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In the first edition of the special issue titled “Wireless
Sensor Networks for Smart Communications”, a total of 22
manuscripts were received and 6 of these were accepted. This
issue demonstrated that network congestion, user mobility,
and adjacent spectrum interference are the main reasons for
the degradation of communication quality in Wireless Sensor
Networks (WSNs).

In WSNs, the lifetime of network can be extended by
exploiting an optimal routing tree algorithm. Besides, by
integrating the subgradient-based congestion-optimal Wi-
Fi offload and virtualized congestion-optimal Wi-Fi oftload
algorithms, we can obtain the optimal offload rate of each
Access Point (AP). What is more, by using the Device-to-
device (D2D) resource allocation and K-nearest Neighbor
(KNN) assisted machine learning algorithms, we can obtain
effective spectrum resource allocation schemes, and mean-
while by exploiting the mobile state detection algorithms and
training of Artificial Neural Network (ANN) model based on
ZigBee nodes, we can estimate the heading directions and
locations of mobile users.

This special issue has successfully attracted many inter-
esting original articles discussing the optimization of WSNs
for smart communications. For example, L. Wang et al. inves-
tigated the problem of inefficient spectrum utilization caused
by the spectrum sharing and power interference between
different communities as well as used the dynamic game
theory to optimize the spectrum resource allocation scheme
in D2D communication cellular network. The proposed
allocation scheme not only quantifies the impact of D2D
transmitter power interference on user data transmission

rate, but also quantifies the impact of the social relations
between different mobile users on data transmission rate.
This scheme comprehensively measures the impact of the
two factors above on data transmission rate and meanwhile
relies on the Nash equilibrium based utility function to
design a resource allocation approach based on resource
priority searching, which is then used to optimize spectral
efficiency. In a subsequent study, Y. Sun et al. proposed a
device-free wireless localization system based on the ANN
model and used the ZigBee nodes to construct a hardware
platform for the communications between different sensor
nodes in WSNs. By setting the variance of RSS data and their
corresponding indices as the input and the coordinates of
known locations as the output for the ANN model training,
a satisfactory localization result without the use of special
terminals can be obtained. Subsequently, H. A. Shah et al.
reported a strategy of using the spectrum-aware KNN algo-
rithm in Cognitive Radio (CR) networks to enhance spec-
trum utilization. In training phase, this strategy makes global
decision based on the perceptual report generated by each CR
user, i.e., sending information or keeping silent. At the same
time, the majority decisions of different CR users are merged
into global one, which is then returned to each CR user.
In addition, at each CR user, according to the comparison
between global decision and the actual primary user activity
determined by confirmation signal, the sensing classes are
formed. Then, in classification phase, by comparing each CR
user’s current sensing report with the existing sensing class
formed in training phase, the distance vector and posterior
probability of each perceptual class are calculated to indicate
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the presence or absence of primary users. In all, this strategy
uses a decision-making combination scheme to infer the
reliability of each CR user, which is able to determine sending
information or keeping silent based on global decision. In
response to the Wi-Fi offloading problem, B. Liu et al.
studied the problem of network congestion and user mobility
management in smart communications. They proposed a
Congestion-optimized Wi-Fi Offload (COWO) algorithm to
obtain the optimal offload ratio of Wi-Fi networks, which
is considered for the enhancement of network throughput
as well as mitigation of network congestion. In addition,
they improved the COWO algorithm through equivalent
transformation and developed a simple Virtual Congestion-
optimal Wi-Fi Oftfload (VCOWO) algorithm, which can well
approximate the optimal result obtained by COWO. Finally,
extensive simulation results show that the VCOWO is capable
of achieving higher network throughput and lower network
congestion compared with the existing state-of-the-art. In
terms of user mobility, Z. Deng et al. pointed out three special
states of human motion, i.e., random hand movement, change
of heading direction, and terminal location variation. The
performance of heading direction estimation depends on
the discrimination of these three states, which can be well
achieved according to the user movement states detection,
namely, Rotation Matrix and Principal Component Analysis
(RMPCA). Besides, the outlier elimination algorithm is also
used to improve the accuracy of heading direction estimation
of pedestrian. Finally, P. Cao et al. proposed to use multiple
Central Processing Unit (CPU) cores to accelerate the process
of constructing the optimal routing tree corresponding to the
maximal lifetime of WSNs. The goal of this approach is to
break down the lifetime maximization problem into several
separate subproblems which can be easily solved on each
CPU core at the same time. To achieve this goal, they propose
three decomposition algorithms, in which two of them are
based on the assumption that routing tree does not involve
any cycle and the other one is based on the assumption
that any node in routing tree has at most one parent node.
According to the numerical testing carried out on an 8-core
desktop platform, the proposed approach is verified with
faster computation speed compared with the conventional
ones using only one CPU core.

Therefore, from our perspective, this special issue brings
new insights into the WSNs for smart communications. We
hope that this information will be helpful to pave the way for
the development of intelligent and cognitive communications
with wireless sensors in further study.
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Spectrum sensing is of crucial importance in cognitive radio (CR) networks. In this paper, a reliable spectrum sensing scheme is
proposed, which uses K-nearest neighbor, a machine learning algorithm. In the training phase, each CR user produces a sensing
report under varying conditions and, based on a global decision, either transmits or stays silent. In the training phase the local
decisions of CR users are combined through a majority voting at the fusion center and a global decision is returned to each CR user.
A CR user transmits or stays silent according to the global decision and at each CR user the global decision is compared to the actual
primary user activity, which is ascertained through an acknowledgment signal. In the training phase enough information about
the surrounding environment, i.e., the activity of PU and the behavior of each CR to that activity, is gathered and sensing classes
formed. In the classification phase, each CR user compares its current sensing report to existing sensing classes and distance vectors
are calculated. Based on quantitative variables, the posterior probability of each sensing class is calculated and the sensing report is
classified into either representing presence or absence of PU. The quantitative variables used for calculating the posterior probability
are calculated through K-nearest neighbor algorithm. These local decisions are then combined at the fusion center using a novel
decision combination scheme, which takes into account the reliability of each CR user. The CR users then transmit or stay silent
according to the global decision. Simulation results show that our proposed scheme outperforms conventional spectrum sensing
schemes, both in fading and in nonfading environments, where performance is evaluated using metrics such as the probability of
detection, total probability of error, and the ability to exploit data transmission opportunities.

1. Introduction

Cognitive radio (CR) has been proposed to address the issue
of spectrum scarcity resulting from ineflicient utilization of
spectrum resources [1, 2]. A CR user has unlicensed access
to the spectrum under the constraint that primary user (PU)
communication is not affected. To ensure this, the spectrum
is continuously monitored for PU activity. Spectrum sensing
can also be used to detect spectral holes and enable CR users
to transmit opportunistically. The performance gain of a CR
system is further improved by cooperative spectrum sensing
(CSS), where multiple CR users cooperate to detect spectral
holes.

While matched filtering outperforms other techniques
such as cyclostationary detection and energy detection used
for spectrum sensing, its complexity makes it impractical for

most systems. Energy detection is the simplest technique,
given the limited resources (e.g., energy and computational
power) of most CR users. Common spectrum sensing
problems such as multipath fading and shadowing can be
overcome by exploiting spatial diversity using CSS, thereby
ensuring that PU constraints are met [3]. In CSS, individual
CR users share their data with a fusion center (FC) that
combines local reports to make a global decision. CR users
can report the actual amount of received energy, i.e., the not
quantized into different levels and then reporting the quan-
tized level which can be represented by fewer bits than the
number of bits required for representing the actual amount of
energy received. This is called soft-decision combination and
results in optimal detection performance but theoretically
requires infinite bandwidth [4]. Alternatively, CR users can
make a hard decision based on the received energy and
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report a single bit representing either the presence or absence
of the PU to the FC [5]. Hard reporting saves bandwidth
but produces inferior results as compared to soft reporting.
Linear soft combination has nearly the same performance as
likelihood ratio tests [6].

To balance performance and bandwidth efficiency a
combination of both soft and hard decisions can be used
where the energy range can be quantized, as in [4, 7]. In
[4], the authors used a so-called softened hard combination
scheme, in which the observed energy is quantized into four
regions using two bits, where each region is represented by
a label. This achieves an acceptable trade-off between the
improved performance resulting from soft reporting and
information loss during quantization process. The FC uses a
decision combination rule to combine decisions reported by
CR users and make a global decision. The decisions of CR
users are in quantized form; i.e., instead of reporting a one-
bit decision or the actual amount of energy received to the
FC, the CR users quantize the received energy into multiple
levels and send multiple bits denoting the quantization zone.
This is called quantized-hard decision combination [8].

Along with other factors such as the number of par-
ticipating CR users, the sensing environment, and sensing
capabilities of CR users, the FC’s global decision combination
rule determines the detection performance of the CR system.
For instance, an OR rule results in good protection for the
PU but has the lowest spectral hole exploration capability
[9], whereas an AND rule improves spectral hole detection
but lowers the PU protection capacity. Likewise, poor sensing
and/or malicious CR users reduce the performance of the k-
out-N decision combination rule. More sophisticated com-
bination rules such as Bayesian analysis and the sequential
probability ratio test (SPRT) have better PU protection and
spectral hole exploration but require prior information which
may not always be available in a given CR environment [10].

The notion of learning from the environment is embed-
ded in the concept of cognitive radios. CR users are meant
to monitor the environment and adapt their operating char-
acteristics (operating frequency, transmitting power, etc.) to
the changing conditions. To enable CR users to learn from
the environment, several authors have considered machine
learning algorithms [11-16]. Machine learning in spectrum
sensing becomes a task of extracting a feature vector from
a pattern and classifying it into a hypothesis class corre-
sponding either to the absence or presence of PU activity.
Fading and shadowing can make estimating the channel
condition difficult, and hence spectrum sensing cannot reli-
ably determine the PU status based on the current sensing
slot only [17]. However, machine learning-based spectrum
sensing is capable of implicitly learning the surrounding
environment. Another advantage of machine learning-based
spectrum sensing is that it can reliably detect PU activity
without requiring any prior knowledge of the environment.

Machine learning algorithms are classified into two types:
supervised and unsupervised. K-nearest neighbor (KNN) is
a supervised machine learning algorithm. In KNN, training
instances (spectrum sensing feature vectors) are used to form
K neighborhood classes. A test instance is then classified into
one of K neighbors based on majority voting. The voting
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is based on statistical information gained from finding the
distance between the test instance and the training instances.
The distance should be calculated accurately as to truly
reflect the classifying class [18]. KNN is the simplest of
machine learning algorithms, suitable for the low-complexity
requirements of CR users. KNN is also the most stable
machine learning algorithm [19].

Authors in [20-22] have considered KNN for spectrum
sensing. In [20] the authors have considered a binary hypoth-
esis testing and have proposed to optimize the distance
between the two classes. The drawback of their scheme is that
they have considered soft-decision combination and have
used a one-time spectrum sensing which cannot be checked
against ground reality. In [21], KNN is used in conventional
way as a counting mechanism to fill the spaces in building a
TV white space database. The use of KNN is limited to recon-
struction of the missing spectrum sensing points and thus,
the full capacity of KNN as a classifier is not exploited. In [22],
authors have found a global energy detection threshold for
different conventional rules of decision combination. These
rules are used in conjunction with different classification
schemes to classify a test instance which takes the signal
strength as a feature vector. The authors in [22] also have used
KNN as a counting mechanism and, moreover, the global
decision combination rule does not take into consideration
the weight of individual CR users and their performance
history.

Authors in [23] used multiple antennas for centralized
spectrum sensing while in [24] a scheme based on multiple
energy detectors and adaptive multiple thresholds for coop-
erative spectrum sensing was presented. For regional area
networks, some improved energy detectors were presented
in [25, 26]. Authors in [25] proposed a two-stage energy
detector where decisions of both the detectors are fused
at a decision device while in [26] multiple antennas were
used for spectrum sensing in regional area networks. In [27]
both a fixed energy detector and adaptive double threshold
were used for cooperative spectrum sensing. In [28] multiple
antennas based energy detector utilizing adaptive double
threshold for spectrum sensing was proposed while in [29] a
comparison between cyclostationary detection technique and
adaptive double threshold based energy detection scheme
was carried out.

In this paper, we propose a machine learning-based
reliable spectrum sensing algorithm in which the FC uses
a weight-based decision combination rule. In the training
phase, CR users perform spectrum sensing, and based on
an acknowledgment signal (ACK) and the global decision,
the sensing report is assigned to a sensing class. The sensing
class corresponds to the behavior of a CR user in a changing
environment which is due to the changing activity of the PU.
These sensing classes reliably reflect the activity of the PU
and the CR user’s behavior in response to it. After enough
information is gathered about the surrounding environment,
the classification phase begins. In the training phase the CR
users form alocal decision. The local decision is in quantized-
hard form. The local decisions of the CR users are sent to
the FC and the FC takes a global decision. The CR users
stay silent or transmit according to the global decision. If the
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CR users transmit and ACK is received in the next time slot
then the transmission was successful. Based on the global
decision and the status of ACK signal sensing classes are
formed. The training phase is over when enough training
data for the sensing classes is gathered. In the classification
phase, the KNN algorithm is used, where the sensing classes
obtained in the training phase are treated as neighbors
for the test instance, which is the current sensing report.
The Smith-Waterman algorithm (SWA) is used to accurately
find the distance between the current sensing report and
the neighboring classes. Based on quantitative variables like
the conditional probability and posterior probability, which
are calculated through KNN, the current sensing report is
classified into one of the sensing classes, corresponding to
either the absence or presence of the PU. The local decision
is then reported to the FC, where the local decisions of all
CR users are combined to make a global decision, taking into
consideration the reliability of each CR user.

The proposed scheme uses the quantized information
as opposed to the soft-decision combination scheme that
is proposed in [30]. The spectrum is sensed multiple times
in a sensing slot, which makes the proposed scheme more
reliable since temporal diversity to the spectrum sensing
process is added as wireless channel changes rapidly. The
scheme proposed in [30] was based on one-time spectrum
sensing while we add a verification mechanism in case that
the spectrum sensing decision is absence of PU activity. The
classification problem in the proposed scheme is a multilabel
one where the current spectrum sensing report is classified
into eight different classes. These eight different classes belong
to either hypothesis. But the division of the binary hypothesis
into subclasses makes the proposed scheme more accurately
analyze the PU activity. In addition, the scheme proposed in
[30] used the KNN in the traditional way as a counting mech-
anism. On the other hand, we in the proposed scheme use
posterior probability to find the nearest neighbor and utilize
KNN to calculate the conditional and prior probabilities.

In the reference of [31], KNN was simply used for data
recovery in white space database as a mechanism for majority
voting. The classification problem in [31] is also a binary one
and the KNN decides a label based on majority labels of
the neighboring data points. The proposed spectrum sensing
scheme is different from that of [31] in that quantized energy
levels are used to train the classifier and then the sensing
reports are used to find the class label of the current sensing
report by finding the distance between them. Instead of
majority voting, we have used an efficient distance measuring
algorithm, Smith-Waterman algorithm (SWA) to calculate
the similarity of the current sensing report and the training
reports.

Mikaeil et al. proposed different classification schemes
which work on thresholds calculated through different fusion
rules [22]. In the paper, we utilize a different fusion rule at
the fusion center which takes into consideration the weight of
different CR users before taking a global decision. The focus
of [22] is to find the thresholds for different schemes and
KNN is used as one of the classifications schemes. On the
other hand, in the proposed scheme, the fusion rule utilizes
the distance between the test report and the training reports

intrinsically at the CR user level and at the FC the historical
accuracy of each CR user is also taken into consideration. In
this way, the global fusion rule at the FC makes use of the
training reports as well as the history of performance of each
CR user. Therefore, the global fusion rule is more robust as
well as reliable.

Spectrum sensing has been incorporated into satellite
communications, 5G as well as MIMO schemes. The growing
need for spectrum has made spectrum sensing crucial for
next generation’s communication technologies. Authors in
[32] employed CR for future broadband satellite-terrestrial
communications under the broader framework toward 5G,
while the authors in [33] employed joint spectrum sensing
and channel selection optimization for satellite communi-
cation based on cognitive radios. The concept of the PU
as employed by the CR network was employed for satellite
cluster communications where the presence of the primary
satellite system was detected using the concepts of spectrum
sensing by J. Min et al. [34]. The spectral efficiency of MIMO
systems which has hybrid architectures were investigated by
[35] by investigating the optimal number of users in the
system while in [36] the upper limit of downlink spectral
efficiency and energy efliciency were investigated in massive
MIMI systems with hybrid architecture.

The rest of the paper is organized as follows: Section 2
describes the system model; Section 3 describes the spectrum
sensing scheme which consist of KNN algorithm, SWA, the
training phase, and the classification phase in detail; Section 4
describes the cooperative spectrum sensing and the global
decision combination in detail; Section 5 discusses the results;
and Section 6 concludes the paper.

2. System Model

In this section the energy detection method used and
the quantization method which is employed are discussed.
This section deals with forming of sensing report which is
used both in training phase and classification phase of the
spectrum sensing scheme. We consider N CR users that
continuously sense the spectrum report their local decisions
to the FC through a dedicated control channel [4]. The CR
user transmits information if a spectral hole exists which is
determined by the FC. CR users can either transmit or receive
at a given time; i.e., they operate in half-duplex mode. CR
users are assumed to be close to the PU and outside the range
of other PUs. The system model is presented in Figure 1.

CSS introduces spatial diversity, while temporal diversity
is introduced by dividing the sensing slot into minislots.
We consider a slotted time-frame structure, where the first
slot is used for spectrum sensing and the second slot is
used for transmitting CR user data. The authors in [37]
investigated the optimal sensing slot duration. In this work
a suboptimal sensing slot duration is considered. The sensing
result may change when fading and shadowing phenomena
are present. Temporal diversity counters these effects by
sensing the spectrum # times in the sensing slot. In this work,
the sensing slot is further divided into minislots. In each
minislot, the spectrum is sensed independently. The sensing
performance can be improved if the number of minislots and
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FIGURE I: Basic system model.

hence the sensing duration are increased but that results in
lesser duration for the transmission slot. The authors in [37]
investigated the optimal number of minislots for sensing-
throughput trade-oft in CRNs. According to [37], diversity
reception is introduced in the sensing process by sensing the
channel independently in minislots within the same sensing
phase. In our proposed scheme the results of these minislots
are combined to form a sensing report which later is used in
the classification phase as given in Section 3.2. The sensing
reports were previously used in [8] to calculate trust of each
CR user in a CRN which is under-attack by malicious users.
In this work the sensing reports are used to train the classifiers
and then later used for classifying the current sensing report.
A half-duplex CR user system is considered in which in the
sensing slot the CR users remain silent. If in the sensing slot it
is decided that the PU is absent then the CR users transmit in
the transmission slot; otherwise the CR users remain silent.

When the duration of one-time frame, which consists of a
sensing slot and a transmission slot, is over the CR users sense
the spectrum again. Energy detection is used in each minislot.
The energy received in the w-th sensing slot by the i-th CR
user at the k-th minislot, X, ,;, can be expressed as

N, 5
Xk,w,i = Z |ek,w,i (])l (1)
j=1

where k € {1,2,3,...,n}, n is total number of minislots,
€. (j) is the j-th energy sample received at the k-th minislot
of the w-th sensing slot by the i-th CR user, and N is the
total number of samples, given by N, = 2TB. T and B are the
detection time and signal bandwidth in Hertz, respectively.
The number of samples received in a particular minislot is
dependent upon the bandwidth of the sensed spectrum and
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the sensing time. The received signal e, ;(j) in the absence
of PU (H,)) and presence of PU (H,) is given as follows:

e (]) _ Vk,w,i (J) > H0 (2)
k,w,i - X .
Skow,i (j) + Viw,i (j); H,

where v;_,;(j) is zero-mean additive white Gaussian noise
(AWGN) and s; () is the j-th sample of the PU signal
received at the k-th minislot of the of the w-th sensing slot
by the i-th CR user.

It was shown in [37] that if the primary signal is absent
the probability density function of the energy of the received
signal at the i-th CR user (X, ;) follows a central chi-
square distribution with mean y, and variance og; otherwise
it follows a noncentral chi-square distribution with mean g,
and variance Gf , which can be estimated as

tho = Ny
03 = 2N,

(3)
=Ny (y;+1)

U% = 2N, (2y; + 1)

where y;is the signal to noise ratio (SNR) of the received signal
at the i-th CR user.

When the total number of samples, Ny, is large, the energy
signal received, X ,;, under both hypotheses H, and H,
can be approximated by a Gaussian random variable. In our
scheme, the energy signal at each minislot is quantized into
discrete zones. Multiple bits representing the corresponding
zone are transmitted to the FC, rather than transmitting
a continuous energy variable (a soft decision) or a single
bit (a hard decision). An M-level quantizer of an input
variable is represented by a set of quantization levels and a
set of quantization thresholds. These quantization thresholds
determine the accuracy to which the quantization levels
represent the actual received signal.

In the paper, the slotted-frame structure is considered
where a frame is one unit of accessing the spectrum. The first
slot, called the sensing slot, in each frame is used to sense
the spectrum to decide whether the PU is active or not. If
it is decided in the sensing slot that the PU is absent, the
CR users transmit in the transmission slot. Otherwise, they
remain silent for the duration of the transmission slot. When
the duration of transmission slot is over, the CR users will
start sensing the spectrum again.

Because wireless channel changes rapidly, the spectrum is
sensed multiple times instead of only once so as to consider
the changing behavior of the channel. To do this, in the paper,
the sensing slot is divided into minislots. In each minislot,
the spectrum is sensed independently and based on the
result, a sensing report is formed. A sensing report is formed
according to the quantized decision of each minislot, which
is expressed by (4) and will be used in the classification phase
later. For spectrum sensing, the energy detection is utilized
where samples of received energy are summed and compared
with a threshold and based on the comparison result it is
decided that whether PU is present or absent.

In this work the number of quantization levels is four, i.e.,
M = 4. These levels or quantization zones are represented by
2\, Z,y, Zs, and Z,. Zones Z, and Z, represent low energy or
the absence of the PU, while Z; and Z, represent high energy
or the presence of the PU. The quantized energy zones are
given as

H Zl; Xk,w,i < /\Z1
0
Zy Az < Xpwi <Az
Uk wi = (4)
Zy Ay < Xgwi <Az
H,

Zy Xiwi > Az,

where u;,; represents the quantized energy for the k-th
minislot of the w-th sensing slot of the i-th CR user and A x
Az, and A, are the thresholds that differentiate different
quantization zones. The set of quantization zones is q ¢
{Z21,Z,,Z5,Z,} and the set of thresholds is A € {A; ,A; A, }.
Equation (4) signifies that, in case of H, the average received
energy at i-th CR user at the k-th sensing slot (X, ;) can
be quantized into either Z, or Z, and in case of Hy, X} ,; is
quantized into either Z; or Z,. According to our quantization
scheme Z, and Z, represent H,, and Z, and Z, represent H;.

At each sensing slot, a sensing report is formed that
consists of symbols belonging to g. The report for the i-th
CR user at the w-th sensing slot is called sensing report and
is represented by R; ,, which contains n elements belonging
to g (the sensing report formation is further explained in
Section 3.1). This report is used as a feature vector for the
machine learning algorithm. During the training phase, this
report is assigned to a sensing class based on ACK and
the global decision, which will be discussed in detail in
Section 3.1. The next section describes the spectrum sensing
algorithm at the CR user level.

3. Spectrum Sensing

The proposed spectrum sensing scheme aims to improve PU
detection capability under varying environments to improve
spectral hole detection. The first goal protects the PU’s data
from harmful interference and is the foremost constraint
specified by IEEE 802.21 which is the standard for accessing
TV white spaces [38]. The second goal efficiently exploits
spectrum access opportunities, enabling the CR user to
transmit data. For the i-th CR user at the w-th sensing slot,
channel availability is decided on the basis of the energy
vector (R;,). To correctly map R;, to PU activity, the
behavior of the PU has to be learned. Thus the energy vector
in our case is analogous to a feature vector in the context of
machine learning.

To construct a classifier, i.e., to classify the current sensing
report into channel available (H,) or channel busy (H,)
classes, a training phase is needed. Each CR user stores energy
vectors of size W, where W is the length of the training or
training phase. In training phase, the slotted-frame structure
is used as explained in Section 2. As explained in Section 2, a
one-time slot has a sensing phase and a transmission phase.
There are W slots in the training phase. These vectors are
input of a classifier in the classification phase, where the



current sensing report is compared with previously stored
sensing reports to decide between H, and H,.

In our proposed scheme, first the CR users learn the
behavior of the PU by mapping the generated quantized
energy vectors, which are called sensing reports, to the
accurate status of the PU. The true status of the PU is found
through ACK and a reliable combination of local decisions
of CR users determined by the FC. The function of the CR
user in the training phase is different from its function in the
classification phase. In the training phase, sensing reports are
assigned to sensing classes according to the actual activity
of the PU and the corresponding behavior of the CR user.
In the classification phase, sensing reports are sorted into
one of the sensing classes using KNN. To accurately calculate
the distance between the current sensing report and existing
members of the sensing classes, SWA is used. Section 3.1
describes the training phase, while Section 3.2 describes the
classification phase.

3.1. Training Phase. In this phase, the operating environment
is learned by gauging the behavior of the CR user to the
changing activity of the PU. The i-th CR user generates a
sensing report R; ,,, makes a local decision on the basis of the
average received energy in the current sensing slot, sends the
local decision to the FC, and based on the result of FC and
the status of ACK assigns the sensing report to a sensing class.
This section will explain these steps in detail.

Let the energy received in the w-th sensing slot at the i-th
CR user be represented by Y; , which is given as

_ Zk:l Xk,w,i (5)
n

Yiw
where X, ; is given by (1).

The local decision for the i-th CR user at the w-th sensing
slot in the training phase is represented by g; ,, and is given

by [3]

HO Zl; Yi,w < /\Zl
G = Zy Ay <Y, <Ay ©6)
" Z3 Ay, <Y, <Az
H,

Z4; Yi,w > /\Z3

The local decision is sent to the FC, which combines local
decisions from all CR users and renders a global decision.
In the training phase, the simple majority rule is used as the
rule of decision combination. The symbol (quantization zone)
reported by the majority of CR users determines the global
decision at the FC. As can be seen from (6), the local decision
during the training phase is in the quantized-hard form, so
the global decision at the FC is also in the quantized-hard
form. The sensing report of a CR user is as shown in Figure 2.
The local sensing report was explained above in the previous
section. In Figure 2, the first six minislots constitute a local
sensing report. As can be seen every element of the report
belongs to q. For every CR user, at every sensing slot a sensing
report (the current sensing report is represented by R; ) is
formed, and the local decision is taken according to (6).
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Next, the global decision is returned to the CR users. The
CR users either transmit or remain silent based on the global
decision. If the CR global decision is H, then this can be
verified by the ACK signal which is sent by the CR receiver to
the CR sender after the CR receiver receives the transmission.
As overlay cognitive radio network is considered, so, there is
no interference to the PU communications. The ACK signal
is affected by the PU communication only when the spectrum
sensing result is wrong and in-fact the ground reality is H;.
Based on the local decision and the global decision, there are
eight possible cases for the CR user and the sensing classes
according to our system model. These possible cases called
observations are given below.

Observation 1. The local decision (g;,,) is Z, and the global
decision is also Z;. The CR user transmits its data. If ACK
is received, it means the sensing result was correct and the
actual status of the PU was H,,. Through the ACK signal, the
true status of the PU is known. The sensing report corre-
sponding to this decision (R;,) is stored in a class labelled
as R, while in case of absence of ACK signal it is stored in R,.

