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and Márcia Federson



Copyright © 2014 Hindawi Publishing Corporation. All rights reserved.

This is a special issue published in “Abstract and Applied Analysis.” All articles are open access articles distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited.



Editorial Board

Ravi P. Agarwal, USA
Bashir Ahmad, KSA
M. O. Ahmedou, Germany
Nicholas D. Alikakos, Greece
Debora Amadori, Italy
Pablo Amster, Argentina
Douglas R. Anderson, USA
Jan Andres, Czech Republic
Giovanni Anello, Italy
Stanislav Antontsev, Portugal
Mohamed Kamal Aouf, Egypt
Narcisa C. Apreutesei, Romania
Natig M. Atakishiyev, Mexico
Ferhan M. Atici, USA
Ivan G. Avramidi, USA
Soohyun Bae, Korea
Chuanzhi Bai, China
Zhanbing Bai, China
D. Baleanu, Turkey
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Tero Kilpeläinen, Finland
Sung Guen Kim, Republic of Korea
Ljubisa Kocinac, Serbia
Andrei Korobeinikov, Spain
Pekka Koskela, Finland
Victor Kovtunenko, Austria
Ren-Jieh Kuo, Taiwan
Pavel Kurasov, Sweden
Miroslaw Lachowicz, Poland
Kunquan Lan, Canada
Ruediger Landes, USA
Irena Lasiecka, USA
Matti Lassas, Finland
Chun-Kong Law, Taiwan
Ming-Yi Lee, Taiwan
Gongbao Li, China
Elena Litsyn, Israel
Yansheng Liu, China



Shengqiang Liu, China
Carlos Lizama, Chile
Milton C. Lopes Filho, Brazil
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The theory of differential equations is always and necessarily
“under construction,” because more accurate mathematical
models usually demand new theoretical developments. For
instance, discontinuities or singularities often occur in appli-
cations and they are often removed from models just for
technical limitations.

On the other hand, the last few years have witnessed
an increasing interest in different types of differential and
integral equations as mathematical models for real life situ-
ations. Besides the classical examples of impulsive equations
or equations with deviating arguments, many other types of
revisions of the classical concepts of differential or integral
equations are being intensively studied: set-valued equations,
stochastic equations, fractional equations, fuzzy equations,
and many more.

This diversity notwithstanding, it appears that general-
ized Stieltjes integration provides an unified framework for
many of the above types of equations, thus simplifying and
improving the theory at the same time.

The special issue succeeded in bringing together a num-
ber of papers on many different branches of the theory
of differential equations which clearly deserve the adjective
“generalized.” The editors in charge of this special issue did
not expect such a variety when they first proposed a special
issue mainly focused on the following topics:

(i) generalized differential and integral equations (such
as differential inclusions, stochastic equations, and
fractional equations, but not restricted to these three),

(ii) discontinuous or singular equations,

(iii) fixed point theorems with applications to differential
equations,

(iv) generalized integration with applications to differen-
tial equations.

While many of papers in the special issue fall inside at least
one of the four previous categories, there are some others
which do not and yet represent many other interesting topics
in this area. For instance, to point out just a few, readers
will find in this special issue papers on singular semigroups,
fuzzy differential equations, homogeneization of parabolic
equations, and interior field methods for Laplace’s equation.

For more details on recent and future developments in
generalized differential and integral equations, we refer the
reader to the survey paper authored by the editors in this
special issue.

Acknowledgments

Finally, the editors wish to express their gratitude to the
many authors and reviewers who contributed so greatly to the
success of this special issue.

Rodrigo López Pouso
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This is a review paper on recent results for different types of generalized ordinary differential equations. Its scope ranges from
discontinuous equations to equations on time scales. We also discuss their relation with inclusion and highlight the use of
generalized integration to unify many of them under one single formulation.

1. Existence Theory for Differential
Equations and Inclusions

Therewas a series of resultswhich progressivelyweakened the
continuity in the state variable of the classical Carathéodory
existence theorem for first-order differential equations; these
include [1–7]. Biles and Schechter posed the open problem
of proving an existence result for discontinuous systems of
differential equations lacking a quasimonotonicity property;
see [7, page 3352]. Motivated by that question, Cid and
Pouso [8] explored an alternative approach to discontinuous
equations which consisted, roughly speaking, of inserting
the differential equation into a semicontinuous differential
inclusion for which existence results were available, and then
positing assumptions on the discontinuities of the former
differential equation so that every solution of the inclusion is
a solution of the equation. Besides getting an existence result
for nonquasimonotone discontinuous systems, the approach
in [8] came to unify and extend previous similar results for
autonomous equations proven in [9] and for nonautonomous
equations proven in [10].

Here and henceforthwework in a real interval 𝐼 = [𝑡
0
, 𝑡

0
+

𝐿] with 𝐿 > 0.

Theorem 1 (see [8,Theorem 2.4]). Assume that𝑓 : 𝐼×R𝑚
→

R𝑚
(𝑚 ∈ N) and the null set 𝑁 ⊂ 𝐼 satisfy the following

conditions.
(i) There exists 𝜓 ∈ 𝐿1

(𝐼) such that for all 𝑡 ∈ 𝐼 \𝑁 and all
𝑥 ∈ R𝑚 one has ‖𝑓(𝑡, 𝑥)‖ ≤ 𝜓(𝑡)(1 + ‖𝑥‖), where ‖ ⋅ ‖
is a norm in R𝑚.

(ii) For all 𝑥 ∈ R𝑚, 𝑓(⋅, 𝑥) is measurable.
(iii) For all 𝑡 ∈ 𝐼\𝑁,𝑓(𝑡, ⋅) is continuous inR𝑚

\𝐾(𝑡), where
𝐾(𝑡) = ∪

∞

𝑛=1
𝐾

𝑛
(𝑡), and for each 𝑛 ∈ N and 𝑥 ∈ 𝐾

𝑛
(𝑡)

one has

⋂

𝜀>0

𝑐𝑜𝑓 (𝑡, 𝑥 + 𝜀𝐵) ∩ 𝐷𝐾𝑛 (𝑡, 𝑥) (1) ⊂ {𝑓 (𝑡, 𝑥)} , (1)

where 𝑐𝑜 denotes the closed convex hull, 𝐵 is the unit
ball centered at the origin, and 𝐷𝐾

𝑛
is the contingent

derivative of the multivalued map 𝐾
𝑛
(see [11] for

details).
Then the set C of all Carathéodory solutions of the initial

value problem
𝑥

(𝑡) = 𝑓 (𝑡, 𝑥 (𝑡)) , 𝑡 ∈ 𝐼, 𝑥 (𝑡

0
) = 𝑥

0
(2)

is a nonempty, compact, and connected subset ofC(𝐼,R𝑚
).
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Moreover, in the scalar case (𝑚 = 1), one has the following.

(1) C has pointwise maximum, 𝑥∗, and minimum, 𝑥
∗
,

which are the extremal solutions of the initial value
problem. Furthermore for each 𝑡 ∈ 𝐼 one has

𝑥
∗
(𝑡) = max {V (𝑡) : V ∈ 𝐴𝐶 (𝐼) ,

V (𝑠) ≤ 𝑓 (𝑠, V (𝑠)) 𝑎.𝑒., V (𝑡
0
) ≤ 𝑥

0
} ,

𝑥
∗
(𝑡) = min {V (𝑡) : V ∈ 𝐴𝐶 (𝐼) ,

V (𝑠) ≥ 𝑓 (𝑠, V (𝑠)) 𝑎.𝑒., V (𝑡
0
) ≥ 𝑥

0
} .

(3)

(2) C is a funnel; that is, for all 𝑡 ∈ 𝐼 and 𝑐 ∈ [𝑥
∗
(𝑡), 𝑥

∗
(𝑡)]

there exists 𝑥 ∈ C such that 𝑥(𝑡) = 𝑐.

