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Tore Flåtten, Norway
Ilaria Fragala, Italy
Bruno Franchi, Italy
Xianlong Fu, China
Massimo Furi, Italy
Giovanni P. Galdi, USA
Isaac Garcia, Spain
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This annual issue comes as a sequel to two special issues,
Recent Progress in Differential andDifference Equations edited
by the four members of the present team and Functional
Differential and Difference Equations with Applications with
the same editorial team, both published by the Abstract and
Applied Analysis in 2011 and 2012, respectively.

In the call for papers prepared by the Guest Editors and
posted on the journal’s web page, we encouraged submission
of state-of-the-art contributions on a wide spectrum of topics
such as asymptotic behavior of solutions, boundedness and
periodicity of solutions, nonoscillation and oscillation of
solutions, representation of solutions, stability, numerical
algorithms, and computational aspects, as well as applica-
tions to real-world phenomena. This invitation was warmly
welcomed by the mathematical community; more than sixty
manuscripts addressing important problems in the above-
mentioned fields of qualitative theory of functional differen-
tial and difference equations were submitted to the Editorial
Office and went through a thorough peer refereeing process.
Twenty-seven carefully selected research articles collected
in this special issue reflect modern trends and advances in
functional differential and difference equations. Sixty-seven
authors from fourteen countries (China, Czech Republic,
Georgia, Hungary, Israel, Latvia, Norway, Portugal, Saudi
Arabia, Serbia, Slovak Republic, Spain, Turkey, and Ukraine)
have contributed to the success of this thematic collection of
papers.

Questions related to the existence of periodic solutions
and their stability properties traditionally attract attention
of researchers working in the qualitative theory of differen-
tial, functional differential, and difference equations. In this
issue, the reader will find results that relate periodicity of
linear autonomous nonhomogeneous difference equations to
the existence of equilibria. Systems of nonlinear difference
equations whose all well-defined solutions are periodic are
considered. For some classes of nonlinear systems with delay,
it is shown that the presence of the time delay results in the
existence of periodic solutions.

Existence of oscillating solutions for half-linear differen-
tial equations with delay and for even order damped equa-
tions with distributed deviating arguments is studied. Non-
linear oscillations in the context of saddle-center bifurcation
in the dynamical system describing a singularly perturbed
forced oscillator of Duffing’s type with a nonlinear restoring
and a nonperiodic external driving force are examined.
Boundedness of solutions to a class of second-order periodic
systems with singularities is considered as well.

Stability problems always attract interest of researchers,
and this special issue is not an exception. The reader will
find papers on the stability of impulsive stochastic functional
differential equations with delayed impulses and stability
of differential systems under permanently arising impulses,
an application of moment equations in a model of the
stable foreign currency exchange market in conditions of

Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2014, Article ID 543797, 2 pages
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uncertainty, a study on the global exponential stability of
equilibria for impulsive cellular neural network models with
piecewise alternately advanced and retarded arguments, and
analysis of stability and global Hopf bifurcation phenomena
in a ratio-dependent predator-prey model with two time
delays.

New results for boundary value problems are also
reported, including the existence and uniqueness theorem
for solutions of nonhomogeneous impulsive boundary value
problem for planar Hamiltonian systems and general results
on the solvability of singular initial value problems.

Several articles deal with the behavior of solutions at
infinity. Namely, explicit formulas for planar weakly delayed
linear discrete systems are derived; results on asymptotic
behavior of solutions to generalized Emden-Fowler differen-
tial equations with delayed argument, higher-order quasilin-
ear neutral differential equations, vector integral equations
with deviating arguments, and linear Volterra integrodif-
ferential systems are reported along with the applications
of nonlinear weakly singular inequalities to Volterra-type
difference equations.

Other important problems discussed in this special issue
are related to the representation of the solutions of linear
discrete systems with constant coefficients and two delays,
automorphisms of ordinary differential equations, spatial
discretization of the Cauchy problem for a multidimensional
linear parabolic partial differential equation of the second
order with nondivergent operator, and unbounded time-
and space-dependent coefficients. Newton-Kantorovich and
Smale type convergence theorems are used in a deformed
Newton method with the third-order convergence for solv-
ing nonlinear equations. Regularity of a mild solution for
a stochastic fractional delayed reaction-diffusion equation
driven by Lévy space-time white noise and an inverse
problem for Dirac differential operators with discontinu-
ity conditions and discontinuous coefficient are studied.
Finally, a mathematical model for the incompressible two-
dimensional/axisymmetric non-Newtonian fluid flows and
heat transfer analysis in the region of stagnation point over a
stretching/shrinking sheet and axisymmetric shrinking sheet
is presented.

It is not possible to provide in this short editorial note a
detailed description for all papers included in this volume.
However, it is clear that they reflect contemporary trends
in the development of the qualitative theory of functional
differential equations and feature important applications. We
believe that this special issue challenges researchers with
new unsolved problems and introduces many new ideas and
useful techniques.

J. Dibĺık
E. Braverman

I. Györi
Yu. Rogovchenko

M. Růžičková
A. Zafer
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Planar linear discrete systems with constant coefficients and delays 𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + ∑𝑛
𝑙=1
𝐵
𝑙

𝑥
𝑙
(𝑘 − 𝑚

𝑙
) are considered where

𝑘∈ Z∞
0
:= {0, 1, . . . ,∞}, 𝑚

1
, 𝑚
2
, . . . , 𝑚

𝑛
are constant integer delays, 0 < 𝑚

1
< 𝑚
2
< ⋅ ⋅ ⋅ < 𝑚

𝑛
, 𝐴, 𝐵1, . . . , 𝐵𝑛 are constant 2 × 2

matrices, and 𝑥 : Z∞
−𝑚
𝑛

→ R2. It is assumed that the considered system is weakly delayed. The characteristic equations of such
systems are identical with those for the same systems but without delayed terms. In this case, after several steps, the space of
solutions with a given starting dimension 2(𝑚

𝑛
+ 1) is pasted into a space with a dimension less than the starting one. In a sense,

this situation is analogous to one known in the theory of linear differential systems with constant coefficients and special delays
when the initially infinite dimensional space of solutions on the initial interval turns (after several steps) into a finite dimensional
set of solutions. For every possible case, explicit general solutions are constructed and, finally, results on the dimensionality of the
space of solutions are obtained.

1. Introduction

1.1. Preliminary Notions and Properties. We use the following
notation: for integers 𝑠, 𝑞, 𝑠 ≤ 𝑞, we define Z𝑞

𝑠
:= {𝑠, 𝑠 +

1, . . . , 𝑞}, where 𝑠 = −∞ or 𝑞 = ∞ is admitted, too.
Throughout this paper, using notation Z𝑞

𝑠
, we always assume

𝑠 ≤ 𝑞. In the paper, we deal with the discrete planar system

𝑥 (𝑘 + 1) = 𝐴𝑥 (𝑘) +

𝑛

∑

𝑙=1

𝐵
𝑙

𝑥
𝑙
(𝑘 − 𝑚

𝑙
) , (1)

where 𝑚
1
, 𝑚
2
, . . . , 𝑚

𝑛
are constant integer delays, 0 < 𝑚

1
<

𝑚
2
< ⋅ ⋅ ⋅ < 𝑚

𝑛
, 𝑘 ∈ Z∞

0
, 𝐴, 𝐵1, ..., 𝐵𝑛 are constant 2 × 2

matrices, 𝐴 = (𝑎
𝑖𝑗
), 𝐵𝑙 = (𝑏𝑙

𝑖𝑗
), 𝑖, 𝑗 = 1, 2, 𝑙 = 1, 2, . . . , 𝑛, and

𝑥 : Z∞
−𝑚
𝑛

→ R2. Throughout the paper, we assume that

𝐵
𝑙

̸=Θ, (2)

where 𝑙 = 1, 2, . . . , 𝑛 andΘ is 2 × 2 zeromatrix. Together with
(1), we consider an initial (Cauchy) problem

𝑥 (𝑘) = 𝜑 (𝑘) , (3)

where 𝑘 = −𝑚
𝑛
, −𝑚
𝑛
+ 1, . . . , 0 with 𝜑 : Z0

−𝑚
𝑛

→ R2. The
existence and uniqueness of the solution of the initial problem
(1), (3) on Z∞

−𝑚
𝑛

are obvious. We recall that the solution 𝑥 :
Z∞
−𝑚
𝑛

→ R2 of (1), (3) is defined as an infinite sequence

{𝑥 (−𝑚
𝑛
) = 𝜑 (−𝑚

𝑛
) ,

𝑥 (−𝑚
𝑛
+ 1) = 𝜑 (−𝑚

𝑛
+ 1) , . . . ,

𝑥 (0) = 𝜑 (0) ,

𝑥 (1) , 𝑥 (2) , . . . , 𝑥 (𝑘) , . . . }

(4)

such that, for any 𝑘 ∈ Z∞
0
, equality (1) holds.

The space of all initial data (3) with 𝜑 : Z0
−𝑚
𝑛

→ R2

is obviously 2(𝑚
𝑛
+ 1)-dimensional. Below, we describe the
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fact that, among system (1), there are such systems that their
space of solutions, being initially 2(𝑚

𝑛
+ 1)-dimensional, on

a reduced interval turns into a space having a dimension less
than 2(𝑚

𝑛
+ 1). The problem under consideration (pasting

property of solutions) is exactly formulated in Section 1.4.

1.2.WeaklyDelayed Systems. Weconsider system (1) and look
for a solution having the form 𝑥(𝑘) = 𝜉𝜆

𝑘, where 𝑘 ∈ Z∞
−𝑚
𝑛

,
𝜆 = constant with 𝜆 ̸= 0, and 𝜉 = (𝜉

1
, 𝜉
2
)
𝑇 is a nonzero

constant vector. The usual procedure leads to a characteristic
equation

𝐷 := det(𝐴 +
𝑛

∑

𝑙=1

𝜆
−𝑚
𝑙

𝐵
𝑙

− 𝜆𝐼) = 0, (5)

where 𝐼 is the unit 2× 2matrix. Together with (1), we consider
a system with the terms containing delays omitted:

𝑥 (𝑘 + 1) = 𝐴𝑥 (𝑘) (6)

and its characteristic equation

det (𝐴 − 𝜆𝐼) = 0. (7)

Definition 1. System (1) is called a weakly delayed system if
characteristic equations (5), (7) corresponding to systems (1)
and (6) are equal, that is, if, for every 𝜆 ∈ C \ {0},

𝐷 = det(𝐴 +
𝑛

∑

𝑙=1

𝜆
−𝑚
𝑙

𝐵
𝑙

− 𝜆𝐼) = det (𝐴 − 𝜆𝐼) . (8)

We consider a linear transformation

𝑥 (𝑘) = S𝑦 (𝑘) , (9)

with a nonsingular 2 × 2 matrix S, then the discrete system
for 𝑦 is

𝑦 (𝑘 + 1) = 𝐴S𝑦 (𝑘) +

𝑛

∑

𝑙=1

𝐵
𝑙

S𝑦 (𝑘 − 𝑚𝑙) , (10)

with 𝐴S = S−1𝐴S, 𝐵𝑙S = S−1𝐵𝑙S, where 𝑙 = 1, 2, . . . , 𝑛. We
show that a system’s property of being one weakly delayed is
preserved by every nonsingular linear transformation.

Lemma 2. If system (1) is a weakly delayed system, then its
arbitrary linear nonsingular transformation (9) again leads to
a weakly delayed system (10).

Proof. It is easy to show that

det(𝐴S +

𝑛

∑

𝑙=1

𝜆
−𝑚
𝑙

𝐵
𝑙

S − 𝜆𝐼) = det (𝐴S − 𝜆𝐼) (11)

holds since

det(𝐴S +

𝑛

∑

𝑙=1

𝜆
−𝑚
𝑙

𝐵
𝑙

S − 𝜆𝐼)

= det (𝐴S + 𝜆
−𝑚
1

𝐵
1

S + 𝜆
−𝑚
2

𝐵
2

S

+ ⋅ ⋅ ⋅ + 𝜆
−𝑚
𝑛

𝐵
𝑛

S − 𝜆𝐼)

= det (S−1𝐴S + 𝜆−𝑚1S−1𝐵1S

+ 𝜆
−𝑚
2S
−1

𝐵
2

S + ⋅ ⋅ ⋅

+𝜆
−𝑚
𝑛S
−1

𝐵
𝑛

S − 𝜆S
−1

𝐼S)

= det [S−1 (𝐴 + 𝜆−𝑚1𝐵1 + 𝜆−𝑚2𝐵2

+ ⋅ ⋅ ⋅ + 𝜆
−𝑚
𝑛

𝐵
𝑛

− 𝜆𝐼)S]

= detS−1 det (𝐴 + 𝜆−𝑚1𝐵1 + 𝜆−𝑚2𝐵2

+ ⋅ ⋅ ⋅ + 𝜆
−𝑚
𝑛

𝐵
𝑛

− 𝜆𝐼) detS

= det (𝐴 + 𝜆−𝑚1𝐵1 + 𝜆−𝑚2𝐵2

+ ⋅ ⋅ ⋅ + 𝜆
−𝑚
𝑛

𝐵
𝑛

− 𝜆𝐼)

= det(𝐴 +
𝑛

∑

𝑙=1

𝜆
−𝑚
𝑙

𝐵
𝑙

− 𝜆𝐼) ,

det (𝐴S − 𝜆𝐼) = det (S−1𝐴S − 𝜆S−1𝐼S)

= det [S−1 (𝐴 − 𝜆𝐼)S]

= detS−1 det (𝐴 − 𝜆𝐼) detS

= det (𝐴 − 𝜆𝐼) ,

det(𝐴 +
𝑛

∑

𝑙=1

𝜆
−𝑚
𝑙

𝐵
𝑙

− 𝜆𝐼) = det (𝐴 − 𝜆𝐼) ;

(12)

that is, equality (8) is assumed.

1.3. Necessary and Sufficient Conditions Determining Weakly
Delayed Systems. In the next theorem, we give conditions, in
terms of determinants, indicating whether a system is weakly
delayed.

Theorem 3. System (1) is a weakly delayed system if and only
if the following 3𝑛+𝑛(𝑛−1)/2 conditions hold simultaneously:

𝑏
𝑙

11
+ 𝑏
𝑙

22
= 0, (13)












𝑏
𝑙

11
𝑏
𝑙

12

𝑏
𝑙

21
𝑏
𝑙

22












= 0, (14)
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𝑎
11
𝑎
12

𝑏
𝑙

21
𝑏
𝑙

22












+












𝑏
𝑙

11
𝑏
𝑙

12

𝑎
21
𝑎
22












= 0, (15)












𝑏
𝑙

11
𝑏
𝑙

12

𝑏
V
21
𝑏
V
22












+












𝑏
V
11
𝑏
V
12

𝑏
𝑙

21
𝑏
𝑙

22












= 0, (16)

where 𝑙, V = 1, 2, . . . , 𝑛 and V > 𝑙.

Proof. We start with computing determinant 𝐷 defined by
(5). We get

𝐷 =










𝐷
1
𝐷
2

𝐷
3
𝐷
4










, (17)

where
𝐷
1
= 𝑎
11
+ 𝑏
1

11
𝜆
−𝑚
1

+ 𝑏
2

11
𝜆
−𝑚
2

+ ⋅ ⋅ ⋅ + 𝑏
𝑛

11
𝜆
−𝑚
𝑛

− 𝜆,

𝐷
2
= 𝑎
12
+ 𝑏
1

12
𝜆
−𝑚
1

+ 𝑏
2

12
𝜆
−𝑚
2

+ ⋅ ⋅ ⋅ + 𝑏
𝑛

12
𝜆
−𝑚
𝑛

,

𝐷
3
= 𝑎
21
+ 𝑏
1

21
𝜆
−𝑚
1

+ 𝑏
2

21
𝜆
−𝑚
2

+ ⋅ ⋅ ⋅ + 𝑏
𝑛

21
𝜆
−𝑚
𝑛

,

𝐷
4
= 𝑎
22
+ 𝑏
1

22
𝜆
−𝑚
1

+ 𝑏
2

22
𝜆
−𝑚
2

+ ⋅ ⋅ ⋅ + 𝑏
𝑛

22
𝜆
−𝑚
𝑛

− 𝜆.

(18)

Expanding the determinant on the right-hand side along
summands of the first column, we get

𝐷 =












𝑎
11

𝑎
12
+ 𝑏
1

12
𝜆
−𝑚
1
+ 𝑏
2

12
𝜆
−𝑚
2
+ ⋅ ⋅ ⋅ + 𝑏

𝑛

12
𝜆
−𝑚
𝑛

𝑎
21
𝑎
22
+ 𝑏
1

22
𝜆
−𝑚
1
+ 𝑏
2

22
𝜆
−𝑚
2
+ ⋅ ⋅ ⋅ + 𝑏

𝑛

22
𝜆
−𝑚
𝑛
− 𝜆












+ 𝜆
−𝑚
1












𝑏
1

11
𝑎
12
+ 𝑏
1

12
𝜆
−𝑚
1
+ 𝑏
2

12
𝜆
−𝑚
2
+ ⋅ ⋅ ⋅ + 𝑏

𝑛

12
𝜆
−𝑚
𝑛

𝑏
1

21
𝑎
22
+ 𝑏
1

22
𝜆
−𝑚
1
+ 𝑏
2

22
𝜆
−𝑚
2
+ ⋅ ⋅ ⋅ + 𝑏

𝑛

22
𝜆
−𝑚
𝑛
− 𝜆












+ 𝜆
−𝑚
2












𝑏
2

11
𝑎
12
+ 𝑏
1

12
𝜆
−𝑚
1
+ 𝑏
2

12
𝜆
−𝑚
2
+ ⋅ ⋅ ⋅ + 𝑏

𝑛

12
𝜆
−𝑚
𝑛

𝑏
2

21
𝑎
22
+ 𝑏
1

22
𝜆
−𝑚
1
+ 𝑏
2

22
𝜆
−𝑚
2
+ ⋅ ⋅ ⋅ + 𝑏

𝑛

22
𝜆
−𝑚
𝑛
− 𝜆












+ ⋅ ⋅ ⋅

+ 𝜆
−𝑚
𝑛












𝑏
𝑛

11
𝑎
12
+ 𝑏
1

12
𝜆
−𝑚
1
+ 𝑏
2

12
𝜆
−𝑚
2
+ ⋅ ⋅ ⋅ + 𝑏

𝑛

12
𝜆
−𝑚
𝑛

𝑏
𝑛

21
𝑎
22
+ 𝑏
1

22
𝜆
−𝑚
1
+ 𝑏
2

22
𝜆
−𝑚
2
+ ⋅ ⋅ ⋅ + 𝑏

𝑛

22
𝜆
−𝑚
𝑛
− 𝜆












+ 𝜆












−1 𝑎
12
+ 𝑏
1

12
𝜆
−𝑚
1
+ 𝑏
2

12
𝜆
−𝑚
2
+ ⋅ ⋅ ⋅ + 𝑏

𝑛

12
𝜆
−𝑚
𝑛

0 𝑎
22
+ 𝑏
1

22
𝜆
−𝑚
1
+ 𝑏
2

22
𝜆
−𝑚
2
+ ⋅ ⋅ ⋅ + 𝑏

𝑛

22
𝜆
−𝑚
𝑛
− 𝜆












.

(19)

Expanding each of the above determinants along sum-
mands of the second column, we have

𝐷 =












𝑎
11
𝑎
12

𝑎
21
𝑎
22












+ 𝜆
−𝑚
1












𝑎
11
𝑏
1

12

𝑎
21
𝑏
1

22












+ 𝜆
−𝑚
2












𝑎
11
𝑏
2

12

𝑎
21
𝑏
2

22












+ ⋅ ⋅ ⋅ + 𝜆
−𝑚
𝑛












𝑎
11
𝑏
𝑛

12

𝑎
21
𝑏
𝑛

22












+ 𝜆










𝑎
11

0

𝑎
21
−1










+ 𝜆
−𝑚
1

[












𝑏
1

11
𝑎
12

𝑏
1

21
𝑎
22












+ 𝜆
−𝑚
1












𝑏
1

11
𝑏
1

12

𝑏
1

21
𝑏
1

22












+ 𝜆
−𝑚
2












𝑏
1

11
𝑏
2

12

𝑏
1

21
𝑏
2

22












+ ⋅ ⋅ ⋅ + 𝜆
−𝑚
𝑛












𝑏
1

11
𝑏
𝑛

12

𝑏
1

21
𝑏
𝑛

22












+ 𝜆












𝑏
1

11
0

𝑏
1

21
−1












]

+ 𝜆
−𝑚
2

[












𝑏
2

11
𝑎
12

𝑏
2

21
𝑎
22












+ 𝜆
−𝑚
1












𝑏
2

11
𝑏
1

12

𝑏
2

21
𝑏
1

22












+ 𝜆
−𝑚
2












𝑏
2

11
𝑏
2

12

𝑏
2

21
𝑏
2

22












+ ⋅ ⋅ ⋅ + 𝜆
−𝑚
𝑛












𝑏
2

11
𝑏
𝑛

12

𝑏
2

21
𝑏
𝑛

22












+ 𝜆












𝑏
2

11
0

𝑏
2

21
−1












]

+ ⋅ ⋅ ⋅

+ 𝜆
−𝑚
𝑛

[












𝑏
𝑛

11
𝑎
12

𝑏
𝑛

21
𝑎
22












+ 𝜆
−𝑚
1












𝑏
𝑛

11
𝑏
1

12

𝑏
𝑛

21
𝑏
1

22












+ 𝜆
−𝑚
2












𝑏
𝑛

11
𝑏
2

12

𝑏
𝑛

21
𝑏
2

22












+ ⋅ ⋅ ⋅ + 𝜆
−𝑚
𝑛












𝑏
𝑛

11
𝑏
𝑛

12

𝑏
𝑛

21
𝑏
𝑛

22












+ 𝜆












𝑏
𝑛

11
0

𝑏
𝑛

21
−1












]

+ 𝜆[












−1 𝑎
12

0 𝑎
22












+ 𝜆
−𝑚
1












−1 𝑏
1

12

0 𝑏
1

22












+ 𝜆
−𝑚
2












−1 𝑏
2

12

0 𝑏
2

22












+ ⋅ ⋅ ⋅ + 𝜆
−𝑚
𝑛












−1 𝑏
𝑛

12

0 𝑏
𝑛

22












+ 𝜆










−1 0

0 −1










] .

(20)
After simplification, we get

𝐷 =










𝑎
11
− 𝜆 𝑎

12

𝑎
21

𝑎
22
− 𝜆










− 𝜆
−𝑚
1
+1

(𝑏
1

11
+ 𝑏
1

22
)

− 𝜆
−𝑚
2
+1

(𝑏
2

11
+ 𝑏
2

22
) + ⋅ ⋅ ⋅ − 𝜆

−𝑚
𝑛
+1

(𝑏
𝑛

11
+ 𝑏
𝑛

22
)

+ 𝜆
−𝑚
1

[












𝑎
11
𝑎
12

𝑏
1

21
𝑏
1

22












+












𝑏
1

11
𝑏
1

12

𝑎
21
𝑎
22












]

+ 𝜆
−𝑚
2

[












𝑎
11
𝑎
12

𝑏
2

21
𝑏
2

22












+












𝑏
2

11
𝑏
2

12

𝑎
21
𝑎
22












]

+ ⋅ ⋅ ⋅ + 𝜆
−𝑚
𝑛

[












𝑎
11
𝑎
12

𝑏
𝑛

21
𝑏
𝑛

22












+












𝑏
𝑛

11
𝑏
𝑛

12

𝑎
21
𝑎
22












]

+ 𝜆
−𝑚
1
−𝑚
2

[












𝑏
1

11
𝑏
1

12

𝑏
2

21
𝑏
2

22












+












𝑏
2

11
𝑏
2

12

𝑏
1

21
𝑏
1

22












]

+ ⋅ ⋅ ⋅ + 𝜆
−𝑚
1
−𝑚
𝑛

[












𝑏
1

11
𝑏
1

12

𝑏
𝑛

21
𝑏
𝑛

22












+












𝑏
𝑛

11
𝑏
𝑛

12

𝑏
1

21
𝑏
1

22












]

+ 𝜆
−𝑚
2
−𝑚
3

[











𝑏
2

11
𝑏
2

12

𝑏
3

21
𝑏
3

22











+











𝑏
3

11
𝑏
3

12

𝑏
2

21
𝑏
2

22











]

+ ⋅ ⋅ ⋅ + 𝜆
−𝑚
2
−𝑚
𝑛

[










𝑏
2

11
𝑏
2

12

𝑏
𝑛

21
𝑏
𝑛

22










+










𝑏
𝑛

11
𝑏
𝑛

12

𝑏
2

21
𝑏
2

22










]

+ ⋅ ⋅ ⋅ + 𝜆
−𝑚
𝑛−1
−𝑚
𝑛

[










𝑏
𝑛−1

11
𝑏
𝑛−1

12

𝑏
𝑛

21
𝑏
𝑛

22










+










𝑏
𝑛

11
𝑏
𝑛

12

𝑏
𝑛−1

21
𝑏
𝑛−1

22










]

+ 𝜆
−2𝑚
1











𝑏
1

11
𝑏
1

12

𝑏
1

21
𝑏
1

22











+ 𝜆
−2𝑚
2











𝑏
2

11
𝑏
2

12

𝑏
2

21
𝑏
2

22











+ ⋅ ⋅ ⋅ + 𝜆
−2𝑚
𝑛










𝑏
𝑛

11
𝑏
𝑛

12

𝑏
𝑛

21
𝑏
𝑛

22










.

(21)
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Now we see that for (8) to hold; that is,

𝐷 = det(𝐴 +
𝑛

∑

𝑙=1

𝜆
−𝑚
𝑙

𝐵
𝑙

− 𝜆𝐼)

= det (𝐴 − 𝜆𝐼)

=










𝑎
11
− 𝜆 𝑎

12

𝑎
21

𝑎
22
− 𝜆










,

(22)

conditions (13)–(16) are both necessary and sufficient.

Lemma 4. Conditions (13)–(16) are equivalent to

tr𝐵𝑙 = det𝐵𝑙 = 0, (23)

det (𝐴 + 𝐵𝑙) = det𝐴, (24)

det (𝐵𝑙 + 𝐵V) = 0, (25)

where 𝑙, V = 1, 2, . . . , 𝑛 and V > 𝑙.

Proof. (I) We show that assumptions (13)–(16) imply (23)–
(25). It is obvious that condition (23) is equivalent to (13), (14).
Now we consider

det (𝐴 + 𝐵𝑙) =











𝑎
11
+ 𝑏
𝑙

11
𝑎
12
+ 𝑏
𝑙

12

𝑎
21
+ 𝑏
𝑙

21
𝑎
22
+ 𝑏
𝑙

22












. (26)

Expanding the determinant on the right-hand side along
summands of the first column and then expanding each of
the determinants along summands of the second column, we
have

det (𝐴 + 𝐵𝑙) =











𝑎
11
𝑎
12
+ 𝑏
𝑙

12

𝑎
21
𝑎
22
+ 𝑏
𝑙

22












+












𝑏
𝑙

11
𝑎
12
+ 𝑏
𝑙

12

𝑏
𝑙

21
𝑎
22
+ 𝑏
𝑙

22












=












𝑎
11
𝑎
12

𝑎
21
𝑎
22












+












𝑎
11
𝑏
𝑙

12

𝑎
21
𝑏
𝑙

22












+












𝑏
𝑙

11
𝑎
12

𝑏
𝑙

21
𝑎
22












+












𝑏
𝑙

11
𝑏
𝑙

12

𝑏
𝑙

21
𝑏
𝑙

22












= [due to (15) and (16)] = det𝐴.

(27)

Now we consider

det (𝐵𝑙 + 𝐵V) =











𝑏
𝑙

11
+ 𝑏

V
11
𝑏
𝑙

12
+ 𝑏

V
12

𝑏
𝑙

21
+ 𝑏

V
21
𝑏
𝑙

22
+ 𝑏

V
22












. (28)

Expanding the determinant on the right-hand side along
summands of the first column and then expanding each of

the determinants along summands of the second column, we
have

det (𝐵𝑙 + 𝐵V) =











𝑏
𝑙

11
𝑏
𝑙

12
+ 𝑏

V
12

𝑏
𝑙

21
𝑏
𝑙

22
+ 𝑏

V
22












+












𝑏
V
11
𝑏
𝑙

12
+ 𝑏

V
12

𝑏
V
21
𝑏
𝑙

22
+ 𝑏

V
22












=












𝑏
𝑙

11
𝑏
𝑙

12

𝑏
𝑙

21
𝑏
𝑙

22












+












𝑏
𝑙

11
𝑏
V
12

𝑏
𝑙

21
𝑏
V
22












+












𝑏
V
11
𝑏
𝑙

12

𝑏
V
21
𝑏
𝑙

22












+












𝑏
V
11
𝑏
V
12

𝑏
V
21
𝑏
V
22












= [due to (15) , (17)] = 0.

(29)

(II) Now we prove that assumptions (23)–(25) imply (13)
and (16). Due to equivalence of (13) and (14) with (23), it
remains to be shown that (23)–(25) imply (15) and (16).

If (24) holds, then, from computations in (27), we see that











𝑎
11
𝑏
𝑙

12

𝑎
21
𝑏
𝑙

22












+












𝑏
𝑙

11
𝑎
12

𝑏
𝑙

21
𝑎
22












+












𝑏
𝑙

11
𝑏
𝑙

12

𝑏
𝑙

21
𝑏
𝑙

22












= 0, (30)

and because of (23) we get (15).
Finally, we show that (23) and (25) imply (16). From (29)

(using (23)) we get

det (𝐵𝑙 + 𝐵V) =










𝑏
𝑙

11
𝑏
V
12

𝑏
𝑙

21
𝑏
V
22











+











𝑏
V
11
𝑏
𝑙

12

𝑏
V
21
𝑏
𝑙

22











= 0, (31)

that is, (16) holds.

1.4. Problem under Consideration. The aim of this paper is to
give explicit formulas for solutions of weakly delayed systems
and to show that, after several steps, the dimension of the
space of all solutions, being initially equal to the dimension
2(𝑚
𝑛
+ 1) of the space of initial data (3) generated by discrete

functions 𝜑, is reduced to a dimension less than the initial
one on an interval of the form Z∞

𝑠
with an 𝑠 > 0. In other

words, we will show that the 2(𝑚
𝑛
+ 1)-dimensional space

of all solutions of (1) is pasted to a less-dimensional space of
solutions on Z∞

𝑠
. This problem is solved directly by explic-

itly computing the corresponding solutions of the Cauchy
problems with each of the cases arising being considered.The
underlying idea for such investigation is simple. If (1) is a
weakly delayed system, then the corresponding characteristic
equation has only two eigenvalues instead of 2(𝑚

𝑛
+ 1)

eigenvalues in the case of systems with nonweak delays. This
explains why the dimension of the space of solutions becomes
less than the initial one. The final results (Theorems 10–13)
provide the dimension of the space of solutions. Our results
generalize the results in [1, 2], where system (1) with 𝑛 = 1
and 𝑛 = 2 was analyzed.

1.5. Auxiliary Formula. For the reader’s convenience, we
recall one explicit formula (see, e.g., [3]) for the solutions of
linear scalar discrete nondelayed equations used in this paper.
We consider initial-value problem for the first order linear
discrete nonhomogeneous equation

𝑤 (𝑘 + 1) = 𝑎𝑤 (𝑘) + 𝑔 (𝑘) , 𝑤 (𝑘
0
) = 𝑤
0
, 𝑘 ∈ Z

∞

𝑘
0

, (32)
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with 𝑎 ∈ C and 𝑔 : Z∞
𝑘
0

→ C. Then, it is easy to verify that
unique solution of this problem is

𝑤 (𝑘) = 𝑎
𝑘−𝑘
0

𝑤
0
+

𝑘−1

∑

𝑟=𝑘
0

𝑎
𝑘−1−𝑟

𝑔 (𝑟) , 𝑘 ∈ Z
∞

𝑘
0
+1
. (33)

Throughout the paper, we adopt the customary notation for
the sum: ∑ℓ

𝑖=ℓ+𝑠
F(𝑖) = 0, where ℓ is an integer, 𝑠 is a positive

integer, and “F” denotes the function considered indepen-
dently of whether it is defined for indicated arguments or not.

Note that the formula (33) is used many times in recent
literature to analyze asymptotic properties of solutions of
various classes of difference equations, including nonlinear
equations. We refer, for example, to [4–8] and to relevant
references therein.

2. General Solution of Weakly Delayed System

If (8) holds, then (5) and (7) have only two (and the same)
roots simultaneously. In order to prove the properties of the
family of solutions of (1) formulated in the introduction, we
will discuss each combination of roots, that is, the cases of two
real and distinct roots, a pair of complex conjugate roots, and,
finally, a double real root.

Although computations in Sections 1.2 and 1.3 were
performed under assumption that 𝜆 ̸= 0, results of this part
remain valid also if one or both roots of characteristic
equation (7) are zero.

2.1. Jordan Forms of theMatrix𝐴 and Corresponding Solutions
of Problem (1) and (3). It is known that, for every matrix
𝐴, there exists a nonsingular matrix 𝑆 transforming it to the
corresponding Jordan matrix form Λ. This means that

Λ = 𝑆
−1

𝐴𝑆, (34)

where Λ has the following four possible forms (denoted
below as Λ

1
, Λ
2
, Λ
3
, Λ
4
), depending on the roots of the

characteristic equation (7), that is, on the roots of

𝜆
2

− (𝑎
11
+ 𝑎
22
) 𝜆 + (𝑎

11
𝑎
22
− 𝑎
12
𝑎
21
) = 0. (35)

If (35) has two real distinct roots 𝜆
1
, 𝜆
2
, then

Λ
1
= (

𝜆
1
0

0 𝜆
2

) , (36)

if the roots are complex conjugate, that is, 𝜆
1,2
= 𝑝 ± 𝑖𝑞 with

𝑞 ̸= 0, then

Λ
2
= (

𝑝 𝑞

−𝑞 𝑝
) (37)

and, finally, in the case of one double real root 𝜆
1,2
= 𝜆, we

have either

Λ
3
= (

𝜆 0

0 𝜆
) (38)

or

Λ
4
= (

𝜆 1

0 𝜆
) . (39)

The transformation 𝑦(𝑘) = 𝑆
−1

𝑥(𝑘) transforms (1) into a
system

𝑦 (𝑘 + 1) = Λ𝑦 (𝑘) +

𝑛

∑

𝑙=1

𝐵
∗𝑙

𝑦 (𝑘 − 𝑚
𝑙
) , 𝑘 ∈ Z

∞

0
(40)

with 𝐵∗𝑙 = 𝑆−1𝐵𝑙𝑆, 𝐵∗𝑙 = (𝑏∗𝑙
𝑖𝑗
), 𝑙 = 1, . . . , 𝑛, and 𝑖, 𝑗 = 1, 2.

Together with (40), we consider an initial problem

𝑦 (𝑘) = 𝜑
∗

(𝑘) , (41)

𝑘 ∈ Z0
−𝑚
𝑛

with 𝜑∗ : Z0
−𝑚
𝑛

→ R2 where 𝜑∗(𝑘) = 𝑆−1𝜑(𝑘) is
the initial function corresponding to the initial function 𝜑 in
(3).

Next, we consider all four possible cases (36)–(39) sepa-
rately.

We define

Φ
1
(𝑘) := (0, 𝜑

∗

1
(𝑘))
𝑇

, Φ
2
(𝑘) := (𝜑

∗

2
(𝑘) , 0)

𝑇

,

𝑘 ∈ Z
0

−𝑚
𝑛

.

(42)

Assuming that (1) is a weakly delayed system, by Lemma 2,
the system (40) is weakly delayed system again.

2.1.1. Case (36) of Two Real Distinct Roots. In this case, we
have Λ = Λ

1
and Λ𝑘

1
= diag(𝜆𝑘

1
, 𝜆
𝑘

2
). The necessary and

sufficient conditions (13)–(16) for (40) turn into

𝑏
∗𝑙

11
+ 𝑏
∗𝑙

22
= 0, (43)











𝑏
∗𝑙

11
𝑏
∗𝑙

12

𝑏
∗𝑙

21
𝑏
∗𝑙

22











= 𝑏
∗𝑙

11
𝑏
∗𝑙

22
− 𝑏
∗𝑙

12
𝑏
∗𝑙

21
= 0, (44)










𝜆
1
0

𝑏
∗𝑙

21
𝑏
∗𝑙

22










+










𝑏
∗𝑙

11
𝑏
∗𝑙

12

0 𝜆
2










= 𝜆
1
𝑏
∗𝑙

22
+ 𝜆
2
𝑏
∗𝑙

11
= 0, (45)










𝑏
∗𝑙

11
𝑏
∗𝑙

12

𝑏
∗V
21

𝑏
∗V
22










+










𝑏
∗V
11

𝑏
∗V
12

𝑏
∗𝑙

21
𝑏
∗𝑙

22










= 0. (46)

Since 𝜆
1
̸= 𝜆
2
, (43) and (45) yield 𝑏∗𝑙

11
= 𝑏
∗𝑙

22
= 0, then, from

(44), we get 𝑏∗𝑙
12
𝑏
∗𝑙

21
= 0, so that either 𝑏∗𝑙

21
= 0 or 𝑏∗𝑙

12
= 0. In

view of assumptions 𝐵𝑙 ̸=Θ, 𝑙 = 1, 2, . . . , 𝑛, we conclude that
only the following cases I, II are possible:

(I) 𝑏∗𝑙
11
= 𝑏
∗𝑙

22
= 𝑏
∗𝑙

21
= 0, 𝑏∗𝑙
12

̸= 0, 𝑙 = 1, 2, . . . , 𝑛,

(II) 𝑏∗𝑙
11
= 𝑏
∗𝑙

22
= 𝑏
∗𝑙

12
= 0, 𝑏∗𝑙
21

̸= 0, 𝑙 = 1, 2, . . . , 𝑛.

In Theorem 5 both cases I, II are analyzed.

Theorem 5. Let (1) be a weakly delayed system and (35) has
two real distinct roots 𝜆

1
, 𝜆
2
. If case (I) holds, then the solution
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of the initial problem (1), (3) is 𝑥(𝑘) = 𝑆𝑦(𝑘), 𝑘 ∈ Z∞
−𝑚
𝑛

, where
𝑦(𝑘) has the form

𝑦 (𝑘) =

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

𝜑
∗

(𝑘) 𝑖𝑓 𝑘 ∈ Z0
−𝑚
𝑛

,

Λ
𝑘

1
𝜑
∗

(0) +

𝑘−1

∑

𝑟=0

𝜆
𝑘−1−𝑟

1
[

𝑛

∑

𝑙=1

𝑏
∗𝑙

12
Φ
2
(𝑟 − 𝑚

𝑙
)]

𝑖𝑓 𝑘 ∈ Z
𝑚
1
+1

1
,

...

Λ
𝑘

1
𝜑
∗

(0) +

𝑘−1

∑

𝑟=0

𝜆
𝑘−1−𝑟

1
[

𝑛

∑

𝑙=𝑠+1

𝑏
∗𝑙

12
Φ
2
(𝑟 − 𝑚

𝑙
)]

+

𝑠

∑

𝑙=1

𝑏
∗𝑙

12
[

𝑚
𝑙

∑

𝑟=0

𝜆
𝑘−1−𝑟

1
Φ
2
(𝑟 − 𝑚

𝑙
)

+Φ
2
(0)

𝑘−1

∑

𝑟=𝑚
𝑙
+1

𝜆
𝑘−1−𝑟

1
𝜆
𝑟−𝑚
𝑙

2
]

𝑖𝑓 𝑘 ∈ Z
𝑚
𝑠+1
+1

𝑚
𝑠
+2
,

𝑠 = 1, 2, . . . , 𝑛 − 1,

...

Λ
𝑘

1
𝜑
∗

(0) +

𝑛

∑

𝑙=1

𝑏
∗𝑙

12
[

𝑚
𝑙

∑

𝑟=0

𝜆
𝑘−1−𝑟

1
Φ
2
(𝑟 − 𝑚

𝑙
)

+Φ
2
(0)

𝑘−1

∑

𝑟=𝑚
𝑙
+1

𝜆
𝑘−1−𝑟

1
𝜆
𝑟−𝑚
𝑙

2
]

𝑖𝑓 𝑘 ∈ Z∞
𝑚
𝑛
+2
.

(47)

If case (II) is true, then the solution of initial problem (1), (3) is
𝑥(𝑘) = 𝑆𝑦(𝑘), 𝑘 ∈ Z∞

−𝑚
𝑛

, where 𝑦(𝑘) has the form

𝑦 (𝑘) =

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

𝜑
∗

(𝑘) 𝑖𝑓 𝑘 ∈ Z0
−𝑚
𝑛

,

Λ
𝑘

1
𝜑
∗

(0) +

𝑘−1

∑

𝑟=0

𝜆
𝑘−1−𝑟

2
[

𝑛

∑

𝑙=1

𝑏
∗𝑙

21
Φ
1
(𝑟 − 𝑚

𝑙
)]

𝑖𝑓 𝑘 ∈ Z
𝑚
1
+1

1
,

...

Λ
𝑘

1
𝜑
∗

(0) +

𝑘−1

∑

𝑟=0

𝜆
𝑘−1−𝑟

2
[

𝑛

∑

𝑙=𝑠+1

𝑏
∗𝑙

21
Φ
1
(𝑟 − 𝑚

𝑙
)]

+

𝑠

∑

𝑙=1

𝑏
∗𝑙

21
[

𝑚
𝑙

∑

𝑟=0

𝜆
𝑘−1−𝑟

2
Φ
1
(𝑟 − 𝑚

𝑙
)

+Φ
1
(0)

𝑘−1

∑

𝑟=𝑚
𝑙
+1

𝜆
𝑟−𝑚
𝑙

1
𝜆
𝑘−1−𝑟

2
]

𝑖𝑓 𝑘 ∈ Z
𝑚
𝑠+1
+1

𝑚
𝑠
+2
,

𝑠 = 1, 2, . . . , 𝑛 − 1,

...

Λ
𝑘

1
𝜑
∗

(0) +

𝑛

∑

𝑙=1

𝑏
∗𝑙

21
[

𝑚
𝑙

∑

𝑟=0

𝜆
𝑘−1−𝑟

2
Φ
1
(𝑟 − 𝑚

𝑙
)

+Φ
1
(0)

𝑘−1

∑

𝑟=𝑚
𝑙
+1

𝜆
𝑟−𝑚
𝑙

1
𝜆
𝑘−1−𝑟

2
]

𝑖𝑓 𝑘 ∈ Z∞
𝑚
𝑛
+2
.

(48)

Proof. If case (I) is true, then the transformed system (40)
takes the form

𝑦
1
(𝑘 + 1) = 𝜆

1
𝑦
1
(𝑘) +

𝑛

∑

𝑙=1

𝑏
∗𝑙

12
𝑦
2
(𝑘 − 𝑚

𝑙
) , (49)

𝑦
2
(𝑘 + 1) = 𝜆

2
𝑦
2
(𝑘) ,

𝑘 ∈ Z
∞

0
,

(50)

and if case (II) holds, then (40) takes the form

𝑦
1
(𝑘 + 1) = 𝜆

1
𝑦
1
(𝑘) , (51)

𝑦
2
(𝑘 + 1) = 𝜆

2
𝑦
2
(𝑘) +

𝑛

∑

𝑙=1

𝑏
∗𝑙

21
𝑦
1
(𝑘 − 𝑚

𝑙
) ,

𝑘 ∈ Z
∞

0
.

(52)

We investigate only the initial problem (49), (50), (41) since
the initial problem (51), (52), (41) can be examined in a similar
way.

From (50), (41), we get

𝑦
2
(𝑘) = {

𝜑
∗

2
(𝑘) if 𝑘 ∈ Z0

−𝑚
𝑛

,

𝜆
𝑘

2
𝜑
∗

2
(0) if 𝑘 ∈ Z∞

1
,

(53)

then (49) becomes

𝑦
1
(𝑘 + 1)

=

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

𝜆
1
𝑦
1
(𝑘) +

𝑛

∑

𝑙=1

𝑏
∗𝑙

12
𝜑
∗

2
(𝑘 − 𝑚

𝑙
) if 𝑘 ∈ Z𝑚1

0
,

𝜆
1
𝑦
1
(𝑘) + 𝑏

∗1

12
𝜆
𝑘−𝑚
1

2
𝜑
∗

2
(0)

+

𝑛

∑

𝑙=2

𝑏
∗𝑙

12
𝜑
∗

2
(𝑘 − 𝑚

𝑙
) if 𝑘 ∈ Z𝑚2

𝑚
1
+1
,

𝜆
1
𝑦
1
(𝑘) +

2

∑

𝑙=1

𝑏
∗𝑙

12
𝜆
𝑘−𝑚
𝑙

2
𝜑
∗

2
(0)

+

𝑛

∑

𝑙=3

𝑏
∗𝑙

12
𝜑
∗

2
(𝑘 − 𝑚

𝑙
) if 𝑘 ∈ Z𝑚3

𝑚
2
+1
,

...

𝜆
1
𝑦
1
(𝑘) +

𝑠

∑

𝑙=1

𝑏
∗𝑙

12
𝜆
𝑘−𝑚
𝑙

2
𝜑
∗

2
(0)

+

𝑛

∑

𝑙=𝑠+1

𝑏
∗𝑙

12
𝜑
∗

2
(𝑘 − 𝑚

𝑙
) if 𝑘 ∈ Z𝑚𝑠+1

𝑚
𝑠
+1
,

𝑠 = 3, 4, . . . , 𝑛 − 1,

...

𝜆
1
𝑦
1
(𝑘) +

𝑛

∑

𝑙=1

𝑏
∗𝑙

12
𝜆
𝑘−𝑚
𝑙

2
𝜑
∗

2
(0) if 𝑘 ∈ Z∞

𝑚
𝑛
+1
.

(54)
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First, we solve this equation for 𝑘 ∈ Z
𝑚
1

0
. This means that we

consider the problem

𝑦
1
(𝑘 + 1) = 𝜆

1
𝑦
1
(𝑘)

+

𝑛

∑

𝑙=1

𝑏
∗𝑙

12
𝜑
∗

2
(𝑘 − 𝑚

𝑙
) , 𝑘 ∈ Z

𝑚
1

0
,

𝑦
1
(0) = 𝜑

∗

1
(0) .

(55)

With the aid of formula (33), we get

𝑦
1
(𝑘) = 𝜆

𝑘

1
𝜑
∗

1
(0) +

𝑘−1

∑

𝑟=0

𝜆
𝑘−1−𝑟

1
[

𝑛

∑

𝑙=1

𝑏
∗𝑙

12
𝜑
∗

2
(𝑟 − 𝑚

𝑙
)] ,

𝑘 ∈ Z
𝑚
1
+1

1
.

(56)

Now we solve (54) for 𝑘 ∈ Z
𝑚
2

𝑚
1
+1

with initial data deduced
from (56); that is, we consider the problem

𝑦
1
(𝑘 + 1) = 𝜆

1
𝑦
1
(𝑘) + 𝑏

∗1

12
𝜆
𝑘−𝑚
1

2
𝜑
∗

2
(0)

+

𝑛

∑

𝑙=2

𝑏
∗𝑙

12
𝜑
∗

2
(𝑘 − 𝑚

𝑙
) , 𝑘 ∈ Z

𝑚
2

𝑚
1
+1
,

𝑦
1
(𝑚
1
+ 1) = 𝜆

𝑚
1
+1

1
𝜑
∗

1
(0) +

𝑚
1

∑

𝑟=0

𝜆
𝑚
1
−𝑟

1
[

𝑛

∑

𝑙=1

𝑏
∗𝑙

12
𝜑
∗

2
(𝑟 − 𝑚

𝑙
)] .

(57)

Applying formula (33) we get (for 𝑘 ∈ Z𝑚2+1
𝑚
1
+2
)

𝑦
1
(𝑘) = 𝜆

𝑘−(𝑚
1
+1)

1
𝑦
1
(𝑚
1
+ 1)

+

𝑘−1

∑

𝑟=𝑚
1
+1

𝜆
𝑘−1−𝑟

1
[𝑏
∗1

12
𝜆
𝑟−𝑚
1

2
𝜑
∗

2
(0)

+

𝑛

∑

𝑙=2

𝑏
∗𝑙

12
𝜑
∗

2
(𝑟 − 𝑚

𝑙
)]

= 𝜆
𝑘−𝑚
1
−1

1
[𝜆
𝑚
1
+1

1
𝜑
∗

1
(0)

+

𝑚
1

∑

𝑟=0

𝜆
𝑚
1
−𝑟

1
[

𝑛

∑

𝑙=1

𝑏
∗𝑙

12
𝜑
∗

2
(𝑟 − 𝑚

𝑙
)]]

+

𝑘−1

∑

𝑟=𝑚
1
+1

𝜆
𝑘−1−𝑟

1
[𝑏
∗1

12
𝜆
𝑟−𝑚
1

2
𝜑
∗

2
(0)

+

𝑛

∑

𝑙=2

𝑏
∗𝑙

12
𝜑
∗

2
(𝑟 − 𝑚

𝑙
)]

= 𝜆
𝑘

1
𝜑
∗

1
(0) +

𝑚
1

∑

𝑟=0

𝜆
𝑘−1−𝑟

1
[

𝑛

∑

𝑙=1

𝑏
∗𝑙

12
𝜑
∗

2
(𝑟 − 𝑚

𝑙
)]

+

𝑘−1

∑

𝑟=𝑚
1
+1

𝜆
𝑘−1−𝑟

1
[𝑏
∗1

12
𝜆
𝑟−𝑚
1

2
𝜑
∗

2
(0)

+

𝑛

∑

𝑙=2

𝑏
∗𝑙

12
𝜑
∗

2
(𝑟 − 𝑚

𝑙
)]

= 𝜆
𝑘

1
𝜑
∗

1
(0) +

𝑘−1

∑

𝑟=0

𝜆
𝑘−1−𝑟

1
[

𝑛

∑

𝑙=2

𝑏
∗𝑙

12
𝜑
∗

2
(𝑟 − 𝑚

𝑙
)]

+ 𝑏
∗1

12
[

𝑚
1

∑

𝑟=0

𝜆
𝑘−1−𝑟

1
𝜑
∗

2
(𝑟 − 𝑚

1
)

+ 𝜑
∗

2
(0)

𝑘−1

∑

𝑟=𝑚
1
+1

𝜆
𝑘−1−𝑟

1
𝜆
𝑟−𝑚
1

2
] .

(58)

Now we solve (54) for 𝑘 ∈ Z
𝑚
3

𝑚
2
+1

with initial data deduced
from (58); that is, we consider the problem

𝑦
1
(𝑘 + 1) = 𝜆

1
𝑦
1
(𝑘) +

2

∑

𝑙=1

𝑏
∗𝑙

12
𝜆
𝑘−𝑚
𝑙

2
𝜑
∗

2
(0)

+

𝑛

∑

𝑙=3

𝑏
∗𝑙

12
𝜑
∗

2
(𝑘 − 𝑚

𝑙
) , 𝑘 ∈ Z

𝑚
3

𝑚
2
+1
,

𝑦
1
(𝑚
2
+ 1) = 𝜆

𝑚
2
+1

1
𝜑
∗

1
(0) +

𝑚
2

∑

𝑟=0

𝜆
𝑚
2
−𝑟

1
[

𝑛

∑

𝑙=2

𝑏
∗𝑙

12
𝜑
∗

2
(𝑟 − 𝑚

𝑙
)]

+ 𝑏
∗1

12
[

𝑚
1

∑

𝑟=0

𝜆
𝑚
2
−𝑟

1
𝜑
∗

2
(𝑟 − 𝑚

1
)

+ 𝜑
∗

2
(0)

𝑚
2

∑

𝑟=𝑚
1
+1

𝜆
𝑚
2
−𝑟

1
𝜆
𝑟−𝑚
1

2
] .

(59)

Applying formula (33) yields (for 𝑘 ∈ Z𝑚3+1
𝑚
2
+2
)

𝑦
1
(𝑘)

= 𝜆
𝑘−(𝑚
2
+1)

1
𝑦
1
(𝑚
2
+ 1)

+

𝑘−1

∑

𝑟=𝑚
2
+1

𝜆
𝑘−1−𝑟

1
[

2

∑

𝑙=1

𝑏
∗𝑙

12
𝜆
𝑟−𝑚
𝑙

2
𝜑
∗

2
(0) +

𝑛

∑

𝑙=3

𝑏
∗𝑙

12
𝜑
∗

2
(𝑟 − 𝑚

𝑙
)]

= 𝜆
𝑘−𝑚
2
−1

1
[𝜆
𝑚
2
+1

1
𝜑
∗

1
(0) +

𝑚
2

∑

𝑟=0

𝜆
𝑚
2
−𝑟

1
[

𝑛

∑

𝑙=2

𝑏
∗𝑙

12
𝜑
∗

2
(𝑟 − 𝑚

𝑙
)]
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+ 𝑏
∗1

12
[

𝑚
1

∑

𝑟=0

𝜆
𝑚
2
−𝑟

1
𝜑
∗

2
(𝑟 − 𝑚

1
)

+ 𝜑
∗

2
(0)

𝑚
2

∑

𝑟=𝑚
1
+1

𝜆
𝑚
2
−𝑟

1
𝜆
𝑟−𝑚
1

2
]]

+

𝑘−1

∑

𝑟=𝑚
2
+1

𝜆
𝑘−1−𝑟

1
[

2

∑

𝑙=1

𝑏
∗𝑙

12
𝜆
𝑟−𝑚
𝑙

2
𝜑
∗

2
(0) +

𝑛

∑

𝑙=3

𝑏
∗𝑙

12
𝜑
∗

2
(𝑟 − 𝑚

𝑙
)]

= 𝜆
𝑘

1
𝜑
∗

1
(0) +

𝑚
2

∑

𝑟=0

𝜆
𝑘−1−𝑟

1
[

𝑛

∑

𝑙=2

𝑏
∗𝑙

12
𝜑
∗

2
(𝑟 − 𝑚

𝑙
)]

+ 𝑏
∗1

12
[

𝑚
1

∑

𝑟=0

𝜆
𝑘−1−𝑟

1
𝜑
∗

2
(𝑟 − 𝑚

1
)

+ 𝜑
∗

2
(0)

𝑚
2

∑

𝑟=𝑚
1
+1

𝜆
𝑘−1−𝑟

1
𝜆
𝑟−𝑚
1

2
]

+

𝑘−1

∑

𝑟=𝑚
2
+1

𝜆
𝑘−1−𝑟

1
[

2

∑

𝑙=1

𝑏
∗𝑙

12
𝜆
𝑟−𝑚
𝑙

2
𝜑
∗

2
(0)

+

𝑛

∑

𝑙=3

𝑏
∗𝑙

12
𝜑
∗

2
(𝑟 − 𝑚

𝑙
)]

= 𝜆
𝑘

1
𝜑
∗

1
(0) +

𝑘−1

∑

𝑟=0

𝜆
𝑘−1−𝑟

1
[

𝑛

∑

𝑙=3

𝑏
∗𝑙

12
𝜑
∗

2
(𝑟 − 𝑚

𝑙
)]

+ 𝑏
∗1

12
[

𝑚
1

∑

𝑟=0

𝜆
𝑘−1−𝑟

1
𝜑
∗

2
(𝑟 − 𝑚

1
)

+ 𝜑
∗

2
(0)

𝑘−1

∑

𝑟=𝑚
1
+1

𝜆
𝑘−1−𝑟

1
𝜆
𝑟−𝑚
1

2
]

+ 𝑏
∗2

12
[

𝑚
2

∑

𝑟=0

𝜆
𝑘−1−𝑟

1
𝜑
∗

2
(𝑟 − 𝑚

2
)

+ 𝜑
∗

2
(0)

𝑘−1

∑

𝑟=𝑚
2
+1

𝜆
𝑘−1−𝑟

1
𝜆
𝑟−𝑚
2

2
] .

(60)

From (56), (58), and (60) we deduce that expected form
of the solution of the initial problem for 𝑘 ∈ Z

𝑚
𝑠

𝑚
𝑠−1
+1

with
initial data derived from the solution of previous equation for
𝑘 ∈ Z

𝑚
𝑠−1

𝑚
𝑠−2
+1

is

𝑦
1
(𝑘) = 𝜆

𝑘

1
𝜑
∗

1
(0) +

𝑘−1

∑

𝑟=0

𝜆
𝑘−1−𝑟

1
[

𝑛

∑

𝑙=𝑠

𝑏
∗𝑙

12
𝜑
∗

2
(𝑟 − 𝑚

𝑙
)]

+

𝑠−1

∑

𝑙=1

𝑏
∗𝑙

12
[

𝑚
𝑙

∑

𝑟=0

𝜆
𝑘−1−𝑟

1
𝜑
∗

2
(𝑟 − 𝑚

𝑙
)

+ 𝜑
∗

2
(0)

𝑘−1

∑

𝑟=𝑚
𝑙
+1

𝜆
𝑘−1−𝑟

1
𝜆
𝑟−𝑚
𝑙

2
]

if 𝑘 ∈ Z𝑚𝑠+1
𝑚
𝑠−1
+2
.

(61)

We solve (54) for 𝑘 ∈ Z
𝑚
𝑠+1

𝑚
𝑠
+1

with initial data deduced
from (61); that is, we consider the problem

𝑦
1
(𝑘 + 1) = 𝜆

1
𝑦
1
(𝑘) +

𝑠

∑

𝑙=1

𝑏
∗𝑙

12
𝜆
𝑘−𝑚
𝑙

2
𝜑
∗

2
(0)

+

𝑛

∑

𝑙=𝑠+1

𝑏
∗𝑙

12
𝜑
∗

2
(𝑘 − 𝑚

𝑙
) , 𝑘 ∈ Z

𝑚
𝑠+1

𝑚
𝑠
+1
,

𝑦
1
(𝑚
𝑠
+ 1) = 𝜆

𝑚
𝑠
+1

1
𝜑
∗

1
(0) +

𝑚
𝑠

∑

𝑟=0

𝜆
𝑚
𝑠
−𝑟

1
[

𝑛

∑

𝑙=𝑠

𝑏
∗𝑙

12
𝜑
∗

2
(𝑟 − 𝑚

𝑙
)]

+

𝑠−1

∑

𝑙=1

𝑏
∗𝑙

12
[

𝑚
𝑙

∑

𝑟=0

𝜆
𝑚
𝑠
−𝑟

1
𝜑
∗

2
(𝑟 − 𝑚

𝑙
)

+ 𝜑
∗

2
(0)

𝑚
𝑠

∑

𝑟=𝑚
𝑙
+1

𝜆
𝑚
𝑠
−𝑟

1
𝜆
𝑟−𝑚
𝑙

2
] .

(62)

Applying formula (33) yields (for 𝑘 ∈ Z𝑚𝑠+1+1
𝑚
𝑠
+2

)

𝑦
1
(𝑘)

= 𝜆
𝑘−(𝑚
𝑠
+1)

1
𝑦
1
(𝑚
𝑠
+ 1)

+

𝑘−1

∑

𝑟=𝑚
𝑠
+1

𝜆
𝑘−1−𝑟

1
[

𝑠

∑

𝑙=1

𝑏
∗𝑙

12
𝜆
𝑟−𝑚
𝑙

2
𝜑
∗

2
(0) +

𝑛

∑

𝑙=𝑠+1

𝑏
∗𝑙

12
𝜑
∗

2
(𝑟 − 𝑚

𝑙
)]

= 𝜆
𝑘−(𝑚
𝑠
+1)

1
[𝜆
𝑚
𝑠
+1

1
𝜑
∗

1
(0) +

𝑚
𝑠

∑

𝑟=0

𝜆
𝑚
𝑠
−𝑟

1
[

𝑛

∑

𝑙=𝑠

𝑏
∗𝑙

12
𝜑
∗

2
(𝑟 − 𝑚

𝑙
)]

+

𝑠−1

∑

𝑙=1

𝑏
∗𝑙

12
[

𝑚
𝑙

∑

𝑟=0

𝜆
𝑚
𝑠
−𝑟

1
𝜑
∗

2
(𝑟 − 𝑚

𝑙
)

+ 𝜑
∗

2
(0)

𝑚
𝑠

∑

𝑟=𝑚
𝑙
+1

𝜆
𝑚
𝑠
−𝑟

1
𝜆
𝑟−𝑚
𝑙

2
]]

+

𝑘−1

∑

𝑟=𝑚
𝑠
+1

𝜆
𝑘−1−𝑟

1
[

𝑠

∑

𝑙=1

𝑏
∗𝑙

12
𝜆
𝑟−𝑚
𝑙

2
𝜑
∗

2
(0)

+

𝑛

∑

𝑙=𝑠+1

𝑏
∗𝑙

12
𝜑
∗

2
(𝑟 − 𝑚

𝑙
)]

= 𝜆
𝑘

1
𝜑
∗

1
(0) +

𝑚
𝑠

∑

𝑟=0

𝜆
𝑘−1−𝑟

1
[

𝑛

∑

𝑙=𝑠

𝑏
∗𝑙

12
𝜑
∗

2
(𝑟 − 𝑚

𝑙
)]
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+

𝑠−1

∑

𝑙=1

𝑏
∗𝑙

12
[

𝑚
𝑙

∑

𝑟=0

𝜆
𝑘−1−𝑟

1
𝜑
∗

2
(𝑟 − 𝑚

𝑙
)

+ 𝜑
∗

2
(0)

𝑚
𝑠

∑

𝑟=𝑚
𝑙
+1

𝜆
𝑘−1−𝑟

1
𝜆
𝑟−𝑚
𝑙

2
]

+

𝑘−1

∑

𝑟=𝑚
𝑠
+1

𝜆
𝑘−1−𝑟

1
[

𝑠

∑

𝑙=1

𝑏
∗𝑙

12
𝜆
𝑟−𝑚
𝑙

2
𝜑
∗

2
(0)

+

𝑛

∑

𝑙=𝑠+1

𝑏
∗𝑙

12
𝜑
∗

2
(𝑟 − 𝑚

𝑙
)]

=𝜆
𝑘

1
𝜑
∗

1
(0)+

𝑚
𝑠

∑

𝑟=0

𝜆
𝑘−1−𝑟

1
[𝑏
∗𝑠

12
𝜑
∗

2
(𝑟 − 𝑚

𝑠
)

+

𝑛

∑

𝑙=𝑠+1

𝑏
∗𝑙

12
𝜑
∗

2
(𝑟 − 𝑚

𝑙
)]

+ 𝑏
∗1

12
[

𝑚
1

∑

𝑟=0

𝜆
𝑘−1−𝑟

1
𝜑
∗

2
(𝑟 − 𝑚

1
)

+ 𝜑
∗

2
(0)

𝑚
𝑠

∑

𝑟=𝑚
1
+1

𝜆
𝑘−1−𝑟

1
𝜆
𝑟−𝑚
1

2
]

+ 𝑏
∗2

12
[

𝑚
2

∑

𝑟=0

𝜆
𝑘−1−𝑟

1
𝜑
∗

2
(𝑟 − 𝑚

2
)

+ 𝜑
∗

2
(0)

𝑚
𝑠

∑

𝑟=𝑚
2
+1

𝜆
𝑘−1−𝑟

1
𝜆
𝑟−𝑚
2

2
]

+ ⋅ ⋅ ⋅

+ 𝑏
∗𝑠−1

12
[

𝑚
𝑠−1

∑

𝑟=0

𝜆
𝑘−1−𝑟

1
𝜑
∗

2
(𝑟 − 𝑚

𝑠−1
)

+ 𝜑
∗

2
(0)

𝑚
𝑠

∑

𝑟=𝑚
𝑠−1
+1

𝜆
𝑘−1−𝑟

1
𝜆
𝑟−𝑚
𝑠−1

2
]

+ 𝑏
∗1

12
[𝜑
∗

2
(0)

𝑘−1

∑

𝑟=𝑚
𝑠
+1

𝜆
𝑘−1−𝑟

1
𝜆
𝑟−𝑚
1

2
]

+ 𝑏
∗2

12
[𝜑
∗

2
(0)

𝑘−1

∑

𝑟=𝑚
𝑠
+1

𝜆
𝑘−1−𝑟

1
𝜆
𝑟−𝑚
2

2
]

+ . . .

+ 𝑏
∗𝑠

12
[𝜑
∗

2
(0)

𝑘−1

∑

𝑟=𝑚
𝑠
+1

𝜆
𝑘−1−𝑟

1
𝜆
𝑟−𝑚
𝑠

2
]

+

𝑘−1

∑

𝑟=𝑚
𝑠
+1

𝜆
𝑘−1−𝑟

1
[

𝑛

∑

𝑙=𝑠+1

𝑏
∗𝑙

12
𝜑
∗

2
(𝑟 − 𝑚

𝑙
)]

= 𝜆
𝑘

1
𝜑
∗

1
(0) +

𝑘−1

∑

𝑟=0

𝜆
𝑘−1−𝑟

1
[

𝑛

∑

𝑙=𝑠+1

𝑏
∗𝑙

12
𝜑
∗

2
(𝑟 − 𝑚

𝑙
)]

+

𝑠

∑

𝑙=1

𝑏
∗𝑙

12
[

𝑚
𝑙

∑

𝑟=0

𝜆
𝑘−1−𝑟

1
𝜑
∗

2
(𝑟 − 𝑚

𝑙
)

+ 𝜑
∗

2
(0)

𝑘−1

∑

𝑟=𝑚
𝑙
+1

𝜆
𝑘−1−𝑟

1
𝜆
𝑟−𝑚
𝑙

2
] .

(63)

In the end we solve (54) for 𝑘 ∈ Z∞
𝑚
𝑛
+1

with initial data
deduced from (63); that is, we consider the problem

𝑦
1
(𝑘 + 1) = 𝜆

1
𝑦
1
(𝑘) +

𝑛

∑

𝑙=1

𝑏
∗𝑙

12
𝜆
𝑘−𝑚
𝑙

2
𝜑
∗

2
(0) , 𝑘 ∈ Z

∞

𝑚
𝑛
+1
,

𝑦
1
(𝑚
𝑛
+ 1) = 𝜆

𝑚
𝑛
+1

1
𝜑
∗

1
(0) +

𝑚
𝑛

∑

𝑟=0

𝜆
𝑚
𝑛
−𝑟

1
𝑏
∗𝑛

12
𝜑
∗

2
(𝑟 − 𝑚

𝑛
)

+

𝑛−1

∑

𝑙=1

𝑏
∗𝑙

12
[

𝑚
𝑙

∑

𝑟=0

𝜆
𝑚
𝑛
−𝑟

1
𝜑
∗

2
(𝑟 − 𝑚

𝑙
)

+ 𝜑
∗

2
(0)

𝑚
𝑛

∑

𝑟=𝑚
𝑙
+1

𝜆
𝑚
𝑛
−𝑟

1
𝜆
𝑟−𝑚
𝑙

2
] .

(64)

Applying formula (33) yields (for 𝑘 ∈ Z∞
𝑚
𝑛
+2
)

𝑦
1
(𝑘) = 𝜆

𝑘−(𝑚
𝑛
+1)

1
𝑦
1
(𝑚
𝑛
+ 1)

+

𝑘−1

∑

𝑟=𝑚
𝑛
+1

𝜆
𝑘−1−𝑟

1
[

𝑛

∑

𝑙=1

𝑏
∗𝑙

12
𝜆
𝑟−𝑚
𝑙

2
𝜑
∗

2
(0)]

= 𝜆
𝑘−(𝑚
𝑛
+1)

1
[𝜆
𝑚
𝑛
+1

1
𝜑
∗

1
(0) +

𝑚
𝑛

∑

𝑟=0

𝜆
𝑚
𝑛
−𝑟

1
𝑏
∗𝑛

12
𝜑
∗

2
(𝑟 − 𝑚

𝑛
)

+

𝑛−1

∑

𝑙=1

𝑏
∗𝑙

12
[

𝑚
𝑙

∑

𝑟=0

𝜆
𝑚
𝑛
−𝑟

1
𝜑
∗

2
(𝑟 − 𝑚

𝑙
)

+ 𝜑
∗

2
(0)

𝑚
𝑛

∑

𝑟=𝑚
𝑙
+1

𝜆
𝑚
𝑛
−𝑟

1
𝜆
𝑟−𝑚
𝑙

2
]]

+

𝑘−1

∑

𝑟=𝑚
𝑛
+1

𝜆
𝑘−1−𝑟

1
[

𝑛

∑

𝑙=1

𝑏
∗𝑙

12
𝜆
𝑟−𝑚
𝑙

2
𝜑
∗

2
(0)]

= 𝜆
𝑘

1
𝜑
∗

1
(0) +

𝑚
𝑛

∑

𝑟=0

𝜆
𝑘−1−𝑟

1
𝑏
∗𝑛

12
𝜑
∗

2
(𝑟 − 𝑚

𝑛
)
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+

𝑛−1

∑

𝑙=1

𝑏
∗𝑙

12
[

𝑚
𝑙

∑

𝑟=0

𝜆
𝑘−1−𝑟

1
𝜑
∗

2
(𝑟 − 𝑚

𝑙
)

+ 𝜑
∗

2
(0)

𝑚
𝑛

∑

𝑟=𝑚
𝑙
+1

𝜆
𝑘−1−𝑟

1
𝜆
𝑟−𝑚
𝑙

2
]

+

𝑘−1

∑

𝑟=𝑚
𝑛
+1

𝜆
𝑘−1−𝑟

1
[

𝑛

∑

𝑙=1

𝑏
∗𝑙

12
𝜆
𝑟−𝑚
𝑙

2
𝜑
∗

2
(0)]

= 𝜆
𝑘

1
𝜑
∗

1
(0) +

𝑚
𝑛

∑

𝑟=0

𝜆
𝑘−1−𝑟

1
𝑏
∗𝑛

12
𝜑
∗

2
(𝑟 − 𝑚

𝑛
)

+ 𝑏
∗1

12
[

𝑚
1

∑

𝑟=0

𝜆
𝑘−1−𝑟

1
𝜑
∗

2
(𝑟 − 𝑚

1
)

+ 𝜑
∗

2
(0)

𝑚
𝑠

∑

𝑟=𝑚
1
+1

𝜆
𝑘−1−𝑟

1
𝜆
𝑟−𝑚
1

2
]

+ 𝑏
∗2

12
[

𝑚
2

∑

𝑟=0

𝜆
𝑘−1−𝑟

1
𝜑
∗

2
(𝑟 − 𝑚

2
)

+ 𝜑
∗

2
(0)

𝑚
𝑠

∑

𝑟=𝑚
2
+1

𝜆
𝑘−1−𝑟

1
𝜆
𝑟−𝑚
2

2
]

+ ⋅ ⋅ ⋅

+ 𝑏
∗𝑛−1

12
[

𝑚
𝑛−1

∑

𝑟=0

𝜆
𝑘−1−𝑟

1
𝜑
∗

2
(𝑟 − 𝑚

𝑛−1
)

+ 𝜑
∗

2
(0)

𝑚
𝑠

∑

𝑟=𝑚
𝑛−1
+1

𝜆
𝑘−1−𝑟

1
𝜆
𝑟−𝑚
𝑛−1

2
]

+ 𝑏
∗1

12
[𝜑
∗

2
(0)

𝑘−1

∑

𝑟=𝑚
𝑠
+1

𝜆
𝑘−1−𝑟

1
𝜆
𝑟−𝑚
1

2
]

+ 𝑏
∗2

12
[𝜑
∗

2
(0)

𝑘−1

∑

𝑟=𝑚
𝑠
+1

𝜆
𝑘−1−𝑟

1
𝜆
𝑟−𝑚
2

2
]

+ ⋅ ⋅ ⋅

+ 𝑏
∗𝑛

12
[𝜑
∗

2
(0)

𝑘−1

∑

𝑟=𝑚
𝑛
+1

𝜆
𝑘−1−𝑟

1
𝜆
𝑟−𝑚
𝑛

2
]

= 𝜆
𝑘

1
𝜑
∗

1
(0) +

𝑛

∑

𝑙=1

𝑏
∗𝑙

12
[

𝑚
𝑙

∑

𝑟=0

𝜆
𝑘−1−𝑟

1
𝜑
∗

2
(𝑟 − 𝑚

𝑙
)

+ 𝜑
∗

2
(0)

𝑘−1

∑

𝑟=𝑚
𝑙
+1

𝜆
𝑘−1−𝑟

1
𝜆
𝑟−𝑚
𝑙

2
] .

(65)

Summing up all particular cases (56)–(65) we have

𝑦
1
(𝑘) =

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

𝜑
∗

1
(𝑘) if 𝑘 ∈ Z0

−𝑚
𝑛

,

𝜆
𝑘

1
𝜑
∗

1
(0) +

𝑘−1

∑

𝑟=0

𝜆
𝑘−1−𝑟

1
[

𝑛

∑

𝑙=1

𝑏
∗𝑙

12
𝜑
∗

2
(𝑟 − 𝑚

𝑙
)]

if 𝑘 ∈ Z𝑚1+1
1

,

𝜆
𝑘

1
𝜑
∗

1
(0) +

𝑘−1

∑

𝑟=0

𝜆
𝑘−1−𝑟

1
[

𝑛

∑

𝑙=2

𝑏
∗𝑙

12
𝜑
∗

2
(𝑟 − 𝑚

𝑙
)]

+ 𝑏
∗1

12
[

𝑚
1

∑

𝑟=0

𝜆
𝑘−1−𝑟

1
𝜑
∗

2
(𝑟 − 𝑚

1
)

+ 𝜑
∗

2
(0)

𝑘−1

∑

𝑟=𝑚
1
+1

𝜆
𝑘−1−𝑟

1
𝜆
𝑟−𝑚
1

2
]

if 𝑘 ∈ Z𝑚2+1
𝑚
1
+2
,

𝜆
𝑘

1
𝜑
∗

1
(0) +

𝑘−1

∑

𝑟=0

𝜆
𝑘−1−𝑟

1
[

𝑛

∑

𝑙=3

𝑏
∗𝑙

12
𝜑
∗

2
(𝑟 − 𝑚

𝑙
)]

+𝑏
∗1

12
[

𝑚
1

∑

𝑟=0

𝜆
𝑘−1−𝑟

1
𝜑
∗

2
(𝑟 − 𝑚

1
)

+ 𝜑
∗

2
(0)

𝑘−1

∑

𝑟=𝑚
1
+1

𝜆
𝑘−1−𝑟

1
𝜆
𝑟−𝑚
1

2
]

+𝑏
∗2

12
[

𝑚
2

∑

𝑟=0

𝜆
𝑘−1−𝑟

1
𝜑
∗

2
(𝑟 − 𝑚

2
)

+ 𝜑
∗

2
(0)

𝑘−1

∑

𝑟=𝑚
2
+1

𝜆
𝑘−1−𝑟

1
𝜆
𝑟−𝑚
2

2
]

if 𝑘 ∈ Z𝑚3+1
𝑚
2
+2
,

...

𝜆
𝑘

1
𝜑
∗

1
(0) +

𝑘−1

∑

𝑟=0

𝜆
𝑘−1−𝑟

1
[

𝑛

∑

𝑙=𝑠+1

𝑏
∗𝑙

12
𝜑
∗

2
(𝑟 − 𝑚

𝑙
)]

+

𝑠

∑

𝑙=1

𝑏
∗𝑙

12
[

𝑚
𝑙

∑

𝑟=0

𝜆
𝑘−1−𝑟

1
𝜑
∗

2
(𝑟 − 𝑚

𝑙
)

+𝜑
∗

2
(0)

𝑘−1

∑

𝑟=𝑚
𝑙
+1

𝜆
𝑘−1−𝑟

1
𝜆
𝑟−𝑚
𝑙

2
]

if 𝑘 ∈ Z𝑚𝑠+1+1
𝑚
𝑠
+2
,

...
𝜆
𝑘

1
𝜑
∗

1
(0)

+

𝑛

∑

𝑙=1

𝑏
∗𝑙

12
[

𝑚
𝑙

∑

𝑟=0

𝜆
𝑘−1−𝑟

1
𝜑
∗

2
(𝑟 − 𝑚

𝑙
)

+𝜑
∗

2
(0)

𝑘−1

∑

𝑟=𝑚
𝑙
+1

𝜆
𝑘−1−𝑟

1
𝜆
𝑟−𝑚
𝑙

2
]

if 𝑘 ∈ Z∞
𝑚
𝑛
+2
.

(66)

Now, taking into account (42), formula (47) is a consequence
of (53) and (66). Formula (48) can be proved in a similar way.

Finally, we note that both formulas (47), (48) remain valid
for 𝑏∗𝑙
12
= 𝑏
∗𝑙

21
= 0. In this case, the transformed system
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(1) reduces to a system without delays. This possibility is
excluded by condition (2).

2.1.2. Case (37) of Two Complex Conjugate Roots. The neces-
sary and sufficient conditions (13)–(16) take the forms (43),
(44), (46), and









𝑝 𝑞

𝑏
∗𝑙

21
𝑏
∗𝑙

22










+










𝑏
∗𝑙

11
𝑏
∗𝑙

12

−𝑞 𝑝










= 𝑝 (𝑏
∗𝑙

11
+ 𝑏
∗𝑙

22
) + 𝑞 (𝑏

∗𝑙

12
− 𝑏
∗𝑙

21
) = 0,

(67)

where 𝑙, V = 1, 2, . . . , 𝑛 and V > 𝑙.
The system of conditions (43), (44), and (67) gives 𝑏∗𝑙

12
=

𝑏
∗𝑙

21
, (𝑏∗𝑙
11
)
2

= −(𝑏
∗𝑙

12
)
2 and admits only one possibility; namely,

𝑏
∗𝑙

11
= 𝑏
∗𝑙

22
= 𝑏
∗𝑙

12
= 𝑏
∗𝑙

21
= 0. (68)

Consequently, 𝐵∗𝑙 = Θ, 𝐵𝑙 = Θ.
The initial problem (1), (3) reduces to a problem without

delay

𝑥 (𝑘 + 1) = 𝐴𝑥 (𝑘) ,

𝑥 (𝑘) = 𝜑 (𝑘) , 𝑘 ∈ Z
0

−𝑚
𝑛

(69)

and, obviously,

𝑥 (𝑘) = {

𝜑 (𝑘) if 𝑘 ∈ Z0
−𝑚
𝑛

,

𝐴
𝑘

𝜑 (0) if 𝑘 ∈ Z∞
1
.

(70)

From this discussion, the next theorem follows.

Theorem 6. There exists no weakly delayed system (1) if Λ has
the form (37).

Finally, we note that the assumption (2) alone excludes
this case.

2.1.3. Case (38) of Double Real Root. In this case we have
Λ = Λ

3
and Λ𝑘

3
= diag(𝜆𝑘, 𝜆𝑘). For (40), the necessary and

sufficient conditions (13)–(16) are reduced to (43), (44), (46),
and










𝜆 0

𝑏
∗𝑙

21
𝑏
∗𝑙

22










+










𝑏
∗𝑙

11
𝑏
∗𝑙

12

0 𝜆










= 𝜆 (𝑏
∗𝑙

11
+ 𝑏
∗𝑙

22
) = 0, (71)

where 𝑙 = 1, 2, . . . , 𝑛.
From (43), (44), and (71), we get 𝑏∗𝑙

12
𝑏
∗𝑙

21
= −(𝑏

∗𝑙

11
)

2

. From
the condition (46) we get

𝑏
∗𝑙

11
𝑏
∗V
22
− 𝑏
∗𝑙

12
𝑏
∗V
21
+ 𝑏
∗𝑙

22
𝑏
∗V
11
− 𝑏
∗𝑙

21
𝑏
∗V
12
= 0, (72)

where 𝑙, V = 1, 2, . . . , 𝑛 and V > 𝑙. Multiplying (72) by 𝑏∗𝑙
12
𝑏
∗V
12
,

we have

𝑏
∗𝑙

11
𝑏
∗V
22
𝑏
∗𝑙

12
𝑏
∗V
12
− (𝑏
∗𝑙

12
)

2

𝑏
∗V
21
𝑏
∗V
12

+ 𝑏
∗𝑙

22
𝑏
∗V
11
𝑏
∗𝑙

12
𝑏
∗V
12
− 𝑏
∗𝑙

21
𝑏
∗𝑙

12
(𝑏
∗V
12
)
2

= 0.

(73)

Substituting 𝑏∗𝑙
12
𝑏
∗𝑙

21
= −(𝑏

∗𝑙

11
)

2

, 𝑏∗V
12
𝑏
∗V
21
= −(𝑏

∗V
11
)
2 into (73) and

using (43) we obtain

− 𝑏
∗𝑙

11
𝑏
∗V
11
𝑏
∗𝑙

12
𝑏
∗V
12
+ (𝑏
∗𝑙

12
)

2

(𝑏
∗V
11
)
2

− 𝑏
∗𝑙

11
𝑏
∗V
11
𝑏
∗𝑙

12
𝑏
∗V
12
+ (𝑏
∗𝑙

11
)

2

(𝑏
∗V
12
)
2

= 0.

(74)

The equation (74) can be written as

(𝑏
∗𝑙

12
𝑏
∗V
11
− 𝑏
∗V
12
𝑏
∗𝑙

11
)

2

= 0,

𝑏
∗𝑙

12
𝑏
∗V
11
= 𝑏
∗V
12
𝑏
∗𝑙

11
.

(75)

Nowwewill analyse the two possible cases: 𝑏∗𝑙
12
𝑏
∗𝑙

21
= 0 and

𝑏
∗𝑙

12
𝑏
∗𝑙

21
̸= 0.

For the case 𝑏∗𝑙
12
𝑏
∗𝑙

21
= 0, we have from (43), (44) that 𝑏∗𝑙

11
=

𝑏
∗𝑙

22
= 0 and 𝑏∗𝑙

12
= 0 or 𝑏∗𝑙

21
= 0. For 𝑏∗𝑙

12
= 0 and 𝑏∗𝑙

21
̸= 0,

condition (46) gives 𝑏∗V
12
= 0, where 𝑙, V = 1, 2, . . . , 𝑛 and V > 𝑙.

Then, from (43), (44) for 𝑙 = V, we get 𝑏∗V
11
= 𝑏
∗V
22
= 0 and

𝑏
∗V
21

̸= 0.
For 𝑏∗𝑙
21
= 0 and 𝑏∗𝑙

12
̸= 0, condition (46) gives 𝑏∗V

21
= 0,

where 𝑙, V = 1, 2, . . . , 𝑛 and V > 𝑙, then, from (43), (44) for
𝑙 = V, we get 𝑏∗V

11
= 𝑏
∗V
22
= 0 and 𝑏∗V

12
̸= 0.

Now we discuss the case 𝑏∗𝑙
12
𝑏
∗𝑙

21
̸= 0. From conditions (43),

(44), we have 𝑏∗𝑙
12
𝑏
∗𝑙

21
= −(𝑏

∗𝑙

11
)

2

and 𝑏∗𝑙
11
𝑏
∗𝑙

22
̸= 0. This yields

𝑏
∗𝑙

11
̸= 0, 𝑏∗𝑙
22

̸= 0 and, from (75), we have 𝑏∗V
11

̸= 0, 𝑏∗V
12

̸= 0. By
conditions (43), (44) for V = 𝑙, we get 𝑏∗V

22
̸= 0, 𝑏∗V
21

̸= 0.
From the assumptions 𝐵𝑙 ̸=Θ, we conclude that only the

following cases ((I), (II), (III)) are possible:

(I) 𝑏∗𝑙
11
= 𝑏
∗𝑙

22
= 𝑏
∗𝑙

21
= 0, 𝑏∗𝑙
12

̸= 0,

(II) 𝑏∗𝑙
11
= 𝑏
∗𝑙

22
= 𝑏
∗𝑙

12
= 0, 𝑏∗𝑙
21

̸= 0,

(III) 𝑏∗𝑙
12
𝑏
∗𝑙

21
̸= 0,

where 𝑙 = 1, 2, . . . , 𝑛.

2.1.4. Case 𝑏∗𝑙
12
𝑏
∗𝑙

21
= 0

Theorem 7. Let (1) be a weakly delayed system, (35) has a
twofold root 𝜆

1,2
= 𝜆, 𝑏∗𝑙

12
𝑏
∗𝑙

21
= 0 and the matrix Λ has the

form (38). Then the solution of the initial problem (1), (3) is
𝑥(𝑘) = 𝑆𝑦(𝑘), 𝑘 ∈ Z∞

−𝑚
𝑛

, where in case 𝑏∗𝑙
21
= 0, 𝑦(𝑘) has the

form
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𝑦 (𝑘) =

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

𝜑
∗

(𝑘) 𝑖𝑓 𝑘 ∈ Z0
−𝑚
𝑛

,

Λ
𝑘

3
𝜑
∗

(0) +

𝑘−1

∑

𝑟=0

𝜆
𝑘−1−𝑟

[

𝑛

∑

𝑙=1

𝑏
∗𝑙

12
Φ
2
(𝑟 − 𝑚

𝑙
)]

𝑖𝑓 𝑘 ∈ Z
𝑚
1
+1

1
,

...

Λ
𝑘

3
𝜑
∗

(0) +

𝑘−1

∑

𝑟=0

𝜆
𝑘−1−𝑟

[

𝑛

∑

𝑙=𝑠+1

𝑏
∗𝑙

12
Φ
2
(𝑟 − 𝑚

𝑙
)]

+

𝑠

∑

𝑙=1

𝑏
∗𝑙

12
[

𝑚
𝑙

∑

𝑟=0

𝜆
𝑘−1−𝑟

Φ
2
(𝑟 − 𝑚

𝑙
)

+ (𝑘 − 1 − 𝑚
𝑙
) 𝜆
𝑘−1−𝑚

𝑙
Φ
2
(0) ]

𝑖𝑓 𝑘 ∈ Z
𝑚
𝑠+1
+1

𝑚
𝑠
+2
,

𝑠 = 1, 2, . . . , 𝑛 − 1,

...
Λ
𝑘

3
𝜑
∗

(0)

+

𝑛

∑

𝑙=1

𝑏
∗𝑙

12
[

𝑚
𝑙

∑

𝑟=0

𝜆
𝑘−1−𝑟

Φ
2
(𝑟 − 𝑚

𝑙
)

+ (𝑘 − 1 − 𝑚
𝑙
) 𝜆
𝑘−1−𝑚

𝑙
Φ
2
(0) ]

𝑖𝑓 𝑘 ∈ Z∞
𝑚
𝑛
+2
.

(76)

If 𝑏∗𝑙
12
= 0 is true then the solution of initial problem (1), (3) is

𝑥(𝑘) = 𝑆𝑦(𝑘), 𝑘 ∈ Z∞
−𝑚
𝑛

, where 𝑦(𝑘) has the form

𝑦 (𝑘) =

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

𝜑
∗

(𝑘) 𝑖𝑓 𝑘 ∈ Z0
−𝑚
𝑛

,

Λ
𝑘

3
𝜑
∗

(0) +

𝑘−1

∑

𝑟=0

𝜆
𝑘−1−𝑟

[

𝑛

∑

𝑙=1

𝑏
∗𝑙

21
Φ
1
(𝑟 − 𝑚

𝑙
)]

𝑖𝑓 𝑘 ∈ Z
𝑚
1
+1

1
,

...

Λ
𝑘

3
𝜑
∗

(0) +

𝑘−1

∑

𝑟=0

𝜆
𝑘−1−𝑟

[

𝑛

∑

𝑙=𝑠+1

𝑏
∗𝑙

21
Φ
1
(𝑟 − 𝑚

𝑙
)]

+

𝑠

∑

𝑙=1

𝑏
∗𝑙

21
[

𝑚
𝑙

∑

𝑟=0

𝜆
𝑘−1−𝑟

Φ
1
(𝑟 − 𝑚

𝑙
)

+ (𝑘 − 1 − 𝑚
𝑙
) 𝜆
𝑘−1−𝑚

𝑙
Φ
1
(0) ]

𝑖𝑓 𝑘 ∈ Z
𝑚
𝑠+1
+1

𝑚
𝑠
+2
,

𝑠 = 1, 2, . . . , 𝑛 − 1,

...
Λ
𝑘

3
𝜑
∗

(0)

+

𝑛

∑

𝑙=1

𝑏
∗𝑙

21
[

𝑚
𝑙

∑

𝑟=0

𝜆
𝑘−1−𝑟

Φ
1
(𝑟 − 𝑚

𝑙
)

+ (𝑘 − 1 − 𝑚
𝑙
) 𝜆
𝑘−1−𝑚

𝑙
Φ
1
(0) ]

𝑖𝑓 𝑘 ∈ Z∞
𝑚
𝑛
+2
.

(77)

Proof. Case (I) means that 𝑏∗𝑙
12

̸= 0. Then (40) turns into the
system

𝑦
1
(𝑘 + 1) = 𝜆𝑦

1
(𝑘) +

𝑛

∑

𝑙=1

𝑏
∗𝑙

12
𝑦
2
(𝑘 − 𝑚

𝑙
) , 𝑘 ∈ Z

∞

0

𝑦
2
(𝑘 + 1) = 𝜆𝑦

2
(𝑘) ,

(78)

and, if 𝑏∗𝑙
21

̸= 0, (40) turns into the system

𝑦
1
(𝑘 + 1) = 𝜆𝑦

1
(𝑘) ,

𝑦
2
(𝑘 + 1) = 𝜆𝑦

2
(𝑘) +

𝑛

∑

𝑙=1

𝑏
∗𝑙

21
𝑦
1
(𝑘 − 𝑚

𝑙
) , 𝑘 ∈ Z

∞

0
.

(79)

System (78) can be solved in much the same way as the
systems (49), (50) if we put 𝜆

1
= 𝜆
2
= 𝜆, and the discussion

of the system (79) goes along the same lines as that of the
systems (51), (52) with 𝜆

1
= 𝜆
2
= 𝜆. Formulas (76) and (77)

are consequences of (47), (48).

2.1.5. Case 𝑏∗𝑙
12
𝑏
∗𝑙

21
̸= 0. For 𝑘 ∈ Z0

−𝑚
𝑛

, we define

Φ
∗

𝑙
(𝑘) := (𝑏

∗𝑙

11
[𝜑
∗

1
(𝑘) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑘)] ,

−

(𝑏
∗𝑙

11
)

2

𝑏
∗𝑙

12

[𝜑
∗

1
(𝑘) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑘)])

𝑇

.

(80)

Theorem 8. Let system (1) be a weakly delayed system, (35)
admits two repeated roots 𝜆

1,2
= 𝜆, 𝑏∗𝑙

12
𝑏
∗𝑙

21
̸= 0 and the matrix

Λ
3
has the form (38). Then the solution of the initial problem
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(1), (3) is given by 𝑥(𝑘) = 𝑆𝑦(𝑘), 𝑘 ∈ Z∞
−𝑚
𝑛

, where 𝑦(𝑘) has the
form

𝑦 (𝑘) =

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

𝜑
∗

(𝑘) 𝑖𝑓 𝑘 ∈ Z0
−𝑚
𝑛

,

Λ
𝑘

3
𝜑
∗

(0) +

𝑘−1

∑

𝑟=0

𝜆
𝑘−1−𝑟

[

𝑛

∑

𝑙=1

Φ
∗

𝑙
(𝑟 − 𝑚

𝑙
)]

𝑖𝑓 𝑘 ∈ Z
𝑚
1
+1

1
,

...

Λ
𝑘

3
𝜑
∗

(0) +

𝑘−1

∑

𝑟=0

𝜆
𝑘−1−𝑟

[

𝑛

∑

𝑙=𝑠+1

Φ
∗

𝑙
(𝑟 − 𝑚

𝑙
)]

+

𝑠

∑

𝑙=1

[

𝑚
𝑙

∑

𝑟=0

𝜆
𝑘−1−𝑟

Φ
∗

𝑙
(𝑟 − 𝑚

𝑙
)

+ (𝑘 − 1 − 𝑚
𝑙
) 𝜆
𝑘−1−𝑚

𝑙
Φ
∗

𝑙
(0) ]

𝑖𝑓 𝑘 ∈ Z
𝑚
𝑠+1
+1

𝑚
𝑠
+2
,

𝑠 = 1, 2, . . . , 𝑛 − 1,

...
Λ
𝑘

3
𝜑
∗

(0)

+

𝑛

∑

𝑙=1

[

𝑚
𝑙

∑

𝑟=0

𝜆
𝑘−1−𝑟

Φ
∗

𝑙
(𝑟 − 𝑚

𝑙
)

+ (𝑘 − 1 − 𝑚
𝑙
) 𝜆
𝑘−1−𝑚

𝑙
Φ
∗

𝑙
(0) ]

𝑖𝑓 𝑘 ∈ Z∞
𝑚
𝑛
+2
.

(81)

Proof. In this case, all the entries of𝐵∗𝑙 are nonzero and, from
(43), (44), and (71), we get

𝐵
∗

= (

𝑏
∗𝑙

11
𝑏
∗𝑙

12

−(𝑏
∗𝑙

11
)

2

𝑏
∗𝑙

12

−𝑏
∗𝑙

11

), (82)

where 𝑙 = 1, 2, . . . , 𝑛, then, the system (40) reduces to

𝑦
1
(𝑘 + 1) = 𝜆𝑦

1
(𝑘) +

𝑛

∑

𝑙=1

[𝑏
∗𝑙

11
𝑦
1
(𝑘 − 𝑚

𝑙
) + 𝑏
∗𝑙

12
𝑦
2
(𝑘 − 𝑚

𝑙
)] ,

(83)

𝑦
2
(𝑘 + 1)

= 𝜆𝑦
2
(𝑘) −

𝑛

∑

𝑙=1

[

[

(𝑏
∗𝑙

11
)

2

𝑏
∗𝑙

12

𝑦
1
(𝑘 − 𝑚

𝑙
) + 𝑏
∗𝑙

11
𝑦
2
(𝑘 − 𝑚

𝑙
)
]

]

,

(84)

where 𝑘 ∈ Z∞
0
. It is easy to see (multiplying (84) by 𝑏∗1

12
/𝑏
∗1

11

and summing both equations) that

𝑦
1
(𝑘 + 1) +

𝑏
∗1

12

𝑏
∗1

11

𝑦
2
(𝑘 + 1) = 𝜆 [𝑦

1
(𝑘) +

𝑏
∗1

12

𝑏
∗1

11

𝑦
2
(𝑘)] ,

𝑘 ∈ Z
∞

0
.

(85)

Equation (85) is a homogeneous equation with respect to the
unknown expression

𝑦
1
(𝑘) + (

𝑏
∗1

12

𝑏
∗1

11

)𝑦
2
(𝑘) , (86)

then, using (33), we obtain

𝑦
1
(𝑘) +

𝑏
∗1

12

𝑏
∗1

11

𝑦
2
(𝑘)

=

{
{
{
{

{
{
{
{

{

𝜑
∗

1
(𝑘) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑘) if 𝑘 ∈ Z0

−𝑚
𝑛

,

𝜆
𝑘

[𝜑
∗

1
(0) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(0)] if 𝑘 ∈ Z∞

1
.

(87)

With the aid of (87), we rewrite the systems (83), (84) as
follows:

𝑦
1
(𝑘 + 1) =

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

𝜆𝑦
1
(𝑘) +

𝑛

∑

𝑙=1

𝑏
∗𝑙

11
[𝜑
∗

1
(𝑘 − 𝑚

𝑙
)

+

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑘 − 𝑚

𝑙
)]

if 𝑘 ∈ Z𝑚1
0
,

𝜆𝑦
1
(𝑘) + 𝑏

∗1

11
𝜆
𝑘−𝑚
1
[𝜑
∗

1
(0) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(0)]

+

𝑛

∑

𝑙=2

𝑏
∗𝑙

11
[𝜑
∗

1
(𝑘 − 𝑚

𝑙
)+

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑘 − 𝑚

𝑙
)]

if 𝑘 ∈ Z𝑚2
𝑚
1
+1
,

𝜆𝑦
1
(𝑘) +

2

∑

𝑙=1

𝑏
∗𝑙

11
𝜆
𝑘−𝑚
𝑙

[𝜑
∗

1
(0)+

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(0)]

+

𝑛

∑

𝑙=3

𝑏
∗𝑙

11
[𝜑
∗

1
(𝑘 − 𝑚

𝑙
)+

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑘 − 𝑚

𝑙
)]

if 𝑘 ∈ Z𝑚3
𝑚
2
+1
,

...

𝜆𝑦
1
(𝑘) +

𝑠

∑

𝑙=1

𝑏
∗𝑙

11
𝜆
𝑘−𝑚
𝑙

[𝜑
∗

1
(0) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(0)]

+

𝑛

∑

𝑙=𝑠+1

𝑏
∗𝑙

11
[𝜑
∗

1
(𝑘 − 𝑚

𝑙
)+

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑘 − 𝑚

𝑙
)]

if 𝑘 ∈ Z𝑚𝑠+1
𝑚
𝑠
+1
,

𝑠 = 3, 4, . . . , 𝑛 − 1,

...

𝜆𝑦
1
(𝑘) +

𝑛

∑

𝑙=1

𝑏
∗𝑙

11
𝜆
𝑘−𝑚
𝑙

[𝜑
∗

1
(0) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(0)]

if 𝑘 ∈ Z∞
𝑚
𝑛
+1
,
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𝑦
2
(𝑘 + 1) =

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

𝜆𝑦
2
(𝑘) −

𝑛

∑

𝑙=1

(𝑏
∗𝑙

11
)

2

𝑏
∗𝑙

12

[𝜑
∗

1
(𝑘 − 𝑚

𝑙
)

+

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑘 − 𝑚

𝑙
)]

if 𝑘 ∈ Z𝑚1
0
,

𝜆𝑦
2
(𝑘) −

(𝑏
∗1

11
)

2

𝑏
∗1

12

𝜆
𝑘−𝑚
1

×[𝜑
∗

1
(0) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(0)]

−

𝑛

∑

𝑙=2

(𝑏
∗𝑙

11
)

2

𝑏
∗𝑙

12

[𝜑
∗

1
(𝑘 − 𝑚

1
)

+

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑘 − 𝑚

1
)]

if 𝑘 ∈ Z𝑚2
𝑚
1
+1
,

𝜆𝑦
2
(𝑘) −

2

∑

𝑙=1

(𝑏
∗𝑙

11
)

2

𝑏
∗𝑙

12

[𝜑
∗

1
(0) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(0)]

−

𝑛

∑

𝑙=3

(𝑏
∗𝑙

11
)

2

𝑏
∗𝑙

12

[𝜑
∗

1
(𝑘 − 𝑚

𝑙
)

+

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑘 − 𝑚

𝑙
)]

if 𝑘 ∈ Z𝑚3
𝑚
2
+1
,

...

𝜆𝑦
2
(𝑘) −

𝑠

∑

𝑙=1

(𝑏
∗𝑙

11
)

2

𝑏
∗𝑙

12

[𝜑
∗

1
(0) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(0)]

−

𝑛

∑

𝑙=𝑠+1

(𝑏
∗𝑙

11
)

2

𝑏
∗𝑙

12

[𝜑
∗

1
(𝑘 − 𝑚

𝑙
)

+

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑘 − 𝑚

𝑙
)]

if 𝑘 ∈ Z𝑚𝑠+1
𝑚
𝑠
+1
,

𝑠 = 3, 4, . . . , 𝑛 − 1,

...

𝜆𝑦
2
(𝑘) −

𝑛

∑

𝑙=1

(𝑏
∗𝑙

11
)

2

𝑏
∗𝑙

12

𝜆
𝑘−𝑚
𝑙

×[𝜑
∗

1
(0) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(0)]

if 𝑘 ∈ Z∞
𝑚
𝑛
+1
.

(88)

First, we solve this system for 𝑘 ∈ Z
𝑚
1

0
and consider the

problems
𝑦
1
(𝑘 + 1) = 𝜆𝑦

1
(𝑘)

+

𝑛

∑

𝑙=1

𝑏
∗𝑙

11
[𝜑
∗

1
(𝑘 − 𝑚

𝑙
) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑘 − 𝑚

𝑙
)]

if 𝑘 ∈ Z𝑚1
0
,

𝑦
1
(0) = 𝜑

∗

1
(0) ,

𝑦
2
(𝑘 + 1) = 𝜆𝑦

2
(𝑘)

−

𝑛

∑

𝑙=1

(𝑏
∗𝑙

11
)

2

𝑏
∗𝑙

12

[𝜑
∗

1
(𝑘 − 𝑚

𝑙
) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑘 − 𝑚

𝑙
)]

if 𝑘 ∈ Z𝑚1
0
,

𝑦
2
(0) = 𝜑

∗

2
(0) .

(89)

With the aid of formula (33), we get

𝑦
1
(𝑘)

= 𝜆
𝑘

𝜑
∗

1
(0) +

𝑘−1

∑

𝑟=0

𝜆
𝑘−1−𝑟

× (

𝑛

∑

𝑙=1

𝑏
∗𝑙

11
[𝜑
∗

1
(𝑟 − 𝑚

𝑙
) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

𝑙
)]) ,

𝑘 ∈ Z
𝑚
1
+1

1
,

(90)

𝑦
2
(𝑘)

= 𝜆
𝑘

𝜑
∗

2
(0) −

𝑘−1

∑

𝑟=0

𝜆
𝑘−1−𝑟

× (

𝑛

∑

𝑙=1

(𝑏
∗𝑙

11
)

2

𝑏
∗𝑙

12

[𝜑
∗

1
(𝑟 − 𝑚

𝑙
) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

𝑙
)]) ,

𝑘 ∈ Z
𝑚
1
+1

1
.

(91)

Now we solve system (88) for 𝑘 ∈ Z
𝑚
2

𝑚
1
+1
; that is, we

consider the problem (with initial data deduced from (90),
(91))

𝑦
1
(𝑘 + 1)

= 𝜆𝑦
1
(𝑘) + 𝑏

∗1

11
𝜆
𝑘−𝑚
1

[𝜑
∗

1
(0) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(0)]

+

𝑛

∑

𝑙=2

𝑏
∗𝑙

11
[𝜑
∗

1
(𝑘 − 𝑚

𝑙
) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑘 − 𝑚

𝑙
)]

if 𝑘 ∈ Z𝑚2
𝑚
1
+1
,

𝑦
1
(𝑚
1
+ 1)

= 𝜆
𝑚
1
+1

𝜑
∗

1
(0) +

𝑚
1

∑

𝑟=0

𝜆
𝑚
1
−𝑟

× (

𝑛

∑

𝑙=1

𝑏
∗𝑙

11
[𝜑
∗

1
(𝑟 − 𝑚

𝑙
) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

𝑙
)]) ,
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𝑦
2
(𝑘 + 1)

= 𝜆𝑦
2
(𝑘) −

(𝑏
∗1

11
)

2

𝑏
∗1

12

𝜆
𝑘−𝑚
1

[𝜑
∗

1
(0) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(0)]

−

𝑛

∑

𝑙=2

(𝑏
∗𝑙

11
)

2

𝑏
∗𝑙

12

[𝜑
∗

1
(𝑘 − 𝑚

1
) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑘 − 𝑚

1
)]

if 𝑘 ∈ Z𝑚2
𝑚
1
+1
,

𝑦
2
(𝑚
1
+ 1)

= 𝜆
𝑚
1
+1

𝜑
∗

2
(0) −

𝑚
1

∑

𝑟=0

𝜆
𝑚
1
−𝑟

× (

𝑛

∑

𝑙=1

(𝑏
∗𝑙

11
)

2

𝑏
∗𝑙

12

[𝜑
∗

1
(𝑟 − 𝑚

𝑙
) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

𝑙
)]) .

(92)

Formula (33) yields (for 𝑘 ∈ Z𝑚2+1
𝑚
1
+2
)

𝑦
1
(𝑘)

= 𝜆
𝑘−(𝑚
1
+1)

𝑦
1
(𝑚
1
+ 1) +

𝑘−1

∑

𝑟=𝑚
1
+1

𝜆
𝑘−1−𝑟

× (𝑏
∗1

11
𝜆
𝑘−𝑚
1

[𝜑
∗

1
(0) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(0)]

+

𝑛

∑

𝑙=2

𝑏
∗𝑙

11
[𝜑
∗

1
(𝑟 − 𝑚

𝑙
)

+

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

𝑙
)])

= 𝜆
𝑘−𝑚
1
−1

[𝜆
𝑚
1
+1

𝜑
∗

1
(0) +

𝑚
1

∑

𝑟=0

𝜆
𝑚
1
−𝑟

× (

𝑛

∑

𝑙=1

𝑏
∗𝑙

11
[𝜑
∗

1
(𝑟 − 𝑚

𝑙
)

+

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

𝑙
)])]

+

𝑘−1

∑

𝑟=𝑚
1
+1

𝜆
𝑘−1−𝑟

(𝑏
∗1

11
𝜆
𝑘−𝑚
1

[𝜑
∗

1
(0) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(0)]

+

𝑛

∑

𝑙=2

𝑏
∗𝑙

11
[𝜑
∗

1
(𝑟 − 𝑚

𝑙
)

+

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

𝑙
)])

= 𝜆
𝑘

𝜑
∗

1
(0) +

𝑚
1

∑

𝑟=0

𝜆
𝑘−1−𝑟

(

𝑛

∑

𝑙=1

𝑏
∗𝑙

11
[𝜑
∗

1
(𝑟 − 𝑚

𝑙
)

+

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

𝑙
)])

+

𝑘−1

∑

𝑟=𝑚
1
+1

𝜆
𝑘−1−𝑟

(𝑏
∗1

11
𝜆
𝑘−𝑚
1

[𝜑
∗

1
(0) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(0)]

+

𝑛

∑

𝑙=2

𝑏
∗𝑙

11
[𝜑
∗

1
(𝑟 − 𝑚

𝑙
)

+

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

𝑙
)])

= 𝜆
𝑘

𝜑
∗

1
(0) +

𝑘−1

∑

𝑟=0

𝜆
𝑘−1−𝑟

(

𝑛

∑

𝑙=2

𝑏
∗𝑙

11
[𝜑
∗

1
(𝑟 − 𝑚

𝑙
)

+

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

𝑙
)])

+

𝑚
1

∑

𝑟=0

𝜆
𝑘−1−𝑟

𝑏
∗1

11
[𝜑
∗

1
(𝑟 − 𝑚

1
) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

1
)]

+ (𝑘 − 1 − 𝑚
1
) 𝑏
∗1

11
𝜆
𝑘−1−𝑚

1

[𝜑
∗

1
(0) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(0)]

= 𝜆
𝑘

𝜑
∗

1
(0) +

𝑘−1

∑

𝑟=0

𝜆
𝑘−1−𝑟

(

𝑛

∑

𝑙=2

𝑏
∗𝑙

11
[𝜑
∗

1
(𝑟 − 𝑚

𝑙
)

+

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

𝑙
)])

+ 𝑏
∗1

11
(

𝑚
1

∑

𝑟=0

𝜆
𝑘−1−𝑟

[𝜑
∗

1
(𝑟 − 𝑚

1
) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

1
)]

+ (𝑘 − 1 − 𝑚
1
) 𝜆
𝑘−1−𝑚

1

[𝜑
∗

1
(0)

+

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(0)]) ,

(93)

𝑦
2
(𝑘)

= 𝜆
𝑘−(𝑚
1
+1)

𝑦
2
(𝑚
1
+ 1) −

𝑘−1

∑

𝑟=𝑚
1
+1

𝜆
𝑘−1−𝑟

× (

(𝑏
∗1

11
)

2

𝑏
∗1

12

𝜆
𝑟−𝑚
1

[𝜑
∗

1
(0) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(0)]

+

𝑛

∑

𝑙=2

(𝑏
∗𝑙

11
)

2

𝑏
∗𝑙

12

[𝜑
∗

1
(𝑟 − 𝑚

𝑙
)
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+

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

𝑙
)])

= 𝜆
𝑘−𝑚
1
−1
[

[

𝜆
𝑚
1
+1

𝜑
∗

2
(0) −

𝑚
1

∑

𝑟=0

𝜆
𝑚
1
−𝑟

× (

𝑛

∑

𝑙=1

(𝑏
∗𝑙

11
)

2

𝑏
∗𝑙

12

[𝜑
∗

1
(𝑟 − 𝑚

𝑙
)

+

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

𝑙
)])

]

]

−

𝑘−1

∑

𝑟=𝑚
1
+1

𝜆
𝑘−1−𝑟

(

(𝑏
∗1

11
)

2

𝑏
∗1

12

𝜆
𝑟−𝑚
1

[𝜑
∗

1
(0) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(0)]

+

𝑛

∑

𝑙=2

(𝑏
∗𝑙

11
)

2

𝑏
∗𝑙

12

[𝜑
∗

1
(𝑟 − 𝑚

𝑙
)

+

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

𝑙
)])

= 𝜆
𝑘

𝜑
∗

2
(0) −

𝑚
1

∑

𝑟=0

𝜆
𝑘−1−𝑟

(

𝑛

∑

𝑙=1

(𝑏
∗𝑙

11
)

2

𝑏
∗𝑙

12

[𝜑
∗

1
(𝑟 − 𝑚

𝑙
)

+

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

𝑙
)])

−

𝑘−1

∑

𝑟=𝑚
1
+1

𝜆
𝑘−1−𝑟

(

(𝑏
∗1

11
)

2

𝑏
∗1

12

𝜆
𝑟−𝑚
1

[𝜑
∗

1
(0) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(0)]

+

𝑛

∑

𝑙=2

(𝑏
∗𝑙

11
)

2

𝑏
∗𝑙

12

[𝜑
∗

1
(𝑟 − 𝑚

𝑙
)

+

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

𝑙
)])

= 𝜆
𝑘

𝜑
∗

2
(0) −

𝑘−1

∑

𝑟=0

𝜆
𝑘−1−𝑟

(

𝑛

∑

𝑙=2

(𝑏
∗𝑙

11
)

2

𝑏
∗𝑙

12

[𝜑
∗

1
(𝑟 − 𝑚

𝑙
)

+

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

𝑙
)])

−

𝑚
1

∑

𝑟=0

𝜆
𝑘−1−𝑟

(𝑏
∗1

11
)

2

𝑏
∗1

12

[𝜑
∗

1
(𝑟 − 𝑚

1
) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

1
)]

− (𝑘 − 1 − 𝑚
1
) 𝜆
𝑘−1−𝑚

1

(𝑏
∗1

11
)

2

𝑏
∗1

12

[𝜑
∗

1
(0) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(0)]

= 𝜆
𝑘

𝜑
∗

2
(0) −

𝑘−1

∑

𝑟=0

𝜆
𝑘−1−𝑟

(

𝑛

∑

𝑙=2

(𝑏
∗𝑙

11
)

2

𝑏
∗𝑙

12

[𝜑
∗

1
(𝑟 − 𝑚

𝑙
)

+

𝑏
∗1

12

𝑏
∗1

11

𝑏
∗𝑙

12
𝜑
∗

2
(𝑟 − 𝑚

𝑙
)])

−

(𝑏
∗1

11
)

2

𝑏
∗1

12

(

𝑚
1

∑

𝑟=0

𝜆
𝑘−1−𝑟

[𝜑
∗

1
(𝑟 − 𝑚

1
) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

1
)]

+ (𝑘 − 1 − 𝑚
1
) 𝜆
𝑘−1−𝑚

1

× [𝜑
∗

1
(0) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(0)]) .

(94)

Now we solve (88) for 𝑘 ∈ Z
𝑚
3

𝑚
2
+1
; that is, we consider the

problem (with initial data deduced from (93), (94))

𝑦
1
(𝑘 + 1)

= 𝜆𝑦
1
(𝑘) +

2

∑

𝑙=1

𝑏
∗𝑙

11
𝜆
𝑘−𝑚
𝑙

[𝜑
∗

1
(0) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(0)]

+

𝑛

∑

𝑙=3

𝑏
∗𝑙

11
[𝜑
∗

1
(𝑘 − 𝑚

𝑙
) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑘 − 𝑚

𝑙
)]

if 𝑘 ∈ Z𝑚3
𝑚
2
+1
,

𝑦
1
(𝑚
2
+ 1)

= 𝜆
𝑚
2
+1

𝜑
∗

1
(0) +

𝑚
2

∑

𝑟=0

𝜆
𝑚
2
−𝑟

× (

𝑛

∑

𝑙=2

𝑏
∗𝑙

11
[𝜑
∗

1
(𝑟 − 𝑚

𝑙
) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

𝑙
)])

+ 𝑏
∗1

11
(

𝑚
1

∑

𝑟=0

𝜆
𝑚
2
−𝑟

[𝜑
∗

1
(𝑟 − 𝑚

1
) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

1
)]

+ (𝑚
2
− 𝑚
1
) 𝜆
𝑚
2
−𝑚
1

[𝜑
∗

1
(0) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(0)]) ,

𝑦
2
(𝑘 + 1)

= 𝜆𝑦
2
(𝑘) −

2

∑

𝑙=1

(𝑏
∗𝑙

11
)

2

𝑏
∗𝑙

12

[𝜑
∗

1
(0) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(0)]

−

𝑛

∑

𝑙=3

(𝑏
∗𝑙

11
)

2

𝑏
∗𝑙

12

[𝜑
∗

1
(𝑘 − 𝑚

𝑙
) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑘 − 𝑚

𝑙
)]

if 𝑘 ∈ Z𝑚3
𝑚
2
+1
,
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𝑦
2
(𝑚
2
+ 1)

= 𝜆
𝑚
2
+1

𝜑
∗

2
(0) −

𝑚
2

∑

𝑟=0

𝜆
𝑚
2
−𝑟

× (

𝑛

∑

𝑙=2

(𝑏
∗𝑙

11
)

2

𝑏
∗𝑙

12

[𝜑
∗

1
(𝑟 − 𝑚

𝑙
) +

𝑏
∗1

12

𝑏
∗1

11

𝑏
∗𝑙

12
𝜑
∗

2
(𝑟 − 𝑚

𝑙
)])

−

(𝑏
∗1

11
)

2

𝑏
∗1

12

(

𝑚
1

∑

𝑟=0

𝜆
𝑚
2
−𝑟

[𝜑
∗

1
(𝑟 − 𝑚

1
) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

1
)]

+ (𝑚
2
− 𝑚
1
) 𝜆
𝑚
2
−𝑚
1

[𝜑
∗

1
(0) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(0)]) .

(95)

Applying formula (33) yields (for 𝑘 ∈ Z𝑚3+1
𝑚
2
+2
)

𝑦
1
(𝑘)

= 𝜆
𝑘−(𝑚
2
+1)

𝑦
1
(𝑚
2
+ 1) +

𝑘−1

∑

𝑟=𝑚
2
+1

𝜆
𝑘−1−𝑟

× (

2

∑

𝑙=1

𝑏
∗𝑙

11
𝜆
𝑟−𝑚
𝑙

[𝜑
∗

1
(0) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(0)]

+

𝑛

∑

𝑙=3

𝑏
∗𝑙

11
[𝜑
∗

1
(𝑟 − 𝑚

𝑙
) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

𝑙
)])

= 𝜆
𝑘−𝑚
2
−1

[𝜆
𝑚
2
+1

𝜑
∗

1
(0) +

𝑚
2

∑

𝑟=0

𝜆
𝑚
2
−𝑟

× (

𝑛

∑

𝑙=2

𝑏
∗𝑙

11
[𝜑
∗

1
(𝑟 − 𝑚

𝑙
)

+

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

𝑙
)])

+ 𝑏
∗1

11
(

𝑚
1

∑

𝑟=0

𝜆
𝑚
2
−𝑟

[𝜑
∗

1
(𝑟 − 𝑚

1
)

+

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

1
)]

+ (𝑚
2
− 𝑚
1
) 𝜆
𝑚
2
−𝑚
1

× [𝜑
∗

1
(0) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(0)])]

+

𝑘−1

∑

𝑟=𝑚
2
+1

𝜆
𝑘−1−𝑟

(

2

∑

𝑙=1

𝑏
∗𝑙

11
𝜆
𝑟−𝑚
𝑙

[𝜑
∗

1
(0) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(0)]

+

𝑛

∑

𝑙=3

𝑏
∗𝑙

11
[𝜑
∗

1
(𝑟 − 𝑚

𝑙
)

+

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

𝑙
)])

= 𝜆
𝑘

𝜑
∗

1
(0) +

𝑚
2

∑

𝑟=0

𝜆
𝑘−1−𝑟

(

𝑛

∑

𝑙=2

𝑏
∗𝑙

11
[𝜑
∗

1
(𝑟 − 𝑚

𝑙
)

+

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

𝑙
)])

+ 𝑏
∗1

11
(

𝑚
1

∑

𝑟=0

𝜆
𝑘−1−𝑟

[𝜑
∗

1
(𝑟 − 𝑚

1
) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

1
)]

+ (𝑚
2
− 𝑚
1
) 𝜆
𝑘−1−𝑚

1

[𝜑
∗

1
(0) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(0)])

+

𝑘−1

∑

𝑟=𝑚
2
+1

𝜆
𝑘−1−𝑟

(

2

∑

𝑙=1

𝑏
∗𝑙

11
𝜆
𝑟−𝑚
𝑙

[𝜑
∗

1
(0) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(0)]

+

𝑛

∑

𝑙=3

𝑏
∗𝑙

11
[𝜑
∗

1
(𝑟 − 𝑚

𝑙
)

+

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

𝑙
)])

= 𝜆
𝑘

𝜑
∗

1
(0) +

𝑘−1

∑

𝑟=0

𝜆
𝑘−1−𝑟

(

𝑛

∑

𝑙=3

𝑏
∗𝑙

11
[𝜑
∗

1
(𝑟 − 𝑚

𝑙
)

+

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

𝑙
)])

+

𝑚
2

∑

𝑟=0

𝜆
𝑘−1−𝑟

𝑏
∗2

11
[𝜑
∗

1
(𝑟 − 𝑚

2
) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

2
)]

+ 𝑏
∗1

11
(

𝑚
1

∑

𝑟=0

𝜆
𝑘−1−𝑟

[𝜑
∗

1
(𝑟 − 𝑚

1
) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

1
)]

+ (𝑚
2
− 𝑚
1
) 𝜆
𝑘−1−𝑚

1

[𝜑
∗

1
(0) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(0)])

+ (𝑘 − 1 − 𝑚
2
) (𝑏
∗1

11
𝜆
𝑘−1−𝑚

1

[𝜑
∗

1
(0) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(0)]

+ 𝑏
∗2

11
𝜆
𝑘−1−𝑚

2

[𝜑
∗

1
(0) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(0)])

= 𝜆
𝑘

𝜑
∗

1
(0) +

𝑘−1

∑

𝑟=0

𝜆
𝑘−1−𝑟

(

𝑛

∑

𝑙=3

𝑏
∗𝑙

11
[𝜑
∗

1
(𝑟 − 𝑚

𝑙
)

+

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

𝑙
)])
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+ 𝑏
∗1

11
(

𝑚
1

∑

𝑟=0

𝜆
𝑘−1−𝑟

[𝜑
∗

1
(𝑟 − 𝑚

1
) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

1
)]

+ (𝑘 − 1 − 𝑚
1
) 𝜆
𝑘−1−𝑚

1

[𝜑
∗

1
(0) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(0)])

+ 𝑏
∗2

11
(

𝑚
2

∑

𝑟=0

𝜆
𝑘−1−𝑟

[𝜑
∗

1
(𝑟 − 𝑚

2
) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

2
)]

+ (𝑘 − 1 − 𝑚
2
) 𝜆
𝑘−1−𝑚

2

[𝜑
∗

1
(0) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(0)]) ,

(96)
𝑦
2
(𝑘)

= 𝜆
𝑘−(𝑚
2
+1)

𝑦
2
(𝑚
2
+ 1) −

𝑘−1

∑

𝑟=𝑚
2
+1

𝜆
𝑘−1−𝑟

× (

2

∑

𝑙=1

(𝑏
∗𝑙

11
)

2

𝑏
∗𝑙

12

𝜆
𝑟−𝑚
𝑙

[𝜑
∗

1
(0) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(0)]

+

𝑛

∑

𝑙=3

(𝑏
∗𝑙

11
)

2

𝑏
∗𝑙

12

[𝜑
∗

1
(𝑟 − 𝑚

𝑙
) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

𝑙
)])

= 𝜆
𝑘−𝑚
2
−1

[𝜆
𝑚
2
+1

𝜑
∗

2
(0) −

𝑚
2

∑

𝑟=0

𝜆
𝑚
2
−𝑟

× (

𝑛

∑

𝑙=2

(𝑏
∗𝑙

11
)

2

𝑏
∗𝑙

12

[𝜑
∗

1
(𝑟 − 𝑚

𝑙
)

+

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

𝑙
)])

−

(𝑏
∗𝑙

11
)

2

𝑏
∗1

12

(

𝑚
1

∑

𝑟=0

𝜆
𝑚
2
−𝑟

[𝜑
∗

1
(𝑟 − 𝑚

1
)

+

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

1
)]

+ (𝑚
2
− 𝑚
1
) 𝜆
𝑚
2
−𝑚
1

× [𝜑
∗

1
(0) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(0)])]

−

𝑘−1

∑

𝑟=𝑚
2
+1

𝜆
𝑘−1−𝑟

(

2

∑

𝑙=1

(𝑏
∗𝑙

11
)

2

𝑏
∗𝑙

12

𝜆
𝑟−𝑚
𝑙

[𝜑
∗

1
(0) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(0)]

+

𝑛

∑

𝑙=3

(𝑏
∗𝑙

11
)

2

𝑏
∗𝑙

12

[𝜑
∗

1
(𝑟 − 𝑚

𝑙
)

+

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

𝑙
)])

= 𝜆
𝑘

𝜑
∗

2
(0) −

𝑚
2

∑

𝑟=0

𝜆
𝑘−1−𝑟

(

𝑛

∑

𝑙=2

(𝑏
∗𝑙

11
)

2

𝑏
∗𝑙

12

[𝜑
∗

1
(𝑟 − 𝑚

𝑙
)

+

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

𝑙
)])

−

(𝑏
∗1

11
)

2

𝑏
∗1

12

(

𝑚
1

∑

𝑟=0

𝜆
𝑘−1−𝑟

[𝜑
∗

1
(𝑟 − 𝑚

1
) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

1
)]

+ (𝑚
2
− 𝑚
1
) 𝜆
𝑘−1−𝑚

1

[𝜑
∗

1
(0) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(0)])

−

𝑘−1

∑

𝑟=𝑚
2
+1

𝜆
𝑘−1−𝑟

(

2

∑

𝑙=1

(𝑏
∗𝑙

11
)

2

𝑏
∗𝑙

12

𝜆
𝑟−𝑚
𝑙

[𝜑
∗

1
(0) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(0)]

+

𝑛

∑

𝑙=3

(𝑏
∗𝑙

11
)

2

𝑏
∗𝑙

12

[𝜑
∗

1
(𝑟 − 𝑚

𝑙
)

+

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

𝑙
)])

= 𝜆
𝑘

𝜑
∗

2
(0) −

𝑘−1

∑

𝑟=0

𝜆
𝑘−1−𝑟

(

𝑛

∑

𝑙=3

(𝑏
∗𝑙

11
)

2

𝑏
∗𝑙

12

[𝜑
∗

1
(𝑟 − 𝑚

𝑙
)

+

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

𝑙
)])

−

𝑚
2

∑

𝑟=0

𝜆
𝑘−1−𝑟

(𝑏
∗2

11
)

2

𝑏
∗2

12

[𝜑
∗

1
(𝑟 − 𝑚

2
)+

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

2
)]

−

(𝑏
∗1

11
)

2

𝑏
∗1

12

(

𝑚
1

∑

𝑟=0

𝜆
𝑘−1−𝑟

[𝜑
∗

1
(𝑟 − 𝑚

1
)

+

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

1
)]

+ (𝑚
2
− 𝑚
1
) 𝜆
𝑘−1−𝑚

1

[𝜑
∗

1
(0) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(0)])

− (𝑘 − 1 − 𝑚
2
)

× (

(𝑏
∗1

11
)

2

𝑏
∗1

12

𝜆
𝑘−1−𝑚

1

[𝜑
∗

1
(0) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(0)]

+

(𝑏
∗2

11
)

2

𝑏
∗2

12

𝜆
𝑘−1−𝑚

2

[𝜑
∗

1
(0) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(0)])
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= 𝜆
𝑘

𝜑
∗

2
(0) −

𝑘−1

∑

𝑟=0

𝜆
𝑘−1−𝑟

(

𝑛

∑

𝑙=3

(𝑏
∗𝑙

11
)

2

𝑏
∗𝑙

12

[𝜑
∗

1
(𝑟 − 𝑚

𝑙
)

+

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

𝑙
)])

−

(𝑏
∗1

11
)

2

𝑏
∗1

12

(

𝑚
1

∑

𝑟=0

𝜆
𝑘−1−𝑟

[𝜑
∗

1
(𝑟 − 𝑚

1
)+

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

1
)]

+ (𝑘 − 1 − 𝑚
1
) 𝜆
𝑘−1−𝑚

1

× [𝜑
∗

1
(0) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(0)])

−

(𝑏
∗2

11
)

2

𝑏
∗2

12

(

𝑚
2

∑

𝑟=0

𝜆
𝑘−1−𝑟

[𝜑
∗

1
(𝑟 − 𝑚

2
) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

2
)]

+ (𝑘 − 1 − 𝑚
2
) 𝜆
𝑘−1−𝑚

2

× [𝜑
∗

1
(0) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(0)]) .

(97)

From (93)–(97) we deduce that expected form of the
solution of the initial problem for 𝑘 ∈ Z

𝑚
𝑠

𝑚
𝑠−1
+1

with initial
data derived from the solution of previous equation for 𝑘 ∈
Z
𝑚
𝑠−1

𝑚
𝑠−2
+1

is

𝑦
1
(𝑘)

= 𝜆
𝑘

𝜑
∗

1
(0) +

𝑘−1

∑

𝑟=0

𝜆
𝑘−1−𝑟

× (

𝑛

∑

𝑙=𝑠

𝑏
∗𝑙

11
[𝜑
∗

1
(𝑟 − 𝑚

𝑙
) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

𝑙
)])

+

𝑠−1

∑

𝑙=1

[𝑏
∗𝑙

11
(

𝑚
𝑙

∑

𝑟=0

𝜆
𝑘−1−𝑟

[𝜑
∗

1
(𝑟 − 𝑚

𝑙
) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

𝑙
)]

+ (𝑘 − 1 − 𝑚
𝑙
) 𝜆
𝑘−1−𝑚

𝑙

× [𝜑
∗

1
(0) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(0)])]

if 𝑘 ∈ Z𝑚𝑠+1
𝑚
𝑠−1
+2
,

𝑦
1
(𝑘)

= 𝜆
𝑘

𝜑
∗

2
(0) −

𝑘−1

∑

𝑟=0

𝜆
𝑘−1−𝑟

× (

𝑛

∑

𝑙=𝑠

(𝑏
∗𝑙

11
)

2

𝑏
∗𝑙

12

[𝜑
∗

1
(𝑟 − 𝑚

𝑙
) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

𝑙
)])

−

𝑠−1

∑

𝑙=1

[

[

(𝑏
∗𝑙

11
)

2

𝑏
∗𝑙

12

(

𝑚
𝑙

∑

𝑟=0

𝜆
𝑘−1−𝑟

[𝜑
∗

1
(𝑟 − 𝑚

𝑙
) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

𝑙
)]

+ (𝑘 − 1 − 𝑚
𝑙
) 𝜆
𝑘−1−𝑚

𝑙

×[𝜑
∗

1
(0) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(0)])

]

]

if 𝑘 ∈ Z𝑚𝑠+1
𝑚
𝑠−1
+2
.

(98)

We solve (88) for 𝑘 ∈ Z
𝑚
𝑠+1

𝑚
𝑠
+1

with initial data deduced
from (98); that is, we consider the problem

𝑦
1
(𝑘 + 1)

= 𝜆𝑦
1
(𝑘)

+

𝑠

∑

𝑙=1

𝑏
∗𝑙

11
𝜆
𝑘−𝑚
𝑙

[𝜑
∗

1
(0) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(0)]

+

𝑛

∑

𝑙=𝑠+1

𝑏
∗𝑙

11
[𝜑
∗

1
(𝑘 − 𝑚

𝑙
) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑘 − 𝑚

𝑙
)]

if 𝑘 ∈ Z𝑚𝑠+1
𝑚
𝑠
+1
,

𝑦
1
(𝑚
𝑠
+ 1)

= 𝜆
𝑚
𝑠
+1

𝜑
∗

1
(0)

+

𝑚
𝑠

∑

𝑟=0

𝜆
𝑚
𝑠
−𝑟

(

𝑛

∑

𝑙=𝑠

𝑏
∗𝑙

11
[𝜑
∗

1
(𝑟 − 𝑚

𝑙
) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

𝑙
)])

+

𝑠−1

∑

𝑙=1

𝑏
∗𝑙

11
(

𝑚
𝑙

∑

𝑟=0

𝜆
𝑚
𝑠
−𝑟

[𝜑
∗

1
(𝑟 − 𝑚

𝑙
) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

𝑙
)]

+ (𝑚
𝑠
− 𝑚
𝑙
) 𝜆
𝑚
𝑠
−𝑚
𝑙

×[𝜑
∗

1
(0) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(0)]) ,

𝑦
2
(𝑘 + 1)

= 𝜆𝑦
2
(𝑘)

−

𝑠

∑

𝑙=1

(𝑏
∗𝑙

11
)

2

𝑏
∗𝑙

12

[𝜑
∗

1
(0) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(0)]

−

𝑛

∑

𝑙=𝑠+1

(𝑏
∗𝑙

11
)

2

𝑏
∗𝑙

12

[𝜑
∗

1
(𝑘 − 𝑚

𝑙
) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑘 − 𝑚

𝑙
)]

if 𝑘 ∈ Z𝑚𝑠+1
𝑚
𝑠
+1
,



20 Abstract and Applied Analysis

𝑦
2
(𝑚
𝑠
+ 1)

= 𝜆
𝑚
𝑠
+1

𝜑
∗

2
(0)

−

𝑚
𝑠

∑

𝑟=0

𝜆
𝑚
𝑠
−𝑟

(

𝑛

∑

𝑙=𝑠

(𝑏
∗𝑙

11
)

2

𝑏
∗𝑙

12

[𝜑
∗

1
(𝑟 − 𝑚

𝑙
) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

𝑙
)])

−

𝑠−1

∑

𝑙=1

(𝑏
∗𝑙

11
)

2

𝑏
∗𝑙

12

(

𝑚
𝑙

∑

𝑟=0

𝜆
𝑚
𝑠
−𝑟

[𝜑
∗

1
(𝑟 − 𝑚

𝑙
) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

𝑙
)]

+ (𝑚
𝑠
− 𝑚
𝑙
) 𝜆
𝑚
𝑠
−𝑚
𝑙

[𝜑
∗

1
(0) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(0)]) .

(99)

Applying formula (33) yields (for 𝑘 ∈ Z𝑚𝑠+1+1
𝑚
𝑠
+2

)

𝑦
1
(𝑘)

= 𝜆
𝑘−(𝑚
𝑠
+1)

𝑦
1
(𝑚
𝑠
+ 1) +

𝑘−1

∑

𝑟=𝑚
𝑠
+1

𝜆
𝑘−1−𝑟

× (

𝑠

∑

𝑙=1

𝑏
∗𝑙

11
𝜆
𝑟−𝑚
𝑙

[𝜑
∗

1
(0) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(0)]

+

𝑛

∑

𝑙=𝑠+1

𝑏
∗𝑙

11
[𝜑
∗

1
(𝑟 − 𝑚

𝑙
) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

𝑙
)])

= 𝜆
𝑘−𝑚
𝑠
−1

[𝜆
𝑚
𝑠
+1

𝜑
∗

1
(0) +

𝑚
𝑠

∑

𝑟=0

𝜆
𝑚
𝑠
−𝑟

× (

𝑛

∑

𝑙=𝑠

𝑏
∗𝑙

11
[𝜑
∗

1
(𝑟 − 𝑚

𝑙
) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

𝑙
)])

+

𝑠−1

∑

𝑙=1

𝑏
∗𝑙

11
(

𝑚
𝑙

∑

𝑟=0

𝜆
𝑚
𝑠
−𝑟

[𝜑
∗

1
(𝑟 − 𝑚

𝑙
)

+

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

𝑙
)]

+ (𝑚
𝑠
− 𝑚
𝑙
) 𝜆
𝑚
𝑠
−𝑚
𝑙

× [𝜑
∗

1
(0) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(0)])]

+

𝑘−1

∑

𝑟=𝑚
𝑠
+1

𝜆
𝑘−1−𝑟

(

𝑠

∑

𝑙=1

𝑏
∗𝑙

11
𝜆
𝑟−𝑚
𝑙

[𝜑
∗

1
(0) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(0)]

+

𝑛

∑

𝑙=𝑠+1

𝑏
∗𝑙

11
[𝜑
∗

1
(𝑟 − 𝑚

𝑙
)

+

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

𝑙
)])

= 𝜆
𝑘

𝜑
∗

1
(0) +

𝑚
𝑠

∑

𝑟=0

𝜆
𝑘−1−𝑟

× (

𝑛

∑

𝑙=𝑠

𝑏
∗𝑙

11
[𝜑
∗

1
(𝑟 − 𝑚

𝑙
) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

𝑙
)])

+

𝑠−1

∑

𝑙=1

𝑏
∗𝑙

11
(

𝑚
𝑙

∑

𝑟=0

𝜆
𝑘−1−𝑟

[𝜑
∗

1
(𝑟 − 𝑚

𝑙
) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

𝑙
)]

+ (𝑚
𝑠
− 𝑚
𝑙
) 𝜆
𝑘−1−𝑚

𝑙

× [𝜑
∗

1
(0) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(0)])

+

𝑘−1

∑

𝑟=𝑚
𝑠
+1

𝜆
𝑘−1−𝑟

(

𝑠

∑

𝑙=1

𝑏
∗𝑙

11
𝜆
𝑟−𝑚
𝑙

[𝜑
∗

1
(0) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(0)]

+

𝑛

∑

𝑙=𝑠+1

𝑏
∗𝑙

11
[𝜑
∗

1
(𝑟 − 𝑚

𝑙
)

+

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

𝑙
) ])

= 𝜆
𝑘

𝜑
∗

1
(0) +

𝑘−1

∑

𝑟=0

𝜆
𝑘−1−𝑟

× (

𝑛

∑

𝑙=𝑠+1

𝑏
∗𝑙

11
[𝜑
∗

1
(𝑟 − 𝑚

𝑙
) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

𝑙
)])

+ 𝑏
∗𝑠

11

𝑚
𝑠

∑

𝑟=0

𝜆
𝑘−1−𝑟

[𝜑
∗

1
(𝑟 − 𝑚

𝑠
) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

𝑠
)]

+ 𝑏
∗1

11
(

𝑚
1

∑

𝑟=0

𝜆
𝑘−1−𝑟

[𝜑
∗

1
(𝑟 − 𝑚

1
) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

1
)]

+ (𝑚
𝑠
− 𝑚
1
) 𝜆
𝑘−1−𝑚

1

[𝜑
∗

1
(0) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(0)])

+ 𝑏
∗2

11
(

𝑚
2

∑

𝑟=0

𝜆
𝑘−1−𝑟

[𝜑
∗

1
(𝑟 − 𝑚

2
) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

2
)]

+ (𝑚
𝑠
− 𝑚
2
) 𝜆
𝑘−1−𝑚

2

× [𝜑
∗

1
(0) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(0)])

+ ⋅ ⋅ ⋅

+ 𝑏
∗𝑠−1

11
(

𝑚
𝑠−1

∑

𝑟=0

𝜆
𝑘−1−𝑟

[𝜑
∗

1
(𝑟 − 𝑚

𝑠−1
)

+

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

𝑠−1
)]
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+ (𝑚
𝑠
− 𝑚
𝑠−1
) 𝜆
𝑘−1−𝑚

𝑠−1

× [𝜑
∗

1
(0) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(0)])

+ (𝑘 − 1 − 𝑚
𝑠
)

× (𝜆
𝑘−1−𝑚

1

𝑏
∗1

11
[𝜑
∗

1
(0) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(0)]

+ 𝜆
𝑘−1−𝑚

2

𝑏
∗2

11
[𝜑
∗

1
(0) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(0)] + ⋅ ⋅ ⋅

+ 𝜆
𝑘−1−𝑚

𝑠−1

𝑏
∗𝑠−1

11
[𝜑
∗

1
(0) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(0)]

+𝜆
𝑘−1−𝑚

𝑠

𝑏
∗𝑠

11
[𝜑
∗

1
(0) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(0)])

= 𝜆
𝑘

𝜑
∗

1
(0) +

𝑘−1

∑

𝑟=0

𝜆
𝑘−1−𝑟

× (

𝑛

∑

𝑙=𝑠+1

𝑏
∗𝑙

11
[𝜑
∗

1
(𝑟 − 𝑚

𝑙
) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

𝑙
)])

+ 𝑏
∗1

11
(

𝑚
1

∑

𝑟=0

𝜆
𝑘−1−𝑟

[𝜑
∗

1
(𝑟 − 𝑚

1
) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

1
)]

+ (𝑘 − 1 − 𝑚
1
) 𝜆
𝑘−1−𝑚

1

× [𝜑
∗

1
(0) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(0)])

+ 𝑏
∗2

11
(

𝑚
2

∑

𝑟=0

𝜆
𝑘−1−𝑟

[𝜑
∗

1
(𝑟 − 𝑚

2
) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

2
)]

+ (𝑘 − 1 − 𝑚
2
) 𝜆
𝑘−1−𝑚

2

× [𝜑
∗

1
(0) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(0)])

+ ⋅ ⋅ ⋅

+ 𝑏
∗𝑠−1

11
(

𝑚
𝑠−1

∑

𝑟=0

𝜆
𝑘−1−𝑟

[𝜑
∗

1
(𝑟 − 𝑚

𝑠−1
)

+

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

𝑠−1
)]

+ (𝑘 − 1 − 𝑚
𝑠−1
) 𝜆
𝑘−1−𝑚

𝑠−1

× [𝜑
∗

1
(0) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(0)])

+ 𝑏
∗𝑠

11
(

𝑚
𝑠

∑

𝑟=0

𝜆
𝑘−1−𝑟

[𝜑
∗

1
(𝑟 − 𝑚

𝑠
) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

𝑠
)]

+ (𝑘 − 1 − 𝑚
𝑠
) 𝜆
𝑘−1−𝑚

𝑠

[𝜑
∗

1
(0) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(0)])

= 𝜆
𝑘

𝜑
∗

1
(0) +

𝑘−1

∑

𝑟=0

𝜆
𝑘−1−𝑟

× (

𝑛

∑

𝑙=𝑠+1

𝑏
∗𝑙

11
[𝜑
∗

1
(𝑟 − 𝑚

𝑙
) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

𝑙
)])

+

𝑠

∑

𝑙=1

𝑏
∗𝑙

11
(

𝑚
𝑙

∑

𝑟=0

𝜆
𝑘−1−𝑟

[𝜑
∗

1
(𝑟 − 𝑚

𝑙
)

+

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

𝑙
)]

+ (𝑘 − 1 − 𝑚
𝑙
) 𝜆
𝑘−1−𝑚

𝑙

× [𝜑
∗

1
(0) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(0)]) ,

(100)
𝑦
2
(𝑘)

= 𝜆
𝑘−(𝑚
𝑠
+1)

𝑦
2
(𝑚
𝑠
+ 1) −

𝑘−1

∑

𝑟=𝑚
𝑠
+1

𝜆
𝑘−1−𝑟

× (

𝑠

∑

𝑙=1

(𝑏
∗𝑙

11
)

2

𝑏
∗𝑙

12

𝜆
𝑟−𝑚
𝑙

[𝜑
∗

1
(0) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(0)]

+

𝑛

∑

𝑙=𝑠+1

(𝑏
∗𝑙

11
)

2

𝑏
∗𝑙

12

[𝜑
∗

1
(𝑟 − 𝑚

𝑙
)

+

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

𝑙
)])

= 𝜆
𝑘−𝑚
𝑠
−1

[𝜆
𝑚
𝑠
+1

𝜑
∗

2
(0) −

𝑚
𝑠

∑

𝑟=0

𝜆
𝑚
𝑠
−𝑟

× (

𝑛

∑

𝑙=𝑠

(𝑏
∗𝑙

11
)

2

𝑏
∗𝑙

12

[𝜑
∗

1
(𝑟 − 𝑚

𝑙
)

+

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

𝑙
)])

−

𝑠−1

∑

𝑙=1

(𝑏
∗𝑙

11
)

2

𝑏
∗𝑙

12

(

𝑚
𝑙

∑

𝑟=0

𝜆
𝑚
𝑠
−𝑟

[𝜑
∗

1
(𝑟 − 𝑚

𝑙
)

+

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

𝑙
)]
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+ (𝑚
𝑠
− 𝑚
𝑙
) 𝜆
𝑚
𝑠
−𝑚
𝑙

× [𝜑
∗

1
(0) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(0)])]

−

𝑘−1

∑

𝑟=𝑚
𝑠
+1

𝜆
𝑘−1−𝑟

(

𝑠

∑

𝑙=1

(𝑏
∗𝑙

11
)

2

𝑏
∗𝑙

12

𝜆
𝑟−𝑚
𝑙

[𝜑
∗

1
(0) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(0)]

+

𝑛

∑

𝑙=𝑠+1

(𝑏
∗𝑙

11
)

2

𝑏
∗𝑙

12

[𝜑
∗

1
(𝑟 − 𝑚

𝑙
)

+

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

𝑙
)])

= 𝜆
𝑘

𝜑
∗

2
(0) −

𝑚
𝑠

∑

𝑟=0

𝜆
𝑘−1−𝑟

× (

𝑛

∑

𝑙=𝑠

(𝑏
∗𝑙

11
)

2

𝑏
∗𝑙

12

[𝜑
∗

1
(𝑟 − 𝑚

𝑙
) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

𝑙
)])

−

𝑠−1

∑

𝑙=1

(𝑏
∗𝑙

11
)

2

𝑏
∗𝑙

12

(

𝑚
𝑙

∑

𝑟=0

𝜆
𝑘−1−𝑟

[𝜑
∗

1
(𝑟 − 𝑚

𝑙
)

+

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

𝑙
)]

+ (𝑚
𝑠
− 𝑚
𝑙
) 𝜆
𝑘−1−𝑚

𝑙

[𝜑
∗

1
(0) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(0)])

−

𝑘−1

∑

𝑟=𝑚
𝑠
+1

𝜆
𝑘−1−𝑟

(

𝑠

∑

𝑙=1

(𝑏
∗𝑙

11
)

2

𝑏
∗𝑙

12

𝜆
𝑟−𝑚
𝑙

[𝜑
∗

1
(0) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(0)]

+

𝑛

∑

𝑙=𝑠+1

(𝑏
∗𝑙

11
)

2

𝑏
∗𝑙

12

[𝜑
∗

1
(𝑟 − 𝑚

𝑙
)

+

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

𝑙
)])

= 𝜆
𝑘

𝜑
∗

2
(0) −

𝑘−1

∑

𝑟=0

𝜆
𝑘−1−𝑟

× (

𝑛

∑

𝑙=𝑠+1

(𝑏
∗𝑙

11
)

2

𝑏
∗𝑙

12

[𝜑
∗

1
(𝑟 − 𝑚

𝑙
) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

𝑙
)])

−

(𝑏
∗𝑠

11
)
2

𝑏
∗𝑠

12

𝑚
𝑠

∑

𝑟=0

𝜆
𝑘−1−𝑟

[𝜑
∗

1
(𝑟 − 𝑚

𝑠
) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

𝑠
)]

−

(𝑏
∗1

11
)

2

𝑏
∗1

12

(

𝑚
1

∑

𝑟=0

𝜆
𝑘−1−𝑟

[𝜑
∗

1
(𝑟 − 𝑚

1
) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

1
)]

+ (𝑚
𝑠
− 𝑚
1
) 𝜆
𝑘−1−𝑚

1

[𝜑
∗

1
(0) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(0)])

−

(𝑏
∗2

11
)

2

𝑏
∗2

12

(

𝑚
2

∑

𝑟=0

𝜆
𝑘−1−𝑟

[𝜑
∗

1
(𝑟 − 𝑚

2
) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

2
)]

+ (𝑚
𝑠
− 𝑚
2
) 𝜆
𝑘−1−𝑚

2

[𝜑
∗

1
(0) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(0)])

+ ⋅ ⋅ ⋅

−

(𝑏
∗𝑠−1

11
)

2

𝑏
∗𝑠−1

12

(

𝑚
𝑠−1

∑

𝑟=0

𝜆
𝑘−1−𝑟

[𝜑
∗

1
(𝑟 − 𝑚

𝑠−1
) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

𝑠−1
)]

+ (𝑚
𝑠
− 𝑚
𝑠−1
)𝜆
𝑘−1−𝑚

𝑠−1

[𝜑
∗

1
(0) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(0)])

− (𝑘 − 1 − 𝑚
𝑠
)

× (𝜆
𝑘−1−𝑚

1

(𝑏
∗1

11
)

2

𝑏
∗1

12

[𝜑
∗

1
(0) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(0)]

+ 𝜆
𝑘−1−𝑚

2

(𝑏
∗2

11
)

2

𝑏
∗2

12

[𝜑
∗

1
(0) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(0)] + ⋅ ⋅ ⋅

+ 𝜆
𝑘−1−𝑚

𝑠−1

(𝑏
∗𝑠−1

11
)

2

𝑏
∗𝑠−1

12

[𝜑
∗

1
(0) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(0)]

+𝜆
𝑘−1−𝑚

𝑠

(𝑏
∗𝑠

11
)
2

𝑏
∗𝑠

12

[𝜑
∗

1
(0) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(0)])

= 𝜆
𝑘

𝜑
∗

2
(0) −

𝑘−1

∑

𝑟=0

𝜆
𝑘−1−𝑟

× (

𝑛

∑

𝑙=𝑠+1

(𝑏
∗𝑙

11
)

2

𝑏
∗𝑙

12

[𝜑
∗

1
(𝑟 − 𝑚

𝑙
) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

𝑙
)])

−

(𝑏
∗1

11
)

2

𝑏
∗1

12

(

𝑚
1

∑

𝑟=0

𝜆
𝑘−1−𝑟

[𝜑
∗

1
(𝑟 − 𝑚

1
) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

1
)]

+ (𝑘 − 1 − 𝑚
1
) 𝜆
𝑘−1−𝑚

1

× [𝜑
∗

1
(0) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(0)])
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−

(𝑏
∗2

11
)

2

𝑏
∗2

12

(

𝑚
2

∑

𝑟=0

𝜆
𝑘−1−𝑟

[𝜑
∗

1
(𝑟 − 𝑚

2
) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

2
)]

+ (𝑘 − 1 − 𝑚
2
) 𝜆
𝑘−1−𝑚

2

× [𝜑
∗

1
(0) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(0)])

+ ⋅ ⋅ ⋅

−

(𝑏
∗𝑠−1

11
)

2

𝑏
∗𝑠−1

12

(

𝑚
𝑠−1

∑

𝑟=0

𝜆
𝑘−1−𝑟

[𝜑
∗

1
(𝑟 − 𝑚

𝑠−1
)

+

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

𝑠−1
)]

+ (𝑘 − 1 − 𝑚
𝑠−1
) 𝜆
𝑘−1−𝑚

𝑠−1

× [𝜑
∗

1
(0) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(0)])

−

(𝑏
∗𝑠

11
)
2

𝑏
∗𝑠

12

(

𝑚
𝑠

∑

𝑟=0

𝜆
𝑘−1−𝑟

[ 𝜑
∗

1
(𝑟 − 𝑚

𝑠
)

+

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

𝑠
)]

+ (𝑘 − 1 − 𝑚
𝑠
) 𝜆
𝑘−1−𝑚

𝑠

× [𝜑
∗

1
(0) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(0)])

= 𝜆
𝑘

𝜑
∗

2
(0) −

𝑘−1

∑

𝑟=0

𝜆
𝑘−1−𝑟

× (

𝑛

∑

𝑙=𝑠+1

(𝑏
∗𝑙

11
)

2

𝑏
∗𝑙

12

[𝜑
∗

1
(𝑟 − 𝑚

𝑙
) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

𝑙
)])

−

𝑠

∑

𝑙=1

(𝑏
∗𝑙

11
)

2

𝑏
∗𝑙

12

(

𝑚
𝑙

∑

𝑟=0

𝜆
𝑘−1−𝑟

[𝜑
∗

1
(𝑟 − 𝑚

𝑙
)

+

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

𝑙
)]

+ (𝑘 − 1 − 𝑚
𝑙
) 𝜆
𝑘−1−𝑚

𝑙

× [𝜑
∗

1
(0) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(0)]) .

(101)

In the end, we solve (88) for 𝑘 ∈ Z∞
𝑚
𝑛
+1

with initial data
deduced from (100) and (101); that is, we consider the problem

𝑦
1
(𝑘 + 1) = 𝜆𝑦

1
(𝑘) +

𝑛

∑

𝑙=1

𝑏
∗𝑙

11
𝜆
𝑘−𝑚
𝑙

[𝜑
∗

1
(0) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(0)]

if 𝑘 ∈ Z∞
𝑚
𝑛
+1
,

𝑦
1
(𝑚
𝑛
+ 1)

= 𝜆
𝑚
𝑛
+1

𝜑
∗

1
(0) +

𝑚
𝑛

∑

𝑟=0

𝜆
𝑚
𝑛
−𝑟

𝑏
∗𝑛

11

× [𝜑
∗

1
(𝑟 − 𝑚

𝑛
) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

𝑛
)]

+

𝑛−1

∑

𝑙=1

𝑏
∗𝑙

11
(

𝑚
𝑙

∑

𝑟=0

𝜆
𝑚
𝑛
−𝑟

[𝜑
∗

1
(𝑟 − 𝑚

𝑙
)

+

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

𝑙
)]

+ (𝑚
𝑛
− 𝑚
𝑙
) 𝜆
𝑚
𝑛
−𝑚
𝑙

× [𝜑
∗

1
(0) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(0)]) ,

𝑦
2
(𝑘 + 1)

= 𝜆𝑦
2
(𝑘) −

𝑛

∑

𝑙=1

(𝑏
∗𝑙

11
)

2

𝑏
∗𝑙

12

𝜆
𝑘−𝑚
𝑙

× [𝜑
∗

1
(0) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(0)] if 𝑘 ∈ Z∞

𝑚
𝑛
+1
,

𝑦
2
(𝑚
𝑛
+ 1)

= 𝜆
𝑚
𝑛
+1

𝜑
∗

2
(0) −

𝑚
𝑛

∑

𝑟=0

𝜆
𝑚
𝑛
−𝑟
(𝑏
∗𝑛

11
)
2

𝑏
∗𝑛

12

× [𝜑
∗

1
(𝑟 − 𝑚

𝑛
) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

𝑛
)]

−

𝑛−1

∑

𝑙=1

(𝑏
∗𝑙

11
)

2

𝑏
∗𝑙

12

(

𝑚
𝑙

∑

𝑟=0

𝜆
𝑚
𝑛
−𝑟

[𝜑
∗

1
(𝑟 − 𝑚

𝑙
)

+

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

𝑙
)]

+ (𝑚
𝑛
− 𝑚
𝑙
) 𝜆
𝑚
𝑛
−𝑚
𝑙

× [𝜑
∗

1
(0) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(0)]) .

(102)
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Applying formula (33) yields (for 𝑘 ∈ Z∞
𝑚
𝑛
+2
)

𝑦
1
(𝑘)

= 𝜆
𝑘−(𝑚
𝑛
+1)

𝑦
1
(𝑚
𝑛
+ 1) +

𝑘−1

∑

𝑟=𝑚
𝑛
+1

𝜆
𝑘−1−𝑟

× (

𝑛

∑

𝑙=1

𝑏
∗𝑙

11
𝜆
𝑟−𝑚
𝑙

[𝜑
∗

1
(0) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(0)])

= 𝜆
𝑘−𝑚
𝑛
−1

[𝜆
𝑚
𝑛
+1

𝜑
∗

1
(0)

+

𝑚
𝑛

∑

𝑟=0

𝜆
𝑚
𝑛
−𝑟

𝑏
∗𝑛

11
[𝜑
∗

1
(𝑟 − 𝑚

𝑛
)

+

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

𝑛
)]

+

𝑛−1

∑

𝑙=1

𝑏
∗𝑙

11
(

𝑚
𝑙

∑

𝑟=0

𝜆
𝑚
𝑛
−𝑟

[𝜑
∗

1
(𝑟 − 𝑚

𝑙
)

+

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

𝑙
)]

+ (𝑚
𝑛
− 𝑚
𝑙
) 𝜆
𝑚
𝑛
−𝑚
𝑙

× [𝜑
∗

1
(0) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(0)])]

+

𝑘−1

∑

𝑟=𝑚
𝑛
+1

𝜆
𝑘−1−𝑟

(

𝑛

∑

𝑙=1

𝑏
∗𝑙

11
𝜆
𝑟−𝑚
𝑙

× [𝜑
∗

1
(0) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(0)])

= 𝜆
𝑘

𝜑
∗

1
(0) +

𝑚
𝑛

∑

𝑟=0

𝜆
𝑘−1−𝑟

𝑏
∗𝑛

11
[𝜑
∗

1
(𝑟 − 𝑚

𝑛
)

+

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

𝑛
)]

+

𝑛−1

∑

𝑙=1

𝑏
∗𝑙

11
(

𝑚
𝑙

∑

𝑟=0

𝜆
𝑘−1−𝑟

[𝜑
∗

1
(𝑟 − 𝑚

𝑙
)

+

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

𝑙
)]

+ (𝑚
𝑛
− 𝑚
𝑙
) 𝜆
𝑘−1−𝑚

𝑙

× [𝜑
∗

1
(0) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(0)])

+

𝑘−1

∑

𝑟=𝑚
𝑛
+1

𝜆
𝑘−1−𝑟

(

𝑛

∑

𝑙=1

𝑏
∗𝑙

11
𝜆
𝑟−𝑚
𝑙

× [𝜑
∗

1
(0) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(0)])

= 𝜆
𝑘

𝜑
∗

1
(0) +

𝑚
𝑛

∑

𝑟=0

𝜆
𝑘−1−𝑟

𝑏
∗𝑛

11
[𝜑
∗

1
(𝑟 − 𝑚

𝑛
)

+

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

𝑛
)]

+ 𝑏
∗1

11
(

𝑚
1

∑

𝑟=0

𝜆
𝑘−1−𝑟

[𝜑
∗

1
(𝑟 − 𝑚

1
) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

1
)]

+ (𝑚
𝑛
− 𝑚
1
) 𝜆
𝑘−1−𝑚

1

×[𝜑
∗

1
(0) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(0)])

+ 𝑏
∗2

11
(

𝑚
2

∑

𝑟=0

𝜆
𝑘−1−𝑟

[𝜑
∗

1
(𝑟 − 𝑚

2
) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

2
)]

+ (𝑚
𝑛
− 𝑚
2
) 𝜆
𝑘−1−𝑚

2

×[𝜑
∗

1
(0) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(0)])

+ ⋅ ⋅ ⋅

+ 𝑏
∗𝑛−1

11
(

𝑚
𝑛−1

∑

𝑟=0

𝜆
𝑘−1−𝑟

[𝜑
∗

1
(𝑟 − 𝑚

𝑛−1
)

+

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

𝑛−1
)]

+ (𝑚
𝑛
− 𝑚
𝑛−1
) 𝜆
𝑘−1−𝑚

𝑛−1

× [𝜑
∗

1
(0) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(0)])

+ (𝑘 − 1 − 𝑚
𝑛
)

× (𝜆
𝑘−1−𝑚

1

𝑏
∗1

11
[𝜑
∗

1
(0) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(0)]

+ 𝜆
𝑘−1−𝑚

2

𝑏
∗2

11
[𝜑
∗

1
(0) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(0)] + ⋅ ⋅ ⋅

+ 𝜆
𝑘−1−𝑚

𝑛−1

𝑏
∗𝑛−1

11
[𝜑
∗

1
(0) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(0)]

+𝜆
𝑘−1−𝑚

𝑛

𝑏
∗𝑛

11
[𝜑
∗

1
(0) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(0)])
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= 𝜆
𝑘

𝜑
∗

1
(0) + 𝑏

∗1

11
(

𝑚
1

∑

𝑟=0

𝜆
𝑘−1−𝑟

[𝜑
∗

1
(𝑟 − 𝑚

1
)

+

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

1
)]

+ (𝑘 − 1 − 𝑚
1
) 𝜆
𝑘−1−𝑚

1

× [𝜑
∗

1
(0) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(0)])

+ 𝑏
∗2

11
(

𝑚
2

∑

𝑟=0

𝜆
𝑘−1−𝑟

[𝜑
∗

1
(𝑟 − 𝑚

2
) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

2
)]

+ (𝑘 − 1 − 𝑚
2
) 𝜆
𝑘−1−𝑚

2

×[𝜑
∗

1
(0) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(0)])

+ ⋅ ⋅ ⋅

+ 𝑏
∗𝑛−1

11
(

𝑚
𝑛−1

∑

𝑟=0

𝜆
𝑘−1−𝑟

[𝜑
∗

1
(𝑟 − 𝑚

𝑛−1
)

+

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

𝑛−1
)]

+ (𝑘 − 1 − 𝑚
𝑛−1
) 𝜆
𝑘−1−𝑚

𝑛−1

× [𝜑
∗

1
(0) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(0)])

+ 𝑏
∗𝑛

11
(

𝑚
𝑛

∑

𝑟=0

𝜆
𝑘−1−𝑟

[𝜑
∗

1
(𝑟 − 𝑚

𝑛
) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

𝑛
)]

+ (𝑘 − 1 − 𝑚
𝑛
) 𝜆
𝑘−1−𝑚

𝑛

× [𝜑
∗

1
(0) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(0)])

= 𝜆
𝑘

𝜑
∗

1
(0)

+

𝑛

∑

𝑙=1

𝑏
∗𝑙

11
(

𝑚
𝑙

∑

𝑟=0

𝜆
𝑘−1−𝑟

[𝜑
∗

1
(𝑟 − 𝑚

𝑙
) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

𝑙
)]

+ (𝑘 − 1 − 𝑚
𝑙
) 𝜆
𝑘−1−𝑚

𝑙

× [𝜑
∗

1
(0) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(0)]) ,

(103)

𝑦
2
(𝑘)

= 𝜆
𝑘−(𝑚
𝑛
+1)

𝑦
2
(𝑚
𝑛
+ 1) −

𝑘−1

∑

𝑟=𝑚
𝑛
+1

𝜆
𝑘−1−𝑟

× (

𝑛

∑

𝑙=1

(𝑏
∗𝑙

11
)

2

𝑏
∗𝑙

12

𝜆
𝑟−𝑚
𝑙

[𝜑
∗

1
(0) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(0)])

= 𝜆
𝑘−𝑚
𝑛
−1

× [𝜆
𝑚
𝑛
+1

𝜑
∗

2
(0) −

𝑚
𝑛

∑

𝑟=0

𝜆
𝑚
𝑛
−𝑟
(𝑏
∗𝑛

11
)
2

𝑏
∗𝑛

12

× [𝜑
∗

1
(𝑟 − 𝑚

𝑛
) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

𝑛
)]

−

𝑛−1

∑

𝑙=1

(𝑏
∗𝑙

11
)

2

𝑏
∗𝑙

12

× (

𝑚
𝑙

∑

𝑟=0

𝜆
𝑚
𝑛
−𝑟

[𝜑
∗

1
(𝑟 − 𝑚

𝑙
)

+

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

𝑙
)]

+ (𝑚
𝑛
− 𝑚
𝑙
) 𝜆
𝑚
𝑛
−𝑚
𝑙

× [𝜑
∗

1
(0) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(0)])]

−

𝑘−1

∑

𝑟=𝑚
𝑛
+1

𝜆
𝑘−1−𝑟

(

𝑛

∑

𝑙=1

(𝑏
∗𝑙

11
)

2

𝑏
∗𝑙

12

𝜆
𝑟−𝑚
𝑙

× [𝜑
∗

1
(0) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(0)])

= 𝜆
𝑘

𝜑
∗

2
(0) −

𝑚
𝑛

∑

𝑟=0

𝜆
𝑘−1−𝑟

(𝑏
∗𝑛

11
)
2

𝑏
∗𝑛

12

× [𝜑
∗

1
(𝑟 − 𝑚

𝑛
) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

𝑛
)]

−

𝑛−1

∑

𝑙=1

(𝑏
∗𝑙

11
)

2

𝑏
∗𝑙

12

(

𝑚
𝑙

∑

𝑟=0

𝜆
𝑘−1−𝑟

[𝜑
∗

1
(𝑟 − 𝑚

𝑙
)

+

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

𝑙
)]

+ (𝑚
𝑛
− 𝑚
𝑙
) 𝜆
𝑘−1−𝑚

𝑙

× [𝜑
∗

1
(0) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(0)])
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−

𝑘−1

∑

𝑟=𝑚
𝑛
+1

𝜆
𝑘−1−𝑟

(

𝑛

∑

𝑙=1

(𝑏
∗𝑙

11
)

2

𝑏
∗𝑙

12

𝜆
𝑟−𝑚
𝑙

× [𝜑
∗

1
(0) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(0)])

= 𝜆
𝑘

𝜑
∗

2
(0) −

𝑚
𝑛

∑

𝑟=0

𝜆
𝑘−1−𝑟

(𝑏
∗𝑛

11
)
2

𝑏
∗𝑛

12

[𝜑
∗

1
(𝑟 − 𝑚

𝑛
)

+

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

𝑛
)]

−

(𝑏
∗1

11
)

2

𝑏
∗1

12

(

𝑚
1

∑

𝑟=0

𝜆
𝑘−1−𝑟

[𝜑
∗

1
(𝑟 − 𝑚

1
)

+

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

1
)]

+ (𝑚
𝑛
− 𝑚
1
) 𝜆
𝑘−1−𝑚

1

× [𝜑
∗

1
(0) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(0)])

−

(𝑏
∗2

11
)

2

𝑏
∗2

12

(

𝑚
2

∑

𝑟=0

𝜆
𝑘−1−𝑟

[𝜑
∗

1
(𝑟 − 𝑚

2
)

+

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

2
)]

+ (𝑚
𝑛
− 𝑚
2
) 𝜆
𝑘−1−𝑚

2

×[𝜑
∗

1
(0) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(0)])

+ ⋅ ⋅ ⋅

−

(𝑏
∗𝑛−1

11
)

2

𝑏
∗𝑛−1

12

(

𝑚
𝑛−1

∑

𝑟=0

𝜆
𝑘−1−𝑟

[𝜑
∗

1
(𝑟 − 𝑚

𝑛−1
)

+

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

𝑛−1
)]

+ (𝑚
𝑛
− 𝑚
𝑛−1
) 𝜆
𝑘−1−𝑚

𝑛−1

× [𝜑
∗

1
(0) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(0)]) − (𝑘 − 1 − 𝑚

𝑛
)

× (𝜆
𝑘−1−𝑚

1

(𝑏
∗1

11
)

2

𝑏
∗1

12

[𝜑
∗

1
(0) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(0)]

+ 𝜆
𝑘−1−𝑚

2

(𝑏
∗2

11
)

2

𝑏
∗2

12

[𝜑
∗

1
(0) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(0)] + ⋅ ⋅ ⋅

+ 𝜆
𝑘−1−𝑚

𝑛−1

(𝑏
∗𝑛−1

11
)

2

𝑏
∗𝑛−1

12

[𝜑
∗

1
(0) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(0)]

+𝜆
𝑘−1−𝑚

𝑛

(𝑏
∗𝑛

11
)
2

𝑏
∗𝑛

12

[𝜑
∗

1
(0) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(0)])

= 𝜆
𝑘

𝜑
∗

2
(0) −

(𝑏
∗1

11
)

2

𝑏
∗1

12

× (

𝑚
1

∑

𝑟=0

𝜆
𝑘−1−𝑟

[𝜑
∗

1
(𝑟 − 𝑚

1
) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

1
)]

+ (𝑘 − 1 − 𝑚
1
) 𝜆
𝑘−1−𝑚

1

× [𝜑
∗

1
(0) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(0)])

−

(𝑏
∗2

11
)

2

𝑏
∗2

12

(

𝑚
2

∑

𝑟=0

𝜆
𝑘−1−𝑟

[𝜑
∗

1
(𝑟 − 𝑚

2
)

+

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

2
)]

+ (𝑘 − 1 − 𝑚
2
) 𝜆
𝑘−1−𝑚

2

× [𝜑
∗

1
(0) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(0)])

+ ⋅ ⋅ ⋅

−

(𝑏
∗𝑛−1

11
)

2

𝑏
∗𝑛−1

12

(

𝑚
𝑛−1

∑

𝑟=0

𝜆
𝑘−1−𝑟

[𝜑
∗

1
(𝑟 − 𝑚

𝑛−1
)

+

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

𝑛−1
)]

+ (𝑘 − 1 − 𝑚
𝑛−1
) 𝜆
𝑘−1−𝑚

𝑛−1

× [𝜑
∗

1
(0) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(0)])

−

(𝑏
∗𝑛

11
)
2

𝑏
∗𝑛

12

(

𝑚
𝑛

∑

𝑟=0

𝜆
𝑘−1−𝑟

[𝜑
∗

1
(𝑟 − 𝑚

𝑛
)
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+

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

𝑛
)]

+ (𝑘 − 1 − 𝑚
𝑛
) 𝜆
𝑘−1−𝑚

𝑛

× [𝜑
∗

1
(0) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(0)])

= 𝜆
𝑘

𝜑
∗

2
(0) −

𝑛

∑

𝑙=1

(𝑏
∗𝑙

11
)

2

𝑏
∗𝑙

12

× (

𝑚
𝑙

∑

𝑟=0

𝜆
𝑘−1−𝑟

[𝜑
∗

1
(𝑟 − 𝑚

𝑙
) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

𝑙
)]

+ (𝑘 − 1 − 𝑚
𝑙
) 𝜆
𝑘−1−𝑚

𝑙

× [𝜑
∗

1
(0) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(0)]) .

(104)

Summing up all particular cases (90), (93), (96), (100),
and (103) we have

𝑦
1
(𝑘) =

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

𝜑
∗

1
(𝑘) if 𝑘 ∈ Z0

−𝑚
𝑛

,

𝜆
𝑘

𝜑
∗

1
(0) +

𝑘−1

∑

𝑟=0

𝜆
𝑘−1−𝑟

(

𝑛

∑

𝑙=1

𝑏
∗𝑙

11
[𝜑
∗

1
(𝑟 − 𝑚

𝑙
) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

𝑙
)]) if 𝑘 ∈ Z𝑚1+1

1
,

𝜆
𝑘

𝜑
∗

1
(0) +

𝑘−1

∑

𝑟=0

𝜆
𝑘−1−𝑟

(

𝑛

∑

𝑙=2

𝑏
∗𝑙

11
[𝜑
∗

1
(𝑟 − 𝑚

𝑙
) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

𝑙
)])

+ 𝑏
∗1

11
(

𝑚
1

∑

𝑟=0

𝜆
𝑘−1−𝑟

[𝜑
∗

1
(𝑟 − 𝑚

1
) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

1
)]

+ (𝑘 − 1 − 𝑚
1
) 𝜆
𝑘−1−𝑚

1
[𝜑
∗

1
(0) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(0)]) if 𝑘 ∈ Z𝑚2+1

𝑚
1
+2
,

𝜆
𝑘

𝜑
∗

1
(0) +

𝑘−1

∑

𝑟=0

𝜆
𝑘−1−𝑟

(

𝑛

∑

𝑙=3

𝑏
∗𝑙

11
[𝜑
∗

1
(𝑟 − 𝑚

𝑙
) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

𝑙
)])

+ 𝑏
∗1

11
(

𝑚
1

∑

𝑟=0

𝜆
𝑘−1−𝑟

[𝜑
∗

1
(𝑟 − 𝑚

1
) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

1
)]

+ (𝑘 − 1 − 𝑚
1
) 𝜆
𝑘−1−𝑚

1

[𝜑
∗

1
(0) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(0)])

+ 𝑏
∗2

11
(

𝑚
2

∑

𝑟=0

𝜆
𝑘−1−𝑟

[𝜑
∗

1
(𝑟 − 𝑚

2
) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

2
)]

+ (𝑘 − 1 − 𝑚
2
) 𝜆
𝑘−1−𝑚

2
[𝜑
∗

1
(0) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(0)]) if 𝑘 ∈ Z𝑚3+1

𝑚
2
+2
,

...

𝜆
𝑘

𝜑
∗

1
(0) +

𝑘−1

∑

𝑟=0

𝜆
𝑘−1−𝑟

(

𝑛

∑

𝑙=𝑠+1

𝑏
∗𝑙

11
[𝜑
∗

1
(𝑟 − 𝑚

𝑙
) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

𝑙
)])

+

𝑠

∑

𝑙=1

𝑏
∗𝑙

11
(

𝑚
𝑙

∑

𝑟=0

𝜆
𝑘−1−𝑟

[𝜑
∗

1
(𝑟 − 𝑚

𝑙
) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

𝑙
)]

+ (𝑘 − 1 − 𝑚
𝑙
) 𝜆
𝑘−1−𝑚

𝑙
[𝜑
∗

1
(0) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(0)]) if 𝑘 ∈ Z𝑚𝑠+1+1

𝑚
𝑠
+2
,

...

𝜆
𝑘

𝜑
∗

1
(0) +

𝑛

∑

𝑙=1

𝑏
∗𝑙

11
(

𝑚
𝑙

∑

𝑟=0

𝜆
𝑘−1−𝑟

[𝜑
∗

1
(𝑟 − 𝑚

𝑙
) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

𝑙
)]

+ (𝑘 − 1 − 𝑚
𝑙
) 𝜆
𝑘−1−𝑚

𝑙
[𝜑
∗

1
(0) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(0)]) if 𝑘 ∈ Z∞

𝑚
𝑛
+2
,

(105)
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and from cases (91), (94), (97), (101), and (104) we conclude
that

𝑦
2
(𝑘) =

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

𝜑
∗

2
(𝑘) if 𝑘 ∈ Z0

−𝑚
𝑛

,

𝜆
𝑘

𝜑
∗

2
(0) −

𝑘−1

∑

𝑟=0

𝜆
𝑘−1−𝑟

(

𝑛

∑

𝑙=1

(𝑏
∗𝑙

11
)

2

𝑏
∗𝑙

12

[𝜑
∗

1
(𝑟 − 𝑚

𝑙
) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

𝑙
)]) if 𝑘 ∈ Z𝑚1+1

1
,

𝜆
𝑘

𝜑
∗

2
(0) −

𝑘−1

∑

𝑟=0

𝜆
𝑘−1−𝑟

(

𝑛

∑

𝑙=2

(𝑏
∗𝑙

11
)

2

𝑏
∗𝑙

12

[𝜑
∗

1
(𝑟 − 𝑚

𝑙
) +

𝑏
∗1

12

𝑏
∗1

11

𝑏
∗𝑙

12
𝜑
∗

2
(𝑟 − 𝑚

𝑙
)])

−

(𝑏
∗1

11
)

2

𝑏
∗1

12

(

𝑚
1

∑

𝑟=0

𝜆
𝑘−1−𝑟

[𝜑
∗

1
(𝑟 − 𝑚

1
) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

1
)]

+ (𝑘 − 1 − 𝑚
1
) 𝜆
𝑘−1−𝑚

1
[𝜑
∗

1
(0) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(0)]) if 𝑘 ∈ Z𝑚2+1

𝑚
1
+2
,

𝜆
𝑘

𝜑
∗

2
(0) −

𝑘−1

∑

𝑟=0

𝜆
𝑘−1−𝑟

(

𝑛

∑

𝑙=3

(𝑏
∗𝑙

11
)

2

𝑏
∗𝑙

12

[𝜑
∗

1
(𝑟 − 𝑚

𝑙
) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

𝑙
)])

−

(𝑏
∗1

11
)

2

𝑏
∗1

12

(

𝑚
1

∑

𝑟=0

𝜆
𝑘−1−𝑟

[𝜑
∗

1
(𝑟 − 𝑚

1
) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

1
)]

+ (𝑘 − 1 − 𝑚
1
) 𝜆
𝑘−1−𝑚

1
[𝜑
∗

1
(0) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(0)])

−

(𝑏
∗2

11
)

2

𝑏
∗2

12

(

𝑚
2

∑

𝑟=0

𝜆
𝑘−1−𝑟

[𝜑
∗

1
(𝑟 − 𝑚

2
) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

2
)]

+ (𝑘 − 1 − 𝑚
2
) 𝜆
𝑘−1−𝑚

2
[𝜑
∗

1
(0) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(0)]) if 𝑘 ∈ Z𝑚3+1

𝑚
2
+2
,

...

𝜆
𝑘

𝜑
∗

2
(0) −

𝑘−1

∑

𝑟=0

𝜆
𝑘−1−𝑟

(

𝑛

∑

𝑙=𝑠+1

(𝑏
∗𝑙

11
)

2

𝑏
∗𝑙

12

[𝜑
∗

1
(𝑟 − 𝑚

𝑙
) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

𝑙
)])

−

𝑠

∑

𝑙=1

(𝑏
∗𝑙

11
)

2

𝑏
∗𝑙

12

(

𝑚
𝑙

∑

𝑟=0

𝜆
𝑘−1−𝑟

[𝜑
∗

1
(𝑟 − 𝑚

𝑙
) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

𝑙
)]

+ (𝑘 − 1 − 𝑚
𝑙
) 𝜆
𝑘−1−𝑚

𝑙
[𝜑
∗

1
(0) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(0)]) if 𝑘 ∈ Z𝑚𝑠+1+1

𝑚
𝑠
+2
,

...

𝜆
𝑘

𝜑
∗

2
(0) −

𝑛

∑

𝑙=1

(𝑏
∗𝑙

11
)

2

𝑏
∗𝑙

12

(

𝑚
𝑙

∑

𝑟=0

𝜆
𝑘−1−𝑟

[𝜑
∗

1
(𝑟 − 𝑚

𝑙
) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑟 − 𝑚

𝑙
)]

+ (𝑘 − 1 − 𝑚
𝑙
) 𝜆
𝑘−1−𝑚

𝑙
[𝜑
∗

1
(0) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(0)]) if 𝑘 ∈ Z∞

𝑚
𝑛
+2
.

(106)

Formula (81) is now a direct consequence of (105), (106), and
(80).

2.1.6. Case (39) of a Double Real Root. If the matrixΛ has the
form (39), the necessary and sufficient conditions (13)–(16),
for (40), are reduced to (43), (44), (46), and










𝜆 1

𝑏
∗𝑙

21
𝑏
∗𝑙

22










+










𝑏
∗𝑙

11
𝑏
∗𝑙

12

0 𝜆










= 𝜆 (𝑏
∗𝑙

11
+ 𝑏
∗𝑙

22
) − 𝑏
∗𝑙

21
= 0. (107)

Then (43), (44), and (107) give 𝑏∗𝑙
11
= 𝑏
∗𝑙

22
= 𝑏
∗𝑙

21
= 0.

Theorem 9. Let (1) be a weakly delayed system, (35) has a
double root 𝜆

1,2
= 𝜆 and the matrix Λ has the form (39). Then
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𝑏
∗𝑙

11
= 𝑏
∗𝑙

22
= 𝑏
∗𝑙

21
= 0 and the solution of the initial problem (1),

(3) is 𝑥(𝑘) = S𝑦(𝑘), 𝑦(𝑘) = (𝑦
1
(𝑘), 𝑦
2
(𝑘))
𝑇, and

𝑦
1
(𝑘) =

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

𝜑
∗

1
(𝑘) 𝑖𝑓 𝑘 ∈ Z0

−𝑚
𝑛

,

𝜆
𝑘

𝜑
∗

1
(0) + 𝑘𝜆

𝑘−1

𝜑
∗

2
(0)

+

𝑘−1

∑

𝑟=0

𝜆
𝑘−1−𝑟

[

𝑛

∑

𝑙=1

𝑏
∗𝑙

12
𝜑
∗

2
(𝑟 − 𝑚

𝑙
)]

𝑖𝑓 𝑘 ∈ Z
𝑚
1
+1

1
,

...
𝜆
𝑘

𝜑
∗

1
(0) + 𝑘𝜆

𝑘−1

𝜑
∗

2
(0)

+

𝑘−1

∑

𝑟=0

𝜆
𝑘−1−𝑟

[

𝑛

∑

𝑙=𝑠+1

𝑏
∗𝑙

12
𝜑
∗

2
(𝑟 − 𝑚

𝑙
)]

+

𝑠

∑

𝑙=1

𝑏
∗𝑙

12
[

𝑚
𝑙

∑

𝑟=0

𝜆
𝑘−1−𝑟

𝜑
∗

2
(𝑟 − 𝑚

𝑙
)

+ (𝑘 − 1 − 𝑚
𝑙
) 𝜆
𝑘−1−𝑚

𝑙
𝜑
∗

2
(0) ]

𝑖𝑓 𝑘 ∈ Z
𝑚
𝑠+1
+1

𝑚
𝑠
+2
,

𝑠 = 1, 2, . . . , 𝑛 − 1,

...
𝜆
𝑘

𝜑
∗

1
(0) + 𝑘𝜆

𝑘−1

𝜑
∗

2
(0)

+

𝑛

∑

𝑙=1

𝑏
∗𝑙

12
[

𝑚
𝑙

∑

𝑟=0

𝜆
𝑘−1−𝑟

𝜑
∗

2
(𝑟 − 𝑚

𝑙
)

+ (𝑘 − 1 − 𝑚
𝑙
) 𝜆
𝑘−1−𝑚

𝑙
𝜑
∗

2
(0) ]

𝑖𝑓 𝑘 ∈ Z∞
𝑚
𝑛
+2
,

(108)

𝑦
2
(𝑘) =

{

{

{

𝜑
∗

2
(𝑘) 𝑖𝑓 𝑘 ∈ Z0

−𝑚
𝑛

,

𝜆
𝑘

𝜑
∗

2
(0) 𝑖𝑓 𝑘 ∈ Z∞

1
.

(109)

Proof. The system (40) can be written as

𝑦
1
(𝑘 + 1) = 𝜆𝑦

1
(𝑘) + 𝑦

2
(𝑘) +

𝑛

∑

𝑙=1

𝑏
∗𝑙

12
𝑦
2
(𝑘 − 𝑚

𝑙
) , (110)

𝑦
2
(𝑘 + 1) = 𝜆𝑦

2
(𝑘) , 𝑘 ∈ Z

∞

0
. (111)

Solving (111), we get

𝑦
2
(𝑘) =

{

{

{

𝜑
∗

2
(𝑘) if 𝑘 ∈ Z0

−𝑚
𝑛

,

𝜆
𝑘

𝜑
∗

2
(0) if 𝑘 ∈ Z∞

1
,

(112)

then (110) turns into

𝑦
1
(𝑘 + 1) =

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

𝜆𝑦
1
(𝑘) + 𝜆

𝑘

𝜑
∗

2
(0) +

𝑛

∑

𝑙=1

𝑏
∗𝑙

12
𝜑
∗

2
(𝑘 − 𝑚

𝑙
)

if 𝑘 ∈ Z𝑚1
0
,

𝜆𝑦
1
(𝑘) + 𝜆

𝑘

𝜑
∗

2
(0) + 𝑏

∗1

12
𝜆
𝑘−𝑚
1
𝜑
∗

2
(0)

+

𝑛

∑

𝑙=2

𝑏
∗𝑙

12
𝜑
∗

2
(𝑘 − 𝑚

𝑙
)

if 𝑘 ∈ Z𝑚2
𝑚
1
+1
,

𝜆𝑦
1
(𝑘) + 𝜆

𝑘

𝜑
∗

2
(0) +

2

∑

𝑙=1

𝑏
∗𝑙

12
𝜆
𝑘−𝑚
𝑙

𝜑
∗

2
(0)

+

𝑛

∑

𝑙=3

𝑏
∗𝑙

12
𝜑
∗

2
(𝑘 − 𝑚

𝑙
)

if 𝑘 ∈ Z𝑚3
𝑚
2
+1
,

...

𝜆𝑦
1
(𝑘) + 𝜆

𝑘

𝜑
∗

2
(0) +

𝑠

∑

𝑙=1

𝑏
∗𝑙

12
𝜆
𝑘−𝑚
𝑙

𝜑
∗

2
(0)

+

𝑛

∑

𝑙=𝑠+1

𝑏
∗𝑙

12
𝜑
∗

2
(𝑘 − 𝑚

𝑙
)

if 𝑘 ∈ Z𝑚𝑠+1
𝑚
𝑠
+1
,

𝑠 = 3, 4, . . . , 𝑛 − 1,

...

𝜆𝑦
1
(𝑘) + 𝜆

𝑘

𝜑
∗

2
(0) +

𝑛

∑

𝑙=1

𝑏
∗𝑙

12
𝜆
𝑘−𝑚
𝑙

𝜑
∗

2
(0)

if 𝑘 ∈ Z∞
𝑚
𝑛
+1
.

(113)

Equation (113) can be solved in a way similar to that of (54)
in the proof of Theorem 5 using (33).

First we solve (113) for 𝑘 ∈ Z
𝑚
1

0
. This means that we

consider the problem

𝑦
1
(𝑘 + 1) = 𝜆𝑦

1
(𝑘) + 𝜆

𝑘

𝜑
∗

2
(0)

+

𝑛

∑

𝑙=1

𝑏
∗𝑙

12
𝜑
∗

2
(𝑘 − 𝑚

𝑙
) if 𝑘 ∈ Z𝑚1

0
,

𝑦
1
(0) = 𝜑

∗

1
(0) .

(114)

With the aid of formula (33), we get

𝑦
1
(𝑘) = 𝜆

𝑘

𝜑
∗

1
(0)

+

𝑘−1

∑

𝑟=0

𝜆
𝑘−1−𝑟

[𝜆
𝑟

𝜑
∗

2
(0) +

𝑛

∑

𝑙=1

𝑏
∗𝑙

12
𝜑
∗

2
(𝑟 − 𝑚

𝑙
)]
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= 𝜆
𝑘

𝜑
∗

1
(0) + 𝑘𝜆

𝑘−1

𝜑
∗

2
(0)

+

𝑘−1

∑

𝑟=0

𝜆
𝑘−1−𝑟

[

𝑛

∑

𝑙=1

𝑏
∗𝑙

12
𝜑
∗

2
(𝑟 − 𝑚

𝑙
)] , 𝑘 ∈ Z

𝑚
1
+1

1
.

(115)

Nowwe solve (113) for 𝑘 ∈ Z𝑚2
𝑚
1
+1
with initial data deduced

from (115); that is, we consider the problem

𝑦
1
(𝑘 + 1) = 𝜆𝑦

1
(𝑘) + 𝜆

𝑘

𝜑
∗

2
(0) + 𝑏

∗1

12
𝜆
𝑘−𝑚
1

𝜑
∗

2
(0)

+

𝑛

∑

𝑙=2

𝑏
∗𝑙

12
𝜑
∗

2
(𝑘 − 𝑚

𝑙
) , 𝑘 ∈ Z

𝑚
2

𝑚
1
+1
,

𝑦
1
(𝑚
1
+ 1) = 𝜆

𝑚
1
+1

𝜑
∗

1
(0) + (𝑚

1
+ 1) 𝜆

𝑚
1

𝜑
∗

2
(0)

+

𝑚
1

∑

𝑟=0

𝜆
𝑚
1
−𝑟

[

𝑛

∑

𝑙=1

𝑏
∗𝑙

12
𝜑
∗

2
(𝑟 − 𝑚

𝑙
)] .

(116)

Applying formula (33) we get (for 𝑘 ∈ Z𝑚2+1
𝑚
1
+2
)

𝑦
1
(𝑘) = 𝜆

𝑘−(𝑚
1
+1)

𝑦
1
(𝑚
1
+ 1)

+

𝑘−1

∑

𝑟=𝑚
1
+1

𝜆
𝑘−1−𝑟

[𝜆
𝑟

𝜑
∗

2
(0) + 𝑏

∗1

12
𝜆
𝑟−𝑚
1

𝜑
∗

2
(0)

+

𝑛

∑

𝑙=2

𝑏
∗𝑙

12
𝜑
∗

2
(𝑟 − 𝑚

𝑙
)]

= 𝜆
𝑘−𝑚
1
−1

[𝜆
𝑚
1
+1

𝜑
∗

1
(0) + (𝑚

1
+ 1) 𝜆

𝑚
1

𝜑
∗

2
(0)

+

𝑚
1

∑

𝑟=0

𝜆
𝑚
1
−𝑟

[

𝑛

∑

𝑙=1

𝑏
∗𝑙

12
𝜑
∗

2
(𝑟 − 𝑚

𝑙
)]]

+

𝑘−1

∑

𝑟=𝑚
1
+1

𝜆
𝑘−1−𝑟

[𝜆
𝑟

𝜑
∗

2
(0) + 𝑏

∗1

12
𝜆
𝑟−𝑚
1

𝜑
∗

2
(0)

+

𝑛

∑

𝑙=2

𝑏
∗𝑙

12
𝜑
∗

2
(𝑟 − 𝑚

𝑙
)]

= 𝜆
𝑘

𝜑
∗

1
(0) + (𝑚

1
+ 1) 𝜆

𝑘−1

𝜑
∗

2
(0)

+

𝑚
1

∑

𝑟=0

𝜆
𝑘−1−𝑟

[

𝑛

∑

𝑙=1

𝑏
∗𝑙

12
𝜑
∗

2
(𝑟 − 𝑚

𝑙
)]

+ (𝑘 − 𝑚
1
− 1) 𝜆

𝑘−1

𝜑
∗

2
(0)

+

𝑘−1

∑

𝑟=𝑚
1
+1

𝜆
𝑘−1−𝑟

[𝑏
∗1

12
𝜆
𝑟−𝑚
1

𝜑
∗

2
(0) +

𝑛

∑

𝑙=2

𝑏
∗𝑙

12
𝜑
∗

2
(𝑟 − 𝑚

𝑙
)]

= 𝜆
𝑘

𝜑
∗

1
(0) + 𝑘𝜆

𝑘−1

𝜑
∗

2
(0)

+

𝑘−1

∑

𝑟=0

𝜆
𝑘−1−𝑟

[

𝑛

∑

𝑙=2

𝑏
∗𝑙

12
𝜑
∗

2
(𝑟 − 𝑚

𝑙
)]

+ 𝑏
∗1

12
[

𝑚
1

∑

𝑟=0

𝜆
𝑘−1−𝑟

𝜑
∗

2
(𝑟 − 𝑚

1
)

+ (𝑘 − 1 − 𝑚
1
) 𝜆
𝑘−1−𝑚

1

𝜑
∗

2
(0) ] .

(117)

Nowwe solve (113) for 𝑘 ∈ Z𝑚3
𝑚
2
+1
with initial data deduced

from (117); that is, we consider the problem

𝑦
1
(𝑘 + 1) = 𝜆𝑦

1
(𝑘) + 𝜆

𝑘

𝜑
∗

2
(0) +

2

∑

𝑙=1

𝑏
∗𝑙

12
𝜆
𝑘−𝑚
𝑙

𝜑
∗

2
(0)

+

𝑛

∑

𝑙=3

𝑏
∗𝑙

12
𝜑
∗

2
(𝑘 − 𝑚

𝑙
) 𝑘 ∈ Z

𝑚
3

𝑚
2
+1
,

𝑦
1
(𝑚
2
+ 1) = 𝜆

𝑚
2
+1

𝜑
∗

1
(0) + (𝑚

2
+ 1) 𝜆

𝑚
2

𝜑
∗

2
(0)

+

𝑚
2

∑

𝑟=0

𝜆
𝑚
2
−𝑟

[

𝑛

∑

𝑙=2

𝑏
∗𝑙

12
𝜑
∗

2
(𝑟 − 𝑚

𝑙
)]

+ 𝑏
∗1

12
[

𝑚
1

∑

𝑟=0

𝜆
𝑚
2
−𝑟

𝜑
∗

2
(𝑟 − 𝑚

1
)

+ (𝑚
2
− 𝑚
1
) 𝜆
𝑚
2
−𝑚
1

𝜑
∗

2
(0) ] .

(118)

Applying formula (33) yields (for 𝑘 ∈ Z𝑚3+1
𝑚
2
+2
)

𝑦
1
(𝑘) = 𝜆

𝑘−(𝑚
2
+1)

𝑦
1
(𝑚
2
+ 1)

+

𝑘−1

∑

𝑟=𝑚
2
+1

𝜆
𝑘−1−𝑟

[𝜆
𝑟

𝜑
∗

2
(0) +

2

∑

𝑙=1

𝑏
∗𝑙

12
𝜆
𝑟−𝑚
𝑙

𝜑
∗

2
(0)

+

𝑛

∑

𝑙=3

𝑏
∗𝑙

12
𝜑
∗

2
(𝑟 − 𝑚

𝑙
)]
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= 𝜆
𝑘−𝑚
2
−1

[𝜆
𝑚
2
+1

𝜑
∗

1
(0) + (𝑚

2
+ 1) 𝜆

𝑚
2

𝜑
∗

2
(0)

+

𝑚
2

∑

𝑟=0

𝜆
𝑚
2
−𝑟

[

𝑛

∑

𝑙=2

𝑏
∗𝑙

12
𝜑
∗

2
(𝑟 − 𝑚

𝑙
)]

+ 𝑏
∗1

12
[

𝑚
1

∑

𝑟=0

𝜆
𝑚
2
−𝑟

𝜑
∗

2
(𝑟 − 𝑚

1
)

+ (𝑚
2
− 𝑚
1
) 𝜆
𝑚
2
−𝑚
1

𝜑
∗

2
(0) ] ]

+

𝑘−1

∑

𝑟=𝑚
2
+1

𝜆
𝑘−1−𝑟

[𝜆
𝑟

𝜑
∗

2
(0) +

2

∑

𝑙=1

𝑏
∗𝑙

12
𝜆
𝑟−𝑚
𝑙

𝜑
∗

2
(0)

+

𝑛

∑

𝑙=3

𝑏
∗𝑙

12
𝜑
∗

2
(𝑟 − 𝑚

𝑙
)]

= 𝜆
𝑘

𝜑
∗

1
(0) + (𝑚

2
+ 1) 𝜆

𝑘−1

𝜑
∗

2
(0)

+

𝑚
2

∑

𝑟=0

𝜆
𝑘−1−𝑟

[

𝑛

∑

𝑙=2

𝑏
∗𝑙

12
𝜑
∗

2
(𝑟 − 𝑚

𝑙
)]

+ 𝑏
∗1

12
[

𝑚
1

∑

𝑟=0

𝜆
𝑘−1−𝑟

𝜑
∗

2
(𝑟 − 𝑚

1
)

+ (𝑚
2
− 𝑚
1
) 𝜆
𝑘−1−𝑚

1

𝜑
∗

2
(0) ]

+ (𝑘 − 1 − 𝑚
2
) 𝜆
𝑘−1

𝜑
∗

2
(0)

+

𝑘−1

∑

𝑟=𝑚
2
+1

𝜆
𝑘−1−𝑟

[

2

∑

𝑙=1

𝑏
∗𝑙

12
𝜆
𝑟−𝑚
𝑙

𝜑
∗

2
(0)

+

𝑛

∑

𝑙=3

𝑏
∗𝑙

12
𝜑
∗

2
(𝑟 − 𝑚

𝑙
)]

= 𝜆
𝑘

𝜑
∗

1
(0) + 𝑘𝜆

𝑘−1

𝜑
∗

2
(0)

+

𝑘−1

∑

𝑟=0

𝜆
𝑘−1−𝑟

[

𝑛

∑

𝑙=3

𝑏
∗𝑙

12
𝜑
∗

2
(𝑟 − 𝑚

𝑙
)]

+ 𝑏
∗1

12
[

𝑚
1

∑

𝑟=0

𝜆
𝑘−1−𝑟

𝜑
∗

2
(𝑟 − 𝑚

1
)

+ (𝑘 − 1 − 𝑚
1
) 𝜆
𝑘−1−𝑚

1

𝜑
∗

2
(0) ]

+ 𝑏
∗2

12
[

𝑚
2

∑

𝑟=0

𝜆
𝑘−1−𝑟

𝜑
∗

2
(𝑟 − 𝑚

2
)

+ (𝑘 − 1 − 𝑚
2
) 𝜆
𝑘−1−𝑚

2

𝜑
∗

2
(0) ] .

(119)

From (115), (117), and (119) we deduce that expected form
of the solution of the initial problem for 𝑘 ∈ Z

𝑚
𝑠

𝑚
𝑠−1
+1

with
initial data derived from the solution of previous equation for
𝑘 ∈ Z

𝑚
𝑠−1

𝑚
𝑠−2
+1

is

𝑦
1
(𝑘) = 𝜆

𝑘

𝜑
∗

1
(0) + 𝑘𝜆

𝑘−1

𝜑
∗

2
(0)

+

𝑘−1

∑

𝑟=0

𝜆
𝑘−1−𝑟

[

𝑛

∑

𝑙=𝑠

𝑏
∗𝑙

12
𝜑
∗

2
(𝑟 − 𝑚

𝑙
)]

+

𝑠−1

∑

𝑙=1

𝑏
∗𝑙

12
[

𝑚
𝑙

∑

𝑟=0

𝜆
𝑘−1−𝑟

𝜑
∗

2
(𝑟 − 𝑚

𝑙
)

+ (𝑘 − 1 − 𝑚
𝑙
) 𝜆
𝑘−1−𝑚

𝑙

𝜑
∗

2
(0) ]

if 𝑘 ∈ Z𝑚𝑠+1
𝑚
𝑠−1
+2
.

(120)

We solve (113) for 𝑘 ∈ Z
𝑚
𝑠+1

𝑚
𝑠
+1

with initial data deduced
from (120); that is, we consider the problem

𝑦
1
(𝑘 + 1) = 𝜆𝑦

1
(𝑘) + 𝜆

𝑘

𝜑
∗

2
(0) +

𝑠

∑

𝑙=1

𝑏
∗𝑙

12
𝜆
𝑘−𝑚
𝑙

𝜑
∗

2
(0)

+

𝑛

∑

𝑙=𝑠+1

𝑏
∗𝑙

12
𝜑
∗

2
(𝑘 − 𝑚

𝑙
) , 𝑘 ∈ Z

𝑚
𝑠+1

𝑚
𝑠
+1
,

𝑦
1
(𝑚
𝑠
+ 1) = 𝜆

𝑚
𝑠
+1

𝜑
∗

1
(0) + (𝑚

𝑠
+ 1) 𝜆

𝑚
𝑠

𝜑
∗

2
(0)

+

𝑚
𝑠

∑

𝑟=0

𝜆
𝑚
𝑠
−𝑟

[

𝑛

∑

𝑙=𝑠

𝑏
∗𝑙

12
𝜑
∗

2
(𝑟 − 𝑚

𝑙
)]

+

𝑠−1

∑

𝑙=1

𝑏
∗𝑙

12
[

𝑚
𝑙

∑

𝑟=0

𝜆
𝑚
𝑠
−𝑟

𝜑
∗

2
(𝑟 − 𝑚

𝑙
)

+ (𝑚
𝑠
− 𝑚
𝑙
) 𝜆
𝑚
𝑠
−𝑚
𝑙

𝜑
∗

2
(0) ] .

(121)
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Applying formula (33) yields (for 𝑘 ∈ Z𝑚𝑠+1+1
𝑚
𝑠
+2

)

𝑦
1
(𝑘) = 𝜆

𝑘−(𝑚
𝑠
+1)

𝑦
1
(𝑚
𝑠
+ 1)

+

𝑘−1

∑

𝑟=𝑚
𝑠
+1

𝜆
𝑘−1−𝑟

[𝜆
𝑟

𝜑
∗

2
(0) +

𝑠

∑

𝑙=1

𝑏
∗𝑙

12
𝜆
𝑟−𝑚
𝑙

𝜑
∗

2
(0)

+

𝑛

∑

𝑙=𝑠+1

𝑏
∗𝑙

12
𝜑
∗

2
(𝑟 − 𝑚

𝑙
)]

= 𝜆
𝑘−𝑚
𝑠
−1

× [𝜆
𝑚
𝑠
+1

𝜑
∗

1
(0) + (𝑚

𝑠
+ 1) 𝜆

𝑚
𝑠

𝜑
∗

2
(0)

+

𝑚
𝑠

∑

𝑟=0

𝜆
𝑚
𝑠
−𝑟

[

𝑛

∑

𝑙=𝑠

𝑏
∗𝑙

12
𝜑
∗

2
(𝑟 − 𝑚

𝑙
)]

+

𝑠−1

∑

𝑙=1

𝑏
∗𝑙

12
[

𝑚
𝑙

∑

𝑟=0

𝜆
𝑚
𝑠
−𝑟

𝜑
∗

2
(𝑟 − 𝑚

𝑙
)

+ (𝑚
𝑠
− 𝑚
𝑙
) 𝜆
𝑚
𝑠
−𝑚
𝑙

𝜑
∗

2
(0) ]]

+

𝑘−1

∑

𝑟=𝑚
𝑠
+1

𝜆
𝑘−1−𝑟

[𝜆
𝑟

𝜑
∗

2
(0) +

𝑠

∑

𝑙=1

𝑏
∗𝑙

12
𝜆
𝑟−𝑚
𝑙

𝜑
∗

2
(0)

+

𝑛

∑

𝑙=𝑠+1

𝑏
∗𝑙

12
𝜑
∗

2
(𝑟 − 𝑚

𝑙
)]

= 𝜆
𝑘

𝜑
∗

1
(0) + (𝑚

𝑠
+ 1) 𝜆

𝑘−1

𝜑
∗

2
(0)

+

𝑚
𝑠

∑

𝑟=0

𝜆
𝑘−1−𝑟

[

𝑛

∑

𝑙=𝑠

𝑏
∗𝑙

12
𝜑
∗

2
(𝑟 − 𝑚

𝑙
)]

+

𝑠−1

∑

𝑙=1

𝑏
∗𝑙

12
[

𝑚
𝑙

∑

𝑟=0

𝜆
𝑘−1−𝑟

𝜑
∗

2
(𝑟 − 𝑚

𝑙
)

+ (𝑚
𝑠
− 𝑚
𝑙
) 𝜆
𝑘−1−𝑚

𝑙

𝜑
∗

2
(0) ]

+ (𝑘 − 1 − 𝑚
𝑠
) 𝜆
𝑘−1

𝜑
∗

2
(0)

+

𝑘−1

∑

𝑟=𝑚
𝑠
+1

𝜆
𝑘−1−𝑟

[

𝑠

∑

𝑙=1

𝑏
∗𝑙

12
𝜆
𝑟−𝑚
𝑙

𝜑
∗

2
(0)

+

𝑛

∑

𝑙=𝑠+1

𝑏
∗𝑙

12
𝜑
∗

2
(𝑟 − 𝑚

𝑙
)]

= 𝜆
𝑘

𝜑
∗

1
(0) + 𝑘𝜆

𝑘−1

𝜑
∗

2
(0)

+

𝑘−1

∑

𝑟=0

𝜆
𝑘−1−𝑟

× [

𝑛

∑

𝑙=𝑠+1

𝑏
∗𝑙

12
𝜑
∗

2
(𝑟 − 𝑚

𝑙
)]

+

𝑚
𝑠

∑

𝑟=0

𝜆
𝑘−1−𝑟

𝑏
∗𝑠

12
𝜑
∗

2
(𝑟 − 𝑚

𝑠
)

+ 𝑏
∗1

12
[

𝑚
1

∑

𝑟=0

𝜆
𝑘−1−𝑟

𝜑
∗

2
(𝑟 − 𝑚

1
)

+ (𝑚
𝑠
− 𝑚
1
) 𝜆
𝑘−1−𝑚

1

𝜑
∗

2
(0) ]

+ 𝑏
∗2

12
[

𝑚
2

∑

𝑟=0

𝜆
𝑘−1−𝑟

𝜑
∗

2
(𝑟 − 𝑚

2
)

+ (𝑚
𝑠
− 𝑚
2
) 𝜆
𝑘−1−𝑚

2

𝜑
∗

2
(0) ]

+ ⋅ ⋅ ⋅

+ 𝑏
∗𝑠−1

12
[

𝑚
𝑠−1

∑

𝑟=0

𝜆
𝑘−1−𝑟

𝜑
∗

2
(𝑟 − 𝑚

𝑠−1
)

+ (𝑚
𝑠
− 𝑚
𝑠−1
) 𝜆
𝑘−1−𝑚

𝑠−1

𝜑
∗

2
(0) ]

+ (𝑘 − 1 − 𝑚
𝑠
) [𝜆
𝑘−1−𝑚

1

𝑏
∗1

12
𝜑
∗

2
(0)

+ 𝜆
𝑘−1−𝑚

2

𝑏
∗2

12
𝜑
∗

2
(0)

+ ⋅ ⋅ ⋅ + 𝜆
𝑘−1−𝑚

𝑠−1

𝑏
∗𝑠−1

12
𝜑
∗

2
(0)

+𝜆
𝑘−1−𝑚

2

𝑏
∗𝑠

12
𝜑
∗

2
(0)]

= 𝜆
𝑘

𝜑
∗

1
(0) + 𝑘𝜆

𝑘−1

𝜑
∗

2
(0)

+

𝑘−1

∑

𝑟=0

𝜆
𝑘−1−𝑟

[

𝑛

∑

𝑙=𝑠+1

𝑏
∗𝑙

12
𝜑
∗

2
(𝑟 − 𝑚

𝑙
)]

+ 𝑏
∗1

12
[

𝑚
1

∑

𝑟=0

𝜆
𝑘−1−𝑟

𝜑
∗

2
(𝑟 − 𝑚

1
)

+ (𝑘 − 1 − 𝑚
1
) 𝜆
𝑘−1−𝑚

1

𝜑
∗

2
(0) ]

+ 𝑏
∗2

12
[

𝑚
2

∑

𝑟=0

𝜆
𝑘−1−𝑟

𝜑
∗

2
(𝑟 − 𝑚

2
)

+ (𝑘 − 1 − 𝑚
2
) 𝜆
𝑘−1−𝑚

2

𝜑
∗

2
(0) ]

+ ⋅ ⋅ ⋅

+ 𝑏
∗𝑠−1

12
[

𝑚
𝑠−1

∑

𝑟=0

𝜆
𝑘−1−𝑟

𝜑
∗

2
(𝑟 − 𝑚

𝑠−1
)

+ (𝑘 − 1 − 𝑚
𝑠−1
) 𝜆
𝑘−1−𝑚

𝑠−1

𝜑
∗

2
(0) ]
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+ 𝑏
∗𝑠

12
[

𝑚
𝑠

∑

𝑟=0

𝜆
𝑘−1−𝑟

𝜑
∗

2
(𝑟 − 𝑚

𝑠
)

+ (𝑘 − 1 − 𝑚
𝑠
) 𝜆
𝑘−1−𝑚

𝑠

𝜑
∗

2
(0)]

= 𝜆
𝑘

𝜑
∗

1
(0) + 𝑘𝜆

𝑘−1

𝜑
∗

2
(0)

+

𝑘−1

∑

𝑟=0

𝜆
𝑘−1−𝑟

[

𝑛

∑

𝑙=𝑠+1

𝑏
∗𝑙

12
𝜑
∗

2
(𝑟 − 𝑚

𝑙
)]

+

𝑠

∑

𝑙=1

𝑏
∗𝑙

12
[

𝑚
𝑙

∑

𝑟=0

𝜆
𝑘−1−𝑟

𝜑
∗

2
(𝑟 − 𝑚

𝑙
)

+ (𝑘 − 1 − 𝑚
𝑙
) 𝜆
𝑘−1−𝑚

𝑙

𝜑
∗

2
(0) ] .

(122)

In the end, we solve (113) for 𝑘 ∈ Z∞
𝑚
𝑛
+1

with initial data
deduced from (122); that is, we consider the problem

𝑦
1
(𝑘 + 1) = 𝜆𝑦

1
(𝑘) + 𝜆

𝑘

𝜑
∗

2
(0)

+

𝑛

∑

𝑙=1

𝑏
∗𝑙

12
𝜆
𝑘−𝑚
𝑙

𝜑
∗

2
(0) if 𝑘 ∈ Z∞

𝑚
𝑛
+1
,

𝑦
1
(𝑚
𝑛
+ 1) = 𝜆

𝑚
𝑛
+1

𝜑
∗

1
(0) + (𝑚

𝑛
+ 1) 𝜆

𝑚
𝑛

𝜑
∗

2
(0)

+

𝑚
𝑛

∑

𝑟=0

𝜆
𝑚
𝑛
−𝑟

𝑏
∗𝑛

12
𝜑
∗

2
(𝑟 − 𝑚

𝑛
)

+

𝑛−1

∑

𝑙=1

𝑏
∗𝑙

12
[

𝑚
𝑙

∑

𝑟=0

𝜆
𝑚
𝑛
−𝑟

𝜑
∗

2
(𝑟 − 𝑚

𝑙
)

+ (𝑚
𝑛
− 𝑚
𝑙
) 𝜆
𝑚
𝑛
−𝑚
𝑙

𝜑
∗

2
(0) ] .

(123)

Applying formula (33) yields (for 𝑘 ∈ Z∞
𝑚
𝑛
+2
)

𝑦
1
(𝑘)

= 𝜆
𝑘−(𝑚
𝑛
+1)

𝑦
1
(𝑚
𝑛
+ 1)

+

𝑘−1

∑

𝑟=𝑚
𝑛
+1

𝜆
𝑘−1−𝑟

[𝜆
𝑟

𝜑
∗

2
(0) +

𝑛

∑

𝑙=1

𝑏
∗𝑙

12
𝜆
𝑟−𝑚
𝑙

𝜑
∗

2
(0)]

= 𝜆
𝑘−𝑚
𝑛
−1

[𝜆
𝑚
𝑛
+1

𝜑
∗

1
(0) + (𝑚

𝑛
+ 1) 𝜆

𝑚
𝑛

𝜑
∗

2
(0)

+

𝑚
𝑛

∑

𝑟=0

𝜆
𝑚
𝑛
−𝑟

𝑏
∗𝑛

12
𝜑
∗

2
(𝑟 − 𝑚

𝑛
)

+

𝑛−1

∑

𝑙=1

𝑏
∗𝑙

12
[

𝑚
𝑙

∑

𝑟=0

𝜆
𝑚
𝑛
−𝑟

𝜑
∗

2
(𝑟 − 𝑚

𝑙
)

+ (𝑚
𝑛
− 𝑚
𝑙
) 𝜆
𝑚
𝑛
−𝑚
𝑙

𝜑
∗

2
(0) ]]

+

𝑘−1

∑

𝑟=𝑚
𝑛
+1

𝜆
𝑘−1−𝑟

[𝜆
𝑟

𝜑
∗

2
(0) +

𝑛

∑

𝑙=1

𝑏
∗𝑙

12
𝜆
𝑟−𝑚
𝑙

𝜑
∗

2
(0)]

= 𝜆
𝑘

𝜑
∗

1
(0) + (𝑚

𝑛
+ 1) 𝜆

𝑘−1

𝜑
∗

2
(0)

+

𝑚
𝑛

∑

𝑟=0

𝜆
𝑘−1−𝑟

𝑏
∗𝑛

12
𝜑
∗

2
(𝑟 − 𝑚

𝑛
)

+

𝑛−1

∑

𝑙=1

𝑏
∗𝑙

12
[

𝑚
𝑙

∑

𝑟=0

𝜆
𝑘−1−𝑟

𝜑
∗

2
(𝑟 − 𝑚

𝑙
)

+ (𝑚
𝑛
− 𝑚
𝑙
) 𝜆
𝑘−1−𝑚

𝑙

𝜑
∗

2
(0) ]

+ (𝑘 − 1 − 𝑚
𝑛
) 𝜆
𝑘−1

𝜑
∗

2
(0)

+

𝑘−1

∑

𝑟=𝑚
𝑛
+1

𝜆
𝑘−1−𝑟

[

𝑛

∑

𝑙=1

𝑏
∗𝑙

12
𝜆
𝑟−𝑚
𝑙

𝜑
∗

2
(0)]

= 𝜆
𝑘

𝜑
∗

1
(0) + 𝑘𝜆

𝑘−1

𝜑
∗

2
(0) +

𝑚
𝑛

∑

𝑟=0

𝜆
𝑘−1−𝑟

𝑏
∗𝑛

12
𝜑
∗

2
(𝑟 − 𝑚

𝑛
)

+ 𝑏
∗1

12
[

𝑚
1

∑

𝑟=0

𝜆
𝑘−1−𝑟

𝜑
∗

2
(𝑟 − 𝑚

1
)

+ (𝑚
𝑛
− 𝑚
1
) 𝜆
𝑘−1−𝑚

1

𝜑
∗

2
(0) ]

+ 𝑏
∗2

12
[

𝑚
2

∑

𝑟=0

𝜆
𝑘−1−𝑟

𝜑
∗

2
(𝑟 − 𝑚

2
)

+ (𝑚
𝑛
− 𝑚
2
) 𝜆
𝑘−1−𝑚

2

𝜑
∗

2
(0) ]

+ ⋅ ⋅ ⋅
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+ 𝑏
∗𝑛−1

12
[

𝑚
𝑛−1

∑

𝑟=0

𝜆
𝑘−1−𝑟

𝜑
∗

2
(𝑟 − 𝑚

𝑛−1
)

+ (𝑚
𝑛
− 𝑚
𝑛−1
) 𝜆
𝑘−1−𝑚

𝑛−1

𝜑
∗

2
(0) ]

+ (𝑘 − 1 − 𝑚
𝑛
)

× [𝜆
𝑘−1−𝑚

1

𝑏
∗1

12
𝜑
∗

2
(0) + 𝜆

𝑘−1−𝑚
2

𝑏
∗2

12
𝜑
∗

2
(0)

+ ⋅ ⋅ ⋅ + 𝜆
𝑘−1−𝑚

𝑛−1

𝑏
∗𝑛−1

12
𝜑
∗

2
(0)

+𝜆
𝑘−1−𝑚

𝑛

𝑏
∗𝑛

12
𝜑
∗

2
(0)]

= 𝜆
𝑘

𝜑
∗

1
(0) + 𝑘𝜆

𝑘−1

𝜑
∗

2
(0)

+ 𝑏
∗1

12
[

𝑚
1

∑

𝑟=0

𝜆
𝑘−1−𝑟

𝜑
∗

2
(𝑟 − 𝑚

1
)

+ (𝑘 − 1 − 𝑚
1
) 𝜆
𝑘−1−𝑚

1

𝜑
∗

2
(0) ]

+ 𝑏
∗2

12
[

𝑚
2

∑

𝑟=0

𝜆
𝑘−1−𝑟

𝜑
∗

2
(𝑟 − 𝑚

2
)

+ (𝑘 − 1 − 𝑚
2
) 𝜆
𝑘−1−𝑚

2

𝜑
∗

2
(0) ]

+ ⋅ ⋅ ⋅

+ 𝑏
∗𝑛−1

12
[

𝑚
𝑛−1

∑

𝑟=0

𝜆
𝑘−1−𝑟

𝜑
∗

2
(𝑟 − 𝑚

𝑛−1
)

+ (𝑘 − 1 − 𝑚
𝑛−1
) 𝜆
𝑘−1−𝑚

𝑛−1

𝜑
∗

2
(0) ]

+ 𝑏
∗𝑛

12
[

𝑚
𝑛

∑

𝑟=0

𝜆
𝑘−1−𝑟

𝜑
∗

2
(𝑟 − 𝑚

𝑛
)

+ (𝑘 − 1 − 𝑚
𝑛
) 𝜆
𝑘−1−𝑚

𝑛

𝜑
∗

2
(0) ]

= 𝜆
𝑘

𝜑
∗

1
(0) + 𝑘𝜆

𝑘−1

𝜑
∗

2
(0)

+

𝑛

∑

𝑙=1

𝑏
∗𝑙

12
[

𝑚
𝑙

∑

𝑟=0

𝜆
𝑘−1−𝑟

𝜑
∗

2
(𝑟 − 𝑚

𝑙
)

+ (𝑘 − 1 − 𝑚
𝑙
) 𝜆
𝑘−1−𝑚

𝑙

𝜑
∗

2
(0) ] .

(124)

Summing up all particular cases (115)–(124), we get

𝑦
1
(𝑘) =

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

𝜑
∗

1
(𝑘) if 𝑘 ∈ Z0

−𝑚
𝑛

,

𝜆
𝑘

𝜑
∗

1
(0) + 𝑘𝜆

𝑘−1

𝜑
∗

2
(0)

+

𝑘−1

∑

𝑟=0

𝜆
𝑘−1−𝑟

[

𝑛

∑

𝑙=1

𝑏
∗𝑙

12
𝜑
∗

2
(𝑟 − 𝑚

𝑙
)]

if 𝑘 ∈ Z𝑚1+1
1

,

𝜆
𝑘

𝜑
∗

1
(0) + 𝑘𝜆

𝑘−1

𝜑
∗

2
(0)

+

𝑘−1

∑

𝑟=0

𝜆
𝑘−1−𝑟

[

𝑛

∑

𝑙=2

𝑏
∗𝑙

12
𝜑
∗

2
(𝑟 − 𝑚

𝑙
)]

+𝑏
∗1

12
[

𝑚
1

∑

𝑟=0

𝜆
𝑘−1−𝑟

𝜑
∗

2
(𝑟 − 𝑚

1
)

+ (𝑘 − 1 − 𝑚
1
) 𝜆
𝑘−1−𝑚

1
𝜑
∗

2
(0) ]

if 𝑘 ∈ Z𝑚2+1
𝑚
1
+2
,

𝜆
𝑘

𝜑
∗

1
(0) + 𝑘𝜆

𝑘−1

𝜑
∗

2
(0)

+

𝑘−1

∑

𝑟=0

𝜆
𝑘−1−𝑟

[

𝑛

∑

𝑙=3

𝑏
∗𝑙

12
𝜑
∗

2
(𝑟 − 𝑚

𝑙
)]

+𝑏
∗1

12
[

𝑚
1

∑

𝑟=0

𝜆
𝑘−1−𝑟

𝜑
∗

2
(𝑟 − 𝑚

1
)

+ (𝑘 − 1 − 𝑚
1
) 𝜆
𝑘−1−𝑚

1
𝜑
∗

2
(0) ]

+𝑏
∗2

12
[

𝑚
2

∑

𝑟=0

𝜆
𝑘−1−𝑟

𝜑
∗

2
(𝑟 − 𝑚

2
)

+ (𝑘 − 1 − 𝑚
2
) 𝜆
𝑘−1−𝑚

2
𝜑
∗

2
(0) ]

if 𝑘 ∈ Z𝑚3+1
𝑚
2
+2
,

...
𝜆
𝑘

𝜑
∗

1
(0) + 𝑘𝜆

𝑘−1

𝜑
∗

2
(0)

+

𝑘−1

∑

𝑟=0

𝜆
𝑘−1−𝑟

[

𝑛

∑

𝑙=𝑠+1

𝑏
∗𝑙

12
𝜑
∗

2
(𝑟 − 𝑚

𝑙
)]

+

𝑠

∑

𝑙=1

𝑏
∗𝑙

12
[

𝑚
𝑙

∑

𝑟=0

𝜆
𝑘−1−𝑟

𝜑
∗

2
(𝑟 − 𝑚

𝑙
)

+ (𝑘 − 1 − 𝑚
𝑙
) 𝜆
𝑘−1−𝑚

𝑙
𝜑
∗

2
(0) ]

if 𝑘 ∈ Z𝑚𝑠+1+1
𝑚
𝑠
+2
,

...
𝜆
𝑘

𝜑
∗

1
(0) + 𝑘𝜆

𝑘−1

𝜑
∗

2
(0)

+

𝑛

∑

𝑙=1

𝑏
∗𝑙

12
[

𝑚
𝑙

∑

𝑟=0

𝜆
𝑘−1−𝑟

𝜑
∗

2
(𝑟 − 𝑚

𝑙
)

+ (𝑘 − 1 − 𝑚
𝑙
) 𝜆
𝑘−1−𝑚

𝑙
𝜑
∗

2
(0) ]

if 𝑘 ∈ Z∞
𝑚
𝑛
+2
.

(125)

Formulas (108) and (109) are consequences of (125), (112).
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3. Dimension of the Set of Solutions

Since all the possible cases of the planar system (1) with weak
delay have been analysed, we are ready to formulate results
concerning the dimension of the space of solutions of (1)
assuming that initial condition (3) is variable. Although case
𝑏
∗𝑙

11
= 𝑏
∗𝑙

22
= 𝑏
∗𝑙

12
= 𝑏
∗𝑙

21
= 0 does not lead to a weakly delayed

system and is excluded by (2), for completeness of analysis
we incorporate such possibility in our analysis as well (such
a case can be considered as a degenerated weakly delayed
system). Before formulation we remark that if an assumption
in the following theorem is assumed to be valid for a fixed
index 𝑙 ∈ {1, 2, . . . , 𝑛}, it is easy to see that it must be valid for
all indices 𝑙 = 1, 2, . . . , 𝑛.

Theorem 10. Let (1) be a weakly delayed system and let (35)
having both roots different from zero and 𝑙 ∈ {1, 2, . . . , 𝑛} be
fixed. Then the space of solutions, being initially 2(𝑚

𝑛
+ 1)-

dimensional, becomes on Z∞
𝑚
𝑛
+2

only

(1) (𝑚
𝑛
+ 2)-dimensional if (35) has

(a) two real distinct roots and (𝑏∗𝑙
12
)
2

+ (𝑏
∗𝑙

21
)
2

> 0,
(b) a double real root, 𝑏

∗𝑙

12
𝑏
∗𝑙

21
= 0, and

(𝑏
∗𝑙

12
)
2

+ (𝑏
∗𝑙

21
)
2

> 0.
(c) a double real root and 𝑏∗𝑙

12
𝑏
∗𝑙

21
̸= 0,

(2) 2-dimensional if (35) has

(a) two real distinct roots and 𝑏∗𝑙
12
= 𝑏
∗𝑙

21
= 0,

(b) a pair of complex conjugate roots,
(c) a double real root and 𝑏∗𝑙

12
= 𝑏
∗𝑙

21
= 0.

Proof. We will carefully go through all the theorems consid-
ered (Theorems 5–9) adding the case of a pair of complex
conjugate roots and our conclusionwill hold at least onZ∞

𝑚
𝑛
+2

(some of the statements hold on a larger interval).
(a) Analysing the statement of Theorem 5 (case (36) of

two real distinct roots), we obtain the following subcases.

(a1) If 𝑏∗𝑙
11
= 𝑏
∗𝑙

22
= 𝑏
∗𝑙

21
= 0, 𝑏∗𝑙

12
̸= 0, then the dimension of

the space of solutions on Z∞
𝑚
𝑛
+2

equals 𝑚
𝑛
+ 2 since

the last formula in (47) uses only 𝑚
𝑛
+ 2 arbitrary

parameters:

𝜑
∗

1
(0) , 𝜑

∗

2
(−𝑚
𝑛
) , 𝜑
∗

2
(−𝑚
𝑛
+ 1) , . . . , 𝜑

∗

2
(0) . (126)

(a2) If 𝑏∗𝑙
11
= 𝑏
∗𝑙

22
= 𝑏
∗𝑙

12
= 0, 𝑏∗𝑙

21
̸= 0, then the dimension of

the space of solutions on Z∞
𝑚
𝑛
+2

equals 𝑚
𝑛
+ 2 since

the last formula in (48) uses only 𝑚
𝑛
+ 2 arbitrary

parameters:

𝜑
∗

1
(−𝑚
𝑛
) , 𝜑
∗

1
(−𝑚
𝑛
+ 1) , . . . , 𝜑

∗

1
(0) , 𝜑

∗

2
(0) . (127)

(a3) If 𝑏∗𝑙
12

= 𝑏
∗𝑙

21
= 0, then 𝑏∗𝑙

11
= 𝑏
∗𝑙

22
= 0 and

Theorem 5 is not applicable. The dimension of the
space of solutions onZ∞

𝑚
𝑛
+2
equals 2 since the solution

is determined only by 2 arbitrary parameters

𝜑
∗

1
(0) , 𝜑

∗

2
(0) . (128)

This means that all the cases considered are covered
by conclusions (1)(a) and (2)(a) of Theorem 10.

(b) In case (37) of two complex conjugate roots, we have
𝑏
∗𝑙

11
= 𝑏
∗𝑙

22
= 𝑏
∗𝑙

12
= 𝑏
∗𝑙

21
= 0 (i.e., we deal not with a weakly

delayed system, as noted previosly) and the formula (70) uses
only 2 arbitrary parameters

𝜑
∗

1
(0) , 𝜑

∗

2
(0) (129)

for every 𝑘 ∈ Z∞
1
. This is covered by case (2)(b) of

Theorem 10.
(c) Analysing the statement of Theorems 7 and 8 (case

(38) of a double real root), we obtain the following subcases.

