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Billions of dollars are spent globally every year on public
infrastructure, automotive, and aerospace structures to keep
up with the world’s population growth. Managing those
assets is of high significance, and to do that efficiently is an
exhausting task that requires the need for continuous moni-
toring, maintenance, and rehabilitation. For instance, consid-
ering the bridge network in Europe, a recent survey showed
that around 31% age between 50 and 100 years [1]. In-
service and aging steel bridges entail a great attention to
ensure a high level of safety, to maintain them in a good
shape, and to extend their lifespan. The increase in the traffic
flow and the size of the vehicles, environmental pollution,
poor quality of construction, and inadequate maintenance
necessitate the development of robust methods of inspection,
in particular when dealing with complex and extremely large
structures. Another example is the steel pipeline systems that
are very crucial in transporting dangerous substances, such as
crude oil and petroleum products, due to their practicality,
efficiency, and cost-effectiveness. With many kilometres of
the pipeline, carrying large volumes of hazardous substances,
there are many reasons that may engender the pipeline’s fail-
ure (mechanical, operational, corrosion, and natural failure
or intrusion from a third party), rupture, leaks, and spillages.
According to Concawe’s report [2] having data collected on
European cross-country oil pipelines from 1971 till 2016,
135 mechanical failures occurred from which 49 were due
to construction faults and 86 due to design or material faults.
As such, structural integrity monitoring and management

are very crucial to maintain the high level of safety and pre-
vent failure-related incidents and consequences.

Continuous structural health monitoring (SHM) systems
would form a major establishment in the field of damage
detection, assessment, and failure prediction. Knowing the
integrity of in-service structures, on a continuous real-time
basis, is crucial for manufacturers, maintenance teams, and
operators. SHM is an area of growing interest and worthy
of new and innovative approaches. A typical SHM system
requires the constant collection of data from sensors that
are embedded within the structure. The data can then be ana-
lyzed to detect the presence of any possible flaws; moreover,
the remaining life of the monitored system can be estimated.
The advancement in sensor technology, in its various forms,
as well as hardware, leads to major developments of smart
systems in many fields including manufacturing, automotive,
aerospace, and civil engineering. The presence of a wide
range of sensors, at a reduced cost, resulted in significant
work in real-time monitoring of components and structures,
in the last two decades, aiming at extending their lifetime,
reducing the associated maintenance costs, and ensuring
the public safety [3].

When designing a sensor network, many considerations
must be taken into account that may impact every compo-
nent of the SHM system, starting with the type of measure-
ments (sensor selection or development), number and
location of sensors, communication and data transmission,
and finally data storage [4].
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In this special issue, we aimed to shed some light on a
very important component of an SHM system, which is
related to sensing technologies and sensor networks. With
no doubt, sensors’ development and design of sensor net-
works are a fundamental step for an efficient and robust
SHM system.

Although there have been a lot of focuses on sensor tech-
nologies and design of sensor networks, the implementation
is not very smooth in particular when dealing with sensitive
or critical components in automotive and aerospace struc-
tures. Retrofitting sensors on structures is not always plausi-
ble, and therefore, novel approaches for sensor installation
or sensor embedment during manufacturing are of a high
demand. Researchers and engineering scientists, in the future,
should focus more on development of smart sensing systems
that are effective for practical applications such as smart
skins, smart paint, or miniature advanced sensing nodes.

Conflicts of Interest

The editors declare that they have no conflicts of interest
regarding the publication of this special issue.

Acknowledgments

We wish to thank all the researchers who have contributed in
their great work to the success of this special issue. Also, we
would like to thank the reviewers that have been involved
in the reviewing process. We would like to acknowledge the
editorial boardmembers for approving the publication of this
special issue.

Samir Mustapha
Ching-Tai Ng

Ye Lu
Pawel Malinowski

References

[1] P. P. Reza Haghan and J. Patino, “Needs for maintenance and
refurbishment of bridges in urban environments,” in Low Dis-
turbance Sustainable Urban Construction, Chalmers University,
2011.

[2] M. Cech, P. Davis, F. Gambardella et al., Performance of Euro-
pean cross-country oil pipelines–statistical summary of reported
spillages in 2016 and since 1971, report no. 6/18, Concawe, 2018.

[3] P. Runcie, S. Mustapha, and T. Rakotoarivelo, “Advances in
structural health monitoring system architecture,” in Proceed-
ings of the the fourth International Symposium on Life-Cycle
Civil Engineering, IALCCE, vol. 14, pp. 1064–1071, 2014.

[4] W. Ostachowicz, R. Soman, and P. Malinowski, “Optimization
of sensor placement for structural health monitoring: a review,”
Structural Health Monitoring, vol. 18, no. 3, pp. 963–988, 2019.

2 Journal of Sensors



Research Article
A Real-Valued Genetic Algorithm for Optimization of Sensor
Placement for Guided Wave-Based Structural Health Monitoring

Rohan Soman and Pawel Malinowski

Institute of Fluid Flow Machinery, Polish Academy of Sciences, 14 Fiszera Street, Gdansk 80-231, Poland

Correspondence should be addressed to Rohan Soman; rsoman@imp.gda.pl

Received 13 August 2019; Accepted 5 November 2019; Published 10 December 2019

Academic Editor: Antonio Lazaro

Copyright © 2019 Rohan Soman and Pawel Malinowski. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work
is properly cited.

The paper presents a novel implementation of the genetic algorithm (GA) to improve the coverage of the sensor network for
damage detection using guided waves. The implementation allows depiction of sensor locations with real values which is closer
to the real-life situation. Also, additional features such as proximity checks and node insertions have been implemented in order
to improve the convergence of the GA as well as the thoroughness of the search space. For the traditional integer-based
implementation, the size of the problem is large but finite. For the real-valued implementation, the problem size can indeed be
infinitely large. So added measures have been introduced such as a two-step optimization process for the reduction in size and
improved convergence.

1. Introduction

Guided wave- (GW) based structural health monitoring
(SHM) in one of the most widely used techniques for large
plate or pipe-like structures. The propagating wave may be
used to cover a large area and through the processing of the
time of flight (TOF) allows damage isolation. The GW have
been shown to be sensitive to extremely small levels of dam-
age and have been employed for detection of damage due to
impact, corrosion, and fatigue [1–4].

The research in the area of GW in metallic structures is
quite extensive, but the work in the area of sensor placement
is quite limited. Ostachowicz et al. [5] present an excellent
review of the techniques used in the optimization of sensor
placement with a special section dedicated to the optimiza-
tion of sensor placement for GW-based SHM. The literature
can be divided into primarily 3 areas. The first work in the
area of sensor placement optimization was based on improv-
ing the probability of detection (POD). Staszewski et al. [6]
used it in conjunction with artificial neural networks for
improving the probability of impact localization and detec-
tion. Markmiller and Chang [7] used a metric dependent
on the POD which was computed based on the response

reconstruction of the impact event. Staszewski et al. and
Markmiller et al. both used GA for the optimization. Flynn
and Todd [8] used the probabilistic approach as well in the
form of Bayes’ risk. The aim is to minimize the false-
positive and false-negative errors caused by the sensor net-
work. Haynes [9] built on the Bayes’ risk framework and
included the cost of the SHM system in the decision-
making process. Similar approaches based on the false alarms
were also proposed by Vanli et al. [10] and Coelho et al. [11].

The second philosophy of the optimization is to improve
the sensitivity of the network to damage. The work done in
this area is largely finite element model based, where different
damage scenarios are numerically simulated and used to
determine the sensor locations such as the one by Lee and
Staszewski [12]. Venkat et al. [13] and Ewald et al. [14] also
present a method for locating the sensors at the maxima of
the differential image of the healthy and damaged condition
of the structure. These methods are useful for optimization
of placement for the known hotspots in the structure.

Another philosophy of the optimization is to maximize
the coverage of the sensor network. Soni et al. [15] developed
a sensor placement algorithm based on the minimal sensing
distance. The sensing range was determined based on the
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signal to noise ratio (SNR) and the attenuation of the waves.
The minimum sensor range was a circle of fixed radius deter-
mined experimentally. The backward sequential sensor
placement (BSSP) was used in order to remove the redundant
sensors in the network. Coelho et al. also developed an
approach based on maximizing the coverage area by mini-
mizing the probability of false alarms. Thiene et al. [16] pro-
posed maximizing of coverage area based on a pixelated
approach. The sample of interest was divided into pixels,
and the coverage of the sensor network was calculated for
each pixel. The different wave propagation features such as
attenuation, line of sight, and shape of the sample can be
incorporated based on different multiplication factors for
obtaining the fitness function. The number of candidate loca-
tions are restricted in the study in order to limit the problem
size. But this unnatural constraint may limit the performance
of the optimization algorithm. The number of possible sensor
locations was increased by Soman et al. [17] through the use
of an analytical approach which is computationally more effi-
cient than the pixel-based approach. Soman et al. [17] then
extended the optimization cost function also to improve the
quality of the damage isolation. The damage isolation in the
GW-based SHM is carried out by the triangulation tech-
nique. Soman et al. included the area covered by at least 3
sensors as an additional metric. The multiobjective optimiza-
tion problem was scalarized using weighing functions in
order to simplify the optimization using the GA. Tarhini
et al. [18] too used coverage of the specimen as a optimiza-
tion objective. They developed a mixed integer nonlinear
program which does not constrain the optimization search
to a limited number of possible sensor locations and is a
motivation for the current research.

In the present paper, the authors build on the defined cost
function with 3 optimization objectives, namely, coverage by
at least 1 sensor-actuator pair, coverage by 3 sensor-actuator
pairs and the number of sensors. The implementation of the
GA is changed from an integer GA to a real-valued GA. In
order to restrict the size of the optimization problem, the
number of sensors is limited to a range of values. This range
is determined based on the sensor densities required for the
SNR to allow reliable damage detection. The cost function
computation is the most computationally demanding step,
and hence, the number of unnecessary computations needs
to be reduced. In order to limit this number, some features

such as node insertion and the proximity detection have been
added to the implementation.

The rest of the paper is organized as follows: the next sec-
tion explains the methodology for defining the optimization
problem. Section 3 presents the additional functionalities
such as node insertion and proximity check implemented
for improving the performance of the GA. Section 4 covers
the results of the optimization and the comparison of the
improved GA with the earlier work. The last section draws
some conclusions and presents areas of future work.

2. Methodology

The increase in number of sensors deployed on a structure
leads to an increase in the deployment costs as well as sec-
ondary costs related to the extra weight of the sensors and
the wiring as well as the processing and storage of the data.
Hence, one of the objectives of the optimization of sensor
placement should be the minimization of sensors used. This
minimization can be implemented in the cost function or
as a constraint in the allowed placements. If it is incorporated
in the cost function as by Soman et al. [17], the number of
possible sensor placements increases. The optimization prob-
lem becomes very large, and as a result, the time needed for
convergence is very large. Also, the time consumed for the
computation of the cost function increases with the increase
in number of sensors as shown in Figure 1. The computations
are based on the implementation of the GA reported in [17].

Also, the sensor placements with the large number of
sensors are not feasible due to the availability of the
resources. Thus, in order to reduce the size of the optimiza-
tion problem, constraints on the number of sensors may be
imposed right at the implementation stage. This constraint
must be imposed in an objective way in order to ensure that
the sensor performance is within the acceptable range. Thus,
this section discusses a formal method for determining the
maximum number of sensors.

2.1. Sensor Number Determination. The number of sensors is
determined based on sensor densities using the concept
developed by Croxford et al. [19]. They provide an excellent
discussion and step by step process for calculating the differ-
ent parameters for determining the sensor densities. For
completeness, the equations for calculating the sensor pitch
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Figure 1: Problem size and computation time for increasing number of sensors.
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and all the factors are provided here without the derivation
which can be found in [19]. The minimum pitch of the sen-
sors is given by

p =
33/4Rdamageffiffiffi

2
p

SβδT

 ! 2/3ð Þ
, ð1Þ

where Rdamage is the reflection coefficient of the damage
(defined in terms of the scattered wave amplitude at unit dis-
tance from the damage), S is the minimum SNR required for
reliable damage assessment, β is the coefficient correspond-
ing to the post subtraction noise between the baseline signal
and the signal at the present time, and δT is the change in
temperature. The factor β is dependent on the type of sub-
traction carried out as well as the wave mode. In the paper
by Croxford et al., the value for RF subtraction is given by

βRF = 2πf 1
vph

α −
kph
vph

 !
, ð2Þ

where vph is the phase velocity, kph is the coefficient relating
the sensitivity of the phase velocity to temperature, and α is
the coefficient of expansion.

The factor Rdamage is dependent on the type of damage
considered. For a hole in the plate considered as a cylindrical
scatterer, the coefficient can be analytically given by

Rdamage = 0:55
ffiffiffi
d

p
, ð3Þ

where d is the diameter of the hole in m.
Knowing the values for all the parameters in equation (1),

the pitch of sensors can be calculated which in turn may be
used for determining the minimum number of sensors. The
maximum number of sensors then can be determined by
introducing some redundancy in the system. As shown in
Figure 1, the problem size and the computation time increase
with the increase in the maximum number of sensors. So care
should be taken in defining the maximum number. For the
purpose of the study and to ensure some redundancy, the
maximum number of sensors was identified as 50% more
than the minimum number of sensors required.

The sample of interest was an aluminium plate with
dimensions 1m × 1m × 1mm shown in Figure 2. Added
mass was used to simulate damage. The backscatter profile
of the added mass was obtained based on the full-field mea-
surements from the laser Doppler vibrometer as shown in
Figure 3. The result is for the centrally located mass shown
in Figure 2.

As can be seen, the minimum value for the backscatter
was 0.073 which is taken as the back-scatter Rdamage. Key
points to note is that the backscatter is more or less symmet-
rical (within reasonable errors). The small error can be attrib-
uted to the fact that the sampled points were in a rectangular
grid as opposed to a radial grid. Hence, the distances at the
point of measurement were approximately equal. The maxi-
mum backscatter occurs at 45° to the incident angle. The

minimum value is in the area just beyond the mass as is
expected. So the worst case will be when the sensor is at the
other side of the actuator which is considered in computing
the minimum number of sensors. The backscattering index
obtained is equivalent to 17mm hole in the sample according
to equation (3) which is a reasonable assumption for a scat-
tering object. The β value for the aluminium plate S0 wave
based on equation (2) is given as 0.0962. In the author’s team,
methods have been developed for temperature compensation
which allow -14 dB change in the SNR for 10°C change in
temperature [20]. The 14 dB change results in β = 0:0192.
The SNR = 2 (similar to [19]) has been assumed to be neces-
sary for ensuring reliable damage detection. Based on these
inputs, the p calculated based on equation (1) is 0.454 which
relates to the minimum number of sensors as 6. Taking into

Figure 2: Aluminium plate under investigation [17].
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mass)—excitation from 90°.
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consideration the proposed redundancy in the system, the
maximum number of sensors is calculated as 9. This allows
comparison of the method with the older method as the sen-
sor optimization carried out previously and reported in [17]
was on a network of 9 sensors.

2.2. Sensor Location Optimization. Once the number of sen-
sors is known, an optimization scheme can be implemented
by restricting the number of sensors between the lower and
the upper limits. The criterion for the optimization is given
by the cost function. As has been mentioned in [17], the three
demands from the application are as follows:

(1) coverage with at least 1 sensor-actuator pair
(coverage1)

(2) coverage with at least 3 sensor-actuator pairs
(coverage3)

(3) number of sensors (s)

Based on these demands, a scalarized cost function can be
developed by using weighing factors as shown in

cost = −1 × ω
coverage3

sγ
+ 1 − ωð Þ coverage1

sδ

� �
, ð4Þ

where coverage3 is the % of points of the grid which lie
within the sensing range of 3 or more sensor-actuator pairs;
coverage1 is the % of points which lie in the sensing range
of a single sensor-actuator pair. ω, γ, and δ are weighting
values to determine the relative merit for each of the param-
eters, and s is the number of sensors. The parameters γ and δ
can be treated as independent of each other or dependent
based on the choice. The two parameters were introduced
to show the different correlations of the coverage3 and cover-
age1 values to the number of sensors.

For the two-stage optimization implementation illus-
trated in this paper, the choice of the weighing parameters
is even more sensitive. As the change in the number of sen-
sors is limited, the range of values for the parameter too are
limited and do not showmuch change. Hence if the weighing
values for γ and δ are too low (e.g., 0), the algorithm will
choose solutions with maximum number of sensors while if
they are too high (e.g., 1), the number of sensors will have a
very high bearing on the sensor placement, and as such, the
placements with lower number of sensors will be preferred.
This value depends on the contribution of each sensor to
the coverage of the network. For metallic structure without
any structural features such as stiffeners, each sensor contrib-
utes significantly; hence, the low values for γ and δ need to be
chosen. Sensitivity studies were carried out with evenly
spaced sensor placements (Figure 4) for different number of
sensors as shown in Table 1. It is acknowledged that the
evenly spaced sensor placements may or may not be optimal.
The aim of Table 1 and Figure 4 is to show the contribution
of each sensor towards the coverage1 and coverage3 values
and their bearing on the choice of γ and δ values.

As can be seen in Table 1, the contribution per sensor
reduces but the overall coverage increases with the increase

in the sensor number. In order to obtain similar cost for sen-
sor placement with 6 sensors and 9 sensors, the δ value needs
to be 0.17. Similarly, the γ value needs to be 0.26. As men-
tioned, the evenly placed sensor placement is suboptimal; as
a result, the sensor contribution too is suboptimal. For opti-
mized sensor placements, the values for γ and δ should be
significantly lower. Hence, for the purpose of the study,
values of γ and δ were taken as 0.15.

The optimization of the locations was carried out using a
real-valued implementation of the GA with special tools and
routines incorporated for improved convergence which have
been described in the next section.

3. Implementation of the GA

The main innovation of the paper is the implementation of
real-valued GA as opposed to the commonly used integer
GA for sensor placement optimization. The underlying moti-
vation for this is the observation that the more realistic the
encoding of the optimization, the better the performance of

Table 1: Change in metrics with different number of evenly
distributed sensors.

s
coverage1 coverage3

Contribution
per sensor to
coverage1

% contribution
per sensor to
coverage3

% % % %

6 84.1 74.5 14.0 12.4

7 85.2 77.4 12.2 11.1

8 86.6 78.5 10.8 9.8

9 90.2 82.8 10.0 9.2
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(m)
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Figure 4: Even distribution of sensors to show sensor contribution.
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the algorithm. Also, by changing the implementation from
the integer to real GA, the difference in the phenotype for a
unit change in the sensor values is significantly reduced thus
allowing better search in the sample space. On the downside,
the size of the problem is no longer finite but infinite. Thus,
there is no way for checking the validity of the optimization
tool with brute-force methods. The flow chart for the GA is
provided in Figure 5.

The population is generated with each individual sensor
placement depicted by 2 ×N . The first row corresponds to
the x-coordinate while the second row corresponds to the y
-coordinate. The x and y coordinates are treated as indepen-

dent in the population generation, fitness evaluation, node
insertion, and mutation phases while in the crossover and
selection phase, y-coordinate is treated as dependent vari-
able. The number N corresponds to number of sensors and
can take any value in the chosen range determined by the
method outlined in Section 2.1. The different features incor-
porated in the GA are shown through an example in Figure 6.

3.1. Proximity Check. This feature is introduced to avoid con-
centration of the nodes at a point or ensure the feasibility of
the sensor placement. In the first step, nodes which are too
close to the boundaries are omitted as it will be difficult to

Start Generate first 
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Fitness 
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SelectionCrossoverMutation

Node insertion
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End

Yes

No

One generation
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Insert 
node
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Figure 5: GA flowchart.
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Figure 6: Example of the real-encoded GA with additional features.
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distinguish between direct signals and the reflection from the
boundary. In the next stage, redundancy in the system
because of 2 closely spaced sensors is reduced by deleting
the sensor. The limit for the proximity check was taken as
the diameter of the sensors used which was 0.01m. This con-
straint ensures that the optimized network is possible to be
realized physically.

3.2. Node Insertion. In case the proximity check removes a
gene from the chromosome, there is a possibility to increase
the number of sensor in the chromosome by adding a node
at the location with the poorest coverage. The node is
inserted if it provides an advantage over the existing sensor
placement in terms of the coverage3, coverage1, and the sca-
larized cost function. The node insertion is repeated until the
insertion is possible and desirable. The chromosome with the
added gene replaces the lowest ranked chromosome in the
selection process. The node insertion allows a better local
search but at the cost of possible entrapment in the local min-
ima. This entrapment is caused as there are two copies of very
similar chromosomes which are very desirable in the popula-
tion. So in order to avoid their domination in the subsequent
generations, the number of chromosomes in each generation
is increased as compared to the previous implementation of
the GA reported in [17].

3.3. Fitness Evaluation. In the previous work by the authors,
the analytical approach based on the largest ellipse fitting
inside the plate was employed for determining the coverage
of each sensor-actuator pair. This approach is simple to
implement for simple structures and is computationally effi-
cient. For problems where the propagation is direction
dependent (anisotropic structures, or structures with damage
backscatter with an angle-dependent profile), the ellipse
approach is not valid. Hence, the ray-tracing approach [21]
explained in Figure 7 was employed. In the ray-tracing
approach, a ray is extended from the actuator to the location
under investigation and another ray is extended between the

investigated point and the sensor. The attenuation, velocity,
or backscatter can be incorporated based on the angle of
the rays with the coordinate axes and the distance between
the points. The maximum allowed TOF is determined from
the edge points. This TOF is then used to construct a limiting
ellipse with the major axis equal to the product of maximum
velocity and the TOF. The points within the ellipse are then
checked individually with the ray-tracing approach to deter-
mine the coverage of the sensor-actuator pair. The fitness
value evaluated for the sensor network is the superposition
of the coverage for each sensor-actuator pair.

3.4. Crossover. The standard crossover techniques used in the
GA are the single-point crossover, the multipoint crossover,
the arithmetic crossover, etc. [22]. They are simplistic to
implement but often are not exactly aligned with the imple-
mentation and the physical nature of the problem. As men-
tioned earlier, the closer the encoding of the problem to
reality, the better is the performance of the optimization.
Hence, the mirror crossover [23] was implemented for the
optimization problem. The method for the mirror crossover
is shown in Figure 8 and is as follows: two parents are selected
randomly similarly to the other crossover techniques.

Then, a random value xcross of the x-coordinate is gener-
ated. All genes with x > xcross in the father are transferred to
offspring 1 and x ≤ xcross in the father to offspring 2. The
genes with x > xcross from the mother are transferred to
offspring 1 and x ≤ xcross from the mother are transferred
to offspring 2.

As can be seen, the number of sensors in both parents
is 8. By the use of mirror crossover, it is possible to obtain
a sensor placement with fewer number of sensors (7 in
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Figure 7: Schematic explaining the ray-tracing approach.
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offspring 2). Thus, increasing the search capability of the
optimization algorithm.

3.5. Algorithm Inputs. For obtaining the optimized sensor
placement, several variables need to be determined based
on the sensitivity analysis. For the problem size at hand, the
number of chromosomes was taken as 256. This is to mini-
mize the domination of the gene pool by a few genes due to
the node insertion phase. The elitism was 50%. The mutation
rate was 25%, and number of generations was 5000. The next
section compares the results of the optimization from the
real-valued GA with the integer GA.

4. Results and Discussion

4.1. Sensor Number. As shown in Section 2, the pitch of the
sensors and in turn the sensor density is dependent on the
values of Rdamage, S, β, and ΔT . The parameter Rdamage
depends on the backscatter characteristics of the damage
while the parameter β depends on the material and the cen-
tral frequency used for the excitation. Figure 9 shows the
change in the number of sensors with unilateral change in
any of the 4 variables.
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The factor Rdamage can be changed with the size and type
of defect which is to be detected. The factor ΔT depends on
the uncertainty in ambient conditions expected during the
application. The value of β depends on the frequency of exci-
tation as well as the material properties. The material proper-
ties affect the phase and group velocity as well as the
dependence of the material on the change in temperature.
The factor S depends on the quality of the signal processing
and noise cancellation algorithm. It can also be used to intro-

duce the effects of attenuation which is significant in com-
posites. The value of S can be increased in case the
attenuation is high in order to determine the sensor density.

4.2. Sensor Location. The real-valued implementation of the
optimization eliminates the unnecessary constraint on the
locations of sensors imposed due to the integer-based imple-
mentation. As a result, better coverage3 and coverage1 and in
turn better fitness value may be achieved. Figure 10 shows the
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Figure 11: Surface plot showing coverage: (a) integer GA-based placement; (b) real GA-based placement.
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optimal sensor placement achieved for the integer placement
and for the real-valued optimization. Figures 11(a), 11(b),
and 12(a) show the coverage plot for the three sensor place-
ments. Figure 12(b) also shows the improved coverage
achieved through the real-valued implementation. The objec-
tive values for the optimization are quantitatively compared
in Table 2.

5. Conclusions

The paper outlines a two-step methodology for optimization
of sensor placement for GW-based damage detection. In the
first step, the minimum number of sensors needed is calcu-
lated based on the quality of the signal processing algorithm.
Once the number of sensors is determined, the location of the
sensors is optimized through improved implementation of
the GA. The optimization problem is posed using real values
rather than constraining the search with the use of integer-
based implementation. In order to account for the increase
in the search space for optimal solution and improve the
computational performance of the algorithm, some key fea-
tures have been introduced in the GA such as proximity
checking, node insertion, and use of mirror crossover
scheme. The use of these features allows the improvement
in the search capability as well as the computational effi-
ciency of the search algorithm.

The paper presents sensitivity studies for the different
parameters in determining the number of sensors. The paper
also shows that through the use of real-valued implementa-
tion improved coverage using the same number of sensors
can be achieved. Also, the computational efficiency for the
real-valued GA is better than the integer GA. Based on the
presented results, the use of real-valued GA is recommended.
Incorporation of backscatter profiles from different damage
scenarios, use of the technique for composite structures with
structural features such as stiffener, rivets, and the experi-
mental validation of the proposed methodology are identified
as the areas of further research.
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Obtaining the internal stress and strain state of concrete to evaluate the safety and reliability of structures is the important purpose
of concrete structural health monitoring. In this paper, a three-dimensional (3D) strain rosette sensor was designed and fabricated
using graphene-based piezoresistive composite to measure the strains in concrete structures. The piezoresistive composite was
prepared using reduced graphene oxide (RGO) as conductive filler, cellulose nanofiber (CNF) as dispersant and structural
skeleton, and waterborne epoxy (WEP) as polymer matrix. The mechanical, electrical, and electromechanical properties of
RGO-CNF/WEP composite were tested. The results show that the tensile strength, elastic modulus, and conductivity of the
composite are greatly improved by the addition of RGO and CNF. The relative resistance change of composite films
demonstrates high sensitivity to mechanical strain with gauge factors of 16-52. Within 4% strain, the piezoresistive properties of
composites are stable with good linearity and repeatability. The sensing performance of the 3D strain rosette was tested. The
measured strains are close to the actual strains of measure point in concrete, and the error is small. The RGO-CNF/WEP
composite has excellent mechanical and piezoresistive properties, which enable the 3D strain rosette to be used as embedded
sensor to measure the internal strain of concrete structures accurately.

1. Introduction

Concrete is the most widely used material in civil engineer-
ing. The service periods of concrete structures are usually
several decades or even longer. In the long-term process,
combined actions of multiple factors, such as load effect,
environmental erosion, and material aging, will lead to dam-
age accumulation and resistance attenuation of concrete
structures [1, 2]. If the crisis situation cannot be timely
warned and repaired, it will easily lead to catastrophic acci-
dents. Therefore, structural health monitoring is necessary
to determine the stress and strain states of key points in con-
crete and to evaluate the safety and reliability of the structure.

Sensing system is the base of concrete structural health
monitoring. Traditional sensors include strain gauges, fiber
Bragg grating [3, 4], and piezoelectric materials [5–7].
However, these sensors have some problems, such as single
testing direction, high cost, bad durability, and poor compat-
ibility with concrete. The emergence of cement-based smart

composites [8–14] provides a new sensing mean for struc-
tural health monitoring, and it has been well applied in civil
engineering as embedded sensors. However, although the
cement-based smart sensor has high sensitivity, good linear-
ity, and well compatibility with concrete, it is greatly affected
by environmental factors, especially temperature and humid-
ity, and has poor plasticity. Therefore, it is mostly used to
measure one-dimensional stress and strain in concrete.
Polymer-based intelligent sensor [15, 16] can avoid the above
problems, because of the good corrosion resistance and
waterproofing, simple molding, and well plasticity of poly-
mer materials.

Due to the unique crystal structures and properties,
nanomaterials can be used to enhance and modify polymer,
which provides a theoretical basis for the preparation of
new sensors [17–20]. At present, most polymer-based intelli-
gent composites are based on flexible materials such as rub-
ber. Because of the low elastic modulus of rubber, the
mechanical properties of concrete will be greatly reduced
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when embedded in the component. In addition, the compos-
ites using nanocarbon black or carbon nanotube as conduc-
tive fillers have low sensitivity, high filling content, and
poor repeatability. Therefore, to make new sensors, epoxy
resin with high mechanical strength [21] is used as the matrix
material, and graphene, a two-dimensional nanomaterial,
with excellent mechanical and electrical properties [22] is
selected as the conductive filler.

In this paper, a graphene-based composite material with
piezoresistive effect was prepared first. RGO was used as
the conductive filler of the composite. CNF with good disper-
sion in water [23] was used as dispersant and carries RGO to
evenly disperse in WEP to form a stable and continuous 3D
reinforcing and conductive network. The mechanical, electri-
cal, and electromechanical properties of the composite were
tested. Then, based on the strain theory, a 3D strain rosette
was designed and fabricated to obtain the strain state of a
point inside the concrete structure. The sensing elements of
the strain rosette are six one-dimensional strain sensors
formed by the RGO-CNF/WEP composite and arranged in
six directions of an epoxy cube. At last, the sensing perfor-
mance of the 3D strain rosette was tested and analyzed.

2. Fabrication of the RGO-CNF/WEP Composite

2.1. Materials and Instruments. Reduced graphene oxide
(RGO) was purchased from Suzhou Tanfeng Graphene
Technology Co., Ltd, China (purity > 98wt%, thickness
1-3 nm, flake size 0.5-5μm). Cellulose nanofiber (CNF) was
purchased from Guilin Qihong Technology Co., Ltd, China
(purity > 99wt%, diameter 4-10nm, length 1-3μm). Water-
borne epoxy (WEP, product number F0704) and curing
agent (product number F0705) were purchased from Shenz-
hen Jitian Chemical Co., Ltd, China. The materials were all
used as received. Deionized (DI) water was prepared in our
lab. A horn-type sonicator (JY92, Ningbo Scientz Biotechnol-
ogy Co., Ltd, China) and a magnetic stirrer (LC-TN-1,
LICHEN Instrument, China) were used to assist the disper-
sion of RGO.

2.2. Preparation of the RGO-CNF/WEP Composite. Figure 1
shows the fabrication process of the composite. WEP has
high viscosity which is not conducive to uniform dispersion
of RGO. So, as a first step, WEP is mixed with water, and
the mixture is magnetic stirred at a speed of 1000 r/min for
10min. This yields an aqueous solution of WEP (S1) with
low viscosity. Second step, the RGO and CNF powders are
added in DI water, magnetic stirred at a speed of
2000 r/min for 5min and then ultrasonic dispersed at
200W for 1 h. Due to less surface group, low chemical activ-
ity, and high specific surface area of RGO, agglomeration
phenomenon often occurs when RGO is dispersed in water.
There are a large number of hydrophilic hydroxyl groups
on the surface of CNF, which enable CNF to form stable
and uniform suspension in water. Some unreduced hydroxyl
and carboxyl groups are distributed on the surface of RGO.
They can interact with the hydroxyl groups on the surface
of CNF by hydrogen bonding. CNF acted as a template to
help RGO disperse in water. Then, RGO-CNF suspension
solution (S2) is obtained. CNF, on the one hand, acts as a
dispersant for RGO, on the other hand, acts as a framework
for supporting RGO, to promote the formation of three-
dimensional reinforcement and conductive network in poly-
mer matrix. The two prepared solutions, S1 and S2, are
mixed in one container with magnetic stirring at a speed of
1000 r/min for 5min and followed ultrasonic dispersion at
200W for 3 h. The solution (S3) with RGO-CNF uniformly
dispersed in WEP is obtained. Then, a curing agent is added
in S3 at a mass ratio of 1 : 2. After 10min of magnetic stirring
at a speed of 1000 r/min, it is placed in the vacuum box for
30min to remove bubbles. Subsequently, it is put in the oven
to complete curing at 40°C for 3 hours and at 60°C for 24
hours. The choice of curing temperature is the key to the for-
mation of a stable reinforcement and conductive network. If
the temperature is high and the water evaporates too quickly,
the network between graphene flakes will be destroyed, thus
affecting the mechanical and electrical properties of the com-
posites [24]. Table 1 is the filler percentage of samples, and
the values of RGO and CNF are mass percent to WEP.

