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Blood pressure assessment plays a vital role in day-to-day clinical diagnosis procedures as well as personal monitoring. Thus, blood
pressure monitoring devices must afford convenience and be easy to use with no side effects on the user. This paper presents a
compact, economical, power-efficient, and convenient wireless plethysmography sensor for real-time blood pressure biosignal
monitoring. The proposed sensor facilitates blood pressure signal shape sensing, signal conditioning, and data conversion as
well as its wireless transmission to a monitoring terminal. Received data can, subsequently, be compiled and stored on a
computer via a Wi-Fi module. During monitoring, users can observe blood pressure signals being processed and displayed on
the graphical user interface (GUI)—developed using a virtual instrumentation (VI) application. The proposed device comprises
a finger clip optical pulse sensor, analogue signal preprocessing, microcontroller, and Wi-Fi module. It consumes approximately
500mW power when operating in the active mode and synthesized using commercial off-the-shelf (COTS) components.
Experimental results reveal that the proposed device is reliable and facilitates efficient blood pressure monitoring. The proposed
wireless photoplethysmographic (PPG) sensor is a preliminary (or first) version of the intended device manifestation. It provides
raw blood pressure data for further classification. Additionally, the collected data concerning the blood pressure wave shape can
be easily analysed for use in other biosignal observations, interpretations, and investigations. The design approach also allows
the device to be built into a wearable system for further research purposes.

1. Introduction

Several innovations have led to significant advances in health-
care systems by enhancing both functionality and capability
of different monitoring systems. Acute, precarious diseases
can be diagnosed at their early stages using new-age electronic
equipment. Modern diagnostic and therapeutic approaches
bear high operation costs and require expensive equipment.

Moreover, in recent years, the advent of wearable tech-
nology has afforded accurate recording and precise process-
ing of biosignals. Blood pressure is a vital physiological

parameter that indicates the functional well-being of the
cardiovascular system [1]. Conventional blood pressure-
monitoring devices are either limited in scope with regard
to systolic and diastolic blood pressure measurements [2]
or unreliable and uncomfortable from the viewpoint of pro-
longed use. Therefore, there exists the need for a noninvasive,
ambulatory care system for long-term blood pressure moni-
toring while accounting for details concerning blood pressure
variability. Availability of such a system would facilitate easy
and timely prediction of serious cardiovascular diseases
during antihypertensive therapy sessions [3].

Hindawi
Journal of Sensors
Volume 2020, Article ID 7192015, 9 pages
https://doi.org/10.1155/2020/7192015

https://orcid.org/0000-0001-7542-480X
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/7192015


During development of psychophysiology-monitoring
systems, it is important to consider aspects, such as conve-
nience, comfort, and minimum side effects on the user. Such
systems detect and record physiological biosignals of patients
through a sensor attached to their body. Although the said
signals are stored and processed locally, monitoring systems
must comprise a wireless module to allow effective signal
transmission as and when required. A wearable biosignal
monitoring instrument is preferred owing its afforded com-
fort and convenience of use. Moreover, embedded sensors
in such devices can be placed directly in contact with the
user’s (patient’s) body, and their pulse can be recorded.
Wearable technology has proven to be effective and promis-
ing in medical and clinical applications owing to its noninva-
sive, comfortable, and accurate measurement techniques.

Several researchers have proposed numerous methods
to collect and analyse psychophysiological biosignals. An
extant study [4] proposed a mechanism to sense blood vol-
ume and pulse signals from fingertips using transmission-
mode photoplethysmography. The proposed sensor was
sensitive, economic, and consumed less power. It employed
a light-emitting diode as a transmitter and a phototransistor
as detector. A microcontroller processes signals obtained
from the sensor. Advantages of this mechanism were cost-
effectiveness, compactness, and reduced power consumption.

Ghamari et al. [5] proposed a wireless PPG device
enclosed in a wristband-type unit, wherein arterial-pulse data
were collected using a sensor, and the same were analysed by
the said device. The said device comprised an optical sensor,
signal conditioning unit, microcontroller, and Bluetooth
module. Collected pulse data were monitored, filtered, ampli-
fied, processed, and transferred to another smart device.
Additionally, the authors proposed a model using two Gauss-
ian functions to describe photoplethysmographic signals.

Shimazaki and Hara [6] proposed a heart rate- (HR-)
sensing device with motion artefact (MA) cancellation along
with PPG and MA sensors [6]. The said device was claimed
to produce accurate results even in cases of vigorous physical
exercise owing to use of two sensors—HR sensor fitted to sub-
jects’waist (back) and a device (Holter monitor) fitted to their
chests to monitor ECGwaveforms. The authors described the
MA cancellation principle in detail, albeit they did not discuss
adequate values of relevant design parameters.

Gothwal [7] proposed an economic, wearable PPG sys-
tem using available components. The device comprised an
optical sensor (IR transmitter and receiver), preprocessing
unit (buffer amplifier, two-stage band pass filter, amplifier,
and comparator), processor (microcontroller), and display
unit. Biosignals acquired from subjects’ fingers were pro-
vided as input to the IR transmitter and receiver. To avoid
excessive loading, acquired signals were passed through the
buffer amplifier using a coupling mechanism between the
IR-receiver output and bandpass-filter input. Subsequently,
the output from the buffer amplifier was processed using
the microcontroller.

In another study [8], a heart rate monitor (HRM) based
on the reflectance photoplethysmography technique was
developed to sense pulses from subjects’ fingertips. Sensed
pulse signals were filtered and amplified using a two-stage

operational amplifier (Op-Amp), and the same were proc-
essed using a microcontroller. The recorded heart rate was
displayed on a liquid-crystal display (LCD) in beats per
minute (BPM). The proposed device was claimed to be
convenient, inexpensive, and portable compared with the
competition. Athletes could use this device to monitor their
heart rate with minimal errors.

Zangróniz et al. [9] introduced a wearable photoplethys-
mography sensor capable of assessing mental distress. The
proposed design employed optical plethysmograms to obtain
blood volume information using an appropriate sensor.
Additionally, a discriminant tree-based model was developed
to determine parameter dependencies. Assessment of the
proposed model revealed an overall accuracy of 82.35%.

Similarly, a multipurpose photoplethysmographic sensor
was proposed in [10] to detect multiwavelength photo-
plethysmographs by penetrating skin at various depths. The
proposed device was named “SmartPPG,” and it could oper-
ate under transmission and reflection modes with the trans-
mission mode being confined to thin body parts—fingers
and earlobes. A light source was used to illuminate parts of
the skin under observation, thereby reflecting photoplethys-
mographs. Operation in the reflection mode optimized both
the light wavelength and distance between its source and
photodetector.

Botman et al. [11] developed a device to monitor car-
diovascular activity. The device is dedicated working in an
automated workstation for data collection and analysis in
large-scale medical measurements. The proposed design
was based on a PPG sensor attached to body parts, such
as the nose-bridge, earlobe, fingers, and wrist, to facilitate
evaluation of physiological parameters, such as the heart
rate and pulse-wave characteristics.

Leier et al. [12] proposed use of a smart optical sensor to
monitor different tissue layers constituting the cardiovascular
system. Based on acquired PPG signals, the proposed sensor
could extract physiological parameters, such as the heart and
breath rates, skin microcirculation dynamics, oxygen satura-
tion, and vasomotion activity. The said sensor could be
attached to patient bodies at four different points depending
on their distance from the four photodetectors. The system
comprised 32 light-emitting sources capable of emission at
four different wavelengths. All electronic components, includ-
ing LEDs and photodiodes, were moulded using medical-
grade silicone to facilitate ease and comfort of wearability.

Ishikawa et al. [13] presented a wristband-type PPG heart
rate sensor [13] capable of detecting heart rate variability.
Additionally, the device was equipped with a motion artefact
cancellation framework to handle motion artefacts during
daily activities. During assessment of the proposed sensor
operation, activities of the arm, finger, and wrist were
observed to cause significantly negligible motion artefacts.
Additionally, assessment results revealed that the proposed
device and coupled motion cancellation framework can be
continuously used tomonitor heart rate variability.Moreover,
the device could be used to recognize and analyse emotions.

Spigulis et al. [14] developed a wireless PPG sensor
combining GaAs-radiation emitting and Si-photon diodes
placed adjacent to each other to imitate PPG reflection. A

2 Journal of Sensors



microcontroller processed sampled signals at programmable
sampling frequencies (e.g., 100Hz) using a 10-bit analogue-
to-digital converter. Processed signals were subsequently
transmitted in real time via a Bluetooth module within
10m range.

Abovementioned extant researches focus primarily on
heart rate analysis using PPG sensors followed by local dis-
play of monitoring results on the device-LCD. While some
extant studies allow data to be stored on external storage
devices, others support data transmission to portable
monitoring devices via direct (USB and/or SPI interfaces)
or wireless (Bluetooth or GPRS) connections. Any further
processing of raw data can be performed post their collection.
Additionally, there exist commercial products that can be
directly employed in clinical and psychophysiological appli-
cations [15–17]; however, these products do not provide
users access to raw data.

This paper presents a device capable of recording blood
pressure biosignal shapes for psychophysiological and clini-
cal purposes. The proposed device incorporates a Wi-Fi
module (ISM-Industry, Scientific, Medical band) for trans-
mitting, displaying, and storing acquired biosignal data at a
monitoring terminal (computer). Wave shapes used in this
study were acquired from healthy volunteers, and acquired
data was continuously monitored in real-time on an interac-
tive GUI while simultaneously being used for blood pressure
monitoring. Collected data concerning the blood pressure
wave shape can be easily analysed for use in other biosignal
observations, interpretations, and investigations. The device
is aimed at maximizing comfort, convenience, affordability,
and compactness while minimizing side effects (if any),
operational costs, and power consumption. The proposed
wireless PPG sensor is a preliminary (or first) version of the
intended device manifestation. It provides raw blood pres-
sure data for further classification, and the design approach
allows the device to be built into a wearable system for further
research purposes.

2. Materials and Methods

2.1. Photoplethysmography (PPG). The term “photoplethys-
mography” is derived from the Greek word “plethysmos,”
which means “to increase.” As mentioned in [18], plethys-
mography means “[…] finding variations in the size of a
body part owing to variations in the amount of blood passing
through or contained in that body part.” Pulsatile tissue vol-
umes can be measured using conventional plethysmographs,
such as strain gauges, capable of measuring changes under
extreme conditions. This technique can be applied to all
blood vessels to determine their overall change in volume.
Arterial pulsations are the most significant, whereas capil-
laries are quite noncompliant because they exclusively record
minor pulsations. Venous oscillations might occur depend-
ing on the measurement technique, albeit such oscillations
are often cancelled under application of external pressure
[19]. Arterial blood pressure can be measured indirectly
using a plethysmogram [20].

Photoplethysmography is similar to traditional plethys-
mography, albeit not identical. When operating in the

transmission mode, PPG devices use an LED operating on
one side of the tissue and a photodetector on the other to
demonstrate the obstruction and absorption of incident light.
If both the LED and photodetector are placed adjacent to
each other, all incident lights may reflect off the tissue
surface. Plethysmographic devices cannot measure blood
pressure; however, they can evaluate changes in the blood
volume. The plethysmographic principle is depicted in
Figure 1.

Volumetric changes in blood vessels were first
reported by Hertzman [22] using the term “photoplethys-
mography,” and they described two plethysmograph signal
components—pulsatile (volume pulse) and baseline (blood
volume). Accordingly, plethysmograph signals comprising
alternating current (AC) components are indicative of the
total absorbance owing to the arterial blood pulsatile compo-
nent, whereas those comprising direct current (DC) compo-
nents reveal absorbance caused by other nonpulsatile
components as well as the constant flow of arterial and
venous blood. Typical plethysmograph signals are depicted
in Figure 2.

Absolute changes in blood volume can be accurately
measured using the chamber-plethysmography method,
wherein volumetric changes (dV/dt) can be transformed into
blood flow (F) using the relation F = dV/dt. However, some
cases only concern relative volumes. Such cases provide
information pertaining to time exclusively without any con-
sideration of the amplitude or signal shape. In such cases,
electrical impedance plethysmography or photoplethysmo-
graphy can help provide required information. A literature
review regarding plethysmography has been reported in
[23], and a more comprehensive review concerning PPG
can be found in [24].

Arterial blood pressure is the main cause of PPG signal
variations, and as described in Figure 3, the PPG dependence
on arterial blood pressure is similar to that of true plethysmo-
grams [19, 25].

2.2. Proposed System. A schematic of the wireless photo-
plethysmography sensor design proposed in this paper is
depicted in Figure 4. Acquired PPG signals are first provided
as input to a microcontroller through a signal conditioning
(filter and amplifier) circuit. Data obtained is subsequently
analysed and organised into packets suitable for transmission
over a Wi-Fi network through a universal asynchronous
receiver transmitter (UART). Data received by the Wi-Fi

Finger volume changes

IR-light

Figure 1: Principle of photoplethysmography [21].
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module is transmitted to a computer where it can be dis-
played and/or stored.

An LED placed at one end of a finger emits infrared light
through the skin. Arterial blood partially absorbs this emitted
light which changes according to the pulse. The photode-
tector placed at the other end of the finger receives any
nonabsorbed light and generates an associated continuous
pulse signal.

A two-stage analogue preprocessing block filters and
amplifies signals received from the sensor. The first stage

comprises a passive high-pass filter (HPF) with cut-off
frequency f c = 0:7Hz intended to eliminate DC signal com-
ponents. Additionally, an active low-pass filter (LPF) with
constant gain and cut-off frequency of 101 and 2.34Hz,
respectively, was incorporated in the first stage. The said
HPF–LPF combination eliminates unwanted DC signal com-
ponents, thereby reducing noise interference above 60Hz.
The configuration of the second stage is identical to that
of the first stage. These filter (first) and amplifier (second)
stages modify the PPG sensor signal close to the TTL

AC component

DC component

Fitted spline

Time (s)
0 3

Figure 2: AC and DC plethysmograph signals.
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(transistor-transistor logic) pulse, which is synchronized
with the heart rate.

The microcontroller forms the main component of the
wireless PPG sensor, since it serves as an integrated data
acquisition system incorporating several features, including
low power consumption, compact size, and low cost. It
converts analogue skin impedance signals to their digital
equivalents prior to processing them. Additionally, the
microcontroller communicates with the wireless block through
the UART serial port.

The wireless block performs RF communication between
the PPG sensor and a remote receiver via Wi-Fi connectivity.
Collected data is relayed over a UART serial port to a Wi-Fi
module, which transmits the same to a laptop or a personal
computer (PC). The Wi-Fi module was selected owing to its
free bandwidth and wide operating range (typically 50m).
The power-supply block dissipates power to other compo-
nents at the required supply voltage, which is regulated to
achieve optimum device functionality.

3. Results and Discussion

3.1. Device Implementation. The proposed setup uses the
“finger clips” sensor manufactured by Kyto Electronics
(finger pulse sensor HRM-2511B), as depicted in Figure 5(a).
Additionally, the monitoring device comprises optoelec-
tronic components, an infrared LED, and a phototransistor.
The LED cathode and phototransistor emitter were electri-
cally connected with each other as well as other devices using
a standard 3.5mm connection jack.

The analogue preprocessing circuit was built using a
standard 2-layer FR4 PCB board (1.6mm thickness), as
depicted in Figure 5(b). The PCB schematic and board
layout were developed using the Altium Design tool. The
PCB board measured 20 × 22mm × 1:6mm. The Microchip
operational amplifier—MCP6004—and Maxim Integrated
voltage reference—MAX6190—were selected as components
of the PPG analogue preprocessing circuit. MCP6004 is a
low-power amplifier that exhibits other features favourable
for analogue preprocessing, as described in [26]. MAX6190
is a precision, micropower, and low-dropout voltage refer-
ence. It has a maximum series-mode bandgap referencing
of 35μA quiescent supply current, which makes it ideal for
use in combination with battery-powered instruments [27].

An Arduino Beetle board was selected for use in signal
processing owing to its ease of use, easy availability, and
flexibility with regard to creation of powerful applications
while using preexisting libraries. The said Beetle board is
depicted in Figure 5(c). Because this is an early stage in
the design and development of the intended device, minimum
hardware that is both power-efficient and cost-effective was
considered herein.

The Arduino Beetle is a minimalized version of the pow-
erful Arduino Leonardo board, albeit it offers identical func-
tionalities. Its key feature is its compactness—it measures
only 20 × 22mm. Additional features of this board are listed
in [28].

For wireless data transmission, a 2.4GHz ESP8266 Wi-Fi
module, depicted in Figure 5(d), was employed in this study.
The ESP8266 offers a complete, self-contained Wi-Fi net-
working solution that can either be applied ad hoc or using

(a) (b) (c)

(d) (e)

Figure 5: Developed devices. (a) Finger clip optical pulse sensor. (b) Analogue preprocessing. (c) Arduino Beetle board. (d) ESP8266 Wi-Fi
module. (e) Wireless PPG sensor module implementation.
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a network infrastructure. Additional features concerning the
ESP8266 Wi-Fi platform can be found in [29].

