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In this article, barycentric interpolation collocation method (BICM) is presented to solve the fractional linear Fredholm-Volterra
integro-differential equation (FVIDE). Firstly, the fractional order term of equation is transformed into the Riemann integral with
Caputo definition, and this integral term is approximated by the Gauss quadrature formula. Secondly, the barycentric
interpolation basis function is used to approximate the unknown function, and the matrix equation of BICM is obtained.
Finally, several numerical examples are given to solve one-dimensional differential equation.

1. Introduction

The concept of the fractional calculus dates back to 1695.
Fractional differential equations, as a generalization of inte-
ger differential equations, are suitable for describing mate-
rials and processes with genetic and memory properties.
Compared with integer order model, fractional order model
can simulate dynamic system and natural physical phenom-
ena more accurately. Fractional models are widely used in
many fields, such as biological engineering [1–3], mechanics
[4, 5], physics [6], electromagnetism [7, 8], viscoelastic
system [9, 10], and heat conduction engineering [11].
Moreover, many researchers have proposed some efficient
methods to investigate the existence and uniqueness of the
solutions of fractional differential equations [12–18].

Lately, many researchers insinuated some standards to
classify fractional differential operators. The notion of
offering a guideline in a field was satisfactory enough,
although the list of items that were suggested presented a
limitation along with the critics brought up that were not
academically acceptable. As a result of these criticisms,
numerous researchers investigated the list along with their

outcomes rejected the index law; in [19], their outcomes
invalidated that inclusion of index law in the field. In another
research work, the authors did overall investigation of the
diffusive function of some kernel [20] and the outcomes they
presented suggested that only operators with nonindex law
properties can have crossover diffusive behaviors. However,
Caputo and Fabrizio proved that the suggested index law
was not right or it was a restriction to the field, and in their
turn, they offered a list of items to be followed [21]. Further,
they also proved the necessity of nonsingular differential
operators along with their applications to nature applications
to nature. In [22], the authors presented an optimal control
of diffusion using the Atangana–Baleanu fractional differential
operator. They proved that the existence of the solution with
Atangana–Baleanu derivatives was obtained when the frac-
tional order α ∈ 0, 1 , and they also mentioned that the exis-
tence of the solution with Riemann-Liouville and Caputo
was achieved during α ∈ 0,0 5 .

Furthermore, definitions of two well-known fractional
derivatives, namely, Riemann-Liouville and Caputo [23],
included a singular kernel. However, Caputo and Fabrizio
introduced another definition having a nonsingular kernel
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and properties can be found in [24]. Another derivatives
with nonsingular kernel were suggested in [25] which funda-
mentally generalized the Caputo and Fabrizio definition
[26]. However, Riemann-Liouville fractional derivative be
essential in the development of theory of fractional deriva-
tives and integrals. But, this derivative barely able to generate
physical interpretation of the initial conditions that are com-
pulsory for the initial value issues containing fractional dif-
ferential equations and also the boundary value issue both
of the issues can be solved with the Caputo definition of frac-
tional derivative for further details, refer [27]. Another dif-
ference is that the derivative of a constant is not zero for
Riemann-Liouville, but it is equal to zero for Caputo. Addi-
tionally, the Riesz fractional derivatives have some short-
comings, such as it relies upon the values of whole interval
also not sustaining the Leibniz rule for the product of two
functions [28]. Besides, the Caputo fractional definition is
easy to calculate and program. So the Caputo derivative is
chosen in this manuscript.

In this paper, we mainly solve the FVIDE

C
0D

α
t y t +

t

0
Kv t, x y x dx +

b

a
K f t, z y z dz

= g t , 0 ≤ t ≤ T ,
1

where t
0Kv t, x y x dx is the Volterra part, b

aK f t, z y z

dz is the Fredholm part, C0D
α
t y t is the fractional derivative

part, and the fractional derivative is defined as the Caputo
definition as follows:

C
0D

α

t y t = 1
Γ ξ − α

t

0

∂ξy τ

∂τξ
dτ

t − τ α+1−ξ , 2

where Γ · is the Gamma function.
The initial condition of one-dimensional differential

equation is given as

y 0 = A 3

In recent years, many methods are proposed to solve frac-
tional differential equations. In [29], the Bell polynomials are
introduced to solve fractional differential equations based on
matrix and collocation points. In [30], the central difference
and Crank-Nicolson method are used to obtain the full dis-
crete scheme of spatial fractional convection-diffusion equa-
tion; then, the Richardson extrapolation method is used to
further improve the calculation accuracy. In [31, 32], the finite
element method is presented to solve fractional convection-
diffusion equations. In [33–35], the element free Galerkin
method is used to solve fractional differential equations.
Compared with other algorithms, BICM has the advantages
of high precision, easy programming, and simple formula.
Therefore, this method has been applied to solve various
equations, such as heat conduction equation [36], generalized
Poisson equation [37], fractional differential equation [38],
and fractional reaction-diffusion equation [39]. At the same
time, the BICM is also utilized to solve some engineering

problems, such as the plane elasticity problem [40], the bend-
ing problem of elliptic plate [41], and the numerical approxi-
mation of Darcy flow [42].

In this article, BICM is introduced to solve FVIDE. In
Section 2, we provide relevant definitions of barycentric inter-
polation. In Sections 3–5, barycentric interpolation basis func-
tion is applied to approximate the unknown function, and
matrix equations of the fractional derivative part, Volterra
part, and Fredholm part are given. In Section 6, we obtain
the matrix equation of FVIDE, and initial condition is dealt
with by replacement method or additive method. In Section
7, some numerical examples are shown to prove feasibility of
the algorithm.

2. Barycentric Interpolation

In this section, we will introduce barycentric interpolation
for solving one-dimensional differential equation. First,
n + 1 equidistant nodes or Chebyshev’s nodes are chosen as
collocation points on the domain, i.e., (ti), i = 0, 1,⋯, n. The
barycentric interpolation function is defined as

yn t = 〠
n

i=0
Ti t yi, 4

where yi = yn ti and

Ti t = wi/ t − ti
∑n

k=0wk/ t − tk
5

According to different definitions of weight functions wi,
barycentric interpolation can be divided into barycentric ratio-
nal interpolation and barycentric Lagrange interpolation. The
weight functions of barycentric Lagrange interpolation are
defined as

wi =
1

n
j=0,j≠iti − t j

, 6

the weight functions of barycentric rational interpolation are
defined as

wi = 〠
s∈Di

−1 s
s+d

k=s,s≠i

1
ti − tk

,

Di = s i − d ≤ s ≤ i ,

7

where s ∈ 0, 1,⋯,n − d , the parameter d is integer, and
0 ≤ d ≤ n.
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3. Matrix Equation of Fractional
Derivative Part

Fractional terms are dealt with by integration by parts; then,
we get

C
0D

α

t y t = 1
Γ ξ − α

t

0

∂ξy τ

∂τξ
dτ

t − τ α+1−ξ

= 1
Γ ξ + 1 − α

∂ξy 0
∂tξ

tξ−α

+ 1
Γ ξ + 1 − α

t

0

∂ξ+1y τ

∂τξ+1
dτ

t − τ α−ξ

= Γξ
α

∂ξy 0
∂tξ

tξ−α +
t

0

∂ξ+1y τ

∂τξ+1
dτ

t − τ α−ξ
,

8

where Γξ
α = 1/ Γ ξ + 1 − α .

Substituting equation (4) into equation (8), we obtain

C
0D

α

t yn t = Γξ
α 〠

n

i=0
T ξ
i 0 tξ−α yi + Γξ

α 〠
n

i=0

t

0

T ξ+1
i τ

t − τ α−ξ
dτ yi,

9

where

Ti τ = wi/ τ − τi
∑n

k=0wk/ τ − τk
10

Let t = tθ, formula (9) can be expressed as

C
0D

α
tθ
yn tθ = Γξ

α 〠
n

i=0
T ξ
i 0 tξ−αθ yi + Γξ

α 〠
n

i=0

tθ

0

T ξ+1
i τ

tθ − τ α−ξ
dτ yi,

11

where θ = 0, 1,⋯, n
Let us write the integral term of the formula (11) as the

following form:

Pθi = Pi tθ =
tθ

0
T ξ+1
i τ tθ − τ ξ−αdτ,

i = 0, 1,⋯, n
12

Then, we have

C
0D

α

tθ
yn tθ = Γξ

α 〠
n

i=0
T ξ
i 0 tξ−αθ + 〠

n

i=0
Pθi yi 13

The integral term (12) is calculated using the Gauss

quadrature formula with weights ρ τ = tθ − τ ξ−α; we get

PG
θi = 〠

m

j=1
T ξ+1
i τθ,αj Aθ,α

j , 14

where τθ,αj and Aθ,α
j are the Gauss points and Gauss

weights and m is the number of the Gauss points.
Using the Gauss-Legendre quadrature formula, equation

(15) is given as

PGL
θi = tθ

2 〠
m

j=1
f τθ,lj Aθ,l

j , 15

where τθ,lj and Aθ,l
j are integral points and integral

weights, m is the number of the integral points, tθ/2 is trans-
formed coefficient, and f τθ,lj = ρ τθ,lj T ξ+1

i τθ,lj .
Then, the formula (16) with the Gauss quadrature for-

mula is obtained as

C
0D

α
t0
yn t0

⋮
C
0D

α
tn
yn tn

= Γξ
α Tξ,α In+1 ⊗M ξ

1 + In+1 ⊗ P

y0

⋮

yn

,

16

where In+1 is the identity matrix and ⊗ is the Kronecker
product.

Briefly, the formula (16) can be written as

D =DαY , 17

where

Dα = Γξ
α Tξ,α In+1 ⊗M ξ

1 + In+1 ⊗ P ,

Y =
y0

⋮

yn

,

D =

C
0D

α

t0
yn t0

⋮
C
0D

α

tn
yn tn

,

Tξ,α =

tξ−αθ

tξ−αθ

⋱

tξ−αθ N×N

,

P =

P11 P12 ⋯ P1N

P21 P22 ⋯ P2N

⋮ ⋮ ⋱ ⋮

PN1 PN2 ⋯ PNN N×N

,

N = n + 1,

P11 = 〠
m

j=1
T ξ+1
0 τ0,αj A0,α

j ,
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P12 = 〠
m

j=1
T ξ+1
1 τ0,αj A0,α

j ,

P1N = 〠
m

j=1
T ξ+1
n τ0,αj A0,α

j ,

P21 = 〠
m

j=1
T ξ+1
0 τ1,αj A1,α

j ,

P22 = 〠
m

j=1
T ξ+1
1 τ1,αj A1,α

j ,

P2N = 〠
m

i=1
T ξ+1
n τ1,αj A1,α

j ,

PN1 = 〠
m

j=1
T ξ+1
0 τn,αj An,α

j ,

PN2 = 〠
m

j=1
T ξ+1
1 τn,αi An,α

j ,

PNN = 〠
m

j=1
T ξ+1
n τn,αj An,α

j 18

The relations between differential matrices and basis func-
tions are defined as follows:

M h = M h
θi

N×N
= T h

i tθ
N×N

, 19

where N = n + 1 and

M 1
θi =

wi/wθ

tθ − ti
, θ ≠ i,

−〠
i≠θ

M 1
θi , θ = i,

M ξ
θi =

ξ M ξ−1
θθ M 1

θi −
M ξ−1

θi

tθ − ti
, θ ≠ i,

−〠
i≠θ

M ξ
θi , θ = i

20

Hence, we can get

M ξ
1 =

−〠
n

i=1
M ξ

0i M ξ
01 M ξ

02 ⋯ M ξ
0n

−〠
n

i=1
M ξ

0i M ξ
01 M ξ

02 ⋯ M ξ
0n

⋮ ⋮ ⋮ ⋱ ⋮

−〠
n

i=1
M ξ

0i M ξ
01 M ξ

02 ⋯ M ξ
0n

N×N
21

4. Matrix Equation of the Volterra Part

The Volterra part is expressed as V t ; equation (22) is
shown as follows:

V t =
t

0
Kv t, x y x dx 22

Substituting equation (4) into equation (22), we obtain

Vn t = 〠
n

i=0

t

0
Kv t, x Ti x dx yi, 23

where Ti x is defined as shown in equation (10).
t is replaced by tθ of formula (23), and we have

Vn tθ = 〠
n

i=0

tθ

0
Kv tθ, x Ti x dx yi, 24

where θ = 0, 1,⋯, n.
Formula (25) is expressed in the following form:

Qθi =Qi tθ =
tθ

0
Kv tθ, x Ti x dx 25

Using the Gauss quadrature formula with weights
β x = Kv tθ, x , we get

QG
θi = 〠

m

j=1
Ti xθj Cθ

j , i = 0, 1,⋯, n, 26

where xθj and Cθ
j are the Gauss points and Gauss

weights and m is the number of the Gauss points.
Formula (25) is calculated by the Gauss-Legendre quad-

rature formula, and we obtain

QGL
θi = tθ

2 〠
m

j=1
q xθ,lj Cθ,l

j , 27

where xθ,lj and Cθ,l
j are integral points and integral weights,

m is the number of the integral points, tθ/2 is transformed

coefficient, and q xθ,lj = β xθ,lj T ξ+1
i xθ,lj .

Combining equation (24), equation (25), and equation
(26), equation (28) is obtained

Vn tθ = 〠
n

i=0
QG

θi yi 28

Let Vi = Vn ti ; formula (29) is obtained as follows:

V =QY , 29
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where

V =
V0

⋮

Vn

,

Y =
y0

⋮

yn

,

Q =

Q11 Q12 ⋯ Q1N

Q21 Q22 ⋯ Q2N

⋮ ⋮ ⋱ ⋮

QN1 QN2 ⋯ QNN N×N

,

N = n + 1,Q11 = 〠
m

j=1
T0 x0j C0

j ,

Q12 = 〠
m

j=1
T1 x0j C0

j ,Q1N = 〠
m

j=1
Tn x0j C0

j ,

Q21 = 〠
m

j=1
T0 x1j C1

j ,Q22 = 〠
m

j=1
T1 x1j C1

j ,

Q2N = 〠
m

i=1
Tn x1j C1

j ,QN1 = 〠
m

j=1
T0 xnj Cn

j ,

QN2 = 〠
m

j=1
T1 xni Cn

j ,QNN = 〠
m

j=1
Tn xnj Cn

j

30

5. Matrix Equation of the Fredholm Part

The Fredholm part is expressed as the following form:

I t =
b

a
K f t, z y z dx 31

Substituting equation (4) into equation (31), we obtain

In t = 〠
n

i=0

b

a
K f t, z Ti z dx yi, 32

where the definition of Ti z is as shown in equation (10).
Let t = tθ, θ = i = 0, 1,⋯, n; we have

In tθ = 〠
n

i=0

b

a
K f tθ, z Ti z dz yi 33

Equation (34) is written as follows:

Rθi = Ri tθ =
b

a
K f tθ, z Ti z dz 34

Formula (34) is calculated by the Gauss quadrature for-
mula with weights η z = K f tθ, z ; we have

RG
θi = 〠

m

j=1
Ti zθj Bθ

j , i = 0, 1,⋯, n, 35

where zθj and Bθ
j are the Gauss points and Gauss weights and

m is the number of the Gauss points.
Using the Gauss-Legendre quadrature formula, we

obtain

RGL
θi = b − a

2 〠
m

j=1
r zθ,lj Bθ,l

j , 36

where zθ,lj and Bθ,l
j are integral points and integral weights, m

is the number of the integral points, b − a /2 is transformed

coefficient, and r zθ,lj = η zθ,lj T ξ+1
i zθ,lj .

Formula (33) is calculated by the Gauss quadrature for-
mula; equation (37) is written as follows:

In tθ = 〠
n

i=0
RG
θi yi 37

Let Ii = In ti ; formula (38) is obtained

I = RY , 38

where

I =
I0

⋮

In

,

Y =
y0

⋮

yn

,

R =

R11 R12 ⋯ R1N

R21 R22 ⋯ R2N

⋮ ⋮ ⋱ ⋮

RN1 RN2 ⋯ RNN N×N

,

N = n + 1, R11 = 〠
m

j=1
T0 z0j B0

j ,

R12 = 〠
m

j=1
T1 z0j B0

j , R1N = 〠
m

j=1
Tn z0j B0

j ,

R21 = 〠
m

j=1
T0 z1j B1

j , R22 = 〠
m

j=1
T1 z1j B1

j ,

R2N = 〠
m

i=1
Tn z1j B1

j , RN1 = 〠
m

j=1
T0 znj Bn

j ,
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RN2 = 〠
m

j=1
T1 zni Bn

j , RNN = 〠
m

j=1
Tn znj Bn

j 39

6. Matrix Equation for FVIDE

Equation (1) is treated by integration by parts; then, we get

Γξ
α

∂ξy 0
∂tξ

tξ−α +
t

0

∂ξ+1y τ

∂τξ+1
dτ

t − τ α−ξ

+
t

0
Kv t, x y x dx +

b

a
K f t, z y z dz = g t

40

Substituting equation (4) into equation (40), equation
(41) is obtained

Γξ
α 〠

n

i=0
T ξ
i 0 tξ−α + 〠

n

i=0

t

0

T ξ+1
i τ

t − τ α−ξ
dτ yi

+ 〠
n

i=0

t

0
Kv t, x Ti x dx yi

+ 〠
n

i=0

b

a
K f t, z Ti z dz yi = g t

41

Taking t = tθ, θ = 0, 1,⋯, n, we get

Γξ
α 〠

n

i=0
T ξ
i 0 tξ−αθ + 〠

n

i=0

tθ

0

T ξ+1
i τ

tθ − τ α−ξ
dτ yi

+ 〠
n

i=0

tθ

0
Kv tθ, x Ti x dx yi

+ 〠
n

i=0

b

a
K f tθ, z Ti z dz yi = g tθ

42

Let gi = g ti ; combining (17), (29), and (38), we obtain
the matrix equation as follows:

LY = G, 43

where

G =
g0

⋮

gn

,

L =Dα +Q + R

44

The initial conditions are imposed by replacementmethod
and additive method. When the replacement method is used
to impose initial conditions, the 1st row element of matrix
In+1 is extracted to replace the corresponding row element of
matrix L in the system (43). When the additive method is used
to impose initial conditions, the 1st row element of matrix
In+1 is extracted and then added to the n + 2 row of matrix
L in the system (43).

7. Numerical Experiments

In this section, several numerical examples are given to illus-
trate the accuracy of BICM. All of numerical examples have
been performed on MATLAB (version: R2020a). The error
function is defined as

en t = yn t − y t , 45

where yn t and y t are approximate solution and exact
solution of numerical examples.

Example 1. Consider the linear fractional Volterra integro-
differential equation with the initial condition y 0 = 0.

D0 75y t + ett2

5 y t −
t

0
etxy x dx = 6t2 25

Γ 3 25 , 46

where 0 ≤ t ≤ 1. The analytical solution is y t = t3.

Table 1: Errors of equidistant nodes for barycentric Lagrange
interpolation with m = 6 for Example 1.

ti n, α = 5,0 75 n, α = 10,0 75 n, α = 20,0 75
0 6.7117e-16 1.7418e-15 5.5914e-13

0.2 1.4468e-15 2.0154e-13 2.9617e-08

0.4 1.6376e-15 1.6798e-13 2.3200e-08

0.6 1.8041e-15 1.5907e-13 5.5773e-08

0.8 2.1094e-15 1.5510e-13 4.7605e-07

1 2.2204e-15 1.9784e-13 1.3536e-06

Table 2: Errors of equidistant nodes for barycentric rational
interpolation with m = 6 and d = 3 for Example 1.

ti n, α = 5,0 75 n, α = 10,0 75 n, α = 20,0 75
0 2.6439e-16 4.0324e-16 1.0279e-15

0.2 1.3184e-16 1.0807e-15 2.5535e-15

0.4 6.1062e-16 1.4572e-15 2.8449e-15

0.6 8.3267e-16 1.8041e-15 3.2474e-15

0.8 9.9920e-16 2.9976e-15 1.9762e-14

1 8.8818e-16 8.8818e-16 2.4070e-13

Table 3: Errors of equidistant nodes for barycentric Lagrange
interpolation using the Gauss-Legendre quadrature formula with
m = 6 for Example 1.

ti n, α = 5,0 75 n, α = 10,0 75 n, α = 20,0 75
0 7.6617e-17 1.7422e-15 7.1349e-14

0.2 2.0293e-05 2.0293e-05 2.0288e-05

0.4 1.6234e-04 1.6234e-04 1.6234e-04

0.6 5.4791e-04 5.4791e-04 5.4793e-04

0.8 1.2988e-03 1.2988e-03 1.2989e-03

1 2.5366e-03 2.5366e-03 2.5369e-03
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In Tables 1 and 2, the errors of the Gauss quadrature
formula are shown for n = 5,10,20 at m = 6. From Tables 1
and 2, we know that barycentric Lagrange interpolation
and barycentric rational interpolation both get high error

accuracy when t = 0,0 2,0 4,0 6,0 8,1. In Table 3, the errors
of barycentric Lagrange interpolation with the Gauss-
Legendre quadrature formula are shown. In Tables 1–3,
initial conditions are imposed by replacement method. From
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Figure 1: yn t and y t of barycentric Lagrange interpolation using the Gauss quadrature formula with m = 3 at n = 5 for Example 1.
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Figure 2: Errors of barycentric Lagrange interpolation using the Gauss quadrature formula with different Gauss points at n = 5 for
Example 1.
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Tables 1 and 3, we know that error precision of barycentric
Lagrange interpolation with the Gauss quadrature formula
is higher than the Gauss-Legendre quadrature formula.

In Figure 1, approximate solution yn t and exact solu-
tion y t are given for barycentric Lagrange interpolation
using the Gauss quadrature formula with m = 3 at n = 5.
Figure 2 shows errors of equidistant nodes for barycentric
Lagrange interpolation using the Gauss quadrature formula
with different Gauss points m. From Figures 1 and 2, we
can see that higher error precision is attained when the lesser
equidistant nodes are used.

Example 2. Consider the linear fractional Fredholm-Volterra
integro-differential equation with the initial condition y 0 = 1.

D0 75y t + ett2

5 y t −
t

0
etxy x dx −

1

0
t − x y x dx

= 6t2 25

Γ 3 25 −
t
4 + 1

5 , 0 ≤ t ≤ 1
47

The analytical solution is y t = t3.
In Tables 4–6, the errors of the Gauss quadrature

formula are up to machine accuracy. In Tables 4 and 5, the
initial conditions are imposed by replacement method. From

Tables 4 and 6, we can find that replacement method or
additive method can get high error precision.

In Figure 3, we can see that approximate solution yn t
and exact solution y t basically coincide. In Figure 4, errors
of equidistant nodes are shown for barycentric Lagrange
interpolation using the Gauss quadrature formula with dif-
ferent Gauss points m = 3, 5, 10 at n = 5.

Example 3. Consider the linear fractional Volterra integro-
differential equation with the initial condition y 0 = 1.

D0 75y t + ty t −
t

0
txy x dx = t0 25

Γ 1 25

−
t4

3 −
t3

2 − t2 − t, 0 ≤ t ≤ 1
48

The analytical solution is y t = t + 1.
Tables 7 and 8 show the errors of the Gauss quadrature

formula for different m with replacement method. From
these tables, BICM can obtain higher error accuracy with
fewer interpolation nodes.

In Figure 5, approximate solution yn t and exact solu-
tion y t are given with equidistant nodes. In Figure 6, errors
of barycentric Lagrange interpolation are shown with differ-
ent Gauss points m. From Figures 5 and 6, we know that

Table 4: Errors of equidistant nodes for barycentric Lagrange interpolation with n = 5 for Example 2.

ti m, α = 3,0 75 m, α = 5,0 75 m, α = 10,0 75
0 5.5339e-16 3.5112e-16 1.9950e-16

0.2 3.1745e-16 3.1745e-16 2.9317e-16

0.4 7.0777e-16 9.7145e-17 5.9674e-16

0.6 8.8818e-16 2.7756e-17 8.3267e-16

0.8 1.2212e-15 0 7.7716e-16

1 1.2212e-15 2.2204e-16 3.3307e-16

Table 5: Errors of equidistant nodes for barycentric rational interpolation with n = 5 and d = 3 for Example 2.

ti m, α = 3,0 75 m, α = 5,0 75 m, α = 10,0 75
0 7.8913e-17 3.4635e-16 3.4501e-16

0.2 3.4348e-16 6.1409e-16 6.3144e-16

0.4 1.3878e-17 4.8572e-16 4.5797e-16

0.6 1.3878e-16 4.1633e-16 5.5511e-16

0.8 2.2204e-16 3.3307e-16 2.2204e-16

1 0 1.1102e-15 6.6613e-16

Table 6: Errors of equidistant nodes for barycentric Lagrange interpolation using the additive method with n = 5 for Example 2.

ti m, α = 3,0 75 m, α = 5,0 75 m, α = 10,0 75
0 2.8897e-16 7.1029e-16 7.1941e-16

0.2 6.5399e-16 2.9317e-16 1.1293e-15

0.4 9.0206e-16 4.9960e-16 1.3600e-15

0.6 1.0825e-15 5.8287e-16 1.4433e-15

0.8 1.7764e-15 8.8818e-16 1.6653e-15

1 1.7764e-15 5.5511e-16 1.4433e-15
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Figure 3: yn t and y t of barycentric Lagrange interpolation using the Gauss quadrature formula with m = 3 at n = 5 for Example 2.
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Figure 4: Errors of barycentric Lagrange interpolation using the Gauss quadrature formula with different Gauss points at n = 5 for Example 2.
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error accuracy of Barycentric Lagrange interpolation collo-
cation method can achieve machine accuracy.

Example 4. Consider the linear fractional Volterra integro-
differential equation with the initial condition y 0 = 0.

D0 75y t + y t − 2
t

0
sin x − t y x dx

= 4
Γ 0 25 t0 25 −

t

0
sin τ t − τ 0 25dτ − t cos t ,

49

where 0 ≤ t ≤ 1; the analytical solution is y t = sin t .
Table 9 shows the errors of the Gauss quadrature for-

mula for the Gauss points m with barycentric Lagrange
interpolation. In Table 10, taking the parameter d = 9 of
barycentric rational interpolation, we get the errors of BICM

Table 7: Errors of equidistant nodes for barycentric Lagrange interpolation with n = 5 for Example 3.

ti m, α = 3,0 75 m, α = 5,0 75 m, α = 10,0 75
0 8.8818e-16 1.3323e-15 1.1102e-16

0.2 5.5511e-15 4.8850e-15 5.1070e-15

0.4 5.9952e-15 0 2.6645e-15

0.6 8.8818e-15 8.8818e-16 1.1102e-15

0.8 1.1546e-14 2.2204e-16 3.1086e-15

1 1.4211e-14 3.9968e-15 1.1546e-14

Table 8: Errors of equidistant nodes for barycentric rational interpolation with n = 5 and d = 3 for Example 3.

ti m, α = 3,0 75 m, α = 5,0 75 m, α = 10,0 75
0 2.2204e-16 1.1102e-16 7.7716e-16

0.2 0 1.7764e-15 6.6613e-16

0.4 2.2204e-16 2.2204e-16 1.7764e-15

0.6 4.4409e-16 1.9984e-15 4.4409e-15

0.8 1.9984e-15 3.1086e-15 4.4409e-15

1 1.3323e-15 6.6613e-16 5.3291e-15
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Figure 5: yn t and y t of barycentric Lagrange interpolation using the Gauss quadrature formula with m = 3 at n = 5 for Example 3.
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with equidistant nodes for different Gauss pointsm. Tables 9
and 10 also show the better error results.

In Figure 7, approximate solution yn t and exact solu-
tion y t of the example are given at n = 10. In Figure 8,

errors for barycentric Lagrange interpolation are shown with
different Gauss points at n = 10. From Figures 7 and 8, bary-
centric Lagrange interpolation collocation method can get
high error accuracy.
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m = 3
m = 5
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×10−14

Figure 6: Errors of barycentric Lagrange interpolation using the Gauss quadrature formula with different Gauss points at n = 5 for
Example 3.

Table 9: Errors of equidistant nodes for barycentric Lagrange interpolation with n = 10 for Example 4.

ti m, α = 3,0 75 m, α = 5,0 75 m, α = 10,0 75
0 2.7467e-15 1.0670e-14 2.3967e-14

0.2 5.3985e-13 9.6498e-13 1.1939e-12

0.4 7.5476e-12 1.0544e-12 1.3185e-12

0.6 2.3869e-10 1.1452e-12 1.4382e-12

0.8 2.7404e-09 1.1894e-12 1.4846e-12

1 1.7312e-08 1.0930e-12 1.4452e-12

Table 10: Errors of equidistant nodes for barycentric rational interpolation with n = 10 and d = 9 for Example 4.

ti m, α = 3,0 75 m, α = 5,0 75 m, α = 10,0 75
0 6.2870e-15 9.3112e-15 1.8457e-14

0.2 1.0277e-12 8.2812e-13 1.1412e-12

0.4 7.9721e-12 8.8335e-13 1.2341e-12

0.6 2.3779e-10 9.2648e-13 1.3328e-12

0.8 2.7337e-09 9.2382e-13 1.3728e-12

1 1.7293e-08 8.2778e-13 1.3872e-12
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Figure 7: yn t and y t of barycentric Lagrange interpolation using the Gauss quadrature formula with m = 3 at n = 10 for Example 4.
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Example 4.
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8. Conclusion

BICM is proposed to solve the FVIDE. Integral terms of
equation are dealt with by the Gauss quadrature formula or
Gauss-Legendre quadrature formula. Compared with the
Gauss-Legendre quadrature formula, barycentric Lagrange
interpolation with the Gauss quadrature formula obtains
higher error accuracy. The high-precise error results are gained
when replacementmethod or additivemethod is chosen to deal
with initial conditions. The errors of BICM are displayed by
numerical examples, which illustrate that the method is
available for solving one-dimensional FVIDE equation.
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This paper derives some equalities via twice differentiable functions and conformable fractional integrals. With the help of the
obtained identities, we present new trapezoid-type and midpoint-type inequalities via convex functions in the context of the
conformable fractional integrals. New inequalities are obtained by taking advantage of the convexity property, power mean
inequality, and Hölder’s inequality. We show that this new family of inequalities generalizes some previous research studies by
special choices. Furthermore, new other relevant results with trapezoid-type and midpoint-type inequalities are obtained.

1. Introduction

Fractional calculus and the theory of inequalities, which
have recently received a lot of attention, have been the sub-
ject of many investigations in the mathematics. Mathemati-
cal modeling is one of the most important fields of this
theory in which fractional operators are defined to design
different fractional differential equations for describing the
phenomena. For instance, one can mention to the third-
order BVP with multistrip multipoint conditions [1], hybrid
version and the Hilfer type of thermostat model [2, 3], frac-
tional HIV model with the Mittag-Leffler-type kernel [4],
mathematical fractional model of Q fever [5], fractional
dynamics of mumps virus [6], fractional p-Laplacian equa-

tions [7], fractal-fractional version of AH1N1/09 virus along
with the fractional Caputo-type version [8], etc.

In the last century, the Hermite–Hadamard inequality
along with the midpoint and trapezoidal inequalities arising
from this inequality has attracted many researchers. In addi-
tion, RL-fractional (Riemann-Liouville) integrals, conform-
able integrals, and many types of such integrals have been
defined in these inequalities and have gained an important
place in the literature.

More precisely, fractional calculus is a big part of math-
ematics in which the mathematicians develop and extend the
existing classical ideas of integration and differentiation
operators to noninteger orders. Recently, it has received
the attention of many researchers from different areas like
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mathematicians, physicists, and engineers [9, 10]. For exam-
ple, if we consider a fluid-dynamic traffic model, then we see
that one can simulate the irregular oscillation of earthquakes
via fractional derivatives. These operators are also utilized
for modeling a main part of chemical and physical processes,
biological processes, and engineering problems. For
instance, biological population model [11], electrical circuits
[12], viscous fluid and their semianalytical solutions [13],
fractional gas dynamics [14], and fractal modeling of traffic
flow [15] are applied examples of the application of frac-
tional operators. Further, it is stated that fractional systems
provide some numerical outcomes that are more appropriate
than those given by integer-order systems [16, 17].

New investigations have developed a category of frac-
tional integration operators and their application in various
scientific fields. Using only the idea of the fundamental limit
formulation for derivatives, a novel well-behaved fractional
derivative was defined, entitled as the conformable deriva-
tive, by Khalil et al. in [18]. Some applied properties that
cannot be derived by the Riemann-Liouville and Caputo
operators are obtained by the conformable derivative. How-
ever, in [19], Abdelhakim stated that the conformable struc-
ture in [18] cannot yield acceptable data compared to the
Caputo idea for special functions. This flaw in the conform-
able definition was overcome by giving several extensions of
the conformable operators [20, 21]. Moreover, with the help
of the well-known exponential and Mittag-Leffler functions
and using them in the kernels, several researchers defined
newly expanded fractional operators such as exponential
discrete kernel-type operators [22], fractal-fractional opera-
tors [23], and some other derivatives [24, 25].

Inequalities are one of the important topics of mathe-
matics, and in this field, convex functions and their general-
izations play an important role. In [26–28], the authors
focused on Hermite–Hadamard inequalities by using the
majorization and some properties of convex functions. Later,
some other researchers combined these notions with mono-
city and boundedness [29–31]. Over the years, many math-
ematicians have concentrated on acquired trapezoidal and
midpoint-type inequalities that yield specific bounds via
the R.H.S. and L.H.S. of the Hermite–Hadamard inequality,
respectively. For instance, at first, Dragomir and Agarwal
derived trapezoid inequalities in relation to the convex func-
tions in [32], whereas Kirmac derived inequalities of mid-
point type with the help of the convex functions in [33]. In
addition, in [34], Qaisar and Hussain established a number
of generalized inequalities of midpoint type. Moreover, Sar-
ikaya et al. and Iqbal et al. derived some fractional trapezoid
and midpoint-type inequalities for a family of the convex
mappings in [35, 36], respectively. In [37, 38], studies
obtained some extensions from midpoint inequalities
involving the Riemann-Liouville operators. In [39], similar
results are derived by Hyder et al. under the generalized
Reimann-Liouville operators.

Researches on the differentiable functions of these
inequalities also have an important place in the literature.
Many researchers have focused on twice differentiable func-
tions to obtain many important inequalities. For example,
Barani et al. proved some inequalities under twice differen-

tiable mappings having the convexity property which is con-
nected to Hadamard-type inequalities in [40, 41]. In [42],
several novel extensions of integral fractional inequalities
of midpoint-trapezoid type for the abovementioned twice
differentiable functions are established. In [43], authors
obtained other class of novel inequalities in the sense of
the Simpson and Hermite–Hadamard for some special func-
tions whose absolute values of derivatives are convex.

The main goal of this paper is to acquire some new
trapezoid-type and midpoint-type inequalities with the help
of the twice differentiable function including conformable
fractional integrals. We also establish that the newly obtained
inequalities are a generalization of the existing trapezoid-type
and midpoint type inequalities. The ideas and strategies for
our results concerning trapezoid type and midpoint-type
inequalities via conformable fractional integrals may open
other directions for more research in this area.

2. Preliminaries

This section discusses the basics for building our main
results. Here, definitions of the Riemann-Liouville integrals
and conformable integrals, which are well known in the lit-
erature, are given. From the fact of fractional calculus theory,
mathematical preliminaries will be given.

For x, y > 0 (real numbers), the famous gamma function
and incomplete beta function are

Γ xð Þ≔
ð∞
0
tx−1e−tdt,

B x, y, rð Þ≔
ðr
0
tx−1 1 − tð Þy−1dt,

ð1Þ

respectively.
In 2006, Kilbas et al. [44] defined fractional integrals,

also called the Riemann-Liouville integrals (RL-integral) as
follows:

Definition 1 (see [44]). For ℏ ∈ L1½ν, ω�, the Riemann-
Liouville integrals Jϰν+ℏðxÞ and Jϰω−ℏðxÞ of order ϰ > 0 are,
respectively, given as

Jϰν+ℏ xð Þ = 1
Γ ϰð Þ

ðx
ν

x − tð Þϰ−1ℏ tð Þdt, x > ν, ð2Þ

Jϰω−ℏ xð Þ = 1
Γ ϰð Þ

ðω
x
t − xð Þϰ−1ℏ tð Þdt, x < ω, ð3Þ

where J0ν+ℏðxÞ = J0ω−ℏðxÞ = ℏðxÞ: By setting ϰ = 1, the
Riemann-Liouville integrals reduce to the classical integrals.