CNF

Stirring

Remove bubbles
Heating curing

Adding curing agent

RGO
Ultrasonic
dispersion

Stirring

S2 S1

S3

WEP

Stirri
ng

Ultrasonic dispersio
n

RGO-CNF/WEP film

Figure 1: The fabrication process of the RGO-CNF/WEP composite.
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2.3. Test Methods of Composite Properties. The mechanical
property of the composite was tested using a tensile instru-
ment (HP-500, LANB Instrument, China) at a speed of
1mm/min. The electrical resistance of the composite was
measured by a 6.5-digit source meter (DMM6500, Keithley
Instruments, USA) and the adopted voltage was AC 220V.
Copper foil electrodes were preembedded in the composite
during fabrication process, and 2-prode method was used.
The composite specimen was cut into a rectangular shape,
and the distance between two electrodes was 100mm.
The width of the specimen was 10mm and its thickness
was 1mm. At least three effective specimens were tested
for each sample.

3. Properties of the RGO-CNF/WEP Composite

3.1. Mechanical and Electrical Properties. Figure 2 shows the
stress-strain curve of the composites. It shows that the addi-
tion of RGO and CNF can significantly improve the tensile
strength of epoxy. With the increase of RGO content, the ten-
sile strength of the composites increases firstly and then
decreases. The composites are in the elastic deformation

stage within 4% strain range, and stress is proportional to
strain. Their elastic moduli are calculated and the results
can be seen in Table 2. When the content of RGO and
CNF is 6wt% and 2wt%, respectively, the elastic modulus
of the composite reaches the largest value of 12.02GPa,
which is in the same magnitude order with the elastic mod-
ulus of concrete.

With the help of CNF, the conductive filler RGO is evenly
dispersed in epoxy. When the distance between RGO flakes is
small enough, the “tunnel effect” occurs, which makes the
RGO-CNF/WEP composite becomes electrically conductive.
Table 2 shows the conductivity of the composites. The max-
imum conductivity is 3:4 × 10−1 S/m, and the content of
RGO and CNF is 6wt% and 2wt%, respectively, which corre-
sponds to the filler content of the composite with the maxi-
mum elastic modulus.

The improvement of mechanical and electrical properties
of the RGO-CNF/WEP composites mainly depends on the
binding state of RGO and CNF, the dispersion level of
RGO-CNF in WEP, and the combination of RGO-CNF
with WEP in micro level. As a green and renewable one-
dimensional nanomaterial, CNF acts as dispersant and
structural skeleton in the composite. RGO combines with
CNF through hydrogen bond. The overlapping CNF can
carry RGO to disperse evenly in the WEP matrix. It helps
form a stable and continuous conductive network of RGO
in the WEP matrix. Moreover, owing to the high strength
and modulus of RGO and CNF, a cross-linking enhanced
network is also constructed in the WEP matrix, which sig-
nificantly improves the mechanical property of the com-
posite. However, if RGO or CNF is added excessively,
CNF could not carry redundant RGO to be uniformly dis-
persed into the WEP matrix, which destroyed the balance
among the three components in the composite. The
redundant RGO and CNF agglomerate in the WEP matrix,
resulting in stress concentration which would decrease the
mechanical property of the composite, meanwhile affecting
the electrical property.

3.2. Electromechanical Properties of the RGO-CNF/WEP
Composite. When the composite material is deformed by
external force, the internal conductive network also deforms
and the distance between RGO flakes changes, which makes
the composite resistance change. Figure 3 shows the relative
resistance change versus the strain of the RGO-CNF/WEP
composite film. It can be seen that except for sample B2/2,
the relative resistance change of other films has a good linear
relationship with the strain. This was because the electrical
network of sample B2/2 was imperfect at low RGO content.
The phenomenon of resistance varying with strain belongs
to piezoresistive effect. Gauge factor (GF) is usually used to
evaluate this property of materials, and it associates resis-
tance change rate with external strain, as shown in equation
(1). The slope of fitting line of the curve in Figure 3 equals
the GF of the film. The GFs of B4/2-B10/2 are 16-52, which
are all obviously larger than the GF of traditional metal strain
gauges (~2). Cycle tensile tests on specimens B6/2 and B10/2
showed good repeatability and GF remained basically
unchanged, as shown in Figure 4. The results indicate that

Table 1: Filler percentage of samples.

Sample number RGO CNF WEP

WEP 0 0 100

A2/0 2 0 100

A4/0 4 0 100

B2/2 2 2 100

B4/2 4 2 100

B6/2 6 2 100

B8/2 8 2 100

B10/2 10 2 100

140
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A2/0
A4/0
B2/2
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B8/2
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40200
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Figure 2: The stress-strain curves of the composites.
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the RGO-CNF/WEP composite has good strain sensing
property and can be used to structural health monitoring.

GF = ΔR/R0
ε

, ð1Þ

where ΔR is the relative resistance change and R0 is the initial
resistance of the composite film.

Strain sensor is widely used in structural damage detec-
tion and health monitoring. The traditional resistance strain
sensor is mainly fabricated by metal or semiconductor mate-
rials. They have some defects such as small range, poor
toughness, and easy to damage, which are unable to meet
the needs in complex structures and large strain monitoring.
From the above results, it can be seen that the films made of
the RGO-CNF/WEP composite have good strain sensing
performance with high sensitivity, good stability, and large
measurement range. And the excellent mechanical property
and corrosion resistance of epoxy can protect the film from
environmental impact. In addition, it also has well plasticity
to be made into the desired shape. Therefore, the RGO-
CNF/WEP composite can be made into film strain gauges
instead of metal or semiconductor strain gauges, which can
be used to measure the strain on the surface of concrete
structures. Film strain gauges with different GF can be
obtained by adjusting the filler content of the composite to
the needs of individual application, for example, high GF
for low-strain applications and low GF for high deformation
applications [25].

However, there is still a lack of effective means to measure
the internal strain state of concrete. At present, most of the
researches are to bury smart cement or polymer blocks into
the structure and can only obtain strain data in a single direc-
tion. However, the internal stress state of concrete structure is
complex, and it is difficult to get accurate results from one-
dimensional sensors. Therefore, it is necessary to develop a
new sensor which can measure 3D strain.

4. Principle and Design of a 3D Strain Rosette

4.1. Principle of a 3D Strain Rosette. The strain of a point in
concrete under 3D state can be described by three normal
strains and three shear strains, as shown in Figure 5. If
the strain state of point A in Figure 5(b) is ðεx, εy, εz , γxy,
γyz , γzxÞ, according to the strain theory, the linear strain ε

in any direction through point A can be expressed as [26–28]

ε = εxl
2 + εym

2 + εzn
2 + γxylm + γyzmn + γzxnl, ð2Þ

l = sin δ cos φ, ð3Þ
m = sin δ sin φ, ð4Þ
n = cos δ, ð5Þ

where l, m, and n are directional cosines of line AB on x-, y-,
and z-axes, respectively, δ is the angle between line AB
and z-axis, and φ is the angle between x-axis and the pro-
jection of line AB on planar xAy.

Table 2: Elastic modulus and conductivity of samples.

Sample number A2/0 A4/0 B2/2 B4/2 B6/2 B8/2 B10/2 WEP

Elastic modulus (GPa) 4.74 4.98 6.13 6.91 12.02 9.39 8.26 4.07

Conductivity (S/m) 6:2 × 10−8 2:7 × 10−5 2:1 × 10−3 3:9 × 10−2 3:4 × 10−1 9:6 × 10−2 1:5 × 10−1 Nonconductive
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Figure 3: The relative resistance change versus the strain of the
RGO-CNF/WEP composite films.
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Figure 4: Cycle test of the RGO-CNF/WEP composite films.
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For the selected direction, δ and φ are known quantities,
then l,m, and n can be obtained by equations (3)–(5). There-
fore, for equation (2), in order to solve the six unknown
variables ðεx, εy, εz , γxy, γzx, γyzÞ, at least six different linear
strains at this point need to be known. In theory, there can
be multiple layouts for several strain gauges to form a 3D
strain rosette. Figure 6 shows the structure of a sample 3D
strain rosette. E1-E6 are six sensing elements (SE) through
point A.

If the strains of E1-E6 are εi (i = 1, 2, 3, 4, 5, 6), the follow-
ing can be obtained from equation (2):

ε1

ε2

ε3

ε4

ε5

ε6

8>>>>>>>>>>><
>>>>>>>>>>>:

9>>>>>>>>>>>=
>>>>>>>>>>>;

=

l21 m2
1 n21 l1m1 m1n1 n1l1

l22 m2
2 n22 l2m2 m2n2 n2l2

l23 m2
3 n23 l3m3 m3n3 n3l3

l24 m2
4 n24 l4m4 m4n4 n4l4

l25 m2
5 n25 l5m5 m5n5 n5l5

l26 m2
6 n26 l6m6 m6n6 n6l6

2
666666666664

3
777777777775

εx

εy

εz

γxy

γyz

γzx

8>>>>>>>>>>><
>>>>>>>>>>>:

9>>>>>>>>>>>=
>>>>>>>>>>>;

:

ð6Þ

Setting

K½ � =

l21 m2
1 n21 l1m1 m1n1 n1l1

l22 m2
2 n22 l2m2 m2n2 n2l2

l23 m2
3 n23 l3m3 m3n3 n3l3

l24 m2
4 n24 l4m4 m4n4 n4l4

l25 m2
5 n25 l5m5 m5n5 n5l5

l26 m2
6 n26 l6m6 m6n6 n6l6

2
666666666664

3
777777777775

, ð7Þ

then

εif g = K½ � εj
È É

, ð8Þ

where fεig = fε1, ε2, ε3, ε4, ε5, ε6gT , fεjg = fεx, εy, εz , γxy , γyz ,
γzxgT .

Table 3 is the directional cosines of the six sensing ele-
ments in Figure 6. From equation (7), it can be obtained
as follows:

K½ � =

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0:5 0:5 0 0:5 0 0
0 0:5 0:5 0 0:5 0
0:5 0 0:5 0 0 0:5

2
666666666664

3
777777777775

: ð9Þ
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Figure 5: The strain of a point under three-dimensional state.
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Figure 6: The structure of a 3D strain rosette.

Table 3: The directional cosines of the six sensing elements.

Sensing element δ φ l m n

E1 90 0 1 0 0

E2 90 90 0 1 0

E3 0 0 0 0 1

E4 90 45 0.707 0.707 0

E5 45 90 0 0.707 0.707

E6 45 0 0.707 0 0.707
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Then

εj
È É

= K½ �−1 εif g: ð10Þ

4.2. Design and Fabrication of a 3D Strain Rosette. A 3D
strain rosette sensor based on the RGO-CNF/WEP com-
posite was fabricated. Figure 7 shows the fabrication pro-
cess of the 3D strain rosette sensor. Using the good
plasticity of WEP, six grooves were reserved as the layout
of Figure 6 when forming a WEP cube with the size of
40mm × 40mm × 40mm. The grooves were formed by
strong magnetic strips attracted at the designed location
of the mould. The size of the grooves is 30mm × 3mm
× 3mm. Then, the RGO-CNF/WEP composite was filled
in the grooves. After the composite curing, six sensing ele-
ments were formed. The composite can be well joint with
the WEP cube which ensures sensing elements and cube
to deform together. At last, a WEP layer of about 1mm
thick was coated on the surface of the cube. The epoxy
protective layer has good corrosion resistance and water-
proof performance, which can prevent the damage of the
internal sensing elements. It avoids the influence of exter-
nal environment on the sensor and ensures the stability of
the sensor performance.

4.3. Error Analysis. The total error of the sensor includes
systematic error and random error. The errors that existed
before the measurement, which will always affect the accu-
racy of the measurement results inevitability, are system-
atic errors, for example, the errors caused by the angle
deviation between the sensing elements of the three-
dimensional strain gauge. If the systematic error of each

sensing element is Δεi, the systematic error of strain com-
ponent can be obtained as follows:

Δεj = 〠
6

i=1
kjiΔεi, ð11Þ

where kji is the value of the matrix ½K�−1 at row j and
column i.

Forming cube with grooves Forming sensing elements Coating protective layer

(a)

Electrodes Cube with grooves Cube with sensing elements

(b)

Figure 7: Fabrication of the 3D strain rosette sensor. (a) Fabrication process. (b) Some components.

Figure 8: Test of the 3D strain rosette sensor.
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When repeated measurements of the same sensor are
carried out with equal precision, a series of different results
are obtained, and the deviations with actual value are ran-
dom errors. If the random error of each sensing element is
RðεiÞ, the random error of strain component can be obtained
as follows:

R εj
À Á

≤ R εið Þ
ffiffiffiffiffiffiffiffiffiffiffi
〠
6

i=1
k2ji

vuut : ð12Þ
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Figure 9: Resistances and strains of SEs and strain gauges. (a) Resistances of SEs. (b) Vertical strains. (c) Transverse strains. (d) Strains of SEs.

Table 4: Slope of fitting line of strain.

Slope Vertical strain Transverse strain

SL1 167.73 (E3) 64.2 (E1) 65.05 (E2) 65.47 (E4)

SL2 196.08 (VSG) 75.56 (TSG)

SL1/SL2
0.86 0.85 0.86 0.87

0.86 (average value)
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Figure 10: Three-dimensional strain state of point A.

7Journal of Sensors



5. Performance Testing and Analysis of the 3D
Strain Rosette Sensor

5.1. Test of the 3D Strain Rosette. Because of the good linear-
ity and high sensitivity of the B6/2 RGO-CNF/WEP compos-
ite, it was selected to fabricate SEs of the 3D strain rosette
sensor. As shown in Figure 8, the performance of the pre-
pared sensor was tested. Axial pressure was applied by a pres-
sure testing machine (TYA-300B, Wuxi Xinluda Instrument
Equipment, China), and the loading speed was 0.5mm/min.
Two PTFE films were placed on the upper and lower surfaces
of the machine to reduce friction between the sensor and the
machine. The resistances of SEs were measured by the
DMM6500 source meter. A vertical strain gauge (VSG) and
a transverse strain gauge (TSG) were attached to one side of
the sensor, and a static resistance strain indicator (JM3841,
Yangzhou Jingming Technology Co., Ltd, China) was used
to measure vertical and transverse strains of VSG and TSG.
During the loading process, displacement, resistance, and
strain were collected synchronously every 10 seconds for a
total of 60 seconds. The coordinate system of the strain
rosette is set as shown in Figure 6.

Figure 9(a) shows the resistance of SEs over time. The ini-
tial resistances of SEs vary slightly due to the difference in
fabrication. GF of sample B6/2 is 34, and the strain of E3
can be obtained according to equation (1), as shown in
Figure 9(b). The vertical displacement of the sensor was the
same as that of the instrument. Then, the displacement was
transformed into strain (VDS), and its change over time
was shown in Figure 9(b). The strain of VSG was also shown
in Figure 9(b). As can be seen in Figure 9(b), the line of VSG
and VDS almost coincide, while the line of E3 deviates from
them but has the same trend. It can be inferred that the strain
of VSG approximates to the true vertical strain, while the
strain of E3 needs to be modified. The strains of E1, E2,
and E4 transformed from their resistances by equation (1)

were shown in Figure 9(c). The strain of TSG was also shown
in Figure 9(c). They all represent the transverse strain of the
sensor. The strains of E1, E2, and E4 are close, but they have
deviations from the strain of TSG. It is similar to the analysis
of vertical strain. The difference between the measured
strains of SEs and strain gauges is mainly caused by the GF
value which is used to calculate strain from resistance. It is
because that GF of the composite is shape-dependent. The
length-thickness ratio of SEs is different with that of the
tested specimens. So GFc = 34 is not the true value (GFt) of
SEs. According to equation (1), the ratio of calculated strain
(εc) to true strain (εt) is as follows:

εc
εt

= ΔR/R0ð Þ/GFc
ΔR/R0ð Þ/GFt

, ð13Þ

GFt =
εc
εt

· GFc: ð14Þ

x

z
y

A

V1

T1

V2

T2

Prism

(a) (b)
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The strains of VSG and TSG can be considered as true
strains, and their values can be used to modify the GF of
SEs. In Figures 8(b) and 8 (c), the strains of VSG, TSG, and
SEs almost change linearly, and Table 4 shows the slope of
the fitting line of the corresponding data. According to equa-
tion (14), GFt = 0:86 × 34 = 29. In addition, it can be seen
from the table that the ratio of TSG to VSG is 0.385, which
is consistent with Poisson’s ratio of the WEP matrix (0.39,
provided by the material company).

Figure 9(d) shows the strain of SEs calculated using the
modified GFt . Figure 10 shows the 3D strain state of point
A calculated from the strain of SEs according to equation
(10). It can be seen that the vertical and transverse strains
of point A coincide with those of VSG and TSG, and its shear
strains are very small, relatively. The measured 3D strain

state of point A is consistent with its actual strain state,
which verifies the correctness and feasibility of the 3D strain
rosette sensor.

5.2. Test of the 3D Strain Rosette Embedded in Concrete. To
test the performance of the 3D strain rosette in concrete
strain monitoring, a prism with a size of 150mm × 150mm
× 500mm was poured using C30 concrete (standard value
of axial compressive strength f ck = 20:1MPa). The 3D strain
rosette was embedded in the prism, and its surface was
polished so that it can bond well with the concrete. After
standard curing, a loading test was performed on the prism
by a pressure testing machine (WAW-600, Shanghai Hua-
long Testing Instrument, China). A vertical strain gauge
(V1) and a transverse strain gauge (T1) were pasted on one
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Figure 13: Measured strains of the 3D strain rosette and strain gauges. (a) Strains of rosette at first loading. (b) Strains of V1, T1, V2, and T2 at
first loading. (c) Strains of rosette at second loading. (d) Strains of V1, T1, V2, and T2 at second loading.
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side of the prism. A vertical strip film (V2) and a transverse
strip film (T2) made of the B6/2 composite were applied on
the opposite side. The sensor arrangement and load test are
shown in Figure 11. The axial pressure was applied step by
step and unloaded step by step after reaching the predeter-
mined value. Two times of loading were carried out.
Figure 12 shows the loading history. The JM3841 static resis-
tance strain indicator was used to measure the strains of the
3D strain rosette and strain gauges. The modified GFt = 29
was used for the 3D strain rosette.

Figures 13(a) and 13(c) show the strains of SEs of the 3D
strain rosette. Figures 13(b) and 13(d) show the strains of V1,
T1, V2, and T2. During the two loading processes, for longi-
tudinal strain, the strain of E3 is close to that of L1, while for
transverse strain, the strains of E1, E2, and E4 are close to
that of T1. This indicates that there is a good bond between
SEs and the WEP matrix and between the 3D strain rosette
and the concrete. So they can deform synchronously.

According to equation (2), the 3D strain state of point A
in concrete can be obtained, which is shown in Figure 14. It
can be seen that the three normal strains are close to the cor-
responding strains of L1 and T1, and the three shear strains
are small, which is consistent with the actual strain state of
point A. But there are also some tiny differences, which
may be caused by the following reasons: (i) Concrete is not
a fully homogeneous material, so the stress transfer is not
completely uniform. (ii) There are errors in manufacturing,
such as deviations in the angle and size between SEs. There
may also be deflection in the placed angle of the strain
rosette. (iii) Poisson’s ratio of the matrix material (0.39) of
the strain rosette is different from that of the concrete
(0.19). This will result in a difference in deformation of SE
when the strain rosette is embedded in concrete or not. How-
ever, because of the large slenderness ratio of SE, the defor-
mation of the width direction of SE has little effect on the
deformation of the length direction.

From the two loading processes, the stress of the first
loading is small, the concrete is in the stage of elastic defor-
mation, the stress-strain relationship is close to a straight
line, and the strain almost recovers to zero after unloading;
the stress of the second loading is larger, the microcracks
expand, and there is plastic strain after unloading. This is
consistent with the measured results of the 3D strain rosette,
which shows that the 3D strain rosette can be used to mea-
sure the internal strain of concrete. In addition, the strains
of L1 and T1 are close to the strains of L2 and T2, respec-
tively. It indicates that the composite film can also be used
to measure the surface strain of concrete.

6. Conclusions

Modified polymer material with piezoresistive effect can be
used to prepare new sensors for concrete structural health
monitoring. Based on strain theory, a 3D strain rosette sensor
was designed and fabricated using the RGO-CNF/WEP com-
posites to obtain the strains in concrete structures. Firstly, the
composite was prepared using RGO as the conductive filler,
CNF as the dispersant and structural skeleton, and WEP as
the polymer matrix. Then, a WEP cube was formed and six
grooves were reserved in its six different directions. Subse-
quently, the RGO-CNF/WEP composite was filled in grooves
to form six one-dimensional sensing elements. At last, a pro-
tective layer was coated on the cube surface and the 3D strain
rosette was finished. Nanomaterials RGO and CNF with high
strength and modulus form a stable and continuous three-
dimensional reinforcing and conductive network in the
WEP matrix, which significantly improves the mechanical
and electrical properties of the composite. The GFs of the
composites are 16-52, which are larger than the GF of
traditional metal strain gauges. Within 4% strain, the sensing
performance of the composites is stable with good linearity
and repeatability. The 3D strain rosette was tested, and the
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Figure 14: 3D strain state of point A. (a) First loading. (b) Second loading.
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measured strains are close to the actual strain state of mea-
sure point. The RGO-CNF/WEP composite has excellent
mechanical and piezoresistive properties, which enable the
fabricated 3D strain rosette to be used as an embedded sensor
to measure the internal strain of concrete structures accu-
rately. Moreover, the composite with good plasticity also
can be made into film sensors to replace the traditional metal
or semiconductor strain gauges for strain measurement on
concrete surface.
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A novel, efficient, and accurate method to detect gear defects under a complex background during industrial gear production is
proposed in this study. Firstly, we first analyzed image filtering and smoothing techniques, which we used as a basis to develop a
complex background-weakening algorithm for detecting the microdefects of gears. Subsequently, we discussed the types and
characteristics of gear manufacturing defects. Under the complex background of image acquisition, a new model S-YOLO is
proposed for online detection of gear defects, and it was validated on our experimental platform for online gear defect detection
under a complex background. Results show that S-YOLO has better recognition of microdefects under a complex background
than the YOLOv3 target recognition network. The proposed algorithm has good robustness as well. Code and data have been
made available.

1. Introduction

In recent years, the demand for online quality inspection
of mechanical parts under high-efficiency, high-precision
manufacturing conditions has continued to grow with
the rapid development of the manufacturing industry.
Considering that a gear is a transmission part with a wide
range of applications in the machinery industry, gear quality
is particularly important in production. The development of
the gear industry currently faces great challenges. Complex
backgrounds, such as oil stains and dust particles, cannot
be avoided in the gear manufacturing line. Identifying ways
to accurately and efficiently identify gear surface defects in
complex backgrounds and improve the quality inspection
accuracy and production efficiency of gear production
lines is important to advance the level of the manufactur-
ing industry.

Traditional testing standards mainly detect the appear-
ance size [1] and shape error [2] of parts, among which the
error is maintained between 0.12mm and 0.23mm. In this
paper, the gear defect is located by a deep learning algorithm,
which lays a foundation for more precise quality inspection

such as the subsequent dimension measurement. The tradi-
tional detection of gear manufacturing defect detection is
based mainly on machine vision [3, 4], in which the contour
extraction algorithm is often used to extract the image fea-
tures of a single gear. After extracting the features, the gear
is detected and checked via template matching. This method
not only processes the image at a slow speed but also has low
detection efficiency because only one gear sample can be
detected in each feature image. In the case of insufficient illu-
mination or complex background, the traditional visual
detection method relies heavily on the light source, and the
background-weakening effect is poor. As a result, detection
accuracy is greatly reduced.

With the rapid development of deep learning in daily
life [5–7] and industrial fields [8, 9], many scholars
attempt to apply deep learning methods for detecting part
defects [10]. To ensure the quality of online defect detec-
tion, the network must exhibit fast positioning speed and
high classification accuracy. At present, the mainstream
target recognition networks include You Only Look Once
(YOLOv3) [11], FAST-RCNN [12, 13], SSD, and FPN
[14]. No complicated computation is required because
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the YOLOv3 target detection network uses an end-to-end
method to regress features. Previous research shows that
YOLOv3 is faster than SSD, FPN, and other target recog-
nition networks. However, the direct application of the
YOLOv3 method to detect gear defects cannot satisfy the
high accuracy requirements in industrial production.
Therefore, the k-means clustering method is adopted to
obtain the most suitable anchor to improve the positioning
and detection accuracy of YOLOv3 for detecting gear
defects. The background is weakened and denoised via
image filtering and smoothing under the complex back-
ground of gear manufacturing, thereby improving the
accuracy and detection efficiency of online gear defect
detection. The proposed algorithm provides reference for
the gear manufacturing industry to improve production
efficiency, enhance product quality, and strengthen quality
control capabilities.

A defect detection algorithm based on the deep learning
algorithm of YOLOv3 for 62 gear line surface manufactur-
ing is proposed in this study, which has the following
main contributions:

(1) By analyzing image filtering and smoothing tech-
nology aimed at the microdefects of gears under
a complex background, this study proposes a com-
plex background-weakening algorithm based on
image filtering and smoothing, which weakens the
background noise of oil and dust, among others

(2) This study designs and opens source gear defect data-
sets for common defects, including missing teeth,
broken teeth, surface scratches, and normal gear

(3) This study proposes an improved network for online
gear defect detection called S-YOLO. This network is
created by combining the types and characteristics of
defects during the actual manufacturing of gears
under the complex background of image acquisition
on the factory production line. S-YOLO improves
detection accuracy

The main structure of this paper is as follows. The second
section mainly describes the related works on gear
manufacturing defects and sorts the techniques of gear
running fault and fatigue damage defect detection. The
third section proposes a background-weakening algorithm
for the complex background in gear manufacturing. The
fourth section introduces the deep learning network target
detection model, which is based on the YOLOv3 model for
improvement and model training. The fifth section designs
and manufactures an online detection platform for indus-
trial defects. The sixth section designs and makes the gear
defect dataset and compares and analyzes the experimental
results. The final section summarizes the research content.

2. Related Work

In the research on fault diagnosis during gear runtime,
Mączak and Jasiński [15] discussed the simulation model
of the helical gearbox and analyzed a phenomenon during

the tooth-meshing process in the presence of manufactur-
ing and assembly errors. This work proposed a kind of
gear fault diagnosis method based on the model. The
detection method is simple, and the detection speed is fast.
However, the effect of gear detection in large-volume
motion on the production line is unknown. Gandarias
et al. [16] took pressure reading as a standard image pro-
cessing technique with the new high-resolution pressure
sensor. It connects the tactile sensor with the robot detec-
tor with high resolution and realizes the image recognition
of the contact object via a convolutional neural network
(CNN) and migration learning. Lu et al. [17] applied the
improved CNN model to an embedded system composed
of signal acquisition and processing circuits and proposed
a method for on-site motor fault diagnosis. A heteroge-
neous computing framework was proposed, and an inte-
grated embedded system was designed based on the
analysis of different motor signals. This method uses arti-
ficial intelligence technology to provide a solution for the
field motor fault diagnosis on small, flexible, and conve-
nient handheld devices. Cheng and Hu [18] proposed a
method based on a physical model to detect the damage
quantification of the planetary gear set. The performance
of the feature in the damage evolution tracking was ana-
lyzed via the double-sample test method, and the state
monitoring of the planetary gear transmission system
was realized. Nabih et al. [19] experimentally verified the
dynamic model of the single-stage gear transmission sys-
tem and analyzed the effect of the perforation on TE.
The results proved that a simple perforation model can
reproduce the actual vibration caused by the failure of
the perforation surface. Younes et al. [20] proposed a vibra-
tion acoustic signal analysis theory. The theory uses the fea-
ture extraction and classification of acoustic signals to
accurately identify the defects of gears and bearings, but its
algorithm cannot identify the exact location of the defects.

In research on gear defect detection through data
acquisition and signal processing during gear operation,
Zhao et al. [21] proposed a gearbox health evaluation
framework based on R/C (run-up/coast-down) signal anal-
ysis by studying the mechanical vibration information. A
feature enhancement scheme based on sparse guidance
was proposed to extract the weak phase jitter associated
with gear defects and detect the damage position of the
gear. Kidar et al. [22] provided the crack characteristics
in the vibration signal through the numerical model of
the data. The analysis of the phase estimated using the
Hilbert method and the signal parameters estimated via
the sliding window-based rotation invariant technique
were compared to achieve the detection of gear cracks. A
sensor position optimization method based on finite ele-
ment analysis and spectrum analysis was proposed in
[23]. The existing two nonlinear models of mechanical
rotating parts were solved, and the dynamic response of
the whole system under defect excitation was used to
determine the predictive maintenance for defect detection
in the optimal sensor location. The defect of mechanical
rotating parts was accurately detected. Moreno et al. [24]
proposed various signal processing strategies for the
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detection and quantification of early gear defects. A compar-
ison among the early detection capabilities of the micro-
phone, accelerometer, and LDV sensors verified that the
acoustic signal was the first method to detect the initial pro-
gressive crack of the gear (detecting a 1.3mm long crack).
Using a microphone signal had obvious advantages, but the
result was sensitive to speed and torque. The pitting of gears
was tested, and the vibration data was recorded in [25]. The
application of vibration-based time, frequency, cepstrum,
wavelet transform, and other methods in each set of experi-
mental data, pitting fault, and the progress of pitting failure
in gears were reviewed as well.

In research on detecting small defects of gears, Liu
et al. [26] aimed to address the high cost, low efficiency,
slow speed, and low precision of manual detection of auto-
mobile bevel gear surface defects and dimensional mea-
surement. They studied and analyzed the three effective
algorithms—neighborhood means difference method, cir-
cular approximation method, and fast rotation positioning
method. A comprehensive bevel gear quality detection sys-
tem was developed based on multicamera vision technology,
which could simultaneously detect and measure the size of
bevel gear surface defects. Fedala et al. [27] aimed to improve
the detection and recognition ability of gear defects by
extracting the features of the angular frequency domain of
angular acceleration sampling, transmission error, and
instantaneous angular velocity. SVM was then used to clas-
sify and realize gear fault detection under normal and non-
stationary states. To isolate the defect signal from the
measured signal, Djebala et al. [28] proposed a gear defect
detection method based on wavelet multiresolution analysis
and Hilbert transform. Experiments show that, in contrast
with the commonly used analysis tools, this new method
can isolate defect frequency, which enables the detection of
small or combined defects. Focusing on the internal meshing
gear defects, Zhang and Fan [29] proposed a universal for-
mula for the identification and conducted the closed defects
of the N-lobed noncircular gears (N-LNG) positioning func-
tion. The closed condition of the positioning function was
satisfied by introducing two correction parameters: propor-
tional and controllable. The controllable correction parame-
ters were further verified and improved on the basis of the
relationship between the inner pitch curve and the curvature
radius of the outer pitch curve of the inner meshing of N-
lobed noncircular gears. The method was applied in several
numerical examples, and the simulation results showed that
the method can effectively identify and conduct the closed
defects of the N-LNG positioning function.

In the field of gear defect detection, many scholars con-
ducted relevant theoretical research on gear operation faults,
surface defects, and other aspects. However, research on sur-
face manufacturing defects during the manufacturing of
gears and high-speed online defect detection with numerous
parts requires further improvement.

3. Complex Background-Weakening Algorithm

Substantial oil, dust, and other debris accumulate on the con-
veyor during gear production, and they complicate the back-

ground of the gear image sample to be tested. Accurately
identifying the minor manufacturing defects on the gears,
such as scratches and pinion broken teeth, is difficult. Such
defects are called background noise. The images collected
by the camera also generate noise due to the randomness of
the photon flux and the fact that the gears are in motion on
the conveyor belt. If the real pixel value gr,c is disturbed by
the noise nr,c, the gray value obtained is as follows:

ĝr,c = gr,c + nr,c: ð1Þ

Noise nr,c is assumed to be smooth in the whole picture;
that is, the noise is independent of the position of the pixels
on the image. This noise, which is called stationary noise, is
equally distributed for each pixel in the picture.

Two methods are commonly used to weaken the two
kinds of noise in the picture collected during gear produc-
tion: time-domain average denoising [30] and spatial average
denoising [31]. Time-domain averaging captures and aver-
ages multiple images of the same scene. If n images are col-
lected, then time-domain average is obtained as follows:

gr,c =
1
n
〠
n

i=1
ĝr,c;i, ð2Þ

where ĝr,c;i denotes the grayscale value at position ðr, cÞ on
the i image. The time-domain average method effectively
reduces noise, and the variance of the noise is reduced to
original 1/n. To suppress noise, the method must collect
images in the same scene. For online defect detection, the
acquisition of multiple images in the same scene improves
the accuracy of defect identification. However, it greatly
increases the running time of the algorithm, thereby reducing
the overall detection efficiency.