The simplest case of Theorem 1 occurs in the one-
dimensional case, that is, 𝑚 = 1, and when the discontinuity
sets𝐾

𝑛
are single-valued, that is,𝐾

𝑛
(𝑡) = {𝛾

𝑛
(𝑡)} for, let us say,

absolutely continuous functions 𝛾
𝑛
, 𝑛 ∈ N. In this situation

we have

𝐷𝐾
𝑛
(𝑡, 𝛾

𝑛
(𝑡)) (1) = {𝛾



𝑛
(𝑡)} , (4)

and then condition (1) reads simply as follows:

either 𝛾
𝑛
(𝑡) ∉ ⋂

𝜀>0

𝑐𝑜𝑓 (𝑡, 𝛾
𝑛
(𝑡) + 𝜀𝐵) ,

or 𝛾


𝑛
(𝑡) = 𝑓 (𝑡, 𝛾𝑛 (𝑡)) ,

(5)

and it is helpful to note that, in the one-dimensional case, we
have

⋂

𝜀>0

𝑐𝑜𝑓 (𝑡, 𝑥 + 𝜀𝐵) = [min {𝑓 (𝑡, 𝑥) , lim inf
𝑦→𝑥

𝑓 (𝑡, 𝑦)} ,

max{𝑓 (𝑡, 𝑥) , lim sup
𝑦→𝑥

𝑓 (𝑡, 𝑦)}] .

(6)

The first alternative in (5) means that 𝛾
𝑛
(𝑡) coincides neither

with 𝑓(𝑡, 𝛾
𝑛
(𝑡)) nor with any limit value of 𝑓 when the

variables tend to (𝑡, 𝛾
𝑛
(𝑡)). This is a sort of transversality

condition between 𝑓(𝑡, 𝑥) and the discontinuity curve 𝛾
𝑛
(𝑡),

and it is immediately satisfied in case 𝛾
𝑛
has a sufficiently big

(or sufficiently small) slope.
The second alternative is much clearer: it simply means

that 𝛾
𝑛
solves the differential equation at the point 𝑡. The

moral is that we do not have to worry about discontinuities
of 𝑓 when they are located over graphs of solutions of the
differential equation (even though these solutions do not
satisfy the initial condition or they are not defined on the
whole interval 𝐼).

For simplicity, we have often called admissible disconti-
nuity curve any function 𝛾(𝑡) satisfying (5), and they have
proven to be useful in other contexts; see [12] for singular
and discontinuous problems and [13] for a revision of Perron’s
method using similar curves.

Let us now turn our attention to differential inclusions.
The rest of this section is devoted to a somewhat inverse
approach to that in the first part: one can get new results
for inclusions by means of known results for discontinuous
equations.

To start with, we quote [14] where we can find necessary
and sufficient conditions for the existence of Carathéodory
solutions to

𝑥

∈ 𝐹 (𝑥) , 𝑥 (0) = 𝑥

0
, (7)

where 𝐹 is an arbitrary multifunction. Biles proves that the
necessary and sufficient conditions for (7) to have at least one
solution are that 𝐹 have a selection 𝑓 such that either 𝑓(𝑥

0
) =

0 or ∫𝛽

𝑥0

𝑑𝑥/𝑓(𝑥) exists (in Lebesgue’s sense) for some 𝛽 ̸=𝑥
0
.

This uses and generalizes a theorem for differential equations
by binding in [15].

We also used known results for equations to study
nonautonomous first-order inclusions in [16]. Let us proceed
to review the main ideas in that paper.

For a given multifunction 𝐹 : 𝐼 × R → 𝑃(R) \ {0} we
consider the initial value problem

𝑥

(𝑡) ∈ 𝐹 (𝑡, 𝑥 (𝑡)) for almost all (𝑎.𝑎.) 𝑡 ∈ 𝐼,

𝑥 (𝑡
0
) = 𝑥

0
,

(8)

and we look for solutions in the Carathéodory sense, that is,
absolutely continuous solutions.

A very usual assumption on the multifunction 𝐹 is that it
assumes compact values for 𝑎.𝑎. 𝑡 ∈ 𝐼 and all𝑥 ∈ R, hence the
set 𝐹(𝑡, 𝑥) has minimum and maximum. We simply impose
the following condition.

(H1) For 𝑎.𝑎. 𝑡 ∈ 𝐼 and all 𝑥 ∈ R the set 𝐹(𝑡, 𝑥)
has a minimum; and now we introduce the following
definition.

Definition 2. Asuperfunction (or upper solution) of (8) is any
𝑢 ∈ 𝐴𝐶(𝐼) such that 𝑢(𝑡

0
) ≥ 𝑥

0
and for 𝑎.𝑎. 𝑡 ∈ 𝐼 one has

𝑢

(𝑡) ≥ min𝐹(𝑡, 𝑢(𝑡)).
We also impose the following.

(H2) There exists 𝜓 ∈ 𝐿
1
(𝐼) such that for 𝑎.𝑎. 𝑡 ∈ 𝐼

and all 𝑥 ∈ R we have

|min𝐹 (𝑡, 𝑥)| ≤ 𝜓 (𝑡) , (9)

and we restrict, for technical convenience, the set of super-
functions to the following one.

Definition 3. The set of admissible superfunctions of (8) is

𝑈 := {𝑢 ∈ 𝐴𝐶 (𝐼) : 𝑢 is a superfunction of (8)

and 
𝑢

≤ 𝜓 + 1 𝑎.𝑒. on 𝐼} .

(10)

Notice that 𝑢(𝑡) := 𝑥
0
+ ∫

𝑡

𝑡0

𝜓(𝑟)𝑑𝑟, 𝑡 ∈ 𝐼, is an admissible
superfunction of (8). Thus we can define

𝑢inf (𝑡) := inf {𝑢 (𝑡) : 𝑢 ∈ 𝑈} ∀𝑡 ∈ 𝐼. (11)

Standard arguments reveal that 𝑢inf (𝑡0) = 𝑥0
and that 𝑢inf ∈

𝐴𝐶(𝐼).
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For simplicity of notation, we also define

𝑓
𝑚
(𝑡, 𝑥) := min𝐹 (𝑡, 𝑥) for 𝑎.𝑎. 𝑡 ∈ 𝐼 and all 𝑥 ∈ R,

(12)

and we consider the ordinary problem

𝑥

(𝑡) = 𝑓

𝑚
(𝑡, 𝑥 (𝑡)) for 𝑎.𝑎. 𝑡 ∈ 𝐼, 𝑥 (𝑡

0
) = 𝑥

0
. (13)

Plainly, solutions of (13) are solutions of (8) by virtue of (H1),
but the converse is false in general. Moreover, superfunctions
of (8) in the sense of Definition 2 are nothing but the usual
superfunctions of (13), and so 𝑢inf is a reasonable candidate
for being a solution to (8). Note also that solutions of (8) need
not be admissible superfunctions in the sense of Definition 3,
so 𝑢inf might not be the least solution of (8).

Definition 4. A lower admissible nonquasisemicontinuity
curve for (8) (LAD curve, for short) is an absolutely continu-
ous function 𝛾 : [𝑎, 𝑏] ⊂ 𝐼 → R for which there exist disjoint
sets 𝐴, 𝐵 ⊂ [𝑎, 𝑏] such that 𝐴 ∪ 𝐵 = [𝑎, 𝑏] and for 𝑎.𝑎. 𝑡 ∈ 𝐴
one has

𝛾

(𝑡) ∈ 𝐹 (𝑡, 𝛾 (𝑡)) , (14)

and for 𝑎.𝑎. 𝑡 ∈ 𝐵 one has

𝛾

(𝑡) ≥ 𝑓

𝑚
(𝑡, 𝛾 (𝑡)) whenever 𝛾 (𝑡) ≥ lim inf

𝑦→(𝛾(𝑡))
+

𝑓
𝑚
(𝑡, 𝑦) ,

𝛾

(𝑡) ≤ 𝑓

𝑚
(𝑡, 𝛾 (𝑡)) whenever 𝛾 (𝑡) ≤ lim sup

𝑦→(𝛾(𝑡))
−

𝑓
𝑚
(𝑡, 𝑦) .

(15)

Remark 5. The sets 𝐴 or 𝐵 in Definition 4 might be empty.
A particularly clear case of a LAD curve corresponds to

𝐵 = 0, which means that 𝐴 = [𝑎, 𝑏], so in that case the LAD
curve is nothing but a solution of the differential inclusion on
[𝑎, 𝑏].