In 2017, Jarad et al. [25] formulated a novel fractional con-
formable integration operators. These researchers gave certain
characteristics for these operators and some other fractional
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operators defined before. The fractional conformable integral
operators are defined in the following definition:

Definition 2 (see [25]). For ℏ ∈ L1½ν, ω�, the fractional con-
formable integral operator ϰJ

μ
ν+ℏðxÞ and ϰJ μ

ω−ℏðxÞ of order
ϰ ∈ C, Re ðϰÞ > 0 and μ ∈ ð0, 1� are, respectively, given by

ϰ
J μ

ν+ℏ xð Þ = 1
Γ ϰð Þ

ðx
ν

x − νð Þμ − t − νð Þμ
μ

� �ϰ−1

Á ℏ tð Þ
t − νð Þ1−μ dt, t > ν,

ð4Þ

ϰ
J μ

ω−ℏ xð Þ = 1
Γ ϰð Þ

ðω
x

ω − xð Þμ − ω − tð Þμ
μ

� �ϰ−1

Á ℏ tð Þ
ω − tð Þ1−μ dt, t < ω:

ð5Þ

It is notable that the fractional integral in (4) coincides
with the fractional RL-integral in (2) when μ = 1. Moreover,
the fractional integral in (5) coincides with the fractional RL-
integral in (3) when μ = 1. For more studies about several
recent results in relation to fractional integral inequalities,
we can mention some versions in the context of the
Caputo-Fabrizio operators [45, 46], proportional generalized
operators [47, 48], some inequalities in the Maxwell fluid
modeling with nonsingular operators [49], conformable
integral inequalities [50], some inequalities based on the
Caputo-type operators [51], the Katugampola-type inequal-
ities [52, 53], and the references cited therein.

3. Trapezoid-Type Inequalities Based on
Conformable Fractional Integrals

In this section, inequalities of trapezoid type are obtained for
twice differentiable functions. We use the conformable frac-
tional integral operators to obtain these inequalities.

To acquire conformable fractional integrals trapezoid-
type inequalities, we consider the following lemma.

Lemma 3. Let ℏ : ½ν, ω�⟶ℝ be a twice differentiable map-
ping on ðν, ωÞ such that ℏ′′ ∈ L1ð½ν, ω�Þ. In this case, the
equality

ℏ νð Þ + ℏ ωð Þ
2

−
2μϰ−1μϰΓ ϰ + 1ð Þ

ω − νð Þμϰ
ϰ
J

μ
ν+ω/2−ℏ νð Þ + ϰ

J
μ
ν+ω/2+ℏ ωð ÞÂ Ã

= ω − νð Þ2μϰ
8

�ð1
0

ðt
0

1
μϰ

−
1 − 1 − sð Þμ

μ

� �ϰ� �
ds

� �

Á ℏ″ 2 − t
2

ν + t
2
ω

� �
dt +

ð1
0

�ðt
0

�
1
μϰ

−
1 − 1 − sð Þμ

μ

� �ϰ�
ds
�
ℏ″ t

2
ν + 2 − t

2
ω

� �
dt
�
,

ð6Þ

holds.

Proof. Employing integration by parts, it yields

I1 =
ð1
0

ðt
0

1
μϰ

−
1 − 1 − sð Þμ

μ

� �ϰ� �
ds

� �
ℏ″ 2 − t

2 ν + t
2ω

� �
dt

= 2
ω − ν

ðt
0

1
μϰ

−
1 − 1 − sð Þμ

μ

� �ϰ� �
ds

� �
ℏ′ 2 − t

2 ν + t
2ω

� �����
1

0

−
2

ω − ν

ð1
0

1
μϰ

−
1 − 1 − tð Þμ

μ

� �ϰ� �
ℏ′ 2 − t

2 ν + t
2ω

� �
dt

= 2
ω − ν

ð1
0

1
μϰ

−
1 − 1 − sð Þμ

μ

� �ϰ� �
ds

� �
ℏ′ ν + ω

2
� �

−
2

ω − ν

(
2

ω − ν

1
μϰ

−
1 − 1 − tð Þμ

μ

� �ϰ� �
ℏ

2 − t
2 ν + t

2ω
� �����

1

0

+ 2ϰ
ω − ν

ð1
0

1 − 1 − tð Þμ
μ

� �ϰ−1
1 − tð Þμ−1ℏ 2 − t

2 ν + t
2ω

� �
dt
)

= 2
ω − ν

ð1
0

1
μϰ

−
1 − 1 − sð Þμ

μ

� �ϰ� �
ds

� �
f ′ ν + ω

2
� �

+ 2
ω − ν

� �2 ℏ νð Þ
μϰ

−
2

ω − ν

� �2 Γ ϰ + 1ð Þ
Γ ϰð Þ

ðν+ω/2
ν

Á 1 − 2/ω − ν ν + ω/2 − xð Þð Þμ
μ

� �ϰ−1

Á 2
ω − ν

ν + ω

2 − x
� �� �μ−1 2

ω − ν
ℏ xð Þdx

= 2
ω − ν

ð1
0

1
μϰ

−
1 − 1 − sð Þμ

μ

� �ϰ
ds

� �
ℏ′ ν + ω

2
� �

+ 2
ω − ν

� �2 ℏ νð Þ
μϰ

−
2

ω − ν

� �2+μϰ Γ ϰ + 1ð Þ
Γ ϰð Þ

Á
ðν+ω/2
ν

ω − ν/2ð Þμ − ν + ω/2 − xð Þμ
μ

� �ϰ−1

Á ℏ xð Þ
ν + ω/2 − xð Þ1−μ ℏ xð Þdx

= 2
ω − ν

ð1
0

1
μϰ

−
1 − 1 − sð Þμ

μ

� �ϰ
ds

� �
ℏ′ ν + ω

2
� �

+ 2
ω − ν

� �2 ℏ νð Þ
μϰ

−
2

ω − ν

� �2+μϰ
Γ ϰ + 1ð ÞϰJ μ

ν+ω/2−ℏ νð Þ:

ð7Þ

Likewise,

I2 =
ð1
0

ðt
0

1
μϰ

−
1 − 1 − sð Þμ

μ

� �ϰ� �
ds

� �
ℏ″ t

2 ν +
2 − t
2 ω

� �
dt

= −
2

ω − ν

ð1
0

1
μϰ

−
1 − 1 − sð Þμ

μ

� �ϰ� �
ds

� �
ℏ′ ν + ω

2
� �

+ 2
ω − ν

� �2 ℏ ωð Þ
μϰ

−
2

ω − ν

� �2+μϰ
Γ ϰ + 1ð ÞϰJ μ

ν+ω/2+ℏ ωð Þ:

ð8Þ
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Then, it follows that

ω − νð Þ2μϰ
8 I1 + I2½ � = ℏ νð Þ + ℏ ωð Þ

2 −
2μϰ−1μϰΓ ϰ + 1ð Þ

ω − νð Þμϰ
Á ϰJ

μ
ν+ω/2−ℏ νð Þ + ϰ

J
μ
ν+ω/2+ℏ ωð ÞÂ Ã

:

ð9Þ

So, the proof is accomplished.

Theorem 4. Consider ℏ : ½ν, ω�⟶ℝ as a twice differentia-
ble mapping on ðν, ωÞ s.t. ℏ″ ∈ L1ð½ν, ω�Þ . If jℏ′′j is convex
on ½ν, ω�, then

ℏ νð Þ + ℏ ωð Þ
2

−
2μϰ−1μϰΓ ϰ + 1ð Þ

ω − νð Þμϰ
ϰ
J

μ
ν+ω/2−ℏ νð Þ + ϰ

J
μ
ν+ω/2+ℏ ωð ÞÂ Ã����

����
≤

ω − νð Þ2μϰ
8

Φ1 μ, ϰð Þ ℏ″ νð Þ�� �� + ℏ′′ ωð Þ�� ��� �
,

ð10Þ

where

Φ1 μ, ϰð Þ =
ð1
0

ðt
0

1
μϰ

−
1 − 1 − sð Þμ

μ

� �ϰ� �
ds

����
����dt

= 1
μϰ

ð1
0
t −

1
μ
B ϰ + 1, 1

μ
, 1 − 1 − tð Þμ

� �����
����dt:

ð11Þ

Proof. Taking the absolute value of both sides of (6), we derive

ℏ νð Þ + ℏ ωð Þ
2 −

2μϰ−1μϰΓ ϰ + 1ð Þ
ω − νð Þμϰ

ϰ
J

μ
ν+ω/2−ℏ νð Þ + ϰ

J
μ
ν+ω/2+ℏ ωð ÞÂ Ã����

����
≤

ω − νð Þ2μϰ
8

�ð1
0

ðt
0

1
μϰ

−
1 − 1 − sð Þμ

μ

� �ϰ� �
ds

����
����

Á ℏ″ 2 − t
2 ν + t

2ω
� �����

����dt +
ð1
0

ðt
0

1
μϰ

−
1 − 1 − sð Þμ

μ

� �ϰ� �
ds

����
����

Á ℏ″ t
2 ν +

2 − t
2 ω

� �����
����dt
�
:

ð12Þ

By using the convexity property of the jℏ″j, we establish

ℏ νð Þ + ℏ ωð Þ
2 −

2μϰ−1μϰΓ ϰ + 1ð Þ
ω − νð Þμϰ

ϰ
J

μ
ν+ω/2−ℏ νð Þ + ϰ

J
μ
ν+ω/2+ℏ ωð ÞÂ Ã����

����
≤

ω − νð Þ2μϰ
8

�ð1
0

ðt
0

1
μϰ

−
1 − 1 − sð Þμ

μ

� �ϰ� �
ds

����
����
� 2 − t

2

Á ℏ′ νð Þ�� �� + t
2 ℏ′ ωð Þ�� ���dt + ð1

0

ðt
0

1
μϰ

−
1 − 1 − sð Þμ

μ

� �ϰ� �
ds

����
����

Á t
2 ℏ′ νð Þ�� �� + 2 − t

2 ℏ′ ωð Þ�� ��� �
dt
�

= ω − νð Þ2μϰ
8

ð1
0

ðt
0

1
μϰ

−
1 − 1 − sð Þμ

μ

� �ϰ� �
ds

����
����dt

� �

Á ℏ′ νð Þ�� �� + ℏ′ ωð Þ�� ��� �
:

ð13Þ

The proof is ended.

Remark 5. In Theorem 11, we have the inequalities as follows:

(i) If we set μ = 1 in (10), then Theorem 4 leads to [42],
Corollary 7.

(ii) If we take μ = 1 and ϰ = 1 in (10), then Theorem 4
leads to [43], Proposition 2.

Theorem 6. Assume that ℏ : ½ν, ω�⟶ℝ is a twice differen-
tiable function on ðν, ωÞ s.t. ℏ′′ ∈ Lpð½ν, ω�Þ with ν < ω. Let

jℏ′′jq be convex on ½ν, ω� with q > 1. Then, the inequality

ℏ νð Þ + ℏ ωð Þ
2

−
2μϰ−1μϰΓ ϰ + 1ð Þ

ω − νð Þμϰ
ϰ
J

μ
ν+ω/2−ℏ νð Þ + ϰ

J
μ
ν+ω/2+ℏ ωð ÞÂ Ã����

����
≤

ω − νð Þ2μϰ
8

Θϰ
μ pð Þ

"
3 ℏ″ νð Þ�� ��q + ℏ″ ωð Þ�� ��q

4

 !1/q

+ ℏ″ νð Þ�� ��q + 3 ℏ″ ωð Þ�� ��q
4

 !1/q#

≤
ω − νð Þ2μϰ
23−2/p

Θϰ
μ pð Þ ℏ″ νð Þ�� ��q + ℏ″ ωð Þ�� ��qh i

,

ð14Þ

holds, where 1/q + 1/p = 1 and

Θϰ
μ pð Þ =

ð1
0

ðt
0

1
μϰ

−
1 − 1 − sð Þμ

μ

� �ϰ� �
ds

����
����
p

dt

 !1/q

: ð15Þ

Proof. By employing the Hölder inequality on (12), we have

ℏ νð Þ + ℏ ωð Þ
2 −

2μϰ−1μϰΓ ϰ + 1ð Þ
ω − νð Þμϰ

ϰ
J

μ
ν+ω/2−ℏ νð Þ + ϰ

J
μ
ν+ω/2+ℏ ωð ÞÂ Ã����

����
≤

ω − νð Þ2μϰ
8

" ð1
0

ðt
0

1
μϰ

−
1 − 1 − sð Þμ

μ

� �ϰ� �
ds

����
����
p

dt
 !1/p

Á
ð1
0
ℏ″ 2 − t

2 ν + t
2ω

� �����
����
q

dt
� �1/q

+
ð1
0

ðt
0

1
μϰ

−
1 − 1 − sð Þμ

μ

� �ϰ� �
ds

����
����
p

dt
 !1/p

Á
ð1
0
ℏ″ t

2 ν +
2 − t
2 ω

� �����
����
q

dt
� �1/q#

:

ð16Þ

For the sake of the convexity of jℏ′′jq on ½ν, ω�, we get
ð1
0
ℏ″ 2 − t

2 ν + t
2ω

� �����
����
q

dt

≤
ð1
0

2 − t
2 ℏ″ νð Þ�� ��q + t

2 ℏ″ ωð Þ�� ��q� �
dt

= 3 ℏ″ νð Þ�� ��q + ℏ″ ωð Þ�� ��q
4 ,

ð17Þ
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and similarly

ð1
0
ℏ″ t

2 ν +
2 − t
2 ω

� �����
����
q

dt ≤ ℏ″ νð Þ�� ��q + 3 ℏ″ ωð Þ�� ��q
4 : ð18Þ

If we substitute the inequalities (17) and (18) in (16), the
first inequality of (14) will be established.

The next inequality is derived directly if we let ϖ1 = 3
jℏ′′ðνÞjq,ρ1 = jℏ′′ðωÞjq,ϖ2 = jℏ′′ðνÞjq, and ρ2 = 3jℏ′′ðωÞjq
and apply the inequality

〠
n

k=1
ϖk + ρkð Þs ≤ 〠

n

k=1
ϖs
k + 〠

n

k=1
ρsk, 0 ≤ s < 1: ð19Þ

Thus, our deduction is ended.

Corollary 7. In Theorem 6, we have the inequalities as
follows:

(i) If we set μ = 1 in Theorem 6, we derive

ℏ νð Þ + ℏ ωð Þ
2

−
2ϰ−1Γ ϰ + 1ð Þ

ω − νð Þϰ Jϰν+ω/2−ℏ νð Þ + Jϰν+ω/2+ℏ ωð Þ½ �
����

����
≤

ω − νð Þ2
8

1
p + 1

−
1

ϰ + 1ð Þp ϰp + p + 1ð Þ
� �

×
"

3 ℏ″ νð Þ�� ��q + ℏ″ ωð Þ�� ��q
4

 !1/q

+ ℏ″ νð Þ�� ��q + 3 ℏ″ ωð Þ�� ��q
4

 !1/q#

≤
ω − νð Þ2
23−2/p

1
p + 1

−
1

ϰ + 1ð Þp ϰp + p + 1ð Þ
� �

Á ℏ″ νð Þ�� ��q + ℏ″ ωð Þ�� ��qh i
:

ð20Þ

Proof. For the proof, it will be sufficient to write down the
solution of the integral below.

Θϰ
μ pð Þ =Θϰ

1 pð Þ =
ð1
0

ðt
0
1 − sϰð Þds

����
����
p

dt
� �1/p

=
ð1
0
t −

tϰ+1

ϰ + 1

����
����
p

dt
 !1/p

:

ð21Þ

Under conditions A > B > 0 and p > 1, the inequality

A − Bj jp ≤ Ap − Bp ð22Þ

is satisfied.

From the inequality (22), A = t and B = tϰ+1/ϰ + 1, we
have

Θϰ
1 pð Þ ≤

ð1
0
tpdt −

ð1
0

tϰ+1

ϰ + 1

� �p

dt
 !1/p

= 1
p + 1 −

1
ϰ + 1ð Þp ϰp + p + 1ð Þ

� �1/p
:

ð23Þ

When the solution of Θϰ
μðpÞ is substituted for (14), the

proof is clear.

(ii) If we take μ = 1 and ϰ = 1 in Theorem 6, then

ℏ νð Þ + ℏ ωð Þ
2 −

1
ω − νð Þ

ðω
ν

ℏ xð Þdx
����

����
≤

ω − νð Þ2
8

1
p + 1 −

1
2p 2p + 1ð Þ

� �

Á
"

3 ℏ″ νð Þ�� ��q + ℏ″ ωð Þ�� ��q
4

 !1/q

+ ℏ″ νð Þ�� ��q + 3 ℏ″ ωð Þ�� ��q
4

 !1/q#

≤
ω − νð Þ2
23−2/p

1
p + 1 −

1
2p 2p + 1ð Þ

� �

Á ℏ″ νð Þ�� ��q + ℏ″ ωð Þ�� ��qh i
:

ð24Þ

Theorem 8. Consider ℏ : ½ν, ω�⟶ℝ as a twice differentia-
ble mapping on ðν, ωÞ s.t. ℏ″ ∈ Lqð½ν, ω�Þ. Assume that

jℏ′′jq admits the convexity property on ½ν, ω� with q ≥ 1.
Then,

ℏ νð Þ + ℏ ωð Þ
2

−
2μϰ−1μϰΓ ϰ + 1ð Þ

ω − νð Þμϰ
ϰ
J

μ
ν+ω/2−ℏ νð Þ + ϰ

J
μ
ν+ω/2+ℏ ωð ÞÂ Ã����

����
≤

ω − νð Þ2μϰ
8

Φ1 μ, ϰð Þð Þ1−1/q ×
"�

2Φ1 μ, ϰð Þ −Φ2 μ, ϰð Þð Þ
2

Á ℏ″ νð Þ�� ��q + Φ2 μ, ϰð Þ
2

ℏ″ ωð Þ�� ��q�1/q
+
�
Φ2 μ, ϰð Þ

2

Á ℏ″ νð Þ�� ��q + 2Φ1 μ, ϰð Þ −Φ2 μ, ϰð Þð Þ
2

ℏ″ ωð Þ�� ��q�1/q#
,

ð25Þ

holds, where

Φ2 μ, ϰð Þ =
ð1
0
t
ðt
0

1
μϰ

−
1 − 1 − sð Þμ

μ

� �ϰ� �
ds

����
����dt

= 1
μϰ

ð1
0
t t −

1
μ
B ϰ + 1, 1

μ
, 1 − 1 − tð Þμ

� �����
����dt:

ð26Þ
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Proof. By employing the power-mean inequality in (12), we
have

ℏ νð Þ + ℏ ωð Þ
2 −

2μϰ−1μϰΓ ϰ + 1ð Þ
ω − νð Þμϰ

ϰ
J

μ
ν+ω/2−ℏ νð Þ + ϰ

J
μ
ν+ω/2+ℏ ωð ÞÂ Ã����

����
≤

ω − νð Þ2μϰ
8

" ð1
0

ðt
0

1
μϰ

−
1 − 1 − sð Þμ

μ

� �ϰ� �
ds

����
����dt

� �1−1/q

×
�ð1

0

ðt
0

1
μϰ

−
1 − 1 − sð Þμ

μ

� �ϰ� �
ds

����
����

Á ℏ″ 2 − t
2 ν + t

2ω
� �����

����
q

dt
�1/q

+
ð1
0

ðt
0

1
μϰ

−
1 − 1 − sð Þμ

μ

� �ϰ� �
ds

����
����dt

� �1−1/q

×
�ð1

0

ðt
0

1
μϰ

−
1 − 1 − sð Þμ

μ

� �ϰ� �
ds

����
����

Á ℏ″ t
2 ν +

2 − t
2 ω

� �����
����
q

dt
�1/q#

:

ð27Þ

We know that jℏ′jq is convex. Thus,

ð1
0

ðt
0

1
μϰ

−
1 − 1 − sð Þμ

μ

� �ϰ� �
ds

����
���� ℏ″ 2 − t

2 ν + t
2ω

� �����
����
q

dt

≤
ð1
0

ðt
0

1
μϰ

−
1 − 1 − sð Þμ

μ

� �ϰ� �
ds

����
����

Á 2 − t
2 ℏ″ νð Þ�� ��q + t

2 ℏ″ ωð Þ�� ��q� �
dt

= 2Φ1 μ, ϰð Þ −Φ2 μ, ϰð Þð Þ
2 ℏ″ νð Þ�� ��q

+ Φ2 μ, ϰð Þ
2 ℏ″ ωð Þ�� ��q,

ð28Þ

and similarly

ð1
0

ðt
0

1
μϰ

−
1 − 1 − sð Þμ

μ

� �ϰ� �
ds

����
���� ℏ″ t

2 ν +
2 − t
2 ω

� �����
����
q

dt

≤
Φ2 μ, ϰð Þ

2 ℏ″ νð Þ�� ��q + 2Φ1 μ, ϰð Þ −Φ2 μ, ϰð Þð Þ
2 ℏ″ ωð Þ�� ��q:

ð29Þ

Substituting the inequalities (28) and (29) in (27), we
derive the desired result.

Corollary 9. In Theorem 8, we have the inequalities as
follows:

(i) By choosing μ = 1 in Theorem 8, we derive

ℏ νð Þ + ℏ ωð Þ
2

−
2ϰ−1Γ ϰ + 1ð Þ

ω − νð Þϰ Jϰν+ω/2−ℏ νð Þ + Jϰν+ω/2+ℏ ωð Þ½ �
����

����
≤

ω − νð Þ2
8

1
2
−

1
ϰ + 1ð Þ ϰ + 2ð Þ

� �1−1/q

×
"�

1
3
−

ϰ + 4
2 ϰ + 1ð Þ ϰ + 2ð Þ ϰ + 3ð Þ

� �
ℏ″ νð Þ�� ��q

+ 1
6
−

1
2 ϰ + 1ð Þ ϰ + 3ð Þ

� �
ℏ″ ωð Þ�� ��q�1/q

+
�

1
6
−

1
2 ϰ + 1ð Þ ϰ + 3ð Þ

� �
ℏ″ νð Þ�� ��q

+ 1
3
−

ϰ + 4
2 ϰ + 1ð Þ ϰ + 2ð Þ ϰ + 3ð Þ

� �
ℏ″ ωð Þ�� ��q�1/q#

:

ð30Þ

(ii) If we take μ = 1 and ϰ = 1 in Theorem 8, we derive

ℏ νð Þ + ℏ ωð Þ
2

−
1

ω − νð Þ
ðω
ν

ℏ xð Þdx
����

����
≤

ω − νð Þ2
24

"
11
16

ℏ″ νð Þ�� ��q + 5
16

ℏ″ ωð Þ�� ��q� �1/q

+ 5
16

ℏ″ νð Þ�� ��q + 11
16

ℏ″ ωð Þ�� ��q� �1/q
#
:

ð31Þ

4. Midpoint-Type Inequalities Based on
Conformable Fractional Integrals

In this section, midpoint-type inequalities are created for
twice differentiable functions with the help of conformable
fractional integrals. To formulate these inequalities, let us
first set up the following identity.

Lemma 10. Let ℏ : ½ν, ω�⟶ℝ be a twice differentiable map
on ðν, ωÞ with ℏ′′ ∈ L1ð½ν, ω�Þ. Then, the equality

2μϰ−1μϰΓ ϰ + 1ð Þ
ω − νð Þμϰ

ϰJ
μ
ν+ω/2+ℏ ωð Þ + ϰJ

μ
ν+ω/2−ℏ νð ÞÂ Ã

− ℏ
ν + ω

2

� �

= ω − νð Þ2μϰ
8

�ð1
0

ðt
0

1 − 1 − sð Þμ
μ

� �ϰ
ds

� �
ℏ″ 2 − t

2
ν + t

2
ω

� �
dt

+
ð1
0

ðt
0

1 − 1 − sð Þμ
μ

� �ϰ
ds

� �
ℏ″ t

2
ν + 2 − t

2
ω

� �
dt
�

ð32Þ

is valid.
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Proof. With the help of the integration by parts

I3 =
ð1
0

ðt
0

1 − 1 − sð Þμ
μ

� �ϰ
ds

� �
ℏ″ 2 − t

2 ν + t
2ω

� �
dt

= 2
ω − ν

ðt
0

1 − 1 − sð Þμ
μ

� �ϰ
ds

� �
ℏ′ 2 − t

2 ν + t
2ω

� �����
1

0

−
2

ω − ν

ð1
0

1 − 1 − tð Þμ
μ

� �ϰ
ℏ′ 2 − t

2 ν + t
2ω

� �
dt

= 2
ω − ν

ðt
0

1 − 1 − sð Þμ
μ

� �ϰ
ds

� �
ℏ′ ν + ω

2
� �

−
2

ω − ν

2
ω − ν

1 − 1 − tð Þμ
μ

� �ϰ

ℏ
2 − t
2 ν + t

2ω
� �����

1

0

(

−
2ϰ

ω − ν

ð1
0

1 − 1 − tð Þμ
μ

� �ϰ−1
1 − tð Þμ−1dt:

ð33Þ

By using variable change, equality is obtained as follows:

I3 =
2

ω − ν

ð1
0

1 − 1 − sð Þμ
μ

� �ϰ
ds

� �
ℏ′ ν + ω

2
� �

−
2

ω − ν

� �2 1
μϰ

ℏ
ν + ω

2
� �

+ 2
ω − ν

� �2+μϰ Γ ϰ + 1ð Þ
Γ ϰð Þ

ðν+ω/2
ν

Á ω − ν/2ð Þμ − ν + ω/2 − xð Þμ
μ

� �ϰ−1 ℏ xð Þ
ν + ω/2 − xð Þ1−μ ℏ xð Þdx

= 2
ω − ν

ð1
0

1 − 1 − sð Þμ
μ

� �ϰ
ds

� �
ℏ′ ν + ω

2
� �

−
2

ω − ν

� �2

Á 1
μϰ

ℏ
ν + ω

2
� �

+ 2
ω − ν

� �2+μϰ
Γ ϰ + 1ð ÞϰJ μ

ν+ω/2−ℏ νð Þ:

ð34Þ

In the same way,

I4 =
ð1
0

ðt
0

1 − 1 − sð Þμ
μ

� �ϰ
ds

� �
ℏ″ t

2 ν +
2 − t
2 ω

� �
dt

= −
2

ω − ν

ð1
0

1 − 1 − sð Þμ
μ

� �ϰ
ds

� �
ℏ′ ν + ω

2
� �

−
2

ω − ν

� �2 1
μϰ

ℏ
ν + ω

2
� �

+ 2
ω − ν

� �2+μϰ
Γ ϰ + 1ð ÞϰJ μ

ν+ω/2+ℏ ωð Þ:

ð35Þ

If (34) and (35) are added together and then multiplied
by ðω − νÞ2μϰ/8, the proof is completed.

Theorem 11. Assume ℏ : ½ν, ω�⟶ℝ as a twice differentia-
ble function on ðν, ωÞ s.t. ℏ′′ ∈ L1ð½ν, ω�Þ. By considering the
convexity of jℏ′′j on ½ν, ω�, the inequality

2μϰ−1μϰΓ ϰ + 1ð Þ
ω − νð Þμϰ

ϰJ
μ
ν+ω/2+ℏ ωð Þ + ϰJ

μ
ν+ω/2−ℏ νð ÞÂ Ã

− ℏ
ν + ω

2

� �����
����

≤
ω − νð Þ2μϰ

8
Y1 μ, ϰð Þ ℏ″ νð Þ�� �� + ℏ″ ωð Þ�� ��� �

ð36Þ

is satisfied, where B denotes the beta function and

Y1 μ, ϰð Þ =
ð1
0

ðt
0

1 − 1 − sð Þμ
μ

� �ϰ
ds

����
����dt

= 1
μϰ

ð1
0

1
μ
B ϰ + 1, 1

μ
, 1 − 1 − tð Þμ

� �����
����dt:

ð37Þ

Proof. On both sides of (32), we take the absolute value and
get

2μϰ−1μϰΓ ϰ + 1ð Þ
ω − νð Þμϰ

ϰ
J

μ
ν+ω/2+ℏ ωð Þ + ϰ

J
μ
ν+ω/2−ℏ νð ÞÂ Ã

− ℏ
ν + ω

2
� �����

����
≤

ω − νð Þ2μϰ
8

�ð1
0

ðt
0

1 − 1 − sð Þμ
μ

� �ϰ
ds

����
���� ℏ″ 2 − t

2 ν + t
2ω

� �����
����dt

+
ð1
0

ðt
0

1 − 1 − sð Þμ
μ

� �ϰ
ds

����
���� ℏ″ t

2 ν +
2 − t
2 ω

� �����
����dt
�
:

ð38Þ

Since convexity of jℏ″j, then we have

2μϰ−1μϰΓ ϰ + 1ð Þ
ω − νð Þμϰ

ϰ
J

μ
ν+ω/2+ℏ ωð Þ + ϰ

J
μ
ν+ω/2−ℏ νð ÞÂ Ã

− ℏ
ν + ω

2
� �����

����
≤

ω − νð Þ2μϰ
8

�ð1
0

ðt
0

1 − 1 − sð Þμ
μ

� �ϰ
ds

����
����

Á 2 − t
2 ℏ″ νð Þ�� �� + t

2 ℏ″ ωð Þ�� ��� �
dt

+
ð1
0

ðt
0

1 − 1 − sð Þμ
μ

� �ϰ
ds

����
���� t

2 ℏ″ νð Þ�� �� + 2 − t
2 ℏ″ ωð Þ�� ��� �

dt
�

= ω − νð Þ2μϰ
8

ð1
0

ðt
0

1 − 1 − sð Þμ
μ

� �ϰ
ds

����
����dt

� �

Á ℏ″ νð Þ�� �� + ℏ″ ωð Þ�� ��� �
:

ð39Þ

Remark 12. In Theorem 11:

(i) If we set μ = 1, then we lead to [42], Theorem 1.5.

(ii) If we allow μ = 1 and ϰ = 1, then Theorem 11 and
[43], Proposition 1 are identical.

Theorem 13. Let ℏ : ½ν, ω�⟶ℝ be a twice differentiable
map on ðν, ωÞ s.t. ℏ′′ ∈ L1ð½ν, ω�Þ . Let jℏ′′j

q
be convex on ½

ν, ω� with q > 1. Then,
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2μϰ−1μϰΓ ϰ + 1ð Þ
ω − νð Þμϰ

ϰ
J

μ
ν+ω/2+ℏ ωð Þ + ϰ

J
μ
ν+ω/2−ℏ νð ÞÂ Ã

− ℏ
ν + ω

2

� �����
����

≤
ω − νð Þ2

2
Yϰ
μ pð Þ

� �1/p" 3 ℏ″ νð Þ�� ��q + ℏ″ ωð Þ�� ��q
4

 !1/q

+ ℏ″ νð Þ�� ��q + 3 ℏ″ ωð Þ�� ��q
4

 !1/q#

≤
ω − νð Þ2

2
4Yϰ

μ pð Þ
� �1/p

ℏ″ νð Þ�� �� + ℏ″ ωð Þ�� ��h i
,

ð40Þ

where 1/p + 1/q = 1, and

Yϰ
μ pð Þ =

ð1
0

ðt
0

1 − 1 − sð Þμ
μ

� �ϰ
ds

����
����
p

dt: ð41Þ

Proof. Using the Hölder inequality in (38), we have

2μϰ−1μϰΓ ϰ + 1ð Þ
ω − νð Þμϰ

ϰ
J

μ
ν+ω/2+ℏ ωð Þ + ϰ

J
μ
ν+ω/2−ℏ νð ÞÂ Ã

− ℏ
ν + ω

2
� �����

����
≤

ω − νð Þ2μϰ
8

" ð1
0

ðt
0

1 − 1 − sð Þμ
μ

� �ϰ
ds

����
����
p

dt
 !1/p

Á
ð1
0
ℏ″ 2 − t

2 ν + t
2ω

� �����
����
q

dt
� �1/q

+
ð1
0

ðt
0

1 − 1 − sð Þμ
μ

� �ϰ
ds

����
����
p

dt
 !1/p

Á
ð1
0
ℏ″ t

2 ν +
2 − t
2 ω

� �����
����
q

dt
� �1/q#

:

ð42Þ

Since jℏ′′jq is convex, we obtain

2μϰ−1μϰΓ ϰ + 1ð Þ
ω − νð Þμϰ

ϰ
J

μ
ν+ω/2+ℏ ωð Þ + ϰ

J
μ
ν+ω/2−ℏ νð ÞÂ Ã

− ℏ
ν + ω

2
� �����

����
≤

ω − νð Þ2μϰ
8

" ð1
0

ðt
0

1 − 1 − sð Þμ
μ

� �ϰ
ds

����
����
p

dt
 !1/p

Á
ð1
0

2 − t
2 ℏ″ νð Þ�� ��q + t

2 ℏ″ ωð Þ�� ��q� �
dt

� �1/q

+
ð1
0

ðt
0

1 − 1 − sð Þμ
μ

� �ϰ
ds

����
����
p

dt

 !1/p

Á
ð1
0

2 − t
2 ℏ″ νð Þ�� ��q + t

2 ℏ″ ωð Þ�� ��q� �
dt

� �1/q#
:

ð43Þ

If we substitute the inequalities (17) and (18) in (43), we
obtain the first inequality of (40).

The last inequality is established by letting ϖ1 = 3
jℏ″ðνÞjq,ρ1 = jℏ″ðωÞjq,ϖ2 = jℏ″ðνÞjq, and ρ2 = 3jℏ″ðωÞjq
and with help of the inequality (19).

