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Field programmable logic devices have traditionally been
used as vehicles for prototyping and implementing digital
circuits; but beyond this use, continued improvements in
device density and functionality have made the technology
a mainstream one for implementing large systems and
accelerators for specific applications.

Field-programmable gate array (FPGA) is one of the
most well-known commercial names of programmable logic.
The FPGA technology, marketed in 1984 by a startup
company called Xilinx, allowed designers to build complex
circuits with virtually zero setup costs, enabling the devel-
opment of the small-scale products common to most Latin
American technological companies.

Nowadays, after more than two decades of progress,
programmable logic has become the key technology in digital
systems design. Not only FPGAs are now capable of imple-
menting multimillion gate systems working at hundreds
of megahertz but also the design costs of custom ASICs
have soared to levels where only million-unit projects are
profitable, keeping them out of the reach of most companies.

Applications of FPGAs include almost every application
that needs a fast electronic system including digital signal
processing (DSP) applications, ASIC prototyping, medical
imaging, computer vision, speech recognition, cryptography,
bioinformatics, aerospace and defence systems, computer
hardware emulation, as well as a growing range of other
areas.

FPGAs market and applications growing are reflected
also in the variety of programmable logic conferences around
the world and the number of papers published by the

research community.

The Southern Conference on Programmable Logic (SPL,
www.splconf.org) is the austral meeting point for research
interested in FPGA technology. It started in 2005 as a
cooperation project between Spain and Latin America called
SURLABS. The project “SURLABs: Joint Latin American
FPGA Laboratories” was financed by the Banco Santander
Central Hispano. The interest and rapid growth of the
conference, since SPL 2007, has been giving the IEEE Circuit
and Systems Society (CAS) a technical cosponsorship.

More than 95 papers were submitted to the last IV SPL
conference. The 29 selected papers and the 23 short papers
presented at the IV SPL were authored by researchers from
Argentina, Australia, Belgium, Brazil, Canada, Colombia,
France, Germany, Hong Kong, Iran, Italy, México, Peru,
Romania, Spain, Taiwan, UK, Uruguay, and USA. These
high technical quality works cover aspects of FPGA-based
system design like custom DSPs, computer arithmetic,
cryptography, control systems, instrumentation, video pro-
cessing, embedded processors, test, fault tolerance, low-
power design, high-level languages, and education. More
than 100 researches and student attend this conference.

The selection of articles presented in this special issue
is from the SPL2008 (IV Southern Conference on Pro-
grammable Logic) held in Bariloche, Argentina, during
March 26-28, 2008. Thirty relevant researches help us in the
review process to select the final 6 contributions covering
topics of high-level languages, wireless sensor network,
configurable architectures, signal processing, and arithmetic
units.

The editors of this special issue on programmable
logic and applications hope that this edition constitutes
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a contribution of FPGA design, being valuable for electronic
engineers and designers.

Gustavo Sutter
Richard Katz
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This paper discusses a pair of synthesis algorithms that optimise a SystemC design to minimise area when targeting FPGAs. Each
can significantly improve the synthesis of a high-level language construct, thus allowing a designer to concentrate more on an
algorithm description and less on hardware-specific implementation details. The first algorithm is a source-level transformation
implementing function exlining—where a separate block of hardware implements a function and is shared between multiple
calls to the function. The second is a novel algorithm for mapping arrays to memories which involves assigning array accesses to
memory ports such that no port is ever accessed more than once in a clock cycle. This algorithm assigns accesses to read/write
only ports and read-write ports concurrently, solving the assignment problem more efficiently for a wider range of memories
compared to existing methods. Both optimisations operate on a high-level program representation and have been implemented in
a commercial SystemC compiler. Experiments show that in suitable circumstances these techniques result in significant reductions
in logic utilisation for FPGAs.
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1. Introduction

Hardware compilation translates a program written in a
high-level language into a description of a hardware circuit.
The ultimate aim is to take software code and produce an
efficient digital system design. SystemC [1] is a language
designed for this purpose, allowing modelling of hardware
in C++ syntax. This capability allows a designer to work at
a higher level of abstraction compared to RTL design. Fur-
thermore, SystemC offers faster simulation, enabling rapid
prototyping, and effective design exploration [2]. These
benefits can result in a significant boost in productivity.
SystemC was originally designed as a modelling language but
there are now several hardware compilers for this language,
one of which being the agility compiler [3].

This paper focusses on methods for area optimisation
in hardware compilation. For ASICs, this can significantly
reduce the chip area and thus the production costs involved.
For FPGAs, improving logic usage may be a necessity, given
that these devices have limited resources. There are a variety

of ways to improve the logic usage of a design. Most of
these are optimisation techniques that are known for a long
time, well understood, and described in, for example, [4].
These techniques are part of the domain of logic synthesis
and are performed on a gate-level description. At this level,
they can be applied to both RTL synthesis and hardware
compilation. This paper investigates two area optimisation
methods that are specific to hardware compilation and are
performed on a high-level program representation such
as an abstract syntax tree or a control and data flow
graph, rather than on a gate-level description. The first
method implements function exlining, which is the task of
mapping a function to a dedicated piece of hardware that
is shared between calls. Our method implements exlining
as a source-level transformation that can be supported in
existing compiler frameworks with relatively little effort. The
second optimisation technique automatically maps arrays in
SystemC to multiport memories in hardware. This involves a
novel procedure for automatically assigning concurrent array
accesses to memory ports whilst avoiding resource conflicts.



Both optimisations have been implemented in the agility
compiler, which is discussed in Section 2. Sections 3 and
4 describe the two optimisation methods and their imple-
mentations and demonstrate their benefits in minimising
logic utilisation for FPGAs. Section 5 summarises the main
findings of this study. Finally, Section 6 discusses the current
limitations of the two implementations and explores possible
avenues for future research.

2. Agility SystemC Compiler

The agility compiler [3] is a commercial hardware compiler
intended for the compilation of a SystemC program to
a hardware description. It provides facilities for creation,
compilation and synthesis of a large subset of the SystemC
language. In addition to support for an extensive range of
input language constructs, the compiler back end can target a
wide range of architecture-specific functionality for a variety
of technologies, enabling efficient synthesis. Agility is a timed
synthesis tool, accepting designs composed either of SystemC
threads punctuated by wait statements, or fully synchronous
or fully asynchronous SystemC methods. As a result, the cycle
timing of synthesised output exactly matches that of an input
design, significantly aiding functional verification.

2.1. Language Support

The agility compiler language support is extensive, including
all of the synthesisable subset defined by the Open SystemC
Initiative (OSCI) Synthesis Working Group [5]. This includes
most C++ constructs, such as

(i) conditional statements — if, switch;
(ii) loop statements — while, do ... while, for;

(iii) control flow — break, continue, return.

In addition, agility supports C++ templates for generic pro-
gramming in SystemC as well as object-oriented constructs
such as (abstract) classes, inheritance, and polymorphism.
Exceptions, dynamic (run-time) recursion, and dynamic
pointer synthesis (including dynamic dispatch of virtual
functions) are not supported, as their synthesis is either
impossible on many devices (dynamic recursion) or would
result in very inefficient hardware.

2.2. Synthesis

The agility compiler allows a designer to compile SystemC
source code and produce different output formats: EDIF,
VHDL, and Verilog. Figure 1 shows this design flow. When
targeting FPGAs, agility can directly produce an EDIF netlist
for Xilinx and Altera architectures. The EDIF is optimised
and technology mapped and can be passed directly to the
vendor’s place and route tools. Alternatively, agility can
produce RTL VHDL or Verilog for use with a third-party RTL
synthesis or simulation tool.
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2.3. Verification Support

In addition to the aforementioned synthesis outputs, the
compiler also supports the output of RTL SystemC for
verification purposes. This output has exactly the same
external interface as the synthesised input design, allowing
the input design’s test bench to be reused for functional
verification. In addition, by design, this SystemC output is
structurally identical to the RTL VHDL and Verilog output,
allowing functional verification of the HDL output without
requiring the use of an HDL simulator.

After synthesis through agility and then through target-
specific place and route tools, final timing-level verification
of fully synthesised designs can be achieved. This can be
accomplished using the original SystemC test bench, a timing
back-annotation of the HDL output and one of the several
available mixed-language cycle-accurate simulators such as
Aldec’s Active-HDL [6] or Mentor Graphics’s ModelSim [7].

3. Function Call Optimisation

Functions are commonly used in SystemC to divide a
system up into tasks. Traditionally there are two methods
for handling function calls in hardware compilation. One
method, inlining, replaces each function call with the body
of the function. Another method builds a single-hardware
module for the function, which is subsequently shared
between calls. This is called function exlining. Function
exlining can potentially improve logic usage by reuse of the
hardware associated with the function.

Function exlining has been implemented in several
hardware compilers, such as [8, 9]. For these tools however,
there is no description of how this optimisation is performed.
This paper investigates the benefits of function exlining in
hardware and describes a method for implementing this
optimisation in SystemC compilation. It is shown that exlin-
ing can be adequately described in SystemC with the addition
of asynchronous channels. This approach makes it possible
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to implement the method as a source transformation in
existing compiler frameworks with relatively little effort. A
further benefit of this method is that it allows arguments to
be passed by value as well as by reference without relying
on run-time pointer resolution, a feature not supported by
many hardware compilers.

The effects of function exlining on the efficiency of the
produced hardware are discussed in the next section. Then
in Section 3.2, the mentioned method for function exlining
in SystemC is explained. Finally, Section 3.3 presents results
that demonstrate function exlining in the agility compiler for
various SystemC programs.

3.1. Function Calls in Hardware

This section describes function inlining and exlining in
hardware compilation and the effect that these methods have
on the size and speed of hardware designs. The benefits
of function exlining are discussed, as well as the design
restrictions that apply when using this function call method.

3.1.1. Inlining Versus Exlining

In software, a call to a function causes execution to jump
to a new part of the code. Assuming the typical execution
environment for a C++ program with registers and a stack,
the registers and parameters get written to the stack just
before the function call, then the parameters get read from
the stack inside the function and read again to restore the
registers when the function returns. These operations can
add a significant time overhead, in particular for functions
that take little time to execute. An inline function call
is expanded without causing a function call. That is, the
compiler inserts the complete body of the function in every
context where that function is used. Inline expansion is
typically used to eliminate the transfer of control overhead
that occurs in calling a function. However, because inline
calls are replaced with a copy of the function body, they can
result in a significant increase in code size.

The notion of inline and exline functions applies sim-
ilarly to hardware compilation. Here, exline functions are
synthesised to separate modules that are shared between
calls. Alternatively, inlining replaces function calls with the
bodies of the called functions. Figure 2 shows a SystemC
thread calling two functions f and g that have been defined
elsewhere. Each wait statement represents the end of a clock
cycle, except for the first wait, which marks the end of the
reset cycle.

Function £ has a single adder and a single multiplier in
its datapath and has two states. States essentially correspond
to wait statements in SystemC and their number largely
determines how large the control logic for this function is
in hardware. Function g is larger, both in terms of datapath
logic and number of states.

Figure 3(a) describes the structure of the hardware
synthesised from this program by exlining £ and g. In
this case, one hardware module is synthesised from one
function. Therefore, only a single module is synthesised
from function f despite having been called twice. After

inlining, however, the function accessor will contain multiple
instances of the function and the resulting hardware is larger.
This is illustrated in Figure 3(b), which shows the hardware
structure that is generated by inlining calls to £ and g.
From this example, it follows that function exlining results
in smaller logic compared to inlining as hardware is being
shared. However, this view is not the whole picture and
there are other factors involved that affect the results when
exlining.

(1) Exlined Functions Require Additional
Multiplexers

If arguments are passed to an exlined function, and the
function is called multiple times, multiplexers must be
created in hardware to switch between arguments from
different calls. The logic depth of these multiplexers and
thus the delay through them increase with the number of
function calls and so do their sizes. Function exlining can
therefore potentially decrease the maximum frequency fiax
of a design, if these multiplexers are in the critical path.
Furthermore, the size of multiplexers can be significant,
in particular, for FPGAs where they are implemented in
general-purpose lookup tables [10]. If the function that is
exlined is small, this means that the overhead of multiplexers
could outweigh the benefits of exlining the function.

(2) Function Exlining May Hinder Resource Sharing

Resource sharing is an optimisation that automatically shares
hardware resources between arithmetic operations in a
program and is performed by many hardware compilers.
Resource sharing is generally only performed on resources
within the same module and those in different modules can-
not be shared due to the difficulty of determining exclusive
access to a resource from multiple threads of execution. This
means that the hardware produced by function inlining,
in which all hardware resources associated with functions
become part of the same module, is more suited to resource
sharing than exlining, in which a separate module is pro-
duced for each function. As a result, the size of the data path
after exlining functions may be larger than the size after inlin-
ing [11]. Similarly, memory port sharing, as described in the
second part of this paper, may also be hindered by function
exlining.

When making the decision on whether to inline or exline
calls to a function, it is therefore necessary to balance the
circuit area saved by exlining against the added overhead
associated with exlining.

3.1.2. Restrictions of Exlined Functions

The SystemC standard [1] does not specify when function
calls should be inlined or exlined. In C++, functions
are shared or exlined by default. By analogy, one could
assume that exlining is a suitable default implementation of
functions in SystemC. However, exlined functions are more
restrictive in their use than inlined functions.
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FIGURE 3: Function call methods in hardware. (a) Function exlining. (b) Function inlining.

(1) A Single Instance of an Exlined Functions
Cannot Be Called in Parallel

Exlined functions cannot be called simultaneously from
different threads as there is only one instance of each
function to perform the task. Inlined functions do not have
this restriction, as function instances are not shared in this
case.

(2) Exlined Functions Cannot Be Called Recursively

Exlined functions cannot be called recursively as there is
no stack in hardware. Functions labelled as inline can be
called recursively without the use of a stack by means of
recursive instantiation of the function, provided that the
maximum recursion depth can be determined at compile
time.

(3) Calls to a Particular Exlined Function Must Be
in the Same Clock Domain

An exlined function must be in the same clock domain as its
callers to avoid cross-clock domain synchronisation issues.
Resynchronisation logic that is commonly used to resolve
such issues would break SystemC timing semantics. Exlined
functions can not therefore be called from multiple clock
domains.

Despite these restrictions, exline functions are useful in
hardware. They can greatly reduce the hardware size by
sharing resources between calls. Unlike automatic resource
sharing, exline functions allow sharing resources between
threads and allow sharing of control path as well as data
path logic. A hardware compiler will therefore benefit from
supporting exlining as a method for synthesising function
calls.
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int £f( int x )
{
// function body

}

class Module : public sc.module
{
sc_in < bool > clock;
sc_in < int > inputl, input2;
sc_out < int > result;

void thread()

{
wait (); // end of reset cycle
result = f( inputl ); // inlined calll
wait ();
result = f( input2); // inlined call 2
wait ();
}
Module(sc_module name name) : sc_module(name)
{
SC_CTHREAD( thread, clock.pos() );
}

b

LisTING 1: SystemC program with function calls.

3.2. Synthesising Function Calls

This section describes a method for exlining function calls
in SystemC synthesis. It explains how function exlining can
be modelled in the SystemC language and how it has been
implemented in the agility compiler.

3.2.1. Exlining in SystemC

In order to synthesise exline functions, it is useful to
manually describe exlining in SystemC. This way, it can be
evaluated and tested before implementation in a compiler.
Furthermore, if function exlining can be modelled in
SystemC, it can be conveniently implemented as a source
transformation in a hardware compiler, rather than treating
function exlining as a special case requiring significant
additional functionality. To manually exline a function in
SystemC, the following steps can be taken.

(1) The body of the function is moved to a newly created
thread, inside an infinite loop.

(2) Handshaking is added between the function calls and
the new thread to signal the start and end of function
execution.

(3) Communication channels are added between the
function calls and the new thread to transfer argu-
ments and return value.

Step (1) is straightforward and involves creating a new
thread that runs on the same clock as the calling thread or

class Module : public sc_module
{
sc_in < bool > clock;
sc_in < int > inputl, input2;
sc_out < int > result;

// handshaking

sc_async_signal < bool > start, done;

// argument and return value
sc_async_signal < int > arg_chan, rtn_chan;
void thread()

{

wait (); // end of reset cycle

// exlined call 1:
arg_chan.write( inputl );
start.write( true); // start execution
while( !/done.read()) {wait();}

result = rtn_chan.read(); // recv return value

// send argument

wait (); // end of clock cycle

// exlined call 2:
arg_chan.write( input?2 );
start.write( true ); // start execution
while( !/done.read()) { wait();}

result = rtn_chan.read();// recv return value

// send argument

wait ();

}

// end of clock cycle

// newly created thread for function f
void f_thread()

{
wait (); // end of reset cycle
while (1)
{
while( !start.read()) {wait();}
intarg = arg_chanread();// recv argument
int rtn = f( arg ); // inlined call to f
rtn_chanwrite( rtn ); // send return value
done.write( true ); // end execution
}
}

Module(sc_module name name) : sc_module(name)
{
SC_CTHREAD( thread, clock.pos() );
SC_CTHREAD( f_thread, clock.pos() );
}
b5

L1sTING 2: SystemC program modelling function exlining.

accessor. Steps (2) and (3) require asynchronous commu-
nication between two clocked threads for which SystemC
has no facilities. To communicate between threads, SystemC
uses synchronous sc_signal channels that introduce a
clock cycle latency. This means that if they were used for
exlined function calls, there would be an overhead of several
clock cycles in calling a function. While this is perhaps



void f( int * x, int * y )
{

(kx) ++;

Cky) ==
}

void thread()
{

intx = 1; //initialise x

wait (); // end of reset cycle

£ &x, &x);
wait ();

// x remains unchanged

output = x;
wait ();

// output = 1

L1sTING 3: SystemC program illustrating pointer aliasing.

int f( int arg)
{
// function body

}

ag-share routine( f ); // exline all calls to £

LisTING 4: Agility directive for exlining a function.

acceptable in untimed synthesis, it would break the timing
semantics of SystemC in which only wait statements take
clock cycles. For the purpose of exlining, a new channel type
is therefore introduced, called sc_async_signal. A channel
of this type has the same interface as sc_signal, but imple-
ments asynchronous communication between synchronous
threads. This channel type is used both for handshaking and
transferring arguments.