Observation 2. Both the local decision (g;,,) and the global
decision are Z,, or the global decision is Z, and the local
decision is Z;. The CR user will transmit, but ACK is not
received, meaning that the sensing decision was wrong and
the PU was available. The CR user will store R;, in a class
labelled R,. If ACK signal is received it will be stored in R;.
If the local decision is Z, and the global decision is Z; or Z,,
then R; ,, will also be stored in this class.

Observation 3. The local decision (g;,,) is Z, and the global
decision is also Z,. The CR users follow the procedure as
explained in Observation 1. If ACK is received, the sensing
decision is correct and the PU is not present. R; , is stored in
a class labelled R;, otherwise it is stored in R,.

Observation 4. The local decision is Z, and the global
decision is Z, or Z,. The CR user transmits, and if ACK is not
received, R; , is assigned to the class with label R,, otherwise
in R;. If the local decision is Z, and the global decision is
either Z; or Z,, then again R; , will be stored in the class
labelled as R,.

Observation 5. The local decision is Z; and the global
decision is also Z5. There will be no transmission in this case.
The true status of the PU thus cannot be known. R; , will be
assigned to a class which is labelled as R;. The sensing report
will also be stored in class R; if the global decision is Z, and
the local decision is Z;.

Observation 6. Thelocal decision is Z; but the global decision
is either Z, or Z,. The CR user will transmit. If ACK is
received, R; ,, will be stored in a class labelled Ry, otherwise it
will be stored in Rs.

Observation 7. Both the local and global decisions are Z,.
There will be no transmission and R; , will be stored in the
class labelled as R;. R; ,, will also be stored in R; if the local
decision is Z, and global decision is Z,.
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FIGURE 2: Local sensing report and local decision during training phase.

Observation 8. The local decision is Z,, but the global
decision is either Z; or Z,. The CR user will transmit. If
ACK is received, R; , will be stored in class Rq. If no ACK
is received, R; , will be stored in R;.

In the observations above it can be seen that ACK signal
is used when the global decision is H,. When the global
decision is H, the CR users do not transmit and thus ACK
signal cannot be used to ascertain ground reality. So, in the
case when H, is the global decision at the FC the CR users
store the current sensing report in the classes R; and R,
as the current sensing decision cannot be verified in any
other way than at the risk of causing interference to the PU
transmission.

The observations are given in decision tree form in
Figure 3. As the observations do not stem from one set of
decisions, there is no unified root of the decision tree. The
decision trees are given in four partitions depending on the
local decision. The local decision is abbreviated as LD and the
global decision as GD in Figure 3. Figure 3(a) corresponds to
the case that the local decision is Z; and Observations 1 and
2 are obtained. Figure 3(b) corresponds to the case that the
local decision is Z, and the Observations 3 and 4 are obtained.
Figures 3(c) and 3(d), respectively, correspond to the cases
that the local decisions are Z; and Z, and the Observations 5,
6, 7, and 8 are obtained.

These observations help learn the CR user about the
surrounding environment and its behavior in response to the
environment and also give CR users historical data that can
be used in conjunction with the current sensing behavior to
more reliably predict the PU status. This process can be seen
as cooperative learning where not only is the individual CR
user taken into account, but also the impact of other CR users
is incorporated through the global decision. This adds spatial
diversity to the learning process, where a receiver with better
signal to noise ratio (SNR) conditions can drive the behavior
of CR users with poorer SNR conditions.

The training phase is run until the CR user is sufficiently
trained in the behavior of the surrounding environment,
including changing the SNR conditions and changing the
behavior of the PU. Fading can also temporarily affect the
signal and thus the energy received due to the continuously
changing sensing environment. The training scheme devel-
oped takes into consideration the presence of fading and thus
store sensing reports that may have been the results of either
fading or bad sensing in their corresponding categories.
As the learning is based on the ACK and reliable decision
combination at the FC, classes based on training more reliably
reflect the sensing environment and PU activity. The results
of either fading or bad sensing at the CR user level are found
in the above observations, where the local decision is different
from the global decision or when ACK is not received.

The training data is collected locally at each CR user in
the training phase. The performance of machine learning
techniques is dependent upon the size of the training phase.
As the training size increase, the performance also improves.
With an increase in the number of CR users a larger
area under the PU is covered. Because our training model
incorporates the global decision by acting according to it and
also through the ACK signal the ground reality is known, the
training phase can accurately know the behavior of CR users
to the PU activity. With a large number of CR users, each
CR user can reflect the ground reality in its training classes
through the global decision. With a large training phase, the
behavior of CR users to varying nature of the PU activity
also can be accurately known. In conventional machine
learning techniques, the training phase can gather adequate
amount of training data to know the environment. Knowing
the exact nature of PU activity is practically not feasible
because of the random nature both of wireless channel and
of the PU activity. But as will be shown in simulations, given
a sufliciently large size of the training phase, the system
detection performance can converge even at a very low SNR.

Figure 4(a) presents the frame structure when the FC
decides that the PU is present during training phase. The CR
users remain silent during the transmission phase in this case.
Different operations in the sensing phase happen as first the
local decision is made, then the local sensing decision is sent
to the FC through a CCC. The FC combines the local sensing
decisions and decides whether the PU is present or absent.
If the FC decides that the PU is absent then the CR users
transmit and hear for the ACK signal over the same channel
on which transmission has been done. The CCC is not used
for establishing links between the CR users. Rather it the
communications happen between the CR user through the
spectrum which is licensed to the PU and which is accessed
by the CR users if the PU is absent. Figure 4(b) presents the
time frame for the case when PU is absent during training
phase. On the basis of the ACK signal the sensing report
of the sensing slot is assigned into the classes as defined by
the observations above. The frame structure is different for
training phase from classification phase. In the training phase
the sensing classes are updated on the basis of status of the
ACK signal which helps in training the CR user to accurately
reflect the ground reality.

3.2. Classification Phase. In the previous phase, information
was gathered regarding the operating environment and the
CR user behavior in response to the changing environment.
Learning the environment is made especially difficult by
the nature of CR networks. Because of the noisy sensing
environment, CR users only obtain partial observations of the
environment variables. In addition, CR users must also trans-
mit data. This results in a trade-off between sensing time and
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throughput: the higher the sensing time, the more accurate
the sensing result and thus the more efficient the learning.
Therefore, partial observability and capping the sensing time
complicate the learning process. A third limitation is that
a PU is considered to be autonomous. A CR user may not
have any prior information about PU behavior, its operating
characteristics, the RF environment, interference levels, or
noise power distribution.

Our learning scheme addresses these issues. Partial
observability is addressed by incorporating the behavior of
other CR users into the learning process through the global
decision. The ACK enables CR users to better learn the
operating environment and divide the sensing observations
into their respective classes more accurately. Our learning
scheme requires no prior information and can efficiently
map sensing performance to the changing activity of the
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FIGURE 4

PU, thus enabling the CR user to more reliably detect the
PU.

A frame structure during the classification phase is
presented in Figure 5. In the local decision making phase, the
spectrum is sensed and a sensing report is created. The first
six minislots in the local decision making part of Figure 5
represent the local sensing report. The second part is the
classification phase discussed in Section 3.2.3. The last part of
the local decision making slot is the reporting phase, where
the local decision is reported to the FC, the global decision
is returned and the CR user takes action accordingly. The
transmission phase follows the local decision making phase.

In this section, we will present in detail how the current
sensing report is classified into one of the training classes.
KNN, a machine learning algorithm, is used to accurately
classify the current instance into one of the sensing classes
and thus reliably detect PU activity. Section 3.2.1 presents the
KNN algorithm.

3.2.1. K-Nearest Neighbor Algorithm. KNN is a distribution-
free machine learning algorithm that classifies observations
into one of several classes based on quantitative variables.
KNN, being a distribution-free method, is suitable for the
context of cognitive radios. KNN classifies a test instance, in
our case the current sensing report as described in Section 3.1,
into one of several neighboring classes by majority voting.
The voting can be modified to calculate the distance between
any two sensing reports. In the context of CR networks, it is
highly improbable that any two sensing reports are exactly the
same, so we have to measure the similarity between them.
The classification plane is divided into a number of
neighbors and the distance of the current sensing report to
each of those neighbors is found. For the sake of notational
simplicity let us denote the sensing report of the current
sensing slot at the i-th CR user by x; onwards. Let d(x;, y)
be the distance, where y represents the neighbors, or the
sensing classes obtained in Section 3.1, given by y ¢
{R}, RyR;, Ry, Ry, RgR;, Rg}. The distance is calculated to each

of the neighbors representing either H,, or H,. Based on the
calculated distance, the current sensing report is classified
either to H,, or to H;. Section 3.2.2 shows how the distance
is calculated and Section 3.2.3 shows the procedure for using
KNN for classification.

3.2.2. Smith-Waterman Algorithm. The Smith-Waterman
algorithm (SWA) [39] is a local alignment algorithm that
calculates an accurate distance between two vectors. The
sensing reports in our case can differ from each other due
to spatial and temporal diversity, so the voting method
conventionally used in KNN, which is based on finding a
match or a mismatch, is not applicable here. Instead, we
focus on measuring the similarity between sensing reports,
using SWA to calculate the distance between the current
sensing report and the sensing classes.

SWA consists of three stages: training, matrix fill, and
trace back. The three stages are briefly described as follows.

Training: one sensing report is arranged horizontally and
the other vertically. The top row and the leftmost column are
initialized to 0.

Matrix fill: let the sensing report arranged vertically be
g, and the sensing report arranged horizontally be g;. Each
element of g, (q,,,) is compared with every element of
q; (q;,;) and the score F(p,]) is computed according to the
matrix fill equation as follows:

0

F(p-1,I-1)+ o0 o A1
F(p) = max (p-1,1-1) +0(qp ;) -
F(P'l’l) -t (qp,m’ql,j)

F(p,1-1) -t (qpm ;)

where p,l = 1,2,...,n are indices of the elements of report
dm and report g;, respectively, gq,,, is the p-th element of
report g, q; ; is the I-th element of report G;, o(q,,» q;,;) is
the similarity reward between two characters, and £(q,,,,,» q;, ;)
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FIGURE 5: Frame structure during classification phase.

is the gap penalty (dissimilarity) that determines the degree
of mismatch between q,,,, and g; ; to be penalized. Different
reward and penalty values are defined for different types
of sequences and applications. Here, we use intuitive values
based on experimental results. The gap penalty is determined
as

4 (Gpm =215 015 = 'Z4)
3 (dpm =201 = 'Z5)
or (qpm Zz',ql,j='Z4')
Hpw @) = 120 (dpm='Zba;='25)  ®)
L (g =210 ='2y)

0, otherwise.

and the similarity reward is calculated as

2, (qp,m = ql,j)

1, (qp,m = 'ZIV’QI,]‘ = 'Zz') or

(qp,m ='Z3,q,; = 'Z4')

0, otherwise.

0 (dpmwrj) = 9)

It is important to note that o(q,,,,»q; ;) = 0(qy,j»9,,,) and
H(dpm 91,;) = £(qyj»qpm)> which means that the similarity
reward and gap penalty have the commutative property. The
similarity score between two sensing reports F; a,1s obtained
by taking the maximum element of the score matrix (F). The
similarity score of the m-th sensing report when compared

with the j-th sensing report is given as
Fouq, =, max {F(p.D}. (10)

Trace back: the third stage of the SWA is called trace
back and is performed to align sequences based on the scores
computed in the “matrix fill” stage. Since our objective is just
to find the similarity score, the trace back stage is not required
in our work.

3.2.3. Classification. As is explained a sensing report have n
elements belonging to g. The sensing report (x;) has to be

classified into one of the sensing classes, which are treated
as neighbors for x;. The candidate set of neighbors for x;
is denoted by N(x;) and contains all classes as found in
Section 3.1 such that N(x;) € {R;,R,,R3, Ry, Rs, Rg, Ry, Rg}
and each CR user has its own version of sensing classes.

The current sensing report is compared with every mem-
ber of each of the sensing classes belonging to N(x;). The
membership counting vector is represented by y_x:(l). Each

element of }Z(l) is the result of comparing x; with the j-th
member of the [-th sensing class which is computed by (10).
Let hl1 be the event that sensing report x; belongs to class / and
hé be the event that sensing report x; does not belong to class

I. Furthermore, let Efv be the event that w elements in y_xr(l)
are greater than a threshold. Then the posterior probability
(Px,-(l)) that the current sensing report x; belongs to class [ is
found as

l P(H)P(E /H
Px_(l)=P<h_ll)= (m) l( . ;) |
i Ew Zbe[o,l] P(hb)P(Ew/hb)

=P(h’1)P<i—%’>.

Based on the posterior probability, the local decision for the i-
th CR user at the r-th sensing slot, represented by g; _, is given
as

(11)

H, Py,>P
9ir = (12)
H, otherwise

where P, is the sum of posterior probabilities of sensing
classes representing H,, and is given as

PO =Px,- (R1)+Px,- (R3)+Px,- (R6)+Px,- (RS) (13)

and P, is the sum of posterior probabilities of sensing classes
representing H, and is given as

P, =P, (Ry) + P, (Ry) + P (Rs) + P, (R;). (14)

i

4. Cooperative Spectrum Sensing

The FC receives the local decisions as D; where i = 1,2, 3,
...,N. In CSS, the sensing capabilities of CR users are
different from each other which results in different local
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sensing results [40]. In the proposed scheme, we use a weight-
based decision combination at the FC. Each CR user is
assigned a weight based on its effectiveness.

A partial global decision at FC, represented by L, is
made by excluding the result of the i-th CR user as

H, N. >N
LGJ.=<| 0 TH ©TTH (15)

H, otherwise

where N7, is the number of CR users reporting H, excluding
the local decision of the i-th CR user and is given as

N
= Z I, (D; = H,) (16)
i=1,i#i

where I,(D; = H,) is indicator function for H,, and is given
by

I, (D; = Hy) = (17)
0; Dl ?é HO‘

On the other hand, N;{I is the number of CR users
reporting H; excluding the local decision of the i-th CR user
and is given as

, N
Ny, = Z I, (D; = Hy) (18)

i=1,i#i

where I;(D; = H,) is indicator function for H, and is given
by

1; D;=H,

I,(D; = H)) = 19)
0; D;+ H,.

Partial global decisions are found for all CR users. The
local decisions are then combined through a majority rule as
LG4y and can be expressed as

H, Ny, > Ny,
Logan = { (20)

H, otherwise

where Ny, is the number of CR users reporting Hy and Ny is
the number of CR users reporting H,. Based on (15) and (20)
the weight for each CR user, o, is calculated as

oa;+1 Lg; # Lga @
(Xi =
a; Lgi=Lga-

The cumulative weight for each hypothesis 3, where a €
{H,, H,} is then calculated as

N
Ba = Z“ilo (D;=a) ae{HyH,} (22)
i=1
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where I(D; = a) is given by

1; D;=a
Iy(D;=a) = «| (23)

0; otherwise.

The final global decision is denoted by L; and is calculated as

B {Ho ﬁHO > ﬁHl (24)

G=
H, otherwise.

The global decision is returned to CR users and the CR
users then transmit or stay silent according to the global
decision.

Let B = /2y Y., Ih|* + 1 where hy is the channel gain

between the primary user and the i-th CR user during the k-
th minislot and y is the mean SNR as received from the PU. If
itis assumed that the system’s coefficients are known, then the
system probability of false alarm under nonfading channels is
given as [37]

<ﬁQ’1 P;)+ JNOYZ i ) (25)

where Q(.) is the complimentary distribution function of the
standard Gaussian, i.e., Q(x) = (1/2m) J;O exp(—t2/2)dt and

P, is the system target probability of detection. The probabil-
ity of detection and probability of false alarm of the proposed
scheme depend both on the probability of the sensing report
falling into a particular quantization zone and on the number
of minislots in the sensing slot. The target probability of
detection and target probability of false alarm are depended
upon the number of quantization zones, the portability that
under a particular hypothesis the sensing decision will fall
in a particular quantization zone and the weight of each
quantization zone. The quantization thresholds are adjusted
such that the optimal quantization thresholds are found. On
the basis of quantization parameters the target probabilities
of detection and false alarm are optimized. For cooperative
spectrum sensing the target probability of detection, if the
weight of the quantization zones is considered the same, i.e.,
that each quantization zone contributes the same to the final
decision combination, can be given as [41]

1
M
B-T1{( N2V

m=1 NBm

(P, (Z))" " (26)

where N, is the number of CR users having the local sensing
decision in zone Z,,, [ is the largest integer less than m, and
Py (Z,,) is the probability of having the local sensing decision
in quantization zone Z,, under H;.

The system probability of detection can be given as [37]

(ﬁQ‘l Pr)+ \/NoyZ [ > (27)
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where P; is the system target probability of false alarm and is
given by [41]

1
M
=11V S:ZINZS (P, (Z))" (28)
m=1 NBm

and Py (Z,,) is the probability of having the local sensing
decision in quantization zone Z,, under H,,.

5. Results and Analysis

In this section we observe the behavior of our proposed
scheme and compare it to other schemes through system
parameters such as probability of detection, probability of
error, and probability of spectral holes exploitation. In [8],
the effect of introducing multiple bits for reporting and
sensing the spectrum multiple times within the same sensing
phase was investigated where the scheme utilizing reporting
multiple bits and multiple minislots was shown to be robust
against all kind of attacks. Authors in [3, 37] have also
shown the reliability gain which is brought by using multiple
minislots. The number of CR users is 5, the number of
iterations is 1000, the sensing slot duration is 1 ms, the
sampling frequency is 300 kHz, and the number of energy
samples in each sensing slot is 600. The idle probability of
PU is 0.5. The SNR range is from -25 to -10 dB. When
the number of CR users is large, clusters are formed for
spectrum sensing to reduce the overhead. Authors in [42]
considered clusters to sense the spectrum where the number
of CR users in each cluster was five. That is, when cluster
is considered, the CR users send their local decisions to a
cluster-head to reduce the number of direct reports sent to
the FC. To consider a higher number of CR users, the concept
of cluster needs to be adopted. However, it is beyond the
scope of the paper. However, according to [42] as the number
of clusters and thus the number of CR users increase the
sensing performance also improves. The idle probability is
used as 0.5 in literature for the sake of fairness ([8, 42]). If
the idle probability of PU is increased, it will provide higher
opportunities of transmission to the CR user. Therefore,
the idle probability of PU in the paper is taken as 0.5 for
maintaining fairness among CR and PU systems. As the idle
probability of PU is considered equal to that of probability
of activity of the PU, the target detection probability for
channel without fading is set to be 0.8 at SNR of -20 dB.
The detection probability as is set in this paper with a higher
active probability of the PU of 0.5 (the authors in [37]
considered a low active probability of PU of 0.3) guarantees
the protection of the PU data. We measure the performance of
our proposed scheme in both the AWGN channels and also in
fading channels by observing our scheme’s behavior and also
of other schemes behavior through varying SNR conditions
for different system parameters. The training phase strongly
impacts the system performance, as through this phase, the
sensing classes are developed. The larger this phase, the
greater the number of training instances, which means the
current sensing report has more similar reports to match
with. We plot the proposed scheme with two variants. In
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one, the training phase is 100 iterations and in the other it is
330 iterations. These schemes are compared with a scheme in
which the CR users make a one-bit local decision and the local
decisions are combined at the FC by using a conventional OR
rule.

In this paper, the probability of error (Pe) is given as

Pe = Pf x P(H,) + (1 - Pd) x P (H,) (29)

where Pd is the probability of detection, Py is the probability
of false alarm, P(H,)) is the prior probability of H, and P(H,)
is the prior probability of H,. The probability of detection
(Pd) is defined as

N(Dg=1 && H=1)

Pd = (30)

Np,=1 && H=1) T (n(DG:O && H:I))
and the probability of false alarm (P 7) is defined as

n _ —
(Dg=1 && H=0)
Pf = - (31)

N(p,=1 && H=1) T (”(DG=0 && H:l))

where H is the real status of the PU and is equal to a randomly
generated stream of ones and zeroes with size equal to the
total number of iterations. A one represents the presence
of the PU, while a zero represents absence of the PU. The
notation 7, gg ,) means the number of times the condition
in the subscript is satisfied. The probability of spectral hole
exploitation is represented by Pnf and can be expressed as

Pnf =1-Pf. (32)

Soft-decision combination gives the optimal sensing per-
formance [4]. In [4], it is also shown that hard decision
combination gives inferior results but only has one-bit over-
head while soft combination incurs a lot of overhead. In
one-bit hard combination scheme, sensing information was
lost during local decision making because of using only one
threshold. By using multiple thresholds, the sensing informa-
tion loss can be reduced, which leads to better performance,
and more overhead. In [7], it is also shown that using two bits
for reporting the local decision can significantly improve the
sensing performance. The effectiveness of using two bits (four
quantization levels) was shown for both perfect and imperfect
reporting channels. In [43], H. Sakran et al. utilized three
bits to report the local decision to the FC. The performance
improvement was shown to be better than using two bits
for reporting local decision. In summary, it is obvious that
trade-off exists between spectrum sensing performance and
overhead when we design the quantization levels. Therefore,
in the paper we mainly focus on applying machine learn-
ing algorithm into Smith-Waterman algorithm-based soft-
decision spectrum sensing by considering the case of four
quantization levels. To consider more quantization levels
than 4 levels, the whole problem formulation such as the
observations in Section 3.1 and the classification classes have
to be changed and redesigned. Therefore, simulation results
are bounded to the case of four quantization levels.

In the training phase the probability of detection of the
proposed scheme is equal to that of majority rule which
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FIGURE 6: System detection performance with nonfading channels.

0.25 : : . . .
A ; ; ; ;
02 F - i S e L P
A ! ; ; ;
TAA :
0154 - R
© ! : AL ; ‘
~ : : A :
(8 SRR LA L S
. . . ‘\\ .
S T L S e
005 "0 : ; AR

- Proposed scheme; Training size = 330
-O- Proposed scheme; Training size = 100
-A- OR Rule

FIGURE 7: System error performance with nonfading channels.

uses quantization. In machine learning technique, the per-
formance of the proposed scheme is dependent upon the
classification phase. In the simulations, the probability of
detection is composed of those of both the training and
classification phase. Similarly, training data in the proposed
scheme is required to train the KNN classifier, and the
performance of the classifier is depended on the training size
of the data. The proposed scheme utilizes the majority rule to
get training data. Since malicious users or anomalies are not
considered in the paper, the majority rule works by majority
voting and corresponding performance will be dependent
upon local sensing decisions of the CR users. When the
training phase is over, the classifier will have ample data
available to the changing behavior of PU and will be trained.

Figure 6 shows the system detection performance in
an AWGN channel. The proposed scheme with the larger
training phase outperforms the other two schemes. The
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FIGURE 8: System probability of exploiting spectral holes.

proposed scheme with a smaller training phase has the
same detection performance as an OR rule in the low SNR
regime. The reason is that the sensing reports in low SNR
regimes do not have large distances from each other. The
energies received under both hypotheses in the low SNR
regime vary little from each other and thus, the scheme with
fewer training instances fails to learn the environment more
reliably. As the SNR improves, the proposed scheme with
the smaller training phase results in more reliable spectrum
sensing than conventional schemes. Figure 7 shows the error
performance as calculated by (29). In this figure, it can also be
seen that the proposed scheme with the larger training phase
has a low probability of error even in the low SNR regime.
The scheme with the smaller training phase converges to one
with a larger training phase in better SNR conditions, which
shows that even with a smaller training size the proposed
scheme can result in more reliable spectrum sensing than
conventional schemes.

Figure 8 shows the capability of the proposed scheme to
exploit spectral holes which is defined by (28). Exploiting
available opportunities for transmitting data is the highest
priority from the perspective of a CR user. Even in bad SNR
conditions our proposed scheme enables CR users to exploit
data transmission opportunities. The proposed scheme with
the smaller training phase lags behind the one with the larger
training phase in bad SNR conditions but converges to the
scheme with the larger training phase in good SNR regimes.

In the region of high SNR, the sensing reports which are
formed are better reflections of the PU’s activity. The sensing
performance can be improved under the region of high SNR
regimes since the PU signal will take larger portion of the
received signal, compared to the added noise. That is to say,
when SNR gets larger, a smaller number of training samples
and further a smaller size of the training window are required
to train the classifier. Therefore, when the SNR improves, a
smaller training size results in the same performance. On the
other hand, in the region of lower SNR, a larger training size
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FIGURE 10: System error performance with fading channels.

and a higher training size are needed to accurately reflect the
PU’s activity. All the three schemes show same performance
trend but at different SNR levels. The OR rule has the best
detection performance among conventional schemes, as it
uses the most relaxed criteria for declaring, whether the PU
is present or not out of all the conventional rules. However,
this means that the OR rule cannot efficiently exploit data
transmission opportunities. These figures show that our
proposed scheme can protect PU data more effectively as well
as provide more data transmission opportunities.

Figure 9 shows the detection performance of the pro-
posed scheme in a fading environment. Fading affects the
power of the received signal and thus the number of energy
samples required to efficiently decide the status of the PU.
In nonfading environment the amplitude gain of the channel
is deterministic while in the fading channels the amplitude
gain of the channel varies [17]. Thus the probability of
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detection is dependent upon the instantaneous SNR. The
effect of fading on performance of spectrum sensing was
investigated in detail by [17]. Instead of following (2) and (3)
for setting up a simulation environment, we have followed a
path-loss model to incorporate fading as presented in [44].
We assume a path-loss model where the signal goes fading
proportional to d*, where d is the distance between the
PU and the CR users and « = 3. The average distance
between the PU and CR users is assumed to be 20 m. The
performance of our proposed scheme with the larger training
phase outperforms the OR rule by 5% when the SNR is -23
dB, but when the SNR improves to -16 dB, the improvement
is about 20%. The detection performance of the proposed
scheme outperforms the OR rule by a larger margin when
SNR conditions improve. As can be seen from the figure, the
OR rule has a very poor detection performance in a fading
environment despite the fact that it has the best detection
performance among conventional fusion rules. Figure 10
shows the error performance of the proposed scheme in a
fading environment. It can be seen that with increasing SNR,
the error reduces. At -25 dB, the error probability is just above
0.1. Due to fading, the error probability of the OR rule is 0.35,
which is very high compared to our proposed scheme.
Figure 11 shows the effect of the number of CR users
on the performance of cooperative spectrum sensing under
fading channels where some CR users undergo deep fading
and thus have unreliable training data. To reflect the effect of
increasing number of CR users fading conditions are required
asinnonfading channels the performance with increasing the
number of CR users remains the same because the training
data of less CR users is also reliable and reflect the PU activity
accurately. In the figure for each number of CR users the SNR
is varied from -25 to -10 and then the mean of probabilities
of detection is found. For instance, when the number of CR
users is 6 the probability of detection for a multiple values of
SNR varying between -25 and -15 is calculated and then the
mean of the computed probabilities is the mean probability of
detection. The mean probability of detection is represented
by Pmd. As the values shown are mean values so the Pmd
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cannot converge to 1. For each values of SNR the system is
run 1,000 time for the proposed scheme having training size
0f100 and 300 times for the proposed scheme having training
size of 100. As can be seen as the number of CR users increases
beyond a limit, in this case beyond 10 the improvement in
mean probability of detection is not abrupt. That is because
of the reasons explained in first paragraph of this section that
to utilize the gain which can be introduced by increasing the
number of CR users clusters need to be formed. When instead
of cluster-heads the FC combines the sensing decisions of all
CR users then the sensing decisions of many CR users may
fall outside of the similarity distances range as calculated in
Section 3.2.2 and thus their reports will be rejected. From
Figure 11 it can be seen that the mean probability of detection
of the proposed scheme with a larger training size surpasses
the performance of the other schemes. A mean probability
of detection when the number of users equals 20 reaches 0.8
which is target detection probability as we consider in this
paper at SNR of -20 dB for nonfading channels when the
number of CR users is 5 as we have considered in this paper.
The proposed scheme reaches highest mean probability of
detection of near 0.7 and the OR can achieve highest mean
probability of detection of less than 0.6.