Figure 5(e) depicts the first version of the proposed wire-
less PPG module hardware. As can be seen, the front-end
analogue preprocessing unit is interfaced with the Arduino
Beetle board and ESP8266Wi-Fi module. The front-end ana-
logue preprocessing unit was designed to match the size of
the Arduino Beetle board. A stackable system was formed
with the front-end analogue preprocessing unit, Arduino
Beetle, and ESP8266 Wi-Fi module comprising the bottom,
middle, and top layers of the system, respectively. All blocks
within the device were regulated to operate at 3V voltage.
The power source employed two 3V coin batteries and

consumed approximately 500mW power when operating in
the active mode, which was defined in accordance with the
power consumed by main components—the sensor, pream-
plifier (preamp), microcontroller, andWi-Fi module [26–30].

3.2. GUI Implementation. The LabView software was used to
develop a graphical user interface (GUI) to monitor the
shape of blood pressure signals, as illustrated in Figure 6.

Signals obtained from the wireless PPG sensor can be
scanned, configured, and examined using the GUI, as
depicted in Figure 6(a), which shows variations in the blood
pressure signal amplitude (V) against acquisition time (s).
In this study, blood pressure signals obtained from different

(a)

(b)

Figure 6: LabView virtual instrumentation for PPG acquisition. (a) GUI developed in LabView. (b) Signal acquisition algorithm.
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participants were preprocessed, collected, and stored on a
dedicated database. The proposed algorithm continuously
acquires and processes raw blood pressure data, as depicted
in Figure 6(b), and several toolboxes were employed in con-
junction with the LabView software for rapid blood pressure
data acquisition and monitoring [31]. Blood pressure signals
acquired from participants were stored in a data logger for
future psychophysiology and healthcare research purposes.

3.3. Experimental Procedure. During experiments performed
in this study, PPG signals were collected using a finger clip
instrument; the operation of which is based on the trans-
mission photoplethysmography phenomenon. An IR-LED
installed within the finger clip (with approximately 18mA
current rating) emits infrared waves through the finger, sub-
sequent to which the photodiode performs signal detection,
thereafter converting them to corresponding voltage values
using a voltage-divider circuit. This generated signal corre-
sponds to the volume of blood flowing within the finger,
and therefore, reflects pulse waves generated within blood
vessels. Experiments and tests were performed to assess the
proposed PPG sensor system. The experimental setup is
depicted in Figure 7.

During experiments, the PPG sensor—via the finger clip
instrument—was attached to a healthy participant finger to
obtain biosignals (Figure 8). Acquired biosignals were trans-
mitted to the processing module for preprocessing, storage,

analysis, and organizing data into packets for transmission
over the Wi-Fi module. These data packets received by the
monitoring terminal (notebook/PC) along with raw PPG
biosignals were stored in the data logger, and the same can
be viewed in GUI.

3.4. Experimental Results and Discussions. Figure 9 depicts
the graphical representation of blood pressure signals. Proc-
essed signals can be stored locally on a notebook or personal
computer.

Using the above interface (Figure 9), users can observe
the shape of their blood pressure signal and associated varia-
tion trends in real time during the monitoring experiment.
This facilitates early detection of anomalies in blood pressure
detection.

Results obtained via assessment of raw blood pressure
signals acquired from healthy participants are depicted in
Figure 10. Data stored in the data logger during measurement
as well as blood pressure signals include artefacts owing to
interference of ambient light.

Hertzman [22] defined two important PPG–AC pulse
waveform phases—anacrotic (rising edge of a pulse) and cat-
acrotic (falling edge of a pulse). The shape of a blood pressure
signal representing the anacrotic and catacrotic phases is
depicted in Figure 11 (using the signal from Figure 10 above).

The anacrotic phase denotes the systolic pressure,
whereas the catacrotic phase concerns the diastolic pressure
and peripheral wave reflections. As depicted in the figure,
a dicrotic notch can be observed in the catacrotic phase
for participants demonstrating a compliant healthy arterial
system.

The PPG signal depicted in Figure 9 can be directly
observed during blood pressure measurements with regard
to the systolic and diastolic phases. The context of this
research is limited to providing raw blood pressure data.
However, its scope can be extended to include an analytic
method that facilitates estimation of cuffless blood pressure
using the PPG signal generated in this research. The regres-
sion tree is a suitable analytic approach that can be used for
blood pressure estimation [32]. Raw PPG signals require
initial processing (preprocessing) to smoothen (i.e., remove
signal artefacts) PPG signals. A filter can be employed to
perform the said preprocessing, which can subsequently be
followed by two-dimensional normalization (width and

Wireless
PPG

sensor

Wireless PPG
sensor

Monitoring
terminal

WiFi
WiFi

Figure 7: Experimental setup used in this study.

Figure 8: Finger clip pulse sensor.
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amplitude) of filtered PPG signals. Preprocessed PPG seg-
ments comprise pulse area, rising time, and widths of range
25%, 50%, and 75%. Thus, the three most significant PPG
waveform features are the pulse area, pulse rising time, and
pulse width of 25%, which can be further processed using
the regression tree.

4. Conclusions

This paper presents a simple, compact, inexpensive, power-
efficient, comfortable, noninvasive, real-time, and durable
wireless photoplethysmograph sensor for monitoring the

shape of blood pressure signals. This study implements the
first version of the said wireless photoplethysmograph
sensor, and initial assessment results (for stationary test
scenarios) reveal realisation of reliable blood pressure signal
shape monitoring. Additionally, the proposed wireless sensor
provides raw blood pressure data that can be utilized for
future blood pressure estimations and classifications. In the
proposed system, artefacts within PPG signals can be reduced
by attaching a Velcro strip around the finger, minimizing
ambient light interference, and ensuring accurate placement
of the sensor on the participant’s finger.

The proposed device in conjunction with a wearable sys-
tem can be implemented to support further research pertain-
ing to psychophysiology and healthcare applications. As a
future endeavour, the authors intend to develop a more con-
venient and compact wireless PPG wearable sensor capable
of acquiring data during physical activities. The said sensor
can be combined with an analytic method to accurately esti-
mate and classify blood pressure levels.
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Figure 9: Graphical representation of blood pressure signals.
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Falls from a bed often occur when an elderly patient attempts to get out of bed or comes close to the edge of a bed. These mishaps
have a high possibility of serious injuries, such as bruises, soreness, and bone fractures. Moreover, a lack of repositioning the body
of a bedridden elderly person may cause bedsores. To avoid such a risk, a continuous activity monitoring system is needed for
taking care of the elderly. In this study, we propose a bed position classification method based on the sensor signals collected
from only four sensors that are embedded in a panel (composed of two piezoelectric sensors and two pressure sensors). It is
installed under the mattress on the bed. The bed positions considered are classified into five different classes, i.e., off-bed,
sitting, lying center, lying left, and lying right. To collect the training dataset, three elderly patients were asked for consent to
participate in the experiment. In our approach, a neural network combined with a Bayesian network is adopted to classify the
bed positions and put a constraint on the possible sequences of the bed positions. The results from both the neural network
and Bayesian network are combined by the weighted arithmetic mean. The experimental results have a maximum accuracy of
position classification of 97.06% when the proportion of coefficients for the neural network and the Bayesian network is 0.3
and 0.7, respectively.

1. Introduction

Due to the significant growth of the elderly population in
today’s demography, the needs of geriatric care have
increased. A survey of the National Statistical Office of Thai-
land has shown that the single elderly increased to 8.7% in
2014, and 18.76% of the elderly population live with their
spouse only [1]. This is one of the results from gradual
changes in the Thai social structure. Most young people have
to spend their time earning money. Increasingly, elderly
people are abandoned to stay alone at home or are left
in a nursing home during working hours.

Without being carefully watched over, elderly patients
can fall which is a major cause of trouble in nursing care
[2]. The accident can cause severe injuries, such as bruises,
soreness, and bone fractures. The National Statistical Office

of Thailand reported that 11.6% of elderly people have expe-
rienced a fall, and 46.3% of them were treated and 7.8% of
them were hospitalized as an inpatient [1]. Moreover, falls
are the leading cause of death and disability in elderly people,
as high as 40.4% [3]. An injury at a higher age has a higher
possibility of death because of health weaknesses [1]. The
Department of Disease Control, Ministry of Public Health
of Thailand, reported that 1,049 elderly people died from falls
in 2015 [4]. In 2014, Tsai et al. conducted a study of the fac-
tors of fall injuries in the elderly patients at a medical center
in Taiwan [5]. They found that 8.7% of elderly patients who
participated in the study had repeatedly fallen in the previous
year. Some of them (28.6%) fell at the bedside, in which most
of the cases are an unassisted bed exit [5]. However, there is
also a risk of rolling out of bed when an elderly patient lies
too close to the edge of the bed. In addition, the bedridden
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elderly patients are often unable to reposition themselves,
which is a cause of bedsores. Desirable bodily movement
can alleviate the prolonged pressure over the body. The most
widely accepted way of preventing bedsores is to turn the
elderly body every two hours. Therefore, continuous moni-
toring is inevitable for the elderly to prevent falls and bed-
sores. This requires a large number of caregivers with
respect to the growth of the elderly population. Geriatric care
can be highly costly and faces a shortage in the number of
caregivers, which is only 11.1% of the elderly population as
reported in [1]. This is leading to an inefficiency of nursing
care services in the near future. The monitoring system for
bed fall and bedsore prevention can be a complementary util-
ity to support caregivers and to diminish their workloads.
The system must be able to detect the position of an elderly
patient on the bed and movement which comes close to fall-
ing in an allowable time period for a caregiver to assist the
elderly patient.

A wearable device is widely used for an elderly activity
monitoring system [6, 7]. However, in most cases, the
elderly can feel uncomfortable with their daily living activ-
ities, which leads to discontinuous monitoring [8, 9]. Also,
a video camera is unacceptable for the elderly because of
privacy concerns. As a result, a noncontact sensing device
is a proper approach for continuously monitoring elderly
activity [10–29]. There are some reports of using an ultra-
sonic sensor, air pressure sensor, and vibration sensor [10–
12]. Though the aforementioned studies can determine
whether the patient is in the bed or not, this is not enough
to prevent a fall. To prevent falls, the system needs to
detect the position of lying with respect to the edge of
the bed. To prevent bedsores, the duration of the same
position of lying can be observed by monitoring move-
ment. Some previous studies used commercial pressure
mat systems to detect the bed position [13–21]. However,
their proposed pressure mat systems need a large number
of sensors which are not practical and are costly in actual
practice. Some studies proposed approaches to reduce the
number of sensing array sensors. The minimum number
of sensors in the aforementioned studies is 16 sensors, as
reported by Hsia et al. [21]. Although the studies have
shown promising results in bed position classification,
their approaches still require quite a large number of sen-
sors. For this concern, we reduced the number of sensors
to only four in our study while maintaining high accuracy
in bed position classification.

In this paper, we propose a bed position classification
based on a neural network combined with a Bayesian net-
work, with signals from only four sensors. The results of
our study can be applied to prevent elderly bedsores and
bed falls. We classify the bed positions into five classes,
namely, off-bed, sitting, lying center, lying left, and lying
right. The off-bed and sitting positions are highly impor-
tant for detecting the bed exit activity because they nor-
mally are the positions just before or after the bed exit
according to our statistical analysis. With the bed position,
the system will alert the caregiver to assist an elderly
patient to prevent falls when the elderly patient moves
towards the edge of the bed. The system will also alert

the caregiver to turn the elderly patient’s body when stay-
ing in the same position for almost the allowed time
period (normally two hours) to prevent bedsores.

2. Materials

2.1. Sensor Panel. The sensor panel is a ready-made set of
sensors provided by AIVS Co., Ltd. The size of the panel is
60 × 18 cm. The panel is equipped with two types of sensors,
i.e., two piezoelectric sensors and two pressure sensors. Each
pair of sensors is embedded symmetrically on each side of the
panel as shown in Figure 1. The sensors are sandwiched
between two ABS boards, which has an advantage in stiffness
and being firm and difficult to bend. The sandwich structure
keeps the sensors firm avoiding the signal distortion as
shown in Figure 2.

To detect the weight applied on the bed, we use two low-
cost force-resistive sensors (FRS) from Interlink 402. Each is
installed on the left and the right side of the panel. The FSR
consists of two membranes separated by a thin air gap. Resis-
tance decreases when force is applied, and resistance is infi-
nite when force is zero. The force sensitivity range is ~0.2
to 20N. The temperature operating range is -30 to 70°C.
The sensor is low-cost and can be used to detect physical
pressure, squeezing, and weight, though it is rarely accurate.
However, its sensitivity is sufficient for detecting a weighted
object on the bed.

The piezoelectric sensor, Murata Piezoelectric Dia-
phragms 7BB-15-6L0, can change the energy between the
kinetic energy and electric energy. When a vibration force
is applied, the voltage is changed. The resonance frequency

Pressure sensor

Piezoelectric sensor

Figure 1: Sensor panel.

Figure 2: Components of a sensor panel.
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is 2.8 kHz. In the sensor panel, it is installed to detect the
vibration transmitted from the patient activities.

The combination of both pairs of different types of sen-
sors is used to detect the position from each side of the body
on the bed. The panel is simply set under the mattress in the
thoracic area, as shown in Figure 3. The panel is fixed to the
bed board to keep the constant relative position to the patient
body. It is designed to work 24 hours in common use, avoid-
ing the wet circumstance since there is not much temperature
change in the hospital ward or at home. In our case, the sen-
sor is not designed to be used in a severe condition.

Placing the panel in such a position can distinguish
between sitting and lying positions on the bed. Figure 4
shows the correlation between signals of four sensors and
positions. For example, Figure 4(a) is the signal of four sen-
sors of the off-bed position. The activation of both sensor
signals is low compared to the signal of the sitting position
which has low activation of pressure signals while the sig-
nals from the piezoelectric sensors are still being detected.
Normally, the signals from the piezoelectric sensors in
any positions on the bed show high activation, whereas
they are very low in the off-bed position. The pair of pres-
sure sensors can be used to distinguish between the posi-
tions of lying. For example, in the lying center position,
the weight of the body is on both sides of the sensors while
in the lying left or lying right positions, only one side of the
sensors is activated, as shown in Figures 4(c)–4(e). In lying
positions, the activation of pressure sensors is quite high in
contrast to sitting positions in which the activation of the
pressure sensors is low.

2.2. Data Structure. The control device outputs a package
of data in a sample rate of 30 samples in one second.
The data package contains 45 bytes. It is divided into 3
parts: 8 bytes for the header, 34 bytes for the data from
four sensors, and 3 bytes for the ender. In the 34 bytes
for the data from four sensors, the first two bytes contain
the sensor ID, and the next 32 bytes contain four 8-byte
blocks (one block for each sensor), i.e., the left piezoelec-
tric signal, left pressure signal, right piezoelectric signal,
and right pressure signal. The magnitude of the sensors
is 256. The range of the value of the piezoelectric signal
is -127 to 128, and the pressure signal is from 0 to 256.
The sampling rate of each sensor is 30Hz. Table 1 shows
the details of the structure of the signal data package.

2.3. Data Collection. The collected data include the sensor
signal data and the corresponding videos. Three elderly
patients, whose ages are between 60 and 85, participated in
the experiment. To evaluate the effects of the environment,
the data from two different rooms are collected with different
sets of sensors. The data of two patients are collected from
two different rooms. The total collected data are 459 hours
long. The position labels are annotated by observing the cor-
responding video. The position labels are defined in five clas-
ses, i.e., off-bed (O), sitting (S), lying center (C), lying left (L),
and lying right (R). The definition of each position is
described as follows:

(i) Off-bed (O): nobody is on the bed

(ii) Sitting (S): a subject is sitting on the bed

(iii) Lying center (C): a subject is lying in the center of
the bed

(iv) Lying left (L): a subject is lying on the left-hand side
of the bed

(v) Lying right (R): a subject is lying on the right-hand
side of the bed

Lying left (L) and lying right (R) positions are defined as
positions in which the subject is lying on either the left or the
right side of the bed, regardless of the subject’s lateral
position. An ambiguous position or changing movement
is not considered in this experiment.

The structure of the dataset is shown in Figure 5.
Each set of the accumulated data is composed of 30
samples × 4 sensors = 120 samples, which is called the time
slot in one second. The holding period of one position is
called the interval time. Normally, one position held in
one interval time lasts more than one second. Therefore,
there are many time slots in one interval time. The time
length of each position can then be measured by accumu-
lating the number of time slots. The change of interval
time shows the change of position. The sequence of
changing positions can then be detected by the sequence
of time intervals.