3.2.2. Example

Listing 1 shows a SystemC program with two (inlined) calls
to a function £.

In order to exline calls to f, a new thread f_thread is
created, as shown in Listing 2. Two asynchronous channels,
start and done, are introduced to signal the start and end of
function execution. Two additional channels, arg_chan and
rtn_chan, transfer argument and return value between the
callers and the function.

The result is that only one instance of function f
is created, rather than the two instances in the original
program.

International Journal of Reconfigurable Computing

3.2.3. Passing Arguments by Reference

Function arguments in SystemC can be passed either by
value or by reference. If an argument is passed by reference,
a pointer to the argument is passed to the function. This
pointer may then be derefenced inside the function which
allows the argument to be modified. If the function is
exlined, it can be accessed by multiple callers and pointers to
arguments that need to be resolved during execution inside
the function. This feature relies on a hardware compiler
being able to synthesise pointers. Although pointer synthesis
is possible, it tends towards producing inefficient hardware
in terms of area and speed and at the same time offers little
modelling benefit in the absence of dynamic memory allo-
cation [12]. For this reason, not many hardware compilers
support this feature, including agility. As a consequence,
it would not be possible to modify arguments within a
function.

Fortunately it turns out that if the value of a pointer
argument is known at compile time for every caller of an
exline function, then the call-by-reference can be replaced by
a call-by-value without the need for pointers in hardware.
This is achieved by dereferencing the pointer at the point
of call rather than inside the function, and passing the
result over an asynchronous channel to the function. The
function receives this value and may modify it. After the
function finishes execution, the modified value is sent back
to the caller on a second, different channel and the call
finishes.

Although this method allows arguments to be modified
inside an exlined function, it has some limitations as well.
By sending arguments over a channel rather than passing
them by reference, the function will operate on a copy of
the argument rather than the original. This requires that
the argument must be of a copyable type that can be sent
over a channel. Furthermore, the copy requires extra storage
in the function and potentially increases sequential logic.
Fortunately, this usually does not lead to an overall increase
in logic area in FPGAs, except for register-rich designs such
as those containing large register files.

Another potential issue arises when several arguments
are passed by reference to a SystemC function where two
or more pointers refer to the same object. In this case,
changing one of the arguments inside the function may have
an indirect effect on another argument. This effect is called
pointer aliasing and is illustrated in Listing 3.

In this example, two pointers are passed to f that
both point at the same integer x. The result is that x
will first be incremented and then decremented and the
effect is that x remains unchanged. When function f is
exlined using the method described in this section, then
x is sent on two different channels and the function will
operate on two distinct copies of x. This would remove any
pointer aliasing and cause a mismatch in behaviour between
SystemC and hardware implementation: depending on the
order in which channel communication happens, x will
either be incremented or decremented. Fortunately, given the
restriction that pointers must be resolved at compile time,
pointer aliasing can be detected by the compiler.
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int f( int arg )
{
// function body

}

int £1( int arg)

{ return f( arg ); // create instance of f
}

int £2( int arg )

{ return f( arg ); // create instance of f
}

ag-share_routine( f1); // exline all calls to f1
ag-share_routine( £2 ); // exline all calls to f2

LISTING 5: Creating multiple shared instances of a function.

3.2.4. Function Calls in Agility

Early versions of Agility only supported inlining as a method
for synthesising function calls. In order to achieve better
synthesis results, function exlining was added based on
the method described in this section. Together with the
addition of asynchronous channels to Agility, the method
was implemented as a source-to-source transformation on
the abstract syntax tree (AST), the compiler’s internal
representation of a SystemC program.

The obvious way to control function call expansion
in Agility is to use the inline keyword and other C++
rules set out in [13]. This approach however has several
disadvantages. Firstly, it would change the behaviour of
existing designs that rely on functions being inlined rather
than exlined. Exlining function calls that were previously
inlined would not only affect the hardware that is produced,
but would potentially break the design due to the restrictions
of exline functions that were mentioned in Section 3.1.2.
Furthermore, the rules for inlining in C++ are not strict and
merely hint to the compiler that inlining is preferred. This
would not provide many users the control they desire. For
these reasons, a new synthesis directive, ag_share_routine,
was added to Agility to exline a function and automatically
perform the described source-to-source transformation.
This directive takes the function to be exlined, which is
illustrated in Listing 4.

In this example, all calls to function f are exlined
and a single instance is created in hardware. In order to
decrease multiplexer depth and improve clock frequency, it
is sometimes beneficial to map a function to multiple shared
instances instead. This can be achieved in Agility by creating
several exline functions for each call £ as is illustrated in
Listing 5.

In this example, if f is always called via £1 or £2, no more
than two shared instances of f are created in hardware.

3.3. Results

Experiments were performed to demonstrate the effect of
function exlining and inlining on the efficiency of hardware
produced by Agility. For this purpose, three designs in
SystemC were used: an inverse discrete cosine transform
(IDCT), calculating the determinant of a 3 X 3 matrix (DET),
and multiplying two 3 X 3 matrices (MULT). These designs
all contain a function that is called multiple times and can be
exlined. Each design was compiled to EDIF and implemented
on an Xilinx Virtex-4 device in two versions: one inlining
and another exlining the function. Post-implementation
simulations were performed to verify that both versions are
equivalent. Table 1 shows the number of slices and maximum
clock frequency fmax for each design for the two function call
methods as reported by the Xilinx tools. For each design, the
table also lists the size of the function that is exlined as well
as the number of calls to this function and the number of
arguments. All arguments are 32-bit wide.

From these results, it follows that function exlining
reduces the size of all designs, in particular those containing a
large function such as MULT. For smaller functions and those
with many arguments, the overhead of multiplexers that are
created to switch between arguments from different calls
becomes noticable. This is true for the IDCT example, where
exlining only has marginal effect. The same multiplexers also
add to the logic delay and can reduce fmax if they become
part of the critical path. This is the case for DET and MULT,
where the the maximum frequency is significantly reduced
by exlining.

4. Array Optimisation

The array is a commonly used data structure in SystemC
and can be mapped in different ways to hardware. Normally,
arrays are mapped to register files. This implementation
matches the behaviour of arrays in SystemC, but is not
very efficient in terms of performance and logic area. ASIC
libraries generally include efficient RAM components and
modern FPGAs typically contain a large number of RAM
blocks which can be used to implement arrays instead.
Memories have a limited number of ports, and part of
the process of mapping arrays to memories is assigning
each memory access to a port such that contention is
prevented. Many RTL synthesis tools can infer RAMs from
arrays, but they require that the designer assigns access
to ports manually. High-level languages do not offer this
kind of control and a hardware compiler must therefore
be able to automatically assign each array access to a
memory port such that no port is accessed multiple times in
parallel.

The problem of automatically assigning memory accesses
to ports has received little attention by itself. The reason is
that this problem has traditionally been solved using general
resource sharing methods such as described in [14]. As we
shall show, these methods cannot be used for all types of
memories and thus a different approach must be taken. This
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TaBLE 1: Comparison between function call methods for various designs targeting an XC4VLX40 FPGA.

Example Func size (slices) Calls Args Method Size (slices) fmax (MHz)

IDCT 1,008 ) 9 1nl%ne 6,213 69
exline 6,165 69

DET 541 3 4 inline 2,418 74
exline 1,715 61

MULT 2,424 3 3 1n1%ne 7,218 78
exline 2,747 64

paper proposes an algorithm to solve this problem. The

algorithm has been implemented in the agility compiler. 0 I = i 2 n-1

The effects of mapping arrays in SystemC to memories Address

in hardware are discussed in the next section. Then in
Section 4.2, existing research in this field is examined. Our
proposed method for assigning array accesses to memory
ports is discussed in Section 4.3. Finally, Section 4.4 presents
results that show the benefits of using this method in
minimising logic utilisation for FPGAs.

4.1. Arrays in Hardware

In C++, an array is represented by a continuous memory
segment containing all array elements in a representation
corresponding to their type. By analogy, one could assume
that a memory is a suitable hardware implementation
of an array in SystemC, both being multi-dimensional
representations of bits. However, arrays in SystemC have
different semantics from memories.

(1) SystemC Arrays Offer Parallel Access to Elements

In SystemC, a design can access multiple array elements in
the same clock cycle and there are no restrictions to the
number of parallel accesses. A memory on the other hand has
a limited number of ports which means that only a limited
number of simultaneous accesses is allowed.

(2) SystemC Arrays are Accessed in One Cycle

In timed SystemC threads, only wait statements take clock
cycles and nothing else. An array access must therefore
finish within one cycle. Many architectures however support
synchronous memories, where a read operation is controlled
by the system clock and takes two cycles: one to setup the
address and one to read the data. To match the SystemC
timing semantics, memory accesses could be pipelined in an
attempt to establish the address one cycle ahead. However,
this is only possible in certain program contexts.

(3) SystemC Arrays Have Write-Before-Read
Semantics

In SystemC, when an array write is followed by an array
read in the same cycle from the same address, the value that
is read is the value that has just been written in the same

X —>

decoder J, \l/

N2
y

FIGURE 4: Array read access in hardware.

cycle. In hardware, many multi-port memories have read-
before-write behaviour, which means that a value that is
written does not become available until the next clock cycle.
Consequently, any value that is read has always been written
in an earlier cycle. This behaviour can cause a mismatch
between SystemC model and implementation.

Because of the difference in behaviour between arrays in
SystemC and memories in hardware, not all arrays can be
implemented in memory. For this reason, Agility implements
an array as a register file by default, consisting of registers and
combinational logic. This implementation however may use
considerable logic resources. This is illustrated in Figure 4,
showing the hardware that is built for a read operation
y = Array[x] from a register array with n elements. Each
array element requires a register in hardware. An address
decoder translates address x into a bit vector which controls
the output multiplexer. This multiplexer selects the output of
the particular element that is indexed by x. If an array is read
several times, several address decoders and multiplexers are
required.

Figure 5 shows the hardware that is built for a write
operation Array[x] = y to a register array with n elements.
In this case, the output lines of the address decoder are
connected to the write enables of the registers to select which
element to write to. If an array is written to multiple times,
multiplexers are required on the inputs of the registers to
select which data to write.

With more complex systems being developed onFPGA
platforms, the need for storage in these devices is increasing.
Thus modern FPGAs contain a large amount of on-chip
memory. This memory can be targeted automatically from
arrays in a SystemC program. Mapping arrays to memory
rather than general purpose logic can significantly reduce the
logic usage of a design.
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FIGURE 5: Array write access in hardware.

4.2. Related Research

The problem of synthesising memories from arrays has
received attention in the past, though most of this research
has focussed on efficient mapping of arrays to physical
memory blocks [15, 16]. The problem of assigning memory
accesses to ports has not been investigated by itself. The rea-
son is that memory accesses are treated as normal data path
operations and are covered by general sharing methods such
as described in [14, 17]. In these methods, a compatibility
graph is built where two operations are compatible when
they can be assigned to the same resource, independent of
the type of resource. This is not always the case for memory
accesses. For example, suppose a particular memory has
one read only port and one read-write port. Whilst read
operations can use either port, write operations can only be
assigned to the read-write port. The compatibility between a
read access and a write access thus depends on which port
the read access will be assigned to. Consequently, a global
clique partitioning algorithm operating on a compatibility
graph cannot be applied to solve this problem.

Assigning array accesses to memory ports can also
be performed using a constructive approach, in which
operations are assigned to functional units in a step-by-step
fashion [18]. For each memory access, such an algorithm
attempts to find a memory port that is capable of executing
the read or write operation and that has not been assigned
yet in the current clock cycle. In the case where there are
two or more memory ports that meet these conditions, the
one which results in minimum multiplexer depth is chosen.
Whilst this method is simple, it is based on local information
only and therefore often leads to suboptimal results. This is
true particularly in the presence of exclusive branches, where
an efficient assignment of accesses in one branch depends on
the accesses present in the other branches.

Another paper that addresses the problem of assigning
operations to functional units is [19]. This method builds,
for each clock cycle, a bipartite graph containing the
operations that are executed in this cycle together with
functional units that the operations can be assigned to. All
edges in the graph run between operations and functional
units and specify whether an operation can be performed
on a certain unit. As with clique partitioning, weights can be
associated with these edges, representing the costs associated
with particular assignments. The problem of assigning each
operation to a unique functional unit, such that the sum
of all edge weights is minimal, is called weighted bipartite
matching.

The bipartite graph does not contain information regard-
ing compatibility between operations and it is therefore not
possible to assign operations that are executed in mutually
exclusive branches to the same functional unit. To overcome
this limitation, the method proposed in this paper uses
a transformed bipartite graph which, instead of nodes
representing operations, contains nodes representing sets of
operations that are executed in mutually exclusive branches.
Each of these sets can then be assigned to functional units
using weighted bipartite matching. To build this type of
bipartite graph for assigning memory accesses, the algorithm
must analyse the program to gather all memory accesses that
are executed in a particular cycle and merge those that occur
in mutually exclusive branches. An algorithm for performing
this analysis is presented in the next section.

4.3. Proposed Method

To assign memory accesses to ports, the algorithm needs
to determine which accesses may occur simultaneously and
which are independent. If two accesses are erroneously
determined to be independent, incorrect hardware will be
produced that suffers from memory port contention. On the
other hand, it is acceptable if the algorithm is conservative
and determines that two accesses can occur at the same time,
when in fact they cannot. The proposed method is divided
into two parts: access analysis and port assignment. The
first part analyses the semantic structure of the program to
determine which memory accesses are independent. This is
the case if they are separated by a wait statement or are in
different branches of an if/switch statement. The information
that is gathered by access analysis is then used by the port
assignment algorithm in order to assign accesses to ports.

4.3.1. Control Flow Representation

In order to describe the algorithm, a SystemC program is
represented in a control flow graph (CFG). A CFG is a
representation, using graph notation, of all paths that might
be traversed through a program during its execution. The
nodes represent operations and directed edges are used to
represent jumps in the control flow. For the purpose of
assigning memory accesses, a CFG is presented in which
there are four node types: conditional forks, conditional joins,
waits, and basic blocks. A basic block is a sequence of
operations that is always entered at the beginning and exited
at the end. Without loss of generality, it is assumed here that
a basic block contains at most a single-memory access.

Figure 6(a) shows a SystemC program with conditional
constructs in which an array is accessed. Figure 6(b) shows
the corresponding CFG, containing three basic blocks.

Cycles in the CFG are created by loops in the SystemC
program. It is assumed that all combinational loops in
SystemC will have been unrolled by the compiler at this
stage. Consequently, cycles in the CFG always contain at least
one wait node, as they cannot otherwise be implemented in
synchronous hardware.
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void thread()
{
sc_uint (8) i = 0;
wait ();
while (1)
{
y = ram[i];
if (i <128}
{
ram[i+ 1] =x;
}
else
{

ram[i — 1] = x;

(a) (b)

FiGure 6: Control flow representation. (a) SystemC description, (b)
control flow graph.

4.3.2. Access Analysis

The access analysis algorithm gathers, for each clock cycle,
sets of independent memory accesses that are assigned to dif-
ferent memory ports. It performs this process independent of
the number of memory ports available and the access types of
these ports. It attempts to combine memory accesses in such
a way that the final number of sets, and thus the number of
required memory ports, is minimal. Some sets may contain
both read and write accesses and must be mapped to read-
write ports. As not all memories have these ports, these sets
may later have to be split into sets that can be assigned to
simple ports. This increases the number of required memory
ports and the algorithm therefore attempts to minimise the
number of sets with mixed accesses.