6. Conclusion

In this paper, a machine learning-based reliable spectrum
sensing scheme is proposed. The proposed scheme learns
from the environment by taking into account the true status
of the PU. Sensing reports are stored in appropriate sensing
classes and then the current sensing report is classified into
one of the sensing classes. Based on the result of classification,
the PU is declared present or absent. Local decisions are
combined at the FC by a novel decision combination scheme
that takes into account the reliability of the CR users. Mech-
anisms at both the CR level and the FC level ensure reliable
spectrum sensing. Simulation results show that our proposed
scheme has better detection performance and better spectral
hole exploitation capability than the conventional OR rule.
Fading affects detection performance, but our scheme detects
successfully 80% of the times at -10 dB SNR even in a fading
environment.
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We study the WiFi offloading problem in smart communications and adaptively seek for the optimal offloading strategies with
the consideration of the mobility management and the dynamical nature of network state. With users mobility management, we
formulate the offloading ratio optimization problem based on Markov process. Then, we propose a novel Congestion-Optimal WiFi
Offloading (COWO) algorithm based on subgradient method, which aims to obtain the optimal offloading ratio for each access
point (AP) to maximize the throughput and minimize the network congestion. Due to the computational complexity of subgradient
method, we further improve the COWO algorithm by the equivalent transformation. By viewing all the APs as one virtual WiFi
network, we try to optimize the identical offloading ratio for virtual WiFi network and develop a Virtualized Congestion-Optimal
WiFi Offloading (VCOWO) algorithm with lower complexity. Under the equivalent conditions, the performance of the VCOWO
algorithm could well approximate the optimal results obtained by the COWO algorithm. It is found that the VCOWO algorithm
could obtain the upper bound of multiple APs WiFi offloading performance. Moreover, we investigate the impacts of user mobility
on the WiFi offloading performance. Simulation results show that the proposed algorithm could achieve higher throughput with

lower network congestion compared with other current offloading schemes.

1. Introduction

With the proliferation of smart devices such as smartphones
and tablets, cellular networks are facing an exponential
growth of mobile data traffic. According to Cisco’s forecast,
global mobile data traffic is expected to grow to 49 megabytes
per month by 2021, a sevenfold increase over 2016 [1-4]. With
the limited licensed bandwidth, the cellular network capacity,
however, can not keep up with the explosive data growth
[5-9]. The mobile operators have been seeking for the cost-
effective and timely solution to alleviate the cellular network.
Thanks to the abundant unlicensed spectrum and large-scale
WiFi deployment, Wireless Local Area Network (WLAN) has
attracted much attention as a promising approach to oftload
data from the cellular network [10-13] and enhance network
survivability and resilience in smart communications.
Previous works have demonstrated WiFi offloading
prospects in leveraging traffic load [14-18]. The work in
[18] proposed the on-the-spot offloading (OTSO) scheme

and showed that the OTSO offloading could leverage more
than 65% traffic from the cellular network through an
experiment in Seoul. Gass and Diot [19] further verified
that the WiFi offloading is favorable even if the connecting
time is insufficient. Much effort has also been seen in WiFi
offloading schemes and performance analysis under the
integrated cellular and WLAN networks framework [20]. The
authors in [21] demonstrated that larger portions of cellular
traffic could be offloaded to WiFi if the delay to wait for
WiFi network is allowed during user movement. It presented
the offloading scheme called Wiffler, which schedules the
network access based on the historical access knowledge.
By extracting typical users’ mobility profiles, the work of
[22] optimized the energy consumption in offloading. The
authors in [23] studied the capacity of delayed offloading
without prior knowledge of users’ mobility patterns and
proposed online scheduling policy to maximize the amount
of oftfloaded data. By taking downloading cost and delay into
the offloading decision, the delayed offloading scheme was
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proposed in [24] to harvest maximum benefits from WiFi
offloading. The optimal transmission deadline for delayed
offloading was further derived in [25] and could achieve
the maximum monetary incentive while maintaining the
outage probability. The WiFi offloading and LTE WLAN
Aggregation (LWA) was jointly considered in [26] to make
the full use of the spectrum in the licensed and unlicensed
carriers aggregation approach.

However, previously proposed schemes mainly focus on
using WiFi offloading merely as a capacity-augment solution
and try to offload as much data traffic to WiFi as possible,
without systematically considering the dynamic nature of
the network, which may result in the network congestion
and degrade user’s quality of experience (QoE). For instance,
the OTSO scheme, which has been used as a default setting
in most of the smartphones, enables users to handover
and offload data through WiFi whenever users enter the
network coverage. Rather than consider the load balance and
network congestion in the WiFi network, this scheme simply
decides the offloading by the availability of the network. It
nevertheless increases the access conflicts and degrades the
performance [27]. The network selection game was proposed
in [28, 29] to analyze the offloading by jointly considering
the network congestion and the cost of switching between
different networks. The Pareto-efficiency of the equilibria in
congestion game was proved in [30], and a client-centric
network selection is further proposed to reduce the network
congestion. Though the load balance and network congestion
are considered, few of these works are involved in the optimal
users offloading ratio during their movement or analyze the
impacts of network congestion and user mobility on WiFi
offloading.

In this paper, we investigate WiFi offloading with con-
sideration of the network congestion and the user mobility
management in smart communications and deduce the
throughput and blocking probability based on Markov pro-
cess. From the geometric deduction, the user flow equilib-
rium is observed, i.e., the rate of the users entering and
leaving out of the network is equal, and thus we obtain the
user flow rate between different networks. We optimize the
ratio of users performing oftfloading when they move into
the WiFi access points (APs), which aims to maximize the
network throughput and minimize the network congestion.
In this paper, the network congestion is characterized by
the blocking probability. To obtain the optimal offloading
ratio for each WiFi network, the Congestion-Optimal WiFi
Offloading (COWO) algorithm is proposed based on the
subgradient method. High computational complexity often
occurs, especially in the dense APs deployed scenario. To
this end, we make the nearly equivalent transformation and
view all the WiFi networks as a virtual network. In this
case, the Virtualized Congestion-Optimal WiFi Offloading
(VCOWO) algorithm could well approximate to the optimal
results under equivalent conditions. Moreover, the effects of
users mobility on offloading effectiveness are demonstrated.

The rest of this paper is organized as follows. In Section 2,
we describe the scenario of WiFi offloading in Section 2.
We analyze the WiFi offloading performance and formu-
late the offloading optimization problem in Section 3. The
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TABLE 1: Notations and definitions.

Notation Definition

Stot Coverage of the cellular network

S; Coverage of the ith AP

M The number of APs

D Radius of cellular network coverage

d; Radius of ith AP coverage

A Total active users arriving rate

A Active users arriving rate in the cellular network
A; Active users arriving rate in the ith AP

Y. Average user flow rate in the cellular network

Vi Average user flow rate in the ith AP

U Average service completing rate in the cellular network
Ui Average service completing rate in the ith AP

w, Service arriving rate in the cellular network

w; Service arriving rate in the ith AP

I, Service leaving rate in the cellular network

l; Service leaving rate in the ith AP

N, Average number of users in the cellular network
N; Average number of users in the ith AP

P Blocking probability in the cellular network

PP Blocking probability in the ith AP

T, Throughput in the cellular network

T, Throughput in the ith AP

C, Total number of channels in the cellular network
C; Total number of channels in the ith AP

v Average velocity of user mobility

P Offloading probability in ith AP

F1GURE 1: WiFi offloading scenario.

Congestion-Optimal WiFi Offloading algorithm is proposed
in Section 4. With equivalent conditions, we develop the
Virtualized Congestion-Optimal WiFi offloading algorithm
in Section 5. We present the numerical results in Section 6 and
draw conclusions in Section 7. The symbols used throughout
the paper are summarized in Table 1.

2. System Model

We describe the WiFi offloading scenario under the inte-
grated cellular and WLAN networks framework [31-34]
in Figure 1, where the MO can tightly integrate the WiFi
networks with the cellular networks through the recent IEEE
and 3rd Generation Partnership Project (3GPP) standards.
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For example, the network discovery and selection function-
ality (ANDSEF) reports the network information related to
the access network type, roaming consortium, and venue
information through management frames to the macro base
station (MBS) [28]. Then, the MBS decides and schedules
the user offloading based on the reported information. In
this paper, we consider that the MBS covers the whole
scenario, with M WiFi APs randomly distributed in its
coverage without overlapping with each other. The active
users, defined as the users need network service at this
moment, are assumed to have arriving rate A with Poisson
arrivals, and the active users follow the uniform distribution
on the geometry coverage; i.e., the active user arriving rate
for each network is proportional to their coverage, and the
active user arriving rates for ith AP and cellular networks are
Ai=1,2,..., M, and A, respectively,

A=A
Stot ( )
1
A — AStOt B ZII\:II Sl

Stot

where S, , and §; are the coverage area of the scenario and ith
AP, respectively.

The user mobility management is considered, and the
offloading ratio in user mobility is further investigated in
this paper. With circular coverage, the user flow rates under
fluid flow model and geometric angle mobility model were
separately deduced in [35-38], and it is proved that the rate
of the users entering and leaving the network is equal, which
is called user flow equilibrium. With user mobility probability
density function f,(v), we have the user flow rate as

2NE (v)
nd

where N is the number of users in the network, d is the radius
of the network coverage, and E(v) denotes the first moment of
v. We start the analysis of user flow rate with the assumptions
as follows:

y=2pd [ vfy()dv- @

(1) All the networks have circular geometric coverage.

(2) User moves within the coverage area with the random
direction; i.e., the angle of direction is uniformly
distributed in [0, 27].

(3) The user’s mobility is in uniform linear motion; i.e.,
E(v) =w.
The user flow rate can be written as follows [37]:
_2NE(v) _2Nv
Y20 T has

To be specific, for the ith AP with radius d; and MBS with
radius D, we have the user flow rate separately:

A3)

_ 2Nw

= nd;’
(4)

_ 2Ny

Ye = D >

\lk lk+1/ \lc'l 1

FIGURE 2: Markov state transition.

where N; and N, are the numbers of active user in ith AP and
MBS.

We formulate the WiFi offloading model based on the
discrete Markov process [39-41]. The occupation of network
channel is described as a discrete Markov state, the service
arriving means that the user enters the network service
sequence, and service leaving means that the user cuts off
the network service. Each user could access one channel at
the same time. The maximum number of users served by the
network is constrained by the number of channels C. Let o
denote the state transmission rate from the kth state to the (k
+1)th state 0 < k < C — 1, and [“ is the state transition rate of
uth state to the (u-1)th state, 1 < u < C, as shown in Figure 2.
And we have the steady distribution as

WL R (wk + lk)nk, 0<k<C
[/tkﬂn'kﬂ _ wkﬂk, k=0
WOk = ek k= (5)
C
an =1,
k=0

where 7 is the steady-state probability distribution for the
kth state, and

k= (an_:lowm/ﬂizllx) (6)
(1 + Zrcnzl (Hnm:_ol“’n/nﬁzllx)).

We try to find the optimal offloading ratio p;, aiming to
maximize the network throughput and minimize the network
congestion at both networks when the users enter into the ith
AP’s coverage area. With offloading ratio p;, the serve arriving
rates at ith AP w; and MBS w, are defined as

w; = A+ pyi 7

wC = Ac+yc’

where the first term denotes the newly active users in their
own coverage, and the second term denotes the service
increase by the users flow in their mobility. Note that only
p; of the users will be offloaded to the WiFi network when
entering, while all the users moving out of the AP’s coverage
will be immediately handed over to the cellular network.
Assume the average service completing rate in WiFi and



cellular network is y; and y., respectively; the service leaving
rates for ith AP [; and MBS [, are

=N+,

M (8)
Zc = Nc/’lc + Zpiyi’

i=1

where the first part is by the user finishing their transmission
and turning to inactive, and the second part is by the user
moving out of the network coverage, and handover to another
network. Only p; of the users could be accepted by the ith AP,
i.e., only p; of the users flowing out of the cellular network
could leave the MBS service sequence, and the rest of users
are still kept in service in the cellular network.

In this paper, we try to optimize the offloading ratio for
multiple APs, which aims to increase the throughput and
reduce the network congestion. On the one hand, it is an
incentive to oftfload more user to leverage the cellular traffic
load and to increase the throughput. On the other hand, the
increase of offloading will nevertheless result in the conflicts
and degrade the performance. Therefore, the offloading ratio
should be carefully designed with the consideration of the
network congestion and the user mobility.

3. Problem Formulation

In this section, we analyze the WiFi offloading performance
from both cellular and WiFi network sides based on the
Markov process and model the network congestion, which
is characterized by the blocking probability. Then, we define
the system utility as the function of throughput and blocking
probability and formulate the offloading ratio optimization
problem.

3.1. WiFi Network. First, we analyze the ith AP network with
C; channels in total. From (8), the steady-state probability
distribution of ith AP is

oS () mn) &Y

_ ; 9
! = i , 0<j<c, O
where
w; Ai+ Dy A+ pyi
g= oo STPN TPV g
LIN; i +y,IN;  py+2v/ (md;)

Thus, we have the number of users served by the ith AP N; as
the average queue length, and

C

i

N;=N;(,C)=E(k|C;) = Zk'ﬂf
k=0
v - , (11)
o @) @

C)l
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In [42], the blocking probability Pib and nonblocking proba-
bility P** for the ith AP are defined as

pb—1_pw_ (Zrcn;o (( ) /m')) (E)
! ! C;!

where P(§;) denotes the fact that the blocking probability
depends on the ratio of service arriving and leaving rate ¢;
in (10). Then, the average user number N; can be rewritten as

N;=N; (§,C) =& (1-P) = P2 (13)

With the average user number N; in (13), the user flow rate
can be expressed as

=P (&), (12)

2N (§.C)v 28,vP"
h= nd; - nd,
(14)
_ ZVPiub A+ piy;

nd; ‘ w; +2v/ (nd;)’

After modification, it is observed that the user flow rate y;
is the function of blocking probability, which is denoted as

(/)(Pib), and we have

2vA, P
- pP)
With the user flow rate in (15), we have the blocking
probability Pib in its implicit function form Pib = (p(Pib) as

Y= =¢(P). (15)

ndp; +2v (1

b
P = P (&)le— 0y 2v/ e

_ (A + 2 (P)) 1 (s +2v/ ()" jcp - (16)
Zio (((Ai + pi¢p (P,-b)) / (p; +2v/ (ndi)))k /k!)’

where the second equation is denoted as <p(Pib). Clearly, Pl.b is
the root of y(x) that holds

Y () =x =9 () = x = P(&)le-0 oot 2vira)

17)
= 0’
and it could be solved by the bisection method.
Proof. See Appendix A. O

From (16), it is also found that the Pib depends on the

offloading ratio p;, i.e., Pib = h;(p;), and we thus have the user
flow rate in the form of a function of p;

2vA; (1-h(p))
nd, ith T 2y (1 —-pit ch (Pz))
Then, the throughput achieved under the oftloading prob-
ability p; in the ith AP is for simplicity; we normalize the

achievable data rate of per channel in the ith AP network as
R;, and the throughput can be expressed as

T; (p;) = RiN; (£, C))

Yi = vi(p). (18)

A+ pivi (p;) (19)

=Ri(1- w+2v/ (nd;)

hi (p:))
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3.2. Cellular Network. The analysis of the cellular network
follows the similar approaches in the WiFi network. Con-
sider the cellular network with total C, channels, and the
steady-state probability distribution of the cellular network
is expressed as

. (€)"

o= 0<u<C

C(XS, (&) my)) “

(20)

where
_ Actve
. .
e+ Zz]\fl (ini/Nc)

The length of service queue is equal to the average number of
users N, served by the cellular network,

(21)

Cu
N.(&)=Eu)= ZM‘nZ‘

u=0

¢ { (S () ) @) } @

c,!

=£c<1 _Pcb) =£cPcub’

where Pcb and Pc"b are defined the blocking probability and
nonblocking probability in the cellular network as (13):

Pcb =1- Pcub _ (fc)cu _p (Ec) -
(Zo (&)™ fm1)) €,

where P(£,) denotes that the blocking probability depending
on the ratio of service arriving and leaving rate &_.

Fixing the average user number N, in (22), the user
flow rate y, can be expressed as the function of blocking

probability, which is denoted as gbc(PCb )

Ny w(BOA-ZE )
Ye="op T (nDy, — 2P*y) ¢ (Pc ) CS

With the user flow rate in (24), we have the blocking
probability Pcb in its implicit function form,

P =P, (&)

_ b
£ O P s T oy = P (PE) - (25)

Similar to (16), Pcb could be obtained through solving (25) by

the bisection method. From (25), it is also found that the Pcb
depends on the offloading ratio for each AP p;,i = 1,2, M;

ie., Pcb is the function of vector composed by p;, Pcb = g(p),
N
P = [p1, Pyr--> P>+ > Pyl Thus, the user flow rate y, also

has the formation of the function of offloading ratio vector p
as

_ 21/{[1 —g(?)] Ao — Zf\fl Pi%’}
b2l a )]

=1 (P). 6

The throughput of the cellular network is similarly given:
T.(¥) = & (1-9(¥))
a{(1-g(B)A-Thpv} )
(1-9(F)) - [wDuc~2v(1-9 (%))

where R, is the normalized channel rate of the cellular
network.

3.3. Congestion Optimization Problem. In this paper, we seek
for the optimal offloading ratio for multiple APs in user
mobility, which aims to maximize the throughput and mini-
mize the network congestion. The throughput is the sum of all
networks, i.e., T(p) = Zf\fl T,(p,) + T.(p), and the network
congestion is characterized by the blocking probability, i.e.,
B(p) = Zf\fl Pib + Pcb . Thus, we set the system utility
function Q(P) so that it increases with the throughput and
decreases with the network congestion, where the blocking
probability acts as a penalty for network congestion. The
constant 3 is defined as weight over the throughput and
blocking probability, which embodies the s sensitivity to
network congestion. The system utility function could be
formulated as

mes Q(F) = 1(5) - 2(F)

Mk

RN; (§,C;) + RN, (&)
1

_/3<§I:sz +Pcb>

st. B=[pupy--pi--Puls
0<py...pi o py<1

(28)

4. Congestion-Optimal WiFi Offloading

In this section, we proposed the COWO algorithm to obtain
the optimal offloading ratio p; for each AP, which is based
on subgradient method [43] and further reveal the impacts
of user mobility on WiFi offloading performance.

4.1. Congestion-Optimal WiFi Offloading Algorithm. The
optimization problem in (28) is convex function with the
convex feasible region. Thus, the subgradient method can be
used to solve the optimization problem.

Proof. See Appendix B and Appendix C. O

The augmented Lagrangian function of optimization
problem (28) is written as

max L (?, v)
i py At v (pi) b
i=1 (1_ i).“i+2"/(”di)_ﬁ :



ub M
+ nD (Pc /\c - Zi:I pi)/i)
nDy, — 2vPu

- pP

c

M

- Z”i (pi—-1)

i=1
st PP Pu =0,

v, >0,

1

(29)

where v, is the Lagrange multiplier. The Lagrange problem in
(29) could be solved in subgradient method, and the optimal

P satisfies

BL(?,a)
p
_ [aL@,a) Aa(Pa)  A(Pa)] GO
op, op, Ppum
_7,

where the ith element in the partial derivatives of p; can be
calculated as (31), as shown below.

oL(P.v) 2
e LU AR )
& op;

(31)

+|R(1-F(1+C,-EP"))

b b
_ ﬁcpc (Cu _gcpcu )
&
Equation (30) is nonlinear. Thus, we make the transformation

to simplify the calculation. The partial derivative of p; is
written as

%,
op; g

oL (_p), v) ;
75}71 =W - (32)

where
i _ RjON;(§,C) o5 RBOP" 3,
W=-L—" "4 2t
Yi 0&; op; v 9 op;
R ON. (§) 98, R.BOR" 3%,
Y; 0. op; y; 0§ op;

To achieve the identity dL(p,v)/0p = 0, v, = W fori =
1,2... M. Thus, we have

(33)
> 0.

W1:~--:WM:X’ (34)
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where y = ;/y;, and the augmented Lagrangian function in
(28) can be written as

max L (_p), X)

B iz py A+ Py (pi) b
_; (I—Pi)m_ﬁipi
. D (Pcub)tc -y Pi%’)

b
— B8P (35)
nDy, — 2vP.* o

M
_XZ'Vi(Pi_l) x>0
i=1

st prec PPy =0.

Then, y could be updated with pace 9, and we have

M +
A = x99y (pi-1) | (36)
i1

The following parts give the update process in detail. For ith
AP, the service arriving rate is w; = A; + p;y;, and A; < w; <
A; + y,. It is observed from (37) that W' is dependent on w;,
and thus we define the function f;(w;)

oL (?, X)
op;

It can be proved that the f;(w;) is a decreasing function of w;
by the partial derivative deduction. Thus, if the zero point of
fi(w;) exists, it can be obtained by the bisection method. Let
us denote the zero point of f;(w;) as ;. If f;(w;) does not have
zero points, we modify it as

=% (Wi_X) = fi(w;). (37)

w;, Jw; € [Ap A+ ] 0 fi(w) =0

1

VY, € [Ap A+ 9]0 fi(w) >0 (38)

1

.
w; =14,

Ai+7ys Yo, € [Ap A +y] 0 fi(w) <O0.

1

If Vw; € [A,A; + 9], fi(w;) > 0, the offloading ratio p; is
obtained by
pyi=w —A, i=12...M. (39)
When Vo, € [A;A; + 9], fi(w;) < 0, the offloading ratio is
modified as
oL (P, )

s 3p; €[0,1]U ——2 =0
p p D

pi =70,

)
L( .
)
1, Vp; e [0,1]U¥ <

SN
P
p;
P.«)
Vp, € [0,1]U ————= >0 (40)
p;
Pa
: 0.
p;

Based on the subgradient method, the implementation of the
proposed COWO algorithm is provided as in Algorithm 1.
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(k+1)

2: while [y**) — y*| > & do

Solve equation (37) and get w;
Update w; by (38)

Solve out p
Set k = k + 1 and update y

(k) . (k+1)
9: Iterate —p> into T;

16: end while

(k+1)

1: Initialize: P = [P0 p2... p2) =10,0...01= 0,9 = 1,k=0

k
3:  Calculate Pih forl <i< Mand Pcb under the initialf))( ) in the bisection method
Get initial updating factor x© = [(1 /M) fol W’T

according to (36)

11: Set the optimal oftload factor Vector?*

Ly (k+1)

ALGORITHM 1: The proposed COWO algorithm.

4.2. Impacts of User Mobility on WiFi Offloading. In this
section, we study the impacts of user mobility, mainly
characterized by average velocity, on the WiFi offloading.
First, we show its impacts on WiFi oftfloading throughput. The
derivatives of throughput T; with respect to v are

0N, (&,C . op’
aT,:R‘ z(fz 1)=R-a—€l<l—Pib—£ z)

v ov " ov "OE.
(41)
9, b ub
:Ri$(1 —F(C;+1-§P7)).
From (10) and (11), ; can be expressed as
A; +2p;N; (&, C;) v/ (nd,;
P ANEC) )
y+2v/ (nd;)
and we take the derivatives &; of v, and we have
9; _ )P (ON; (£, Ci) /ov) + piN; (. C;)
ov nd; (u + 2v/nd;)
(43)

_ (Ai +2pN; (5. C;) v/nd;) (p + ZV/”di)_l
nd; (u + 2v/nd,;) .

Thus, the derivatives of throughput T; with respect to v could
be rewritten as

%—ZR 1
ov

-(1-P(C;+1-§P7)) (44)

2vpi/ (ﬂdi)) )_1

p+2v/ (nd;

piN; (§,C;) - &; b "
-(ﬂdi(M+2V/(7rdi))) (1-P(Ci+1-ER")),

where the details about the computation and the associated
analysis can be found in the literature [44-46]. With the fact
that N;(;, C;) = P’ < £, and the deduction in Appendix A
and B, we have

0<1-P(C+1-EPY) < 1. (45)

Therefore, 0T;/0v < 0, which draws the conclusion that the
average throughput for each network T; is decreasing with
the velocity v. It is also observed that & decreases with v.

Furthermore, the blocking probability Pib has
op? P 0%,

i i _ ub\ YSi
o g (Ci SE )8v<0

(46)

Thus, Pib also decreases with the values of v. Similarly, the
similar conclusions can be drawn in the cellular network.
The blocking ratio Pcb and throughput T, all decrease with
velocity. Therefore, the higher speed will degrade the capacity,
but could lower the congestion. It could be explained by the
fact that the increase of mobility rate in one hand enhances
the handover opportunity, as well as the fairness for each user,
since they have the more chance to access network; i.e., the
increase of user mobility gives more opportunities to enter
another network and enables some user who is always failing
to connect to the AP to reconsider the network access. It could
also lower the blocking probability in the congested situation
but can not increase the system capacity.

5. Virtualized Congestion WiFi
Offloading Algorithm

The COWO algorithm could obtain the optimal offloading
ratio for each AP. However, it is based on the subgradient
method, whose computational complexity will drastically
increase with the number of networks [47, 48]. In this section,
rather than optimize the independent offloading ratio for
each AP, we view all the APs as one virtual WiFi network,
and the channels and other resources in the WiFi networks
will be jointly scheduled. Then, we proposed VCOWO algo-
rithm, which could obtain the approximately optimal results
under the equivalent conditions with much lower complexity.
Though we did not get the separate offloading ratio, we can
obtain some general results and useful insights from it.
Through observation, it is found that the offloading
decision mainly depends on the service arriving w and leaving
rate [ for given total channels in each network. As all the WiFi
networks act as the capacity-augment utilities, it is reasonable



to view all the AP as one virtual WiFi network, where all the
channels are centrally controlled. For simplicity, we consider
the AP to have the same coverage, ie.,d; =d,i =1,2--- M,
and same serving completing rate y; = p. The virtual WiFi
network satisfies the equivalent conditions as follows.

(1) The user flow rate of virtual WiFi network y, is the
sum of user flow rate for each AP;i.e.,

M M
2N.v 2N.v  2N.v
ya=§%=§ﬂd’i=Mm; @

whered,, = d/M.

(2) The active users arriving rate of virtual WiFi network
A, is equal to total active users arriving rate of all APs,

A, = ZA,. = ZAE =AM (48)

(3) All the channels in each AP are scheduled by the
virtual WiFi network, i.e., the virtual WiFi network
C,hasC, = Y™ C,.

(4) The user serving rate in virtual WiFi network is y, =
U.