Corollary 14. In Theorem 13, we have the inequalities as
follows:

(i) If we set μ = 1 in Theorem 13, we derive

2ϰ−1Γ ϰ + 1ð Þ
ω − νð Þϰ Jϰν+ω/2+ℏ ωð Þ + Jϰν+ω/2−ℏ νð Þ½ � − ℏ

ν + ω

2

� �����
����

≤
ω − νð Þ2
2 ϰ + 1ð Þ

1
ϰp + p + 1

� �1/p
"

3 ℏ″ νð Þ�� ��q + ℏ″ ωð Þ�� ��q
4

 !1/q

+ ℏ″ νð Þ�� ��q + 3 ℏ″ ωð Þ�� ��q
4

 !1/q#

≤
ω − νð Þ2
2 ϰ + 1ð Þ

4
ϰp + p + 1

� �1/p
ℏ″ νð Þ�� �� + ℏ″ ωð Þ�� ��h i

:

ð44Þ

(ii) If we take μ = 1 and ϰ = 1 in Theorem 13, we have

1
ω − ν

ðω
ν

ℏ xð Þdx − ℏ
ν + ω

2

� �����
����

≤
ω − νð Þ2

4
1

2p + 1

� �1/p
"

3 ℏ″ νð Þ�� ��q + ℏ″ ωð Þ�� ��q
4

 !1/q

+ ℏ″ νð Þ�� ��q + 3 ℏ″ ωð Þ�� ��q
4

 !1/q#

≤
ω − νð Þ2

4
4

2p + 1

� �1/p
ℏ″ νð Þ�� �� + ℏ″ ωð Þ�� ��h i

:

ð45Þ

Theorem 15. Let ℏ : ½ν, ω�⟶ℝ be a twice differentiable
map on ðν, ωÞ s.t. ℏ′′ ∈ L1ð½ν, ω�Þ. Suppose that jℏ′j

q
is con-

vex on ½ν, ω� with q ≥ 1. Then,

2μϰ−1μϰΓ ϰ + 1ð Þ
ω − νð Þμϰ

ϰ
J

μ
ν+ω/2+ℏ ωð Þ + ϰ

J
μ
ν+ω/2−ℏ νð ÞÂ Ã

− ℏ
ν + ω

2

� �����
����

≤
ω − νð Þ2μϰ

8
Y1 μ, ϰð Þð Þ1−1/q ×

"�
2Y1 μ, ϰð Þ − Y2 μ, ϰð Þ

2

Á ℏ″ νð Þ�� ��q + Y2 μ, ϰð Þ
2

ℏ″ ωð Þ�� ��qdt�1/q
+
�
Y2 μ, ϰð Þ

2

Á ℏ″ νð Þ�� ��q + 2Y1 μ, ϰð Þ − Y2 μ, ϰð Þ
2

ℏ″ ωð Þ�� ��qdt�1/q#
,

ð46Þ
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in which B depicts the beta function, and Y1ðμ, ϰÞ is defined
as in (37). Here,

Y2 μ, ϰð Þ =
ð1
0

ðt
0
t
1 − 1 − sð Þμ

μ

� �ϰ
ds

����
����dt

= 1
μϰ

ð1
0
t
1
μ
B ϰ + 1, 1

μ
, 1 − 1 − tð Þμ

� �����
����dt:

ð47Þ

Proof. By utilizing the power-mean inequality in (38), it
becomes

2μϰ−1μϰΓ ϰ + 1ð Þ
ω − νð Þμϰ

ϰ
J

μ
ν+ω/2+ℏ ωð Þ + ϰ

J
μ
ν+ω/2−ℏ νð ÞÂ Ã

− ℏ
a + ω

2
� �����

����
≤

ω − νð Þ2μϰ
8

" ð1
0

ðt
0

1 − 1 − sð Þμ
μ

� �ϰ
ds

����
����dt

� �1−1/q

×
ð1
0

ðt
0

1 − 1 − sð Þμ
μ

� �ϰ
ds

����
���� ℏ″ 2 − t

2 ν + t
2ω

� �����
����
q

dt
� �1/q

+
ð1
0

ðt
0

1 − 1 − sð Þμ
μ

� �ϰ
ds

����
����dt

� �1−1/q

×
ð1
0

ðt
0

1 − 1 − sð Þμ
μ

� �ϰ
ds

����
���� ℏ″ 2 − t

2 ν + t
2ω

� �����
����
q

dt
� �1/q#

:

ð48Þ

Due to the convexity of jℏ′′jq on ½ν, b�, we may write

2μϰ−1μϰΓ ϰ + 1ð Þ
ω − νð Þμϰ

ϰ
J

μ
ν+ω/2+ℏ ωð Þ + ϰ

J
μ
ν+ω/2−ℏ νð ÞÂ Ã

− ℏ
ν + ω

2
� �����

����
≤

ω − νð Þ2μϰ
8

ð1
0

ðt
0

1 − 1 − sð Þμ
μ

� �ϰ
ds

����
����dt

� �1−1/q

×
" ð1

0

ðt
0

1 − 1 − sð Þμ
μ

� �ϰ
ds

����
���� 2 − t

2 ℏ″ νð Þ�� ��q + t
2 ℏ″ ωð Þ�� ��qdt� �1/q

+
ð1
0

ðt
0

1 − 1 − sð Þμ
μ

� �ϰ
ds

����
���� t2 ℏ″ νð Þ�� ��q + 2 − t

2 ℏ″ ωð Þ�� ��qdt� �1/q#
:

ð49Þ

It is clearly seen that

2μϰ−1μϰΓ ϰ + 1ð Þ
ω − νð Þμϰ

ϰ
J

μ
ν+ω/2+ℏ ωð Þ + ϰ

J
μ
ν+ω/2−ℏ νð ÞÂ Ã

− ℏ
ν + ω

2
� �����

����
≤

ω − νð Þ2μϰ
8 Y1 μ, ϰð Þð Þ1−1/q

×
"

2Y1 μ, ϰð Þ − Y2 μ, ϰð Þ
2 ℏ″ νð Þ�� ��q + Y2 μ, ϰð Þ

2 ℏ″ ωð Þ�� ��qdt� �1/q

+ Y2 μ, ϰð Þ
2 ℏ″ νð Þ�� ��q + 2Y1 μ, ϰð Þ − Y2 μ, ϰð Þ

2 ℏ″ ωð Þ�� ��qdt� �1/q
#
:

ð50Þ

The proof is ended.

Corollary 16. In Theorem 15,

(i) if we set μ = 1, then we acquire

2ϰ−1Γ ϰ + 1ð Þ
ω − νð Þϰ Jϰν+ω/2+ℏ ωð Þ + Jϰν+ω/2−ℏ νð Þ½ � − ℏ

ν + ω

2

� �����
����

≤
ω − νð Þ2

8
1

ϰ + 1ð Þ ϰ + 2ð Þ
� �1−1/q

×
"�

ϰ + 4
2 ϰ + 1ð Þ ϰ + 2ð Þ ϰ + 3ð Þ ℏ″ νð Þ�� ��q

+ 1
2 ϰ + 1ð Þ ϰ + 3ð Þ ℏ″ ωð Þ�� ��qdt�1/q

+
�

1
2 ϰ + 1ð Þ ϰ + 3ð Þ ℏ″ νð Þ�� ��q

+ ϰ + 4
2 ϰ + 1ð Þ ϰ + 2ð Þ ϰ + 3ð Þ
� �

ℏ″ ωð Þ�� ��qdt�1/q#
,

ð51Þ

(ii) if we take μ = 1 and ϰ = 1, we obtain

1
ω − ν

ðω
ν

ℏ xð Þdx − ℏ
ν + ω

2

� �����
����

≤
ω − νð Þ2
48

"
5
8
ℏ″ νð Þ�� ��q + 3

8
ℏ″ ωð Þ�� ��qdt� �1/q

+ 3
8
ℏ″ νð Þ�� ��q + 5

8
ℏ″ ωð Þ�� ��qdt� �1/q

#
:

ð52Þ

5. Conclusion

In this research, we established new estimates of trapezoid
type and midpoint-type inequalities via conformable frac-
tional integrals under twice differentiable functions. These
inequalities were proven to be generalizations of the
Riemann-Liouville fractional integrals related to inequalities
of trapezoid type and midpoint type. In future works,
researchers can obtain likewise inequalities of midpoint type
and trapezoid type via conformable fractional integrals for
convex functions in the context of quantum calculus. More-
over, curious readers can investigate our obtained inequal-
ities via different kinds of fractional integrals.

Data Availability

No data were generated or analyzed during the current
study.

Conflicts of Interest

The authors declare that they have no competing interests.

Authors’ Contributions

Conceptualization was performed by H.K. and H.B.; formal
analysis was contributed by H.K., H.B., S.E., S.R., and

9Journal of Function Spaces



M.K.A.K.; methodology was performed by H.K., H.B., S.E.,
S.R., and M.K.A.K.; H.B. and S.E. were assigned for the soft-
ware. All authors have read and agreed to the published ver-
sion of the manuscript.

Acknowledgments

The third and fourth authors would like to thank Azarbaijan
Shahid Madani University.

References

[1] A. Alsaedi, M. Alsulami, H. M. Srivastava, B. Ahmad, and S. K.
Ntouyas, “Existence theory for nonlinear third-order ordinary
differential equations with nonlocal multi-point and multi-
strip boundary conditions,” Symmetry, vol. 11, no. 2, p. 281,
2019.

[2] D. Baleanu, S. Etemad, and S. Rezapour, “A hybrid Caputo
fractional modeling for thermostat with hybrid boundary
value conditions,” Boundary Value Problems, vol. 2020, no. 1,
2020.

[3] C. Thaiprayoon, W. Sudsutad, J. Alzabut, S. Etemad, and
S. Rezapour, “On the qualitative analysis of the fractional
boundary value problem describing thermostat control model
via ψ-Hilfer fractional operator,” Advances in Differential
Equations, vol. 2021, no. 1, 2021.

[4] M. Aslam, R. Murtaza, T. Abdeljawad et al., “A fractional order
HIV/AIDS epidemic model with Mittag-Leffler kernel,”
Advances in Differential Equations, vol. 2021, no. 1, 2021.

[5] J. K. K. Asamoah, E. Okyere, E. Yankson et al., “Non-fractional
and fractional mathematical analysis and simulations for Q
fever,” Chaos, Solitons & Fractals, vol. 156, article 111821,
2022.

[6] H. Mohammadi, S. Kumar, S. Rezapour, and S. Etemad, “A
theoretical study of the Caputo-Fabrizio fractional modeling
for hearing loss due to mumps virus with optimal control,”
Chaos, Solitons & Fractals, vol. 144, article 110668, 2021.

[7] H. Khan, Y. G. Li, W. Chen, D. Baleanu, and A. Khan, “Exis-
tence theorems and Hyers-Ulam stability for a coupled system
of fractional differential equations with p-Laplacian operator,”
Boundary Value Problems, vol. 2017, no. 1, 2017.

[8] S. Etemad, I. Avci, P. Kumar, D. Baleanu, and S. Rezapour,
“Some novel mathematical analysis on the fractal-fractional
model of the AH1N1/09 virus and its generalized Caputo-
type version,” Chaos, Solitons & Fractals, vol. 162, article
112511, 2022.

[9] G. A. Anastassiou, Generalized Fractional Calculus: New
Advancements and Applications, Springer, Switzerland, 2021.

[10] D. Baleanu, K. Diethelm, E. Scalas, and J. J. Trujillo, Fractional
Calculus: Models and Numerical Methods, World Scientific,
Singapore, 2016.

[11] N. Attia, A. Akgül, D. Seba, and A. Nour, “An efficient numer-
ical technique for a biological population model of fractional
order,” Chaos, Solutions & Fractals, vol. 141, article 110349,
2020.

[12] A. Gabr, A. H. Abdel Kader, and M. S. Abdel Latif, “The effect
of the parameters of the generalized fractional derivatives on
the behavior of linear electrical circuits,” International Journal
of Applied and Computational Mathematics, vol. 7, no. 6, 2021.

[13] M. A. Imran, S. Sarwar, M. Abdullah, and I. Khan, “An analy-
sis of the semi-analytic solutions of a viscous fluid with old and

new definitions of fractional derivatives,” Chinese Journal of
Physics, vol. 56, no. 5, pp. 1853–1871, 2018.

[14] N. Iqbal, A. Akgül, R. Shah, A. Bariq, M. M. Al-Sawalha, and
A. Ali, “On solutions of fractional-order gas dynamics equa-
tion by effective techniques,” Journal of Function Spaces,
vol. 2022, Article ID 3341754, 14 pages, 2022.

[15] L. F. Wang, X. J. Yang, D. Baleanu, C. Cattani, and Y. Zhao,
“Fractal dynamical model of vehicular traffic flow within the
local fractional conservation laws,” Abstract and Applied Anal-
ysis, vol. 2014, Article ID 635760, 5 pages, 2014.

[16] M. A. Barakat, A. H. Soliman, and A. Hyder, “Langevin equa-
tions with generalized proportional Hadamard–Caputo frac-
tional derivative,” Computational Intelligence and Neuroscience,
vol. 2021, Article ID 6316477, 18 pages, 2021.

[17] H. Budak, S. K. Yıldırım, M. Z. Sarıkaya, and H. Yıldırım,
“Some parameterized Simpson-, midpoint- and trapezoid-
type inequalities for generalized fractional integrals,” Journal
of Inequalities and Applications, vol. 2022, no. 1, 2022.

[18] R. Khalil, M. Al Horani, A. Yousef, and M. Sababheh, “A new
definition of fractional derivative,” Journal of Computational
and Applied Mathematics, vol. 264, pp. 65–70, 2014.

[19] A. A. Abdelhakim, “The flaw in the conformable calculus: it is
conformable because it isnot fractional,” Fractional Calculus
and Applied Analysis, vol. 22, no. 2, pp. 242–254, 2019.

[20] A. Hyder and A. H. Soliman, “A new generalized θ-conform-
able calculus and its applications in mathematical physics,”
Physica Scripta, vol. 96, no. 1, article 015208, 2021.

[21] D. Zhao and M. Luo, “General conformable fractional deriva-
tive and its physical interpretation,” Calcolo, vol. 54, no. 3,
pp. 903–917, 2017.

[22] T. Abdeljawad and D. Baleanu, “Monotonicity results for frac-
tional difference operators with discrete exponential kernels,”
Advances in Differential Equations, vol. 2017, no. 1, 2017.

[23] A. Atangana and D. Baleanu, “New fractional derivatives with
nonlocal and non-singular kernel: theory and application to
heat transfer model,” Thermal Science, vol. 20, no. 2,
pp. 763–769, 2016.

[24] A. Hyder and M. A. Barakat, “Novel improved fractional oper-
ators and their scientific applications,” Advances in Differential
Equations, vol. 2021, no. 1, 2021.

[25] F. Jarad, E. Uğurlu, T. Abdeljawad, and D. Baleanu, “On a new
class of fractional operators,” Advances in Difference Equa-
tions, vol. 2017, no. 1, 2017.

[26] S. Faisal, M. Adil Khan, T. U. Khan, T. Saeed, and Z. M. M. M.
Sayed, “Unifications of continuous and discrete fractional
inequalities of the Hermite–Hadamard–Jensen–Mercer type
via majorization,” Journal of Function Spaces, vol. 2022, Article
ID 6964087, 24 pages, 2022.

[27] S. Faisal, M. A. Khan, and S. Iqbal, “Generalized Hermite-
Hadamard-Mercer type inequalities via majorization,” Filo-
mat, vol. 36, no. 2, pp. 469–483, 2022.

[28] S. Faisal, M. A. Khan, T. U. Khan, T. Saeed, A. M. Alshehri,
and E. R. Nwaeze, “New “conticrete” Hermite–Hadamard–
Jensen–Mercer fractional inequalities,” Symmetry, vol. 14,
no. 2, p. 294, 2022.

[29] T. H. Zhao, M. K. Wang, and Y. M. Chu, “Concavity and
bounds involving generalized elliptic integral of the first kind,”
Journal of Mathematical Inequalities, vol. 15, no. 2, pp. 701–
724, 2021.

[30] T. H. Zhao, M. K. Wang, and Y. M. Chu, “Monotonicity and
convexity involving generalized elliptic integral of the first

10 Journal of Function Spaces



kind,” Revista de la Real Academia de Ciencias Exactas, Físicas
y Naturales. Serie A. Matemáticas, vol. 115, no. 2, 2021.

[31] T. H. Zhao, L. Shi, and Y. M. Chu, “Convexity and concavity of
the modified Bessel functions of the first kind with respect to
Hölder means,” Revista de la Real Academia de Ciencias
Exactas, Físicas y Naturales. Serie A. Matemáticas, vol. 114,
no. 2, 2020.

[32] S. S. Dragomir and R. P. Agarwal, “Two inequalities for differ-
entiable mappings and applications to special means of real
numbers and to trapezoidal formula,” Applied Mathematics
Letters, vol. 11, no. 5, pp. 91–95, 1998.

[33] U. S. Kirmac, “Inequalities for differentiable mappings and
applications to special means of real numbers and to midpoint
formula,” Applied Mathematics and Computation, vol. 147,
no. 1, pp. 137–146, 2004.

[34] S. Qaisar and S. Hussain, “On Hermite-Hadamard type
inequalities for functions whose first derivative absolute values
are convex and concave,” Fasciculi Mathematici, vol. 58, no. 1,
pp. 155–166, 2017.

[35] M. Z. Sarikaya, E. Set, H. Yaldiz, and N. Basak, “Hermite-
Hadamard's inequalities for fractional integrals and related
fractional inequalities,” Mathematical and Computer Model-
ling, vol. 57, no. 9–10, pp. 2403–2407, 2013.

[36] M. Iqbal, S. Qaisar, and M. Muddassar, “A short note on inte-
gral inequality of type Hermite-Hadamard through convex-
ity,” Journal of Computational Analysis and Applications,
vol. 21, no. 5, pp. 946–953, 2016.

[37] H. Budak and P. Agarwal, “New generalized midpoint type
inequalities for fractional integral,” Miskolc Mathematical
Notes, vol. 20, no. 2, pp. 781–793, 2019.

[38] H. Budak and R. Kapucu, “New generalization of midpoint
type inequalities for fractional integral,” Annals of the Alexan-
dru Ioan Cuza University – Mathematics, vol. 67, no. 1,
pp. 113–128, 2021.

[39] A. Hyder, H. Budak, and A. A. Almoneef, “Further midpoint
inequalities via generalized fractional operators in Riemann-
Liouville sense,” Fractal and Fractional, vol. 6, no. 9, p. 496,
2022.

[40] A. Barani, S. Barani, and S. S. Dragomir, “Hermite-Hadamard
inequality for functions whose derivatives absolute values are
preinvex,” Journal of Inequalities and Applications, vol. 2012,
no. 1, 2012.

[41] A. Barani, S. Barani, and S. S. Dragomir, “Refinements of
Hermite-Hadamard inequalities for functions when a power
of the absolute value of the second derivative is P -convex,”
Journal of Applied Mathematics, vol. 2012, Article ID 615737,
10 pages, 2012.

[42] P. O. Mohammed and M. Z. Sarikaya, “On generalized frac-
tional integral inequalities for twice differentiable convex func-
tions,” Journal of Computational and Applied Mathematics,
vol. 372, article 112740, 2020.

[43] M. Z. Sarikaya and N. Aktan, “On the generalization of some
integral inequalities and their applications,” Mathematical and
Computer Modelling, vol. 54, no. 9-10, pp. 2175–2182, 2011.

[44] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, “Theory and
applications of fractional differential equations,” inNorth-Hol-
land Mathematics Studies, vol. 204, Elsevier, Amsterdam,
2006.

[45] M. Caputo and M. Fabrizio, “A new definition of fractional
derivative without singular kernel,” Progress in Fractional Dif-
ferentiation & Applications, vol. 1, no. 2, pp. 73–85, 2015.

[46] J. Losada and J. J. Nieto, “Properties of a new fractional deriv-
ative without singular kernel,” Progress in Fractional Differen-
tiation and Applications, vol. 1, no. 2, pp. 87–92, 2015.

[47] H. Desalegn, J. B. Mijena, E. R. Nwaeze, and T. Abdi, “Simp-
son’s type inequalities for s-convex functions via a generalized
proportional fractional integral,” Foundations, vol. 2, no. 3,
pp. 607–616, 2022.

[48] F. Jarad, T. Abdeljawad, and J. Alzabut, “Generalized fractional
derivatives generated by a class of local proportional deriva-
tives,” The European Physical Journal Special Topics, vol. 226,
no. 16-18, pp. 3457–3471, 2017.

[49] F. Gao and X. J. Yang, “Fractional Maxwell fluid with frac-
tional derivative without singular kernel,” Thermal Science,
vol. 20, Supplement 3, pp. 871–877, 2016.

[50] T. Abdeljawad, “On conformable fractional calculus,” Journal
of Computational and Applied Mathematics, vol. 279, pp. 57–
66, 2015.

[51] F. Jarad, T. Abdeljawad, and D. Baleanu, “On the generalized
fractional derivatives and their Caputo modification,” The
Journal of Nonlinear Sciences and Applications, vol. 10, no. 5,
pp. 2607–2619, 2017.

[52] U. N. Katugampola, “New approach to a generalized fractional
integral,” Applied Mathematics and Computation, vol. 218,
no. 3, pp. 860–865, 2011.

[53] S. Kermausuor, “Simpson’s type inequalities via the Katugam-
pola fractional integrals for S-convex functions,” Kragujevac
Journal of Mathematics, vol. 45, no. 5, pp. 709–720, 2021.

11Journal of Function Spaces



Research Article
Discussions on Proinov-Cb-Contraction Mapping on b-Metric
Space

Erdal Karapınar 1,2 and Andreea Fulga 3

1Department of Medical Research, China Medical University Hospital, China Medical University, 40402 Taichung, Taiwan
2Department of Mathematics, Çankaya University, 06790, Etimesgut, Ankara, Turkey
3Department of Mathematics and Computer Sciences, Transilvania University of Brasov, Brasov, Romania

Correspondence should be addressed to Erdal Karapınar; erdalkarapinar@tdmu.edu.vn

Received 18 July 2022; Revised 22 February 2023; Accepted 5 April 2023; Published 8 May 2023

Academic Editor: Mohammed S. Abdo

Copyright © 2023 Erdal Karapınar and Andreea Fulga. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work
is properly cited.

In the present paper, we introduce the notion of Proinov-Cb-contraction mapping and we discuss it within the most interesting
abstract structure, namely, b-metric spaces. We further take into consideration the necessary conditions to guarantee the
existence and uniqueness of fixed points for such mappings, as well as indicate the validity of the main results by providing
illustrative examples.

1. Introduction and Preliminaries

The fixed point theory focuses on investigating the necessary
and sufficient conditions on the operator as well as the abstract
structure within which the operator is defined. Many research
papers, on fixed point theory, aim to bring forth a new condi-
tion on the operator (contraction criteria) or suggest a new
abstract structure, or both. The present paper highlights a new
contraction condition, namely, a Proinov-Cb-contraction, on
the most interesting abstract structure of b-metric spaces.

The notion of b-metric has been approached by several
researchers such as Bakhtin [1] and Czerwik [2, 3]. For
instance, Berinde [4, 5] named this structure as “quasi-
metric.” To be more precise, by b-metric, we understand
the natural successful extension of metric by weakening
“the triangle inequality” with “the extended triangle inequal-
ity.” In other words, the condition of metric dðr, qÞ ≤ dðr, pÞ
+ dðp, qÞ turns into the new condition dðr, qÞ ≤ s½dðr, pÞ + d
ðp, qÞ� for all p, q, r and for a real number s ≥ 1. Evidently,
in case of s = 1, these two notions coincide. Despite the high
similarities of the definitions of the notion of metric and
b-metric, there topological properties may differ. For instance,
it is known that metric is a continuousmap, but, as a mapping,

b-metric is not necessarily continuous. Moreover, an open ball
is not open and a closed ball is not a closed set. These differ-
ences make this structure very interesting to investigate. In
particular, in [6], the authors characterized the weak ϕ-con-
tractions in setting of b-metric spaces. In [7], the existence
of the fixed point of certain set-valued mappings was
discussed in the context of b-metric spaces. Additionally,
Ulam Stability of the fixed point, in the framework of
b-metric spaces, has been considered in [8]. On the other
hand, in [9–12], the authors focused on the existence of dis-
tinct multivalued operators in the context of b-metric spaces.
In [13], Pacurar dealt with a fixed point for ϕ-contractions
in the same structures. Another fact worth mentioning is that
Shukla [14] defined partial b-metric spaces while considering
the fixed point theorem.

The notion of Proinov-Cb-contraction mapping is based
on two aspects: “Proinov-type mappings” [15] and “simula-
tion functions” [16, 17]. Proinov [15] proved that several
existing results are consequences of Skof’s result [18]
reported in 1977. On the other hand, the simulation func-
tion also helps to get a very general contraction condition
whose consequences involve several existing fixed point
theorems, including Banach’s.
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Throughout the paper, we presume that X is a non-
empty set.

The notion of simulation function, introduced by
Joonaghany et al. [16], combine several existing results.

Definition 1 (see [16]). A function ζ : ½0,∞Þ × ½0,∞Þ⟶ℝ
is called a simulation function if

(ζ1) ζð0, 0Þ = 0
(ζ2) ζðr, pÞ < p − r for all r, p > 0
(ζ3) frng, fpng are sequences in ð0,∞Þ such that lim

n⟶∞
rn = lim

n⟶∞
pn > 0, then

lim sup
n⟶∞

ζ rn, pnð Þ < 0: ð1Þ

The set of all simulation functions will be denoted by Z .
On account of ðζ2Þ, we observe that

ζ t, tð Þ < 0 for all t > 0, ζ ∈Z: ð2Þ

We also notice that in [17], it was shown that ðζ1Þ is
superfluous.

Definition 2 (see [16]). Let ðX, dÞ be a metric space and
ζ ∈Z . We say that a self-mapping T on X is a Z-con-
traction with respect to ζ, if

ζ d T xð Þ, T yð Þð Þ, d x, yð Þð Þ ≥ 0, for all x, y ∈X: ð3Þ

Considering ζðr, pÞ = κp − r with κ ∈ ½0, 1Þ and r, p ∈
½0,∞Þ, it follows that the Banach contraction forms a Z

-contraction with respect to ζ.

Theorem 3. On a complete metric space, every Z -contrac-
tion has a unique fixed point.

Definition 4. On a nonempty set X, let b : X ×X⟶ ½0,∞Þ
be a function such that the following conditions hold:

(b1) bðx, yÞ = 0 if and only if x = y
(b2) bðx, yÞ = bðy, xÞ for all x, y ∈ X
(b3) bðx, yÞ ≤ s½bðx, uÞ + bðu, yÞ� for all x, y, u ∈X, with

s ≥ 1
Then, we say that function b is a b -metric. In this case,

the tripled ðX, b, sÞ forms a b-metric space.

Of course, for s = 1, the above function b defines a
distance (or metric) on X.

An illustrative example of b-metric would be the following:

Example 1. Let the space

l1/2 = x = x1, x2,⋯, xm,⋯ð Þ: 〠
∞

j=1
xj
�� �� <∞

( )
: ð4Þ

Then, the function b : l1/2 × l1/2 ⟶ ½0,∞Þ, where

b x, yð Þ = 〠
∞

j=1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xj − yj
��� ���

r !2

ð5Þ

is a b-metric, with s = 2.

The concepts of convergent and Cauchy sequences on
b-metric spaces can be defined in a similar way to the case
of ordinary metric spaces.

Definition 5. Let fxmgm≥0 be a sequence in the b-metric
space ðX, b, sÞ. We say that the sequence fxmgm≥0 is

(c) convergent ⟺ there exists u ∈X such that for any
e > 0, there exists NðeÞ ∈ℕ such that bðxm, uÞ < e, for all
m ≥NðeÞ

This means, limm⟶inftybðxm, uÞ = 0; we write xm ⟶ u,
or lim

m⟶∞
xm = u.

(C) Cauchy ⟺ for any e > 0, there exists NðeÞ ∈ℕ such
that bðxm, xpÞ < e, for all m, p ≥NðeÞ

In case every Cauchy sequence in X is convergent, we
say that the b-metric space ðX, b, sÞ is complete.

Lemma 6 (see [19]). Let ðX, bÞ be a b-metric space and fxng
be a sequence of elements in X such that there exists κ ∈ ½0, 1Þ
such that bðxn+1, xn+2Þ ≤ κðxn, xn+1Þ for every n ∈ℕ. Then,
fxng is a Cauchy sequence.

Definition 7. Let ðX, bÞ, s ≥ 1, be a b-metric space and a func-
tion ζb : ½0,∞Þ × ½0,∞Þ⟶ℝ satisfying the following:

(ζb1) ζbðr, tÞ < t − r for all r, t ∈ℝ+

(ζb2) If frng, ftng are two sequences in ½0, +∞Þ, such
that for p > 0

lim sup
n⟶∞

tn = sp lim
n⟶∞

rn > 0, ð6Þ

then

lim sup
n⟶∞

ζb sprn, tnð Þ < 0: ð7Þ

Thus, ζb is said to be a b-ψ-simulation function. We shall
denote by Cb the family of all b-simulation functions.

(See, e.g., [16, 20, 21], for more details and examples.)
In [22], the authors considered several fixed point the-

orems, in the setting of b-metric spaces, for a family of
contractions (called multiparametric contractions) depend-
ing on two functions (that are not defined in t = 0) and
some parameters.

Definition 8 (see [22]). Let ðX, bÞ be a b-metric space and
T : X⟶X be a mapping. Let ϰ = fκ1, κ2, κ3, κ4, κ5g be a
set of five nonnegative real numbers, and we denote by

AT : X ×X⟶ 0,∞½ Þ ð8Þ
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the function defined, for all x, y ∈X, by

AT x, yð Þ = κ1b x, yð Þ + κ2b x, Txð Þ + κ3b y, Tyð Þ
+ κ4b x, Tyð Þ + κ5b y, Txð Þ: ð9Þ

We say that T is a ðψ, ϕ, ϰ, qÞ-multiparametric contrac-
tion on ðX, b, sÞ if

ψ sqb Tx, Tyð Þð Þ ≤ ϕ AT x, yð Þð Þ for all x, y ∈X such that b Tx, Tyð Þ > 0,

ð10Þ

where ψ, ϕ : ð0,∞Þ⟶ℝ are two auxiliary functions and
q ∈ ½1,∞Þ.

Inspired by some results in [15], we will consider a pair
of two functions ψ, ϕ : ð0,∞Þ⟶ℝ that satisfy the
following:

(p1) ϕðuÞ < ψðuÞ for any u > 0
(p2) ψ is nondecreasing
Let P be the set of such pair of functions; that is,

P = ψ, ϕð Þ ψ, ϕj : 0,∞ð Þ⟶ℝ,  p1ð Þ, p2ð Þ holdf g: ð11Þ

2. Main Results

Definition 9. Let ðX, b, sÞ be a b-metric space. A mapping
T : X⟶X is a Proinov-Cb-contraction mapping of type
Ri if there exist ðψ, ϕÞ ∈P , ζb ∈Cb, a number β ≥ 1, and
nonnegative real numbers α1, α2, α3, α4, with α1 + α2 + α3 >
0, such that for all x, y ∈X with bðTx, TyÞ > 0, we have

1
2s

min b x, Txð Þ, b y, Tyð Þf g
≤ b x, yð Þ implies ζb ψ sβb Tx, Tyð Þ

� �
, ϕ Ri x, yð Þð Þ

� �
≥ 0,

ð12Þ

where

R1 x, yð Þ = α1b x, yð Þ + α2b x, Txð Þ
+ α3b y, Tyð Þ + α4

b x, Txð Þb y, Tyð Þ
b x, yð Þ , for any x ≠ y

R2 x, yð Þ = α1b x, yð Þ + α2b x, Txð Þ
+ α3b y, Tyð Þ + α4

b y, Tyð ÞÞ 1 + b x, Txð Þð Þ
1 + b x, yð Þ ,

R3 x, yð Þ = α1b x, yð Þ + α2b x, Txð Þ + α3b y, Tyð Þ
+ α4

b x, Txð Þb x, Tyð Þ + b y, Tyð Þb y, Txð Þ
1 +max b x, Tyð Þ, b y, Txð Þf g

++α5
b x, Txð Þb x, Tyð Þ + b y, Tyð Þb y, Txð Þ
1 + s max b x, Txð Þ, b y, Tyð Þf g :

ð13Þ

Remark 10. We mention that following Corollary 11 in [22],
we have that, for α1 + α2 + α3 > 0, either T admits at least one
fixed point or Riðx, yÞ > 0, i = �1, 3, for all distinct x, y ∈X.

Theorem 11. On a complete b-metric space ðX, b, sÞ, any
continuous Proinov-Cb-contraction mapping of type R1T
has a unique fixed point provided that ∑4

k=1αk < sβ.

Proof. Starting with a point x0 ∈X, we can consider the
sequence fxng in X, build as follows:

x1 = Tx0,⋯xn+1 = Txn for all n ∈ℕ0: ð14Þ

We observe that if there is some m0 ∈ℕ such that xm0

= xm0+1, it follows that xm0
= Txm0

, so xm0
is a fixed point

of the mapping T . With this in mind, we will presume that
xn ≠ xn+1 for all n. Thus, since

1
2s

min b xn, Txnð Þ, b xn+1, Txn+1ð Þf g

=
1
2s

min b xn, xn+1ð Þ, b xn+1, xn+2ð Þf g ≤ b xn, xn+1ð Þ,
ð15Þ

by (12),

ζb ψ sβb xn, xn+1ð Þ, ϕ R1 xn, xn+1ð Þð Þ
� ��

≥ 0, ð16Þ

which is equivalent, taking ðζb1Þ into account, with

ϕ R1 xn, xn+1ð Þð Þ − ψ sβb Txn, Txn+1ð Þ
� �

> 0: ð17Þ

Moreover, since

R1 xn, xn+1ð Þ = α1b xn, xn+1ð Þ + α2b xn, Txnð Þ
+ α3b xn+1, Txn+1ð Þ + α4

b xn, Txnð Þb xn+1, Txn+1ð Þ
b xn, xn+1ð Þ

= α1 + α2ð Þb xn, xn+1ð Þ + α3 + α4ð Þb xn+1, xn+2ð Þ,
ð18Þ

the above inequality becomes

ψ sβb xn+1, xn+2ð Þ
� �

< ϕ α1 + α2ð Þb xn, xn+1ð Þð
+ α3 + α4ð Þd xn+1, xn+2ð ÞÞ:

ð19Þ

Since the pair ðψ, ϕÞ ∈P , it follows

ψ sβb xn+1, xn+2ð Þ
�

< ϕ α1 + α2ð Þb xn, xn+1ð Þð
+ α3 + α4ð Þb xn+1, xn+2ð ÞÞ

< ψ α1 + α2ð Þd xn, xn+1ð Þð
+ α3 + α4ð Þd xn+1, xn+2ð ÞÞ:

ð20Þ
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Consequently,

sβb xn+1, xn+2ð Þ < α1 + α2ð Þb xn, xn+1ð Þ + α3 + α4ð Þb xn+1, xn+2ð Þ,

b xn+1, xn+2ð Þ < α1 + α2
sβ − α3 − α4

b xn, xn+1ð Þ:

ð21Þ

Let κ = ðα1 + α2Þ/ðsβ − α3 − α4Þ < 1. Consequently,

b xn+1, xn+2ð Þ < κb xn, xn+1ð Þ < κn+1b x0, x1ð Þ⟶ 0 as n⟶∞:

ð22Þ

Moreover, by Lemma 6, it follows that the sequence fxng
is Cauchy, and taking into account the completeness of the
b-metric space X, we find that there exists ω ∈X such that

lim
n⟶∞

xn = ω: ð23Þ

But, the mapping T was supposed to be continuous, so that

Tω = T lim
n⟶∞

xn
� �

= lim
n⟶∞

T xnð Þ = lim
n⟶∞

xn+1 = ω: ð24Þ

Thereupon, Tω = ω; that is, ω is a fixed point of the
mapping T.

Supposing that there exists another point υ ∈X, such
that Tυ = υ ≠ ω = Tω, we have

1
2s

min b ω, Tωð Þ, b υ, T υð Þðf g
= 0 < b ω, υð Þ⟹ ζb ψ sβb Tω, Tυð Þ

� �
, ϕ R1 ω, υð Þð Þ

� �
≥ 0:

ð25Þ

Thus,

ϕ R1 ω, υð Þð Þ − ψ sβb Tω, Tυð Þ
� �

> 0

⟺ ψ sβb Tω, Tυð Þ
� �

< ϕ R1 ω, υð Þð Þ,
ð26Þ

where

R1 ω, υð Þ = α1b ω, υð Þ + α2b ω, Tωð Þ + α3b υ, Tυð Þ
+ α4

b ω, Tωð Þb υ, Tυð Þ
b ω, υð Þ

= α1b ω, υð Þ:

ð27Þ

We have in this case

ψ sβb ω, υð Þ
� �

= ψ sβb Tω, Tυð Þ
� �

< ϕ α1b ω, υð Þð Þ < ψ α1b ω, υð Þð Þ,
ð28Þ

or, since ψ is nondecreasing,

0 < sβb ω, υð Þ < α1b ω, υð Þ, ð29Þ

which is a contradiction. Therefore, the mapping T admits a
unique fixed point.