The algorithm takes the CFG as the input. It then splits
it into directed acyclic subgraphs (sub-DAGs) corresponding
to individual clock cycles and processes them separately. One
way of doing this is to remove all wait nodes and edges
incident upon them from the CFG. Then the graph can
be split into subgraphs by temporarily regarding all edges
as undirected, and finding all connected nodes (e.g., using
depth-first search). As all cycles in the CFG contain at least
one wait node, all directed subgraphs thus obtained will be
acyclic. To assign accesses to memory ports, the basic blocks
in each sub-DAG corresponding to a clock cycle are traversed
in topological order, starting with accesses early in the cycle.
During traversal, the algorithm gathers sets of independent
memory accesses that can be mapped to the same memory
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Assign(CFG)

{
result:= g
for each g € subDAGs(CFG)
{

accesses = J
for each blk € topsort (basic blocks in g)

{
// merge control flows into blk
merged := merge {accesses [b] | b € pred[blk]}
// add the effect of a memory access in blk
accesses [blk] := effect blk merged
}
result(g] := merge {accesses [b] | succ[b] =0}
}
return result

LisTING 6: Memory access analysis algorithm.

port. This information is represented as a triple list of sets
(r, w, rw) of accesses as follows:

(i) r contains sets of independent read accesses;
(ii) w contains sets of independent write accesses; and

(iii) rw contains sets of independent read and write
accesses.

Accesses in the same set can be mapped to the same
memory port and accesses in different sets must be mapped
to different ports to prevent resource conflicts. Consequently,
the minimum number of memory ports required to assign all
accesses in the triple to ports is equal to the total number of
sets in the triple. For example, suppose the triple is equal to

(T’,W,TW) = ([{7’1,1’2}], [{Wl}’ {W2}]> [{73)W3}])~ (1)

In this case, at least four memory ports are required to
assign all accesses: one port capable of reading, two ports
capable of writing, and one port capable of both reading and
writing.

Pseudocode for the algorithm that gathers all accesses to
a particular memory in a program is shown in Listing 6.

The map accesses store the access triple at each basic
block and are used for temporary storage. pred and succ,
respectively, return the parents and children of a basic block.
When a particular basic block is encountered, the access
triples of its predecessors are merged to combine accesses
from mutually exclusive branches. Then, the memory access
in the current basic block is added to the triple. After all
basic blocks in a clock cycle have been visited, the final
access triple is calculated by merging those basic blocks
without successors. Function effect models a memory
access in a basic block and appends the access as a singleton
set to the end of the appropriate list in the access triple
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mergetwo : triple — > triple — > triple
mergetwo (ril,wl,rwl) (r2,w2,rw2) = (fr, fw, frw)
where (rir2, r1’, r2’) = combine r1 r2

(wiw2, wl', w2') = combine w1 w2
(rwirw2, rwl’, rw2’) = combine rwl rw2
(r1irw2, r1”, rw2”) = combine rl’, ru2’
(wirw2, wi1”, fru2) = combine wil’, rw2”
(rwir2, rwl”, r2”) = combine rwl’, r1”
(rwiw2, frwl, w2”’) = combine rwl’, wi”
(riw2, fri, fw2) = combine r1”, w2"
(wir2, fwi, fr2) = combine w1, r2"”

—— take sets of accesses from two lists
——xs and ys and combine them into zw

combine xs ys = (zw,drop n xs,drop n ys)
where zw = zipwith (U ) xs ys
n = length zw

——the merged triple is created from the
—— combined sets plus any remaining sets
fr = rir2 ++ frl ++ fr2
fw = wiw2 ++ fwl ++ fw2
frw = rwlrw2 ++ rirw2 ++ wirw2 ++
rwlr2 ++ rwlw2 ++ riw2 ++
wir2 ++ frwl ++ frw2

Listing 7: Function for merging two control flows.

(r,w,rw). Read accesses are added to r and write accesses
to w. Function merge combines the memory acesses in a
number of mutually exlusive branches, for example at the
end of an if statement. The aim of merge is to combine
accesses in the most efficient way as to minimise the number
of memory ports required. The algorithm for merging two
triples is shown in Listing 7 in functional programming
notation.

The merging of two triples P and Q consists of repeatedly
picking a set of accesses from P and a set from Q and taking
the union until either P or Q is empty. If any sets remain in P
or Q, these sets are just inserted into the merged triple. There
are many ways in which sets in P or Q can be combined,
where some combinations are more favourable than others.
For example, suppose two access triples P and Q are defined
as

P=([{r}] [{wi}],10),
Q= ([{n} ], [{w2} ], D).

One possible way to merge P and Q is to combine
read accesses with write accesses: ([], [], [{r1, w2}, {r2, w1}]).
Although this requires two memory ports, not all memories
have read-write ports. A better way to merge P and Q
is ([{r1,r2}], [{w1,w2}],[]), which requires one read port
and one write port. The merge function therefore favours
combinations between accesses of the same type over accesses
of different types. In addition, merge attempts to avoid
combining sets that merely contain read accesses with those

(2

11

TABLE 2: Steps showing progress of access analysis.

Operation Accesses (r,w,rw)
a = ram[p}; (HBLILID
ram[q] = b; (({1}], {2}, 1D

¢ = ram[r]; (3300, 1D
ram(s] = d; ([1, [t431, (D
merge (3,4); ([L, 11, [43,41])
ram[t] = e; (1, [{5}], [{3,4}])
merge (2,5); ([1,[{2,5}],[{3,4,1}])

that merely contain write accesses. For example, if P and Q
are defined as

P=([{n}]0,00),
Q= (H) [{Wl}]’ HT2,W2H))

then P and Q can be merged by combining {r;} and
wite (IL L [, wo b {r,wil]), or {r} and {ry,w,}:
([{r13], 1], [{r2, w2, 71}]). Both solutions require two mem-
ory ports. However, when read access {r;} and write access
{w1} are combined, a set with mixed access types is created
which requires an additional read-write port.

Figure 7 shows a fragment of a SystemC program,
together with the control flow subgraph for the particular
clock cycle.

The code contains two read accesses (1 and 3) and three
write accesses (2, 4, and 5). Table 2 shows the progress of
access analysis whilst traversing the CFG. The final access
triple for this clock cycle is ([], [{2,5}], [{3,4, 1}]), which can
be assigned to a memory with one write port and one read-
write port.

(3)

4.3.3. Assigning Accesses to Ports

To assign accesses to ports, a bipartite graph is constructed
for each clock cycle from the access triple (r,w,rw). The
sets of accesses in r and w can be mapped to read/write
only ports as well as read-write ports whilst the sets in rw
can be mapped to read-write ports only. The latter therefore
gives the algorithm less freedom in assigning accesses to ports
optimally. Furthermore, not all memories have read-write
ports. For this reason, the access triples are transformed as
to minimise the size of rw. This transformation involves
repeatedly splitting sets in rw into two sets: one containing
the read and one containing the write accesses. These are
then added to r and w respectively. This process increases
the number of required memory ports and is repeated until
the number of required ports is equal to the number of
ports on the memory or until rw is empty. For example,
the final access triple in the example of Figure7 was
([1,[12,5}],[13,4,1}]), requiring one write port and one
read-write port. If these accesses are mapped to a memory
with one read-only and two write only ports instead, the
triple is transformed as ([{3,1}], [{2,5}, {4}], [])-

After the transformation, the bipartite graph is built.
Each edge in the graph has a weight associated with it. This
is a measure of the cost of binding the accesses in a set to
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wait ();
if (c1)
{
a = ram[pl; // 1
ram[q] = b; // 2 l
t
else
{
if (c2) )/_ f
{ a = ram(p];
¢ = ram(r]; // 3 1
} |c:ram[r];| |ra.m[s]: ;
else 3 \/ \/ 4
{ram[s] _a/a 7Merge(3,4)
t
ram[t] = e; // 5 ;
t
wait ();
.. VMerge(Z,S)

(a)

(®)

FIGURE 7: Memory access analysis. (a) SystemC fragment, (b) control flow subgraph corresponding to clock cycle.

a particular port. In the proposed algorithm, the weight on
an edge (a;, pj) is based on the total number of accesses
bound to port p; if the set of accesses a; is assigned to
it. This weight is a global cost which takes into account
accesses that were assigned in other cycles as well. This way,
memory accesses will be balanced between ports and the
depths of multiplexers on the input of ports is minimised.
After building the graph, bipartite matching is performed to
assign all accesses to ports.

4.4. Results

Experiments were performed to demonstrate the effect
of mapping an array to memory. For this purpose, an
inverse discrete cosine transform (IDCT) was used. An
implementation of this algorithm was written in C by
the MPEG Software Simulation Group (MSSG) [20] which
contains an array requiring 1kb of storage. This design
was ported to SystemC and compiled to EDIF with and
without mapping the array to memory. The generated EDIF
for both array implementations was passed to the Xilinx
design tools and implemented on a Virtex-4 device. Post-
implementation simulations were performed to verify that
both implementations are functionally correct. Table 3 shows
the number of flip-flops and slices for the IDCT design for
the two array implementations as reported by the Xilinx
design tools.

From these results it follows that mapping the array to
memory significantly reduces the size of the IDCT design.
The proportion of used slices on the particular FPGA device

TaBLE 3: Comparison between array implementations for IDCT
design targeting an XC4VLX40 FPGA.

Array impl. Flip-flops Slices Logic usage (%)
registers 1,687 6,213 34
memory 663 2,724 15

is reduced from 34 percent to 15 percent, whilst only 1
out of 96 available RAM blocks is needed for implementing
the array. As a result, the design can be implemented on a
smaller, and thus cheaper, FPGA device.

5. Conclusion

This paper has presented two area optimisation procedures
for FPGAs in SystemC hardware compilation. The first is
function exlining, which aims to reduce the logic size of
a design by mapping a function to a separate piece of
hardware that is shared between calls. It has been shown
that function exlining can be described in SystemC with the
addition of an asynchronous channel to the language. This
method can be easily implemented in a hardware compiler as
a source transformation and performed automatically. The
second optimisation algorithm deals with mapping arrays
in SystemC to memories in hardware. This method analyses
the program and gathers sets of independent accesses that
can be mapped to the same memory port whilst avoiding
resource conflicts. Compared to previous methods, it solves
the assignment problem more efficiently for a wider range
of memories. Both optimisations can help to transform a
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behavioural specification into an efficient implementation
in hardware. This is in the spirit of hardware compilation,
where designers should focus on the algorithm itself rather
than on manually optimising code.

The proposed methods were implemented in the agility
compiler and experiments were performed that showed the
benefits of these methods in reducing logic utilisation in
FPGAs. It was found that function exlining can greatly
improve the logic usage of a design. However, sharing a func-
tion between different callers also introduces multiplexers
to switch between arguments. The overhead of these mul-
tiplexers in terms of logic size and delay is potentially large
for FPGAs, where they are implemented in general-purpose
lookup tables. It is therefore necessary to balance the circuit
area saved by exlining against the added overhead associated
with exlining. Whilst function exlining saves resources by
sharing them between tasks, mapping arrays to memories is
based on choosing a different hardware implementation for
a given task. Modern FPGAs contain a large amount of on-
chip memory and this method allows a designer to target this
abundant resource without significantly changing a design’s
specification. As experiments showed, this can significantly
reduce logic area such that the design can be implemented
on a smaller, and thus cheaper, FPGA device.

6. Limitations

Although the optimisation techniques described in this paper
have shown promising results, there are several opportunities
for improvement as well as for further research. Function
exlining in agility is currently controlled by the user via the
ag_share_routine directive. If a function is specified as
shared, all calls to this function are exlined and care must
be taken that no resource conflicts arise due to simultaneous
calls to the function. The decision to exline a function could
be made by the compiler instead. A method to achieve this is
described in [21].

In the current implementation, all calls to an exline
function share the same hardware module. In order to
optimise multiplexer usage and avoid resource conflicts, a
SystemC function could be mapped to multiple hardware
modules instead. In this approach, function calls with
common arguments could be detected through static analysis
and combined in order to reduce multiplexer depth and thus
improve clock frequency.

The current implementation supports arguments passed
by reference without the need to resolve pointers during
execution. As discussed, this not only poses restrictions on
the type of arguments passed, but also increases sequential
logic. A solution using run-time pointer resolution would
avoid these issues, a method for which is presented in [22].

In the proposed algorithm for synthesising arrays, each
array is mapped to a separate logical memory. This can
be inefficient if a program contains several arrays that are
smaller in size than the available memory components.
In theory, those arrays could be implemented in a single
memory thereby reducing memory cost. Schmit and Thomas
[16] propose a method for grouping arrays of different sizes
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and dimensions and packing them into memories, which is
suited to this purpose.

The bipartite matching algorithm that is used to assign
memory accesses to ports is based on a cost function. In the
current implementation, this function only takes multiplexer
depth into account and attempts to balance accesses between
ports. The algorithm could be improved by using true delay
information instead.

Finally, this paper discussed the interaction between
function exlining and other optimisation techniques. It
was mentioned that function exlining may hinder other
optimisations, such as resource sharing and memory port
sharing, which are typically performed on each module
individually rather than globally. More research is required to
investigate how the proposed optimisation techniques can be
extended to operate optimally together and in synergy with
other optimisations.
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1. Introduction

Bioinspired systems emulate the behavior of biological ones.
Neuromorphic approximations [1] are based on the way
how the nervous systems create physical architectures and
computations, attending to the morphology, information
coding, robustness against damage, and so on. Neuromor-
phic systems usually deliver good primitives for the building
of more complex systems, being the output of each system
simpler than its input. This data reduction helps in the task
of integrating every response associated with all information
channels [2].

Attending to the estimation of a pixel motion inside
the image sequence, there are many models and algorithms
that could be classified as belonging to the matching
domain approximations [3], energy models [4], and gradient
models [5]. Related to this last family, different studies
[6-8] show that this represents an admissible choice for
keeping a tolerable tradeoff between accuracy and computing

resources. For designing systems operating efficiently, it is
required to deal with many challenges, such as robustness,
static patterns, illumination changes, different kinds of noise,
contrast invariance, and so on. If bioinspirational behavior is
required, that is, ability to detect correct motion related to
optical illusions or avoiding operations like matrix inverse
or iterative methods that are not biologically justified, we
have to select carefully a model that carries out this kind
of requirements. This is the Multichannel Gradient Model
(McGM) [9-12].

Motivated by these previous results and analysis, we
present the architecture and implementation of a customiz-
able optical flow embedded processing core running in real
time. This system works in the framework of a codesign
scheme that is able to manage complex situations in real
environments [13] better than other algorithms [14] and
mimic some behavior of the mammalians [15].

This paper is organized as follows. First, the stages of
McGM model are explained very briefly; after that, we tackle
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FIGURE 1: General scheme of the McGM algorithm.

the precision study of every conceptual stage, obtaining
a set of bit width values which models the filters and
the bit width stage required to obtain results that match
with the statistical error metric requirements. From this
previous study, we design the customizable architecture
implementation attending to the original model plus several
hardware modifications in order to improve the feasibility
of the system. An example of this is the design of IIR
filters replacing the original FIR filters due to the memory
limitation of the prototyping platform, or the use of several
information channels with a few bit width, replicating the
nature of the brain (large number of neurons with very
little precision for a few channels with huge information
capacity) [14]. After that, we explain the coarse pipeline
processing architecture and the platform and language used
in our systems. Finally, quality results, hardware associ-
ated cost, and comparisons to other implementations are
shown.

2. Multichannel Gradient Model (McGM)

The original algorithm was proposed by Johnston and
Clifford, and we have applied Johnston’s description of
the McGM model [9], while adding several variations
to improve the viability of the hardware implementa-
tion. Figure 1 shows a simplified scheme of the algo-
rithm.
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2.1.IIR Filtering

A temporal IIR filter is modeled from its original FIR
description due to the limitation of available memory in our
prototyping platform [15, 16]. The result is a recursive filter
with only two frames of latency, being o0 and i the output and
input, respectively, of the filter and a; , b; the coefficients from
our previous work [14, 15]:

O(n) =ajiln—1) — bjo(n — 1) — byo(n — 2), (1)

where a; = e V%a?; by = 2¢7%% b, = e ¥*, and « drives
the peak in the temporal impulse response function. It is
calibrated with a frame peak value equals to 10 following a
critical flicker fusion limit of 60 Hz, according to the human
visual system evidences [11]:

1
—(In(t/a)/7),
e . 2
JrTa @

Attending to the original algorithm, we need to perform the
order zero, one and two derivatives, which represent our first
triplet of information to be processed, as shown in Figure 1.
The derivatives are obtained applying a gradient operator of
minimal length (+1,-1) to (1):

R(t) =

To(n) = o(n—1),
Ti(n) = o(n) — o(n - 2), (3)
Ty(n) = o(n) —20(n—1)+o0(n —2).

2.2. FIR Spatial Filtering

A set of spatial FIR filters is modeled by the next impulse
response corresponding to bidimensional Gaussians and
their separable derivatives:

dn dn e—(x2+y2)/202
dx”(GO) B dx”( o2m )

2n
_ X Yo\ (=L
‘H”(ﬂa>H”<ﬁo>(ﬁa> “

e—(x2+y2)/202
o\2n )’

where o represents the spread of the Gaussian and H,, is the
Hermite polynomial of order n . The convolution is done in
a separable way, taking derivatives in x and y directions up
to sixth and second order, respectively, due to bioinspired
and robustness reasons [11-13]. The aim of this stage is to
cover enough spread area of information channels that allow
us to contribute to the calculus when any of them are null
due to many reasons, such as noise. Therefore, we have three
spatial structures, each one containing a pyramidal set of
several filters corresponding to Gaussians and their different
derivatives.