In turn, let us point out the following sufficient condition
for an absolutely continuous function 𝛾 : [𝑎, 𝑏] ⊂ 𝐼 → R to
be a LAD curve with 𝐵 = [𝑎, 𝑏]: there exist 𝜀 > 0 and 𝜌 > 0
such that for 𝑎.𝑎. 𝑡 ∈ [𝑎, 𝑏] we have

𝑓
𝑚
(𝑡, 𝑥) ≥ 𝛾


(𝑡) + 𝜌 ∀𝑥 ∈ [𝛾 (𝑡) − 𝜀, 𝛾 (𝑡) + 𝜀] , (16)

or for 𝑎.𝑎. 𝑡 ∈ [𝑎, 𝑏] we have

𝑓
𝑚
(𝑡, 𝑥) ≤ 𝛾


(𝑡) − 𝜌 ∀𝑥 ∈ [𝛾 (𝑡) − 𝜀, 𝛾 (𝑡) + 𝜀] . (17)

Notice that (16) (or (17)) implies that 𝛾 crosses each solution
of 𝑥

= 𝑓
𝑚
(𝑡, 𝑥) at most once, so (16) (or (17)) is a

transversality condition for 𝛾 with respect to the differential
equation 𝑥

= 𝑓
𝑚
(𝑡, 𝑥).

We are now in a position to present themain result in [16].

Theorem 6 (see [16, Theorem 2.5]). Assume that conditions
(H1) and (H2) hold. Suppose moreover that the following
condition is fulfilled.

(H3) Either for 𝑎.𝑎. 𝑡 ∈ 𝐼 and all 𝑥 ∈ R one has

lim sup
𝑦→𝑥

−

𝑓
𝑚
(𝑡, 𝑦) ≤ 𝑓

𝑚
(𝑡, 𝑥) ≤ lim inf

𝑦→𝑥
+

𝑓
𝑚
(𝑡, 𝑦) (18)

or there exist countably many LAD curves for (8), 𝛾
𝑛
:

[𝑎
𝑛
, 𝑏

𝑛
] ⊂ 𝐼 → R, 𝑛 ∈ N, such that for 𝑎.𝑎. 𝑡 ∈ 𝐼 and

all 𝑥 ∈ R \ ∪
{𝑛|𝑎𝑛≤𝑡≤𝑏𝑛}

{𝛾
𝑛
(𝑡)} one has (18).

Then one has the following results.
(a) There exists a null measure set𝑁 ⊂ 𝐼 such that

{𝑡 ∈ 𝐼 : 𝑢


inf (𝑡) ∉ 𝐹 (𝑡, 𝑢inf (𝑡))} ⊂ 𝐽 ∪ 𝑁, (19)

where 𝐽 = ∪
𝑛,𝑚∈N𝐽𝑛,𝑚, and for each 𝑛,𝑚 ∈ N the set

𝐽
𝑛,𝑚

:= {𝑡 ∈ 𝐼 : 𝑢


inf (𝑡) −
1

𝑛

> sup {𝑓
𝑚
(𝑡, 𝑦) : 𝑢inf (𝑡) −

1

𝑚
< 𝑦 < 𝑢inf (𝑡)}}

(20)

contains no positive measure subset.
(b) The function 𝑢inf is a solution of (8) provided that for

all 𝑛,𝑚 ∈ N the set 𝐽
𝑛,𝑚

is measurable.
(c) If 𝐽

𝑛,𝑚
is measurable for every 𝑛,𝑚 ∈ N, then 𝑢inf is the

least solution of (8) provided that one of the following
conditions hold:

either for 𝑎.𝑎. 𝑡 ∈ 𝐼, all 𝑥 ∈ R, and all 𝑦 ∈ 𝐹(𝑡, 𝑥)
one has 𝑦 ≤ 𝜓(𝑡) + 1 or the first alternative in
(H3) holds, which, furthermore, guarantees that
𝑢inf is the least solution to (13).

The following result is Lemma 2 in [13], and it is very
useful to prove that the 𝐽

𝑛,𝑚
’s are measurable in practical

situations.

Lemma 7. Let𝑁 ⊂ 𝐼 be a null measure set and let 𝑔 : 𝐼×R →

R be such that 𝑔(⋅, 𝑞) is measurable for each 𝑞 ∈ Q.
If, moreover, for all 𝑡 ∈ 𝐼 \ 𝑁 and all 𝑥 ∈ R one has

max{lim inf
𝑦→𝑥

−

𝑔 (𝑡, 𝑦) , lim inf
𝑦→𝑥

+

𝑔 (𝑡, 𝑦)} ≥ 𝑔 (𝑡, 𝑥) , (21)

then the mapping 𝑡 ∈ 𝐼 → sup{𝑔(𝑡, 𝑦) : 𝑥
1
(𝑡) < 𝑦 < 𝑥

2
(𝑡)} is

measurable for each pair 𝑥
1
, 𝑥

2
∈ 𝐶(𝐼) such that 𝑥

1
(𝑡) < 𝑥

2
(𝑡)

for all 𝑡 ∈ 𝐼.

Notice that our multifunctions 𝐹 need not satisfy the
usual hypotheses such as monotonicity or upper/lower semi-
continuity. Moreover, 𝐹 need not assume closed or convex
values.

An analogous result for the greatest solution to (13) is also
given in [16] and existence of solution for a singular version
of (8) is considered in [17].

Another example where we used known results for
equations to deduce new result for inclusions is [18], which
concerns second-order inclusions and relies on the results
proven for equations in [19]. In order to present the main
result in [18] we need some notations and preliminaries.

Let 𝐹 : [0, 𝑇] ×R → P(R) \ {0}, and

𝑋 = {𝑢 ∈ C ([0, 𝑇]) : 𝑢 (0) = 𝑥0
, 𝑢 is nondecreasing} .

(22)
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For each 𝑢 ∈ 𝑋 we define its “pseudoinverse” �̂� : R → [0, 𝑇]

as

�̂� (𝑥) =

{{

{{

{

0, 𝑥 < 𝑥
0
,

min 𝑢−1
({𝑥}) , 𝑥

0
≤ 𝑥 ≤ 𝑢 (𝑇) ,

𝑇, 𝑢 (𝑇) < 𝑥.

(23)

We notice that �̂� is nondecreasing but not necessarily contin-
uous.Moreover, if𝑢 ∈ 𝑋 is increasing in 𝐼, then �̂�(𝑥) = 𝑢−1

(𝑥)

for all 𝑥 ∈ [𝑥
0
, 𝑢(𝑇)].

Theorem8 (see [18,Theorem 4.1]). Suppose that for some𝑅 >
0 the following hypotheses hold.

(F1) For each𝑢 ∈ 𝑋 themultifunction𝐹
𝑢
: R → P(R)\{0}

defined as 𝐹
𝑢
(⋅) = 𝐹(�̂�(⋅), ⋅) has an admissible selection

on the right of 𝑥
0
, that is, a selection𝑓

𝑢
: [𝑥

0
, 𝑥

0
+𝑅] →

R such that

(i) 𝑓
𝑢
∈ 𝐿

1
(𝑥

0
, 𝑥

0
+ 𝑅);

(ii) 𝑥2

1
+ 2 ∫

𝑥

𝑥0

𝑓
𝑢
(𝑟)𝑑𝑟 > 0 for 𝑎.𝑎. 𝑥 ∈ [𝑥

0
, 𝑥

0
+ 𝑅];

(iii) max{1, |𝑓|}/√𝑥2

1
+ 2 ∫

⋅

𝑥0

𝑓
𝑢
(𝑟)𝑑𝑟 ∈ 𝐿

1
(𝑥

0
, 𝑥

0
+

𝑅);
(iv) ∫𝑥0+𝑅

𝑥0

(𝑑𝑥/√𝑥
2

1
+ 2 ∫

𝑥

𝑥0

𝑓
𝑢
(𝑟)𝑑𝑟) ≥ 𝑇.

(F2) There exists𝑀 ∈ 𝐿
1
(𝑥

0
, 𝑥

0
+ 𝑅) such that for all 𝑡 ∈ 𝐼

and all 𝑥 ∈ [𝑥
0
, 𝑥

0
+ 𝑅] one has

sup {𝑦 : 𝑦 ∈ 𝐹 (𝑡, 𝑥)} ≤ 𝑀 (𝑥) . (24)

(F3) For every 𝑢, V ∈ 𝑋, the relation 𝑢 ≤ V on 𝐼 implies
𝑓
𝑢
≤ 𝑓V on [𝑥0

, 𝑥
0
+ 𝑅].