Therefore, the spatial average is used for denoising by
taking a filter with a pixel of ð2n + 1Þ × ð2m + 1Þ and tra-
versing the same image. Depending on the operation and
the filter, the filtering algorithm includes meaning filtering,
block filtering, Gaussian filtering, and median filtering.
Among them, mean filtering and Gaussian filtering are
the most commonly used filtering algorithms. Mean filter-
ing can be expressed as

hr,c =
1

2n + 1ð Þ × 2m + 1ð Þ rj j ≤ n ∧ cj j ≤m

0Other

8><
>: , ð3Þ

where ðr, cÞ denotes the pixel position of the image and
m and n are the parameters that determine the length
and width of the filter.

If the original image matrix is

A =
α1,1 α1,2 ⋯ α1,k

⋮ ⋱ ⋮

αj,1 αj,2 ⋯ αj,k

2
664

3
775, ð4Þ
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then the filtered matrix is

B =
β1,1 β1,2 ⋯ β1,k

⋮ ⋱ ⋮

βj,1 βj,2 ⋯ βj,k

2
664

3
775: ð5Þ

In the actual operation process, the input image is usually
a square, so m = n. The pixel αp,q in matrix A is then proc-
essed through the mean filter with the size of ð2n + 1Þ ×
ð2n + 1Þ to obtain βp,q in B:

βp,q =

αp−n,q−n ⋯ αp−n,q+n

⋮ ⋱ ⋮

αp+n,q−n ⋯ αp+n,q+n

2
6664

3
7775

2n+1ð Þ 2n+1ð Þ

× 1
2n + 1ð Þ2

1 ⋯ 1

⋮ ⋱ ⋮

1 ⋯ 1

2
6664

3
7775

2n+1ð Þ 2n+1ð Þ

:

ð6Þ

As shown in Formulas (3) and (6), the averaging filter
actually averages the pixels in the effective calculation
range and assigns them to the middle value of the filtering
window. For the oil stain and dust background of the gear
production workshop, the mean filter averages pixel
values, such as oil and dust, with the surrounding back-
ground pixels. It blurs the oil, dust, and other small parti-
cles. It also highlights the position and feature information
of the gear in the whole image to prepare for subsequent
feature extraction.

Although the mean filter weakens small particles, such as
oil stains and dust in the background, most of the stationary
noises in the image due to the principle of lens imaging
appear in the form of high-frequency fluctuation of gray
value. The suppression of high-frequency noise via filtering
is not satisfactory. Therefore, to maximize the suppression
of the influence of high-frequency stationary noise, the
Gaussian filter is used for secondary image smoothing. As
such, the eigenvalue of the processed image becomes easy
to extract. The 1D Gaussian filter can be expressed as

gσ xð Þ = 1ffiffiffiffiffiffi
2π

p e−x
2/ 2σ2ð Þ: ð7Þ

The two-dimensional Gaussian filter applied to image
processing can be expressed as

gσ r, cð Þ = 1ffiffiffiffiffiffiffiffiffiffi
2πσ2

p e− r2+c2ð Þ/ 2σ2ð Þ = gσ rð Þgσ cð Þ: ð8Þ

After the first mean filtering of complex background
images, the effect of oil, dust, and other abrupt noises in the
background is weakened. The high-frequency noise in the
complex background of the image is weakened after the sec-
ond Gaussian filtering, and the gear body in the relative

image is highlighted, allowing for the easy extraction of the
gear body’s features.

4. Improved Construction and Training of
YOLOv3 Network

4.1. Characteristics of YOLOv3 Network Structure. The
YOLOv3 network model uses an end-to-end network archi-
tecture implemented in a CNN. The basic network structure
is shown in Figure 1.

Its network first divides the input image into S × S grids
and the image by clustering. If the center point of an object
in the image falls in the YOLO-divided grid, then the grid
is responsible for predicting the object. Each grid is responsi-
ble for predicting B bounding boxes and the confidence of the
bounding boxes. The confidence reflects the probability of
containing objects in the bounding box predicted by the net-
work model and the accuracy of the predicted position of the
bounding box, which can be expressed as

Confidence = Pr Objectð Þ × IOU truth
pred , ð9Þ

Type Filters Size Output

Convolutional

Convolutional

32 3 x 3 256 x 256

64

32

64

3 x 3 /2 128 x 128

1 x 1

3 x 3
128 x 128

Convolutional

Convolutional

Convolutional

Residual

Convolutional

Convolutional

Convolutional

Residual

Convolutional

Convolutional
Residual

Convolutional

Convolutional
Residual

Convolutional

Convolutional
Residual

128 3 x 3 /2 64 x 64

64 x 64

64 1 x 1

128 3 x 3

256 3 x 3 /2 32 x 32

32 x 32

128 1 x 1

256 3 x 3

Convolutional 512 3 x 3 /2 16 x 16

16 x 16

256 1 x 1

512 3 x 3

Convolutional 1024 3 x 3 /2 8 x 8

8 x 8

512 1 x 1

1024 3 x 3

Avgpool Global

Connected 1000

Softmax

1 x

2 x

8 x

8 x

4 x

Figure 1: YOLOv3 basic network Darknet-53 [11].
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where IOU (Intersection over Union) represents the intersec-
tion ratio of the real target bounding box and the predicted
target bounding box, which can be represented by Figure 2.
If an object exists in the grid, PrðObjectÞ = 1, then

Confidence = IOU truth
pred : ð10Þ

Otherwise, PrðObjectÞ = 0, that is,

Confidence = 0: ð11Þ

In the YOLOv3 network, each bounding box predicts five
values, including (x, y,w, h) and confidence, where x, y rep-
resents the coordinates of the center point of the predicted
bounding box and w, h are the width and the height of the
bounding box. Confidence is the IOU that predicts the
bounding and the real bounding boxes.

Each grid predicts the probability of C condition catego-
ries, that is, the probability of the mesh containing objects
belonging to a certain category. PrðClassi ∣ObjectÞ. Finally,
the conditional probability is multiplied by confidence, and
the probability that a certain type of object appears in the
box and the degree of fit of the bounding box to the object
are obtained:

Pr Classi ∣Objectð Þ × Pr Objectð Þ × IOU truth
pred

= Pr Classið Þ × IOU truth
pred :

ð12Þ

In the design of loss function, the YOLO network
takes the form of a weighted summation of the partial loss
functions. By weighing the coordinate error, IOU error,
and classification error and summing them, the total loss
function is calculated and can be expressed as

loss = 〠
s2

i=0
coordErr + iouErr + clsErr: ð13Þ

The loss of the predicted center coordinates is
expressed as

λcoord 〠
s2

i=0
〠
B

j=0
ℓobjij xi − xi∧ð Þ2 + yi − yi∧ð Þ2Â Ã

: ð14Þ

The loss of the width and the height of the predicted
bounding box is expressed as follows:

λcoord 〠
s2

i=0
〠
B

j=0
ℓobjij

ffiffiffiffiffi
wi

p
−

ffiffiffiffiffiffiffiffi
wi∧

pÀ Á2 + ffiffiffiffi
hi

p
−

ffiffiffiffiffiffiffi
hi∧

p� �2
� �

ð15Þ

where λcoord denotes the weight factor of the coordinate
error in the overall loss function.

The loss made to the forecast category is expressed as

〠
s2

i=0
ℓobji 〠

B

j=0
pi cð Þ − pi∧ cð Þð Þ2Â

: ð16Þ

The loss of confidence in the prediction is expressed as
follows:

〠
s2

i=0
〠
B

j=0
ℓobjij ci − cI∧ð Þ2Â Ã

+ λnoobj 〠
s2

i=0
〠
B

j=0
ℓobjij ci − cI∧ð Þ2Â Ã

, ð17Þ

where C is the confidence score; Ĉ is the intersection of the
predicted bounding box and the basic fact, when an object

exists in a cell; and ℓobjij is equal to 1; otherwise, it is 0; λnoobj
represents the confidence weight when no object exists in
the bounding box [10].

4.2. Improved YOLOv3 Network. The original YOLOv3 net-
work uses a CNN, so the image is extracted through multiple
convolutional layers for abstract feature extraction. Finally,
the image is classified and predicted. Combining the types
and characteristics of defects during actual gear manufactur-
ing and the complex background of image acquisition on the
factory production line, an improved online defect detection
network for YOLOv3 gear is proposed. This network is called
S-YOLO, which stands for smoothing-YOLOv3. The net-
work structure is shown in Figure 3.

In the network structure of S-YOLO, the end-to-end
Darknet-53 convolutional network formed in YOLOv3 is
maintained. Moreover, an image-smoothing layer is added
at the front end of the network to weaken the background
noise of gear image collection during production.

In the smoothing layer, an average filter with pixel 8 × 8 is
used to filter and smoothen the collected image for the first
time. This process is aimed at weakening the influence of
impurities, such as oil and fine dust particles, in the image.
A Gaussian filter with a pixel of 3 × 3 is then used for the sec-
ondary smoothing of the image. This filter mainly reduces

IOU =
Area of overlap

Area of Union

Poor

Good Excellent

Figure 2: IOU evaluation diagram.
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the high-frequency noise in the collected image and further
reduces the influence of oil, dust particles, and other impuri-
ties in the gear production workshop.

After passing the smooth layer, the pixel size and gear
defect characteristics remain unchanged. The following
YOLOv3 network uses three different scale feature maps
for defect detection. As shown in Figure 3, a scale detection
result is obtained through several yellow convolution layers
after the 79th convolutional layer. The input image size
during the experiment is 416 × 416 pix. Hence, the feature
image pixel size at this time is 13 × 13 pix. The receptive
field of the feature map is relatively large at this time
because the downsampling factor is high, which is suitable

for detecting relatively large defect size in the image. The
network starts upsampling from the feature map of the
79th layer. It then fuses with the 61st layer feature map to
obtain the 91st layer of the finer-grained feature map. After
several convolution layers, the feature map 16 times of the
input image is obtained. It has a medium-scale receptive
field and is suitable for detecting objects with medium
defect size. Finally, the 91st layer feature map is again
upsampled and merged with the 36th layer feature map to
obtain a feature map that is downsampled for eight times
from the input image. It has the smallest receptive field
and is suitable for detecting small defect sizes.

4.3. k-Means Clustering-Based A Priori Box Acquisition.
Although the YOLO network itself can improve the value

+

+

⁎

Concatenation

Addition

Further layers

Residual block

Up sampling layer

Detection layer

36 61
79

91

82
Scale1

Scale2
Stride:32

Stride:16

Scale3
Stride:8

94

106

 Down sampling
multiple

  
 

Image
smoothing

layer

Network
layer

 

⁎ ⁎

Figure 3: S-YOLO detection principle.
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Figure 4: Flow chart of the experimental platform.
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Figure 5: Experimental platform.
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of the IOU and constantly adjust the size of the bounding box
via training, allowing the network to modify through a large
amount of data will slow down the network training and
prevent the value of the IOU from gaining substantial
improvement. With the gear training dataset as a basis,
the k-means method is used to find the anchors of the
a priori box that best fits the size of the gear defect.
The standard k-means method uses Euclidean distance,
and this usage will result in large boxes that generate
more errors than small boxes. Therefore, Formula (18)
is used to represent the distance and obtain a large
IOU value in network prediction:

d box, centroidð Þ = 1 − IOU box, centroidð Þ: ð18Þ

5. Online Platform for Industrial
Defect Detection

Figure 4 depicts the system flow chart of the online testing
platform for gear manufacturing defects designed by the
research group. Figure 5 is an online test platform for gear
manufacturing defects built by the research team [10, 32].
This platform includes the conveyor belt, data processor,
data acquisition sensor, light source, and other mechanical
supports, wherein the touch display for inputting and dis-
playing data is the 32-inch industrial touch screen. The vision
sensor device uses the MindVision high-speed industrial
camera with an electronic rolling shutter, which can collect
high-speed moving samples for real-time testing. The data
processor is the Raspberry Pi B3. To ensure sufficient light
in the system box, a band-shaped ambient light source LED

with adjustable brightness is installed. A dedicated circular
light source of Microscope LED Ring Light is installed out-
side the industrial camera to fill the test sample with light
and to obtain a clear sample image. The device uses a variable
speed motor to drive the conveyor belt. The outside of the
box is equipped with a display for visualizing the test results.
The Dell workstation of GPU1080 graphics card, which is
mainly used for data analysis, is used to reduce the compu-
tational load of data processor. At the same time, Raspberry
PI B3 has a wireless communication module, which can
realize end-to-end communication between the test experi-
mental platform and the workstation. The SQL SERVER
2008 R2 database is installed on the workstation to realize
real-time local data capturing and automatic real-time data
storage in the cloud.

The gear is transported to the field of view of the
industrial camera’s lens through the conveyor belt. After
detecting the gear passing, the fiber optic sensor sends a
trigger pulse to the image acquisition part. The image
acquisition part then sends a start pulse to the industrial
camera and the illumination system according to the pre-
set program and delay. Industrial cameras begin to capture
images, and the Microscope LED Ring Light’s dedicated
ring light source provides illumination that matches the
exposure time of the industrial cameras. After capturing
the image, the image acquisition of the camera receives
the analog signal and digitizes it via an analog to digital
conversion. The image acquisition part stores the digital
image in the processor or computer memory. The proces-
sor then processes, analyzes, and recognizes the collected
gear image. It then obtains and saves the detection result.

(a) (b)

(c) (d)

Figure 6: Common defects in the gear manufacturing process. (a) Break. (b) Lack. (c) Scratch. (d) Normal.

Table 1: Distribution of common manufacturing defect datasets for gears.

Defect type Broken tooth Missing tooth Scratch Normal

Number of images
Test Train Test Train Test Train Test Train

100 900 100 900 100 900 100 900
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6. Experimental Results and Analysis

6.1. Production of Gear Datasets. During gear manufactur-
ing, the bluntness of the turbine hob or the uneven mate-
rial of the gear billet often causes gear tooth surface tear,
tooth fracture, and gear surface scratches, among others,
as shown in Figure 6.

Gear defect datasets P = fL, B, S,Ng are collected accord-
ing to the types of defects commonly found in gear produc-
tion. The four types of datasets are broken tooth image set
B = fB1, B2,⋯,B300g, missing tooth image set L = fL1, L2,⋯,
L300g, gear surface scratch image set S = fS1, S2,⋯,S300g,
and normal image set N = fN1,N2,⋯,N300g.

Data enhancements can enrich small datasets or poorly
diverse datasets. Common data enhancement methods
include color jittering, PCA jittering, random scale, random
crop, and horizontal/vertical flip. After collecting 300 pieces
of gear data for each type of gear through industrial cameras,
the images are rotated at random angles to achieve data
enhancement. Finally, 1000 pieces of image data for each type
are obtained, thereby collecting a total of 4000 pieces of gear
image data. The specific data distribution is shown in Table 1.

6.2. Double Filtering Background Weakening. The effect of
mean filtering on image noise removal in the complex back-
ground is considered. As shown in Figure 7, the original gray-
scale image has background noises, such as dust and oil
stains, as illustrated in Figure 7(a). These noises have a cer-
tain influence on the later gear feature extraction. After the
mean filtering operation, as shown in Figure 7(c), the back-
ground noise is partially weakened, and the degree of weak-
ening depends on the convolution kernel size of the mean
filter. After the mean filtering operation, the entire part of
the gear still has all the features required for defect detection.
As indicated in the comparison between Figures 7(b) and
7(d), the smoothness of the image increases after mean filter-
ing. Moreover, the overall pixel gradient tends to be smooth,
which is a good data condition for defect recognition and
classification via the deep learning algorithm.

The comparison in Figure 8 shows that the high-
frequency noise in the image is suppressed after the second-
ary filtering by the Gaussian filter, and the low-frequency
part of the image is highlighted. Thus, the effect of the main
part of the gear in the protruding image is achieved, which
lays the foundation for the following feature extraction.
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Figure 7: Comparison of image smoothness after mean filtering. (a) Original grayscale image. (b) The pixel gradient of the original grayscale
image. (c) Image after mean filtering. (d) Image pixel gradient after mean filtering.
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6.3. Experimental Results under Different k-Means. To con-
stantly adjust the size of the bounding box, the value of the
IOU must be increased. Under the parameter settings in
Table 2, the clustering effect of different k values on training

data in different k-means algorithms is tested. The experi-
mental results are listed in Table 3.

The clustering effect is conducive to the gear defect situ-
ation. S-YOLO allocates three different sizes of a priori boxes

(a) (b)
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(d)

Figure 8: Comparison with the Fourier transform of the Gaussian filtered image. (a) Original. (b) Gaussian filtered. (c) The original Fourier
transform. (d) The gaussian filtered Fourier transform.

Table 2: Training part of the main parameter settings.

Parameter Numerical value Parameter Numerical value Parameter Numerical value Parameter Numerical value

Batch 64 Angle 0 Burn_in 2000 Scales 0.1, 0.1

Subdivisions 32 Saturation 1.5 Max_batches 50000 Learning_rate 0.001

Momentum 0.9 Exposure 1.5 Policy Steps Random 1

Decay 0.0008 Hue 0.1 Steps 4000, 4500 Jitter 3

Table 3: The effect of different k values on the clustering effect of datasets.

k value 5

Accuracy 82.32%

Boxes (47, 42), (68, 45), (40, 60), (37, 25), (31, 43)

Ratios [0.67, 0.72, 1.12, 1.48, 1.51]

k value 7

Accuracy 82.32%

Boxes (72, 37), (37, 25), (46, 36), (39, 60), (66, 52), (42, 44), (50, 43)

Ratios [0.65, 0.95, 1.16, 1.27, 1.28, 1.48, 1.95]

k value 9

Accuracy 86.06%

Boxes (39, 61), (58, 53), (54, 38), (33, 25), (43, 45), (41, 26), (31, 41), (46, 40.5), (73, 38)

Ratios [0.64, 0.76, 0.96, 1.09, 1.14, 1.32, 1.42, 1.58, 1.92]
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for each scale when performing three-scale feature detection.
When the k value is equal to 9, nine kinds of a priori boxes
are available for allocation. Hence, when assigning, three a
priori boxes may be assigned for each scale feature. Details
are shown in Table 4.

At the smallest feature map 13 × 13 (larger receptive
field), the larger priority box (58, 53) (54, 38) (73, 38) is
applied to the feature map, which is suitable for detecting
surface scratches with large defect sizes. Medium feature
map 26 × 26 (medium receptive field) applies a medium

Table 4: A priori boxes for different receptive field assignments.

Feature map 13 × 13 26 × 26 52 × 52
Receptive field Big Medium Small

Prior box (58, 53) (54, 38) (73, 38) (39, 61) (43, 45) (46, 40.5) (33, 25) (31, 41) (41, 26)
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Figure 9: Comparison between the detection speed and accuracy of YOLOv3 and other algorithms [11].

10 Journal of Sensors



priority box (39, 61) (43, 45) (46, 40.5), which is suitable for
detecting objects of medium-size defects. A smaller priority
box (33, 25) (31, 41) (41, 26) is applied on the larger feature
map 52 × 52 (small receptive field), which is suitable for
detecting objects with small defect sizes, such as broken and
missing teeth. When training, the model training using the
cluster generated by k = 9 can significantly shorten the model
training time and improve the model IOU value.

6.4. Analysis of Gear Defect Detection Results. Figure 9 shows
the combined performance of the YOLOv3 object detection
network and other mainstream networks on the COCO data-
sets. After modifying the YOLOv3 model, the S-YOLO target
detection model is trained. Through model training, the gear
defect detection verification is finally performed on the detec-
tion platform. Figure 10 shows the detection of the S-YOLO
model in the absence of complex background conditions,
such as oil stains and dust particles. Figure 11 depicts the test-
ing situation of the S-YOLO model when oil and dust parti-
cles are filled in the background in the simulation of the
actual factory production on the platform for high-speed
gear manufacturing defect testing. The experimental test
results are provided in Table 5.

A comparison between Table 5 and Figure 11 shows that
proposed network S-YOLO increases the complex back-

ground of gear manufacturing while retaining the advantages
of traditional YOLOv3, which are detection speed and
multiscale prediction. The image-smoothing layer and k
-means clustering method are used to assign the most pri-
ority box to multiscale detection, which greatly inhibits the
influence of the complex background on the detection
effect of the model. It also makes the model lose stability
and improves the average IOU value during training. S-
YOLO is applied to the high-speed gear manufacturing
defect detection experimental platform. Its classification
effect reaches 100% accuracy, and the average confidence
reaches 93.96%. The algorithm has good robustness.

7. Summary

Themanufacturing defects in the gear manufacturing process
were analyzed and studied. A dual-filtering background-
weakening algorithm was proposed to address oil pollu-
tion, dust, and other complex backgrounds during produc-
tion. Combined with the deep learning algorithm and
target detection network model of YOLOv3, the network
model of S-YOLO for gear manufacturing defect detection
was proposed. Nine optimal anchor values were obtained
via k-means clustering, which reduced the declining fluctu-
ation of loss during model training and improved the
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Figure 10: S-YOLO network test results without background interference.
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average IOU value of the model. The gear manufacturing
defect dataset was established using the data enhancement
method.The applicationof theproposed algorithmandmodel
was verified by building an online platform for industrial
defect detection. The results showed that the proposed algo-
rithm can meet actual production requirements.
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.com/Yuli-Ya/Detecting-Gear-Surface-Defects.

Conflicts of Interest

The authors declare no conflict of interest.

Authors’ Contributions

L.Y. and Z.W. worked on conceptualization and data cura-
tion. Z.W. performed the methodology. L.Y. worked with
software and resources and did writing (original draft prepa-

ration and review and editing) and funding acquisition. Z.W,
L.Y., and Z.D. carried out the validation.

Acknowledgments

This work was supported in part by the National Natural
Science Foundation of China under Grant Nos. 91746116
and 51741101, the Science and Technology Project of Gui-
zhou Province under Grant Nos. [2017]2308, [2015]4011,
and [2016]5013, and the Collaborative Innovation of Gui-
zhou Province (YJSCXJH[2018]052).

References

[1] M. J. Robinson, J. P. Oakley, and M. J. Cunningham, “The
accuracy of image analysis methods in spur gear metrology,”
Measurement Science and Technology, vol. 6, no. 7, pp. 860–
871, 1995.

[2] M. A. Ayub, A. B. Mohamed, and A. H. Esa, “In-line inspec-
tion of roundness using machine vision,” Procedia Technology,
vol. 15, pp. 807–816, 2014.

Input

Output

Scratch

Scratch
Break

Lack

Figure 11: S-YOLO network defect detection when background interference exists on the detection platform.

Table 5: S-YOLO network detection gear defect situation.

Defect type
Number of
defects in
the test set

S-YOLO
classification
accuracy

YOLOv3
classification
accuracy

Average confidence
of each type of

defect in S-YOLO

YOLOv3 average
confidence of

each type of defect

Broken tooth 300 100% 98.2% 98.30% 88.4%

Missing tooth 300 100% 98.7% 97.05% 84.9%

Surface scratch 300 100% 98.6% 86.54% 80.2%

12 Journal of Sensors

https://github.com/Yuli-Ya/Detecting-Gear-Surface-Defects
https://github.com/Yuli-Ya/Detecting-Gear-Surface-Defects


[3] Q. Guo, C. Zhang, H. Liu, and X. Zhang, “Defect detection in
tire X-ray images using weighted texture dissimilarity,” Jour-
nal of Sensors, vol. 2016, Article ID 4140175, 12 pages, 2016.

[4] J. Yuan, Q. Wang, and B. Li, “A flexile and high precision cal-
ibration method for binocular structured light scanning sys-
tem,” The Scientific World Journal, vol. 2014, no. 8, Article
ID 753932, 8 pages, 2014.

[5] J. Yang and G. Yang, “Modified convolutional neural network
based on dropout and the stochastic gradient descent opti-
mizer,” Algorithms, vol. 11, no. 3, pp. 28–43, 2018.

[6] G. Yang, J. Yang, W. Sheng, F. Junior, and S. Li, “Convolu-
tional neural network-based embarrassing situation detection
under camera for social robot in smart homes,” Sensors,
vol. 18, no. 5, pp. 1530–1553, 2018.

[7] J. Yang, W. Sheng, and G. Yang, “Dynamic gesture recognition
algorithm based on ROI and CNN for social robots,” in 2018
13th World Congress on Intelligent Control and Automation
(WCICA), pp. 389–394, Changsha, China, China, July 2018.

[8] Y. Xu, C. Yang, J. Zhong, N. Wang, and L. Zhao, “Robot teach-
ing by teleoperation based on visual interaction and extreme
learning machine,” Neurocomputing, vol. 275, pp. 2093–
2103, 2018.

[9] M. Trobe and M. D. Burke, “The molecular industrial revolu-
tion: automated synthesis of small molecules,” Angewandte
Chemie International Edition, vol. 57, no. 16, pp. 4192–4214,
2018.

[10] J. Yang, S. Li, Z. Gao, Z. Wang, and W. Liu, “Real-time recog-
nition method for 0.8 cm darning needles and KR22 bearings
based on convolution neural networks and data increase,”
Applied Sciences, vol. 8, no. 10, p. 1857, 2018.

[11] J. Redmon and A. Farhadi, “Yolov3: an incremental improve-
ment,” 2018, http://arxiv.org/abs/1804.02767.

[12] R. Girshick, “Fast r-cnn,” in 2015 IEEE International Confer-
ence on Computer Vision (ICCV), pp. 1440–1448, Santiago,
Chile, December 2015.

[13] W. Liu, D. Anguelov, D. Erhan et al., “Ssd: single shot multibox
detector,” in Computer Vision – ECCV 2016. ECCV 2016. Lec-
ture Notes in Computer Science, volume 9905, B. Leibe, J.
Matas, N. Sebe, and M. Welling, Eds., pp. 21–37, Springer,
Cham, 2016.

[14] T. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and
S. Belongie, “Feature pyramid networks for object detection,”
in 2017 IEEE Conference on Computer Vision and Pattern Rec-
ognition (CVPR), pp. 2117–2125, Honolulu, HI, USA, July
2017.

[15] J. Mączak and M. Jasiński, “Model-based detection of local
defects in gears,” Archive of Applied Mechanics, vol. 88,
no. 1-2, pp. 215–231, 2018.

[16] J. M. Gandarias, A. J. García-Cerezo, and J. M. Gómez-De-
Gabriel, “CNN-based methods for object recognition with
high-resolution tactile sensors,” IEEE Sensors Journal, vol. 19,
no. 16, pp. 6872–6882, 2019.

[17] S. Lu, G. Qian, Q. He, F. Liu, Y. Liu, and Q. Wang, “Insitu
motor fault diagnosis using enhanced convolutional neural
network in an embedded system,” IEEE Sensors Journal, p. 1,
2019.

[18] Z. Cheng and N. Hu, “Quantitative damage detection for plan-
etary gear sets based on physical models,” Chinese Journal of
Mechanical Engineering, vol. 25, no. 1, pp. 190–196, 2012.

[19] F. Nabih, C. Jérôme, V. Fabrice, and V. Philippe, “Detection of
gear tooth pitting based on transmission error measurements,”

in Design and Modeling of Mechanical Systems. Lecture Notes
in Mechanical EngineeringSpringer, Berlin, Heidelberg.

[20] R. Younes, N. Ouelaa, N. Hamzaoui, and A. Djebala, “Experi-
mental study of combined gear and bearing faults by sound
perception,” in Advances in Acoustics and Vibration. Applied
Condition Monitoring, vol 5, T. Fakhfakh, F. Chaari, L. Walha,
M. Abdennadher, M. Abbes, and M. Haddar, Eds., vol. 76,
no. 5-8pp. 927–940, Springer, Cham, 2015.

[21] M. Zhao, J. Lin, Y. Miao, and X. Xu, “Feature mining and
health assessment for gearboxes using run-up/coast-down sig-
nals,” Sensors, vol. 16, no. 11, p. 1837, 2016.

[22] T. Kidar, M. Thomas, M. Elbadaoui, and R. Guilbault, “Phase
monitoring by ESPRIT with sliding window and Hilbert trans-
form for early detection of gear cracks,” in Advances in Condi-
tion Monitoring of Machinery in Non-Stationary Operations.
Lecture Notes in Mechanical Engineering, G. Dalpiaz, Ed.,
pp. 287–299, Springer Berlin Heidelberg, Berlin, Heidelberg,
2014.

[23] K. Debray, F. Bogard, and Y. Q. Guo, “Numerical vibration
analysis on defect detection in revolving machines using two
bearing models,” Archive of Applied Mechanics, vol. 74,
no. 1-2, pp. 45–58, 2004.

[24] R. Moreno, J. M. Chicharro, and P. Pintado, “Comparison of
minimum detectable crack size in a geared system from three
different vibration transducer types,” Experimental Tech-
niques, vol. 38, no. 1, pp. 76–87, 2014.

[25] H. Ozturk, I. Yesilyurt, and M. Sabuncu, “Detection and
advancement monitoring of distributed pitting failure in
gears,” Journal of Nondestructive Evaluation, vol. 29, no. 2,
pp. 63–73, 2010.

[26] R. Liu, D. Zhong, H. Lyu, and J. Han, “A bevel gear quality
inspection system based on multi-camera vision technology,”
Sensors, vol. 16, no. 9, p. 1364, 2016.

[27] S. Fedala, D. Rémond, R. Zegadi, and A. Felkaoui, “Gear fault
diagnosis based on angular measurements and support vector
machines in normal and nonstationary conditions,” in
Advances in Condition Monitoring of Machinery in Non-
Stationary Operations. CMMNO 2014. Applied Condition
Monitoring, vol 4, F. Chaari, R. Zimroz, W. Bartelmus, and
M. Haddar, Eds., pp. 291–308, Cham: Springer International
Publishing, 2014.

[28] A. Djebala, N. Ouelaa, C. Benchaabane, and D. F. Laefer,
“Application of the wavelet multi-resolution analysis and Hil-
bert transform for the prediction of gear tooth defects,”Mecca-
nica, vol. 47, no. 7, pp. 1601–1612, 2012.

[29] X. Zhang and S. Fan, Identification and modification of closed
defect of the location function for N-lobed noncircular gears,
Springer Singapore, Singapore, 2016.

[30] X. Tian, L. Jiao, Y. Duan, and X. Zhang, “Video denoising via
spatially adaptive coefficient shrinkage and threshold adjust-
ment in Surfacelet transform domain,” Signal, Image and
Video Processing, vol. 8, no. 5, pp. 901–912, 2014.

[31] H. D. J. O. Domínguez and V. G. Jiménez, “Evaluation of
denoising methods in the spatial domain for medical ultra-
sound imaging applications,” in Current Trends on
Knowledge-Based Systems. Intelligent Systems Reference
Library, vol 120, G. Alor-Hernández and R. Valencia-García,
Eds., pp. 263–281, Springer, Cham, 2017.

[32] J. Yang, S. Li, Z. Wang, and G. Yang, “Real-time tiny part
defect detection system in manufacturing using deep learn-
ing,” IEEE Access, vol. 7, pp. 89278–89291, 2019.

13Journal of Sensors

http://arxiv.org/abs/1804.02767


Research Article
Presenting a New Wireless Strain Method for Structural
Monitoring: Experimental Validation

Amedeo Gregori,1 Emidio Di Giampaolo,2 Alessandro Di Carlofelice,2 and Chiara Castoro 1

1Department of Civil, Building and Environmental Engineering, University of L’Aquila, Via Giovanni Gronchi 18,
67100 L’Aquila, Italy
2Department of Industrial and Information Engineering and Economics, University of L’Aquila, Via Giovanni Gronchi 18,
67100 L’Aquila, Italy

Correspondence should be addressed to Chiara Castoro; chiara.castoro@libero.it

Received 14 March 2019; Revised 7 July 2019; Accepted 23 August 2019; Published 3 November 2019

Guest Editor: Ye Lu

Copyright © 2019 Amedeo Gregori et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

The structural health monitoring (SHM) of large and complex infrastructures as well as laboratory tests of new structures and
materials resorts to strain gauge measurements to check mechanical stress. A wireless measurement of the strain gauge response
is desirable in many practical applications to avoid the cost and the difficulty of wiring, particularly in large structures requiring
several sensors and in complex objects where the measurement points are difficult to access. In this paper, a wireless
strain gauge which is a hybrid between an RFID tag and a usual thin-film resistive strain gauge is experimented.
Installation and maintenance problems of the wireless sensor networks are overcome allowing a high level of measurement
accuracy, comparable to that of wired strain sensors, together with a long measurement distance. A large set of measurements
has been performed using reference specimens and readings in order to validate the sensor and to develop a calibration
procedure that makes the sensor suitable for a large number of different applications in civil engineering.