(c1) If 𝑏∗𝑙
21
= 0, 𝑏∗𝑙

12
̸= 0, then the dimension of the space of

solutions onZ∞
𝑚
𝑛
+2
equals𝑚

𝑛
+2 since the last formula

in (76) uses only𝑚
𝑛
+ 2 arbitrary parameters:

𝜑
∗

1
(0) , 𝜑

∗

2
(−𝑚
𝑛
) , 𝜑
∗

2
(−𝑚
𝑛
+ 1) , . . . , 𝜑

∗

2
(0) . (130)

(c2) If 𝑏∗𝑙
12
= 0, 𝑏∗𝑙

21
̸= 0, then the dimension of the space of

solutions onZ∞
𝑚
𝑛
+2
equals𝑚

𝑛
+2 since the last formula

in (77) uses only𝑚
𝑛
+ 2 arbitrary parameters:

𝜑
∗

1
(−𝑚
𝑛
) , 𝜑
∗

1
(−𝑚
𝑛
+ 1) , . . . , 𝜑

∗

1
(0) , 𝜑

∗

2
(0) . (131)

(c3) If 𝑏∗𝑙
12

= 𝑏
∗𝑙

21
= 0 (degenerated weakly delayed

system), then the dimension of the space of solutions
on Z∞
𝑚
𝑛
+2

equals 2and solutions are determined only
by 2 arbitrary parameters:

𝜑
∗

1
(0) , 𝜑

∗

2
(0) . (132)

(c4) If 𝑏∗𝑙
12
𝑏
∗𝑙

21
̸= 0, then the dimension of the space of

solutions onZ∞
𝑚
𝑛
+2
equals𝑚

𝑛
+2 since the last formula

in (81) uses only𝑚
𝑛
+ 2 arbitrary parameters:

𝐶 (−𝑚
𝑛
) , 𝐶 (−𝑚

𝑛
+ 1) , . . . , 𝐶 (0) , 𝜑

∗

1
(0) , (133)

where

𝐶 (𝑘) := [𝜑
∗

1
(𝑘) +

𝑏
∗1

12

𝑏
∗1

11

𝜑
∗

2
(𝑘)] , 𝑘 ∈ Z

0

−𝑚
𝑛

. (134)

The parameter 𝜑∗
2
(0) cannot be seen as independent

since it depends on the independent parameters𝜑∗
1
(0)

and 𝐶(0).

All the cases considered are covered by conclusions (1)(b),
(1)(c), and (2)(c) of Theorem 10.

(d) Analysing the statement of Theorem 9 (case (39) of a
double real root), we obtain the following subcases:

(d1) If 𝑏∗𝑙
11
= 𝑏
∗𝑙

22
= 𝑏
∗𝑙

21
= 0, 𝑏∗𝑙

12
̸= 0, then the dimension of

the space of solutions on Z∞
𝑚
𝑛
+2

equals 𝑚
𝑛
+ 2 since

the last formula in (108) uses only 𝑚
𝑛
+ 2 arbitrary

parameters:

𝜑
∗

1
(0) , 𝜑

∗

2
(−𝑚
𝑛
) , 𝜑
∗

2
(−𝑚
𝑛
+ 1) , . . . , 𝜑

∗

2
(0) (135)
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and the last formula in (109) provides no new infor-
mation.

(d2) If 𝑏∗𝑙
11
= 𝑏
∗𝑙

22
= 𝑏
∗𝑙

21
= 𝑏
∗𝑙

12
= 0 (degenerated weakly

delayed system), then the dimension of the space
of solutions on Z∞

𝑚
𝑛
+2

equals 2 since solutions are
determined only by 2 arbitrary parameters

𝜑
∗

1
(0) , 𝜑

∗

2
(0) . (136)

Both cases are covered by conclusions (1)(b) and
(2)(c) of Theorem 10.

Since there are no cases other than cases (a)–(d), the proof
is finished.

Theorem 10 can be formulated simply as follows.

Theorem 11. Let (1) be a weakly delayed system and let (35)
have both roots different from zero, then the space of solutions,
being initially 2(𝑚

𝑛
+ 1)-dimensional, is on Z∞

𝑚
𝑛
+2

only

(1) (𝑚
𝑛
+ 2)-dimensional if (𝑏∗𝑙

12
)
2

+ (𝑏
∗𝑙

21
)
2

> 0,
(2) 2-dimensional if 𝑏∗𝑙

12
= 𝑏
∗𝑙

21
= 0.

We omit the proofs of the following two theorems since,
again, they are much the same as those of Theorems 5–9.

Theorem 12. Let (1) be a weakly delayed system and let (35)
have a simple root 𝜆 = 0, then the space of solutions, being
initially 2(𝑚

𝑛
+1)-dimensional, is either (𝑚

𝑛
+1)-dimensional

or 1-dimensional on Z∞
𝑚
𝑛
+2
.

Theorem 13. Let (1) be a weakly delayed system and let (35)
have a double root 𝜆 = 0, then the space of solutions, being
initially 2(𝑚

𝑛
+ 1)-dimensional, turns into a 0-dimensional

space on Z∞
𝑚
𝑛
+2
, namely, into the zero solution.

4. Concluding Remarks

To our best knowledge, weakly delayed systems were firstly
defined in [9] for systems of linear delayed differential sys-
temswith constant coefficients and in [1] for planar linear dis-
crete systemswith a single delay (in these papers such systems
are called systems with a weak delay). The weakly delayed
systems analyzed in this paper can be simplified and their
solutions can be found in explicit analytical forms (results
obtained generalize those in [1, 2]). Consequently, analytical
forms of solutions can be used directly to solve several
problems for weakly delayed systems, for example, problems
of asymptotical behavior of their solutions, boundary-value
problems, or someproblems of control theory (using different
methods, such problems have recently been investigated
e.g., in [10–18]). For an alternative approach to differential-
difference equations using the variational iteration method
and new analytical and asymptotic methods see, for example,
[19–21].

In the case of discrete systems of two equations investi-
gated in this paper, to obtain the corresponding eigenvalues, it
is sufficient to solve only a second-order polynomial equation
rather than a polynomial equation of order 2𝑚

𝑛
.
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The purpose of this paper is to develop a method for the construction of solutions to initial problems of linear discrete systems with
constant coefficients and with two delays Δ𝑥(𝑘) = 𝐵𝑥(𝑘 − 𝑚) + 𝐶𝑥(𝑘 − 𝑛) + 𝑓(𝑘), where 𝑚, 𝑛 ∈ N, 𝑚 ̸= 𝑛, are fixed, 𝑘 = 0, . . . ,∞,
𝐵 = (𝑏

𝑖𝑗
),𝐶 = (𝑐

𝑖𝑗
) are constant 𝑟×𝑟matrices,𝑓 is a given 𝑟×1 vector, and 𝑥 is an 𝑟×1 unknown vector. Solutions are expressed with

the aid of a special function called the discrete matrix delayed exponential for two delays. Such approach results in a possibility to
express an initial Cauchy problem in a closed form. Examples are shown illustrating the results obtained.

1. Introduction

Throughout the paper, we will use the following notation. For
integers 𝑠, 𝑡, 𝑠 ≤ 𝑡, we define the setZ𝑡

𝑠
:= {𝑠, 𝑠+1, . . . , 𝑡 −1, 𝑡}.

Similarly, we define the sets Z𝑡
−∞

:= {. . . , 𝑡 − 1, 𝑡} and Z∞
𝑠
:=

{𝑠, 𝑠 + 1, . . .}. The function ⌊⋅⌋ used below is the floor integer
function. We will employ the following property of the floor
integer function:

𝑥 − 1 < ⌊𝑥⌋ ≤ 𝑥, (1)

where 𝑥 ∈ R.
In this paper, we deal with the discrete system

Δ𝑥 (𝑘) = 𝐵𝑥 (𝑘 − 𝑚) + 𝐶𝑥 (𝑘 − 𝑛) + 𝑓 (𝑘) , (2)

where 𝑚, 𝑛 ∈ N, 𝑚 ̸= 𝑛, are fixed, 𝑘 ∈ Z∞
0
, 𝐵 = (𝑏

𝑖𝑗
), 𝐶 = (𝑐

𝑖𝑗
)

are constant 𝑟 × 𝑟 matrices, 𝑓 : Z∞
0
→ R𝑟 is a given 𝑟 × 1

vector, and 𝑥 : Z∞
0
→ R𝑟 is an 𝑟 × 1 unknown vector.

Together with (2), we consider an initial (Cauchy) prob-
lem

𝑥 (𝑘) = 𝜑 (𝑘) . (3)

Define binomial coefficients as customary; that is, for 𝑛 ∈
Z and 𝑘 ∈ Z,

(

𝑛

𝑘
) :=

{
{

{
{

{

𝑛!

𝑘! (𝑛 − 𝑘)!

if 𝑛 ≥ 𝑘 ≥ 0,

0 otherwise.
(4)

We recall that, for a well-defined discrete function 𝜔(𝑘), the
forward difference operator Δ is defined as Δ𝜔(𝑘) = 𝜔(𝑘 +
1) −𝜔(𝑘). In the paper, we also adopt the customary notation
∑
𝑖
2

𝑖=𝑖
1

𝑔
𝑖
= 0 if 𝑖

2
< 𝑖
1
. In the case of double sums, we set

𝑖
2
,𝑗
2

∑

𝑖=𝑖
1
,𝑗=𝑗
1

𝑔
𝑖𝑗
= 0 (5)

if at least one of the inequalities 𝑖
2
< 𝑖
1
, 𝑗
2
< 𝑗
1
holds.
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2 Abstract and Applied Analysis

In [1, 2], a discrete matrix delayed exponential for a single
delay𝑚 ∈ N was defined.

Definition 1. For an 𝑟 × 𝑟 constant matrix 𝐵, 𝑘 ∈ Z, and fixed
𝑚 ∈ N, one defines the discrete matrix delayed exponential
e𝐵𝑘
𝑚

as follows:

e𝐵𝑘
𝑚
:=

{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{

{

Θ

if 𝑘 ∈ Z−𝑚−1
−∞

,

𝐼 +

ℓ

∑

𝑗=1

𝐵
𝑗

⋅ (

𝑘 − 𝑚 (𝑗 − 1)

𝑗

)

if ℓ = 0, 1, 2, . . . , 𝑘 ∈ Zℓ(𝑚+1)
(ℓ−1)(𝑚+1)+1

,

(6)

where Θ is an 𝑟 × 𝑟 null matrix and 𝐼 is an 𝑟 × 𝑟 unit matrix.

Such discrete matrix delayed exponential was used in [1]
to construct solutions of the initial problems (2), (3) with
𝐶 ≡ Θ, whereΘ is an 𝑟×𝑟 zeromatrix. In these constructions,
the main property (Theorem 2) of discrete matrix delayed
exponential for a single delay 𝑚 ∈ N was utilized in
[1].

Theorem 2. Let 𝐵 be a constant 𝑟 × 𝑟 matrix. Then, for 𝑘 ∈
Z∞
−𝑚

,

Δ e𝐵𝑘
𝑚
= 𝐵 e𝐵(𝑘−𝑚)
𝑚

. (7)

The properties of delayed matrix exponential functions
for their continuous and discrete variants and their applica-
tions are the topic of recent papers [1–18]. We note that the
definition of the delayed matrix exponential was first defined
for the continuous case in [4] and, for the discrete case, in
[1, 2].

The paper is organized as follows. Discretematrix delayed
exponentials for two delays and their main property are
considered in Section 2. A representation of the solution to
problem (2), (3) is given in Section 3 and examples illustrating
the results obtained are shown in Section 4.

2. Discrete Matrix Delayed Exponential for
Two Delays and Its Main Property

In order to extend the results proved in [1, 2] to problems
(2), (3), a discrete matrix delayed exponential for two delays
was proposed in [3]. There is a discrete matrix delayed
exponential for two delays 𝑚, 𝑛 ∈ N, 𝑚 ̸= 𝑛, defined as fol-
lows.

Definition 3. Let𝐵,𝐶 be constant 𝑟×𝑟matrices with𝐵𝐶 = 𝐶𝐵
and let 𝑚, 𝑛 ∈ N, 𝑚 ̸= 𝑛, be fixed integers. One defines a
discrete 𝑟 × 𝑟matrix function e𝐵𝐶𝑘

𝑚𝑛
called the discrete matrix

delayed exponential for two delays 𝑚, 𝑛 and for two 𝑟 × 𝑟
constant matrices 𝐵, 𝐶:

e𝐵𝐶𝑘
𝑚𝑛

:=

{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{

{

Θ

if 𝑘 ∈ Z−max{𝑚,𝑛}−1
−∞

,

𝐼

if 𝑘 ∈ Z0
−max{𝑚,𝑛},

𝐼 + (𝐵 + 𝐶)

𝑝
(𝑘)
−1,𝑞
(𝑘)
−1

∑

𝑖=0,𝑗=0

𝐵
𝑖

𝐶
𝑗

(

𝑖 + 𝑗

𝑖

)(

𝑘 − 𝑚𝑖 − 𝑛𝑗

𝑖 + 𝑗 + 1

)

if 𝑘 ∈ Z∞
1
,

(8)

where

𝑝
(𝑘)
:= ⌊

𝑘 + 𝑚

𝑚 + 1

⌋ , 𝑞
(𝑘)
:= ⌊

𝑘 + 𝑛

𝑛 + 1

⌋ . (9)

Let us show an example illustrating this special exponen-
tial function.

Example 4. For 𝑘 ∈ Z12
0
we will construct the matrix e𝐵𝐶𝑘

𝑚𝑛
if

𝑚 = 2 and 𝑛 = 3. Computing particular matrices generating
e𝐵𝐶𝑘
2,3

for 𝑘 ∈ Z12
0
, we get

e𝐵𝐶0
2,3

= 𝐼, e𝐵𝐶1
2,3

= 𝐼 + 𝐵 + 𝐶,

e𝐵𝐶2
2,3

= 𝐼 + (𝐵 + 𝐶) 2, e𝐵𝐶3
2,3

= 𝐼 + (𝐵 + 𝐶) 3,

e𝐵𝐶4
2,3

= 𝐼 + (𝐵 + 𝐶) (4 + 𝐵) ,

e𝐵𝐶5
2,3

= 𝐼 + (𝐵 + 𝐶) (5 + 3𝐵 + 𝐶) ,

e𝐵𝐶6
2,3

= 𝐼 + (𝐵 + 𝐶) (6 + 6𝐵 + 3𝐶) ,

e𝐵𝐶7
2,3

= 𝐼 + (𝐵 + 𝐶) (7 + 10𝐵 + 6𝐶 + 𝐵
2

) ,

e𝐵𝐶8
2,3

= 𝐼 + (𝐵 + 𝐶) (8 + 15𝐵 + 10𝐶 + 4𝐵
2

+ 2𝐵𝐶) ,

e𝐵𝐶9
2,3

= 𝐼 + (𝐵 + 𝐶) (9 + 21𝐵 + 15𝐶 + 10𝐵
2

+ 8𝐵𝐶 + 𝐶
2

) ,

e𝐵𝐶10
2,3

= 𝐼 + (𝐵 + 𝐶)

× (10 + 28𝐵 + 21𝐶 + 20𝐵
2

+ 20𝐵𝐶 + 4𝐶
2

+ 𝐵
3

) ,

e𝐵𝐶11
2,3

= 𝐼 + (𝐵 + 𝐶) (11 + 36𝐵 + 28𝐶 + 35𝐵
2

+ 40𝐵𝐶 + 10𝐶
2

+ 5𝐵
3

+ 3𝐵
2

𝐶) ,

e𝐵𝐶12
2,3

= 𝐼 + (𝐵 + 𝐶) (12 + 45𝐵 + 36𝐶 + 56𝐵
2

+ 70𝐵𝐶

+ 20𝐶
2

+ 15𝐵
3

+ 15𝐵
2

𝐶 + 3𝐵𝐶
2

) .

(10)

The main property of e𝐵𝐶𝑘
𝑚𝑛

was proved in [3].
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Theorem 5. Let 𝐵, 𝐶 be constant 𝑟× 𝑟matrices with 𝐵𝐶 = 𝐶𝐵
and let𝑚, 𝑛 ∈ N,𝑚 ̸= 𝑛, be fixed integers. Then

Δ e𝐵𝐶𝑘
𝑚𝑛

= 𝐵 e𝐵𝐶(𝑘−𝑚)
𝑚𝑛

+ 𝐶 e𝐵𝐶(𝑘−𝑛)
𝑚𝑛

(11)

for 𝑘 ∈ Z∞
0
.

The analysis of e𝐵𝐶𝑘
𝑚𝑛

applicability to a representation of
the solution to initial problem (2), (3) unfortunately does
not lead to satisfactory results because, as we will see below,
an additional condition det(𝐵 + 𝐶) ̸= 0 is necessary. A small
difference in the definition results in representations of
solutions of initial problems without this assumption. Now
we give a second definition of a discrete matrix delayed
exponential for two delays ẽ 𝐵𝐶𝑘

𝑚𝑛
.

Definition 6. Let𝐵,𝐶 be constant 𝑟×𝑟matrices with𝐵𝐶 = 𝐶𝐵
and let 𝑚, 𝑛 ∈ N, 𝑚 < 𝑛, be fixed integers. One defines a
discrete 𝑟× 𝑟matrix function ẽ 𝐵𝐶𝑘

𝑚𝑛
called the discrete matrix

delayed exponential for two delays 𝑚, 𝑛 and for two 𝑟 × 𝑟
constant matrices 𝐵, 𝐶 as follows:

ẽ𝐵𝐶𝑘
𝑚𝑛

:=

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

Θ

if 𝑘 ∈ Z−1
−∞
,

𝐼

if 𝑘 ∈ Z𝑚
0
,

𝐼 + 𝐵

𝑝
(𝑘)
−1,𝑞
(𝑘)
−1

∑

𝑖=0,𝑗=0

𝐵
𝑖

𝐶
𝑗

(

𝑖 + 𝑗

𝑖

)(

𝑘 − 𝑚 − 𝑚𝑖 − 𝑛𝑗

𝑖 + 𝑗 + 1

)

+𝐶

𝑝
(𝑘)
−1,𝑞
(𝑘)
−1

∑

𝑖=0,𝑗=0

𝐵
𝑖

𝐶
𝑗

(

𝑖 + 𝑗

𝑖

)(

𝑘 − 𝑛 − 𝑚𝑖 − 𝑛𝑗

𝑖 + 𝑗 + 1

)

if 𝑘 ∈ Z∞
𝑚+1
,

(12)

where

𝑝
(𝑘)
:= ⌊

𝑘 + 𝑚

𝑚 + 1

⌋ , 𝑞
(𝑘)
:= ⌊

𝑘 + 𝑛

𝑛 + 1

⌋ . (13)

Remark 7. For 𝑘 ∈ Z𝑛
0
, it is easy to deduce that ẽ𝐵𝐶𝑘

𝑚𝑛
= e𝐵(𝑘−𝑚)
𝑚

.

In order to compare both types of discrete delayed
matrices for two delays and see the difference between both
definitions, we consider the following example where delays
are the same as in Example 4.

Example 8. For 𝑘 ∈ Z12
0
we will construct the matrix ẽ𝐵𝐶𝑘

𝑚𝑛
if

𝑚 = 2 and 𝑛 = 3. Computing particular matrices generating
ẽ𝐵𝐶𝑘
2,3

for 𝑘 ∈ Z12
0
, we get

ẽ𝐵𝐶0
2,3

= 𝐼, ẽ𝐵𝐶1
2,3

= 𝐼,

ẽ𝐵𝐶2
2,3

= 𝐼, ẽ𝐵𝐶3
2,3

= 𝐼 + 𝐵,

ẽ𝐵𝐶4
2,3

= 𝐼 + 2𝐵 + 𝐶, ẽ𝐵𝐶5
2,3

= 𝐼 + 3𝐵 + 2𝐶,

ẽ𝐵𝐶6
2,3

= 𝐼 + 4𝐵 + 3𝐶 + 𝐵
2

,

ẽ𝐵𝐶7
2,3

= 𝐼 + 5𝐵 + 4𝐶 + 3𝐵
2

+ 2𝐵𝐶,

ẽ𝐵𝐶8
2,3

= 𝐼 + 6𝐵 + 5𝐶 + 6𝐵
2

+ 6𝐵𝐶 + 𝐶
2

,

ẽ𝐵𝐶9
2,3

= 𝐼 + 7𝐵 + 6𝐶 + 10𝐵
2

+ 12𝐵𝐶 + 3𝐶
2

+ 𝐵
3

,

ẽ𝐵𝐶10
2,3

= 𝐼 + 8𝐵 + 7𝐶 + 15𝐵
2

+ 20𝐵𝐶 + 6𝐶
2

+ 4𝐵
3

+ 3𝐵
2

𝐶,

ẽ𝐵𝐶11
2,3

= 𝐼 + 9𝐵 + 8𝐶 + 21𝐵
2

+ 30𝐵𝐶 + 10𝐶
2

+ 10𝐵
3

+ 12𝐵
2

𝐶 + 3𝐵𝐶
2

,

ẽ𝐵𝐶12
2,3

= 𝐼 + 10𝐵 + 9𝐶 + 28𝐵
2

+ 42𝐵𝐶 + 15𝐶
2

+ 20𝐵
3

+ 30𝐵
2

𝐶 + 12𝐵𝐶
2

+ 𝐶
3

+ 𝐵
4

.

(14)

The main property of ẽ𝐵𝐶𝑘
𝑚𝑛

is given by the following
theorem.

Theorem 9. Let 𝐵, 𝐶 be constant 𝑟× 𝑟matrices with 𝐵𝐶 = 𝐶𝐵
and let𝑚, 𝑛 ∈ N,𝑚 < 𝑛, be fixed integers. Then

Δ ẽ 𝐵𝐶𝑘
𝑚𝑛

= 𝐵 ẽ 𝐵𝐶(𝑘−𝑚)
𝑚𝑛

+ 𝐶ẽ𝐵𝐶(𝑘−𝑛)
𝑚𝑛

(15)

for 𝑘 ∈ Z∞
0
.

Proof. Let 𝑘 ≥ 1. From (1) and (13), we can see easily that, for
an integer 𝑘 ≥ 0 satisfying

(𝑝
(𝑘)
− 1) (𝑚 + 1) + 1

≤ 𝑘 ≤ 𝑝
(𝑘)
(𝑚 + 1) ∧ (𝑞

(𝑘)
− 1) (𝑛 + 1) + 1

≤ 𝑘 ≤ 𝑞
(𝑘)
(𝑛 + 1) ,

(16)

the equation

Δẽ𝐵𝐶𝑘
𝑚𝑛

= Δ
[

[

𝐼 + 𝐵

𝑝
(𝑘)
−1,𝑞
(𝑘)
−1

∑

𝑖=0,𝑗=0

𝐵
𝑖

𝐶
𝑗

(

𝑖 + 𝑗

𝑖
) (

𝑘 − 𝑚 − 𝑚𝑖 − 𝑛𝑗

𝑖 + 𝑗 + 1
)

+ 𝐶

𝑝
(𝑘)
−1,𝑞
(𝑘)
−1

∑

𝑖=0,𝑗=0

𝐵
𝑖

𝐶
𝑗

(

𝑖 + 𝑗

𝑖
) (

𝑘 − 𝑛 − 𝑚𝑖 − 𝑛𝑗

𝑖 + 𝑗 + 1
)
]

]

(17)

holds by Definition 6 of ẽ𝐵𝐶𝑘
𝑚𝑛

. Since Δ𝐼 = Θ, we have

Δẽ𝐵𝐶𝑘
𝑚𝑛

= Δ
[

[

𝐵

𝑝
(𝑘)
−1,𝑞
(𝑘)
−1

∑

𝑖=0,𝑗=0

𝐵
𝑖

𝐶
𝑗

(

𝑖 + 𝑗

𝑖
) (

𝑘 − 𝑚 − 𝑚𝑖 − 𝑛𝑗

𝑖 + 𝑗 + 1
)

+ 𝐶

𝑝
(𝑘)
−1,𝑞
(𝑘)
−1

∑

𝑖=0,𝑗=0

𝐵
𝑖

𝐶
𝑗

(

𝑖 + 𝑗

𝑖
) (

𝑘 − 𝑛 − 𝑚𝑖 − 𝑛𝑗

𝑖 + 𝑗 + 1
)
]

]

.

(18)

By the definition of the forward difference, that is,

Δẽ𝐵𝐶𝑘
𝑚𝑛

= ẽ𝐵𝐶(𝑘+1)
𝑚𝑛

− ẽ𝐵𝐶𝑘
𝑚𝑛
, (19)
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we conclude that it is reasonable to divide the proof into four
parts given by the four values of integer 𝑘.

In the first case, 𝑘 is such that

(𝑝
(𝑘)
− 1) (𝑚 + 1) + 1

≤ 𝑘 < 𝑝
(𝑘)
(𝑚 + 1) ∧ (𝑞

(𝑘)
− 1) (𝑛 + 1) + 1

≤ 𝑘 < 𝑞
(𝑘)
(𝑛 + 1) ,

(20)

in the second case

𝑘 = 𝑝
(𝑘)
(𝑚 + 1) ∧ (𝑞

(𝑘)
− 1) (𝑛 + 1) + 1 ≤ 𝑘 < 𝑞

(𝑘)
(𝑛 + 1) ,

(21)

in the third case

(𝑝
(𝑘)
− 1) (𝑚 + 1) + 1 ≤ 𝑘 < 𝑝

(𝑘)
(𝑚 + 1) ∧ 𝑘 = 𝑞

(𝑘)
(𝑛 + 1) ,

(22)

and in the fourth case

𝑘 = 𝑝
(𝑘)
(𝑚 + 1) ∧ 𝑘 = 𝑞

(𝑘)
(𝑛 + 1) . (23)

We see that the above four cases cover all the possible
relations between 𝑘, 𝑝

(𝑘)
, and 𝑞

(𝑘)
.

In the proof, we use obvious identities

(

𝑛 + 1

𝑘
) = (

𝑛

𝑘
) + (

𝑛

𝑘 − 1
) , (24)

where 𝑛, 𝑘 ∈ N and

(

𝑖

𝑖
) = (

𝑖 − 1

𝑖 − 1
) , (

𝑗

0
) = (

𝑗 − 1

0
) ,

(

𝑖 + 𝑗

𝑖
) = (

𝑖 + 𝑗 − 1

𝑖 − 1
) + (

𝑖 + 𝑗 − 1

𝑖
) ,

(25)

where 𝑖, 𝑗 ∈ N, derived from (4) and (24).
Now we consider (in parts (I)–(IV) below) all four

cases and perform auxiliary computations. The proof will be
finished in part (V).
(I) (𝑝
(𝑘)
−1)(𝑚+1)+1 ≤ 𝑘 < 𝑝

(𝑘)
(𝑚+1)∧(𝑞

(𝑘)
−1)(𝑛+1)+1 ≤

𝑘 < 𝑞
(𝑘)
(𝑛 + 1). From (1) and (13), we get

𝑝
(𝑘−𝑚)

= ⌊

𝑘 − 𝑚 + 𝑚

𝑚 + 1

⌋ ≤

𝑘

𝑚 + 1

< 𝑝
(𝑘)
,

𝑝
(𝑘−𝑚)

= ⌊

𝑘 − 𝑚 + 𝑚

𝑚 + 1

⌋ >

𝑘

𝑚 + 1

− 1 =

𝑘 − 𝑚 − 1

𝑚 + 1

> 𝑝
(𝑘)
− 2.

(26)

Therefore, 𝑝
(𝑘−𝑚)

= 𝑝
(𝑘)
− 1 and, by Definition 6,

ẽ𝐵𝐶(𝑘−𝑚)
𝑚𝑛

= 𝐼 + 𝐵

𝑝
(𝑘)
−2,𝑞
(𝑘−𝑚)
−1

∑

𝑖=0,𝑗=0

𝐵
𝑖

𝐶
𝑗

(

𝑖 + 𝑗

𝑖
) (

𝑘 − 𝑚 − 𝑚 − 𝑚𝑖 − 𝑛𝑗

𝑖 + 𝑗 + 1
)

+ 𝐶

𝑝
(𝑘)
−2,𝑞
(𝑘−𝑚)
−1

∑

𝑖=0,𝑗=0

𝐵
𝑖

𝐶
𝑗

(

𝑖 + 𝑗

𝑖
) (

𝑘 − 𝑚 − 𝑛 − 𝑚𝑖 − 𝑛𝑗

𝑖 + 𝑗 + 1
) .

(27)

Similarly, omitting details, we get, using (1) and (13),
𝑞
(𝑘−𝑛)

= 𝑞
(𝑘)
− 1 and

ẽ𝐵𝐶(𝑘−𝑛)
𝑚𝑛

= 𝐼 + 𝐵

𝑝
(𝑘−𝑛)
−1,𝑞
(𝑘)
−2

∑

𝑖=0,𝑗=0

𝐵
𝑖

𝐶
𝑗

(

𝑖 + 𝑗

𝑖
) (

𝑘 − 𝑛 − 𝑚 − 𝑚𝑖 − 𝑛𝑗

𝑖 + 𝑗 + 1
)

+ 𝐶

𝑝
(𝑘−𝑛)
−1,𝑞
(𝑘)
−2

∑

𝑖=0,𝑗=0

𝐵
𝑖

𝐶
𝑗

(

𝑖 + 𝑗

𝑖
)(

𝑘 − 𝑛 − 𝑛 − 𝑚𝑖 − 𝑛𝑗

𝑖 + 𝑗 + 1
) .

(28)

Let 𝑞
(𝑘−𝑚)

≥ 1. We show that

(

𝑘 − 𝑚 − 𝑚 − 𝑚𝑖 − 𝑛𝑗

𝑖 + 𝑗 + 1
) = 0 if 𝑖 ≥ 0, 𝑗 ≥ 𝑞

(𝑘−𝑚)
,

(

𝑘 − 𝑚 − 𝑛 − 𝑚𝑖 − 𝑛𝑗

𝑖 + 𝑗 + 1
) = 0 if 𝑖 ≥ 0, 𝑗 ≥ 𝑞

(𝑘−𝑚)
.

(29)

By (1),

𝑞
(𝑘−𝑚)

= ⌊

𝑘 − 𝑚 + 𝑛

𝑛 + 1

⌋ >

𝑘 − 𝑚 + 𝑛

𝑛 + 1

− 1 =

𝑘 − 𝑚 − 1

𝑛 + 1

(30)

or

𝑘 − 𝑚 − 𝑚

< (𝑛 + 1) 𝑞
(𝑘−𝑚)

+ 1

≤ (𝑚 + 1) 𝑖 + (𝑛 + 1) 𝑗 + 1 if 𝑖 ≥ 0, 𝑗 ≥ 𝑞
(𝑘−𝑚)

,

𝑘 − 𝑚 − 𝑛

< (𝑛 + 1) 𝑞
(𝑘−𝑚)

+ 1

≤ (𝑚 + 1) 𝑖 + (𝑛 + 1) 𝑗 + 1 if 𝑖 ≥ 0, 𝑗 ≥ 𝑞
(𝑘−𝑚)

.

(31)

From the last inequalities, we get

𝑘 − 𝑚 − 𝑚 − 𝑚𝑖 − 𝑛𝑗 < 𝑖 + 𝑗 + 1 if 𝑖 ≥ 0, 𝑗 ≥ 𝑞
(𝑘−𝑚)

,

𝑘 − 𝑚 − 𝑛 − 𝑚𝑖 − 𝑛𝑗 < 𝑖 + 𝑗 + 1 if 𝑖 ≥ 0, 𝑗 ≥ 𝑞
(𝑘−𝑚)

,

(32)

and (29) holds by (4). For that reason and since 𝑞
(𝑘−𝑚)

≤ 𝑞
(𝑘)
,

we can replace 𝑞
(𝑘−𝑚)

by 𝑞
(𝑘)

in (27). Thus, we have

ẽ𝐵𝐶(𝑘−𝑚)
𝑚𝑛

= 𝐼 + 𝐵

𝑝
(𝑘)
−2,𝑞
(𝑘)
−1

∑

𝑖=0,𝑗=0

𝐵
𝑖

𝐶
𝑗

(

𝑖 + 𝑗

𝑖
) (

𝑘 − 𝑚 − 𝑚 (𝑖 + 1) − 𝑛𝑗

𝑖 + 𝑗 + 1
)

+ 𝐶

𝑝
(𝑘)
−2,𝑞
(𝑘)
−1

∑

𝑖=0,𝑗=0

𝐵
𝑖

𝐶
𝑗

(

𝑖 + 𝑗

𝑖
) (

𝑘 − 𝑛 − 𝑚 (𝑖 + 1) − 𝑛𝑗

𝑖 + 𝑗 + 1
) .

(33)
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It is easy to see that, due to (5), formula (33) can be used
instead of (27) if 𝑞

(𝑘−𝑚)
< 1 too. Let 𝑝

(𝑘−𝑛)
≥ 1. Similarly, we

can show that

(

𝑘 − 𝑛 − 𝑚 − 𝑚𝑖 − 𝑛𝑗

𝑖 + 𝑗 + 1
) = 0 if 𝑖 ≥ 𝑝

(𝑘−𝑛)
, 𝑗 ≥ 0,

(

𝑘 − 𝑛 − 𝑛 − 𝑚𝑖 − 𝑛𝑗

𝑖 + 𝑗 + 1
) = 0 if 𝑖 ≥ 𝑝

(𝑘−𝑛)
, 𝑗 ≥ 0,

(34)

and, since 𝑝
(𝑘−𝑛)

≤ 𝑝
(𝑘)
, we can replace 𝑝

(𝑘−𝑛)
by 𝑝
(𝑘)

in (28).
Thus, we have

ẽ𝐵𝐶(𝑘−𝑛)
𝑚𝑛

= 𝐼 + 𝐵

𝑝
(𝑘)
−1,𝑞
(𝑘)
−2

∑

𝑖=0,𝑗=0

𝐵
𝑖

𝐶
𝑗

(

𝑖 + 𝑗

𝑖
) (

𝑘 − 𝑚 − 𝑚𝑖 − 𝑛 (𝑗 + 1)

𝑖 + 𝑗 + 1
)

+ 𝐶

𝑝
(𝑘)
−1,𝑞
(𝑘)
−2

∑

𝑖=0,𝑗=0

𝐵
𝑖

𝐶
𝑗

(

𝑖 + 𝑗

𝑖
) (

𝑘 − 𝑛 − 𝑚𝑖 − 𝑛 (𝑗 + 1)

𝑖 + 𝑗 + 1
) .

(35)

It is easy to see that, due to (5), formula (35) can be used
instead of (28) if 𝑝

(𝑘−𝑛)
< 1 too By Definition 6,

ẽ𝐵𝐶(𝑘+1)
𝑚𝑛

= 𝐼 + 𝐵

𝑝
(𝑘+1)
−1,𝑞
(𝑘+1)
−1

∑

𝑖=0,𝑗=0

𝐵
𝑖

𝐶
𝑗

(

𝑖 + 𝑗

𝑖
) (

𝑘 + 1 − 𝑚 − 𝑚𝑖 − 𝑛𝑗

𝑖 + 𝑗 + 1
)

+ 𝐶

𝑝
(𝑘+1)
−1,𝑞
(𝑘+1)
−1

∑

𝑖=0,𝑗=0

𝐵
𝑖

𝐶
𝑗

(

𝑖 + 𝑗

𝑖
) (

𝑘 + 1 − 𝑛 − 𝑚𝑖 − 𝑛𝑗

𝑖 + 𝑗 + 1
) .

(36)

Due to (1), we also conclude that

𝑝
(𝑘+1)

= 𝑝
(𝑘)
, 𝑞

(𝑘+1)
= 𝑞
(𝑘)

(37)

because

𝑝
(𝑘+1)

= ⌊

𝑘 + 1 + 𝑚

𝑚 + 1

⌋ ≤

𝑘

𝑚 + 1

+ 1 < 𝑝
(𝑘)
+ 1,

𝑝
(𝑘+1)

= ⌊

𝑘 + 1 + 𝑚

𝑚 + 1

⌋ >

𝑘 + 1 + 𝑚

𝑚 + 1

− 1

=

𝑘

𝑚 + 1

≥ 𝑝
(𝑘)
− 1 +

1

𝑚 + 1

.

(38)

The second formula can be proved similarly.
Then,

ẽ𝐵𝐶(𝑘+1)
𝑚𝑛

= 𝐼 + 𝐵

𝑝
(𝑘)
−1,𝑞
(𝑘)
−1

∑

𝑖=0,𝑗=0

𝐵
𝑖

𝐶
𝑗

(

𝑖 + 𝑗

𝑖
) (

𝑘 + 1 − 𝑚 − 𝑚𝑖 − 𝑛𝑗

𝑖 + 𝑗 + 1
)

+ 𝐶

𝑝
(𝑘)
−1,𝑞
(𝑘)
−1

∑

𝑖=0,𝑗=0

𝐵
𝑖

𝐶
𝑗

(

𝑖 + 𝑗

𝑖
) (

𝑘 + 1 − 𝑛 − 𝑚𝑖 − 𝑛𝑗

𝑖 + 𝑗 + 1
) .

(39)

Now we are able to prove that

Δẽ𝐵𝐶𝑘
𝑚𝑛

= 𝐵ẽ𝐵𝐶(𝑘−𝑚)
𝑚𝑛

+ 𝐶ẽ𝐵𝐶(𝑘−𝑛)
𝑚𝑛

=𝐵
[

[

𝐼 + 𝐵

𝑝
(𝑘)
−2,𝑞
(𝑘)
−1

∑

𝑖=0,𝑗=0

𝐵
𝑖

𝐶
𝑗

(

𝑖+𝑗

𝑖
) (

𝑘−𝑚−𝑚 (𝑖 + 1) − 𝑛𝑗

𝑖 + 𝑗 + 1
)

+𝐶

𝑝
(𝑘)
−2,𝑞
(𝑘)
−1

∑

𝑖=0,𝑗=0

𝐵
𝑖

𝐶
𝑗

(

𝑖+𝑗

𝑖
) (

𝑘−𝑛−𝑚 (𝑖 + 1) − 𝑛𝑗

𝑖 + 𝑗 + 1
)
]

]

+𝐶
[

[

𝐼 + 𝐵

𝑝
(𝑘)
−1,𝑞
(𝑘)
−2

∑

𝑖=0,𝑗=0

𝐵
𝑖

𝐶
𝑗

(

𝑖+𝑗

𝑖
) (

𝑘−𝑚−𝑚𝑖 − 𝑛 (𝑗 + 1)

𝑖 + 𝑗 + 1
)

+𝐶

𝑝
(𝑘)
−1,𝑞
(𝑘)
−2

∑

𝑖=0,𝑗=0

𝐵
𝑖

𝐶
𝑗

(

𝑖+𝑗

𝑖
) (

𝑘−𝑛−𝑚𝑖−𝑛 (𝑗 + 1)

𝑖 + 𝑗 + 1
)
]

]

.

(40)

(II) 𝑘 = 𝑝
(𝑘)
(𝑚 + 1) ∧ (𝑞

(𝑘)
− 1)(𝑛 + 1) + 1 ≤ 𝑘 < 𝑞

(𝑘)
(𝑛 + 1).

In this case,

𝑝
(𝑘−𝑚)

= ⌊

𝑘 − 𝑚 + 𝑚

𝑚 + 1

⌋ = ⌊

𝑘

𝑚 + 1

⌋ = 𝑝
(𝑘)
,

𝑝
(𝑘+1)

= ⌊

𝑘 + 1 + 𝑚

𝑚 + 1

⌋ ≤

𝑘 + 1 + 𝑚

𝑚 + 1

=

𝑘

𝑚 + 1

+ 1 = 𝑝
(𝑘)
+ 1,

𝑝
(𝑘+1)

= ⌊

𝑘 + 1 + 𝑚

𝑚 + 1

⌋ >

𝑘 + 1 + 𝑚

𝑚 + 1

− 1 =

𝑘

𝑚 + 1

= 𝑝
(𝑘)

(41)

and 𝑝
(𝑘+1)

= 𝑝
(𝑘)
+ 1. In addition to this (see the relevant

computations performed in case (I)), we have 𝑞
(𝑘−𝑛)

= 𝑞
(𝑘)
−1

and 𝑞
(𝑘+1)

= 𝑞
(𝑘)
.

Then,

ẽ𝐵𝐶(𝑘+1)
𝑚𝑛

= 𝐼 + 𝐵

𝑝
(𝑘)
,𝑞
(𝑘)
−1

∑

𝑖=0,𝑗=0

𝐵
𝑖

𝐶
𝑗

(

𝑖 + 𝑗

𝑖
) (

𝑘 + 1 − 𝑚 − 𝑚𝑖 − 𝑛𝑗

𝑖 + 𝑗 + 1
)

+ 𝐶

𝑝
(𝑘)
,𝑞
(𝑘)
−1

∑

𝑖=0,𝑗=0

𝐵
𝑖

𝐶
𝑗

(

𝑖 + 𝑗

𝑖
) (

𝑘 + 1 − 𝑛 − 𝑚𝑖 − 𝑛𝑗

𝑖 + 𝑗 + 1
) ,

(42)

ẽ𝐵𝐶(𝑘−𝑚)
𝑚𝑛

= 𝐼 + 𝐵

𝑝
(𝑘)
−1,𝑞
(𝑘−𝑚)
−1

∑

𝑖=0,𝑗=0

𝐵
𝑖

𝐶
𝑗

(

𝑖 + 𝑗

𝑖
) (

𝑘 − 𝑚 − 𝑚 − 𝑚𝑖 − 𝑛𝑗

𝑖 + 𝑗 + 1
)

+ 𝐶

𝑝
(𝑘)
−1,𝑞
(𝑘−𝑚)
−1

∑

𝑖=0,𝑗=0

𝐵
𝑖

𝐶
𝑗

(

𝑖 + 𝑗

𝑖
) (

𝑘 − 𝑚 − 𝑛 − 𝑚𝑖 − 𝑛𝑗

𝑖 + 𝑗 + 1
) ,

(43)
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ẽ𝐵𝐶(𝑘−𝑛)
𝑚𝑛

= 𝐼 + 𝐵

𝑝
(𝑘−𝑛)
−1,𝑞
(𝑘)
−2

∑

𝑖=0,𝑗=0

𝐵
𝑖

𝐶
𝑗

(

𝑖 + 𝑗

𝑖
) (

𝑘 − 𝑛 − 𝑚 − 𝑚𝑖 − 𝑛𝑗

𝑖 + 𝑗 + 1
)

+ 𝐶

𝑝
(𝑘−𝑛)
−1,𝑞
(𝑘)
−2

∑

𝑖=0,𝑗=0

𝐵
𝑖

𝐶
𝑗

(

𝑖 + 𝑗

𝑖
) (

𝑘 − 𝑛 − 𝑛 − 𝑚𝑖 − 𝑛𝑗

𝑖 + 𝑗 + 1
) .

(44)

For 𝑘 = 𝑝
(𝑘)
(𝑚 + 1), 𝑖 = 𝑝

(𝑘)
, and 𝑗 ≥ 0, we have

(

𝑘 + 1 − 𝑚 − 𝑚𝑖 − 𝑛𝑗

𝑖 + 𝑗 + 1
) = (

𝑝
(𝑘)
+ 1 − 𝑚 − 𝑛𝑗

𝑝
(𝑘)
+ 1 + 𝑗

) = 0,

(

𝑘 + 1 − 𝑛 − 𝑚𝑖 − 𝑛𝑗

𝑖 + 𝑗 + 1
) = (

𝑝
(𝑘)
+ 1 − 𝑛 − 𝑛𝑗

𝑝
(𝑘)
+ 1 + 𝑗

) = 0

(45)

and, for 𝑘 = 𝑝
(𝑘)
(𝑚 + 1), 𝑖 = 𝑝

(𝑘)
− 1, and 𝑗 ≥ 0, we have

(

𝑘 − 𝑚 − 𝑚 − 𝑚𝑖 − 𝑛𝑗

𝑖 + 𝑗 + 1
) = (

𝑝
(𝑘)
− 𝑚 − 𝑛𝑗

𝑝
(𝑘)
+ 𝑗

) = 0,

(

𝑘 − 𝑚 − 𝑛 − 𝑚𝑖 − 𝑛𝑗

𝑖 + 𝑗 + 1
) = (

𝑝
(𝑘)
− 𝑛 − 𝑛𝑗

𝑝
(𝑘)
+ 𝑗

) = 0.

(46)

Thus, we can substitute 𝑝
(𝑘)
−1 for 𝑝

(𝑘)
in (42) and 𝑝

(𝑘)
−2 for

𝑝
(𝑘)
− 1 in (43).
Like with the computations performed in the previous

part of the proof, (29), (34) hold. So we can substitute 𝑞
(𝑘)

for 𝑞
(𝑘−𝑚)

in (43) and 𝑝
(𝑘)

for 𝑝
(𝑘−𝑛)

in (44).
Accordingly, we have

ẽ𝐵𝐶(𝑘+1)
𝑚𝑛

= 𝐼 + 𝐵

𝑝
(𝑘)
−1,𝑞
(𝑘)
−1

∑

𝑖=0,𝑗=0

𝐵
𝑖

𝐶
𝑗

(

𝑖 + 𝑗

𝑖
) (

𝑘 + 1 − 𝑚 − 𝑚𝑖 − 𝑛𝑗

𝑖 + 𝑗 + 1
)

+ 𝐶

𝑝
(𝑘)
−1,𝑞
(𝑘)
−1

∑

𝑖=0,𝑗=0

𝐵
𝑖

𝐶
𝑗

(

𝑖 + 𝑗

𝑖
) (

𝑘 + 1 − 𝑛 − 𝑚𝑖 − 𝑛𝑗

𝑖 + 𝑗 + 1
) ,

(47)

ẽ𝐵𝐶(𝑘−𝑚)
𝑚𝑛

= 𝐼 + 𝐵

𝑝
(𝑘)
−2,𝑞
(𝑘)
−1

∑

𝑖=0,𝑗=0

𝐵
𝑖

𝐶
𝑗

(

𝑖 + 𝑗

𝑖
) (

𝑘 − 𝑚 − 𝑚 (𝑖 + 1) − 𝑛𝑗

𝑖 + 𝑗 + 1
)

+ 𝐶

𝑝
(𝑘)
−2,𝑞
(𝑘)
−1

∑

𝑖=0,𝑗=0

𝐵
𝑖

𝐶
𝑗

(

𝑖 + 𝑗

𝑖
) (

𝑘 − 𝑛 − 𝑚 (𝑖 + 1) − 𝑛𝑗

𝑖 + 𝑗 + 1
) ,

(48)

ẽ𝐵𝐶(𝑘−𝑛)
𝑚𝑛

= 𝐼 + 𝐵

𝑝
(𝑘)
−1,𝑞
(𝑘)
−2

∑

𝑖=0,𝑗=0

𝐵
𝑖

𝐶
𝑗

(

𝑖 + 𝑗

𝑖
) (

𝑘 − 𝑚 − 𝑚𝑖 − 𝑛 (𝑗 + 1)

𝑖 + 𝑗 + 1
)

+𝐶

𝑝
(𝑘)
−1,𝑞
(𝑘)
−2

∑

𝑖=0,𝑗=0

𝐵
𝑖

𝐶
𝑗

(

𝑖 + 𝑗

𝑖
) (

𝑘 − 𝑛 − 𝑚𝑖 − 𝑛 (𝑗 + 1)

𝑖 + 𝑗 + 1
) .

(49)

It is easy to see that, due to (5), formula (48) can also be
used instead of (43) if 𝑞

(𝑘−𝑚)
< 1 and formula (49) can also

be used instead of (44) if 𝑝
(𝑘−𝑛)

< 1. Therefore, we see that
(like in part (I)) the relation (40) must be proved.
(III) (𝑝

(𝑘)
− 1)(𝑚 + 1) + 1 ≤ 𝑘 < 𝑝

(𝑘)
(𝑚 + 1) ∧ 𝑘 = 𝑞

(𝑘)
(𝑛 + 1).

In this case, we have (see the relevant computations in cases
(I) and (II))

𝑝
(𝑘−𝑚)

= 𝑝
(𝑘)
− 1, 𝑝

(𝑘+1)
= 𝑝
(𝑘)
,

𝑞
(𝑘−𝑛)

= 𝑞
(𝑘)
, 𝑞

(𝑘+1)
= 𝑞
(𝑘)
+ 1.

(50)

Then,

ẽ𝐵𝐶(𝑘+1)
𝑚𝑛

= 𝐼 + 𝐵

𝑝
(𝑘)
−1,𝑞
(𝑘)

∑

𝑖=0,𝑗=0

𝐵
𝑖

𝐶
𝑗

(

𝑖 + 𝑗

𝑖
) (

𝑘 + 1 − 𝑚 − 𝑚𝑖 − 𝑛𝑗

𝑖 + 𝑗 + 1
)

+ 𝐶

𝑝
(𝑘)
−1,𝑞
(𝑘)

∑

𝑖=0,𝑗=0

𝐵
𝑖

𝐶
𝑗

(

𝑖 + 𝑗

𝑖
) (

𝑘 + 1 − 𝑛 − 𝑚𝑖 − 𝑛𝑗

𝑖 + 𝑗 + 1
) ,

(51)

ẽ𝐵𝐶(𝑘−𝑚)
𝑚𝑛

= 𝐼 + 𝐵

𝑝
(𝑘)
−2,𝑞
(𝑘−𝑚)
−1

∑

𝑖=0,𝑗=0

𝐵
𝑖

𝐶
𝑗

(

𝑖 + 𝑗

𝑖
) (

𝑘 − 𝑚 − 𝑚 − 𝑚𝑖 − 𝑛𝑗

𝑖 + 𝑗 + 1
)

+ 𝐶

𝑝
(𝑘)
−2,𝑞
(𝑘−𝑚)
−1

∑

𝑖=0,𝑗=0

𝐵
𝑖

𝐶
𝑗

(

𝑖 + 𝑗

𝑖
) (

𝑘 − 𝑚 − 𝑛 − 𝑚𝑖 − 𝑛𝑗

𝑖 + 𝑗 + 1
) ,

(52)

ẽ𝐵𝐶(𝑘−𝑛)
𝑚𝑛

= 𝐼 + 𝐵

𝑝
(𝑘−𝑛)
−1,𝑞
(𝑘)
−1

∑

𝑖=0,𝑗=0

𝐵
𝑖

𝐶
𝑗

(

𝑖 + 𝑗

𝑖
) (

𝑘 − 𝑛 − 𝑚 − 𝑚𝑖 − 𝑛𝑗

𝑖 + 𝑗 + 1
)

+ 𝐶

𝑝
(𝑘−𝑛)
−1,𝑞
(𝑘)
−1

∑

𝑖=0,𝑗=0

𝐵
𝑖

𝐶
𝑗

(

𝑖 + 𝑗

𝑖
) (

𝑘 − 𝑛 − 𝑛 − 𝑚𝑖 − 𝑛𝑗

𝑖 + 𝑗 + 1
) .

(53)

For 𝑘 = 𝑞
(𝑘)
(𝑛 + 1), 𝑗 = 𝑞

(𝑘)
, and 𝑖 ≥ 0, we have

(

𝑘 + 1 − 𝑚 − 𝑚𝑖 − 𝑛𝑗

𝑖 + 𝑗 + 1
) = (

𝑞
(𝑘)
+ 1 − 𝑚 − 𝑚𝑖

𝑖 + 𝑞
(𝑘)
+ 1

) = 0,

(

𝑘 + 1 − 𝑛 − 𝑚𝑖 − 𝑛𝑗

𝑖 + 𝑗 + 1
) = (

𝑞
(𝑘)
+ 1 − 𝑛 − 𝑚𝑖

𝑖 + 𝑞
(𝑘)
+ 1

) = 0

(54)



Abstract and Applied Analysis 7

and, for 𝑘 = 𝑞
(𝑘)
(𝑚 + 1), 𝑗 = 𝑞

(𝑘)
− 1, and 𝑖 ≥ 0, we get

(

𝑘 − 𝑛 − 𝑚 − 𝑚𝑖 − 𝑛𝑗

𝑖 + 𝑗 + 1
) = (

𝑞
(𝑘)
− 𝑚 − 𝑚𝑖

𝑖 + 𝑞
(𝑘)

) = 0,

(

𝑘 − 𝑛 − 𝑛 − 𝑚𝑖 − 𝑛𝑗

𝑖 + 𝑗 + 1
) = (

𝑞
(𝑘)
− 𝑛 − 𝑚𝑖

𝑖 + 𝑞
(𝑘)

) = 0.

(55)

Thuswe can replace 𝑞
(𝑘)

by 𝑞
(𝑘)
−1 in (51) and 𝑞

(𝑘)
−1 by 𝑞

(𝑘)
−2

in (53).
Like with the computations performed in cases (I) and

(II), formulas (29), (34) hold and we can substitute 𝑞
(𝑘)

for
𝑞
(𝑘−𝑚)

in (52) and 𝑞
(𝑘)

for 𝑞
(𝑘−𝑛)

in (53). This means that

ẽ𝐵𝐶(𝑘+1)
𝑚𝑛

= 𝐼 + 𝐵

𝑝
(𝑘)
−1,𝑞
(𝑘)
−1

∑

𝑖=0,𝑗=0

𝐵
𝑖

𝐶
𝑗

(

𝑖 + 𝑗

𝑖
) (

𝑘 + 1 − 𝑚 − 𝑚𝑖 − 𝑛𝑗

𝑖 + 𝑗 + 1
)

+ 𝐶

𝑝
(𝑘)
−1,𝑞
(𝑘)
−1

∑

𝑖=0,𝑗=0

𝐵
𝑖

𝐶
𝑗

(

𝑖 + 𝑗

𝑖
) (

𝑘 + 1 − 𝑛 − 𝑚𝑖 − 𝑛𝑗

𝑖 + 𝑗 + 1
) ,

(56)

ẽ𝐵𝐶(𝑘−𝑚)
𝑚𝑛

= 𝐼 + 𝐵

𝑝
(𝑘)
−2,𝑞
(𝑘−𝑚)
−1

∑

𝑖=0,𝑗=0

𝐵
𝑖

𝐶
𝑗

(

𝑖 + 𝑗

𝑖
) (

𝑘 − 𝑚 − 𝑚 − 𝑚𝑖 − 𝑛𝑗

𝑖 + 𝑗 + 1
)

+ 𝐶

𝑝
(𝑘)
−2,𝑞
(𝑘−𝑚)
−1

∑

𝑖=0,𝑗=0

𝐵
𝑖

𝐶
𝑗

(

𝑖 + 𝑗

𝑖
) (

𝑘 − 𝑚 − 𝑛 − 𝑚𝑖 − 𝑛𝑗

𝑖 + 𝑗 + 1
) ,

(57)

ẽ𝐵𝐶(𝑘−𝑛)
𝑚𝑛

= 𝐼 + 𝐵

𝑝
(𝑘−𝑛)
−1,𝑞
(𝑘)
−2

∑

𝑖=0,𝑗=0

𝐵
𝑖

𝐶
𝑗

(

𝑖 + 𝑗

𝑖
) (

𝑘 − 𝑛 − 𝑚 − 𝑚𝑖 − 𝑛𝑗

𝑖 + 𝑗 + 1
)

+ 𝐶

𝑝
(𝑘−𝑛)
−1,𝑞
(𝑘)
−2

∑

𝑖=0,𝑗=0

𝐵
𝑖

𝐶
𝑗

(

𝑖 + 𝑗

𝑖
) (

𝑘 − 𝑛 − 𝑛 − 𝑚𝑖 − 𝑛𝑗

𝑖 + 𝑗 + 1
) .

(58)

It is easy to see that, due to (5), formula (57) can also be used
instead of (52) if 𝑞

(𝑘−𝑚)
< 1 and formula (58) can also be used

instead of (53) if 𝑝
(𝑘−𝑛)

< 1. Therefore, we see that (as in parts
(I), (II)) (40) must be proved.

(IV) 𝑘 = 𝑝
(k)(𝑚 + 1) ∧ 𝑘 = 𝑞(𝑘)(𝑛 + 1). In this case, we have

(see similar combinations in the cases (II) and (III))

𝑝
(𝑘−𝑚)

= 𝑝
(𝑘)
, 𝑝

(𝑘+1)
= 𝑝
(𝑘)
+ 1,

𝑞
(𝑘−𝑛)

= 𝑞
(𝑘)
, 𝑞

(𝑘+1)
= 𝑞
(𝑘)
+ 1.

(59)

Then,

ẽ𝐵𝐶(𝑘+1)
𝑚𝑛

= 𝐼 + 𝐵

𝑝
(𝑘)
,𝑞
(𝑘)

∑

𝑖=0,𝑗=0

𝐵
𝑖

𝐶
𝑗

(

𝑖 + 𝑗

𝑖
) (

𝑘 + 1 − 𝑚 − 𝑚𝑖 − 𝑛𝑗

𝑖 + 𝑗 + 1
)

+ 𝐶

𝑝
(𝑘)
,𝑞
(𝑘)

∑

𝑖=0,𝑗=0

𝐵
𝑖

𝐶
𝑗

(

𝑖 + 𝑗

𝑖
) (

𝑘 + 1 − 𝑛 − 𝑚𝑖 − 𝑛𝑗

𝑖 + 𝑗 + 1
) ,

(60)

ẽ𝐵𝐶(𝑘−𝑚)
𝑚𝑛

= 𝐼 + 𝐵

𝑝
(𝑘)
−1,𝑞
(𝑘−𝑚)
−1

∑

𝑖=0,𝑗=0

𝐵
𝑖

𝐶
𝑗

(

𝑖 + 𝑗

𝑖
) (

𝑘 − 𝑚 − 𝑚 − 𝑚𝑖 − 𝑛𝑗

𝑖 + 𝑗 + 1
)

+ 𝐶

𝑝
(𝑘)
−1,𝑞
(𝑘−𝑚)
−1

∑

𝑖=0,𝑗=0

𝐵
𝑖

𝐶
𝑗

(

𝑖 + 𝑗

𝑖
) (

𝑘 − 𝑚 − 𝑛 − 𝑚𝑖 − 𝑛𝑗

𝑖 + 𝑗 + 1
) ,

(61)

ẽ𝐵𝐶(𝑘−𝑛)
𝑚𝑛

= 𝐼 + 𝐵

𝑝
(𝑘−𝑛)
−1,𝑞
(𝑘)
−1

∑

𝑖=0,𝑗=0

𝐵
𝑖

𝐶
𝑗

(

𝑖 + 𝑗

𝑖
) (

𝑘 − 𝑛 − 𝑚 − 𝑚𝑖 − 𝑛𝑗

𝑖 + 𝑗 + 1
)

+ 𝐶

𝑝
(𝑘−𝑛)
−1,𝑞
(𝑘)
−1

∑

𝑖=0,𝑗=0

𝐵
𝑖

𝐶
𝑗

(

𝑖 + 𝑗

𝑖
) (

𝑘 − 𝑛 − 𝑛 − 𝑚𝑖 − 𝑛𝑗

𝑖 + 𝑗 + 1
) .

(62)

As in part (II), for 𝑘 = 𝑝
(𝑘)
(𝑚+1), 𝑖 = 𝑝

(𝑘)
, and 𝑗 ≥ 0, formulas

(45) hold and, for 𝑘 = 𝑝
(𝑘)
(𝑚 + 1), 𝑖 = 𝑝

(𝑘)
− 1, and 𝑗 ≥ 0,

formulas (46) hold. Thus we can substitute 𝑝
(𝑘)
− 1 for 𝑝

(𝑘)
in

(60) and 𝑝
(𝑘)
− 2 for 𝑝

(𝑘)
− 1 in (61).

As in part (III), for 𝑘 = 𝑞
(𝑘)
(𝑛 + 1), 𝑗 = 𝑞

(𝑘)
, and 𝑖 ≥ 0,

formulas (54) hold and, for 𝑘 = 𝑞
(𝑘)
(𝑚 + 1), 𝑗 = 𝑞

(𝑘)
− 1, and

𝑖 ≥ 0, formulas (55) hold. Thus we can replace 𝑞
(𝑘)

by 𝑞
(𝑘)
− 1

in (60) and 𝑞
(𝑘)
− 1 by 𝑞

(𝑘)
− 2 in (62).

As before, (29), (34) hold and we can substitute 𝑞
(𝑘)

for
𝑞
(𝑘−𝑚)

in (61) and 𝑝
(𝑘)

for 𝑝
(𝑘−𝑛)

in (62). Thus, we have

ẽ𝐵𝐶(𝑘+1)
𝑚𝑛

= 𝐼 + 𝐵

𝑝
(𝑘)
−1,𝑞
(𝑘)
−1

∑

𝑖=0,𝑗=0

𝐵
𝑖

𝐶
𝑗

(

𝑖 + 𝑗

𝑖
) (

𝑘 + 1 − 𝑚 − 𝑚𝑖 − 𝑛𝑗

𝑖 + 𝑗 + 1
)

+ 𝐶

𝑝
(𝑘)
−1,𝑞
(𝑘)
−1

∑

𝑖=0,𝑗=0

𝐵
𝑖

𝐶
𝑗

(

𝑖 + 𝑗

𝑖
) (

𝑘 + 1 − 𝑛 − 𝑚𝑖 − 𝑛𝑗

𝑖 + 𝑗 + 1
) ,

(63)
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ẽ𝐵𝐶(𝑘−𝑚)
𝑚𝑛

= 𝐼 + 𝐵

𝑝
(𝑘)
−2,𝑞
(𝑘−𝑚)
−1

∑

𝑖=0,𝑗=0

𝐵
𝑖

𝐶
𝑗

(

𝑖 + j
𝑖
) (

𝑘 − 𝑚 − 𝑚 − 𝑚𝑖 − 𝑛𝑗

𝑖 + 𝑗 + 1
)

+ 𝐶

𝑝
(𝑘)
−2,𝑞
(𝑘−𝑚)
−1

∑

𝑖=0,𝑗=0

𝐵
𝑖

𝐶
𝑗

(

𝑖 + 𝑗

𝑖
) (

𝑘 − 𝑚 − 𝑛 − 𝑚𝑖 − 𝑛𝑗

𝑖 + 𝑗 + 1
) ,

(64)

ẽ𝐵𝐶(𝑘−𝑛)
𝑚𝑛

= 𝐼 + 𝐵

𝑝
(𝑘−𝑛)
−1,𝑞
(𝑘)
−2

∑

𝑖=0,𝑗=0

𝐵
𝑖

𝐶
𝑗

(

𝑖 + 𝑗

𝑖
) (

𝑘 − 𝑛 − 𝑚 − 𝑚𝑖 − 𝑛𝑗

𝑖 + 𝑗 + 1
)

+ 𝐶

𝑝
(𝑘−𝑛)
−1,𝑞
(𝑘)
−2

∑

𝑖=0,𝑗=0

𝐵
𝑖

𝐶
𝑗

(

𝑖 + 𝑗

𝑖
) (

𝑘 − 𝑛 − 𝑛 − 𝑚𝑖 − 𝑛𝑗

𝑖 + 𝑗 + 1
) .

(65)

It is easy to see that, due to (5), formula (64) can also be used
instead of (61) if 𝑞

(𝑘−𝑚)
< 1 and formula (65) can also be used

instead of (62) if 𝑝
(𝑘−𝑛)

< 1. Therefore, we see that (as in all
the previous parts) (40) must be proved.

(V) The Proof of Formula (40). Now we prove (40). With the
aid of (18), (19), (24), and (36), we get

Δẽ𝐵𝐶𝑘
𝑚𝑛

= ẽ𝐵𝐶(𝑘+1)
𝑚𝑛

− ẽ𝐵𝐶𝑘
𝑚𝑛

= 𝐼 + 𝐵

𝑝
(𝑘)
−1,𝑞
(𝑘)
−1

∑

𝑖=0,𝑗=0

𝐵
𝑖

𝐶
𝑗

(

𝑖 + 𝑗

𝑖
) (

𝑘 + 1 − 𝑚 − 𝑚𝑖 − 𝑛𝑗

𝑖 + 𝑗 + 1
)

+ 𝐶

𝑝
(𝑘)
−1,𝑞
(𝑘)
−1

∑

𝑖=0,𝑗=0

𝐵
𝑖

𝐶
𝑗

(

𝑖 + 𝑗

𝑖
) (

𝑘 + 1 − 𝑛 − 𝑚𝑖 − 𝑛𝑗

𝑖 + 𝑗 + 1
)

− 𝐼 − 𝐵

𝑝
(𝑘)
−1,𝑞
(𝑘)
−1

∑

𝑖=0,𝑗=0

𝐵
𝑖

𝐶
𝑗

(

𝑖 + 𝑗

𝑖
) (

𝑘 − 𝑚 − 𝑚𝑖 − 𝑛𝑗

𝑖 + 𝑗 + 1
)

− 𝐶

𝑝
(𝑘)
−1,𝑞
(𝑘)
−1

∑

𝑖=0,𝑗=0

𝐵
𝑖

𝐶
𝑗

(

𝑖 + 𝑗

𝑖
) (

𝑘 − 𝑛 − 𝑚𝑖 − 𝑛𝑗

𝑖 + 𝑗 + 1
)

= 𝐵

𝑝
(𝑘)
−1,𝑞
(𝑘)
−1

∑

𝑖=0,𝑗=0

𝐵
𝑖

𝐶
𝑗

(

𝑖 + 𝑗

𝑖
) [(

𝑘 + 1 − 𝑚 − 𝑚𝑖 − 𝑛𝑗

𝑖 + 𝑗 + 1
)

−(

𝑘 − 𝑚 − 𝑚𝑖 − 𝑛𝑗

𝑖 + 𝑗 + 1
)]

+ 𝐶

𝑝
(𝑘)
−1,𝑞
(𝑘)
−1

∑

𝑖=0,𝑗=0

𝐵
𝑖

𝐶
𝑗

(

𝑖 + 𝑗

𝑖
) [(

𝑘 + 1 − 𝑛 − 𝑚𝑖 − 𝑛𝑗

𝑖 + 𝑗 + 1
)

−(

𝑘 − 𝑛 − 𝑚𝑖 − 𝑛𝑗

𝑖 + 𝑗 + 1
)]

= 𝐵

𝑝
(𝑘)
−1,𝑞
(𝑘)
−1

∑

𝑖=0,𝑗=0

𝐵
𝑖

𝐶
𝑗

(

𝑖 + 𝑗

𝑖
) (

𝑘 − 𝑚 − 𝑚i − 𝑛𝑗
𝑖 + 𝑗

)

+ 𝐶

𝑝
(𝑘)
−1,𝑞
(𝑘)
−1

∑

𝑖=0,𝑗=0

𝐵
𝑖

𝐶
𝑗

(

𝑖 + 𝑗

𝑖
) (

𝑘 − 𝑛 − 𝑚𝑖 − 𝑛𝑗

𝑖 + 𝑗
)

= 𝐵
[

[

𝐼 +

𝑝
(𝑘)
−1

∑

𝑖=1

𝐵
𝑖

𝐶
0

(

𝑖

𝑖
) (

𝑘 − 𝑚 − 𝑚𝑖

𝑖
)

+

𝑞
(𝑘)
−1

∑

𝑗=1

𝐵
0

𝐶
𝑗

(

𝑗

0
)(

𝑘 − 𝑚 − 𝑛𝑗

𝑗
)

+

𝑝
(𝑘)
−1,𝑞
(𝑘)
−1

∑

𝑖=1,𝑗=1

𝐵
𝑖

𝐶
𝑗

(

𝑖 + 𝑗

𝑖
) (

𝑘 − 𝑚 − 𝑚𝑖 − 𝑛𝑗

𝑖 + 𝑗
)
]

]

+ 𝐶
[

[

𝐼 +

𝑝
(𝑘)
−1

∑

𝑖=1

𝐵
𝑖

𝐶
0

(

𝑖

𝑖
) (

𝑘 − 𝑛 − 𝑚𝑖

𝑖
)

+

𝑞
(𝑘)
−1

∑

𝑗=1

𝐵
0

𝐶
𝑗

(

𝑗

0
)(

𝑘 − 𝑛 − 𝑛𝑗

𝑗
)

+

𝑝
(𝑘)
−1,𝑞
(𝑘)
−1

∑

𝑖=1,𝑗=1

𝐵
𝑖

𝐶
𝑗

(

𝑖 + 𝑗

𝑖
) (

𝑘 − 𝑛 − 𝑚𝑖 − 𝑛𝑗

𝑖 + 𝑗
)
]

]

.

(66)

By (25), we have

Δẽ𝐵𝐶𝑘
𝑚𝑛

= 𝐵
[

[

𝐼 +

𝑝
(𝑘)
−1

∑

𝑖=1

𝐵
𝑖

𝐶
0

(

𝑖 − 1

𝑖 − 1
)(

𝑘 − 𝑚 − 𝑚𝑖

𝑖
)

+

𝑞
(𝑘)
−1

∑

𝑗=1

𝐵
0

𝐶
𝑗

(

𝑗 − 1

0
)(

𝑘 − 𝑚 − 𝑛𝑗

𝑗
)

+

𝑝
(𝑘)
−1,𝑞
(𝑘)
−1

∑

𝑖=1,𝑗=1

𝐵
𝑖

𝐶
𝑗

(

𝑖 + 𝑗 − 1

𝑖 − 1
)(

𝑘 − 𝑚 − 𝑚𝑖 − 𝑛𝑗

𝑖 + 𝑗
)

+

𝑝
(𝑘)
−1,𝑞
(𝑘)
−1

∑

𝑖=1,𝑗=1

𝐵
𝑖

𝐶
𝑗

(

𝑖 + 𝑗 − 1

𝑖
)(

𝑘 − 𝑚 − 𝑚𝑖 − 𝑛𝑗

𝑖 + 𝑗
)
]

]

+ 𝐶
[

[

𝐼 +

𝑝
(𝑘)
−1

∑

𝑖=1

𝐵
𝑖

𝐶
0

(

𝑖 − 1

𝑖 − 1
)(

𝑘 − 𝑛 − 𝑚𝑖

𝑖
)

+

𝑞
(k)−1

∑

𝑗=1

𝐵
0

𝐶
𝑗

(

𝑗 − 1

0
)(

𝑘 − 𝑛 − 𝑛𝑗

𝑗
)

+

𝑝
(𝑘)
−1,𝑞
(𝑘)
−1

∑

𝑖=1,𝑗=1

𝐵
𝑖

𝐶
𝑗

(

𝑖 + 𝑗 − 1

𝑖 − 1
)(

𝑘 − 𝑛 − 𝑚𝑖 − 𝑛𝑗

𝑖 + 𝑗
)
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+

𝑝
(𝑘)
−1,𝑞
(𝑘)
−1

∑

𝑖=1,𝑗=1

𝐵
𝑖

𝐶
𝑗

(

𝑖 + 𝑗 − 1

𝑖
)(

𝑘 − 𝑛 − 𝑚𝑖 − 𝑛𝑗

𝑖 + 𝑗
)
]

]

= 𝐵
[

[

𝐼 +

𝑝
(𝑘)
−1,𝑞
(𝑘)
−1

∑

𝑖=1,𝑗=0

𝐵
𝑖

𝐶
𝑗

(

𝑖 + 𝑗 − 1

𝑖 − 1
)(

𝑘 − 𝑚 − 𝑚𝑖 − 𝑛𝑗

𝑖 + 𝑗
)

+

𝑝
(𝑘)
−1,𝑞
(𝑘)
−1

∑

𝑖=0,𝑗=1

𝐵
𝑖

𝐶
𝑗

(

𝑖 + 𝑗 − 1

𝑖
)(

𝑘 − 𝑚 − 𝑚𝑖 − 𝑛𝑗

𝑖 + 𝑗
)
]

]

+ 𝐶
[

[

𝐼 +

𝑝
(𝑘)
−1,𝑞
(𝑘)
−1

∑

𝑖=1,𝑗=0

𝐵
𝑖

𝐶
𝑗

(

𝑖 + 𝑗 − 1

𝑖 − 1
)(

𝑘 − 𝑛 − 𝑚𝑖 − 𝑛𝑗

𝑖 + 𝑗
)

+

𝑝
(𝑘)
−1,𝑞
(𝑘)
−1

∑

𝑖=0,𝑗=1

𝐵
𝑖

𝐶
𝑗

(

𝑖 + 𝑗 − 1

𝑖
)(

𝑘 − 𝑛 − 𝑚𝑖 − 𝑛𝑗

𝑖 + 𝑗
)
]

]

.

(67)

Now, in the first and third sum,we replace the summation
index 𝑖 by 𝑖 + 1 and, in the second and fourth sum, we replace
the summation index 𝑗 by 𝑗 + 1. Then,

Δẽ𝐵𝐶𝑘
𝑚𝑛

= 𝐵
[

[

𝐼 +

𝑝
(𝑘)
−2,𝑞
(𝑘)
−1

∑

𝑖=0,𝑗=0

𝐵
𝑖+1

𝐶
𝑗

(

𝑖 + 𝑗

𝑖
)

× (

𝑘 − 𝑚 − 𝑚 (𝑖 + 1) − 𝑛𝑗

𝑖 + 𝑗 + 1
)

+

𝑝
(𝑘)
−1,𝑞
(𝑘)
−2

∑

𝑖=0,𝑗=0

𝐵
𝑖

𝐶
𝑗+1

(

𝑖 + 𝑗

𝑖
)(

𝑘 − 𝑚 − 𝑚𝑖 − 𝑛 (𝑗 + 1)

𝑖 + 𝑗 + 1
)
]

]

+ 𝐶
[

[

𝐼 +

𝑝
(𝑘)
−2,𝑞
(𝑘)
−1

∑

𝑖=0,𝑗=0

𝐵
𝑖+1

𝐶
𝑗

(

𝑖 + 𝑗

𝑖
)

× (

𝑘 − 𝑛 − 𝑚 (𝑖 + 1) − 𝑛𝑗

𝑖 + 𝑗 + 1
)

+

𝑝
(𝑘)
−1,𝑞
(𝑘)
−2

∑

𝑖=0,𝑗=0

𝐵
𝑖

𝐶
𝑗+1

(

𝑖 + 𝑗

𝑖
)(

𝑘 − 𝑛 − 𝑚𝑖 − 𝑛 (𝑗 + 1)

𝑖 + 𝑗 + 1
)
]

]

= 𝐵 + 𝐵
2

𝑝
(𝑘)
−2,𝑞
(𝑘)
−1

∑

𝑖=0,𝑗=0

𝐵
𝑖C𝑗 (𝑖 + 𝑗

𝑖
) (

𝑘 − 𝑚 − 𝑚 (𝑖 + 1) − 𝑛𝑗

𝑖 + 𝑗 + 1
)

+ 𝐵𝐶

𝑝
(𝑘)
−1,𝑞
(𝑘)
−2

∑

𝑖=0,𝑗=0

𝐵
𝑖

𝐶
𝑗

(

𝑖 + 𝑗

𝑖
)(

𝑘 − 𝑚 − 𝑚𝑖 − 𝑛 (𝑗 + 1)

𝑖 + 𝑗 + 1
)

+ 𝐶 + 𝐵𝐶

𝑝
(𝑘)
−2,𝑞
(𝑘)
−1

∑

𝑖=0,𝑗=0

𝐵
𝑖

𝐶
𝑗

(

𝑖 + 𝑗

𝑖
)

× (

𝑘 − 𝑛 − 𝑚 (𝑖 + 1) − 𝑛𝑗

𝑖 + 𝑗 + 1
)

+ 𝐶
2

𝑝
(𝑘)
−1,𝑞
(𝑘)
−2

∑

𝑖=0,𝑗=0

𝐵
𝑖

𝐶
𝑗

(

𝑖 + 𝑗

𝑖
) (

𝑘 − 𝑛 − 𝑚𝑖 − 𝑛 (𝑗 + 1)

𝑖 + 𝑗 + 1
)

= 𝐵
[

[

𝐼+𝐵

𝑝
(𝑘)
−2,𝑞
(𝑘)
−1

∑

𝑖=0,𝑗=0

𝐵
𝑖

𝐶
𝑗

(

𝑖 + 𝑗

𝑖
)(

𝑘 − 𝑚 − 𝑚 (𝑖 + 1) − 𝑛𝑗

𝑖 + 𝑗 + 1
)

+𝐶

𝑝
(𝑘)
−2,𝑞
(𝑘)
−1

∑

𝑖=0,𝑗=0

𝐵
𝑖

𝐶
𝑗

(

𝑖 + 𝑗

𝑖
)(

𝑘 − 𝑛 − 𝑚 (𝑖 + 1) − 𝑛𝑗

𝑖 + 𝑗 + 1
)
]

]

+ 𝐶
[

[

𝐼 + 𝐵

𝑝
(𝑘)
−1,𝑞
(𝑘)
−2

∑

𝑖=0,𝑗=0

𝐵
𝑖

𝐶
𝑗

(

𝑖 + 𝑗

𝑖
)

× (

𝑘 − 𝑚 − 𝑚𝑖 − 𝑛 (𝑗 + 1)

𝑖 + 𝑗 + 1
)

+𝐶

𝑝
(𝑘)
−1,𝑞
(𝑘)
−2

∑

𝑖=0,𝑗=0

𝐵
𝑖

𝐶
𝑗

(

𝑖 + 𝑗

𝑖
)(

𝑘 − 𝑛 − 𝑚𝑖 − 𝑛 (𝑗 + 1)

𝑖 + 𝑗 + 1
)
]

]

= 𝐵ẽ𝐵𝐶(𝑘−𝑚)
𝑚𝑛

+ 𝐶ẽ𝐵𝐶(𝑘−𝑛)
𝑚𝑛

.

(68)

Due to (33) and (35), we conclude that formula (40) is
valid.

We proved that formula (15) holds in each of the consid-
ered cases (I), (II), (III), and (IV) for 𝑘 ≥ 1. If 𝑘 = 0, the proof
can be done directly because 𝑝

(0)
= 𝑞
(0)
= 0, 𝑝

(1)
= 𝑞
(1)
= 1,

Δẽ𝐵𝐶0
𝑚𝑛

= ẽ𝐵𝐶1
𝑚𝑛

− ẽ𝐵𝐶0
𝑚𝑛

= 𝐼 + 𝐵

0,0

∑

𝑖=0,𝑗=0

𝐵
𝑖

𝐶
𝑗

(

𝑖 + 𝑗

𝑖
) (

1 − 𝑚 − 𝑚𝑖 − 𝑛𝑗

𝑖 + 𝑗 + 1
)

+ 𝐶

0,0

∑

𝑖=0,𝑗=0

𝐵
𝑖

𝐶
𝑗

(

𝑖 + 𝑗

𝑖
) (

1 − 𝑛 − 𝑚𝑖 − 𝑛𝑗

𝑖 + 𝑗 + 1
)

− 𝐼 − 𝐵

−1,−1

∑

𝑖=0,𝑗=0

𝐵
𝑖

𝐶
𝑗

(

𝑖 + 𝑗

𝑖
) (

−𝑚 − 𝑚𝑖 − 𝑛𝑗

𝑖 + 𝑗 + 1
)

− 𝐶

−1,−1

∑

𝑖=0,𝑗=0

𝐵
𝑖

𝐶
𝑗

(

𝑖 + 𝑗

𝑖
) (

−𝑛 − 𝑚𝑖 − 𝑛𝑗

𝑖 + 𝑗 + 1
)

= 𝐼 + 𝐵Θ + 𝐶Θ − 𝐼 − 𝐵Θ − 𝐶Θ = Θ,

𝐵ẽ𝐵𝐶(−𝑚)
𝑚𝑛

+ 𝐶ẽ𝐵𝐶(−𝑛)
𝑚𝑛

= 𝐵Θ + 𝐶Θ = Θ.

(69)

Formula (15) holds again. Theorem 9 is proved.

3. Representing the Solution of
an Initial Problem by Discrete Matrix
Delayed Exponential for Two Delays

In this part, we prove the main results of the paper. With
the aid of both discrete matrix delayed exponentials we
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give formulas for the solution of the homogeneous and
nonhomogeneous initial problem (2), (3).

3.1. Representing the Solution of a Homogeneous Initial Prob-
lem. Consider the homogeneous initial problem

Δ𝑥 (𝑘) = 𝐵𝑥 (𝑘 − 𝑚) + 𝐶𝑥 (𝑘 − 𝑛) , 𝑘 ∈ Z
∞

0
, (70)

𝑥 (𝑘) = 𝜑 (𝑘) , 𝑘 ∈ Z
0

−𝑛
. (71)

First we derive formulas for the solution of (70), (71) with the
aid of discrete matrix delayed exponential e𝐵𝐶𝑘

𝑚𝑛
and then with

the aid of discrete matrix delayed exponential ẽ𝐵𝐶𝑘
𝑚𝑛

.

Theorem 10. Let 𝐵, 𝐶 be constant 𝑟 × 𝑟matrices such that

𝐵𝐶 = 𝐶𝐵, det (𝐵 + 𝐶) ̸= 0, (72)

and let 𝑚, 𝑛 ∈ N, 𝑚 < 𝑛, be fixed integers. Then, the solution
of the initial Cauchy problem (70), (71) can be expressed in the
form

𝑥 (𝑘) =

𝑛

∑

𝑗=0

e𝐵𝐶(𝑘+𝑗)
𝑚𝑛

V
𝑗
, (73)

where 𝑘 ∈ Z∞
−𝑛

and

V
0
= 𝜑 (−𝑛) −

𝑛

∑

𝑠=1

V
𝑠
,

V
ℓ
= (𝐵 + 𝐶)

−1

[Δ𝜑 (−ℓ) −

𝑛−ℓ

∑

𝑡=1

Δ e𝐵𝐶𝑡
𝑚𝑛

V
𝑡+ℓ
] , ℓ ∈ Z

𝑛

1
.

(74)

Proof. We are going to find the solution of the problem (70),
(71) in the form

𝑥 (𝑘) =

𝑛

∑

𝑗=0

e𝐵𝐶(𝑘+𝑗)
𝑚𝑛

V
𝑗
, 𝑘 ∈ Z

∞

−𝑛 (75)

with unknown constant vectors V
𝑗
. Due to linearity (taking

into account that 𝑘 varies), we have, for 𝑘 ≥ 0,

Δ𝑥 (𝑘) = Δ

𝑛

∑

𝑗=0

e𝐵𝐶(𝑘+𝑗)
𝑚𝑛

V
𝑗
=

𝑛

∑

𝑗=0

Δ [e𝐵𝐶(𝑘+𝑗)
𝑚𝑛

V
𝑗
]

=

𝑛

∑

𝑗=0

Δ [e𝐵𝐶(𝑘+𝑗)
𝑚𝑛

] V
𝑗
.

(76)

Using formula (11),

Δ𝑥 (𝑘) =

𝑛

∑

𝑗=0

(𝐵e𝐵𝐶(𝑘−𝑚+𝑗)
𝑚𝑛

+ 𝐶e𝐵𝐶(𝑘−𝑛+𝑗)
𝑚𝑛

) V
𝑗

= 𝐵

𝑛

∑

𝑗=0

e𝐵𝐶(𝑘−𝑚+𝑗)
𝑚𝑛

V
𝑗
+ 𝐶

𝑛

∑

𝑗=0

e𝐵𝐶(𝑘−𝑛+𝑗)
𝑚𝑛

V
𝑗

= 𝐵𝑥 (𝑘 − 𝑚) + 𝐶𝑥 (𝑘 − 𝑛) .

(77)

Now we conclude that, for any V
𝑗
and 𝑘 ∈ Z∞

0
, the

equation Δ𝑥(𝑘) = 𝐵𝑥(𝑘 − 𝑚) + 𝐶𝑥(𝑘 − 𝑛) holds. We will
try to satisfy initial conditions (71). Due to (75), we have, for
𝑘 ∈ Z0

−𝑛
,

e𝐵𝐶0
𝑚𝑛

V
0
+ e𝐵𝐶1
𝑚𝑛

V
1
+ e𝐵C2
𝑚𝑛

V
2
+ ⋅ ⋅ ⋅ + e𝐵𝐶(𝑛−2)

𝑚𝑛
V
𝑛−2

+ e𝐵𝐶(𝑛−1)
𝑚𝑛

V
𝑛−1
+ e𝐵𝐶𝑛
𝑚𝑛

V
𝑛
= 𝜑 (0) ,

e𝐵𝐶(−1)
𝑚𝑛

V
0
+ e𝐵𝐶0
𝑚𝑛

V
1
+ e𝐵𝐶1
𝑚𝑛

V
2
+ ⋅ ⋅ ⋅ + e𝐵𝐶(𝑛−3)

𝑚𝑛
V
𝑛−2

+ e𝐵𝐶(𝑛−2)
𝑚𝑛

V
𝑛−1
+ e𝐵𝐶(𝑛−1)
𝑚𝑛

V
𝑛
= 𝜑 (−1) ,

e𝐵𝐶(−2)
𝑚𝑛

V
0
+ e𝐵𝐶(−1)
𝑚𝑛

V
1
+ e𝐵𝐶0
𝑚𝑛

V
2
+ ⋅ ⋅ ⋅ + e𝐵𝐶(𝑛−4)

𝑚𝑛
V
𝑛−2

+ e𝐵𝐶(𝑛−3)
𝑚𝑛

V
𝑛−1
+ e𝐵𝐶(𝑛−2)
𝑚𝑛

V
𝑛
= 𝜑 (−2) ,

e𝐵𝐶(−3)
𝑚𝑛

V
0
+ e𝐵𝐶(−2)
𝑚𝑛

V
1
+ e𝐵𝐶(−1)
𝑚𝑛

V
2
+ ⋅ ⋅ ⋅ + e𝐵𝐶(𝑛−5)

𝑚𝑛
V
𝑛−2

+ e𝐵𝐶(𝑛−4)
𝑚𝑛

V
𝑛−1
+ e𝐵𝐶(𝑛−3)
𝑚𝑛

V
𝑛
= 𝜑 (−3) ,

...

e𝐵𝐶(−𝑛+3)
𝑚𝑛

V
0
+ e𝐵𝐶(−𝑛+4)
𝑚𝑛

V
1
+ e𝐵𝐶(−𝑛+5)
𝑚𝑛

V
2
+ ⋅ ⋅ ⋅ + e𝐵𝐶1

𝑚𝑛
V
𝑛−2

+ e𝐵𝐶2
𝑚𝑛

V
𝑛−1
+ e𝐵𝐶3
𝑚𝑛

V
𝑛
= 𝜑 (−𝑛 + 3) ,

e𝐵𝐶(−𝑛+2)
𝑚𝑛

V
0
+ e𝐵𝐶(−𝑛+3)
𝑚𝑛

V
1
+ e𝐵𝐶(−𝑛+4)
𝑚𝑛

V
2
+ ⋅ ⋅ ⋅ + e𝐵𝐶0

𝑚𝑛
V
𝑛−2

+ e𝐵𝐶1
𝑚𝑛

V
𝑛−1
+ e𝐵𝐶2
𝑚𝑛

V
𝑛
= 𝜑 (−𝑛 + 2) ,

e𝐵𝐶(−𝑛+1)
𝑚𝑛

V
0
+ e𝐵𝐶(−𝑛+2)
𝑚𝑛

V
1
+ e𝐵𝐶(−𝑛+3)
𝑚𝑛

V
2
+ ⋅ ⋅ ⋅ + e𝐵𝐶(−1)

𝑚𝑛
V
𝑛−2

+ e𝐵𝐶0
𝑚𝑛

V
𝑛−1
+ e𝐵𝐶1
𝑚𝑛

V
𝑛
= 𝜑 (−𝑛 + 1) ,

e𝐵𝐶(−𝑛)
𝑚𝑛

V
0
+ e𝐵𝐶(−𝑛+1)
𝑚𝑛

V
1
+ e𝐵𝐶(−𝑛+2)
𝑚𝑛

V
2
+ ⋅ ⋅ ⋅ + e𝐵𝐶(−2)

𝑚𝑛
V
𝑛−2

+ e𝐵𝐶(−1)
𝑚𝑛

V
𝑛−1
+ e𝐵𝐶0
𝑚𝑛

V
𝑛
= 𝜑 (−𝑛) .

(78)

Due to Definition 3, e𝐵𝐶𝑘
𝑚𝑛

= 𝐼 for 𝑘 ∈ Z0
−𝑛
. So we have

V
0
+ e𝐵𝐶1
𝑚𝑛

V
1
+ e𝐵𝐶2
𝑚𝑛

V
2
+ ⋅ ⋅ ⋅ + e𝐵𝐶(𝑛−2)

𝑚𝑛
V
𝑛−2

+ e𝐵𝐶(𝑛−1)
𝑚𝑛

V
𝑛−1
+ e𝐵𝐶𝑛
𝑚𝑛

V
𝑛
= 𝜑 (0) ,

(𝐸
0
)

V
0
+ V
1
+ e𝐵𝐶1
𝑚𝑛

V
2
+ ⋅ ⋅ ⋅ + e𝐵𝐶(𝑛−3)

𝑚𝑛
V
𝑛−2

+ e𝐵𝐶(𝑛−2)
𝑚𝑛

V
𝑛−1
+ e𝐵𝐶(𝑛−1)
𝑚𝑛

V
𝑛
= 𝜑 (−1) ,

(𝐸
1
)

V
0
+ V
1
+ V
2
+ ⋅ ⋅ ⋅ + e𝐵𝐶(𝑛−4)

𝑚𝑛
V
𝑛−2

+ e𝐵𝐶(𝑛−3)
𝑚𝑛

V
𝑛−1
+ e𝐵𝐶(𝑛−2)
𝑚𝑛

V
𝑛
= 𝜑 (−2) ,

(𝐸
2
)

V
0
+ V
1
+ V
2
+ ⋅ ⋅ ⋅ + e𝐵𝐶(𝑛−5)

𝑚𝑛
V
𝑛−2

+ e𝐵𝐶(𝑛−4)
𝑚𝑛

V
𝑛−1
+ e𝐵𝐶(𝑛−3)
𝑚𝑛

V
𝑛
= 𝜑 (−3) ,

(𝐸
3
)
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...

V
0
+ V
1
+ V
2
+ ⋅ ⋅ ⋅ + e𝐵𝐶1

𝑚𝑛
V
𝑛−2

+ e𝐵𝐶2
𝑚𝑛

V
𝑛−1
+ e𝐵𝐶3
𝑚𝑛

V
𝑛
= 𝜑 (−𝑛 + 3) ,

(𝐸
𝑛−3
)

V
0
+ V
1
+ V
2
+ ⋅ ⋅ ⋅ + V

𝑛−2

+ e𝐵𝐶1
𝑚𝑛

V
𝑛−1
+ e𝐵𝐶2
𝑚𝑛

V
𝑛
= 𝜑 (−𝑛 + 2) ,

(𝐸
𝑛−2
)

V
0
+ V
1
+ V
2
+ ⋅ ⋅ ⋅ + V

𝑛−2

+ V
𝑛−1
+ e𝐵𝐶1
𝑚𝑛

V
𝑛
= 𝜑 (−𝑛 + 1) ,

(𝐸
𝑛−1
)

V
0
+ V
1
+ V
2
+ ⋅ ⋅ ⋅ + V

𝑛−2
+ V
𝑛−1
+ V
𝑛
= 𝜑 (−𝑛) . (𝐸

𝑛
)

Subtracting the neighbouring equations ((𝐸
𝑛−1
− 𝐸
𝑛
),

(𝐸
𝑛−2
− 𝐸
𝑛−1
),. . . ,(𝐸

0
− 𝐸
1
)), we get

(e𝐵𝐶1
𝑚𝑛

− 𝐼) V
𝑛
= 𝜑 (−𝑛 + 1) − 𝜑 (−𝑛) , (𝐸

𝑛−1
− 𝐸
𝑛
)

(e𝐵𝐶1
𝑚𝑛

− 𝐼) V
𝑛−1
+ (e𝐵𝐶2
𝑚𝑛

− e𝐵𝐶1
𝑚𝑛
) V
𝑛

= 𝜑 (−𝑛 + 2) − 𝜑 (−𝑛 + 1) ,

(𝐸
𝑛−2
− 𝐸
𝑛−1
)

(e𝐵𝐶1
𝑚𝑛

− 𝐼) V
𝑛−2
+ (e𝐵𝐶2
𝑚𝑛

− e𝐵𝐶1
𝑚𝑛
) V
𝑛−1
+ (e𝐵𝐶3
𝑚𝑛

− e𝐵𝐶2
𝑚𝑛
) V
𝑛

= 𝜑 (−𝑛 + 3) − 𝜑 (−𝑛 + 2) ,

(𝐸
𝑛−3
− 𝐸
𝑛−2
)

...

(e𝐵𝐶1
𝑚𝑛

− 𝐼) V
3
+ (e𝐵𝐶2
𝑚𝑛

− e𝐵𝐶1
𝑚𝑛
) V
4
+ ⋅ ⋅ ⋅

+ (e𝐵𝐶(𝑛−4)
𝑚𝑛

− e𝐵𝐶(𝑛−5)
𝑚𝑛

) V
𝑛−2

+ (e𝐵𝐶(𝑛−3)
𝑚𝑛

− e𝐵𝐶(𝑛−4)
𝑚𝑛

) V
𝑛−1
+ (e𝐵𝐶(𝑛−2)
𝑚𝑛

− e𝐵𝐶(𝑛−3)
𝑚𝑛

) V
𝑛

= 𝜑 (−2) − 𝜑 (−3) ,

(𝐸
2
− 𝐸
3
)

(e𝐵𝐶1
𝑚𝑛

− 𝐼) V
2
+ (e𝐵𝐶2
𝑚𝑛

− e𝐵𝐶1
𝑚𝑛
) V
3
+ ⋅ ⋅ ⋅

+ (e𝐵𝐶(𝑛−3)
𝑚𝑛

− e𝐵𝐶(𝑛−4)
𝑚𝑛

) V
𝑛−2

+ (e𝐵𝐶(𝑛−2)
𝑚𝑛

− e𝐵𝐶(𝑛−3)
𝑚𝑛

) V
𝑛−1
+ (e𝐵𝐶(𝑛−1)
𝑚𝑛

− e𝐵𝐶(𝑛−2)
𝑚𝑛

) V
𝑛

= 𝜑 (−1) − 𝜑 (−2) ,

(𝐸
1
− 𝐸
2
)

(e𝐵𝐶1
𝑚𝑛

− 𝐼) V
1
+ (e𝐵𝐶2
𝑚𝑛

− e𝐵𝐶1
𝑚𝑛
) V
2
+ ⋅ ⋅ ⋅

+ (e𝐵𝐶(𝑛−2)
𝑚𝑛

− e𝐵𝐶(𝑛−3)
𝑚𝑛

) V
𝑛−2

+ (e𝐵𝐶(𝑛−1)
𝑚𝑛

− e𝐵𝐶(𝑛−2)
𝑚𝑛

) V
𝑛−1
+ (e𝐵𝐶𝑛
𝑚𝑛

− e𝐵𝐶(𝑛−1)
𝑚𝑛

) V
𝑛

= 𝜑 (0) − 𝜑 (−1) .

(𝐸
0
− 𝐸
1
)

By Definition 3, we have

e𝐵𝐶1
𝑚𝑛

− 𝐼 = 𝐼 + 𝐵 + 𝐶 − 𝐼 = 𝐵 + 𝐶, (79)

and, from the foregoing equations, we get

V
𝑛
= (𝐵 + 𝐶)

−1

Δ𝜑 (−𝑛) ,

V
𝑛−1
= (𝐵 + 𝐶)

−1

[Δ𝜑 (−𝑛 + 1) − (e𝐵𝐶2
𝑚𝑛

− e𝐵𝐶1
𝑚𝑛
) V
𝑛
] ,

V
𝑛−2
= (𝐵 + 𝐶)

−1

[Δ𝜑 (−𝑛 + 2) − (e𝐵𝐶2
𝑚𝑛

− e𝐵𝐶1
𝑚𝑛
) V
𝑛−1

− (e𝐵𝐶3
𝑚𝑛

− e𝐵𝐶2
𝑚𝑛
) V
𝑛
] ,

...

V
3
= (𝐵 + 𝐶)

−1

[Δ𝜑 (−3) − (e𝐵𝐶2
𝑚𝑛

− e𝐵𝐶1
𝑚𝑛
) V
4
− ⋅ ⋅ ⋅

− (e𝐵𝐶(𝑛−4)
𝑚𝑛

− e𝐵𝐶(𝑛−5)
𝑚𝑛

) V
𝑛−2

− (e𝐵𝐶(𝑛−3)
𝑚𝑛

− e𝐵𝐶(𝑛−4)
𝑚𝑛

) V
𝑛−1

− (e𝐵𝐶(𝑛−2)
𝑚𝑛

− e𝐵𝐶(𝑛−3)
𝑚𝑛

) V
𝑛
] ,

V
2
= (𝐵 + 𝐶)

−1

[Δ𝜑 (−2) − (e𝐵𝐶2
𝑚𝑛

− e𝐵𝐶1
𝑚𝑛
) V
3
− ⋅ ⋅ ⋅

− (e𝐵𝐶(𝑛−3)
𝑚𝑛

− e𝐵𝐶(𝑛−4)
𝑚𝑛

) V
𝑛−2

− (e𝐵𝐶(𝑛−2)
𝑚𝑛

− e𝐵𝐶(𝑛−3)
𝑚𝑛

) V
𝑛−1

− (e𝐵𝐶(𝑛−1)
𝑚𝑛

− e𝐵𝐶(𝑛−2)
𝑚𝑛

) V
𝑛
] ,

V
1
= (𝐵 + 𝐶)

−1

[Δ𝜑 (−1) − (e𝐵𝐶2
𝑚𝑛

− e𝐵𝐶1
𝑚𝑛
) V
2
− ⋅ ⋅ ⋅

− (e𝐵𝐶(𝑛−2)
𝑚𝑛

− e𝐵𝐶(𝑛−3)
𝑚𝑛

) V
𝑛−2

− (e𝐵𝐶(𝑛−1)
𝑚𝑛

− e𝐵𝐶(𝑛−2)
𝑚𝑛

) V
𝑛−1

− (e𝐵𝐶𝑛
𝑚𝑛

− e𝐵𝐶(𝑛−1)
𝑚𝑛

) V
𝑛
] .

(80)

The previous formulas can be shortened as

V
ℓ
= (𝐵 + 𝐶)

−1

[Δ𝜑 (−ℓ) −

𝑛−ℓ

∑

𝑡=1

(e𝐵𝐶(𝑡+1)
𝑚𝑛

− e𝐵𝐶𝑡
𝑚𝑛
) V
𝑡+ℓ
]

= (𝐵 + 𝐶)
−1

[Δ𝜑 (−ℓ) −

𝑛−ℓ

∑

𝑡=1

Δe𝐵𝐶𝑡
𝑚𝑛

V
𝑡+ℓ
] ,

(81)

where ℓ ∈ Z𝑛
1
. Finally, from (𝐸

𝑛
), we get

V
0
= 𝜑 (−𝑛) −

𝑛

∑

𝑠=1

V
𝑠
. (82)

Theorem 10 is proved.

Nowwe express the solution of the homogeneous Cauchy
problem by ẽ𝐵𝐶(𝑘)

𝑚𝑛
. In this case, the condition det(𝐵+𝐶) ̸= 0 is

not necessary.
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Theorem 11. Let 𝐵,𝐶 be constant 𝑟×𝑟matrices with 𝐵𝐶 = 𝐶𝐵
and let 𝑚, 𝑛 ∈ N, 𝑚 < 𝑛, be fixed integers. Then the solution
of the initial Cauchy problem (70), (71) can be expressed in the
form

𝑥 (𝑘) =

𝑛

∑

𝑗=0

ẽ 𝐵𝐶(𝑘+𝑗)
𝑚𝑛

𝑤
𝑗
, (83)

where 𝑘 ∈ Z∞
−𝑛

and

𝑤
ℓ
= Δ𝜑 (−ℓ − 1) − Δ ẽ 𝐵𝐶(−ℓ+𝑛−1)

𝑚𝑛
𝜑 (−𝑛)

−

−ℓ−𝑚−2

∑

𝑠=−𝑛

Δ ẽ 𝐵𝐶(−ℓ−𝑠−2)
𝑚𝑛

Δ𝜑 (𝑠) , ℓ ∈ Z
𝑛−𝑚−1

0
,

𝑤
ℓ
= Δ𝜑 (−ℓ − 1) , ℓ ∈ Z

𝑛−1

𝑛−𝑚
,

𝑤
𝑛
= 𝜑 (−𝑛) .

(84)

Proof. We are going to find the solution of the problem (70),
(71) in the form

𝑥 (𝑘) =

𝑛

∑

𝑗=0

ẽ𝐵𝐶(𝑘+𝑗)
𝑚𝑛

𝑤
𝑗
, 𝑘 ≥ 0 (85)

with unknown constant vectors 𝑤
𝑗
. Due to linearity (taking

into account that 𝑘 varies), we have

Δ𝑥 (𝑘) = Δ

𝑛

∑

𝑗=0

ẽ𝐵𝐶(𝑘+𝑗)
𝑚𝑛

𝑤
𝑗
=

𝑛

∑

𝑗=0

Δ [ẽ𝐵𝐶(𝑘+𝑗)
𝑚𝑛

𝑤
𝑗
]

=

𝑛

∑

𝑗=0

Δ [ẽ𝐵𝐶(𝑘+𝑗)
𝑚𝑛

]𝑤
𝑗
.

(86)

We use formula (15) and we get

Δ𝑥 (𝑘) =

𝑛

∑

𝑗=0

(𝐵ẽ𝐵𝐶(𝑘−𝑚+𝑗)
𝑚𝑛

+ 𝐶ẽ𝐵𝐶(𝑘−𝑛+𝑗)
𝑚𝑛

)𝑤
𝑗

= 𝐵

𝑛

∑

𝑗=0

ẽ𝐵𝐶(𝑘−𝑚+𝑗)
𝑚𝑛

𝑤
𝑗
+ 𝐶

𝑛

∑

𝑗=0

ẽ𝐵𝐶(𝑘−𝑛+𝑗)
𝑚𝑛

𝑤
𝑗

= 𝐵𝑥 (𝑘 − 𝑚) + 𝐶𝑥 (𝑘 − 𝑛) .

(87)

Now we conclude that, for any 𝑤
𝑗
and 𝑘 ∈ Z∞

0
, the

equation Δ𝑥(𝑘) = 𝐵𝑥(𝑘 − 𝑚) + 𝐶𝑥(𝑘 − 𝑛) holds. We will
try to satisfy initial conditions (71). Due to (83), we have, for
𝑘 ∈ Z0

−𝑛
,

ẽ𝐵𝐶0
𝑚𝑛
𝑤
0
+ ẽ𝐵𝐶1
𝑚𝑛
𝑤
1
+ ẽ𝐵𝐶2
𝑚𝑛
𝑤
2
+ ⋅ ⋅ ⋅

+ ẽ𝐵𝐶(𝑛−2)
𝑚𝑛

𝑤
𝑛−2
+ ẽ𝐵𝐶(𝑛−1)
𝑚𝑛

𝑤
𝑛−1

+ ẽ𝐵𝐶𝑛
𝑚𝑛
𝑤
𝑛
= 𝜑 (0) ,

ẽ𝐵𝐶(−1)
𝑚𝑛

𝑤
0
+ ẽ𝐵𝐶0
𝑚𝑛
𝑤
1
+ ẽ𝐵𝐶1
𝑚𝑛
𝑤
2
+ ⋅ ⋅ ⋅

+ ẽ𝐵𝐶(𝑛−3)
𝑚𝑛

𝑤
𝑛−2
+ ẽ𝐵𝐶(𝑛−2)
𝑚𝑛

𝑤
𝑛−1

+ ẽ𝐵𝐶(𝑛−1)
𝑚𝑛

𝑤
𝑛
= 𝜑 (−1) ,

ẽ𝐵𝐶(−2)
𝑚𝑛

𝑤
0
+ ẽ𝐵𝐶(−1)
𝑚𝑛

𝑤
1
+ ẽ𝐵𝐶0
𝑚𝑛
𝑤
2
+ ⋅ ⋅ ⋅

+ ẽ𝐵𝐶(𝑛−4)
𝑚𝑛

𝑤
𝑛−2
+ ẽ𝐵𝐶(𝑛−3)
𝑚𝑛

𝑤
𝑛−1

+ ẽ𝐵𝐶(𝑛−2)
𝑚𝑛

𝑤
𝑛
= 𝜑 (−2) ,

ẽ𝐵𝐶(−3)
𝑚𝑛

𝑤
0
+ ẽ𝐵𝐶(−2)
𝑚𝑛

𝑤
1
+ ẽ𝐵𝐶(−1)
𝑚𝑛

𝑤
2
+ ⋅ ⋅ ⋅

+ ẽ𝐵𝐶(𝑛−5)
𝑚𝑛

𝑤
𝑛−2
+ ẽ𝐵𝐶(𝑛−4)
𝑚𝑛

𝑤
𝑛−1

+ ẽ𝐵𝐶(𝑛−3)
𝑚𝑛

𝑤
𝑛
= 𝜑 (−3) ,

...

ẽ𝐵𝐶(−𝑛+3)
𝑚𝑛

𝑤
0
+ ẽ𝐵𝐶(−𝑛+4)
𝑚𝑛

𝑤
1
+ ẽ𝐵𝐶(−𝑛+5)
𝑚𝑛

𝑤
2
+ ⋅ ⋅ ⋅

+ ẽ𝐵𝐶1
𝑚𝑛
𝑤
𝑛−2
+ ẽ𝐵𝐶2
𝑚𝑛
𝑤
𝑛−1

+ ẽ𝐵𝐶3
𝑚𝑛
𝑤
𝑛
= 𝜑 (−𝑛 + 3) ,

ẽ𝐵𝐶(−𝑛+2)
𝑚𝑛

𝑤
0
+ ẽ𝐵𝐶(−𝑛+3)
𝑚𝑛

𝑤
1
+ ẽ𝐵𝐶(−𝑛+4)
𝑚𝑛

𝑤
2
+ ⋅ ⋅ ⋅

+ ẽ𝐵𝐶0
𝑚𝑛
𝑤
𝑛−2
+ ẽ𝐵𝐶1
𝑚𝑛
𝑤
𝑛−1

+ ẽ𝐵𝐶2
𝑚𝑛
𝑤
𝑛
= 𝜑 (−𝑛 + 2) ,

ẽ𝐵𝐶(−𝑛+1)
𝑚𝑛

𝑤
0
+ ẽ𝐵𝐶(−𝑛+2)
𝑚𝑛

𝑤
1
+ ẽ𝐵𝐶(−𝑛+3)
𝑚𝑛

𝑤
2
+ ⋅ ⋅ ⋅

+ ẽ𝐵𝐶(−1)
𝑚𝑛

𝑤
𝑛−2
+ ẽ𝐵𝐶0
𝑚𝑛
𝑤
𝑛−1

+ ẽ𝐵𝐶1
𝑚𝑛
𝑤
𝑛
= 𝜑 (−𝑛 + 1) ,

ẽ𝐵𝐶(−𝑛)
𝑚𝑛

𝑤
0
+ ẽ𝐵𝐶(−𝑛+1)
𝑚𝑛

𝑤
1
+ ẽ𝐵𝐶(−𝑛+2)
𝑚𝑛

𝑤
2
+ ⋅ ⋅ ⋅

+ ẽ𝐵𝐶(−2)
𝑚𝑛

𝑤
𝑛−2
+ ẽ𝐵𝐶(−1)
𝑚𝑛

𝑤
𝑛−1

+ ẽ𝐵𝐶0
𝑚𝑛
𝑤
𝑛
= 𝜑 (−𝑛) .

(88)

By Definition 6, we have ẽ𝐵𝐶𝑘
𝑚𝑛

= Θ for 𝑘 ∈ Z−1
−∞

and
ẽ𝐵𝐶𝑘
𝑚𝑛

= 𝐼 for 𝑘 ∈ Z𝑚
0
. Thus, we have

𝑤
0
+ 𝑤
1
+ 𝑤
2
+ ⋅ ⋅ ⋅ + 𝑤

𝑚
+ ẽ𝐵𝐶(𝑚+1)
𝑚𝑛

𝑤
𝑚+1

+ ẽ𝐵𝐶(𝑚+2)
𝑚𝑛

𝑤
𝑚+2

+ ⋅ ⋅ ⋅ + ẽ𝐵𝐶(𝑛−2)
𝑚𝑛

𝑤
𝑛−2

+ẽ𝐵𝐶(𝑛−1)
𝑚𝑛

𝑤
𝑛−1
+ ẽ𝐵𝐶𝑛
𝑚𝑛
𝑤
𝑛
= 𝜑 (0) ,

(𝐸
0
)

𝑤
1
+ 𝑤
2
+ 𝑤
3
+ ⋅ ⋅ ⋅ + 𝑤

𝑚+1
+ ẽ𝐵𝐶(𝑚+1)
𝑚𝑛

𝑤
𝑚+2

+ ẽ𝐵𝐶(𝑚+2)
𝑚𝑛

𝑤
𝑚+3

+ ⋅ ⋅ ⋅ + ẽ𝐵𝐶(𝑛−3)
𝑚𝑛

𝑤
𝑛−2

+ẽ𝐵𝐶(𝑛−2)
𝑚𝑛

𝑤
𝑛−1
+ ẽ𝐵𝐶(𝑛−1)
𝑚𝑛

𝑤
𝑛
= 𝜑 (−1) ,

(𝐸
1
)
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𝑤
2
+ 𝑤
3
+ 𝑤
4
+ ⋅ ⋅ ⋅ + 𝑤

𝑚+2
+ ẽ𝐵𝐶(𝑚+1)
𝑚𝑛

𝑤
𝑚+3

+ ẽ𝐵𝐶(𝑚+2)
𝑚𝑛

𝑤
𝑚+4

+ ⋅ ⋅ ⋅ + ẽ𝐵𝐶(𝑛−4)
𝑚𝑛

𝑤
𝑛−2

+ ẽ𝐵𝐶(𝑛−3)
𝑚𝑛

𝑤
𝑛−1
+ ẽ𝐵𝐶(𝑛−2)
𝑚𝑛

𝑤
𝑛
= 𝜑 (−2) ,

...

(𝐸
2
)

𝑤
𝑛−𝑚−2

+ 𝑤
𝑛−𝑚−1

+ 𝑤
𝑛−𝑚

+ ⋅ ⋅ ⋅ + 𝑤
𝑛−2

+ẽ𝐵𝐶(𝑚+1)
𝑚𝑛

𝑤
𝑛−1
+ ẽ𝐵𝐶(𝑚+2)
𝑚𝑛

𝑤
𝑛
= 𝜑 (−𝑛 + 𝑚 + 2) ,

(𝐸
𝑛−𝑚−2

)

𝑤
𝑛−𝑚−1

+ 𝑤
𝑛−𝑚

+ 𝑤
𝑛−𝑚+1

+ ⋅ ⋅ ⋅ + 𝑤
𝑛−2

+𝑤
𝑛−1
+ ẽ𝐵𝐶(𝑚+1)
𝑚𝑛

𝑤
𝑛
= 𝜑 (−𝑛 + 𝑚 + 1) ,

(𝐸
𝑛−𝑚−1

)

𝑤
𝑛−𝑚

+ 𝑤
𝑛−𝑚+1

+ 𝑤
𝑛−𝑚+2

+ ⋅ ⋅ ⋅

+𝑤
𝑛−2
+ 𝑤
𝑛−1
+ 𝑤
𝑛
= 𝜑 (−𝑛 + 𝑚) ,

(𝐸
𝑛−𝑚
)

...
𝑤
𝑛−2
+ 𝑤
𝑛−1
+ 𝑤
𝑛
= 𝜑 (−𝑛 + 2) ,

(𝐸
𝑛−2
)

𝑤
𝑛−1
+ 𝑤
𝑛
= 𝜑 (−𝑛 + 1) , (𝐸

𝑛−1
)

𝑤
𝑛
= 𝜑 (−𝑛) . (𝐸

𝑛
)

We see directly that 𝑤
𝑛
= 𝜑(−𝑛). Subtracting the

neighbouring equations ((𝐸
𝑛−1
− 𝐸
𝑛
), (𝐸

𝑛−2
− 𝐸
𝑛−1
), . . . ,

(𝐸
𝑛−𝑚

− 𝐸
𝑛−𝑚+1

)), we immediately get the formulas for
𝑤
𝑛−1
, 𝑤
𝑛−2
, . . . , 𝑤

𝑛−𝑚
as follows:

𝑤
𝑛−1
= 𝜑 (−𝑛 + 1) − 𝜑 (−𝑛) = Δ𝜑 (−𝑛) , (𝐸

𝑛−1
− 𝐸
𝑛
)

𝑤
𝑛−2
= 𝜑 (−𝑛 + 2) − 𝜑 (−𝑛 + 1) = Δ𝜑 (−𝑛 + 1) ,

(𝐸
𝑛−2
− 𝐸
𝑛−1
)

...
𝑤
𝑛−𝑚+1

= 𝜑 (−𝑛 + 𝑚 − 1) − 𝜑 (−𝑛 + 𝑚 − 2)

= Δ𝜑 (−𝑛 + 𝑚 − 2) ,

(𝐸
𝑛−𝑚+1

− 𝐸
𝑛−𝑚+2

)

𝑤
𝑛−𝑚

= 𝜑 (−𝑛 + 𝑚) − 𝜑 (−𝑛 + 𝑚 − 1)

= Δ𝜑 (−𝑛 + 𝑚 − 1) .

(𝐸
𝑛−𝑚

− 𝐸
𝑛−𝑚+1

)

Further, subtracting the neighbouring equations
((𝐸
𝑛−𝑚−1

− 𝐸
𝑛−𝑚
), (𝐸
𝑛−𝑚−2

− 𝐸
𝑛−𝑚−1

),. . . ,(𝐸
0
− 𝐸
1
)), we get

𝑤
𝑛−𝑚−1

+ [ẽ𝐵𝐶(𝑚+1)
𝑚𝑛

− 𝐼]𝑤
𝑛

= 𝜑 (−𝑛 + 𝑚 + 1) − 𝜑 (−𝑛 + 𝑚)

⇒ 𝑤
𝑛−𝑚−1

= Δ𝜑 (−𝑛 + 𝑚) − [ẽ𝐵𝐶(𝑚+1)
𝑚𝑛

− 𝐼] 𝜑 (−𝑛) ,

(𝐸
𝑛−𝑚−1

− 𝐸
𝑛−𝑚
)

𝑤
𝑛−𝑚−2

+ [ẽ𝐵𝐶(𝑚+1)
𝑚𝑛

− 𝐼]𝑤
𝑛−1

+ [ẽ𝐵𝐶(𝑚+2)
𝑚𝑛

− ẽ𝐵𝐶(𝑚+1)
𝑚𝑛

]𝑤
𝑛

= 𝜑 (−𝑛 + 𝑚 + 2) − 𝜑 (−𝑛 + 𝑚 + 1)

⇒ 𝑤
𝑛−𝑚−2

= Δ𝜑 (−𝑛 + 𝑚 + 1)

− [ẽ𝐵𝐶(𝑚+2)
𝑚𝑛

− ẽ𝐵𝐶(𝑚+1)
𝑚𝑛

] 𝜑 (−𝑛)

− [ẽ𝐵𝐶(𝑚+1)
𝑚𝑛

− 𝐼] Δ𝜑 (−𝑛) ,

...
(𝐸
𝑛−𝑚−2

− 𝐸
𝑛−𝑚−1

)

𝑤
2
+ [ẽ𝐵𝐶(𝑚+1)
𝑚𝑛

− 𝐼]𝑤
𝑚+3

+ [ẽ𝐵𝐶(𝑚+2)
𝑚𝑛

− ẽ𝐵𝐶(𝑚+1)
𝑚𝑛

]𝑤
𝑚+4

+ ⋅ ⋅ ⋅

+ [ẽ𝐵𝐶(𝑛−4)
𝑚𝑛

− ẽ𝐵𝐶(𝑛−5)
𝑚𝑛

]𝑤
𝑛−2

+ [ẽ𝐵𝐶(𝑛−3)
𝑚𝑛

− ẽ𝐵𝐶(𝑛−4)
𝑚𝑛

]𝑤
𝑛−1

+ [ẽ𝐵𝐶(𝑛−2)
𝑚𝑛

− ẽ𝐵𝐶(𝑛−3)
𝑚𝑛

]𝑤
𝑛
= 𝜑 (−2) − 𝜑 (−3)

⇒ 𝑤
2
= Δ𝜑 (−3) − [ẽ𝐵𝐶(𝑛−2)

𝑚𝑛
− ẽ𝐵𝐶(𝑛−3)
𝑚𝑛

] 𝜑 (−𝑛)

− [ẽ𝐵𝐶(𝑛−3)
𝑚𝑛

− ẽ𝐵𝐶(𝑛−4)
𝑚𝑛

] Δ𝜑 (−𝑛)

− [ẽ𝐵𝐶(𝑛−4)
𝑚𝑛

− ẽ𝐵𝐶(𝑛−5)
𝑚𝑛

] Δ𝜑 (−𝑛 + 1) − ⋅ ⋅ ⋅

− [ẽ𝐵𝐶(𝑚+2)
𝑚𝑛

− ẽ𝐵𝐶(𝑚+1)
𝑚𝑛

] Δ𝜑 (−𝑚 − 5)

− [ẽ𝐵𝐶(𝑚+1)
𝑚𝑛

− 𝐼] Δ𝜑 (−𝑚 − 4) ,

(𝐸
2
− 𝐸
3
)

𝑤
1
+ [ẽ𝐵𝐶(𝑚+1)
𝑚𝑛

− 𝐼]𝑤
𝑚+2

+ [ẽ𝐵𝐶(𝑚+2)
𝑚𝑛

− ẽ𝐵𝐶(𝑚+1)
𝑚𝑛

]𝑤
𝑚+3

+ ⋅ ⋅ ⋅ + [ẽ𝐵𝐶(𝑛−3)
𝑚𝑛

− ẽ𝐵𝐶(𝑛−4)
𝑚𝑛

]𝑤
𝑛−2

+ [ẽ𝐵𝐶(𝑛−2)
𝑚𝑛

− ẽ𝐵𝐶(𝑛−3)
𝑚𝑛

]𝑤
𝑛−1

+ [ẽ𝐵𝐶(𝑛−1)
𝑚𝑛

− ẽ𝐵𝐶(𝑛−2)
𝑚𝑛

]𝑤
𝑛

= 𝜑 (−1) − 𝜑 (−2)

⇒ 𝑤
1
= Δ𝜑 (−2)

− [ẽ𝐵𝐶(𝑛−1)
𝑚𝑛

− ẽ𝐵𝐶(𝑛−2)
𝑚𝑛

] 𝜑 (−𝑛)
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− [ẽ𝐵𝐶(𝑛−2)
𝑚𝑛

− ẽ𝐵𝐶(𝑛−3)
𝑚𝑛

] Δ𝜑 (−𝑛)

− [ẽ𝐵𝐶(𝑛−3)
𝑚𝑛

− ẽ𝐵𝐶(𝑛−4)
𝑚𝑛

] Δ𝜑 (−𝑛 + 1) − ⋅ ⋅ ⋅

− [ẽ𝐵𝐶(𝑚+2)
𝑚𝑛

− ẽ𝐵𝐶(𝑚+1)
𝑚𝑛

] Δ𝜑 (−𝑚 − 4)

− [ẽ𝐵𝐶(𝑚+1)
𝑚𝑛

− 𝐼] Δ𝜑 (−𝑚 − 3) ,

(𝐸
1
− 𝐸
2
)

𝑤
0
+ [ẽ𝐵𝐶(𝑚+1)
𝑚𝑛

− 𝐼]𝑤
𝑚+1

+ [ẽ𝐵𝐶(𝑚+2)
𝑚𝑛

− ẽ𝐵𝐶(𝑚+1)
𝑚𝑛

]𝑤
𝑚+2

+ ⋅ ⋅ ⋅

+ [ẽ𝐵𝐶(𝑛−2)
𝑚𝑛

− ẽ𝐵𝐶(𝑛−3)
𝑚𝑛

]𝑤
𝑛−2

+ [ẽ𝐵𝐶(𝑛−1)
𝑚𝑛

− ẽ𝐵𝐶(𝑛−2)
𝑚𝑛

]𝑤
𝑛−1

+ [ẽ𝐵𝐶𝑛
𝑚𝑛

− ẽ𝐵𝐶(𝑛−1)
𝑚𝑛

]𝑤
𝑛

= 𝜑 (0) − 𝜑 (−1)

⇒ 𝑤
0
= Δ𝜑 (−1) − [ẽ𝐵𝐶𝑛

𝑚𝑛
− ẽ𝐵𝐶(𝑛−1)
𝑚𝑛

] 𝜑 (−𝑛)

− [ẽ𝐵𝐶(𝑛−1)
𝑚𝑛

− ẽ𝐵𝐶(𝑛−2)
𝑚𝑛

] Δ𝜑 (−𝑛)

− [ẽ𝐵𝐶(𝑛−2)
𝑚𝑛

− ẽ𝐵𝐶(𝑛−3)
𝑚𝑛

] Δ𝜑 (−𝑛 + 1) − ⋅ ⋅ ⋅

− [ẽ𝐵𝐶(𝑚+2)
𝑚𝑛

− ẽ𝐵𝐶(𝑚+1)
𝑚𝑛

] Δ𝜑 (−𝑚 − 3)

− [ẽ𝐵𝐶(𝑚+1)
𝑚𝑛

− 𝐼] Δ𝜑 (−𝑚 − 2) .

(𝐸
0
− 𝐸
1
)

The previous formulas can be written as

𝑤
ℓ
= Δ𝜑 (−ℓ − 1) − [ẽ𝐵𝐶(−ℓ+𝑛)

𝑚𝑛
− ẽ𝐵𝐶(−ℓ+𝑛−1)
𝑚𝑛

] 𝜑 (−𝑛)

−

−ℓ−𝑚−2

∑

𝑠=−𝑛

[ẽ𝐵𝐶(−ℓ−𝑠−1)
𝑚𝑛

− ẽ𝐵𝐶(−ℓ−𝑠−2)
𝑚𝑛

] Δ𝜑 (𝑠) ,

= Δ𝜑 (−ℓ − 1) − Δẽ𝐵𝐶(−ℓ+𝑛−1)
𝑚𝑛

𝜑 (−𝑛)

−

−ℓ−𝑚−2

∑

𝑠=−𝑛

Δẽ𝐵𝐶(−ℓ−𝑠−2)
𝑚𝑛

Δ𝜑 (𝑠) , ℓ ∈ Z
𝑛−𝑚−1

0
,

𝑤
ℓ
= Δ𝜑 (−ℓ − 1) , ℓ ∈ Z

𝑛−1

𝑛−𝑚
,

𝑤
𝑛
= 𝜑 (−𝑛) .

(89)

Theorem 11 is proved.

3.2. Representing the Solution of a Nonhomogeneous Initial
Problem. We consider a nonhomogeneous initial Cauchy
problem

Δ𝑥 (𝑘) = 𝐵𝑥 (𝑘 − 𝑚) + 𝐶𝑥 (𝑘 − 𝑛) + 𝑓 (𝑘) , 𝑘 ∈ Z
∞

0
, (90)

𝑥 (𝑘) = 𝜑 (𝑘) , 𝑘 ∈ Z
0

−𝑛
. (91)

By the theory of linear equations, we can obtain its solution as
the sum of a solution of adjoint homogeneous problem (70),
(71) (satisfying the same initial data) and a particular solution

of (90) being zero on an initial interval. Let us, therefore, find
such a particular solution.

We need an auxiliary lemma the proof of which is
omitted.

Lemma 12. Let a function 𝐹(𝑘, 𝑛) of two discrete variables be
given. Then,

Δ
𝑘

[

[

𝑘

∑

𝑗=1

𝐹 (𝑘, 𝑗)
]

]

= 𝐹 (𝑘 + 1, 𝑘 + 1) +

𝑘

∑

𝑗=1

Δ
𝑘
𝐹 (𝑘, 𝑗) . (92)

Now we are ready to find a particular solution 𝑥
𝑝
(𝑘), 𝑘 ∈

Z∞
−𝑛

of the initial Cauchy problem:

Δ𝑥 (𝑘) = 𝐵𝑥 (k − 𝑚) + 𝐶𝑥 (𝑘 − 𝑛) + 𝑓 (𝑘) , 𝑘 ∈ Z
∞

0
, (93)

𝑥 (𝑘) = 0, 𝑘 ∈ Z
0

−𝑛
. (94)

Theorem 13. The solution 𝑥 = 𝑥
𝑝
(𝑘) of the initial Cauchy

problem (93), (94) can be represented on Z∞
−𝑛

in the form

𝑥
𝑝
(𝑘) =

𝑘

∑

ℓ=1

ẽ 𝐵𝐶(𝑘−ℓ)
𝑚𝑛

𝑓 (ℓ − 1) , 𝑘 ∈ Z
∞

0
. (95)

Proof. We are going to find a particular solution 𝑥
𝑝
(𝑘) of

problem (93), (94) in the form (95). We substitute (95) into
(93). Then, we get

Δ[

𝑘

∑

ℓ=1

ẽ𝐵𝐶(𝑘−ℓ)
𝑚𝑛

𝑓 (ℓ − 1)]

= 𝐵

𝑘−𝑚

∑

ℓ=1

ẽ𝐵𝐶(𝑘−𝑚−ℓ)
𝑚𝑛

𝑓 (ℓ − 1)

+ 𝐶

𝑘−𝑛

∑

ℓ=1

ẽ𝐵𝐶(𝑘−𝑛−ℓ)
𝑚𝑛

𝑓 (𝑗 − 1) + 𝑓 (𝑘) .

(96)

We modify the left-hand side of (96). With the aid of
Lemma 12, we obtain

Δ[

𝑘

∑

ℓ=1

ẽ𝐵𝐶(𝑘−ℓ)
𝑚𝑛

𝑓 (𝑗 − 1)]

= ẽ𝐵𝐶((𝑘+1)−(𝑘+1))
𝑚𝑛

𝑓 (𝑘 + 1 − 1)

+

𝑘

∑

ℓ=1

Δ [ẽ𝐵𝐶(𝑘−ℓ)
𝑚𝑛

𝑓 (𝑗 − 1)] ,

(97)
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and, applyingTheorem 9, we get

Δ[

𝑘

∑

ℓ=1

ẽ𝐵𝐶(𝑘−ℓ)
𝑚𝑛

𝑓 (𝑗 − 1)]

= ẽ𝐵𝐶0
𝑚𝑛
𝑓 (𝑘) +

𝑘

∑

ℓ=1

[𝐵ẽ𝐵𝐶(𝑘−𝑚−ℓ)
𝑚𝑛

+ 𝐶ẽ𝐵𝐶(𝑘−𝑛−ℓ)
𝑚𝑛

] 𝑓 (𝑗 − 1)

= ẽ𝐵𝐶0
𝑚𝑛
𝑓 (𝑘) + 𝐵[

𝑘−𝑚

∑

ℓ=1

ẽ𝐵𝐶(𝑘−𝑚−ℓ)
𝑚𝑛

𝑓 (𝑗 − 1)

+

𝑘

∑

ℓ=𝑘−𝑚+1

ẽ𝐵𝐶(𝑘−𝑚−ℓ)
𝑚𝑛

𝑓 (𝑗 − 1)]

+ 𝐶[

𝑘−𝑛

∑

ℓ=1

ẽ𝐵𝐶(𝑘−𝑛−ℓ)
𝑚𝑛

𝑓 (𝑗 − 1)

+

𝑘

∑

ℓ=𝑘−𝑛+1

ẽ𝐵𝐶(𝑘−𝑛−ℓ)
𝑚𝑛

𝑓 (𝑗 − 1)] .

(98)

By Definition 6, we have ẽ𝐵𝐶0
𝑚𝑛

= 𝐼, ẽ𝐵𝐶(𝑘−𝑚−ℓ)
𝑚𝑛

= Θ for ℓ ∈
Z𝑘
𝑘−𝑚+1

and ẽ𝐵𝐶(𝑘−𝑛−ℓ)
𝑚𝑛

= Θ for ℓ ∈ Z𝑘
𝑘−𝑛+1

. Thus, we get

Δ[

𝑘

∑

ℓ=1

ẽ𝐵𝐶(𝑘−ℓ)
𝑚𝑛

𝑓 (𝑗 − 1)]

= 𝑓 (𝑘) + 𝐵

𝑘−𝑚

∑

ℓ=1

ẽ𝐵𝐶(𝑘−𝑚−ℓ)
𝑚𝑛

𝑓 (𝑗 − 1)

+ 𝐶

𝑘−𝑛

∑

ℓ=1

ẽ𝐵𝐶(𝑘−𝑛−ℓ)
𝑚𝑛

𝑓 (𝑗 − 1)

(99)

and (96) holds.

Combining the results of Theorems 10, 11, and 13, we
get immediately the following two theorems, which describe
the solution of (90), (91). The first theorem uses the delayed
matrix exponential e𝐵𝐶𝑘

𝑚𝑛
and the second one uses the delayed

matrix exponential ẽ𝐵𝐶𝑘
𝑚𝑛

.

Theorem 14. Let 𝐵, 𝐶 be constant 𝑟 × 𝑟matrices with

𝐵𝐶 = 𝐶𝐵, det (𝐵 + 𝐶) ̸= 0, (100)

and let 𝑚, 𝑛 ∈ N, 𝑚 < 𝑛, be fixed integers. Then, the solution
of the initial Cauchy problem (90), (91) can be expressed in the
form

𝑥 (𝑘) =

𝑛

∑

𝑗=0

e𝐵𝐶(𝑘+𝑗)
𝑚𝑛

V
𝑗
+

𝑘

∑

ℓ=1

ẽ 𝐵𝐶(𝑘−ℓ)
𝑚𝑛

𝑓 (ℓ − 1) , (101)

where 𝑘 ∈ Z∞
−𝑛

and

V
0
= 𝜑 (−𝑛) −

𝑛

∑

𝑠=1

V
𝑠
,

V
ℓ
= (𝐵 + 𝐶)

−1

[Δ𝜑 (−ℓ) −

𝑛−ℓ

∑

𝑡=1

Δ e𝐵𝐶𝑡
𝑚𝑛

V
𝑡+ℓ
] , ℓ ∈ Z

𝑛

1
.

(102)

Theorem 15. Let𝐵,𝐶 be constant 𝑟×𝑟matrices with𝐵𝐶 = 𝐶𝐵
and let 𝑚, 𝑛 ∈ N, 𝑚 < 𝑛, be fixed integers. Then, the solution
of the initial Cauchy problem (90), (91) can be expressed in the
form

𝑥 (𝑘) =

𝑛

∑

𝑗=0

ẽ𝐵𝐶(𝑘+𝑗)
𝑚𝑛

𝑤
𝑗
+

𝑘

∑

ℓ=1

ẽ𝐵𝐶(𝑘−ℓ)
𝑚𝑛

𝑓 (ℓ − 1) , (103)

where 𝑘 ∈ Z∞
−𝑛

and

𝑤
ℓ
= Δ𝜑 (−ℓ − 1) − Δẽ𝐵𝐶(−ℓ+𝑛−1)

𝑚𝑛
𝜑 (−𝑛)

−

−ℓ−𝑚−2

∑

𝑠=−𝑛

Δẽ𝐵𝐶(−ℓ−𝑠−2)
𝑚𝑛

Δ𝜑 (𝑠) , ℓ ∈ Z
𝑛−𝑚−1

0
,

𝑤
ℓ
= Δ𝜑 (−ℓ − 1) , ℓ ∈ Z

𝑛−1

𝑛−𝑚
,

𝑤
𝑛
= 𝜑 (−𝑛) .

(104)

4. Examples

Below, we show four examples to demonstrate the results
achieved.

Example 16. Let us represent the solution of the scalar (𝑟 = 1)
problem (70), (71) where we put 𝑚 = 2, 𝑛 = 3, 𝐵 = 𝑏, 𝐶 =
𝑐, 𝜑(−3) = 1, 𝜑(−2) = 2, 𝜑(−1) = 3, and 𝜑(0) = 4, using
Theorem 10. We get

Δ𝑥 (𝑘) = 𝑏𝑥 (𝑘 − 2) + 𝑐𝑥 (𝑘 − 3) , 𝑘 ∈ Z
∞

0
, (105)

𝑥 (−3) = 𝜑 (−3) = 1,

𝑥 (−2) = 𝜑 (−2) = 2,

𝑥 (−1) = 𝜑 (−1) = 3,

𝑥 (0) = 𝜑 (0) = 4.

(106)

ByTheorem 10, the solution of problem (105), (106) is

𝑥 (𝑘) =

3

∑

𝑗=0

e𝑏𝑐(𝑘+𝑗)
2,3

V
𝑗
, 𝑘 ∈ Z

∞

−3
, (107)
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where

V
3
= (𝑏 + 𝑐)

−1

[Δ𝜑 (−3) −

0

∑

𝑡=1

Δe𝑏𝑐𝑡
2,3
V
𝑡+3
] = (𝑏 + 𝑐)

−1

,

V
2
= (𝑏 + 𝑐)

−1

[Δ𝜑 (−2) −

1

∑

𝑡=1

Δe𝑏𝑐𝑡
2,3
V
𝑡+2
]

= (𝑏 + 𝑐)
−1

[Δ𝜑 (−2) − Δe𝑏𝑐1
2,3

V
3
]

= (𝑏 + 𝑐)
−1

[1 − (e𝑏𝑐2
2,3
− e𝑏𝑐1
2,3
) (𝑏 + 𝑐)

−1

]

= (𝑏 + 𝑐)
−1

[1 − (𝑏 + 𝑐) (𝑏 + 𝑐)
−1

] = 0,

V
1
= (𝑏 + 𝑐)

−1

[Δ𝜑 (−1) −

2

∑

𝑡=1

Δe𝑏𝑐𝑡
2,3
V
𝑡+1
]

= (𝑏 + 𝑐)
−1

[Δ𝜑 (−2) − Δe𝑏𝑐1
2,3

V
2
− Δe𝑏𝑐2
2,3

V
3
]

= (𝑏 + 𝑐)
−1

[1 − (e𝑏𝑐3
2,3
− e𝑏𝑐2
2,3
) (𝑏 + 𝑐)

−1

]

= (𝑏 + 𝑐)
−1

[1 − (𝑏 + 𝑐) (𝑏 + 𝑐)
−1

] = 0,

V
0
= 𝜑 (−3) −

3

∑

𝑠=1

V
𝑠
= 1 − (𝑏 + 𝑐)

−1

.

(108)

Thus, we get

𝑥 (𝑘) = e𝑏𝑐𝑘
2,3
[1 − (𝑏 + 𝑐)

−1

] + e𝑏𝑐(𝑘+3)
2,3

(𝑏 + 𝑐)
−1

. (109)

We give values of 𝑥(𝑘) for 𝑘 ∈ Z8
1
as follows:

𝑥 (1) = 4 + 2𝑏 + 𝑐,

𝑥 (2) = 4 + 5𝑏 + 3𝑐,

𝑥 (3) = 4 + 9𝑏 + 6𝑐,

𝑥 (4) = 4 + 13𝑏 + 10𝑐 + 2𝑏
2

+ 𝑏𝑐,

𝑥 (5) = 4 + 17𝑏 + 14𝑐 + 7𝑏
2

+ 6𝑏𝑐 + 𝑐
2

,

𝑥 (6) = 4 + 21𝑏 + 18𝑐 + 16𝑏
2

+ 17𝑏𝑐 + 4𝑐
2

,

𝑥 (7) = 4 + 25𝑏 + 22𝑐 + 29𝑏
2

+ 36𝑏𝑐 + 10𝑐
2

+ 2𝑏
3

+ 𝑏
2

𝑐,

𝑥 (8) = 4 + 29𝑏 + 26𝑐 + 46𝑏
2

+ 63𝑏𝑐 + 20𝑐
2

+ 9𝑏
3

+ 9𝑏
2

𝑐 + 2𝑏𝑐
2

.

(110)

Example 17. Let us represent the solution of the scalar (𝑟 = 1)
problem (90), (91) where we put 𝑚 = 2, 𝑛 = 3, 𝐵 = 𝑏, 𝐶 = 𝑐,

𝜑(−3) = 1, 𝜑(−2) = 2, 𝜑(−1) = 3, 𝜑(0) = 4, and 𝑓(𝑘) = 𝑘 + 1,
usingTheorem 11. Thus, we have

Δ𝑥 (𝑘) = 𝑏𝑥 (𝑘 − 2) + 𝑐𝑥 (𝑘 − 3) + 𝑘 + 1, 𝑘 ∈ Z
∞

0
,

(111)

𝑥 (−3) = 𝜑 (−3) = 1,

𝑥 (−2) = 𝜑 (−2) = 2,

𝑥 (−1) = 𝜑 (−1) = 3,

𝑥 (0) = 𝜑 (0) = 4.

(112)

ByTheorem 11, the solution of problem (111), (112) is

𝑥 (𝑘) =

3

∑

𝑗=0

ẽ𝑏𝑐(𝑘+𝑗)
2,3

𝑤
𝑗
+

𝑘

∑

ℓ=1

ẽ𝑏𝑐(𝑘−ℓ)
2,3

ℓ, 𝑘 ∈ Z
∞

−3
, (113)

where

𝑤
0
= Δ𝜑 (−1) − Δẽ𝑏𝑐2

2,3
𝜑 (−3) −

−4

∑

𝑠=−3

Δẽ𝑏𝑐(−𝑠−2)
2,3

Δ𝜑 (𝑠)

= 1 − (ẽ𝑏𝑐3
2,3
− ẽ𝑏𝑐2
2,3
) 1

= 1 − (1 + 𝑏 − 1) = 1 − 𝑏,

𝑤
1
= Δ𝜑 (−2) = 1,

𝑤
2
= Δ𝜑 (−3) = 1,

𝑤
3
= 𝜑 (−3) = 1.

(114)

Thus, we get

𝑥 (𝑘) = ẽ𝑏𝑐𝑘
2,3
(1 − 𝑏) + ẽ𝑏𝑐(𝑘+1)

2,3
+ ẽ𝑏𝑐(𝑘+2)
2,3

+ ẽ𝑏𝑐(𝑘+3)
2,3

+

𝑘

∑

ℓ=1

ẽ𝑏𝑐(𝑘−ℓ)
2,3

ℓ.

(115)

The first eight values of the homogeneous problem are given
in Example 16. Now, we compute the first eight values of a
particular solution 𝑥

𝑝
(𝑘) = ∑

𝑘

ℓ=1
ẽ𝑏𝑐(𝑘−ℓ)
2,3

ℓ as follows:

𝑥
𝑝
(1) = 1, 𝑥

𝑝
(2) = 3,

𝑥
𝑝
(3) = 6, 𝑥

𝑝
(4) = 10 + 𝑏,

𝑥
𝑝
(5) = 15 + 4𝑏 + 𝑐, 𝑥

𝑝
(6) = 21 + 10𝑏 + 4𝑐,

𝑥
𝑝
(7) = 28 + 20𝑏 + 10𝑐 + 𝑏

2

,

𝑥
𝑝
(8) = 36 + 35𝑏 + 20𝑐 + 5𝑏

2

+ 2𝑏𝑐.

(116)
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Together, we get

𝑥 (1) = 5 + 2𝑏 + 𝑐, 𝑥 (2) = 7 + 5𝑏 + 3𝑐,

𝑥 (3) = 10 + 9𝑏 + 6𝑐,

𝑥 (4) = 14 + 14𝑏 + 10𝑐 + 2𝑏
2

+ 𝑏𝑐,

𝑥 (5) = 19 + 21𝑏 + 15𝑐 + 7𝑏
2

+ 6𝑏𝑐 + 𝑐
2

,

𝑥 (6) = 25 + 31𝑏 + 22𝑐 + 16𝑏
2

+ 17𝑏𝑐 + 4𝑐
2

,

𝑥 (7) = 32 + 45𝑏 + 32𝑐 + 30𝑏
2

+ 36𝑏𝑐 + 10𝑐
2

+ 2𝑏
3

+ 𝑏
2

𝑐,

𝑥 (8) = 40 + 64𝑏 + 46𝑐 + 51𝑏
2

+ 65𝑏𝑐 + 20𝑐
2

+ 9𝑏
3

+ 9𝑏
2

𝑐 + 2𝑏𝑐
2

.

(117)

Example 18. Let us represent the solution of the scalar (𝑟 = 1)
problem (70), (71) where we put 𝑚 = 2, 𝑛 = 3, 𝐵 = 𝑏 = 4,
𝐶 = 𝑐 = −1, 𝜑(−3) = 1, 𝜑(−2) = 2, 𝜑(−1) = 3, and 𝜑(0) = 4,
usingTheorem 10. Thus, we have

Δ𝑥 (𝑘) = 4𝑥 (𝑘 − 2) − 𝑥 (𝑘 − 3) , 𝑘 ∈ Z
∞

0
, (118)

𝑥 (−3) = 𝜑 (−3) = 1,

𝑥 (−2) = 𝜑 (−2) = 2,

𝑥 (−1) = 𝜑 (−1) = 3,

𝑥 (0) = 𝜑 (0) = 4.

(119)

ByTheorem 10, the solution of problem (118), (119) is

𝑥 (𝑘) =

3

∑

𝑗=0

e𝑏𝑐(𝑘+𝑗)
2,3

V
𝑗
, 𝑘 ∈ Z

∞

−3
, (120)

where

V
3
= (𝑏 + 𝑐)

−1

[Δ𝜑 (−3) −

0

∑

𝑡=1

Δe𝑏𝑐𝑡
2,3
V
𝑡+3
] = (𝑏 + 𝑐)

−1

=

1

3

,

V
2
= (𝑏 + 𝑐)

−1

[Δ𝜑 (−2) −

1

∑

𝑡=1

Δe𝑏𝑐𝑡
2,3
V
𝑡+2
]

= (𝑏 + 𝑐)
−1

[Δ𝜑 (−2) − Δe𝑏𝑐1
2,3

V
3
]

= (𝑏 + 𝑐)
−1

[1 − (e𝑏𝑐2
2,3
− e𝑏𝑐1
2,3
) (𝑏 + 𝑐)

−1

]

= (𝑏 + 𝑐)
−1

[1 − (𝑏 + 𝑐) (𝑏 + 𝑐)
−1

] = 0,

V
1
= (𝑏 + 𝑐)

−1

[Δ𝜑 (−1) −

2

∑

𝑡=1

Δe𝑏𝑐𝑡
2,3
V
𝑡+1
]

= (𝑏 + 𝑐)
−1

[Δ𝜑 (−2) − Δe𝑏𝑐1
2,3

V
2
− Δe𝑏𝑐2
2,3

V
3
]

= (𝑏 + 𝑐)
−1

[1 − (e𝑏𝑐3
2,3
− e𝑏𝑐2
2,3
) (𝑏 + 𝑐)

−1

]

= (𝑏 + 𝑐)
−1

[1 − (𝑏 + 𝑐) (𝑏 + 𝑐)
−1

] = 0,

V
0
= 𝜑 (−3) −

3

∑

𝑠=1

V
𝑠
= 1 − (𝑏 + 𝑐)

−1

=

2

3

.

(121)

Thus, we get

𝑥 (𝑘) = e𝑏𝑐𝑘
2,3
⋅

2

3

+ e𝑏𝑐(𝑘+3)
2,3

⋅

1

3

,

𝑥 (1) = e𝑏𝑐1
2,3
⋅

2

3

+ e𝑏𝑐4
2,3
⋅

1

3

= 4 ⋅

2

3

+ 25 ⋅

1

3

= 11,

𝑥 (2) = e𝑏𝑐2
2,3
⋅

2

3

+ e𝑏𝑐5
2,3
⋅

1

3

= 7 ⋅

2

3

+ 49 ⋅

1

3

= 21,

𝑥 (3) = e𝑏𝑐3
2,3
⋅

2

3

+ e𝑏𝑐6
2,3
⋅

1

3

= 10 ⋅

2

3

+ 82 ⋅

1

3

= 34,

𝑥 (4) = e𝑏𝑐4
2,3
⋅

2

3

+ e𝑏𝑐7
2,3
⋅

1

3

= 25 ⋅

2

3

+ 172 ⋅

1

3

= 74,

𝑥 (5) = e𝑏𝑐5
2,3
⋅

2

3

+ e𝑏𝑐8
2,3
⋅

1

3

= 49 ⋅

2

3

+ 343 ⋅

1

3

= 147,

𝑥 (6) = e𝑏𝑐6
2,3
⋅

2

3

+ e𝑏𝑐9
2,3
⋅

1

3

= 82 ⋅

2

3

+ 622 ⋅

1

3

= 262,

𝑥 (7) = e𝑏𝑐7
2,3
⋅

2

3

+ e𝑏𝑐10
2,3

⋅

1

3

= 172 ⋅

2

3

+ 1228 ⋅

1

3

= 524,

𝑥 (8) = e𝑏𝑐8
2,3
⋅

2

3

+ e𝑏𝑐11
2,3

⋅

1

3

= 343 ⋅

2

3

+ 2428 ⋅

1

3

= 1038.

(122)

Example 19. Let us represent the solution of the scalar (𝑟 = 1)
problem (90), (91) where we put 𝑚 = 2, 𝑛 = 3, 𝐵 = 𝑏 = 4,
𝐶 = 𝑐 = −1, 𝜑(−3) = 1, 𝜑(−2) = 2, 𝜑(−1) = 3, 𝜑(0) = 4, and
𝑓(𝑘) = 𝑘 + 1, usingTheorem 11. Thus, we have

Δ𝑥 (𝑘) = 4𝑥 (𝑘 − 2) − 𝑥 (𝑘 − 3) + 𝑘 + 1, 𝑘 ∈ Z
∞

0
, (123)

𝑥 (−3) = 𝜑 (−3) = 1,

𝑥 (−2) = 𝜑 (−2) = 2,

𝑥 (−1) = 𝜑 (−1) = 3,

𝑥 (0) = 𝜑 (0) = 4.

(124)

ByTheorem 11, the solution of the problem (123), (124) is

𝑥 (𝑘) =

3

∑

𝑗=0

ẽ𝑏𝑐(𝑘+𝑗)
2,3

𝑤
𝑗
+

𝑘

∑

ℓ=1

ẽ𝑏𝑐(𝑘−ℓ)
2,3

ℓ, 𝑘 ∈ Z
∞

−3
, (125)
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where

𝑤
0
= Δ𝜑 (−1) − Δẽ𝑏𝑐2

2,3
𝜑 (−3) −

−4

∑

𝑠=−3

Δẽ𝑏𝑐(−𝑠−2)
2,3

Δ𝜑 (𝑠)

= 1 − (ẽ𝑏𝑐3
2,3
− ẽ𝑏𝑐2
2,3
) 1

= 1 − (1 + 𝑏 − 1) = 1 − 𝑏 = −3,

𝑤
1
= Δ𝜑 (−2) = 1,

𝑤
2
= Δ𝜑 (−3) = 1,

𝑤
3
= 𝜑 (−3) = 1.

(126)

Thus, we get

𝑥 (𝑘) = ẽ𝑏𝑐𝑘
2,3
(−3) + ẽ𝑏𝑐(𝑘+1)

2,3
+ ẽ𝑏𝑐(𝑘+2)
2,3

+ ẽ𝑏𝑐(𝑘+3)
2,3

+

𝑘

∑

ℓ=1

ẽ𝑏𝑐(𝑘−ℓ)
2,3

ℓ,

𝑥 (1) = ẽ𝑏𝑐1
2,3
(−3) + ẽ𝑏𝑐2

2,3
+ ẽ𝑏𝑐3
2,3
+ ẽ𝑏𝑐4
2,3
+

1

∑

ℓ=1

ẽ𝑏𝑐(1−ℓ)
2,3

ℓ

= −3 + 1 + 5 + 8 + 1 = 12,

𝑥 (2) = ẽ𝑏𝑐2
2,3
(−3) + ẽ𝑏𝑐3

2,3
+ ẽ𝑏𝑐4
2,3
+ ẽ𝑏𝑐5
2,3
+

2

∑

ℓ=1

ẽ𝑏𝑐(2−ℓ)
2,3

ℓ

= −3 + 5 + 8 + 11 + 3 = 24,

𝑥 (3) = ẽ𝑏𝑐3
2,3
(−3) + ẽ𝑏𝑐4

2,3
+ ẽ𝑏𝑐5
2,3
+ ẽ𝑏𝑐6
2,3
+

3

∑

ℓ=1

ẽ𝑏𝑐(3−ℓ)
2,3

ℓ

= −15 + 8 + 11 + 30 + 6 = 40,

𝑥 (4) = ẽ𝑏𝑐4
2,3
(−3) + ẽ𝑏𝑐5

2,3
+ ẽ𝑏𝑐6
2,3
+ ẽ𝑏𝑐7
2,3
+

4

∑

ℓ=1

ẽ𝑏𝑐(4−ℓ)
2,3

ℓ

= −24 + 11 + 30 + 57 + 14 = 88,

𝑥 (5) = ẽ𝑏𝑐5
2,3
(−3) + ẽ𝑏𝑐6

2,3
+ ẽ𝑏𝑐7
2,3
+ ẽ𝑏𝑐8
2,3
+

5

∑

ℓ=1

ẽ𝑏𝑐(5−ℓ)
2,3

ℓ

= −33 + 30 + 57 + 93 + 30 = 177,

𝑥 (6) = ẽ𝑏𝑐6
2,3
(−3) + ẽ𝑏𝑐7

2,3
+ ẽ𝑏𝑐8
2,3
+ ẽ𝑏𝑐9
2,3
+

6

∑

ℓ=1

ẽ𝑏𝑐(6−ℓ)
2,3

ℓ

= −90 + 57 + 93 + 202 + 57 = 319,

𝑥 (7) = ẽ𝑏𝑐7
2,3
(−3) + ẽ𝑏𝑐8

2,3
+ ẽ𝑏𝑐9
2,3
+ ẽ𝑏𝑐10
2,3

+

7

∑

ℓ=1

ẽ𝑏𝑐(7−ℓ)
2,3

ℓ

= −171 + 93 + 202 + 400 + 114 = 638,

𝑥 (8) = ẽ𝑏𝑐8
2,3
(−3) + ẽ𝑏𝑐9

2,3
+ ẽ𝑏𝑐10
2,3

+ ẽ𝑏𝑐11
2,3

+

8

∑

ℓ=1

ẽ𝑏𝑐(8−ℓ)
2,3

ℓ

= −279 + 202 + 400 + 715 + 228 = 1266.

(127)
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[1] J. Dibĺık and D. Ya. Khusainov, “Representation of solutions
of linear discrete systems with constant coefficients and pure
delay,” Advances in Difference Equations, vol. 2006, Article ID
80825, 13 pages, 2006.
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[10] J. Dibĺık, D. Khusainov, O. Kukharenko, and Z. Svoboda,
“Solution of the first boundary-value problem for a system of
autonomous second-order linear partial differential equations
of parabolic type with a single delay,” Abstract and Applied
Analysis, vol. 2012, Article ID 219040, 27 pages, 2012.
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Copyright © 2014 F. F. Gonçalves and M. R. Grossinho. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

We study the spatial discretisation of the Cauchy problem for a multidimensional linear parabolic PDE of second order, with
nondivergent operator and unbounded time- and space-dependent coefficients.The equation free term and the initial data are also
allowed to grow. Under a nondegeneracy assumption, we consider the PDE solvability in the framework of the variational approach
and approximate in space the PDE problem’s generalised solution, with the use of finite-differencemethods.The rate of convergence
is estimated.

1. Introduction

In this paper, we study the discretisation in space of the
Cauchy problem

𝜕𝑢

𝜕𝑡

= 𝐿𝑢 + 𝑓 in [0, 𝑇] ×R
𝑑

,

𝑢 (0, 𝑥) = 𝑔 (𝑥) on R
𝑑

,

(1)

where𝐿 is the second-order partial differential operator in the
nondivergence form

𝐿 (𝑡, 𝑥) = 𝑎
𝑖𝑗

(𝑡, 𝑥)

𝜕
2

𝜕𝑥
𝑖
𝜕𝑥
𝑗
+ 𝑏
𝑖

(𝑡, 𝑥)

𝜕

𝜕𝑥
𝑖
+ 𝑐 (𝑡, 𝑥) ,

𝑖, 𝑗 = 1, . . . , 𝑑,

(2)

with real coefficients (written with the usual summation
convention), 𝑓 and 𝑔 are given real-valued functions, and
𝑇 ∈ (0,∞) is a constant. We assume that operator 𝜕/𝜕𝑡 − 𝐿

is uniformly parabolic and allows the growth in the spatial
variables of the first- and second-order coefficients in 𝐿

(linear and quadratic growth, resp.) and of the data 𝑓 and 𝑔
(polynomial growth).

Multidimensional partial differential equation (PDE)
problems arise in Financial Mathematics and in Mathemat-
ical Physics. We are mainly motivated by the application to

a large class of stochastic models in Financial Mathemat-
ics comprising the non-path-dependent options, with fixed
exercise, written onmultiple assets (basket options, exchange
options, compound options, European options on future
contracts and foreign-exchange, and others) and also to a
particular type of path-dependent options: the Asian options
(see, e.g., [1]).

Let us consider the stochastic modelling of a multiasset
option of European type under the framework of a general
version of Black-Scholes model, where the vector of asset
appreciation rates and the volatility matrix are taken to
be time- and space-dependent, and the riskless interest
rate is a function of time. Owing to a Feynman-Kač type
formula, pricing this option can be reduced to solving the
Cauchy problem (with terminal condition) for the degenerate
second-order linear parabolic PDE of nondivergent type,
with null term and unbounded coefficients (see, e.g., [1]),

𝜕𝑉

𝜕𝑡

+

1

2

𝜎
𝑖𝑗

(𝑡, 𝑆) 𝑆
𝑖

𝑆
𝑗
𝜕
2

𝑉

𝜕𝑆
𝑖
𝜕𝑆
𝑗
+ 𝑟 (𝑡) 𝑆

𝑖
𝜕𝑉

𝜕𝑆
𝑖
− 𝑟 (𝑡) 𝑉 = 0

in [0, 𝑇] ×R
𝑑

+
,

𝑉 (𝑇, 𝑆) = 𝜙 (𝑆) on R
𝑑

+
,

(3)
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where R𝑑
+
≡ {𝑥 ∈ R𝑑 : 𝑥

𝑖

> 0, 𝑖 = 1, . . . , 𝑑}, 𝑉 is the
(unknown) option value, 𝑆𝑖 the price of the 𝑖th underlying
asset, (𝜎𝑖𝑗) the volatility matrix, 𝑟 the risk-free interest rate,
and 𝜙 the pay-off function.

Therefore, as an alternative to approximating the option
price with probabilistic numerical methods, we can approxi-
mate the solution of the corresponding PDE problem (3) with
the use of nonprobabilistic techniques.

When problem (1) is considered in connection with
option pricing, we see that the growth of the Black-Scholes
PDE coefficients is appropriately matched. Also, the general
case where the asset appreciation rate vector, the volatility
matrix, and the risk-free interest rate are variable is covered.
Finally, by imposing weak conditions on the initial data 𝑔, we
will allow the financial derivative pay-off to be specified in a
large class of functions.The free term 𝑓 is included to further
improve generality.

In this paper, we study the approximation in space (for the
time approximation, we refer to [2–4], where a general evolu-
tion equation problem of parabolic type is discretised) of the
second-order parabolic problem (1), in the challenging case
where the coefficients are unbounded (as well as the free data
𝑓 and 𝑔). The results are obtained under the strong assump-
tion that the PDE does not degenerate but by imposing weak
regularity assumptions. In order to facilitate the approach, we
avoid any numerical methods’ sophistication and make use
of basic one-step finite-difference schemes. Also, an estimate
for the rate of convergence of the discretised problem’s gener-
alised solution to the exact problem’s generalised solution is
given.

The numerical methods and possible approximation
results are strongly linked to the theory on the solvability
of the PDEs. We make use of the 𝐿2 theory of solvability
of linear PDEs in weighted Sobolev spaces. In particular,
we consider the PDE solvability in a class of weighted
Sobolev spaces used by O. G. Purtukhia (the references for
Purtukhia’s works can be found in [5]) for the treatment
of linear stochastic partial differential equations (SPDEs)
and further generalised by Gyöngy and Krylov (see [5]),
the so-called well-weighted Sobolev spaces. By constructing
discrete versions of these spaces, we set a suitable discretised
framework and investigate the spatial approximation to the
PDE generalised solution with the use of standard variational
techniques.

We emphasize some points.
Firstly, we note that many PDE problems related to

finance are Cauchy problems: initial-boundary value prob-
lems arise mostly after a localisation procedure for the
purpose of obtaining implementable numerical schemes.
Therefore, we do not find in many of these problems the
complex domain geometries which are one important rea-
son to favour other numerical methods (e.g., finite-element
methods).

Also, although the finite-difference method for approxi-
mating PDEs is a well-developed area, and the theory could
be considered reasonably complete since three decades ago,
some important research is still currently pursued (see, e.g.,
the recent works [8–10]). (We refer to [6] for a brief summary

of the method’s history, and also for the references of the
seminal works by R. Courant, K. O. Friedrichs, and H. Lewy,
and further major contributions by many others. For the
application of the finite-difference method to option pricing,
we refer to the review paper [7] for the references of the
original publications by M. Brennan and E. S. Schwartz and
further major research.)

Secondly, we observe that the usual procedure for obtain-
ing implementable numerical schemes for problem (1) is to
localise it to a bounded domain in [0, 𝑇] × R𝑑 and then
to approximate the localised problem (see, e.g., [11–13]; see
also [14], where the approximation is pursued for more
complex financial models but using the same localisation
technique). In this case, there is no need to consider weighted
functional spaces for the solvability and approximation
study, as the PDE coefficients are bounded in the truncated
domain.

An alternative procedure is to (semi)discretise problem
(1) in [0, 𝑇] × 𝑍

𝑑

ℎ
, with 𝑍

𝑑

ℎ
being the ℎ-grid on R𝑑, and

then localise the discretised problem to a bounded domain
in [0, 𝑇] × 𝑍

𝑑

ℎ
by imposing a discrete artificial boundary

condition (see, e.g., [15–17], where several types of initial-
value problems on unbounded domains are approximated;
we refer to [16, 17] for the procedure discussion). Our
study is meaningful in this latter case, as the coefficient
unboundedness remains a problem that must be dealt
with.

Finally, we remark that (i) the partial differential oper-
ators arising in finance are of nondivergent type and (ii)
we do not assume the operator coefficients to be smooth
enough to be possible to obtain an equivalent divergent
operator. Therefore, although there are definite advantages
in considering the operator in the divergent form when the
approach is variational, this is not available for the present
work.

We outline the paper. In Section 2, we establish somewell-
known facts on the solvability of linear PDEs under a general
framework and introduce the well-weighted Sobolev spaces.
In Section 3, we discretise in space problem (1), with the use
of a finite-difference scheme. We set a discrete framework
and deduce the existence and uniqueness of the discretised
problem’s generalised solution. In Section 4, we investigate
the approximation properties of the scheme and compute
a rate of convergence. In Section 5, we make a few final
comments.

2. Preliminaries and Classical Results

We establish some facts on the solvability of PDEs under a
general framework.

Let 𝑉 be a reflexive separable Banach space embedded
continuously and densely into a Hilbert space 𝐻 with inner
product (, ). Then 𝐻

∗, the dual space of 𝐻, is also continu-
ously and densely embedded into 𝑉

∗, the dual of 𝑉. Let us
use the notation ⟨, ⟩ for the duality. Let𝐻∗ be identified with
𝐻 in the usual way, by the help of the inner product.Then we
have the so-called normal triple 𝑉 → 𝐻 ≡ 𝐻

∗

→ 𝑉
∗, with

continuous and dense embeddings.
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Let us consider the Cauchy problem for an evolution
equation

𝑑𝑢

𝑑𝑡

= 𝐴 (𝑡) 𝑢 + 𝑓 (𝑡) in [0, 𝑇] , 𝑢 (0) = 𝑔, (4)

with𝑇 ∈ (0,∞) and where for every 𝑡 ∈ [0, 𝑇] 𝐴(𝑡) is a linear
operator from 𝑉 to 𝑉∗, 𝑓(𝑡) ∈ 𝑉∗, and 𝑔 ∈ 𝐻.

We assume that the operator 𝐴(𝑡) is continuous and
impose a coercivity condition, as well as some regularity on
the free data 𝑓 and 𝑔.

Assumption 1. There exist constants 𝜆 > 0,𝐾,𝑀, and𝑁 such
that

(1) ⟨𝐴(𝑡)V, V⟩ + 𝜆‖V‖2
𝑉
≤ 𝐾‖V‖2

𝐻
, ∀V ∈ 𝑉, ∀𝑡 ∈ [0, 𝑇];

(2) ‖𝐴(𝑡)V‖
𝑉
∗ ≤ 𝑀‖V‖

𝑉
, ∀V ∈ 𝑉, ∀𝑡 ∈ [0, 𝑇];

(3) ∫𝑇
0

‖𝑓(𝑡)‖
2

𝑉
∗𝑑𝑡 ≤ 𝑁 and ‖𝑔‖

𝐻
≤ 𝑁.

We define the generalised solution of problem (4).

Definition 2. One says that 𝑢 ∈ 𝐶([0, 𝑇];𝐻) is a generalised
solution of (4) on [0, 𝑇] if

(1) 𝑢 ∈ 𝐿2([0, 𝑇]; 𝑉);
(2) for every 𝑡 ∈ [0, 𝑇],

(𝑢 (𝑡) , V) = (𝑔, V) + ∫
𝑡

0

⟨𝐴 (𝑠) 𝑢 (𝑠) , V⟩ 𝑑𝑠 + ∫
𝑡

0

⟨𝑓 (𝑠) , V⟩ 𝑑𝑠

(5)

holds for all V ∈ 𝑉.

Notation 1. Let 𝑊 be a Banach space with norm ‖ ‖. We
denote by 𝐶([0, 𝑇];𝑊) the space of continuous 𝑊-valued
functions on [0, 𝑇] and by 𝐿

2

([0, 𝑇];𝑊) the space of 𝑊-
valued functions 𝑤 on [0, 𝑇] such that ‖𝑤‖

𝐿
2
([0,𝑇];𝑊)

:=

(∫

𝑇

0

‖𝑤(𝑡)‖
2

𝑑𝑡)

1/2

< ∞.

The following well-known result states that, under
Assumption 1, problem (4) has a unique generalised solution
(see, e.g., [5], where the result is stated for the more general
case of a linear stochastic evolution equation problem and
[18]).

Theorem 3. Under (1)–(3) in Assumption 1, problem (4) has a
unique generalised solution on [0, 𝑇]. Moreover

sup
𝑡∈[0,𝑇]

‖𝑢 (𝑡)‖
2

𝐻
+ ∫

𝑇

0

‖𝑢 (𝑡)‖
2

𝑉
𝑑𝑡

≤ 𝑁(




𝑔





2

𝐻
+ ∫

𝑇

0





𝑓 (𝑡)






2

𝑉
∗𝑑𝑡) ,

(6)

where𝑁 is a constant.

Let us now consider the particular PDE problem

𝑢
𝑡
= 𝐿𝑢 + 𝑓 in𝑄, 𝑢 (0, 𝑥) = 𝑔 (𝑥) on R

𝑑

, (7)

where 𝐿 is the second-order operator with real coefficients

𝐿 (𝑡, 𝑥) = 𝑎
𝑖𝑗

(𝑡, 𝑥)

𝜕
2

𝜕𝑥
𝑖
𝜕𝑥
𝑗
+ 𝑏
𝑖

(𝑡, 𝑥)

𝜕

𝜕𝑥
𝑖
+ 𝑐 (𝑡, 𝑥) , (8)

𝑄 = [0, 𝑇] × R𝑑, with 𝑇 ∈ (0,∞), and 𝑓 and 𝑔 are given
functions.We allow the growth, in the spatial variables, of the
coefficients 𝑎𝑖𝑗(𝑡, 𝑥) and 𝑏𝑖(𝑡, 𝑥), 𝑖, 𝑗 = 1, . . . , 𝑑, and of the free
data 𝑓(𝑡, 𝑥) and 𝑔(𝑥).

In order to set the framework for problem (7), we
introduce a suitable class of weighted Sobolev spaces, the so-
called well-weighted Sobolev spaces (we refer to [5] for a
complete description of this class of spaces).

Let𝑈 be a domain inR𝑑, that is, an open subset ofR𝑑. Let
𝑟 > 0, 𝜌 > 0 be smooth functions in 𝑈 and𝑚 ≥ 0 an integer.
Theweighted Sobolev space𝑊𝑚,2(𝑈; 𝑟, 𝜌) is the Banach space
of locally integrable functions V : 𝑈 → R such that for each
multi-index 𝛼, with |𝛼| ≤ 𝑚, 𝐷𝛼V exists in the weak sense,
and

‖V‖
𝑊
𝑚,2
(𝑈;𝑟,𝜌)

:= ( ∑

|𝛼|≤𝑚

∫

𝑈

𝑟
2





𝜌
|𝛼|

𝐷
𝛼V






2

𝑑𝑥)

1/2

< ∞. (9)

Endowed with the inner product which generates the above
norm

(V, 𝑤)
𝑊
𝑚,2
(𝑈;𝑟,𝜌)

:= ∑

|𝛼|≤𝑚

∫

𝑈

𝑟
2

𝜌
2|𝛼|

𝐷
𝛼V𝐷𝛼𝑤𝑑𝑥, (10)

for all V, 𝑤 ∈ 𝑊
𝑚,2

(𝑈; 𝑟, 𝜌),𝑊𝑚,2(𝑈; 𝑟, 𝜌) is a Hilbert space.

Remark 4. Setting the weight functions 𝑟 = 𝜌 = 1, for all
𝑥 ∈ 𝑈, we obtain the particular case of the Sobolev spaces
𝑊
𝑚,2

(𝑈).

Notation 2. In the sequel, when 𝑈 = R𝑑 we drop the
argument in the function space notation. For instance, we
denote𝑊𝑚,2(R𝑑; 𝑟, 𝜌) =: 𝑊𝑚,2(𝑟, 𝜌).

We make some assumptions on the behaviour of the
weight functions 𝑟 and 𝜌 (see [5]).

Assumption 5. Let 𝑚 ≥ 0 be an integer and 𝑟 > 0, 𝜌 > 0

smooth functions on R𝑑. There exists a constant𝐾 such that

(1) |𝐷𝛼𝜌| ≤ 𝐾𝜌
1−|𝛼|, for all multi-indexes 𝛼 such that

|𝛼| ≤ 𝑚 − 1 if𝑚 ≥ 2;
(2) |𝐷𝛼𝑟| ≤ 𝐾(𝑟/𝜌

|𝛼|

), for all multi-indexes 𝛼 such that
|𝛼| ≤ 𝑚.

Remark 6. In (1) in Assumption 5, if 𝑚 < 2 nothing is
required.

Example 7. The following functions (taken from [5], citing O.
G. Purtukhia) satisfy Assumption 5:

(1) 𝑟(𝑥) = (1 + |𝑥|
2

)

𝛽, 𝛽 ∈ R; 𝜌(𝑥) = (1 + |𝑥|
2

)

𝛾, 𝛾 ≤ 1/2;

(2) 𝑟(𝑥) = exp(±(1 + |𝑥|2)𝛽), 0 ≤ 𝛽 ≤ 1/2; 𝜌(𝑥) = (1 +

|𝑥|
2

)
𝛾, 𝛾 ≤ 1/2 − 𝛽;
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(3) 𝑟(𝑥) = (1 + |𝑥|
2

)
𝛽, 𝛽 ∈ R; 𝜌(𝑥) = ln𝛾(2 + |𝑥|2), 𝛾 ∈ R;

(4) 𝑟(𝑥) = (1 + |𝑥|
2

)
𝛽 ln𝜇(2 + |𝑥|

2

), 𝛽 ≥ 0, 𝜇 ≥ 0; 𝜌(𝑥) =
(1 + |𝑥|

2

)

𝛾, 𝛾 ≤ 1/2;

(5) 𝑟(𝑥) = (1 + |𝑥|
2

)

𝛽 ln𝜇(2 + |𝑥|
2

), 𝛽 ≥ 0, 𝜇 ≥ 0; 𝜌(𝑥) =
ln𝛾(2 + |𝑥|2), 𝛾 ≥ 0;

(6) 𝜌(𝑥) = exp(−(1 + |𝑥|2)𝛾), 𝛾 ≥ 0; each weight function
𝑟(𝑥) in examples (1)–(5).

Now, we switch our point of view and consider the
functions 𝑤 : 𝑄 → R as mappings of 𝑡 into certain spaces
of functions of 𝑥 we make precise below such that, for all
𝑡 ∈ [0, 𝑇], 𝑥 ∈ R𝑑, (𝑤(𝑡))(𝑥) := 𝑤(𝑡, 𝑥).

We impose a coercivity condition and make some
assumptions on the growth and regularity of the operator’s
coefficients and also on the regularity of the free data 𝑓 and 𝑔
(see [5], where the assumptions aremade for themore general
case of an SPDE problem).

Assumption 8. Let 𝑟 > 0, 𝜌 > 0 be smooth functions on R𝑑

and𝑚 ≥ 0 an integer.

(1) There exists a constant 𝜆 > 0 such that
∑
𝑑

𝑖,𝑗=1
𝑎
𝑖𝑗

(𝑡, 𝑥)𝜉
𝑖

𝜉
𝑗

≥ 𝜆𝜌
2

(𝑥)|𝜉|
2, for all 𝑡 ≥ 0,

𝑥 ∈ R𝑑, and 𝜉 ∈ R𝑑.

(2) The coefficients of 𝐿 are measurable functions in
[0, 𝑇] ×R𝑑. The derivatives in 𝑥 of the coefficients 𝑎𝑖𝑗
up to order𝑚∨1 and of the coefficients 𝑏𝑖 and 𝑐 up to
order𝑚 exist for any 𝑡 ∈ [0, 𝑇]. Moreover, there exists
a constant𝐾 such that






𝐷
𝛼

𝑥
𝑎
𝑖𝑗





≤ 𝐾𝜌
2−|𝛼|

∀ |𝛼| ≤ 𝑚 ∨ 1,






𝐷
𝛼

𝑥
𝑏
𝑖





≤ 𝐾𝜌
1−|𝛼|

,




𝐷
𝛼

𝑥
𝑐




≤ 𝐾 ∀ |𝛼| ≤ 𝑚,

(11)

for all 𝑡 ∈ [0, 𝑇], 𝑥 ∈ R𝑑, with 𝐷𝛼
𝑥
denoting the |𝛼|th

partial derivative operator with respect to 𝑥.

(3) Consider 𝑓 ∈ 𝐿
2

([0, 𝑇];𝑊
𝑚−1,2

(𝑟, 𝜌)) and 𝑔 ∈

𝑊
𝑚,2

(𝑟, 𝜌).

Notation 3. In the above assumption, 𝑝 ∨ 𝑞 := max(𝑝, 𝑞),
with 𝑝, 𝑞 integers. Also, for 𝑚 = 0 we use the notation
𝑊
−1,2

(𝑟, 𝜌) := (𝑊
1,2

(𝑟, 𝜌))
∗, where (𝑊1,2(𝑟, 𝜌))∗ is the dual

of𝑊1,2(𝑟, 𝜌).

We define the generalised solution of problem (7).

Definition 9. One says that 𝑢 ∈ 𝐶([0, 𝑇];𝑊
0,2

(𝑟, 𝜌)) is a
generalised solution of (7) on [0, 𝑇] if

(1) 𝑢 ∈ 𝐿2([0, 𝑇];𝑊1,2(𝑟, 𝜌));

(2) for every 𝑡 ∈ [0, 𝑇],

(𝑢 (𝑡) , 𝜑)

= (𝑔, 𝜑) + ∫

𝑡

0

{− (𝑎
𝑖𝑗

(𝑠)𝐷
𝑥
𝑖𝑢 (𝑠) , 𝐷

𝑥
𝑗𝜑)

+ (𝑏
𝑖

(𝑠)𝐷
𝑥
𝑖𝑢 (𝑠) − 𝐷

𝑥
𝑗𝑎
𝑖𝑗

(𝑠)𝐷
𝑥
𝑖𝑢 (𝑠) , 𝜑)

+ (𝑐 (𝑠) 𝑢 (𝑠) , 𝜑) + ⟨𝑓 (𝑠) , 𝜑⟩ } 𝑑𝑠

(12)

holds for all 𝜑 ∈ 𝐶
∞

0
.

Notation 4. The notation ( , ) in the above definition stands
for the inner product in 𝑊

0,2

(𝑟, 𝜌). Also, we denote 𝐶∞
0

:=

𝐶
∞

0
(R𝑑).

Remark 10. Note that as an alternative to the infinite differ-
entiability of 𝜑 in (2) it can be required that 𝜑 ∈ 𝑊

1,2

(𝑟, 𝜌).

Finally, we state a result on the existence and uniqueness
of the solution of problem (7). This result can be obtained
from the general result in abstract spaces by using the suitable
triple of spaces (see, e.g., [5], where the result is proved for the
more general case of an SPDE problem).

Theorem11. Under (1)-(2) inAssumption 5, with𝑚+1 in place
of𝑚, with𝑚 ≥ 0 being an integer, and (1)–(3) in Assumption 8,
problem (7) admits a unique generalised solution 𝑢 on [0, 𝑇].
Moreover

𝑢 ∈ 𝐶 ([0, 𝑇] ;𝑊
𝑚,2

(𝑟, 𝜌)) ∩ 𝐿
2

([0, 𝑇] ;𝑊
𝑚+1,2

(𝑟, 𝜌)) ,

sup
0≤𝑡≤𝑇

‖𝑢 (𝑡)‖
2

𝑊
𝑚,2

(𝑟,𝜌)
+ ∫

𝑇

0

‖𝑢 (𝑡)‖
2

𝑊
𝑚+1,2
(𝑟,𝜌)

𝑑𝑡

≤ 𝑁(




𝑔





2

𝑊
𝑚,2

(𝑟,𝜌)
+ ∫

𝑇

0





𝑓 (𝑡)






2

𝑊
𝑚−1,2

(𝑟,𝜌)
𝑑𝑡) ,

(13)

with𝑁 being a constant.

3. The Discrete Framework

We now proceed to the discretisation of problem (7) in the
spatial variable. We set a suitable discrete framework with
the use of a finite-difference scheme and, by showing that
discretised problem can be cast into the general problem
(4), we prove an existence and uniqueness result for the
discretised problem’s generalised solution.

We emphasize that this study mirrors the study of
problem (7), in the sense that the framework we now set is
a discrete version of the framework set for problem (7), and
the techniques used for proving the existence and uniqueness
results are the same for both problems.

Define the ℎ-grid on R𝑑, with ℎ ∈ (0, 1],

𝑍
𝑑

ℎ
= {𝑥 ∈ R

𝑑

: 𝑥 = ℎ

𝑑

∑

𝑖=1

𝑒
𝑖
𝑛
𝑖
, 𝑛
𝑖
= 0, ±1, ±2, . . .} , (14)
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where 𝑒
𝑖
, for 𝑖 = 1, 2, . . . , 𝑑, is the unit vector inR𝑑 whose 𝑖th

entry is 1.
For every 𝑥 ∈ 𝑍

𝑑

ℎ
, denote

𝜕
+

𝑖
𝑢 = 𝜕
+

𝑖
𝑢 (𝑡, 𝑥) = ℎ

−1

(𝑢 (𝑡, 𝑥 + ℎ𝑒
𝑖
) − 𝑢 (𝑡, 𝑥)) ,

𝜕
−

𝑖
𝑢 = 𝜕
−

𝑖
𝑢 (𝑡, 𝑥) = ℎ

−1

(𝑢 (𝑡, 𝑥) − 𝑢 (𝑡, 𝑥 − ℎ𝑒
𝑖
))

(15)

the forward and backward difference quotients in space,
respectively. Define the discrete operator

𝐿
ℎ
(𝑡, 𝑥) = 𝑎

𝑖𝑗

(𝑡, 𝑥) 𝜕
−

𝑗
𝜕
+

𝑖
+ 𝑏
𝑖

(𝑡, 𝑥) 𝜕
+

𝑖
+ 𝑐 (𝑡, 𝑥) . (16)

We consider the discrete problem

𝑢
𝑡
= 𝐿
ℎ
𝑢 + 𝑓
ℎ

in 𝑄 (ℎ) , 𝑢 (0, 𝑥) = 𝑔
ℎ
(𝑥) on 𝑍

𝑑

ℎ
,

(17)

where𝑄(ℎ) = [0, 𝑇] ×𝑍
𝑑

ℎ
, with 𝑇 ∈ (0,∞), and 𝑓

ℎ
and 𝑔

ℎ
are

functions such that 𝑓
ℎ
: 𝑄(ℎ) → R and 𝑔

ℎ
: 𝑍
𝑑

ℎ
→ R.

Consider functions V : 𝑍𝑑
ℎ
→ R. We introduce the space

𝑙
0,2

(𝑟), the discrete version of the weighted Sobolev space
𝑊
0,2

(𝑟, 𝜌),

𝑙
0,2

(𝑟) := {V : ‖V‖
𝑙
0,2
(𝑟)

< ∞} , (18)

where the norm ‖V‖
𝑙
0,2
(𝑟)

is given by

‖V‖
𝑙
0,2
(𝑟)

= ( ∑

𝑥∈𝑍
𝑑

ℎ

𝑟
2

(𝑥) |V (𝑥)|2ℎ𝑑)

1/2

. (19)

We define, for any V, 𝑤 ∈ 𝑙
0,2

(𝑟), the inner product

(V, 𝑤)
𝑙
0,2
(𝑟)

= ∑

𝑥∈𝑍
𝑑

ℎ

𝑟
2

(𝑥) V (𝑥)𝑤 (𝑥) ℎ
𝑑

, (20)

which induces the norm.
The inner product space 𝑙0,2(𝑟) has a good structure: it can

be easily shown that it is complete, therefore a Hilbert space.
For functions 𝑤 : 𝑍

𝑑

ℎ
→ R, we introduce also the

discrete version of the weighted Sobolev space𝑊1,2(𝑟, 𝜌), the
space 𝑙1,2(𝑟, 𝜌) defined by

𝑙
1,2

(𝑟, 𝜌) = {𝑤 : ‖𝑤‖
𝑙
1,2
(𝑟,𝜌)

< ∞} , (21)

with norm

‖𝑤‖
2

𝑙
1,2

(𝑟,𝜌)
:= ‖𝑤‖

2

𝑙
0,2
(𝑟)
+

𝑑

∑

𝑖=1





𝜌𝜕
+

𝑖
𝑤





2

𝑙
0,2
(𝑟)
. (22)

We endow 𝑙
1,2

(𝑟, 𝜌) with the inner product, inducing the
norm,

(𝑤, 𝑧)
𝑙
1,2
(𝑟,𝜌)

= (𝑤, 𝑧)
𝑙
0,2
(𝑟)
+

𝑑

∑

𝑖=1

(𝜌𝜕
+

𝑖
𝑤, 𝜌𝜕
+

𝑖
𝑧)
𝑙
0,2
(𝑟)
, (23)

for any functions 𝑤, 𝑧 ∈ 𝑙1,2(𝑟, 𝜌).

We want to show that the discrete framework we have set
is a particular case of the general framework considered in
Section 2.

It can be easily checked that 𝑙1,2(𝑟, 𝜌) is a reflexive and
separable Banach space, continuously and densely embedded
into the Hilbert space 𝑙0,2(𝑟).

As 𝑙1,2(𝑟, 𝜌), endowed with the inner product (, )
𝑙
1,2
(𝑟,𝜌)

, is
clearly a Hilbert space therefore it is reflexive, and the proof
for the separability is trivial.The continuity of the embedding
follows immediately from ‖V‖

𝑙
0,2
(𝑟)

≤ ‖V‖
𝑙
1,2
(𝑟,𝜌)

, for all V ∈

𝑙
1,2

(𝑟, 𝜌). Finally, the denseness can be checked by noticing
that, for an arbitrary function 𝑤 ∈ 𝑙

0,2

(𝑟), and 𝐵 a ball in 𝑍𝑑
ℎ
,

the function 𝑧 defined by

𝑧 (𝑥) = {

𝑤 (𝑥) , 𝑥 ∈ 𝐵,

0, otherwise,
(24)

belongs obviously to 𝑙1,2(𝑟, 𝜌) and that, for any given 𝜀 > 0,
‖𝑤 − 𝑧‖

𝑙
0,2
(𝑟)

< 𝜀 if the diameter of 𝐵 is chosen sufficiently
large.

As in the previous section, we switch our viewpoint and
consider the functions 𝑧 : 𝑄(ℎ) → R as mappings of 𝑡
into certain spaces of functions of 𝑥, defined by (𝑧(𝑡))(𝑥) :=
𝑧(𝑡, 𝑥), for all 𝑡 ∈ [0, 𝑇] and for all𝑥 ∈ 𝑍

𝑑

ℎ
. For these functions,

we consider the space 𝐶([0, 𝑇]; 𝑙0,2(𝑟)) of continuous 𝑙0,2(𝑟)-
valued functions on [0, 𝑇] and the spaces

𝐿
2

([0, 𝑇] ; 𝑙
𝑚,2

(𝑟, 𝜌))

= {𝑧 : [0, 𝑇] → 𝑙
𝑚,2

(𝑟, 𝜌) : ∫

𝑇

0

‖𝑧 (𝑡)‖
2

𝑙
𝑚,2

(𝑟,𝜌)
𝑑𝑡 < ∞} ,

(25)

with𝑚 = 0, 1.

Notation 5. We identify 𝑙0,2(𝑟, 𝜌) with 𝑙0,2(𝑟).

Remark 12. Clearly, if 𝑢 ∈ 𝐶([0, 𝑇]; 𝑙
0,2

(𝑟)) then
sup
𝑡∈[0,𝑇]

‖𝑢(𝑡)‖
𝑙
0,2
(𝑟)

< ∞.

We make some assumptions on the regularity of the data
𝑓
ℎ
and 𝑔

ℎ
in (17).

Assumption 13. Let 𝑟 > 0 be a smooth function on R𝑑. We
assume

(1) 𝑓
ℎ
∈ 𝐿
2

([0, 𝑇]; 𝑙
0,2

(𝑟));
(2) 𝑔
ℎ
∈ 𝑙
0,2

(𝑟).

Remark 14. In Assumption 13, (1) can be replaced with
the weaker assumption 𝑓

ℎ
∈ 𝐿
2

([0, 𝑇]; (𝑙
1,2

(𝑟, 𝜌))
∗

), where
(𝑙
1,2

(𝑟, 𝜌))
∗ denotes the dual space of 𝑙1,2(𝑟, 𝜌).

Remark 15. We note that |𝜕+
𝑖
𝑎
𝑖𝑗

| ≤ 𝐾𝜌 can be obtained from
(2) in Assumption 8. In fact, by the mean-value theorem,






𝜕
+

𝑖
𝑎
𝑖𝑗

(𝑡, 𝑥)






=






ℎ
−1

(𝑎
𝑖𝑗

(𝑡, 𝑥 + ℎ𝑒
𝑖
) − 𝑎
𝑖𝑗

(𝑡, 𝑥))







=










𝜕

𝜕𝑥
𝑖
𝑎
𝑖𝑗

(𝑡, 𝑥 + 𝜏𝑒
𝑖
)










,

(26)



6 Abstract and Applied Analysis

for some 𝜏 such that 0 < 𝜏 < ℎ.Thus |(𝜕/𝜕𝑥𝑖)𝑎𝑖𝑗| ≤ 𝐾𝜌 implies
|𝜕
+

𝑖
𝑎
𝑖𝑗

| ≤ 𝐾𝜌.

We define the generalised solution of problem (17).

Definition 16. One says that 𝑢 ∈ 𝐶([0, 𝑇]; 𝑙
0,2

(𝑟)) ∩ 𝐿
2

([0, 𝑇]; 𝑙
1,2

(𝑟, 𝜌)) is a generalised solution of (17) if, for every
𝑡 ∈ [0, 𝑇],

(𝑢 (𝑡) , 𝜑) = (𝑔
ℎ
, 𝜑)

+ ∫

𝑡

0

{− (𝑎
𝑖𝑗

(𝑠) 𝜕
+

𝑖
𝑢 (𝑠) , 𝜕

+

𝑗
𝜑)

+ (𝑏
𝑖

(𝑠) 𝜕
+

𝑖
𝑢 (𝑠) − 𝜕

+

𝑗
𝑎
𝑖𝑗

(𝑠) 𝜕
+

𝑖
𝑢 (𝑠) , 𝜑)

+ (𝑐 (𝑠) 𝑢 (𝑠) , 𝜑) + ⟨𝑓
ℎ
(𝑠) , 𝜑⟩ } 𝑑𝑠

(27)

holds for all 𝜑 ∈ 𝑙
1,2

(𝑟, 𝜌).

Notation 6. In the above definition, ( , ) denotes the inner
product in 𝑙0,2(𝑟). We keep this convention for the remainder
of present section.

Finally, we prove an existence and uniqueness result
for the solution of the discrete problem (17). This result
shows that the scheme is stable, that is, that, informally, the
discrete problem’s solution remains bounded independent of
the space-step ℎ. The result is obtained as a consequence of
Theorem 3, remaining only to prove that, under the discrete
framework we constructed, (1)-(2) in Assumption 1 hold.

Theorem 17. Under (1)-(2) in Assumption 8 and (1)-(2) in
Assumption 13, problem (17) has a unique generalised solution
𝑢 in [0, 𝑇]. Moreover

sup
0≤𝑡≤𝑇

‖𝑢 (𝑡)‖
2

𝑙
0,2
(𝑟)
+ ∫

𝑇

0

‖𝑢 (𝑡)‖
2

𝑙
1,2

(𝑟,𝜌)
𝑑𝑡

≤ 𝑁(




𝑔
ℎ






2

𝑙
0,2
(𝑟)
+ ∫

𝑇

0





𝑓
ℎ
(𝑡)





2

𝑙
0,2
(𝑟)
𝑑𝑡) ,

(28)

with𝑁 a constant independent of ℎ.

Proof. Let 𝐿
ℎ
(𝑠) : 𝑙

1,2

(𝑟, 𝜌) → (𝑙
1,2

(𝑟, 𝜌))
∗, for every 𝑠 ∈

[0, 𝑇]. We define

⟨𝐿
ℎ
(𝑠) 𝜓, 𝜑⟩ := − (𝑎

𝑖𝑗

(𝑠) 𝜕
+

𝑖
𝜓, 𝜕
+

𝑗
𝜑)

+ (𝑏
𝑖

(𝑠) 𝜕
+

𝑖
𝜓 − 𝜕
+

𝑗
𝑎
𝑖𝑗

(𝑠) 𝜕
+

𝑖
𝜓, 𝜑)

+ (𝑐 (𝑠) 𝜓, 𝜑) ,

(29)

for all 𝑠 ∈ [0, 𝑇], 𝜑, 𝜓 ∈ 𝑙
1,2

(𝑟, 𝜌).
It suffices to prove that the following properties hold:

(1) ∃𝐾, 𝜆 > 0 constants: ⟨𝐿
ℎ
(𝑠)𝜓, 𝜓⟩ + 𝜆‖𝜓‖

𝑙
1,2
(𝑟,𝜌)

≤

𝐾‖𝜓‖
𝑙
0,2
(𝑟)
,

(2) ∃𝐾 constant: ⟨𝐿
ℎ
(𝑠)𝜓, 𝜑⟩| ≤ 𝐾‖𝜓‖

𝑙
1,2
(𝑟,𝜌)

⋅ ‖𝜑‖
𝑙
1,2
(𝑟,𝜌)

,

for all 𝑠 ∈ [0, 𝑇], 𝜑, 𝜓 ∈ 𝑙
1,2

(𝑟, 𝜌).

For the first property, owing to (1) and (2) in Assump-
tion 8, we have

⟨𝐿
ℎ
(𝑠) 𝜓, 𝜓⟩ = −∑

𝑖,𝑗

∑

𝑥

𝑟
2

𝑎
𝑖𝑗

(𝑠) 𝜕
+

𝑖
𝜓𝜕
+

𝑗
𝜓ℎ
𝑑

+∑

𝑖

∑

𝑥

𝑟
2

(𝑏
𝑖

(𝑠) − 𝜕
+

𝑗
𝑎
𝑖𝑗

(𝑠)) 𝜕
+

𝑖
𝜓𝜓ℎ
𝑑

+∑

𝑥

𝑟
2

𝑐 (𝑠) 𝜓𝜓ℎ
𝑑

≤ − 𝜆∑

𝑖

∑

𝑥

𝑟
2



𝜌𝜕
+

𝑖
𝜓





2

ℎ
𝑑

+ 2𝐾∑

𝑖

∑

𝑥

𝑟
2

𝜌




𝜕
+

𝑖
𝜓𝜓





ℎ
𝑑

+ 𝐾∑

𝑥

𝑟
2



𝜓





2

ℎ
𝑑

= − 𝜆∑

𝑖





𝜌𝜕
+

𝑖
𝜓





2

𝑙
0,2
(𝑟)

+ 2𝐾∑

𝑖

∑

𝑥

𝑟
2

𝜌




𝜕
+

𝑖
𝜓𝜓





ℎ
𝑑

+ 𝐾




𝜓





2

𝑙
0,2
(𝑟)
,

(30)

where the variable 𝑥 ∈ 𝑍
𝑑

ℎ
is omitted,∑

𝑥
denotes the summa-

tion over𝑍𝑑
ℎ
, and∑

𝑖
,∑
𝑗
the summation over {1, 2, . . . , 𝑑}. We

use Cauchy’s inequality on the second term in estimate (30)
and obtain

⟨𝐿
ℎ
(𝑠) 𝜓, 𝜓⟩ ≤ − 𝜆∑

𝑖





𝜌𝜕
+

𝑖
𝜓





2

𝑙
0,2
(𝑟)
+ 𝜀𝐾∑

𝑖

∑

𝑥

𝑟
2



𝜌𝜕
+

𝑖
𝜓





2

ℎ
𝑑

+

𝐾

𝜀

∑

𝑖

∑

𝑥

𝑟
2



𝜓





2

ℎ
𝑑

+ 𝐾




𝜓





2

𝑙
0,2
(𝑟)

= − 𝜆∑

𝑖





𝜌𝜕
+

𝑖
𝜓





2

𝑙
0,2
(𝑟)
− 𝜆





𝜓





2

𝑙
0,2
(𝑟)

+ 𝜀𝐾∑

𝑖





𝜌𝜕
+

𝑖
𝜓





2

𝑙
0,2
(𝑟)

+

𝐾

𝜀





𝜓





2

𝑙
0,2
(𝑟)
+ (𝐾 + 𝜆)





𝜓





2

𝑙
0,2
(𝑟)

≤ − 𝜆




𝜓





2

𝑙
1,2

(𝑟,𝜌)
+ 𝐾





𝜓





2

𝑙
0,2
(𝑟)
,

(31)

with 𝜆 > 0,𝐾 constants, by taking 𝜀 sufficiently small. The
first property is proved.

The second property follows from (2) in Assumption 8
and Cauchy-Schwarz inequality





⟨𝐿
ℎ
(𝑠) 𝜓, 𝜑⟩





=













−∑

𝑖,𝑗

∑

𝑥

𝑟
2

𝑎
𝑖𝑗

(𝑠) 𝜕
+

𝑖
𝜓𝜕
+

𝑗
𝜑ℎ
𝑑

+∑

𝑖

∑

𝑥

𝑟
2

𝑏
𝑖

(𝑠) 𝜕
+

𝑖
𝜓𝜑ℎ
𝑑

−∑

𝑖,𝑗

∑

𝑥

𝑟
2

𝜕
+

𝑗
𝑎
𝑖𝑗

(𝑠) 𝜕
+

𝑖
𝜓𝜑ℎ
𝑑
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+∑

𝑥

𝑟
2

𝑐 (𝑠) 𝜓𝜑ℎ
𝑑











≤ 𝐾∑

𝑖,𝑗

∑

𝑥

𝑟
2





𝜌
2

𝜕
+

𝑖
𝜓𝜕
+

𝑗
𝜑






ℎ
𝑑

+ 𝐾∑

𝑖

∑

𝑥

𝑟
2 



𝜌𝜕
+

𝑖
𝜓𝜑





ℎ
𝑑

+ 𝐾∑

𝑥

𝑟
2 



𝜓𝜑





ℎ
𝑑

≤ 𝐾∑

𝑖





𝜌𝜕
+

𝑖
𝜓



𝑙
0,2
(𝑟)
∑

𝑗






𝜌𝜕
+

𝑗
𝜑





𝑙
0,2
(𝑟)

+ 𝐾∑

𝑖





𝜌𝜕
+

𝑖
𝜓



𝑙
0,2
(𝑟)





𝜑



𝑙
0,2
(𝑟)

+ 𝐾




𝜓



𝑙
0,2
(𝑟)





𝜑



𝑙
0,2
(𝑟)

≤ 𝐾




𝜓



𝑙
1,2
(𝑟,𝜌)

⋅




𝜑



𝑙
1,2
(𝑟,𝜌)

,

(32)

where the same writing conventions are kept.
Owing toTheorem 3 the result follows.

4. Approximation Results

In this section, we study the approximation properties of
scheme (17). We begin by investigating the consistency of the
scheme and prove that the difference quotients approximate
the partial derivatives (with accuracy of order 1). In addition,
we estimate the rate of convergence of the difference quotients
to the partial derivatives.

The result is obtained by using a Sobolev inequality,
under stronger regularity assumptions, and imposing that the
weights 𝜌 are bounded from below by a positive constant. In
practice, the latter restriction amounts to assuming that the
weights 𝜌 are increasing functions of |𝑥|, which is precisely
the case we are interested in.

Also, we note that the way we set our discrete framework,
in strong connection with the framework for problem (7),
plays a crucial role in obtaining the convergence rate.

Theorem 18. Let 𝑟 > 0 and 𝜌 > 0 be functions on R𝑑

and 𝑚 an integer strictly greater than 𝑑/2. Assume that (1)-
(2) in Assumption 5 are satisfied and also that 𝜌(𝑥) ≥ 𝐶 on
R𝑑, with 𝐶 > 0 being a constant. Let 𝑢(𝑡) ∈ 𝑊

𝑚+2,2

(𝑟, 𝜌),
V(𝑡) ∈ 𝑊

𝑚+3,2

(𝑟, 𝜌), for all 𝑡 ∈ [0, 𝑇]. Then there exists a
constant𝑁 independent of ℎ such that

(1) ∑
𝑥∈𝑍
𝑑

ℎ

𝑟
2

(𝑥)|𝑢
𝑥
𝑖(𝑡, 𝑥) − 𝜕

+

𝑖
𝑢(𝑡, 𝑥)|

2

𝜌
2

(𝑥)ℎ
𝑑

≤ ℎ
2

𝑁

‖𝑢(𝑡)‖
2

𝑊
𝑚+2,2
(𝑟,𝜌)

,

(2) ∑
𝑥∈𝑍
𝑑

ℎ

𝑟
2

(𝑥)|V
𝑥
𝑖
𝑥
𝑗(𝑡, 𝑥) − 𝜕

−

𝑗
𝜕
+

𝑖
V(𝑡, 𝑥)|2𝜌4(𝑥)ℎ𝑑 ≤ ℎ

2

𝑁

‖V(𝑡)‖2
𝑊
𝑚+3,2
(𝑟,𝜌)

,

for all 𝑡 ∈ [0, 𝑇].

Remark 19. The following remarks will be used in the proof
of the theorem.

(1) Under the conditions of the theorem, function 𝑢(𝑡)

(function V(𝑡)) has a modification in 𝑥 which is con-
tinuously differentiable in 𝑥 up to order 2 (up to order
3), and the derivatives equal the weak derivatives, for
every 𝑡 ∈ [0, 𝑇]. This can be proved by Sobolev’s
embedding of 𝑊𝑚,2(𝐵) into 𝐶𝑛(𝐵), for balls 𝐵 in R𝑑,
if 𝑚 > 𝑑/2 + 𝑛 (see, e.g., [18, 19]). We consider these
modifications in the theorem’s proof.

(2) Note that if 𝑈, 𝑉 are open subsets of R𝑑 with 𝑉 ⊂ 𝑈

and 𝑤 ∈ 𝑊
𝑚,2

(𝑈) then 𝑤 ∈ 𝑊
𝑚,2

(𝑉). Also, if 𝑤 ∈

𝑊
𝑚,2

(𝑈) and 𝜁 ∈ 𝐶∞
0
(𝑈) then 𝜁 ∈ 𝑊𝑚,2(𝑈) and 𝜁𝑤 ∈

𝑊
𝑚,2

(𝑈) (see, e.g., [18, 19]).

Proof of Theorem 18. Let us prove (1). We define a suitable
geometric setting and then obtain an estimate for

𝑟
2

(𝑥)




𝑢
𝑥
𝑖 (𝑡, 𝑥) − 𝜕

+

𝑖
𝑢 (𝑡, 𝑥)






2

𝜌
2

(𝑥) , (33)

with 𝑥 ∈ 𝑍
𝑑

ℎ
, using Sobolev’s inequality on a fixed ball.

Let us consider 𝑑-cells

𝑅
ℎ
= {(𝑥

1

, 𝑥
2

, . . . , 𝑥
𝑑

) ∈ R
𝑑

: 𝑥
𝑖

ℎ
< 𝑥
𝑖

< 𝑥
𝑖

ℎ
+ ℎ,

𝑖 = 1, 2, . . . , 𝑑} ,

(34)

with 𝑥
ℎ
= (𝑥
1

ℎ
, 𝑥
2

ℎ
, . . . , 𝑥

𝑑

ℎ
) ∈ 𝑍
𝑑

ℎ
fixed. Consider the particular

𝑑-cell, where ℎ = 1 and 𝑥
1
= (0, 0, . . . , 0), and denote it

by 𝑅0
1
. Now, take open balls 𝐵

ℎ
such that 𝐵

ℎ
⊃ 𝑅
ℎ
, with the

vertices {𝑥𝑖
ℎ
, 𝑥
𝑖

ℎ
+ ℎ, 𝑖 = 1, 2, . . . , 𝑑} lying on the limiting

sphere. Denote by 𝐵0
1
the ball containing 𝑅0

1
.

For every 𝑥
ℎ
∈ 𝑍
𝑑

ℎ
, taking in mind (1) in Remark 19, we

have, by the mean-value theorem,

𝜕
+

𝑖
𝑢 (𝑡, 𝑥

ℎ
) = ℎ
−1

(𝑢 (𝑡, 𝑥
ℎ
+ ℎ𝑒
𝑖
) − 𝑢 (𝑡, 𝑥

ℎ
))

= 𝑢
𝑥
𝑖 (𝑡, 𝑥
ℎ
+ 𝜃ℎ𝑒

𝑖
) ,

(35)





𝑢
𝑥
𝑖 (𝑡, 𝑥
ℎ
) − 𝜕
+

𝑖
𝑢 (𝑡, 𝑥

ℎ
)




=




𝑢
𝑥
𝑖 (𝑡, 𝑥
ℎ
) − 𝑢
𝑥
𝑖 (𝑡, 𝑥
ℎ
+ 𝜃ℎ𝑒

𝑖
)





≤ ℎ






𝑢
𝑥
𝑖
𝑥
𝑖 (𝑡, 𝑥
ℎ
+ 𝜃


ℎ𝑒
𝑖
)






,

(36)

for some 0 < 𝜃


< 𝜃 < 1. Clearly,






𝑢
𝑥
𝑖
𝑥
𝑖 (𝑡, 𝑥
ℎ
+ 𝜃


ℎ𝑒
𝑖
)






≤ sup
𝑥∈𝑅
ℎ





𝑢
𝑥
𝑖
𝑥
𝑖 (𝑡, 𝑥)





, (37)
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and then, from (36) and (37),





𝑢
𝑥
𝑖 (𝑡, 𝑥
ℎ
) − 𝜕
+

𝑖
𝑢 (𝑡, 𝑥

ℎ
)





2

≤ ℎ
2 sup
𝑥∈𝑅
ℎ





𝑢
𝑥
𝑖
𝑥
𝑖 (𝑡, 𝑥)






2

. (38)

We change variable in order to have the supremum in (38)
calculated over the fixed 𝑑-cell 𝑅0

1
:

sup
𝑥∈𝑅
ℎ





𝑢
𝑥
𝑖
𝑥
𝑖 (𝑡, 𝑥)





= sup
𝑥∈𝑅
0

1





𝑢
𝑥
𝑖
𝑥
𝑖 (𝑡, 𝑥
ℎ
+ ℎ𝑥)





. (39)

As

sup
𝑥∈𝑅
0

1





𝑢
𝑥
𝑖
𝑥
𝑖 (𝑡, 𝑥
ℎ
+ ℎ𝑥)






2

≤ sup
𝑥∈𝐵
0

1





𝑢
𝑥
𝑖
𝑥
𝑖 (𝑡, 𝑥
ℎ
+ ℎ𝑥)






2

, (40)

from (38)–(40) we immediately obtain

𝑟
2

(𝑥
ℎ
)




𝑢
𝑥
𝑖 (𝑡, 𝑥
ℎ
) − 𝜕
+

𝑖
𝑢 (𝑡, 𝑥

ℎ
)





2

𝜌
2

(𝑥
ℎ
)

≤ ℎ
2 sup
𝑥∈𝑅
0

1

(𝑟
2

(𝑥
ℎ
+ ℎ𝑥)





𝑢
𝑥
𝑖
𝑥
𝑖 (𝑡, 𝑥
ℎ
+ ℎ𝑥)






2

𝜌
2

(𝑥
ℎ
+ ℎ𝑥))

≤ ℎ
2 sup
𝑥∈𝐵
0

1

(𝑟
2

(𝑥
ℎ
+ ℎ𝑥)





𝑢
𝑥
𝑖
𝑥
𝑖 (𝑡, 𝑥
ℎ
+ ℎ𝑥)






2

𝜌
2

(𝑥
ℎ
+ ℎ𝑥)) .

(41)

Now, taking in mind (2) in Remark 19, we have for 𝑚 >

𝑑/2 by using Sobolev’s inequality

sup
𝑥∈𝐵
0

1





𝑟 (𝑥
ℎ
+ ℎ𝑥) 𝑢

𝑥
𝑖
𝑥
𝑖 (𝑡, 𝑥
ℎ
+ ℎ𝑥) 𝜌 (𝑥

ℎ
+ ℎ𝑥)






2

≤ 𝑁 ∑

|𝛼|≤𝑚

∫

𝐵
0

1





𝐷
𝛼

𝑥
(𝑟 (𝑥
ℎ
+ ℎ𝑥) 𝑢

𝑥
𝑖
𝑥
𝑖 (𝑡, 𝑥
ℎ
+ ℎ𝑥) 𝜌

× (𝑥
ℎ
+ ℎ𝑥))






2

𝑑𝑥,

(42)

with 𝑁 being a constant independent of ℎ. Observe that the
Leibniz formula





𝐷
𝛼

𝑥
(𝑟𝑢
𝑥
𝑖
𝑥
𝑖𝜌)





=













∑

𝛽≤𝛼

(

𝛼

𝛽
)𝐷
𝛽

(𝑟𝜌)𝐷
𝛼−𝛽

𝑥
𝑢
𝑥
𝑖
𝑥
𝑖













=













∑

𝛽≤𝛼

(

𝛼

𝛽
)(∑

𝛾≤𝛽

(

𝛽

𝛾
)𝐷
𝛾

𝑟𝐷
𝛽−𝛾

𝜌)𝐷
𝛼−𝛽

𝑥
𝑢
𝑥
𝑖
𝑥
𝑖













(43)

holds (the arguments of 𝑟, 𝜌 and 𝑢
𝑥
𝑖
𝑥
𝑖 are omitted). Also,

keeping the same convention, owing to Assumption 5





𝐷
𝛾

𝑟




≤ 𝐾𝑟𝜌

−|𝛾|

,






𝐷
𝛽−𝛾

𝜌






≤ 𝐾𝜌
1−(|𝛽|−|𝛾|)

, (44)

with 𝐾 a constant, and then












∑

𝛾≤𝛽

(

𝛽

𝛾
)𝐷
𝛾

𝑟𝐷
𝛽−𝛾

𝜌













≤ 𝑁∑

𝛾≤𝛽

(

𝛽

𝛾
) 𝑟𝜌
−|𝛾|

𝜌
1−(|𝛽|−|𝛾|)

≤ 𝑁𝑟𝜌
1−|𝛽|

,

(45)

with𝑁 a constant. From (42)–(45), we get

sup
𝑥∈𝐵
0

1





𝑟 (𝑥
ℎ
+ ℎ𝑥) 𝑢

𝑥
𝑖
𝑥
𝑖 (𝑡, 𝑥
ℎ
+ ℎ𝑥) 𝜌 (𝑥

ℎ
+ ℎ𝑥)






2

≤ 𝑁 ∑

|𝛼|≤𝑚

∑

𝛽≤𝛼

∫

𝐵
0

1

𝑟
2

(𝑥
ℎ
+ ℎ𝑥)






𝜌
1−|𝛽|

(𝑥
ℎ
+ ℎ𝑥)







2

×






𝐷
𝛼−𝛽

𝑥
𝑢
𝑥
𝑖
𝑥
𝑖 (𝑡, 𝑥
ℎ
+ ℎ𝑥)







2

𝑑𝑥.

(46)

Note also that, owing to Hölder inequality and to the
hypotheses on function 𝜌, the integral in (46) can be esti-
mated by

∫

𝐵
0

1

𝑟
2

(𝑥
ℎ
+ ℎ𝑥)

×






𝜌
1−|𝛽|

(𝑥
ℎ
+ ℎ𝑥)𝐷

𝛼−𝛽

𝑥
𝑢
𝑥
𝑖
𝑥
𝑖 (𝑡, 𝑥
ℎ
+ ℎ𝑥)







2

𝑑𝑥

≤ 𝑁∫

𝐵
0

1

𝑟
2

(𝑥
ℎ
+ ℎ𝑥)






𝜌
2+(|𝛼|−|𝛽|)

(𝑥
ℎ
+ ℎ𝑥)

×𝐷
𝛼−𝛽

𝑥
𝑢
𝑥
𝑖
𝑥
𝑖 (𝑡, 𝑥
ℎ
+ ℎ𝑥)







2

𝑑𝑥

⋅ sup
𝑥∈𝐵
0

1






𝜌
−1−|𝛼|

(𝑥
ℎ
+ ℎ𝑥)







2

≤ 𝑁∫

𝐵
0

1

𝑟
2

(𝑥
ℎ
+ ℎ𝑥)






𝜌
2+(|𝛼|−|𝛽|)

(𝑥
ℎ
+ ℎ𝑥)

×𝐷
𝛼−𝛽

𝑥
𝑢
𝑥
𝑖
𝑥
𝑖 (𝑡, 𝑥
ℎ
+ ℎ𝑥)







2

𝑑𝑥.

(47)

Thus, from (46) and (47),

sup
𝑥∈𝐵
0

1





𝑟 (𝑥
ℎ
+ ℎ𝑥) 𝑢

𝑥
𝑖
𝑥
𝑖 (𝑡, 𝑥
ℎ
+ ℎ𝑥) 𝜌 (𝑥

ℎ
+ ℎ𝑥)






2

≤ 𝑁 ∑

|𝛼|≤𝑚

∑

𝛽≤𝛼

∫

𝐵
0

1

𝑟
2

(𝑥
ℎ
+ ℎ𝑥)

×






𝜌
2+(|𝛼|−|𝛽|)

(𝑥
ℎ
+ ℎ𝑥)

⋅𝐷
𝛼−𝛽

𝑥
𝑢
𝑥
𝑖
𝑥
𝑖 (𝑡, 𝑥
ℎ
+ ℎ𝑥)







2

𝑑𝑥

≤ 𝑁 ∑

|𝛼|≤𝑚

∫

𝐵
0

1

𝑟
2

(𝑥
ℎ
+ ℎ𝑥)

×






𝜌
2+|𝛼|

(𝑥
ℎ
+ ℎ𝑥)𝐷

𝛼

𝑥
𝑢
𝑥
𝑖
𝑥
𝑖 (𝑡, 𝑥
ℎ
+ ℎ𝑥)







2

𝑑𝑥
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≤ 𝑁 ∑

|𝛼|≤𝑚+2

∫

𝐵
0

1

𝑟
2

(𝑥
ℎ
+ ℎ𝑥)

×






𝜌
|𝛼|

(𝑥
ℎ
+ ℎ𝑥)𝐷

𝛼

𝑥
𝑢 (𝑡, 𝑥

ℎ
+ ℎ𝑥)







2

𝑑𝑥

= 𝑁 ∑

|𝛼|≤𝑚+2

∫

𝐵
ℎ

𝑟
2

(𝑥)






𝜌
|𝛼|

(𝑥)𝐷
𝛼

𝑥
𝑢 (𝑡, 𝑥)







2

ℎ
−𝑑

ℎ
2|𝛼|

𝑑𝑥

≤ 𝑁 ∑

|𝛼|≤𝑚+2

∫

𝐵
ℎ

𝑟
2

(𝑥)






𝜌
|𝛼|

(𝑥)𝐷
𝛼

𝑥
𝑢 (𝑡, 𝑥)







2

ℎ
−𝑑

𝑑𝑥.

(48)

Finally, owing to the particular geometry of the frame-
work we have set, from (41) and (48) we obtain

∑

𝑥∈𝑍
𝑑

ℎ

𝑟
2

(𝑥)




𝑢
𝑥
𝑖 (𝑡, 𝑥) − 𝜕

+

𝑖
𝑢 (𝑡, 𝑥)






2

𝜌
2

(𝑥) ℎ
𝑑

≤ 𝑁ℎ
2

∑

|𝛼|≤𝑚+2

∑

𝑥
ℎ
∈𝑍
𝑑

ℎ

∫

𝐵
ℎ(𝑥ℎ)

𝑟
2

(𝑥)






𝜌
|𝛼|

(𝑥)𝐷
𝛼

𝑥
𝑢 (𝑡, 𝑥)







2

𝑑𝑥

≤ 𝑁ℎ
2

∑

|𝛼|≤𝑚+2

∑

𝑥
ℎ
∈𝑍
𝑑

ℎ

∫

𝑅
ℎ(𝑥ℎ)

𝑟
2

(𝑥)






𝜌
|𝛼|

(𝑥)𝐷
𝛼

𝑥
𝑢 (𝑡, 𝑥)







2

𝑑𝑥

≤ ℎ
2

𝑁‖𝑢 (𝑡)‖
2

𝑊
𝑚+2,2

(𝑟,𝜌)
,

(49)

where 𝐵
ℎ
(𝑥
ℎ
) := 𝐵

ℎ
, 𝑅
ℎ
(𝑥
ℎ
) := 𝑅

ℎ
, and the proof for (1) is

complete.
The proof for (2) follows the same steps.

Finally, owing to the stability and consistency properties
of the scheme (Theorems 17 and 18, resp.), we prove the
convergence of the discrete problem’s solution to the PDE
problem’s solution and compute a rate of convergence. The
accuracy obtained is of order 1.

Theorem 20. Let 𝑟 > 0 and 𝜌 > 0 be functions on R𝑑

and 𝑚 an integer strictly greater than 𝑑/2. Assume that the
hypotheses of Theorems 11 and 17 are satisfied and that 𝜌(𝑥) ≥
𝐶 on R𝑑, with 𝐶 > 0 being a constant. Denote by 𝑢 the
solution of problem (7) in Theorem 11 and by 𝑢

ℎ
the solution

of problem (17) in Theorem 17. Assume additionally that 𝑢 ∈

𝐿
2

([0, 𝑇];𝑊
𝑚+3,2

(𝑟, 𝜌)). Then

sup
0≤𝑡≤𝑇





𝑢 (𝑡) − 𝑢

ℎ
(𝑡)





2

𝑙
0,2
(𝑟)
+ ∫

𝑇

0





𝑢 (𝑡) − 𝑢

ℎ
(𝑡)





2

𝑙
1,2

(𝑟,𝜌)
𝑑𝑡

≤ ℎ
2

𝑁∫

𝑇

0

‖𝑢 (𝑡)‖
2

𝑊
𝑚+3,2

(𝑟,𝜌)
𝑑𝑡

+ 𝑁(




𝑔 − 𝑔
ℎ






2

𝑙
0,2
(𝑟)
+ ∫

𝑇

0





𝑓 (𝑡) − 𝑓

ℎ
(𝑡)





2

𝑙
0,2
(𝑟)
𝑑𝑡) ,

(50)

with𝑁 being a constant independent of ℎ.

Remark 21. Under the conditions of the above theorem, there
are modifications in 𝑥 such that the data 𝑓(𝑡) and 𝑔 are

continuous in 𝑥, for every 𝑡 ∈ [0, 𝑇] (see Remark 19). We will
consider these modifications in the proof of the theorem.

Proof of Theorem 20. From (7) and (17), we have that 𝑢 − 𝑢
ℎ

satisfies the problem

(𝑢 − 𝑢
ℎ
)
𝑡
= 𝐿
ℎ
(𝑢 − 𝑢

ℎ
) + (𝐿 − 𝐿

ℎ
) 𝑢 + (𝑓 − 𝑓

ℎ
) in 𝑄 (ℎ)

(𝑢 − 𝑢
ℎ
) (0, 𝑥) = (𝑔 − 𝑔

ℎ
) (𝑥) on 𝑍

𝑑

ℎ
.

(51)

Taking in mind Remark 21, we see clearly that 𝑓 − 𝑓
ℎ
∈

𝐿
2

([0, 𝑇]; 𝑙
0,2

(𝑟)) and 𝑔 − 𝑔
ℎ
∈ 𝑙
0,2

(𝑟).
With respect to the term (𝐿 − 𝐿

ℎ
)𝑢, note that if 𝑢(𝑡) ∈

𝑊
𝑚+3,2

(𝑟, 𝜌), for all 𝑡 ∈ [0, 𝑇],

∑

𝑥∈𝑍
𝑑

ℎ

𝑟
2

(𝑥)




(𝐿 − 𝐿

ℎ
) (𝑡) 𝑢 (𝑡)






2

ℎ
𝑑

= ∑

𝑥∈𝑍
𝑑

ℎ

𝑟
2

(𝑥)











𝑎
𝑖𝑗

(𝑡, 𝑥) (

𝜕
2

𝜕𝑥
𝑖
𝜕𝑥
𝑗
− 𝜕
−

𝑗
𝜕
+

𝑖
)𝑢 (𝑡, 𝑥)

+𝑏
𝑖

(𝑡, 𝑥) (

𝜕

𝜕𝑥
𝑖
− 𝜕
+

𝑖
)𝑢 (𝑡, 𝑥)











2

ℎ
𝑑

≤ ℎ
2

𝑁‖𝑢 (𝑡)‖
2

𝑊
𝑚+3,2

(𝑟,𝜌)
< ∞,

(52)

owing to (2) in Assumption 8 and to Theorem 18. Thus
(𝐿 − 𝐿

ℎ
)(𝑡)𝑢(𝑡) ∈ 𝑙

0,2

(𝑟), for every 𝑡 ∈ [0, 𝑇]. Moreover,
as by assumption 𝑢 ∈ 𝐿

2

([0, 𝑇];𝑊
𝑚+3,2

(𝑟, 𝜌)), we obtain
immediately (𝐿 − 𝐿

ℎ
)𝑢 ∈ 𝐿

2

([0, 𝑇]; 𝑙
0,2

(𝑟)).
We have shown that problem (51) satisfies the hypotheses

of Theorem 17, therefore holding the estimate

sup
0≤𝑡≤𝑇





𝑢 (𝑡) − 𝑢

ℎ
(𝑡)





2

𝑙
0,2
(𝑟)
+ ∫

𝑇

0





𝑢 (𝑡) − 𝑢

ℎ
(𝑡)





2

𝑙
1,2

(𝑟,𝜌)
𝑑𝑡

≤ 𝑁(




𝑔 − 𝑔
ℎ






2

𝑙
0,2
(𝑟)
+ ∫

𝑇

0





𝑓 (𝑡) − 𝑓

ℎ
(𝑡)





2

𝑙
0,2
(𝑟)
𝑑𝑡

+∫

𝑇

0





(𝐿 − 𝐿

ℎ
) (𝑡) 𝑢 (𝑡)






2

𝑙
0,2
(𝑟)
𝑑𝑡) .

(53)

Owing again to (2) in Assumption 8 and to Theorem 18, the
result follows.

The following result is an immediate consequence of
Theorem 20.

Corollary 22. Let the hypotheses of Theorem 20 be satisfied,
and denote by 𝑢 the solution of (7) in Theorem 11 and by 𝑢

ℎ

the solution of (17) in Theorem 17. If there is a constant 𝑁
independent of ℎ such that





𝑔 − 𝑔
ℎ






2

𝑙
0,2
(𝑟)
+ ∫

𝑇

0





𝑓 (𝑡) − 𝑓

ℎ
(𝑡)





2

𝑙
0,2
(𝑟)
𝑑𝑡

≤ ℎ
2

𝑁(




𝑔





2

𝑊
𝑚,2

(𝑟,𝜌)
+ ∫

𝑇

0





𝑓 (𝑡)






2

𝑊
𝑚−1,2

(𝑟,𝜌)
𝑑𝑡)

(54)
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then

sup
0≤𝑡≤𝑇





𝑢 (𝑡) − 𝑢

ℎ
(𝑡)





2

𝑙
0,2
(𝑟)
+ ∫

𝑇

0





𝑢 (𝑡) − 𝑢

ℎ
(𝑡)





2

𝑙
1,2

(𝑟,𝜌)
𝑑𝑡

≤ ℎ
2

𝑁(∫

𝑇

0

‖𝑢 (𝑡)‖
2

𝑊
𝑚+3,2

(𝑟,𝜌)
𝑑𝑡 +





𝑔





2

𝑊
𝑚,2

(𝑟,𝜌)

+∫

𝑇

0





𝑓 (𝑡)






2

𝑊
𝑚−1,2

(𝑟,𝜌)
𝑑𝑡) .

(55)

5. Conclusions

In this paper, we investigated the finite-difference spatial
approximation of the Cauchy problem for a second-order
linear parabolic PDE, in the framework of the variational
approach.

By considering a suitable class of weighted Sobolev
spaces, and its zero and first-order discrete versions, we could
deal with the growth in space of the PDE coefficients (as
well as with the spatial growth of the free data 𝑓 and 𝑔).
Moreover, as the framework and techniques used to study the
discrete problem mirror the framework and techniques for
the corresponding continuous problem we could estimate a
rate of convergence.

The approximationwas studied under the strong assump-
tion that the PDE does not degenerate. But the framework
we used is broadly the appropriate framework for a future
investigation of the related degenerate case.

Other possible further research directions include the
use of splitting-up methods (see [10]), following Richardson’s
idea to accelerate numerical schemes, and also the use of
techniques reducing the volume of computational work (e.g.,
sparse grid techniques), in order to deal with the computa-
tional challenge posed by the possible high dimensionality of
the problem.
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The problem of stability for nonlinear impulsive stochastic functional differential equations with delayed impulses is addressed
in this paper. Based on the comparison principle and an impulsive delay differential inequality, some exponential stability and
asymptotical stability criteria are derived, which show that the system will be stable if the impulses’ frequency and amplitude are
suitably related to the increase or decrease of the continuous stochastic flows. The obtained results complement ones from some
recent works. Two examples are discussed to illustrate the effectiveness and advantages of our results.

1. Introduction

Impulsive dynamical equations have received considerable
attention during the recent decades since they provide a
natural framework for mathematical modeling of many
real world evolutionary processes where the states undergo
abrupt changes at certain instants (see [1–7]). In particular,
more researchers have given special interests to the stability
and stabilization analysis of impulsive functional differential
equations (IFDEs) and there are extensive literatures in this
field (see [8–14] and reference therein).

In the current literature concerning IFDEs, the impulses
are assumed to take the form Δ𝑥(𝑡

𝑘
) = 𝐼

𝑘
(𝑡
𝑘
, 𝑥(𝑡
−

𝑘
)), which

indicates that the state “jump” at the impulse times 𝑡
𝑘
is only

related to the present state variables. But in most cases, it
is more applicable that the state variables on the impulses
that we add are also related to the past ones. For example,
in the transmission of the impulse information, input delays
are often encountered (see, e.g., [15, 16]). So, it is more
meaningful if the above impulses are modified as Δ𝑥(𝑡

𝑘
) =

𝑥(𝑡
𝑘
) − 𝑥(𝑡

−

𝑘
) = 𝐼

𝑘
(𝑡
𝑘
, 𝑥((𝑡
𝑘
− 𝑑
𝑘
)
−

)). Recently, there have
been several attempts in the literature to study the stability

and control problems of IFDEs with delayed impulse (IFDEs-
DI). For example, by using Lyapunov functions couples with
Razumikhin techniques, some Razumikhin-type asymptotic
stability and exponential stability criteria for IFDEs-DI were
established in [17–19], and some Lyapunov-based sufficient
conditions for the exponential stability of the equations were
derived in [20].

On the other hand, stochastic perturbations are unavoid-
able in real equations (see [21, 22] and reference therein).
In recent years, the stability analysis of impulsive stochastic
functional equations which include delay equations is inter-
esting to many investigators, and many results of stability
criteria of these equations have been reported (see, e.g.,
[23–29]). Very recently, [30, 31] took environment noise
into account and generalized delayed impulses to stochastic
equations. In particular, applying the Lyapunov functions
couples with Razumikhin techniques, [30] investigates both
moment and almost sure exponential stability of impul-
sive stochastic functional differential equations with delayed
impulses (ISFDEs-DI), and several Razumikhin-type criteria
on the exponential stability and uniform stability in terms
of two measures for the equations were established in [31].
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But it is worth noting that the stability analysis in [30] and
the effects of time delay on the impulses have been ignored.
And in [30, 31], the authors only consider the case that the
impulsive stabilization. Moreover, it is well known that the
Razumikhin techniques are very effective in the study of
stability problems for ordinary and functional differential
equations. However, when we use the Razumikhin tech-
niques, we need to choose an appropriate minimal class of
functionals relative to which the derivative of the Lyapunov
function or Lyapunov functional is estimated, which is not
entirely convenient.