Then the initial value problem

𝑥

(𝑡) ∈ 𝐹 (𝑡, 𝑥 (𝑡)) for 𝑎.𝑎. 𝑡 ∈ 𝐼 := [0, 𝑇] ,

𝑥 (0) = 𝑥
0
, 𝑥


(0) = 𝑥

1
≥ 0

(25)

has an increasing solution in𝑊2,1
(0, 𝑇).

2. Dynamic Equations on Time Scales

The study of time scales was formalized in the Ph.D. thesis of
Hilger in 1988 [20].The notions of derivative fromdifferential
calculus and the forward jump operator from difference
calculus are unified and extended to the delta derivative 𝑓Δ

on a time scale T (an arbitrary set on the real line).These lead
to the study of dynamic equations on time scales, unifying
differential and difference equations. In addition, these ideas
can be applied in situations more general than those for
differential and difference equations, such as population
problems inwhich the species alternates between time frames
in which they are active and periods of dormancy. The study
of time scales yields interesting insight into the special cases.
For example, one realizes that the only reason we have the
simple derivative from elementary calculus of 𝑡2 is 2𝑡 is
because the graininess of real line is zero.

Much of the earlier history of time scales can be found in
the books by Bohner and Peterson [21, 22] which are on the
bookshelf of every time scales analyst. We refer the reader to
these sources for the basic concepts and definitions for time
scales. Reference [21] collects much of the information for
the linear case. As an example, we will overview the first-
order linear case. We define the cylinder transformation 𝜉

ℎ

on {𝑧 ∈ C | 𝑧 ̸= − 1/ℎ} by 𝜉
ℎ
(𝑧) = 1/ℎ log(1 + 𝑧ℎ) for ℎ > 0,

where log is the principal logarithm function and 𝜉
0
(𝑧) = 𝑧.

We call a function 𝑝 : T → R regressive if 1+𝜇(𝑡)𝑝(𝑡) for all
𝑡 ∈ T𝜅, where 𝜇 is the graininess of the time scale.We can now
define the time scales (or generalized) exponential function
by 𝑒

𝑝
(𝑡, 𝑠) = exp(∫𝑡

𝑠
𝜉
𝜇(𝑡)
(𝑝(𝜏))Δ𝜏), where 𝑠, 𝑡 ∈ T . The

exponential function thus defined enjoys many properties
analogous to that of the standard exponential function on the
real line. The following can now be proven.

Theorem9. Suppose 𝑝 is rd-continuous and regressive, and let
𝑡
0
∈ T . Then, 𝑒

𝑝
(⋅, 𝑡

0
) is the unique solution to

𝑦
Δ
= 𝑝 (𝑡) 𝑦, 𝑦 (𝑡

0
) = 1. (26)

Note that this yields the corollaries that 𝑦 = 𝑒
𝛼𝑡 is the

unique solution to 𝑦
= 𝛼𝑦, 𝑦(0) = 1 on the real line and

𝑦 = (1 + 𝛼)
𝑡 is the unique solution to Δ𝑦(𝑡) = 𝛼𝑦(𝑡), 𝑦(0) = 1

on the integers, where Δ𝑦 represents the forward difference
operator from difference calculus.

We note that the nabla derivative on time scales was
defined byAtici andGuseinov [23] in 2002, which generalizes
the backward difference operator. One might think that the
results for nabla derivatives mirror those for the delta case,
but this is not true; see, for example, [24]. Recently, work
has progressed for dynamic equations with the diamond-
alpha derivative initiated in [25] and furthered in [26–28].
In the remainder of this section, without making a claim
to being complete, we overview some of the recent work in
dynamic equations on time scales to illustrate how many of
the ideas fromdifferential and difference equations have been
generalized and extended.

Existence of solutions has been proven in a number of
cases, such as [29] using fixed point theory, [30] proving a
Nagumo-type existence result, and [31] using a fixed point
theorem due to Avery and Peterson. (A number of other
existence theorems arementioned in specific contexts below.)
As an example, here is the theorem from [30].

Theorem 10. Assume there exist a lower solution 𝛼 and an
upper solution 𝛽 with 𝛼 ≤ 𝛽 on T and

(a) 𝑓 ∈ 𝐶([𝑎, 𝑏] × R2
,R) satisfies 𝑓(𝑡, 𝑥, 𝑦) > 0 for all

𝑡 ∈ T , 𝑥 ∈ [𝛼𝜎
(𝑡), 𝛽

𝜎
(𝑡)] and 𝑦 ̸= 0,

(b) there exists a 𝐾 > 0 such that 𝑓(𝑡, 𝑥, 𝑦) ≤ 𝐾 for all
right scattered 𝑡 ∈ T , 𝑥 ∈ [𝛼𝜎

(𝑡), 𝛽
𝜎
(𝑡)] and 𝑦 ∈ R,

(c) 𝑓(𝑡, 𝑥, ⋅) is nonincreasing for all right scattered 𝑡 ∈ T

and 𝑥 ∈ [𝛼𝜎
(𝑡), 𝛽

𝜎
(𝑡)],

(d) 𝐿
1
∈ 𝐶(R4

× 𝐶(T),R) is nondecreasing in its third
variable, nonincreasing in its fourth variable, and
nondecreasing in its fifth variable,
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(e) 𝐿
2
∈ 𝐶(R2

,R) is nonincreasing in its first variable, and

(f) 𝑓 satisfies a Nagumo condition with respect to the pair
𝛼 and 𝛽.

Then, there exists a solution 𝑦 ∈ [𝛼, 𝛽] to the problem

𝑦
ΔΔ
(𝑡) = 𝑓 (𝑡, 𝑦

𝜎
(𝑡) , 𝑦

Δ
(𝑡)) , for 𝑡 ∈ T

𝜅
2

,

0 = 𝐿
1
(𝑦 (𝑎) , 𝑦

Δ
(𝑎) , 𝑦 (𝜎

2
(𝑏)) , 𝑦

Δ
(𝜎 (𝑏)) , 𝑦) ,

0 = 𝐿
2
(𝑦 (𝑎) , 𝑦 (𝜎

2
(𝑏))) .

(27)

Singular problems have been studied in [32, 33]. Green’s
functions have been considered in [23, 34]. A Sturm-Liouville
eigenvalue problem was studied by [35]. Periodic solutions
were investigated in [36]. OscillationS of solutions have been
considered in [37–39] using the time scales Taylor formula,
[40–45]. Asymptotic behavior of solutions has been studied
in [46, 47] using Taylor monomials and in [47]. Laplace
transforms on time scales were studied by [48].

Delay equations were studied in [40, 42, 44]. Impulsive
problems have been studied in [37, 38, 49–51]. Functional
dynamic equations have been studied in [50, 52] using
Lyapunov functions [41, 46]. Fractional derivatives have been
considered in [53, 54]. Problems in abstract spaces were
studied in [55]. Dynamic inclusions have been studied in
[24, 37, 50, 56]. Partial differentiation on time scales was
introduced in [57] and was continued in [28].

Recently, work has begun on extending stochastic calcu-
lus to time scales, for example, [58] for the isolated time scale
case, [59, 60] for the delta case, AND [61] for the nabla case.

3. Generalized Ordinary Differential Equations

In order to generalize some results on continuous depen-
dence of solutions of ordinary differential equations with
respect to the initial data, Jaroslav Kurzweil introduced, in
1957, the notion of generalized ordinary differential equations
for functions taking values in Euclidean and Banach spaces.
This generalization of the notion of ordinary differential
equations uses the concept of the Perron generalized integral,
also known as the Kurzweil integral. We refer to these
equations as generalized ODEs. See [62–66].

The correspondence between generalized ODEs and clas-
sic ODEs is very simple. It is known that the ordinary system

̇𝑥 = 𝑓 (𝑥, 𝑡) , (28)

where ̇𝑥 = 𝑑𝑥/𝑑𝑡,Ω ⊂ R𝑛 is an open set and𝑓 : Ω×R → R𝑛,
has the integral representation

𝑥 (𝑡) = 𝑥 (𝑡0) + ∫

𝑡

𝑡0

𝑓 (𝑥 (𝜏) , 𝜏) 𝑑𝜏, 𝑡 ≥ 𝑡
0
, (29)

whenever the integral exists in some sense. It is also known
that if the integral in (29) is in the sense of Riemann, Lebesgue
(with the equivalent definition given by E. J. McShane), or
Henstock-Kurzweil, for instance, then such an integral can
be approximated by a Riemann-type sum of the form

𝑚

∑

𝑖=1

𝑓 (𝑥 (𝜏
𝑖
) , 𝜏

𝑖
) [𝑠

𝑖
− 𝑠

𝑖−1
] , (30)

where 𝑡
0
= 𝑠

0
≤ 𝑠

1
≤ ⋅ ⋅ ⋅ ≤ 𝑠

𝑚
= 𝑡 is a fine partition of the

interval [𝑡
0
, 𝑡] and, for each 𝑖 = 1, 2, . . . , 𝑚, 𝜏

𝑖
is sufficiently

“close” to the interval [𝑠
𝑖−1
, 𝑠

𝑖
].