Example 2. Let X = ½−1, 1�, the function b : X⟶X⟶

½0,∞Þ, and bðx, yÞ = jx − yj2 be a b -metric with s = 2,
and let T : X⟶X be a continuous mapping, where

Tx =
−1, for x ∈ −1, 0½ Þ,
x
4
− 1, for x ∈ 0, 1½ �:

8<
: ð30Þ

Let the pair ðψ, ϕÞ ∈P , with ψðuÞ = u, ϕðuÞ = u/2, for
any u > 0, and ζb ∈Cb, ζbðr, tÞ = ð10/11Þt − r, for r, t ≥ 0.
Thus, choosing β = 1, α1 = 1, α2 = α4 = 1/16, and α3 = 3/
4, we have

ζb ψ sβb Tx, Tyð Þ
� �

, ϕ R1 x, yð Þð Þ
� �

=
10
11

ϕ R1 x, yð Þð Þ − ψ 2b Tx, Tyð Þð Þ

=
5
11

b x, yð Þ + 1
16

b x, Txð Þ + 3
4
b y, Tyð Þ

�

+
1
16

·
b x, Txð Þb y, Tyð Þ

b x, yð Þ
�
− 2b Tx, Tyð Þ:

ð31Þ

For x, y ∈ ½0, 1� such that 1/4 min fbðx, TxÞ, bðy, TyÞg
= 1/4 min fð3x/4 + 1Þ2, ð3y/4 + 1Þ2g ≤ jx − yj2 = bðx, yÞ, we
have bðTx, TyÞ = jðx/4Þ − 1 − ðy/4Þ + 1j2 = ðjx − yj2Þ/16 and

ζb ψ sβb Tx, Tyð Þ
� �

, ϕ R1 x, yð Þð Þ
� �

=
5
11

x − yj j2 + 1
16

3x
4

+ 1
� �2

+
3
4

3y
4

+ 1
� �2

+
1
16

 

·
3x/4ð Þ + 1ð Þ2 · 3/4ð Þ 3y/4ð Þ + 1ð Þ2

b x, yð Þ

!
− 2

x − yj j2
16

=
5
11

29
40

x − yj j2 + 1
16

3x
4

+ 1
� �2

+
3
4

3y
4

+ 1
� �2

+
1
16

 

·
3x/4ð Þ + 1ð Þ2 · 3/4ð Þ 3y/4ð Þ + 1ð Þ2

b x, yð Þ

!
≥ 0:

ð32Þ

For x ∈ ½−1, 0Þ, y ∈ ½0, 1� such that 1/4 min fbðx, TxÞ, bðy,
TyÞg = 1/4 min fðx + 1Þ2, ðð3y/4Þ + 1Þ2g ≤ jx − yj2 = bðx, yÞ,
we have bðTx, TyÞ = j−1 − ðy/4Þ + 1j2 = y2/16 and
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ζb ψ sβb Tx, Tyð Þ
� �

, ϕ R1 x, yð Þð Þ
� �

=
5
11

x − yj j2 + 1
16

x + 1ð Þ2 + 3
4

3y
4

+ 1
� �2

+
1
16

 

·
x + 1ð Þ2 3y/4ð Þ + 1ð Þ2

b x, yð Þ

!
− 2

y2

16

= 5
11

x − yj j2 + 1
16

x + 1ð Þ2 + 3
4

9y2

16
+ 3y

2
+ 1

� �
+ 1
16

�

· x + 1ð Þ2 3y/4ð Þ + 1ð Þ2
b x, yð Þ

!
−
y2

8

=
5
11

x − yj j2 + 1
16

x + 1ð Þ2 + 3y
2

+ 1
�
+

1
16

�

·
x + 1ð Þ2 3y/4ð Þ + 1ð Þ2

b x, yð Þ

!
+

5
11

·
3
4
·
9
16

−
1
8

� �
y2 ≥ 0:

ð33Þ

Therefore, T is a continuous Proinov-Cb-contraction
mapping of type R1, and from Theorem 11, it follows that T
has a unique fixed point.

Corollary 12. Let ðX, b, sÞ be a complete b-metric space and
T : X⟶X be a continuous mapping such that there exist
ðψ, ϕÞ ∈P , ζ ∈Cb, a number β ≥ 1, and nonnegative real
numbers α1, α2, α3, α4 such that for all x, y ∈X with bðTx, T
yÞ > 0, we have

ζb ψ sβb Tx, Tyð Þ
� �

, ϕ R1 x, yð Þð Þ
� �

≥ 0, ð34Þ

where

R1 x, yð Þ = α1b x, yð Þ + α2b x, Txð Þ + α3b y, Tyð Þ
+ α4

b x, Txð Þb y, Tyð Þ
b x, yð Þ , for any x ≠ y:

ð35Þ

Then, T has a unique fixed point provided that∑4
k=1αk < sβ.

Theorem 13. On a complete b-metric space ðX, b, sÞ any T
Proinov-Cb-contraction mapping of type R2 has a unique
fixed point provided that ∑4

k=1αk < sβ.

Proof. Let fxng be the sequence in X defined by (14), with
xn ≠ xn+1, for all n ∈ℕ. Thus, by (12),

1
2s

min b xn, Txnð Þ, b xn+1, Txn+1ðf g

=
1
2s

min b xn, xn+1ð Þ, b xn+1, xn+2ðf g
⟹ ζb ψ sβb xn, xn+1ð Þ

� �
, ϕ R2 xn, xn+1ð Þð Þ

� �
≥ 0:

ð36Þ

Thus, using ðζb1Þ, it follows

ϕ R2 xn, xn+1ð Þð Þ − ψ sβb xn, xn+1ð Þ
� �

> 0, ð37Þ

where

R2 xn, xn+1ð Þ = α1b xn, xn+1ð Þ + α2b xn, Txnð Þ + α3b xn+1, Txn+1ð Þ
+ α4

b xn+1, Txn+1ð Þ 1 + b xn, Txnð Þð Þ
1 + b xn, xn+1ð Þ

= α1b xn, xn+1ð Þ + α2b xn, xn+1ð Þ + α3b xn+1, xn+2ð Þ
+ α4

b xn+1, xn+2ð Þ 1 + b xn, xn+1ð Þð Þ
1 + b xn, xn+1ð Þ

= α1 + α2ð Þb xn, xn+1ð Þ + α3 + α4ð Þb xn+1, xn+2ð Þ:
ð38Þ

Since R2ðxn, xn+1Þ = R1ðxn, xn+1Þ, proceeding in the pre-
vious proof, it follows that fxng is a convergent sequence
in X. Thus, there exists ω ∈X, such that limn⟶∞xn = ω:

We shall show that Tω = ω. First of all, we claim that

1
2s
b xn, xn+1ð Þ ≤ b xn, ωð Þ ð39Þ

or

1
2s
b xn+1, xn+2ð Þ ≤ b xn+1, ωð Þ: ð40Þ

By contradiction, if we suppose that there exists p0 ∈ℕ
such that neither (39) nor (40) hold, we have

b xp0 , xp0+1
� �

≤ s · b xp0 , ω
� �

+ b ω, xp0+1
� �h ii

< s ·
1
2s
b xp0 , xp0+1
� �

+
1
2s
b xp0+1, xp0+2
� �� �

=
b xp0 , xp0+1
� �

+ b xp0+1, xp0+2
� �

2
< b xp0 , xp0+1
� �

,

ð41Þ

which is a contradiction. Consequently, at least one of (39)
or (40) holds, so that we can find a subsequence fxnðiÞg of
fxng, such that

1
2s

min b xn ið Þ, Txn ið Þ
� �

, b ω, Tωð Þ
n o

=
1
2s
b xn ið Þ, xn ið Þ+1
� �

≤ b xn ið Þ, ω
� �

:

ð42Þ

Therefore, keeping (12) in mind,

ζb ψ sβb Txn ið Þ, Tωð Þ
� �

, ϕ R2 xn ið Þ, ω
� �� �� �

≥ 0, ð43Þ

which is equivalent with
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ψ sβb Txn ið Þ, Tω
� �� �

< ϕ R2 xn ið Þ, ω
� �� �

: ð44Þ

Moreover, since ðψ, ϕÞ ∈P ,

ψ sβb Txn ið Þ, Tω
� �� �

< ϕ R2 xn ið Þ, ω
� �� �

< ψ R2 xn ið Þ, ω
� �� �

,

ð45Þ

and then,

sβb Txn ið Þ, Tω
� �

< R2 xn ið Þ, ω
� �

: ð46Þ

But,

R2 xn ið Þ, ω
� �

= α1b xn ið Þ, ω
� �

+ α2b xn ið Þ, Txn ið Þ
� �

+ α3b ω, Tωð Þ

+ α4
b ω, Tωð Þ 1 + b xn ið Þ, Txn ið Þ

� �� �

1 + b xn ið Þ, ω
� �

= α1b xn ið Þ, ω
� �

+ α2b xn ið Þ, xn ið Þ+1
� �

+ α3b ω, Tωð Þ

+ α4
b ω, Tωð Þ 1 + b xn ið Þ, xn ið Þ+1

� �� �

1 + b xn ið Þ, ω
� � :

ð47Þ

Consequently, there exists limn⟶∞R2ðxnðiÞ, ωÞ, and
we have

lim
i⟶∞

R2 xn ið Þ, ω
� �

= α3 + α4ð Þb ω, Tωð Þ: ð48Þ

On the other hand,

0 < b ω, Tωð Þ ≤ s b ω, Txnð Þ + b Txn, Tωð Þ½ �
≤ sb ω, xn+1ð Þ + sβb Txn, Tωð Þ
< sb ω, xn+1ð Þ + R2 xn, ωð Þ:

ð49Þ

Therefore,

0 < b ω, Tωð Þ < limsup
n⟶∞

R2 xn, ωð Þ
= α3 + α4ð Þb ω, Tωð Þ
≤ b ω, Tωð Þ,

ð50Þ

which is a contradiction. Thus, Tω = ω. Supposing that this
point is not unique, we can find another point υ ∈X, such that
Tω = ω ≠ υ = Tυ. In this case,

0 =
1
2s

min b ω, Tωð Þ, b υ, Tυð Þf g < b ω, υð Þ
⟹ ζb ψ sβb Tω, Tυð Þ

� �
, ϕ R2 ω, υð Þð Þ

� �
≥ 0:

ð51Þ

We have,

ψ sβb ω, υð Þ
� �

= ψ sβb Tω, Tυð Þ
� �

≤ ϕ R2 ω, υð Þð Þ
= ϕ α1b ω, υð Þð Þ < ψ α1b ω, υð Þð Þ,

ð52Þ

and, taking ðp1Þ into account,

0 < sβb ω, υð Þ < α1b ω, υð Þ, ð53Þ

which is a contradiction, because α1 < sβ: So, the mapping T
possesses a unique fixed point.

Corollary 14. Let ðX, b, sÞ be a complete b-metric space and
T : X⟶X be a continuous mapping such that there exist
ðψ, ϕÞ ∈P , ζ ∈Cb, a number β ≥ 1, and nonnegative real
numbers α1, α2, α3, α4 such that for all x, y ∈X with bðTx, T
yÞ > 0, we have

ζb ψ sβb Tx, Tyð Þ
� �

, ϕ R2 x, yð Þð Þ
� �

≥ 0, ð54Þ

where

R2 x, yð Þ = α1b x, yð Þ + α2b x, Txð Þ + α3b y, Tyð Þ
+ α4

b x, Txð Þb y, Tyð Þ
b x, yð Þ , for any x ≠ y:

ð55Þ

Then, T has a unique fixed point provided that
∑4

k=1αk < sβ.

Theorem 15. On a complete b-metric space ðX, b, sÞ, any
Proinov- Cb-contraction mapping of type R3T has a unique
fixed point provided that α1 + α2 + α3 + α4 + 2α5 < sβ and
α3 < 1.

Proof. Let fxng be the sequence in X defined by (14), with
xn ≠ xn+1, for all n ∈ℕ. Thus, by (12),

1
2s

min b xn, Txnð Þ, b xn+1, Txn+1ðf g

=
1
2s

min b xn, xn+1ð Þ, b xn+1, xn+2ðf g
⟹ ζb ψ sβb Txn, Txn+1ð Þ

� �
, ϕ R2 xn, xn+1ð Þð Þ

� �
≥ 0:

ð56Þ

Thus, using ðζb1Þ, it follows

ϕ R3 xn, xn+1ð Þð Þ − ψ sβb Txn, Txn+1ð Þ
� �

> 0, ð57Þ

or, equivalent (keeping in mind ðζb1Þ and ðp1Þ)

ψ sβb Txn, Txn+1ð Þ
� �

< ϕ R3 xn, xn+1ð Þð Þ < ψ R3 xn, xn+1ð Þð Þ,
ð58Þ
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where

R3 xn, xn+1ð Þ = α1b xn, xn+1ð Þ + α2b xn, Txnð Þ + α3b xn+1, Txn+1ð Þ
++α4

b xn, Txnð Þb xn, Txn+1ð Þ + d xn+1, Txn+1ð Þb xn+1, Txnð Þ
1 +max b xn, Txn+1ð Þ, b xn+1, Txnð Þf g

++α5
b xn, Txnð Þb xn, Txn+1ð Þð + b xn+1, Txn+1ð Þb xn+1, Txnð Þ

1 + s max b xn, Txnð Þ, b xn+1, Txn+1ð Þf g
= α1b xn, xn+1ð Þ + α2b xn, xn+1ð Þ + α3b xn+1, xn+2ð Þ
++α4

b xn, xn+1ð Þb xn, xn+2ð Þ + d xn+1, xn+2ð Þb xn+1, xn+1ð Þ
1 + max b xn, xn+2ð Þ, b xn+1, xn+1ð Þf g

++α5
b xn, xn+1ð Þb xn, xn+2ð Þð + b xn+1, xn+2ð Þb xn+1, xn+1ð Þ

1 + s max b xn, xn+1ð Þ, b xn+1, xn+2ð Þf g
= α1b xn, xn+1ð Þ + α2b xn, xn+1ð Þ + α3b xn+1, xn+2ð Þ
++α4

b xn, xn+1ð Þb xn, xn+2ð Þ
1 + b xn, xn+2ð Þ

+ α5
b xn, xn+1ð Þb xn, xn+2ð Þ

1 + s max b xn, xn+1ð Þ, b xn+1, xn+2ð Þf g
≤ α1 + α2 + α3ð Þb xn, xn+1ð Þ

+ α5
s · b xn, xn+1ð Þ b xn, xn+1ð Þ + b xn+1, xn+2ð Þð Þ
1 + s max b xn, xn+1ð Þ, b xn+1, xn+2ð Þf g :

ð59Þ

Assuming that there exists p0 ∈ℕ such that max fbðxp0 ,
xp0+1Þ, bðxp0+1, xp0+2Þg = bðxp0+1, xp0+2Þ, we have

0 < R3 xp0 , xp0+1
� �

≤ α1 + α2 + α3ð Þb xp0+1, xp0+2
� �

+ α5
2s · b xp0+1, xp0+2

� �� �2
1 + sb xp0+1, xp0+2

� �

≤ α1 + α2 + α3ð Þb xp0+1, xp0+2
� �

+ 2α5b xp0+1, xp0+2
� �

= ϕ:

ð60Þ

Therefore, by (58) and (59), together with ðp1Þ, we get

ψ sβb xp0+1, xp0+2
� �� �

= ψ sβb Txp0 , Txp0+1
� �� �

< ϕ R3 xp0 , xp0+1
� �� �

< ψ α1 + α2 + α3ð Þb xp0+1, xp0+2
� ��

+ 2α5b xp0+1, xp0+2
� ��

,

ð61Þ

and taking ðp2Þ into account, it follows

sβb xp0+1, xp0+2
� �

< α1 + α2 + α3 + 2α5ð Þb xp0+1, xp0+2
� �

,

ð62Þ

which is a contradiction.
Consequently, bðxn, xn+1Þ > bðxn+1, xn+2Þ, for any n ∈ℕ,

and fbðxn, xn+1Þg is a nonincreasing sequence; so, we can
find ρ ≥ 0 such that limn⟶∞bðxn, xn+1Þ = ρ. Moreover,

0 < R3 xn, xn+1ð Þ ≤ α1b xn, xn+1ð Þ + α2b xn, xn+1ð Þ + α3b xn+1, xn+2ð Þ
++α4b xn, xn+1ð Þ + α5

b xn, xn+1ð Þb xn, xn+2ð Þ
1 + sb xn, xn+1ð Þ,

≤ α1 + α2 + α4ð Þb xn, xn+1ð Þ + α3b xn+1, xn+2ð Þ
++α5

s · b xn, xn+1ð Þ b xn, xn+1ð Þ + b xn+1, xn+2ð Þ½ �
1 + sb xn, xn+1ð Þ

≤ α1 + α2 + α4 + α5ð Þb xn, xn+1ð Þ + α3 + α5ð Þb xn+1, xn+2ð Þ,
ð63Þ

and then, from (58) and ðp2Þ,

sβb xn+1, xn+2ð Þ < R3 xn, xn+1ð Þ
< α1 + α2 + α4 + α5ð Þb xn, xn+1ð Þ

+ α3 + α5ð Þb xn+1, xn+2ð Þ,
ð64Þ

which leads us to

b xn+1, xn+2ð Þ < α1 + α2 + α4 + α5
sβ − α3 − α5

b xn, xn+1ð Þ: ð65Þ

Letting κ1 = ðα1 + α2 + α4 + α5Þ/ðsβ − α3 − α5Þ < 1, we get
bðxn+1, xn+2Þ < κ1bðxn, xn+1Þ, for any n ∈ℕ. Thus, Lemma 6
ensure that the sequence fxng is Cauchy, that is,

lim
n,m⟶∞

b xn, xmð Þ = 0: ð66Þ

Moreover, the b-metric space ðX, b, sÞ is supposed to be
complete, so, we can find ω ∈X such that

lim
m⟶∞

xm = ω: ð67Þ

Further, from the proof of Theorem 13, we know that at
least one of (39) or (40) holds, and for this reason, there
exists a subsequence fxkg of fxng such that

1
2s

min xk, TxkÞ, b ω, Tωð Þf g ≤ 1
2s
b xk, xk+1ð Þ ≤ b xk, ωð Þ,

ð68Þ

which implies

ζb ψ sβb Txk, Tωð Þ
� �

, ϕ R3 xk, ωð Þð Þ
� �

≥ 0: ð69Þ

Therefore,

ψ sβb Txk, Tωð Þ
� �

< ϕ R3 xk, ωð Þð Þ < ψ R3 xk, ωð Þð Þ, ð70Þ

and, by ðp2Þ,

sβb Txk, Tωð Þ < R3 xk, ωð Þ: ð71Þ
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Now, since

R3 xk, ωð Þ = α1b xk, ωð Þ + α2b xk, xk+1ð Þ + α3b ω, Tωð Þ
+ α4

b xk, xk+1ð Þb xk, ωð Þ + b ω, Tωð Þb ω, xk+1ð Þ
1 +max b xk, Tωð Þ, b ω, xk+1ð Þf g

++α4
b xk, xk+1ð Þb xk, ωð Þ + b ω, Tωð Þb ω, xk+1ð Þ

1 + s max b xk, xk+1ð Þ, b ω, Tωð Þf g ,

ð72Þ

taking into account (66) and (67),

limsup
k⟶∞

R3 xk, ωð Þ ≤ α3b ω, Tωð Þ < b ω, Tωð Þ: ð73Þ

But,

b ω, Tωð Þ ≤ s b ω, Txkð Þ + b Txk, Tωð Þ½ �
≤ sb ω, Txkð Þ + sβb Txk, Tωð Þ
< sb ω, Txkð Þ + R3 xk, ωð Þ,

ð74Þ

which combined with (73) showing that

b ω, Tωð Þ ≤ limsup
k⟶∞

R3 xk, ωð Þ ≤ α3b ω, Tωð Þ: ð75Þ

But, this is a contradiction, so, Tω = ω:
We claim that ω is the only fixed point of T . Suppose

that, on the contrary, there exists υ ∈X, such that Tυ = υ
and bðυ, ωÞ > 0. Thus,

0 =
1
2s

min b υ, Tυð Þ, b ω, Tωð Þf g
< b υ, ωð Þ⟹ ζb ψ sβb Tυ, Tωð Þ

� �
, ϕ R3 υ, ωð Þð Þ

� �
≥ 0,

ð76Þ

and moreover,

ψ sβb υ, ωð Þ
� �

= ψ sβb Tυ, Tωð Þ
� �

< ϕ R3 υ, ωð Þð Þ
= ϕ α1b υ, ωð Þð Þ
< ψ α1b υ, ωð Þð Þ,

ð77Þ

which is a contradiction.

Example 3. Let X = fq1, q2, q3, q4g and a function b : X ×X

⟶ ½0,∞Þ, defined as follows:

b x, yð Þ q1 q2 q3 q4

q1 0
1
4

5
4

3

q2
1
4

0 2 3

q3
5
4

2 0 2

q4 3 3 2 0

: ð78Þ

It is easy to check that b is a b-metric, with s = 2. Let the
mapping T : X⟶X, where

x q1 q2 q3 q4

Tx q1 q1 q1 q2
: ð79Þ

Let the pair ðψ, ϕÞ ∈P , where ψðuÞ = eu, ϕðuÞ = 1 + ln
ð1 + uÞ, for any u > 0, and ζb ∈Cb, ζbðr, tÞ = ð11t/12Þ − r.
Choosing β = 1 and α1 = α2 = α4 = α5 = 1/6 and α3 = 8/9,
we have

ζb ψ sβb Tx, Tyð Þ
� �

, ϕ R3 x, yð Þð Þ
� �

=
11
12

ϕ R3 x, yð Þð Þ − ψ 2b Tx, Tyð Þð Þ

=
11
12

1 + ln 1 + R3 x, yð Þð Þð Þ − e2b Tx,Tyð Þ

= 11
12

1 + ln 1 + 1
6

b x, yð Þ + b x, Txð Þð
��

+
b x, Txð Þb x, Tyð Þ + b y, Tyð Þb y, Txð Þ

1 + max b x, Tyð Þ, b y, Txð Þf g
++

b x, Txð Þb x, Tyð Þ + b y, Tyð Þb y, Txð Þ
1 + 2 max b x, Txð Þ, b y, Tyð Þf g

�

+
8
9
b y, Tyð ÞÞ

�
− e2b Tx,Tyð Þ:

ð80Þ

We consider the following cases (which respect the
condition bðTx, TyÞ > 0):

(i) x = qj, y = q4, j ∈ f1, 2g,

1
4
min b qj, Tqj

� �
, b q4, Tq4ð Þ

n o
< 3 = b qj, q4

� �

⟹ ζb ψ sβb Tqj, Tq4
� �� �

, ϕ R3 qj, q4
� �� �� �

≥ 0,
ð81Þ

which means
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e2b Tqj ,Tq4ð Þ = e2b q1,q2ð Þ

=
ffiffi
e

p
<
11
12

1 + ln
11
3

� �

=
11
12

1 + ln 1 + α3b q4, Tq4ð Þð Þð Þ

≤
11
12

1 + ln 1 + R3 qj, q4
� �� �� �

:

ð82Þ

(ii) x = q3, y = q4,

1
4
min b q3, Tq3ð Þ, b q4, Tq4ð Þf g < 2 = b q3, q4ð Þ
⟹ ζb ψ sβb Tq3, Tq4ð Þ

� �
, ϕ R3 q3, q4ð Þð Þ

� �
≥ 0,

ð83Þ

which means

e2b Tq3,Tq4ð Þ = e2b q1,q2ð Þ

=
ffiffi
e

p
<
11
12

1 + ln
11
3

� �

=
11
12

1 + ln 1 + α3b q4, Tq4ð Þð Þð Þ

≤
11
12

1 + ln 1 + R3 q3, q4ð Þð Þð Þ:

ð84Þ

Consequently, the mapping T is a Proinov-Cb-contrac-
tion mapping of type R3 and, by Theorem 15, it follows that
T has a unique fixed point.

Corollary 16. Let ðX, b, sÞ be a complete b-metric space and
T : X⟶X be a c mapping such that there exist ðψ, ϕÞ ∈
P , ζ ∈Cb, a number β ≥ 1, and nonnegative real numbers
α1, α2, α3, α4 such that for all x, y ∈X with bðTx, TyÞ > 0,
we have

ζb ψ sβb Tx, Tyð Þ
� �

, ϕ R3 x, yð Þð Þ
� �

≥ 0, ð85Þ

where

R3 x, yð Þ = α1b x, yð Þ + α2b x, Txð Þ + α3b y, Tyð Þ
+ α4

b x, Txð Þb x, Tyð Þ + b y, Tyð Þb y, Txð Þ
1 +max b x, Tyð Þ, b y, Txð Þf g

++α5
b x, Txð Þð Þb x, Tyð Þ + b y, Tyð Þb y, Txð Þ

1 + s max b x, Txð Þ, b y, Tyð Þf g :

ð86Þ

Then, T has a unique fixed point provided that α1 + α2 +
α3 + α4 + 2α5 < sβ and α3 < 1.

3. Conclusion

In this paper, we extend the renowned Proinov’s result [15]
in several directions: First of all, we investigate the contrac-
tions involving interesting rational forms. Secondly, the
abstracted structure is chosen as a b-metric space that is
one of the natural and novel generalizations of the concept
of metric spaces. Thirdly, we use auxiliary simulation func-
tions to improve Proinov’s results [15].
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In this paper, we investigate an orthogonal L⋆-contraction map concept and prove the fixed-point theorem in an orthogonal
complete Branciari metric space (OCBMS). We also provide illustrative examples to support our theorems. We demonstrated
the existence of a uniqueness solution to the fourth-order differential equation using a more orthogonal L⋆ contraction
operator in OCBMS as an application of the main results.

1. Introduction

The Branciari metric (BM) concept was introduced by
Branciari [1] in the year 2000. The generalization is via the
fact that the triangle inequality is replaced by the rectangular
inequality bðλ1, λ2Þ ≤ bðλ1, λ3Þ + bðλ3, λ4Þ + bðλ4, λ2Þ for all
pairwise distinct points λ1, λ2, λ3, λ4 of P . Afterwards, many
authors studied and elaborated the existence of old fixed-
point theorems in the BMS (briefly Branciari metric spaces)
[2–7]. The Θ-contraction concept was introduced by Jleli
and Samet [8] in 2014. Later, some authors provided a vari-
ety of results based on Θ-contraction [9, 10]. Saleh et al. [11]
introduced the concept of generalized L and L∗-contrac-
tions. And also proved fixed-point theorems in CBMS.
Eshraghisamani et al. [12] initiated new contractive map
and proved fixed-point theorem in BMS.

An orthogonality notion in metric spaces is presented by
Gordji et al. in 2017 [13, 14]. Recently, many authors estab-
lished a variety of fixed-point results in generalized orthogo-

nal metric space (OMS). Nazam et al. [15] demonstrated the
concept of ðΨ,ΦÞ-orthogonal interpolation contraction
mappings. The notion of B metric-like space via a hybird
pair of operators was introduced by Ali et al. [16] in
2022. In 2021, Hussain [17] presented another family of
fractional symmetric α-η-contractions and builds up some
new results for such contraction in the context of F-met-
ric space. Mukheimer et al. [18] initiated the concept of
orthogonal L-contraction mapping and proved fixed-point
results in OBMS.

From the above motivation, we prove some fixed-point
results in the direction of OBMS. We also give some exam-
ples to argue that our results correctly generalize certain
results in the literature.

In this article, we present basic definitions and examples
in Section 2, prove some fixed-point theorems by orthogonal
L∗-contractive mapping in an OCBMS in Section 3, and
finally, obtain a unique solution of differential equation
using orthogonal L⋆ contraction operator in Section 4.
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2. Preliminaries

Throughout this article, we denote by P , ℕ, and ℝ+ the
nonempty set, the set of positive integers, and the set of pos-
itive real numbers, respectively.

The Branciari metric space was introduced by Branciari
[1] as follows.

Definition 1. Let P ≠∅ and a function b : P ×P ⟶ℝ+ s.t
(briefly such that) ∀λ1, λ2 ∈P and all λ3 ≠ λ4 ∈P /fλ1, λ2g:

(BM1) bðλ1, λ2Þ = 0, iff λ1 = λ2;
(BM2) bðλ1, λ2Þ = bðλ2, λ1Þ;
(BM3) bðλ1, λ2Þ ≤ bðλ1, λ3Þ + bðλ3, λ4Þ + bðλ4, λ2Þ:
The pair ðP , bÞ is called a BMS with Branciari metric b.

The following example is on the Branciari metric space
(BMS).

Example 1. Let P = f0, 2g ∪ fð1/ıÞ: ı ∈ℕg, where E = f0, 2g
and G = fð1/ıÞ: ı ∈ℕg. Define b : P ×P ⟶ℝ+ as

b ℘1, ℘2ð Þ =

0, if ℘1 = ℘2,
1, if ℘1 ≠ ℘2 and ℘1, ℘2f g ⊂ E or ℘1, ℘2f g ⊂G,
℘2, if ℘1 ∈ E and℘2 ∈G,
℘1, if ℘1 ∈Gand℘2 ∈ E:

8>>>>><
>>>>>:

ð1Þ

Then, ðP , bÞ is a CBMS (briefly complete Branciari met-
ric space). However, we get

(1) limı⟶∞bðð1/ıÞ, ð1/2ÞÞ ≠ bð0, ð1/2ÞÞalthough limı⟶∞
ð1/ıÞ = 0, and hence, b is discontinuous

(2) There is nonexistence ℓ > 0 s.t Gℓð0Þ ∩Gℓð2Þ = ϕ,
and hence, the topology is not a Hausdorff

(3) Gð2/3Þ = f0, 2, ð1/3Þg ; however, there does not exist
ℓ > 0 s.t Gℓð0Þ ⊆Gð2/3Þð1/3Þ, and thus, an open ball
does not necessitate an open set

(4) f1/ıgı∈ℕ is not a Cauchy sequence since it converges
to both 0 and 2

Now, we give the following concepts, which are used in
this paper.

Definition 2. Let ðP , bÞ be a BMS and fαıg be a sequence in
P and λ1 ∈P .

(1) fαıg is convergent to λ1 ⟺ bðαı, αℓÞ⟶ 0 as ı
⟶∞. We denote this by αı ⟶ α;

(2) fαıg is Cauchy ⟺bðαı, αℓÞ⟶ 0 as ı, ℓ⟶∞;

(3) ðP , bÞ is complete ⟺ every Cauchy sequence in P

which converges to some element in P .

Eshraghisamani et al. [12] introduced the concept of
Θ-contraction as follows.

Definition 3. Let ðP , bÞ be a BMS. A map Φ : P ⟶P is
said to be Θ-contraction if there exist Θ ∈ Γ1,2,3 and ν ∈ ð0, 1Þ
s.t ð∀λ1, λ2 ∈P Þ

b Φλ1,Φλ2ð Þ > 0⟹Θ b Φλ1,Φλ2ð Þð Þ ≤ Θ b λ1, λ2ð Þð Þ½ �ν,
ð2Þ

where Γ1,2,3 is the family of all functionsΘ : ð0,∞Þ⟶ ð0,∞Þ
which satisfy the following axioms:

ðΘ1ÞΘ is increasing
ðΘ2Þ For each sequence fαıg ⊂ ð0,∞Þ, limı⟶∞ΘðαiÞ =

1⟺ lim
ı⟶∞

αı = 0+

ðΘ3ÞΘ is continuous.

Using Definition 3, Eshraghisamani et al. [12] proved the
following theorem.

Theorem 4. Let ðP , bÞ be a CBMS and Φ : P ⟶P a
Θ-contraction function. Then, Φ has a ufp (briefly unique
fixed point).

The below example supports Theorem 4.

Example 2. Let ςΦ,I : ½1,∞Þ × ½1,∞Þ⟶ R be two functions
defined as below:

ςΦ,I σ, σ1ð Þ = I σ1ð Þ
Φ σ1ð Þ ,∀σ, σ1 ≥ 1, ð3Þ

where Φ,I : ½1,∞Þ⟶ ½1,∞Þ are upper semicontinuous
from the right s.t IðσÞ < σ ≤ΦðσÞ, for all σ > 1: Then,
ςΦ,I ∈ L.

In Theorem 4, by replacing the condition (Θ3), we get
the following remark.

Remark 5. Let fuıg, fxıg, fyıg be the sequence of ℝ+ s.t
lim
ı⟶∞

uı = u, lim
ı⟶∞

xı = x and lim
ı⟶∞

yı = y. Then,

(1) lim
ı⟶∞

max fuı, xı, yıg =max fu, x, yg,

(2) lim
ı⟶∞

min fuı, xı, yıg =min fu, x, yg.

In 2017, Gordji et al. [13] introduced the concept of an
orthogonal set as follows.

Definition 6. Let P ≠∅ and ⊥⊆P ×P be a binary relation.
If ⊥ holds

∃λ10 ∈P : ∀λ1 ∈P , λ1⊥λ10ð Þ or ∀λ1 ∈P , λ10⊥λ1ð Þ, ð4Þ

then ðP ,⊥Þ is called an orthogonal set.
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The following example and Figure 1 are satisfied by
Definition 6.

Example 3. Let P = Z and define λ2⊥λ1 if ∃ν ∈ Z : λ2 = νλ1.
It is clear that 0⊥λ1, ∀λ1 ∈ Z. Hence, ðP ,⊥Þ is an orthogonal
set.

Example 4. A wheel graph W ı with ı edge for every ı ≥ 4, a
node connect to each node to every edge of ðı − 1Þ -cycle.
Let P be the set of all edge of W ı for every ı ≥ 4. Define λ1
⊥λ2 if there is a connection from λ1 to λ2. Then, ðP , ⊥Þ is
an orthogonal set.

The following orthogonal sequence definition was intro-
duced by Gordji et al. [13] which will be utilized in this
paper to prove main results.

Definition 7. Let ðP , ⊥Þ be an orthogonal set. A sequence
fλ1ıg is called an orthogonal sequence (shortly,O -sequence)
if

∀ı ∈ℕ, λ1ı⊥λ1ı+1ð Þ or ∀ı ∈ℕ, λ1ı+1⊥λ1ıð Þ: ð5Þ

Again, the concepts of orthogonal continuous also intro-
duced by Gordji et al. [13].

Definition 8. Let ðP ,⊥,bÞ be a OMS. Then, a mapping
Φ : P ⟶P is called orthogonal continuous in λ1 ∈P if for
every O -sequence fλ1ıg in P with λ1ı ⟶ λ1 as ı⟶∞,
we have Φðλ1ıÞ⟶Φðλ1Þ as ı⟶∞.

Definition 9. Let ðP ,⊥,bÞ be a OBMS.

(1) fλ1ιg, an orthogonal sequence in P , converges at a
point λ1 if

lim
ι⟶∞

Φ λ1ι , λ1
À Á

= 0: ð6Þ

(2) fλ1ιg, fλ1mg are orthogonal sequences in P and are
said to be orthogonal Cauchy sequence if

lim
ι,m⟶∞

Φ λ1ι , λ1m
À Á

<∞: ð7Þ

Gordji et al. [13] introduced the concept of an orthogo-
nal complete as follows.

Definition 10. Let ðP ,⊥,bÞ be a OMS. Then, P is called an
orthogonal complete, if every orthogonal Cauchy sequence
is convergent.

Finally, the following orthogonal-preserving concepts
introduced by Gordji et al. [13] is of importance in this
paper.

Definition 11. Let ðP , ⊥Þ be an orthogonal set. A function
Φ : P ⟶P is called a ⊥ -preserving if Φλ1⊥Φλ2 whenever
λ1⊥λ2, ∀λ1, λ2 ∈P .

Lemma 12. Let fλ1ıg be an orthogonal Cauchy sequence in
BMS ðP , bÞ s.t lim

ı⟶∞
bðλ1ı, λ1Þ = 0, for some λ1 ∈P . Then,

lim
ı⟶∞

bðλ1ı, λ2Þ = bðλ1, λ2Þ, for all λ1, λ2 ∈P , with λ1⊥λ2.

Eshraghisamani et al. [12] proved fixed-point result on
Branciari metric space as follows.