1. Introduction

The structural monitoring of large and complex infrastruc-
tures requires the use of a number of specific sensors dis-
tributed on a large area or volume to form a monitoring
system composed of independent or interconnected sensor
nodes like a smart skin. Because of the complexity of that
monitoring system, some kind of intelligence is required
to make easy the managing of the system and the handling
of the large amount of measured data. In particular, the
communication between the sensor nodes and a managing
unit that collects and stores the information gathered from
the sensors spread over the structure is a critical issue that
preferably has a solution with wireless systems. In fact,
wireless sensors permit a fast and easy installation even in
points difficult to access while their cost is lower than that
of a wired system.

Wireless sensor networks (WSNs) are a favorite candidate
for structural health monitoring (SHM) of large structures.
As an interdiscipline consisting of sensor, communication,
and wireless technology, WSNs were initially applied in the
military and then extended to environmental monitoring,
agriculture, medical treatment, and civil engineering [1–13].
Various types of sensors have been developed during the past
decades (such as strain gauge and optical fiber sensors) while
SHM technology is becoming important in a wide range of
technical fields, most of the time in combination with struc-
tural use of special composites and high-performance mate-
rials [14]. Actually, it is more and more understood as the
SHM system can improve safety and reliability of structures
by autonomously monitoring the conditions or detecting
critical damage. In [9], authors state that in comparison
with traditional wired sensor networks, wireless systems
for SHM have numerous advantages in terms of better
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flexibility, software or hardware expandability, cost effective-
ness, and fault tolerance. Interesting applications of wireless
sensors made in aerospace, civil, and environmental engi-
neering are discussed in [15–18] comparing the practical
needs concerning space requirements and cost increments
with those of traditional wired techniques. In [19], a dipole
antenna-based wireless sensor for the damage detection of
a composite rotor blade is investigated. In [20], the use of
WSNs has been presented as a useful tool even in forest fire
surveillance, allowing real-time acquisition, evaluation, and
analysis of environmental information including tempera-
ture, humidity, sound, vibrations, and smoke as well as pic-
tures of buildings and forest. Some advances in research,
development, and implementation of smart sensor networks
and health monitoring systems for civil infrastructures are
presented in [21, 22]. In particular, cases of study of WSNs
and their integrated systems and implementations in off-
shore platform structures, hydraulic engineering structures,
large span bridges, and large space structures have been
reported. Other researches on wireless sensing technology
applied to SHM for buildings and civil engineering struc-
tures are discussed in [23].

During the entire last decade, implementation of wireless
transmitters for continued structural damage monitoring
became a promising research field to be often related to
new patented inventions and devices. In [24], the authors
present a new methodology for operating a monitoring
system that provides near-real-time structural condition
assessment for extreme events and long-term deterioration
information, using MEMS-type accelerometers. This pro-
posed structural monitoring system comprises modular,
battery-powered data acquisition devices which transmit
structural information to a central data collection and analy-
sis device over a wireless data link. Data acquisition devices
comprise mechanical vibration sensors, data acquisition cir-
cuitry, wireless transmitter, and battery. For sophisticated
analysis after a natural hazard or extreme event, the authors
suggested that powerful computers may be interfaced with
the central device.

While WSNs have been extensively investigated in
recent years, many practical challenges are still to be faced
when employing such a technology for many SHM applica-
tions, including civil and mechanical infrastructures [25]. In
fact, a WSN must remain in operation over multiple decades
with maintenance costs low enough to justify its integration
into a given structural maintenance strategy. These technical
barriers include ensuring reliable power sources for sensor
nodes, reducing installation and maintenance costs, and
automating the collection and analysis of data acquired by
a WSN.

As a possible solution to overcome the mentioned chal-
lenges, in [26] is discussed the use of sensor nodes that collect
measurements from a structure in a completely passive man-
ner without any electrical power. In [27], a wireless sensor
network with temperature-compensated measuring technol-
ogy for long-term structural health monitoring of buildings
and infrastructures is presented. A brief summary and com-
parison among benefits and disadvantages related to active
and passive wireless sensors are given in [28] together with

the presentation of a passive wireless structural health mon-
itoring sensor made with a flexible planar dipole antenna.
In fact, it is understood that chipless passive wireless sensors
can give real-time structural information for SHM without
space and battery constraints in harsh environmental condi-
tions [10–13]. Chipless passive wireless strain and damage
detection sensors based on a frequency selective surface are
presented in [29].

In this paper, a new kind of sensor node for mechanical
stress detection which is obtained as a hybridization of an
RFID (Radio Frequency Identification) tag and a resistive
strain gauge is exploited.

It is a semipassive wireless strain sensor tag, which uses a
piezoresistive thin-film strain gauge (like a wired sensor), but
it can be passively interrogated as an RFID tag. Like an RFID
system, there is an interrogation unit (i.e., a commercial
RFID reader) that radiates an electromagnetic wave that
impinges on the antenna of the sensor tag waking it up.
The strain gauge varies its resistance in accordance with the
applied strain and drives an oscillating circuit that modulates
the electromagnetic wave backscattered by the sensor tag
antenna. The modulating frequency is dependent on the
applied strain and can be easily measured by means of a spec-
trum analyzer or a frequency meter once the modulated
backscattered wave is received back by the interrogation unit.

The prototype of the proposed sensor tag makes use of a
battery to power the oscillating circuit that is maintained
turned off for all the time except for a short time interval
during the measurement interrogation. For this reason, the
life span of the battery can be very long. A detailed descrip-
tion of the sensor tag is reported in [30] and in Materials
and Methods.

Since each sensor tag is autonomous and independent
from other nearby deployed sensors, the resulting network
has the simple star topology where the central unit is an RFID
reader that interrogates one-by-one all the deployed sensor
tags. In this paper, the application of this sensor tag to realis-
tic cases concerning the field of civil and mechanical engi-
neering is shown. The assessment of the sensor tag is
demonstrated by means of measurements of the Young’s
modulus of different materials and by a comparison with
the results obtained using a calibrated wired system. A cali-
bration procedure of the new sensor tag has been developed,
and a detailed measurement campaign using many instru-
mented specimens is also reported.

With this study, we have assessed the possibility to trans-
fer the measured information from the sensor tag to a central
unit analogically avoiding the analog to digital conversion at
the sensor tag level but performing it at the level of the central
unit. We transmit the measured data analogically as a back-
scattered frequency modulated continuous signal that can
be sampled at the receiving unit using an appropriate device
having a high data rate so that very fast phenomena can be
detected easily, with high accuracy, using cheap sensor tags.
The feasibility of this new sensor tag has been investigated;
a measurement campaign shows its effectiveness and proves
the advantages of this new sensor tag in particular in measur-
ing vibrations and dynamic phenomena. The managing of
the system results is simple because it does not suffer of
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restriction on the data rate, since the strain information
travels over analogical signals.

2. Materials and Methods

The overall SHM system consists of an interrogating unit
(i.e., a reader) placed in a convenient position (e.g., near the
ground in Figure 1) and several sensor tags deployed on the
structure to be monitored (e.g., in positions difficult to
access). Tags are fixed to the structure; they are designed to
remain operative for several years, while the interrogation
unit is intended to be portable and placed at the measure-
ment location only when needed (obviously, it can be also
used for a permanent monitoring of the structure). All sensor
tags are quiescent (i.e., inactive) for all the time except for the
short time interval when interrogated. During interrogation,
they measure the strain affecting the portion of the structure
where each of them is stuck on and send back to the interro-
gation unit a signal encoding the strain measured value. The
optimal operation of the system is achieved when the interro-
gation unit has a line of sight with each sensor tag, but the
system is able to work even in nonline of sight conditions.
As sketched in Figure 1, the distance between the interroga-
tion unit and the sensor tags can be of several meters. Like
in logistic applications, the number of tags that can be han-
dled by a single interrogation unit is large (e.g., a commercial
reader can interrogate several tags per second), but that num-
ber can be larger or smaller in agreement with the repetition
time of interrogations. In case of static objects (i.e., the
change of the status of the monitored structure is slow com-
pared to the measurement time), the interrogation rate can
be low (the number of tags interrogated in the time unit is
not an issue), and as a consequence, the number of tags that
can be handled by an interrogation unit is limited only by the
maximum interrogation distance, i.e., the distance over
which the tag is not getting enough power to be woken up.

The developed sensor consists of three main circuital
blocks: an RFID block, a supply block, and a sensing block
as shown in Figure 2(a).

The RFID block consists of an antenna, a commercial
RFID microchip (i.e., an NXP GMiL+), and a pin diode with
its feeding network. The antenna is a dipole-like antenna
operating at 868MHz; the pin diode is connected to the
antenna terminals by means of a feeding network, and it is
used to modulate (on-off) the backscattered signal. The RFID
microchip, powered by an external battery, allows the read-
ing/writing distance of the sensor tag up to 30m (nominal)
and allows the remote control of the voltage level of a logic
pin by means of an appropriate writing of the configuration
word in its memory. This voltage level is used to switch the
supply and sensing blocks on and off.

The sensing block is essentially a resistance-to-frequency
converter circuit whose output is a squared wave signal that is
used to drive the pin diode connected to the antenna termi-
nals. Under the squared wave signal, the input impedance
of the pin diode switches between two values (low and high
impedances) performing an amplitude modulation of the
electromagnetic wave that is backscattered by the antenna
(Figure 2(a)). Since the frequency of the squared wave signal

is proportional to the strain gauge stretch, the backscattered
signal, amplitude modulated by the squared wave signal,
carries the information concerning the strain measured by
the strain gauges.

Details of the resistance-to-frequency converter are
shown in Figure 2(b). It is composed of a full Wheatstone
bridge strain gauge circuit (i.e., four piezoresistive thin-film
strain gauges like in a wired sensor) and an operational
amplifier that amplifies the small voltage changes across the
bridge.

Actually, the Wheatstone bridge is a well-known circuit
consisting of four resistive arms with resistances R1, R2, R3,
and R4 and an excitation voltage, Ve, applied across the
bridge. The output voltage Vo is zero when R1/R2 = R4/R3
and the bridge is said to be balanced. Any change in resis-
tance in any arm of the bridge will result in a nonzero output
voltage.

A possible configuration for strain measurements is the
so-called quarter-bridge. It has a strain gauge at one arm of
the bridge (active arm), e.g., R4, which is the only changing
resistance of the bridge. R4 = R0 + ΔR, where R0 is the
unstressed resistance (or nominal resistance) of the strain
gauge and ΔRmodels the strain-induced change in resistance
due to an applied strain ε.

It is ΔR = R0 · GF · ε, where GF is the Gauge Factor, i.e.,
the sensitivity of the strain gauge to strain which for metallic
strain gauges is typically around 2.

If we assume that R1 = R2 and R3 = R0, the output volt-
age is

Vo = −
GF · ε
4

1
1 + GF · ε/2

� �
Ve: ð1Þ

In practice, considering that the strain measurements
rarely involve quantities larger than a fewmillistrain, the out-
put voltage (Equation (1)) cannot be larger than a few thou-
sandths of the excitation voltage. For these reasons, wired

IU

RT

Tag

Figure 1: Scheme of the system measurement set-up. Tags are
represented as dotted rectangles; the interrogation unit (IU) is
shown as a box on the ground while RT means responding tag.
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systems resort to an amplification of the output voltage to
bring the signal to a level where it can be conveniently
handled for indication or recording. In the proposed wireless
system, instead, the resistance-to-frequency technique is
used in order to codify the strain measurement into a modu-
lation frequency while preserving the high sensitivity of the
Wheatstone bridge. A deeper description of the resistance-
to-frequency converter is provided in [30].

The unbalance voltage due to the resistance change is
then integrated, and its polarity is fed back to the bridge as
the bias voltage to sustain the oscillation. The oscillation fre-
quency changes quite linearly with the stretching of the strain
gauges. The output of this circuit drives a pin diode circuit for
modulating the backscattered signal.

The interrogating unit consists of a commercial RFID
reader (the same kind used in logistics) and a spectrum ana-
lyzer connected to an antenna and to a personal computer
(Figure 3); alternatively, we have used a Universal Software
Radio Peripheral (National Instruments NI USRP 2920) par-
ticularly suited for dynamic measurements. At the start of
measurements, the interrogation unit sends, by means of
the RFID reader, an electromagnetic wave which delivers
both the energy to wake up the tags and a query command
to boost the tags to reveal themselves. Awaken tags modulate
the electromagnetic wave that scatters back from their anten-
nas with a random numeric code revealing their readiness for
communication. Then, the RFID reader performs the inven-
tory of all the responding tags which identify themselves
sending back their ID. Once the inventory is completed, the
interrogation unit starts with the measurements of the strain
gauge status of the inventoried tags.

The measurement procedure is repeated identically for
each one of the responding tags and consists of three steps.
In the first step, the interrogation unit opens a specific read-
ing/writing session with the ith responding tag identified by
means of its ID and enables that tag (with appropriate writing
of the configuration word located in the memory of the tag)
to switch on the supply circuit block which supplies energy
to the sensing block. After that, during the second step, the
interrogation unit sends a continuous wave (CW) signal

and waits for the signal backscattered from the tag which
delivers the strain gauge status information. In fact, the strain
gauge varies its resistance in accordance with the applied
strain and drives an oscillating circuit (inside the sensing
block) which modulates the electromagnetic wave backscat-
tered by the tag antenna. The modulating frequency is line-
arly dependent on the applied strain, so the backscattered
signal has a different frequency modulation in accordance
with the strain gauge status. Once the modulated backscat-
tered signal is received by the interrogation unit, the modu-
lating frequency is easily measured by means of a spectrum
analyzer and the strain status is retrieved. Once the strain
measurement is completed, the interrogation unit becomes
the step three. A new reading/writing session is open to dis-
able (by writing the appropriate memory location of the
tag) the supply circuit block, and consequently, the sensing
block is switched off. The modulation of the backscattered
signal finishes, and a CW signal arrives to the interrogating
unit which closes the communications with that tag and
starts to interrogate another inventoried tag repeating the
above-described three steps. Therefore, the sensing circuit is
kept turned off all the time except for the short time interval
during the measurement interrogation (step two).

Pin diode

RFID 
microchip

Supply
block

Sensing
block

V3.35 V+–

EN Antenna

(a)

+
+

RX

R1

R2

RT

CT
R𝛿 (1–𝛿)3 R3

+

–
–

–
Vo

/

(b)

Figure 2: (a) Scheme of the sensor tag; three main circuital blocks: an RFID block, a supply block, and a sensing block. The sensor tag is
quiescent and can be activated on demand. (b) Schematic of the resistance-to-frequency converter circuit.

Receiving

Reader

Interrogating
antenna

Spectrum
analyzer

antenna

Figure 3: The interrogation unit consists of a commercial RFID
reader and a spectrum analyzer connected to an antenna and to a
personal computer.
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3. Set-Up of the Experimental Tests

To evaluate the effectiveness of the proposed sensor tag, a
campaign of measurements has been performed. Tasks of
this experimental activity were the calibration of the sen-
sor and the comparison of the wireless measured data with
those achieved with a consolidate method based on wired
sensors. Specific tests have been also performed to estimate
the maximum interrogation distance for the wireless sensor.
Inside a laboratory room, with several obstacles making this
environment noisy, the sensor tag was proved to allow for
an interrogation distance even larger than 20 meters.

To prove the effectiveness of the proposed new wireless
strain measurement technique, the elastic properties of three
materials have been investigated using wireless sensor tags in
place of the wired strain gauges. In particular, the experimen-
tal procedure described in this section refers to the elastic
modulus assessment of brass, aluminium, and steel samples,
respectively. These estimations have been first performed in
accordance with a common wired strain gauge technology.
Subsequently, the estimation of the elastic modulus of the
three materials has been repeated on the base of the wireless
strain measurements. The two procedures are discussed in
Results and Discussion, together with a comparison of the
experimental results.

The experimental tests were performed in accordance
with the wired strain measurement technique, and those con-
cerning the new proposed method have been all carried out
operating a specific apparatus. In particular, the experimental
apparatus included a manual compensator (working with the
principle of the Wheatstone bridge) and a vertical metal
frame (Figure 4) that mainly consists of a rigid steel-made
structure built for a laboratory test and standing in the verti-
cal plane and designed to apply controlled forces up to 10 kN
in tension. In particular, a manually driven wheel is mounted
on the top of the testing frame. The wheel controls a lever
mechanism by which a variable tensile force is introduced
in the specimen causing it to extend. A load cell mounted
in series with the specimens (and electrically connected to
the compensator) allows the measurement of the tensile force
applied during the tensile test.

Operating the just mentioned apparatus in a proper
way, the elastic modulus E (Young’s modulus), the shear
modulus G, and/or the Poisson’s ratio ν of any elastic
material can be assessed. So far, only specimens of material
previously instrumented with wired strain gauges have been
considered for tests.

Three different solid metal pieces made of brass, alumin-
ium, and steel, respectively, have been selected and machined
to obtain a couple of identical specimens from each of them.
The two specimens of each couple have been assumed to be
homogeneous and to univocally represent the same material.
To perform tensile tests, the specimens had to be previously
worked and instrumented. Once machined, specimens have
been characterized from a dog’s bone shape, with the two
hands kept bigger to secure the specimen to the testing appa-
ratus and to favorite a regular strain diffusion along the cen-
tral, cylindrical portion of the specimen (stalk) when
applying tensile forces. The cylindrical portion of the speci-

mens measures 8mm in diameter and about 100mm in
length (Figure 5).

During the test, the applied tensile forces have been mea-
sured and controlled by means of a load cell mounted in
series with the specimen and electrically connected to the
compensator. The load cell is characterized by a maximum
load capacity of 20 kN, a maximum output signal of
4000mV/V, and a scale factor k = 2.

The number and the magnitude of the load increments
applied during the tensile test have been set in accordance
with the different strengths and stiffness of the various metal
specimens. In particular, load increments have been limited
in the range of 0:75 ÷ 1 kN (equivalent signal variation: 150
÷ 200mV/V) and have been repeated several times upward
and downward, respectively. A complete load sequence
includes a number of steps upward to a maximum load value
and an equal number of load decrements downward to a zero
load value, so to obtain a closed loop. The maximum applied
load has been fixed in advance and kept low enough to avoid
the specimens to yield: about half of the yield threshold was
reached as maximum stress.

According to the elastic theory, tensile strains resulted in
the specimen while loads are being applied. During the
experiments, tensile strains have been detected and measured
by means of several strain gauges previously mounted on
the specimen and electrically connected to the compensator.
In particular, each specimen has been instrumented with
two single grid strain gauges glued on the opposite side of
the specimen, the grids being aligned with the longitudinal
axis of the specimen. Common strain gauges 3/120LY4x
type, characterized from R = 120Ω and a scale factor k = 2,
were adopted.

The number of strain gauges used in each single test var-
ies from two to four according to the half or to the whole
bridge configuration, respectively. The reason for multiple
gauges mounted on the same specimen first comes from the
undesired possibility that applied tensile force could act
eccentrically with respect to the ideal longitudinal axis of
the specimen. In fact, applied loads acting with casual eccen-
tricities introduce undesired bending actions so that a not

Figure 4: Steel frame for the laboratory tests.
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uniform strain distribution across the transversal section of
the specimen may result. An average signal computed from
strain gauges mounted on opposite sides of the same speci-
men allows to compensate for this undesired effect and
accounts for the ideal, uniform tensile strain to be consid-
ered in the tensioned specimen. On the other hand, when
more arms of the Wheatstone bridge have been made active,
the sensitivity of the bridge increased. Moreover, due to pos-
sible temperature change during the test, the need for a sec-
ond signal compensation rises as well. For this reason,
signals from gauges mounted on the loaded specimen are
combined with those recorded, at the same time, from
gauges mounted on a second, identical specimen kept
unloaded. In this research work, both the mechanical
and thermal compensations of the strain measurements
have been performed at once, recording signals from
gauges in a whole bridge configuration.

4. Results and Discussion

The elastic modulus of the three materials has been deter-
mined by means of tensile tests performed in accordance
with the wiredmethod first, then using wireless strain gauges.

4.1. Experimental Data from the Wired Method. Experimen-
tal curves obtained from separate tensile tests carried out on
the brass specimen, on the aluminium specimen, and on the
steel specimen, respectively, have been reported in the graph
of Figure 6. The values of the applied stress σ have been
reported on the vertical axis and measured strains ε in the
horizontal one.

As expectable, the experimental data clearly proved the
elastic behavior of the specimens. According to Hooke’s
law (σ = E · ε), the estimation of the elastic modulus E of
each different material was then obtained as a slope (angu-
lar coefficient) of the linear regressions built on the exper-
imental data. Both the ascending and descending branches
of each experimental curve have been considered in these
calculations. In fact, it is worth to note that a curve actually
consists of a very narrow loop in which the ascending and
the descending branches, respectively, do not precisely
overlap each other. This fact (undesired) is usually assumed
to depend from hysteretic phenomena (unavoidable) taking
place during the loading/unloading cycles. In our research,
the loop amplitude was made sure to remain always neg-
ligible and not to affect the test repeatability. This explains

why loops are not clearly visible from curves plotted in
Figure 6.

On the other hand, linear regressions built on experi-
mental data are found to be very accurate and characterized
by R2 values almost equal to 1. In this experimental work,
the mean value of the three measurements repeated on each
metal specimen has been assumed as the reference value for
the elastic modulus Eref of the considered material. Single
experimental results and Eref values have been reported in
Table 1.

4.2. Experimental Data from the Wireless Method: Static
Measurements. To prove that the wireless sensor tag is a reli-
able measuring tool, the elastic modulus assessment previ-
ously carried out on the base of the wired method has been
attempted in the wireless mode. As before, tensile loads
(and stresses) continued to be measured by means of the
same load cell and compensator.

Data plotted in Figure 7 show the results of a tensile test
performed on the brass specimen and recorded in accor-
dance with the new wireless method. Values of the applied
stress σ have been reported on the vertical axis, and the
recorded bridge frequency changes on the horizontal one.
To be consistent in the experimental procedure, stress incre-
ments and load sequence have been repeated as in previous
tests carried out to estimate reference elastic modulus Eref
of the brass specimen in accordance with the wired method.

Experimental data in Figure 7 highlight that a relation-
ship exists among the applied load increments and the fre-
quency changes (i.e., the modulation frequency of the
backscattered signal) measured from the interrogation unit.
Actually, a linear regression built on the experimental data
was found to be very satisfactory, with the coefficient of
determination R2 approaching unit (R2 = 0:9931). On the
other hand, considering experimental data more into details,
it is noted that the experimental curve yet consists of a very
narrow loop (as for wired gauge strain measurements) in

Figure 5: One of the instrumented steel specimens.
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Figure 6: Experimental stress-strain curves obtained from tensile
tests on steel, brass, and aluminium specimens using the wired
method.
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which the ascending and the descending branches tend to a
unique monotonic curve perfectly fitted by a second order
polynomial regression (R2 = 1:00) (Figure 7). This was con-
firmed also for different materials.

About the weak nonlinearity of the experimental curve, it
is worth to note that it mainly depends on the actual value of
the hardware parameters, i.e., the tolerances of the electronic
components (in particular, resistances and capacitances) that
make the response of the sensor tag not perfectly linear as
explained in [30]. Fortunately, the level of nonlinearity can
be made small by means of an accurate choice of the elec-
tronic components so that the resulting nonlinearity can be
ignored as shown by the R2 value calculated for the linear
regression plotted in Figure 7, approaching unit.

On the other hand, observing the four curves of Figure 8,
referring to tensile tests carried out on a unique aluminium
specimen, it can be noted that they significantly differ from
each other for the entity of the frequency increments
recorded in consequence of the same strain variation pro-
duced in the specimen. This is because the frequency
response of the sensor tag changes in the four experiments;
in particular, the frequency domain and the slope of the
response are different. The change of the frequency response
is achieved by means of different choices of the values of the
electronic components of the oscillating circuit [30]. There-
fore, the sensor tag can be tuned to have different frequency
responses, and each response is characterized by a different
reference frequency value f 0 (i.e., the frequency in unstressed
condition). For these reasons, the four series of measure-

ments shown in Figure 8 have been operated into different
domains and have different slopes.

Linear regressions plotted in Figure 8 are characterized
from different slopes Δσ/Δf and clearly show the highest
bridge frequency changes when using the sensor tag charac-
terized by the lowest initial frequency f 0 = 8648Hz (red
square dots curve). Consequently, the sensor tag character-
ized by higher initial frequencies results to be less and less
sensitive to the same stress (strain) increments applied to
the specimen.

4.3. Calibration. According to the wired method, a unique,
direct proportion exists among the strain variations, the
gauge resistance changes, and the consequent current change
in the Wheatstone bridge of the compensator. Similarly, the
sensor tag gives a change of the modulating frequency of
the backscattered signal in accordance with the real strain
increment occurring in the gauge, but it depends on the ref-
erence frequency in unstressed condition, and it suffers from
possible nonlinearity. In order to investigate these character-
istics of the sensor tag, a large campaign of new tensile tests
has been carried out making the initial frequency f 0 variable
in a wide range of values. As explained in [30], this is possible
operating a suitable tuning of the electrical resistance of the
circuit. Tensile tests are extended to specimens made of steel,
brass, and aluminium, searching for a general validation of
the proposed method. As already done in Figure 7, the linear
regressions are calculated on the experimental data and the
angular coefficient Eapp = Δσ/Δf of each of these regressions
is regarded as an apparent value of elastic modulus for the
tested specimens. Results of these calculations, made with
respect to a significant number of different f 0 values and
extended to all the considered materials, have been reported
in Figure 9. The ratio k = Eapp/Eref among the calculated
values of apparent elastic modulus Eapp and the reference
value of the Young elastic modulus Eref (previously deter-
mined for various materials using the wired method) have
been plotted with respect to the considered initial frequency
f 0. In particular, a unique linear relationship has been
highlighted among experimental k values and f 0 ones, inde-
pendently from the considered materials. That relationship
can also be written as

k =
Eapp
Eref

= Δσ/Δf
Δσ/Δε = Δε

Δf
ð2Þ

so that the variable k represents the ratio among the real
strain increment to be measured (Δε) and the measured

Table 1: Estimation of the reference elastic modulus Eref of the materials and R2 of the single linear regressions. Wired method.

Material Stress step (MPa) Max. stress (MPa)
Cycle 1 Cycle 2 Cycle 3

Eref (MPa)
E1 (MPa) R1

2 E2 (MPa) R2
2 E3 (MPa) R3

2

Steel 20 140 219200 0.9999 223700 0.9999 223100 1.000 222000

Brass 15 105 106100 0.9995 106600 1.000 105400 0.9996 106000

Aluminium 7.5 75 68300 1.0000 69200 1.000 68900 1.000 68800

y = 0.0519x
R = 0.9931y = 6.68E-06x2+4.25E-02x

2R = 1.00E+00
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Figure 7: Wireless sensor tag frequency variation recorded during
the tensile test on the brass specimen.
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frequency change Δf . This ratio depends on the considered
frequency f 0. Then, linear regression calculated in Figure 9
provides the calibrating law to translate the measured fre-
quency changes into the actual strain variation experienced
by the specimen.

If nonlinearity of the experimental Δσ‐Δf curves is
taken into account, at each step i of a single tensile test,
stress increments Δσi = σi+1‐σi and, consequently, single
real strain increments Δεi = εi+1‐εi may be directly related
to the correspondent frequency variations Δf i = f i+1‐f i. This
allows to compute several local values of the apparent elastic
modulus, here named secant values Esec,i = Esecð f iÞ = ðσi+1‐
σIÞ/ð f i+1‐f iÞ which depends from the actual frequency f i
at the step i. Consequently, a new definition for the ratio

k (Equation (2)) can be given with respect to the Esec,i values
in place of the Eapp ones, highlighting the continued depen-
dence of ratio k = Esec/Eref from the current f i value in place
of the initial value f 0. In these terms, ratio k can be regarded
as a continue function of the actual bridge frequency f i in
accordance with the following expression:

k = k f ið Þ = Esec f ið Þ
Eref

= σi+1 − σið Þ/ f i+1 − f ið Þ
σi+1 − σið Þ/ εi+1 − εið Þ = Δεi

Δf i
: ð3Þ

Equation (3) highlights the existing relation between the
real strain increment to be measured Δεi and the frequency
change Δf i measured in place of it. The ratio k between
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these two variables is modelled as a continuous function of
the instantaneous frequency f while strain increments
(and consequent frequency changes) are taking place.

A plot of k = k ð f iÞ calculated for each tensile test is
shown in Figure 10.

In particular, experimental Δσ vs. Δf curves recorded
from tensile tests were first considered as sequences of indi-
vidual steps i, whose stress increments Δσi could be con-
verted into the real strain variations Δεi in accordance
with Hooke’s law Δεi = Δσi/Eref for each specific material.
Subsequently, the values of the ratio k = Δεi/Δf i among the
calculated real strain variations Δεi and the related fre-
quency changes Δf i recorded at the step i have been com-
puted and plotted with respect to the instantaneous bridge
frequency value f i considered at the beginning of each con-
sidered step i.

Data in Figure 10 refer to the entire bunch of experimen-
tal values obtained from tensile tests performed on all the
three different couples of metal specimen. These data clearly
show the real strain increment and the correspondent fre-
quency change to be strictly related to each other. In particu-
lar, several regression laws have been calculated on the
experimental data, including an exponential form, a second
order polynomial, and a linear equation, respectively. The
first two regression laws showed to fit experimental data
not significantly better than the linear regression one, this lat-
ter being characterized from an R2 value very close to unity.

Assuming k = k ð f iÞ as a continue function of f i, the dif-
ferential k = Δε/Δf can be considered and the real strain var-
iation Δε is calculated in accordance with the following
integral expression:

Δε =
ð
k fð Þdf : ð4Þ

If the linear regression law k = 2:382E‐05 · f (indicated in
Figure 10) is substituted in Equation (4), the strain increment
Δε occurring in the gauge while the measured frequency
changes from value f 1 to value f 2 is simply calculated as

Δε = 1:1912 ⋅ 10−5 f 22 − f 21
À Á

: ð5Þ

Once again, it is worth noticing that Equation (5) is inde-
pendent from the material of the specimen. Also, the validity
of Equation (5) extends to a very wide range of frequency
values (from just a few Hz up to 60 kHz). On the other hand,
measurements performed with a sensor tag having lower ini-
tial frequency result to be more sensitive than that having
higher initial frequency. In fact, in the former case, the ratio
k = Δε/Δf is less than unity. In this condition, the frequency
variation of 1Hz corresponds to a strain variation lower than
1 ε, representing a great improvement with respect to strain
measurements performed with traditional techniques. In
fact, electrical current variations in gauges are generally
detected with such a limited resolution that only a precision
of several ε may correspond, this representing a limit for
the traditional method of measuring strains with wired
gauges. In comparison, the proposed new method may

enhance the strain measurement resolution even below 0, 2
ε if the initial frequency is set lower than about 10 kHz.

4.4. Experimental Data from the Wireless Method: Dynamic
Measurements. A steel cantilever about 25 cm long has been
anchored at one end to the structure of a steel staircase as
shown in Figure 11 so that it can vibrate after an initial dis-
placement of its free end. The cantilever is instrumented with
the proposed sensor that changes the modulation frequency
of the backscattered signal dynamically according to the
vibration movement. In fact, the strain gauge alternates
extension and compression in agreement with the natural
frequency of the beam while the backscattered signal changes
its modulating frequency according to the extension and
compression of the strain gauge. The analog modulated sig-
nal coming back from the sensor is received, sampled, and
recorded by a Universal Software Radio Peripheral (National
Instruments NI USRP 2920). A subsequent demodulation
and filtering permit to determine the vibration frequency
and the damping of the vibration. Figure 12 shows the mod-
ulation frequency of the received signal with respect to time
in the case of repeated bending (with a pulse load) of the free
end of the cantilever with a time interval of about 5 seconds.
After each bending, the load is quickly removed permitting
the cantilever to have free vibration. Figure 12 shows four
responses of the cantilever under repeated loading and free
vibration. Figure 13 shows an enlargement of the third
response. Until about 13.8 s the cantilever is static, the small
ripple concerns hardware and numerical noise. From 13.8 s
until about 14.1 s, the modulation frequency increases
because of the progressive loading of the free end of the can-
tilever. After 14.1 s, the load is quickly removed and the can-
tilever is under free vibration; the modulation frequency
becomes oscillating since it follows the alternating extension
and compression of the strain gauge glued on the cantilever.
The frequency of that oscillation corresponds to the natural
frequency of the cantilever as shown in Figure 14 that is the
spectrum of the signal of Figure 13. The continuous compo-
nent, in Figure 14, depends on the part of the signal corre-
sponding to the static condition of the cantilever, the peak
at 33.14Hz is the natural frequency of vibration of the canti-
lever, and the small peak at 50Hz is the hardware noise (from
supplying network). Because of the damping of vibration, the
oscillation of Figure 13 (i.e., the modulation frequency)
decreases along the time. The response of the sensor has been
compared to that measured by a laser detector (also shown in
Figure 12) obtaining excellent agreement (shown in
Figure 15).