Alternatively, if we define

𝐹 (𝑥, 𝑠) = ∫

𝑠

𝑠0

𝑓 (𝑥, 𝜎) 𝑑𝜎, (𝑥, 𝑡) ∈ Ω ×R, (31)

then the integral in (29) can be approximated by

𝑚

∑

𝑖=1

∫

𝑠𝑖

𝑠𝑖−1

𝑓 (𝑥 (𝜏
𝑖
) , 𝜎) 𝑑𝜎

=

𝑚

∑

𝑖=1

[𝐹 (𝑥 (𝜏
𝑖
) , 𝑠

𝑖
) − 𝐹 (𝑥 (𝜏

𝑖
) , 𝑠

𝑖−1
)] .

(32)

In such a case, the right-hand side of (32) approximates
the nonabsolute Kurzweil integral which, when considered
in (29), gives rise to a “differential equation” of type (28),
however in a wider sense. Such type of equation is known
as generalized ordinary differential equation or Kurzweil
equation. See [67, 68].

Let [𝑎, 𝑏] ⊂ R be a compact interval and consider a
function 𝛿 : [𝑎, 𝑏] → R+ (called a gauge on [𝑎, 𝑏]). A tagged
partition of the interval [𝑎, 𝑏] with division points 𝑎 = 𝑠

0
≤

𝑠
1
≤ ⋅ ⋅ ⋅ ≤ 𝑠

𝑘
= 𝑏 and tags 𝜏

𝑖
∈ [𝑠

𝑖−1
, 𝑠

𝑖
], 𝑖 = 1, . . . , 𝑘, is called

𝛿-fine if

[𝑠
𝑖−1
, 𝑠

𝑖
] ⊂ (𝜏

𝑖
− 𝛿 (𝜏

𝑖
) , 𝜏

𝑖
+ 𝛿 (𝜏

𝑖
)) , 𝑖 = 1, . . . , 𝑘. (33)

Definition 11. Let 𝑋 be a Banach space. A function 𝑈(𝜏, 𝑡) :
[𝑎, 𝑏] × [𝑎, 𝑏] → 𝑋 is called Kurzweil integrable over [𝑎, 𝑏],
if there is an element 𝐼 ∈ 𝑋 such that, given 𝜀 > 0, there is a
gauge 𝛿 on [𝑎, 𝑏] such that



𝑘

∑

𝑖=1

[𝑈 (𝜏
𝑖
, 𝑠

𝑖
) − 𝑈 (𝜏

𝑖
, 𝑠

𝑖−1
)] − 𝐼



< 𝜀, (34)

for every 𝛿-fine tagged partition of [𝑎, 𝑏]. In this case, 𝐼 is
called the Kurzweil integral of 𝑈 over [𝑎, 𝑏] and it will be
denoted by ∫𝑏

𝑎
𝐷𝑈(𝜏, 𝑡).

TheKurzweil integral has the usual properties of linearity,
additivity with respect to adjacent intervals, and integrability
on subintervals. See, for instance, [68], for these and other
interesting properties.

Now, consider a subset 𝑂 ⊂ 𝑋 and a function 𝐺 : 𝑂 ×

[𝑎, 𝑏] → 𝑋.
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Any function 𝑥 : [𝑎, 𝑏] → 𝑂 is called a solution of the
generalized ordinary differential equation (we write simply
generalized ODE)

𝑑𝑥

𝑑𝜏
= 𝐷𝐺 (𝑥, 𝑡) (35)

on the interval [𝑎, 𝑏], provided

𝑥 (𝑑) − 𝑥 (𝑐) = ∫

𝑑

𝑐

𝐷𝐺 (𝑥 (𝜏) , 𝑡) , 𝑐, 𝑑 ∈ [𝑎, 𝑏] , (36)

where the integral is obtained by setting 𝑈(𝜏, 𝑡) = 𝐺(𝑥(𝜏), 𝑡)
in the definition of the Kurzweil integral.

As it was done in [69, 70], but using different assumptions,
namely, Carathéodory and Lipschitz-type conditions on the
indefinite integral, we proved in [71] that retarded functional
differential equations (we write RFDEs, for short) can be
regarded as abstract generalizedODEs and some applications
were investigated.

In [72], together with professor Štefan Schwabik, we
proved that RFDEs subject to impulse effects can also be
regarded as generalized ODEs taking values in a Banach
space.

Recently, in [73], together with Federson et al., we proved
that a solution of a measure RFDEs of the form

𝐷𝑦 = 𝑓 (𝑦
𝑡
, 𝑡) 𝐷𝑔, 𝑦

𝑡0
= 𝜙, (37)

where 𝐷𝑦 and 𝐷𝑔 are distributional derivatives in the sense
of L. Schwartz with respect to 𝑦 and 𝑔, respectively, can be
related to a solution of an abstract generalized ODE. More
precisely, we considered the integral form of (37) as follows:

𝑥 (𝑡) = 𝑥 (𝑡
0
) + ∫

𝑡

𝑡0

𝑓 (𝑥
𝑠
, 𝑠) 𝑑𝑔 (𝑠) , 𝑡 ≥ 𝑡

0
,

𝑥
𝑡0
= 𝜙,

(38)

where 𝑡
0
, 𝜎, 𝑟 are given real numbers, with 𝜎, 𝑟 > 0, and

𝑦
𝑡
(𝜃) = 𝑦(𝑡 + 𝜃), for 𝜃 ∈ [−𝑟, 0]. We also considered 𝑂 ⊂

𝐺([𝑡
0
− 𝑟, 𝑡

0
+ 𝜎],R𝑛

) as being an open set and
𝑃 = {𝑦

𝑡
: 𝑦 ∈ 𝑂, 𝑡 ∈ [𝑡

0
, 𝑡

0
+ 𝜎]} ⊂ 𝐺 ([−𝑟, 0] ,R

𝑛
) , (39)

where by 𝐺([𝑎, 𝑏], 𝑋) we mean the Banach space of all
regulated functions 𝑓 : [𝑎, 𝑏] → 𝑋 endowed with the usual
supremum norm

𝑓
∞

= sup
𝑎≤𝑡≤𝑏

𝑓 (𝑡)
 , (40)

andwe assumed that𝑓:𝑃×[𝑡
0
, 𝑡

0
+𝜎] → R𝑛 is a function such

that, for each 𝑦 ∈ 𝑂, the mapping 𝑡 → 𝑓(𝑦
𝑡
, 𝑡) is Henstock-

Kurzweil integrable (or Perron integrable) over [𝑡
0
, 𝑡

0
+ 𝜎]

with respect to a nondecreasing function𝑔 : [𝑡
0
, 𝑡

0
+𝜎] → R.

Then, we defined a function𝐺 : 𝑂× [𝑡
0
, 𝑡

0
+𝜎] → 𝐺([𝑡

0
, 𝑡

0
+

𝜎],R𝑛
) by

𝐺 (𝑥, 𝑡) (𝜗) =

{{{{{{{

{{{{{{{

{

0, 𝑡
0
− 𝑟 ≤ 𝜗 ≤ 𝑡

0
,

∫

𝜗

𝑡0

𝑓 (𝑥
𝑠
, 𝑠) 𝑑𝑔 (𝑠) , 𝑡

0
≤ 𝜗 ≤ 𝑡 ≤ 𝑡

0
+ 𝜎,

∫

𝑡

𝑡0

𝑓 (𝑥
𝑠
, 𝑠) 𝑑𝑔 (𝑠) , 𝑡 ≤ 𝜗 ≤ 𝑡

0
+ 𝜎,

(41)

and proved the correspondence between a solution of (38)
and a solution of the generalized ODE

𝑑𝑥

𝑑𝜏
= 𝐷𝐺 (𝑥 (𝜏) , 𝑡) , (42)

with initial condition

𝑥 (𝑡
0
) (𝜗) = {

𝜙 (𝜗 − 𝑡
0
) , 𝑡

0
− 𝑟 ≤ 𝜗 ≤ 𝑡

0
,

𝑥 (𝑡
0
) (𝑡

0
) , 𝑡

0
≤ 𝜗 ≤ 𝑡

0
+ 𝜎,

(43)

just by requiring the following conditions.