Theorem 13. Let ðP , bÞ be a complete generalized metric
space and a map Φ : P ⟶P . Suppose that there exist
ℓ ∈ ð0, 1Þ and function π : R+ ⟶R+, satisfying the follow-
ing conditions:

(i) For every fβıg ⊂ ð0,∞Þ and nonconstant

lim
ı⟶∞

π βıð Þ = 0⟺ lim
ı⟶∞

βı = 0: ð8Þ

(ii) For every fβıg ⊂ ð0,∞Þ that βı ⟶ 0+, limsupı⟶∞ffiffiffiffiffiffiffiffiffiffiffi
πðβıÞı

p
< 1⟹∑∞

1 βı <∞, such that

π b Φλ1,Φλ2ð Þð Þ ≤ ℓπ b λ1, λ2ð Þð Þ, ð9Þ

then ϕ has a ufp.

3. Main Results

Before presenting our main result of this section, we are
inspired by the concept of L∗ contraction mapping defined
by Saleh et al. [11]; we introduce a new concept of an
orthogonal L∗-contraction mapping. Then, we prove a
fixed-point results in OCBMS.
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Figure 1: A wheel graph.
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Definition 14. Let ðP ,⊥,bÞ be a OBMS and Φ : P ⟶P .
Then, Φ is called an orthogonal L∗ -contraction w.r.t ζ ∈ L
if ∃Θ ∈Ω1,2,3 s.t.

∀λ1, λ2 ∈P with λ1⊥λ2, b Φλ1,Φλ2ð Þ
> 0⟹ ζ Θ b Φλ1,Φλ2ð Þð Þ,Θ M λ1, λ2ð Þð Þ½ � ≥ 1,

ð10Þ

where Mðλ1, λ2Þ =max fbðλ1, λ2Þ, bðλ1,Φλ1Þ, bðλ2,Φλ2Þg:

Motivated by Theorem 13, we prove the below theorem.

Theorem 15. Let ðP ,⊥,bÞ be a OCBMS and Φ is a self-map
on P . Suppose that ∃ℓ ∈ ð0, 1Þ and a function π : R+ ⟶
R+ hold the axioms:

(i) Φ is orthogonal-preserving

(ii) For every fβıg ⊂ ð0,∞Þ and nonconstant

lim
ı⟶∞

π βıð Þ = 0⟺ lim
ı⟶∞

βı = 0: ð11Þ

(iii) Φ⊥ with for every fβıg ⊂ ð0,∞Þ that βı ⟶ 0+, lim
supı⟶∞

ffiffiffiffiffiffiffiffiffiffiffi
πðβıÞı

p
< 1⟹∑∞

1 βı <∞such that

∀λ1, λ2 ∈P with λ1⊥λ2 ⟹ π b Φλ1,Φλ2ð Þð Þ ≤ ℓπ b λ1, λ2ð Þð Þ,
ð12Þ

then Φ has a ufp.

Proof. Since ðP , ⊥Þ is orthogonal set,

∃λ2 ∈P : ∀λ1 ∈P , λ1⊥λ2ð Þ or ∀λ1 ∈P , λ2⊥λ1ð Þ: ð13Þ

It follows that λ2⊥Φλ2 or Φλ2⊥λ2. Let

λ11 =Φλ2, λ12 =Φλ11 =Φ2λ2 ⋯⋯, λ1ı+1
=Φλ1ı =Φı+1λ2,∀ı ∈ℕ ∪ 0f g:

ð14Þ

If λ1ı0 = λ1ı0+1 for any ı ∈ℕ ∪ f0g, then it is easy to see
that λ10 is a fixed point of Φ. Consider that λ1ı0 ≠ λ1ı0+1 for
all ı ∈ℕ ∪ f0g. Since Φ is ⊥-preserving, we have

λ1ı0⊥λ1ı0+1or λ1ı0+1⊥λ1ı0∀ı ∈ℕ ∪ 0f g: ð15Þ

This implies that fbðλı, λı+1Þg > 0 is an O-sequence.
First, we show that limı⟶∞bðλı, λı+1Þ = 0. Since Φ

satisfies (12), for all ı ∈ℕ, we have

π b λ1ı, λ1ı+1ð Þð Þ ≤ ℓπ b λ1ı−1, λ1ıð Þð Þ: ð16Þ

Since ℓ ∈ ð0, 1Þ, we have

π b λ1ı, λ1ı+1ð Þð Þ ≤ ℓπ b λ1ı−1, λ1ıð Þð Þ ≤ π b λ1ı−1, λ1ıð Þð Þ,∀ı ∈ℕ:

ð17Þ

Thus, fπðbðλı+1, λıÞÞg is a decreasing sequence; hence, it
is convergent and

lim
ı⟶∞

π b λ1ı+1, λ1ıð Þð Þ = u ≥ 0: ð18Þ

Now, we show that u = 0. From (17), we have

π b λ1ı+1, λ1ıð Þð Þ ≤ ℓπ b λ1ı, λ1ı−1ð Þð Þ ≤⋯⋯≤ℓıπ b λ11 , λ10
À ÁÀ Á

,
ð19Þ

since 0 < ℓ < 1; therefore, limı⟶∞πðbðλ1ı+1, λ1ıÞÞ = 0. So,
limı⟶∞bðλ1ı+1, λ1ıÞ = 0 by (ii).

On the other hand from (19), we have

π b λ1ı+1, λ1ıð Þð Þ ≤ ℓıπ b λ11 , λ10
À ÁÀ Á

,∀ı ∈ℕ: ð20Þ

Then,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π b λ1ı+1, λ1ıð Þð Þı

p
≤ ℓı

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π b λ11 , λ10
À ÁÀ Á

ı

q
,∀ı ∈ℕ: ð21Þ

Thus,

lim
ı⟶∞

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π b λ1ı+1, λ1ıð Þð Þı

p
≤ ℓ < 1: ð22Þ

Put βı = bðλ1ı+1, λ1ıÞ; using (22), and condition (iii) of π,
we get

〠
∞

1
βı <∞ and also βı ⟶ 0: ð23Þ

Now, we will show that bðλ1ı, λ1ı+2Þ⟶ 0 as ı⟶∞.

0 < π b λ1ı+2, λ1ıð Þð Þ ≤ ℓπ b λ1ı+1, λ1ı−1ð Þð Þ
≤⋯ ≤ ℓıπ b λ12 , λ10

À ÁÀ Á
:

ð24Þ

Therefore, bðλ1ı+2, λ1ıÞ⟶ 0, as ı⟶∞.

Now, to prove that the sequence fλ1ıg is Cauchy, we
consider two cases.

Case 1. If m = 2p + 1, p ≥ 1, then

b λ1ı, λ1ı+mð Þ ≤ b λ1ı, λ1ı+1ð Þ + b λ1ı+1, λ1ı+2ð Þ
+ ::⋯ + b λ1ı+2p, λ1ı+2p+1

À Á
≤ 〠

ı+2p+1

ı

βı < 〠
∞

ı

βı:

ð25Þ
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Case 2. If m = 2p, p ≥ 2, then

b λ1ı, λ1ı+mð Þ ≤ b λ1ı, λ1ı+2ð Þ + b λ1ı+2, λ1ı+3ð Þ + ::⋯

+ b λ1ı+2p−1, λ1ı+2p
À Á

≤ 〠
ı+2p+1

ı

βı < 〠
∞

ı

βı:

ð26Þ

Thus, combining these two cases and using (23), when
ı⟶∞, we have

b λ1ı, λ1ı+mð Þ ≤ 〠
∞

ı

βı ⟶ 0, as ı⟶∞: ð27Þ

Thus, we deduce that fΦıλ1g is an orthogonal Cauchy
sequence.

Completeness of ðP ,⊥,bÞ ensures limm⟶∞λ1ı = z for
some z ∈P .

Now, we want to show that z is a fixed point of P . From
(12), we have

π b Φλ1ı,Φzð Þð Þ ≤ π b λ1ı, zð Þð Þ: ð28Þ

Hence, bðλ1ı, zÞ⟶ 0, and πðbðλ1ı, zÞÞ⟶ 0, and
therefore, limı⟶∞πðbðλ1ı+1,ΦzÞÞ = 0 as ı⟶∞. Again,

lim
ı⟶∞

b λ1ı+1,Φzð Þ = 0, ð29Þ

by using (ii).

b z,Φzð Þ ≤ b z, λ1ıð Þ + b λ1ı, λ1ı+1ð Þ + b λ1ı+1,Φzð Þ: ð30Þ

Thus, z =Φz, and hence, z is a fixed point on Φ.
Now, we prove that Φ is unique. Conversely, assume that

any two fixed points s.t bðλ1, zÞ = bðΦλ1,ΦzÞ > 0. From
(12), since Φ is preserving, ∀Φλ1⊥Φz, we have

Φıλ1⊥Φ
ıλ2 andΦıλ1⊥Φ

ızð Þ or
Φıλ1⊥Φ

ız andΦıλ1⊥Φ
ıλ2ð Þ,∀ı ∈ℕ:

ð31Þ

Now,

b λ2, zð Þ = b Φıλ2,Φızð Þ ≤ b Φıλ2,Φıλ1ð Þ + b Φıλ1,Φızð Þ:
ð32Þ

This implies that

π b λ2, zð Þð Þ < π b λ2, zð Þð Þ: ð33Þ

This is a contradiction. Then Φ has a ufp.
The below example validates the proof of Theorem 15.

Example 5. Let P = ½−2,−1� ∪ ½1, 2� and b : P ×P ⟶ ½0,∞Þ
defined as follow bðλ1, λ1Þ = 0, for all λ1 ∈P

b 1, 2ð Þ = b 2, 1ð Þ = 3, b 1,−1ð Þ = b −1, 1ð Þ
= b −1, 2ð Þ = b 2,−1ð Þ = 1,

ð34Þ

we define the relation λ1⊥λ2 and bðλ1, λ2Þ = jλ1 − λ2j,
otherwise.

We observe that

b 1, 2ð Þ > b 1,−1ð Þ + b −1, 2ð Þ: ð35Þ

Hence, Φ⊥-preserving, bðλ1, λ2Þ is not a BMS. It is obvi-
ous that bðλ1, λ2Þ is a OCBMS.

Let Φ : P ⟶P be a map defined by

Φλ1 =
3
4 λ1, λ1 ∈ −2,− 32

� �
∪

3
2 , 2
� �

,

0, otherwise:

8><
>: ð36Þ

Now, we define π : ½0,∞Þ⟶ ½0,∞Þ by πðβÞ = ffiffiffi
β

p
.

Easily, we can show that π satisfies conditions (ii) and
(iii) of Theorem 15, Φ satisfies (12), and λ∗1 = 0 is fixed point
of Φ.

Saleh et al. [11] proved a new contractive maps and their
fixed points on BMS as follows:

Theorem 16. Let ðP , bÞ be a BMS and Φ : P ⟶P be an
L∗ -contraction w.r.t (briefly with respect to) ζ ∈ L. Then, Φ
has a ufp.

In the following theorem, we are going to prove fixed-
point theorem on an orthogonal L∗-contraction mapping
using continuity hypothesis of Φ.

Theorem 17. Let ðP ,⊥,bÞ be a OCBMS with an orthogonal
element λ2 and a function Φ : P ⟶P , orthogonal L∗ -con-
traction w.r.t ζ ∈ L, the following axioms are satisfy:

(i) Φ is orthogonal-preserving.

(ii) Φ is Φ⊥ with L∗-contraction mapping.

Then, Φ has a ufp.

Proof. Since ðP , ⊥Þ is orthogonal set,

∃λ2 ∈P : ∀λ1 ∈P , λ1⊥λ2ð Þ or ∀λ1 ∈P , λ2⊥λ1ð Þ: ð37Þ

It follows that λ2⊥Φλ2 or Φλ2⊥λ2. Let

λ11 =Φλ2, λ12 =Φλ11 =Φ2λ2 ⋯⋯, λ1ı+1 =Φλ1i =Φı+1λ2,
ð38Þ

for all ı ∈ℕ ∪ f0g.
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If λ1ı0 = λ1ı0+1 for any ı ∈ℕ ∪ f0g, then it is easy to see that
λ10 is a fixed point of Φ. Consider λ1ı0 ≠ λ1ı0+1, ∀ı ∈ℕ ∪ f0g.
Since Φ is ⊥-preserving, we have

λ1ı0⊥λ1ı0+1 or λ1ı0+1⊥λ1ı0 , ð39Þ

for all ı ∈ℕ ∪ f0g. Which implies that fλ1ıg is a O-sequence.

Using equation (10) and ðζ∗2 Þ, we have

1 ≤ ζ Θ b Φλ1ı−1,Φλ1ıð Þð Þ,Θ M λ1ı−1, λ1ıð Þð Þ½ �
= ζ Θ b λ1ı, λ1ı+1ð Þð Þ,Θ M λ1ı−1, λ1ıð Þð Þ½ �
< Θ M λ1ı−1, λ1ıð Þð Þ

Θ b λ1ı, λ1ı+1ð Þð Þ :

ð40Þ

Consequently, we obtain that

Θ b λ1ı, λ1ı+1ð Þð Þ <Θ M λ1ı−1, λ1ið Þð Þ,∀ı ∈ℕ, ð41Þ

where

M λ1ı−1, λ1ıð Þ
=max b λ1ı−1, λ1ıð Þ, b λ1ı−1,Φλ1ı−1ð Þ, b λ1ı,Φλ1ıð Þf g
=max b λ1ı−1, λ1ıð Þ, b λ1ı, λ1ı+1ð Þf g:

ð42Þ

If Mðλ1ı−1, λ1ıÞ = bðλ1ı, λ1ı+1Þ, then inequality (41)
becomes

Θ b λ1ı, λ1ı+1ð Þð Þ <Θ b λ1ı, λ1ı+1ð Þð Þ,∀ı ∈ℕ: ð43Þ

This is a contradiction. Hence, we must have Mðλ1ı−1,
λ1ıÞ = bðλ1ı−1, λ1ıÞ, for all ı ∈ℕ. Therefore, inequality (41)
becomes

Θ b λ1ı, λ1ı+1ð Þð Þ <Θ b λ1ı−1, λ1ıð Þð Þ,∀ı ∈ℕ, ð44Þ

which implies from ðΘ1Þ that

b λ1ı, λ1ı+1ð Þ < b λ1ı−1, λ1ıð Þ,∀ı ∈ℕ: ð45Þ

Thus, fbðλ1ı−1, λ1ıÞg is decreasing sequence and bound-
ary below by 0, so ∃r ≥ 0 s.t limı⟶∞bðλ1ı−1, λ1ıÞ = r. Suppose
that r ≠ 0, then from ðΘ2Þ

lim
ı⟶∞

Θ b λ1ı−1, λ1ıð Þð Þ > 1: ð46Þ

Taking αı =Θðbðλ1ı, λ1ı+1ÞÞ and bı =Θðbðλ1ı−1, λ1ıÞÞ,
∀ı ∈ℕ, it is clear from (44), (46), and (Θ3) that αı < bı, ∀ı ∈ℕ,
and limı⟶∞αı = limı⟶∞bı > 1. Hence, using ðζ∗3 Þ, we get

1 ≤ limsup
ı⟶∞

ζ αı, bıð Þ < 1: ð47Þ

This is a contradiction. Therefore, r = 0, we have

lim
ı⟶∞

b λ1ı−1, λ1ıð Þ = 0,∀ı ∈ℕ: ð48Þ

Now, let us assume that λ1m = λ1ı, for some m > ı. Then,
we have λ1m+1 = λ1ı+1. Using (44), we get

Θ b λ1m, λ1m+1ð Þð Þ
<Θ b λ1m−1, λ1mð Þð Þ <Θ b λ1m−2, λ1m−1ð Þð Þ
<⋯⋯ <Θ b λ1ı, λ1ı+1ð Þð Þ =Θ b λ1m, λ1m+1ð Þð Þ:

ð49Þ

This is a contradiction. To summarize λ1m ≠ λ1ı, for all
m ≠ ı.

Next, to prove fλ1ıg is a orthogonal Cauchy sequence in
ðP ,⊥,bÞ. Now, we consider it as not an orthogonal Cauchy;
then, we can find two subsequences fλ1ıℓg, and fλ1mℓ

g of
fλ1ıg s.t ıℓ is the smallest integer for which

ıℓ >mℓ > ℓ,

b λ1mℓ
, λ1ıℓ

� �
≥ ε,

b λ1mℓ
, λ1ıℓ−2

� �
< ε:

ð50Þ

By using a similar argument, we obtain

lim
ℓ⟶∞

b λ1mℓ
, λ1ıℓ

� �
= ε = lim

ℓ⟶∞
b λ1mℓ−1, λ1ıℓ−1
� �

: ð51Þ

Now, using (10) and ðζ∗2 Þ, we have

1 ≤ ζ Θ b Φλ1mℓ−1,Φλ1ıℓ−1
� �� �

,Θ M λ1mℓ−1, λ1ıℓ−1
� �� �h i

= ζ Θ b λ1mℓ
, λ1ıℓ

� �� �
,Θ M λ1mℓ−1, λ1ıℓ−1

� �� �h i

<
Θ M λ1mℓ−1, λ1ıℓ−1

� �� �
Θ b λ1mℓ

, λ1ıℓ
� �� � ,

ð52Þ

which implies that

Θ b λ1mℓ
, λ1ıℓ

� �� �
<Θ M λ1mℓ−1, λ1ıℓ−1

� �� �
,∀ℓ ∈ℕ, ð53Þ

where

M λ1mℓ−1, λ1ıℓ−1
� �

=max b λ1mℓ−1, λ1ıℓ−1
� �

, b
n

Á λ1mℓ−1, λ1mℓ

� �
, b λ1ıℓ−1, λ1ıℓ
� �o

:

ð54Þ

From (48), (51), and Remark 5, we get

lim
ℓ⟶∞

M λ1mℓ−1, λ1ıℓ−1
� �

=max ε, 0, 0f g = ε: ð55Þ
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Now, let αℓ =Θðbðλ1mℓ
, λ1ıℓÞÞ, and bℓ =ΘðMðλ1mℓ−1,

λ1ıℓ−1ÞÞ, for all ℓ ∈ℕ. In view of (51), (53), (55), and ðΘ3Þ,
we have αℓ < bℓ, for all ℓ ∈ℕ and lim

ℓ⟶∞
αℓ = lim

ℓ⟶∞
bℓ > 1.

Therefore, using ðζ∗3 Þ, we obtain

1 ≤ limsup
ℓ⟶∞

ζ αℓ, bℓð Þ < 1, ð56Þ

which is contradiction. Hence, fλ1ıg ∈ ðP ,⊥,bÞ is orthogo-
nal Cauchy sequence. As ðP ,⊥,bÞ is complete, then there
exists ℓ ∈P s.t

lim
ı⟶∞

b λ1ı, ℓð Þð Þ = 0: ð57Þ

Without loss of generality, we consider λ1ı ≠ ℓ and
Φλ1ı ≠Φℓ, for all ı ∈ℕ. Suppose that bðℓ,ΦℓÞ > 0, it fol-
lows from (10) and ζ∗2 that

1 ≤ ζ Θ b Φλ1ı,Φℓð Þð Þ,Θ M λ1ı, ℓð Þð Þ½ �
= ζ Θ b λ1ı+1,Φℓð Þð Þ,Θ M λ1ı, ℓð Þð Þ½ �
< Θ M λ1ı, ℓð Þð Þ
Θ b λ1ı+1,Φℓð Þð Þ ,

ð58Þ

where Mðλ1ı, ℓÞ =max fbðλ1ı, ℓÞ, bðλ1ı, λ1ı+1Þ, bðℓ,ΦℓÞg,
which implies that

Θ b λ1ı+1,Φℓð Þð Þ <Θ M λ1ı, ℓð Þð Þ: ð59Þ

From Remark 5 and Lemma 12, we have

lim
ı⟶∞

b λ1ı+1,Φℓð Þ = lim
ı⟶∞

M λ1ı, ℓð Þ = b ℓ,Φℓð Þ > 0: ð60Þ

Let αı =Θðbðλ1ı+1,ΦℓÞÞ, and bı =ΘðMðλ1ı, ℓÞÞ, for all
ı ∈ℕ; it follows from (10) and ζ∗3 that

1 ≤ limsup
ı⟶∞

ζ αı, bıð Þ < 1: ð61Þ

This is a contradiction. Therefore, summarize ℓ =Φℓ,
that is, ℓ is a fixed point of Φ. Finally, prove that Φ is ufp.

Consider two different fixed points ℓ and z in P .
Then, bðℓ, zÞ = bðΦℓ,ΦzÞ > 0, since Φ is an orthogonal-

preserving, ∀Φℓ⊥Φz.
Using (10) and ζ∗2 , we deduce that

1 ≤ ζ Θ b Φℓ,Φzð Þð Þ,Θ M ℓ, zð Þð Þ½ �
= ζ Θ b ℓ, zð Þð Þ,Θ M ℓ, zð Þð Þ½ � < Θ M ℓ, zð Þð Þ

Θ b ℓ, zð Þð Þ ,
ð62Þ

where Mðℓ, zÞ =max fbðℓ, zÞ, bðℓ,ΦℓÞ, bðz,ΦzÞg = bðℓ, zÞ,
which implies that

Θ b ℓ, zð Þð Þ <Θ M ℓ, zð Þð Þ =Θ b ℓ, zð Þð Þ: ð63Þ

This is a contradiction. Therefore, Φ has a ufp.

Corollary 18. Let ðP ,⊥,bÞ be a OCBMS and Φ : P ⟶P .
Assume that ðfor all λ1, λ2 ∈P with λ1⊥λ2Þ:

(i) Φ is orthogonal-preserving

(ii) bðΦλ1,Φλ2Þ > 0⟹

Θ b Φλ1,Φλ2ð Þð Þ ≤M λ1, λ2ð Þ − φ M λ1, λ2ð Þð Þ,∀λ1, λ2
∈P with λ1⊥λ2,

ð64Þ

where Mðλ1, λ2Þ =max fbðλ1, λ2, bðλ1,Φλ1Þ, bðλ2,Φλ2ÞÞg,
and φ : ½0,∞Þ⟶ ½0,∞Þ is nondecreasing and lower semi-
continuous s.t φ−1ðf0gÞ = 0. Then, Φ has a ufp.

Proof. Let ΘðαÞ = eα, for all α > 0. From (64), we have

Θ b Φλ1,Φλ2ð Þð Þ = e b Φλ1,Φλ2ð Þð Þ ≤ eM λ1,λ2ð Þ−φ M λ1,λ2ð Þð Þ

= Θ M λ1, λ2ð Þð
eφ M λ1,λ2ð Þð Þ ,

ð65Þ

for all λ1, λ2 ∈P with λ1⊥λ2, and bðΦλ1,Φλ2Þ > 0. There-
fore, Φ is orthogonal-preserving.

Now, we define φðαÞ = InðΦðΘðαÞÞÞ, for all α > 0, where
Φ : ½1,∞Þ⟶ ½1,∞Þ is nondecreasing and lower semicon-
tinuous s.t Φ−1ðf1gÞ = 1.

From (65), we have

Θ b Φλ1,Φλ2ð Þð Þ ≤ Θ M λ1, λ2ð Þð Þ
Φ Θ M λ1, λ2ð Þð Þð Þ : ð66Þ

Taking ζðα, bÞ = ððb/αÞΦðbÞÞ and using (66), we have

1 ≤ Θ M λ1, λ2ð Þð Þ
Θ b Φλ1,Φλ2ð Þð ÞΦ Θ M λ1, λ2ð Þð Þð Þ

= ζ Θ b Φλ1,Φλ2ð Þð Þ,Θ M λ1, λ2ð Þð Þ½ �:
ð67Þ

Therefore, all conditions are satisfied in Theorem 17,
and hence, Φ has a ufp.

In the following example, validate the proof of Theorem 17.

Example 6. Let P =Π ∪Ψ, where Π = ½1, 2� and Ψ = fð1/ıÞ:
ı = 2, 3, 4, 5g: Define a map b : P ×P ⟶ ½0,∞Þ as follows:

(1) bð1/2, 1/3Þ = bð1/4, 1/5Þ = 3/10,
(2) bð1/2, 1/5Þ = bð1/3, 1/4Þ = 2/10,
(3) bð1/2, 1/4Þ = bð1/5, 1/3Þ = 6/10,
(4) bðλ1, λ1Þ = 0, bðλ1, λ2Þ = bðλ2, λ1Þ, ∀λ1, λ2 ∈Ψ, and
(5) bðλ1, λ2Þ = jλ1 − λ2j if λ1, λ2 ∈Π or λ1 ∈Π, λ2 ∈Ψ

or λ1 ∈Ψ, λ2 ∈Π:
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Here, the triangle inequality is not satisfied, so b is not a
metric on P ; we have

6
10 = b

1
5 ,

1
3

� �
> b

1
5 ,

1
4

� �
+ b

1
4 ,

1
3

� �
= 5
10 : ð68Þ

It is easy to verify that ðP , bÞ is a OCBMS. Let Φ : P
⟶P be defined as an orthogonality relation ⊥ on P by

Φλ1 =

1
5 , if λ1 ∈ 1, 32

� �
,

1
4 , if λ1 ∈

3
2 , 2
� �

∪Ψ:

8>>><
>>>:

ð69Þ

Since Φ is not continuous at λ1 = ð3/2Þ, and Φ − ⊥ is not
continuous, then Φ is neither orthogonal Θ-contraction nor
an orthogonal L∗-contraction.

Declare that Φ is an orthogonal L∗-contraction w.r.t
ζ : ½1,∞Þ × ½1,∞Þ⟶ℝ, where

ζℓ α, bð Þ = bℓ

α
,∀α, b ∈ 1,∞½ Þ, ℓ ∈ 3

8 , 1
� �

, ð70Þ

and Θ : ð0,∞Þ⟶ ð1,∞Þ, s.t ΘðαÞ = eα, ∀α ∈ ð0,∞Þ.
Indeed, for λ1 ∈ ½1, ð3/2Þ�, and λ2 ∈ ½ð3/2Þ, 2� ∪Ψ, we

have

b Φλ1,Φλ2ð Þ = b
1
4 ,

1
5

� �
= 3
10 > 0,

ζ Θ b Φλ1,Φλ2ð Þð Þ,Θ M λ1, λ2ð Þð Þ½ �

= ΘM λ1, λ2ð Þ½ �ℓ
Θ b Φλ1,Φλ2ð Þð Þ ≥

e4ℓ/5

e3/10
= e 1/5ð Þ 4ℓ− 3/2ð Þð Þ

≥ 1, for any ℓ ∈ 3
8 , 1
� �

:

ð71Þ

Hence, all the hypotheses are satisfied in Theorem 17,
and ℓ = 1/4 is the ufp of Φ.

4. An Application

The following BVP of a fourth-order differential equation is
taken from Saleh et al. [11].

In this section, as an application of Theorem 17, we pres-
ent the following result which provides an existence and
uniqueness solution to the BVP of a fourth-order differential
equation through an orthogonal L∗-contraction.

λ1″′′ αð Þ = g α, λ1 αð Þ, λ1′ αð Þ, λ1′′ αð Þ, λ1′′′ αð Þ
� �

, α ∈ 0, 1½ �,

λ1 0ð Þ = λ1′ 0ð Þ = λ1″ 1ð Þ = λ1″′ 1ð Þ = 0:

8<
:

ð72Þ

Let g : ½0, 1� ×ℝ4 ⟶ℝ is a continuous function. Let
P =C ½0, 1� represent the space of all continuous functions

defined on the interval [0,1]. Define a metric Φ : P ×P

⟶ℝ by

Φ λ1, λ2ð Þ = max
α∈ 0,1½ �

λ1 αð Þ − λ2 αð Þj j, for all λ1, λ2 ∈P : ð73Þ

It is known that ðP ,ΦÞ is a complete BMS. Define the
green function associated with (72)

G b, αð Þ =
1
6 α

2 3b − αð Þ, 0 ≤ α ≤ b ≤ 1,

1
6 b

2 3α − bð Þ, 0 ≤ b ≤ α ≤ 1:

8>><
>>: ð74Þ

Now, we provide the following result regarding the BVP
(72) solution.

Theorem 19. Assume that the following axioms are satisfied:
(P1) g : ½0, 1� ×ℝ4 ⟶ℝ is orthogonal continuous

function
(P2) there exist τ > 0 and s.t, for all λ1, λ2 ∈P , λ1⊥λ2,

and b ∈ ½0, 1�

g b, λ1, λ1′
� �

− g b, λ2, λ2′
� ���� ���

≤ 8e−τ max λ1 bð Þ − λ2 bð Þj j, λ1 bð Þjf½
−Φλ1 bð Þj, λ2 bð Þ −Φλ2 bð Þj jg�,

ð75Þ

where Φ : P ⟶P is defined by

Φλ1 αð Þ =
ð1
0
G α, bð Þg b, λ1 bð Þ, λ1′ bð Þ

� �
ds: ð76Þ

Then, (72) has a unique solution in P .

Proof. Define the binary relation ⊥ on P by

λ1⊥λ2 ⇐ λ1 σð Þλ2 σð Þ ≥ λ1 σð Þ or λ1 σð Þλ2 σð Þ
≥ λ2 σð Þ,∀σ ∈ 0, 1½ �: ð77Þ

Observe that λ1 ∈P is a solution of (72) iff λ1 ∈P is a
solution of the differential equation

λ1 αð Þ =
ð1
0
G α, bð Þg b, λ1 bð Þ, λ1′ bð Þ

� �
ds,∀λ1 ∈P : ð78Þ

Then, Φ is an orthogonal-continuous.
Now, we show that Φ is orthogonal-preserving, in (P2),

for all λ1, λ2 ∈P with bðΦλ1,Φλ2Þ > 0 and for all α ∈ ½0, 1�.
Then, Φ is an orthogonal-preserving.
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Next, we claim that Φ is orthogonal L⋆-contraction.
We have

Φλ1 αð Þ −Φλ2 αð Þj j

=
ð1
0
G α, bð Þg b, λ1 bð Þ, λ1′ bð Þ

� �
ds

����
−
ð1
0
G α, bð Þg b, λ2 bð Þ, λ2′ bð Þ

� �
ds
����

≤
ð1
0
G α, bð Þ g b, λ1 bð Þ, λ1′ bð Þ

� �
− g b, λ2 bð Þ, λ2′ bð Þ
� ���� ���ds

≤ 8e−τ
ð1
0
G α, bð Þ max λ1 − λ2j j, λ1 −Φλ1j j, λ2 −Φλ2j jf g½ �ds

≤ 8e−τ M λ1, λ2ð Þ½ � sup
α∈ 0,1½ �

ð1
0
G α, bð Þds

 !
,

ð79Þ

where Mðλ1, λ2Þ =max fbðλ1, λ2Þ, bðλ1,Φλ1Þ, bðλ2,Φλ2Þg.
As
Ð 1
0Gðα, bÞds = ðα4/24Þ − ðα3/6Þ + ðα2/4Þ, for all α ∈ ½0, 1�,

supα∈½0,1�
Ð 1
0Gðα, bÞds = 1/8, we obtain

b Φλ1,Φλ2ð Þ ≤ 8e−τ M λ1, λ2ð Þ½ �,

eb Φλ1,Φλ2ð Þ ≤ 8e−τ eM λ1,λ2ð Þ
� �eτ

:
ð80Þ

Observe that eτ ∈ ð0, 1Þ as τ > 0. It follows that Φ is an
orthogonal L⋆-contraction. Therefore, for all λ1, λ2 ∈P , we
obtain

ζ Θ b Φλ1,Φλ2ð Þð Þ,Θ M λ1, λ2ð Þð Þ½ �

= ΘM λ1, λ2ð Þ½ �ℓ
Θ b Φλ1,Φλ2ð Þð Þ ≥

eM λ1,λ2ð Þe−τ
� �
eb Φλ1,Φλ2ð Þ ≥ 1,

ð81Þ

where ΘðαÞ = eα, ζðα, bÞ = ðbℓ/αÞ, and ℓ = eτ. Thus, all the
axioms of Theorem 17 are fulfilled. Therefore, Φ has a ufp
in P which is a solution of (72).

5. Conclusion

In this paper, we proved the fixed-point results for orthogo-
nal L⋆-contraction map on OCBMS. Furthermore, we pre-
sented some examples to strengthen our main results. Also,
we provided an application to the BVP of a fourth-order dif-
ferential equation.

Khalehoghli et al. [19, 20] presented a real generaliza-
tion of the mentioned Banach’s contraction principle by
introducing R-metric spaces, where R is an arbitrary relation
on L. We note that in a special case, R can be considered as
R = ⪯ [partially ordered relation], R =⊥ [orthogonal relation],
etc. If one can find a suitable replacement for a Banach theo-
rem that may determine the values of fixed points, then many
problems can be solved in this R-relation. This will provide a
structural method for finding a value of a fixed point. It is an
interesting open problem to study the fixed-point results on
ℝ-complete R-metric spaces.
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This paper is aimed at proving the existence and uniqueness of a common fixed point for a pair of ω − ψ-interpolative Hardy-
Rogers-Suzuki-type contractions in the context of quasipartial b-metric space. Thus, several results in literature such as Hardy
and Rogers, Suzuki, and others have been generalized in this work. We also offer a demonstrative example and an application
of fractional differential equations to validate the findings.

1. Introduction and Preliminaries

Fixed-point theory is one of the fascinating research areas in
pure mathematics, which has many applications in both
pure and applied mathematics. Picard presented an iterative
procedure for the solution of a functional equation first time
in his research paper. This notion was later developed into
an abstract framework by the Polish mathematician Stephan
Banach [1] who presented a powerful tool known as the
Banach contraction principle to determine the fixed point
of mapping in complete metric space. It states as follows:

Theorem 1 (see [1]). Let ðM, dÞ be a complete metric space
and let f : M⟶M be a contraction; that is, there exists a
number k ∈ ½0, 1Þ such that for all u, v ∈M,

d f u, f vð Þ ≤ kd u, vð Þ: ð1Þ

Then, f has a unique fixed point w in M:
By altering the contraction conditions, maps, and other

conditions, several researchers have generalized the Banach
contraction principle.

The Banach contraction principle needs continuity of
the map involved in the contraction condition. In 1968,
Kannan [2] relaxed the continuity condition and introduced
a new fixed-point theorem with a new contraction condition
as follows:

Theorem 2. Let ðM, dÞ be a complete metric space. A map-
ping T : M⟶M is said to be a Kannan contraction if there
exists λ ∈ ½0, 1/2Þ such that

d Tx, Tyð Þ ≤ λ d x, Txð Þ + d y, Tyð Þ½ �, ð2Þ

for all x, y ∈ X \ FixðTÞ: Then, T possesses a unique fixed
point.

In 2018, Karapinar first established the interpolative
Kannan-type contraction in his paper [3] as follows:

Definition 3. Let ðM, dÞ be ametric space.We say that the self-
mapping T : M⟶M is an interpolative Kannan-type
contraction, if there exists a constant λ ∈ ½0, 1Þ and α ∈ ð0, 1Þ
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such that

d Tx, Tyð Þ ≤ λ d x, Txð Þ½ �α d y, Tyð Þ½ �1−α, ð3Þ

for all x, y ∈ X with x ≠ Tx:

Karapinar et al. [4] proved some results in the setting of
ðα, β, ψ, ϕÞ -interpolative contractions. Again in 2021, Khan
et al. [5] proved some fixed-point results on the interpolative
ðϕ, ψÞ-type Z-contraction. For more results on interpolative-
type contractions, one can see [6–8] and the references
therein.

Following the results due to Karapinar et al. [9], Gaba
and Karapinar [10] introduced a new approach to the inter-
polative contraction as follows:

Definition 4 (see [10]). Let ðM, dÞ be a metric space and f
: M⟶M be a self-map. We shall call T a relaxed ðλ, α, βÞ
-interpolative Kannan contraction, if there exists 0 ≤ λ, α, β
such that

d f u, f vð Þ ≤ λd u, f uð Þαd v, f vð Þ:β: ð4Þ

Gaba and Karapinar [10] introduced the following defini-
tion of optimal interpolative triplet as follows:

Definition 5 (see [10]). Let ðM, dÞ be a metric space and
f : M⟶M be a relaxed ðλ, α, βÞ-interpolative Kannan
contraction. The triplet ðλ, α, βÞ will be called an “optimal
interpolative triplet” if for any ϵ > 0, the inequality (4) fails
for at least one of the triplet ðλ − ϵ, α, βÞ, ðλ, α − ϵ, βÞ,
and ðλ, α, β − ϵÞ:

In view of the above definitions, Gaba and Karapinar
[10] proved the following theorem:

Theorem 6 (see [10]). Let ðM, dÞ be a complete metric space,
and f : M⟶M be a ðλ, α, βÞ-interpolative Kannan con-
traction with λ ∈ ½0, 1Þ, α, β ∈ ð0, 1Þ so that α + β < 1: Then,
f has a fixed point in M:

In 1973, Hardy and Rogers [11] introduced a natural
modification of the Banach contraction principle.