We try to find the optimal offloading ratio p, for the virtual

WiFi network. Thus, the steady-state distribution of virtual
WiFi network can be expressed as

(S, (&)™ fm)) " (&)
j!

ml = , 0<j<cC, (49

where
Ao+ PaYa
g, = ——otPale
Yo +2v/ (ndeq)

Therefore, the number of users served by the virtual WiFi
network N, is the average queue length, and

(50)

Cu
N, (&) = Y kn:
k=0

(51)

C
. {1 @) }
a k N
(2 ()" 7k)) ot
Similarly, the blocking probability Pf and unblocking proba-
bility P;‘b in virtual WiFi network are defined as

Pj =1- P;b _ (Zrcna:o ((fa)mc/:n,))—l (ga)ca. o

Then the users flow rate in virtual network y, is written as

2N, (&) v 2€avP;‘b
- nd,, - nd

Ya
eq

(53)
B ZVP:b

Aq+ Pala
Moy ph, +2v/ (ndeq).
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After modification, it is observed that the user flow rate y,
is the function of blocking probability, which is denoted as

P(PP)sie,

2vA, P B
n/’ladeq + 21/(1 - pP;b) -

Ya = $(P). G4

Under the equivalent conditions, the analysis of offloading
performance in the cellular network could be simplified. The

users flowing rate in the cellular network is transformed as
!

Yeo

p_Ne(&)v_agam

Ye =77D nD
(55)
~ 2vP* Ao+y.
- 7D Ue +2vp,/ (D)’
where
!
glo—Jeth (56)

 u. +2vp/ (nD)’

The user flow rate y, can also be written as the function of
blocking probability,

) 2vA P

_ _ b
“ )

Ye

Similar to (17), the blocking probability could be solved
in bisection method [49, 50]. Therefore, the optimization
problem in (28) for all multiple APs could be transformed as
follows:

max Q' (p,)
= RN, (£) + RN, (&) - B(P, +R")  (58)
st. 0<p, <L

From (58), it is observed that the optimization is aimed at
finding the optimal scalar p, to maximize the throughput
and minimize the blocking probability. The optimal scalar p,
could be solved by the golden section method, and we pro-
posed the VCOWO algorithm as illustrated in Algorithm 2.
The computational complexity in COWO is O(U + M), while
the complexity is reduced to O(U + 1) in VCOWO algorithm,
where U is the number of MBS, and U = 1 is assumed in this
paper. It means the complexity of COWO algorithm increases
with the number of APs M, while that of VCOWO algorithm
isindependent of M. The VCOWO algorithm could approach
the optimal results under the equivalent conditions. To be
more specific, the VCOWO could achieve the upper bound of
the WiFi offloading performance achieved by COWO algo-
rithm. Under the equivalent conditions, all WiFi networks
are assumed to serve the users in a cooperation approach
and could achieve higher throughput with lower blocking
probability with the centralized control of WiFi channels
allocation.
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1: Calculate parameters in equivalent WiFi network
2: Initialize: py = 0,k =0
3: while |Q,,, — Q.| > ¢, do
4 Calculate steady-state probability distribution 7w under given pj
5:  Calculate utility function Q;
6 Update py,, according to golden section method
7: end while
8: Set the optimal offload factor vector p, = py.;.
ALGORITHM 2: The proposed VCOWO.
TABLE 2: Simulation parameters.
Parameters MBS AP1 AP2 AP3 AP4
d;/D(m) 1000 200 150 100 100
Channels 30 8 7 6 5
R,/R. (Mbps) 96 13.6 13.6 13.6 13.6
p(links/s) 1/120
v (m/s) 8

6. Numerical Results

In this section, we evaluate the proposed algorithms with the
OTSO scheme [18] in system utility as formulated in (28),
blocking probability and throughput. The OTSO algorithm
enables oftfloading user to a WiFi network whenever users
enter into its coverage, which means the offloading ratio
p = L. Further, we show the approximation of VCOWO to
COWO under equivalent conditions. Moreover, we verify the
impacts of user mobility on WiFi offloading performance. In
the simulation, we consider the scenario that contains one
MBS U = 1 and multiple APs. Each AP is assumed to have
no overlap with the others, and other parameters are shown
in Table 2.

6.1. Performance Comparison. In this section, we compare
the WiFi offloading performance with the multiple APs
between COWO and OTSO under user arriving rate ranging
from 0 to 0.5. First, Figure 3 illustrates that the system utility
varies with the total active user arriving rate A. When A <
0.3, it is found that the system utility grows with A, and
COWO algorithm has similar performance as the OTSO. It is
because when the network is unsaturated and the congestion
is small, the system utility increases by the throughput bought
by the user arriving. The throughput increases since more
users flow to the network and make the use of channels when
unsaturated. However, it can be observed from Figure 3 that
the utility in OTSO decreases with A. Intuitively, when traffic
load in the WiFi network is heavy, offloading data to WiFi
network whenever possible will nevertheless incur higher
blocking probability, which may degrade the utility function.

To further demonstrate the network congestion in WiFi
offloading, we compare the blocking probability in Figure 4.
It is obviously observed that the blocking probability in
the proposed algorithm is much lower than the OTSO,
especially when A is larger. Without consideration of network
congestion, the blocking probability grows rapidly with the

600 T T T T
500
400

300

System Utility

200

100 +

0 0.1 0.2 0.3 0.4 0.5
User Arriving Rate
- COWO M=2

- COWO M=3
-+- COWO M=4

—+— OTSO M=2
—— OTSO M=3
—— OTSO M=4

FIGURE 3: System utility varies with the users arriving rate.

active user arriving rate A, which is also indicated in the
decrease of system utility as shown in Figure 3.

Moreover, Figure 5 illustrates that the throughput varies
with the user arriving rate A. It can be observed that the
throughput increases with A. It is because the throughput
increases with user arriving when the channels are not fully
utilized. When A is larger, the throughput does not change
with the A. Intuitively, when all the channels have been occu-
pied, the increase of users will not bring higher throughput.
Thus, it can be observed from Figure 5, constrained by the
number of channels, that the throughput will not increase
with the user arriving rate. The throughput is larger with
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more WiFi APs, e.g., more available channels. To conclude,
the proposed algorithm could maximize the throughput with
lower blocking probability than OTSO algorithm.

6.2. Approximation Comparison. In this section, we evaluate
the VCOWO algorithm under the equivalent conditions. We
consider the 4 or 5 APs separately with equal coverage (d =
150m), and each with 5 channels, and it correspondingly
has C = 20 or 25 channels for the virtual WiFi network.
Assume the maximum user arriving rate A range is 0.7. Other

Wireless Communications and Mobile Computing

700 T T T T T T
ke k¢
600 - N A' 4—*:::::j3—:*—#—x—*4
* .
P T ]
S . ‘Vb—bggiiﬁi—c
] R A T 5 =< = a s
£
= 400 +
=
D N
E S
% 300+
>~
w
200
100 + ¥
0 A A : .

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
User Arriving Rate
-+- VCOWO C=30

—+— OTSO C=25
—— OTSO C=30

+>- COWO C=25
+- COWO C=30
+>- VCOWO C=25

FIGURE 6: System utility comparison varies with the users arriving
rate.

0.35 T T T T T T

e e
— e % o
@ o & W

Blocking Possibility p®

e
=

0.05

User Arriving Rate

—+- VCOWO C=30
—+— OTSO C=25
—— OTSO C=30

+>- COWO C=25
+- COWO C=30
+>- VCOWO C=25

FIGURE 7: Blocking probability comparison varies with the active
users arriving rate.

parameters all satisfy the equivalent conditions in Section 5.
In Figures 6-8, we compare the performance with OTSO
under different channel numbers in WiFi network. Clearly,
more channels offer service to more users and nevertheless
could contribute to the larger system utility. It can be
observed that the VCOWO achieves similar system utility,
blocking probability and throughput to COWO algorithm.
To be more specific, the performance in VCOWO is the
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upper bound of COWO under the equivalent situation. Recall
the equivalent assumption in Section 5; it is found that all
the channels of different APs could be jointly scheduled
in the virtual WiFi network. That is to say, all the APs
serve the users with the association, rather than separately
schedule the users’ network access in COWO algorithm.
Thus, VCOWO could give the tight upper bound of COWO
algorithm performance with much lower complexity under
the equivalent conditions.

6.3. User Mobility. In this section, we verify the impacts of
user mobility on WiFi offloading as illustrated in Section 5. In
Figures 9 and 10, the COWO and OTSO are evaluated under
the different velocities with user arriving rate ranging from 0
to 0.5. It can be observed from Figure 9 that the throughput
decreases with the velocity. Recall the fact that it was indicated
in (41) that throughput T; is the monotonically decreasing
function about the velocity v. Intuitively, we deduce it in
another way. At one-moment f, suppose that there are N
users in ith AP; the users move with the average velocity v,
and the § = (A, + p; - 2Nv/(nd,))/(4; + 2v/(nd;)). Then,
for the next moment, t + At, with the increase of v, we have
&' = (\+p;2N;(v+Av) [(72d) [ (u+2(v+Av) /(nd;)), and &; >
&' Therefore, the increase of v reduces the average number
of users in the network and thus lowers the throughput
and the blocking probability. The user mobility increases the
opportunities to access, and could, to some extent, reduce
the access blocking in the congested situation. The mobility
only gives more users the chances to access the network.
However, it can not guarantee the access success or improve
the throughput. Actually, constrained by the number of total
channels, the capacity will not increase. Even worse, the
mobility impedes sustainable connection and nevertheless
lowers the throughput in general.
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FIGURE 9: Throughput evaluation under different mobility velocity
v.
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7. Conclusion

In this paper, we studied WiFi offloading with user mobility
management in smart communications. With considera-
tion of the dynamic network nature, including the net-
work congestion and the user mobility, we proposed the
COWO algorithm to optimize the oftloading ratio for each
AP, which aims to maximize the throughput with lower
blocking probability. By viewing all the APs as one virtual
WiFi network, the VCOWO algorithm is proposed with
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much lower complexity. Under equivalent conditions, the
VCOWO algorithm could approximate optimal results by
COWO algorithm and give an upper bound of offloading
performance of COWO algorithm. Moreover, we investigated
the impacts of user mobility on WiFi offloading. It is found
that the increase of velocity in user mobility degrades the
throughput performance, but could reduce the blocking in
some way. For future work, it is an interesting direction for
future research to consider other mobility models, especially
the heavy-tailed distribution model, which was shown to be
more accurate for modeling human mobility. It is promising
to deal with the network congestion and load balance in smart
communications through artificial intelligence technologies
and wireless big data support, which could well predict the
user random mobility patterns with statistical information
of the possible user’s trajectories and schedule the network
access in a smarter way.

Appendix

A. Proof of the Bisection Method for
Solving Pl.l7

Due to Pib being the root of 1//(Pl.b) = 0, the derivation of 1//(Pib)
is

‘ LA
b
dEi £i:(/\i+P¢i(P,'b))/(ﬂ+2V/(7rdi)) dPl

l//l (Pb) 1 dp (Ez)

=1 (A1)

C¢®) )
p+2v/(nd;) dé

§=(Atpid(P))/ (pr+2v/ ()

where
s (Pib) _ -2y [ndi‘ui + 2V(1 -pit PiPib):pi]
[mDy; +2v (1 - p; + p,P?)] (4.2)
<0,
and
b ub
dr() B (G- &P )_ (A.3)

df,' fi

The maximum number of users served by the network
will not be more than the channel number; ie., N(§) =

Z&o knk = P < G ziC:io 7' = C; and thus we have
dP(&;)/d&; = 0. Overall, it is found that t//’(Pib) > 0, and thus
1//(Pib) is an increasing function of Pib. Moreover, Pib € [0,1],
y(0) = —@(0) < 0,and (1) = 1 — ¢(1) > 0. Therefore,
EIPib e [0,1], 1//(Pib) = 0, and the bisection method can be
used for the calculation of Pib.
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B. Proof of Convex Optimization

The utility function can be divided into two parts:

(B.1)
=Y (RN (E,C;) - BE)

+ (RN, (&) - BR.")

Mk

Qi (pz) + Qc (T))) >

1

Il
—

where the Q;(p;) denotes the utility of ith WiFi network and
Q.(p) represents the cellular system utility.

The proof of convex optimization in (28) is equal to
proving that the utility matrix Q(p) is a negative definite

2
matrix. Hessian matrix BZQ/BT)’ is

’Q
P
- 2 -
0°Q, (py) 0 0
ap,*
0 0Q, (p2) 0
op,° (B.2)
0 0 ) aZQM (Pa)
Opa’
’Q.(P) o (P) Q. (P)
L 0P -0p, P -p, Op - py
where

’Q(P) _FQ(P) 2Q(F)
Jp - 9p, op,’ p, - Op,
. Q. (P)
Opy - Opy

(B.3)
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Since 0°Q,(P)/(0p;-9p;) = 0°Q.(P)/(0p;-9p;)i # j, we have
’Q

)
op
[0°Q, (p1) 0 . 0 1
op,?
0*Q, (p2) 0 (B.4)
op,*
0 0 0°Qu (Pam)
. P’
L0 0 0o |

Then, the proof that the Hessian matrix is negative definite is
equal to proving that its eigenvalue is nonnegative. That is,

0,05

op; 9% op;

2 2 2 2 (B.5)
aQi:aQi<a_fi> +aQiafi <0

op’  0&* \op; o0& op?

We assume that 9¢;/dp; > 0and 9*¢,/dp,* < 0 hold, which has
been proved in Appendix B with the bound of Pib. Thus, the
convex optimization question is converted to prove 0Q;/0&; >
0. The first-order and second-order partial derivative of Q;
are, respectively, given by

b ub
0Q; b »  Di (Ci - &b )
—=1-P(1+C;-§P”) - ——————~. (B.6)
0&; ( ) &
and
’Q
o’
B [(C- &R +ER) (14 C - EP®) - &] (BY)
TTE i Gl 6 T L= Gl i :
P b b
~plG-g 2t (G -gr) -cl.
The lower and upper bound of Pib give the conditions [42]
&
Pl < ’ ,
LG5+ PN G ()
4 E2 C. - &pw
P2 Gl N L )
ES(1+C - (& +1)P) + Cg; §;
and, thus, we have
0Q;
0 t<1
< 5 <
5 (B.10)
o in <0,
0¢;

which completes the proof.
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C. Proof of 0°¢,/0p,” < 0

We prove the 0&;/dp; > 0 and 9°¢,/9p,> < 0 with the bound
constraint in Appendix B. From (10), the derivative of &; with

p;is

o&; Vi 1 9;
= + 1
op; w+2v/(nd;)  w +2v/(nd;) op;

(C1)

Then, the fist-order derivative of y; with p; is calculated as

y,  —2vA;(nd;u+2v) opr”
Op; i +2v (1 - p;P) Op;
(C2)
(20 0,
+ .
[y +2v (1 - PiPiub)]z
With (12), the derivative of Pib with p; is
b pb(C —Epr
op! _ B (Ci-&P") a5, (C.3)

a_Pi - & op;’
With (C.1) and (C.3), the derivative of y; with p; could be
rewritten as
a_fi _ Yi [1
op; Ui +2v/ (rrdj)

N 2vp; P ]
ndip+2v (1 - pP®)

. pi
[1 + e 2v] (ndj) (C4)

AP, (i + 2v) (Ci - EiPiub)
. [nd;u +2v (1 - pPr*)] -§;

-1

Since the channel used in éPf‘b is less than the total channel
in i-th AP, i.e,, C; — §P* > 0, thus, we have 9&,/dp; > 0.
Similarly, 9*£,/0p;* < 0 can be proved.
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Heading estimation using inertial sensors built-in smartphones has been considered as a central problem for indoor pedestrian
navigation. For practical daily lives, it is necessary for heading estimation to allow an unconstrained use of smartphones, which
means the varying device carrying positions and orientations. As a result, three special human body motion states, namely,
random hand movements, carrying position transitions, and user turns, are introduced. However, most existing heading estimation
approaches neglect the three motion states, which may render large estimation errors. We propose a robust heading estimation
system adapting to the unconstrained use of smartphones. A novel detection and classification method is developed to detect the
three motion states timely and discriminate them accurately. For normal working, the user heading is estimated by a PCA-based
approach. If a user turn occurs, it is estimated by adding horizontal heading change to previous user heading directly. If one of
the other two motion states occurs, it is obtained by averaging estimation results of the adjacent normal walking steps. Finally, an
outlier filtering algorithm is developed to smooth the estimation results. Experimental results show that our approach is capable of
handling the unconstrained situation of smartphones and outperforms previous approaches in terms of accuracy and applicability.

1. Introduction

For Global Navigation Satellite Systems- (GNSS-) denied
environments, various indoor pedestrian navigation solu-
tions [1-5], such as wireless local area positioning systems,
ultrawideband, and radio frequency identification, have been
proposed. The usage of these infrastructure based solutions
is limited to the space where special equipment or infrastruc-
tures are available. Pedestrian dead reckoning (PDR) [6-8]
using inertial sensors built-in a smartphone may overcome
this limitation, since the inertial sensors are continuously
available. PDR achieves location estimation by combining
step detection and step length estimation with user head-
ing estimation. Once each user step is detected, the user
position is updated by adding the current estimated relative
displacement to the user position estimated at previous
step. Recently, since smartphones are ubiquitous and carried
almost everywhere we go, it is more and more practicable to
deploy PDR approach in our daily lives.

User heading estimation is a central problem for PDR.
Most existing heading estimation solutions deploy traditional
attitude estimation based approaches [9, 10]. The user head-
ing is estimated by adding a fixed user heading offset to the
estimated device forward heading. This approach performs
well if the device is constrained to a fixed carrying position
and device orientation. However, for the smartphone in the
trouser pocket or swinging in hand, the heading offset is
changing all the time and hard to be estimated. Traditional
attitude estimation based approaches may render a large
heading estimation error due to the biased estimation of the
heading offset.

To address the heading estimation problem with devices
placed in the trouser pocket or swinging in hand, the
uDirect approach [11], the PCA-based approach including
conventional PCA approach [12], and our previous proposed
RMPCA approach [13] combining rotation matrix (RM) and
PCA have been proposed. The uDirect approach extracts
local walking direction directly at a specific region, where the
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forward acceleration dominates the acceleration in the hori-
zontal plane. In contrast, PCA-based approach is more robust
to the body locomotion dynamics, since all acceleration sam-
ples are exploited to extract the most variation of horizontal
acceleration signals, which is assumed to be parallel with
walking direction. Recently, to remove the restrictions on
device carrying positions, we proposed a heading estimation
approach independent of carrying position. The carrying
position is recognized by a position classifier upon the dis-
tinguishable acceleration patterns, while assuming relatively
stable device orientations under the same carrying positions.

To enable a really unconstrained use of smartphones for
heading estimation, not only device carrying positions but
also the varying device orientations should be considered.
Thus, several critical problems still need to be solved to
enhance the reliability and applicability of heading estima-
tion.

Firstly, the current heading estimation solutions are
sensitive and nonrobust to random hand movements. For
PCA-based approach, the fundamental assumption is seri-
ously corrupted by random hand movements, which make
the maximum variance of the acceleration signals in the
horizontal plane deviate from the walking direction.

Secondly, three motion states, namely, hand movements,
carrying positions transitions, and user turns, and their
impacts on heading estimations have been paid little atten-
tions. Missed detection and confusion among the three
motion states may render a large heading estimation error.

To solve the above problems, we propose a robust heading
estimation system using unconstrained smartphones. The
main idea is that we select the related optimal heading
estimation strategy based on the detection and discrimina-
tion of three special motion states, namely, random hand
movements, carrying position transitions, and user turns. A
novel detection and classification method is developed to
detect the three motion states timely and discriminate them
accurately. If user turn occurs, the user heading is estimated
by computing heading change in the horizontal plane directly.
If the other two motion states occur, the user heading is
assumed to be smooth and obtained by averaging estimation
results of the normal neighbor walking steps.

The proposed estimation system deploys our previous
RMPCA approach for heading estimation during normal
walking. Finally, the estimation results are further smoothed
by filtering outliers caused by hand movements undetected or
hand movements misclassified as user turns. For simplicity,
in this work, we only consider the two main pedestrian
activities, namely, walking and standing, and assume that
they have been already accurately recognized according to
their different acceleration patterns [14, 15].

Experiments show that our heading estimation system
outperforms existing approaches in terms of accuracy, reli-
ability, and applicability under the unconstrained situations.
In summary, our work makes the following contributions:

(i) We propose a robust heading estimation system inde-
pendent of carrying positions and device orientations.

(ii) We point out that a large heading estimation error
may be introduced by PCA-based approach, if the
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following three motion states cannot be detected and
discriminated: random hand movements, carrying
position transitions, and user turn.

(iii) We propose a novel detection and classification
method to detect and discriminate the above three
motion states.

(iv) We develop an outlier filtering algorithm to remove
the outliers of user heading estimation results.

(v) We report the evaluation of the proposed detection
and classification technique based on extensive sam-
ples collected from four participants and compare
the accuracy performance of our heading estimation
approach to existing approaches.

In the rest of this paper, we will firstly introduce an
overview of the proposed robust heading estimation system
using unconstrained smartphones in Section 2. Section 3
describes the detection and classification methods against
the three special motion states in detail. Section 4 describes
the robust user heading estimation approaches adapting the
special motion states caused by unconstrained use of smart-
phones. The evaluations of experimental results are reported
in Section 5. Conclusions are presented in the last section.

2. System Overview

Figure 1 shows an overview of the proposed robust user head-
ing estimation system using unconstrained smartphones. The
proposed system selects user heading estimation scheme
based on continuous motion states detection and classifi-
cation results. The basic idea of the motion state detection
and discrimination method is to exploit their distinguish-
able acceleration and device attitude changing patterns. The
attitude changing patterns include the accumulated pitch
and roll angles, the horizontal device heading change angles,
which can be derived from a continuous device attitude
tracking model. For practical smartphone uses, we assume
that position transition and user turn cannot occur simul-
taneously. Similar assumption is given to hand movement
and user turn motion states. The assumptions are reasonable
for the following two reasons. First, the probability of both
motion states happening is rather low when the probability
of each motion state is low. Second, requiring device carrying
position transitions or significant hand movements when
a user turn occurs is unnatural and also complicated for
pedestrians.

For heading estimation scheme selection, during nor-
mal walking without any special motion state detected, we
deploy our previous RMPCA approach, since the funda-
mental assumption of PCA-based approach still holds. If
random hand movements or carrying position transitions
are detected, the user heading is assumed to be smooth
and calculated by averaging heading estimation results of
the neighboring normal walking steps. If user turns are
detected, the user heading is obtained by adding horizontal
heading change to previous user heading. Besides, to avoid
introducing estimation errors caused by undetected hand
movements, the estimation results are further smoothed by
an outlier filtering algorithm.
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In order to describe the heading estimation problem,
we define two coordinate systems, namely, global coordinate
system (GCS) and device coordinate system (DCS). GCS is
defined by three axes X, Y, and Z; of the Earth coordinate
system, which point east, north, and in the opposite direction
of the gravity vector. User heading estimation problem can
be considered as seeking walking direction expressions at
GCS. All raw inertial signals including acceleration and
angular velocity samples are initially measured at DCS. DCS
is defined by axes Xp, Yp, and Zj,. The axis X, points
rightward and Y}, points forward, while both axes are parallel
with the device screen. The axis Z, points outside of the
screen and is the cross-product of X, and Yp,.

In this work, we only investigate the most common
four device carrying positions [17-20], namely, held in hand
(hand-held), against ear during phone call (phone-call),
placed in trouser pocket (in-pocket), and swinging in hand
(swinging-hand). For pedestrian activities, we only consider
two situations, namely, normal walking and standing, which
may be easily recognized by their different acceleration
patterns [14, 15]. For simplicity, we assume that the two
activities are already accurately recognized.

3. Detection and Classification of
the Three Special Motion States

Three special motion states, namely, hand movements, car-
rying position transitions, and user turns, may render the
fundamental assumption of PCA-based approaches seriously
corrupted. Therefore, we develop detection and classification
method of the three motion states, as seen in Figure 2. We
collect acceleration signals from an accelerometer and obtain
the device attitude data from a continuous device attitude
tracking model, which will be presented in Section 4.1.
Then, the collected data are divided into small segments
for subsequent detection and discrimination by a sliding
window. We select a window twice the size of user walking
step period, with 50% overlap between consecutive windows,
which is appropriate for detecting and discriminating the
motion states accurately and timely.

As shown in Figure 2, four parameters, namely, accu-
mulated absolute acceleration change AAcc, device head-
ing change AYaw, accumulated absolute pitch angle change
APitch, and accumulated absolute roll angle change ARoll, are
calculated as follows:

Ny-1
AAcc = ) (JAce, (i +1) - Acc, ()|

i=1

. . ey
+ |Accy (i+1)- Acc,, (z)'
+|Acc, (i + 1) - Acc, (i)|)
Np-1
APitch = ) (|Pitch (i + 1) - Pitch (i)]) )
i=1
Ni-1
ARoll = )" ([Roll (i + 1) — Roll (i)|) 3)

i=1

AYaw = Yaw (EndTime) — Yaw (StartTime) (4)

where Acc, (i), Accy(i), Acc,(i) are the ith measured three
dimensional acceleration signals at DCS; Pitch(i) and Roll(i)
are the ith pitch and roll angle values of smartphone at
GCS as seen in (13) in Section 4.1; and Yaw(StartTime) and
Yaw(EndTime) are the yaw values of smartphone at GCS at
the start time and end time of a sliding window as seen in (13).

After obtaining the four parameters, we start to deploy
them to detect and discriminate the three special motion
states by comparing the parameters with related threshold
values. Firstly, we detect and recognize the position transition
motion by exploiting the significant acceleration change
patterns. Figure 3 shows a classical example of acceleration
signals when position transitions occur during a pair of
device carrying positions. Clearly, all kinds of position tran-
sitions consist of substantial acceleration change over three
dimensions. Moreover, the acceleration changes are signifi-
cantly larger than those of normal walking, user turn motion
states, and most hand movements with a relatively small
magnitude. This may be contributed to two reasons. First,
position transitions involve significant relative displacement
and subsequently introduce extra acceleration. Second, the
subcomponents of the gravity vector added on the three axes
are changing all the time due to the changing device attitude.
Therefore, we set a threshold value for the accumulated
absolute acceleration change AAcc, denoted as Th(AAcc).
When the accumulated absolute acceleration change exceeds
the threshold value, a position transition is assumed to occur.
To avoid false detection, we deploy the Random Forest based
carrying position classifier proposed in [16], to confirm if the
carrying position is changed. The carrying position classifier
selects statistics of mean, variance, maximum, and minimum
over windowed acceleration samples as input features. For
detailed information about the carrying position classifier,
please see [16]. If a position transition does not occur and
the carrying position is not in-pocket, hand movement with
a large magnitude is detected.

Secondly, after excluding the position transition motion
state, we detect and discriminate the remaining two motion
states. We observe that the user turns only render device
heading change in the horizontal plane, while most hand
movements may introduce significant roll and pitch angle
changes. Therefore, we set threshold values for the accumu-
lated absolute pitch angle change APitch and accumulated
absolute roll angle change ARoll, denoted as Th(APitch)
and Th(ARoll), respectively. When the accumulated absolute
pitch angle or roll angle change exceeds the related threshold
values, respectively, and the carrying position is not in-
pocket, a hand movement is assumed to occur.

Finally, if both carrying position transitions and hand
movements are excluded, we may infer that a user turn
occurs when the device heading change AYaw exceeds a
predefined threshold value Th(AYaw). Otherwise, no special
motion state is detected. The heading estimation is achieved
by RMPCA approach. Generally, the choice of an appropri-
ate threshold value is different for various device carrying
positions. For in-pocket and swinging-hand positions, the
threshold values are usually significantly larger than those
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FIGURE 1: Architecture of the proposed robust heading estimation system.

of hand-held and phone-call positions, due to a stronger
intensity of the body locomotion.