(A) The integral∫𝑡0+𝜎

𝑡0

𝑓(𝑦
𝑡
, 𝑡)𝑑𝑔(𝑡) exists, for every𝑦 ∈ 𝑂.

(B) There exists a function𝑀 : [𝑡
0
, 𝑡

0
+ 𝜎] → R+ which

is Lebesgue integrable with respect to 𝑔 such that, for
all 𝑦 ∈ 𝑂, 𝑢

1
, 𝑢

2
∈ [𝑡

0
, 𝑡

0
+ 𝜎], we have



∫

𝑢2

𝑢1

𝑓 (𝑦
𝑠
, 𝑠) 𝑑𝑔 (𝑠)



≤ ∫

𝑢2

𝑢1

𝑀(𝑠) 𝑑𝑔 (𝑠) . (44)

(C) There exists a function 𝐿 : [𝑡
0
, 𝑡

0
+ 𝜎] → R+ which

is Lebesgue integrable with respect to 𝑔, such that for
all 𝑦, 𝑥 ∈ 𝑂, 𝑢

1
, 𝑢

2
∈ [𝑡

0
, 𝑡

0
+ 𝜎], we have



∫

𝑢2

𝑢1

[𝑓 (𝑥
𝑠
, 𝑠) − 𝑓 (𝑦

𝑠
, 𝑠)] 𝑑𝑔 (𝑠)



≤ ∫

𝑢2

𝑢1

𝐿 (𝑠)
𝑥𝑠

− 𝑦
𝑠

 𝑑𝑔 (𝑠) .

(45)

Under the above conditions, the paper [73] introduces
new concepts of stability for the trivial solutions of (38), with
𝑓(0, 𝑡) = 0, for 𝑡 ∈ [𝑡

0
, 𝑡

0
+ 𝜎], and new results which

generalize those from [74–76], for instance.
In [77, 78], together with Federson et al., we proved that

measure RFDEs are useful tools in the study of impulsive
RFDEs and functional dynamic equations on time scales with
or without impulse action. In other words, it was proved that
the unique solution of the Cauchy problem for a measure
RFDE of type

𝑥 (𝑡) = 𝑥 (𝑡0) + ∫

𝑡

𝑡0

𝑓 (𝑥
𝑠
, 𝑠) 𝑑𝑔 (𝑠) , 𝑡 ∈ [𝑡

0
, 𝑡

0
+ 𝜎] ,

𝑥
𝑡0
= 𝜙

(46)

can be regarded, in a one-to-one relation, with the unique
solution of the Cauchy problem for the measure RFDE with
impulses given by

𝑥 (𝑡) = 𝑥 (𝑡0) + ∫

𝑡

𝑡0

𝑓 (𝑥
𝑠
, 𝑠) 𝑑𝑔 (𝑠)

+ ∑

𝑘∈{1,...,𝑚},

𝑡𝑘<𝑡

𝐼
𝑘
(𝑥 (𝑡

𝑘
)) , 𝑡 ∈ [𝑡

0
, 𝑡

0
+ 𝜎] ,

𝑥
𝑡0
= 𝜙.

(47)
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Still in [77, 78], we related the solution of problem (47) to
the solution of the following impulsive functional dynamic
equation on time scales

𝑥 (𝑡) = 𝑥 (𝑡0) + ∫

𝑡

𝑡0

𝑓 (𝑥
∗

𝑠
, 𝑠) Δ𝑠

+ ∑

𝑘∈{1,...,𝑚},

𝑡𝑘<𝑡

𝐼
𝑘
(𝑥 (𝑡

𝑘
)) , 𝑡 ∈ [𝑡

0
, 𝑡

0
+ 𝜎]

T
,

𝑥 (𝑡) = 𝜙 (𝑡) , 𝑡 ∈ [𝑡
0
− 𝑟, 𝑡

0
]
T
,

(48)

where 𝑥∗ is defined as being the extension of 𝑥 defined by
𝑥
∗
(𝑡) = 𝑥(𝑡

∗
), for 𝑡∗ = inf{𝑠 ∈ T : 𝑠 ≥ 𝑡}.

In order to obtain the correspondences presented in
[77, 78], the requirement was mainly that 𝑓 is Henstock-
Kurzweil integrable with respect to a nondecreasing function
𝑔. Therefore many discontinuities are allowed. Moreover, 𝑓
does not need to be rd-continuous nor regulated, and yet
good results for impulsive functional dynamic equations on
time scales can be obtained through these correspondences.

Even more recently, together with Federson et al., we
studied, in [79], measure neutral functional differential equa-
tions (we write measure NFDEs) of type

𝐷[𝑁 (𝑦
𝑡
, 𝑡)] = 𝑓 (𝑦

𝑡
, 𝑡) 𝐷𝑔,

𝑦
𝑡0
= 𝜙,

(49)

where𝑁 is a nonautonomous linear operator (i.e.,𝑁(𝑦
𝑡
, 𝑡) =

𝑁(𝑡)𝑦
𝑡
). Besides, we assume that𝑁 admits a representation

𝑁(𝑡) 𝜑 = 𝜑 (0) − ∫

0

−𝑟

𝑑
𝜃
[𝜇 (𝑡, 𝜃)] 𝜑 (𝜃) , (50)

where 𝜇 : R × R → R𝑛×𝑛 is a normalized measurable
function satisfying

𝜇 (𝑡, 𝜃) = 0, 𝜃 ≥ 0;

𝜇 (𝑡, 𝜃) = 𝜇 (−𝑟) , 𝜃 ≤ −𝑟,

(51)

which is continuous to the left on 𝜃 ∈ (−𝑟, 0) of bounded
variation in 𝜃 ∈ [−𝑟, 0], and the variation of 𝜇 in [𝑠, 0],
var

[𝑠,0]
𝜇 tends to zero as 𝑠 → 0.

In order to obtain a correspondence between solutions of
measureNFDEs and solutions of a certain class of generalized
ODEs of the form

𝑑𝑥

𝑑𝜏
= 𝐷𝐺 (𝑥 (𝜏) , 𝑡) , (52)

whose right-hand side is given by

𝐺 (𝑥, 𝑡) = 𝐹 (𝑥, 𝑡) + 𝐽 (𝑥, 𝑡) , 𝑥 ∈ 𝑂, 𝑡 ∈ [𝑡
0
, 𝑡

0
+ 𝜎] ,

(53)

with 𝐹 as (47) and 𝐽 given by

𝐽 (𝑥, 𝑡) (𝜗)

=

{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{

{

0, 𝑡
0
− 𝑟 ≤ 𝜗 ≤ 𝑡

0
,

∫

0

−𝑟

𝑑
𝜃
[𝜇 (𝜗, 𝜃)] 𝑥 (𝜗 + 𝜃)

−∫

0

−𝑟

𝑑
𝜃
[𝜇 (𝑡

0
, 𝜃)] 𝑥 (𝑡

0
+ 𝜃) , 𝑡

0
≤ 𝜗 ≤ 𝑡 ≤ 𝑡

0
+ 𝜎,

∫

0

−𝑟

𝑑
𝜃
[𝜇 (𝑡, 𝜃)] 𝑥 (𝑡 + 𝜃)

−∫

0

−𝑟

𝑑
𝜃
[𝜇 (𝑡

0
, 𝜃)] 𝑥 (𝑡

0
+ 𝜃) , 𝑡 ≤ 𝜗 ≤ 𝑡

0
+ 𝜎.

(54)

Besides conditions (A), (B), and (C) presented above,
we required that the normalized function 𝜇 satisfies the
following:

(D) there exists a Lebesgue integrable function𝐾: [𝑡
0
, 𝑡

0
+

𝜎] → R+ such that



∫

0

−𝑟

𝑑
𝜃
𝜇 (𝑠

2
, 𝜃) 𝑥 (𝑠

2
+ 𝜃) − ∫

0

−𝑟

𝑑
𝜃
𝜇 (𝑠

1
, 𝜃) 𝑥 (𝑠

1
+ 𝜃)



≤ ∫

𝑠2

𝑠1

𝐾 (𝑠) ∫

0

−𝑟

𝑑
𝜃
𝜇 (𝑠, 𝜃) |𝑥 (𝑠 + 𝜃)| .