3. Position Detection

3.1. Position Classification by the Neural Network. To classify
a position on the bed, the signal data from the control device
output, i.e., the left piezoelectric signal (Pl), right piezoelec-
tric signal (Pr), left pressure signal (W l), and right pressure
signal (Wr), are used as the input for the neural network.
These four inputs are passed through the neural network as
defined in (1) and depicted in Figure 6.

X = x1, x2, x3, x4f g = Pl,W l, Pr,Wrf g: ð1Þ

Since the initial weight and the scale of the signal from
the piezoelectric sensor and pressure sensor are different,
instead of using the raw values from the sensors, we apply
the unity-based normalization (or feature scaling) method
to eliminate the biases of the weight from different bodies

Figure 3: Sensor panel under the mattress in the thoracic area.
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Figure 4: Continued.
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and the different types of sensors. All sensor data are normal-
ized into the same range of 0 to 1 by [30]

Yi =
xi −min
max −min , ð2Þ

where Yi is the normalized value, xi is the sensor data in the
ith time position of the sequence, min is the minimum value,
and max is the maximum value of the collection.

To accumulate the signal data in one second from the
property of the sensors where the sampling rate is 30Hz,

one set of data is composed of 30 samples of 4 types of sen-
sors, which makes 120 data signals as defined in

X = x1, x2, x3,⋯, x120f g
= Pl1,W l1, Pr1,Wr1, Pl2,W l2, Pr2,Wr2,⋯, Pl120,W l120, Pr120,Wr120f g:

ð3Þ

3.2. Estimation of Consecutive Position by the Bayesian
Network. In normal practice, not all positions are equally
transitioned to form a specific position. For example, it is
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Figure 4: Correlation between signals and positions, where the first bold line is the signal of the piezoelectric sensor on the left, the second
bold line is the signal of the piezoelectric sensor on the right, the solid line is the signal of pressure on the left, and the dashed line is the signal
of pressure on the right.
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more likely that a subject will sit on the bed before lying
down to a sleeping position, while it is rarely found that
a subject will jump to lying down on the opposite side
of the bed. To estimate the next possible transition posi-
tions, the Bayesian network [31] is applied. This method
can depress the noise of the signal that is caused by other
activities in an uncontrolled environment. The probability
of a consecutive position can be estimated by the former
n positions and the current signal, as shown in (4) and
(5) for the trigram model estimation.

P S, Pð Þ = P Sð ÞP P ∣ Sð Þ = P Pð ÞP S ∣ Pð Þ, ð4Þ

P S, Pð Þ = P Pi ∣ Pi−1, Pi−2ð ÞP S ∣ Pið Þ, ð5Þ
where Pi, Pi−1, and Pi−2Pi−2 are, respectively, the positions
in the ði − 2Þth , ði − 1Þth, and ith time positions of the
sequence. S is the current set of signals consisting of four

sensor signals (Pl, W l, Pr, and Wr). The normalized signal
is divided into three levels, i.e., low, middle, and high, by
converting the continuous values of signal data to nominal
values. For piezoelectric signals, 0-0.25, 0.26-0.50, and
0.51-1 are defined as low, middle, and high, respectively.
For pressure signals, 0-0.35, 0.36-0.70, and 0.70-1 are
defined as low, middle, and high, respectively.

3.3. Combination of the Neural Network and Bayesian
Network. We apply the weighted arithmetic mean for the
combination of the results from the neural network and
Bayesian network, as shown in Figure 7 and (5).

αN + βB = C, ð6Þ

where N is the neural network probability, B is the Bayesian
probability, C is classes, and α and β are coefficients where
the sum of α and β is 1.

4. Experiment and Result

4.1. Input Feature Evaluation. To evaluate the coverage of the
trained model, the clean datasets are prepared by eliminating
the possible noise of the signals. The evaluation set is defined
in five categories, i.e., subject A, subject B, subject C, the com-
bination of subject A and subject B in the same room, and the
combination of data from two different rooms (subjects A, B,
and C). The features of input are conducted for 4 inputs, 120
inputs, 4 inputs with normalized signals, and 120 inputs with
normalized signals.

The selected datasets are tabulated in Table 2. The dataset of
subject A consists of 2,000 samples (5 positions × 400 samples),
the same as subject B. This means that the combination of
subject A and subject B in the same room includes 4,000
samples (5 positions × 800 samples). For subject C, collected
from another room, the dataset includes 1,335 samples
(5 positions × 267 samples). Totally, there are 5,335 samples
(5 positions × 1067 samples) as shown in the “Total” row in

Table 1: Structure of the signal data package.

Header
Data from four sensors

Ender
Sensor ID Piezo right Weight right Piezo left Weight left

8 bytes 2 bytes 8 bytes 8 bytes 8 bytes 8 bytes 3 bytes

Sample
O S C

Interval time slot

Time

w1
p1
w0
p0

Figure 5: Structure of the dataset.

O

S

C

L

R

Pl

Wl

Pr

Wr

Figure 6: Neural network diagram of four input signal types, where
O is off-bed, S is sitting, C is lying center, L is lying left, and R is lying
right.
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Table 2. The datasets are selected from four different time
intervals for each subject and randomly divided into 70%
for training and 30% for testing. In the combination of two
rooms, the dataset consists of 12 time intervals, as shown
in the “Total” row in Table 2.

Table 3 shows the result of the feature evaluation test
with the small clean dataset. The overall performance on
the 120 inputs with normalized signals can reach 100%
accuracy. In total, the model based on the normalized sig-
nal data and the model based on the accumulated signal
data of 120 inputs can provide a better result when com-
pared to the 4-input model.

In the off-bed and sitting positions, the signals are quite
similar. For example, in the sitting position, the activation
of the pressure sensors is low, similar to that in the off-bed
position, but not for the signals from the piezoelectric sen-
sors. Therefore, at some points, the signals of both positions

look the same, as shown in Figures 8 and 9. In the case of 4
inputs, the accuracy of the off-bed position is 99.2 and that
of the sitting position is 93.2, showing an error of 0.8 in

𝛽𝛼

Normalized data

Accumulated data in 1 second (120 samples)

Neural
network  

Bayesian
network

Raw data

Position

Figure 7: Diagram of the position classification approach.

Table 2: Small clean dataset.

Subject Position
Clean dataset

Training set Test set
# of samples # of time intervals # of samples # of time intervals

A

Off-bed 280 4 120 4

Sitting 280 4 120 4

Lying center 280 4 120 4

Lying left 280 4 120 4

Lying right 280 4 120 4

B

Off-bed 280 4 120 4

Sitting 280 4 120 4

Lying center 280 4 120 4

Lying left 280 4 120 4

Lying right 280 4 120 4

C

Off-bed 187 4 80 4

Sitting 187 4 80 4

Lying center 187 4 80 4

Lying left 187 4 80 4

Lying right 187 4 80 4

Total

Off-bed 747 12 320 12

Sitting 747 12 320 12

Lying center 747 12 320 12

Lying left 747 12 320 12

Lying right 747 12 320 12

Table 3: Accuracy of input features on the small clean dataset.

Dataset

Input

Raw signal data
Normalized
signal data

4 inputs 120 inputs 4 inputs 120 inputs

A (room 1) 99.3 99.8 99.6 99.9

B (room 1) 99.5 100 100 100

C (room 2) 99.9 99.9 100 99.9

A+B (room 1) 97.6 98.2 98.2 98.8

Room 1+room 2 97.2 98.1 98.5 100
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classifying off-bed as sitting and an error of 6.8 in classifying
sitting as off-bed, as shown in Figure 10.

The accumulation of the signal data in a one-second time
slot (120-input set) can solve the confusion between the
sitting position and the off-bed position, as shown in
Figure 11. This is because by using the 120 inputs, the neural
network can capture more context features, to distinguish the
off-bed position from the sitting position.

Expanding the size of the dataset on the single subject A
from 2,000 to 394,113 samples, we evaluated the features of
input in four categories. The selected dataset includes many
signal errors and unexpected noise. The dataset is also
divided randomly into 70% for training and 30% for testing.

Table 4 shows the number of time intervals, sampled
from the position data. The total size of the unclean data-

set of the single subject A consists of 394,113 samples. The
sizes of the 5 positions are 44,172, 32,012, 90,486, 4,820,
and 222,643 for off-bed (O), sitting (S), lying center (C),
lying left (L), and lying right (R), respectively. The total
number of time intervals for each position is 42, 160,
111, 26, and 173, respectively.

The result of the feature evaluation test on subject A is
shown in Table 5. The best result is 96.64% for the accuracy
of the 120 inputs with normalized signals. The accuracy of
the larger dataset decreases because of the signal ambiguity.
The accuracy of the large and unclean dataset (Table 5)
decreases, compared to that of the small and clean dataset
as shown in Table 3. The best result of Table 5 is 96.64%while
the best result for subject A in Table 3 is 99.9%. This is
because the larger dataset includes much-unexpected noise.
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Figure 8: Signal of the off-bed position (the first bold line is the signal of the piezoelectric sensor on the left, the second bold line is the signal
of the piezoelectric sensor on the right, the solid line is the signal of pressure on the left, and the dashed line is the signal of pressure
on the right).
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Figure 9: Signal of the sitting position (the first bold line is the signal of the piezoelectric sensor on the left, the second bold line is the signal of
the piezoelectric sensor on the right, the solid line is the signal of pressure on the left, and the dashed line is the signal of pressure on the right).
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4.2. Position Classification by the Combination of the Neural
Network and Bayesian Network. The very large and unclean
dataset includes many signal errors and much-unexpected
noise. Figures 12 and 13 show some examples of errors. For
the signals shown in Figure 12, the signals of the sitting posi-

tion are similar to the signals of the lying right position. This
is because the subject gets on/off on the right side of the bed.
Before getting out of bed, the subject usually moves to sit on
the right side of the bed, applying force on the right pressure
sensor. Therefore, sitting before getting out of bed can cause
the signal to look similar to lying right.

Similarly, the signals in Figure 14 show the similarity of
signal patterns between the lying center position and the
lying right position because the subject tends to stay on the
right side of the bed.

To solve the problems of signal ambiguity, we introduce
the Bayesian network to estimate the likelihood of the con-
secutive position, to eliminate the unexpected result of the
output position from the neural network model. We create
the Bayesian network from the large unclean dataset of sub-
ject A, as shown in Table 4. All possible connecting positions
are calculated from the transition network, as shown in
Figure 14. We estimate the Bayesian network by using the
position trigram model, according to (5).

The results from both the neural network and the Bayes-
ian network estimations are combined by the weighted
arithmetic mean. To evaluate the coefficient (α, β) of the
weighted arithmetic mean in (5), the values of α and β are
varied for the dataset of subject A, as shown in Table 6. α
is the coefficient of neural network probability, and β is the
coefficient of Bayesian network probability. The accuracy
can reach 97.06% when the proportion of the coefficient
for the neural network is 0.3 and that for the Bayesian net-
work is 0.7, as shown in Table 6. As a result of this combina-
tion model, the Bayesian network effectively shows the
improved performance in position estimation in the case of
signal confusing errors.

Looking into the details of improvement, Figure 15 shows
a significant change in recognizing the sitting position better
by reducing the fault detection of the lying right position,
while still maintaining other position classification in similar
accuracy. The sitting position detection is improved from
86.10% to 89.07% by reducing the confusion errors of the
detection with lying right and out of bed positions from
8.06% to 6.24% and 4.68% to 3.91%, respectively. The
improvement of sitting position detection is crucial for care
givers in making decision of supporting help.

4.3. Comparative Evaluation with Other Approaches. It is
quite difficult to evaluate the performance against other
approaches because of the differences in datasets, number
of bed positions, and number of sensors. The best we can
do is to compare the results on the estimation of the common
target position. Table 7 is tabulated by accumulating the
results of the sleeping position estimation only. Our
approach can reach 97.8% accuracy in classifying the three
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Figure 10: Confusion matrix of the 5-position classification of
subject B with 4 inputs.
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Figure 11: Confusion matrix of the 5-position classification of
subject B with 120 inputs.

Table 4: Large unclean dataset.

Position

Unclean dataset
From one subject

276922 + 117211 = 394113 samples = 109 h 28m53 s
Training set Test set

# of
samples

# of time
intervals

# of
samples

# of time
intervals

Off-bed 30,650 42 13,522 42

Sitting 22,408 160 9,604 160

Lying center 64,340 111 26,146 111

Lying left 3,674 26 1,146 26

Lying right 15,5850 173 66,793 173

Total 276922 512 117211 512

Table 5: Accuracy of the unclean dataset.

Input
Raw signal data Normalized signal data
4 inputs 120 inputs 4 inputs 120 inputs

95.17 95.45 96.54 96.64
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sleep positions, i.e., lying center, lying left, and lying right.
Our approach, using only four sensors, outperforms the
approaches proposed by [13] using 2,048 sensors, [15] using
360 sensors, [18] using 2,048 sensors, [19] using 56 sensors,
and [20] using 60 sensors in overall evaluation.

In terms of a position-by-position comparison, there is
only one report from Hsia et al. [21], which has the same
three bed positions as defined by our model. The position-
by-position comparison result is shown in Table 8.

The result of our approach is not the best though it shows
that our model is promising with a limited number of sen-
sors, and the model can be created by a small number of test-
ing subjects. In terms of practicality, our approach has
advantages in cost performance and maintenance.

5. Conclusion

A bed alarm for fall prevention needs a highly accurate
bed position detection system. The system must be able

to issue an alert as early as possible once it detects a posi-
tion where there is a high risk of falling. In this study, a
neural network is used to classify the signals from the
designed sensors into five types of positions. The signal
data from the sensors are normalized by using the unity-
based normalization (or feature scaling) method to elimi-
nate the biases of body weight and different types of sen-
sors. In addition, the accumulation of the signal data in a
one-second time slot (a set of 120 inputs) can also help
improve the accuracy of the sitting and off-bed positions.
The performance of 120 inputs with normalized signal
data yields a better result than the three other types of
inputs, i.e., 4 inputs, 4 inputs with normalized signal data,
and 120 inputs. Furthermore, when the dataset is extended
to a large and unclean dataset, the accuracy of the single
neural network model significantly drops. To improve
the performance of the neural network approach, we
adopt the Bayesian network to restrict the possibility of
transition of a position. As a result, the Bayesian network

Time
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Figure 12: Similarity of the signal patterns between the sitting position and lying right position.
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trigram probability effectively improves the accuracy from
96.64% to 97.06%, with a coefficient of 0.3 and 0.7 for the
neural network and the Bayesian network probability,
respectively. The combination model essentially improves
the sitting position detection from 86.10% to 89.07% by
reducing the confusion errors of the detection with lying
right and out of bed positions from 8.06% to 6.24% and
4.68% to 3.91%, respectively. The evaluation of our
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Figure 13: Similarity of the signal pattern between the lying center position and lying right position.

Table 6: Accuracy of the combination of the neural network and
Bayesian network.

α β Accuracy rate

1 0 96.64

0.7 0.3 96.74

0.5 0.5 96.85

0.3 0.7 97.06

0 1 91.40

O S C

L

ROut of bed On the bed

Figure 14: State transition of the 5 positions, i.e., off-bed (O), sitting
(S), lying center (C), lying left (L), and lying right (R).
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approach against others is also promising. Even though it
cannot outperform some of the other previously proposed
methods that need a large number of sensors, our
approach needs only four sensors. It can be concluded that
our approach can perform at high accuracy for position
detection and requires the fewest number of sensors.
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(b) Results of coefficients α = 0:3 and β = 0:7

Figure 15: Detailed comparison between the results of classification of using only a neural network and a neural network with a Bayesian network.

Table 7: Comparison of sleep position classification algorithms.

Ref # of positions Accuracy (%) Algorithm Type of sensors # of sensors

[13] 8 97.1 kNN Pressure sensors 2,048

[14] 3 98.4 GMM+kNN Pressure sensors 1,728

[15] 5 97.7 PCA+SVM Pressure sensors 360

[16] 5 98.1 HoG+DNN Pressure sensors 2,048

[17] 4 99.7 SVM Pressure sensors 512

[18] 5 97.7 kNN Force sensing array 2048

[19] 6 83.5 Raw data+SVM FSR sensors 56

[20] 9 94.1
Joint feature extraction and
normalization+SVM+PCA

FSR sensors/video 60

[21] 3 100 Kurtosis+skewness FSR sensors 16

[22] 5 98.4 SVM (linear)+SVM (RBF)+LDA CC-electrodes 12

Ours 3 97.8 NN+Bayesian network Pressure and piezoelectric sensors 4

Table 8: Comparison of sleep three-position classification
algorithms.