Theorem 7. Let ðM, dÞ be a complete metric space. The map-
ping f : M⟶M is called an interpolative Hardy-Rogers
type of contraction if there exist positive real numbers α, β,
γ, δ > 0, with β + α + γ + δ < 1 such that

d f u, f vð Þ ≤ αd u, vð Þ + βd u, f uð Þ + γd v, f vð Þ½ �
+ δ

1
2

d u, f vð Þ + d v, f uð Þð Þ
� �

,
ð5Þ

for each u, v ∈M \ Fixð f Þ. Then, a mapping f has a unique
fixed point in M.

Later in 2018, Karapinar et al. [12] introduced the fol-
lowing notion of interpolative Hardy-Rogers-type
contraction.

Theorem 8 (see [12]). Let ðM, dÞ be a complete metric space.
The mapping f : M⟶M is called an interpolative Hardy-
Rogers type of contraction if there exist λ ∈ ð0, 1Þ and positive
reals α, β, γ > 0, with β + α + γ < 1 such that

for each u, v ∈M \ Fixð f Þ. Then, a mapping f has a unique
fixed point in M.

Several other versions of this type of results were proven
by researchers. Some of them can be seen in [9, 13–15].

In 2008, Suzuki [16] introduced a generalization of the
Banach contraction principle and characterizes the metric
completeness of the underlying space. The generalized result
is as follows:

Theorem 9 (see [16]). Let ðM, dÞ be a complete metric space
and let f : M⟶M be a mapping such that for all u, v ∈M,

Φ kð Þd u, f uð Þ ≤ d u, vð Þ⇒ d f u, f vð Þ ⩽ kd u, vð Þ, ð7Þ

where Φ : ½0, 1Þ⟶ ð1/2, 1Þ is a nonincreasing function

defined by

Φ kð Þ =

1 if 0 ≤ k ≤

ffiffiffi
5

p
− 1

� �
2

,

1 − kð Þk−2 if

ffiffiffi
5

p
− 1

� �
2

≤ k ≤ 2−1/2,

1 + kð Þ−1 if 2−1/2 ≤ k < 1:

8>>>>>>>><
>>>>>>>>:

ð8Þ

Then, there exists a unique fixed-point w ∈M. A mapping
f satisfying (7) is called as the Suzuki contraction.

Example 10 (see [16]). Let M = fð1, 1Þ, ð4, 1Þ, ð1, 4Þ, ð4, 5Þ, ð
5, 4Þg with a metric d be defined by

d u1, u2ð Þ, v1, v2ð Þð Þ = u1 − v1j j + u2 − v2j j: ð9Þ

d f u, f vð Þ ≤ λ d u, vð Þ½ �β: d u, f uð Þ½ �α: d v, f vð Þ½ �γ: 1
2 d u, f vð Þ + d v, f uð Þð Þ
� �1−α−β−γ !

, ð6Þ
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Define a mapping

f u1, u2ð Þ =
u1, 1ð Þ if u1 ≥ u2,
1, u2ð Þ if u1 > u2:

(
ð10Þ

Then, the map f satisfies all the hypotheses of Theo-
rem 9, and ð1, 1Þ is the unique fixed point of f . However,
for u = ð4, 5Þ and v = ð5, 4Þ, dð f u, f vÞ = 6 > 2 = dðu, vÞ:
Thus, f does not satisfy the assumptions in Theorem 9
for any k ∈ ½0, 1Þ.

In 2021, Yeşilkaya [17] generalized the Banach contrac-
tion principle to ðλ, α, βÞ-interpolative Kannan contraction
as follows:

Definition 11 (see [17]). Let ðM, dÞ be a metric space. The
mapping f : M⟶M is called an ω − ϕ interpolative
Hardy-Rogers contraction of the Suzuki type. If there exist
ψ ∈Ψ, ω : M ×M⟶ ½0,∞Þ, and positive reals α, β, γ > 0,
with α + β + γ < 1, such that

where Ψ is the set of all nondecreasing self-mappings ψ on
½0,∞Þ such that ∑∞

n=1ψ
nðtÞ <∞ for all t > 0.

Similar results can be seen in [6, 7] and the references
therein.

In 2012, Wardowski [18] generalized the Banach con-
traction principle into F-contraction mapping principle as
follows:

Definition 12 (see [18]). Let ðM, dÞ be a metric space. A
mapping f : M⟶M is called an F-contraction if there
exist τ > 0 and F ∈F such that

τ + F d f u, f vð Þð Þ ⩽ F d u, vð Þð Þ, ð12Þ

holds for any u, v ∈M with dð f u, f vÞ > 0, where F is the set
of all functions F : R+ ⟶ R satisfying the following
conditions:

(F1) F is strictly increasing: u < v⇒ FðuÞ < FðvÞ,
(F2) For each sequence fαngn∈N in R+, limn⟶∞FðαnÞ

= −∞,
(F3) There exists k ∈ ð0, 1Þ such that limα⟶∞αkFðαÞ = 0.

We denote by F the set of all functions satisfying the
conditions ðF1Þ and ðF2Þ:

Example 13 (see [18]). The following F : ð0,+∞Þ are the ele-
ments of F

(1) Fθ = θ,
(2) Fθ = lnθ + θ,

(3) Fθ = −1/
ffiffiffi
θ

p
,

(4) Fθ = ln ðθ2 + θÞ:

In 2013, Salimi et al. [19] and Hussain et al. [20] modi-
fied the notions of α − ϕ-contractive and α-admissible map-
pings and established certain fixed-point theorem as given
below:

Definition 14 (see [19]). Let f be a self-mapping on M and
α, η : M ×M⟶ ½0,+∞Þ be two functions. We say that T
is an α-admissible mapping with respect to η if u, v ∈M,

α u, vð Þ ≥ η u, vð Þ⇒ α f u, f vð Þ ≥ η f u, f vð Þ: ð13Þ

Remark 15. It should be noted that Definition 14 reduces to
α-admissible mapping definition due to Samet et al. [21] if
we assume that αðu, vÞ = 1. Furthermore, if we suppose that
ηðu, vÞ = 1, we may argue that f is an admissible η-sub
admissible mapping.

Note that a self-map f can be ω-orbital admissible as
stated in the definition below:

Definition 16 (see [11]). Let f be a self-map defined on M,
and ω : M ×M⟶ ½0,∞Þ be a function. f is said to be an
ω-orbital admissible if for all u ∈M, we have

ω u, f uð Þ ≥ 1⇒ ω u, f 2u
À Á

≥ 1: ð14Þ

Gopal et al. [22] established the idea of α-type F-con-
tractions and α-type F-weak contractions by combining
the concepts of α-admissible mappings with F-contractions
and F-weak contractions:

Definition 17 (see [22]). Let ðM, dÞ be a metric space and g
: M⟶M be a mapping. Suppose α : M ×M⟶ f−∞g ∪
ð0,∞Þ be a function. The function g is said to be an α-type
F-contraction if there exists τ > 0 such that for all u, v ∈M,

d f u, f vð Þ > 0⇒ τ + α u, vð ÞF d gu, gvð Þð Þ ≤ F d u, vð Þð Þ: ð15Þ

1
2 d u, f uð Þ ≤ d u, vð Þ⇒ ω u, vð Þd f u, f vð Þ ≤ ψ d u, vð Þ½ �β: d u, f uð Þ½ �α: d v, f vð Þ½ �γ: 1

2 d u, f vð Þ + d v, f uð Þð Þ
� �1−α−β−γ( )

, ð11Þ

3Journal of Function Spaces



In 2019, Dey et al. [23] introduced the notion of general-
ized α-F-contraction mapping as follows:

Theorem 18 (see [23]). Let ðM, dÞ be a metric space and g
: M⟶M be a mapping. Let α : M ×M⟶ ½0,∞Þ be a
function and F ∈F: The function g is said to be a modified
generalized α − F-contraction mapping if there exists τ > 0

such that for all u, v ∈M,

d gu, gvð Þ > 0⇒ τ + α u, vð ÞF d gu, gvð Þð Þ ≤ F Ng u,vð Þ
� �

,

ð16Þ

where

Later, Wangwe and Kumar [24] proved results for α − F
-type contractions. One can see more results in [25–28] and
the references therein.

F − contraction mapping of Hardy-Rogers type was
introduced by Cosentino and Vetro [29] as follows:

Definition 19 (see [29]). Let ðM, dÞ be a metric space. A self-
mapping f on M is called an F-contraction of Hardy-Rogers
type if there exists F ∈F and τ ∈ S such that

τ d u, vð Þ + F d f u, f vð Þð Þð Þ ≤ F αd u, vð Þ + βd u, f uð Þ½
+ γd v, f vð Þ + δd u, f vð Þ + Ld v, f uð Þ�, ð18Þ

for all u, v ∈M with f u ≠ f v where α, β, γ, δ, L ∈ ½0,+∞Þ,

α + β + γ + 2δ = 1: ð19Þ

Moreover, f is said to be a F-contraction of Suzuki-
Hardy-Rogers type [30] if contraction Condition (18) holds
for all u, v ∈M with f u ≠ f v and dðu, f uÞ/2 < dðu, vÞ:

Many researchers generalized the concept of metric
space. The concept of b-metric space was first introduced
by Bakhtin in 1989. By adding a variable s ≥ 1 to the defini-
tion of metric space, the triangle inequality in this concept
was relaxed as follows:

Definition 20 (see [31]). A b-metric on a nonempty setM is a
function d : M ×M⟶ ½0,∞Þ, such that for all u, v,w ∈M
and for some real number s ≥ 1, it satisfies the following:

(i) if dðu, vÞ = 0, then u = v,

(ii) dðu, vÞ = dðv, uÞ,
(iii) dðu, vÞ ⩽ s½dðu,wÞ + dðw, vÞ�,

then, a pair ðM, dÞ is called b-metric space.

In 2021, Pauline and Kumar [32] presented an extension
of the fixed-point theorem for T-Hardy-Rodgers contraction

mappings in b-metric space. Czerwick [33] proved the exis-
tence of fixed point in b-metric space as follows:

Theorem 21 (see [33]). Let ν be a topological space and let
ðM, dÞ be a complete b-metric space. Let f : M⟶M be con-
tinuous and satisfy for each w ∈ ν

d f u,wð Þ, f v,wð Þ½ � ≤ αd u, vð Þ, ð20Þ

for all u, v ∈M, where 0 < α < 1. Then for each w ∈ ν, there
exists a unique fixed-point uðwÞ of f , i.e., f ½uðwÞ,w� = uðwÞ
and the function w⟶ uðwÞ is continuous on ν:

In 1994, Matthews [34] introduced partial metric space
as a result of the failure of metric functions in computer sci-
ence as follows:

Definition 22 (see [34]). Let M ≠∅. A partial metric is a
function p : M ×M⟶ R+satisfying

(i) pðu, vÞ = pðv, uÞ,
(ii) If 0 ⩽ pðu, uÞ = pðu, vÞ = pðv, vÞ, then u = v,

(iii) pðu, vÞ + pðw,wÞ ⩽ pðu,wÞ + pðw, vÞ for all u, v,w
∈M.

Then, a pair ðM, pÞ is called partial metric space. It is
clear that if pðu, vÞ = 0, then u = v; however, if u = v, then p
ðu, vÞ may not be zero.

Remark 23 (see [34]). As partial metrics have a wider range
of topological features and may easily support partial
ordering, partial metrics are more versatile than metric
spaces.

Künzi et al. [35] proposed the idea of partial quasimetric
by eliminating symmetry condition from the notion of par-
tial metric space.

Ng u,vð Þ =max d u, vð Þ, d u, gvð Þ + d v, guð Þ
2 , d g2u, u

À Á
+ d g2u, gv
À Á

2 , d g2u, gu
À Á

, d g2u, v
À Á

, d gu, vð Þ + d v, gvð Þ, d g2u, gv
À Á

+ d u, guð Þ
� �

:

ð17Þ
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Definition 24 (see [35]). A quasipartial metric on a non-
empty set M is a function qp : M ×M⟶ ½0,∞Þ such that

(1) qpðu, uÞ ⩽ qpðu, vÞ whenever u, v ∈M,

(2) qpðu, uÞ ⩽ qpðv, uÞ whenever u, v ∈M,

(3) qpðu,wÞ + qpðv, vÞ ⩽ ðqpðu, vÞ + qpðv,wÞÞ, whenever
u, v,w ∈M,

(4) u = v if and only if qpðu, uÞ = qpðu, vÞ = qpðv, vÞ
whenever u, v ∈M.

A pair ðM, qpÞ is called a quasipartial metric space.

In 2015, Gupta and Gautam [36] introduced the notion
of quasipartial b-metric space as follows:

Definition 25 (see [36]). A quasipartial b-metric on a non-
empty set M is a function qpb : M ×M⟶ ½0,∞Þ such that
for some real number s ≥ 1, it satisfies the following:

(i) if qpbðu, uÞ = qpbðu, vÞ = qpbðv, vÞ, then u = v (indis-
tancy implies equality),

(ii) qpbðu, uÞ ⩽ qpbðu, vÞ (small self-distances),

(iii) qpbðu, uÞ ⩽ qpbðv, uÞ (small self-distances)

(iv) qpbðu, vÞ + qpbðw,wÞ ⩽ s½qpbðu,wÞ + qpbðw, vÞ� (tri-
angularity), for all u, v ∈M.

Then, the pair ðM, qpbÞ is quasipartial b-metric on
space M.

Example 26 (see [36]). Let M =ℝ be the set of all real num-
bers. Define qpb : ℝ ×ℝ⟶ℝ+ by

qpb u, vð Þ = u − vj j + uj j: ð21Þ

Then, it is a quasipartial b-metric on M:
Gautam et al. [37, 38] extended several results in quasi-

partial b-metric spaces.
In this article, we establish the existence and uniqueness

of fixed-point theorems for ω − ψ- interpolative Hardy-Rog-
ers-Suzuki-type contraction in a compact quasipartial b
-metric spaces with an application to fractional differential
equations. An example is given to use the results that have
been proven. The outcomes of this study will generalize sev-
eral results obtained in [11, 12, 16–18, 25, 39, 40] and the
references therein.

2. Main Results

To establish our first main results, we will begin by general-
izing Definition 11 and extend it to a compact quasipartial b
-metric space.

Definition 27. Let ðM, qpbÞ be a compact quasipartial b-metric
space. A map f : M⟶M is called ω − ψ-interpolative
Hardy-Rogers contraction of Suzuki type, if there exist ψ ∈Ψ
, where Ψ is the set of all nondecreasing self-mappings ψ on
½0,∞Þ such that ∑∞

n=1ψ
nðtÞ <∞ for all t > 0 and α, β, γ > 0,

with α + β + γ < 1,

We now present our main theorem as follows:

Theorem 28. Let ðM, qpbÞ be a compact quasipartial b
-metric space and f : M⟶M be ω − ψ-interpolative
Hardy-Rogers contraction of Suzuki type. If f is ω-orbital
admissible mappings such that

ω u0, f u0ð Þ ≥ 1, ð23Þ

for some u0 ∈M: Then, a mapping f has a fixed point in M if
at least one of the following properties holds

(i) ðM, qpbÞ is ω-regular
(ii) f is a continuous map

(iii) f 2 is continuous, ωðu, f uÞ ≥ 1 where u ∈ Fixð f 2Þ:

Proof. Let u0 ∈M satisfies

ω u0, f u0ð Þ ≥ 1: ð24Þ

We construct a sequence fung∞n=1 as shown below

u1 = f u0, u2 = f u1,⋯, un = f un−1: ð25Þ

Assume that

un0 = un0+1 ð26Þ

for some n0 ∈ℕ, so that un0 is a fixed point of f . Thus on
contrary, we can suppose that

un ≠ un+1, ð27Þ

1
2 qpb u, f uð Þ < qpb u, vð Þ⇒ ω u, vð Þqpb f u, f vð Þ < ψ qpb u, vð Þ½ �β qpb u, f uð Þ½ �α qpb v, f vð Þ½ �γ 1

2 qpb u, f vð Þ + qpb v, f uð Þð Þ
� �1−α−β−γ( )

,

∀u, v ∈M \ Fix fð Þ:
ð22Þ
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for each n ∈ℕ ∪ f0g. As f is ω-orbital admissible

ω u0, f u0ð Þ = ω u0, u1ð Þ ≥ 1, ð28Þ

implies that

ω u1, f u1ð Þ = ω u1, u2ð Þ ≥ 1: ð29Þ

Similarly, continuing this process, we get a sequence,

ω un−1, unð Þ ≥ 1: ð30Þ

By substituting u = un−1 and v = f un−1 = un in Definition

27, we obtain

1
2 qpb un−1, f un−1ð Þ = 1

2 qpb un−1, unð Þ < qpb un−1, unð Þ
⇒ ω un−1, unð Þqpb f un−1, f unð Þ
< ψ qpb un−1, unð Þ½ �β qpb un−1, f un−1ð Þ½ �α qpb un, f unð Þ½ �γ
�

Â 1
2 qpb un−1, f unð Þ + qpb un, f un−1ð Þð Þ
� �1−α−β−γ!

= ψ qpb un−1, unð Þ½ �β qpb un−1, unð Þ½ �α qpb un, un+1ð Þ½ �γ
�

Â 1
2 qpb un−1, un+1ð Þ + qpb un, unð Þð Þ
� �1−α−β−γ!

:

ð31Þ

Thus, using ψðtÞ < t for t > 0, we have

Assuming that,

qpb un−1, unð Þ < qpb un, un+1ð Þ, ð33Þ

for all n ∈ℕ, then

1
2 qpb un−1, unð Þ + qpb un, un+1ð Þð Þ ≤ qpb un, un+1ð Þ, ð34Þ

Thus,

qpb un, un+1ð Þ½ �α+β < qpb un−1, unð Þ½ �α+β, ð35Þ

which is a contradiction. Hence, we get ∀n ∈ℕ,

qpb un, un+1ð Þ ≤ qpb un−1, unð Þ: ð36Þ

Then, the positive sequence fqpbðun−1, unÞg is a nonin-
creasing sequence with positive terms, so we attain that there
exists a ≥ 0 such that

lim
n⟶∞

qpb un−1, unð Þ = a: ð37Þ

Accordingly, we get

1
2 qpb un−1, unð Þ + qpb un, un+1ð Þð Þ < qpb un, un+1ð Þ: ð38Þ

Furthermore, using Equation (32),

qpb un, un+1ð Þ½ �1−γ < ψ qpb un−1, unð Þ½ �, ð39Þ

or equivalent

qpb un, un−1ð Þ < ψ qpb un−1, unð Þð Þ: ð40Þ

Hence, by repeating this condition, we can write

qpb un, un+1ð Þ < qpb un−1, unð Þ < ψ2qpb qpb un−2, un−1ð Þð Þ
<⋯ < ψnqpb u0, u1ð Þ:

ð41Þ

Now, we claim that fxng is a Cauchy sequence in ðX, q
pbÞ: Then, we shall use the triangle inequality with Equation
(41) for s ≥ 1 and find that

qpb un, un+lð Þ ≤ s qpb un, un+1ð Þ + qpb un+1, un+2ð Þð
+⋯+qpb un+l−1, un+lð Þ − qpb un+l−1, un+l−1ð ÞÞ,

< ψn qpb u0, u1ð Þ + ψn+1qpb u0, u1ð ÞÀ
+ :: + ψn+l−1qpb u0, u1ð Þ

�
, < 〠

∞

k=1
ψk qpb u0, u1ð Þð Þ:

ð42Þ

Letting n⟶∞ in Equation (42), we find that fung is a
Cauchy sequence in ðM, qpbÞ. Regarding that ðM, qpbÞ is

qpb un, un+1ð Þ < ψ qpb un−1, unð Þ½ �β qpb un−1, unð Þ½ �α qpb un, un+1ð Þ½ �γ 1
2 qpb un−1, un+1ð Þ + qpb un, unð Þð Þ
� �1−α−β−γ !

< qpb un−1, unð Þ½ �β qpb un−1, unð Þ½ �α qpb un, un+1ð Þ½ �γ 1
2 qpb un−1, unð Þ + qpb un, un+1ð Þð Þ
� �1−α−β−γ

:

ð32Þ
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complete, there exists t ∈M such that

lim
n⟶∞

qpb un, tð Þ = 0: ð43Þ

We will show that the point t is a fixed point of f . If
Equation (32) holds, that is, ðM, qpbÞ is ω-regular, then f
ung verify Equation (32), that

ω un, un+1ð Þ ≥ 1: ð44Þ

and ∀n ∈ℕ, we get

ω un, tð Þ ≥ 1: ð45Þ

We assert that

1
2 qpb un, f unð Þ ≤ qpb un, tð Þ, ð46Þ

or

1
2 qpb f un, f f unð Þð Þ ≤ qpb f un, tð Þ, ð47Þ

∀n ∈ℕ: Assuming on the contrary that

1
2 qpb un, f unð Þ > qpb un, tð Þ, ð48Þ

and

1
2 qpb f un, f f unð Þð Þ > qpb f un, tð Þ: ð49Þ

Using triangle inequality for s ≥ 1, we obtain

qpb un, un+1ð Þ = qpb un, f unð Þ ≤ s qpb un, tð Þ + qpb t, f unð Þ − qpb t, tð Þð Þ
< 1
2 qpb un, un+1ð Þ + 1

2 qpb un, un+2ð Þ = qpb un, un+1ð Þ,
ð50Þ

which is a contradiction. Therefore, ∀n ∈ℕ, either

1
2 qpb un, f unð Þ ≤ qpb un, tð Þ, ð51Þ

or

1
2 qpb f un, f f unð Þð Þ ≤ qpb f un, tð Þ, ð52Þ

holds. In case that inequality (46) holds, we get

If Equation (47) holds, we have

Therefore, letting n⟶∞ in Equations (54) and (55),
we get qpbðt, tÞ = 0, that is,

ft = t: ð56Þ

In case that assumption (47) is true, that is the mapping
f is continuous,

t = ft = lim
n⟶∞

f un = lim
n⟶∞

un+1, ð57Þ

qpb un+1, ftð Þ < ω un, tð Þ:qpb f un, ftð Þ < ψ qpb un, tð Þð½ �β qpb un, f unð Þ½ �α qpb t, ftð Þ½ �γ 1
2 qpb un, ftð Þ + qpb t, un+1ð Þð Þ
� �1−α−β−γ !

:

< qpb un, tð Þð½ �β qpb un, un+1ð Þ½ �α qpb t, ftð Þ½ �γ 1
2 qpb un, ftð Þ + qpb t, un+1ð Þð Þ
� �1−α−β−γ

:

ð53Þ

qpb un+2, ftð Þ < ω un+1, tð Þqpb f f unð Þ, ftð ÞÞ < ψ qpb f un, tð Þ½ �β qpb f un, f f unð Þð Þ½ �α qpb t, ftð Þ½ �γ 1
2 qpb f un, ftð Þ + qpb t, f f unð Þð Þð Þ
� �1−α−β−γ !

,

ð54Þ

= ψ qpb un+1, tð Þ½ �β qpb un+1, un+2ð Þ½ �α qpb t, ftð Þ½ �γ 1
2 qpb un+1, ftð Þ + qpb t, f un+2ð Þð Þ
� �1−α−β−γ !

: ð55Þ
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and we want to show that also

ft = t: ð58Þ

Assuming on the contrary that

t ≠ ft: ð59Þ

Since,

1
2 qpb ft, f 2 tð ÞÀ Á

= 1
2 qpb ft, tð Þ < qpb ft, tð Þ, ð60Þ

by Equation (47), we get

which is a contradiction. Consequently,

t = ft, ð62Þ

that is, t is a fixed point of f .

The following corollary is obtained by substituting ω = 1
in Theorem 28.

Corollary 29. Let ðM, qpbÞ be a complete and compact metric
space and f be self-mapping on M, such that

1
2
qpb u, f uð Þ < qpb u, vð Þ, ð63Þ

implies

for each u, v ∈M \ Fixð f Þ, where ψ ∈Ψ and positive real β,
α, γ > 0, with α + β + γ < 1. Then, f has a fixed point in M.

Proof. In Theorem 28, it is sufficient to get

ω u, vð Þ = 1, ð65Þ

for proof.

Further, taking ψðpÞ = pλ, with λ ∈ ½0, 1Þ in Corollary 29,
we obtain the following Corollary.

Corollary 30. Let ðM, qpbÞ be a compact quasipartial b
-metric space and f be a self-mapping on space M such that

1
2
qpb u, f uð Þ < qpb u, vð Þ, ð66Þ

implies that

qpb f u, f vð Þ < λ qpb u, vð Þ½ �β: qpb u, f uð Þ½ �α qpb v, f vð Þ½ �γ

Á 1
2

qpb u, f vð Þ + qpb v, f uð Þð Þ
� �1−α−β−γ

,
ð67Þ

for each u, v ∈M \ Fixð f Þ, where positive reals α, β, γ > 0,
with α + β + γ < 1. Then, f has a fixed point in M.

Remark 31. If we replace the quasipartial b-metric space by
the metric space in Theorem 28, then we get the result due
to Yeşilkaya [17] as a corollary.

Kumar [27] discussed the concept of orbital continuity.
Using this concept, we formulate the following example
which validates the result proved in Theorem 28.

Example 32. Let M = ½0, 2� and

qpb = u − vj j + uj j: ð68Þ

Here, ðM, qpbÞ is a complete and compact quasipartial b
-metric space defined by

f uð Þ =
1
3 if , 0 ≤ u ≤ 1,
u
5 if , 1 < u ≤ 2,

8><
>: ð69Þ

qpb t, ftð Þ < ω t, ftð Þ:qpb f 2t, ft
À Á

< ψ qpb ft, tð Þ½ �β qpb ft, f 2t
À ÁÂ Ãα

qpb t, ftð Þ½ �γ 1
2 qpb ft, ftð Þ + qpb ft, f 2t

À ÁÀ Á� �1−α−β−γ !

< qpb ft, tð Þ½ �β qpb ft, tð Þ½ �α qpb t, ftð Þ½ �γ 1
2 qpb ft, tð Þ
� �1−α−β−γ

< qpb t, ftð Þ,
ð61Þ

qpb f u, f vð Þ < ψ qpb u, vð Þ½ �β qpb u, f uð Þ½ �α qpb v, f vð Þ½ �γ 1
2 qpb u, f vð Þ + qpb v, f uð Þð Þ
� �1−α−β−γ !

, ð64Þ
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and further, let

ω u, vð Þ =
3, if , 0 ≤ u ≤ 1,
1, if , u = 0, and v = 2,
0, otherwise:

8>><
>>: ð70Þ

The mapping f is not continuous but since

f 2 = 1
3 , ð71Þ

we have f 2 is continuous mapping. Let a function ψ ∈Ψ
defined as ψ = t/6 and we choose β = 1/2, α = 1/3, γ = 1/7,
and t = 1. Then, we have to check if Theorem 28 holds.
We have to consider the following cases:

(i) For u, v ∈ ½0, 1�, we have

1
2 qpb u, f uð Þ < qpb u, vð Þ, ð72Þ

implies

(ii) For u = 0 and v = 2, we have

1
2 qpb 0, f 0ð Þ = 1

3 < qpb 0, 2ð Þ = 2, ð74Þ

implies

ω 0, 2ð Þqpb f 0, f 2ð Þ = 2
5 , <

1
6 2½ �1/2À Á 2

5

� �1/3 !
18
5

� �1/7 !
1
2

2
5 + 18

5

� �� �1/42
:

ð75Þ

For all other cases, Theorem 28 holds, since

ω u, vð Þ = 0: ð76Þ

As a result, the assumptions of Theorem 28 are satisfied,
also the mappings f has a fixed point u = 1/3:

3. An Application to Fractional
Differential Equations

Several authors gave solutions of fractional differential equa-
tions using fixed-point theorems. Some of them are worth
noting in this direction [41–45]. In this section, Theorem
28 is used to establish the existence and uniqueness of the
solution of the fractional order differential equation. Here,
we consider the following initial valued problem (IVP) of
the form

Dαu tð Þ = f t, utð Þ,∀t ∈ γ = 0, b½ �, α ∈ 0, 1ð Þ, ð77Þ

u tð Þ = ϕ tð Þ, t ∈ −∞,0ð Þ, ð78Þ
where Dα is the standard Riemann-Liouville fractional

derivative

f : γ × A⟶ℝ, ϕ ∈ A, ϕ 0ð Þ = 0, ð79Þ

and A is called a phase, space, or state space. Consider a
quasipartial b-metric qpb on X given by

qpb u, vð Þ = u − vj j + uj j, ð80Þ

∀u, v ∈M then, it is obvious that ðM, qpbÞ is a compact
quasipartial b-metric space. If u : ð−∞,b�⟶ℝ, and u0 ∈
γ, then for every t ∈ ½0, b�ut is a γ-valued continuous func-
tion on ½0, b�. The space γ is complete by a solution of
problems (77) and (78); we mean a space Ω = fu : ð−∞,
b�⟶ℝ : ujð−∞,0Þ∈B and uj½0,b�g: Therefore, a function u ∈
Ω is called a solution of Equations (77) and (78) if it sat-
isfies the equation DsuðtÞ = f ðt, utÞ on γ and condition u
ðtÞ = ϕðtÞ on ð−∞, 0�:

Lemma 33 (see [41]). Let 0 < β < 1 and h : ð0, b�⟶ℝ be
continuous and

lim
t⟶0+

υ tð Þ = υ 0+ð Þ ∈ℝ: ð81Þ

Then, u is a solution of the fractional integral equation

u tð Þ = 1
Γ βð Þ

ðt
0
t − sð Þβ−1υ sð Þds, ð82Þ

if and only if u is a solution of the initial value problem for the
fractional differential equation

Dβu tð Þ = υ tð Þ, t ∈ 0, bð �, u 0ð Þ = 0: ð83Þ

ω u, vð Þqpb f u, f vð Þ < ψ qpb u, vð Þ½ �β qpb u, f uð Þ½ �α qpb v, f vð Þ½ �γ 1
2 qpb u, f vð Þ + qpb v, f uð Þð Þ
� �1−α−β−γ

,
 

∀u, v ∈M
ð73Þ
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Theorem 34. Let f : γ × A⟶ℝ. Assume that there exists
q > 0 such that

f t, uð Þ − f t, vð Þj j + f t, uð Þj j ≤ q u − vj j + uj jð Þ, ð84Þ

for t ∈ γ and ∀u, v ∈ A. If bβkbq/Γðβ + 1Þ = k1λ < 1 where 0
≤ k1 < 1/7 and

kb = sup k tð Þj j: t ∈ 0, b½ �f g, ð85Þ

then, there exists a unique solution for (IVP) (77) and (78) on
the interval ð−∞, b�:

Proof.We first transform the given initial value problem into
a fixed point problem. For this, we consider an operator N
: Ω⟶Ω defined by

N uð Þ tð Þ =
ϕ tð Þ if , t ∈ −∞,0ð �,
1

Γ βð Þ
ð0
1
t − sð Þβ−1 f s, ysð Þ if , t ∈ 0, b½ �:

8><
>:

ð86Þ

Let ρð·Þ: ð−∞,b�⟶ℝ be a function defined by

ρ tð Þ =
ϕ tð Þ if , t ∈ −∞,0ð �,
0 if , t ∈ 0, bð Þ:

(
ð87Þ

Then, ξ0 = ϕ: For each η ∈ Cð½0, b�,ℝÞ with ηð0Þ = 0, we
denote by �η the function defined by

�η tð Þ =
0 if , t ∈ −∞,0ð �,
η tð Þ if , t ∈ 0, bð Þ:

(
ð88Þ

If

u tð Þ = 1
Γ βð Þ

ðt
0
t − sð Þβ−1 f s, usð Þds, ð89Þ

for every 0 ≤ t ≤ b and the function ηð·Þ satisfies

η tð Þ = 1
Γ βð Þ

ðt
0
t − sð Þβ−1 f s, �ηs + ρsð Þds: ð90Þ

Set

C0 = η ∈ C 0, b½ �,ℝð Þ: η0 = 0f g: ð91Þ

Now, let f : C0 ⟶ C0 be ω − ψ Hardy-Rogers-Suzuki
operator be defined by

f η tð Þ = 1
Γ βð Þ

ðt
0
t − sð Þβ−1 f s, �ηs + usð Þ: ð92Þ

The operator N has a fixed-point equivalent to f ; hence,
we have to prove that f has a fixed point. Indeed, if we con-

sider that η, η∗ ∈ C0, then for all t ∈ ½0, b�, we have

f η tð Þ − f η∗ tð Þj j + f η tð Þj j
= 1

Γ βð Þ
ðt
0
t − sð Þβ−1 f s, �ηs + usð Þds

����
−

1
Γ βð Þ

ðt
0
t − sð Þβ−1 f s, �η∗s + us

� �
ds
����

+ 1
Γ αð Þ

ðt
0
t − sð Þα−1 f s, �ηs + usð Þds

����
����

< 1
Γ βð Þ

ðt
0
t − sð Þβ−1 f s, �ηs + usð Þ − f s, �η∗ + ρs

� ���� ���
+ 1
Γ βð Þ

ðt
0
t − sð Þβ−1 f s, �ηs + ρsð Þj j

< 1
Γ βð Þ

ðt
0
t − sð Þβ−1 f s, �ρs + ρsð Þ − f s, �η∗ + ρs

� ���� ����
+ f s, �ηs + usð Þj jÞds

< 1
Γ βð Þ

ðt
0
t − sð Þβ−1 q �ηs − �η∗

�� �� + q �ηsj j
� �

ds

< 1
Γ βð Þ

ðt
0
t − sð Þβ−1qkb sup η sð Þ − η∗ sð Þj j + η sð Þj jð Þ

< kb
Γ βð Þ

ðt
0
t − sð Þβ−1qds η − η∗j j + ηj j:

ð93Þ

Therefore,

f ηð Þ − f η∗ð Þj j + f ηð Þj j < qbβkb
Γ β + 1ð Þ η − η∗j jb

+ ηj jqpb f ηð Þ, f η∗ð Þð Þ < λk1qpb η, η∗ð Þ:
ð94Þ

Suppose ψ ∈Ψ and α, β, γ ≥ 0 with α + β + γ < 1 such
that

1
2 qpb η, f ηð Þ < qpb η, η∗ð Þ ð95Þ

implies that

ω η, η∗ð Þqpb f η, f η∗ð Þ < ψ qpb η, η∗ð Þ½ �β: qpb η, f ηð Þ½ �β qpb η∗, f η∗ð Þ½ �γ
� �

Á 1
2 qpb η, f ηð Þ∗ð Þ + qpb η∗, f ηð Þ
� �

:

ð96Þ

Thus, we deduce that the operator f satisfy all the
hypothesis of Theorem 28. Therefore, f has a unique fixed
point.
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In this work, we introduce weak Pata convex contractions and weak E-Pata convex contractions via simulation functions in metric
spaces to prove some fixed point results for such mappings. Also, we consider an example related to weak Pata convex
contractions. Consequently, our results generalize and unify some results in the literature.

1. Introduction and Preliminaries

It is well known that Banach [1] pioneered in fixed point
theory by introducing a novel notion, namely, Banach con-
traction principle in 1922. After this date, several authors
generalized and extended this principle. A generalization
was given by Pata [2] known as Pata contraction. Recently,
Pata contraction has been studied by many authors. Some
of the studies were for Pata contraction presented by [3–13].