It should be noted that two false situations may happen,
though their probabilities are rather low. One is that a hand
movement may be missed, when it only introduces extra
acceleration in the horizontal plane, and have little impacts
on the pitch angles and yaw angles. Another false situation
is that a hand movement may be misclassified as a user turn,
when it only renders device heading change in the horizontal
plane, and have little impacts on the pitch angles and yaw
angles. Fortunately, large heading estimation errors caused by
the two false situations may be avoided by an outlier filtering
algorithm, which will be given in Section 4.3.

4. User Heading Estimation

The proposed user heading estimation approach consists
of three strategies: an average of heading estimations of
the neighboring normal walking steps, adding horizontal
heading change to user heading of previous step, and RMPCA
approach. Upon the detected and discrimination results of
three special motion states, the most suitable strategy is
selected for heading estimation, as seen in Figure 1. The
first strategy is selected when hand movements or carrying
position transitions are detected, while the second strategy
is employed when user turns occur. During normal walking,

RMPCA approach is used as the last strategy. Besides, to
avoid heading estimation errors caused by undetected hand
movements, the estimation results of RMPCA are further
smoothed by an outlier filtering algorithm.

Two basic assumptions are used for heading estimation.
First, the initial heading offset between user heading and
device forward heading is zero, since users need to hold
device in hand and gaze at it when they start the localization
application. Second, the initial user heading and related
device attitude are assumed to be known a priori [21, 22],
which can be obtained by Global Position System (GPS)
tracking when the user enters a building, landmarks, or WiFi
localization.

For both RMPCA approach and three special motion
states detection, continuous device attitude information is
required. Therefore, we firstly present the device attitude
tracking model based on quaternions in Section 4.1. Then,
we describe the heading estimation strategies in detail in
Section 4.2. An outlier filtering algorithm is developed in
Section 4.3.

4.1. Attitude Tracking Model. An Extended Kalman Filter
(EKF) is employed to fuse the inertial sensors and magne-
tometer for device attitude tracking. We deploy the quater-
nion [23, 24] to describe device attitude tracking model,
since it can avoid the singularity problems. The relationship
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between GCS and real-time device attitude is constructed by
the quaternion vector and related rotation matrix. The rota-
tion matrix may transform any inertial signals represented at
GCS into DCS as follows:

a(®)) b (1) (5)

W% (1) = (RGGs
where Rgg‘ss(q(t)) is the rotation matrix of DCS correspond-
ing to GCS at time ¢ and h®S(t) and hPS(¢) are the same
3 x 1 vectors represented at GCS and DCS, respectively. We
may establish the one to one mapping relationship between
rotation matrix and a quaternion vector:

Recs (@)
Grai--4 2(@d-d) 2@+ ad) | g
=| 2(@d o) do-di+ 45— 2(9:45 — dohi)
2(0nas ~ ad)  2(d0d +903) G0~ — D+
whereq = [qy 41 % 95 ]T is the normalized quaternion
vector with the scalar part g, and the vector part [q; ¢, gs] ’
and the parameter ¢ is omitted for simplicity.

For device attitude estimation, we firstly construct the
state equation of EKE Based on the kinematic law of rigid

body [24], the discrete-time state model of quaternions is
given by

Qii1 = exp (0.5 x Q (Wi T,)) qi

(Wi T) sin (0.5 x ABy) )
76, qx

Q
= (I cos (0.5 x AB) +

where q; and qy,, are the quaternion vectors at time instants
kT, and (k + 1)T,, T is the time interval of state model,

T, .
w, = [w{ w] wf] is the raw angular velocity vector
measured at DCS, I is an 3 x 3 identity matrix, A0, =

T, \/(w]’f)2 + (wi’)2 + (wf)?, and Q(w, T;) is given by

X y v4

0 —w, —w, -wy
X z J
wy 0w -w

y

Q(w.T,) =T
(ks) s wk —wi 0 w]f

z y X
wp w, -wy 0

In order to construct the state equation of EKF, we deploy a
first order linearized approximation of the state model:

Qi1 = Feqi + Wy )
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where the linearized transition matrix F, = exp(0.5 X
Q(w, Ty)), and
q — . _gyro Ts [ekx] + ql(;I gyro
w, = Ew = ey T Wy, (10)
&

[q’l‘ 9 q’S‘]T are the scalar and vector
parts of the quaternion vector q;, w;”" is the white Gaussian
noise of gyroscope outputs, and [e,Xx] is a standard vector
cross-product operator. The real-time quaternion vector is
determined once the initial value of quaternion vector is
known. Based on the two basic assumptions of our heading
estimation approach, the related initial quaternion can be
easily calculated by initial user heading and device attitude
that are already known.

where qlg and e

Then, we construct the measurement model of EKF based
on the observed acceleration and magnetic field samples
measured at DCS:

A1
Ziy) = [mk 1] = ¢(qk+1) + Vi1
_ (RS (k)" 0 [g] "
0 (Rgccg (qk+1))T h

a
[Vk+1]
+

where a,, and g are the observed acceleration sample at DCS
and related gravity vector sample at GCS, m,; and h are the
observed magnetic field sample at DCS and related magnetic

m
Vi1
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field sample at GCS, and v{, | and v}, are the white Gaussian
measurement noise of the acceleration and magnetic field
values. The covariance matrices of the acceleration and
magnetic field values are set according to [25], respectively.

In order to construct the measurement equation of EKF,
we linearize the nonlinear function ¢(-) in (11) by computing
the related Jacobian matrix:

9

H =
o aqk+1

¢ (1) (12)

Qic+1 =q];+1

where q,, = F,qy is a priori state estimate of the unavailable
true state q; and q; is the EKF estimation result of the state
available at the previous time instant.

According to the state equation (9), measurement equa-
tion (11), and related parameters, the EKF model for estimat-
ing the real-time quaternion vector is constructed. Detailed
procedures for executing the EKF model may be found
in [26]. Therefore, the real-time device attitude tracking is
achieved. We may calculate the real-time device yaw, pitch,
and roll values at GCS as follows:

2 (‘10‘13 - ‘11‘12) )
(@ -ai+95 - a3)

yaw = arctan (

pitch = arcsin (2 (4,9 + qod1)) (13)

2 (‘10‘12 - ‘11‘13) )
(%~ -9 +93)

roll = arctan(

4.2. Heading Estimation Strategy Selection. During normal
walking, we deploy RMPCA approach for heading estima-
tion. User heading is estimated step by step. The walking
steps are detected by a classic peak detection algorithm [27-
29], which recognizes the peak acceleration caused by the
unique heel strike during each walking step. We firstly project
all acceleration within a walking step measured at DCS into
GCS.

ACCc () = Rogs (9 (1) ACCps (1) (14)

where ACCqes(t) = [ACCEos(t) ACCLis(t) ACCE ()]
is the acceleration sample represented at GCS at time ft,
ACCp(t) is the related acceleration sample measured at
DCS, and Rgccss (q(t)) is the related rotation matrix between
GCS and DCS. All acceleration samples at GCS in the
horizontal plane can be given as

HACC s (i) = [ACCE s (i) ACClios )]

i=1,...,Ny,
where N, is the number of acceleration samples within the
walking step and HACC (i) is the ith acceleration sample
in the horizontal plane. Then, we deploy PCA and extract the
first eigenvector of the N 4. acceleration samples in the hori-
zontal plane as the ultimate global walking direction vector

WD = [WDE WDéCS]T. The ambiguity problem of
PCA [30] can be solved by exploiting the phase relationship

between the user walking direction and the vertical acceler-
ation [13]. The ultimate user heading estimation y,,.,, can be
given as follows:

Y
Yiser = arctan < WDGCS) - E (16)
WD 2
For more details about RMPCA, we refer readers to our

previous work [13].

When three special motion states are detected, extra
acceleration may be introduced into the acceleration in the
horizontal plane. Therefore, the principal component of the
acceleration in the horizontal plane may deviate from the
user walking direction. For example, when a hand movement
occurs, the first eigenvector of PCA deviates from the walking
direction and moves towards the hand movement direction.
Similar observations may be seen when position transitions
or user turns occur. Therefore, when hand movements or
position transitions occur, instead of deploying RMPCA
approach, we obtain the user heading by averaging user
heading estimation of the neighbor K normal walking steps:

K/2

Vier (i) = =5

[v/user (1 - k) + Viser (l + k)] (17)
K

where y,,.,.(i) is the user heading of the ith walking step.
Usually, without user turn, the user heading is smooth and
setting K equal to four may obtain a reasonable heading
estimation result.

When user turn occurs, we calculate the user heading
of current walking step by adding user heading change to
user heading of previous walking step. The horizontal device
heading change is computed by the yaw angle change at GCS:

Nayro

00 = Y wics (k) T,y (18)
k=1

where 80 is the horizontal device heading change within one
walking step, wgcs(k) is the kth angular velocity component
rotating around Zg at GCS, Ny, is the total number of
angular velocity samples within the step, T, is the related
sampling interval. The angular velocity sample at GCS can be
obtained by angular velocity sample measured at DCS and the
related rotation matrix as follows:

Woacs () = Rogs (9 (1)) Wi (£) (19)

where wgg(t) is the angular velocity sample vector with
respect to GCS at time t, Wy, (t) is the related sample at DCS,
and Rgccg(q(t)) is the related rotation matrix.

4.3. Outlier Filtering for Heading Estimation Results. This sec-
tion describes a postprocessing outlier filtering algorithm to
remove the outliers caused by undetected hand movements.
This fault situation can be divided into two classes. The first
class is that a hand movement motion state is undetected and
recognized as a normal walking state. The second class is that
a hand movement state is misclassified as a user turn. During
normal walking without significant user turns, the heading
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FIGURE 4: Illustration of an outlier among user heading estimations
of RMPCA approach.

estimation results of RMPCA are smooth and do not change
significantly compared with neighbor steps. If a user turn
occurs, the user heading of current walking step may vary
significantly from that of the previous step, being close to
that of the next step without the user turn. In contrast, if an
undetected hand movement occurs, the heading estimation
result may vary significantly from the heading estimation
results of both the previous step and the next step, as shown in
Figure 4. Therefore, from the above observations, we develop
an outlier filtering algorithm to detect the fault situation by
comparing the difference values of heading estimation results
between adjacent walking steps. If one heading estimation
result is significantly larger (smaller) than previous walking
step and smaller (larger) than the next walking step and
the two difference values exceed related threshold values, an
outlier is detected and removed. Then, we correct the user
heading by averaging the estimation results of the adjacent
normal walking steps.

5. Evaluation

5.1. Experimental Setup. We performed the user heading
estimation experiments in indoor test environments, as
seen in Figure 5. In order to test the heading estimation
performance of both straight and nonstraight walking paths,
the test environment consisted of two symmetric parabolas,
one straight line and a half circle, whose total length was
76.9 m. Four subjects participated in the experiments with
a smartphone. Before each experimental run, each subject
initially held the phone in hand for few seconds to start the
developed user heading estimation application. We also did
all necessary calibrations to make the measurement outputs
of all inertial sensors built in the smartphone as precise as
possible. As in many other works [31, 32], we assume that the
initial user heading was known. To label the ground truth,
we also applied a camera to record the entire walking path of
each subject. The user heading estimations were obtained and
compared with the true values for each walking step.

In order to study the classification accuracy performance
of the proposed detection and discrimination algorithm, each
subject walked along the path with one hundred walking
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FIGURE 5: Walking path of test environment consists of one straight
line, two symmetric parabolas, and a half circle and is divided into
four subpaths by different colors. Figure 5 is reproduced from Deng,
Z.A. et al. (2016) in [16] [under the Creative Commons Attribution
License/public domain].

steps, including seventy steps for normal walking and the
remaining steps for one of the three special motion states with
an equal quantity. Each subject repeated the procedure ten
times.

In order to study the effects of three special motion states
on heading estimation accuracy individually, we compare
the heading estimation errors between RMPCA and the
proposed robust heading estimation approach when each
special motion state occurs individually. For hand move-
ments, various kinds of hand locomotion with different
magnitudes were performed during walking steps. For car-
rying position transitions, we performed all twelve kinds
of position transitions between four classic device carrying
positions. For user turns, we performed user turns varying
from 20 degrees to 180 degrees. Each special motion state was
carried out one thousand times. We assume that each special
motion state is surrounded by normal walking steps during
practical pedestrian walking.

5.2. Classification Accuracy Results. Table 1 shows the clas-
sification results of the proposed three motion states detec-
tion and discrimination algorithm. The results show that
the proposed detection and discrimination algorithm can
classify all three special motion states with high accuracy.
An averaged classification accuracy of 97.6% is obtained for
the three special motion states. For hand movements, though
the probability is rather low, some hand movements may
involve small pitch and roll angle changes, while the yaw
angle changes exceed the threshold. Therefore, this kind of
hand movements may be misclassified as the user turns.
Fortunately, these fault situations may not finally affect the
user heading estimation performance, since the negative
effects may be eliminated by the following outlier filtering
algorithm of the proposed user heading estimation approach.
For carrying position transitions, the accumulated absolute
acceleration changes are always large enough to distinguish
them from the other motion states. The confusion between
position transitions and the other motion states can be
neglected.
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TaBLE 1: Confusion table of the proposed motion states detection and discrimination algorithm.

Hand movement Position transition User turn Normal walking
Hand movement 0.952 0 0.018 0.03
Position transition 0.007 0.988 0.005 0
User turn 0 0.011 0.989 0
Normal walking 0.005 0 0 0.995

Mean absolute estimation error (degrees)

User turn Position transition

Hand movement

EEl Proposed
I RMPCA

FIGURE 6: Mean absolute heading estimation errors of the proposed
approach and RMPCA when each special motion state occurs
individually.

5.3. Heading Estimation Results. Figures 6 and 7 show the
mean and standard deviation of absolute estimation errors of
RMPCA approach and the proposed approach. The heading
estimation errors were calculated over the walking steps
when the special motion states occurred. Compared with
RMPCA approach, the proposed approach reduces the mean
absolute estimation error by 43.1 percent (10.9 degrees), 48.0
percent (15.4 degrees), and 67.4 percent (38.2 degrees), for
hand movement, user turn, and position transition motion
states, respectively. Compared with RMPCA approach, the
proposed approach reduces the standard deviation of abso-
lute estimation error by 35.8 percent (2.4 degrees), 40.7
percent (3.3 degrees), and 46.3 percent (4.4 degrees), for hand
movement, user turn, and position transition motion states,
respectively. Significant absolute heading estimation error
reduction can be achieved by the proposed robust heading
estimation approach. Among three special motion states, the
error reduction of the position transition motion state is the
largest, since the extra acceleration signals introduced by
a position transition motion are always significantly larger
than those of the other two motion states. For the proposed
robust heading estimation approach, when three special
motion states are detected and accurately discriminated, an
appropriate heading estimation scheme is selected rather
than using RMPCA.

Furthermore, we study the overall heading estimation
accuracy of the proposed robust heading estimation approach

Standard deviation of error (degrees)

User turn Position transition

Hand movement

Bl Proposed
I RMPCA

FIGURE 7: Standard deviation of absolute heading estimation errors
of the proposed approach and RMPCA when each special motion
state occurs individually.

with all three special motion states involved. The subject
walked along the whole walking path, which is divided into
four subpaths by different colors, as seen in Figure 5. The
device carrying position was transited into another position
of the reminaing ones with equal probability once the subpath
changed. The whole walking path required about 128 walking
steps for each subject. Each subject consciously did random
hand movements for fifteen times over the whole walking
path. They repeated the procedure for twenty times. We
performed user heading estimations over each walking step,
and then a total number of more than ten thousand samples
can be used. We also carried out and compared the proposed
approach without outlier filtering, RMPCA approach [13],
and uDirect approach [11].

Figure 8 shows the cumulative error distribution of
the compared heading estimation approaches. As seen in
Figure 8, the 75th percentile absolute error of the pro-
posed approach is 13.8 degrees, while those of the proposed
approach without outlier filtering, RMPCA, and uDirect are
14.2,26.2, and 34.4 degrees, respectively. The 90th percentile
absolute error of the proposed approach is 24.9 degrees,
while those of the proposed approach without outlier filter-
ing, RMPCA, and uDirect are 28.1, 42.7, and 54.9 degrees,
respectively. As seen in Figure 9, compared with the proposed
approach without outlier filtering, RMPCA approach, and
uDirect approach, the proposed approach reduces the mean
absolute estimation error by 13.9 percent (1.5 degrees), 46.9
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tributions with all three special motion states involved in the
experiments.
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FIGURE 9: Comparisons of mean and standard deviation of absolute
heading estimation errors with all three special motion states
involved in the experiments.

percent (8.2 degrees), and 59.4 percent (13.6 degrees), respec-
tively. For standard deviation of absolute estimation error, the
proposed approach reduces it by 13.6 percent (0.6 degrees),
34.5 percent (2.0 degrees), and 38.7 percent (2.4 degrees),
respectively.

The proposed approach achieves more significant head-
ing estimation accuracy improvement than the compared
approaches. This is because, when three special motion states
occur, the proposed approach may detect and discriminate
them accurately and timely and then select the related suitable
heading estimation strategy. The traditional RMPCA and
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uDirect approaches may render large heading estimation
errors, since extra acceleration caused by irregular body
locomotion may violate the fundamental assumptions of tra-
ditional approaches. However, these large heading estimation
errors may be always avoided by the proposed approach. If
one of the three special motion states is detected, related
optimal heading estimation strategy will be carried out. For
hand movements and position transitions, the user heading
estimations are obtained by averaging heading estimation
results of the neighboring normal walking steps. For user
turns, the user headings are estimated by adding the yaw
angle change to the user heading of the previous step. Besides,
the outlier filtering algorithm may also improve the heading
estimation accuracy slightly, since the outliers of heading
estimations can be removed.

6. Conclusions

This paper proposes a robust user heading estimation
approach adapting three special motion states, namely, rand
hand movements, position transitions, and user turns. When
these three motion states occur, the traditional approaches
exploiting acceleration patterns may render large heading
estimation errors. Therefore, we firstly develop the motion
state detection and discrimination algorithm to determine
the special motion state. Then, the most suitable strategy is
selected for user heading estimation. Finally, an outlier filter-
ing algorithm is developed to smooth the user heading esti-
mation results. Experimental results show that the proposed
robust heading estimation approach may improve the user
heading estimation accuracy significantly. Compared with
RMPCA and uDirect approaches, the proposed approach
reduces the mean absolute user heading estimation error by
46.9 percent (8.2 degrees) and 59.4 percent (13.6 degrees),
respectively.
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Currently, localization has been one of the research hot spots in Wireless Sensors Networks (WSNs). However, most localization
methods focus on the device-based localization, which locates targets with terminal devices. This is not suitable for the application
scenarios like the elder monitoring, life detection, and so on. In this paper, we propose a device-free wireless localization system
using Artificial Neural Networks (ANNs). The system consists of two phases. In the off-line training phase, Received Signal Strength
(RSS) difference matrices between the RSS matrices collected when the monitoring area is vacant and with a professional in the area
are calculated. Some RSS difference values in the RSS difference matrices are selected. The RSS difference values and corresponding
matrix indices are taken as the inputs of an ANN model and the known location coordinates are its outputs. Then a nonlinear
function between the inputs and outputs can be approximated through training the ANN model. In the on-line localization phase,
when a target is in the monitoring area, the RSS difference values and their matrix indices can be obtained and input into the trained
ANN model, and then the localization coordinates can be computed. We verify the proposed device-free localization system with
a WSN platform. The experimental results show that our proposed device-free wireless localization system is able to achieve a
comparable localization performance without any terminal device.

1. Introduction

As Internet of Things (IoT) is becoming progressively
popular, the related research areas that IoT involves have
been well investigated, such as Wireless Sensors Networks
(WSNs), Radio Frequency Identification (RFID), Micro-
Electro-Mechanical System (MEMS), and mobile comput-
ing [1]. Among these, WSNs integrate various advanced
technologies including sensor technology, wireless commu-
nication, and distributed information processing, so it has
attracted great concerns in IoT [2, 3]. In a WSN, usually a
number of sensor nodes are deployed in a monitoring area.
These sensor nodes are connected through wireless commu-
nication to finish the tasks of sensing, recognizing, and mon-
itoring in a cooperative manner. With the abilities of sensing,
computing, and communicating, WSNs have been widely
used in various fields, for example, indoor fire detection,

object tracking, survivor sensing, and building safety mon-
itoring [4]. In these applications, localization in WSNs plays
an essential and important role [5].

So far, various localization systems have been devel-
oped [6-9]. Satellite-based localization system is able to
provide satisfactory Location Based Service (LBS) for users
in outdoor environments [10]. Cellular-based system is able
to calculate the locations of mobile phone users, but the
cellular-based system usually suffers great localization errors
[11]. Most localization systems using Wireless Local Area
Networks (WLANSs) are able to offer LBS for users when
the users take WLAN terminal devices [12, 13]. Ultrawide
Band (UWB) localization system needs users to take UWB
tags for estimating their locations [6]. Smart phone sensors
are also used for navigation and localization services [14].
Although infrared-based localization system does not need
terminal devices, the performance can be easily affected by
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surrounding environments [6]. In a word, most existing
localization systems need users to carry terminal devices,
which cannot be applied in some special scenarios like
the elder monitoring, life detection, and so on. Device-free
wireless localization in WSNs that makes use of Received
Signal Strength (RSS) variations between sensor nodes is
able to solve this problem. When a target goes into the
monitoring area of a WSN, the presence of the target will
reflect, scatter, and absorb the radio signals of the WSN [15].
Localization results can be calculated with the collected RSS
variations. Therefore, device-free wireless localization that
does not need any terminal device extends the application
range of localization and it will have a promising prospect and
increasing requirement.

However, one challenge of the device-free wireless local-
ization in WSNs is the unpredictability of the RSS measure-
ments in multipath environments, especially in the complex
environments where people usually move. To deal with this
problem, in this paper, we refer to the popular WLAN finger-
printing localization method [6] and propose a device-free
wireless localization system using Artificial Neural Networks
(ANNS). In our proposed system, RSS difference values and
corresponding matrix indices are fused as the inputs of an
ANN model, whose outputs are location coordinates. Then
a nonlinear function between the inputs and outputs can be
approximated through training the ANN model. When we
need to locate a target in the monitoring area, the trained
ANN model is used to compute the localization coordinates
of the target. The four contributions of this paper can be
summarized as follows:

(1) We propose a device-free wireless localization sys-
tem using an ANN model. The localization system
consists of two phases: the oft-line training and on-
line localization. In the oft-line phase, a professional
stands at some selected locations with known location
coordinates. RSS difference matrices between the
RSS matrices collected when the monitoring area is
vacant and with the professional in the area are com-
puted. Some RSS difference values and correspond-
ing matrix indices are used as the inputs, and the
known location coordinates are used as the outputs
for training the ANN model. In the on-line phase,
when a target is in the monitoring area, the obtained
RSS difference values and matrix indices are input
into the trained ANN model for location coordinate
estimation.

(2) We propose an ANN model for location coordinate
estimation in our device-free wireless localization
system. The proposed ANN model is not only used for
nonlinear function approximation, but also used for
data fusion. The model fuses the RSS difference values
and corresponding matrix indices and then takes the
fused data as the input vector of the ANN model. With
the known location coordinates as the output vector,
a nonlinear function can be approximated with the
ANN model for computing the localization results.

(3) We build a hardware platform for the device-free
wireless localization system with a ZigBee-based
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WSN. It consists of 16 sensor nodes, 1 sink node, and 1
localization server. Each sensor node sends the RSS
data that are received from the other sensor nodes
to the localization server through the sink node. The
RSS data will be processed and then used to calculate
localization results in the server.

(4) We verify the proposed localization system in a
real indoor environment with our built hardware
platform. We also try different system parameters for
localization performance improvement and analyse
the experimental results. The experimental results
confirm that our proposed device-free wireless local-
ization system is able to achieve a comparable local-
ization performance.

The remainder of the paper is organized as follows. Related
works about this research are reviewed in Section 2. In
Section 3, the proposed device-free wireless localization
system and ANN model for estimating localization results are
given in detail. Section 4 describes the experimental hardware
platform, experimental results, and analyses. Finally, conclu-
sions are drawn and ideas for future works are presented in
Section 5.

2. Related Works

So far, many device-free wireless localization methods have
been proposed. Wilson and Patwari [16] presented a device-
free localization method based on Radio Tomographic
Imaging (RTI). RTI-based localization method imaged the
RSS attenuation caused by targets with inexpensive and
standard hardware [17]. They also proposed regularization
methods to reduce noise and a statistical model relating
variance to spatial locations of movement for motion image
estimation [18]. Due to the comparable performance of
this method, RTI-based device-free localization has been
extensively researched. An RTI-based device-free localization
using segmentation algorithm and connected component
label algorithm for target tracking was proposed in [19]. Nan-
nuru et al. [20] developed a model for multitarget tracking
using RTT in indoor environments and successfully tracked
three targets with the model. Bocca et al. [21] presented
an RTI method that used RSS measurements on multiple
frequency channels and combined them with a weighted
average for real-time multitarget tracking. Alippi et al. [22]
proposed an RTI method for locating people outdoors that
achieved high localization accuracy and reduced the sensor
energy consumption. Wang et al. [23-25] also have done solid
works in this area and they applied saddle surface model,
compressive sensing (CS), and Bayesian grid approach into
device-free wireless localization. Savazzi et al. [26] proposed
the uses of device-free localization methods and architec-
tures to track a human worker in a human-robot industrial
scenario. The proposed localization and detection algorithm
was based on the jump linear Markovian and interactive
multiple model. Wang et al. [15] introduced an energy-
efficient framework for multitarget device-free localization.
They applied CS to guarantee high localization performance
with less RSS measurements.
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FIGURE 1: The device-free wireless localization system that consists
of 16 sensor nodes.

Besides the aforementioned, similar to WLAN finger-
printing localization method, Zhang et al. [27] mounted
some nodes on the ceiling and divided the tracking area
into different subareas. For each subarea, they utilized the
Support Vector Regression (SVR) model to estimate the
localization coordinates. Youssef et al. [28] proposed a device-
free wireless localization system based on radio-map. They
calculated localization results with a probabilistic method.
Then they proposed another device-free localization system
with particle filtering [29]. Xu et al. [30] formulated the
device-free localization problem with probabilistic classifica-
tion approaches based on discriminant analysis and mitigated
the errors caused by multipath effect. Because the finger-
printing localization method performs well in multipath
environments, in this paper, we also refer to the fingerprinting
localization method and propose a device-free localization
system using an ANN model.

3. Proposed Device-Free Localization System

3.1. System Overview. The proposed device-free localization
system is shown in Figure 1. The sensor nodes are evenly
deployed on the edges of a square monitoring area. When
a target goes into the monitoring area, some wireless links
between sensor nodes will be shadowed. If we take Figure 1
as an example, the wireless links between sensor nodes 1 and
8,1and 9,2 and 10, 2 and 11, 3 and 13, 3 and 14, 3 and 15, and
6 and 16 are shadowed, which cause RSS variations of these
wireless links. When the target moves to a different location
in the monitoring area, corresponding wireless links will be
also shadowed. All the sensor nodes in the WSN measure the
RSS data and send the data to a localization server through a

sink node. We assume L sensor nodes have been deployed in
the monitoring area with known location coordinates (x;, ;),
i=1,2,---,L, then we can have M = L(L — 1)/2 wireless
links. The RSS data of these wireless links are sent to the sink
node and then processed in the localization server. When
the monitoring area is vacant, that is, no target is in the
area, we collect the RSS data from the WSN and compile
them into matrices. Then a professional stands at a number
of selected locations with known location coordinates, and
some wireless links are shadowed when the professional is
at each location. We can also obtain the RSS matrices in the
same manner and compute the RSS difference matrices. We
establish a nonlinear function relationship between the RSS
difference value information and location coordinates with
an ANN model. This ANN model is used for calculating
the location coordinates of the target in the monitoring
area.