Ref
Accuracy (%)

# of sensors
Left Middle Right

[21] 100 100 100 16

Ours 93.05 96.40 98.46 4
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Diabetes is one of today’s greatest global problems, and it is only becoming bigger. Constant measuring of blood glucose level is a
prerequisite for monitoring glucose blood level and establishing diabetes treatment procedures. The usual way of glucose level
measuring is by an invasive procedure that requires finger pricking with the lancet and might become painful and obeying,
especially if this becomes a daily routine. In this study, we analyze noninvasive glucose measurement approaches and present
several classification dimensions according to different criteria: size, invasiveness, analyzed media, sensing properties, applied
method, activation type, response delay, measurement duration, and access to results. We set the focus on using machine
learning and neural network methods and correlation with heart rate variability and electrocardiogram, as a new research and
development trend.

1. Introduction

A lot of problems arise when a human cannot control the
insulin level and thus process the glucose concentration in
the blood. This inability initiates diabetes [1], which is a
disease where the blood glucose level is high. In this case,
only a precise therapy and careful management can pre-
vent a buildup of sugars in the blood and intolerance to
glucose [2], increasing the risk of dangerous vascular com-
plications [3], such as coronary artery disease (leading to
heart attack) [4], peripheral vascular disease, kidney failure
or stroke, and neural complications (diabetic neuropathy)
[5], including peripheral neuropathy and autonomic nervous
system failure.

Recent studies show that there are 424.9 million diag-
nosed diabetic patients in the world and that the number is
expected to go up to 628.6 million by 2045 [6]. Glucose mea-

surement and diabetes treatment are very expensive; for
example, in the USA, the costs rose from $245M in 2012
[7] to $327M in 2017 [8]. To indicate the size of this problem,
diabetic patients present 6-7% of the total worldwide popula-
tion according to the International Diabetes Federation [9].

Furthermore, cardiovascular disease is closely linked to
diabetes. In fact, a study in the USA [10] concluded that
25% of diabetes patient costs are a consequence of cardiovas-
cular disease and 15% of costs of physician office visits are
related to cardiovascular disease. At the same time, diabetes
is responsible for more than a quarter of all cardiovascular
disease expenditure.

In addition, there is a high proportion of undiagnosed
diabetes mellitus globally, especially in developing coun-
tries, and Beagley et al. [11] conclude that 45.8% of diabe-
tes cases are undiagnosed and very often associated with
cardiovascular risk.
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Several studies analyze the history of development of glu-
cose measurement devices [12–14] and a summary of the
four generations of glucose monitoring [13] classified by
the used technology.

The produced medical devices have been evaluated from
the 1970s with the start of the first-generation glucose meters
that used reflectance technology and were made as heavy
devices requiring a relatively big amount of blood. Second-
generation devices used a drop of blood, and due to the avail-
able technology, they were made as smaller devices with
affordable prices that allowed personalized use.

Finger pricking as the main routine in these invasive
techniques is troublesome for diabetic patients because it
can lead to scarring, motivating the development of devices
that enable glucose measurement to be done cheaply and in
a noninvasive way. The third-generation devices started as
minimally invasive devices that include an array of small nee-
dles on the skin and enabled continuous glucose monitoring
(CGM) [15–17].

Recently, a new generation is rising on the horizon,
although it is still the king of an alternative, rather than an
actual application of these kinds of medical devices, due to
its current early stage of development. Nevertheless, we will
refer to it as the fourth-generation medical devices which
include noninvasive methods, providing an environment
for remote and real-time continuous monitoring. The nonin-
vasive methods do not invade the human body and are based
on various methods, including spectrometry or analysis of
other parameters correlated with the glucose level [18].

In this paper, we aim to present the available methods
and ongoing projects for noninvasive glucose measurement,
focusing on the use of machine learning (ML) and neural net-
work (NN) methods used in a lot of ongoing research to deal
with estimation methods of the glucose level.

The focus is also set to the possibility of using an ECG or
other methods that determine the HRV parameters for detec-
tion of the ability of a human to regulate the blood glucose
level with noninvasive methods. This is especially important
since the recent wearable ECG sensors successfully emerged
on the market, and ECG and HRV can be measured effi-
ciently by a noninvasive method that allows a possibility for
remote continuous real-time monitoring.

2. Classification of Noninvasive
Glucose Measurement

Glucose measurement is mostly classified by the level of inva-
siveness of the sensing devices, which are usually classified as
invasive (devices that are implanted in the patient’s body or
that invade the body to access a blood sample), minimally inva-
sive (devices that painlessly invade a very small part of the
patient’s body, such as skin to collect a minimal sample, like
a skin part, sweat, tear, and saliva), and noninvasive devices
(devices that do not invade the patient’s body) [12–14].

Noninvasive blood glucose monitoring methods are
based on measuring glucose concentration from its chemical,
thermal, electrical, or optical sensing properties [14, 19–22].
Some other sensing properties can also be exploited for mea-
surement since the human body shows different physiologi-

cal responses to changes in glucose, such as electric and
acoustic impedance, thermal conductivity, and electromag-
netic response.

Usual classification of noninvasive methods is based on
the used technology, although there are several authors that
classify methods based on the subject they analyze, such as
differentiation of media they target, including tissues (skin,
aqueous eye humor, oral mucosa, tongue, and tympanic
membrane) and fluids (sweat, urine, saliva, and tears) [21].

Each measurement system is specified by its size that
determines if it can be used in a specialized laboratory at
the healthcare institution or as a part of a smart home system
[23]. In addition, it can be a pocket-size measurement device,
such as those personal finger pricking devices or a wearable
device, which is worn on the patient’s body.

A specific method is used to process the sensed informa-
tion and produce intermediate results, including transdermal
and optical methods [20] or including nanotechnology [14].
The way the information obtained intermediate results which
are further processed may include a specific processing, such
as multivariate analysis, multiregression, or various artificial
methods, such as deep machine learning or neural networks,
which are described in more detail in this paper.

Glucose measurement can be applicable for continuous
and real-time monitoring or can provide only on-demand
activation of a single measurement, treated to be just a substi-
tute of the existing invasive methods. A measurement is
defined to be a single measurement if it is activated on
demand to access a sample and then to process a result, while
the continuous measurement systems continuously take
samples and calculate results.

In addition, if the results are displayed on to a single user,
the corresponding medical device is specified to be used in
self-monitoring only, and if the results can be shared over
the Internet to authorized users, the corresponding systems
are systems that allow shared authorized access to results.

Finally, the end results may be obtained immediately or
with a certain delay. If the delay is less than 2 minutes, they
become near real time, or if the delay is less than 30 sec, they
are treated as real time. For example, a blood analysis in the
lab may take more time, and these measurement systems
are specified to deliver postponed results. Not to be confused,
this delay is dependent on the measurement device and pro-
cessing capabilities, while the time delay needed for glucose
concentration to propagate to the analyzed media is usually
called lag.

To present a more comprehensive way and specify the
domain of noninvasive glucose measurement techniques,
we have introduced a methodology based on criteria, which
determine several dimensions of glucose measurement
devices, as illustrated in Figure 1. Each classification criterion
is displayed by a rounded rectangle, and each category within
a given criterion is presented by a sharped rectangle.

Glucose measurement systems can be classified accord-
ing to the following criteria:

(i) Size: describing the measurement device to be a
point-of-care system, home system, portable pocket
device, or wearable device
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(ii) Invasiveness: determined as an invasive, minimally
invasive, and noninvasive technique

(iii) Media: where the measurement is conducted,
including interstitial fluid, intermittent, and tissues

(iv) Sensing properties: analyzed by the medical device,
including chemical, impedance, thermal, electrical,
acoustic, or electromagnetic properties

(v) Method: defined by the used technology to analyze
the sensed information, such as transdermal, opti-
cal, and thermal conductivity and electromagnetic
response, autonomic dysfunction (HRV-based),
and nanotechnology

(vi) Processing: specified by the method used in pro-
cessing the result, which may include analog
(comparison result or indication from the sensed
information), mathematical and statistical methods
(multivariate analysis with calibration, multiregres-
sion, etc.), and artificial intelligence (machine learn-
ing, neural network methods, deep learning, etc.)

(vii) Activation type: determined by the way the mea-
surement is activated: either on-demand activation
or continuous measurement

(viii) Duration type: determined by the measurement
time: short term (less than 1 minute), medium term
(less than 1 hour), and long term (expressed in days)

(ix) Response delay: defined by the time required to
process the results, including real-time systems
(immediately or up to 30 sec), near real-time sys-
tems (up to 2 minutes), and postponed systems
(more than 1 hour)

(x) Access to results: specified by the access locality of
the results, including self-monitoring systems and
systems that use shared authorized remote access

3. Transdermal Noninvasive
Glucose Measurements

Transdermal methods use the following technologies:

(i) The reverse iontophoresis technique [24] accesses
the interstitial fluid by a low electric current across
the skin between two electrodes [25]. Sodium ions
cause convective flow carrying glucose molecules in
the opposite direction to that of normal medica-
ments (from the skin outward) [26]. Sensing is real-
ized by detecting the glucose oxidase. An FDA-
approved medical device is the GlucoWatch [27] tar-
geting a wrist skin, capable of measuring 78 readings
per wear (up to six per hour), after 2-hour calibra-
tion. It operates by a small current passing between
two skin surface electrodes that draw ions and
glucose-containing interstitial fluid to the surface
and into hydrogel pads incorporating a glucose oxi-
dase biosensor [28, 29]. According to our classifica-
tion, it is a wearable device, using a noninvasive
method to analyze interstitial fluid by sensing the
chemical and electrical properties by a transdermal
method with analog reading of local near real-time
results for medium-term continuous glucose mea-
surement. There are also other commercially unsuc-
cessful medical devices, including GluCal [22, 30]

(ii) Impedance spectroscopy measures the dielectric
properties of a tissue, by passing a small alternating
current across a tissue and measuring the impedance
frequency spectrum in the range of 100Hz−
100MHz [31], which is dependent on the glucose
interaction with red blood cells [32]. Several issues
including water content, temperature variation,
sweating, and motion [33] require frequent calibra-
tion and equilibration, which generates a lot of
implementation problems. Pendra is an FDA- and
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CE-approved medical device [34], realized as a wrist
watch based on impedance spectroscopy, with sens-
ing conducted by an open resonant circuit, capable
of performing up to 4 measurements per minute.
However, it lacks a successful commercialization
due to calibration problems (the need to change
the tape after 24 h and requiring at least 1 h equili-
bration). GlucoBand is another medical device with-
out successful commercialization, being oriented
more to the wellness market instead of the medical
one [35]

(iii) The skin suction blister technique is based on analy-
sis of a blister obtained by a vacuum suction over a
small area of the skin [36] as a well-tolerated painless
procedure with a low infection risk. Glucose concen-
tration in the analyzed blister is lower than that seen
in plasma but correlates well with the concentration
in the blood [37], especially to the HbA1c value,
which corresponds to a three-month average glucose
values. Symphony is a commercially unsuccessful
product which is applied to a permeated skin to ana-
lyze the electrochemical properties [38] by using a
sensitive biosensor which measures the transdermal
glucose flux

(iv) The sonophoresis technique uses low-frequency
ultrasound to increase skin permeability and causes
expansion and contraction of gaseous inclusions
that open pathways for interstitial fluids to transport
glucose to the epidermis [39], where it is measured
by a conventional electrochemical sensor [40]. This
technique is sometimes considered minimally inva-
sive as it creates micropores in the skin to enable
the interstitial fluid containing glucose to come out-
side [22]. SpectRx is a product that is not yet com-
mercialized, which uses laser to create micropores
in the outermost skin layer to collect interstitial fluid
containing glucose

Bruen et al. [41] discuss several wearable and noninvasive
methods based on monitoring the interstitial fluid and wear-
able devices based on detection of the sweat (eyeglass, flexi-
ble wristband, etc.), breath analysis, saliva analysis (tattoo
printed on a tooth, etc.), and ocular fluid (smart contact
lens). Wearable glucose monitoring using epidermal sensors
was reviewed by Kim et al. [42]. Concentration of glucose in
interstitial fluid depends on blood glucose levels [43],
although there is a significant time difference for transmis-
sion of the corresponding blood glucose levels to the intersti-
tial fluids [44].

4. Optical Noninvasive Glucose Measurements

When light meets biological tissues, it can suffer reflection,
scattering, and transmission being proportional to the struc-
ture and chemical components of the sample [21], as a basis
of plenty of optical-based noninvasive glucose measurement
methods [45, 46]. These are differentiated according to the
analyzed band of electromagnetic radiations and interpreta-

tion of glucose levels from the received spectrum [20] by
selectivity and interference to other compounds using multi-
variate calibration vectors [47] and several detection and
multistage separation principles [48].

The following optical noninvasive methods have been
analyzed to more or less successfully detect the diabetes level:

(i) Infrared spectroscopy is based on rotational and
vibrational transitions of molecule chemical
bonds, and the corresponding fluctuation is mea-
sured by the incident radiation [49]

(ii) Near-infrared (NIR) spectroscopy is based on the
investigation of a visible and near-infrared range,
including wavelengths 0.59–0.95μm [50], 1.21–
1.85μm [51], and 2.12–2.38μm [52] chosen due
to weak water absorption and relatively high
energy of the measured signal [21]. Although mea-
surements do not depend on skin pigmentation,
they depend onmolecular structure and absorption
spectrum ability, so several wavelengths are used
for multivariate analysis with calibration. Although
several medical devices (SugarTrac, Dream Beam,
Diasensor, MedOptix, etc. [22, 30]) have been
developed using the NIR spectroscopy method,
they still are commercially unsuccessful

(iii) Midinfrared (MIR) spectroscopy gives more dis-
tinct glucose peaks [21] analyzing the wavelength
spectrum 8.38–9.71μm [53]. Measurements of a
specific wavelength before and after interaction
with matter are compared, and effects on stretch-
ing and bending of molecules are used to deter-
mine glucose concentrations. A sensor using
depth-selective MIR spectroscopy of skin based
on total infrared reflection photothermal deflec-
tion has been described in [54] and absorption
spectroscopy based on a few wave numbers in [55]

(iv) Raman spectroscopy [56] evaluates scattering of
single wavelength light, which is dependent on
rotational or vibrational energy states within amol-
ecule and highly specific absorption bands with
respect to original laser light [57]. A multivariate
analysis is applied to detected molecule quantity
and reduced interference from water compared
with MIR or NIR spectroscopy. There are several
research projects by LightTouch Medical, C8
Medisensors [58], and Massachusetts Institute of
Technology applying the Raman spectroscopy
method on skin [22]. Development of a Raman
spectrometer suitable for home-use noninvasive
glucose monitoring was also reported in [59]

(v) Photoacoustic spectroscopy measures ultrasonic
waves created by tissue absorption of pulsating
light created by a laser diode [60], as their inter-
action generates heat and causes pressure varia-
tions in the sample in the form of acoustic
signals monitored by a piezoelectric transducer
[61]. A theoretical study of resonant photoacoustic
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spectroscopy for noninvasive glucose detection was
reported in [62]. Aprise is a medical device that was
clinically tested [63]. It utilizes the photoacoustic
properties of the blood to infer the prevailing glu-
cose levels, when ultrasound waves illuminate the
tissue with laser pulses and acoustic signals are ana-
lyzed for the depth profile of the light absorbance of
the skin above a blood vessel

(vi) Ocular spectroscopy is applied to tears by using a
hydrogel-bound contact lens [64] and using a spec-
trometer to measure the change in the reflected
light received when a light source illuminates the
lens. A lot of weakness has been detected in the
application of this method, such as delay of glu-
cose concentration, biocompatibility, and differ-
ence between the eyes [65]

(vii) Scattering is the effect when the radiated signal is
reflected by the tissue parts, such as cell membranes
and collagen fibre in the blood and the interstitial
fluid. Since the glucose changes the refractive index
of the tissue, measuring the reflected signal pro-
vides information to calculate the glucose level
[66]. Precision is affected by large interindividual
differences and sensor drift, motion, temperature,
water, and protein density [21]

(viii) Occlusion spectroscopy is similar to scattering
and optical coherence tomography methods mea-
suring the scattering effects on arterial flow,
instead of systolic flow. It uses enhanced light
transmission of erythrocyte aggregation to calcu-
late the glucose concentration [67]. The precision
is vulnerable to many intravascular variables such
as drug treatment, intrinsic erythrocyte aggrega-
tion, free fatty acid concentration, and chylomi-
crons [68]. OrSense is a medical device using
near-infrared occlusion spectroscopy, detecting
the red optical signal from blood due to changes
in the glucose concentrations in blood vessels or
finger, which has not yet been commercially
successful

(ix) Electromagnetic sensing uses electromagnetic
sensors to measure the conductivity of dielectric
parameters changed by the glucose concentration
on a specific resonant frequency of 2.664MHz
[69]. Precision of the glucose measurements is
strongly affected by environmental temperature
and physiological blood dielectric parameter
changes. TouchTrak is a high-cost medical device
using electromagnetic sensing [22] and is not
commercially successful. GluControl GC300 is a
medical device, which has no significant proof of
its accuracy and is poorly described [30].