Motivated by the above discussion, in this paper, we
will further investigate the stability of ISFDEs-DI. By using
the comparison principle and an impulsive delay differen-
tial inequality, some exponential and asymptotical stabil-
ity criteria are derived, which are more convenient to be
applied than those Razumikhin-type conditions. Our results
complement ones from some recent works and show that
the ISFDE-ID will be stable if the impulses’ frequency and
amplitude are suitably related to the increase or decrease
of the corresponding continuous stochastic flows. The rest
of the paper is organized as follows. In Section 2, some
relevant notations and definitions are presented. In Section 3,
the comparison principle, an impulsive delay differential
inequality, and several criteria on the exponential stability
and asymptotical stability are established. Section 4 provides
two illustrative examples to demonstrate the applications
of the obtained results. Finally, conclusions are drawn in
Section 5.

2. Preliminaries

Throughout this paper, unless otherwise specified, we let
(Ω,F, {F

𝑡
}
𝑡⩾0

,P) be a complete probability space with a
filtration {F

𝑡
}
𝑡⩾0

satisfying the usual conditions; that is, it
is right continuous and F

0
contains all P-null sets. Let

𝑤(𝑡) = (𝑤
1
(𝑡), . . . , 𝑤

𝑑
(𝑡))
𝑇 be a 𝑑-dimensional Brownian

motion defined on the probability space. Let N denote the
set of positive integers, R𝑛 the 𝑛-dimensional real Euclidean
space, and R𝑛 × 𝑑 the space of 𝑛 × 𝑑 real matrices. 𝐼 stands
for the identity matrix of appropriate dimensions. For 𝑥 ∈

R𝑛, |𝑥| denotes the Euclidean norm. For 𝐴 ∈ R𝑛 × 𝑑, ‖𝐴‖
denotes spectral norm of the matrix𝐴. Denote by 𝜆min(⋅) the
minimum eigenvalue of a matrix. If 𝐴 is a vector or matrix,
its transpose is denoted by 𝐴𝑇.

Let 𝜏 > 0 and PC([−𝜏, 0];R𝑛) = {𝜑 : [−𝜏, 0] →

R𝑛| 𝜑(𝑡+) = 𝜑(𝑡) for all 𝑡 ∈ [−𝜏, 0), 𝜑(𝑡−) exist and let
𝜑(𝑡
−

) = 𝜑(𝑡) for all but at most a finite number of points
𝑡 ∈ (−𝜏, 0]} be with the norm ‖ 𝜑 ‖= sup

−𝜏⩽𝜃⩽0
|𝜑(𝜃)|, where

𝜑(𝑡
+

) and 𝜑(𝑡−) denote the right-hand and left-hand limits of
function 𝜑(𝑡) at 𝑡, respectively. Denote PC([𝑡

0
− 𝜏,∞);R) =

{𝜑|𝜑|
[𝑡
0
−𝜏,𝑏]

∈ PC([𝑡
0
− 𝜏, 𝑏];R) for all 𝑏 > 𝑡

0
− 𝜏}.

For 𝑝 > 0 and 𝑡 ⩾ 0, let PC𝑝
F
𝑡

([−𝜏, 0];R𝑛) denote the
family of all F

𝑡
-measurable PC([−𝜏, 0];R𝑛)-valued random

variables 𝜑 such that sup
−𝜏⩽𝜃⩽0

E|𝜑(𝜃)|𝑝 < ∞, where E stands
for the mathematical expectation operator with respect to
the given probability measure P. And 𝐿

𝑝

F
𝑡

(Ω;R𝑛) denote

the family of allF
𝑡
measurable R𝑛-valued random variables

𝑋, such that E|𝑋|
𝑝

< ∞. Let PC𝑏([−𝜏, 0];R𝑛) be the
family of all bounded PC([−𝜏, 0];R𝑛)-valued functions, and
let PC𝑏F

𝑡
0

([−𝜏, 0];R𝑛) be the family of all F
𝑡
0

measurable
PC𝑏([−𝜏, 0];R𝑛)-valued functions.

Consider the following ISFDE-DI:

d𝑥 (𝑡) = 𝑓 (𝑡, 𝑥
𝑡
) d𝑡 + 𝑔 (𝑡, 𝑥

𝑡
) d𝑤 (𝑡) , 𝑡 ̸= 𝑡

𝑘
, 𝑡 ⩾ 𝑡

0
,

𝑥 (𝑡
𝑘
) = 𝐼
𝑘
(𝑡
𝑘
, 𝑥 (𝑡
−

𝑘
) , 𝑥 ((𝑡

𝑘
− 𝑑
𝑘
)
−

)) , 𝑘 ∈ N,

𝑥
𝑡
0

(𝜃) = 𝜉 (𝜃) , 𝜃 ∈ [−𝜏, 0] ,

(1)

where the initial value 𝜉 ∈ PC𝑏F
𝑡
0

([−𝜏, 0];R𝑛), 𝑥(𝑡) = ((𝑥
1
(𝑡),

. . . , 𝑥
𝑛
(𝑡))
𝑇, 𝑥
𝑡
= 𝑥(𝑡 + 𝜃) ∈ PC𝑝

F
𝑡

([−𝜏, 0];R𝑛). Both 𝑓 : R
+
×

PC𝑝
F
𝑡

([−𝜏, 0];R𝑛) → R𝑛 and 𝑔 : R
+
× PC𝑝

F
𝑡

([−𝜏, 0];R𝑛) →

R𝑛×𝑑 are Borelmeasurable. 𝐼
𝑘
: R
+
×𝐿
𝑝

F
𝑡

(Ω;R𝑛)×𝐿
𝑝

F
𝑡

(Ω;R𝑛)

→ R𝑛 represents the impulsive perturbation of 𝑥 at time 𝑡
𝑘
.

The fixed moments of impulse times {𝑡
𝑘
, 𝑘 ∈ N} satisfy 0 ⩽

𝑡
0
< 𝑡
1
< ⋅ ⋅ ⋅ < 𝑡

𝑘
< ⋅ ⋅ ⋅ , 𝑡

𝑘
→ ∞ (as 𝑘 → ∞). {𝑑

𝑘
⩾ 0, 𝑘 ∈

N} are the impulse input delays satisfying 𝑑 = sup
𝑘∈N𝑑𝑘 < ∞.

As a standing hypothesis, we assume that for any 𝜉 ∈

PC𝑏F
𝑡
0

([−𝜏, 0];R𝑛) there exists a unique stochastic process
satisfying (1) denoted by 𝑥(𝑡; 𝑡

0
, 𝜉), which is continuous on

the right-hand side and limitable on the left-hand side (see
[32]). Moreover, we assume that 𝑓(𝑡, 0) ≡ 0, 𝑔(𝑡, 0) ≡ 0, and
𝐼
𝑘
(𝑡, 0, 0) ≡ 0 for all 𝑡 ⩾ 𝑡

0
, 𝑘 ∈ N; then (1) admits a trivial

solution 𝑥(𝑡) ≡ 0.
We introduce the following scalar IFDE-DI as the com-

parison system:

̇𝑢 (𝑡) = ℎ (𝑡, 𝑢 (𝑡) , 𝑢
𝑡
) , 𝑡 ̸= 𝑡

𝑘
, 𝑡 ⩾ 𝑡

0
,

𝑢 (𝑡
𝑘
) = Ψ
1𝑘
(𝑢 (𝑡
−

𝑘
)) + Ψ

2𝑘
(𝑢(𝑡
𝑘
− 𝑑
𝑘
)
−

) , 𝑘 ∈ N,

𝑢
𝑡
0

(𝜃) = 𝜁 (𝜃) , 𝜃 ∈ [−𝜏, 0] ,

(2)

where the initial value 𝜁 ∈ PC([−𝜏, 0];R
+
); 𝑢
𝑡
∈ PC([−𝜏, 0];

R
+
) is defined as 𝑢

𝑡
= 𝑢(𝑡 + 𝜃), 𝜃 ∈ [−𝜏, 0]. ℎ : R

+
× R
+
×

PC([−𝜏, 0];R
+
) → R

+
is continuous, Lebesgue measurable,

and nondecreasing with respect to the last argument; Ψ
1𝑘
,

Ψ
2𝑘

: R
+
→ R
+
are continuous and nondecreasing. Assume

that ℎ(𝑡, 0, 0) ≡ 0, Ψ
1𝑘
(0) ≡ 0, and Ψ

2𝑘
(0) ≡ 0; then system

(2) admits a trivial solution 𝑢(𝑡) ≡ 0. We further assume that
for any 𝜁 ∈ PC𝑏([−𝜏, 0];R

+
), there exists a unique solution

to system (2) on [𝑡
0
− 𝜏,∞) denoted by 𝑢(𝑡; 𝑡

0
, 𝜁) (see [5, 6])

which is continuous on the right-handside and limitable on
the left-hand side.

For convenience, we introduce the following function
classes:

K = {𝜙 : R
+
→ R
+
, continuous and strictly increas-

ing, 𝜙(0) = 0}.
K
∞

= {𝜙 ∈ K, 𝜙(𝑠) → ∞ as 𝑠 → ∞}.

𝐶K = {𝜙 ∈ K, 𝜙 is concave}.
𝑉K
∞

= {𝜙 ∈ K
∞
, 𝜙 is convex}.
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At the end of this section, let us introduce the following
definitions.

Definition 1 (see [23, 26]). The trivial solution of (1) is said to
be as follows.

(i) 𝑝th moment stable if, for any 𝜀 > 0, there exists 𝛿 =

𝛿(𝜀, 𝑡
0
) > 0 such that

E




𝑥(𝑡; 𝑡
0
, 𝜉)






𝑝

⩽ 𝜀, 𝑡 ⩾ 𝑡
0
, (3)

whenever E‖𝜉‖𝑝 < 𝛿.
(ii) 𝑝th moment asymptotically stable if it is 𝑝th moment

stable and there exists 𝛿
0
= 𝛿
0
(𝑡
0
) such that

lim
𝑡→∞

E




𝑥 (𝑡; 𝑡
0
, 𝜉)






𝑝

= 0, 𝑡 ⩾ 𝑡
0
, (4)

whenever E‖𝜉‖𝑝 < 𝛿
0
.

(iii) 𝑝th moment globally exponentially stable if there is a
pair of positive constants 𝜆, 𝐶 such that

E




𝑥 (𝑡; 𝑡
0
, 𝜉)






𝑝

⩽ 𝐶E




𝜉





𝑝

𝑒
−𝜆(𝑡−𝑡

0
)

, 𝑡 ⩾ 𝑡
0

(5)

for all 𝜉 ∈ PC𝑏F
𝑡
0

([−𝜏, 0];R𝑛). When 𝑝 = 2, it is usu-
ally said to be globally exponentially stable in mean
square.

Definition 2 (see [26]). A function𝑉 : [𝑡
0
−𝜏,∞) ×R𝑛 → R

+

belongs to class V
0
if

(i) 𝑉 is continuous on each of the sets [𝑡
𝑘−1

, 𝑡
𝑘
) × R𝑛

and for each 𝑥, 𝑦 ∈ R𝑛, 𝑡 ∈ [𝑡
𝑘−1

, 𝑡
𝑘
), and 𝑘 ∈ N,

lim
(𝑡,𝑦)→ (𝑡

−

𝑘
,𝑥)
𝑉(𝑡, 𝑦) = 𝑉(𝑡

−

𝑘
, 𝑥) exists;

(ii) 𝑉(𝑡, 𝑥) is continuously once differentiable in 𝑡 and
twice in 𝑥 in each of the sets (𝑡

𝑘−1
, 𝑡
𝑘
) ×R𝑛, 𝑘 ∈ N.

If 𝑉 ∈ V
0
, define an operator L𝑉 from [𝑡

0
,∞) ×

PC([−𝜏, 0];R𝑛) to R by

L𝑉 (𝑡, 𝜑) = 𝑉
𝑡
(𝑡, 𝜑 (0)) + 𝑉

𝑥
(𝑡, 𝜑 (0)) 𝑓 (𝑡, 𝜑)

+

1

2

trace [𝑔𝑇 (𝑡, 𝜑)𝑉
𝑥𝑥

(𝑡, 𝜑 (0)) 𝑔 (𝑡, 𝜑)] ,

(6)

where

𝑉
𝑡
(𝑡, 𝑥) =

𝜕𝑉 (𝑡, 𝑥)

𝜕𝑡

,

𝑉
𝑥
(𝑡, 𝑥) = (

𝜕𝑉 (𝑡, 𝑥)

𝜕𝑥
1

, . . . ,

𝜕𝑉 (𝑡, 𝑥)

𝜕𝑥
𝑛

) ,

𝑉
𝑥𝑥

(𝑡, 𝑥) = (

𝜕
2

𝑉 (𝑡, 𝑥)

𝜕𝑥
𝑖
𝜕𝑥
𝑗

)

𝑛×𝑛

.

(7)

3. Main results

In this section, we will develop an impulsive delay differential
inequality and comparison principles and establish some cri-
teria on 𝑝th moment exponential stability and asymptotical
stability for (1).

Lemma 3 (impulsive delay differential inequality). Assume
that 𝑐 ∈ R, 𝛿 ∈ R, 𝑞 ∈ R

+
, 𝑎
𝑘
> 0, 𝑏

𝑘
⩾ 0, 𝑘 ∈ N, 𝑢(𝑡) :=

sup
𝜃∈[−𝜏,0]

𝑢(𝑡 + 𝜃), and

(i) ln(𝑎
𝑘
+ 𝑏
𝑘
𝑒
𝑐𝑑
𝑘
) ⩽ 𝛿(𝑡

𝑘
− 𝑡
𝑘−1

) for each 𝑘 ∈ N;

(ii) 𝛿 + 𝑐 + 𝑞𝛾 < 0, where 𝛾 = sup
𝑘∈N{𝑒
𝛿(𝑡
𝑘
−𝑡
𝑘−1
)

, 1/

𝑒
𝛿(𝑡
𝑘
−𝑡
𝑘−1
)

}.

Then any solution 𝑢 ∈ 𝑃𝐶([𝑡
0
− 𝜏,∞);R

+
) of the scalar

impulsive delay differential inequality problem

𝐷
+

𝑢 (𝑡) ⩽ 𝑐𝑢 (𝑡) + 𝑞𝑢 (𝑡) , 𝑡 ̸= 𝑡
𝑘
, 𝑡 ⩾ 𝑡

0
,

𝑢 (𝑡
𝑘
) ⩽ 𝑎
𝑘
𝑢 (𝑡
−

𝑘
) + 𝑏
𝑘
𝑢 ((𝑡
𝑘
− 𝑑
𝑘
)
−

) , 𝑘 ∈ N
(8)

satisfies

𝑢 (𝑡) ⩽ 𝛾𝑢 (𝑡
0
) 𝑒
−𝜆(𝑡−𝑡

0
)

, 𝑡 ⩾ 𝑡
0
− 𝜏, (9)

where 𝜆 is the unique positive solution of 𝜆+ 𝛿+ 𝑐 + 𝑞𝛾𝑒𝜆𝜏 = 0.

Proof . Set V(𝑡) = 𝑒
−𝑐(𝑡−𝑡

0
)

𝑢(𝑡), 𝑡 ∈ [𝑡
0
−𝜏,∞). For each 𝑘 ∈ N,

by the second inequality of (8), we have

V (𝑡
𝑘
) = 𝑒
−𝑐(𝑡
𝑘
−𝑡
0
)

𝑢 (𝑡
𝑘
)

⩽ 𝑒
−𝑐(𝑡
𝑘
−𝑡
0
)

[𝑎
𝑘
𝑢 (𝑡
−

𝑘
) + 𝑏
𝑘
𝑢 ((𝑡
𝑘
− 𝑑
𝑘
)
−

)]

= 𝑎
𝑘
𝑒
−𝑐(𝑡
𝑘
−𝑡
0
)

𝑢 (𝑡
−

𝑘
) + 𝛽
𝑘
𝑏
𝑘
𝑢 ((𝑡
𝑘
− 𝑑
𝑘
)
−

) 𝑒
−𝑐(𝑡
𝑘
−𝑑
𝑘
−𝑡
0
)

= 𝑎
𝑘
V (𝑡−
𝑘
) + 𝛽
𝑘
𝑏
𝑘
V ((𝑡
𝑘
− 𝑑
𝑘
)
−

) ,

(10)

where 𝛽
𝑘
= 𝑒
𝑐𝑑
𝑘 .

On the other hand, for any 𝑡 ̸= 𝑡
𝑘
, 𝑘 ∈ N,

𝐷
+V (𝑡) = 𝑒

−𝑐(𝑡−𝑡
0
)

[−𝑐𝑢 (𝑡) + 𝐷
+

𝑢 (𝑡)] ⩽ 𝑞𝑒
−𝑐(𝑡−𝑡

0
)

𝑢 (𝑡) .

(11)

For 𝑡 ∈ [𝑡
0
, 𝑡
1
), integrating inequality (11) from 𝑡

0
to 𝑡, we

obtain

V (𝑡) ⩽ V (𝑡
0
) + ∫

𝑡

𝑡
0

𝑞𝑒
−𝑐(𝑠−𝑡

0
)

𝑢 (𝑠) d𝑠; (12)

this implies that

V (𝑡−
1
) ⩽ V (𝑡

0
) + ∫

𝑡
1

𝑡
0

𝑞𝑒
−𝑐(𝑠−𝑡

0
)

𝑢 (𝑠) d𝑠. (13)
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For 𝑡 ∈ [𝑡
1
, 𝑡
2
), by the same method, together with (10), (11),

and (13), we have

V (𝑡) ⩽ V (𝑡
1
) + ∫

𝑡

𝑡
1

𝑞𝑒
−𝑐(𝑠−𝑡

0
)

𝑢 (𝑠) d𝑠

⩽ 𝑎
1
V (𝑡−
1
) + 𝛽
1
𝑏
1
V ((𝑡
1
− 𝑑
1
)
−

) + ∫

𝑡

𝑡
1

𝑞𝑒
−𝑐(𝑠−𝑡

0
)

𝑢 (𝑠) d𝑠

⩽ 𝑎
1
[V (𝑡
0
) + ∫

𝑡
1

𝑡
0

𝑞𝑒
−𝑐(𝑠−𝑡

0
)

𝑢 (𝑠) d𝑠]

+ 𝛽
1
𝑏
1
[V (𝑡
0
) + ∫

𝑡
1
−𝑑
1

𝑡
0

𝑞𝑒
−𝑐(𝑠−𝑡

0
)

𝑢 (𝑠) d𝑠]

+ ∫

𝑡

𝑡
1

𝑞𝑒
−𝑐(𝑠−𝑡

0
)

𝑢 (𝑠) d𝑠

⩽ (𝑎
1
+ 𝛽
1
𝑏
1
) V (𝑡
0
) + (𝑎

1
+ 𝛽
1
𝑏
1
)

× ∫

𝑡
1

𝑡
0

𝑞𝑒
−𝑐(𝑠−𝑡

0
)

𝑢 (𝑠) d𝑠 + ∫

𝑡

𝑡
1

𝑞𝑒
−𝑐(𝑠−𝑡

0
)

𝑢 (𝑠) d𝑠.

(14)

By induction, we have, for 𝑡 ∈ [𝑡
𝑘−1

, 𝑡
𝑘
), 𝑘 ∈ N,

V (𝑡) ⩽ V (𝑡
0
) ∏

𝑡
0
<𝑡
𝑗
⩽𝑡

(𝑎
𝑗
+ 𝛽
𝑗
𝑏
𝑗
)

+ ∫

𝑡

𝑡
0

∏

𝑠<𝑡
𝑗
⩽𝑡

(𝑎
𝑗
+ 𝛽
𝑗
𝑏
𝑗
) 𝑞𝑒
−𝑐(𝑠−𝑡

0
)

𝑢 (𝑠) d𝑠.
(15)

Thus, for 𝑡 > 𝑡
0
, we get

𝑢 (𝑡) ⩽ 𝑢 (𝑡
0
) 𝑒
𝑐(𝑡−𝑡
0
)

∏

𝑡
0
<𝑡
𝑗
⩽𝑡

(𝑎
𝑗
+ 𝛽
𝑗
𝑏
𝑗
)

+ ∫

𝑡

𝑡
0

∏

𝑠<𝑡
𝑗
⩽𝑡

(𝑎
𝑗
+ 𝛽
𝑗
𝑏
𝑗
) 𝑞𝑒
𝑐(𝑡−𝑠)

𝑢 (s) d𝑠.
(16)

Let 𝑡
𝑗
1

, 𝑡
𝑗
2

, . . . , 𝑡
𝑗
𝑚

be impulse points in (𝑠, 𝑡], 𝑡 > 𝑠. In view
of condition (i), we get

∏

𝑠<𝑡
𝑗
⩽𝑡

(𝑎
𝑗
+ 𝛽
𝑗
𝑏
𝑗
) = (𝑎

𝑗
1

+ 𝛽
𝑗
1

𝑏
𝑗
1

)

× (𝑎
𝑗
2

+ 𝛽
𝑗
2

𝑏
𝑗
2

) ⋅ ⋅ ⋅ (𝑎
𝑗
𝑚

+ 𝛽
𝑗
𝑚

𝑏
𝑗
𝑚

)

⩽ 𝑒
𝛿(𝑡
𝑗
1

−𝑡
𝑗
1
−1
)

𝑒
𝛿(𝑡
𝑗
2

−𝑡
𝑗
1

)

⋅ ⋅ ⋅ 𝑒
𝛿(𝑡
𝑗𝑚
−𝑡
𝑗
𝑚−1

)

= 𝑒
𝛿(𝑡
𝑗𝑚
−𝑡
𝑗
1
−1
)

= 𝑒
𝛿(𝑡−𝑠)

𝑒
𝛿(𝑡
𝑗𝑚
−𝑡)

𝑒
𝛿(𝑠−𝑡
𝑗
𝑙
−1
)

⩽ 𝛾𝑒
𝛿(𝑡−𝑠)

,

(17)

where 𝑡
𝑗
1
−1

is the first impulsive point before 𝑡
𝑗
1

and satisfies
𝑡
𝑗
1
−1

< 𝑠. Submitting this into inequality (16), then, for 𝑡 > 𝑡
0
,

𝑢 (𝑡) ⩽ 𝛾𝑒
(𝑐+𝛿)(𝑡−𝑡

0
)

𝑢 (𝑡
0
) + ∫

𝑡

𝑡
0

𝛾𝑞𝑒
(𝑐+𝛿)(𝑡−𝑠)

𝑢 (𝑠) d𝑠. (18)

Let Φ(𝜆) = 𝜆 + 𝑐 + 𝛿 + 𝛾𝑞𝑒
𝜆𝜏. Then condition (ii) implies

Φ(0) < 0. Moreover,Φ(+∞) = +∞ andΦ(𝜆) = 1+𝜏𝛾𝑞𝑒
𝜆𝜏

>

0. HenceΦ(𝜆) = 0 has a unique positive solution 𝜆. Next, we
claim that

𝑢 (𝑡) ⩽ 𝛾𝑢 (𝑡
0
) 𝑒
−𝜆(𝑡−𝑡

0
)

, 𝑡 ⩾ 𝑡
0
− 𝜏. (19)

Since

𝑢 (𝑡) ⩽ 𝑢 (𝑡
0
) ⩽ 𝛾𝑢 (𝑡

0
) 𝑒
−𝜆(𝑡−𝑡

0
)

, 𝑡 ∈ [𝑡
0
− 𝜏, 𝑡
0
] . (20)

So we only need to prove (19) for 𝑡 > 𝑡
0
. Suppose not, then

there exists a 𝑡∗ ∈ (𝑡
0
, +∞) such that

𝑢 (𝑡
∗

) > 𝛾𝑢 (𝑡
0
) 𝑒
−𝜆(𝑡
∗

−𝑡
0
)

, (21)

𝑢 (𝑡) ⩽ 𝛾𝑢 (𝑡
0
) 𝑒
−𝜆(𝑡−𝑡

0
)

, 𝑡 ∈ [𝑡
0
− 𝜏, 𝑡
∗

) . (22)

Thus from (18), (22), and Φ(𝜆) = 0, we see that

𝑢 (𝑡
∗

) ⩽ 𝛾𝑢 (𝑡
0
) 𝑒
(𝑐+𝛿)(𝑡

∗

−𝑡
0
)

+ 𝛾∫

𝑡
∗

𝑡
0

𝑞𝑒
(𝑐+𝛿)(𝑡

∗

−𝑠)

𝑢 (𝑠) d𝑠

⩽ 𝛾𝑢 (𝑡
0
) 𝑒
(𝑐+𝛿)(𝑡

∗

−𝑡
0
)

+ 𝛾∫

𝑡
∗

𝑡
0

𝛾𝑞𝑒
𝜆𝜏

𝑒
(𝑐+𝛿)(𝑡

∗

−𝑠)

𝑒
−𝜆(𝑠−𝑡

0
)

𝑢 (𝑡
0
) d𝑠

= 𝛾𝑢 (𝑡
0
) 𝑒
−𝜆(𝑡
∗

−𝑡
0
)

,

(23)

which is a contradiction.Therefore, (19) holds.This completes
the proof.

Lemma 4 (comparison principle). Assume that there exists a
function 𝑉 ∈ V

0
such that

(i) EL𝑉(𝑡, 𝜑) ⩽ ℎ(𝑡,E𝑉(𝑡, 𝜑(0)),E𝑉(𝑡 + 𝜃, 𝜑)) for any
(𝑡, 𝜑) ∈ [𝑡

𝑘−1
, 𝑡
𝑘
) × 𝑃𝐶

𝑝

F
𝑡

([−𝜏, 0];R𝑛), 𝑘 ∈ N;

(ii) E𝑉(𝑡
𝑘
, 𝐼
𝑘
(𝑡
𝑘
, 𝑋, 𝑌)) ⩽ Ψ

1𝑘
(E𝑉(𝑡−

𝑘
, 𝑋)) + Ψ

2𝑘
(E𝑉((𝑡

𝑘
−

𝑑
𝑘
)
−

, 𝑌)) for all𝑋,𝑌 ∈ 𝐿
𝑝

F
𝑡

(Ω;R𝑛), 𝑘 ∈ N.

Then,

E𝑉 (𝑡, 𝑥 (𝑡)) ⩽ 𝑢 (𝑡; 𝑡
0
, 𝜁) , 𝑡 ⩾ 𝑡

0
(24)

providedE𝑉(𝑡
0
+𝜃, 𝑥(𝑡

0
+𝜃)) ⩽ 𝜁(𝜃), 𝜃 ∈ [−𝜏, 0], where 𝑥(𝑡) =

x(𝑡; 𝑡
0
, 𝜉) is the solution process to (1).

Proof. For any 𝑡 ∈ [𝑡
𝑘−1

, 𝑡
𝑘
) and 𝛼 > 0 sufficiently small

satisfying 𝑡 + 𝛼 < 𝑡
𝑘
, by the Itô formula together with

condition (i), we have

E𝑉 (𝑡 + 𝛼, 𝑥 (𝑡 + 𝛼)) − E𝑉 (𝑡, 𝑥 (𝑡))

= ∫

𝑡+𝛼

𝑡

EL𝑉 (𝑠, 𝑥
𝑠
) d𝑠

⩽ ∫

𝑡+𝛼

𝑡

ℎ (𝑠,E𝑉 (𝑠, 𝑥 (𝑠)) ,E𝑉 (𝑠 + 𝜃, 𝑥
𝑠
)) d𝑠;

(25)
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this implies that

𝐷
+

E𝑉 (𝑡, 𝑥 (𝑡))

:= lim sup
𝛼→0

+

E𝑉 (𝑡 + 𝛼, 𝑥 (𝑡 + 𝛼)) − E𝑉 (𝑡, 𝑥 (𝑡))

𝛼

⩽ lim sup
𝛼→0

+

1

𝛼

∫

𝑡+𝛼

𝑡

ℎ (𝑠,E𝑉 (𝑠, 𝑥 (𝑠)) ,E𝑉 (𝑠 + 𝜃, 𝑥
𝑠
)) d𝑠

= ℎ (𝑡,E𝑉 (𝑡, 𝑥 (𝑡)) ,E𝑉 (𝑡 + 𝜃, 𝑥
𝑡
)) .

(26)

Write 𝑢(𝑡; 𝑡
0
, 𝜁) = 𝑢(𝑡) simply. Now supposing that for

each 𝜃 ∈ [−𝜏, 0], E𝑉(𝑡
0
+ 𝜃, 𝑥(𝑡

0
+ 𝜃)) ⩽ 𝜁(𝜃), we claim that

E𝑉 (𝑡, 𝑥 (𝑡)) ⩽ 𝑢 (𝑡) , 𝑡 ∈ [𝑡
0
− 𝜏, 𝑡
1
) . (27)

Consider the system

𝑈 (𝑡) = ℎ (𝑡, 𝑈 (𝑡) , 𝑈
𝑡
) + 𝜀, 𝑡 ∈ [𝑡

0
, 𝑡
1
) ,

𝑈 (𝜃) = 𝜁 (𝜃) + 𝜀, 𝜃 ∈ [𝑡
0
− 𝜏, 𝑡
0
] ,

(28)

where 𝜀 > 0 is a constant. We claim that 𝑈(𝑡) ⩾ E𝑉(𝑡, 𝑥(𝑡))

for 𝑡 ∈ [𝑡
0
− 𝜏, 𝑡
1
).

In fact, if this is not true, then from the continuity of𝑈(𝑡)
and E𝑉(𝑡, 𝑥(𝑡)) in 𝑡 ∈ [𝑡

0
, 𝑡
1
), we know that there exist a 𝑡∗ ∈

(𝑡
0
, 𝑡
1
) and a sufficiently small constant 𝛼 > 0 such that 𝑡∗ +

𝛼 < 𝑡
1
and

E𝑉 (𝑡, 𝑥 (𝑡)) ⩽ 𝑈 (𝑡) , 𝑡 ∈ [𝑡
0
− 𝜏, 𝑡
∗

) ,

E𝑉 (𝑡
∗

, 𝑥 (𝑡
∗

)) = 𝑈 (𝑡
∗

) ,

E𝑉 (𝑡, 𝑥 (𝑡)) > 𝑈 (𝑡) , 𝑡 ∈ (𝑡
∗

, 𝑡
∗

+ 𝛼) .

(29)

Thus 𝑈(𝑡∗) = 𝐷
+

𝑈(𝑡
∗

) ⩽ 𝐷
+E𝑉(𝑡∗, 𝑥(𝑡∗)). On the other

hand, by condition (i), we obtain that

𝑈 (𝑡
∗

) = ℎ (𝑡
∗

, 𝑈 (𝑡
∗

) , 𝑈
𝑡
∗) + 𝜀

⩾ ℎ (𝑡
∗

, 𝑉 (𝑡
∗

, 𝑥 (𝑡
∗

)) ,E𝑉 (𝑡
∗

+ 𝜃, 𝑥
𝑡
∗)) + 𝜀

> ℎ (𝑡
∗

, 𝑉 (𝑡
∗

, 𝑥 (𝑡
∗

)) ,E𝑉 (𝑡
∗

+ 𝜃, 𝑥
𝑡
∗))

⩾ 𝐷
+

E𝑉 (𝑡
∗

, 𝑥 (𝑡
∗

)) .

(30)

This is a contradiction. So 𝑈(𝑡) ⩾ E𝑉(𝑡, 𝑥(𝑡)) holds for all
𝑡 ∈ [𝑡

0
− 𝜏, 𝑡
1
). Let 𝜀 → 0; then 𝑈(𝑡) → 𝑢(𝑡), and hence

inequality (27) holds.
Noting that Ψ

1𝑘
(⋅) and Ψ

2𝑘
(⋅) are nondecreasing, by (27)

and condition (ii), we get

E𝑉 (𝑡
1
, 𝑥 (𝑡
1
))

= E𝑉(𝑡
1
, 𝐼
1
(𝑡
1
, 𝑥 (𝑡
−

1
) , 𝑥(𝑡
1
− 𝑑
1
)
−

))

⩽ Ψ
11
(E𝑉 (𝑡

−

1
, 𝑥 (𝑡
−

1
)))

+ Ψ
21
(E𝑉((𝑡

1
− 𝑑
1
)
−

, 𝑥(𝑡
1
− 𝑑
1
)
−

))

⩽ Ψ
11
(𝑢 (𝑡
−

1
)) + Ψ

21
(𝑢(𝑡
1
− 𝑑
1
)
−

) = 𝑢 (𝑡
1
) .

(31)

Thus, it follows from (27) and (31) that

E𝑉 (𝑡
1
+ 𝜃, 𝑥 (𝑡

1
+ 𝜃)) ⩽ 𝑢 (𝑡

1
+ 𝜃) , 𝜃 ∈ [−𝜏, 0] . (32)

Similar to the previous process, we have E𝑉(𝑡, 𝑥(𝑡)) ⩽ 𝑢(𝑡)

when 𝑡 ∈ [𝑡
0
−𝜏, 𝑡
2
). By induction, it follows thatE𝑉(𝑡, 𝑥(𝑡)) ⩽

𝑢(𝑡), 𝑡 ∈ [𝑡
0
− 𝜏,∞). The proof is complete.

Theorem 5. Assume that there exist functions 𝑉 ∈ V
0
, 𝜙
1
∈

𝑉K
∞
, and 𝜙

2
∈ 𝐶K such that

(i) 𝜙
1
(|𝑥|
𝑝

) ⩽ 𝑉(𝑡, 𝑥) ⩽ 𝜙
2
(|𝑥|
𝑝

) for any (𝑡, 𝑥) ∈ [𝑡
0
−

𝜏,∞) ×R𝑛;
(ii) EL𝑉(𝑡, 𝜑) ⩽ ℎ(𝑡,E𝑉(𝑡, 𝜑(0)),E𝑉(t + 𝜃, 𝜑)) for any

(𝑡, 𝜑) ∈ [𝑡
𝑘−1

, 𝑡
𝑘
) × PC𝑝

F
𝑡

([−𝜏, 0];R𝑛), 𝑘 ∈ N;

(iii) E𝑉(𝑡
𝑘
, 𝐼
𝑘
(𝑡
𝑘
, 𝑋, 𝑌)) ⩽ Ψ

1𝑘
(E𝑉(𝑡−

𝑘
, 𝑋)) + Ψ

2𝑘
(E𝑉((𝑡

𝑘
−

𝑑
𝑘
)
−

, 𝑌)) for all𝑋,𝑌 ∈ 𝐿
𝑝

F
𝑡

(Ω;R𝑛), 𝑘 ∈ N.

Then the stability properties of the trivial solution of IFDE-DI
(2) imply the corresponding stability properties of the trivial
solution of ISFDE-DI (1). Moreover, if condition (i) is replaced
by

(i∗) there exist positive constants 𝑝, 𝑐
1
, and 𝑐

2
such that for

all (𝑡, 𝑥) ∈ [𝑡
0
− 𝜏,∞) ×R𝑛

𝑐
1





𝑥|
𝑝

⩽ 𝑉 (𝑡, 𝑥) ⩽ 𝑐
2





𝑥|
𝑝 (33)

then the global exponential stability of the trivial solution
of IFDE-DI (2) implies that 𝑝th moment global exponential
stability of ISFDE-DI (1).

Proof. Firstly, assume that the trivial solution of IFDE-DI (2)
is stable. Let 𝜀 > 0; then for given 𝜙

1
(𝜀) > 0, there exists

𝛿
1
= 𝛿
1
(𝑡
0
, 𝜀) > 0 such that 𝛿

1
< 𝜙
1
(𝜀) and





𝜁





𝑝

< 𝛿
1
implies 𝑢 (𝑡; 𝑡

0
, 𝜁) < 𝜙

1
(𝜀) , 𝑡 ⩾ 𝑡

0
. (34)

Let 𝜁(𝜃) = E𝑉(𝑡
0
+ 𝜃, 𝑥(𝑡

0
+ 𝜃)), 𝜃 ∈ [−𝜏, 0]. From

conditions (ii) and (iii) and Lemma 4, we get that

E𝑉 (𝑡, 𝑥 (𝑡)) ⩽ 𝑢 (𝑡; 𝑡
0
, 𝜁) , 𝑡 ⩾ 𝑡

0
. (35)

Let 𝛿 ⩽ 𝜙
−1

2
(𝛿
1
) andE‖𝜉‖𝑝 < 𝛿; then by condition (i) and 𝜙

2
∈

𝐶K, we have ‖𝜁‖𝑝 ⩽ E𝜙
2
(‖𝜉‖
𝑝

) ⩽ 𝜙
2
(E‖𝜉‖
𝑝

) < 𝜙
2
(𝛿) ⩽ 𝛿

1
.

Hence, by (34) and (35), we have

E𝑉 (𝑡, 𝑥 (𝑡)) < 𝜙
1
(𝜀) , 𝑡 ⩾ 𝑡

0
. (36)

If E‖𝜉‖𝑝 < 𝛿, then by conditions (i) and (36), we have

E|𝑥 (𝑡)|
𝑝

⩽ 𝜙
−1

1
(E𝑉 (𝑡, 𝑥 (𝑡))) < 𝜀, 𝑡 ⩾ 𝑡

0
; (37)

that is, the trivial solution of ISFDE-DI (1) is stable.
Next, let us suppose that the trivial solution of IFDE-

DI (2) is asymptotically stable. This implies that the trivial
solution of ISFDE-DI (1) is stable. Let 𝜁(𝜃) = E𝑉(𝑡

0
+𝜃, 𝑥(𝑡

0
+

𝜃)), 𝜃 ∈ [−𝜏, 0]. Since 𝑢 = 0 is attractive, for any 𝜀 > 0, there
exist 𝛿

0
= 𝛿
0
(𝑡
0
) > 0 and 𝑇 = 𝑇(𝑡

0
, 𝛿
0
) such that





𝜁





𝑝

< 𝛿
0
, implies 𝑢 (𝑡; 𝑡

0
, 𝜁) < 𝜙

1
(𝜀) , 𝑡 ⩾ 𝑡

0
+ 𝑇. (38)
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Choose E‖𝜉‖𝑝 < 𝛿
0
. Note the fact that 𝜙 ∈ 𝑉K implies 𝜙−1 ∈

𝐶K. Then by (35) and (37), we get

E|𝑥 (𝑡)|
𝑝

⩽ 𝜙
−1

1
(E𝑉 (𝑡, 𝑥 (𝑡))) < 𝜀, 𝑡 ⩾ 𝑡

0
+ 𝑇, (39)

which implies that the trivial solution of ISFDE-DI (1) is
asymptotically stable.

Thirdly, let us suppose that the trivial solution of IFDE-DI
(2) is globally exponentially stable and condition (i∗) holds.
Then, there exists a couple of positive constants 𝛾 and𝐾 such
that

𝑢 (𝑡) ⩽ 𝐾




𝜁




𝑒
−𝛾(𝑡−𝑡

0
)

, 𝑡 ⩾ 𝑡
0
. (40)

Let 𝜁(𝜃) = 𝑉(𝑡
0
+ 𝜃, 𝑥(𝑡

0
+ 𝜃)), 𝜃 ∈ [−𝜏, 0]. Then by (35) and

(40), we getE𝑉(𝑡, 𝑥(𝑡)) ⩽ 𝑢(𝑡) ⩽ 𝐾E‖𝜉‖
𝑝

𝑒
−𝛾(𝑡−𝑡

0
) for all 𝑡 ⩾ 𝑡

0
.

Thus, by condition (i∗), it yields that

E|𝑥 (𝑡)|
𝑝

⩽

𝐾𝑐
2

𝑐
1

E




𝜉





𝑝

𝑒
−𝛾(𝑡−𝑡

0
)

, 𝑡 ⩾ 𝑡
0
. (41)

Hence, the trivial solution of ISFDE-DI (1) is 𝑝th moment
globally exponentially stable. The proof is complete.

Theorem6. Assume that there exist a function𝑉 ∈ V
0
, positive

constants 𝑐
1
, 𝑐
2
, 𝑞, and 𝑎

𝑘
, constants 𝑐 and 𝛿, and 𝑏

𝑘
⩾ 0 such

that
(i) 𝑐
1
|𝑥|
𝑝

⩽ 𝑉(𝑡, 𝑥) ⩽ 𝑐
2
|𝑥|
𝑝 for any (𝑡, 𝑥) ∈ [𝑡

0
− 𝜏,∞) ×

R𝑛;
(ii) EL𝑉(𝑡, 𝜑) ⩽ 𝑐E𝑉(𝑡, 𝜑(0)) + 𝑞E𝑉(𝑡 + 𝜃, 𝜑) for any

(𝑡, 𝜑) ∈ [𝑡
𝑘−1

, 𝑡
𝑘
) × 𝑃𝐶

𝑝

F
𝑡

([−𝜏, 0];R𝑛), 𝑘 ∈ N;

(iii) E𝑉(𝑡
𝑘
, 𝐼
𝑘
(𝑡
𝑘
, 𝑋, 𝑌)) ⩽ 𝑎

𝑘
E𝑉(𝑡−
𝑘
, 𝑋) + 𝑏

𝑘
E𝑉((𝑡

𝑘
−

𝑑
𝑘
)
−

, 𝑌) for all𝑋,𝑌 ∈ 𝐿
𝑝

F
𝑡

(Ω;R𝑛), 𝑘 ∈ N;

(iv) ln(𝑎
𝑘
+ 𝑏
𝑘
𝑒
𝑐𝑑
𝑘
) ⩽ 𝛿(𝑡

𝑘
− 𝑡
𝑘−1

) for each 𝑘 ∈ N;
(v) 𝛿+𝑐+𝑞𝛾 < 0where 𝛾 = sup

𝑘∈N{𝑒
𝛿(𝑡
𝑘
−𝑡
𝑘−1
)

, 1/𝑒
𝛿(𝑡
𝑘
−𝑡
𝑘−1
)

}.
Then the trivial solution of ISFDE-DI (1) is 𝑝th moment
globally exponentially stable.

Proof. Let 𝑢(𝑡) = E𝑉(𝑡, 𝜑(0)), ℎ(𝑡, 𝑢(𝑡), 𝑢
𝑡
) = 𝑐𝑢(𝑡) + 𝑞𝑢

𝑡
,

Ψ
1𝑘
(𝑢(𝑡
−

𝑘
)) = 𝑎

𝑘
𝑢(𝑡
−

𝑘
), and Ψ

2𝑘
(𝑢((𝑡
𝑘
− 𝑑
𝑘
)
−

)) = 𝑏
𝑘
𝑢((𝑡
𝑘
−

𝑑
𝑘
)
−

). We obtain the comparison system (2). It is easy to
verify that all conditions ofTheorem 5 are satisfied and so the
global exponential stability of the trivial solution of IFDE-DI
(2) implies that 𝑝th moment global exponential stability of
ISFDE-DI (1).

Furthermore, let 𝜆 be the unique positive solution of 𝜆 +

𝛿 + 𝑝 + 𝑞𝛾𝑒
𝜆𝜏

= 0. Using conditions (ii) and (iii), we find

𝐷
+

𝑢 (𝑡) ⩽ 𝑐𝑢 (𝑡) + 𝑞𝑢 (𝑡) , 𝑡 ̸= 𝑡
𝑘
, 𝑡 ⩾ 𝑡

0
,

𝑢 (𝑡
𝑘
) ⩽ 𝑎
𝑘
𝑢 (𝑡
−

𝑘
) + 𝑏
𝑘
𝑢 ((𝑡
𝑘
− 𝑑
𝑘
)
−

) , 𝑘 ∈ N.
(42)

Thus from conditions (iv) and (v) and Lemma 3, we obtain
that

𝑢 (𝑡) ⩽ 𝛾𝑢 (𝑡
0
) 𝑒
−𝜆(𝑡−𝑡

0
)

, 𝑡 ⩾ 𝑡
0
− 𝜏, (43)

which implies that the trivial solution of IFDE-DI (2) is
globally exponentially stable. The proof of Theorem 6 is
complete.

Remark 7. An impulsive stochastic dynamical system can
be viewed as a hybrid one comprised of two components:
a continuous stochastic dynamic and a discrete dynamic.
Theorem 6 can be used to deal will all three cases: the
system with stable continuous stochastic dynamic and unsta-
ble discrete dynamic, the system with unstable continuous
stochastic dynamic and stable discrete dynamic, and the
system with stable continuous stochastic dynamic and stable
discrete dynamic. When 𝑐 < 0, the continuous stochastic
dynamic of (1) may be stable. In this case, in order to
ensure the stability of the entire system, the delayed impulses’
frequency {𝑡

𝑘
− 𝑡
𝑘−1

, 𝑘 ∈ N} and amplitude 𝑎
𝑘
, 𝑏
𝑘
should be

suitably related to the decrease of continuous flows; that is,
conditions (iv) and (v) hold. In this sense, Theorem 6 can be
used to deal with the robust stabling of continuous stochastic
dynamic subject to delayed impulsive perturbations. When
𝑐 ⩾ 0, the continuous stochastic dynamic of (1) may be
unstable and the stability of the entire system is determined
by the delayed impulse effects. In this case, we need to require
that the delayed impulses’ frequency and amplitude should be
suitablly related to the decrease of of continuous flows.

Remark 8. It is noted that the exponential stability analysis in
[30, 31] only considers the case of impulsive stabilization. In
this sense, Theorem 6 has a wider adaptive range.

4. Examples

In this section, the effectiveness and advantages of the results
derived in the preceding section will be illustrated by two
examples.

Example 1. Consider the two-dimensional nonlinear impul-
sive stochastic delay equation in the form

d𝑥
1
(𝑡) = [−2𝑥

2
(𝑡) sin (𝑥

1
(𝑡 − 𝜏)) − 5𝑥

1
(𝑡)

+ 0.5𝑥
2
(𝑡 − 𝜏) ] d𝑡 + 0.2𝑥

1
(𝑡 − 𝜏) d𝑤 (𝑡) ,

𝑡 ̸= 𝑡
𝑘
,

d𝑥
2
(𝑡) = [𝑥

1
(𝑡) sin (𝑥

1
(𝑡 − 𝜏)) − 5𝑥

2
(𝑡)

+0.4𝑥
2
(𝑡 − 𝜏)] d𝑡

+ 0.4𝑥
2
(𝑡 − 𝜏) d𝑤 (𝑡) , 𝑡 ̸= 𝑡

𝑘
,

𝑥
1
(𝑡
𝑘
) = 𝑥
1
(𝑡
−

𝑘
) + 𝛼𝑥

1
((𝑡
𝑘
− 𝑑
𝑘
)
−

) , 𝑘 ∈ N,

𝑥
2
(𝑡
𝑘
) = 𝑥
2
(𝑡
−

𝑘
) + 𝛼𝑥

2
((𝑡
𝑘
− 𝑑
𝑘
)
−

) , 𝑘 ∈ N,

(44)

where 𝜏 > 0, 𝑑
𝑘
∈ [0, 𝑑], 𝛼 ⩾ 0. If there exists a positive

constant 𝜀 > 0 such that

𝛼 < √
9/0.445 − 1 − 𝜀

1 + 1/𝜀

,

 = inf
𝑘∈N

{𝑡
𝑘
− 𝑡
𝑘−1

} >

ln [1 + 𝜀 + (1 + 1/𝜀) 𝛼
2

]

9 − 0.445 [1 + 𝜀 + (1 + 1/𝜀) 𝛼
2
]

,

(45)
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then (44) is globally exponentially stable for any bounded
impulsive input delays {𝑑

𝑘
}.

Denote 𝐼
𝑘
(𝑡
𝑘
, 𝑋, 𝑌) = 𝑋 + 𝛼𝑌. Choose the Lyapunov

function 𝑉(𝑡, 𝑥) = (1/4)𝑥
2

1
+ (1/2)𝑥

2

2
; then for any 𝜀 > 0,

we have

E𝑉 (𝑡
𝑘
, 𝐼
𝑘
(𝑡
𝑘
, 𝑋, 𝑌))

=

1

4





𝑋
1
+ 𝛼𝑌
1






2

+

1

2





𝑋
2
+ 𝛼𝑌
2






2

= E𝑉 (𝑡
−

𝑘
, 𝑋) + 𝛼

2

E𝑉((𝑡
𝑘
− 𝑑
𝑘
)
−

, 𝑌)

+

𝛼

2

E (𝑋
1
𝑌
1
) + 𝛼E (𝑋

2
𝑌
2
)

⩽ (1 + 𝜀)E𝑉 (𝑡
−

𝑘
, 𝑋) + (1 +

1

𝜀

) 𝛼
2

E𝑉((𝑡
𝑘
− 𝑑
𝑘
)
−

, 𝑌) ,

EL𝑉 (𝑡, 𝜑)

= −10E𝑉 (𝑡, 𝜑 (0))

+ E [0.25𝜑
1
(0) 𝜑
2
(−𝜏) + 0.4𝜑

2
(0) 𝜑
2
(−𝜏)

+0.01𝜑
2

1
(−𝜏) + 0.08𝜑

2

2
(−𝜏) ]

⩽ −10E𝑉 (𝑡, 𝜑 (0)) + E [0.01𝜑
2

1
(−𝜏) + 0.08𝜑

2

2
(−𝜏)]

+ E [0.25𝜑
2

1
(0) + 0.0625𝜑

2

2
(−𝜏)

+0.5𝜑
2

2
(0) + 0.08𝜑

2

2
(−𝜏)]

= −9E𝑉 (𝑡, 𝜑 (0)) + E [0.01𝜑
2

1
(−𝜏) + 0.2225𝜑

2

2
(−𝜏)]

⩽ −9E𝑉 (𝑡, 𝜑 (0)) + 0.445E𝑉 (𝑡 − 𝜏, 𝜑 (−𝜏)) ,

(46)

for 𝑡 ̸= 𝑡
𝑘
.

Take 𝑐
1
= 1/4, 𝑐

2
= 1/2, 𝑐 = −9, 𝑞 = 0.445, 𝑎

𝑘
≡ 1 + 𝜀,

𝑏
𝑘
≡ (1 + 1/𝜀)𝛼

2, 𝛿 = ln[1 + 𝜀 + (1 + 1/𝜀)𝛼
2

]/, 𝛾 = 1 + 𝜀 +

(1+1/𝜀)𝛼
2. It is easy to check that all conditions ofTheorem 6

are satisfied under conditions (45), which means that (44) is
globally mean square exponentially stable for any bounded
impulsive input delays {𝑑

𝑘
}.

Remark. It is noted that (44) without impulses is globally
mean square exponentially stable and the impulses are desta-
bilizing since 𝛼 ⩾ 0. Hence, the existing stability theorems in
[30, 31] fail to work. This shows that our results have a wider
adaptive range.

Example 2. Consider the following impulsive stochastic
delayed neural network:

d𝑥 (𝑡) = [−𝑥 (𝑡) + 𝐴𝑓 (𝑥 (𝑡 − 𝜏 (𝑡)))] d𝑡

+ 𝐵𝑥 (𝑡 − 𝜏 (𝑡)) d𝑤 (𝑡) , 𝑡 ̸= 𝑡
𝑘
,

𝑥 (𝑡
𝑘
) = 0.3𝑥 (𝑡

−

𝑘
)

+ 0.2𝑥 ((𝑡
𝑘
− 𝑑
𝑘
)
−

) , 𝑘 ∈ N,

(47)

0 20 40 60 80 100
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1

Time (t)
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−3

−2

−1

x
(t
)

Figure 1: The solution of system (47) without impulses (single
sample).
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Figure 2: The mean square of the solution of system (47) without
impulses (2000 samples).

where

𝐴 = [

−1.5 1

−3 2.5
] , 𝐵 = [

0.5 0

0 0.4
] , (48)

𝑓(𝑥) = (𝑓
1
(𝑥
1
), 𝑓
2
(𝑥
2
))
𝑇 with 𝑓

1
(𝑠) = 𝑓

2
(𝑠) = (1/2)(|𝑠 + 1| −

|𝑠 − 1|).
It is noted that (47) without impulse is not stable, and

its simulation with delay 𝜏(𝑡) = 1 and initial data 𝜉(𝑠) =

[1, −1]
𝑇and 𝑠 ∈ [−1, 0] are shown in Figures 1 and 2.

In the following, applying Theorem 5, we will show that
under impulsive control law, (47) is mean square exponen-
tially stable if sup

𝑘∈N{𝑡𝑘 − 𝑡
𝑘−1

} ⩽ 0.0681.
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Figure 3:The solution of system (47) with impulses (single sample).
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Figure 4: The mean square of the solution of system (47) with
impulses (2000 samples).

Denote 𝐼
𝑘
(𝑡
𝑘
, 𝑋, 𝑌) = 0.3𝑋+ 0.2𝑌. Choose𝑉(𝑡, 𝑥) = |𝑥|

2.
Then condition (i) of Theorem 5 holds with 𝑐

1
= 𝑐
2
= 1,

E𝑉 (𝑡
𝑘
, 𝐼
𝑘
(𝑡
𝑘
, 𝑋, 𝑌))

= [0.3𝑋 + 0.2𝑌]
𝑇

[0.3𝑋 + 0.2𝑌]

⩽ 0.18E|𝑋|
2

+ 0.08E|𝑌|
2

= 0.18E𝑉 (𝑡
−

𝑘
, 𝑋) + 0.08E𝑉((𝑡

𝑘
− 𝑑
𝑘
)
−

, 𝑌) ,

EL𝑉 (𝑡, 𝜑)

= E [2𝜑
𝑇

(0) (−𝜑 (0) + 𝐴𝑓 (𝜑 (−𝜏 (𝑡))))]

+E [𝜑
𝑇

(−𝜏 (𝑡)) 𝐵
𝑇

𝐵𝜑 (−𝜏 (𝑡))]

⩽ E [ (−2 + ‖𝐴‖)




𝜑 (0)






2

+ (‖𝐴‖ + ‖𝐵‖
2

)




𝜑 (−𝜏 (𝑡))






2

]

⩽ 2.2976E




𝜑(0)






2

+ 4.5476E




𝜑 (−𝜏 (𝑡))






2

= 2.2976E𝑉 (𝑡, 𝜑 (0))

+ 4.5476E𝑉 (𝑡 − 𝜏 (𝑡) , 𝜑 (−𝜏 (𝑡))) ,

(49)

for 𝑡 ̸= 𝑡
𝑘
.

Thus, the comparison system is

̇𝑢 (𝑡) = 2.2976𝑢 (𝑡) + 4.5476𝑢 (𝑡 − 𝜏 (𝑡)) , 𝑡 ̸= 𝑡
𝑘
,

𝑡 ⩾ 𝑡
0
,

𝑢 (𝑡
𝑘
) = 0.18𝑢 (𝑡

−

𝑘
) + 0.08𝑢 ((𝑡

𝑘
− 𝑑
𝑘
)
−

) , 𝑘 ∈ N,

(50)

which according to case (iii) of Corollary 1 in [19] is globally
exponentially stable for any bounded impulsive input delays
{𝑑
𝑘
} if sup

𝑘∈N{𝑡𝑘−𝑡𝑘−1} < ln(1/0.26)/(2.2976+4.5476/0.26) =
0.0681. Hence, we conclude by Theorem 6 that system (47)
is mean square exponentially stable if sup

𝑘∈N{𝑡𝑘 − 𝑡
𝑘−1

} ⩽

0.0681. With the same initial value, the simulations of the
impulsive stochastic delay neural network (47) under the
delayed impulsive control law 𝑥(𝑡

𝑘
) = 0.3𝑥(𝑡

−

𝑘
) + 0.2𝑥((𝑡

𝑘
−

𝑑
𝑘
)
−

), 𝑡
𝑘
− 𝑡
𝑘−1

= 0.06, 𝑑
𝑘
= 0.4 are shown in Figures 3 and 4.

5. Conclusions

This paper has investigated the exponential stability of
ISFDEs-DI based on the comparison approach and an
impulsive delay differential inequality. Some criteria on the
𝑝th moment global exponential stability are established.
The obtained results complement some recent works. Two
examples have been given to illustrate the effectiveness and
the advantages of the results obtained. One of the drawbacks
of the proposed method is perhaps that our results require
the condition 𝛿 + 𝑐 + 𝑞𝛾 < 0 and thus cannot deal with the
time delay system with Δ𝑥(𝑡

𝑘
) = 𝐵

𝑘
𝑥((𝑡
𝑘
− 𝑑
𝑘
)
−

). There will
be future work to establish a criterion for the above system.
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Copyright © 2014 V. Tryhuk and V. Chrastinová.This is an open access article distributed under theCreativeCommonsAttribution
License, which permits unrestricted use, distribution, and reproduction in anymedium, provided the originalwork is properly cited.

The paper deals with the local theory of internal symmetries of underdetermined systems of ordinary differential equations in full
generality. The symmetries need not preserve the choice of the independent variable, the hierarchy of dependent variables, and
the order of derivatives. Internal approach to the symmetries of one-dimensional constrained variational integrals is moreover
proposed without the use of multipliers.

1. Preface

The theory of symmetries of determined systems (the solution
depends on constants) of ordinary differential equations
was ultimately established in Lie’s and Cartan’s era in the
most possible generality and the technical tools (infinitesimal
transformations and moving frames) are well known. Recall
that the calculations are performed in finite-dimensional
spaces given in advance and the results are expressed in terms
of Lie groups or Lie-Cartan pseudogroups.

We deal with underdetermined systems (more unknown
functions than the number of equations) of ordinary dif-
ferential equations here. Then the symmetry problem is
rather involved. Even the system of three first-order quasi-
linear equations with four unknown functions (equivalently,
three Pfaffian equations with five variables) treated in the
famous Cartan’s article [1] and repeatedly referred to in
actual literature was not yet clearly explained in detail.
Paradoxically, the common tools (the calculations in given
finite-order jet space) are quite sufficient for this particular
example. We will later see that they are insufficient to analyze
the seemingly easier symmetry problem of one first-order
equation with three unknown functions (alternatively, two
Pfaffian equations with five variables) in full generality since
the order of derivatives need not be preserved in this case
and the finite-order jet spaces may be destroyed. Recall that
even the higher-order symmetries (automorphisms) of empty
systems of differential equations (i.e., of the infinite order

jet spaces without any additional differential constraints) are
nontrivial [2–4] and cannot be included into the classical Lie-
Cartan theory of transformation groups. Such symmetries
need not preserve any finite-dimensional space and therefore
the invariant differential forms (the Maurer-Cartan forms,
the moving coframes) need not exist.

Let us outline the very core of the subject for better
clarity by using the common jet terminology. We start with
the higher-order transformations of curves 𝑤

𝑖

= 𝑤
𝑖

(𝑥)

(𝑖 = 1, . . . , 𝑚) lying in the space R𝑚+1 with coordinates
𝑥, 𝑤

1

, . . . , 𝑤
𝑚. The transformations are defined by certain

formulae

𝑥 = 𝑊(𝑥, . . . , 𝑤
𝑗

𝑠
, . . .) ,

𝑤
𝑖

= 𝑊
𝑖

(𝑥, . . . , 𝑤
𝑗

𝑠
, . . .) (𝑖 = 1, . . . , 𝑚) ,

(1)

where the 𝐶∞-smooth real-valued functions 𝑊,𝑊𝑖 depend
on a finite number of the familiar jet variables

𝑤
𝑗

𝑠
=

𝑑
𝑠

𝑤
𝑗

𝑑𝑥
𝑠

(𝑗 = 1, . . . , 𝑚; 𝑠 = 0, 1, . . .) . (2)

The resulting curve 𝑤𝑖

= 𝑤
𝑖

(𝑥) (𝑖 = 1, . . . , 𝑚) again lying in
R𝑚+1 appears as follows. We put

𝑥 = 𝑊(𝑥, . . . ,

𝑑
𝑠

𝑤
𝑗

(𝑥)

𝑑𝑥
𝑠

, . . .) = 𝑤 (𝑥) (3)
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and assuming

𝑤


(𝑥) = (𝐷𝑊)(𝑥, . . . ,

𝑑
𝑠

𝑤
𝑗

(𝑥)

𝑑𝑥
𝑠

, . . .) ̸= 0

(𝐷 =

𝜕

𝜕𝑥

+∑𝑤
𝑗

𝑠+1

𝜕

𝜕𝑤
𝑗

𝑠

) ,

(4)

there exists the inverse function 𝑥 = 𝑤
−1

(𝑥) which provides
the desired result

𝑤
𝑖

(𝑥) = 𝑊
𝑖

(𝑤
−1

(𝑥) , . . . ,

𝑑
𝑠

𝑤
𝑗

𝑑𝑥
𝑠
(𝑤

−1

(𝑥)) , . . .) . (5)

One can also easily obtain the well-known prolongation
formula

𝑤
𝑖

𝑠
= 𝑊

𝑖

𝑠
(𝑥, . . . , 𝑤

𝑗

𝑠
, . . .)

(𝑊
𝑖

𝑠+1
=

𝐷𝑊
𝑖

𝑠

𝐷𝑊

; 𝑖 = 1, . . . , 𝑚; 𝑠 = 0, 1, . . . ;𝑊
𝑖

0
= 𝑊

𝑖

)

(6)

for the derivatives 𝑤𝑖

𝑟
= 𝑑

𝑟

𝑤
𝑖

/𝑑𝑥
𝑟 by using the Pfaffian

equations

𝑑𝑤
𝑖

𝑟
− 𝑤

𝑖

𝑟+1
𝑑𝑥 = 0 (𝑖 = 1, . . . , 𝑚; 𝑟 = 0, 1, . . .) . (7)

Functions𝑊 satisfying (4) and𝑊𝑖 may be arbitrary here.
At this place, in order to obtain coherent theory, introduc-

tion of the familiar infinite-order jet space of 𝑥-parametrized
curves briefly designated asM(𝑚)with coordinates 𝑥, 𝑤𝑖

𝑟
(𝑖 =

1, . . . , 𝑚; 𝑟 = 0, 1, . . .) is necessary. Then formulae ((1), (6))
determine amappingm : M(𝑚) → M(𝑚), amorphism of the
jet spaceM(𝑚). If the inversem−1 given by certain formulae

𝑥 = 𝑊(𝑥, . . . , 𝑤
𝑗

𝑠
, . . .) ,

𝑤
𝑖

𝑟
= 𝑊

𝑖

𝑟
(𝑥, . . . , 𝑤

𝑗

𝑠
, . . .) (𝑖 = 1, . . . , 𝑚; 𝑟 = 0, 1, . . .)

(8)

exists, we speak of an automorphism (in alternative common
terms, symmetry)m of the jet spaceM(𝑚). It should be noted
that we tacitly deal with the local theory in the sense that
all formulae and identities, all mappings, and transformation
groups to follow are in fact considered only on certain
open subsets of the relevant underlying spaces which is not
formally declared by the notation. Expressively saying, in
order to avoid the clumsy purism, we follow the reasonable
19th century practice and do not rigorously indicate the true
definition domains.

After this preparation, a system of differential equations is
traditionally identified with the subspace M ⊂ M(𝑚) given
by certain equations

𝐷
𝑟

𝐺
𝑘

= 0

(𝑘 = 1, . . . 𝐾; 𝑟 = 0, 1, . . . ; 𝐺
𝑘

= 𝐺
𝑘

(𝑥, . . . , 𝑤
𝑗

𝑠
, . . .)) .

(9)

(We tacitly suppose that M ⊂ M(𝑚) is a “reasonable
subspace” and omit the technical details.)This is the infinitely

prolonged system. The total derivative vector field 𝐷 defined
on M(𝑚) is tangent to the subspace M ⊂ M(𝑚) and may
be regarded as a vector field on M, as well. The morphism
m : M(𝑚) → M(𝑚) transforms M ⊂ M(𝑚) into the
subspacemM ⊂ mM(𝑚) ⊂ M(𝑚) given by the equations

(𝐷
𝑟

𝐺
𝑘

) (𝑊, . . . ,𝑊
𝑗

𝑠
, . . .) = 0

(𝑘 = 1, . . . , 𝐾; 𝑟 = 0, 1, . . .) .

(10)

This is again a system of differential equations. In our paper,
we are interested only in the particular case whenmM = M.
Then, if the inversem−1 locally exists on a neighbourhood of
the subspaceM ⊂ M(𝑚) in the total jet space, we speak of the
external symmetry m of the system of differential equations
(9). Let us, however, deal with the natural restriction m :

M → M of the mapping m to the subspace M. If there
exists the inverse m−1

: M → M of the restriction, we
speak of the internal symmetry. Internal symmetries do not
depend on the localizations of M in M(𝑚). More precisely,
differential equations can be introduced without any ref-
erence to jet spaces and the internal symmetries can be
defined without the use of localizations. On this occasion, we
are also interested in groups of internal symmetries. They are
generated by special vector fields, the infinitesimal symme-
tries.

In the actual literature, differential equations are as a rule
considered in finite-dimensional jet spaces.Then the internal
and external symmetries become rather delicate and differ
from our concepts since the higher-order symmetries are
not taken into account. We will not discuss such conceptual
confusion in this paper with the belief that the following two
remarks (and Remark 5) should be quite sufficient in this
respect.

Remark 1 (on the symmetries). The true structure of the jet
spaceM(𝑚) is determined by the contactmodule Ω(𝑚)which
involves all contact forms

𝜔 = ∑𝑎
𝑖

𝑟
𝜔
𝑖

𝑟

(𝜔
𝑖

𝑟
= 𝑑𝑤

𝑖

𝑟
− 𝑤

𝑖

𝑟+1
𝑑𝑥, finite sum, arbitrary coefficients) .

(11)

Then the above morphisms m : M(𝑚) → M(𝑚) given in
((1), (6)) are characterized by the propertym∗

Ω(𝑚) ⊂ Ω(𝑚).
Recall that invertible morphisms are automorphisms. Let us
introduce the subspace i : M ⊂ M(𝑚) of all points (9).
This M is equipped with the restriction Ω = i∗Ω(𝑚) of the
contact module. Recall that we are interested only in the case
mM = M (abbreviation of miM = iM). Let m : M →

M be the restriction of m. If m is a morphism then m is
a morphism in the sense thatm∗

Ω ⊂ Ω. Recall that we have
the internal symmetry, if m is moreover invertible. If also m
is invertible, we have the external symmetry m. The internal
symmetries can be defined without any reference to m and
M(𝑚) as follows. Letm : M → M be any invertible mapping
such that m∗

Ω ⊂ Ω. This m can be always extended to
a morphism m : M(𝑚) → M(𝑚) of the ambient jet space.
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(Hint, recurrence (6) holds true both inM(𝑚) and inM.) So
we may conclude that such m is just the internal symmetry.
Moreover, if there exists invertible extensionm ofm, thenm
is even the external symmetry but the latter concept already
depends on the localization i ofM inM(𝑚).

Remark 2 (on infinitesimal symmetries). Let us consider
a vector field

𝑍 = 𝑧

𝜕

𝜕𝑥

+∑𝑧
𝑖

𝑟

𝜕

𝜕𝑤
𝑖

𝑟

(infinite sum, arbitrary coefficients)
(12)

on the jet spaceM(𝑚). Let us moreover supposeL
𝑍
Ω(𝑚) ⊂

Ω(𝑚) from now on (whereL
𝑍
denotes the Lie derivative see

alsoDefinition 8). In common terminology, such vector fields
𝑍 are called generalized (higher-order,Lie-Bäcklund) infinites-
imal symmetries of the jet space M(𝑚). However 𝑍 need not
in general generate any true group of transformations and we
therefore prefer the “unorthodox” term a variation 𝑍 here.
(See Section 7 and especially Remark 35 where the reasons
for this term are clarified.) The common term infinitesimal
symmetry is retained only for the favourable case when 𝑍

generates a local one-parameter Lie group [5]. Let us consider
the above subspace i : M ⊂ M(𝑚). If 𝑍 is tangent to M,
then there exists the natural restriction 𝑍 of 𝑍 to M. Clearly
L

𝑍
Ω ⊂ Ω and we speak of the (internal) variation 𝑍. If

𝑍 moreover generates a group in M, we have the (internal)
infinitesimal symmetry 𝑍. The internal concepts onM can be
easily introduced without any reference to the ambient space
M(𝑚). This is not the case for the concept of the external
infinitesimal symmetry 𝑍 which supposes that appropriate
extension 𝑍 of𝑍 on the ambient spaceM(𝑚) 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑠 a Lie
group.

We deal only with the internal symmetries and infinites-
imal symmetries in this paper. It is to be noted once more
that infinite-dimensional underlying spaces are necessary if
we wish to obtain a coherent theory. The common technical
tools invented in the finite-dimensional spaces will be only
slightly adapted; alas, the ingenious methods proposed, for
example, in [6–8] seem to be not suitable for this aim and so
we undertake the elementary approach [9] here.

2. Technical Tools

We introduce infinite-dimensional manifold M modelled
on the space R∞ with local coordinates ℎ1, ℎ2, . . . in full
accordance with [9]. The manifold M is equipped with the
structural algebra F(M) of 𝐶∞-smooth functions expressed
as 𝑓 = 𝑓(ℎ

1

, . . . , ℎ
𝑚(𝑓)

) in terms of coordinates. Transforma-
tions (mappings)m : M → M are (locally) given by certain
formulae

m∗

ℎ
𝑖

= 𝐻
𝑖

(ℎ
1

, . . . , ℎ
𝑚(𝑖)

) (𝐻
𝑖

∈ F (M) ; 𝑖 = 1, 2, . . .) ,

(13)

and analogous (invertible) formulae describe the change of
coordinates at the overlapping coordinate systems.

Let Φ(M) be theF(M)-module of differential 1-forms

𝜑 = ∑𝑓
𝑖

𝑑𝑔
𝑖

(𝑓
𝑖

, 𝑔
𝑖

∈ F (M) ; finite sum) . (14)

The familiar rules of exterior calculus can be applied without
any change, in particularm∗

𝜑 = ∑m∗

𝑓
𝑖

𝑑m∗

𝑔
𝑖 for the above

transformationm.
Let T(M) be the F(M)-module of vector fields 𝑍. In

terms of coordinates we have

𝑍 = ∑𝑧
𝑖
𝜕

𝜕ℎ
𝑖

(𝑧
𝑖

= 𝑧
𝑖

(ℎ
1

, . . . , ℎ
𝑚(𝑖)

) ∈ F (M) , infinite sum) ,
(15)

where the coefficients 𝑧𝑖 may be quite arbitrary. We identify
𝑍 with the linear functional on Φ(M) determined by the
familiar duality pairing

𝑑ℎ
𝑖

(𝑍) = 𝑍⌋ 𝑑ℎ
𝑖

= 𝑍ℎ
𝑖

= 𝑧
𝑖

(𝑖 = 1, 2, . . .) . (16)

With this principle in mind, if certain forms 𝜑1, 𝜑2, . . . ∈

Φ(M) generate theF(M)-module, then the values

𝜑
𝑖

(𝑍) = 𝑍⌋ 𝜑
𝑖

= 𝑧
𝑖

∈ F (M) (𝑖 = 1, 2, . . .) (17)

uniquely determine the vector field 𝑍 and (17) can be very
expressively (and unorthodoxly) recorded by

𝑍 = ∑𝑧
𝑖
𝜕

𝜕𝜑
𝑖

(𝑧
𝑖

= 𝜑
𝑖

(𝑍) ∈ F (M) , infinite sum) .

(18)

This is a mere symbolical record, not the true infinite series.
However, if 𝜑1, 𝜑2, . . . is a basis of the module Φ(M) in the
sense that every 𝜑 ∈ Φ(M) admits a unique representation
𝜑 = ∑𝑓

𝑖

𝜑
𝑖

(𝑓
𝑖

∈ F(M), finite sum) then the coefficients
𝑧
𝑖
can be quite arbitrary and (18) may be regarded as

a true infinite series.The arising vector fields 𝜕/𝜕𝜑1, 𝜕/𝜕𝜑2, . . .
provide a weak basis (infinite expansions, see [9]) of T(M)

dual to the basis 𝜑1, 𝜑1, . . . ofΦ(M). In this transcription, (15)
is alternatively expressed as

𝑍 = ∑𝑧
𝑖
𝜕

𝜕𝑑ℎ
𝑖

(𝑧
𝑖

∈ F (M) , infinite sum) . (19)

We recall the Lie derivative L
𝑍

= 𝑍⌋𝑑 + 𝑑𝑍⌋ acting on
exterior differential forms. The image m

∗
𝑍 of a vector field

defined by the property

m∗

(m
∗
𝑍)𝑓 = 𝑍m∗

𝑓 (𝑓 ∈ F (M)) (20)

need not exist. It is defined ifm is invertible.
We consider various submodules Ω ⊂ Φ(M) of differen-

tial forms together with the relevant orthogonal submodules
Ω
⊥

⊂ T(M) consisting of all vector fields 𝑍 ∈ T(M) such
that 𝜔(𝑍) = 0 (𝜔 ∈ Ω). The existence of (local) F(M)-
bases in all submodules ofΦ(M) to appear in our reasonings
is tacitly postulated. Dimension of an F(M)-module is the
number of elements of an F(M)-basis. Omitting some
“exceptional points,” it may be confused with the dimension
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of the corresponding R-module (the localization) at a fixed
place P ∈ M. On this occasion, it should be noted that the
image

m
∗
𝑍P ((m

∗
𝑍P)Q𝑓 = 𝑍P (m

∗

𝑓) ,mP = Q,P ∈ M) (21)

of a tangent vector 𝑍P at P exists as a vector at the place Q.
Let us also remark with regret that any rigorous expo-

sition of classical analysis in the infinite-dimensional space
R∞ is not yet available; however, certain adjustments of
finite-dimensional results are not difficult. For instance, the
following invertibility theoremwill latently occur in the proof
of Theorem 20.

Theorem 3. A mapping m : M → M is invertible if and
only if any of the following equivalent conditions is satisfied:
the pull-back m∗

: F(M) → F(M) is invertible, the pull-
back m∗

: Φ(M) → Φ(M) is invertible, and if 𝜑1, 𝜑2, . . . is
a (fixed, equivalently: arbitrary) basis of module Φ(M), then
m∗

𝜑
1

,m∗

𝜑
2

, . . . again is a basis.

Hint. A nonlinear version of the familiar Gauss elimination
procedure for infinite dimension [9] provides a direct proof
with difficulties concerning the definition domain of the
resulting inverse mapping. Nevertheless if m is moreover
a morphism of a diffiety (see Definition 8) then the prolon-
gation procedure ensures the local existence of m−1 in the
common sense.

3. Fundamental Concepts

We introduce a somewhat unusual intrinsical approach to
underdetermined systems of ordinary differential equations
in terms of the above underlying spaceM, a submodule Ω ⊂

Φ(M) of differential 1-forms, and its orthogonal submodule
H = Ω

⊥

⊂ T(M) of vector fields.

Definition 4. A codimension one submodule Ω ⊂ Φ(M) is
called a diffiety if there exists a good filtration

Ω
∗
: Ω

0
⊂ Ω

1
⊂ ⋅ ⋅ ⋅ ⊂ Ω = ∪Ω

𝑙
(22)

by finite-dimensional submodules Ω
𝑙
⊂ Ω (𝑙 = 0, 1, . . .) such

that

LHΩ𝑙
⊂ Ω

𝑙+1
(all 𝑙) ,

LHΩ𝑙
+ Ω

𝑙
= Ω

𝑙+1
(𝑙 large enough) .

(23)

To every subset Θ ⊂ Φ(M), let LHΘ ⊂ Φ(M) denote the
submodule with generators L

𝑍
𝜗 (𝑍 ∈ H, 𝜗 ∈ Θ). Since

Θ ⊂ LHΘ (easy), the second requirement (23) can be a little
formally simplified asLHΩ𝑙

= Ω
𝑙+1

.

Remark 5. This is a global coordinate-free definition; how-
ever, we again deal only with the local theory from now on
in the sense that the definition domains (of filtrations (22), of
independent variable 𝑥 to follow, and so on) are not specified.
It should be noted on this occasion that the common

geometrical approach [6–8] to differential equations rests
on the use of the rigid structure of finite-order jets. Many
classical concepts then become incorrect, if the higher-order
mappings are allowed but we cannot adequately discuss this
important topic here. Rather subtle difficulties are also passed
over already in the common approach to the fundamental
jet theory. For instance, smooth curves in the plane R2 with
coordinates 𝑥, 𝑦 are parametrized either by 𝑥 (i.e., 𝑦 = 𝑦(𝑥))
or by coordinate 𝑦 (i.e., 𝑥 = 𝑥(𝑦)) in the common so-called
“geometrical” approach [6–8]. However, then already the Lie’s
classical achievements concerning contact transformations
[10, 11] with curves parametrized either by 𝑝 = 𝑑𝑦/𝑑𝑥 or
by 𝑞 = 𝑑𝑥/𝑑𝑦 cannot be involved. Quite analogously, the
“higher-order” parameterizations and mappings [2–5] are in
fact rejected in the common “rigid” jet theory with a mere
point symmetries.

Definition 6. Let a differential 𝑑𝑥 (𝑥 ∈ F(M)) generate
together with Ω the total module Φ(M) of all differential 1-
forms.Then 𝑥 is called the independent variable to diffietyΩ.
The vector field𝐷 = 𝐷

𝑥
(abbreviation) such that

𝐷 ∈ H, 𝐷𝑥 = 𝑑𝑥 (𝐷) = 1

(symbolically 𝐷 =

𝜕

𝜕𝑑𝑥

+ ∑

𝜔∈Ω

0 ⋅

𝜕

𝜕𝜔

)

(24)

is called total (or formal) derivative of Ω with respect to the
independent variable 𝑥. This vector field 𝐷 is a basis of the
one-dimensional moduleH = Ω

⊥ for every fixed particular
choice of the independent variable 𝑥.

Remark 7. Let us state some simple properties of diffieties.
The proofs are quite easy and may be omitted. A form 𝜑 ∈

Φ(M) is lying in Ω if and only if 𝜑(𝐷) = 0. In particular
L

𝐷
Ω ⊂ Ω in accordance with the identities

L
𝐷
𝜔 = 𝐷⌋ 𝑑𝜔 + 𝑑𝜔 (𝐷) = 𝐷⌋ 𝑑𝜔,

(L
𝐷
𝜔) (𝐷) = 𝑑𝜔 (𝐷,𝐷) = 0

(𝜔 ∈ Ω) .

(25)

(This trivial property clarifies the more restrictive condition
(23).) Moreover clearly

𝐷𝑓𝑑𝑔 − 𝐷𝑔𝑑𝑓, 𝑑𝑓 − 𝐷𝑓𝑑𝑥 ∈ Ω

(𝑓, 𝑔 ∈ F (M))

(26)

and in particular

𝐷ℎ
𝑖

𝑑ℎ
𝑗

− 𝐷ℎ
𝑗

𝑑ℎ
𝑖

, 𝑑ℎ
𝑖

− 𝐷ℎ
𝑖

𝑑𝑥 ∈ Ω

(𝑖, 𝑗 = 1, 2, . . .)

(27)

for all coordinates. We have very useful F(M)-generators of
diffiety Ω. The independent variable and the filtrations (22)
can be capriciously modified. In particular the 𝑐-lift [9]

Ω
∗+𝑐

= Ω̃
∗
: Ω̃

0
⊂ Ω̃

1
⊂ ⋅ ⋅ ⋅ ⊂ Ω = ∪Ω̃

𝑙

(Ω̃
𝑙
= Ω

𝑙+𝑐
, 𝑐 = 0, 1, . . .)

(28)
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with 𝑐 large enough ensures that Ω̃
𝑙+1

= LHΩ̃𝑙
+ Ω̃

𝑙
for

all 𝑙 ≥ 0. We will be, however, interested just in the reverse
concept “Ω

∗−𝑐
” latently involved in the “standard adaptation”

of filtrations to appear later on.

Definition 8. A transformation m : M → M is called
amorphism of the diffiety Ω if m∗

Ω ⊂ Ω. Invertible
morphisms are automorphisms (or symmetries) ofΩ. A vector
field𝑍 ∈ T(M) satisfyingL

𝑍
Ω ⊂ Ω is called the variation of

Ω. If moreover 𝑍 (locally) generates a one-parameter group
of transformations, we speak of the infinitesimal symmetry 𝑍
of diffiety Ω.

Remark 9. Let us mention the transformation groups in
more detail. A local one-parameter group of transformations
m(𝜆) : M → M is given by certain formulae

m(𝜆)
∗

ℎ
𝑖

= 𝐻
𝑖

(ℎ
1

, . . . , ℎ
𝑚(𝑖)

; 𝜆) (𝑖 = 1, 2, . . . ; −𝜀 < 𝜆 < 𝜀)

(29)

in terms of local coordinates, where m(𝜆 + 𝜇) =

m(𝜆)m(𝜇), m(0) = 𝑖𝑑 is supposed. Then the special vector
field (15) defined by

𝑧
𝑖

=

𝜕

𝜕𝜆

m(𝜆)
∗

ℎ
𝑖








𝜆=0

=

𝜕

𝜕𝜆

𝐻
𝑖

(ℎ
1

, . . . , ℎ
𝑚(𝑖)

; 0)

(𝑖 = 1, 2, . . .)

(30)

is called the infinitesimal transformation of the group (29). In
the opposite direction, we recall that a general vector field (15)
generates the local group (29) if and only if the Lie system

𝜕𝐻
𝑖

𝜕𝜆

= 𝑧
𝑖

(𝐻
1

, . . . , 𝐻
𝑛(𝑖)

) , 𝐻
𝑖

(ℎ
1

, . . . , ℎ
𝑚(𝑖)

; 0) = ℎ
𝑖

(𝑖 = 1, 2, . . .)

(31)

is satisfied. Alas, a given vector field (19) need not in general
generate any transformation group since the Lie system need
not admit any solution (29).

With all fundamental concepts available, let us even-
tually recall the familiar and thoroughly discussed in [9]
interrelation between the diffieties and the corresponding
classical concept of differential equations for the convenience
of reader. In brief terms, the idea is quite simple. A given
system of differential equations is represented by a system of
Pfaffian equations𝜔 = 0 and themoduleΩ generated by such
1-forms 𝜔 is just the diffiety. More precisely, we deal with the
infinite prolongations as follows.

In one direction, let a system of underdetermined ordi-
nary differential equations be given. We may deal with the
first-order system

𝑑𝑤
𝑗

𝑑𝑥

= 𝑓
𝑗

(𝑥,𝑤
1

, . . . , 𝑤
𝑚

,

𝑑𝑤
𝐽+1

𝑑𝑥

, . . . ,

𝑑𝑤
𝑚

𝑑𝑥

)

(𝑗 = 1, . . . , 𝐽)

(32)

without any true loss of generality. Then (32) completed with

𝑑𝑤
𝑘

𝑠

𝑑𝑥

= 𝑤
𝑘

𝑠+1
(𝑤

𝑘

0
= 𝑤

𝑘

; 𝑘 = 𝐽 + 1, . . . , 𝑚; 𝑠 = 0, 1, . . .)

(33)

provides the infinite prolongation.The corresponding diffiety
Ω is generated by the forms

𝑑𝑤
𝑗

− 𝑓
𝑗

𝑑𝑥, 𝑑𝑤
𝑘

𝑠
− 𝑤

𝑘

𝑠+1
𝑑𝑥

(𝑗 = 1, . . . , 𝐽; 𝑘 = 𝐽 + 1, . . . , 𝑚; 𝑠 = 0, 1, . . .)

(34)

in the spaceM with coordinates

𝑤
𝑗

(𝑗 = 1, . . . , 𝐽) ,

𝑤
𝑘

𝑠
(𝑘 = 𝐽 + 1, . . . , 𝑚; 𝑠 = 0, 1, . . . ; 𝑤

𝑘

0
= 𝑤

𝑘

) .

(35)

Clearly

𝐷
𝑥
=

𝜕

𝜕𝑥

+∑𝑓
𝑗
𝜕

𝜕𝑤
𝑗
+∑𝑤

𝑘

𝑠+1

𝜕

𝜕𝑤
𝑘

𝑠

∈ H (36)

is the total derivative and the submodulesΩ
𝑙
⊂ Ω of all forms

(34) with 𝑠 ≤ 𝑙 determine a quite simple filtration (22) with
respect to the order of contact forms. (Hint: use the formulae

L
𝐷
(𝑑𝑤

𝑗

− 𝑓
𝑗

𝑑𝑥)

= ∑

𝜕𝑓
𝑗

𝜕𝑤
𝑗
(𝑑𝑤

𝑗

− 𝑓
𝑗

𝑑𝑥) +∑

𝜕𝑓
𝑗

𝜕𝑤
𝑗

1

(𝑑𝑤
𝑗

1
− 𝑤

𝑗

2
𝑑𝑥)

(37)

and L
𝐷
(𝑑𝑤

𝑗

𝑠
− 𝑤

𝑗

𝑠+1
𝑑𝑥) = 𝑑𝑤

𝑗

𝑠+1
− 𝑤

𝑗

𝑠+2
𝑑𝑥.) However, there

exist many other andmore useful filtrations; see the examples
to follow later on.

The particular case 𝐽 = 0 of the empty system (32) can
be easily related to the case of the jet space M(𝑚) of all 𝑥-
parametrized curves in R𝑚+1 of the Section 1. The relevant
diffiety is identified with the module Ω(𝑚) of all contact
forms (11), of course.

In the reverse direction, let a diffiety Ω be given on the
spaceM. In accordance with (27), the forms 𝑑ℎ𝑖 −𝐷ℎ𝑖𝑑𝑥 (𝑖 =

1, 2, . . .) generate Ω. So we have the Pfaffian system 𝑑ℎ
𝑖

−

𝐷ℎ
𝑖

𝑑𝑥 = 0 (𝑖 = 1, 2, . . .) and therefore the system of
differential equations

𝑑ℎ
𝑖

𝑑𝑥

= 𝑔
𝑖

(𝑥, ℎ
1

, . . . , ℎ
𝑚(𝑖)

) (𝑖 = 1, 2, . . . ; 𝑔
𝑖

= 𝐷ℎ
𝑖

) (38)

of rather unpleasant kind. Then, due to the existence of
a filtration (22) and (23), one can obtain also the above
classical system of differential equations (32) together with
the prolongation (33) by means of appropriate change of
coordinates [9]. This is, however, a lengthy procedure and
a shorter approach can be described as follows. Let the second
requirement (23) be satisfied, if 𝑙 ≥ 𝐿. Suppose that the forms
𝜔
𝑗

= ∑𝑎
𝑗

𝑖
𝑑ℎ

𝑖

(𝑗 = 1, . . . , 𝐽 = dimΩ
𝐿
) generate module Ω

𝐿
.

Then all forms

L
𝑘

𝐷
𝜔
𝑗

(𝑗 = 1, . . . , 𝐽; 𝑘 = 0, 1, . . .) (39)



6 Abstract and Applied Analysis

generate the diffiety Ω. The corresponding Pfaffian system
L𝑘

𝐷
𝜔
𝑗

= 0 is equivalent to certain infinite prolongation of
differential equations, namely,

𝜔
𝑗

= ∑𝑎
𝑗

𝑖
𝑑ℎ

𝑖

= 0 is equivalent to ∑𝑎
𝑗

𝑖

𝑑ℎ
𝑖

𝑑𝑥

= 0,

L
𝐷
𝜔
𝑗

= ∑𝐷𝑎
𝑗

𝑖
𝑑ℎ

𝑖

+∑𝑎
𝑗

𝑖
𝑑𝐷ℎ

𝑖

= 0 is equivalent to 𝑑

𝑑𝑥

∑𝑎
𝑗

𝑖

𝑑ℎ
𝑖

𝑑𝑥

= 0

(40)

(direct verification), and in general

L
𝑘

𝐷
𝜔
𝑗

= ∑𝐷
𝑘

𝑎
𝑗

𝑖
𝑑ℎ

𝑖

+ ⋅ ⋅ ⋅ + ∑𝑎
𝑗

𝑖
𝑑𝐷

𝑘

ℎ
𝑖

= 0 is equivalent to 𝑑
𝑘

𝑑𝑥
𝑘

∑𝑎
𝑗

𝑖

𝑑ℎ
𝑖

𝑑𝑥

= 0.

(41)

We have the infinite prolongation of the classical system
∑𝑎

𝑗

𝑖
𝑑ℎ

𝑖

/𝑑𝑥 = 0 (𝑗 = 1, . . . , 𝐽) and this is just the system that
corresponds to diffiety Ω.

Altogether taken, differential equations uniquely determine
the corresponding diffieties; however, a given diffiety leads to
many rather dissimilar but equivalent systems of differential
equations with regard to the additional choice of dependent and
independent variables.

Remark 10. Definitions 4–8 make good sense even if M is
a finite-dimensional manifold and then provide the well-
known intrinsical approach to determined systems of dif-
ferential equations. They are identified with vector fields
(better, fields of directions) in the finite-dimensional spaceM.
Choosing a certain independent variable 𝑥, the equations are
represented by the vector field 𝐷

𝑥
or, more visually, by the

corresponding 𝐷
𝑥
-flow. The general theory becomes trivial;

we may, for example, chooseΩ
𝑙
= Ω for all 𝑙 in filtration (22).

4. On the Structure of Diffieties

Definition 11. To every submodule Θ ⊂ Ω of a diffiety Ω ⊂

Φ(M), let KerΘ ⊂ Θ be the submodule of all 𝜗 ∈ Θ such
that LH𝜗 ∈ Θ. Filtration (22) and (23) is called a standard
one, if

KerΩ
𝑙+1

= Ω
𝑙

(𝑙 ≥ 0) ,

Ker2Ω
0
= KerΩ

0
̸=Ω

0
.

(42)

For every 𝜔 ∈ Ω, the first condition ensures that the
inclusions 𝜔 ∈ Ω

𝑙
, L

𝐷
𝜔 ∈ Ω

𝑙+1
are equivalent and the

second condition ensures thatL
𝐷
𝜔 ∈ Ω

0
impliesL2

𝐷
𝜔 ∈ Ω

0
.

Theorem 12. Appropriate adaptation of some lower-order
terms of a given filtration (22) and (23) provides a standard
filtration in a unique manner [9]. Equivalently and in more
detail, there exists unique standard filtration Ω

∗
: Ω

0
⊂ Ω

1
⊂

⋅ ⋅ ⋅ ⊂ Ω = ∪Ω
𝑙
such that Ω

𝑙
= Ω

𝑙+𝑐
for appropriate 𝑐 ∈ N and

all 𝑙 large enough. Equivalently and briefly, there exists unique

Original filtration

Ω0 Ω1 Ω2

𝜔 ℒD𝜔

· · ·

The corresponding standard filtration

Ω0 Ω1 Ω2 Ω3 = Ω2ℛ(Ω)

𝜋
1
0

𝜔 = 𝜋
2
0 𝜋

2
1 = ℒD𝜋

2
0

· · ·

Figure 1

standard filtrationΩ
∗
such thatΩ

∗+𝑐
 = Ω

∗+𝑐
 for appropriate

𝑐


, 𝑐


∈ N.

Proof. The mapping L
𝐷

: Ω
𝑙
→ Ω

𝑙+1
naturally induces

certainF(M)-homomorphism

𝐷 : Ω
𝑙
/Ω

𝑙−1
→ Ω

𝑙+1
/Ω

𝑙
(𝑙 ≥ 0, formally Ω

−1
= 0) (43)

of factor modules denoted by𝐷 for better clarity. Homomor-
phisms 𝐷 are surjective and therefore even bijective for all
𝑙 large enough, say for 𝑙 ≥ 𝐿. However, the injectivity of 𝐷
implies KerΩ

𝑙
= Ω

𝑙−1
(𝑙 ≥ 𝐿). It follows that we have strongly

decreasing sequence

⋅ ⋅ ⋅ ⊃ Ω
𝐿
(= KerΩ

𝐿+1
) ⊃ Ω

𝐿−1
(= KerΩ

𝐿
)

⊃ KerΩ
𝐿−1

⊃ Ker2Ω
𝐿−1

⊃ ⋅ ⋅ ⋅ ,

(44)

which necessarily terminates with the stationarity
Ker𝐶Ω

𝐿−1
= Ker𝐶+1 Ω

𝐿−1
. Denoting

Ω
0
= Ker𝐶−1Ω

𝐿−1
, . . . ,

Ω
𝐶−1

= KerΩ
𝐿−1

, Ω
𝐶
= Ω

𝐿−1
, Ω

𝐶+1
= Ω

𝐿
, . . . ,

(45)

we have the sought strongly increasing standard filtration

Ω
∗
: Ω

0
⊂ Ω

1
⊂ ⋅ ⋅ ⋅ ⊂ Ω

𝐶
(= Ω

𝐿−1
)

⊂ Ω
𝐶+1

(= Ω
𝐿
) ⊂ ⋅ ⋅ ⋅ ⊂ Ω = ∪Ω

𝑙

(46)

of diffiety Ω. In particular Ker2 Ω
0

= Ker𝐶+1Ω
𝐿−1

=

Ker𝐶Ω
𝐿−1

= KerΩ
0
.
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Proof of Theorem 12 was of the algorithmical nature
and provides a useful standard basis of diffiety Ω as follows.
Assume that the forms

𝜏
1

, . . . , 𝜏
𝐾

∈ Ω
0

provide a basis of the submodule KerΩ
0
⊂ Ω

0

(47)

(recall that Ker2Ω
0
= KerΩ

0
whence L

𝐷
KerΩ

0
⊂ KerΩ

0
)

and moreover the classes of forms

𝜋
1

, . . . , 𝜋
𝑗
0

∈ Ω
0
provide a basis of Ω

0
/KerΩ

0
(48)

(recall that 𝐷 : Ω
0
/KerΩ

0
→ Ω

1
/Ω

0
is injective mapping),

the classes of forms

𝜋
𝑗
0
+1

, . . . , 𝜋
𝑗
1

∈ Ω
1

provide a basis of Ω
1
/ (Ω

0
+LHΩ0

)

(49)

(recall that 𝐷 : Ω
1
/Ω

0
→ Ω

2
/Ω

1
is injective mapping), and

in general the classes of forms

𝜋
𝑗
𝑙−1
+1

, . . . , 𝜋
𝑗
𝑙

∈ Ω
𝑙

provide a basis of Ω
𝑙
/ (Ω

𝑙−1
+LHΩ𝑙−1

) .

(50)

Alternatively saying, the following forms constitute a basis:

𝜏
1

, . . . , 𝜏
𝐾 of KerΩ

0
,

together with 𝜋
1

, . . . , 𝜋
𝑗
0 of Ω

0
,

together with L
𝐷
𝜋
1

, . . . ,L
𝐷
𝜋
𝑗
0

, 𝜋
𝑗
0
+1

, . . . , 𝜋
𝑗
1 of Ω

1
,

together with L
2

𝐷
𝜋
1

, . . . ,L
2

𝐷
𝜋
𝑗
0

,L
𝐷
𝜋
𝑗
0
+1

, . . . ,L
𝐷
𝜋
𝑗
1

,

𝜋
𝑗
1
+1

, . . . , 𝜋
𝑗
2 of Ω

2
,

(51)

and so on. Let us denote

𝜋
𝑗

𝑟
= L

𝑟

𝐷
𝜋
𝑗

(𝑗 = 𝑗
𝑙−1

+ 1, . . . , 𝑗
𝑙
) . (52)

In terms of this notation

𝜏
1

, . . ., 𝜏
𝐾 is a basis of KerΩ

0
and together with the forms

𝜏
1

, . . . , 𝜏
𝐾

,

𝜋
1

0
, . . . , 𝜋

𝑗
0

0
, 𝜋

1

1
, . . . , 𝜋

𝑗
0

1
, . . . , 𝜋

1

𝑙
, . . . , 𝜋

𝑗
0

𝑙
,

𝜋
𝑗
0
+1

0
, . . . , 𝜋

𝑗
1

0
, . . . , 𝜋

𝑗
0
+1

𝑙−1
, . . . , 𝜋

𝑗
1

𝑙−1

. . .

𝜋
𝑗
𝑙−1
+1

0
, . . . , 𝜋

𝑗
𝑙

0
,

(53)

we have the standard basis ofΩ
𝑙
.

Clearly 𝑗
𝐿
= 𝑗

𝐿+1
= ⋅ ⋅ ⋅ and it follows that there is only

a finite number 𝜇(Ω) = 𝑗
𝐿
of initial forms

𝜋
1

= 𝜋
1

0
, . . . , 𝜋

𝑗
0

= 𝜋
𝑗
0

0
, 𝜋

𝑗
0
+1

= 𝜋
𝑗
0
+1

0
,

. . . , 𝜋
𝑗
𝐿−1

+1

= 𝜋
𝑗
𝐿−1

+1

0
, . . . , 𝜋

𝑗
𝐿

= 𝜋
𝑗
𝐿

0

(54)

with the lower zero indice. The following forms 𝜋𝑗
𝑟
(𝑟 > 0)

satisfy the recurrence and the (equivalent) congruence

L
𝐷
𝜋
𝑗

𝑟
= 𝜋

𝑗

𝑟+1
, 𝑑𝜋

𝑗

𝑟
≅ 𝑑𝑥 ∧ 𝜋

𝑗

𝑟+1
(modΩ ∧ Ω) . (55)

In this sense, the linearly independent forms 𝜋𝑗
𝑟
𝑎𝑟𝑒 gen-

eralizations of the classical contact forms 𝜔𝑗

𝑟
= 𝑑𝑤

𝑗

𝑟
−

𝑤
𝑗

𝑟+1
𝑑𝑥 𝑜𝑓the jet theory.

Theorem 13. LetΩ
∗
be a standard filtration of diffietyΩ.Then

the submoduleKerΩ
0
⊂ Ω is generated by all differentials𝑑𝑓 ∈

Ω.

Proof. First assume 𝑑𝑓 ∈ Ω. Then 𝐷𝑓 = 𝑑𝑓(𝐷) = 0 whence
L

𝐷
𝑑𝑓 = 𝑑𝐷𝑓 = 0. Clearly 𝑑𝑓 ∈ Ω

𝑙
for appropriate 𝑙. This

implies 𝑑𝑓 ∈ KerΩ
𝑙−1

, if 𝑙 ≥ 0 therefore 𝑑𝑓 ∈ KerΩ
0
. It

follows that KerΩ
0
contains all differentials 𝑑𝑓 ∈ Ω.

Conversely let 𝜏 ∈ KerΩ
0
. Due to the equality KerΩ

0
=

Ker2Ω
0
, we have L

𝐷
𝜏 ∈ KerΩ

0
whence 𝑑𝜏 ≅ 𝑑𝑥 ∧

L
𝐷
𝜏 (modΩ ∧ Ω), consequently

𝑑𝜏 ≅ ∑𝑎
𝑗𝑖

𝑟𝑠
𝜋
𝑗

𝑟
∧ 𝜋

𝑖

𝑠
(mod KerΩ

0
, sumover 𝑖 ≤ 𝑗) . (56)

It follows that 𝑎𝑗𝑖
𝑟𝑠

= 0 identically by using 𝑑(𝑑𝜏) = 0

and (55). (Hint: look at assumed top order product 𝜋𝑗
𝑅
∧ 𝜋

𝑖

𝑠

where 𝑅 ≥ all 𝑟. Then 𝑑2𝜏 involves only one summand with
𝑑𝑥 ∧ 𝜋

𝑗

𝑅+1
∧ 𝜋

𝑖

𝑠
which is impossible since 𝑑2 = 0.) Therefore

𝑑(KerΩ
0
) ≅ 0 (mod KerΩ

0
) and the Frobenius theorem

can be applied. Module KerΩ
0
has a basis consisting of total

differentials.

Definition 14. We may denote R(Ω) = KerΩ
0
since this

module does not depend on the choice of the filtration (22).
Together with the original basis 𝜏1, . . . , 𝜏𝐾 occurring in (53),
there exists alternative basis 𝑑𝑡1, . . . , 𝑑𝑡𝐾 with differentials. In
the particular case R(Ω) = 0, hence, 𝐾 = 0, we speak of
a controllable diffietyΩ.

Remark 15. The controllability is a familiar concept of the
theory of underdetermined ordinary differential equations or
Pfaffian systems in finite-dimensional spaces [12]; however,
some aspects due to diffieties are worth mentioning here. If
R(Ω) ̸= 0 is a nontrivial module, the underlying space M is
fibered by the leaves 𝑡𝑘 = 𝑐

𝑘

∈ R (𝑘 = 1, . . . , 𝐾) depending
on 𝐾 > 0 parameters. A curve p : I → M (I ⊂ R) is
called a solution of diffiety Ω, if p∗𝜔 = 0 (𝜔 ∈ Ω). Since
𝑑𝑡

𝑘

∈ R(Ω) ⊂ Ω, we have

p∗𝑑𝑡𝑘 = 𝑑p∗𝑡𝑘 = 0, p∗𝑡𝑘 = 𝑐
𝑘

∈ R

(𝑘 = 1, . . . , 𝐾) ,

(57)
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P∗tk = c
k

P

(a) Non-contrillable case

𝜀

O(𝜀)P

(b) Mayer extermal

Figure 2

therefore every solution of diffietyΩ is contained in a certain
leaf (the Figure 2(a)).

In the controllable case, such foliation of the spaceM does
not exist. However, the construction of the standard filtration
need not be of the “universal nature.” There may exist some
“exceptional points” where the terms 𝜋

𝑖

𝑟
of the standard

basis are not independent. We may even obtain a solution p
consisting of such exceptional points and then there appears
the “infinitesimal leaf ” of the noncontrollability along p
which means that p is a Mayer extremal (the Figure 2(b)).
We refer to article [13] inspired by the beautiful paper [14].
In the present paper, such exceptional points are tacitly
excluded.They produce singularities of the symmetry groups
and deserve a special, not yet available approach. It should
be noted that the noncontrollable case also causes some
technical difficulties. We may however suppose R(Ω) = 0

without much loss of generality since the noncontrollable
diffiety can be restricted to a leaf and regarded as a diffiety
depending on parameters 𝑐1, . . . , 𝑐𝐾.

Theorem 16. The total number 𝜇(Ω) of initial forms does not
depend on the choice of the good filtration (22).

Proof. Filtration (22) differs from the standard filtration Ω
∗

only in lower terms whence

dimΩ
𝑙
= dimΩ

𝑙
+ const. = 𝜇 (Ω) 𝑙 + const.

(𝑙 large enough) .
(58)

Let another filtration Ω̃
∗
: Ω̃

0
⊂ Ω̃

1
⊂ ⋅ ⋅ ⋅ ⊂ Ω = ∪Ω̃

𝑙

of diffiety Ω provide (corresponding standard filtration and
therefore) certain number 𝜇(Ω) of (other) initial forms.Then

dimΩ
𝑙
= dim Ω̃

𝑙
+ const. = 𝜇 (Ω) 𝑙 + const.

(𝑙 large enough) .
(59)

Ω0 Ω1 Ω2 · · ·

Ω0 Ω1 Ω2 · · · Ω0 Ω1 Ω2 · · ·

(a)

(b) (c)

Figure 3

However Ω
𝑙
⊂ Ω̃

𝐿(𝑙)
⊂ Ω

𝑀(𝑙)
for appropriate 𝐿(𝑙) and 𝑀(𝑙)

whence

Ω
𝑙+𝑘

⊂ Ω̃
𝐿(𝑙)+𝑘

⊂ Ω
𝑀(𝑙)+𝑘

(𝑙, 𝑘 large enough) (60)

by using (23) and the equality 𝜇(Ω) = 𝜇(Ω) easily follows.

5. On the Morphisms and Variations

A huge literature on the point symmetries (scheme (a) of
Figure 3, the order of derivatives is preserved) of differential
equations is available. On the contrary, we can mention only
a few fundamental principles for the generalized (or higher-
order) symmetries (scheme (c) of Figure 3) since the general
theory deserves quite another paper. Our modest aim is to
clarify a little the mechanisms of the particular examples to
follow. We will also deal with generalized (or higher-order)
groups of symmetries and the relevant generalized infinitesimal
symmetries (scheme (b) Figure 3) with ambiguous higher-
order invariant subspaces (the dotted lines). Figure 3 should
be therefore regarded as a rough description of the topics to
follow and we also refer to Section 9 for more transparent
details. The main difficulty of the higher-order theory lies in
the fact that the dotted domains are not known in advance.
Modules Ω

𝑙
represent the “natural” filtration with respect to

the primary order of contact forms in the ambient jet space,
see the examples. They depend on the accidental inclusion
M ⊂ M(𝑚) mentioned in Section 1 and do not have any
true geometrical sense in the internal approach. It is to be
therefore surprisingly observed that the seemingly “exotic”
at the first glance concept of higher-order transformations
of Section 1 should be regarded for reasonable and the only
possible in the coordinate free theory. On the other hand,
an important distinction between the group-like morphisms
with large number of finite-dimensional invariant subspaces
(scheme (a) and (b)) and the genuine order-destroying mor-
phisms without such subspaces (scheme (c)) is of the highest
importance.
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We are passing to rigorous exposition. Let us recall the
diffiety Ω ⊂ Φ(M) on the spaceM, the independent variable
𝑥 ∈ F(M) with the corresponding vector field 𝐷 = 𝐷

𝑥
∈

Ω
⊥

= H, the controllability submodule R(Ω) ⊂ Ω

with the basis 𝑑𝑡1, . . . , 𝑑𝑡𝐾, and a standard basis 𝜋𝑗
𝑟
(𝑗 =

1, . . . , 𝜇(Ω); 𝑟 = 0, 1, . . .) of diffiety Ω.
Let us begin with morphisms.

Lemma 17. If m : M → M is a morphism of Ω then
m∗R(Ω) ⊂ R(Ω) and the recurrence

𝐷𝑊m∗

𝜋
𝑗

𝑟+1
≅ L

𝐷
m∗

𝜋
𝑗

𝑟

(𝑊 = m∗

𝑥; 𝑗 = 1, . . . , 𝜇 (Ω) ; 𝑟 = 0, 1, . . .)

(61)

moduloR(Ω) holds true.

Proof. If m is a morphism then m∗

Ω ⊂ Ω therefore
m∗R(Ω) ⊂ R(Ω) (use Theorem 13) and m∗

𝜋
𝑗

𝑟
≅

∑𝑎
𝑗𝑖

𝑟𝑠
𝜋
𝑖

𝑠
(modR(Ω)). It follows that

m∗

𝑑𝜋
𝑗

𝑟
≅ m∗

(𝑑𝑥 ∧ 𝜋
𝑗

𝑟+1
) ≅ 𝐷𝑊𝑑𝑥 ∧m∗

𝜋
𝑗

𝑟+1
,

𝑑m∗

𝜋
𝑗

𝑟
≅ 𝑑∑𝑎

𝑗𝑖

𝑟𝑠
𝜋
𝑖

𝑠

≅ ∑𝐷𝑎
𝑗𝑖

𝑟𝑠
𝑑𝑥 ∧ 𝜋

𝑖

𝑠

+∑𝑎
𝑗𝑖

𝑟𝑠
𝑑𝑥 ∧ 𝜋

𝑖

𝑠+1
≅ 𝑑𝑥 ∧L

𝐷
m∗

𝜋
𝑗

𝑟

(62)

moduloR(Ω) andΩ∧Ω.This implies (61) by comparing both
factors of 𝑑𝑥.

Remark 18. On this occasion, the following useful principles
of calculation are worth mentioning:

if 𝛼, 𝛽 ∈ Ω satisfy 𝑑𝛼 ≅ 𝑑𝑥 ∧ 𝛽 (modΩ ∧ Ω)

then 𝐷𝑊m∗

𝛽 = L
𝐷
m∗

𝛼,

(63)

if 𝑢, V ∈ F (M) , 𝑑𝑢 − V𝑑𝑥 ∈ Ω then 𝐷𝑊m∗V = 𝐷m∗

𝑢,

(64)

and in general

m∗

𝐷𝑓 ⋅ 𝐷m∗

𝑔 = m∗

𝐷𝑔 ⋅ 𝐷m∗

𝑓 (𝑓, 𝑔 ∈ F (M)) . (65)

In terms of notation (21), we conclude thatm
∗
𝐷P = 𝐷𝑊(P) ⋅

𝐷Q and therefore

m
∗
(

1

𝐷𝑊

𝐷) = 𝐷 (𝑊 = m∗

𝑥) , (66)

if the morphismm of diffiety Ω is invertible.

Let us turn to invertible morphisms.

Lemma 19. The inverse of amorphismm again is amorphism.

Proof. Assume 𝜔 ∈ Ω, m−1
∗

𝜔 ≅ 𝑓𝑑𝑥 (modΩ). Then

𝜔 = m∗m−1
∗

𝜔 ≅ m∗

(𝑓𝑑𝑥) = m∗

𝑓 ⋅ 𝑑𝑊 ∈ Ω, (67)

where 𝑑𝑊 = 𝑑m∗

𝑥 = m∗

𝑑𝑥 ̸= 0. Hence m∗

𝑓 = 0, 𝑓 = 0

and thereforem−1
∗

Ω ⊂ Ω.

We have m∗

Ω ⊂ Ω if m : M → M is a morphism and
moreover m−1

∗

Ω ⊂ Ω hence Ω∗

⊂ m∗

Ω in the invertible
case. The converse and rather useful assertion is as follows.

Theorem 20. A morphism m of diffiety Ω is invertible if and
only ifm∗

Ω = Ω.

This may be obtained easily from the following result.

Lemma 21. Let m∗R(Ω) = R(Ω) and 𝜋
𝑗

0
∈ m∗

Ω (𝑗 =

1, . . . , 𝜇(Ω)). Thenm is invertible.

Proof. Proof of the Lemma 21 is analogous as in [2, Theorem
2] and we briefly recall only the main principles here. It is
sufficient to prove the invertibility ofm∗

: Ω → Ω.
Assuming 𝜋𝑗

𝑟
∈ m∗

Ω then 𝜋
𝑗

𝑟+1
= L

𝐷
𝜋
𝑗

𝑟
∈ m∗

Ω by
virtue of recurrence (61). It follows that Ω ⊂ m∗

Ω and m∗

is surjective. We prove that m∗

: Ω → Ω 𝑖𝑠 even injectivity
by using the well-known algebraical interrelation between
filtrations and gradations.

Let us introduce filtrations Ω
∗
(Ω

∗
, resp.) as follows: the

submodule Ω
𝑙
⊂ Ω (Ω

𝑙
⊂ Ω) is generated by R(Ω) and

all forms 𝜋𝑗
𝑟
(m∗

𝜋
𝑗

𝑟
) where 𝑟 ≤ 𝑙. We also introduce the

gradations

M = ⊕M
𝑙

(M
𝑙
= Ω

𝑙
/Ω

𝑙−1
) ,

M = ⊕M
𝑙

(M
𝑙
= Ω

𝑙
/Ω

𝑙−1
)

(𝑙 = 0, 1, . . .)

(68)

(formally Ω
−1

= Ω
−1

= 0). It follows that the naturally
induced mapping m∗

: M → M is surjective and it is
sufficient to prove that this inducedm∗ is also injective.

We are passing to the most delicate part of the proof. The
surjectivity ofm∗

: Ω → Ω implies thatΩ
0
⊂ Ω

𝐿
for 𝐿 large

enough. Therefore Ω
𝑙
⊂ Ω

𝐿+𝑙
by applying the recursion (61)

which implies

dimΩ
𝑙
= 𝜇 (Ω) 𝑙 + const. ≤ dimΩ

𝐿+𝑙

(𝜇 (Ω) = dimM
𝑙
; 𝑙 = 0, 1, . . .) .

(69)

On the other hand, assume the noninjectivity therefore the
existence of a nontrivial identity

0 = ∑𝑎
𝑖

𝑟
m∗

𝜋
𝑖

𝑟
= ⋅ ⋅ ⋅ + ∑𝑎

𝑖

𝑅
m∗

𝜋
𝑖

𝑅
(top-order terms) .

(70)

Then 0 = ⋅ ⋅ ⋅ + (𝐷𝑊)
−𝑙

∑𝑎
𝑖

𝑅
m∗

𝜋
𝑖

𝑅+𝑙
(𝑙 = 0, 1, . . .) by applying

operatorL
𝐷
and recurrence (61). Due to the existence of such

identities, it follows that

dimM
𝑙
< dimM

𝑙
= 𝜇 (Ω) ,

dimΩ
𝐿+𝑙

≤ (𝜇 (Ω) − 1) 𝑙 + const.
(71)

and this is a contradiction.
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Remark 22. Recall that if m : M → M is a mapping and
Ω ⊂ Φ(M) a submodule, then m∗

Ω ⊂ Φ(M) denotes the
submodule with generatorsm∗

𝜔 (𝜔 ∈ Ω) in accordance with
the common practice in the algebraical module theory. Let
in particular Ω be a diffiety and assume R(Ω) = 0 for
simplicity.Thenmodulem∗

Ω is generated by all formsm∗

𝜋
𝑗

𝑟

and therefore by all formsL𝑟

𝐷
m∗

𝜋
𝑗

0
, see Lemma 17. It follows

that the invertibility of the morphismm depends only on the
properties of the forms m∗

𝜋
𝑗

0
, see Lemma 21. In this sense,

the invertibility problem is reduced to the finite-dimensional
reasonings.

We turn to the variations.

Lemma 23. A vector field 𝑍 ∈ T(M) is a variation of diffiety
Ω if and only if

𝜋
𝑗

𝑟+1
(𝑍) = 𝐷𝜋

𝑗

𝑟
(𝑍) (𝑗 = 1, . . . , 𝜇 (Ω) ; 𝑟 = 0, 1, . . .) (72)

and all 𝑍𝑡𝑘 (𝑘 = 1, . . . , 𝐾; fixed 𝑘) are functions only of
variables 𝑡1, . . . , 𝑡𝐾.

Proof. We suppose L
𝑍
Ω ⊂ Ω which is equivalent to the

congruences

L
𝑍
𝑑𝑡

𝑘

= 𝑑𝑍𝑡
𝑘

≅ 𝐷𝑍𝑡
𝑘

𝑑𝑥 = 0 (modΩ) ,

L
𝑍
𝜋
𝑗

𝑟
= 𝑍⌋ 𝑑𝜋

𝑗

𝑟
+ 𝑑𝜋

𝑗

𝑟
(𝑍)

≅ (−𝜋
𝑗

𝑟+1
(𝑍) + 𝐷𝜋

𝑗

𝑟
(𝑍)) 𝑑𝑥 = 0 (modΩ)

(73)

by using ((26) and (55)). So we have obtained (72) and more-
over identities𝐷𝑍𝑡𝑘 = 0 (𝑘 = 1, . . . , 𝐾).

It is sufficient to prove that the latter identities imply
𝑑𝑍𝑡

𝑘

= 0 (mod 𝑑𝑡1, . . . , 𝑑𝑡𝐾). However, every differential
𝑑𝑓 (𝑓 ∈ F(M)) can be represented as

𝑑𝑓 = 𝐷𝑓𝑑𝑥 +∑𝑓
𝑘


𝑑𝑡
𝑘


+∑𝑓
𝑗

𝑟
𝜋
𝑗

𝑟
(74)

in terms of the standard basis. Assuming in particular 𝑓 =

𝑍𝑡
𝑘

(fixed 𝑘 = 1, . . . , 𝐾), we have already obtained the
equation 𝐷𝑓 = 0 and then identities 𝑓𝑗

𝑟
= 0 easily follow

by applying the common rule 𝑑(𝑑𝑓) = 0 together with (26).
This concludes the proof.

Theorem 24. A variation 𝑍 of diffiety Ω is infinitesimal
symmetry of Ω if and only if all forms L𝑘

𝑍
𝜋
𝑗

0
(𝑘 = 0, 1, . . .)

are contained in a finite-dimensional module.

We omit lengthy proof and refer to more general results
[5, Lemma 5.4, Theorem 5.6, and especially Theorem 11.1].
In future examples, we apply other and quite elementary
arguments in order to avoid the nontrivial Theorem 24.

Remark 25. It follows from Lemma 23 that variations 𝑍 of
diffietyΩ can be represented by the universal series

𝑍 = ∑𝑐
𝑘

𝜕

𝜕𝑑𝑡
𝑘

+ 𝑧

𝜕

𝜕𝑑𝑥

+∑𝐷
𝑟

𝑝
𝑗
𝜕

𝜕𝜋
𝑗

𝑟

, (75)

where 𝑐𝑘 = 𝑐
𝑘

(𝑡
1

, . . . , 𝑡
𝐾

) are arbitrary composed functions
and 𝑧 = 𝑍𝑥, 𝑝

𝑗

= 𝜋
𝑗

0
(𝑍) are arbitrary functions inF(M).We

have explicit formulae for all variations (in common terms, for
all Lie-Bäcklund infinitesimal symmetries) of a given system of
ordinary differential equations. Recall that these variations 𝑍
need not generate any true group, and though the criterion
inTheorem 24 is formally simple, it is not easy to be applied.
Lemma 17 can be regarded as a counterpart to Lemma 23
since it ensures quite analogous result for the morphism m
or, better saying, for the pullback m∗

: Φ(M) → Φ(M)

of a morphism. In more detail, the quite arbitrary choice
of the initial terms m∗

𝜋
𝑗

0
of recurrence (61) is in principle

possible but provides a mere formal result (corresponding to
the formal nature of variations 𝑍) and does not ensure the
existence of true morphismm. We may refer to articles [2, 3]
where the formal part (the algebra) is distinguished from the
nonformal part (the analysis) in the higher-order algorithms.

We conclude this Section with the only gratifying result
[9, point (]) on page 40].

Theorem 26. The standard filtration is unique in the case
𝜇(Ω) = 1.

Proof. Let us take a fixed filtration (22) and the corresponding
standard filtration (46). Since 𝜇(Ω) = 1, we have only one
initial form𝜋

1

0
and therefore 𝜏1, . . . , 𝜏𝐾, 𝜋1

0
, . . . , 𝜋

1

𝑙
is a basis of

Ω
𝑙
; see (53). Let us take another standard filtration Ω̃

∗
. Then

the module Ω̃
0
has certain basis

𝜏
1

, . . . , 𝜏
𝐾

(common forms) ,

�̂�
1

0
= ∑𝑎

𝑟
𝜋
1

𝑟
= ⋅ ⋅ ⋅ + 𝑎

𝑅
𝜋
1

𝑅
(𝑎

𝑅
̸=0, top-order term) .

(76)

These forms together with all �̃�1
𝑠
= L𝑠

𝐷
�̂�
1

0
= ⋅ ⋅ ⋅ + 𝑎

𝑅
𝜋
1

𝑅+𝑠
(𝑠 ≥

0) generate the module Ω and this is possible only if 𝑅 = 0.
We conclude that �̃�1

0
= 𝑎

𝑅
𝜋
1

𝑅
= 𝑎

0
𝜋
1

0
which implies Ω̃

0
= Ω

0

hence Ω̃
𝑙
= Ω

𝑙
for all 𝑙.

Remark 27. It follows that in the particular case 𝜇(Ω) = 1,
every symmetry and infinitesimal symmetry preserves all
terms of the (unique) standard filtration. So we have a large
family of finite-dimensional subspaces of the underlying
spaceMwhich are preserved too.The classical methods acting
in finite-dimensional spaces uniquely determined in advance
can be applied and are quite sufficient in this case 𝜇(Ω) = 1.

Remark 28. In more generality, one could also consider two
diffieties Ω and Ω̃ on the underlying spaces M and M̃,
respectively. Though we do not deal with the isomorphism
problems of two diffieties Ω and Ω̃ here, let us mention
that such isomorphism is defined as invertible mapping m :

M̃ → M of underlying spaces satisfying m∗

Ω = Ω̃. Quite
equivalent “absolute equivalence” problem was introduced in
[15] and resolved just for the case 𝜇(Ω) = 𝜇(Ω̃) = 1 (in
our terminology) by using finite-dimensional methods. We
have discovered alternative approach here: the isomorphism
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m identifies the unique standard filtrations of Ω and of Ω̃.
On this occasion, it is worth mentioning Cartan’s pessimistic
notice (rather unusual in his work) to the case 𝜇(Ω) >

1 : “Je dois ajourter que la géneralization de la théorie
de l’equivalence absolu aux systémes differentiels dont la
solution générale dépend de deux functions arbitraires d’un
argument n’est pas immédiate et souléve d’asses grosses
difficultiés.” The same notice can be literally repeated also
for the theory of the higher-order symmetries treated in this
paper.

6. The Order-Preserving Case of
Infinitesimal Symmetries

We are passing to the first example which intentionally
concerns the well-known “towering” problem in order to
examine our method reliably. Let us deal with infinitesimal
symmetries of differential equation

𝑑
2

𝑢

𝑑𝑥
2
= 𝐹(

𝑑V
𝑑𝑥

) (77)

involving two unknown functions 𝑢 = 𝑢(𝑥) and V = V(𝑥). In
external theory, (77) is identified with the subspace i : M ⊂

M(2) defined by the conditions

𝐷
𝑟

(𝑢
2
− 𝐹) = 𝑢

𝑟+2
− 𝐷

𝑟

𝐹 (V
1
) = 0

(𝑟 = 0, 1, . . . ; 𝐷 =

𝜕

𝜕𝑥

+∑𝑢
𝑟+1

𝜕

𝜕𝑢
𝑟

+∑ V
𝑟+1

𝜕

𝜕V
𝑟

)

(78)

in the jet space M(2). We use simplified notation of coordi-
nates and contact forms

𝑢
𝑟
= 𝑤

1

𝑟
, V

𝑟
= 𝑤

2

𝑟
, 𝛼

𝑟
= 𝜔

1

𝑟
, 𝛽

𝑟
= 𝜔

2

𝑟

(𝑟 = 0, 1, . . .)

(79)

here. We are, however, interested in internal theory, that is, in
the diffietyΩ corresponding to (77). DiffietyΩ appears if the
contact forms

𝛼
𝑟
= 𝑑𝑢

𝑟
− 𝑢

𝑟+1
𝑑𝑥, 𝛽

𝑟
= 𝑑V

𝑟
− V

𝑟+1
𝑑𝑥

(𝑟 = 0, 1, . . .)

(80)

are restricted to the subspace i : M ⊂ M(2). In accordance
with the common practice, let us again simplify as

𝑢
𝑟
= i∗𝑢

𝑟
, V

𝑟
= i∗V

𝑟
, 𝛼

𝑟
= i∗𝛼

𝑟
, 𝛽

𝑟
= i∗𝛽

𝑟
(81)

the notation of the restrictions toM, and moreover𝐷 will be
regarded as a vector field onM from now on.

Let us outline the lengthy path of future reasonings for
the convenience of reader. We begin with preparatory points
(𝜄)–(𝜄𝜄𝜄). The underlying space M together with the diffiety
Ω is introduced and the standard basis 𝜋

0
, 𝜋

1
, . . . (𝜇(Ω) =

1, abbreviation 𝜋
𝑟
= 𝜋

1

𝑟
) of diffiety Ω is determined. The

standard basis is related to the “common” basis ofΩ bymeans
of formulae (93). We obtain explicit representation (99) for
the variations 𝑍 with two arbitrary functions 𝑧 = 𝑍𝑥 and

𝑝 = 𝜋
0
(𝑍) as the final result. Variations 𝑍 generating the

true group (i.e., the infinitesimal symmetries 𝑍 of Ω) satisfy
certain strong conditions discovered in points (𝜄]) and (]).
The conditions are expressed by the resolving system (107)
and (108) or, alternatively, by (112)–(114) only in terms of
the functions 𝑝, 𝐷𝑝, 𝐷2

𝑝, and 𝐷3

𝑝. This rather complicated
resolving system which does not provide any clear insight
is equivalent to much simpler crucial requirements (121) or
(125) on the actual structure of function 𝑝; see the central
points (]𝜄)–(]𝜄𝜄𝜄). Then the subsequent points are devoted to
the explicit solution of these equations (125). This is a mere
technical task of traditional mathematical analysis and we
omit comments at this place.

(𝜄) The diffiety. Let us introduce space M equipped with
coordinates 𝑥, 𝑢

0
, 𝑢

1
, V

𝑟
(𝑟 = 0, 1, . . .). Then

𝑢
𝑟+2

= 𝐷
𝑟

𝐹 (V
1
)

(𝑟 = 0, 1, . . . ; 𝐷 =

𝜕

𝜕𝑥

+ 𝑢
1

𝜕

𝜕𝑢
0

+ 𝐹

𝜕

𝜕𝑢
1

+∑ V
𝑟+1

𝜕

𝜕V
𝑟

)

(82)

are merely composed functions. The forms

𝛼
0
= 𝑑𝑢

0
− 𝑢

1
𝑑𝑥, 𝛼

1
= 𝑑𝑢

1
− 𝐹𝑑𝑥,

𝛽
𝑟
= 𝑑V

𝑟
− V

𝑟+1
𝑑𝑥 (𝑟 = 0, 1, . . .)

(83)

provide a basis of the diffietyΩ; however, all forms 𝛼
𝑟
= 𝑑𝑢

𝑟
−

𝑢
𝑟+1
𝑑𝑥 (𝑟 = 2, 3, . . .) are also lying in Ω as follows from the

obvious rule:

L
𝐷
𝛼
𝑟
= 𝛼

𝑟+1
, L

𝐷
𝛽
𝑟
= 𝛽

𝑟+1
(𝑟 = 0, 1, . . .) (84)

and the inclusionL
𝐷
Ω ⊂ Ω.

(𝜄𝜄) Standard Filtration.There exists the “natural” filtrationΩ
∗

of diffiety Ω with respect to the order: submodule Ω
𝑙
⊂ Ω

involves the forms 𝛼
𝑟
, 𝛽

𝑟
with 𝑟 ≤ 𝑙. Alternatively saying,

𝛼
0
, 𝛽

0
is a basis ofΩ

0
and

𝛼
0
, 𝛽

0
, 𝛼

1
, 𝛽

1
, 𝛽

2
, . . . , 𝛽

𝑙
is a basis of Ω

𝑙
(𝑙 ≥ 1) . (85)

Clearly KerΩ
𝑙+1

= Ω
𝑙
if 𝑙 ≥ 1 as follows from (84). However,

L
𝐷
𝛼
1
= L

𝐷
(𝑑𝑢

1
− 𝐹𝑑𝑥) = 𝑑𝐹 − 𝐷𝐹𝑑𝑥

= 𝐹


(𝑑V
1
− V

2
𝑑𝑥) = 𝐹



𝛽
1
∈ Ω

1
.

(86)

(Figure 4(a)) therefore

L
𝐷
(𝛼

1
− 𝐹



𝛽
0
) = 𝐹



𝛽
1
− 𝐷𝐹



𝛽
0
− 𝐹



L
𝐷
𝛽
0

= − 𝐷𝐹


𝛽
0
∈ Ω

0
.

(87)

Then 𝛼
0
, 𝛼 = 𝛼

1
−𝐹



𝛽
1
, 𝛽

0
may be taken for a basis of module

KerΩ
1
(Figure 4(b)).

Moreover

L
𝐷
𝛼
0
= 𝛼

1
= 𝛼 + 𝐹



𝛽
0
,

L
𝐷
𝛼 = −𝐷𝐹



𝛽
0
∈ KerΩ

1
,

(88)
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𝛼0 𝛼1

𝛽0
𝛽1 𝛽2

Ω0 Ω1 Ω2 · · ·

𝛼0

𝛽0 𝛽1

𝛼

Ω1 · · ·KerΩ1

𝛼0

𝛽0

𝛼

· · ·KerΩ1Ker2 Ω1

(a)

(b) (c)

Figure 4

hence 𝛼
0
, 𝛼 constitute a basis of module Ker2Ω

1
(Figure 4(c))

and finally

L
𝐷
(𝐹



𝛼 + 𝐷𝐹


𝛼)

= 𝐷𝐹


𝛼 + 𝐷
2

𝐹


𝛼
0
+ 𝐹



L
𝐷
𝛼 + 𝐷𝐹



L
𝐷
𝛼
0

= 2𝐷𝐹


𝛼 + 𝐷
2

𝐹


𝛼
0
∈ Ker2Ω

1
.

(89)

Therefore assuming

𝐷𝐹


= 𝐹
V

3
̸=0 (hence 𝐹 ̸=0) (90)

from now on, the form 𝜋
0
= 𝐹



𝛼 + 𝐷𝐹


𝛼
0
may be taken for

a basis of module Ker3Ω
0
. We have obtained the standard

filtration

Ω
∗
: Ω

0
= Ker3Ω

1
⊂ Ω

1
= Ker2Ω

1
⊂ Ω

2

= KerΩ
1
⊂ Ω

3
= Ω

1
⊂ ⋅ ⋅ ⋅ (R (Ω) = 0) ,

(91)

where forms

𝜋
𝑟
= L

𝑟

𝐷
𝜋
0

(𝑟 = 0, . . . , 𝑙;

𝜋
0
= 𝐹



𝛼 + 𝐷𝐹


𝛼
0
= 𝐷𝐹



𝛼
0
+ 𝐹



𝛼
1
− (𝐹



)

2

𝛽
0
)

(92)

provide a basis of module Ω
𝑙
.

Abbreviating 𝑓 = 𝐹
 from now on, explicit formulae

𝜋
0
= 𝑓𝛼 + 𝐷𝑓𝛼

0
,

𝜋
1
= 2𝐷𝑓𝛼 + 𝐷

2

𝑓𝛼
0
,

𝜋
2
= 3𝐷

2

𝑓𝛼 + 𝐷
3

𝑓𝛼
0
+ 𝐶𝛽

0
,

𝐶𝛼 = 𝐷
2

𝑓𝜋
0
− 𝐷𝑓𝜋

1
,

𝐶𝛼
0
= −2𝐷𝑓𝜋

0
+ 𝑓𝜋

1
,

𝐶
2

𝛽
0
= 𝐴𝜋

0
+ 𝐵𝜋

1
+ 𝐶𝜋

2
,

(93)

where 𝛼 = 𝛼
1
− 𝑓𝛽

0
and

𝐴 = 2𝐷𝑓 ⋅ 𝐷
3

𝑓 − 3(𝐷
2

𝑓)

2

,

𝐵 = 3𝐷𝑓 ⋅ 𝐷
2

𝑓 − 𝑓𝐷
3

𝑓,

𝐶 = 𝑓𝐷
2

𝑓 − 2(𝐷𝑓)
2

(94)

can be easily found. They will be sufficient in calculations to
follow. Recall that we suppose that the inequality (90) hold
true, hence 𝐶 = ⋅ ⋅ ⋅ + 𝑓𝑓

V
3
= ⋅ ⋅ ⋅ + 𝐹



𝐹
V

3
̸=0.

(𝜄𝜄𝜄) Variations.We deal with vector fields

𝑍 = 𝑧

𝜕

𝜕𝑥

+ 𝑧
1

0

𝜕

𝜕𝑢
0

+ 𝑧
1

1

𝜕

𝜕𝑢
1

+∑𝑧
2

𝑟

𝜕

𝜕V
𝑟

(95)

(the notation (75) with indices is retained) on the space
M. Recall that 𝑍 is a variation if L

𝑍
Ω ⊂ Ω. In terms of

coordinates, the conditions are

𝑧
1

1
= 𝐷𝑧

1

0
− 𝑢

1
𝐷𝑧,

𝑓𝑧
1

0
= 𝐷𝑧

1

1
− 𝐹𝐷𝑧,

𝑧
2

𝑟+1
= 𝐷𝑧

2

𝑟
− V

𝑟+1
𝐷𝑧 (𝑟 = 0, 1, . . .) ,

(96)

where the first and third equations are merely recur-
rences while the middle equation causes serious difficulties
(a classical result. Hint: useL

𝑍
𝛼
0
∈ Ω, L

𝑍
𝛼
1
∈ Ω, L

𝑍
𝛽
𝑟
∈

Ω). By using the alternative formula

𝑍 = 𝑧

𝜕

𝜕𝑑𝑥

+ 𝑎
0

𝜕

𝜕𝛼
0

+ 𝑎
1

𝜕

𝜕𝛼
1

+∑𝑏
𝑟

𝜕

𝜕𝛽
𝑟

, (97)

the conditions slightly simplify

𝑎
1
= 𝐷𝑎

0
, 𝐷𝑎

1
= 𝑓𝑏

1
,

𝑏
𝑟+1

= 𝐷𝑏
𝑟

(𝑟 = 0, 1, . . .) .

(98)

(Hint: apply the rule L
𝑍
𝜑 = 𝑍⌋𝑑𝜑 + 𝑑𝜑(𝑍) to the forms

𝜑 = 𝛼
0
, 𝛼

1
, 𝛽

𝑟
.)However, by virtue of Lemma 23 and standard

filtration, we have explicit formula

𝑍 = 𝑧

𝜕

𝜕𝑑𝑥

+∑𝐷
𝑟

𝑝

𝜕

𝜕𝜋
𝑟

(𝑧 = 𝑍𝑥, 𝑝 = 𝜋
0
(𝑍)) (99)
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for the variations where 𝑧 and 𝑝 are arbitrary functions. One
can then easily obtain explicit formulae for all coefficients
𝑎
0
, 𝑎

1
, 𝑏
𝑟
in (97) and 𝑧1

0
, 𝑧

1

, 𝑧
2

𝑟
in (95) by using the left-hand

identities (93). They need not be stated here.

(𝜄]) Infinitesimal Transformations. We refer to Remark 27:
variation 𝑍 is infinitesimal symmetry if and only if

L
𝑍
𝜋
0
= 𝑍⌋ 𝑑𝜋

0
+ 𝑑𝑝 = 𝜆𝜋

0
(100)

for appropriate multiplier 𝜆 ∈ F(M). In explicit terms, we
recall formula

𝜋
0
= 𝑓𝛼 + 𝐷𝑓𝛼

0
= 𝑓𝛼 + 𝑓

V
2
𝛼
0
, (101)

where
𝑑𝜋

0
= 𝑑𝑥 ∧ 𝜋

1
(modΩ ∧ Ω) ,

𝑑𝛼 = 𝑑 (𝛼
1
− 𝑓𝛽

0
) ≅ −𝑑𝑓 ∧ 𝛽

0
= −𝑓



𝛽
1
∧ 𝛽

0

(mod 𝑑𝑥) ,

(102)

and therefore clearly

𝑑𝜋
0
= 𝑑𝑥 ∧ 𝜋

1
+ (𝑓



𝛽
1
∧ 𝛼 − 𝑓𝑓



𝛽
1
∧ 𝛽

0
)

+ (𝑓
V

2
𝛽
1
+ 𝑓



𝛽
2
) ∧ 𝛼

0

= 𝑑𝑥 ∧ 𝜋
1
+ 𝛽

1
∧ (𝑓



𝛼 − 𝑓𝑓


𝛽
0
+ 𝑓

V
2
𝛼
0
)

+ 𝑓


𝛽
2
∧ 𝛼

0
.

(103)

So denoting

𝑧 = 𝑍𝑥 = 𝑑𝑥 (𝑍) , 𝑎
0
= 𝛼

0
(𝑍) , 𝑎 = 𝛼 (𝑍) ,

𝑏
𝑟
= 𝛽

𝑟
(𝑍) , 𝑝 = 𝜋

0
(𝑍) (𝑟 = 0, 1, . . .) ,

(104)

requirement (100) reads

𝑧𝜋
1
+ 𝑏

1
(𝑓



𝛼 − 𝑓𝑓


𝛼
0
+ 𝑓

V
2
𝛽
0
) + 𝑓



𝑏
2
𝛼
0

− (𝑓


𝑎 − 𝑓𝑓


𝑎
0
+ 𝑓

V
2
𝑏
0
) 𝛽

1
− 𝑓



𝑎
0
𝛽
2
+ 𝑑𝑝

= 𝜆 (𝑓𝛼 + 𝐷𝑓𝛼
0
) ,

(105)

where 𝜋
1
= 2𝐷𝑓𝛼 + 𝐷

2

𝑓𝛼
0
and

𝑑𝑝 ≅ 𝑝
𝑢
0

𝛼
0
+ 𝑝

𝑢
1

𝛼
1
+∑𝑝V

𝑟

𝛽
𝑟

= 𝑝
𝑢
0

𝛼
0
+ 𝑝

𝑢
1

𝛼 + (𝑓𝑝
𝑢
1

+ 𝑝V
0

) 𝛽
0
+ ∑

𝑟>0

𝑝V
𝑟

𝛽
𝑟

(106)

(mod 𝑑𝑥) should be moreover inserted. It follows that
requirement (100) is equivalent to the so-called resolving
system

2𝑧𝐷𝑓 + 𝑓


𝑏
1
+ 𝑝

𝑢
1

= 𝜆𝑓,

𝑧𝐷
2

𝑓 + 𝑓
V

2
𝑏
1
+ 𝑝

𝑢
0

= 𝜆𝐷𝑓,

(107)

𝑓𝑓


𝑏
1
= 𝑓𝑝

𝑢
1

+ 𝑝V
0

,

𝑓


𝑎 − 𝑓𝑓


𝑏
0
+ 𝑓

V
2
𝑎
0
= 𝑝V

1

,

𝑓


𝑎
0
= 𝑝V

2

.

(108)

Moreover 𝑝V
𝑟

= 0 (𝑟 ≥ 2) and therefore 𝑝 = 𝑝(𝑢
0
, 𝑢

1
,

V
0
, V

1
, V

2
) is of the order 2 at most.

(]) On the Resolving System. Equations (107) uniquely deter-
mine the multiplier 𝜆 and the “horizontal” coefficient 𝑧 =

𝑍𝑥 in terms of the “vertical” coefficients 𝑎
0
, 𝑎, 𝑏

𝑟
, and 𝑝. For

instance the formula

𝑧 =

1

𝐶

((𝑓


𝑏
1
+ 𝑝

𝑢
1

)𝐷𝑓 − (𝑓
V

2
𝑏
1
+ 𝑝

𝑢
0

) 𝑓) (109)

easily follows. So we may focus on (108).
Equations (108) deserve more effort. They depend only

on “vertical” components and can be expressed in terms of
functions 𝑝,𝐷𝑝,𝐷2

𝑝, and𝐷3

𝑝 if the obvious identities

𝑝 = 𝑎𝑓 + 𝑎
0
𝐷𝑓,

𝐷𝑝 = 2𝑎𝐷𝑓 + 𝑎
0
𝐷
2

𝑓,

𝐷
2

𝑝 = 3𝑎𝐷
2

𝑓 + 𝑎
0
𝐷
3

𝑓 + 𝑏
0
𝐶,

𝐶𝑎 = 𝐷
2

𝑓 ⋅ 𝑝 − 𝐷𝑓 ⋅ 𝐷𝑝,

𝐶𝑎
0
= −2𝐷𝑓 ⋅ 𝑝 + 𝑓𝐷𝑝,

𝐶
2

𝑏
0
= 𝐴𝑝 + 𝐵𝐷𝑝 + 𝐶𝐷

2

𝑝,

(110)

following from (93) together with the prolongation formula

𝐶
2

𝑏
1
+ 2𝑏

0
𝐶𝐷𝐶 = 𝐷(𝐶

2

𝑏
0
) = 𝐷 (𝐴𝑝 + 𝐵𝐷𝑝 + 𝐶𝐷

2

𝑝)

(111)

are applied. By using the lucky identity 𝐷𝐶 = −𝐵 (direct
verification), one can obtain the alternative resolving system

𝑓𝑓


(𝐶 (𝐷𝐴 ⋅ 𝑝 + (𝐴 + 𝐷𝐵)𝐷𝑝 + 𝐶𝐷
3

𝑝)

+2𝐵 (𝐴𝑝 + 𝐵𝐷𝑝 + 𝐶𝐷
2

𝑝))

= 𝐶
3

(𝑓𝑝
𝑢
1

+ 𝑝V
0

) ,

(112)

𝐶 ((𝑓


𝐷
2

𝑓 − 2V
2
𝑓


𝐷𝑓)𝑝 + (V
2
𝑓


𝑓 − 𝑓


𝐷𝑓)𝐷𝑝)

− 𝑓𝑓


(𝐴𝑝 + 𝐵𝐷𝑝 + 𝐶𝐷
2

𝑝)

= 𝐶
2

𝑝V
1

,

(113)

−2𝑓


𝐷𝑓 ⋅ 𝑝 + 𝑓𝑓


𝐷𝑝 = 𝐶𝑝V
2

(114)

only in terms of the unknown function 𝑝. Recall that the
resolving system is satisfied if and only if the vector field (99)
is infinitesimal symmetry.

Our aim is to determine the function 𝑝 satisfying (112)–
(114). Alas, the resolving system does not provide any insight
into the true structure of function 𝑝. It will be therefore
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replaced by other conditions of classical nature, the crucial
requirements and the simplified requirements as follows.

(]𝜄) Crucial Requirements.We start with simple formulae

𝐷𝑓 = 𝑓
V
2
, 𝐷

2

𝑓 = 𝑓
V2

2
+ 𝑓

V
3
,

𝐷
3

𝑓 = 𝑓
V3

2
+ 3𝑓

V
2
V
3
+ 𝑓

V
4
,

𝐷𝑝 = ⋅ ⋅ ⋅ + 𝑝V
2

V
3
, 𝐷

2

𝑝 = ⋅ ⋅ ⋅ + 𝑝V
2
V
2

V2
3
+ 𝑝V

2

V
4

(the top-order terms) .

(115)

Using moreover (94), one can see that there is a unique
summand in (113) which involves the factor V3

3
, namely the

summand

−𝑓𝑓


⋅ 𝐶 ⋅ 𝐷
2

𝑝 ≅ −𝑓𝑓


⋅ 𝑓𝑓
V
3
⋅ 𝑝V
2
V
2

V2
3
. (116)

It follows that 𝑝V
2
V
2

= 0 identically and we (temporarily) may
denote

𝑝 = 𝑀(𝑥, 𝑢
0
, 𝑢

1
, V

0
, V

1
) + 𝑁 (𝑥, 𝑢

0
, 𝑢

1
, V

0
, V

1
) V

2
. (117)

The simplest equation (114) of the resolving system then reads

− 2𝑓


⋅ 𝑓
V
2
⋅ (𝑀 + 𝑁V

2
) + 𝑓𝑓



𝐷(𝑀 +𝑁V
2
)

= ((𝑓𝑓


− 2𝑓
2

) V
2

2

+ 𝑓𝑓
V
3
)𝑁.

(118)

Clearly

𝐷(𝑀 +𝑁V
2
) = D𝑀+ (𝑀V

1

+D𝑁) V
2
+ 𝑁V

1

V2
2
+ 𝑁V

3
,

(119)

where the reduced operator

D =

𝜕

𝜕𝑥

+ 𝑢
1

𝜕

𝜕𝑢
0

+ 𝐹

𝜕

𝜕𝑢
1

+ V
1

𝜕

𝜕V
0

(120)

appears and we obtain three so-called crucial requirements

D𝑀 = 0, 2𝑀𝑓


= (𝑀V
1

+D𝑁)𝑓, 𝑁V
1

𝑓


= 𝑁𝑓
 (121)

for the functions 𝑀,𝑁 by inspection of the variable V
2
.

Altogether taken, the last resolving equation (114) is equivalent
to three requirements (121). We will see with great pleasure in
(]𝜄𝜄𝜄) below that requirements (121) ensure even the remaining
equations (112) and (113) of the resolving system.

(]𝜄𝜄) The Crucial Requirements Simplified. The right-hand
equation (121) reads

𝑄V
1

= 0 (𝑄 =

𝑁

𝑓

) (122)

and the middle equation (121) reads

𝑓
2

𝑃V
1

+ 𝑓


D𝑄 = 0 (𝑃 =

𝑀

𝑓
2
) , (123)

whence altogether

𝑝 = 𝑃𝑓
2

+ 𝑄𝑓
V
2
= 𝑃𝑓

2

+ 𝑄𝐷𝑓. (124)

The left-hand equation (121) does not change much; it may be
expressed byD𝑃 = 0.

Let us summarize our achievements. In order to determine
function 𝑝 𝑔𝑖V𝑒𝑛 by (124), we have three simplified require-
ments

D𝑃 = 0,

𝑓
2

𝑃V
1

+ 𝑓


D𝑄 = 0, 𝑄V
1

= 0

(125)

for the coefficients 𝑃 = 𝑃(𝑥, 𝑢
0
, 𝑢

1
, V

0
, V

1
) and 𝑄 = 𝑄(𝑥, 𝑢

0
,

𝑢
1
,V
0
, V

1
).

(]𝜄𝜄𝜄) Resolving System is Deleted. Let us recall the primary
transcription (108) of the resolving system. We have already
seen that (125) implies (114) and hence the equivalent and
simplest right-hand equation (108).

Let us turn to the middle equation (108) equivalent to
(113). One can directly find formulae

𝐷𝑝 = 𝐷𝑃 ⋅ 𝑓
2

+ 𝑃𝐷(𝑓
2

) + 𝐷𝑄 ⋅ 𝐷𝑓 + 𝑄𝐷
2

𝑓

= 𝑃𝐷(𝑓
2

) + 𝑄𝐷
2

𝑓

(126)

by using (124) and (125). Moreover

𝑎 = 𝑃𝑓, 𝑎
0
= 𝑄, 𝑎

1
= 𝐷𝑎

0
= D𝑄,

𝑏
0
=

𝑎
1
− 𝑎

𝑓

=

D𝑄

𝑓

− 𝑃

(127)

by using (124) and right-hand formulae (110). Substitution
into middle equation (108) with

𝑝V
1

=

𝜕

𝜕V
1

(𝑃𝑓
2

+ 𝑄𝑓
V
2
) = 𝑃V

1

𝑓


+ 2𝑃𝑓𝑓


+ 𝑄𝑓
V

2
(128)

gives the identity.
As the right-hand equation (108) equivalent to (112) is

concerned, we may use

𝑏
1
= 𝐷𝑏

0
=

D2

𝑄

𝑓

+

𝜕

𝜕V
1

(

D𝑄

𝑓

) V
2
− 𝑃V

1

V
2
,

D
2

𝑄 = −D(

𝑓
2

𝑓

𝑃V
1

) ,

(129)

where

(D𝑃)V
1

= D (𝑃V
1

) + 𝑃
𝑢
1

𝑓 + 𝑃V
0

= 0,

(D𝑄)V
1

= 𝑄
𝑢
1

𝑓 + 𝑄V
0

.

(130)

Moreover

𝑓𝑝
𝑢
1

+ 𝑝V
0

= 𝑓 (𝑃
𝑢
1

𝑓
2

+ 𝑄
𝑢
1

𝑓
V
2
) + 𝑃V

0

𝑓
2

+ 𝑄V
0

𝑓
V
2

(131)

and (108) again becomes the identity.

(𝜄𝜅) Back to the Crucial Requirements. Passing to the final
part of this example, let us eventually solve (125) with the
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unknown functions𝑃,𝑄 and given function𝑓.This is already
a task of classical mathematical analysis.We abbreviate V = V

1

from now on since this variable V frequently occurs in our
formulae.

Let us begin with middle equation (125) which reads

𝑃V = (

1

𝑓

)



⋅ (𝑞 + 𝐹𝑄
𝑢
1

+ V𝑄V
0

) (𝑞 = 𝑄
𝑥
+ 𝑢

1
𝑄
𝑢
0

) (132)

whence

𝑃 =

1

𝑓

𝑞 + ∫(

1

𝑓

)



𝐹𝑑V ⋅ 𝑄
𝑢
1

+ ∫(

1

𝑓

)



V𝑑V ⋅ 𝑄V
0

+ 𝑃 (𝑃 = 𝑃 (𝑥, 𝑢
0
, 𝑢

1
, V

0
))

(133)

since 𝑄 is independent of variable V due to the right-hand
equation (125). We may insert

∫(

1

𝑓

)



𝐹𝑑V =
𝐹

𝑓

− V,

∫ (

1

𝑓

)



V𝑑V =
V
𝑓

− ∫

V

V

𝑑V
𝑓

(fixed V ∈ R)

(134)

and the remaining left-hand equation (125) is expressed by
the identity

1 ⋅ (𝑃
𝑥
+ 𝑢

1
𝑃
𝑢
0

) + 𝐹 ⋅ 𝑃
𝑢
1

+ V ⋅ 𝑃V
0

+

1

𝑓

⋅ (𝑞
𝑥
+ 𝑢

1
𝑞
𝑢
0

+ 𝐹 ⋅ 𝑞
𝑢
1

+ V ⋅ 𝑞V
0

) + (

𝐹

𝑓

− V)

⋅ (𝑄
𝑢
1
𝑥
+ 𝑢

1
𝑄
𝑢
1
𝑢
0

+ 𝐹 ⋅ 𝑄
𝑢
1
𝑢
1

+ V ⋅ 𝑄
𝑢
1
V
0

)

+ (

V
𝑓

− ∫

𝑑V
𝑓

) ⋅ (𝑞V
0

+ 𝐹 ⋅ 𝑄V
0
𝑢
1

+ V ⋅ 𝑄V
0
V
0

)

= 0.

(135)

Functions 𝑃, 𝑞,𝑄 are independent of V and thereby subjected
to very strong conditions by the inspection of the coefficients
of functions

1, 𝐹, V,
1

𝑓

,

1

𝑓

𝐹,

1

𝑓

V, (
𝐹

𝑓

− V)𝐹, (
𝐹

𝑓

− V) V,

V
𝑓

− ∫

𝑑V
𝑓

, (

V
𝑓

− ∫

𝑑V
𝑓

)𝐹, (

V
𝑓

− ∫

𝑑V
𝑓

) V

(136)

in identity (135).The final result depends on the properties of
function 𝐹 and we mention only a few instructive subcases
here.

(𝜅) The Generic Subcase. Functions (136) are in general
linearly independent over R and identity (135) implies

𝑃
𝑥
+ 𝑢

1
𝑃
𝑢
0

= 𝑃
𝑢
1

= 𝑃V
0

− 𝑄
𝑢
1
𝑥
− 𝑢

1
𝑄
𝑢
1
𝑢
0

= 0, (137)

(𝑞
𝑥
+ 𝑢

1
𝑞
𝑢
0

) = 𝑄
𝑥𝑥
+ 2𝑢

1
𝑄
𝑥𝑢
0

+ 𝑢
2

1
𝑄
𝑢
0
𝑢
0

= 0, (138)

(𝑞
𝑢
1

+ 𝑄
𝑢
1
𝑥
+ 𝑢

1
𝑄
𝑢
1
𝑢
0

) = 𝑄
𝑢
0

+ 2 (𝑄
𝑢
1
𝑥
+ 𝑢

1
𝑄
𝑢
1
𝑢
0

) = 0,

(139)

(𝑞V
0

) = 𝑄
𝑥V
0

+ 𝑢
1
𝑄
𝑢
0
V
0

= 𝑄
𝑢
1
𝑢
1

= 𝑄
𝑢
1
V
0

= 𝑄V
0
V
0

= 0.

(140)

The unknown functions 𝑃 and 𝑄 can be easily found as
follows. We may suppose that

𝑄 = 𝑎 (𝑥, 𝑢
0
) 𝑢

1
+ 𝑏 (𝑥, 𝑢

0
) V

0
+ 𝑐 (𝑥, 𝑢

0
) ,

𝑏 (𝑥, 𝑢
0
) = 𝐵 ∈ R,

(141)

by using (140). Then 𝑃
𝑥
= 𝑃

𝑢
0

= 𝑃
𝑢
1

= 0; hence 𝑃 = 𝑃(V
0
)

due to (139). Moreover 𝑃 = 𝑎
𝑥
+ 𝑢

1
𝑎
0
which implies 𝑃 =

𝑎
𝑥
∈ R, 𝑎

0
= 0; hence 𝑎 = 𝑎(𝑥) and altogether

𝑎 = 𝐴𝑥 + 𝐴, 𝑃 = 𝐴V
0
+ 𝐶 (𝐴,𝐴, 𝐶 ∈ R) . (142)

Then

𝑐 = 𝐶
1
𝑥 + 𝐶

2
𝑢
0
+ 𝐶

3
(𝐶

1
, 𝐶

2
, 𝐶

3
∈ R) (143)

follows from (138). Hence, 𝐶
2
+ 2𝐴 = 0 due to (139) and

altogether

𝑄 = (𝐴𝑥 + 𝐴) 𝑢
1
+ 𝐵V

0
+ 𝐶

1
𝑥 − 2𝐴𝑢

0
+ 𝐶

3
,

𝑃 = 𝐴V
0
+ 𝐶.

(144)

Recalling moreover (133), we have explicit formulae for the
solutions 𝑃,𝑄 of crucial requirements (125) and the symmetry
problem is resolved. While 𝑃 and𝑄 are mere polynomials, the
total coefficient 𝑃 given by (133) depends on the quadrature
∫(𝑑V/𝑓) and this may be globally rather complicated function.
It follows that, in our approach, the elementary and the
“transcendental” parts of the solution are in a certain sense
separated.

(𝜅𝜄) A Special Case of Function 𝐹. Let us choose 𝐹(V) = 𝑒
V.

Then series (136) becomes quite explicit; namely,

1, 𝑒
V
, V, 𝑒−V, 1, V𝑒−V, (1 − V) 𝑒V,

(1 − V) V, V + 1, (V + 1) 𝑒V, (V + 1) V𝑒V
(145)

and these functions are linearly dependent. Identity (135)
implies smaller number of requirements; the first term in
(137) is combined with (139) into the single equation

𝑃
𝑥
+ 𝑢

1
𝑃
𝑢
0

+ 𝑞
𝑢
1

+ 𝑄
𝑢
1
𝑥
+ 𝑢

1
𝑄
𝑢
1
𝑢
0

= 0 (146)
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without any other change. We can state the final solution

𝑄 = (𝐴𝑥 + 𝐴) 𝑢
1
+ 𝐵V

0
+ 𝐶

1
𝑥 + 𝐶

2
𝑢
0
+ 𝐶

3
,

𝑃 = 𝐴V
0
+ (𝐶

2
+ 2𝐴) 𝑥 + 𝐶

(147)

with only one additional parameter 𝐶
2
∈ R if compared to

the previous formulae (144).

(𝜅𝜄𝜄) Another Special Case. Let us eventually mention the very
prominent function 𝐹(V) = V1/2; see [1, 7, 16]. Then the series

1, V1/2, V, 2V1/2, 2V, 2V3/2, V3/2, V2,
2

3

V3/2,
2

3

V2,
2

3

V5/2 (148)

stands for (136) and the relevant identity (135) implies the
system of equations

𝑃
𝑥
+ 𝑢

1
𝑃
𝑢
0

= 0, (149)

𝑃
𝑢
1

+ 2 (𝑞
𝑥
+ 𝑢

1
𝑞
𝑢
0

)

= 𝑃
𝑢
1

+ 2 (𝑄
𝑥𝑥
+ 2𝑢

1
𝑄
𝑥𝑢
0

+ 𝑢
2

1
𝑄
𝑢
0
𝑢
0

) = 0,

(150)

𝑃V
0

+ 2𝑞
𝑢
1

+ 𝑄
𝑢
1
𝑥
+ 𝑢

1
𝑄
𝑢
1
𝑢
0

= 𝑃V
0

+ 2𝑄
𝑢
0

+ 3 (𝑄
𝑢
1
𝑥
+ 𝑢

1
𝑄
𝑢
1
𝑢
0

) = 0,

(151)

6𝑞V
0

+ 3𝑄
𝑢
1
𝑢
1

+ 2 (𝑄V
0
𝑥
+ 𝑢

1
𝑄V
0
𝑢
0

)

= 3𝑄
𝑢
1
𝑢
1

+ 8 (𝑄V
0
𝑥
+ 𝑢

1
𝑄V
0
𝑢
0

) = 0,

(152)

𝑄
𝑢
1
V
0

= 0, 𝑄V
0
V
0

= 0. (153)
We are passing to the solution of the system of (149)–(153)
with unknown functions 𝑄 = 𝑄(𝑥, 𝑢

0
, 𝑢

1
, V

0
) and 𝑃 =

𝑃(𝑥, 𝑢
0
, 𝑢

1
, V

0
). Due to (153), we may put
𝑄 = 𝑎 (𝑥, 𝑢

0
) V

0
+ 𝑏 (𝑥, 𝑢

0
, 𝑢

1
) (154)

and then (152) is expressed by 3𝑏
𝑢
1
𝑢
1

+ 8(𝑎
𝑥
+ 𝑢

1
𝑎
𝑢
0

) = 0,
whence easily

𝑏 = −

4

9

𝑎
𝑢
0

𝑢
3

1
−

4

3

𝑎
𝑥
𝑢
2

1
+ 𝑏 (𝑥, 𝑢

0
) 𝑢

1
+
̃
𝑏 (𝑥, 𝑢

0
) . (155)

Moreover (151) reads𝑃V
0

+2(𝑎
𝑢
0

V
0
+𝑏

𝑢
0

)+3(𝑏
𝑢
1
𝑥
+𝑢

1
𝑏
𝑢
1
𝑢
0

) = 0,
whence

𝑃 = − 𝑎
𝑢
0

V2
0
− (2𝑏

𝑢
0

+ 3 (𝑏
𝑢
1
𝑥
+ 𝑢

1
𝑏
𝑢
1
𝑢
0

)) V
0

+ 𝑝 (𝑥, 𝑢
0
, 𝑢

1
) .

(156)

Remaining equations (149) and (150) do not admit such
simple discussion. Using (154) and (155), identity (149) is
equivalent to the system

𝑎
𝑢
0
𝑥
+ 𝑢

1
𝑎
𝑢
0
𝑢
0

= 0

(whence 𝑎 = 𝐴𝑢
0
+ 𝑎 (𝑥) , 𝐴 ∈ R) ,

(157)

2𝑏
𝑢
0
𝑥
+ 3 (𝑏

𝑢
1
𝑥𝑥
+ 𝑢

1
𝑏
𝑢
1
𝑢
0
𝑥
)

+ 𝑢
1
(2𝑏

𝑢
0
𝑢
0

+ 3 (𝑏
𝑢
1
𝑥𝑢
0

+ 𝑢
1
𝑏
𝑢
1
𝑢
0
𝑢
0

)) = 0,

(158)

𝑝
𝑥
+ 𝑢

1
𝑝
𝑢
0

= 0 (159)

of three equations and identity (150) is equivalent to the
system

2𝑏
𝑢
0
𝑢
1

+ 3 (𝑏
𝑢
1
𝑥𝑢
1

+ 𝑏
𝑢
1
𝑢
0

+ 𝑢
1
𝑏
𝑢
1
𝑢
0
𝑢
1

) = 2𝑎


, (160)

𝑝
𝑢
1

+ 2 (𝑏
𝑥𝑥
+ 2𝑢

1
𝑏
𝑥𝑢
0

+ 𝑢
2

1
𝑏
𝑢
0
𝑢
0

) = 0, (161)

if (157) is moreover employed. At the same time, (155) can be
improved as

𝑏 = −

4

9

𝐴𝑢
3

1
−

4

3

𝑎


𝑢
2

1
+ 𝑏 (𝑥, 𝑢

0
) 𝑢

1
+
̃
𝑏 (𝑥, 𝑢

0
) . (162)

With this improvement, (160) reads 2𝑏
𝑢
0

+3(−(8/4)𝑎


+𝑏
𝑢
0

) =

2𝑎
 and it follows that

𝑏 = 2𝑎


𝑢
0
+
̂
𝑏 (𝑥) . (163)

Analogously (158) reads

2 (𝑏
𝑢
0
𝑥
𝑢
1
+
̃
𝑏
𝑢
0
𝑥
) + 3 (−

8

3

𝑎


𝑢
1
+ 𝑏

𝑥𝑥
+ 𝑢

1
𝑏
𝑢
0
𝑥
)

+ 𝑢
1
(2
̃
𝑏
𝑢
0
𝑢
0

+ 3𝑏
𝑢
0
𝑥
) = 0,

(164)

which is equivalent to the system

2
̃
𝑏
𝑢
0
𝑥
+ 6𝑎

(4)

𝑢
0
+ 3

̂
𝑏


= 0, 4𝑎


+
̃
𝑏
𝑢
0
𝑢
0

= 0, (165)

if (163) is inserted. Altogether, it follows that (158) is equiva-
lent to

2
̃
𝑏 = −3𝑎



𝑢
2

0
− 3

̂
𝑏


𝑢
0
+
̃
𝑏
0
(𝑢

0
) +

̃
𝑏
1
(𝑥) ,

𝑎


= −

1

2

̃
𝑏


0
= 𝐴

3
∈ R,

(166)

whence

𝑎 = 𝐴
3

𝑥
3

6

+ 𝐴
2
𝑥
2

+ 𝐴
1
𝑥 + 𝐴

0
,

̃
𝑏
0
= −𝐴

3
𝑢
2

0
+ 𝐵

1
𝑢
0
+ 𝐵

0

(𝐴
2
, 𝐴

1
, 𝐴

0
, 𝐵

1
, 𝐵

0
∈ R) .

(167)

At the same time, we have improvements

𝑏 = 2 (𝐴
3
+ 2𝐴

2
) 𝑢

0
+
̂
𝑏,

2
̃
𝑏 = −3𝐴

3
𝑢
2

0
− 3

̂
𝑏


𝑢
0
+
̃
𝑏 (𝑢

0
) +

̃
𝑏
1
(𝑥)

(168)

of the above formulae. Let us eventually turn to the remaining
equations (159) and (161). We begin with (161) which can be
simplified to

𝑝
𝑢
1

+ 2

16

3

𝐴
3
𝑢
2

1
+ 2

̂
𝑏


𝑢
1
− (3

̂
𝑏


𝑢
0
+
̃
𝑏


1
) = 0, (169)

whence

𝑝 = 2

16

3

𝐴
3

𝑢
3

1

3

+
̂
𝑏


𝑢
2

1
− (3

̂
𝑏


𝑢
0
+
̃
𝑏


1
) 𝑢

1

+ ̆𝑝(𝑥, 𝑢
0
) .

(170)
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Then the last requirement (159) is easily simplified as

̂
𝑏


𝑢
2

1
− (3

̂
𝑏
(4)

𝑢
0
+
̃
𝑏


1
) 𝑢

1
+ ̆𝑝

𝑥

+ 𝑢
1
(−3

̂
𝑏


𝑢
1
+ ̆𝑝

𝑢
0

) = 0

(171)

and it follows that

̆𝑝
𝑥
= 0,

̃
𝑏


1
− 3

̂
𝑏
(4)

+ ̆𝑝
𝑢
0

= 0,
̂
𝑏


= 0, (172)

whence easily

̆𝑝 = ̆𝑝(𝑢
0
) ,

̃
𝑏


1
= − ̆𝑝



= 𝐶
3
∈ R,

̂
𝑏 = 𝐷

2
𝑥
2

+ 𝐷
1
𝑥 + 𝐷

0
,

(173)

̃
𝑏
1
= 𝐶

3

𝑥
3

6

+ 𝐶
2
𝑥
2

+ 𝐶
1
𝑥 + 𝐶

0
,

̆𝑝 = −𝐶
3
𝑢
0
+ 𝐶

(𝐶
3
, 𝐷

2
, . . . , 𝐶 ∈ R) .

(174)

The solution is eventually done. It depends on the parameters

𝐴,𝐴
3
, 𝐴

2
, 𝐴

1
, 𝐴

0
, 𝐵

1
, 𝐵

0
, 𝐶

3
, 𝐶

2
, 𝐶

1
, 𝐶

0
, 𝐶, 𝐷

2
, 𝐷

1
, 𝐷

0
∈ R

(175)

in the total number of 15. This is seemingly in contradic-
tion with [1, 7, 16] where 14-dimensional symmetry group
(namely, the exceptional simple Lie group G

2
) was declared.

However, our final symmetry in fact depends on the sum
𝐵
0
+ 𝐶

0
as follows from (166), (167), and (174) and therefore

no contradiction appears. We will not explicitly state the
resulting symmetries 𝑍 for obvious reason here. Recall that
they are given by (99) where 𝑧, 𝑝 are clarified in (109) and
(124). Coefficients appearing in (124) are clarified in (133),
(156), and (170) and in (154), (157), (162), (168), (173), and
(174).

It should be moreover noted that our approach is of the
universal nature while themethod of explicit calculations which
provides the infinitesimal transformations in [7] rests on a lucky
accident; see [7,Theorem 3.2, and the subsequent discussion].

Remark 29. Variations 𝑍 were easily found in (𝜄𝜄𝜄). Due
to Theorem 26 and Remark 27, infinitesimal symmetries
satisfy moreover L

𝑍
𝜋
0
= 𝜆𝜋

0
or, alternatively saying, they

preserve the Pfaffian equation 𝜋
0

= 0, and this property
was just employed. We will now prove the converse without
use of Theorem 24. The reasoning is as follows. Let a
variation 𝑍 preserve Pfaffian equation 𝜋

0
= 0. Then 𝑍

preserves the space of adjoint variables 𝑥, 𝑢
0
, 𝑢

1
, V

0
, V

1
of

this Pfaffian equation. In this finite-dimensional space, the
variation 𝑍 generates a group which can be prolonged to
the higher-order jet variables. It follows that 𝑍 is indeed an
infinitesimal transformation.

Remark 30. Let us briefly mention the case 𝐹(V
1
) = 𝐴V

1
+

𝐵 (𝐴, 𝐵 ∈ R; 𝐴 ̸= 0) as yet excluded by condition (90). In this
linear case, clearly

L
𝐷
𝛼
1
= L

𝐷
(𝑑𝑢

1
− (𝐴V

1
+ 𝐵) 𝑑𝑥)

= 𝑑 (𝐴V
1
+ 𝐵) − 𝐴V

2
𝑑𝑥 = 𝐴𝛽

1
,

L
𝐷
(𝛼

1
− 𝐴𝛽

0
) = 0,

𝜏 = 𝛼
1
− 𝐴𝛽

0
= 𝑑 (𝑢

1
− 𝐴V

0
− 𝐵𝑥) ∈ R (Ω)

(176)

and we may introduce standard filtration

R (Ω) ⊂ Ω
0
= Ker2Ω

1
⊂ Ω

1

= KerΩ
1
⊂ Ω

0
= Ω

1
⊂ Ω

1
= Ω

2
⊂ ⋅ ⋅ ⋅ ,

(177)

where 𝜏 is a basis ofR(Ω) and the forms

𝜋
0
= 𝛼

0
, 𝜋

1
= 𝛼

1
,

𝜋
2
= L

𝐷
𝛼
1
= 𝐴𝛽

1
, . . . , 𝜋

𝑙
= 𝐴𝛽

𝑙−1

(178)

provide a basis of module Ω
𝑙
(𝑙 ≥ 1). The symmetries can be

easily found.They are the prolonged contact transformations
m defined by m∗

𝛼
0

= 𝜆𝛼
0
depending moreover on the

parameter 𝑡 = 𝑢
1
− 𝐴V

0
− 𝐵𝑥. Roughly saying, the geometry

of the linear second-order equation 𝑢
2

= 𝐴V
1
+ 𝐵 is

identical with the contact geometry of curves in R2. Quite
analogous result can be obtained also for theMonge equation
𝐹(𝑥, 𝑢

0
, 𝑢

1
, V

0
, V

1
) = 0 and, in much greater generality, for the

system of two Pfaffian equations in four-dimensional space
[17].

Remark 31. Let us once more return to the crucial require-
ment (125) where operators D and 𝜕/𝜕V

1
are applied to

unknown functions 𝑃 and𝑄. We have employed the simplic-
ity of the second operator 𝜕/𝜕V

1
in the above solution; see

formula (133). However, analogous “complementary”method
can be applied to the first operator D as follows. Let us
introduce new variables

𝑥 = 𝑥, 𝑢
0
= 𝑢

0
− 𝑢

1
𝑥 +

𝐹𝑥
2

2

,

𝑢
1
= 𝑢

1
− 𝐹𝑥, V

0
= V

0
− V

1
𝑥, V = V

1

(179)

with the obvious inverse transformation (not stated here).
Then

D =

𝜕

𝜕𝑥

,

𝜕

𝜕V
1

=

𝑓

2

𝑥
2
𝜕

𝜕𝑢
0

− 𝑥(𝑓

𝜕

𝜕𝑢
1

+

𝜕

𝜕V
0

) +

𝜕

𝜕V

(𝑓 = 𝑓 (V
1
) = 𝑓 (V))

(180)

in terms of new variables. We again abbreviate V = V = V
1
.

Passing to new coordinates, the left-hand requirement (125)
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is simplified as 𝑃 = 𝑃(𝑢
0
, 𝑢

1
, V

0
, V). The middle requirement

(125) reads

𝑓
2

(

𝑓

2

𝑥
2

𝑃
𝑢
0

− 𝑥 (𝑓𝑃
𝑢
1

+ 𝑃V
0

) + 𝑃V) + 𝑓


𝑄
𝑥
= 0

(𝑄 = 𝑄 (𝑥, 𝑢
0
, 𝑢

1
, V

0
, V))

(181)

and determines the function 𝑄 in terms of new variables as

𝑄 = −

𝑓
2

𝑓

(

𝑓

6

𝑥
3

𝑃
𝑢
0

−

𝑥
2

2

(𝑓𝑃
𝑢
1

+ 𝑃V
0

) + 𝑥𝑃V) + 𝑞,

𝑞 = 𝑞 (𝑢
0
, 𝑢

1
, V

0
, V) ,

(182)

where 𝑞 is constant of integration. This is a polynomial in
variable 𝑥 and it follows easily that the remaining right-hand
requirement (130) applied to function 𝑄 is equivalent to the
system

𝑃
𝑢
0
𝑢
0

= 0, P
𝑢
0

= 0, 𝑞V = 0,

𝑓𝑞
𝑢
1

+ 𝑞V
0

+

𝜕

𝜕V
(

𝑓
2

𝑓

𝑃V) = 0,

𝑓
3

𝑓

𝑃
𝑢
0
V +

𝑓
2

𝑓

(𝑓P

𝑢
1

+PV
0

) +

1

3

𝜕

𝜕V
(

𝑓
3

𝑓

𝑃
𝑢
0

)

= 0,

𝑓𝑞
𝑢
0

+ 2

𝑓
2

𝑓

PV +

𝜕

𝜕V
(

𝑓
2

𝑓

P) = 0

(P = 𝑓𝑃
𝑢
1

+ 𝑃V
0

) .

(183)

We will not discuss this alternative approach here in more
detail.

Remark 32. Though the symmetries of (77) can be completely
determined by applying the common methods, several for-
mally quite different ways of the calculation are possible.
It would certainly be of practical interest which of them
is the “most economical” one. Let us mention such an
alternative way for better clarity. We start with the “opposite”
transcription

𝑑V
𝑑𝑥

= 𝐺(

𝑑
2

𝑢

𝑑𝑥
2
) (𝐺 = 𝐹

−1

, the inverse function) (184)

of (77). The primary concepts are retained, the same under-
lying space M, diffiety Ω, and contact forms 𝛼

𝑟
, 𝛽

𝑟
(𝑟 =

0, 1, . . .). However, we choose 𝑥, 𝑢
0
, 𝑢

1
, . . . , V

0
for new coordi-

nates onM from now on and the forms

𝛼
𝑟
= 𝑑𝑢

𝑟
− 𝑢

𝑟+1
𝑑𝑥 (𝑟 = 0, 1, . . .) ,

𝛽
0
= 𝑑V

0
− 𝐺 (𝑢

2
) 𝑑𝑥

(185)

for new basis ofΩ. We have moreover

𝐷 =

𝜕

𝜕𝑥

+∑𝑢
𝑟+1

𝜕

𝜕𝑢
𝑟

+ 𝐺

𝜕

𝜕V
0

(186)

in terms of new coordinates. The standard filtration is
formally simplified. The forms

𝜋
𝑟
= L

𝑟

𝐷
𝜋
0

(𝑟 = 0, 1, . . . ; 𝜋
0
= 𝛽

0
− 𝐺



𝛼
1
+ 𝐷𝐺



𝛼
0
)

(187)

may be taken for new standard basis if the inequality𝐷2

𝐺


̸=0

is supposed. This follows from the obvious formulae

𝜋
1
= L

𝐷
𝜋
0
= 𝐷

2

𝐺


𝛼
0
,

𝜋
2
= L

𝐷
𝜋
1
= 𝐷

3

𝐺


𝛼
0
+ 𝐷

2

𝐺


𝛼
1
, . . . ,

(188)

simplifying the analogous left-hand side (93). Then, analo-
gously to (95) and (99), we introduce the variations

𝑍 = 𝑧

𝜕

𝜕𝑥

+∑𝑧
1

𝑟

𝜕

𝜕𝑢
𝑟

+ 𝑧
2

0

𝜕

𝜕V
0

= 𝑧

𝜕

𝜕𝑑𝑥

+∑𝐷
𝑟

𝑝

𝜕

𝜕𝜋
𝑟

(189)

of diffiety Ω where 𝑧 = 𝑍𝑥 and 𝑝 = 𝜋
0
(𝑍) may be arbitrary

functions. Recall that we have even infinitesimal symmetry of
Ω if and only if the requirement (100) is satisfied. However
clearly

𝑑𝜋
0
= 𝑑𝑥 ∧ 𝜋

1

+ 𝐺


𝛼
1
∧ 𝛼

2
+ (𝐺



𝑢
3
𝛼
2
+ 𝐺



𝛼
3
) ∧ 𝛼

0

(190)

and one can obtain the resolving equations as follows. First of
all, we obtain equations

𝑧𝐷
2

𝐺


+ 𝐺


𝑢
3
𝑎
2
+ 𝐺



𝑎
3
+ 𝑝

𝑢
0

= 𝜆𝐷𝐺


,

𝑝V
0

= 𝜆

(𝑎
𝑟
= 𝛼

𝑟
(𝑍))

(191)

which determine coefficients 𝑧 and 𝜆 analogously to (107).
Moreover

𝐺


𝑎
2
− 𝑝

𝑢
1

− 𝐺


𝑝V
0

= 𝐺


𝑎
1
− 𝐺



𝑢
3
𝑎
0
+ 𝑝

𝑢
2

= 𝐺


𝑎
0
− 𝑝

𝑢
3

= 𝑝
𝑢
𝑟

= 0 (𝑟 > 3)

(192)

are conditions for the unknown function 𝑝 = 𝑝(𝑥, 𝑢
0
, . . . ,

𝑢
3
, V

0
) analogous to (108). The “vertical” coefficients 𝑎

𝑟
can

be expressed in terms of functions 𝑝,𝐷𝑝,𝐷2

𝑝 and 𝐷3

𝑝, by
using the equation

𝐷
2

𝐺


⋅ 𝑎
0
= 𝐷

2

𝐺


⋅ 𝛼
0
(𝑍) = 𝜋

1
(𝑍) = 𝐷𝜋

0
(𝑍) = 𝐷𝑝 (193)

and the recurrence 𝑎
𝑟+1

= 𝐷𝑎
𝑟
. As yet the calculations

are much easier then for the above case of formulae (110);
however, the resulting resolving system of three equations
analogous to (112)–(114) is again complicated and will not
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be explicitly stated here. Remarkable task appears when we
investigate the corresponding crucial requirements and try to
determine the structure of function 𝑝 in terms of new coor-
dinates. For instance, the “very prominent” and seemingly
rather artificial case (𝜅𝜄𝜄) turns into the “simplest possible”
and quite natural equation 𝑑V/𝑑𝑥 = (𝑑

2

𝑢/𝑑𝑥
2

)
2 in new

coordinates.

7. Brief Digression to the Calculus
of Variations

The classical Lagrange problem of the calculus of varia-
tions deals with an underdetermined system of differential
equations (better with a diffiety) together with a variational
integral. We are interested in internal symmetries of this
variational problem.

Let us start with a diffiety Ω ⊂ Φ(M). We choose
a standard filtrationΩ

∗
and the corresponding standard basis

𝜋
𝑗

𝑟
(𝑗 = 1, . . . , 𝜇(Ω); 𝑟 = 0, 1, . . . ). For better clarity, we

suppose the controllable case R(Ω) = 0. Let 𝑥 ∈ F(M)

be an independent variable. Let us consider 𝑥-parametrized
solutions p of diffiety Ω in the sense

p : I → M (I ⊂ R) ,

p∗𝜔 = 0 (𝜔 ∈ Ω) ,

p∗𝑥 = 𝑥 ∈ I ⊂ R.

(194)

Here I ⊂ R is a closed interval 𝑎 ≤ 𝑥 ≤ 𝑏 with a little
confusion: letter 𝑥 denotes both a function on M and the
common coordinate (that is, a point) in R.

Definition 33. Avector field𝑉 ∈ T(M) is called a variation of
solution p of diffietyΩ if p∗L

𝑉
𝜔 = 0 (𝜔 ∈ Ω). This is a mere

slight adaptation of the familiar classical concept.

Lemma 34. A vector field𝑉 ∈ T(M) is a variation of p if and
only if

p∗𝜋𝑗
𝑟+1

(𝑉) = p∗𝐷𝜋𝑗
𝑟
(𝑉) =

𝑑

𝑑𝑥

p∗𝜋𝑗
𝑟
(𝑉)

(𝑗 = 1, . . . , 𝜇 (Ω) ; 𝑟 = 0, 1, . . .) .

(195)

Proof. A variation 𝑉 satisfies p∗L
𝑉
𝜋
𝑗

𝑟
= 0, where

p∗L
𝑉
𝜋
𝑗

𝑟
= p∗ (𝑉⌋ 𝑑𝜋𝑗

𝑟
+ 𝑑𝜋

𝑗

𝑟
(𝑉))

= p∗ (−𝜋𝑗
𝑟+1

(𝑉) + 𝐷𝜋
𝑗

𝑟
(𝑉)) 𝑑𝑥

(196)

by virtue of (55).

Remark 35. It follows easily that a vector field 𝑍 ∈ T(M)

is a variation of diffiety Ω in the sense of Definition 8 if
and only if 𝑍 is a variation of every solution p of Ω; see
Lemma 23. Conversely, if 𝑉 is a variation of a solution p
then there exist many variations 𝑍 of Ω such that 𝑍 = 𝑉 at
every point of p, and they are characterized by the identities
p∗𝜋𝑗

0
(𝑍) = p∗𝜋𝑗

0
(𝑉) (𝑗 = 1, . . . , 𝜇(Ω)) along the curve p; see

formula (72). We conclude that the concepts “variation 𝑍 of
Ω” and “variations𝑉 of p” are closely related. Roughly saying,
variations 𝑉 of p are “restrictions” of variations 𝑍 ofΩ to the
curve p.

Definition 36. A couple {Ω, 𝜑} where Ω ⊂ Φ(M) is a diffiety
and 𝜑 ∈ Φ(M) is a differential form will be identified with
a variational problem in the (common) sense that diffiety
Ω represents the differential constraints to the variational
integral ∫𝜑. A solution p of Ω is called an extremal of this
variational problem, if

∫ p∗L
𝑉
𝜑 = ∫ p∗ 𝑉⌋ 𝑑𝜑 = 0 (special variations 𝑉)

(197)

for every variation𝑉 of pwhich is vanishing at the endpoints
p(𝑎), p(𝑏) ∈ M.This definition provides the common classical
extremals; see Remark 43.

Remark 37. The phrase “variation 𝑉 of p” can be replaced
with “variation 𝑉 of Ω”. The form 𝜑 can be replaced with
arbitrary form 𝜑 + 𝜔 (𝜔 ∈ Ω). The extremals do not change.

Theorem 38. To every standard basis of Ω and given 𝜑 ∈

Φ(M) there exists unique form ̆𝜑 ∈ Φ(M) such that

̆𝜑 ≅ 𝜑 (modΩ) ,

𝑑 ̆𝜑 ≅ 0 (modΩ ∧ Ω and all initial forms 𝜋𝑗
0
) .

(198)

In accordance with (198) we assume that

𝑑 ̆𝜑 ≅ ∑𝑒
𝑗

𝜋
𝑗

0
∧ 𝑑𝑥 (modΩ ∧ Ω) . (199)

Then a solution p of Ω is extremal if and only if p∗𝑒𝑗 = 0 (𝑗 =

1, . . . , 𝜇(Ω)) and therefore if and only if

p∗ 𝑍⌋ 𝑑 ̆𝜑 = 0 (𝑍 ∈ T (M)) (200)

for all vector fields 𝑍 ∈ T(M).

Proof (see [9]). For a given 𝜑 ∈ Φ(M), let us look at a top-
order summand

𝑑𝜑 ≅ ∑𝑎
𝑗

𝑟
𝜋
𝑗

𝑟
∧ 𝑑𝑥 = ⋅ ⋅ ⋅ + 𝑎

𝐽

𝑅
𝜋
𝐽

𝑅
∧ 𝑑𝑥

(modΩ ∧ Ω) .

(201)

If 𝑅 > 0, the summand can be deleted if the primary dif-
ferential form 𝜑 is replaced with the new form 𝜑 + 𝑎

𝐽

𝑅
𝜋
𝐽

𝑅−1
.

The extremals do not change. The procedure is unique and
terminates in form ̆𝜑 satisfying (198).Then (200) follows from
the identity

p∗ 𝑍⌋ 𝑑 ̆𝜑 = p∗ 𝑍⌋∑𝑒
𝑗

𝜋
𝑗

0
∧ 𝑑𝑥 = p∗∑𝑒

𝑗

𝜋
𝑗

0
(𝑍) 𝑑𝑥, (202)

where the functions 𝜋𝑗
0
(𝑍) may be quite arbitrary if 𝑍 is

a variation, see Lemma 34.
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Definition 39. The differential form ̆𝜑 can be regarded for the
internal Poincaré-Cartan form of our variational problem and
equations 𝑒𝑗 = 0 (𝑗 = 1, . . . , 𝜇(Ω)) for the Euler-Lagrange
system.

We turn to the symmetries.

Definition 40. A symmetry m of diffiety Ω is called a sym-
metry of variational problem {Ω, 𝜑}, if m∗

𝜑 ≅ 𝜑 (modΩ).
A variation (infinitesimal symmetry) 𝑍 ofΩ is called a vari-
ation (infinitesimal symmetry, resp.) of variational problem
{Ω, 𝜑}, if L

𝑍
𝜑 ∈ Ω. Let 𝑉 ∈ T(M) be a variation of

a solution p of diffietyΩ. Then𝑉 is called a Jacobi vector field
of p, if moreover p∗L

𝑉
𝜑 = 0. Roughly saying, variations

𝑍 of variational problem {Ω, 𝜑} are “universal” Jacobi vector
fields for all solutions p ofΩ. In classical theory, Jacobi vector
fields are introduced only for the particular case when p is an
extremal.

We will see in the following example that Poincaré-
Cartan forms ̆𝜑 simplify the calculation of symmetries and
variations. On this occasion, we also recall the following
admirable result.

Theorem 41 (E. Noether). If 𝑍 is a variation of varia-
tional problem {Ω, 𝜑} and ̆𝜑 is a Poincaré-Cartan form then
p∗ ̆𝜑(𝑍) = const. for every extremal p.

Proof. We haveL
𝑍
̆𝜑 ∈ Ω, p∗𝜔 = 0 (𝜔 ∈ Ω), and therefore

0 = p∗L
𝑍
̆𝜑 = p∗ (𝑍⌋ 𝑑 ̆𝜑 + 𝑑 ̆𝜑(𝑍))

= p∗𝑑 ̆𝜑(𝑍) = 𝑑p∗ ̆𝜑(𝑍)

(203)

by virtue of (200).

Remark 42. Many concepts of the classical calculus of vari-
ations lose the geometrical meaning if the higher-order
symmetries are accepted; for example, this concerns the
common concept of a nondegenerate variational problem
and even the order of a variational integral. On the other
hand, the most important concepts can be appropriately
modified; for example, the Hilbert-Weierstrass extremality
theory together with the Hamilton-Jacobi equations [18–21]
since the Poincaré-Cartan forms ̆𝜑 make “absolute sense”
along the extremals.

Remark 43. In the common classical calculus of variations,
extremals p are defined by the property ∫ p∗L

𝑉
𝜑 = 0, where

variations 𝑉 satisfy certain weak boundary conditions at the
endpoints (“fixed ends” or transversality) in order to delete
some “boundary effects” of the variational integral. Much
stronger conditions appear in Definition 36. Therefore

classical extremals ⊂ our extremals. (204)

However, 𝜑 can be replaced by the form ̆𝜑. Then

∫ p∗L
𝑉
̆𝜑 = ∫ p∗ 𝑉⌋ 𝑑 ̆𝜑 + boundary term. (205)

For the above special variations 𝑉, the boundary term
vanishes. If p is extremal in the sense of Definition 36, then
(200) and Remark 15 may be applied and it follows that

classical extremals ⊃ our extremals. (206)

In topical Griffiths’ theory [22], extremals are defined by the
property

p∗ 𝑍⌋ 𝑑 (𝜑 + 𝜔) = 0

(all 𝑍 ∈ T (M) , appropriate 𝜔 ∈ Ω depending on p)
(207)

which is clearly equivalent to the condition

∫ p∗ 𝑍⌋ 𝑑 (𝜑 + 𝜔) = ∫ p∗L
𝑍
(𝜑 + 𝜔) = 0

(special vector fields 𝑍, appropriate 𝜔 ∈ Ω) ,

(208)

where 𝑍 are vector fields vanishing at the endpoints. This
condition trivially implies

∫ p∗L
𝑉
(𝜑 + 𝜔) = 0 hence ∫ p∗L

𝑉
𝜑 = 0

(special variations 𝑉)
(209)

with variations 𝑉 vanishing at the endpoints; see Remark 35.
Therefore

Griffiths extremals ⊂ our extremals. (210)

The converse inclusion

Griffiths extremals ⊃ our extremals (211)

is, however, trivial since the universal form ̆𝜑 = 𝜑+ ̆𝜔 ( ̆𝜔 ∈ Ω)

satisfies p∗𝑍⌋𝑑 ̆𝜑 = 0 even for every extremal in the sense of
Definition 36. We conclude that all the mentioned concepts
of extremals are identical. (We apologize for this hasty
exposition. Roughly saying, the Griffiths’ theory and our
approach are almost identical. The Griffiths’ correction 𝜔 ∈

Ω depending on p is made universal here. The classical
approach rests on a special choice of boundary conditions for
the variations𝑉. However, such a special choice is misleading
since it does not affect the resulting family of extremals and
we prefer a universal choice here as well.)

8. Particular Example of a Variational Integral

A simple illustrative example is necessary at this place. Let
us again deal with diffiety Ω of Section 6. So we recall
coordinates 𝑥, 𝑢

0
, 𝑢

1
, V

0
, V

1
, . . . of the underlying space M,

the contact forms𝛼
𝑟
,𝛽

𝑟
(𝑟 = 0, 1, . . .) generatingΩ, the vector

field

𝐷 =

𝜕

𝜕𝑥

+ 𝑢
1

𝜕

𝜕𝑢
0

+ 𝐹

𝜕

𝜕𝑢
1

+∑ V
𝑟+1

𝜕

𝜕V
𝑟

=

𝜕

𝜕𝑥

+ ∑

𝜔∈Ω

0 ⋅

𝜕

𝜕𝜔

∈ H,

(212)
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and the standard basis 𝜋
0
, 𝜋

1
, . . . of Ω. We moreover intro-

duce variational integrals

∫𝜑 (𝜑 = 𝑔𝑑𝑥, 𝑔 ∈ F (M)) . (213)

Assuming 𝜕𝑔/𝜕𝜋
𝑟
= 0 (𝑟 > 𝑅) and therefore

𝑑𝑔 = 𝐷𝑔𝑑𝑥 +

𝜕𝑔

𝜕𝑢
0

𝛼
0
+

𝜕𝑔

𝜕𝑢
1

𝛼
1
+∑

𝜕𝑔

𝜕V
𝑟

𝛽
𝑟

= 𝐷𝑔𝑑𝑥 +

𝜕𝑔

𝜕𝜋
0

𝜋
0
+ ⋅ ⋅ ⋅ +

𝜕𝑔

𝜕𝜋
𝑅

𝜋
𝑅
,

(214)

we introduce the functions

𝑔
𝑅
=

𝜕𝑔

𝜕𝜋
𝑅

,

𝑔
𝑟−1

=

𝜕𝑔

𝜕𝜋
𝑟−1

− 𝐷𝑔
𝑟

(𝑟 = 𝑅, . . . , 1) .

(215)

Then

̆𝜑 = 𝑔𝑑𝑥 + 𝑔
1
𝜋
0
+ ⋅ ⋅ ⋅ + 𝑔

𝑅
𝜋
𝑅−1

(216)

is the Poincaré-Cartan form since the identity

𝑑 ̆𝜑 = 𝑔
0
⋅ 𝜋

0
∧ 𝑑𝑥 (modΩ ∧ Ω) (217)

can be directly verified. In accordance with formula (199)
where 𝑒 = 𝑒

1

, 𝜋
0
= 𝜋

1

0
is abbreviated, we have 𝑒 = 𝑔

0
. Let

us denote

𝑒 = 𝑒 [𝑔] = 𝑔
0

=

𝜕𝑔

𝜕𝜋
0

− 𝐷

𝜕𝑔

𝜕𝜋
1

+ ⋅ ⋅ ⋅ + (−1)
𝑅

𝐷
𝑅
𝜕𝑔

𝜕𝜋
𝑅

,

(218)

for better clarity. The following simple result will be needed.

Lemma 44. Identity 𝑒[𝑔] = 0 is equivalent to the equation
𝑔 = 𝐷𝐺 with appropriate 𝐺 ∈ F(M).

Proof. By virtue of (200), the identity is equivalent to the
congruence 𝑑 ̆𝜑 ≅ 0 (modΩ ∧ Ω). However, if the rule
𝑑(𝑑 ̆𝜑) = 0 is applied to the congruence, it follows easily that
𝑑 ̆𝜑 = 0 identically. Therefore ̆𝜑 = 𝑑𝐺 ≅ 𝐷𝐺𝑑𝑥 (modΩ) by
using the Poincaré lemma.

Let us mention symmetries m and variations 𝑍 of our
variational problem in more detail. In the favourable case
𝜇(Ω) = 1, the task is not difficult.

The symmetry m of our variational problem {Ω, 𝜑}

clearly preserves the unique Poincaré-Cartan form ̆𝜑 and
therefore also the vector field D = 𝐷/𝑔 ∈ H determined
by the condition ̆𝜑(D) = 1. We suppose 𝑔 ̸=0 here. It follows
that all differential forms

̆𝜋
0
= LD ̆𝜑 = D⌋ 𝑑 ̆𝜑 + 𝑑 ̆𝜑(D) = 𝑒𝜋

0
⋅D𝑥 =

𝑒

𝑔

𝜋
0
,

̆𝜋
𝑟+1

= LD ̆𝜋
𝑟

(𝑟 = 0, 1, . . .)

(219)

are preserved, too. Let us moreover suppose 𝑒 = 𝑒[𝑔] ̸= 0.
Clearly

̆𝜋
1
=

1

𝑔

L
𝐷
𝜋
0
=

1

𝑔

(𝐷

𝑒

𝑔

𝜋
0
+

𝑒

𝑔

𝜋
1
) ,

̆𝜋
𝑟+1

=

1

𝑔

LD𝜋𝑟 ≅
𝑒

𝑔
𝑟+1

𝜋
𝑟

(mod 𝑑𝑥, 𝜋
0
, . . . , 𝜋

𝑟
) .

(220)

Therefore ̆𝜑, ̆𝜋
0
, ̆𝜋

1
, . . . is invariant basis of module Φ(M) in

the sense

m∗

̆𝜑 = ̆𝜑,

m∗

̆𝜋
𝑟
= ̆𝜋

𝑟
(𝑟 = 0, 1, . . .) .

(221)

It follows that the symmetries m 𝑜𝑓 our variational prob-
lem {Ω, 𝜑} can be comfortably determined. Quite analogous
conclusion can be made for the infinitesimal symmetries, of
course.

Passing to the variations 𝑍 of the variational problem,
we have explicit formula (99) for the variations of Ω and
moreover condition L

𝑍
𝜑 ∈ Ω equivalent to L

𝑍
̆𝜑 ∈ Ω.

However,

L
𝑍
̆𝜑 = 𝑍⌋𝑑 ̆𝜑 + 𝑑 ̆𝜑(𝑍)

≅ 𝑍⌋ (𝑒𝜋
0
∧ 𝑑𝑥) + 𝐷 ̆𝜑(𝑍) 𝑑𝑥

= (𝑒𝑝 + 𝐷 ̆𝜑(𝑍)) 𝑑𝑥 (modΩ)

(222)

and therefore

0 = 𝑒𝑝 + 𝐷 ̆𝜑(𝑍) = 𝑒𝑝 + 𝐷𝐺

(𝐺 = 𝑔𝑧 + 𝑔
0
𝑝 + 𝑔

1
𝐷𝑝 + ⋅ ⋅ ⋅ + 𝑔

𝑅
𝐷
𝑅

𝑝) .

(223)

Assume 𝑔 ̸=0. We obtain condition 𝑒[𝑒𝑝] = 0 for the
unknown function 𝑝. In more precise notation and in full
detail

𝑒 [𝑒 [𝑔] 𝑝]

= (

𝜕

𝜕𝜋
0

− 𝐷

𝜕

𝜕𝜋
1

+ ⋅ ⋅ ⋅ ) (

𝜕𝑔

𝜕𝜋
0

− 𝐷

𝜕𝑔

𝜕𝜋
1

+ ⋅ ⋅ ⋅ ) 𝑝

= 0.

(224)

This is formally a very simple condition concerning the
unknown function 𝑝; alas, it is not easy to be resolved.
Paradoxically, variations 𝑍 cause serious difficulties.

For better clarity, we continue this example with par-
ticular choice of the variational integral. Let us consider
variational integral ∫𝑔(𝑥, 𝑢

0
, V

0
)𝑑𝑥. Equation (214) reads

𝑑𝑔 = 𝐷𝑔𝑑𝑥 +

𝜕𝑔

𝜕𝑢
0

𝛼
0
+

𝜕𝑔

𝜕V
0

𝛽
0

= 𝐷𝑔𝑑𝑥 +

𝜕𝑔

𝜕𝜋
0

𝜋
0
+

𝜕𝑔

𝜕𝜋
1

𝜋
1
+

𝜕𝑔

𝜕𝜋
2

𝜋
2

(225)
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and it follows that

𝜕𝑔

𝜕𝜋
0

= −2𝑔
𝑢
0

𝐷𝑓

𝐶

+ 𝑔V
0

𝐴

𝐶
2
,

𝜕𝑔

𝜕𝜋
1

= 𝑔
𝑢
0

𝑓

𝐶

+ 𝑔V
0

𝐵

𝐶
2
,

𝜕𝑔

𝜕𝜋
2

=

𝑔V
0

𝐶

(226)

by using (93). We have 𝑅 = 2 and therefore

̆𝜑 = 𝑔𝑑𝑥 + (

𝜕𝑔

𝜕𝜋
1

− 𝐷

𝜕𝑔

𝜕𝜋
2

)𝜋
0
+

𝜕𝑔

𝜕𝜋
2

𝜋
1
,

𝑒 =

𝜕𝑔

𝜕𝜋
0

− 𝐷

𝜕𝑔

𝜕𝜋
1

+ 𝐷
2
𝜕𝑔

𝜕𝜋
2

(227)

by virtue of (215)–(218). Both the Poincaré-Cartan form ̆𝜑

and the Euler-Lagrange equation 𝑒 = 0 can be expressed
in terms of common coordinates, if derivatives (226) are
inserted. We omit the final formulae here. Passing to the
symmetries m, we may simulate the moving frames method
and express the differential

𝑑 ̆𝜑 = ∑𝐶
𝑟
̆𝜋
𝑟
∧ ̆𝜑 +∑

𝑟<𝑠

𝐶
𝑟𝑠

̆𝜋
𝑟
∧ ̆𝜋

𝑠

= ̆𝜋
0
∧ ̆𝜑 +∑

𝑟<𝑠

𝐶
𝑟𝑠

̆𝜋
𝑟
∧ ̆𝜋

𝑠

(228)

in terms of the invariant basis (221). Then all coefficients 𝐶
𝑟𝑠

are invariants of symmetrym; that is,

m∗

𝐶
𝑟𝑠
= 𝐶

𝑟𝑠
hence m∗

D
𝑘

𝐶
𝑟𝑠
= D

𝑘

𝐶
𝑟𝑠

(D =

𝐷

𝑔

) .

(229)

In fact we have obtained all invariants. (Hint: for instance,
differential

𝑑 ̆𝜋
0
= 𝑑LD ̆𝜑 = LD𝑑 ̆𝜑

= ∑D𝐶
𝑟𝑠

̆𝜋
𝑟
∧ ̆𝜋

𝑠
+LD ( ̆𝜋

0
∧ ̆𝜑)

+∑𝐶
𝑟𝑠
LD ( ̆𝜋

𝑟
∧ ̆𝜋

𝑠
)

(230)

does not provide any novelty.) It follows that the symmetry
problem is resolved. Compatibility of the system of (229)
ensures the existence of symmetries m 𝑜𝑓 the variational
problem {Ω, 𝜑} 𝑠𝑖𝑛𝑐𝑒 the Frobenius theorem can be applied to
the Pfaffian system (221). In the most favourable case, 𝐶

𝑟𝑠

are even constants. Explicit calculation of invariants 𝐶
𝑟𝑠
is a

lengthy but routine procedure. First of all

𝑑 ̆𝜑 ≅ 𝑑𝑔
1
∧ 𝜋

0
+ 𝑑𝑔

2
∧ 𝜋

1
+ 𝑔

1
𝑑𝜋

0

+ 𝑔
2
𝑑𝜋

1
(mod 𝑑𝑥)

(231)

by using the primary formula (216). Then

𝑑𝑔
1
≅ ∑

𝜕𝑔
1

𝜕𝜋
𝑟

𝜋
𝑟
, 𝑑𝑔

2
≅ ∑

𝜕𝑔
2

𝜕𝜋
𝑟

𝜋
𝑟

(mod 𝑑𝑥) (232)

may be substituted where the coefficient can be determined
analogously as in (226). As the differential

𝑑𝜋
0
≅ 𝛽

1
∧ (𝑓



𝛼 − 𝑓𝑓


𝛽
0
+ 𝑓

V
2
𝛼
0
)

+ 𝑓


𝛽
2
∧ 𝛼

0
(mod 𝑑𝑥)

(233)

is concerned, we refer to formula in Section 6. The contact
forms must be replaced with the standard basis by using the
right-hand formulae (93).Thenwemay use the lucky identity

𝑑𝜋
1
= 𝑑L

𝐷
𝜋
0
= L

𝐷
𝑑𝜋

0
(234)

in order to determine the last summand in (231). In the end,
the standard basis 𝜋

𝑟
in (231) can be easily replaced by the

invariant forms ̆𝜋
𝑟
(𝑟 = 0, 1, . . .) and we are done.

9. The Order-Increasing Case

Let us eventually return to the main topic, the differential
equations. We will finish this paper with decisive examples
of higher-order symmetries, namely, with symmetries of the
Monge equation

𝑑𝑤

𝑑𝑥

= 𝐹(𝑥, 𝑢, V, 𝑤,
𝑑𝑢

𝑑𝑥

,

𝑑V
𝑑𝑥

) (235)

involving three unknown functions 𝑢 = 𝑢(𝑥), V = V(𝑥), and
𝑤 = 𝑤(𝑥). Let us directly turn to the internal theory carried
out by using the underlying spaceM with coordinates

𝑥, 𝑢
𝑟
, V

𝑟
, 𝑤

0
(𝑟 = 0, 1, . . .) , (236)

diffietyΩ ⊂ Φ(M) with the basis

𝛼
𝑟
= 𝑑𝑢

𝑟
− 𝑢

𝑟+1
𝑑𝑥,

𝛽
𝑟
= 𝑑V

𝑟
− V

𝑟+1
𝑑𝑥 (𝑟 = 0, 1, . . .) ,

𝛾
0
= 𝑑𝑤

0
− 𝐹 (𝑥, 𝑢

0
, V

0
, 𝑤

0
, 𝑢

1
, V

1
) 𝑑𝑥

(237)

and the total derivative

𝐷 =

𝜕

𝜕𝑥

+∑𝑢
𝑟+1

𝜕

𝜕𝑢
𝑟

+∑ V
𝑟+1

𝜕

𝜕V
𝑟

+ 𝐹

𝜕

𝜕𝑤
0

∈ H. (238)

We also introduce functions and differential forms

𝑤
𝑟
= 𝐷

𝑟

𝑤
0
∈ F (M) ,

𝛾
𝑟
= L

𝑟

𝐷
𝛾
0
= 𝑑𝑤

𝑟
− 𝑤

𝑟+1
𝑑𝑥 ∈ Ω

(𝑟 = 0, 1, . . .)

(239)

for the formal reasons.Thenatural filtrationΩ
∗
in accordance

with the order is such that the forms 𝛼
0
, . . . , 𝛼

𝑙
, 𝛽

0
, . . . , 𝛽

𝑙
, 𝛾

0

are taken for the basis of submodule Ω
𝑙
⊂ Ω (𝑙 = 0, 1, . . .).

Let us determine the corresponding standard filtration Ω
∗
.

Clearly

L
𝐷
𝛾
0
= 𝛾

1
= 𝐹

𝑢
0

𝛼
0
+ 𝐹V

0

𝛽
0
+ 𝐹

𝑤
0

𝛾
0

+ 𝐹
𝑢
1

𝛼
1
+ 𝐹V

1

𝛽
1

(240)
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and therefore

L
𝐷
(𝛾

0
− 𝐹

𝑢
1

𝛼
0
− 𝐹V

1

𝛽
0
)

= (𝐹
𝑢
0

− 𝐷𝐹
𝑢
1

) 𝛼
0
+ (𝐹V

0

− 𝐷𝐹V
1

) 𝛽
0
+ 𝐹

𝑤
0

𝛾
0
∈ Ω

0
.

(241)

Denoting 𝜋 = 𝛾
0
− 𝐹

𝑢
1

𝛼
0
− 𝐹V

1

𝛽
0
, we obtain

L
𝐷
𝜋 = (𝐹

𝑢
0

− 𝐷𝐹
𝑢
1

) 𝛼
0
+ (𝐹V

0

− 𝐷𝐹V
1

) 𝛽
0
+ 𝐹

𝑤
0

𝛾
0

= 𝐴𝛼
0
+ 𝐵𝛽

0
+ 𝐹

𝑤
0

𝜋 ∈ Ω
0

(𝐴 = 𝐹
𝑢
0

− 𝐷𝐹
𝑢
1

+ 𝐹
𝑤
0

𝐹
𝑢
1

, 𝐵 = 𝐹V
0

− 𝐷𝐹V
1

+ 𝐹
𝑤
0

𝐹V
1

) .

(242)

We will not deal with the case when 𝐴 = 𝐵 = 0 identically.
Let us instead suppose that𝐴 ̸=0 from now on.ThenR(Ω) =

0 and we may introduce standard filtration Ω
∗
of diffiety Ω

where the form

𝜋
1

0
= 𝜋 = 𝛾

0
− 𝐹

𝑢
1

𝛼
0
− 𝐹V

1

𝛽
0

(243)

generates Ω
0
and in general the forms

𝜋
1

𝑟
= L

𝑟

𝐷
𝜋 (𝑟 = 0, . . . , 𝑙) ,

𝜋
2

𝑟
= 𝛽

𝑟
(𝑟 = 0, . . . , 𝑙 − 1)

(244)

generate module Ω
𝑙
(𝑙 ≥ 1). Notation (53) with indices is

retained here. With this preparation, we are passing to the
symmetries of diffiety Ω. Theorem 26 and Remark 27 fail
since 𝜇(Ω) = 2 in our case. There exist many standard
filtrations of Ω and we may also expect the existence of the
order-destroying symmetries.

The preparation is done; however, before passing to
quite explicit examples, certain general aspects are worth
mentioning. We recall Figure 3 which can be transparently
illustrated just at this place for the first time.

First of all, every order-preserving symmetrym on scheme
(a) of Figure 3 obviously satisfies certain formulae

m∗

𝛼
0
= 𝑎

1

𝛼
0
+ 𝑎

2

𝛽
0
+ 𝑎

3

𝛾
0
,

m∗

𝛽
0
= 𝑏

1

𝛼
0
+ 𝑏

2

𝛽
0
+ 𝑏

3

𝛾
0
,

m∗

𝛾
0
= 𝑐

1

𝛼
0
+ 𝑐

2

𝛽
0
+ 𝑐

3

𝛾
0
,

det(
𝑎
1

𝑎
2

𝑎
3

𝑏
1

𝑏
2

𝑏
3

𝑐
1

𝑐
2

𝑐
3

) ̸=0,

(245)

where the coefficients cannot be in fact arbitrary since they
are subjected to identity (240). In more detail, we have

𝐷𝑊 ⋅m∗

𝛾
1

= L
𝐷
m∗

𝛾
0

= 𝐷𝑐
1

𝛼
0
+ 𝐷𝑐

2

𝛽
0
+ 𝐷𝑐

3

𝛾
0
+ 𝑐

1

𝛼
1
+ 𝑐

2

𝛽
1
+ 𝑐

3

𝛾
1

(𝑊 = m∗

𝑥)

(246)

in accordance with (63). Alternatively (240) implies

m∗

𝛾
1
= m∗

𝐹
𝑢
0

⋅m∗

𝛼
0
+ ⋅ ⋅ ⋅ +m∗

𝐹V
1

⋅m∗

𝛽
1
, (247)

where the formsm∗

𝛼
0
, . . . ,m∗

𝛽
1
can be expressed in terms of

forms 𝛼
0
, . . . , 𝛾

1
. The comparison provides many unpleasant

interrelations among coefficients 𝑎1, . . . , 𝑐3.
However, by using the standard basis, the same symmetry

satisfies shorter formulae

m∗

𝜋
1

0
= 𝑎𝜋

1

0

(hence, automatically 𝐷𝑊m∗

𝜋
1

1
= 𝐷𝑎𝜋

1

0
+ 𝑎𝜋

1

1
) ,

m∗

𝜋
2

0
= 𝑏

1

0
𝜋
1

0
+ 𝑏

2

0
𝜋
2

0
+ 𝑏

1

1
𝜋
1

1

(248)

with coefficients subjected only to the inequalities 𝑎 ̸= 0 and
𝑏
2

0
̸=0 at this place. We employ the fact that both triples

𝛼
0
, 𝛽

0
, 𝛾

0
and 𝜋

1

0
, 𝜋

2

0
, 𝜋

1

1
are bases of module Ω

0
. Moreover

m∗ preserves the natural filtration Ω
∗
and therefore also the

corresponding standard filtration Ω
∗
. Especially, the initial

termΩ
0
is preserved andm∗

𝜋
1

0
is a mere multiple of 𝜋1

0
.

The order-preserving infinitesimal symmetry 𝑍 corre-
sponding to scheme (a) satisfies either the system

L
𝑍
𝛼
0
= 𝜆

1
𝛼
0
+ 𝜆

2
𝛽
0
+ 𝜆

3
𝛾
0
,

L
𝑍
𝛽
0
= 𝜇

1
𝛼
0
+ 𝜇

2
𝛽
0
+ 𝜇

3
𝛾
0
,

L
𝑍
𝛾
0
= ]

1
𝛼
0
+ ]

2
𝛽
0
+ ]

3
𝛾
0

(249)

with coefficients subjected to many identities analogous as
above or, alternatively, the equivalent and shorter system

L
𝑍
𝜋
1

0
= 𝜇𝜋

1

0

(hence L
𝑍
𝜋
1

1
= 𝐷𝜇𝜋

1

0
+ (𝜇 − 𝐷𝑍𝑥) 𝜋

1

1
) ,

L
𝑍
𝜋
2

0
= 𝜆

1

0
𝜋
1

0
+ 𝜆

2

0
𝜋
2

0
+ 𝜆

1

1
𝜋
1

1

(250)

with arbitrary coefficients in terms of the standard basis. For
the middle equation use the identity

L
𝑍
𝜋
1

1
= L

𝑍
L

𝐷
𝜋
1

0
= L

𝐷
L

𝑍
𝜋
1

0
− 𝐷𝑧𝜋

1

1
(𝑧 = 𝑍𝑥) .

(251)

This follows from the Lie bracket formula [𝐷, 𝑍] = 𝐷𝑧 ⋅ 𝐷

which is true if and only if 𝑍 is a variation of diffiety Ω.
The Cartan’s general equivalence method [23] can be applied
to this order-preserving symmetry problem; however, we will
mention the Lie approach later on.

With this result, the simplest possible order-increasing
symmetry m on scheme (c) of Figure 3 can be introduced by
the equations

m∗

𝜋
1

0
= 𝑎

1

𝜋
1

0
+ 𝑎

2

𝜋
2

0
,

m∗

𝜋
2

0
= 𝑏

1

𝜋
1

0
+ 𝑏

2

𝜋
2

0
+ 𝑏 (𝑎

1

𝜋
1

1
+ 𝑎

2

𝜋
2

1
) ,

det(𝑎
1

𝑏
1

− 𝑏𝐷𝑎
1

𝑎
2

𝑏
2

− 𝑏𝐷𝑎
2
) ̸=0.

(252)
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Let us prove the invertibility ofm. Clearly

𝐷𝑊m∗

𝜋
1

1
= L

𝐷
m∗

𝜋
1

0

= 𝐷𝑎
1

𝜋
1

0
+ 𝐷𝑎

2

𝜋
2

0
+ 𝑎

1

𝜋
1

1
+ 𝑎

2

𝜋
2

1

(253)

and it follows that

m∗

𝜋
2

0
− 𝑏𝐷𝑊m∗

𝜋
1

1

= (𝑏
1

− 𝑏𝐷𝑎
1

) 𝜋
1

0
+ (𝑏

2

− 𝑏𝐷𝑎
2

) 𝜋
2

0
∈ m∗

Ω.

(254)

Inclusions 𝜋1
0
, 𝜋

2

0
∈ m∗

Ω therefore hold true and Lemma 21
can be applied.

In order to state another example to scheme (c), let us
consider the equations

m∗

𝜋
1

0
= 𝑎

1

0
𝜋
1

0
+ 𝑎

2

0
𝜋
2

0
+ 𝑎

1

1
𝜋
1

1
+ 𝑎

2

1
𝜋
2

1
,

m∗

𝜋
2

0
= 𝑏

1

0
𝜋
1

0
+ 𝑏

2

0
𝜋
2

0
+ 𝑏

1

1
𝜋
1

1
+ 𝑏

2

1
𝜋
2

1
.

(255)

Invertibility of such morphismm is ensured if 𝑏𝑖
1
= 𝑏𝑎

𝑖

1
, 𝑏

𝑖

0
−

𝑏𝑎
𝑖

0
= 𝑎𝑎

𝑖

1
(𝑖 = 1, 2) for appropriate factors 𝑎 ̸= 0, 𝑏 and if

moreover

det(𝑎
1

1
𝑎
1

0
− 𝐷𝑎

1

1

𝑎
2

1
𝑎
2

0
− 𝐷𝑎

2

1

) ̸=0. (256)

For the proof of invertibility, applyL
𝐷
to the inclusion

1

𝑎

(m∗

𝜋
2

0
− 𝑏m∗

𝜋
1

0
) = 𝑎

1

1
𝜋
1

0
+ 𝑎

2

1
𝜋
2

0
∈ m∗

Ω (257)

and verify that 𝜋1
0
, 𝜋

2

0
∈ m∗

Ω.
In both examples, the common general equivalencemethod

[23] fails. The corresponding variations 𝑍 can be introduced
and are rather interesting though they do not generate any
symmetry groups. See Remark 46 below.

It is also easy to illustrate scheme (b) of Figure 3 by using
the symmetriesm and infinitesimal symmetries 𝑍 such that

m∗

𝜋
1

0
= 𝑎

1

𝜋
1

0
+ 𝑎

2

𝜋
2

0
,

m∗

𝜋
2

0
= 𝑏

1

𝜋
1

0
+ 𝑏

2

𝜋
2

0
,

det(𝑎
1

𝑎
2

𝑏
1

𝑏
2
) ̸=0,

L
𝑍
𝜋
1

0
= 𝜆

1

𝜋
1

0
+ 𝜆

2

𝜋
2

0
,

L
𝑍
𝜋
2

0
= 𝜇

1

𝜋
1

0
+ 𝜇

2

𝜋
2

0
.

(258)

(Hint: Theorem 24 can be trivially applied and the natural
filtration is not preserved, if 𝑎2 ̸=0 and 𝜆

2

̸=0.) Another
example is provided by the equations

m∗

𝜋
1

0
= 𝑎

1

0
𝜋
1

0
+ 𝑎

2

0
𝜋
2

0
+ 𝑎

2

1
𝜋
2

1
,

m∗

𝜋
2

0
= 𝑏𝜋

2

0
,

L
𝑍
𝜋
1

0
= 𝜇

1

0
𝜋
1

0
+ 𝜇

2

0
𝜋
2

0
+ 𝜇

2

1
𝜋
2

1
,

L
𝑍
𝜋
2

0
= 𝜇𝜋

2

0

(259)

“symmetrical” to the order-preserving case. The classical
Lie’s infinitesimal symmetries and the Cartan’s equivalence
method can be both applied without any change.

We have briefly indicated only the simplest devices here
and refer to [2, Section 4] for the universal construction.
A complete overview of all possible higher-order symmetries
of (235) is lying beyond any actual imagination. For instance,
the composition m

1
∘ m

2
of symmetries and the conjugate

groups m ∘ m(𝜆) ∘ m−1 to a given group provide much
more complicated examples than the original components
m

1
,m

2
,m, and m(𝜆). The definition equations for such

composition of symmetries can be directly found and they look
rather depressively for the time being.

10. Concluding Examples on
Infinitesimal Symmetries

We deal only with a simplified equation (235), namely, with
the equation

𝑑𝑤

𝑑𝑥

= 𝐹(

𝑑𝑢

𝑑𝑥

,

𝑑V
𝑑𝑥

) (260)

for good reasons to be clarified in the Appendix. Let us
abbreviate

𝐹
1
= 𝐹

𝑢
1

, 𝐹
1

= 𝐹V
1

, 𝐹
11
= 𝐹

𝑢
1
𝑢
1

,

𝐹
1

1
= 𝐹

𝑢
1
V
1

, 𝐹
11

= 𝐹V
1
V
1

(261)

from now on. The crucial identity (240) then reads

L
𝐷
𝛾
0
= 𝛾

1
= 𝐹

1
𝛼
1
+ 𝐹

1

𝛽
1

(262)

and we recall the standard basis 𝜋1
𝑟
= L𝑟

𝐷
𝜋
1

0
, 𝜋

2

𝑟
= L𝑟

𝐷
𝜋
2

0
=

𝛽
𝑟
(𝑟 = 0, 1, . . .), where

𝜋
1

0
= 𝛾

0
− 𝐹

1
𝛼
0
− 𝐹

1

𝛽
0
,

𝜋
1

1
= −𝐷𝐹

1
𝛼
0
− 𝐷𝐹

1

𝛽
0

(263)

in terms of the simplified notation. The formulae

𝑑𝜋
1

0
= 𝑑𝑥 ∧ 𝜋

1

1
+ (𝐹

11
𝛼
0
+ 𝐹

1

1
𝛽
0
) ∧ 𝛼

1

+ (𝐹
1

1
𝛼
0
+ 𝐹

11

𝛽
0
) ∧ 𝛽

1
,

𝑑𝜋
2

0
= 𝑑𝑥 ∧ 𝛽

1

(264)

easily follow. On this occasion, we also recall more general
adjustments

𝜆m∗

L
𝐷
𝜔 = L

𝐷
m∗

𝜔

(𝜔 ∈ Ω, 𝜆 = 𝐷𝑊,𝑊 = m∗

𝑥) ,

(265)

(L
𝐷
𝜔) (𝑍) = 𝐷 (𝜔 (𝑍)) (𝜔 ∈ Ω) (266)

of Lemmas 17 and 23. The factor 𝜆 ̸= 0 appearing here can be
defined by the congruencem∗

𝑑𝑥 ≅ 𝜆𝑑𝑥 (modΩ) as well.
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Several symmetry problems for (260) will be mentioned.
We start with examples on infinitesimal symmetries 𝑍 and
demonstrate our approach both using the traditional order-
preserving case and then employing two technically quite
analogous order-increasing symmetry problems. The calcu-
lations are elementary but not of a mere mechanical nature
and the concise form of the final results is worth attention.
That is, by using the series (268) with the standard basis, the
unknown functions 𝑧, 𝑝, and 𝑞 satisfy quite reasonable and
explicitly solvable conditions. Denoting

𝑎
0
= 𝛼

0
(𝑍) , 𝑎

1
= 𝛼

1
(𝑍) = 𝐷𝑎

0
,

𝑝 = 𝜋
1

0
(𝑍) , 𝑞 = 𝜋

2

0
(𝑍) = 𝛽

0
(𝑍) ,

𝑧 = 𝑍𝑥,

(267)

we simulate the procedure of Section 6 and ourmethod again
rests on the explicit formula

𝑍 = 𝑧

𝜕

𝜕𝑥

+∑𝐷
𝑟

𝑝

𝜕

𝜕𝜋
1

𝑟

+∑𝐷
𝑟

𝑞

𝜕

𝜕𝜋
2

𝑟

(268)

for all variations 𝑍. We recall that infinitesimal symmetries 𝑍
moreover satisfy certain additional requirements in order to
ensure the conditions of Theorem 24. The choice of such
requirements which is arbitrary to a large extent (dotted lines
in Figure 3(b)) strongly affects the final result, the resulting
symmetries𝑍. Altogether taken, reasonings of this Section 10
belong to the Lie’s theory appropriately adapted to the infinite-
dimensional spaces. On the contrary, we will conclude this
paper with only few remarks on the true (not group-like)
higher-order symmetries m in subsequent Section 11. The
reasonings can be related to the E.Cartan’s general equivalence
method [16, 23] and they would deserve more space than it is
possible here.

Let us turn to proper examples.

(𝜄) The Order-Preserving Symmetry Problem.We again inten-
tionally start with a mere “traditional” case. Let us deal with
infinitesimal symmetries 𝑍 satisfying

L
𝑍
𝜋
1

0
= 𝜇𝜋

1

0
= 𝜇 (𝛾

0
− 𝐹

1
𝛼
0
− 𝐹

1

𝛽
0
) ,

L
𝑍
𝜋
2

0
= 𝜆

1

0
𝜋
1

0
+ 𝜆

2

0
𝜋
2

0
+ 𝜆

1

1
𝜋
1

1

= 𝜇
1

𝛼
0
+ 𝜇

2

𝛽
0
+ 𝜇

3

𝛾
0
.

(269)

We use the “hybrid” equations involving both the standard
basis and the contact forms. Let us recall the explicit for-
mula (268) for all variations. We have moreover the above
equations (269) in order to obtain the true infinitesimal
symmetries. In more detail

𝑍⌋ 𝑑𝜋
1

0
+ 𝑑𝑝 = 𝜇 (𝛾

0
− 𝐹

1
𝛼
0
− 𝐹

1

𝛽
0
) ,

𝑍⌋ 𝑑𝜋
2

0
+ 𝑑𝑞 = 𝜇

1

𝛼
0
+ 𝜇

2

𝛽
0
+ 𝜇

3

𝛾
0

(270)

should be satisfied. Analogously as in Section 6, this is
expressed by the resolving system

𝑧𝐷𝐹
1
+ 𝐹

11
𝑎
1
+ 𝐹

1

1
𝐷𝑞 = 𝑝

𝑢
0

+ 𝜇𝐹
1
,

𝑧𝐷𝐹
1

+ 𝐹
1

1
𝑎
1
+ 𝐹

11

𝐷𝑞 = 𝑝V
0

+ 𝜇𝐹
1

,

𝐹
11
𝑎
0
+ 𝐹

1

1
𝑞 + 𝑝

𝑢
1

= 0,

𝐹
1

1
𝑎
0
+ 𝐹

11

𝑞 + 𝑝V
1

= 0,

(271)

𝑝
𝑤
0

= 𝜇,

𝑝
𝑢
𝑟

= 𝑝V
𝑟

= 0 (𝑟 ≥ 2) ,

𝑞
𝑢
0

= 𝜇
1

, 𝑞V
0

= 𝜇
2

, 𝑞
𝑤
0

= 𝜇
3

,

𝑞
𝑢
𝑟

= 0 (𝑟 ≥ 1) ,

𝑧 + 𝑞V
1

= 0,

𝑞V
𝑟

= 0 (𝑟 ≥ 2)

(272)

by using (264) and𝛽
1
(𝑍) = 𝐷𝛽

0
(𝑍) = 𝐷𝑞. It follows that only

(271) with 𝜇 = 𝑝
𝑤
0

, 𝑧 = −𝑞V
1

inserted and coefficients 𝑎
0
, 𝑎

1

given by

𝑎
0
𝐷𝐹

1
+ 𝑞𝐷𝐹

1

+ 𝐷𝑝 = 0, 𝑎
1
= 𝐷𝑎

0
(273)

are the most important.
Let us denote Δ = (𝐹

1

1
)
2

− 𝐹
11
𝐹
11 and assume Δ ̸=0 from

now on. Equations (271) are equivalent to

Δ𝐷𝑞 = det(
𝑝
𝑢
0

+ 𝑝
𝑤
0

𝐹
1
+ 𝑞V

1

𝐷𝐹
1
𝐹
11

𝑝V
0

+ 𝑝
𝑤
0

𝐹
1

+ 𝑞V
1

𝐷𝐹
1

𝐹
1

1

) ,

Δ𝑎
1
= det(𝐹

1

1
𝑝
𝑢
0

+ 𝑝
𝑤
0

𝐹
1
+ 𝑞V

1

𝐷𝐹
1

𝐹
11

𝑝V
0

+ 𝑝
𝑤
0

𝐹
1

+ 𝑞V
1

𝐷𝐹
1

,

) ,

(274)

Δ𝑞 = det(
𝐹
11

𝑝
𝑢
1

𝐹
1

1
𝑝V
1

) ,

Δ𝑎
0
= det(𝑝𝑢1 𝐹

1

1

𝑝V
1

𝐹
11
) .