(55)

Thus, in [79], results on the local existence and unique-
ness of solutions, as well as continuous dependence of
solutions on the initial data, were established.

Clearly there is still much to do to develop the theory of
abstract generalized ODEs and to apply the results to other
types of differential equations.
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[18] D. C. Biles, J. Á. Cid, and R. L. Pouso, “Initial value problems for
singular and nonsmooth second order differential inclusions,”
MathematischeNachrichten, vol. 280, no. 12, pp. 1335–1343, 2007.

[19] R. L. Pouso, “Necessary and sufficient conditions for existence
and uniqueness of solutions of second-order autonomous dif-
ferential equations,” Journal of the LondonMathematical Society,
vol. 71, no. 2, pp. 397–414, 2005.

[20] S. Hilger, Ein masskettenkalkül mit anwendung auf zen-
trumsmannigfaltigkeiten [Ph.D. thesis], Universität Würzburg,
Würzburg, Germany, 1988.

[21] M. Bohner and A. Peterson,Dynamic Equations on Time Scales,
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By using the strong fuzzy Henstock integral and its controlled convergence theorem, we generalized the existence theorems of
solution for initial problems of fuzzy discontinuous integral equation.

1. Introduction

The fuzzy differential and integral equations are important
part of the fuzzy analysis theory and they have the important
value of theory and application in control theory.

The Cauchy problems for fuzzy differential equations
have been studied by several authors [1–6] on the metric
space (𝐸𝑛

, 𝐷) of normal fuzzy convex set with the distance
𝐷 given by the maximum of the Hausdorff distance between
the corresponding level sets. Seikkala in [7] defined the fuzzy
derivative and then some generalizations of that have been
investigated in [8, 9]. Consequently, the fuzzy integral which
is the same as that of Dubois and Prade in [10], by means of
the extension principle of Zadeh, showed that the fuzzy initial
value problem 𝑥


(𝑡) = 𝑓(𝑡, 𝑥(𝑡)), 𝑥(0) = 𝑥

0
, has a unique

fuzzy solution when𝑓 satisfies the generalized Lipschitz con-
dition which guarantees a unique solution of the determinis-
tic initial value problem. Kaleva [1] studied the Cauchy prob-
lem of fuzzy differential equation and characterized those
subsets of fuzzy sets in which the Peano theorem is valid. Park
et al. in [11–14] have considered the existence of solution of
fuzzy integral equation in Banach space. In 2002, Xue and Fu
[15] established solutions to fuzzy differential equations with
right-hand side functions satisfyingCaratheodory conditions
on a class of Lipschitz fuzzy sets.

However, there are discontinuous systems in which the
right-hand side functions 𝑓 : [𝑎, 𝑏] × 𝐸

𝑛
→ 𝐸

𝑛 are not
integrable in the sense of Kaleva [1] on certain intervals and
their solutions are not absolute continuous functions. To
illustrate, we consider the following example.

Example 1. Consider the following discontinuous system:

𝑥

(𝑡) = ℎ (𝑡) , 𝑥 (0) = 𝐴,

𝑔 (𝑡) =

{

{

{

2𝑡 sin 1

𝑡2
−
2

𝑡
cos 1

𝑡2
, 𝑡 ̸= 0,

0, 𝑡 = 0,

𝐴 (𝑠) =

{{

{{

{

𝑠, 0 ≤ 𝑠 ≤ 1,

2 − 𝑠, 1 < 𝑠 ≤ 2,

0, others,

ℎ (𝑡) = 𝜒
|𝑔(𝑡)|

+ 𝐴.

(1)

Then ℎ(𝑡) = 𝜒
|𝑔(𝑡)|

+𝐴 is not integrable in the sense of Kaleva.
However, the above system has the following solution:

𝑥 (𝑡) = 𝜒
|𝐺(𝑡)|

+ 𝐴𝑡, (2)

where

𝐺 (𝑡) =

{

{

{

𝑡
2 sin 1

𝑡2
, 𝑡 ̸= 0,

0, 𝑡 = 0.

(3)

It is well known that the Henstock integral is designed
to integrate highly oscillatory functions which the Lebesgue
integral fails to do. It is known as nonabsolute integral and it
is a powerful tool. It is well known that the Henstock integral
includes the Riemann, improper Riemann, Lebesgue, and
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Newton integrals. Though such an integral was defined by
Denjoy in 1912 and also by Perron in 1914, it was difficult
to handle using their definitions. But with the Riemann-type
definition introduced more recently by Henstock in 1963 and
also independently by Kurzweil, the definition is now simple
and furthermore the proof involving the integral also turns
out to be easy. For more detailed results about the Henstock
integral, we refer to [16]. Recently, Wu and Gong [17, 18]
have combined the fuzzy set theory and nonabsolute integral
theory and discussed the fuzzy Henstock integrals of fuzzy-
number-valued functions which extended Kaleva [1] integra-
tion. In order to complete the theory of fuzzy calculus and
to transfer a fuzzy differential equation into a fuzzy integral
equation, we [19, 20] have defined the strong fuzzy Henstock
integrals and discussed some of their properties and the
controlled convergence theorem.

In this paper, according to the idea of [6, 21, 22] and using
the concept of generalized differentiability [8], we will deal
with the Cauchy problem of discontinuous fuzzy systems as
follows:

𝑥 (𝑡) = 𝑓 (𝑡) + ∫

𝑎

0

𝑘
1
(𝑡, 𝑠) 𝑥 (𝑠) d𝑠 + ∫

𝑎

0

𝑘
2
(𝑡, 𝑠) 𝑔 (𝑠, 𝑥 (𝑠)) d𝑠,

(4)

where 𝑡 ∈ 𝐼
𝑎
= [0, 𝑎], 𝑎 ∈ 𝑅

+, and 𝑥, 𝑓, 𝑔 : 𝐼
𝛼
→ 𝐸

𝑛 are
fuzzy-number-valued function and integrals which are taken
in sense of strong fuzzyHenstock integration, and 𝑘

1
, 𝑘

2
: 𝐼

𝑎
×

𝐼
𝑎
→ 𝑅

+ are measurable functions such that 𝑘
1
(𝑡, ⋅), 𝑘

2
(𝑡, ⋅)

are continuous.

2. Preliminaries

2.1. Fuzzy Number Theory. Let 𝑃
𝑘
(𝑅

𝑛
) denote the family of

all nonempty compact convex subset of 𝑅𝑛 and define the
addition and scalar multiplication in 𝑃

𝑘
(𝑅

𝑛
) as usual. Let 𝐴

and 𝐵 be two nonempty bounded subsets of 𝑅𝑛. The distance
between 𝐴 and 𝐵 is defined by the Hausdorff metric [10]

𝑑
𝐻
(𝐴, 𝐵) = max{sup

𝑎∈𝐴

inf
𝑏∈𝐵

‖𝑎 − 𝑏‖ , sup
𝑏∈𝐵

inf
𝑎∈𝐴

‖𝑏 − 𝑎‖} . (5)

Denote 𝐸𝑛
= {𝑢 : 𝑅

𝑛
→ [0, 1] | 𝑢 satisfies (1)–(4) below},

where

(1) 𝑢 is normal; that is, there exists an 𝑥
0
∈ 𝑅

𝑛 such that
𝑢(𝑥

0
) = 1,

(2) 𝑢 is fuzzy convex; that is, 𝑢(𝜆𝑥 + (1 − 𝜆)𝑦) ≥

min{𝑢(𝑥), 𝑢(𝑦)} for any 𝑥, 𝑦 ∈ 𝑅
𝑛 and 0 ≤ 𝜆 ≤ 1,

(3) 𝑢 is upper semicontinuous,

(4) [𝑢]0 = cl{𝑥 ∈ 𝑅
𝑛
| 𝑢(𝑥) > 0} is compact.