2.3. Steering Stage

The steering stage represents the approach to projecting the
space-temporal filters calculated in previous stages, under
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the different orientations. Being n and m the order in x
and y directions, respectively, 6 the angle projected, D the
derivative operator, and Gp the Gaussian expression, we
obtain the general expression of the filter rotated in the space
as a linear combination of filters belonging to the same order
basis [14]. Thus, we have to apply this transformation to each
value:

n

>

k=0

[ZO (n:) (=D, sin G)i(Dy cos G)M_i] Go.
(5)

GY (6 y) = [ (Z) (Dy cos G)k(D), sin G)nk}

2.4. Taylor Expansion Stage

In this stage a truncated Taylor expansion is done, substi-
tuting it for the point on the space-time image in order
to further enhance the algorithm. To perform this, it is
necessary to use each oriented filter previously calculated.
This expansion is highly versatile and represents a robust
information structure of the sequence in space and time:

m
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With this, it is necessary to differentiate each Taylor expan-
sion respect to x, y, t, calling these derivatives X, Y, T, and

forming the following sextet of quotient as shown in the
quotient stage:

X0 = ol'/ox X0x0 x0y® x0T

Yo =oray| — [ 0
yoy? yoro T"T"}

O = 3r%/at |, 2

2.5. Quotient Stage (General Primitives) and
Following Stages

This is the last stage belonging to the common path, where a
quotient of every sextet’s component is computed from every
measurement of the product of steered Taylor expansion
differentiates:

| L
2x3

The architecture of the core is branched in two separated
ways, modulus and phase, with different bit operations work-
ing independently, containing products, several quotients,
and even trigonometric operations as arctangent, which are
performed in software. The details of the software stages can
be found in previous works [14, 15] being the final aim to
recover a dense representation of motion. Therefore, we have
two values for each input pixel corresponding to modulus
and phase of the velocity, that is, velocity projection in x and
y directions, following the next expressions
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3. Precission Study (Bit Width Analysis)

We have designed a specific strategy to define the bit width
required in each conceptual stage following this previous
algorithm. The basic idea is to transform every calculus in
the model, applying a chained process of quantization. For
the sake of clarity, if the parameters of the convolution are
the bit width of the input I, the length of the filter L, the mask

size M, we can compute the output bit width simply shifting
the range the output bit width O:

(0]

stage, = 7o Stage,-1- (11)

Applying this method in each stage, we obtain a set of values
that throw back the transformation between floating point



domain and integer domain, getting a tradeoff between bit
width and affordable error.

As the metric error value, we have proposed the most
common ones used in the specialized literature, such as
Barron’s vector [8] and Galvin’s couple of metrics [6], where
Ve and Ve are the values of the correct and experimental
velocities, respectively, and g* is the normal component to
the Galvin vector difference:

(V2 Vy> 1)

—=———— — YBARRON = arccos(v-v,),
ity +1l

WGALVIN = HVZ - V_;H)

y =

VGALVINL = H(V; - V;)'§l||~
(12)

We have also taken into account the simple error measures
(absolutes and relatives) relative to modulus and phase:

HIvell = Ilvell1

Yras = | arctan(vey/Vex) — arctan(vey/vex)|.

¥MoD
(13)

Regarding the stimuli, we have used synthetic compositions
of sine waves of different spatial frequencies and the famous
stimulus of diverging tree and translating tree [17], com-
monly used to evaluate optical flow. As a result, we obtain
the set of precision parameters that are applied in the model
attending to the range of affordable error. Figure 2 shows the
bit width of the stages performed in hardware, and Table 1
contains the final values chosen, for an FIR Blur filter length
of 5 pixels, FIR spatial filter of 23 pixels, and IIR temporal
filter equivalent to an FIR length of 21 frames, with a more
detailed analysis available in [14].

4. Codesign Process

The system has been designed as a codesign process working
with an asynchronous pipeline (micropipeline). The PC
feeds the FPGA with a stream of frames through a bank of
memory connected to PCI bus. The board takes a continuous
stream of pixels at its input (1 byte/pixel); however, we
employ 32 bits at the output, coming back to the PC,
where they are reordered and written to the hard disk. We
have selected Handel C to implement this core, using DK
tool [18]. Relating to the prototyping board, an AlphaData
RC1000 board has been used, which includes a Virtex 2000E-
BG560 chip and 4 SRAM banks of 2MB each [19]. The
memory banks can be accessed both from the FPGA and the
PCI bus, Figure 3 showing the communication scheme of the
codesign system between the external memory banks, FPGA,
and the host platform.

We have implemented a bit width precision defined
version of the model, that we called “semihardware” version
or SmHW; furthermore the next step is to implement
different hardware cores for examining the tradeoff between
accuracy and efficiency. We have developed in the FPGA
two kinds of platforms that are called “basic” (HWbas)
and “extended” (HWext) architectures. The SW version is
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TABLE 1: Parameters of each stage (100% density).

Stage Bit width Error (%) phase mod
I Fi=6 3.64 4.95
Ol; = 9
Fz = 8
1l Oy1=9 4 4.95
OZ,r,H = 10
11 Ws =6 4.73 6.24
O37r = 10
v Wa =11 5.31 9.01
O4J = 17
\Y% Os, =12 5.52 12.83

Being F; temporal IIR, F, spatial FIR, W3 steering weight, W, Taylor
expansion, O, bit width output of stage i,.

TABLE 2: Summary of the different implementations.

Main differences SW SmHW HWbas HWext
Temp filter FIR IIR IIR IIR
Esp. filter 6 6 5 4
Orientations 24 24 18 8
Taylor weights 100% 65% 65% 65%

implemented using the temporal FIR filtering, 24 orienta-
tions (each 15°), the SmHW version keeps the same number
of orientations, although the implementation of the IIR
filters and the Taylor Expansion is not completed (only are
used the 65% of the weights). The basic architecture has
one less order of spatial differentiation than the versions
commented above, and it has only 18 orientations (each
20°), remaining the rest of the parameters constant. The
extended architecture has one additional order less than the
basic and also decreases in the number of orientations, taking
8 orientations (each 45°). Table 2 summarizes the main
differences between these versions attending to the nature of
temporal filter, the final spatial derivative order, the number
of orientations, and the density of the weights used in the
expansion.

5. Results

We have analyzed the resources required by the platform
and also the number of cycles (NCs) of each stage in
Table 3. Every stage belonging to both architectures has been
designed as customizable, scalable, and modular.

The basic architecture computes initial blur filter in order
to remove aliasing components, IIR temporal filtering that
performs the temporal derivatives, FIR spatial filtering, that
is, spatial derivatives, and steering filtering that project the
results onto the whole space (the SW prefix denotes that these
stages are performed in software). This architecture contains
the processing scheme belonging to most of gradient-based
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TaBLE 3: Slices and memory requirements and number of cycles for basic and extended architectures.
T Basic architectures Extended architectures
Pipeline stage . .
Slices (%) Block RAM (%) MC Slices (%) Block RAM (%) NC
Blur filter 289 (2%) 1% 289 (2%) 1% 4
IR temporal filtering 190 (1%) 1% 9 190 (1%) 1% 9
FIR spatial filtering 1307 (7%) 36% 17 1307 (7%) 36% 17
Steering 5961 (31%) 2% 15 2012 (10%) 2% 29
Product and Taylor SW SW SW 5952 (31%) 13% 24
Quotient SW SW SW 8831 (46%) 19% 21

External memory

UL

4 banks of 2 MB
PC
4 GB RAMBUS
FPGA
VIRTEX E

XCV2000EBG560-6

I
I
I
I
I
I
I
I
I
I
:
I
BUS PCI !
I
I
I
i
I
I
I
I
I
I
I
I

Celoxica RC1000
(AlphaData PP1000)

FiGUre 3: Scheme of the communication process.

optical flow models, thus it could be considered as a
motion preprocessor [15, 16]. The extended architecture is
able to cover more stages and is focused in the specific
McGM algorithm, implementing all the stages commented

previously, plus a Taylor expansion, Taylor product (their
derivative products), and the quotient stage as shown in
Figure 4.

5.1. Hardware Cost

The basic architecture consumes 41% of the board slices,
with every stage being performed with parameter values very
close to the original model (derivatives in x up to order 5,
18 orientations in the steering stage), implementing 4 stages.
Nevertheless, the extended architecture requires 97% of the
development board.

5.2. Performance

Related to the number of cycles, we have noted the Xilinx
timing analyzer tool [20] to be very conservative; thus we
can increase the throughput around 25%-35% if we clock
the system manually from the values obtained. The slower
stage in the basic architecture is the FIR filtering, while the
last stages designed need the maximum number of Block
RAMs and slices due to the computation being performed
replicating the spatial convolution (FIR filter) concurrently
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FIGURE 4: Scheme of the two architectures working with an asynchronous pipeline.

for n orientations until order m in x. Nevertheless, in the
extended architecture we must keep resources for the next
stages, removing some contributions and parallelizing the
processing scheme in discrete groups, which replace the
whole group entirely concurrently. For instance, the steering
stage is performed with fewer terms and with reduced
parallelization level, requiring almost the double of cycles.
Applying this strategy of keeping enough resources in the
prototyping board, we can extend the model to additional
stages. We can see in Figure 4 the global codesign scheme and
the two architectures involved, representing the transactions
between external RAM (grey blocks) and the stages. The stage
corresponding to IIR filter has to keep 3 frames using the
bank number one, the steering stage reads the orientation
weights from bank number three, and the send/receive
modulus connects the input/output data between the FPGA
and the host system via the PCI bus using DMA transfer.
Figure 5 shows the performance for the whole systems using
chained stages, attending to the pixel/seconds processed,
concluding that it is possible to compute 177 frames/second
with a resolution of 128 X 96 pixels in the basic architecture,
and 37.9 frames/second for the extended architecture.

5.3. Quality of the Results

An accuracy analysis has been carried out, being possible to
examine the quality of the results under different transfor-
mations and metrics, as we can see in Figure 6. The phase
and modulus metrics (difference between values) show a
good behavior regarding the implementation changes, while
Barron’s metric seems to go well keeping the proportion
accuracy under changes, but Galvin and Galvin perpendic-
ular metrics suffer with the implementation change from
SW to HW. It is due to the nature of the metric, which
gives an idea about how the algorithm copes with the
Aperture Problem [8], this topic being discussed in previous

Performance versus stages x10°
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E 50/ W F12
2 40 R
s 20 -
g‘ -4
10 A L2
0 F0
Blur I LII  LILIO LI, LILII,
L, Iv. 1V, v
Chained stages

Basic architecture
—#— Extended architecture

B [SE tool frequency
= Applied frequency

FiIGure 5: Throughput of the pipeline (Kpps) and frequency
corresponding to basic and extended architectures.

work [14]. Despite restricting every version in terms of
precision parameters one step further until finally taking
the extended architecture, in general the error values are
delimited reasonably.

5.4. Some Visual Results

Figure 7 shows some visual results corresponding to different
versions of our system, concretely SW versus HWhbas. It can
be noted that while the SW version keeps a calculus density
close to 100% (middle row in Figure 7), HWbas loses some
points due to precision bit width (bottom row in Figure 7),
that is, the bit number of the parameters in each stage. The
input sequence, called diverging tree (upper row in Figure 7)
has a divergent structure where the modulus is supposed
to vary poorly and the phase is changing regularly over
360°. Since we are working with synthetic sequences, we can
estimate the error without any ambiguity. Also we have used
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FIGURE 7: Some visual results corresponding to the software version
versus the basic architecture (diverging tree sequence). Left hand
indicates velocity modulus and right hand velocity phase.

TaBLE 4: Summary of the different implementations for the
Yosemite sequence. NP means not provided.

Models Average Star}dgrd Density
error deviation
Described here (HWbas) 5.5° 12.3 100%
Described here (HWext) 7.2° 11.1 100%
Described here (HWext) 6.1° 6.2 60%
Described here (HWext) 4.3° 3.1 20%
Diaz et al. [21] 18.30° 15.8° 100%
Diaz et al. [22] 7.6° NP <55%
Martin et al. [25] NP NP <50%

the translating tree sequence, where modulus is changing
from left to right and the phase is practically almost the same.

6. Comparison with other Approaches

There are other gradient optical flow models implemented
in hardware [21, 22], belonging to the Lucas and Kanade
algorithms [23] and to Horn and Schunk approximations
[24, 25], while in Table 4 we can see the average error for dif-
ferent metrics, although only we compare the Barron’s metric
since the cited authors do not provide other measurements.

Attending to the errors, our implementation provides
better results than the other approaches, even with cal-
culation density 100%. Nevertheless, the final results are
improved if the points where the scene structure changes,
that is, points smaller than a determinate temporal deriva-
tive, are filtered. This is caused by a least squares process
being performed at the end of the algorithm for calculating
the modulus and the phase final values. The points filtered
would force the slope of the linear regression to be very small,
with the value of velocity is almost null.

Regarding throughput, we are able to calculate more
than 2000 Kpixel/s in the basic Architecture and about
1000 Kpixel/s in the extended. It would locate our imple-
mentation between those in [23, 26], enough for real-time
purposes, although it could be improved using a board
with more resources that is used here and increasing the
parallelism level.

The error using the diverging and translating tree
sequences [17] is shown in Figure 7, and it is obtained with
different metrics regarding the expressions (12)-(13).

7. Conclusion

We have developed an FPGA-based implementation of a
bioinspired robust motion estimation system with an asso-
ciated complexity higher than those found in other gradient-
based models commonly used in the literature. The study
of precision calibrates the model and adjusts the bit width
needed for keeping a tradeoft solution between accuracy and
efficiency, acting as a bridge between software and hardware
and estimating the cost to convert every stage from floating
to fixed point. Taking the results from this precision study,
different hardware moduli have been designed, organizing



this in two high parallelized architectures. The first one,
referred to as basic architecture and common to optical flow
gradient models, is a superconvolutive processor orientated
along multiple angles. It could be used as a starting point for
many computer vision algorithms, not necessarily restricted
to the motion estimation field, like change detection, stereo,
or even biometry techniques such as real-time signature
recognition. The second architecture, called extended, is
focused in the Mutichannel Gradient Model, and includes
the truncated Taylor expansion representation of space tem-
poral information of the scene, its three differentiates respect
space and time, and the quotients of the products of these last
functions. The rest of the stages, called velocity primitives,
corresponding to the expressions (8)-(9) are performed in
software in the framework of a codesign process, where
the final modulus value is a quotient of determinants and
the final phase is an arctangent. This extension can be
implemented using a board with more resources than the
VIRTEX 2000 E and, depending on the accuracy required,
using a structure based on LUTs or implementing a CORDIC
core. Both architectures are scalable and modular, and also
extensible to one device with more resources that our
prototyping platform.

Additionally, the resources consumed have been eval-
uated as well as the throughput and the accuracy of the
designed coprocessors. All models come forward with asyn-
chronous segmented architectures (micropipelines). Regard-
ing quality, the average error has been compared using
Barron’s metric, since other authors do not provide results
with other metrics; also the throughput of the design has
been compared with other implementations. This work
generates dense optical flow maps up to 80 frames/second
and 185 frames/second for a resolution of 128 X 96 in the
extended and basic architectures, respectively. The present
contribution opens the door to embed complex bioinspired
systems that require a huge quantity of computation. We are
currently improving the system to extend the model to a fully
stand alone platform also to deal with stereo vision. Several
application fields are though to use it, such as motion illusion
detection or video compression.
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1. Introduction

Mathematical control equations in an FPGA reconfigurable
device is an important aspect in the design of arithmetic
blocks when implementing control algorithms [1]. A well-
known method utilized in the implementation of arithmetic
operations in FPGAs is based upon the coordinate rotation
digital computer (CORDIC) algorithm [2-6] which has
become the standard solution for the implementation of
complex operations in FPGAs.

This paper proposes the design of a mathematical unit
dedicated to the implementation of control algorithms that
involve several sequences of complex mathematical functions
calculations.

Traditionally, the development of complex arithmetic
functions in FPGA devices has resulted in difficulties to
implement such operations. Therefore, the elaboration of
mathematical operations in Xilinx FPGAs is proposed
through the core generator [7]. The objective of this paper is
to explain the development of a core capable of performing
mathematical operations such as trigonometric functions
in a clock cycle, using an alternative method of the core
generator suggested by the manufacturer.

In order to construct such cores, the architecture of
the mathematical unit is established by the user with Java
software, in which the input and output parameters are
defined as well as the functions needed to perform the
desired control algorithm. This tool facilitates the users’
implementation of mathematical blocks in FPGAs, simplify-
ing the flow design to the adjustment of the interconnection
of the required blocks in the main program described in
VHDL. This reduces the designer’s workload during the
implementation stage of control algorithms. The tool is
capable of implementing 16 different types of mathematical
functions which may be described according to the required
algorithm. The maximum number of functions that can
be implemented depends on the available resources of the
FPGA.