(275)

We have unknown functions

𝑝 = 𝑝 (𝑥, 𝑢
0
, V

0
, 𝑤

0
, 𝑢

1
, V

1
) ,

𝑞 = 𝑞 (𝑥, 𝑢
0
, V

0
, 𝑤

0
, V

1
)

(276)

and let us pass to the solution of (273), (274), and (275).
The first equation (273) multiplied by function Δ reads

(𝐹
11
𝑢
2
+ 𝐹

1

1
V
2
) Δ𝑎

0
+ (𝐹

1

1
𝑢
2
+ 𝐹

11V
2
) Δ𝑞

+ (D𝑝 + 𝑝
𝑢
1

𝑢
2
+ 𝑝V

1

V
2
) Δ = 0

(277)

and therefore implies only the identity

D𝑝 = 0 (D =

𝜕

𝜕𝑥

+ 𝑢
1

𝜕

𝜕𝑢
0

+ V
1

𝜕

𝜕V
0

+ 𝐹

𝜕

𝜕𝑤
0

) , (278)
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if both equations (275) are accepted (direct verification).
Alternatively saying, second equation (275) can be regarded
for a definition of function 𝑎

0
if (278) is taken into account.

Let us denote 𝐺 = Δ𝑎
0
for a moment. Then

𝐷𝐺 = 𝐷Δ ⋅ 𝑎
0
+ Δ ⋅ 𝐷𝑎

0
= 𝐷Δ ⋅

𝐺

Δ

+ Δ ⋅ 𝑎
1
,

Δ ⋅ 𝐷𝐺 − 𝐺 ⋅ 𝐷Δ = 𝑎
1
⋅ (Δ)

2

(279)

and the second equation (274) reads

Δ ⋅ 𝐷𝐺 − 𝐺 ⋅ 𝐷Δ = Δ ⋅ det (⋅ ⋅ ⋅ ) (280)

with the same determinant. Lower-order terms clearly pro-
vide the equation

D𝐺 = det(𝐹
1

1
𝑝
𝑢
0

+ 𝑝
𝑤
0

𝐹
1

𝐹
11

𝑝V
0

+ 𝑝
𝑤
0

𝐹
1
) (281)

and coefficients of V
2
give

Δ ⋅ 𝐺V
1

− 𝐺 ⋅ Δ V
1

= 0, hence 𝐺 = 𝑔 (𝑥, 𝑢
0
, V

0
, 𝑤

0
) Δ (282)

for appropriate function𝑔; however trivially𝑔 = 𝑎
0
.With this

result, we obtain

Δ (𝑔
𝑢
1

Δ + 𝑔Δ
𝑢
1

) − 𝑔Δ ⋅ Δ
𝑢
1

= Δ det(𝐹
1

1
𝑞V
1

𝐹
11

𝐹
11

𝑞V
1

𝐹
1

1

) = (Δ)
2

𝑞V
1

(283)

by inspection of coefficients of V
2
. It follows that 𝑔

𝑢
1

= 𝑞V
1

,
whence

𝑔 = 𝑅 (𝑥, 𝑢
0
, V

0
, 𝑤

0
) 𝑢

1
+ 𝑆 (𝑥, 𝑢

0
, V

0
, 𝑤

0
) ,

𝑞 = 𝑅 (𝑥, 𝑢
0
, V

0
, 𝑤

0
) V

1
+ 𝑇 (𝑥, 𝑢

0
, V

0
, 𝑤

0
) .

(284)

Analogously the lower-order terms of the first equation (274)
give

Δ ⋅D𝑞 = det(
𝑝
𝑢
0

+ 𝑝
𝑤
0

𝐹
1
𝐹
11

𝑝V
0

+ 𝑝
𝑤
0

𝐹
1

𝐹
1

1

) , (285)

while the second-order terms do not provide any new
requirements.

Let us finally recall (275) with 𝑎
0
= 𝑔 and 𝑞 given by (284)

inserted. These equations turn into the compatible system

𝑝
𝑢
1

+ (𝑅𝑢
1
+ 𝑆) 𝐹

11
+ (𝑅V

1
+ 𝑇) 𝐹

1

1
= 0,

𝑝V
1

+ (𝑅𝑢
1
+ 𝑆) 𝐹

1

1
+ (𝑅V

1
+ 𝑇) 𝐹

11

= 0

(286)

for the function 𝑝 with the solution

𝑝 = (𝐹 − 𝐹
1
𝑢
1
− 𝐹

1V
1
) 𝑅 − 𝐹

1
𝑆 − 𝐹

1

𝑇 + 𝐶

(𝐶 = 𝐶 (𝑥, 𝑢
0
, V

0
, 𝑤

0
)) .

(287)

Then (278) is expressed by the crucial requirement

(𝐹 − 𝐹
1
𝑢
1
− 𝐹

1V
1
) ⋅D𝑅 − 𝐹

1
⋅D𝑆 − 𝐹

1

⋅D𝑇 +D𝐶 = 0

(288)

for the functions𝑅, 𝑆,𝑇 and𝐶. One canmoreover verify with
the help of

0 = (D𝑝)
𝑢
1

= D (𝑝
𝑢
1

) + 𝑝
𝑢
0

+ 𝑝
𝑤
0

𝐹
1
,

0 = (D𝑝)V
1

= D (𝑝V
1

) + 𝑝V
0

+ 𝑝
𝑤
0

𝐹
1

(289)

that the remaining equations (281) and (285) become identi-
ties.

Let us summarize our achievements. Assuming (𝐹1
1
)
2

̸=

𝐹
11
𝐹
11

, 𝑎𝑙𝑙 infinitesimal symmetries (268) are determined
by formula (287), the second equation (284) and 𝑧 =

−𝑞V
1

= −𝑅 𝑤𝑖𝑡ℎ functions 𝑅, 𝑆, 𝑇, 𝐶 of variables 𝑥
0
, 𝑢

0
, V

0
,

𝑤
0
satisfying (288).
Traditional methods are sufficient to analyze thoroughly

(288). Passing to more details, we have

(𝐹 − 𝐹
1
𝑢
1
− 𝐹

1V
1
) (𝑢

1
𝑅
𝑢
0

+ V
1
𝑅V
0

+ 𝐹𝑅
𝑤
0

)

− 𝐹
1
(𝑆

𝑥
+ 𝑢

1
(𝑆

𝑢
0

+ 𝑅
𝑥
) + V

1
𝑆V
0

+ 𝐹𝑆
𝑤
0

)

− 𝐹
1

(𝑇
𝑥
+ 𝑢

1
𝑇
𝑢
0

+ V
1
(𝑇V
0

+ 𝑅
𝑥
) + 𝐹𝑇

𝑤
0

)

+ 𝐶
𝑥
+ 𝑢

1
𝐶
𝑢
0

+ V
1
𝐶V
0

+ 𝐹 (𝐶
𝑤
0

+ 𝑅
𝑥
) = 0.

(290)

Analogously as in Section 6, the large series of coefficients

𝐹𝑢
1
, 𝐹

1
(𝑢

1
)
2

, 𝐹
1V

1
𝑢
1
, 𝐹V

1
, 𝐹

1
𝑢
1
V
1
, . . . , 1, 𝑢

1
, V

1
, 𝐹 (291)

appears. If these functions are R-linearly independent, only
the solution 𝑅, 𝑆, 𝑇, 𝐶 such that

𝑅
𝑢
0

= 𝑅V
0

= 𝑅
𝑤
0

= 𝑆
𝑥
= 𝑆

𝑢
0

+ 𝑅
𝑥

= ⋅ ⋅ ⋅ = 𝐶V
0

= 𝐶
𝑤
0

+ 𝑅
𝑥
= 0

(292)

is possible. It follows that

𝑅 = 𝑎
1
𝑥 + 𝑎

2
, 𝑆 = −𝑎

1
𝑢
0
+ 𝑎

3
,

𝑇 = −𝑎
1
V
0
+ 𝑎

4
, 𝐶 = −𝑎

1
𝑤
0
+ 𝑎

5
,

(293)

where 𝑎
1
, . . . , 𝑎

5
∈ R are arbitrary constants. This result

provides the obvious symmetries which are self-evident at
a first glance, the coordinate shifts and the similarity.

For a special choice of function 𝐹, the symmetry group
may be very large and less trivial. We can mention the case
𝐹 = 𝑢

1
V
1
. Then the arising system of five equations

𝑅
𝑥
+ 𝑆

𝑢
0

+ 𝑇V
0

− 𝐶
𝑤
0

= 𝑅
𝑢
0

+ 𝑇
𝑤
0

= 𝑅V
0

+ 𝑆
𝑤
0

= 𝑇
𝑥
− 𝐶

𝑢
0

= 𝑆
𝑥
− 𝐶V

0

= 0

(294)

for the unknown functions

𝑅 = 𝑅 (𝑥, 𝑢
0
, V

0
) , 𝑆 = 𝑆 (𝑥, 𝑢

0
, 𝑤

0
) ,

𝑇 = 𝑇 (𝑥, V
0
, 𝑤

0
) = 𝐶 (𝑢

0
, V

0
, 𝑤

0
) ,

(295)
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can be resolved by

𝑅 = 𝑎
1
𝑥 + 𝑎

2
𝑢
0
+ 𝑎

3
V
0
+ 𝑎

4
,

𝑆 = 𝑎
5
𝑥 + 𝑎

6
𝑢
0
− 𝑎

3
𝑤
0
+ 𝑎

7
,

𝑇 = 𝑎
8
𝑥 + 𝑎

9
V
0
− 𝑎

2
𝑤
0
+ 𝑎

10
,

𝐶 = 𝑎
8
𝑢
0
+ 𝑎

6
V
0
+ (𝑎

1
+ 𝑎

6
+ 𝑎

9
) 𝑤

0
+ 𝑎

11
,

(296)

where 𝑎
1
, . . . , 𝑎

11
∈ R are arbitrary constants.

We omit more examples, in particular the interesting
cases (with R-linear dependence of functions 𝐹 − 𝐹

1
𝑢
1
−

𝐹
1V

1
, 𝐹

1
, 𝐹

1

, 1) where the infinitesimal symmetries depend on
arbitrary functions and the “degenerate” cases when either
Δ = 0 or𝐷𝐹

1
= 𝐷𝐹

1

= 0 identically.

(𝜄𝜄) The Order-Increasing Infinitesimal Symmetry. Let us men-
tion variations (268) satisfying moreover the equations

L
𝑍
𝜋
1

0
= 𝜇

1

0
𝜋
1

0
+ 𝜇

2

0
𝜋
2

0
+ 𝜇

2

1
𝜋
2

1
, L

𝑍
𝜋
2

0
= 𝜇𝜋

2

0
(297)

which provide the order-increasing case, if 𝜇2
1

̸=0. One can
then obtain the resolving system

𝑧𝐷𝐹
1
+ 𝐹

11
𝑎
1
+ 𝐹

1

1
𝐷𝑞 − 𝑝

𝑢
0

− 𝑝
𝑤
0

𝐹
1

= 𝐹
11
𝑎
0
+ 𝐹

1

1
𝑞 + 𝑝

𝑢
1

= 𝑧 + 𝑞V
1

= 0

(298)

for the unknown functions

𝑝 = 𝑝 (𝑥, 𝑢
0
, V

0
, 𝑤

0
, 𝑢

1
, V

1
) ,

𝑞 = 𝑞 (𝑥, V
0
, V

1
) , 𝑧 = 𝑧 (𝑥, V

0
, V

1
)

(299)

and moreover formula

𝜇
2

1
= 𝐹

1

1
𝑎
0
+ 𝐹

11

𝑞 + 𝑝V
1

= −𝐹
1

1

𝑞𝐷𝐹
1

+ 𝐷𝑝

𝐷𝐹
1

+ 𝐹
11

𝑞 + 𝑝V
1

(300)

for the coefficient𝜇2
1
.Wemention only the particular case𝐹 =

𝑢
1
V
1
. Then the resolving system reads −𝑞V

1

V
2
+ 𝐷𝑞 − 𝑝

𝑢
0

−

𝑝
𝑤
0

V
1
= 𝑞 + 𝑝

𝑢
1

= 0 and admits the solution

𝑝 = −𝑞𝑢
1
+ (𝑞

𝑥
+ 𝑞V

0

V
1
) 𝑢

0
+ 𝑃 (𝑥, V

1
𝑢
0
− 𝑤

0
, V

0
, V

1
) ,

(301)

where the functions 𝑞 = 𝑞(𝑥, V
0
, V

1
) and 𝑃 = 𝑃(𝑥, V

1
𝑢
0
−

𝑤
0
, V

0
, V

1
) may be arbitrarily chosen. Since the above coeffi-

cient

𝜇
2

1
= −

1

V
2

(𝑞𝑢
2
+ 𝐷𝑝) + 𝑝V

1

(302)

does not in general vanish, we have a large family of order-
increasing infinitesimal symmetries.

(𝜄𝜄𝜄) Another Order-Increasing Case. Let usmention variations
(268) satisfying the equations

L
𝑍
𝜋
1

0
= 𝜆

1

𝜋
1

0
+ 𝜆

2

𝜋
2

0
, L

𝑍
𝜋
2

0
= 𝜇

1

𝜋
1

0
+ 𝜇

2

𝜋
2

0
(303)

which provide an order-increasing case if𝜆2 ̸=0.The resolving
system

𝑧𝐷𝐹
1
+ 𝐹

11
𝑎
1
+ 𝐹

1

1
𝐷𝑞 − 𝑝

𝑢
0

− 𝑝
𝑤
0

𝐹
1
= 0,

𝐹
11
𝑎
0
+ 𝐹

1

1
𝑞 + 𝑝

𝑢
1

= 𝐹
1

1
𝑎
0
+ 𝐹

11

𝑞 + 𝑝V
1

= 0,

𝑞
𝑢
0

+ 𝑞
𝑤
0

𝐹
1
= 𝑞V

1

+ 𝑧 = 0

(304)

for the unknown functions

𝑝 = 𝑝 (𝑥, 𝑢
0
, V

0
, 𝑤

0
, 𝑢

1
, V

1
) ,

𝑞 = 𝑞 (𝑥, 𝑢
0
, V

0
, 𝑤

0
, V

1
) ,

𝑧 = 𝑧 (𝑥, 𝑢
0
, V

0
, 𝑤

0
, V

1
)

(305)

looks more complicated. One can also obtain the formula

𝜆
2

= 𝑞V
1

𝐷𝐹
1

− 𝐹
1

1
𝑎
1
− 𝐹

11

𝐷𝑞 + 𝑝V
0

+ 𝑝
𝑤
0

𝐹
1 (306)

for the important coefficient 𝜆2. Let us again mention only
the particular case 𝐹 = 𝑢

1
V
1
. Then the resolving system is

simplified as

𝑞V
1

V
2
− 𝐷𝑞 + 𝑝

𝑢
0

+ 𝑝
𝑤
0

V
1
= 𝑞 + 𝑝

𝑢
1

= 𝑞𝑢
2
+ 𝐷𝑝 − 𝑝V

1

V
2
= 𝑞

𝑢
0

+ 𝑞
𝑤
0

V
1
= 0.

(307)

It follows immediately that 𝑝 = −𝑞𝑢
1
+ 𝑃 and the resolving

system is reduced to the equations

D𝑞 = 𝑃
𝑢
0

+ 𝑃
𝑤
0

V
1
, 𝑢

1
D𝑞 = D𝑃,

𝑞
𝑢
0

+ 𝑞
𝑤
0

V
1
= 0

(D =

𝜕

𝜕𝑥

+ 𝑢
1

𝜕

𝜕𝑢
0

+ V
1

𝜕

𝜕V
0

+ 𝐹

𝜕

𝜕𝑤
0

)

(308)

for the unknown functions 𝑃 and 𝑞 of variables
𝑥, 𝑢

0
, V

0
, 𝑤

0
, V

1
. This implies that 𝑞 = 𝑄(𝑥, 𝑤, V

0
, V

1
),

where 𝑤 = 𝑤
0
− V

1
𝑢
0
and we obtain two equations

𝑄
𝑥
+ 𝑄V

0

V
1
= 𝑃

𝑢
0

+ 𝑃
𝑤
0

V
1
, 𝑃

𝑥
+ 𝑃V

0

V
1
= 0 (309)

with the solution 𝑃 = 𝑃(V
0
− 𝑥V

1
, 𝑤

0
− 𝑢

0
V
1
, V

1
) + 𝑄, where

𝑃 may be arbitrary function while 𝑄 = 𝑄(𝑥, 𝑢
0
, V

0
, 𝑤

0
, V

1
) is

a fixed particular solution of differential equation

𝑄
𝑥
+ 𝑄V

0

V
1
= 𝑄

𝑢
0

+ 𝑄
𝑤
0

V
1

(310)

satisfying moreover the identity 𝑄
𝑥
+ 𝑄V

0

V
1
= 0. We may

choose the particular solution 𝑄 = (𝑄
𝑥
+ 𝑄V

0

V
1
)𝑢

0
. Then the

identity turns into the requirement (𝜕/𝜕𝑥 + V
1
𝜕/𝜕V

0
)
2

𝑄 = 0

which is satisfied if

𝑄 = 𝑄
1
(𝑤, V

1
) 𝑥 + 𝑄

0
(𝑤, V

1
) (𝑤 = 𝑤

0
− V

1
𝑢
0
) . (311)

Altogether taken, we have obtained the final solution

𝑝 = −𝑞𝑢
1
+ 𝑃 + (𝑄

𝑥
+ 𝑄V

0

V
1
) 𝑢

0
,

𝑞 = 𝑄 = 𝑄
1
𝑥 + 𝑄

0
,

(312)
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where

𝑃 = 𝑃 (V
0
− 𝑥V

1
, 𝑤, V

1
) , 𝑄

1
= 𝑄

1
(𝑤, V

1
) ,

𝑄
0
= 𝑄

0
(𝑤, V

1
) , 𝑤 = 𝑤

0
− V

1
𝑢
0

(313)

and 𝑃, 𝑄
1
, 𝑄

0
are quite arbitrary functions. The above-

mentioned coefficient 𝜆2 does not in general vanish. (Indeed,
look at the top-order summands

𝜆
2

= ⋅ ⋅ ⋅ − 𝐹
1

1
𝑎
1
+ ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅ − 𝑎

1
+ ⋅ ⋅ ⋅ , (314)

where V
2
𝑎
0
= ⋅ ⋅ ⋅ + 𝐷𝑝 by virtue of (263); hence, V

2
𝑎
1
= ⋅ ⋅ ⋅ +

𝐷
2

𝑝 = ⋅ ⋅ ⋅−𝐷
2

(𝑞𝑢
1
) = ⋅ ⋅ ⋅−𝑞𝑢

3
may be substituted.)We again

have an order-increasing infinitesimal symmetry.

Remark 45. Variations 𝑍 satisfying (269) preserve the Pfaf-
fian system 𝜋

1

0
= 𝜋

2

0
= 𝜋

1

1
= 0 and therefore generate

a group for analogous reasons as in Remark 29. Variations
𝑍 satisfying (297) preserve the Pfaffian system 𝜋

1

0
= 𝜋

2

0
=

𝜋
2

1
= 0 and the case of requirements (303) is quite trivial

in this respect. It follows that we have indeed obtained the
infinitesimal symmetries 𝑍.

11. Concluding Example on
Order-Increasing Symmetries

Passing from infinitesimal symmetries 𝑍 to the true sym-
metries m, the linear theory is replaced with highly non-
linear area of Pfaffian equations and the prolongation into
involutiveness. In accordance with E. Cartan’s notice, nobody
should expect such easily available results as in the Lie’s
infinitesimal theory. Our modest aim is twofold: to perform
an economical reduction of the symmetry problem to finite
dimension and to point out a useful interrelation between
appropriate variations 𝑍 and one-parameter families m(𝑡) of
higher-order symmetries. We again deal only with (260).

(𝜄) Setting the Problem. Let us deal with symmetries m such
that

m∗

𝜋
𝑖

0

= 𝑎
𝑖

𝛼
0
+ 𝑏

𝑖

𝛽
0
+ 𝑐

𝑖

𝛾
0

= (𝑎
𝑖

+ 𝐹
1
𝑐
𝑖

) 𝛼
0
+ (𝑏

𝑖

+ 𝐹
1

𝑐
𝑖

) 𝛽
0
+ 𝑐

𝑖

𝜋
1

0
(𝑖 = 1, 2) .

(315)

Invertibility ofm is obviously ensured if

det(
𝑎
1

+ 𝐹
1
𝑐
1

𝑎
2

+ 𝐹
1
𝑐
2

𝑏
1

+ 𝐹
1

𝑐
1

𝑏
2

+ 𝐹
1

𝑐
2
) = 0,

det(
𝑎
1

𝑎
2

𝐷𝑎
1

− 𝑢𝐷𝑎
2

𝑏
1

𝑏
2

𝐷𝑏
1

− 𝑢𝐷𝑏
2

𝑐
1

𝑐
2

𝐷𝑐
1

− 𝑢𝐷𝑐
2

) ̸=0,

(316)

where

𝑢 =

𝑎
1

+ 𝐹
1
𝑐
1

𝑎
2
+ 𝐹

1
𝑐
2
=

𝑏
1

+ 𝐹
1
𝑐
1

𝑏
2
+ 𝐹

1
𝑐
2
. (317)

We tacitly suppose 𝑎
2

+ 𝐹
1
𝑐
2

̸=0, 𝑏
2

+ 𝐹
1

𝑐
2

̸=0 and one
can observe that the particular case 𝑢 = 0 provides the
traditional order-preserving symmetries. Equations (315) can
be simplified to the equivalent system of equations

m∗

𝜋
1

0
− 𝑢m∗

𝜋
2

0
= V𝜋1

0
,

m∗

𝜋
2

0
= 𝑎𝛼

0
+ 𝑏𝛽

0
+ 𝑐𝛾

0
,

(318)

where V = 𝑐
1

−𝑢𝑐
2 and 𝑎 = 𝑎

2

, 𝑏 = 𝑏
2

, 𝑐 = 𝑐
2.The invertibility

is ensured by the inequalities

V ̸=0, det(
𝑎 𝐹

1
𝐷𝐹

1

𝑏 𝐹
1

𝐷𝐹
1

𝑐 −1 0

) ̸=0. (319)

Equations (318) will be represented by a Pfaffian system
in a certain finite-dimensional space; however, let us again
simplify the notation by bars; for example,

𝑥 = m∗

𝑥, 𝜋
𝑖

𝑟
= m∗

𝜋
𝑖

𝑟
, 𝛼

𝑟
= m∗

𝛼
𝑟
,

𝛽
𝑟
= 𝜋

2

𝑟
= m∗

𝛽
𝑟
= m∗

𝜋
2

𝑟
,

(320)

and so like. Then we have the system

𝜋
1

0
− 𝑢𝜋

2

0
= V𝜋1

0
, 𝜋

2

0
= 𝑎𝛼

0
+ 𝑏𝛽

0
+ 𝑐𝛾

0
(321)

which should be completed by the exterior derivatives

𝑑𝜋
1

0
− 𝑢𝑑𝜋

2

0
− 𝑑𝑢 ∧ 𝜋

2

0
= 𝑑V ∧ 𝜋1

0
+ V𝑑𝜋1

0
,

𝑑𝜋
2

0
= 𝑑𝑎 ∧ 𝛼

0
+ 𝑑𝑏 ∧ 𝛽

0
+ 𝑑𝑐 ∧ 𝛾

0

+ 𝑑𝑥 ∧ ((𝑎 + 𝐹
1
𝑐) 𝛼

1
+ (𝑏 + 𝐹

1

𝑐) 𝛽
1
) .

(322)

We refer to (264) for terms 𝑑𝜋1
0
, 𝑑𝜋1

0
appearing here. We

have obtained the compatibility problem of (322).The familiar
prolongation criterion can be shortly expressed as follows.
All coefficients and variables with bars are functions of the
primary jet variables. So we may suppose, for example,

𝑑𝑢 = 𝑈𝑑𝑥 +∑𝑢
1

𝑟
𝛼
𝑟
+∑𝑢

2

𝑟
𝛽
𝑟
+ 𝑢

3

0
𝛾
0

(𝑈 = 𝐷𝑢)

(323)

(with summands of uncertain lengths) and analogously for
𝑑V, 𝑑𝑎, 𝑑𝑏, 𝑑𝑐 with a little adjustment for the differential

𝑑𝑥 = 𝜆 (𝑑𝑥 +∑𝜆
1

𝑟
𝛼
𝑟
+∑𝜆

2

𝑟
𝛽
𝑟
+ 𝜆

3

0
𝛾
0
)

(𝜆 = 𝐷𝑥 = 𝐷m∗

𝑥 = 𝐷𝑊) .

(324)

Such substitutions into (322) should give identities. However,
a short inspection of the summand 𝐹

11
𝛼
0
∧ 𝛼

1
in differential

𝑑𝜋
1

0
implies that then necessarily either 𝑢 = 0 (the group case)

or 𝐹
11
= 0 identically.

(𝜄𝜄) A Particular Case. It follows that the assumption 𝐹 =

𝑓(V
1
)𝑢

1
+ 𝑔(V

1
) is necessary; however, let us again suppose
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𝐹 = 𝑢
1
V
1
from now on.Then (321) may be retained and (322)

become more explicit

𝑑𝑥 ∧ (𝜋
1

1
− 𝑢𝜋

2

1
) + 𝛽

0
∧ 𝛼

1
+ 𝛼

0
∧ 𝛽

1
− 𝑑𝑢 ∧ 𝜋

2

0

= 𝑑V ∧ 𝜋1
0
+ V (𝑑𝑥 ∧ 𝜋1

1
+ 𝛽

0
∧ 𝛼

1
+ 𝛼

0
∧ 𝛽

1
) ,

(325)

𝑑𝑥 ∧ 𝜋
2

1
= 𝑑𝑎 ∧ 𝛼

0
+ 𝑑𝑏 ∧ 𝛽

0
+ 𝑑𝑐 ∧ 𝛾

0

+ 𝑑𝑥 ∧ ((𝑎 + V
1
𝑐) 𝛼

1
+ (𝑏 + 𝑢

1
𝑐) 𝛽

1
) .

(326)

We turn to the prolongation procedure in more detail.

(𝜄𝜄𝜄) On the Equation (326). The prolongation should satisfy
the identity

𝜆 (𝑑𝑥 +∑𝜆
1

𝑟
𝛼
𝑟
+∑𝜆

2

𝑟
𝛽
𝑟
+ 𝜆

3

0
𝛾
0
)

∧

1

𝜆

(𝐴𝛼
0
+ 𝐵𝛽

0
+ 𝐶𝛾

0
+ (𝑎 + V

1
𝑐) 𝛼

1
+ (𝑏 + 𝑢

1
𝑐) 𝛽

1
)

= (𝐴𝑑𝑥 +∑𝑎
1

𝑟
𝛼
𝑟
+∑𝑎

2

𝑟
𝛽
𝑟
+ 𝑎

3

0
𝛾
0
) ∧ 𝛼

0

+ ⋅ ⋅ ⋅ + (𝐶𝑑𝑥 +∑𝑐
1

𝑟
𝛼
𝑟
+∑𝑐

2

𝑟
𝛽
𝑟
+ 𝑐

3

0
𝛾
0
) ∧ 𝛾

0

+ 𝑑𝑥 ∧ ((𝑎 + V
1
𝑐) 𝛼

1
+ (𝑏 + 𝑢

1
𝑐) 𝛽

1
) ,

(327)

where 𝐴 = 𝐷𝑎, 𝐵 = 𝐷𝑏, 𝐶 = 𝐷𝑐. All summands with factor
𝑑𝑥∧ mutually cancel.Thenwe conclude that necessarily𝜆1

𝑟
=

𝜆
2

𝑟
= 0 (𝑟 > 1) and also 𝑎1

𝑟
= ⋅ ⋅ ⋅ = 𝑐

2

𝑟
= 0 (𝑟 > 1). It follows

that the problem is reduced to finite dimension: 𝑥, 𝑎, 𝑏, 𝑐 are
functions only of coordinates𝑥, 𝑢

0
, V

0
, 𝑢

1
, V

1
. Even the explicit

formulae can be easily obtained as follows

𝑎
1

1
= 𝜆

1

1
𝐴 − 𝜆

1

0
(𝑎 + V

1
𝑐) , . . . , 𝑏

2

1
= 𝜆

2

1
𝐵 − 𝜆

2

0
(𝑏 + 𝑢

1
𝑐) ,

𝑏
1

0
− 𝑎

2

0
= 𝜆

1

0
𝐵 − 𝜆

2

0
𝐴,

𝑐
1

0
− 𝑎

3

0
= 𝜆

1

0
𝐶 − 𝜆

3

0
𝐴,

𝑐
2

0
− 𝑏

3

0
= 𝜆

2

0
𝐶 − 𝜆

3

0
𝐵

(328)

for the prolongationwheremoreover𝜆1
1
(𝑏+𝑢

1
𝑐) = 𝜆

2

1
(𝑎+V

1
𝑐)

is supposed.

(𝜄]) On the Equation (325). Calculations modulo 𝑑𝑥 are also
sufficient here. The prolongation should satisfy

(𝜆
1

0
𝛼
0
+ 𝜆

2

0
𝛽
0
+ 𝜆

3

0
𝛾
0
+ 𝜆

1

1
𝛼
1
+ 𝜆

2

1
𝛽
1
)

∧ (𝑉𝜋
1

0
+ V𝜋1

1
+ 𝑈𝜋

2

0
)

− (∑𝑢
1

𝑟
𝛼
𝑟
+∑𝑢

2

𝑟
𝛽
𝑟
+ 𝑢

3

0
𝛾
0
) ∧ 𝜋

2

0

− (∑ V1
𝑟
𝛼
𝑟
+∑ V2

𝑟
𝛽
𝑟
+ V3

0
𝛾
0
) ∧ 𝜋

1

0

= −𝛽
0
∧ 𝛼

1
− 𝛼

0
∧ 𝛽

1
+ V (𝛽

0
∧ 𝛼

1
+ 𝛼

0
∧ 𝛽

1
) ,

(329)

where 𝑈 = 𝐷𝑢, 𝑉 = 𝐷V. We have used the identity

𝜋
1

1
− 𝑢𝜋

2

1
=

1

𝜆

L
𝐷
(𝜋

1

0
− 𝑢𝜋

2

0
) +

𝑈

𝜆

𝜋
2

0
, (330)

where 𝜋1
0
− 𝑢𝜋

2

0
= V𝜋1

0
is moreover substituted. In order to

prove the existence of prolongation, the right-hand side terms
should be made more explicit. We recall the identity (263)
which gives

𝜋
1

1
+ V

2
𝛼
0
+ 𝑢

2
𝜋
2

0
= 0,

𝜋
1

2
+ V

2
𝛼
0
+ V

1
𝛼
1
+ 𝑢

3
𝜋
2

0
+ 𝑢

2
𝜋
2

1
= 0

(331)

and uniquely determines the forms 𝛼
0
and 𝛼

1
in terms of

forms 𝜋1
1
, 𝜋

2

0
, 𝜋

1

2
, 𝜋

2

1
and therefore in terms of contact forms

𝛼
𝑟
, 𝛽

𝑟
, and 𝛾

0
, if the rule (265) is applied to the primary

equations (321). The result is that

𝛽
0
∧ 𝛼

1
= 𝜋

2

0
∧ (a certain sum of forms

𝛼
0
, 𝛽

0
, 𝛾

0
, 𝛼

1
, 𝛽

1
, 𝛼

2
, 𝛽

2
)

𝛼
0
∧ 𝛽

1
= −

1

V
2

(𝑢
2
𝜋
2

0
+ 𝜋

1

1
) ∧ (a certain sum of forms

𝛼
0
, 𝛽

0
, 𝛾

0
, 𝛼

1
, 𝛽

1
) .

(332)

On the other hand, inequalities (266) imply that the factors

𝑉𝜋
1

0
+ V𝜋1

1
+ 𝑈𝜋

2

0
, 𝜋

2

0
, 𝜋

1

1
(333)

on the left-hand side of (329) are linearly independent andwe
conclude that the prolongation can be realized. Moreover 𝑢
becomes a function of second-order coordinates while 𝑥 and
V are functions of first-order coordinates 𝑥, 𝑢

0
, V

0
, 𝑤

0
, 𝑢

1
, V

as before. The problem is again reduced to finite-dimension;
however, we do not state explicit formula for the prolongation
here.

Remark 46. In accordance with Lie’s classical theory, the
existence of infinitesimal symmetries 𝑍 (Figure 5(a)) is equiv-
alent to the existence of a one-parameter group m(𝜆) of
symmetries (Figures 3(a) and 3(b)) due to the solvability of
the Lie system ensured by Theorem 24. Alas, the “genuine”
higher-order symmetries (Figure 3(c)) cannot be obtained in
this way and they rest on the toilsomemechanisms of Pfaffian
systems. We nevertheless propose a hopeful conjecture as
follows. Every one-parameter family m(𝑡) of symmetries
ensures the existence of many variations 𝑍(𝑡) depending on
parameter 𝑡 (Figure 5(b)).We believe that the converse can be
proved as well: one-parameter families of symmetries can be
reconstructed from a “sufficiently large” supply of variations.
Indeed, if 𝑡 is regarded as additional variable of the underlying
space, then the family 𝑍(𝑡) turns into a single vector field.

In any case, the existence of many variations is a necessary
condition for the existence of “genuine” higher-order symme-
tries and the following point (]) will be instructive in this
respect.

(]) On the Variations. If a one-parameter family m(𝑡) = m
(abbreviation) satisfies (318) then the corresponding family
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P = P(0)

P(𝜆)
}Z

(a) Vector field 𝑍:𝑍P(𝜆) = (𝑑/𝑑𝜆)m(𝜆)P

P

P(t) = m(t)P

}Z(t)

(b) Variations 𝑍(𝑡):𝑍(𝑡)P(𝑡) = (𝑑/𝑑𝑡)m(𝑡)P

Figure 5

𝑍(𝑡) = 𝑍 (abbreviation) of variations clearly satisfies the
system

L
𝑍
𝜋
1

0
− 𝑢L

𝑍
𝜋
2

0
− 𝑢



𝜋
2

0
= V𝜋1

0
,

L
𝑍
𝜋
2

0
= 𝑎



𝛼
0
+ 𝑏



𝛽
0
+ 𝑐



𝛾
0
,

(334)

where 𝑢


= 𝑍𝑢, . . . , 𝑐


= 𝑍𝑐 may be regarded as new
parameters. Assuming formula (268), one can obtain the
resolving system

𝑧V
2
+ 𝐷𝑞 − 𝑝

𝑢
0

− 𝑎
V
1
+ 𝑢𝑞

𝑢
0

= 𝑞
𝑢
0

+ 𝑎
V
1
+ 𝑐

V
2
= 0,

(335)

𝑧𝑢
2
+ 𝑎

1
− 𝑝V

0

− 𝑎


𝑢
1
+ 𝑢



+ 𝑢𝑞V
0

= 𝑞V
0

+ 𝑎


𝑢
1
− 𝑏



+ 𝑐


𝑢
2
= 0,

(336)

𝑞 + 𝑝
𝑢
1

= 𝑞
𝑢
1

= 𝑎
0
+ 𝑝V

1

= 𝑧 + 𝑞V
1

= 𝑝
𝑤
0

− V − 𝑢𝑞
𝑤
0

= 𝑞
𝑤
0

− 𝑎


= 0.

(337)

It follows from right-hand equations (337) that 𝑝 = −𝑞𝑢
1
+ 𝑞,

where 𝑞, 𝑞 do not depend on 𝑢
1
. Recalling the identity

𝑎
0
V
2
+ 𝑞𝑢

2
+ 𝐷𝑝 = 0, (338)

then the middle equations (337) yield the conditions

𝑞
𝑢
0

+ 𝑞
𝑤
0

V
1
= 𝑞

𝑥
+ 𝑞V

0

V
1

= 𝑞
𝑥
+ 𝑞V

0

V
1
− 𝑞

𝑢
0

− 𝑞
𝑤
0

V
1
= 0

(339)

and 𝑞 = 𝑞(𝑥, 𝑢
0
, V

0
, V

1
, 𝑤

0
), 𝑞 = 𝑞(𝑥, 𝑢

0
, V

0
, V

1
, 𝑤

0
). With

this result, (335) turns into identity and (336) reduces to the
equation

𝑢


= 𝑢 (𝑞
𝑤
0

𝑢
1
− 𝑞V

0

) + 𝑢
2
𝑞V
1

+ 𝐷(𝑞V
1

𝑢
1
− 𝑞V

1

) + 𝑞V
0

(340)

for the parameter 𝑢. Equations (339) are trivially satisfied if

𝑞 = 𝑄 (𝑥V
1
− V

0
, 𝑢

0
V
1
− 𝑤

0
, V

1
) ,

𝑞 = 𝑄 (𝑥V
1
− V

0
, 𝑢

0
V
1
− 𝑤

0
, V

1
) .

(341)

There exist many variations corresponding to (318). The neces-
sary condition for the existence of higher-order symmetries is
satisfied.

Remark 47. Let us briefly sketch the connection to
the general equivalence method [23] by using slightly
adapted Cartan’s notation. We consider space R𝑛 (and
its counterpart R

𝑛) with coordinates (𝑥) = (𝑥
1
, . . . , 𝑥

𝑛
)

(or (𝑥) = (𝑥
1
, . . . , 𝑥

𝑛
), resp.) and linearly independent

1-forms 𝜔
1
, . . . , 𝜔

𝑛
(and 𝜔

1
, . . . , 𝜔

𝑛
). In the classical equi-

valence problem, a mapping m should be determined such
that

m∗

𝜔
𝑖
= ∑𝑎

𝑖𝑗
(𝑢) 𝜔

𝑗

(𝑖, 𝑗 = 1, . . . , 𝑛; (𝑥) = m∗

(𝑥) , 𝑢 = 𝑢 (𝑥)) ,

(342)

where (𝑎
𝑖𝑗
(𝑢)) is a matrix of a linear group with parameters

(𝑢) = (𝑢
1
, . . . , 𝑢

𝑟
). In Cartan’s approach, this requirement is

made symmetrical:

m∗

∑𝑎
𝑖𝑗
(𝑢) 𝜔

𝑖
= ∑𝑎

𝑖𝑗
(𝑢) 𝜔

𝑗

((𝑥) = m∗

(𝑥) , 𝑢 = 𝑢 (𝑥, 𝑢)) .

(343)

This provides the invariant differential forms by appropriate
simultaneous adjustments of both sides (343). Such proce-
dure fails, if (𝑎

𝑖𝑗
(𝑥)) is not a matrix of a linear group which

happens just in the case of higher-order symmetries on
Figure 3(c). Then the corresponding total system (342) with
𝑖, 𝑗 = 1, 2, . . . is invertible only in the infinite-dimensional
underlying space M and (𝑎

𝑖𝑗
(𝑢)) need not be even a square

matrix in any finite portion of the system (342). On the
other hand, such a finite portion is quite sufficient since
Lemma 17 ensures the extension on the total space M. The
“symmetrization” procedure cannot be applied, invariant
differential forms need not exist, and only the common
prolongation procedure is available, if the problem is reduced
to a finite-dimensional subspace ofM.

12. Concluding Survey

Our approach to differential equations and our methods dif-
fer from the common traditional use. For better clarity, let us
briefly report themain novelties as follows: clear interrelation
between the external and internal concepts in Remarks 1
and 2; introduction and frequent use of “nonholonomic”
series (18); the “absolute” and coordinate-free Definition 4
of ordinary differential equations; the distinction between
variations and infinitesimal symmetries in Definition 8; the
main tool, the standard bases generalizing the common
contact forms in jet spaces; the invariance of constants 𝐾 =

𝐾(Ω) and 𝜇 = 𝜇(Ω), the controllability concept related to the
Mayer problem; the distinction between order-preserving,
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group-like, and true higher-order symmetries in Figure 1;
technical Lemmas 17, 19, and 23 and Theorem 24 which
provide new universal method of solution of the higher-
order symmetry problem; new explicit formula as (136) for
the famous and “well-known” symmetry problem of a Monge
equation with two unknown functions; the Lagrange varia-
tional problem without Lagrange multipliers and with easy
proofs; seeTheorem 41; particular results of new kind for the
Monge equationwith three unknown functions; a note on the
insufficience of 𝐺-structures in Remark 47.

All these achievements can be carried over the partial
differential equations.

On this occasion, the actual extensive theory of the control
systems

𝑑𝑥

𝑑𝑡

= 𝑓 (𝑥, 𝑢) (𝑡 ∈ R, 𝑥 ∈ R
𝑛

, 𝑢 ∈ R
𝑚

) (344)

is worth mentioning. It may be regarded as a mere formally
adapted individual subcase of the theory of underdetermined
systems of ordinary differential equations. However, the
exceptional role of the independent variable 𝑡 (the change of
notation), the state variables 𝑥, and the control 𝑢 is empha-
sized in applications; see [24–26] and references therein. In
particular, only the 𝑡-preserving andmoreover 𝑡-independent
symmetries of the system (344) are accepted. So in our
notation (1), such restriction means that we suppose 𝑥 =

𝑊 = 𝑥 and functions𝑊𝑖 are independent of 𝑥. This is a fatal
restriction of the impact of the theory of control systems. It
follows that the results of this theory do not imply the classical
results by Lie and Cartan; they are of rather special nature.
The lack of new effective methods adapted to the control
systems theory should be moreover noted. The absence of
explicit solutions of particular examples is also symptomatic.
Last but not least, unlike our diffieties, the control systems
cannot be reasonably generalized for the partial differential
equations.

We believe that the internal and higher-order approach
to some nonholonomic theories are possible, for instance,
in the case of the higher-order subriemannian geometry
[12]. It seems that the advanced results [27] in the theory
of geodesics can be appropriately adapted and rephrased in
terms of invariants (as in [28]) instead of adjoint tensor fields.

Appendix

Anontrivial automorphism m of the jet spaceM(3) related to
the theory of differential equation (260) is worth mentioning
[9, pp. 44–46] without additional comments. In terms of
usual jet coordinates 𝑥, 𝑤𝑖

𝑟
(𝑖 = 1, 2, 3; 𝑟 = 0, 1, . . .) on the

spaceM(3), we put

m∗

𝑤
1

0
= 𝑤

1

1
, m∗

𝑤
2

0
= 𝑤

2

1
, m∗

𝑥 = 𝑤
3

1
, (A.1)

and moreover

m∗

𝑤
3

0
= det(

𝑥𝑤
1

1
− 𝑤

1

0
m∗

𝑤
1

1
m∗

𝑤
1

2

𝑥𝑤
2

1
− 𝑤

2

0
m∗

𝑤
2

1
m∗

𝑤
2

2

𝑥𝑤
3

1
− 𝑤

3

0
1 0

) . (A.2)

The morphismm is rigorously defined since the transforms

m∗

𝑤
𝑗

1
=

m∗

𝑤
𝑗

0

m∗
𝑥

, m∗

𝑤
𝑗

2
=

m∗

𝑤
𝑗

1

m∗
𝑥

(𝑗 = 1, 2)
(A.3)

are well-known due to the prolongation (6). The point of
construction is as follows. We have

m∗

(𝑥 − 𝐹 (𝑤
1

0
, 𝑤

2

0
)) = m∗

𝑥 − 𝐹 (m∗

𝑤
1

0
,m∗

𝑤
2

0
)

= 𝑤
3

1
− 𝐹 (𝑤

1

1
, 𝑤

2

1
) .

(A.4)

So, assuming the invertibility of m, differential equations
(260) are identified with subspaces N ⊂ M(3) given by
equations 𝑥 = 𝐹(𝑤

1

0
, 𝑤

2

0
). Every such a subspaceNwith given

𝐹 ̸= const. is clearly isomorphic to the jet space M(2). We
conclude that the diffiety Ω corresponding to given equation
(260) is isomorphic to the diffiety Ω(2) of all curves in three-
dimensional space R3 and therefore admits huge supply of
higher-order symmetries; see [4, Section 7] for quite simple
examples.

Let us turn to the invertibility problem. We introduce
a morphismnwhichwill be identifiedwith the sought inverse
m−1. The definition is as follows. Let us introduce functions
𝑎, 𝑏, 𝑐 determined by three linear equations

det(
𝑎 𝑤

1

1
𝑤
1

2

𝑏 𝑤
2

1
𝑤
2

2

𝑐 1 0

) = 𝑤
3

0
,

det(
𝑎 𝑤

1

1
𝑤
1

3

𝑏 𝑤
2

1
𝑤
2

3

𝑐 1 0

) = 𝑤
3

1
,

det(
𝑎 𝑤

1

2
𝑤
1

3

𝑏 𝑤
2

2
𝑤
2

3

𝑐 0 0

) + det(
𝑎 𝑤

1

1
𝑤
1

4

𝑏 𝑤
2

1
𝑤
2

4

𝑐 1 0

) = 𝑤
3

2
.

(A.5)

It follows that functions 𝑎, 𝑏, 𝑐moreover satisfy

det(
𝐷𝑎 𝑤

1

1
𝑤
1

2

𝐷𝑏 𝑤
2

1
𝑤
2

2

𝐷𝑐 1 0

) = det(
𝐷𝑎 𝑤

1

1
𝑤
1

3

𝐷𝑏 𝑤
2

1
𝑤
2

3

𝐷𝑐 1 0

) = 0 (A.6)

whence the equations

𝐷𝑎 = 𝑤
1

1
n∗𝑥, 𝐷𝑏 = 𝑤

2

1
n∗𝑥,

𝐷𝑐 = 1 ⋅ n∗𝑥 = n∗𝑥
(A.7)

uniquely define function n∗𝑥. We finally put

n∗𝑤1

0
= 𝑤

1

0
n∗𝑥 − 𝑎, n∗𝑤2

0
= 𝑤

2

0
n∗𝑥 − 𝑏,

n∗𝑤3

0
= 𝑥n∗𝑥 − 𝑐

(A.8)

and then
𝐷n∗𝑤1

0
= 𝑤

1

1
n∗𝑥 + 𝑤1

0
𝐷n∗𝑥 − 𝐷𝑎 = 𝑤

1

0
𝐷n∗𝑥,

𝐷n∗𝑤2

0
= ⋅ ⋅ ⋅ = 𝑤

2

0
𝐷n∗𝑥,

𝐷n∗𝑤3

0
= ⋅ ⋅ ⋅ = 𝑥.

(A.9)
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It follows that functions 𝑤1

0
, 𝑤

2

0
, 𝑥 and hence 𝑎, 𝑏, 𝑐 and even

the coordinate 𝑤3

0
can be expressed in terms of certain pull-

backs n∗. Therefore n is invertible and moreover n = m−1.
Indeed, the last three equations read

𝑤
1

0
=

1

𝐷n∗𝑥
𝐷n∗𝑤1

0
= n∗𝐷𝑤1

0
= n∗𝑤1

1
,

𝑤
2

0
= ⋅ ⋅ ⋅ = n∗𝑤2

1
, 𝑥 = ⋅ ⋅ ⋅ = n∗𝑤3

1

(A.10)

in full accordancewith the initial equations (A.1) and formula
(A.2) follows from (A.8).
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Some classes of systems of difference equations whose all well-defined solutions are periodic are presented in this note.

1. Introduction

There has been a great recent interest in studying difference
equations and systems of difference equations which do not
stem fromdifferential ones (see, e.g., [1–19] and the references
therein). For some results on concrete systems of nonlinear
difference equations, see, for example, [1, 3–5, 9–12, 18, 19].
Some classical results in the topic can be found, for example,
in book [20].

Solution (𝑥(1)
𝑛
, . . . , 𝑥

(𝑙)

𝑛
)
𝑛≥−𝑘

, of the system of difference
equations

𝑥
(1)

𝑛
= 𝑓
1
(𝑥
(1)

𝑛−1
, . . . , 𝑥

(1)

𝑛−𝑘
1

, . . . , 𝑥
(𝑙)

𝑛−1
, . . . , 𝑥

(𝑙)

𝑛−𝑘
𝑙

) ,

𝑥
(2)

𝑛
= 𝑓
2
(𝑥
(1)

𝑛−1
, . . . , 𝑥

(1)

𝑛−𝑘
1

, . . . , 𝑥
(𝑙)

𝑛−1
, . . . , 𝑥

(𝑙)

𝑛−𝑘
𝑙

) ,

...

𝑥
(𝑙)

𝑛
= 𝑓
𝑙
(𝑥
(1)

𝑛−1
, . . . , 𝑥

(1)

𝑛−𝑘
1

, . . . , 𝑥
(𝑙)

𝑛−1
, . . . , 𝑥

(𝑙)

𝑛−𝑘
𝑙

) ,

(1)

where 𝑛 ∈ N
0
and 𝑘 = max{𝑘

1
, . . . , 𝑘

𝑙
}, is called eventually

periodic with period 𝑝, if there is an 𝑛
1
≥ −𝑘 such that

𝑥
(𝑗)

𝑛+𝑝
= 𝑥
(𝑗)

𝑛
, (2)

for every 𝑗 = 1, 𝑙, and 𝑛 ≥ 𝑛
1
. It is periodic with period

𝑝 if 𝑛
1
= −𝑘. Period 𝑝 is prime if there is no 𝑝 ∈ N,

𝑝 < 𝑝, which is a period. If all well-defined solutions of an
equation or a system of difference equations are eventually
periodic with the same period, then such an equation or
system is called periodic. For some results on the periodicity,
asymptotic periodicity and periodic equations or systems of
difference equations see, for example, [1–10, 12–14, 16–19] and
the related references therein.

In recent paper [19], the authors formulated four results
which claim that the following systems of difference equa-
tions are periodic with period ten:

𝑥
𝑛+1

=

𝑦
𝑛

𝑥
𝑛−1
(1 + 𝑦

𝑛
)

, 𝑦
𝑛+1

=

𝑥
𝑛

𝑦
𝑛−1
(1 + 𝑥

𝑛
)

, 𝑛 ∈ N
0
;

(3)

𝑥
𝑛+1

=

𝑦
𝑛

𝑥
𝑛−1
(−1 + 𝑦

𝑛
)

, 𝑦
𝑛+1

=

𝑥
𝑛

𝑦
𝑛−1
(−1 + 𝑥

𝑛
)

, 𝑛 ∈ N
0
;

(4)

𝑥
𝑛+1

=

𝑦
𝑛

𝑥
𝑛−1
(1 + 𝑦

𝑛
)

, 𝑦
𝑛+1

=

𝑥
𝑛

𝑦
𝑛−1
(−1 + 𝑥

𝑛
)

, 𝑛 ∈ N
0
;

(5)

𝑥
𝑛+1

=

𝑦
𝑛

𝑥
𝑛−1
(−1 + 𝑦

𝑛
)

, 𝑦
𝑛+1

=

𝑥
𝑛

𝑦
𝑛−1
(1 + 𝑥

𝑛
)

, 𝑛 ∈ N
0
.

(6)
First, we show that all the results in [19] follow from

knownones in the literature and also present some extensions
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of these results in the spirit of systems (3)–(6). To do this,
we will use a system of difference equations related to the
following, so called, Lyness difference equation:

𝑥
𝑛+1

=

1 + 𝑥
𝑛

𝑥
𝑛−1

, 𝑛 ∈ N
0
. (7)

It is easy to see that every well-defined solution of (7) is
periodic with period five. The equation arises in frieze pat-
terns (for the original sources, see [21–23]).

Studying max-type equations and systems of difference
equations is another topic of a recent interest (see, e.g, [2, 3, 5–
7, 10, 11, 15–19]).

Some special cases of the following max-type difference
equation:

𝑥
𝑛
= max{

𝐴
𝑛

𝑥
𝑛−𝑠

, 𝑥
𝑛−𝑘
} , 𝑛 ∈ N

0
, (8)

where 𝑠, 𝑘 ∈ N, and (𝐴
𝑛
)
𝑛∈N
0

⊂ R, have been studied, for
example, in [2, 16]. Positive solutions of (8) are periodic in
many cases. However, if (𝐴

𝑛
)
𝑛∈N
0

is not a positive sequence, it
was shown in [2] that (8) can have unbounded solutions.

In [5], it was shown that all solutions of the following
max-type system of difference equations:

𝑥
𝑛+1

= max{
𝐴
𝑛

𝑦
𝑛

, 𝑥
𝑛−1
} , 𝑐𝑦

𝑛+1
= max{

𝐵
𝑛

𝑥
𝑛

, 𝑦
𝑛−1
} ,

𝑛 ∈ N
0
,

(9)

where 𝑥
0
, 𝑥
−1
, 𝑦
0
, 𝑦
−1

∈ (0, +∞) and (𝐴
𝑛
)
𝑛∈N
0

, (𝐵
𝑛
)
𝑛∈N
0

are positive two-periodic sequences, are eventually periodic
with, not necessarily prime, period two. This was done by
direct calculation.

By using direct calculation, it can be easily shown that
positive solutions of the following max-type system of differ-
ence equations:

𝑥
𝑛+1

= max{
𝐴
𝑛

𝑥
𝑛

, 𝑦
𝑛−1
} , 𝑦

𝑛+1
= max{

𝐵
𝑛

𝑦
𝑛

, 𝑥
𝑛−1
} ,

𝑛 ∈ N
0
,

(10)

where (𝐴
𝑛
)
𝑛∈N
0

and (𝐵
𝑛
)
𝑛∈N
0

are positive two-periodic
sequences, are also periodic.

Here, we give a noncalculatory explanation of the fact
by proving that positive solutions of the following max-type
system of difference equations:

𝑥
𝑛
= max{

𝐴
𝑛

𝑥
𝑛−𝑠

, 𝑦
𝑛−𝑘
} , 𝑦

𝑛
= max{

𝐵
𝑛

𝑦
𝑛−𝑠

, 𝑥
𝑛−𝑘
} ,

𝑛 ∈ N
0
,

(11)

where 𝑠, 𝑘 ∈ N, and (𝐴
𝑛
)
𝑛∈N
0

, (𝐵
𝑛
)
𝑛∈N
0

are positive periodic
sequences of a certain period, are also periodic. We also
present another extension of the result.

2. Some Extensions of Systems (3)–(6)
In this section, we present some periodic systems of differ-
ence equations in the spirit of systems (3)–(6).

Theorem 1. Consider the following system of difference equa-
tions

𝑥
(1)

𝑛+1
= 𝑓
−1

1
(

1 + 𝑓
2
(𝑥
(2)

𝑛
)

𝑓
3
(𝑥
(3)

𝑛−1
)

) ,

...

𝑥
(𝑘−1)

𝑛+1
= 𝑓
−1

𝑘−1
(

1 + 𝑓
𝑘
(𝑥
(𝑘)

𝑛
)

𝑓
1
(𝑥
(1)

𝑛−1
)

) ,

𝑥
(𝑘)

𝑛+1
= 𝑓
−1

𝑘
(

1 + 𝑓
1
(𝑥
(1)

𝑛
)

𝑓
2
(𝑥
(2)

𝑛−1
)

) , 𝑛 ∈ N
0
,

(12)

where 𝑘 ∈ N\ {1}, and functions 𝑓
𝑗
, 𝑗 = 1, 𝑘, are continuous on

their domains; map the setR\{0} onto itself and, for each fixed
𝑗 ∈ {1, . . . , 𝑘}, 𝑓

𝑗
is simultaneously increasing or decreasing on

the intervals (−∞, 0) and (0, +∞).
Then the following statements hold.

(a) If 𝑘 ̸≡ 0 (mod 5), then every well-defined solution of
system (12) is periodic with period 5𝑘.

(b) If 𝑘 ≡ 0 (mod5), then every well-defined solution of
system (12) is periodic with period 𝑘.

Proof. From the conditions of the theorem, it follows that for
each 𝑗 ∈ {1, . . . , 𝑘}, there is 𝑓−1

𝑗
which continuously map the

set R \ {0} onto itself. Using the change of variables

𝑦
(𝑗)

𝑛
= 𝑓
𝑗
(𝑥
(𝑗)

𝑛
) , 𝑗 = 1, 𝑘, (13)

system (12) is easily transformed into the next one

𝑦
(1)

𝑛+1
=

1 + 𝑦
(2)

𝑛

𝑦
(1)

𝑛−1

, 𝑦
(2)

𝑛+1
=

1 + 𝑦
(1)

𝑛

𝑦
(2)

𝑛−1

, (14)

for 𝑘 = 2,

𝑦
(1)

𝑛+1
=

1 + 𝑦
(2)

𝑛

𝑦
(3)

𝑛−1

, 𝑦
(2)

𝑛+1
=

1 + 𝑦
(3)

𝑛

𝑦
(1)

𝑛−1

, 𝑦
(3)

𝑛+1
=

1 + 𝑦
(1)

𝑛

𝑦
(2)

𝑛−1

,

(15)

for 𝑘 = 3, and

𝑦
(1)

𝑛+1
=

1 + 𝑦
(2)

𝑛

𝑦
(3)

𝑛−1

, 𝑦
(2)

𝑛+1
=

1 + 𝑦
(3)

𝑛

𝑦
(4)

𝑛−1

, . . . , 𝑦
(𝑘)

𝑛+1
=

1 + 𝑦
(1)

𝑛

𝑦
(2)

𝑛−1

,

(16)

for 𝑘 ≥ 4. In [4], it was proved that, if 𝑘 ̸≡ 0 (mod 5), then
every well-defined solution of systems (14)–(16) is periodic
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with period 5𝑘, and, if 𝑘 ≡ 0 (mod5), then every well-
defined solution of systems (14)–(16) is periodic with period
𝑘. Using this along with the fact

𝑥
(𝑗)

𝑛
= 𝑓
−1

𝑗
(𝑦
(𝑗)

𝑛
) , 𝑗 = 1, 𝑘, (17)

following from (13), the results in (a) and (b) follow.

The following theorem is proved in a similar way. There-
fore, the proof will be omitted.

Theorem 2. Consider the following system of difference equa-
tions

𝑥
(1)

𝑛+1
= 𝑓
−1

1
(

1 + 𝑓
𝑘
(𝑥
(𝑘)

𝑛
)

𝑓
𝑘−1
(𝑥
(𝑘−1)

𝑛−1
)

) ,

𝑥
(2)

𝑛+1
= 𝑓
−1

2
(

1 + 𝑓
1
(𝑥
(1)

𝑛
)

𝑓
𝑘
(𝑥
(𝑘)

𝑛−1
)

) ,

...

𝑥
(𝑘)

𝑛+1
= 𝑓
−1

𝑘
(

1 + 𝑓
𝑘−1
(𝑥
(𝑘−1)

𝑛
)

𝑓
𝑘−2
(𝑥
(𝑘−2)

𝑛−1
)

) , 𝑛 ∈ N
0
,

(18)

where 𝑘 ∈ N\ {1}, and functions 𝑓
𝑗
, 𝑗 = 1, 𝑘, are continuous on

their domains; map the setR\{0} onto itself and, for each fixed
𝑗 ∈ {1, . . . , 𝑘}, 𝑓

𝑗
is simultaneously increasing or decreasing on

the intervals (−∞, 0) and (0, +∞).
Then the following statements hold.

(a) If 𝑘 ̸≡ 0 (mod 5), then every well-defined solution of
system (18) is periodic with period 5𝑘.

(b) If 𝑘 ≡ 0 (mod5), then every well-defined solution of
system (18) is periodic with period 𝑘.

Now, we show that all the results on the periodicity of the
solutions of systems (3)–(6) in [19] follow from Theorems 1
and 2.

Corollary 3. Systems of difference equations (3)–(6) are all
periodic with period ten.

Proof. For the systems of difference equations (3)–(6), we use
the following changes of variables, respectively:

𝑥
𝑛
=

1

𝑢
𝑛

, 𝑦
𝑛
=

1

V
𝑛

, 𝑛 ∈ N
0
;

𝑥
𝑛
= −

1

𝑢
𝑛

, 𝑦
𝑛
= −

1

V
𝑛

, 𝑛 ∈ N
0
;

𝑥
𝑛
= −

1

𝑢
𝑛

, 𝑦
𝑛
=

1

V
𝑛

, 𝑛 ∈ N
0
;

𝑥
𝑛
=

1

𝑢
𝑛

, 𝑦
𝑛
= −

1

V
𝑛

, 𝑛 ∈ N
0
.

(19)

By using them, systems (3)–(6) are transformed into system
(14). By applying Theorem 1(a), ten-periodicity of all well-
defined solutions of system (14) follows, from which ten-
periodicity of all well-defined solutions of systems (3)–(6)
follows.

The following four examples are natural extensions of
systems (3)–(6).

Example 4. If we use the following functions:

𝑓
1
(𝑥) =

1

𝑥
𝑙

, 𝑓
2
(𝑥) =

1

𝑥
𝑚
, (20)

where 𝑙 and𝑚 are odd integers, we see that all the conditions
inTheorem 1 are applied with 𝑘 = 2, so by using the theorem
we obtain that the system of difference equations

𝑥
𝑛+1

=

1

𝑥
𝑛−1

(

𝑦
𝑚

𝑛

1 + 𝑦
𝑚

𝑛

)

1/𝑙

,

𝑦
𝑛+1

=

1

𝑦
𝑛−1

(

𝑥
𝑙

𝑛

1 + 𝑥
𝑙

𝑛

)

1/𝑚

,

(21)

𝑛 ∈ N
0
, is also periodic with period ten.

Example 5. For

𝑓
1
(𝑥) = −

1

𝑥
𝑙

, 𝑓
2
(𝑥) = −

1

𝑥
𝑚
, (22)

where 𝑙 and 𝑚 are also odd integers, all the conditions of
Theorem 1 are again satisfied with 𝑘 = 2. Using the theorem,
it follows that the system

𝑥
𝑛+1

=

1

𝑥
𝑛−1

(

𝑦
𝑚

𝑛

−1 + 𝑦
𝑚

𝑛

)

1/𝑙

,

𝑦
𝑛+1

=

1

𝑦
𝑛−1

(

𝑥
𝑙

𝑛

−1 + 𝑥
𝑙

𝑛

)

1/𝑚

,

(23)

𝑛 ∈ N
0
, is ten-periodic.

Example 6. For

𝑓
1
(𝑥) =

1

𝑥
𝑙

, 𝑓
2
(𝑥) = −

1

𝑥
𝑚
, (24)

where 𝑙 and 𝑚 are odd integers, all the conditions of
Theorem 1 are also satisfiedwith 𝑘 = 2. Applying the theorem,
it follows that the system

𝑥
𝑛+1

=

1

𝑥
𝑛−1

(

𝑦
𝑚

𝑛

−1 + 𝑦
𝑚

𝑛

)

1/𝑙

,

𝑦
𝑛+1

=

1

𝑦
𝑛−1

(

𝑥
𝑙

𝑛

1 + 𝑥
𝑙

𝑛

)

1/𝑚

,

(25)

𝑛 ∈ N
0
, is ten-periodic.

Example 7. Finally, for

𝑓
1
(𝑥) = −

1

𝑥
𝑙

, 𝑓
2
(𝑥) =

1

𝑥
𝑚
, (26)
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where 𝑙 and𝑚 are odd integers and applying Theorem 1 with
𝑘 = 2, we get that the system

𝑥
𝑛+1

=

1

𝑥
𝑛−1

(

𝑦
𝑚

𝑛

1 + 𝑦
𝑚

𝑛

)

1/𝑙

,

𝑦
𝑛+1

=

1

𝑦
𝑛−1

(

𝑥
𝑙

𝑛

−1 + 𝑥
𝑙

𝑛

)

1/𝑚

,

(27)

𝑛 ∈ N
0
, is ten-periodic.

Themain results in [4] can be relatively easily extended to
a very general situation, which have been noticed by Iričanin
and Stević soon after publishing [4], and later also proved by
several other authors. Namely, the following result holds (see,
e.g., [1]).

Theorem 8. Assume that the following difference equation

𝑥
𝑛
= 𝑓 (𝑥

𝑛−1
, . . . , 𝑥

𝑛−𝑘
) , 𝑛 ∈ N

0
, (28)

is periodic with period 𝑝.
Then the following system of difference equations

𝑥
(𝑖)

𝑛
= 𝑓(𝑥

(𝜎(𝑖))

𝑛−1
, 𝑥
(𝜎
[2]

(𝑖))

𝑛−2
, . . . , 𝑥

(𝜎
[𝑘]

(𝑖))

𝑛−𝑘
) ,

𝑖 = 1, 𝑙, 𝑛 ∈ N
0
,

(29)

where 𝜎(𝑖) = 𝑖 + 1, for 1 ≤ 𝑖 ≤ 𝑙 − 1, 𝜎(𝑙) = 1 and 𝜎[𝑗](𝑖) =
𝜎(𝜎
[𝑗−1]

(𝑖)), 𝑗 = 1, 𝑘, and 𝜎[0](𝑖) = 𝑖, 𝑖 = 1, 𝑙, is periodic with
period lcm(𝑝, 𝑙) (the least common multiple of numbers 𝑝
and 𝑙).

Theorem 8 can be used in constructing numerous peri-
odic cyclic systems of difference equations based on scalar
periodic difference equations, which, with some changes of
variables, give some other periodic cyclic systems of differ-
ence equations.

3. Periodicity of Positive Solutions
of System (11)

In this section, we study positive solutions of system (11). By
gcd(𝑠, 𝑘), we denote the greatest common divisor of natural
numbers 𝑠 and 𝑘.

Theorem 9. Consider system (11). Assume that 𝑠, 𝑘 ∈ N,
and (𝐴

𝑛
)
𝑛∈N
0

and (𝐵
𝑛
)
𝑛∈N
0

are positive 𝑘 gcd(𝑠, 𝑘)-periodic
sequences.Then every positive solution of system (11) is periodic
with, not necessarily prime, period

𝑝 = 2𝑘 gcd(𝑠, 𝑘) . (30)

Proof. Let 𝑟 = gcd(𝑠, 𝑘).Thenwehave that 𝑠 = 𝑟𝑠
1
and 𝑘 = 𝑟𝑘

1

for some 𝑠
1
, 𝑘
1
∈ N such that

gcd (𝑠
1
, 𝑘
1
) = 1. (31)

Since every 𝑛 ∈ N
0
can be written as 𝑛 = 𝑚𝑟 + 𝑖, for some

𝑚 ∈ N
0
and 𝑖 = 0, 𝑟 − 1, system (11) becomes

𝑥
𝑚𝑟+𝑖

= max{
𝐴
𝑚𝑟+𝑖

𝑥
𝑟(𝑚−𝑠

1
)+𝑖

, 𝑦
𝑟(𝑚−𝑘

1
)+𝑖
} ,

𝑦
𝑚𝑟+𝑖

= max{
𝐵
𝑚𝑟+𝑖

𝑦
𝑟(𝑚−𝑠

1
)+𝑖

, 𝑥
𝑟(𝑚−𝑘

1
)+𝑖
} ,

(32)

for every𝑚 ∈ N
0
and 𝑖 = 0, 𝑟 − 1.

Using the next change of variables

𝑥
(𝑖)

𝑡
= 𝑥
𝑡𝑟+𝑖
, 𝑦

(𝑖)

𝑡
= 𝑦
𝑡𝑟+𝑖
, (33)

where 𝑡 ≥ −max{𝑠
1
, 𝑘
1
}, 𝑖 = 0, 𝑟 − 1, in (32), we have that

(𝑥
(𝑖)

𝑡
)
𝑡≥−max{𝑠

1
,𝑘
1
}
, (𝑦(𝑖)
𝑡
)
𝑡≥−max{𝑠

1
,𝑘
1
}
, 𝑖 = 0, 𝑟 − 1, are 𝑟 indepen-

dent solutions of the next systems

𝑥
𝑡
= max{

𝐴
𝑡𝑟+𝑖

𝑥
𝑡−𝑠
1

, 𝑦
𝑡−𝑘
1

} , 𝑦
𝑡
= max{

𝐵
𝑡𝑟+𝑖

𝑦
𝑡−𝑠
1

, 𝑥
𝑡−𝑘
1

} ,

(34)

which are systems of the form in (11) with 𝑠
1
and 𝑘
1
instead of

𝑠 and 𝑘, and where the sequences (𝐴
𝑡𝑟+𝑖
)
𝑡∈N
0

and (𝐵
𝑡𝑟+𝑖
)
𝑡∈N
0

,
𝑖 = 1, 𝑟, are 𝑘-periodic.

Hence, it is enough to prove the theoremwhen gcd(𝑠, 𝑘) =
1 and the sequences (𝐴

𝑛
)
𝑛∈N
0

, and (𝐵
𝑛
)
𝑛∈N
0

are positive 𝑘-
periodic.

Now note that from the equations in (11), we have that

𝑥
𝑛
≥ 𝑦
𝑛−𝑘
, 𝑦
𝑛
≥ 𝑥
𝑛−𝑘
, for 𝑛 ∈ N

0
. (35)

Further, by using the equations in (11), we also get

𝑥
𝑛
= max{

𝐴
𝑛

𝑥
𝑛−𝑠

, 𝑦
𝑛−𝑘
} = max{

𝐴
𝑛

𝑥
𝑛−𝑠

,

𝐵
𝑛−𝑘

𝑦
𝑛−𝑘−𝑠

, 𝑥
𝑛−2𝑘

} ,

𝑦
𝑛
= max{

𝐵
𝑛

𝑦
𝑛−𝑠

, 𝑥
𝑛−𝑘
} = max{

𝐵
𝑛

𝑦
𝑛−𝑠

,

𝐴
𝑛−𝑘

𝑥
𝑛−𝑘−𝑠

, 𝑦
𝑛−2𝑘

} ,

(36)

for 𝑛 ≥ 𝑘.
Using relations (36), we get

𝑥
𝑛
= max{

𝐴
𝑛

𝑥
𝑛−𝑠

,

𝐵
𝑛−𝑘

𝑦
𝑛−𝑘−𝑠

, 𝑥
𝑛−2𝑘

}

= max{
𝐴
𝑛

𝑥
𝑛−𝑠

,

𝐵
𝑛−𝑘

𝑦
𝑛−𝑘−𝑠

,

𝐴
𝑛−2𝑘

𝑥
𝑛−2𝑘−𝑠

,

𝐵
𝑛−3𝑘

𝑦
𝑛−3𝑘−𝑠

, 𝑥
𝑛−4𝑘

} ,

𝑦
𝑛
= max{

𝐵
𝑛

𝑦
𝑛−𝑠

,

𝐴
𝑛−𝑘

𝑥
𝑛−𝑘−𝑠

, 𝑦
𝑛−2𝑘

}

= max{
𝐵
𝑛

𝑦
𝑛−𝑠

,

𝐴
𝑛−𝑘

𝑥
𝑛−𝑘−𝑠

,

𝐵
𝑛−2𝑘

𝑦
𝑛−2𝑘−𝑠

,

𝐴
𝑛−3𝑘

𝑥
𝑛−3𝑘−𝑠

, 𝑦
𝑛−4𝑘

} ,

(37)

for 𝑛 ≥ 3𝑘.
Now, note that, from the inequalities in (35), we have that

𝑥
𝑛
≥ 𝑥
𝑛−2𝑘

, 𝑦
𝑛
≥ 𝑦
𝑛−2𝑘

, for 𝑛 ≥ 𝑘. (38)
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Using (38) and 𝑘-periodicity of the sequences𝐴
𝑛
and 𝐵

𝑛
,

we obtain

𝐴
𝑛

𝑥
𝑛−𝑠

=

𝐴
𝑛−2𝑘

𝑥
𝑛−𝑠

≤

𝐴
𝑛−2𝑘

𝑥
𝑛−2𝑘−𝑠

,

𝐵
𝑛−𝑘

𝑦
𝑛−𝑘−𝑠

=

𝐵
𝑛−3𝑘

𝑦
𝑛−𝑘−𝑠

≤

𝐵
𝑛−3𝑘

𝑦
𝑛−3𝑘−𝑠

,

𝐵
𝑛

𝑦
𝑛−𝑠

=

𝐵
𝑛−2𝑘

𝑦
𝑛−𝑠

≤

𝐵
𝑛−2𝑘

𝑦
𝑛−2𝑘−𝑠

,

𝐴
𝑛−𝑘

𝑥
𝑛−𝑘−𝑠

=

𝐴
𝑛−3𝑘

𝑥
𝑛−𝑘−𝑠

≤

𝐴
𝑛−3𝑘

𝑥
𝑛−3𝑘−𝑠

.

(39)

Employing (39) into (37), we get

𝑥
𝑛
= max{

𝐴
𝑛−2𝑘

𝑥
𝑛−2𝑘−𝑠

,

𝐵
𝑛−3𝑘

𝑦
𝑛−3𝑘−𝑠

, 𝑥
𝑛−4𝑘

} = 𝑥
𝑛−2𝑘

,

𝑦
𝑛
= max{

𝐵
𝑛−2𝑘

𝑦
𝑛−2𝑘−𝑠

,

𝐴
𝑛−3𝑘

𝑥
𝑛−3𝑘−𝑠

, 𝑦
𝑛−4𝑘

} = 𝑦
𝑛−2𝑘

,

(40)

from which it follows that in this case the solutions of system
(11) are 2𝑘-periodic. From all the above, the theorem follows.

By a slight modification of the proof of Theorem 9, the
next result can be proved. We omit the proof.

Theorem 10. Consider the following system of difference
equations

𝑥
𝑛
= max{

𝐴
𝑛

𝑥
𝑛−𝑠

, 𝑦
𝑛−𝑘
} , 𝑦

𝑛
= max{

𝐵
𝑛

𝑦
𝑛−𝑠

, 𝑧
𝑛−𝑘
} ,

𝑧
𝑛
= max{

𝐶
𝑛

𝑧
𝑛−𝑠

, 𝑥
𝑛−𝑘
} , 𝑛 ∈ N

0
,

(41)

where 𝑠, 𝑘 ∈ N, and (𝐴
𝑛
)
𝑛∈N
0

, (𝐵
𝑛
)
𝑛∈N
0

, and (𝐶
𝑛
)
𝑛∈N
0

are pos-
itive 𝑘 gcd(𝑠, 𝑘)-periodic sequences. Then, every positive solu-
tion of system (41) is periodic with, not necessarily prime,
period

𝑝 = 3𝑘 gcd(𝑠, 𝑘) . (42)
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[16] S. Stević, “Periodicity of max difference equations,” Utilitas
Mathematica, vol. 83, pp. 69–71, 2010.
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The following differential equation 𝑢
(𝑛)

(𝑡) + 𝑝(𝑡)|𝑢(𝜎(𝑡))|
𝜇(𝑡) sign 𝑢(𝜎(𝑡)) = 0 is considered. Here 𝑝 ∈ 𝐿 loc(𝑅+; 𝑅+), 𝜇 ∈

𝐶(𝑅
+
; (0, +∞)), 𝜎 ∈ 𝐶(𝑅

+
; 𝑅
+
), 𝜎(𝑡) ≤ 𝑡, and lim

𝑡→+∞
𝜎(𝑡) = +∞. We say that the equation is almost linear if the condition

lim
𝑡→+∞

𝜇(𝑡) = 1 is fulfilled, while if lim sup
𝑡→+∞

𝜇(𝑡) ̸= 1 or lim inf
𝑡→+∞

𝜇(𝑡) ̸= 1, then the equation is an essentially nonlinear
differential equation. In the case of almost linear and essentially nonlinear differential equations with advanced argument,
oscillatory properties have been extensively studied, but there are no results on delay equations of this sort. In this paper, new
sufficient conditions implying Property A for delay Emden-Fowler equations are obtained.

1. Introduction

This work deals with oscillatory properties of solutions of a
functional differential equation of the form

𝑢
(𝑛)

(𝑡) + 𝑝 (𝑡) |𝑢 (𝜎 (𝑡))|
𝜇(𝑡) sign 𝑢 (𝜎 (𝑡)) = 0, (1)

where

𝑝 ∈ 𝐿 loc (𝑅+; 𝑅) , 𝜇 ∈ 𝐶 (𝑅
+
; (0; +∞)) ,

𝜎 ∈ 𝐶 (𝑅
+
; 𝑅
+
) , 𝜎 (𝑡) ≤ 𝑡 for 𝑡 ∈ 𝑅

+
,

lim
𝑡→+∞

𝜎 (𝑡) = +∞.

(2)

It will always be assumed that the condition

𝑝 (𝑡) ≥ 0 for 𝑡 ∈ 𝑅
+

(3)

is fulfilled.
Let 𝑡
0
∈ 𝑅
+
. A function 𝑢 : [𝑡

0
; +∞) → 𝑅 is said to be

a proper solution of (1) if it is locally absolutely continuous
together with its derivatives up to order 𝑛 − 1 inclusive,

sup {|𝑢 (𝑠)| : 𝑠 ∈ [𝑡; +∞)} > 0 for 𝑡 ≥ 𝑡
0
, (4)

and there exists a function 𝑢 ∈ 𝐶(𝑅
+
; 𝑅) such that

𝑢(𝑡) ≡ 𝑢(𝑡) on [𝑡
0
; +∞) and the equality 𝑢

(𝑛)

(𝑡) +

𝑝(𝑡)|𝑢(𝜎(𝑡))|
𝜇(𝑡) sign 𝑢(𝜎(𝑡)) = 0 holds for 𝑡 ∈ [𝑡

0
: +∞).

A proper solution 𝑢 : [𝑡
0
: +∞) → 𝑅 of (1) is said to

be oscillatory if it has a sequence of zeros tending to +∞.
Otherwise the solution 𝑢 is said to be nonoscillatory.

Definition 1. We say that (1) has Property A if any of its
proper solutions is oscillatory when 𝑛 is even and either is
oscillatory or satisfies






𝑢
(𝑖)

(𝑡)






↓ 0 for 𝑡 ↑ +∞ (𝑖 = 0, . . . , 𝑛 − 1) , (5)

when 𝑛 is odd.

Definition 2. We say that (1) is almost linear if the condition
lim
𝑡→+∞

𝜇(𝑡) = 1 holds, while if lim sup
𝑡→+∞

𝜇(𝑡) ̸= 1 or
lim inf

𝑡→+∞
𝜇(𝑡) ̸= 1, then we say that the equation is an

essentially nonlinear differential equation.

The Emden-Fowler equation originated from theories
concerning gaseous dynamics in astrophysics in the middle
of the nineteenth century. In the study of stellar structure at

Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2014, Article ID 168425, 13 pages
http://dx.doi.org/10.1155/2014/168425

http://dx.doi.org/10.1155/2014/168425


2 Abstract and Applied Analysis

that time it was important to investigate the equilibrium con-
figuration of the mass of spherical clouds of gas. Lord Kelvin
in 1862 assumed that the gaseous cloud is under convective
equilibrium and then Lane [1] studied the equation

1

𝑡
2

𝑑

𝑑𝑡

(𝑡
2
𝑑𝑢

𝑑𝑡

) + 𝑢
𝛾

= 0. (6)

The Emden-Fowler equations were first considered only
for second-order equations and written in the form

𝑑

𝑑𝑡

(𝑝 (𝑡)

𝑑𝑢

𝑑𝑡

) + 𝑞 (𝑡) 𝑢
𝛾

= 0, 𝑡 ≥ 0, (7)

which could be reduced in the case of positive and continuous
coefficients to the equation

𝑥


+ 𝑎 (𝑡) 𝑥
𝛾

= 0, 𝑡 ≥ 0. (8)

To avoid difficulties of defining 𝑥𝛾 when 𝑥(𝑡) is negative and
𝛾 is not an integer, the equation

𝑥


(𝑡) + 𝑎 (𝑡) |𝑥 (𝑡)|
𝛾 sign 𝑥 (𝑡) = 0, 𝑡 ≥ 0, (9)

was usually considered. The mathematical foundation of the
theory of such equations was built by Fowler [2] and the
description of the results can be found in Chapter 7 of [3].

We see also the Emden-Fowler equation in gas dynamics
and fluid mechanics (see Sansone [4], page 431 and the paper
[5]). Nonoscillation of these equations is important in various
applications. Note that the zero of such solutions corresponds
to an equilibrium state in a fluid with spherical distribution
of density and under mutual attraction of its particles. The
Emden-Fowler equations can be either oscillatory (i.e., all
proper solutions have a sequence of zeros tending to zero) or
nonoscillatory, if solutions are eventually positive or negative,
or, in contrast with the case of linear differential equations of
second order,may possess both oscillating and nonoscillating
solutions. For example, for the equation

𝑥


(𝑡) + 𝑡
𝜇

|𝑥 (𝑡)|
𝛾 sign 𝑥 (𝑡) = 0, 𝑡 ≥ 0, (10)

it was proven in [2] that for 𝜇 ≥ −2 > −(𝛾 + 3)/2 all solutions
oscillate, for 𝜇 < −(𝛾 + 3)/2—all solutions nonoscillate, and
for −(𝛾 + 3)/2 ≤ 𝜇 < −2 there are both oscillating and
nonoscillating solutions.

The Emden-Fowler equation presents one of the classical
objects in the theory of differential equations. Tests for
oscillation and nonoscillation of all solutions and existence
of oscillating solutions were obtained in the works [6–8]. In
[9] for the case 0 < 𝛾 < 1, it was obtained that all solutions of
the equation

𝑥


(𝑡) + 𝑎 (𝑡)




𝑥
𝛾

(𝑡)




sign 𝑥 (𝑡) = 0, 𝑡 ≥ 0, (11)

oscillate if and only if

∫

∞

0

𝑡
𝛾

𝑎 (𝑡) 𝑑𝑡 = ∞. (12)

The latest research results in this area are presented in the
book [8]. Behavior of solutions to nth order Emden-Fowler

equations can be essentially more complicated. Properties A
and B defined by Kiguradze are studied in the abovemen-
tioned book.

There are essentially less results on oscillation of delay
Emden-Fowler equations. Oscillation properties of nonlinear
delay differential equations, where Emden-Fowler equations
were also included as a particular case, were studied in [10–
20]. Results of these papers are discussed in [13, 15], where
various examples demonstrating essentialities of conditions
are also presented. Note that for delay differential equations
there are no results on nonoscillation of all solutions and only
existence of nonoscillating solutions is studied. Actually, the
results on oscillation of delayed equations are based on the
approaches existing for ordinary differential equations with
development in the direction of preventing the obstructive
influence of delay. In the paper [15] the following equation

𝑥
(𝑛)

(𝑡) + 𝑎 (𝑡) 𝑓 [𝑥 (𝜎 (𝑡))] = 0, 𝑡 ≥ 0, 𝑛 even, (13)

and its particular case

𝑥
(𝑛)

(𝑡) + 𝑎 (𝑡) |𝑥 (𝜎 (𝑡))|
𝛾 sign 𝑥 (𝜎 (𝑡)) = 0,

𝑡 ≥ 0, 𝑛 even,
(14)

are considered. It was obtained for the last equation under
some standard assumptions on the coefficients [15] that in the
case 0 < 𝛾 < 1,

∫

∞

0

𝜎
(𝑛−1)𝛾

(𝑡) 𝑎 (𝑡) 𝑑𝑡 = ∞, (15)

all solutions oscillate. We see that the integral depends on
deviation of argument 𝜎(𝑡) and the power of the equation 𝑛.
For the equation

𝑥
(𝑛)

(𝑡) + 𝑎 (𝑡)

𝑚

∏

𝑖=1





𝑥 (𝜎
𝑖
(𝑡))






𝛾
𝑖 sign 𝑥 (𝜎

𝑖
(𝑡)) = 0,

𝑡 ≥ 0, 𝑛 even,

(16)

where 𝛾
𝑖
is the ratio of two positive odd integers, 𝜎(𝑡) ≤

𝜎
𝑖
(𝑡) ≤ 𝑡 for 𝑖 = 1, . . . , 𝑚, and 𝜎(𝑡) → ∞ as 𝑡 → ∞, each of

the following conditions (a), (b), and (c) ensures oscillation
of all solutions:

(a)

∫

∞

0

𝜎
(𝑛−1)𝛾

(𝑡) 𝑎 (𝑡) 𝑑𝑡 = ∞ for 𝛾 =
𝑚

∑

𝑖=1

𝛾
𝑖
< 1; (17)

(b)

∫

∞

0

𝜎
(𝑛−1)𝛼

(𝑡) 𝑎 (𝑡) 𝑑𝑡 = ∞ for 𝛾 = 1, 0 < 𝛼 < 1; (18)

(c)

∫

∞

0

𝜎
𝑛−1

(𝑡) 𝑎 (𝑡) 𝑑𝑡 = ∞, 𝜎


(𝑡) ≥ 0 for 𝛾 > 1. (19)
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Most proofs of results on oscillation of all solutions to
second order equations utilize the fact that if a nonoscillating
solution exists, the signs of the solution 𝑥(𝑡) and its second
derivative 𝑥(𝑡) are opposite to each other for sufficiently
large 𝑡. Then a growth of nonoscillating solution is estimated
and the authors come to contradiction with conditions that
proves oscillation of all solutions. Note that delays disturb
oscillation. Instead of 𝑡𝛾,𝜎𝛾(𝑡) appears. The principle is
clear: for oscillation of all solutions we have to achieve a
corresponding smallness of the delay 𝑡 −𝜎(𝑡). All this is more
complicated if we study 𝑛th order equations. In this case also
the fact that 𝑥(𝑡) and its 𝑛th derivative 𝑥(𝑛)(𝑡) have different
signs for sufficiently large 𝑡 is used, but the technique is more
complicated.

In the papers [21–28] a generalization of Emden-Fowler
equations was considered. The powers in these papers can
be functions and not constants. In many cases, it leads to
essentially new oscillation properties of such equations. Sur-
prisingly, oscillation behavior of equations, with the power
𝜆 and with functional power 𝜇(𝑡) such that lim

𝑡→∞
𝜇(𝑡) =

𝜆, can be quite different. The main purpose of our paper
is to study conditions under which the generalized (in this
sense) equations preserve the known oscillation properties of
Emden-Fowler equations and conditions under which these
properties are not preserved. Oscillatory properties of almost
linear and essentially nonlinear differential equation with
advanced argument have already been studied in [21–28]. In
this paper we study oscillation properties of nth order delay
Emden-Fowler equations.

2. Some Auxiliary Lemmas

In the sequel, 𝐶loc([𝑡0; +∞)) will denote the set of all func-
tions 𝑢 : [𝑡

0
; +∞) → 𝑅 absolutely continuous on any finite

subinternal of [𝑡
0
; +∞) along with their derivatives of order

up to including 𝑛 − 1.

Lemma 3 (see [28]). Let 𝑢 ∈ 𝐶
𝑛−1

loc ([𝑡0; +∞)), 𝑢(𝑡) > 0,
𝑢
(𝑛)

(𝑡) ≤ 0 for 𝑡 ≥ 𝑡
0
, and 𝑢(𝑛)(𝑡) ̸≡ 0 in any neighborhood

of +∞. Then there exist 𝑡
1
≥ 𝑡
0
and ℓ ∈ {0, . . . , 𝑛 − 1} such

that ℓ + 𝑛 is odd and

𝑢
(𝑖)

(𝑡) > 0 for 𝑡 ≥ 𝑡
1
(𝑖 = 0, . . . , ℓ − 1) ,

(−1)
𝑖+ℓ

𝑢
(𝑖)

(𝑡) > 0 for 𝑡 ≥ 𝑡
1
(𝑖 = ℓ, . . . , 𝑛 − 1) .

(20
ℓ
)

Remark 4. If 𝑛 is odd and ℓ = 0, then it means that in (20
0
)

only the second inequalities are fulfilled.

Lemma 5 (see [29]). Let 𝑢 ∈ 𝐶𝑛−1loc ([𝑡0; +∞)) and let (20
ℓ
) be

fulfilled for some ℓ ∈ {0, . . . , 𝑛 − 1} with ℓ + 𝑛 odd. Then

∫

+∞

𝑡
0

𝑡
𝑛−ℓ−1






𝑢
(𝑛)

(𝑡)






𝑑𝑡 < +∞. (21)

If, moreover,

∫

+∞

𝑡
0

𝑡
𝑛−ℓ





𝑢
(𝑛)

(𝑡)






𝑑𝑡 = +∞, (22)

then there exists 𝑡
∗
> 𝑡
0
such that

𝑢
(𝑖)

(𝑡)

𝑡
ℓ−𝑖

↓,

𝑢
(𝑖)

(𝑡)

𝑡
ℓ−𝑖−1

↑ (𝑖 = 0, . . . , ℓ − 1) , (23
𝑖
)

𝑢 (𝑡) ≥

𝑡
ℓ−1

ℓ!

𝑢
(ℓ−1)

(𝑡) for 𝑡 ≥ 𝑡
∗
, (24)

𝑢
(ℓ−1)

(𝑡) ≥

𝑡

(𝑛 − ℓ)!

∫

+∞

𝑡

𝑠
𝑛−ℓ−1






𝑢
(𝑛)

(𝑠)






𝑑𝑠

+

1

(𝑛 − ℓ)!

∫

𝑡

𝑡
∗

𝑠
𝑛−ℓ





𝑢
(𝑛)

(𝑠)






𝑑𝑠 for 𝑡 ≥ 𝑡

∗
.

(25)

3. Necessary Conditions for the Existence of
a Solution of Type (20

ℓ
)

The following notation will be used throughout the work:

𝛼 = inf {𝜇 (𝑡) : 𝑡 ∈ 𝑅
+
} , 𝛽 = sup {𝜇 (𝑡) : 𝑡 ∈ 𝑅

+
} , (26)

𝜎
(−1)

(𝑡) = sup {𝑠 ≥ 0, 𝜎 (𝑠) ≤ 𝑡} ,

𝜎
(−𝑘)

= 𝜎
(−1)

∘ 𝜎
(−(𝑘−1))

, 𝑘 = 2, 3, . . . .

(27)

Clearly 𝜎
(−1)
(𝑡) ≥ 𝑡, and 𝜎

(−1)
is nondecreasing and coincides

with the inverse of 𝜎 when the latter exists.

Definition 6. Let 𝑡
0
∈ 𝑅
+
. By U

ℓ,𝑡
0

one denotes the set of all
proper solutions 𝑢 : [𝑡

0
, +∞) → 𝑅 of (1) satisfying the con-

dition (20
ℓ
) with some 𝑡

1
≥ 𝑡
0
.

Lemma 7. Let the conditions (2), (3) be fulfilled, let ℓ ∈

{1, . . . , 𝑛 − 1} with ℓ + 𝑛 odd, and let 𝑢 ∈ U
ℓ,𝑡
0

be a positive
proper solution of (1). If, moreover, 𝛼 ≥ 1, 𝛽 < +∞,

∫

+∞

0

𝑡
𝑛−ℓ

(𝜎 (𝑡))
(ℓ−1)𝜇(𝑡)

𝑝 (𝑡) 𝑑𝑡 = +∞, (28
ℓ
)

then for any𝑀 ∈ (1; +∞) there exists 𝑡
∗
> 𝑡
0
such that for any

𝑘 ∈ 𝑁

𝑢
(ℓ−1)

(𝑡) ≥ 𝜌
(𝛼)

𝑘,ℓ,𝑡
∗

(𝑡) for 𝑡 ≥ 𝜎
(−𝑘)

(𝑡
∗
) , (29)
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where 𝛼 is given by the first equality of (26) and

𝜌
(𝛼)

1,ℓ,𝑡
∗

(𝑡)

= ℓ! exp{𝑀
ℓ
(𝛼) ∫

𝑡

𝜎
(−1)(𝑡∗)

∫

+∞

𝑠

𝜉
𝑛−ℓ−2

× (𝜎 (𝜉))
1+(ℓ−1)𝜇(𝜉)

×𝑝 (𝜉) 𝑑𝜉 𝑑𝑠} ,

(30)

𝜌
(𝛼)

𝑖,ℓ,𝑡
∗

(𝑡) = ℓ!

+

1

(𝑛 − ℓ)!

× ∫

𝑡

𝜎
(−𝑖)(𝑡∗)

∫

+∞

𝑠

𝜉
𝑛−ℓ−1

(𝜎 (𝜉))
(ℓ−1)𝜇(𝜉)

× 𝑝 (𝜉)

× (

1

ℓ!

𝜌
𝑖−1,ℓ,𝑡

∗

(𝜎 (𝜉)))

𝜇(𝜉)

𝑑𝜉 𝑑𝑠

(𝑖 = 2, . . . , 𝑘) ,

(31)

𝑀
ℓ
(𝛼) =

{

{

{

1

ℓ! (𝑛 − ℓ)!

if 𝛼 = 1,

𝑀 if 𝛼 > 1.
(32)

Proof. Let 𝑡
0
∈ 𝑅
+
, ℓ ∈ {1, . . . , 𝑛 − 1} with ℓ + 𝑛 odd and

𝑢 ∈ U
ℓ,𝑡
0

(see Definition 6) is solution of (1). Since 𝛽 < +∞,
according to (1), (20

ℓ
), and (28

ℓ
), it is clear that condition

(22) holds. Thus, by Lemma 5 there exists 𝑡
2
> 𝑡
1
such that

the conditions (23
𝑖
)–(25) with 𝑡

∗
= 𝑡
2
are fulfilled and

𝑢
(ℓ−1)

(𝑡) ≥

𝑡

(𝑛 − ℓ)!

∫

+∞

𝑡

𝑠
𝑛−ℓ−1

𝑝 (𝑠) (𝑢 (𝜎 (𝑠)))
𝜇(𝑠)

𝑑𝑠

+

1

(𝑛 − ℓ)!

∫

𝑡

𝑡
2

𝑠
𝑛−ℓ

𝑝 (𝑠) (𝑢 (𝜎 (𝑠)))
𝜇(𝑠)

𝑑𝑠

for 𝑡 ≥ 𝑡
2
.

(33)

Observe that there exists 𝑡
3
> 𝑡
2
such that 𝜎(𝑡) ≥ 𝑡

2
for 𝑡 ≥ 𝑡

3
.

Thus, by (24), for any 𝑡 ≥ 𝑡
3
we get

𝑢
(ℓ−1)

(𝑡)

≥

𝑡

(𝑛 − ℓ)!

∫

+∞

𝑡

𝑠
𝑛−ℓ−1

𝑝 (𝑠) (𝑢 (𝜎 (𝑠)))
𝜇(𝑠)

𝑑𝑠

−

1

(𝑛 − ℓ)!

∫

𝑡

𝑡
2

𝑠𝑑∫

+∞

𝑠

𝜉
𝑛−ℓ−1

𝑝 (𝜉)

× (𝑢 (𝜎 (𝜉)))
𝜇(𝜉)

𝑑𝜉 𝑑𝑠

≥

1

(𝑛 − ℓ)!

∫

𝑡

𝑡
3

∫

+∞

𝑠

𝜉
𝑛−ℓ−1

(𝜎 (𝜉))
(ℓ−1)𝜇(𝜉)

× (

1

ℓ!

𝑢
(ℓ−1)

(𝜎 (𝜉)))

𝜇(𝜉)

𝑝 (𝜉) 𝑑𝜉 𝑑𝑠.

(34)

According to (28
ℓ
) and (23

ℓ−1
), choose 𝑡

∗
> 𝑡
3
such that

1

(𝑛 − ℓ)!

∫

𝑡
∗

𝑡
3

∫

+∞

𝑠

𝜉
𝑛−ℓ−1

(𝜎 (𝜉))
(ℓ−1)𝜇(𝜉)

× (

𝑢
(ℓ−1)

(𝜎 (𝜉))

ℓ!

)

𝜇(𝜉)

𝑝 (𝜉) 𝑑𝜉 𝑑𝑠 > ℓ!.

(35)

By (34) and (35) we have

𝑢
(ℓ−1)

(𝑡) ≥ ℓ!

+

1

(𝑛 − ℓ)!

∫

𝑡

𝑡
∗

∫

+∞

𝑠

𝜉
𝑛−ℓ−1

(𝜎 (𝜉))
(ℓ−1)𝜇(𝜉)

𝑝 (𝜉)

× (

𝑢
(ℓ−1)

(𝜎 (𝜉))

ℓ!

)

𝜇(𝜉)

𝑑𝜉 𝑑𝑠

for 𝑡 ≥ 𝑡
∗
.

(36)

Let 𝛼 = 1. Since 𝑢(ℓ−1)(𝑡) → +∞ as 𝑡 → +∞, without loss
of generally we can assume that 𝑢(ℓ−1)(𝜎(𝜉)) ≥ ℓ! for 𝜉 ≥ 𝑡

3
.

Then by (23
ℓ
) from (36) we get

𝑢
(ℓ−1)

(𝑡)

≥ ℓ! +

1

ℓ! (𝑛 − ℓ)!

∫

𝑡

𝑡
∗

∫

+∞

𝑠

𝜉
𝑛−ℓ−2

×(𝜎 (𝜉))
1+(ℓ−1)𝜇(𝜉)

𝑢
(ℓ−1)

(𝜉) 𝑝 (𝜉) 𝑑𝜉 𝑑𝑠

for 𝑡≥ 𝑡
∗
.

(37)

It is obvious that

𝑥


(𝑡) ≥

𝑢
(ℓ−1)

(𝑡)

ℓ! (𝑛 − ℓ)!

∫

+∞

𝑡

𝜉
𝑛−ℓ−2

(𝜎 (𝜉))
1+(ℓ−1)𝜇(𝜉)

𝑝 (𝜉) 𝑑𝜉,

(38)

where

𝑥 (𝑡) = ℓ! +

1

ℓ! (𝑛 − ℓ)!

∫

𝑡

𝑡
∗

∫

+∞

𝑠

𝜉
𝑛−ℓ−2

× (𝜎 (𝜉))
1+(ℓ−1)𝜇(𝜉)

𝑝 (𝜉) 𝑢
(ℓ−1)

(𝜉) 𝑑𝜉 𝑑𝑠.

(39)
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Thus, according to (23
ℓ−1
) (37), and (39) from (38) we get

𝑥


(𝑡)

≥

𝑥 (𝑡)

ℓ! (𝑛 − ℓ)!

∫

+∞

𝑡

𝜉
𝑛−ℓ−2

(𝜎 (𝜉))
1+(ℓ−1)𝜇(𝜉)

𝑝 (𝜉) 𝑑𝜉

for 𝑡 ≥ 𝑡
∗
.

(40)

Therefore

𝑥 (𝑡)

≥ ℓ! exp{ 1

ℓ! (𝑛 − ℓ)!

×∫

𝑡

𝑡
∗

∫

+∞

𝑠

𝜉
𝑛−ℓ−2

(𝜎 (𝜉))
1+(ℓ−1)𝜇(𝜉)

𝑝 (𝜉) 𝑑𝜉 𝑑𝑠}

for 𝑡 ≥ 𝑡
∗
.

(41)

Hence, according to (37) and (39)

𝑢
(ℓ−1)

(𝑡) ≥ 𝜌
(1)

1,ℓ,𝑡
∗

(𝑡) for 𝑡 ≥ 𝜎
(−1)

(𝑡
∗
) , (42)

where

𝜌
(1)

1,ℓ,𝑡
∗

(𝑡)

= ℓ! exp{ 1

ℓ! (𝑛 − ℓ)!

× ∫

𝑡

𝜎
(−1)
(𝑡
∗
)

∫

+∞

𝑠

𝜉
𝑛−ℓ−2

× (𝜎 (𝜉))
1+(ℓ−1)𝜇(𝜉)

𝑝 (𝜉) 𝑑𝜉 𝑑𝑠} .

(43)

Thus, according to (36) and (42)

𝑢
(ℓ−1)

(𝑡) ≥ 𝜌
(1)

𝑖,ℓ,𝑡
∗

(𝑡) for 𝑡 ≥ 𝜎
(−𝑖)

(𝑡
∗
) (𝑖 = 1, . . . , 𝑘) ,

(44)

where

𝜌
(1)

𝑖,ℓ,𝑡
∗

(𝑡)

= ℓ! +

1

(𝑛 − ℓ)!

× ∫

𝑡

𝜎
(−𝑖)(𝑡∗)

∫

+∞

𝑠

𝜉
𝑛−ℓ−1

(𝜎 (𝜉))
(ℓ−1)𝜇(𝜉)

𝑝 (𝜉)

× (

1

ℓ!

𝜌
(1)

𝑖−1,ℓ,𝑡
∗

(𝜎 (𝜉)))

𝜇(𝜉)

𝑑𝜉 𝑑𝑠

(𝑖 = 2, . . . , 𝑘) .

(45)

Now assume that 𝛼 > 1 and𝑀 ∈ (1, +∞). Since 𝑢(ℓ−1)(𝑡) ↑
+∞ for 𝑡 ↑ +∞, without loss of generality we can assume that

(𝑢
(ℓ−1)

(𝜎(𝜉))/ℓ!)
𝛼−1

≥ ℓ!(𝑛−ℓ)! 𝑀 for 𝜉 ≥ 𝑡
∗
.Therefore, from

(36) we have

𝑢
(ℓ−1)

(𝑡)

≥ ℓ! + 𝑀∫

𝑡

𝑡
∗

∫

+∞

𝑠

𝜉
𝑛−ℓ−1

(𝜎 (𝜉))
(ℓ−1)𝜇(𝜉)

× 𝑝 (𝜉) 𝑢
(ℓ−1)

(𝜎 (𝜉)) 𝑑𝜉 𝑑𝑠

for 𝑡 ≥ 𝑡
∗
.

(46)

Taking into account (46), as above we can find that if 𝛼 > 1,
then

𝑢
(ℓ−1)

(𝑡) ≥ 𝜌
(𝛼)

𝑘,ℓ,𝑡
∗

(𝑡) for 𝑡 ≥ 𝜎
(−𝑘)

(𝑡
∗
) , (47)

where

𝜌
(𝛼)

1,ℓ,𝑡
∗

(𝑡)

= ℓ! exp{𝑀∫

𝑡

𝜎
(−1)(𝑡∗)

∫

+∞

𝑠

𝜉
𝑛−ℓ−2

(𝜎 (𝜉))
1+(ℓ−1)𝜇(𝜉)

× 𝑝 (𝜉) 𝑑𝜉 𝑑𝑠}

for 𝑡 ≥ 𝜎
(−1)

(𝑡
∗
) ,

(48)

𝜌
(𝛼)

𝑖,ℓ,𝑡
∗

(𝑡) = ℓ! +

1

(𝑛 − ℓ)!

× ∫

𝑡

𝜎
(−𝑖)(𝑡∗)

∫

+∞

𝑠

𝜉
𝑛−ℓ−1

(𝜎 (𝜉))
(ℓ−1)𝜇(𝜉)

𝑝 (𝜉)

× (

1

ℓ!

𝜌
(𝛼)

𝑖−1,ℓ,𝑡
∗

(𝜎 (𝜉)))

𝜇(𝜉)

𝑑𝜉 𝑑𝑠

for 𝑡 ≥ 𝜎
(−𝑖)

(𝑡
∗
) (𝑖 = 2, . . . , 𝑘) .

(49)

According to (43)–(45) and (47)–(49), it is obvious that for
any 𝛼 ≥ 1, 𝑘 ∈ 𝑁, and𝑀 > 1 there exists 𝑡

∗
∈ 𝑅
+
such that

(29)–(31) hold, where 𝑀
ℓ
(𝛼) is defined by (32). This proves

the validity of the lemma.

Analogously we can prove.

Lemma 8. Let conditions (2), (3), (28
ℓ
) be fulfilled, let ℓ ∈

{1, . . . , 𝑛 − 1} with ℓ + 𝑛 odd, 1 ≤ 𝛽 < +∞, and let 𝑢 ∈ U
ℓ,𝑡
0

be a positive proper solution of (1). Then for any𝑀 ∈ (1; +∞)

there exists 𝑡
∗
> 𝑡
0
such that for any 𝑘 ∈ 𝑁

𝑢
(ℓ−1)

(𝑡) ≥ 𝜌
(𝛽)

𝑘,ℓ,𝑡
∗

(𝑡) for 𝑡 ≥ 𝜎
(−𝑘)

(𝑡
∗
) , (50)



6 Abstract and Applied Analysis

where 𝛽 is defined by the second equality of (26) and

𝜌
(𝛽)

1,ℓ,𝑡
∗

(𝑡) = ℓ! exp

× {𝑀(𝛽)

× ∫

𝑡

𝜎
(−1)
(𝑡
∗
)

∫

+∞

𝑠

𝜉
𝑛−ℓ−2

× (𝜎 (𝜉))
1+ℓ𝜇(𝜉)−𝛽

×𝑝 (𝜉) 𝑑𝜉 𝑑𝑠} ,

(51)

𝜌
(𝛽)

𝑖,ℓ,𝑡
∗

(𝑡)

= ℓ! +

1

(𝑛 − ℓ)!

× ∫

𝑡

𝜎
(−𝑖)(𝑡∗)

∫

+∞

𝑠

𝜉
𝑛−ℓ−1

(𝜎 (𝜉))
(ℓ−1)𝜇(𝜉)

× (

1

ℓ!

𝜌
𝑖−1,ℓ,𝑡

∗

(𝜎 (𝜉)))

𝜇(𝜉)

𝑝 (𝜉) 𝑑𝜉 𝑑𝑠

(𝑖 = 2, . . . , 𝑘) ,

(52)

𝑀(𝛽) =

{

{

{

1

ℓ! (𝑛 − ℓ)!

if 𝛽 = 1,

𝑀 if 𝛽 > 1.
(53)

Remark 9. In Lemma 7, the condition 𝛽 < +∞ cannot be
replaced by the condition 𝛽 = +∞. Indeed, let 𝑐 ∈ (0, 1).
Consider (1), where 𝑛 is even and

𝜎 (𝑡) ≡ 𝑡, 𝑝 (𝑡) =

𝑛! 𝑡
log
1/𝑐
𝑡

𝑡
𝑛+1
(𝑐𝑡 − 1)

log
1/𝑐
𝑡

,

𝛽 (𝑡) = log
1/𝑐
𝑡, 𝑡 ≥

2

𝑐

.

(54)

It is obvious that the function 𝑢(𝑡) = 𝑐 − (1/𝑡) is the
solution of (1) and it satisfies the condition (20

1
) for 𝑡 ≥

(2/𝑐). On the other hand, the condition (28
1
) holds, but the

condition (22) is not fulfilled.

Theorem 10. Let ℓ ∈ {1, . . . , 𝑛 − 1} with ℓ + 𝑛 be odd, let 𝛽 <
+∞ and the conditions (2), (3), (28

ℓ
), and let

∫

+∞

0

𝑡
𝑛−ℓ−1

(𝜎 (𝑡))
ℓ𝜇(𝑡)

𝑝 (𝑡) 𝑑𝑡 = +∞ (55
ℓ
)

be fulfilled, and for some 𝑡
0
∈ 𝑅
+
,U
ℓ,𝑡
0

̸= 0.Then for any𝑀 > 1

there exists 𝑡
∗
> 𝑡
0
such that if 𝛼 = 1,

lim
𝑡→+∞

1

𝑡

∫

𝑡

𝜎
(−𝑘)(𝑡∗)

∫

+∞

𝑠

𝜉
𝑛−ℓ−1

(𝜎 (𝜉))
(ℓ−1)𝜇(𝜉)

× (

1

ℓ!

𝜌
(1)

𝑘,ℓ,𝑡
∗

(𝜎 (𝜉)))

𝜇(𝜉)

𝑝 (𝜉) 𝑑𝜉 𝑑𝑠 = 0

(56)

and if 𝛼 > 1, then for any 𝑘 ∈ 𝑁 and 𝛿 ∈ (1; 𝛼],

∫

+∞

𝜎
(−𝑘)(𝑡∗)

∫

+∞

𝑠

𝜉
𝑛−ℓ−1−𝛿

(𝜎 (𝜉))
(ℓ−1)𝜇(𝜉)+𝛿

× (

1

ℓ!

𝜌
(𝛼)

𝑘,ℓ,𝑡
∗

(𝜎 (𝜉)))

𝜇(𝜉)−𝛿

𝑝 (𝜉) 𝑑𝜉 𝑑𝑠 < +∞,

(57)

where 𝛼 is defined by first equality of (26) and 𝜌(𝛼)
𝑘,ℓ,𝑡
∗

is given
by (30)–(32).

Proof. Let 𝑀 > 1 and 𝑡
0
∈ 𝑅
+
such that U

ℓ,𝑡
0

̸= 0. By
definition, (1) has a proper solution 𝑢 ∈ U

ℓ,𝑡
0

satisfying
the condition (20

ℓ
) with some 𝑡

ℓ
≥ 𝑡
0
. Due to (1), (20

ℓ
),

and (28
ℓ
), it is obvious that condition (22) holds. Thus by

Lemma 5 there exists 𝑡
2
> 𝑡
1
such that conditions (23

𝑖
)-(24)

with 𝑡
∗
= 𝑡
2
are fulfilled. On the other hand, according to

Lemma 7 (and its proof), we see that

𝑢
(ℓ−1)

(𝑡)

≥

1

(𝑛 − ℓ)!

∫

𝑡

𝑡
2

∫

+∞

𝑠

𝜉
𝑛−ℓ−1

𝑝 (𝜉) (𝑢 (𝜎 (𝜉)))
𝜇(𝜉)

𝑑𝜉 𝑑𝑠

for 𝑡 ≥ 𝑡
2
,

(58)

and there exists 𝑡
∗
> 𝑡
2
such that relation (30) is fulfilled.

Without loss of generality we can assume that 𝜎(𝑡) ≥ 𝑡
2
for

𝑡 ≥ 𝑡
∗
. Therefore, by (24), from (58) we have

𝑢
(ℓ−1)

(𝑡)

≥

1

(𝑛 − ℓ)!

∫

𝑡

𝜎
(−𝑘)(𝑡∗)

∫

+∞

𝑠

𝜉
𝑛−ℓ−1

(𝜎 (𝜉))
(ℓ−1)𝜇(𝜉)

𝑝 (𝜉)

× (

1

ℓ!

𝑢
(ℓ−1)

(𝜎 (𝜉)))

𝜇(𝜉)

𝑑𝜉 𝑑𝑠.

(59)

Assume that 𝛼 = 1. Then by (44) and (59), we have

𝑢
(ℓ−1)

(𝑡)

≥

1

(𝑛 − ℓ)!

∫

𝑡

𝜎
(−𝑘)(𝑡∗)

∫

+∞

𝑠

𝜉
𝑛−ℓ−1

(𝜎 (𝜉))
(ℓ−1)𝜇(𝜉)

𝑝 (𝜉)

× (

1

ℓ!

𝜌
(1)

𝑘−1,ℓ,𝑡
∗

(𝜎 (𝜉)))

𝜇(𝜉)

𝑑𝜉 𝑑𝑠 for 𝑡 ≥ 𝜎
(−𝑘)

(𝑡
∗
) .

(60)

On the other hand, according to (23
ℓ−1
) and (55

ℓ
) it is obvious

that
𝑢
(ℓ−1)

(𝑡)

𝑡

↓ 0 for 𝑡 ↑ +∞. (61)

Therefore, from (60) we get

lim
𝑡→+∞

1

𝑡

∫

𝑡

𝜎
(−𝑘)(𝑡∗)

∫

+∞

𝑠

𝜉
𝑛−ℓ−1

(𝜎 (𝜉))
(ℓ−1)𝜇(𝜉)

𝑝 (𝜉)

× (

1

ℓ!

𝜌
(1)

𝑘,ℓ,𝑡
∗

(𝜎 (𝜉)))

𝜇(𝜉)

𝑑𝜉 𝑑𝑠 = 0.

(62)
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Now assume that 𝛼 > 1 and 𝛿 ∈ (1, 𝛼]. Then according to
(47), (23

ℓ−1
), and (61), from (59) we have

𝑢
(ℓ−1)

(𝑡)

≥

1

(𝑛 − ℓ)!

∫

𝑡

𝜎
(−𝑘)(𝑡∗)

∫

+∞

𝑠

𝜉
𝑛−ℓ−1

(𝜎 (𝜉))
(ℓ−1)𝜇(𝜉)

𝑝 (𝜉)

× (

1

ℓ!

𝑢
(ℓ−1)

(𝜎 (𝜉)))

𝜇(𝜉)−𝛿

× (

1

ℓ!

𝑢
(ℓ−1)

(𝜎 (𝜉)))

𝛿

𝑑𝜉 𝑑𝑠

≥

1

(𝑛 − ℓ)!

∫

𝑡

𝜎
(−𝑘)(𝑡∗)

∫

+∞

𝑠

𝜉
𝑛−ℓ−𝛿

(𝜎 (𝜉))
𝛿+(ℓ−1)𝜇(𝜉)

𝑝 (𝜉)

× (

1

ℓ!

𝜌
(𝛼)

𝑘,ℓ,𝑡
∗

(𝜎 (𝜉)))

𝜇(𝜉)−𝛿

×(

1

ℓ!

𝑢
(ℓ−1)

(𝜉))

𝛿

𝑑𝜉 𝑑𝑠

≥

1

(𝑛 − ℓ)!

∫

𝑡

𝜎
(−𝑘)(𝑡∗)

(

𝑢
ℓ−1

(𝑠)

ℓ!

)

𝛿

× ∫

+∞

𝑠

𝜉
𝑛−ℓ−1−𝛿

(𝜎 (𝜉))
𝛿+(ℓ−1)𝜇(𝜉)

𝑝 (𝜉)

× (

1

ℓ!

𝜌
(𝛼)

𝑘,ℓ,𝑡
∗

(𝜎 (𝜉)))

𝜇(𝜉)−𝛿

𝑑𝜉 𝑑𝑠.

(63)

Thus, we obtain

(V (𝑡))𝛿 ≥
1

(ℓ! (𝑛 − ℓ)!)
𝛿

× (∫

𝑡

𝜎
(−𝑘)(𝑡∗)

V𝛿 (𝑠) ∫
+∞

𝑠

𝜉
𝑛−ℓ−1−𝛿

(𝜎 (𝜉))
𝛿+(ℓ−1)𝜇(𝜉)

× 𝑝 (𝜉) (

1

ℓ!

𝜌
(𝛼)

𝑘,ℓ,𝑡
∗

(𝜎 (𝜉)))

𝜇(𝜉)−𝛿

𝑑𝜉 𝑑𝑠)

𝛿

,

(64)

where V(𝑡) = (1/ℓ!)𝑢(ℓ−1)(𝑡).
It is obvious that there exist 𝑡

1
> 𝜎
(−𝑘)
(𝑡
∗
) such that

∫

𝑡

𝜎
(−𝑘)(𝑡∗)

V𝛿 (𝑠) ∫
+∞

𝑠

𝜉
𝑛−ℓ−1−𝛿

(𝜎 (𝜉))
𝛿+(ℓ−1)𝜇(𝜉)

𝑝 (𝜉)

× (

1

ℓ!

𝜌
(𝛼)

𝑘,ℓ,𝑡
∗

(𝜎 (𝜉)))

𝜇(𝜉)−𝛿

𝑑𝜉 𝑑𝑠 > 0

for 𝑡 ≥ 𝑡
1
.

(65)

Therefore, from (64)

∫

𝑡

𝑡
1

𝜑


(𝑠)

(𝜑 (𝑠))
𝛿

𝑑𝑠

≥

1

(ℓ! (𝑛 − ℓ)!)
𝛿

× ∫

𝑡

𝑡
1

∫

+∞

𝑠

𝜉
𝑛−ℓ−1−𝛿

(𝜎 (𝜉))
𝛿+(ℓ−1)𝜇(𝜉)

× 𝑝 (𝜉) (

1

ℓ!

𝜌
(𝛼)

𝑘,ℓ,𝑡
∗

(𝜎 (𝜉)))

𝜇(𝜉)−𝛿

𝑑𝜉 𝑑𝑠,

(66)

where

𝜑 (𝑡)

= ∫

𝑡

𝜎
(−𝑘)(𝑡∗)

(V (𝑠))𝛿 ∫
+∞

𝑠

𝜉
𝑛−ℓ−1−𝛿

(𝜎 (𝜉))
𝛿+(ℓ−1)𝜇(𝜉)

× 𝑝 (𝜉) (

1

ℓ!

𝜌
(𝛼)

𝑘,ℓ,𝑡
∗

(𝜎 (𝜉)))

𝜇(𝜉)−𝛿

𝑑𝜉 𝑑𝑠.

(67)

From the last inequality we get

∫

𝑡

𝑡
1

∫

+∞

𝑠

𝜉
𝑛−ℓ−1−𝛿

(𝜎 (𝜉))
𝛿+(ℓ−1)𝜇(𝜉)

𝑝 (𝜉)

× (

1

ℓ!

𝜌
(𝛼)

𝑘,ℓ,𝑡
∗

(𝜎 (𝜉)))

𝜇(𝜉)−𝛿

𝑑𝜉 𝑑𝑠

≤

(ℓ! (𝑛 − ℓ)!)
𝛿

𝛿 − 1

[𝜑
1−𝛿

(𝑡
1
) − 𝜑
1−𝛿

(𝑡)]

≤

(ℓ! (𝑛 − ℓ)!)
𝛿

𝛿 − 1

𝜑
1−𝛿

(𝑡
1
) for 𝑡 ≥ 𝑡

1
.

(68)

Passing to the limit in the latter inequality, we get

∫

+∞

𝑡
1

∫

+∞

𝑠

𝜉
𝑛−ℓ−1−𝛿

(𝜎 (𝜉))
𝛿+(ℓ−1)𝜇(𝜉)

𝑝 (𝜉)

× (

1

ℓ!

𝜌
(𝛼)

𝑘,ℓ,𝑡
∗

(𝜎 (𝜉)))

𝜇(𝜉)−𝛿

𝑑𝜉 𝑑𝑠 < +∞;

(69)

that is, according to (62) and (69), (56) and (57) hold, which
proves the validity of the theorem.

Using Lemma 8 in a similar manner one can prove the
following.

Theorem11. Let ℓ ∈ {1, . . . , 𝑛−1}with ℓ+𝑛 be odd, let (2), (3),
(28
ℓ
), and (55

ℓ
) be fulfilled, and for some 𝑡

0
∈ 𝑅
+
, U
ℓ,𝑡
0

= 0.
Then there exists 𝑡

∗
> 𝑡
0
such that if 𝛽 = 1, for any 𝑘 ∈ 𝑁

lim sup
𝑡→+∞

1

𝑡

× ∫

𝑡

𝜎
(−𝑘)(𝑡∗)

∫

+∞

𝑠

𝜉
𝑛−ℓ−1

(𝜎 (𝜉))
(ℓ−1)𝜇(𝜉)

× (𝜌
(1)

𝑘,ℓ,𝑡
∗

(𝜎 (𝜉)))

𝜇(𝜉)

𝑝 (𝜉) 𝑑𝜉 𝑑𝑠 = 0,

(70)
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and if 1 < 𝛽 < +∞, then for any 𝑘 ∈ 𝑁 and 𝛿 ∈ (1, 𝛽]

∫

+∞

𝜎
(−𝑘)(𝑡∗)

∫

+∞

𝑠

𝜉
𝑛−ℓ−1−𝛿

(𝜎 (𝜉))
ℓ𝜇(𝜉)+𝛿−𝛽

× (𝜌
(𝛽)

𝑘,ℓ,𝑡
∗

(𝜎 (𝜉)))

𝛽−𝛿

𝑝 (𝜉) 𝑑𝜉 𝑑𝑠 < +∞,

(71)

where 𝛽 is defined by the second equality of (26) and 𝜌 (𝛽)
𝑘,ℓ,𝑡
∗

is
given by (51)–(53).

4. Sufficient Conditions for Nonexistence of
Solutions of the Type (20

ℓ
)

Theorem 12. Let 𝛽 < +∞, ℓ ∈ {1, . . . , 𝑛 − 1} with ℓ + 𝑛 odd,
let the conditions (2), (3), (28

ℓ
), and (55

ℓ
) be fulfilled, and if

𝛼 = 1, for any large 𝑡
∗
∈ 𝑅
+
and for some 𝑘 ∈ 𝑁

lim sup
𝑡→+∞

1

𝑡

∫

𝑡

𝜎
(−𝑘)(𝑡∗)

∫

+∞

𝑠

𝜉
𝑛−ℓ−1

(𝜎 (𝜉))
(ℓ−1)𝜇(𝜉)

× (

1

ℓ!

𝜌
(1)

𝑘,ℓ,𝑡
∗

(𝜎 (𝜉)))

𝜇(𝜉)

𝑝 (𝜉) 𝑑𝜉 𝑑𝑠 > 0

(72
ℓ
)

or if 𝛼 > 1, for same 𝑘 ∈ 𝑁 and 𝛿 ∈ (1, 𝛼]

∫

+∞

𝜎
(−𝑘)(𝑡∗)

∫

+∞

𝑠

𝜉
𝑛−ℓ−1−𝛿

(𝜎 (𝜉))
𝛿+(ℓ−1)𝜇(𝜉)

× (

1

ℓ!

𝜌
(𝛼)

𝑘,ℓ,𝑡
∗

(𝜎 (𝜉)))

𝜇(𝜉)−𝛿

𝑝 (𝜉) 𝑑𝜉 𝑑𝑠 = +∞.

(73
ℓ
)

Then for any 𝑡
0
∈ 𝑅
+
one has U

ℓ,𝑡
0

= 0, where 𝛼 and 𝛽 are
defined by (26) and 𝜌(𝛼)

𝑘,ℓ,𝑡
∗

is given by (30)–(32).

Proof. Assume the contrary. Let there exist 𝑡
0
∈ 𝑅
+
such

thatU
ℓ,𝑡
0

̸= 0 (seeDefinition 6).Then (1) has a proper solution
𝑢 : [𝑡

0
, +∞) → 𝑅 satisfying the condition (20

ℓ
). Since the

condition of Theorem 10 is fulfilled, there exists 𝑡
∗
> 𝑡
0
such

that if 𝛼 = 1 (if 𝛼 > 1), the condition (56) (the condition
(57)) holds, which contradicts (72

ℓ
) and (73

ℓ
). The obtained

contradiction proves the validity of the theorem.

Using Theorem 11 analogously we can prove the follow-
ing.

Theorem 13. Let ℓ ∈ {1, . . . , 𝑛 − 1} with ℓ + 𝑛 odd, let the
conditions (2), (3), (28

ℓ
), and (55

ℓ
) be fulfilled, and if 𝛽 = 1,

for any large 𝑡
∗
∈ 𝑅
+
and for some 𝑘 ∈ 𝑁

lim sup
𝑡→+∞

1

𝑡

∫

𝑡

𝜎
(−𝑘)(𝑡∗)

∫

+∞

𝑠

𝜉
𝑛−ℓ−1

(𝜎 (𝜉))
(ℓ−1)𝜇(𝜉)

× (

1

ℓ!

𝜌
(1)

𝑘,ℓ,𝑡
∗

(𝜎 (𝜉)))

𝜇(𝜉)

𝑝 (𝜉) 𝑑𝜉 𝑑𝑠 > 0

(74
ℓ
)

or if 1 < 𝛽 < +∞ for same 𝑘 ∈ 𝑁 and 𝛿 ∈ (1, 𝛽]

∫

+∞

𝜎
(−𝑘)(𝑡∗)

∫

+∞

𝑠

𝜉
𝑛−ℓ−1−𝛿

(𝜎 (𝜉))
ℓ𝜇(𝜉)+𝛿−𝛽

× (𝜌
(𝛽)

𝑘,ℓ,𝑡
∗

(𝜎 (𝜉)))

𝛽−𝛿

𝑝 (𝜉) 𝑑𝜉 𝑑𝑠 = +∞.

(75
ℓ
)

Then for any 𝑡
0
∈ 𝑅
+
we have U

ℓ,𝑡
0

= 0, where 𝛽 is defined by
the second equality of (26) and 𝜌

𝑘,ℓ,𝑡
∗

is given by (51)–(53).

Corollary 14. Let ℓ ∈ {1, . . . , 𝑛 − 1} with ℓ + 𝑛 odd, let the
conditions (2), (3), and (55

ℓ
) be fulfilled, 𝛼 = 1, 𝛽 < +∞, and

lim sup
𝑡→+∞

1

𝑡

∫

𝑡

0

∫

+∞

𝑠

𝜉
𝑛−ℓ−1

(𝜎 (𝜉))
(ℓ−1)𝜇(𝜉)

𝑝 (𝜉) 𝑑𝜉 𝑑𝑠 > 0. (76
ℓ
)

Then U
ℓ,𝑡
0

= 0 for any 𝑡
0
∈ 𝑅
+
.

Proof. Since

𝜌
(𝛼)

1,ℓ,𝑡
(𝜎 (𝑡
∗
)) ≥ ℓ! for 𝑡 ≥ 𝜎

(−1)
(𝑡
∗
) , (77)

it suffices to note that by (76
ℓ
) the conditions (72

ℓ
) and (28

ℓ
)

are fulfilled for 𝑘 = 1.

Corollary 15. Let ℓ ∈ {1, . . . , 𝑛 − 1} with ℓ + 𝑛 odd, let the
conditions (2) and (3) be fulfilled, 𝛼 = 1, 𝛽 < +∞, and

lim inf
𝑡→+∞

𝑡 ∫

+∞

𝑡

𝑠
𝑛−ℓ−2

(𝜎 (𝑠))
1+(ℓ−1)𝜇(𝑠)

𝑝 (𝑠) 𝑑𝑠 = 𝛾 > 0. (78
ℓ
)

If, moreover, for some 𝜀 ∈ (0, 𝛾)

lim sup
𝑡→+∞

1

𝑡

×∫

𝑡

0

∫

+∞

𝑠

𝜉
𝑛−ℓ−1

(𝜎 (𝜉))
𝜇(𝜉)(ℓ−1+((𝛾−𝜀)/(ℓ!(𝑛−ℓ)!)))

𝑝 (𝜉) 𝑑𝜉 𝑑𝑠

> 0,

(79
ℓ
)

then for any 𝑡
0
∈ 𝑅
+
, U
ℓ,𝑡
0

= 0.

Proof. Clearly by virtue of (78
ℓ
) conditions (28

ℓ
) and (55

ℓ
)

are fulfilled. Let 𝜀 ∈ (0, 𝛾). According to (78
ℓ
) and (79

ℓ
) it is

obvious that, for large 𝑡, 𝜌(1)
1,ℓ,𝑡
∗

(𝑡) ≥ ℓ!𝑡
(𝛾−𝜀)/(ℓ!(𝑛−ℓ)!).Therefore,

by (79
ℓ
), for 𝑘 = 1, (72

ℓ
) holds, which proves the validity of

the corollary.

Corollary 16. Let ℓ ∈ {1, . . . , 𝑛 − 1} with ℓ + 𝑛 odd, let the
conditions (2), (3), (28

ℓ
), and (55

ℓ
) be fulfilled, 𝛼 > 1, 𝛽 <

+∞, and for some 𝛿 ∈ (1, 𝛼]

∫

+∞

0

∫

+∞

𝑠

𝜉
𝑛−ℓ−1−𝛿

(𝜎 (𝜉))
𝛿+(ℓ−1)𝜇(𝜉)

𝑝 (𝜉) 𝑑𝜉 𝑑𝑠 = +∞. (80
ℓ
)

Then for any 𝑡
0
∈ 𝑅
+
, U
ℓ,𝑡
0

= 0, where 𝛼 is defined by the
first condition of (3).
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Proof. By (80
ℓ
) and (77), for 𝑘 = 1, the condition (73

ℓ
) holds,

which proves the validity of the corollary.

Corollary 17. Let ℓ ∈ {1, . . . , 𝑛 − 1} with ℓ+ 𝑛 odd and let the
conditions (2), (3), and (78

ℓ
) be fulfilled. Moreover, if 𝛼 > 1,

𝛽 < +∞, and there exists𝑚 ∈ 𝑁 such that

lim inf
𝑡→+∞

𝜎
𝑚

(𝑡)

𝑡

> 0, (81)

then for any 𝑡
0
∈ 𝑅
+
, U
ℓ,𝑡
0

= 0, where 𝛼 is defined by the first
condition of (3).

Proof. By (78
ℓ
) there exist 𝑐 > 0 and 𝑡

1
∈ 𝑅
+
such that

𝑡 ∫

+∞

𝑡

𝜉
𝑛−ℓ−2

(𝜎 (𝜉))
1+(ℓ−1)𝜇(𝜉)

𝑝 (𝜉) 𝑑𝜉 ≥ 𝑐 for 𝑡 ≥ 𝑡
1
. (82
ℓ
)

Let 𝛿 = (1 + 𝛼)/2 and𝑀 = 𝑚(1 + 𝛼)/𝑐(𝛼 − 𝛿). Then by (82
ℓ
)

and (30), for large 𝑡
∗
> 𝑡
1
,

𝜌
(𝛼)

1,ℓ,𝑡
∗

(𝑡) ≥ 𝑡
𝑀𝑐

𝑡 ≥ 𝑡
∗
. (83)

Therefore

(

𝜎 (𝑡)

𝑡

)

𝛿

(

1

ℓ!

𝜌
(𝛼)

1,ℓ,𝑡
∗

(𝜎 (𝑡)))

𝜇(𝑡)−𝛿

≥ (

𝜎 (𝑡)

𝑡

)

𝛿

(

1

ℓ!

𝜎
𝑀𝑐

(𝑡))

𝛼−𝛿

=

1

(ℓ!)
𝛼−𝛿

(

(𝜎 (𝑡))
1+(𝑀𝑐(𝛼−𝛿)/𝛿)

𝑡

)

𝛿

>

1

(ℓ!)
𝛼−𝛿

(

(𝜎 (𝑡))
𝑚

𝑡

)

𝛿

.

(84)

Thus, by (81) and (78
ℓ
), it is obvious that (73

ℓ
) holds, which

proves the corollary.

Quite similarly one can prove the following.

Corollary 18. Let ℓ ∈ {1, . . . , 𝑛 − 1} with ℓ + 𝑛 odd, let the
conditions (2), (3), (28

ℓ
), and (55

ℓ
) be fulfilled, 𝛼 > 1, and

𝛽 < +∞. Moreover, if

lim inf
𝑡→+∞

𝑡 ln 𝑡 ∫
+∞

𝑡

𝜉
𝑛−ℓ−2

(𝜎 (𝜉))
1+(ℓ−1)𝜇(𝜉)

𝑝 (𝜉) 𝑑𝜉 > 0 (85
ℓ
)

and for some 𝛿 ∈ (1, 𝛼] and𝑚 ∈ 𝑁

∫

+∞

0

∫

+∞

𝑠

𝜉
𝑛−ℓ−1−𝛿

(𝜎 (𝜉))
𝛿+(ℓ−1)𝜇(𝜉)

(ln 𝜎 (𝜉))𝑚𝑑𝜉 𝑑𝑠 = +∞,

(86
ℓ
)

then for any 𝑡
0
∈ 𝑅
+
one has U

ℓ,𝑡
0

= 0, where 𝛼 and 𝛽 are
defined by the condition of (26).

Corollary 19. Let ℓ ∈ {1, . . . , 𝑛 − 1} with ℓ + 𝑛 be odd, let the
conditions (2), (3), and (28

ℓ
) be fulfilled, 𝛼 > 1, and 𝛽 < +∞.

Moreover, let there exist 𝛾 ∈ (0, 1) and 𝑟 ∈ (0, 1] such that

lim inf
𝑡→+∞

𝑡
𝛾

∫

+∞

𝑡

𝜉
𝑛−ℓ−1

(𝜎 (𝜉))
(ℓ−1)𝜇(𝜉)

𝑝 (𝜉) 𝑑𝜉 > 0, (87
ℓ
)

lim inf
𝑡→+∞

𝜎 (𝑡)

𝑡
𝑟
> 0, (88)

and let at least one of the conditions

𝑟𝛼 ≥ 1 (89)

or 𝑟𝛼 < 1 and for some 𝜀 > 0 and 𝛿 ∈ (1, 𝛼]

∫

+∞

0

∫

+∞

𝑠

𝜉
𝑛−ℓ−1−𝛿+(𝛼𝑟(1−𝛾)/(1−𝛼𝑟))−𝜀

× (𝜎 (𝜉))
(ℓ−1)𝜇(𝜉)

𝑝 (𝜉) 𝑑𝜉 𝑑𝑠 = +∞

(90
ℓ
)

be fulfilled. Then for any 𝑡
0
∈ 𝑅
+
one has U

ℓ,𝑡
0

= 0, where 𝛼 is
defined by (26).

Proof. It suffices to show that the condition (73
ℓ
) is satisfied

for some 𝑘 ∈ 𝑁 and 𝛿 = (1+𝛼)/2. Indeed, according to (87
ℓ
)

and (88), there exist 𝛾 ∈ (0, 1), 𝑟 ∈ (0, 1], 𝑐 > 0, and 𝑡
1
∈ 𝑅
+

such that

𝑡
𝛾

∫

+∞

𝑡

𝜉
𝑛−ℓ−1

(𝜎 (𝜉))
(ℓ−1)𝜇(𝜉)

𝑝 (𝜉) 𝑑𝜉 > 𝑐 for 𝑡 ≥ 𝑡
1
, (91)

𝜎 (𝑡) ≥ 𝑐𝑡
𝑟 for 𝑡 ≥ 𝑡

1
. (92)

By (77), (31), and (91), from (31) we get

𝜌
(𝛼)

2,ℓ,𝑡
∗

(𝑡)

≥

𝑐

(𝑛 − ℓ)!

∫

𝑡

𝜎
(−1)(𝑡∗)

𝑠
−𝛾

𝑑𝑠

=

𝑐 (𝑡
1−𝛾

− 𝜎
1−𝛾

(−1)
(𝑡
∗
))

(𝑛 − ℓ)! (1 − 𝛾)

for 𝑡 ≥ 𝜎
(−1)

(𝑡
∗
) .

(93)

Let 𝛾
1
∈ (𝛾, 1). Choose 𝑡

2
> 𝜎
(−1)
(𝑡
∗
) such that

𝜌
(𝛼)

2,ℓ,𝑡
∗

(𝑡) ≥ 𝑡
1−𝛾
1 for 𝑡 ≥ 𝑡

2
. (94)

Therefore, by (91) from (31) we can find 𝑡
3
> 𝑡
2
such that

𝜌
(𝛼)

3,ℓ,𝑡
∗

(𝑡) ≥ 𝑡
(1−𝛾
1
)(1+𝛼𝑟) for 𝑡 ≥ 𝑡

3
. (95)

Hence for any 𝑘
0
∈ 𝑁 there exists 𝑡

𝑘
0

such that

𝜌
(𝛼)

𝑘
0
,ℓ,𝑡
∗

(𝑡) ≥ 𝑡
(1−𝛾
1
)(1+𝛼𝑟+⋅⋅⋅+(𝛼𝑟)

𝑘𝛼−2

) for 𝑡 ≥ 𝑡
𝑘
0

. (96)

Assume that (89) is fulfilled. Choose 𝑘
0
∈ 𝑁 such that

𝑘
0
− 1 ≥ ((1 − 𝑟)(1 + 𝛼))/((1 − 𝛾

1
)(𝛼 − 1)). Then according



10 Abstract and Applied Analysis

to (92), (96), and (28
ℓ
), the condition (73

ℓ
) holds for 𝑘 = 𝑘

0

and 𝛿 = (1 + 𝛼)/2. In this case, the validity of the corollary
has already been proven.

Assume now that (90
ℓ
) is fulfilled. Let 𝜀 > 0 and choose

𝑘
0
∈ 𝑁 and 𝛾

1
∈ (𝛾, 1) such that

(1 − 𝛾
1
) (1 + 𝛼𝑟 + ⋅ ⋅ ⋅ + (𝛼𝑟)

𝑘
0
−2

) >

(1 − 𝛾) 𝛼𝑟

1 − 𝛼𝑟

− 𝜀. (97)

Then according to (96), (92), and (90
ℓ
), it is obvious that (73

ℓ
)

holds for 𝑘 = 𝑘
0
. The proof of the corollary is complete.

Using Theorem 13, in a manner similar to above we can
prove the following.

Corollary 20. Let ℓ ∈ {1, . . . , 𝑛 − 1} with ℓ + 𝑛 odd, let the
conditions (2), (3), and (28

ℓ
) be fulfilled, 𝛽 = 1, and

lim sup
𝑡→+∞

1

𝑡

∫

𝑡

0

∫

+∞

𝑠

𝜉
𝑛−ℓ−1

(𝜎 (𝜉))
(ℓ−1)𝜇(𝜉)

𝑝 (𝜉) 𝑑𝜉 𝑑𝑠 > 0. (98
ℓ
)

Then for any 𝑡
0
∈ 𝑅
+
, U
ℓ,𝑡
0

= 0, where 𝛽 is given by (26).

Corollary 21. Let ℓ ∈ {1, . . . , 𝑛 − 1} with ℓ + 𝑛 odd, let the
conditions (2), (3), and (28

ℓ
) be fulfilled, 𝛽 = 1, and

lim inf
𝑡→+∞

𝑡 ∫

+∞

𝑡

𝜉
𝑛−ℓ−1

(𝜎 (𝜉))
(ℓ−1)𝜇(𝜉)

𝑝 (𝜉) 𝑑𝜉 = 𝛾 > 0. (99
ℓ
)

Moreover, let for some 𝜀 ∈ (0, 𝛾)

lim sup
𝑡→+∞

1

𝑡

∫

𝑡

0

∫

+∞

𝑠

𝜉
𝑛−ℓ−1

(𝜎 (𝜉))
𝜇(𝜉)(ℓ−1+((𝛾−𝜀)/ℓ!(𝑛−ℓ)!))

× 𝑝 (𝜉) 𝑑𝜉 𝑑𝑠 > 0.

(100
ℓ
)

Then for any 𝑡
0
∈ 𝑅
+
one has U

ℓ,𝑡
0

= 0, where 𝛽 is given by
(26).

Corollary 22. Let ℓ ∈ {1, . . . , 𝑛 − 1} with ℓ + 𝑛 odd, let the
conditions (2), (3), (28

ℓ
), and (55

ℓ
) be fulfilled, 1 < 𝛽 < +∞,

and for some 𝛿 ∈ (1, 𝛽]

∫

+∞

0

∫

+∞

𝑠

𝜉
𝑛−ℓ−1−𝛿

(𝜎 (𝜉))
ℓ𝜇(𝜉)+𝛿−𝛽

𝑝 (𝜉) 𝑑𝜉 𝑑𝑠 = +∞.

(101
ℓ
)

Then for any 𝑡
0
∈ 𝑅
+
, U
ℓ,𝑡
0

= 0.

5. Differential Equation with Property A

Theorem 23. Let the conditions (2), (3) be fulfilled and for
any ℓ ∈ {1, . . . , 𝑛 − 1} with ℓ + 𝑛 odd, the conditions (74

ℓ
)

and (75
ℓ
) hold. Moreover for any large 𝑡

∗
∈ 𝑅
+
, if 𝛼 = 1 and

𝛽 < +∞ for some 𝑘 ∈ 𝑁 let (72
ℓ
) be fulfilled or if 𝛼 > 1 and

𝛽 < +∞, for some 𝑘 ∈ 𝑁, 𝑀 ∈ (1, +∞), and 𝛿 ∈ (1, 𝛼],
let (72

ℓ
) be fulfilled. Then, if for odd 𝑛

∫

+∞

0

𝑡
𝑛−1

𝑝 (𝑡) 𝑑𝑡 = +∞, (102)

then (1) has PropertyA, where 𝛼 and 𝛽 are defined by (26) and
𝜌
(𝛼)

𝑘,ℓ,𝑡
∗

is given by (30)–(32).

Proof. Let (1) have a proper nonoscillatory solution 𝑢 :

[𝑡
0
, +∞) → (0, +∞) (the case 𝑢(𝑡) < 0 is similar). Then

by (2), (3), and Lemma 3 there exists ℓ ∈ {0, . . . , 𝑛 − 1} such
that ℓ+𝑛 is odd and conditions (20

ℓ
) hold. Since, for any ℓ ∈

{1, . . . , 𝑛−1}with ℓ+𝑛 odd, the conditions ofTheorem 12 are
fulfilled we have ℓ ∉ {1, . . . , 𝑛 − 1}. Now assume that ℓ = 0,
𝑛 is odd, and there exists 𝑐 ∈ (0, 1) such that 𝑢(𝑡) ≥ 𝑐 for
sufficiently large 𝑡. According to (20

0
) since 𝛽 < +∞, from

(1) we have

𝑛−1

∑

𝑖=0

(𝑛 − 𝑖 − 1)!𝑡
𝑖

1






𝑢
(𝑖)

(𝑡
1
)







≥ ∫

𝑡

𝑡
1

𝑠
𝑛−1

𝑝 (𝑠) 𝑐
𝜇(𝑠)

𝑑𝑠

≥ 𝑐
𝛽

∫

𝑡

𝑡
1

𝑠
𝑛−1

𝑝 (𝑠) 𝑑𝑠 for 𝑡 ≥ 𝑡
1
,

(103)

where 𝑡
1
is a sufficiently large number. The last inequality

contradicts the condition (102). The obtained contradiction
proves that (1) has Property A.

Theorem 24. Let the conditions (2), (3) be fulfilled and for
any ℓ ∈ {1, . . . , 𝑛 − 1} with ℓ + 𝑛 odd the conditions (28

ℓ
) and

(55
ℓ
) hold. Let moreover, if 𝛽 = 1, for some 𝑘 ∈ 𝑁 (74

ℓ
) hold

or if 1 < 𝛽 < +∞ and for some 𝑘 ∈ 𝑁,𝑀 ∈ (1, +∞), and
𝛿 ∈ (1, 𝛽], (75

ℓ
) hold. Then, if for odd 𝑛 (102) is fulfilled, then

(1) has PropertyA, where 𝛽 is defined by the second equality of
(26) and 𝜌 (𝛽)

𝑘,ℓ,𝑡
∗

is given by (51)–(53).

Proof. The proof of the theorem is analogous to that
of Theorem 23. We simply use Theorem 13 instead of
Theorem 12.

Theorem 25. Let 𝛼 > 1, 𝛽 < +∞, let the conditions (2), (3),
(28
1
), and (55

1
) be fulfilled, and

lim inf
𝑡→+∞

(𝜎 (𝑡))
𝜇(𝑡)

𝑡

> 0. (104)

If, moreover, for some 𝑘 ∈ 𝑁,𝑀 ∈ (1, +∞), and 𝛿 ∈ (1, 𝛼],
(73
1
) holds and for odd n (102) is fulfilled, then (1) has Property

A, where 𝛼 and 𝛽 are defined by (26) and 𝜌(𝛼)
𝑘,1,𝑡
∗

is given by
(30)–(32).

Proof. It suffices to note that by (104) and (72
1
), for any ℓ ∈

{2, . . . , 𝑛 − 1} there exist𝑀 > 1, 𝑘 ∈ 𝑁, and 𝛿 ∈ (1, 𝛼) such
that condition (72

ℓ
) is fulfilled.

Theorem 26. Let 1 < 𝛽 < +∞, and conditions (2), (3), (28
1
),

(29), and (104) be fulfilled. If, moreover, for some 𝑘 ∈ 𝑁,
𝑀 ∈ (1, +∞), and 𝛿 ∈ (1, 𝛽], (75

1
) holds and for odd n (102)

is fulfilled, then (1) has Property A, where 𝛽 is defined by the
second condition of (26) and 𝜌 (𝛽)

𝑘,1,𝑡
∗

is given by (51)–(55).

Proof. The theorem is proved similarly to Theorem 25 if we
replace the condition (73

1
) by the condition (75

1
).
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Corollary 27. Let 𝛼 = 1, 𝛽 < +∞, and conditions (2), (3),
(28
1
), (76
1
), and (104) be fulfilled. Then (1) has Property A,

where 𝛼 and 𝛽 are given by (26).

Proof. By (28
1
), (76

1
), and (104), condition (102), and for

any ℓ ∈ {1, . . . , 𝑛 − 1} (76
ℓ
) holds. Now assume that (1) has

a proper nonoscillatory solution 𝑢 : [𝑡
0
, +∞) → (0, +∞).

Then, by (2), (3), and Lemma 3, there exists ℓ ∈ {0, . . . , 𝑛 − 1}
such that ℓ + 𝑛 is odd and the condition (20

ℓ
) holds. Since

for any ℓ ∈ {1, . . . , 𝑛 − 1} with ℓ + 𝑛 odd the conditions
of Corollary 14 are fulfilled, we have ℓ ∉ {1, . . . , 𝑛 − 1}.
Therefore 𝑛 is odd and ℓ = 0. According to (102) and (20

0
)

it is obvious that the condition (5) holds. Therefore, (1) has
Property A.

Using Corollaries 15–19, the validity of Corollaries 28–32
can be proven similarly to Corollary 27.

Corollary 28. Let 𝛼 = 1, 𝛽 < +∞, and conditions (2), (3),
(78
1
), (79
1
), and (104) be fulfilled. Then (1) has Property A,

where 𝛼 and 𝛽 are given by (26).

Corollary 29. Let 𝛼 > 1, 𝛽 < +∞, conditions (2), (3), (104)
be fulfilled, and (80

1
) for some 𝛿 ∈ (1, 𝛼] hold and if 𝑛 is odd,

condition (102) holds. Then (1) has Property A.

Corollary 30. Let 𝛼 > 1, 𝛽 < +∞, the conditions (2), (3),
(28
1
), (78
1
), (104) be fulfilled, and (81) for some𝑚 ∈ 𝑁 holds.

Then (1) has Property A.

Corollary 31. Let 𝛼 > 1, 𝛽 < +∞, the conditions (2), (3),
(28
1
), (104), and (85

1
) and for some 𝛿 ∈ (1, 𝛼] and 𝑚 ∈

𝑁 (86
1
) be fulfilled. Then (1) has Property A, where 𝛼 and 𝛽

are given by (26).

Corollary 32. Let 𝛼 > 1, 𝛽 < +∞, and the conditions (2),
(3), (28

1
), and (104) be fulfilled. Let moreover, there exist 𝛾 ∈

(0, 1) and 𝑟 ∈ (0, 1] such that (87
1
) and (88) hold. Then either

condition (89) or condition (90
1
) is sufficient for (1) to have

Property A.

Corollary 33. Let 𝛽 = 1 and the conditions (2), (3), (28
1
),

(104), and (98
1
) be fulfilled. Then (1) has Property A, where 𝛽

is defined by the second condition of (26).

Proof. By (28
1
), (104), and (98

1
), the condition (102), and for

any ℓ ∈ {1, . . . , 𝑛−1} (98
ℓ
) holds.Therefore, by Corollary 20,

for any 𝑡
0
∈ 𝑅
+
and ℓ ∈ {1, . . . , 𝑛−1}with ℓ+𝑛 is oddU

ℓ,𝑡
0

=

0. On the other hand, if 𝑛 is odd and ℓ = 0, according to (102)
it is obvious that the condition (5) holds, which proves that
(1) has Property A.

Using Corollaries 21 and 22, we can analogously prove the
following corollaries.

Corollary 34. Let 𝛽 = 1 and the conditions (2), (3), (104),
(99
1
), and (100

1
) be fulfilled.Then (1) has PropertyA, where 𝛽

is given by (26).

Corollary 35. Let 1 < 𝛽 < +∞, the conditions (2), (3),
(104), (28

1
), and (29

1
) be fulfilled, and if 𝑛 is odd (102) holds.

Moreover, if for some 𝛿 ∈ (1, 𝛽) (101
1
) holds, then (1) has

Property A.

Theorem 36. Let 𝛼 > 1, 𝛽 < +∞, the conditions (2), (3),
(28
𝑛−1
), and (29

𝑛−1
) be fulfilled, and

lim sup
𝑡→+∞

(𝜎 (𝑡))
𝜇(𝑡)

𝑡

< +∞. (105)

Moreover, for some 𝑘 ∈ 𝑁,𝑀 ∈ (1, +∞), and 𝛿 ∈ (1, 𝛼], let
(73
𝑛−1
) be fulfilled.Then (1) has PropertyA, where 𝛼 and 𝛽 are

defined by (26).

Proof. It suffices to note that by (28
𝑛−1
), (29
𝑛−1
), (105), and

(73
𝑛−1
) there exist𝑀 > 1, 𝑘 ∈ 𝑁, and 𝛿 ∈ (1, 𝛼] such that

(28
ℓ
), (29
ℓ
), and (73

ℓ
) hold for any ℓ ∈ {1, . . . , 𝑛 − 2}.

Theorem 37. Let 1 < 𝛽 < +∞ and the conditions (2), (3),
(28
𝑛−1
), (29
𝑛−1
), and (105) be fulfilled, and for some 𝑘 ∈ 𝑁,

𝑀 ∈ (1, +∞), and 𝛿 ∈ (1, 𝛽], (75
𝑛−1
) holds. Then (1) has

Property A, where 𝛽 is given by the second condition of (26).

Proof. The proof is similar to that of Theorem 36 we replace
the condition (73

𝑛−1
) by the condition (75

𝑛−1
).

Corollary 38. Let 𝛼 = 1, 𝛽 < +∞, and the conditions (2), (3),
(28
𝑛−1
), (76
𝑛−1
), and (105) be fulfilled. Then (1) has Property

A, where 𝛼 and 𝛽 are given by (26).

Proof. By (28
𝑛−1
), (76
𝑛−1
), and (105), the condition (102), and

for any ℓ ∈ {1, . . ., 𝑛−1} the condition (76
ℓ
)holds; it is obvious

that (1) has Property A.

Using Corollaries 15–19, the validity of Corollaries 39–43
below can be proven similarly to Corollary 38.

Corollary 39. Let 𝛼 = 1, 𝛽 < +∞, and the conditions (2), (3),
(78
𝑛−1
), (79
𝑛−1
), and (105) be fulfilled. Then (1) has Property

A, where 𝛼 and 𝛽 are given by (26).

Corollary 40. Let 𝛼 > 1, 𝛽 < +∞, and the conditions (2), (3),
(105), and, for some 𝛿 ∈ (1, 𝛼], (80

𝑛−1
) be fulfilled.Then (1) has

Property A, where 𝛼 is given by (26).

Corollary 41. Let 𝛼 > 1, 𝛽 < +∞, and the conditions (2), (3),
(28
𝑛−1
), (78
𝑛−1
), (105), and for some 𝑚 ∈ 𝑁 (81) be fulfilled.

Then (1) has Property A, where 𝛼 and 𝛽 are given by (26).

Corollary 42. Let 𝛼 > 1, 𝛽 < +∞, and the conditions (2), (3),
(28
𝑛−1
), (85
𝑛−1
) and (105) be fulfilled and for some 𝛿 ∈ (1, 𝛼]

and 𝑚 ∈ 𝑁 (86
𝑛−1
) holds. Then (1) has Property A, where 𝛼

and 𝛽 are given by (26).

Corollary 43. Let 𝛼 > 1, 𝛽 < +∞, and the conditions (2),
(3), (28

𝑛−1
), and (105) be fulfilled. Let, moreover, there exist

𝛾 ∈ (0, 1) and 𝑟 ∈ (0, 1) such that (87
𝑛−1
) and (88) hold. Then

either condition (89) or condition (90
𝑛−1
) is sufficient for (1) to

have Property A.

Corollary 44. Let 𝛽 = 1 and the conditions (2), (3), (28
𝑛−1
),

(105), and (98
𝑛−1
) be fulfilled. Then (1) has Property A.
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Proof. By (28
𝑛−1
), (105), and (98

𝑛−1
), the conditions (102),

and for any ℓ ∈ {1, . . . , 𝑛 − 1} (98
ℓ
) holds. Therefore, by

Corollary 20, it is clear that (1) has Property A.

Using Corollaries 21 and 22, analogously we can prove
Corollaries 45 and 5.18.

Corollary 45. Let 𝛽 = 1 and the conditions (2), (3), (105),
(99
𝑛−1
), and (100

𝑛−1
) be fulfilled. Then (1) has Property A,

where 𝛽 is given by (26).

Corollary 46. Let 1 < 𝛽 < +∞ and the conditions (2), (3),
(105), and (29

𝑛−1
) be fulfilled. If for some 𝛿 ∈ (1, 𝛽], (101

𝑛−1
)

holds, then (1) has Property A.

6. Necessary and Sufficient Conditions

Theorem 47. Let 𝛼 > 1 and 𝛽 < +∞, let the conditions (2)
and (3) be fulfilled and

lim inf
𝑡→+∞

𝜎 (𝑡)

𝑡

> 0. (106)

Then the condition (102) is necessary and sufficient for (1) to
have Property A, where 𝛼 and 𝛽 are given by (26).

Proof. Necessity. Assume that (1) has Property A and

∫

+∞

0

𝑡
𝑛−1

𝑝 (𝑡) 𝑑𝑡 < +∞. (107)

Therefore, by Lemma 4.1 from [28], there exists 𝑐 ̸= 0 such that
(1) has a proper solution 𝑢 : [0, +∞) → 𝑅 satisfying the
condition lim

𝑡→+∞
𝑢(𝑡) = 𝑐. But this contradicts the fact that

(1) has Property A.
Sufficiency. By (106) and (102) it is obvious that the con-
dition (80

1
) holds. Therefore the sufficiency follows from

Corollary 29.

Remark 48. InTheorem 47 the condition 𝛽 < +∞ cannot be
replaced by the condition 𝛽 = +∞. Indeed, let 𝑐 ∈ (0, 1/2),
𝛼 = 1/2𝑐, and

𝑝 (𝑡) =

𝑛!𝑡
lg
𝛼
𝑡

𝑡
1+𝑛
(1 + 𝑐𝑡)

lg
𝛼
𝑡

𝑡 ≥ 1. (108)

It is obvious that the condition (102) is fulfilled, but equation

𝑢
(𝑛)

(𝑡) + 𝑝 (𝑡) |𝑢 (𝑡)|
lg
𝛼
𝑡 sign 𝑢 (𝑡) = 0 (109)

has solution 𝑢(𝑡) = (1/𝑡 + 𝑐). Therefore, (109) does not have
Property A.
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We study asymptotic behavior of solutions to a class of higher-order quasilinear neutral differential equations under the assumptions
that allow applications to even- and odd-order differential equations with delayed and advanced arguments, as well as to functional
differential equations with more complex arguments that may, for instance, alternate indefinitely between delayed and advanced
types. New theorems extend a number of results reported in the literature. Illustrative examples are presented.

1. Introduction

In this paper, we study asymptotic behavior of solutions
to a class of higher-order quasilinear neutral functional
differential equations

(𝑟 (𝑡) (𝑧
(𝑛−1)

(𝑡))

𝛼

)



+ 𝑞 (𝑡) 𝑥
𝛽

(𝜎 (𝑡)) = 0, (1)

where 𝑡 ∈ I := [𝑡
0
,∞), 𝑡

0
∈ R, 𝑧(𝑡) := 𝑥(𝑡) + 𝑝(𝑡)𝑥(𝜏(𝑡)),

𝑟, 𝜏, 𝜎 ∈ C1(I,R), 𝑟(𝑡) ≥ 0, 𝑟(𝑡) > 0, lim
𝑡→∞

𝜎(𝑡) = ∞,
𝑝, 𝑞 ∈ C(I,R), 𝑞(𝑡) ≥ 0, and 𝑞(𝑡) does not vanish eventually.
We also assume that 𝛼, 𝛽 ∈ R, where R stands for the set
containing all quotients of odd positive integers. Analysis
of qualitative properties of (1) is important not only for the
sake of further development of the oscillation theory, but
for practical reasons too. In fact, a particular case of (1), an
Emden-Fowler type equation

(𝑟 (𝑡) (𝑥
(𝑛−1)

(𝑡))

𝛼

)



+ 𝑞 (𝑡) 𝑥
𝛽

(𝜎 (𝑡)) = 0, (2)

has numerous applications in physics and engineering; see,
for instance, the papers by Ou and Wong [1] or Wong [2].

As customary, by a solution of (1) we understand a
function 𝑥 ∈ C([𝑇

𝑥
,∞),R), 𝑇

𝑥
≥ 𝑡
0
, which has the property

𝑟(𝑧
(𝑛−1)

)
𝛼

∈ C1([𝑇
𝑥
,∞),R) and turns (1) into identity for all

𝑡 ∈ [𝑇
𝑥
,∞). We deal only with proper solutions 𝑥 of (1) that

satisfy the condition sup{|𝑥(𝑡)| : 𝑡 ≥ 𝑇} > 0 for all𝑇 ≥ 𝑇
𝑥
and

tacitly assume that (1) possesses such solutions. A solution of
(1) is said to be oscillatory if it has arbitrarily large zeros on the
ray [𝑇

𝑥
,∞); otherwise, it is termed nonoscillatory. Equation

(1) is called oscillatory if all its proper solutions are oscillatory.
For several decades, an increasing interest in obtain-

ing sufficient conditions for oscillatory and nonoscillatory
behavior of different classes of differential equations has been
observed; see, for instance, the monographs [3–6], the papers
[1, 2, 7–25], and the references cited therein. Let us briefly
comment on a number of related results which motivated
our study. Questions regarding the oscillation and asymptotic
behavior of solutions to (2) have been studied by Džurina
and Bacuĺıková [12] and Zhang et al. [23, 25]. In particular,
Zhang et al. [23, 25] derived some results on the oscillation
and asymptotic behavior of solutions to (2) in the case where
𝛼 ≥ 𝛽, 𝜎(𝑡) < 𝑡, and

∫

∞

𝑡
0

𝑟
−1/𝛼

(𝑡) d𝑡 < ∞. (3)

Oscillation criteria for (1) for 𝑛 = 2, 𝛼 = 𝛽 = 1, and 0 ≤

𝑝(𝑡) ≤ 𝑝
0

< ∞ can be found in the papers by Bacuĺıková
and Džurina [8] and Li et al. [18]. A number of oscillation
results for (1) have been established by Bacuĺıková et al. [11]
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and Xing et al. [22] under the assumptions that 𝛼 = 𝛽, 0 ≤

𝑝(𝑡) ≤ 𝑝
0
< ∞, and

∫

∞

𝑡
0

𝑟
−1/𝛼

(𝑡) d𝑡 = ∞. (4)

We conclude bymentioning that Bacuĺıková andDžurina [10]
studied another particular case of (1) assuming that 𝛼 = 𝛽 =

1, 0 ≤ 𝑝(𝑡) ≤ 𝑝
0
< ∞, and

∫

∞

𝑡
0

𝑟
−1

(𝑡) d𝑡 = ∞. (5)

It should be noted that research in this paper was strongly
motivated by the recent contributions of Bacuĺıková and
Džurina [10], Li et al. [18], and Zhang et al. [23, 25].
Our principal goal is to analyze the asymptotic behavior of
solutions to (1) in the case where condition (3) holds. We
provide sufficient conditions which ensure that solutions to
(1) are either oscillatory or approach zero at infinity. In some
cases, we reveal oscillatory nature of (1). However, we do
not discuss in this paper nonoscillation results referring to
the recent monograph by Agarwal et al. [3] for an excellent
analysis of recent advances in this direction.

As usual, all functional inequalities are supposed to hold
for all 𝑡 large enough.Without loss of generality, we deal only
with positive solutions of (1) since, under our assumptions, if
𝑥(𝑡) is a solution, then −𝑥(𝑡) is a solution of this equation too.

In the sequel, we denote by 𝜏
−1 the function which is

inverse to 𝜏. We also adopt the following notation for a
compact presentation of our results:

𝐴 (𝑡) := ∫

∞

𝑡

𝑟
−1/𝛼

(𝑠) d𝑠,

𝑄 (𝑡) := min {𝑞 (𝑡) , 𝑞 (𝜏 (𝑡))} ,

𝑅 (𝑡) := max {𝑟 (𝑡) , 𝑟 (𝜏 (𝑡))} ,

𝑄
𝛾
(𝑡) := 𝑄 (𝑡) (

(𝜂
1
(𝑡))
𝑛−1

𝑟
1/𝛼

(𝜂
1
(𝑡))

)

𝛾

,

𝑄
𝛽
(𝑡) := 𝑄 (𝑡) (𝜎

𝑛−2

(𝑡))

𝛽

,

𝑄
𝛽
(𝑡) := 𝑄 (𝑡) (

(𝜂
1
(𝑡))
𝑛−1

𝑟
1/𝛽

(𝜂
1
(𝑡))

)

𝛽

,

𝑄
𝜃
(𝑡) := 𝑄 (𝑡) (∫

∞

𝜂
3
(𝑡)

(𝜂 − 𝜂
3
(𝑡))
𝑛−3

𝐴 (𝜂) d𝜂)
𝜃

,

𝑄
𝛽
(𝑡) := 𝑄 (𝑡) (∫

∞

𝜂
3
(𝑡)

(𝜂 − 𝜂
3
(𝑡))
𝑛−3

𝐴 (𝜂) d𝜂)
𝛽

,

𝑄
𝛽
(𝑡) := 𝑄 (𝑡) (

𝜎
𝑛−1

(𝑡)

𝑟
1/𝛽

(𝜎 (𝑡))

)

𝛽

,

𝑄
𝛾
(𝑡) := 𝑄 (𝑡) (

𝜎
𝑛−1

(𝑡)

𝑟
1/𝛼

(𝜎 (𝑡))

)

𝛾

,

(6)

where the meaning of 𝛾, 𝜃, 𝜂
1
, and 𝜂

3
will be explained later.

2. Asymptotic Behavior of Solutions to
Even-Order Equations

In what follows, 𝜏(𝑡) can be both a delayed or an advanced
argument. Throughout this section, in addition to the basic
assumptions listed in the introduction, it is also supposed that
(3) holds along with

(𝐻
1
) 0 ≤ 𝑝(𝑡) ≤ 𝑝

0
< ∞, for some constant 𝑝

0
;

(𝐻
2
) 𝜏


(𝑡) ≥ 𝜏
∗
> 0, 𝜏 ∘ 𝜎 = 𝜎 ∘ 𝜏.

We need the following auxiliary results.

Lemma 1 (see [20]). Let 𝑓 ∈ 𝐶
𝑛

([𝑡
0
,∞),R+). If the 𝑛th

derivative 𝑓
(𝑛)

(𝑡) is eventually of one sign for all large 𝑡, then
there exist a 𝑡

1
≥ 𝑡
0
and an integer 𝑙, 0 ≤ 𝑙 ≤ 𝑛 with 𝑛 + 𝑙 even

for 𝑓(𝑛)(𝑡) ≥ 0, or 𝑛 + 𝑙 odd for 𝑓(𝑛)(𝑡) ≤ 0 such that

𝑙 > 0 𝑦𝑖𝑒𝑙𝑑𝑠 𝑓
(𝑘)

(𝑡) > 0 𝑓𝑜𝑟 𝑡 ≥ 𝑡
1
, 𝑘 = 0, 1, . . . , 𝑙 − 1,

𝑙 ≤ 𝑛 − 1 𝑦𝑖𝑒𝑙𝑑𝑠 (−1)
𝑙+𝑘

𝑓
(𝑘)

(𝑡) > 0 𝑓𝑜𝑟 𝑡 ≥ 𝑡
1
,

𝑘 = 𝑙, 𝑙 + 1, . . . , 𝑛 − 1.

(7)

Lemma 2 (see [5, Lemma 2.2.3]). Let 𝑓 be as in Lemma 1,

𝑓
(𝑛)

(𝑡) 𝑓
(𝑛−1)

(𝑡) ≤ 0 (8)

for 𝑡 ≥ 𝑡
1
, and assume also that

lim
𝑡→∞

𝑓 (𝑡) ̸= 0. (9)

Then, for every constant 𝜆 ∈ (0, 1), there exists a 𝑡
𝜆

∈ [𝑡
1
,∞)

such that

𝑓 (𝑡) ≥

𝜆

(𝑛 − 1)!

𝑡
𝑛−1






𝑓
(𝑛−1)

(𝑡)






, (10)

for all 𝑡 ∈ [𝑡
𝜆
,∞).

We are in a position now to state and prove principal
results of this paper for even-order equations.

Theorem 3. Let 𝑛 ≥ 2 be even and let 0 < 𝛽 ≤ 1. Assume
that conditions (𝐻

1
) and (𝐻

2
) are satisfied, and there exist two

numbers 𝛾, 𝜆 ∈ R such that 𝛾 ≤ 𝛽 ≤ 𝜆 and 𝛾 < 𝛼 < 𝜆. Suppose
further that there exist two functions 𝜂

1
, 𝜂
2
∈ 𝐶(I,R) such that

𝜂
1
(𝑡) ≤ 𝜎 (𝑡) ≤ 𝜂

2
(𝑡) , 𝜂

1
(𝑡) < 𝑡 ≤ 𝜏 (𝑡) < 𝜂

2
(𝑡) ,

lim
𝑡→∞

𝜂
1
(𝑡) = ∞.

(11)

If

∫

∞

𝑄
𝛾
(𝑡) d𝑡 = ∞, (12)

∫

∞

𝑄
𝛽
(𝑡) 𝐴
𝜆

(𝜂
2
(𝑡)) d𝑡 = ∞, (13)

every solution 𝑥(𝑡) of (1) is either oscillatory or satisfies

lim
𝑡→∞

𝑥 (𝑡) = 0. (14)
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Proof. Assume that (1) has a nonoscillatory solution 𝑥(𝑡)

which is eventually positive and such that

lim
𝑡→∞

𝑥 (𝑡) ̸= 0. (15)

Then 𝑧 satisfies

𝑧 (𝜎 (𝑡)) = 𝑥 (𝜎 (𝑡)) + 𝑝 (𝜎 (𝑡)) 𝑥 (𝜏 (𝜎 (𝑡)))

≤ 𝑥 (𝜎 (𝑡)) + 𝑝
0
𝑥 (𝜏 (𝜎 (𝑡))) .

(16)

In view of (1), we have

0 =

𝑝
0

𝛽

𝜏

(𝑡)

(𝑟 (𝜏 (𝑡)) (𝑧
(𝑛−1)

(𝜏 (𝑡)))

𝛼

)



+ 𝑝
0

𝛽

𝑞 (𝜏 (𝑡)) 𝑥
𝛽

(𝜎 (𝜏 (𝑡)))

≥

𝑝
0

𝛽

𝜏
∗

(𝑟 (𝜏 (𝑡)) (𝑧
(𝑛−1)

(𝜏 (𝑡)))

𝛼

)



+ 𝑝
0

𝛽

𝑞 (𝜏 (𝑡)) 𝑥
𝛽

(𝜎 (𝜏 (𝑡))) .

(17)

Using (16) and [9, Lemma 2], we obtain

𝑞 (𝑡) 𝑥
𝛽

(𝜎 (𝑡)) + 𝑝
0

𝛽

𝑞 (𝜏 (𝑡)) 𝑥
𝛽

(𝜎 (𝜏 (𝑡)))

= 𝑞 (𝑡) 𝑥
𝛽

(𝜎 (𝑡)) + 𝑝
0

𝛽

𝑞 (𝜏 (𝑡)) 𝑥
𝛽

(𝜏 (𝜎 (𝑡)))

≥ 𝑄 (𝑡) 𝑧
𝛽

(𝜎 (𝑡)) .

(18)

It follows from (1), (17), and (18) that

(𝑟 (𝑡) (𝑧
(𝑛−1)

(𝑡))

𝛼

+

𝑝
0

𝛽

𝜏
∗

𝑟 (𝜏 (𝑡)) (𝑧
(𝑛−1)

(𝜏 (𝑡)))

𝛼

)



+ 𝑄 (𝑡) 𝑧
𝛽

(𝜎 (𝑡)) ≤ 0.

(19)

As in the proof of [25, Theorem 2.1], we conclude that, by
virtue of (1) and Lemma 1, there are two possibilities, either

𝑧 (𝑡) > 0, 𝑧


(𝑡) > 0, 𝑧
(𝑛−1)

(𝑡) > 0,

𝑧
(𝑛)

(𝑡) ≤ 0, (𝑟 (𝑡) (𝑧
(𝑛−1)

(𝑡))

𝛼

)



≤ 0,

(20)

or

𝑧 (𝑡) > 0, 𝑧
(𝑛−2)

(𝑡) > 0,

𝑧
(𝑛−1)

(𝑡) < 0, (𝑟 (𝑡) (𝑧
(𝑛−1)

(𝑡))

𝛼

)



≤ 0,

(21)

for all 𝑡 ≥ 𝑡
1
, where 𝑡

1
≥ 𝑡
0
is large enough.

Case I. Suppose first that conditions (20) hold. Using inequal-
ity (19) and assumption 𝜂

1
(𝑡) ≤ 𝜎(𝑡), we conclude that

(𝑟 (𝑡) (𝑧
(𝑛−1)

(𝑡))

𝛼

+

𝑝
0

𝛽

𝜏
∗

𝑟 (𝜏 (𝑡)) (𝑧
(𝑛−1)

(𝜏 (𝑡)))

𝛼

)



+ 𝑄 (𝑡) 𝑧
𝛽

(𝜂
1
(𝑡)) ≤ 0.

(22)

Furthermore, by the monotonicity of 𝑧(𝑡), there exists a
constant 𝑀 > 0 such that

𝑧
𝛽

(𝜂
1
(𝑡)) = 𝑧

𝛽−𝛾

(𝜂
1
(𝑡)) 𝑧
𝛾

(𝜂
1
(𝑡)) ≥ 𝑀

𝛽−𝛾

𝑧
𝛾

(𝜂
1
(𝑡)) .

(23)

Combining (22) and (23), we have

(𝑟 (𝑡) (𝑧
(𝑛−1)

(𝑡))

𝛼

+

𝑝
0

𝛽

𝜏
∗

𝑟 (𝜏 (𝑡)) (𝑧
(𝑛−1)

(𝜏 (𝑡)))

𝛼

)



+ 𝑀
1
𝑄 (𝑡) 𝑧

𝛾

(𝜂
1
(𝑡)) ≤ 0,

(24)

where 𝑀
1
= 𝑀
𝛽−𝛾. An application of conditions (20) allows

us to deduce that the function

𝑤 (𝑡) := 𝑟 (𝑡) (𝑧
(𝑛−1)

(𝑡))

𝛼

(25)

is positive and nonincreasing. By Lemma 2, we have

𝑧 (𝑡) ≥

𝜆𝑡
𝑛−1

(𝑛 − 1)!𝑟
1/𝛼

(𝑡)

𝑟
1/𝛼

(𝑡) 𝑧
(𝑛−1)

(𝑡)

=

𝜆𝑡
𝑛−1

(𝑛 − 1)!𝑟
1/𝛼

(𝑡)

𝑤
1/𝛼

(𝑡) ,

(26)

for every 𝜆 ∈ (0, 1) and for all sufficiently large 𝑡. Using (26)
in (24), we conclude that 𝑤(𝑡) is a positive solution of a delay
differential inequality

(𝑤 (𝑡) +

𝑝
0

𝛽

𝜏
∗

𝑤 (𝜏 (𝑡)))



+ 𝑀
1
(

𝜆

(𝑛 − 1)!

)

𝛾

𝑄
𝛾
(𝑡) 𝑤
𝛾/𝛼

(𝜂
1
(𝑡)) ≤ 0.

(27)

Define now a function 𝑦(𝑡) by

𝑦 (𝑡) := 𝑤 (𝑡) +

𝑝
0

𝛽

𝜏
∗

𝑤 (𝜏 (𝑡)) . (28)

Then, by the monotonicity of 𝑤(𝑡),

𝑦 (𝑡) ≤ 𝑤 (𝑡) (1 +

𝑝
0

𝛽

𝜏
∗

) . (29)

Substituting (29) into (27), we observe that 𝑦(𝑡) is a positive
solution of a delay differential inequality

𝑦


(𝑡)+𝑀
1
(

𝜆

(𝑛 − 1)!

)

𝛾

(

𝜏
∗

𝜏
∗
+ 𝑝
0

𝛽

)

𝛾/𝛼

𝑄
𝛾
(𝑡) 𝑦
𝛾/𝛼

(𝜂
1
(𝑡)) ≤ 0.

(30)

Then, by virtue of [21, Theorem 1], the associated delay
differential equation

𝑦


(𝑡)+𝑀
1
(

𝜆

(𝑛 − 1)!

)

𝛾

(

𝜏
∗

𝜏
∗
+ 𝑝
0

𝛽

)

𝛾/𝛼

𝑄
𝛾
(𝑡) 𝑦
𝛾/𝛼

(𝜂
1
(𝑡)) = 0

(31)
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also has a positive solution. However, the result by Kitamura
and Kusano [15, Theorem 2] implies that, under assumption
(12), (31) is oscillatory. Therefore, (1) cannot have positive
solutions.

Case II. Assume now that conditions (21) hold. By virtue of
(15), we have that

lim
𝑡→∞

𝑧 (𝑡) ̸= 0. (32)

An application of Lemma 2 yields

𝑧 (𝑡) ≥

𝜆

(𝑛 − 2)!

𝑡
𝑛−2

𝑧
(𝑛−2)

(𝑡) , (33)

for any 𝜆 ∈ (0, 1) and for all sufficiently large 𝑡. Hence, by (19)
and (33), we obtain

(𝑟(𝑡)(𝑧
(𝑛−1)

(𝑡))

𝛼

+

𝑝
0

𝛽

𝜏
∗

𝑟 (𝜏 (𝑡)) (𝑧
(𝑛−1)

(𝜏 (𝑡)))

𝛼

)



+ (

𝜆

(𝑛 − 2)!

)

𝛽

𝑄
𝛽
(𝑡) (𝑧
(𝑛−2)

(𝜎 (𝑡)))

𝛽

≤ 0.

(34)

Using conditions 𝑧
(𝑛−1)

(𝑡) < 0, 𝜎(𝑡) ≤ 𝜂
2
(𝑡), and inequality

(34), we have

(𝑟(𝑡)(𝑧
(𝑛−1)

(𝑡))

𝛼

+

𝑝
0

𝛽

𝜏
∗

𝑟 (𝜏 (𝑡)) (𝑧
(𝑛−1)

(𝜏 (𝑡)))

𝛼

)



+ (

𝜆

(𝑛 − 2)!

)

𝛽

𝑄
𝛽
(𝑡) (𝑧
(𝑛−2)

(𝜂
2
(𝑡)))

𝛽

≤ 0.

(35)

Furthermore, by the monotonicity of 𝑧(𝑛−2)(𝑡), there exists a
constant 𝑁 > 0 such that

(𝑧
(𝑛−2)

(𝜂
1
(𝑡)))

𝛽

= (𝑧
(𝑛−2)

(𝜂
1
(𝑡)))

𝛽−𝜆

(𝑧
(𝑛−2)

(𝜂
1
(𝑡)))

𝜆

≥ 𝑁
𝛽−𝜆

(𝑧
(𝑛−2)

(𝜂
2
(𝑡)))

𝜆

.

(36)

Combining (35) and (36), we arrive at

(𝑟 (𝑡) (𝑧
(𝑛−1)

(𝑡))

𝛼

+

𝑝
0

𝛽

𝜏
∗

𝑟 (𝜏 (𝑡)) (𝑧
(𝑛−1)

(𝜏 (𝑡)))

𝛼

)



+ 𝑁
1
(

𝜆

(𝑛 − 2)!

)

𝛽

𝑄
𝛽
(𝑡) (𝑧
(𝑛−2)

(𝜂
2
(𝑡)))

𝜆

≤ 0,

(37)

where 𝑁
1

= 𝑁
𝛽−𝜆. Using the monotonicity of 𝑤(𝑡), for 𝑠 ≥

𝑡 ≥ 𝑡
1
, we conclude that

𝑟
1/𝛼

(𝑠) 𝑧
(𝑛−1)

(𝑠) ≤ 𝑟
1/𝛼

(𝑡) 𝑧
(𝑛−1)

(𝑡) . (38)

Dividing (38) by 𝑟
1/𝛼

(𝑠) and integrating the resulting inequal-
ity from 𝑡 to 𝑙, we obtain

𝑧
(𝑛−2)

(𝑙)

≤ 𝑧
(𝑛−2)

(𝑡) + 𝑟
1/𝛼

(𝑡) 𝑧
(𝑛−1)

(𝑡) ∫

𝑙

𝑡

𝑟
−1/𝛼

(𝑠) d𝑠.
(39)

Passing to the limit as 𝑙 → ∞, we deduce that

0 ≤ 𝑧
(𝑛−2)

(𝑡) + 𝑟
1/𝛼

(𝑡) 𝑧
(𝑛−1)

(𝑡) 𝐴 (𝑡) , (40)

which yields

𝑧
(𝑛−2)

(𝑡) ≥ −𝐴 (𝑡) 𝑟
1/𝛼

(𝑡) 𝑧
(𝑛−1)

(𝑡) = −𝐴 (𝑡) 𝑤
1/𝛼

(𝑡) .

(41)

Combining (37) and (41), we have

(𝑟(𝑡)(𝑧
(𝑛−1)

(𝑡))

𝛼

+

𝑝
0

𝛽

𝜏
∗

𝑟 (𝜏 (𝑡)) (𝑧
(𝑛−1)

(𝜏 (𝑡)))

𝛼

)



− 𝑁
1
(

𝜆

(𝑛 − 2)!

)

𝛽

𝑄
𝛽
(𝑡) 𝐴
𝜆

(𝜂
2
(𝑡)) 𝑤

𝜆/𝛼

(𝜂
2
(𝑡)) ≤ 0.

(42)

Using again monotonicity of 𝑤(𝑡), we conclude that

𝑦 (𝑡) ≥ 𝑤 (𝜏 (𝑡)) (1 +

𝑝
0

𝛽

𝜏
∗

) . (43)

Substituting (43) into (42), we observe that 𝑦(𝑡) is a negative
solution of an advanced differential inequality

𝑦


(𝑡) − 𝑁
1
(

𝜆

(𝑛 − 2)!

)

𝛽

(

𝜏
∗

𝜏
∗
+ 𝑝
0

𝛽

)

𝜆/𝛼

× 𝑄
𝛽
(𝑡) 𝐴
𝜆

(𝜂
2
(𝑡)) 𝑦
𝜆/𝛼

(𝜏
−1

(𝜂
2
(𝑡))) ≤ 0,

(44)

which implies that 𝑢(𝑡) := −𝑦(𝑡) is a positive solution of an
advanced differential inequality

𝑢


(𝑡) − 𝑁
1
(

𝜆

(𝑛 − 2)!

)

𝛽

(

𝜏
∗

𝜏
∗
+ 𝑝
0

𝛽

)

𝜆/𝛼

× 𝑄
𝛽
(𝑡) 𝐴
𝜆

(𝜂
2
(𝑡)) 𝑢
𝜆/𝛼

(𝜏
−1

(𝜂
2
(𝑡))) ≥ 0.

(45)

Consequently, by [7, Lemma 2.3], the associated advanced
differential equation

𝑢


(𝑡) − 𝑁
1
(

𝜆

(𝑛 − 2)!

)

𝛽

(

𝜏
∗

𝜏
∗
+ 𝑝
0

𝛽

)

𝜆/𝛼

× 𝑄
𝛽
(𝑡) 𝐴
𝜆

(𝜂
2
(𝑡)) 𝑢
𝜆/𝛼

(𝜏
−1

(𝜂
2
(𝑡))) = 0

(46)

also has a positive solution. However, it follows from [15,
Theorem 1] that if condition (13) holds, (46) is oscillatory.
Therefore, (1) cannot have positive solutions. This contradic-
tion with our initial assumption completes the proof.

Theorem 4. Let 𝑛 ≥ 2 be even, and let 0 < 𝛼 = 𝛽 ≤ 1.
Assume that conditions (𝐻

1
) and (𝐻

2
) hold, and there exist
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two functions 𝜂
1
, 𝜂
2
∈ 𝐶(I,R) satisfying (11). Suppose also that

conditions

𝜏
∗

((𝑛 − 1)!)
𝛽

(𝜏
∗
+ 𝑝
0

𝛽
)

lim inf
𝑡→∞

∫

𝑡

𝜂
1
(𝑡)

𝑄
𝛽
(𝑠) d𝑠 >

1

e
, (47)

𝜏
∗

((𝑛 − 2)!)
𝛽

(𝜏
∗
+ 𝑝
0

𝛽
)

lim inf
𝑡→∞

∫

𝜏
−1

(𝜂
2
(𝑡))

𝑡

𝑄
𝛽
(𝑠) 𝐴
𝛽

(𝜂
2
(𝑠)) d𝑠

>

1

e
(48)

are satisfied. Then conclusion of Theorem 3 remains intact.

Proof. Assume that 𝑥(𝑡) is an eventually positive solution of
(1) that satisfies (15). Proceeding as in the proof ofTheorem 3,
one comes to the conclusion that, for every 𝜆 ∈ (0, 1), a delay
differential equation

𝑦


(𝑡) + (

𝜆

(𝑛 − 1)!

)

𝛽

𝜏
∗

𝜏
∗
+ 𝑝
0

𝛽

𝑄
𝛽
(𝑡) 𝑦 (𝜂

1
(𝑡)) = 0 (49)

and an advanced differential equation

𝑢


(𝑡) − (

𝜆

(𝑛 − 2)!

)

𝛽

𝜏
∗

𝜏
∗
+ 𝑝
0

𝛽

𝑄
𝛽
(𝑡) 𝐴
𝛽

(𝜂
2
(𝑡))

× 𝑢 (𝜏
−1

(𝜂
2
(𝑡))) = 0

(50)

both have positive solutions. On the other hand, condition
(47) and [9, Lemma 4] imply that (49) is oscillatory, a
contradiction. Likewise, by virtue of [6, Theorem 2.4.1],
condition (48) yields that (50) has no positive solutions. This
contradiction completes the proof.

Theorem 5. Let 𝑛 ≥ 2 be even and 0 < 𝛽 ≤ 1. Assume
that conditions (𝐻

1
) and (𝐻

2
) are satisfied, and there exist

two numbers 𝛾, 𝜆 ∈ R as in Theorem 3 and two functions
𝜂
1
, 𝜂
2
∈ 𝐶(I,R) such that

𝜂
1
(𝑡) ≤ 𝜎 (𝑡) ≤ 𝜂

2
(𝑡) , 𝜂

1
(𝑡) < 𝜏 (𝑡) ≤ 𝑡 < 𝜂

2
(𝑡) ,

lim
𝑡→∞

𝜂
1
(𝑡) = ∞.

(51)

If conditions (12) and (13) hold, the conclusion of Theorem 3
remains intact.

Proof. As above, let 𝑥(𝑡) be an eventually positive solution of
(1) that satisfies (15). As in the proof of Theorem 3, we split
the argument into two parts.

Case I. Assume first that (20) is satisfied. It has been
established in the proof of Theorem 3 that the function
𝑤(𝑡) defined by (25) is positive, nonincreasing, and satisfies
inequality (27). Introducing again 𝑦(𝑡) by (28) and using the
monotonicity of 𝑤(𝑡), we conclude that

𝑦 (𝑡) ≤ 𝑤 (𝜏 (𝑡)) (1 +

𝑝
0

𝛽

𝜏
∗

) . (52)

Substitution of (52) into (27) implies that, for sufficiently large
𝑡, 𝑦(𝑡) is a positive solution of a delay differential inequality

𝑦


(𝑡) + 𝑀
1
(

𝜆

(𝑛 − 1)!

)

𝛾

(

𝜏
∗

𝜏
∗
+ 𝑝
0

𝛽

)

𝛾/𝛼

𝑄
𝛾
(𝑡)

× 𝑦
𝛾/𝛼

(𝜏
−1

(𝜂
1
(𝑡))) ≤ 0.

(53)

Then, by virtue of [21, Theorem 1], the associated delay
differential equation

𝑦


(𝑡) + 𝑀
1
(

𝜆

(𝑛 − 1)!

)

𝛾

(

𝜏
∗

𝜏
∗
+ 𝑝
0

𝛽

)

𝛾/𝛼

𝑄
𝛾
(𝑡)

× 𝑦
𝛾/𝛼

(𝜏
−1

(𝜂
1
(𝑡))) = 0

(54)

also has a positive solution. However, [15,Theorem 2] implies
that if (12) holds, (54) is oscillatory.Therefore, (1) cannot have
positive solutions.

Case II. Assume now that (21) is satisfied. It has been
established in the proof of Theorem 3 that the function 𝑤(𝑡)

defined by (25) is negative, nonincreasing, and satisfies the
inequality (42). Introducing again 𝑦(𝑡) by (28) and using the
monotonicity of 𝑤(𝑡), we conclude that

𝑦 (𝑡) ≥ 𝑤 (𝑡) (1 +

𝑝
0

𝛽

𝜏
∗

) . (55)

Substituting (55) into (42), we observe that 𝑦(𝑡) is a negative
solution of an advanced differential inequality

𝑦


(𝑡) − 𝑁
1
(

𝜆

(𝑛 − 2)!

)

𝛽

(

𝜏
∗

𝜏
∗
+ 𝑝
0

𝛽

)

𝜆/𝛼

𝑄
𝛽
(𝑡)

× 𝐴
𝜆

(𝜂
2
(𝑡)) 𝑦
𝜆/𝛼

(𝜂
2
(𝑡)) ≤ 0.

(56)

That is, 𝑢(𝑡) := −𝑦(𝑡) is a positive solution of an advanced
differential inequality

𝑢


(𝑡) − 𝑁
1
(

𝜆

(𝑛 − 2)!

)

𝛽

(

𝜏
∗

𝜏
∗
+ 𝑝
0

𝛽

)

𝜆/𝛼

𝑄
𝛽
(𝑡)

× 𝐴
𝜆

(𝜂
2
(𝑡)) 𝑢
𝜆/𝛼

(𝜂
2
(𝑡)) ≥ 0.

(57)

Then, by [7, Lemma 2.3], the associated advanced differential
equation

𝑢


(𝑡) − 𝑁
1
(

𝜆

(𝑛 − 2)!

)

𝛽

(

𝜏
∗

𝜏
∗
+ 𝑝
0

𝛽

)

𝜆/𝛼

𝑄
𝛽
(𝑡)

× 𝐴
𝜆

(𝜂
2
(𝑡)) 𝑢
𝜆/𝛼

(𝜂
2
(𝑡)) = 0

(58)

also has a positive solution. However, [15,Theorem 1] implies
that, under assumption (13), (58) is oscillatory. Therefore, (1)
cannot have positive solutions. This contradiction with our
initial assumption completes the proof.
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Theorem 6. Let 𝑛 ≥ 2 be even and 0 < 𝛼 = 𝛽 ≤ 1. Assume
that conditions (𝐻

1
) and (𝐻

2
) are satisfied, and there exist two

functions 𝜂
1
, 𝜂
2
∈ 𝐶(I,R) satisfying (51). Suppose also that

𝜏
∗

((𝑛 − 1)!)
𝛽

(𝜏
∗
+ 𝑝
0

𝛽
)

lim inf
𝑡→∞

∫

𝑡

𝜏
−1

(𝜂1(𝑡))

𝑄
𝛽
(𝑠) d𝑠 >

1

e
, (59)

𝜏
∗

((𝑛 − 2)!)
𝛽

(𝜏
∗
+ 𝑝
0

𝛽
)

lim inf
𝑡→∞

∫

𝜂
2
(𝑡)

𝑡

𝑄
𝛽
(𝑠) 𝐴
𝛽

(𝜂
2
(𝑠)) d𝑠> 1

e
.

(60)

Then the conclusion of Theorem 3 remains intact.

Proof. Assuming that 𝑥(𝑡) is an eventually positive solution
of (1) that satisfies (15) and proceeding as in the proof of
Theorem 5, one concludes that, for every 𝜆 ∈ (0, 1), a delay
differential equation

𝑦


(𝑡) + (

𝜆

(𝑛 − 1)!

)

𝛽

𝜏
∗

𝜏
∗
+ 𝑝
0

𝛽

𝑄
𝛽
(𝑡) 𝑦 (𝜏

−1

(𝜂
1
(𝑡))) = 0

(61)

and an advanced differential equation

𝑢


(𝑡) −

𝜏
∗

𝜏
∗
+ 𝑝
0

𝛽

(

𝜆

(𝑛 − 2)!

)

𝛽

𝑄
𝛽
(𝑡) 𝐴
𝛽

(𝜂
2
(𝑡)) 𝑢 (𝜂

2
(𝑡)) = 0

(62)

have positive solutions. On the other hand, application of
condition (59) along with [9, Lemma 4] implies that (61)
is oscillatory, a contradiction. Likewise, by virtue of [6,
Theorem 2.4.1], condition (60) yields that (62) has no positive
solutions. This contradiction completes the proof.

Note that Theorems 3–6 ensure that every solution 𝑥(𝑡)

of (1) is either oscillatory or tends to zero as 𝑡 → ∞ and,
unfortunately, cannot distinguish solutions with different
behaviors. In the remaining part of this section, we establish
several results which guarantee that all solutions of (1) are
oscillatory.

Theorem 7. Let 𝑛 ≥ 4 be even and 0 < 𝛽 ≤ 1. Assume that
conditions (𝐻

1
) and (𝐻

2
) are satisfied, and there exist three

numbers 𝛾, 𝜆, 𝜃 ∈ R such that 𝛾 ≤ 𝛽 ≤ 𝜆, 𝛾 < 𝛼 < 𝜆, 𝜃 ≥

𝛽, and 𝜃 > 𝛼. Suppose further that there exist three functions
𝜂
1
, 𝜂
2
, 𝜂
3
∈ 𝐶(I,R)

𝜂
3
(𝑡) ≥ 𝜎 (𝑡) , 𝜂

3
(𝑡) > 𝜏 (𝑡) , (63)

and such that (11) holds. Assume that conditions (12), (13), and

∫

∞

𝑄
𝜃
(𝑡) d𝑡 = ∞ (64)

hold. Then (1) is oscillatory.

Proof. Without loss of generality, suppose that 𝑥(𝑡) is a
nonoscillatory solution of (1) which is eventually positive. As
in the proof ofTheorem 3, we obtain (19). Applying the same
argument as in the paper by Zhang et al. [23, Theorem 2.1],

we conclude that, by virtue of (1) and Lemma 1, in addition to
the case (20), there are twomore possible types of behavior of
solutions for 𝑡 ≥ 𝑡

1
, where 𝑡

1
≥ 𝑡
0
is large enough in the proof

of Theorem 3. Namely, one can also have

𝑧 (𝑡) > 0, 𝑧


(𝑡) > 0, 𝑧
(𝑛−2)

(𝑡) > 0,

𝑧
(𝑛−1)

(𝑡) < 0, (𝑟 (𝑡) (𝑧
(𝑛−1)

(𝑡))

𝛼

)



≤ 0,

(65)

or

𝑧 (𝑡) > 0, 𝑧
(𝑗)

(𝑡) < 0, 𝑧
(𝑗+1)

(𝑡) > 0,

𝑧
(𝑛−1)

(𝑡) < 0, (𝑟 (𝑡) (𝑧
(𝑛−1)

(𝑡))

𝛼

)



≤ 0,

(66)

for all odd integers 𝑗 ∈ {1, 2, . . . , 𝑛 − 3}. However, conditions
(12) and (13) yield that neither (20) nor (65) is possible.

Therefore, we have to analyze the only remaining case,
and we assume now that all the conditions in (66) are
satisfied. Then, inequality (41) holds. Integrating (41) from 𝑡

to ∞ 𝑛 − 2 times, we obtain

𝑧 (𝑡) ≥ −

∫

∞

𝑡

(𝜂 − 𝑡)
𝑛−3

𝐴 (𝜂) d𝜂
(𝑛 − 3)!

𝑟
1/𝛼

(𝑡) 𝑧
(𝑛−1)

(𝑡)

= −

∫

∞

𝑡

(𝜂 − 𝑡)
𝑛−3

𝐴 (𝜂) d𝜂
(𝑛 − 3)!

𝑤
1/𝛼

(𝑡) ,

(67)

where𝑤(𝑡) is defined by (25). Taking into account that 𝑧(𝑡) <

0, 𝜎(𝑡) ≤ 𝜂
3
(𝑡), and using (19), we have

(𝑟 (𝑡) (𝑧
(𝑛−1)

(𝑡))

𝛼

+

𝑝
0

𝛽

𝜏
∗

𝑟 (𝜏 (𝑡)) (𝑧
(𝑛−1)

(𝜏 (𝑡)))

𝛼

)



+ 𝑄 (𝑡) 𝑧
𝛽

(𝜂
3
(𝑡)) ≤ 0.

(68)

By virtue ofmonotonicity of 𝑧(𝑡), there exists a constant𝑀
2
>

0 such that

𝑧
𝛽

(𝜂
3
(𝑡)) = 𝑧

𝛽−𝜃

(𝜂
3
(𝑡)) 𝑧
𝜃

(𝜂
3
(𝑡)) ≥ 𝑀

2
𝑧
𝜃

(𝜂
3
(𝑡)) .

(69)

Combining (68) and (69), we obtain

(𝑟 (𝑡) (𝑧
(𝑛−1)

(𝑡))

𝛼

+

𝑝
0

𝛽

𝜏
∗

𝑟 (𝜏 (𝑡)) (𝑧
(𝑛−1)

(𝜏 (𝑡)))

𝛼

)



+ 𝑀
2
𝑄 (𝑡) 𝑧

𝜃

(𝜂
3
(𝑡)) ≤ 0.

(70)

Using (67) in (70), we conclude that in this case, the function
𝑤(𝑡) defined by (25) is negative, nonincreasing, and satisfies
the inequality

(𝑟 (𝑡) (𝑧
(𝑛−1)

(𝑡))

𝛼

+

𝑝
0

𝛽

𝜏
∗

𝑟 (𝜏 (𝑡)) (𝑧
(𝑛−1)

(𝜏 (𝑡)))

𝛼

)



−

𝑀
2

((𝑛 − 3)!)
𝜃

𝑄
𝜃
(𝑡) 𝑤
𝜃/𝛼

(𝜂
3
(𝑡)) ≤ 0.

(71)
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Introducing again 𝑦(𝑡) by (28) and using the monotonicity of
𝑤(𝑡), we arrive at (43). Substitution of (43) into (71) leads to
the conclusion that 𝑦(𝑡) is a negative solution of an advanced
differential inequality

𝑦


(𝑡) −

𝑀
2

((𝑛 − 3)!)
𝜃

(

𝜏
∗

𝜏
∗
+ 𝑝
0

𝛽

)

𝜃/𝛼

𝑄
𝜃
(𝑡) 𝑦
𝜃/𝛼

(𝜏
−1

(𝜂
3
(𝑡)))

≤ 0,

(72)

in which case the function 𝑢(𝑡) := −𝑦(𝑡) is a positive solution
of an advanced differential inequality

𝑢


(𝑡) −

𝑀
2

((𝑛 − 3)!)
𝜃

(

𝜏
∗

𝜏
∗
+ 𝑝
0

𝛽

)

𝜃/𝛼

𝑄
𝜃
(𝑡) 𝑢
𝜃/𝛼

(𝜏
−1

(𝜂
3
(𝑡)))

≥ 0.

(73)

Then, by [7, Lemma 2.3], the associated advanced differential
equation

𝑢


(𝑡) −

𝑀
2

((𝑛 − 3)!)
𝜃

(

𝜏
∗

𝜏
∗
+ 𝑝
0

𝛽

)

𝜃/𝛼

𝑄
𝜃
(𝑡) 𝑢
𝜃/𝛼

(𝜏
−1

(𝜂
3
(𝑡)))

= 0

(74)

also has a positive solution. However, [15,Theorem 1] implies
that (74) is oscillatory under assumption (64). Therefore, (1)
cannot have positive solutions. This contradiction with our
initial assumption completes the proof.

Theorem8. Let 𝑛 ≥ 4 be even and 0 < 𝛼 = 𝛽 ≤ 1. Assume that
conditions (𝐻

1
) and (𝐻

2
) are satisfied, and there exist three

functions 𝜂
1
, 𝜂
2
, 𝜂
3

∈ 𝐶(I,R) as in Theorem 7. Suppose also
that conditions (47) and (48) hold. If

𝜏
∗

((𝑛 − 3)!)
𝛽

(𝜏
∗
+ 𝑝
0

𝛽
)

lim inf
𝑡→∞

∫

𝜏
−1

(𝜂
3
(𝑡))

𝑡

𝑄
𝛽
(𝑠) d𝑠 >

1

e
, (75)

(1) is oscillatory.

Proof. Let 𝑥(𝑡) be a nonoscillatory solution of (1) which is
eventually positive. As in the proof of Theorem 7, one can
have either (20) or (65), or (66). However, conditions (47) and
(48) exclude cases (20) and (65). Thus, all the inequalities in
(66) should be satisfied. Along the same lines as in the proof
of Theorem 7, one comes to the conclusion that an advanced
differential equation

𝑢


(𝑡) −

𝜏
∗

((𝑛 − 3)!)
𝛽

(𝜏
∗
+ 𝑝
0

𝛽
)

𝑄
𝛽
(𝑡) 𝑢 (𝜏

−1

(𝜂
3
(𝑡))) = 0

(76)

has positive solutions. On the other hand, if condition (75)
holds, a well-known result [6,Theorem2.4.1] implies that (76)
has no positive solutions. This contradiction completes the
proof.

Theorem 9. Let 𝑛 ≥ 4 be even, 0 < 𝛽 ≤ 1, and assume that
conditions (𝐻

1
) and (𝐻

2
) are satisfied. Suppose further that

there exist three numbers 𝛾, 𝜆, 𝜃 ∈ R as in Theorem 7 and
three functions 𝜂

1
, 𝜂
2
, 𝜂
3

∈ 𝐶(I,R) such that (51) is satisfied,
𝜂
3
(𝑡) ≥ 𝜎(𝑡), and 𝜂

3
(𝑡) > 𝑡. If (12), (13), and (64) hold, (1) is

oscillatory.

Proof. Let 𝑥(𝑡) be an eventually positive nonoscillatory solu-
tion of (1). The same argument as in the proof of Theorem 7
yields that (66) holds. Define the function𝑤(𝑡) by (25). From
the proof ofTheorem 7, we already know that𝑤(𝑡) is negative,
nonincreasing, and satisfies the inequality (71). Introducing
then the function 𝑦(𝑡) by (28) and using the monotonicity of
𝑤(𝑡), we arrive at (55). Substituting (55) into (71), we observe
that 𝑦(𝑡) is a negative solution of an advanced differential
inequality

𝑦


(𝑡) −

𝑀
2

((𝑛 − 3)!)
𝜃

(

𝜏
∗

𝜏
∗
+ 𝑝
0

𝛽

)

𝜃/𝛼

𝑄
𝜃
(𝑡) 𝑦
𝜃/𝛼

(𝜂
3
(𝑡)) ≤ 0,

(77)

while 𝑢(𝑡) := −𝑦(𝑡) is a positive solution of an advanced
differential inequality

𝑢


(𝑡) −

𝑀
2

((𝑛 − 3)!)
𝜃

(

𝜏
∗

𝜏
∗
+ 𝑝
0

𝛽

)

𝜃/𝛼

𝑄
𝜃
(𝑡) 𝑢
𝜃/𝛼

(𝜂
3
(𝑡)) ≥ 0.

(78)

In this case, the result due to Bacuĺıková [7, Lemma 2.3]
allows one to deduce that the associated advanced differential
equation

𝑢


(𝑡) −

𝑀
2

((𝑛 − 3)!)
𝜃

(

𝜏
∗

𝜏
∗
+ 𝑝
0

𝛽

)

𝜃/𝛼

𝑄
𝜃
(𝑡) 𝑢
𝜃/𝛼

(𝜂
3
(𝑡)) = 0

(79)

also has a positive solution. However, it has been established
by Kitamura and Kusano [15, Theorem 1] that if condition
(64) is satisfied, (79) is oscillatory. Therefore, (1) cannot
have positive solutions, and this contradiction with the
assumptions of the theorem completes the proof.

Theorem 10. Let 𝑛 ≥ 4 be even and 0 < 𝛼 = 𝛽 ≤ 1. Assume
that conditions (𝐻

1
) and (𝐻

2
) are satisfied, and there exist

three functions 𝜂
1
, 𝜂
2
, 𝜂
3

∈ 𝐶(I,R) as in Theorem 9. Suppose
further that (59), (60) hold, and

𝜏
∗

((𝑛 − 3)!)
𝛽

(𝜏
∗
+ 𝑝
0

𝛽
)

lim inf
𝑡→∞

∫

𝜂
3
(𝑡)

𝑡

𝑄
𝛽
(𝑠) d𝑠 >

1

e
. (80)

Then (1) is oscillatory.

Proof. Assuming that 𝑥(𝑡) is an eventually positive nonoscil-
latory solution of (1) and reasoning as in the proof of
Theorem 7, one concludes that (66) holds. As in the proof of
Theorem 9, we observe that an advanced differential equation

𝑢


(𝑡) −

𝜏
∗

((𝑛 − 3)!)
𝛽

(𝜏
∗
+ 𝑝
0

𝛽
)

𝑄
𝛽
(𝑡) 𝑢 (𝜂

3
(𝑡)) = 0 (81)
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has positive solutions. On the other hand, if condition (80) is
satisfied, a result reported by Ladde et al. [6, Theorem 2.4.1]
yields that (81) has no positive solutions. This contradiction
completes the proof.

3. Asymptotic Behavior of Solutions to
Odd-Order Equations

In this section, in addition to conditions (𝐻
1
), (𝐻
2
), and (3),

we also assume that

(𝐻
3
) 𝜎(𝑡) < 𝑡.

The validity of the following four propositions can be
established in the same manner as it has been done for
Theorems 3–6.Therefore, to avoid unnecessary repetition, we
only formulate counterparts of Theorems 3–6 for the case of
odd-order equations.

Theorem 11. Let 𝑛 ≥ 3 be odd and let 0 < 𝛽 ≤ 1. Assume
that conditions (𝐻

1
)–(𝐻
3
) are satisfied, and there exist two

numbers 𝛾, 𝜆 ∈ R as inTheorem 3 and a function 𝜂
4
∈ 𝐶(I,R)

such that 𝑡 ≤ 𝜏(𝑡) < 𝜂
4
(𝑡). Suppose further that

∫

∞

𝑄
𝛾
(𝑡) d𝑡 = ∞,

∫

∞

𝑄
𝛽
(𝑡) 𝐴
𝜆

(𝜂
4
(𝑡)) d𝑡 = ∞.

(82)

Then the conclusion of Theorem 3 remains intact.

Theorem 12. Let 𝑛 ≥ 3 be odd, and let 0 < 𝛼 = 𝛽 ≤ 1. Assume
that conditions (𝐻

1
)–(𝐻
3
) are satisfied, and there exists a

function 𝜂
4
∈ 𝐶(I,R) as in Theorem 11. Suppose also that

𝜏
∗

((𝑛 − 1)!)
𝛽

(𝜏
∗
+ 𝑝
0

𝛽
)

lim inf
𝑡→∞

∫

𝑡

𝜎(𝑡)

𝑄
𝛽
(𝑠) d𝑠 >

1

e
,

𝜏
∗

((𝑛 − 2)!)
𝛽

(𝜏
∗
+ 𝑝
0

𝛽
)

lim inf
𝑡→∞

∫

𝜏
−1

(𝜂
4
(𝑡))

𝑡

𝑄
𝛽
(𝑠)

× 𝐴
𝛽

(𝜂
4
(𝑠)) d𝑠 >

1

e
.

(83)

Then the conclusion of Theorem 3 remains intact.

Theorem 13. Let 𝑛 ≥ 3 be odd and let 0 < 𝛽 ≤ 1. Assume
that conditions (𝐻

1
)–(𝐻
3
) are satisfied, and there exist two

numbers 𝛾, 𝜆 ∈ R as inTheorem 3 and a function 𝜂
4
∈ 𝐶(I,R)

such that 𝜎(𝑡) < 𝜏(𝑡) ≤ 𝑡 < 𝜂
4
(𝑡). Suppose further that con-

ditions (82) are satisfied. Then the conclusion of Theorem 3
remains intact.

Theorem 14. Let 𝑛 ≥ 3 be odd, and let 0 < 𝛼 = 𝛽 ≤

1. Assume that conditions (𝐻
1
)–(𝐻
3
) are satisfied, and there

exists a function 𝜂
4
∈ 𝐶(I,R) as in Theorem 13. If

𝜏
∗

((𝑛 − 1)!)
𝛽

(𝜏
∗
+ 𝑝
0

𝛽
)

lim inf
𝑡→∞

∫

𝑡

𝜏
−1
(𝜎(𝑡))

𝑄
𝛽
(𝑠) d𝑠 >

1

e
,

𝜏
∗

((𝑛 − 2)!)
𝛽

(𝜏
∗
+ 𝑝
0

𝛽
)

lim inf
𝑡→∞

∫

𝜂
4
(𝑡)

𝑡

𝑄
𝛽
(𝑠) 𝐴
𝛽

(𝜂
4
(𝑠)) d𝑠 >

1

e
,

(84)

the conclusion of Theorem 3 remains intact.

Note that Theorems 11–14 apply only if 𝜎 is a delayed
argument, 𝜎(𝑡) < 𝑡. Hence, it is important to complement
such results with the following theorems that can be applied
in the case where 𝜎 is an advanced argument, 𝜎(𝑡) ≥ 𝑡.

Theorem 15. Let 𝑛 ≥ 3 be odd and let 0 < 𝛽 ≤ 1. Assume
that conditions (𝐻

1
) and (𝐻

2
) are satisfied, and there exist two

numbers 𝛾, 𝜆 ∈ R as in Theorem 3 and two functions 𝜂
1
, 𝜂
2
∈

𝐶(I,R) satisfying (11). Suppose also that

∫

∞

𝑡
0

𝜉
𝑛−2

[

1

𝑅 (𝜉)

∫

∞

𝜉

𝑄 (𝑠) d𝑠]
1/𝛼

d𝜉 = ∞. (85)

If (12) and (13) are satisfied, the conclusion of Theorem 3
remains intact.

Proof. Assume that (1) has an eventually positive solution𝑥(𝑡)

satisfying (15). Proceeding as in the proof of Theorem 3, we
arrive at (19) and observe that (1) yields that either (20) or
(21) holds.

Indeed, it follows from the condition (𝑟(𝑡)(𝑧
(𝑛−1)

(𝑡))
𝛼

)


≤

0 that either 𝑧
(𝑛−1)

(𝑡) > 0 or 𝑧
(𝑛−1)

(𝑡) < 0. Assume first that
𝑧
(𝑛−1)

(𝑡) < 0; this immediately leads us to conditions (21). On
the other hand, if 𝑧(𝑛−1)(𝑡) > 0, then 𝑧

(𝑛)

(𝑡) ≤ 0 due to the fact
that 𝑟(𝑡) ≥ 0. We claim that 𝑧(𝑡) > 0 eventually. In fact, if
this is not the case, then 𝑧



(𝑡) < 0 eventually. Since 𝑧(𝑡) > 0,
𝑧


(𝑡) < 0, and (15) holds, there should exist a positive constant
𝑎 such that

lim
𝑡→∞

𝑧 (𝑡) = 𝑎. (86)

On the other hand, if 𝑧(𝑛−1)(𝑡) > 0 and 𝑧
(𝑛)

(𝑡) ≤ 0, there exists
a constant 𝑏 ≥ 0 such that

lim
𝑡→∞

𝑧
(𝑛−1)

(𝑡) = 𝑏 ≥ 0. (87)

Hence,

lim
𝑡→∞

𝑧
(𝑖)

(𝑡) = 0, (88)

for 𝑖 = 1, 2, . . . , 𝑛 − 1. Integrating (19) from 𝑡 to ∞ and using
the fact that the limit

lim
𝑡→∞

𝑟 (𝑡) (𝑧
(𝑛−1)

(𝑡))

𝛼

≥ 0 (89)
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is finite, we have

− 𝑟 (𝑡) (𝑧
(𝑛−1)

(𝑡))

𝛼

−

𝑝
0

𝛽

𝜏
∗

𝑟 (𝜏 (𝑡)) (𝑧
(𝑛−1)

(𝜏 (𝑡)))

𝛼

+ ∫

∞

𝑡

𝑄 (𝑠) 𝑧
𝛽

(𝜎 (𝑠)) d𝑠 ≤ 0.

(90)

Consequently,

− 𝑅 (𝑡)
[

[

(𝑧
(𝑛−1)

(𝑡))

𝛼

+ ((

𝑝
0

𝛽

𝜏
∗

)

1/𝛼

)

𝛼

(𝑧
(𝑛−1)

(𝜏 (𝑡)))

𝛼

]

]

+ ∫

∞

𝑡

𝑄 (𝑠) 𝑧
𝛽

(𝜎 (𝑠)) d𝑠 ≤ 0.

(91)

Assume first that 𝛼 ≤ 1. Using the result due to Bacuĺıková
[7, Lemma 2.2], we obtain

(𝑧
(𝑛−1)

(𝑡))

𝛼

+ ((

𝑝
0

𝛽

𝜏
∗

)

1/𝛼

)

𝛼

(𝑧
(𝑛−1)

(𝜏 (𝑡)))

𝛼

≤ 2
1−𝛼

[

[

𝑧
(𝑛−1)

(𝑡) + (

𝑝
0

𝛽

𝜏
∗

)

1/𝛼

𝑧
(𝑛−1)

(𝜏 (𝑡))
]

]

𝛼

.

(92)

Substituting (92) into (91), we have

− 2
1−𝛼

𝑅 (𝑡)
[

[

𝑧
(𝑛−1)

(𝑡) + (

𝑝
0

𝛽

𝜏
∗

)

1/𝛼

𝑧
(𝑛−1)

(𝜏 (𝑡))
]

]

𝛼

+ ∫

∞

𝑡

𝑄 (𝑠) 𝑧
𝛽

(𝜎 (𝑠)) d𝑠 ≤ 0,

(93)

which yields

−
[

[

𝑧
(𝑛−1)

(𝑡) + (

𝑝
0

𝛽

𝜏
∗

)

1/𝛼

𝑧
(𝑛−1)

(𝜏 (𝑡))
]

]

𝛼

≤ −

1

2
1−𝛼

𝑅 (𝑡)

∫

∞

𝑡

𝑄 (𝑠) 𝑧
𝛽

(𝜎 (𝑠)) d𝑠.

(94)

Therefore,

−
[

[

𝑧
(𝑛−1)

(𝑡) + (

𝑝
0

𝛽

𝜏
∗

)

1/𝛼

𝑧
(𝑛−1)

(𝜏 (𝑡))
]

]

+ [

1

2
1−𝛼

𝑅 (𝑡)

∫

∞

𝑡

𝑄 (𝑠) 𝑧
𝛽

(𝜎 (𝑠)) d𝑠]
1/𝛼

≤ 0.

(95)

Integrate (95) 𝑛 − 2 times from 𝑡 to ∞ and then one more
time from 𝑡

1
to ∞. Using (88) and changing the order of

integration, we obtain

∫

∞

𝑡
1

(𝜉 − 𝑡
1
)
𝑛−2

(𝑛 − 2)!

[

1

2
1−𝛼

𝑅 (𝜉)

∫

∞

𝜉

𝑄 (𝑠) 𝑧
𝛽

(𝜎 (𝑠)) d𝑠]
1/𝛼

d𝜉 < ∞.

(96)

Inequality (96) yields

∫

∞

𝑡
1

𝜉
𝑛−2

[

1

𝑅 (𝜉)

∫

∞

𝜉

𝑄 (𝑠) d𝑠]
1/𝛼

d𝜉 < ∞, (97)

which contradicts (85).
For the case 𝛼 > 1, one arrives at the contradiction with

the assumptions of the theorem by using another auxiliary
result obtained by Bacuĺıková [7, Lemma 2.1]. Thus, we
conclude that 𝑧



(𝑡) > 0 eventually. The rest of the proof
follows the same lines as in Theorem 3 and is omitted.

Combining the ideas exploited in the proofs ofTheorems
4–6 and 15, one can derive the following results.

Theorem 16. Let 𝑛 ≥ 3 be odd, and let 0 < 𝛼 = 𝛽 ≤ 1. Assume
that conditions (𝐻

1
) and (𝐻

2
) are satisfied, and there exist two

functions 𝜂
1
, 𝜂
2
∈ 𝐶(I,R) satisfying (11). If (47), (48), and (85)

hold, the conclusion of Theorem 3 remains intact.

Theorem 17. Let 𝑛 ≥ 3 be odd, and let 0 < 𝛽 ≤ 1. Assume
that conditions (𝐻

1
) and (𝐻

2
) are satisfied, and there exist

two numbers 𝛾, 𝜆 ∈ R as in Theorem 3 and two functions
𝜂
1
, 𝜂
2
∈ 𝐶(I,R) satisfying (51). If conditions (12), (13), and (85)

are satisfied, the conclusion of Theorem 3 remains intact.

Theorem 18. Let 𝑛 ≥ 3 be odd, and let 0 < 𝛼 = 𝛽 ≤ 1.
Assume that conditions (𝐻

1
) and (𝐻

2
) are satisfied, and there

exist two functions 𝜂
1
, 𝜂
2
∈ 𝐶(I,R) satisfying (51). If conditions

(59), (60), and (85) are satisfied, the conclusion of Theorem 3
remains intact.

4. Examples and Discussion

The following examples illustrate applications of some of
theoretical results presented in the previous sections. In all
the examples, 𝑝

0
is a constant such that 0 ≤ 𝑝

0
< ∞.

Example 1. For 𝑡 ≥ 1, consider a fourth-order neutral
differential equation

(e𝑡(𝑥 (𝑡) + 𝑝
0
𝑥 (𝑡 − 2))



)



+

1

16

(1 + 𝑝
0
e) e𝑡−1/2𝑥 (𝑡 − 1) = 0.

(98)

Let 𝜂
1
(𝑡) = 𝑡−3 and 𝜂

2
(𝑡) = 𝑡+1. An application ofTheorem 6

yields that every solution 𝑥(𝑡) of (98) is either oscillatory or
satisfies (14). As a matter of fact, 𝑥(𝑡) = e−𝑡/2 is an exact
solution to (98) satisfying (14).

Example 2. For 𝑡 ≥ 1, consider a fourth-order neutral
differential equation

(e𝑡(𝑥 (𝑡) + 𝑝
0
𝑥 (𝑡 + 2𝜋))



)



+ 2√10 (1 + 𝑝
0
e2𝜋)

× e𝑡+arcsin√10/10𝑥(𝑡 − arcsin
√10

10

) = 0.

(99)

Let 𝜂
1
(𝑡) = 𝑡 − 3 and 𝜂

2
(𝑡) = 𝜂

3
(𝑡) = 𝑡 + 3𝜋. UsingTheorem 8,

we deduce that (99) is oscillatory. It is not hard to verify that
one oscillatory solution of this equation is 𝑥(𝑡) = e𝑡 sin 𝑡.
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Example 3. For 𝑡 ≥ 1, consider a third-order neutral differ-
ential equation

(e𝑡(𝑥 (𝑡) + 𝑝
0
𝑥 (𝑡 − 2))



)



+

9

8

(1 + 𝑝
0
e3) e𝑡−3/2𝑥 (𝑡 − 1) = 0.

(100)

Let 𝜂(𝑡) = 𝑡+1. It follows fromTheorem 14 that every solution
𝑥(𝑡) of (100) is either oscillatory or satisfies (14). In fact, one
solution of this equation satisfying (14) is 𝑥(𝑡) = e−𝑡/2.

Remark 4. In the case of (2), oscillation criteria established in
this paper complement theorems reported by Zhang et al. [23,
25] because our criteria apply also in the case where 𝜎(𝑡) ≥ 𝑡

and 𝛽 > 𝛼. On the other hand, our results for (1) supplement
those reported by Bacuĺıková andDžurina [10], Bacuĺıková et
al. [11], and Xing et al. [22] since our theorems can be applied
if 𝛼 ̸=𝛽 and (3) holds.

Remark 5. By using inequality

𝑥
1

𝛽

+ 𝑥
2

𝛽

≥ 2
1−𝛽

(𝑥
1
+ 𝑥
2
)
𝛽 (101)

which holds for any 𝛽 ≥ 1 and for all 𝑥
1
, 𝑥
2

∈ [0,∞),
results reported in this paper can be extended to (1) for
all 𝛽 ∈ R which satisfy 𝛽 > 1. In this case, one has to
replace 𝑄(𝑡) := min{𝑞(𝑡), 𝑞(𝜏(𝑡))} with a function 𝑄(𝑡) :=

2
1−𝛽min{𝑞(𝑡), 𝑞(𝜏(𝑡))} and proceed as above.

Remark 6. Our main assumptions on functional arguments
do not specify whether 𝜏(𝑡) is a delayed or an advanced argu-
ment. Remarkably, 𝜎(𝑡) can even switch its nature between an
advanced and delayed argument. However, as in the paper by
Bacuĺıková and Džurina [10, condition (𝐻

3
)], such flexibility

is achieved at the cost of requiring that the function 𝜏 is
monotonic and satisfies 𝜏 ∘ 𝜎 = 𝜎 ∘ 𝜏. The question regarding
the analysis of the asymptotic behavior of solutions to (1) with
othermethods that do not require these assumptions remains
open at the moment.
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[9] B. Bacuĺıková and J. Džurina, “Oscillation theorems for second-
order nonlinear neutral differential equations,” Computers &
Mathematics with Applications, vol. 62, no. 12, pp. 4472–4478,
2011.
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We introduce impulsive cellular neural network models with piecewise alternately advanced and retarded argument (in short
IDEPCA).Themodel with the advanced argument is systemwith strong anticipation. Some sufficient conditions are established for
the existence and global exponential stability of a unique equilibrium.The approaches are based on employing Banach’s fixed point
theorem and a new IDEPCA integral inequality of Gronwall type. The criteria given are easily verifiable, possess many adjustable
parameters, and depend on impulses and piecewise constant argument deviations, which provides exibility for the design and
analysis of cellular neural network models. Several numerical examples and simulations are also given to show the feasibility and
effectiveness of our results.

1. Introduction

Chua and Yang [1] proposed a novel class of information-
processing systems called cellular neural networks (CNNs)
in 1988. Like neural networks, it is a large-scale nonlin-
ear analog circuit which processes signals in real time.
Like cellular automata [2] it is made of a massive aggre-
gate of regularly spaced circuit clones, called cells, which
communicate with each other directly only through its
nearest neighbors. Each cell is made of a linear capacitor,
a nonlinear voltage-controlled current source, and a few
resistive linear circuit elements. The key features of neural
networks are asynchronous parallel processing and global
interaction of network elements. Impressive applications of
neural networks have been proposed for various fields such as
optimization, linear and nonlinear programming, associative
memory, pattern recognition, and computer vision. For the
circuit diagram and connection pattern implementing the
CNN, one can refer to [1]. The CNN can be applied in
signal processing and can also be used to solve some image
processing and pattern recognition problems [3]. However,
it is necessary to solve some dynamic image processing and

pattern recognition problems by using delayed cellular neural
networks (DCNN) [4–6]. The study of the stability of CNN
and DCNN is known to be an important problem in theory
and applications.

On the other hand, in real world, many evolutionary
processes are characterized by abrupt changes at certain
time. These changes are known to be impulsive phenomena,
which are included in many fields such as physics, chemistry,
population dynamics, and optimal control. Fundamental
theory of impulsive differential equations has been developed
in [7]. Furthermore, researches of impulsive differential
equations have been receivedmuch interesting in recent years
[8–18]. Meanwhile, several kinds of neural networks with
impulse have been investigated. In particular, Xu and Yang
established the delay differential inequalities with impulsive
initial conditions; some new sufficient conditions for global
exponential stability of impulsive delay model were obtained
[15, 16].

Most neural networks can be classified into two types,
continuous or discrete. However, many real-world systems
and natural processes cannot be categorized into one of them.
They display characteristics both continuous and discrete
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styles. For instance, some biological neural networks in
biology, bursting rhythm models in pathology, and optimal
control models in economics are characterized by abrupt
changes of state.These are the familiar impulsive phenomena.

It is well known that applications of CNN depend cru-
cially on the dynamical behavior of the networks. In these
applications, stability and convergence of neural networks are
prerequisites. However, in the design of neural networks one
is interested not only in the uniform asymptotic stability but
also in the global exponential stability, which guarantees a
neural network to converge fast enough in order to achieve
fast response. In addition, in the analysis of dynamical
neural networks for parallel computation and optimization,
to increase the rate of convergence to the equilibrium point
of the networks and reduce the neural computing time, it
is necessary to ensure a desired exponential convergence
rate of the networks’ trajectories, starting from arbitrary
initial states to the equilibrium point which corresponds
to the optimal solution. Thus, from the mathematical and
engineering points of view, it is required that the neural
networks have a unique equilibrium point which is globally
exponentially stable. Therefore, the problem of stability anal-
ysis has received great attention and many results on this
topic have been reported in the literature. See, for instance,
[4, 9, 13, 19–27] and references cited therein.

1.1. Piecewise Constant Impulsive Systems. Differential equa-
tions with piecewise constant argument (in short DEPCA)
are first considered by Shah and Wiener [28] and Cooke
and Wiener [29] in the 80s and have been developed by
many authors. Applications of DEPCAs are discussed in
[30]. Theory and practice of DEPCA of general type, have
been discussed extensively in [31–37]. Piecewise constant
systems exist in widely expanded areas such as biomedicine,
chemistry, mechanical engineering, and physics. The sys-
tematical studies with mathematical models involving piece-
wise constant arguments were initiated for solving some
biomedical problems. These kinds of equations are similar
in structure to those found in certain sequential-continuous
models of disease dynamics. In [38], the following system
of equations describing the dynamics of the disease for
generation 𝑛 = 1, 2, . . . is investigated:

𝑑𝐼
(𝑛)

𝑑𝑡

(𝑡) = −𝑐 (𝑡) 𝐼
(𝑛)

(𝑡) + 𝑘 (𝑡) 𝑆
(𝑛)

(𝑡) 𝐼
(𝑛)

(𝑡) ,

𝑛 < 𝑡 ≤ 𝑛 + 1,

𝑑𝑆
(𝑛)

𝑑𝑡

(𝑡) = −𝑐 (𝑡) 𝑆
(𝑛)

(𝑡) − 𝑘 (𝑡) 𝑆
(𝑛)

(𝑡) 𝐼
(𝑛)

(𝑡) ,

𝑛 < 𝑡 ≤ 𝑛 + 1,

(1)

while

𝐼
(1)

(1) = 𝐼
0
, 𝑆

(1)

(1) = 𝑆
0
, (2)

where 𝑐 is the death rate and 𝑘 is the horizontal transmission
factor. These types of models are special cases of the general
form

𝑑𝑥 (𝑡)

𝑑𝑡

= 𝐹 (𝑡, 𝑥
𝑡
) , [𝑡] < 𝑡 ≤ [𝑡] + 1, 𝑥

[𝑡]
= 𝜙
[𝑡]
,

𝜙
[𝑡]
= 𝐺 ([𝑡] , 𝑥

[𝑡]
) , [𝑡] ≥ 2, 𝜙

1
= 𝐻,

(3)

which arise naturally in a number of models of epidemic.
DEPCAs usually describe hybrid dynamical systems (a
combination of continuous and discrete) and so combine
properties of both differential and difference equations.