(x) Thermal emission spectroscopy measures the nat-
urally emitted infrared signals generated in the
human body due to changes in glucose concentra-
tion, similar to clinical tympanic membrane ther-

mometers, based on wavelengths of 9.8m and
10.9m [70]. This method can be applied on the
skin of the forearm, fingertip, or ear to detect glu-
cose concentrations [53]. Infratec develops a por-
table handheld glucose measurement device built
on a thermal emission spectroscopy method, not
being yet commercialized [22]

(xi) Temperature-regulated localized reflectance uses
the scattering of a localized reflected light signal
with wavelengths of 0.59μm and 0.935μm [71].
Measured temperature variations between 22°C
and 38°C are related to glucose concentration
[50]. Precision of measurements is affected by
probe position, physiological parameters, and dis-
ease conditions

(xii) The metabolic heat conformation technique uses
thermal and optical sensors to measure thermal
generation, blood flow rate, and hemoglobin and
oxyhemoglobin concentrations strongly related
to glucose concentration [72]. Multivariate sta-
tistical, regression, and cluster analyses, includ-
ing multiwavelength spectroscopy (wavelengths
0.47μm, 0.53μm, 0.66μm, 0.81μm, 0.88μm,
and 0.95μm), are used to calculate the glucose
value [73]

(xiii) The far-infrared (thermal infrared) technique uses
the dependence of the cutaneous microcirculation
on the local glucose concentration, which is
observed by inducing controlled, periodic temper-
ature variations in the skin and assessing MIR
light scattering [53]. The far-infrared dielectric
properties of sugars in the condensed state are
dominated by vibrational modes of their intermo-
lecular hydrogen-bonded network [74]. The basic
principle of absorption is due to the existence of
particular vibrational and rotational transitions
of weak bonds and bonds of heavy atoms with
wavelengths between 10μm and 1000μm

(xiv) Terahertz time-domain spectroscopy measures
the radiation absorption obtained from single-
frequency (wavelength 0.9μm) very short laser
pulses (in the order of picoseconds). The method
is based on time-domain analysis to get the phase
change from reflected and scattered signals which
allows the detection of the optical properties
dependent on glucose concentration [75]. An
ultrafast laser pump with a specific pulse shape
can allow a broad frequency sweep and by apply-
ing time-domain signal processing of the detected
spectroscopic information can extract crucial
frequency-dependent information and determine
glucose levels [76]

(xv) Millimeter and microwave sensing allows going
deeper into the tissue to reach regions with suffi-
cient blood concentration using lower energy per
photon and less scattering for accurate glucose
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readings [77]. The sensing is realized by a near-
field antenna using reflection methods

(xvi) Ultrasound technology is based on measurement
of the propagation time of ultrasound waves
through the extracellular fluid, which is depen-
dent on the glucose concentration due to the
strength of intermolecular bonding forces and
the density of the fluid [78]. Precision is affected
by the ambient temperature. The noninvasive
ultrasound or spectroscopy (light) technology
measuring the heat capacity and conductivity as
a two-parameter approach was used with Gluco-
Track [79], which is still a not commercially suc-
cessful product, although reporting good clinical
results [78]

(xvii) The polarimetry method estimates the optical
rotary dispersal of polarized light by a millidegree
precision polarization through tissue less than
4mm thick across the anterior chamber of the
eye [80]. Multiple linear regression or similar
methods used for multispectral polarimetry mini-
mize glucose prediction errors [81]. There is a
time delay for glucose peak concentrations to
propagate in the aqueous humour [82]

(xviii) The fluorescence method relies on measuring the
glucose levels in tears, since they reflect concentra-
tions similar to those in blood, and the idea is to
build a glucose-sensitive fluorescence system to
monitor glucose metabolism by detection of either
intrinsic cell fluorescence or fluorescent reporters
of cell metabolism [83]. Fluorescence uses the
principle of varying light emission frommolecules
in different states [84, 85]. GluMetrics uses the
fluorescence method on an intravascular target,
based on a glucose sensing polymer that glows in
the case of high glucose concentration, but still
not a commercially successful product [22]

(xix) Optical coherence tomography is based on irradi-
ation of a low-power laser source with coherent
light to the skin and an in-depth scanning system
to record the backscattered radiation (wavelength
between 0.8μm and 1.3μm) [86]. Since the der-
mal layer is dependent on the glucose concentra-
tion, measurements include induced changes
[87]. Precision is sensitive to motion, tissue het-
erogeneity, and interfering analytes [88]. Gluco-
Light is a portable medical product that targets
the skin and is still not being commercialized [22]

(xx) Kromoscopy is based on a near-infrared analog of
human color perception [89]. Four detector chan-
nels with complementary bandpass functions are
used for the evaluation of collected electromag-
netic radiation [90]. Complex vector analysis is
applied for observed significant differences in
channel responses for glucose and urea over dif-
ferent wavelengths of NIR light

Note that metabolic heat conformation and thermal
emission can be differentiated from optical methods as a spe-
cial class of thermal methods [91].

5. ML and NN Methods for Noninvasive
Glucose Measurement

In order to extract knowledge from the gathered measured
data, many studies use ML and NN methods. There are sev-
eral studies that successfully include ML and NN techniques
in methods of extraction and monitoring of glucose levels.
Monte-Moreno [92] proposed a system for a simultaneous
noninvasive estimate of the blood glucose level based on
machine learning techniques and using a photoplethysmo-
graph (PPG) sensor. The system idea is to find the relationship
between the shape of the PPG waveform and the glucose
levels. The system was tested on 410 individuals, and it used
several machine learning techniques. The best results were
obtained by the random forest technique. The distribution of
the points on a Clarke error grid placed 87.7% of points in
zone A, 10.3% in zone B, and 1.9% in zone D.

Yadav et al. [93] measured the blood glucose noninva-
sively by using the galvanic skin response and temperature
measurements along with PPG. They used the multiple linear
regression (MLR) and artificial neural network (ANN) tech-
niques to estimate the blood glucose concentration from the
multisensors. A significantly low mean absolute percentage
error (MAPE) (9.21%) and high R2 (0.94) demonstrated the
accuracy of this multisensory approach.

Malik et al. [94] detected fasting blood glucose levels
(FBGLs) in a mixed population of 175 healthy and diseased
individuals in India. Their detecting algorithm uses machine
learning techniques such as logistic regression (LR), support
vector machine (SVM), and artificial neural network (ANN).
The occurrence of elevated FBGL was estimated noninva-
sively using the status of an individual’s salivary electrochem-
ical parameters such as pH, redox potential, conductivity,
and concentration of sodium, potassium, and calcium ions.
The best performance for classifying high FBGLs was
achieved by the SVM using RBF kernel showing approxi-
mately 85% accuracy, 84% precision, 85% sensitivity, and
85% F1 score.

A noninvasive nocturnal hypoglycemia monitoring sys-
tem for type 1 diabetes patients is presented by Ling et al.
[95]. The system uses an extreme learning machine-based
neural network model. The results show that hypoglycemia
in type 1 diabetes mellitus children can be detected noninva-
sively from the real-time heart rate and corrected QT inter-
val. The testing performances of the proposed algorithm for
the detection of hypoglycemia achieved sensitivity of
78.00% and specificity of 60.00%.

Reddy et al. [96] proposed a noninvasive blood glucose
measurement method based on microwave transmission
and the machine learning technique. The blood glucose
concentration is detected by analyzing the reflected micro-
wave signals.

The machine learning technique is used to facilitate real-
time processing and to provide an alert for the patients with
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hyperglycemia conditions. The system can also suggest a pre-
cise dose of insulin to intake.

Carter et al. [97] proposed a noninvasive diagnostic
method using concentrations of twenty-two elements in toe-
nails and personal information such as age, gender, and
smoking history. The authors used seven different machine
learning techniques to perform the robust classification of
type 2 diabetes. They compared the performance of forty-
six distinct machine learning models on resampled training
data and testing data. The best results were achieved with
the random forest model (seven out of nine test samples were
predicted correctly).

Das et al. [98] measure the galvanic skin response of
11 diabetic patients and 8 normal controls. The novel nonin-
vasive system is based on the principle of skin impedance
spectrogram and heart rate variability. To compute the heart
rate variability, they acquired ECG signals from 20 normal
controls and 20 diabetic patients. In the study, they use fea-
tures such as Welch’s power spectral density estimation.
Artificial neural networks were used to classify GSR signals,
and the obtained accuracy is 100%. During the analysis of
diabetes mellitus, they have proven that there is a change in
some parameters related to heart rate variability.

A compact microwave sensor has been proposed [99] for
glucose sensing based on the utilization of the artificial neural
network and has been simulated with the proposed models
and measured with a fingertip as well as glucose/water solu-
tions. It has been concluded that the presence of biological
tissues decreases the measurement sensitivity. However, the
sensor can measure the glucose level when the solution is
directly placed on the sensor.

Low-cost continuous glucose and noninvasive BG detec-
tion system is presented [100] based on a combination of the
conservation-of-energy method with a sensor for collecting
oxygen saturation (SPO2), blood flow velocity, and heart rate.
Also, methods for a basal metabolic rate (BMR) and BV
detection are proposed based on human body heat balance
and PPG signals. The system includes a module for multisen-
sor information fusion. The intelligence is implemented by
using a decision tree and backpropagation neural network.
The reported achieved accuracy is 88.53%.

Artificial neural networks (ANNs) combined with parti-
cle swarm optimization (PSO) are proposed to model the
nonlinear relationship between the blood glucose concentra-
tion and near-infrared signal [101]. The weight coefficients of
the ANNs represent the difference between individual and
daily physiological rule. The Bland-Altman method has been
applied to show that the predictions and measurements are
in good agreement. The PSO-2ANN model is concluded to
be a nonlinear calibration strategy with accuracy and robust-
ness using 1.55μm spectroscopy, able to correct the individ-
ual difference and physiological glucose dynamics.

Another low-cost portable noninvasive blood glucose
measurement system based on near-infrared light is pre-
sented in [102]. Regression analysis is applied to model the
relationship between the detector output voltage and the glu-
cose concentration. The accuracy of the device has been
tested by comparing the noninvasively estimated and inva-
sively measured blood glucose. The neural network method

is used to estimate the glucose concentration. The results of
the prediction of glucose concentration show that the system
errors are in the clinically acceptable region.

Todd et al. [103] review existing research in methods of
extraction and monitoring of glucose levels, especially focus-
ing on the performance of ML methods, such as fuzzy logic,
neural networks, and decision trees. The most promising
result with the accuracy of nearly 98% was produced by neu-
ral networks and recurrent neural networks.

The presented work in [104] focuses on the design of
low-cost, painless, and noninvasive blood glucose measure-
ment system by using near-infrared LED and four photodi-
odes. The attenuated light is transformed into a voltage
signal. The voltage signal is calibrated using the Levenberg-
Marquardt-based artificial neural network to obtain the glu-
cose concentration. The accuracy of the proposed system has
been tested by comparing it with invasively measured blood
glucose. The errors obtained are in a clinical range.

6. HRV-Based Noninvasive
Glucose Measurement

An ECG is the electrical signal representation of the heart
action potential. The heart rate is being controlled by the
autonomous nerve system, the same that regulates the blood
pressure and the glucose level. Thus, the last group of
methods is used to produce medical devices including wear-
able ECG sensors and different HRV trackers, mainly repre-
sented by smart watches, smartphones, or similar devices,
including belts, special shirts, and patches.

The autonomic nervous system constituted the para-
sympathetic and sympathetic parts which operate indepen-
dently of each other or interact cooperatively to control
heart rate, cardiac output, myocardial contractility, cardiac
electrophysiology, and the constriction and dilatation of
blood vessels [105]. Thus, HRV is an essential tool to diag-
nose the cardiac autonomic neuropathy for both clinically
asymptomatic and symptomatic patients as a serious com-
plication of diabetes mellitus.

Heart rate variability is a physiological phenomenon
consisting of oscillations in consecutive heartbeat intervals
controlled by the autonomic nervous system and is caused
by the ability of the heart to handle the ever stresses and
relaxations placed on the body. Several studies show that
there is a correlation between HRV and the glucose level
of the subjects.

Recent studies [106–108] show a big correlation
between the HRV from one side and glucose level from
the other side, since they show that diabetes caused progres-
sive autonomic dysfunction and decreased variability in the
heart rate [109, 110].

The overall result is the differentiation of diabetic
patients from normal whenever a reduction of HRV param-
eters is detected. Kudat et al. [107] investigated cardiovascu-
lar autonomic neuropathy in diabetics and healthy controls
by analysis of heart rate variability and concluded that diabe-
tes patients had lower values for time-domain and frequency-
domain parameters than other normal subjects. They have
analyzed that diabetes mellitus is a cause of autonomic
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dysfunction in the gastrointestinal and urogenital systems
besides the cardiovascular system but focused their research
on autonomic dysfunction.

Five different tests have been introduced by Ewing et al.
[111] of short-term R-R alterations to identify cardiac auto-
nomic neuropathy in patients with diabetes, based on heart
rate response to respiration and to standing, during and after
a provoked increase in intrathoracic and intra-abdominal
pressures (Valsalva maneuver), and blood pressure response
to orthostasis and isometric exercise.

An increase in the ability to detect minor changes in car-
diac autonomic function with long-term HRV monitoring is
reported [112] when compared with standard tests of auto-
nomic function. There was evidence of significant HRV
reductions for those diagnosed with diabetes compared with
nondiabetic subjects, indicating that the presence or absence
of neuropathy may conceal important information. Some
studies included data recorded by wearable heart rate sen-
sors. They have also confirmed high accuracy at detecting
diabetes (0.8451) by a semisupervised training method, semi-
supervised sequence learning, and heuristic pretraining and
show that they outperform hand-engineered biomarkers
from the medical literature [106].

HRV parameters can be classified as a time series
domain, a frequency domain, and other domains [113] such
as long-term (24h), short-term (5min), and ultra-short-term
measurements (less than 5min) [114–116]. Most of the stud-
ies [109, 113] conclude that long-term HRV variability is
more sensitive for detecting diabetes autonomic neuropathy
from the conventional short-term measures.

7. Discussion

A comprehensive overview of the progress of glucose mea-
surement is elaborated by Villena Gonzales et al. [14]. They
specify using various glucose detection techniques based
on electric, thermal, and optical methods, and recently, the
nanotechnology approaches are essential for minimally inva-
sive and noninvasive glucose measurement technologies.

Several properties of glucose are manifested under differ-
ent phenomena. García-Guzmán et al. [19] conclude that
chemical, electrical, optical, thermal, acoustic, or any combi-
nation of these glucose properties can achieve greater accu-
racy in the determination of glucose concentration in blood
and that both optical and electrical properties are the most
suitable for noninvasive glucose measurement. In this paper,
we also give advantage to the analysis of glucose properties by
the analysis of autonomic dysfunction.

Methods using sweat-based glucose monitor wearable
biosensors are reported as ongoing projects [117, 118].

A hybrid approach [19], which includes sensing of more
than one physiological parameter, is becoming popular, such
as electrochemical or combination of measuring the sound
speed, conductivity, and heat capacity obtaining thereafter a
weighted average or a combination of absorption spectros-
copy and complex bioimpedance measurements [119]. In
addition, a complex big data analysis of several parameters
with corresponding artificial intelligence methods are hot
topic research and can produce promising results.

Data analytics in processing various glucose properties
for noninvasive and minimally invasive techniques is an
emerging technology [120] contributing to the field of diabe-
tes informatics and providing a more data-rich approach to
understanding and managing diabetes.

Analyzing the accuracy, the American Diabetes Associ-
ation [121] recommends the control of all glucometers
both at the start of usage and at regular intervals and also
the accuracy of blood glucose to be <5% of the measured
value or accuracy better than 15mg/dl (0.8mmol/l) [20].
Solnica et al. [122] conclude that all glucometers examined
have small deviations from laboratory reference values
(<10%), although there are reports that, yet, some of the
glucometers do not meet the recommendations and stan-
dard requirements.

Besides the accuracy, there are other socioeconomic
parameters that can be treated as a barrier to the adoption
of the noninvasive glucose monitoring [19], including com-
mercialization uptake in the global economy. It is believed
that next-generation glucometers or continuous glucose sen-
sor systems may become excellent predictable and selective
devices and probably in the future become a fully reliable
source of information and acceptable for patient use [20].

Lin et al. [91] specify major challenges for development
on noninvasive glucose measurements, extracting issues in
obtained specificity and sensitivity, variable physiological
time lag, need for the calibration process, and usability. Talk-
ing about usability, one needs to describe if the device is a
wearable or pocket-size hand-held device. For example, Glu-
coWise is a U-shaped sensor that fits over the corner of the
hand between the thumb and forefinger. Analyte is a hand-
held device that is inserted into the ear, whereas GlucoTrack
is clipped to the earlobe [123].