When the VHDL code generator is activated, a window
initially appears, asking the characteristic of the input-
output variables. The longitude of the input data indi-
cating integer and decimal bits must be specified. At
this point, selection of the functions to be implemented
according to the control algorithm is made, and finally
the code generator creates a file containing the description
of each block in VHDL language ready to be synthesized
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by the Xilinx ISE tool [8]. Each function might be an
independent module that can be interconnected with the
rest of the blocks in order to represent the equations
that describe the desired algorithm. Trigonometric func-
tions are implemented in the embedded memory of the
FPGA. The advantage of solving complex functions with
preloaded tables can be clearly seen in computing time,
simplifying the execution of a mathematical function to
the transfer of data from memory to the accumulator
register.

The control algorithm of a magnetic elevation system
is presented in order to provide an implementation study
for the proposed mathematical unit. This system deals
with the levitation of steel objects aided by a controlled
electromagnetic force that is equal and opposed to the
gravitational force acting on the steel object. This type of
control is actually applied in commercial magnetic levitation
(MAGLEV) trains [9].

2. Description of the Mathematical Unit

The mathematical unit has been developed with a Java
program that generates blocks of mathematical functions
in VHDL. The complete system is composed of 5 main
modules, as shown in Figure 1, (1) VHDL code genera-
tor, (2) RAM or ROM memory block for mathematical
operations, (3) control unit for instructions, (4) accu-
mulator registers for results, and (5) magnetic levitation
system.

The mathematical unit was functionally designed in
VHDL code with instantiation of RAM or ROM memories
that were created through the program generator functions,
elaborated in Java language, especially for this job which is
described in Section 2.1. The memories were programmed
with input parameters assigned by the user, allowing the data
input to have a suitable format according to the designers
needs.

2.1. VHDL Code Generator

As previously mentioned, the proposed mathematical unit
is capable of solving trigonometric functions in a clock
cycle by using preestablished data tables. To accomplish
this, a program was developed in Java language that cal-
culates the values of the trigonometric or mathematical
functions within the range of values defined by the user,
followed by the creation of tables with the calculated
values, and uses a RAM or ROM memory to store these
data values and then to translate them into the descrip-
tion hardware language VHDL. The program defines the
architecture, entity, and process which automatically adds
to the libraries, reducing user time and the definition of
each block to only the definition of ranges and precise
values of input and output data in its integer and decimal
parts.

The software function generator reduces the computa-
tional burden to the FPGA by using a standard computer to
calculate the possible results of mathematical functions that
require only one parameter in the instantiation of a RAM or
ROM memory.

The program creates the desired function as an entity
in VHDL with an input and an output of the selected size.
The VHDL has syntax standards, which are contained in
the libraries. The program generates the necessary lines for
use by the corresponding libraries. The entity block is also
created at the same time, along with the input data, ready
to be synthesized by the Xilinx ISE simulator. The list of
mathematical function values is calculated with the program
code generator.

An example is shown in Table 1. This table corresponds
to the calculation of the cosine function, which is imple-
mented in a ROM memory of 16 bits x 1024 lines. The
address bus is identified with the letters a9 to a0, where
a0 is the least significant bit. Before executing the program
generating code, the data format specifies the required bits
for the integer part and the decimal part.
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TaBLE 1: Selection of preestablished data for a cosine function.
Address bus Data bus
a9-a8 a7-a4 a3-a0 die d15-d12 d11-d8 d7-d4 d3-do
00 0000 0000 0 1000 0000 0000 0000
00 0000 0001 0 0111 1111 1111 1110
00 0000 0010 0 0111 1111 1111 1110
00 0000 0011 0 0111 1111 1111 1010
00 0000 0100 0 0111 1111 1111 1000
00 0000 0101 0 0111 1111 1111 0010
00 0000 0110 0 0111 1111 1110 1110
00 0000 0111 0 0111 1111 1110 0110
00 0000 1000 0 0111 1111 1110 0000
00 0000 1001 0 0111 1111 1101 0110
00 0000 1010 0 0111 1111 1100 1110
00 0000 1011 0 0111 1111 1100 0010

The value of the angle is defined in radians at an interval
from 0 to 3.99. In the example in Table 2, this quantity
may be defined by the user in the program generator. The
calculation of the cosine function is made considering the
bits from a6 to a0 as the decimals of the parameter and
the bits from a9 to a7 as the integer part. The result of the
function is located in the data bus where dO0 is the sign bit, d1
to d13 is the decimal part, and from d14 to d16 is the integer
part of the data.
The following program code fragment is an example
of the result of the VHDL mathematical functions, where
numbers 9 and 16 are the defining entrance parameters that
were programmed:
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.std_logic_arith.all;
use IEEE.std_Logic UNSIGNED.ALL;
entity block is
Port(angle:in std_logic_vector(9 downto 0);
result:out std_logic_vector(16 downto 0));

end block;
architecture behavior of block is
type func is array (0 to 1024) of std_logic_vector
(16 downto 0);
constant Content: func:=(
B*“00000000000100000,”
B“00000000000100000,
B“00000000000100000,”
B“00000000000100000,”

The critical functions programmed in C language turned a

floating chain of bits as well as the same operation in inverse
form. An example of the code follows:

acadena(Number_to_turning, chain_of_exit,
decimal_of_exit, size_of_exit)
adouble(Chain_to_turning, Number_of_decimal)

acadena(15.25,chain_of_exit,2,6) // chain_of_exit will
have the value of 111101

acadena(15.5,chain_of_exit,2,6) // chain_of_exit will
have the value of 111110

acadena(10.5,chain_of_exit,2,6) // chain_of_exit will
have the value of 101010

acadena(8.75,chain_of_exit,2,10) // chain_of _exit will
have the value of 0000100011

adouble(“100011,72); // The result is 8.75
adouble(“100011,71); // The resultis 17.5
adouble(“100011,70); // The result is 35

In the program, the “acadena” function transformed the
floating value of bits and the “adouble” function converted
a floating value of bits. A part of the second version which
was generated in Java language follows:

import java.io.*;

#1  class seno

#2 |

#3 public static String acadena(double X,

int enteros,int longitud){

#4 double Y=0.0;

#5 if (X<0)

#6 {

#7 Y=Math.abs(Math.ceil(X));
#8 telse{

#9 Y=Math.abs(Math.floor(X));
#10 }
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TaBLE 2: Results obtained from the mathematical unit.
Angle degrees Angle radians Math unit result Matlab result Error obtained
0.00000 0.00000 1.00000 1.00000 0.00000
9.84771 0.17188 0.98527 0.98510 0.00017
14.77157 0.25781 0.96695 0.96692 0.00003
19.69542 0.34375 0.94150 0.94141 0.00009
24.61928 0.42969 0.90910 0.90906 0.00004
29.99076 0.52344 0.86611 0.86609 0.00002
34.91462 0.60938 0.82001 0.81995 0.00006
39.83847 0.69531 0.76785 0.76782 0.00003
95.79138 1.67188 —.10091 —.10083 0.00008
210.38294 3.67188 —.86266 —-.86255 0.00012

In order to complete the conversion of the floating value to
chain of bits, we followed a 2-stage process; firstly, the whole
part becomes a chain of bits, and after the part decimal is
turned into a chain of bits. Later they are united in a single
decimal number in binary code.

The conversion process starts with the whole part of the
function; this requires rounding the smallest number (when
positive) or rounding the largest number (when negative).
Using the “ceil” function one can obtain the rounding of
the number and using the “floor” function one can round
the whole part. Since the conversion algorithm uses positive
numbers, the “abs” function is used to take the absolute value
from the rounded number. The variable “res” keeps the final
result from the conversion.

The code generator program allows the usage of RAM
or ROM memories and selection of these will depend on
the application required. For example, when using ROM
memories, these are implemented with the internal resources
of the FPGA augmenting the utilization of the circuit;
the flexibility of using these memories is their facility to
adjust the size of the word and required address for the
precise calculations that will be stored in them. When RAM
memories are selected, as these are embedded, they do
not impact the available resources in the FPGA, allowing
a huge logic capacity for other circuit implementation, the
disadvantage that it is limited to the implementation of
variable arrays in the word longitude and address bus.

With the objective of observing the units behavior
during the calculation of different trigonometric functions,
a sequence of operations was established for the resolution
of the functions with different angles. The obtained results
are shown in Table 2. The first column corresponds to the
evaluation angles; the second column is equivalent to the
first column in radians; the third column shows the results
of the cosine function obtained with the mathematical unit
presented; the fourth column has the results obtained with
Matlab; the last column presents the difference between the
value calculated with Matlab and the value obtained with the
mathematical unit.

It is important to emphasize that the mathematical
function sequence can be carried out to form complete
equations which are calculated and stored in a ROM or RAM
memory, to be used later in the implementation of individual

TasLE 3: Utilization of the mathematical unit blocks.

Function Utilization

Sel. Slices LUTs TEGs
Cosine 0 11% 8% 6121
Sine 1 11% 8% 6282
Square root 2 1% 1% 50
Tangent 3 8% 6% 5230
Arc cosine 4 3% 3% 2799
Arc sine 5 3% 3% 2 807
Arc tangent 6 3% 3% 2952
Exponential 7 5% 4% 3956
Radians 8 4% 3% 3303
Hyperbolic tangent 9 2% 1% 1571
Hyperbolic cosine 10 5% 4% 4375
Hyperbolic sine 11 5% 4% 4391
Natural log 12 1% 1% 80
Inverse 13 1% 1% 1345
Log base 10 14 1% 1% 671
Degrees 15 3% 3% 3082

block control equations, that are capable of being calculated
in a clock pulse, optimizing the calculation time.

2.2. Description of the Mathematical
Unit Operation

The mathematical unit was implemented in a FPGA Virtex
II. The results of the utilization are shown in Table 3. The
utilization of slices, LUTs, and total equivalent gate (TEG) is
presented in independent columns. The column “sel” refers
to the instruction code that mathematical unit executes. This
makes 16 trigonometric and mathematical functions which
may be selected through a control word of 4 bits.

The total circuit utilization is 95% of the available slices
in the FPGA and 74% of LUTSs, being equivalent in TEG to
58 157 out of 1000000 of the available total on the Xilinx
Virtex II.
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3. Application to the Control of a Magnetic
Levitation System

In order to prove the capacities of the mathematical unit, a
sliding mode controller [10] was used to regulate a magnetic
levitation system. This type of system is used in several
applications such as frictionless bearings [11], high-speed
maglev passenger trains [12], wind tunnel levitation models
[13], molten metal levitation [14], and the levitation of metal
slabs during industrial manufacturing process [15]. These
systems have natural unstable nonlinear dynamics requiring
closed-loop control designs for stabilization. Several control
techniques have been applied to the stabilization of MAGLEV
systems, such as I/O linearization [16, 17], backstepping
[18], and sliding mode control [19], among others. The
sliding mode control [10] has been extensively used in
electromechanical systems due to its robustness to unknown
bounded perturbations. Another characteristic of sliding
mode control is the discontinuous nature of its control
signal which switches from two states. This is an advantage
because it avoids using pulse width modulation (PWM).
The drawback of sliding mode control is that the switching
signal has an infinite frequency and when implemented with
common switching power devices with a frequency around
20 KHz, produces an output phenomenon called chattering;
small oscillations around the set-point. Nowadays, there are
power devices available with a switching frequency of at
least 150 KHz, which common digital signal processor boards
cannot support. To take full advantage of such switching
devices, one needs high speed digital media such as FPGAs
that can support and match high switching frequencies. In
this case, the chattering problem is considerably reduced.

3.1. Mathematical Model and Problem
Formulation for the MAGLEYV System

Figure 2 shows an schematic diagram of a maglev system.
The mathematical model of the MAGLEV system is given
in the following equations [17]:

X1 = X2,
PR
2 g M x%’
(1)
) + 1
X3=—=x3+ -V,
T L
y=x
with state vector defined as x = (x1,%,x3)", where x;

represents the position of the steel ball of mass M which
is positively increasing in the downward position, x; is the
velocity of the steel ball, x5 is the current through the coil, v
is the input voltage applied to the coil, and y is the output
of the system. The constant parameters are the resistance of
the coil denoted by R, the inductance denoted by L, g which
is the gravitational constant and is considered as a known
perturbation term, finally k,, which is the magnetic constant
of the electromagnet.

5
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The control problem is based upon forcing the output
y = x to track a reference signal q(w). Therefore, one can
consider the following output tracking error:

e=x1 —q(w). (2)

3.2. Sliding Mode Output Regulation for
the MAGLEYV System

The applied control design methodology is a combination of
two important control techniques, output regulation theory
(ORT) [20] and sliding mode control (SMC) [10]. The
advantage of using ORT is that it plays an important role
in trajectory output tracking and in the rejection of known
disturbances. ORT deals with the problem of finding a
control law such that the output of the controlled system
can asymptotically track a signal generated by an exosystem
and at the same time reject perturbations possible generated
by the same exosystem. The nature of the control signal is
continuous or smooth, and in this case PWM is required
for implementation. When ORT is combined with SMC one
obtains a control methodology commonly known as sliding
mode output regulation (SMOR) [10] resulting in robust
protection against unknown perturbations and avoids the
use of PWM as just mentioned before.
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The exosystem is proposed as follows:

w1 = —awy,

Wy = awy,

, (3)
w3 = 0:

Wy =0

with initial conditions w;(0) = w,(0) = a, w3(0) = b, and
w4(0) = ¢, such that, the exosystem generates a reference
output tracking signal for an MAGLEV system, which is
chosen as g(w) = w; + ws, that is, a sinusoidal shape signal
with frequency «, peak value of +/24, and a dc bias value b.
The reference signal is chosen in this way in order to test
some trigonometric functions of the mathematical unit. In
this case, the steel ball will move upward and downward
as dictated by the amplitude and frequency of the reference
signal.

What follows is the ideal steady state of operation for the
MAGLEV system, that is, m(w) = (m(w), ;(w), i3 (w) T
this state is such that, if the original states of the MAGLEYV,
x = (Xl,XQ,Xg,)T, are driven to the ideal steady-state, then
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the output tracking error will asymptotically decay to zero,
accomplishing the control objective. In order to find the
steady state of operation one must solve the well-known
Francis-Isidori-Byrnes [20] equations. In the case of the
MAGLEYV system results are as follows:

IMMW) () = my(w), (4)
ow
o (w) ki 73 (w)
e s(w) = d(w) — i ﬂ?z )’ (5)
IO o) = Ryt + 1 clow),

(6)
0=m(w)—q(w)

with s(w) = (—aw,, aw;,0,0)". Note that the ideal steady-
state value for e is obviously zero. Using this fact, one easily
calculates from (6) m(w) = w; + ws, replacing m(w)
in (4) one finds that m(w) = —aw,. Substituting m,(w)
in (5), one reckons the expression for m3(w) as ms(w) =
(w1 + w3)/(M/ky,) (ws + a>wy). The c(w) variable represents
the steady-state value for the control input v, but it is not
neccesary to calculate such expression when using SMC
actions. Let us define the steady-state error as

z=(x—7n(w) = (a1 2 z)"
; (7)
= (x1 —mw) x2—mw) x5 —m(w)) .

The dynamic equation for (7) with tracking error e (2) can
be obtained from (1) as

om (w)
ow
ki (23 +m(w))" Om(w)

s(w), (8)

21 =2+ ﬂz(W) —

. — d _— ’
o= dow) - o2 P S S (9)
4= _§(z3 +m3(w)) + %u _ angivw)s(W)y (10)

e=z +m —qw).
Now, one defines the sliding function and control as

u = —kLsign(o), o=z3+%z', k>0, (11)

where sign is the typical signum function, with ¥, =
(Z11%12) and 2" = (21,22)".
Making use of a rigorous stability analysis by means of a

Lyapunov function [10], one finds a stability condition for
gain k:

k >

(%)V“I(Z,W)‘, (12)
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where v¢4(z, w) is a solution of & = 0, namely,

That is, the differential equation (10) is unnecessary as
its solution (14) is now known. The remaining differential
equations for z; and z, are obtained by replacing (14) in (8)

ors and (9). This residual dynamic is known as the sliding mode
Veg = R(z3 +713) + L(%)““’) dynamic. This dynamic is made stable by the proper choice
of ;. An easy way to stabilize the sliding mode dynamic is by
_ LZ (Zz - (%) s w)) using its linear approximation at the origin as shown here:
ow
2t = (A]l — A1221)Zl +H.O.T,
kn\ (z3 +m3)°  (Om .
AN _<7>7_<7> ) W= Sw, 15
%( @ - (3) 2 - () (15)
(13) e=2z+m(w)—q(w)
If condition (12) is satisfied then ¢ = 0 is guaranteed, with Ay, and Ay, being as proper dimensions matrices

implying that z3 can be calculated from (11) as

obtained from linear approximation, and where H.O.T.
stands for higher-order terms, that vanish at the origin. Now,

z3 = —2,z%. (14) >1 is chosen so that the matrix (A;; —A12X1) is Hurwitz or has
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negative real part poles. In this case lim; . 2! (t) = 0 and as a
consequence by (14) z3 tends to zero too. By continuity, using
m(w) = wy + ws one finally finds that the output tracking
error e asymptotically tends to zero, satisfying the control
objective. Finally a closed-loop block diagram is presented
in Figure 3.