Impulsive differential equations with discontinuous argu-
ment are proposed as an open problem by Wiener [30] in
1994, namely, the impulsive differential equations with piece-
wise constant argument: IDEPCA. As we know, impulsive
differential equations with piecewise constant arguments (in
short IDEPCA) are studied in a few papers [8, 39, 40].

1.2. Model Description. First, let us give a general description
of the mathematical model of ICNNs with piecewise alter-
nately advanced and retarded argument:

𝑑𝑥
𝑖
(𝑡)

𝑑𝑡

= −𝑎
𝑖
𝑥
𝑖
(𝑡)

+

𝑛

∑

𝑗=1

{𝑏
𝑖𝑗
𝑓
𝑗
(𝑥
𝑗
(𝑡)) + 𝑐

𝑖𝑗
𝑔
𝑗
(𝑥
𝑗
(𝑚[

𝑡 + 𝑙

𝑚

]))}

+ 𝑑
𝑖
, 𝑡 ̸=𝑚𝑘 − 𝑙,

(4a)

Δ𝑥
𝑖




𝑡=𝑚𝑘−𝑙

= 𝐽
𝑖𝑘
(𝑥
𝑖
(𝑚𝑘 − 𝑙

−

)) , 𝑖 = 1, 2, . . . , 𝑛, 𝑘 ∈ N,

(4b)

where [⋅] signifies the greatest integer function, 𝑙 and 𝑚 are
positive real numbers such that 𝑙 < 𝑚, 𝑡, 𝑥

𝑖
∈ R+, 𝑖 =

1, 2, . . . , 𝑛, Δ𝑥
𝑖
(𝑚𝑘 − 𝑙) = 𝑥

𝑖
(𝑚𝑘 − 𝑙) − 𝑥

𝑖
(𝑚𝑘 − 𝑙

−

), and
𝑥
𝑖
(𝑚𝑘 − 𝑙

−

) = lim
ℎ→0

− 𝑥
𝑖
(𝑚𝑘 − 𝑙 + ℎ). Moreover, 𝑛 denotes

the number of neurons in the network, 𝑥
𝑖
(𝑡) corresponds to

the state of the 𝑖th unit at time 𝑡, 𝑓
𝑗
(𝑥
𝑗
(𝑡)) and 𝑔

𝑗
(𝑥
𝑗
(𝑚[(𝑡 +

𝑙)/𝑚])) denote, respectively, the measures of activation to its
incoming potentials of the unit 𝑗 at time 𝑡 and discrete-time
𝑚[(𝑡 + 𝑙)/𝑚], 𝑎

𝑖
denotes the rate with which the unit 𝑖 resets

its potential to the resting state when isolated from other
units and inputs, 𝑏

𝑖𝑗
denotes the synaptic connection weight

of the unit 𝑗 on the unit 𝑖 at time 𝑡, 𝑐
𝑖𝑗
denotes the synaptic

connection weight of the unit 𝑗 on the unit 𝑖 at discrete-time
𝑚[(𝑡 + 𝑙)/𝑚], and 𝑑

𝑖
is the input from outside the network

to the unit 𝑖. The numbers 𝑥
𝑖
(𝑚𝑘 − 𝑙

−

) and 𝑥
𝑖
(𝑚𝑘 − 𝑙) are,

respectively, the states of the 𝑖th unit before and after impulse
perturbation at the moment𝑚𝑘 − 𝑙, 𝑘 ∈ N, and represent the
abrupt change of the state 𝐽

𝑖𝑘
(𝑥
𝑖
(𝑚𝑘 − 𝑙

−

)) at the impulsive
moment𝑚𝑘 − 𝑙.

Let us clarify why the IDEPCA (4a)-(4b) is of alternately
advanced and retarded type; that is, the argument can change
its deviation character during the motion. The argument
is deviated if it is advanced or retarded. Fix 𝑘 ∈ N,
and consider the IDEPCA on the interval 𝐼

𝑘
= [𝑚𝑘 −
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𝑙, 𝑚(𝑘 + 1) − 𝑙). Then, the identification function𝑚[(𝑡 + 𝑙)/𝑚]
is equal to 𝑚𝑘. If 𝑡 ∈ 𝐼

+

𝑘
= [𝑚𝑘 − 𝑙,𝑚𝑘), then 𝑚[(𝑡 +

𝑙)/𝑚] ≥ 𝑡 and IDEPCA (4a)-(4b) is an equation with
advanced argument. Similarly, if 𝑡 ∈ 𝐼

−

𝑘
= (𝑚𝑘,𝑚(𝑘 +

1) − 𝑙) then 𝑚[(𝑡 + 𝑙)/𝑚] < 𝑡 and IDEPCA (4a)-(4b) is
an equation with retarded argument. Consequently, IDEPCA
(4a)-(4b) changes the type of deviation of the argument
during the process. In other words, the IDEPCA (4a)-(4b) is
of alternately advanced and retarded type.

For any solution 𝑥(𝑡) = (𝑥
1
(𝑡), . . . , 𝑥

𝑛
(𝑡))
𝑇 of IDEPCA

(4a)-(4b), the model can be summarized as follows:

𝑑𝑥 (𝑡)

𝑑𝑡

= −𝐴𝑥 (𝑡) + 𝐵𝑓 (𝑥 (𝑡)) + 𝐶𝑔(𝑥(𝑚[

𝑡 + 𝑙

𝑚

])) + 𝐷,

𝑡 ̸=𝑚𝑘 − 𝑙,

(5a)

Δ𝑥|
𝑡=𝑚𝑘−𝑙

= 𝐽
𝑘
(𝑥 (𝑚𝑘 − 𝑙

−

)) , 𝑘 ∈ N, (5b)

where 𝐴 = diag(𝑎
1
, . . . , 𝑎

𝑛
), 𝐵 = (𝑏

𝑖𝑗
)
𝑛×𝑛

, and 𝐶 = (𝑐
𝑖𝑗
)
𝑛×𝑛

are
constant matrices and 𝐷 = (𝑑

1
, . . . , 𝑑

𝑛
) is a constant vector.

Moreover, the functions 𝑓 : R𝑛 → R𝑛, 𝑔 : R𝑛 → R𝑛 satisfy
(𝜕𝑓
𝑖
/𝜕𝑥
𝑗
) = (𝜕𝑔

𝑖
/𝜕𝑥
𝑗
) = 0 when 𝑖 ̸= 𝑗.

To the best of our knowledge, cellular neural network
with piecewise constant argument has been developed by few
authors, for example, Huang et al. Reference [41] considered
first the following cellular neural network with piecewise
constant delay:

𝑑𝑥
𝑖
(𝑡)

𝑑𝑡

=−𝑎
𝑖
([𝑡]) 𝑥

𝑖
(𝑡) +

𝑛

∑

𝑗=1

{𝑐
𝑖𝑗
([𝑡]) 𝑔

𝑗
(𝑥
𝑗
([𝑡]))} + 𝑑

𝑖
([𝑡]),

(6)

where [⋅] signifies the greatest integer function. Some suf-
ficient conditions of existence and attractivity of almost
periodic sequence solution were given for the corresponding
discrete-time analogue:

𝑥
𝑖
(𝑘 + 1) = 𝑥

𝑖
(𝑘) 𝑒
−𝑎
𝑖
(𝑘)

+

1 − 𝑒
−𝑎
𝑖
(𝑘)

𝑎
𝑖
(𝑘)

×

{

{

{

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
(𝑘) 𝑔
𝑗
(𝑥
𝑗
(𝑘)) + 𝑑

𝑖
(𝑘)

}

}

}

.

(7)

In 2010, Akhmet and Yılmaz [8] considered first the follow-
ing impulsive neural network with only piecewise constant
retarded argument:

𝑑𝑥
𝑖
(𝑡)

𝑑𝑡

= −𝑎
𝑖
𝑥
𝑖
(𝑡) +

𝑚

∑

𝑗=1

{𝑏
𝑖𝑗
𝑓
𝑗
(𝑥
𝑗
(𝑡)) + 𝑐

𝑖𝑗
𝑔
𝑗
(𝑥
𝑗
(𝛽 (𝑡)))}

+ 𝑑
𝑖
, 𝑡 ̸= 𝜃

𝑘
,

Δ𝑥
𝑖




𝑡=𝜃
𝑘

= 𝐼
𝑘
(𝑥
𝑖
(𝜃
−

𝑘
)) , 𝑖 = 1, 2, . . . , 𝑚, 𝑘 ∈ N,

(8)

where 𝛽(𝑡) = 𝜃
𝑘
if 𝜃
𝑘
< 𝑡 < 𝜃

𝑘+1
, 𝑘 ∈ N, 𝑡 ∈ R+, is an

identification function and 𝜃
𝑘
> 0, 𝑘 ∈ N, is a sequence

of real numbers. Several sufficient conditions are obtained for
the existence and stability of a unique 𝜔-periodic solution.

In this paper, we for the first time study the dynamic
behavior of impulsive cellular neural network models that
combine the properties of impulsive differential equations
and discrete-time difference equations, that is, the following
impulsive cellular neural network with piecewise alternately
advanced and retarded argument:

𝑑𝑥
𝑖
(𝑡)

𝑑𝑡

= −𝑎
𝑖
𝑥
𝑖
(𝑡)

+

𝑛

∑

𝑗=1

{𝑏
𝑖𝑗
𝑓
𝑗
(𝑥
𝑗
(𝑡)) + 𝑐

𝑖𝑗
𝑔
𝑗
(𝑥
𝑗
(𝑚[

𝑡 + 𝑙

𝑚

]))}

+ 𝑑
𝑖
, 𝑡 ̸=𝑚𝑘 − 𝑙,

Δ𝑥
𝑖




𝑡=𝑚𝑘−𝑙

= 𝐽
𝑖𝑘
(𝑥
𝑖
(𝑚𝑘 − 𝑙

−

)) , 𝑖 = 1, 2, . . . , 𝑛, 𝑘 ∈ N.

(9)

The purpose of this paper is to derive some new and simple
sufficient conditions for the existence and uniqueness of
solutions of the ICNNswith IDEPCA system (5a)-(5b), which
is globally exponentially stable. This paper is organized as
follows. In Section 2, we establish several criteria for the
existence and uniqueness of a unique equilibrium of the
ICNNs with IDEPCA system and the equivalence lemma for
(5a)-(5b). Here, a new IDEPCA Gronwall-type inequality is
very useful. In Section 3, we derive some sufficient conditions
which ensure that a unique equilibrium of the ICNNs with
IDEPCA system (5a)-(5b) is globally exponentially stable.
In Section 4, two illustrative examples and the numerical
simulations are given to demonstrate the effectiveness of our
results. The conclusions are drawn in Section 5.

2. Existence and Uniqueness Theorems

In this section, sufficient conditions that govern the network
parameters and the activation functions are established for
the existence of a unique equilibrium state of the impulsive
cellular neural network models (5a)-(5b).

2.1. Preliminaries andDefinition. In this section, wewill focus
our attention on some preliminary results which will be used
in the existence and uniqueness of solutions of the ICNNs
with IDEPCA system (5a)-(5b).

For every 𝑡 ∈ R, let 𝑖 = 𝑖(𝑡) ∈ N be the unique integer
such that 𝑡 ∈ 𝐼

𝑖
= [𝑚𝑖 − 𝑙, 𝑚(𝑖 + 1) − 𝑙).

For the sake of convenience, two of the standing assump-
tions are formulated below.

Lipschitz Condition

(L) The activation functions 𝑓
𝑗
and 𝑔

𝑗
with 𝑓

𝑗
(0) = 0,

𝑔
𝑗
(0) = 0 (𝑗 = 1, 2, . . . , 𝑛) satisfy the Lipschitz
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condition; that is, there are constants L𝑓
𝑗
, L𝑔
𝑗
> 0

such that





𝑓
𝑗
(𝑢) − 𝑓

𝑗
(V)





≤ L
𝑓

𝑗
|𝑢 − V| ,






𝑔
𝑗
(𝑢) − 𝑔

𝑗
(V)





≤ L
𝑔

𝑗
|𝑢 − V|

(10)

for all 𝑢, V ∈ R+.
The impulsive operator 𝐽

𝑘
satisfies






𝐽
𝑗𝑘
(𝑢) − 𝐽

𝑗𝑘
(V)





≤ L
𝐽

𝑘
|𝑢 − V| , (11)

for all 𝑢, V ∈ R+, 𝑗 = 1, . . . , 𝑛, 𝑘 ∈ N, whereL𝐽
𝑘
is a positive

Lipschitz constant.

Existence condition
(E) Consider

max
𝑖∈[1,...,𝑛]

{

{

{

1 − 𝑒
−𝑙⋅𝑎
∗

𝑎
∗

(

𝑛

∑

𝑗=1

[L
𝑓

𝑗






𝑏
𝑖𝑗






+L
𝑔

𝑗






𝑐
𝑖𝑗






])

}

}

}

< 1, (12)

where min
𝑖∈[1,...,𝑛]

𝑎
𝑖
= 𝑎
∗
.

First, we prove the existence and uniqueness of solutions
of IDEPCA system (5a)-(5b). A natural extension of the
original definition of a solution of DEPCA [28–30, 42] allows
us to define a solution of IDEPCA system.

Definition 1. A function 𝑥 is a solution of IDEPCA system
(5a)-(5b) in R+ = [0,∞) if

(i) 𝑥(𝑡) is continuous for 𝑡 ∈ R+ with the possible
exception of the points 𝑡 = 𝑚𝑘 − 𝑙, 𝑘 ∈ N,

(ii) 𝑥(𝑡) is right continuous and has left-hand limits at the
points 𝑡 = 𝑚𝑘 − 𝑙, 𝑘 ∈ N,

(iii) 𝑥(𝑡) is differentiable and satisfies (5a) for any 𝑡 ∈ R+,
with the possible exception of the points 𝑡 = 𝑚𝑘 − 𝑙,
𝑘 ∈ N, where one-sided derivatives exist,

(iv) 𝑥(𝑛) satisfies (5b) for 𝑛 = 𝑘𝑚 − 𝑙, 𝑘 ∈ N.

To study nonlinear IDEPCA system, we will use the
approach based on the construction of an equivalent integral
equation. Let us give the following proposition.

Proposition 2. Let (𝜏, 𝑥
0
) ∈ R+ × R𝑛. The function 𝑥(𝑡) =

𝑥(𝑡, 𝜏, 𝑥
0
) is a solution on R+ of the IDEPCA system (5a)-(5b)

in the sense of Definition 1 if and only if it is a solution of the
integral equation

𝑥 (𝑡) = 𝑒
−𝐴(𝑡−𝜏)

𝑥
0

+ ∫

𝑡

𝜏

𝑒
−𝐴(𝑡−𝑠)

[𝐵𝑓 (𝑥 (𝑠))

+𝐶𝑔(𝑥(𝑚[

𝑠 + 𝑙

𝑚

])) + 𝐷]𝑑𝑠

+

𝑖(𝑡)

∑

𝑘=𝑖(𝜏)+1

𝑒
−𝐴(𝑡−(𝑚𝑘−𝑙))

𝐽
𝑘
(𝑥 (𝑚𝑘 − 𝑙

−

)) , 𝑡 ∈ R
+

.

(13)

In particular, one has the following integral equations: for
𝑖 = 1, . . . , 𝑛, 𝑡 ∈ R+,

𝑥
𝑖
(𝑡) = 𝑒

−𝑎
𝑖
(𝑡−𝜏)

𝑥
𝑖
(𝜏)

+ ∫

𝑡

𝜏

𝑒
−𝑎
𝑖
(𝑡−𝑠)

[

[

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗
(𝑥
𝑗
(𝑠))

+

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
𝑔
𝑗
(𝑥
𝑗
(𝑚[

𝑠 + 𝑙

𝑚

])) + 𝑑
𝑖

]

]

𝑑𝑠

+

𝑖(𝑡)

∑

𝑘=𝑖(𝜏)+1

𝑒
−𝑎(𝑡−(𝑚𝑘−𝑙))

𝐽
𝑖𝑘
(𝑥
𝑖
(𝑚𝑘 − 1

−

)) .

(14)

The proof of Proposition 2 is almost identical to the
verification in [7] with slight changes which are caused by the
piecewise constant argument.

In the next, we give the following lemma about IDEPCA
integral inequality of Gronwall type, which is one of the most
important auxiliary results of the present paper.

Lemma 3. Let 𝑢 : R → [0,∞) be a function such that 𝑢 is
continuous with possible points of discontinuity of the first kind
at 𝑡 = 𝑚𝑘− 𝑙, 𝑘 ∈ N, and 𝜂

1
, 𝜂
2
are nonnegative real constants

satisfying

𝜐 := (𝜂
1
+ 𝜂
2
) 𝑙 < 1. (15)

Suppose that for 𝑡 ≥ 𝜏 the inequality

𝑢 (𝑡) ≤ 𝑢 (𝜏) + ∫

𝑡

𝜏

(𝜂
1
𝑢 (𝑠) + 𝜂

2
𝑢(𝑚[

𝑠 + 𝑙

𝑚

]))𝑑𝑠

+

𝑖(𝑡)

∑

𝑘=𝑖(𝜏)+1

𝛽
𝑘
𝑢 (𝑚𝑘 − 𝑙

−

)

(16)

holds. Then for 𝑡 ≥ 𝜏,

𝑢 (𝑡) ≤ 𝑢 (𝜏)

𝑖(𝑡)

∏

𝑘=𝑖(𝜏)+1

(1 + 𝛽
𝑘
) exp {(𝜂

1
+

𝜂
2

1 − 𝜐

) (𝑡 − 𝜏)} ,

(17)

𝑢(𝑚[

𝑡 + 𝑙

𝑚

]) ≤

𝑢 (𝜏)

1 − 𝜐

𝑖(𝑡)

∏

𝑘=𝑖(𝜏)+1

(1 + 𝛽
𝑘
)

× exp {(𝜂
1
+

𝜂
2

1 − 𝜐

) (𝑡 − 𝜏)} ,

(18)

𝑢 (𝑚𝑖) ≤ (1 − 𝜐)
−1

𝑢 (𝑚𝑖 − 𝑙) , 𝑖 ∈ N. (19)

Proof. Call V(𝑡) the right member of (16). So V(𝜏) = 𝑢(𝜏),
𝑢 ≤ V, and V is a piecewise differentiable and nondecreasing
function and, by (16), it satisfies

V (𝑡) ≤ 𝜂
1
V (𝑡) + 𝜂

2
V(𝑚[

𝑡 + 𝑙

𝑚

]) ,

V (𝑚𝑘 − 𝑙) ≤ (1 + 𝛽
𝑘
) V (𝑚𝑘 − 𝑙−) ,

(20)
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𝑘 ∈ N and for any 𝑡 ≥ 𝑟 with 𝑡, 𝑟 ∈ 𝐼
𝑖

V (𝑡) − V (𝑟) ≤ ∫
𝑡

𝑟

(𝜂
1
V (𝑠) + 𝜂

2
V(𝑚[

𝑠 + 𝑙

𝑚

]))𝑑𝑠. (21)

With 𝑡 = 𝑚𝑖 and 𝑟 = 𝑚𝑖 − 𝑙 in (21) for 𝑡 ∈ 𝐼
𝑖
, since V is a

nondecreasing function, we get

V (𝑚𝑖) ≤ V (𝑚𝑖 − 𝑙) + ∫
𝑚𝑖

𝑚𝑖−𝑙

(𝜂
1
V (𝑠) + 𝜂

2
V (𝑚𝑖)) 𝑑𝑠

≤ V (𝑚𝑖 − 𝑙) + (𝜂
1
+ 𝜂
2
) 𝑙 ⋅ V (𝑚𝑖) .

(22)

Considering the particular case 𝜏 = 𝑡
𝑖
and taking V(𝑡

𝑖
) = 𝑢(𝑡

𝑖
)

and 𝑢 ≤ V, by (15) and (22), estimate (19) follows. Take now
in (21) 𝑡 ∈ 𝐼

𝑖
and 𝑟 = 𝑚𝑖 − 𝑙 to obtain

V (𝑡) ≤ V (𝑚𝑖 − 𝑙) + ∫
𝑡

𝑚𝑖−𝑙

(𝜂
1
V (𝑠) + 𝜂

2
V (𝑚𝑖)) 𝑑𝑠

≤ V (𝑚𝑖 − 𝑙) + ∫
𝑡

𝑚𝑖−𝑙

(𝜂
1
V (𝑠) +

𝜂
2

1 − 𝜐

V (𝑚𝑖 − 𝑙)) 𝑑𝑠

≤ V (𝑚𝑖 − 𝑙) + ∫
𝑡

𝑚𝑖−𝑙

(𝜂
1
+

𝜂
2

1 − 𝜐

) V (𝑠) 𝑑𝑠

(23)

because V is a nondecreasing function. Now, we can apply the
classical Gronwall’s Lemma to get

V (𝑡) ≤ V (𝑚𝑖 − 𝑙) exp {(𝜂
1
+

𝜂
2

1 − 𝜐

) (𝑡 − (𝑚𝑖 − 𝑙))}

for 𝑡 ∈ 𝐼
𝑖
.

(24)

By the impulsive effect (20), we have

V (𝑚 (𝑖 + 1) − 𝑙) ≤ (1 + 𝛽
𝑖+1
) V (𝑚𝑖 − 𝑙)

× exp {𝑚 ⋅ (𝜂
1
+

𝜂
2

1 − 𝜐

)} .

(25)

From (25), recursively we obtain

𝑢 (𝑡) ≤ V (𝑡) ≤ V (𝜏)
𝑖(𝑡)

∏

𝑘=𝑖(𝜏)+1

(1 + 𝛽
𝑘
)

× exp {(𝜂
1
+

𝜂
2

1 − 𝜐

) (𝑡 − 𝜏)} ,

(26)

using V(𝜏) = 𝑢(𝜏) and (19); then we give (17) and (18). The
proof is complete. This IDEPCA inequality of Gronwall type
seems to be new.

We need to have the global unique existence of solutions
𝑥(𝑡) = 𝑥(𝑡, 𝜏, 𝑥

0
) on R+ of the nonlinear IDEPCA system

(5a)-(5b).
One can easily see that IDEPCA system (5a)-(5b) has the

form of DEPCA system without impulsive effect within the
intervals [𝑚𝑖 − 𝑙, 𝑚(𝑖 + 1) − 𝑙), 𝑖 ∈ N; then using the same
technique of [34, 35, 37] we have the following results.

Proposition 4. Suppose that conditions (L) and (E) hold.
For any (𝜏, 𝑥

0
) ∈ R+ × R𝑛 there exists a unique solution

𝑥(𝑡) = 𝑥(𝑡, 𝜏, 𝑥
0
) of the IDEPCA system (5a)-(5b) on [𝑚𝑖(𝜏) −

𝑙, 𝑚(𝑖(𝜏) + 1) − 𝑙).

Theorem 5. Under conditions (L) and (E), for every (𝜏, 𝑥
0
) ∈

R+ ×R𝑛, there exists a unique solution 𝑥(𝑡) = 𝑥(𝑡, 𝜏, 𝑥
0
) of the

IDEPCA system (5a)-(5b) with 𝑥(𝜏) = 𝑥
0
for 𝑡 ∈ [𝜏,∞) in the

sense of Definition 1.

Proof. Fix 𝜏 ∈ R+; then 𝜏 ∈ 𝐼
𝑖(𝜏)

= [𝑚𝑖(𝜏) − 𝑙, 𝑚𝑖(𝜏) + 𝑚 − 𝑙).
Use Proposition 4 with 𝑥(𝜏) = 𝑥

0
to obtain the unique

solution 𝑥(𝑡) = 𝑥(𝑡, 𝜏, 𝑥
0
) on 𝐼

𝑖(𝜏)
. Then apply the impulse

condition to evaluate uniquely

𝑥 (𝑚𝑖 (𝜏) + 𝑚 − 𝑙, 𝜏, 𝑥
0
)

= 𝑥 (𝑚𝑖 (𝜏) + 𝑚 − 𝑙
−

, 𝜏, 𝑥
0
)

+ 𝐽
𝑖(𝜏)+1

(𝑥 (𝑚𝑖 (𝜏) + 𝑚 − 𝑙
−

, 𝜏, 𝑥
0
)) .

(27)

Next, on the interval 𝐼
𝑖(𝜏)+1

= [𝑚𝑖(𝜏) + 𝑚 − 𝑙,𝑚𝑖(𝜏) + 2𝑚 − 𝑙)

the solution satisfies the DEPCA:

𝑑𝑦
𝑖
(𝑡)

𝑑𝑡

= −𝑎
𝑖
𝑦
𝑖
(𝑡)

+

𝑛

∑

𝑗=1

{𝑏
𝑖𝑗
𝑓
𝑗
(𝑦
𝑗
(𝑡)) + 𝑐

𝑖𝑗
𝑔
𝑗
(𝑦
𝑗
(𝑚[

𝑡 + 𝑙

𝑚

]))}

+ 𝑑
𝑖
, 𝑖 = 1, 2, . . . , 𝑛.

(28)

The IDEPCA system has a unique solution 𝑦(𝑡, 𝑚𝑖(𝜏) + 𝑚 −

𝑙, 𝑥(𝑚𝑖(𝜏) + 𝑚 − 𝑙, 𝜏, 𝑥
0
)). By definition of the solution of

IDEPCA system (5a)-(5b), 𝑥(𝑡, 𝜏, 𝑥
0
) = 𝑦(𝑡, 𝑚𝑖(𝜏) + 𝑚 −

𝑙, 𝑥(𝑚𝑖(𝜏) + 𝑚 − 𝑙, 𝜏, 𝑥
0
)) on 𝐼

𝑖(𝜏)+1
= [𝑚𝑖(𝜏) + 𝑚 − 𝑙,𝑚𝑖(𝜏) +

2𝑚−𝑙).Themathematical induction completes the proof.

2.2. Existence and Uniqueness of Equilibrium. When impul-
sive cellular neural network models are used for the solution
of optimization problems, one of the fundamental issues in
the design of a network is concerned with the existence
of a unique globally exponentially stable equilibrium state
of network (5a)-(5b). Without requiring the boundedness,
differentiability, ormonotonicity, we establish easily verifiable
sufficient conditions for the existence of a unique equilibrium
state in this section.

Let us denote an equilibrium state of the impulsive
cellular neural network models (5a)-(5b) by the constant
vector 𝑥∗ = (𝑥

∗

1
, 𝑥
∗

2
. . . , 𝑥
∗

𝑛
)
𝑇

∈ R𝑛, where each 𝑥
∗

𝑖
is

governed by the algebraic system

0 = − 𝑎
𝑖
𝑥
∗

𝑖
+

𝑛

∑

𝑗=1

{𝑏
𝑖𝑗
𝑓
𝑗
(𝑥
∗

𝑗
) + 𝑐
𝑖𝑗
𝑔
𝑗
(𝑥
∗

𝑗
)}

+ 𝑑
𝑖
, 𝑖 = 1, . . . , 𝑛.

(29)

Here, it is assumed that the impulse functions 𝐽
𝑖𝑘
(⋅) satisfy

𝐽
𝑖𝑘
(𝑥
∗

𝑖
) = 0 for all 𝑖 = 1, . . . , 𝑛, 𝑘 ∈ N.

In the following theorem, we obtain sufficient condi-
tions for the existence of a unique equilibrium, 𝑥∗ =

(𝑥
∗

1
, 𝑥
∗

2
. . . , 𝑥
∗

𝑛
)
𝑇

∈ R𝑛, of the impulsive cellular neural
network models (5a)-(5b).
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Theorem 6. Suppose that conditions (L) and (E) hold and the
neural parameters 𝑎

𝑖
, 𝑏
𝑖𝑗
, and 𝑐

𝑖𝑗
and Lipschitz constantsL𝑓

𝑖
,

L
𝑔

𝑖
satisfy

𝑎
𝑖
> L
𝑓

𝑖

𝑛

∑

𝑗=1






𝑏
𝑖𝑗






+L
𝑔

𝑖

𝑛

∑

𝑗=1






𝑐
𝑖𝑗






, 𝑖, 𝑗 = 1, . . . , 𝑛. (30)

Then there exists a unique equilibrium state 𝑥∗ of the ICNNs
with IDEPCA system (5a)-(5b).

Proof. Let us consider a mapping 𝐺(𝑢) = (𝐺
1
(𝑢), 𝐺

2
(𝑢), . . .,

𝐺
𝑛
(𝑢))
𝑇

∈ R𝑛, where 𝑢 = (𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑛
)
𝑇

∈ R𝑛 and

𝐺
𝑖
(𝑢) =

1

𝑎
𝑖

[

[

𝑛

∑

𝑗=1

{𝑏
𝑖𝑗
𝑓
𝑗
(𝑢
𝑗
) + 𝑐
𝑖𝑗
𝑔
𝑗
(𝑢
𝑗
)} + 𝑑

𝑖

]

]

,

𝑖 = 1, . . . , 𝑛.

(31)

By applying the hypotheses,

max
1≤𝑖≤𝑛





𝐺
𝑖
(𝑢) − 𝐺

𝑖
(V)


= max
1≤𝑖≤𝑛














1

𝑎
𝑖

[

[

𝑛

∑

𝑗=1

{𝑏
𝑖𝑗
𝑓
𝑗
(𝑢
𝑗
) + 𝑐
𝑖𝑗
𝑔
𝑗
(𝑢
𝑗
)} + 𝑑

𝑖

]

]

−

1

𝑎
𝑖

[

[

𝑛

∑

𝑗=1

{𝑏
𝑖𝑗
𝑓
𝑗
(V
𝑗
) + 𝑐
𝑖𝑗
𝑔
𝑗
(V
𝑗
)} + 𝑑

𝑖

]

]














≤ max
1≤𝑖≤𝑛

{

{

{

1

𝑎
𝑖

𝑛

∑

𝑗=1

{






𝑏
𝑖𝑗












𝑓
𝑗
(𝑢
𝑗
) − 𝑓
𝑗
(V
𝑗
)






}

+

1

𝑎
𝑖

𝑛

∑

𝑗=1

{






𝑐
𝑖𝑗












𝑔
𝑗
(𝑢
𝑗
) − 𝑔
𝑗
(V
𝑗
)






}

}

}

}

≤ max
1≤𝑖≤𝑛

{

{

{

1

𝑎
𝑖

𝑛

∑

𝑗=1

{L
𝑓

𝑗






𝑏
𝑖𝑗












𝑢
𝑗
− V
𝑗






}

+

1

𝑎
𝑖

𝑛

∑

𝑗=1

{L
𝑔

𝑗






𝑐
𝑖𝑗












𝑢
𝑗
− V
𝑗






}

}

}

}

≤ max
1≤𝑖≤𝑛

{

{

{

1

𝑎
𝑖

𝑛

∑

𝑗=1

{L
𝑓

𝑗






𝑏
𝑖𝑗






+L
𝑔

𝑗






𝑐
𝑖𝑗






}

}

}

}

⋅ max
1≤𝑗≤𝑛






𝑢
𝑗
− V
𝑗






,

(32)

where the number

𝜌 =

1

𝑎
𝑖

𝑛

∑

𝑗=1

{L
𝑓

𝑗






𝑏
𝑖𝑗






+L
𝑔

𝑗






𝑐
𝑖𝑗






} (33)

satisfies 0 < 𝜌 < 1 by virtue of condition (30). Thus,

max
1≤𝑖≤𝑛





𝐺
𝑖
(𝑢) − 𝐺

𝑖
(V)

≤ 𝜌max
1≤𝑗≤𝑛






𝑢
𝑗
− V
𝑗





 (34)

for any two vectors 𝑢, V ∈ R𝑛 implying that the mapping
𝐺 : R𝑛 → R𝑛 is a global contraction on R𝑛 endowed with
the supremum norm. Hence, there is a unique fixed point
𝑥
∗

∈ R𝑛 that satisfies 𝐺(𝑥∗) = 𝑥
∗ (i.e., 𝐺

𝑖
(𝑥
∗

) = 𝑥
∗

𝑖
for

𝑖 = 1, . . . , 𝑛). This point defines the unique equilibrium state
of the impulsive cellular neural network models (5a)-(5b).
The proof is now complete.

3. Global Exponential Stability of Equilibrium

The existence and stability of a unique equilibrium state
are usually a requirement in the design of cellular neural
network models for various applications, particularly when
there are destabilizing agents such as retarded arguments
and impulses. However, even if the unique stable state exists,
these agentsmay affect the convergence speed of the network,
which in turn can downgrade the performance of the network
in applications that demand fast computation in real-time
mode. Thus, exponential stability is usually desirable for an
impulsive network, and sufficient conditions for the global
exponential stability of the unique equilibrium state 𝑥∗ of the
ICNNs with IDEPCA system (5a)-(5b) are obtained in this
section.

For analytical convenience, the ICNNs with IDEPCA
system (5a)-(5b) can be simplified as follows. Let

𝑧
𝑖
(𝑡) = 𝑥

𝑖
(𝑡) − 𝑥

∗

𝑖
,

̂
𝑓 (𝑧
𝑖
(𝑡)) = 𝑓 (𝑥

𝑖
(𝑡) + 𝑥

∗

𝑖
) − 𝑓 (𝑥

∗

𝑖
) ,

𝑔 (𝑧
𝑖
(𝑚[

𝑡 + 𝑙

𝑚

])) = 𝑔(𝑥
𝑖
(𝑚[

𝑡 + 𝑙

𝑚

]) + 𝑥
∗

𝑖
) − 𝑔 (𝑥

∗

𝑖
) ,

𝐽
𝑖𝑘
(𝑧
𝑖
(𝑚𝑘 − 𝑙

−

)) = 𝐽
𝑖𝑘
(𝑥
𝑖
(𝑚𝑘 − 𝑙

−

) + 𝑥
∗

𝑖
) ,

(35)

so that the ICNNs with IDEPCA system (5a)-(5b) can be
written as

𝑑𝑧 (𝑡)

𝑑𝑡

= −𝐴𝑧 (𝑡) + 𝐵
̂
𝑓 (𝑧 (𝑡))

+ 𝐶𝑔(𝑧(𝑚[

𝑡 + 𝑙

𝑚

])) , 𝑡 ̸=𝑚𝑘 − 𝑙,

Δ𝑥|
𝑡=𝑚𝑘−𝑙

= 𝐽
𝑘
(𝑧 (𝑚𝑘 − 𝑙

−

)) , 𝑘 ∈ N,

(36)

where ̂
𝑓(𝑧(𝑡)) = [

̂
𝑓
1
(𝑧
1
(𝑡)), . . . ,

̂
𝑓
𝑛
(𝑧
𝑛
(𝑡))]
𝑇, 𝑔(𝑧(𝑚[(𝑡 +

𝑙)/𝑚]))= [𝑔
1
(𝑧
1
(𝑚[(𝑡 + 𝑙)/𝑚])), . . ., 𝑔

𝑛
(𝑧
𝑛
(𝑚[(𝑡 + 𝑙)/𝑚]))]

𝑇

and 𝐽
𝑘
(𝑧(𝑚𝑘 − 𝑙

−

)) = [𝐽
1𝑘
(𝑥
1
(𝑚𝑘 − 𝑙

−

) + 𝑥
∗

1
), . . . , 𝐽

𝑛𝑘
(𝑥
𝑛
(𝑚𝑘 −

𝑙
−

) + 𝑥
∗

𝑛
)]
𝑇.

The activation functions ̂𝑓
𝑖
(⋅), inheriting the properties of

𝑓
𝑖
(⋅), satisfy

̂
𝑓
𝑖
(0) = 0,







̂
𝑓
𝑖
(𝑢) −

̂
𝑓
𝑖
(V)





≤ L
𝑓

𝑖
|𝑢 − V| , (37)

the functions 𝑔
𝑖
(⋅) inherit the properties of 𝑔

𝑖
(⋅), namely,

𝑔
𝑖
(0) = 0,





𝑔
𝑖
(𝑢) − 𝑔

𝑖
(V)

≤ L
𝑔

𝑖
|𝑢 − V| , (38)
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and the impulsive operator 𝐽
𝑖𝑘
satisfies

𝐽
𝑖𝑘
(0) = 0,






𝐽
𝑖𝑘
(𝑢) − 𝐽

𝑖𝑘
(V)





≤ L
𝐽

𝑘





𝑢
𝑖
− V
𝑖





, (39)

for all 𝑢, V ∈ R+, 𝑖 = 1, . . . , 𝑛, 𝑘 ∈ N.
It is clear that the stability of the zero solution of (36)

is equivalent to that of the equilibrium 𝑥
∗ of the ICNNs

with IDEPCA system (4a)-(4b). Therefore, we restrict our
discussion to the stability of the zero solution of (36).

First of all, we give the following definition and lemma,
which will be used in the proof of the stability of the zero
solution for the ICNNs with IDEPCA system.

Definition 7. The equilibrium 𝑥
∗ of the ICNNs with IDEPCA

system (5a)-(5b) is said to be globally exponentially stable if
there exist positive constants 𝛼 and 𝜆 such that the estimation





𝑥 (𝑡) − 𝑥

∗



≤ 𝛼





𝑥 (𝜏) − 𝑥

∗



𝑒
−𝜆(𝑡−𝜏) (40)

is valid for all 𝑡 ≥ 𝜏.

Lemma 8. If (L) and (E) are satisfied, then the solutions 𝜑 and
𝜓 of the IDEPCA system (5a)-(5b) satisfy for all 𝑡 ≥ 𝜏 the
inequality





𝜑 (𝑡) − 𝜓 (𝑡)





≤




𝜑 (𝜏) − 𝜓 (𝜏)





exp (−𝜆

𝑖(𝑡)
⋅ (𝑡 − 𝜏)) , (41)

where 𝜆
𝑖(𝑡)

= 𝑎
∗
− 𝛽
∗

− L
𝑖(𝑡)
, 𝑎
∗
= min

𝑖∈[1,...,𝑛]
𝑎
𝑖
, L
𝑖(𝑡)

=

max
𝑖(𝜏)+1≤𝑘≤𝑖(𝑡)

(ln(1 +L𝐽
𝑘
)/𝑚),

𝛽
∗

= max
𝑖∈[1,...,𝑛]

𝛽
𝑖

= max
𝑖∈[1,...,𝑛]

𝑛

∑

𝑗=1

(L
𝑓

𝑗






𝑏
𝑖𝑗






+L
𝑔

𝑗






𝑐
𝑖𝑗






(1 − Ṽ)−1

× exp (𝑎
∗
⋅ (𝑚 − 𝑙))) ,

Ṽ = max
𝑖∈[1,...,𝑛]

(

𝑛

∑

𝑗=1

L
𝑓

𝑗






𝑏
𝑖𝑗






+L
𝑔

𝑗






𝑐
𝑖𝑗






exp (𝑎

∗
⋅ (𝑚 − 𝑙)))

⋅ 𝑙 < 1.

(42)

Proof. Suppose that 𝜑(𝑡) = (𝜑
1
, . . . , 𝜑

𝑛
)
𝑇 and 𝜓(𝑡) =

(𝜓
1
, . . . , 𝜓

𝑛
)
𝑇 are arbitrary solutions of the IDEPCA system

(5a)-(5b). Let 𝑦(𝑡) = 𝜑(𝑡)−𝜓(𝑡) and by (5a) and (5b) it follows
that 𝑦(⋅) satisfies

̇𝑦(𝑡) = −𝐴𝑦 (𝑡) + 𝐵 (𝑓 (𝑦 (𝑡) + 𝜓 (𝑡)) − 𝑓 (𝜓 (𝑡)))

+ 𝐶{𝑔(𝑦(𝑚[

𝑡 + 𝑙

𝑚

]) + 𝜓(𝑚[

𝑡 + 𝑙

𝑚

]))

−𝑔(𝜓(𝑚[

𝑡 + 𝑙

𝑚

]))} ,

Δ𝑦



𝑡=𝑚𝑘−𝑙

= 𝐽
𝑘
(𝑦 (𝑚𝑘 − 𝑙

−

) + 𝜓 (𝑚𝑘 − 𝑙
−

))

− 𝐽
𝑘
(𝜓 (𝑚𝑘 − 𝑙

−

)) , 𝑘 ∈ N.

(43)

By the variation of parameters formula, it can be proved that

𝑦 (𝑡) = 𝑒
−𝐴(𝑡−𝜏)

𝑦 (𝜏) + ∫

𝑡

𝜏

𝑒
−𝐴(𝑡−𝑠)

R (𝑠, 𝑦 (𝑠)) 𝑑𝑠

+

𝑖(𝑡)

∑

𝑘=𝑖(𝜏)+1

𝑒
−𝐴(𝑡−(𝑚𝑘−𝑙))

J
𝑘
(𝑦 (𝑚𝑘 − 𝑙

−

)) ,

(44)

where

R (𝑠, 𝑦 (𝑠)) := 𝐵

⋅ {𝑓 (𝑦 (𝑠) + 𝜓 (𝑠)) − 𝑓 (𝜓 (𝑠))}

+ 𝐶 ⋅ {𝑔(𝑦(𝑚[

𝑠 + 𝑙

𝑚

])

+𝜓(𝑚[

𝑠 + 𝑙

𝑚

]))

−𝑔(𝜓(𝑚[

𝑠 + 𝑙

𝑚

]))} ,

J
𝑘
(𝑦 (𝑚𝑘 − 𝑙

−

)) := 𝐽
𝑘
(𝑦 (𝑚𝑘 − 𝑙

−

) + 𝜓 (𝑚𝑘 − 𝑙
−

))

− 𝐽
𝑘
(𝜓 (𝑚𝑘 − 𝑙

−

)) .

(45)

Notice that (L) implies that





R
𝑖
(𝑠, 𝑦 (𝑠))





≤ (

𝑛

∑

𝑗=1

L
𝑓

𝑗






𝑏
𝑖𝑗











𝑦𝑖 (𝑠)






+

𝑛

∑

𝑗=1

L
𝑔

𝑗






𝑐
𝑖𝑗
















𝑦𝑖 (𝑚[

𝑠 + 𝑙

𝑚

])










) ,





R
𝑖
(𝑠, 𝑦 (𝑠))





≤ max
𝑖∈[1,...,𝑛]

(

𝑛

∑

𝑗=1

L
𝑓

𝑗






𝑏
𝑖𝑗











𝑦 (𝑠)






+

𝑛

∑

𝑗=1

L
𝑔

𝑗






𝑐
𝑖𝑗
















𝑦 (𝑚[

𝑠 + 𝑙

𝑚

])










) ,





J
𝑘
(𝑦 (𝑚𝑘 − 𝑙

−

))




≤ L
𝐽

𝑘





𝑦 (𝑚𝑘 − 𝑙

−

)




.

(46)

By (44), we can deduce that V
𝑖
(𝑡) = exp(𝑎

∗
⋅ (𝑡 − 𝜏))|𝑦

𝑖
(𝑡)|

satisfies





V
𝑖
(𝑡)




≤




𝜑
𝑖
(𝜏) − 𝜓

𝑖
(𝜏)





+ ∫

𝑡

𝜏

[

[

𝑛

∑

𝑗=1

L
𝑓

𝑗






𝑏
𝑖𝑗












V
𝑗
(𝑠)







+

𝑛

∑

𝑗=1

L
𝑔

𝑗






𝑐
𝑖𝑗
















V
𝑗
(𝑚[

𝑠 + 𝑙

𝑚

])
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× exp(𝑎
∗
⋅ (𝑠 − 𝑚[

𝑠 + 𝑙

𝑚

]))
]

]

𝑑𝑠

+

𝑖(𝑡)

∑

𝑘=𝑖(𝜏)+1

L
𝐽

𝑘





V
𝑖
(𝑚𝑘 − 𝑙

−

)




,

(47)

or

|V (𝑡)| ≤ 

𝜑 (𝜏) − 𝜓 (𝜏)






+ max
𝑖∈[1,...,𝑛]

∫

𝑡

𝜏

[

[

𝑛

∑

𝑗=1

L
𝑓

𝑗






𝑏
𝑖𝑗






|V (𝑠)|

+

𝑛

∑

𝑗=1

L
𝑔

𝑗






𝑐
𝑖𝑗
















V(𝑚[

𝑠 + 𝑙

𝑚

])










× exp(𝑎
∗
⋅ (𝑠 − 𝑚[

𝑠 + 𝑙

𝑚

]))
]

]

𝑑𝑠

+

𝑖(𝑡)

∑

𝑘=𝑖(𝜏)+1

L
𝐽

𝑘





V (𝑚𝑘 − 𝑙−)



≤




𝜑 (𝜏) − 𝜓 (𝜏)





+ max
𝑖∈[1,...,𝑛]

× ∫

𝑡

𝜏

[

[

𝑛

∑

𝑗=1

L
𝑓

𝑗






𝑏
𝑖𝑗






|V (𝑠)| +

𝑛

∑

𝑗=1

L
𝑔

𝑗






𝑐
𝑖𝑗







× exp (𝑎
∗
⋅ (𝑚 − 𝑙))










V(𝑚[

𝑠 + 𝑙

𝑚

])










]

]

𝑑𝑠

+

𝑖(𝑡)

∑

𝑘=𝑖(𝜏)+1

L
𝐽

𝑘





V (𝑚𝑘 − 𝑙−)


,

(48)

for any finite 𝑡 ∈ [𝜏,∞).
Hence, by Lemma 3 of IDEPCA Gronwall’s inequality

implies

|V (𝑡)| ≤ 

𝜑 (𝜏) − 𝜓 (𝜏)






𝑖(𝑡)

∏

𝑘=𝑖(𝜏)+1

(1 +L
𝐽

𝑘
)

× exp( max
𝑖∈[1,...,𝑛]

{

{

{

𝑛

∑

𝑗=1

L
𝑓

𝑗






𝑏
𝑖𝑗






+

1

1 − Ṽ

𝑛

∑

𝑗=1

L
𝑔

𝑗






𝑐
𝑖𝑗







× exp (𝑎
∗
⋅ (𝑚 − 𝑙))

}

}

}

(𝑡 − 𝜏)) .

(49)

Then, we have





𝜑 (𝑡) − 𝜓 (𝑡)





≤




𝜑 (𝜏) − 𝜓 (𝜏)






𝑖(𝑡)

∏

𝑘=𝑖(𝜏)+1

(1 +L
𝐽

𝑘
)

× exp{−(𝑎
∗
− max
𝑖∈[1,...,𝑛]

𝛽
𝑖
) (𝑡 − 𝜏)} ,

(50)

or




𝜑 (𝑡) − 𝜓 (𝑡)






≤




𝜑 (𝜏) − 𝜓 (𝜏)






× exp{ − (𝑎
∗
− max
𝑖∈[1,...,𝑛]

𝛽
𝑖

− max
𝑖(𝜏)+1≤𝑘≤𝑖(𝑡)

ln (1 +L𝐽
𝑘
)

𝑚

) (𝑡 − 𝜏)} ,

(51)

and the statement (41) follows.

The following result will show sufficient conditions for the
global exponential stability of the unique equilibrium of the
ICNNs with IDEPCA system (5a)-(5b).

Theorem 9. If the assumptions of Theorem 6, (42) and

𝑎
∗
− 𝛽
∗

−L
𝑖(𝑡)

> 0, 𝑡 ∈ R
+

, (52)

are satisfied, then the unique equilibrium 𝑥
∗ of the ICNNs with

IDEPCA system (5a)-(5b) is globally exponentially stable.

Proof. By Theorem 6, we know that the IDEPCA system
(5a)-(5b) has a unique equilibrium 𝑥

∗. Let 𝑥(𝑡, 𝑥
0
) be an

arbitrary solution of (5a)-(5b) with initial condition 𝑥
0
and

define 𝑧(𝑡) = 𝑥(𝑡, 𝑥
0
) − 𝑥
∗. By Lemma 8 and (42), we obtain

|𝑧 (𝑡)| ≤ |𝑧 (𝜏)| exp (−𝜆
𝑖(𝑡)

⋅ (𝑡 − 𝜏)) , (53)

where 𝜆
𝑖(𝑡)

= 𝑎
∗
− 𝛽
∗

− L
𝑖(𝑡)
. So, using (52), we see that

|𝑧(𝑡)| → 0 as 𝑡 → ∞. That is, the zero solution of
ICNNs with IDEPCA system (36) is globally exponentially
stable. Therefore, the unique equilibrium 𝑥

∗ of the ICNNs
with IDEPCA system (5a)-(5b) is globally exponentially
stable.

Remark 10. To the best of the author’s knowledge, this
is the first time we investigate impulsive cellular neural
network models with piecewise alternately advanced and
retarded argument in equilibrium case. Sufficient conditions
are gained for the existence and exponential stability of a
unique equilibrium of the ICNNs with IDEPCA system. And
our results can be extended to a unique equilibrium of the
CNNswithDEPCA system. See Corollaries 11–12. Our results
about exponential stability of a unique equilibrium of the
ICNNs with IDEPCA system may give some insight into the
application of neural networks.

As immediate corollaries of Lemma 8 andTheorem 9, the
following results without impulsive effects are true.
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Corollary 11. If (L) and (E) are satisfied, then the solutions
𝜑 and 𝜓 of the DEPCA system (5a) satisfy for all 𝑡 ≥ 𝜏 the
inequality





𝜑 (𝑡) − 𝜓 (𝑡)





≤




𝜑 (𝜏) − 𝜓 (𝜏)





exp (−𝜆 ⋅ (𝑡 − 𝜏)) , (54)

where 𝜆 = 𝑎
∗
− 𝛽
∗

, 𝑎
∗
= min

𝑖∈[1,...,𝑛]
𝑎
𝑖
,

𝛽
∗

= max
𝑖∈[1,...,𝑛]

𝛽
𝑖
= max
𝑖∈[1,...,𝑛]

𝑛

∑

𝑗=1

(L
𝑓

𝑗






𝑏
𝑖𝑗






+L
𝑔

𝑗






𝑐
𝑖𝑗






(1 − Ṽ)−1

× exp (𝑎
∗
⋅ (𝑚 − 𝑙)) ) ,

Ṽ = max
𝑖∈[1,...,𝑛]

(

𝑛

∑

𝑗=1

L
𝑓

𝑗






𝑏
𝑖𝑗







+L
𝑔

𝑗






𝑐
𝑖𝑗






exp (𝑎

∗
⋅ (𝑚 − 𝑙))) ⋅ 𝑙 < 1.

(55)

Corollary 12. If the assumptions of Corollary 11 and

𝑎
∗
− 𝛽
∗

> 0 (56)

are satisfied, then the unique equilibrium 𝑥
∗ of the CNNs with

DEPCA system (5a) is globally exponentially stable.

Remark 13. In [41], authors investigated discrete-time cellular
neural network without impulsive effects in almost periodic
case. Simple sufficient conditions are gained for a unique
almost periodic sequence solution which is globally attrac-
tive. When 𝑚 = 1, 𝑙 = 0, this conclusion of Corollary 12
cannot be derived by applying the corresponding stability
result for cellular neural networks given in the literature [41]
with 𝑎

𝑖
, 𝑏
𝑖𝑗
, 𝑐
𝑖𝑗
, and 𝑑

𝑖
being constant coefficients.

4. Examples and Simulations

In this section, we give two examples with numerical simu-
lations to illustrate the effectiveness of the proposed method
and results.

Example 1. Consider the following impulsive cellular neural
networks with piecewise alternately advanced and retarded
argument:

𝑑𝑥 (𝑡)

𝑑𝑡

= −(

1.2 0

0 0.9
)(

𝑥
1
(𝑡)

𝑥
2
(𝑡)
)

+ (

0.15 0.25

0.25 0.15
)(

tanh(𝑥1 (𝑡)
2

)

tanh(𝑥2 (𝑡)
8

)

)

+ (

0.15 0.25

0.25 0.15
)(

tanh(𝑥1 (3 [(𝑡 + 1) /3])
8

)

tanh(𝑥2 (3 [(𝑡 + 1) /3])
2

)

)

+ (

0.2

0.1
) ,

Δ𝑥|
𝑡=3𝑘−1

= (

𝐽
1𝑘
(𝑥
1
(3𝑘 − 1

−

))

𝐽
2𝑘
(𝑥
2
(3𝑘 − 1

−

))
)

= (

𝑥
1
(3𝑘 − 1

−

) − 𝑥
∗

1

2

𝑥
2
(3𝑘 − 1

−

) − 𝑥
∗

2

3

), 𝑘 ∈ N,

(57)

where 𝑥∗
1
= 1.943, 𝑥∗

2
= 1.57. One can check that the point

𝑥
∗

= (𝑥
∗

1
, 𝑥
∗

2
)
𝑇 satisfies the algebraic system

−𝑎
𝑖
𝑥
∗

𝑖
+

2

∑

𝑗=1

{𝑏
𝑖𝑗
𝑓
𝑗
(𝑥
∗

𝑗
) + 𝑐
𝑖𝑗
𝑔
𝑗
(𝑥
∗

𝑗
)} + 𝑑

𝑖
= 0, 𝑖 = 1, 2,

(58)

approximately. And it is clear that 𝐽
𝑖𝑘
(𝑥
∗

𝑖
) = 0 for 𝑖 = 1, 2. By

simple calculation, we can see that 𝑎
∗
= 0.9, L𝑓

1
= L
𝑔

2
=

L𝐽
1
= 1/2, L𝑓

2
= L
𝑔

1
= 1/8, L𝐽

2
= 1/3, and sup

𝑡∈R+ L𝑖(𝑡) =

ln(1 +L𝐽
1
)/3 ≈ 0.1351. Then

1 − 𝑒
−𝑙⋅𝑎
∗

𝑎
∗

(

𝑛

∑

𝑗=1

[L
𝑓

𝑗






𝑏
1𝑗






+L
𝑔

𝑗






𝑐
1𝑗






]) ≈ 0.1813 < 1,

1 − 𝑒
−𝑙⋅𝑎
∗

𝑎
∗

(

𝑛

∑

𝑗=1

[L
𝑓

𝑗






𝑏
2𝑗






+L
𝑔

𝑗






𝑐
2𝑗






]) ≈ 0.1648 < 1,

𝑎
1
= 1.2 > 0.275 = L

𝑓

1

2

∑

𝑗=1






𝑏
1𝑗






+L
𝑔

1

2

∑

𝑗=1






𝑐
1𝑗






,

𝑎
2
= 0.9 > 0.25 = L

𝑓

2

2

∑

𝑗=1






𝑏
2𝑗






+L
𝑔

2

2

∑

𝑗=1






𝑐
2𝑗






.

(59)

ByTheorem 6, we know that the ICNNswith IDEPCA system
(57) have a unique equilibrium state 𝑥∗, approximately with
the error, which is less than 10−11 (evaluated by MATLAB).

Moreover, we have

Ṽ = max
𝑖∈[1,...,𝑛]

(

𝑛

∑

𝑗=1

L
𝑓

𝑗






𝑏
𝑖𝑗






+L
𝑔

𝑗






𝑐
𝑖𝑗






exp (𝑎

∗
⋅ (𝑚 − 𝑙)))

⋅ 𝑙 ≈ 0.7522 < 1,

𝑛

∑

𝑗=1

(L
𝑓

𝑗






𝑏
1𝑗






+L
𝑔

𝑗






𝑐
1𝑗






(1 − Ṽ)−1 exp (𝑎

∗
⋅ (𝑚 − 𝑙)))
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Figure 1: (a) The simulation, where the initial value is chosen as (1, 3)𝑇, illustrates that all trajectories uniformly converge to the unique
equilibrium 𝑥

∗

= (1.943, 1.57)
𝑇 for the ICNNs (57) with impulsive effects. (b) The simulation, where the initial value is chosen as (1, 3)𝑇,

illustrates that all trajectories uniformly converge to the unique equilibrium 𝑥
∗

= (1.943, 1.57)
𝑇 for the ICNNs (57) without impulsive effects.

≈ 0.7607 < 0.7648 ≈ 𝑎
∗
− sup
𝑡∈R+

L
𝑖(𝑡)
,

𝑛

∑

𝑗=1

(L
𝑓

𝑗






𝑏
2𝑗






+L
𝑔

𝑗






𝑐
2𝑗






(1 − Ṽ)−1 exp (𝑎

∗
⋅ (𝑚 − 𝑙)))

≈ 0.58302 < 0.7648 ≈ 𝑎
∗
− sup
𝑡∈R+

L
𝑖(𝑡)
.

(60)

Thus, according to Theorem 9, the ICNNs with IDEPCA
system (57) have a unique globally exponentially stable
equilibrium.The numerical simulations, showing the conver-
gence of the unique equilibrium 𝑥

∗ of the ICNNs with and
without impulses (57), are given in Figures 1(a) and 1(b).

Example 2. Consider the following impulsive cellular neural
networks model with piecewise constant argument:

𝑑𝑥 (𝑡)

𝑑𝑡

= −(

1.3 0

0 0.8
)(

𝑥
1
(𝑡)

𝑥
2
(𝑡)
) + (

0.1 0.25

0.25 0.35
)

×(

tanh(𝑥1 (𝑡)
3

)

tanh(𝑥2 (𝑡)
4

)

) + (

0.16 0.26

0.25 0.15
)

×(









𝑥
1
(4 [

𝑡 + 1

4

]) + 1









−









𝑥
1
(4 [

𝑡 + 1

4

]) − 1
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𝑥
2
(4 [

𝑡 + 1

4

]) + 1









−









𝑥
2
(4 [

𝑡 + 1

4

]) − 1









8

)

+ (

3

4
) ,

Δ𝑥|
𝑡=4𝑘−1

= (

𝐽
1𝑘
(𝑥
1
(4𝑘 − 1

−

))

𝐽
2𝑘
(𝑥
2
(4𝑘 − 1

−

))
)

= (

𝑥
1
(4𝑘 − 1

−

) − 𝑥
∗

1

4

𝑥
2
(4𝑘 − 1

−

) − 𝑥
∗

2

10

) , 𝑘 ∈ N,

(61)

where 𝑥∗
1
= 2.608, 𝑥∗

2
= 5.719. One can check that the

point 𝑥∗ = (𝑥
∗

1
, 𝑥
∗

2
)
𝑇 satisfies the algebraic system (29)

approximately and it is clear that 𝐽
𝑖𝑘
(𝑥
∗

𝑖
) = 0 for 𝑖 = 1, 2.

The output functions are 𝑓
1
(𝑥
1
) = tanh(𝑥

1
/3), 𝑓

2
(𝑥
2
) =

tanh(𝑥
2
/4), 𝑔

1
(𝑥
1
) = (|𝑥

1
+ 1| − |𝑥

1
− 1|)/10, and 𝑔

2
(𝑥
2
) =

(|𝑥
2
+ 1| − |𝑥

2
− 1|)/8.

We can easily obtain that 𝑎
∗
= 0.8, L𝑓

1
= 1/3, L𝑓

2
=

L
𝑔

2
= L𝐽
1
= 0.25, L𝑔

1
= 0.2, L𝐽

2
= 0.1, and sup

𝑡∈R+ L𝑖(𝑡) =

ln(1 +L𝐽
1
)/4 ≈ 0.0557.

Then we give

1 − 𝑒
−𝑙⋅𝑎
∗

𝑎
∗

(

𝑛

∑

𝑗=1

[L
𝑓

𝑗






𝑏
1𝑗






+L
𝑔

𝑗






𝑐
1𝑗






]) ≈ 0.1904 < 1,

1 − 𝑒
−𝑙⋅𝑎
∗

𝑎
∗

(

𝑛

∑

𝑗=1

[L
𝑓

𝑗






𝑏
2𝑗






+L
𝑔

𝑗






𝑐
2𝑗






]) ≈ 0.1996 < 1,

𝑎
1
= 1.3 > 0.2766 ≈ L

𝑓

1

2

∑

𝑗=1






𝑏
1𝑗






+L
𝑔

1

2

∑

𝑗=1






𝑐
1𝑗






,

𝑎
2
= 0.8 > 0.29 = L

𝑓

2

2

∑

𝑗=1






𝑏
2𝑗






+L
𝑔

2

2

∑

𝑗=1






𝑐
2𝑗






.

(62)

ByTheorem 6, we know that the ICNNswith IDEPCA system
(61) have a unique equilibrium.
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Figure 2: (a) The simulation, where the initial value is chosen as (3, 3)𝑇, illustrates that all trajectories uniformly converge to the unique
equilibrium 𝑥

∗

= (2.608, 5.719)
𝑇 for the ICNNs (61) with impulsive effects. (b) The simulation, where the initial value is chosen as (3, 3)𝑇,

illustrates that all trajectories uniformly converge to the unique equilibrium 𝑥
∗

= (2.608, 5.719)
𝑇 for the ICNNs (61) without impulsive effects.

In addition, we have

Ṽ = max
𝑖∈[1,...,𝑛]

(

𝑛

∑

𝑗=1

L
𝑓

𝑗






𝑏
𝑖𝑗






+L
𝑔

𝑗






𝑐
𝑖𝑗






exp (𝑎

∗
⋅ (𝑚 − 𝑙)))

⋅ 𝑙 ≈ 0.4615 < 1,

𝑛

∑

𝑗=1

(L
𝑓

𝑗






𝑏
1𝑗






+L
𝑔

𝑗






𝑐
1𝑗






(1 − Ṽ)−1 exp (𝑎

∗
⋅ (𝑚 − 𝑙)))

≈ 0.5826 < 0.7442 ≈ 𝑎
∗
− sup
𝑡∈R+

L
𝑖(𝑡)
,

𝑛

∑

𝑗=1

(L
𝑓

𝑗






𝑏
2𝑗






+L
𝑔

𝑗






𝑐
2𝑗






(1 − Ṽ)−1 exp (𝑎

∗
⋅ (𝑚 − 𝑙)))

≈ 0.7286 < 0.7442 ≈ 𝑎
∗
− sup
𝑡∈R+

L
𝑖(𝑡)
.

(63)

FromTheorem 9, the ICNNs with IDEPCA system (61) have
the unique equilibrium 𝑥

∗ which is globally asymptotically
stable and all other solutions of the IDEPCA system (61)
converge exponentially to it as 𝑡 → ∞. The numerical sim-
ulations, showing the convergence of the unique equilibrium
𝑥
∗ of the ICNNs with and without impulses (61), are given in

Figures 2(a) and 2(b).

5. Conclusions

This is the first time that impulsive differential equations
with alternately advanced and retarded argument have been
applied to the model of cellular neural network models, and
this paper has provided sufficient conditions guaranteeing the
existence, uniqueness, and global exponential stability of the
unique equilibrium of the impulsive cellular neural network
models for the considered system based on a new IDEPCA
integral inequality of Gronwall type and fixed point theorem.
In addition, our method gives new ideas not only from the
modeling point of view but also from that of theoretical

opportunities since the impulsive cellular neural network
model equation involves piecewise constant arguments of
both advanced and delayed types. The obtained results could
be useful in the design and applications of impulsive cellular
neural network models. Furthermore, the examples with
numerical simulations are given to show the effectiveness of
the proposed method and results.
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Newton-Kantorovich and Smale uniform type of convergence theorem of a deformed Newton method having the third-order
convergence is established in a Banach space for solving nonlinear equations. The error estimate is determined to demonstrate the
efficiency of our approach. The obtained results are illustrated with three examples.

1. Introduction

In this paper, we study the problem of approximating a
unique solution 𝑥∗ of a nonlinear operator equation

𝐹 (𝑥) = 0, (1)

where 𝐹 is a Fréchet-differentiable operator defined on an
open convex Ω of a Banach space 𝑋 with values in a Banach
space 𝑌.

There are many iterative methods (see [1–3]), which have
been used for finding a solution of (1). For example, the well-
known iterative method for solving (1) is Newton’s method
defined by

𝑥
𝑛+1

= 𝑥
𝑛
− 𝐹


(𝑥
𝑛
)
−1

𝐹 (𝑥
𝑛
) , (𝑛 ≥ 0) (𝑥

0
∈ Ω) . (2)

Under the appropriate assumptions, Newton’s method is
the second-order convergence. Kantorovich (see [4]) pre-
sented the famous convergence result regarding a solution
of (1). Many Newton-Kantorovich type of convergence the-
orems were given in papers [5–11]. Frontini and Sormani (see
[12]) presented a new deformed Newton method with

∫

𝑥

𝑥
𝑛

𝑓


(𝑡) 𝑑𝑡 ≃ (𝑥 − 𝑥
𝑛
) 𝑓


(

𝑥
𝑛
+ 𝑥

2

) . (3)

The deformed Newton method can be written as follows:

𝑥
𝑛+1

= 𝑥
𝑛
−

𝑓 (𝑥
𝑛
)

𝑓

(𝑥
𝑛
− 𝑓 (𝑥

𝑛
) /2𝑓

(𝑥
𝑛
))

, (4)

where 𝑓 is a real or a complex function. In papers [13–17],
the local convergence theorem has been established and the
deformedmethod in a real or a complex space was discussed.

In the paper, we generalize the deformedNewtonmethod
[18] in a Banach space. The deformed Newton method [18] is
shown as follows:

𝑦
𝑛
= 𝑥
𝑛
− 𝐹


(𝑥
𝑛
)
−1

𝐹 (𝑥
𝑛
) ,

𝑥
𝑛+1

= 𝑥
𝑛
− 𝐹


(

𝑥
𝑛
+ 𝑦
𝑛

2

)

−1

𝐹 (𝑥
𝑛
) ,

(5)

where 𝐹 is defined on an open convex subset Ω of a Banach
space 𝑋 with values in a Banach space 𝑌, 𝐹(𝑥) has Fréchet
derivatives inΩ, and 𝐹(𝑥)−1 exists.

We establish Newton-Kantorovich and Smale uniform
type convergence theorem (see [18]) for the deformed New-
ton method with the third-order in a Banach space with
new sufficient conditions for the existence of a well-defined
sequence which converges to a unique solution 𝑥∗ of (1).
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2. Main Results

Denote 𝑔(𝑡) = ∫𝑡
0

(𝑡 − 𝑢)𝐿(𝑢)𝑑𝑢 − 𝑡 + 𝜂, 𝑢 ∈ (0, 𝑅), 𝜂 > 0, and
suppose 𝐿(𝑢), 𝐿(𝑢) are the positive and nondecreasing con-
tinuous functions, lim

𝑡→𝑅
+𝑔(𝑡) = 𝑔(𝑅

+

) > 0, ∫𝑅
0

𝐿(𝑢)𝑑𝑢 > 1,

∫

𝛼

0

𝐿(𝑢)𝑑𝑢 = 1 for 𝛼 ∈ (0, 𝑅), 𝛽 = 𝛼 − ∫𝛼
0

(𝛼 − 𝑢)𝐿(𝑢)𝑑𝑢 =

∫

𝛼

0

𝑢𝐿(𝑢)𝑑𝑢.
Assume that sequences {𝑡

𝑛
}, {𝑠
𝑛
} are generated by the

following formulae [18]:

𝑠
𝑛
= 𝑡
𝑛
− 𝑔


(𝑡
𝑛
)
−1

𝑔 (𝑡
𝑛
) ,

𝑡
𝑛+1

= 𝑡
𝑛
− 𝑔


(

𝑡
𝑛
+ 𝑠
𝑛

2

)

−1

𝑔 (𝑡
𝑛
) , 𝑡

0
= 0.

(6)

Firstly, we give some lemmas.

Lemma 1. If 𝜂 ≤ 𝛽, then the function 𝑔(𝑡) has two positive real
roots 𝑟

1
, 𝑟
2
(0 < 𝑟

1
≤ 𝛼 ≤ 𝑟

2
< 𝑅).

Proof. Because 𝑔(0) = 𝜂 > 0, 𝑔(𝑅+) > 0, and 𝑔(𝑡) = 𝐿(𝑡) >
0, we know that 𝑔(𝑡) is the convex function for 𝑡 ∈ (0, 𝑅).
Hence, 𝛼 is a unique positive root of 𝑔(𝑡) = ∫𝑡

0

𝐿(𝑢)𝑑𝑢 − 1.
So, the necessary and sufficient condition that 𝑔(𝑡) has two
positive roots for 𝑡 ∈ (0, 𝑅) is that the minimum of 𝑔(𝑡)
satisfies the condition 𝑔(𝛼) ≤ 0, which holds for 𝜂 ≤ 𝛽. This
completes the proof of Lemma 1.

Lemma 2. Suppose the sequences {𝑡
𝑛
}, {𝑠
𝑛
} are generated by

(6). Then, for 𝜂 ≤ 𝛽, the sequences {𝑡
𝑛
}, {𝑠
𝑛
} are increasing and

converge to the minimum positive root of 𝑔(𝑡), and

0 ≤ 𝑡
𝑛
≤ 𝑠
𝑛
≤ 𝑡
𝑛+1

< 𝑟
1
. (7)

Proof. Denote

𝑈 (𝑥) = 𝑥 −

𝑔 (𝑥)

𝑔

(𝑥)

, 𝑉 (𝑥) = 𝑥 −

𝑔 (𝑥)

𝑔

((𝑥 + 𝑈 (𝑥)) /2)

.

(8)

On [0, 𝑟
1
), we know 𝑔(𝑡) > 0, 𝑔(𝑡) < 0, 𝑔(𝑡) > 0,

and 𝑔(𝑡) is increasing. Denoting 𝑦 = (𝑥 + 𝑈(𝑥))/2 = 𝑥 −
𝑔(𝑥)/2𝑔



(𝑥), then

𝑈


(𝑥) =

𝑔 (𝑥) 𝑔


(𝑥)

𝑔

(𝑥)
2

> 0,

[𝑔


(𝑦) − 𝑔


(𝑥)] = 𝑔


(𝜉) (𝑦 − 𝑥) = −𝑔


(𝜉)

𝑔 (𝑥)

2𝑔

(𝑥)

,

𝜉 ∈ (𝑥, 𝑦) ,

𝑉


(𝑥) = 1 − (𝑔


(𝑥) 𝑔


(𝑦) −

1

2

𝑔 (𝑥) 𝑔


(𝑦)

× 1 + (

𝑔 (𝑥) 𝑔


(𝑥)

𝑔

(𝑥)
2

))

× (𝑔


(𝑦)
2

)

−1

=

1

𝑔

(𝑦)

[𝑔


(𝑦) − 𝑔


(𝑥)] +

𝑔 (𝑥) 𝑔


(𝑦)

2𝑔

(𝑦)
2

+

𝑔(𝑥)
2

𝑔


(𝑥) 𝑔


(𝑦)

2𝑔

(𝑥)
2

𝑔

(𝑦)
2

≥ −

𝑔


(𝜉)

𝑔

(𝑦)

⋅

𝑔 (𝑥)

2𝑔

(𝑥)

+

𝑔 (𝑥) 𝑔


(𝑦)

2𝑔

(𝑦)
2

= −

𝑔 (𝑥) 𝑔


(𝜉)

2𝑔

(𝑦)
2

𝑔

(𝑥)

[𝑔


(𝑦) − 𝑔


(𝑥)]

+

𝑔 (𝑥) 𝑔


(𝑦) − 𝑔 (𝑥) 𝑔


(𝜉)

2𝑔

(𝑦)
2

=

𝑔 (𝑥) 𝑔


(𝜉)

2𝑔

(𝑦)
2

𝑔

(𝑥)

⋅

𝑔 (𝑥) 𝑔


(𝜉)

2𝑔

(𝑥)

+

𝑔 (𝑥) 𝑔


(𝑦) − 𝑔 (𝑥) 𝑔


(𝜉)

2𝑔

(𝑦)
2

> 0.

(9)

Therefore, 𝑈(𝑥), 𝑉(𝑥) are increasing on [0, 𝑟
1
]. Thus, for

𝑥 ∈ [0, 𝑟
1
), 𝑈(𝑥) < 𝑈(𝑟

1
) = 𝑟
1
, 𝑉(𝑥) < 𝑉(𝑟

1
) = 𝑟
1
. Moreover,

𝑠
𝑛
= 𝑈 (𝑡

𝑛
) , 𝑡

𝑛+1
= 𝑉 (𝑡

𝑛
) , 𝑡

0
= 0 < 𝑟

1
; (10)

hence we can easily prove Lemma 2 by the induction.
Suppose 𝑋 and 𝑌 are the Banach spaces, Ω ⊂ 𝑋 is an

open convex subset, 𝐹 : Ω ⊂ 𝑋 → 𝑌 has the second-
order Fréchet derivative, 𝐹(𝑥

0
)
−1 exists for 𝑥

0
∈ Ω, and the

following conditions hold:





𝐹


(𝑥
0
)
−1

𝐹 (𝑥
0
)






≤ 𝜂,






𝐹


(𝑥
0
)
−1

𝐹


(𝑥
0
)






≤ 𝐿 (0) ,






𝐹


(𝑥
0
)
−1

(𝐹


(𝑦) − 𝐹


(𝑥))







≤ ∫

𝜌(𝑥,𝑦)

𝜌(𝑥)

𝐿


(𝑢) 𝑑𝑢, 𝑥, 𝑦 ∈ Ω, 𝜌 (𝑥, 𝑦) < 𝛼,

(11)

where 𝜌(𝑥) = ‖𝑥 − 𝑥
0
‖ and 𝜌(𝑥, 𝑦) = ‖𝑦 − 𝑥‖ + ‖𝑥 − 𝑥

0
‖.

Lemma 3. Suppose 𝐹 satisfies (11) and ‖𝑥 − 𝑥
0
‖ < 𝛼. Then

𝐹


(𝑥)
−1 exists, and






𝐹


(𝑥
0
)
−1

𝐹


(𝑥)






≤ 𝑔


(




𝑥 − 𝑥
0





) ,






𝐹


(𝑥)
−1

𝐹


(𝑥
0
)






≤ −

1

𝑔

(




𝑥 − 𝑥
0





)

.

(12)

Proof. Firstly, by the conditions (11), we know that





𝐹


(𝑥
0
)
−1

𝐹


(𝑥)






≤






𝐹


(𝑥
0
)
−1

𝐹


(𝑥
0
)







+






𝐹


(𝑥
0
)
−1

𝐹


(𝑥) − 𝐹


(𝑥
0
)
−1

𝐹


(𝑥
0
)







≤ 𝐿 (0) + ∫

‖𝑥−𝑥
0
‖

0

𝐿


(𝑢) 𝑑𝑢

= 𝐿 (




𝑥 − 𝑥
0





) = 𝑔


(




𝑥 − 𝑥
0





) .

(13)
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Secondly, we know 𝑔(𝑡) < 0 for 𝑡 < 𝛼. Hence






𝐹


(𝑥
0
)
−1

𝐹


(𝑥) − 𝐼






=






𝐹


(𝑥
0
)
−1

[𝐹


(𝑥) − 𝐹


(𝑥
0
)]







=











𝐹


(𝑥
0
)
−1

∫

1

0

𝐹


(𝑥
0
+ 𝑡 (𝑥 − 𝑥

0
))

× (𝑥 − 𝑥
0
) 𝑑𝑡











≤ ∫

1

0

𝑔


(𝑡




𝑥 − 𝑥
0





)




𝑥 − 𝑥
0





𝑑𝑡

= 𝑔


(




𝑥 − 𝑥
0





) − 𝑔


(0)

= 𝑔


(




𝑥 − 𝑥
0





) + 1 < 1.

(14)

By BanachTheorem, we know 𝐹(𝑥)−1 exists, and






𝐹


(𝑥)
−1

𝐹


(𝑥
0
)






≤

1

1 −






𝐹

(𝑥
0
)
−1

𝐹

(𝑥) − 𝐼







= −

1

𝑔

(




𝑥 − 𝑥
0





)

.

(15)

This completes the proof of Lemma 3.

Lemma 4. Suppose 𝑋 and 𝑌 are Banach spaces, Ω is an open
convex of the Banach space 𝑋, 𝐹 : Ω ⊂ 𝑋 → 𝑌 has
the second-order Fréchet derivative, and the sequences {𝑥

𝑛
},

{𝑦
𝑛
} are generated by (5). Then, for any natural number 𝑛, the

following formula holds:

𝐹 (𝑥
𝑛+1
)

= ∫

1

0

𝐹


(

𝑥
𝑛
+ 𝑦
𝑛

2

+ 𝑡 (𝑥
𝑛+1
−

𝑥
𝑛
+ 𝑦
𝑛

2

)) (1 − 𝑡) 𝑑𝑡

× (𝑥
𝑛+1
− 𝑦
𝑛
)
2

+

1

2

∫

1

0

𝐹


(

𝑥
𝑛
+ 𝑦
𝑛

2

+ 𝑡 (𝑥
𝑛+1
−

𝑥
𝑛
+ 𝑦
𝑛

2

)) (1 − 𝑡) 𝑑𝑡

× (𝑥
𝑛+1
− 𝑦
𝑛
) (𝑦
𝑛
− 𝑥
𝑛
)

+

1

2

∫

1

0

𝐹


(

𝑥
𝑛
+ 𝑦
𝑛

2

+ 𝑡 (𝑥
𝑛+1
−

𝑥
𝑛
+ 𝑦
𝑛

2

)) (1 − 𝑡) 𝑑𝑡

× (𝑦
𝑛
− 𝑥
𝑛
) (𝑥
𝑛+1
− 𝑦
𝑛
)

+

1

4

∫

1

0

𝐹


(

𝑥
𝑛
+ 𝑦
𝑛

2

+ 𝑡 (𝑥
𝑛+1
−

𝑥
𝑛
+ 𝑦
𝑛

2

)) (1 − 𝑡) 𝑑𝑡

× (𝑦
𝑛
− 𝑥
𝑛
)
2

−

1

4

∫

1

0

𝐹


(

𝑥
𝑛
+ 𝑦
𝑛

2

− 𝑡 (

𝑦
𝑛
− 𝑥
𝑛

2

)) (1 − 𝑡) 𝑑𝑡

× (𝑦
𝑛
− 𝑥
𝑛
)
2

.

(16)

Proof. By (5), we have

𝐹 (𝑥
𝑛+1
) = 𝐹 (𝑥

𝑛+1
) − 𝐹 (

𝑥
𝑛
+ 𝑦
𝑛

2

)

− 𝐹


(

𝑥
𝑛
+ 𝑦
𝑛

2

) (𝑥
𝑛+1
−

𝑥
𝑛
+ 𝑦
𝑛

2

)

+ 𝐹(

𝑥
𝑛
+ 𝑦
𝑛

2

) + 𝐹


(

𝑥
𝑛
+ 𝑦
𝑛

2

)

× (𝑥
𝑛+1
−

𝑥
𝑛
+ 𝑦
𝑛

2

)

= ∫

1

0

𝐹


(

𝑥
𝑛
+ 𝑦
𝑛

2

+ 𝑡 (𝑥
𝑛+1
−

𝑥
𝑛
+ 𝑦
𝑛

2

)) (1 − 𝑡) 𝑑𝑡

× (𝑥
𝑛+1
−

𝑥
𝑛
+ 𝑦
𝑛

2

)

2

+ 𝐹(

𝑥
𝑛
+ 𝑦
𝑛

2

)

+ 𝐹


(

𝑥
𝑛
+ 𝑦
𝑛

2

) (𝑥
𝑛+1
−

𝑥
𝑛
+ 𝑦
𝑛

2

) ,

𝐹 (

𝑥
𝑛
+ 𝑦
𝑛

2

) + 𝐹


(

𝑥
𝑛
+ 𝑦
𝑛

2

) (𝑥
𝑛+1
−

𝑥
𝑛
+ 𝑦
𝑛

2

)

= 𝐹(

𝑥
𝑛
+ 𝑦
𝑛

2

) + 𝐹


(

𝑥
𝑛
+ 𝑦
𝑛

2

)

× (𝑥
𝑛+1
− 𝑥
𝑛
−

𝑦
𝑛
− 𝑥
𝑛

2

)

= 𝐹(

𝑥
𝑛
+ 𝑦
𝑛

2

) − 𝐹 (𝑥
𝑛
) − 𝐹


(

𝑥
𝑛
+ 𝑦
𝑛

2

)

𝑦
𝑛
− 𝑥
𝑛

2

= −

1

4

∫

1

0

𝐹


(

𝑥
𝑛
+ 𝑦
𝑛

2

− 𝑡 (

𝑦
𝑛
− 𝑥
𝑛

2

)) (1 − 𝑡) 𝑑𝑡

× (𝑦
𝑛
− 𝑥
𝑛
)
2

.

(17)

Hence

𝐹 (𝑥
𝑛+1
) = ∫

1

0

𝐹


(

𝑥
𝑛
+ 𝑦
𝑛

2

+ 𝑡 (𝑥
𝑛+1
−

𝑥
𝑛
+ 𝑦
𝑛

2

))

× (1 − 𝑡) 𝑑𝑡(𝑥
𝑛+1
− 𝑦
𝑛
)
2

+

1

2

∫

1

0

𝐹


(

𝑥
𝑛
+ 𝑦
𝑛

2

+ 𝑡 (𝑥
𝑛+1
−

𝑥
𝑛
+ 𝑦
𝑛

2

))

× (1 − 𝑡) 𝑑𝑡 (𝑥
𝑛+1
− 𝑦
𝑛
) (𝑦
𝑛
− 𝑥
𝑛
)

+

1

2

∫

1

0

𝐹


(

𝑥
𝑛
+ 𝑦
𝑛

2

+ 𝑡 (𝑥
𝑛+1
−

𝑥
𝑛
+ 𝑦
𝑛

2

))

× (1 − 𝑡) 𝑑𝑡 (𝑦
𝑛
− 𝑥
𝑛
) (𝑥
𝑛+1
− 𝑦
𝑛
)

+

1

4

∫

1

0

𝐹


(

𝑥
𝑛
+ 𝑦
𝑛

2

+ 𝑡 (𝑥
𝑛+1
−

𝑥
𝑛
+ 𝑦
𝑛

2

))

× (1 − 𝑡) 𝑑𝑡(𝑦
𝑛
− 𝑥
𝑛
)
2
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−

1

4

∫

1

0

𝐹


(

𝑥
𝑛
+ 𝑦
𝑛

2

− 𝑡 (

𝑦
𝑛
− 𝑥
𝑛

2

)) (1 − 𝑡) 𝑑𝑡

× (𝑦
𝑛
− 𝑥
𝑛
)
2

.

(18)

This completes the proof of Lemma 4.

Theorem 5. Suppose𝑋 and 𝑌 are Banach spaces,Ω ⊂ 𝑋 is an
open convex subset, 𝐹 : Ω ⊂ 𝑋 → 𝑌 satisfies condition (11),
𝜂 ≤ 𝛽, and

𝑆 (𝑥
0
, 𝑟
1
) = {𝑥 |





𝑥 − 𝑥
0





≤ 𝑟
1
, 𝑥 ∈ 𝑋} ⊂ Ω. (19)

Then the sequence {𝑥
𝑛
}
𝑛≥0

generated by (5) is well defined, 𝑥
𝑛
∈

𝑆(𝑥
0
, 𝑟
1
), and converges to the unique solution 𝑥∗ in 𝑆(𝑥

0
, 𝛼)

and





𝑥
𝑛
− 𝑥
∗



≤ 𝑟
1
− 𝑡
𝑛
. (20)

Proof. By induction,we can prove that the following formulae
hold:





𝑥
𝑛
− 𝑥
0





≤ 𝑡
𝑛
;






𝐹


(𝑥
𝑛
)
−1

𝐹


(𝑥
0
)






≤ −𝑔


(𝑡
𝑛
)
−1

;





𝑦
𝑛
− 𝑥
𝑛





≤ 𝑠
𝑛
− 𝑡
𝑛
;





𝑦
𝑛
− 𝑥
0





≤ 𝑠
𝑛
;










𝐹


(

𝑥
𝑛
+ 𝑦
𝑛

2

)

−1

𝐹


(𝑥
0
)










≤ −𝑔


(

𝑡
𝑛
+ 𝑠
𝑛

2

)

−1

;





𝑥
𝑛+1
− 𝑦
𝑛





≤ 𝑡
𝑛+1
− 𝑠
𝑛
;





𝑥
𝑛+1
− 𝑥
𝑛





≤ 𝑡
𝑛+1
− 𝑡
𝑛
.

(21)

In fact, by Lemma 2 we know 𝑡
𝑛
< 𝑟
1
for any natural

number 𝑛. It is easy to prove that for 𝑛 = 0 the above formulae
hold. Suppose the above formulae also hold for 𝑛 > 0. Then





𝑥
𝑛+1
− 𝑥
0





≤




𝑥
𝑛+1
− 𝑥
𝑛






+




𝑥
𝑛
− 𝑥
0





≤ 𝑡
𝑛+1
− 𝑡
𝑛
+ 𝑡
𝑛
= 𝑡
𝑛+1
.

(22)

By Lemma 3, we get






𝐹


(𝑥
𝑛+1
)
−1

𝐹


(𝑥
0
)






≤ −𝑔


(




𝑥
𝑛+1
− 𝑥
0





)
−1

≤ −𝑔


(𝑡
𝑛+1
)
−1

.

(23)

By Lemmas 3 and 4 and the fact that −𝑔(𝑡)−1, 𝑔(𝑡) are
positive and increasing on [0, 𝛼), we have









𝐹


(𝑥
0
)
−1

[𝐹


(

𝑥
𝑛
+ 𝑦
𝑛

2

+ 𝑡 (𝑥
𝑛+1
−

𝑥
𝑛
+ 𝑦
𝑛

2

))

−𝐹


(

𝑥
𝑛
+ 𝑦
𝑛

2

− 𝑡 (

𝑦
𝑛
− 𝑥
𝑛

2

))]









≤ ∫

𝑡‖𝑥
𝑛+1
−𝑥
𝑛
‖

0

𝐿


(𝑢 +









𝑥
𝑛
+ 𝑦
𝑛

2

− 𝑡 (

𝑦
𝑛
− 𝑥
𝑛

2

) − 𝑥
0









) 𝑑𝑢

≤ ∫

𝑡(𝑡
𝑛+1
−𝑡
𝑛
)

0

𝐿


(𝑢 +

𝑡
𝑛
+ 𝑠
𝑛

2

− 𝑡

𝑠
𝑛
− 𝑡
𝑛

2

) 𝑑𝑢

= 𝐿(

𝑡
𝑛
+ 𝑠
𝑛

2

+ 𝑡 (𝑡
𝑛+1
−

𝑡
𝑛
+ 𝑠
𝑛

2

))

− 𝐿(

𝑡
𝑛
+ 𝑠
𝑛

2

− 𝑡 (

𝑠
𝑛
− 𝑡
𝑛

2

))

= 𝑔


(

𝑡
𝑛
+ 𝑠
𝑛

2

+ 𝑡 (𝑡
𝑛+1
−

𝑡
𝑛
+ 𝑠
𝑛

2

))

− 𝑔


(

𝑡
𝑛
+ 𝑠
𝑛

2

− 𝑡 (

𝑠
𝑛
− 𝑡
𝑛

2

)) ,






𝐹


(𝑥
0
)
−1

𝐹 (𝑥
𝑛+1
)







≤ ∫

1

0

𝑔


(

𝑡
𝑛
+ 𝑠
𝑛

2

+ 𝑡 (𝑡
𝑛+1
−

𝑡
𝑛
+ 𝑠
𝑛

2

))

× (1 − 𝑡) 𝑑𝑡(𝑡
𝑛+1
− 𝑠
𝑛
)
2

+

1

2

∫

1

0

𝑔


(

𝑡
𝑛
+ 𝑠
𝑛

2

+ 𝑡 (𝑡
𝑛+1
−

𝑡
𝑛
+ 𝑠
𝑛

2

)) (1 − 𝑡) 𝑑𝑡

× (𝑡
𝑛+1
− 𝑠
𝑛
) (𝑠
𝑛
− 𝑡
𝑛
)

+

1

2

∫

1

0

𝑔


(

𝑡
𝑛
+ 𝑠
𝑛

2

+ 𝑡 (𝑡
𝑛+1
−

𝑡
𝑛
+ 𝑠
𝑛

2

)) (1 − 𝑡) 𝑑𝑡

× (𝑠
𝑛
− 𝑡
𝑛
) (𝑡
𝑛+1
− 𝑠
𝑛
)

+

1

4

∫

1

0

𝑔


(

𝑡
𝑛
+ 𝑠
𝑛

2

+ 𝑡 (𝑡
𝑛+1
−

𝑡
𝑛
+ 𝑠
𝑛

2

)) (1 − 𝑡) 𝑑𝑡

× (𝑠
𝑛
− 𝑡
𝑛
)
2

−

1

4

∫

1

0

𝑔


(

𝑡
𝑛
+ 𝑠
𝑛

2

− 𝑡 (

𝑠
𝑛
− 𝑡
𝑛

2

)) (1 − 𝑡) 𝑑𝑡

× (𝑠
𝑛
− 𝑡
𝑛
)
2

= 𝑔 (𝑡
𝑛+1
) .

(24)

Hence we get





𝑦
𝑛+1
− 𝑥
𝑛+1





=






−𝐹


(𝑥
𝑛+1
)
−1

𝐹 (𝑥
𝑛+1
)







≤






−𝐹


(𝑥
𝑛+1
)
−1

𝐹


(𝑥
0
)







×






𝐹


(𝑥
0
)
−1

𝐹 (𝑥
𝑛+1
)
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≤ −𝑔


(𝑡
𝑛+1
)
−1

𝑔 (𝑡
𝑛+1
)

= 𝑠
𝑛+1
− 𝑡
𝑛+1
,





𝑦
𝑛+1
− 𝑥
0





≤




𝑦
𝑛+1
− 𝑥
𝑛+1






+




𝑥
𝑛+1
− 𝑥
0





≤ 𝑠
𝑛+1
.

(25)

By Lemma 3, we get










𝐹


(

𝑥
𝑛+1
+ 𝑦
𝑛+1

2

)

−1

𝐹


(𝑥
0
)










≤ −𝑔


(

𝑡
𝑛+1
+ 𝑠
𝑛+1

2

)

−1

. (26)

Moreover, we have





𝑥
𝑛+2
− 𝑦
𝑛+1






=










𝐹


(𝑥
𝑛+1
)
−1

𝐹 (𝑥
𝑛+1
)

−𝐹


(

𝑥
𝑛+1
+ 𝑦
𝑛+1

2

)

−1

𝐹 (𝑥
𝑛+1
)










=










𝐹


(

𝑥
𝑛+1
+ 𝑦
𝑛+1

2

)

−1

[𝐹


(

𝑥
𝑛+1
+ 𝑦
𝑛+1

2

)

−𝐹


(𝑥
𝑛+1
) ]

× 𝐹


(𝑥
𝑛+1
)
−1

𝐹 (𝑥
𝑛+1
)









=










𝐹


(

𝑥
𝑛+1
+ 𝑦
𝑛+1

2

)

−1

𝐹


(𝑥
0
) 𝐹


(𝑥
0
)
−1

× ∫

1

0

𝐹


(𝑥
𝑛+1
+

𝑡

2

(𝑦
𝑛+1
− 𝑥
𝑛+1
)) 𝑑𝑡

×

𝑦
𝑛+1
− 𝑥
𝑛+1

2

𝐹


(𝑥
𝑛+1
)
−1

×𝐹


(𝑥
0
) 𝐹


(𝑥
0
)
−1

𝐹 (𝑥
𝑛+1
)










≤ 𝑔


(

𝑡
𝑛+1
+ 𝑠
𝑛+1

2

)

−1

× ∫

1

0

𝑔


(𝑡
𝑛+1
+

𝑡

2

(𝑠
𝑛+1
− 𝑡
𝑛+1
)) 𝑑𝑡

×

(𝑠
𝑛+1
− 𝑡
𝑛+1
)

2

𝑔


(𝑡
𝑛+1
)
−1

𝑔 (𝑡
𝑛+1
)

≤ 𝑔


(

𝑡
𝑛+1
+ 𝑠
𝑛+1

2

)

−1

× [𝑔


(

𝑡
𝑛+1
+ 𝑠
𝑛+1

2

) − 𝑔


(𝑡
𝑛+1
)]

× 𝑔


(𝑡
𝑛+1
)
−1

𝑔 (𝑡
𝑛+1
)

= 𝑔


(𝑡
𝑛+1
)
−1

𝑔 (𝑡
𝑛+1
)

− 𝑔


(

𝑡
𝑛+1
+ 𝑠
𝑛+1

2

)

−1

× 𝑔 (𝑡
𝑛+1
) = 𝑡
𝑛+2
− 𝑠
𝑛+1
,





𝑥
𝑛+2
− 𝑥
𝑛+1





≤




𝑥
𝑛+2
− 𝑦
𝑛+1






+




𝑦
𝑛+1
− 𝑥
𝑛+1





≤ 𝑡
𝑛+2
− 𝑡
𝑛+1
.

(27)

Hence, the sequence {𝑥
𝑛
}
𝑛≥0

generated by (5) is well
defined, 𝑥

𝑛
∈ 𝑆(𝑥

0
, 𝑟
1
), and {𝑥

𝑛
} converges to the solution

𝑥
∗

∈ 𝑆(𝑥
0
, 𝑟
1
) of (1).

Now we prove the uniqueness. Suppose 𝑦∗ is also a
solution of (1) on 𝑆(𝑥

0
, 𝛼). We know that 𝑔(𝑡) < 0 for

𝑡 ∈ [0, 𝛼). Then










𝐹


(𝑥
0
)
−1

∫

1

0

𝐹


(𝑥
∗

+ 𝑡 (𝑦
∗

− 𝑥
∗

)) 𝑑𝑡 − 𝐼











≤











𝐹


(𝑥
0
)
−1

∫

1

0

{𝐹


[𝑥
∗

+ 𝑡 (𝑦
∗

− 𝑥
∗

)] − 𝐹


(𝑥
0
)} 𝑑𝑡











≤











𝐹


(𝑥
0
)
−1

∫

1

0

∫

1

0

𝐹


(𝑥
0
+ 𝑠 (𝑥

∗

− 𝑥
0
+ 𝑡 (𝑦

∗

− 𝑥
∗

))) 𝑑𝑠𝑑𝑡

× (𝑥
∗

− 𝑥
0
+ 𝑡 (𝑦

∗

− 𝑥
∗

))











≤ ∫

1

0

∫

1

0

𝑔


(𝑠




𝑥
∗

− 𝑥
0
+ 𝑡 (𝑦

∗

− 𝑥
∗

)




) 𝑑𝑠𝑑𝑡

×




𝑥
∗

− 𝑥
0
+ 𝑡 (𝑦

∗

− 𝑥
∗

)





= ∫

1

0

𝑔


(




𝑥
∗

− 𝑥
0
+ 𝑡 (𝑦

∗

− 𝑥
∗

)




) 𝑑𝑡 − 𝑔



(0)

= ∫

1

0

𝑔


(




(1 − 𝑡) (𝑥

∗

− 𝑥
0
) + 𝑡 (𝑦

∗

− 𝑥
0
)




) 𝑑𝑡 + 1 < 1.

(28)

By Banach Theorem, we know the inverse of ∫1
0

𝐹


[𝑥
∗

+

𝑡(𝑦
∗

− 𝑥
∗

)]𝑑𝑡 exists and

0 = 𝐹 (𝑦
∗

) − 𝐹 (𝑥
∗

)

= ∫

1

0

𝐹


[𝑥
∗

+ 𝑡 (𝑦
∗

− 𝑥
∗

)] 𝑑𝑡 (𝑦
∗

− 𝑥
∗

) ;

(29)

hence we get 𝑦∗ = 𝑥
∗. This completes the proof of the

uniqueness of the solution of (1).
For𝑚 > 𝑛, we know that





𝑥
𝑚
− 𝑥
𝑛





≤




𝑥
𝑚
− 𝑥
𝑚−1






+




𝑥
𝑚−1

− 𝑥
𝑚−2





+ ⋅ ⋅ ⋅ +





𝑥
𝑛+1
− 𝑥
𝑛





≤ 𝑡
𝑚
− 𝑡
𝑛
.

(30)

When𝑚 → ∞, we get




𝑥
𝑛
− 𝑥
∗



≤ 𝑟
1
− 𝑡
𝑛
. (31)

This completes the proof of Theorem 5.
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Suppose that 𝐿(𝑢) = 𝛾+𝐾𝑢, 𝑢 ∈ (0, +∞), 𝛾,𝐾 > 0. Then
∫

𝜌(𝑥,𝑦)

𝜌(𝑥)

𝐿


(𝑢)𝑑𝑢 = 𝐾‖𝑥 − 𝑦‖, 𝑔(𝑡) = (1/6)𝐾𝑡3 + (1/2)𝛾𝑡2 − 𝑡 +

𝜂𝛼 = 2/(𝛾 + √𝛾
2
+ 2𝐾), and 𝛽 = 𝛼 − (1/6)𝐾𝛼3 − (1/2)𝛾𝛼2 =

2(𝛾 + 2√𝛾
2
+ 2𝐾)/3(𝛾 + √𝛾

2
+ 2𝐾)

2.

Corollary 6. Suppose𝑋 and 𝑌 are the Banach spaces,Ω is an
open convex subset of the Banach space𝑋,𝐹 : Ω ⊂ 𝑋 → 𝑌 has
the second-order Fréchet derivative, 𝐹(𝑥

0
)
−1 exists for 𝑥

0
∈ Ω,

and the following conditions hold:






𝐹


(𝑥
0
)
−1

𝐹 (𝑥
0
)






≤ 𝜂,






𝐹


(𝑥
0
)
−1

𝐹


(𝑥
0
)






≤ 𝛾,






𝐹


(𝑥
0
)
−1

(𝐹


(𝑥) − 𝐹


(𝑦))






≤ 𝐾





𝑥 − 𝑦






𝑥, 𝑦 ∈ Ω,

𝜂 ≤

2 (𝛾 + 2√𝛾
2
+ 2𝐾)

3(𝛾 + √𝛾
2
+ 2𝐾)

2
, 𝑆 (𝑥

0
, 𝑟
1
) ⊂ Ω.

(32)

Then the sequence {𝑥
𝑛
}
𝑛≥0

generated by (5) is well defined,
𝑥
𝑛
∈ 𝑆(𝑥
0
, 𝑟
1
), and {𝑥

𝑛
} converges to the unique solution 𝑥∗ on

𝑆(𝑥
0
, 𝛼) of (1), where 𝑟

1
≤ 𝑟
2
are two positive roots of 𝑔(𝑡) =

(1/6)𝐾𝑡
3

+ (1/2)𝛾𝑡
2

− 𝑡 + 𝜂.

Suppose 𝐿(𝑢) = 2𝛾(1 − 𝛾𝑢)
−3, 𝑢 ∈ (0, 1/𝛾), 𝑔(𝑡) =

𝜂−𝑡+𝛾𝑡
2

/(1−𝛾𝑡),𝛼 = (1−√2/2)(1/𝛾) and𝛽 = (3−2√2)/𝛾 and
for ‖𝑥 − 𝑥

0
‖ < 𝛼, ‖𝐹(𝑥

0
)
−1

𝐹


(𝑥)‖ ≤ 6𝛾
2

/(1 − 𝛾‖𝑥 − 𝑥
0
‖)
4.

Hence, for ‖𝑥 − 𝑥
0
‖ + ‖𝑦 − 𝑥‖ < 𝛼, we get






𝐹


(𝑥
0
)
−1

[𝐹


(𝑦) − 𝐹


(𝑥)]







=











∫

1

0

𝐹


(𝑥
0
)
−1

𝐹


(𝑥 + 𝑡 (𝑦 − 𝑥)) 𝑑𝑡 (𝑦 − 𝑥)











≤ ∫

1

0

6𝛾
2

[1 − 𝛾




𝑥 − 𝑥
0
+ 𝑡 (𝑦 − 𝑥)





]
4
𝑑𝑡




𝑦 − 𝑥






≤ ∫

1

0

6𝛾
2

[1 − 𝛾 (




𝑥 − 𝑥
0





+ 𝑡




𝑦 − 𝑥





)]
4
𝑑𝑡




𝑦 − 𝑥






= ∫

‖𝑥−𝑥
0
‖+‖𝑦−𝑥‖

‖𝑥−𝑥0‖

6𝛾
2

(1 − 𝛾𝑢)
4
𝑢
⋅

= ∫

‖𝑥−𝑥
0
‖+‖𝑦−𝑥‖

‖𝑥−𝑥0‖

𝐿


(𝑢) 𝑑𝑢.

(33)

Corollary 7 (see [10]). Suppose 𝑋 and 𝑌 are Banach spaces,
Ω is an open convex subset of the Banach space 𝑋, 𝐹 : Ω ⊂

𝑋 → 𝑌 has the third-order Fréchet derivative, 𝐹(𝑥
0
)
−1 exists

for 𝑥
0
∈ Ω, and the following conditions hold:






𝐹


(𝑥
0
)
−1

𝐹 (𝑥
0
)






≤ 𝜂,






𝐹


(𝑥
0
)
−1

𝐹


(𝑥
0
)






≤ 2𝛾,






𝐹


(𝑥
0
)
−1

𝐹


(𝑥)






≤

6𝛾
2

(1 − 𝛾




𝑥 − 𝑥
0





)
4

= 𝑔


(




𝑥 − 𝑥
0





) , 𝑥 ∈ Ω,





𝑥 − 𝑥
0





≤ (1 −

1

√2

)

1

𝛾

, 𝜂𝛾 ≤ 3 − 2√2,

𝑆 (𝑥
0
, 𝑟
1
) ⊂ Ω.

(34)

Then the sequence {𝑥
𝑛
}
𝑛≥0

generated by (5) is well defined,
𝑥
𝑛
∈ 𝑆(𝑥
0
, 𝑟
1
), and {𝑥

𝑛
} converges to the unique solution 𝑥∗ of

(1) on 𝑆(𝑥
0
, (1 − 1/√2)(1/𝛾)), where

𝑟
1
=

1 + 𝜂𝛾 − √(1 + 𝜂𝛾)
2

− 8𝜂𝛾

4𝛾

,

𝑟
2
=

1 + 𝜂𝛾 + √(1 + 𝜂𝛾)
2

− 8𝜂𝛾

4𝛾

(35)

are two positive roots of the equation 𝑔(𝑡) = 𝜂−𝑡+𝛾𝑡2/(1−𝛾𝑡).

3. Numerical Examples

In this section, we apply the convergence theorem and show
three numerical examples.

Example 1. Consider the equation

𝐹 (𝑥) =

1

6

𝑥
3

+

1

6

𝑥
2

−

5

6

𝑥 +

1

3

= 0. (36)

We choose the initial point 𝑥
0
= 0, Ω = [−1, 1]; then

𝜂 =






𝐹


(0)
−1

𝐹 (0)






=

2

5

, 𝛾 =






𝐹


(0)
−1

𝐹


(0)






=

2

5

,

𝐾 =

6

5

,

2 (𝛾 + 2√𝛾
2
+ 2𝐾)

3(𝛾 + √𝛾
2
+ 2𝐾)

2
=

3

5

> 𝜂.

(37)

Hence, by Corollary 6, the sequence {𝑥
𝑛
}
𝑛≥0

generated by
(5) is well defined, and {𝑥

𝑛
} converges to the solution 𝑥∗ of

(36).
Now, we will analyze errors ‖𝑥

𝑛
− 𝑥
∗

‖ by Corollary 6
(see Table 1). In this case, we take 𝑥

0
= 0; then 𝑟

1
=

0.462598422 ⋅ ⋅ ⋅ .

Example 2. Consider the system of equation [18] 𝐹(𝑢, V) = 0,
where

𝐹 (𝑢, V) = (𝑢V − 1, 𝑢V + 𝑢 − 2V)𝑇. (38)
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Table 1: Error results for Corollary 6 (‖𝑥
𝑛
− 𝑥
∗

‖ ≤ 𝑟
1
− 𝑡
𝑛
).

Step 𝑟
1
− 𝑡
𝑛

Step 𝑟
1
− 𝑡
𝑛

𝑘 = 1 1.616985 × 10
−2

𝑘 = 2 2.236349 × 10
−6

𝑘 = 3 6.225929 × 10
−18

𝑘 = 4 1.343387 × 10
−52

𝑘 = 5 1.349560 × 10
−156

𝑘 = 6 1.368249 × 10
−468

Then, we have

𝐹


(𝑢, V) = ( V 𝑢

V + 1 𝑢 − 2
) ,

𝐹


(𝑢, V)−1 = −
1

𝑢 + 2V
(

𝑢 − 2 −𝑢

−V − 1 V ) ,

𝐹


(𝑢, V) = (

0 1

1 0

0 1

1 0

) .

(39)

We choose 𝑥
0
= (𝑢
0
, V
0
) = (1.75, 1.75) and Ω = {𝑥 |

‖𝑥 − 𝑥
0
‖ ≤ 1.75}. We take the max-norm in 𝑅2 and the norm

‖𝐴‖ = max{|𝑎
11
| + |𝑎
12
|, |𝑎
21
| + |𝑎
22
|} for 𝐴 = ( 𝑎11 𝑎12𝑎

21
𝑎
22

). Define
the norm of a bilinear operator 𝐵 on 𝑅2 by

‖𝐵‖ = sup
‖𝑢‖=1

max
𝑖

2

∑

𝑗=1












2

∑

𝑘=1

𝑏
𝑗𝑘

𝑖
𝑢
𝑘












, (40)

where 𝑢 = (𝑢
1
, 𝑢
2
)
𝑇 and

𝐵 = (

𝑏
11

1
𝑏
12

1

𝑏
21

1
𝑏
22

1

𝑏
11

2
𝑏
12

2

𝑏
21

2
𝑏
22

2

). (41)

Then we get the following results:

𝜂 =






𝐹


(𝑥
0
)
−1

𝐹 (𝑥
0
)






=

9

14

,

𝛾 =






𝐹


(𝑥
0
)
−1

𝐹


(𝑥
0
)






=

16

21

,

𝐾 = 0,

2 (𝛾 + 2√𝛾
2
+ 2𝐾)

3(𝛾 + √𝛾
2
+ 2𝐾)

2
> 𝜂.

(42)

This means that the hypotheses of Corollary 6 are satis-
fied.

Now, we will analyze errors ‖𝑥
𝑛
− 𝑥
∗

‖ by Corollary 6 (see
Table 2). In this case, we take𝑥

0
= (𝑢
0
, V
0
) = (1.75, 1.75); then

𝑟
1
= 1.125.

Example 3. Consider the following integral equations:

𝑥 (𝑠) = 1 +

1

4

𝑥 (𝑠) ∫

1

0

𝑠

𝑠 + 𝑡

𝑥 (𝑡) 𝑑𝑡 (43)

Table 2: Error results for Corollary 6 (‖𝑥
𝑛
− 𝑥
∗

‖ ≤ 𝑟
1
− 𝑡
𝑛
).

Step 𝑟
1
− 𝑡
𝑛

Step 𝑟
1
− 𝑡
𝑛

𝑘 = 1 2.736486 × 10
−1

𝑘 = 2 3.044252 × 10
−2

𝑘 = 3 1.588069 × 10
−4

𝑘 = 4 2.844419 × 10
−11

𝑘 = 5 1.636509 × 10
−30

𝑘 = 6 3.116680 × 10
−92

Table 3: Error results for Corollary 7 (‖𝑥
𝑛
− 𝑥
∗

‖ ≤ 𝑟
1
− 𝑡
𝑛
).

Step 𝑟
1
− 𝑡
𝑛

Step 𝑟
1
− 𝑡
𝑛

𝑘 = 1 2.764303 × 10
−3

𝑘 = 2 4.099223 × 10
−9

𝑘 = 3 1.344301 × 10
−26

𝑘 = 4 4.741124 × 10
−79

𝑘 = 5 2.079868 × 10
−236

𝑘 = 6 <1.0 × 10−500

and the space𝑋 = 𝐶[0, 1] with the norm

‖𝑥‖ = max
0≤𝑠≤1

|𝑥 (𝑠)| . (44)

This equation arises in the theory of radiative transfer and
neutron transport and in the kinetic theory of gases. Define
the operator 𝐹 on𝑋 by

𝐹 (𝑥) =

1

4

𝑥 (𝑠) ∫

1

0

𝑠

𝑠 + 𝑡

𝑥 (𝑡) 𝑑𝑡 − 𝑥 (𝑠) + 1. (45)

Then, for 𝑥
0
= 1, we obtain

𝜂 =






𝐹


(𝑥
0
)
−1

𝐹 (𝑥
0
)






= 0.2652,

2𝛾 =






𝐹


(𝑥
0
)
−1

𝐹


(𝑥
0
)






= 1.5304 × 2

⋅

1

4

max
0≤𝑠≤1











∫

1

0

𝑠

𝑠 + 𝑡

𝑑𝑡











= 1.5304 ×

ln 2
2

= 0.5303,

𝜂𝛾 = 0.07032 < 3 − 2√2,






𝐹


(𝑥
0
)
−1

𝐹


(𝑥)






= 0 <

6𝛾
2

(1 − 𝛾




𝑥 − 𝑥
0





)
4
.

(46)

This means that the hypotheses of Corollary 7 are satisfied.
Now, we will analyze errors ‖𝑥

𝑛
− 𝑥
∗

‖ by Corollary 7 (see
Table 3). In this case, we take 𝑥

0
= 1; then 𝑟

1
= 0.289222 ⋅ ⋅ ⋅ .
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In this paper, we propose the study of an integral equation, with deviating arguments, of the type 𝑦(𝑡) = 𝜔(𝑡) −

∫

∞

0

𝑓(𝑡, 𝑠, 𝑦(𝛾
1
(𝑠)), . . . , 𝑦(𝛾

𝑁
(𝑠)))𝑑𝑠, 𝑡 ≥ 0, in the context of Banach spaces, with the intention of giving sufficient conditions

that ensure the existence of solutions with the same asymptotic behavior at ∞ as 𝜔(𝑡). A similar equation, but requiring a little
less restrictive hypotheses, is 𝑦(𝑡) = 𝜔(𝑡) − ∫

∞

0

𝑞(𝑡, 𝑠)𝐹(𝑠, 𝑦(𝛾
1
(𝑠)), . . . , 𝑦(𝛾

𝑁
(𝑠)))𝑑𝑠, 𝑡 ≥ 0. In the case of 𝑞(𝑡, 𝑠) = (𝑡 − 𝑠)

+
,

its solutions with asymptotic behavior given by 𝜔(𝑡) yield solutions of the second order nonlinear abstract differential equation
𝑦


(𝑡) − 𝜔


(𝑡) + 𝐹(𝑡, 𝑦(𝛾
1
(𝑡)), . . . , 𝑦(𝛾

𝑁
(𝑡))) = 0, with the same asymptotic behavior at∞ as 𝜔(𝑡).

1. Introduction

From the pioneering work of Atkinson [1], and subsequent
works found in the literature (see, e.g., [2–10] for recent
papers on the subject), we consider the following differential
problem, with deviating arguments:

𝑦


(𝑡) − 𝜔


(𝑡) + 𝐹 (𝑡, 𝑦 (𝛾
1
(𝑡)) , . . . , 𝑦 (𝛾

𝑁
(𝑡))) = 0, 𝑡 ≥ 0,

(1)

with the task of finding solutions 𝑦 with the same behavior
at ∞ as 𝜔. Solutions with this prescription are given by the
solutions of the following integral equation:

𝑦 (𝑡) = 𝜔 (𝑡) − ∫

∞

𝑡

(𝑠 − 𝑡) 𝐹 (𝑠, 𝑦 (𝛾
1
(𝑠)) , . . . , 𝑦 (𝛾

𝑁
(𝑠))) 𝑑𝑠,

𝑡 ≥ 0,

(2)

which, by writing 𝑓(𝑡, 𝑠, 𝑦(𝛾
1
(𝑠)), . . . , 𝑦(𝛾

𝑁
(𝑠))) = (𝑠 −

𝑡)
+
𝐹(𝑠, 𝑦(𝛾

1
(𝑠)), . . . , 𝑦(𝛾

𝑁
(𝑠))), is of the type

𝑦 (𝑡) = 𝜔 (𝑡) − ∫

∞

0

𝑓 (𝑡, 𝑠, 𝑦 (𝛾
1
(𝑠)) , . . . , 𝑦 (𝛾

𝑁
(𝑠))) 𝑑𝑠,

𝑡 ≥ 0.

(3)

The purpose of this note is to provide conditions that
ensure the existence of solutions to the above integral equa-
tion, whose asymptotic behavior at∞ is the same as that of
𝜔, thus giving a procedure to show existence of solutions with
prescribed asymptotic behavior of differential equation of the
type (1). Our wish is to also work out this integral equation in
the setting of Banach spaces.

Denote byR+ the set [0,∞) of nonnegative real numbers.
Assume that {𝛾

𝑗
}
𝑁

𝑗=1

is a finite set of continuous mappings
from R+ to R+, that (𝑋, ‖ ⋅ ‖

𝑋
) is a Banach space (with norm

‖ ⋅ ‖
𝑋
), and also that 𝜔 is a continuous mapping from R+ to

𝑋. Finally, assume that 𝑓 : R+ × R+ × 𝑋𝑁 → 𝑋 is a given
continuous mapping with certain regularity and integrability
conditions, to be specified later. In order to give a better aspect
to our equation, define, for each continuous𝑦 : R+ → 𝑋, the
mapping Γ(𝑦) : R+ → 𝑋

𝑁 given by

Γ (𝑦) (𝑡) = (𝑦 (𝛾
1
(𝑡)) , . . . , 𝑦 (𝛾

𝑁
(𝑡))) , 𝑡 ≥ 0. (4)

Then, our equation becomes

𝑦 (𝑡) = 𝜔 (𝑡) − ∫

∞

0

𝑓 (𝑡, 𝑠, Γ (𝑦) (𝑠)) 𝑑𝑠, 𝑡 ≥ 0, (𝐸)
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which, by writing 𝑥(𝑡) = 𝑦(𝑡) − 𝜔(𝑡), 𝑡 ∈ R+, is transformed
into

𝑥 (𝑡) = −∫

∞

0

𝑓 (𝑡, 𝑠, Γ (𝜔 + 𝑥) (𝑠)) 𝑑𝑠, 𝑡 ≥ 0. (𝐸)

Abitmore of notation and preliminary results are needed.
As customary, 𝐵

𝑋
(𝑥, 𝑟) denotes the open ball in𝑋 centered at

𝑥 with radius 𝑟. The closure in 𝑋 of any set 𝐴 ⊆ 𝑋 is written
𝐴, and its closed convex hull, co(𝐴). The space of continuous
𝑋-valued functions defined on R+ is denoted by C(R+, 𝑋),
while the space of bounded ones isC

𝑏
(R+, 𝑋). The latter is a

Banach space when endowed with the sup norm ‖ ⋅ ‖
∞
, (i.e.,

for 𝑥 ∈ C
𝑏
(R+, 𝑋), ‖𝑥‖

∞
= sup

𝑡∈R+‖𝑥(𝑡)‖𝑋).
The Schauder fixed point theorem states that any con-

tinuous operator 𝑇 defined on a nonempty, bounded, closed
and convex subset 𝐶 of a Banach space has necessarily a
fixed point, provided that 𝑇(𝐶) is a relatively compact subset
of 𝐶. We will also be needing a well-known version of the
Arzelà-Ascoli theorem which, in the case that occupies us,
is as follows: if a family F ⊆ C(R+, 𝑋) is equicontinuous
at each 𝑡 ∈ R+, and each section F(𝑡) := {𝑢(𝑡) : 𝑢 ∈ F}

is relatively compact in 𝑋, then each sequence {𝑢
𝑛
} ⊆ F

contains a subsequence that converges uniformly on compact
subsets of R+ to a given𝑋-valued function 𝑢.

Let us also say a word about vector integrals. For a brief
introduction see, for example, [11] or [12]. If𝑓 : [𝑎, 𝑏] → 𝑋 is
a bounded vector function, the Riemann sum of 𝑓 associated
to a finite partition of [𝑎, 𝑏], ℘ = {𝑎 = 𝑡

0
< 𝑡
1
< ⋅ ⋅ ⋅ < 𝑡

𝑛
= 𝑏}

(with norm ‖℘‖ = max
𝑗
|𝑡
𝑗
− 𝑡
𝑗−1
|), and to a selection {𝑡∗

𝑗
}
𝑛

𝑗=1

,
𝑡
∗

𝑗
∈ [𝑡
𝑗−1
, 𝑡
𝑗
], is ∑𝑛

𝑗=1
𝑓(𝑡
∗

𝑗
)(𝑡
𝑗
− 𝑡
𝑗−1
). Without specifying the

type of limit alluded, we say that 𝑓 is Riemann integrable on
[𝑎, 𝑏] if there exists the limit of its Riemann sums as the norm
of the partitions of [𝑎, 𝑏] tends to 0, in which case, this limit
(which is unique) is called the integral of 𝑓 over [𝑎, 𝑏] and is
denoted by ∫𝑏

𝑎

𝑓(𝑡)𝑑𝑡. That is, being a little bit sloppy with the
notation, we have

∫

𝑏

𝑎

𝑓 (𝑡) 𝑑𝑡 = lim
‖℘‖→0

∑

𝑗

𝑓 (𝑡
∗

𝑗
) (𝑡
𝑗
− 𝑡
𝑗−1
) . (5)

Observe that whenever𝑓 is integrable on [𝑎, 𝑏], then each
Riemann sum associated to 𝑓 is (𝑏 − 𝑎) times a linear convex
combination of elements of 𝑓([𝑎, 𝑏]). Therefore, the integral
of 𝑓 over [𝑎, 𝑏], being a limit of Riemann sums, is a multiple
of an element of the closed convex hull of 𝑓([𝑎, 𝑏]), that is,

∫

𝑏

𝑎

𝑓 (𝑡) 𝑑𝑡 = lim
‖℘‖→0

(𝑏 − 𝑎)

× ∑

𝑗

𝑓 (𝑡
∗

𝑗
)

𝑡
𝑗
− 𝑡
𝑗−1

𝑏 − 𝑎

∈ (𝑏 − 𝑎) co𝑓 ([𝑎, 𝑏]) .

(6)

2. Existence of Solutions

We begin this section enumerating the conditions that will
be basic for our results on existence of solutions of (𝐸). Take

𝑓, 𝛾
𝑗
, and 𝜔 as above and, in analogy with what would

happen with continuous mappings on finite dimensional
spaces, assume that

𝑓 is uniformly continuous on bounded sets

of R+ ×R
+

× 𝑋
𝑁

, and maps bounded

sets into relatively compact sets of 𝑋.

(H0)

The following conditions have already been motivated in
previous work [7]. Recall that 𝜔 : R+ → 𝑋 is continuous,
but not necessarily bounded.

There exists 𝑔 :R+→R
+ bounded,with 𝑔 (𝑡)

𝑡→∞

→ 0,

such that for 𝐶 = {𝑦 ∈ C (R
+

, 𝑋) :





𝑦 (𝑡) − 𝜔 (𝑡)




𝑋

≤ 𝑔 (𝑡) , 𝑡 ∈ R
+

} ,

∫

∞

0





𝑓 (𝑡, 𝑠, Γ (𝑦) (𝑠))




𝑋
𝑑𝑠 ≤ 𝑔 (𝑡) , ∀𝑡 ∈ R

+

, ∀𝑦∈𝐶.

(H1)

There exists ℎ : R+ → R
+ with ℎ (𝜏)

𝜏→∞

→ 0 , such that

∫

∞

𝜏





𝑓 (𝑡, 𝑠, Γ (𝑦) (𝑠))




𝑋
𝑑𝑠 ≤ ℎ (𝜏) , ∀𝑡, 𝜏 ∈ R

+

, ∀𝑦 ∈ 𝐶.

(H2)

The result on existence of solutions to the integral equa-
tion is the following.

Theorem 1. Under hypotheses (H0), (H1), and (H2), the
integral equation (𝐸) has a solution 𝑦(𝑡) asymptotically equal
to 𝜔(𝑡) as 𝑡 → ∞.

Remark 2. This theorem represents a generalization of the
one presented in the work [7] in two aspects. First, we have
made the jump to deal with integral equations in the setting
of infinite dimensional spaces. And second, we have included
deviating arguments in the equation.

Proof of Theorem 1. First observe that it suffices to find a
solution to the integral equation (𝐸) in𝐶 = {𝑥 ∈ C

𝑏
(R+, 𝑋) :

‖𝑥(𝑡)‖
𝑋
≤ 𝑔(𝑡), 𝑡 ∈ R+}, and this will be achieved by proving

the existence of a fixed point in 𝐶 of the operator:

𝑇 : 𝑥 ∈ 𝐶 → 𝑇𝑥,

𝑇𝑥 (𝑡) = −∫

∞

0

𝑓 (𝑡, 𝑠, Γ (𝜔 + 𝑥) (𝑠)) 𝑑𝑠, 𝑡 ≥ 0.

(7)

We proceed to check that the conditions of the Schauder
fixed point Theorem are fulfilled. First observe that 𝐶 is a
nonempty, bounded, closed, and convex subset of the Banach
space C

𝑏
(R+, 𝑋). Also, by (H1), ‖𝑇𝑥(𝑡)‖

𝑋
≤ 𝑔(𝑡) for all

𝑡 ∈ R+ and all 𝑥 ∈ 𝐶. So 𝑇𝐶 ⊆ 𝐶 provided 𝑇𝑥 ∈ C(R+, 𝑋)

for all 𝑥 ∈ 𝐶.
In fact, we will prove four assertions. (a) 𝑇𝐶 is uniformly

equicontinuous on R+. This will give the desired continuity
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of 𝑇𝑥 for each 𝑥 ∈ 𝐶. (b) 𝑇 is uniformly continuous on 𝐶,
hence it will be continuous on 𝐶. (c) 𝑇𝐶(R+) is relatively
compact in 𝑋. Thus, (a) and (c) will imply, by the Arzelà-
Ascoli theorem, that each sequence in 𝑇𝐶 has a subsequence
which converges uniformly on each compact subset of R+ to
a given function inC(R+, 𝑋) (actually in𝐶). Finally, in order
to obtain that 𝑇𝐶 is relatively compact inC

𝑏
(R+, 𝑋), we will

use the “funnel” structure of𝐶 to prove (d), that any sequence
in 𝐶 which converges uniformly on each compact subset of
R+ to a given function in 𝐶must indeed converge uniformly
to that function in all of R+. With all these assertions, the
Schauder fixed point theorem can be applied to conclude the
existence of a fixed point of 𝑇, as we want.

Start fixing an arbitrary 𝜀 > 0 once for all. In what follows,
we will build up different objects indexed by this 𝜀, (𝑡

𝜀
, 𝜏
𝜀
,𝐷
𝜀
,

𝐵
𝜀
), knowing that even if for each assertion we have to start

taking an arbitrary 𝜀 > 0, the objects will vary accordingly
but not the way to obtain them.

Since 𝑔(𝑡) → 0 as 𝑡 → ∞, there exists 𝑡
𝜀
> 0 such that

𝑔 (𝑡) <

𝜀

2

, ∀𝑡 ≥ 𝑡
𝜀
. (8)

We start proving (d), as it is quite independent of the rest
of assertions. Assume that a sequence {𝑢

𝑛
} ⊆ 𝐶 converges

uniformly on each compact subset of R+ to a function 𝑢 ∈

𝐶, and let us show that indeed converges uniformly to 𝑢 in
all of R+. For the 𝜀 > 0 above (so for any 𝜀 > 0), find the
corresponding 𝑡

𝜀
> 0 to satisfy (8). Since 𝑢

𝑛
, 𝑛 ∈ N, and 𝑢 all

belong to 𝐶, then





𝑢
𝑛
(𝑡) − 𝑢 (𝑡)




𝑋

≤ 2𝑔 (𝑡) , ∀𝑛 ∈ N, ∀𝑡 ∈ R
+

. (9)

In particular,





𝑢
𝑛
(𝑡) − 𝑢 (𝑡)




𝑋

≤ 2𝑔 (𝑡) < 𝜀, ∀𝑛 ∈ N, ∀𝑡 ≥ 𝑡
𝜀
. (10)

Now, since {𝑢
𝑛
} converges uniformly to 𝑢 in [0, 𝑡

𝜀
], there

exists 𝑛
𝜀
∈ N such that





𝑢
𝑛
(𝑡) − 𝑢 (𝑡)




𝑋

< 𝜀, ∀𝑛 ≥ 𝑛
𝜀
, ∀𝑡 ∈ [0, 𝑡

𝜀
] . (11)

This tells us that if 𝑛 ≥ 𝑛
𝜀
, then ‖𝑢

𝑛
− 𝑢‖
∞
≤ 𝜀, proving

that the convergence of {𝑢
𝑛
} to 𝑢 is uniform on R+, and thus

(d) is proven.
Next, continue building up other objects associated with

the arbitrary 𝜀 fixed above. Observe that, by (8) and (H1),

‖𝑇𝑥 (𝑡)‖
𝑋
≤ ∫

∞

0





𝑓 (𝑡, 𝑠, Γ (𝜔 + 𝑥) (𝑠))




𝑋
𝑑𝑠

≤ 𝑔 (𝑡) <

𝜀

2

, ∀𝑡 ≥ 𝑡
𝜀
, ∀𝑥 ∈ 𝐶.

(12)

Also, since ℎ(𝜏) → 0 as 𝜏 → ∞, there exists 𝜏
𝜀
> 0 such

that

ℎ (𝜏) <

𝜀

4

, ∀𝜏 ≥ 𝜏
𝜀
, (13)

so, by (H2),

∫

∞

𝜏
𝜀





𝑓 (𝑡, 𝑠, Γ (𝜔 + 𝑥) (𝑠))




𝑋
𝑑𝑠

≤ ℎ (𝜏
𝜀
) <

𝜀

4

, ∀𝑡 ∈ R
+

, ∀𝑥 ∈ 𝐶.

(14)

The continuity of 𝜔 and the 𝛾
𝑗
’s, 𝑗 = 1, . . . , 𝑁, and the

uniform bound for functions in 𝐶 (given by the bound of 𝑔)
imply that there exists a bounded set𝐷

𝜀
⊆ 𝑋
𝑁, depending on

𝜏
𝜀
, 𝜔, the 𝛾

𝑗
’s, and 𝑔, but not on 𝑥 ∈ 𝐶, such that

Γ (𝜔 + 𝑥) (𝑠)

= (𝜔 (𝛾
1
(𝑠)) + 𝑥 (𝛾

1
(𝑠)) , . . . , 𝜔 (𝛾

𝑁
(𝑠)) + 𝑥 (𝛾

𝑁
(𝑠))) ∈ 𝐷

𝜀
,

∀𝑥 ∈ 𝐶, ∀𝑠 ∈ [0, 𝜏
𝜀
] .

(15)

Now, observe that 𝐵
𝜀
:= [0, 𝑡

𝜀
+1]×[0, 𝜏

𝜀
]×𝐷
𝜀
is bounded

in R+ ×R+ × 𝑋𝑁, so by (H0),

𝑓 is uniformly continuous on 𝐵
𝜀
,

and 𝑓 (𝐵
𝜀
) is relatively compact in 𝑋.

(16)

By the uniform continuity of 𝑓 on 𝐵
𝜀
, there exists 𝛿

𝜀
∈

(0, 1) such that, whenever (𝑡
1
, 𝑠
1
, 𝑦
1,1
, . . . , 𝑦

𝑁,1
) ∈ 𝐵

𝜀
and

(𝑡
2
, 𝑠
2
, 𝑦
1,2
, . . . , 𝑦

𝑁,2
) ∈ 𝐵

𝜀
with |𝑡

1
− 𝑡
2
| < 𝛿
𝜀
, |𝑠
1
− 𝑠
2
| < 𝛿
𝜀
,

and ‖𝑦
𝑗,1
− 𝑦
𝑗,2
‖
𝑋

< 𝛿
𝜀
, 𝑗 = 1, . . . , 𝑁, then





𝑓 (𝑡
1
, 𝑠
1
, 𝑦
1,1
, . . . , 𝑦

𝑁,1
) − 𝑓 (𝑡

2
, 𝑠
2
, 𝑦
1,2
, . . . , 𝑦

𝑁,2
)



𝑋

<

𝜀

4𝜏
𝜀

.

(17)

Notice that if 𝑡
1
, 𝑡
2
∈ R+ with |𝑡

1
− 𝑡
2
| < 𝛿
𝜀
and, without

loss of generality, 𝑡
1
≤ 𝑡
2
, then several cases are possible. If

𝑡
2
≥ 𝑡
𝜀
+ 1, then, as 𝛿

𝜀
< 1, 𝑡
2
≥ 𝑡
1
> 𝑡
2
− 𝛿
𝜀
> 𝑡
𝜀
+ 1 − 1 = 𝑡

𝜀
,

and so, by (12),




𝑇𝑥 (𝑡
1
) − 𝑇𝑥 (𝑡

2
)



𝑋

≤




𝑇𝑥 (𝑡
1
)



𝑋
+




𝑇𝑥 (𝑡
2
)



𝑋

< 𝜀,

∀𝑥 ∈ 𝐶.

(18)

If, on the other hand, 𝑡
2
≤ 𝑡
𝜀
+ 1, then, by (15), Γ(𝜔 +

𝑥)([0, 𝜏
𝜀
]) ⊆ 𝐷

𝜀
for all 𝑥 ∈ 𝐶, and, by (17) and (14), we have,

for any 𝑥 ∈ 𝐶,




𝑇𝑥 (𝑡
1
) − 𝑇𝑥 (𝑡

2
)



𝑋

≤ ∫

𝜏
𝜀

0





𝑓 (𝑡
2
, 𝑠, Γ (𝜔 + 𝑥) (𝑠))

−𝑓 (𝑡
1
, 𝑠, Γ (𝜔 + 𝑥) (𝑠))




𝑋
𝑑𝑠

+ ∫

∞

𝜏
𝜀





𝑓 (𝑡
1
, 𝑠, Γ(𝜔 + 𝑥)(𝑠))




𝑋
𝑑𝑠

+ ∫

∞

𝜏
𝜀





𝑓 (𝑡
2
, 𝑠, Γ(𝜔 + 𝑥)(𝑠))




𝑋
𝑑𝑠

< 𝜏
𝜀

𝜀

4𝜏
𝜀

+ 2

𝜀

4

< 𝜀.

(19)

This proves (a), the uniform equicontinuity of 𝑇𝐶 over R+.
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Now notice that if 𝑥
1
, 𝑥
2
∈ 𝐶 with ‖𝑥

1
− 𝑥
2
‖
∞
< 𝛿
𝜀
and

𝑡 ∈ R+, then, again, two cases are possible. If 𝑡 ≥ 𝑡
𝜀
, then, by

(12),





𝑇𝑥
1
(𝑡) − 𝑇𝑥

2
(𝑡)



𝑋

≤




𝑇𝑥
1
(𝑡)



𝑋
+




𝑇𝑥
2
(𝑡)



𝑋

≤ 2𝑔 (𝑡) < 𝜀,

(20)

while for 𝑡 ≤ 𝑡
𝜀
, using (15), (17), (14), and (13),





𝑇𝑥
1
(𝑡) − 𝑇𝑥

2
(𝑡)



𝑋

≤ ∫

𝜏
𝜀

0





𝑓 (𝑡, 𝑠, Γ (𝜔 + 𝑥

2
) (𝑠))

−𝑓 (𝑡, 𝑠, Γ (𝜔 + 𝑥
1
) (𝑠))




𝑋
𝑑𝑠

+ ∫

∞

𝜏
𝜀





𝑓 (𝑡, 𝑠, Γ (𝜔 + 𝑥

1
) (𝑠))




𝑋
𝑑𝑠

+ ∫

∞

𝜏
𝜀





𝑓 (𝑡, 𝑠, Γ (𝜔 + 𝑥

2
) (𝑠))




𝑋
𝑑𝑠

< 𝜏
𝜀

𝜀

4𝜏
𝜀

+ 2ℎ (𝜏
𝜀
) < 𝜀,

(21)

This proves that ‖𝑇𝑥
1
− 𝑇𝑥
2
‖
∞

< 𝜀, showing (b), that 𝑇 is
uniformly continuous on 𝐶.

For the compactness of 𝑇𝐶 (R+) in 𝑋, it suffices to show
that 𝑇𝐶 (R+) is totally bounded [13, page 298]; that is, for the
given 𝜀 > 0 (so for any 𝜀 > 0) there exists a finite covering
of 𝑇𝐶 (R+)with balls of radii not bigger than 𝜀. Observe first
that, by (12), ‖𝑇𝑥(𝑡)‖

𝑋
< 𝜀/2 for all 𝑥 ∈ 𝐶 and all 𝑡 ≥ 𝑡

𝜀
, that

is,

𝑇𝐶 ([𝑡
𝜀
,∞)) ⊆ 𝐵

𝑋
(0,

𝜀

2

) . (22)

Now, in order to control the elements of 𝑇𝐶([0, 𝑡
𝜀
]),

observe that each of these can be decomposed as the sum of
a “head” and a “tail,”

𝑇𝑥 (𝑡) = − ∫

𝜏
𝜀

0

𝑓 (𝑡, 𝑠, Γ (𝜔 + 𝑥) (𝑠)) 𝑑𝑠

− ∫

∞

𝜏
𝜀

𝑓 (𝑡, 𝑠, Γ (𝜔 + 𝑥) (𝑠)) 𝑑𝑠,

∀𝑥 ∈ 𝐶 and all 𝑡 ∈ [0, 𝑡
𝜀
] .

(23)

The “head” can be approximated by Riemann sums,
which, in turn, are nothing else but 𝜏

𝜀
times a convex linear

combination of elements of −𝑓(𝐵
𝜀
), that is, the “head” is an

element of 𝜏
𝜀
co(−𝑓(𝐵

𝜀
)). By (16), 𝑓(𝐵

𝜀
) has compact closure

in𝑋, so byMazur’s theorem [14], co(−𝑓(𝐵
𝜀
)) is compact, and

therefore it can be covered with a finite number of balls, say
𝐵
1
, . . . , 𝐵

ℓ
, of radii not bigger than 𝜀/(2𝜏

𝜀
). This yields a finite

covering of 𝜏
𝜀
co(−𝑓(𝐵

𝜀
)) with balls of radii not bigger than

𝜀/2, precisely the collection {𝜏
𝜀
𝐵
𝑗
}
ℓ

𝑗=1

. On the other hand, by
(14), the “tail” of each of the above integrals is bounded by

ℎ(𝜏
𝜀
) < 𝜀/4, so they are elements of 𝐵

𝑋
(0, 𝜀/4). All this can be

summarized as follows:

𝑇𝐶 ([0, 𝑡
𝜀
]) ⊆ 𝜏

𝜀
co (−𝑓 (𝐵

𝜀
)) + 𝐵

𝑋
(0,

𝜀

4

)

⊆ (

ℓ

⋃

𝑗=1

𝜏
𝜀
𝐵
𝑗
) + 𝐵

𝑋
(0,

𝜀

4

)

=

ℓ

⋃

𝑗=1

(𝜏
𝜀
𝐵
𝑗
+ 𝐵
𝑋
(0,

𝜀

4

)) ;

(24)

that is, 𝑇𝐶([0, 𝑡
𝜀
]) can be covered with a finite collection of

balls of radii smaller than 𝜀, because each 𝜏
𝜀
𝐵
𝑗
+ 𝐵
𝑋
(0, 𝜀/4) is

readily seen to be a ball of radius not bigger than 3𝜀/4.
At the end, by (22) and (24), we have

𝑇𝐶 (R
+

) ⊆ 𝑇𝐶 ([0, 𝑡
𝜀
]) ∪ 𝑇𝐶 ([𝑡

𝜀
,∞))

⊆

ℓ

⋃

𝑗=1

(𝜏
𝜀
𝐵
𝑗
+ 𝐵
𝑋
(0,

𝜀

4

)) ∪ 𝐵
𝑋
(0,

𝜀

2

) ;

(25)

that is, we have given a finite covering of 𝑇𝐶 (R+) with balls
of radii not bigger than 𝜀. With this we conclude (c) and, with
all four assertions proved, the theorem too.

Coming back to the integral equation (2) underlying the
differential equation (1), we just need to adapt the hypothe-
ses presented above to the function 𝑓(𝑡, 𝑠, 𝑦

1
, . . . , 𝑦

𝑁
) =

(𝑠 − 𝑡)
+
𝐹(𝑠, 𝑦

1
, . . . , 𝑦

𝑁
), to obtain a corresponding result

on existence of solutions to (2) with asymptotic behavior
given by 𝜔(𝑡). Notice that these hypotheses, (H0), (H1),
and (H2), are natural generalizations from the 1-dimensional
case. However, the proof in the abstract setting has shown
many more properties for the operator 𝑇 that needed in
order to show the existence of a fixed point. This, somehow,
is telling us that the hypotheses could be weakened. For
the moment, we content ourselves noticing that, in (2), the
corresponding hypothesis of uniform continuity on bounded
sets is “not needed,” because it will be “consequence” of the
other hypotheses, and a little trick of changing the domain of
definition of the operator.Thus, for our next result, we will be
using the following hypothesis:

𝐹 : R
+

× 𝑋
𝑁

→ 𝑋 is continuous and

maps bounded sets into relatively compact ones.
(H0)

Also, instead of considering just the integral equation (2), we
generalize a little bit to a convolution type integral equation,

𝑦 (𝑡) = 𝜔 (𝑡) − ∫

∞

0

𝑞 (𝑡, 𝑠) 𝐹 (𝑠, Γ (𝑦) (𝑠)) 𝑑𝑠, 𝑡 ≥ 0,

(𝐸
1
)



Abstract and Applied Analysis 5

with a kernel 𝑞(𝑡, 𝑠) satisfying the right properties for us.
Observe that, when 𝑞(𝑡, 𝑠) = (𝑠 − 𝑡)

+
, and 0 ≤ 𝑡

1
≤ 𝑡
2
,

𝑞 (𝑡
1
, 𝑠) − 𝑞 (𝑡

2
, 𝑠) = (𝑠 − 𝑡

1
)
+
− (𝑠 − 𝑡

2
)
+

=

{
{

{
{

{

0 if 0 ≤ 𝑠 ≤ 𝑡
1

𝑠 − 𝑡
1

if 𝑡
1
≤ 𝑠 ≤ 𝑡

2

𝑡
2
− 𝑡
1

if 𝑡
2
≤ 𝑠

≤ 𝑡
2
− 𝑡
1
.

(26)

That is, 𝑞(𝑡, 𝑠) satisfies a Lipschitz condition on the first
variable, independent of the second. Actually, much less is
needed, just continuity of 𝑞(𝑡, 𝑠) suffices.

Theorem 3. Let 𝜔, 𝛾
𝑗
, 𝑗 = 1, . . . , 𝑁, Γ be as forTheorem 1, and

let 𝑞 : R+ × R+ → R be continuous. Under hypothe-
ses (H0), (H1), and (H2) (where 𝑓(𝑡, 𝑠, 𝑦

1
, . . . , 𝑦

𝑁
) =

𝑞(𝑡, 𝑠) 𝐹(𝑠, 𝑦
1
, . . . , 𝑦

𝑁
)), the integral equation (E

1
) has a solu-

tion 𝑦(𝑡) asymptotically equal to 𝜔(𝑡) as 𝑡 → ∞.

Remark 4. Observe, as in [7], that if the kernel 𝑞 is the one
we started with, 𝑞(𝑡, 𝑠) = (𝑠 − 𝑡)

+
, then hypothesis (H2) is

redundant, because in that case, if 𝑠 ≥ 𝜏, we always have, for
𝜏 ≤ 𝑡, (𝑠 − 𝑡)

+
≤ (𝑠 − 𝜏)

+
≤ 2(𝑠 − 𝜏/2)

+
, and for 𝜏 > 𝑡,

(𝑠 − 𝑡)
+
= 𝑠 − 𝑡 ≤ 𝑠 ≤ 2 (𝑠 −

𝜏

2

) = 2(𝑠 −

𝜏

2

)

+

. (27)

Consequently, from hypothesis (H1), taking ℎ(𝜏) = 3𝑔(𝜏/2),
we have ℎ(𝜏) → 0 as 𝜏 → ∞, and

∫

∞

𝜏

(𝑠 − 𝑡)
+





𝐹 (𝑠, Γ (𝑦) (𝑠))




𝑋

𝑑𝑠

≤ 3𝑔 (

𝜏

2

) = ℎ (𝜏) , ∀𝜏, 𝑡 ∈ R
+

, ∀𝑦 ∈ 𝐶.

(28)

In general, hypothesis (H2) is superfluouswhenever there
exist constants, 𝑎 ∈ (0, 1) and 𝐴 > 1, such that




𝑞 (𝑡, 𝑠)





≤ 𝐴





𝑞 (𝑎 𝜏, 𝑠)





, ∀𝑡, 𝑠, 𝜏 ∈ R

+

,with 𝑠 ≥ 𝜏. (29)

Proof of Theorem 3. We proceed as before. Consider initially
the same nonempty, bounded, closed, and convex subset𝐶 as
before, as well as the same operator 𝑇. The idea is to find a
fixed point for 𝑇 using the Schauder fixed point theorem. For
that, we start repeating the same scheme of four assertions
established in the previous theorem. The two assertions that
do not depend on the uniform continuity of 𝑓 on bounded
sets are done the same way as before; hence we omit their
proofs. These are (c), that 𝑇𝐶(R+) is compact in 𝑋, and (d),
that uniform convergence on compact subsets of R+ of a
sequence in 𝐶 turns into actual uniform convergence on R+.

Let us now prove (a), that 𝑇𝐶 is uniformly equicontin-
uous on R+. This will finish showing that 𝑇𝐶 ⊆ 𝐶, and, by
(c), (d), and the Arzelà-Ascoli theorem, that 𝑇𝐶 has compact
closure inC

𝑏
(𝑅
+

, 𝑋).
Let 𝜀 > 0 be fixed. Find, as before, 𝑡

𝜀
> 0, 𝜏

𝜀
> 0, and 𝐷

𝜀

bounded subset of𝑋𝑁, so as to satisfy (8), (12), (13), (14), and

(15). Now, observe that [0, 𝜏
𝜀
] × 𝐷
𝜀
is bounded in R+ × 𝑋𝑁,

so by (H0), 𝐹([0, 𝜏
𝜀
] × 𝐷
𝜀
) is relatively compact in𝑋; hence

there exists𝑀
𝜀
> 0 such that

‖𝐹 (𝑠, Γ (𝜔 + 𝑥) (𝑠))‖
𝑋
≤ 𝑀
𝜀
, ∀𝑠 ∈ [0, 𝜏

𝜀
] , ∀𝑥 ∈ 𝐶. (30)

Notice now that 𝑞 is uniformly continuous on𝑅
𝜀
= [0, 𝑡

𝜀
+

1] × [0, 𝜏
𝜀
]. So there is 𝛿

𝜀
∈ (0, 1) such that, whenever (𝑡

1
, 𝑠
1
)

and (𝑡
2
, 𝑠
2
) are in 𝑅

𝜀
with |𝑡

1
− 𝑡
2
| < 𝛿 and |𝑠

1
− 𝑠
2
| < 𝛿, then





𝑞 (𝑡
1
, 𝑠
1
) − 𝑞 (𝑡

2
, 𝑠
2
)




<

𝜀

4𝜏
𝜀
𝑀
𝜀

. (31)

Now take 𝑡
1
, 𝑡
2
∈ R+ with |𝑡

1
− 𝑡
2
| < 𝛿
𝜀
and, without loss

of generality, assume that 𝑡
1
≤ 𝑡
2
. Then again, several cases

are possible. If 𝑡
2
≥ 𝑡
𝜀
+ 1, then, as 𝛿

𝜀
< 1, 𝑡
2
≥ 𝑡
1
> 𝑡
2
− 𝛿
𝜀
>

𝑡
𝜀
+ 1 − 1 = 𝑡

𝜀
, and so, by (12),





𝑇𝑥 (𝑡
1
) − 𝑇𝑥 (𝑡

2
)



𝑋

≤




𝑇𝑥 (𝑡
1
)



𝑋
+




𝑇𝑥 (𝑡
2
)



𝑋

< 𝜀,

∀𝑥 ∈ 𝐶.

(32)

If, on the other hand, 𝑡
2
≤ 𝑡
𝜀
+ 1, then, by (31), (30), and

(14), we have, for any 𝑥 ∈ 𝐶,




𝑇𝑥 (𝑡
1
) − 𝑇𝑥 (𝑡

2
)



𝑋

≤ ∫

𝜏
𝜀

0





𝑞 (𝑡
2
, 𝑠) − 𝑞 (𝑡

1
, 𝑠)





× ‖𝐹 (𝑠, Γ (𝜔 + 𝑥) (𝑠))‖
𝑋
𝑑𝑠

+ ∫

∞

𝜏
𝜀





𝑞 (𝑡
1
, 𝑠)




‖𝐹 (𝑠, Γ (𝜔 + 𝑥) (𝑠))‖

𝑋
𝑑𝑠

+ ∫

∞

𝜏
𝜀





𝑞 (𝑡
2
, 𝑠)




‖𝐹 (𝑠, Γ (𝜔 + 𝑥) (𝑠))‖

𝑋
𝑑𝑠

<

𝜀

4𝜏
𝜀
𝑀
𝜀

𝑀
𝜀
𝜏
𝜀
+ 2

𝜀

4

< 𝜀.

(33)

This proves the uniform equicontinuity of 𝑇𝐶 over R+.
To finish the proof, we have to prove (b), that 𝑇 is

uniformly continuous. It is here that we restrict the domain of
definition of 𝑇. Observe that co(𝑇𝐶) is nonempty, closed and
convex. Also, co(𝑇𝐶) ⊆ 𝐶 because 𝑇𝐶 ⊆ 𝐶 and 𝐶 is closed
and convex.More is true, since𝑇𝐶 has compact closure, then,
byMazur’sTheorem, co(𝑇𝐶) is compact too. Onemore thing,
𝑇 leaves invariant co(𝑇𝐶):

co (𝑇𝐶) ⊆ 𝐶 ⇒ 𝑇(co (𝑇𝐶)) ⊆ 𝑇𝐶 ⊆ co (𝑇𝐶) . (34)

With all of this, it suffices to prove that 𝑇 is continuous
on this new 𝑇-invariant set. Let us prove that, indeed, 𝑇
is uniformly continuous on co(𝑇𝐶). Let 𝜀 > 0 be given.
Find that 𝑡

𝜀
> 0 and 𝜏

𝜀
> 0 as before, so as to satisfy

(8), (12), (13), and (14). The continuity of 𝜔 and the 𝛾
𝑗
’s,

𝑗 = 1, . . . , 𝑁, and the compactness of co(𝑇𝐶) tells us that
𝐷
𝜀
= {Γ(𝜔 + 𝑥)(𝑠) : 𝑠 ∈ [0, 𝜏

𝜀
], 𝑥 ∈ co(𝑇𝐶)} is a

compact subset of 𝑋𝑁, giving us the opportunity to say that
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𝐹 is uniformly continuous on [0, 𝜏
𝜀
] × 𝐷
𝜀
and, consequently,

that 𝑓(𝑡, 𝑠, 𝑦
1
, . . . , 𝑦

𝑁
) = 𝑞(𝑡, 𝑠) 𝐹(𝑠, 𝑦

1
, . . . , 𝑦

𝑁
) is uniformly

continuous on 𝐵
𝜀
:= [0, 𝑡

𝜀
+ 1] × [0, 𝜏

𝜀
] × 𝐷
𝜀
. So there exists

𝛿
𝜀
∈ (0, 1) such that, for (𝑡

1
, 𝑠
1
, 𝑦
1,1
, . . . , 𝑦

𝑁,1
) ∈ 𝐵

𝜀
and

(𝑡
2
, 𝑠
2
, 𝑦
1,2
, . . . , 𝑦

𝑁,2
) ∈ 𝐵

𝜀
with |𝑡

1
− 𝑡
2
| < 𝛿
𝜀
, |𝑠
1
− 𝑠
2
| < 𝛿
𝜀
,

and ‖𝑦
𝑗,1
− 𝑦
𝑗,2
‖
𝑋

< 𝛿
𝜀
, 𝑗 = 1, . . . , 𝑁, then





𝑓 (𝑡
1
, 𝑠
1
, 𝑦
1,1
, . . . , 𝑦

𝑁,1
) − 𝑓 (𝑡

2
, 𝑠
2
, 𝑦
1,2
, . . . , 𝑦

𝑁,2
)



𝑋

<

𝜀

4𝜏
𝜀

.

(35)

Now, it is a matter of repeating the same steps as was done in
Theorem 1 to prove the uniform continuity of 𝑇.

This concludes the proof of the theorem.

Remark 5. Instead of working with functions defined onR+,
we could have worked with functions defined on any interval
of the type [𝑡

0
,∞), obtaining a result completely similar. Also,

many times, one is just interested in giving partial solutions;
that is, solutions defined not on the whole interval [𝑡

0
,∞),

but on some other interval [𝑡
1
,∞) with 𝑡

1
≥ 𝑡
0
.

Next, we just mention an easy result on the existence
of solutions of the underlying differential equation, just
to illustrate the type of functions 𝐹 that could generate a
condition like (H1). This result is inspired from [7, Thm. 2]
and [8, Thm. 1].

Theorem 6. Let 𝐹 : R+ × 𝑋𝑁 → 𝑋 be a continuous function
mapping bounded sets into relatively compact ones, such that,





𝐹 (𝑡, 𝑦

1
, . . . , 𝑦

𝑁
)



𝑋

≤ 𝜓 (𝑡) ,

∀𝑡 ∈ R
+

, ∀ (𝑦
1
, . . . , 𝑦

𝑁
) ∈ 𝑋
𝑁

,

(36)

where

𝜓 : R
+

→ R
+

, 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑠 ∫

∞

0

𝑠𝜓 (𝑠) 𝑑𝑠 < ∞. (37)

Let also {𝛾
𝑗
}
𝑁

𝑗=1

be a set of continuous functions fromR+ toR+.
Then, for any 𝜔 ∈ C2(R+, 𝑋), (1) has a solution 𝑦 ∈

C2(R+, 𝑋) with 𝑦(𝑡) − 𝜔(𝑡) → 0 as 𝑡 → ∞.

Proof. Take 𝜔 ∈ C2(R+, 𝑋), consider the corresponding
integral equation (2), and define

𝑔 (𝑡) = ∫

∞

𝑡

𝑠𝜓 (𝑠) 𝑑𝑠, 𝑡 ≥ 0. (38)

Observe that, by (37), 𝑔(𝑡) → 0 as 𝑡 → ∞. This allows
us to consider the set

𝐶 = {𝑦 ∈ C (R
+

, 𝑋) :




𝑦 (𝑡) − 𝜔 (𝑡)




𝑋

≤ 𝑔 (𝑡) , 𝑡 ≥ 0} ,

(39)

which, adopting the notation used throughout the paper,
gives by (36), for 𝑦 ∈ 𝐶 and 𝑡 ≥ 0,

∫

∞

𝑡





(𝑠 − 𝑡) 𝐹 (𝑠, Γ (𝑦) (𝑠))




𝑋
𝑑𝑠 ≤ ∫

∞

𝑡

(𝑠 − 𝑡) 𝜓 (𝑠) 𝑑𝑠 ≤ 𝑔 (𝑡) .

(40)

With this, Theorem 3 applies (hypothesis (H2) need not
be verified by Remark 4) and then there exists 𝑦 ∈ C(R+, 𝑋),
solution of (2) with 𝑦(𝑡) − 𝜔(𝑡) → 0 as 𝑡 → ∞.
Finally, it is just an exercise to check that 𝑦 is twice continu-
ously differentiable and that satisfies the differential equation
(1).
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A ratio-dependent predator-prey model with two time delays is studied. By means of an iteration technique, sufficient conditions
are obtained for the global attractiveness of the positive equilibrium. By comparison arguments, the global stability of the semitrivial
equilibrium is addressed. By using the theory of functional equation and Hopf bifurcation, the conditions on which positive
equilibrium exists and the quality of Hopf bifurcation are given. Using a global Hopf bifurcation result of Wu (1998) for functional
differential equations, the global existence of the periodic solutions is obtained. Finally, an example for numerical simulations is
also included.

1. Introduction

The main purpose of this paper is to investigate the bifurca-
tion phenomena from the delays for the following predator-
prey system:

̇𝑥 (𝑡) = 𝑥 (𝑡) [𝑟
1
− 𝑎

11
𝑥 (𝑡) −

𝑎
12
𝑥 (𝑡) 𝑦 (𝑡 − 𝜏

2
)

𝑚𝑦
2
(𝑡 − 𝜏

2
) + 𝑥

2
(𝑡)

] ,

̇𝑦 (𝑡) =

𝑎
21
𝑥
2

(𝑡 − 𝜏
1
) 𝑦 (𝑡)

𝑚𝑦
2
(𝑡) + 𝑥

2
(𝑡 − 𝜏

1
)

− 𝑟
2
𝑦 (𝑡) ,

(1)

where 𝑥(𝑡) and 𝑦(𝑡) stand for the population (or den-
sity) of the prey and the predator at time 𝑡, respectively.
From the biological sense, we assume that 𝑥2 + 𝑦2 ̸= 0.
𝑟
1
, 𝑟

2
, 𝑎

11
, 𝑎

12
, 𝑎

21
, and 𝑚 are positive constants, in which

𝑟
1
denotes the intrinsic growth rate of the prey, 𝑎

11
is

the intraspecific competition rate of the prey, 𝑎
12

is the
capturing rate of the predator, 𝑎

21
/𝑎

12
describes the efficiency

of the predator in converting consumed prey into predator
offspring, 𝑚 is the interference coefficient of the predators,
and 𝑟

2
is the predator mortality rate.The delay 𝜏

1
≥ 0 denotes

the gestation period of the predator; 𝜏
2
≥ 0 is the hunting

delay of the predator to prey.

This model is labeled “ratio-dependent,” which means
that the functional and numerical responses depend on the
densities of both prey andpredators, especiallywhenpredator
has to search for food. Such a functional response is called a
ratio-dependent response function (see [1] for more details).
In system (1), the ratio-dependent response function is of the
form 𝑔(𝑥/𝑦) = 𝑐(𝑥/𝑦)2/(𝑚 + (𝑥/𝑦)2) = 𝑐𝑥2/(𝑚𝑦2 + 𝑥2).

The ratio-dependent predator-prey model has been stud-
ied by several researchers recently and very rich dynamics
have been observed [2–5]. For example, Xu et al. [4] studied a
delayed ratio-dependent predator-prey model with the same
ratio-dependent response function of system (1). Bymeans of
an iteration technique, they obtained the sufficient conditions
for the global attractiveness of the positive equilibrium. By
comparison arguments, they proved the global stability of the
semitrivial equilibrium. Finally using the theory of functional
equation and Hopf bifurcation, they gave the condition
on which positive equilibrium exists and the formulae to
determine the quality of Hopf bifurcation. But in their work,
the global continuation of local Hopf bifurcation was not
mentioned.

In general, periodic solutions through the Hopf bifurca-
tion in delay differential equations are local for the values
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of parameters which are only in a small neighborhood of
the critical values (see, e.g., [6, 7]). Therefore we would like
to know if these nonconstant periodic solutions obtained
through local bifurcation can continue for a large range of
parameter values. Recently, a great deal of research has been
devoted to the topics [8–12]. One of the methods used in
them is the global Hopf bifurcation theorem by Wu [13]. For
example, Song et al. [12] studied a predator-prey system with
two delays, and using the methods in [13], they get the global
existence of periodic solutions.

Motivated by [12], we will study the system (1); special
attention is paid to the global continuation of local Hopf
bifurcation. We suppose that the initial condition for system
(1) takes the form

𝑥 (𝜃) = 𝜙 (𝜃) , 𝑦 (𝜃) = 𝜓 (𝜃) , 𝜙 (𝜃) ≥ 0, 𝜓 (𝜃) ≥ 0,

𝜃 ∈ [−𝜏, 0] (𝜏 = 𝜏
1
+ 𝜏

2
) , 𝜙 (0) > 0, 𝜓 (0) > 0,

(2)

where (𝜙(𝜃), 𝜓(𝜃)) ∈ C([−𝜏, 0],R2

+0
), which is the Banach

space of continuous functions mapping the interval [−𝜏, 0]
into R2

+0
, where R2

+0
= {(𝑥, 𝑦) | 𝑥 ≥ 0, 𝑦 ≥ 0}.

By the fundamental theory of functional differential
equations [14], system (1) has a unique solution (𝑥(𝑡), 𝑦(𝑡))
satisfying initial condition (2).

The rest of the paper is organized as follows. In Section 2,
we show the positivity and the boundedness of solutions
of system (1) with initial condition (2). In Section 3, we
study the existence of Hopf bifurcation for system (1) at the
positive equilibrium. In Section 4, using the normal form
theory and the center manifold reduction, explicit formulae
are derived to determine the direction of bifurcation and
the stability and other properties of bifurcating periodic
solutions. In Section 5, by means of an iteration technique,
sufficient conditions are obtained for the global attractiveness
of the positive equilibrium. In Section 6, we consider the
global existence of bifurcating periodic solutions and give
some numerical simulations. In Section 7, a brief discussion
is given.

2. Positivity and Boundedness

In this section, we study the positivity and boundedness of
solutions of system (1) with initial conditions (2).

Theorem 1. Solutions of system (1) with initial condition (2)
are positive for all 𝑡 ≥ 0.

Proof. Assume (𝑥(𝑡), 𝑦(𝑡)) to be a solution of system (1) with
initial condition (2). Let us consider 𝑦(𝑡) for 𝑡 ≥ 0. It follows
from the second equation of system (1) that

𝑦 (𝑡) = 𝑦 (0) 𝑒
∫

𝑡

0

((𝑎
21
𝑥
2

(𝑠−𝜏
1
)/𝑚𝑦
2

(𝑠)+𝑥
2

(𝑠−𝜏
1
))−𝑟
2
)𝑑𝑠

; (3)

then, from initial condition (2), we have 𝑦(𝑡) > 0, for 𝑡 ≥ 0.
We derive from the first equation of system (1) that

𝑥 (𝑡) = 𝑥 (0) 𝑒
∫

𝑡

0

(𝑟
1
−𝑎
11
𝑥(𝑠)−(𝑎

12
𝑥(𝑠)𝑦(𝑠−𝜏

2
)/𝑚𝑦
2

(𝑠−𝜏
2
)+𝑥
2

(𝑠)))𝑑𝑠

; (4)

that is, 𝑥(𝑡) > 0 for 𝑡 ≥ 0. This ends the proof.

For the following discussion of boundedness, we first
consider the following ordinary differential equation:

̇𝑢 =

𝑎
21
𝐴

2

1
𝑢 (𝑡)

𝑚𝑢
2
(𝑡) + 𝐴

2

1

− 𝑟
2
𝑢 (𝑡) , 𝑢 (0) > 0, (5)

where 𝑎
21
, 𝑟

2
, 𝐴

1
, and𝑚 are positive constants. FromLemma

2.1 in [5], it is easy to verify the following result.

Lemma 2. If 𝑎
21
< 𝑟

2
, the trivial equilibrium 𝑢

0

= 0 of
(5) is globally stable. If 𝑎

21
> 𝑟

2
, then (5) admits a unique

positive equilibrium 𝑢∗ = √(𝑎
21
− 𝑟

2
)/𝑚𝑟

2
𝐴

1
which is globally

asymptotically stable in Λ = {𝑢 | 𝑢 ≥ 0}.

Theorem 3. Positive solutions of system (1) with initial condi-
tion (2) are ultimately bounded.

Proof. Let (𝑥(𝑡), 𝑦(𝑡)) be a positive solution of system (1) with
initial condition (2). From the first equation of system (1), we
have

̇𝑥 (𝑡) ≤ 𝑥 (𝑡) [𝑟
1
− 𝑎

11
𝑥 (𝑡)] , (6)

which yields

lim sup
𝑡→+∞

𝑥 (𝑡) ≤

𝑟
1

𝑎
11

; (7)

hence, for 𝜖 > 0 sufficiently small, there is a 𝑇
1
> 0 such that

if 𝑡 > 𝑇
1
, 𝑥(𝑡) < (𝑟

1
/𝑎

11
) + 𝜖.

We now consider the boundedness of 𝑦(𝑡). If 𝑎
21
≤ 𝑟

2
, we

derive from the second equation of system (1) that

̇𝑦 (𝑡) ≤ (𝑎
21
− 𝑟

2
) 𝑦 (𝑡) ≤ 0; (8)

from monotone bounded theorem, it is easy to show that
lim

𝑡→+∞
𝑦(𝑡) ≤ 𝑦(0).

Therefore, we assume below that 𝑎
21
> 𝑟

2
. We derive from

the second equation of system (1) that, for 𝑡 > 𝑇
1
+ 𝜏,

̇𝑦 (𝑡) ≤

𝑎
21
(𝑟

1
/𝑎

11
+ 𝜖)

2

𝑦 (𝑡)

𝑚𝑦
2
(𝑡) + (𝑟

1
/𝑎

11
+ 𝜖)

2
− 𝑟

2
𝑦 (𝑡) ; (9)

noting that 𝑎
21
> 𝑟

2
, by Lemma 2, a comparison argument

shows that

lim sup
𝑡→+∞

𝑦 (𝑡) ≤ √

𝑎
21
− 𝑟

2

𝑚𝑟
2

(

𝑟
1

𝑎
11

+ 𝜖) . (10)

This completes the proof.

3. Local Stability and Hopf Bifurcation

In this section, we discuss the local stability of the positive
equilibrium and the semitrivial equilibrium of system (1) and
establish the existence of Hopf bifurcation at the positive
equilibrium.
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It is easy to show that system (1) always has a semitrivial
equilibrium 𝐸

1
(𝑟

1
/𝑎

11
, 0). Further, if the following condition

holds:

(H1) 𝑟2
1
𝑎
2

21
𝑚 > 𝑎

2

12
𝑟
2
(𝑎

21
− 𝑟

2
) > 0,

then system (1) has a unique positive equilibrium 𝐸∗

(𝑥
∗

, 𝑦
∗

),
where

𝑥
∗

=

𝑟
1
𝑎
21
− 𝑟

2
𝑎
12
ℎ

𝑎
11
𝑎
21

, 𝑦
∗

= ℎ𝑥
∗

, (11)

where

ℎ = √

𝑎
21
− 𝑟

2

𝑚𝑟
2

. (12)

For convenience, let us introduce new variables 𝑋(𝑡) =
𝑥(𝑡 − 𝜏

1
), 𝑌(𝑡) = 𝑦(𝑡), 𝜏 = 𝜏

1
+ 𝜏

2
, rewriting 𝑋(𝑡), 𝑌(𝑡) as

𝑥(𝑡), 𝑦(𝑡), so that system (1) can be written as the following
system with a single delay:

̇𝑥 (𝑡) = 𝑥 (𝑡) [𝑟
1
− 𝑎

11
𝑥 (𝑡) −

𝑎
12
𝑥 (𝑡) 𝑦 (𝑡 − 𝜏)

𝑚𝑦
2
(𝑡 − 𝜏) + 𝑥

2
(𝑡)

] ,

̇𝑦 (𝑡) =

𝑎
21
𝑥
2

(𝑡) 𝑦 (𝑡)

𝑚𝑦
2
(𝑡) + 𝑥

2
(𝑡)

− 𝑟
2
𝑦 (𝑡) .

(13)

Clearly, system (13) has the same equilibrium as system (1).
The characteristic equation of system (13) at the semitriv-

ial equilibrium 𝐸
1
(𝑟

1
/𝑎

11
, 0) is of the form

(𝜆 + 𝑟
1
) (𝜆 + 𝑟

2
− 𝑎

21
) = 0. (14)

Clearly, (14) always has a root 𝜆 = −𝑟
1
, and if 𝑎

21
< 𝑟

2
, the

other root of (14) is negative; if 𝑎
21
> 𝑟

2
, the other root of (14)

is positive. Hence the semitrivial equilibrium 𝐸
1
(𝑟

1
/𝑎

11
, 0) is

locally asymptotically stable (unstable) if 𝑎
21
< 𝑟

2
(𝑎

21
> 𝑟

2
).

The characteristic equation of system (13) at the positive
equilibrium 𝐸∗

(𝑥
∗

, 𝑦
∗

) is of the form

𝜆
2

+ 𝑝
0
𝜆 + 𝑝

1
+ 𝑝

2
𝑒
−𝜆𝜏

= 0, (15)

where

𝑝
0
= 𝑟

1
−

2𝑎
12
𝑟
2

2
ℎ

𝑎
2

21

+

2𝑟
2
(𝑎

21
− 𝑟

2
)

𝑎
21

,

𝑝
1
= (𝑟

1
−

2𝑎
12
𝑟
2

2
ℎ

𝑎
2

21

)

2𝑟
2
(𝑎

21
− 𝑟

2
)

𝑎
21

,

𝑝
2
=

2𝑎
12
𝑟
2

2
ℎ (2𝑟

2
− 𝑎

21
) (𝑎

21
− 𝑟

2
)

𝑎
3

21

,

(16)

where ℎ is defined as (12).
When 𝜏 = 0, (15) becomes

𝜆
2

+ 𝑝
0
𝜆 + 𝑝

1
+ 𝑝

2
= 0. (17)

It is easy to show that

𝑝
1
+ 𝑝

2
=

2𝑟
2
(𝑎

21
− 𝑟

2
) (𝑟

1
𝑎
21
− 𝑎

12
𝑟
2
ℎ)

𝑎
2

21

. (18)

Obviously, if (H1) holds, then 𝑝
1
+𝑝

2
> 0. Hence, the positive

equilibrium 𝐸
∗

(𝑥
∗

, 𝑦
∗

) of system (13) is locally stable when
𝜏 = 0 if

𝑟
1
>

2𝑎
12
𝑟
2

2
ℎ

𝑎
2

21

−

2𝑟
2
(𝑎

21
− 𝑟

2
)

𝑎
21

, (19)

and it is unstable when 𝜏 = 0 if

𝑟
1
<

2𝑎
12
𝑟
2

2
ℎ

𝑎
2

21

−

2𝑟
2
(𝑎

21
− 𝑟

2
)

𝑎
21

. (20)

We assume that 𝜆 = 𝑖𝜔(𝜔 > 0) is a root of (15); this is the
case if and only if 𝜔 satisfies the following equation:

−𝜔
2

+ 𝑝
0
𝜔𝑖 + 𝑝

1
+ 𝑝

2
𝑒
−𝑖𝜔𝜏

= 0. (21)

Separating the real and imaginary parts, we obtain the
following system for 𝜔:

𝑝
2
cos𝜔𝜏 = 𝜔2

− 𝑝
1
,

𝑝
2
sin𝜔𝜏 = 𝑝

0
𝜔.

(22)

It follows that

𝜔
4

+ (𝑝
2

0
− 2𝑝

1
) 𝜔

2

+ 𝑝
2

1
− 𝑝

2

2
= 0. (23)

Letting 𝑧 = 𝜔2, (42) becomes

𝑧
2

+ (𝑝
2

0
− 2𝑝

1
) 𝑧 + 𝑝

2

1
− 𝑝

2

2
= 0. (24)

By a direct calculation, it follows that

𝑝
2

0
− 2𝑝

1
= (𝑟

1
−

2𝑎
12
𝑟
2

2
ℎ

𝑎
2

21

)

2

+ (

2𝑟
2
(𝑎

21
− 𝑟

2
)

𝑎
21

)

2

> 0,

𝑝
1
− 𝑝

2
=

2𝑟
2
(𝑎

21
− 𝑟

2
)

𝑎
21

(𝑟
1
−

4𝑎
12
𝑟
2

2
ℎ + 𝑎

12
𝑎
21
𝑟
2
ℎ

𝑎
2

21

) .

(25)

Note that if (H1) holds, then 𝑝
1
+ 𝑝

2
> 0. Hence if (H1) and

𝑝
1
− 𝑝

2
> 0 hold, (24) has no positive roots. Accordingly, if

(H1) and 𝑝
1
− 𝑝

2
> 0 hold, the positive equilibrium 𝐸

∗ of
system (13) exists and is locally asymptotically stable for all
𝜏 ≥ 0. If (H1) and 𝑝

1
− 𝑝

2
< 0 hold, then (24) has a unique

positive root 𝜔
0
, where

𝜔
2

0
=

1

2

(2𝑝
1
− 𝑝

2

0
+ √𝑝

4

0
− 4𝑝

2

0
𝑝
1
+ 4𝑝

2

2
) . (26)

Then, we can get

𝜏
𝑛
=

1

𝜔
0

arccos
𝜔
2

0
− 𝑝

1

𝑝
2

+

2𝑛𝜋

𝜔
0

, 𝑛 = 0, 1, 2, . . . , (27)

at which (15) admits a pair of purely imaginary roots of the
form ±𝜔

0
.

Let 𝑝
1
− 𝑝

2
< 0 and 𝜏

0
be defined above. Denote

𝜆 (𝜏) = 𝛼 (𝜏) + 𝑖𝜔 (𝜏) (28)

the root of (15) satisfying

𝛼 (𝜏
𝑛
) = 0, 𝜔 (𝜏

𝑛
) = 𝜔

0
. (29)

It is not difficult to verify that the following result holds.
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Lemma 4. If (H1) and 𝑝
1
− 𝑝

2
< 0 hold, the transversal

condition (𝑑(Re 𝜆)/𝑑𝜏)|
𝜏=𝜏
𝑛

> 0 holds.

Proof. Differentiating (15) with respect 𝜏, we obtain that

2𝜆

𝑑𝜆

𝑑𝜏

+ 𝑝
0

𝑑𝜆

𝑑𝜏

− 𝑝
2
𝜏𝑒

−𝜆𝜏
𝑑𝜆

𝑑𝜏

= 𝑝
2
𝜆𝑒

−𝜆𝜏

; (30)

it follows that

(

𝑑𝜆

𝑑𝜏

)

−1

=

2𝜆 + 𝑝
0

−𝜆𝑝
2
𝑒
−𝜆𝜏

−

𝜏

𝜆

; (31)

from (15) and (31), we have

(

𝑑𝜆

𝑑𝜏

)

−1

=

2𝜆 + 𝑝
0

−𝜆 (𝜆
2
+ 𝑝

0
𝜆 + 𝑝

1
)

−

𝜏

𝜆

. (32)

We therefore derive that

sign{ 𝑑 (Re 𝜆)
𝑑𝜏








𝜏=𝜏
𝑛

}

= sign{Re(𝑑𝜆
𝑑𝜏

)

−1






𝜏=𝜏
𝑛

}

= sign{Re[
2𝜆 + 𝑝

0

−𝜆 (𝜆
2
+ 𝑝

0
𝜆 + 𝑝

1
)

]

𝜏=𝜏
𝑛

}

= sign{
𝜔
2

0
(𝑝

2

0
− 2𝑝

1
+ 𝜔

2

0
)

𝜔
4

0
𝑝
2

0
+ (𝜔

0
𝑝
1
− 𝜔

3

0
)
2
} .

(33)

Noting that 𝑝2
0
−2𝑝

1
> 0, hence, if (H1) and 𝑝

1
−𝑝

2
< 0 hold,

we have (𝑑(Re 𝜆)/𝑑𝜏)|
𝜏=𝜏
𝑛

> 0. Accordingly, the transversal
condition holds and a Hopf bifurcation occurs at 𝜏 = 𝜏

𝑛
.

By Lemma B in [5], we have the following results.

Theorem 5. Suppose (H1) holds and let ℎ be defined in (12),
for system (13), one has the following.

(i) If 𝑟
1
> (2𝑎

12
𝑟
2

2
ℎ/𝑎

2

21
) − (2𝑟

2
(𝑎

21
− 𝑟

2
)/𝑎

21
) and 𝑟

1
>

(4𝑎
12
𝑟
2

2
ℎ+𝑎

12
𝑎
21
𝑟
2
ℎ)/𝑎

2

21
, then the positive equilibrium

𝐸
∗ is locally asymptotically stable for all 𝜏 ≥ 0.

(ii) If 𝑟
1
> (2𝑎

12
𝑟
2

2
ℎ/𝑎

2

21
) − (2𝑟

2
(𝑎

21
− 𝑟

2
)/𝑎

21
) and 𝑟

1
<

(4𝑎
12
𝑟
2

2
ℎ + 𝑎

12
𝑎
21
𝑟
2
ℎ)/𝑎

2

21
, then there exists a positive

number 𝜏
0
such that the positive equilibrium 𝐸

∗ is
locally asymptotically stable if 𝜏 ∈ [0, 𝜏

0
) and is

unstable if 𝜏 > 𝜏
0
. Further, system (13) undergoes a

Hopf bifurcation at 𝐸∗ when 𝜏 = 𝜏
0
.

4. Direction and Stability of Hopf Bifurcations

In Section 3,we have shown that system (13) admits a periodic
solution bifurcated from the positive equilibrium 𝐸

∗ at the
critical value 𝜏

0
. In this section, we derive explicit formulae

to determine the direction of Hopf bifurcations and stability
of periodic solutions bifurcated from the positive equilibrium

𝐸
∗ at critical value 𝜏

0
by using the normal form theory and the

center manifold reduction (see, e.g., [15, 16]).
Set 𝜏 = 𝜏

0
+ 𝜇; then 𝜇 = 0 is a Hopf bifurcation value of

system (13). Thus we can consider the problem above in the
phase spaceC = C([−𝜏, 0],R2

).
Let 𝑢

1
(𝑡) = 𝑥(𝑡) − 𝑥

∗

, 𝑢
2
(𝑡) = 𝑦(𝑡) − 𝑦

∗ . System (13) is
transformed into

̇𝑢
1
(𝑡) = 𝑐

1
𝑢
1
(𝑡) + 𝑐

4
𝑢
2
(𝑡 − 𝜏)

+ ∑

𝑖+𝑗≥2

1

𝑖!𝑗!

𝑓
(1)

𝑖𝑗
𝑢
𝑖

1
(𝑡) 𝑢

𝑗

2
(𝑡 − 𝜏) ,

̇𝑢
2
(𝑡) = 𝑐

2
𝑢
1
(𝑡) + 𝑐

3
𝑢
2
(𝑡) + ∑

𝑖+𝑗≥2

1

𝑖!𝑗!

𝑓
(2)

𝑖𝑗
𝑢
𝑖

1
(𝑡) 𝑢

𝑗

2
(𝑡) ,

(34)

where

𝑐
1
= − 𝑟

1
+

2𝑎
12
𝑟
2

2
ℎ

𝑎
2

21

, 𝑐
2
=

2𝑟
2
ℎ (𝑎

21
− 𝑟

2
)

𝑎
21

,

𝑐
3
= − 𝑟

2
+

𝑟
2
(2𝑟

2
− 𝑎

21
)

𝑎
21

, 𝑐
4
= −

𝑎
12
𝑟
2
(2𝑟

2
− 𝑎

21
)

𝑎
2

21

,

𝑓
(1)

= 𝑥 (𝑡) [𝑟
1
− 𝑎

11
𝑥 (𝑡) −

𝑎
12
𝑥 (𝑡) 𝑦 (𝑡 − 𝜏)

𝑚𝑦
2
(𝑡 − 𝜏) + 𝑥

2
(𝑡)

] ,

𝑓
(2)

=

𝑎
21
𝑥
2

(𝑡) 𝑦 (𝑡)

𝑚𝑦
2
(𝑡) + 𝑥

2
(𝑡)

− 𝑟
2
𝑦 (𝑡) ,

𝑓
(1)

𝑖𝑗
=

𝜕
𝑖+𝑗

𝑓
(1)

𝜕𝑥
𝑖
𝜕𝑦(𝑡 − 𝜏)

𝑗









(𝑥
∗
,𝑦
∗
)

,

𝑓
(2)

𝑖𝑗
=

𝜕
𝑖+𝑗

𝑓
(2)

𝜕𝑥
𝑖
𝜕𝑦

𝑗









(𝑥
∗
,𝑦
∗
)

, 𝑖, 𝑗 ≥ 0.

(35)

For the simplicity of notations, we rewrite (34) as

̇𝑢 (𝑡) = 𝐿
𝜇
𝑢
𝑡
+ 𝑓 (𝜇, 𝑢

𝑡
) , (36)

where 𝑢(𝑡) = (𝑢
1
(𝑡), 𝑢

1
(𝑡))

𝑇

∈ R2, 𝑢
𝑡
(𝜃) ∈ C is defined by

𝑢
𝑡
(𝜃) = 𝑢(𝑡 + 𝜃), and 𝐿

𝜇
: C → R,𝑓 : R ×C → R are given,

respectively, by

𝐿
𝜇
𝜙 = [

𝑐
1
0

𝑐
2
𝑐
3

] 𝜙 (0) + [

0 𝑐
4

0 0
] 𝜙 (−𝜏) , (37)

𝑓 (𝜇, 𝜙) =

[

[

[

[

∑

𝑖+𝑗≥2

1

𝑖!𝑗!

𝑓
(1)

𝑖𝑗
𝜙
𝑖

1
(𝑡) 𝜙

𝑗

2
(𝑡 − 𝜏)

∑

𝑖+𝑗≥2

1

𝑖!𝑗!

𝑓
(2)

𝑖𝑗
𝜙
𝑖

1
(𝑡) 𝜙

𝑗

2
(𝑡)

]

]

]

]

. (38)

By the Riesz representation theorem, there exists a function
𝜂(𝜃, 𝜇) of bounded variation for 𝜃 ∈ [−𝜏, 0] such that

𝐿
𝜇
𝜙 = ∫

0

−𝜏

𝑑𝜂 (𝜃, 𝜇) 𝜙 (𝜃) , for 𝜙 ∈ C. (39)
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In fact, we can choose

𝜂 (𝜃, 𝜇) = [

𝑐
1
0

𝑐
2
𝑐
3

] 𝛿 (𝜃) + [

0 𝑐
4

0 0
] 𝛿 (𝜃 + 𝜏) , (40)

where 𝛿 is the Dirac delta function. For 𝜙 ∈ C1

([−𝜏, 0],R2

),
define

𝐴 (𝜇) 𝜙 =

{
{
{

{
{
{

{

𝑑𝜙 (𝜃)

𝑑𝜃

, 𝜃 ∈ [−𝜏, 0) ,

∫

0

−𝜏

𝑑𝜂 (𝑠, 𝜇) 𝜙 (𝑠) , 𝜃 = 0,

𝑅 (𝜇) 𝜙 = {

0, 𝜃 ∈ [−𝜏, 0) ,

𝑓 (𝜇, 𝜙) , 𝜃 = 0.

(41)

Then when 𝜃 = 0, system (36) is equivalent to

̇𝑢
𝑡
= 𝐴 (𝜇) 𝑢

𝑡
+ 𝑅 (𝜇) 𝑢

𝑡
, (42)

where 𝑢
𝑡
(𝜃) = 𝑢(𝑡 + 𝜃) for 𝜃 ∈ [−𝜏, 0].

For 𝜓 ∈ C1

([0, 𝜏], (R2

)
∗

), define

𝐴
∗

𝜓 (𝑠) =

{
{
{
{

{
{
{
{

{

−

𝑑𝜓 (𝑠)

𝑑𝑠

, 𝑠 ∈ (0, 𝜏] ,

∫

0

−𝜏

𝑑𝜂
𝑇

(𝑡, 0) 𝜓 (−𝑡) , 𝑠 = 0,

(43)

and a bilinear inner product,

⟨𝜓 (𝑠) , 𝜙 (𝜃)⟩ = 𝜓 (0) 𝜙 (0)

− ∫

0

−𝜏

∫

𝜃

𝜉=0

𝜓 (𝜉 − 𝜃) 𝑑𝜂 (𝜃) 𝜙 (𝜉) 𝑑𝜉,

(44)

where 𝜂(𝜃) = 𝜂(𝜃, 0) and (⋅) denotes the conjugate complex of
(⋅).Then𝐴(0) and𝐴∗ are adjoint operators. By the discussion
in Section 3, we know that ±𝑖𝜔

0
are eigenvalues of𝐴(0).Thus,

they are also eigenvalues of 𝐴∗. We first need to compute the
eigenvector of 𝐴(0) and 𝐴∗ corresponding to 𝑖𝜔

0
and −𝑖𝜔

0
,

respectively.
Suppose that 𝑞(𝜃) = (1, 𝜌)𝑇𝑒𝑖𝜔0𝜃 is the eigenvector of𝐴(0)

corresponding to 𝑖𝜔
0
. Then 𝐴(0)𝑞(𝜃) = 𝑖𝜔

0
𝑞(𝜃). From the

definition of 𝐴(0), it is easy to get 𝜌 = (𝑖𝜔
0
− 𝑐

3
)/𝑐

2
.

Similarly, let 𝑞∗(𝑠) = 𝐷(1, 𝜌∗)𝑒−𝑖𝜔0𝑠 be the eigenvector of
𝐴

∗ corresponding to −𝑖𝜔
0
. By the definition of 𝐴∗, we can

compute 𝜌∗ = (−𝑖𝜔
0
− 𝑐

1
)/𝑐

2
.

In order to assure ⟨𝑞∗(𝑠), 𝑞(𝜃)⟩ = 1, we need to determine
the value of𝐷. From (44) and the definitions of 𝑞 and 𝑞∗, we
have𝐷 = 1/(1 + 𝜌∗𝜌 + 𝑐

4
𝜌𝜏

0
𝑒
𝑖𝜏
0
𝜔
0
) such that ⟨𝑞∗(𝑠), 𝑞(𝜃)⟩ = 1

and ⟨𝑞∗(𝑠), 𝑞(𝜃)⟩ = 0.
In the following, we first compute the coordinates to

describe the center manifold 𝐶
0
at 𝜇 = 0. Define

𝑧 (𝑡) = ⟨𝑞
∗

, 𝑢
𝑡
⟩ , 𝑊 (𝑡, 𝜃) = 𝑢

𝑡
(𝜃) − 2Re {𝑧 (𝑡) 𝑞 (𝜃)} .

(45)

On the center manifold 𝐶
0
, we have

𝑊(𝑡, 𝜃) = 𝑊 (𝑧 (𝑡) , 𝑧 (𝑡) , 𝜃)

= 𝑊
20
(𝜃)

𝑧
2

2

+𝑊
11
(𝜃) 𝑧𝑧 +𝑊

02
(𝜃)

𝑧
2

2

+𝑊
30
(𝜃)

𝑧
3

6

+ ⋅ ⋅ ⋅ ,

(46)

where 𝑧 and 𝑧 are local coordinates for center manifold 𝐶
0
in

the directions of 𝑞 and 𝑞. Note that𝑊 is real if 𝑢
𝑡
is real. We

consider only real solutions. For the solution 𝑢
𝑡
∈ 𝐶

0
, since

𝜇 = 0, we have
̇𝑧 = 𝜔

0
𝑧 + 𝑖 ⟨𝑞

∗

(𝜃) , 𝑓 (0,𝑊 (𝑧 (𝑡) , 𝑧 (𝑡) , 𝜃)

+2Re {𝑧 (𝑡) 𝑞 (𝜃)})⟩

= 𝑖𝜔
0
𝑧 + 𝑞

∗

(0) 𝑓 (0,𝑊 (𝑧 (𝑡) , 𝑧 (𝑡) , 0)

+ 2Re {𝑧 (𝑡) 𝑞 (0)})

≜ 𝑖𝜔
0
𝑧 + 𝑞

∗

(0) 𝑓
0
(𝑧, 𝑧) = 𝑖𝜔

0
𝑧 + 𝑔 (𝑧, 𝑧) ,

(47)

where
𝑔 (𝑧, 𝑧) = 𝑞

∗

(0) 𝑓
0
(𝑧, 𝑧)

= 𝑔
20

𝑧
2

2

+ 𝑔
11
𝑧𝑧 + 𝑔

02

𝑧
2

2

+ 𝑔
21

𝑧
2

𝑧

2

+ ⋅ ⋅ ⋅ .

(48)

By (45), we have

𝑢
𝑡
(𝜃) = (𝑢

1𝑡
(𝜃) , 𝑢

2𝑡
(𝜃))

𝑇

= 𝑊(𝑡, 𝜃) + 𝑧𝑞 (𝜃) + 𝑧𝑞 (𝜃) .

(49)
It follows from (38) and (48) that

𝑔
20
= 2𝐷[

1

2

𝑓
(1)

20
𝜌
2

+ 𝑓
(1)

11
𝜌𝑒

−𝑖𝜏
0
𝜔
0

+

1

2

𝑓
(1)

02
𝑒
−2𝑖𝜏
0
𝜔
0

+ 𝜌
∗

(

1

2

𝑓
(2)

20
𝜌
2

+ 𝑓
(2)

11
𝜌 +

1

2

𝑓
(2)

02
)] ,

𝑔
11
= 𝐷 [𝑓

(1)

20
𝜌𝜌 + 𝑓

(1)

11
(𝜌𝑒

𝑖𝜏
0
𝜔
0

+ 𝜌𝑒
−𝑖𝜏
0
𝜔
0

)

+𝑓
(1)

02
+ 𝜌

∗

(𝑓
(2)

20
𝜌𝜌 + 𝑓

(2)

11
(𝜌 + 𝜌) + 𝑓

(2)

02
)] ,

𝑔
02
= 2𝐷[

1

2

𝑓
(1)

20
𝜌
2

+ 𝑓
(1)

11
𝜌𝑒

𝑖𝜏
0
𝜔
0

+

1

2

𝑓
(1)

02
𝑒
2𝑖𝜏
0
𝜔
0

+ 𝜌
∗

(

1

2

𝑓
(2)

20
𝜌
2

+𝑓
(2)

11
𝜌 +

1

2

𝑓
(2)

02
)] ,

𝑔
21
= 2𝐷[

1

2

𝑓
(1)

20
(2𝜌𝑊

(1)

11
(0) + 𝜌𝑊

(1)

20
(0))

+ 𝑓
(1)

11
(𝜌𝑊

(2)

11
(−𝜏

0
) +

1

2

𝜌𝑊
(2)

20
(−𝜏

0
)

+

1

2

𝑊
(1)

20
(0) 𝑒

𝑖𝜏
0
𝜔
0

+𝑊
(1)

11
(0) 𝑒

−𝑖𝜏
0
𝜔
0

)

+

1

2

𝑓
(1)

02
(2𝑊

(2)

11
(−𝜏

0
) 𝑒

−𝑖𝜏
0
𝜔
0

+𝑊
(2)

20
(−𝜏

0
) 𝑒

𝑖𝜏
0
𝜔
0

)
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+

1

2

𝑓
(1)

21
(𝜌

2

𝑒
𝑖𝜏
0
𝜔
0

+ 2𝜌𝜌𝑒
−𝑖𝜏
0
𝜔
0

)

+

1

2

𝑓
(1)

12
(𝜌𝑒

−2𝑖𝜏
0
𝜔
0

+ 2𝜌)

+

1

2

𝑓
(1)

30
𝜌
2

𝜌 +

1

2

𝑓
(1)

03
𝑒
−𝑖𝜏
0
𝜔
0

]

+ 2𝐷𝜌
∗

[

1

2

𝑓
(2)

20
(2𝜌𝑊

(1)

11
(0) + 𝜌𝑊

(1)

20
(0))

+ 𝑓
(2)

11
(𝜌𝑊

(2)

11
(0) +

1

2

𝜌𝑊
(2)

20
(0)

+

1

2

𝑊
(1)

20
(0) + 𝑊

(1)

11
(0))

+

1

2

𝑓
(2)

02
(2𝑊

(2)

11
(0) + 𝑊

(2)

20
(0))

+

1

2

𝑓
(2)

21
(𝜌

2

+ 2𝜌𝜌)

+

1

2

𝑓
(2)

12
(𝜌 + 2𝜌) +

1

2

𝑓
(2)

30
𝜌
2

𝜌 +

1

2

𝑓
(2)

03
] .

(50)

In order to assure the value of 𝑔
21
, we need to compute

𝑊
20
(𝜃) and𝑊

11
(𝜃). By (42) and (45), we have

𝑊 = ̇𝑢
𝑡
− ̇𝑧𝑞 −

̇
𝑧 𝑞

= {

𝐴𝑊 − 2Re {𝑞∗ (0) 𝑓
0
𝑞 (𝜃)} , 𝜃 ∈ [−𝜏

0
, 0) ,

𝐴𝑊 − 2Re {𝑞∗ (0) 𝑓
0
𝑞 (𝜃)} + 𝑓

0
, 𝜃 = 0,

≜ 𝐴𝑊 +𝐻 (𝑧, 𝑧, 𝜃) ,

(51)

where

𝐻(𝑧, 𝑧, 𝜃) = 𝐻
20
(𝜃)

𝑧
2

2

+ 𝐻
11
(𝜃) 𝑧𝑧 + 𝐻

02
(𝜃)

𝑧
2

2

+ ⋅ ⋅ ⋅ .

(52)

Notice that near the origin on the centermanifold𝐶
0
, we have

𝑊 = 𝑊
𝑧
̇𝑧 +𝑊

𝑧

̇
𝑧; (53)

thus, we have

(𝐴 − 2𝑖𝜔
𝑘
𝜏
𝑘
𝐼)𝑊

20
(𝜃) = −𝐻

20
(𝜃) ,

𝐴𝑊
11
(𝜃) = −𝐻

11
(𝜃) .

(54)

By (51), for 𝜃 ∈ [−𝜏
0
, 0), we have

𝐻(𝑧, 𝑧, 𝜃) = −𝑞
∗

(0) 𝑓
0
𝑞 (𝜃) − 𝑞

∗

(0) 𝑓
0
𝑞 (𝜃)

= −𝑔𝑞 (𝜃) − 𝑔𝑞 (𝜃) .

(55)

Comparing the coefficients with (51) gives that

𝐻
20
(𝜃) = −𝑔

20
𝑞 (𝜃) − 𝑔

02
𝑞 (𝜃) ,

𝐻
11
(𝜃) = −𝑔

11
𝑞 (𝜃) − 𝑔

11
𝑞 (𝜃) .

(56)

From (56), (54), and the definition of 𝐴(0), we can get

𝑊
20
(𝜃) = 2𝑖𝜔

0
𝑊

20
(𝜃) + 𝑔

20
𝑞 (𝜃) + 𝑔

02
𝑞 (𝜃) . (57)

Notice that 𝑞(𝜃) = 𝑞(0)𝑒𝑖𝜔0𝜃; we have

𝑊
20
(𝜃) =

𝑖𝑔
20

𝜔
0

𝑞 (0) 𝑒
𝑖𝜔
0
𝜃

+

𝑖𝑔
02

3𝜔
0

𝑞 (0) 𝑒
−𝑖𝜔
0
𝜃

+ 𝐸
1
𝑒
2𝑖𝜔
0
𝜃

, (58)

where 𝐸
1
= (𝐸

(1)

1
, 𝐸

(2)

1
) ∈ R2 is a constant vector. In the same

way, we can also obtain

𝑊
11
(𝜃) = −

𝑖𝑔
11

𝜔
0

𝑞 (0) 𝑒
𝑖𝜔
0
𝜃

+

𝑖𝑔
11

𝜔
0

𝑞 (0) 𝑒
−𝑖𝜔
0
𝜃

+ 𝐸
2
, (59)

where 𝐸
2
= (𝐸

(1)

2
, 𝐸

(2)

2
) ∈ R2 is also a constant vector. In what

follows, we will compute 𝐸
1
and 𝐸

2
. From the definition of

𝐴(0) and (54), we have

∫

0

−𝜏
0

𝑑𝜂 (𝜃)𝑊
20
(𝜃) = 2𝑖𝜔

0
𝑊

20
(0) − 𝐻

20
(0) , (60)

∫

0

−𝜏
0

𝑑𝜂 (𝜃)𝑊
11
(𝜃) = −𝐻

11
(0) , (61)

where 𝜂(𝜃) = 𝜂(0, 𝜃).
From (51), (58), and (60) and noting that

[𝑖𝜔
0
𝐼 − ∫

0

−𝜏
0

𝑒
𝑖𝜔
0
𝜃

𝑑𝜂 (𝜃)] 𝑞 (0) = 0, (62)

we have

𝐸
(1)

1
=

1

𝐴
1










𝑒
1
−𝑐

4
𝑒
−2𝑖𝜔
0
𝜏
0

𝑒
2
2𝑖𝜔

0
− 𝑐

3










, 𝐸
(2)

1
=

1

𝐴
1










2𝑖𝜔
0
− 𝑐

1
𝑒
1

−𝑐
2

𝑒
2










,

(63)

where

𝐴
1
= (2𝑖𝜔

0
− 𝑐

1
) (2𝑖𝜔

0
− 𝑐

3
) − 𝑐

2
𝑐
4
𝑒
−2𝑖𝜔
0
𝜏
0

,

𝑒
1
= 𝑓

(1)

20
𝜌
2

+ 2𝑓
(1)

11
𝜌𝑒

−𝑖𝜏
0
𝜔
0

+ 𝑓
(1)

02
𝑒
−2𝑖𝜏
0
𝜔
0

,

𝑒
2
= 𝑓

(2)

20
𝜌
2

+ 2𝑓
(2)

11
𝜌 + 𝑓

(2)

02
.

(64)

From (52), (59), and (61) and noting that

[−𝑖𝜔
0
𝐼 − ∫

0

−𝜏
0

𝑒
−𝑖𝜔
0
𝜃

𝑑𝜂 (𝜃)] 𝑞 (0) = 0, (65)

we have

𝐸
(1)

2
=

1

𝐴
2










𝑒
3
−𝑐

4

𝑒
4
−𝑐

3










, 𝐸
(2)

2
=

1

𝐴
2










−𝑐
1
𝑒
3

−𝑐
2
𝑒
4










, (66)

where

𝐴
2
= 𝑐

1
𝑐
3
− 𝑐

2
𝑐
4
,

𝑒
3
= 𝑓

(1)

20
𝜌𝜌 + 𝑓

(1)

11
(𝜌𝑒

𝑖𝜏
0
𝜔
0

+ 𝜌𝑒
−𝑖𝜏
0
𝜔
0

) + 𝑓
(1)

02
,

𝑒
4
= 𝑓

(2)

20
𝜌𝜌 + 𝑓

(2)

11
(𝜌 + 𝜌) + 𝑓

(2)

02
.

(67)



Abstract and Applied Analysis 7

Thus, we can determine𝑊
20
(𝜃) and𝑊

11
(𝜃) from (58) and

(59). Furthermore, we can determine each𝑔
𝑖𝑗
.Therefore, each

𝑔
𝑖𝑗
is determined by the parameters and delay in (13). Thus,

we can compute the following values [15]:

𝑐
1
(0) =

𝑖

2𝜔
0
𝜏
0

(𝑔
20
𝑔
11
− 2




𝑔
11






2

−

1

3





𝑔
02






2

) +

𝑔
21

2

,

𝜇
2
= −

Re {𝑐
1
(0)}

Re {𝜆 (𝜏
0
)}

,

𝑇
2
= −

Im {𝑐
1
(0)} + 𝜇

2
Im {𝜆 (𝜏

0
)}

𝜔
0
𝜏
0

,

𝛽
2
= 2Re {𝑐

1
(0)} ,

(68)

which determine the quantities of bifurcating periodic solu-
tions in the center manifold at the critical value 𝜏

𝑘
; that is,

𝜇
2
determines the directions of the Hopf bifurcation: if 𝜇

2
>

0 (< 0), then theHopf bifurcation is supercritical (subcritical)
and the bifurcation exists for 𝜏 > 𝜏

0
(< 𝜏

0
); 𝛽

2
determines the

stability of the bifurcation periodic solutions: the bifurcating
periodic solutions are stable (unstable) if 𝛽

2
< 0 (> 0); and 𝑇

2

determines the period of the bifurcating periodic solutions:
the period increases (decreases) if 𝑇

2
> 0 (< 0).

5. Global Attractiveness

In this section, following Chaplygin [17], taking into account
the upper and lower solution technique and using monotone
iterative methods [18, 19], we discuss the global attractiveness
of the positive equilibrium 𝐸∗

(𝑥
∗

, 𝑦
∗

) and the global stability
of the semitrivial equilibrium 𝐸

1
(𝑟

1
/𝑎

11
, 0) of system (1),

respectively.

Theorem 6. Suppose (H1) holds and let ℎ be defined above,
then the positive equilibrium𝐸∗

(𝑥
∗

, 𝑦
∗

) of system (1) is globally
attractive provided that the following holds:

(H2) 𝑟
1
> max{𝑎

12
/2√𝑚, (3𝑎

12
/𝑚) + (2𝑎

12
𝑟
2
/𝑎

21
)ℎ},

Proof. Let (𝑥(𝑡), 𝑦(𝑡)) be any positive solution of system (1)
with initial conditions (2).

Let

𝑈
1
= lim sup

𝑡→+∞

𝑥 (𝑡) , 𝑉
1
= lim inf

𝑡→+∞

𝑥 (𝑡) ,

𝑈
2
= lim sup

𝑡→+∞

𝑦 (𝑡) , 𝑉
2
= lim inf

𝑡→+∞

𝑦 (𝑡) .

(69)

Using iteration method, we will proof that 𝑈
1
= 𝑉

1
=

𝑥
∗

, 𝑈
2
= 𝑉

2
= 𝑦

∗.
From the first equation of system (1), we have

̇𝑥 (𝑡) ≤ 𝑥 (𝑡) [𝑟
1
− 𝑎

11
𝑥 (𝑡)] ; (70)

by comparison, it follows that

𝑈
1
= lim sup

𝑡→+∞

𝑥 (𝑡) ≤

𝑟
1

𝑎
11

:= 𝑀
𝑥

1
; (71)

hence, for 𝜖 > 0 sufficiently small, there exists a 𝑇
1
> 0 such

that if 𝑡 > 𝑇
1
, 𝑥(𝑡) ≤ 𝑀

𝑥

1
+ 𝜖.

From the second equation of system (1), we have, for 𝑡 >
𝑇
1
+ 𝜏,

̇𝑦 (𝑡) ≤

𝑎
21
(𝑀

𝑥

1
+ 𝜖)

2

𝑦 (𝑡)

𝑚𝑦
2
(𝑡) + (𝑀

𝑥

1
+ 𝜖)

2
− 𝑟

2
𝑦 (𝑡) . (72)

Consider the following auxiliary equation:

̇𝑢 (𝑡) =

𝑎
21
(𝑀

𝑥

1
+ 𝜖)

2

𝑢 (𝑡)

𝑚𝑢
2
(𝑡) + (𝑀

𝑥

1
+ 𝜖)

2
− 𝑟

2
𝑢 (𝑡) . (73)

Since (H1) holds, by Lemma 2, it follows from (73) that

lim
𝑡→+∞

𝑢 (𝑡) = (𝑀
𝑥

1
+ 𝜖) ℎ, (74)

where ℎ is defined in (12). By comparison, we obtain that

𝑈
2
= lim sup

𝑡→+∞

𝑦 (𝑡) ≤ (𝑀
𝑥

1
+ 𝜖) ℎ; (75)

since this inequality holds true for arbitrary 𝜖 > 0 sufficiently
small, it follows that 𝑈

2
≤ 𝑀

𝑦

1
, where

𝑀
𝑦

1
= 𝑀

𝑥

1
ℎ. (76)

Hence, for 𝜖 > 0 sufficiently small, there is a 𝑇
2
> 𝑇

1
+ 𝜏 such

that if 𝑡 > 𝑇
2
, 𝑦(𝑡) ≤ 𝑀

𝑦

1
+ 𝜖.

For 𝜖 > 0 sufficiently small, noting that𝑚𝑦2(𝑡−𝜏
2
)+𝑥

2

≥

2√𝑚𝑥𝑦(𝑡−𝜏
2
), we derive from the first equation of system (1)

that, for 𝑡 > 𝑇
2
,

̇𝑥 (𝑡) ≥ 𝑥 (𝑡) [𝑟
1
− 𝑎

11
𝑥 (𝑡) −

𝑎
12

2√𝑚

] ; (77)

by comparison, it follows that

𝑉
1
= lim inf

𝑡→+∞

𝑥 (𝑡) ≥

1

𝑎
11

(𝑟
1
−

𝑎
12

2√𝑚

) := 𝑁
𝑥

1
; (78)

hence, for 𝜖 > 0 sufficiently small, there is a 𝑇
3
> 𝑇

2
+ 𝜏, such

that if 𝑡 > 𝑇
3
, 𝑥(𝑡) ≥ 𝑁𝑥

1
− 𝜀.

For 𝜖 > 0 sufficiently small, we derive from the second
equation of system (1) that, for 𝑡 > 𝑇

3
+ 𝜏,

̇𝑦 (𝑡) ≥

𝑎
21
(𝑁

𝑥

1
− 𝜖)

2

𝑦 (𝑡)

𝑚𝑦
2
(𝑡) + (𝑁

𝑥

1
− 𝜖)

2
− 𝑟

2
𝑦 (𝑡) . (79)

Consider the following auxiliary equation:

̇𝑢 (𝑡) =

𝑎
21
(𝑁

𝑥

1
− 𝜖)

2

𝑢 (𝑡)

𝑚𝑢
2
(𝑡) + (𝑁

𝑥

1
− 𝜖)

2
− 𝑟

2
𝑢 (𝑡) . (80)

Since (H1) holds, by Lemma (5), it follows from (80) that

lim
𝑡→+∞

𝑢 (𝑡) = (𝑁
𝑥

1
− 𝜖) ℎ; (81)

by comparison we derive that

𝑉
2
= lim inf

𝑡→+∞

𝑦 (𝑡) ≥ (𝑁
𝑥

1
− 𝜖) ℎ. (82)
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Since this inequality holds true for arbitrary 𝜖 > 0 sufficiently
small, we conclude that 𝑉

2
≥ 𝑁

𝑦

1
, where

𝑁
𝑦

1
= 𝑁

𝑥

1
ℎ. (83)

Therefore, for 𝜖 > 0 sufficiently small, there is a 𝑇
4
> 𝑇

3
+ 𝜏

such that if 𝑡 > 𝑇
4
, 𝑦(𝑡) ≥ 𝑁𝑦

1
− 𝜖.

Again, for 𝜖 > 0 sufficiently small, it follows from the first
equation of system (1) that, for 𝑡 > 𝑇

4
,

̇𝑥 (𝑡) ≤ 𝑥 (𝑡) [𝑟
1
− 𝑎

11
𝑥 (𝑡) −

𝑎
12
(𝑁

𝑥

1
− 𝜖) (𝑁

𝑦

1
− 𝜖)

𝑚(𝑀
𝑦

1
+ 𝜖)

2

+ (𝑀
𝑥

1
+ 𝜖)

2
] ;

(84)

by comparison we derive that

𝑈
1
= lim sup

𝑡→+∞

𝑥 (𝑡) ≤

1

𝑎
11

(𝑟
1
−

𝑎
12
(𝑁

𝑥

1
− 𝜖) (𝑁

𝑦

1
− 𝜖)

𝑚(𝑀
𝑦

1
+ 𝜖)

2

+ (𝑀
𝑥

1
+ 𝜖)

2
) .

(85)

Since the above inequality holds true for arbitrary 𝜖 > 0

sufficiently small, it follows that 𝑈 ≤ 𝑀𝑥

2
, where

𝑀
𝑥

2
=

1

𝑎
11

(𝑟
1
−

𝑎
12
𝑁

𝑥

1
𝑁

𝑦

1

𝑚(𝑀
𝑦

1
)

2

+ (𝑀
𝑥

1
)
2
) ; (86)

hence, for 𝜖 > 0 sufficiently small, there is a 𝑇
5
> 𝑇

4
+ 𝜏 such

that if 𝑡 > 𝑇
5
, 𝑥(𝑡) ≤ 𝑀𝑥

2
+ 𝜖.

It follows from the second equation of system (1) that, for
𝑡 > 𝑇

5
,

̇𝑦 (𝑡) ≤

𝑎
21
(𝑀

𝑥

2
+ 𝜖)

2

𝑦 (𝑡)

𝑚𝑦
2
(𝑡) + (𝑀

𝑥

2
+ 𝜖)

2
− 𝑟

2
𝑦 (𝑡) . (87)

By Lemma 2 and a comparison argument we derive from (87)
that

𝑈
2
= lim sup

𝑡→+∞

𝑦 (𝑡) ≤ (𝑀
𝑥

2
+ 𝜖) ℎ; (88)

since this inequality holds true for 𝜖 > 0 sufficiently small, we
get 𝑈

2
≤ 𝑀

𝑦

2
, where

𝑀
𝑦

2
= 𝑀

𝑥

2
ℎ; (89)

hence, for 𝜖 > 0 sufficiently small, there is a 𝑇
6
> 𝑇

5
+ 𝜏 such

that if 𝑡 > 𝑇
6
, 𝑦(𝑡) ≤ 𝑀𝑦

2
+ 𝜖.

For 𝜖 > 0 sufficiently small, it follows from the first
equation of system (1) that, for 𝑡 > 𝑇

6
,

̇𝑥 (𝑡) ≥ 𝑥 (𝑡) [𝑟
1
− 𝑎

11
𝑥 (𝑡) −

𝑎
12
(𝑀

𝑥

2
+ 𝜖) (𝑀

𝑦

2
+ 𝜖)

𝑚(𝑁
𝑦

1
− 𝜖)

2

+ (𝑁
𝑥

1
− 𝜖)

2
] ;

(90)

by comparison, we can obtain that

𝑉
1
= lim inf

𝑡→+∞

𝑥 (𝑡) ≥

1

𝑎
11

(𝑟
1
−

𝑎
12
(𝑀

𝑥

2
+ 𝜖) (𝑀

𝑦

2
+ 𝜖)

𝑚(𝑁
𝑦

1
− 𝜖)

2

+ (𝑁
𝑥

1
− 𝜖)

2
) .

(91)

Since the above inequality holds true for arbitrary 𝜖 > 0

sufficiently small, it follows that 𝑉 ≥ 𝑁𝑥

2
, where

𝑁
𝑥

2
=

1

𝑎
11

(𝑟
1
−

𝑎
12
𝑀

𝑥

2
𝑀

𝑦

2

𝑚(𝑁
𝑦

1
)

2

+ (𝑁
𝑥

1
)
2
) ; (92)

therefore, for 𝜖 > 0 sufficiently small, there is a 𝑇
7
> 𝑇

6
+ 𝜏

such that if 𝑡 > 𝑇
7
, 𝑥(𝑡) ≥ 𝑁𝑥

2
− 𝜖.

For 𝜖 > 0 sufficiently small, we derive from the second
equation of system (1) that, for 𝑡 > 𝑇

7
+ 𝜏,

̇𝑦 (𝑡) ≥

𝑎
21
(𝑁

𝑥

2
− 𝜖)

2

𝑦 (𝑡)

𝑚𝑦
2
(𝑡) + (𝑁

𝑥

2
− 𝜖)

2
− 𝑟

2
𝑦 (𝑡) . (93)

Since (H1) holds, by Lemma 2 and a comparison argument, it
follows (93) that

𝑉
2
= lim inf

𝑡→+∞

𝑦 (𝑡) ≥ (𝑁
𝑥

2
− 𝜖) ℎ; (94)

since, for arbitrary 𝜖 > 0 sufficiently small, this inequality
holds true, we conclude that 𝑉

2
≥ 𝑁

𝑦

2
, where

𝑁
𝑦

2
= 𝑁

𝑥

2
ℎ. (95)

Continuing this process, we obtain four sequences
𝑀

𝑥

𝑛
,𝑀

𝑦

𝑛
, 𝑉

𝑥

𝑛
, and𝑉𝑦

𝑛
(𝑛 = 1, 2, . . .) such that, for 𝑛 ≥ 2,

𝑀
𝑥

𝑛
=

1

𝑎
11

(𝑟
1
−

𝑎
12
𝑁

𝑥

𝑛−1
𝑁

𝑦

𝑛−1

𝑚(𝑀
𝑦

𝑛−1
)

2

+ (𝑀
𝑥

𝑛−1
)
2
) ,

𝑁
𝑥

𝑛
=

1

𝑎
11

(𝑟
1
−

𝑎
12
𝑀

𝑥

𝑛
𝑀

𝑦

𝑛

𝑚(𝑁
𝑦

𝑛−1
)

2

+ (𝑁
𝑥

𝑛−1
)
2
) ,

𝑀
𝑦

𝑛
= 𝑀

𝑥

𝑛
ℎ, 𝑁

𝑦

𝑛
= 𝑁

𝑥

𝑛
ℎ,

(96)

where ℎ is defined in (12). It is readily seen that

𝑁
𝑥

𝑛
≤ 𝑉

1
≤ 𝑈

1
≤ 𝑀

𝑥

𝑛
, 𝑁

𝑦

𝑛
≤ 𝑉

2
≤ 𝑈

2
≤ 𝑀

𝑦

𝑛
. (97)

It is easy to know that the sequences 𝑀𝑥

𝑛
,𝑀

𝑦

𝑛
are not

increasing and the sequences𝑁𝑥

𝑛
, 𝑁

𝑦

𝑛
are not decreasing; from

accumulation point theorem, the limit of each sequence in
𝑀

𝑥

𝑛
,𝑀

𝑦

𝑛
, 𝑁

𝑥

𝑛
, and𝑁𝑦

𝑛
exists, Denote

𝑥 = lim
𝑡→+∞

𝑀
𝑥

𝑛
, 𝑥 = lim

𝑡→+∞

𝑁
𝑥

𝑛
,

𝑦 = lim
𝑡→+∞

𝑀
𝑦

𝑛
, 𝑦 = lim

𝑡→+∞

𝑁
𝑦

𝑛
.

(98)

We therefore obtain from (96) and (98) that

𝑥 =

1

𝑎
11

(𝑟
1
−

𝑎
12
𝑥𝑦

𝑚𝑦
2

+ 𝑥
2
) ,

𝑥 =

1

𝑎
11

(𝑟
1
−

𝑎
12
𝑥𝑦

𝑚𝑦
2
+ 𝑥

2
) ,

𝑦 = 𝑥ℎ, 𝑦 = 𝑥ℎ.

(99)
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To complete the proof, it is sufficient to prove that 𝑥 = 𝑥, 𝑦 =
𝑦. It follows from (99) that

𝑎
11
(1 + 𝑚ℎ

2

) 𝑥
3

= 𝑟
1
(1 + 𝑚ℎ

2

) 𝑥
2

− 𝑎
12
ℎ𝑥

2

, (100)

𝑎
11
(1 + 𝑚ℎ

2

) 𝑥
3

= 𝑟
1
(1 + 𝑚ℎ

2

) 𝑥
2

− 𝑎
12
ℎ𝑥

2

. (101)

Letting (100) minus (101), we have

𝑎
11
(1 + 𝑚ℎ

2

) (𝑥 − 𝑥) (𝑥
2

+ 𝑥𝑥 + 𝑥
2

)

= [𝑟
1
(1 + 𝑚ℎ

2

) + 𝑎
12
ℎ] (𝑥 − 𝑥) (𝑥 + 𝑥) .

(102)

If 𝑥 ̸= 𝑥, we derive from (102) that

𝑎
11
(1 + 𝑚ℎ

2

) (𝑥
2

+ 𝑥𝑥 + 𝑥
2

)

= [𝑟
1
(1 + 𝑚ℎ

2

) + 𝑎
12
ℎ] (𝑥 + 𝑥) .

(103)

Letting 𝐴 = 𝑎
11
(1 + 𝑚ℎ

2

), 𝐵 = 𝑟
1
(1 + 𝑚ℎ

2

) + 𝑎
12
ℎ, we derive

from (103) that

𝑥𝑥 = (𝑥 + 𝑥)
2

−

𝐵

𝐴

(𝑥 + 𝑥) . (104)

It follows from (104) that

(𝑥 + 𝑥)
2

− 4𝑥𝑥 = (𝑥 + 𝑥)
2

− 4 [(𝑥 + 𝑥)
2

−

𝐵

𝐴

(𝑥 + 𝑥)]

= (𝑥 + 𝑥) [

4𝐵

𝐴

− 3 (𝑥 + 𝑥)] ;

(105)

noting that 𝑥 ≥ 𝑁𝑥

1
, 𝑥 ≥ 𝑁

𝑥

1
, we derive from (105) that

(𝑥 + 𝑥)
2

− 4𝑥𝑥 ≤ 2 (𝑥 + 𝑥) [

2𝐵

𝐴

− 3𝑁
𝑥

1
] . (106)

Substituting (78) into (106), it follows that

(𝑥 + 𝑥)
2

− 4𝑥𝑥 ≤ −

2 (𝑥 + 𝑥)

𝑎
11

[𝑟
1
−

3𝑎
12

𝑚

−

2𝑎
12
ℎ

1 + 𝑚ℎ
2
] .

(107)

Hence, if (H2) holds, we have (𝑥 + 𝑥)2 − 4𝑥𝑥 < 0; this is a
contradiction. Accordingly, we have 𝑥 = 𝑥. Therefore, from
(99), we have 𝑦 = 𝑦. Hence, the positive equilibrium 𝐸

∗ is
globally attractive. The proof is complete.

Using the same methods in [4, 20], we can also get a
similar result.

Theorem 7. If 𝑟
1
> 𝑎

12
/2√𝑚 and 𝑎

21
< 𝑟

2
, the semitrivial

equilibrium 𝐸
1
(𝑟

1
/𝑎

11
, 0) of system (1) is globally asymptoti-

cally stable.

6. Global Continuation of
Local Hopf Bifurcations

In this section, we study the global continuation of periodic
solutions bifurcating from the positive equilibrium 𝐸

∗ of
system (13). Throughout this section, we follow closely the
notations in [13]. For simplification of notations, setting
𝑧(𝑡) = (𝑧

1
(𝑡), 𝑧

2
(𝑡))

𝑇

= (𝑥(𝑡), 𝑦(𝑡))
𝑇, we may rewrite system

(13) as the following functional differential equation:
̇𝑧 (𝑡) = F (𝑧

𝑡
, 𝜏, 𝑝) , (108)

where 𝑧
𝑡
(𝜃) = (𝑧

1𝑡
(𝜃), 𝑧

2𝑡
(𝜃))

𝑇

= (𝑧
1
(𝑡 + 𝜃), and 𝑧

2
(𝑡 + 𝜃))

𝑇

∈

C([−𝜏, 0],R2

). It is obvious that if (H1) holds, then system
(13) has a semitrivial equilibrium 𝐸

1
(𝑟

1
/𝑎

11
, 0) and a positive

equilibrium 𝐸∗

(𝑥
∗

, 𝑦
∗

). Following the work of [13], we need
to define

X = C ([−𝜏, 0] ,R2

) ,

Γ = Cl {(𝑧, 𝜏, 𝑝) ∈ X × R × R+

; 𝑧 is a nonconstant

periodic solution of (108)} ,

N = {(𝑧, 𝜏, 𝑝) ;F (𝑧, 𝜏, 𝑝) = 0} .

(109)

Let ℓ
(𝐸
∗
,𝜏
𝑗
,2𝜋/𝜔

0
)
denote the connected component passing

through (𝐸∗

, 𝜏
𝑗
, 2𝜋/𝜔

0
) in Γ, where 𝜏

𝑗
is defined by (26). From

Theorem 5, we know that ℓ
(𝐸
∗
,𝜏
𝑗
,2𝜋/𝜔

0
)
is nonempty.

We first state the global Hopf bifurcation theory due to
Wu [13] for functional differential equations.

Lemma 8. Assume that (𝑧
∗
, 𝜏, 𝑝) is an isolated center satis-

fying the hypotheses (𝐴
1
)–(𝐴

4
) in [13]. Denote by ℓ

(𝑧
∗
,𝜏,𝑝)

the
connected component of (𝑧

∗
, 𝜏, 𝑝) in Γ. Then either

(i) ℓ
(𝑧
∗
,𝜏,𝑝)

is unbounded or
(ii) ℓ

(𝑧
∗
,𝜏,𝑝)

is bounded; ℓ
(𝑧
∗
,𝜏,𝑝)

∩ Γ is finite and

∑

(𝑧,𝜏,𝑝)∈ℓ(𝑧∗,𝜏,𝑝)
∩N

𝛾
𝑚
(𝑧

∗
, 𝜏, 𝑝) = 0, (110)

for all𝑚 = 1, 2, . . ., where 𝛾
𝑚
(𝑧

∗
, 𝜏, 𝑝) is the𝑚𝑡ℎ crossing num-

ber of (𝑧
∗
, 𝜏, 𝑝) if𝑚 ∈ 𝐽(𝑧

∗
, 𝜏, 𝑝) or it is zero if otherwise.

Clearly, if (ii) in Lemma 8 is not true, then ℓ
(𝑧
∗
,𝜏,𝑝)

is
unbounded. Thus, if the projections of ℓ

(𝑧
∗
,𝜏,𝑝)

onto 𝑧-space
and onto 𝑝-space are bounded, then the projection onto
𝜏-space is unbounded. Further, if we can show that the
projection of ℓ

(𝑧
∗
,𝜏,𝑝)

onto 𝜏-space is away from zero, then
the projection of ℓ

(𝑧
∗
,𝜏,𝑝)

onto 𝜏-space must include interval
[𝜏, +∞). Following this ideal, we can prove our results on the
global continuation of local Hopf bifurcation.

Lemma 9. If condition (H1) holds, then all nonconstant
periodic solutions of (13) with initial conditions,

𝑥 (𝜃) = 𝜙 (𝜃) , 𝑦 (𝜃) = 𝜓 (𝜃) , 𝜙 (𝜃) ≥ 0, 𝜓 (𝜃) ≥ 0,

𝜃 ∈ [−𝜏, 0] (𝜏 = 𝜏
1
+ 𝜏

2
) , 𝜙 (0) > 0, 𝜓 (0) > 0,

(111)

are uniformly bounded.



10 Abstract and Applied Analysis

Proof. Suppose that 𝑥 = 𝑥(𝑡), 𝑦 = 𝑦(𝑡) are nonconstant
periodic solutions of system (13) and define

𝑥 (𝜉
1
) = min {𝑥 (𝑡)} , 𝑥 (𝜂

1
) = max {𝑥 (𝑡)} ,

𝑦 (𝜉
2
) = min {𝑦 (𝑡)} , 𝑦 (𝜂

2
) = max {𝑦 (𝑡)} .

(112)

It follows from system (13) that

𝑥 (𝑡) = 𝑥 (0) exp{∫
𝑡

0

(𝑟
1
− 𝑎

11
𝑥 (𝑠)

−

𝑎
12
𝑥 (𝑠) 𝑦 (𝑠 − 𝜏)

𝑚𝑦
2
(𝑠 − 𝜏) + 𝑥

2
(𝑠)

) 𝑑𝑠} ,

𝑦 (𝑡) = 𝑦 (0) exp{∫
𝑡

0

(−𝑟
2
+

𝑎
21
𝑥
2

(𝑠)

𝑚𝑦
2
(𝑠) + 𝑥

2
(𝑠)

) 𝑑𝑠} ,

(113)

which implies that the solutions of system (13) cannot cross
the 𝑥-axis and 𝑦-axis. Thus the nonconstant periodic orbits
must be located in the interior of each quadrant. It follows
from initial conditions of system (13) that (𝑡) > 0, 𝑦(𝑡) > 0.
From system (13), we can get

0 = 𝑟
1
− 𝑎

11
𝑥 (𝜂

1
) −

𝑎
12
𝑥 (𝜂

1
) 𝑦 (𝜂

1
− 𝜏)

𝑚𝑦
2
(𝜂

1
− 𝜏) + 𝑥

2
(𝜂

1
)

,

0 = −𝑟
2
+

𝑎
21
𝑥
2

(𝜂
2
)

𝑚𝑦
2
(𝜂

2
) + 𝑥

2
(𝜂

2
)

.

(114)

Since 𝑥(𝑡) > 0, 𝑦(𝑡) > 0, it follows from the first equation of
(114) that

0 < 𝑥 (𝜂
1
) ≤

𝑟
1

𝑎
11

; (115)

on the other hand, by the second equation of (114) and (115),
we have

0 < 𝑦 (𝜂
2
) ≤ ℎ

𝑟
1

𝑎
11

, (116)

where ℎ is defined in (12). From the discussion above, the
lemma follows immediately.

Lemma 10. If conditions (H1) and (H2) hold, then system (13)
has no nonconstant periodic solution with period 𝜏.

Proof. Suppose for a contradiction that system (13) has
nonconstant periodic solution with period 𝜏. Then the
following system (117) of ordinary differential equations has
nonconstant periodic solution:

̇𝑥 (𝑡) = 𝑥 (𝑡) [𝑟
1
− 𝑎

11
𝑥 (𝑡) −

𝑎
12
𝑥 (𝑡) 𝑦 (𝑡)

𝑚𝑦
2
(𝑡) + 𝑥

2
(𝑡)

] ,

̇𝑦 (𝑡) =

𝑎
21
𝑥
2

(𝑡) 𝑦 (𝑡)

𝑚𝑦
2
(𝑡) + 𝑥

2
(𝑡)

− 𝑟
2
𝑦 (𝑡) ,

(117)
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Figure 1:The bifurcation diagramof system (1) with 𝑎
11
= 0.1, 𝑎

12
=

1, 𝑎
21
= 3/2, and 𝑚 = 2, where 𝐿1 : 𝑟

1
= −(2/9)𝑟

2

2
+ 𝑟

2
/3, 𝐿2 :

𝑟
1
= (8/9)𝑟

2

2
√((3/2) − 𝑟

2
)/(2𝑟

2
) − (4/3)𝑟

2
((3/2) − 𝑟

2
), and 𝐿3 : 𝑟

1
=

((16/9)𝑟
2
+ (1/6))√((3/2) − 𝑟

2
)/(2𝑟

2
).

which has the same equilibria as system (13), that is, 𝐸
1
(𝑟

1
/

𝑎
11
, 0) and a positive equilibrium𝐸∗

(𝑥
∗

, 𝑦
∗

). Note that 𝑥-axis
and 𝑦-axis are the invariable manifold of system (13) and the
orbits of system (13) do not intersect each other.Thus, there is
no solution crossing the coordinate axis. On the other hand,
note the fact that if system (117) has a periodic solution, then
theremust be the equilibrium in its interior and𝐸

1
are located

on the coordinate axis. Thus, we conclude that the periodic
orbit of system (117) must lie in the first quadrant. From the
proof of Theorem 6, we known that if (H1) and (H2) hold,
the positive equilibrium is asymptotically stable and globally
attractive; thus, there is no periodic orbit in the first quadrant.
This ends the proof.