5. Conclusions

A new method for measuring strains has been proposed. It
consists in a wireless technique based on the traditional strain
gauges and integrated into an electrical circuit together with
an RFID tag. While traditionally strain measurement is usu-
ally performed by reading the current variation occurring in
the circuit as a consequence of the resistance change in the
strain gauge, in the proposed new method, an interrogating
antenna is used to detect the modulation frequency of an

9Journal of Sensors



electromagnetic signal that varies in accordance with the
strain to be measured.

Several tensile tests have been carried out on metal spec-
imens made of different materials, including steel, brass, and
aluminium. Feasibility of this new method has been proved
determining a unique clear relationship among the strain
values and the measured frequency changes.

The tag sensor is able to measure dynamic phenomena as
assessed by experiments with vibrations of tens of Hz. The

a

c

b

Figure 11: Dynamic measurement set-up: (a) instrumented
cantilever anchored at one end to the structure of a steel staircase;
(b) wireless sensor tag; (c) laser detector.
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loading. The enlargement of free vibration is shown in Figure 13.
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Figure 13: Enlargement of the third response of Figure 12. It shows
the loading and free vibration of cantilever.
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detectable frequency of vibration is not limited by the sam-
pling rate because the sampling is performed in the central
unit (not in the tag sensor) that can be equipped with a suit-
able sampling device. The limit in measuring oscillating phe-
nomena is given by the bandwidth of the strain gauge that is
in the order of KHz, while the bandwidth of electronic com-
ponents is much larger in the order of MHz. So, the tag sen-
sor should be able to measure oscillations up to a few kHz.

A calibration of the measuring system has been proposed,
showing that it remains valid for a large range of working fre-
quencies and for large strain intervals as well. In comparison
with a traditional strain measuring procedure, the accuracy

of the proposed new technique has been proved to be
potentially higher. Effectiveness of the proposed wireless
method has been proved up to a maximum interrogating
distance of 20 meters in a laboratory room and outdoor,
making this new strain measuring technique suitable for
structural monitoring.
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Deformation is a comprehensive reflection of the structural state of a concrete dam, and research on prediction models for concrete
dam deformation provides the basis for safety monitoring and early warning strategies. This paper focuses on practical problems
such as multicollinearity among factors; the subjectivity of factor selection; robustness, externality, generalization, and integrity
deficiencies; and the unsoundness of evaluation systems for prediction models. Based on rough set (RS) theory and a long short-
term memory (LSTM) network, single-point and multipoint concrete dam deformation prediction models for health monitoring
based on RS-LSTM are studied. Moreover, a new prediction model evaluation system is proposed, and the model accuracy,
robustness, externality, and generalization are defined as quantitative evaluation indexes. An engineering project shows that the
concrete dam deformation prediction models based on RS-LSTM can quantitatively obtain the representative factors that affect
dam deformation and the importance of each factor relative to the effect. The accuracy evaluation index (AVI), robustness
evaluation index (RVI), externality evaluation index (EVI), and generalization evaluation index (GVI) of the model are superior
to the evaluation indexes of existing shallow neural network models and statistical models according to the new evaluation
system, which can estimate the comprehensive performance of prediction models. The prediction model for concrete dam
deformation based on RS-LSTM optimizes the factors that influence the model, quantitatively determines the importance of
each factor, and provides high-performance, synchronous, and dynamic predictions for concrete dam behaviours; therefore, the
model has strong engineering practicality.

1. Introduction

Due to unique advantages in design, construction, and opera-
tional management, concrete dams account for a large propor-
tion of all dams and have become the preferred dam type for
the construction of high dams. However, most of the concrete
dam projects are located in harsh alpine valleys. Thus, the
dams are subjected to various dynamic, static, and special
cyclic loads during service, and the design, construction, and
operational management must be tailored to these conditions.
Therefore, service safety behaviour involves a nonlinear
dynamic process that includes material and structure interac-
tions and multiple factors [1]. As a comprehensive variable
that reflects the safety state of concrete dams, deformation
can be used as an important index of structural behaviours
and trends. Therefore, strengthening the prediction models

for deformation, conducting safety monitoring, and estab-
lishing early warning systems are important ways to ensure
long-term service safety of concrete dams [2].

In recent years, the successful application of dam
engineering theory, finite element theory, and artificial intel-
ligence (AI) technology has greatly promoted the develop-
ment of concrete dam deformation prediction models. The
most commonly used methods [3] for influential factor selec-
tion in concrete dam deformation prediction models include
prior knowledge, linear correlation coefficient, stepwise
regression, principal component analysis (PCA), and grey
correlation analysismethods. However, in actual applications,
the prior knowledge method relies too much on experience
and has large errors. Notably, thewater pressure, temperature,
and dam age are generally selected as influential factors in
hydrostatic seasonal temporal (HST) models considering
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simplified physical models of dams and dam foundations, the
burial conditions of monitoring equipment, prototype moni-
toring data, engineering mechanical analysis, and deductive
investigation. The limitation of the PCA method is that only
linear relations between variables are considered. If the depen-
dence is nonlinear, themisinterpretation of resultsmay occur.
The grey correlation analysis method can only sort factors
according to their relevance, and there is no clear criterion
for selecting influential factors. Moreover, multiple collinear-
ity can exist among the factors selected by conventional
methods, which may reduce the accuracy of the model and
adversely affect the prediction results [4]. Meanwhile, predic-
tion models do not consider the influence of nonquantitative
factors such as the seepage flow, crack opening degree, and
lifting pressure; the dam constructionmaterials; the construc-
tion quality; and the geological conditions. Additionally,
model interpretation is important for evaluating the perfor-
mance of prediction models, especially the model accuracy.
The HST model has been traditionally used to identify the
response of a dam to a considered action, such as a hydrostatic
load, or to variations in factors such as temperature and time
[5]. However, such analyses are only valid if the predictor
variables are independent, which is not generally true [6]. In
contrast, intelligent models (such as neural network, multi-
layer perceptron, and support vector machine models) have
not been applied to interpret dam behaviour. Traditional
models are frequently termed “black box”models, in reference
to their lack of interpretability. Therefore, in the selection pro-
cess of the factors that influence concrete dam deformation
prediction models, imperfect selection criteria and neglecting
important factors can seriously affect the prediction perfor-
mance of the model. Single-point statistical models, deter-
ministic models, and hybrid models [7–10] have evolved
into multipoint intelligent models [11–16]. Based on the
traditional statistical model, Gu et al. treated deformation at
multiple measurement points and the spatial coordinates of
these points as variables and established a spatiotemporal
distributed prediction model of the deformation field of a
concrete dam. Li et al. investigated the spatial and temporal
expression of the factors that affected the deformation of an
RCC dam and established a spatiotemporal deformation
prediction model for RCC dams based on measured data.
The prediction results agreed to the actual dam deformation
data. Li et al. used the strong functional nonlinear mapping
ability of a back propagation (BP) neural network to replace
the complex factor subset in the traditional spatial deforma-
tion field model with water level, temperature, time, andmea-
surement point variables as the input of the neural network. A
BP network prediction model was established for dam defor-
mation at multiple points. Chen et al. proposed a spectral
decomposition method to decompose the monitoring data
collected at multiple measurement points into several mutu-
ally independent latent variables for noise reduction and
monitoring data processing. A least square support vector
machine prediction model was established between the envi-
ronmental data and latent variables, and the horizontal
displacement ofMianhuatan Damwas successfully predicted.
Many scholars have addressed these issues. The successful
application of new methods has expanded the theoretical

knowledge of dam deformation prediction and model estab-
lishment and provided important guiding significance for
engineering practice. However, due to the complexity of
concrete dam engineering, the structural volatility of dams,
and the uncertainty of working conditions, there are still some
shortcomings in existing prediction models. It is difficult for
some models to process massive amounts of monitoring data
in real time with extensive mining data mechanisms for high-
performance prediction targets, such as those in practical
applications. It is important to appropriately evaluate the
prediction performance of a model from all angles because
the practical value of the models can be guaranteed, different
models can be compared, and different warning thresholds
can be defined. There are various indexes [17] that can be used
to assess how well a model matches the observed data, among
which the most commonly used are the mean squared error
(MSE), root mean squared error (RMSE), coefficient of deter-
mination (R2), mean absolute error (MAE), mean absolute
percentage error (MAPE), and average relative variance
(ARV). The result of any of these indexes is frequently
equivalent to a given prediction task. Specifically, an accu-
rate model will have small MSE, RMSE, MAE, and MAPE
values and high R2 and ARV values. However, these accuracy
indexes have differences that can be relevant but are often not
considered [18]. Commonly, robustness and generalization
ability are neglected in themodel assessment, and quantitative
evaluation indexes are not always used in practical applica-
tions. Therefore, it is necessary to explore methods for factor
selection, establish high-performance, dynamic, synchronous
prediction models, and design a scientific and comprehensive
evaluation system which are urgent for concrete dam defor-
mation prediction.

Attribute reduction is one of the core concepts of RS
theory, which addresses incompleteness, redundancy, and
ambiguity in data in the field of machine learning. This
approach avoids the use of complex discernibility matrices
and uses attribute importance as heuristic information to
obtain inductive sets and importance analysis results; excel-
lent results can be obtained in factor selection for prediction
models based on RS theory [19–21]. Moreover, long short-
term memory (LSTM) based on the memory architecture in
deep learning (DL) can overcome the memory shortage and
vanishing gradient issues of recurrent neural networks
(RNNs). Besides, this method is characterized by controllable
memory and rapid convergence. LSTM has achieved good
practical application results in the dynamic and deep
processing of massive, long-term, dependent data series
[22–25]. To overcome the shortcomings of existing concrete
dam deformation prediction models, RS theory and an LSTM
network are applied to a concrete dam deformation predic-
tion model in virtue of Tensor Flow. Finally, a concrete
dam deformation prediction model based on RS-LSTM is
established, and a new predictive model evaluation system
is proposed.

2. Materials and Methods

2.1. Rough Set Theory. RS theory was proposed by Polish
scholar Pawlak in the 1980s. The core objectives are the
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mining and refining of essential information under the
premise of maintaining equivalence relations. The main
tasks in this approach are attribute reduction, correlation
analysis, and importance evaluation for uncertain infor-
mation systems.

2.1.1. Information System. To describe the samples that
encompass the necessary information in RS theory, a quater-
nary information system S is established, and it can be
expressed as follows:

S = U , R, V , ff g, ð1Þ

where U is a nonempty finite set of all samples; R is a set
of attributes, including a set of conditional attributes C
and a set of decision attributes D; V is the attribute value
set; and f is the information function, also known as the
decision table.

2.1.2. Attribute Reduction. For arbitrary P ⊆ R and P ≠Ø, the
indistinguishable relationship between P and U is defined as
follows.

IND Pð Þ = x, yð Þ ∈U2 ∀α ∈ P, α xð Þ = α yð ÞjÈ É
: ð2Þ

For an arbitrary set of objects X ⊆U and attributes B ⊆ C
in a given information system S, the approximation of X is
defined as BX = fxj½x�B ⊆ Xg; the approximate definition of
X is defined as �BX = fxj½x�B ∪ X ≠Øg; and the boundary area
of x is defined as BNBðXÞ = �BX − BX. In this case, ½x�B repre-
sents the set of indistinguishable relations for the division of
U by B.

If BNBðXÞ is not empty, then X is called a rough set of B.
The positive region of B relative to D is as follows.

POSB Dð Þ = BXjX ∈U
IND Dð Þ

� �
: ð3Þ

When SIM = POSCðDÞ − POSC−fagðDÞ = 0, where a ∈ C,
a can be omitted. Additionally, when each element in C is
not omissible from D, it can be concluded that C is indepen-
dent of D. When C′ = C − C∗, where C′ is independent of D
and all the elements in C∗ can be omitted, then C′ is called
the relative reduction of D.

2.1.3. Importance Evaluation. In attribute reduction, the
importance of the attribute can be defined by the degree of
interdependence between the attribute sets B and D. The
degree of interdependence between P and R is defined as
follows:

γB Dð Þ = POSB Dð Þj j
Uj j , ð4Þ

where j·j represents the cardinality value of a set.
The importance of the conditional attribute a to the

decision attribute D based on the attribute dependency

degree is defined as follows.

Sig α, B,Dð Þ = γB Dð Þ − γB− αf g Dð Þ: ð5Þ

2.2. LSTM Network Based on a Memory Architecture. LSTM
is obtained by improving the hidden layer of the RNN struc-
ture. LSTM based on a memory architecture can overcome
memory shortage and vanishing gradient problems. The
LSTM model structure is shown in Figure 1. The key advan-
tages of LSTM are twofold. Notably, the hidden layer includes
a hidden state and a cell state, and a threshold mechanism is
established in the RNN. These factors strengthen the ability
of the model to learn current information, extract the infor-
mation and rules associated with the data, and simultaneously
transmit information to reduce memory use. The threshold
mechanism uses input gates, forget gates, and output gates
to selectively memorize the feedback parameters of the feed-
back error function as the gradient decreases, achieving rapid
gradient convergence [26].

2.2.1. Input Gate Updates. The input gate controls the infor-
mation xðtÞ transmitted from the input of the network at
moment t and hidden state at the final moment hðt−1Þ to
the cell state CðtÞ. The function of the input gate is to filter
new information. The structure of an input gate is shown in
Figure 2.

Figure 2 shows that the input gate consists of two parts.
The first part selects the sigmoid activation function, for
which the output is iðtÞ, and the second part selects the tanh
activation function, for which the output is aðtÞ. The two
partial outputs are multiplied to update the cell state. The
renewal process can be mathematically expressed as follows:

i tð Þ = σ Wih
t−1ð Þ +Uix

tð Þ + bi
� �

,

a tð Þ = tanh Wah
t−1ð Þ +Uax

tð Þ + ba
� �

,
ð6Þ

whereWi,Ui, bi,Wa,Ua, and ba are the weights and biases of
the input gate and σ is the sigmoid activation function.

2.2.2. Forget Gate Updates. The forget gate controls the infor-
mation transmitted from the cell state Cðt−1Þ at moment t − 1
to the cell state CðtÞ at moment t, and the information that
should be discarded is identified. The structure of the forget
gate is shown in Figure 3.

Figure 3 shows that the hidden state hðt−1Þ at moment
t − 1 and the input xðtÞ at moment t activate the sigmoid
function, and the output f ðtÞ is in the range of [0, 1].
This value represents the probability of forgetting the
information associated with the cell state at a previous
moment. The renewal process can be mathematically
expressed as follows:

f tð Þ = σ Wf h
t−1ð Þ +Uf x

tð Þ + bf
� �

, ð7Þ
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where Wf , Uf , and bf are the weights and biases of the
forget gate.

2.2.3. Cell State Updates. The cell state controls the informa-
tion aðtÞ transmitted from the result of the input gate f ðtÞ and
the result of the forget gate iðtÞ to the cell state CðtÞ. The struc-
ture of a cell state is shown in Figure 4.

Figure 4 shows that the cell state updating result CðtÞ is
mainly determined by the cell state Cðt−1Þ at moment t − 1
and the results of the input and forget gates (f ðtÞ, iðtÞ, and
aðtÞ) at moment t. The renewal process can be mathemati-
cally expressed as follows:

C tð Þ = C t−1ð Þ ⊙ f tð Þ + i tð Þ ⊙ a tð Þ, ð8Þ

where ⊙ is the Hadamard product.

2.2.4. Output Gate Updates. The output gate controls the
information transmitted from the hidden state hðt−1Þ at
moment t − 1, the cell state CðtÞ at moment t, and the input
xðtÞ at moment t. The function of the output gate is to deter-
mine the final retained information. The structure of an
output gate is shown in Figure 5.

Figure 5 shows that the hidden state hðtÞ at moment t
contains two parts. The first part oðtÞ is determined by the
hidden state hðt−1Þ at moment t − 1, the input xðtÞ at moment
t, and the sigmoid activation function. The other part is
determined by the cell state CðtÞ at moment t and the tanh
activation function. The renewal process can be mathemati-
cally expressed as follows:

o tð Þ = σ Woh
t−1ð Þ +Uox

tð Þ + bo
� �

,

h tð Þ = o tð Þ ⊙ tanh C tð Þ
� �

,
ð9Þ

where Wf , U f , and bf are the weights and biases of the
output gate.

2.2.5. Output Layer Updates. The output of the model is
determined by the hidden state hðtÞ at moment t and the
sigmoid activation function. The renewal process can be
mathematically expressed as follows:

y∧ tð Þ = σ Vh tð Þ + c
� �

, ð10Þ
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where V and c are the weight and bias of the output layer,
respectively.

2.2.6. Model Parameter Updating. To obtain the optimal
solution, this paper iteratively updates all the parameters in
the LSTM model based on the gradient descent algorithm
and error BP algorithm.

The objective loss function LðtÞ is defined to minimize
the sum of squared residuals between the predictions y∧ðtÞ

of the output layer and the target outputs yðtÞ. LðtÞ is divided
into two parts: the loss lðtÞ at moment t and the subsequent
loss lðt + 1Þ moments later.

L tð Þ =
l tð Þ + l t + 1ð Þ, t < τ,
l tð Þ, t = τ:

(
ð11Þ

The gradients of the hidden state hðtÞ and cell state CðtÞ

are defined as δðtÞh and δðtÞC , respectively, and the gradient at
position τ can be expressed as follows.

δ
τð Þ
h = ∂L τð Þ

∂h τð Þ = ∂L τð Þ
∂O τð Þ

∂O τð Þ
∂h τð Þ =VT y∧ τð Þ − y τð Þ

� �
, ð12Þ

δ
τð Þ
C = ∂L τð Þ

∂C τð Þ = ∂L τð Þ
∂h τð Þ

∂h τð Þ
∂C τð Þ = ∂h τð Þ ⊙ o τð Þ ⊙

Á 1 − tanh2 C τð Þ
� �� �

:

ð13Þ

The output gradient error at a given moment is deter-

mined in two parts, respectively, because δðtÞh and δðtÞC are
obtained for lðtÞ and lðt + 1Þ. Thus, according to equations
(12) and (13), the gradients of the hidden state hðtÞ and cell
state CðtÞ can be expressed as follows.

δ
tð Þ
h = ∂L

∂h tð Þ =VT y∧ tð Þ − y tð Þ
� �

+ δ
t+1ð Þ
h ∂h t+1ð Þ/∂h tð Þ, ð14Þ

δ
tð Þ
C = ∂L

∂C tð Þ = δ
t+1ð Þ
C f t+1ð Þ + δ

tð Þ
h ⊙ o tð Þ ⊙ 1 − tanh2 C tð Þ

� �� �
:

ð15Þ
According to equations (14) and (15), the following

formula can be obtained.

∂L
∂Wf

= 〠
τ

t=1

∂L
∂C tð Þ

∂C tð Þ

∂f tð Þ
∂f tð Þ

∂Wf

= 〠
τ

t=1
δ

tð Þ
C ⊙ C t−1ð Þ ⊙ f tð Þ ⊙ 1 − f tð Þ

� �h i
h t−1ð Þ

� �T
:

ð16Þ

The other parameters in the model are derived similarly.
The updating step size and learning rate of the model are
defined as λ and α, respectively. The parameters in the LSTM
model are iteratively updated using the gradient BP
algorithm. The corresponding formula can be expressed as
follows:

βt+1 = βt − α
∂L
∂β

, ð17Þ

where β represents the parameters in the LSTM model and
∂L/∂β represents the gradients of the parameters.

In summary, the updating process of the parameters in
the LSTM network model based on a memory architecture
can be expressed as follows. First, a parameter initialization
process is implemented. Second, the iterative process is
repeated by the gradient descent algorithm and the error
BP algorithm until the target loss function converges. Finally,
the parametric optimal solution of the LSTM model is
obtained. Moreover, the Dropout algorithm is adopted in
the training process of the LSTM model to avoid the overfit-
ting phenomenon [27] and improve network performance by
preventing feature detectors from working together.

2.3. Concrete Dam Deformation Prediction Model Based on
RS-LSTM. With the advantages of RS, the mapping rela-
tionship between the factors that influence dam operating
behaviour and the corresponding effects is established
under the premise of retaining the key information. Addi-
tionally, the redundant information is eliminated, the
expression space of the influential factors is simplified,
and the importance of each factor is evaluated. Moreover,
because the LSTM model overcomes the memory shortage
and gradient dissipation issues of traditional RNNs and is
characterized by controllable memory and fast gradient
convergence, the model yields high-performance dynamic
predictions based on long-term data series. Therefore, by
combining the advantages of RS theory and the LSTM
network, this paper establishes a concrete dam deformation
prediction model based on RS-LSTM, and the prediction
model is optimized considering the relevant influential
factors and interactive mechanisms between these factors
and concrete dam deformation in a quantitative manner.
The process of establishing a concrete dam deformation
prediction model based on RS-LSTM is shown in Figure 6.
The specific modeling steps are as follows.

2.3.1. Data Acquisition. Statistical methods are used to
perform gross error processing for concrete dam monitoring
data. Such methods provide a reliable data foundation for the
establishment of prediction models. Attribute reduction in
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Figure 5: Output gate structure.
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RS theory is conducted based on a complex multivariate
dataset composed of water depth, temperature, seepage flow,
fracture aperture, and uplift pressure information to
accurately obtain the representative factors that affect the
deformation behaviours of concrete dams. Deformation
monitoring data and the representative influential factors
corresponding to certain measurement points are selected
as the model dataset. The representative factor dataset is
standardized using an independent standardization formula,
and the model dataset is divided into a training set and
testing set by a cross-validation method.

2.3.2. Model Training. The preprocessed and standardized
training set samples are used as model inputs. Error back
propagation based on the gradient descent algorithm drives
the model loss function to converge, and the optimal model
parameters are obtained. The Dropout algorithm is used to
overcome the problem of overfitting in training, and finally,
a prediction model with optimal parameters is obtained.

2.3.3. Model Prediction. The testing set samples are input into
the trained prediction model to obtain the corresponding
deformation prediction results.

2.3.4. Model Performance Evaluation. According to the
established evaluation system, the results of the concrete
dam deformation prediction model based on LSTM, a classi-
cal least squares (OLS) model, a support vector machine
(SVM) model, and a multilayer perceptron (MLP) model
with 2 hidden layers are compared based on accuracy,
robustness, externality, and generalization.

2.4. Evaluation System for the Concrete Dam Deformation
Prediction Model. A concrete dam deformation prediction
model plays an important role in operational behaviour
monitoring, real-time abnormality detection, and decision-
making, and its performance directly affects condition
assessments and early warning strategies. In actual applica-
tion processes, a single accuracy evaluation index may have
certain limitations, and it is often impossible to evaluate the
robustness, externality, and generalization of a model. There-
fore, a complete evaluation system for concrete dam deforma-
tion prediction models must be established for practical
applications. Therefore, this paper evaluates model perfor-
mance from the aspects of accuracy, robustness, externality,
and generalization, and quantitative evaluation indexes are
used to comprehensively evaluate the performance of the
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Figure 6: Process of establishing the concrete dam deformation prediction model based on RS-LSTM.
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concrete dam deformation prediction model based on
statistical theory.

2.4.1. Accuracy. The accuracy of the concrete dam deforma-
tion prediction model refers to the degree of agreement
between the predicted and true values. This evaluation index
is the most widely used in model assessment. In actual
engineering, the MAPE, MSE, and RMSE are usually selected
to evaluate the accuracy of a model. Considering the nonsta-
tionarity of deformation monitoring data and the overlap
among evaluation indexes, the RMSEP and MAPEP are
selected to establish the accuracy evaluation index (AEI) of
the concrete dam deformation prediction model. The corre-
sponding formulas are defined as follows.

RMSEP =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
〠
n

t=1
yt − y∧tð Þ2

s
,

MAPEP =
100
n

〠
n

t=1

yt − ŷt
yt

����
����:

ð18Þ

2.4.2. Robustness. The robustness of a concrete dam deforma-
tion prediction model refers to its resistance to the inherent
errors in training data. Model training and prediction are
performed by establishing normal training samples and
training samples with a certain degree of random error. The
ability of a model to learn the true nonlinear mapping rela-
tionships when there is a small gross error in the training
set is tested. The absolute difference between the RMSEO of
the training model prediction results with no gross error
and the RMSEE of the training model prediction results with
gross error is selected as the robustness evaluation index
(REI) for the concrete dam deformation prediction model.
The corresponding formula is defined as follows.

REI = RMSEO − RMSEEj j: ð19Þ

2.4.3. Externality. The externality of the concrete dam defor-
mation prediction model refers to its adaptability to accu-
rately process samples outside the training set with the
same mapping relationship. A high-performance model
based on its externality ability can learn the mapping rela-
tionships hidden in data through training set. Even if some
samples are outside the training set, a model with a satisfac-
tory externality can achieve accurate predictions. The sam-
ples outside the training set are fused with the testing
samples, and the prediction performance of the model based
on a training set with the same mapping relationship is
tested. The accuracy index of the model under this condition,
the RMSEP , is selected as the externality evaluation index
(EEI). The corresponding formula is defined as follows.

EEI = RMSEP =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
〠
n

t=1
yt − y∧tð Þ2

s
: ð20Þ

2.4.4. Generalization. The generalization of a concrete dam
deformation prediction model refers to its adaptability to
process samples with the same mapping relationship. A poor

generalization ability can lead to overfitting. In such cases,
the model error for the training set is very low, but the error
is very large for the testing set. The model is optimized by
adding training samples, performing regularization process-
ing, and applying the Dropout algorithm to improve its
generalization performance. Selecting the ratio of RMSET
in the training process to RMSEP in the prediction process
is selected as the generalization evaluation index (GEI). The
corresponding formula is defined as follows.

GEI = RMSEP

RMSET
: ð21Þ

In each evaluation index formula above, yðtÞ represents
a measured value; ŷðtÞ represents a predicted value; n
represents the number of predicted samples; the subscript
T represents the training process; the subscript P represents
the prediction process; the subscript O represents samples
with no gross error; and the subscript E represents samples
with gross error.

2.5. Simulation Environment and Engineering Project.
Concrete dam deformation prediction models based on
OLS, SVM, MLP, and LSTM are established in accordance
with the horizontal displacement of concrete gravity dams,
and the evaluation system is used to evaluate the accuracy,
robustness, externality, and generalization of each model.
Additionally, a comparative analysis is performed. The simu-
lation environment includes the Windows 10 operating
system, an Intel Core i5 CPU, 8GB of memory, the Python
programming language version 3.7.2rcl, and the TensorFlow
deep learning framework version 1.12.0.

2.5.1. Engineering Situation. Zhouning Hydropower Station
is a diversion-type power station on the Muyang River in
Fujian Province that performs step exploitation. The total
installed capacity is 250MW, the total storage capacity of
the reservoir is 47 million m3, and the designed flood level is
633.00m. The power station consists of a barrage, a sluice
building, a water conveyance system, an underground power-
house, and a ground switch station. The barrage is an RCC
gravity dam with a foundation plane elevation of 562.00m, a
maximum dam height of 72.40m, and a dam crest length of
206.00m. The body of Zhouning Dam is divided into nine
dam sections, of whichNos. 1-4 andNos. 7-9 are nonoverflow
sections and Nos. 5-6 are overflow sections.

The deformation monitoring data collected by Zhouning
Hydropower Station include horizontal and vertical dam dis-
placement data. The horizontal displacement monitoring of
the dam crest is performed by the extension wire alignment
method. The fixed end of the extension wire with a total
length of 200.75m is arranged at Sta. R01+107.025 and the
guide end is placed at Sta. L0+93.50. In total, 11 monitoring
points are arranged along the dam, of which nine datum
points are located at the top of each dam section and two
checkpoints are set at the left and right ends of the extension
wire to check the displacement of each end. The extension
wire system was automated in April 2005 with an observation
frequency of 1 time per day. The layout of the extension wire
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measurement points for horizontal displacement is shown in
Figure 7.

2.5.2. Selection and Optimization of Influential Factors in the
Prediction Model. According to theoretical knowledge, mon-
itoring data, expert experience, etc., the initial selection of
empirical influence factors was as follows:

H −H0ð Þ1, H −H0ð Þ2, H −H0ð Þ3, T5 − Tð Þ, T20 − Tð Þ,È
T60 − Tð Þ, T90 − Tð Þ, θ, ln 1 + θð Þ, J ,Q,UÉ

,
ð22Þ

where H is the water depth on a day when observations are
collected, H0 is the water depth on the base day; Ti is the
mean reservoir region temperature i days ago, and T is the
annual mean temperature. Additionally, θ = ðt − t0Þ/100,
where t is the observation date and t0 is the date of the base
day. J is the average fracture aperture at measurement points,
Q is the seepage flow, and U is the average uplift pressure at
measurement points.

The initial empirical influential factors are selected as the
conditional attributes X, and the horizontal displacements
obtained by the dam crest extension wire (to the left bank is
positive and to the right bank is negative) at point EX1 are
set as the decision attributes Y in the single-point prediction
model. Additionally, the horizontal displacements of EX1,
EX2, EX4, EX5, EX6, and EX7 are selected as the decision
attributes YM in the multipoint prediction model (because
the extension wire at EX3 contacted a stainless-steel rod, the
monitoring data at the point are not reliable). Overall, 864
monitoring samples of horizontal displacement and influen-
tial factors were selected as the sample set U . The attribute
range V was determined based on the K-means clustering
algorithm with adaptive discretization, and the number of
clusters was experimentally determined to be 7. To eliminate
irrelevant orweakly informative input variables and keep only
the representative factors that affect concrete dam deforma-
tion, the RS theory is used to conduct an attribute reduction
and importance evaluation and obtain an initial information
table S = fU , X ∪ Y , V , f g. The attribute reduction and

importance evaluation results for the single-point and multi-
point prediction models are shown in Table 1.

According to attribute reduction and importance evaluation
results, the influential factors of the single-point prediction
model are {H‐H0, ðH‐H0Þ2, ðH‐H0Þ3, ðT5‐TÞ, ðT20‐TÞ, θ, ln
ð1 + θÞ}, and the importance evaluation values for each compo-
nent of horizontal displacement at EX1 are 0.12, 0.08, 0.13, 0.42,
0.20, 0.02, and 0.03, respectively. The influential factors of the
multipoint prediction model are {H‐H0, ðH‐H0Þ2, ðH‐H0Þ3,
ðT5‐TÞ, ðT20‐TÞ, θ, ln ð1 + θÞ, J ,Q,U}, and the importance
evaluation values of each component of the horizontal
displacement at EX1, EX2, EX4, EX5, EX6, and EX7 are
0.10, 0.07, 0.06, 0.33, 0.19, 0.00, 0.00, 0.02, 0.04, 0.06, 0.08,
and 0.05. Therefore, it can be concluded that the horizontal
displacement of the extension wire is greatly affected by
temperature changes and water level fluctuations. Specifically,
the temperature component accounts for 60% of the horizontal
displacement, and the lag period of the water level is approxi-
mately 20 days.

2.5.3. Sample Selection for Prediction Models. According to
attribute reduction and importance evaluation results, the
influential factor monitoring data of the single-point and
multipoint prediction models are selected to obtain samples
as independent variables, and the horizontal displacement
at points EX1-EX7 (except EX3) is selected to obtain samples
as dependent variables. The dataset is established between
June 2, 2016, and October 22, 2018, and has a total of 864
samples of data. The dataset of 700 samples selected from
June 2, 2016, to May 10, 2018, is used as the training set,
and the dataset of 164 samples selected from May 11, 2018,
to October 22, 2018, is adopted as the testing set. Investiga-
tions of the concrete dam deformation prediction model
based on the OLS, SVM, MLP, and LSTM methods are
performed using the dataset with 864 samples of data. Varia-
tions in the water depth and horizontal displacement are
shown in Figures 8 and 9.

2.5.4. Model Parameter Setting. The performance of SVM,
MLP, and LSTM models depends greatly on the setting of
some parameters. According to experience and experiment
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Figure 7: Layout of the extension wire measuring points for horizontal displacement.
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results, parameters of the adapted algorithms, namely, regu-
larization parameters, kernel function parameters, network
parameters, learning rates, and so on, are given before the
simulation.

Parameters in the SVM model: the kernel function is
determined as a radial basis function (RBF) according to
experience. Parameter range of the SVM model is deter-
mined based on experience, penalty parameter C ∈ ½−256,

Table 1: Attribute reduction results of the single-point and multipoint prediction models.