4. Control Algorithm Implementation Results

The control algorithm was tested using an FPGA virtexII
XE2V1000-4fg256, and the plant dynamic was simulated
using the DSP board DS1104 from DSPACE. This type
of simulation is known as hardware-in-the-Loop (HIL)
simulation [21]. HIL simulation is a real-time simulation
form. It differs from real-time simulation by the addition of a
hardware component in the loop as an FPGA. This technique
is increasingly being used in the development and testing
of complex real-time embedded systems. Moreover, the
complexity of the plant dynamic under control is commonly
simulated in a graphical environment as SIMULINK from
Matlab. In our case the plant dynamic was created in
SIMULINK and then downloaded to the DSP board DS1104
in order to arrange the I/O ports. Figure 4 shows a simple
diagram of the HIL simulation that was performed.

4.1. FPGA Implementation Results

The system is declared as an entity of three inputs that
represents the position of the ball x;, the velocity of the
ball x;, the current through the coil x3, and the output
voltage v closed loop with the MAGLEV system. The internal
variables used for the calculation of the equations use a
word of 32 longitude bits—15 bits to represent the integer
part, 16 bits for the decimal part, and 1 bit to represent
the sign. The variable v corresponds to the final calculation
of the system and has a word longitude of 64 bits—4 for
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integers, 1 for signs, and 59 for decimals, providing the
necessary accuracy for the stability of the system. The total
processing time of the calculations of one cycle in the FPGA is
202 nanoseconds, representing maximum processing speed
of up to 21 nanoseconds. Figure 5 shows the utilization of
the components in the FPGA virtexII XE2V1000-4fg256,
with 3% of slices, 3% of LUTs, 7% of RAMs, and 20% of
multipliers. The device has sufficient resources available to
implement additional circuits.

4.2. Closed-Loop System in
Implementation Results

The nominal parameters of the MAGLEV system are k,, =
3kgm®/s?A%, M = 0.14kg, g = 9.8 m/s>, R=1.2Q,L = 1 x
107% H. The constant values of the exogenous signals (2) are
a = 0.0070716, b = 0.05m, and ¢ = 9.8. Taking the nominal
parameters of the MAGLEV system, the following pairs of
matrices are calculated:

A = 013920, Ay =0-579.6551. (16)

The control parameters that appear in (11) are as follows:

k =100, 21 = —12.9423, Y1, = —12.2492. (17)
The matrix Z; in (11) is calculated using the LQR function
provided in Matlab.

To verify the robustness properties, some plant parame-
ter variations are introduced which can be seen in Figure 6,
where R and k, may change up to 100% from their
nominal values. It is worth to mention that the perturbation
term generated by the variation of R satisfies the matching
condition [10], but not the variations on k.

Figure 7 shows the tracking of the output signal where
can be appreciated a good performance for 0 < ¢ < 5. But for
5 < t < 10 where the perturbation term due to the variation
in R is present, and the output still performs well due to the
matching conditions. Finally, the unmatched perturbation
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term due to the variation of k,,, appearing at t > 10 adversely
affects the maglev system but the output still performs well.

Figure 8 shows the output tracking error where can be
appreciated the transient and steady-state responses can be
observed.

Figure 9 shows 73, which represents the ideal steady-
state behavior of the current. It can be seen that the current
becomes different to 73 for + > 10 due to the unmatched
perturbation.

Finally, Figure 10 shows the voltage input signals where
the discontinuous nature of the control signal can be appre-
ciated. The main advantage of having discontinuous control
signals is that it avoids the use of PWM as mentioned in
[10], therefore, facilitating a straightforward implementation
of the control action.

5. Conclusion

This work has presented the results of a program gen-
erator for VHDL code developed in Java language and
designed to implement a mathematical unit prototyped and
implemented in reconfigurable FPGA circuits from Xilinx.
The mathematical unit was used to implement the control
algorithm of a magnetic levitation system, accomplishing the
requirements of speed and precision necessary to operate
under nominal conditions. The code generator tool allows
the implementation of blocks containing complex operations
which may be grouped in the same memory, letting oper-
ations to run in a clock pulse, based on the calculation of
functions through preestablished tables. Moreover, the HIL
simulation test platformed has facilitated the verification of
the results obtained when the physical plant is not available.
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1. Introduction

Due to the increasing complexity of digital systems combined
with the market drive for higher performance, there has
been an increased interest about asynchronous circuits [1,
2]. Asynchronous circuits do not present clock distribution
related problems like clock skew. The circuits have low power
consumption, better modularity, robustness toward varia-
tions in temperature, and low emission of electromagnetic
radiation [3]. One known weakness of asynchronous circuits
has been the difficulty to design hazard-free circuits and
to solve the critical races [3]. Furthermore, asynchronous
circuits frequently cannot benefit from the use of FPGAs due
to the extra difficulty imposed by their fixed architecture to
deal with hazards [4].

Asynchronous circuits can be classified according to dif-
ferent criteria like its function (controller—datapath); delay
model (delay insensitive—quasi-delay insensitive—speed
independent—generalized fundamental mode (GFM)) [2];
styles (global asynchronous local synchronous—self-timed
systems—micropipeline—speed-independent controllers—
burst-mode controllers) [5-9].

Burst-mode asynchronous controllers proposed by Now-
ick [9, 10] are a popular class of finite state machines. They

allow multiple inputs changes. They operate according to
the GFM, meaning that a new state transition may only
start when the whole circuit (gates and lines) is stable.
This paper addresses burst-mode asynchronous controllers.
Their advantages are the use of basic gates, similarity with
synchronous design. These controllers have been adopted in
important industrial and academic designs [11-13].

FPGAs are popular components for prototyping and
production of digital circuits due to their low cost and short
design time. Their focus has been on synchronous digital
circuits. There have been some recent efforts to prototype
asynchronous circuits on both commercial [14-17] and
academic FPGAs [4, 18-20].

Burst-mode controllers are usually designed using a
logic-driven design methodology [21]. There are two reasons
why off-the-shelf FPGAs are not fit for burst-mode asyn-
chronous controllers [4, 14, 22].

(1) The mapping process of burst-mode Booleans fun-
ctions (equations of next state—controllers) to logic
blocks (macrocells) may introduce logic hazards.

(2) The internal routing among logic blocks may intro-
duce significant delays that may result in essential
hazards.



1.1. Avoiding Logic Hazards in
Burst-Mode Controllers

The burst-mode specification proposed by Nowick is
functional-hazard free [23]. Nowick also proposed a method
to produce logic-hazard free burst-mode Boolean functions
[24]. Furthermore, Siegel et al. [25] proposed a technique
to decompose large fan-in burst-mode Boolean functions
without introducing logic-hazards. Finally, Maheswaran and
Akella [15] and Hauck et al. [4] showed that if Booleans
functions are functional-hazard free then they can be mapped
on ordinary LUT-based FPGAs without presenting logic
hazards [26].

1.2. Avoiding Essential Hazards in
Burst-Mode Controllers

Yun and Dill [27] and Nowick and Coates [10] proposed
the insertion of delay elements on the feedback wires to
avoid essential hazards in burst-mode controllers. However,
this solution is not adequate for FPGAs because these
components are not designed to ease the insertion of delay
elements. Furthermore, delay elements degrade the circuit
cycle time, area, and reliability.

In this paper, we demonstrated a sufficient condition that
guarantees essential hazard-free operation of any type of burst-
mode controller when mapped on any type of LUT-based
FPGA component without the need of extra delay elements.
The proof is based on two new concepts: (1) essential signals;
(2) essential super states. The essential hazard-free operation
is guaranteed if the following conditions are satisfied:

(1) essential hazard-free specification: for all state tran-
sitions in a burst-mode specification, if the label
contains a nonempty output burst, it must also
contain at least one essential input signal;

(2

~—

essential hazard-free implementation: starting from
an essential hazard-free specification, while building
the burst-mode flow map, all single states whose
incident state transitions are labeled with nonempty
output bursts must be transformed into essential
super states.

Furthermore, whenever a burst-mode specification does
not satisfy the first condition, we present two functional
transformations that create essential input signals without
altering the original functionality:

(1) reduction of input concurrency: transforms concur-
rent transitions into sequential transitions whenever
acceptable (but there is a latency penalty);

(2) addition of dummy input signals (but there is an area
penalty).

2. Hazard-Free BM Conditions

This paper is divided in four sections. Section 3 briefly
explains the burst-mode specifications. Section 2 presents
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the essential signal and essential super-state concepts and
explains the two functional transformations. Section 4
presents our method and illustrated with an example.
Section 5 shows our experimental results presenting the
latency and area penalties found on nine known and one
homemade benchmark. Section 6 presents our conclusions
and future work.

3. Burst-Mode Specification

The BM specification is represented as a state transition
diagram. Each transition is triggered by an input burst
(single- or multiple-input changes) causing the occurrence
of an output burst (that may be empty or nonempty). It
is necessary to define an initial state. State transitions are
represented by arcs, which are labeled with their correspond-
ing input/output bursts. The signals are always transition
sensitive (0 — 1, or 1 —0). Input bursts may not be empty.
The input signals are monotonic, changing only once during
each state transition. The BM specification has to obey the
polarity property, the unique entry point and the maximal
set property [23].

Figure 1 shows a BM specification. The input signals
are a,b, and ¢ while the output signals are x and y. For
example, state transition 7(44p—/x+] — 2 means that if a
changes from 0 to 1 and b changes from 1 to 0, the output
x will change from 0 to 1. State 0 is the initial state. Figure 2
shows the corresponding burst-mode flow map (2D map)
[27]. Several tools, like Minimalist [28], 3D [27], and ATACS
[29] have been proposed to synthesize controllers from a
textual description of the burst-mode specification. These
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FIGURE 3: Part of the BM flow map of Figure 2: (a) path T2; (b) path T3 (final total state—FTS).

tools generate an independent netlist of the technology (next-
state equations of the type sum of products).

BM asynchronous controllers may be subject to sequen-
tial hazards. Essential hazards, like transient essential hazard
or steady-state essential hazard, are inherent to the sequential
function and are not necessarily associated to a particular
implementation of the circuit. The concept of essential haz-
ard has been originally defined by Unger [30] in connection
with fundamental-mode controllers.

This concept has been generalized for BM controllers
and may be explained using the total state concept. A total
state A(I,0) is a vector composed of all the input (I) and
output (O) signal values in the specification. A total state
corresponds to one single cube (cell) on a burst-mode flow
map (see Figure 2). For example, the total state 2 of the
Figure 2 is (a,b,c,x,y) = 10011. There may be n! paths
on the BM flow map corresponding to the transition from
total state A(I;, O;) to total state B(I», O,) (labeled with an
input/output burst I,/Oy), n being the number input signals
in Ip. These paths cover the set {A,B,C,...,N}, where A is
the initial total state, B is the final total state, and C,...,N
are intermediary total states.

3.1. Essential Hazard

Generalized Unger Rule [30] (GUR): the Triple
Sequential Input Burst

Let A(I;,O,) and B(I,,O,) be two total states in the BM
flow map and I,/Oy, the input/output burst that activates the
transition A — B. Let N be the number of the input burst
signals. Consider the following transitions sequence:

T1: Aip) — B; (transition 1 is A — B activated by I)

T2: B[Ib,inverted,polarity] - Ci(i=1,...,kare possible
final states);

T3: Cyy — D; (i = 1,...,n are possible initial
states), (j = 1,...,m are possible final states).

Definition 1. There is a potential steady-state essential hazard
in the A — B transition if, applying the GUR rule, any final
total state D; (j = 1,...,m) # B.

Definition 2. There is a potential transient essential hazard in
the A — B transition if, applying the GUR rule, there is a total
state I (# A and # B) on any path of transitions B — C; or
Ci — D; that produces an output signal different from any
value occurring on any path of transition A — B.

A potential essential hazard can be detected applying the
GUR rule from any initial state. For example, Figures 3(a)
and 3(b) show two paths for the 0 — 1 state transition on the
BM flow map of Figure 2. Consider the Ofp1a1/x+] — 1 path
on Figure 3(a). According to the GUR rule we must apply
the following activation sequence: T1(b + a+), T2(b — a—),
T3(b + a+). The corresponding paths on the BM flow table
are

T1: abexy = {00000 — 01000 — 11000 — 11010},

T2: abexy = {11010 - 10010 — 10011 -
00011 — 00001},

T3: abexy = {00001 — 01001 — 11001}.

As the final total state (11001) after the last activation (T3)
is different from the final total state (11010) after the first
activation (T1), then a steady-state essential hazard has
occurred. Figure 3(a) shows the path T2 and Figure 3(b)
shows the path T3.

3.2. BM-EHF Condition

An input signal in a BM specification is a context signal in an
A — B transition if it does not change during this transition
(it is not on the label) while it is a trigger signal if it is labeled
during this transition. The input burst of each state transition
can be represented by an input transition cube (ITC). For
example, the ITC for state transition 7 —2 on Figure 1 is
abc = 220 (2 means do not care). In this example a and b
are trigger signals while ¢ is a context signal (whose value is

0).

Definition 3. Let A and B be a pair of total states in a BM
specification and I,/Op be the input/output burst for the
A — B transition. Let E; be one input signal (Es; € I,). E; is
an essential signal if it is a context signal on all transitions
incident on state A and is a trigger signal on the transition
A—B.

For instance (see Figure 1), a,b,c are not essential on
transitions 4 — 0, 1 — 2, and 2 — 3 because they are trigger
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signals on transitions 3 -4, 0— 1, and 7 — 2. Signal b is
essential on transition 7 — 2 because it is a context signal
on transition 6 — 7. On transition 6 — 7 both a and ¢ are
essential signals.

Lemma 1. A BM specification is essential hazard free (BM-
EHF) if and only if for each state transition labeled by I,/ Oy,
if Op # O, there must be at least one essential input signal.

Proof. Let T1(A — B) and T2(B — C) be two sequential state
transitions of a BM-EHF specification. ITCy; and ITCr;
are their respective input transition cubes. Suppose that the
transition T2 input burst does not contain as essential signal.
Then ITCr; € ITCr,, which means that the C final total state
belongs to a path on ITCry;. This fact violates Definitions 1
or 2. O

Figure 4 shows the HP-mp-for-pkt benchmark [12, 13].
On all transition labels there is at least one essential signal.
Therefore, it is a BM-EHF specification.

There are two ways to transform nonessential hazard-free
BM specifications into a BM-EHF specification.

3.3. Reduction of Input Burst Concurrency

The transformation consists of decomposing the input burst
labeled on a state transition generating two-state transi-
tions. For example, Figure 5 shows a reduced concurrency
BM-EHF specification equivalent to the BM specification
in Figure 1 in which the concurrency has been reduced.
Analyzing the BM specification in Figure 1, we found
state transitions 1 —2 and 2 — 3 without essential signals.
Decomposing state transitions Ofp+ g+/x+] — 1 into Ope; —
Alai/x4) — 1 and decomposing state transition 744 p—/x+] —
2 into 744/ — Bp-/x+] — 2, we obtained the BM-EHF
specification shown in Figure 5. It is EHF because transitions
4 — 0 and 7 — B contain empty output bursts while all other
transitions contain essential signals.

3.4. Insertion of Essential Signals

This transformation consists of inserting the smallest num-
ber of dummy essential signals in all state transitions without
essential signal. For example, Figure 6 shows an BM-EHF
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specification equivalent to the specification in Figure 1 in
which adummy essential signal d has been added to state
transitions 1 — 2 and 2 — 3. This transformation has a higher
cost than the previous one because it increases the number of
input signals (I ), modifying the interaction with the external
environment.

If one observes the 2 — 3 state transition in Figure 6, the
conclusion is that a is essential on transitions 1 — 2 — 3, while
d is essential on transitions 7 — 2 — 3.

3.5. Super-State Condition

Lemma 1l is a necessary and sufficient condition for an
essential hazard free specification but not for hazard-free
implementation. The super-state concept will guarantee the
latter condition.

Definition 4 (super-state). Consider an input burst I,(a,
b,...,n) and an output burst Op(x,y,...,m). We call a
super-state the set of single total states defined by all 0/1
combinations of a subset Sy, of the input burst signals,
keeping fixed the remaining input signals and all the output
signals.

Definition 5 (essential super-state). Consider a BM-EHF
specification in which a total state F is reached by a set
of N incident transitions {I;;} i = 1,...,N. Each incident
transition I; ; is activated by an input burst I, ;. Each input
burst is labeled with a subset of the input signals set {I;}. An
essential super-state is the super-state defined by the union
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Sure = U{Il,;} of all input signals active on the incident as SSTCx[output] = SSTCg[output] because both output

transitions set {I; ;}, labeled with nonempty output bursts.