Based on the description above, more specifically, the
proposed device-free wireless localization system consists of
two phases: the off-line training and on-line localization. In
the off-line training phase, we first collect the RSS data of the
vacant monitoring area for a while. The RSS data of all the
sensor nodes in the WSN are sent to the localization server
through the sink node. The server will extract the RSS data
and compile the data into RSS matrices. Then a number of
specific locations are selected and their location coordinates
are recorded. A professional stands at each location and
the RSS data from all the sensor nodes are also collected
and processed in the same manner in order to get the
RSS matrices. The RSS difference matrices between the RSS
matrices collected when the monitoring area is vacant and
with the professional in the area are computed. Some RSS
difference values are selected, and then these RSS difference
values and their matrix indices are fused and input into the
ANN model. Meanwhile, the known location coordinates
of the selected locations are considered as the outputs of
the ANN model. So the ANN model can be trained with
these data and a nonlinear function is approximated for
calculating localization coordinates. In the on-line localiza-
tion phase, when a target goes into the monitoring area,
some wireless links are shadowed. The localization server
collects the RSS data from all the sensor nodes and compiles
these RSS data into an RSS matrix. Then an RSS difference
matrix is also computed. The same number of selected RSS
difference values and their indices in the matrix are input
into the trained ANN model, and therefore the location
coordinates of the target can be calculated by the ANN
model.

3.2. RSS Data Preprocessing. After the localization server
collects enough broadcasted frames in the WSN that consist
of RSS and Node Identification (NID) data, the RSS data can
be extracted from these frames and compiled into an RSS
matrix with dimensions of L x L. The row of the RSS matrix
represents the sensor node that receives the radio signals and
the column of the RSS matrix represents the sensor node that
transmits the radio signals. So the RSS matrix of the vacant
monitoring area can be denoted by the following:
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When a professional stands at ith location, the compiled RSS
matrix can be denoted by the following:

1 rSSyp; 1SSy L;
1SSy, 2 CTSSyL
Iss; =
1 bl
: : . : 2)
rSSpy; VYSSpa; - L IxL
i = 17 2’ DY Q

where Q is the number of selected locations. So the RSS dif-
ference matrix Arss; between RSS and rss; can be computed
by the following:

Arss; = |rss; —RSS|, i=1,2,--+,Q (3)

As shown in Figure 1, there is one problem that should be
considered that is the sensor nodes on the same edge of
the monitoring area can also receive RSS data from each
other. For instance, sensor node 1 can receive the RSS data
from sensor node 5 and sensor node 13. Sometimes the RSS
difference values between these sensor nodes on the same
edge may vary greatly. Because this is not caused by the target
in the monitoring area, if we take these RSS difference values
into consideration and input the RSS difference values and
their matrix indices into the ANN model, the localization
errors might be significant. So we design a filtering matrix
m to set the elements that represent the RSS difference
values between the sensor nodes on the same edges of the
monitoring area to be 0. This operation is able to remove
the negative effect effectively. The final RSS difference matrix
Arss, after the filtering operation can be computed by the
following:

Arss, = Arss; em, i=1,2,---,Q (4)

3.3. Localization with ANN Model. In this paper, we apply
a three-layer perceptron network for nonlinear function
approximation and data fusion. The network has a basic
network structure that consists of one input layer, one hidden
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layer, and one output layer. The structure of the network is
shown in Figure 2. Let the number of the neurons in the
input layer, hidden layer, and output layer be 3K, T, and 2,
respectively. After the RSS data preprocessing, we can obtain
the RSS difference matrix Arss,. We sort all the elements in
matrix Arss; in a descending order, then we select the first
K maximum RSS difference values Arssf’ pJ=L2K,

and determine their indices in matrix Arss; that are
column ¢ ; and row ; ;, j = 1,2,--+, K. The RSS difference
values and their indices are fused by the three-layer ANN
model as the input vector of the ANN model denoted
as (Arssl{,l, G1sTins Arssf’z, CosTins ot s Arss;’K, G Ti)-
Meanwhile, the outputs of the ANN model are the location
coordinates (x;, ¥;) in X-axis and Y-axis, respectively. Then
the nonlinear function between the in})uts and outputs can
be approximated and denoted by F : R** — R? as follows:

! ! !
(xi,y,») =F (Arssi’l,ci,l, Tit> Arssi)z,ciyz, Tigs™" "> Arssi’K,
(5)
Ci,K’ri,K)’ i=12--,Q

. ! !
When we input the vector (Arss;;,¢; .7, Arss; ;6 ),
! .
Tigs o+ s ATSS; 1, G > T ) into the ANN model, the output

g%) of jth neuron in the Nth layer of the model can be
calculated by the following:

o = 1 ()

T
(i,7) (i,5)
WON-1,N*N-1,N
i1

() (7)
uy = -0y (6)

j=1,2,---,T, I=3K, N=2 j=1,2, I=T, N=3
where x%{ )l,N is the input from ith neuron in the (N — 1)th
layer to jth neuron in the Nth layer; wﬁ,{ )1 . is the weight from
ith neuron in the (N — 1)th layer to jth neuron in the Nth

layer; 9%) is the threshold of jth neuron in the Nth layer; f(-)
is the activation function of the ANN model.

We train the ANN model with the famous back prop-
agation (BP) algorithm [31], which has been widely used
for ANN training. The operation process of the algorithm
is to propagate errors backwards and update the weights
and thresholds of the network. The updating process will be
suspended when one of the iteration termination conditions
is achieved. The weights and thresholds of the ANN model
can be updated by the following:

7)

i=12,---,3K, j=1,2,---,T, N=2i=1,2,---,T, j=1,2, N=3
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where oY is our expected output of jth neuron in the output
layer; a and b are learning rates for adapting the stability and
training time.

After finishing the ANN model training, when a tar-
get is in the monitoring area in the on-line localization
phase, the shadowed RSS data of the WSN are collected
and processed. Then the first K maximum RSS difference
values and their matrix indices are fused as the input vector
(Arssy, ¢, 1y, Arssh, ¢y, 75, Arssi, ¢, ) and input into
the trained ANN model. So the location coordinates (X, y)
of the target can be estimated with the trained ANN model
by the following:

(8)

! ! !
=F (Arssl, C> 1 ATSS,, G 1y, oo+ 5 ATSSy, Cs rK)

4. Experimental Setup, Results, and Analyses

4.1. Experimental Setup. In this paper, we use CC2530 ZigBee
nodes of Texas Instruments (TI) as the WSN nodes. This
CC2530 ZigBee node has the advantages of low power cost,
high controllability, and convenient networking. It operates
on the 2.4GHz ISM band and is also compatible with [EEE
802.15.4 protocol. When one sensor transmits radio signals,
all the other sensor nodes in the network can receive the
signals. In our experiment, the hardware platform consists of
16 sensor nodes, 1 sink node, and 1 localization server. The 16
sensor nodes measure the RSS data and transmit these RSS
data in turn. The sink node is used to receive the RSS data
from all the sensor nodes and also upload these data to the
localization server.

In this experiment, we set that each sensor node is able
to transmit radio signals and the other sensor nodes can
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FIGURE 4: Photography of the experimental scenario.

receive these radio signals and measure the RSS data. To
be more specific, a total of 16 sensor nodes are first evenly
deployed on the edges of the square monitoring area. After
the network start-up, one sensor node can broadcast its NID.
The other 15 sensor nodes are able to receive the NID and
measure the RSS data. The RSS and corresponding NID data
are recorded in a frame and then the frame is also transmitted.
The designed structure of the frame is shown in Figure 3. We
set different time delays for different sensor nodes in order
to avoid conflicts. When it is the turn of one sensor node to
transmit its frame, the node will transmit its NID as well as
the measured RSS data and corresponding NID information.
After a while, every frame will contain the entire RSS data
and NID information of all the nodes. The sink node can also
receive all the frames in the WSN and upload these data to
the localization server.

The real experimental scenario is shown in Figure 4. The
monitoring area that is in a meeting room is a square area
with dimensions of 7Z2mx72m. There are three tables and
some chairs in the monitoring area. The monitoring area
plan is shown in Figure 5 and the chairs are not displayed
in the plan for simplicity. The deployed 16 sensor nodes are
on the edges of the monitoring area with 1.8m gaps and are
also fixed on tripods with 1.2m height. The sink node and
localization server are in the meeting room too, but they are
not in the monitoring area. In the monitoring area, there
are 52 locations are selected, which are marked with “x” in
Figure 5. The RSS data that are collected for each location
can be compiled into 20 RSS matrices. We divide these RSS
matrices into two data sets. One set is used for training the
ANN model and the other set is used as testing data.

4.2. Experimental Results and Analyses. In this experiment,
we set the number of neurons in the hidden layer to be 35 and
we train the ANN model with BP algorithm. We utilize 15 RSS
matrices of each selected location to train the ANN model
and the rest of 5 RSS matrices to test the trained model. We
calculate the mean errors of the localization results with the
number of first K maximum RSS difference values varying
from 1 to 10. Figure 6 shows the mean errors with different
parameter K. The maximum mean error is 1.3lm when K
equals 9 and the minimum one is 0.42m when K equals 6.
The reason might be that when K is set to be too large, the
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FIGURE 6: Mean errors with different parameter K.

number of inputs is 3K, the performance of the ANN model
decreases because there are only 35 neurons in the hidden
layer. On the contrary, when K is set to be too small, the
selected RSS difference values may be not caused by the target,
so it is difficult to estimate the location coordinates of the
target accurately. For example, when parameter K equals 2,
only the first 2 maximum RSS difference values are selected.
At this time, if it is not the target but some interference causes
the RSS variations, then this will decrease the localization
performance.

As presented in Table 1, the localization results with
parameter K varying from 3 to 8 are compared. The error
standard deviations with parameter K varying from 3 to 8
are 1.05, 1.15, 1.14, 1.08, 1.45, and 1.35, respectively. When
parameter K increases to 7 or 8, the error standard deviation
increases greatly. Meanwhile, the cumulative probabilities
with parameter K varying from 3 to 8 within localization
error of Im are 75.4%, 76.4%, 60.4%, 83.5%, 79.2%, and 63.1%,
respectively. The cumulative probabilities with parameter K
varying from 3 to 8 within localization error of 2m are 91.5%,
88.1%, 83.5%, 90.0%, 87.7%, and 77.7%, respectively. The
cumulative probabilities with different parameter K are also
shown in Figure 7. Obviously, the localization performance of
the proposed system when K equals 6 outperforms the others.
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TABLE 1: Performance comparison with different parameter K.
Standard Accuracy within Accuracy within
K
Mean error (m) deviation (m) 1m (%) 2m (%)
3 0.83 1.05 75.4 91.5
4 0.85 1.15 76.4 88.1
5 1.08 1.14 60.4 83.5
6 0.42 1.08 83.5 90.0
7 0.45 1.45 79.2 87.7
8 1.17 1.35 63.1 777
1 : Data Availability
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F1GURrE 7: Cumulative probabilities with different parameter K.

5. Conclusions and Future Works

In this paper, a device-free wireless localization system using
an ANN model is proposed. With the proposed localization
system, location coordinates of a target can be estimated
without any terminal device attached. We construct a WSN
hardware platform with ZigBee nodes and RSS data of
wireless links between the sensor nodes are collected. We
compile the RSS data into RSS matrices and then compute the
RSS difference matrices between the RSS matrices collected
when the monitoring area is vacant and with a professional
in the monitoring area. The first K maximum RSS difference
values that are caused by the professional are selected. These
RSS difference values and their matrix indices are taken as
the inputs and the known location coordinates are used as the
outputs to train the ANN model. In the on-line localization
phase, when a target is in the monitoring area, the same
number of RSS difference values and corresponding matrix
indices can be obtained and input into the trained ANN
model, then the localization coordinates can be calculated.
The experimental results prove that our proposed device-free
wireless localization system is able to achieve a comparable
localization performance without any terminal device.

In the future, we will try to focus on the moving target or
multitarget localization with the constructed hardware plat-
form and the system parameter optimization for localization
performance improvement. The nonlinear function approx-
imation with other advanced machine learning algorithms
will be investigated as well.

of the Jiangsu Higher Education Institutions of China under
Grant no. 16KJB510014, the Natural Science Foundation
of Jiangsu Province under Grant no. BK20171023, and the
National Natural Science Foundation of China under Grant
no. 61701223.
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Maximizing the lifetime of wireless sensor networks is NP-hard, and existing exact algorithms run in exponential time. These
algorithms implicitly use only one CPU core. In this work, we propose to use multiple CPU cores to speed up the computation.
The key is to decompose the problem into independent subproblems and then solve them on different cores simultaneously. We
propose three decomposition approaches. Two of them are based on the notion that a tree does not contain cycles, and the third
is based on the notion that, in any tree, a node has at most one parent. Simulations on an 8-core desktop computer show that our

approach can speed up existing algorithms significantly.

1. Introduction

In wireless sensor networks, each sensor node has only a
limited amount of energy. When a node sends or receives
messages, it consumes the corresponding amount of energy.
Thus, the amount of traffic of a node influences how long
the node can work, which in turn determines the lifetime of
the network. To this end, finding a routing tree to get longer
lifetime is a key issue, which is known to be NP-hard [1].
Recall that algorithms that can guarantee finding the optimal
routing tree are called exact algorithms. It is clear that, unless
P=NP, all exact algorithms for the lifetime maximization
problem are not polynomial time algorithms.

In fact, all existing exact algorithms run in exponen-
tial time [1-3]. A straightforward approach is to perform
exhaustive search over the solution space (e.g., [2]). This
process can be improved by dynamically eliminating sub-
optimal solutions in the search process [1], or integrating
fast integer linear programming solvers [3]. However, these
algorithms implicitly use only one CPU core and do not use
the full potential of current multicore CPUs. Indeed, most

computers, even smartphones, are equipped with multiple
cores.

In this work, instead of designing a new algorithm, we
consider speeding up existing exact algorithms by using
multicore CPUs to their full potential. The basic idea is
to decompose the problem into independent subproblems
and then solve them on different cores using existing exact
algorithms. The challenge is how to decompose the problem.
We propose three decomposition methods for different exact
algorithms. The first is based on the fact that a tree does not
contain (undirected) cycles, so we can break the network into
subnetworks whenever we encounter an undirected cycle.
This approach applies to all algorithms that consider the
network as either an undirected graph or a directed graph.
The second is based on directed cycle, and the network is
divided whenever we find a directed cycle. The third is based
on the fact that every node has only one parent node, so the
network is divided according to different parent choices of
a given node. The second and the third approaches apply to
algorithms that consider the network as a directed
graph.
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Our contributions can be enumerated as follows:

(1) We consider using the multicore of current comput-
ers to speed up existing algorithms. The proposed
approaches are applicable to all exact algorithms
based on one CPU core.

(2) We propose three problem decomposition approaches.
These approaches can decompose the problem into
subproblems, which can be solved on different cores
using any exact algorithm. We also propose a mecha-
nism to expose information of solved subproblems to
help solve other subproblems.

(3) We implement our approach on an 8-core desk-
top computer and perform numerical simulations.
The results suggest that, in general, the proposed
approaches can reduce the empirical time of existing
exact algorithms, especially when the problem size is
large.

The rest of the paper is organized as follows. Section 2
reviews related work. Section 3 reviews the definition of the
problem and proposes a solution framework. Section 4 pro-
poses three decomposition approaches. Section 5 discusses
several problems. Section 6 presents numerical simulation
results. Finally, Section 7 concludes the paper.

2. Related Works

Finding routing paths of messages to maximize lifetime is a
critical problem in wireless sensor networks (e.g., [1-3, 5-7]).
Unfortunately, it is NP-hard in most scenarios when nodes
can or cannot perform data aggregation. Researchers resort
to polynomial-time approximation algorithms by sacrificing
accuracy (e.g., [8]), or exponential-time exact algorithms by
sacrificing running time (e.g., [1, 3]). While both algorithms
have important applications, we focus on exact algorithms in
this paper.

A simple method is to enumerate all spanning trees
[2], which has a very poor running time. To improve the
efficiency, [1] decomposes the underlying network graph into
biconnected subgraphs to reduce problem size. A limitation
is that the technique does not work when the graph is
already biconnected. Reference [3] proposes to incorporate
graph decomposition with integer linear programming. The
basic idea is to decompose the graph into biconnected
subgraphs and formulate the problem on each subgraph as
an integer linear programming problem, which is solved
by an integer linear programming solver. Besides routing,
energy efficiency is also considered in other contexts such as
compressive sensing-based encryption [9] and rechargeable
sensor networks [10].

Contrary to these works, our work in this paper focuses
on how to use the multiple cores in current computers to their
tull potential. The proposed approaches can be incorporated
with existing exact algorithms. Though the idea of using
multicores in wireless sensor networks is not new, existing
works do not focus on our problem. For example, [11] uses the
cores within a GPU to speed up lifetime simulation for sensor
nodes, and [12] designs multicore sensor node hardware.
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3. A Framework to Use Multicores

We first review the problem and then introduce the solution
framework. A sensor network contains n sensors nodes v,,
V,,...,v, and a sink node v,. Each sensor node senses the
environment periodically, generating a data packet in each
period. It needs to send the data packet to the sink node. The
network can be represented as an undirected graph G(V, E),
where V is the set of nodes and E is the set of communication
links. Sensor node v; has initial energy e; and the sink node
has infinite initial energy; i.e., e, = 00. The energy consumed
for receiving a message is R, and that for transmitting a
message is T,. For any tree T € G rooted at the sink,
in each time period, the energy consumed by node v; is
dr(i) (R, +T,)+T,, where d(i) is the number of descendants
of node i in tree T. The lifetime of node v; in tree T is the
number of rounds it can support until it runs out of energy:
I(T,i) = e;/(dr(i)(R, + T,) + T,.). The lifetime of tree T is the
maximization problem is to find a tree that has the maximum
lifetime. It has been proven to be NP-hard [1].

In this work, we assume that an operating system does
not perform automatic multicore optimization; i.e., a single
thread program can use at most one CPU core. To this end,
we perform a simple experiment as follows. We run a dead
loop program on two computers, one of which has 4 cores
and the other has 8 cores. Both computers are equipped
with the Windows operating system. The CPU utilization
ratio is roughly 25% on the 4-core computer and is about
13% on the 8-core computer, which is consistent with our
assumption. Note that if there are multiple threads, then the
operating system will distribute the threads on different cores
automatically.

3.1. Problem Decomposition Overview. We refer to the set
of feasible solutions of a lifetime maximization problem as
its solution space, i.e., the set of directed trees pointing to
the sink. A subproblem is a lifetime maximization problem
with smaller solution space. The basic idea is to find a set
of subproblems whose solution space contains at least one
optimal solution. A decomposition method is feasible if three
conditions are satisfied.

(i) Each subproblem is feasible; i.e., each subproblem
contains at least one feasible solution.

(ii) At least two subproblems are returned, unless the
original problem has only one feasible solution; i.e.,
the original network graph is itself a tree.

(iii) The union of the solution spaces of all subproblems
contains at least one optimal solution to the original
problem.

Figure 1 illustrates the basic idea. Given a problem,
we apply a feasible decomposition method to get a set of
subproblems. Then we solve these subproblems concurrently,
compare the optimal solutions to subproblems, and select
the best one, which is the optimal solution to the original
problem.
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FIGURE 1: A problem decomposition framework.

Output: a set of subproblems S
1S«

(2) S' — apply &/ on G;

(3) while |S|JS'] <t A\|S'| # 0do

(5) S" < apply & on g;
(6) if S| = 1 then
/lg is a tree

(7) addgto S;
(8) else

©9) S g Us”;
10) S «— S'|JS;

(11) return S;

Input: graph G, sink s, desired subproblem number t, a feasible decomposition method &/

(4)  let g be an arbitrary element of S', remove g from S';

ALGORITHM I: generate_sufficient_subproblems.

3.2. Generating a Sufficient Number of Subproblems. A chal-
lenge for the above framework is that a feasible decompo-
sition method might not generate a sufficient number of
subproblems. For example, a decomposition method may
only give two subproblems. To this end, we observe that
sequentially combining several feasible decomposition meth-
ods results in a feasible decomposition method.

Proposition 1. Suppose o and 9B are two feasible decompo-
sition methods. Apply of on a problem P, and let the set of
subproblems be H. If we apply B on a subproblem h € H
and get subproblem set Q, then the union of solution spaces
of subproblem set (H\{h}) |J Q contains at least one optimal
solution to problem P.

Proof. Simply note that an optimal solution to subproblem h
is contained in the solution space of Q, so it can be replaced
by Q. O

Therefore, we can repeatedly apply a feasible decompo-
sition method until the number of subproblems is sufficient.
Algorithm 1 presents the detailed procedure.

In Algorithm 1, after initializing a variable S to store
the final subproblem set in line (1), we apply the feasible
decomposition method and get subproblem set S’ in line
(2). We will ensure that S and S’ are disjoint throughout the
algorithm, and S JS' contains at least one optimal solution
to the original problem. If the number of subproblems is
insufficient, i.e., [S|J S'| < t, we will remove one subproblem
g from S in line (4) and apply o/ to g to get another

subproblem set S” in line (5). However, $" may contain only
one subproblem, e.g., when g is already a directed tree. In this
case, we will insert g to S in line (7). Otherwise, we include s
to S'. The above process is repeated until either the number
of subproblems is sufficient or S’ is empty. Finally, we insert
all elements remaining in S’ to S.

Theorem 2. Algorithm 1 is a feasible decomposition method. It
will call of for at most 2t times where t is the desired number
of subproblems. At termination, either |S| > t or the solution
space of each subproblem in S is simply a directed tree pointing
to the sink.

Proof. To see that Algorithm 1 is a feasible decomposi-
tion method, observe that all subproblems are obtained by
sequentially applying o/. The result follows from Proposi-
tion 1.

For the number of calls to &/, consider the potential
function ¢ = |S|JS'| + |S|. It is easy to see that ¢ > 0 prior
to the while loop, and ¢ < 2t at the last iteration. We claim
that ¢ is increased by 1 in each iteration, indicating that the
number of calls to & is at most 2¢.

To prove this claim, observe that each iteration of the
while loop either increases |S|  S'| by at least one or increases
|S| by one. On the one hand, if line (9) is executed, then 1S"|
is at least 2, so [SJ §'| is increased by at least one and [S] is
unchanged. On the other hand, if line (7) is executed, then |S]
is increased by one, so [S|J §'| is unchanged. Consequently, ¢
is increased by one. The claim is proved.
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FIGURE 2: Incorporating feedback to the framework to reduce unnecessary computation. Solved subproblems can provide lifetime lower

bound to unsolved subproblems.

For the last part, if |S| > ¢, then we are done. Otherwise,
the while loop terminates with IS’ = 0. In this case, all
elements in S are included in line (7), so these subproblems
cannot be further divided, meaning that the solution space
contains only one directed tree pointing to the sink. O

This theorem suggests that when ¢ is a constant, Algo-
rithm 1 has the same asymptotic running time as the given
method /. In Section 4, we will propose several feasible
decomposition methods. These methods are used as sub-
routines of Algorithm 1 to generate a sufficient number of
subproblems.

3.3. Solving Subproblems Concurrently on Multiple Cores. The
straightforward method is to create threads whose number
is equal to the number of subproblems. Each thread invokes
an exact algorithm on a subproblem. Then the operating
system will schedule the threads on available CPU cores
automatically. Unfortunately, there are several drawbacks in
this approach.

First, if the number of subproblems is greater than
the number of cores, then there exists a core on which
several threads are running. These threads compete in the
core unnecessarily, wasting precious CPU time. Second, if
the number of subproblems is required to be less than or
equal to the number of cores, then some cores are wasted
if their threads terminate early. Third, subproblems are
solved independently, so that solving one subproblem cannot
help solving the other problems. For example, if a solved
subproblem has a solution with lifetime 100, then for the other
unsolved subproblems, we should not waste time finding
solutions with less lifetime.

To address these limitations, we create a thread for a
core, so that [ threads are created on a computer with [ CPU
cores. Each thread repeatedly performs the following three
operations until all subproblems are solved.

(i) Retrieve an unsolved problem and the best solution
up to now.

(ii) Invoke an exact algorithm on the unsolved subprob-
lem with the best solution up to now as a lower bound.

(iii) Mark the subproblem as solved, and update the best
solution up to now.

Figure 2 shows the change to the framework, where the solved
subproblems provide feedback to unsolved subproblems.
Instead of solving subproblems independently, we maintain
the current best solution to reduce unnecessary recomputa-
tion in unsolved subproblems.

We can see that this approach does not have the above
limitations. First, since the number of threads is equal to
the number of cores, no two threads compete in the same
core. Second, CPU cores are fully used, since they will
keep running until all subproblems are solved. Third, when
a thread attempts to solve a subproblem, it will retrieve
the status of solved subproblems, e.g., the lifetime of the
current best solution, which will help reduce unnecessary
computation.

4. Three Feasible Decomposition Methods

We propose three decomposition methods based on different
observations. First, a tree does not contain undirected cycles.
Second, a tree does not contain directed cycles. Third, a node
has only one parent in a directed tree.

4.1. Decomposition by Breaking Undirected Cycle. This
approach applies to undirected graphs. Observe that a
feasible solution to the lifetime maximization problem is a
tree, so any feasible solution cannot contain a cycle. The basic
idea of our approach is to find an undirected cycle and create
subproblems by breaking the cycle, i.e., removing one edge
at a time. Each decomposed subproblem contains one less
edge than the original problem. Figure 3 gives an example.
By breaking cycle A — B — C — A, we get three subproblems
P,, P,, and P;. Note that applying this method to directed
graphs needs slight modifications.

One design issue is to decide which cycle to break. We
propose to choose the cycle containing the minimum number
of edges. The motivation is to generate a small number
of subproblems at each time, so that the total number of
subproblems can be controlled more easily when calling
Algorithm 1. We will discuss this motivation in Section 5.

Algorithm 2 presents our approach. We first use the
algorithm in [13] to find a minimum cycle in line (1). Then, in
lines (2)-(5), we create subproblems whose number is equal
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Input: graph G(V, E), sink s
Output: subproblem set P

Qi1
(3) foreach e € C do

(5) Qi+l
(6)P<_{P1)P2)"'};

(1) find a cycle with minimum length by the MIN_CIRCUIT algorithm in [13], let C be the edges of the cycle;

(4) construct subproblem P, with G\ {e} as the network;

ALGORITHM 2: decompse_undirected_cycle.

Subproblem Py

Subproblem P,

—>

B C

Original Problem P
Subproblem P;

= = =
> > >
@) @) @)

FIGURE 3: Breaking an undirected cycle to create three subproblems.

to the number of edges in the cycle. Each subproblem is
obtained by deleting one edge from the cycle.

Theorem 3. Algorithm 2 is a feasible decomposition method.
It runs in O(mn) time, where m is the number of edges and n is
the number of vertices.

Proof. It is easy to verify that the first two conditions of a
feasible decomposition method are satisfied, since a cycle
contains at least three edges. For the third condition, let
the original problem be P and the constructed subprob-
lems be P,,P,,..., P, with corresponding removed edges
€1,€,,...,e. Let S(P) be the solution space of problem P. We
claim a stronger result that

k
sy Js(p). 0))
i=1

To prove this, consider an arbitrary feasible solution x to
problem P, i.e., x € S(P). Because x is a tree, it cannot contain
all edges in the cycle. Suppose it does not contain e;. Then,
x € S(Pj). The claim follows immediately.