Experience
impact factors

Component
name

Single-point
model SIM

Reduction
Importance evaluation

Sig a, X, Yð Þ
Multipoint
model SIM

Reduction
Importance evaluation

Sig a, X, Yð Þ
H‐H0

Water
pressure

-5 No 0.12 -4 No 0.10

H‐H0ð Þ2 -2 No 0.08 -2 No 0.07

H‐H0ð Þ3 -2 No 0.13 -4 No 0.06

(T5‐T)
Temperature

-5 No 0.42 -7 No 0.33

(T20‐T) -4 No 0.20 -2 No 0.19

(T60‐T) 0 Yes 0.00 0 Yes 0.00

(T90‐T) 0 Yes 0.00 0 Yes 0.00

θ
Aging

-2 No 0.02 -2 No 0.02

ln 1 + θð Þ -1 No 0.03 -3 No 0.04

J Fracture -1 Yes 0.00 -2 No 0.06

Q Seepage -2 Yes 0.00 -4 No 0.08

U Uplift
pressure

-3 Yes 0.00 -3 No 0.05
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256�, kernel parameter γ ∈ ½−256, 256�. Parametric tuning is
implemented with Grid Search, C is set to 8, and γ is set to
0.72 according to the experimental relationship between the
objective functions and parameters.

Parameters in the MLP model: according to experiment
results, the network is composed of input layer, hidden
layers, and output layer with the three-layer topology of 7-
15-15-1 for single-point prediction model and 10-15-15-1
for multipoint prediction model, and the learning rate is also
set to 0.08. The network variable parameter weights and
biases are initialized randomly and calculated by gradient
descent algorithms, and the activation function is the ReLU
function.

Parameters in the LSTMmodel: hyperparameter range of
the LSTM model is determined based on experience, batch
size ∈ ½0, 1000�, timestep ∈ ½20, 300�, hidden layers ∈ ½20,200�,
and the initial value of learning rate is set to 0.1. Taking the
minimum RMSE value as the objective function, and
according to the experimental relationship between the
objective function and parameters, parametric tuning is
implemented with Grid Search. Finally, batch size, time-
step, hidden layers, and learning rate are set to 12, 46,
42, and 0.12, respectively. The network variable parameters
including weights and biases are generated using the
glorot_uniform initializer and calculated by gradient
descent algorithms.

3. Results

To verify the superiority of the concrete dam deformation
prediction model based on LSTM compared to other models
in terms of accuracy, robustness, externality, and generaliza-
tion, a comparative analysis of the OLS, SVM, MLP, and
LSTM models is conducted based on the prediction results
with preprocessed training and testing samples.

3.1. Single-Point Prediction Model. Single-point prediction
models for concrete dam deformation based on the OLS,
SVM,MLP, and LSTM algorithms are established to facilitate
comparative analysis.

3.1.1. Model Prediction Analysis. Concrete dam deformation
prediction models based on the OLS, SVM, MLP, and LSTM
algorithms were established based on the preprocessed stan-
dardized environmental dataset and the unnormalized defor-
mation dataset. Based on the objective functions, the training
samples are used to train the models, and the optimal model
parameters are obtained. Finally, a concrete dam deforma-
tion prediction and performance analysis are performed.
The measured and predicted values of concrete dam defor-
mation based on the OLS, SVM, MLP, and LSTM models
are shown in Figure 10.

Figure 10 shows that the predicted values of the OLS
model largely deviate from the measured values, but the over-
all trend is similar to that for the measured values. The devi-
ation between the predicted values of the SVM, MLP, and
LSTM models and the measured values is small, but the
late-stage prediction trend of the SVMmodel deviates signif-
icantly from the measured values. The LSTMmodel not only
exhibits the highest degree of agreement between the pre-
dicted and measured values but also yields the same trend
as that for the measured values. Therefore, the prediction
performance of the concrete dam deformation prediction
model based on LSTM is significantly better than that based
on the OLS, SVM, and MLP models.

3.1.2. Model Performance Evaluation. A prediction model for
concrete dam deformation is an important tool for quantita-
tively evaluating the safety status of dams, revealing abnor-
malities in the service status and ensuring engineering
safety. A high-performance deformation prediction model
should meet the relevant accuracy, robustness, externality,
and generalization requirements to implement effective early
warning strategies and feedback control for engineering
safety. To verify the reliability of the concrete dam deforma-
tion prediction model based on LSTM, concrete dam defor-
mation prediction models based on OLS, SVM, MLP, and
LSTM were compared and analyzed according to the evalua-
tion system established in this paper. The horizontal dis-
placement residuals of each prediction model are shown in
Figure 11. Evaluation index values of all prediction models
are shown in Table 2.
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(1) Accuracy. Figure 11 and AVI value of each model in
Table 2 show that the horizontal displacement residuals of
the concrete dam deformation prediction model based on
LSTM are the smallest, RMSEP is lower than 0.1, MAPEP is
lower than 10, and all these are in the low range compared
with those of the models based on OLS, SVM, and MLP.
Therefore, the concrete dam deformation prediction model
based on LSTM displays better accuracy than the other
models, and the prediction results better agree with the real
data.

(2) Robustness. The REI value of each model in Table 2 shows
that the concrete dam prediction models based on OLS,
SVM, MLP, and LSTM are all affected by the gross error,
resulting in different degrees of prediction accuracy. The
REI value of the concrete dam deformation prediction model
based on LSTM is the smallest among the REI values of all the
models; thus, the gross error associated with the data sample
has little impact on the prediction results of the proposed
model, which displays the strongest robustness.

(3) Externality. The EEI value of each model in Table 2 shows
that the accuracy of the models decreases after adding
samples outside the training set to the model testing samples.
Nevertheless, the concrete dam deformation prediction
model based on LSTM exhibits the smallest EEI, representing
the strongest externality and the most powerful learning
ability.

(4) Generalization. The GEI value of each model in
Table 2 shows that the generalization of the concrete
dam deformation prediction models based on OLS and
SVM is poor. These models likely experience overfitting
during training, resulting in an increase in the error for
the testing set and poor performance. The concrete dam
deformation prediction models based on MLP and LSTM
display good generalization performance, and the LSTM
model yields the best performance.

In summary, the successful application of machine
learning technology has greatly promoted the development
of concrete dam deformation prediction model compared
with using traditional statistical methods. The concrete
dam deformation prediction models based on SVM,
MLP, and LSTM all displayed high accuracy, but the
performance of each model in terms of robustness, exter-
nality, and generalization varies. The concrete deformation
prediction model based on LSTM displays the highest
accuracy, robustness, externality, and generalization by
comparison with the performance of the other models.
Therefore, the application of LSTM to concrete deforma-
tion prediction models further promotes the development
of concrete dam prediction model.

3.2. Multipoint Synchronized Prediction Model for Concrete
Dam Deformation. According to the theoretical, mathemat-
ical, and mechanical principles of concrete dams, the
concrete dam deformation is affected not only by loads
such as water pressure and temperature loads but also by
adjacent local factors. The sudden displacement of some
dam parts will influence the surrounding areas, and a
single-point prediction model for concrete dam deforma-
tion does not consider the relationships among points;
therefore, it is difficult to grasp the displacement field
under a given load. It is necessary to establish a multipoint
synchronized prediction model for concrete dam deforma-
tion that can effectively improve the prediction perfor-
mance compared to that of traditional models and the
accuracy of mechanical parameter inversion and feedback
analysis. Additionally, such a method could improve the
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Figure 11: The horizontal displacement residuals of each prediction model.

Table 2: Evaluation index values of all prediction models.

Prediction model
OLS SVM MLP LSTM

AVI

RMSEP 0.32833 0.2466 0.1604 0.0690

MAPEP 29.7077 24.7789 16.3695 6.3213

REI 0.3253 0.3672 0.2865 0.1760

EEI 0.4032 0.2739 0.1892 0.1023

GEI 0.8266 0.8788 0.9336 0.9610
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safety monitoring level of concrete dams. This paper
establishes a multipoint synchronized prediction model
for concrete dam deformation based on the data
collected at multiple points and the advantages of LSTM
for multiple inputs and outputs.

3.2.1. Model Prediction Analysis. The factors that influence
the multipoint synchronized prediction model for concrete
dam deformation are determined by attribute reduction. All
the data are normalized and used as samples of the indepen-
dent variables in the LSTM model, and the deformation
monitoring data from points EX1-EX7 (except EX3) are
selected as samples of the dependent variable (no normaliza-
tion processing). The training data and testing set are divided
in the same way as in the single-point model. The output
layer is a multidimensional fully connected layer, the model
learning rate is 0.18, and other parameters are the same as
those in the single-point model. The six-point synchronized
prediction model for concrete dam deformation with optimal
parameters is obtained by training, and the deformation
values are predicted based on the testing samples. The actual
measured values and the predicted values of the single-point
and multipoint models are shown in Figure 12 (taking the

measured values at EX1 as an example). The measured values
and values predicted with the multipoint synchronized
deformation model are shown in Figure 13 (taking the mea-
sured values at EX4-EX6 as examples).

3.2.2. Model Performance Evaluation. Since the prediction
model is based on the deformation values at multiple points,
the error of the multipoint model includes the error at all
points. According to error theory, RMSE of the multipoint
model is the weighted average of RMSE at each point, and
it can be expressed as follows:

S =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ns21 + ns22+⋯+ns2k

kn

r
=

ffiffiffiffiffiffiffiffiffiffi
〠
k

i=1

s2i
k

vuut , ð23Þ

where S represents the RMSE of the multipoint model, si
represents each point, and k represents the number of testing
samples.

The RMSE values of the multipoint synchronized predic-
tion model and single-point prediction model are compared
and analyzed, as shown in Table 3.
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Figure 12: Actual values and predicted values with the single-point and multipoint models.
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Figures 12 and 13 and Table 3 show that the performance
of both models is good, and the error is within the acceptable
precision range. The RMSE value of the multipoint predic-
tion model is smaller than that of the single-point prediction
model, and the predicted values of the multipoint model are
closer to the measured values. Additionally, the weighted
average RMSE of the single-point prediction model is larger
than the RMSE of the multipoint model, which indicates that
the prediction accuracy at each point in the multipoint model
is high. Therefore, the multipoint synchronized prediction
model for concrete dam deformation based on LSTM
exhibits good performance, and the analysis results are
locally meaningful and spatially representative at large scales.

4. Conclusions and Discussion

RS theory and an LSTM network are introduced for concrete
dam safety monitoring in the TensorFlow framework, and
single-point and multipoint concrete dam deformation
prediction models based on LSTM are established. Moreover,
a new evaluation system and quantitative evaluation indexes
for the concrete dam deformation prediction model are
proposed. The following conclusions were obtained from
application examples.

(1) RS theory is applied to optimize the selection and
evaluate the importance of the factors that influence
concrete dam deformation based on the internal rela-
tionships among the monitoring dataset. This
approach overcomes the deficiencies of intelligent
prediction models related to the quantitative inter-
pretation and ensures the objectivity of prediction
model analysis

(2) According to statistical theory, an evaluation system
is proposed, and accuracy, robustness, externality,
and generalization evaluation indexes are given as
performance inspection criteria to comprehensively
evaluate the performance of concrete dam deforma-
tion prediction models in practical engineering

(3) The single-point prediction model for concrete dam
deformation based on LSTM displays high prediction
accuracy and strong robustness, externality, and gen-
eralization. Moreover, the multipoint synchronized
prediction model for concrete dam deformation
based on LSTM is locally pertinent and spatially
representative at large scales. Thus, the multipoint
approach can be effectively used in the deformation
prediction of concrete dams at large scales

The continuous improvements in concrete dam tech-
nology have resulted in high requirements for prediction
model performance, and establishing high-performance
spatiotemporal prediction models will be important as
concrete dam safety monitoring continues to progress.
Therefore, the combination of AI, deep learning theory,
online dynamic learning, and space-time deformation
prediction models should be promoted to establish an ideal
concrete dam monitoring system and achieve the goal of
“intelligent monitoring.”
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In this paper we propose a global positioning algorithm of multiple assets based on Received Signal Strength (RSS) measurements
that takes into account the gain uncertainties of each hardware transceiver involved in the system, as well as the uncertainties on
the Log-Distance Path Loss (LDPL) parameters. Such a statistical model is established and its Maximum Likelihood Estimator
(MLE) is given with the analytic expression of the Cramér-Rao Lower Bound (CRLB). Typical values of those uncertainties are
given considering whether calibration is done in production, in situ, or if hardware is used uncalibrated, in order to know what
is the expected accuracy in function of the calibration setup. Results are tested by numerical simulations and confronted to real
measurements in different roomconfigurations, showing that the theoretical bound can be reached by the proposedMLE algorithm.

1. Introduction

Assets positioning raised a great interest in the last decade,
especially with the Internet of Things (IoT) business. In
this context, we expect indoor and outdoor positioning
to be achieved with the same hardware, a low energy
constraint for an autonomy of a few years. Economical
aspect can even constrain each reference node, named Access
Point (AP), used to locate the target assets, to run on
battery.

Outdoor positioning is mainly achieved using Global
Navigation Satellite System (GNNS) with an accuracy of
a few meters that is enough for this kind of applications.
Even if GNNS receiver energy consumption has been greatly
improved in the past decade [1–5], this still mainly limits
the asset autonomy to a few years. There is more energy
efficient but less accurate work in progress systems where
the measurement effort and position estimation are reported
from the asset to the infrastructure usingmainly a LowPower
Wide Area Network (LPWAN) connection [6–10]. Sub-GHz

bands allow using the same transceiver for both indoor and
outdoor positioning.

Indoor positioning using GNNS requires additional
infrastructure because of the poor signal level; the monolithic
solutions [11–14] can be very precise but the need of a great
number of external antenna does not meet most economical
requirements.

This paper focuses on indoor solutions that meet the
constraints of low energy (for assets and APs) with minimal
infrastructure and setup to reach a precision of a few meters.
We particularly focus on the static assets positioning use-
case, which implies that some techniques such as pedestrian
dead reckoning are not applicable for the solutions we are
studying. This area of indoor positioning using LPWANs,
WIFI, or Bluetooth Low Energy (BLE) raised a great interest
in the last decade and many solutions have been proposed,
based on Received Signal Strength Indication (RSSI), Time of
Arrival (ToA), andAngle of Arrival (AoA). Reviews on recent
advances and capacities can be found [15–17], and theoretical
bounds like Cramér-Rao Lower Bound (CRLB) and
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algorithms have been given and reviewed formost techniques
[18–20].

The common framework widely used proceeds in two
steps instead of direct estimation to reduce complexity even
if this is suboptimal in general [19]:

(i) A given number of measurements related to distance
are collected in a short time slot; outliers and noise are
filtered and an approximate distance measurement is
inferred from those, which are not coherent one with
the other due to multipath and measurement noise.

(ii) Those distances are then aggregated using algorithms,
which can belong to the following domains:

(a) Geometry (finding the intersection of distance
circles).

(b) Machine learning (neural networks, Smallest
M-vertex Polygon (SMP), or Support Vector
Machine (SVM)).

(c) Cellular algorithms (closest neighbour, weighted
neighbors, etc. . . .).

(d) Statistical estimation algorithms (mainly maxi-
mum likelihood).

ToA based solutions can be very accurate (within a meter
or centimeter), such as Ultra Wide Band (UWB) or col-
laborative positioning, but they require expensive hardware
and moreover synchronization signals are involved which
increases the power consumption. On the other hand such
a precision is not needed for asset positioning.

This paper then considers less precise but lower cost
solutions like Received Signal Strength (RSS) positioning
using low energy protocols like BLE. In this case the accu-
racy is strongly limited by the fast and slow fading effect
arising in dense multipath environments. Fast fading can
be mitigated using several measurements in time and their
first step preprocessing (averaging and removing outliers
from the average, i.e., values that are far from the mean
value, or using median value) before running the second
step positioning algorithm (which is known as time diversity
[21]).

Contrariwise, slow fading effects need spatial diversity or
frequency diversity to be reduced. For a given multipath con-
figuration, frequency diversity changes fading effects on the
RSS allowing simple algorithms like averaging or maximum
selection to improve the measurement at the preprocessing
stage of the positioning [22, 23]; this solution is promising
because it is only at the energy cost of a few emissions using
an agile emitter. Theoretical bounds and finding algorithms
should be more developed in the future to tackle the slow
fading effect.

Fingerprinting methods include the multipath effect for
each specific room in the propagation model to compensate
the static part of slow fading effects. Depending on the
AP placement, this method can drastically improve the
accuracy of positioning compared to physical models based
solutions. The main drawback is the learning process energy
consumption and hardware cost that should be deployed
at the setup for static environments, and moreover the

continuous learning process needed to correct slow changes
in the environment.

An energy efficient solution to reduce slow fading is to
use a sufficient number of APs in sparse places of the room
to give redundant measurements, with different multipath
biases. This spatial diversity may increase the accuracy of the
positioning algorithm when it is able to take advantage of
redundant measurements. There is then a trade-off between
the hardware cost of a great number of APs and the desired
accuracy of positioning. Part of the hardware cost resides
in its installation process which is greatly reduced when
those receivers are battery powered (so they do not need
to be connected to a power source), when no calibration of
the hardware gain is needed, and moreover when precise
coordinates of AP placement in the room are not needed.

Calibration of APs gains can be done in the fabrication
process or at setup time which takes into account the antenna
coupling with the environment, or calibration can be run
jointly to positioning as an unsupervised learning process.
Many works deal with the calibration of radio map with pure
machine learning [24–27], where others introduce path-loss
model into the learning process [17, 24, 28]. It is difficult
to find how much radio map learning can improve the
positioning performances and what will be quantitatively the
positioning error after the learning phase.

To help the design of a positioning system, the authors
of the previous work proposed theoretical bounds of posi-
tioning error with uncalibrated propagation model that are
reachable in an analytic way [29]. This bound has already
been derived for RSS, ToA, and Difference Time of Arrival
(DToA) techniques but not in the specific case of uncalibrated
Aps [19]. In the case of RSS phenomena like measurements
quantification are taken into account but lead to numerical
expression of the CRLB [30]. The CRLB is generally used in
statistics to bound the error variance of a given estimation
problem using the FIM derived from the likelihood function
of an estimate. This bound cannot be used to find an
estimation algorithm but gives a limit to the performance
of any estimator that can be proposed to solve this specific
estimation problem. Moreover this bound can sometimes be
optimistic when there is no existing algorithm capable of
reaching the performances of the bound.

We first consider in this paper the whole estimation of
multiple assets positions, as it may improve performances
compared to the independent estimation of each single target
in presence of common APs miss-calibrated parameters.
Then full equations are given and compared to previous
paper single asset positioning [29].TheMaximumLikelihood
Estimator (MLE) is also confronted to real experimentation
and measurement. Comparing error performances to CRLB
gives the efficiency of each solution so one can judge the loss
of precision in regard to the algorithm complexity and energy
efficiency. Moreover the analytic expression of the bound
helps to design, without any experimentation or simulation,
the best APs coverage density and calibration efforts to be run
with a given precision objective.

In the next section, we first give the stochastic propaga-
tion model and state the positioning problem as an uncertain
static parameter estimation. Then analytic CRLB and the
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MLE reaching this bound are derived. Section 3 aims to verify
previous results using simulations: the analytic bound is
compared with variance and RMSE of numerically computed
estimates.

2. Optimal RSS Positioning Algorithm with
Uncertain Calibration Parameters

We consider the positioning problem of I target assets which
sends N signals to J APs placed in a given room. The
positioning algorithm takes part of a propagation model
which contains uncertain parameters model for each asset
and APs.

It must be noted that this estimation problem is not a
joint estimation of the model parameters and the position
at the same time (like it is often done when dealing with
fingerprinting) but rather a position estimator which takes
into account the residual uncertainties of model parameters
from the calibration process to estimate a position.

Thepropagationmodel and estimation problemare stated
in the next section; the likelihood and maximum likelihood
estimator is derived in Section 2.2. The analytic CRLB is
given in Section 2.3, and finally the impact of asset gain, APs
gain, and reference model gain are shown using this analytic
formula at the end of Section 2.3.

2.1. Problem Statement and Uncertain Model. We consider
the position estimation problem to be a static parameter esti-
mation: knowing the RSSI channel model, the uncertainties
on the parameters model, we want to find 𝜃, the best estimate
of position 𝜃, inside a given room from some measurements𝑟(𝜃) by maximizing the likelihood functionL(𝜃 | 𝑟(𝜃)):

𝜃 = argmax
𝜃

(L (𝜃 | 𝑟 (𝜃))) (1)

The use of probabilistic algorithms requires a propagation
model; the Log-Distance Path Loss (LDPL) model is a
common choice for indoor (NLOS) propagation [31], which
defines the received power in relation with the distance as it
follows:

𝑃𝑅 (𝑑) = 𝐺 + 𝑎0 − 10𝛾 log10 (𝑑) + 𝑅 +V (𝜎) (2)

where 𝑎0 is the loss at a reference distance of 1m, 𝛾 is
commonly known as path loss exponent, path loss factor, or
path loss gradient, 𝑅 (𝐺, resp.) is the loss due to receiver’s
antenna (transmitter, resp.), andV(𝜎) is the measuring noise
modeled as a random Gaussian variable.

Fast fading phenomenon is removed by the preprocessing
step, usually by removing outliers using median or Kalman
filtering. NLOS situation is taken into account by the log-
normal probability of shadowing V(𝜎) and does not worth
to bemodeled separately frommeasurement noise as for time
delay techniques.

Path Loss parameters are known with relative precision
depending on the calibration setup when it exists; its value
differs from the theoretical value of 2 (valid in the case of
isotropic propagation in vacuum). Density of obstacles and

antenna directivity change this value which can be different
from an AP to another. However, it is possible to find average
values for those parameters working fine in most case and
improving themwith the collected RSSI over time [27, 31] and
measure a mean value and a variance for 𝐺 and 𝑅.

If we do not calibrate 𝐺 (𝑅, 𝑎0, and 𝛾, resp.), then we can
consider it as a random variable normally distributed around
an average value 𝐺 with a variance 𝜎𝐺. Similarly, we can
model all those parameters by a mean value and a variance
expressing the residual uncertainty of the measure. We want
to provide some typical values for three different calibration
modes: production calibration where the static gains are
measured prior to installation, in situ calibration where the
gains are measured with the device fixed at its final position
(more complexes and being costly for industrials, but it takes
into account the possible change in gain because antenna cou-
pling with the material the device is attached on), and finally
no calibration where we only know the general Probability
Density Function (PDF) of the gains frommean and variance
measurements. We conducted experiments in three different
rooms (confined, semiconfined, and open environment) to
get typical values for our hardware: we measured RSSIs
at known distance from multiple APs with several target
assets and measured the mean and standard deviation of
each parameter of the model using a Root Minimum Square
(RMS) optimization. We also measured the static gain in an
anechoic chamber using an USRP B200 from Ettus Research,
measuring as well the variance of our measurement; results
are compiled in Table 1. It must be noted that mean gains
(𝐺 and 𝑅) are set to zero for in situ calibration because their
mean value is reported to be 𝑎0 as we do not have a reference
measuring tool such as in production calibration.

Wepropose studying the influence of those variances over
the accuracy and precision of the likelihood estimate using
CRLB, for instance, to know which accuracy we could expect
by skipping or not the calibration of the receivers or the APs.

Let us consider that 𝐼 assets send 𝑁 signals to 𝐽 APs
in the same room. The APs have known positions and are
placed at coordinates 𝜃𝑎𝑝𝑗 = 𝑇[𝑥𝑗 𝑦𝑗 𝑧𝑗] if we are interested
in 3D coordinates or 𝜃𝑎𝑝𝑗 = 𝑇[𝑥𝑗 𝑦𝑗] when estimating 2D
coordinates with 𝑗 ∈ [0, 𝐽 − 1], and the assets have unknown
coordinates named 𝜃𝑡𝑖 = [𝑥𝑖 𝑦𝑖 𝑧𝑖] or 𝜃𝑡𝑖 = 𝑇[𝑥𝑖 𝑦𝑖], 𝑖 ∈[0, 𝐼 − 1], respectively, for 3D and 2D estimation.

The path loss model (2) applied to the 𝑛 ∈ N = {𝑛, 0 ≤𝑛 < 𝑁} signal sent from the ith asset and received at the jth AP
gives a strength measurement (in dB) 𝑟𝑖𝑗𝑛 and its expectation𝑟𝑖𝑗𝑛 is expressed by

𝑟𝑖𝑗𝑛 = 𝑔𝑗 + 𝑎0 + 𝑟𝑖 − 𝛾𝑗Δ 𝑖𝑗 (𝜃𝑡𝑖 , 𝜃𝑎𝑝𝑗 )
𝑟𝑖𝑗𝑛 = 𝑟𝑖𝑗𝑛 +V𝑔𝑗 +V𝑎0 +V𝑟𝑖 + Δ 𝑖𝑗V𝛾𝑗 +V

𝑖𝑗𝑛
𝑚

(3)

with Δ 𝑖𝑗(𝜃𝑡𝑖 , 𝜃𝑎𝑝𝑗 ) = 5 log10 𝑔(𝑑𝑖𝑗(𝜃𝑡𝑖 , 𝜃𝑎𝑝𝑗 )2) being the

log–distances and 𝑑𝑖𝑗(𝜃𝑡𝑖 , 𝜃𝑎𝑝𝑗 )2 = 𝑇(𝜃𝑡𝑖 − 𝜃𝑎𝑝𝑗 )(𝜃𝑡𝑖 − 𝜃𝑎𝑝𝑗 )
being the distance between the target i and the AP number j.

It is shown in the Appendix that the vector 𝑟 of all 𝐼×𝐽×𝑁
measurement can be modeled as the statistical expectation
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Table 1: Typical uncertain parameters models when production calibration is run, or when calibration is done at the setup process in situ, or
for the uncalibrated scenario.The 𝑥 notation is the value obtained from calibration whereN(], 𝜎2) is the normal law of mean ] and variance𝜎2.
Parameters Production calibration In situ calibration Not calibrated𝐺(𝑑𝐵): AP gain mismatch N (𝐺, 0.12) N (0, 1) N (0, 22)
𝑅(𝑑𝐵): asset gain mismatch N (𝑅, 0.12) Non Applicable N (0, 22)
𝛾: room path loss exponent Nonrelevant N (1.4, 0.12) N (1.4, 0.42)𝑎0(𝑑𝐵): reference gain N (52, 2.32)
](𝑑𝐵): noise measurement and shadow probability N (0, 62)

of the measurement vector 𝑟 given all the target positions 𝜃𝑡
added to multivariate Gaussian vectorsW𝛾(𝜃𝑡) andW𝐿. The
final expression (A.7) is recalled here:

𝑟 (𝜃𝑡) = 𝑀Γ (𝜃𝑡) ⋅ Γ (4)

𝑟 (𝜃𝑡) = 𝑟 (𝜃𝑡) +W (5)

with

W ∼ N (O𝐼𝐽𝑁, ΣW (𝜃𝑡) = ΣW𝛾
(𝜃𝑡) + ΣW𝐿

) (6)

ΣW (𝜃𝑡) = (𝜎𝛾2diag
𝐼𝐽

(Δ 𝑖𝑗 (𝜃𝑡𝑖 , 𝜃𝑎𝑝𝑗 )2) + 𝜎𝑎0 21◻𝐼𝐽
+ 𝜎𝐺21◻𝐼 ⊗ I𝐽 + 𝜎𝑅2I𝐼 ⊗ 1

◻
𝐽) ⊗ 1

◻
𝑁

(7)

𝑀Γ (𝜃𝑡) = [Δ𝑑𝑖𝑎𝑔 (𝜃𝑡) 1𝐼𝐽 1𝐼 ⊗ I𝐽 I𝐼 ⊗ 1𝐽] ⊗ 1𝑁 (8)

Thus the measurements are affected linearly by a multi-
variate covariant random uncertain vector, so the likelihood
and MLE can be obtained.

2.2. Log-Likelihood Expression. Thepositioning problem is to
find all the assets coordinates components 𝜃𝑡𝑘 of the vector 𝜃𝑡
with 𝑘 ∈ K = {𝑘, 0 ≤ 𝑘 < 𝐾}, 𝐾 = 3𝐼, for 3D positioning
and 𝐾 = 2𝐼 for 2D where 𝜃𝑡 = [𝜃0 ⋅ ⋅ ⋅ 𝜃𝐾]. The likelihood
of a measurement vector 𝑟 is simply the probability density
of the multivariate random vector W to equal 𝑟 − 𝑟. Then
the probability density function of such a vector follows a
multivariate normal law and can be expressed in matrix form
[32], which gives the following expressions for likelihood (L)
and log–likelihood (LL):

L (𝑟 | 𝜃𝑡)
= 1
√2𝜋𝐼𝐽𝑁√ΣW (𝜃𝑡)

e−(1/2)
𝑇
(𝑟−𝑟(𝜃𝑡))ΣW(𝜃

𝑡)−1(𝑟−𝑟(𝜃𝑡))

− 2LL (𝑟 | 𝜃𝑡)
= 𝐼𝐽𝑁 ln (2𝜋) + ln ΣW (𝜃𝑡)

+ 𝑇(𝑟 − 𝑟 (𝜃𝑡))ΣW (𝜃𝑡)−1 (𝑟 − 𝑟 (𝜃𝑡))

(9)

Then the maximum likelihood to be solved is
𝜃𝑡 = argmax

𝜃𝑡∈R𝐾
L (𝑟 | 𝜃𝑡) = argmax

𝜃𝑡∈R𝐾
LL (𝑟 | 𝜃𝑡) (10)

Analytic solution to this optimization problem seems
complicated as long as uncertainties on 𝛾𝑗 (involved in the
covariance matrix ΣW(𝜃𝑡)) are to be taken into account: this
involves a covariance matrix which depends on the unknown
optimization. This is the scope of future work because the
part of ΣW that depends on 𝜃𝑡 is the diagonal matrix ΣW𝛾

in an additive way and further calculations may be solved
analytically in the future.