Theorem 11. Suppose the conditions (H1) and (H2) hold; let
𝜔
0
and 𝜏

𝑗
(𝑗 = 0, 1, . . .) be defined in (26). If (2𝑎

12
𝑟
2

2
ℎ/𝑎

2

21
) −

(2𝑟
2
(𝑎

21
− 𝑟

2
)/𝑎

21
) < 𝑟

1
< ((4𝑎

12
𝑟
2

2
ℎ + 𝑎

12
𝑎
21
𝑟
2
ℎ)/𝑎

2

21
), then

system (13) has at least 𝑗 − 1 periodic solutions for every 𝜏 >
𝜏
𝑗
, (𝑗 = 1, 2, . . .).

Proof. It is sufficient to prove that the projection of
ℓ
(𝐸
∗
,𝜏
𝑗
,2𝜋/𝜔

0
)
onto 𝜏-space is [𝜏, +∞) for each 𝑗 > 0, where

𝜏 ≤ 𝜏
𝑗
.

The characteristic matrix of (108) at an equilibrium 𝑧 =

(𝑧
(1)

, 𝑧
(2)

) ∈ R2 takes the following form:

Δ (𝑧, 𝜏, 𝑝) (𝜆) = 𝜆Id − 𝐷F (𝑧, 𝜏, 𝑝) (𝑒
𝜆Id) . (118)

(𝑧, 𝜏, 𝑝) is called a center if F(𝑧, 𝜏, 𝑝) = 0 and
det(Δ(𝑧, 𝜏, 𝑝)((2𝜋/𝑝)𝑖)) = 0. A center is said to be isolated if it
is the only center in some neighborhood of (𝑧, 𝜏, 𝑝). It follows
from (118) that

det (Δ (𝐸
1
, 𝜏, 𝑝) (𝜆)) = (𝜆 + 𝑟

1
) (𝜆 + 𝑟

2
− 𝑎

21
) = 0, (119)

det (Δ (𝐸∗

, 𝜏, 𝑝) (𝜆)) = 𝜆
2

+ 𝑝
0
𝜆 + 𝑝

1
+ 𝑝

2
𝑒
−𝜆𝜏

= 0, (120)



Abstract and Applied Analysis 11

0 0.5 1 1.5 2 2.5 3 3.5 4
0.8

0.81

0.82

0.83

0.84

0.85

0.86

0.87

0.88

x
(t
)

t − x plane ×10
4

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4
0.4

0.405

0.41

0.415

0.42

0.425

0.43

0.435

0.44

y
(t
)

t − y plane ×10
4

(b)

0.8 0.81 0.82 0.83 0.84 0.85 0.86 0.87 0.88
0.4

0.405

0.41

0.415

0.42

0.425

0.43

0.435

0.44

x(t)

y
(t
)

(c)

Figure 2: The trajectories and phase graphs of system (1) with 𝜏 = 𝜏
1
+ 𝜏

2
= 6 + 4 = 10.

where 𝑝
0
, 𝑝

1
, and 𝑝

2
are defined as in Section 3. From the

discussion in Section 3, each of (119) and (120) has no purely
imaginary root provided that 𝑟

1
> (4𝑎

12
𝑟
2

2
ℎ + 𝑎

12
𝑎
21
𝑟
2
ℎ)/𝑎

2

21
.

Thus, we conclude that (108) has no the center of the form
as (𝐸

1
, 𝜏, 𝑝) and (𝐸∗

, 𝜏, 𝑝). On the other hand, from the
discussion in Section 3 about the local Hopf bifurcation, it
is easy to verify that (𝐸∗

, 𝜏
𝑗
, 2𝜋/𝜔

0
) is an isolated center, and

there exist 𝜖 > 0, 𝛿 > 0, and a smooth curve 𝜆 : (𝜏
𝑗
− 𝛿, 𝜏

𝑗
+

𝛿) → C such that det(Δ(𝜆(𝜏))) = 0, |𝜆(𝜏) − 𝜔
0
| < 𝜖 for all

𝜏 ∈ [𝜏
𝑗
− 𝛿, 𝜏

𝑗
+ 𝛿] and

𝜆 (𝜏
𝑗
) = 𝜔

0
𝑖,

𝑑Re 𝜆 (𝜏)
𝑑𝜏








𝜏=𝜏
𝑗

> 0. (121)

Let

Ω
𝜖,(2𝜋/𝜔

0
)
= {(𝜂, 𝑝) ; 0 < 𝜂 < 𝜖,










𝑝 −

2𝜋

𝜔
0










< 𝜖} . (122)

It is easy to verify that, on [𝜏
𝑗
− 𝛿, 𝜏

𝑗
+ 𝛿] × 𝜕Ω

𝜖, 2𝜋/𝜔
0

,

det(Δ (𝐸∗

, 𝜏, 𝑝) (𝜂 +

2𝜋

𝑝

𝑖)) = 0

if and only if 𝜂 = 0, 𝜏 = 𝜏
𝑗
, 𝑝 =

2𝜋

𝜔
0

.

(123)

Therefore, the hypotheses (𝐴
1
)–(𝐴

4
) in [13] are satisfied.

Moreover, if we define

𝐻
±

(𝐸
∗

, 𝜏
𝑗
,

2𝜋

𝜔
0

) (𝜂, 𝑝)

= det(Δ (𝐸∗

, 𝜏
𝑗
± 𝛿, 𝑝) (𝜂 +

2𝜋

𝑝

𝑖)) ,

(124)
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Figure 3: The trajectories and phase graphs of system (1) with 𝜏 = 𝜏
1
+ 𝜏

2
= 6 + 6 = 12.

then we have the crossing number of isolated center (𝐸∗

,

𝜏
𝑗
, (2𝜋/𝜔

0
)) as follows:

𝛾(𝐸
∗

, 𝜏
𝑗
,

2𝜋

𝜔
0

) = deg
𝐵
(𝐻

−

(𝐸
∗

, 𝜏
𝑗
,

2𝜋

𝜔
0

) ,Ω
𝜖,2𝜋/𝜔

0

)

− deg
𝐵
(𝐻

+

(𝐸
∗

, 𝜏
𝑗
,

2𝜋

𝜔
0

) ,Ω
𝜖,2𝜋/𝜔

0

)

= −1.

(125)

Thus, we have

∑

(𝑧,𝜏,𝑝)∈C(𝐸∗,𝜏
𝑗
,2𝜋/𝜔
0
)

𝛾 (𝑧, 𝜏, 𝑝) < 0,

(126)

where (𝑧, 𝜏, 𝑝) has all or parts of the form (𝐸∗

, 𝜏
𝑘
, 2𝜋/𝜔

0
)(𝑘 =

0, 1, . . .). It follows from Lemma 8 that the connected compo-
nent ℓ

(𝐸
∗
,𝜏
𝑗
,2𝜋/𝜔

0
)
through (𝐸∗

, 𝜏
𝑗
, 2𝜋/𝜔

0
) in Γ is unbounded.

From (26), we can know that if (H1) holds, for 𝑗 ≥ 1,

𝜏
𝑗
=

1

𝜔
0

arccos
𝜔
2

0
− 𝑝

1

𝑝
2

+

2𝑗𝜋

𝜔
0

>

2𝜋

𝜔
0

. (127)

Now we prove that the projection of ℓ
(𝐸
∗
, 𝜏
𝑗
, 2𝜋/𝜔

0
)
onto

𝜏-space is [𝜏, +∞), where 𝜏 ≤ 𝜏
𝑗
. Clearly, it follows from

the proof of Lemma 10 that system (13) with 𝜏 = 0 has
no nontrivial periodic solution. Hence, the projection of
ℓ
(𝐸
∗
, 𝜏
𝑗
, (2𝜋/𝜔

0
))
onto 𝜏-space is away from zero.

For a contradiction, we suppose that the projection of
ℓ
(𝐸
∗
, 𝜏
𝑗
, (2𝜋/𝜔

0
))
onto 𝜏-space is bounded; this means that the

projection of ℓ
(𝐸
∗
, 𝜏
𝑗
, (2𝜋/𝜔

0
))
onto 𝜏-space is included in an

interval (0, 𝜏∗). Noticing (2𝜋/𝜔
0
) < 𝜏

𝑗
and applying

Lemma 10 we have 0 < 𝑝 < 𝜏
∗ for (𝑧(𝑡), 𝜏, 𝑝) belonging
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Figure 4: The trajectories and phase graphs of system (1) with 𝜏 = 𝜏
1
+ 𝜏

2
= 10 + 8 = 18.

to ℓ
(𝐸
∗
, 𝜏
𝑗
, (2𝜋/𝜔

0
))
. Applying Lemma 9, we know that the

projection of ℓ
(𝐸
∗
, 𝜏
𝑗
, (2𝜋/𝜔

0
))
onto 𝑧-space is bounded. So the

component of ℓ
(𝐸
∗
, 𝜏
𝑗
, (2𝜋/𝜔

0
))
is bounded.This contradicts our

conclusion that ℓ
(𝐸
∗
, 𝜏
𝑗
, (2𝜋/𝜔

0
))
is unbounded. The contradic-

tion implies that the projection of ℓ
(𝐸
∗
𝜏
𝑗
, (2𝜋/𝜔

0
))
onto 𝜏-space

is unbounded above.
Hence, system (13) has at least 𝑗 − 1 periodic solution for

every 𝜏 > 𝜏
𝑗
, (𝑗 = 1, 2, . . .). This completes the proof.

Example 12. In system (1), we first choose 𝑎
11
= 0.1, 𝑎

12
=

1, 𝑎
21
= 3/2, and𝑚 = 2. As depicted in Figure 1, a bifurcation

diagram is given for system (1) with respect to the parameters
𝑟
1
and 𝑟

2
. By the discussion in Section 3, system (1) always

has a semitrivial equilibrium 𝐸
1
, and if 𝑟

2
> 𝑎

21
, 𝐸

1
is

asymptotically stable; otherwise, 𝐸
1
is unstable. So if we

choose 0 < 𝑟
2
< 𝑎

21
= 3/2, as depicted in Figure 1, 𝐸

1

is always unstable. In domains II, V, and VI, the positive
equilibrium is not feasible. In domains I, III, and IV, system (1)

has a unique positive equilibrium; it is locally asymptotically
stable in domain I and is unstable in domain IV. In domain
III, system (1) undergoes a Hopf bifurcation at the positive
equilibrium at some 𝜏

0
. Further, we choose 𝑟

1
= 5/12, 𝑟

2
= 1,

𝑎
11
= 0.1,𝑎

12
= 1, 𝑎

21
= 3/2, and 𝑚 = 2. In this case,

system (1) has a positive equilibrium 𝐸
∗

= (5/6, 5/12). By
computation, we have 𝜔

0
≈ 0.1063, 𝜏

0
≈ 10.8795, and

𝜏
1
≈ 69.9876. From Theorem 5, 𝐸∗ is stable when 𝜏 < 𝜏

0
as

illustrated by numerical simulations (see Figure 2). When 𝜏
passes through the critical value 𝜏

0
, the equilibrium 𝐸∗ loses

its stability and a Hopf bifurcation occurs; that is, a family
of periodic solution bifurcates from 𝐸

∗. By the algorithm
derived in Section 3 and Section 4, we have 𝜆(𝜏

0
) = 0.0053−

0.0058𝑖, 𝑐
1
(0) = −0.4357 + 0.0265𝑖, which implies that 𝜇

2
>

0, 𝛽
2
< 0, and 𝑇

2
> 0. Thus, by the discussion in Section 4,

theHopf bifurcation is supercritical for 𝜏 > 𝜏
0
, the bifurcating

periodic solutions from𝐸∗ at 𝜏
0
are asymptotically stable, and

the period of these periodic solutions is increasing with the
increasing of 𝜏, which are depicted in Figures 3, 4, and 5.
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Figure 5: The trajectories and phase graphs of system (1) with 𝜏 = 𝜏
1
+ 𝜏

2
= 10 + 60 = 70.

Furthermore, Figure 5 shows that the local Hopf bifurcation
implies the global Hopf bifurcation after the second critical
value of 𝜏

1
= 69.9876.

7. Discussion

In this paper, we have studied a ratio-dependent predator-
prey model with two time delays. By analyzing the corre-
sponding characteristic equation, the local stability of the
positive equilibrium and the semitrivial equilibrium of sys-
tem (1) was discussed.We have obtained the estimated length
of gestation delay which would not affect the stable coexis-
tence of both prey and predator species at their equilibrium
values. The existence of Hopf bifurcation for system (1) at the
positive equilibrium was also established. From theoretical
analysis it was shown that the larger values of gestation time
delay cause fluctuation in individual population density and
hence the system becomes unstable. As the estimated length

of delay to preserve stability and the critical length of time
delay for Hopf bifurcation are dependent upon the parame-
ters of system, it is possible to impose some control, which
will prevent the possible abnormal oscillation in population
density.The global attractiveness result inTheorem 6 implied
that system (1) is permanent if the intrinsic growth rate of the
prey and the conversion rate and the interference rate of the
predator are high, and the death rate of the predator is low.
FromTheorem 7we see that if the death rate of the predator is
greater than the conversion rate of the predator, the predator
population become extinct for any gestation delay. In par-
ticular, the results about boundedness and attractiveness are
similar to the results of [4]. From the discussion in Sections
3 and 4, we see that if the values of 𝑟

1
, 𝑟

2
, 𝑎

11
, 𝑎

12
, 𝑎

21
,

and 𝑚 are given, we can get the Hopf bifurcation value
of 𝜏, and further we may determine the direction of Hopf
bifurcation and the stability of periodic solutions bifurcating
from the positive equilibrium 𝐸

∗ at the critical point 𝜏
0
.



Abstract and Applied Analysis 15

Furthermore, we show that the local Hopf bifurcation implies
the global Hopf bifurcation after the second critical value of
delay.
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In this paper we study the following second-order periodic system: x + 𝑉(𝑥) + 𝑝(𝑥, 𝑡) = 0, where 𝑉(𝑥) has a singularity. Under
some assumptions on the 𝑉(𝑥) and 𝑝(𝑥, 𝑡) by Ortega’ small twist theorem, we obtain the existence of quasi-periodic solutions and
boundedness of all the solutions.

1. Introduction and Main Result

In 1991, Levi [1] considered the following equation:

𝑥


+ 𝑉


(𝑥, 𝑡) = 0, (1)

where 𝑉(𝑥, 𝑡) satisfies some growth conditions and𝑉(𝑥, 𝑡) =
𝑉(𝑥, 𝑡 + 1). The author reduced the system to a normal
form and then applied Moser twist theorem to prove the
existence of quasi-periodic solution and the boundedness
of all solutions. This result relies on the fact that the
nonlinearity 𝑉(𝑥, 𝑡) can guarantee the twist condition of
KAM theorem. Later, several authors improved Levi’s result;
we refer to [2–4] and the references therein.

Recently, Capietto et al. [5] studied the following equa-
tion:

𝑥


+ 𝑉


(𝑥) = 𝐹 (𝑥, 𝑡) , (2)

wher 𝐹(𝑥, 𝑡) = 𝑝(𝑡) is a 𝜋-periodic function and 𝑉(𝑥) =
(1/2)𝑥

2

+
+ (1/(1 − 𝑥

2

−
)
]
) − 1, where 𝑥

+
= max{𝑥, 0}, 𝑥

−
=

max{−𝑥, 0}, and ] is a positive integer. Under the Lazer-
Leach assumption that

1 +

1

2

∫

𝜋

0

𝑝 (𝑡
0
+ 𝜃) sin 𝜃𝑑𝜃 > 0, ∀𝑡

0
∈ 𝑅, (3)

they prove the boundedness of solutions and the existence of
quasi-periodic solution by Moser twist theorem. It is the first

time that the equation of the boundedness of all solutions is
treated in case of a singular potential.

We observe that 𝐹(𝑥, 𝑡) = 𝑝(𝑡) in (2) is smooth and
bounded, so a natural question is to find sufficient condi-
tions on 𝐹(𝑥, 𝑡) such that all solutions of (2) are bounded
when 𝐹(𝑥, 𝑡) is unbounded. The purpose of this paper is to
deal with this problem.

Motivated by the papers [1, 5, 6], we consider the follow-
ing equation:

𝑥


+ 𝑉


(𝑥) + 𝑝 (𝑥, 𝑡) = 0, (4)

where

𝑉 =

1

2

𝑥
2

+
+

1

1 − 𝑥
2

−

− 1, 𝑥 > −1. (5)

In order to state our main results, we give some notation
and assumptions. Let 𝛼 ∈ (0, 1) be some fixed constant. Let

𝑝 =

𝑝 (𝑥, 𝑡)

|𝑥|
𝛼
, 𝑃 (𝑥, 𝑡) = ∫

𝑥

0

𝑝 (𝑠, 𝑡) 𝑑𝑠. (6)

(A1) Assume 𝑝(𝑥, 𝑡) ∈ 𝐶7,6(𝑆1 × 𝑅) and lim
𝑥→+∞

𝑝(𝑥, 𝑡) =

𝑝
+
(𝑡) uniformly in 𝑡.

(A2) lim
𝑥→+∞

𝑥
𝑚

(𝜕
𝑚+𝑛

𝑝(𝑥, 𝑡)/𝜕𝑥
𝑚

𝜕𝑡
𝑛

) = 𝑝
+,𝑚,𝑛

(𝑡) uni-
formly in 𝑡 for (𝑚, 𝑛) = (6, 0), (6, 7), (0, 7), where
𝑝
+,𝑚,0

(𝑡) ≡ 0 and 𝑝
+,6,7
(𝑡) ≡ 0.
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(A3) We suppose Lazer-Leach assumption holds:

∫

𝜋

0

𝑝
+
(𝑡
0
+ 𝜃) (sin 𝜃)1+𝛼𝑑𝜃 > 0, ∀𝑡

0
∈ 𝑅. (7)

Our main result is the following theorem.

Theorem 1. Under the assumptions (A1)–(A3), all the solu-
tions of (4) are defined for all 𝑡 ∈ (−∞, +∞), and for each
solution 𝑥(𝑡), one has sup

𝑡∈𝑅
(|𝑥(𝑡)| + |𝑥



(𝑡)|) < +∞.

The main idea of our proof is acquired from [6]. The
proof of Theorem 1 is based on a small twist theorem due
to Ortega [7]. The hypotheses (A1)–(A3) of our theorem are
used to prove that the Poincaré mapping of (4) satisfies the
assumptions of Ortega’s theorem.

Moreover, we have the following theorem on solutions of
Mather type.

Theorem 2. Assume that 𝑝(𝑡) ∈ 𝐶 satisfies (7); then, there
is an 𝜖

0
> 0 such that, for any 𝜔 ∈ (1/𝜋, 1/(𝜋 + 𝜖

0
)),

(4) has a solution (𝑥
𝜔
(𝑡), 𝑥



𝜔
(𝑡)) of Mather type with rotation

number 𝜔. More precisely,

Case 1 (𝜔 = 𝑝/𝑞 is rational).The solutions (𝑥
𝜔
(𝑡+2𝑖𝜋), 𝑥



𝜔
(𝑡+

2𝑖𝜋)), 1 ≤ 𝑖 ≤ 𝑞 − 1, are mutually unlinked periodic solution
of periodic 𝑞𝜋; moreover, in this case,

lim
𝑞→∞

min
𝑡∈𝑅





𝑥
𝜔
(𝑡)




+






𝑥


𝜔
(𝑡)






= +∞. (8)

Case 2 (𝜔 is irrational). The solution (𝑥
𝜔
(𝑡), 𝑥



𝜔
(𝑡)) is either a

usual quasi-periodic solution or a generalized one.

2. Proof of Theorem

2.1. Action-Angle Variables and Some Estimates. Observe that
(4) is equivalent to the following Hamiltonian system:

𝑥


=

𝜕𝐻

𝜕𝑦

, 𝑦


= −

𝜕𝐻

𝜕𝑥

(9)

with the Hamiltonian function

𝐻(𝑥, 𝑦, 𝑡) =

1

2

𝑦
2

+ 𝑉 (𝑥) + 𝑃 (𝑥, 𝑡) . (10)

In order to introduce action and angle variables, we first
consider the auxiliary autonomous equation:

𝑥


= 𝑦, 𝑦


= −𝑉


(𝑥) , (11)

which is an integrable Hamiltonian system with Hamiltonian
function

𝐻
1
(𝑥, 𝑦, 𝑡) =

1

2

𝑦
2

+ 𝑉 (𝑥) . (12)

The closed curves 𝐻
1
(𝑥, 𝑦, 𝑡) = ℎ > 0 are just the integral

curves of (11).
Denote by 𝑇

0
(ℎ) the time period of the integral curve Γ

ℎ

of (11) defined by 𝐻
1
(𝑥, 𝑦, 𝑡) = ℎ and by 𝐼 the area enclosed

by the closed curve Γ
ℎ
for every ℎ > 0. Let −1 < −𝛼

ℎ
< 0 <

𝛽
ℎ
be such that 𝑉(−𝛼

ℎ
) = 𝑉(𝛽

ℎ
) = ℎ. It is easy to see that

𝐼
0
(ℎ) = 2∫

𝛽
ℎ

−𝛼
ℎ

√2 (ℎ − 𝑉 (𝑠))𝑑𝑠, ∀ℎ > 0,

𝑇
0
(ℎ) = 𝐼



0
(ℎ) = 2∫

𝛽
ℎ

𝛼
ℎ

1

√2 (ℎ − 𝑉 (𝑠))

𝑑𝑠, ∀ℎ > 0.

(13)

By direct computation we get

𝐼
0
(ℎ) = 2∫

𝛽
ℎ

0

√2 (ℎ − 𝑉 (𝑠))𝑑𝑠 + 2∫

0

−𝛼
ℎ

√2 (ℎ − 𝑉 (𝑠))𝑑𝑠

= 𝜋ℎ + 2∫

𝛼
ℎ

0

√2 (ℎ − 𝑉 (−𝑠))𝑑𝑠,

(14)

so

𝑇
0
(ℎ) = 𝜋 + ∫

𝛼
ℎ

0

1

√2 (ℎ − 𝑉 (−𝑠))

𝑑𝑠. (15)

We then have

𝐼
0
(ℎ) = 𝐼

−
(ℎ) + 𝐼

+
(ℎ) , 𝑇

0
(ℎ) = 𝑇

−
(ℎ) + 𝑇

+
(ℎ) , (16)

where

𝐼
−
(ℎ) = 2∫

−𝛼
ℎ

0

√2 (ℎ − 𝑉 (𝑠))𝑑𝑠, 𝐼
+
(ℎ) = 𝜋ℎ,

𝑇
−
(ℎ) = 2∫

−𝛼
ℎ

0

1

√2 (ℎ − 𝑉 (−𝑠))

𝑑𝑠, 𝑇
+
(ℎ) = 𝜋.

(17)

We now give the estimates on the functions 𝐼 and 𝑇 .

Lemma 3. One has

ℎ
𝑛










𝑑
𝑛

𝑇 (ℎ)

𝑑ℎ
𝑛










≤ 𝐶ℎ
−1/2

,

ℎ
𝑛










𝑑
𝑛

𝐼 (ℎ)

𝑑ℎ
𝑛










≤ 𝐶ℎ
1/2

,

(18)

where 𝑛 = 0, 1, . . . , 6, ℎ → ∞. Note that here and below one
always uses 𝐶, 𝐶

0
, or 𝐶

0
to indicate some constants.

Proof. Now we estimate the first inequality. We chose
𝑉(𝑠)/ℎ = 𝜂 as the new variable of integration; then we have

𝑇 (ℎ) = ∫

0

−𝛼
ℎ

1

√2 (ℎ − 𝑉 (𝑠))

𝑑𝑠

= ∫

1

0

√ℎ

𝑉

(𝑠 (𝜂, ℎ))

1

√2 (1 − 𝜂)

𝑑𝜂.

(19)

Since 𝑉(𝑠) = (1/(1 − 𝑠2)) − 1 and 𝑉(𝑠)/ℎ = 𝜂, we have 𝑠 =
√𝜂ℎ/(1 + 𝜂ℎ). By direct computation, we have

𝑉


(𝑠) =

2𝑠

(1 − 𝑠
2
)
2
=

2√𝜂ℎ(1 + 𝜂ℎ)
2

√1 + 𝜂ℎ

, (20)
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and then we get

𝑇
(𝑛)

−
(ℎ) =

(−3/2)!

((−3/2) − 𝑛)!

∫

1

0

𝜂
𝑛

√2𝜂 (1 − 𝜂)(1 + 𝜂ℎ)
(3/2)+𝑛

𝑑𝜂,

𝑛 = 0, 1, . . . , 6.

(21)

When 0 ≤ 𝜂 ≤ ℎ−1 and ℎ is sufficiently large, there exits 𝐶
0

such that 1 − 𝜂 > 𝐶
0
, so we have

∫

ℎ
−1

0

𝜂
𝑛

√2𝜂 (1 − 𝜂)(1 + 𝜂ℎ)
(3/2)+𝑛

𝑑𝜂

≤ 𝐶∫

ℎ
−1

0

𝜂
𝑛

√2𝜂 (1 − 𝜂)

𝑑𝜂

≤

𝐶

𝐶
0

∫

ℎ
−1

0

𝜂
𝑛−(1/2)

𝑑𝜂 ≤ 𝐶ℎ
−(1/2)−𝑛

.

(22)

Since ℎ−2/3 ≤ 𝜂 ≤ 1, we have

ℎ
1/3

< 1 + ℎ
1/3

≤ 1 + 𝜂ℎ ≤ 1 + ℎ, (23)

and then

∫

1

ℎ
−2/3

𝜂
𝑛

√2𝜂 (1 − 𝜂)(1 + 𝜂ℎ)
(3/2)+𝑛

𝑑𝜂

≤ 𝐶∫

1

ℎ
−2/3

𝜂
𝑛

ℎ
𝑛

√2𝜂 (1 − 𝜂)ℎ
𝑛
(1 + 𝜂ℎ)

𝑛

(1 + 𝜂ℎ)
3/2

𝑑𝜂

≤ 𝐶∫

1

ℎ
−2/3

1

√2𝜂 (1 − 𝜂)ℎ
𝑛
(1 + 𝜂ℎ)

3/2

𝑑𝜂

≤ 𝐶∫

1

ℎ
−2/3

1

√2𝜂 (1 − 𝜂)ℎ
𝑛
ℎ
1/2

𝑑𝜂

≤ 𝐶ℎ
(−1/2)−𝑛

∫

1

0

1

√2𝜂 (1 − 𝜂)

𝑑𝜂 ≤ 𝐶ℎ
(−1/2)−𝑛

.

(24)

Observing that there is 𝐶
0
> 0 such that √1 − 𝜂 ≥ 𝐶

0
when

ℎ
−1

≤ 𝜂 ≤ ℎ
−2/3 and ℎ → +∞, we have

∫

ℎ
−2/3

ℎ
−1

𝜂
𝑛

√2𝜂 (1 − 𝜂)(1 + 𝜂ℎ)
(3/2)+𝑛

𝑑𝜂

≤ 𝐶
1
ℎ
(−3/2)−𝑛

∫

ℎ
−2/3

ℎ
−1

1

√2𝜂 (1 − 𝜂)𝜂
3/2

𝑑𝜂

≤

𝐶
1

𝐶
0

ℎ
(−3/2)−𝑛

∫

ℎ
−2/3

ℎ
−1

1

𝜂
2
𝑑𝜂 =

𝐶
1

𝐶
0

ℎ
(−3/2)−𝑛

1

𝜂










ℎ
−2/3

ℎ
−1

=

𝐶
1

𝐶
0

ℎ
(−3/2)−𝑛

(ℎ − ℎ
2/3

) ≤ 𝐶ℎ
−(1/2)−𝑛

.

(25)

By (22)–(25) we have 𝑇(𝑛)
−
(ℎ) ≤ 𝐶ℎ

(−1/2)−𝑛, 𝑛 = 0, 1, . . . , 6.

The proof of the second inequality is similar to the first
one, so we only give a brief proof.

We choose 𝑉(𝑠)/ℎ = 𝜂 as the new variable of integration,
so we have

𝜕𝑠

𝜕ℎ

=

𝜂

𝑉

, 𝑠 = √

𝜂ℎ

1 + 𝜂ℎ

,

𝑉


(𝑠) =

2𝑠

(1 − 𝑠
2
)
2
=

2√𝜂ℎ(1 + 𝜂ℎ)
2

√1 + 𝜂ℎ

.

(26)

By direct computation, we have

𝐼
−
(ℎ) = 2∫

0

−𝛼
ℎ

√2 (ℎ − 𝑉 (𝑠))𝑑𝑠 = ℎ∫

1

0

√2 (1 − 𝜂)

√𝜂(1 + 𝜂ℎ)
3/2

𝑑𝜂.

(27)

By (27), we can easily get

𝐼
(𝑛)

−
(ℎ) = 𝐼

(𝑛)

−1
(ℎ) + 𝐼

(𝑛)

−2
(ℎ)

= 𝑛

(−3/2)!

((−3/2) − 𝑛 + 1)!

× ∫

1

0

√2 (1 − 𝜂)

√𝜂

𝜂
𝑛−1

(1 + 𝜂ℎ)
(3/2)+𝑛−1

𝑑𝜂

+

(−3/2)!

((−3/2) − 𝑛)!

ℎ ∫

1

0

√2 (1 − 𝜂)

√𝜂

𝜂
𝑛

(1 + 𝜂ℎ)
(3/2)+𝑛

𝑑𝜂,

(28)

where 𝑛 = 0, 1, . . . , 6.
By a similar way to that used in estimating 𝑇(𝑛)

−
(ℎ), we get

𝐼
(𝑛)

−1
(ℎ) ≤ 𝐶ℎ

(1/2)−𝑛

, 𝐼
(𝑛)

−2
(ℎ) ≤ 𝐶ℎ

(1/2)−𝑛

, (29)

which means that

𝐼
(𝑛)

−
(ℎ) ≤ 𝐶ℎ

(1/2)−𝑛

, 𝑛 = 0, 1, . . . , 6. (30)

Thus Lemma 3 is proved.

Remark 4. It follows from the definitions of 𝑇
+
(ℎ), 𝑇

−
(ℎ) and

Lemma 3 that

lim
ℎ→+∞

𝑇
−
(ℎ) = 0, lim

ℎ→+∞

𝑇
+
(ℎ) = 𝜋. (31)

Thus the time period 𝑇
0
(ℎ) is dominated by 𝑇

+
(ℎ) when ℎ is

sufficiently large. From the relation between 𝑇
−
(ℎ) and 𝐼

−
(ℎ),

we know 𝐼
0
(ℎ) is dominated by 𝐼

+
(ℎ) when ℎ is sufficiently

large.

Remark 5. It also follows from the definition of 𝐼(ℎ), 𝐼
−
(ℎ),

𝐼
+
(ℎ) and Remark 4 that










ℎ
𝑛
𝑑
𝑛

𝐼
0
(ℎ)

𝑑ℎ
𝑛










≤ 𝐶
0
𝐼
0
(ℎ) , for 𝑛 ≥ 1. (32)
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Remark 6. Note that ℎ = ℎ
0
(𝐼
0
) is the inverse function of 𝐼

0
.

By Remark 5, we have









𝐼
𝑛
𝑑
𝑛

ℎ (𝐼)

𝑑𝐼
𝑛










≤ 𝐶
0
ℎ (𝐼) for 𝑛 ≥ 1. (33)

We now carry out the standard reduction to the action-
angle variables. For this purpose, we define the generating
function 𝑆(𝑥, 𝐼) = ∫

𝐶

√2(ℎ − 𝑉(𝑠))𝑑𝑠, where 𝐶 is the part of
the closed curve Γ

ℎ
connecting the point on the 𝑦-axis and

point (𝑥, 𝑦).
We define the well-known map (𝜃, 𝐼) → (𝑥, 𝑦) by

𝑦 =

𝜕𝑆

𝜕𝑥

(𝑥, 𝐼) , 𝜃 =

𝜕𝑆

𝜕𝐼

(𝑥, 𝐼) , (34)

which is symplectic since

𝑑𝑥 ∧ 𝑑𝑦 = 𝑑𝑥 ∧ (𝑆
𝑥𝑥
𝑑𝑥 + 𝑆

𝑥𝐼
𝑑𝐼) = 𝑆

𝑥𝐼
𝑑𝑥 ∧ 𝑑𝐼,

𝑑𝜃 ∧ 𝑑𝐼 = (𝑆
𝐼𝑥
𝑑𝑥 + 𝑆

𝐼𝐼
𝑑𝐼) ∧ 𝑑𝐼 = 𝑆

𝐼𝑥
𝑑 ∧ 𝑑𝐼.

(35)

From the above discussion, we can easily get

𝜃 =

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

𝜋

𝑇
0
(ℎ (𝑥, 𝑦))

×(

𝑇
−
(ℎ (𝑥, 𝑦))

2

+ arcsin 𝑥

√2 (ℎ (𝑥, 𝑦))

) ,

if 𝑥 > 0, 𝑦 > 0,
𝜋

𝑇
0
(ℎ (𝑥, 𝑦))

×(

𝑇
−
(ℎ (𝑥, 𝑦))

2

+ 𝜋 +arcsin 𝑥

√2 (ℎ (𝑥, 𝑦))

) ,

if 𝑥 > 0, 𝑦 < 0,
𝜋

𝑇
0
(ℎ (𝑥, 𝑦))

×(∫

𝑥

−𝛼
ℎ

1

√2 (ℎ (𝑥, 𝑦) + 1 − (1 − 𝑠
2
)
−1

)

𝑑𝑠) ,

if 𝑥 < 0, 𝑦 > 0,
𝜋

𝑇
0
(ℎ (𝑥, 𝑦))

×(𝑇
0
(ℎ (𝑥, 𝑦)) − ∫

𝑥

−𝛼
ℎ

1

√2 (ℎ (𝑥, 𝑦) + 1 − (1 − 𝑠
2
)
−1

)

𝑑𝑠) ,

if 𝑥 < 0, 𝑦 < 0,

𝐼 (𝑥, 𝑦) = 𝐼
0
(ℎ (𝑥, 𝑦)) = 2∫

𝛽
ℎ

−𝛼
ℎ

√2 (ℎ (𝑥, 𝑦) − 𝑉(𝑠))𝑑𝑠.

(36)

In the new variables (𝜃, 𝐼), the system (9) becomes

𝜃


=

𝜕𝐻

𝜕𝐼

, 𝐼


= −

𝜕𝐻

𝜕𝜃

, (37)

where

𝐻(𝜃, 𝐼, 𝑡) = 𝜋ℎ
0
(𝐼) + 𝜋𝑃 (𝑥 (𝐼, 𝜃) , 𝑡) . (38)

In order to estimate 𝜋𝑃(𝐼, 𝜃), we need the estimate on the
function 𝑥(𝐼, 𝜃).

Lemma 7. For 𝐼 sufficiently large and −𝛼
ℎ
≤ 𝑥 < 0, the

following estimates hold:









𝐼
𝑛
𝜕
𝑛

𝑥 (𝐼, 𝜃)

𝜕𝐼
𝑛










≤ 𝑐√𝐼, for 0 ≤ 𝑛 ≤ 6. (39)

The Lemma was first proved in [1], and later [5] gives a
different proof; [8] using the method of induction hypothesis
also gives another proof. So, for concision, we omit the proof.

2.2. New Action and Angle Variables. Now we are con-
cerned with the Hamiltonian system (37) with Hamiltonian
function 𝐻(𝜃, 𝐼, 𝑡) given by (38). Note that

𝐼𝑑𝜃 − 𝐻𝑑𝑡 = − (𝐻𝑑𝑡 − 𝐼𝑑𝜃) . (40)

This means that if one can solve 𝐼 from (38) as a function
of 𝐻 (using 𝜃 and 𝑡 as parameters), then

𝑑𝐻

𝑑𝜃

= −

𝜕𝐼

𝜕𝑡

(𝑡,𝐻, 𝜃) ,

𝑑𝑡

𝑑𝜃

=

𝜕𝐼

𝜕𝐻

(𝑡,𝐻, 𝜃) (41)

is also aHamiltonian systemwithHamiltonian function 𝐼 and
now the action, angle, and time variables are𝐻, 𝑡, and 𝜃.

From (38) and Lemma 3, we have

𝜕𝐻

𝜕𝐼

→ 1, as 𝐼 → +∞. (42)

So we assume that 𝐼 can be written as

𝐼 = 𝐼
0
(

𝐻

𝜋

+ 𝑅 (𝐻, 𝑡, 𝜃)) , (43)

where 𝑅 satisfies |𝑅| < 𝐻/𝜋. Recalling that ℎ
0
is the inverse

function of 𝐼
0
, we have

𝐻

𝜋

+ 𝑅 (𝐻, 𝑡, 𝜃) = ℎ
0
(𝐼) , (44)

which implies that

𝑅 (𝐻, 𝑡, 𝜃) = 𝑃 (𝑥 (𝐼, 𝜃) , 𝑡) . (45)

As a consequence, 𝑅 is implicitly defined by

𝑅 (𝐻, 𝑡, 𝜃) = 𝑃(𝑥(𝐼
0
(

𝐻

𝜋

+ 𝑅 (𝐻, 𝑡, 𝜃)) , 𝜃) , 𝑡) . (46)

For the estimates of 𝑅, we need the following lemmas.

Lemma 8. Let 𝑓(𝑥, 𝑡) and 𝑔(𝑥, 𝑡) be continuously differen-
tiable for (𝑥, 𝑡) ∈ [0, +∞) × 𝐼, where 𝐼 is an interval of 𝑅. If

(1) 𝑔(𝑥, 𝑡) → ∞ as 𝑥 → +∞, uniformly with respect
to 𝑡 ∈ 𝐼,
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(2) 𝑓
𝑥
(𝑥, 𝑡)/𝑔



𝑥
(𝑥, 𝑡) → ℎ(𝑡) as 𝑥 → +∞, uniformly

with respect to 𝑡 ∈ 𝐼,
then one has 𝑓(𝑥, 𝑡)/𝑔(𝑥, 𝑡) → ℎ(𝑡) as 𝑥 → +∞, uniformly
with respect to 𝑡 ∈ 𝐼.

Proof. For any 0 < 𝜖 < 1, there exits 𝑋
1
, such that if 𝑥 > 𝑋

1
,

we have










𝑓


𝑥
(𝑥, 𝑡)

𝑔


𝑥
(𝑥, 𝑡)

− ℎ (𝑡)











≤

𝜖

2

, ∀𝑡 ∈ 𝐼. (47)

Let 𝑥
0
= 𝑋

1
+ 1. Then by Lagrangian differential mean value

theorem, it follows that, for all 𝑥 > 𝑋
1
, we have











𝑓 (𝑥, 𝑡) − 𝑓 (𝑥
0
, 𝑡)

𝑔 (𝑥, 𝑡) − 𝑔 (𝑥
0
, 𝑡)

− ℎ (𝑡)











≤

𝜖

2

, ∀𝑡 ∈ 𝐼. (48)

Moreover, there exists a constant 𝑀 > 0 such that










𝑔 (𝑥
0
, 𝑡)

𝑓 (𝑥, 𝑡) − 𝑓 (𝑥
0
, 𝑡)

𝑔 (𝑥, 𝑡) − 𝑔 (𝑥
0
, 𝑡)

− 𝑓 (𝑥
0
, 𝑡)











≤ 𝑀, ∀𝑡 ∈ 𝐼.

(49)

By condition (A1), there exists 𝑋 > 𝑋
1
; we have |𝑔(𝑥, 𝑡)| >

2𝑀/𝜖.
Thus










𝑓 (𝑥, 𝑡)

𝑔 (𝑥, 𝑡)

− ℎ (𝑡)










≤











𝑓 (𝑥, 𝑡) − 𝑓 (𝑥
0
, 𝑡)

𝑔 (𝑥, 𝑡) − 𝑔 (𝑥
0
, 𝑡)

− ℎ (𝑡)











+











1

𝑔 (𝑥, 𝑡)

(𝑔 (𝑥
0
, 𝑡)

𝑓 (𝑥, 𝑡) − 𝑓 (𝑥
0
, 𝑡)

𝑔 (𝑥, 𝑡) − 𝑔 (𝑥
0
, 𝑡)

− 𝑓 (𝑥
0
, 𝑡))











< 𝜖.

(50)

Lemma9. Under the assumptions (A1) and (A2), the following
results hold:

(1) lim
𝑥→+∞

(𝑥
𝑚

(𝜕
𝑚+𝑛

𝑝(𝑥, 𝑡)/𝜕𝑥
𝑚

𝜕𝑡
𝑛

)) = 𝑝
+,𝑚,𝑛

(𝑡) uni-
formly in 𝑡, for 0 ≤ 𝑚 ≤ 6 and 0 ≤ 𝑛 ≤ 7, where
𝑝
+,𝑚,𝑛

(𝑡) = 0 for 1 ≤ 𝑚 ≤ 6, 0 ≤ 𝑛 ≤ 7 and
𝑝
+,0,𝑛
(𝑡) = 𝑝

(𝑛)

(𝑡) for 0 ≤ 𝑛 ≤ 7.
(2) lim

𝑥→+∞
(𝑥
𝑚

(𝜕
𝑚+𝑛

/𝜕𝑥
𝑚

𝜕𝑡
𝑛

)(𝑃(𝑥, 𝑡)/|𝑥|
𝜎

𝑥)) = (1/

(𝜎 + 1))𝑝
+,𝑚,𝑛

(𝑡), for 0 ≤ 𝑚 ≤ 6 and 0 ≤ 𝑛 ≤ 7, where
𝑝
+,7,𝑛
(𝑡) = 0 for 0 ≤ 𝑛 ≤ 7.

Proof. Result (1) is similar to Lemma 2.1 in [9], so we omit
the proof.

For result (2), we first prove that, for 1 ≤ 𝑚 ≤ 6 and 0 ≤
𝑛 ≤ 7,

lim
𝑥→+∞

𝑥
𝑚
(𝜕
𝑚+𝑛

/𝜕𝑥
𝑚

𝜕𝑡
𝑛

) 𝑝 (𝑡, 𝑥)

|𝑥|
𝜎

= 𝜎 ⋅ ⋅ ⋅ (𝜎 − 𝑚 + 1) 𝑝
(𝑛)

+
(𝑡) .

(51)

For 𝑚 = 1 and 0 ≤ 𝑛 ≤ 7, by result (1), we have that

lim
𝑥→+∞

𝑥{−𝜎 ⋅

(𝜕
𝑛

/𝜕𝑡
𝑛

) 𝑝 (𝑡, 𝑥)

|𝑥|
𝜎

⋅ 𝑥

+

(𝜕
1+𝑛

/𝜕𝑥𝜕𝑡
𝑛

) 𝑝 (𝑡, 𝑥)

|𝑥|
𝜎

}=0,

(52)

uniformly in 𝑡. It follows that

lim
𝑥→+∞

𝑥 ⋅

(𝜕
1+𝑛

/𝜕𝑥𝜕𝑡
𝑛

) 𝑝 (𝑡, 𝑥)

|𝑥|
𝜎

= 𝜎 ⋅ 𝑝
(𝑛)

+
(𝑡) . (53)

This means that (51) holds for 𝑚 = 1. For 𝑚 = 2, combining
this with result (1) and the result of (51) for 𝑚 = 1, we have
that (51) still holds. Inductively we can prove that (51) holds
for all 1 ≤ 𝑚 ≤ 6.

Obviously, it follows that

𝜕
𝑛

𝜕𝑡
𝑛

𝑃 (𝑡, 𝑥)

|𝑥|
𝜎

⋅ 𝑥

−

1

1 + 𝛼

⋅ 𝑝
(𝑛)

+
(𝑡)

=

∫

𝑥

0

[(𝜕
𝑛

/𝜕𝑡
𝑛

) 𝑝 (𝑡, 𝑥) − 𝑝
(𝑛)

+
(𝑡) |𝑠|

𝜎

] 𝑑𝑠

|𝑥|
𝜎

⋅ 𝑥

.

(54)

Using Lemma 8 and the first result (1) for 𝑚 = 0, it follows
that

lim
𝑥→+∞

𝜕
𝑛

𝜕𝑡
𝑛

𝑃 (𝑡, 𝑥)

|𝑥|
𝜎

⋅ 𝑥

=

1

𝜎 + 1

𝑝
(𝑛)

+
(𝑡) , (55)

for 0 ≤ 𝑛 ≤ 7. In a similar way to the proof of (51), we have

lim
𝑥→+∞

𝑥
𝑚
𝜕
𝑚+𝑛

𝜕𝑥
𝑚
𝜕𝑡
𝑛

𝑃 (𝑥, 𝑡)

|𝑥|
𝜎

𝑥

=

1

𝜎 + 1

𝑝
+,𝑚,𝑛

(𝑡) , for 0 ≤ 𝑚 ≤ 6, 0 ≤ 𝑛 ≤ 7,
(56)

where 𝑝
+,7,𝑛
(𝑡) = 0. Thus we proved Lemma 9.

Nowwe give the estimates of 𝑅. By Lemma 9, in a similar
way to that for Lemma 2.3 in [5], we have the following
lemma.

Lemma 10. The function 𝑅(𝐻, 𝑡, 𝜃) satisfies the following esti-
mates:











𝜕
𝑚+𝑙

𝑅 (𝐻, 𝑡, 𝜃)

𝜕𝐻
𝑚
𝜕𝑡
𝑙











≤ 𝐻
(𝛼+1)/2

, for 𝑚 + 𝑙 ≤ 6. (57)

Moreover, by the implicit function theorem, there exists
a function 𝑅

1
= 𝑅

1
(𝑡,𝐻, 𝜃) such that

𝑅 (𝐻, 𝑡, 𝜃) = 𝑃 (𝑥 (𝐻, 𝜃) , 𝑡) + 𝑅
1
(𝐻, 𝑡, 𝜃) . (58)

Since

𝑅
1
(𝐻, 𝑡, 𝜃) = 𝑅 (𝐻, 𝑡, 𝜃) − 𝑃 (𝑥 (𝐻, 𝜃) , 𝑡)

= 𝑃 {𝑥 [𝐼
0
(

𝐻

𝜋

+ 𝑅 (𝐻, 𝑡, 𝜃)) , 𝜃] , 𝑡}

− 𝑃 (𝑥 (𝐻, 𝜃) , 𝑡)

= ∫

1

0

𝑝 {𝑥 [𝐻 + 𝑠 (𝜋𝑅 + 𝐼
−
) , 𝜃] , 𝑡}

⋅

𝜕𝑥

𝜕𝐼

(𝐻 + 𝑠 (𝜋𝑅 + 𝐼
−
) , 𝜃) ⋅ (𝜋𝑅 + 𝐼

−
) 𝑑𝑠,

(59)

by Lemmas 3 and 10, we have the estimates on 𝑅
1
(𝐻, 𝑡, 𝜃).
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Lemma 11. Consider the following:










𝜕
𝑘+𝑙

𝑅
1
(𝐻, 𝑡, 𝜃)

𝜕
𝑘
𝐻𝜕

𝑙
𝑡











< 𝐻
𝛼/2

𝑓𝑜𝑟 𝑘 + 𝑙 ≤ 6. (60)

For the estimate of 𝐼((𝐻/𝜋) + 𝑅), we need the estimate
on 𝐼

−
((𝐻/𝜋)+𝑅). By Lemma 3 and noticing that |𝑅| < 𝐻/𝜋,

we have the following lemma.

Lemma 12. Consider the following:










𝜕
𝑘+𝑙

𝐼
−
((𝐻/𝜋) + 𝑅)

𝜕
𝑘
𝐻𝜕

𝑙
𝑡











< 𝐻
1/2

𝑓𝑜𝑟 𝑘 + 𝑙 ≤ 6. (61)

Now the new Hamiltonian function 𝐼 = 𝐼(𝑡,𝐻, 𝜃) is
written in the form

𝐼 = 𝐼
0
(

𝐻

𝜋

+ 𝑅) = 𝐼
+
(

𝐻

𝜋

+ 𝑅) + 𝐼
−
(

𝐻

𝜋

+ 𝑅)

= 𝐻 + 𝜋𝑅 (𝐻, 𝑡, 𝜃) + 𝐼
−
(

𝐻

𝜋

+ 𝑅)

= 𝐻 + 𝜋𝑃 (𝑥 (𝐻, 𝜃) , 𝑡) + 𝑅
1
(𝐻, 𝑡, 𝜃) + 𝐼

−
(

𝐻

𝜋

+ 𝑅) .

(62)

The system (41) is of the form

𝑑𝑡

𝑑𝜃

=

𝜕𝐼

𝜕𝐻

= 1 + 𝜋

𝜕𝑥

𝜕𝐻

(𝐻, 𝜃) 𝑝 (𝑥 (𝐻, 𝜃) , 𝑡)

+

𝜕𝑅
1

𝜕𝐻

(𝐻, 𝑡, 𝜃) +

𝜕𝐼
−

𝜕𝐻

(𝐻, 𝑡, 𝜃) ,

𝑑𝐻

𝑑𝜃

= −

𝜕𝐼

𝜕𝑡

= −𝜋

𝜕𝑃

𝜕𝑡

(𝑥 (𝜃,𝐻) , 𝑡)

−

𝜕𝑅
1

𝜕𝑡

(𝑡,𝐻, 𝜃) −

𝜕𝐼
−

𝜕𝑡

(𝐻, 𝑡, 𝜃) .

(63)

Introduce a new action variable 𝜌 ∈ [1, 2] and a parameter
𝜖 > 0 by 𝐻 = 𝜖−2𝜌. Then, 𝐻 ≫ 1 ⇔ 0 < 𝜖 ≪ 1. Under this
transformation, the system (63) is changed into the form

𝑑𝑡

𝑑𝜃

=

𝜕𝐼

𝜕𝐻

= 1 + 𝜋

𝜕𝑥

𝜕𝐻

(𝐻, 𝜃) 𝑝 (𝑥 (𝐻, 𝜃) , 𝑡)

+

𝜕𝑅
1

𝜕𝐻

(𝐻, 𝑡, 𝜃) +

𝜕𝐼
−

𝜕𝐻

(𝐻, 𝑡, 𝜃) ,

𝑑𝜌

𝑑𝜃

= −

𝜕𝐼

𝜕𝑡

= −𝜖
2

[𝜋

𝜕𝑃

𝜕𝑡

(𝑥 (𝜃,𝐻) , 𝑡)

+

𝜕𝑅
1

𝜕𝑡

(𝐻, 𝑡, 𝜃) +

𝜕𝐼
−

𝜕𝑡

(𝐻, 𝑡, 𝜃)] ,

(64)

which is also Hamiltonian system with the new Hamiltonian
function

Γ (𝑡, 𝜌, 𝜃; 𝜖) = 𝜌 + 𝜋𝜖
−2

𝑃 (𝑥 (𝜃, 𝜖
−2

𝜌) , 𝑡)

+ 𝜖
−2

𝑅
1
(𝜖
−2

𝜌, 𝜃, 𝑡) + 𝜖
−2

𝐼
−
(𝜖
−2

𝜌, 𝜃, 𝑡) .

(65)

Obviously, if 𝜖 ≪ 1, the solution (𝑡(𝜃, 𝑡
0
, 𝜌
0
), 𝜌(𝜃, 𝑡

0
, 𝜌
0
)) of

(64) with the initial date (𝑡
0
, 𝜌
0
) ∈ 𝑅 × [1, 2] is defined in

the interval 𝜃 ∈ [0, 2𝜋] and 𝜌(𝜃, 𝑡
0
, 𝜌
0
) ∈ [(1/2), 3]. So the

Poincaré map of (64) is well defined in the domain 𝑅×[1, 2].

Lemma 13 (see [6] Lemma 5.1). The Poincaré map of (64)
has intersection property.

The proof is similar to the corresponding one in [6].
For convenience we introduce the notation 𝑂

𝑘
(1) and

𝑜
𝑘
(1). We say a function 𝑓(𝑡, 𝜌, 𝜃, 𝜖) ∈ 𝑂

𝑘
(1) if 𝑓 is smooth

in (𝑡, 𝜌) and, for 𝑘
1
+ 𝑘

2
≤ 𝑘,











𝜕
𝑘
1
+𝑘
2

𝜕𝑡
𝑘
1𝜕𝜌

𝑘
2

𝑓 (𝑡, 𝜌, 𝜃, 𝜖)











≤ 𝐶, (66)

for some constant 𝐶 > 0 which is independent of the
arguments 𝑡, 𝜌, 𝜃, and 𝜖.

Similarly, we say 𝑓(𝑡, 𝜌, 𝜃, 𝜖) ∈ 𝑜
𝑘
(1) if 𝑓 is smooth in

(𝑡, 𝜌) and, for 𝑘
1
+ 𝑘

2
≤ 𝑘,

lim
𝜖→0











𝜕
𝑘
1
+𝑘
2

𝜕𝑡
𝑘
1𝜕𝜌

𝑘
2

𝑓 (𝑡, 𝜌, 𝜃, 𝜖)











= 0, (67)

uniformly in (𝑡, 𝜌, 𝜃).

2.3. Poincaré Map and Twist Theorems. We will use Ortega’
small twist theorem to prove that the Pioncaré map 𝑃 has an
invariant closed curve, if 𝜖 is sufficiently small. Let us first
recall the theorem in [7].

Lemma 14 (Ortega’sTheorem). Let 𝐴 = S1×[𝑎, 𝑏] be a finite
cylinder with universal cover A = R × [𝑎, 𝑏]. The coordinate
in A is denoted by (𝜏, ]). Consider a map

𝑓 : 𝐴 → S ×R. (68)

One assumes that the map has the intersection property.
Suppose that 𝑓 : 𝐴 → R × R, (𝜏

0
, ]
0
) → (𝜏

1
, ]
1
) is a lift

of 𝑓 and it has the form

𝜏
1
= 𝜏

0
+ 2𝑁𝜋 + 𝛿𝑙

1
(𝜏
0
, ]
0
) + 𝛿𝑔

1
(𝜏
0
, ]
0
) ,

]
1
= ]

0
+ 𝛿𝑙

2
(𝜏
0
, ]
0
) + 𝛿𝑔

2
(𝜏
0
, ]
0
) ,

(69)

where 𝑁 is an integer and 𝛿 ∈ (0, 1) is a parameter. The
functions 𝑙

1
, 𝑙
2
, 𝑔

1
, and 𝑔

2
satisfy

𝑙
1
∈ 𝐶

6

(𝐴) , 𝑙
1
(𝜏
0
, ]
0
) > 0,

𝜕𝑙
1

𝜕]
0

(𝜏
0
, ]
0
) > 0,

∀ (𝜏
0
, ]
0
) ∈ 𝐴,

𝑙
2
(⋅, ⋅) , 𝑔

1
(⋅, ⋅, 𝜖) , 𝑔

2
(⋅, ⋅, 𝜖) ∈ 𝐶

5

(𝐴) .

(70)

In addition, one assumes that there is a function 𝐼 : 𝐴 →

𝑅 satisfying

𝐼 ∈ 𝐶
6

(𝐴) ,

𝜕𝐼

𝜕]
0

(𝜏
0
, ]
0
) > 0, ∀ (𝜏

0
, ]
0
) ∈ 𝐴,

𝑙
1
(𝜏
0
, ]
0
) ⋅

𝜕𝐼

𝜕𝜏
𝑜

(𝜏
0
, ]
0
) + 𝑙

2
(𝜏
0
, ]
0
) ⋅

𝜕𝐼

𝜕]
0

(𝜏
0
, ]
0
) = 0,

∀ (𝜏
0
, ]
0
) ∈ 𝐴.

(71)
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Moreover, suppose that there are two numbers 𝑎 and ̃𝑏 such
that 𝑎 < 𝑎 < ̃𝑏 < 𝑏 and

𝐼
𝑀
(𝑎) < 𝐼

𝑚
(𝑎) ≤ 𝐼

𝑀
(𝑎) < 𝐼

𝑚
(
̃
𝑏) ≤ 𝐼

𝑀
(
̃
𝑏) < 𝐼

𝑚
(𝑏) , (72)

where

𝐼M (𝑟) = max
𝜌∈𝑆
1

𝐼 (𝜌
𝑜
, 𝜏
𝑜
) , 𝐼

𝑚
(𝑟) = min

𝜌∈𝑆
1

𝐼 (𝜌
𝑜
, 𝜏
𝑜
) . (73)

Then there exist 𝜖 > 0 and Δ > 0 such that, if 𝛿 < Δ and




𝑔
1
(⋅, ⋅, 𝜖)




𝐶
5
(𝐴)
+




𝑔
2
(⋅, ⋅, 𝜖)




𝐶
5
(𝐴)
< 𝜖, (74)

the mapping 𝑓 has an invariant curve in Γ
𝐴
. The constant 𝜖 is

independent of 𝛿.

We make the ansatz that the solution of (64) with the
initial condition (𝑡(0), 𝜌(0)) = (𝑡

0
, 𝜌
0
) is of the form

𝑡 = 𝑡
0
+ 𝜃 + 𝜖

1−𝛼

Σ
1
(𝑡
0
, 𝜌
0
, 𝜃; 𝜖) ,

𝜌 = 𝜌
0
+ 𝜖

1−𝛼

Σ
2
(𝑡
0
, 𝜌
0
, 𝜃; 𝜖) .

(75)

Then, the Poincaré map of (64) is

𝑃 : 𝑡
1
= 𝑡

0
+ 2𝜋 + 𝜖

1−𝛼

Σ
1
(𝑡
0
, 𝜌
0
, 2𝜋; 𝜖) ,

𝜌
1
= 𝜌

0
+ 𝜖

1−𝛼

Σ
2
(𝑡
0
, 𝜌
0
, 2𝜋; 𝜖) .

(76)

The functions Σ
1
and Σ

2
satisfy

Σ
1
= 𝜋𝜖

𝛼−1

∫

𝜃

0

𝜕𝑥

𝜕𝐻

(𝜖
−2

𝜌, 𝜃) 𝑝 (𝑥 (𝜖
−2

𝜌, 𝜃) , 𝑡) 𝑑𝜃

+ 𝜖
𝛼−1

∫

𝜃

0

(

𝜕𝑅
1

𝜕𝐻

(𝜖
−2

𝜌, 𝑡, 𝜃) +

𝜕𝐼
−

𝜕𝐻

(𝜖
−2

𝜌, 𝑡, 𝜃)) 𝑑𝜃,

Σ
2
= −𝜋𝜖

𝛼+1

∫

𝜃

0

𝜕𝑃

𝜕𝑡

(𝑥 (𝜖
−2

𝜌, 𝜃) , 𝑡) 𝑑𝜃

− 𝜖
𝛼+1

∫

𝜃

0

(

𝜕𝑅
1

𝜕𝑡

(𝜖
−2

𝜌, 𝑡, 𝜃) −

𝜕𝐼
−

𝜕𝑡

(𝜖
−2

𝜌, 𝑡, 𝜃)) 𝑑𝜃,

(77)

where 𝑡 = 𝑡
0
+ 𝜃 + 𝜖

1−𝛼

Σ
1
and 𝜌 = 𝜌

0
+ 𝜖

1−𝛼

Σ
2
. By Lemmas

9, 11, and 12, we know that




Σ
1





+




Σ
2





≤ 𝐶 for 𝜃 ∈ [0, 2𝜋] . (78)

Hence, for 𝜌
0
∈ [1, 2], we may choose 𝜖 sufficiently small

such that

𝜌
0
+ 𝜖Σ

2
≥

𝜌
0

2

≥

1

2

. (79)

Moreover we can prove that

Σ
1
, Σ

2
∈ 𝑂

6
(1) . (80)

In a similar way to that used for estimating 𝑅
1
, by direct

calculation we have the following lemma.

Lemma 15. The following estimates hold:

𝑃 (𝑥 (𝜖
−2

𝜌, 𝜃) , 𝑡) − 𝑃 (𝑥 (𝜖
−2

𝜌
0
, 𝜃) , 𝑡

0
) ∈ 𝜖

−𝛼

𝑂
6
(1) ,

𝜕𝑃

𝜕𝑡

(𝑥 (𝜖
−2

𝜌, 𝜃) , 𝑡) −

𝜕𝑃

𝜕𝑡

(𝑥 (𝜖
−2

𝜌
0
, 𝜃) , 𝑡

0
) ∈ 𝜖

2−𝛼

𝑂
6
(1) .

(81)

Now we give an asymptotic expression of Poincaré
map of (63); that is, we study the behavior of the
functions Σ

1
and Σ

2
at 𝜃 = 𝜋 as 𝜖 → 0. In order to

estimate Σ
1
and Σ

2
, we need to introduce the following

definition and lemma. Let

Θ
+
(𝐼) = meas {𝜃 ∈ [0, 𝜋] , 𝑥 (𝐻

0
, 𝜃) > 0} ,

Θ
−
(𝐼) = 𝑇

0
− Θ

+
(𝐼) ,

(82)

where 𝐻
0
= 𝜖

−2

𝜌
0
.

Lemma 16. Consider the following:

Θ
+
(𝐼) = 𝜋 + 𝜖𝑂

6
(1) , Θ

−
(𝐼) = 𝜖𝑂

6
(1) . (83)

Proof. This Lemma was proved in [5], so we omit the details.
For estimate Σ

1
and Σ

2
, we need the estimates

of 𝑥 and 𝑥
𝐻
.

We recall that, when 𝑥 < 0, we have





𝑥 (𝐻

0
, 𝜃)




= 𝑂

6
(1) ,





𝑥
𝐻
(𝐻

0
, 𝜃)




= 𝜖

2

𝑂
5
(1) . (84)

When 𝑥 > 0, by the definition of 𝜃, we have

arcsin
𝑥 (𝐻

0
, 𝜃)

√2ℎ

=

𝑇
0
(ℎ)

𝜋

𝜃 −

𝑇
−
(ℎ)

2

= 𝜃 + 𝜖
2

𝑂
5
(1) , (85)

which yields that

𝑥 (𝐻
0
, 𝜃) = √

2𝐻
0

𝜋

sin 𝜃 + 𝑂
5
(1) ,

𝑥
𝐻
(𝐻

0
, 𝜃) = √

1

2𝐻
0
𝜋

sin 𝜃 + 𝜖2𝑂
5
(1) .

(86)

Now we can give the estimates of Σ
1
and Σ

2
.
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Lemma 17. The following estimates hold true:

Σ
1
(𝑡
0
, 𝜌
0
, 2𝜋; 𝜖) = (

𝜋

2𝜌
0

)

(𝛼−1)/2

× ∫

𝜋

0

(sin 𝜃)1+𝛼𝑝
+
(𝑡
0
+ 𝜃) 𝑑𝜃 + 𝑜

6
(1) ,

(87)

Σ
2
(𝑡
0
, 𝜌
0
, 2𝜋; 𝜖) = −𝜋

(1−𝛼)/2

(2𝜌
0
)
(𝛼+1)/2

× ∫

𝜋

0

(sin 𝜃)1+𝛼𝑝
+
(𝑡
0
+ 𝜃) 𝑑𝜃+𝑜

6
(1) ,

(88)

for 𝜖 → 0.

Proof. Firstly we consider Σ
1
. By Lemmas 11, 12, and 15 and

(77), we have

Σ
1
(𝑡
0
, 𝜌
0
, 2𝜋; 𝜖)

= 𝜋𝜖
𝛼−1

∫

𝜋

0

𝜕𝑥

𝜕𝐻

(𝜖
−2

𝜌, 𝜃) 𝑝 (𝑥 (𝜖
−2

𝜌, 𝜃) , 𝑡) 𝑑𝜃

+ 𝜖
𝛼−1

∫

𝜋

0

𝜕𝑅
1

𝜕𝐻

(𝑥 (𝜖
−2

𝜌, 𝜃) , 𝑡)

+

𝜕𝐼
−

𝜕𝐻

(𝑥 (𝜖
−2

𝜌, 𝜃) , 𝑡) 𝑑𝜃

= 𝜋𝜖
𝛼−1

∫

𝜋

0

𝜕𝑥

𝜕𝐻

(𝜖
−2

𝜌
0
, 𝜃) 𝑝 (𝑥 (𝜖

−2

𝜌
0
, 𝜃) , 𝑡

0
+ 𝜃) 𝑑𝜃

+ 𝜖
𝛼

𝑂
6
(1)

= 𝜋𝜖
𝛼−1

∫

Θ
+

𝜕𝑥

𝜕𝐻

(𝜖
−2

𝜌
0
, 𝜃) 𝑝 (𝑥 (𝜖

−2

𝜌
0
, 𝜃) , 𝑡

0
+ 𝜃) 𝑑𝜃

+ 𝜋𝜖
𝛼−1

∫

Θ
−

𝜕𝑥

𝜕𝐻

(𝜖
−2

𝜌
0
, 𝜃) 𝑝 (𝑥 (𝜖

−2

𝜌
0
, 𝜃) , 𝑡

0
+ 𝜃) 𝑑𝜃

+ 𝜖
𝛼

𝑂
6
(1) .

(89)

By result (2) of Lemma 9, as 𝜖 → 0 which means 𝑥 →

∞,we have

𝜋𝜖
𝛼−1

∫

Θ
+

𝜕𝑥

𝜕𝐻

(𝜖
−2

𝜌
0
, 𝜃) 𝑝 (𝑥 (𝜖

−2

𝜌
0
, 𝜃) , 𝑡

0
+ 𝜃) 𝑑𝜃

= 𝜋𝜖
𝛼−1

∫

Θ
+

𝜕𝑥

𝜕𝐻

(𝜃, 𝜖
−2

𝜌) |𝑥|
𝛼

𝑝
+
(𝑡
0
+ 𝜃) 𝑑𝜃

+ 𝜖
𝛼

𝑂
6
(1) .

(90)

By the measure of Θ
−
, we have

𝜋𝜖
𝛼−1

∫

Θ
−

𝜕𝑥

𝜕𝐻

(𝜖
−2

𝜌
0
, 𝜃)

× 𝑝 (𝑥 (𝜖
−2

𝜌
0
, 𝜃) , 𝑡

0
+ 𝜃) 𝑑𝜃 = 𝜖

𝛼

𝑂
6
(1) .

(91)

By (90) and (91), we have

Σ
1
(𝑡
0
, 𝜌
0
, 2𝜋; 𝜖)

= 𝜋𝜖
𝛼−1

∫

Θ
+

𝜕𝑥

𝜕𝐻

(𝜃, 𝜖
−2

𝜌) |𝑥|
𝛼

𝑝
+
(𝑡
0
+ 𝜃) 𝑑𝜃 + 𝜖

𝛼

𝑂
6
(1)

= 𝜋𝜖
𝛼−1

∫

𝜋

0

𝜕𝑥

𝜕𝐻

(𝜃, 𝜖
−2

𝜌) |𝑥|
𝛼

𝑝
+
(𝑡
0
+ 𝜃) 𝑑𝜃 + 𝜖

𝛼

𝑂
6
(1)

= (

𝜋

2𝜌
0

)

(1−𝛼)/2

∫

𝜋

0

(sin 𝜃)𝛼+1𝑝
+
(𝑡
0
+ 𝜃) 𝑑𝜃 + 𝑜

6
(1) .

(92)

Now we consider Σ
2
. By Lemmas 11, 12, and 15 and (77),

we have

Σ
2
(𝑡
0
, 𝜌
0
, 2𝜋; 𝜖)

= −𝜋𝜖
𝛼+1

∫

𝜋

0

𝜕𝑃

𝜕𝑡

(𝑥 (𝜃, 𝜖
−2

𝜌) , 𝑡) 𝑑𝜃

− 𝜖
𝛼+1

∫

𝜋

0

[

𝜕𝑅
1

𝜕𝑡

(𝑥 (𝜃, 𝜖
−2

𝜌) , 𝑡)

+

𝜕𝐼
−

𝜕𝑡

(𝑥 (𝜃, 𝜖
−2

𝜌) , 𝑡)] 𝑑𝜃

= −𝜋𝜖
𝛼+1

∫

𝜋

0

𝜕𝑃

𝜕𝑡

(𝑥 (𝜃, 𝜖
−2

𝜌
0
) , 𝑡

0
+ 𝜃) 𝑑𝜃 + 𝜖

𝛼

𝑂
6
(1)

= −𝜋𝜖
𝛼+1

∫

Θ
+

𝜕𝑃

𝜕𝑡

(𝑥 (𝜃, 𝜖
−2

𝜌
0
) , 𝑡

0
+ 𝜃) 𝑑𝜃

− 𝜋𝜖
𝛼+1

∫

Θ
−

𝜕𝑃

𝜕𝑡

(𝑥 (𝜃, 𝜖
−2

𝜌
0
) , 𝑡

0
+ 𝜃) 𝑑𝜃 + 𝜖

𝛼

𝑂
6
(1) .

(93)

By result (2) of Lemma 9, as 𝜖 → 0, we have

− 𝜋𝜖
𝛼+1

∫

Θ
+

𝜕𝑃

𝜕𝑡

(𝑥 (𝜃, 𝜖
−2

𝜌
0
) , 𝑡

0
+ 𝜃) 𝑑𝜃

= −

𝜋𝜖
𝛼+1

𝛼 + 1

∫

Θ
+






𝑥 (𝜃, 𝜖

−2

𝜌
0
)







𝛼

𝑥 (𝜃, 𝜖
−2

𝜌
0
) 𝑝



+
(𝑡
0
+ 𝜃) 𝑑𝜃

+ 𝜖
𝛼

𝑂
6
(1) .

(94)

By the measure of Θ
−
, we have

−𝜋𝜖
𝛼+1

∫

Θ
−

𝜕𝑃

𝜕𝑡

(𝑥 (𝜃, 𝜖
−2

𝜌
0
) , 𝑡

0
+ 𝜃) 𝑑𝜃 = 𝜖

𝛼

𝑂
6
(1) . (95)
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By (94) and (95), we have

Σ
2
= −

𝜋𝜖
𝛼+1

𝛼 + 1

∫

Θ
+






𝑥 (𝜃, 𝜖

−2

𝜌
0
)







𝛼

𝑥 (𝜃, 𝜖
−2

𝜌
0
) 𝑝



+

× (𝑡
0
+ 𝜃) 𝑑𝜃 + 𝜖

𝛼

𝑂
6
(1)

= −

𝜋𝜖
𝛼+1

𝛼 + 1

∫

𝜋

0






𝑥 (𝜃, 𝜖

−2

𝜌
0
)







𝛼

𝑥 (𝜃, 𝜖
−2

𝜌
0
) 𝑝



+

× (𝑡
0
+ 𝜃) 𝑑𝜃 + 𝜖

𝛼

𝑂
6
(1)

= −

1

𝛼 + 1

𝜋
(1−𝛼)/2

(2𝜌
0
)
(𝛼+1)/2

∫

𝜋

0

(sin 𝜃)1+𝛼𝑝
+

× (𝑡
0
+ 𝜃) 𝑑𝜃 + 𝑜

6
(1) .

(96)

Thus Lemma 17 is proved.

2.4. Proof of Theorem 1. Let

Ψ
1
(𝑡
0
, 𝜌
0
) = (

𝜋

2𝜌
0

)

(1−𝛼)/2

× ∫

𝜋

0

(sin 𝜃)1+𝛼𝑝
+
(𝑡
0
+ 𝜃) 𝑑𝜃,

Ψ
2
(𝑡
0
, 𝜌
0
) = −

1

𝛼 + 1

𝜋
(1−𝛼)/2

(2𝜌
0
)
(𝛼+1)/2

× ∫

𝜋

0

(sin 𝜃)1+𝛼𝑝
+
(𝑡
0
+ 𝜃) 𝑑𝜃.

(97)

Then there are two functions 𝜙
1
and 𝜙

2
such that the Poincaré

map of (64), given by (76) of the form

𝑃 : 𝑡
1
= 𝑡

0
+ 2𝜋 + 𝜖

1−𝛼

Ψ
1
(𝑡
0
, 𝜌
0
) + 𝜖

1−𝛼

𝜙
1
,

𝜌
1
= 𝜌

0
+ 𝜖

1−𝛼

Ψ
2
(𝑡
0
, 𝜌
0
) + 𝜖

1−𝛼

𝜙
2
,

(98)

where 𝜙
1
, 𝜙
2
∈ 𝑂

6
(1).

Since ∫𝜋
0

𝑝
+
(𝑡
0
+ 𝜃) sin 𝜃𝑑𝜃 > 0, ∀𝑡

0
∈ 𝑅,we have

Ψ
1
> 0,

𝜕Ψ
1

𝜕𝜌
0

̸=0. (99)

Let

𝐿 =

𝜌
−(1+𝛼)/2

0

∫

𝜋

0

(sin 𝜃)1+𝛼𝑝
+
(𝑡
0
+ 𝜃) 𝑑𝜃

. (100)

Then

𝜕𝐿

𝜕𝑡
0

Ψ
1
(𝑡
0
, 𝜌
0
) +

𝜕𝐿

𝜕𝜌
0

Ψ
2
(𝑡
0
, 𝜌
0
) = 0. (101)

The other assumptions of Ortega’s theorem are easily
verified. Hence, there is an invariant curve of 𝑃 in the
annulus (𝑡

0
, 𝜌
0
) ∈ 𝑆

1

× [1.2] which implies the boundedness
of our original equation (4). ThenTheorem 1 is proved.

2.5. Proof of Theorem 2. We apply Aubry-Mather theory.
By Theorem B in [10] and the monotone twist property
of the Pioncaré map 𝑃 guaranteed by 𝜕Ψ

1
/𝜕𝜌

0
< 0, it is

straightforward to check that Theorem 2 is correct.
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The paper develops a mathematical model of foreign currency exchange market in the form of a stochastic linear differential
equation with coefficients depending on a semi-Markov process. The boundaries of the domain of its instability is determined
by using moment equations.

1. Introduction

The economic growth of a given country is based on the
government policy that includes numerous controlmoments.
An important part of this policy is the correct financial policy,
which defines the priorities in the development of financial
relations and its function is to ensure the financial stability
of the state. Finance and energy markets have been an active
scientific field for some time, even though the development
and applications of sophisticated quantitative methods in
these areas are relatively new and referred to in a broader
context as energy finance. Energy finance is often viewed
as a branch of mathematical finance, yet this area continues
to provide a rich source of issues that are fuelling new and
exciting research developments [1].

The foreign currency exchange market is one of the most
liquid financial markets with banks as major participants.
Income from the foreign currency exchange transactions
makes up a significant proportion of the banks income. The
currency exchange risks associated with open positions are
especially imminent in periods of significant fluctuations in
exchange rates. The main feature of risky cases related to the
market risk is that such cases occur as a result of adverse
changes in the generalmarket situation.Whenever such cases
occur, the value of the assets has a tendency to decrease for a
short-term period, causing liquidity gap.

In view of the disbalance of the foreign currency exchange
market, the negative trade balance, the high inflation, an
effective foreign currency exchange rate policy determining
the optimal level of foreign currency exchange rates is an
important problem.

Under such conditions, it is especially important to
perceive the “bank” as a comprehensive dynamic system that
works in the conditions of unstable economy under high
foreign currency exchange risks.Thus, amorewidespread use
of economic-mathematical methods and models is necessary
to study the processes taking place in the “bank”, evaluating
the effectiveness of its work and identifying the trends and
ways to improve the management of the banking activities.

Significant scientific achievements in the field of banking
and construction of some models can be found in [2, 3],
and some economical models are studied in [4–6]. However,
many other issues of bank practices require further research
and elaboration of approaches to their solution. One aspect
of the model is to build stable functioning of the foreign
currency exchange transactions of the “bank” as a factor of
effective functioning of the banking system in general [7, 8].

Most scientists understand under the category “financial
stability of the banking system” the establishment of an effec-
tive mechanism preventing the emergence of banking crises
and facilitating further development of economy. Depending



2 Abstract and Applied Analysis

on the tasks, the stability of the banks may be defined as in
the model presented in this paper.

The paper develops a stability model of foreign currency
bank transactions with semi-Markov fluctuations. An exam-
ple illustrates the theory in the special case when the semi-
Markov process can take three possible states.Thismeans that
a commercial bank operates in a foreign currency exchange
market that can be in three states: stable foreign currency
exchange market, market in the crisis, and market with
currency restrictions. In the example, we assume that the
bank remains in each state for the same period of time.

In addition, the present paper contains the necessary
and sufficient conditions for the mean square stability and
conditions for the 𝐿

2
-stability of systems with semi-Markov

coefficients and random transformations of solutions. There
are constructed moment equations as a tool for studying the
stochastic system stability which is working in uncertainty
conditions.

2. Statement of the Problem

Let (Ω,F, 𝐹,P) be a filtered probability space (or stochastic
basis) consisting of a probability space (Ω,F,P) and a
filtration

𝐹 = {F
𝑡
, ∀𝑡 ≥ 0} ⊂ F. (1)

The space Ω is called the sample space, F is the set of all
possible events (the 𝜎-algebra), and P is some probability
measure onΩ. A family 𝜉 = {𝜉(𝑡) : 𝑡 ≥ 0} of random variables
𝜉(𝑡) : Ω → L

2
is called a continuous-time stochastic

process on the state space L
2
. In our considerations, 𝜉(𝑡) is

a random semi-Markov process and the state space L
2
is the

space of all random variables for which there exists squared
mathematical expectation. On such a probability space, we
consider initial problem formulated for the stochastic system
of linear differential equations in the form

𝑑𝑥 (𝑡)

𝑑𝑡

= 𝐴 (𝜉 (𝑡)) 𝑥 (𝑡) , (2)

𝑥 (0) = 𝜑 (𝜔) , (3)

where 𝐴(𝜉(𝑡)) is an𝑚×𝑚matrix whose elements depend on
the semi-Markov process 𝜉(𝑡). The state function 𝑥(𝑡) is an
𝑚-dimensional column vector-function with the initial state
𝜑(𝜔) at 𝑡 = 0. For simplicity, we denote

𝐴 (𝜉 (𝑡)) = 𝐴
𝑘
, if 𝜉 (𝑡) = 𝜃

𝑘
, 𝑘 = 1, 2, . . . , 𝑛, (4)

where 𝐴
𝑘
are constant 𝑚 × 𝑚 matrices and 𝜃

𝑘
are real

numbers.
An 𝑚-dimensional vector-function 𝑥(𝑡) is called a solu-

tion of the initial value problem (2) and (3) if 𝑥(𝑡) satisfies
(2) and initial condition (3) within the meaning of a strong
solution of the initial Cauchy problem.

Our considerations are subject to the following assump-
tions.

Assumption 1. The random semi-Markov process 𝜉(𝑡) can
take 𝑛 possible states

𝜃
1
, 𝜃
2
, . . . , 𝜃

𝑛
(5)

with transition probabilities

𝜋
𝑠𝑘
(𝑡) = 𝑃 {𝜉 (𝑡

𝑗+1
) = 𝜃
𝑠
| 𝜉 (𝑡
𝑗
) = 𝜃
𝑘
, 𝑗 = 1, 2, . . .} ,

𝑠, 𝑘 = 1, 2, . . . , 𝑛,

(6)

where 𝑡
0
= 0 < 𝑡

1
< 𝑡
2
< ⋅ ⋅ ⋅ are the moments of time at

which the jump from one state to another is realized.
If we fix anymoment 𝑡 > 0, then the semi-Markov process

takes some of states, 𝜉(𝑡) = 𝜃
𝑘
, 𝑘 = 1, 2, . . . , 𝑛, and the

state function 𝑥(𝑡) ≡ 𝑥(𝑡, 𝜔) changes in accordance with the
deterministic system of differential equations

𝑑𝑥 (𝑡)

𝑑𝑡

= 𝐴
𝑘
𝑥 (𝑡) , 𝑘 = 1, 2, . . . , 𝑛. (7)

So the solution of such a system is in the form

𝑥 (𝑡) = 𝑒
𝐴
𝑘
𝑡

𝜑 (𝜔) , 𝑘 = 1, 2, . . . , 𝑛. (8)

Assumption 2. The jumping time during which the process
is in state 𝜃

𝑠
before it jumps to state 𝜃

𝑘
, 𝑠, 𝑘 = 1, 2, . . . , 𝑛 is

given by a discrete integer-valued random variable 𝑇
𝑠𝑘
whose

probability density function is a known function 𝑑
𝑠𝑘
(𝑡).Then,

the intensity 𝑞
𝑠𝑘
(𝑡) of the jump from state 𝜃

𝑠
to state 𝜃

𝑘
is given

by the formula

𝑞
𝑠𝑘
(𝑡) = 𝜋

𝑠𝑘
(𝑡) 𝑑
𝑠𝑘
(𝑡) , 𝑠, 𝑘 = 1, 2, . . . , 𝑛, (9)

and the semi-Markov process 𝜉(𝑡) is defined by the transition
intensity matrix

𝑄 (𝑡) = (𝑞
𝑠𝑘
(𝑡))
𝑛

𝑠,𝑘=1
, (10)

whose elements satisfy the relationships

𝑞
𝑠𝑘
(𝑡) ≥ 0, ∫

∞

0

𝑛

∑

𝑠=1

𝑞
𝑠𝑘
(𝑡) 𝑑𝑡 = ∫

∞

0

𝑞
𝑘
(𝑡) 𝑑𝑡 = 1, (11)

where 𝑞
𝑘
(𝑡) is the probability density of the elapsed time 𝑇

𝑘

in state 𝜃
𝑘
if the process jumps to it at time 𝑡

𝑗
. If 𝜓
𝑘
(𝑡) denotes

the probability of the event that no jump takes place during
the interval (𝑡

𝑗
, 𝑡
𝑗+1
), provided that the process jumps to the

state 𝜃
𝑘
at time 𝑡

𝑗
, then

𝜓
𝑘
(𝑡) = ∫

∞

𝑡

𝑞
𝑘
(𝜏) 𝑑𝜏, 𝑘 = 1, 2, . . . , 𝑛. (12)

In our considerations, it will be convenient to denote the
block-diagonal matrix,

Ψ (𝑡) = diag (𝜓
1
(𝑡) , 𝜓
2
(𝑡) , . . . , 𝜓

𝑛
(𝑡)) . (13)

Assumption 3. At the moments of jumps 𝑡
𝑗
, 𝑗 = 1, 2, . . . that

are caused by some perturbations, solutions of (2) submit to
the random transformations

𝑥 (𝑡
𝑗
+ 0) = 𝐶

𝑠𝑘
𝑥 (𝑡
𝑗
− 0) , 𝑠, 𝑘 = 1, . . . , 𝑛, (14)

where 𝐶
𝑠𝑘
are𝑚 × 𝑚 constant matrices and det𝐶

𝑠𝑘
̸= 0.
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Our aim is to transform the stochastic system with
random coefficients to a deterministic system with solutions
whose stability can be considered by using classical methods.
To complete this task below, we present a method of moment
equations. We will show that the method is effective and
useful for solving an economical model problem.

3. Construction of the Moment Equations

We define the moments of the first or second order of a
random variable 𝑥 before we derive the moments equa-
tions. We use some notation. In the sequel, E

𝑚
denotes

an 𝑚-dimensional Euclidean space, functions 𝑓
𝑘
(𝑡, 𝑥), 𝑘 =

1, 2, . . . , 𝑛 are the particular density functions of the random
variable 𝑥, and the vector-function

𝑓 (𝑡, 𝑥) = (𝑓
1
(𝑡, 𝑥) , 𝑓

2
(𝑡, 𝑥) , . . . , 𝑓

𝑛
(𝑡, 𝑥))

𝑇

, (15)

where the operation 𝑇 denotes transposition, is called the
vector of particular density functions. Moreover, we define

𝑆 (𝑡) := (𝑞
𝑠𝑘
𝑆
𝑠𝑘
)
𝑛

𝑠,𝑘=1
, 𝑠, 𝑘 = 1, . . . , 𝑛,

𝑅 (𝑡) := diag (𝑅
1
(𝑡) , . . . , 𝑅

𝑛
(𝑡)) ,

(16)

where 𝑆
𝑠𝑘
are operators defined, for a given function 𝑓, as

𝑆
𝑠𝑘
𝑓 (𝑡, 𝑥) ≡ 𝑓

𝑘
(𝑡, 𝐶
−1

𝑠𝑘
𝑥) det𝐶−1

𝑠𝑘
(17)

and 𝑅
𝑘
, 𝑘 = 1, . . . , 𝑛 are operators defined, for a given

function 𝑓, as

𝑅
𝑘
(𝑡) 𝑓 (𝑡, 𝑥) ≡ 𝑓

𝑘
(𝑡, 𝑒
−𝐴
𝑘
𝑡

𝑥) det (𝑒−𝐴𝑘𝑡) . (18)

Definition 4. Let 𝑥 ∈ E
𝑚
be a continuous random variable

depending on a random semi-Markov process 𝜉(𝑡) with 𝑛

possible states 𝜃
𝑘
, 𝑘 = 1, 2, . . . , 𝑛. The 𝑛-dimensional column

vectors 𝐸(1){𝑥(𝑡)} and 𝑛 × 𝑛matrices 𝐸(2){𝑥(𝑡)} of the form

𝐸
(1)

{𝑥 (𝑡)} =

𝑛

∑

𝑘=1

𝐸
(1)

𝑘
{𝑥 (𝑡)} , 𝐸

(2)

{𝑥 (𝑡)} =

𝑛

∑

𝑘=1

𝐸
(2)

𝑘
{𝑥 (𝑡)} ,

(19)

where

𝐸
(1)

𝑘
{𝑥 (𝑡)} = ∫

E
𝑚

𝑥𝑓
𝑘
(𝑡, 𝑥) 𝑑𝑥,

𝐸
(2)

𝑘
{𝑥 (𝑡)} = ∫

E
𝑚

𝑥𝑥
𝑇

𝑓
𝑘
(𝑡, 𝑥) 𝑑𝑥,

(20)

are calledmoments of the first or second order of the random
variable 𝑥, respectively. The values 𝐸(1)

𝑘
{𝑥(𝑡)} and 𝐸(2)

𝑘
{𝑥(𝑡)},

𝑘 = 1, . . . , 𝑛 are called particular moments of the first or
second order, respectively.

Theorem 5. Let the coefficients of the linear differential system
(2) depend on a random semi-Markov process 𝜉(𝑡) with
transition intensity matrix (10) and, for solutions of system (2),
there occur jumps (14) simultaneously with jumps of the process
𝜉(𝑡). Then, the following three statements are true.

(1) The stochastic process (𝑥(𝑡), 𝜉(𝑡)) is defined by the
operator equation

𝑓 (𝑡, 𝑥) = 𝐿 (𝑡) 𝑓 (0, 𝑥) , (21)

where the matrix operator 𝐿(𝑡) ≡ (𝐿
𝑖𝑗
(𝑡))
𝑛

𝑖,𝑗=1
satisfies

𝐿 (𝑡) = 𝜓 (𝑡) 𝑅 (𝑡) + ∫

𝑡

0

𝐿 (𝑡 − 𝜏) 𝑆 (𝜏) 𝑅 (𝜏) 𝑑𝜏. (22)

(2)The vectors of particular moments of first order satisfy

𝐸
(1)

𝑘
{𝑥 (𝑡)} = 𝜓

𝑘
(𝑡) 𝑒
𝐴
𝑘
𝑡

𝐸
(1)

𝑘
{𝑥 (0)}

+ ∫

𝑡

0

𝜓 (𝑡 − 𝜏) 𝑒
𝐴
𝑘
(𝑡−𝜏)

𝑍
𝑘
(𝜏) 𝑑𝜏,

(23)

where

𝑍
𝑘
(𝑡) =

𝑛

∑

𝑠=1

𝑞
𝑘𝑠
(𝑡) 𝐶
𝑘𝑠
𝑒
𝐴
𝑠
𝑡

𝐸
(1)

𝑠
{𝑥 (0)}

+ ∫

𝑡

0

𝑛

∑

𝑠=1

𝑞
𝑘𝑠
(𝑡 − 𝜏) 𝐶

𝑘𝑠
𝑒
𝐴
𝑠
(𝑡−𝜏)

𝑍
𝑠
(𝜏) 𝑑𝜏

(24)

and 𝑘 = 1, . . . , 𝑛.
(3) The matrix of particular moments of second order

satisfies

𝐸
(2)

𝑘
{𝑥 (𝑡)} = 𝜓

𝑘
(𝑡) 𝑒
𝐴
𝑘
𝑡

𝐸
(2)

𝑘
{𝑥 (0)} 𝑒

𝐴
𝑇

𝑘
𝑡

+ ∫

𝑡

0

𝜓
𝑘
(𝑡 − 𝜏) 𝑒

𝐴
𝑘
(𝑡−𝜏)

𝑊
𝑘
(𝜏) 𝑒
𝐴
𝑇

𝑘
(𝑡−𝜏)

𝑑𝜏,

(25)

where

𝑊
𝑘
(𝑡) =

𝑛

∑

𝑠=1

𝑞
𝑘𝑠
(𝑡) 𝐶
𝑘𝑠
𝑒
𝐴
𝑠
𝑡

𝐸
(2)

𝑠
{𝑥 (0)} 𝑒

𝐴
𝑇

𝑠
𝑡

𝐶
𝑇

𝑘𝑠

+ ∫

𝑡

0

𝑛

∑

𝑠=1

𝑞
𝑘𝑠
(𝑡 − 𝜏) 𝐶

𝑘𝑠
𝑒
𝐴
𝑠
(𝑡−𝜏)

𝑊
𝑠
(𝜏) 𝑒
𝐴
𝑇

𝑠
(𝑡−𝜏)

𝐶
𝑇

𝑘𝑠
𝑑𝜏,

(26)

and 𝑘 = 1, . . . , 𝑛.

Proof. (1) The stochastic process (𝑥(𝑡), 𝜉(𝑡)) is also semi-
Markov because all probabilistic properties of the process for
𝑡 > 𝑡
𝑗
are defined by particular probability density functions

at the moment 𝑡
𝑗
of jump.Thus, there exists a linear operator

𝐿(𝜏) such that

𝑓 (𝑡
𝑗
+ 𝜏, 𝑥) = 𝐿 (𝜏) 𝑓 (𝑡

𝑗
, 𝑥) , 𝑗 = 0, 1, 2, . . . . (27)

Let the stochastic process 𝜉(𝑡)move to state 𝜃
𝑘
at the moment

𝑡 = 0. Then,

𝑝
𝑘
(0) = 1, 𝑝

𝑠
(0) = 0, for 𝑠 ̸= 𝑘, 𝑠 = 1, . . . , 𝑛, (28)

𝑓
𝑘
(0, 𝑥) ≥ 0, ∫

𝐸
𝑚

𝑓
𝑘
(0, 𝑥) 𝑑𝑥 = 1, 𝑓

𝑠
(0, 𝑥) ≡ 0,

𝑠 ̸= 𝑘.

(29)
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For particular density functions, when 𝑡 ≥ 0, we obtain

𝑓
𝑠
(𝑡, 𝑥) = 𝐿

𝑠𝑘
(𝑡) 𝑓
𝑘
(0, 𝑥) , 𝑘, 𝑠 = 1, . . . , 𝑛. (30)

Also, with probability 𝜓
𝑘
(𝑡), in view of 𝑥(0) = 𝑒

−𝐴
𝑘
𝑡

𝑥, we
obtain the equality

𝑓
𝑘
(𝑡, 𝑥) = 𝑓

𝑘
(0, 𝑒
−𝐴
𝑘
𝑡

𝑥) det (𝑒−𝐴𝑘𝑡) , 𝑓
𝑠
(𝑡, 𝑥) ≡ 0,

𝑘 ̸= 𝑠.

(31)

On the interval (𝜏, 𝜏 + 𝑑𝜏), there could be a jump of
the stochastic process 𝜉(𝜏) from state 𝜃

𝑘
to state 𝜃

𝑠
with

probability 𝑞
𝑘𝑠
(𝜏)𝑑𝜏. Taking into account that functions 𝑞

𝑘𝑠
(𝑡)

are continuous, we obtain the probability

𝑃 {𝜏 < 𝑡
1
< 𝜏 + 𝑑𝜏} = ∫

𝜏+𝑑𝜏

𝜏

𝑞
𝑘
(𝑠) 𝑑𝑠 ≈ 𝑞

𝑘
(𝜏) 𝑑𝜏. (32)

After a jump at the moment lying between moments 𝜏 and
𝜏 + 𝑑𝜏, we can use (27). At the moment 𝑡

1
of the first jump of

the stochastic process 𝜉(𝑡), in accordance with (14), we have

𝑓
𝑠
(𝑡
1
+ 0, 𝑥) = 𝑓

𝑘
(𝑡
1
− 0, 𝐶

−1

𝑠𝑘
𝑥) det𝐶−1

𝑠𝑘
. (33)

Therefore, by using operators 𝑅, 𝑆 defined in (16), to remain
in state 𝜃

𝑘
at the moment 𝑡, we get

𝐿
𝑘𝑘
(𝑡) 𝑓
𝑘
(0, 𝑥)

= 𝜓
𝑘
(𝑡) 𝑅
𝑘
(𝑡) 𝑓
𝑘
(0, 𝑥)

+ ∫

𝑡

0

𝑛

∑

𝑠=1

𝐿
𝑘𝑠
(𝑡 − 𝜏) 𝑞

𝑠𝑘
(𝜏) 𝑆
𝑠𝑘
𝑅
𝑘
(𝜏) 𝑓
𝑘
(0, 𝑥) 𝑑𝜏,

𝑘 = 1, . . . , 𝑛.

(34)

For transition from state 𝜃
𝑘
to state 𝜃

𝜏
at the moment 𝑡, we

obtain
𝐿
𝜏𝑘
(𝑡) 𝑓
𝑘
(0, 𝑥)

= ∫

𝑡

0

𝑛

∑

𝑠=1

𝐿
𝜏𝑠
(𝑡 − 𝜏) 𝑞

𝑠𝑘
(𝜏) 𝑆
𝑠𝑘
𝑅
𝑘
(𝜏) 𝑓
𝑘
(0, 𝑥) 𝑑𝜏,

(35)

where 𝜏 ̸= 𝑘, 𝜏, 𝑘 = 1, . . . , 𝑛.
These two systems can be written in the form (22).
(2) Before we derive the system of moment equations in

(23), we establish an auxiliary operator equation. Let us find
the solution of (22) in the form

𝐿 (𝑡) = 𝜓 (𝑡) 𝑅 (𝑡) + ∫

𝑡

0

𝜓 (𝑡 − 𝜏) 𝑅 (𝑡 − 𝜏)𝑈 (𝜏) 𝑑𝜏, (36)

where 𝑈 is an unknown matrix. If we put 𝐿(𝑡) expressed in
the form (36) into (22), we obtain

∫

𝑡

0

𝜓 (𝑡 − 𝜏) 𝑅 (𝑡 − 𝜏)𝑈 (𝜏) 𝑑𝜏

= ∫

𝑡

0

𝜓 (𝑡 − 𝜏) 𝑇 (𝑡 − 𝜏) 𝑆 (𝜏) 𝑅 (𝜏) 𝑑𝜏

+ ∫

𝑡

0

𝑑𝜏∫

𝑡−𝜏

0

𝜓 (𝑡 − 𝜏 − 𝑠) 𝑅 (𝑡 − 𝜏 − 𝑠)𝑈 (𝑠) 𝑆 (𝜏) 𝑅 (𝜏) 𝑑𝑠.

(37)

After substituting 𝑟 = 𝜏 + 𝑠, 𝜏 = 𝜏 in the double integral and
after changing the order of integration, we obtain

∫

𝑡

0

𝑑𝜏∫

𝑡−𝜏

0

𝜓 (𝑡 − 𝜏 − 𝑠) 𝑅 (𝑡 − 𝜏 − 𝑠)𝑈 (𝑠) 𝑆 (𝜏) 𝑅 (𝜏) 𝑑𝑠

= ∫

𝑡

0

𝜓 (𝑡 − 𝑟) (∫

𝑟

0

𝑈 (𝑟 − 𝜏) 𝑆 (𝜏) 𝑅 (𝜏) 𝑑𝜏) 𝑑𝑟.

(38)

Therefore, a suitable matrix 𝑈 in (22) is the matrix

𝑈 (𝑡) = 𝑆 (𝑡) 𝑅 (𝑡) + ∫

𝑡

0

𝑈 (𝑡 − 𝜏) 𝑆 (𝜏) 𝑅 (𝜏) 𝑑𝜏. (39)

In the other way, we can find a matrix 𝑈(𝑡) as a solution of
(36) in the form

𝑈 (𝑡) = 𝑆 (𝑡) 𝑅 (𝑡) + ∫

𝑡

0

𝑆 (𝑡 − 𝜏) 𝑅 (𝑡 − 𝜏)𝑉 (𝜏) 𝑑𝜏, (40)

where 𝑉 is an unknown matrix. From this, we get

𝑉 (𝑡) = 𝑆 (𝑡) 𝑅 (𝑡) + ∫

𝑡

0

𝑉 (𝑡 − 𝜏) 𝑆 (𝜏) 𝑅 (𝜏) 𝑑𝜏. (41)

A comparison of (39) and (41) implies that we can set 𝑉(𝑡) ≡
𝑈(𝑡). Then, (40) can be written as

𝑈 (𝑡) = 𝑆 (𝑡) 𝑅 (𝑡) + ∫

𝑡

0

𝑆 (𝑡 − 𝜏) 𝑅 (𝑡 − 𝜏)𝑈 (𝜏) 𝑑𝜏, (42)

or

𝑈 (𝑡) = 𝑆 (𝑡) 𝑅 (𝑡) + ∫

𝑡

0

𝑆 (𝜏) 𝑅 (𝜏)𝑈 (𝑡 − 𝜏) 𝑑𝜏. (43)

Multiplying (36) and (38) on the right by the vector 𝑓(0, 𝑥),
we obtain

𝑓 (𝑡, 𝑥) = 𝜓 (𝑡) 𝑅 (𝑡) 𝑓 (0, 𝑥)

+ ∫

𝑡

0

𝜓 (𝑡 − 𝜏) 𝑅 (𝑡 − 𝜏)𝑈 (𝜏) 𝑓 (0, 𝑥) 𝑑𝜏,

𝑈 (𝑡) 𝑓 (0, 𝑥) = 𝑆 (𝑡) 𝑅 (𝑡) 𝑓 (0, 𝑥)

+ ∫

𝑡

0

𝑆 (𝑡 − 𝜏) 𝑅 (𝑡 − 𝜏)𝑈 (𝜏) 𝑓 (0, 𝑥) 𝑑𝜏.

(44)

Denote

ℎ (𝑡, 𝑥) = 𝑈 (𝑡) 𝑓 (0, 𝑥) ,

ℎ (𝑡, 𝑥) = (ℎ
1
(𝑡, 𝑥) , ℎ

2
(𝑡, 𝑥) , . . . , ℎ

𝑛
(𝑡, 𝑥))

𝑇

,

(45)

and

𝑧
𝑘
(𝑡) = ∫

E
𝑚

𝑥ℎ
𝑘
(𝑡, 𝑥) 𝑑𝑥,

𝑊
𝑘
(𝑡) = ∫

E
𝑚

𝑥𝑥
𝑇

ℎ
𝑘
(𝑡, 𝑥) 𝑑𝑥,

(46)
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where 𝑘 = 1, . . . , 𝑛. The system (44) can be rewritten into the
scalar form

𝑓
𝑘
(𝑡, 𝑥) = 𝜓

𝑘
(𝑡) 𝑅
𝑘
(𝑡) 𝑓
𝑘
(0, 𝑥)

+ ∫

𝑡

0

𝜓
𝑘
(𝑡 − 𝜏) 𝑅

𝑘
(𝑡 − 𝜏) ℎ

𝑘
(𝜏, 𝑥) 𝑑𝜏,

(47)

ℎ
𝑘
(𝑡, 𝑥) =

𝑛

∑

𝑠=1

𝑞
𝑘𝑠
(𝑡) 𝑆
𝑘𝑠
𝑅
𝑠
(𝑡) 𝑓
𝑠
(0, 𝑥)

+ ∫

𝑡

0

𝑛

∑

𝑠=1

𝑞
𝑘𝑠
(𝑡 − 𝜏) 𝑆

𝑘𝑠
𝑅
𝑠
(𝑡 − 𝜏) ℎ

𝑠
(𝜏, 𝑥) 𝑑𝜏,

𝑘 = 1, . . . , 𝑛.

(48)

The system of (23) can be obtained by multiplying each
equation of (48) by vector 𝑥 and integrating it over the space
E
𝑚
. In doing so, it is necessary to use

∫

E
𝑚

𝑥𝑓
𝑘
(𝑡, 𝑥) 𝑑𝑥 = 𝐸

(1)

𝑘
{𝑥 (𝑡)} ,

∫

E
𝑚

𝑥𝑅
𝑘
(𝑡) 𝑓
𝑘
(0, 𝑥)

= ∫

E
𝑚

𝑥𝑓
𝑘
(0, 𝑒
−𝐴
𝑘
𝑡

𝑥) det 𝑒−𝐴𝑘𝑡𝑑𝑥

= ∫

E
𝑚

𝑒
𝐴
𝑘
𝑡

𝑦𝑓
𝑘
(0, 𝑦) 𝑑𝑦 = 𝑒

𝐴
𝑘
𝑡

𝐸
(1)

𝑘
{𝑥 (𝑡)} ,

∫

E
𝑚

𝑥𝑅
𝑘
(𝑡 − 𝜏) ℎ

𝑘
(𝜏, 𝑥) 𝑑𝑥

= ∫

E
𝑚

𝑥ℎ
𝑘
(𝜏, 𝑒
−𝐴
𝑘
(𝑡−𝜏)

) det 𝑒−𝐴𝑘(𝑡−𝜏)𝑑𝑥

= 𝑒
𝐴
𝑘
(𝑡−𝜏)

∫

E
𝑚

𝑦ℎ
𝑘
(𝜏, 𝑦) 𝑑𝑦 = 𝑒

𝐴
𝑘
(𝑡−𝜏)

𝑧
𝑘
(𝜏) ,

∫

E
𝑚

𝑥𝑆
𝑘𝑠
𝑅
𝑘
(𝑡) 𝑓
𝑠
(0, 𝑥) 𝑑𝑥

= ∫

E
𝑚

𝑥𝑆
𝑘𝑠
𝑓
𝑠
(0, 𝑒
−𝐴
𝑠
𝑡

𝑥) det 𝑒−𝐴𝑠𝑡𝑑𝑥

= ∫

E
𝑚

𝑥𝑓
𝑠
(0, 𝑒
−𝐴
𝑠
𝑡

𝐶
−1

𝑘𝑠
𝑥) det 𝑒−𝐴𝑠𝑡𝐶−1

𝑘𝑠
𝑑𝑥 = 𝐶

𝑘𝑠
𝑒
𝐴
𝑠
𝑡

,

∫

E
𝑚

𝑥𝑓
𝑠
(0, 𝑥) 𝑑𝑥 = 𝐶

𝑘𝑠
𝑒
𝐴
𝑠
𝑡

𝐸
(1)

𝑠
{𝑥 (0)} .

(49)

(3) The system of (25) can be obtained by multiplying each
equation in (48) by matrix 𝑥𝑥𝑇 and integrating it over the
space E

𝑚
by using matrix equalities

∫

E
𝑚

𝑥𝑥
𝑇

𝑅
𝑘
(𝑡) 𝑓
𝑘
(0, 𝑥) 𝑑𝑥

= ∫

E
𝑚

𝑥𝑥
𝑇

𝑓
𝑘
(0, 𝑒
−𝐴
𝑘
𝑡

𝑥) det 𝑒−𝐴𝑘𝑡𝑑𝑥

= ∫

E
𝑚

𝑒
𝐴
𝑘
𝑡

𝑦𝑦
𝑇

𝑒
𝐴
𝑇

𝑘
𝑡

𝑓
𝑘
(0, 𝑦) 𝑑𝑦 = 𝑒

𝐴
𝑘
𝑡

𝐸
(2)

𝑘
{𝑥 (0)} 𝑒

𝐴
𝑇

𝑘
𝑡

,

∫

E
𝑚

𝑥𝑥
𝑇

𝑆
𝑘𝑠
𝑅
𝑠
(𝑡) 𝑓
𝑠
(0, 𝑥) 𝑑𝑥

= ∫

E
𝑚

𝑥𝑥
𝑇

𝑓
𝑠
(0, 𝑒
−𝐴
𝑘
𝑡

𝐶
−1

𝑘𝑠
𝑥) det 𝑒−𝐴𝑘𝑡 det𝐶−1

𝑘𝑠
𝑑𝑥

= 𝐶
𝑘𝑠
𝑒
𝐴
𝑠
𝑡

𝐸
(2)

𝑠
{𝑥 (0)} 𝑒

𝐴
𝑇

𝑠
𝑡

𝐶
𝑇

𝑘𝑠
.

(50)

4. Necessary and Sufficient Conditions
of 𝐿
2
-Stability

Several different stability definitions are useful. Here, we
recall the mean stability and the mean square stability
definitions, the 𝐿

2
-stability, and the classical definition of

asymptotic stability.

Definition 6. The trivial solution of system (2) is said to be
mean square stable on the interval [0,∞) if, for each 𝜀 > 0,
there exists 𝛿 > 0 such that any solution 𝑥(𝑡) corresponding
to the initial data𝑥(0) exists for all 𝑡 ≥ 0 and themathematical
expectation

𝐸
(1)

{‖𝑥 (𝑡)‖
2

} < 𝜀, whenever 𝑡 ≥ 0, ‖𝑥 (0)‖ < 𝛿. (51)

The mean stability of the zero solution of system (2)
is much defined in the same way with only ‖𝑥(𝑡)‖2 being
replaced by ‖𝑥(𝑡)‖.

Definition 7. The trivial solution of system (2) is said to be
asymptotically mean square stable on the interval [0,∞) if it
is stable and, moreover,

lim
𝑡→∞

𝐸
(2)

{𝑥 (𝑡)} = 0. (52)

Remark 8. It is obvious that the mean stability of the zero
solution of system (2) is equivalent to the asymptotic stability
of the solutions of system (23) and (24) and the mean square
stability of the solutions of system (2) is equivalent to the
asymptotic stability of the solutions of system (25) and (26).

Definition 9. The trivial solution of the differential systems
(2) is said to be 𝐿

2
-stable if the integral

∫

∞

0

𝐸
(1)

{‖𝑥 (𝑡)‖
2

} 𝑑𝑡 (53)

converges.

Remark 10. It is easy to see that the integral (53) converges if
and only if the matrix integral

∫

∞

0

𝐸
(2)

{𝑥 (𝑡)} 𝑑𝑡 (54)

is convergent.



6 Abstract and Applied Analysis

Lemma 11. The following three inequalities hold:

(1) 𝐸(2)
𝑘
{𝑥(𝑡)} ≥ 0, 𝑘 = 1, . . . , 𝑛.

(2) 𝑒𝐴𝑘𝑡𝐸(2)
𝑘
{𝑥(0)}𝑒

𝐴
𝑇

𝑘
𝑡

𝑥 ≥ 0, 𝑘 = 1, . . . , 𝑛.

(3) 𝐶
𝑘𝑠
𝑒
𝐴
𝑠
𝑡

𝐸
(2)

𝑠
{𝑥(0)}𝑒

𝐴
𝑇

𝑠
𝑡

𝐶
𝑇

𝑘𝑠
≥ 0, 𝑘, 𝑠 = 1, . . . , 𝑛.

Proof. All inequalities follow from property 𝑓
𝑘
(𝑡, 𝑥) ≥ 0, 𝑘 =

1, . . . , 𝑛 in accordance with (23) and (24).

It is convenient to derive some sufficient and necessary
conditions of 𝐿

2
-stability by using a matrix operator with

suitable properties. Such an operator is defined by the
following lemma.

Lemma 12. The linear matrix operators𝑁
𝑘𝑠
(𝑡), 𝑘, 𝑠 = 1, . . . , 𝑛,

defined as

𝑁
𝑘𝑠
(𝑡) ∘ 𝑊

𝑠
(𝑡)

:= ∫

𝑡

0

𝑞
𝑘𝑠
(𝑡 − 𝜏) 𝐶

𝑘𝑠
𝑒
𝐴
𝑠
(𝑡−𝜏)

𝑊
𝑠
(𝜏) 𝑒
𝐴
𝑇

𝑠
(𝑡−𝜏)

𝐶
𝑇

𝑘𝑠
𝑑𝜏,

(55)

are monotonous.

Proof. Because 𝑞
𝑘𝑠
(𝑡 − 𝜏) ≥ 0, in accordance with the third

statement of Lemma 11, we have

𝑥
𝑇

𝑁
𝑘𝑠
(𝑡) ∘ 𝑊

𝑠
(𝑡) 𝑥 ≥ 0, for 𝑥 ≥ 0. (56)

So𝑊
𝑠
(𝜏) ≥ 0 implies 𝑁

𝑘𝑠
(𝑡) ∘ 𝑊

𝑠
(𝑡) ≥ 0 and the operator is

monotone.

Remark 13. The linear monotonous operator 𝑁
𝑘𝑠
(𝑡) trans-

forms any symmetric matrix 𝐷 into a symmetric matrix
𝑁
𝑘𝑠
(𝑡) ∘ 𝐷. Its monotonicity guarantees that inequality 𝐷

1
≥

𝐷
2
implies inequality

𝑁
𝑘𝑠
(𝑡) ∘ 𝐷

1
≥ 𝑁
𝑘𝑠
(𝑡) ∘ 𝐷

2
. (57)

Lemma 14. The symmetric matrices 𝑊
𝑘
(𝑡), 𝑘 = 1, . . . , 𝑛

defined by (26) satisfy the inequalities𝑊
𝑘
(𝑡) ≥ 0, 𝑘 = 1, . . . , 𝑛.

Proof. System (26) can be rewritten in the form

𝑊
𝑘
(𝑡) =

𝑛

∑

𝑠=1

𝑞
𝑘𝑠
(𝑡) 𝐶
𝑘𝑠
𝑒
𝐴
𝑠
𝑡

𝐸
(2)

𝑠
{𝑥 (0)} 𝑒

𝐴
𝑇

𝑠
𝑡

𝐶
𝑇

𝑘𝑠

+

𝑛

∑

𝑠=1

𝑁
𝑘𝑠
(𝑡) ∘ 𝑊

𝑠
(𝑡) ,

(58)

𝑘 = 1, . . . , 𝑛, by using the matrix operators (55). System
(26) as well as system (58) can be solved by the method of
successive approximations

𝑊
(0)

𝑘
(𝑡) =

𝑛

∑

𝑠=1

𝑞
𝑘𝑠
(𝑡) 𝐶
𝑘𝑠
𝑒
𝐴
𝑠
𝑡

𝐸
(2)

𝑠
{𝑥 (0)} 𝑒

𝐴
𝑇

𝑠
𝑡

𝐶
𝑇

𝑘𝑠
,

𝑊
(𝑙+1)

𝑘
(𝑡) = 𝑊

(0)

𝑘
(𝑡) +

𝑛

∑

𝑠=1

𝑁
𝑘𝑠
(𝑡) ∘ 𝑊

(𝑙)

𝑠
(𝑡) ,

𝑙 = 1, 2, . . . .

(59)

Hence,𝑊(0)
𝑘
(𝑡) ≥ 0 and𝑊(𝑙)

𝑘
(𝑡) ≥ 0 implies𝑊(𝑙+1)

𝑘
≥ 0, 𝑘 =

1, . . . , 𝑛. So the solution of system (58),

𝑊
𝑘
(𝑡) = lim
𝑙→∞

𝑊
(𝑙)

𝑘
(𝑡) , (60)

satisfies𝑊
𝑘
(𝑡) ≥ 0, 𝑘 = 1, . . . , 𝑛.

Now, we rewrite the moment equations (25) and (26) into
a more compact form by using the denotations

𝐷
𝑘
= ∫

∞

0

𝐸
(2)

𝑘
{𝑥 (𝑡)} 𝑑𝑡, 𝑊

𝑘
= ∫

∞

0

𝑊
𝑘
(𝜏) 𝑑𝜏,

𝑘 = 1, . . . , 𝑛.

(61)

Then, integrating systems (25) and (26) from 0 to ∞ with
respect to 𝑡, we obtain

𝐷
𝑘
= ∫

∞

0

𝜓
𝑘
(𝑡) 𝑒
𝐴
𝑘
𝑡

(𝐸
(2)

𝑘
{𝑥 (0)} + 𝑊

𝑘
) 𝑒
𝐴
𝑇

𝑘
𝑡

𝑑𝑡,

𝑘 = 1, . . . , 𝑛,

(62)

𝑊
𝑘
=

𝑛

∑

𝑠=1

∫

∞

0

𝑞
𝑘𝑠
(𝑡) 𝐶
𝑘𝑠
𝑒
𝐴
𝑠
𝑡

(𝐸
(2)

𝑠
{𝑥 (0)} + 𝑊

𝑠
) 𝑒
𝐴
𝑇

𝑠
𝑡

𝐶
𝑇

𝑘𝑠
𝑑𝑡,

𝑘 = 1, . . . , 𝑛.

(63)

Corollary 15. Let the zero solution of the system (2) with
jumps (14) at random time moments 𝑡

𝑗
, 𝑗 = 0, 1, 2, . . .

determined by jumps of stochastic process 𝜉(𝑡) be 𝐿
2
-stable.

Then, the integrals

𝐼
𝑘
= ∫

∞

0

𝜓
𝑘
(𝑡) 𝑒
𝐴
𝑘
𝑡

𝐸
(2)

𝑘
{𝑥 (0)} 𝑒

𝐴
𝑇

𝑘
𝑡

𝑑𝑡, 𝑘 = 1, . . . , 𝑛 (64)

are convergent.

Proof. This immediately follows from Lemma 14. In fact,
since𝑊

𝑘
≥ 0, then𝐷

𝑘
≥ 𝐼
𝑘
, 𝑘 = 1, . . . , 𝑛.

Theorem 16. Let the integrals (64) be convergent. Then, the
zero solution of system (2) is 𝐿

2
-stable if and only if the

solutions𝑊
𝑘
≥ 0, 𝑘 = 1, . . . , 𝑛 of system (63) are bounded.

Proof. (1) Sufficiency. Integrating system (59) from 0 to ∞
with respect to 𝑡, using notation 𝑊

(𝑙)

𝑘
= ∫

∞

0

𝑊
(𝑙)

𝑘
(𝑡)𝑑𝑡,

𝑘 = 1, . . . , 𝑛, we obtain the system of matrix successive
approximations

𝑊
(𝑙+1)

𝑘
= 𝑊
(0)

𝑘
+

𝑛

∑

𝑠=1

𝑁
𝑘𝑠
∘ 𝑊
(𝑙)

𝑠
, 𝑘 = 1, . . . , 𝑛,

𝑙 = 0, 1, 2, . . . .

(65)

As the linear operators𝑁
𝑘𝑠
, 𝑘, 𝑠 = 1, . . . , 𝑛 defined by (55) are

monotonous, the zero solution of system (2) is 𝐿
2
-stable if the

sequence of matrices𝑊(𝑙)
𝑘
, 𝑙 = 0, 1, 2, . . . is convergent.
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(2) Necessity. Let us assume that the solution 𝑊
𝑘
= 𝑍
𝑘
≥ 0,

𝑘 = 1, . . . , 𝑛 of the system

𝑊
𝑘
= 𝑊
(0)

𝑘
+

𝑛

∑

𝑠=1

𝑁
𝑘𝑠
∘ 𝑊
𝑠
, 𝑘 = 1, . . . , 𝑛 (66)

is bounded. Obviously, 𝑍
𝑘
≥ 𝑊
(0)

𝑘
, 𝑘 = 1, . . . , 𝑛 and, in view

of successive approximations (65), we get

𝑊
(𝑙+1)

𝑘
= 𝑊
(0)

𝑘
+ 𝑁
𝑘𝑠
∘ 𝑊
(𝑙)

𝑠

≤ 𝑊
(0)

𝑘
+ 𝑁
𝑘𝑠
∘ 𝑍
𝑠
= 𝑍
𝑘
, 𝑘 = 1, . . . , 𝑛.

(67)

So, for all 𝑙 = 0, 1, 2, . . ., we have𝑊(𝑙)
𝑘
≤ 𝑍
𝑘
, 𝑘 = 1, . . . , 𝑛.

Next, from (65), we obtain

𝑊
(𝑙+1)

𝑘
= 𝑊
(0)

𝑘
+ 𝑁
𝑘𝑠
∘ 𝑊
(𝑙)

𝑠
≥ 𝑊
(0)

𝑘

+ 𝑁
𝑘𝑠
∘ 𝑊
(𝑙−1)

𝑠
= 𝑊
(𝑙)

𝑘
, 𝑘 = 1, . . . , 𝑛.

(68)

Moreover, because𝑊(0)
𝑘

≥ 0,𝑊(𝑙+1)
𝑘

≥ 𝑊
(𝑙)

𝑘
, 𝑘 = 1, . . . , 𝑛

is satisfied for all 𝑙 = 0, 1, . . . .
Finally, the boundedness and monotonicity of the matrix

sequences𝑊(𝑙)
𝑘
, 𝑙 = 0, 1, . . . imply the existence of limits

𝑊
𝑘
= lim
𝑙→∞

𝑊
(𝑙)

𝑘
, (69)

𝑘 = 1, . . . , 𝑛. Consequently, independently of the initial value
𝑊
(0)

𝑘
, in view of 0 ≤ 𝑊

(𝑙)

𝑘
≤ 𝑍
𝑘
, the linear operator 𝑁 =

(𝑁
𝑘𝑠
)
𝑛

𝑘,𝑠=1
has the spectral radius less than 1. This means that

system (65) has a unique solution𝑊
𝑘
= 𝑍
𝑘
, 𝑘 = 1, . . . , 𝑛.

5. Model Problem

The functioning of the foreign currency exchange market in
conditions of uncertainty can bemodelled by using stochastic
differential equations. Such convenient mathematical model
is the scalar case of the initial problem (2), (3), that is, the ini-
tial problem formulated for the stochastic linear differential
equation

𝑑𝑥 (𝑡)

𝑑𝑡

= 𝑎 (𝜉 (𝑡)) 𝑥 (𝑡) , (70)

𝑥 (0) = 𝜑 (𝜔) , (71)

where coefficient 𝑎 depends on a semi-Markov process 𝜉(𝑡).
The possible states 𝜃

1
, . . . , 𝜃

𝑛
of the stochastic process 𝜉(𝑡)

express the conditions in which the bank works, for example,
in a currency crisis, in a stable foreign currency exchange
market, and so forth. Let the stochastic process 𝜉(𝑡) take the
states 𝜃

𝑘
, 𝑘 = 1, 2, . . . , 𝑛. If 𝜉(𝑡) = 𝜃

𝑘
, we denote 𝑎(𝜉(𝑡)) = 𝑎

𝑘
.

Further assume that the intensities 𝑞
𝑠𝑘
(𝑡) are determined by

the formulas

𝑞
𝑠𝑠
(𝑡) = 0, (72)

𝑞
𝑠𝑘
(𝑡) =

{

{

{

1

𝑇
𝑠𝑘

for 0 ≤ 𝑡 < 𝑇
𝑠𝑘
,

0 for 𝑡 ≥ 𝑇
𝑠𝑘
,

(73)

where 𝑠, 𝑘 = 1, 2, . . . , 𝑛.

Perturbations in the foreign currency exchange market
cause the changes of the stochastic process 𝜉(𝑡), and conse-
quently, solutions of (2) in this scalar case are subject to the
random transformations

𝑥 (𝑡
𝑗
+ 0) = 𝑝

𝑘
𝑥 (𝑡
𝑗
− 0) , 𝑝

𝑘
̸= 0, 𝑘 = 1, . . . , 𝑛 (74)

at the moments of jumps 𝑡
𝑗
, 𝑗 = 1, 2, . . . .

We derive the domain of stability of the foreign currency
exchangemarket using the results of the previous section.The
moment equations in (25) for 𝐸(2)

𝑘
{𝑥(𝑡)}, 𝑘 = 1, . . . , 𝑛 take, in

the scalar case, the form

𝐸
(2)

𝑘
{𝑥 (𝑡)} = 𝜓

𝑘
𝑒
2𝑎
𝑘
𝑡

𝐸
(2)

𝑘
{𝑥 (0)}

+ ∫

𝑡

0

𝜓
𝑘
(𝑡 − 𝜏) 𝑒

2𝑎
𝑘
(𝑡−𝜏)

𝑊
𝑘
(𝜏) 𝑑𝜏,

(75)

𝑊
𝑘
(𝑡) =

𝑛

∑

𝑠=1

𝑞
𝑘𝑠
(𝑡) 𝐶
2

𝑘𝑠
𝑒
2𝑎
𝑠
𝑡

𝐸
(2)

𝑠
{𝑥 (0)}

+ ∫

𝑡

0

𝑛

∑

𝑠=1

𝑞
𝑘𝑠
(𝑡 − 𝜏) 𝐶

2

𝑘𝑠
𝑒
2𝑎
𝑠
(𝑡−𝜏)

𝑊
𝑠
(𝜏) 𝑑𝜏,

𝑘 = 1, . . . , 𝑛.

(76)

By definition, the zero solution of (75) is asymptotically stable
if 𝐸(2){𝑥(𝑡)} → 0 for 𝑡 → ∞.

Lemma 17. If

lim
𝑡→∞

𝐸
(2)

𝑘
{𝑥 (𝑡)} = 0, 𝑘 = 1, . . . , 𝑛, (77)

then

lim
𝑡→∞

𝜓
𝑘
(𝑡) 𝑒
2𝑎
𝑘
𝑡

= 0, 𝑘 = 1, . . . , 𝑛. (78)

Proof. Formula (20) implies 𝐸(2)
𝑘
{𝑥(𝑡)} ≥ 0, 𝑘 = 1, . . . , 𝑛 if

𝑡 ≥ 0. Therefore,𝑊
𝑘
(𝑡) ≥ 0, 𝑘 = 1, . . . , 𝑛, 𝑡 ≥ 0. From (75), it

follows that inequalities

𝐸
(2)

𝑘
{𝑥 (𝑡)} ≥ 𝜓

𝑘
𝑒
2𝑎
𝑘
𝑡

𝐸
(2)

𝑘
{𝑥 (0)} , 𝑘 = 1, . . . , 𝑛 (79)

are always satisfied. Then, for any constant 𝐸(2)
𝑘
{𝑥(0)}, prop-

erty (77) implies (78).

Note that, in general, condition (78) does not imply the
property (77). In the following theorem, it is shown what
additional assumptions are needed.

Theorem 18. Let (78) hold and let

∫

∞

0

𝜓
𝑘
(𝑡) 𝑒
2𝑎
𝑘
𝑡

𝑑𝑡 < ∞, 𝑘 = 1, . . . , 𝑛. (80)

Then, if there exist limits

lim
𝑡→∞

𝑊
𝑘
(𝑡) = 0, 𝑘 = 1, . . . , 𝑛, (81)

limits (77) exist too.
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Proof. We denote

𝐼
𝑘
= ∫

∞

0

𝜓
𝑘
(𝑡) 𝑒
2𝑎
𝑠
𝑡

𝑑𝑡, 𝐼
𝑘
≥ 0, 𝑘 = 1, . . . , 𝑛. (82)

As the integrals 𝐼
𝑘
, 𝑘 = 1, . . . , 𝑛 are convergent, for all 𝜀 > 0,

there exists 𝑇
1
> 0 such that, for all 𝑡 > 𝑇

1
, the inequalities

∫

∞

𝑡

𝜓
𝑘
(𝑡) 𝑒
2𝑎
𝑘
𝑡

< 𝜀, 𝑘 = 1, . . . , 𝑛 (83)

hold. Similarly, assumption (81) means that ∀𝜀 > 0 ∃ 𝑇
2
> 0

such that ∀𝑡 > 𝑇
2
the inequalities

0 ≤ 𝑊
𝑘
(𝑡) < 𝜀, 𝑘 = 1, . . . , 𝑛 (84)

hold. Moreover, there exists constant𝑊
0
such that





𝑊
𝑘
(𝑡)




≤ 𝑊
0
, 𝑘 = 1, . . . , 𝑛, 𝑡 ≥ 𝑇

2
. (85)

The integral part of (75) can be now estimated if 𝑡 > 𝑇
1
+ 𝑇
2
.

We have

∫

𝑡

0

𝜓
𝑘
(𝑡 − 𝜏) 𝑒

2𝑎
𝑘
(𝑡−𝜏)

𝑊
𝑘
(𝜏) 𝑑𝜏

= ∫

𝑇
1
+𝑇
2

0

𝜓
𝑘
(𝑡) 𝑒
2𝑎
𝑘
𝜏

𝑊
𝑘
(𝑡 − 𝜏) 𝑑𝜏

+ ∫

𝑡

𝑇
1
+𝑇
2

𝜓
𝑘
(𝑡) 𝑒
2𝑎
𝑘
𝜏

𝑊
𝑘
(𝑡 − 𝜏) 𝑑𝜏

≤ 𝐼
𝑘
𝜀 + 𝑊

0
𝜀.

(86)

Thus, there exist limits

lim
𝑡→∞

∫

𝑡

0

𝜓
𝑘
(𝑡 − 𝜏) 𝑒

2𝑎
𝑘
(𝑡−𝜏)

𝑊
𝑘
(𝜏) 𝑑𝜏 = 0, 𝑘 = 1, . . . , 𝑛.

(87)

Corollary 19. Let the assumptions of Theorem 18 hold. Then,
the asymptotical stability of solutions of system (75) implies the
asymptotical mean square stability of the zero solution of (70).

Proof. Under the given assumptions, this follows from the
existence of limits (77).

The results obtained make it possible to examine the
stability of the stochastic equation (70) by using the deter-
ministic system of (76). Here, we can use the knownmethods
such as the Laplace transformation.

If we denote

Υ
𝑘
(𝑝) = ∫

∞

0

𝑒
−𝑝𝑡

𝑊
𝑘
(𝑡) 𝑑𝑡, Θ

𝑘𝑠
(𝑝) = ∫

∞

0

𝑒
−𝑝𝑡

𝑞
𝑘𝑠
(𝑡) 𝑑𝑡,

𝑘, 𝑠 = 1, . . . , 𝑛,

(88)

then, multiplying (76) by 𝑒−𝑝𝑡 and integrating it from 0 to∞
with respect to 𝑡, (76) can be transformed into the system of
linear algebraic equations with respect to the functionsΥ

𝑘
(𝑝).

We get the system

Υ
𝑘
(𝑝) =

𝑛

∑

𝑠=1

Θ
𝑘𝑠
(𝑝 − 2𝑎

𝑠
) 𝐶
2

𝑘𝑠
𝐸
(2)

𝑠
{𝑥 (0)}

+

𝑛

∑

𝑠=1

Θ
𝑘𝑠
(𝑝 − 2𝑎

𝑠
) 𝐶
2

𝑘𝑠
Υ
𝑠
(𝑝) ,

(89)

where 𝑘 = 1, . . . , 𝑛.
The determinant Δ(𝑝) of the system of linear equations

(89) is in the form

Δ (𝑝) =























1 − Θ
11
(𝑝 − 2𝑎

1
) 𝐶
2

11
−Θ
12
(𝑝 − 2𝑎

2
) 𝐶
2

12
⋅ ⋅ ⋅ −Θ

1𝑛
(𝑝 − 2𝑎

𝑛
) 𝐶
2

1𝑛

−Θ
21
(𝑝 − 2𝑎

1
) 𝐶
2

21
1 − Θ

22
(𝑝 − 2𝑎

2
) 𝐶
2

22
⋅ ⋅ ⋅ −Θ

2𝑛
(𝑝 − 2𝑎

𝑛
) 𝐶
2

2𝑛

...
... d

...
−Θ
𝑛1
(𝑝 − 2𝑎

1
) 𝐶
2

𝑛1
−Θ
𝑛2
(𝑝 − 2𝑎

2
) 𝐶
2

𝑛2
⋅ ⋅ ⋅ 1 − Θ

𝑛𝑛
(𝑝 − 2𝑎

𝑛
) 𝐶
2

𝑛𝑛























. (90)

The singular points of mappings Θ
𝑘𝑠
(𝑝), 𝑘, 𝑠 = 1, . . . , 𝑛 are

determined by the roots of Δ(𝑝) = 0. If all the functions
Θ
𝑘𝑠
(𝑝), 𝑘, 𝑠 = 1, . . . , 𝑛 are entire, then there are no singular

points, except for the point 𝑝 = ∞.

Remark 20. In a particular case, solutions of (89) are located
on the boundary of the stability domain. If 𝑝 = 0, thenΔ(0) =
0 is the equation determining the boundary of the stability
domain.

To solve the model problem formulated at the beginning
of this section, we use the stochastic operators 𝑆

𝑠𝑘
𝑓(𝑥), 𝑠, 𝑘 =

1, 2, . . . , 𝑛 in the form

𝑆
𝑠𝑘
𝑓 (𝑡, 𝑥) =

{
{

{
{

{

𝑓 (𝑡, 𝑥) , 𝑠 = 𝑘,

𝑛

∑

𝑘=1

𝑝
𝑘

𝑝
𝑠

𝑓(𝑡,

𝑥

𝑝
𝑠

) , 𝑠 ̸= 𝑘,

(91)
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associated to the intensities 𝑞
𝑠𝑘
(𝑡) determined by (72). The

domain of stability of banking operations in the foreign
currency exchange market can be derived from the behavior
of the solutions of the moment equations (76). Before we
use the moment equations, we express the probabilities 𝐶

𝑘𝑠
,

𝑘, 𝑠 = 1, 2, . . . , 𝑛 from formula (14) by using the probabilities
𝑝
𝑘
, 𝑘 = 1, 2, . . . , 𝑛 from formula (74) in the form

𝐶
𝑘𝑠
=

{
{

{
{

{

1, 𝑠 = 𝑘,

𝑛

∑

𝑘=1

𝑝
2

𝑘
, 𝑠 ̸= 𝑘.

(92)

Then, the moment equations (76) can be rewritten into the
form

𝑊
𝑘
(𝑡) = 𝜌

[

[

[

𝑛

∑

𝑠=1

𝑠 ̸=𝑘

𝑞
𝑘𝑠
(𝑡) 𝑒
2𝑎
𝑠
𝑡

𝐸
(2)

𝑠
{𝑥 (0)}

+ ∫

𝑡

0

𝑛

∑

𝑠=1

𝑞
𝑘𝑠
(𝑡 − 𝜏) 𝑒

2𝑎
𝑠
(𝑡−𝜏)

𝑊
𝑠
(𝜏) 𝑑𝜏

]

]

]

,

𝑘 = 1, . . . , 𝑛,

(93)

where 𝜌 = ∑
𝑛

𝑘=1
𝑝
2

𝑘
. The system (93) can be solved in the

same way as above, that is, by Laplace transformation. Then,
multiplying (93) by 𝑒−𝑝𝑡 and integrating it from 0 to∞ with
respect to 𝑡, we get a preliminary form of the system

Υ
𝑘
(𝑝)

= 𝜌
[

[

[

∫

∞

0

𝑛

∑

𝑠=1

𝑘 ̸=𝑠

𝑞
𝑘𝑠
𝑒
2𝑎
𝑠
𝑡

𝑒
−𝑝𝑡

𝐸
(2)

𝑠
{𝑥 (0)} 𝑑𝑡

+ ∫

∞

0

∫

𝑡

0

𝑛

∑

𝑠=1

𝑘 ̸=𝑠

𝑞
𝑘𝑠
(𝑡 − 𝜏) 𝑒

2𝑎
𝑠
(𝑡−𝜏)

𝑒
−𝑝𝑡

𝑊
𝑠
(𝜏) 𝑑𝜏𝑑𝑡

]

]

]

,

𝑘 = 1, . . . , 𝑛,

(94)

which we will still have to modify using some properties of
the Laplace transformation. In accordance with the property
of the delay and with regard to the equality

∫

∞

0

𝑞
𝑘𝑠
𝑒
−𝑝𝑡

𝑑𝑡 =

1 − 𝑒
−𝑝𝑇
𝑘𝑠

𝑇
𝑘𝑠
𝑝

, 𝑘, 𝑠 = 1, . . . , 𝑛, 𝑘 ̸= 𝑠, (95)

we obtain

∫

∞

0

𝑞
𝑘𝑠
𝑒
2𝑎
𝑠
𝑡

𝑒
−𝑝𝑡

𝑑𝑡 =

1 − 𝑒
−𝑇
𝑘𝑠
(𝑝−2𝑎

𝑠
)

𝑇
𝑘𝑠
(𝑝 − 2𝑎

𝑠
)

, 𝑘, 𝑠 = 1, . . . , 𝑛, 𝑘 ̸= 𝑠.

(96)

In accordance with the property of convolution, we get

∫

∞

0

∫

𝑡

0

𝑞
𝑘𝑠
(𝑡 − 𝜏) 𝑒

2𝑎
𝑠
(𝑡−𝜏)

𝑒
−𝑝𝑡

𝑊
𝑠
(𝜏) 𝑑𝜏𝑑𝑡 =

1 − 𝑒
−𝑇
𝑘𝑠
(𝑝−2𝑎

𝑠
)

𝑇
𝑘𝑠
(𝑝 − 2𝑎

𝑠
)

.

(97)

Therefore, the system of (94) can be written in the form

Υ
𝑘
(𝑝) = 𝜌

[

[

[

𝑛

∑

𝑠=1

𝑘 ̸=𝑠

𝐸
(2)

𝑠
{𝑥 (0)}

1 − 𝑒
−𝑇
𝑘𝑠
(𝑝−2𝑎

𝑠
)

𝑇
𝑘𝑠
(𝑝 − 2𝑎

𝑠
)

+

𝑛

∑

𝑠=1

𝑘 ̸=𝑠

𝑓
𝑠
(𝑝)

1 − 𝑒
−𝑇
𝑘𝑠
(𝑝−2𝑎

𝑠
)

𝑇
𝑘𝑠
(𝑝 − 2𝑎

𝑠
)

]

]

]

,

(98)

where 𝑘 = 1, . . . , 𝑛, or, using the notations

𝑏
𝑘
(𝑝) ≡

𝑛

∑

𝑠=1

𝑘 ̸=𝑠

𝐸
(2)

𝑠
{𝑥 (0)}

1 − 𝑒
−𝑇
𝑘𝑠
(𝑝−2𝑎

𝑠
)

𝑇
𝑘𝑠
(𝑝 − 2𝑎

𝑠
)

,

𝑎
𝑘𝑠
≡

1 − 𝑒
−𝑇
𝑘𝑠
(𝑝−2𝑎

𝑠
)

𝑇
𝑘𝑠
(𝑝 − 2𝑎

𝑠
)

,

(99)

𝑘, 𝑠 = 1, . . . , 𝑛, 𝑘 ̸= 𝑠, in a simpler form

Υ
𝑘
(𝑝) = 𝜌(𝑏

𝑘
(𝑝) +

𝑛

∑

𝑠=1

𝑘 ̸=𝑠

𝑎
𝑘𝑠
Υ
𝑠
(𝑝)) , 𝑘 = 1, . . . , 𝑛. (100)

By the Cramer theorem, we can solve the system (100).
The singular points are determined by the roots of

det (𝐸 − 𝜌𝑎) = 0, (101)

where 𝑎 ≡ (𝑎
𝑘𝑠
(𝑝, 𝑇
𝑘𝑠
))
𝑛

𝑘,𝑠=1
, while 𝜌𝑎

𝑘𝑘
(𝑝, 𝑇
𝑘𝑘
) ≡ −1.

The character of the roots of (101) determines the stability
of the solutions of the system of integral equations in (93). If
the real parts of all the roots of (101) are negative, then the
solutions of (93) are asymptotically stable. If there is at least
one root of (101) with a positive real part, then the solutions
of integral equations (93) are unstable.

The character of the dependence between parameters 𝑝
and 𝑇

𝑘𝑠
can be determined by solving the system of algebraic

equations in (101) by numerical methods.

Example 21. The real boundaries of the instability domain
of foreign currency exchange market can be determined in
a particular case. Suppose that the random semi-Markov
process can take three states:

𝜃
1
—if the bank operates in a currency crisis, then

𝑎(𝜉(𝑡)) = 𝑎
1
;

𝜃
2
—if the bank operates in a stable foreign currency

exchange market, then 𝑎(𝜉(𝑡)) = 𝑎
2
;

𝜃
3
—if the bank operates in a market with currency

restrictions, then 𝑎(𝜉(𝑡)) = 𝑎
3
,

with intensities
𝑞
11
(𝑡) = 𝑞

22
(𝑡) = 𝑞

33
(𝑡) ≡ 0,

𝑞
12
(𝑡) = 𝑞

13
(𝑡) = 𝑞

21
(𝑡) = 𝑞

23
(𝑡) = 𝑞

31
(𝑡)

= 𝑞
32
(𝑡) ≡

{

{

{

1

𝑇

for 0 ≤ 𝑡 < 𝑇,
0 for 𝑡 > 𝑇,

(102)
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Figure 1: The boundary of instability of solutions of (70) constructed in the plane of parameters 𝑎
1
, 𝑎
2
, and 𝑎

3
for 𝑝 = 0 and for different

values of 𝜌.

which means that the bank remains in each state for the same
period of time 1/𝑇. In the above case, the system (100) takes
the form

Υ
1
(𝑝) = 𝜌𝑏

1
(𝑝) + 𝜌𝑎

12
Υ
2
(𝑝) + 𝜌𝑎

13
Υ
3
(𝑝) ,

Υ
2
(𝑝) = 𝜌𝑏

2
(𝑝) + 𝜌𝑎

21
Υ
1
(𝑝) + 𝜌𝑎

23
Υ
3
(𝑝) ,

Υ
3
(𝑝) = 𝜌𝑏

3
(𝑝) + 𝜌𝑎

31
Υ
1
(𝑝) + 𝜌𝑎

32
Υ
2
(𝑝) ,

(103)

where

𝑎
12
=

1 − 𝑒
−𝑇(𝑝−2𝑎

2
)

𝑇 (𝑝 − 2𝑎
2
)

, 𝑎
13
=

1 − 𝑒
−𝑇(𝑝−2𝑎

3
)

𝑇 (𝑝 − 2𝑎
3
)

,

𝑎
21
=

1 − 𝑒
−𝑇(𝑝−2𝑎

1
)

𝑇 (𝑝 − 2𝑎
1
)

, 𝑎
23
=

1 − 𝑒
−𝑇(𝑝−2𝑎

3
)

𝑇 (𝑝 − 2𝑎
3
)

,

𝑎
31
=

1 − 𝑒
−𝑇(𝑝−2𝑎

1
)

𝑇 (𝑝 − 2𝑎
1
)

, 𝑎
32
=

1 − 𝑒
−𝑇(𝑝−2𝑎

2
)

𝑇 (𝑝 − 2𝑎
2
)

.

(104)

The value 𝜌 expresses the mean value of the bank’s income
from foreign currency transactions during time 𝑇. The
singular point is 𝑝 = 0, when the solution is situated on
the boundary of the domain of instability on the plane of
coefficients 𝑎

1
, 𝑎
2
, and 𝑎

3
.

Equation (101) is in the form













1 −𝜌𝑎
12

−𝜌𝑎
13

−𝜌𝑎
21

1 −𝜌𝑎
23

−𝜌𝑎
31

−𝜌𝑎
32

1














= 0, (105)

or

1 − 𝜌
3

𝑎
21
𝑎
32
𝑎
13
− 𝜌
3

𝑎
12
𝑎
23
𝑎
31
− 𝜌
2

𝑎
13
𝑎
31

− 𝜌
2

𝑎
23
𝑎
32
− 𝜌
2

𝑎
12
𝑎
21
= 0.

(106)

If 𝑝 = 0, the boundaries of instability of solutions of
(70) are constructed in the plane of parameters 𝑎

1
, 𝑎
2
, and

𝑎
3
for different values 𝜌 (see Figure 1 where some admissible

boundaries are constructed).
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The paper is devoted to the study of the solvability of a singular initial value problem for systems of ordinary differential equations.
The main results give sufficient conditions for the existence of solutions in the right-hand neighbourhood of a singular point. In
addition, the dimension of the set of initial data generating such solutions is estimated. An asymptotic behavior of solutions is
determined as well and relevant asymptotic formulas are derived. The method of functions defined implicitly and the topological
method (Ważewski’s method) are used in the proofs. The results generalize some previous ones on singular initial value problems
for differential equations.

1. Introduction

Let 𝑥
0
> 0 and 𝑦

0
> 0 be given constants. Define auxiliary set

of points

𝐷
𝑛
:= (0, 𝑥

0
] ×

𝑛

∏

𝑖=1

(0, 𝑦
0𝑖
] , (1)

where 𝑦
0𝑖
= 𝑦
0
.

In the paper, we consider a system of ordinary differential
equations in the form

𝑔
𝑖
(𝑥, 𝑦) 𝑦



𝑖
= 𝛼
𝑖
(𝑥, 𝑦) , (2)

where 𝑖 = 1, . . . , 𝑛 and functions 𝑔
𝑖
, 𝛼
𝑖
: 𝐷
𝑛
→ (0,∞) can

satisfy

𝑔
𝑟
(0
+

, 𝜃) = 𝛼
𝑟
(0
+

, 𝜃) = 0 (3)

for some indices 𝑟 ∈ {1, 2, . . . , 𝑛} or

1

𝑔
𝑠
(0
+
, 𝜃)

=

1

𝛼
𝑠
(0
+
, 𝜃)

= 0 (4)

for some indices 𝑠 ∈ {1, 2, . . . , 𝑛}, where 𝜃 = (0, 0, . . . , 0) is
the 𝑛-dimensional zero vector. Together with system (2) we
consider the initial problem

𝑦
𝑖
(0
+

) = 0, 𝑖 = 1, . . . , 𝑛. (5)

Because of the above properties, the initial problem (2), (5) is
called a singular initial problem.

Definition 1. Denote by𝑀(𝑥
0
, 𝑦
0
) a class of vector-functions

𝜑 : (0, 𝑥
0
] → R𝑛 having the following properties:

(1) 𝜑 is continuously differentiable on (0, 𝑥
0
];

(2) 𝜑
𝑖
(0
+

) = 0, 𝑖 = 1, . . . , 𝑛;

(3) 0 < 𝜑(𝑗)
𝑖
(𝑥) for 𝑥 ∈ (0, 𝑥

0
], 𝑗 = 0, 1, 𝑖 = 1, . . . , 𝑛;

(4) 𝜑
𝑖
(𝑥
0
) < 𝑦
0
, 𝑖 = 1, . . . , 𝑛.

For 𝜑 ∈ 𝑀(𝑥
0
, 𝑦
0
), define an auxiliary vector-function

𝐺 (𝑥, 𝜑 (𝑥)) = (𝐺
1
(𝑥, 𝜑 (𝑥)) , . . . , 𝐺

𝑛
(𝑥, 𝜑 (𝑥))) , (6)
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where

𝐺
𝑖
(𝑥, 𝜑 (𝑥)) := −𝜑



𝑖
(𝑥) 𝑔
𝑖
(𝑥, 𝜑 (𝑥)) + 𝛼

𝑖
(𝑥, 𝜑 (𝑥)) ,

𝑖 = 1, . . . , 𝑛.

(7)

In the paper, sufficient conditions which guarantee the
existence of a parametric class of solutions of initial value
problem (2), (5) are given and asymptotic formulas

𝑦
𝑖
(𝑥) = 𝜑

𝑖
(𝑥) (1 + 𝑜 (1)) , 𝑥 → 0

+

, 𝑖 = 1, . . . , 𝑛 (8)

are derived, where 𝜑
𝑖
are the coordinates of a function 𝜑 ∈

𝑀(𝑥
0
, 𝑦
0
) and the symbol 𝑜(1) is the well-known Landau

order symbol.
There are numerous papers and books dealing with

singular initial value problems (see, e.g., [1–16] and the
references therein). Among others, we should mention pio-
neering results on the solvability of singular problems for
ordinary differential equations achieved by Chechyk [15] and
Kiguradze [13]. The results of the paper generalize previous
investigation of the first author on the solvability of singular
problems [5–7]. The main differences are as follows. In [5],
a scalar singular differential equation was studied for the
case that a function similar to the function 𝐺 above does
not change the sign for 𝑥 → 0

+. In [6], system (2) is
investigated under the assumption that the 𝑖th right-hand
side of the system is bounded by the product of two functions,
with the first depending only on the variable 𝑥 while the
second one only depends on the variable 𝑦

𝑖
, 𝑖 = 1, . . . , 𝑛. In

comparison with the results of [7], we cannot expect that a
first approximation of system (2) consists of equations with
separable variables.

The structure of the paper is the following. In Section 2,
auxiliary results on implicit functions are given. We refer to
Corollary 4 where formula (27) is crucial for the proofs of
the asymptotic behavior of solutions. The main results of the
paper are formulated in Section 3. New results are proved and
a progress is achieved by implicit construction of funnels,
where solutions of the singular problem are expected. To
prove the existence of such solutions, the topological method
of Ważewski (see, e.g., [17–19]) is used. A simple illustrative
example is shown here as well. A generalization of the results
derived is discussed in Section 4.

2. Auxiliary Results on Implicit Functions

First, we give some properties of implicit functions used in
the following proofs.

Lemma 2. Assume that a function 𝜔 : 𝐷
1
→ R satisfies the

following conditions:

(1) 𝜔(𝑥, 𝑦) is continuously differentiable with respect to 𝑥
and 𝑦;

(2) 𝜔(0+, 0+) = 0;
(3) for every 𝑦 ∈ (0, 𝑦

0
], there exists a finite limit 𝜔(0+, 𝑦),

for every 𝑥 ∈ (0, 𝑥
0
], there exists a finite limit 𝜔(𝑥, 0+),

and 𝜔(0+, 𝑦)𝜔(𝑥, 0+) < 0;

(4) 𝜔
𝑥
(𝑥, 𝑦)𝜔



𝑦
(𝑥, 𝑦) < 0, where (𝑥, 𝑦) ∈ 𝐷

1
.

Then,

𝜔 (𝑥, 𝑦) = 0 (9)

defines a unique implicit function 𝑦 = 𝑦(𝑥) on some interval
(0, 𝑥
00
], 0 < 𝑥

00
≤ 𝑥
0
such that 𝑦(𝑥) ∈ 𝑀(𝑥

00
, 𝑦
0
).

Proof. Analysing assumptions (1)–(4), we deduce that only
the following two cases can occur: either

𝜔 (0
+

, 𝑦) < 0, 𝜔


𝑦
(𝑥, 𝑦) < 0,

𝜔 (𝑥, 0
+

) > 0, 𝜔


𝑥
(𝑥, 𝑦) > 0

(10)

or

𝜔 (0
+

, 𝑦) > 0, 𝜔


𝑦
(𝑥, 𝑦) > 0,

𝜔 (𝑥, 0
+

) < 0, 𝜔


𝑥
(𝑥, 𝑦) < 0

(11)

while the remaining two cases

𝜔 (0
+

, 𝑦) < 0, 𝜔


𝑦
(𝑥, 𝑦) > 0, 𝜔 (𝑥, 0

+

) > 0,

𝜔


𝑥
(𝑥, 𝑦) < 0, 𝜔 (0

+

, 𝑦) > 0, 𝜔


𝑦
(𝑥, 𝑦) < 0,

𝜔 (𝑥, 0
+

) < 0, 𝜔


𝑥
(𝑥, 𝑦) > 0

(12)

are in contradiction with assumptions (1) and (2). The
rest of the proof is analogous to the proofs of the well-
known implicit-function theorems and, therefore, we leave it
out.

To formulate the second lemma, we need some auxiliary
notions. Define, for a given 𝑦

00
> 0 and 𝜀∗ > 0 satisfying the

inequality 0 < 𝑦
00
(1 + 𝜀

∗

) < 𝑦
0
, the set

𝐷
∗

(𝑦
00
, 𝜀
∗

) := {(𝑦, 𝜀) : 𝑦 ∈ [0, 𝑦
00
] , 𝜀 ∈ (−𝜀

∗

, 𝜀
∗

)} . (13)

Moreover, for a given continuously differentiable function𝑅 :
(0, 𝑦
0
) → (0,∞), let

𝐹 (𝑦, 𝜀) :=

𝑅 (𝑦 (1 + 𝜀))

𝑅 (𝑦)

, (14)

where argument𝑦(1+𝜀) is assumed to be positive. In addition,
we define

𝐹 (0, 𝜀) := lim
𝑦→0

+

𝐹 (𝑦, 𝜀) ,

𝐹


𝜀
(0, 𝜀) := lim

𝑦→0
+

𝐹


𝜀
(𝑦, 𝜀)

(15)

provided that the limits exist and are finite.

Lemma 3. Assume that functions

𝑅 : (0, 𝑦
0
) → (0,∞) , 𝐹 : 𝐷

∗

(𝑦
00
, 𝜀
∗

) → [0,∞)

(16)

satisfy the following conditions:
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(1) 𝑅(𝑦) is continuously differentiable and 𝑅(𝑦) < 0;
(2) 𝐹(𝑦, 𝜀) is continuous with respect to𝑦 and continuously

differentiable with respect to 𝜀;
(3) 𝐹
𝜀
(𝑦, 0) ̸= 0.

Then, for an arbitrary𝑦 ∈ [0, 𝑦
00
] and 𝜀

1
∈ (−𝜀
1
, 𝜀
1
), where

𝜀
1
is a positive and sufficiently small constant, there exists a

unique continuous solution

𝜀
0

1
= 𝜀
0

1
(𝑦, 𝜀
1
) (17)

of the equation

1 + 𝜀
1
− 𝐹 (𝑦, 𝜀

0

1
) = 0, (18)

where
𝜀
0

1
(𝑦, 𝜀
1
) : [0, 𝑦

00
] × (−𝜀

1
, 𝜀
1
)

→

{
{

{
{

{

(−𝜀
0

1
, 0) 𝑖𝑓 𝜀

1
∈ (0, 𝜀

1
) ,

0 𝑖𝑓 𝜀
1
= 0,

(0, 𝜀
0

1
) 𝑖𝑓 𝜀

1
∈ (−𝜀
1
, 0) ,

(19)

and 𝜀0
1
is a sufficiently small positive constant, 𝜀0

1
≤ 𝜀
∗.

Proof. Define an auxiliary function

𝜔 : 𝐷
∗

(𝑦
00
, 𝜀
∗

) × (−𝜀
1
, 𝜀
1
) → R (20)

as

𝜔 (𝑦, 𝜀
0

1
, 𝜀
1
) := 1 + 𝜀

1
− 𝐹 (𝑦, 𝜀

0

1
) (21)

and consider implicit equation (18) in the form

𝜔 (𝑦, 𝜀
0

1
, 𝜀
1
) = 0 (22)

with respect to 𝜀0
1
. In what follows, we will assume that 𝑦 ∈

[0, 𝑦
00
] is a parameter. Since

𝜔 (𝑦, 0, 0) = 0, (23)

𝜔(𝑦, 𝜀
0

1
, 𝜀
1
) is continuous with respect to all 𝑦, 𝜀0

1
, and 𝜀

1
and

continuously differentiable with respect to 𝜀0
1
, and

𝜔


𝜀
0

1

(𝑦, 0, 0) = −𝐹


𝜀
0

1

(𝑦, 0) > 0 (24)

for arbitrary 𝑦 ∈ [0, 𝑦
00
]. Hence we can apply the classical

implicit-function theorem. As a result, we state that (18) is
uniquely solvable with respect to 𝜀0

1
. Thus

𝜀
0

1
= 𝜀
0

1
(𝑦, 𝜀
1
) , (25)

where 𝜀0
1
: [0, 𝑦

00
] × (−𝜀

1
, 𝜀
1
) → R is a continuous function

with respect to both 𝑦 and 𝜀
1
and 𝜀
1
is a sufficiently small

positive number. The sign of the function 𝜀
0

1
(𝑦, 𝜀
1
) can be

specified. In particular, since 𝑅 is a decreasing function, the
function 𝐹 is decreasing with respect to 𝜀,

𝜀
0

1
= 𝜀
0

1
(𝑦, 𝜀
1
) : [0, 𝑦

00
] × (−𝜀

1
, 𝜀
1
)

→

{
{

{
{

{

(−𝜀
0

1
, 0) if 𝜀

1
∈ (0, 𝜀

1
) ,

0 if 𝜀
1
= 0,

(0, 𝜀
0

1
) if 𝜀

1
∈ (−𝜀
1
, 0) ,

(26)

and 𝜀0
1
is a sufficiently small positive constant satisfying 𝜀0

1
≤

𝜀
∗.

Corollary 4. It is possible to reformulate the statement of
Lemma 3 as follows. Since (18) is uniquely solvable, one can use
the definition of 𝐹(𝑦, 𝜀) given by (14) to get

𝑅 (𝑦) (1 + 𝜀
1
) ≡ 𝑅 (𝑦 (1 − 𝜀

00

1
(𝑦, 𝜀
1
))) , (27)

where 𝜀00
1
(𝑦, 𝜀
1
) := −𝜀

0

1
(𝑦, 𝜀
1
).

3. Main Results

In this part, the main results related to the solvability of
problem (2), (5) are proved. We will discuss the dimension
of the set of initial conditions generating solutions of this
problem as well.

Using 𝜑 ∈ 𝑀(𝑥
0
, 𝑦
0
), define the sets

𝑁
𝜑
𝑖

:= {(𝑥, 𝑦) : (𝑥, 𝑦) ∈ 𝐷
𝑛
, 𝜑
𝑖
(𝑥) < 𝑦

𝑖
< 𝜑
𝑖
(𝑥
0
)} ,

𝑁
𝜑
𝑖

:= {(𝑥, 𝑦) : (𝑥, 𝑦) ∈ 𝐷
𝑛
, 𝑦
𝑖
< 𝜑
𝑖
(𝑥)} ,

(28)

where 𝑖 = 1, 2, . . . , 𝑛. To formulate the results we need
auxiliary functions

𝑊
𝑖
: 𝑁
𝜑
𝑖

∪ 𝑁
𝜑
𝑖

→ R
𝑛 (29)

defined as follows:

𝑊
𝑖
(𝑥, 𝑦) := 𝑔

𝑖
(𝜑
−1

𝑖
(𝑦
𝑖
) , 𝜑 (𝜑

−1

𝑖
(𝑦
𝑖
)))

𝛼
𝑖
(𝑥, 𝑦)

𝑔
𝑖
(𝑥, 𝑦)

− 𝛼
𝑖
(𝑥, 𝜑 (𝑥))

(30)

for 𝑖 = 1, 2, . . . , 𝑛.

Theorem 5. Let 𝑔
𝑖
: 𝐷
𝑛
→ R𝑛 and 𝛼

𝑖
: 𝐷
𝑛
→ R𝑛, 𝑖 =

1, . . . , 𝑛, be continuous functions. Let, moreover, for a function
𝜑 ∈ 𝑀(𝑥

0
, 𝑦
0
), the following conditions be true:

(1)

0 < 𝑔
𝑖
(𝑥, 𝜑 (𝑥)) , 0 < 𝛼

𝑖
(𝑥, 𝜑 (𝑥)) , 𝑥 ∈ (0, 𝑥

0
] ,

𝑖 = 1, . . . , 𝑛;

(31)

(2)

∫

0
+

𝑔
𝑖
(𝑥, 𝜑 (𝑥)) 𝜑



𝑖
(𝑥) 𝑑𝑥 = ∫

0
+

𝛼
𝑖
(𝑥, 𝜑 (𝑥)) 𝑑𝑥 = ∞,

𝑖 = 1, . . . , 𝑛;

(32)

(3)










∫

𝑥
00

𝑥

𝐺
𝑖
(𝑡, 𝜑 (𝑡)) 𝑑𝑡










<











∫

𝑥
00

𝑥
𝑘𝑖

𝑔
𝑖
(𝑡, 𝜑 (𝑡)) 𝜑



𝑖
(𝑡) 𝑑𝑡











, (33)

where 𝑥
00

∈ (0, 𝑥
0
) is a sufficiently small constant, 𝑥 ∈

(0, 𝑥
00
], 𝑥
𝑘𝑖
= 𝜑
−1

𝑖
(𝜓
𝑘𝑖
), and 𝜓

𝑘𝑖
, 𝑘 = 1, 2, 𝑖 = 1, . . . , 𝑛, are

constants such that

𝜓
1𝑖
< 𝜑
𝑖
(𝑥
00
) < 𝜓
2𝑖
< 𝑦
0
, 𝑥
2𝑖
< 𝑥
0
; (34)

(4) there is an integer 𝑛
1
∈ {0, 1, . . . , 𝑛} such that
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(a) 𝑊
𝑖
(𝑥, 𝑦) > 0 if (𝑥, 𝑦) ∈ 𝑁𝜑𝑖 and 𝑖 = 1, . . . , 𝑛

1
;

(b) 𝑊
𝑖
(𝑥, 𝑦) < 0 if (𝑥, 𝑦) ∈ 𝑁

𝜑
𝑖

and 𝑖 = 1, . . . , 𝑛
1
;

(c) 𝑊
𝑖
(𝑥, 𝑦) < 0 if (𝑥, 𝑦) ∈ 𝑁𝜑𝑖 and 𝑖 = 𝑛

1
+ 1, . . . , 𝑛;

(d) 𝑊
𝑖
(𝑥, 𝑦) > 0 if (𝑥, 𝑦) ∈ 𝑁

𝜑
𝑖

and 𝑖 = 𝑛
1
+ 1, . . . , 𝑛.

Here, if 𝑛
1
= 0, conditions (a), (b) are omitted and, if 𝑛

1
=

𝑛, conditions (c), (d) are omitted.
Then, problem (2), (5) has at least 𝑛

1
-parametric class of

solutions 𝑦(𝑥) = (𝑦
1
(𝑥), . . . , 𝑦

𝑛
(𝑥)) such that (𝑥, 𝑦(𝑥)) ∈ 𝐷

𝑛

for 𝑥 → 0
+.

Proof. The proof is divided into two parts. First, implicit
curves are constructed and their properties are derived.Then,
Ważewski’s method is applied to special domains having
the shape of funnels with sides constructed using implicitly
defined hypersurfaces. In this construction, we use implicit
curves from the first part of the proof.

Implicitly Defined Curves and Their Properties. Let 𝜑 ∈

𝑀(𝑥
0
, 𝑦
0
) be fixed. Define auxiliary functions

𝑧
𝑘𝑖
, �̃�
𝑘𝑖
: (0, 𝑥

00
] × (0, 𝑦

0
] → R, 𝑘 = 1, 2, 𝑖 = 1, . . . , 𝑛

(35)

as

𝑧
𝑘𝑖
(𝑥, 𝑦
𝑘𝑖
) := ∫

𝑦
𝑘𝑖

𝜓
𝑘𝑖

𝑔
𝑖
(𝜑
−1

𝑖
(𝑡) , 𝜑 (𝜑

−1

𝑖
(𝑡))) 𝑑𝑡

− ∫

𝑥

𝑥
00

𝛼
𝑖
(𝑡, 𝜑 (𝑡)) 𝑑𝑡,

�̃�
𝑘𝑖
(𝑥, 𝑦
𝑘𝑖
) := [∫

𝑦
𝑘𝑖

𝜓
𝑘𝑖

𝑔
𝑖
(𝜑
−1

𝑖
(𝑡) , 𝜑 (𝜑

−1

𝑖
(𝑡))) 𝑑𝑡]

−1

− [∫

𝑥

𝑥
00

𝛼
𝑖
(𝑡, 𝜑 (𝑡)) 𝑑𝑡]

−1

.

(36)

We prove that

𝑧
𝑘𝑖
(𝑥, 𝑦
𝑘𝑖
) = 0, 𝑘 = 1, 2, 𝑖 = 1, . . . , 𝑛, (37)

define unique implicit functions

𝑦
𝑘𝑖
= 𝑦
𝑘𝑖
(𝑥) ≡ 𝜓

𝑘𝑖
(𝑥) ∈ 𝑀 (𝑥

00
, 𝑦
0
) (38)

on the interval (0, 𝑥
00
]. Observe that the function 𝜓

𝑘𝑖
(𝑥) is a

solution of

�̃�
𝑘𝑖
(𝑥, 𝑦
𝑘𝑖
) = 0, 𝑘 = 1, 2, 𝑖 = 1, . . . , 𝑛, (39)

on the interval (0, 𝑥
00
) as well. Therefore, we consider the

latter equation and investigate its solvability using Lemma 2.
Set

𝜔 (𝑥, 𝑦) := �̃�
𝑘𝑖
(𝑥, 𝑦) , (40)

where 𝑘 ∈ {1, 2} and 𝑖 ∈ {1, . . . , 𝑛}. We show that the function
𝜔(𝑥, 𝑦) satisfies all assumptions (1)–(4) of Lemma 2, where,
instead of the region 𝐷

1
, we assume the region (0, 𝑥

∗

00
] ×

(0, 𝑦
∗

0
] with sufficiently small 𝑥∗

00
, 𝑦∗
0
such that 0 < 𝑥∗

00
< 𝑥
00
,

0 < 𝑦
∗

0
< 𝑦
0
.

(a) It is easy to see (in view of the above assumptions) that
the function

𝜔 : (0, 𝑥
∗

00
] × (0, 𝑦

∗

0
] → R (41)

defined by (39) is continuously differentiable with respect to
𝑥 and 𝑦 and assumption (1) of Lemma 2, holds.

(b) Compute the limit 𝜔(0+, 0+). We get

𝜔 (0
+

, 0
+

)

≡ �̃�
𝑘𝑖
(0
+

, 0
+

)

= lim
𝑥→0

+

,𝑦→0
+

[[∫

𝑦

𝜓
𝑘𝑖

𝑔
𝑖
(𝜑
−1

𝑖
(𝑡) , 𝜑 (𝜑

−1

𝑖
(𝑡))) 𝑑𝑡]

−1

− [∫

𝑥

𝑥
00

𝛼
𝑖
(𝑡, 𝜑 (𝑡)) 𝑑𝑡]

−1

]

= lim
𝑦→0

+

[∫

𝑦

𝜓
𝑘𝑖

𝑔
𝑖
(𝜑
−1

𝑖
(𝑡) , 𝜑 (𝜑

−1

𝑖
(𝑡))) 𝑑𝑡]

−1

− lim
𝑥→0

+

[∫

𝑥

𝑥
00

𝛼
𝑖
(𝑡, 𝜑(𝑡))𝑑𝑡]

−1

(42)

if the last two limits exist and are finite. Substituting 𝑡 =

𝜑
𝑖
(𝑥) into the first integral of the last expression and using

condition (2), we get

𝜔 (0
+

, 0
+

) ≡ �̃�
𝑘𝑖
(0
+

, 0
+

)

= lim
𝑦→0

+

[∫

𝜑
−1

𝑖
(𝑦)

𝜑
−1

𝑖
(𝜓
𝑘𝑖
)

𝑔
𝑖
(𝑥, 𝜑(𝑥))𝜑



𝑖
(𝑥)𝑑𝑥]

−1

− lim
𝑥→+0

[∫

𝑥

𝑥
00

𝛼
𝑖
(𝑡, 𝜑(𝑡))𝑑𝑡]

−1

= [∫

0
+

𝑥
𝑘𝑖

𝑔
𝑖
(𝑥, 𝜑 (𝑥)) 𝜑



𝑖
(𝑥) 𝑑𝑥]

−1

− [∫

0
+

𝑥
00

𝛼
𝑖
(𝑥, 𝜑(𝑥))𝑑𝑥]

−1

= 0

(43)

and assumption (2) of Lemma 2 holds.
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(c) Now we consider the existence of the product
𝜔(0
+

, 𝑦)𝜔(𝑥, 0
+

) for 𝑦 ∈ (0, 𝑦
∗

0
], 𝑥 ∈ (0, 𝑥

∗

00
] and determine

its sign. We get

𝜔 (0
+

, 𝑦) 𝜔 (𝑥, 0
+

)

≡ �̃�
𝑘𝑖
(0
+

, 𝑦) �̃�
𝑘𝑖
(𝑥, 0
+

)

= lim
𝑥→0

+

[[∫

𝑦

𝜓
𝑘𝑖

𝑔
𝑖
(𝜑
−1

𝑖
(𝑡) , 𝜑 (𝜑

−1

𝑖
(𝑡))) 𝑑𝑡]

−1

−[∫

𝑥

𝑥
00

𝛼
𝑖
(𝑡, 𝜑 (𝑡)) 𝑑𝑡]

−1

]

× lim
𝑦→0

+

[[∫

𝑦

𝜓
𝑘𝑖

𝑔
𝑖
(𝜑
−1

𝑖
(𝑡) , 𝜑 (𝜑

−1

𝑖
(𝑡))) 𝑑𝑡]

−1

−[∫

𝑥

𝑥
00

𝛼
𝑖
(𝑡, 𝜑 (𝑡)) 𝑑𝑡]

−1

] .

(44)

Substituting 𝑡 = 𝜑
𝑖
(𝑥) into the first integrals in the square

brackets, using conditions (1) and (2) of Theorem 5 and the
property 𝑥∗

00
< 𝑥
00
, and assuming 𝑦∗

0
< min

𝑘=1,2; 𝑖=1,...,𝑛
{𝜓
𝑘𝑖
},

we have

𝜔 (0
+

, 𝑦) 𝜔 (𝑥, 0
+

)

≡ �̃�
𝑘𝑖
(0
+

, 𝑦) �̃�
𝑘𝑖
(𝑥, 0
+

)

=
[

[

[∫

𝜑
−1

𝑖
(𝑦)

𝜑
−1

𝑖
(𝜓𝑘𝑖)

𝑔
𝑖
(𝑥, 𝜑 (𝑥)) 𝜑



𝑖
(𝑥) 𝑑𝑥]

−1

−[∫

0
+

𝑥
00

𝛼
𝑖
(𝑥, 𝜑 (𝑥)) 𝑑𝑥]

−1

]

]

× [[∫

0
+

𝜑
−1

𝑖
(𝜓𝑘𝑖)

𝑔
𝑖
(𝑥, 𝜑 (𝑥)) 𝜑



𝑖
(𝑥) 𝑑𝑥]

−1

−[∫

𝑥

𝑥
00

𝛼
𝑖
(𝑥, 𝜑 (𝑥)) 𝑑𝑥]

−1

]

= [∫

𝜑
−1

𝑖
(𝑦)

𝑥
𝑘𝑖

𝑔
𝑖
(𝑥, 𝜑 (𝑥)) 𝜑



𝑖
(𝑥) 𝑑𝑥]

−1

× [∫

𝑥

𝑥
00

𝛼
𝑖
(𝑥, 𝜑(𝑥))𝑑𝑥]

−1

⋅ (−1) < 0.

(45)

(d) Determine the sign of 𝜔
𝑥
(𝑥, 𝑦)𝜔



𝑦
(𝑥, 𝑦). We get

𝜔


𝑥
(𝑥, 𝑦) ⋅ 𝜔



𝑦
(𝑥, 𝑦)

≡ (�̃�
𝑘𝑖
(𝑥, 𝑦))



𝑥
⋅ (�̃�
𝑘𝑖
(𝑥, 𝑦))



𝑦

= (−1) ⋅ 𝛼
𝑖
(𝑥, 𝜑 (𝑥)) [∫

𝑥

𝑥
00

𝛼
𝑖
(𝑡, 𝜑 (𝑡)) 𝑑𝑡]

−2

× [∫

𝑦

𝜓
𝑘𝑖

𝑔
𝑖
(𝜑
−1

𝑖
(𝑡) , 𝜑 (𝜑

−1

𝑖
(𝑡))) 𝑑𝑡]

−2

× 𝑔
𝑖
(𝜑
−1

𝑖
(𝑦) , 𝜑 (𝜑

−1

𝑖
(𝑦))) .

(46)

From condition (1), it follows that

𝛼
𝑖
(𝑥, 𝜑 (𝑥)) > 0, 𝑔

𝑖
(𝜑
−1

𝑖
(𝑦) , 𝜑 (𝜑

−1

𝑖
(𝑦))) > 0. (47)

Hence

𝜔


𝑥
(𝑥, 𝑦) ⋅ 𝜔



𝑦
(𝑥, 𝑦) ≡ (�̃�

𝑘𝑖
(𝑥, 𝑦))



𝑥
⋅ (�̃�
𝑘𝑖
(𝑥, 𝑦))



𝑦
< 0. (48)

Because of (a)–(d) all assumptions (1)–(4) of Lemma 2 on
(0, 𝑥
∗

00
] × (0, 𝑦

∗

0
] hold and (39) defines an implicit function

𝑦 (𝑥) = 𝑦
𝑘𝑖
(𝑥) = 𝜓

𝑘𝑖
(𝑥) (49)

on some interval (0, 𝑥∗∗
00
], where 𝑥∗∗

00
≤ 𝑥
∗

00
.

Now we turn to (37) and show that its solution given by
formula (49) can be extended beyond 𝑥∗∗

00
.

We show that 𝑥∗∗
00

= 𝑥
00
. On the contrary, assume 𝑥∗∗

00
<

𝑥
00
. Then, (after a proper transformation of variables) we

can apply Lemma 2 to the point (𝑥∗∗
00
, 𝜓
𝑘𝑖
(𝑥
∗∗

00
)) again and, by

well-knownprocedure, implicit function can be continued up
to the boundary of the region (0, 𝑥

00
] × (0, 𝑦

0
].

If 𝜓
𝑘𝑖
(𝑥
∗∗

00
) = 𝑦

0
, then �̃�

𝑘𝑖
(𝑥
∗∗

00
, 𝑦
0
) = 𝑧

𝑘𝑖
(𝑥
∗∗

00
, 𝑦
0
) = 0.

Moreover, we have

𝑧
𝑘𝑖
(𝑥
∗∗

00
, 𝑦
0
) = ∫

𝑦
0

𝜓
𝑘𝑖

𝑔
𝑖
(𝜑
−1

𝑖
(𝑡) , 𝜑 (𝜑

−1

𝑖
(𝑡))) 𝑑𝑡

− ∫

𝑥
∗∗

00

𝑥
00

𝛼
𝑖
(𝑡, 𝜑 (𝑡)) 𝑑𝑡 > 0

(50)

since 𝑥∗∗
00

< 𝑥
00

and 𝜓
𝑘𝑖
< 𝑦
0
by condition (3). This is a

contradiction and 𝑥∗∗
00
= 𝑥
00
. Therefore, the implicit function

𝑦
𝑘𝑖
= 𝜓
𝑘𝑖
(𝑥) can be continued on the whole interval (0, 𝑥

00
].

Similarly we will show that the inequality

𝜓
𝑘𝑖
(𝑥
00
) < 𝑦
0

(51)

holds. We have
𝑧
𝑘𝑖
(𝑥
00
, 𝑦
0
)

= ∫

𝑦
0

𝜓
𝑘𝑖

𝑔
𝑖
(𝜑
−1

𝑖
(𝑡) , 𝜑 (𝜑

−1

𝑖
(𝑡))) 𝑑𝑡

− ∫

𝑥
00

𝑥
00

𝛼
𝑖
(𝑡, 𝜑 (𝑡)) 𝑑𝑡

= 𝑔
𝑖
(𝜑
−1

𝑖
(𝑡) , 𝜑 (𝜑

−1

𝑖
(𝑡))) 𝑑𝑡 > 0,

(52)

because, by condition (3), 𝜓
𝑘𝑖
< 𝑦
0
holds. It is obvious that

𝑧
𝑘𝑖
(𝑥
00
, 𝜓
𝑘𝑖
(𝑥
00
)) = 0,

(𝑧
𝑘𝑖
(𝑥
00
, 𝑦))


𝑦
= 𝑔
𝑖
(𝜑
−1

𝑖
(𝑦) , 𝜑 (𝜑

−1

𝑖
(𝑦))) > 0.

(53)
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Because the function 𝑧
𝑘𝑖
(𝑥
00
, 𝑦) is monotonously increasing

and

0 = 𝑧
𝑘𝑖
(𝑥
00
, 𝜓
𝑘𝑖
(𝑥
00
)) < 𝑧

𝑘𝑖
(𝑥
00
, 𝑦
0
) , (54)

we get 𝜓
𝑘𝑖
(𝑥
00
) < 𝑦
0
. Hence inequality (51) is proved.

Now we will investigate the behavior of implicit curves in
a neighborhood of the function 𝜑. Since

𝜓
1𝑖
< 𝜑
𝑖
(𝑥
00
) < 𝜓
2𝑖
, (55)

we have (by condition (8))

𝜑
𝑖
(𝑥
1𝑖
) < 𝜑
𝑖
(𝑥
00
) < 𝜑
𝑖
(𝑥
2𝑖
) ,

𝑥
1𝑖
< 𝑥
00
< 𝑥
2𝑖
.

(56)

Thus, (in the first integral we substitute 𝑡 = 𝜑
𝑖
(𝑠))

𝑧
𝑘𝑖
(𝑥, 𝜑
𝑖
(𝑥))

= ∫

𝜑
𝑖
(𝑥)

𝜓
𝑘𝑖

𝑔
𝑖
(𝜑
−1

𝑖
(𝑡) , 𝜑 (𝜑

−1

𝑖
(𝑡))) 𝑑𝑡

− ∫

𝑥

𝑥
00

𝛼
𝑖
(𝑡, 𝜑 (𝑡)) 𝑑𝑡

= ∫

𝑥

𝜑
−1

𝑖
(𝜓𝑘𝑖)

𝑔
𝑖
(𝑠, 𝜑 (𝑠)) 𝜑



𝑖
(𝑠) 𝑑𝑠

− ∫

𝑥

𝑥
00

𝛼
𝑖
(𝑡, 𝜑 (𝑡)) 𝑑𝑡

= ∫

𝑥

𝑥
00

[𝑔
𝑖
(𝑡, 𝜑 (𝑡)) 𝜑



𝑖
(𝑡) − 𝛼

𝑖
(𝑡, 𝜑 (𝑡))] 𝑑𝑡

+ ∫

𝑥
00

𝑥
𝑘𝑖

𝑔
𝑖
(𝑡, 𝜑 (𝑡)) 𝜑



𝑖
(𝑡) 𝑑𝑡

= −∫

𝑥

𝑥
00

𝐺
𝑖
(𝑡, 𝜑 (𝑡)) 𝑑𝑡

− ∫

𝑥
𝑘𝑖

𝑥
00

𝑔
𝑖
(𝑡, 𝜑 (𝑡)) 𝜑



𝑖
(𝑡) 𝑑𝑡,

(57)

where 𝑘 = 1, 2 and 𝑖 = 1, . . . , 𝑛. Consequently, we deduce that

𝑧
1𝑖
(𝑥, 𝜑
𝑖
(𝑥)) > 0, 𝑧

2𝑖
(𝑥, 𝜑
𝑖
(𝑥)) < 0, 𝑥 ∈ (0, 𝑥

00
] . (58)

Since functions 𝑧
1𝑖
, 𝑧
2𝑖
increase with respect to their second

co-ordinates and

𝑧
1𝑖
(𝑥, 𝜓
1𝑖
(𝑥)) ≡ 0, 𝑧

2𝑖
(𝑥, 𝜓
2𝑖
(𝑥)) ≡ 0 (59)

on (0, 𝑥
00
], we get

𝜓
1𝑖
(𝑥) < 𝜑

𝑖
(𝑥) < 𝜓

2𝑖
(𝑥) , 𝑥 ∈ (0, 𝑥

00
] (60)

for each 𝑖 ∈ {1, . . . , 𝑛}. Finally, we recall that

𝜓
𝑘𝑖
(0
+

) = 𝜑
𝑖
(0
+

) = 0, 𝑘 = 1, 2, 𝑖 = 1, . . . , 𝑛. (61)

Application of Ważewski’s Method to an Implicitly Defined
Domain. In the next part of the proof we will apply the topo-
logical method of Ważewski. We use the above mentioned
functions given implicitly to define an open set

Ω
0

:= {(𝑥, 𝑦) : (𝑥, 𝑦) ∈ 𝐷
𝑛
, V
𝑘
(𝑥, 𝑦) < 0,

𝑘 = 0, . . . , 𝑛
1
, 𝑢
𝑗
(𝑥, 𝑦) < 0, 𝑗 = 𝑛

1
+ 1, . . . , 𝑛} ,

(62)

where

V
0
(𝑥, 𝑦) ≡ V

0
(𝑥) := 𝑥 − 𝑥, 0 < 𝑥 < 𝑥

00
, 𝑥 is a constant,

V
𝑘
(𝑥, 𝑦) ≡ V

𝑘
(𝑥, 𝑦
𝑘
) := (𝑦

𝑘
− 𝜓
1𝑘
(𝑥)) (𝑦

𝑘
− 𝜓
2𝑘
(𝑥)) ,

𝑘 = 1, . . . , 𝑛
1
,

𝑢
𝑗
(𝑥, 𝑦) ≡ 𝑢

𝑗
(𝑥, 𝑦
𝑗
) := (𝑦

𝑗
− 𝜓
1𝑗
(𝑥)) (𝑦

𝑗
− 𝜓
2𝑗
(𝑥)) ,

𝑗 = 𝑛
1
+ 1, . . . , 𝑛.

(63)

Nowwe start to investigate the behavior of the integral curves
of system (2) with respect to the boundary of the setΩ0, that
is, on the sets

𝑉
𝛽
= {(𝑥, 𝑦) : (𝑥, 𝑦) ∈ 𝐷

𝑛
, V
𝛽
(𝑥, 𝑦) = 0, V

𝑘
(𝑥, 𝑦) ≤ 0,

𝑘 = 0, . . . , 𝑛
1
, 𝑘 ̸= 𝛽, 𝑢

𝑗
(𝑥, 𝑦) ≤ 0, 𝑗 = 𝑛

1
+ 1, . . . , 𝑛} ,

𝛽 = 0, . . . , 𝑛
1
,

𝑈
𝛼
= {(𝑥, 𝑦) : (𝑥, 𝑦) ∈ 𝐷

𝑛
, 𝑢
𝛼
(𝑥, 𝑦) = 0, V

𝑘
(𝑥, 𝑦) ≤ 0,

𝑘 = 0, . . . , 𝑛
1
, 𝑢
𝑗
(𝑥, 𝑦) ≤ 0, 𝑗 = 𝑛

1
+ 1, . . . , 𝑛, 𝑗 ̸= 𝛼} ,

𝛼 = 𝑛
1
+ 1, . . . , 𝑛.

(64)

First, we calculate the full derivative ̇V
𝛽
(𝑥, 𝑦) of the

function V
𝛽
(𝑥, 𝑦) along trajectories of system (2) on the set

𝑉
𝛽
, 𝛽 = 0, . . . , 𝑛

1
. It is clear that ̇V

0
(𝑥) = 1 > 0. Further, for

𝛽 = 1, . . . , 𝑛
1
, we have

̇V
𝛽
(𝑥, 𝑦) =

𝑑

𝑑𝑥

[(𝑦
𝛽
− 𝜓
1𝛽
(𝑥)) (𝑦

𝛽
− 𝜓
2𝛽
(𝑥))]

= [

𝑑

𝑑𝑥

(𝑦
𝛽
− 𝜓
1𝛽
(𝑥))] (𝑦

𝛽
− 𝜓
2𝛽
(𝑥))

+ (𝑦
𝛽
− 𝜓
1𝛽
(𝑥)) [

𝑑

𝑑𝑥

(𝑦
𝛽
− 𝜓
2𝛽
(𝑥))]

= [

𝛼
𝛽
(𝑥, 𝑦)

𝑔
𝛽
(𝑥, 𝑦)

− 𝜓


1𝛽
(𝑥)] (𝑦

𝛽
− 𝜓
2𝛽
(𝑥))

+ [

𝛼
𝛽
(𝑥, 𝑦)

𝑔
𝛽
(𝑥, 𝑦)

− 𝜓


2𝛽
(𝑥)] (𝑦

𝛽
− 𝜓
1𝛽
(𝑥)) .

(65)

On the set 𝑉
𝛽
, as it follows from the condition V

𝛽
(𝑥, 𝑦) = 0,

we have either 𝑦
𝛽
= 𝜓
1𝛽
(𝑥) or 𝑦

𝛽
= 𝜓
2𝛽
(𝑥).
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(1) Let 𝑦
𝛽
= 𝜓
1𝛽
(𝑥). Then, we can see that

̇V
𝛽
(𝑥, 𝜓
1𝛽
(𝑥))

= [

𝛼
𝛽
(𝑥, 𝑦
1
, . . . , 𝑦

𝛽−1
, 𝜓
1𝛽
(𝑥) , 𝑦

𝛽+1
, . . . , 𝑦

𝑛
)

𝑔
𝛽
(𝑥, 𝑦
1
, . . . , 𝑦

𝛽−1
, 𝜓
1𝛽
(𝑥) , 𝑦

𝛽+1
, . . . , 𝑦

𝑛
)

− 𝜓


1𝛽
(𝑥)]

× (𝜓
1𝛽
(𝑥) − 𝜓

2𝛽
(𝑥)) .

(66)

The derivative𝜓
1𝛽
(𝑥) of the function𝜓

1𝛽
(𝑥) can be calculated

using the well-known rules for differentiation of implicit
functions given by identities

𝑧
1𝛽
(𝑥, 𝜓
1𝛽
(𝑥)) ≡ 0. (67)

We get

𝜓


1𝛽
(𝑥) ≡

𝛼
𝛽
(𝑥, 𝜑 (𝑥))

𝑔
𝛽
[𝜑
−1

𝛽
(𝜓
1𝛽
(𝑥)) , 𝜑 (𝜑

−1

𝛽
(𝜓
1𝛽
(𝑥)))]

. (68)

Using that relation, we have

̇V
𝛽
(𝑥, 𝜓
1𝛽
(𝑥))

=
[

[

𝛼
𝛽
(𝑥, 𝑦
1
, . . . , 𝑦

𝛽−1
, 𝜓
1𝛽
(𝑥) , 𝑦

𝛽+1
, . . . , 𝑦

𝑛
)

𝑔
𝛽
(𝑥, 𝑦
1
, . . . , 𝑦

𝛽−1
, 𝜓
1𝛽
(𝑥) , 𝑦

𝛽+1
, . . . , 𝑦

𝑛
)

+ (−1)

𝛼
𝛽
(𝑥, 𝜑 (𝑥))

𝑔
𝛽
[𝜑
−1

𝛽
(𝜓
1𝛽
(𝑥)) , 𝜑 (𝜑

−1

𝛽
(𝜓
1𝛽
(𝑥)))]

]

]

× (𝜓
1𝛽
(𝑥) − 𝜓

2𝛽
(𝑥))

=

𝜓
1𝛽
(𝑥) − 𝜓

2𝛽
(𝑥)

𝑔
𝛽
[𝜑
−1

𝛽
(𝜓
1𝛽
(𝑥)) , 𝜑 (𝜑

−1

𝛽
(𝜓
1𝛽
(𝑥)))]

× [𝑔
𝛽
[𝜑
−1

𝛽
(𝜓
1𝛽
(𝑥)) , 𝜑 (𝜑

−1

𝛽
(𝜓
1𝛽
(𝑥)))]

×

𝛼
𝛽
(𝑥, 𝑦
1
, . . . , 𝑦

𝛽−1
, 𝜓
1𝛽
(𝑥) , 𝑦

𝛽+1
, . . . , 𝑦

𝑛
)

𝑔
𝛽
(𝑥, 𝑦
1
, . . . , 𝑦

𝛽−1
, 𝜓
1𝛽
(𝑥) , 𝑦

𝛽+1
, . . . , 𝑦

𝑛
)

−𝛼
𝛽
(𝑥, 𝜑 (𝑥)) ] .

(69)

Since, by (60),𝜓
1𝛽
(𝑥) < 𝜓

2𝛽
(𝑥) and𝜓

1𝛽
(𝑥) < 𝜑

𝛽
(𝑥) < 𝜓

2𝛽
(𝑥),

assumption (1) of the theorem yields

𝑔
𝛽
[𝜑
−1

𝛽
(𝜓
1𝛽
(𝑥)) , 𝜑 (𝜑

−1

𝛽
(𝜓
1𝛽
(𝑥)))] > 0. (70)

In view of assumption (4b) (𝑊
𝛽
(𝑥, 𝑦) < 0when (𝑥, 𝑦) ∈ 𝑁

𝜑
𝛽

),
we get

𝑔
𝛽
[𝜑
−1

𝛽
(𝜓
1𝛽
(𝑥)) , 𝜑 (𝜑

−1

𝛽
(𝜓
1𝛽
(𝑥)))]

×

𝛼
𝛽
(𝑥, 𝑦
1
, . . . , 𝑦

𝛽−1
, 𝜓
1𝛽
(𝑥) , 𝑦

𝛽+1
, . . . , 𝑦

𝑛
)

𝑔
𝛽
(𝑥, 𝑦
1
, . . . , 𝑦

𝛽−1
, 𝜓
1𝛽
(𝑥) , 𝑦

𝛽+1
, . . . , 𝑦

𝑛
)

− 𝛼
𝛽
(𝑥, 𝜑 (𝑥)) < 0

(71)

and, consequently,

̇V
𝛽
(𝑥, 𝜓
1𝛽
(𝑥)) > 0. (72)

(2) Let 𝑦
𝛽
= 𝜓
2𝛽
(𝑥). Then, by similar calculations and

using assumption (4a) (𝑊
𝛽
(𝑥, 𝑦) > 0 when (𝑥, 𝑦) ∈ 𝑁𝜑𝛽), we

obtain

̇V
𝛽
(𝑥, 𝜓
2𝛽
(𝑥)) > 0. (73)

Hence ̇V
𝛽
(𝑥, 𝑦) > 0 for all 𝛽 = 1, . . . , 𝑛

1
.

Now we will calculate the full derivative ̇𝑢
𝛼
(𝑥, 𝑦) of the

function 𝑢
𝛼
(𝑥, 𝑦) along trajectories of system (2) on the set

𝑈
𝛼
, where 𝛼 = 𝑛

1
+ 1, . . . , 𝑛. As above, we get

̇𝑢
𝛼
(𝑥, 𝑦) =

𝑑

𝑑𝑥

[(𝑦
𝛼
− 𝜓
1𝛼
(𝑥)) (𝑦

𝛼
− 𝜓
2𝛼
(𝑥))]

= [

𝑑

𝑑𝑥

(𝑦
𝛼
− 𝜓
1𝛼
(𝑥))] (𝑦

𝛼
− 𝜓
2𝛼
(𝑥))

+ (𝑦
𝛼
− 𝜓
1𝛼
(𝑥)) [

𝑑

𝑑𝑥

(𝑦
𝛼
− 𝜓
2𝛼
(𝑥))]

= [

𝛼
𝛼
(𝑥, 𝑦)

𝑔
𝛼
(𝑥, 𝑦)

− 𝜓


1𝛼
(𝑥)] (𝑦

𝛼
− 𝜓
2𝛼
(𝑥))

+ [

𝛼
𝛼
(𝑥, 𝑦)

𝑔
𝛼
(𝑥, 𝑦)

− 𝜓


2𝛼
(𝑥)] (𝑦

𝛼
− 𝜓
1𝛼
(𝑥)) .

(74)

On the set 𝑈
𝛼
, as it follows from the condition 𝑢

𝛼
(𝑥, 𝑦) = 0,

we have either 𝑦
𝛼
= 𝜓
1𝛼
(𝑥) or 𝑦

𝛼
= 𝜓
2𝛼
(𝑥).

(1) Let 𝑦
𝛼
= 𝜓
1𝛼
(𝑥). Then, we get (proceeding like in the

previous part of the proof)

̇𝑢
𝛼
(𝑥, 𝜓
1𝛼
(𝑥))

= [

𝛼
𝛼
(𝑥, 𝑦
1
, . . . , 𝑦

𝛼−1
, 𝜓
1𝛼
(𝑥) , 𝑦

𝛼+1
, . . . , 𝑦

𝑛
)

𝑔
𝛼
(𝑥, 𝑦
1
, . . . , 𝑦

𝛼−1
, 𝜓
1𝛼
(𝑥) , 𝑦

𝛼+1
, . . . , 𝑦

𝑛
)

+ (−1)

𝛼
𝛼
(𝑥, 𝜑 (𝑥))

𝑔
𝛼
[𝜑
−1

𝛼
(𝜓
1𝛼
(𝑥)) , 𝜑 (𝜑

−1

𝛼
(𝜓
1𝛼
(𝑥)))]

]

× (𝜓
1𝛼
(𝑥) − 𝜓

2𝛼
(𝑥))
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=

𝜓
1𝛼
(𝑥) − 𝜓

2𝛼
(𝑥)

𝑔
𝛼
[𝜑
−1

𝛼
(𝜓
1𝛼
(𝑥)) , 𝜑 (𝜑

−1

𝛼
(𝜓
1𝛼
(𝑥)))]

× [𝑔
𝛼
[𝜑
−1

𝛼
(𝜓
1𝛼
(𝑥)) , 𝜑 (𝜑

−1

𝛼
(𝜓
1𝛼
(𝑥)))]

×

𝛼
𝛼
(𝑥, 𝑦
1
, . . . , 𝑦

𝛼−1
, 𝜓
1𝛼
(𝑥) , 𝑦

𝛼+1
, . . . , 𝑦

𝑛
)

𝑔
𝛼
(𝑥, 𝑦
1
, . . . , 𝑦

𝛼−1
, 𝜓
1𝛼
(𝑥) , 𝑦

𝛼+1
, . . . , 𝑦

𝑛
)

− 𝛼
𝛼
(𝑥, 𝜑 (𝑥)) ] .

(75)

Since, by (60), 𝜓
1𝛼
(𝑥) < 𝜓

1𝛽
(𝑥) and 𝜓

1𝛼
(𝑥) < 𝜑

𝛼
(𝑥) <

𝜓
2𝛼
(𝑥), applying assumption (1) of the theorem, we have

𝑔
𝛼
[𝜑
−1

𝛼
(𝜓
1𝛼
(𝑥)) , 𝜑 (𝜑

−1

𝛼
(𝜓
1𝛼
(𝑥)))] > 0. (76)

In viewof assumption (4d) (𝑊
𝛼
(𝑥, 𝑦) > 0when (𝑥, 𝑦) ∈ 𝑁

𝜑
𝛼

),
we have

𝑔
𝛼
[𝜑
−1

𝛼
(𝜓
1𝛼
(𝑥)) , 𝜑 (𝜑

−1

𝛼
(𝜓
1𝛼
(𝑥)))]

×

𝛼
𝛼
(𝑥, 𝑦
1
, . . . , 𝑦

𝛼−1
, 𝜓
1𝛼
(𝑥) , 𝑦

𝛼+1
, . . . , 𝑦

𝑛
)

𝑔
𝛼
(𝑥, 𝑦
1
, . . . , 𝑦

𝛼−1
, 𝜓
1𝛼
(𝑥) , 𝑦

𝛼+1
, . . . , 𝑦

𝑛
)

− 𝛼
𝛼
(𝑥, 𝜑 (𝑥)) > 0

(77)

and, consequently

̇𝑢
𝛼
(𝑥, 𝜓
1𝛼
(𝑥)) < 0. (78)

(2) Let 𝑦
𝛼
= 𝜓
2𝛼
(𝑥). Then, by similar calculations and

using assumption (4)-(c) (𝑊
𝛼
(𝑥, 𝑦) < 0 when (𝑥, 𝑦) ∈ 𝑁𝜑𝛼),

we obtain

̇𝑢
𝛼
(𝑥, 𝜓
2𝛼
(𝑥)) < 0. (79)

Thus, ̇𝑢
𝛼
(𝑥, 𝑦) < 0 for all 𝛼 = 𝑛

1
+ 1, . . . , 𝑛.

By [18, Lemma 3.1, page 281], for decreasing values of the
variable 𝑥, the set of all egress points Ω0

𝑒
, Ω0
𝑒
⊂ Ω
0, from the

set Ω0 equals the set of all strict egress points Ω0se, Ω
0

se ⊂ Ω
0

from the setΩ0 (for definitions ofΩ0
𝑒
andΩ0se see, for example,

[18, page 37 and page 278]); that is,

Ω
0

𝑒
= Ω
0

se =
𝑛

⋃

𝛼=𝑛
1
+1

𝑈
𝛼
\

𝑛
1

⋃

𝛽=0

𝑉
𝛽
. (80)

Let 𝑆 be a subset ofΩ0 ∪ Ω0
𝑒
defined as

𝑆 = { (𝑥, 𝑦
0

1
, . . . , 𝑦

0

𝑛
1

, 𝑦
𝑛
1
+1
, . . . , 𝑦

𝑛
) : 𝑢
𝑗
(𝑥, 𝑦
𝑗
) ≤ 0,

𝑗 = 𝑛
1
+ 1, . . . , 𝑛, V

0
(𝑥) < 0, V

𝑘
(𝑥, 𝑦
0

𝑘
) < 0,

𝑘 = 1, . . . , 𝑛
1
} ,

(81)

where 𝑦0
𝑘
, 𝑘 = 1, . . . , 𝑛

1
, are fixed. Then,

𝑆 ∩ Ω
0

𝑒
= {(𝑥, 𝑦

0

1
, . . . , 𝑦

0

𝑛
1

, 𝑦
𝑛
1
+1
, . . . , 𝑦

𝑛
) : 𝑢
𝛼
(𝑥, 𝑦
𝛼
)

= 0, 𝑢
𝑗
(𝑥, 𝑦
𝑗
) ≤ 0, 𝛼, 𝑗 = 𝑛

1
+ 1, . . . , 𝑛,

𝛼 ̸= 𝑗, V
𝑘
(𝑥, 𝑦
0

𝑘
) < 0, 𝑘 = 1, . . . , 𝑛

1
} .

(82)

We can see that the set 𝑆∩Ω0
𝑒
is a subset of the boundary 𝜕𝑆 of

the set 𝑆, but it is not a retract of 𝑆. The explanation is simple
and is based on the well-known fact that the boundary of an
(𝑛 − 𝑛

1
)-dimensional ball is not its retract [20], and the set 𝑆

is topologically equivalent to an (𝑛 − 𝑛
1
)-dimensional ball.

We show that 𝑆 ∩ Ω0
𝑒
is a retract ofΩ0

𝑒
. Define a mapping

𝜋 : Ω
0

𝑒
∋ (𝑥, 𝑦)→ (𝑥, 𝑦

0

1
, . . . , 𝑦

0

𝑛
1

, 𝑦
𝑛
1
+1
, . . . , 𝑦

𝑛
) ∈ 𝑆 ∩ Ω

0

𝑒
,

(83)

where

𝑦
𝑗
= 𝜓
1𝑗
(𝑥) + (𝑦

𝑗
− 𝜓
1𝑗
(𝑥))

𝜓
2𝑗
(𝑥) − 𝜓

1𝑗
(𝑥)

𝜓
2𝑗
(𝑥) − 𝜓

1𝑗
(𝑥)

,

𝑗 = 𝑛
1
+ 1, . . . , 𝑛.

(84)

With respect to the behavior of functions 𝜓
𝑘𝑗
(𝑥), 𝑘 = 1, 2, 𝑗 =

𝑛
1
+1, . . . , 𝑛, themapping𝜋 is continuous. From the definition

of the mapping 𝜋, we get that 𝑆 ∩ Ω0
𝑒
is a retract of Ω0

𝑒
and,

furthermore, 𝑆 is a compact set.
By seeing Corollary 3.1, [18, page 282] of Ważewski’s

theorem [18, Theorem 3.1, page 282] there exists a solution
of system (2) with the initial conditions in the set 𝑆 ∩ Ω0

𝑒
and

it is contained in Ω0 for 𝑥 ∈ (0, 𝑥]. This solution satisfies (5)
since the setΩ0

𝑒
is contracted to the initial point for 𝑥 → 0

+.
As we can change the constants 𝑦0

𝑘
, 𝑘 = 1, . . . , 𝑛

1

within the inequality V
𝑘
(𝑥, 𝑦
0

𝑘
) < 0, we can repeat the

above-mentioned construction for every admissible fixed set
(𝑦
0

1
, . . . , 𝑦

0

𝑛
1

).Then, there exists a class of solutions depending
on 𝑛
1
parameters and lying in Ω0 for 𝑥 ∈ (0, 𝑥]. If 𝑛

1
= 𝑛,

the assertion of theorem remains true as well. The proof is
complete.

Remark 6. If 𝜑 ∈ 𝑀(𝑥
0
, 𝑦
0
) is a solution of initial problem

(2), (5), then

𝐺
𝑖
(𝑥, 𝜑 (𝑥)) = −𝜑



𝑖
(𝑥) 𝑔
𝑖
(𝑥, 𝜑 (𝑥)) + 𝛼

𝑖
(𝑥, 𝜑 (𝑥)) ≡ 0, (85)

where 𝑥 ∈ (0, 𝑥
0
] and 𝑖 = 1, . . . , 𝑛, and

𝐺 (𝑥, 𝜑 (𝑥)) ≡ 𝜃, 𝑥 ∈ (0, 𝑥
0
] . (86)

Then, condition (3) ofTheorem 5 is satisfied and, in this case,
we obtain the result on the dimension of the set of initial data
generating solutions of initial problem (2), (5).

Denote

𝑅
𝑖
(𝑦) := ∫

𝑦
0

𝑦

𝑔
𝑖
(𝜑
−1

𝑖
(𝑡) , 𝜑 (𝜑

−1

𝑖
(𝑡))) 𝑑𝑡,

𝐹
𝑖
(𝑦, 𝜀) :=

𝑅
𝑖
(𝑦 (1 + 𝜀))

𝑅
𝑖
(𝑦)

,

𝐹
𝑖
(0, 𝜀) := lim

𝑦→0
+

𝐹
𝑖
(𝑦, 𝜀) ,

(𝐹
𝑖
)


𝜀
(0, 𝜀) := lim

𝑦→0
+

(𝐹
𝑖
)


𝜀
(𝑦, 𝜀) ,

(87)

𝑖 = 1, . . . , 𝑛, provided that the limits exist and are finite.
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Theorem 7. Let all assumptions of Theorem 5 hold and,
moreover, the functions

𝐹
𝑖
: 𝐷
∗

(𝑦
00
, 𝜀
∗

) → [0,∞) , 𝑖 = 1, . . . , 𝑛, (88)

satisfy the following:

(1) 𝐹
𝑖
(𝑦, 𝜀) is continuous with respect to 𝑦 and continu-

ously differentiable with respect to 𝜀;

(2) (𝐹
𝑖
)


𝜀
(𝑦, 0) ̸= 0.

Then arbitrary solution 𝑦(𝑥) = (𝑦
1
(𝑥), . . . , 𝑦

𝑛
(𝑥)) of initial

problem (2), (5) mentioned in Theorem 5 has the asymptotic
form

𝑦
𝑖
(𝑥) = 𝜑

𝑖
(𝑥) (1 + 𝑜 (1)) , 𝑥 → 0

+

, 𝑖 = 1, . . . , 𝑛. (89)

Proof. From the proof of Theorem 5, it follows that, for
coordinates 𝑦

𝑖
(𝑥), 𝑖 = 1, . . . , 𝑛, of the solution 𝑦(𝑥) of initial

problem (2), (5), the inequalities

𝜓
1𝑖
(𝑥) < 𝑦

𝑖
(𝑥) < 𝜓

2𝑖
(𝑥) , 𝑖 = 1, . . . , 𝑛 (90)

are valid on an interval (0, 𝑥] and we can assume that the
inequalities

𝜓
1𝑖
(𝑥) < 𝜑

𝑖
(𝑥) < 𝜓

2𝑖
(𝑥) , 𝑖 = 1, . . . , 𝑛 (91)

are valid on (0, 𝑥] as well. Thus, to prove (89), it is sufficient
to prove that

lim
𝑥→0

+

𝜓
2𝑖
(𝑥)

𝜓
1𝑖
(𝑥)

= 1, 𝑖 = 1, . . . , 𝑛. (92)

Applying L’Hospital’s rule to the limits (92), we do not
obtain the desired result. Therefore we will apply L’Hospital’s
rule to the limits

lim
𝑥→0

+

𝑅
𝑖
(𝜓
2𝑖
(𝑥))

𝑅
𝑖
(𝜓
1𝑖
(𝑥))

, 𝑖 = 1, . . . , 𝑛. (93)

This is possible because, in view of condition (2) of the
theorem, we obviously have

lim
𝑥→0

+

𝑅
𝑖
(𝜓
𝑘𝑖
(𝑥)) = ∞, 𝑖 = 1, . . . , 𝑛, 𝑘 = 1, 2. (94)

Then, we use the auxiliary results for implicit functions.
Applying the above-mentioned procedure, we get (for 𝑖 ∈

{1, . . . , 𝑛})

lim
𝑥→0

+

𝑅
𝑖
(𝜓
2𝑖
(𝑥))

𝑅
𝑖
(𝜓
1𝑖
(𝑥))

= lim
𝑥→0

+

[𝑅
𝑖
(𝜓
2𝑖
(𝑥))]


[𝑅
𝑖
(𝜓
1𝑖
(𝑥))]


= lim
𝑥→0

+

−𝑔
𝑖
[𝜑
−1

𝑖
(𝜓
2𝑖
(𝑥)) , 𝜑 (𝜑

−1

𝑖
(𝜓
2𝑖
(𝑥)))] 𝜓



2𝑖
(𝑥)

−𝑔
𝑖
[𝜑
−1

𝑖
(𝜓
1𝑖
(𝑥)) , 𝜑 (𝜑

−1

𝑖
(𝜓
1𝑖
(𝑥)))] 𝜓



1𝑖
(𝑥)

= lim
𝑥→0

+

𝑔
𝑖
[𝜑
−1

𝑖
(𝜓
2𝑖
(𝑥)) , 𝜑 (𝜑

−1

𝑖
(𝜓
2𝑖
(𝑥)))]

𝑔
𝑖
[𝜑
−1

𝑖
(𝜓
1𝑖
(𝑥)) , 𝜑 (𝜑

−1

𝑖
(𝜓
1𝑖
(𝑥)))]

×

𝛼
𝑖
(𝑥, 𝜑 (𝑥)) /𝑔

𝑖
[𝜑
−1

𝑖
(𝜓
2𝑖
(𝑥)) , 𝜑 (𝜑

−1

𝑖
(𝜓
2𝑖
(𝑥)))]

𝛼
𝑖
(𝑥, 𝜑 (𝑥)) /𝑔

𝑖
[𝜑
−1

𝑖
(𝜓
1𝑖
(𝑥)) , 𝜑 (𝜑

−1

𝑖
(𝜓
1𝑖
(𝑥)))]

= lim
𝑥→0

+

𝑔
𝑖
[𝜑
−1

𝑖
(𝜓
2𝑖
(𝑥)) , 𝜑 (𝜑

−1

𝑖
(𝜓
2𝑖
(𝑥)))]

𝑔
𝑖
[𝜑
−1

𝑖
(𝜓
2𝑖
(𝑥)) , 𝜑 (𝜑

−1

𝑖
(𝜓
2𝑖
(𝑥)))]

×

𝑔
𝑖
[𝜑
−1

𝑖
(𝜓
1𝑖
(𝑥)) , 𝜑 (𝜑

−1

𝑖
(𝜓
1𝑖
(𝑥)))]

𝑔
𝑖
[𝜑
−1

𝑖
(𝜓
1𝑖
(𝑥)) , 𝜑 (𝜑

−1

𝑖
(𝜓
1𝑖
(𝑥)))]

×

𝛼
𝑖
(𝑥, 𝜑 (𝑥))

𝛼
𝑖
(𝑥, 𝜑 (𝑥))

= 1.

(95)

Hence it follows that there exists a sufficiently small
constant 𝜀

𝑖
> 0 such that the inequalities

𝑅
𝑖
(𝜓
1𝑖
(𝑥)) (1 − 𝜀

𝑖
) < 𝑅
𝑖
(𝜓
2𝑖
(𝑥)) < 𝑅

𝑖
(𝜓
1𝑖
(𝑥)) (1 + 𝜀

𝑖
) ,

𝑖 = 1, . . . , 𝑛,

(96)

hold on some interval (0, 𝑥∗], 0 < 𝑥
∗

≤ 𝑥, where
𝑥
∗ is a sufficiently small constant. Applying Lemma 3 and

Corollary 4 (formula (27)) we show that inequalities (96) can
be written as

𝑅
𝑖
[𝜓
1𝑖
(𝑥) (1 + 𝜀

2

𝑖
(𝜓
1𝑖
(𝑥) , 𝜀
𝑖
))]

< 𝑅
𝑖
(𝜓
2𝑖
(𝑥)) < 𝑅

𝑖
[𝜓
1𝑖
(𝑥) (1 − 𝜀

1

𝑖
(𝜓
1𝑖
(𝑥) , 𝜀
𝑖
))] ,

𝑖 = 1, . . . , 𝑛,

(97)

where 𝜀𝑗
𝑖
(𝜓
1𝑖
(𝑥), 𝜀
𝑖
), 𝑗 = 1, 2, are constants depending on

𝜓
1𝑖
(𝑥) and 𝜀

𝑖
such that

0 < 𝜀
𝑗

𝑖
(𝜓
1𝑖
(𝑥) , 𝜀
𝑖
) , lim
𝜀
𝑖
→0
+

𝜀
𝑗

𝑖
(𝜓
1𝑖
(𝑥) , 𝜀
𝑖
) = 0, 𝑗 = 1, 2.

(98)
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In Lemma 3 we set, for every fixed index 𝑖 = 1, . . . , 𝑛,

𝑅 (𝑦) := 𝑅
𝑖
(𝑦) = ∫

𝑦
0

𝑦

𝑔
𝑖
(𝜑
−1

𝑖
(𝑡) , 𝜑 (𝜑

−1

𝑖
(𝑡))) 𝑑𝑡,

𝐹 (𝑦, 𝜀) := 𝐹
𝑖
(𝑦, 𝜀) =

𝑅
𝑖
(𝑦 (1 + 𝜀))

𝑅
𝑖
(𝑦)

.

(99)

Then, we have 𝑅 : (0, 𝑦
0
) → (0,∞), 𝐹 : 𝐷

∗

(𝑦
00
, 𝜀
∗

) →

[0,∞) and we have the following:

(a) 𝑅(𝑦) is continuously differentiable, 𝑅


(𝑦) =

−𝑔
𝑖
(𝜑
−1

𝑖
(𝑦), 𝜑(𝜑

−1

𝑖
(𝑦))) < 0;

(b) 𝐹(𝑦, 𝜀) is continuous with respect to 𝑦 and continu-
ously differentiable with respect to 𝜀;

(c) 𝐹
𝜀
(𝑦, 0) ̸= 0 by condition (2) of the theorem.

Hence, Lemma 3 holds. By Corollary 4, we can write
inequalities (96) in the form of (97). From (97), we get

𝜓
1𝑖
(𝑥) (1 − 𝜀

1

𝑖
(𝜓
1𝑖
(𝑥) , 𝜀
𝑖
))

< 𝜓
2𝑖
(𝑥) < 𝜓

1𝑖
(𝑥) (1 + 𝜀

2

𝑖
(𝜓
1𝑖
(𝑥) , 𝜀
𝑖
))

(100)

for (0, 𝑥∗]. The last inequalities are equivalent to

lim
𝑥→+0

𝜓
2𝑖
(𝑥)

𝜓
1𝑖
(𝑥)

= 1, 𝑖 = 1, . . . , 𝑛. (101)

The proof is complete.

Example 8. Consider the following simple particular case of
initial problem (2), (5):

𝑥
2

(1 + 𝑥
2

𝑦
6

) 𝑦


= 𝑦
2

(1 + 𝑥𝑦
7

) , (102)

𝑦 (0
+

) = 0. (103)

This problem is a singular one. To apply Theorem 5, we
rewrite (102), (103) as

1

𝑦
2
𝑦


=

1 + 𝑥𝑦
7

𝑥
2
(1 + 𝑥

2
𝑦
6
)

,

𝑦 (0
+

) = 0.

(104)

Set 𝑛 = 1 (belowwe omit this index since we deal with a scalar
problem), 𝜑(𝑥) = 𝑥, and

𝑔 (𝑥, 𝑦) =

1

𝑦
2
, 𝛼 (𝑥, 𝑦) =

1 + 𝑥𝑦
7

𝑥
2
(1 + 𝑥

2
𝑦
6
)

. (105)

Without loss of generality, we assume that 𝑥
0
and 𝑦

0
in

definition of 𝐷
1
are positive and sufficiently small (from

Definition (1), property (4), it follows 𝑥
0
< 𝑦
0
). Condition

(1), obviously holds. Condition (2), is valid as well because

∫

0
+

𝑔 (𝑥, 𝜑 (𝑥)) 𝜑


(𝑥) 𝑑𝑥 = ∫

0
+

1

𝑥
2
𝑑𝑥 = ∞,

∫

0
+

𝛼 (𝑥, 𝜑 (𝑥)) 𝑑𝑥 = ∫

0
+

1 + 𝑥
8

𝑥
2
(1 + 𝑥

8
)

𝑑𝑥 = ∫

0
+

1

𝑥
2
𝑑𝑥 = ∞.

(106)

Since 𝜑 is a solution of (104), we have 𝐺(𝑥, 𝜑(𝑥)) ≡ 0 and
Condition (3) holds (see Remark 6 as well). Next,

𝑊(𝑥, 𝑦)

= 𝑔 (𝜑
−1

(𝑦) , 𝜑 (𝜑
−1

(𝑦)))

𝛼 (𝑥, 𝑦)

𝑔 (𝑥, 𝑦)

− 𝛼 (𝑥, 𝜑 (𝑥))

= 𝑔 (𝑦, 𝑦)

𝛼 (𝑥, 𝑦)

𝑔 (𝑥, 𝑦)

− 𝛼 (𝑥, 𝑥)

=

1

𝑦
2

(1 + 𝑥𝑦
7

) / (𝑥
2

(1 + 𝑥
2

𝑦
6

))

1/𝑦
2

−

1

𝑥
2

=

𝑦
6

(𝑦 − 𝑥)

𝑥 (1 + 𝑥
2
𝑦
6
)

.

(107)

Set 𝑛
1

= 1 (i.e., conditions (4c) and (4d) are omitted).
For 𝑥 and 𝑦 sufficiently small and positive, it is easy to
see that 𝑊(𝑥, 𝑦) > 0 if 𝑦 > 𝑥 and 𝑊(𝑥, 𝑦) < 0 if
𝑦 < 𝑥. Hence, conditions (4a) and (4b) hold. According to
Theorem 5, problem (102), (103) has at least one-parametric
class of solutions.

Now we apply Theorem 7. We get

𝑅 (𝑦) = ∫

𝑦
0

𝑦

𝑔 (𝜑
−1

(𝑡) , 𝜑 (𝜑
−1

(𝑡))) 𝑑𝑡

= ∫

𝑦
0

𝑦

𝑔 (𝑡, 𝑡) 𝑑𝑡 = ∫

𝑦
0

𝑦

1

𝑡
2
𝑑𝑡 =

1

𝑦

−

1

𝑦
0

,

𝐹 (𝑦, 𝜀) =

𝑅 (𝑦 (1 + 𝜀))

𝑅 (𝑦)

=

1/𝑦 (1 + 𝜀) − 1/𝑦
0

1/𝑦 − 1/𝑦
0

.

(108)

Now we see that condition (1) holds since 𝐹 is continuous
with respect to 𝑦 and continuously differentiable with respect
to 𝜀 for (𝑦, 𝜀) ∈ 𝐷∗(𝑦

00
, 𝜀
∗

).The values 𝐹(0, 𝜀) and 𝐹
𝜀
(0, 𝜀) are

computed by above given formulas. Moreover, as

𝜕𝐹

𝜕𝜀

(𝑦, 0) =

−1/𝑦(1 + 𝜀)
2

1/𝑦 − 1/𝑦
0









𝜀=0

=

𝑦
0

𝑦 − 𝑦
0

̸= 0 (109)

for 𝑦 ∈ (0, 𝑦
00
] with 𝑦

00
< 𝑦
0
and

𝜕𝐹

𝜕𝜀

(0, 0) = lim
𝑦→0

+

𝜕𝐹

𝜕𝜀

(𝑦, 0) = − lim
𝑦→0

+

1/𝑦

1/𝑦 − 1/𝑦
0

= lim
𝑦→0

+

𝑦
0

𝑦 − 𝑦
0

= −1 ̸= 0.

(110)

condition (2) holds too.Theorem 7 is valid and every solution
of problem (102), (103)mentioned inTheorem 5 satisfies (89);
that is,

𝑦 (𝑥) = 𝑥 (1 + 𝑜 (1)) (111)

for 𝑥 → 0
+.

Finally, we remark that, instead of (102), the same inves-
tigation can be performed, for example, for

𝑥
2

(1 + 𝑥
2

𝑦
6

) 𝑦


= 𝑦
2

(1 + 𝑥𝑦
7

+ 𝑦
20

) , (112)
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where the function 𝜑 is no longer a solution and condition
(3) of Theorem 5 holds (the moment 𝑥

00
can be sufficiently

small).

4. Generalization

The following theorem improves Theorems 5 and 7. In
particular, comparing assumptions ofTheorems 5 and 7 with
Theorem 9, we see that the corresponding assumptions in
Theorem 9 are assumed to be valid on some sets that are
reductions of sets used inTheorems 5 and 7.

For given constants 𝐶∗
𝑖
> 1 and 0 < 𝐶∗∗

𝑖
< 1, 𝑖 = 1, . . . , 𝑛,

and for 𝜑 ∈ 𝑀(𝑥
0
, 𝑦
0
), define sets

𝑁
𝜑
𝑖

(𝐶
∗

𝑖
) := {(𝑥, 𝑦) : (𝑥, 𝑦) ∈ 𝐷

𝑛
, 𝜑
𝑖
(𝑥) < 𝑦

𝑖
< 𝐶
∗

𝑖
𝜑
𝑖
(𝑥)} ,

𝑁
𝜑
𝑖

(𝐶
∗∗

𝑖
) := {(𝑥, 𝑦) : (𝑥, 𝑦) ∈ 𝐷

𝑛
, 𝐶
∗∗

𝑖
𝜑
𝑖
(𝑥) < 𝑦

𝑖
< 𝜑
𝑖
(𝑥)} ,

𝑁 := {(𝑥, 𝑦) : (𝑥, 𝑦) ∈ 𝐷
𝑛
,

𝐶
∗∗

𝑖
𝜑
𝑖
(𝑥) < 𝑦

𝑖
< 𝐶
∗

𝑖
𝜑
𝑖
(𝑥) , 𝑖 = 1, . . . , 𝑛} .

(113)

Theorem 9. Let, for some constants 𝐶∗
𝑖
, 𝐶∗∗
𝑖
, 𝐶∗
𝑖
> 1, 0 <

𝐶
∗∗

𝑖
< 1, 𝑖 = 1, . . . , 𝑛, and some function 𝜑 ∈ 𝑀(𝑥

0
, 𝑦
0
), the

following conditions be fulfilled.

(a) Consider 𝑔
𝑖
(𝑥, 𝑦) ∈ 𝐶(𝑁), 𝛼

𝑖
(𝑥, 𝑦) ∈ 𝐶(𝑁), 𝑖 =

1, . . . , 𝑛.
(b) Assumptions (1)–(3) of Theorem 5 hold.
(c) For 𝑖 = 1, . . . , 𝑛

1
,

𝑊
𝑖
(𝑥, 𝑦) > 0 𝑖𝑓 (𝑥, 𝑦) ∈ 𝑁

𝜑
𝑖

(𝐶
∗

𝑖
) ∩ 𝑁,

𝑊
𝑖
(𝑥, 𝑦) < 0 𝑖𝑓 (𝑥, 𝑦) ∈ 𝑁

𝜑
𝑖

(𝐶
∗∗

𝑖
) ∩ 𝑁.

(114)

We omit this assumption if 𝑛
1
= 0.

(d) For 𝑖 = 𝑛
1
+ 1, . . . , 𝑛,

𝑊
𝑖
(𝑥, 𝑦) < 0 𝑖𝑓 (𝑥, 𝑦) ∈ 𝑁

𝜑
𝑖

(𝐶
∗

𝑖
) ∩ 𝑁,

𝑊
𝑖
(𝑥, 𝑦) > 0 𝑖𝑓 (𝑥, 𝑦) ∈ 𝑁

𝜑
𝑖

(𝐶
∗∗

𝑖
) ∩ 𝑁.

(115)

We omit this assumption if 𝑛
1
= 𝑛.

(e) Functions 𝐹
𝑖
(𝑦, 𝜀), 𝑖 = 1, . . . , 𝑛, satisfy the assumptions

of Theorem 7.

Then, there exists at least an 𝑛
1
-parametric family of

solutions

𝑦 (𝑥) = (𝑦
1
(𝑥) , . . . , 𝑦

𝑛
(𝑥)) (116)

such that

𝑦
𝑖
(𝑥) = 𝜑

𝑖
(𝑥) (1 + 𝑜 (1)) , 𝑖 = 1, . . . , 𝑛, (117)

holds for 𝑥 → 0
+ and (𝑥, 𝑦(𝑥)) ∈ 𝐷

𝑛
.

Proof. The proof is omitted since it is similar to the proofs of
Theorems 5 and 7.

Acknowledgments

The first author was supported by the Project FEKT-S-11-2-
921 of Faculty of Electrical Engineering and Communica-
tion, Brno University of Technology. The third author was
supported by the Grant no. P201/11/0768 of Czech Grant
Agency (Prague). The second author was supported by the
Project CZ.1.07/2.3.00/30.0039 of Brno University of Tech-
nology. The work of the first and the third authors was part-
ially realized in (Central European Institute of Technology
CEITEC) with research infrastructure supported by the Pro-
ject CZ.1.05/1.1.00/02.0068 financed from European Regional
Development Fund.

References

[1] A. F. Andreev, Singular Points of Differential Equations,
Vysheish. Skhola, Minsk, Russia, 1979, Russian.

[2] K. Balla, “Solution of singular boundary value problems for
non-linear systems of ordinary differential equations,” USSR
Computational Mathematics and Mathematical Physics, vol. 20,
no. 4, pp. 100–115, 1980.
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The asymptotic phase property and reduction principle for stability of a trivial solution is generalized to the case of the noninvertible
impulsive differential equations in Banach spaces whose linear parts split into two parts and satisfy the condition of separation.

1. Introduction

The reduction principle in the theory of stability for sys-
tems of autonomous differential equations for the first time
was proved by Pliss [1]. For systems of nonautonomous
differential equations it was extended by Aulbach [2]; see
also Pötzsche [3]. The analogy of the reduction principle
for differential equations in Banach spaces was proved by
Lykova [4] and for nonautonomous difference equations in
Banach spaces by Reinfelds and Janglajew [5]. Several works
[6, 7] are devoted to different modifications and applications
of the reduction principle. In this paper, we generalize the
reduction principle to the case of the noninvertible impulsive
differential equations in Banach spaces whose linear part split
into two parts and satisfy the condition of separation.

2. The Statement of the Problem

Let X and Y be Banach spaces. By L(X) and L(Y) we mean
the Banach spaces of bounded linear operators. Consider the
following system of impulsive differential equations:

𝑑𝑥

𝑑𝑡

= 𝐴 (𝑡) 𝑥 + 𝑓 (𝑡, 𝑥, 𝑦) ,

𝑑𝑦

𝑑𝑡

= 𝐵 (𝑡) 𝑦 + 𝑔 (𝑡, 𝑥, 𝑦) ,

Δ𝑥|
𝑡=𝜏
𝑖

= 𝑥 (𝜏
𝑖
+ 0) − 𝑥 (𝜏

𝑖
− 0)

= 𝐶
𝑖
𝑥 (𝜏
𝑖
− 0) + 𝑝

𝑖
(𝑥 (𝜏
𝑖
− 0) , 𝑦 (𝜏

𝑖
− 0)) ,

Δ𝑦|
𝑡=𝜏
𝑖

= 𝑦 (𝜏
𝑖
+ 0) − 𝑦 (𝜏

𝑖
− 0)

= 𝐷
𝑖
𝑦 (𝜏
𝑖
− 0) + 𝑞

𝑖
(𝑥 (𝜏
𝑖
− 0) , 𝑦 (𝜏

𝑖
− 0)) ,

(1)

where

(i) the mappings 𝐴 : R → L(X) and 𝐵 : R → L(Y) are
locally integrable in the Bochner sense;

(ii) the mappings 𝑓 : R × X × Y → X and 𝑔 : R × X ×

Y → Y are locally integrable in the Bochner sense
with respect to 𝑡 for fixed 𝑥 and 𝑦, and in addition
they satisfy the uniform Lipschitz conditions






𝑓 (𝑡, 𝑥, 𝑦) − 𝑓 (𝑡, 𝑥



, 𝑦


)






≤ 𝜀 (






𝑥 − 𝑥






+






𝑦 − 𝑦






) ,






𝑔 (𝑡, 𝑥, 𝑦) − 𝑔 (𝑡, 𝑥



, 𝑦


)






≤ 𝜀 (






𝑥 − 𝑥






+






𝑦 − 𝑦






) ;

(2)

(iii) for 𝑖 ∈ Z, 𝐶
𝑖
∈ L(X), and 𝐷

𝑖
∈ L(Y), the mappings

𝑝
𝑖
: X × Y → X and 𝑞

𝑖
: X × Y → Y satisfy the

uniform Lipschitz conditions





𝑝
𝑖
(𝑥, 𝑦) − 𝑝

𝑖
(𝑥


, 𝑦


)






≤ 𝜀 (






𝑥 − 𝑥






+






𝑦 − 𝑦






) ,






𝑞
𝑖
(𝑥, 𝑦) − 𝑞

𝑖
(𝑥


, 𝑦


)






≤ 𝜀 (






𝑥 − 𝑥






+






𝑦 − 𝑦






) ;

(3)

(iv) the mappings 𝑥 → 𝑥 + 𝐶
𝑖
𝑥 are homeomorphisms;
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(v) the moments 𝜏
𝑖
of impulse form a strictly increasing

sequence

⋅ ⋅ ⋅ < 𝜏
−2
< 𝜏
−1
< 𝜏
0
< 𝜏
1
< 𝜏
2
< ⋅ ⋅ ⋅ , (4)

where the limit point may be only∞.
Without loss of generality we assume that the system (1)

has the equilibrium points 𝑥 = 0, 𝑦 = 0,

𝑓 (𝑡, 0, 0) = 0, 𝑔 (𝑡, 0, 0) = 0,

𝑝
𝑖
(𝑡, 0, 0) = 0, 𝑞

𝑖
(𝑡, 0, 0) = 0.