An essential super-state BM flow map is derived from a
BM-EHF specification by applying Definition 5 to all total
states. Figure 7 is such a map for the specification in Figure 6.
Cells in red are used to compose essential super-states. For
example, the Oig4p4/x+] — 1 transition creates essential
super-state 1 composed of four total states: abcdxy =
[000010,010010, 100010, 110010]. State 110010 is the final
total state. Total state 2 may be reached from either state 1 or
state 7. Applying Definition 5, we find that it must be com-
posed of six total states (essential super-state 2): abcdxy =
[000111,010111,100111,110111,100011,110011]. This set
of total states can be described by a cube (super-state
transition cube—SSTC). Figure 8 shows the description in
states transition diagram of the BM-ESS flow map.

Proposition 1. If a total state F in a BM-EHF specification is
reached by one or more incident transitions labeled with empty
output bursts, then F is an essential super-state.

Proof. Let T1(A — F) be a state transition with an empty
output burst. SSTC, and SSTCp are super-state transition
cubes for final total states A and F. As A must be essential, and

bursts are empty, then F is also an essential super-state. [

Lemma 2. The BM-EHF specification has an EHF implemen-
tation if and only if for ¥ total state A € BM-EHF it is an
essential super-state.

Proof. Let T1(B—A) and T2(A— C) be state transitions
with output bursts. SSTCy and SSTCc are the super-
state transition cubes of final total states A and C. Sup-
pose that the T2(A— C) input burst does not contain
an essential signal. Then SSTCy[input] < SSTCc[input]
hence SSTCx [output] # SSTC¢[output]. This means that A
cannot be an essential super-state because this would violate
Definition 5. O

4. Metodolology

Our method begins from the BM specification and imple-
ments the asynchronous controllers in the architecture of
Huffman with feedback output. The synthesis procedure has
five steps.

(1) If the BM specification satisfies Lemma 1 to go for
Step (3), otherwise, Step (2).
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(2) Apply in the BM specification the functional trans-
formations that satisfy Lemma 1 (Sections 3.3 and 3.4).

(3) Generate the BM-EHF specification with essential
super-states (BM-ESS) according to Section 3.5 (applying
Definition 5).
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FIGURE 12: Simulation of the logic circuit of Figure 5.

(4) Use the Minimalist tool that starts from the BM-
ESS specification and produces the equations of next-state
hazard-free (sum of products—mnetlist).

(5) Use the Quartus tool [31] that starts from the netlist
in structural VHDL.

The BM specification shown in Figure 1 has been used to
illustrate our method. Figure 5 shows BM-EHF specification
(Steps (1) and (2)). Figure 9 shows the BM-ESS specification
(Step (3)). Steps (4) and (5) accomplish the automatic
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Figure 13: Simulation of the mp-for-pkt: with transient essential
hazard.

TABLE 1: BM specifications show data.

BM specification

Design States/trans. In/out
Call-proc 12/15 3/3
Chul33 4/4 3/3
Chul50 5/5 3/3
Diff-Alul 719 3/5
Dram-ctrl 12/14 716
Figure 1 8/9 3/2
Hp-ir-if 717 5/5
Mp-for-pkt 4/4 3/4
QR42 4/4 2/2
Rev-setup 6/7 3/2

TaBLE 2: Experimental Results to Huffman Machine The column
State vars shows the variables of state.

Huffman machine

Design State vars Total of LUTs Latency (ns)
Call-proc 0 8 10,888
Chul33 2 5 10,650
Chul50 0 3 10,017
Dift-Alul 3 17 11,081
Dram-ctrl 0 10 11,633
Figure 1 0 4 10,675
Hp-ir-if 0 7 10,900
Mp-for-pkt 0 5 10,719
QR42 1 6 9,699
Rev-setup 0 4 11,104

synthesis. One-state variable y0 was required to solve the
existing conflicts (see Figure 10) [28]. Figure 11 shows
logic circuit (RTL view—Altera). Figure 12 shows result of
simulation of the circuit that was obtained by our method
(hazard-free waveforms).

TABLE 3: BM-ESS specifications lead to the following data.

BM-ESS specification

Design States/trans. In/out Dummy signals
Call-proc 22/40 3/3 0
Chul33 6/8 3/3 0
Chul50 10/15 3/3 0
Diff-Alul 14/23 3/5 1
Dram-ctrl 22/36 716 0
Figure 5 14/19 3/2 0
Hp-ir-if 717 5/5 0
Mp-for-pkt 6/8 3/4 0
QR42 8/12 2/2 1
Rcv-setup 9/13 3/2 1

TaBLE 4: Experimental results show Huffman machine—EHF
(*Minimalist Tool did not complete the synthesis).

Huffman machine—EHF

Design State vars Total of LUTs Latency (ns)
Call-proc 0 6 10,898
Chul33* — — —
Chul50 0 7 11,606
Diff-Alul 3 24 11,879
Dram-ctrl 0 16 12,271
Figure 5 1 11 10,855
Hp-ir-if 1 14 11,454
Mp-for-pkt 0 8 10,948
QR42 1 10,769
Rev-setup 1 6 10,263

5. Discussion & Results

5.1. Discussion

Figures 13 and 14 show, respectively, the simulation results
and the logic circuit of the mp-for-pkt benchmark whose
specification is shown in Figure 4. The synthesis was per-
formed using the Minimalist tool followed by the Quartus
tool. Figure 13 shows two glitches, one on the Allocoutbound
output and one on the AllocPB output. For example, the
glitch on signal Allocoutbound occurs on state transition
1{Ackout—Req+/TRS—AllocPB+] — 2. Figure 14 shows the behavior
in the logic circuit of the state transition 1 — 2. The reason
of the glitch: input signal Reg+ acts in the paths 1 and 2,
where the change in the path 1 arrives first in LUT-5 (see
Figure 14). This glitche can also be identified in the BM flow
map. Thespecification is EHF (Lemma 1 is satisfied) but the
implementation is not (Lemma 2 is not satisfied), causing a
transient essential hazard shown in Figure 15 (to apply GUR
rule—T2: 2[req-ackout+] — 1 — Allocoutbound 0 — 1 — 0).

The result of simulation of the circuit that was obtained
by our method shows that the glitches have been eliminated
(see Figure 16). The area penalty was 8 LUTs against 5 LUTs
in the first solution. The latency penalty was 2,2%.
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5.2. Results

We applied our theory to 9 known [8, 9, 12, 13] and
one homemade benchmark. Table 1 presents the number of
input and output signals, states, and transitions for each
benchmark. Table 2 presents the area and timing results
for these benchmarks synthesized as Huffman machines
(with feedback output) before applying our theory. Syntheses

performed using Minimalist followed by Quartus. The area
was measured in terms of the number of LUTs while the
latency was derived from simulations of the circuits already
fitted on an EP2C35F672C7 device from Altera (Cyclone II
family).

Table 3 presents the number of inputs and output
signals, states, transitions, and dummy signals for the same
benchmarks after applying the functional transformations
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FiGure 16: Simulation of the EHF version of the mp-for-pkt.

required to satisfy Lemmas 1 and 2. Table 4 shows the same
results for the benchmarks after adhering to Lemmas 1
and 2.

As expected we found an area penalty (average of 54%),
a latency penalty (average of 4,8%), and a state variables
penalty (average of 75%). The call-proc benchmark showed a
smaller area (less LUTs) and the rev-setup benchmark showed
a reduced latency time. However, the area penalties did not
impact significantly the FPGA usage (=1%) still leaving
enough free space for a datapath and other components that
could be placed on the same device.

6. Conclusions

This work presented two conditions that, if satisfied,
guarantee that burst-mode asynchronous controllers can
be mapped on any commercial LUT-based FPGA without
incurring in essential hazards.

When these conditions are not satisfied, we presented
functional transformations that may be used to solve the
problem. In this case, there is an area (mainly are added
state variables—75%) and a latency penalty. However, our
experimental results on a set of known benchmark showed
low latency penalty (4,8%) and low FPGA occupation
overhead (£1%). This type of burst-mode controllers may be
combined with a self-timed datapath that have already been
successfully synthesized on commercial FPGAs, in order to
create fully asynchronous processor on FPGAs.
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1. Introduction

Significant improvements in the performance, logic density,
and power efficiency of field-programmable gate arrays
(FPGAs) have made them useful for implementing nearly
any type of digital application. In early FPGAs, significant
improvements were made by optimizing the fine-grained
programmable logic and routing architecture of the FPGA.
Today, further improvements are being made by embedding
coarse-grained elements such as memories, multipliers, and
processors within the fine-grained programmable fabric of
the FPGA. Coarse-grained elements can implement a specific
function more efficiently than fine-grained programmable
logic. However, since they are not as flexible, they only benefit
applications which utilize them. This limits the types of
embedded blocks which are commercially viable in general-
purpose FPGAs to very common circuit elements such
as memories, adders, and multipliers. For domain-specific
FPGAs, however, additional embedded blocks may make
sense. For example, an FPGA that is built specifically to
implement applications containing a significant amount of
floating point computation would benefit from embedded

floating point units. This was explored in [1], in which
a domain-specific FPGA that incorporates coarse-grained
floating point units (FPUs) was described. The results in
[1] show that the embedded floating point units lead to an
18 times density improvement for a set of floating point
datapath circuits.

An important consideration when adding coarse-grained
embedded elements to an FPGA is the interface between the
coarse-grained and fine-grained resources. If this interface
is not flexible enough, the usefulness of the embedded
block will be reduced, since connections to and from the
block will be expensive. On the other hand, if the interface
is too flexible, it will require too much area and delay,
possibly negating the density and performance advantages of
including the embedded block, and resulting in unnecessary
overhead for applications that do not use the embedded
component.

In this paper, we examine this interface. We focus on
architectural issues, such as the location of the embedded ele-
ments, and the interconnect between the embedded elements
and the fine-grained fabric. Our approach is presented in
the context of the embedded floating point blocks described



in [1]. Specifically, the key contributions of this paper are the
following:

(i) a set of parameters that describes the interface
between coarse-grained and fine-grained program-
mable logic in FPGAs;

(ii) an empirical framework to model the impact of
coarse-grained architectural parameters in terms of
performance, density, and power consumption;

(iii) an empirical study that examines:

(1) where the coarse-grained FPUs should be
embedded within FPGAs;

(2) where the pins of the FPUs should be on the
periphery;

(3) how flexible the interconnect between the FPUs
and the fine-grained logic should be;

(4) what shape the FPU should have;

(iv) a study of a hybrid FPGA interface containing
embedded memories and FPUs including:

(1) where embedded memories used by the FPUs
should be located;

(2) how flexible the interconnect between the FPUs,
embedded memories and the fine-grained logic
should be.

Although this study focuses on FPGAs with embedded
FPUs, its findings may be applicable to other types of
embedded computational blocks.

A preliminary version of this work was presented in [2].
This paper further expands the study by considering hybrid
FPGAs with more than one type of coarse-grained block.
This is important because the different coarse-grained blocks
have different I/O density, area, and speed. The connection
of those blocks should affect the performance and routing
resources required in the hybrid FPGA.

This paper is organized as follows. Section 2 describes
related work. Section 3 illustrates the interface between
coarse- and fine-grained logic and presents corresponding
parameters to describe this interface. Section 4 then presents
the empirical framework used to evaluate different interface
schemes. Finally, Section 5 presents our results and analysis,
and Section 6 summarizes our conclusions.

2. Background

Conventional island-style FPGAs consist mainly of a fine-
grained programmable fabric that is made up of configurable
logic blocks (CLBs), programmable routing resources, and
programmable I/Os. The CLBs consist of one or more k-
input lookup tables (k-LUT) and fast local interconnect.
Each k-LUT can implement any single output function
with k inputs or less. The routing resources implement the
interconnect between the CLBs and the I/Os.

A significant number of studies have focused on opti-
mizing this type of FPGA architecture to minimize area,
critical-path delay, and power consumption. As an example,
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the study described in [3] compares different aspects of
segmented routing architectures, such as wirelength distri-
bution, switch block implementation, and connection block
flexibility, with the goal of creating a fast and area-efficient
general-purpose FPGA architecture.

More recent work has focused on adding coarse-grained
blocks within the fine-grained fabric. Examples of this
include embedded arithmetic multipliers [4, 5] and embed-
ded processors [5]. Coarse-grained blocks improve area and
delay since they can implement specific functions more
efficiently than the fine-grained logic [6]. On the other hand,
coarse-grained blocks waste area when they are not used by
an application. FPGAs vendors must consider this tradeoff
to determine the type and number of coarse-grained blocks
that should be embedded within their devices.

In order to take further advantage of coarse-grained
blocks, domain-specific hybrid FPGAs target a specific
application domain. In doing so, greater area and delay
savings can be achieved for certain types of applications
since the amount of coarse-grained logic can be tailored
for those applications. A number of recent approaches have
been proposed in the literature. In [7], a coarse-grained
architecture with bus-based interconnect has been shown
to reduce area for datapath circuits. In [8], a tool that
generates a domain-specific reconfigurable fabric that is
tailored to a specified set of application has been proposed.
In [9], the QUKU architecture which merges coarse-grained
reconfigurable processing element array and FPGA archi-
tectures has been described. This two-level reconfigurable
architecture provides active support for fast and efficient
dynamic reconfiguration. Enzler et al. [10] has proposed a
framework for the cycle-accurate performance evaluation of
hybrid reconfigurable processors on the system level, which
is based on data-streaming applications. In [1], a domain-
specific hybrid FPGA architecture that targets floating point
arithmetic applications by incorporating floating point units
within a fine-grained programmable fabric has been pre-
sented; this architecture is shown to be 18 times more area-
efficient than a purely fine-grained architecture for floating
point arithmetic applications.

One of the key parts of an FPGA with embedded
coarse-grained blocks is the routing structure between the
embedded blocks and the fine-grained logic resources. If the
coarse-grained/fine-grained interface is not flexible enough,
many applications will be unroutable. On the other hand, if
the interface is overly flexible, the routing resources will be
slower and consume more area than is necessary. Although a
number of studies have proposed new coarse-grained blocks
and hybrid FPGA architectures, few have examined the
interface between the coarse-grained blocks and fine-grained
fabric in significant detail. In [11], the local routing resources
that connect CLBs to the FPGA routing resource are shared
with the embedded blocks to minimize the overall area
penalty when adding the embedded blocks. This technique,
called shadow clustering, is useful for embedded blocks with
similar I/O pin densities as the existing CLBs; however,
for embedded blocks which has higher I/O pin densities
than the existing routing resources are not sufficient. In
[12], the interface between embedded memory blocks and
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FIGURE 1: A configurable logic block and the basic logic element inside.

fine-grained programmable logic is examined. Memories are
quite different from computation blocks, and so we expect
that the interface presented in [12] would not be suitable for
our problem.

3. Coarse/Fine-Grained Interface

In this section, we describe the architecture of the blocks used
in this work. We first present our assumptions regarding the
fine and coarse-grained logic and then give a description of a
generic interface architecture with parameters that cover the
space of architectures considered.

3.1. Fine-Grained FPGA Assumptions

We assume that the fine-grained resources in the FPGA
consist of a grid of identical configurable logic blocks (CLBs),
each containing N basic logic elements (BLEs). Each BLE
contains a k-LUT and flip flop. The CLB also contains
support for carry chains, shift registers, internal multiplexers,
and XOR gates. Figure 1 shows the CLB and BLE modelled.

The CLBs are connected using horizontal and vertical
channels, as described in [3]. Each channel contains W
parallel routing tracks of length 1 and is connected to neigh-
bouring CLBs using a connection block, and intersecting
channels using a switch block. We use the subset switch
block (also known as disjoint) with Fcgitch = W, Fs = 3,
Fcouput = 1, Feinput = 1, and Fepag = 1 [3].

3.2. Coarse-Grained Block Assumptions

In general, FPGA-based floating point application circuits
can be divided into control and datapath circuits. The
datapath occupies most of the area in the form of FPUs.
The required processing mainly consists of addition, sub-
traction, and multiplication. We adopt the coarse-grained
floating point blocks described in [1]. The datapath circuit
is implemented in this floating point block. The float-
ing point multiplier block is a fixed-function block. The
floating point adder block can be configured for either
floating point addition or subtraction. Each block has
a reconfigurable registered output and associated control
input and status output signals. A wordblock contains N
identical bitblocks. Bitblock contains two 4-input LUTs
and a reconfigurable output register. Bitblocks within a
wordblock are all controlled by the same set of configuration
bits, so all bitblocks within a wordblock perform the
same function. A wordblock, which includes a register,
can efficiently implement operations such as addition and
multiplexing.

In our assumption, each coarse-grained block contains
two double precision floating point adders, two double
precision floating point multipliers, and five wordblocks
which can efficiently implement operations such as addition
and multiplexing as shown in Figure 2.