Firstly, the concept of ϕ − weak contraction was given by
Alber et al. [14]. Zhang et al. and Rhoades’s results [15, 16]
extend previous results given by Alber et al., and they
obtained fixed point results for single-valued mappings in
Banach spaces, and Rhoades [15] got a unique common
fixed point of such contractions, respectively.

In 2012, Samet et al. [17] suggested a novel notion, the
so-called α-admissible. Later, Karapinar et al. [18] presented
triangular α-admissible mappings, and then, Arshad et al.
[19] introduced α-orbital admissible and triangular α
-orbital admissible mappings. Due to the importance, many
authors studied such mappings. For more knowledge and
different examples related to admissible mappings, one can
see [20–25].

Istratescu [26–28] gave the concept of contractions
known as the convex contraction of order 2 and two-sided
convex contraction mappings. Very recently on, Karapinar
et al. [10] introduced the notion of α-almost Istratescu con-
traction of type E. Some notable generalizations related to
Istratescu’s results were obtained by [29–35].

In a recent work, Khojasteh et al. [36] introduced the
notion of Z-contraction using simulation functions. Later,
Karapinar [37] and Argoubi et al. [38] studied such contrac-
tions. After that, some new studies were obtained related to
simulation functions in [39–44].

The aim of this paper is to establish some fixed point
results for weak Pata convex contractive mapping and weak
E-Pata convex contractive mapping via α-admissible map-
pings by using simulation functions in metric spaces. Our
results are generalization of recent fixed point results derived
by Karapinar et al. ([10, 32, 45]), Alber et al. [14], Zhang
et al. [16], Istratescu [26], Pata [2], and Banach [1] and some
other related results in the literature.

Firstly, we start this section by recalling some definitions
related to our work.

In the course of this manuscript, ℝ, ℕ denote the set of
real numbers and the set of natural numbers, respectively.
Let FixS = fw ∈W : Sw =w:g

Alber et al. [14] gave the definition of ϕ −weak contrac-
tion, stated below.

Definition 1. See [14]. Let ðW, ρÞ be a metric space. A map-
ping S : W ⟶W is called ϕ −weak contraction, if there
exists a map ϕ : ½0,+∞Þ⟶ ½0,+∞Þ with ϕð0Þ = 0 and ϕðwÞ
> 0 for all w > 0 such that

ρ Sw, Sυð Þ ≤ ρ w, υð Þ − ϕ ρ w, υð Þð Þ, ð1Þ

for all w, υ ∈W.
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The concept of ϕ-weak contraction was generalized by
Zhang et al. [16] as generalized ϕ-weak contraction.

Definition 2. See [16]. Let ðW, ρÞ be a metric space. A map-
ping S : W ⟶W is called generalized ϕ -weak contraction,
if there exists a map ϕ : ½0,+∞Þ⟶ ½0,+∞Þ with ϕð0Þ = 0
and ϕðwÞ > 0 for all w > 0 such that

ρ Sw, Sυð Þ ≤M w, υð Þ − ϕ M w, υð Þð Þ, ð2Þ

for all w, υ ∈W, where

M w, υð Þ =max ρ w, υð Þ, ρ w, Swð Þ, ρ υ, Sυð Þ, ρ w, Sυð Þ + ρ υ, Swð Þ
2

� �
:

ð3Þ

Samet et al. [17] and Karapinar et al. [18] introduced the
following concepts, respectively.

Definition 3. Let ðW, ρÞ be a metric space, S : W ⟶W be a
map, and α : W ×W ⟶ ½0,+∞Þ be a function.

(i) [17] If αðw, υÞ ≥ 1 implies αðSw, SυÞ ≥ 1 for all w, υ
∈W, then S is called α − admissible

(ii) [18] If S is α − admissible and αðw, zÞ ≥ 1 and αðz,
υÞ ≥ 1 imply αðw, υÞ ≥ 1, then S is called triangular
α − admissible

Example 4. Let W =ℝ, the mappings S : W ⟶W by

S wð Þ =
w2 + 1

3 , w ∈ 0, 1½ Þ,
1
2 , w ∉ 0, 1½ Þ,

8>><
>>: ð4Þ

and α : W ×W ⟶ ½0,+∞Þ by

α w, υð Þ =
1, w, υ ∈ 0, 1½ �,
0, w, υ ∉ 0, 1½ �:

(
ð5Þ

Thus, S is a triangular α-admissible mapping.

Khojasteh et al. [36] gave the simulation function and Z
-contraction as follows.

Definition 5. See [36]. A mapping ζ : ½0,∞Þ × ½0,∞Þ⟶ℝ is
called a simulation function if it satisfies the following
conditions:

(ζ1) ζð0, 0Þ = 0
(ζ2) ζðw, υÞ <w − υ
(ζ3) if fwng and fυng are sequences in ð0,∞Þ such that

limn⟶+∞wn = limn⟶+∞vn > 0, then limsupn⟶+∞ζðwn, υnÞ
< 0.

Definition 6. See [36]. Let ðW, ρÞ be a metric space and
S : W ⟶W be a mapping. If there exists ζ ∈ Z such that

ζ ρ Sw, Sυð Þ, ρ w, υð Þð Þ ≥ 0, for allw, υ ∈W, ð6Þ

then, S is called Z − contraction with respect to ζ:

(ζ1) condition was removed in the above definition of
simulation function by Argoubi et al. [38] in 2015. Also, Z ′
denotes the set of all simulation functions.

Example 7. See [36, 42, 44]. Let ζ : ½0,∞Þ × ½0,∞Þ⟶ℝ and
φi : ½0,∞Þ⟶ ½0,∞Þ, i = 1, 2, 3 be continuous functions
with φiðwÞ = 0⇔ t = 0.

ζðw, υÞ = φ1ðwÞ − φ2ðvÞ, for all w, v ∈ ½0,∞Þ, where φ1
ðwÞ <w ≤ φ2ðvÞ for all w > 0:

ζ w, υð Þ = v − φ3 wð Þ −w: ð7Þ

For the above examples and other examples related
to simulation functions, one can see [36, 37, 42, 44]
and references therein.

The following two concepts were defined by Istratescu
[26] as follows.

Definition 8. See [26]. Let ðW, ρÞ be a metric space and S
: W ⟶W be a self-mapping. For all w, υ ∈W, S is called
convex contraction of order 2 if there exist d1, d2 ∈ ð0, 1Þ
such that d1 + d2 < 1 and

ρ S2w, S2υ
� �

≤ d1ρ Sw, Sυð Þ + d2ρ w, υð Þ: ð8Þ

S is called two-sided convex contraction mappings if
there exist d1, d2, d3, d4 ∈ ð0, 1Þ such that d1 + d2 + d3 +
d4 < 1 and

ρ S2w, S2υ
� �

≤ d1ρ w, Swð Þ + d2ρ Sw, S2w
� �

+ d3ρ υ, Sυð Þ
+ d4ρ Sυ, S2υ

� �
:

ð9Þ

In the course of this work, Ψ denotes the set of all
increasing function ψ : ½0, 1�⟶ ½0,∞Þ, which vanishes
with continuity at zero. For a random w0 ∈W, we
denote kwk = ρðw,w0Þ, ∀w ∈W.

Introducing a novel generalization of the Banach con-
traction principle, Pata [2] proved Theorem 9.

Theorem 9. See [2]. Let ðW, ρÞ be a metric space and Λ ≥ 0,
ξ ≥ 1 and ϑ ∈ ½0, ξ� be fixed constants. ψ ∈Ψ and S : W ⟶
W be functions. If for all w, υ ∈W, the inequality

ρ Sw, Sυð Þ ≤ 1 − εð Þρ w, υð Þ +Λεξψ εð Þ 1 + wk k + υk k½ �ϑ ð10Þ

is satisfied for all ε ∈ ½0, 1�; then S has a unique fixed point,
ω = Sω, ω ∈W.
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Pata-type contractions were studied by some authors.
Karapinar et al. [11] introduced Pata-Ciric type contraction
at a point. Alqahtani et al. [5] gave the α-Pata–Suzuki con-
traction and fixed point results for such contractions. After
that, Karapinar and Himabindu [11] proved some common
fixed point results for Pata–Suzuki Z-contraction.

We recall here the following important Lemma 10 that
we will use to proof of our main results.

Lemma 10. See [46]. Let ðW, ρÞ be a metric space and fwng
be a sequence in W such that ρðwn+1,wnÞ⟶ 0 as n⟶∞.
If fwng is not a Cauchy sequence, then there exist a ς > 0 and
subsequences fwmj

g and fwnj
g of fwng such that lim j⟶∞

ρðxmj+1, xnj+1Þ = ς, limj⟶∞ρðxmj
, xnj

Þ = ς, lim j⟶∞ρðxmj+1,
xnj

Þ = ς and limj⟶∞ρðxmj
, xnj+1Þ = ς.

2. Main Results

The main objective of this work is to give some new fixed
point theorems via a combination of convex contraction,
weak contraction and Pata type contractive mappings by
introducing the concept of weak E-Pata convex contractions
and weak Pata convex contractions in metric spaces. We will
use simulation functions and admissible mappings when
combining these concepts. Also, we will give an example that
supports our conclusion.

In definitions and results in this paper, Λ ≥ 0, ξ ≥ 1, and
ϑ ∈ ½0, ξ� will be considered as fixed constants, and also, we
will consider the following equations:

EI w, υð Þ = ρ Sw, Sυð Þ + ρ Sw, S2w
� �

− ρ Sυ, S2υ
� ��� ��,

MI w, υð Þ =max ρ w, υð Þ, ρ Sw, Sυð Þ, ρ w, Swð Þ, ρ υ, Sυð Þ,f
ρ Sw, S2w
� �

, ρ Sυ, S2υ
� ��

,

PI w, υð Þ = 1 + wk k + υk k + Swk k + Sυk k + S2w
�� �� + S2υ

�� ��	 
ϑ
:

ð11Þ

At first, we begin our work by giving the following
definitions.

Definition 11. Let ðW, ρÞ be a metric space. We say that
S : W ⟶W is weak Pata convex contractive mapping via
simulation function if for all w, υ ∈W, and ε ∈ ½0, 1�, there
exist three functions ζ ∈ Z ′, ψ ∈Ψ, and α : W ×W ⟶ ½0,+
∞Þ such that S satisfies the inequality

ζ α w, υð Þρ S2w, S2υ
� ��

, 1 − εð Þ MI w, υð Þ − ϕ MI w, υð Þð Þð Þ
+Λεξψ εð ÞPI w, υð Þ ≥ 0,

ð12Þ

where ϕ : ½0,+∞Þ⟶ ½0,+∞Þ is a continuous and nonde-
creasing function with ϕð0Þ = 0 and ϕðwÞ > 0, for all w > 0.

Definition 12. Let ðW, ρÞ be a metric space. We say that
S : W ⟶W is weak E -Pata convex contractive mapping
via simulation function if for all w, υ ∈W, and ε ∈ ½0, 1�, there
exist three functions ψ ∈Ψ, ζ ∈ Z ′, and α : W ×W ⟶ ½0,+
∞Þ such that S satisfies the inequality

ζ α w, υð Þρ S2w, S2υ
� �

, 1 − εð Þ EI w, υð Þ − ϕ EI w, υð Þðð Þ�
+Λεξψ εð ÞPI w, υð ÞÞ ≥ 0,

ð13Þ

where ϕ : ½0,+∞Þ⟶ ½0,+∞Þ is a continuous and nonde-
creasing function with ϕð0Þ = 0 and ϕðwÞ > 0, for all w > 0.

Now, we are in a position to present our main theorems.

Theorem 13. Let ðW, ρÞ be a complete metric space, α : W
×W ⟶ ½0,+∞Þ and S : W ⟶W be a weak E -Pata con-
vex mapping via simulation function. Suppose that

(i) S is triangular α -admissible

(ii) there exists w0 ∈W such that αðw0, Sw0Þ ≥ 1

(iii) S is continuous

(iv) for all w, υ ∈ FixS, αðw, υÞ ≥ 1.

Then S has a unique fixed point in W.

Proof. From hypothesis (ii) of the Theorem 13, there exists
w0 ∈W such that αðw0, Sw0Þ ≥ 1. Firstly, we will show that
αðSnw0, Sn+1w0Þ ≥ 1 for all n ∈ℕ. Since S is an α-admissi-
ble mapping, we have

α w0,w1ð Þ ≥ 1 = α w0, Sw0ð Þ ≥ 1⇒ α Sw0, S2w0
� �

≥ 1,

α Sw0, S2w0
� �

≥ 1⇒ α S2w0, S3w0
� �

≥ 1:
ð14Þ

By induction, we obtain that

α Snw0, Sn+1w0
� �

≥ 1, for all n ∈ℕ: ð15Þ

Taking into account hypothesis (i) of the Theorem 13,
we have

α Snw0, Sn+1w0
� �

≥ 1 and α Sn+1w0, Sn+2w0
� �

≥ 1⇒ α Snw0, Sn+2w0
� �

≥ 1:
ð16Þ

Again by induction, we obtain that

α Snw0, Smw0ð Þ ≥ 1,  for allm > n ≥ 0: ð17Þ

Now, we will show that fρðSnw0, Sn+1w0Þg is a nonin-
creasing sequence. Since S is a weak E-Pata convex contrac-
tive mapping via simulation function, we have
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ζ α w0, Sw0ð Þρ S2w0, S3w0
� �

, 1 − εð Þ
EI w0, Sw0ð Þ

−ϕ EI w0, Sw0ð Þð Þ

 ! 

+Λεξψ εð ÞPI w0, Sw0ð Þ
!
≥ 0,

1 − εð Þ
EI w0, Sw0ð Þ

−ϕ EI w0, Sw0ð Þð Þ

 !
+Λεξψ εð ÞPI w0, Sw0ð Þ

− α w0, Sw0ð Þρ S2w0, S3w0
� �

≥ 0:
ð18Þ

From hypothesis (ii) of the Theorem 13, we get

ρ S2w0, S3w0
� �

≤ α w0, Sw0ð Þρ S2w0, S3w0
� �

≤ 1 − εð Þ EI w0, Sw0ð Þ − ϕ EI w0, Sw0ð Þð Þð Þ +Λεξψ εð ÞPI w0, Sw0ð Þ

= 1 − εð Þ
ρ Sw0, S2w0
� �

+ ρ Sw0, S2w0
� �

− ρ S2w0, S3w0
� ��� ��

−ϕ ρ Sw0, S2w0
� �

+ ρ Sw0, S2w0
� �

− ρ S2w0, S3w0
� ��� ��� �

0
@

1
A

+Λεξψ εð Þ
1 + w0k k + Sw0k k + Sw0k k

+ S2w0
�� �� + S2w0

�� �� + S3w0
�� ��

" #ϑ

≤ 1 − εð Þ
ρ Sw0, S2w0
� �

+ ρ Sw0, S2w0
� �

− ρ S2w0, S3w0
� ��� ��

−ϕ ρ Sw0, S2w0
� �

+ ρ Sw0, S2w0
� �

− ρ S2w0, S3w0
� ��� ��� �

0
@

1
A

� 1 + w0k k + 2 Sw0k k + 2 S2w0
�� �� + S3w0

�� ��	 
ϑ
≤ 1 − εð Þ

ρ Sw0, S2w0
� �

+ ρ Sw0, S2w0
� �

− ρ S2w0, S3w0
� ��� ��

−ϕ ρ Sw0, S2w0
� �

+ ρ Sw0, S2w0
� �

− ρ S2w0, S3w0
� ��� ��� �

0
@

1
A

+ Kεξψ εð Þ,
ð19Þ

for some K > 0. If we assume that ρðSw0, S2w0Þ < ρðS2w0,
S3w0Þ, then we have ρðSw0, S2w0Þ + jρðSw0, S2w0Þ − ρðS2w0,
S3w0Þj = ρðS2w0, S3w0Þ. Hence, we have

ρ S2w0, S3w0
� �

≤ 1 − εð Þ ρ S2w0, S3w0
� �

− ϕ ρ S2w0, S3w0
� �� �� �

+ Kεξψ εð Þ:
ð20Þ

The inequality (20) is true for all ε ∈ ½0, 1�: For ε = 0, we
obtain ρðS2w0, S3w0Þ < ρðS2w0, S3w0Þ which is a contradic-
tion. Therefore, we obtain

ρ S2w0, S3w0
� �

≤ ρ Sw0, S2w0
� �

: ð21Þ

Analogously, as S is a weak E-Pata convex contractive
mapping via simulation function, we have

ζ α Sw0, S2w0
� �

ρ S3w0, S4w0
� �

, 1 − εð Þ
EI Sw0, S2w0
� �

−ϕ EI Sw0, S2w0
� �� �

0
@

1
A

0
@

+Λεξψ εð ÞPI Sw0, S2w0
� �!

≥ 0,

1 − εð Þ
EI Sw0, S2w0
� �

−ϕ EI Sw0, S2w0
� �� �

0
@

1
A +Λεξψ εð ÞPI Sw0, S2w0

� �0
@

− α Sw0, S2w0
� �

ρ S3w0, S4w0
� �!

≥ 0:

ð22Þ

Now, we can write

ρ S3w0, S4w0
� �

≤ α Sw0, S2w0
� �

ρ S3w0, S4w0
� �

≤ 1 − εð Þ
ρ S2w0, S3w0
� �

+ ρ S2w0, S3w0
� �

− ρ S3w0, S4w0
� ��� ��

−ϕ ρ S2w0, S3w0
� �

+ ρ S2w0, S3w0
� �

− ρ S3w0, S4w0
� ��� ��� �

0
@

1
A

+Λεξψ εð Þ 1 + Sw0k k + S2w0
�� �� + S2w0

�� �� + S3w0
�� �� + S3w0

�� �� + S4w0
�� ��	 
ϑ

≤ 1 − εð Þ
ρ S2w0, S3w0
� �

+ ρ S2w0, S3w0
� �

− ρ S3w0, S4w0
� ��� ��

−ϕ ρ S2w0, S3w0
� �

+ ρ S2w0, S3w0
� �

− ρ S3w0, S4w0
� ��� ��� �

0
@

1
A + Kεξψ εð Þ,

ð23Þ

for some K > 0. In case that ρðS2w0, S3w0Þ < ρðS3w0, S4w0Þ;
then we have ρðS2w0, S3w0Þ + jρðS2w0, S3w0Þ − ρðS3w0, S4
w0Þj = ρðS3w0, S4w0Þ. So, we have

ρ S3w0, S4w0
� �

≤ 1 − εð Þ ρ S3w0, S4w0
� �

− ϕ ρ S3w0, S4w0
� �� �� �

+ Kεξψ εð Þ:
ð24Þ

The inequality (24) is true for all ε ∈ ½0, 1�: For ε = 0, we
obtain ρðS3w0, S4w0Þ < ρðS3w0, S4w0Þ which is again a con-
tradiction. Therefore, we obtain

ρ S3w0, S4w0
� �

≤ ρ S2w0, S3w0
� �

: ð25Þ

By induction, since S is a weak E-Pata convex contractive
mapping via simulation function, we have

ζ α Sn−2w0, Sn−1w0
� �

ρ Snw0, Sn+1w0
� �

, 1 − εð Þ�
� EI Sn−2w0, Sn−1w0

� �
− ϕ EI Sn−2w0, Sn−1w0

� �� �� �
+Λεξψ εð ÞPI Sn−2w0, Sn−1w0

� ��
≥ 0,

1 − εð Þ
EI Sn−2w0, Sn−1w0
� �

−ϕ EI Sn−2w0, Sn−1w0
� �� �

0
@

1
A

0
@

+Λεξψ εð ÞPI Sn−2w0, Sn−1w0
� �

− α Sn−2w0, Sn−1w0
� �

� ρ Snw0, Sn+1w0
� �!

≥ 0:

ð26Þ
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We have that

ρ Snw0, Sn+1w0
� �

≤ α Sn−2w0, Sn−1w0
� �

ρ Snw0, Sn+1w0
� �

≤ 1 − εð Þ
ρ Sn−1w0, Snw0
� �

+ ρ Sn−1w0, Snw0
� �

− ρ Snw0, Sn+1w0
� ��� ��

−ϕ ρ Sn−1w0, Snw0
� �

+ ρ Sn−1w0, Snw0
� �

− ρ Snw0, Sn+1w0
� ��� ��� �

0
@

1
A

+Λεξψ εð Þ 1 + Sn−2w0
�� �� + Sn−1w0

�� �� + Sn−1w0
�� �� + Snw0k k + Snw0k k + Sn+1w0

�� ��	 
ϑ
≤ 1 − εð Þ

ρ Sn−1w0, Snw0
� �

+ ρ Sn−1w0, Snw0
� �

− ρ Snw0, Sn+1w0
� ��� ��

−ϕ ρ Sn−1w0, Snw0
� �

+ ρ Sn−1w0, Snw0
� �

− ρ Snw0, Sn+1w0
� ��� ��� �

0
@

1
A + Kεξψ εð Þ,

ð27Þ

for some K > 0. In case that ρðSn−1w0, Snw0Þ < ρðSnw0, Sn+1
w0Þ; then we have

ρ Snw0, Sn+1w0
� �

< 1 − εð Þ ρ Snw0, Sn+1w0
� ��

− ϕ ρ Snw0, Sn+1w0
� �� ��

+ Kεξψ εð Þ:
ð28Þ

Again, the inequality (28) is true for all ε ∈ ½0, 1� for ε = 0;
we obtain ρðSnw0, Sn+1w0Þ < ρðSnw0, Sn+1w0Þ is again a con-
tradiction. Therefore, we obtain

ρ Snw0, Sn+1w0
� �

≤ ρ Sn−1w0, Snw0
� �

: ð29Þ

Consequently, we find that

ρ Snw0, Sn+1w0
� �

≤ ρ Sn−1w0, Snw0
� �

≤⋯≤ ρ S3w0, S4w0
� �

≤ ρ S2w0, S3w0
� �

≤ ρ Sw0, S2w0
� �

:

ð30Þ

If the point w0 ∈W is taken as the starting point, the
sequence fwng is constructed by wn = Swn−1 = Snw0, n ≥ 1. If
wn0+1 =wn0

for any n0 ∈ℕ, then wn0
is a fixed point of S. As

a result, supposing that wn0+1 ≠wn0
for all n0 ∈ℕ and let ρn

= ρðwn−1,wnÞ. So, we get that fρng is a nonincreasing
sequence. For this reason, there exists a δ ≥ 0 such that

lim
n⟶∞

ρ wn−1,wnð Þ = lim
n⟶∞

ρn = δ: ð31Þ

Wewill demonstrate that δ = 0. For this, we should demo-
strate that the sequence fkwnkg is bounded. Since fρng is a
nonincreasing sequence, we have

ρn+1 = ρ wn,wn+1ð Þ ≤ ρ wn−1,wnð Þ ≤⋯≤ ρ w3,w4ð Þ
≤ ρ w2,w3ð Þ ≤ ρ w1,w2ð Þ = ρ2 ≤ w1k k + w2k k: ð32Þ

By the triangle inequality, we have

wnk k = ρ wn,w0ð Þ ≤ ρ wn,wn+1ð Þ + ρ wn+1,w2ð Þ + ρ w2,w0ð Þ
= ρn+1 + ρ wn+1,w2ð Þ + w2k k ≤ ρ2 + ρ wn+1,w2ð Þ

+ w2k k ≤ w1k k + 2 w2k k + ρ wn+1,w2ð Þ:
ð33Þ

Since S is a weak E-Pata convex contractive mapping, we
have

ζ α wn,w0ð Þρ wn+1,w2ð Þ, 1 − εð Þ
EI wn−1,w0ð Þ

−ϕ EI wn−1,w0ð Þð Þ

 ! 

+Λεξψ εð ÞPI wn−1,w0ð Þ
!
≥ 0,

ð34Þ

1 − εð Þ EI wn−1,w0ð Þ − ϕ EI wn−1,w0ð Þð Þð Þ +Λεξψ εð ÞPI wn−1,w0ð Þ
� �

− α wn,w0ð Þρ wn+1,w2ð Þ ≥ 0:
ð35Þ

Together with (35), we obtain

ρ wn+1,w2ð Þ ≤ α wn,w0ð Þρ wn+1,w2ð Þ
≤ 1 − εð Þ EI wn−1,w0ð Þ − ϕ EI wn−1,w0ð Þð Þð Þ

+Λεξψ εð ÞPI wn−1,w0ð Þ,
ð36Þ

where

EI wn−1,w0ð Þ = ρ wn,w1ð Þ + ρ wn,wn+1ð Þ − ρ w1,w2ð Þj j
≤ ρ wn,w0ð Þ + ρ w1,w0ð Þ

+ ρ wn,wn+1ð Þ − ρ w1,w2ð Þj j ≤ wnk k + w1k k
+ ρn+1 − ρ2j j = wnk k + w1k k + ρ2 − ρn+1

≤ wnk k + 2 w1k k + w2k k − ρn+1 ≤ wnk k
+ 2 w1k k + w2k k,

PI wn−1,w0ð Þ = 1 + wn−1k k + w0k k + wnk k + w1k k + wn+1k k½
+ w2k k�ϑ ≤ 1 + w1k k + w2k k + wnk k + wnk k½
+ w1k k + w1k k + w2k k + wnk k + w2k k�ϑ

= 1 + 3 w1k k + 3 w2k k + 3 wnk k½ �ϑ:
ð37Þ

Now, we derive that

wnk k < w1k k + 2 w2k k + 1 − εð Þ wnk k + 2 w1k k + w2k kð
− ϕ wnk k + 2 w1k k + w2k kð ÞÞ +Λεξψ εð Þ 1 + 3 w1k k½
+ 3 w2k k + 3 wnk k�ϑ:

ð38Þ

Using ϑ ≤ ξ, we get

ε wnk k < 3 − 2εð Þ w1k k + 3 − εð Þ w2k k +Λεξψ εð Þ 1 + 3 w1k k½
+ 3 w2k k + 3 wnk k�ϑ ≤ 3 − 2εð Þ w1k k + 3 − εð Þ w2k k
+Λεξψ εð Þ 1 + 3 w1k k + 3 w2k k + 3 wnk k½ �ξ

= 3 − 2εð Þ w1k k + 3 − εð Þ w2k k +Λεξψ εð Þ 1 + 3 wnk kð Þξ

� 1 + 3 w1k k + 3 w2k k
1 + 3 wnk k

� �ξ

≤ 3 w1k k + 3 w2k k +Λεξψ

� εð Þ3ξ wnk kξ 1
3 wnk k + 1
� �ξ

1 + 3 w1k k + 3 w2k kð Þξ:

ð39Þ
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Conversely, we assume that fkwnkg is not bounded
sequence. So, there exists a subsequence fkwnj

kg of fkwnkg
such that limj⟶∞wnj

=∞. If we take ε = εj = ð1 + 3kw1k +
3kw2kÞ/kwnj

k in (39) inequality; then we have

1 ≤Λ3ξ εξ wnk kξ
 �

1 + 3 w1k k + 3 w2k kð Þξ 1
3 wnj

��� ��� + 1

0
B@

1
CA

ξ

� ψ εj
� �

≤Λ3ξ 1 + 3 w1k k + 3 w2k kð Þξ 1 + 3 w1k k + 3 w2k kð Þξ

� 1
3 wnj

��� ��� + 1

0
B@

1
CA

ξ

ψ εj
� �

≤Λ3ξ 1 + 3 w1k k + 3 w2k kð Þ2ξ

� 1
3 wnj

��� ��� + 1

0
B@

1
CA

ξ

ψ εj
� �

:

ð40Þ

If we take limit in (40) inequality as j⟶∞, then we get

Λ3ξ 1 + 3 w1k k + 3 w2k kð Þ2ξ 1
3 wnj

��� ��� + 1

0
B@

1
CA

ξ

ψ εj
� �

⟶ 0,

ð41Þ

which is a contradiction. Therefore, we demonstrate that the
sequencefkwnkg is bounded. So, there exists A > 0 such that
kwnk ≤ A for all n ∈ℕ. Following this line of work, we dem-
onstrate that δ = 0. Since S is a weak E-Pata convex contractive
mapping, we have

ζ α wn−1,wnð Þρ wn+1,wn+2ð Þ, 1 − εð Þ EI wn−1,wnð Þðð
− ϕ EI wn−1,wnð Þð ÞÞ +Λεξψ εð ÞPI wn−1,wnð ÞÞ ≥ 0,

1 − εð Þ EI wn−1,wnð Þ − ϕ EI wn−1,wnð Þð Þð Þ
+Λεξψ εð ÞPI wn−1,wnð Þ − α wn−1,wnð Þρ wn+1,wn+2ð Þ ≥ 0:

ð42Þ

Since ρn+1 ≤ ρn for all n ∈ℕ, we have

EI wn−1,wnð Þ = ρ wn,wn+1ð Þ + ρ wn,wn+1ð Þ − ρ wn+1,wn+2ð Þj j
= 2ρ wn,wn+1ð Þ − ρ wn+1,wn+2ð Þ = 2ρn+1 − ρn+2:

ð43Þ

Since the sequencefkwnkg is bounded, we have

PI wn−1,wnð Þ =Λεξψ εð Þ 1 + wn−1k k + wnk k + wnk k + wn+1k k½
+ wn+2k k + wn+3k k�ϑ ≤Λεξψ εð Þ 1 + 6Að Þϑ:

ð44Þ

Now, we can write

ρn+2 = ρ wn+1,wn+2ð Þ ≤ α wn−1,wnð Þρ wn+1,wn+2ð Þ
≤ 1 − εð Þ EI wn−1,wnð Þ − ϕ EI wn−1,wnð Þð Þð Þ

+Λεξψ εð ÞPI wn−1,wnð Þ ≤ 1 − εð Þ
� 2ρn+1 − ρn+2 − ϕ 2ρn+1 − ρn+2ð Þð Þ
+Λεξψ εð Þ 1 + 6Að Þϑ:

ð45Þ

If we take the limit as n⟶∞ in (45) inequality, then we
obtain

δ ≤ 1 − εð Þ δ − ϕ δð Þð Þ +Λεξψ εð Þ 1 + 6Að Þϑδ
≤Λεξ−1ψ εð Þ 1 + 6Að Þϑ:

ð46Þ

δ ≤ 0 as ε⟶ 0, that is limn⟶∞ρðwn+1,wn+2Þ = δ = 0.
Now, we demonstrate that fwng is a Cauchy sequence. On
the contrary, assume that the sequence fwng is not a Cauchy.
From Lemma 10, there exist subsequence fwmj

g and fwnj
g

with nj >mj > j such that limk⟶∞ρðxmk−1, xnk+1Þ = ς,
limk⟶∞ρðxmk−1, xnkÞ = ς, limk⟶∞ρðxmk

, xnkÞ = ς, limk⟶∞ρ

ðxmk+1, xnk+1Þ = ς, and limk⟶∞ρðxmk
, xnk−1Þ = ς. Since S is a

weak E − Pata convex contractive mapping, we have

ζ α wnj−1,wmj−1
 �

ρ wnj+1,wmj+1
 �

, 1 − εð Þ


� EI wnj−1,wmj−1
 �

− ϕ EI wnj−1,wmj−1
 � � ��

≥ 0,

1 − εð Þ EI wnj−1,wmj−1
 �

− ϕ EI wnj−1,wmj−1
 � � �

− α wnj−1,wmj−1
 �

ρ wnj+1,wmj+1
 �

≥ 0,
ð47Þ

where

EI wnj−1,wmj−1
 �

= ρ wnj
,wmj

 �
+ ρ wnj

,wnj+1
 �

− ρ wmj
,wmj+1

 ���� ���,

PI wnj−1,wmj−1
 �

=Λεξψ εð Þ 1 + wnj−1

��� ��� + wmj−1

��� ���h
+ wnj

��� ��� + wmj

��� ��� + wnj+1

��� ��� + wmj+1

��� ���iϑ
=Λεξψ εð Þ 1 + 6A½ �ϑ:

ð48Þ
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Now, we have

ς ≤ ρ wnj+1,wmj+1

 �
≤ α wnj−1,wmj−1

 �
ρ wnj+1,wmj+1

 �
≤ 1 − εð Þ EI wnj−1,wmj−1

 �
− ϕ EI wnj−1,wmj−1

 � � �
+Λεξψ εð ÞPI wnj−1,wmj−1

 �

≤ 1 − εð Þ
ρ wnj

,wmj

 �
+ ρ wnj

,wnj+1
 �

− ρ wmj
,wmj+1

 ���� ���
−ϕ ρ wnj

,wmj

 �
+ ρ wnj

,wnj+1
 �

− ρ wmj
,wmj+1

 ���� ��� �
0
BB@

1
CCA

+Λεξψ εð Þ 1 + 6A½ �ϑ

≤ 1 − εð Þ ρ wnj
,wmj

 �
+ ρ wnj

,wnj+1
 �

− ρ wmj
,wmj+1

 ���� ��� �
+Λεξψ εð Þ 1 + 6A½ �ϑ:

ð49Þ

If we take the limit as j⟶∞, then we obtain

ς ≤ 1 − εð Þς + Kεψ εð Þ, ð50Þ

and so, we have

ς ≤ Kψ εð Þ, ð51Þ

and thus, we get that ς = 0, which is a contradiction. Therefore,
we concluded that fwng is a Cauchy sequence in ðW, ρÞ. By
the completeness of W, the sequence fwng is convergent to
some ω ∈W that is wn ⟶ ω as n⟶ +∞. Since S is contin-
uous, Swn ⟶ Sω as n⟶ +∞. By the uniqueness of the
limit, we obtain ω = Sω that is ω is a fixed point of S.

Next, we will demonstrate the uniqueness of the fixed
point. Suppose that Τ and ω are two fixed points of S: Since
S satisfies the hypothesis (iv) of Theorem 13, S is an weak E-
Pata convex contractive mapping; we have

ρ ω, Τð Þ ≤ α ω, Τð Þρ S2ω, S2Τ
� �

≤ 1 − εð Þ EI ω, Τð Þ − ϕ EI ω, Τð Þð Þð Þ +Λεξψ εð ÞPI ω, Τð Þ

≤ 1 − εð Þ
ρ Sω, SΤð Þ + ρ Sω, S2ω

� �
− ρ SΤ, S2Τ
� ��� ��

−ϕ ρ Sω, SΤð Þð + ρ Sω, S2ω
� �

− ρ SΤ, S2Τ
� ��� ��

0
@

1
A
1
A

+Λεξψ εð Þ 1 + ωk k + Τk k + Sωk k + SΤk k + S2ω
�� ��	

+ S2Τ
�� ��
ϑ ≤ 1 − εð Þρ ω, Τð Þ +Λεξψ εð Þ 1 + 3 ωk k + 3 Τk k½ �ϑ:

ð52Þ

We obtain that ρðω, ΤÞ < KψðεÞ for some K ≥ 0, and so,
we get ω = Τ. Hence, S has a unique fixed point in W, that is
ω = Sω, ω ∈W.

Following this line of work, Theorem 14 does not require
the continuity of S.

Theorem 14. Let ðW, ρÞ be a complete metric space, α : W
×W ⟶ ½0,+∞Þ and S : W ⟶W be a weak Pata-convex
mapping. Suppose that

(i) S is triangular α − admissible

(ii) there exists w0 ∈W such that αðw0, Sw0Þ ≥ 1

(iii) S2 is continuous and for all ω ∈ FixS2, αðSω, ωÞ ≥ 1

(iv) for all w, ω ∈ FixS2, αðw, ωÞ ≥ 1

Then, S has a unique fixed point in W.