A roadmap of continuous glucose measurement initiates
next generations of noninvasive techniques [124], and some
of the future key challenges [22] include the following:

(i) Improvement of the sensitivity and positive predictive
rate in the detection of glucose levels and correspond-
ing accuracy and precision of glucose measurement
medical devices

(ii) Development of a wearable continuous noninvasive
glucose measurement system

Note that besides the lack of precision, robustness, and
stability, the cost-effectiveness that is measured as a price
per use is the key factor to accept a certain technology and
make it commercially successful.

8. Conclusion

In this paper, we have presented an enhanced set of noninva-
sive techniques for glucose measuring based on HRV and
using sophisticated artificial intelligence algorithms. Those
methods are important since they enable the patients’ com-
fortable continuous monitoring of the blood glucose levels.

Usually, the noninvasive measurements have been classi-
fied as transdermal and optical methods. We specified
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autonomic dysfunction as another class, based on an impor-
tant observation that wearable ECG sensors are capable of
measuring HRV. This trend in modern real-time remote
noninvasive monitoring by wearable mobile medical devices
could be correlated with methodologies for glucose monitor-
ing. Reduction in HRV variability is an indicator of autonomic
diabetes dysfunction, and thus, the technology based on wear-
able ECG sensors may have promising results in the determi-
nation of the ability to control the blood glucose level.
Although these methodologies may have promising results
in terms of patients’ comfort, they still lack the needed accu-
racy. In order to get a better understanding of the gathered
measurement data, many of those measurement methods
use ML and NN techniques to achieve better accuracy.

Expenses and proving benefit are probably those that
need to be made more affordable and demonstrated in
further research. However, it takes a lot of time to market
the technology from one side and to change the behavior
of both the patients and doctors.

Future trends include the use of new sophisticated tech-
niques, such as the use of artificial intelligence algorithms
or sensing other psychophysiological parameters, such as
the autonomic dysfunction based on heart rate variability,
as discussed in this article. Nanotechnologies are also a
promising technique, although they are commonly treated
as minimally invasive techniques.
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Respiratory rate is an important parameter for many health, home care, work, or sport applications. In this paper, a new wearable
sensing system based on a piezoresistive FlexiForce sensor has been developed. The sensor can be attached to any common chest
strap. A compact 3D casing has been designed and printed with a 3D printer. This casing integrates the sensor and all auxiliary
elements of the system: microcontroller, battery, Bluetooth module, connections, battery charger, and acquisition circuit. To the
best of our knowledge, this is the first study presenting a FlexiForce respiration sensor that includes all system elements in a
single compact casing. The source files with the design of the casing have been published as supplementary material to be reused
by any interested researcher. The sensing system was tested with twenty-one subjects for different breathing rates. Two different
algorithms were developed to obtain the respiratory rate from the voltage signals recorded by the sensor. Statistical tests were
performed to determine the optimal computation time window and algorithm. This approach is also novel in this field. Low
error values were obtained for a time window of 27 s with an algorithm based on the calculation of time between zero-crossings
(4.02%) and with an algorithm based on counting them (3.40%). To promote research transparency and reusability, the dataset
with the recorded data and the source code of the algorithms and statistical tests have also been published. Therefore, an open,
replicable, low-error, wearable, wireless, and compact sensing system to measure respiratory rate was developed and tested.

1. Introduction

Monitoring of physiological vital signs in humans, such as
heart rate, respiratory rate (RR), blood oxygen concentration,
body temperature, or blood pressure, is a field of growing
interest with many applications. Specifically, respiratory rate
is widely used in health applications such as detection of
abnormal breathing patterns [1] or pulmonary disorders
[2]; diagnosis of obstructive sleep apnea [3], chronic obstruc-
tive pulmonary disease [4], or asthma [5]; monitoring 7 of
anaesthetized patients [6]; monitoring during magnetic reso-
nance imaging (MRI) [7]; indication for cardiac arrest [8],
imbalance or failure in the nervous, cardiovascular, or excre-
tory 9 systems [8]; prevention of sudden infant death syn-
drome [9]; or admission to intensive care unit, among
others. Respiratory rate monitoring has also be applied to
occupational health [10]. Respiratory rate provides informa-
tion on the psychophysiological condition of workers, which

is especially interesting for pilots, drivers, or operators of crit-
ical machines. It can be used to detect alarming symptoms of
fatigue or fainting. It is also useful in other fields like home
care [11] or sports [12].

There are several wearable approaches to properly mea-
sure respiratory rate [13]. One possible way is to detect var-
iations in the velocity or volume of the respiratory airflow.
For example, Liao et al. [14] presented a capacitive flow
sensor. Pressure changes caused by airflow induced capaci-
tance changes in the sensing plates. Other sensors that
detect airflow variations to monitor breathing are described
in [15, 16].

There are studies that presented sensors based on the
recording of the sound associated with the air flowing
through the airways of subjects. In this regard, Nam et al.
[17] used built-in microphones of smartphones or simple
headset microphones placed under the nose. The built-in
microphone was manually held in a fixed position by
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subjects, assuming no displacement during experiments. The
amplitude of the envelope of the respiratory sounds was in
the range 0.45-0.9 (amplitude units). For reliable estimates
of RR, background noise was kept to a minimum. Respiratory
rates could be estimated accurately even if microphones were
30 cm away from the nose.

Another set of studies recorded the temperature of
inhaled or exhaled air during breathing. Cao et al. [5] pre-
sented a Bluetooth-based hot-film flow sensor. It was based
on convective heat transfer. Changes in the fluidic flow con-
dition led to variations in the resistance of the film. The sen-
sor consisted of a micro/nanothin film inserted into a tube.
Flow rates covering 0.1-100 L/min were considered in sensor
design. Motion was incorporated in the validation tests, and
three-axis accelerations were also recorded to assess motion
intensity. Similar sensors based on this principle were devel-
oped by Huang and Huang [18] and Milici et al. [19].

Several authors registered changes in air humidity to
obtain RR. Pang et al. [20] designed a porous graphene net-
work to monitor breathing. It can be used to monitor mouth
and nose respiration, including breathing patterns such as
normal and deep respiration. The system described is an ini-
tial prototype that needs to be improved for commercializa-
tion. Other approaches to detect humidity variations were
described in the reviews by Farahani et al. [21] and Ascorbe
et al. [22].

Chemical sensors have also been used in this field to ana-
lyze breathing air components and obtain the RR from the
results of analyses. Katagiri et al. [23] presented a sensor to
measure carbon dioxide (CO2) based on optical absorption
spectroscopy. Other chemical approaches were discussed in
the surveys by Imani et al. [24] and Güntner et al. [25].

Images taken with mobile phone cameras were also used
to determine RR. The work of Karlen et al. [26] was based on
placing a finger on the lens of a mobile phone’s camera and
extracting imaging photoplethysmogram from the region of
interest to estimate the RR. Motion artifacts were detected
and labeled. Then, two algorithms were used to obtain the
RR. The system presented a root mean square error of 6
breaths/min, being much higher for respiratory rates greater
than 20 breaths/min. Recordings with incorrect counts due
to artifacts in the reference device were excluded. The same
was done with RR recordings of less than 6 breaths/min or
greater than 40 breaths/min. Scully et al. [27] presented a
similar approach using intensity changes in the green band
of the video signal.

A set of studies measured the changes in electrical
bioimpedance that occur during breathing. The work of
Metshein [28] presented an electrode shirt to measure elec-
trical bioimpedance using large surface plate electrodes.
They were made of aluminium foil and covered with contact
gel. Electrical bioimpedance measurements were in the
range of 175-300 Ω, approximately. The validation experi-
ments included movements to show the influence of motions
of human body on the measured signal. Motions and dis-
placement of the electrodes affected the results. Displacement
of the shirt was specially important in long experiments. The
best electrode placement configurations were identified,
matching the locations of the heart, lungs, and large blood

vessels. Similarly, Ansari et al. [29] determined RR from elec-
trical impedance. In this case, it was measured in the arms
using only four electrodes.

There are also studies that use radar for the measurement
of RR. Kukkapalli et al. [30] presented a micro radar-based
system designed as a wearable neck pendant. The system
used the relative motion between the radar and the chest wall
to estimate the RR. The radar was operated at 24GHz; a cus-
tom active analog amplifier circuit was designed to improve
sensitivity. A module with WiFi data transfer was used for
data collection. Ten subjects participated in the validation
experiments performed in static position. Radar technology
has been widely used for RR detection, but mainly in non-
wearable systems [31].

Several sensing systems were also proposed to detect
chest movements associated with breathing. Dan et al. [4]
described an inertial sensor platform to obtain angular veloc-
ity waveforms to calculate RR. Sensors were place in the
suprasternal notch, which is located on the upper border of
the sternum. This position caused noises in signals, which
had to be filtered. The sensing system was wired, ensuring
stability of signal transmission. Inertial sensors were also
used in the works of Hernandez et al. [32] and Estrada
et al. [33].

Finally, a set of sensors registered deformations in the
chest due to breathing. The sensor developed in this work is
based on this principle. Several previous works in this cate-
gory already exist. Table 1 shows a comparison of the sensing
system proposed in this paper with several related works
found in the state of the art. Some of the most relevant fea-
tures of respiratory sensing systems are compared. All studies
included in Table 1 detect thoracic movements. They have in
common the use a chest strap to attach the sensor to the
body, which is the approach adopted in the sensor presented
in this study. However, there are large differences in sensing
principles, hardware processing units, data processing tech-
niques, or data transfer technologies, among other factors.

Hesse et al. [12] designed a respiration sensor using a
force-sensing resistor. Thoracic movements were recorded,
and the RR was calculated using a peak detection algorithm.
A simple mechanical housing mechanism consisting of two
quadratic plates integrated the force-sensing resistor exclu-
sively. The housing mechanism was attached to a chest strap,
which included the rest of the elements of the system. There-
fore, the mechanical housing mechanism did not contain the
microcontroller, memory, battery, or any other auxiliary ele-
ments since they were attached to the strap separately. The
sensor evaluation was performed with five subjects, obtaining
good results for normal and deep breathing. Data were proc-
essed locally on the same strap.

A sensor to be worn on the chest was also designed by
Mahbub et al. [1]. In this case, the sensing element was a pie-
zoelectric transducer composed of a ferroelectric polymer,
polyvinylidene fluoride (PVDF). PVDF had fast response
time to vibration due to chest dilation. The sensor was mod-
eled by a first-order equivalent circuit composed of a thermal
capacitance shunted by a thermal resistance. The sensor
generated charge (peak-to-peak amplitude of 400 pA) in
response to vibrations due to breathing. A charge amplifier
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produces an output voltage proportional to the integrated
charge. This voltage ranges from 0.7 to 1Vpp. A custom inte-
grated circuit was responsible for processing and sending the
data wirelessly. The sensor was validated with only one sub-
ject, showing respiration detection. Similarly, the works of
Ciobotariu et al. [34] and Rotariu et al. [35] presented piezo-
electric thoracic belts to measure respiratory activity. The
first work is wireless using GSM/GPRS transmission, while
the second prototype communicates with a central computer
through a USB cable. None of the studies included a struc-
tured evaluation of the sensors.

Hoffman et al. [2] estimated respiration volume using a
textile integrated force sensor based on the principle of plate
capacitors. The sensors were composed of different layers of
textiles. A compressible 3D textile was the core of the sensor.
On the top and bottom of the 3D textile, conductive fabrics
formed the electrodes of the plate capacitor. Expansion of
the thorax during breathing caused a change in fabric thick-
ness, which was measured as a change in the value of capac-
itance. The tightness of the belt that supported the sensor was
set at 10N. The pressure range to be measured was 0.3 to
0.7N/cm. Position of the belt and the sensor changed fre-
quently during measurements due to body movement. This
led to larger errors. The authors stressed that one possible
solution could be frequent recalibration of the system. How-
ever, this would affect usability and comfort. Eighteen sub-
jects participated in the validation tests and results showed
a high correlation of the measurements with respect to a ref-
erence device, although the estimation of the respiratory vol-
ume was not accurate enough (37.9% error). Tests included
activities with movements. Similarly, Grlica et al. [36] pre-
sented a capacitive sensor that detected changes in capaci-
tance in the range from 0.1 to 0.5 pF for normal breathing.
The sensor consisted of a fixed triangular electrode and a
rectangular moveable electrode. Total electrode displacement
was approximately 40mm for deep breathing. The sensor of
Yang et al. [37] included a low-energy Bluetooth wireless
communication module to transmit capacitance values to a
smartphone. This same transmission technology was used
in the work of Yang et al. [38] with the sensor integrated in
a shirt. Min et al. [39] also presented a capacitive sensor made
of conductive fabric and polyester. The sensor designed was
linear with sufficient resolution to measure a wide range of
breathing from different subjects. Force was increased from
0 to 3N, producing a capacitance change of 445-510 pF.
The authors stressed that the position during tests may
affect performance.

Witt et al. [6] designed a system to measure thoracic
motion continuously based on optical fiber sensors. Specifi-
cally, the sensor was based on fiber Bragg gratings (FBG),
macrobending effect, and optical time-domain reflectometry.
The sensor was specifically for patients under MRI. It was
tested in simulators and in climate chambers. FBG sensor
can be stretched up to 3% elongation with a sensitivity
0.32 nm. Results showed that the sensor retained its stability
for different elongations. The same principle (FBG) was also
used in the sensor of Presti et al. [40]. In that case, an array of
12 FBG was designed. The placement of the 12 FBG in sub-
ject’s torso was optimized. Five subjects participated in the

validation of the sensor and measurements were analyzed
offline, obtaining a minimum error. FBG were also used by
Massaroni et al. [41] to monitor compartmental and global
volumetric parameters. Six subjects participated in the exper-
iments, obtaining an error in the tidal volume of 14%. Simi-
larly, Yang et al. [42] developed a fiber optic respiratory
sensor based, this time, on the microbend effect. That study
verified the RR by counting the number of breaths manually.
The sensing belt was stretched 20mm and 40mm, which
corresponded to elongations of 2.14% and 4.28%.

Padasdao et al. [9] presented a respiratory chest sensor
based on human energy harvesting. An off-the-shelf dc
brushed motor was used to detect thoracic movements as a
function of average harvested power. The expansion of the
chest due to respiration turned the armature, which trans-
mitted the movement to the gears and the rotor of the
machine. The motor was integrated into a plastic casing
and mounted on a piece of felt to stabilize the device against
the body. Displacements of 1 cm and 3 cm were considered in
the experiments. Average output power harvested by the
motor was in the range 6-72μW. To eliminate motion arti-
facts, voltage outputs were filtered with a low-pass finite
impulse response (FIR) filter. The sensor was validated with
twenty subjects, obtaining that RR was measured with a low
error value.

The proposal of Teichmann et al. [43] is also innovative,
since they presented a sensor based on magnetic induction to
obtain RR. A coil was the core element of the sensor. The sen-
sor detected variations in the distribution of human imped-
ance due to thoracic movements associated with breathing
through electromagnetic coupling. The sensing system was
completed with a microcontroller and a Bluetooth module.
The sensor was placed on a flexible PCB. All other electronic
components (except for the power management) were also
mounted on there. The impact of coil deformation was also
investigated since the sensor was designed to be carried in
the shirt pocket. Four subjects participated in the evaluation.
The authors stressed that the spatial fusion of different
sensors could allow the cancellation of motion artifacts.
However, this was not tested in the study.