For the running time, note that the algorithm in [13] runs
in O(mn) time. The found cycle contains at most O(n) edges,
so the for loop has at most O(n) iterations. Since constructing
a subproblem can be finished in O(m) time, the for loop runs
in O(mn) time. The overall running time is O(mn). O

Subproblem P

Subproblem P,

Original Problem P

Subproblem P;

FIGURE 4: A directed network graph and three subproblems by
breaking directed cycle ABCA.

4.2. Decomposition by Breaking Directed Cycle. When the
network graph is directed, we can see that no solution
contains a directed cycle. Thus, we first find a directed cycle
and create a subproblem by removing one edge from the
cycle. We choose the minimum cycle to create subproblems,
so that the total number of subproblems can be better
controlled. Figure 4 gives an example. In the problem, we can
break cycle ABCA to get three subproblems.

One problem for this approach is that there may exist a
subproblem that does not contain any feasible solution to the
original problem. For example, in Figure 4, if we consider
the cycle BCDB, then the subproblem by removing edge DB
does not contain a feasible solution since no path connects
D to the sink. To solve this problem, we check the feasibility
of each subproblem and remove infeasible ones. If there is
only one feasible subproblem, then we find directed cycles
from the subproblem. Since one edge has been removed, the
subproblem contains fewer edges than the original problem;
the process will terminate.

Algorithm 3 presents the decomposition method. We first
check whether the graph itself is a tree. If it is a tree, we
return the graph immediately in line (1). Otherwise, we find
a directed cycle with the minimum number of edges. If no
directed cycle exists, then there exists at least one vertex
with out degree larger than 1. We identify such a vertex and
insert all its out edges into C in line (4). Then, we construct
subproblems by removing one edge from C in lines (6)-(11).
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Input: graph G(V, E), sink s
Output: subproblem set P
(1) return Gif G is a tree;

(3) if C = 0 then// no cycle

insert its out edges into C;
(5)i < 0;
(6) foreach e € C do
(7) G «—G\{ek

(12) if i = 1 then
(13)  C' « graph of subproblem P;;

(14)  return decomp_directed_cycle(G');
(15) else

(16) return {P,P,,--- ,P};

i

(2) let C be the minimum directed cycle found by the DICIRCUIT algorithm in [13];

(4) find any vertex with out degree larger than 1, and

(8) reverse the direction of edges in G, and perform a breadth-first search from the sink;
9) if all vertices are visited then

(10) it

(11) construct subproblem P, with G’ as the network;

ALGORITHM 3: decomp_directed_cycle.

Different from Algorithm 2, we need to verify whether the
constructed subproblem is feasible. This is done by reversing
the directions of the edges and performing a breadth-first
search from the sink in line (8). The subproblem is feasible
if and only if all vertices are visited. If the subproblem is
feasible, we store it in line (11). Finally, if we get only one
feasible subproblem, then we recursively call Algorithm 3 to
get subproblems in lines (13) and (14). Otherwise, we return
in line (16).

Theorem 4. Algorithm 3 is a feasible decomposition method.
It runs in O(m*n) time.

Proof. Consider the recursion tree of Algorithm 3. If the last
call to Algorithm 3 (i.e., the leaf node in the recursion tree)
returns in line (1), then the original problem contains exactly
one feasible solution. If it returns in line (16), then at least
two feasible subproblems are returned. Similar to the proof of
Theorem 3, the union of solution spaces of these subproblems
contains at least one optimal solution to the original problem.
So the algorithm is a feasible decomposition method.

For the running time, line (2) in Algorithm 3 runs in
O(mmn) time. Observe that lines (3)-(11) run in O(mn) time.
So, except for the recursive call in line (14), the rest of the
algorithm runs in O(mn) time. Consider the recursion tree
of the algorithm. Since each call to the algorithm will remove
at least one edge from the input graph in line (7) and there
are O(m) edges, the depth of the recursion tree is O(m).
Therefore, the overall running time is O(m*n). O

4.3. Decomposition by Fixing the Parent Node. Observe the
fact that a node except for the sink has one parent in a
directed tree. Thus, given a node, we can create subproblems
by keeping one out edge to fix its parent and deleting other
out edges. Figure 5 gives an example. Vertex A has three out

C
D Subproblem P,
B A
C C
—> Subproblem P,
D
B A B A
Original Problem P C
Subproblem P
B A

FIGURE 5: A directed network graph and three subproblems by fixing
the parent node of vertex A.

edges pointing to nodes B, C, and D, so we can construct three
subproblems Py, P,, and P;, where the parent of A is fixed to
B, C, and D, respectively.

Two issues need to be solved. First, a subproblem may
not be feasible. This is similar to Section 4.2, and we can
also introduce the verification step to remove infeasible
subproblems. For the example in Figure 5, if D is the
sink, then we cannot remove edge BC, since the resulting
subproblem will be infeasible. Second, we need to consider
which node to choose. We propose to choose the node with
the minimum initial energy. This is based on the intuition
that nodes with less energy are usually the bottleneck for the
network’s lifetime.

Algorithm 4 presents the method. We sort nodes in
ascending order by their initial energy in line (2). We will
consider nodes in this order one by one (lines (3)-(4)). For
each node, we visit its out edges and construct a subproblem
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Input: graph G(V, E), sink s
Output: subproblem set P
(D) P <0

(3) while L¥@A|P| <1 do

(11) return P;

(2) sort nodes in ascending order by initial energy, and let L be the sorted list;

(4) u «— L.removeFirst();

(5) for uv € G do

(6) G —G\{uweGlw# v}

(7) reverse the directions of edges in G’ and perform a breadth-first search from the sink
(8) if all vertices are visited then

9) construct subproblem P’ with G’ as the network;

(10) include P’ to P;

ALGORITHM 4: decomp_fixing_parent.

by keeping one out edge and deleting others in line (6), which
essentially fixes the node’s parent in the routing tree. To check
whether the resulting subproblem is feasible, we reverse the
directions of the edges and perform a breadth-first search
from the sink in line (7). The subproblem is feasible if and
only if all vertices are visited. If the subproblem is feasible, we
include it to subproblem set P in line (1). In either case, we
continue to consider the next node until either L is empty or
P contains at least two subproblems.

Theorem 5. Algorithm 4 is a feasible decomposition method,
and it runs in O(m?) time.

Proof. Algorithm 4 terminates if either L is empty or P
contains at least two feasible subproblems. In the first case,
the original problem contains exactly one feasible solution.
In the second case, at least two feasible subproblems are
returned and it is easy to prove that the union of solution
spaces of these subproblems contains at least one optimal
solution to the original problem. So the algorithm is a feasible
decomposition method.

For the running time, sorting nodes in line (2) runs in
O(nlogn) time. Observe that, in the worst case, each edge in
G will be examined once in line (5), and lines (6)-(10) run in
O(m) times, so the while loop runs in O(m?) time. The overall
running time is o(m?). ]

5. Discussion

In this section, we analyze the overall running time of
algorithms and discuss several related issues.

Lemma 6. Suppose there are t subproblems and § cores. Then,
there exists a core that solves at most |t/8] subproblems.

Proof. It follows from the pigeonhole principle. O

Incorporating Algorithm 1 with the three decomposition
methods, i.e., decomposition by breaking undirected cycle,
decomposition by breaking directed cycle, and decomposi-
tion by fixing the parent, gives three algorithms, which are
denoted by UnCycle, DCycle, and FixP.

Theorem 7. Let R(m, n) be the worst-case running time of an
exact algorithm to solve a problem containing m directed edges
and n vertices, t be the number of subproblems, and & be the
number of CPU cores. One has the following results.

(i) UnCycle runs in O(mnt) + ([t/8] + 1)R(m — 2, n) time.
(ii) DCycle runs in O(m*nt) + ([t/8] + 1)R(m — 1, n) time.
(iii) FixP runsin O(m?t) + ([t/8] + 1)R(m — 1,n) time.

Proof. Observe that the running time of each algorithm
consists of two parts, one of which is for dividing the
problem into t subproblems and the other is for solving the
subproblems. The first part is a single thread program, and,
following Theorem 2, its running time is 2t times the running
time of the corresponding decomposition method. Due to
Theorems 3, 4, and 5, the first part running time for UnCycle
is O(mnt), that for DCycle is O(m*nt), and that for FixP is
o(m’t).

The second part uses & cores to solve the subproblems.
By Lemma 6, there exists one core that solves at most |¢/J]
subproblems. Consider this core. We can see that when
this core finishes computing |t/8]| subproblems, there are
no subproblems left. (Otherwise, this core should pick up
another subproblem to solve.) This suggests that the other
cores either already terminate or are computing the last
subproblem. Thus, the running time is at most the time
for computing [t/8] + 1 subproblems. Further note that
each subproblem in UnCycle contains m — 2 edges, each
subproblem in DCycle contains m — 1 edges, and each
subproblem in FixP contains at most mn—1 edges. The theorem
follows immediately. O

Note that this theorem studies the worst-case running
time. Though FixP seems to have the same complexity with
DCycle, the edges of each subproblem in FixP are usually less
than m — 1.

Another concern for our approach is that the same
tree may be produced by different subproblems, so that
computations are wasted. This is indeed true for UnCycle and
DCycle. However, this happens only if the two subproblems
are being solved on different cores at the same time, because



if they are solved sequentially, then the solved subproblem
provides feedback to the unsolved subproblem, eliminating
redundant trees. This mechanism is shown in Figure 2. Since
subproblems are smaller than the original problem, we find
that using multiple cores does not increase the running time.
In addition, the redundant computation problem does not
exist for FixP. In different subproblems of FixP, at least one
node has a different parent due to the decomposition method.
Thus, it is not possible for two subproblems to produce the
same tree.

In this paper, we consider constructing a single tree for the
network. If multiple trees are allowed, i.e., the network uses a
different routing tree after some time, then the overall lifetime
can be further extended. The drawback of this approach
is that sensor nodes need to perform complex operations,
e.g., either to record multiple routing paths in memory to
change parents periodically or to receive commands from the
network periodically. We plan to extend our result to this
scenario in the future.

Finally, we discuss the motivation for finding the mini-
mum cycle in UnCycle and the minimum directed cycle in
DCycle. There are several reasons. Ideally, we should find a
cycle with length ¢ so that we can break the problem into ¢
subproblems, where t is provided by the user. However, this
problem is NP-hard to solve. To see this, simply note that this
problem contains the Hamiltonian path problem as a special
case (when t=n). We cannot afford another exponential time
algorithm to get the desired cycle. On the contrary, finding a
minimum cycle or a cycle with arbitrary length can be done
in polynomial time. To this end, we need to use Algorithm 1
to get the desired number of subproblems. If we decompose
the graph by finding a cycle with arbitrary length (e.g., by
performing a DES search to get an arbitrary cycle), then it
is probable that the number of subproblems may be much
more than ¢. Instead, by finding a cycle with minimum length,
we get small granularity in that each time we add a few
subproblems to the set of subproblems. An additional benefit
is that a resulting subproblem may be obtained by calling the
decomposition method several times, so it has fewer edges.

6. Simulations

We compare our approach with previous single-thread
approaches on randomly generated sensor networks. Sensors
are uniformly and randomly distributed in a 100(#) x 100(r1)
square field, and the sink node is located at the center. Two
nodes can receive messages from each other if and only if
their distance is not greater than 20 meters. Thus, the graph is
essentially a unit disk graph. Figure 6 shows one such network
with 41 nodes. Each node has its initial energy uniformly
drawn from [1, 10]J. The energy consumption for receiving
and transmitting a message is 3.33 x 10™*J and 6.66 x 107*],
respectively. These settings are consistent with those in [1, 3].
We use Java language to program all algorithms and run them
on a desktop computer with configuration listed in Table 1.
We implement the proposed decomposition methods to
generate subproblems including decomposition by break-
ing undirected cycle (UnCycle), decomposition by breaking
directed cycle (DCycle), and decomposition by fixing the
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FIGURE 6: A randomly generated network consisting of 41 nodes.

TaBLE 1: Desktop computer configuration.

Operating System Windows 7 64 bit

CPU Intel(R) Core(TM) i7-4770 Processor
Number of Cores 8

Memory 8GB

Java Runtime Environment JRE 1.8.0

ILP Solver Ip_solve 5.5

parent (FixP). We consider networks with 30,35,...,55
nodes, and for each node number, we generate 20 network
instances, so that there are 120 problem instances. We vary
the number of subproblems from 8 to 20 with increments of
4. Note that if the number of subproblems is fixed to 1, then no
decomposition is performed. We set the maximum allowed
running time to 10 minutes, after which we terminate an
algorithm and mark the network as fail for the algorithm. We
implement two previous algorithms: ILP-B that uses integer
linear programming with binary search [1] and ILP-BD that
improves ILP-B by adding a procedure to decompose the
network graph into biconnected subgraphs [3].

6.1. Performance Improvement on ILP-B. We study the
improvement of our approach on ILP-B in terms of average
running time. Figure 7 shows the results. When the number
of subproblems is 1, our approach is not applied and the
result corresponds to the original algorithm. Note that we do
not take into account problem instances that no algorithm
can solve within ten minutes. Other than these networks, we
approximate the running time of an algorithm on a problem
instance to ten minutes if it fails to get the optimal solution.
We will also study the effect of this approximation.

We have two observations from the figure. First, our
approach can significantly reduce the average running time.
This is in line with intuition since all CPU cores are used.
Second, when the number of subproblems is either small (8)
or large (20), the average running time is not the smallest. We
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FIGURE 7: Average running time of ILP-B with three decomposition methods under different numbers of subproblems.

get smaller running time when the number of subproblems
is 12 or 16. When the number of subproblems is small, most
subproblems are still very similar to the original problem.
But when we get too many subproblems, even though most
subproblems are simpler, it is more likely that we encounter
a difficult subproblem. Indeed, in lifetime maximization
problem, small problem size is not a guarantee of less running
time. Thus, we recommend to set the number of subproblems
to within twice the number of CPU cores.

We show that the approximation of the running time of
unsolved instance as ten minutes is reasonable in that the
relationship of running time of different algorithms remains
the same under this approximation. To this end, we vary
the maximum allowed running time from 2 minutes to 10

minutes with increments of 2 minutes. Figure 9 shows the
resulting average running time for networks containing 46
nodes. We can see that, with the increase of the maximum
allowed running time, the average running time is increased
since unsolved problem instances contribute more running
time due to the approximation. However, the relationship
between different algorithms remains the same; i.e., FixP
has the smallest average running time in all cases, DCy-
cle has the second smallest average running time, and so
forth. Therefore, we believe the approximation is reason-
able.

6.2. Performance Improvement on ILP-BD. We study the
improvement on ILP-BD with the same problem instances in
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FIGURE 8: Average running time of ILP-BD with three decomposition methods under different numbers of subproblems.

Section 6.1. We do not take a problem instance into account if
all configurations cannot solve it. Figure 8 shows the results.
The results are similar.

We can see again that our approach greatly reduces the
average running time. The improvement is more significant
when the number of nodes becomes larger. Setting the
number of subproblems to 12 or 16 gives smaller running
time than 8 or 20. Note that it is not fair to compare ILP-
BD with ILP-B using Figures 7 and 8, because the problem
instances used in average running time computation are
different for the two approaches. In fact, ILP-BD can solve
more problem instances in general, so some solved difficult
problem instances increase the average running time.

6.3. Performance Improvements in the Number of Failed
Networks. Besides average running time, we show that the
number of failed networks is smaller for our approach.
Figures 10 and 11 show the number of failed networks of
each decomposition method on algorithms ILP-B and ILP-
BD. Note that we omit the result for networks with 30 and
35 nodes, since all approaches can solve all problem instances
within ten minutes. We can see that our methods can solve
more networks than previous single-thread method. The
improvement is more obvious when the network contains
more nodes. In addition, ILP-BD can solve more problem
instances than ILP-B, and our approach can further improve
ILP-BD significantly.
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6.4. Performance on a Real Network. We test the algorithms
on a real network reported in [4]. The network consists of
49 sensor nodes deployed on a 7 x 7 grid. The distance
between adjacent columns is roughly 5 meters. Two nodes
are connected by an edge if the received signal strength is at
least -74db, giving a network topology in Figure 12. We run
our algorithms with ILB-BD on the network and show the
running time of each method in Table 2. We can see that using
multiple cores can indeed reduce the running time. While the
original single-thread program needs about 3 minutes, FixP
terminates in less than 1 second.

11
10 T T T T
L, 8t .
=
9]
Z
L
Z 6t i
9
2
s
a5
N
S 4. .. . ) ) ) 4
o)
Na)
5
z
L . ) ) . 4
0 m L1 |
n=40 n=45 n=50 n=55
I single-thread (| DCycle
[ UnCycle [ Fixp

FI1GURE 11: Number of failed networks of ILP-BD.

FIGURE 12: A network with 49 nodes in [4]. Solid disk represents the
sink. The distance between columns (and rows) is roughly 5 meters.

TABLE 2: Running time of each method on the network in [4].

Methods Running time
Single-thread 175.285(s)
UnCycle 1.395(s)
DCycle 37.831(s)
FixP 0.746(s)

7. Conclusions

In this paper, we proposed to use multiple cores to speed up
existing exact algorithms for finding optimal routing tree of
wireless sensor networks. The basic idea is to decompose the
original problem into multiple subproblems and run them on
different CPU cores. We propose three decomposition meth-
ods and prove their correctness. Numerical results show that
the three methods can speed up the calculation significantly



12

in terms of average running time and the number of solved [1]
problems.
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Device-to-Device communication underlaying cellular network can increase the spectrum efficiency due to direct proximity
communication and frequency reuse. However, such performance improvement is influenced by the power interference caused
by spectrum sharing and social characteristics in each social community jointly. In this investigation, we present a dynamic
game theory with complete information based D2D resource allocation scheme for D2D communication underlaying cellular
network. In this resource allocation method, we quantify both the rate influence from the power interference caused by the
D2D transmitter to cellular users and rate enhancement brought by the social relationships between mobile users. Then, the
utility function maximization game is formulated to optimize the overall transmission rate performance of the network, which
synthetically measures the final influence from both power interference and sociality enhancement. Simultaneously, we discuss the
Nash Equilibrium of the proposed utility function maximization game from a theoretical point of view and further put forward a
utility priority searching algorithm based resource allocation scheme. Simulation results show that our proposed scheme attains
better performance compared with the other two advanced proposals.

1. Introduction

With the rapid spread of intelligence terminals and the explo-
sive growth of communication capacity, local area services are
considered as a popular issue. Traditional cellular networks
can not meet the explosive demands for gigantic amount
of mobile users in the following years. As Device-to-Device
(D2D) communication enables direct communication be-
tween a pair of mobile users in proximity by occupying the
cellular spectrum without traversing the BS or core net-
work [1, 2], it becomes an important usage case through peer-
to-peer scheme while nowadays mobile users in cellular
networks need high-speed data service in which they could
potentially be in range for direct communication [3-5]. For
example, when friends close to each other want to exchange
music, picture, or video via their own mobile phone, the D2D
communication can provide a reasonable solution for the
local media service as the same interested contents can be

shared between mobile users. In this way, the throughput and
spectral efficiency of the network can be highly increased [6-
8].

In D2D communication underlaying cellular network,
mobile users occupy the same licensed band of spectrum
resource for cellular users to increase the system capacity.
Hence, resource allocation becomes the key issue in D2D
communication, and appropriate resource allocation schemes
are imperative to be conducted to settle this issue [9]. Consid-
ering the fact that the D2D communication shares the uplink
spectrum resource, Xu et al. utilize a reverse iterative combi-
natorial auction based mechanism to accomplish the resource
allocation [10]. Ferdouse et al. propose a throughput efficient
subcarrier allocation (TESA) proposal for multiclass cellular
D2D systems [11]. Hoang et al. adopt graph-based approach
to discuss the nonorthogonal dynamic spectrum sharing to
maximize the weighted system sum rate [12].
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Worth mentioning about the above studies [10-12] is that
mobile users in social networks usually form stable social net-
works when communicating with others. They are grouped
by social relationships or background to form different com-
munities which have the same interested contents. Human
beings in social communities share interested content through
online social platforms, such as Weibo and WeChat. The more
the interactions that take place in the community, the faster
the transmission rate the community will consider. But these
studies above all pay attention to improving the transmission
rate in an overall perspective to restrict the interference
cellular communication suffers [13]. The characteristics of
high sociality may be able to improve the spectrum efficiency
greatly; however, this has not been considered.

The sociality in D2D communication has been extensively
studied for resource allocation optimization problem. Wang
et al. model the strength of sociality of D2D links by counting
contact time among mobile users [14]. The authors in [15] pro-
pose a social-aware resource allocation method based on two
hops: communication with the BS (first hop) and extending
communication with another device (second hop), but, with
the iterations proceeding, the size of the master problem is
also increasing. Li et al. quantitatively analyze the benefit
taken by the incorporation of social features and propose a
social-ware D2D communication framework by leveraging
these social networking characteristics; this investigation has
created the precedent for studying the problem of social-
awareness based D2D resource allocation in [16].

The aforementioned works indicate that the rate perfor-
mance of the network can be effectively improved by imple-
menting proper interference control policy and fully using
social networking characteristics. However, how to allocate
cellular resource for each D2D pairs is much more complex.
The difference of our work from all the works done by those
predecessors is that we maximize the sum transmission rate
of the system by jointly paying attention to the interference
caused by the D2D transmitter to cellular user and rate
performance enhanced by the social relationships between
mobile users. Thus, we further design a priority searching
algorithm based resource allocation scheme in D2D commu-
nications underlaying cellular network.

Generally, D2D pairs along with cellular users may be
self-interested to maximize their own benefit through coop-
eration or competition in the underlaying D2D communica-
tion network. Consequently, it is needed to develop suitable
solutions to the consideration we present above. At the same
time, game theory is adopted for modeling and researching
the resource allocation problem in recent works. Many
kinds of game theory have been applied to the study of D2D
resource allocation problems. In [17], a social-community
utilization optimization game is proposed to optimize the
utility of social community for each of the D2D pairs. But
modeling the game in such a way seems quite a complex
task. In [18], Stackelberg game has been applied to model
the interactions between D2D users and cellular users. Since
the Stackelberg game belongs to the category of cooperative
game, its outcome is not social optimum. Further cooperative
games such as Nash Bargaining Solution (NBS) are needed to
improve the results. In [19], NBS is developed to tackle the
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inefliciency of the scheme in [18] where the assumption is not
reasonable in practical environment.

Despite the popularity of game theory in recent resource
allocation related investigation, the most common idea of
these papers is to verify that any strategy that deviates from
the Nash Equilibrium (NE) can not improve the system per-
formance any more. This one-side proof may be not convinc-
ing enough when applying to resource allocation problem
between two disjoint sets influenced by mutual interference.
Accordingly, the matching theory provides a distributed
solution to resource matching problem between two disjoint
sets. In [20], the matching theory was employed to match
D2D pairs with cellular users to address the energy efficiency
optimization problem in D2D enabled cellular networks.
Besides, this work was extended to large-scale networks and
acquired significant performance gains. In [21], a 3D itera-
tive matching algorithm was proposed to maximize the sum
rate of D2D pairs while guaranteeing the QoS requirement
of both cellular communication and D2D communication.
In [22], the matching theory was used to model the network
as a one-to-one matching market and each secondary user
(SU) can maximize its utility by selecting the most suitable
primary user (PU). However, it is confirmed that sociality-
interference joint resource allocation problem has not been
considered from the perspective of matching theory.

In this paper, in order to jointly compare the influence of
sociality between the mobile users within the same commu-
nity and power interference caused by D2D communication,
we discuss the main problem existing in current resource
allocation scheme and propose a utility function maximiza-
tion (UFM) game for D2D communication underlaying
cellular network by utility function construction, game estab-
lishment, providing relative proof for the existence of Nash
Equilibrium. Inspired by one-to-one matching theory, we
propose a priority searching algorithm based resource alloca-
tion scheme to acquire the final resource allocation proposal
for the UFM game. We perform extensive simulations under
realistic social network to evaluate the rate performance of
our proposed scheme. The result shows that our proposed
scheme improves system performance obviously, in terms of
increasing the overall transmission rate and decreasing the
transmission time.

The remainder of this paper is organized as follows:
we introduce the system model and formulate the problem
in Section 2. UFM game is formulated in Section 3. Then,
in Section 4, a priority searching based resource allocation
algorithm is proposed, and, in Section 5, simulation result
and analysis are given, and finally we make the conclusion
of the paper in Section 6.

2. Problem Formulation

2.1. System Model. We consider the D2D communication
underlaying cellular network in which D2D links occupy the
spectrum resource of uplink cellular communication. The
reason why we choose uplink one is that when the cellular
users (CUs) are in downlink transmission they will suffer
from sophisticated interference caused by D2D communica-
tion [23]. Otherwise, we divide the investigation of social-
awareness based resource allocation for D2D communication
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FIGURE 1: Illustration of social-aware D2D communications under-
laying cellular network. In physical domain, wireless links are
subject to the physical interference constraints, while social domain
indicates the relationships between mobile users.

underlaying cellular networks into two domains in our work:
physical domain and virtual social domain. More details
about these are illustrated in Figure 1.

In the physical domain, the system contains N nodes
labelled as the set of #/* = {1,2,..., N}. Each node denotes
a mobile user that can communicate with the BS or execute
D2D communication with other users directly. For active
mobile users, they can form & = {1,2,...,D} D2D pairs.
The remaining, which is denoted by the set € = {1,2,...,C}
can request for interested content toward BS via cellular
communication. Those D2D pairs can choose to reuse the
spectrum resource of any cellular users. But there exist
physical constraints between mobile users, and only some of
them can form D2D pairs (including D-Tx and D-Rx) [24].

In the social domain, for the reason that a community
is combined by sophisticated relationship like friendship,
kinship, or even classmates with each other [25], and they
were physically in close proximity, we tend to make use of
these characteristics to model the social relationship between
the users. Users consider the strength of their social trust
within a community and their properties of social trust
between different communities, respectively, to make D2D
communication more secure.

To ensure the practicality of our work, we set the channel
scene as Rayleigh fading channel. Under the premise of the
free space propagation model, the interference signal power
level of cellular user which is introduced by D2D transmitter
D-Tx sharing the same spectrum resource with cellular user
can be expressed as follows according to Shannon theorem:

o 42
Pint,c = Pd : Cc,d i hc,d’ (1)

while the interference signal of D2D receiver D-Rx is from the
BS that establishes communication link with cellular users.
Thus, the signal power can be expressed as

- 2
Pint,d =Py {B,d . hB,d’ 2)

where P; and Py are the transmitted power of BS and D2D
transmitter, respectively. (. ; denotes the distance between
the D2D transmitter and cellular user and {; denotes the
distance between D2D receiver and the BS, « is the path loss
exponent, and h_ ; and hy ; are the complex Gaussian channel
coeflicients.

In our investigation, we assume there are one D2D pair
and one cellular user within a single cell. By sharing cellular
spectrum resource blocks with D2D pair, D2D communica-
tion and cellular communication can be conducted syn-
chronously [26]. For the purpose of maximizing the overall
system transmission rate, the Signal-to-Noise Ratio (SINR) of
the two communication modes is regarded as important indi-
cator. Based on (1) and (2), we can obtain the SINR of cellular
user ¢ and D2D receiver d as

SINR . = — Pede
o Pint,c + NO '

3)
SINR,; = — P94 _
i Pint,d + NO

p. is the given transmission power of cellular user and p; is
the given transmission power of D2D transmitter; g; and g,
are the channel gains of cellular link and D2D link, respec-
tively. And N,, is the noise power on each channel.