In this paper we consider that all path-loss exponents are
certain, or sufficiently calibrated, with known values 𝛾. Then
only miss-calibrated gains on assets and APs are considered
uncertain as follows. Then ΣW does no longer depend on 𝛾,
which simplifies (9) and (15) to

LL (𝑟 | 𝜃𝑡) = −𝐼𝐽𝑁2 ln (2𝜋) − 12 ln ΣW𝐿


− 12 𝑇(𝑟 − 𝑟 (𝜃𝑡))ΣW𝐿

−1 (𝑟 − 𝑟 (𝜃𝑡))
𝜕LL (𝑟 | 𝜃𝑡)𝜕𝜃𝑡

𝑘

= − 𝑇 𝜕𝑟𝜕𝜃𝑡
𝑘

𝜃𝑡 ΣW𝐿

−1 (𝑟 − 𝑟 (𝜃𝑡))
(11)

The positioning problem becomes the following nonlin-
ear least square formulation:

𝜃𝑡 = argmax
𝜃𝑡∈R𝐾

LL (𝑟 | 𝜃𝑡)
= argmin
𝜃𝑡∈R𝐾

[𝑇(𝑟 − 𝑟 (𝜃𝑡))ΣW𝐿

−1 (𝑟 − 𝑟 (𝜃𝑡))] (12)

which is efficiently solved in an iterative way [33]:

𝜃𝑡 (𝑘 + 1) = 𝜃𝑡 (𝑘) + (𝑇 𝜕𝑟𝜕𝜃𝑡
𝜃𝑡(𝑘) ΣW𝐿

−1 𝜕𝑟𝜕𝜃𝑡
𝜃𝑡(𝑘))

−1

⋅ 𝑇 𝜕𝑟𝜕𝜃𝑡
𝜃𝑡(𝑘) ΣW𝐿

−1 (𝑟 − 𝑟 (𝜃𝑡 (𝑘)))
(13)

2.3. Analytic Cramer-Rao Lower Bound. To compute the
theoretical bound, the FIM matrix should be derived using

I (𝜃𝑡) = E[𝑇(𝜕LL (𝑟 | 𝜃𝑡)
𝜕𝜃𝑡 )𝜕LL (𝑟 | 𝜃𝑡)

𝜕𝜃𝑡 ] (14)



Journal of Sensors 5

Once again, the log-likelihood derivative with respect to𝜃𝑡 does not permit analytic expression of the bound because
of ΣW depending on 𝛾:

𝜕LL (𝑟 | 𝜃𝑡)𝜕𝜃𝑡 = (𝜕LL (𝑟 | 𝜃𝑡)𝜕𝜃𝑡
𝑘

)
𝑘∈K

with
𝜕LL (𝑟 | 𝜃𝑡)𝜕𝜃𝑡

𝑘

= − 𝜕 𝑇(𝑟 − 𝑟)𝜕𝜃𝑡
𝑘

𝜃𝑡 ΣW
−1 (𝜃𝑡) (𝑟 − 𝑟 (𝜃𝑡)) − 12Tr (ΣW

−1) ⋅ 𝜕ΣW𝛾𝜕𝜃𝑡
𝑘

𝜃𝑡 +
12 𝑇(𝑟 − 𝑟)ΣW

−1 (𝜃𝑡) 𝜕ΣW𝛾𝜕𝜃𝑡
𝑘

𝜃𝑡 ΣW
−1 (𝜃𝑡) (𝑟 − 𝑟)

(15)

In this case the FIM can only be obtained in a numerical
way. Taking the assumption of a well-calibrated path-loss
exponents (14) and (11) gives

I (𝜃𝑡) = E[𝑇 𝜕𝑟𝜕𝜃𝑡
𝜃𝑡 ΣW𝐿

−1 (𝑟 − 𝑟 (𝜃𝑡))
⋅ 𝑇(𝑟 − 𝑟 (𝜃𝑡))ΣW𝐿

−1 𝜕𝑟𝜕𝜃𝑡
𝜃𝑡] = 𝑇 𝜕𝑟𝜕𝜃𝑡

𝜃𝑡
⋅ ΣW𝐿

−1𝐸 [W𝐿 𝑇W𝐿] ΣW𝐿

−1 𝜕𝑟𝜕𝜃𝑡
𝜃𝑡 =
𝑇 𝜕𝑟𝜕𝜃𝑡

𝜃𝑡
⋅ ΣW𝐿

−1 𝜕𝑟𝜕𝜃𝑡
𝜃𝑡

(16)

Then the CRLB can be used to obtain the inequality

Var (𝜃𝑡) ≥ I
−1 = 𝑇 𝜕𝑟𝜕𝜃𝑡ΣW𝐿

−1 𝜕𝑟𝜕𝜃𝑡
−1

(17)

Then as 𝜕𝑟/𝜕𝜃𝑡 is overdetermined compared to the
dimension of W𝐿 we can use the Moore-Penrose Pseudo
Inverse (MPPI) [34]:

I
−1 = 𝜕𝑟𝜕𝜃𝑡

+ (ΣW𝐿

−1)+ 𝑇 𝜕𝑟𝜕𝜃𝑡
+ = 𝜕𝑟𝜕𝜃𝑡

+ΣW𝐿

𝑇 𝜕𝑟𝜕𝜃𝑡
+

(18)

where 𝐴+ and (𝐴)+ stand for the MPPI of 𝐴.
As the measurements sensibility is independent from an

asset to another and the expectation ofmeasurements is inde-
pendent from a measure to another, the derivative 𝜕𝑟/𝜕𝜃𝑡 is a
block diagonal repetition of the form diag𝑖∈I(𝜕𝑟𝑖𝑛/𝜕𝜃𝑡𝑖 ⊗ 1𝑁)
where 𝑟𝑖𝑛 = (𝑟𝑖𝑗)𝑗∈J is the vector of all expected measurement
for the ith asset. Then pseudoinverse is expressed as a vertical
vector as

𝜕𝑟𝜕𝜃𝑡
+ = diag
𝑖∈I

((𝑁 𝑇𝜕𝑟𝑖𝑛𝜕𝜃𝑡𝑖
𝜕𝑟𝑖𝑛𝜕𝜃𝑡𝑖 )

−1 𝜕𝑟𝑖𝑛𝜕𝜃𝑡𝑖 )𝑖∈I ⊗ 1𝑁

= 1𝑁diag
𝑖∈I

(𝜕𝑟𝑖𝑛𝜕𝜃𝑡𝑖
+) ⊗ 1𝑁

(19)

Then using the covariance matrix structure (A.5) ofW𝐿 with
expression (18) the inverse FIM is simplified in

I
−1 = 1𝑁2 (diag𝑖∈I (𝜕𝑟𝑖𝑛𝜕𝜃𝑡𝑖

+) ⊗ 1𝑁) ⋅ ((𝜎𝑎0 21◻𝐼𝐽
+ 𝜎𝐺21◻𝐼 ⊗ I𝐽 + 𝜎𝑅2I𝐼 ⊗ 1

◻
𝐽 ) ⊗ 1

◻
𝑁 + 𝜎𝑚2I𝐼𝐽𝑁)

⋅ (diag
𝑖∈I

(𝑇 𝜕𝑟𝑖𝑛𝜕𝜃𝑡𝑖
+) ⊗ 𝑇1𝑁)

= diag
𝑖∈I

(𝜕𝑟𝑖𝑛𝜕𝜃𝑡𝑖
+ ((𝜎𝐺2 + 𝜎2𝑚𝑁 ) I𝐽

+ (𝜎𝑎0 2 + 𝜎𝑅2) 1◻𝐽)
𝑇 𝜕𝑟𝑖𝑛𝜕𝜃𝑡𝑖
+) = diag

𝑖∈I

((𝜎𝐺2

+ 𝜎2𝑚𝑁 ) 𝜕𝑟𝑖𝑛𝜕𝜃𝑡𝑖
+ 𝑇 𝜕𝑟𝑖𝑛𝜕𝜃𝑡𝑖

+ + (𝜎𝑎0 2 + 𝜎𝑅2)
⋅ 𝜕𝑟𝑖𝑛𝜕𝜃𝑡𝑖
+

1
◻
𝐽

𝑇 𝜕𝑟𝑖𝑛𝜕𝜃𝑡𝑖
+)

(20)

The inverse FIM shows that each asset positioning accu-
racy is independent one from the other, which shows that
estimating positions of 𝐼multiple assets is equivalent to mak-
ing 𝐼 different estimations of one asset. Hence, information
measured by each asset does not improve positioning of
the others, and results from previous work [29] can also be
used for multiple assets without loss of optimality. Then the
CRLB of the ith target positioning can bound the RMSE of its
estimate error 𝜖𝑖 with

E [𝑇𝜖𝑖𝜖𝑖] ≥ Tr (Var (𝜖𝑖)) ≥ Tr (I−1)
≥ (𝜎𝐺2 + 𝜎2𝑚𝑁 )Tr(𝜕𝑟𝑖𝑛𝜕𝜃𝑡𝑖

+ 𝑇 𝜕𝑟𝑖𝑛𝜕𝜃𝑡𝑖
+)

+ (𝜎𝑎0 2 + 𝜎𝑅2)Tr(𝜕𝑟𝑖𝑛𝜕𝜃𝑡𝑖
+

1
◻
𝐽

𝑇 𝜕𝑟𝑖𝑛𝜕𝜃𝑡𝑖
+)

= (𝜎𝐺2 + 𝜎2𝑚𝑁 )Tr((𝑇𝜕𝑟𝑖𝑛𝜕𝜃𝑡𝑖
𝜕𝑟𝑖𝑛𝜕𝜃𝑡𝑖 )

−1)
+ (𝜎𝑎0 2 + 𝜎𝑅2)Tr(𝜕𝑟𝑖𝑛𝜕𝜃𝑡𝑖

+

1
◻
𝐽

𝑇 𝜕𝑟𝑖𝑛𝜕𝜃𝑡𝑖
+)

(21)



6 Journal of Sensors

This formula shows that the increase of assets to be
positioned does not improve accuracy (as the positioning
algorithm does not calibrate the gain mismatch, this result
seems fine). The number of measurements 𝑁 only helps to
mitigate the fast fading and noises measurement 𝜎2𝑚 and does
not compensate the calibration of the APs gains. Hence, we
see that we can stop measuring values when we reach 𝜎𝐺2 ≫𝜎2𝑚/𝑁. Two terms depending on the geometrical configura-
tion represent the Geometrical Dilution of Precision (GDoP)
of the positioning. Thismeans that the optimal AP placement
depends on the quality of assets, APs gain calibrations, and
fading probability.

3. Simulations and Experiments

In this section we compare analytic expression with simu-
lations. The first subsection validates the analytic form of
the FIM with simulations, showing analytic versus simulated
covariance matrices. Then Section 3.2 compares results from
real measurements against CRLB expectations for various
results from a numerical simulation. Those results were made
for several different configurations of APs.

3.1. Numerical Verification of Cramer-Rao Lower Bound. For
the numerical verification of previous equations, we used a
simulator generatingRSSIswith an additional pseudorandom
noise. From those values we computed a position estimate
using the MLE, and we measured the covariance matrix of
those estimates. We then plotted the estimates coordinates,
the 2-sigma ellipsis of the numerical verification, and the
CRLB covariance matrix. An example of the results is shown
in Figure 1 with a room of11 by 6 meters, one AP at each
corner, 𝜎𝐺 = 𝜎𝑅 = √2 and 𝜎 = √3, and two target assets
at positions 𝑥, 𝑦 = [5 5] and 𝑥, 𝑦 = [2 2]. In this figure,
we can see that the simulated covariance is bigger than the
CRLB which is consistent with the theory. On regions closer
to APs (position of transmitter 1 in Figure 1), the likelihood
function is highly nonlinear due to the nonlinearity of the
LDPL model close to zero; hence the estimated positions
will no longer be spread linearly but rather in circle around
the AP combined with the fact that we have further all APs
and the GDOP is not good in this configuration; some noisy
measurements might be estimated outside the room, which
is distorting the covariance ellipsis: the CRLB ellipsis less fits
the simulated values; however estimates covariance is always
above the CRLB, so the results are still theoretically correct.
We can see that filtering those outliers leads to a closest
match betweenCRLB and simulated values. On the rightmost
part of the figure you can see the RMSE of the Euclidean
distance ((1/𝑁)∑𝑁𝑖 √(𝑥𝑖 − 𝑥)2 + (𝑦𝑖 − 𝑦)2 where 𝑥 and 𝑦 are
the estimates of the real coordinates 𝑥 and 𝑦) versus the trace
of the CRLB (the criterion in equation (21)).

3.2. Comparison with Real Data. To make sure that the
CRLB matches real case scenarios, we conducted experi-
ments in different room configurations, with several APs
configurations at various known positions and computed the
Cumulated Density Function (CDF) of the distance error

between estimated and real positions. This subsection depicts
the setup and the results.

3.2.1. Presentation of Hardware and Experimental Setup.
After a numerical verification of the equations, we confronted
the CRLB results with real measurements. Experiments took
place in 11 by 6 meters office with two devices from firm
FFLY4U: FFLYdot and Myria, respectively, for APs and
tracked devices (see Figure 2 for a schematic of the setup and
pictures of the devices). Both devices use a Nordic NRF52
for Bluetooth communication and RSSI ranging. It must
be noted that for practical issues in this scenario the APs
were set as BLE advertisers (iBeacon) and the RSSIs were
measured by the tracked asset. This is done without any loss
of generality and its impact on the algorithm results in a
change of gains between receivers and transmitters (𝑅 and𝐺 values are swapped). This inverted scenario is necessary
because the APs only have a broadcast capability. The APs
were broadcasting with a period of 25 milliseconds and a
total of 140 measurements were collected for each AP. The
tracked device was placed on a regular grid of 135 points
spaced with a distance of 0.6 meter, using existing marks
on the ground, whose size was fine-measured using a laser
rangefinder. To be able to easily change the APs coordinates
for position optimization tests, each AP was mounted on a
mobile wooden pillar.

3.2.2. Cumulative Density Function of the Error for Simulated
Data, Real Data, and CRLB in Various AP Configurations. To
compare thosemeasurements, we also computed aCDFusing
our RSSI simulator: for all 135 positions of measurements,
we simulated 140 measurements, from which we computed
the estimated position. For the CRLB, we generated 1000
positions estimates from the covariance matrix at each
measuring point. It must be noted that the number of
estimates is significantly higher than the CRLB because we
want to generate a theoretical smooth curve and the random
generated position is just an easier way to compute the
theoretical curve from the analytic expression, taking into
account all the different values of the CRLB at the different
positions of the room. We made measurements with 7 and
4 APs placed at easiest mount points in the room (close
to existing pillars, e.g., not on windows); the resulting CDF
curves of those simulations and measurements are shown in
Figure 3, showing that the CRLB is as expected slightly better
than reality but not too much conservative or optimistic.
Hence, the CRLB could be used as a good indicator of the
performance of the AP topology, giving a metric of the error
in meters. Moreover, simulated values also produced a more
slightly better result as they do not include effect of multipath
propagation and fading.

3.3. Impact of Calibration on the Expected Accuracy. Cali-
bration is a step costly in time, which involves measuring
in postproduction the static gain of all devices (APs and
tracked assets), which might also vary in time for devices
on battery. However, it could be skipped by measuring the
average and variance of gains and model parameters and
using those values in the model. As it could save time and
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Figure 3: Experimental values matched against CRLB.

money for industrial deployments, we want to study its
impact on the expected accuracy. Now, we showed that our
CRLB is consistent with real measurements; we will use it as
a criterion to see if calibration is required depending on the
expected accuracy. We simulated the CRLB in the case of a
squared room with an AP at each corner in function of the
size of the room (Δ, which symbolizes the meshing density),
our relative coordinates [𝛿𝑥, 𝛿𝑦] = [𝑥, 𝑦] /Δ, and the number
of measures 𝑁. We compared the result in the case where
no calibration has been made (𝜎𝐺 = 𝜎𝑅 = 2), where APs
are calibrated in production (𝜎𝑅 = 2, 𝜎𝐺 ≈ 0), and where
both APs and tracked devices are calibrated in production
(𝜎𝑅 = 𝜎𝐺 ≈ 0). Results are shown in Table 2.

What we can see on those results is that if we do
not calibrate the APs gains, the lower error achievable is
equivalent to Δ/2; that means the positioning is equivalent
to a cellular algorithm. If we want a higher precision than
cellular setup, we necessarily have to calibrate the APs.

4. Conclusion

The positioning problem of multiple assets with uncertain
receivers gain and uncertain propagation model has been
addressed. Typical values of uncertainties have been given
from the observation of multiple setups and calibration
realized in different industrial environments. Based on this

model, the global MLE algorithm is given and formulated,
having an iterative nonlinear least square solver. The CRLB is
expressed in the general form and analytically for the specific
case of well-calibrated path-loss exponents. Simulations show
that the bound is reached by the MLE and moreover real
measurements and estimations show that this result is not too
much conservative; that is, the bound is a good estimation of
the expected accuracy. Using this analytic CRLB, we discuss
the impact on the accuracy of access points gain calibration,
assets gain calibration, precision of measurements, number
of measurements repetitions, and number of joint assets to
be positioned.

It first shows that in contrary to joint calibration and
positioning algorithms the number of assets to be estimated
has no effect on the accuracy of each estimation. One can
then reduce the solver complexity by running independent
estimations without loss of optimality.

Secondly, it shows that the positioning of RMSE is
split into two terms involving APs calibration, measurement
precision and repetition, weighted by a parameter connected
to the geometric position of the APs inside the room on
the one hand. And on the other hand the asset calibration
gain and LDPL reference gain are weighted by a different
geometrical factor to impact the accuracy. Then it shows that
depending on different calibration quality or efforts different
geometrical terms can be involved and then different optimal
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Table 2: CRLB RMSE. Coordinates are 𝛿𝑥 and 𝛿𝑦: fractions of Δ the inter-APs distance (the meshing density).

Δ (𝛿𝑥,𝛿𝑦) I Not calibrated Calibrated APs Calibrated APs & targets
5 (0.5, 0.5) 1 2.13 0.48 0.48
5 (0.5, 0.5) 20 2.08 0.11 0.11
5 (0.1, 0.5) 1 3.14 1.95 1.16
5 (0.1, 0.5) 20 3.09 1.87 1.01
10 (0.5, 0.5) 1 4.26 0.96 0.96
10 (0.5, 0.5) 20 4.15 0.21 0.21
10 (0.1, 0.5) 1 6.27 3.89 2.31
10 (0.1, 0.5) 20 6.17 3.73 2.03
20 (0.5, 0.5) 1 8.51 1.92 1.92
20 (0.5, 0.5) 20 8.30 0.43 0.43
20 (0.1, 0.5) 1 12.54 7.79 4.62
20 (0.1, 0.5) 20 12.35 7.47 4.05

APs configurations can arise. Using a numerical application,
we also showed that with typical hardware the error was close
to those of cellular positioning if we do not calibrate APs.

More generally, this can be used for dimension and to
optimize a setup to reach a desired accuracy. It showed an
example of how to infer the number of APs to reach accuracy
in a given room. Future work could infer the number of
measurements required for a given accuracy in function
of the calibration error of the APs or even to find the
optimal AP disposition in a given room for a given calibra-
tion.

Appendix

Full Measurement Vector Construction

Equation (3) givesthe RSS measurement obtained for signal
number 𝑛 ∈ N received by the AP number 𝑗 ∈ J = {𝑗, 0 ≤𝑗 < 𝐽} sent from asset number 𝑖 ∈ I = {𝑖, 0 ≤ 𝑖 < 𝐼}. In this
section we use matrix algebra with the Kronecker product,
noted ⊗, to give the full 𝐼𝐽𝑁 measurements vector 𝑟 and its
expectation value 𝑟.

We first stack in the vector 𝑟𝑖𝑗 the 𝑁 expectations of the
strength measurement transmitted between a couple (𝑖, 𝑗) ∈
I × J of target and AP. This expectation is the same for all
measurements; only the measurement and shadowing effect
noise V𝑖𝑗𝑛𝑚 ∼ N(0, 𝜎2𝑚) change from one measurement to
another. We then define the Gaussian random vector variable
V𝑖𝑗𝑚 as 𝑇V𝑖𝑗𝑚 = 𝑇[V𝑖𝑗0𝑚 . . . V𝑖𝑗(𝑁−1)𝑚 ] = N(O𝑁, 𝜎2𝑚I𝑁),
where O𝑁 is the null vector of size N, and I𝑁 is the
identity matrix of size 𝑁, and express those measurements
as

𝑟𝑖𝑗 (𝜃𝑡𝑖) = (𝑔𝑗 + 𝑎0 + 𝑟𝑖 + 𝛾𝑗Δ 𝑖𝑗 (𝜃𝑡𝑖 , 𝜃𝑎𝑝𝑗 )) ⊗ 1𝑁

𝑟𝑖𝑗 (𝜃𝑡𝑖) = 𝑟𝑖𝑗 (𝜃𝑡𝑖)
+ (V𝑔𝑗 +V𝑎0 +V𝑟𝑖 + Δ 𝑖𝑗 (𝜃𝑡𝑖 , 𝜃𝑎𝑝𝑗 )V𝛾𝑗)
⊗ 1𝑁 +V

𝑖𝑗
𝑚

= 𝑟𝑖𝑗 (𝜃𝑡𝑖) + [1𝑁 I𝑁] ⋅ [V𝑎0
V𝑖𝑗𝑚

]
+ (V𝑔𝑗 +V𝑟𝑖 + Δ 𝑖𝑗 (𝜃𝑡𝑖 , 𝜃𝑎𝑝𝑗 )V𝛾𝑗) ⊗ 1𝑁

(A.1)
For stacking all APs on the vector we need to define

the mismatch gain vector 𝐺 of those J receivers as 𝑇𝐺 =
𝑇[𝑔0 . . . 𝑔𝐽−1] and the corresponding gain uncertainties
vector 𝑇V𝐺 = 𝑇[V0𝐺 . . . V𝐽−1𝐺 ] ∼ N(O𝐽, 𝜎𝐺2I𝐽). Similarly
for the path-loss exponent we get 𝛾 = 𝑇[𝛾0 . . . 𝛾𝐽−1] and
𝑇V𝛾 = 𝑇[V0𝛾 . . . V𝐽−1𝛾 ] ∼ N(O𝐽, 𝜎𝛾2I𝐽). The log-square-
distance vector between the ith asset and all the APs is noted
𝑇Δ 𝑖(𝜃𝑡𝑖 ) = 𝑇[Δ 𝑖𝑗(𝜃𝑡𝑖 , 𝜃𝑎𝑝0 ) . . . Δ 𝑖𝑗(𝜃𝑡𝑖 , 𝜃𝑎𝑝𝐽−1)]. Then the vector𝑟𝑖 of the 𝐽𝑁measurements and its expectation 𝑟𝑖 concerning
an asset number 𝑖 ∈ I are written (we consider that the
Kronecker operator ⊗ has priority on the matrix product):

𝑟𝑖 (𝜃𝑡𝑖) = [(diag (Δ 𝑖 (𝜃𝑡𝑖)) 𝛾 + 𝐺) + (𝑎0 + 𝑟𝑖) ⊗ 1𝐽]
⊗ 1𝑁

= [diag (Δ 𝑖 (𝜃𝑡𝑖 )) ⊗ 1𝑁 1𝐽 ⊗ 1𝑁 I𝐽𝑁] ⋅ [[[
[

𝛾
𝑎0
𝐺
]]]
]

+ 𝑟𝑖 ⊗ 1𝐽𝑁

𝑟𝑖 (𝜃𝑡𝑖) = 𝑟𝑖 (𝜃𝑡𝑖)
+ [diag (Δ 𝑖 (𝜃𝑡𝑖 )) ⊗ 1𝑁 1𝐽 ⊗ 1𝑁 I𝐽𝑁 I𝐽𝑁]

⋅ [[[[[
[

V𝛾

V𝑎0

V𝐺

V𝑖𝑚

]]]]]
]
+V𝑟𝑖 ⊗ 1𝐽𝑁

(A.2)



10 Journal of Sensors

where V𝑖𝑚 ∼ N(O𝐽𝑁, 𝜎𝑚2I𝐽𝑁) and 1𝑘 (O𝑘, resp.) is the
vertical vector of 𝑘 ones (zeros, resp.).

Finally, we note 𝑅 being the vector of the I expected
assets gain mismatch defined as 𝑇𝑅 = 𝑇[𝑟0 . . . 𝑟𝐼−1] and
its random multivariate vector 𝑇V𝑅 = 𝑇[V0𝑅 . . . V𝐼−1𝑅 ] ∼
N(O𝐼, 𝜎𝑅2I𝐼).

For the full log-square-distance vector defined as
𝑇Δ(𝜃𝑡) = 𝑇[Δ 𝑖(𝜃𝑡0) . . . Δ 𝑖(𝑇𝜃𝑡𝐼−1)], we added a rectangular
form 𝑇Δ𝑑𝑖𝑎𝑔(𝜃𝑡) = 𝑇[diag(Δ 𝑖(𝜃𝑡0)) . . . diag(Δ 𝑖(𝜃𝑡𝐼−1))] to
allowmatrix expression. All the targets relatedmeasurements
are stacked to obtain the full𝑁𝐽𝐼measurements vector 𝑟 and
its expectation 𝑟 being then expressed as

𝑟 (𝜃𝑡) = [diag (Δ (𝜃𝑡)) ⋅ 1𝐼 ⊗ 𝛾 + 𝑅 ⊗ 1𝐽 + 1𝐼

⊗ (𝐺 + 𝑎0 ⊗ 1𝐽)] ⊗ 1𝑁

= [Δ𝑑𝑖𝑎𝑔 (𝜃𝑡) 1𝐼𝐽 1𝐼 ⊗ I𝐽 I𝐼 ⊗ 1𝐽] ⊗ 1𝑁 ⋅
[[[[[[
[

𝛾
𝑎0
𝐺
𝑅

]]]]]]
]

𝑟 (𝜃𝑡) = 𝑟 (𝜃𝑡)
+ [Δ𝑑𝑖𝑎𝑔 (𝜃𝑡) ⊗ 1𝑁 1𝐼𝐽𝑁 1𝐼 ⊗ I𝐽 ⊗ 1𝑁 I𝐼 ⊗ 1𝐽𝑁 I𝐼𝐽𝑁]

⋅
[[[[[[[[
[

V𝛾

V𝑎0

V𝐺

V𝑅

V𝑚

]]]]]]]]
]

(A.3)

whereV𝑚 ∼ N(O𝐼𝐽𝑁, 𝜎𝑚2I𝐼𝐽𝑁).
The path-loss exponents 𝛾𝑗 are the only parameters

involved with the targets positions 𝜃𝑡 in this equation;
thus we can define the vector Γ𝐿 of expected uncertain
parameters linearly involved in the equation as 𝑇Γ𝐿 =
𝑇[𝑎0 𝑇𝐺 𝑇𝑅] and its mismatch noise vector as 𝑇V𝐿 =
𝑇[V𝑎0 𝑇V𝐺 𝑇V𝑅 𝑇V𝑚] ∼ N(O, ΣΓ𝐿) which is a zero
mean independent random variables vector whose diagonal
covariance matrix is ΣΓ𝐿 = diag(𝜎𝑎0 2, 𝜎𝐺2I𝐽, 𝜎𝑅2I𝐼, 𝜎𝑚2I𝐼𝐽𝑁).

Then (A.3) becomes

𝑟 (𝜃𝑡) = 𝑀𝛾 (𝜃𝑡) ⋅ 𝛾 +𝑀Γ𝐿 ⋅ Γ𝐿
𝑟 (𝜃𝑡) = 𝑟 (𝜃𝑡) +𝑀𝛾 (𝜃𝑡) ⋅V𝛾

+ [𝑀Γ𝐿 | I𝐼𝐽𝑁] ⋅V𝐿
with 𝑀𝛾 (𝜃𝑡) = Δ𝑑𝑖𝑎𝑔 (𝜃𝑡) ⊗ 1𝑁

𝑀Γ𝐿 = [1𝐼𝐽 1𝐼 ⊗ I𝐽 I𝐼 ⊗ 1𝐽] ⊗ 1𝑁

(A.4)

Then the independent random Gaussian vector V𝛾
is linearly mixed by 𝑀𝛾(𝜃𝑡) to give the multivariate

Gaussian vector W𝛾 ∼ N(O, ΣW𝛾
(𝜃𝑡)). The covariance is

given by

ΣW𝛾
(𝜃𝑡) = 𝜎𝛾2𝑀𝛾 ⋅ 𝑇𝑀𝛾

= 𝜎𝛾2diag
𝐼𝐽

(Δ 𝑖𝑗 (𝜃𝑡𝑖 , 𝜃𝑎𝑝𝑗 )2) ⊗ 1
◻
𝑁

(A.5)

where diag(𝑖,𝑗)∈𝐼×𝐽(𝐴 𝑖𝑗) is the block diagonal matrix defined
as ((𝐴 𝑖𝑗)𝑗,𝑗)𝑖,𝑖.

The independent measurement noise vectorV𝑚 is added
to the independent Gaussian vector Γ𝐿 linearly mixed with𝑀Γ𝐿 to give the multivariate Gaussian vector W𝐿 ∼
N(O, ΣW𝐿

):
ΣW𝐿

= [𝑀Γ𝐿 | I𝐼𝐽𝑁] ⋅ ΣV𝐿
⋅ 𝑇[𝑀Γ𝐿 | I𝐼𝐽𝑁] (𝜎𝑎0 21◻𝐼𝐽

+ 𝜎𝐺21◻𝐼 ⊗ I𝐽 + 𝜎𝑅2I𝐼 ⊗ 1
◻
𝐽 ) ⊗ 1

◻
𝑁 + 𝜎𝑚2I𝐼𝐽𝑁

(A.6)

where 1◻𝑘 is the square 𝑘 × 𝑘matrix full of ones.
Finally measurements are modeled by

𝑟 (𝜃𝑡) = 𝑀𝛾 (𝜃𝑡) ⋅ 𝛾 +𝑀Γ𝐿 ⋅ Γ𝐿
𝑟 (𝜃𝑡) = 𝑟 (𝜃𝑡) +W𝛾 (𝜃𝑡) +W𝐿

(A.7)

The two multivariate random vectors W𝛾 and W𝐿 are inde-
pendent so they can be added to form a single multivariate
vector which simplify expression to

𝑟 (𝜃𝑡) = 𝑀Γ (𝜃𝑡) ⋅ Γ
𝑟 (𝜃𝑡) = 𝑟 (𝜃𝑡) +W

with W ∼ N (O𝐼𝐽𝑁, ΣW (𝜃𝑡) = ΣW𝛾
(𝜃𝑡) + ΣW𝐿

)
ΣW (𝜃𝑡) = (𝜎𝛾2 diag

𝐼𝐽

(Δ 𝑖𝑗 (𝜃𝑡𝑖 , 𝜃𝑎𝑝𝑗 )2) + 𝜎𝑎0 21◻𝐼𝐽
+ 𝜎𝐺21◻𝐼 ⊗ I𝐽 + 𝜎𝑅2I𝐼 ⊗ 1

◻
𝐽) ⊗ 1

◻
𝑁

𝑀Γ (𝜃𝑡) = [Δ𝑑𝑖𝑎𝑔 (𝜃𝑡) 1𝐼𝐽 1𝐼 ⊗ I𝐽 I𝐼 ⊗ 1𝐽] ⊗ 1𝑁

(A.8)

Abbreviations

AoA: Angle of Arrival
AP: Access Point
BLE: Bluetooth Low Energy
CDF: Cumulated Density Function
CRLB: Cramér-Rao Lower Bound
DToA: Difference Time of Arrival
FIM: Fisher Information Matrix
GDoP: Geometrical Dilution of Precision
GNNS: Global Navigation Satellite System
IoT: Internet of Things
LDPL: Log-Distance Path Loss
LPWAN: Low Power Wide Area Network
MLE: Maximum Likelihood Estimator
MPPI: Moore-Penrose Pseudoinverse
NLoS: Nonline of Sight
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PDF: Probability Density Function
RMS: Root Minimum Square
RMSE: Root Minimum Square Error
RSS: Received Signal Strength.
RSSI: Received Signal Strength Indication
SMP: Smallest M-vertex Polygon
SVM: Support Vector Machine
ToA: Time of Arrival
UWB: Ultra Wide Band.
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Position estimation algorithm and Cramér-Rao bound
ellipses can be computed following the instructions and
using the code provided in https://github.com/XavierTolza/
RssiCRLB-plots.
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Collecting the information of traffic load, especially heavy trucks, is crucial for bridge statistical analysis, safety evaluation, and
maintenance strategies. This paper presents a traffic sensing methodology that combines a deep learning based computer vision
technique with the influence line theory. Theoretical background and derivations are introduced from both aspects of structural
analysis and computer vision techniques. In addition, to evaluate the effectiveness and accuracy of the proposed traffic sensing
method through field tests, a systematic analysis is performed on a continuous box-girder bridge. The obtained results show that
the proposed method can automatically identify the vehicle load and speed with promising efficiency and accuracy and most
importantly cost-effectiveness. All these features make the proposed methodology a desirable bridge weigh-in-motion system,
especially for bridges already equipped with structural health monitoring system.

1. Introduction

Modern bridges are mainly constructed for traffic purposes.
Accordingly, collecting the information of traffic including
vehicle weight, velocity, quantity, type, and spatiotemporal
distribution, is crucial for bridge design refinement, safety
evaluation, and maintenance strategies [1–3]. To this end, a
number of studies on traffic information identification have
been conducted. Among these methods, the bridge-weigh-
in-motion (BWIM) technique is highlighted [4, 5].

The concepts behind BWIM techniques were initially
proposed by Moses [6], who used an instrumented bridge
as the weighing scale to estimate vehicle weights. Compared
with other weigh-in-motion (WIM) techniques, such as the
pavement-based WIM systems [7, 8], BWIM techniques are
cost-efficient, durable, and unbiased as they are not impacted
by repeated axle loads and do not require interrupting the
traffic to cut the pavement. All these advantages have made
BWIM a preferable tool to weigh vehicles, especially heavy
trucks, attracting many follow-up research and engineering
applications. Up to date, this research topic has progressed
significantly in aspects as diverse as the identification results,

such as time-history moving load identification [9–11], or the
types of sensors, such as portable accelerometers [12].

One of the most simple and practical BWIM techniques
verified by field tests is the gross vehicle weight (GVW).
This identification method is based on the static influence
line/surface theory, which is already applied by Moses in
his earliest research [13]. However, key problems arise in
obtaining accurate results when multiple vehicles cross the
bridge deck simultaneously or move transversely [14]. In this
scenario, combining supplemental vehicles position infor-
mation and the influence surface instead of influence line
might help to mitigate the problem. To position the vehicles
on the bridge, traffic sensors such as radar, road tubes, and
embedded axle detectors are recommended by Snyder et al.
[15]. Lamentably, these sensors are too costly for its massive
installation in actual structures. Alternatively, Xiao et al. [16]
and Yamaguchi et al. [17] innovatively utilized the longitu-
dinal ribs strains of an orthotropic steel bridge to detect the
transverse position of vehicle axles. Unfortunately, concrete
bridges without ribs are insensitive to single axle loads,
making this method ineffective for this kind of structures.
Yu et al. [18] proposed a novel BWIM algorithm that was
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able to identify the lateral position of a single vehicle on a
bridge by using only seven strain gauges installed transversely
at the bottom of the beams. That paper, however, admitted
that identifying the presence of multiple-vehicle is still one of
the main challenges faced by BWIM technology.

To address the multiple-vehicle presence challenge, using
visual information is an innovative and feasible solution
on the basis that a large number of bridges have been
equipped with surveillance cameras for traffic monitoring of
late years. In fact, the rich visual information recorded by the
surveillance cameras enables obtaining the exact position of
the vehicles on the bridge deck with nothing but a common
webcam. Chen et al. [19] proposed an identification approach
for the spatiotemporal distribution of traffic loads on bridges
using the information from the pavement-based WIM and
background subtraction technique. This approach relies on
high quality video image, which limits its range of application.
Another disadvantage of this method is the fact that it is
nonsemantic, which means deep information contained in
the video image, such as type and axle number of vehicles,
is difficult to obtain. Similar problems also exist in studies
aiming to detect vehicle axles using traditional computer
vision techniques [1, 20].