This paper presents a compact wireless sensing system
based on a piezoresistive sensor (A201 FlexiForce sensor,
Tekscan [44]) to monitor respiratory rate. As can be seen in
Table 1, the proposal of Hesse et al. [12] is the most related
work to the sensing system presented in this paper. A system-
atic search was conducted in the literature, and no other
works were found that use a piezoresistive FlexiForce sensor,
to the best of our knowledge. This paper contributes with
several novelties to the state of the art:

(i) One key aspect of the piezoresistive FlexiForce sen-
sor is the casing, since it determines the sensor
detection capabilities. In the work of Hesse et al.
[12], a casing was designed only for the sensor, while
the rest of the elements (microcontroller, transmis-
sion unit, flash memory, etc.) were considered sepa-
rately. Therefore, the casing did not include them in
a compact way. In this paper, we present a wireless
FlexiForce sensor integrated in a single casing to
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measure RR. All system components (FlexiForce
sensor, microcontroller, Bluetooth module, battery,
etc.) are integrated in the wearable casing. A 3D cas-
ing was designed and printed on a regular 3D printer.
The files with the 3D design of the casing have been
published as supplementary material (available here)
to be reused by any interested researcher

(ii) The system has been tested with several subjects
using a metronome. Two popular algorithms have
been used for the calculation of respiratory rate.
Additionally, both algorithms have been compared
to determine which one measures RR more accu-
rately. Statistical tests have been used for that pur-
pose. The optimal time window of the algorithms
has also been determined using statistical tests. This
is a novel approach in this field

(iii) Another novelty of this work is that a public dataset
has been created with all the data recorded in the
tests. It is publicly available for use by any interested
researcher [45]. In addition, the files with all data
processing (algorithms and statistical tests) have
been published as supplementary material to this
paper. We have not found any other study on respi-
ratory monitoring that makes public all study data
and resources

2. Prototype Design

2.1. Physical Prototype. A sensor has been developed to mea-
sure respiratory rate by detecting variations in chest move-
ment. The sensing system was designed to be placed around
the chest with a strap. The system uses a force-sensitive resis-
tor (FSR) based on the piezoresistive effect (FlexiForce A201
sensor, Tekscan). The characteristic curve of this sensor is
not linear, but logarithmic, as shown in Figure 1 (curve pro-
vided by the manufacturer). The resistance provided by the
sensor drops as the exerted force increases. This sensor is suit-
able for applications in which force variations must be
detected. This is the case of RR measurement. The condition-
ing circuit for this sensor is a simple voltage divider as shown
in Figure 2. An analysis of the typical operating region of the

FSR has been performed for the application presented in this
paper. For this analysis, the data collected according to the
experiments described in Experimental Setup have been used.
First, the histogram associated with the voltage recorded by
the sensor has been represented in Figure 3(a). For this
application, it is important that the voltage varies over a
wide range. The typical operating region ranges from 0.2V
to 1.7V. Second, the histogram of resistance variation is rep-
resented in Figure 3(b). Third, Figure 3(c) shows the histo-
gram of the forces related to those resistance values. The
typical operating region corresponds to force values in the
range of 50-500 g. These force values have been calculated
after fitting the equation of the resistance-force curve pro-
vided by the manufacturer.

Force gð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffi

399:88
R kΩð Þ

0:827

s

: ð1Þ

In the typical region of operation ð2kΩ − 10kΩÞ, the
force can be considered to vary linearly with the conduc-
tance, according to the datasheet provided by the manu-
facturer [46].

The sensing system takes samples from the piezoresistive
sensor through an Arduino Pro Mini that operates at a sam-
pling frequency of 50Hz, and sends the data using an HC-05
Bluetooth module. Data are received by a processing unit
with Bluetooth technology (i.e., computer, Android, or iOS
device), as shown in Figure 4. Then, they are downloaded
to be processed offline in MATLAB or any other numerical
computing software. The range of the Bluetooth module is
around 10m with a data transfer rate of up to 3Mbps
[47, 48]. The reliability of the Bluetooth module as part of
the sensing system was also measured. For that, four experi-
ments were performed. They consisted of transmitting a
known value to the receiving unit at different distances: 1m,

100

10

1

0.1
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Figure 1: Force-resistance curve of FlexiForce A201 sensor
provided by the manufacturer [46].

VC C

10 k R 

Output to ADC

FSR sensor

GND

Figure 2: Conditioning circuit of the piezoresistive FlexiForce
sensor.
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3m, 5m, and 10m. The transmission frequency was 50Hz.
The sensing system was in motion during the experiments
and there were obstacles between the transmitter and the
receiver. Each experiment was performed for 30min. As a
result, no corrupted value was received. The average percent-
age of lost packets was 0.03% (standard deviation of 0.01%).

The sensing unit was powered by a 3.7V, 150mAh
lithium battery, although the casing was also designed to
accommodate batteries of 300mAh, 400mAh, and 500mAh
capacity. These batteries were selected since they can be

integrated into the casing in a compact way. The current
consumption of the different components of the prototype
wasmeasured. The average values are shown inTable 2. These
values are in line with those provided in the datasheets by the
manufacturers [46–49]. The battery life of the prototype
was also measured, obtaining average values of 3.83 h,
7.88 h, and 13.01 h for batteries of 150mAh, 300mAh,
and 500mAh capacity, respectively. A battery was considered
discharged when the voltage was below 3.6V, following the
recommendation of Lee et al. [50]. Regarding their safety,
lithium-ion batteries are used massively. Statistically, they
are very reliable since failure rates for rechargeable units are
on the order of one in 10 million cells [51].

A TP4056 board is used to manage battery recharge. It
ensures that both current and voltage remain constant during
battery charging. The board consists of a processor and a
battery protection circuit. It regulates the charging current
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Figure 3: Histograms with the distribution of voltage (a), resistance (b), and force (c) for the signals captured in the experiments performed in
this study.

Prototype

Bluetooth connection

Monitoring device
(PC/Android)

Store received
data

Wait for 
next

 reading

Get sample
Send sample
via Bluetooth

Destination 
device with 
Bluetooth

Figure 4: Block diagram of data acquisition and communication of
the proposed system.

Table 2: Current consumption of the main components of the
sensing system.

Component Current consumption

Arduino Pro Mini 9.65mA

Bluetooth 30.5mA

FSR sensor 0.2-360 uA

Total 40.15-40.51mA

Figure 5: Elements of the sensing system mounted: front of the
prototype with the Arduino Pro Mini, battery charger, and FSR
(a) and back of the prototype with the Bluetooth module and
battery (b).
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under conditions of high power operation or high ambient
temperature. The board also ends the charging cycle when
the current drops 10% of the programmed value. It also has
an internal MOSFET battery disconnect switch to avoid neg-
ative charging currents [52].

With respect to the operating temperatures supported by
the prototype, the values for the different components were
extracted from their datasheets: Bluetooth (-20 to 55°C),
Arduino Pro Mini (-40 to 85°C), battery charger (-40 to
85°C), and battery (-20 to 60°C). The sensing system is not
designed to be submerged in water. However, it is not differ-
ent from any other object printed with polylactic acid mate-

rial, which means that the casing can withstand weak levels
of rainwater. Figure 5 shows a photograph of the mounted
components of the sensing system outside the casing.

A casing to contain all the elements of the sensing unit
was designed in the Autodesk software. This casing has two
main parts:

(i) An element printed with standard polylactic acid
(PLA) containing the piezoresistive sensor, the
conditioning circuit, the microprocessor, the Blue-
tooth module, the battery, and the battery charger
(Figure 6(a), Figure 7, and pink case of Figure 8)

(a) (b)

Figure 6: 3D design of the casing. PLA-printed part (a) and flexible PLA-printed part (b).

Figure 7: Internal design of the prototype (details in the Supplementary Materials).
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(ii) An element printed with flexible PLA that allows
transmitting chest movements to the sensing element
(Figure 6(b) and black cover of Figure 8)

The sensing system is attached to the belt through two
rings coupled to the flexible part. Figure 9 shows a pho-
tograph of the back of the casing. The sensing unit was
designed to be worn on a garment, although direct con-
tact with the skin would also be possible. The total size
of this prototype is 73mmwide × 45mmhigh × 37mm
deep (Figure 8). The internal volume of the pink case is
30.42 cm3, while the weight of the entire prototype is 103 g
(21 g for circuitry, 23 g for the 3D printed casing, and 59 g
for the belt and the rings). The 3D design of the casing has
been published as supplementary material and is available
to be reused or reprinted by any interested researcher.

2.2. Data Processing. To measure the respiratory rate of the
signals received on the remote unit via Bluetooth, different
processing operations are performed. Firstly, data are filtered
with a 0.5Hz-low-pass digital filter, which “smooths” the sig-
nals by removing high-frequency noise. A minimum-order
FIR or infinite impulse response (IIR) filter with a stop band
attenuation of 60 dB and compensation for the delay was
used [53]. This frequency has been selected because breath-
ing rates above 30 BPM are rare in daily life activities of
humans [54, 55]. An analysis of the system error was also
performed considering cut-off frequencies in the range
0.5-4.5Hz, obtaining the lowest error values for 0.5Hz.
In addition, to prevent that a trend in the signals (systematic
increase or decrease) due to sensor or subject movement dur-
ing the tests affects system performance, a linear fit was made

to each signal and was subtracted from the original signal
(Figure 10). In this way, systematic shifts were removed.
These shifts are not relevant if signals are analyzed in short
time windows. However, they affect system accuracy in large
windows. Therefore, this preprocessing helps to prevent the
algorithm from malfunctioning in large windows due to
sensor movements other than breathing.

Then, the maximum and minimum points are obtained
in a given analysis time window ðwÞ. For that, a subset of data
which includes only the values in the time window is seg-
mented. It has the form of a vector (x). This vector is used
to calculate the level corresponding to the “zero 280 axis”
(ZA), according to the following equation:

ZA = min xð Þ +max xð Þ
2

, ð2Þ

where x is a vector with the filtered data sequence. The length
of x depends on the time window, which is a parameter
whose optimal value has to be selected (see Validation Exper-
iments). The time window w slides through the entire signal.
To avoid that outliers due to isolated deep breaths may raise
the ZA value, peaks with prominence of at least 0.03V 285
are detected and max ðxÞ is set to the amplitude of the
median of all the detected peaks. The prominence threshold
value was selected after performing simulations in the range
of 0.013-0.13V, since it led to the lowest error values.

ZA will be the reference value used to detect zero-
crossings in the data. To detect these crossing points, the
segmented data set x will be assessed by taking pairs of two
consecutive samples ðxk, xk+1Þ. If inequalities 3 are fulfilled,
a new zero-crossing will be detected and the time kð1/f sÞ
will be added to a vector containing the zero-crossings in
the time window (z). f s is the sampling frequency of the sens-
ing system, in this case, 50Hz.

xk ≤ ZA < xk+1,

xk ≥ ZA > xk+1:
ð3Þ

Figure 8: Prototype designed with all the circuitry embedded inside.

Figure 9: Back of the casing showing the fixation of the flexible part
to the solid part. The belt is attached to both sides of the flexible part
by two rings.
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the systematic shift correction.
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Begin

Segment samples for time-window
of w seconds (x)
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Calculate ZA (Eq.1)
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k
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Figure 11: Block diagram of the data processing algorithms used to estimate the RR.
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To avoid detecting two close zero-crossings due to noise,
the zero-crossing at position jðzjÞ will be removed from z if
zj does not differ, at least, a set threshold ðTHÞ from the rest
of the elements of z, that is, if inequality 4 is satisfied.

zj − zi
�
�

�
� < TH, ∀i ∈ 1,N½ � i ≠ jj , ð4Þ

where N is the length of vector z, j is the index of the zero-
crossing under analysis, and i is the index for the rest of
zero-crossings in z. The value of TH has been empirically set
to 500ms.

Then, two different algorithms are used to measure the
RR. Figure 11 shows a block diagram of both algorithms.
The operation of the algorithms is as follows:

Algorithm 1. This algorithm is based on the time difference
between consecutive zero-crossings [4, 39]. Firstly, the mean
time difference (MTD) between consecutive pairs of zero-
crossings is obtained as follows:

MTD =
∑N−1

i=1 zi − zi+1j j
N − 1

: ð5Þ

Then, with that average value of all times, the respiratory
rate RR (in breaths per minute, 305BPM) is calculated
according to the following equation:

RR = 30
MTD

: ð6Þ

To obtain that equation, it was taken into consideration
that two zero-crossings occur in a breathing cycle (2 MTDs,
is a breathing period) and that the RR is given in breaths per
minute (if one breath occurs in 2 MTDs, in 60 seconds, there
should be 60/2 MTD breaths).

Algorithm 2. This algorithm is based on counting the number
of crosses by zero [56]. For that, the length of the vector z is
obtained, which is directly the number of zero-crossings (N).
Then, the RR is obtained according to the following equation.

RR =
30N
w

, ð7Þ

where w is the duration of the time window (in seconds).
Equation (7) is obtained by scaling the number of zero-
crossings to 60 seconds ð60N/wÞ, so that the number of
zero-crossings in 1 minute is obtained. As each breath is
composed of 2 zero-crossings, by dividing this value by 2,
the RR is obtained.

The sliding time window ðwÞ used in the algorithms is a
parameter that can take any desired value. Once a time win-
dow has been selected, the RR is updated every w seconds.
The methods of counting peaks or zero-crossings or measur-
ing distances between them have been widely used in previ-
ous studies to obtain RR [10, 40, 57–59].

3. Materials and Methods

3.1. Experimental Setup. An experimental setup was designed
to validate the sensor developed. Experiments involved
twenty-one subjects. Fifteen were male and six were female.
Ages ranged from 19 to 55 years with an average of 35.95
and a standard deviation of 10.5. Subjects’ weights were
between 42 and 95 kg (average of 70.76 kg and standard devi-
ation of 14.83 kg). As for heights, they were in the range of
1.52-1.83m with an average of 1.72m and a standard devia-
tion of 7.51 cm.

The diameter of the thoracic region was also measured,
obtaining values from 68 to 103 cm (average of 87.90 cm
and standard deviation of 12.36 cm). The health status of
the participants was also noted. Sixteen subjects declared no
respiratory problems, while five suffered from breathing
allergies and two of them also from asthma. Subjects were
asked to wear the breathing sensor placed just below the
chest, at the level of the diaphragm, as shown in Figure 12.
The sensor was connected via Bluetooth to a computer run-
ning a program that was developed specifically for this study.
The computer program was written in Processing.

Regarding the validation protocol, each subject was asked
to breathe during one minute at the rhythm of a metronome.
The metronome was set so that subjects followed a rhythm of
10, 12.5, 15, 17.5, 20, and 22.5 BPM. There are studies in the
literature that use this method (metronome as a reference) to
validate their sensing systems in a controlled breathing sce-
nario [4, 17, 27, 57, 60, 61]. The reference values of BPM con-
sidered are in accordance with the typical respiratory rates in
humans [62]. Subjects were asked to repeat the experiment in
different positions: sitting without moving, sitting with
movement, standing without moving, standing with move-
ment, and walking. A one-minute resting time was given
between two consecutive experiments. All participants
received written and oral information about the study, and
informed consent was obtained from them to publish their
data anonymously in a public repository.

Each set of breathing data was recorded in a different text
file (two example signals are shown in Figure 13). Thirty files
were recorded for each subject (six BPM times five activities).

Figure 12: Two subjects involved in the validation experiments
wearing the prototype around the chest.
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Therefore, a total of 630 files were collected as a result of the
experiments. The files were processed offline to obtain the RR
according to the algorithms described in Data Processing.
MATLAB was used to perform the processing. The
MATLAB code is given as supplementary material to this
paper.

Figure 13 shows two example of breathing graphs. The
upper signal contains nine breathing cycles. A typical breath-
ing signal has an approximate sinusoidal shape with a nega-
tive slope for inspiration and a positive slope for expiration.
It also has an upper peak corresponding to the situation in
which all the air has been exhaled and a lower peak associated
with the moment when all the air is inside the lungs. Typical
absolute slope values are 0.1-0.2V/s for low intensity activi-
ties, 0.2-0.28V/s for moderate intensity activities, and 0.28-
0.35V/s for higher intensity activities. These values were esti-
mated theoretically and from the signals recorded in the
experiments. Slope values are low since they were measured
in the time-voltage graphs and breathing signals are low
frequency.

3.2. Validation Experiments. The validation experiments
allow in determining the accuracy of the sensor and the opti-
mal processing algorithm and its parameters.

For that, the collected data were processed with the two
algorithms described in Data Processing. For each algorithm,
a different RR was obtained for each participant and dataset
(in total 1260 values, 630 per algorithm). In addition, the
algorithms are influenced by the width of the time window
used to perform the RR calculation. Therefore, twenty-five
different time windows have been considered: from 6 s to
30 s. Windows below 6 s were not considered since the refer-
ence BPM value with the lowest frequency had a period of 6 s.
At least one period is required to obtain the RR. Windows
above 30 s were not considered, since an update time greater
than this value may be excessive for many applications
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Figure 13: Two raw breathing signals captured by the FlexiForce sensor. The upper graph corresponds to an experiment performed at a rate
of 10 BPM in a sitting position without movement. The lower signal was captured at 17.5 BPM during the walking activity.
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Figure 14: Scheme of the validation experiments performed.
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Table 3: Maximum structural relative errors for Algorithm 1 (extreme cases).

10 BPM 12.5 BPM 15 BPM 17.5 BPM 20 BPM 22.5 BPM

Error (%) 0.67 0.83 1.00 1.17 1.33 1.50

Table 4: Maximum structural relative errors (%) for Algorithm 2 (down and up), considering the time window error and the quantization
error for extreme cases. If a single value is provided, it is because the up and down errors are the same.