In addition to FPUs, we also consider embedded mem-
ories. Specially, we consider block-selected RAMs (BRAMs)
as described in [13]. The details of floating point blocks and
BRAMs are shown in Table 1.



connection blocks, similar to those used for CLBs. Although
other connection patterns are possible (see, e.g., [12]), this
pattern allows us to minimize the number of changes to the
existing FPGA routing architecture, so that we can leverage
the significant amount of previous work on FPGA routing
structures. We also assume that the gridded routing fabric
extends over the embedded block, as shown in Figure 3.
Given the large number of metal layers available in modern
CMOS processes, it is reasonable that tracks can easily be
placed on top of the embedded blocks. In Figure 3, the four
switch blocks required at the interface of the horizontal and
vertical channels must coexist with the embedded block; the
embedded block, which takes the same area as nine CLBs,
includes the area of these four switch blocks. Although it
would be possible to consider architectures in which the grid
is “broken” [14], it would require changes to the detailed
routing architecture. In addition to FPUs, the memories are
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Control signals
and status flags
WBI1 FM1 FA1 WB2 WB3 FM2 FA2 WB4 ‘WB5
Input === Output
bus t bus
Feedback ,/
register
* ‘\ Feedback
Note * WB: word block Feedback bus
FM: floating point multiplier MUX
FA: floating point adder
FIGURE 2: Coarse-grained unit modelled in this paper.
TABLE 1: Statistic of the coarse-grained blocks used.
BRAM Floating point unit CLB | | CLB || CLB | CLB | CLB
Number of input 90 286 b b bj_l_,[_,_,_r bl 1]
S S S S|
Number of output 64 258 ¥ J Lo
Area (no. of CLB) 8 182 || |
CLB | | L] CLB
Delay (nanoseconds) 2.1 9.2 ] ]
L] C ] ey iy Cop ) L]
T L | Lo d Lo f Lo f T
3.3. Coarse-Grained Interface ces | ] EB I cuB
Based on our detailed area model, we estimate that our L [} Ceb Iy Fg{%
embedded FPU consumes roughly the same amount of area IR - [ b
as 182 tiles. Each tile represents a CLB and its associated cis | [ 1 M1 cLs
interconnect, buffer, and configuration bit. To embed an -
FPU, we remove a 13 x 14 grid of CLBs, and replace them [ ! | ! | ! [ ] ! [
with a single EB. Figure 3 shows an example of replacing 3 x 3 I N B NS B W Tt 11
grid of CLBs-by a single embedded.block (EB). We assume cs | cee | cie as LM cs
that the EB pins connect to the routing architecture through ]

FiGure 3: Connection between coarse- and fine-grained units
through switch box (sb).

embedded in the hybrid FPGA under the same assumption.
However, the area and the delay of the memories are different
to FPUs, which is shown in Table 1. The size of BRAM is 2 X 4
tiles.

3.4. Interface Parameters—Single EB Type

In this paper, we consider a range of interface architectures.
First, we explore the single EB-type hybrid FPGA. To describe
the space of single EB-type architectures that we consider, we
define the following parameters.
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EB EB EB EB

(a) Type 1: EBs are on the top and  (b) Type 2: All EBs are on the top of

bottom of CLBs CLBs
—1 EB EB —
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EB EB
— EB EB —

(c) Type 3: EBs are in the middle of (d) Type 4: EBs are surrounded by
CLBs sea of CLBs

FIGURE 4: Various positions of the EBs relative to the fine-grained
CLBs.

(1) Single EB Position

The embedded blocks can be placed in various places within
the FPGA. In this paper, we consider the positions as shown
in Figure 4.

(2) Single EB Pin Location

Figure 5 shows several strategies for positioning the pins of
each EB. Strategy (a) has the highest I/O density, but may
be suitable if signals from the I/O block are to be combined
using a small set of CLBs. Strategies (b), (¢), and (d) have
lower I/O density, but may result in longer connections if
signals from more than one side of the EB are to be connected
to the same CLB(s).

(3) Single EB Channel Width

The width of the channels surrounding the EB has a
significant impact on the routability of the device. Since our
EB has a large number of pins, congestion around the EB may
happen so it is desirable to relieve this congestion by using
wider channels.

(4) Single EB Shape

Several layouts of each embedded block are possible. We
consider various aspect ratios.

3.5. Interface Parameters: Multiple EB Types

We also study the interface between multiple EB types
and the fine-grained fabric. In this case, connections exist
between the two types of EBs and also between EBs and
CLBs. The best interface architecture may be different from
the single type EB FPGA. Therefore, we investigate the
following parameters for the hybrid FPGAs with two types
of embedded blocks.

(1) Multiple EB Position

We arrange the different EB types in various ways as shown
in Figure 6. We consider three different arrangements. The
first type places the smaller EBs in columns next to the larger
EBs. The second type places the smaller EBs around a group
of larger EBs. The third type places the smaller EBs around
individual larger EBs.

(2) Multiple EB Channel Width

Embedding additional EBs may change the amount of
routing resources that are needed. The connections between
EBs are usually bus-based which require more routing
resources. It is because if the I/O density of the additional
EB is larger, more wires are needed to connect to another
EB within a certain area. And the congestion in this area
increases and may reduce the performance of the FPGA.

4. Methodology

We employ an empirical methodology to examine the impact
of the interface parameters described in the previous section.
This section describes the benchmark circuits, the CAD tools,
and the model that are used.

4.1. Domain-Specific Benchmark Circuits

First we use six double precision floating point benchmark
circuits [15] with only one kind of coarse-grained embedded
block. They are (1) bfly: the basic component of fast Fourier
transform: z = y + x*w using complex numbers; (2) dscg:
a digital sine-cosine generator; (3) fir4: a 4-tap finite impulse
response filter; (4) mm3: a 3 X 3 matrix multiplication circuit,
(5) ode: an ordinary differential equation solver; (6) bgm: a
datapath to compute Monte Carlo simulations of interest rate
model derivatives priced under the Brace-Gatarek-Musiela
(BGM) framework.

These benchmarks are chosen since they each involve
a significant amount of floating point computation. Since
bfly, dscg, fird, ode, and mm3 contain a small number of
fine-grained units, each core is replicated four times and are
connected together. For example, a dscg benchmark contains
four dscg cores connected together. All circuits use a single
global clock. The amount of FPUs and CLBs used for each
benchmark circuit is shown in Table 2.

For the experiment involving embedded memories, we
add BRAMs to the benchmark circuits. It is more realistic
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rounded by small EBs and CLBs

FIGURE 6: Various positions of the multiple EBs.

to store the input and output data of the applications
in internal BRAMs rather than store the data in of-chip
memories. The BRAM data lines are connected to primary
input/output of the benchmark circuits. The BRAM address
lines are connected to counters which are also added
to the benchmark circuits. The adders do not affect the
performance because they are implemented using fast carry
chains, the delay of which is small compared to the delay
of the BRAM and the FPU. The benchmark circuits now
contain two different types of EB: (1) FPUs and (2) BRAMs.
The number of BRAMs used in each benchmark circuit is
shown in Table 2.

4.2. VPH: Versatile Place and Route for
Hybrid FPGAs

We use the evaluation tool VPH to explore our architectures.
VPH is a modified version of the VPR tool, with support
for embedded blocks, complex logic blocks, carry chains,
and constraint files [16]. The tool is available at [17]. In
the VPH design flow, shown in Figure 7, applications and
coarse-grained elements are written in a high-level hardware
description language (VHDL) and synthesized to a mapped

TasLE 2: Amount of FPU, CLB, and also BRAM used in each
benchmark circuit.

Benchmarks bgm dscg bfly ode mm3  fird
No. of CLB 6433 649 884 430 876 282
No. of FPU 7 8 8 8 8 8

No. of BRAM 18 22 40 25 12 12

library netlist in VHDL format using Synplicity’s Synplify
Premier 8.5 tool. The library netlist contains the usage and
connection of simple units such as registers, LUTs, internal
multiplexors, and internal inverters. The basic logic block
packing tool, VPHpack, packs these units into basic logic
elements (BLEs). VPHpack clusters BLEs into CLBs.

A user constraint file (.ucf) is used to specify the FPGA
area and the absolute position of each embedded block. A
separate constraint file for each embedded block is used to
specify the area, the pin position, and the timing information
for the EB; the area and delay information for each block is
obtained using Synopsys Design Compiler V-2004.06. As in
VPR, an architecture file specifies the fine-grained FPGA’s
architectural parameters, such as timing delay of the LUT.
Using these files, the VPH tool performs placement, routing,
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(VHDL) 8.5) (vhm file)
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Place and route VPH netlist
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EB ucf files
(.ucf file)
Place and route .
result and timing Architecture file
. (.arch file)
analysis result

F1GURE 7: Design flow of exploration using VPH.

and timing analysis to produce area and delay estimates for
each benchmark circuit.

5. Results and Discussion—Single EB Type

In this section, the impact of the interface parameters in
Section 3 on hybrid FPGAs is studied. In the experiments
conducted, the default architecture parameters are (1) CLB
with 2x 4-LUTs, (2) type 3 EB position (Figure 4) as it gives
the best performance for the first experiment, (3) channel
width 80; since the maximum I/O density of the EBs is
42 pins per slice width, we choose 80 to be the channel width
to facilitate routing, (4) size of the floating point unit is 13 X
14 CLBs. We use higher routing effort than our preliminary
version of work in [2]; therefore, the experiments result can
achieve higher speed than our previous work.

5.1. Single EB Position Results

We first examine how the position of the EBs affects the
overall performance of the device. As shown in Figure 4, we
consider positioning the EBs both around the periphery of
the device, as well as in the centre. Intuitively, positioning
the EBs in the centre will lead to shorter wirelengths for
wires that connect multiple EBs. However, positioning the
EBs around the periphery may cause less congestion since the
EBs will be more spread out.

Figure 8 shows the results for each of the positioning
strategies described in Figure 4. The best strategy is type 3, in
which the EBs are in the centre of the device, surrounded by a
sea of CLBs. It achieves at most 14.4% in speed improvement
compared to other positioning strategies. The critical path of
our circuits tends to include nets that connect multiple EBs;
thus placing the EBs close to each other is beneficial.

Delay against shape of EB—single EB type

Delay-average of 4 I/O pin
sides (ns)

bgm dscg bfly ode mm3 fird

Benchmarks

@ Shape 2 x 91
o Shape 4 x 45

O Shape 7 X 26
O Shape 13 x 14

FIGURE 8: Delay against various EBs positions for single EB type
FPGA, as defined in Figure 4.

5.2. Single EB Pin Location Results

We next consider the effect of I/O pin position on the
periphery of each EB. As shown earlier, pins can be
distributed evenly around the EB, or can be concentrated on
one or more sides of the block. Intuitively, distributing the
pins evenly will lead to a lower I/O density, possibly reducing
congestion but may lead to longer wirelengths if pins from
more than one side of the EB are connected.

The results are shown in Tables 3 and 4. The critical
path of the circuit is slightly smaller if all pins are placed
on a single side of the embedded block. In several of our
benchmarks, the critical path includes a path from one
EB, through a register in a CLB, into another EB. These
connections are shorter if the pins are close together. On
the other hand, Table 4 shows that the routing demand in
each channel can be reduced by distributing the pins evenly
around each EB. Compared to the configuration in which all
pins are on one side of the block, evenly distributing the pins
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TaBLE 3: Critical path delay in ns for different EB’s I/O positions as shown in Figure 5 for single EB-type FPGA. The percentage shows the
deviation from the 1 side result.

Circuits 1 side 2 sides 3 sides 4 sides
(42 wires/clb) (21 wires/clb) (14 wires/clb) (11 wires/clb)
bgm 12.01 (0%) 11.92 (—-0.7%) 11.93 (—0.7%) 12.03 (0.2%)
dscg 12.12 (0%) 12.34 (1.8%) 12.13 (0.1%) 12.28 (1.3%)
bfly 12.42 (0%) 12.38 (—0.3%) 12.30 (—1.0%) 12.19 (—1.9%)
ode 13.02 (0%) 13.30 (2.2%) 12.79 (—-1.8%) 13.06 (0.3%)
mm3 11.22 (0%) 11.53 (2.8%) 11.31 (0.8%) 11.29 (0.6%)
fird 12.63 (0%) 12.79 (1.3%) 12.41 (—1.7%) 12.67 (0.3%)
Average 12.23 (0%) 12.37 (1.1%) 12.14 (-1.9%) 12.25 (0.9%)

TABLE 4: Minimum channel width (number of wires) for different I/O positions for single EB-type FPGA as shown in Figure 5. The

percentage shows the deviation from the 1 side result.

Circuits 1 side 2 sides 3 sides 4 sides

bgm 44 (0%) 44 (0%) 30 (—32%) 27 (—39%)
dscg 43 (0%) 44 (2%) 30 (—30%) 33 (—23%)
bily 44 (0%) 44 (0%) 38 (—14%) 37 (—16%)
ode 43 (0%) 44 (2%) 35 (—19%) 33 (—23%)
mm3 45 (0%) 45 (0%) 29 (—36%) 30 (—33%)
fir4 42 (0%) 44 (5%) 32 (—24%) 29 (—-31%)
Average 43.5 (0%) 44.2 (1.6%) 32.3 (—26%) 31.5 (—28%)

reduces the channel width by 39%. We conclude that this is
the best choice.

5.3. Single EB Interconnect Flexibility

We next consider the width of the channels surrounding the
EBs. Intuitively, there is a high pin density on each side of
each EB; this may place additional demands on the routing
fabric near the EBs. If the fabric cannot provide the required
flexibility, circuitous routes may be required, leading to an
increased delay.

The results in Figure 9 show the effect of EB to CLB chan-
nel width on delay. For routable circuits, rather surprisingly,
the average variation is less than 3%. We believe that this
is due to critical paths being routed efficiently, so once the
circuit is routable, channel width does not affect delay.

5.4. Single EB Aspect Ratio

Finally, we consider how the aspect ratio of each EB affects
the overall performance of the FPGA. In this experiment, the
area of EB is fixed, but the aspect ratio is changed. Intuitively,
changing aspect ratio will change the distance between pins
on different EBs; this leads to a change in the delay of the nets
connecting these pins.

We modify the shape of the EBs from rectangular (2x91)
to square (13 x 14); the width and height are counted in the
number of CLBs. The results in Figure 10 show that square
EBs are the most efficient for all applications and result in

Delay against channel width—single EB type
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FIGURE 9: Delay against channel width for single EB-type FPGA.

a 14.4% speed improvement compared to the 2 X 91 shape.
Square EBs lead to a better worst-case delay between the EBs,
shortening the critical path in our benchmark circuits.

6. Results and Discussion: Multiple EB Types

After finding the best parameters for the single EB-type case,
we examine how embedding more than one type of EB affects
performance and routing demand. In our experiments, we
explore the EB position and the interconnect flexibility of this
system. The size of BRAM is 2 X 4 CLBs in these experiments.
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FiGure 10: Delay against various EBs’ shape for single EB-type
FPGA.
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FiGgure 11: Delay against various EBs positions for multiple EB
types FPGA, as defined in Figure 6.

6.1. Multiple EB Position Results

We first explore the effect of the BRAMs position on
the floating point hybrid FPGA. Figure 11 shows the best
location between floating point units which corresponds to
type 3 in Figure 6. This configuration performs better than
the traditional column-based BRAM (type 1 in Figure 6)
used in Xilinx devices because the connections between
floating point units and BRAMs are reduced in this case. In
a similar way shown in Section 5.1, placing the embedded
blocks closer together reduces the length of the bus-based
connections between the embedded blocks which improves
performance and reduces congestion.

6.2. Multiple EB Interconnect Flexibility

Finally, we investigate routing resources for the multiple EB
system. Figure 12 shows delay for different channel widths.
The channel width is observed to be nearly constant which is
similar to the case discussed in Section 5.3. Table 5 shows the
increase in channel width required when embedded BRAM
is introduced. Since both FPUs and BRAMs have large 1/O
requirements, an increase in channel width of 12% over the
case without embedded BRAM is required.

Delay against channel width—multiple EB types
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FIGURE 12: Delay against channel width for multiple EB types
FPGA.

TaBLE 5: Minimum channel width of multiple EB types FPGA.

Channel width increase

Circuits ~ Minimum channel width (%) (I/0O pos.: 4 sides,
type 3 in Figure 4)

bgm 27 0

dscg 35 6.06

bily 50 35.14

ode 36 9.09

mm3 32 6.66

fir4 33 13.79
Average 35.5 11.79

7. Conclusion

This paper investigates the architecture of the programmable
interconnect between coarse-grained blocks and the fine-
grained fabric in domain-specific FPGA with embedded
floating point blocks. Specifically, we first examine the
position of the embedded blocks (EBs) within the FPGA,
the placement of the pins on the periphery of the EB, the
width of the routing channels surrounding the EB, and the
aspect ratio of the EB for single EB type FPGA. After that
we explore the EBs position and the channel of multiple EB
types FPGA. We find that (a) the EBs should be positioned
close to each other in the middle of the chip, (b) the
EB’s pins should be distributed evenly around the EB, (c)
the width of the channels surrounding the EB have little
impact on circuit speed, (d) a square EB leads to the most
efficient implementations (e) smaller EBs should be located
between large EB to achieve higher speed, and (f) embedding
higher I/O density EB types leads to more routing resources
being consumed. Although our results are specific to the
architecture studied, we believe that they can be applied to
FPGAs containing other types of embedded blocks. Current
and future work includes extending our methodology to
cover other embedded blocks for different domain-specific
applications.
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