(5)

Using the suitable bump function it is possible for the
analysis of local stability of the trivial solution to reduce to
investigation of the global stability of the trivial solution if
the nonlinear terms of (1) are uniform Lipschitz with respect
to time and with a sufficient small constant in a fixed radius
tubular neighbourhood of the trivial solution.

For simplicity, we assume that the linear part of (1)
is decoupled in two separate parts. In many cases, this
can be reached via the so-called kinematic similarity trans-
formation [8, 9]. More generally via kinematic similarity
transformation, the linear system can be reduced to the
same almost reducible system [10], a system with a diagonal
part and a small nondiagonal part. However, the kinematic
transformation can grow unboundedly as the nondiagonal
part tends to zero.

Definition 1 (see [11, 12]). By the solution to an impulsive sys-
tem one means a piecewise absolutely continuous mapping
with discontinuities of the first kind at the points 𝑡 = 𝜏

𝑖
which

for almost all 𝑡 satisfies system (1) and for 𝑡 = 𝜏
𝑖
satisfies the

conditions of a “jump.”

Note that condition (v) together with the Lipschitz prop-
erty with respect to 𝑥 and 𝑦 of the right-hand side ensures
that there is a unique solution.

Let Φ(⋅, 𝑠, 𝑥, 𝑦) = (𝑥(⋅, 𝑠, 𝑥, 𝑦), 𝑦(⋅, 𝑠, 𝑥, 𝑦)) : [𝑠, +∞) →

X × Y be the solution of system (1), where Φ(𝑠 + 0, 𝑠, 𝑥, 𝑦) =
(𝑥(𝑠 + 0, 𝑠, 𝑥, 𝑦), 𝑦(𝑠 + 0, 𝑠, 𝑥, 𝑦)) = (𝑥, 𝑦). At the break
points 𝜏

𝑖
the values for all solutions are taken at 𝜏

𝑖
+ 0

unless otherwise indicated. For short, wewill use the notation
Φ(𝑡) = (𝑥(𝑡), 𝑦(𝑡)).

Let𝑋(𝑡, 𝑠) and𝑌(𝑡, 𝑠) be the evolutionary operators of the
impulsive linear differential equations

𝑑𝑥

𝑑𝑡

= 𝐴 (𝑡) 𝑥,

Δ𝑥|
𝑡=𝜏
𝑖

= 𝑥 (𝜏
𝑖
+ 0) − 𝑥 (𝜏

𝑖
− 0) = 𝐶

𝑖
𝑥 (𝜏
𝑖
− 0) ,

(6)

and, respectively,

𝑑𝑦

𝑑𝑡

= 𝐵 (𝑡) 𝑦,

Δ𝑦|
𝑡=𝜏
𝑖

= 𝑦 (𝜏
𝑖
+ 0) − 𝑦 (𝜏

𝑖
− 0) = 𝐷

𝑖
𝑦 (𝜏
𝑖
− 0) .

(7)

We assume that the operators𝑋(𝑡, 𝑠) and𝑌(𝑡, 𝑠) satisfy the
condition of separation [7]:

] = max(sup
𝑠

∫

𝑠

−∞

|𝑌 (𝑠, 𝑡)| |𝑋 (𝑡, 𝑠)| 𝑑𝑡

+ sup
𝑠

∑

𝜏
𝑖
≤𝑠





𝑌 (𝑠, 𝜏

𝑖
)









𝑋 (𝜏
𝑖
− 0, 𝑠)





,

sup
𝑠

∫

+∞

𝑠

|𝑋 (𝑠, 𝑡)| |𝑌 (𝑡, 𝑠)| 𝑑𝑡

+sup
𝑠

∑

𝑠<𝜏
𝑖





𝑋 (𝑠, 𝜏

𝑖
)









𝑌 (𝜏
𝑖
− 0, 𝑠)





) < +∞,

(8)

where ] is the constant of separation.
To prove the theorems and lemmas, we use integrals

which include evolutionary operators in their integrands.
That is why it is more useful to estimate not the evolutionary
operators but the corresponding integrals. Doing so, on
the one hand, the conditions of theorems and lemmas are
released from unnecessary technical limitations and, on the
other hand, we obtain the conditions that are close to the
necessary conditions.

If 𝐴(𝑡) = 𝐴, 𝐵(𝑡) = 𝐵, 𝐶
𝑖
= 0, and 𝐷

𝑖
= 0, then

] = ∫

+∞

0

|𝑒
−𝐴𝑡

||𝑒
𝐵𝑡

|𝑑𝑡. Consequently, the integral converges
if the spectrum of the mapping 𝐵 is located to the left of the
spectrum of the mapping 𝐴 and the spectra are separated by
a vertical line in the complex plane.

Let PC(R × X,Y) be a set of mappings 𝑢 : R × X →

Y that are continuous for (𝑡, 𝑥) ∈ [𝜏
𝑖
, 𝜏
𝑖+1
) × X and have

discontinuities of the first kind for 𝑡 = 𝜏
𝑖
.

The set

M = {𝑢 ∈ PC (R × X,Y) | 𝑢 (𝑠, 0) = 0,

sup
𝑠,𝑥 ̸= 0

|𝑢 (𝑠, 𝑥)|

|𝑥|

< +∞}

(9)

is a Banach space with the norm

‖𝑢‖ = sup
𝑠,𝑥 ̸= 0

|𝑢 (𝑠, 𝑥)|

|𝑥|

,

M (𝑘) = {𝑢 ∈M | ‖𝑢‖ ≤ 𝑘,






𝑢 (𝑠, 𝑥) − 𝑢 (𝑠, 𝑥



)






≤ 𝑘






𝑥 − 𝑥






}

(10)

are a closed subsets ofM.
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3. Auxiliary Lemma

Lemma 2. Let 𝑢, 𝑢 ∈ M(𝑘) and 𝜀](𝑘 + 1) < 1. Then the
following estimations are valid:

∫

𝑠

−∞

|𝑌 (𝑠, 𝑡)| |𝑧 (𝑡)| 𝑑𝑡 + ∑

𝜏
𝑖
≤𝑠





𝑌 (𝑠, 𝜏

𝑖
)









𝑧 (𝜏
𝑖
− 0)






≤

] |𝑥|
1 − 𝜀] (𝑘 + 1)

,

∫

𝑠

−∞

|𝑌 (𝑠, 𝑡)|






𝑧 (𝑡) − 𝑧



(𝑡)






𝑑𝑡

+ ∑

𝜏
𝑖
≤𝑠





𝑌 (𝑠, 𝜏

𝑖
)










𝑧 (𝜏
𝑖
− 0) − 𝑧



(𝜏
𝑖
− 0)







≤

]
1 − 𝜀] (𝑘 + 1)

× (






𝑥 − 𝑥






+

𝜀]
1 − 𝜀] (𝑘 + 1)

|𝑥|






𝑢 − 𝑢






) ,

(11)

where 𝑧 : R → X is the solution of the impulsive differential
equations

𝑑𝑧

𝑑𝑡

= 𝐴 (𝑡) 𝑧 + 𝑓 (𝑡, 𝑧, 𝑢 (𝑡, 𝑧)) ,

Δ𝑧|
𝑡=𝜏
𝑖

= 𝐶
𝑖
𝑧 (𝜏
𝑖
− 0) + 𝑝

𝑖
(𝑧 (𝜏
𝑖
− 0) , 𝑢 (𝜏

𝑖
− 0, 𝑧 (𝜏

𝑖
− 0)))

(12)

satisfying the initial condition 𝑧(𝑠) = 𝑥.

We remark that 𝑋(𝜏
𝑖
− 0, 𝜏
𝑖
) = (𝑖𝑑

𝑥
+ 𝐶
𝑖
)
−1 and |𝑋(𝜏

𝑖
−

0, 𝜏
𝑖
)| ≤ ]. It follows that (12) has a unique backward solution

if 𝜀(𝑘 + 1)] < 1.

Proof. The solution of the impulsive system (12) for 𝑡 ≤ 𝑠 is

𝑧 (𝑡) = 𝑋 (𝑡, 𝑠) 𝑥 + ∫

𝑡

𝑠

𝑋 (𝑡, 𝜏) 𝑓 (𝜏, 𝑧 (𝜏) , 𝑢 (𝜏, 𝑧 (𝜏))) 𝑑𝜏

− ∑

𝑡<𝜏
𝑖
≤𝑠

𝑋(𝑡, 𝜏
𝑖
) 𝑝
𝑖
(𝑧 (𝜏
𝑖
− 0) , 𝑢 (𝜏

𝑖
− 0, 𝑧 (𝜏

𝑖
− 0))) .

(13)

Taking into account that 𝑓 and 𝑝
𝑖
satisfy the uniform

Lipschitz conditions and 𝑢 properties, the solution 𝑧(𝑡) can
be estimated by

|𝑧 (𝑡)| ≤ |𝑋 (𝑡, 𝑠)| |𝑥|

+ 𝜀 (𝑘 + 1) (∫

𝑠

𝑡

|𝑋 (𝑡, 𝜏)| |𝑧 (𝜏)| 𝑑𝜏

+ ∑

𝑡<𝜏
𝑖
≤𝑠





𝑋 (𝑡, 𝜏

𝑖
)









𝑧 (𝜏
𝑖
− 0)





) .

(14)

Multiplying the solution 𝑧(𝑡) by |𝑌(𝑠, 𝑡)| and integrating
from −∞ to 𝑠, we obtain

∫

𝑠

−∞

|𝑌 (𝑠, 𝑡)| |𝑧 (𝑡)| 𝑑𝑡 ≤ |𝑥| ∫

𝑠

−∞

|𝑌 (𝑠, 𝑡)| |𝑋 (𝑡, 𝑠)| 𝑑𝑡

+ 𝜀 (𝑘 + 1) sup
𝜏

∫

𝜏

−∞

|𝑌 (𝜏, 𝑡)| |𝑋 (𝑡, 𝜏)| 𝑑𝑡

× (∫

𝑠

−∞

|𝑌 (𝑠, 𝜏)| |𝑧 (𝜏)| 𝑑𝜏 + ∑

𝜏
𝑖
≤𝑠





𝑌 (𝑠, 𝜏

𝑖
)









𝑧 (𝜏
𝑖
− 0)





) .

(15)

Multiplying 𝑧(𝜏
𝑖
− 0) by |𝑌(𝑠, 𝜏

𝑖
)| and summing for all 𝑖

with respect to 𝜏
𝑖
≤ 𝑠, we obtain

∑

𝜏
𝑖
≤𝑠





𝑌 (𝑠, 𝜏

𝑖
)









𝑧 (𝜏
𝑖
− 0)






≤ |𝑥| ∑

𝜏
𝑖
≤𝑠





𝑌 (𝑠, 𝜏

𝑖
)









𝑋 (𝜏
𝑖
− 0, 𝑠)






+ 𝜀 (𝑘 + 1) sup
𝜏

∑

𝜏
𝑖
≤𝜏





𝑌 (𝜏, 𝜏

𝑖
)









𝑋 (𝜏
𝑖
− 0, 𝜏)






× (∫

𝑠

−∞

|𝑌 (𝑠, 𝜏)| |𝑧 (𝜏)| 𝑑𝜏 + ∑

𝜏
𝑖
≤𝑠





𝑌 (𝑠, 𝜏

𝑖
)









𝑧 (𝜏
𝑖
− 0)





) .

(16)

Summing up we get that

∫

𝑠

−∞

|𝑌 (𝑠, 𝜏)| |𝑧 (𝜏)| 𝑑𝜏 + ∑

𝜏
𝑖
≤𝑠





𝑌 (𝑠, 𝜏

𝑖
)









𝑧 (𝜏
𝑖
− 0)






≤ ] |𝑥| + 𝜀] (𝑘 + 1)

× (∫

𝑠

−∞

|𝑌 (𝑠, 𝜏)| |𝑧 (𝜏)| 𝑑𝜏 + ∑

𝜏
𝑖
≤𝑠





𝑌 (𝑠, 𝜏

𝑖
)









𝑧 (𝜏
𝑖
− 0)





) .

(17)

From the last inequality, we get that

∫

𝑠

−∞

|𝑌 (𝑠, 𝜏)| |𝑧 (𝜏)| 𝑑𝜏 + ∑

𝜏
𝑖
≤𝑠





𝑌 (𝑠, 𝜏

𝑖
)









𝑧 (𝜏
𝑖
− 0)






≤

] |𝑥|
1 − ]𝜀 (𝑘 + 1)

.

(18)
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Now we estimate the difference |𝑧(𝑡) − 𝑧(𝑡)| taking into
consideration the properties of 𝑓, 𝑝

𝑖
, and 𝑢:






𝑧 (𝑡) − 𝑧



(𝑡)







≤ |𝑋 (𝑡, 𝑠)|






𝑥 − 𝑥






+ 𝜀 (𝑘 + 1)

× (∫

𝑠

𝑡

|𝑋 (𝑡, 𝜏)|






𝑧 (𝜏) − 𝑧



(𝜏)






𝑑𝜏

+ ∑

𝑡<𝜏
𝑖
≤𝑠





𝑋 (𝑡, 𝜏

𝑖
)










𝑧 (𝜏
𝑖
− 0) − 𝑧



(𝜏
𝑖
− 0)






)

+ 𝜀






𝑢 − 𝑢






(∫

𝑠

𝑡

|𝑋 (𝑡, 𝜏)| |𝑧 (𝜏)| 𝑑𝜏

+ ∑

𝑡<𝜏
𝑖
≤𝑠





𝑋 (𝑡, 𝜏

𝑖
)









𝑧 (𝜏
𝑖
− 0)





) .

(19)

Multiplying the difference |𝑧(𝑡) − 𝑧(𝑡)| by |𝑌(𝑠, 𝑡)| and
integrating from −∞ to 𝑠, we obtain

∫

𝑠

−∞

|𝑌 (𝑠, 𝑡)|






𝑧 (𝑡) − 𝑧



(𝑡)






𝑑𝑡

≤






𝑥 − 𝑥






∫

𝑠

−∞

|𝑌 (𝑠, 𝑡)| |𝑋 (𝑡, 𝑠)| 𝑑𝑡

+ 𝜀 (𝑘 + 1) sup
𝜏

∫

𝜏

−∞

|𝑌 (𝜏, 𝑡)| |𝑋 (𝑡, 𝜏)| 𝑑𝑡

× (∫

𝑠

−∞

|𝑌 (𝑠, 𝜏)|






𝑧 (𝜏) − 𝑧



(𝜏)






𝑑𝜏

+ ∑

𝜏
𝑖
≤𝑠





𝑌 (𝑠, 𝜏

𝑖
)










𝑧 (𝜏
𝑖
− 0) − 𝑧



(𝜏
𝑖
− 0)






)

+ 𝜀






𝑢 − 𝑢






sup
𝜏

∫

𝜏

−∞

|𝑌 (𝜏, 𝑡)| |𝑋 (𝑡, 𝜏)| 𝑑𝑡

× (∫

𝑠

−∞

|𝑌 (𝑠, 𝜏)| |𝑧 (𝜏)| 𝑑𝜏 + ∑

𝜏
𝑖
≤𝑠





𝑌 (𝑠, 𝜏

𝑖
)









𝑧 (𝜏
𝑖
− 0)





) .

(20)

Multiplying the difference |𝑧(𝜏
𝑖
−0)−𝑧



(𝜏
𝑖
−0)| by |𝑌(𝑠, 𝜏

𝑖
)|

and summing for all 𝑖 with respect to 𝜏
𝑖
≤ 𝑠, we obtain

∑

𝜏
𝑖
≤𝑠





𝑌 (𝑠, 𝜏

𝑖
)










𝑧 (𝜏
𝑖
− 0) − 𝑧



(𝜏
𝑖
− 0)







≤






𝑥 − 𝑥






∑

𝜏
𝑖
≤𝑠





𝑌 (𝑠, 𝜏

𝑖
)









𝑋 (𝜏
𝑖
− 0, 𝑠)






+ 𝜀 (𝑘 + 1) sup
𝜏

∑

𝜏
𝑖
≤𝜏





𝑌 (𝜏, 𝜏

𝑖
)









𝑋 (𝜏
𝑖
− 0, 𝜏)






× (∫

𝑠

−∞

|𝑌 (𝑠, 𝜏)|






𝑧 (𝜏) − 𝑧



(𝜏)






𝑑𝜏

+ ∑

𝜏
𝑖
≤𝑠





𝑌 (𝑠, 𝜏

𝑖
)










𝑧 (𝜏
𝑖
− 0) − 𝑧



(𝜏
𝑖
− 0)






)

+ 𝜀






𝑢 − 𝑢






sup
𝜏

∑

𝜏
𝑖
≤𝜏





𝑌 (𝜏, 𝜏

𝑖
)









𝑋 (𝜏
𝑖
− 0, 𝜏)






× (∫

𝑠

−∞

|𝑌 (𝑠, 𝜏)| |𝑧 (𝜏)| 𝑑𝜏

+ ∑

𝜏
𝑖
≤𝑠





𝑌 (𝑠, 𝜏

𝑖
)









𝑧 (𝜏
𝑖
− 0)





) .

(21)

Summing up, we get that

∫

𝑠

−∞

|𝑌 (𝑠, 𝜏)|






𝑧 (𝜏) − 𝑧



(𝜏)






𝑑𝜏

+ ∑

𝜏
𝑖
≤𝑠





𝑌 (𝑠, 𝜏

𝑖
)










𝑧 (𝜏
𝑖
− 0) − 𝑧



(𝜏
𝑖
− 0)







≤ ](





𝑥 − 𝑥






+ 𝜀 (𝑘 + 1)

× (∫

𝑠

−∞

|𝑌 (𝑠, 𝜏)|






𝑧 (𝜏) − 𝑧



(𝜏)






𝑑𝜏

+ ∑

𝜏
𝑖
≤𝑠





𝑌 (𝑠, 𝜏

𝑖
)










𝑧 (𝜏
𝑖
− 0) − 𝑧



(𝜏
𝑖
− 0)






))

+ 𝜀]





𝑢 − 𝑢







× (∫

𝑠

−∞

|𝑌 (𝑠, 𝜏)| |𝑧 (𝜏)| 𝑑𝜏

+∑

𝜏
𝑖
≤𝑠





𝑌 (𝑠, 𝜏

𝑖
)









𝑧 (𝜏
𝑖
− 0)





) .

(22)

Applying the first result of Lemma 2, we get

∫

𝑠

−∞

|𝑌 (𝑠, 𝜏)|






𝑧 (𝜏) − 𝑧



(𝜏)






𝑑𝜏

+ ∑

𝜏
𝑖
≤𝑠





𝑌 (𝑠, 𝜏

𝑖
)










𝑧 (𝜏
𝑖
− 0) − 𝑧



(𝜏
𝑖
− 0)







≤ ](





𝑥 − 𝑥






+ 𝜀 (𝑘 + 1)

× (∫

𝑠

−∞

|𝑌 (𝑠, 𝜏)|






𝑧 (𝜏) − 𝑧



(𝜏)






𝑑𝜏

+∑

𝜏
𝑖
≤𝑠





𝑌 (𝑠, 𝜏

𝑖
)










𝑧 (𝜏
𝑖
− 0) − 𝑧



(𝜏
𝑖
− 0)






))

+ 𝜀]





𝑢 − 𝑢







] |𝑥|
1 − 𝜀] (𝑘 + 1)

.

(23)

From the last inequality we easily obtain (11).
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4. Existence of a Lipschitz Invariant Manifold

Theorem 3. If 4𝜀] < 1, then there exists a unique piecewise
continuous mapping 𝑢 ∈ M(𝑘) satisfying the following
properties:

(i) 𝑢(𝑡, 𝑥(𝑡, 𝑠, 𝑥, 𝑢(𝑠, 𝑥))) = 𝑦(𝑡, 𝑠, 𝑥, 𝑢(𝑠, 𝑥)) for 𝑡 ≥ 𝑠;

(ii) |𝑢(𝑠, 𝑥) − 𝑢(𝑠, 𝑥)| ≤ 𝑘|𝑥 − 𝑥|;

(iii) 𝑢(𝑡, 0) = 0.

Proof. Consider inM(𝑘) the functional equation

𝑢 (𝑠, 𝑥)

= ∫

𝑠

−∞

𝑌 (𝑠, 𝜏) 𝑔 (𝜏, 𝑧 (𝜏) , 𝑢 (𝜏, 𝑧 (𝜏))) 𝑑𝜏

+ ∑

𝜏
𝑖
≤𝑠

𝑌 (𝑠, 𝜏
𝑖
) 𝑞
𝑖
(𝑧 (𝜏
𝑖
− 0) , 𝑢 (𝜏

𝑖
− 0, 𝑧 (𝜏

𝑖
− 0))) ,

(24)

where 𝑧 : R → X is the solution of the impulsive differential
equation system (12) satisfying the initial condition 𝑧(𝑠) = 𝑥.

Consider the operator L : M(𝑘) → M(𝑘) defined by
the formula

L𝑢 (𝑠, 𝑥)

= ∫

𝑠

−∞

𝑌 (𝑠, 𝜏) 𝑔 (𝜏, 𝑧 (𝜏) , 𝑢 (𝜏, 𝑧 (𝜏))) 𝑑𝜏

+ ∑

𝜏
𝑖
≤𝑠

𝑌 (𝑠, 𝜏
𝑖
) 𝑞
𝑖
(𝑧 (𝜏
𝑖
− 0) , 𝑢 (𝜏

𝑖
− 0, 𝑧 (𝜏

𝑖
− 0))) .

(25)

If 4𝜀] < 1, then

𝑘 = (2𝜀])−1 (1 − 2𝜀] − √1 − 4𝜀]) =
1 − √1 − 4𝜀]
1 + √1 − 4𝜀]

< 1 (26)

satisfies the equality

𝑘 = 𝜀] (𝑘 + 1) (1 − 𝜀] (𝑘 + 1))−1. (27)

Then

|L𝑢 (𝑠, 𝑥)|

≤ 𝜀 (𝑘 + 1)

(∫

𝑠

−∞

|𝑌 (𝑠, 𝜏)| |𝑧 (𝜏)| 𝑑𝜏 + ∑

𝜏
𝑖
≤𝑠





𝑌 (𝑠, 𝜏

𝑖
)









𝑧 (𝜏
𝑖
− 0)





)

≤

𝜀] (𝑘 + 1) |𝑥|
1 − 𝜀] (𝑘 + 1)

= 𝑘 |𝑥| .

(28)

It follows that ||L𝑢|| ≤ 𝑘.

Taking into account that 𝑔 and 𝑞
𝑖
satisfy the uniform

Lipschitz conditions, we get that






L𝑢 (𝑠, 𝑥) −L𝑢



(𝑠, 𝑥


)







≤ 𝜀 (𝑘 + 1)

× (∫

𝑠

−∞

|𝑌 (𝑠, 𝜏)|






𝑧 (𝜏) − 𝑧



(𝜏)






𝑑𝜏

+∑

𝜏
𝑖
≤𝑠





𝑌 (𝑠, 𝜏

𝑖
)










𝑧 (𝜏
𝑖
− 0) − 𝑧



(𝜏
𝑖
− 0)






)

+ 𝜀






𝑢 − 𝑢






(∫

𝑠

−∞

|𝑌 (𝑠, 𝜏)| |𝑧 (𝜏)| 𝑑𝜏

+∑

𝜏
𝑖
≤𝑠





𝑌 (𝑠, 𝜏

𝑖
)









𝑧 (𝜏
𝑖
− 0)





)

≤ 𝑘(






𝑥 − 𝑥






+

𝜀]
1 − 𝜀] (𝑘 + 1)

|𝑥|






𝑢 − 𝑢






)

+

𝜀] |𝑥|
1 − 𝜀] (𝑘 + 1)






𝑢 − 𝑢







= 𝑘






𝑥 − 𝑥






+ 𝑘 |𝑥|






𝑢 − 𝑢






.

(29)

We have that L𝑢 ∈ M(𝑘) and L is a contraction in
M(𝑘), and therefore there is only one solution satisfying the
functional equationL𝑢 = 𝑢.

In addition for 𝑡 ≥ 𝑠

𝑢 (𝑡, 𝑧 (𝑡))

= ∫

𝑡

−∞

𝑌 (𝑡, 𝜏) 𝑔 (𝜏, 𝑧 (𝜏) , 𝑢 (𝜏, 𝑧 (𝜏))) 𝑑𝜏

+ ∑

𝜏
𝑖
≤𝑡

𝑌 (𝑡, 𝜏
𝑖
) 𝑞
𝑖
(𝑧 (𝜏
𝑖
− 0) , 𝑢 (𝜏

𝑖
− 0, 𝑧 (𝜏

𝑖
− 0)))

= 𝑌 (𝑡, 𝑠) 𝑢 (𝑠, 𝑥) + ∫

𝑡

𝑠

𝑌 (𝑡, 𝜏) 𝑔 (𝜏, 𝑧 (𝜏) , 𝑢 (𝜏, 𝑧 (𝜏))) 𝑑𝜏

+ ∑

𝑠<𝜏
𝑖
≤𝑡

𝑌 (𝑡, 𝜏
𝑖
) 𝑞
𝑖
(𝑧 (𝜏
𝑖
− 0) , 𝑢 (𝜏

𝑖
− 0, 𝑧 (𝜏

𝑖
− 0))) .

(30)

Therefore for uniqueness of solutions we get for 𝑡 ≥ 𝑠

𝑧 (𝑡) = 𝑥 (𝑡, 𝑠, 𝑥, 𝑢 (𝑠, 𝑥)) ,

𝑢 (𝑡, 𝑧 (𝑡)) = 𝑦 (𝑡, 𝑠, 𝑥, 𝑢 (𝑠, 𝑥)) .

(31)

The theorem is proven.
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5. Behaviour of Solutions in the
Neighbourhood of an Invariant Manifold

Theorem 4. Let 4𝜀] < 1. Then the following estimation is
valid:

∫

+∞

𝑠

|𝑋 (𝑠, 𝑡)|




𝑦 (𝑡) − 𝑢 (𝑡, 𝑥 (𝑡))





𝑑𝑡

+ ∑

𝑠<𝜏
𝑖





𝑋 (𝑠, 𝜏

𝑖
)









𝑦 (𝜏
𝑖
− 0) − 𝑢 (𝜏

𝑖
− 0, 𝑥 (𝜏

𝑖
− 0))






≤

] 

𝑦 − 𝑢 (𝑠, 𝑥)






1 − 𝜀] (𝑘 + 1)
.

(32)

The inequality characterizes the integral distance between
an arbitrary solution and an invariant manifold.

Proof. For an arbitrary map 𝜉 : R → Y, piecewise
continuous from the right with points of discontinuity 𝑡 = 𝜏

𝑖

of the first type, we have the following relation:

𝜉 (𝑡) = 𝜉 (𝑠) + lim
𝛿→+0

1

𝛿

∫

𝑡

𝑠

(𝜉 (𝑟 + 𝛿) − 𝜉 (𝑟)) 𝑑𝑟. (33)

Set 𝜉(𝑟) = 𝑌(𝑡, 𝑟)𝑢(𝑟, 𝑥(𝑟)). Then for 𝑡 ≥ 𝑠 we obtain

𝑢 (𝑡, 𝑥 (𝑡)) = 𝑌 (𝑡, 𝑠) 𝑢 (𝑠, 𝑥)

+ lim
𝛿→+0

1

𝛿

∫

𝑡

𝑠

(𝑌 (𝑡, 𝑟 + 𝛿) 𝑢 (𝑟 + 𝛿, 𝑥 (𝑟 + 𝛿))

−𝑌 (𝑡, 𝑟) 𝑢 (𝑟, 𝑥 (𝑟))) 𝑑𝑟

= 𝑌 (𝑡, 𝑠) 𝑢 (𝑠, 𝑥)

+ lim
𝛿→+0

1

𝛿

∫

𝑡

𝑠

𝑌 (𝑡, 𝑟 + 𝛿)

× (𝑢 (𝑟 + 𝛿, 𝑥 (𝑟 + 𝛿))

−𝑦 (𝑟 + 𝛿, 𝑟, 𝑥 (𝑟) , 𝑢 (𝑟, 𝑥 (𝑟)))) 𝑑𝑟

+ lim
𝛿→+0

1

𝛿

∫

𝑡

𝑠

(𝑌 (𝑡, 𝑟 + 𝛿) 𝑦

× (𝑟 + 𝛿, 𝑟, 𝑥 (𝑟) , 𝑢 (𝑟, 𝑥 (𝑟)))

−𝑌 (𝑡, 𝑟) 𝑢 (𝑟, 𝑥 (𝑟))) 𝑑𝑟.

(34)

Let us note that

𝑦 (𝑟 + 𝛿, 𝑟, 𝑥
1
, 𝑦
1
)

= 𝑌 (𝑟 + 𝛿, 𝑟) 𝑦
1

+ ∫

𝑟+𝛿

𝑟

𝑌 (𝑟 + 𝛿, 𝜏) 𝑔 (𝜏, Φ (𝜏, 𝑟, 𝑥
1
, 𝑦
1
)) 𝑑𝜏

+ ∑

𝑟<𝜏
𝑖
≤𝑟+𝛿

𝑌 (𝑟 + 𝛿, 𝜏
𝑖
) 𝑞
𝑖
(Φ (𝜏
𝑖
− 0, 𝑟, 𝑥

1
, 𝑦
1
)) .

(35)

The third countable can be simplified:

lim
𝛿→+0

1

𝛿

∫

𝑡

𝑠

(∫

𝑟+𝛿

𝑟

𝑌 (𝑡, 𝜏) 𝑔 (𝜏, Φ (𝜏, 𝑟, 𝑥 (𝑟) , 𝑢 (𝑟, 𝑥 (𝑟)))) 𝑑𝜏

+ ∑

𝑟<𝜏
𝑖
≤𝑟+𝛿

𝑌 (𝑡, 𝜏
𝑖
) 𝑞
𝑖

× (Φ (𝜏
𝑖
− 0, 𝑟, 𝑥 (𝑟) , 𝑢 (𝑟, 𝑥 (𝑟))))) 𝑑𝑟

= ∫

𝑡

𝑠

𝑌 (𝑡, 𝑟) 𝑔 (𝑟, 𝑥 (𝑟) , 𝑢 (𝑟, 𝑥 (𝑟))) 𝑑𝑟

+ ∑

𝑠<𝜏
𝑖
≤𝑡

𝑌 (𝑡, 𝜏
𝑖
) 𝑞
𝑖
(𝑥 (𝜏
𝑖
− 0) , 𝑢 (𝜏

𝑖
− 0, 𝑥 (𝜏

𝑖
− 0))) .

(36)

Next we obtain

𝑦 (𝑡) − 𝑢 (𝑡, 𝑥 (𝑡))

= 𝑌 (𝑡, 𝑠) (𝑦 − 𝑢 (𝑠, 𝑥))

+ ∫

𝑡

𝑠

𝑌 (𝑡, 𝑟) (𝑔 (𝑟, 𝑥 (𝑟) , 𝑦 (𝑟))

−𝑔 (𝑟, 𝑥 (𝑟) , 𝑢 (𝑟, 𝑥 (𝑟)))) 𝑑𝑟

+ lim
𝛿→+0

1

𝛿

∫

𝑡

𝑠

𝑌 (𝑡, 𝑟 + 𝛿)

× (𝑦 (𝑟 + 𝛿, 𝑟, 𝑥 (𝑟) , 𝑢 (𝑟, 𝑥 (𝑟)))

−𝑢 (𝑟 + 𝛿, 𝑥 (𝑟 + 𝛿))) 𝑑𝑟

+ ∑

𝑠<𝜏
𝑖
≤𝑡

𝑌 (𝑡, 𝜏
𝑖
)

× (𝑞
𝑖
(𝑥 (𝜏
𝑖
− 0) , 𝑦 (𝜏

𝑖
− 0))

−𝑞
𝑖
(𝑥 (𝜏
𝑖
− 0) , 𝑢 (𝜏

𝑖
− 0, 𝑥 (𝜏

𝑖
− 0)))) .

(37)

Now we consider

𝑥 (𝑟 + 𝛿, 𝑟, 𝑥
1
, 𝑦
1
) − 𝑥 (𝑟 + 𝛿, 𝑟, 𝑥

1
, 𝑢 (𝑟, 𝑥

1
))

= ∫

𝑟+𝛿

𝑟

𝑋(𝑟 + 𝛿, 𝜏) (𝑓 (𝜏, Φ (𝜏, 𝑟, 𝑥
1
, 𝑦
1
))

−𝑓 (𝜏, Φ (𝜏, 𝑟, 𝑥
1
, 𝑢 (𝑟, 𝑥

1
)))) 𝑑𝜏

+ ∑

𝑟<𝜏
𝑖
≤𝑟+𝛿

𝑋(𝑟 + 𝛿, 𝜏
𝑖
) (𝑝
𝑖
(Φ (𝜏
𝑖
− 0, 𝑟, 𝑥

1
, 𝑦
1
))

−𝑝
𝑖
(Φ (𝜏
𝑖
− 0, 𝑟, 𝑥

1
, 𝑢 (𝑟, 𝑥

1
)))) .

(38)
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Thus,

lim
𝛿→+0

1

𝛿










∫

𝑡

𝑠

𝑌 (𝑡, 𝑟 + 𝛿) (𝑦 (𝑟 + 𝛿, 𝑟, 𝑥 (𝑟) , 𝑢 (𝑟, 𝑥 (𝑟)))

−𝑢 (𝑟 + 𝛿, 𝑥 (𝑟 + 𝛿))) 𝑑𝑟










≤ 𝑘 lim
𝛿→+0

1

𝛿

× ∫

𝑡

𝑠

|𝑌 (𝑡, 𝑟 + 𝛿)|

× |𝑥 (𝑟 + 𝛿, 𝑟, 𝑥 (𝑟) , 𝑢 (𝑟, 𝑥 (𝑟)))

−𝑥 (𝑟 + 𝛿, 𝑟, 𝑥 (𝑟) , 𝑦 (𝑟))




𝑑𝑟

≤ 𝑘 lim
𝛿→+0

1

𝛿

× ∫

𝑡

𝑠

|𝑌 (𝑡, 𝑟 + 𝛿)|

× (∫

𝑟+𝛿

𝑟

|𝑋 (𝑟 + 𝛿, 𝜏)|

×




𝑓 (𝜏, Φ (𝜏, 𝑟, 𝑥 (𝑟) , 𝑦 (𝑟)))

− 𝑓 (𝜏, Φ (𝜏, 𝑟, 𝑥 (𝑟) 𝑢 (𝑟, 𝑥 (𝑟))))




𝑑𝜏

+ ∑

𝑟<𝜏
𝑖
≤𝑟+𝛿





𝑋 (𝑟 + 𝛿, 𝜏

𝑖
)





×




𝑝
𝑖
(Φ (𝜏
𝑖
− 0, 𝑟, 𝑥 (𝑟) , 𝑦 (𝑟)))

−𝑝
𝑖
(Φ (𝜏
𝑖
− 0, 𝑟, 𝑥 (𝑟) , 𝑢 (𝑟, 𝑥 (𝑟))))





) 𝑑𝑟

= 𝑘(∫

𝑡

𝑠

|𝑌 (𝑡, 𝑟)|

×




𝑓 (𝑟, 𝑥 (𝑟) , 𝑦 (𝑟)) − 𝑓 (𝑟, 𝑥 (𝑟) , 𝑢 (𝑟, 𝑥 (𝑟)))





𝑑𝑟

+ ∑

𝑠<𝜏
𝑖
≤𝑡





𝑌 (𝑡, 𝜏

𝑖
)





×










𝑝
𝑖
(𝑥 (𝜏
𝑖
− 0) , 𝑦 (𝜏

𝑖
− 0))

− 𝑝
𝑖
(𝑥 (𝜏
𝑖
− 0) , 𝑢 (𝜏

𝑖
− 0, 𝑥 (𝜏

𝑖
− 0)))










) .

(39)

We introduce the expression 𝜂(𝑡) = |𝑦(𝑡) − 𝑢(𝑡, 𝑥(𝑡))|. For
𝑡 ≥ 𝑠, we obtain the estimation

𝜂 (𝑡) ≤ |𝑌 (𝑡, 𝑠)| 𝜂 (𝑠)

+ 𝜀 (𝑘 + 1)

× (∫

𝑡

𝑠

|𝑌 (𝑡, 𝑟)| 𝜂 (𝑟) 𝑑𝑟 + ∑

𝑠<𝜏
𝑖
≤𝑡





𝑌 (𝑡, 𝜏

𝑖
)




𝜂 (𝜏
𝑖
− 0)) .

(40)

Multiplying by𝑋(𝑠, 𝑡), integrating, and summing analogously
as in auxiliary Lemma 2, we obtain the inequality

∫

+∞

𝑠

|𝑋 (𝑠, 𝑡)|




𝑦 (𝑡) − 𝑢 (𝑡, 𝑥 (𝑡))





𝑑𝑡

+ ∑

𝑠<𝜏
𝑖





𝑋 (𝑠, 𝜏

𝑖
)









𝑦 (𝜏
𝑖
− 0) − 𝑢 (𝜏

𝑖
− 0, 𝑥 (𝜏

𝑖
− 0))






≤

] 

𝑦 − 𝑢 (𝑠, 𝑥)






1 − 𝜀] (𝑘 + 1)
.

(41)

6. Asymptotic Phase Type Property

Theorem 5. Let 4𝜀] < 1. Then for every solution (𝑥(⋅), 𝑦(⋅)) :
[𝑠, +∞) → X × Y of the impulsive system (1) there is a such
solution 𝜁(⋅) : [𝑠, +∞) → X of the impulsive system (12) that
for all 𝑡 ≥ 𝑠 the following estimation is fulfilled:





𝜁 (𝑡) − 𝑥 (𝑡)





≤ 𝑘
1





𝑦 (𝑡) − 𝑢 (𝑡, 𝑥 (𝑡))





, (42)

where

𝑘
1
=

𝜀]
√1 − 4𝜀]

. (43)

Proof. The set of mappings

M
1
= {𝜅 ∈ PC (R × X × Y,X) | sup

𝑠,𝑥,𝑦





𝜅 (𝑠, 𝑥, 𝑦)










𝑦 − 𝑢 (𝑠, 𝑥)






< +∞}

(44)

is a Banach space with the norm

‖𝜅‖ = sup
𝑠,𝑥,𝑦





𝜅 (𝑠, 𝑥, 𝑦)










𝑦 − 𝑢 (𝑠, 𝑥)






, (45)

respectively.
Consider the functional equation inM

1

𝜅 (𝑠, 𝑥, 𝑦)

= ∫

+∞

𝑠

𝑋(𝑠, 𝜏) (𝑓 (𝜏, Φ (𝜏))

− 𝑓 (𝜏, 𝑥 (𝜏) + 𝜅 (𝜏, Φ (𝜏)) ,

𝑢 (𝜏, 𝑥 (𝜏) + 𝜅 (𝜏, Φ (𝜏))))) 𝑑𝜏

+ ∑

𝑠<𝜏
𝑖

𝑋(𝑠, 𝜏
𝑖
)

× (𝑝
𝑖
(Φ (𝜏
𝑖
− 0))

− 𝑝
𝑖
(𝑥 (𝜏
𝑖
− 0) + 𝜅 (𝜏

𝑖
− 0,Φ (𝜏

𝑖
− 0)) ,

𝑢 (𝜏
𝑖
− 0, 𝑥 (𝜏

𝑖
− 0)

+𝜅 (𝜏
𝑖
− 0,Φ (𝜏

𝑖
− 0))))) .

(46)
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Consider the operatorL :M
1
→ M

1
defined by formula

L𝜅 (𝑠, 𝑥, 𝑦)

= ∫

+∞

𝑠

𝑋 (𝑠, 𝜏) (𝑓 (𝜏, Φ (𝜏))

− 𝑓 (𝜏, 𝑥 (𝜏) + 𝜅 (𝜏, Φ (𝜏)) ,

𝑢 (𝜏, 𝑥 (𝜏) + 𝜅 (𝜏, Φ (𝜏))))) 𝑑𝜏

+ ∑

𝑠<𝜏
𝑖

𝑋(𝑠, 𝜏
𝑖
)

× (𝑝
𝑖
(Φ (𝜏
𝑖
− 0))

− 𝑝
𝑖
(𝑥 (𝜏
𝑖
− 0) + 𝜅 (𝜏

𝑖
− 0,Φ (𝜏

𝑖
− 0)) ,

𝑢 (𝜏
𝑖
− 0, 𝑥 (𝜏

𝑖
− 0) + 𝜅

((𝜏
𝑖
− 0,Φ (𝜏

𝑖
− 0))))) .

(47)

We have the following estimation:






L𝜅 (𝑠, 𝑥, 𝑦) −L𝜅



(𝑠, 𝑥, 𝑦)







≤ 𝜀 (𝑘 + 1)

× ∫

+∞

𝑠

|𝑋 (𝑠, 𝜏)|

×






𝜅 (𝜏, Φ (𝜏)) − 𝜅



(𝜏, Φ (𝜏))






𝑑𝜏

+ 𝜀 (𝑘 + 1) ∑

𝑠<𝜏
𝑖





𝑋 (𝑠, 𝜏

𝑖
)





×




𝜅 (𝜏
𝑖
− 0,Φ (𝜏

𝑖
− 0))

−𝜅


(𝜏
𝑖
− 0,Φ (𝜏

𝑖
− 0))







≤ 𝜀 (𝑘 + 1)






𝜅 − 𝜅







× ∫

+∞

𝑠

|𝑋 (𝑠, 𝜏)|




𝑦 (𝜏) − 𝑢 (𝜏, 𝑥 (𝜏))





𝑑𝜏

+ 𝜀 (𝑘 + 1)






𝜅 − 𝜅






∑

𝑠<𝜏
𝑖





𝑋 (𝑠, 𝜏

𝑖
)





×




𝑦 (𝜏
𝑖
− 0) − 𝑢 (𝜏

𝑖
− 0, 𝑥 (𝜏

𝑖
− 0))






≤ 𝜀 (𝑘 + 1)






𝜅 − 𝜅







] 

𝑦 − 𝑢 (𝑠, 𝑥)






1 − 𝜀] (𝑘 + 1)

= 𝑘






𝜅 − 𝜅











𝑦 − 𝑢 (𝑠, 𝑥)





.

(48)

Besides





L𝜅 (𝑠, 𝑥, 𝑦)





+ 𝜀 ((𝑘 + 1) ‖𝜅‖ + 1)

× ∫

+∞

𝑠

|𝑋 (𝑠, 𝜏)|




𝑦 (𝜏) − 𝑢 (𝜏, 𝑥 (𝜏))





𝑑𝜏

+ 𝜀 ((𝑘 + 1) ‖𝜅‖ + 1)

× ∑

𝑠<𝜏
𝑖





𝑋 (𝑠, 𝜏

𝑖
)









𝑦 (𝜏
𝑖
− 0) − 𝑢 (𝜏

𝑖
− 0, 𝑥 (𝜏

𝑖
− 0))






≤

𝜀] ((𝑘 + 1) ‖𝜅‖ + 1)
1 − 𝜀] (𝑘 + 1)





𝑦 − 𝑢 (𝑠, 𝑥)






= (𝑘 ‖𝜅‖ +

𝑘

𝑘 + 1

)




𝑦 − 𝑢 (𝑠, 𝑥)





.

(49)

If

‖𝜅‖ ≤ 𝑘
1
=

𝑘

1 − 𝑘
2
=

𝜀]
√1 − 4𝜀]

, (50)

then ‖ L𝜅 ‖≤ 𝑘
1
. We have thatL is a contraction andL𝜅 ∈

M
1
. It follows that there is only one solution satisfying the

functional equationL𝜅 = 𝜅. In addition for 𝑡 ≥ 𝑠

𝜅 (𝑡, Φ (𝑡))

= ∫

+∞

𝑡

𝑋(𝑡, 𝜏) (𝑓 (𝜏, Φ (𝜏))

− 𝑓 (𝜏, 𝑥 (𝜏) + 𝜅 (𝜏, Φ (𝜏)) ,

𝑢 (𝜏, 𝑥 (𝜏) + 𝜅 (𝜏, Φ (𝜏))))) 𝑑𝜏

+ ∑

𝑡<𝜏
𝑖

𝑋(𝑡, 𝜏
𝑖
)

× (𝑝
𝑖
(Φ (𝜏
𝑖
− 0))

− 𝑝
𝑖
(𝑥 (𝜏
𝑖
− 0) + 𝜅 (𝜏

𝑖
− 0,Φ (𝜏

𝑖
− 0)) ,

𝑢 (𝜏
𝑖
− 0, 𝑥 (𝜏

𝑖
− 0) + 𝜅 (𝜏

𝑖
− 0,Φ (𝜏

𝑖
− 0)))))

= 𝑋 (𝑡, 𝑠) 𝜅 (𝑠, 𝑥, 𝑦)

− ∫

𝑡

𝑠

𝑋(𝑡, 𝜏)

× (𝑓 (𝜏, Φ (𝜏))

− 𝑓 (𝜏, 𝑥 (𝜏) + 𝜅 (𝜏, Φ (𝜏)) ,

𝑢 (𝜏, 𝑥 (𝜏) + 𝜅 (𝜏, Φ (𝜏))))) 𝑑𝜏

− ∑

𝑠<𝜏
𝑖
≤𝑡

𝑋(𝑡, 𝜏
𝑖
) (𝑝
𝑖
(Φ (𝜏
𝑖
− 0))

− 𝑝
𝑖
(𝑥 (𝜏
𝑖
− 0) + 𝜅 (𝜏

𝑖
− 0,Φ (𝜏

𝑖
− 0)) ,

𝑢 (𝜏
𝑖
− 0, 𝑥 (𝜏

𝑖
− 0)

+𝜅 (𝜏
𝑖
− 0,Φ (𝜏

𝑖
− 0)))))
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= −𝑥 (𝑡) + 𝑋 (𝑡, 𝑠) (𝑥 + 𝜅 (𝑠, 𝑥, 𝑦))

+ ∫

𝑡

𝑠

𝑋(𝑡, 𝜏)

× 𝑓 (𝜏, 𝑥 (𝜏) + 𝜅 (𝜏, Φ (𝜏)) ,

𝑢 (𝜏, 𝑥 (𝜏) + 𝜅 (𝜏, Φ (𝜏)))) 𝑑𝜏

+ ∑

𝑠<𝜏
𝑖
≤𝑡

𝑋(𝑡, 𝜏
𝑖
) 𝑝
𝑖

× (𝑥 (𝜏
𝑖
− 0) + 𝜅 (𝜏

𝑖
− 0,Φ (𝜏

𝑖
− 0)) ,

𝑢 (𝜏
𝑖
− 0, 𝑥 (𝜏

𝑖
− 0) + 𝜅 (𝜏

𝑖
− 0,Φ (𝜏

𝑖
− 0)))) .

(51)

Let

𝜁 (𝑡) = 𝑥 (𝑡) + 𝜅 (𝑡, Φ (𝑡)) , (52)

where 𝜁(𝑠) = 𝑥 + 𝜅(𝑠, 𝑥, 𝑦). It follows that 𝜁(𝑡) is a solution of
(12) and





𝜁 (𝑡) − 𝑥 (𝑡)






= |𝜅 (𝑡, Φ (𝑡))| ≤

𝜀]
√1 − 4𝜀]





𝑦 (𝑡) − 𝑢 (𝑡, 𝑥 (𝑡))





.

(53)

This completes the proof of the theorem.

7. Stability of the Impulsive Equations

We assume in addition that

𝜇 = sup
𝑠

∫

+∞

𝑠

|𝑌 (𝑡, 𝑠)| 𝑑𝑡 + sup
𝑠

∑

𝜏
𝑖
>𝑠





𝑌 (𝜏
𝑖
− 0, 𝑠)





< +∞.

(54)

Note that in case 𝐵(𝑡) = 𝐵 and 𝐷
𝑖
= 0 we have 𝜇 =

∫

+∞

0

|𝑒
𝐵𝑡

|𝑑𝑡.

Theorem 6. Let 4𝜀] < 1 and 2𝜀𝜇 < 1 + √1 − 4𝜀]. Then the
following estimation is valid:

∫

+∞

𝑠





𝑦 (𝑡) − 𝑢 (𝑡, 𝑥 (𝑡))





𝑑𝑡

+ ∑

𝑠<𝜏
𝑖





𝑦 (𝜏
𝑖
− 0) − 𝑢 (𝜏

𝑖
− 0, 𝑥 (𝜏

𝑖
− 0))






≤

𝜇




𝑦 − 𝑢 (𝑠, 𝑥)






1 − 𝜀𝜇 (𝑘 + 1)

.

(55)

Proof. Since

𝑘 + 1 =

1 − √1 − 4𝜀]
2𝜀]

=

2

1 + √1 − 4𝜀]
,

2𝜀𝜇 < 1 + √1 − 4𝜀],

(56)

we get

1 − 𝜀𝜇 (𝑘 + 1) = 1 −

2𝜀𝜇

1 + √1 − 4𝜀𝜇

> 0. (57)

From Theorem 4 of behaviour of solutions, we get
inequality (40).Then doing the integration and summing up,
inequality (55) is obtained.

Definition 7. A trivial solution of impulsive equation (1) is
integral stable if for all 𝜀

1
> 0 there exists a 𝛿 > 0 such that for

all |𝑥| < 𝛿 and |𝑦| < 𝛿 and 𝑡 ≥ 𝑠 one has

∫

𝑡+1

𝑡

|𝑥 (𝜏)| 𝑑𝜏 < 𝜀
1
, ∫

𝑡+1

𝑡





𝑦 (𝜏)





𝑑𝜏 < 𝜀

1
. (58)

Definition 8. A trivial solution of impulsive equation (1) is
asymptotically integral stable if it is integral stable and if there
exists a 𝛿 > 0 such that for all |𝑥| < 𝛿 and |𝑦| < 𝛿 one has

lim
𝑡→+∞

∫

𝑡+1

𝑡

|𝑥 (𝜏)| 𝑑𝜏 = 0, lim
𝑡→+∞

∫

𝑡+1

𝑡





𝑦 (𝜏)





𝑑𝜏 = 0.

(59)

Theorem 9. Let 4]𝜀 < 1 and 2𝜀𝜇 < 1 + √1 − 4𝜀]. The
trivial solution of impulsive equation (1) is integral stable,
asymptotically integral stable, or integral unstable if and only if
the trivial solution of impulsive equation (12) is integral stable,
asymptotically integral stable, or integral unstable.

Proof. Suppose that the trivial solution of the system (12) is
integral stable. Then for every 𝜀

1
> 0, there is a 𝛿

1
> 0 such

that for all |𝜁(𝑠)| < 𝛿
1
and 𝑡 ≥ 𝑠 we have

∫

𝑡+1

𝑡





𝜁 (𝜏)





𝑑𝜏 <

𝜀
1

2

. (60)

Let |𝑥| < 𝛿 and |𝑦| < 𝛿 where

𝛿 < min{
1 − 𝜀𝜇 (𝑘 + 1)

2𝜇 (𝑘
1
+ 1)

𝜀
1
, 𝛿
1
} . (61)

Then for 𝑡 ≥ 𝑠 we get

∫

𝑡+1

𝑡





𝜁 (𝜏) − 𝑥 (𝜏)





𝑑𝜏

≤ 𝑘
1
∫

𝑡+1

𝑡





𝑦 (𝜏) − 𝑢 (𝜏, 𝑥 (𝜏))





𝑑𝜏

≤

𝜇𝑘
1
(𝑘 + 1)

1 − 𝜀𝜇 (𝑘 + 1)

𝛿 <

𝜀
1

2

,

∫

𝑡+1

𝑡





𝑦 (𝜏) − 𝑢 (𝜏, 𝜁 (𝜏))





𝑑𝜏

≤ ∫

𝑡+1

𝑡





𝑦 (𝜏) − 𝑢 (𝜏, 𝑥 (𝜏))





𝑑𝜏

+ ∫

𝑡+1

𝑡





𝑢 (𝜏, 𝑥 (𝜏)) − 𝑢 (𝜏, 𝜁 (𝜏))





𝑑𝜏

≤ (1 + 𝑘𝑘
1
) ∫

𝑡+1

𝑡





𝑦 (𝜏) − 𝑢 (𝜏, 𝑥 (𝜏))





𝑑𝜏

≤

𝜇 (1 + 𝑘𝑘
1
) (𝑘 + 1)

1 − 𝜀𝜇 (𝑘 + 1)

𝛿 <

𝜀
1

2

.

(62)
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Therefore

∫

𝑡+1

𝑡

|𝑥 (𝜏)| 𝑑𝜏

≤ ∫

𝑡+1

𝑡





𝑥 (𝜏) − 𝜁 (𝜏)





𝑑𝜏

+ ∫

𝑡+1

𝑡





𝜁 (𝜏)





𝑑𝜏 < 𝜀

1
,

∫

𝑡+1

𝑡





𝑦 (𝜏)





𝑑𝜏

≤ ∫

𝑡+1

𝑡





𝑦 (𝜏) − 𝑢 (𝜏, 𝜁 (𝜏))





𝑑𝜏

+ ∫

𝑡+1

𝑡





𝑢 (𝜏, 𝜁 (𝜏))






<

(𝑘 + 1) 𝜀
1

2

< 𝜀
1
.

(63)

Suppose that the trivial solution of the system (12) is
asymptotically integral stable. Then

lim
𝑡→+∞

∫

𝑡+1

𝑡





𝜁 (𝜏)





𝑑𝜏 = 0. (64)

It follows that

lim
𝑡→+∞

∫

𝑡+1

𝑡

|𝑥 (𝜏)| 𝑑𝜏

≤ lim
𝑡→+∞

∫

𝑡+1

𝑡





𝑥 (𝜏) − 𝜁 (𝜏)





𝑑𝜏

+ lim
𝑡→+∞

∫

𝑡+1

𝑡





𝜁 (𝜏)





𝑑𝜏 = 0,

(65)

lim
𝑡→+∞

∫

𝑡+1

𝑡





𝑦 (𝜏)





𝑑𝜏

≤ lim
𝑡→+∞

∫

𝑡+1

𝑡





𝑦 (𝜏) − 𝑢 (𝜏, 𝑥 (𝜏))





𝑑𝜏

+ lim
𝑡→+∞

∫

𝑡+1

𝑡

|𝑢 (𝜏, 𝑥 (𝜏))| 𝑑𝜏 = 0,

(66)

taking into account that

|𝑢 (𝑡, 𝑥 (𝑡))| ≤ 𝑘 |𝑥 (𝑡)| . (67)

If the trivial solution of (12) is integral unstable, then the
trivial solution of (1) is integral unstable.

If the trivial solution of (1) is integral stable or asymptot-
ically integral stable, then the trivial solution of (12) is also
integral stable or asymptotically integral stable.

Let the trivial solution of (1) be integral unstable; then
the trivial solution of (12) is integral unstable. Otherwise as
before it follows that the trivial solution of (1) is integral
stable. We get a contraction. The theorem is proven.

Theorem 10. Assume that the estimates

𝜇 (𝛽) = sup
𝑠

∫

+∞

𝑠

|𝑌 (𝑡, 𝑠)| 𝑒
𝛽(𝑡−𝑠)

𝑑𝑡

+ sup
𝑠

∑

𝜏
𝑖
>𝑠





𝑌 (𝜏
𝑖
− 0, 𝑠)





𝑒
𝛽(𝜏
𝑖
−𝑠)

< +∞,

|𝑌 (𝑡, 𝑠)| 𝑒
𝛽(𝑡−𝑠)

≤ 𝑀(𝛽) ∀𝑡 ≥ 𝑠

(68)

are satisfied for some 𝛽 ≥ 0. If 4𝜀] < 1 and 2𝜀𝜇(𝛽) < 1 +

√1 − 4𝜀], then




𝑦 (𝑡) − 𝑢 (𝑡, 𝑥 (𝑡))






≤ 𝛼 (𝛽) 𝑒
−𝛽(𝑡−𝑠) 




𝑦 − 𝑢 (𝑠, 𝑥)






for 𝑡 ≥ 𝑠.
(69)

Proof. From Theorem 4 of behaviour of solutions, we get
inequality (40). Multiplying by 𝑒𝛽(𝑡−𝑠) and doing the integra-
tion and summing up, the inequality

∫

+∞

𝑠

𝑒
𝛽(𝑡−𝑠) 




𝑦 (𝑡) − 𝑢 (𝑡, 𝑥 (𝑡))





𝑑𝑡

+ ∑

𝑠<𝜏
𝑖

𝑒
𝛽(𝜏
𝑖
−𝑠) 



𝑦 (𝜏
𝑖
− 0) − 𝑢 (𝜏

𝑖
− 0, 𝑥 (𝜏

𝑖
− 0))






≤

𝜇 (𝛽)




𝑦 − 𝑢 (𝑠, 𝑥)






1 − 𝜀𝜇 (𝛽) (𝑘 + 1)

(70)

is obtained.
Then from inequality (40) for 𝑡 ≥ 𝑠 we get the estimation




𝑦 (𝑡) − 𝑢 (𝑡, 𝑥 (𝑡))






≤ 𝑀 (𝛽) 𝑒
−𝛽(𝑡−𝑠) 




𝑦 − 𝑢 (𝑠, 𝑥)






+ 𝜀 (𝑘 + 1)𝑀 (𝛽) 𝑒
−𝛽(𝑡−𝑠)

× (∫

+∞

𝑠

𝑒
𝛽(𝑟−𝑠) 




𝑦 (𝑟) − 𝑢 (𝑟, 𝑥 (𝑟))





𝑑𝑟

+ ∑

𝑠<𝜏
𝑖





𝑦 (𝜏
𝑖
− 0) − 𝑢 (𝜏

𝑖
− 0, 𝑥 (𝜏

𝑖
− 0))





)

≤ 𝑀(𝛽) 𝑒
−𝛽(𝑡−𝑠)

(1 +

𝜀𝜇 (𝛽) (𝑘 + 1)

1 − 𝜀𝜇 (𝛽) (𝑘 + 1)

)




𝑦 − 𝑢 (𝑠, 𝑥)






= 𝛼 (𝛽) 𝑒
−𝛽(𝑡−𝑠) 




𝑦 − 𝑢 (𝑠, 𝑥)





.

(71)

Theorem 11. Let 4]𝜀 < 1, 2𝜀𝜇 < 1 + √1 − 4𝜀],




𝑦 (𝑡) − 𝑢 (𝑡, 𝑥 (𝑡))





≤ 𝛼





𝑦 − 𝑢 (𝑠, 𝑥)






if 𝑡 ≥ 𝑠, (72)

lim
𝑡→+∞

(𝑦 (𝑡) − 𝑢 (𝑡, 𝑥 (𝑡))) = 0. (73)

The trivial solution of impulsive equation (1) is stable, asymp-
totically stable, or unstable if and only if the trivial solution
of impulsive equation (12) is stable, asymptotically stable, or
unstable.
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Proof. Suppose that the trivial solution of the system (12) is
stable.Then for every 𝜀

1
> 0, there is a 𝛿

1
> 0 such that for all

|𝜁(𝑠)| < 𝛿
1
and 𝑡 ≥ 𝑠 we have |𝜁(𝑡)| < 𝜀

1
/2.

Let |𝑥| < 𝛿 and |𝑦| < 𝛿 where

𝛿 < min{ 𝜀
1

2𝛼 (𝑘
1
+ 1) (𝑘 + 1)

, 𝛿
1
} . (74)

Then for 𝑡 ≥ 𝑠 we get




𝜁 (𝑡) − 𝑥 (𝑡)






≤ 𝑘
1





𝑦 (𝑡) − 𝑢 (𝑡, 𝑥 (𝑡))






≤ 𝛼𝑘
1
(𝑘 + 1) 𝛿 <

𝜀
1

2

,





𝑦 (𝑡) − 𝑢 (𝑡, 𝜁 (𝑡))






≤




𝑦 (𝑡) − 𝑢 (𝑡, 𝑥 (𝑡))






+




𝑢 (𝑡, 𝑥 (𝑡)) − 𝑢 (𝑡, 𝜁 (𝑡))






≤ (1 + 𝑘𝑘
1
)




𝑦 (𝑡) − 𝑢 (𝑡, 𝑥 (𝑡))






≤ 𝛼 (1 + 𝑘𝑘
1
) (𝑘 + 1) 𝛿 <

𝜀
1

2

.

(75)

Therefore

|𝑥 (𝑡)| ≤




𝑥 (𝑡) − 𝜁 (𝑡)





+




𝜁 (𝑡)





< 𝜀
1
,





𝑦 (𝑡)





≤




𝑦 (𝑡) − 𝑢 (𝑡, 𝜁 (𝑡))





+




𝑢 (𝑡, 𝜁 (𝑡))






<

(𝑘 + 1) 𝜀
1

2

< 𝜀
1
.

(76)

Suppose that the trivial solution of the system (12) is
asymptotically stable. Then

lim
𝑡→+∞

𝜁 (𝑡) = 0. (77)

It follows that

lim
𝑡→+∞

𝑥 (𝑡) = lim
𝑡→+∞

(𝑥 (𝑡) − 𝜁 (𝑡)) + lim
𝑡→+∞

𝜁 (𝑡) = 0,

lim
𝑡→+∞

𝑦 (𝑡) = lim
𝑡→+∞

(𝑦 (𝑡) − 𝑢 (𝑡, 𝑥 (𝑡)))

+ lim
𝑡→+∞

𝑢 (𝑡, 𝑥 (𝑡)) = 0.

(78)

If the trivial solution of (12) is unstable, then the trivial
solution of (1) is unstable.

If the trivial solution of (1) is stable or asymptotically
stable, then the trivial solution of (12) is also stable or
asymptotically stable.

Let the trivial solution of (1) be unstable; then the trivial
solution of (12) is unstable. Otherwise as before it follows that
the trivial solution of (1) is stable. We get a contraction. The
theorem is proven.

Remark 12. Let 𝜂(𝑡) = |𝑦(𝑡) − 𝑢(𝑡, 𝑥(𝑡))| be uniformly
continuous on 𝑡 ∈ [𝑠, +∞) and let improper integral
∫

+∞

𝑠

𝜂(𝑡)𝑑𝑡 converge. Then lim
𝑡→+∞

𝜂(𝑡) = 0 [13, page 32].

Remark 13. If we replace assumption (54) by the stronger one

𝜇
1
= ∫

+∞

0

sup
𝑠

|𝑌 (𝑡 + 𝑠, 𝑠)| 𝑑𝑡

+ ∑

𝜏
𝑖
>0

sup
𝑠





𝑌 (𝑠 + 𝜏

𝑖
− 0, 𝑠)





< +∞,

(79)

then for 𝑡 ≥ 𝑠 it is possible to prove that |𝑌(𝑡, 𝑠)| ≤

𝐾 exp(−𝜆(𝑡 − 𝑠)), where 𝐾 ≥ 1 and 𝜆 > 0. Further, if 𝜀 > 0

is sufficiently small, then using Gronwall’s lemma for all 𝑡 ≥ 𝑠
the following estimation is valid:





𝑦 (𝑡) − 𝑢 (𝑡, 𝑥 (𝑡))





≤ 𝐾𝑒
−𝜆
1
(𝑡−𝑠) 




𝑦 − 𝑢 (𝑠, 𝑥)





, (80)

where 0 < 𝜆
1
< 𝜆.
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By the critical point theory, infinitely many 4𝜎-periodic solutions are obtained for the system of delay differential equations ̇𝑥(𝑡) =

−𝑓(𝑥(𝑡 − 𝜎)), where 𝜎 ∈ (0, +∞) and 𝑓 ∈ 𝐶(R𝑛, R𝑛

). It is shown that all the periodic solutions derived here are brought about by
the time delay.

1. Introduction

This paper is concerned with the existence of periodic
solutions to the system of delay differential equations

̇𝑥 (𝑡) = −𝑓 (𝑥 (𝑡 − 𝜎)) , (1)

where 𝜎 ∈ (0, +∞) and 𝑓 ∈ 𝐶(R𝑛

,R𝑛

).
Delay differential equations have widely been applied

to describe the dynamics phenomena in both natural and
manmade processes such as chemistry, physics, engineering,
and economics. The existence of the periodic solutions for
delay differential equations has been extensively investigated
by using various methods, including fixed point theorems
[1–5], Hopf bifurcation theorems [6–8], variational methods
[9–14], the methods of differential inequalities [15–21], and
other effective approaches (e.g., see [22–24]). In [25–31], the
minimal periods of the periodic solutions to Lipschitzian
differential equations are estimated through the Lipschitz
constants (see Remark 4).

Theuse of variationalmethods in the study of 4𝜎-periodic
solutions of system (1) having a variational structure was
introduced in 2005 by Guo and Yu [9]. Assume that
(F

1
) 𝑓 is odd in 𝑥; that is, 𝑓(−𝑥) = −𝑓(𝑥), for all 𝑥 ∈ R𝑛;

(F
2
) there exists 𝐹 ∈ 𝐶

1

(R𝑛

,R) such that 𝐹
𝑥
(𝑥) = 𝑓(𝑥),

for all 𝑥 ∈ R𝑛, where 𝐹
𝑥
denotes the gradient of 𝐹.

In [9], the authors obtained the multiplicity results for
periodic solutions to (1) in the case that 𝑓 is asymptotically
linear. Later, the existence of the periodic solution of (1) was
investigated by using Morse theory and Galerkin methods
[10]. For the other relative investigations, we refer the reader
to [11–14].

Many practical problems, such as nonlinear population
growth models and control systems working with potentially
explosive chemical reactions, can be transformed into the
form of (1). For example, by the change of variables 𝑦 =

𝑎 tanh(𝑎𝑥), the following generalized food-limited popula-
tion model

̇𝑦 (𝑡) = −𝜃 sign (𝑦 (𝑡 − 1)) 

𝑦 (𝑡 − 1)






𝛾

(𝑎
2

− 𝑦
2

(𝑡)) (2)

is transformed equivalently into (1) with 𝑛 = 1, 𝑓(𝑥) =
𝜃𝑎

𝛾 sign(𝑥)| tanh(𝑎𝑥)|𝛾, and 𝜎 = 1, where 𝜃 and 𝑎 are positive
numbers. When 𝛾 = 1, 𝑓

(0) = 𝜃𝑎
2. It is known from [24]

that, with the slope 𝑓

(0) increasing and tending to infinity,
the number of the periodic solutions of (2) increases and
tends to infinity. Naturally, one would conjecture that when
0 < 𝛾 < 1, (2) possesses infinitely many periodic solutions,
since in this case lim

𝑥→0
𝑓



(𝑥) = +∞.
Motivated by the above observation, in this paper, we

study the existence of infinitely many periodic solutions to
the system (1) under the assumptions (F

1
), (F

2
), and
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(F
3
) there are 1 < 𝛼, 𝛽 < 2 and 𝑑

1
, 𝑟

0
> 0 such that

(i) 0 < (𝑓(𝑥), 𝑥) ⩽ 𝛼𝐹(𝑥), for all 𝑥 ∈ 𝐵
𝑟
0

\ {0};

(ii) 𝑑
1
|𝑓(𝑥)|

𝛽


⩽ 𝐹(𝑥), for all 𝑥 ∈ 𝐵
𝑟
0

,

where 1/𝛽 + 1/𝛽

= 1, 𝐵
𝑟
0

= {𝑥 ∈ R𝑛

: |𝑥| ⩽ 𝑟
0
}.

Here and subsequently, (⋅, ⋅), | ⋅ | denote the inner product
and the standard norm in R𝑛, respectively, and the bold face
0 represents the coordinate origin of R𝑛. The main result of
this paper is stated as follows.

Theorem 1. Assume that (𝐹
1
)–(𝐹

3
) hold. Then (1) possesses a

sequence of nonconstant 4𝜎-periodic solutions {𝑥
𝑚
} satisfying

‖𝑥
𝑚
‖
∞
→ 0 as𝑚 → ∞.

Example 2. When 0 < 𝛾 < 1, it is easy to check that 𝑓(𝑥) =
𝜃𝑎 sign(𝑥)| tanh(𝑎𝑥)|𝛾 satisfies (F

1
)–(F

3
) with 𝛼 = 𝛽 = 1 + 𝛾;

then (2) has a sequence of nonconstant 4-periodic solutions
{𝑥

𝑚
} satisfying ‖𝑥

𝑚
‖
∞
→ 0 as𝑚 → ∞.

Remark 3. Let us compare the result here with that in the case
of ordinary differential equations (ODE). Without the time
delay, (1) reduces to the following system of ODE

𝑥


(𝑡) = 𝑓 (𝑥 (𝑡)) . (3)

Let 𝑥(𝑡) = 𝑥(𝑡; 𝑥
0
) be the solution of (3) satisfying the initial

condition 𝑥(0) = 𝑥
0
̸= 0. Then the derivative of the Lyapunov

function 𝑉(𝑥) = |𝑥|2 along 𝑥(𝑡) reads

𝑑𝑉

𝑑𝑡








(3)

= (−𝑓 (𝑥 (𝑡)) , 𝑥 (𝑡)) . (4)

From (F
3
)-(i), we see that 𝑑𝑉/𝑑𝑡|

(3)
< 0 for 0 < |𝑥| < 𝑟

0
,

which implies that there is no any periodic orbit of (3) across
𝐵
𝑟
0

\ {0}; that is, the trivial solution is an isolated periodic
solution. However, by the above theorem, with the time delay,
the system (1) possesses infinitely many periodic solutions in
any neighborhood of the origin.

Remark 4. Consider the following system of 𝑚th order
functional differential equations:

𝑥
(𝑚)

(𝑡) = 𝑓 (𝑥 (𝜏 (𝑡))) , 𝑡 ∈ R, (5)

where 𝑓 : R𝑛

→ R𝑛 satisfies the Lipschitz condition and
𝜏 : R1

→ R1 is a measurable function. The lower bounds
for the periods of the periodic solutions to (5) and their
special forms are estimated in [25–31]. From this perspective,
Theorem 1 complements the information in the case of non-
Lipschitzian differential equations. For the unique solvability
of the periodic problems on functional differential equations,
we refer the reader to [1, 15–21].

The remainder of this paper is divided into two parts. In
the next section, we state the preliminaries on the variational
structure for (1). In the final section, the proof of Theorem 1
will be given via the Z

2
-genus theory, together with an

approximating argument.

2. Preliminaries

Let 𝐿2

(𝑆
1

,R𝑛

) denote the set of 𝑛-tuples of 2𝜋-periodic
functions which are square integrable. If 𝑥 ∈ 𝐿

2

(𝑆
1

,R𝑛

), it
has a Fourier expansion

𝑥 (𝑡) = 𝑎
0
+ ∑

𝑗∈N

(𝑎
𝑗
cos 𝑗𝑡 + 𝑏

𝑗
sin 𝑗𝑡) , (6)

where 𝑎
𝑖
, 𝑏

𝑗
∈ R𝑛 and the series converges in the space 𝐿2

(𝑆
1

,

R𝑛

). For 𝑥 ∈ 𝐿2

(𝑆
1

,R𝑛

) with its expansion (6), set𝐻 := {𝑥 ∈

𝐿
2

(𝑆
1

,R𝑛

) | ‖𝑥‖
𝐻
< ∞}, where

‖𝑥‖
𝐻
:=




𝑎
0






2

+ ∑

𝑗∈N

(1 + 𝑗) (






𝑎
𝑗







2

+






𝑏
𝑗







2

) . (7)

Then𝐻, equipped with the norm ‖ ⋅ ‖
𝐻
, is a Sobolev space.

On the other hand, for 𝑥 ∈ 𝐻 with its expansion (6), set

‖𝑥‖ :=




𝑎
0






2

+ ∑

𝑗∈N

𝑗 (






𝑎
𝑗







2

+






𝑏
𝑗







2

) . (8)

Then 𝐻 possesses another norm ‖ ⋅ ‖ which is equivalent to
‖ ⋅ ‖

𝐻
. In the following, we always employ ‖ ⋅ ‖ as the norm of

𝐻. The associated inner product with ‖ ⋅ ‖ is denoted by ⟨⋅, ⋅⟩.
Now set

𝐸 := {𝑥 ∈ 𝐻 | 𝑥 (⋅ + 𝜋) = −𝑥 (⋅)} . (9)

Then 𝐸 is a closed subspace of 𝐻 and the Fourier expansion
of 𝑥 ∈ 𝐸 reduces to

𝑥 (𝑡) =

∞

∑

𝑗=1

[𝑎
2𝑗−1

cos (2𝑗 − 1) 𝑡 + 𝑏
2𝑗−1

sin (2𝑗 − 1) 𝑡] . (10)

Thus with 𝑥
1
, 𝑥

2
∈ 𝐸 being expanded as

𝑥
𝑖
(𝑡) =

∞

∑

𝑗=1

[𝑎
(𝑖)

2𝑗−1
cos (2𝑗 − 1) 𝑡 + 𝑏(𝑖)

2𝑗−1
sin (2𝑗 − 1) 𝑡] ,

𝑖 = 1, 2,

(11)

we have

⟨𝑥
1
, 𝑥

2
⟩ =

∞

∑

𝑗=1

(2𝑗 − 1) {(𝑎
(1)

2𝑗−1
, 𝑎

(2)

2𝑗−1
) + (𝑏

(1)

2𝑗−1
, 𝑏

(2)

2𝑗−1
)} .

(12)

For 𝑥, 𝑦 ∈ 𝐸, we call 𝑦 a weak derivative of 𝑥 and denote
it by ̇𝑥 = 𝑦 if

∫

2𝜋

0

(𝑥 (𝑡) , 𝑧


(𝑡)) 𝑑𝑡 = −∫

2𝜋

0

(𝑦 (𝑡) , 𝑧 (𝑡)) 𝑑𝑡,

∀𝑧 ∈ 𝐶
∞

(𝑆
1

,R
𝑛

) .

(13)

Further, for 𝑥 ∈ 𝐶∞

(𝑆
1

,R𝑛

)∩𝐸with its expansion (10), define

𝐴 (𝑥) :=

1

2

∫

2𝜋

0

( ̇𝑥 (𝑡 +

𝜋

2

) , 𝑥 (𝑡)) 𝑑𝑡

=

1

2

∞

∑

𝑗=1

(−1)
𝑗

(2𝑗 − 1) (






𝑎
2𝑗−1







2

+






𝑏
2𝑗−1







2

) .

(14)
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Then it is easy to check that |𝐴(𝑥)| ⩽ ‖𝑥‖2 for 𝑥 ∈ 𝐶∞

(𝑆
1

,

R𝑛

) ∩ 𝐸. Therefore 𝐴 extends to all of 𝐸 as a continuous
quadratic form. This extension will still be denoted by 𝐴.

Let 𝐹 ∈ 𝐶1

(R𝑛

,R) and satisfy

𝐹 (−𝑥) = 𝐹 (𝑥) ,






𝐹 (𝑥)






⩽ 𝐶

1
+ 𝐶

2
|𝑥|

𝑠

, 𝑥 ∈ R
𝑛 (15)

for some 𝑠 ∈ [1,∞). Define

Φ (𝑥) := ∫

2𝜋

0

𝐹 (𝑥 (𝑡)) 𝑑𝑡, 𝑥 ∈ 𝐸 (16)

and 𝐼(𝑥) = 𝐴(𝑥) + Φ(𝑥), 𝑥 ∈ 𝐸. The following lemma is
derived from [9, Lemma 2.2].

Lemma 5 (see [9]). Let 𝐹 ∈ 𝐶1

(R𝑛

,R) and satisfy (15). Then
𝐼 ∈ 𝐶

1

(𝐸,R) and

𝐼


(𝑥) 𝑦 = 𝐴


(𝑥) 𝑦 + ∫

2𝜋

0

(𝐹
𝑥
(𝑥 (𝑡)) , 𝑦 (𝑡)) , 𝑦 ∈ 𝐸,

(17)

where

𝐴


(𝑥) 𝑦 = ∫

2𝜋

0

( ̇𝑥 (𝑡 +

𝜋

2

) , 𝑦 (𝑡)) 𝑑𝑡, 𝑦 ∈ 𝐸. (18)

Moreover, the existence of 2𝜋-periodic solutions 𝑥(𝑡) for

𝑥


(𝑡) = −𝐹
𝑥
(𝑥(𝑡 −

𝜋

2

)) (19)

satisfying 𝑥 ∈ 𝐸 is equivalent to the existence of critical points
of functional 𝐼.

Let {𝑒
1
, . . . , 𝑒

𝑛
} be the orthonormal basis ofR𝑛. For 𝑘 ∈ N,

set

𝐸
+
(𝑘) := span {cos [(4𝑘 − 1) 𝑡] 𝑒

𝑖
, sin [(4𝑘 − 1) 𝑡] 𝑒

𝑖
:

𝑖 = 1, 2, . . . , 𝑛} ,

𝐸
−
(𝑘) := span {cos [(4𝑘 − 3) 𝑡] 𝑒

𝑖
, sin [(4𝑘 − 3) 𝑡] 𝑒

𝑖
:

𝑖 = 1, 2, . . . , 𝑛} .

(20)

For 𝑙, 𝑚 ∈ N ∪ {+∞}, define

𝑉
±

𝑙
= ⊕

𝑙

𝑘=1
𝐸

±
(𝑘), 𝑉

𝑚

𝑙
= 𝑉

−

𝑙
⊕ 𝑉

+

𝑚
, (21)

where the closure is of 𝐸 sense. Set𝑉±

:= 𝑉
±

+∞
; then 𝐸 = 𝑉+

⊕

𝑉
−. In the rest of this paper, this decomposition will always

be referred to when a point 𝑥 ∈ 𝐸 is written as 𝑥 = 𝑥+

+ 𝑥
−,

where 𝑥±

∈ 𝑉
±.

Remark 6. In view of (12), (14), and (18), we see that

𝐴 (𝑥) =

1

2

(




𝑥
+




2

−




𝑥
−




2

) (22)

and that

𝐴


(𝑥) 𝑦 = ⟨𝑥
+

, 𝑦
+

⟩ − ⟨𝑥
−

, 𝑦
−

⟩ , 𝑥, 𝑦 ∈ 𝐸. (23)

The following lemma is derived from [32, Lemma 2.1].

Lemma 7 (see [32]). For each 𝑠 ∈ [1,∞) there is 𝛾
𝑠
> 0 such

that

‖𝑥‖
𝑠
⩽ 𝛾

𝑠
𝑚

−1/𝑠

‖𝑥‖ (24)

for all 𝑥 ∈ (𝑉𝑚−1

𝑚−1
)
⊥ with𝑚 ⩾ 2, the orthogonal complement in

𝐸, where (and below) ‖ ⋅ ‖
𝑠
denotes the usual 𝐿𝑠-norm.

3. Proof of Theorem 1

Without loss of generality we assume that 𝜎 = 𝜋/2 since,
under the change of variables 𝑦(𝑡) = 𝑥(2𝜎𝑡/𝜋), (1) can be
transformed into the system

̇𝑦 (𝑡) = −
̃
𝑓(𝑦(𝑡 −

𝜋

2

)) , (1


)

where ̃𝑓(𝑦) = (2𝜎/𝜋)𝑓(𝑦) still satisfies (F
1
–F

3
) with 𝑓 being

replaced by ̃𝑓.
Let 𝜒 ∈ 𝐶∞

(R, [0, 1]) be such that 𝜒(𝑠) = 0 for 𝑠 ⩽ 𝑟
0
/2,

𝜒(𝑠) = 1 for 𝑠 ⩾ 𝑟
0
, and 𝜒

(𝑠) > 0 for 𝑠 ∈ (𝑟
0
/2, 𝑟

0
). Define

𝐹 : R𝑛

→ R by

𝐹 (𝑥) := (1 − 𝜒 (|𝑥|)) 𝐹 (𝑥) + 𝜒 (|𝑥|)𝑀
0
|𝑥|

𝛼

, (25)

where𝑀
0
= inf{𝐹(𝑥)/𝑟𝛼

0
: 𝑟

0
/2 ⩽ |𝑥| ⩽ 𝑟

0
}.

Let 𝛼

> 0 be such that 1/𝛼 + 1/𝛼

= 1. By (F
3
) we get

0 < (𝐹
𝑥
(𝑥) , 𝑥) ⩽ 𝛼𝐹 (𝑥) , ∀𝑥 ∈ R

𝑛

, (26)

𝐹 (𝑥) ⩾

{

{

{

𝐶
1






𝐹
𝑥
(𝑥)







𝛽


, |𝑥| ⩽ 1,

𝐶
1






𝐹
𝑥
(𝑥)







𝛼


, |𝑥| > 1,

(27)

where (and below) 𝐶
𝑗
’s stand for positive constants.

Lemma 8. Let 𝐹 : R𝑛

→ R be defined by (25); then 1 < 𝛽 <
𝛼 < 2, 𝐹 ∈ 𝐶1

(R𝑛

,R), and

𝐶
2
|𝑥|

𝛼

⩽ 𝐹 (𝑥) ⩽ {

𝐶
3
|𝑥|

𝛽

, |𝑥| ⩽ 1,

𝐶
3
|𝑥|

𝛼

, |𝑥| > 1.

(28)

Proof. From (25), it is easy to see that 𝐹 ∈ 𝐶1

(R𝑛

,R). Nowwe
start to prove (28). Let𝑀 be such a constant that | ln𝐹(𝑥) −
𝛼 ln |𝑥|| ⩽ 𝑀 for 𝑥 ∈ 𝑆

1
≡ 𝜕𝐵

1
. For 𝑥 ∈ R𝑛, |𝑥| ⩽ 1, set

𝑥
0
= 𝑥/|𝑥|; then 𝑥

0
∈ 𝑆

1
. Define 𝑔(𝑡) = ln𝐹(𝑡𝑥

0
) − 𝛼 ln |𝑡𝑥

0
|,

𝑡 ∈ (0, 1]. Then, by (26),

𝑔


(𝑡) = (

𝐹
𝑥
(𝑡𝑥

0
)

𝐹 (𝑡𝑥
0
)

, 𝑥
0
) − 𝛼 ⩽ 0, (29)

which implies that 𝑔(|𝑥|) ⩾ 𝑔(1); that is,

ln𝐹 (𝑥) − 𝛼 ln |𝑥| ⩾ ln𝐹 (𝑥
0
) − 𝛼 ln 


𝑥
0





⩾ −𝑀. (30)

It follows that 𝐹(𝑥) ⩾ 𝑒−𝑀|𝑥|𝛼 for |𝑥| ⩽ 1, which, combining
with (25), leads to the inequality on the left hand of (28) with
𝐶

2
being chosen adequately.
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Again, for 𝑥 ∈ R𝑛, |𝑥| ⩽ 1, set 𝑥
0
= 𝑥/|𝑥| and define

ℎ(𝑡) = (𝐹(𝑡𝑥
0
))

1/𝛽

−𝑡|𝑥
0
|/(𝛽𝐶

1/𝛽


1
), 𝑡 ∈ [0, 1].Then by the first

inequality in (27),

ℎ


(𝑡) =

1

𝛽

(

(𝐹
𝑥
(𝑡𝑥

0
) , 𝑥

0
)

(𝐹 (𝑡𝑥
0
))

1/𝛽

−

1

𝐶
1/𝛽


1





𝑥
0





)

⩽





𝑥
0






𝛽

(






𝐹
𝑥
(𝑡𝑥

0
)







(𝐹 (𝑡𝑥
0
))

1/𝛽

−

1

𝐶
1/𝛽


1

) < 0.

(31)

Thus ℎ(|𝑥|) ⩽ ℎ(0) = 0, which leads to 𝐹(𝑥) ⩽ 𝐶


3
|𝑥|

𝛽,
where 𝐶

3
= 1/(𝛽𝐶

1/𝛽


1
)
𝛽. In the same way, from the second

inequality in (27), we can arrive at 𝐹(𝑥) ⩽ 𝐶

3
|𝑥|

𝛼 for |𝑥| >
1, where the constant 𝐶

3
only depends on 𝛼 and 𝐶

1
. With

𝐶
3
= max{𝐶

3
, 𝐶



3
}, the inequalities on the right hand of (28)

hold.Thuswe get (28), which implies that𝐶
2
|𝑥|

𝛼

⩽ 𝐶
3
|𝑥|

𝛽 for
|𝑥| ⩽ 1 and that 1 < 𝛽 < 𝛼 < 2. The proof is complete.

Now we consider the functional

𝐼 (𝑥) = 𝐴 (𝑥) + ∫

2𝜋

0

𝐹 (𝑥) 𝑑𝑡, 𝑥 ∈ 𝐸. (32)

Lemma 9. 𝐼 satisfies (𝑃𝑆) condition; that is, every sequence
{𝑥

𝑘
} ⊂ 𝐸 such that {𝐼(𝑥

𝑘
)} is bounded and 𝐼(𝑥

𝑘
) → 0 as

𝑘 → ∞ has a convergent subsequence.

Proof. By Lemma 5, for 𝑥 ∈ 𝐸, 𝐼(𝑥) is defined by

𝐼


(𝑥) 𝑦 = 𝐴


(𝑥) 𝑦 + ∫

2𝜋

0

(𝐹
𝑥
(𝑥) , 𝑦) 𝑑𝑡, ∀𝑦 ∈ 𝐸. (33)

To verify that 𝐼 satisfies (PS) condition, we suppose |𝐼(𝑥
𝑘
)| ⩽

𝐶
4
and 𝐼(𝑥

𝑘
) → 0 as 𝑘 → ∞. Note that, for large 𝑘,

|𝐼


(𝑥
𝑘
)𝑥| ⩽ ‖𝑥‖. Thus for large 𝑘 and 𝑥 = 𝑥

𝑘
, from (32) and

(33),

𝐶
4
+ ‖𝑥‖ ⩾ 𝐼 (𝑥) −

1

2

𝐼


(𝑥) 𝑥

= ∫

2𝜋

0

[𝐹 (𝑥) −

1

2

(𝐹
𝑥
(𝑥) , 𝑥)] 𝑑𝑡.

(34)

Noticing that 1 < 𝛽 < 𝛼 < 2, we see from (25) that, for all
𝑥 ∈ R𝑛,

(𝐹
𝑥
(𝑥) , 𝑥) ⩾ 𝐶

5
max {|𝑥|𝛼, |𝑥|𝛽} − 𝐶

6
, (35)

which, combining with (26) and (34), implies

𝐶
4
+ ‖𝑥‖ ⩾ (𝛼

−1

− 2
−1

)∫

2𝜋

0

(𝐹
𝑥
(𝑥) , 𝑥) 𝑑𝑡

⩾ 𝐶
7
max {‖𝑥‖𝛼

𝛼
, ‖𝑥‖

𝛽

𝛽
} − 𝐶

8
,

(36)

max {‖𝑥‖𝛼
𝛼
, ‖𝑥‖

𝛽

𝛽
} ⩽ 𝐶

9
(‖𝑥‖ + 1) . (37)

Next for large 𝑘, taking 𝑥 = 𝑥
𝑘
and 𝜍 = 𝑥+

𝑘
in











∫

2𝜋

0

(𝐹
𝑥
(𝑥) , 𝜍) 𝑑𝑡 + 𝐴



(𝑥) 𝜍











=






𝐼


(𝑥) 𝜍






⩽ ‖𝜍‖ (38)

and using (23), (27), and (28) and theHölder inequality (1/𝛼+
1/𝛼



= 1, 1/𝛽 + 1/𝛽

= 1), we get





𝑥
+




2

⩽











∫

2𝜋

0

(𝐹
𝑥
(𝑥) , 𝑥

+

) 𝑑𝑡











+




𝑥
+




⩽ 𝐶
10
(∫

|𝑥(𝑡)|>1

|𝑥|
𝛼/𝛼





𝑥
+



𝑑𝑡 + ∫

|𝑥(𝑡)|⩽1

|𝑥|
𝛽/𝛽





𝑥
+



𝑑𝑡)

+




𝑥
+




⩽ 𝐶
10
(‖𝑥‖

𝛼/𝛼


𝛼





𝑥
+


𝛼
+ ‖𝑥‖

𝛽/𝛽


𝛽





𝑥
+


𝛽
) +





𝑥
+




⩽ 𝐶
11
(‖𝑥‖

𝛼/𝛼


𝛼
+ ‖𝑥‖

𝛽/𝛽


𝛽
+ 1)





𝑥
+



,

(39)

where the last inequality holds since 𝐸 is compactly embed-
ded in 𝐿𝑠

(𝑆
1

,R𝑛

) for 𝑠 ⩾ 1. It follows from (36) that





𝑥
+



⩽ 𝐶

12
(‖𝑥‖

1/𝛼


+ ‖𝑥‖
1/𝛽


+ 1) . (40)

Similarly, (40) works with 𝑥+ being replaced by 𝑥−. Combin-
ing these inequalities shows

‖𝑥‖ ⩽ 𝐶
13
(‖𝑥‖

1/𝛼


+ ‖𝑥‖
1/𝛽


+ 1) , (41)

which implies that {𝑥
𝑘
} is bounded in 𝐸.

Let Φ be defined by (16). By [33, Proposition B.37],
{Φ



(𝑥
𝑘
)} is precompact in 𝐸. Moreover, from (23) and (33),

𝐼


(𝑥
𝑘
) = 𝑥

+

𝑘
− 𝑥

−

𝑘
+ Φ



(𝑥
𝑘
) . (42)

It follows that {𝑥
𝑘
} has a convergent subsequence. The proof

is complete.

Lemma 10. For each 𝑙 ∈ N, there are 𝜌
𝑙
> 0, 𝑎

𝑙
> 0, and

0 < 𝑏
𝑙
→ 0 such that

(a) 𝐼(𝑥) ⩾ 0, for all 𝑥 ∈ 𝐵
𝜌
𝑙

∩𝑉
+∞

𝑙
and inf 𝐼(𝜕𝑆

𝜌
𝑙

∩𝑉
+∞

𝑙
) ⩾

𝑎
𝑙
, where 𝐵

𝜌
𝑙

= {𝑥 ∈ 𝐸 : ‖𝑥‖ ⩽ 𝜌
𝑙
};

(b) sup 𝐼((𝑉+∞

𝑙−1
)

⊥

) ⩽ 𝑏
𝑙
.

Proof. Noticing that 𝑉+∞

𝑙
= 𝑉

−

𝑙
⊕ 𝑉

+

+∞
and that dim(𝑉−

𝑙
) <

∞, we have, for 𝑥 ∈ 𝐵
𝜌
𝑙

∩ 𝑉
+∞

𝑙
,

‖𝑥‖
𝛼
= sup {∫

𝑆
1

(𝑥 (𝑡) , 𝑦 (𝑡)) 𝑑𝑡 | 𝑦 ∈ 𝐿
𝛼


(𝑆
1

,R
𝑛

) ,




𝑦



𝛼
 =1}

⩾ sup {∫
𝑆
1

(𝑥 (𝑡) , 𝑦 (𝑡)) 𝑑𝑡 | 𝑦 ∈ 𝑉
−

𝑙
,




𝑦



𝛼
 = 1}

= sup {∫
𝑆
1

(𝑥
−

(𝑡) , 𝑦 (𝑡)) 𝑑𝑡 | 𝑦 ∈ 𝑉
−

𝑙
,




𝑦



𝛼
 = 1}

=




𝑥
−


𝛼
⩾ 𝜂

𝑙





𝑥
−



,

(43)
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where 𝜂
𝑙
is a positive constant depending on 𝑙. It follows by

(28) that, for 𝑥 ∈ 𝐵
𝜌
𝑙

∩ 𝑉
+∞

𝑙
,

𝐼 (𝑥) ⩾

1

2





𝑥
+




2

+ 𝐶
2
𝜂
𝑙





𝑥
−




𝛼

−

1

2





𝑥
−




2

=

1

2





𝑥
+




2

+ (𝐶
2
𝜂
𝑙
−

1

2





𝑥
−




2−𝛼

)




𝑥
−




𝛼

,

(44)

which implies (a) by setting 𝜌
𝑙
:= min{1, (𝐶

2
𝜂
𝑙
)
1/(2−𝛼)

} and
𝑎
𝑙
= 𝜌

2

𝑙
(1 + 𝐶

2
𝜂
𝑙
)/2.

Let 𝑥 ∈ (𝑉+∞

𝑙−1
)
⊥. By (28) and Lemma 7,

𝐼 (𝑥) ⩽ 𝐶
3
(‖𝑥‖

𝛼

𝛼
+ ‖𝑥‖

𝛽

𝛽
) −

1

2

‖𝑥‖
2

⩽ 𝐶
16
𝑙
−1

(‖𝑥‖
𝛼

+ ‖𝑥‖
𝛽

) −

1

2

‖𝑥‖
2

⩽ 𝑏
𝑙
:= sup

𝑠≥0

𝑔 (𝑠) ,

(45)

where 𝑔(𝑠) := 𝐶
16
𝑙
−1

(𝑠
𝛼

+ 𝑠
𝛽

) − 𝑠
2

/2. Noticing 1 < 𝛽 ⩽ 𝛼 < 2,
one can see that 𝑏

𝑙
→ 0 as 𝑙 → ∞ and (b) follows.The proof

is complete.

In the following, let Σ denote the family of closed (in 𝐸)
subsets of 𝐸 \ {0} symmetric with respect to the origin, and

𝛾 : Σ → N ∪ {0,∞} , (46)

the Z
2
-genus map (see [33]). For 𝑙, 𝑚 ∈ N, set

Σ
𝑚

𝑙
= {𝐴 ∈ Σ : 𝐴 ⊂ 𝑉

𝑚

+∞
, 𝛾 (𝐴) ⩾ 𝑛 (𝑙 + 𝑚)} , (47)

and define

𝑐
𝑙,𝑚
= sup

𝐴∈Σ
𝑚

𝑙

inf
𝑥∈𝐴

𝐼 (𝑢) . (48)

Lemma 11. For all 𝑙, 𝑚 ∈ N, 𝑐
𝑙,𝑚

is a critical value of 𝐼 and

𝑎
𝑙
⩽ 𝑐

𝑙,𝑚
⩽ 𝑏

𝑙
. (49)

Proof. Wefirst prove that (49) holds. For each𝑚 ∈ N, let 𝜌
𝑙
be

chosen as that in Lemma 10; then it follows by Lemma 10(a)
that inf 𝐼(𝜕𝑆

𝜌
𝑙

∩ 𝑉
+∞

𝑙
) ⩾ 𝑎

𝑙
. Denote 𝐴 = 𝜕𝑆

𝜌
𝑙

∩ 𝑉
𝑚

𝑙
; then

𝛾(𝐴) = 𝑛(𝑚 + 𝑙) and 𝐴 ∈ Σ𝑚

𝑙
. Since 𝐴 ⊂ 𝜕𝑆

𝜌
𝑙

∩ 𝑉
+∞

𝑙
, we have

𝑐
𝑙,𝑚
⩾ inf

𝑥∈
̃
𝐴

𝐼 (𝑥) ⩾ inf 𝐼 (𝜕𝑆
𝜌
𝑙

∩ 𝑉
+∞

𝑙
) ⩾ 𝑎

𝑙
. (50)

On the other hand, for every 𝐴 ∈ Σ𝑚

𝑙
, by the property of

genus, 𝐴 ∩ (𝑉+∞

𝑙−1
)
⊥

̸=⌀, which, from Lemma 10(b), leads to
inf

𝑥∈𝐴
𝐼(𝑥) ⩽ 𝑏

𝑙
for every 𝐴 ∈ Σ

𝑚

𝑙
. Thus 𝑐

𝑙,𝑚
⩽ 𝑏

𝑙
and (49)

holds.
By (F

1
) and (25), 𝐹(𝑥) is even with respect to 𝑥, which

implies that 𝐼 is even. We claim that 𝑐 = 𝑐
𝑙,𝑚

is a critical point
of 𝐼. Otherwise, there exists 𝜖 > 0, such that there is no any
critical point in the interval (𝑐 − 𝜖, 𝑐 + 𝜖). By the definition of
𝑐
𝑙,𝑚
, there exists 𝐴 ∈ Σ𝑚

𝑙
, such that

inf
𝑥∈𝐴

𝐼 (𝑥) > 𝑐 − 𝜖. (51)

For 𝑎 ∈ R, denote 𝐼𝑎 = {𝑥 ∈ 𝐸 : 𝐼(𝑥) ⩾ 𝑎}. Use a positive
rather than a negative gradient flow [33, Remark A.17], we
get 𝜂 ∈ 𝐶([0, 1] × 𝐸, 𝐸) such that 𝜂(1, ⋅) is odd and

𝜂 (1, 𝐼
𝑐−𝜖

) ⊂ 𝐼
𝑐+𝜖

. (52)

Since 𝐴 ⊂ 𝐼𝑐−𝜖, we have 𝜂(1, 𝐴) ⊂ 𝐼𝑐+𝜖; that is,

inf
𝑥∈𝜂(1,𝐴)

𝐼 (𝑥) ⩾ 𝑐 + 𝜖. (53)

On the other hand, by the property of genus, we know
that 𝛾(𝜂(1, 𝐴)) ∈ Σ𝑚

𝑙
, which, by the definition of 𝑐, leads to

𝑐 ⩾ inf
𝑥∈𝜂(1,𝐴)

𝐼 (𝑥) ⩾ 𝑐 + 𝜖. (54)

This contradiction implies that 𝑐
𝑙,𝑚

is a critical value of 𝐼. The
proof is complete.

Now we are in a position to give the following proof.

Proof of Theorem 1. In view of Lemma 11, let 𝑥
𝑙,𝑚

∈ 𝑉
𝑚

+∞
be

such that

𝐼 (𝑥
𝑙,𝑚
) = 𝑐

𝑙,𝑚
, 𝐼



(𝑥
𝑙,𝑚
) = 0. (55)

Then by (PS) condition, along a subsequence as 𝑚 → ∞,
𝑥
𝑙,𝑚
→ 𝑥

𝑙
∈ 𝐸 such that

𝑎
𝑙
⩽ 𝐼 (𝑥

𝑙
) ⩽ 𝑏

𝑙
, 𝐼



(𝑥
𝑙
) = 0, (56)

which implies that 𝑥
𝑙
is nonzero. Moreover, by Lemma 5,

𝑥


𝑙
(𝑡) = −𝐹

𝑥
(𝑥

𝑙
(𝑡 −

𝜋

2

)) . (57)

We claim that, for sufficiently large 𝑙, 𝑥
𝑙
solves (1). In fact,

from (26) and (56)

𝑏
𝑙
⩾ 𝐼 (𝑥

𝑙
) = 𝐼 (𝑥

𝑙
) −

1

2

𝐼


(𝑥
𝑙
) 𝑥

𝑙

⩾ (1 −

𝛼

2

)∫

2𝜋

0

𝐹 (𝑥
𝑙
) 𝑑𝑡.

(58)

By (27), (58), and Hölder inequality





𝑥
+

𝑙






2

= ∫

2𝜋

0

(𝐹
𝑥
(𝑥

𝑙
) , 𝑥

+

𝑙
) 𝑑𝑡

⩽




𝑥
+

𝑙




𝛼
(∫

2𝜋

0






𝐹
𝑥
(𝑥

𝑙
)







𝛼


𝑑𝑡)

1/𝛼


+




𝑥
+

𝑙




𝛽
(∫

2𝜋

0






𝐹
𝑥
(𝑥

𝑙
)







𝛽


𝑑𝑡)

1/𝛽


⩽ 𝐶
17





𝑥
+

𝑙





(∫

2𝜋

0

𝐹 (𝑥
𝑙
) 𝑑𝑡)

1/𝛼


+ 𝐶
18





𝑥
+

𝑙





(∫

2𝜋

0

𝐹 (𝑥
𝑙
) 𝑑𝑡)

1/𝛽


⩽ (𝐶
17
𝑏
1/𝛼


𝑙
+ 𝐶

18
𝑏
1/𝛽


𝑙
)




𝑥
+



.

(59)
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Similarly, the above inequality works with 𝑥+

𝑙
replaced by 𝑥−

𝑙
.

These inequalities yield





𝑥
𝑙





≤ 𝐶

19
𝑏
1/𝛼


𝑙
+ 𝐶

20
𝑏
1/𝛽


𝑙
. (60)

Since 𝑏
𝑙
→ 0 as 𝑙 → ∞, it follows that





𝑥
𝑙





→ 0 as 𝑙 → ∞. (61)

Furthermore, from (27) and (57), we have

∫

2𝜋

0





̇𝑥
𝑙
(𝑡)





2

𝑑𝑡 = ∫

2𝜋

0






𝐹
𝑥
(𝑥

𝑙
)







2

𝑑𝑡

⩽ 𝐶
21
(∫

2𝜋

0

[𝐹 (𝑥
𝑙
)]

2/𝛽


𝑑𝑡 +∫

2𝜋

0

[𝐹 (𝑥
𝑙
)]

2/𝛼


𝑑𝑡) .

(62)

It follows from (58) that ‖ ̇𝑥
𝑙
‖
2
→ 0 as 𝑙 → ∞. Recalling

(61), we get




𝑥
𝑙




𝑊
1,2 → 0 as 𝑙 → ∞, (63)

which implies that ‖𝑥
𝑙
‖
∞

→ 0 as 𝑙 → 0. Thus for 𝑚
sufficiently large, ‖𝑥

𝑙
‖
∞
< 𝑟

0
/2 and therefor 𝐹

𝑥
(𝑥

𝑙
) = 𝐹

𝑥
(𝑥

𝑙
).

It follow from (57) that, for 𝑙 sufficiently large, 𝑥
𝑙
solves (1). In

addition, by (1) and (F
3
)(i), the only constant solution of (1)

is the trivial solution. Then (56) yields that 𝑥
𝑙
is nonconstant

and the proof of Theorem 1 is complete.
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It is proved that any first-order globally periodic linear inhomogeneous autonomous difference equation defined by a linear operator
with closed range in a Banach space has an equilibrium.This result is extended for higher order linear inhomogeneous system in a
real or complex Euclidean space. The work was highly motivated by the early works of Smith (1934, 1941) and the papers of Kister
(1961) and Bas (2011).

1. Introduction

Let𝑋 be a set and let 𝑝 be a positive integer. It is said that the
transformation 𝑇 : 𝑋 → 𝑋 is 𝑝-periodic if

𝑇
𝑝

:= 𝑇 ∘ ⋅ ⋅ ⋅ ∘ 𝑇 = 𝑖𝑑
𝑋
, (1)

where 𝑖𝑑
𝑋
is the identical function on 𝑋 and 𝑝 is the least

positive integer with this property. It follows from (1) that 𝑇
is a bijection. If there is a topology on𝑋 and 𝑇 is continuous,
then (1) implies that 𝑇 is a homeomorphism.

The following question was posed by Smith (see [1]): does
any continuous periodic transformation of a Euclidean 𝑛-
space always admit a fixed point? Smith knew that the answer
is true if the period𝑝 of the transformation is a prime number
(see [2]) or a power of a prime number (see [1]). Moreover,
Smith was able to answer the question affirmatively when
𝑛 ≤ 3 and for suitably regular transformations, when 𝑛 = 4.
But it was shown by Kister (see [3]) that there exist periodic
transformations of a Euclidean space without fixed points.
Kister’s example is based on the results in the paper [4].

Special periodic transformations can be derived from
difference equations.

Consider the 𝑠th order difference equation:

𝑥 (𝑛) = ℎ (𝑥 (𝑛 − 1) , . . . , 𝑥 (𝑛 − 𝑠)) 𝑛 ≥ 0, (2)

where,

(G) 𝑠 is a positive integer,𝑋 is a set, and ℎ : 𝑋𝑠 → 𝑋.

It is clear that the solutions of (2) are uniquely determined
by their initial values:

𝑥 (𝑛) = 𝜑 (𝑛) , −𝑠 ≤ 𝑛 ≤ −1, (3)

where 𝜑(𝑛)∈𝑋. The unique solution of (2) and (3) is denoted
by 𝑥(𝜑) = (𝑥(𝜑)(𝑛))

𝑛≥−𝑠
, where 𝜑 := (𝜑(−𝑠), . . . , 𝜑(−1))𝑇 ∈

𝑋
𝑠.
We give some basic definitions about the periodicity of

(2).

Definition 1. Assume (G).

(a) A sequence V = (V(𝑛))
𝑛≥−𝑠

in 𝑋 is called periodic if
there is a positive integer 𝑝 such that V is 𝑝-periodic,
which means that V(𝑛 + 𝑝) = V(𝑛) for all 𝑛 ≥ −𝑠.

(b) We say that (2) is globally periodic if there is a positive
integer 𝑝 ≥ 𝑠 for which the equation is globally 𝑝-
periodic; that is, every solution of it is 𝑝-periodic.

(c) We say that (2) is globally 𝑝-periodic with prime
period 𝑝 if it is globally 𝑝-periodic and 𝑝 is the least
positive integer with this property.
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It is easy to see that (2) is globally 𝑝-periodic with prime
period 𝑝 if and only if the transformation 𝑇 : 𝑋

𝑠

→ 𝑋
𝑠

defined by

𝑇 (𝑥
−𝑠
, . . . , 𝑥

−1
)

:= (𝑥
−𝑠+1

, . . . , 𝑥
−2
, ℎ (𝑥
−𝑠
, . . . , 𝑥

−1
))

(4)

is 𝑝-periodic.
About periodicity of general difference equations, see [5,

6]. Periodicity of linear difference equations is considered in
[7].

We recall that the solution (𝑥(𝑛))
𝑛≥−𝑠

of (2) is a steady
state solution if 𝑥(𝑛) = V(𝑛 ≥ −𝑠), where V ∈ 𝑋 is an
equilibrium of (2); that is, V obeys

V = ℎ (V, . . . , V) . (5)

It is obvious that V ∈ 𝑋 is an equilibrium of (2) exactly if
(V, . . . , V) is a fixed point of the transformation 𝑇 given in (4).

Even if there is a metric on 𝑋 and ℎ is continuous, it is
still an open problem to determine whether (2) has or not an
equilibrium point, or equivalently, the transformation (4) has
a fixed point, if (2) is globally periodic.

In this paper we solve this problem for some linear
equations.

Let K stand for either the field of real numbers R or
the field of complex numbers C. Throughout this paper, the
term vector space in which the scalar field is not explicitly
mentioned will refer to a vector space over R or over C.

Consider the 𝑠th order inhomogeneous linear difference
equation:

𝑥 (𝑛) =

𝑠

∑

𝑖=1

𝐿
𝑖
(𝑥 (𝑛 − 𝑖)) + 𝑏, 𝑛 ≥ 0, (6)

where,

(A) 𝑠 is a positive integer,𝑋 is a vector space, 𝐿
𝑖
: 𝑋 → 𝑋

is a linear transformation (1 ≤ 𝑖 ≤ 𝑠), and 𝑏 ∈ 𝑋 is a
vector.

The 𝑠th order homogeneous linear difference equation
associated (6) is

𝑥 (𝑛) =

𝑠

∑

𝑖=1

𝐿
𝑖
(𝑥 (𝑛 − 𝑖)) , 𝑛 ≥ 0. (7)

Clearly, if that (6) is globally 𝑝-periodic, the difference
of any two solutions of it is also 𝑝-periodic. On the other
hand, the general solution of the inhomogeneous equation
(6) can be written as the sum of the general solution of the
homogeneous equation (7) and an arbitrarily fixed particular
solution of the inhomogeneous equation. Thus the global
𝑝-periodicity of the inhomogeneous equation implies the
global 𝑝-periodicity of the related homogeneous equation.
One can easily see that the opposite statement is also true
if the inhomogeneous equation has a steady state solution
which is obviously 𝑝-periodic for any 𝑝 ≥ 1.

From this we conclude the following.

Conclusion. If (6) has an equilibrium, then (6) and (7) both
behave in the same way regarding the global periodicity; that
is, they both are globally periodic or both are not globally
periodic.

The crux in the application of the above self-evident
statement is that not all autonomous inhomogeneous linear
difference equations have an equilibrium. But this crux is
eliminated by the main theorems of this work in two special
cases of (6).

In the first result𝑋 is finite dimensional.

Theorem 2. Consider the system of the 𝑠th order inhomoge-
neous linear difference equations:

𝑥 (𝑛) =

𝑠

∑

𝑖=1

𝐴
𝑖
𝑥 (𝑛 − 𝑖) + 𝑏, 𝑛 ≥ 0, (8)

where,

(𝐵) 𝑠 is a positive integer, 𝐴
𝑖
∈ K𝑑×𝑑 (1 ≤ 𝑖 ≤ 𝑠) are

matrices, and 𝑏 ∈ K𝑑 is vector.

If (8) is globally periodic, then it has an equilibrium.

Let 𝑋 be a vector space. 𝐼 and 𝑂 mean the identity and
the zero operator on𝑋, respectively. If 𝐿 : 𝑋 → 𝑋 is a linear
transformation, we define the kernel and the image of 𝐿 in the
usual way:

ker (𝐿) := {𝑥 ∈ 𝑋 | 𝐿 (𝑥) = 0} ,

im (𝐿) := {𝐿 (𝑥) | 𝑥 ∈ 𝑋} .
(9)

In the next result first-order equations are investigated.

Theorem 3. Consider the first order inhomogeneous linear
difference equation:

𝑥 (𝑛) = 𝐿 (𝑥 (𝑛 − 1)) + 𝑏, 𝑛 ≥ 0, (10)

where,

(𝐶) 𝐿 is a bounded linear operator of the Banach space 𝑋
into itself such that im(𝐼 − 𝐿) is closed and 𝑏 ∈ 𝑋 is a
vector.

If (10) is globally periodic, then it has an equilibrium.

2. Existence of an Equilibrium in an
Abstract First-Order Inhomogeneous
Linear Equation

In this section we proveTheorem 3.
First, we need the following lemma about global period-

icity.

Lemma 4. Consider the first order inhomogeneous linear
difference equation:

𝑥 (𝑛) = 𝐿 (𝑥 (𝑛 − 1)) + 𝑏, 𝑛 ≥ 0, (11)
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where,

(𝐷) 𝑋 is a vector space, 𝐿 : 𝑋 → 𝑋 is a linear
transformation, and 𝑏 ∈ 𝑋 is a vector.

Let 𝑝 be a positive integer. Equation (11) is globally 𝑝 -
periodic if and only if

𝐿
𝑝

= 𝐼,

𝑝−1

∑

𝑖=0

𝐿
𝑖

(𝑏) = 0. (12)

Proof. It is easy to check that (11) is globally 𝑝-periodic if and
only if

(𝐿
𝑝

− 𝐼) 𝜑 +

𝑝−1

∑

𝑖=0

𝐿
𝑖

(𝑏) = 0, (13)

for every 𝜑 ∈ 𝑋, but this condition and (12) are equivalent.

Remark 5. (a) Condition (12) is equivalent to

(

𝑝−1

∑

𝑖=0

𝐿
𝑖

) (𝐼 − 𝐿) = 𝑂, 𝑏 ∈ ker(
𝑝−1

∑

𝑖=0

𝐿
𝑖

) . (14)

The first part of (14) implies that

im (𝐼 − 𝐿) ⊂ ker(
𝑝−1

∑

𝑖=0

𝐿
𝑖

) . (15)

Since (11) has an equilibrium point exactly if the linear
equation

(𝐼 − 𝐿) 𝑥 = 𝑏 (16)

has a solution, it follows from the previous establishments
that the following two assertions are equivalent. Let 𝑝 be a
positive integer.

(i) If (11) is globally 𝑝-periodic, then it has an equilib-
rium.

(ii) If 𝐿𝑝 = 𝐼, then

im (𝐼 − 𝐿) = ker(
𝑝−1

∑

𝑖=0

𝐿
𝑖

) . (17)

(b) 𝐿𝑝 = 𝐼 implies that 𝐿 is invertible. If 𝐼 − 𝐿 is also
invertible, then (16) obviously has a solution (or (17) holds),
and therefore the only interesting case is when 𝐼 − 𝐿 is not
invertible.

We can see that if (11) is globally periodic, then the
problem of the existence or nonexistence of an equilibrium
leads to a pure linear algebraic problem.

Problem. Let 𝑋 be a vector space and let 𝐿 : 𝑋 → 𝑋 be a
linear transformation such that𝐿𝑝 = 𝐼 for some integer𝑝 ≥ 2.
Either prove that

im (𝐼 − 𝐿) = ker(
𝑝−1

∑

𝑖=0

𝐿
𝑖

) , (18)

or give an example when im(𝐼 − 𝐿) is a proper subset of

ker(
𝑝−1

∑

𝑖=0

𝐿
𝑖

) . (19)

If 𝐿 is a linear operator of the Banach space 𝑋 into itself
such that im(𝐼 − 𝐿) is closed, thenTheorem 3 shows that (18)
holds.

Henceforth we need some notations (see [8]).

Definition 6. Let𝑋 be a Banach space.

(a) 𝑋∗ means its dual space, and let (𝑤, 𝑢) denote the
value of the functional 𝑤 ∈ 𝑋

∗ at 𝑢 ∈ 𝑋. For a
bounded linear operator 𝐿 of𝑋 into itself, 𝐿∗ : 𝑋∗ →
𝑋
∗ denotes its adjoint operator.

(b) Suppose that𝑀 is a subspace of𝑋 and𝑁 is a subspace
of𝑋∗. Their annihilators are defined as follows:

𝑀
⊥

:= {𝑤 ∈ 𝑋
∗

| (𝑤, 𝑢) = 0, 𝑢 ∈ 𝑀} ,

⊥

𝑁 := {𝑢 ∈ 𝑋 | (𝑤, 𝑢) = 0, 𝑤 ∈ 𝑁} .

(20)

In the proof of Theorem 3 the following result will be
used, which is related to the Fredholm alternative (see [9]).

Lemma 7. Let 𝑋 be a Banach space and let 𝐿 be a bounded
linear operator of 𝑋 into itself such that im(𝐼 − 𝐿) is closed.
The equation (𝐼 − 𝐿)𝑥 = 𝑏 is solvable for given 𝑏 ∈ 𝑋 if and
only if 𝑏 ∈⊥(ker(𝐼 − 𝐿∗)).

Proof. It is well known (see [8]) that

⊥

(ker (𝐼 − 𝐿∗)) =
⊥

(im(𝐼 − 𝐿)⊥) , (21)

and ⊥(im(𝐼−𝐿)⊥) is the norm closure of im(𝐼−𝐿) in𝑋. Since
im(𝐼 − 𝐿) is closed,

⊥

(ker (𝐼 − 𝐿∗)) = im (𝐼 − 𝐿) , (22)

which gives the result.

Remark 8. If𝑋 is finite dimensional, then im(𝐼−𝐿) is closed,
since every subspace of 𝑋 is closed. In this case Lemma 7 is
exactly the Fredholm alternative.

Proof of Theorem 3. We can obviously suppose that 𝑝 ≥ 2.
Equation (10) has an equilibrium point exactly if the

linear equation

(𝐼 − 𝐿) 𝑥 = 𝑏 (23)

has a solution. By Lemma 7, it is enough to show that

𝑏 ∈
⊥

(ker (𝐼 − 𝐿∗)) . (24)

To prove (24), assume that

𝑤 ∈ ker (𝐼 − 𝐿∗) . (25)
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Recalling Lemma 4, we have

(𝑤, 𝑏) = (𝐿
∗

(𝑤) , −

𝑝−1

∑

𝑖=1

𝐿
𝑖

(𝑏))

= − (𝑤,

𝑝−1

∑

𝑖=1

𝐿
𝑖+1

(𝑏))

= − (𝑤, 𝑏 +

𝑝−1

∑

𝑖=2

𝐿
𝑖

(𝑏))

= − ⟨𝑤, 𝑏⟩ − (

𝑝−1

∑

𝑖=2

(𝐿
∗

)
𝑖

𝑤, 𝑏) .

(26)

𝑤 = 𝐿
∗

(𝑤) gives 𝑤 = (𝐿∗)𝑖(𝑤). Consequently,

(𝑤, 𝑏) = − (𝑝 − 1) (𝑤, 𝑏) , (27)

which means that (𝑤, 𝑏) = 0.
The proof is complete.

By Remark 8, we have the following.

Corollary 9. Consider the first order inhomogeneous linear
difference equation:

𝑥 (𝑛) = 𝐿 (𝑥 (𝑛 − 1)) + 𝑏, 𝑛 ≥ 0, (28)

where 𝐿 is a linear operator of the finite dimensional space 𝑋
into itself and 𝑏 ∈ 𝑋 is a vector. If (28) is globally periodic, then
it has an equilibrium.

We illustrate by an example that the conditions involved
in Theorem 3 can be satisfied and not only the finite dimen-
sional case.

Example 10. Let 𝐵([0, 1]) be the Banach space of bounded
scalar-valued functions on [0, 1], with the supremum norm





𝑓



∞

:= sup {

𝑓 (𝑡)





| 𝑡 ∈ [0, 1]} . (29)

Define the function 𝛼 ∈ 𝐵([0, 1]) by

𝛼 (𝑡) := {

1, if 𝑡 is rational
−1, if 𝑡 is irrational,

(30)

and introduce the following bounded linear operator 𝐿 on
𝐵([0, 1]):

𝐿 (𝑓) := 𝛼𝑓, 𝑓 ∈ 𝐵 ([0, 1]) . (31)

Then 𝐿2 = 𝐼, 𝐼 − 𝐿 is not invertible (by Remark 5 (b), this
is an interesting case), and

im (𝐼 − 𝐿) = {𝑔 ∈ 𝐵 ([0, 1]) | 𝑔 (𝑡) = 0 if 𝑡 is rational} (32)

is a closed subspace of 𝐵([0, 1]).
It is easy to see that equation

𝑥 (𝑛) = 𝐿 (𝑥 (𝑛 − 1)) + 𝑏,

𝑥, 𝑏 ∈ 𝐵 ([0, 1]) , 𝑛 ≥ 0,

(33)

or equivalently, for every 𝑡 ∈ [0, 1]

𝑥 (𝑛) (𝑡) = 𝛼 (𝑡) 𝑥 (𝑛 − 1) (𝑡) + 𝑏 (𝑡) ,

𝑥, 𝑏 ∈ 𝐵 ([0, 1]) , 𝑛 ≥ 0,

(34)

is globally 2-periodic if and only if 𝑏 ∈ im(𝐼 − 𝐿), and in this
case it has the equlibrium point (1/2)𝑏.

The previous example can be extended if the scalars are
the complex numbers. Let 𝑝 ≥ 3 be an integer, and define the
function 𝛼 ∈ 𝐵([0, 1]) by

𝛼 (𝑡) := {

1, if 𝑡 is rational
𝜀
𝑝
, if 𝑡 is irrational,

(35)

where

𝜀
𝑝
:= 𝑒
(2𝜋/𝑝)𝑖 (36)

is a primitive 𝑝th root of unity. Then 𝐿𝑝 = 𝐼; equation

𝑥 (𝑛) = 𝐿 (𝑥 (𝑛 − 1)) ,

𝑥 ∈ 𝐵 ([0, 1]) , 𝑛 ≥ 0,

(37)

is globally 𝑝-periodic, and it has solutions with prime period
𝑝.

3. The Proof of Theorem 2

We will use the following notations.

Definition 11. Let𝑚 ≥ 1 be an integer.

(a) 𝐵𝑉𝑚,𝑑 will mean the 𝑚𝑑-dimensional real vector
space of block vectors with entries in K𝑑.

(b) The real vector space of 𝑚 × 𝑚 block matrices with
entries inK𝑑×𝑑 will be denoted by𝐵𝑀𝑚,𝑑 (𝐵𝑀𝑚,𝑑 and
K𝑚𝑑×𝑚𝑑 can be treated as being identical).

(c) The zero matrix and the identity matrix in K𝑑×𝑑 are
denoted by 𝑂

𝑑
and 𝐼
𝑑
, respectively.

Let (𝑥(𝑛))
𝑛≥−𝑠

be a given sequence in K𝑑. Then for any
fixed 𝑛 ≥ 0 we introduce an 𝑠𝑑-dimensional state vector:

x
𝑛
= (x
𝑛
(−𝑠) , . . . , x

𝑛
(−1))
𝑇

∈ 𝐵𝑉
𝑠,𝑑

, (38)

defined by x
𝑛
(𝑖) := 𝑥(𝑛 + 𝑖) (−𝑠 ≤ 𝑖 ≤ −1).

As it is well known (see [10]), by using the state vector
notation, (8) may be written as an 𝑠𝑑-dimensional system of
first order difference equations.

Lemma 12. For any 𝜑 = (𝜑(−𝑠), . . . , 𝜑(−1))𝑇 ∈ 𝐵𝑉𝑠,𝑑, 𝑥(𝜑) =
(𝑥(𝜑)(𝑛))

𝑛≥−𝑠
is the solution of (8) and (3) exactly if

(x
𝑘
(𝜑))
𝑘≥1

= ((x
𝑘
(𝜑) (−𝑠) , . . . , x

𝑘
(𝜑) (−1))

𝑇

)
𝑘≥1

(39)

is the solution of

x
𝑘
= Cx
𝑘−1
+B, 𝑘 ≥ 1,

x
0
= 𝜑,

(40)
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where the companion matrix C ∈ 𝐵𝑀
𝑠,𝑑

K
and the block vector

B can be written in the forms

C =(

𝑂
𝑑

𝐼
𝑑

𝑂
𝑑
. . . 𝑂

𝑑

𝑂
𝑑
𝑂
𝑑

𝐼
𝑑

. . . 𝑂
𝑑

...
...

... d
...

𝑂
𝑑
𝑂
𝑑

𝑂
𝑑
. . . 𝐼
𝑑

𝐴
𝑠
𝐴
𝑠−1

𝐴
𝑠−2

. . . 𝐴
1

), (41)

B =(

0

0

...
0

𝑏

). (42)

Another companion matrix is developed in [11].
There is a one-to-one correspondence between the global

periodicity of (8) and that of (40) and also between equilib-
rium of (8) and that of (40).

Lemma 13. (a) Let𝑝 ≥ 𝑠 be an integer. Equation (8) is globally
𝑝 -periodic if and only if (40) is also globally 𝑝-periodic.

(b) c ∈ K𝑑 is an equilibrium of (8) exactly if c =

(𝑐, . . . , 𝑐)
𝑇

∈ 𝐵𝑉
𝑠,𝑑 is an equilibrium of (40).

Now we prove the first main result.

Proof of Theorem 2. We can apply Theorem 3 and Lemma 13.
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[11] I. Györi and L. Horváth, “A new view of the 𝑙𝑝-theory for a
system of higher order difference equations,” Computers and
Mathematics with Applications, vol. 59, no. 8, pp. 2918–2932,
2010.



Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2013, Article ID 393892, 10 pages
http://dx.doi.org/10.1155/2013/393892

Research Article
Oscillation Theorems for Even Order Damped Equations with
Distributed Deviating Arguments

Chunxia Gao and Peiguang Wang

College of Electronic and Information Engineering, Hebei University, Baoding 071002, China

Correspondence should be addressed to Peiguang Wang; pgwang@mail.hbu.edu.cn

Received 24 August 2013; Accepted 8 November 2013

Academic Editor: Miroslava Růžičková
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A class of even order damped differential equations with distributed deviating arguments are investigated. Several new criteria that
ensure the oscillation of solutions are obtained. To demonstrate the validity of the results obtained, two examples are given.

1. Introduction and Lemmas

Oscillatory behavior of solutions for different types of
second-order differential equations with damping has been
widely discussed by using different techniques. Here, we
particularly refer the reader to the papers [1–9] and the
references quoted therein. However, very little is known
for the case of higher order damped functional differential
equations with deviating arguments, especially the case with
distributed deviating arguments. In this paper, we deal with
the following class of even order functional differential
equations with damping:

𝑥
(𝑛)

(𝑡) + 𝑝 (𝑡) 𝑥
(𝑛−1)

(𝑡)

+ ∫

𝛽

𝛼

𝑞 (𝑡, 𝜉) 𝑓 (𝑥 [𝑔
1
(𝑡, 𝜉)] , . . . , 𝑥 [𝑔

𝑚
(𝑡, 𝜉)]) 𝑑𝜇 (𝜉) = 0,

𝑡 ≥ 𝑡
0
> 0.

(1)

Our aim is to get the criteria for the oscillatory solutions of
(1).

Throughout this paper, we assume that the following
conditions hold:

(H
1
) 𝑛 is an even positive integer;

(H
2
) 𝑝(𝑡) ∈ 𝐶([𝑡

0
,∞), 𝑅

+
), 𝑞(𝑡, 𝜉) ∈ 𝐶([𝑡

0
,∞)× [𝛼, 𝛽], 𝑅

+
)

is not identically zero on any [𝑇,∞)×[𝛼, 𝛽] for𝑇 ≥ 𝑡
0
,

and

lim
𝑡→∞

∫

𝑡

𝑡
1

exp(−∫

𝑠

𝑡
1

𝑝 (𝜏) 𝑑𝜏) 𝑑𝑠 = ∞, 𝑡
1
≥ 𝑡
0
; (2)

(H
3
) 𝑓(𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑚
) ∈ 𝐶(𝑅

𝑚

, 𝑅) has the same sign as
𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑚
when 𝑢

1
, 𝑢
2
, . . . , 𝑢

𝑚
have the same sign,

𝑔
𝑖
(𝑡, 𝜉) ∈ 𝐶([𝑡

0
,∞) × [𝛼, 𝛽], 𝑅

+
), 𝜇(𝜉) ∈ ([𝛼, 𝛽], 𝑅)

is nondecreasing, and the integral of (1) is a Stieltjes
one.

In the sequel, it will be always assumed that solutions
of (1) exist for any 𝑡

0
≥ 0. A solution 𝑥(𝑡) of (1) is called

eventually positive solution (or negative solution) if there
exists a sufficiently large positive number 𝑡

1
≥ 𝑡
0
, such that

𝑥(𝑡) > 0 (or 𝑥(𝑡) < 0) for all 𝑡 ≥ 𝑡
1
. A nontrivial solution

𝑥(𝑡) of (1) is called oscillatory if it has arbitrary large zeros;
otherwise it is called nonoscillatory. Equation (1) is called
oscillatory if all its solutions are oscillatory.

Remark 1. Since the integral of (1) is a Stieltjes one, it includes
the following equations:

𝑥
(𝑛)

(𝑡) + 𝑝 (𝑡) 𝑥
(𝑛−1)

(𝑡)

+

𝑚

∑

𝑖=1

𝑞
𝑖
(𝑡) 𝑓 (𝑥 [𝑔

1
(𝑡)] , . . . , 𝑥 [𝑔

𝑚
(𝑡)]) = 0,

𝑡 ≥ 𝑡
0
> 0.

(1


)

The following lemmas will be useful to the proof of the
main results to be presented in this paper.
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Lemma 2 (see [10]). Let 𝑢(𝑡) be a positive and n times
differentiable function on R

+
. If 𝑢(𝑛)(𝑡) is of constant sign and

not identically zero on any ray [𝑡
1
, +∞) for 𝑡

1
> 0, then there

exists a 𝑡
𝑢
≥ 𝑡
1
and an integer 𝑙 (0 ≤ 𝑙 ≤ 𝑛), with 𝑛 + 𝑙 even for

𝑢(𝑡)𝑢
(𝑛)

(𝑡) ≥ 0 or 𝑛 + 𝑙 odd for 𝑢(𝑡)𝑢(𝑛)(𝑡) ≤ 0; and for 𝑡 ≥ 𝑡
𝑢
,

𝑢 (𝑡) 𝑢
(𝑘)

(𝑡) > 0, 0 ≤ 𝑘 ≤ 𝑙;

(−1)
𝑘−𝑙

𝑢 (𝑡) 𝑢
(𝑘)

(𝑡) > 0, 𝑙 ≤ 𝑘 ≤ 𝑛.

(3)

Lemma 3 (see [11]). Suppose that the conditions of Lemma 2
are satisfied, and

𝑢
(𝑛−1)

(𝑡) 𝑢
(𝑛)

(𝑡) ≤ 0, 𝑡 ≥ 𝑡
𝑢
, (4)

then there exists a constant 𝜃 ∈ (0, 1) such that for sufficiently
large 𝑡, there exists a constant𝑀

𝜃
> 0 satisfying









𝑢


(

𝑡

2

)









≥ 𝑀
𝜃
𝑡
𝑛−2






𝑢
(𝑛−1)

(𝑡)






. (5)

We say that a function 𝐻 = 𝐻(𝑡, 𝑠) belongs to a function
class Φ, denoted by 𝐻 ∈ Φ, if 𝐻 ∈ 𝐶(𝐷, 𝑅

+
), where 𝐷 =

{(𝑡, 𝑠) : −∞ < 𝑠 ≤ 𝑡 < ∞}, satisfies

(i) 𝐻(𝑡, 𝑡) = 0, for 𝑡 ≥ 𝑡
0
and𝐻(𝑡, 𝑠) > 0, for 𝑡 > 𝑠 ≥ 𝑡

0
;

(ii) partial derivatives 𝜕𝐻/𝜕𝑡 and 𝜕𝐻/𝜕𝑠 exist, and

𝜕𝐻

𝜕𝑡

= ℎ
1
(𝑡, 𝑠) √𝐻 (𝑡, 𝑠),

𝜕𝐻

𝜕𝑠

= −ℎ
2
(𝑡, 𝑠) √𝐻 (𝑡, 𝑠),

(6)

where ℎ
1
, ℎ
2
∈ 𝐿 loc(𝐷, 𝑅).

2. Oscillation Results for
𝑓(𝑢
1
, . . . , 𝑢

𝑚
) with Monotonicity

Throughout this section, we assume that the following condi-
tions hold.

(A
1
) There exist functions 𝜎

𝑖
(𝑡) ∈ 𝐶



([𝑡
0
,∞), (0,∞)),

such that 𝜎
𝑖
(𝑡) = min{𝑡, inf

𝜉∈[𝛼,𝛽]
𝑔
𝑖
(𝑡, 𝜉)}, lim

𝑡→∞

𝜎
𝑖
(𝑡) = ∞, 𝜎

𝑖
(𝑡) > 0, and 𝑖 = 1, 2, . . . , 𝑚.

(A
2
) (𝜕/𝜕𝑢

𝑖
)𝑓(𝑢
1
, . . . , 𝑢

𝑚
) ≡ 𝑓



𝑖
(𝑢
1
, . . . , 𝑢

𝑚
) exists, and

𝑓


𝑖
(𝑢
1
, . . . , 𝑢

𝑚
) ≥ 𝜆

𝑖
> 0 for 𝑢

𝑖
̸=0, 𝑖 = 1, 2, . . . , 𝑚,

where 𝜆
𝑖
> 0 are some constants, and 𝑖 = 1, 2, . . . , 𝑚.

Lemma 4. Let 𝑥(𝑡) be an eventually positive solution of (1).
Then, there exists a sufficiently large 𝑇

0
≥ 𝑡
0
, such that for all

𝑡 ≥ 𝑇
0

𝑥


(𝑡) > 0, 𝑥
(𝑛−1)

(𝑡) > 0, 𝑥
(𝑛)

(𝑡) ≤ 0. (7)

Proof. From the assumption, there exists a sufficiently large
𝑡
1
≥ 𝑡
0
, such that 𝑥(𝑡) > 0 for 𝑡 ≥ 𝑡

1
. Further from (A

1
), there

exists 𝑡
2
≥ 𝑡
1
such that for all 𝑡 ≥ 𝑡

2

𝜎
𝑖
(𝑡) ≥ 𝑡

1
, 𝑔

𝑖
(𝑡, 𝜉) ≥ 𝜎

𝑖
(𝑡) ≥ 𝑡

1
,

𝑖 = 1, 2, . . . , 𝑚; 𝜉 ∈ [𝛼, 𝛽] .

(8)

Hence, for all 𝑡 ≥ 𝑡
2

𝑥 [𝜎
𝑖
(𝑡)] > 0, 𝑥 [𝑔

𝑖
(𝑡, 𝜉)] > 0,

𝑖 = 1, 2, . . . , 𝑚; 𝜉 ∈ [𝛼, 𝛽] ,

(9)

and from (H
3
), we have for all 𝑡 ≥ 𝑡

2
and 𝜉 ∈ [𝛼, 𝛽]

𝑓 (𝑥 [𝜎
1
(𝑡)] , . . . , 𝑥 [𝜎

𝑚
(𝑡)]) > 0,

𝑓 (𝑥 [𝑔
1
(𝑡, 𝜉)] , . . . , 𝑥 [𝑔

𝑚
(𝑡, 𝜉)]) > 0.

(10)

Let

V (𝑡) = exp∫

𝑡

𝑡
2

𝑝 (𝑠) 𝑑𝑠, 𝑤 (𝑡) = 𝑥
(𝑛−1)

(𝑡) V (𝑡) , 𝑡 ≥ 𝑡
2
,

(11)

then it is easy to know that

𝑤


(𝑡) = (𝑥
(𝑛)

(𝑡) + 𝑝 (𝑡) 𝑥
(𝑛−1)

(𝑡)) V (𝑡)

= −∫

𝛽

𝛼

𝑞 (𝑡, 𝜉) 𝑓 (𝑥 [𝑔
1
(𝑡, 𝜉)] , . . . , 𝑥 [𝑔

𝑚
(𝑡, 𝜉)])

× 𝑑𝜇 (𝜉) V (𝑡) ≤ 0,

(12)

which implies that 𝑤(𝑡) is nonincreasing on [𝑡
2
, +∞).

Now, we claim that 𝑥(𝑛−1)(𝑡) ≥ 0, 𝑡 ≥ 𝑡
2
. Otherwise, there

exists 𝑡
3
≥ 𝑡
2
such that 𝑥(𝑛−1)(𝑡

3
) < 0. Therefore,

𝑥
(𝑛−1)

(𝑡) V (𝑡) ≤ 𝑥
(𝑛−1)

(𝑡
3
) V (𝑡
3
) , 𝑡 ≥ 𝑡

3
,

∫

𝑡

𝑡
3

𝑥
(𝑛−1)

(𝜏) 𝑑𝜏 ≤ 𝑥
(𝑛−1)

(𝑡
3
) V (𝑡
3
) ∫

𝑡

𝑡
3

1

V (𝜏)
𝑑𝜏, 𝑡 ≥ 𝑡

3
,

𝑥
(𝑛−2)

(𝑡) ≤ 𝑥
(𝑛−2)

(𝑡
3
) + 𝑥
(𝑛−1)

(𝑡
3
) V (𝑡
3
) ∫

𝑡

𝑡
3

1

V (𝜏)
𝑑𝜏,

𝑡 ≥ 𝑡
3
.

(13)

Using (H
2
), we see that lim

𝑡→+∞
𝑥
(𝑛−2)

(𝑡) = −∞. Ulteriorly,
we can prove lim

𝑡→+∞
𝑥(𝑡) = −∞, which contradicts 𝑥(𝑡) >

0, 𝑡 ≥ 𝑡
1
.

Furthermore, from (1), for all 𝑡 ≥ 𝑡
2
, we have

𝑥
(𝑛)

(𝑡) = −𝑝 (𝑡) 𝑥
(𝑛−1)

(𝑡)

− ∫

𝛽

𝛼

𝑞 (𝑡, 𝜉) 𝑓 (𝑥 [𝑔
1
(𝑡, 𝜉)] , . . . , 𝑥 [𝑔

𝑚
(𝑡, 𝜉)])

× 𝑑𝜇 (𝜉) ≤ 0.

(14)

Thus, from Lemma 2, there exist 𝑇
0
≥ 𝑡
2
and an odd number

𝑙 (0 < 𝑙 < 𝑛), such that for 𝑡 ≥ 𝑇
0
, we have

𝑥
(𝑘)

(𝑡) > 0, 0 ≤ 𝑘 ≤ 𝑙;

(−1)
𝑘−𝑙

𝑥
(𝑘)

(𝑡) > 0, 𝑙 ≤ 𝑘 ≤ 𝑛.

(15)

By choosing 𝑘 = 1 and 𝑛−1, we have 𝑥(𝑡) > 0 and 𝑥
(𝑛−1)

(𝑡) >

0 for 𝑡 ≥ 𝑇
0
. The proof is completed.
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Lemma 5. Let 𝑥(𝑡) be an eventually positive solution of (1).
Then, there exists a sufficiently large 𝑇

0
≥ 𝑡
0
, such that for any

interval [𝑐, 𝑏) ⊂ [𝑇
0
,∞), if let

𝑦 (𝑡) =

𝜌 (𝑡) 𝑥
(𝑛−1)

(𝑡)

𝑓 (𝑥 [𝜎
1
(𝑡) /2] , . . . , 𝑥 [𝜎

𝑚
(𝑡) /2])

, 𝑡 ∈ [𝑐, 𝑏) ,

(16)

where 𝜌(𝑡) ∈ 𝐶


([𝑡
0
,∞), (0,∞)), then for any𝐻 ∈ Φ,

∫

𝑏

𝑐

𝐻(𝑏, 𝑠) 𝜌 (𝑠) (∫

𝛽

𝛼

𝑞 (𝑠, 𝜉) 𝑑𝜇 (𝜉)) 𝑑𝑠

≤ 𝐻 (𝑏, 𝑐) 𝑦 (𝑐) +

1

2

∫

𝑏

𝑐

𝜌 (𝑠)

∑
𝑚

𝑖=1
𝜆
𝑖
𝑀
𝜃
𝜎
𝑛−2

𝑖
(𝑠) 𝜎


𝑖
(𝑠)

× [ℎ
2
(𝑏, 𝑠) − √𝐻(𝑏, 𝑠) (

𝜌


(𝑠)

𝜌(𝑠)

− 𝑝(𝑠))]

2

𝑑𝑠.

(17)

Proof. From (1) and (16), we have that for 𝑡 ∈ [𝑐, 𝑏),

𝑦


(𝑡)

=

𝜌 (𝑡) 𝑥
(𝑛)

(𝑡) + 𝜌


(𝑡) 𝑥
(𝑛−1)

(𝑡)

𝑓 (𝑥 [𝜎
1
(𝑡) /2] , . . . , 𝑥 [𝜎

𝑚
(𝑡) /2])

−

𝑦 (𝑡)

𝑓 (𝑥 [𝜎
1
(𝑡) /2] , . . . , 𝑥 [𝜎

𝑚
(𝑡) /2])

× (

1

2

𝑚

∑

𝑖=1

𝑓


𝑖
(𝑥[

𝜎
1
(𝑡)

2

] , . . . ,

𝑥 [

𝜎
𝑚
(𝑡)

2

]) 𝑥


[

𝜎
𝑖
(𝑡)

2

] 𝜎


𝑖
(𝑡))

= −𝜌 (𝑡)

∫

𝛽

𝛼

𝑞 (𝑡, 𝜉) 𝑓 (𝑥 [𝑔
1
(𝑡, 𝜉)] , . . . , 𝑥 [𝑔

𝑚
(𝑡, 𝜉)]) 𝑑𝜇 (𝜉)

𝑓 (𝑥 [𝜎
1
(𝑡) /2] , . . . , 𝑥 [𝜎

𝑚
(𝑡) /2])

+ (

𝜌


(𝑡)

𝜌 (𝑡)

− 𝑝 (𝑡)) 𝑦 (𝑡)

−

𝑦 (𝑡)

𝑓 (𝑥 [𝜎
1
(𝑡) /2] , . . . , 𝑥 [𝜎

𝑚
(𝑡) /2])

× (

1

2

𝑚

∑

𝑖=1

𝑓


𝑖
(𝑥[

𝜎
1
(𝑡)

2

] , . . . , 𝑥 [

𝜎
𝑚
(𝑡)

2

])

×𝑥


[

𝜎
𝑖
(𝑡)

2

] 𝜎


𝑖
(𝑡)) .

(18)

From Lemma 4, there exists a sufficiently large 𝑇
0
≥ 𝑡
0
such

that 𝑥(𝑡) > 0 and 𝑥
(𝑛)

(𝑡) ≤ 0 for 𝑡 ≥ 𝑇
0
. Further from (A

1
),

for all 𝑡 ≥ 𝑇
0

𝜎
𝑖
(𝑡) ≤ 𝑡, 𝑔

𝑖
(𝑡, 𝜉) ≥ 𝜎

𝑖
(𝑡) ≥

𝜎
𝑖
(𝑡)

2

,

𝑖 = 1, 2, . . . , 𝑚; 𝜉 ∈ [𝛼, 𝛽] .

(19)

Hence, for all 𝑡 ≥ 𝑇
0
, we have

𝑥 [𝑔
𝑖
(𝑡, 𝜉)] ≥ 𝑥 [

𝜎
𝑖
(𝑡)

2

] , 𝑥
(𝑛−1)

[𝜎
𝑖
(𝑡)] ≥ 𝑥

(𝑛−1)

(𝑡) ,

𝑖 = 1, 2, . . . , 𝑚; 𝜉 ∈ [𝛼, 𝛽] .

(20)

In view of (20) and (A
2
), for all 𝑡 ≥ 𝑇

0

𝑓 (𝑥 [𝑔
1
(𝑡, 𝜉)] , . . . , 𝑥 [𝑔

𝑚
(𝑡, 𝜉)])

≥ 𝑓(𝑥 [

𝜎
1
(𝑡)

2

] , . . . , 𝑥 [

𝜎
𝑚
(𝑡)

2

]) , 𝜉 ∈ [𝛼, 𝛽] .

(21)

Thus, for all 𝑡 ≥ 𝑇
0

∫

𝛽

𝛼

𝑞 (𝑡, 𝜉) 𝑓 (𝑥 [𝑔
1
(𝑡, 𝜉)] , . . . , 𝑥 [𝑔

𝑚
(𝑡, 𝜉)]) 𝑑𝜇 (𝜉)

𝑓 (𝑥 [𝜎
1
(𝑡) /2] , . . . , 𝑥 [𝜎

𝑚
(𝑡) /2])

≥ ∫

𝛽

𝛼

𝑞 (𝑡, 𝜉) 𝑑𝜇 (𝜉) .

(22)

Therefore, from (18)–(22) and Lemma 3, we obtain

𝑦


(𝑡) ≤ −𝜌 (𝑡) ∫

𝛽

𝛼

𝑞 (𝑡, 𝜉) 𝑑𝜇 (𝜉) + (

𝜌


(𝑡)

𝜌 (𝑡)

− 𝑝 (𝑡)) 𝑦 (𝑡)

−

𝑥
(𝑛−1)

(𝑡)

𝑓 (𝑥 [𝜎
1
(𝑡) /2] , . . . , 𝑥 [𝜎

𝑚
(𝑡) /2])

× (

1

2

𝑚

∑

𝑖=1

𝜆
𝑖
𝑀
𝜃
𝜎
𝑛−2

𝑖
(𝑡) 𝜎


𝑖
(𝑡))𝑦 (𝑡)

= −𝜌 (𝑡) ∫

𝛽

𝛼

𝑞 (𝑡, 𝜉) 𝑑𝜇 (𝜉) + (

𝜌


(𝑡)

𝜌 (𝑡)

− 𝑝 (𝑡)) 𝑦 (𝑡)

− 𝜌
−1

(𝑡) (

1

2

𝑚

∑

𝑖=1

𝜆
𝑖
𝑀
𝜃
𝜎
𝑛−2

𝑖
(𝑡) 𝜎


𝑖
(𝑡))𝑦

2

(𝑡)

(23)

for all 𝑡 ≥ 𝑇
0
.

Multiplying (23) by 𝐻(𝑡, 𝑠), then integrating it with
respect to 𝑠 from 𝑐 to 𝑡 for 𝑡 ∈ [𝑐, 𝑏) and using (i) and (ii),
we get that

∫

𝑡

𝑐

𝐻(𝑡, 𝑠) 𝜌 (𝑠) (∫

𝛽

𝛼

𝑞 (𝑠, 𝜉) 𝑑𝜇 (𝜉)) 𝑑𝑠

≤ −∫

𝑡

𝑐

𝐻(𝑡, 𝑠) 𝑦


(𝑠) 𝑑𝑠

+ ∫

𝑡

𝑐

𝐻(𝑡, 𝑠) (

𝜌


(𝑠)

𝜌 (𝑠)

− 𝑝 (𝑠)) 𝑦 (𝑠) 𝑑𝑠

− ∫

𝑡

𝑐

𝐻(𝑡, 𝑠) 𝜌
−1

(𝑠) (

1

2

𝑚

∑

𝑖=1

𝜆
𝑖
𝑀
𝜃
𝜎
𝑛−2

𝑖
(𝑠) 𝜎


𝑖
(𝑠))𝑦

2

(𝑠) 𝑑𝑠
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= 𝐻 (𝑡, 𝑐) 𝑦 (𝑐) + ∫

𝑡

𝑐

𝜕𝐻 (𝑡, 𝑠)

𝜕𝑠

𝑦 (𝑠) 𝑑𝑠

+ ∫

𝑡

𝑐

𝐻(𝑡, 𝑠) (

𝜌


(𝑠)

𝜌 (𝑠)

− 𝑝 (𝑠)) 𝑦 (𝑠) 𝑑𝑠

− ∫

𝑡

𝑐

𝐻(𝑡, 𝑠) 𝜌
−1

(𝑠) (

1

2

𝑚

∑

𝑖=1

𝜆
𝑖
𝑀
𝜃
𝜎
𝑛−2

𝑖
(𝑠) 𝜎


𝑖
(𝑠))𝑦

2

(𝑠) 𝑑𝑠

= 𝐻 (𝑡, 𝑐) 𝑦 (𝑐) − ∫

𝑡

𝑐

√𝐻(𝑡, 𝑠)

× [ℎ
2
(𝑡, 𝑠) − √𝐻 (𝑡, 𝑠) (

𝜌


(𝑠)

𝜌 (𝑠)

− 𝑝 (𝑠))]𝑦 (𝑠) 𝑑𝑠

− ∫

𝑡

𝑐

𝐻(𝑡, 𝑠) 𝜌
−1

(𝑠) (

1

2

𝑚

∑

𝑖=1

𝜆
𝑖
𝑀
𝜃
𝜎
𝑛−2

𝑖
(𝑠) 𝜎


𝑖
(𝑠))𝑦

2

(𝑠) 𝑑𝑠

= 𝐻 (𝑡, 𝑐) 𝑦 (𝑐)

+

1

2

∫

𝑡

𝑐

𝜌 (𝑠)

∑
𝑚

𝑖=1
𝜆
𝑖
𝑀
𝜃
𝜎
𝑛−2

𝑖
(𝑠) 𝜎


𝑖
(𝑠)

× [ℎ
2
(𝑡, 𝑠) − √𝐻 (𝑡, 𝑠) (

𝜌


(𝑠)

𝜌 (𝑠)

− 𝑝 (𝑠))]

2

𝑑𝑠

− ∫

𝑡

𝑐

[

[

[

[

[

[

√
𝐻(𝑡, 𝑠)

𝜌 (𝑠)

(

1

2

𝑚

∑

𝑖=1

𝜆
𝑖
𝑀
𝜃
𝜎
𝑛−2

𝑖
(𝑠) 𝜎


𝑖
(𝑠))𝑦 (𝑠)

+

ℎ
2
(𝑡, 𝑠) − √𝐻 (𝑡, 𝑠) ((𝜌



(𝑠) /𝜌 (𝑠)) − 𝑝 (𝑠))

√2𝜌
−1

(𝑠) (∑
𝑚

𝑖=1
𝜆
𝑖
𝑀
𝜃
𝜎
𝑛−2

𝑖
(𝑠) 𝜎


𝑖
(𝑠))

]

]

]

2

𝑑𝑠

≤ 𝐻 (𝑡, 𝑐) 𝑦 (𝑐)

+

1

2

∫

𝑡

𝑐

𝜌 (𝑠)

∑
𝑚

𝑖=1
𝜆
𝑖
𝑀
𝜃
𝜎
𝑛−2

𝑖
(𝑠) 𝜎


𝑖
(𝑠)

× [ℎ
2
(𝑡, 𝑠) − √𝐻 (𝑡, 𝑠) (

𝜌


(𝑠)

𝜌 (𝑠)

− 𝑝 (𝑠))]

2

𝑑𝑠.

(24)

Letting 𝑡 → 𝑏
− in the above, we obtain (17). The proof is

completed.

Lemma 6. Let 𝑥(𝑡) be an eventually positive solution of (1).
Then, there exists a sufficiently large 𝑇

0
≥ 𝑡
0
such that for any

interval (𝑎, 𝑐] ⊂ [𝑇
0
,∞), if let 𝑦(𝑡) be defined by (16) on (𝑎, 𝑐],

then for any𝐻 ∈ Φ,

∫

𝑐

𝑎

𝐻(𝑠, 𝑎) 𝜌 (𝑠) (∫

𝛽

𝛼

𝑞 (𝑠, 𝜉) 𝑑𝜇 (𝜉)) 𝑑𝑠

≤ −𝐻 (𝑐, 𝑎) 𝑦 (𝑐)

+

1

2

∫

𝑐

𝑎

𝜌 (𝑠)

∑
𝑚

𝑖=1
𝜆
𝑖
𝑀
𝜃
𝜎
𝑛−2

(𝑠) 𝜎


𝑖
(𝑠)

× [ℎ
1
(𝑠, 𝑎) + √𝐻 (𝑠, 𝑎) (

𝜌


(𝑠)

𝜌 (𝑠)

− 𝑝 (𝑠))]

2

𝑑𝑠.

(25)
Proof. Similar to the proof of Lemma 5, by multiplying (23)
by𝐻(𝑠, 𝑡), then integrating it with respect to 𝑠 from 𝑡 to 𝑐 for
𝑡 ∈ (𝑎, 𝑐], and then using (i) and (ii), we get that

∫

𝑐

𝑡

𝐻(𝑠, 𝑡) 𝜌 (𝑠) (∫

𝛽

𝛼

𝑞 (𝑠, 𝜉) 𝑑𝜇 (𝜉)) 𝑑𝑠

≤ −∫

𝑐

𝑡

𝐻(𝑠, 𝑡) 𝑦


(𝑠) 𝑑𝑠

+ ∫

𝑐

𝑡

𝐻(𝑠, 𝑡) (

𝜌


(𝑠)

𝜌 (𝑠)

− 𝑝 (𝑠)) 𝑦 (𝑠) 𝑑𝑠

− ∫

𝑐

𝑡

𝐻(𝑠, 𝑡) 𝜌
−1

(𝑠) (

1

2

𝑚

∑

𝑖=1

𝜆
𝑖
𝑀
𝜃
𝜎
𝑛−2

𝑖
(𝑠) 𝜎


𝑖
(𝑠))𝑦

2

(𝑠) 𝑑𝑠

= −𝐻 (𝑐, 𝑡) 𝑦 (𝑐) + ∫

𝑐

𝑡

𝜕𝐻 (𝑠, 𝑡)

𝜕𝑠

𝑦 (𝑠) 𝑑𝑠

+ ∫

𝑐

𝑡

𝐻(𝑠, 𝑡) (

𝜌


(𝑠)

𝜌 (𝑠)

− 𝑝 (𝑠)) 𝑦 (𝑠) 𝑑𝑠

− ∫

𝑐

𝑡

𝐻(𝑠, 𝑡) 𝜌
−1

(𝑠) (

1

2

𝑚

∑

𝑖=1

𝜆
𝑖
𝑀
𝜃
𝜎
𝑛−2

𝑖
(𝑠) 𝜎


𝑖
(𝑠))𝑦

2

(𝑠) 𝑑𝑠

= −𝐻 (𝑐, 𝑡) 𝑦 (𝑐)

+ ∫

𝑐

𝑡

√𝐻(𝑠, 𝑡) [ℎ
1
(𝑠, 𝑡)

+√𝐻 (𝑠, 𝑡) (

𝜌


(𝑠)

𝜌 (𝑠)

− 𝑝 (𝑠))]𝑦 (𝑠) 𝑑𝑠

− ∫

𝑐

𝑡

𝐻(𝑠, 𝑡) 𝜌
−1

(𝑠) (

1

2

𝑚

∑

𝑖=1

𝜆
𝑖
𝑀
𝜃
𝜎
𝑛−2

𝑖
(𝑠) 𝜎


𝑖
(𝑠))𝑦

2

(𝑠) 𝑑𝑠

= −𝐻 (𝑐, 𝑡) 𝑦 (𝑐) +

1

2

∫

𝑐

𝑡

𝜌 (𝑠)

∑
𝑚

𝑖=1
𝜆
𝑖
𝑀
𝜃
𝜎
𝑛−2

𝑖
(𝑠) 𝜎


𝑖
(𝑠)

× [ℎ
1
(𝑠, 𝑡) + √𝐻 (𝑠, 𝑡) (

𝜌


(𝑠)

𝜌 (𝑠)

− 𝑝 (𝑠))]

2

𝑑𝑠

− ∫

𝑐

𝑡

[

[

[

[

[

√
𝐻(𝑠, 𝑡)

𝜌 (𝑠)

(

1

2

𝑚

∑

𝑖=1

𝜆
𝑖
𝑀
𝜃
𝜎
𝑛−2

𝑖
(𝑠) 𝜎


𝑖
(𝑠))𝑦 (𝑠)

−

ℎ
1
(𝑠, 𝑡) + √𝐻 (𝑠, 𝑡) ((𝜌



(𝑠) /𝜌 (𝑠)) − 𝑝 (𝑠))

√2𝜌
−1

(𝑠) (∑
𝑚

𝑖=1
𝜆
𝑖
𝑀
𝜃
𝜎
𝑛−2

𝑖
(𝑠) 𝜎


𝑖
(𝑠))

]

]

]

]

]

]

2

𝑑𝑠
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≤ −𝐻 (𝑐, 𝑡) 𝑦 (𝑐) +

1

2

∫

𝑐

𝑡

𝜌 (𝑠)

∑
𝑚

𝑖=1
𝜆
𝑖
𝑀
𝜃
𝜎
𝑛−2

𝑖
(𝑠) 𝜎


𝑖
(𝑠)

× [ℎ
1
(𝑠, 𝑡) + √𝐻 (𝑠, 𝑡) (

𝜌


(𝑠)

𝜌 (𝑠)

− 𝑝 (𝑠))]

2

𝑑𝑠.

(26)

Letting 𝑡 → 𝑎
+ in the above, we obtain (25). The proof is

completed.

The following theorem is an immediate result from
Lemmas 5 and 6.

Theorem 7. Assume that for each 𝑇 ≥ 𝑡
0
there exist 𝐻 ∈ Φ,

𝜌 ∈ 𝐶


([𝑡
0
,∞), (0,∞)) and 𝑎, 𝑏, 𝑐 ∈ 𝑅, such that 𝑇 ≤ 𝑎 < 𝑐 <

𝑏 and

1

𝐻 (𝑐, 𝑎)

∫

𝑐

𝑎

𝐻(𝑠, 𝑎) 𝜌 (𝑠) (∫

𝛽

𝛼

𝑞 (𝑠, 𝜉) 𝑑𝜇 (𝜉)) 𝑑𝑠

+

1

𝐻 (𝑏, 𝑐)

∫

𝑏

𝑐

𝐻(𝑏, 𝑠) 𝜌 (𝑠) (∫

𝛽

𝛼

𝑞 (𝑠, 𝜉) 𝑑𝜇 (𝜉)) 𝑑𝑠

>

1

2

{

1

𝐻 (𝑐, 𝑎)

∫

𝑐

𝑎

𝜌 (𝑠)

∑
𝑚

𝑖=1
𝜆
𝑖
𝑀
𝜃
𝜎
𝑛−2

𝑖
(𝑠) 𝜎


𝑖
(𝑠)

× [ℎ
1
(𝑠, 𝑎) + √𝐻 (𝑠, 𝑎) (

𝜌


(𝑠)

𝜌 (𝑠)

− 𝑝 (𝑠))]

2

𝑑𝑠

+

1

𝐻 (𝑏, 𝑐)

× ∫

𝑏

𝑐

𝜌 (𝑠)

∑
𝑚

𝑖=1
𝜆
𝑖
𝑀
𝜃
𝜎
𝑛−2

𝑖
(𝑠) 𝜎


𝑖
(𝑠)

×[ℎ
2
(𝑏, 𝑠) − √𝐻 (𝑏, 𝑠) (

𝜌


(𝑠)

𝜌 (𝑠)

− 𝑝 (𝑠))]

2

𝑑𝑠} .

(27)

Then (1) is oscillatory.

Proof. Suppose that (1) has a nonoscillatory solution 𝑥(𝑡).
Without loss of generality, we assume that 𝑥(𝑡) is an even-
tually positive solution of (1). Then from Lemmas 5 and 6,
there exists a sufficiently large 𝑇

0
≥ 𝑡
0
, such that for any

(𝑎, 𝑏) ⊂ [𝑇
0
,∞), and for any 𝑐 ∈ (𝑎, 𝑏), 𝐻 ∈ Φ and

𝜌 ∈ 𝐶


([𝑡
0
,∞), (0,∞)), (17) and (25) hold. By dividing (17)

and (25) by𝐻(𝑏, 𝑐) and𝐻(𝑐, 𝑎), respectively, and then adding
them, we have

1

𝐻 (𝑐, 𝑎)

∫

𝑐

𝑎

𝐻(𝑠, 𝑎) 𝜌 (𝑠) (∫

𝛽

𝛼

𝑞 (𝑠, 𝜉) 𝑑𝜇 (𝜉)) 𝑑𝑠

+

1

𝐻 (𝑏, 𝑐)

∫

𝑏

𝑐

𝐻(𝑏, 𝑠) 𝜌 (𝑠) (∫

𝛽

𝛼

𝑞 (𝑠, 𝜉) 𝑑𝜇 (𝜉)) 𝑑𝑠

≤

1

2

{

1

𝐻 (𝑐, 𝑎)

∫

𝑐

𝑎

𝜌 (𝑠)

∑
𝑚

𝑖=1
𝜆
𝑖
𝑀
𝜃
𝜎
𝑛−2

𝑖
(𝑠) 𝜎


𝑖
(𝑠)

× [ℎ
1
(𝑠, 𝑎) + √𝐻 (𝑠, 𝑎) (

𝜌


(𝑠)

𝜌 (𝑠)

− 𝑝 (𝑠))]

2

𝑑𝑠

+

1

𝐻 (𝑏, 𝑐)

× ∫

𝑏

𝑐

𝜌 (𝑠)

∑
𝑚

𝑖=1
𝜆
𝑖
𝑀
𝜃
𝜎
𝑛−2

𝑖
(𝑠) 𝜎


𝑖
(𝑠)

× [ℎ
2
(𝑏, 𝑠) − √𝐻 (𝑏, 𝑠)

× (

𝜌


(𝑠)

𝜌 (𝑠)

− 𝑝 (𝑠))]

2

𝑑𝑠} ,

(28)

which contradicts the assumption (27) and completes the
proof.

Theorem 8. Assume that for some 𝐻 ∈ Φ, 𝜌 ∈ 𝐶


([𝑡
0
,∞),

(0,∞)) and for each 𝑟 ≥ 𝑡
0
,

lim sup
𝑡→∞

∫

𝑡

𝑟

{𝐻(𝑠, 𝑟) 𝜌 (𝑠) ∫

𝛽

𝛼

𝑞 (𝑠, 𝜉) 𝑑𝜇 (𝜉)

−

𝜌 (𝑠)

2∑
𝑚

𝑖=1
𝜆
𝑖
𝑀
𝜃
𝜎
𝑛−2

𝑖
(𝑠) 𝜎


𝑖
(𝑠)

× [ℎ
1
(𝑠, 𝑟)

+√𝐻 (𝑠, 𝑟) (

𝜌


(𝑠)

𝜌 (𝑠)

− 𝑝 (𝑠))]

2

}𝑑𝑠 > 0,

(29)

lim sup
𝑡→∞

∫

𝑡

𝑟

{𝐻(𝑡, 𝑠) 𝜌 (𝑠) ∫

𝛽

𝛼

𝑞 (𝑠, 𝜉) 𝑑𝜇 (𝜉)

−

𝜌 (𝑠)

2∑
𝑚

𝑖=1
𝜆
𝑖
𝑀
𝜃
𝜎
𝑛−2

𝑖
(𝑠) 𝜎


𝑖
(𝑠)

× [ℎ
2
(𝑡, 𝑠)

−√𝐻 (𝑡, 𝑠) (

𝜌


(𝑠)

𝜌 (𝑠)

− 𝑝 (𝑠))]

2

}𝑑𝑠 > 0.

(30)

Then (1) is oscillatory.

Proof. For any 𝑇 ≥ 𝑡
0
, let 𝑎 = 𝑇. In (29), we choose 𝑟 = 𝑎.

Then there exists 𝑐 > 𝑎 such that

∫

𝑐

𝑎

{𝐻(𝑠, 𝑎) 𝜌 (𝑠) ∫

𝛽

𝛼

𝑞 (𝑠, 𝜉) 𝑑𝜇 (𝜉)
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−

𝜌 (𝑠)

2∑
𝑚

𝑖=1
𝜆
𝑖
𝑀
𝜃
𝜎
𝑛−2

𝑖
(𝑠) 𝜎


𝑖
(𝑠)

× [ℎ
1
(𝑠, 𝑎) + √𝐻 (𝑠, 𝑎) (

𝜌


(𝑠)

𝜌 (𝑠)

− 𝑝 (𝑠))]

2

}𝑑𝑠 > 0.

(31)

In (30), we choose 𝑟 = 𝑐, then there exists 𝑏 > 𝑐 such that

∫

𝑏

𝑐

{𝐻(𝑏, 𝑠) 𝜌 (𝑠) ∫

𝛽

𝛼

𝑞 (𝑠, 𝜉) 𝑑𝜇 (𝜉)

−

𝜌 (𝑠)

2∑
𝑚

𝑖=1
𝜆
𝑖
𝑀
𝜃
𝜎
𝑛−2

𝑖
(𝑠) 𝜎


𝑖
(𝑠)

× [ℎ
2
(𝑏, 𝑠) − √𝐻 (𝑏, 𝑠) (

𝜌


(𝑠)

𝜌 (𝑠)

− 𝑝 (𝑠))]

2

}𝑑𝑠 > 0.

(32)

By dividing (31) and (32) by𝐻(𝑐, 𝑎) and𝐻(𝑏, 𝑐), respectively,
and then adding them, we obtain (27). The conclusion thus
comes fromTheorem 7. The proof is completed.

For the case of 𝐻 := 𝐻(𝑡 − 𝑠) ∈ Φ, we have that
ℎ
1
(𝑡 − 𝑠) = ℎ

2
(𝑡 − 𝑠) and thus denote them by ℎ(𝑡 − 𝑠). The

subclass of Φ containing such 𝐻(𝑡 − 𝑠) is denoted by Φ
0
.

Applying Theorem 7 to Φ
0
, and choosing 𝜌 = 1, we obtain

the following.

Theorem 9. Assume that for each 𝑇 ≥ 𝑡
0
there exist 𝐻 ∈ Φ

0

and 𝑎, 𝑐 ∈ 𝑅 such that 𝑇 ≤ 𝑎 < 𝑐 and

∫

𝑐

𝑎

𝐻(𝑠 − 𝑎) (∫

𝛽

𝛼

[𝑞 (𝑠, 𝜉) + 𝑞 (2𝑐 − 𝑠, 𝜉)] 𝑑𝜇 (𝜉)) 𝑑𝑠

>

1

2

∫

𝑐

𝑎

{

{

{

[ℎ (𝑠 − 𝑎) − 𝑝 (𝑠)√𝐻 (𝑠 − 𝑎)]

2

∑
𝑚

𝑖=1
𝜆
𝑖
𝑀
𝜃
𝜎
𝑛−2

𝑖
(𝑠) 𝜎


𝑖
(𝑠)

+

[ℎ (𝑠 − 𝑎) + 𝑝 (2𝑐 − 𝑠)√𝐻 (𝑠 − 𝑎)]

2

∑
𝑚

𝑖=1
𝜆
𝑖
𝑀
𝜃
𝜎
𝑛−2

𝑖
(2𝑐 − 𝑠) 𝜎



𝑖
(2𝑐 − 𝑠)

}

}

}

𝑑𝑠.

(33)

Then (1) is oscillatory.

Proof. Let 𝑏 = 2𝑐−𝑎.Then𝐻(𝑏−𝑐) = 𝐻(𝑐−𝑎) = 𝐻((𝑏−𝑎)/2),
and for any 𝜑 ∈ 𝐿[𝑎, 𝑏], we have

∫

𝑏

𝑐

𝜑 (𝑠) 𝑑𝑠 = ∫

𝑐

𝑎

𝜑 (2𝑐 − 𝑠) 𝑑𝑠. (34)

Hence

∫

𝑏

𝑐

𝐻(𝑏 − 𝑠) (∫

𝛽

𝛼

𝑞 (𝑠, 𝜉) 𝑑𝜇 (𝜉)) 𝑑𝑠

= ∫

𝑐

𝑎

𝐻(𝑠 − 𝑎) (∫

𝛽

𝛼

𝑞 (2𝑐 − 𝑠, 𝜉) 𝑑𝜇 (𝜉)) 𝑑𝑠,

∫

𝑏

𝑐

[ℎ (𝑏 − 𝑠) + 𝑝 (𝑠)√𝐻 (𝑏 − 𝑠)]

2

∑
𝑚

𝑖=1
𝜆
𝑖
𝑀
𝜃
𝜎
𝑛−2

𝑖
(𝑠) 𝜎


𝑖
(𝑠)

𝑑𝑠

= ∫

𝑐

𝑎

[ℎ (𝑠 − 𝑎) + 𝑝 (2𝑐 − 𝑠)√𝐻 (𝑠 − 𝑎)]

2

∑
𝑚

𝑖=1
𝜆
𝑖
𝑀
𝜃
𝜎
𝑛−2

𝑖
(2𝑐 − 𝑠) 𝜎



𝑖
(2𝑐 − 𝑠)

𝑑𝑠.

(35)
Thus (33) holds and implies that (27) holds for 𝐻 ∈ Φ

0
, 𝜌 =

1 and therefore (1) is oscillatory by Theorem 7. The proof is
completed.

From the above oscillation criteria, we can obtain dif-
ferent sufficient conditions for oscillation of (1) by different
choices of𝐻(𝑡, 𝑠) and 𝜌(𝑠). For example, let

𝐻(𝑡, 𝑠) = (𝑡 − 𝑠)
𝜆

, 𝑡 ≥ 𝑠 ≥ 𝑡
0
, (36)

where 𝜆 > 1 is a constant. Then, 𝐻 ∈ Φ
0
and ℎ(𝑡 − 𝑠) =

𝜆(𝑡 − 𝑠)
(𝜆/2)−1. FromTheorem 8, we have the following result.

Corollary 10. If there exists a function𝜌 ∈ 𝐶


([𝑡
0
,∞), (0,∞))

and a constant 𝜆 > 1 such that for each 𝑟 ≥ 𝑡
0
,

lim sup
𝑡→∞

1

𝑡
𝜆−1

× ∫

𝑡

𝑟

(𝑠 − 𝑟)
𝜆

𝜌 (𝑠)

× {∫

𝛽

𝛼

𝑞 (𝑠, 𝜉) 𝑑𝜇 (𝜉)

−

1

2∑
𝑚

𝑖=1
𝜆
𝑖
𝑀
𝜃
𝜎
𝑛−2

𝑖
(𝑠) 𝜎


𝑖
(𝑠)

× [

𝜆

𝑠 − 𝑟

+ (

𝜌


(𝑠)

𝜌 (𝑠)

− 𝑝 (𝑠) )]

2

}𝑑𝑠 > 0,

lim sup
𝑡→∞

1

𝑡
𝜆−1

× ∫

𝑡

𝑟

(𝑡 − 𝑠)
𝜆

𝜌 (𝑠)

× {∫

𝛽

𝛼

𝑞 (𝑠, 𝜉) 𝑑𝜇 (𝜉)

−

1

2∑
𝑚

𝑖=1
𝜆
𝑖
𝑀
𝜃
𝜎
𝑛−2

𝑖
(𝑠) 𝜎


𝑖
(𝑠)

× [

𝜆

𝑡 − 𝑠

− (

𝜌


(𝑠)

𝜌 (𝑠)

− 𝑝 (𝑠) )]

2

}𝑑𝑠 > 0.

(37)
Then (1) is oscillatory.

3. Oscillation Results for
𝑓(𝑢
1
, . . . , 𝑢

𝑚
) without Monotonicity

Throughout this section we assume that the following condi-
tions hold:
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(A
1
) there exists a function 𝜎(𝑡) ∈ 𝐶



([𝑡
0
,∞), (0,∞))

such that 𝜎(𝑡) = min{𝑡,min
1≤𝑖≤𝑚

{inf
𝜉∈[𝛼,𝛽]

𝑔
𝑖
(𝑡, 𝜉)}},

lim
𝑡→∞

𝜎(𝑡) = ∞, 𝜎(𝑡) > 0.
(A
2
) there exists a constant 𝛾 > 0 and 𝑖

0
∈ {1, 2, . . . , 𝑚}

such that for sufficiently large |𝑢
𝑖
| (𝑖 ̸= 𝑖

0
)

lim inf





𝑢
𝑖
0






→∞











𝑓 (𝑢
1
, . . . , 𝑢

𝑚
)

𝑢
𝑖
0











≥ 𝛾 > 0. (38)

Lemma 11. Let 𝑥(𝑡) be an eventually positive solution of (1).
Then, there exists a sufficiently large 𝑇

0
≥ 𝑡
0
such that for 𝑡 ≥

𝑇
0
, we have

𝑥


(𝑡) > 0, 𝑥
(𝑛−1)

(𝑡) > 0, 𝑥
(𝑛)

(𝑡) ≤ 0. (39)

The proof is similar to that of Lemma 4, thus we omit the
details here.

Lemma 12. Let 𝑥(𝑡) be an eventually positive solution of (1).
Then, there exists a sufficiently large 𝑇

0
≥ 𝑡
0
such that for any

interval [𝑐, 𝑏) ⊂ [𝑇
0
,∞), if let

𝑢 (𝑡) =

𝜌 (𝑡) 𝑥
(𝑛−1)

(𝑡)

𝑥 [𝜎 (𝑡) /2]

, 𝑡 ∈ [𝑐, 𝑏) , (40)

where 𝜌(𝑡) ∈ 𝐶


([𝑡
0
,∞), (0,∞)), then for any𝐻 ∈ Φ,

∫

𝑏

𝑐

𝛾𝐻 (𝑏, 𝑠) 𝜌 (𝑠) (∫

𝛽

𝛼

𝑞 (𝑠, 𝜉) 𝑑𝜇 (𝜉)) 𝑑𝑠

≤ 𝐻 (𝑏, 𝑐) 𝑢 (𝑐)

+

1

2

∫

𝑏

𝑐

𝜌 (𝑠)

𝑀
𝜃
𝜎
𝑛−2

(𝑠) 𝜎

(𝑠)

× [ℎ
2
(𝑏, 𝑠) − √𝐻 (𝑏, 𝑠) (

𝜌


(𝑠)

𝜌 (𝑠)

− 𝑝 (𝑠))]

2

𝑑𝑠.

(41)

Proof. From (1) and (40) we have that for 𝑡 ∈ [𝑐, 𝑏)

𝑢


(𝑡)

=

𝜌 (𝑡) 𝑥
(𝑛)

(𝑡) + 𝜌


(𝑡) 𝑥
(𝑛−1)

(𝑡)

𝑥 [𝜎 (𝑡) /2]

−

𝑢 (𝑡)

2𝑥 [𝜎 (𝑡) /2]

𝑥


[

𝜎 (𝑡)

2

] 𝜎


(𝑡)

= −𝜌 (𝑡)

∫

𝛽

𝛼

𝑞 (𝑡, 𝜉) 𝑓 (𝑥 [𝑔
1
(𝑡, 𝜉)] , . . . , 𝑥 [𝑔

𝑚
(𝑡, 𝜉)]) 𝑑𝜇 (𝜉)

𝑥 [𝜎 (𝑡) /2]

+ (

𝜌


(𝑡)

𝜌 (𝑡)

− 𝑝 (𝑡)) 𝑢 (𝑡) −

𝑥


[𝜎 (𝑡) /2]

2𝑥 [𝜎 (𝑡) /2]

𝜎


(𝑡) 𝑢 (𝑡) .

(42)

From Lemma 11, there exists a sufficiently large 𝑇
0
≥ 𝑡
0
such

that for all 𝑡 ≥ 𝑇
0
(39) hold and further from (A

1
)

𝜎 (𝑡)

2

≤ 𝜎 (𝑡) ≤ 𝑡, 𝑔
𝑖
(𝑡, 𝜉) ≥ 𝜎 (𝑡) ≥

𝜎 (𝑡)

2

,

𝑖 = 1, 2, . . . , 𝑚; 𝜉 ∈ [𝛼, 𝛽] .

(43)

Hence, we have for all 𝑡 ≥ 𝑇
0
,

𝑥
(𝑛−1)

[

𝜎 (𝑡)

2

] ≥ 𝑥
(𝑛−1)

(𝑡) , 𝑥 [𝑔
𝑖
(𝑡, 𝜉)] ≥ 𝑥 [𝜎 (𝑡) /2] ,

𝑖 = 1, 2, . . . , 𝑚; 𝜉 ∈ [𝛼, 𝛽] .

(44)

From (44) and (A
2
), for all 𝑡 ≥ 𝑇

0

𝑓 (𝑥 [𝑔
1
(𝑡, 𝜉)] , . . . , 𝑥 [𝑔

𝑚
(𝑡, 𝜉)])

≥ 𝛾𝑥 [𝑔
𝑖
0

(𝑡, 𝜉)] ≥ 𝛾𝑥 [

𝜎 (𝑡)

2

] , 𝜉 ∈ [𝛼, 𝛽] .

(45)

Thus, for all 𝑡 ≥ 𝑇
0

∫

𝛽

𝛼

𝑞 (𝑡, 𝜉) 𝑓 (𝑥 [𝑔
1
(𝑡, 𝜉)] , . . . , 𝑥 [𝑔

𝑚
(𝑡, 𝜉)]) 𝑑𝜇 (𝜉)

𝑥 [𝜎 (𝑡) /2]

≥ 𝛾∫

𝛽

𝛼

𝑞 (𝑡, 𝜉) 𝑑𝜇 (𝜉) .

(46)

Therefore, from (42)–(46) and Lemma 3, we obtain

𝑢


(𝑡) ≤ −𝛾𝜌 (𝑡) ∫

𝛽

𝛼

𝑞 (𝑡, 𝜉) 𝑑𝜇 (𝜉)

+ (

𝜌


(𝑡)

𝜌 (𝑡)

− 𝑝 (𝑡)) 𝑢 (𝑡)

−

1

2

𝜌
−1

(𝑡)𝑀
𝜃
𝜎
𝑛−2

(𝑡) 𝜎


(𝑡) 𝑢
2

(𝑡) .

(47)

The rest of the proof is similar to that of Lemma 5 and thus
we omit the details here.

Similar to the proof in Section 2, we have the following
results.

Lemma 13. Let 𝑥(𝑡) be an eventually positive solution of (1).
Then, there exists a sufficiently large 𝑇

0
≥ 𝑡
0
such that, for any

interval (𝑎, 𝑐] ⊂ [𝑇
0
,∞), if let 𝑢(𝑡) be defined by (40) on (𝑎, 𝑐],

then for any𝐻 ∈ Φ,

∫

𝑐

𝑎

𝛾𝐻 (𝑠, 𝑎) 𝜌 (𝑠) (∫

𝛽

𝛼

𝑞 (𝑠, 𝜉) 𝑑𝜇 (𝜉)) 𝑑𝑠 ≤ −𝐻 (𝑐, 𝑎) 𝑢 (𝑐)

+

1

2

∫

𝑐

𝑎

𝜌 (𝑠)

𝑀
𝜃
𝜎
𝑛−2

(𝑠) 𝜎

(𝑠)

× [ℎ
1
(𝑠, 𝑎) + √𝐻 (𝑠, 𝑎) (

𝜌


(𝑠)

𝜌 (𝑠)

− 𝑝 (𝑠))]

2

𝑑𝑠.

(48)

The following theorem is an immediate result from
Lemmas 12 and 13.
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Theorem 14. Assume that for each 𝑇 ≥ 𝑡
0
there exist 𝐻 ∈ Φ,

𝜌 ∈ 𝐶


([𝑡
0
,∞), (0,∞)) and 𝑎, 𝑏, 𝑐 ∈ 𝑅, such that 𝑇 ≤ 𝑎 < 𝑐 <

𝑏 and

1

𝐻 (𝑐, 𝑎)

∫

𝑐

𝑎

𝛾𝐻 (𝑠, 𝑎) 𝜌 (𝑠) (∫

𝛽

𝛼

𝑞 (𝑠, 𝜉) 𝑑𝜇 (𝜉)) 𝑑𝑠

+

1

𝐻 (𝑏, 𝑐)

∫

𝑏

𝑐

𝛾𝐻 (𝑏, 𝑠) 𝜌 (𝑠) (∫

𝛽

𝛼

𝑞 (𝑠, 𝜉) 𝑑𝜇 (𝜉)) 𝑑𝑠

>

1

2𝑀
𝜃

{

1

𝐻 (𝑐, 𝑎)

∫

𝑐

𝑎

𝜌 (𝑠)

𝜎
𝑛−2

(𝑠) 𝜎

(𝑠)

× [ℎ
1
(𝑠, 𝑎) + √𝐻 (𝑠, 𝑎) (

𝜌


(𝑠)

𝜌 (𝑠)

− 𝑝 (𝑠))]

2

𝑑𝑠

+

1

𝐻 (𝑏, 𝑐)

∫

𝑏

𝑐

𝜌 (𝑠)

𝜎
𝑛−2

(𝑠) 𝜎

(𝑠)

× [ℎ
2
(𝑏, 𝑠) − √𝐻 (𝑏, 𝑠) (

𝜌


(𝑠)

𝜌 (𝑠)

− 𝑝 (𝑠))]

2

𝑑𝑠} .

(49)

Then (1) is oscillatory.

Theorem 15. Assume that for some 𝐻 ∈ Φ and 𝜌 ∈

𝐶


([𝑡
0
,∞), (0,∞)), and for each 𝑟 ≥ 𝑡

0
,

lim sup
𝑡→∞

∫

𝑡

𝑟

{𝛾𝐻 (𝑠, 𝑟) 𝜌 (𝑠) ∫

𝛽

𝛼

𝑞 (𝑠, 𝜉) 𝑑𝜇 (𝜉)

−

𝜌 (𝑠)

2𝑀
𝜃
𝜎
𝑛−2

(𝑠) 𝜎

(𝑠)

× [ℎ
1
(𝑠, 𝑟)

+√𝐻 (𝑠, 𝑟) (

𝜌


(𝑠)

𝜌 (𝑠)

− 𝑝 (𝑠))]

2

}𝑑𝑠 > 0,

(50)

lim sup
𝑡→∞

∫

𝑡

𝑟

{𝛾𝐻 (𝑡, 𝑠) 𝜌 (𝑠) ∫

𝛽

𝛼

𝑞 (𝑠, 𝜉) 𝑑𝜇 (𝜉)

−

𝜌 (𝑠)

2𝑀
𝜃
𝜎
𝑛−2

(𝑠) 𝜎

(𝑠)

× [ℎ
2
(𝑡, 𝑠)

−√𝐻 (𝑡, 𝑠) (

𝜌


(𝑠)

𝜌 (𝑠)

− 𝑝 (𝑠))]

2

}𝑑𝑠 > 0.

(51)

Then (1) is oscillatory.

Theorem 16. Assume that for each 𝑇 ≥ 𝑡
0
, there exist𝐻 ∈ Φ

0

and 𝑎, 𝑐 ∈ 𝑅 such that 𝑇 ≤ 𝑎 < 𝑐 and

∫

𝑐

𝑎

𝛾𝐻 (𝑠 − 𝑎) (∫

𝛽

𝛼

[𝑞 (𝑠, 𝜉) + 𝑞 (2𝑐 − 𝑠, 𝜉)] 𝑑𝜇 (𝜉)) 𝑑𝑠

>

1

2𝑀
𝜃

∫

𝑐

𝑎

{

{

{

[ℎ (𝑠 − 𝑎) − 𝑝 (𝑠)√𝐻 (𝑠 − 𝑎)]

2

𝜎
𝑛−2

(𝑠) 𝜎

(𝑠)

+

[ℎ (𝑠 − 𝑎) + 𝑝 (2𝑐 − 𝑠)√𝐻 (𝑠 − 𝑎)]

2

𝜎
𝑛−2

(2𝑐 − 𝑠) 𝜎

(2𝑐 − 𝑠)

}

}

}

𝑑𝑠.

(52)

Then (1) is oscillatory.

Corollary 17. If there exists a function𝜌 ∈ 𝐶


([𝑡
0
,∞), (0,∞))

and a constant 𝜆 > 1 such that for each 𝑟 ≥ 𝑡
0
, the following

two inequalities hold

lim sup
𝑡→∞

1

𝑡
𝜆−1

∫

𝑡

𝑟

𝛾 (𝑠 − 𝑟)
𝜆

𝜌 (𝑠)

× {∫

𝛽

𝛼

𝑞 (𝑠, 𝜉) 𝑑𝜇 (𝜉) −

1

2𝑀
𝜃
𝜎
𝑛−2

(𝑠) 𝜎

(𝑠)

×[

𝜆

𝑠 − 𝑟

+ (

𝜌


(𝑠)

𝜌 (𝑠)

− 𝑝 (𝑠) )]

2

}𝑑𝑠 > 0,

(53)

lim sup
𝑡→∞

1

𝑡
𝜆−1

∫

𝑡

𝑟

𝛾 (𝑡 − 𝑠)
𝜆

𝜌 (𝑠)

× {∫

𝛽

𝛼

𝑞 (𝑠, 𝜉) 𝑑𝜇 (𝜉) −

1

2𝑀
𝜃
𝜎
𝑛−2

(𝑠) 𝜎

(𝑠)

×[

𝜆

𝑡 − 𝑠

− (

𝜌


(𝑠)

𝜌 (𝑠)

− 𝑝 (𝑠) )]

2

}𝑑𝑠 > 0.

(54)

Then (1) is oscillatory.

4. Examples

In this section we demonstrate the applications of our
oscillation criteria through two examples.Wewill see that the
equations in the examples are oscillatory based on the results
in Sections 2 and 3.

Example 1. Consider the following nonlinear damped differ-
ential equation:

𝑥
(4)

(𝑡) +

2𝑡

exp (𝑡
2
)

𝑥
(3)

(𝑡)

+ ∫

1

0

𝑒
2𝑡+𝜉

[𝑥 (𝑡 + 𝜉) + 𝑥 (3𝑡 + 𝜉
2

)

+𝑥
3

(𝑡 + 𝜉) + 𝑥
5

(3𝑡 + 𝜉
2

)] 𝑑𝜉 = 0,

(55)
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where 𝑡 ≥ 1, 𝑝(𝑡) = (2𝑡/ exp(𝑡2)), 𝑞(𝑡, 𝜉) = 𝑒
2𝑡+𝜉, 𝑓(𝑢

1
, 𝑢
2
) =

𝑢
1
+ 𝑢
2
+ 𝑢
3

1
+ 𝑢
5

2
, 𝑔
1
(𝑡, 𝜉) = 𝑡 + 𝜉, 𝑔

2
(𝑡, 𝜉) = 3𝑡 + 𝜉

2, 𝜇(𝜉) = 𝜉.
It is clear that for 𝑡

1
≥ 1

lim
𝑡→∞

∫

𝑡

𝑡
1

exp(−∫

𝑠

𝑡
1

𝑝 (𝜏) 𝑑𝜏) 𝑑𝑠

= lim
𝑡→∞

∫

𝑡

𝑡
1

exp(−∫

𝑠

𝑡
1

2𝜏

exp (𝜏
2
)

𝑑𝜏)𝑑𝑠 = ∞,

𝜎
1
(𝑡) = 𝑡, 𝜎

2
(𝑡) = 𝑡,

𝜕𝑓

𝜕𝑢
1

= 1 + 3𝑢
2

1
≥ 1 = 𝜆

1
,

𝜕𝑓

𝜕𝑢
2

= 1 + 5𝑢
4

2
≥ 1 = 𝜆

2
.

(56)

Applying Corollary 10 with 𝜆 = 2 and 𝜌(𝑠) = 𝑠
3, we have

through a straightforward computation that

lim sup
𝑡→∞

1

𝑡
𝜆−1

∫

𝑡

𝑟

(𝑠 − 𝑟)
𝜆

𝜌 (𝑠)

× {∫

𝛽

𝛼

𝑞 (𝑠, 𝜉) 𝑑𝜇 (𝜉) −

1

2∑
𝑚

𝑖=1
𝜆
𝑖
𝑀
𝜃
𝜎
𝑛−2

𝑖
(𝑠) 𝜎


𝑖
(𝑠)

× [

𝜆

𝑠 − 𝑟

+ (

𝜌


(𝑠)

𝜌 (𝑠)

− 𝑝 (𝑠) )]

2

}𝑑𝑠

= lim sup
𝑡→∞

1

𝑡

∫

𝑡

𝑟

(𝑠 − 𝑟)
2

𝑠
3

× {∫

1

0

𝑒
2𝑠+𝜉

𝑑𝜉 −

1

4𝑀
𝜃
𝑠
2
[

5𝑠 − 3𝑟

𝑠 (𝑠 − 𝑟)

−

2𝑠

exp (𝑠
2
)

]

2

}𝑑𝑠 = ∞,

lim sup
𝑡→∞

1

𝑡
𝜆−1

× ∫

𝑡

𝑟

(𝑡 − 𝑠)
𝜆

𝜌 (𝑠)

× {∫

𝛽

𝛼

𝑞 (𝑠, 𝜉) 𝑑𝜇 (𝜉)

−

1

2∑
𝑚

𝑖=1
𝜆
𝑖
𝑀
𝜃
𝜎
𝑛−2

𝑖
(𝑠) 𝜎


𝑖
(𝑠)

× [

𝜆

𝑡 − 𝑠

+ (

𝜌


(𝑠)

𝜌 (𝑠)

− 𝑝 (𝑠) )]

2

}𝑑𝑠

= lim sup
𝑡→∞

1

𝑡

× ∫

𝑡

𝑟

(𝑡 − 𝑠)
2

𝑠
3

× {∫

1

0

𝑒
2𝑠+𝜉

𝑑𝜉

−

1

4𝑀
𝜃
𝑠
2
[

5𝑠 − 3𝑡

𝑠 (𝑡 − 𝑠)

+

2𝑠

exp (𝑠
2
)

]

2

}

× 𝑑𝑠 = ∞.

(57)

Therefore (37) hold and we conclude by Corollary 10 that (55)
is oscillatory.

Example 2. Consider the following nonlinear damped differ-
ential equation:

𝑥
(4)

(𝑡) + exp (−𝑡) 𝑥
(3)

(𝑡)

+ ∫

𝜋/2

0

𝑡
2 sin 2𝜉

1 + sin2𝜉
𝑥 (𝑡 + sin 𝜉)

2 − exp (−𝑥
2
(𝑡 + cos 𝜉))

𝑑𝜉 = 0,

𝑡 ≥ 1,

(58)

where 𝑝(𝑡) = 1/𝑒
𝑡, 𝑞(𝑡, 𝜉) = 𝑡

2 sin 2𝜉/(1 + sin2𝜉), 𝑓(𝑢
1
, 𝑢
2
) =

𝑢
2
/(2 − exp(−𝑢2

1
)), 𝑔
1
(𝑡, 𝜉) = 𝑡 + cos 𝜉, 𝑔

2
(𝑡, 𝜉) = 𝑡 +

sin 𝜉, 𝜇(𝜉) = 𝜉. In this example,

𝜕𝑓

𝜕𝑢
1

= −

2𝑢
1
𝑢
2
exp (−𝑢

2

1
)

(2 − exp (−𝑢
2

1
))
2
. (59)

Clearly, Corollary 10 does not apply to (58). However, with
𝜆 = 2 and 𝜌(𝑡) = 1, we can prove the oscillatory character of
(58) by Corollary 17. Noting that

𝑓 (𝑢
1
, 𝑢
2
)

𝑢
2

=

1

2 − exp (−𝑢
2

1
)

≥

1

2

= 𝛾, ∀ 𝑢
2

̸=0,

lim
𝑡→∞

∫

𝑡

𝑡
1

exp(−∫

𝑠

𝑡
1

𝑝 (𝜏) 𝑑𝜏) 𝑑𝑠

= lim
𝑡→∞

∫

𝑡

𝑡
1

exp(−∫

𝑠

𝑡
1

1

𝑒
𝜏
𝑑𝜏)𝑑𝑠 = ∞,

(60)

for 𝑡
1
≥ 1 and 𝜎(𝑡) = 𝑡, we have

lim sup
𝑡→∞

1

𝑡
𝜆−1

× ∫

𝑡

𝑟

𝛾(𝑠 − 𝑟)
𝜆

𝜌 (𝑠)

× {∫

𝛽

𝛼

𝑞 (𝑠, 𝜉) 𝑑𝜇 (𝜉) −

1

2𝑀
𝜃
𝜎
𝑛−2

(𝑠) 𝜎

(𝑠)

× [

𝜆

𝑠 − 𝑟

+ (

𝜌


(𝑠)

𝜌 (𝑠)

− 𝑝 (𝑠))]

2

}𝑑𝑠
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= lim sup
𝑡→∞

1

𝑡

∫

𝑡

𝑟

1

2

(𝑠 − 𝑟)
2

×

{

{

{

∫

𝜋/2

0

𝑠
2 sin 2𝜉

1 + sin2𝜉
𝑑𝜉

−

1

2𝑀
𝜃
𝑠
2
[

2

𝑠 − 𝑟

−

1

𝑒
𝑠
]

2}

}

}

𝑑𝑠

= lim sup
𝑡→∞

1

𝑡

∫

𝑡

𝑟

{

1

2

ln 2𝑠
2

(𝑠 − 𝑟)
2

−

(2𝑒
𝑠

− 𝑠 + 𝑟)
2

4𝑀
𝜃
𝑠
2
𝑒
2𝑠

}𝑑𝑠 = ∞,

lim sup
𝑡→∞

1

𝑡
𝜆−1

∫

𝑡

𝑟

𝛾 (𝑡 − 𝑠)
𝜆

𝜌 (𝑠)

× {∫

𝛽

𝛼

𝑞 (𝑠, 𝜉) 𝑑𝜇 (𝜉)

−

1

2𝑀
𝜃
𝜎
𝑛−2

(𝑠) 𝜎

(𝑠)

× [

𝜆

𝑡 − 𝑠

− (

𝜌


(𝑠)

𝜌 (𝑠)

− 𝑝 (𝑠))]

2

}𝑑𝑠 = ∞,

(61)

therefore (53) and (54) hold and we conclude by Corollary 10
that (58) is oscillatory.
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We give an existence and uniqueness theorem for solutions of inhomogeneous impulsive boundary value problem (BVP) for planar
Hamiltonian systems. Green’s function that is needed for representing the solutions is obtained and its properties are listed. The
uniqueness of solutions is connected to a Lyapunov type inequality for the corresponding homogeneous BVP.

1. Introduction

The planar Hamiltonian system of 2-linear first-order equa-
tions has the form

𝑦


= 𝐽𝐻 (𝑡) 𝑦, 𝑡 ∈ R, (1)

where

𝐻(𝑡) = [

𝑐 (𝑡) 𝑎 (𝑡)

𝑎 (𝑡) 𝑏 (𝑡)
] (2)

is a symmetric matrix with piecewise continuous real-valued
entries, and

𝐽 = [

0 1

−1 0
] (3)

is the so called symplectic identity. Setting

𝑦
1
(𝑡) = 𝑥 (𝑡) , 𝑦

2
(𝑡) = 𝑢 (𝑡) , (4)

the Hamiltonian system can be rewritten in a more conve-
nient way as

𝑥


= 𝑎 (𝑡) 𝑥 + 𝑏 (𝑡) 𝑢,

𝑢


= −𝑐 (𝑡) 𝑥 − 𝑎 (𝑡) 𝑢.

(5)

Our aim in this work is to prove an existence and
uniqueness theorem for solutions of the related BVP for

inhomogeneous Hamiltonian system under impulse effect of
the form

𝑥


= 𝑎 (𝑡) 𝑥 + 𝑏 (𝑡) 𝑢 + 𝑓
1
(𝑡) ,

𝑢


= −𝑐 (𝑡) 𝑥 − 𝑎 (𝑡) 𝑢 + 𝑓
2
(𝑡) ,

𝑡 ∈ (𝑡
1
, 𝑡
2
) \ {𝜏
𝑖
} ,

(6a)

𝑥 (𝜏
+

𝑖
) = 𝛼
𝑖
𝑥 (𝜏
−

𝑖
) + 𝑎
𝑖1
,

𝑢 (𝜏
+

𝑖
) = −𝛽

𝑖
𝑥 (𝜏
−

𝑖
) + 𝛼
𝑖
𝑢 (𝜏
−

𝑖
) + 𝑎
𝑖2
,

𝑖 = 1, 2, . . . , 𝑝,

(6b)

𝑥 (𝑡
1
) = 𝐴, 𝑥 (𝑡

2
) = 𝐵, (6c)

where
(i) {𝜏

𝑖
}, {𝛼
𝑖
}, {𝛽
𝑖
}, {𝑎
𝑖1
}, and {𝑎

𝑖2
} are real sequences

for 𝑖 = 1, 2, . . . , 𝑝 with

𝑡
1
< 𝜏
1
< 𝜏
2
< ⋅ ⋅ ⋅ < 𝜏

𝑝
< 𝑡
2
; (7)

(ii) 𝑎, 𝑏, 𝑐, 𝑓
1
, 𝑓
2

∈ PLC(𝐽
0
), where 𝐽

0
= [𝑡
1
, 𝑡
2
] and

PLC(𝐽
0
) = {𝜔 : 𝐽

0
→ R is continuous on each

interval (𝜏
𝑖
, 𝜏
𝑖+1

), the limits 𝑤(𝜏±
𝑖
) exist and 𝑤(𝜏

−

𝑖
) =

𝑤(𝜏
𝑖
) for 𝑖 = 1, 2, . . . , 𝑝};

(iii) 𝑏(𝑡) > 0 for 𝑡 ∈ (𝑡
1
, 𝑡
2
) and 𝛼

𝑖
̸= 0 for 𝑖 = 1, 2, . . . ,

𝑝; 𝐴 and 𝐵 are given real numbers.
We also set 𝜏

0
= 𝑡
1
and 𝜏

𝑝+1
= 𝑡
2
for convenience.



2 Abstract and Applied Analysis

By a solution of the impulsive BVP (6a)–(6c), we mean
nontrivial functions 𝑥, 𝑢 ∈ PLC(𝐽

0
) such that (𝑥, 𝑢) satisfies

system (6a)–(6c) for all 𝑡 ∈ 𝐽
0
.

The corresponding homogeneous BVP takes the form

𝑥


= 𝑎 (𝑡) 𝑥 + 𝑏 (𝑡) 𝑢, 𝑢


= −𝑐 (𝑡) 𝑥 − 𝑎 (𝑡) 𝑢,

𝑡 ∈ (𝑡
1
, 𝑡
2
) \ {𝜏
𝑖
} ,

(8a)

𝑥 (𝜏
+

𝑖
) = 𝛼
𝑖
𝑥 (𝜏
−

𝑖
) , 𝑢 (𝜏

+

𝑖
) = −𝛽

𝑖
𝑥 (𝜏
−

𝑖
) + 𝛼
𝑖
𝑢 (𝜏
−

𝑖
) ,

𝑖 = 1, 2, . . . , 𝑝,

(8b)

𝑥 (𝑡
1
) = 0, 𝑥 (𝑡

2
) = 0. (8c)

Note that if we take

𝑎 (𝑡) ≡ 0, 𝑏 (𝑡) =

1

𝑝 (𝑡)

, 𝑐 (𝑡) = 𝑞 (𝑡) ,

𝑓
1
(𝑡) ≡ 0, 𝑓

2
(𝑡) = 𝑓 (𝑡) ,

(9)

then we obtain as a special case of (6a), (6b), and (6c) the
impulsive BVP for second-order differential equations of the
form

(𝑝 (𝑡) 𝑥


)



+ 𝑞 (𝑡) 𝑥 = 𝑓 (𝑡) , 𝑡 ∈ (𝑡
1
, 𝑡
2
) \ {𝜏
𝑖
} , (10a)

𝑥 (𝜏
+

𝑖
) = 𝛼
𝑖
𝑥 (𝜏
−

𝑖
) + 𝑎
𝑖1
, (10b)

(𝑝𝑥


) (𝜏
+

𝑖
) = − 𝛽

𝑖
𝑥 (𝜏
−

𝑖
) + 𝛼
𝑖
(𝑝𝑥


) (𝜏
−

𝑖
)

+ 𝑎
𝑖2
, 𝑖 = 1, 2, . . . , 𝑝,

(10c)

𝑥 (𝑡
1
) = 𝐴, 𝑥 (𝑡

2
) = 𝐵. (10d)

To the best of our knowledge although many results have
been obtained for linear impulsive boundary value problems
by using different techniques, there is little known for the
linear 2 × 2 Hamiltonian systems under impulse effect.

The existence and uniqueness of linear impulsive bound-
ary value problem for the first-order equations are considered
in [1–4]. For the second-order case we refer to [5, 6] in which
the integral representation of the solution of second order
linear impulsive boundary value problems is given by using
Green’s function and the existence and uniqueness of the
solutions are obtained. Variational technique approach for
the existence of the solutions of linear and nonlinear impul-
sive boundary value problems can be found in [7–10]. In [11],
the method of upper and lower solutions is employed for
the existence of solutions of nonlinear impulsive boundary
value problems. For a detailed discussion on boundary value
problems for higher-order linear impulsive equationswe refer
to [12]. Basic theory of impulsive differential equations is
contained in the seminal book [13].

Our method of proof is based on Green’s function formu-
lation and Lyapunov type inequalities for linear Hamiltonian
system under impulse effect. There are many studies on
Lyapunov type inequalities and their applications for linear
ordinary differential equations [14] and for systems [15–17] as

well as for linear impulsive differential equations and systems
[18, 19]. However, the use of a Lyapunov type inequality in
connection with BVPs seems to be limited.

2. Preliminaries

2.1. Lyapunov Type Inequality for Homogeneous Problem. In
this section we provide a Lyapunov type inequality to be used
for the uniqueness of the inhomogeneous BVP.The obtained
inequality is sharper than the one given by the present authors
in [20] in the sense that 2|𝑎(𝑡)| is replaced by |𝑎(𝑡)|.

Theorem 1. If the homogeneous BVP (8a), (8b), and (8c) has
a real solution (𝑥(𝑡), 𝑢(𝑡)) such that 𝑥(𝑡) ̸≡ 0 on (𝑡

1
, 𝑡
2
), then

one has the Lyapunov type inequality:

exp(∫
𝑡
2

𝑡
1

|𝑎 (𝑡)| d𝑡) [∫

𝑡
2

𝑡
1

𝑏 (𝑡) d𝑡]

× [∫

𝑡
2

𝑡
1

𝑐
+

(𝑡) d𝑡 + ∑

𝑡
1
≤𝜏
𝑖
<𝑡
2

(

𝛽
𝑖

𝛼
𝑖

)

+

] ≥ 4,

(11)

where 𝑐+(𝑡) = max{𝑐(𝑡), 0} and (𝛽
𝑖
/𝛼
𝑖
)
+

= max{𝛽
𝑖
/𝛼
𝑖
, 0}.

Proof. Define

𝑧 (𝑡) =

1

𝛼
1
𝛼
2
⋅ ⋅ ⋅ 𝛼
𝑖

𝑥 (𝑡) , V (𝑡) =
1

𝛼
1
𝛼
2
⋅ ⋅ ⋅ 𝛼
𝑖

𝑢 (𝑡) (12)

for 𝑡 ∈ (𝜏
𝑖
, 𝜏
𝑖+1

) and 𝑖 = 0, 1, . . . , 𝑝, where we put again 𝜏
0
=

𝑡
1
, 𝜏
𝑝+1

= 𝑡
2
and make a convention that 𝛼

1
𝛼
2
⋅ ⋅ ⋅ 𝛼
𝑖

=

1 if 𝑖 = 0.
It is not difficult to see from (8a), (8b), (8c), and (12) that

𝑧


= 𝑎 (𝑡) 𝑧 + 𝑏 (𝑡) V, V = −𝑐 (𝑡) 𝑧 − 𝑎 (𝑡) V,

𝑡 ∈ (𝑡
1
, 𝑡
2
) \ {𝜏
𝑖
} ,

(13)

𝑧 (𝜏
+

𝑖
) = 𝑧 (𝜏

−

𝑖
) ,

V (𝜏+
𝑖
) = −

𝛽
𝑖

𝛼
𝑖

𝑧 (𝜏
−

𝑖
) + V (𝜏−

𝑖
) ,

𝑖 = 1, 2, . . . , 𝑝,

(14)

𝑧 (𝑡
1
) = 0, 𝑧 (𝑡

2
) = 0. (15)

Since we assumed that 𝑧(𝜏
𝑖
) = 𝑧(𝜏

−

𝑖
), 𝑧(𝑡) is continuous

on [𝑡
1
, 𝑡
2
]. Moreover, 𝑧 ∈ PLC(𝐽

0
), 𝑧(𝑡
1
) = 𝑧(𝑡

2
) = 0,

and 𝑧(𝑡) ̸≡ 0 for all 𝑡 ∈ (𝑡
1
, 𝑡
2
). We may assume without loss

of generality that 𝑧(𝑡) ≥ 0 on (𝑡
1
, 𝑡
2
).

Using (13) and (14) we obtain

(V𝑧) = −𝑐 (𝑡) 𝑧
2

+ 𝑏 (𝑡) V2, 𝑡 ̸= 𝜏
𝑖
, (16)

(V𝑧) (𝜏+
𝑖
) − (V𝑧) (𝜏−

𝑖
) = −

𝛽
𝑖

𝛼
𝑖

𝑧
2

(𝜏
𝑖
) . (17)

Integrating (16) from 𝑡
1
to 𝑡
2
and using (15) and (17) lead to

∑

𝑡
1
≤𝜏
𝑖
<𝑡
2

𝛽
𝑖

𝛼
𝑖

𝑧
2

(𝜏
𝑖
) = ∫

𝑡
2

𝑡
1

[𝑏 (𝑡) V2 (𝑡) − 𝑐 (𝑡) 𝑧
2

(𝑡)] d𝑡, (18)
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from which we have

∫

𝑡
2

𝑡
1

𝑏 (𝑡) V2 (𝑡) d𝑡 ≤ ∫

𝑡
2

𝑡
1

𝑐
+

(𝑡) 𝑧
2

(𝑡) d𝑡

+ ∑

𝑡
1
≤𝜏
𝑖
<𝑡
2

(

𝛽
𝑖

𝛼
𝑖

)

+

𝑧
2

(𝜏
𝑖
) .

(19)

On the other hand, from the first equation in (13), we have

[𝑧(𝑡) exp(−∫

𝑡

𝑡
1

𝑎(𝑢)d𝑢)]


= 𝑏 (𝑡) V (𝑡) exp(−∫

𝑡

𝑡
1

𝑎 (𝑢) d𝑢) ,

(20)

[𝑧(𝑡) exp(∫
𝑡
2

𝑡

𝑎(𝑢)d𝑢)]


= 𝑏 (𝑡) V (𝑡) exp(∫
𝑡
2

𝑡

𝑎 (𝑢) d𝑢) .

(21)

Let

max {|𝑧 (𝑡)| : 𝑡 ∈ (𝑡
1
, 𝑡
2
)} = 𝑧 (𝑡

0
) > 0. (22)

If we integrate (20) from 𝑡
1
to 𝑡
0
, we see that

𝑧 (𝑡
0
) = ∫

𝑡
0

𝑡
1

𝑏 (𝑡) V (𝑡) exp(∫
𝑡
0

𝑡

𝑎 (𝑢) d𝑢) d𝑡 (23)

and so

𝑧 (𝑡
0
) ≤ ∫

𝑡
0

𝑡
1

𝑏 (𝑡) |V (𝑡)| exp(∫
𝑡
0

𝑡

|𝑎 (𝑢)| d𝑢) d𝑡. (24)

Using the obvious estimate

∫

𝑡
0

𝑡

|𝑎 (𝑢)| d𝑢 ≤ ∫

𝑡
0

𝑡
1

|𝑎 (𝑢)| d𝑢 (25)

and then applying Cauchy-Schwarz inequality, we have

𝑧
2

(𝑡
0
) ≤ exp(2∫

𝑡
0

𝑡
1

|𝑎 (𝑢)| d𝑢)[∫

𝑡
0

𝑡
1

𝑏 (𝑡) d𝑡]

× [∫

𝑡
0

𝑡
1

𝑏 (𝑡) V2 (𝑡) d𝑡] .
(26)

Similarly, by integrating (21) from 𝑡
0
to 𝑡
2
and following the

above procedure, we get

𝑧
2

(𝑡
0
) ≤ exp(2∫

𝑡
2

𝑡
0

|𝑎 (𝑢)| d𝑢)[∫

𝑡
2

𝑡
0

𝑏 (𝑡) d𝑡]

× [∫

𝑡
2

𝑡
0

𝑏 (𝑡) V2 (𝑡) d𝑡] .
(27)

Now we recall the elementary inequality:

𝑥
2

𝛼

+

𝑦
2

𝛽

≥ 4𝑥𝑦, 𝛼, 𝛽 > 0, 𝛼 + 𝛽 = 1 (28)

for 𝑥 ≥ 0 and 𝑦 ≥ 0. In view of (26) and (27) setting

𝛼 =

∫

𝑡
0

𝑡
1

𝑏 (𝑡) d𝑡

∫

𝑡
2

𝑡
1

𝑏 (𝑡) d𝑡
, 𝛽 =

∫

𝑡
2

𝑡
0

𝑏 (𝑡) d𝑡

∫

𝑡
2

𝑡
1

𝑏 (𝑡) d𝑡
,

𝑥 = 𝑧 (𝑡
0
) exp(−∫

𝑡
0

𝑡
1

|𝑎 (𝑢)| d𝑢) ,

𝑦 = 𝑧 (𝑡
0
) exp(−∫

𝑡
2

𝑡
0

|𝑎 (𝑢)| d𝑢)

(29)

we have
4𝑧
2

(𝑡
0
)

exp (∫𝑡2
𝑡
1

|𝑎 (𝑡)| d𝑡)
≤ [∫

𝑡
2

𝑡
1

𝑏 (𝑡) d𝑡] [∫
𝑡
2

𝑡
1

𝑏 (𝑡) V2 (𝑡) d𝑡] .

(30)

Combining (19) and (30) results in

4𝑧
2

(𝑡
0
)

exp (∫𝑡2
𝑡
1

|𝑎 (𝑡)| d𝑡)

≤ [∫

t
2

𝑡
1

𝑏 (𝑡) d𝑡]

× [∫

𝑡
2

𝑡
1

𝑐 (𝑡) 𝑧
2

(𝑡) d𝑡 + ∑

𝑡
1
≤𝜏
𝑖
<𝑡
2

(

𝛽
𝑖

𝛼
𝑖

)𝑧
2

(𝜏
𝑖
)] .

(31)

Finally, since 𝑧(𝑡
0
) ≥ 𝑧(𝑡) for 𝑡 ∈ [𝑡

1
, 𝑡
2
], from (31) we obtain

the desired inequality:

exp(∫
𝑡
2

𝑡
1

|𝑎 (𝑡)| d𝑡) [∫

𝑡
2

𝑡
1

𝑏 (𝑡) d𝑡]

× [∫

𝑡
2

𝑡
1

𝑐
+

(𝑡) d𝑡 + ∑

𝑡
1
≤𝜏
𝑖
<𝑡
2

(

𝛽
𝑖

𝛼
𝑖

)

+

] ≥ 4.

(32)

2.2. Green’s Function. Here we derive Green’s function to be
used for the representation of the solutions of the inhomoge-
neous BVP.

Let

Φ (𝑡) = [

𝑥
1
(𝑡) 𝑥
2
(𝑡)

𝑢
1
(𝑡) 𝑢
2
(𝑡)

] , Φ (0) = 𝐼 (33)

be a fundamental matrix for (8a), (8b) and set

𝑀 = [

1 0

0 0
] , 𝑁 = [

0 0

1 0
] . (34)

Define the rectangles

𝑅
11

= [𝑡
1
, 𝜏
1
] × [𝑡
1
, 𝜏
1
] ,

𝑅
𝑖1
= (𝜏
𝑖−1

, 𝜏
𝑖
] × [𝑡
1
, 𝜏
1
] , 𝑖 = 2, 3, . . . , 𝑝 + 1,

𝑅
1𝑗
= [𝑡
1
, 𝜏
1
] × (𝜏

𝑗−1
, 𝜏
𝑗
] , 𝑗 = 2, 3, . . . , 𝑝 + 1,

𝑅
𝑖𝑗
= (𝜏
𝑖−1

, 𝜏
𝑖
] × (𝜏

𝑗−1
, 𝜏
𝑗
] , 𝑖, 𝑗 = 2, 3, . . . , 𝑝 + 1,

(35)
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and the triangles

𝑇
𝑢

= {(𝑡, 𝑠) ∈ [𝑡
1
, 𝑡
2
] × [𝑡
1
, 𝑡
2
] : 𝑠 > 𝑡} ,

𝑇
𝑙

= {(𝑡, 𝑠) ∈ [𝑡
1
, 𝑡
2
] × [𝑡
1
, 𝑡
2
] : 𝑠 < 𝑡} ,

𝑇
𝑢

𝑖𝑖
= {(𝑡, 𝑠) ∈ 𝑅

𝑖𝑖
: 𝑠 > 𝑡} , 𝑖 = 1, 2, 3, . . . , 𝑝 + 1,

𝑇
𝑙

𝑖𝑖
= {(𝑡, 𝑠) ∈ 𝑅

𝑖𝑖
: 𝑠 < 𝑡} , 𝑖 = 1, 2, 3, . . . , 𝑝 + 1.

(36)

Green’s function (pair) and its properties are given in the
next theorem.

Theorem2. Suppose that the homogeneous BVP (8a)–(8c) has
only the trivial solution. Let

𝐾 = −[𝑀Φ(𝑡
1
) + 𝑁Φ(𝑡

2
)]
−1

𝑁Φ(𝑡
2
) . (37)

Note that the inverse ofmatrix 𝑀Φ(𝑡
1
)+𝑁Φ(𝑡

2
) exists in view

of the assumption (see also the proof of Theorem 4).
Then the pair of functions

𝐺 (𝑡, 𝑠) = {

Φ (𝑡) (𝐼 + 𝐾)Φ
−1

(𝑠) , 𝑠 < 𝑡,

Φ (𝑡)𝐾Φ
−1

(𝑠) , 𝑠 ≥ 𝑡,

𝐺 (𝑡, 𝜏
+

𝑖
) = {

Φ (𝑡) (𝐼 + 𝐾)Φ
−1

(𝜏
+

𝑖
) , 𝜏
𝑖
< 𝑡,

Φ (𝑡)𝐾Φ
−1

(𝜏
+

𝑖
) , 𝜏

𝑖
≥ 𝑡,

(38)

constitutes Green’s function for (6a), (6b), and (6c). Moreover,
we have the following properties:

(G1) 𝐺(𝑡, 𝑠) is continuous and bounded on 𝑅
𝑖𝑗
,

(G2) (𝜕𝐺(𝑡, 𝑠))/𝜕𝑡 is continuous and bounded on the
rectangles 𝑅

𝑖𝑗
with 𝑖 ̸= 𝑗 and on the triangles 𝑇

𝑢

𝑖𝑖

and 𝑇
𝑙

𝑖𝑖
,

(G3) 𝐺(𝑡, 𝑠) satisfies the following jump conditions:

(a) 𝐺(𝜏
+

𝑖
, 𝜏
𝑖
) − 𝐺(𝜏

−

𝑖
, 𝜏
𝑖
) = 𝐵

𝑖
+ (𝐵
𝑖
− 𝐼)𝐺(𝜏

−

𝑖
, 𝜏
𝑖
)

𝑤ℎ𝑒𝑟𝑒 𝐵
𝑖
= [
𝛼
𝑖
0

−𝛽
𝑖
𝛼
𝑖

] ,

(b) 𝐺(𝑠
+

, 𝑠) − 𝐺(𝑠
−

, 𝑠) = 𝐼, 𝑠 ̸= 𝜏
𝑖
,

(c) (𝜕𝐺(𝑠
+

, 𝑠)/𝜕𝑡) − (𝜕𝐺(𝑠
−

, 𝑠)/𝜕𝑡) = 𝐽𝐻(𝑠), 𝑠 ̸= 𝜏
𝑖
,

(G4) 𝐺(𝑡, 𝑠), considered as a function of 𝑡, is left continuous
and satisfies

𝑦


= 𝐽𝐻 (𝑡) 𝑦, 𝑡 ∈ 𝐽
𝑠
\ {𝜏
𝑖
} ,

𝑦 (𝜏
+

𝑖
) = 𝐵
𝑖
𝑦 (𝜏
−

𝑖
) , 𝑖 ∈ {𝑖 : 𝜏

𝑖
∈ 𝐽
𝑠
} ,

𝑀𝑦 (𝑡
1
) + 𝑁𝑦 (𝑡

2
) = 0,

(39)

where 𝐽
𝑠
is any of the intervals [𝑡

1
, 𝑠) or (𝑠, 𝑡

2
],

(G5) Δ|
𝑡=𝜏
𝑖

𝐺(𝑡, 𝜏
+

𝑖
) = 𝐺(𝜏

+

𝑖
, 𝜏
+

𝑖
) − 𝐺(𝜏

−

𝑖
, 𝜏
+

𝑖
) = (𝐵

𝑖
−

𝐼)𝐺(𝜏
−

𝑖
, 𝜏
+

𝑖
),

(G6) 𝐺(𝑡, 𝑠), considered as a function of 𝑡, is left continuous
and satisfies (39).

Proof. (G1) and (G2) are trivial. Let us consider (G3)(a)
follows from

𝐺 (𝜏
+

𝑖
, 𝜏
𝑖
) − 𝐺 (𝜏

−

𝑖
, 𝜏
𝑖
)

= Φ (𝜏
+

𝑖
) (𝐼 + 𝐾)Φ

−1

(𝜏
𝑖
) − Φ (𝜏

−

𝑖
)𝐾Φ
−1

(𝜏
𝑖
)

= 𝐵
𝑖
+ (𝐵
𝑖
− 𝐼)𝐺 (𝜏

−

𝑖
, 𝜏
𝑖
) .

(40)

To see (b), we write for 𝑠 ̸= 𝜏
𝑖
,

𝐺 (𝑠
+

, 𝑠) − 𝐺 (𝑠
−

, 𝑠) = Φ (𝑠
+

) (𝐼 + 𝐾)Φ
−1

(𝑠)

− Φ (𝑠
−

)𝐾Φ
−1

(𝑠) = 𝐼.

(41)

For (c), let 𝑡 ̸= 𝜏
𝑖
; then

𝜕𝐺 (𝑡, 𝑠)

𝜕𝑡

=

{
{
{
{

{
{
{
{

{

Φ


(𝑡) (𝐼 + 𝐾)Φ
−1

(𝑠)

= 𝐽𝐻 (𝑡)Φ (𝑡) (𝐼 + 𝐾)Φ
−1

(𝑠) , 𝑠 < 𝑡,

Φ


(𝑡) 𝐾Φ
−1

(𝑠)

= 𝐽𝐻 (𝑡)Φ (𝑡)𝐾Φ
−1

(𝑠) , 𝑠 ≥ 𝑡,

𝜕𝐺 (𝑠
+

, 𝑠)

𝜕𝑡

−

𝜕𝐺 (𝑠
−

, 𝑠)

𝜕𝑡

= 𝐽𝐻 (𝑠)Φ (𝑠) (𝐼 + 𝐾)Φ
−1

(𝑠)

− 𝐽𝐻 (𝑠)Φ (𝑠)𝐾Φ
−1

(𝑠)

= 𝐽𝐻 (𝑠) .

(42)

Next, we consider (G4). By definition, it is easy to see
that 𝐺(𝑡, 𝑠) is left continuous function at 𝑡 = 𝜏

𝑖
. Let us

consider the interval [𝑡
1
, 𝑠). The later is similar. The first

equation in (39) is direct consequences of (c) and the
definition of 𝐺(𝑡, 𝑠). Clearly,

𝐺 (𝜏
+

𝑖
, 𝑠) = Φ (𝜏

+

𝑖
)𝐾Φ
−1

(𝑠)

= 𝐵
𝑖
Φ(𝜏
−

𝑖
)𝐾Φ
−1

(𝑠) = 𝐵
𝑖
𝐺 (𝜏
−

𝑖
, 𝑠) ,

𝑀𝐺 (𝑡
1
, 𝑠) + 𝑁𝐺 (𝑡

2
, 𝑠)

= 𝑀Φ(𝑡
1
)𝐾Φ
−1

(𝑠)

+ 𝑁Φ (𝑡
2
) (𝐼 + 𝐾)Φ

−1

(𝑠)

= [𝑀Φ (𝑡
1
) + 𝑁Φ (𝑡

2
)]𝐾Φ

−1

(𝑠)

+ 𝑁Φ (𝑡
2
)Φ
−1

(𝑠) = 0.

(43)

The proofs of (G5) and (G6) are similar to (a) and (G4),
respectively.

Remark 3. One can easily rewrite Green’s function (pair) in
terms of the solutions of system (8a), (8b). Indeed,

𝐾 = − [𝑀Φ(𝑡
1
) + 𝑁Φ (𝑡

2
)]
−1

𝑁Φ(𝑡
2
)

=

1

𝑥
1
(𝑡
1
) 𝑥
2
(𝑡
2
) − 𝑥
1
(𝑡
2
) 𝑥
2
(𝑡
1
)

×
[

[

𝑥
1
(𝑡
2
) 𝑥
2
(𝑡
1
) 𝑥
2
(𝑡
1
) 𝑥
2
(𝑡
2
)

−𝑥
1
(𝑡
1
) 𝑥
1
(𝑡
2
) −𝑥
1
(𝑡
1
) 𝑥
2
(𝑡
2
)

]

]

,

(44)



Abstract and Applied Analysis 5

and since

detΦ (𝑡) = detΦ (0) exp(∫
𝑡

0

trace (𝐽𝐻 (𝑠)) d𝑠)

×

𝑝

∏

𝑖=1

det𝐵
𝑖
=

𝑝

∏

𝑖=1

𝛼
2

𝑖
,

(45)

we may write

Φ
−1

(𝑡) =

1

detΦ (𝑡)

[

[

𝑢
2
(𝑡) −𝑥

2
(𝑡)

−𝑢
1
(𝑡) 𝑥

1
(𝑡)

]

]

= (

𝑝

∏

𝑖=1

𝛼
−2

𝑖
)
[

[

𝑢
2
(𝑡) −𝑥

2
(𝑡)

−𝑢
1
(𝑡) 𝑥

1
(𝑡)

]

]

.

(46)

3. The Main Result

Our main result is the following theorem.

Theorem 4. Let (i)–(iii) hold. If

exp(∫
𝑡
2

𝑡
1

|𝑎 (𝑡)| d𝑡) [∫

𝑡
2

𝑡
1

𝑏 (𝑡) d𝑡]

× [∫

𝑡
2

𝑡
1

𝑐
+

(𝑡) d𝑡 + ∑

𝑡
1
≤𝜏
𝑖
<𝑡
2

(

𝛽
𝑖

𝛼
𝑖

)

+

]

< 4,

(47)

then BVP (6a), (6b), and (6c) has a unique solution
(𝑥(𝑡), 𝑢(𝑡)). Moreover, 𝑦 = (𝑥(𝑡), 𝑢(𝑡)) is expressible as

𝑦 (𝑡) = 𝑤 (𝑡) + ∫

𝑡
2

𝑡
1

𝐺 (𝑡, 𝑠) 𝑓 (𝑠) d𝑠 + ∑

𝑡
1
≤𝜏
𝑖
<𝑡
2

𝐺 (𝑡, 𝜏
+

𝑖
) 𝑎
𝑖
, (48)

where

𝑤 (𝑡) = Φ (𝑡) [𝑀Φ(𝑡
1
) + 𝑁Φ(𝑡

2
)]
−1

𝜂, 𝜂 = (𝐴, 𝐵)
𝑇

, (49)

and Green’s function pair (𝐺, 𝐺) is given by (38).