Window (s) 10 BPM 12.5 BPM 15BPM 17.5 BPM 20BPM 22.5 BPM

6 -50, 50 20.0 0.0 -14.3 -25, 25 11.1

7 28.6 2.9 -14.3 22.4 7.1 -4.8

8 12.5 -10.0 -25, 25 7.1 -6.3 -16.7, 16.7

9 0.0 -20.0 11.1 -4.8 -16.7, 16.7 3.7

10 -10.0 20.0 0.0 -14.3 5.0 -6.7

11 -18.2 9.1 -9.1 9.1 -4.5 9.1

12 -25, 25 0.0 -16.7, 16.7 0.0 -12.5, 12.5 0.0

13 15.4 -7.7 7.7 -7.7 3.8 -7.7

14 7.1 -14.3 0.0 10.2 -3.6 4.8

15 0.0 12.0 -6.7 2.9 -10, 10 -2.2

16 -6.3 5.0 -12.5, 12.5 -3.6 3.1 -8.3, 8.3

17 -11.8 -1.2 5.9 -9.2 -2.9 2.0

18 -16.7, 16.7 -6.7 0.0 4.8 -8.3, 8.3 -3.7

19 10.5 -11.6 -5.3 -0.8 2.6 5.3

20 5.0 8.0 -10, 10 -5.7 -2.5 0.0

21 0.0 2.9 4.8 6.1 -7.1, 7.1 -4.8

22 -4.5 -1.8 0.0 1.3 2.3 3.0

23 -8.7 -6.1 -4.3 -3.1 -2.2 -1.4

24 -12.5, 12.5 -10, 10 -8.3, 8.3 -7.1, 7.1 -6.3, 6.3 -5.6, 5.6

25 8.0 5.6 4.0 2.9 2.0 1.3

26 3.8 1.5 0.0 -1.1 -1.9 -2.6

27 0.0 -2.2 -3.7 -4.8 -5.6, 5.6 3.7

28 -3.6 -5.7 -7.1, 7.1 4.1 1.8 0.0

29 -6.9 7.6 3.4 0.5 -1.7 -3.4

30 -10, 10 4.0 0.0 -2.9 -5, 5 2.2

ts

(b)(a)

3 s 3 s

T = 3 s -> 20 BPM
30⁎5

7 = 21.4 BPM

7 s

Figure 15: Example of possible structural errors associated with Algorithm 1 (a) and Algorithm 2 (a, b).
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[26, 63, 64]. For each time window, the entire analysis was
repeated (in total 31,500 RR values; 15,750 per algorithm).
The elimination of trends due to movements in the sensor
was only applied to large windows (above 21 s for Algorithm 1
and above 19 s for Algorithm 2) since no decrease in error
was perceived in shorter windows. Figure 14 shows the struc-
ture of the experiments graphically.

To obtain the optimal time window, the one sample t-test
was used. This test is suitable to compare the mean of one
sample with a known reference value. The null hypothesis
ðH0Þ is as follows:

H0 : m = μ, ð8Þ

where m is the mean of RR and μ is the reference value of
BPM set by the metronome, which was considered the
gold standard.

Specifically, this test was performed for each time win-
dow and repeated for all reference values of BPM tested. In
total, 150 tests were conducted.

As a result of this test, the p values greater than the signif-
icance level (0.05) were identified. For the time windows and
reference values associated with those p values, the null
hypothesis could not be rejected. In other words, sample
means cannot be assumed to be significantly different from

reference values. Therefore, we can assume that the sensor
is measuring RR accurately for those BPM and time win-
dows. The time windows that have the largest number of
p values greater than 0.05 could be considered candidates
for optimal windows. For those reference values of the candi-
date windows having p values below 0.05 (the mean is signif-
icantly different from the reference value), the Cohen’s d test
can be performed to quantify the effect size [65]. It can be
obtained as the ratio of the difference between two mean
values (one of them can be the reference value) divided by
their pooled standard deviations. Small effect sizes are desir-
able. This would indicate that the difference between the
means of RR and the reference values is small. A quantifica-
tion of the effect size magnitude (“rule of thumb”) can be
made using the thresholds defined in [66]: d < 0:2 (negligible
effect), d < 0:5 (small effect), and d < 0:8 395 (medium effect).
Otherwise, the effect can be categorized as large. Therefore,
the time window with the smallest effect sizes can be consid-
ered optimal.

In parallel, the relative error ðδÞ was calculated according
to the following equation:

δ = 100 × 1 −
μ0
μ
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where μ0 is a measured RR and μ is the reference value of
BPM set by the metronome. In total, 1,500 error values were
calculated (2 algorithms times 6 reference values times 5
activities times 25 time windows). The means of the errors
were made for all activities and reference values, obtaining
50 mean errors (25 per algorithm, 2 per time window).

To determine the optimal algorithm for the optimal time
window, the paired sample t-test was performed since it is
appropriate to compare the means between two groups of
related samples. This test was performed on the means of
the relative errors ðδÞ. The null hypothesis ðH0Þ is as follows:

H0 : m = 0, ð10Þ

where m is the mean of differences. If the p value is less than
or equal to the significance level (0.05), it can be assumed that
the two paired samples (algorithm errors) are significantly
different. In that case, the algorithm with the lowest error
could be considered the best. Figure 14 presents an overview
of the validation experiments. All statistical tests have been
performed in the R software. The R code is given as supple-
mentary material to this paper.

In relation to the errors, it is important to highlight that
some structural errors are already introduced by the sam-
pling frequency or the time window selected, depending on
the algorithm. For Algorithm 1 (based on time measure-
ments), there is a quantization error set by the sampling fre-
quency of up to 1/50 s at each zero-crossing. As one cycle has
two zero-crossings, the maximum structural error in one
cycle can be expressed in relative terms for each reference
BPM value (Table 3). For Algorithm 2 (based on counting
zero-crossings), the time window already introduces some
error. All time windows that are not divisible by integer mul-
tiples of half the breathing period under analysis suffer this
error. For this algorithm, the quantization error can also
affect in some extreme cases in which the appearance or
not of a zero-crossing depends on the sampling frequency
(zero-crossings that appear exactly at the beginning or end
of a window). Taken into consideration both effects (time
window and sampling frequency), their associated maximum
relative errors (up and down) are estimated in Table 4. It
should be noted that the limits of structural errors calculated
in Tables 3 and 4 are maximum values for extreme cases.
Figure 15 graphically shows an example of two structural
errors.

4. Results

Figures 16 and 17 represent the mean error for the twenty-
five time windows under analysis and for the two algorithms
used to obtain the RR. The standard deviations of these mean
values are shown in Table 5. The values of the RR measured
and the source code with the calculation of their mean errors
and standard deviations have been attached to this paper as
supplementary material.

Table 6 shows the p values of the one-sample t-test for
each time window. In view of this table, it is clear that the
27 second window has more p values greater than 0.05: four
in this case. This means that RR average values and reference

values can be assumed to be equal for this time window and
BPM. Therefore, this is the optimal window in the terms
defined in this experiment.

Cohen’s d was calculated for those BPM of the 27 s win-
dow that present statistically significant differences. Table 7
presents the results obtained.

For this window, the error values in the calculation of the
RR provided by the two algorithms were compared. Table 8
shows the results. It can be seen that the p value of the
t-test for paired samples is above the significance level
(0.05). This means that the difference between the two paired
means of error values is not significant. Therefore, it is not
clear the algorithm that presents the lowest error. Both algo-
rithms seem to behave equally well.

The executable source code associated with all statistical
tests has been attached to this paper as supplementary
material.

5. Discussion

The accuracy of the sensor designed presents less average
error value for Algorithm 2 than for Algorithm 1. However,
this difference is not statistically significant. Both algorithms

Table 5: Standard deviations (%) of the mean relative errors ðδÞ for
each algorithm and time window.

Window (s) Algorithm 1 Algorithm 2

6 23.87 5.67

7 17.16 4.76

8 15.32 5.10

9 12.71 4.46

10 11.96 4.49

11 8.78 4.32

12 9.41 4.53

13 8.20 4.63

14 8.00 3.78

15 7.04 3.63

16 6.89 4.06

17 7.09 4.12

18 6.70 4.12

19 5.84 5.13

20 5.04 4.51

21 5.54 4.21

22 5.81 4.61

23 6.35 5.04

24 5.84 4.27

25 5.34 4.06

26 4.99 3.95

27 5.09 4.28

28 5.05 3.96

29 5.42 4.09

30 4.94 3.64
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are influenced, at the same time, by the time window consid-
ered. The validation results presented have allowed deter-
mining the optimal time window.

A time window of 27 s seems optimal to obtain the high-
est sensing accuracy. This has been verified by different
means. Firstly, the mean error values ðδÞ calculated for each
time window have the lowest value for 27 s for Algorithm 2
and the second lowest value for Algorithm 1. Their associated

standard deviations also show low values for the 27 s window
(Table 5). This is an indicator that these low error values also
have a low level of dispersion. In other words, the individual
errors used in the calculation of the average do not differ
much from the average errors obtained. Secondly, the calcu-
lated p values of the one sample t-test provide statistical evi-
dence that the 27 s time window is optimal. This time
window has the highest number of BPM tested that cannot
be considered different from the reference values. The
Cohen’s d results showed a moderate effect size for the
12.5 BPM reference value and large for the 10BPM. Slow
breathing seems to have higher error values for all time
windows. This is an expected result since the number of
cycles used to obtain the RR is less than in rapid breathing.
If the optimal time window was adopted, it could provide a
fairly accurate measurement of RR every twenty-seven sec-
onds. This time step is suitable for many applications. If
shorter time windows were desired (e.g., 16-20 s also have
acceptable error rates), they can be adopted at the expense
of lower accuracy.

Some time windows had large errors for Algorithm 1.
This is the case of short time windows (6 s to 10 s). This is a
logical result since the number of cycles used to make the cal-
culation of time difference is very limited. These time win-
dows are specially affected by the movements of the subject

Table 6: p values greater (>) or less (<) than the significance level (0.05) for the RR calculated for each time window and reference value.

Window (s) 10 BPM 12.5 BPM 15BPM 17.5 BPM 20BPM 22.5 BPM

6 < < < < < >0.05

7 < < < < < >0.05

8 < < < < >0.05 >0.05

9 < < < < >0.05 <

10 < < < < >0.05 <

11 < < < < >0.05 >0.05

12 < < < < >0.05 <

13 < < < < >0.05 <

14 < < < >0.05 >0.05 <

15 < < < >0.05 >0.05 <

16 < < < >0.05 < <

17 < < >0.05 >0.05 < <

18 < < >0.05 >0.05 >0.05 <

19 < < < >0.05 >0.05 <

20 < < < >0.05 >0.05 <

21 < < < >0.05 >0.05 <

22 < < < >0.05 >0.05 <

23 < < < >0.05 >0.05 <

24 < < < >0.05 < <

25 < < < >0.05 < <

26 < < < >0.05 >0.05 <

27 < < >0.05 >0.05 >0.05 >0.05

28 < < < >0.05 >0.05 >0.05

29 < < < >0.05 >0.05 <

30 < < >0.05 >0.05 >0.05 <

Table 7: Effect size quantified with Cohen’s d test.

27 s window

10 BPM 1.06

12.5 BPM 0.53

Table 8: Comparison of the two algorithms. p values of the t-test for
paired samples and Cohen’s d for errors calculated with a 27 s
window.

t-test Cohen’s d

p value 0.0884 0.1320
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or the sensor. It is important to note that the use of time win-
dows greater than 20 s and less than 30 s has quite similar
error values. It is also a fact that error values for those win-
dows were not far from the optimal case, so time windows
above or around 20 s might also be acceptable.

Regarding the processing algorithm, Algorithm 2 seems
more robust to time window variations than Algorithm 1
since its associated error values are small even for short win-
dows. The statistical tests for the optimal window (27 s) did
not identify significant differences. According to the typical
interpretations of Cohen’s d value, the difference between
both algorithms was negligible (0.132).

Results show that the designed sensor can determine the
RR with an error of 3.40%. If the error value obtained with
the proposed sensor is compared with other error values pre-
sented in the literature, it is possible to conclude that this
value is in line with other studies in this field (Table 9). How-
ever, performances among studies cannot be compared
fairly, since each study makes personalized tests. There are
strong differences among validation experiments, datasets,
and performance metrics. The inclusion of movements in
the experiments can also compromise system performance.
It is also important to highlight that the novelty of this paper
with respect to existing studies is that we have presented a
compact piezoresistive sensor with a 3D printed casing inte-
grating all required modules into it, which is an advance in
terms of wearability.

6. Conclusion

A respiration sensing system based on a piezoresistive
FlexiForce sensor to be worn with a chest strap has been
developed. This work is novel since it is the first time that this
sensor is integrated in a compact casing including all the nec-
essary elements (microcontroller, Bluetooth module, battery,
etc.). The casing design has a direct influence on the sensor’s
detection capabilities. As part of this work, a compact casing
has been designed and printed using a 3D printer. The files
with the design have been published as supplementary
material to be reused by any interested researcher.

A validation experiment was performed with 21 subjects.
Two processing algorithms have been developed to deter-
mine the RR. Several statistical tests were conducted to iden-
tify both the optimal time window of the algorithms and the
best algorithm. A time window of 27 s provides optimal
results. This has been verified from the p values of the one
sample t-test and the relative errors. This time window allows
updating the RR every twenty-seven seconds, which is a suit-
able time for many applications. No statistically significant
differences were identified between both algorithms for this
time window. If shorter time windows were required, they
could be used with a slightly larger error. This is a feasible
scenario since error values remain fairly constant for a wide
set of time windows (from 10 s for Algorithm 2 and from
20 s for Algorithm 1). This process of statistical verification
is novel in this field.

Regarding the possible use of the information provided
by this sensing system, it could be applied to several fields
such as ambulatory health monitoring, home treatment of
respiratory diseases, detection of alarming symptoms of
faintness or fatigue in machine operators or drivers, health
condition assessment, prediction and prevention of danger-
ous health states, monitoring of physical activity, and analy-
sis of human emotions like anger and stress, among others.
Customized data processing should be performed depending
on the specific application.

Several commercial products that measure physiological
parameters exist. However, it is not possible to know their
working principle, electronic design, or results of validation
experiments, since these data are generally not published.
Additionally, most commercial products require data to be
analyzed on their proprietary platforms. This contrasts with
the sensing system presented in this paper. Data can be
received online by any device with Bluetooth communica-
tion. They can then be processed offline in any numerical
computing software. In addition, we have designed a 3D
compact casing and uploaded the source files to a public
repository to be rebuilt by any interested researcher. Another
important aspect is the price of the system. Adding the cost
associated with all elements of the system, it is below $50.
Different commercial chest breathing sensors can be pur-
chased for several hundreds of dollars. However, system
design is not available to be reproduced by researchers. In
this paper, the breathing dataset with the measurements from
the experiments, the files with the error calculations, the
source code of the RR computation with the two algorithms,
and the source code of the statistical tests have been

Table 9: Performances provided by other studies in this field. If a
percentage is given without any other indication, that value
corresponds to a relative error. If a value in breaths/min is given
without any other indication, that value corresponds to an
absolute error.

Study Performance

System proposed 3.40%

Chen et al. [60] 98.65% (mean accuracy)

Patwari et al. [61] 0.1-0.4 breaths/min

Liu et al. [8] 1.8-5.7%

Massaroni et al. [57] 2%

Dziuda et al. [10] 12% (maximum)

Nam et al. [17] <1% (median)

Heldt and Ward [68] 1.2 breaths/min

Dan et al. [4]
0.01-0.02 breaths/min
(mean differences)

Taheri and Sant’Anna [31] 0.93-1.77 breaths/min

Min et al. [39]
0.0015 breaths/min
(mean differences)

Massaroni et al. [41] 1.59% (RR) 14% (tidal volume)

Presti et al. [40] 0.38%

Hoffman et al. [2] 37.9% (volume)

Hesse et al. [12] 0.32 breaths/min

Lau et al. [7] 2 breaths/min

Kukkapalli et al. [30] >95% (accuracy)

Padasdao et al. [9]
0.23-0.48 breaths/min
(mean differences)
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published as supplementary material to be reviewed or
reused by researchers in this field. This increases transpar-
ency in research and promotes reusability. It is the first time
that we see this approach in a study in this field, to the best of
our knowledge.

This work also has some limitations. Although sensor
validation using a metronome is a well-known and accepted
method, it would be desirable to validate this sensor against a
reference breathing sensor taken as a gold standard. More
subjects could have been included in the study, and other
3D casing designs could have been investigated. In addition,
programming a smartphone app that receives sensor data via
Bluetooth is a necessary step for the real-world implementa-
tion of the sensing system.

Nevertheless, this paper has shown that the compact
FlexiForce sensor with the 3D casing designed together with
the algorithm based on measuring times between zero-
crossings or counting zero-crossings allows determining the
RR with a low error and an acceptable refresh rate.
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The dataset with the breathing data recorded in the valida-
tion experiments is deposited in a public repository [45].
The files corresponding to the 3D design of the casing, the
calculation of errors and standard deviations, the algorithms
to obtain the RR from raw data, and the statistical tests are
provided as supplementary materials.
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