Proof. Following the proof of Theorem 13, we have already
proved that fwng is a Cauchy sequence in W. Since W is
complete, we have wn ⟶ ω ∈W as n⟶ +∞. Taking into
account hypothesis (iii) Theorem 14, we have limn⟶∞
ρðwn, S2ωÞ = limn⟶∞ρðS2wn−2, S2ωÞ = 0. In the uniqueness
of the limit, we obtain that S2ω = ω. Next, we will prove that
ω = Sω. On the contrary, we assume that ω is not fixed point
of S. So, we have

0 < ρ Sω, ωð Þ = ρ S2 Sωð Þ, S2ω� �
≤ α Sω, ωð Þρ S2 Sωð Þ, S2ω� �

≤ 1 − εð Þ EI Sω, ωð Þ − ϕ EI Sω, ωð Þð Þð Þ +Λεξψ εð ÞPI Sω, ωð Þ

≤ 1 − εð Þ
ρ Sω, S2ω
� �

+ ρ Sω, S2ω
� �

− ρ S2ω, S3ω
� ��� ��

−ϕ ρ Sω, S2ω
� �

+ ρ Sω, S2ω
� �

− ρ S2ω, S3ω
� ��� ��� �

0
@

1
A

+Λεξψ εð Þ 1 + Sωk k + ωk k + Sωk k + S2ω
�� �� + S3ω

�� �� + S2ω
�� ��	 
ϑ

≤ 1 − εð Þρ Sω, ωð Þ − ϕ ρ Sω, ωð Þð Þ + Kεξψ εð Þ,
ð53Þ

for some K > 0. We obtain

ρ Sω, ωð Þ < 1 − εð Þρ Sω, ωð Þ + Kεξψ εð Þ: ð54Þ

For ε = 0 in (54) which is a contradiction. Thus, we make
an inference that Sω = ω, and so, ω is a fixed point of S. Fol-
lowing the proof of Theorem 13, the uniqueness of fixed
point of S can be obtained.

Theorem 15 is other fundamental result of our work.

Theorem 15. Let ðW, ρÞ be a complete metric space, α : W
×W ⟶ ½0,+∞Þ and S : W ⟶W be a weak Pata convex
contractive mapping via simulation function. On the assump-
tion that all of the Theorem 13 hypotheses are satisfied, then h
has a unique fixed point.

Proof. In the proof of Theorem 13, we have got that

α Snw0, Sn+1w0
� �

≥ 1 for all n ∈ℕ and α Snw0, Smw0ð Þ
≥ 1 for allm > n ≥ 0:

ð55Þ

Setting ℓ =min fρðw0, Sw0Þ, ρðSw0, S2w0Þg and now, we
demonstrate that

fρðSnw0, Sn+1w0Þg is a nonincreasing sequence. Since S
is a weak Pata convex contractive mapping via simulation
function, we have

ζ α w0, Sw0ð Þρ S2w0, S3w0
� �

, 1 − εð Þ MI w0, Sw0ð Þð�
− ϕ MI w0, Sw0ð Þð ÞÞ +Λεξψ εð ÞPI w0, Sw0ð ÞÞ ≥ 0:

ð56Þ
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Using hypothesis (ii) of the Theorem 15, we get

ρ S2w0, S3w0
� �

≤ α w0, Sw0ð Þρ S2w0, S3w0
� �

≤ 1 − εð Þ
� MI w0, Sw0ð Þð − ϕ MI w0, Sw0ð Þð Þ +Λεξψ εð ÞPI w0, Sw0ð Þ

= 1 − εð Þ

max
ρ w0, Sw0ð Þ, ρ Sw0, S2w0

� �
, ρ w0, Sw0ð Þ,

ρ Sw0, S2w0
� �

, ρ Sw0, S2w0
� �

, ρ S2w0, S3w0
� �

8<
:

9=
;

−ϕ max

ρ w0, Sw0ð Þ, ρ Sw0, S2w0
� �

,

ρ w0, Sw0ð Þ, ρ Sw0, S2w0
� �

,

ρ Sw0, S2w0
� �

, ρ S2w0, S3w0
� �

8>>><
>>>:

9>>>=
>>>;

0
BBB@

1
CCCA

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

+Λεξψ εð Þ 1 + w0k k + 2 Sw0k k + 2 S2w0
�� �� + S3w0

�� ��	 
ϑ
≤ 1 − εð Þ

max ρ w0, Sw0ð Þ, ρ Sw0, S2w0
� �

, ρ S2w0, S3w0
� �� �

−ϕ max ρ w0, Sw0ð Þ, ρ Sw0, S2w0
� �

, ρ S2w0, S3w0
� �� �� �

0
@

1
A

+ Kεξψ εð Þ,
ð57Þ

for some K > 0. Assuming that max fℓ, ρðS2w0, S3w0Þg =
ρðS2w0, S3w0Þ, then we have ρðSw0, S2w0Þ < ρðS2w0, S3w0Þ.
Thus, we have

ρ S2w0, S3w0
� �

≤ 1 − εð Þ ρ S2w0, S3w0
� �

− ϕ ρ S2w0, S3w0
� �� �� �

+ Kεξψ εð Þ,
ð58Þ

and since ρðS2w0, S3w0Þ ≥ ρðS2w0, S3w0Þ − ϕðρðS2w0, S3w0ÞÞ
, we have

ρ S2w0, S3w0
� �

< 1 − εð Þρ S2w0, S3w0
� �

+ Kεξψ εð Þ: ð59Þ

The inequality (59) is true for all ε ∈ ½0, 1�: For ε = 0, we
obtain ρðS2w0, S3w0Þ < ρðS2w0, S3w0Þ which is a contradic-
tion. Hence, we obtain

ρ S2w0, S3w0
� �

≤ ℓ: ð60Þ

Analogously, since S is a weak Pata convex contractive
mapping via simulation function, we have

ζ
α Sw0, S2w0
� �

ρ S3w0, S4w0
� �

,

1 − εð Þ MI Sw0, S2w0
� �

− ϕ MI Sw0, S2w0
� �� �� �

+Λεξψ εð ÞPI Sw0, S2w0
� �

 !
≥ 0,

1 − εð Þ
MI Sw0, S2w0
� �

−ϕ MI Sw0, S2w0
� �� �

 !
+Λεξψ εð ÞPI Sw0, S2w0

� �
− α Sw0, S2w0
� �

ρ S3w0, S4w0
� �

≥ 0,

ð61Þ

and we can write that

ρ S3w0, S4w0
� �

≤ α Sw0, S2w0
� �

ρ S3w0, S4w0
� �

≤ 1 − εð Þ

max
ρ Sw0, S2w0
� �

, ρ S2w0, S3w0
� �

, ρ Sw0, S2w0
� �

,

ρ S2w0, S3w0
� �

, ρ S2w0, S3w0
� �

, ρ S3w0, S4w0
� �

8<
:

9=
;

−ϕ max

ρ Sw0, S2w0
� �

, ρ S2w0, S3w0
� �

,

ρ Sw0, S2w0
� �

, ρ S2w0, S3w0
� �

,

ρ S2w0, S3w0
� �

, ρ S3w0, S4w0
� �

8>>><
>>>:

9>>>=
>>>;

0
BBB@

1
CCCA

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

+Λεξψ εð Þ 1 + Sw0k k + S2w0
�� �� + S2w0

�� �� + S3w0
�� �� + S3w0

�� �� + S4w0
�� ��	 
ϑ

≤ 1 − εð Þ max ρ Sw0, S2w0
� �

, ρ S2w0, S3w0
� �

, ρ S3w0, S4w0
� �� �� �

+ Kεξψ εð Þ
ð62Þ

for some K > 0. In case that

max ρ Sw0, S2w0
� �

, ρ S2w0, S3w0
� �

, ρ S3w0, S4w0
� �� �

= ρ S3w0, S4w0
� �

,
ð63Þ

then we have

ρ S3w0, S4w0
� �

< 1 − εð Þρ S3w0, S4w0
� �

+ Kεξψ εð Þ: ð64Þ

The inequality (64) is true for all ε ∈ ½0, 1�: For ε = 0, we
obtain ρðS3w0, S4w0Þ < ρðS3w0, S4w0Þ is again a contradic-
tion. Therefore, we obtain

ρ S3w0, S4w0
� �

≤ ρ S2w0, S3w0
� �

≤ ℓ: ð65Þ

Again, by induction, since S is a weak Pata convex con-
tractive mapping via simulation function, we have

ζ

 
α Sn−2w0, Sn−1w0
� �

ρ Snw0, Sn+1w0
� �

, 1 − εð Þ

�
MI Sn−2w0, Sn−1w0
� �

−ϕ MI Sn−2w0, Sn−1w0
� �� �

0
@

1
A

+Λεξψ εð ÞPI Sn−2w0, Sn−1w0
� �!

≥ 0,

1 − εð Þ
MI Sn−2w0, Sn−1w0
� �

−ϕ MI Sn−2w0, Sn−1w0
� �� �

0
@

1
A

0
@

+Λεξψ εð ÞPI Sn−2w0, Sn−1w0
� �

− α Sn−2w0, Sn−1w0
� �

ρ Snw0, Sn+1w0
� �!

≥ 0,

ð66Þ
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and we have that

ρ Snw0, Sn+1w0
� �

≤ α Sn−2w0, Sn−1w0
� �

ρ Snw0, Sn+1w0
� �

≤ 1 − εð Þ

max

ρ Sn−2w0, Sn−1w0
� �

, ρ Sn−1w0, Snw0
� �

,

ρ Sn−2w0, Sn−1w0
� �

, ρ Sn−1w0, Snw0
� �

,

ρ Sn−1w0, Snw0
� �

, ρ Snw0, Sn+1w0
� �

8>>><
>>>:

9>>>=
>>>;

ϕ max

ρ Sn−2w0, Sn−1w0
� �

, ρ Sn−1w0, Snw0
� �

,

ρ Sn−2w0, Sn−1w0
� �

, ρ Sn−1w0, Snw0
� �

,

ρ Sn−1w0, Snw0
� �

, ρ Snw0, Sn+1w0
� �

8>>><
>>>:

9>>>=
>>>;

0
BBB@

1
CCCA

0
BBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCA

+Λεξψ εð Þ 1 + Sn−2w0
�� �� + Sn−1w0

�� �� + Sn−1w0
�� �� + Snw0k k + Snw0k k + Sn+1w0

�� ��	 
ϑ

< 1 − εð Þ

max
ρ Sn−2w0, Sn−1w0
� �

, ρ Sn−1w0, Snw0
� �

,

ρ Snw0, Sn+1w0
� �

8<
:

9=
;

−ϕ max
ρ Sn−2w0, Sn−1w0
� �

, ρ Sn−1w0, Snw0
� �

,

ρ Snw0, Sn+1w0
� �

8<
:

9=
;

0
@

1
A

0
BBBBBBBB@

1
CCCCCCCCA

+ Kεξψ εð Þ,

ð67Þ

for some K > 0. In case that max fρðSn−2w0, Sn−1w0Þ, ρðSn−1
w0, Snw0Þ, ρðSnw0, Sn+1w0Þg = ρðSnw0, Sn+1w0Þ, then we
have

ρ Snw0, Sn+1w0
� �

< 1 − εð Þρ Snw0, Sn+1w0
� �

+ Kεξψ εð Þ: ð68Þ

Again, the inequality (68) is true for all ε ∈ ½0, 1� and for
ε = 0, we obtain ρðSnw0, Sn+1w0Þ < ρðSnw0, Sn+1w0Þ is again
a contradiction. Consequently, we can find that

ρ Snw0, Sn+1w0
� �

≤ ρ Sn−1w0, Snw0
� �

≤⋯≤ ρ S3w0, S4w0
� �

≤ ρ S2w0, S3w0
� �

≤ ρ Sw0, S2w0
� �

:

ð69Þ

Starting at the point w0 ∈W, the sequence fwng is con-
structed by wn = Swn−1 = Snw0, n ≥ 1. If wn0+1 =wn0

for any
n0 ∈ℕ, then wn0

is a fixed point of S. Hereby, assume that
wn0+1 ≠wn0

for all n0 ∈ℕ and let ρn = ρðwn−1,wnÞ. There-
fore, we get that fρng is a nonincreasing sequence. There-
upon, there exists a δ ≥ 0 such that

lim
n⟶∞

ρ wn−1,wnð Þ = lim
n⟶∞

ρn = δ: ð70Þ

We will demostrate that δ = 0. For this, we should demo-
strate that the sequence fkwnkg is bounded. Since fρng is a
nonincreasing sequence, we have

ρn+1 = ρ wn,wn+1ð Þ ≤ ρ wn−1,wnð Þ ≤⋯≤ ρ w3,w4ð Þ
≤ ρ w2,w3ð Þ ≤ ρ w1,w2ð Þ = ρ2 ≤ w1k k + w2k k: ð71Þ

From the triangle inequality, we can write

wnk k = ρ wn,w0ð Þ ≤ ρ wn,wn+1ð Þ + ρ wn+1,w2ð Þ + ρ w2,w0ð Þ
= ρn+1 + ρ wn+1,w2ð Þ + w2k k ≤ ρ2 + ρ wn+1,w2ð Þ + w2k k
≤ w1k k + 2 w2k k + ρ wn+1,w2ð Þ:

ð72Þ

Since S is a weak Pata convex contractive mapping via
simulation function, we have

ζ α wn,w0ð Þρ wn+1,w2ð Þ, 1 − εð Þ MI wn−1,w0ð Þðð
− ϕ MI wn−1,w0ð Þð ÞÞ +Λεξψ εð ÞPI wn−1,w0ð ÞÞ ≥ 0,

1 − εð Þ
MI wn−1,w0ð Þ

−ϕ MI wn−1,w0ð Þð Þ

 !
+Λεξψ εð ÞPI wn−1,w0ð Þ

 

− α wn,w0ð Þρ wn+1,w2ð Þ
!
≥ 0:

ð73Þ

Together with (71), we obtain that

ρ wn+1,w2ð Þ ≤ α wn,w0ð Þρ wn+1,w2ð Þ ≤ 1 − εð Þ
� MI wn−1,w0ð Þ − ϕ MI wn−1,w0ð Þð Þð Þ
+Λεξψ εð ÞPI wn−1,w0ð Þ:

ð74Þ

From (71) and ρ2 ≤ kw1k + kw2k, we have

MI wn−1,w0ð Þ =max
ρ wn−1,w0ð Þ, ρ wn,w1ð Þ, ρ wn−1,wnð Þ,
ρ w0,w1ð Þ, ρ wn,wn+1ð Þ, ρ w1,w2ð Þ

( )

=max ρ wn−1,w0ð Þ, ρ wn,w1ð Þ, ρn, ρ1, ρn+1, ρ2f g
≤ w1k k + w2k k + wnk k,

PI wn−1,w0ð Þ = 1 + wn−1k k + w0k k + wnk k + w1k k + wn+1k k + w2k k½ �ϑ
≤ 1 + 3 w1k k + 3 w2k k + 3 wnk k½ �ϑ:

ð75Þ

Now, we derive that

ε wnk k < 2 − εð Þ w1k k + 3 − εð Þ w2k k +Λεξψ εð Þ 1 + 3 w1k k½
+ 3 w2k k + 3 wnk k�ϑ ≤ 2 − εð Þ w1k k + 3 − εð Þ w2k k

+Λεξψ εð Þ 1 + 3 wnk kð Þξ 1 + 3 w1k k + 3 w2k k
1 + 3 wnk k

� �ξ

≤ 2 w1k k + 3 w2k k +Λεξψ εð Þ3ξ wnk kξ 1
3 wnk k + 1
� �ξ

� 1 + 3 w1k k + 3 w2k kð Þξ:
ð76Þ

Contrarily, supposing that fkwnkg is not bounded
sequence. Thence, there exists a subsequence fkwnj

kg of

fkwnkg such that limj⟶∞wnj
=∞. If we take ε = εj = ð1 +

3kw1k + 3kw2kÞ/kwnj
k in (76) inequality, then we have
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1 ≤Λ3ξ εξ wnk kξ
 �

1 + 3 w1k k + 3 w2k kð Þξ 1
3 wnj

��� ��� + 1

0
B@

1
CA

ξ

� ψ εj
� �

≤Λ3ξ 1 + 3 w1k k + 3 w2k kð Þξ 1 + 3 w1k k + 3 w2k kð Þξ

� 1
3 wnj

��� ��� + 1

0
B@

1
CA

ξ

ψ εj
� �

≤Λ3ξ 1 + 3 w1k k + 3 w2k kð Þ2ξ

� 1
3 wnj

��� ��� + 1

0
B@

1
CA

ξ

ψ εj
� �

:

ð77Þ

If we take limit in (77) inequality as j⟶∞, then we get
that

Λ3ξ 1 + 3 w1k k + 3 w2k kð Þ2ξ 1
3 wnj

��� ��� + 1

0
B@

1
CA

ξ

ψ εj
� �

⟶ 0

ð78Þ

is a contradiction. Next, we show that the sequencefkwnkg is
bounded. So, there exists A > 0 such that kwnk ≤ A for all n
∈ℕ. Following this line of work, we will demonstrate that
δ = 0. Since S is a weak Pata convex contractive mapping
via simulation function, we have

ζ α wn−1,wnð Þρ wn+1,wn+2ð Þ, 1 − εð Þ
MI wn−1,wnð Þ

−ϕ MI wn−1,wnð Þð Þ

 ! 

+Λεξψ εð ÞPI wn−1,wnð Þ
!
≥ 0,

1 − εð Þ
MI wn−1,wnð Þ

−ϕ MI wn−1,wnð Þð Þ

 !
+Λεξψ εð ÞPI wn−1,wnð Þ

 

− α wn−1,wnð Þρ wn+1,wn+2ð Þ
!
≥ 0,

ð79Þ

where

MI wn−1,wnð Þ =max
ρ wn−1,wnð Þ, ρ wn,wn+1ð Þ, ρ wn−1,wnð Þ,
ρ wn,wn+1ð Þ, ρ wn,wn+1ð Þ, ρ wn+1,wn+2ð Þ

( )

=max ρ wn−1,wnð Þ, ρ wn,wn+1ð Þ, ρ wn+1,wn+2ð Þf g
≤ w1k k + w2k k + wnk k:

ð80Þ

Since the sequence fkwnkg is bounded, we have

PI wn−1,wnð Þ =Λεξψ εð Þ 1 + wn−1k k + wnk k + wnk k½
+ wn+1k k + wn+2k k + wn+3k k�ϑ

≤Λεξψ εð Þ 1 + 6Að Þϑ:
ð81Þ

Therefore, we have

ρn+2 = ρ wn+1,wn+2ð Þ ≤ α wn−1,wnð Þρ wn+1,wn+2ð Þ
≤ 1 − εð Þ MI wn−1,wnð Þ − ϕ MI wn−1,wnð Þð Þð Þ

+Λεξψ εð ÞPI wn−1,wnð Þ ≤ 1 − εð Þ

�
max ρ wn−1,wnð Þ, ρ wn,wn+1ð Þ, ρ wn+1,wn+2ð Þf g

−ϕ max ρ wn−1,wnð Þ, ρ wn,wn+1ð Þ, ρ wn+1,wn+2ð Þf gð Þ

 !

+Λεξψ εð Þ 1 + 6Að Þϑ:
ð82Þ

If the limit is taken as n⟶∞ in (82) inequality, then we
get

δ ≤ 1 − εð Þ δ − ϕ δð Þð Þ +Λεξψ εð Þ 1 + 6Að Þϑ

δ ≤Λεξ−1ψ εð Þ 1 + 6Að Þϑ:
ð83Þ

δ ≤ 0 as ε⟶ 0, that is limn⟶∞ρðwn+1,wn+2Þ = δ = 0.
Now, we demonstrate that fwng is a Cauchy sequence. Con-
trarily, supposing that the sequence fwng is not a Cauchy.
From Lemma 10, we say that there exist subsequence fwmj

g
and fwnj

g with nj >mj > j such that limk⟶∞ρðxmk−1, xnk+1Þ= ς, limk⟶∞ρðxmk
, xnkÞ = ς, limk⟶∞ρðxmk−1, xnkÞ = ς,

limk⟶∞ρðxmk+1, xnk+1Þ = ς, and limk⟶∞ρðxmk
, xnk−1Þ = ς.

Since S is a weak Pata convex contractive mapping, we have

ζ α wnj−1,wmj−1
 �

ρ wnj+1,wmj+1
 �

, 1 − εð Þ


� MI wnj−1,wmj−1
 �

− ϕ MI wnj−1,wmj−1
 � �

+Λεξψ εð ÞPI wnj−1,wmj−1
 ��

≥ 0,

1 − εð Þ MI wnj−1,wmj−1
 �

− ϕ MI wnj−1,wmj−1
 � �

+Λεξψ εð ÞPI wnj−1,wmj−1
 �

− α wnj−1,wmj−1
 �

� ρ wnj+1,wmj+1
 ��

≥ 0

ð84Þ

where

MI wnj−1,wmj−1

 �

=max
ρ wnj−1,wmj−1
 �

, ρ wnj
,wmj

 �
, ρ wnj−1,wnj

 �
,

ρ wmj−1,wmj

 �
, ρ wnj

,wnj+1

 �
, ρ wmj

,wmj+1

 �
8><
>:

9>=
>;,
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PI wnj−1,wmj−1
 �

=Λεξψ εð Þ 1 + wnj−1

��� ��� + wmj−1

��� ���h
+ wnj

��� ��� + wmj

��� ��� + wnj+1

��� ��� + wmj+1

��� ���iϑ
=Λεξψ εð Þ 1 + 6A½ �ϑ:

ð85Þ

Now, we can write

ς ≤ ρ wnj+1,wmj+1
 �

≤ α wnj−1,wmj−1
 �

ρ wnj+1,wmj+1
 �

≤ 1 − εð Þ MI wnj−1,wmj−1
 �

− ϕ MI wnj−1,wmj−1
 � � �

+Λεξψ εð ÞPI wnj−1,wmj−1
 �

≤ 1 − εð Þ

max

ρ wnj−1,wmj−1
 �

, ρ wnj
,wmj

 �
,

ρ wnj−1,wnj

 �
, ρ wmj−1,wmj

 �
,

ρ wnj
,wnj+1

 �
, ρ wmj

,wmj+1

 �

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

−ϕ max

ρ wnj−1,wmj−1
 �

, ρ wnj
,wmj

 �
,

ρ wnj−1,wnj

 �
, ρ wmj−1,wmj

 �
,

ρ wnj
,wnj+1

 �
, ρ wmj

,wmj+1

 �

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

0
BBBBBB@

1
CCCCCCA

0
BBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCA

+Λεξψ εð Þ 1 + 6A½ �ϑ:
ð86Þ

If we take the limit as j⟶∞, we get

ς ≤ 1 − εð Þ ς − ϕ ςð Þð Þ + Kεψ εð Þ ≤ 1 − εð Þς + Kεψ εð Þ, ð87Þ

and so, we have

ς ≤ Kψ εð Þ, ð88Þ

that is, we get ς = 0 which is a contradiction. Therefore, we
concluded that fwng is a Cauchy sequence in ðW, ρÞ. By the
completeness ofW, the sequence fwng is convergent to some
ω ∈W that is wn ⟶ ω as n⟶ +∞. Since S is continuous,
Swn ⟶ Sω as n⟶ +∞. By the uniqueness of the limit, we
obtain ω = Sω that is ω is a fixed point of S.

Now, we will demonstrate that the fixed point is unique.
Assuming that Τ and ω are two fixed points of S: From
hypothesis (iv) of Theorem 15 and since S is an a weak Pata
convex contractive mapping via simulation function, we
have

ζ α ω, Τð Þρ S2ω, S2Τ
� �

, 1 − εð Þ MI ω, Τð Þ − ϕ MI ω, Τð Þð Þð Þ�
+Λεξψ εð ÞPI ω, Τð ÞÞ ≥ 0,

1 − εð Þ MI ω, Τð Þ − ϕ MI ω, Τð Þð Þð Þ +Λεξψ εð ÞPI ω, Τð Þ
− α ω, Τð Þρ S2ω, S2Τ

� �
≥ 0,

ð89Þ

and so, we have

ρ ω, Τð Þ ≤ α ω, Τð Þρ S2ω, S2Τ
� �

≤ 1 − εð Þ MI ω, Τð Þ − ϕ MI ω,Τð Þð Þð Þ +Λεξψ εð ÞPI ω,Τð Þ

≤ 1 − εð Þ
max

ρ ω, Τð Þ, ρ Sω, SΤð Þ, ρ ω, Sωð Þ,
ρ Τ, SΤð Þ, ρ Sω, S2ω

� �
, ρ SΤ, S2Τ
� �

( )

−ϕ max ρ ω, Τð Þ, ρ Sω, SΤð Þ, ρ ω, Sωð Þ, ρ Τ, SΤð Þ, ρ Sω, S2ω
� �

, ρ SΤ, S2Τ
� �� ��

0
BBB@

1
CCCA

+Λεξψ εð Þ 1 + ωk k + Τk k + Sωk k + SΤk k + S2ω
�� �� + S2Τ

�� ��	 
ϑ
≤ 1 − εð Þρ ω, Τð Þ +Λεξψ εð Þ 1 + 3 ωk k + 3 Τk k½ �ϑ:

ð90Þ

We obtain that ρðω, ΤÞ < KψðεÞ for some K ≥ 0, and
thus, we get ω = Τ. Hence, S has a unique fixed point in W.

Example 16. Let ðW, j:jÞ the usual metric space where W =
½0, ð3/2Þ�. Let define the mappings S : W ⟶W by

S wð Þ =
w2 + 1

3 , w ∈ 0, 1½ Þ,
1
2 , w ∈ 1, 32

� �
,

8>>><
>>>:

ð91Þ

ϕ : ½0,+∞Þ⟶ 0, +∞Þ by ϕðwÞ =w/10 and α : W ×W
⟶ ½0,+∞Þ by

α w, υð Þ =
1, w, υ ∈ 0, 1½ �,
0, w, υ ∉ 0, 1½ �:

(
ð92Þ

It is easily seen that S is a triangular α -admissible map-
ping, and also, S2w = ðw4 + 2w2 + 10Þ/27,w ∈ ½0, ð3/2Þ�.
Though the mapping, S is discontinuous in x = 1 and S2 is
continuous on W = ½0, ð3/2Þ�. Now, we want to demonstrate
that S satisfies (11). For w, v ∈ ½0, 1�, we have

ρ S2w, S2v
� �

= w4 + 2w2

27 −
v4 + 2v2

27

����
���� ≤ 2

9 w − vj j + 1
2 Sw − Svj j

= 3
4

8
27 w − vj j + 2

3 Sw − Svj j
� �

≤
3
4 max w − vj j, Sw − hvj jf g ≤ 3

4MI w, vð Þ:
ð93Þ

Since ϕðwÞ =w/10 and αðw, υÞ = 1, for w, υ ∈ ½0, 1�, we
get that

α w, υð Þρ S2w, S2v
� �

≤
5
6
9
10 MI w, vð Þð Þ

= 5
6 MI w, vð Þ − ϕ MI w, vð Þð Þð Þ:

ð94Þ

For arbitrary ε ∈ ½0, 1�, as one can see, the above inequal-
ity turns into the following inequality,
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α w, υð Þρ S2w, S2v
� �

≤ 1 − εð Þ MI w, vð Þ − ϕ MI w, vð Þð Þð Þ
+ 3

4 + ε − 1
� �

MI w, vð Þ ≤ 1 − εð Þ MI w, vð Þ − ϕ MI w, vð Þð Þð Þ

+ 3
4 + ε − 1
� �

1 + wk k + υk k + Swk k + Sυk k + S2w
�� �� + S2υ

�� ��	 

:

ð95Þ

Now, our goal is to show that γ ≥ 0 and Λ ≥ 0 such that

3
4 + ε − 1
� �

1 + wk k + υk k + Swk k + Sυk k + S2w
�� �� + S2υ

�� ��	 

≤Λεγ+1 1 + wk k + υk k + Swk k + Sυk k + S2w

�� �� + S2υ
�� ��	 


ð96Þ

holds for all w, v ∈ ½0, 1�, and every 0 ≤ ε ≤ 1. We can find
Λ ≥ 0 such that

Λ = 3/4ð Þ + ε − 1ð Þ
εγ+1

ð97Þ

holds for each 0 ≤ ε ≤ 1 and some γ ≥ 0. If we choose γ
such that ðγ/ðγ + 1ÞÞ > 1 − ð3/4Þ, then

Λ = γγ

γ + 1ð Þγ+1 1 − 3/4ð Þð Þγ : ð98Þ

Hence, we have that

α w, vð Þρ S2w, S2v
� �

≤ 1 − εð Þ MI w, vð Þ − ϕ MI w, vð Þð Þð Þ +Λεγ+1

� 1 + wk k + υk k + Swk k + Sυk k + S2w
�� �� + S2υ

�� ��	 

:

ð99Þ

Now, we can write

1 − εð Þ MI w, vð Þ − ϕ MI w, vð Þð Þð Þ +Λεγ+1
�

� 1 + wk k + υk k + Swk k + Sυk k + S2w
�� �� + S2υ

�� ��	 

− α w, vð Þρ S2w, S2v

� ��
≥ 0,

ð100Þ

and for ζ ∈ Z ′, we have

ζ
α w, vð Þρ S2w, S2v

� �
,

1 − εð Þ MI w, vð Þ − ϕ MI w, vð Þð Þð Þ +Λεγ+1 1 + wk k + υk k + Swk k + Sυk k + S2w
�� �� + S2υ

�� ��	 

 !

≥ 0,

ð101Þ

which satisfies for each ε > 0 and all w, v ∈ ½0, 1�. If ε = 0, it
can be seen that (11) is satisfied. Hence, all conditions of
Theorem 15 are satisfied with ξ = ϑ = 1 and ψðεÞ = εγ. By
an application of Theorem 15, S has a unique fixed point
in W = ½0, ð3/2Þ�.

Suppose that ε = 0 in Theorems 13 and 15; then we
obtain the following corollaries.

Corollary 17. Let ðW, ρÞ be a complete metric space and ζ
∈ Z ′ and S : W ⟶W be two functions. If for all w, υ ∈W,
there exists a function, α : W ×W ⟶ ½0,+∞Þ such that S
satisfies the inequality either

ζ α w, υð Þρ S2w, S2υ
� �

, EI w, υð Þ − ϕ EI w, υð Þð Þ� �
≥ 0

or ζ α w, υð Þρ S2w, S2υ
� �

,MI w, υð Þ − ϕ MI w, υð Þð Þ� �
≥ 0,
ð102Þ

where ϕ : ½0,+∞Þ⟶ ½0,+∞Þ is a continuous and nonde-
creasing function with ϕð0Þ = 0 and ϕðwÞ > 0, for all w > 0,
and assuming that all of the hypotheses of Theorem 13 are
satisfied, then S has a unique fixed point.

Karapinar’s contractive conditions [10, 32, 45] are a spe-
cial case of ours, and also, Corollary 17 generalizes the
results of Samet [17] and Istratescu [26–28].

Corollary 18. Let ðW, ρÞ be a complete metric space and S
: W ⟶W be a function. If for all w, υ ∈W, there exist two
functions, α : W ×W ⟶ ½0,+∞Þ such that S satisfies the
inequality either

α w, υð Þρ S2w, S2υ
� �

≤ EI w, υð Þ − ϕ EI w, υð Þð Þ
or α w, υð Þρ S2w, S2υ

� �
≤MI w, υð Þ − ϕ MI w, υð Þð Þ,

ð103Þ

where ϕ : ½0,+∞Þ⟶ ½0,+∞Þ is a continuous and nonde-
creasing function with ϕð0Þ = 0 and ϕðwÞ > 0, for all w > 0,
and assuming that all of the hypotheses of Theorem 13 are
satisfied, then S has a unique fixed point.

In comparison with recent results such as Alber et al.
[14] and Zhang [16], our results are a generalization of them.

Corollary 19. Let ðW, ρÞ be a complete metric space and S
: W ⟶W be a function. If for all w, υ ∈W, there exists a
function α : W ×W ⟶ ½0,+∞Þ such that S satisfies the
inequality either

α w, υð Þρ S2w, S2υ
� �

≤ EI w, υð Þ
or α w, υð Þρ S2w, S2υ

� �
≤MI w, υð Þ,

ð104Þ

and assuming that all of the hypotheses of Theorem 13 are
satisfied, then h has a unique fixed point.

Putting αðw, υÞ = 1 in Theorems 13 and 15, we can see
the following results.

Corollary 20. Let ðW, ρÞ be a complete metric space and ζ
∈ Z ′ and S : W ⟶W be two functions. If for all w, υ ∈W,
and ε ∈ ½0, 1�, there exists a function ψ ∈Ψ, such that S sat-
isfies the inequality either
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ζ ρ S2w, S2υ
� �

, 1 − εð Þ EI w, υð Þ − ϕ EI w, υð Þð Þð Þ +Λεξψ εð ÞPI w, υð Þ
 �

≥ 0

or ζ ρ S2w, S2υ
� �

, 1 − εð Þ MI w, υð Þ − ϕ MI w, υð Þð Þð Þ +Λεξψ εð ÞPI w, υð Þ
 �

≥ 0,

ð105Þ

where ϕ : ½0,+∞Þ⟶ ½0,+∞Þ is a continuous and nonde-
creasing function with ϕð0Þ = 0 and ϕðwÞ > 0, for all w > 0,
and assuming that all of the hypotheses of Theorem 13 are
satisfied, then S has a unique fixed point.

Corollary 21. Let ðW, ρÞ be a complete metric space and
S : W ⟶W be a function. If for all w, υ ∈W, and ε ∈ ½0, 1�,
there exists a function ψ ∈Ψ, such that S satisfies the inequal-
ity either

ρ S2w, S2υ
� �

≤ 1 − εð Þ EI w, υð Þ − ϕ EI w, υð Þð Þð Þ +Λεξψ εð ÞPI w, υð Þ
or ρ S2w, S2υ
� �

≤ 1 − εð Þ MI w, υð Þ − ϕ MI w, υð Þð Þð Þ +Λεξψ εð ÞPI w, υð Þ,
ð106Þ

where ϕ : ½0,+∞Þ⟶ ½0,+∞Þ is a continuous and nonde-
creasing function with ϕð0Þ = 0 and ϕðwÞ > 0, for all w > 0,
and assuming that all of the Theorem 13 hypotheses are
satisfied, then S has a unique fixed point.

Assume now that αðw, υÞ = 1 and ε = 0 in Theorem 13
and Theorem 15; then we get the following corollaries.

Corollary 22. Let ðW, ρÞ be a complete metric space and ζ ∈
Z ′, and S : W ⟶W be two functions. If for all w, υ ∈W, S
satisfies the inequality either

ζ ρ S2w, S2υ
� �

, EI w, υð Þ − ϕ EI w, υð Þð Þ� �
≥ 0

or ζ ρ S2w, S2υ
� �

,MI w, υð Þ − ϕ MI w, υð Þð Þ� �
≥ 0,

ð107Þ

where ϕ : ½0,+∞Þ⟶ ½0,+∞Þ is a continuous and nonde-
creasing function with ϕð0Þ = 0 and ϕðsÞ > 0, for all s > 0 and
assume that S is continuous or S2 is continuous. Then, S has a
unique fixed point that is ω = Sω, ω ∈W.

Corollary 23. Let ðW, ρÞ be a complete metric space and S
: W ⟶W be a function. If for all w, υ ∈W, S satisfies the
inequality either

ρ S2w, S2υ
� �

≤ EI w, υð Þ − ϕ EI w, υð Þð Þ
or ρ S2w, S2υ

� �
≤MI w, υð Þ − ϕ MI w, υð Þð Þ,

ð108Þ

where ϕ : ½0,+∞Þ⟶ ½0,+∞Þ is a continuous and nonde-
creasing function with ϕð0Þ = 0 and ϕðwÞ > 0, for all w > 0
and assume that S is continuous or S2 is continuous. Then,
S has a unique fixed point that is ω = Sω, ω ∈W.

We derive that the main result of Pata [2] and Banach
[1] can be expressed as a corollary of our main result.

3. Conclusion

We present the concept of weak E-Pata convex contractions
and weak Pata convex contractions in metric spaces in this
paper. After that, we investigate the existence of a fixed point
for our novel type contraction and we state some conse-
quences. Our results generalize and merge the results
derived by Istratescu [26] and Pata [2] and some other
related results in the literature. Besides the corollaries in this
paper, to underline the novelty of our given results, we give
an example that shows that Theorem 15 is a genuine gener-
alization of Istratescu’s results [26]. Our novel concept
allows for further studies and applications.
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