Proof. We first prove the uniqueness. It suffices to show that
the homogeneous BVP (8a)–(8c) has only the trivial solution.
Let 𝑥(𝑡) ̸≡ 0 on (𝑡

1
, 𝑡
2
). ByTheorem 1, we see that Lyapunov

type inequality (11) holds contradicting the inequality (47).
Thus 𝑥(𝑡) = 0 for all 𝑡 ∈ [𝑡

1
, 𝑡
2
]. Moreover, by (6a), (6b), and

(6c) we have

𝑏 (𝑡) 𝑢 = 0, 𝑡 ̸= 𝜏
𝑖
, (50)

which results in 𝑢(𝑡) = 0 for 𝑡 ̸= 𝜏
𝑖
. Taking limit we see

that 𝑢(𝜏±
𝑖
) = 0. As a result we obtain (𝑥(𝑡), 𝑢(𝑡)) = (0, 0) for

all 𝑡 ∈ [𝑡
1
, 𝑡
2
].This completes the uniqueness of the solutions.

For the existence, we start with the variation of param-
eters formula and write the general solution of system (6a),
(6b) as

𝑦 (𝑡) = Φ (𝑡) 𝑐 + ∫

𝑡

𝑡
1

Φ (𝑡)Φ
−1

(𝑠) 𝑓 (𝑠) d𝑠

+ ∑

𝑡
1
≤𝜏
𝑖
<𝑡

Φ (𝑡)Φ
−1

(𝜏
+

𝑖
) 𝑎
𝑖
.

(51)

Clearly, the boundary condition is satisfied if

[𝑀Φ (𝑡
1
) + 𝑁Φ (𝑡

2
)] 𝑐

= 𝜂 − 𝑁Φ (𝑡
2
)

× [∫

𝑡
2

𝑡
1

Φ
−1

(𝑠) 𝑓 (𝑠) d𝑠 + ∑

𝑡
1
≤𝜏
𝑖
<𝑡
2

Φ
−1

(𝜏
+

𝑖
) 𝑎
𝑖
] ,

(52)

where 𝜂 = (𝐴, 𝐵)
𝑇.

Since we have the uniqueness of solutions, the mat-
rix 𝑀Φ(𝑡

1
) + 𝑁Φ(𝑡

2
) must have an inverse. Setting

𝐾 = −[𝑀Φ(𝑡
1
) + 𝑁Φ(𝑡

2
)]
−1

𝑁Φ(𝑡
2
) , (53)

we may solve 𝑐 from (52) uniquely:

𝑐 = [𝑀Φ(𝑡
1
) + 𝑁Φ (𝑡

2
)]
−1

𝜂

+ 𝐾[∫

𝑡
2

𝑡
1

Φ
−1

(𝑠) 𝑓 (𝑠) d𝑠 + ∑

𝑡
1
≤𝜏
𝑖
<𝑡
2

Φ
−1

(𝜏
+

𝑖
) 𝑎
𝑖
] .

(54)

Hence,

𝑦 (𝑡) = Φ (𝑡) [𝑀Φ (𝑡
1
) + 𝑁Φ (𝑡

2
)]
−1

𝜂 + Φ (𝑡) (𝐼 + 𝐾)

× [∫

𝑡

𝑡
1

Φ
−1

(𝑠) 𝑓 (𝑠) d𝑠 + ∑

𝑡
1
≤𝜏
𝑖
<𝑡

Φ
−1

(𝜏
+

𝑖
) 𝑎
𝑖
]

+ Φ (𝑡)𝐾[∫

𝑡
2

𝑡

Φ
−1

(𝑠) 𝑓 (𝑠) d𝑠 + ∑

𝑡≤𝜏
𝑖
<𝑡
2

Φ
−1

(𝜏
+

𝑖
) 𝑎
𝑖
] .

(55)

Therefore the unique solution of the BVP (6a)–(6c) can be
expressed as

𝑦 (𝑡) = 𝑤 (𝑡) + ∫

𝑡
2

𝑡
1

𝐺 (𝑡, 𝑠) 𝑓 (𝑠) d𝑠

+ ∑

𝑡
1
≤𝜏
𝑖
<𝑡
2

𝐺 (𝑡, 𝜏
+

𝑖
) 𝑎
𝑖
.

(56)
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Let us now consider the BVP (10a), (10b), (10c), and (10d).
In this case it is not difficult to see that the corresponding
Green’s function (pair) becomes

𝐺 (𝑡, 𝑠) =

{
{
{

{
{
{

{

𝜓 (𝑡) (𝐼 + 𝐾)Ψ
−1

(𝑠)

1

𝑝 (𝑠)

𝑒
2
, 𝑠 < 𝑡,

𝜓 (𝑡)𝐾Ψ
−1

(𝑠)

1

𝑝 (𝑠)

𝑒
2
, 𝑠 ≥ 𝑡,

𝐺 (𝑡, 𝜏
+

𝑖
) =

{

{

{

𝜓 (𝑡) (𝐼 + 𝐾)Ψ
−1

(𝜏
+

𝑖
) , 𝜏
𝑖
< 𝑡,

𝜓 (𝑡) 𝐾Ψ
−1

(𝜏
+

𝑖
) , 𝜏

𝑖
≥ 𝑡,

(57)

where 𝜓(𝑡) = [𝜓
1
, 𝜓
2
] is the first row of the (Wronskian)

matrix:

Ψ (𝑡) =
[

[

𝜓
1
(𝑡) 𝜓

2
(𝑡)

𝜓


1
(𝑡) 𝜓



2
(𝑡)

]

]

,

𝐾 = − [𝑀Ψ (𝑡
1
) + 𝑁Ψ (𝑡

2
)]
−1

𝑁Ψ(𝑡
2
) ,

𝑒
2
= [0, 1]

𝑇

.

(58)

Corollary 5. Suppose that 𝑝 and 𝑐 are piece-wise continuous
on [𝑡
1
, 𝑡
2
], 𝑝(𝑡) > 0, and 𝛼

𝑖
̸= 0 for 𝑖 = 1, 2, . . . , 𝑝. If

[∫

𝑡
2

𝑡
1

1

𝑝 (𝑡)

d𝑡] [∫
𝑡
2

𝑡
1

𝑐
+

(𝑡) d𝑡 + ∑

𝑡
1
≤𝜏
𝑖
<𝑡
2

(

𝛽
𝑖

𝛼
𝑖

)

+

] < 4, (59)

then the BVP (10a), (10b), (10c), and (10d) has a unique
solution 𝑥(𝑡) which is expressible as

𝑥 (𝑡) = 𝑤 (𝑡) + ∫

𝑡
2

𝑡
1

𝐺 (𝑡, 𝑠) 𝑓 (𝑠) d𝑠 + ∑

𝑡
1
≤𝜏
𝑖
<𝑡
2

𝐺 (𝑡, 𝜏
+

𝑖
) 𝑎
𝑖
, (60)

where

𝑤 (𝑡) = 𝜓 (𝑡) [𝑀Ψ(𝑡
1
) + 𝑁Ψ(𝑡

2
)]
−1

𝜂, (61)

and Green’s function pair (𝐺, 𝐺) is given by (57).

Remark 6. The results in this work are new even if the
impulses are absent. The statements of the corresponding
theorems are left to the reader.
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Received 10 July 2013; Accepted 30 October 2013

Academic Editor: Miroslava Růžičková
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We study the half-linear delay differential equation (𝑟(𝑡)Φ(𝑥


(𝑡)))


+ 𝑐(𝑡)Φ(𝑥(𝜏(𝑡))) = 0, Φ(𝑥) := |𝑥|
𝑝−2

𝑥, 𝑝 > 1. We establish a
new a priori bound for the nonoscillatory solution of this equation and utilize this bound to derive new oscillation criteria for this
equation in terms of oscillation criteria for an ordinary half-linear differential equation. The presented results extend and improve
previous results of other authors. An extension to neutral equations is also provided.

1. Introduction

In this paper we study oscillatory properties of the delay
second-order half-linear differential equation

(𝑟 (𝑡) Φ (𝑥


(𝑡)))



+ 𝑐 (𝑡)Φ (𝑥 (𝜏 (𝑡))) = 0,

Φ (𝑥) := |𝑥|
𝑝−2

𝑥, 𝑝 > 1.

(1)

We suppose that 𝑟, 𝑐, 𝜏 are continuous functions defined
on [𝑡
0
,∞) such that 𝑟(𝑡) > 0, 𝑐(𝑡) > 0 for large 𝑡, 𝜏(𝑡) ≤ 𝑡

for all 𝑡, and lim
𝑡→∞

𝜏(𝑡) = ∞. By 𝑞 we denote the conjugate
number to the number 𝑝, that is, 𝑞 = 𝑝/(𝑝 − 1).

Under the solution of (1) we understand any differentiable
function 𝑥(𝑡) which does not identically equal zero eventu-
ally, such that 𝑟(𝑡)Φ(𝑥(𝑡)) is differentiable and (1) holds for
large 𝑡.

The solution of (1) is said to be oscillatory if it has
infinitelymany zeros tending to infinity. Equation (1) is said to
be oscillatory if all its solutions are oscillatory. In the opposite
case, that is, if there exists an eventually positive solution of
(1), (1) is said to be nonoscillatory.

It is well known that the behavior of delay differential
equations is very different from the behavior of ordinary
differential equations. Among others, the Sturm theory fails
and oscillatory solutions may coexist with nonoscillatory
solutions.

In certain special cases, it is possible to compare asymp-
totics of (1) with some other simpler equation. One of the

typical objects for this comparison is the first order delay
differential equation; see, for example, [1–3] for results on
comparing (1) or its extension in the form of neutral differen-
tial equation with the first order delay differential inequality.
Another simpler object than (1) suitable for comparison
with (1) is the half-linear second-order ordinary differential
equation

(𝑟 (𝑡) Φ (𝑥


(𝑡)))



+ 𝑐 (𝑡)Φ (𝑥 (𝑡)) = 0; (2)

see, for example, [4–7]. Note that some of these papers deal
with a slightly more general equation

(𝑟 (𝑡) Φ (𝑥


(𝑡)))



+ 𝑓 (𝑡, 𝑥 (𝑡) , 𝑥 (𝜏 (𝑡))) = 0. (3)

However, if this more general equation is considered, con-
ditions imposed on the nonlinearity 𝑓 usually state that
(3) is a kind of majorant of (1) (in the sense used in the
Sturmian theory of ordinary differential equations) and allow
to extend the results readily from (1) to (3). An example of
such conditions is

𝑓 (𝑡, 𝑢, V)
Φ (V)

≥ 𝑐 (𝑡) or
𝑓 (𝑡, 𝑢, V)
Φ (𝑢)

≥ 𝑐 (𝑡) (4)

for some (positive) function 𝑐(𝑡) and all positive numbers
𝑢, V. Note also that some of the above cited papers deal
more generally with neutral differential equations and (or)
dynamic equations on time scales.
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In this paper we compare (1) with the ordinary half-
linear equation of the form (2). To make our paper more
readable we restrict our attention to differential equations
rather than equations on time scales. An extension of our
results to neutral differential equations is provided at the end
of this paper.

Let us recall the Riccati technique, which is one of the
methods frequently used in oscillation theory of both (1)
and (2) (it is easy to see that if 𝜏(𝑡) = 𝑡, then (1) reduces
to (2)). Suppose that (1) is nonoscillatory and let 𝑥 be
its eventually positive solution. Then the function 𝑤(𝑡) =

𝑟(𝑡)Φ(𝑥


(𝑡))/Φ(𝑥(𝑡)) satisfies the Riccati type equation

𝑤


(𝑡) + 𝑐 (𝑡) Φ(

𝑥 (𝜏 (𝑡))

𝑥 (𝑡)

) + (𝑝 − 1) 𝑟
1−𝑞

(𝑡) |𝑤 (𝑡)|
𝑞

= 0.

(5)

The following lemma plays a crucial role in the qualita-
tive theory of half-linear second order ordinary differential
equations.

Lemma 1 (see [8, Theorem 2.2.1]). Denote L[𝑥] =

(𝑟(𝑡)Φ(𝑥


(𝑡)))



+ 𝑐(𝑡)Φ(𝑥(𝑡)) and R[𝑤] = 𝑤


+ 𝑐(𝑡) + (𝑝 −

1)𝑟
1−𝑞

(𝑡)|𝑤|
𝑞. The following statements are equivalent:

(i) (2) is nonoscillatory,

(ii) there is 𝑎 ∈ R and a continuously differentiable func-
tion 𝑤 : [𝑎,∞) → R such that

𝑅 [𝑤] (𝑡) = 0 for 𝑡 ∈ [𝑎,∞) , (6)

(iii) there is 𝑎 ∈ R and a continuously differentiable func-
tion 𝑤 : [𝑎,∞) → R such that

𝑅 [𝑤] (𝑡) ≤ 0 for 𝑡 ∈ [𝑎,∞) , (7)

(iv) there is 𝑎 ∈ R and a positive function 𝑥 : [𝑎,∞) → R

with 𝑟Φ(𝑥) continuously differentiable such that

L [𝑥] (𝑡) ≤ 0 for 𝑡 ∈ [𝑎,∞) . (8)

As we show below, the assumptions used in the paper
ensure that the positive solutions are eventually increasing
and concave down. The main step when we compare the
ordinary half-linear differential equation and its delay coun-
terpart (1) is to reduce (5) to the Riccati inequality of the
form (7). The usual approach on how to remove the term
Φ(𝑥(𝜏(𝑡))/𝑥(𝑡)) from (5) is the following lemma, originally
proved in [9] and then used in many subsequent papers.

Lemma 2. Suppose that 𝑥 is a function defined for some 𝑇 > 0

such that 𝑥(𝑡) ∈ 𝐶2[𝑇,∞), 𝑥(𝑡) > 0, 𝑥(𝑡) > 0, and 𝑥(𝑡) ≤ 0

for 𝑡 ≥ 𝑇. Then, for each 𝑘 ∈ (0, 1) there exists 𝑇
𝑘
≥ 𝑇 such

that

𝑥 (𝜏 (𝑡))

𝑥 (𝑡)

≥ 𝑘

𝜏 (𝑡)

𝑡

for 𝑡 ≥ 𝑇
𝑘
. (9)

Note that the proof of Lemma 2 does not exploit the fact
that 𝑥 is a solution of (1) and the lemma holds for any positive
increasing concave down function. The proof of (9) can be
based on the fact that if 𝑥(𝑡) ≤ 0 on [𝑇,∞) and 𝑥(𝑇) ≥ 0,
then 𝑥(𝑡)/(𝑡−𝑇) is decreasing with respect to 𝑡 on [𝑇,∞) (see
[10, Theorem 128]). Thus

𝑥 (𝜏 (𝑡))

𝑥 (𝑡)

≥

𝜏 (𝑡) − 𝑇

𝑡 − 𝑇

=

𝜏 (𝑡)

𝑡

1 − (𝑇/𝜏 (𝑡))

1 − (𝑇/𝑡)

, (10)

where 𝑇 ≤ 𝜏(𝑡) ≤ 𝑡. Removing the dependence on 𝑇 may be
implemented by using of a constant 𝑘 ∈ (0, 1). The presence
of one of the constants 𝑇 or 𝑘 in the estimates (9) and (10) is
an important attribute of these estimates. As a consequence,
the resulting integral oscillation citeria have to be formulated
either with the constant 𝑘 ∈ (0, 1), or as interval-type
or Kamenev-type criteria, where the dependence on 𝑇 is
usually not disturbing.A typical result looks like the following
Theorem A.

Theorem A (see [11, Theorem 2.6]). Equation (1) with 𝑟 ≡ 1

is oscillatory if the differential equation

(Φ (𝑥


(𝑡)))



+ 𝜆𝑐 (𝑡) (

𝜏 (𝑡)

𝑡

)

𝑝−1

Φ (𝑥 (𝑡)) = 0 (11)

is oscillatory for some 𝜆 ∈ (0, 1).

As another particular example of a criterion which suffers
from the presence of the constants 𝑚

𝑖
∈ (0, 1) see [12,

Theorem 2.1].
The above mentioned disadvantage has been removed for

the linear delay equation

𝑥


(𝑡) + 𝑐 (𝑡) 𝑥 (𝜏 (𝑡)) = 0 (12)

under the condition

∫

∞

0

𝑠𝑐 (𝑠) 𝑑𝑠 = ∞. (13)

Opluštil and Šremr utilized in recent papers [13, 14] (12) to
derive a sharper estimate than the estimate from Lemma 2.
Note that imposing (13) on 𝑐 does not yield any restriction in
oscillation criteria for (12) since (12) is already known to be
nonoscillatory if (13) fails. The same approach has been used
for linear dynamic equations on time scales by Erbe, Peterson
and Saker in [15].

The aim of this paper is to derive a result analogical to the
estimate from [13, 14] andmake it available also for delay half-
linear differential equation. The nonlinearity of the equation
causes, that the method from [13, 14] does not extend to
(1) directly and we have to use an indirect approach which
originates in the fact that the half-linear extension does not
yield (13) as its special case, but includes the term 𝜏(𝑠) instead
of 𝑠. This estimate suggests a new tool which can be used to
improve some oscillation criteria for (1).

2. Preliminaries

The proof of the following statement can be found in [16].
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Lemma 3. Let 𝑥 be an eventually positive solution of (1). If
∫

∞

𝑟
1−𝑞

(𝑡) 𝑑𝑡 = ∞, then 𝑥


(𝑡) > 0 for large 𝑡. Moreover, if
𝑟


(𝑡) ≥ 0, then 𝑥(𝑡) ≤ 0 for large 𝑡.

The following lemma shows that under certain additional
conditions we can utilize (1) to derive a sharper version of the
estimate from Lemma 2.

Lemma 4. Suppose that (1) is nonoscillatory, and let 𝑥(𝑡) > 0

be a solution of (1). If the conditions

∫

∞

𝑟
1−𝑞

(𝑡) 𝑑𝑡 = ∞, 𝑟


(𝑡) ≥ 0 for large 𝑡, (14)

∫

∞

𝑐 (𝑡) 𝜏
𝑝−1

(𝑡) 𝑑𝑡 = ∞ (15)

hold, then there exists 𝑇 ∈ R such that

𝑥 (𝜏 (𝑡))

𝑥 (𝑡)

≥

𝜏 (𝑡)

𝑡

, 𝑡 ≥ 𝑇. (16)

Proof. Conditions (14) and Lemma 3 imply that there exists
𝑇
0
such that 𝑥(𝑡) > 0, 𝑥(𝑡) > 0, 𝑥(𝑡) ≤ 0 for 𝑡 ≥ 𝑇

0
.

We show that

𝑡𝑥


(𝑡) − 𝑥 (𝑡) ≤ 0 (17)

for large 𝑡. Since (𝑡𝑥(𝑡) − 𝑥(𝑡)) = 𝑡𝑥


(𝑡) ≤ 0, it is sufficient
to show that (17) holds for some 𝑇

1
≥ 𝑇
0
. Suppose, by

contradiction, that 𝑡𝑥(𝑡)−𝑥(𝑡) > 0 for all 𝑡 ≥ 𝑇
0
. Solving this

inequalitywe get𝑥(𝑡) > 𝐾𝑡 for 𝑡 ≥ 𝑇
0
, where𝐾 = 𝑥(𝑇

0
)/𝑇
0
>

0. Hence, there exists 𝑇
2
≥ 𝑇
0
such that

Φ (𝑥 (𝜏 (𝑡))) ≥ 𝐾
𝑝−1

(𝜏 (𝑡))
𝑝−1

, 𝑡 ≥ 𝑇
2
. (18)

Since 𝑥 is a solution of (1), we have

(𝑟 (𝑡) Φ (𝑥


(𝑡)))



= −𝑐 (𝑡)Φ (𝑥 (𝜏 (𝑡)))

≤ −𝐾
𝑝−1

𝑐 (𝑡) (𝜏 (𝑡))
𝑝−1

,

𝑡 ≥ 𝑇
2
.

(19)

Integrating the last inequality from 𝑇
2
to 𝑡 we obtain

𝑟 (𝑡) Φ (𝑥


(𝑡)) − 𝑟 (𝑇
2
)Φ (𝑥



(𝑇
2
))

≤ −𝐾
𝑝−1

∫

𝑡

𝑇
2

𝑐 (𝑠) (𝜏 (𝑠))
𝑝−1

𝑑𝑠,

(20)

and from the fact that 𝑟(𝑡)Φ(𝑥(𝑡)) is positive we get the
following finite upper bound for the integral of 𝑐(𝑠)(𝜏(𝑠))𝑝−1:

𝐾
𝑝−1

∫

𝑡

𝑇
2

𝑐 (𝑠) (𝜏 (𝑠))
𝑝−1

𝑑𝑠

≤ 𝑟 (𝑇
2
)Φ (𝑥



(𝑇
2
)) − 𝑟 (𝑡) Φ (𝑥



(𝑡)) < 𝑟 (𝑇
2
)Φ (𝑥



(𝑇
2
))

(21)

for 𝑡 ≥ 𝑇
2
. However the condition (15) ensures that the left

hand side of this inequality is unbounded.This contradiction
proves (17) for large 𝑡.

Hence there exists 𝑇
1
≥ 𝑇
0
such that (17) holds for 𝑡 ≥ 𝑇

1
.

This inequality together with the computation

(

𝑥 (𝑡)

𝑡

)



=

𝑡𝑥


(𝑡) − 𝑥 (𝑡)

𝑡
2

≤ 0, 𝑡 ≥ 𝑇
1
, (22)

shows that the function 𝑥(𝑡)/𝑡 is decreasing on (𝑇
1
,∞). This

fact and the fact that 𝜏(𝑡) ≤ 𝑡 reveal that there exists 𝑇 ≥ 𝑇
1

such that
𝑥 (𝑡)

𝑡

≤

𝑥 (𝜏 (𝑡))

𝜏 (𝑡)

, 𝑡 ≥ 𝑇, (23)

which is equivalent to (16).

3. Oscillation of Delay Differential Equation

Theorem 5. Suppose that conditions (14) and (15) hold. If the
ordinary differential equation

(𝑟 (𝑡) Φ (𝑥


(𝑡)))



+ 𝑐 (𝑡) (

𝜏 (𝑡)

𝑡

)

𝑝−1

Φ (𝑥 (𝑡)) = 0 (24)

is oscillatory, then (1) is also oscillatory.

Proof. Suppose, by contradiction, that (1) is nonoscillatory
and (24) is oscillatory. Let 𝑥 be an eventually positive solution
of (1). Using Lemma 4 we see that 𝑥 satisfies the inequality

(𝑟 (𝑡) Φ (𝑥


(𝑡)))



+ 𝑐 (𝑡) (

𝜏 (𝑡)

𝑡

)

𝑝−1

Φ (𝑥 (𝑡)) ≤ 0 (25)

and hence, using equivalence between parts (i) and (iv) of
Lemma 1, we see that (24) is nonoscillatory which contradicts
our assumptions.

Remark 6. The oscillation criterion from Theorem 5 is gen-
eral in the sense that the oscillation is given in terms of oscil-
lation of a certain half-linear differential equation rather than
in terms of explicit conditions on the coefficients of the equa-
tion. Most of the related papers continue the proofs by
utilizing techniques used in the theory of half-linear ordinary
differential equations (often simply copy of the proofs of
known oscillation citeria) to reach effective conditions for
oscillation. However, we feel our approach as an advantage,
since it allows to utilize arbitrary from large family of oscil-
lation criteria for half-linear oscillation equations to detect
oscillation of delay equation. See also [8] for a comprehensive
survey on oscillation criteria known up to 2005.

Remark 7. Note that a similar result like Theorem 5 can be
proved also without Lemma 4 and using Lemma 2 instead.
This results in a comparison of (1) with the equation

(𝑟 (𝑡) Φ (𝑥


(𝑡)))



+ 𝑐 (𝑡) 𝜆(

𝜏 (𝑡)

𝑡

)

𝑝−1

Φ (𝑥 (𝑡)) = 0, (26)

where 𝜆 is a real parameter which satisfies 𝜆 ∈ (0, 1). (Note
that for 𝑟 ≡ 1we getTheoremA.) Equation (24) can be viewed
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in a certain sense as a continuation of (26) with respect to 𝜆
to the border value 𝜆 = 1. Note that the problems related
to oscillation of equation of the type (26) and dependence of
oscillatory properties on the parameter 𝜆 are referred to as
conditional oscillation. In general, oscillation of (26) implies
oscillation of (24), but the opposite implication need not be
true in general, see the paper [17] which (based on the results
from [18]) suggests a method on how to construct a pair of
equations of the type (24) and (26) with (24) oscillatory and
(26) nonoscillatory.

Remark 8. Theorem 5 extends Theorem A, where oscillation
of (1) is deduced from oscillation of (26). The following
example shows that this extension is nonempty.

Example 9. Consider the perturbed Euler type half-linear
delay differential equation

(Φ (𝑥


))



+ (

𝑝 − 1

𝑝

)

𝑝

(

1

𝑡
𝑝
+

𝜇

𝑡
𝑝 ln 𝑡

)

× (

𝑡

𝜏 (𝑡)

)

𝑝−1

Φ (𝑥 (𝜏 (𝑡))) = 0,

(27)

where 𝜇 > 0 is real constant. According toTheorem 5, (27) is
oscillatory if

(Φ (𝑥


))



+ (

𝑝 − 1

𝑝

)

𝑝

(

1

𝑡
𝑝
+

𝜇

𝑡
𝑝 ln 𝑡

)Φ (𝑥 (𝑡)) = 0 (28)

is oscillatory. Following [8, Theorem 5.2.2] (see also [19]) we
treat (28) as a perturbation of the nonoscillatory equation

(Φ (𝑥


))



+ (

𝑝 − 1

𝑝

)

𝑝

1

𝑡
𝑝
Φ (𝑥) = 0 (29)

with principal solution ℎ(𝑡) = 𝑡
(𝑝−1)/𝑝. A simple computation

shows

∫

∞

(

𝑝 − 1

𝑝

)

𝑝

𝜇

𝑡
𝑝 ln 𝑡

𝑡
𝑝−1

𝑑𝑡 = ∞ (30)

hence (28) is oscillatory by [8,Theorem 5.2.2]. Consequently,
(27) is oscillatory for every 𝜇.

We claim that the oscillation of (27) cannot be proved
withTheorem A. Really, in our example (11) becomes

(Φ (𝑥


))



+ 𝜆(

𝑝 − 1

𝑝

)

𝑝

(

1

𝑡
𝑝
+

𝜇

𝑡
𝑝 ln 𝑡

)Φ (𝑥 (𝑡)) = 0, (31)

where 𝜆 ∈ (0, 1). This equation is nonoscillatory for every
𝜇 > 0 by Kneser type nonoscillation criterion [8, Theorem
1.4.5], and thus Theorem A fails to apply.

4. Oscillation of Neutral Differential Equation

In this section we use a slight modification of the estimates
from the first part of the paper to derive similar results for
the second order neutral differential equation

(𝑟 (𝑡) Φ (𝑧


(𝑡)))



+ 𝑐 (𝑡) Φ (𝑥 (𝜏 (𝑡))) = 0, (32)

where
𝑧 (𝑡) = 𝑥 (𝑡) + 𝑎 (𝑡) 𝑥 (𝜃 (𝑡)) , (33)

0 ≤ 𝑎(𝑡) < 1, 𝑟(𝑡) > 0, 𝑐(𝑡) ≥ 0, 𝜏(𝑡) ≤ 𝑡, 𝜃(𝑡) ≤ 𝑡,
lim
𝑡→∞

𝜏(𝑡) = lim
𝑡→∞

𝜃(𝑡) = ∞.
Similarly as for (1), if 𝑥 is a solution of (32) on [𝑡

0
,∞)

such that 𝑧(𝑡) is positive on [𝑡
0
,∞), then the function 𝑤(𝑡) =

𝑟(𝑡)(Φ(𝑧


(𝑡))/Φ(𝑧(𝑡))) satisfies the Riccati type equation

𝑤


+ 𝑐 (𝑡)Φ(

𝑥 (𝜏 (𝑡))

𝑧 (𝑡)

) + (𝑝 − 1) 𝑟
1−𝑞

(𝑡) |𝑤|
𝑞

= 0 (34)

on [𝑡
0
,∞).

Similarly like for the delay equation, the positive solution
is increasing and concave down.More precisely, the following
lemma holds. For linear version of this lemma see [2, Lemma
1] and for 𝑝 ≥ 2 see [1, Lemma 2.1].

Lemma 10. Let 𝑥(𝑡) be an eventually nonoscillatory solution
of (32). If ∫∞ 𝑟1−𝑞(𝑡)𝑑𝑡 = ∞, then the corresponding function
𝑧(𝑡) = 𝑥(𝑡) + 𝑎(𝑡)𝑥(𝜃(𝑡)) satisfies

𝑧 (𝑡) > 0, 𝑧


(𝑡) > 0 (35)

eventually. Moreover, if 𝑟(𝑡) ≥ 0, then 𝑧(𝑡) < 0 for large 𝑡.

Proof. The proof is essentially the same as the proof of [1,
Lemma 2.1]. We just relax the restriction on 𝑝.

Without loss of generality we can suppose that 𝑥 is
eventually positive solution of (32). There exists 𝑇 ∈ R such
that 𝑥(𝑡), 𝑥(𝜏(𝑡)) and 𝑥(𝜃(𝑡)) are positive on (𝑇,∞) and

(𝑟 (𝑡) Φ (𝑧


(𝑡)))



= −𝑐 (𝑡) Φ (𝑥 (𝜏 (𝑡))) < 0 (36)

for 𝑡 ∈ (𝑇,∞). Hence, 𝑟(𝑡)Φ(𝑧(𝑡)) is decreasing and either

Φ(𝑧


(𝑡)) > 0 or Φ(𝑧


(𝑡)) < 0 (37)

for large 𝑡.
Suppose that there exists 𝑇

1
> 𝑇 such that Φ(𝑧(𝑡)) < 0

for 𝑡 ≥ 𝑇
1
. There exists a positive constant𝑀 such that

𝑟 (𝑡) Φ (𝑧


(𝑡)) < −𝑀 < 0,

𝑧


(𝑡) < −Φ
−1

(𝑀) 𝑟
1−𝑞

(𝑡)

(38)

for 𝑡 ≥ 𝑇
1
. Integrating this inequality over the interval (𝑇

1
, 𝑡)

we get

𝑧 (𝑡) ≤ 𝑧 (𝑇
1
) − Φ
−1

(𝑀)∫

𝑡

𝑇
1

𝑟
1−𝑞

(𝑠) 𝑑𝑠. (39)

Letting 𝑡 → ∞ we have a negative upper bound for the
function 𝑧 and large 𝑡. However, the positivity of both 𝑥(𝑡)

and 𝑥(𝜃(𝑡)) implies positivity of 𝑧. This contradiction proves
thatΦ(𝑧(𝑡)) > 0 and 𝑧(𝑡) > 0 eventually.

If 𝑟(𝑡) ≥ 0, then

0 > (𝑟 (𝑡) Φ (𝑧


(𝑡)))



= 𝑟


(𝑡) Φ (𝑧


(𝑡)) + 𝑟 (𝑡) (𝑝 − 1)






𝑧


(𝑡)







𝑝−2

𝑧


(𝑡)

≥ 𝑟 (𝑡) (𝑝 − 1)






𝑧


(𝑡)







𝑝−2

𝑧


(𝑡) ,

(40)

and hence 𝑧(𝑡) < 0.
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Lemma 11. Suppose that 𝑥 is an eventually positive nonoscilla-
tory solution of (32) and 𝑧 is the corresponding function defined
by (33). If ∫∞ 𝑟1−𝑞(𝑡)𝑑𝑡 = ∞, then

𝑥 (𝜏 (𝑡)) ≥ [1 − 𝑎 (𝜏 (𝑡))] 𝑧 (𝜏 (𝑡)) (41)

eventually.

Proof. According to Lemma 10 there exists 𝑇 such that

𝑥 (𝜃 (𝜃 (𝑡))) > 0, 𝑧 (𝑡) > 0, 𝑧


(𝑡) > 0 (42)

holds for 𝑡 ≥ 𝜏(𝑇). From here and from the fact that 𝑧 is
increasing and 𝜃 is delay we have

𝑧 (𝑡) = 𝑥 (𝑡) + 𝑎 (𝑡) 𝑥 (𝜃 (𝑡)) ≤ 𝑥 (𝑡) + 𝑎 (𝑡) 𝑧 (𝜃 (𝑡))

≤ 𝑥 (𝑡) + 𝑎 (𝑡) 𝑧 (𝑡) .

(43)

From here we conclude

𝑧 (𝑡) (1 − 𝑎 (𝑡)) ≤ 𝑥 (𝑡) (44)

and hence (41) holds for 𝑡 > 𝑇.

The following lemma is an alternative to Lemma 4 for
neutral differential equations.

Lemma 12. Suppose that (32) is nonoscillatory and 𝑥(𝑡) is an
eventually positive solution of (32). If

∫

∞

𝑐 (𝑠) (1 − 𝑎 (𝜏 (𝑠)))
𝑝−1

(𝜏 (𝑠))
𝑝−1

𝑑𝑠 = ∞ (45)

and (14) holds, then the function 𝑧(𝑡)/𝑡 is decreasing eventu-
ally.

Proof. Similarly like in Lemma 4 we find the derivative

(

𝑧 (𝑡)

𝑡

)



=

𝑧


(𝑡) 𝑡 − 𝑧 (𝑡)

𝑡
2

. (46)

It is sufficient to show that 𝑧(𝑡)𝑡 − 𝑧(𝑡) < 0 eventually.
Lemma 10 implies that there exists 𝑡

0
such that 𝑧(𝑡) < 0 on

(𝑡
0
,∞). This shows that 𝑧(𝑡)𝑡 − 𝑧(𝑡) is decreasing on (𝑡

0
,∞).

As a consequence, if 𝑧(𝑡
1
)𝑡
1
−𝑧(𝑡
1
) < 0 for some 𝑡

1
> 𝑡
0
, then

𝑧


(𝑡)𝑡 − 𝑧(𝑡) < 0 on (𝑡
1
,∞).

Suppose by contradiction that there exists 𝑡
2
such that

𝑧


(𝑡)𝑡 − 𝑧(𝑡) > 0 on (𝑡
2
,∞). Solving this inequality we get

𝑧 (𝑡) ≥

𝑧 (𝑡
2
)

𝑡
2

𝑡. (47)

Now integrating (32) from 𝑡
2
to 𝑡 and using (41) we get

𝑟 (𝑡) Φ (𝑧


(𝑡)) = 𝑟 (𝑡
2
)Φ (𝑧



(𝑡
2
)) − ∫

𝑡

𝑡
2

𝑐 (𝑠) (𝑥 (𝜏 (𝑠)))
𝑝−1

𝑑𝑠

≤ 𝑟 (𝑡
2
)Φ (𝑧



(𝑡
2
))

− ∫

𝑡

𝑡
2

𝑐 (𝑠) [1 − 𝑎 (𝜏 (𝑠))]
𝑝−1

(𝑧 (𝜏 (𝑠)))
𝑝−1

𝑑𝑠

≤ 𝑟 (𝑡
2
)Φ (𝑧



(𝑡
2
)) −

𝑧 (𝜏 (𝑡
2
))

𝜏 (𝑡
2
)

× ∫

𝑡

𝑡
2

𝑐 (𝑠) [1 − 𝑎 (𝜏 (𝑠))]
𝑝−1

(𝜏 (𝑠))
𝑝−1

𝑑𝑠.

(48)

Taking 𝑡 sufficiently large and using (45) we obtain a negative
upper bound for a positive function 𝑟(𝑡)Φ(𝑧(𝑡)).This contra-
diction proves the lemma.

Now we can formulate the comparison theorem which
relates neutral differential equations to ordinary second-
order half-linear differential equations.

Theorem 13. Suppose that (45) and (14) hold. If the ordinary
half-linear differential equation

(𝑟 (𝑡) Φ (𝑥


(𝑡)))



+ 𝑐 (𝑡) [1 − 𝑎 (𝜏 (𝑡))]
𝑝−1

× (

𝜏 (𝑡)

𝑡

)

𝑝−1

Φ (𝑥 (𝑡)) = 0

(49)

is oscillatory, then (32) is also oscillatory.

Proof. Having proved important estimates in the preceding
two lemmas, the proof of the theorem is a modification
of the proof of Theorem 5. If 𝑥(𝑡) is an eventually positive
solution of (32), then the function 𝑤 defined by 𝑤(𝑡) =

𝑟(𝑡)Φ(𝑧


(𝑡))/Φ(𝑧(𝑡)) satisfies (34). Using Lemmas 11 and 12
we see that

0 = 𝑤


+ 𝑐 (𝑡)Φ(

𝑥 (𝜏 (𝑡))

𝑧 (𝑡)

) + (𝑝 − 1) 𝑟
1−𝑞

(𝑡) |𝑤|
𝑞

≥ 𝑤


+ 𝑐 (𝑡) [1 − 𝑎 (𝜏 (𝑡))]
𝑝−1

Φ(

𝑧 (𝜏 (𝑡))

𝑧 (𝑡)

)

+ (𝑝 − 1) 𝑟
1−𝑞

(𝑡) |𝑤|
𝑞

≥ 𝑤


+ 𝑐 (𝑡) [1 − 𝑎 (𝜏 (𝑡))]
𝑝−1

(

𝜏 (𝑡)

𝑡

)

𝑝−1

+ (𝑝 − 1) 𝑟
1−𝑞

(𝑡) |𝑤|
𝑞

.

(50)

Hence (49) is nonoscillatory by Lemma 1.

Remark 14. A version ofTheorem 13 has been used implicitly
in the proof of [20, Theorem 2.2] for dynamic equations.
A closer estimation of the proof shows that one of the
important steps is an application of inequality which in the
continuous case reads as (10). However, Lemma 12 allows the
estimate

𝑧 (𝜏 (𝑡))

𝑧 (𝑡)

≥

𝜏 (𝑡)

𝑡

, (51)

which appears to be sharper, since
1 − (𝑇/𝜏 (𝑡))

1 − (𝑇/𝑡)

≤ 1 (52)
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and the annoying dependence of the left-hand side on 𝑇

usually necessitates to replace it by a constant 𝑘 < 1 which
may appear in the resulting oscillation criterion.
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Some new nonlinear weakly singular difference inequalities are discussed, which generalize some known weakly singular
inequalities and can be used in the analysis of nonlinear Volterra-type difference equations with weakly singular kernel. An
application to the upper bound of solutions of a nonlinear difference equation is also presented.

1. Introduction

The discrete version of the well-known Gronwall-Bellman
inequality is an important tool in the development of the
theory of difference equations as well as the analysis of the
numerical schemes of differential equations. A great deal of
interest has been given to these inequalities, andmany results
on their generalizations have been found; for example, see [1–
4]. Among them, one of the fundamental cases is Pachpatte’s
result [3] for the difference inequality:

𝑢 (𝑛) ≤ 𝑎 (𝑛) +

𝑛−1

∑

𝑠=0

𝑓 (𝑠) 𝑢 (𝑠) . (1)

In particular, due to the study of the behavior and
numerical solutions for the singular integral equations, some
discrete weakly singular integral inequalities also have drawn
more and more attention [5–7]. Dixon and McKee [8]
investigated the convergence of discretization methods for
the Volterra integral and integrodifferential equations, by
using the following inequality:

𝑥
𝑖
≤ 𝜓
𝑖
+𝑀ℎ

1−𝛼

𝑖−1

∑

𝑗=0

𝑥
𝑗

(𝑖 − 𝑗)
𝛼
, 𝑖 = 1, 2, . . . , 𝑁,

𝑛 > 0, 𝑁ℎ = 𝑇.

(2)

Henry [9] presented a linear integral inequality with
weakly kernel:

𝑥 (𝑡) ≤ 𝑎 (𝑡) + ∫

𝑡

0

(𝑡 − 𝑠)
𝛽−1

𝑏 (𝑠) 𝑥 (𝑠) 𝑑𝑠 (3)

to investigate some qualitative properties for a parabolic
equation. The corresponding discrete version was discussed
by Slodi ̆cka [10]. But he studied the case 𝜏

𝑘
= 𝜏, that is, the

case of constant differences. Furthermore, the first formula-
tion of the inequality with a nonlinearity and 𝜏

𝑘
nonconstant

was studied in [6], in which the general nonlinear discrete
case as follows:

𝑥
𝑛
≤ 𝑎
𝑛
+

𝑛−1

∑

𝑘=0

(𝑡
𝑛
− 𝑡
𝑘
)
𝛽−1

𝜏
𝑘
𝑏
𝑘
𝜔 (𝑥
𝑘
) (4)

was considered. However, his results are based on the
so-called “(𝑞) condition”: (1) 𝜔 satisfies 𝑒

−𝑞𝑡

[𝜔(𝑢)]
𝑞

≤

𝑅(𝑡)𝜔(𝑒
−𝑞𝑡

)𝑢
𝑞; (2) there exists 𝑐 > 0 such that 𝑎

𝑛
𝑒
−𝜏𝑡
𝑛
≤ 𝑐.

Recently, a new nonlinear difference inequality:

𝑥
𝛼

𝑛
≤ 𝑎
𝑛
+

𝑛−1

∑

𝑘=0

(𝑡
𝑛
− 𝑡
𝑘
)
𝛽−1

𝜏
𝑘
𝑏
𝑘
𝑥
𝜆

𝑘
(5)

was discussed by Yang et al. [11]. For other new weakly
singular inequalities, lots of work can be found, for example,
in [12–22] and references therein.
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In this paper, we investigate the new nonlinear weakly
singular inequality:

𝑥
𝑛
≤ 𝑎
𝑛
+

𝑛−1

∑

𝑘=0

(𝑡
𝑛
− 𝑡
𝑘
)
𝛽−1

𝜏
𝑘
𝑏
𝑘
𝜔 (𝑥
𝑘
) , (6)

where 0 < 𝛽 ≤ 1, 𝑡
0
= 0, 𝜏

𝑘
= 𝑡
𝑘+1

− 𝑡
𝑘
, sup
𝑘∈N𝜏𝑘 = 𝜏,

and lim
𝑡→∞

𝑡
𝑘
= ∞. Compared to the existing result, our

result does not need the so-called “(𝑞) condition” proposed
in [6] and can be used to obtain pointwise explicit bounds
on solutions for a class of more general weakly singular
inequalities of Volterra type. Finally, we also present an
application to Volterra-type difference equation with weakly
singular kernel.

2. Preliminaries

Let R be the set of real numbers, R
+
= (0,∞), and N =

{0, 1, 2, . . .}. 𝐶(𝑋, 𝑌) denotes the collection of continuous
functions from the set 𝑋 to the set 𝑌. As usual, the empty
sum is taken to be 0.

Lemma 1 (Discrete Jensen inequality, [11]). Let 𝐴
1
, 𝐴
2
, . . . ,

𝐴
𝑛
be nonnegative real numbers, and let 𝑟 > 1 be a real

number. Then,

(𝐴
1
+ 𝐴
2
+ ⋅ ⋅ ⋅ + 𝐴

𝑛
)
𝑟

≤ 𝑛
𝑟−1

(𝐴
𝑟

1
+ 𝐴
𝑟

2
+ ⋅ ⋅ ⋅ + 𝐴

𝑟

𝑛
) . (7)

Lemma 2 (Discrete Hölder inequality, [11]). Let 𝑎
𝑖
, 𝑏
𝑖
(𝑖 =

1, 2, . . . , 𝑛) be nonnegative real numbers, and let 𝑝, 𝑞 be
positive numbers such that (1/𝑝)+(1/𝑞) = 1 (or𝑝 = 1, 𝑞 = ∞).
Then,

𝑛

∑

𝑖=1

𝑎
𝑖
𝑏
𝑖
≤ (

𝑛

∑

𝑖=1

𝑎
𝑝

𝑖
)

1/𝑝

(

𝑛

∑

𝑖=1

𝑏
𝑞

𝑖
)

1/𝑞

. (8)

Furthermore, take 𝑝 = 𝑞 = 2; then, one gets the discrete
Cauchy-Schwarz inequality.

Lemma 3. Suppose that 𝜔(𝑢) ∈ 𝐶(R
+
,R
+
) is nondecreasing.

Let 𝑎
𝑛
, 𝑐
𝑛
be nonnegative and nondecreasing in 𝑛. If 𝑦

𝑛
is

nonnegative such that

𝑦
𝑛
≤ 𝑎
𝑛
+ 𝑐
𝑛

𝑛−1

∑

𝑘=0

𝑏
𝑘
𝜔 (𝑦
𝑘
) , 𝑛 ∈ N. (9)

Then,

𝑦
𝑛
≤ Ω
−1

[Ω (𝑎
𝑛
) + 𝑐
𝑛

𝑛−1

∑

𝑘=0

𝑏
𝑘
] , 0 ≤ 𝑛 ≤ 𝑀, (10)

where Ω(V) = ∫VV
0

(1/𝜔(𝑠))𝑑𝑠, V ≥ V
0
, Ω−1 is the inverse func-

tion of Ω, and𝑀 is defined by

𝑀 = sup{𝑖 : Ω (𝑎
𝑖
) + 𝑐
𝑖

𝑖−1

∑

𝑘=0

𝑏
𝑘
∈ Dom (Ω

−1

)} . (11)

3. Main Results

Assume that

(A
1
) 𝑎
𝑛
, 𝑏
𝑛
are nonnegative functions for 𝑛 ∈ N,

respectively;
(A
2
) 𝜔(𝑢) ∈ 𝐶(R

+
,R
+
) is nondecreasing and 𝜔(0) =

0.

Define 𝑎
𝑛
= max

0≤𝑘≤𝑛,𝑘∈N𝑎𝑘 and 𝜏 = max
0≤𝑘≤𝑛−1,𝑘∈N𝜏𝑘,

where 𝜏
𝑘
is the variable time step.

Theorem 4. Under assumptions (𝐴
1
) and (𝐴

2
), if 𝑥

𝑛
is

nonnegative such that (6), then

(1) for 0 < 𝛽 ≤ 1/2, letting 𝑝 = 1 + 𝛽 and 𝑞 = (1 + 𝛽)/𝛽,
one has

𝑥
𝑛
≤ [Ω
−1

(Ω(2
𝑞−1

𝑎
𝑞

𝑛
) + 2
𝑞−1

𝜏
1−(𝑞/𝑝)𝛽

2

×𝐾
𝑞/𝑝

(𝛽) 𝑒
𝑞𝜏𝑡
𝑛

𝑛−1

∑

𝑘=0

𝑒
−𝑞𝜏𝑡
𝑘

𝑏
𝑞

𝑘
)]

1/𝑞

,

(12)

for 0 ≤ 𝑛 ≤ 𝑁
1
, where Ω(𝑢) = ∫𝑢

𝑢
0

(1/𝜔
𝑞

(𝑠
1/𝑞

)) 𝑑𝑠, 𝑢 ≥
𝑢
0
≥ 0, Ω−1 is the inverse function of Ω,

𝐾(𝛽) = (1 + 𝛽)
−𝛽
2

Γ (𝛽
2

) , (13)

and𝑁
1
is the largest integer number such that

Ω(2
𝑞−1

𝑎
𝑞

𝑛
) + 2
𝑞−1

𝜏
1−(𝑞/𝑝)𝛽

2

𝐾
𝑞/𝑝

(𝛽) 𝑒
𝑞𝜏𝑡
𝑛

×

𝑛−1

∑

𝑘=0

𝑒
−𝑞𝜏𝑡
𝑘

𝑏
𝑞

𝑘
∈ Dom (Ω

−1

) ;

(14)

(2) for 1/2 < 𝛽 ≤ 1, letting 𝑝 = 2 and 𝑞 = 2, one has

𝑥
𝑛
≤ [Ω
−1

(Ω(2𝑎
2

𝑛
) + 𝐵 (𝛽) 𝜏

2−2𝛽

𝑒
2𝜏𝑡
𝑛

𝑛−1

∑

𝑘=0

𝑒
−2𝜏𝑡
𝑘

𝑏
2

𝑘
)]

1/2

,

(15)

for 0 ≤ 𝑛 ≤ 𝑁
2
, whereΩ(𝑢) = ∫𝑢

𝑢
0

(1/𝜔
2

(𝑠
1/2

))𝑑𝑠, 𝑢 ≥

𝑢
0
≥ 0,

𝐵 (𝛽) = 4
1−𝛽

Γ (2𝛽 − 1) , 𝛽 >

1

2

, (16)

and𝑁
2
is the largest integer number such that

Ω(2𝑎
2

𝑛
) + 𝐵 (𝛽) 𝜏

2−2𝛽

𝑒
2𝜏𝑡
𝑛

𝑛−1

∑

𝑘=0

𝑒
−2𝜏𝑡
𝑘

𝑏
2

𝑘
∈ Dom (Ω

−1

) . (17)

Proof. By definition of 𝑎
𝑛
and assumption (𝐴

1
), 𝑎
𝑛
is nonneg-

ative and nondecreasing and 𝑎
𝑛
≥ 𝑎
𝑛
. It follows from (6) that

𝑥
𝑛
≤ 𝑎
𝑛
+

𝑛−1

∑

𝑘=0

(𝑡
𝑛
− 𝑡
𝑘
)
𝛽−1

𝜏
𝑘
𝑏
𝑘
𝜔 (𝑥
𝑘
) . (18)
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(1) If 0 < 𝛽 ≤ 1/2, using Lemma 2 with the indices 𝑝 =
1 + 𝛽, 𝑞 = (1 + 𝛽)/𝛽 for (18), we get

𝑥
𝑛
≤ 𝑎
𝑛
+

𝑛−1

∑

𝑘=0

(𝑡
𝑛
− 𝑡
𝑘
)
𝛽−1

𝜏
1/𝑝

𝑘
𝜏
1/𝑞

𝑘
𝑒
𝜏𝑡
𝑘

𝑒
−𝜏𝑡
𝑘

𝑏
𝑘
𝜔 (𝑥
𝑘
)

≤ 𝑎
𝑛
+ 𝜏
1/𝑞

𝑛−1

∑

𝑘=0

(𝑡
𝑛
− 𝑡
𝑘
)
𝛽−1

𝜏
1/𝑝

𝑘
𝑒
𝜏𝑡
𝑘

𝑒
−𝜏𝑡
𝑘

𝑏
𝑘
𝜔 (𝑥
𝑘
)

≤ 𝑎
𝑛
+ 𝜏
1/𝑞

[

𝑛−1

∑

𝑘=0

(𝑡
𝑛
− 𝑡
𝑘
)
𝑝(𝛽−1)

𝜏
𝑘
𝑒
𝑝𝜏𝑡
𝑘

]

1/𝑝

× [

𝑛−1

∑

𝑘=0

𝑒
−𝑞𝜏𝑡
𝑘

𝑏
𝑞

𝑘
𝜔
𝑞

(𝑥
𝑘
)]

1/𝑞

.

(19)

By Lemma 1, the inequality above yields

𝑥
𝑞

𝑛
≤ 2
𝑞−1

𝑎
𝑞

𝑛
+ 2
𝑞−1

𝜏[

𝑛−1

∑

𝑘=0

(𝑡
𝑛
− 𝑡
𝑘
)
𝑝(𝛽−1)

𝜏
𝑘
𝑒
𝑝𝜏𝑡
𝑘

]

𝑞/𝑝

× [

𝑛−1

∑

𝑘=0

𝑒
−𝑞𝜏𝑡
𝑘

𝑏
𝑞

𝑘
𝜔
𝑞

(𝑥
𝑘
)] .

(20)

Consider that

𝑛−1

∑

𝑘=0

(𝑡
𝑛
− 𝑡
𝑘
)
𝑝(𝛽−1)

𝜏
𝑘
𝑒
𝑝𝜏𝑡
𝑘

≤ ∫

𝑡
𝑛

0

(𝑡
𝑛
− 𝑠)
𝑝(𝛽−1)

𝑒
𝑝𝜏𝑠

𝑑𝑠

= 𝑒
𝑝𝜏𝑡
𝑛

∫

𝑡
𝑛

0

𝜂
𝑝(𝛽−1)

𝑒
−𝑝𝜏𝜂

𝑑𝜂,

=

𝑒
𝑝𝜏𝑡
𝑛

(𝑝𝜏)
1+𝑝(𝛽−1)

∫

𝑝𝜏𝑡
𝑛

0

𝜎
𝑝(𝛽−1)𝑒

−𝜎

𝑑𝜎 ≤ 𝐾 (𝛽) 𝜏
−𝛽
2

𝑒
𝑝𝜏𝑡
𝑛

,

(21)

where 𝐾(𝛽) = (1 + 𝛽)
−𝛽
2

Γ(𝛽
2

) and Γ(𝑧) = ∫

∞

0

𝑢
𝑧−1

𝑒
−𝑢

𝑑𝑢, (𝑅𝑒𝑧 > 0) is the well-known𝐺-function.Thus,
we have

𝑥
𝑞

𝑛
≤ 2
𝑞−1

𝑎
𝑞

𝑛
+ 2
𝑞−1

𝜏
1−(𝑞/𝑝)𝛽

2

× 𝐾
𝑞/𝑝

(𝛽) 𝑒
𝑞𝜏𝑡
𝑛

𝑛−1

∑

𝑘=0

𝑒
−𝑞𝜏𝑡
𝑘

𝑏
𝑞

𝑘
𝜔
𝑞

(𝑥
𝑘
) .

(22)

Let V
𝑛
= 𝑥
𝑞

𝑛
, 𝐴
𝑛
= 2
𝑞−1

𝑎
𝑞

𝑛
, and 𝐶

𝑛
= 2
𝑞−1

𝜏
1−(𝑞/𝑝)𝛽

2

𝐾
𝑞/𝑝

(𝛽)𝑒
𝑞𝜏𝑡
𝑛 . Obviously, 𝐴

𝑛
, 𝐶
𝑛
are nondecreasing

for 𝑛 ∈ N and 𝜔𝑞(V1/𝑞
𝑘
) satisfies the assumption (𝐴

2
).

Equation (22) can be rewritten as

V
𝑛
≤ 𝐴
𝑛
+ 𝐶
𝑛

𝑛−1

∑

𝑘=0

𝑒
−𝑞𝜏𝑡
𝑘

𝑏
𝑞

𝑘
𝜔
𝑞

(V1/𝑞
𝑘
) , (23)

which is similar to inequality (9). Using Lemma 3,
from (23), we have

V
𝑛
≤ Ω
−1

[(Ω (𝐴
𝑛
) + 𝐶
𝑛

𝑛−1

∑

𝑘=0

𝑒
−𝑞𝜏𝑡
𝑘

𝑏
𝑞

𝑘
)] , (24)

for 0 ≤ 𝑛 ≤ 𝑁
1
, where𝑁

1
is the largest integer number

such that

Ω(𝐴
𝑛
) + 𝐶
𝑛

𝑛−1

∑

𝑘=0

𝑒
−𝑞𝜏𝑡
𝑘

𝑏
𝑞

𝑘
∈ Dom (Ω

−1

) . (25)

Therefore, by 𝑥
𝑛
= V1/𝑞
𝑛

, (12) holds for 0 ≤ 𝑛 ≤ 𝑁
1
.

(2) If 1/2 < 𝛽 ≤ 1, applying Cauchy-Schwarz inequality
for (18), that is, 𝑝 = 𝑞 = 2, we get

𝑥
𝑛
≤ 𝑎
𝑛
+

𝑛−1

∑

𝑘=0

(𝑡
𝑛
− 𝑡
𝑘
)
𝛽−1

𝜏
1/2

𝑘
𝜏
1/2

𝑘
𝑒
𝜏𝑡
𝑘

𝑒
−𝜏𝑡
𝑘

𝑏
𝑘
𝜔 (𝑥
𝑘
)

≤ 𝑎
𝑛
+ 𝜏
1/2

𝑛−1

∑

𝑘=0

(𝑡
𝑛
− 𝑡
𝑘
)
𝛽−1

𝜏
1/2

𝑘
𝑒
𝜏𝑡
𝑘

𝑒
−𝜏𝑡
𝑘

𝑏
𝑘
𝜔 (𝑥
𝑘
)

≤ 𝑎
𝑛
+ 𝜏
1/2

[

𝑛−1

∑

𝑘=0

(𝑡
𝑛
− 𝑡
𝑘
)
2(𝛽−1)

𝜏
𝑘
𝑒
2𝜏𝑡
𝑘

]

1/2

× [

𝑛−1

∑

𝑘=0

𝑒
−2𝜏𝑡
𝑘

𝑏
2

𝑘
𝜔
2

(𝑥
𝑘
)]

1/2

.

(26)

By Lemma 1, the inequality above yields

𝑥
2

𝑛
≤ 2𝑎
2

𝑛
+ 2𝜏[

𝑛−1

∑

𝑘=0

(𝑡
𝑛
− 𝑡
𝑘
)
2(𝛽−1)

𝜏
𝑘
𝑒
2𝜏𝑡
𝑘

]

× [

𝑛−1

∑

𝑘=0

𝑒
−2𝜏𝑡
𝑘

𝑏
2

𝑘
𝜔
2

(𝑥
𝑘
)] .

(27)

Because

𝑛−1

∑

𝑘=0

(𝑡
𝑛
− 𝑡
𝑘
)
2(𝛽−1)

𝜏
𝑘
𝑒
2𝜏𝑡
𝑘

≤ ∫

𝑡
𝑛

0

(𝑡
𝑛
− 𝑠)
2(𝛽−1)

𝑒
2𝜏𝑠

𝑑𝑠

=

𝑒
2𝜏𝑡
𝑛

(2𝜏)
2𝛽−1

∫

2𝜏𝑡
𝑛

0

𝜎
2(𝛽−1)𝑒

−𝜎

𝑑𝜎

≤

1

2

𝐵 (𝛽) 𝜏
1−2𝛽

𝑒
2𝜏𝑡
𝑛

,

(28)

where 𝐵(𝛽) = 41−𝛽Γ(2𝛽 − 1), 𝛽 > 1/2, it follows from
(27) that

𝑥
2

𝑛
≤ 2𝑎
2

𝑛
+ 𝐵 (𝛽) 𝜏

2−2𝛽

𝑒
2𝜏𝑡
𝑛

[

𝑛−1

∑

𝑘=0

𝑒
−2𝜏𝑡
𝑘

𝑏
2

𝑘
𝜔
2

(𝑥
𝑘
)] . (29)
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Let V
𝑛
= 𝑥
2

𝑛
, 𝐴
𝑛
= 2𝑎
2

𝑛
, and 𝐶

𝑛
= 𝐵(𝛽)𝜏

2−2𝛽

𝑒
2𝜏𝑡
𝑛 .

Similarly, 𝐴
𝑛
, 𝐶
𝑛
also are nondecreasing for 𝑛 ∈

N and 𝜔
2

(V1/2
𝑘
) also satisfies the assumption (𝐴

2
).

Equation (29) can be rewritten as

V
𝑛
≤ 𝐴
𝑛
+ 𝐶
𝑛
(

𝑛−1

∑

𝑘=0

𝑒
−2𝜏𝑡
𝑘

𝑏
2

𝑘
𝜔
2

(V1/2
𝑘
)) , (30)

which also is similar to inequality (9). Using
Lemma 3, from (30), we have

V
𝑛
≤ [Ω
−1

(Ω(𝐴
𝑛
) + 𝐶
𝑛

𝑛−1

∑

𝑘=0

𝑒
−2𝜏𝑡
𝑘

𝑏
2

𝑘
)] , (31)

for 0 ≤ 𝑛 ≤ 𝑁
2
, and𝑁

2
is the largest integer number

such that

Ω(𝐴
𝑛
) + 𝐶
𝑛

𝑛−1

∑

𝑘=0

𝑒
−2𝜏𝑡
𝑘

𝑏
2

𝑘
∈ Dom (Ω

−1

) . (32)

Clearly, by 𝑥
𝑛
= V1/2
𝑛

, (15) also holds for 0 ≤ 𝑛 ≤ 𝑁
2
.

Remark 5. Here, we note that the most significant work in
the study of weakly singular inequalities is Medve ̆d’s method,
originally presented in the paper [6] and also applied in
the paper [18]. But his result holds under the assumption
“𝜔(𝑢) satisfies the condition (q),” that is, “𝑒−𝑞𝑡[𝜔(𝑢)]𝑞 ≤

𝑅(𝑡)𝜔(𝑒
−𝑞𝑡

𝑢
𝑞

), where 𝑅(𝑡) is a continuous, nonnegative func-
tion.” In our result, the condition (q) is eliminated.

Corollary 6. Under assumptions (𝐴
1
) and (𝐴

2
), let ] > 0,

𝜇 > 0(] > 𝜇). If 𝑥
𝑛
is nonnegative such that

𝑥
]
𝑛
≤ 𝑎
𝑛
+

𝑛−1

∑

𝑘=0

(𝑡
𝑛
− 𝑡
𝑘
)
𝛽−1

𝜏
𝑘
𝑏
𝑘
𝑥
𝜇

𝑘
, (33)

then

(1) if 0 < 𝛽 ≤ 1/2, let 𝑝 = 1 + 𝛽 and 𝑞 = (1 + 𝛽)/𝛽, and
one gets

𝑥
𝑛
≤ [(2

𝑞−1

𝑎
𝑞

𝑛
)

(]−𝜇)/]
+

] − 𝜇
]

2
𝑞−1

𝜏
1−(𝑞/𝑝)𝛽

2

×𝐾
𝑞/𝑝

(𝛽) 𝑒
𝑞𝜏𝑡
𝑛

𝑛−1

∑

𝑘=0

𝑒
−𝑞𝜏𝑡
𝑘

𝑏
𝑞

𝑘
]

1/(]−𝜇)𝑞
(34)

for 𝑛 ≥ 0, where 𝐾(𝛽) is defined as in Theorem 4;
(2) if 1/2 < 𝛽 ≤ 1, let 𝑝 = 𝑞 = 2, and one gets

𝑥
𝑛
≤ [(2𝑎

2

𝑛
)

(]−𝜇)/]
+

] − 𝜇
]

𝐵 (𝛽) 𝜏
2−2𝛽

× 𝑒
2𝜏𝑡
𝑛

𝑛−1

∑

𝑘=0

𝑒
−2𝜏𝑡
𝑘

𝑏
2

𝑘
]

1/2(]−𝜇)

,

(35)

for 𝑛 ≥ 0, where 𝐵(𝛽) is defined as in Theorem 4

Proof. Let 𝑧
𝑛
= 𝑥

]
𝑛
, then 𝑥

𝑛
= 𝑧
1/]
𝑛

and 𝑥𝜇
𝑛
= 𝑧
𝜇/]
𝑛

. From (33),
we have

𝑧
𝑛
≤ 𝑎
𝑛
+

𝑛−1

∑

𝑘=0

(𝑡
𝑛
− 𝑡
𝑘
)
𝛽−1

𝜏
𝑘
𝑏
𝑘
𝑧
𝜇/]
𝑘
. (36)

Clearly, 𝜔(𝑧
𝑘
) = 𝑧

𝜇/]
𝑘

satisfies the assumption (𝐴
2
). Ac-

cording to the definition ofΩ in Theorem 4, for 0 < 𝛽 ≤ 1/2,
letting 𝑢

0
= 0, we have

Ω (𝑢) = ∫

𝑢

𝑢
0

1

𝜔
𝑞
(𝑠
1/𝑞
)

𝑑𝑠 = ∫

𝑢

0

𝑑𝑠

𝑠
𝜇/] =

]
] − 𝜇

𝑢
(]−𝜇)/]

, (37)

Ω
−1

(𝑢) = (

] − 𝜇
]

𝑢)

]/(]−𝜇)
, Dom (Ω

−1

) = [0,∞) .

(38)

It can be seen easily from (38) that𝑁
1
= ∞. Substituting

(37) and (38) into (12), we get

𝑧
𝑛
≤ [(2

𝑞−1

𝑎
𝑞

𝑛
)

(]−𝜇)/]
+

] − 𝜇
]

2
𝑞−1

𝜏
1−(𝑞/𝑝)𝛽

2

× 𝐾
𝑞/𝑝

(𝛽) 𝑒
𝑞𝜏𝑡
𝑛

𝑛−1

∑

𝑘=0

𝑒
−𝑞𝜏𝑡
𝑘

𝑏
𝑞

𝑘
]

]/(]−𝜇)𝑞

.

(39)

In view of 𝑥
𝑛
= 𝑧
1/]
𝑛

, we can obtain (34). For the case that
1/2 < 𝛽 ≤ 1, in fact,Ω andΩ−1 are the same as (37) and (38),
respectively. So, it follows from (37), (38), and (15) that

𝑥
𝑛
≤ [(2𝑎

2

𝑛
)

(]−𝜇)/]
+

] − 𝜇
]

𝐵 (𝛽) 𝜏
2−2𝛽

× 𝑒
2𝜏𝑡
𝑛

𝑛−1

∑

𝑘=0

𝑒
−2𝜏𝑡
𝑘

𝑏
2

𝑘
]

1/2(]−𝜇)

,

(40)

for 𝑛 > 0.

Remark 7. In [11], Yang et al. investigated inequality (33),
under the assumption that 𝑎

𝑛
is nondecreasing. Clearly, our

result does not need such condition, and we get a more
concise formula.

Remark 8. Letting ] = 2 and 𝜇 = 1, we can get the
interesting Henry version of the Ou-Iang-Pachpatte-type
difference inequality [3]. Thus, our result is a more general
discrete analogue for such inequality.

Corollary 9. Under assumptions (𝐴
1
) and (𝐴

2
), if 𝑥

𝑛
is

nonnegative such that

𝑥
𝑛
≤ 𝑎
𝑛
+

𝑛−1

∑

𝑘=0

(𝑡
𝑛
− 𝑡
𝑘
)
𝛽−1

𝜏
𝑘
𝑏
𝑘
𝑥
𝑘
, (41)
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then

(1) if 0 < 𝛽 ≤ 1/2, let 𝑝 = 1 + 𝛽 and 𝑞 = (1 + 𝛽)/𝛽, and
one gets

𝑥
𝑛
≤ 2
(𝑞−1)/𝑞

𝑎
𝑛
exp(2(𝑞−1)/𝑞𝜏1−(𝑞/𝑝)𝛽

2

𝐾
𝑞/𝑝

(𝛽)

× 𝑒
𝑞𝜏𝑡
𝑛

𝑛−1

∑

𝑘=0

𝑒
−𝑞𝜏𝑡
𝑘

𝑏
𝑞

𝑘
) ,

(42)

for 𝑛 ≥ 0, where 𝐾(𝛽) is defined as in Theorem 4;

(2) if 1/2 < 𝛽 ≤ 1, let 𝑝 = 𝑞 = 2, and one gets

𝑥
𝑛
≤ √2𝑎

𝑛
exp(1

2

𝐵 (𝛽) 𝜏
2−2𝛽

𝑒
2𝜏𝑡
𝑛

𝑛−1

∑

𝑘=0

𝑒
−2𝜏𝑡
𝑘

𝑏
2

𝑘
) , (43)

for 𝑛 ≥ 0, where 𝐵(𝛽) is defined as in Theorem 4.

Proof. In (41), 𝜔(𝑢) = 𝑢 also satisfies the assumption (𝐴
2
).

Thus, we have

Ω (𝑢) = ∫

𝑢

𝑢
0

𝑑𝑠

𝑠

= ln 𝑢

𝑢
0

, Ω
−1

(𝑢) = 𝑢
0
exp (𝑢) ,

Dom (Ω
−1

) = [0,∞) .

(44)

Similarly to the computation in Corollary 6, the estimates
(42) and (43) hold, respectively.

4. Application

In this section, we apply our results to discuss the upper
bound of solution of a Volterra type difference equation with
weakly singular kernel.

Consider the following the inequality:

𝑥
𝑛
≤ 1 +

𝑛−1

∑

𝑘=0

(𝑡
𝑛
− 𝑡
𝑘
)
−1/2

𝜏
𝑘
√𝑥
𝑘
. (45)

Obviously, (45) is the special case of inequality (6), then
we get

𝑎
𝑛
= 1, 𝛽 =

1

2

, 𝜔 = √𝑢. (46)

Thus, we can take 𝑝 = 1 + 𝛽 = 3/2 and 𝑞 = (1 + 𝛽)/𝛽 = 3;
then, 𝑞/𝑝 = 2. Moreover,

𝑎
𝑛
= 1,

𝐾 (𝛽) = (1 + 𝛽)
−𝛽
2

Γ (𝛽
2

) = (

3

2

)

−1/4

Γ (

1

4

) ,

Ω (𝑢) = ∫

𝑢

0

𝑑𝑠

√𝑠

= 2√𝑢, Ω
−1

(𝑢) =

𝑢
2

4

.

(47)

According toTheorem 4, we obtain

𝑥
𝑛
≤ [Ω
−1

(Ω (2
𝑞−1

𝑎
𝑞

𝑛
) + 2
𝑞−1

𝜏
1−(𝑞/𝑝)𝛽

2

)

× 𝐾
𝑞/𝑝

(𝛽) 𝑒
𝑞𝜏𝑡
𝑛

𝑛−1

∑

𝑘=0

𝑒
−𝑞𝜏𝑡
𝑘

𝑏
𝑞

𝑘
]

1/𝑞

= [Ω
−1

(Ω (4) + 4𝜏
1/2

(

3

2

)

−1/2

)

×Γ
2

(

1

4

) 𝑒
3𝜏𝑡
𝑛

𝑛−1

∑

𝑘=0

𝑒
−3𝜏𝑡
𝑘

𝑏
3

𝑘
]

1/3

= [Ω
−1

(4 +

4

3

√6𝜏
1/2

Γ
2

(

1

4

) 𝑒
3𝜏𝑡
𝑛

𝑛−1

∑

𝑘=0

𝑒
−3𝜏𝑡
𝑘

𝑏
3

𝑘
)]

1/3

= 4
−1/3

(4 +

4

3

√6𝜏
1/2

Γ
2

(

1

4

) 𝑒
3𝜏𝑡
𝑛

𝑛−1

∑

𝑘=0

𝑒
−3𝜏𝑡
𝑘

𝑏
3

𝑘
)

2/3

(48)

for 𝑛 > 0, which indicates that we get the upper bound of 𝑥
𝑛
.
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The mathematical model for the incompressible two-dimensional/axisymmetric non-Newtonian fluid flows and heat transfer
analysis in the region of stagnation point over a stretching/shrinking sheet and axisymmetric shrinking sheet is presented. The
governing equations are transformed into dimensionless nonlinear ordinary differential equations by similarity transformation.
Analytical technique, namely, the homotopy perturbation method (HPM) with general form of linear operator is used to
solve dimensionless nonlinear ordinary differential equations. The series solution is obtained without using the diagonal Padé
approximants to handle the boundary condition at infinity which can be considered as a clear advantage of homotopy perturbation
technique over the decomposition method. The effects of the pertinent parameters on the velocity and temperature field are
discussed through graphs. To the best of authors’ knowledge, HPM solution with general form of linear operator for two-
dimensional/axisymmetric non-Newtonian fluid flows and heat transfer analysis in the region of stagnation point is presented
for the first time in the literature.

1. Introduction

Stagnation point flow is of great importance in the prediction
of skin friction as well as heat/mass transfer near stagnation
regions of bodies in high speed flows and also in the
design of thrust bearings and radial diffusers, drag reduction,
transpiration cooling, and thermal oil. In 1911, Hiemenz [1]
revealed that stagnation point flow can be examined by
the Navier-Stokes (NS) equations. He used the similarity
of the solution to reduce number of variables by means of
a coordinate transformation. Later Howann [2] discovered
the stagnation point flow in case of axisymmetric situation.
Recently, a number of researchers studied the stagnation
point flow considering different fluids models, geometries,
and assumptions that were proposed in the literature. The
literature on the topic is quite extensive and hence cannot be
described here in detail. However some most recent works
of eminent researchers regarding the analytical/numerical

solution of stagnation point for different geometries may be
mentioned in [3–5]. Attia [6], Massoudi and Ramezan [7],
and Garg [8] extended the stagnation point flow for heat
transfer.

The main aim of this paper is to extend the HPM [9–
17] for solving non-Newtonian fluid flow and heat transfer
analysis in the region of stagnation point flow towards a
stretching/shrinking and axisymmetric shrinking sheet. Also
the main motivation is to perform such analysis [3] (shrink-
ing/axisymmetric shrinking sheet) for a non-Newtonian fluid
in the presence of heat transfer. Heat transfer plays very
important role in nuclear energy because nuclear chain
reaction creates heat, and it is used to boil water, produce
steam, and drive a steam turbine. The steady Navier-Stokes
equations are reduced to the nonlinear ordinary differential
equations by using similarity solutions. Graphical results
explicitly reveal the complete reliability and efficiency of the
suggested algorithm.
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2. Governing Equations

The flow and heat characteristics are governed by the follow-
ing equations [3]:
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+
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+
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The similarity transformations for two-dimensional stag-
nation flow case are as follows [3]:

𝜂 = √

𝑎

]
𝑧, 𝑢 = 𝑎𝑥𝑓



(𝜂) + 𝑏𝑐ℎ (𝜂) , V = 0,

𝑤 = −√𝑎]𝑓 (𝜂) , 𝜃 =
𝑇 − 𝑇
∞

𝑇
0
− 𝑇
∞

.

(4)

The steady Navier-Stokes equations yield a system of
nonlinear ordinary differential equations in the form

𝑓
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(5)

and corresponding boundary conditions take the form
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= 𝛼, 𝜃 (0) = 1,
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(6)

The similarity transformations for axisymmetric stagna-
tion flow towards an axisymmetric shrinking surface are as
follows [3]:

𝜂 (𝑥, 𝑦) = √

𝑎
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.
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Uponmaking use of the above substitutions in (2) and (3),
the resulting nonlinear system has the following form:
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3. Analytical Solution

For the HPM [9] solution, we select
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as initial approximations of𝑓, ℎ, and 𝜃.We further choose the
following auxiliary linear operators:
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In view of the basic idea of the HPM [9], (5) is expressed
as
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3
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tuting 𝑓, ℎ, and 𝜃 from (13) into (12) and some simplification
and rearrangement based on powers of 𝑝-terms, we have
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Figure 1: Effect of 𝛼 on 𝑓 for two-dimensional case.
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On solving (14) in any software like Mathematica, Maple
or MATLAB we can get any order of approximation.

Adopting the same procedure for axisymmetric stagna-
tion flow towards an axisymmetric shrinking surface (8), we
can get the required solution for (8)

𝑔 = 𝑔
0
+ 𝑔
1
+ 𝑔
2
+ ⋅ ⋅ ⋅ ,

𝑙 = 𝑙
0
+ 𝑙
1
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2
+ ⋅ ⋅ ⋅ ,

𝜃 = 𝜃
0
+ 𝜃
1
+ 𝜃
2
+ ⋅ ⋅ ⋅ .

(15)

4. Concluding Remarks

In this paper, we have studied non-Newtonian Stagnation
point flow in the presence of heat transfer by using HPM.
The HPM is used in a direct way without using linearization,
discretization, or restrictive assumption. The variations of
various emerging parameters on the velocities (𝑓, ℎ, 𝑔, 𝑙)
and temperature field (𝜃) are discussed through Figures 1, 2,
3, 4, 5, and 6. The main results of the present analysis are as
follows:

(i) for two-dimensional case, the velocity 𝑓decreases
for shrinking parameter 𝛼 while for axisymmetric
shrinking surface, the velocity 𝑔 shows opposite
behavior for 𝛼;

(ii) for two dimensional case and axisymmetric shrinking
surface, the velocity profiles ℎ and 𝑙 increase with
increasing value of 𝛽;

(iii) the effects of Prandtl number Pr are same on the
temperature field for both cases.

Notations

𝜌: Density of fluid
𝜐: Kinematic viscosity
𝛼
1
: Second grade parameter
𝑇: Temperature
𝛼: Stretching and shrinking parameter
𝑘: Thermal conductivity
𝑐
𝑝
: Specific heat
𝑇
0
and 𝑇

∞
: The temperatures at and far away from the
plate

Pr: Prandtl number
𝛽: Dimensionless second grade parameter
𝑓, 𝑔, ℎ, 𝑙: Dimensionless velocity profiles
𝜃: Dimensionless temperature profile
𝑢: Velocity component in 𝑥 direction
V: Velocity component in 𝑦 direction
𝑤: Velocity component in 𝑧 direction
𝜂: Independent dimensionless parameter.
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We investigate the asymptotic behavior of solutions to a linear Volterra integrodifferential system 𝑥


𝑖
(𝑡) = 𝑎

𝑖
(𝑡) + 𝑏

𝑖
(𝑡)𝑥
𝑖
(𝑡) +

∑
𝑛

𝑗=1
∫

𝑡

0

𝐾
𝑖𝑗
(𝑡, 𝑠)𝑥

𝑗
(𝑠)𝑑𝑠, 𝑡 ∈ R+, 𝑖 = 1, 2, . . . , 𝑛. We show that under some suitable conditions, there exists a solution for the above

integrodifferential system, which is asymptotically equivalent to some given functions. Two examples are given to illustrate our
theorem.

1. Introduction

Throughout this paper, we denote by N the set of positive
integers, by R the set of all real numbers, by R+ the set of
all nonnegative real numbers, and by R𝑛 the set of all 𝑛-
dimensional real vectors. Moreover, 𝐵𝐶(R+,R𝑛) denotes the
Banach space of all bounded and continuous functions 𝑓 :

R+ → R𝑛 with the norm




𝑓




= sup
𝑡∈R+

max
1≤𝑗≤𝑛






𝑓
𝑗
(𝑡)






, (1)

where 𝑓(𝑡) = (𝑓
1
(𝑡), . . . , 𝑓

𝑛
(𝑡))
𝑇 for 𝑡 ∈ R+.

The aim of this paper is to study some asymptotic behav-
ior of solutions to the following linear Volterra integrodiffer-
ential system:

𝑥


𝑖
(𝑡) = 𝑎

𝑖
(𝑡) + 𝑏

𝑖
(𝑡) 𝑥
𝑖
(𝑡) +

𝑛

∑

𝑗=1

∫

𝑡

0

𝐾
𝑖𝑗
(𝑡, 𝑠) 𝑥

𝑗
(𝑠) 𝑑𝑠,

𝑡 ∈ R
+

, 𝑖 = 1, 2, . . . , 𝑛,

(2)

where 𝑎
𝑖
, 𝑏
𝑖
: R+ → R and 𝐾

𝑖𝑗
: R+ × R+ → R, 𝑖, 𝑗 = 1, 2,

. . . , 𝑛 are all continuous functions.

Definition 1. We call 𝑥 = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
)
𝑇

: R+ → R𝑛 a
solution of system (2) if 𝑥 is continuously differentiable and
satisfies (2).

The asymptotic behavior of solutions has been an impor-
tant and interesting topic in the qualitative theory of differen-
tial and difference equations. Especially, recently, many
authors have made interesting and important contribu-
tions on the asymptotic behavior of solutions forVolterra type
difference equations (e.g., we refer the reader to [1–10] and
references therein).

Very recently, Dibĺık and Schmeidel [6] obtained a very
interesting result concerning the asymptotic behavior of solu-
tions for the following linear Volterra difference equation:

𝑥 (𝑛 + 1) = 𝑎 (𝑛) + 𝑏 (𝑛) 𝑥 (𝑛) +

𝑛

∑

𝑖=0

𝐾 (𝑛, 𝑖) 𝑥 (𝑖) . (3)

More specifically, they proved that for every admissible
constant 𝑐 ∈ R, there exists a solution 𝑥 = 𝑥(𝑛) of (3) such
that

𝑥 (𝑛) ∼ (𝑐 +

𝑛−1

∑

𝑖=0

𝑎 (𝑖)

𝛽 (𝑖 + 1)

)𝛽 (𝑛) , 𝑛 → ∞, (4)

where 𝛽(𝑛) = ∏
𝑛−1

𝑖=0
𝑏(𝑖). However, to the best of our knowl-

edge, it seems that there is no literature concerning such
asymptotic behavior of solutions for Volterra type differential
equations. That is the main motivation of this paper. In this
paper, we will adopt the idea in the proof of [6] to investigate
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some asymptotic behaviors of solutions for Volterra differen-
tial system (2).

2. Main Result

Before establishing our main result, we first give an “Arzela-
Ascoli” type theorem for the subsets of 𝐵𝐶(R+,R𝑛).

Lemma 2. LetF ⊂ 𝐵𝐶(R+,R𝑛), satisfying (i)F is uniformly
bounded; (ii)F is equiuniformly continuous on every compact
subset of R+; (iii) for every 𝜀 > 0, there exist 𝑓

𝜀
∈ 𝐵𝐶(R+,R𝑛)

and 𝑇
𝜀
> 0 such that ‖𝑓(𝑡) − 𝑓

𝜀
(𝑡)‖ < 𝜀 for all 𝑓 ∈ F and

𝑡 ≥ 𝑇
𝜀
. ThenF is precompact in 𝐵𝐶(R+,R𝑛).

Proof. By the condition (iii), for every 𝑘 ∈ N, there exist 𝑇
𝑘
>

0 such that





𝐹
1
(𝑡) − 𝐹

2
(𝑡)





<

1

𝑘

(5)

for all 𝐹
1
, 𝐹
2
∈ F and 𝑡 ≥ 𝑇

𝑘
.

Let {𝑓
𝑛
} be a sequence inF. By (i) and (ii), it follows from

Arzela-Ascoli theorem that for every 𝑘 ∈ N, there exists a sub-
sequence {𝑓

𝑘

𝑛
} ⊂ {𝑓

𝑛
} such that {𝑓𝑘

𝑛
} is uniformly convergent

on [0, 𝑇
𝑘
]. Then, by choosing the diagonal sequence, we can

get a subsequence {𝑓
𝑚
} ⊂ {𝑓

𝑛
} such that, for every 𝑘 ∈ N, {𝑓

𝑚
}

is uniformly convergent on [0, 𝑇
𝑘
].

It remains to show that {𝑓
𝑚
} is uniformly convergent on

R+. For every 𝜀 > 0, choose 𝑘
0
∈ N with 1/𝑘

0
< 𝜀. Since {𝑓

𝑚
}

is uniformly convergent on [0, 𝑇
𝑘
0

], for the above 𝜀 > 0, there
exists𝑁 ∈ N such that

sup
𝑡∈[0,𝑇

𝑘
0

]






𝑓
𝑚
1

(𝑡) − 𝑓
𝑚
2

(𝑡)






≤ 𝜀 (6)

for all𝑚
1
, 𝑚
2
≥ 𝑁; Combining this with (5), we conclude that

sup
𝑡∈R+






𝑓
𝑚
1

(𝑡) − 𝑓
𝑚
2

(𝑡)






≤ 𝜀 (7)

for all 𝑚
1
, 𝑚
2
≥ 𝑁, that is, {𝑓

𝑚
} is uniformly convergent on

R+. This completes the proof.

Throughout the rest of this paper, for every 𝑖 ∈ {1, 2, . . . ,

𝑛}, we assume that

𝐴
𝑖
= sup
𝑡∈R+





𝐴
𝑖
(𝑡)





< +∞, (8)

where

𝐴
𝑖
(𝑡) = ∫

𝑡

0

𝑎
𝑖
(𝑠)

𝛽
𝑖
(𝑠)

𝑑𝑠,

𝛽
𝑖
(𝑡) = exp(∫

𝑡

0

𝑏
𝑖
(𝑠) 𝑑𝑠) , 𝑡 ∈ R

+

,

0 ≤ 𝑀
𝑖
:=

𝑛

∑

𝑗=1

∫

+∞

0

(∫

𝑡

0











𝐾
𝑖𝑗
(𝑡, 𝑠)

𝛽
𝑗
(𝑠)

𝛽
𝑖
(𝑡)











𝑑𝑠) 𝑑𝑡 < 1.

(9)

Theorem 3. Assume that

0 < lim inf
𝑡→+∞

𝛽
𝑖
(𝑡) ≤ lim sup

𝑡→+∞

𝛽
𝑖
(𝑡) < +∞,

𝑖 = 1, 2, . . . , 𝑛.

(10)

Let 𝑐 = (𝑐
1
, 𝑐
2
, . . . , 𝑐

𝑛
)
𝑇

∈ R𝑛 with 𝑐
𝑖
+ 𝐴
𝑖
(𝑡) ≥ 0 for all

𝑖 ∈ {1, 2, . . . , 𝑛} and 𝑡 ∈ R+. Then, there exists a solution 𝑥 =

(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
)
𝑇

: R+ → R𝑛 of system (2) such that

𝑥
𝑖
(𝑡) ∼ (𝑐

𝑖
+ 𝐴
𝑖
(𝑡)) 𝛽
𝑖
(𝑡) , 𝑡 → +∞, 𝑖 = 1, 2, . . . , 𝑛,

(11)

provided that lim inf
𝑡→+∞

(𝑐
𝑖
+ 𝐴
𝑖
(𝑡)) > 0.

Proof. We define that

𝛼
𝑖
(0) =

(𝑐
𝑖
+ 𝐴
𝑖
)𝑀
𝑖

1 − 𝑀
𝑖

,

𝛼
𝑖
(𝑡) = (𝑐

𝑖
+ 𝐴
𝑖
+ 𝛼
𝑖
(0))

×

𝑛

∑

𝑗=1

∫

+∞

𝑡

(∫

𝑠

0












𝐾
𝑖𝑗
(𝑠, 𝑝)

𝛽
𝑗
(𝑝)

𝛽
𝑖
(𝑠)












𝑑𝑝)𝑑𝑠,

(12)

for all 𝑖 ∈ {1, 2, . . . , 𝑛} and 𝑡 ∈ R+. Moreover, we define an
operator 𝜌 = (𝜌

1
, 𝜌
2
, . . . , 𝜌

𝑛
)
𝑇 on

𝑆 = {𝑧 ∈ 𝐵𝐶 (R
+

,R
𝑛

) : 𝑐
𝑖
+ 𝐴
𝑖
(𝑡) − 𝛼

𝑖
(0)

≤ 𝑧
𝑖
(𝑡) ≤ 𝑐

𝑖
+ 𝐴
𝑖
(𝑡) + 𝛼

𝑖
(0) ,

𝑖 = 1, 2, . . . , 𝑛, 𝑡 ∈ R
+

}

(13)

by

(𝜌
𝑖
𝑧) (𝑡) = 𝑐

𝑖
+ 𝐴
𝑖
(𝑡)

−

𝑛

∑

𝑗=1

∫

+∞

𝑡

(∫

𝑠

0

𝐾
𝑖𝑗
(𝑠, 𝑝) 𝑧

𝑗
(𝑝)

𝛽
𝑗
(𝑝)

𝛽
𝑖
(𝑠)

𝑑𝑝)𝑑𝑠,

𝑖 = 1, 2 . . . , 𝑛,

(14)

for 𝑡 ∈ R+ and 𝑧 ∈ 𝑆. It is easy to see that 𝑆 is a nonempty,
closed, and convex set in 𝐵𝐶(R+,R𝑛). Next, we divide the
remaining proof into two steps.

Step 1. 𝜌(𝑆) ⊂ 𝑆, 𝜌 is continuous, and 𝜌(𝑆) is compact.
Let 𝑧 ∈ 𝑆. We have





(𝜌
𝑖
𝑧) (𝑡)





≤





𝑐
𝑖





+ 𝐴
𝑖
+ 𝑀
𝑖
⋅ ‖𝑧‖ < +∞,

𝑡 ∈ R
+

, 𝑖 = 1, 2, . . . , 𝑛.

(15)

In addition, since 𝑧 ∈ 𝑆, we have





𝑧
𝑖
(𝑡)





≤ 𝑐
𝑖
+ 𝐴
𝑖
+ 𝛼
𝑖
(0) , 𝑡 ∈ R

+

, 𝑖 = 1, 2, . . . , 𝑛. (16)
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Then, it follows that





(𝜌
𝑖
𝑧) (𝑡) − (𝑐

𝑖
+ 𝐴
𝑖
(𝑡))






≤

𝑛

∑

𝑗=1

∫

+∞

𝑡

(∫

𝑠

0












𝐾
𝑖𝑗
(𝑠, 𝑝) 𝑧

𝑗
(𝑝)

𝛽
𝑗
(𝑝)

𝛽
𝑖
(𝑠)












𝑑𝑝)𝑑𝑠

≤ [𝑐
𝑖
+ 𝐴
𝑖
+ 𝛼
𝑖
(0)] ⋅ 𝑀

𝑖
= 𝛼
𝑖
(0)

(17)

for all 𝑖 ∈ {1, 2, . . . , 𝑛} and 𝑡 ∈ R+. Thus, we conclude that
𝜌(𝑆) ⊂ 𝑆.

For every 𝜀 > 0, there exists a constant 𝛿 = 𝜀/max
1≤𝑖≤𝑛

𝑀
𝑖

such that for all 𝑧, 𝑦 ∈ 𝑆 with ‖𝑧 − 𝑦‖ < 𝛿, we have





(𝜌
𝑖
𝑧) (𝑡) − (𝜌

𝑖
𝑦) (𝑡)






=













𝑛

∑

𝑗=1

∫

+∞

𝑡

(∫

𝑠

0

𝐾
𝑖𝑗
(𝑠, 𝑝) 𝑧

𝑗
(𝑝)

𝛽
𝑗
(𝑝)

𝛽
𝑖
(𝑠)

𝑑𝑝)𝑑𝑠

−

𝑛

∑

𝑗=1

∫

+∞

𝑡

(∫

𝑠

0

𝐾
𝑖𝑗
(𝑠, 𝑝) 𝑦

𝑗
(𝑝)

𝛽
𝑗
(𝑝)

𝛽
𝑖
(𝑠)

𝑑𝑝)𝑑𝑠













≤ 𝛿 ⋅ 𝑀
𝑖
≤ 𝜀, 𝑖 ∈ {1, 2, . . . , 𝑛} , 𝑡 ∈ R

+

,

(18)

which means that 𝜌 is continuous.
Next, we show that 𝜌(𝑆) is precompact. Firstly, for every

𝑥 ∈ 𝑆, we have





𝜌𝑥





= sup
𝑡∈R+

max
1≤𝑖≤𝑛





(𝜌
𝑖
𝑥) (𝑡)






≤ max
1≤𝑖≤𝑛

[𝑐
𝑖
+ 𝐴
𝑖
+ 𝛼
𝑖
(0)] ,

(19)

which means that 𝜌(𝑆) is uniformly bounded. Secondly, for
every 𝑧 ∈ 𝑆, 𝑡

1
, 𝑡
2
∈ R+ and 𝑖 = 1, 2, . . . , 𝑛, we have





(𝜌
𝑖
𝑧) (𝑡
1
) − (𝜌

𝑖
𝑧) (𝑡
2
)





=













𝑛

∑

𝑗=1

∫

+∞

𝑡
1

(∫

𝑠

0

𝐾
𝑖𝑗
(𝑠, 𝑝) 𝑧

𝑗
(𝑝)

𝛽
𝑗
(𝑝)

𝛽
𝑖
(𝑠)

𝑑𝑝)𝑑𝑠

−

𝑛

∑

𝑗=1

∫

+∞

𝑡
2

(∫

𝑠

0

𝐾
𝑖𝑗
(𝑠, 𝑝) 𝑧

𝑗
(𝑝)

𝛽
𝑗
(𝑝)

𝛽
𝑖
(𝑠)

𝑑𝑝)𝑑𝑠













≤ max
1≤𝑖≤𝑛

[𝑐
𝑖
+ 𝐴
𝑖
+ 𝛼
𝑖
(0)]

⋅













𝑛

∑

𝑗=1

∫

𝑡
2

𝑡
1

(∫

𝑠

0












𝐾
𝑖𝑗
(𝑠, 𝑝)

𝛽
𝑗
(𝑝)

𝛽
𝑖
(𝑠)












𝑑𝑝)𝑑𝑠













,

(20)

which yields that 𝜌(𝑆) is equiuniformly continuous on every
compact subsets of R+. Thirdly, by the definition of 𝑀

𝑖
, for

every 𝜀 > 0, there exists 𝑇 > 0 such that for all 𝑡 ≥ 𝑇 and
𝑧 ∈ 𝑆, we have

𝑛

∑

𝑗=1

∫

+∞

𝑡

(∫

𝑠

0












𝐾
𝑖𝑗
(𝑠, 𝑝)

𝛽
𝑗
(𝑝)

𝛽
𝑖
(𝑠)












𝑑𝑝)𝑑𝑠

<

𝜀

max
1≤𝑖≤𝑛

[𝑐
𝑖
+ 𝐴
𝑖
+ 𝛼
𝑖
(0)]

, 𝑖 = 1, 2, . . . , 𝑛,

(21)

which yields that




𝜌
𝑖
𝑧 − 𝜌
𝑖
0




< 𝜀, 𝑖 = 1, 2, . . . , 𝑛, (22)

and thus ‖𝜌𝑧−𝜌0‖ < 𝜀.Then, by Lemma 2, we know that 𝜌(𝑆)
is precompact.

Step 2. By Step 1 and Schauder’s fixed-point theorem, 𝜌 has a
fixed point in 𝑆; that is, there exists 𝑧0 = (𝑧

0

1
, 𝑧
0

2
, . . . , 𝑧

0

𝑛
)
𝑇

∈ 𝑆

such that

𝑧
0

𝑖
(𝑡) = 𝑐

𝑖
+ 𝐴
𝑖
(𝑡)

−

𝑛

∑

𝑗=1

∫

+∞

𝑡

(∫

𝑠

0

𝐾
𝑖𝑗
(𝑠, 𝑝) 𝑧

0

𝑗
(𝑝)

𝛽
𝑗
(𝑝)

𝛽
𝑖
(𝑠)

𝑑𝑝)𝑑𝑠,

(23)

for all 𝑖 ∈ {1, 2, . . . , 𝑛} and 𝑡 ∈ R+. Noting that

sup
𝑧∈𝑆

‖𝑧‖ ≤ max
1≤𝑖≤𝑛

[𝑐
𝑖
+ 𝐴
𝑖
+ 𝛼
𝑖
(0)] , (24)

we have





𝑧
0

𝑖
(𝑡) − (𝑐

𝑖
+ 𝐴
𝑖
(𝑡))







≤ max
1≤𝑖≤𝑛

[𝑐
𝑖
+ 𝐴
𝑖
+ 𝛼
𝑖
(0)]

⋅

𝑛

∑

𝑗=1

∫

+∞

𝑡

(∫

𝑠

0












𝐾
𝑖𝑗
(𝑠, 𝑝)

𝛽
𝑗
(𝑝)

𝛽
𝑖
(𝑠)












𝑑𝑝)𝑑𝑠,

(25)

for all 𝑖 ∈ {1, 2, . . . , 𝑛} and 𝑡 ∈ R+. Then, it is easy to see that

lim
𝑡→+∞






𝑧
0

𝑖
(𝑡) − (𝑐

𝑖
+ 𝐴
𝑖
(𝑡))






= 0, 𝑖 = 1, 2, . . . , 𝑛, (26)

Combining this with

lim inf
𝑡→+∞

(𝑐
𝑖
+ 𝐴
𝑖
(𝑡)) > 0, (27)

we have

lim
𝑡→+∞

𝑧
0

𝑖
(𝑡)

𝑐
𝑖
+ 𝐴
𝑖
(𝑡)

= 1, 𝑖 = 1, 2, . . . , 𝑛, (28)

that is,

𝑧
0

𝑖
(𝑡) ∼ 𝑐

𝑖
+ 𝐴
𝑖
(𝑡) , 𝑡 → +∞, 𝑖 = 1, 2, . . . , 𝑛. (29)

Now, define a function 𝑥 = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
)
𝑇

: R+ → R𝑛

by

𝑥
𝑖
(𝑡) = 𝑧

0

𝑖
(𝑡) 𝛽
𝑖
(𝑡) , 𝑖 = 1, 2, . . . , 𝑛, 𝑡 ∈ R

+

. (30)
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It follows from (23) that

𝑑

𝑑𝑡

𝑧
0

𝑖
(𝑡)

=

𝑎
𝑖
(𝑡)

𝛽
𝑖
(𝑡)

+

𝑛

∑

𝑗=1

∫

𝑡

0

𝐾
𝑖𝑗
(𝑡, 𝑝) 𝑧

0

𝑗
(𝑝)

𝛽
𝑗
(𝑝)

𝛽
𝑖
(𝑡)

𝑑𝑝,

𝑖 = 1, 2, . . . , 𝑛, 𝑡 ∈ R
+

,

(31)

which yields that

𝑥


𝑖
(𝑡) 𝛽
𝑖
(𝑡) − 𝑥

𝑖
(𝑡) 𝛽


𝑖
(𝑡)

𝛽
2

𝑖
(𝑡)

=

𝑎
𝑖
(𝑡)

𝛽
𝑖
(𝑡)

+

𝑛

∑

𝑗=1

∫

𝑡

0

𝐾
𝑖𝑗
(𝑡, 𝑠)

𝑥
𝑗
(𝑠)

𝛽
𝑖
(𝑡)

𝑑𝑠,

𝑖 = 1, 2, . . . , 𝑛, 𝑡 ∈ R
+

.

(32)

Then, we get

𝑥


𝑖
(𝑡) = 𝑎

𝑖
(𝑡) + 𝑏

𝑖
(𝑡) 𝑥
𝑖
(𝑡)

+

𝑛

∑

𝑗=1

∫

𝑡

0

𝐾
𝑖𝑗
(𝑡, 𝑠) 𝑥

𝑗
(𝑠) 𝑑𝑠,

𝑖 = 1, 2, . . . , 𝑛, 𝑡 ∈ R
+

,

(33)

which means that 𝑥 is a solution to system (2). In addition,
combining (28) with the assumption

0 < lim inf
𝑡→+∞

𝛽
𝑖
(𝑡) ≤ lim sup

𝑡→+∞

𝛽
𝑖
(𝑡) < +∞,

𝑖 = 1, 2, . . . , 𝑛,

(34)

we get

lim
𝑡→+∞

𝑥
𝑖
(𝑡)

(𝑐
𝑖
+ 𝐴
𝑖
(𝑡)) 𝛽
𝑖
(𝑡)

= 1, 𝑖 = 1, 2, . . . , 𝑛, (35)

which yields (11).

Example 4. Let 𝑛 = 1, and for all 𝑡, 𝑠 ∈ R+,

𝑎
1
(𝑡) = exp (sin𝜋𝑡) cos 𝑡,

𝑏
1
(𝑡) = 𝜋 cos𝜋𝑡,

𝐾
11

(𝑡, 𝑠) =

exp (sin𝜋𝑡)

(1 + 𝑡 + 𝑠)
3 exp (sin𝜋𝑠)

.

(36)

Then, for all 𝑡 ∈ R+, we have 𝛽
1
(𝑡) = exp(sin𝜋𝑡),

𝐴
1
(𝑡) = ∫

𝑡

0

𝑎
1
(𝑠)

𝛽
1
(𝑠)

𝑑𝑠 = sin 𝑡,

𝐴
1
= sup
𝑡∈R+

{




𝐴
1
(𝑡)





} = 1 ∈ (0, +∞) ,

𝑀
1
= ∫

+∞

0

(∫

𝑡

0










𝐾
11

(𝑡, 𝑠)

𝛽 (𝑠)

𝛽 (𝑡)










𝑑𝑠) 𝑑𝑡

= ∫

+∞

0

(∫

𝑡

0

1

(1 + 𝑡 + 𝑠)
3
𝑑𝑠) 𝑑𝑡

= ∫

+∞

0

1

2

[

1

(1 + 𝑡)
2
−

1

(1 + 2𝑡)
2
] 𝑑𝑡

=

1

2

∫

+∞

0

1

(1 + 𝑡)
2
𝑑𝑡 −

1

2

∫

+∞

0

1

(1 + 2𝑡)
2
𝑑𝑡

=

1

2

−

1

4

=

1

4

∈ (0, 1) .

(37)

In addition, it is easy to see that

0 < 𝑒
−1

= lim inf
𝑡→+∞

𝛽
1
(𝑡)

≤ lim sup
𝑡→+∞

𝛽
1
(𝑡) = 𝑒 < +∞.

(38)

Thus, by Theorem 3, we conclude that for every 𝑐 > 1,
there exists a solution 𝑥 : R+ → R for (2) such that

𝑥 (𝑡) ∼ (𝑐 + sin 𝑡) exp (sin𝜋𝑡) , 𝑡 → +∞. (39)

Remark 5. It is needed to note that in the above example, (𝑐+
sin 𝑡) exp(sin𝜋𝑡) is not a solution to (2).

Example 6. Consider the following system:

𝑥


𝑖
(𝑡) = 𝑎

𝑖
(𝑡) + 𝑏

𝑖
(𝑡) 𝑥
𝑖
(𝑡)

+

2

∑

𝑗=1

∫

𝑡

0

𝐾
𝑖𝑗
(𝑡, 𝑠) 𝑥

𝑗
(𝑠) 𝑑𝑠, 𝑖 = 1, 2,

(40)

where

𝑎
1
(𝑡) = exp (sin𝜋𝑡) cos 𝑡,

𝑎
2
(𝑡) = − exp (cos𝜋𝑡) sin 𝑡,

𝑏
1
(𝑡) = 𝜋 cos𝜋𝑡,

𝑏
2
(𝑡) = −𝜋 sin𝜋𝑡,

𝐾
𝑖𝑗
(𝑡, 𝑠) =

(−1)
𝑖+𝑗 exp (sin𝜋𝑡)

16 (1 + 𝑡 + 𝑠)
3 exp (sin𝜋𝑠)

(41)

for all 𝑖, 𝑗 = 1, 2, and 𝑡, 𝑠 ∈ R+. By a direct calculation, we get

𝛽
1
(𝑡) = exp (sin𝜋𝑡) ,

𝛽
2
(𝑡) = exp (−1 + cos𝜋𝑡) ,

𝐴
1
(𝑡) = ∫

𝑡

0

𝑎
1
(𝑠)

𝛽
1
(𝑠)

𝑑𝑠 = sin 𝑡, 𝐴
1
= 1,

𝐴
2
(𝑡) = ∫

𝑡

0

𝑎
2
(𝑠)

𝛽
2
(𝑠)

𝑑𝑠 = (−1 + cos 𝑡) 𝑒, 𝑡 ∈ R
+

, 𝐴
2
= 2𝑒,
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𝑀
1
=

2

∑

𝑗=1

∫

+∞

0

(∫

𝑡

0











𝐾
1𝑗

(𝑡, 𝑠)

𝛽
𝑗
(𝑠)

𝛽
1
(𝑡)











𝑑𝑠) 𝑑𝑡

≤

1 + 𝑒

64

< 1,

𝑀
2
=

2

∑

𝑗=1

∫

+∞

0

(∫

𝑡

0











𝐾
2𝑗

(𝑡, 𝑠)

𝛽
𝑗
(𝑠)

𝛽
2
(𝑡)











𝑑𝑠) 𝑑𝑡

≤

𝑒 + 2𝑒
3

64

< 1.

(42)

Moreover, we have

0 < 𝑒
−1

= lim inf
𝑡→+∞

𝛽
1
(𝑡)

≤ lim sup
𝑡→+∞

𝛽
1
(𝑡) = 𝑒 < +∞,

0 < 𝑒
−2

= lim inf
𝑡→+∞

𝛽
2
(𝑡)

≤ lim sup
𝑡→+∞

𝛽
2
(𝑡) = 1 < +∞.

(43)

Then, by Theorem 3, for every 𝑐 = (𝑐
1
, 𝑐
2
)
𝑇

∈ R2 with 𝑐
1
> 1

and 𝑐
2
> 2𝑒, there exists a solution 𝑥 = (𝑥

1
, 𝑥
2
) : R+ → R2

of system (40) such that

𝑥
1
(𝑡) ∼ (𝑐

1
+ sin 𝑡) exp (sin𝜋𝑡) , 𝑡 → +∞,

𝑥
2
(𝑡) ∼ [𝑐

2
+ (−1 + cos 𝑡) 𝑒] exp (−1 + cos𝜋𝑡) , 𝑡 → +∞.

(44)
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The current paper is devoted to the regularity of the mild solution for a stochastic fractional delayed reaction-diffusion equation
driven by Lévy space-time white noise. By the Banach fixed point theorem, the existence and uniqueness of the mild solution are
proved in the proper working function space which is affected by the delays. Furthermore, the time regularity and space regularity
of the mild solution are established respectively. The main results show that both time regularity and space regularity of the mild
solution depend on the regularity of initial value and the order of fractional operator. In particular, the time regularity is affected
by the regularity of initial value with delays.

1. Introduction

Recently, fractional partial differential equations attract more
and more attention. They appear more and more frequently
in different research areas and engineering applications.They
have been applied to model various phenomena in image
analysis, risk management, and statistical mechanics (see,
e.g., [1, 2]). There are many papers concerning the existence
and regularity of the solution for fractional Navier-Stokes,
fractional Ginzburg-Landau equation, fractional Burgers
equation, fractional Langevin equation, and so on (see [3, 4]
and references therein).

Stochastic partial differential equations driven by Gaus-
sian noise and non-Gaussian noise such as Lévy noise have
also attracted a lot of attention. It seems more significant to
investigate fractional partial differential equations with some
random force, and some authors have investigated the exis-
tence and regularity of the solutions for stochastic fractional
partial differential equations ([2, 5–7] and the references
therein). The authors in [6, 7] proved the existence and
uniqueness of the solution for a stochastic fractional partial
differential equation driven by a space-time white noise in
one dimension. Truman and Wu in [8] applied the Banach
fixed point theorem to show the existence and uniqueness of
themild solution for fractal Burgers equations driven by Lévy
noise on real line. Brze ́zniak and Debbi in papers [9, 10]
proved the existence and ergodicity of the solution for fractal
Burgers equation driven by Gaussian space-time white noise,

and we refer to [9, 10] for more details. In mathematical biol-
ogy and other fields, delays are often considered in the model
such as maturation time for population dynamics. Some
efforts have been devoted to the development of the theory of
PDEs with delay. Such equations are naturally more difficult
since they are infinite dimensional both in time and space
variables.We refer to themonographs [11, 12] formore details.
To our knowledge, there is no paper to study the stochastic
fractional reaction-diffusion equation with delays.

It is worth to point out that the authors in [8] study the
existence of themild solution for stochastic fractional Burgers
equation driven by Lévy noise, but they could not provide the
regularity of the mild solution. The authors in [7, 13] study
the regularity of the mild solution for stochastic fractional
partial differential equations driven by Gaussian white noise,
but not Lévy noise. There is a natural question, how about
the regularity of the mild solution for the stochastic fraction
delayed reaction-diffusion equation driven by Lévy noise?

Motivated by [8], in the present paper, we will study the
stochastic fractional reaction-diffusion equation with delays
driven by Lévy process followed as:

𝜕𝑢 (𝑡, 𝑥)

𝜕𝑡

= 𝜆Δ
𝛼
𝑢 (𝑡, 𝑥) + 𝑓 (𝑡, 𝑥, 𝑢

𝑡
)

+ 𝑔 (𝑡, 𝑥, 𝑢
𝑡
) 𝑍
𝑡,𝑥
, (𝑡, 𝑥) ∈ [0, 𝑇] ×R,

𝑢 (0, 𝑥) = 𝑢
0
(𝑥) , 𝑢 (𝜂, 𝑥) = 𝜙 (𝜂, 𝑥) , 𝜂 ∈ [−𝑟, 0] ,

(1)
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where Δ
𝛼
:= −(−𝑑

2

/𝑑𝑥
2

)
𝛼/2 is the fractional Laplacian oper-

ator with 𝛼 ∈ (0, 2], the constants 𝜆 ∈ R, 𝑓, 𝑔 : [0,∞) × R ×

R → R aremeasurable, the function 𝑢
𝑡
= 𝑢(𝑡+𝜂), and𝑍

𝑡,𝑥
is

the one-dimensional Lévy process (see Section 2 for the def-
inition). Recall that 𝐷

𝛼
reduces to be the Laplacian operator

when 𝛼 = 2.
In this paper, the existence, uniqueness, time regularity,

and space regularity of the mild solution for (1) are shown
for 𝛼 ∈ (1, 2] in the proper working function space which is
affected by the delays. The main results show that both time
regularity and space regularity of the mild solution for (1)
depend on the regularity of initial value and the order of frac-
tional operator. In particular, the time regularity is affected by
the the regularity of initial value with delays.

The rest of this paper is organized as follows. In Section 2,
we introduce the definition of the Lévy space-time white
noise. Then, some useful properties for the fractional Green
kernel are presented. In Section 3, the proper working func-
tion space is constructed. Then the existence and uniqueness
of the mild solution for (1) are proved by the Banach fixed
point theorem in the proper working function space. Finally,
the time regularity and space regularity of the mild solution
are provided, respectively, in Section 4.

2. Preliminaries

In this section, we first introduce the Lévy space-time white
noise. Then, some useful properties for the fractional Green
kernel are presented.

Let (Ω,F, {F}
𝑡≥0
, 𝑃) be a complete probability space

with filtration {F}
𝑡≥0

satisfying the usual condition. For one-
dimensional Lévy process 𝑍

𝑡,𝑥
, it follows from Lévy-Itô

decomposition that there exist a constant 𝛽
1
and a nonneg-

ative constant 𝛽
2
, and a one-dimensional space-time white

noise𝑊
𝑡,𝑥
= (𝜕
2

𝑊/𝜕𝑡𝜕𝑥)(𝑡, 𝑥) (𝑊(𝑡, 𝑥) is a Brownian sheet
on [0,∞) ×R) such that

𝑍
𝑡,𝑥
= 𝛽
1
𝑡 + 𝛽
2
𝑊
𝑡,𝑥
+ ∫

|𝑧|<1

𝑧�̃� (𝑡, 𝑥, 𝑑𝑧)

+ ∫

|𝑧|≥1

𝑧𝑁 (𝑡, 𝑥, 𝑑𝑧) ,

(2)

where

�̃� (𝑡, 𝑥, 𝐴) := 𝑁 (𝑡, 𝑥, 𝐴) − 𝑡] (𝐴) , (3)

where ](𝐴) := 𝐸[𝑁(1, 𝐴)] is the Lévy measure of 𝑍
𝑡,𝑥
.

Similar to [14], for any 𝑝, we denote

𝑐
𝑝
:= (∫

R
|𝑧|
𝑝] (𝑑𝑧))

1/𝑝

. (4)

In what follows, we assume that

𝑐 := sup
𝑝≥1

𝑐
𝑝
< ∞. (5)

Recalling that

∫

|𝑧|<1

𝑧𝑁 (𝑡, 𝑥, 𝑑𝑧) = ∫

|𝑧|<1

𝑧�̃� (𝑡, 𝑥, 𝑑𝑧) + 𝑡 ∫

|𝑧|<1

𝑧] (𝑑𝑧) .

(6)

By absorbing ̃𝛽 := − ∫
|𝑧|<1

𝑧](𝑑𝑧) into 𝛽
1
, we can rewrite (2)

into the following equation:

𝑍
𝑡,𝑥
= 𝛽
1
𝑡 + 𝛽
2
𝑊
𝑡,𝑥
+ ∫

R

𝑧𝑁 (𝑡, 𝑥, 𝑑𝑧) . (7)

Let 𝛽
1
= 0; then (1) can be written as

𝑑𝑢 (𝑡, 𝑥) = [𝜆Δ
𝛼
𝑢 (𝑡, 𝑥) + 𝑓 (𝑡, 𝑥, 𝑢

𝑡
)] 𝑑𝑡

+ ℎ (𝑡, 𝑥, 𝑢
𝑡
) 𝑑𝑊
𝑡,𝑥

+ 𝑔 (𝑡, 𝑥, 𝑢
𝑡
) 𝑑𝑌
𝑡,𝑥
, (𝑡, 𝑥) ∈ [0, 𝑇] ×R,

𝑢 (0, 𝑥) = 𝑢
0
(𝑥) , 𝑢 (𝜂, 𝑥) = 𝜙 (𝜂, 𝑥) , 𝜂 ∈ (𝑟, 0] ,

(8)

where𝑊
𝑡,𝑥

is a one-dimensional space-time white noise and
𝑌
𝑡,𝑥
:= ∫

R
𝑧𝑁(𝑡, 𝑥, 𝑑𝑧) is a one-dimensional pure jump Lévy

process with Lévymeasure of ].We suppose that𝑊 generates
a {F}

𝑡≥0
-martingale measure in the sense of Walsh [15].

The following assumptions are imposed to the initial data
𝑢
0
and 𝜙(𝜂, 𝑥), 𝑓(𝑢

𝑡
), ℎ(𝑢

𝑡
), and 𝑔(𝑢

𝑡
) to show the existence

and uniqueness of the mild solution.

(H1) The initial data 𝑢
0
which is F

0
-measurable and 𝜙

satisfy

sup
𝑥∈R

|𝑢 (0, 𝑥)|
2

< ∞, sup
𝑥∈R

∫

0

−𝑟





𝜙 (𝜂, 𝑥)






2

𝑑𝜂 < ∞. (9)

(H2) There exists a constant𝐾 such that for all 𝑡 ≥ 0,





𝑓 (𝑢
𝑡
)





2

+




ℎ (𝑢
𝑡
)





2

+ (∫

R





𝑔 (𝑢
𝑡
)




|𝑧| ] (𝑑𝑧))

2

< 𝐾(|𝑢|
2

+ ∫

0

−𝑟





𝑢 (𝑡 + 𝜂)






2

𝑑𝜂) ,





𝑓 (𝑢
𝑡
) − 𝑓 (V

𝑡
)





2

+




ℎ (𝑢
𝑡
) − ℎ (V

𝑡
)





2

+ (∫

R





𝑔 (𝑢
𝑡
) − 𝑔 (V

𝑡
)




|𝑧| ] (𝑑𝑧))

2

< 𝐾(|𝑢 − V|2 + ∫
0

−𝑟





𝑢 (𝑡 + 𝜂) − V (𝑡 + 𝜂)



2

𝑑𝜂) .

(10)

Let the Green kennel 𝐺
𝛼
(𝑡, 𝑥) be the fundamental solu-

tion of the Cauchy problem:

𝜕𝜐

𝜕𝑡

= 𝜆Δ
𝛼
𝜐, (𝑡, 𝑥) ∈ (0,∞) ×R,

𝜐 (0, 𝑥) = 𝛿
0
(𝑥) , 𝑥 ∈ R,

(11)

where 𝛿
0
(𝑥) denotes the Dirac function. By Fourier trans-

form,

𝐺
𝛼
(𝑡, 𝑥) = [F

−1

(𝑒
𝜆𝑡|⋅|
𝛼

)] (𝑥) . (12)

A higher order fractional Green kennel is introduced in [16].
The following lemma gives some useful properties about

𝐺
𝛼
(𝑡, 𝑥), which are key technique tools to get the estimation

for the existence and uniqueness of the mild solution.
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Lemma 1 (see [7]). TheGreen kernel function𝐺
𝛼
(𝑡, 𝑥) satisfies

the following properties.

(1) For any 𝑡 ≥ 0 𝐺
𝛼
(𝑡, 𝑥) = 𝑡

−1/𝛼

𝐺
𝛼
(1, 𝑡
−1/𝛼

𝑥).

(2) For 𝑛 ∈ (1/(𝛼+1), 𝛼+1), ∫𝑇
0

∫
R
|𝐺
𝛼
(𝑡, 𝑥)|

𝑛

𝑑𝑡 𝑑𝑥 < ∞.

(3) For any 𝑥 ∈ R, ∫
R
𝐺
𝛼
(𝑡, 𝑥)𝑑𝑥 = 1.

(4) For any 𝑡, 𝑠 ∈ R, 𝐺
𝛼
(𝑡, 𝑥) ∗ 𝐺

𝛼
(𝑠, 𝑥) = 𝐺

𝛼
(𝑡 + 𝑠, 𝑥).

(5) For any 𝑥 ∈ R, there exists a constant 𝐶 such that

𝐺
𝛼
(1, 𝑥) ≤

𝐶

1 + |𝑥|
1+𝛼
,

𝜕
𝑚

𝑥
𝐺
𝛼
(1, 𝑥) ≤ 𝐶

|𝑥|
𝛼+𝑚−1

1 + |𝑥|
1+𝛼
.

(13)

3. Existence of the Mild Solution

In this section, we will first construct the proper working
function space.

Let 𝑇 be a fixed positive time and B the class of all F
𝑡
-

adapted càdlàg process {𝑢(𝑡, 𝑥), (𝑡, 𝑥) ∈ [0, 𝑇] ×R} satisfying

sup
(𝑡,𝑥)∈[0,𝑇]×R

𝐸 [|𝑢 (𝑡, 𝑥)|
2

] < ∞. (14)

Let 𝜆 > 0 be arbitrarily fixed; we define

|𝑢|
2

𝜆
= {∫

𝑇

0

𝑒
−𝜆𝑡sup
𝑥∈R

𝐸|𝑢 (𝑡, 𝑥)|
2

𝑑𝑡}

𝑡≥0

+ {∫

0

−𝑟

𝑒
−𝜆𝑡

𝐸|𝑢 (𝑡, 𝑥)|
2

𝑑𝑡}

𝑡∈(−𝑟,0)

.

(15)

For any 𝑢 ∈ B, |𝑢|2
𝜆
< ∞. It is easy to verify that | ⋅ |

𝜆
is a norm

and (B, | ⋅ |
𝜆
) is a Banach space.

Let (Ω,F, (F
𝑡
)
𝑡≥0
, 𝑃) and 𝐺

𝛼
(𝑡, 𝑥) be given as in the pre-

vious section. Following the idea in [17], we represent a mild
solution of (8) for 𝑡 ≥ 0.

Definition 2. AnF
𝑡
-adapted random field {𝑢(𝑡, 𝑥), 𝑡 ≥ 0, 𝑥 ∈

R} is said to be a mild solution of (8) with initial value 𝑢
0

satisfying (H1) if the following integral equation is fulfilled:

𝑢 (𝑡, 𝑥) = ∫

R

𝐺
𝛼
(𝑡, 𝑥 − 𝑦) 𝑢

0
(𝑦) 𝑑𝑦

+ ∫

𝑡

0

∫

R

𝐺
𝛼
(𝑡 − 𝑠, 𝑥 − 𝑦) 𝑓 (𝑢

𝑠
) 𝑑𝑦 𝑑𝑠

+ ∫

𝑡

0

∫

R

𝐺
𝛼
(𝑡 − 𝑠, 𝑥 − 𝑦) ℎ (𝑢

𝑠
)𝑊 (𝑑𝑦, 𝑑𝑠)

+ ∫

𝑡

0

∬

R

𝐺
𝛼
(𝑡 − 𝑠, 𝑥 − 𝑦) 𝑔 (𝑢

𝑠
) 𝑧𝑁 (𝑑𝑠, 𝑑𝑦, 𝑑𝑧) ,

(16)

where the stochastic integral with respect to𝑊(𝑡, 𝑥) is under-
stood in the sense of that introduced by Walsh [15].

Theorem 3. For 𝑡 ≥ 0 and 𝛼 ∈ (1, 2], assume that (H1) and
(H2) hold, then there exists a unique mild solution 𝑢 ∈ B for
(8).

Remark 4. In the following proof, 𝐶 is a local constant which
may change from line to line.

Proof. We will prove the theorem by the following two steps.

Step 1. Suppose that 𝑢 ∈ B and denote

T𝑢 (𝑡, 𝑥) = ∫
R

𝐺
𝛼
(𝑡, 𝑥 − 𝑦) 𝑢

0
(𝑦) 𝑑𝑦 +T

1
𝑢 (𝑡, 𝑥)

+T
2
𝑢 (𝑡, 𝑥) +T

3
𝑢 (𝑡, 𝑥) ,

(17)

where

T
1
𝑢 (𝑡, 𝑥) = ∫

𝑡

0

∫

R

𝐺
𝛼
(𝑡 − 𝑠, 𝑥 − 𝑦) 𝑓 (𝑢

𝑠
) 𝑑𝑦 𝑑𝑠,

T
2
𝑢 (𝑡, 𝑥) = ∫

𝑡

0

∫

R

𝐺
𝛼
(𝑡 − 𝑠, 𝑥 − 𝑦) ℎ (𝑢

𝑠
)𝑊 (𝑑𝑦, 𝑑𝑠) ,

T
3
𝑢 (𝑡, 𝑥) = ∫

𝑡

0

∬

R

𝐺
𝛼
(𝑡 − 𝑠, 𝑥 − 𝑦)

× 𝑔 (𝑢
𝑠
) 𝑧𝑁 (𝑑𝑠, 𝑑𝑦, 𝑑𝑧) .

(18)

It follows from Hölder’s inequality, Lemma 1, (H1), and (H2)
that

𝐸




T
1
𝑢 (𝑡, 𝑥)






2

= 𝐸










∫

𝑡

0

∫

R

𝐺
𝛼
(𝑡 − 𝑠, 𝑥 − 𝑦) 𝑓 (𝑢

𝑠
) 𝑑𝑦 𝑑𝑠










2

≤ 𝐶∫

𝑡

0

∫

R

𝐺
𝛼
(𝑡 − 𝑠, 𝑥 − 𝑦) 𝑑𝑦 𝑑𝑠

× ∫

𝑡

0

∫

R

𝐺
𝛼
(𝑡 − 𝑠, 𝑥 − 𝑦) 𝐸





𝑓 (𝑢
𝑠
)





2

𝑑𝑦𝑑𝑠

≤ 𝐶𝐾∫

𝑡

0

∫

R

𝐺
𝛼
(𝑡 − 𝑠, 𝑥 − 𝑦)

× 𝐸(




𝑢 (𝑠, 𝑦)






2

+∫

0

−𝑟





𝑢 (𝑠 + 𝜂, 𝑦)






2

𝑑𝜂)𝑑𝑦𝑑𝑠

≤ 𝐶∫

𝑡

0

sup
𝑦∈R

𝐸(




𝑢 (𝑠, 𝑦)






2

+∫

0

−𝑟





𝑢 (𝑠 + 𝜂, 𝑦)






2

𝑑𝜂)𝑑𝑠

≤ 𝐶𝑡 + 𝐶∫

𝑡

0

∫

0

−𝑟

sup
𝑦∈R

𝐸




𝑢 (𝑠 + 𝜂, 𝑦)






2

𝑑𝜂 𝑑𝑠

≤ 𝐶𝑡 + 𝐶∫

0

−𝑟

∫

𝑡

−𝑟

sup
𝑦∈R

𝐸




𝑢 (𝑠, 𝑦)






2

𝑑𝑠 𝑑𝜂
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≤ 𝐶𝑡 + 𝐶𝑟∫

0

−𝑟

sup
𝑦∈R

𝐸




𝑢 (𝑠, 𝑦)






2

𝑑𝑠

+ 𝐶𝑟∫

𝑡

0

sup
𝑦∈R

𝐸




𝑢 (𝑠, 𝑦)






2

𝑑𝑠

≤ 𝐶𝑡 (𝑟 + 1) + 𝐶𝑟 < ∞.

(19)

Applying Burkholder-Davis-Gundy inequality, Lemma 1,
(H1), and (H2), we have

𝐸




T
2
𝑢 (𝑡, 𝑥)






2

= 𝐸










∫

𝑡

0

∫

R

𝐺
𝛼
(𝑡 − 𝑠, 𝑥 − 𝑦) ℎ (𝑢

𝑠
)𝑊 (𝑑𝑠 𝑑𝑦)










2

≤ 𝐶∫

𝑡

0

∫

R

𝐺
2

𝛼
(𝑡 − 𝑠, 𝑥 − 𝑦) 𝐸





ℎ (𝑢
𝑠
)





2

𝑑𝑠 𝑑𝑦

≤ 𝐶𝐾∫

𝑡

0

(𝑡 − 𝑠)
−1/𝛼sup
𝑦∈R

𝐸(




𝑢 (𝑠, 𝑦)






2

+∫

0

−𝑟





𝑢 (𝑠 + 𝜂, 𝑦)






2

𝑑𝜂)𝑑𝑠

≤ 𝐶𝑡
1−(1/𝛼)

+ 𝐶∫

0

−𝑟

∫

𝑡

−𝑟





(𝑡 + 𝜂 − 𝑠)






−1/𝛼

× sup
𝑦∈R

𝐸




𝑢 (𝑠, 𝑦)






2

𝑑𝑠 𝑑𝜂

= 𝐶𝑡
1−(1/𝛼)

+ 𝐶(∫

𝑡+𝜂

−𝑟

∫

0

−𝑟

(𝑡 + 𝜂 − 𝑠)
−1/𝛼

𝑑𝜂

× sup
𝑦∈R

𝐸




𝑢 (𝑠, 𝑦)






2

𝑑𝑠

+ ∫

𝑡

𝑡+𝜂

∫

0

−𝑟

(𝑠 − 𝜂 − 𝑡)
−1/𝛼

𝑑𝜂

×sup
𝑦∈R

𝐸




𝑢 (𝑠, 𝑦)






2

𝑑𝑠)

≤ 𝐶𝑡
1−(1/𝛼)

+ 𝐶(∫

𝑡+𝜂

−𝑟

(𝑡 − 𝑠)
1−(1/𝛼)

× sup
𝑦∈R

𝐸




𝑢 (𝑠, 𝑦)






2

𝑑𝑠

+ ∫

𝑡

𝑡+𝜂

(𝑠 + 𝑟 − 𝑡)
1−(1/𝛼)

×sup
𝑦∈R

𝐸




𝑢 (𝑠, 𝑦)






2

𝑑𝑠)

= 𝐶𝑡
1−(1/𝛼)

+ 𝐶(∫

0

−𝑟

(𝑡 − 𝑠)
1−(1/𝛼)

× sup
𝑦∈R

𝐸




𝑢 (𝑠, 𝑦)






2

𝑑𝑠

+ ∫

𝑡+𝜂

0

(𝑡 − 𝑠)
1−(1/𝛼)

× sup
𝑦∈R

𝐸




𝑢 (𝑠, 𝑦)






2

𝑑𝑠

+ ∫

𝑡

𝑡+𝜂

(𝑠 + 𝑟 − 𝑡)
1−(1/𝛼)

×sup
𝑦∈R

𝐸




𝑢 (𝑠, 𝑦)






2

𝑑𝑠)

≤ 𝐶 (𝑡
1−(1/𝛼)

+ (𝑡 + 𝑟)
1−(1/𝛼)

+𝑡
2−(1/𝛼)

+ 𝑟
2−(1/𝛼)

) < ∞,

(20)

𝐸




T
3
𝑢 (𝑡, 𝑥)






2

= 𝐸










∫

𝑡

0

∬

R

𝐺
𝛼
(𝑡 − 𝑠, 𝑥 − 𝑦) 𝑔 (𝑢

𝑠
) 𝑧𝑁 (𝑑𝑠, 𝑑𝑦, 𝑑𝑧)










2

≤ 𝐶∫

𝑡

0

∫

R

𝐺
2

𝛼
(𝑡 − 𝑠, 𝑥 − 𝑦)

× 𝐸(∫

R





𝑔 (𝑢
𝑠
)




|𝑧| ] (𝑑𝑧))

2

𝑑𝑦𝑑𝑠

≤ 𝐶𝐾∫

𝑡

0

(𝑡 − 𝑠)
−1/𝛼sup
𝑦∈R

𝐸 (




𝑢 (𝑠, 𝑦)






2

+∫

0

−𝑟





𝑢 (𝑠 + 𝜂, 𝑦)






2

𝑑𝜂)𝑑𝑠

≤ 𝐶 (𝑡
1−(1/𝛼)

+ (𝑡 + 𝑟)
1−(1/𝛼)

+𝑡
2−(1/𝛼)

+ 𝑟
2−(1/𝛼)

) < ∞.

(21)

Thus, combining (19) and (20) with (21), we derive

𝐸|𝑢 (𝑡, 𝑥)|
2

≤ 𝐶 [𝑡 (𝑟 + 1) + 𝑟 + 𝑡
1−(1/𝛼)

+ (𝑡 + 𝑟)
1−(1/𝛼)

+ 𝑡
2−(1/𝛼)

+𝑟
2−(1/𝛼)

] .

(22)

Taking Laplace transform formula and (22), we deduce that

|T𝑢 (𝑡, 𝑥)|
2

𝜆

= ∫

𝑇

0

𝑒
−𝜆𝑡sup
𝑥∈R

|T𝑢 (𝑡, 𝑥)|
2

𝑑𝑡

≤ 𝐶∫

∞

0

𝑒
−𝜆𝑡

[𝑡 (𝑟 + 1) + 𝑟 + 𝑡
1−(1/𝛼)

+ (𝑡 + 𝑟)
1−(1/𝛼)

+ 𝑡
2−(1/𝛼)

+𝑟
2−(1/𝛼)

] 𝑑𝑡

≤ 𝐶 [ (𝑟 + 1) Γ (2) 𝜆
−2

+ 𝑟𝜆
−1

+ (𝑒
𝑟

+ 1) Γ (2 −

1

𝛼

) 𝜆
−(2−(1/𝛼))
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+ Γ (3 −

1

𝛼

) 𝜆
−(3−(1/𝛼))

+𝑟
2−(1/𝛼)

𝜆
−1

]

≤ 𝐶 [𝜆
−2

+ 𝜆
−1

+ 𝜆
−(2−(1/𝛼))

+𝜆
−(3−(1/𝛼))

] < ∞;

(23)

that is,T𝑢 ∈ B, which implies that operatorT : B → B.

Step 2. For any 𝑢, V ∈ B and 𝑡 ≥ 0, it follows from Hölder’s
inequality, Lemma 1, and (H2) that

𝐸




T
1
𝑢 (𝑡, 𝑥) −T

1
V (𝑡, 𝑥)



2

= 𝐸










∫

𝑡

0

∫

R

𝐺
𝛼
(𝑡 − 𝑠, 𝑥 − 𝑦) (𝑓 (𝑢

𝑠
) − 𝑓 (V

𝑠
)) 𝑑𝑦 𝑑𝑠










2

≤ 𝐶∫

𝑡

0

∫

R

𝐺
𝛼
(𝑡 − 𝑠, 𝑥 − 𝑦) 𝑑𝑦 𝑑𝑠

× ∫

𝑡

0

∫

R

𝐺
𝛼
(𝑡 − 𝑠, 𝑥 − 𝑦) 𝐸





𝑓 (𝑢
𝑠
) − 𝑓 (V

𝑠
)





2

𝑑𝑦𝑑𝑠

≤ 𝐶𝐾∫

𝑡

0

sup
𝑦∈R

𝐸(




𝑢 (𝑠, 𝑦) − V (𝑠, 𝑦)



2

+∫

0

−𝑟





𝑢 (𝑠 + 𝜂, 𝑦) − V (𝑠 + 𝜂, 𝑦)



2

𝑑𝜂)𝑑𝑠

≤ 𝐶(∫

𝑡

0

sup
𝑦∈R

𝐸




𝑢 (𝑠, 𝑦) − V (𝑠, 𝑦)



2

𝑑𝑠

+∫

0

−𝑟

∫

𝑡

−𝑟

sup
𝑦∈R

𝐸




𝑢 (𝑠, 𝑦) − V (𝑠, 𝑦)



2

𝑑𝑠 𝑑𝜂)

= 𝐶((𝑟 + 1) ∫

𝑡

0

sup
𝑦∈R

𝐸




𝑢 (𝑠, 𝑦) − V (𝑠, 𝑦)



2

𝑑𝑠

+𝑟∫

0

−𝑟

sup
𝑦∈R

𝐸




𝑢 (𝑠, 𝑦) − V (𝑠, 𝑦)



2

𝑑𝑠) .

(24)

By Burkholder-Davis-Gundy inequality, Lemma 1 and (H2),
we have

𝐸




T
2
𝑢 (𝑡, 𝑥) −T

2
V (𝑡, 𝑥)



2

= 𝐸










∫

𝑡

0

∫

R

𝐺
𝛼
(𝑡 − 𝑠, 𝑥 − 𝑦) (ℎ (𝑢

𝑠
) − ℎ (V

𝑠
))𝑊 (𝑑𝑦𝑑𝑠)










2

≤ 𝐶∫

𝑡

0

∫

R

𝐺
2

𝛼
(𝑡 − 𝑠, 𝑥 − 𝑦) 𝐸





ℎ (𝑢
𝑠
) − ℎ (V

𝑠
)





2

𝑑𝑦𝑑𝑠

≤ 𝐶𝐾∫

𝑡

0

(𝑡 − 𝑠)
−(1/𝛼)

× sup
𝑦∈R

𝐸(




𝑢 (𝑠, 𝑦) − V (𝑠, 𝑦)



2

+∫

0

−𝑟





𝑢 (𝑠 + 𝜂, 𝑦) − V (𝑠 + 𝜂, 𝑦)



2

𝑑𝜂)𝑑𝑠

≤ 𝐶(∫

𝑡

0

(𝑡 − 𝑠)
−1/𝛼sup
𝑦∈R

𝐸




𝑢 (𝑠, 𝑦) − V (𝑠, 𝑦)



2

𝑑𝑠

+ ∫

0

−𝑟

∫

𝑡

−𝑟





𝑡 + 𝜂 − 𝑠






−1/𝛼

×sup
𝑦∈R

𝐸




𝑢 (𝑠, 𝑦) − V (𝑠, 𝑦)



2

𝑑𝑠 𝑑𝜂)

≤ 𝐶(∫

𝑡

0

(𝑡 − 𝑠)
−1/𝛼sup
𝑦∈R

𝐸




𝑢 (𝑠, 𝑦) − V (𝑠, 𝑦)



2

𝑑𝑠

+ ∫

𝑡+𝜂

−𝑟

∫

0

−𝑟

(𝑡 + 𝜂 − 𝑠)
−1/𝛼

× sup
𝑦∈R

𝐸




𝑢 (𝑠, 𝑦) − V (𝑠, 𝑦)



2

𝑑𝜂 𝑑𝑠

+ ∫

𝑡

𝑡+𝜂

∫

0

−𝑟

(𝑠 − 𝜂 − 𝑡)
−1/𝛼

×sup
𝑦∈R

𝐸




𝑢 (𝑠, 𝑦) − V (𝑠, 𝑦)



2

𝑑𝜂 𝑑𝑠)

≤ 𝐶(∫

𝑡

0

(𝑡 − 𝑠)
−1/𝛼 sup
𝑦∈R

𝐸




𝑢 (𝑠, 𝑦) − V (𝑠, 𝑦)



2

𝑑𝑠

+ ∫

0

−𝑟

(𝑡 − 𝑠)
1−(1/𝛼)sup

𝑦∈R

𝐸




𝑢 (𝑠, 𝑦) − V (𝑠, 𝑦)



2

𝑑𝑠

+ ∫

𝑡+𝜂

0

(𝑡 − 𝑠)
1−(1/𝛼)sup

𝑦∈R

𝐸




𝑢 (𝑠, 𝑦) − V (𝑠, 𝑦)



2

𝑑𝑠

+𝑟
1−(1/𝛼)

∫

𝑡

𝑡+𝜂

sup
𝑦∈R

𝐸




𝑢 (𝑠, 𝑦) − V (𝑠, 𝑦)



2

𝑑𝑠) ,

𝐸




T
3
𝑢 (𝑡, 𝑥) −T

3
V (𝑡, 𝑥)



2

= 𝐸










∫

𝑡

0

∬

R

𝐺
𝛼
(𝑡 − 𝑠, 𝑥 − 𝑦)

× (𝑔 (𝑢
𝑠
) − 𝑔 (V

𝑠
)) 𝑧𝑁 (𝑑𝑠, 𝑑𝑦, 𝑑𝑧)










2

≤ 𝐶∫

𝑡

0

∫

R

𝐺
2

𝛼
(𝑡 − 𝑠, 𝑥 − 𝑦)

× 𝐸(∫

R





𝑔 (𝑢
𝑠
) − 𝑔 (V

𝑠
)




|𝑧| ] (𝑑𝑧))

2

𝑑𝑦𝑑𝑠

≤ 𝐶𝐾∫

𝑡

0

(𝑡 − 𝑠)
−1/𝛼

× sup
𝑦∈R

𝐸(




𝑢 (𝑠, 𝑦) − V (𝑠, 𝑦)



2

+∫

0

−𝑟





𝑢 (𝑠 + 𝜂, 𝑦) − V (𝑠 + 𝜂, 𝑦)



2

𝑑𝜂)𝑑𝑠

≤ 𝐶(∫

𝑡

0

(𝑡 − 𝑠)
−1/𝛼sup
𝑦∈R

𝐸




𝑢 (𝑠, 𝑦) − V (𝑠, 𝑦)



2

𝑑𝑠
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+ ∫

0

−𝑟

(𝑡 − 𝑠)
1−(1/𝛼)sup

𝑦∈R

𝐸




𝑢 (𝑠, 𝑦) − V (𝑠, 𝑦)



2

𝑑𝑠

+ ∫

𝑡+𝜂

0

(𝑡 − 𝑠)
1−(1/𝛼)sup

𝑦∈R

𝐸




𝑢 (𝑠, 𝑦) − V (𝑠, 𝑦)



2

𝑑𝑠

+𝑟
1−(1/𝛼)

∫

𝑡

𝑡+𝜂

sup
𝑦∈R

𝐸




𝑢 (𝑠, 𝑦) − V (𝑠, 𝑦)



2

𝑑𝑠) .

(25)

Thus, it follows that

𝐸|T𝑢 (𝑡, 𝑥) −TV (𝑡, 𝑥)|2

≤ 𝐶((𝑟 + 1) ∫

𝑡

0

sup
𝑦∈R

𝐸




𝑢 (𝑠, 𝑦) − V (𝑠, 𝑦)



2

𝑑𝑠

+ 𝑟∫

0

−𝑟

sup
𝑦∈R

𝐸




𝑢 (𝑠, 𝑦) − V (𝑠, 𝑦)



2

𝑑𝑠

+ ∫

𝑡

0

(𝑡 − 𝑠)
−1/𝛼sup
𝑦∈R

𝐸




𝑢 (𝑠, 𝑦) − V (𝑠, 𝑦)



2

𝑑𝑠

+ ∫

0

−𝑟

(𝑡 − 𝑠)
1−(1/𝛼)sup

𝑦∈R

𝐸




𝑢 (𝑠, 𝑦) − V (𝑠, 𝑦)



2

𝑑𝑠

+ ∫

𝑡+𝜂

0

(𝑡 − 𝑠)
1−(1/𝛼)sup

𝑦∈R

𝐸




𝑢 (𝑠, 𝑦) − V (𝑠, 𝑦)



2

𝑑𝑠

+𝑟
1−(1/𝛼)

∫

𝑡

𝑡+𝜂

sup
𝑦∈R

𝐸




𝑢 (𝑠, 𝑦) − V (𝑠, 𝑦)



2

𝑑𝑠) .

(26)

Finally, direct computation implies that

|T𝑢 (𝑡, 𝑥) −TV (𝑡, 𝑥)|2
𝜆

= ∫

𝑇

0

𝑒
−𝜆𝑡sup
𝑦∈R

𝐸|T𝑢 (𝑡, 𝑥) −TV (𝑡, 𝑥)|2

≤ 𝐶∫

𝑇

0

𝑒
−𝜆𝑡

( (𝑟 + 1)

× ∫

𝑡

0

sup
𝑦∈R

𝐸




𝑢 (𝑠, 𝑦) − V (𝑠, 𝑦)



2

𝑑𝑠

+ 𝑟∫

0

−𝑟

sup
𝑦∈R

𝐸




𝑢 (𝑠, 𝑦) − V (𝑠, 𝑦)



2

𝑑𝑠

+ ∫

𝑡

0

(𝑡 − 𝑠)
−1/𝛼

× sup
𝑦∈R

𝐸




𝑢 (𝑠, 𝑦) − V (𝑠, 𝑦)



2

𝑑𝑠

+ ∫

0

−𝑟

(𝑡 − 𝑠)
1−(1/𝛼)

× sup
𝑦∈R

𝐸




𝑢 (𝑠, 𝑦) − V (𝑠, 𝑦)



2

𝑑𝑠

+ ∫

𝑡+𝜂

0

(𝑡 − 𝑠)
1−(1/𝛼)

× sup
𝑦∈R

𝐸




𝑢 (𝑠, 𝑦) − V (𝑠, 𝑦)



2

𝑑𝑠

+ 𝑟
1−(1/𝛼)

×∫

𝑡

𝑡+𝜂

sup
𝑦∈R

𝐸




𝑢 (𝑠, 𝑦) − V (𝑠, 𝑦)



2

𝑑𝑠)𝑑𝑡

≤ 𝐶[∫

∞

0

𝑒
−𝜆𝑡

𝑑𝑡

× ((𝑟 + 1) ∫

𝑇

0

𝑒
−𝜆𝑠sup
𝑦∈R

𝐸




𝑢 (𝑠, 𝑦) − V (𝑠, 𝑦)



2

𝑑𝑠

+𝑟∫

0

−𝑟

𝑒
−𝜆𝑠sup
𝑦∈R

𝐸




𝑢 (𝑠, 𝑦) − V (𝑠, 𝑦)



2

𝑑𝑠)

+ ∫

∞

0

𝑒
−𝜆𝑡

𝑡
−1/𝛼

𝑑𝑡

× ∫

𝑇

0

𝑒
−𝜆𝑠sup
𝑦∈R

𝐸




𝑢 (𝑠, 𝑦) − V (𝑠, 𝑦)



2

𝑑𝑠

+ ∫

∞

0

𝑒
−𝜆𝑡

𝑡
1−(1/𝛼)

𝑑𝑡

× ∫

0

−𝑟

𝑒
−𝜆𝑠sup
𝑦∈R

𝐸




𝑢 (𝑠, 𝑦) − V (𝑠, 𝑦)



2

𝑑𝑠

+ ∫

∞

0

𝑒
−𝜆𝑡

𝑡
1−(1/𝛼)

𝑑𝑡

× ∫

𝑇+𝜂

0

𝑒
−𝜆𝑠sup
𝑦∈R

𝐸




𝑢 (𝑠, 𝑦) − V (𝑠, 𝑦)



2

𝑑𝑠

+ ∫

∞

0

𝑒
−𝜆𝑡

𝑑𝑡 × 𝑟
1−(1/𝛼)

×∫

𝑇

𝑇+𝜂

𝑒
−𝜆𝑠sup
𝑦∈R

𝐸




𝑢 (𝑠, 𝑦) − V (𝑠, 𝑦)



2

𝑑𝑠]

≤ 𝐶[(

𝑟 + 1

𝜆

+

Γ (1 − (1/𝛼))

𝜆
1−(1/𝛼)

)

× ∫

𝑇

0

𝑒
−𝜆𝑠sup
𝑦∈R

𝐸




𝑢 (𝑠, 𝑦) − V (𝑠, 𝑦)



2

𝑑𝑠

+ (

𝑟

𝜆

+

Γ (2 − (1/𝛼))

𝜆
2−(1/𝛼)

)

× ∫

0

−𝑟

𝑒
−𝜆𝑠sup
𝑦∈R

𝐸




𝑢 (𝑠, 𝑦) − V (𝑠, 𝑦)



2

𝑑𝑠

+

Γ (2 − (1/𝛼))

𝜆
2−(1/𝛼)

× ∫

𝑇+𝜂

0

𝑒
−𝜆𝑠sup
𝑦∈R

𝐸




𝑢 (𝑠, 𝑦) − V (𝑠, 𝑦)



2

𝑑𝑠
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+

𝑟
1−(1/𝛼)

𝜆

∫

𝑇

𝑇+𝜂

𝑒
−𝜆𝑠sup
𝑦∈R

𝐸




𝑢 (𝑠, 𝑦) − V (𝑠, 𝑦)



2

𝑑𝑠]

≤

𝐶
1

𝜆
𝐾
1

(∫

𝑇

0

𝑒
−𝜆𝑠sup
𝑦∈R

𝐸




𝑢 (𝑠, 𝑦) − V (𝑠, 𝑦)



2

𝑑𝑠

+∫

0

−𝑟

𝑒
−𝜆𝑠sup
𝑦∈R

𝐸




𝑢 (𝑠, 𝑦) − V (𝑠, 𝑦)



2

𝑑𝑠)

=

𝐶
1

𝜆
𝐾
1

|𝑢 − V|2
𝜆
,

(27)

where 𝐶
1
= 2𝐶 ⋅max{𝑟 + 1, Γ(1− (1/𝛼)), Γ(2− (1/𝛼)), 𝑟1−(1/𝛼)}

and𝐾
1
= 1 − (1/𝛼).

Let 𝜆 that large enough such that

𝐶
1

𝜆
𝐾
1

< 1, (28)

which implies that the operator T : B → B is contraction.
By the Banach fixed point theorem, there exists a unique
fixed point in B. Moreover, the fixed point is the unique mild
solution of (8).

Remark 5. If there are no delays, Theorem 3 can be solved in
the following working function space:

|𝑢|
2

𝜆
= ∫

𝑇

0

𝑒
−𝜆𝑡sup
𝑥∈R

𝐸|𝑢 (𝑡, 𝑥)|
2

𝑑𝑡, (29)

where 𝑢 ∈ B, which implies that the delays affect the working
function space.

4. The Regularity of the Mild Solution

In this section, wewill show the time regularity and space reg-
ularity of the mild solution for (8). In order to prove the reg-
ularity, we need the following assumptions:

(H3) there exists some 𝛾 < 1/2

sup
𝑥∈R

𝐸 (




𝑢
0
(𝑥 + 𝑧) − 𝑢

0
(𝑥)





2

) < 𝑐|𝑧|
2𝛾

; (30)

(H4) for 𝜃 > 0, let |𝜙(𝜂, 𝑥)| < ∞ and there exists some 𝜋 <
1 such that

sup
𝑥∈R

∫

−𝜃

−𝑟

𝐸




𝑢 (𝜂 + 𝜃, 𝑥) − 𝑢 (𝜂, 𝑥)






2

𝑑𝜂 < 𝑐|𝜃|
2𝜋

; (31)

(H5) |𝑓(𝑡
1
, 𝑦, 𝑢
𝑡
1

) − 𝑓(𝑡
2
, 𝑦, 𝑢
𝑡
2

)|
2

≤ 𝑐(|𝑡
1
− 𝑡
2
|
2

+ |𝑢(𝑡
1
) −

𝑢(𝑡
2
)|
2

+ ∫

0

−𝑟

|𝑢(𝑡
1
+ 𝜂) − 𝑢(𝑡

2
+ 𝜂)|
2

𝑑𝜂).

To the end, we will give an important lemma from [7].

Lemma 6. (1) For 1 < 𝑛 < 𝛼 + 1, ∫∞
0

∫
R
|𝐺
𝛼
(1 + V, 𝑧) −

𝐺
𝛼
(V, 𝑧)|𝑛𝑑𝑧 𝑑V < ∞.
(2) For (𝛼 + 1)/2 < 𝑛 < 𝛼 + 1, ∫∞

0

∫
R
|𝐺
𝛼
(V, 𝑧 + 1) −

𝐺
𝛼
(V, 𝑧)|𝑛𝑑𝑧 𝑑V < ∞.

Theorem 7. Assume that the conditions (H1)–(H5) are satis-
fied; then for 𝛼 ∈ (1, 2] and 𝑡 ≥ 0, there exists a continuous
modification 𝑢(𝑡, 𝑥), which is 𝛽-Hölder continuous in 𝑡, where
𝛽 = min{𝛾/𝛼, 𝜋, (1/2) − (1/2𝛼)}.

Proof. For 𝑡 ≥ 0, it follows that, for any 𝑥 ∈ R and 𝜃 > 0,

|𝑢 (𝑡 + 𝜃, 𝑥) − 𝑢 (𝑡, 𝑥)|

≤









∫

R

(𝐺
𝛼
(𝑡 + 𝜃, 𝑥 − 𝑦) − 𝐺

𝛼
(𝑡, 𝑥 − 𝑦)) 𝑢

0
(𝑦) 𝑑𝑦









+











∫

𝑡+𝜃

0

∫

R

(𝐺
𝛼
(𝑡 + 𝜃 − 𝑠, 𝑥 − 𝑦)

−𝐺
𝛼
(𝑡 − 𝑠, 𝑥 − 𝑦)) 𝑓 (𝑢

𝑠
) 𝑑𝑦 𝑑𝑠











+










∫

𝑡

0

∫

R

(𝐺
𝛼
(𝑡 + 𝜃 − 𝑠, 𝑥 − 𝑦)

−𝐺
𝛼
(𝑡 − 𝑠, 𝑥 − 𝑦)) ℎ (𝑢

𝑠
)𝑊 (𝑑𝑠 𝑑𝑦)










+











∫

𝑡+𝜃

𝑡

∫

R

𝐺
𝛼
(𝑡 + 𝜃 − 𝑠, 𝑥 − 𝑦) ℎ (𝑢

𝑠
)𝑊 (𝑑𝑠 𝑑𝑦)











+










∫

𝑡

0

∬

R

(𝐺
𝛼
(𝑡 + 𝜃 − 𝑠, 𝑥 − 𝑦) − 𝐺

𝛼
(𝑡 − 𝑠, 𝑥 − 𝑦))

×𝑔 (𝑢
𝑠
) 𝑧𝑁 (𝑑𝑠, 𝑑𝑧) 𝑑𝑦










+











∫

𝑡+𝜃

𝑡

∬

R

𝐺
𝛼
(𝑡 + 𝜃 − 𝑠, 𝑥 − 𝑦) 𝑔 (𝑢

𝑠
) 𝑧𝑁 (𝑑𝑠, 𝑑𝑧) 𝑑𝑦











= 𝜙
0

𝜃
+ 𝜙
1

𝜃
+ 𝜙
2

𝜃
+ 𝜙
3

𝜃
+ 𝜙
4

𝜃
+ 𝜙
5

𝜃
.

(32)

Next, we will estimate each term 𝜙
𝑗

𝜃
(𝑗 = 0, 1, . . . , 5),

respectively.
Combining Hölder inequality, Lemma 1 with (H3) yields

𝐸






𝜙
0

𝜃







2

= 𝐸









∫

R

𝐺
𝛼
(𝜃, 𝑧) [∫

R

𝐺
𝛼
(𝑡, 𝑥 − 𝑦)

× (𝑢
0
(𝑦 − 𝑧) − 𝑢

0
(𝑦)) 𝑑𝑦] 𝑑𝑧









2

≤ 𝐶𝐸(∫

R

𝐺
𝛼
(𝜃, 𝑧) [∫

R

𝐺
𝛼
(𝑡, 𝑥 − 𝑦)

× (𝑢
0
(𝑦 − 𝑧) − 𝑢

0
(𝑦)) 𝑑𝑦]

2

𝑑𝑧)

× (∫

R

𝐺
𝛼
(𝜃, 𝑧) 𝑑𝑧)
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≤ 𝐶∫

R

𝐺
𝛼
(𝜃, 𝑧) sup

𝑦∈R

𝐸




𝑢
0
(𝑦 − 𝑧) − 𝑢

0
(𝑦)





2

𝑑𝑧

≤ 𝐶∫

R

𝐺
𝛼
(𝜃, 𝑧) |𝑧|

2𝛾

𝑑𝑧 = 𝐶∫

R

𝜃
2𝛾/𝛼

𝐺
𝛼
(1, 𝑧) 𝑧

2𝛾

𝑑𝑧

≤ 𝐶𝜃
2𝛾/𝛼

∫

R

|𝑧|
2𝛾

1 + |𝑧|
1+𝛼
𝑑𝑧 ≤ 𝐶𝜃

2𝛾/𝛼

.

(33)

Next, we consider 𝜙1
𝜃
. Let 𝑠 = 𝑠 − 𝜃; then,






𝜙
1

𝜃






≤










∫

𝑡

0

∫

R

𝐺
𝛼
(𝑡 − 𝑠, 𝑥 − 𝑦)

× (𝑓 (𝑠 + 𝜃, 𝑦, 𝑢
𝑠+𝜃
) − 𝑓 (𝑠, 𝑦, 𝑢

𝑠
)) 𝑑𝑦 𝑑𝑠






+











∫

𝜃

0

∫

R

𝐺
𝛼
(𝑡 + 𝜃 − 𝑠, 𝑥 − 𝑦)

×𝑓 (𝑠, 𝑦, 𝑢
𝑠
) 𝑑𝑦 𝑑𝑠











= 𝜙
1.1

𝜃
+ 𝜙
1.2

𝜃
.

(34)

By Hölder inequality, Lemma 1, (H4), and (H5), we have

𝐸






𝜙
1.1

𝜃







2

≤ 𝐶∫

𝑡

0

∫

R

𝐺
𝛼
(𝑡 − 𝑠, 𝑥 − 𝑦) 𝑑𝑦 𝑑𝑠

× ∫

𝑡

0

∫

R

𝐺
𝛼
(𝑡 − 𝑠, 𝑥 − 𝑦)

× 𝐸




𝑓 (𝑠 + 𝜃, 𝑦, 𝑢

𝑠+𝜃
) − 𝑓 (𝑠, 𝑦, 𝑢

𝑠
)





2

𝑑𝑦𝑑𝑠

≤ 𝐶∫

𝑡

0

(𝜃
2

+ sup
𝑦∈R

𝐸




𝑢 (𝑠 + 𝜃, 𝑦) − 𝑢 (𝑠, 𝑦)






2

+ ∫

0

−𝑟

sup
𝑦∈R

𝐸




𝑢 (𝑠 + 𝜃 + 𝜂, 𝑦)

−𝑢 (𝑠 + 𝜂, 𝑦)





2

𝑑𝜂)𝑑𝑠

≤ 𝐶(𝑇𝜃
2

+ (𝑟 + 1)

× ∫

𝑡

0

sup
𝑦∈R

𝐸




𝑢 (𝑠 + 𝜃, 𝑦) − 𝑢 (𝑠, 𝑦)






2

𝑑𝑠

+ 𝑟∫

−𝜃

−𝑟

sup
𝑦∈R

𝐸




𝑢 (𝑠 + 𝜃, 𝑦) − 𝑢 (𝑠, 𝑦)






2

𝑑𝑠

+∫

0

−𝜃

sup
𝑦∈R

𝐸




𝑢 (𝑠 + 𝜃, 𝑦) − 𝑢 (𝑠, 𝑦)






2

𝑑𝑠)

≤ 𝐶(𝜃
2

+ 𝜃
2𝜋

+ 𝜃

+∫

𝑡

0

sup
𝑦∈R

𝐸




𝑢 (𝑠 + 𝜃, 𝑦) − 𝑢 (𝑠, 𝑦)






2

𝑑𝑠) ,

𝐸






𝜙
1.2

𝜃







2

≤ 𝐶∫

𝜃

0

∫

R

𝐺
𝛼
(𝑡 + 𝜃 − 𝑠, 𝑥 − 𝑦) 𝑑𝑦 𝑑𝑠

× ∫

𝜃

0

∫

R

𝐺
𝛼
(𝑡 + 𝜃 − 𝑠, 𝑥 − 𝑦) 𝐸





𝑓 (𝑢
𝑠
)





2

𝑑𝑦𝑑𝑠

≤ 𝐶𝜃∫

𝜃

0

∫

R

𝐺
𝛼
(𝑡 + 𝜃 − 𝑠, 𝑥 − 𝑦) 𝐸





𝑓 (𝑢
𝑠
)





2

𝑑𝑦𝑑𝑠

≤ 𝐶𝜃∫

𝜃

0

sup
𝑦∈R

𝐸(




𝑢 (𝑠, 𝑦)






2

+ ∫

0

−𝑟





𝑢 (𝑠 + 𝜂, 𝑦)






2

𝑑𝜂)𝑑𝑠

≤ 𝐶𝜃((𝑟 + 1) ∫

𝜃

0

sup
𝑦∈R

𝐸




𝑢 (𝑠, 𝑦)






2

𝑑𝑠

+𝑟∫

0

−𝑟

sup
𝑦∈R

𝐸




𝑢 (𝑠, 𝑦)






2

𝑑𝑠)

≤ 𝐶 (𝜃
2

+ 𝜃) .

(35)

Taking the transformation 𝑠 = 𝜃V, 𝑦 = 𝜃1/𝛼𝑧, by Burk-
holder-Davis-Gundy inequality, Lemmas 1 and 6, and (H2),
we obtain

𝐸






𝜙
2

𝜃







2

≤ 𝐶∫

𝑡

0

∫

R

𝐸 (𝐺
𝛼
(𝑡 + 𝜃 − 𝑠, 𝑥 − 𝑦)

−𝐺
𝛼
(𝑡 − 𝑠, 𝑥 − 𝑦))

2

ℎ
2

(𝑢
𝑠
) 𝑑𝑠 𝑑𝑦

≤ 𝐶𝐾∫

𝑡

0

∫

R

(𝐺
𝛼
(𝑡 + 𝜃 − 𝑠, 𝑥 − 𝑦)

−𝐺
𝛼
(𝑡 − 𝑠, 𝑥 − 𝑦))

2

× 𝐸(|𝑢 (𝑠)|
2

+ ∫

0

−𝑟





𝑢 (𝑠 + 𝜂)






2

𝑑𝜂)𝑑𝑦𝑑𝑠

≤ 𝐶∫

𝑡

0

∫

R

(𝐺
𝛼
(𝑡 + 𝜃 − 𝑠, 𝑥 − 𝑦) − 𝐺

𝛼
(𝑡 − 𝑠, 𝑥 − 𝑦))

2

× 𝐸(|𝑢 (𝑠)|
2

+ ∫

0

−𝑟





𝑢 (𝜂)






2

𝑑𝜂

+∫

𝑡

0






𝑢 (𝜂


)







2

𝑑𝜂


)𝑑𝑦𝑑𝑠

≤ 𝐶((𝑇 + 1) sup
[0,𝑇]×R

𝐸




𝑢 (𝑠, 𝑦)






2

+ sup
𝑦∈R

∫

0

−𝑟





𝑢 (𝜂, 𝑦)






2

𝑑𝜂)

× ∫

𝑡

0

∫

R

(𝐺
𝛼
(𝑠 + 𝜃, 𝑦) − 𝐺

𝛼
(𝑠, 𝑦))

2

𝑑𝑦𝑑𝑠

≤ 𝐶(𝜃
−1/𝛼

𝜃∫

∞

0

∫

R

(𝐺
𝛼
(V + 1, 𝑧) − 𝐺

𝛼
(V, 𝑧))2𝑑𝑧 𝑑V)

≤ 𝐶𝜃
1−(1/𝛼)

,
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𝐸






𝜙
3

𝜃







2

≤ 𝐶∫

𝑡+𝜃

𝑡

∫

R

𝐸 (𝐺
𝛼
(𝑡 + 𝜃 − 𝑠, 𝑥 − 𝑦)

−𝐺
𝛼
(𝑡 − 𝑠, 𝑥 − 𝑦))

2



ℎ (𝑢
𝑠
)





2

𝑑𝑠 𝑑𝑦

≤ 𝐶∫

𝑡+𝜃

𝑡

∫

R

𝐸 (𝐺
𝛼
(𝑡 + 𝜃 − 𝑠, 𝑥 − 𝑦)

−𝐺
𝛼
(𝑡 − 𝑠, 𝑥 − 𝑦))

2

× (




𝑢 (𝑠, 𝑦)






2

+ ∫

0

−𝑟





𝑢 (𝑠 + 𝜂)






2

𝑑𝜂)𝑑𝑦𝑑𝑠

≤ 𝐶∫

𝑡+𝜃

𝑡

∫

R

𝐸 (𝐺
𝛼
(𝑡 + 𝜃 − 𝑠, 𝑥 − 𝑦)

−𝐺
𝛼
(𝑡 − 𝑠, 𝑥 − 𝑦))

2

× (




𝑢 (𝑠, 𝑦)






2

+ ∫

𝑡+𝜃

−𝑟






𝑢 (𝜂


)







2

𝑑𝜂


)𝑑𝑦𝑑𝑠

≤ 𝐶((𝑇 + 1 + 𝜃) sup
[0,𝑇+𝜃]×R

𝐸




𝑢 (𝑠, 𝑦)






2

+sup
𝑦∈R

∫

0

−𝑟





𝑢 (𝜂, 𝑦)






2

𝑑𝜂)

× ∫

𝜃

0

∫

R

𝐸(𝐺
𝛼
(𝑠 + 𝜃, 𝑦) − 𝐺

𝛼
(𝑠, 𝑦))

2

𝑑𝑦𝑑𝑠

≤ 𝐶 (1 + 𝜃) 𝜃
1−(1/𝛼)

× ∫

1

0

∫

R

𝐸(𝐺
𝛼
(1 + V, 𝑧) − 𝐺

𝛼
(V, 𝑧))2𝑑𝑧 𝑑V

≤ 𝐶 (𝜃
1−(1/𝛼)

+ 𝜃
2−(1/𝛼)

) .

(36)

Then, by the same method, we have

𝐸






𝜙
4

𝜃







2

≤ ∫

𝑡

0

∫

R

(𝐺
𝛼
(𝑡 + 𝜃 − 𝑠, 𝑥 − 𝑦) − 𝐺

𝛼
(𝑡 − 𝑠, 𝑥 − 𝑦))

2

× 𝐸(∫

R





𝑔 (𝑢
𝑠
)




|𝑧| ] (𝑑𝑧))

2

𝑑𝑠 𝑑𝑦

≤ 𝐶𝐾∫

𝑡

0

∫

R

(𝐺
𝛼
(𝑡 + 𝜃 − 𝑠, 𝑥 − 𝑦)

−𝐺
𝛼
(𝑡 − 𝑠, 𝑥 − 𝑦))

2

× 𝐸(|𝑢 (𝑠)|
2

+ ∫

0

−𝑟





𝑢 (𝑠 + 𝜂)






2

𝑑𝜂)𝑑𝑦𝑑𝑠

≤ 𝐶𝜃
1−(1/𝛼)

,

𝐸






𝜙
5

𝜃







2

≤ 𝐶 (𝜃
1−(1/𝛼)

+ 𝜃
2−(1/𝛼)

) .

(37)

Thus, from the previous estimates, let 𝛽 = min{𝛾/𝛼, 𝜋, (1/2)−
(1/2𝛼)}:

𝐸|𝑢 (𝑡 + 𝜃, 𝑥) − 𝑢 (𝑡, 𝑥)|
2

≤ 𝐶[𝜃
2𝛽

+ ∫

𝑡

0

sup
𝑦∈R

𝐸




𝑢 (𝑠 + 𝜃, 𝑦) − 𝑢 (𝑠, 𝑦)






2

𝑑𝑠] .

(38)

Hence, it follows from Gronwall’s Lemma that

𝐸|𝑢 (𝑡 + 𝜃, 𝑥) − 𝑢 (𝑡, 𝑥)|
2

≤ 𝐶𝜃
2𝛽

. (39)

Then, for 𝑡 ≥ 0, we have

|𝑢 (𝑡 + 𝜃, 𝑥) − 𝑢 (𝑡, 𝑥)|
𝑝

𝜆

= (∫

𝑇

0

𝑒
−𝜆𝑡sup
𝑥∈R

𝐸|𝑢 (𝑡 + 𝜃, 𝑥) − 𝑢 (𝑡, 𝑥)|
2

𝑑𝑠)

𝑝/2

≤ 𝐶𝜃
𝛽𝑝

.

(40)

Finally, we study the space regularity of the mild solution
for (8).

Theorem 8. Assume that the conditions (H1)–(H3) are satis-
fied; then for 𝛼 ∈ (1, 2] and 𝑡 ≥ 0, there exists a continuous
modification 𝑢(𝑡, 𝑥), which is 𝜌-Hölder continuous in 𝑥, where
𝜌 = min{𝛾, 𝜗, 𝛼 − 1}.

Proof. It follows that, for any 𝑡 ∈ [0, 𝑇] and 𝜁 > 0,





𝑢 (𝑡, 𝑥 + 𝜁) − 𝑢 (𝑡, 𝑥)






≤









∫

R

(𝐺
𝛼
(𝑡, 𝑥 + 𝜁 − 𝑦) − 𝐺

𝛼
(𝑡, 𝑥 − 𝑦)) 𝑢

0
(𝑦) 𝑑𝑦









+










∫

𝑡

0

∫

R

(𝐺
𝛼
(𝑡 − 𝑠, 𝑥 + 𝜁 − 𝑦)

−𝐺
𝛼
(𝑡 − 𝑠, 𝑥 − 𝑦)) 𝑓 (𝑢

𝑠
) 𝑑𝑦𝑑𝑠










+










∫

𝑡

0

∫

R

(𝐺
𝛼
(𝑡 − 𝑠, 𝑥 + 𝜁 − 𝑦)

−𝐺
𝛼
(𝑡 − 𝑠, 𝑥 − 𝑦)) ℎ (𝑢

𝑠
)𝑊 (𝑑𝑠𝑑𝑦)










+










∫

𝑡

0

∬

R

(𝐺
𝛼
(𝑡 − 𝑠, 𝑥 + 𝜁 − 𝑦)

−𝐺
𝛼
(𝑡 − 𝑠, 𝑥 − 𝑦)) 𝑔 (𝑢

𝑠
) 𝑧𝑁 (𝑑𝑠, 𝑑𝑧) 𝑑𝑦










:=

3

∑

𝑗=0

𝜙
𝑗

𝜁
.

(41)
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By (H3) and Lemma 1, we have

𝐸






𝜙
0

𝜁







2

= 𝐸









∫

R

𝐺
𝛼
(𝑡, 𝑥 − 𝑦) [𝑢

0
(𝑦 + 𝜁) − 𝑢

0
(𝑦)] 𝑑𝑦









2

≤ sup
𝑦∈R

𝐸 (




𝑢
0
(𝑦 + 𝜁) − 𝑢

0
(𝑦)





2

)

× (∫

R

𝐺
𝛼
(𝑡, 𝑥 − 𝑦) 𝑑𝑦)

2

≤ 𝐶𝜁
2𝛾

.

(42)

By (H2), Hölder’s inequality and Lemma 1, we set 𝜖 =

(1/2)(𝛼+ 1) − 𝛿 (𝛿 is small enough) and 𝜗 ∈ (0, 1) and we can
derive

𝐸






𝜙
1

𝜁







2

≤ 𝐶((1 + 𝑇) sup
[0,𝑇]×R

𝐸|𝑢 (𝑡, 𝑥)|
2

+ sup
𝑦∈R

∫

0

−𝑟





𝑢 (𝜂, 𝑦)






2

𝑑𝜂)

×










∫

𝑡

0

∫

R

(𝐺
𝛼
(𝑠, 𝑦 + 𝜁) − 𝐺

𝛼
(𝑠, 𝑦)) 𝑑𝑦 𝑑𝑠










2

≤ 𝐶










∫

𝑡

0

∫

R

𝑠
−1/𝛼

(𝐺
𝛼
(1, 𝑠
−1/𝛼

(𝑦 + 𝜁))

−𝐺
𝛼
(1, 𝑠
−1/𝛼

𝑦)) 𝑑𝑦 𝑑𝑠










2

= 𝐶










∫

𝑡

0

∫

R

𝑠
−𝜖/𝛼

(𝐺
𝛼
(1, 𝑠
−1/𝛼

(𝑦 + 𝜁))

−𝐺
𝛼
(1, 𝑠
−1/𝛼

𝑦))

(1−𝜗)

× 𝑠
−((1−𝜖)/𝛼)

(𝐺
𝛼
(1, 𝑠
−1/𝛼

(𝑦 + 𝜁))

−𝐺
𝛼
(1, 𝑠
−1/𝛼

𝑦))

𝜗

𝑑𝑦𝑑𝑠









2

≤ 𝐶(∫

𝑡

0

∫

R

𝑠
−2𝜖/𝛼






𝐺
𝛼
(1, 𝑠
−1/𝛼

(𝑦 + 𝜁))

−𝐺
𝛼
(1, 𝑠
−1/𝛼

𝑦)







2(1−𝜗)

𝑑𝑦𝑑𝑠)

× (∫

𝑡

0

∫

R

𝑠
−2(1−𝜖)/𝛼






𝐺
𝛼
(1, 𝑠
−1/𝛼

(𝑦 + 𝜁))

−𝐺
𝛼
(1, 𝑠
−1/𝛼

𝑦)







2𝜗

𝑑𝑦𝑑𝑠)

:= 𝑐𝐼 × 𝐼𝐼.

(43)

By Lemma 1, recall that 2𝜖 < 𝛼 + 1, and we have

𝐼 ≤ 𝐶(∫

𝑡

0

∫

R

𝑠
−(2𝜖−1)/𝛼

(𝐺
𝛼
(1, 𝑦))

2(1−𝜗)

𝑑𝑦𝑑𝑠)

≤ 𝐶∫

𝑡

0

𝑠
−(2𝜖−1)/𝛼

𝑑𝑠 < ∞.

(44)

Then, by the mean value of the theorem and Lemma 1, we
have that

𝐼𝐼 = ∫

𝑡

0

∫

R

𝑠
−2(1−𝜖)/𝛼

(

𝜕

𝜕𝑦

𝐺
𝛼
(1, 𝑠
−1/𝛼

(𝑦 + 𝜀))

×𝑠
−1/𝛼

𝜁)

2𝜗

𝑑𝑦𝑑𝑠 (𝜀 ∈ (0, 𝜁))

= 𝜁
2𝜗

∫

𝑡

0

∫

R

𝑠
−(2(1−𝜖+𝜗)−1)/𝛼

× (

𝜕

𝜕𝑦

𝐺
𝛼
(1, 𝑦))

2𝜗

𝑑𝑦𝑑𝑠

≤ 𝐶𝜁
2𝜗

∫

𝑡

0

𝑠
−(2(1−𝜖+𝜗)−1)/𝛼

𝑑𝑠.

(45)

Choosing 𝜗 < 𝛼 − 𝛿 such that (2(1 − 𝜖 + 𝜗) − 1)/𝛼 < 1, then

𝐼𝐼 < 𝐶𝜁
2𝜗

. (46)

Combining (44) and (46), we have

𝐸






𝜙
1

𝜁







2

≤ 𝐶𝜁
2𝜗

. (47)

Taking the change of variable 𝑠 = 𝜁𝛼V, 𝑦 = 𝑧𝜁, and by Burk-
holder-Davis-Gundy inequality, Lemmas 1 and 6, (H1), and
(H2), we derive

𝐸






𝜙
2

𝜁







2

≤ (∫

𝑡

0

∫

R

𝐸(𝐺
𝛼
(𝑡 − 𝑠, 𝑥 + 𝜁 − 𝑦)

−𝐺
𝛼
(𝑡 − 𝑠, 𝑥 − 𝑦) )

2

×𝐸




ℎ (𝑢
𝑠
)





2

𝑑𝑦𝑑𝑠)

≤ 𝐶((𝑇 + 1) sup
[0,𝑇]×R

𝐸|𝑢 (𝑡, 𝑥)|
2

+sup
𝑦∈R

∫

0

−𝑟





𝑢 (𝜂, 𝑦)






2

𝑑𝜂)

× (∫

𝑡

0

∫

R

(𝐺
𝛼
(𝑠, 𝑦 + 𝜁) − 𝐺

𝛼
(𝑠, 𝑦))

2

𝑑𝑦𝑑𝑠)

≤ 𝐶(𝜁
−2

𝜁𝜁
𝛼

∫

∞

0

∫

R

(𝐺
𝛼
(V, 𝑧 + 1)

−𝐺
𝛼
(V, 𝑧))2𝑑𝑧 𝑑V)

≤ 𝐶𝜁
2(𝛼−1)

,
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𝐸






𝜙
3

𝜁







2

≤ 𝐶∫

𝑡

0

∫

R

(𝐺
𝛼
(𝑡 − 𝑠, 𝑥 + 𝜁 − 𝑦)

−𝐺
𝛼
(𝑡 − 𝑠, 𝑥 − 𝑦))

2

× 𝐸(∫

R





𝑔 (𝑢
𝑠
)




𝑧] (𝑑𝑧))

2

𝑑𝑠 𝑑𝑦

≤ 𝐶𝜁
2(𝛼−1)

.

(48)

Combining (42)–(48), we have

𝐸




𝑢 (𝑡, 𝑥 + 𝜁) − 𝑢 (𝑡, 𝑥)






2

≤ 𝐶 (𝜁
2𝛾

+ 𝜁
2𝜗

+ 𝜁
2(𝛼−1)

) . (49)

Then, we have, for 𝑡 ∈ [0, 𝑇],





𝑢 (𝑡, 𝑥 + 𝜁) − 𝑢 (𝑡, 𝑥)






𝑝

𝜆
≤ 𝐶 (𝜁

𝛾𝑝

+ 𝜁
𝜗𝑝

+ 𝜁
(𝛼−1)𝑝

) ≤ 𝐶𝜁
𝜌𝑝

,

(50)

where 𝜌 = min{𝛾, 𝜗, 𝛼 − 1}.

Remark 9. Theorems 7 and 8 show that the regularity of initial
value and the order of fractional operator can affect both time
regularity and space regularity of the mild solution for (1). In
particular, the time regularity is affected by the regularity of
initial value with delays.
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Noise, vol. 245 ofLectureNotes in Pure andAppliedMathematics,
Chapman and Hall/CRC, Boca Raton, Fla, USA, 2006.
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equations,” in École d’été de Probabilités de Saint-Flour, vol. 1180
of Lecture Notes in Mathematics, pp. 265–439, Springer, Berlin,
Germany, 1986.

[16] L. Debbi, “On some properties of a high order fractional differ-
ential operator which is not in general selfadjoint,” Applied
Mathematical Sciences, vol. 1, no. 25-28, pp. 1325–1339, 2007.

[17] J. Walsh,An Introduction to Stochastic Partial Differential Equa-
tions, vol. 1180 of Lecture Notes inMathematics, Springer, Berlin,
Germany, 1986.



Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2013, Article ID 181809, 4 pages
http://dx.doi.org/10.1155/2013/181809

Research Article
A Half-Inverse Problem for Impulsive Dirac Operator
with Discontinuous Coefficient

YalçJn Güldü

Cumhuriyet University, Faculty of Science, Department of Mathematics, 58140 Sivas, Turkey

Correspondence should be addressed to Yalçın Güldü; yguldu@gmail.com
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An inverse problem for Dirac differential operators with discontinuity conditions and discontinuous coefficient is studied. It is
shown by Hochstadt and Lieberman’s method that if the potential function 𝑝(𝑥) in Ω(𝑥) is prescribed over the interval (𝜋/2, 𝜋),
then a single spectrum suffices to determine 𝑝(𝑥) on the interval (0, 𝜋) and it is also shown here that 𝜌(𝑥) is uniquely determined
by a spectrum.

1. Introduction

In this paper, we are concerned with the Dirac operator 𝐿
generated by equation

ℓ (𝑦) := 𝐵𝑦


(𝑥) + Ω (𝑥) 𝑦 (𝑥) = 𝜆𝜌 (𝑥) 𝑦 (𝑥) ,

𝑥 ∈ 𝐼 := (0,

𝜋

2

) ∪ (

𝜋

2

, 𝜋)

(1)

with

𝐵 = (

0 1

−1 0
) , Ω (𝑥) = (

𝑝 (𝑥) 𝑞 (𝑥)

𝑞 (𝑥) −𝑝 (𝑥)
) ,

𝜌 (𝑥) =

{

{

{

1, 0 ≤ 𝑥 <

𝜋

2

𝛼,

𝜋

2

< 𝑥 ≤ 𝜋,

(2)

where 1 < 𝛼 ∈ R+, 𝑦(𝑥) = (
𝑦
1
(𝑥)

𝑦
2
(𝑥)
), subject to the boundary

conditions

𝑦
1
(0) = 0, (3)

𝑦
2
(𝜋) = 0, (4)

and discontinuity conditions

𝑦(

𝜋

2

+ 0) = 𝐴𝑦(

𝜋

2

− 0) , (5)

where 𝑝(𝑥) and 𝑞(𝑥) are real valued functions in 𝐿
2
(0, 𝜋), 𝜆

is a spectral parameter, and 𝐴 = (

𝛽 0

0 𝛽
−1 ), 𝛽 ∈ R+ \ {1}.

Inverse problems of spectral analysis implicate the recon-
struction of a linear operator from its spectral data (e.g., see
[1–5]). Half inverse problem for a Dirac operator consists in
reconstruction of this operator from its spectrum and half of
the potential.

The first result on the half-inverse problem is due to
Hochstadt and Lieberman [6]. After that, Hald [7] proved
that if the potential is known over half of the interval and
if one boundary conditions is given, then the potential and
the other boundary condition are uniquely determined by
the eigenvalues. In [8, 9], Malamud and Gesztesy and Simon
obtained some new uniqueness results in inverse spectral
analysis with partial information on the potential for scalar
and matrix Sturm-Liouville equations, respectively. In 2001,
Sakhnovich [10] studied the existence of solution to the half-
inverse problem. In [11], necessary and sufficient condition
for solvability of the half-inverse spectral problem for Sturm-
Liouville operators with singular operator was taken. In
[12], by using the Hochstadt and Lieberman’s method, half-
inverse problem was solved for diffusion operators. In [13],
the authors presented half-inverse problem for the Sturm-
Liouville equationwith eigenparameter-dependent boundary
conditions.

On the other hand, the fundamental and detailed results
about Dirac operators were given in [14]. Moreover, direct or
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inverse spectral problems for Dirac operators are largely well
studied in [1, 8, 15].

There are also some studies about the interior inverse
problems. Arutyunyan [16] proved that the eigenvalues 𝜆

𝑛
,

𝑛 = 0, 1, . . . and normalizing coefficients 𝛼
𝑛
= ‖𝑦
𝑛
‖
{𝐿
2
(0.1)}

2 ,
𝑛 = 0, 1, . . . uniquely determined the potential 𝑄(𝑥).
Malamud [8] proved an analog of Borg theorem [17]; he
showed that the spectra of two boundary value problems for
an operator with different boundary conditions at one end
uniquely determined the potential 𝑄(𝑥). He also proved an
analog of the theorem of Hochstadt and Lieberman [6]; one
spectrum and a potential on the interval (0, 1/2) uniquely
determined the potential 𝑄(𝑥) on the whole interval [0, 1].
On the other hand, in 2001, Del Rio and Grébert [18] proved
that in the casewhere𝜑 is a priori known on [𝑎, 1], then only a
part (depending on 𝑎) of two spectra determined 𝜑 on [0, 1].
Furthermore, inverse problems for interior spectral data of
the Sturm-Liouville and Dirac operators were studied in [19–
22].

The jump conditions like (5) appear in-some important
physical problems. The work in [7] is a well-known work
about discontinuous inverse eigenvalue problems. Direct and
inverse problems for Dirac operators with discontinuities
inside the interval were investigated in [23].

In this paper, by using the Hochstadt and Lieberman’s
method in [6], we discuss the half-inverse problem for Dirac
operator with discontinuity conditions and discontinuous
coefficients (1)–(5). Furthermore, the potential 𝑝(𝑥) and
discontinuous coefficient 𝜌(𝑥) are uniquely determined.

2. Statement of Results

Let the function 𝜑(⋅, 𝜆) : 𝐼 → 𝑅
2 be solution of (1) which

satisfies the initial conditions

𝜑 (0, 𝜆) = (

0

−1
) (6)

and the jump conditions (5).
It is shown in [14] that, for the solution 𝜑(𝑥, 𝜆), the

following representation holds:

𝜑 (𝑥, 𝜆)=𝜑
0
(𝑥, 𝜆) + ∫

𝑥

0

𝐾 (𝑥, 𝑡) 𝜑
0
(𝑡, 𝜆) 𝑑𝑡, for 0 < 𝑥 < 𝜋

2

,

(7)

where 𝜑
0
(𝑥, 𝜆) = (𝜑

01
(𝑥, 𝜆), 𝜑

02
(𝑥, 𝜆))

𝑇 has the form

𝜑
01
(𝑥, 𝜆) =

{
{
{

{
{
{

{

sin 𝜆𝑥, 0 ≤ 𝑥 <

𝜋

2

𝛽
+ sin 𝜆𝜇 (𝑥)
+𝛽
− sin 𝜆 (𝜋 − 𝜇 (𝑥)) , 𝜋

2

< 𝑥 ≤ 𝜋,

(8)

𝜑
02
(𝑥, 𝜆) =

{
{
{

{
{
{

{

− cos 𝜆𝑥, 0 ≤ 𝑥 <

𝜋

2

−𝛽
+ cos 𝜆𝜇 (𝑥)
+𝛽
− cos 𝜆 (𝜋 − 𝜇 (𝑥)) , 𝜋

2

< 𝑥 ≤ 𝜋,

(9)

𝛽
±

= (1/2)(𝛽 ± 𝛽), 𝐾(𝑥, 𝑡) = (𝐾
𝑖𝑗
(𝑥, 𝑡))

𝑖,𝑗=1,2
, and𝐾

𝑖𝑗
(𝑥, 𝑡) are

real valued continuous functions for 𝑖, 𝑗 = 1, 2 and for each

𝑥, 𝜇 (𝑥) = {

𝑥, 0 ≤ 𝑥 < 𝜋/2

𝛼𝑥 − 𝛼 (𝜋/2) + (𝜋/2) , 𝜋/2 < 𝑥 ≤ 𝜋.

(10)

Next, we define the function

Δ (𝜆) = 𝜑
2
(𝜋, 𝜆) . (11)

The zeros of Δ(𝜆) which is called the characteristic
function of the problem (1)–(5) are the eigenvalues of 𝐿.

From the equalities (7)–(11), we have

Δ (𝜆) = Δ
0
(𝜆) + 𝑜 (exp 𝜏𝜇 (𝜋)) , (12)

where Δ
0
(𝜆) = −𝛽

+ cos 𝜆𝜇(𝜋) + 𝛽− cos 𝜆(𝜋 − 𝜇(𝜋)) and 𝜏 =
| Im 𝜆|.

Theorem 1. (i) The problem 𝐿 has denumerable many eigen-
values such that all of them are real and simple.

(ii) The eigenvalues 𝜆
𝑛
are expressed by the following

asymptotic formula:

𝜆
𝑛
= 𝜆
0

𝑛
+ 𝑂 (1) , (13)

where 𝜆0
𝑛
are the zeros of Δ

0
(𝜆) and 𝜆

0

𝑛
= 𝑛𝜋/𝜇(𝜋) + ℎ

𝑛
,

sup
𝑛
|ℎ
𝑛
| < ∞.

Proof. (i) Since Δ(𝜆) is entire function, it has denumerable
many zeros. Moreover, from [23], zeros of {𝜆

𝑛
} are real and

simple.
(ii) It is shown in [24] that 𝜆0

𝑛
= 𝑛𝜋/𝜇(𝜋) + 𝑂(1). It is

obvious that |Δ
0
(𝜆)| ≥ 𝐶

𝛿
exp 𝜏𝜇(𝜋) for 𝜆 ∈ 𝐺

𝛿
:= {𝜆 : |𝜆 −

𝜆
𝑛
| > 𝛿} and Δ(𝜆) − Δ

0
(𝜆) = 𝑜(exp 𝜏𝜇(𝜋)).

Therefore, it follows from the Rouche’s theorem that the
functions Δ

0
(𝜆) and Δ(𝜆) have the same number of zeros

inside the contour 𝛾
𝜀
:= {𝜆 : |𝜆| = |𝜆

0

𝑛
| − 𝜀}; that is, the

eigenvalues 𝜆
𝑛
are given by the following asymptotic formula:

𝜆
𝑛
=

𝑛𝜋

𝜇 (𝜋)

(1 + 𝑂(

1

𝑛

)) . (14)

Consider a second operator �̃� generated by the differential
equation

𝐵𝑦


(𝑥) + Ω̃ (𝑥) 𝑦 (𝑥) = 𝜆𝜌 (𝑥) 𝑦 (𝑥) ,

𝑥 ∈ 𝐼 := (0,

𝜋

2

) ∪ (

𝜋

2

, 𝜋)

(15)

subject to the same boundary conditions (3) and (4) and
discontinuity condition (5). Here, Ω̃(𝑥) = (

𝑝(𝑥) 𝑞(𝑥)

𝑞(𝑥) −𝑝(𝑥)
) with

a real valued function 𝑝(𝑥) ∈ 𝐿
2
(0, 𝜋).

We denote eigenvalues by 𝜆
𝑛
and the corresponding

eigenfunctions by 𝜑
𝑛
(𝑥) = 𝜑(𝑥, 𝜆

𝑛
) of the problem 𝐿 and

denote eigenvalues by ̃𝜆
𝑛
and the corresponding eigenfunc-

tions by 𝜑
𝑛
(𝑥) = 𝜑(𝑥,

̃
𝜆
𝑛
) of the problem �̃�.
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Lemma 2. If 𝜆
𝑛
=
̃
𝜆
𝑛
, then 𝛼 = �̃� that is, 𝜌(𝑥) = 𝜌(𝑥).

Proof. Since 𝜆
𝑛

= (𝑛𝜋/𝜇(𝜋))(1 + 𝑂(1/𝑛)), then ̃
𝜆
𝑛

=

(𝑛𝜋/𝜇(𝜋))(1+𝑂(1/𝑛)), (𝑛𝜋/𝜇(𝜋))(1+𝑂(1/𝑛))= (𝑛𝜋/𝜇(𝜋))(1+
𝑂(1/𝑛)). Letting 𝑛 → ∞, then we conclude that 𝜇(𝜋) =
𝜇(𝜋). Moreover, since 𝜇(𝜋) = (𝜋/2)(𝛼 + 1), then 𝛼 = �̃�. So
𝜌(𝑥) = 𝜌(𝑥).

Theorem 3. If 𝜆
𝑛
=
̃
𝜆
𝑛
, for all 𝑛 ∈ N and 𝑝(𝑥) = 𝑝(𝑥), for

𝑥 ∈ (𝜋/2, 𝜋), then 𝑝(𝑥) = 𝑝(𝑥) almost everywhere on (0, 𝜋).

Proof. Let us write (1) for the solutions 𝜑 and 𝜑 and take into
account Lemma 2 as

𝐵𝜑


(𝑥, 𝜆) + Ω (𝑥) 𝜑 (𝑥, 𝜆) = 𝜆𝜌 (𝑥) 𝜑 (𝑥, 𝜆) ,

𝐵𝜑


(𝑥, 𝜆) + Ω̃ (𝑥) 𝜑 (𝑥, 𝜆) = 𝜆𝜌 (𝑥) 𝜑 (𝑥, 𝜆) .

(16)

If we multiply these equalities by 𝜑(𝑥, 𝜆) and 𝜑(𝑥, 𝜆),
respectively, and subtract, then we obtain

𝑑

𝑑𝑥

{𝜑
1
(𝑥, 𝜆) 𝜑

2
(𝑥, 𝜆) − 𝜑

1
(𝑥, 𝜆) 𝜑

2
(𝑥, 𝜆)}

= [Ω (𝑥) − Ω̃ (𝑥)] 𝜑 (𝑥, 𝜆) 𝜑 (𝑥, 𝜆) .

(17)

Integrating the last equality from 0 to 𝜋 with respect to 𝑥,
the equality

{𝜑
1
(𝑥, 𝜆) 𝜑

2
(𝑥, 𝜆) − 𝜑

1
(𝑥, 𝜆) 𝜑

2
(𝑥, 𝜆)}






𝜋

0

= ∫

𝜋

0

[Ω (𝑥) − Ω̃ (𝑥)] 𝜑 (𝑥, 𝜆) 𝜑 (𝑥, 𝜆) 𝑑𝑥

= ∫

𝜋

0

[𝑝 (𝑥) − 𝑝 (𝑥)] 𝐽𝜑 (𝑥, 𝜆) 𝜑 (𝑥, 𝜆) 𝑑𝑥

(18)

is obtained where 𝐽 := (
1 0

0 −1
). Applying the initial condition

(6) and the assumption 𝑝(𝑥) = 𝑝(𝑥), 𝑥 ∈ (𝜋/2, 𝜋) in hypo-
thesis, we get

{𝜑
1
(𝑥, 𝜆) 𝜑

2
(𝑥, 𝜆) − 𝜑

1
(𝑥, 𝜆) 𝜑

2
(𝑥, 𝜆)}






𝜋

0

= ∫

𝜋/2

0

[Ω (𝑥) − Ω̃ (𝑥)] 𝜑 (𝑥, 𝜆) 𝜑 (𝑥, 𝜆) 𝑑𝑥

= ∫

𝜋/2

0

[𝑝 (𝑥) − 𝑝 (𝑥)] 𝐽𝜑 (𝑥, 𝜆) 𝜑 (𝑥, 𝜆) 𝑑𝑥.

(19)

Define

𝐹 (𝜆) := ∫

𝜋/2

0

[𝑝 (𝑥) − 𝑝 (𝑥)] 𝐽𝜑 (𝑥, 𝜆) 𝜑 (𝑥, 𝜆) 𝑑𝑥, (20)

where

𝐽𝜑 (𝑥, 𝜆) 𝜑 (𝑥, 𝜆) = − cos 2𝜆𝑥 + ∫
𝑥

0

𝐾
1
(𝑥, 𝑡) cos 2𝜆𝑡𝑑𝑡

+ ∫

𝑥

0

𝐾
2
(𝑥, 𝑡) sin 2𝜆𝑡𝑑𝑡

(21)

and𝐾
𝑖
(𝑥, 𝑡), 𝑖 = 1, 2 depend only on 𝑥, 𝑡.

Then we get from the boundary condition (4) that

𝐹 (𝜆
𝑛
) = 0 (22)

for all 𝑛.
Now, define

𝜒 (𝜆) :=

𝐹 (𝜆)

Δ (𝜆)

. (23)

𝜒(𝜆) is an entire function. Since 𝐹(𝜆) = 𝑂(exp 𝜏𝜋) and
|Δ(𝜆)| ≥ 𝐶

𝛿
exp 𝜏𝜇(𝜋) for 𝜆 ∈ 𝐺

𝛿
:= {𝜆 : |𝜆 − 𝜆

𝑛
| > 𝛿}

where 𝜇(𝜋) = (𝜋/2)(𝛼 + 1), then 𝜒(𝜆) is constant from the
Liouville’s theorem. Furthermore,

lim
𝜆→∞

𝜆∈R

𝜒 (𝜆) = 0 (24)

from the equalities (7), (9), and (21) and the Riemann-
Lebesgue lemma. Thus, 𝜒(𝜆) = 0 on the whole 𝜆-plane.

It follows from (20) and (21) that

∫

𝜋/2

0

𝑄 (𝑥) {cos 2𝜆𝑥 − ∫
𝑥

0

𝐾
1
(𝑥, 𝑡) cos 2𝜆𝑡𝑑𝑡

−∫

𝑥

0

𝐾
2
(𝑥, 𝑡) sin 2𝜆𝑡𝑑𝑡} 𝑑𝑥 = 0

(25)

for all 𝜆 where 𝑄(𝑥) := [𝑝(𝑥) − 𝑝(𝑥)]. This can be rewritten
as

∫

𝜋/2

0

cos 2𝜆𝜏 [𝑄 (𝜏) + ∫

𝜋/2

𝜏

𝑄 (𝑥)𝐾
1
(𝑥, 𝑡) 𝑑𝑥] 𝑑𝑡

+ ∫

𝜋/2

0

sin 2𝜆𝑡 ∫
𝜋/2

𝜏

𝑄 (𝑥)𝐾
2
(𝑥, 𝑡) 𝑑𝑥 𝑑𝑡 = 0.

(26)

From the completeness of the functions (cos 2𝜆𝜏,
sin 2𝜆𝑡)𝑇 in 𝐿

2
(0, 𝜋) ⊕ 𝐿

2
(0, 𝜋), we have

𝑄 (𝜏) + ∫

𝜋/2

𝜏

𝑄 (𝑥)𝐾
1
(𝑥, 𝑡) 𝑑𝑥 = 0, for 0 < 𝜏 < 𝜋

2

. (27)

It follows that 𝑄(𝑥) = 0; that is, 𝑝(𝑥) = 𝑝(𝑥) almost every-
where for 𝑥 ∈ (0, 𝜋).
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We analyze the dynamics of the forced singularly perturbed differential equations of Duffing’s type with a potential that is bounded
from above. We explain the appearance of the large frequency nonlinear oscillations of the solutions. It is shown that the frequency
can be controlled by a small parameter at the highest derivative.

1. Introduction

Duffing’s equation is regarded as one of the most important
differential equations because it appears in various physical
and engineering problems. For example, the periodically
forced Duffing oscillator

𝑦


+ 𝛿𝑦


+ 𝛼𝑦 + 𝛽𝑦
3

= 𝛾 cos𝜔𝑡 (1)

exhibits a wide variety of interesting phenomena which are
fundamental to the behavior of nonlinear dynamical systems,
such as regular and chaotic motions (see, e.g., [1–5] and
the references therein; we also refer to the classical book
of Nayfeh and Mook [6]). In this context, usually two-well
potential of an unperturbed system was considered (𝛽 > 0;
see also [7–9]) by using analytical methods and numerical
simulations.

In this case, the undamped (𝛿 = 0) and unperturbed (𝛾 =

0) Duffing’s oscillator can basically exhibit two distinct types
of steady-state oscillations, namely,

(i) in-well, small orbit dynamics, where the system state
remains within the potential well centred at a stable
equilibrium point (center);

(ii) cross-well, large orbit dynamics, whose trajecto-
ries surround the three equilibrium points (saddle
between two centers).

In both cases, under periodic external excitation, a chaotic
motion can be observed when the control parameters are
changed.

On the contrary, in this paper we consider that 𝛽 < 0

and a potential tends to −∞ for |𝑦| → ∞, so the object
can escape to infinity because of the bounded from above
potential. There exist several atomic or subatomic situations
in quantum physics where the total energy governing the
particles contains an approximately square-well potential
which is bounded from above; see, for example, [10] and
discussion in [11]. For example, recently it has been found that
the meson spectroscopy is better described by “confining”
potential which is bounded from above; for details and
references, see [10].

This paper concentrates on the mathematical aspects
of systems with a potential that is bounded from above;
more concretely, we focus our attention on the existence
of nonlinear oscillations in the context of saddle-center
bifurcation in the dynamical system describing the singularly
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perturbed forced oscillator of Duffing’s type with a nonlinear
restoring and a nonperiodic external driving force

𝜖
2

(𝑎
2

(𝑡) 𝑦


)



+ 𝑓 (𝑦) = 𝑚 (𝑡) , 0 < 𝜖 ≪ 1 (2)

or rewriting to an equivalent set of the three first-order
autonomous equations:

𝜖𝑦


=

𝑤

𝑎 (𝑡)

,

𝜖𝑤


=

𝑚 (𝑡)

𝑎 (𝑡)

−

𝑓 (𝑦)

𝑎 (𝑡)

− 𝜖

𝑎


(𝑡)

𝑎 (𝑡)

𝑤,

𝑡


= 1

(3)

with potential with two-barrier structure. Here 𝑎 and 𝑚 are
the 𝐶
1 functions on the interval ⟨𝑡

𝐵
, 𝑡
𝐸
⟩, 𝑎 is positive and 𝑓

is a 𝐶
1 function on R.

We show that the singular perturbation parameter 𝜖

play role modeling tool for the frequency control of the
nonlinear oscillations arising in these systems (relationship
(33)). Finally we prove that under some assumptions the
solutions of (2) will rapidly oscillate, with the frequency of
the oscillations increasing unboundedly as 𝜖 → 0

+.
System (3) is an example of a singularly perturbed system,

because in the limit 𝜖 → 0
+, it does not reduce to a

differential equation of the same type, but to an algebraic-
differential reduced system:

0 =

𝑤

𝑎 (𝑡)

,

0 =

𝑚 (𝑡)

𝑎 (𝑡)

−

𝑓 (𝑦)

𝑎 (𝑡)

,

𝑡


= 1.

(4)

Another way to study the singular limit 𝜖 → 0
+ is by

introducing the new independent variable 𝜏 = 𝑡/𝜖 which
transforms (3) to the system

𝑑𝑦

𝑑𝜏

=

𝑤

𝑎 (𝑡)

,

𝑑𝑤

𝑑𝜏

=

𝑚 (𝑡)

𝑎 (𝑡)

−

𝑓 (𝑦)

𝑎 (𝑡)

− 𝜖

𝑎


(𝑡)

𝑎 (𝑡)

𝑤,

𝑑𝑡

𝑑𝜏

= 𝜖.

(5)

Taking the limit 𝜖 → 0
+, we obtain the so-called associated

system ([12])

𝑑𝑦

𝑑𝜏

=

𝑤

𝑎 (𝑡)

, (6)

𝑑𝑤

𝑑𝜏

=

𝑚 (𝑡)

𝑎 (𝑡)

−

𝑓 (𝑦)

𝑎 (𝑡)

, (7)

𝑑𝑡

𝑑𝜏

= 0; that is, 𝑡 = 𝑡
∗

= constant, (8)

in which 𝑡 plays the role of a parameter.

y

t
tB

tE

Sa

Sm

Sb
tSC2tSC1

Figure 1: The critical manifold 𝑆.

Both scalings agree on the level of phase space structure
when 𝜖 ̸= 0 but offer very different perspectives since they
differ radically in the limit when 𝜖 = 0. The main goal
of singular perturbation theory is to use these limits to
understand structure in the full system when 𝜖 ̸= 0.

The critical manifold 𝑆 is defined as a solution of the
reduced system; that is,

𝑆 := {(𝑡, 𝑦, 𝑤) : 𝑡 ∈ ⟨𝑡
𝐵
, 𝑡
𝐸
⟩ , 𝑓 (𝑦) = 𝑚 (𝑡) , 𝑤 = 0} (9)

which corresponds to a set of equilibria for the associated
system (6), (7), and (8).

2. Saddle-Center Bifurcations of
Associated System

We assume the following.

(A1) The criticalmanifold is S-shaped curvewith two folds;
that is, it can be written in the form 𝑡 = 𝜑(𝑦), 𝑡 ∈

⟨𝑡
𝐵
, 𝑡
𝐸
⟩, and the function 𝜑 has precisely two critical

points, one nondegenerate minimum 𝑦SC1 and one
nondegenerate maximum 𝑦SC2; let 𝑦SC1 < 𝑦SC2. Thus,
the critical manifold can be broken up into three
pieces 𝑆

𝑏
, 𝑆
𝑚
, and 𝑆

𝑎
, separated by the minimum and

maximum (Figure 1). These three pieces are defined
as follows:

𝑆
𝑏
= {(𝑦, 𝜑 (𝑦) , 0) : 𝑦 < 𝑦SC1} ,

𝑆
𝑚

= {(𝑦, 𝜑 (𝑦) , 0) : 𝑦SC1 < 𝑦 < 𝑦SC2} ,

𝑆
𝑎
= {(𝑦, 𝜑 (𝑦) , 0) : 𝑦SC2 < 𝑦} .

(10)

(A2) Consider 𝜑(𝑦) ̸= 0 for 𝑦 ̸=𝑦SC1, 𝑦SC2.
(A3) Consider (𝑑𝑓/𝑑𝑦)(𝑦) > 0 for every (𝑡, 𝑦, 0) ∈ 𝑆

𝑚
and

(𝑑𝑓/𝑑𝑦)(𝑦) < 0 for every (𝑡, 𝑦, 0) ∈ 𝑆
𝑎
∪ 𝑆
𝑏
.

Due to the assumption (A3), the situation considered
here substantially differs from the situation in [13], where
two pieces of critical manifold, namely, 𝑆

𝑎
and 𝑆

𝑏
, are not

normally hyperbolic, and large orbit oscillations that encircle
all the three pieces of critical manifold were studied (for the
definition of a normal hyperbolicity of critical manifold see,
e.g., [12]). In this paper, the pieces 𝑆

𝑎
and 𝑆

𝑏
of the critical
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manifold 𝑆 are normally hyperbolic, and thus the system
under consideration allows another type of nonlinear oscilla-
tions, namely, small orbit oscillations around themiddle piece
𝑆
𝑚
of critical manifold 𝑆. For comparison, see Figure 3(a) and

Figure 5.
Let 𝑡SC1 = 𝜑(𝑦SC1), 𝑡SC2 = 𝜑(𝑦SC2). Denote by

𝑢
1
(𝑡) = 𝜑

−1

(𝑡) : 𝑡 ∈ ⟨𝑡
𝐵
, 𝑡SC2⟩ , 𝑦SC2 ≤ 𝑢

1
(𝑡) ,

𝑢
2
(𝑡) = 𝜑

−1

(𝑡) : 𝑡 ∈ ⟨𝑡SC1, 𝑡SC2⟩ , 𝑦SC1 ≤ 𝑢
2
(𝑡) ≤ 𝑦SC2,

𝑢
3
(𝑡) = 𝜑

−1

(𝑡) : 𝑡 ∈ ⟨𝑡SC1, 𝑡𝐸⟩ , 𝑢
3
(𝑡) ≤ 𝑦SC1.

(11)

The equations

𝑓 (𝑦) = 𝑚 (𝑡) , 𝑤 = 0 (12)

have three solutions for 𝑦, 𝑤 if 𝑡
∗

∈ (𝑡SC1, 𝑡SC2) and one if
𝑡
∗

∈ ⟨𝑡
𝐵
, 𝑡SC1) and 𝑡

∗

∈ (𝑡SC2, 𝑡𝐸⟩. Thus the associated system
(6), (7), 𝑡 = 𝑡

∗

= constant has three equilibria (two saddles,
one center) for 𝑡

∗

∈ ⟨𝑡
𝐵
, 𝑡SC1) and one equilibrium (saddle)

for 𝑡
∗

∈ ⟨𝑡
𝐵
, 𝑡SC1) and 𝑡

∗

∈ (𝑡SC2, 𝑡𝐸⟩; the eigenvalues of the
jacobian are

𝜆
1,2

(𝑡
∗

, 𝑦, 𝑤) = ± 𝑎
−1

(𝑡
∗

)√−

𝑑𝑓

𝑑𝑦

(𝑦). (13)

Thus, the pieces 𝑆
𝑎
and 𝑆

𝑏
of critical manifold 𝑆 are the

normally hyperbolic manifolds. The points (𝑡SC1, 𝑦SC1, 0) and
(𝑡SC2, 𝑦SC2, 0) of 𝑆 are the cusps of the codimension two ([14,
15]), and the corresponding bifurcation is known as saddle-
center bifurcation ([16]) (Figure 2).

More precisely, at the point 𝑡
∗

= 𝑡SC1, the birth of
the saddle and the center occurs. At 𝑡

∗

= 𝑡SC2, the left
side center and the saddle coalesce. There is a unique 𝑡

∗

0
∈

(𝑡SC1, 𝑡SC2), such that between hyperbolic points (saddles)
there is a heteroclinic connection. The homoclinic loop of
one hyperbolic point surrounds the corresponding elliptic
(center) one for every 𝑡

∗

∈ (𝑡SC1, 𝑡SC2), 𝑡
∗

̸= 𝑡
∗

0
.

Weuse the level surfaces𝐻𝜖(𝑡, 𝑦, 𝑤) = 𝐻
𝜖

(𝑡) of the energy
function 𝐻

𝜖,

𝐻
𝜖

(𝑡, 𝑦, 𝑤) =

1

2

𝑤
2

+ 𝑉 (𝑡, 𝑦) ,

𝑉 (𝑡, 𝑦) = ∫

𝑦

0

𝑓 (𝑠) 𝑑𝑠 − 𝑚 (𝑡) 𝑦,

(14)

to characterize the trajectories of (3). These surfaces in
(𝑡, 𝑦, 𝑤)-space are defined by

𝑤 = ± (2 (𝐻
𝜖

(𝑡) − 𝑉 (𝑡, 𝑦)))
1/2 (15)

extending it as long as 𝑤 remains real. On the intervals
⟨𝑡
𝐵
, 𝑡SC1) and (𝑡SC2, 𝑡𝐸⟩, there is a motion across a single

potential barrier, and on the interval (𝑡SC1, 𝑡SC2), there is
double barrier with a well in between.

The derivative of 𝐻𝜖(𝑡) along any solution path of (3) is

𝐻
𝜖


(𝑡) = 𝑤
𝜖

𝑤
𝜖


+ 𝑓 (𝑦
𝜖

) 𝑦
𝜖


− [𝑚 (𝑡) 𝑦
𝜖

]


= 𝑤
𝜖

[−

𝑓 (𝑦
𝜖

)

𝜖𝑎

+

𝑚 (𝑡)

𝜖𝑎

−

𝑎


𝑎

𝑤
𝜖

]

+ 𝑓 (𝑦
𝜖

) 𝑦
𝜖


− [𝑚 (𝑡) 𝑦
𝜖

]


= −

𝑎


(𝑡)

𝑎 (𝑡)

(𝑤
𝜖

)
2

− 𝑚


(𝑡) 𝑦
𝜖

.

(16)

The main objective of this paper is to prove the strongly
nonlinear oscillations on the interval (𝑡SC1, 𝑡SC2) as possible
scenario of behavior of the solutions for problem (2). For this
reason, we rewrite the differential equation (2) in the system
form

𝑦


=

𝑤

𝜖𝑎 (𝑡)

,

(𝑎 (𝑡) 𝑤)


=

𝑚 (𝑡)

𝜖

−

𝑓 (𝑦)

𝜖

.

(17)

Then, we make a change of variables from rectangular
coordinates (𝑦, 𝑤) to the dynamic polar coordinates (𝑟, 𝛾)

centered at (𝑢
2
(𝑡), 0) defined by the equations

𝑦 = 𝑢
2
(𝑡) + 𝑟 cos 𝛾, 𝑎 (𝑡) 𝑤 = −𝑟 sin 𝛾, (18)

and let us consider the system (17) on the interval (𝑡SC1, 𝑡SC2)
in these new coordinates.The function 𝑢

2
(𝑡) acting in the first

polar transform equation corresponds to the middle piece
𝑆
𝑚
of critical manifold 𝑆. At first, we derive the differential

equation for polar angle 𝛾, which is crucial for an analysis of
nonlinear oscillations in this system. Dividing formally the
second transform equation by the first, we get

tan 𝛾 = −

𝑎𝑤

𝑦 − 𝑢
2

. (19)

Differentiating this equation with respect to 𝑡, we consecu-
tively have

1

cos2𝛾
𝛾


= −[

𝑎𝑤

𝑦 − 𝑢
2

]



=

𝑎𝑤𝑦


(𝑦 − 𝑢
2
)
2
−

(𝑎𝑤)


𝑦 − 𝑢
2

−

𝑎𝑤𝑢


2

(𝑦 − 𝑢
2
)
2
.

(20)

Finally, using (17) and (18), we obtain the following differ-
ential equation for 𝛾:

𝛾


=

1

𝜖

[

1

𝑎
2
(𝑡)

sin2𝛾 + 𝑓 (𝑡, 𝑦) cos2𝛾 +

𝜖𝑢


2
(𝑡)

𝑟
𝜖
(𝑡)

sin 𝛾] , (21)

where the radius is as follows:

𝑟
𝜖

(𝑡) = √(𝑦 − 𝑢
2
)
2

+ (𝑎 (𝑡) 𝑤)
2

,

𝑓 (𝑡, 𝑦) =

𝑓 (𝑦) − 𝑚 (𝑡)

𝑦 − 𝑢
2
(𝑡)

,

𝑓 (𝑡, 𝑢
2
(𝑡))

def
= lim
𝑦→𝑢

2

𝑓 (𝑦) − 𝑚 (𝑡)

𝑦 − 𝑢
2
(𝑡)

=

𝑑𝑓

𝑑𝑦

(𝑢
2
(𝑡)) .

(22)
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(a) (b)

Figure 2: Creation and extinction (inmirrormode) of a separatrix loop in the saddle-center bifurcation at 𝑡∗ = 𝑡SC1 and 𝑡
∗

= 𝑡SC2, respectively.
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Figure 3: Solution of (27), (28), 𝜖2 = 0.0224 on ⟨−2.45, 2.1⟩ (a); solution of (27), (28), 𝜖2 = 0.0225 on ⟨−2.45, −1.25⟩ (b).

Now let 𝐾 be a compact subset of (𝑡SC1, 𝑡SC2). On the
periodic orbits (for fixed 𝑡), we define the minimal radius:

𝑟
𝜖

min (𝐾)

def
= min
𝑡∈𝐾

𝑟
𝜖

(𝑡)

= min
𝑡∈𝐾

{𝑢
2
(𝑡) − 𝑦

𝜖

𝐿
(𝑡) , 𝑦
𝜖

𝑅
(𝑡) − 𝑢

2
(𝑡) ,

√2𝑎 (𝑡)√𝐻
𝜖
(𝑡) − 𝑉 (𝑡, 𝑢

2
(𝑡))} ,

(23)

where 𝑦
𝜖

𝐿
(𝑡) and 𝑦

𝜖

𝑅
(𝑡) (𝑦𝜖

𝐿
< 𝑦
𝜖

𝑅
) are the solutions of the

equation

𝐻
𝜖

(𝑡) − 𝑉 (𝑡, 𝑦) = 0, 𝑡 ∈ (𝑡SC1, 𝑡SC2) (24)

lying on the periodic orbit.
Obviously, 𝑦𝜖

𝑖
(𝑡) → 𝑢

2
(𝑡SC1) for 𝑡 → 𝑡

+

SC1 and 𝑦
𝜖

𝑖
(𝑡) →

𝑢
2
(𝑡SC2) for 𝑡 → 𝑡

−

SC2, 𝑖 = 𝐿, 𝑅.
Let 𝛿(𝑡) be a positive function such that

𝛿 (𝑡) + 𝑉 (𝑡, 𝑢
2
(𝑡)) < min {𝑉 (𝑡, 𝑢

1
(𝑡)) , 𝑉 (𝑡, 𝑢

3
(𝑡))} (25)

on 𝐾.
Now we make the following additional assumption.

(A4) The total energy 𝐻
𝜖

(𝑡) of motion described by (2)
satisfies

𝛿 (𝑡) + 𝑉 (𝑡, 𝑢
2
(𝑡)) ≤ 𝐻

𝜖

(𝑡)

< min {𝑉 (𝑡, 𝑢
1
(𝑡)) , 𝑉 (𝑡, 𝑢

3
(𝑡))}

(26)

on a compact subset 𝐾 of (𝑡SC1, 𝑡SC2).

If a total energy of motion described by (2) satisfies the
assumption (A4) on every compact subset 𝐾 of (𝑡SC1, 𝑡SC2),
then 𝑦

𝜖

𝑖
(𝑡) → 𝑢

2
(𝑡SC1) for 𝑡 → 𝑡

+

SC1, 𝑡 ∈ 𝐾 and 𝑦
𝜖

𝑖
(𝑡) →

𝑢
2
(𝑡SC2) for 𝑡 → 𝑡

−

SC2, 𝑡 ∈ 𝐾, and 𝑖 = 𝐿, 𝑅.
We precede the main result on the existence of nonlinear

oscillations of the solutions for (2) on the interval (𝑡SC1, 𝑡SC2)
by important example.

Example 1. Consider Duffing’s oscillator with linear
excitation

𝜖
2

𝑦


+ 3𝑦 − 𝑦
3

= 𝑡 (27)

for 𝜖2 = 0.0224 subject to the initial conditions

𝑦
𝜖

(−2.45) = −1.9, 𝑦
𝜖


(−2.45) = 11.16 (28)

on the interval ⟨−2.45, 2.1⟩.
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Figure 4: Phase portraits for 𝑡 = (from top-left to bottom-right): −2.5 (𝑡 < 𝑡SC1); −2 (𝑡 = 𝑡SC1); −1 (𝑡SC1 < 𝑡 < 𝑡SC2); 0 (heteroclinic
connections between two saddles of associated system, 𝑡∗

0
= 0); 1; 2 (𝑡 = 𝑡SC2); 2.5 (𝑡 > 𝑡SC2).

In our case 𝑡
𝐵

= −2.45, 𝑡
𝐸

= 2.1, 𝑎 ≡ 1, 𝑓(𝑦) =

3𝑦−𝑦
3

, 𝑚(𝑡) = 𝑡, 𝑡SC1 = −2, 𝑡SC2 = 2, 𝑦SC1 = −1, 𝑦SC2 = 1,
and it is not difficult to check that the assumptions (A1)–
(A3) hold.Numerical results obtained from (27) subject to the
initial conditions (28) using the software packageMATLAB 7
are shown in Figure 3(a). These oscillations are very sensitive
on the value of singular perturbation parameter 𝜖. Figure 3(b)
shows the solution of (27), (28) for 𝜖2 = 0.0225.

In order to facilitate the understanding of the qualitative
behaviors of this dynamical system, we draw the (𝑦, 𝑤)-
phase portraits at the relevant fixed value of time 𝑡 (Figure 4).
For comparison, Figure 5 shows the solution of initial value
problem

𝜖
2

𝑦


− 3𝑦 + 𝑦
3

= −𝑡,

𝑦
𝜖

(−4) = 3.1821, 𝑦
𝜖


(−4) = 0

(29)

with twin-( or single-) well potential for 𝜖
2

= 0.00354 on the
interval ⟨𝑡

𝐵
, 𝑡
𝐸
⟩ = ⟨−4, 4⟩. This type of problems has been

studied in [13].
Now we will analyze the solution of (27), (28) after the

time 𝑡SC2. The total energy (14) for (27) is

𝐻
𝜖

(𝑡, 𝑦, 𝑤) =

1

2

𝑤
2

+

3

2

𝑦
2

−

1

4

𝑦
4

+ 𝑡𝑦, (30)

and for its derivative along the solution given by (16), we
obtain

𝐻
𝜖


(𝑡) = −𝑦
𝜖

(𝑡) . (31)

Due to the oscillations around 𝑢
2
(𝑡) in left neighborhood of

𝑡SC2 between 𝑢
1
(𝑡) and 𝑢

3
(𝑡), that is, 𝑦𝜖 > 0, the total energy

decreases (dissipation) in right neighborhood of 𝑡SC2,

𝐻
𝜖


(𝑡) = −𝑦
𝜖

(𝑡) < 0. (32)
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Figure 5: Solution of (29), 𝜖2 = 0.00354 on ⟨−4, 4⟩.

As it follows from the shape of potential 𝑉 and the phase
portrait for 𝑡 > 𝑡SC2, 𝑦

𝜖

(𝑡
∗

) → ∞ for 𝜖 → 0
+ and 𝑡

∗

∈

(𝑡SC2, 𝑡𝐸⟩.

3. Analysis of Solutions Lying on the Periodic
Orbits: Main Result

Now we formulate the theorem on nonlinear oscillations
of solutions of (2) for the motion with total energy 𝐻

𝜖

(𝑡)

satisfying the assumption (A4). Moreover, we show that
the parameter 𝜖 plays role modeling tool for the frequency
control of the nonlinear oscillations.

Denote by 𝑠
𝜖
the spacing between two successive zero

numbers of the function 𝑦
𝜖

− 𝑢
2
on 𝐾, where 𝑦

𝜖 is a solution
of (2).

Theorem 2. Under the assumptions (A1)–(A4), the solutions
of problem (2) oscillate on the compact set 𝐾, 𝐾 ⊂ (𝑡SC1, 𝑡SC2)
between 𝑢

1
(𝑡) and 𝑢

3
(𝑡) and

𝜖

𝜋

𝜇
2
(𝐾, 𝜖
0
)

≤ 𝑠
𝜖
≤ 𝜖

𝜋

𝜇
1
(𝐾, 𝜖
0
)

, 𝜖 ∈ (0, 𝜖
0
] , (33)

where 𝜇
1
(𝐾, 𝜖
0
) and 𝜇

2
(𝐾, 𝜖
0
) are the positive constants inde-

pendent of the singular perturbation parameter 𝜖, 𝜖 ∈ (0, 𝜖
0
].

Proof. To obtain the oscillations and the estimate of their
frequencies, we analyze the differential equation (21); that is,

𝛾


=

1

𝜖

[

1

𝑎
2
(𝑡)

sin2𝛾 + 𝑓 (𝑡, 𝑦) cos2𝛾 +

𝜖𝑢


2
(𝑡)

𝑟
𝜖
(𝑡)

sin 𝛾] . (34)

Taking into consideration the fact that 𝑟
𝜖

min(𝐾) ≥ Δ > 0

independently of parameter 𝜖 due to the assumption (A4), we
can estimate that











𝜖𝑢


2
(𝑡)

𝑟
𝜖
(𝑡)

sin 𝛾











≤ 𝜖






𝑢


2
(𝑡)







𝑟
𝜖

min (𝐾)

≤ 𝜖






𝑢


2
(𝑡)






Δ → 0

+ (35)

for 𝜖 → 0
+. Further for 𝑡 ∈ 𝐾 and 𝑦 ∈ (𝑢

3
(𝑡), 𝑢
1
(𝑡)), we

have 𝑓(𝑡, 𝑦) > 0. Thus for sufficiently small values of the
singular perturbation parameter 𝜖, say, 𝜖 ∈ (0, 𝜖

0
], there exist

the positive constants 𝜇
1
(𝐾, 𝜖
0
), 𝜇
2
(𝐾, 𝜖
0
), and 𝜇

1
(𝐾, 𝜖
0
) <

𝜇
2
(𝐾, 𝜖
0
):

𝜇
1
(𝐾, 𝜖
0
)

= min[

1

𝑎
2
(𝑡)

sin2𝛾 + 𝑓 (𝑡, 𝑦) cos2𝛾 +

𝜖
0
𝑢


2
(𝑡)

𝑟
𝜖
(𝑡)

sin 𝛾;

𝑡 ∈ 𝐾, 𝑦 ∈ ⟨𝑦
0

𝐿
(𝑡) , 𝑦
0

𝑅
(𝑡)⟩ , 𝛾 ∈ ⟨0, 2𝜋⟩] ,

𝜇
2
(𝐾, 𝜖
0
)

= max[

1

𝑎
2
(𝑡)

sin2𝛾 + 𝑓 (𝑡, 𝑦) cos2𝛾 +

𝜖
0
𝑢


2
(𝑡)

𝑟
𝜖
(𝑡)

sin 𝛾;

𝑡 ∈ 𝐾, 𝑦 ∈ ⟨𝑦
0

𝐿
(𝑡) , 𝑦
0

𝑅
(𝑡)⟩ , 𝛾 ∈ ⟨0, 2𝜋⟩] ,

(36)

where 𝑦
0

𝐿
(𝑡), and 𝑦

0

𝑅
(𝑡) are the roots of the equation

min {𝑉 (𝑡, 𝑢
1
(𝑡)) , 𝑉 (𝑡, 𝑢

3
(𝑡))} − 𝑉 (𝑡, 𝑦) = 0, (37)

lying on the periodic orbit.
Putting (35) into the definitions of constants 𝜇

1
(𝐾, 𝜖
0
),

and 𝜇
2
(𝐾, 𝜖
0
), we obtain that

𝜇
1
(𝐾, 𝜖
0
)

≥ min [

1

𝑎
2
(𝑡)

sin2𝛾 + 𝑓 (𝑡, 𝑦) cos2𝛾 − 𝜖
0






𝑢


2
(𝑡)






Δ;

𝑡 ∈ 𝐾, 𝑦 ∈ ⟨𝑦
0

𝐿
(𝑡) , 𝑦
0

𝑅
(𝑡)⟩ , 𝛾 ∈ ⟨0, 2𝜋⟩] > 0,

𝜇
2
(𝐾, 𝜖
0
)

≤ max [

1

𝑎
2
(𝑡)

sin2𝛾 + 𝑓 (𝑡, 𝑦) cos2𝛾 + 𝜖
0






𝑢


2
(𝑡)






Δ;

𝑡 ∈ 𝐾, 𝑦 ∈ ⟨𝑦
0

𝐿
(𝑡) , 𝑦
0

𝑅
(𝑡)⟩ , 𝛾 ∈ ⟨0, 2𝜋⟩] > 0

(38)

for sufficiently small value of upper bound 𝜖
0
of singular

perturbation parameter 𝜖.
Further, if 𝜖(1)

0
< 𝜖
(2)

0
, then

𝜇
1
(𝐾, 𝜖
(1)

0
) > 𝜇
1
(𝐾, 𝜖
(2)

0
) , (39)

and conversely

𝜇
2
(𝐾, 𝜖
(1)

0
) < 𝜇
2
(𝐾, 𝜖
(2)

0
) . (40)

Thus we have the inequality

𝜇
1
(𝐾, 𝜖
0
) 𝜖
−1

≤ 𝛾


≤ 𝜇
2
(𝐾, 𝜖
0
) 𝜖
−1

. (41)
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Integrating this inequality with respect to the variable 𝑡

between two successive zeros (𝑗th and (𝑗 + 1)th, 𝑗 = 1, 2, . . .)
of 𝑦𝜖(𝑡) − 𝑢

2
(𝑡), 𝑡 ∈ 𝐾, we obtain immediately the lower and

upper bound of their spacing 𝑠
𝜖
. Indeed,

∫

zero(𝑗+1)th

zero(𝑗)th

𝜇
2
(𝐾, 𝜖
0
)

𝜖

𝑑𝑡 ≥ ∫

zero(𝑗+1)th

zero(𝑗)th
𝛾


𝑑𝑡

≥ ∫

zero(𝑗+1)th

zero(𝑗)th

𝜇
1
(𝐾, 𝜖
0
)

𝜖

𝑑𝑡,

𝜇
2
(𝐾, 𝜖
0
)

𝜖

𝑠
𝜖
≥ 𝜋 ≥

𝜇
1
(𝐾, 𝜖
0
)

𝜖

𝑠
𝜖
.

(42)

Hence,

𝜖

𝜋

𝜇
2
(𝐾, 𝜖
0
)

≤ 𝑠
𝜖
≤ 𝜖

𝜋

𝜇
1
(𝐾, 𝜖
0
)

, 𝜖 ∈ (0, 𝜖
0
] . (43)

4. Conclusion

The frequency of nonlinear oscillations of Duffing’s type
equations arising via saddle-center bifurcation in associated
system may be controlled by the singular perturbation
parameter 𝜖.These oscillations are very sensitive on the initial
conditions.
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