In recent years, deep learning methods have dramatically
improved the state of the art in visual object detection and
recognition with amazing efficiency and robustness [21].
Inspired by the tremendous advance of computer vision tech-
niques, this paper presents a traffic information identification
methodology in combination with influence line theory and
deep learning based computer vision techniques.

This paper is organized as follows. Firstly, the theo-
retical background of both aspects of structural analysis
and computer vision techniques is presented. Next, field
tests on a box-girder bridge were conducted to evaluate the
proposed methodology in various aspects. Finally, both the
advantages and the potential engineering applications of the
methodology are discussed.

2. Structural Analysis

�.�. Bridge Response Analysis. One of the most concerning
traffic information is vehicle weight. To estimate the vehi-
cle weight, BWIM technology traditionally uses the bridge
strains.Therefore, bridge structural strain analysis is essential
in the process of vehicle weight identification.

Most BWIM systems are applied on girder bridges with
small or medium span due to its structural simplicity.
Compared with long-span bridges, middle-small span girder
bridges perform linear elasticity under normal operation,
making them ideal weighing scales to estimate vehicle
weights. Moreover, load effects on such bridges are relatively
simple, which can be expressed as follows:

𝜀𝑏𝑟𝑖𝑑𝑔𝑒 = 𝜀𝑒𝑛V𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡 + 𝜀V𝑒ℎ𝑖𝑐𝑙𝑒 (1)

𝜀V𝑒ℎ𝑖𝑐𝑙𝑒 = 𝜀𝑑𝑦𝑛𝑎𝑚𝑖𝑐 + 𝜀𝑠𝑡𝑎𝑡𝑖𝑐 (2)

where 𝜀𝑏𝑟𝑖𝑑𝑔𝑒 is the directly measured bridge strain; 𝜀𝑒𝑛V𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡
is the bridge strain caused by environmental factors, such as
temperature, wind, slight earth pulse, and creep of concrete;

𝜀V𝑒ℎ𝑖𝑐𝑙𝑒 is the bridge strain induced by vehicles, which includes
dynamic 𝜀𝑑𝑦𝑛𝑎𝑚𝑖𝑐 and static 𝜀𝑠𝑡𝑎𝑡𝑖𝑐 components.

According to the influence theory, the static component
𝜀𝑠𝑡𝑎𝑡𝑖𝑐 is to be extracted from 𝜀𝑏𝑟𝑖𝑑𝑔𝑒 by filtering 𝜀𝑒𝑛V𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡
and 𝜀𝑑𝑦𝑛𝑎𝑚𝑖𝑐 for the purpose of traffic load identification. In
this paper, the filtering process is divided into two steps: (i)
the 𝜀𝑏𝑟𝑖𝑑𝑔𝑒 time-history curve is robustly smoothed to get
𝜀𝑒𝑛V𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡 and subtract 𝜀𝑒𝑛V𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡 from 𝜀𝑏𝑟𝑖𝑑𝑔𝑒 to get 𝜀V𝑒ℎ𝑖𝑐𝑙𝑒,
and (ii) the 𝜀V𝑒ℎ𝑖𝑐𝑙𝑒 time-history curve is smoothed to get the
desired 𝜀𝑠𝑡𝑎𝑡𝑖𝑐. The whole procedure is shown in Figure 1 for
intuitive illustration.

To achieve the filtering process in time domain, a local
regression algorithm named locally weighted scatterplot
smoothing (LOWESS) is used. Chief attractions of this
algorithm are the accuracy and convenience. It is not required
to specify a global function of any form to fit a model to the
data, only to fit segments of the data so that satisfactory local
accuracy is achieved. According to Cleveland and Devlin
[22], the basic principle of the LOWESS is expressed as
follows.

First of all, the LOWESS belongs to the regression analy-
sis, which aims to fit the mathematical relationship between
two sequences 𝑥𝑖 and 𝑦𝑖. In this paper, 𝑥𝑖 is considered as the
time sequence 𝑡𝑖, while 𝑦𝑖 is the bridge strain data sequence
𝜀𝑖.

The LOWESS adopts the polynomial regression model,
expression of which is [23]

𝜀𝑖 = 𝛽0 + 𝛽1𝑡𝑖 + 𝛽2𝑡2𝑖 + ⋅ ⋅ ⋅ + 𝛽𝑑𝑡𝑑𝑖 + 𝜀𝑖 =
𝑑

∑
𝑗=0

𝛽𝑗𝑡𝑗𝑖 + 𝜃𝑖
(𝑖 = 1, 2, . . . , 𝑛)

(3)

where 𝛽𝑗 is the coefficient of the polynomial regression
model,𝑑 is the order of the polynomial, 𝜃𝑖 is the randomerror,
and 𝑛 is the length of local sequence segment. For LOWESS,
taking 𝑑 = 2 should almost always provide adequate smooth
and computational efficiency.

To get appropriate coefficient 𝛽𝑗(𝑡𝑖) of the polynomial, the
LOWESS chooses weighted least squares estimate method,
whichmeans 𝛽𝑗(𝑡𝑖) are the values that minimize the following
function:

𝐸 =
𝑛

∑
𝑘=1

𝑤𝑘 (𝑡𝑖) (𝜀𝑘 − 𝛽0 − 𝛽1𝑡𝑘 − ⋅ ⋅ ⋅ − 𝛽𝑑𝑡𝑑𝑘)2 (4)

where 𝑤𝑘(𝑡𝑖) are weights defined for all 𝑡𝑘(𝑘 = 1, . . . , 𝑛).
The tri-cube weight function is adopted to provide adequate
smooth results.

Thus 𝛽𝑗(𝑡𝑖) can be obtained by

𝜕𝐸
𝜕𝛽 = 0 (5)

Finally, smoothing results are

𝜀𝑖 ==
𝑑

∑
𝑗=0

𝛽𝑗 (𝑡𝑖) 𝑡𝑗𝑖 (𝑖 = 1, 2, . . . , 𝑛) (6)

where 𝜀𝑖 is the smoothed strain sequence.
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Figure 1: Procedure of the vehicle induced static strain extraction.

After preselecting 𝑑, the order of the polynomial, and
𝑤𝑘(𝑡𝑖), the weight function, the only parameter left to be
defined, is the length of local sequence segment, 𝑛. This
parameter can be chosen on the basis of the data properties.
In this paper, 𝑛 is selected as 50 when smoothing the 𝜀V𝑒ℎ𝑖𝑐𝑙𝑒
time-history curve. Because the longest vibration period of
girder bridges is less than 1s, and the sampling frequency
of strain sensors in this research is fixed at 50Hz, which
means that 50 data points are recorded perminute. Choosing
the length of the data sequence segment as 50 for locally
smoothing is enough to filter the 𝜀𝑑𝑦𝑛𝑎𝑚𝑖𝑐 from the 𝜀V𝑒ℎ𝑖𝑐𝑙𝑒
hence. Similarly, 𝑛 = 500 can be assumed for smoothing the
𝜀𝑏𝑟𝑖𝑑𝑔𝑒 time-history curve when a vehicle crosses a bridge with
small ormedium span. In these cases, the frequency is usually
within 10s.

The LOWESS algorithm is capable of smoothing the
𝜀V𝑒ℎ𝑖𝑐𝑙𝑒 time-history curve to get the desired 𝜀𝑠𝑡𝑎𝑡𝑖𝑐. However,
using LOWESS to smoothing 𝜀𝑏𝑟𝑖𝑑𝑔𝑒might not be satisfactory
enough. Compared with 𝜀𝑑𝑦𝑛𝑎𝑚𝑖𝑐, strain variation caused by
vehicle weight is much more significant. Thus, the apparent
peaks will distort the smoothed results as shown in Figure 2.

To prevent seriously deviant data from distorting
the smoothed results, robust locally weighted regression
(RLOWESS) algorithm was proposed on the basis of
LOWESS [24]. Based on the size of the residual 𝑒𝑘 = 𝜀𝑘 − 𝜀𝑘,
a different set of weights, 𝛿𝑘 ⋅ 𝑤𝑘(𝑡𝑖), is defined for each (𝑡𝑖, 𝜀𝑖)
as

𝛿𝑘 =
{{{
{{{{

[1 − (𝑒𝑘6𝑠)
2]
2

, for

𝑒𝑘
6𝑠
 < 1

0, for

𝑒𝑘
6𝑠
 ≥ 1

(7)
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Figure 2: Normal strain signal collected from the web of a concrete
box girder bridge.

where 𝛿𝑘 is the robust factor of weights, 𝑒𝑘 = 𝜀𝑘 − 𝜀𝑘 is
the smoothing residual, and 𝑠 is the median of the |𝑒𝑘|. By
introducing 𝛿𝑘, large residuals result in small weights and
small residuals result in large weights. In this way, distortion
produced by seriously deviant data points can be effectively
mitigated as shown in Figure 2.

�.�. Influence Line Calibration. Bridge influence lines can be
used to weigh vehicles and they are vital tools for BWIM
analysis. In fact, obtaining an adequate accuracy of the
influence line is critical for the BWIM system to achieve
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Figure 3: Diagram of the kinematic method aiming to obtain the influence line of section 𝑆1.

convincing results. According to previous studies on BWIM,
there are two methods to obtain the influence line of a bridge.
One is the theoretical simulation method [6, 25, 26], and
the other is the calibration method carried out in field tests
[8, 27].

Apparently, numerical simulation is unable to fully repro-
duce the mechanical behavior of a real bridge. To fill this gap,
a method fitting strain influence line with measured strain
data from field calibration tests is presented in this paper.The
method includes the following two steps.

Step � (theoretically derive the shape of the influence line).
In the first step, the theoretical shape of the strain influence
line of the analyzed girder bridge is obtained. According to
the structural mechanics, one of the most common methods
to obtain the influence line of a chosen beam section is the
kinematic one [28].

Normal strain of the chosen bridge cross-section is used
to weigh vehicles in this work. As it is well known, the Euler-
Bernoulli beam theory states that the normal strain of the
chosen cross-section of a beam under vertical loads is pro-
portional to its bending moment. According to Timoshenko
andGere [29], the proportional relationship can be expressed
as

𝜀 = 𝑀𝑦
𝐸𝐼 (8)

where 𝜀 is the normal strain of a point on the chosen beam
cross-section,𝑀 is the bendingmoment at that cross-section,
𝑦 is the distance between the point and the neutral axis of the
cross-section, 𝐸 is the elastic modulus of the beam material,
and 𝐼 is the moment of inertia of the cross-section.

Equation (8) indicates that, for a fixed point on the chosen
beam cross-section, the normal strain 𝜀 of that point is
proportional to the bending moment𝑀 at the cross-section.
Thus the shape of strain influence line of a fixed point is
similar to that of the bending moment influence line at the
chosen cross-section where the fixed point is located. In other
words, it can be said that the two influence lines are scaled.

To illustrate the kinematic method a four-span contin-
uous beam presented in Figure 3 with nodes from A to E
is considered. This method assumes that an element of the
beam at the chosen cross-section, like 𝑆1 section in Figure 3,
is replaced with an ideal hinge. It allows relative rotation
between the two portions of the beam and a system with one
degree of freedom is obtained in this manner. If a load 𝑃 is

applied at any point on themovable system, for equilibrium, a
pair of two equal and opposite bendingmoments𝑀 is needed
at the hinge. Meanwhile, virtual displacement of the movable
system will be produced by the loads. For the left movable
portion 𝐴𝑆1, the displacement curve is linear, and, for the
right structure portion 𝑆1-E, the displacement curve is a cubic
[29], as shown in Figure 3.

According to the principle of virtual work, the sum of
corresponding virtual work of load 𝑃 and the couple 𝑀
equates zero, that is

𝑀 ⋅ 𝛿𝜃 − 𝑃 ⋅ 𝑦 = 0 →
𝑀 = 𝑃 ⋅ 𝑦𝛿𝜃

(9)

where 𝛿𝜃 is the total angular displacement between the two
parts of the beam and 𝑦 is the vertical displacement of
the point where load P is applied. Thus 𝑦/𝛿𝜃 refers to the
influence coefficients for bending moment at the chosen
section 𝑆1 , and the diagramof structural displacement has the
shape of the influence line.

Step � (calibrating the derived influence line with field tests
data). In the second step, numerical values of the strain
influence line are calibrated from field test data. Figure 3
illustrates how the influence line can be numerically fitted
after introducing the realmeasurements (I) obtained in a field
test at points 𝑆1, 𝑆2, 𝑆3, and 𝑆4 (that is to say 𝐼𝑆1, 𝐼𝑆2, 𝐼𝑆3, and𝐼𝑆4).

The calibration approach begins with arranging a cali-
bration truck with known weight to cross the instrumented
bridge for several times, as Figure 4(a) shows.

Since bridges are usually long relative to the spacing
of vehicle axles, gross vehicle weight is more important
than individual axle load [30]. Besides, for the linear elastic
structures, the mechanics principle of superposition works.
Considering this, the vehicle load can be simplified as a
concentrated load 𝑃, which is written as

𝑃 = 𝑊 ⋅ g (10)

where 𝑊 is the vehicle weight, and g is the gravitational
acceleration.

According to the influence line theory, there will be
an extreme on the strain time history curve recorded by
a fixed strain sensor when a moving load passes a bridge
span. For a four-span continuous girder bridge passed by the
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Figure 4: Procedure of the influence line calibration.

calibration truck, the 𝜀𝑠𝑡𝑎𝑡𝑖𝑐 time-history curve of a fixed point
on bridge has four extremes, as shown in Figure 4(b). The
deflections 𝐼𝑠1, 𝐼𝑠2, 𝐼𝑠3, and 𝐼𝑠4 occur when the calibration
truck passes cross-section 𝑆1, 𝑆2, 𝑆3, and 𝑆4.Then it is feasible
to numerically fit the strain influence line of a desired point
on the chosen section with nine points, A∼E and 𝑆1 ∼ 𝑆4 in
Figure 3, of which the coordinates are determined.

Finally, the strain influence line is normalized to obtain
the direct relationship between vehicle weight and bridge for
BWIM application convenience. The normalization equation
is as follows:

𝐼𝑊 = 𝐼𝑆
𝑊 (11)

where 𝐼𝑊 is the static strain caused by per unit vehicle
weight, and 𝐼𝑆 is the obtained value of the strain influence
line. An example of calibrated strain influence line is shown
in Figure 4(c). In this figure, four static strain values per
unit vehicle weight (𝐼𝑤1, 𝐼𝑤2, 𝐼𝑤3, and 𝐼𝑤4) are considered.
As discussed previously, the polynomial order for fitting
purposes depends on the order of the displacement curve.

This calibration procedure of influence lines has a number
of advantages, such as low calculation, operation simplicity,
and no need to close traffic, enabling convenient recalibration
if the mechanical performances of the instrumented bridge
change [31]. However, it is noteworthy that the usage of influ-
ence line, instead of influence surface [32], is a simplification
for real bridges, because vehicles may move transversely on
bridge. But this simplification is still acceptable under the
assumption that heavy trucks this research focuses on seldom
change the traffic lane when crossing the bridge.

3. Computer Vision Technique

�.�. Deep Learning Approach. Convolution neural network
(CNN) is one of the most notable deep learning approaches
employed for object detection, classification, and segmenta-
tion tasks [33]. Here, learning means that CNN automatically
learns useful features from the training data and distinguishes
the target object and the others based on these features.
Actually, that is how humans recognize objects. The CNN is
therefore classified as artificial intelligence (AI) method. The
learning ability is a qualitative leap over traditional manual
feature extraction methods and can thus drastically reduce
the workload of operation. Besides, the intelligent character
also improves the robustness and generalization capacity
because of the invariance to complex background, geometric
distortion, and illumination.

Due to such advantages, newCNNbased computer vision
algorithms with better performance have been unceasingly
proposed, and most of them are open source. This research
applies the most advanced algorithm named YOLO V3 to
fulfill the vehicle recognition tasks for its multi-scale and
deeper feature extraction capacity as well as the fastest
recognition speed up to date [34]. The application procedure
has the following three steps.

Step � (preparing training data sets). As stated previously,
CNN based computer vision algorithms will not work with-
out effective training. Thus training data sets need to be
prepared for the YOLOV3 algorithm at first.The preparatory
work includes singling out segment of videos in which
vehicles exist and manually labelling cars, trucks, and wheels
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Figure 6: Vehicle recognition results for different scenarios.

in every video frame, as shown in Figure 5(a). In this paper, a
total of 1000 video images with the same camera visual angle
are selected as the training set and different types of objects
including cars, trucks, and wheels are labelled in each image.

Step � (training CNN of YOLO V3). CNN is essentially a set
of weight coefficients capable of recognize objects using the
pixel data of an image. Errors are inevitable in the process of
recognition, and training CNN intends to obtain the optimal
weight coefficients that minimizes the errors. To that end,
the gradient descent method [33] is used in this optimization
problem.This technique states

𝜕𝑒
𝜕𝑤𝑖 ≤ 𝑟 (12)

where 𝑒 is the recognition error,𝑤𝑖 are the CNNweights, and
𝑟 is the convergence threshold.

Numerical iteration is required to achieve (12), and the
iteration process is shown in Figure 5(b). In this research,
iteration times are set to 10000 in the six-hour training
process accelerated by a NVIDIA 1080Ti GPU.

Step � (applying YOLO V3). After a well-trained CNN is
obtained, the YOLO V3 is used to recognize vehicles in
real time. Recognition results in this research were quite
satisfactory in the different scenarios shown in Figure 6. It
is remarkable that the closely spaced wheels are successfully

recognized as shown in Figure 6(c), proving the splendid
recognition capability of the YOLO V3 algorithm. The rec-
ognized pixel coordinates of the detection box are collected
for further vehicle positioning tasks.

Vehicle overlap and insufficient illumination might pro-
duce inevitable recognition errors. Diversifying neural net-
work training sets and utilizing infrared camera at dark night
will help to improve the recognition accuracy.

�.�. Coordinate Transformation. After the successful recog-
nition by YOLO V3 algorithm, precise position of vehicles
has to be determined. To address this problem, coordinate
systems are established as illustrated in Figure 7 [35] and a
coordinate transformation method is proposed in this work.
There are two coordinate systems in the process of coordinate
transformation, namely, camera pixel coordinate in the video
image as shown in Figure 7(a) and space coordinate in the
real world as shown in Figure 7(b). The relations between
them are shown in Figures 7(c) and 7(d), respectively, where
the parameters with same marks are equal. Based on the
relations, the spatial coordinate of a point 𝑃(𝑥, 𝑦) on pixel
plane can be transferred into P(x, y, z) as follows:

𝑥 = 𝑥 ⋅ 𝑡
𝑦 = 𝑦 ⋅ 𝑡
𝑧 = 𝑓 ⋅ 𝑡

(13)
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where𝑓 is the focal length of the camera and 𝑡 is the similarity
coefficient between the two similar triangles.

In the space coordinate, the bridge deck can be considered
as a spatial plane represented by the following equation:

𝐴𝑥 + 𝐵𝑦 + 𝐶𝑧 + 𝐷 = 0 (14)
where x, y, z are the spatial coordinates of the observed object
such as a truck, and A, B, C, D are unknown parameters
determining the bridge deck plane equation. If the bridge
slope is negligible, which is the usual case, x and 𝑦 directly
determine position of vehicles on the bridge deck. Then
vehicle coordinates on the deck are attainable after obtaining
A, B, C and D.

Instinctively, both location and orientation of thewebcam
are needed to obtain parameters A, B, C and 𝐷. However, a
number of field conditions, such as heavy traffic flow, make
it difficult to obtain this information. To solve this problem,
this paper proposes a method to obtain A, B, C, D directly
from the video image without knowing the camera location
and/or its orientation. The proposed method only needs two
lines of equal space length in the image. For example, lines
𝑃1𝑃2 and 𝑃3𝑃4 in Figure 8 have the equal length of 3.75m.
The coordinates of their endpoints can be measured directly
from the image.

3.75m
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P1
(x1

, y1
)
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(x3

, y3
)

P4
(x4

, y4
)

P2
(x2
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Figure 8: Diagram for A, B, C, D calculation from two reference
lines 𝑃1-𝑃2 and 𝑃3-𝑃4.

According to Figure 8, the relations between both lines
can be written as follows:

Δ𝑥1 = 𝑥1 − 𝑥2,
Δ𝑦1 = 𝑦1 − 𝑦2
Δ𝑥2 = 𝑥3 − 𝑥4,
Δ𝑦2 = 𝑦3 − 𝑦4

√Δ𝑥12 + Δ𝑦12 ⋅ 𝑡1 = √Δ𝑥22 + Δ𝑦22 ⋅ 𝑡2 = 𝐿

(15)
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where (𝑥1, 𝑦1), (𝑥2, 𝑦2), (𝑥3, 𝑦3), and (𝑥4, 𝑦4) are the
coordinates of the endpoints 𝑃1, 𝑃2, 𝑃3, and 𝑃4, 𝑡1 and 𝑡2
are similarity coefficients of the lines, and L is the line length.
With (15), parameter 𝑡 of the two lines can be separately
calculated, then spatial coordinates of the four endpoints
are obtained with (13). Substituting coordinates of the four
endpoints of the two equal length lines into (14), the four
unknowns A, B, C and 𝐷 can be directly obtained.

Themain advantage of this method is its simplicity, while
the trade-off is the loss of accuracy assuming that parameter
𝑡 is equal for endpoints 𝑃1 and 𝑃2 as well as 𝑃3 and 𝑃4,
which is true when the selected lines are far enough from the
camera and the line length is short. Another noticeable error
source comes from the camera imaging distortion, which is
complicated and will not be discussed in this paper. Figure 9
depicts vehicle trajectory tracked by the aforementioned
method.

4. Field Tests

	.�. Test Setup. In order to verify the applicability of
the proposed traffic information identification methodol-
ogy in real structures, field tests were conducted on a
32m+37m+32m+32m continuous concrete box girder bridge
of Baoding-Duping Highway, China. There are three traffic
lanes on the bridge in total, and each of them is 3.75m wide.
Among these traffic lines, lane3 is an emergency lane where
vehicles are prohibited to drive under normal conditions. The
bridge is slightly curved with a bending radius of 2600m and
a central angle of 2.93∘; thus the curvature effects are negli-
gible in the analysis. A structural health monitoring system
comprising a pavement-based WIM system, six resistance-
type strain sensors, and a webcam is installed on this bridge.
All the discussed information is shown in Figure 10.

In the field tests, the normal strain data were collected
by the six resistance-type strain sensors mounted on the
mid-span section of the first span and stored in an online
server. Video recorded by thewebcam is also available on line,

providing a basis for long-term online application. Vehicle
weight and velocity recognized by pavement-based WIM
system are used as contrast to evaluate the accuracy of this
proposed methodology.

	.�. Calibration Tests. First of all, field calibration tests as
on the lanes presented in Figure 10(b) were implemented
following the method mentioned in Section 2.2 up front.
To do so, an ordinary truck weighing 14.86t, as shown in
Figure 11, was arranged to drive on the tested bridge for four
times. Detailed test conditions are shown in Table 1. Lane3
was ignored for the calibration because it is an emergency
lane where vehicles are prohibited to drive under normal
conditions.

Figure 12 shows the influence line calibration results of the
“S6” strain sensor in Figure 10(b). Differences between test1
and test2, as well as test3 and test4, are slight, which verifies
the feasibility and reliability of the proposed influence line
calibrationmethod. It is also observed that the influence value
of traffic lane1 is larger than that of lane2, as strain sensor “S6”
is located closer to lane1.

	.�. Strain Data Processing. Next, strain data collected by six
resistance-type strain sensors, shown in Figure 10, is pro-
cessed with the LOWESS algorithm mentioned in Section 2.1
of this paper. Taking a segment of the processed strain time
history shown in Figure 13(a) as an example, an obvious
linear relationship between data peak values of strain sensors
mounted on the same box web is observed in Figure 13(b).
The linear relationship confirms the plane section assumption
of Euler-Bernoulli beam theory mentioned in (8) above and
thus validates the effectiveness of the strain data processing
method.

	.	. GVW Calculation. The gross vehicle weight (GVW) can
be calculated by combining the calibrated strain influence
line, the processed bridge strains, and the vehicle position.
Basically, there are only three elementary vehicle distribution
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Table 1: Conditions of calibration tests.

Test1 Test2 Test3 Test4
Weight 14.86t 14.86t 14.86t 14.86t
Velocity 60km/h 80km/h 60km/h 80km/h
Lane Lane1 Lane1 Lane2 Lane2

scenarios presented in Figure 14. They are single vehicle
in Figure 14(a), one-by-one vehicles on the same lane in
Figure 14(b), and side-by-side vehicles on different lanes in
Figure 14(c).

For the first single vehicle scenario, it is simple to calculate
weight of the vehicle through the following equation:

𝑊 = 𝑆𝑝𝑒𝑎𝑘
𝐼𝑝𝑒𝑎𝑘 (16)

where 𝑆𝑝𝑒𝑎𝑘 is the peak value of vehicle induced static strain
signal, 𝐼𝑝𝑒𝑎𝑘 is the peak value of the calibrated strain influence
line, and𝑊 is the GVW of the vehicle.

For the second one-by-one vehicles scenario, GVW of the
first front vehicle can still be calculated through (16). Then

GVW of the rear vehicles can be calculated after subtracting
effects of the front vehiclewhoseGVW is already known.This
process is written as

𝑊𝑟𝑒𝑎𝑟 = 𝑆𝑝𝑒𝑎𝑘𝑟𝑒𝑎𝑟 − 𝐼𝑓𝑟𝑜𝑛𝑡 ⋅ 𝑊𝑓𝑟𝑜𝑛𝑡
𝐼𝑝𝑒𝑎𝑘𝑟𝑒𝑎𝑟

(17)

where 𝑆𝑝𝑒𝑎𝑘𝑟𝑒𝑎𝑟 is the peak value of the rear vehicle induced static
strain signal, 𝐼𝑓𝑟𝑜𝑛𝑡 is the strain influence value related to the
position of the front vehicle, which can be obtained with the
aid of the aforementioned computer vision technique,𝑊𝑓𝑟𝑜𝑛𝑡
is the GVW of the front vehicle calculated through (16), 𝐼𝑝𝑒𝑎𝑘𝑟𝑒𝑎𝑟
is the peak value of the calibrated strain influence line of
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Table 2: Statistics of the relative errors compared with pavement-basedWIM.

Sensor Mean of errors (%) Standard deviation of errors (%)
S1 35.2 37.4
S2 -3.6 18.7
S3 -2.8 20.8
S4 38.6 25.2
S5 -1.8 12.4
S6 -5.2 11.6

3.60 ton

5.5 m

11.26 ton

Figure 11: Calibration truck.

traffic lane where the rear vehicle drives, and 𝑊𝑟𝑒𝑎𝑟 is the
GVW of the rear vehicle.

It is important to highlight that using (16) to calculate the
weight of the front vehicle in the one-by-one vehicle queue is
not applicable to circumstances when the rear vehicle enters
the bridge before the front vehicle passes the instrumented
bridge cross-section, because 𝑆𝑝𝑒𝑎𝑘 in (16) involves the effects
of the rear vehicle under such circumstances. Fortunately, this
problem does not exist in this research; for a sizeable safety
margin, no less than 30m, between front and rear vehicles, is
demanded when driving on highways in China. The distance
between the instrumented cross-section and the start point
of the bridge, however, is only 16m.

Challenge arises when two vehicles driving side by side,
however. In this scenario, one strain signal peak corresponds
to two indistinguishable vehicles, which makes the above
GVW calculation methods ineffective.

Finally, a segment of 15 minutes’ strain signal and video
when there are no side-by-side trucks is analyzed. Cars are
ignored and weights of a total of 61 trucks are calculated.
Statistics of the relative errors compared with the results
recognized by the pavement-based WIM system are listed in
Table 2. Plots of the GVW results of the six sensors S1∼S6 are
also shown in Figure 15, in which each point corresponds to
a vehicle. In this figure, the further away the point is from the
baseline, the larger the error is.

According to the GVW calculation results, though errors
of several vehicles are unpleasantly significant, accuracy of
the rest is still acceptable, except results based on strain
sensors named S1 and S4. Close distance to the sectionneutral
axis of S1 and S4 explains their significant errors. Because,
under the plane section assumption, the closer the strain
sensor is to the neutral axis, the smaller its strain value,

making the relative error larger in contrast. To avoid this
problem, BWIM sensors should be installed far from the
section neutral axis for higher accuracy.

	.
. VehicleVelocity Calculation. Theoretically, instantaneous
velocities of vehicles can be calculated through (18) with the
recognized vehicle position in each video frame and fixed
time interval between frames.

V = Δ𝑆
Δ𝑡 (18)

where v is the vehicle velocity and Δ𝑆 is the vehicle displace-
ment within a period of time Δ𝑡.

However, calculated instantaneous velocities of vehicles
appear to fluctuate drastically. Average vehicle velocity in
three seconds, which means Δ𝑡 = 3s, is calculated instead of
instantaneously, and the calculation results are quite accurate
as shown in Figure 16. The mean value of errors is -0.8%, the
standard deviation of errors is 9.2%, and the maximum value
of errors is 23.1%.

	.�. Vehicle Type and Axle Recognition. Identification of
closely spaced axles, including tandem axles, is a key factor
to ensure accurate classification of the passing vehicles. Real-
time traffic characterization on a bridge is beneficial for asset
managers and bridge owners because it provides statistical
data about the configurations of the passing vehicles. The
nothing-on-road (NOR) technique is generally utilized to
obtain the information about the axles with sensors located
underneath the bridge girder [36, 37].

As a supplement, this paper obtains information about
vehicle type and number of axles with visual information
provided by only a webcam. Figures 6(a) and 6(c) show that
the well-trained YOLO V3 algorithm is capable of directly
recognizing vehicle types and the number of axles similarly
to humans. The vehicle type recognition accuracy is 100%
and the axle recognition results of 61 trucks (including 6
trucks with 2 axles) and 50 cars in the field tests are shown
in Figure 17, which is still quite satisfactory compared with
the pavement-based WIM. Errors are inevitable because of
vehicle overlap, limited visual angle of the webcam, and
illumination conditions. For instance, if cars are obscured
by trucks with large size or the illumination is rather dim,
wheels of cars will thus not be recognized. For instance, if cars
are obscured by trucks with larger size or the illumination is
rather dim, carswheelswill thus not be recognized.That is the
reasonwhy the computer visionmademistakes.This problem
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Figure 12: Influence line calibration results.
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Figure 13: Strain data processing results.
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Figure 14: Scenarios of vehicle distribution on bridge.
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Figure 15: GVW calculation results for the six strain sensors S1∼S6.
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did not appear in the pavement-based WIM as illustrated in
Figure 17.

To prevent these errors, the visual angle of the webcam
can be adjusted to observe the vehicle wheels more clearly.
Another way to improve the quality of the vision is using an
infrared camera to prevent dim illumination.

	.�. Error Analysis. Although the recognition accuracy is
acceptable, error analysis is imperative for further improve-
ment. To the author’s knowledge, the following two reasons
may account for calculation errors illustrated in Figure 18:
(i) vehicle deviation from the traffic lane and (ii) vehicle
positioning errors of the computer vision technique.

It is noted that vehicles on a bridge do not drive on the
traffic lane strictly in some cases, but, in this research, only
influence lines of traffic lanes are utilized. This assumption
leads to significant errors when the vehicle deviates from the

traffic lane severely as presented in Figure 18(a). To reduce
this kind of error, the influence line can be substituted by the
influence surface.

Another error source is inaccurate vehicle detection as
shown in Figure 18(b), where multiple vehicles overlap in
the image and leads to positioning errors. Particular labelling
aiming at this phenomenon and diversifying the training sets
for the deep neural network will help tomitigate the problem.

5. Conclusions

A traffic sensing methodology has been proposed in this
paper in combination with influence line theory and com-
puter vision technique. Field tests were conducted to evaluate
the proposed methodology in various aspects. The main
conclusions of this work might be listed as follows:

(1) The identification of vehicle positions, especially on
transverse direction when passing a bridge, is quite
critical to solve multiple-vehicle problem for BWIM
systems. This paper introduces, for the first time,
deep learning based computer vision technique to
obtain the exact position of vehicles on bridges and
successfully solves one-by-one vehicles scenario of
multiple-vehicle problems for BWIM research with
an average weighing error within 5%.

(2) The time series smoothing algorithm, LOWESS, is
an effective tool to extract static component from
directly measured bridge responses. Then, influence
line or influence surface of a real bridge can be easily
calibrated for BWIM purpose.

(3) Verified by field tests, the deep learning based com-
puter vision technique is highly stable and efficient
to recognize vehicles on bridges in real time manner.
Therefore, it is proven to be a promising technique for
traffic sensing.

(4) The proposed traffic sensing methodology is capable
of identifying vehicle weight, velocity, type, axle
number, and time-spatial distribution on small and
medium span girder bridges in a cost-effective way,
especially for those bridges already equipped with
structure health monitoring systems and surveillance
cameras.
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