At the same time, we usually calculate the sum rate of
the system to measure the quality of D2D communication
underlaying cellular network. For uplink direction, let R_; be
the data transmission rate between the CU and the BSand R;;
be the data transmission rate between D-Tx and D-Rx. Since
the transmission rate of each cellular link and D2D link can
be determined by the Shannon capacity [27].

R.; = B.;log, (SINR_;),

(4)
R;; = By;log, (SINRd,i)’

where SINR;; and SINR_; are the Signal-to-Noise Ratio
(SINR) in D2D and cellular communication links and B, ; and
B, are the allocated licensed band of resource for D2D and
cellular communication. What is imperative to mention here
is that we only consider the interference that occurred within
a single cell and do not consider any influence from other
microcells.

To describe reusing relationship of spectrum resource, we
denote x4 € [0, 1] as the indicator matrix of the D2D pairs;
that is, x_; = 1 when the D2D pair d occupies the licensed
band of resource of the cellular user ¢; otherwise x_; =
0. Thus, we can acquire the transmission rate of D2D pair
multiplying the indicator x, ; by R;; as Ry; - x_ 4. The system
performance can be represented by the sum of R_; and Ry

2
R= Z (Rc,i + Rd,i ’ xc,d) . (5)

i=1



We can improve the system performance by maximizing
the sum rate to judge whether our proposed optimal social-
aware resource allocation scheme is effective:

2
max ZRCJ + Ry x4
i=1

s.t ijsl, ce€EB, ne¥ (6)
dieD
ngjsl, ceE, ded.
n‘e€

2.2. Problem Description

2.2.1. Power Interference. In D2D communication network,
we assume the cellular users can share uplink resource with
user equipment. During the D2D communication, it is
inevitable that D2D transmitter interference will be intro-
duced to others, especially to nearby CUs. And since we limit
that each D2D pair can reuse the spectrum resource from at
most one cellular user, by assuming there are D D2D pairs
and C cellular users in the D2D underlaying communication
cellular network, we can simplify the network as Figure 2.

In the simplified network we establish, besides the normal
D2D communication, we only consider the effects of both the
interference of a generic D2D transmitter introduced to
others and all other interference caused to a D2D receiver.
For instance, the base station (BS) introduces intratiers
interference to the D2D receivers D2D as shown in Figure 2.
Meanwhile, due to the full frequency reuse, D2D! causes
interference to CU,. Considering the power interference
caused by the transmitter of the D2D pairs to the nearby UE,
we can give the definition that the interference introduced by
D2D transmitter d to cellular userscisI;_,., d € 9, c € G:

Id—m = gd,cpd’ (7)

where p,; denotes the transmission power of the correspond-
ing D2D pairsd, d € 9. g, . denotes the gains of the channel
between the transmitter of D2D pair d to cellular users c.
Here, the terms ¢ and g, are positive. Hence, all of the cel-
lular users are assumed in the single cell and corresponding
interference is introduced by prayer d, d € 9, where the
player d is called the generic D2D transmitter. Meanwhile,
the transmission between player ¢,c € €, and the BS also
introduces interference to D2D pair d, where we define the
intratier interference from player c to player d as follows:

Ic—»d = gc,dpc’ (8)

where g ; is the channel gain between the BS and the D2D
pairs d. p, is the transmission power of cellular user c. Here,
we assume that orthogonal channels are used for different
CUs, and we do not consider any power control policy at
the macrocell layer. In our investigation, we pay attention to
the power interference D2D transmitter introduced to the
CUs, in other words, a new power control policy for the D2D
transmitters.
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FIGURE 2: Interference model in the uplink.

2.2.2. Social Utilization. In this part, we use a visualized
social-network graph to analyze the social relationship be-
tween the mobile users and depict the social characteristic of
the network. In the virtual social network, social ties are
defined to qualitatively measure the strength of social rela-
tionship between D2D users and report the communication
demands between users. Besides, social centrality plays a very
important role in D2D data transmission; users with high
centrality are more likely to hold high capacity in terms of
data transmission volume and frequency. In that case, for
the purpose of obtaining a visualization of the social char-
acteristics existing in user’s daily activities, we adopt the
proximity social network derived from a real-world mobility
dataset—Karate club. The network contains the social data of
34 members within a Karate club, documenting 78 pairwise
links between members who interact inside or outside the
club [28]. By analyzing the realistic dataset and the inter-
action behaviors among these members, we plot the social
network formed by users visualized by the trace in Figure 3,
where the magnitude of the node indicates the centrality of
the specified user, and the label of the node indicates the
strength of the social ties of corresponding links.

In the virtual social network, active mobile users in close
relationship form certain community. In order to weigh the
influence from the social relationship between the mobile
users within the same community to our resource alloca-
tion scheme, we define the utility of social relationship by
quantifying the social characteristic. Since we suppose mobile
users in different communities have no social trust between
each other, when cellular users download some content from
the BS, cellular users belonging to the same community can
deliver the content to other interested users directly instead
of forwarding by the BS. And the amount of the content is
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FIGURE 3: Social characteristics observed from social-network trace.

determined by the social closeness between the users. The
more close social relationship the D2D users have, the more
content they will exchange with each other [29].

Based on the analysis mentioned above, the social graph
can be denoted by G, = (V, R,). V, and R, stand for the set of
all cellular users and D2D users and the set of relationships,
respectively. To be mentioned, the matrix R, demonstrates
the strength of the relationship of V; in the social network.
Generally, we use the form of matrix described as w, ,, d,r =
L,2,....,D,and &; ., d = 1,2,...,D, ¢ = 1,2,...,C. wy,
denotes the intimacy coefficient between D2D users, and &,
denotes the intimacy coefficient between the cellular users
and D2D users. According to the definition in the dataset of
Karate club, we plan to divide the closeness coeflicient into
two kinds: very close and a little close. The values of w, , and
&4, follow the set of [0,1]. For example, w;, = 0 implies
a little close intimacy between the D2D users, and w,, =
1 naturally implies a very close intimacy. As illustrated in
Figure 1, we construct a simple social network. In community
2, D2D users Jack and Alice have a very close intimacy, while
Bob and Jack are unfamiliar with each other. Inspired by the
analysis in Part A, the utility of D2D users can be represented
as follows:

Ug=log,( 1+ ) SINR; |, VdeD. (9

P s
i=G,;NG;

Approximately, the utility of cellular users can be represented
as follows:

U =log,( 1+ ) SINR; |, Vce®. (10)
i=GING;

By the way, G’ and G’ denote the physical and social
relationship of the system model mentioned above. Thus, G?
and G; denote the set of cellular users that reuse the same
frequency band of spectrum resource and maintain stable
interaction with each other. Gg and G}, denotes the D2D users
which reuse the same spectrum resource from cellular users
and maintain stable interaction with the cellular users. U,
represents the influence of the social relationship to D2D
communication and U, represents the influence of the social
relationship to cellular communication. To sum up, we can
define the social-community utility function of D2D users d
as follows:

Ug(X) = Y w,Ug+ Y &, U a1)
r,deD ceE

X denotes the correlation matrix of x_4, and, in general, the
degree of social utility enhancement involves two aspects: the
weighted sum of social utility enhancement by D2D pairs
having social connections with each other as } ..o w;, U,
and the weighted sum of utility enhancement between
familiar cellular users and D2D pairs as ) ¢ &; U.. In this
way, the element of social relationship is considered in the
investigation of resource allocation in D2D communication
underlaying cellular network.

3. Game Theory-Based Framework for
Resource Allocation

In our investigation, we tend to maximize the sum trans-
mission rate of the system. For example, if D2D transmitter
brings about higher-than-sociality interference to cellular
users, the operator would remove the D2D link. So, we model
the resource allocation issue between D2D links and cellular
links as the utility maximization game.

3.1. Problem Formulation. The resource allocation policy of
each of the D2D pairs d depends on the power interference
introduced by D2D communication and social relationships
between the mobile users. Compared to the physical relation-
ship between mobile users, the social relationship is relatively
less changeable. Thus, we need to consider the joint influence
from social enhancement and power interference to the D2D
pairs dynamically. By that, we tend to define the utility of a
D2D link as the profits which are contributed by cellular users
and D2D users using spectrum resources and D2D users
using social characteristics. In this case, the utility function
of the dth D2D links is defined as follows:

[(X)=a-R+f-Uy(X) -y -By;—e- I
(12)
U, (X) > T,

« and f3 are the charging price of unit data rate supported
by the spectrum resource and the social network. y and ¢
are the cost function of a D2D occupied resource and power



interference. With respect to y, a pricing function from (12)
is adopted, which can be expressed as follows:

y=n+s-(Byy+--+By,)", i=12....m  (13)

n,s, and 7 denote nonnegative constants and T > 1 to
guarantee that the cost function is convex. In order to
improve the applicability, we suppose

[No + gaPa,] = 53— (14)
d,i
where p is a nonnegative constant [30]; then
I (X) = a- By, log, (1+SINRy,) + - ) wy,Uy
jED
m
(15)
+ ZEd,cUc - |:I’l +s- ZBd,i] Bd,i —&- Iiau’
ce® i=1

i Uy (X) 2 1.

In the proposed problem in (15), each D2D pair is aimed
at integrating every aspect of influence and then maximizing
its own utility. As the distribution of mobile equipment is
changing all the time, the features of the network are varying
instantaneously. So, for the purpose of exact comparison, we
should implement some effective method to eliminate this
kind of dilemma.

Dynamic game with complete information can model
certain dynamic situation under the premise that the par-
ticipant knows the type of the action it will take and the
information needed for every decision of the action. It can
be applied into our proposed model as every D2D pair
can get to know the social utility and power interference
and get the real-time I;(X) when D2D communication is
in progress. So, the problem above can be regarded as a
dynamic game with complete social information as well as
sophisticated interference information. In this way, we can
propose a dynamic game based scheme to optimize the
overall performance of the D2D communication network due
to the two-sides’ competition.

3.2. UFM Game Formulation. From the analysis above, we
derive the information from two-sides’ action needed in
our game theory. And, for the optimization problem, we
usually utilize the game theory to solve it. Firstly, we define
corresponding strategy adopted by each D2D user d in a
certain point of history as ay,a; € A, where A, is the
set of all available strategies of the D2D pair d. The choice
of strategies of all the other participants, that is, all the
other D2D pairs in our work, can be defined as a_; =
{ay,....a5_1,a4,1>...>ap}. If the above assumption for the
UFM game theory is perfect, there must exist a strategy a; €
A ; to maximize its own utility function:

max T[,;(aza,), VdeD. (16)

a €A,

The UFM game for the resource allocation thinking from the
perspective of utility function is defined by quadruple ® =
{D,{A Yieos (Titdeo Uil dew ez} where D denotes the
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D2D pairs. X; denotes all of the resource allocation strategies
D2D pairs set D can take. I'; denotes the utility function of
each of the D2D pairs d, and I,;_,. denotes the interference
introduced by D2D pairs d to cellular user c.

3.3. Nash Equilibrium. Nash Equilibrium is a very important
terminology in game theory [31, 32]. It represents a set of
strategies which are combined by all optimal choices taken
by each participant which reflect the optimal reaction each
participant adopts against the other participant’s strategies.
According to this, if the choices chosen by all the D2D pairs
are optimal, the system sum rate of the D2D communication
underlaying cellular network will reach the extreme one. The
following part will discuss the existence of Nash Equilibrium
in UFM game theory and provide proof for it.

Generally, the UFM game @ = {D,{A }4e9> (I} gea>
{Iic}deo cew} can reach the Nash Equilibrium if each of the
D2D pairs has the only optimal response to the other D2D
pair’s strategy:

a; = argadm&)i L, (a_gay), VdeD a17)

and a” = {a/,a;,...,ap} denotes the Nash Equilibrium.

Because of the same incentive of changing their strategy
for all the D2D pair, we refer to the potential game theory to
demonstrate the existence of NE for the UFM game. In [33],
Monderer and Shapley propose the definition of potential
game and elaborate the idea in detail, too. In the field of
wireless resource allocation games, game theory has been
applied in a few of authors’ papers, for example, [34-36]. In
potential game theory, the change in individual player’s gain
can be mapped to the global function, which is called the
potential function. By this way, we can conclude if there is
any change that occurred on individual player, the potential
function will change equally in the strict potential game. T
denotes an exact potential function if and only if 3F(I) : I —
U, Vi, j, VI, I, U; € I,and U; € I,.

L (1,U,) - T (I, U_j) =F(I,U,)-F (Ij,U_j) . (18)

In the D2D communication system we have modeled, the
change of power interference and social utility caused by D2D
links would change the utility function of the game, which
is consistent with the principle of potential function. On the
other hand, potential game has the following inherent proper-
ties, which are described in [33]: (1) There must exist a pure-
strategy NE and a solution for it. (2) The Nash Equilibrium
corresponds to the maxima of the potential function I. (3)
Generally, the convergence to Nash Equilibrium would be
reached in finite improvement or searching path according
to sequential best-response dynamics.

For the condition of a single band frequency channel, the
potential game is formulated by utilizing the following utility-
maximizing function:

I; = — (Total utility function generated by i
(19)
+ Total utility function experienced by i).
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Based on the potential game theory, we can demonstrate
the existence of the Nash Equilibrium of our proposed UFM
game. For T for every d € & and for everya_; € A_;

P(d) =T, (a_g,a5) - Ty (a_pay). (20)

Theorem 1. In certain history point t, function P(d) derived
from UFM game is subgame perfect.

Proof. We suppose strategy a; denotes occupying the spec-
trum resource of cellular user ¢ which is taken by D2D pairs
d initially. Therefore, the initial indicator is x_;. Once D2D
pair d change its strategy and make a request for the spectrum
resource of cellular user ¢’, the indicator changes to x_ ;. Then,
we can obtain

I,-Tj=a-R+B-Uy(X)-e-I,_ . —a-R -
Uy (X)—e- T}, (21)

=a-(R-R)-e (L. - I..).

Wedenote A, = R-R'and A, =1, , - I"i_,c. As we can
see, A, > A,. Finally, we conclude that
[,-T;>0. (22)

It means that no D2D pair can acquire performance
enhancement by changing its strategy, so we prove that our
proposed game is subgame perfect. As subgame is the restric-
tion from the perspective of history circumstances, it can
lead to the Nash Equilibrium of the game directly. O

4. Resource Allocation Scheme for
UFM Game Theory

4.1. Priority Searching Based Solution. The value of the utility
function I; varies when D2D pair chooses to reuse spectrum
resource from different cellular user, and the final aim of the
UFM game is to determine the order of the utility function by
the size of value. According to analysis in Sections 3.2 and 3.3,
the resource allocation strategy a* has a Nash Equilibrium.
It means that we can finally achieve an optimal strategy by
substituting the other strategies one by one in finite times. It
is similar to the establishment of preference list and iterates
until acquiring the best selection among different alternatives
[10]. Inspired by the one-to-one matching theory, we will
show the main idea of the proposed resource allocation
algorithm in detail.

Definition 2. For any D2D pairs, we define the binary priority
relation set >; to represent the entire set of resource allocation
strategies that each D2D pair i would possibly take. In our
UFM game, D2D pairs can choose to reuse the resource
occupied by the associated cellular users or not according to
the priority set. For any D2D pairs, g; >; ai' means D2D pairs
i prefer choosing c as the target resource source instead of ¢.

Since the priority set is determined by the utility function, we
can define the priority as follows:

ai' > a; =
L (“il) > T (a;), (23)
VieD.

This definition demonstrates that D2D users i are likely
to reuse the spectrum resource of cellular users ¢ as no more
options can bring additional performance gains. We can set
the highest priority for cellular user ¢ in the set belonging to
D2D user i. By this, a complete priority set can be obtained
by repeating searching operation. For every D2D pair, we
can also design an optimization resource allocation scheme
based on the priority set. In this scheme, every D2D pair urges
finding its own highest priority and reusing the spectrum
resource shared by the corresponding cellular users.

Let us present Algorithm 1.

Based on the definitions and priority searching operation,
we can obtain a final Nash-stable resource scheme ag, for
D2D users to solve the utility maximization problem, which
is given in Algorithm 1. From the whole knowledge given
above, we can see that D2D users make switching iteration
following a logically standard based on an arbitrarily chosen
initial resource allocation strategy a;,;. At the beginning of
each iteration, D2D user i € 9 is randomly chosen by the
system in step (13). And, then, the selected D2D user replaces
its resource allocation strategy with a;,; by random choosing
a occupied cellular users and determine its strategies a; and
uniformly selects another social-trust cellular user ¢’ € %.
Then, the D2D pair will request the base station for the chan-
nel state information once establishing communication link
with these two cellular users cand ¢’. After acquiring specified
information, the BS will computes the utility function of the
resource allocation strategies of a and a’ and broadcast to
the participant of the game model. Meanwhile, making the
decision that whether to carried out the switch operation
for D2D link. If @, >; a], the switch operation will not be
executed. Otherwise, the switch operation will be executed.
The iteration will continue until all of the priority searching
operations for each D2D pair are traversed and reach a final
Nash Equilibrium scheme ag,,.

Different from those conventional D2D resource allo-
cation schemes, our proposed scheme needs to select suit-
able community detection dataset and analyze the social-
community information inside. And a priority based poten-
tial game theory is applied in our scheme. This important
information is taken into consideration in our proposed
scheme fully.

4.2. Uniqueness and Boundedness. According to Theorem 1,
for a given history point ¢, the combination of strategy a;, g; €
A, can reach a status of being subgame perfect as reaction
to the combination of strategy a_;. To prove the uniqueness
and boundedness of our proposed game, it is necessary to
confirm that if there exist any participant Vi € @ and its
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(01) Input: Number of mobile users N and random resource allocation strategy a
(02) Output: A priority based resource allocation scheme ag,,.
(03) Utilize the dataset of Karate Club network
(04) Calculate the transmission rate of the D2D links and cellular links.
(05) Obtain Uy(X) and I,_,,
(06) if Uy(X) < I_,., remove the D2D links
(07) else keep the D2D links
(08) Define the matrix of indicator x_; € [0,1]
(09) I =find x_;,#0 && I =1
(10) There is just one ¢ cellular users qualified to share
resources to D2D user, r = r_,;
(11) else if, uniformly randomly choose one cellular users ¢ and a
possible cellular users ¢', and denote its associate resource
sharing as a; € a,;
(12) Calculate I‘(ai' ) and I'(a;), priority = 0;
(13) if a] >; a;; then Priority = 1;
(14) else repeat (15)~(16);
(15) if Priority == 1; then
(16) D2D pairs quit current resource occupying strategy of ¢, and
turn to adapt the new resource allocation strategy of ¢’
(17) substitute the current resource occupying strategy a for
strategy a’, and add it to a_,
(18) Until all of the D2D pairs complete the priority searching operation, resource
occupying strategy switching operation and reach Nash Equilibrium ag,

ini*

ArcorrTHM 1: The utility function maximization D2D links redistribution algorithm.

corresponding strategy @; can give better reaction to the
strategy combination a_; than g; and make a; >; g; available.
So we provide the following proof relative to the uniqueness
and boundedness of our proposed UFM game.

Theorem 3. For all of the D2D pairs whose x.; = 1, the
proposed priority searching based scheme can only obtain a
unique resource allocation scheme ag,,.

Proof. Based on the description in Algorithm 1, we suppose
reversely that the combination of strategy a; is not subgame
perfect. And, then, there must exist certain participant 7 that
has strategy Vi € 9 and outperforms a;. Now, we investigate
another strategy @, and when t < , @, is equal to @, but, after
t,itis equal to a;. Then, in any subgame after the history point
t, strategy Vi € D is at least as well as &; for the reason that
Vi € D has deviated from a; once. We can also conclude that
strategy Vi € D is at least as well as @; after the history point
t, which is contrary to the assumption that strategy Vi € 9
improves the strategy a;. And so on, we can investigate other
@, to prove its equal benefit with Vi € 9 until reaching the
unique resource allocation scheme ag,.

Through the above analysis, we prove the uniqueness of
the UFM game by Reduction to Absurdity. In each iteration
in Algorithm 1, it may lead to a new resource allocation
strategy. As there is only € in the physical domain and
limited & D2D pairs due to the limited social relationship in
the social domain, each of the D2D pairs is corresponding
to € types of resource allocation scheme. So the priority
searching operation will eventually end in limited steps. This
fact assures the boundedness of our proposed UFM game
based scheme. O

5. Simulation Results and Discussions

In this section, we implement the simulation results from dif-
ferent perspective to verify the performance of our proposed
UFM algorithm and elaborate some necessary explanation
for the results. Main simulation parameters have been given
in Table 1. Simulations are executed in a single cell, which
are within an isolated community circumstance. Path loss
models are considered for cellular and D2D links, along with
shadow fading model. According to the dataset of Karate club,
we conduct the simulation within a 500 m x 500 m area to
guarantee most of the club member’s activities are within this
area, and 34 members of the club are randomly distributed
within the BS coverage area. Meanwhile, the bandwidth of
allocated resource is assigned arbitrarily within the range
limitation. We compare our proposed UFM algorithm with
the following resource allocation schemes: (a) distributed
resource allocation (DRA), which allocates the D2D com-
munication resource by thinking in a distributed way [37],
and (b) optimal social-community aware resource allocation
(OSRA), which allocates the D2D communication resource
to reduce the total transmission time [38]. All the results are
averaged over 10 times’ trial.

Without loss of generality, on one hand, we prescribe
the pathloss model between the base station and all the
mobile users as COST (European Cooperation in Science and
Technology) 231 Hata model [39].

PLoy = 36.7 + 35 x g (d) . (24)

Meanwhile, we prescribe the pathloss model between
different cellular users and D2D users as Xia model [40],
given as follows:
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TABLE 1: System simulated parameters in the performance evalua-
tion.

Parameter Value
Coverage radius of BS 500 m
Distance of D2D 20 m~50 m
Noise figure 9 dB at device
Transmission power BS: 46 dBm; device: 23 dBm
Maximum D2D transmitter power 23dBm
Range of bandwidth 10 MHz~20 MHz
Communication demand 50 W
Interference threshold 56%x10°W
ns,z,T 1
a, 20

66.5+40 xlog(d), d>50

PL = (25)
100.7 + 20 x1g (d), d < 50.

Since we assume the inner distance of D2D pair remains
in close standards and relatively close, the free space model
can be given by

PL =384+20x1g(d). (26)

Moreover, we consider the case of fast fading model for
Rayleigh fading. In different situation, we adopt a different
fading model to investigate. In this way, the evaluation of the
average performance is objective. We also set a great number
of criterions for our simulation: the maximum power state of
D2D users is set at 23 dBm, and the maximum interference
which mobile users can tolerate is assumed to be 5.0 x 107°.
Before investigating the system performance based on our
proposed UFM game, we tend to show the joint influence
of the power interference caused by spectrum sharing and
social characteristics in each social community illustrated in
Figure 4.

In this section, we analyze the sum power interference
and sum social utility, respectively, as the number of cellular
users varies. The case of 10 cellular users means the situation
of system whose spectrum resource is in short supply. In
this situation, D2D users possibly have to share the spectrum
resource of the same users, while the case of 30 cellular users
means D2D pairs have many resource-occupying choices.
The results indicate that the sum power interference decreases
with the trend of the number of cellular users increasing as
the sum social utility stay in quite a stable level. And when
the number of cellular users in the system exceeds 18, the
influence from social utility will surpass the influence from
power interference. And then we evaluate the system sum rate
and sum time with different number of cellular users using
the proposed UFM algorithm and the other two advanced
schemes which is illustrated in Figures 5 and 6.

Figure 5 compares the sum rate of the three algorithms
under the isolated scenarios, in which we set the number of
cellular users varied in the range of [10, 30]. From Figure 5,
we observe that, by removing some interference-intolerable
D2D links, significant performance enhancement can be

140
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10 12 14 16 18 20 22 24 26 28
Number of cellular users

—v— Social utility
—=— Power interference

FIGURE 4: Comparison of the joint interference.
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FIGURE 5: Transmission rate comparison of different resource alloca-
tion algorithms with different number of cellular users.

achieved when the cellular users are relatively sufficient.
But, in the situation that cellular users are not sufficient,
performances of the two are roughly equal. The reason is that
the excessive reuse relationships of frequency with the same
cellular user will cause unbearable interference to the cellular
users. According to our algorithm, the D2D link will be
removed automatically in both schemes.

Figure 6 compares the sum transmission time of the three
algorithms under the isolated scenarios. From Figure 6, we
can observe that, in the case that some unnecessary D2D links
has been removed, the UFM algorithm still provides quite a
considerable reduction of transmission time. That is, because
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FIGURE 6: Transmission time comparison of different resource allo-
cation algorithms with different number of cellular users.

we allow D2D users to continue to acquire content via cellular
communication when D2D communication comes across
link interruption. So, the sum transmission time will not be
affected greatly.

For the purpose of evaluating the system performance
while the number of D2D users varies within a certain
range, we set geographical scope as 300 m x 300 m around
the BS and suppose the number of cellular users is 10. As
illustrated in Figures 7 and 8, the variation range of number
of D2D pairs is [5, 30]; the result demonstrates that our
proposed UFM game always attains the best performance
with the increase of D2D users, compared to the OSRA
and DRA. This is because, in the algorithm of DRA or
OSRA, there exist little coordination measures to restrict
D2D pairs to select their resource and it is inevitable to
establish some high-interference links between D2D pairs
and cellular users. In our proposed algorithm, UFM game
effectively coordinates both social relationship and power
interference and then decides whether to access the spectrum
resource of certain cellular users, not in a random way. In
these circumstances, we can avoid many high-risk links and
attain a better system performance in terms of the evaluation
of the sum transmission rate. At this point, we can summarize
that our proposed scheme precedes the other two schemes in
a relatively comprehensive scale.

6. Conclusion and Future Work

This paper studies game-theory based social-aware resource
allocation in the D2D communication underlaying cellular
network based on the realistic social network. By considering
the power interference and social utility in the physical and
social domain, respectively, a game-theoretic based utility
function maximization scheme has been proposed. Also, to
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FIGURE 7: Transmission rate comparison of different resource alloca-
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FIGURE 8: Transmission time comparison of different resource allo-
cation algorithms with different number of D2D pairs.

demonstrate the optimality of our proposed scheme, this
paper provides evidence for the existence of Nash Equilib-
rium theoretically. Meanwhile, a priority searching operation
based resource allocation scheme is designed to implement
the Nash Equilibrium of the proposed UFM game. The pro-
posed UFM scheme is numerically shown having superiority
over traditional DRA and OSRA scheme: the performances
of sum rate and total transmission time are better than
the OSRA and DRA algorithm through massive simulation



Wireless Communications and Mobile Computing

result, suggesting that the proposed scheme is more ideal for
joint social-aware resource scenarios considering the social
characteristics. Nevertheless, some issues related to further
system optimization remain to be addressed, such as power
allocation of mobile nodes and cluster formation of social
community.

Notations

N Set of mobile users
G- Set of cellular users
: Set of D2D pairs

® The UFM game

>

Set of utility priority
I, ... Interference from dth D2D to cth cellular signal
I._,;; Interference from cth cellular signal to dth D2D

U,(X): Social utility of dth D2D pairs

: Utility function of dth D2D pairs

x.4:  Indicator of resource reusing relations
xy:  The Nash Equilibrium of dth D2D pair
X4 Setof all feasible strategies in UFM game.
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