Then it is easy to see that 𝐸𝑛 is a fuzzy number space.
For 0 < 𝛼 ≤ 1, denote [𝑢]𝛼 = {𝑥 ∈ 𝑅

𝑛
| 𝑢(𝑥) ≥ 𝛼}. Then

from the above conditions (1)–(4), it follows that the 𝛼-level
set [𝑢]𝛼 ∈ 𝑃

𝑘
(𝑅

𝑛
) for all 0 ≤ 𝛼 < 1.

According to Zadeh’s extension principle, we have addi-
tion and scalar multiplication in the fuzzy number space 𝐸𝑛

as follows [10]:

[𝑢 + V]𝛼 = [𝑢]
𝛼
+ [V]𝛼, [𝑘𝑢]

𝛼
= 𝑘[𝑢]

𝛼
, (6)

where 𝑢, V ∈ 𝐸𝑛 and 0 ≤ 𝛼 ≤ 1.
Define𝐷 : 𝐸

𝑛
× 𝐸

𝑛
→ [0,∞)

𝐷 (𝑢, V) = sup {𝑑
𝐻
([𝑢]

𝛼
, [V]𝛼) : 𝛼 ∈ [0, 1]} , (7)

where 𝑑 is the Hausdorff metric defined in 𝑃
𝑘
(𝑅

𝑛
). Then it is

easy to see that 𝐷 is a metric in 𝐸𝑛. Using the results in [23],
we know that

(1) (𝐸𝑛
, 𝐷) is a complete metric space;

(2) 𝐷(𝑢 + 𝑤, V + 𝑤) = 𝐷(𝑢, V) for all 𝑢, V, 𝑤 ∈ 𝐸
𝑛;

(3) 𝐷(𝜆𝑢, 𝜆V) = |𝜆|𝐷(𝑢, V) for all 𝑢, V, 𝑤 ∈ 𝐸
𝑛 and 𝜆 ∈ 𝑅.

The metric space (𝐸
𝑛
, 𝐷) has a linear structure; it can

be embedded isomorphically as a cone in a Banach space of
function 𝑢∗ : 𝐼 × 𝑆𝑛−1 → 𝑅, where 𝑆𝑛−1 is the unit sphere in
𝑅
𝑛, with an embedded function 𝑢∗ = 𝑗(𝑢) defined by

𝑢
∗
(𝑟, 𝑥) = sup

𝛼∈[𝑢]
𝛼

⟨𝛼, 𝑥⟩ (8)

for all ⟨𝑟, 𝑥⟩ ∈ 𝐼 × 𝑆𝑛−1 (see [23]).

Theorem 2 (see [24]). There exists a real Banach space𝑋 such
that 𝐸𝑛 can be embed as a convex cone 𝐶 with vertex 0 into𝑋.
Furthermore the following conditions hold true:

(1) the embedding 𝑗 is isometric;
(2) addition in 𝑋 induces addition in 𝐸𝑛;
(3) multiplication by nonnegative real number in 𝑋

induces the corresponding operation in 𝐸𝑛;
(4) 𝐶 − 𝐶 is dense in𝑋;
(5) 𝐶 is closed.

It is well known that the𝐻-derivative for fuzzy-number-
functions was initially introduced by Puri and Ralescu [5]
and it is based on the condition (𝐻) of sets. We note that
this definition is fairly strong, because the family of fuzzy-
number-valued functions𝐻-differentiable is very restrictive.
For example, the fuzzy-number-valued function𝑓 : [𝑎, 𝑏] →

𝐸
𝑛 defined by 𝑓(𝑥) = 𝐶 ⋅ 𝑔(𝑥), where 𝐶 is a fuzzy number,

⋅ is the scalar multiplication (in the fuzzy context), and 𝑔 :

[𝑎, 𝑏] → 𝑅
+, with 𝑔


(𝑡
0
) < 0, is not 𝐻-differentiable in 𝑡

0

(see [8, 9]). To avoid the above difficulty, in this paper we
consider a more general definition of a derivative for fuzzy-
number-valued functions enlarging the class of differentiable
fuzzy-number-valued functions, which has been introduced
in [8].

Definition 3 (see [8]). Let 𝑓 : (𝑎, 𝑏) → 𝐸
𝑛 and 𝑥

0
∈ (𝑎, 𝑏).

We say that 𝑓 is differentiable at 𝑥
0
, if there exists an element

𝑓

(𝑡
0
) ∈ 𝐸

𝑛, such that,
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(1) for all ℎ > 0 sufficiently small, there exists 𝑓(𝑥
0
+

ℎ)−
𝐻
𝑓(𝑥

0
), 𝑓(𝑥

0
)−

𝐻
𝑓(𝑥

0
− ℎ) and the limits (in the

metric𝐷)

lim
ℎ→0

𝑓 (𝑥
0
+ ℎ) −

𝐻
𝑓 (𝑥

0
)

ℎ

= lim
ℎ→0

𝑓 (𝑥
0
) −

𝐻
𝑓 (𝑥

0
− ℎ)

ℎ
= 𝑓


(𝑥

0
)

(9)

or
(2) for all ℎ > 0 sufficiently small, there exists 𝑓(𝑥

0
)

−
𝐻
𝑓(𝑥

0
+ ℎ), 𝑓(𝑥

0
− ℎ)−

𝐻
𝑓(𝑥

0
) and the limits

lim
ℎ→0

𝑓 (𝑥
0
) −

𝐻
𝑓 (𝑥

0
+ ℎ)

−ℎ

= lim
ℎ→0

𝑓 (𝑥
0
− ℎ) −

𝐻
𝑓 (𝑥

0
)

−ℎ
= 𝑓


(𝑥

0
)

(10)

or
(3) for all ℎ > 0 sufficiently small, there exists 𝑓(𝑥

0
+

ℎ)−
𝐻
𝑓(𝑥

0
), 𝑓(𝑥

0
− ℎ)−

𝐻
𝑓(𝑥

0
) and the limits

lim
ℎ→0

𝑓 (𝑥
0
+ ℎ) −

𝐻
𝑓 (𝑥

0
)

ℎ

= lim
ℎ→0

𝑓 (𝑥
0
− ℎ) −

𝐻
𝑓 (𝑥

0
)

−ℎ
= 𝑓


(𝑥

0
)

(11)

or
(4) for all ℎ > 0 sufficiently small, there exists 𝑓(𝑥

0
)

−
𝐻
𝑓(𝑥

0
+ ℎ), 𝑓(𝑥

0
)−

𝐻
𝑓(𝑥

0
− ℎ) and the limits

lim
ℎ→0

𝑓 (𝑥
0
) −

𝐻
𝑓 (𝑥

0
+ ℎ)

−ℎ

= lim
ℎ→0

𝑓 (𝑥
0
) −

𝐻
𝑓 (𝑥

0
− ℎ)

ℎ
= 𝑓


(𝑥

0
)

(12)

(ℎ and −ℎ at denominators mean (1/ℎ)⋅ and −(1/ℎ)⋅,
resp.).

2.2. The Strong Henstock Integrals of Fuzzy-Number-Valued
Functions in 𝐸

𝑛. In this section we define the strong Hen-
stock integrals of fuzzy-number-valued functions in the fuzzy
number space𝐸𝑛 andwe give some properties of this integral.

Definition 4 (see [20]). A fuzzy-number-valued function 𝑓

will be termed piecewise additive on [𝑎, 𝑏] if there exists a
division 𝑇 : 𝑎 = 𝑎

0
< 𝑎

1
< ⋅ ⋅ ⋅ < 𝑎

𝑛
= 𝑏, such that 𝑓(𝑥)

is additive on each [𝑎
𝑖
, 𝑎

𝑖+1
] (𝑖 = 0, 1, . . . , 𝑛 − 1).

Definition 5 (see [19, 20]). A fuzzy-number-valued function
𝑓 is said to be strong Henstock integrable on [𝑎, 𝑏] if there
exists a piecewise additive fuzzy-number-valued function 𝐹

on [𝑎, 𝑏] such that for every 𝜀 > 0 there exists a function

𝛿(𝜉) > 0 and for any 𝛿-fine division 𝑃 = {[𝑥
𝑖−1
, 𝑥

𝑖
], 𝜉

𝑖
}
𝑛

𝑖=1
of

[𝑎, 𝑏] we have

(𝑃) ∑

𝑖∈𝐾𝑛

𝐷(𝑓 (𝜉
𝑖
) (𝑥

𝑖
− 𝑥

𝑖−1
) , 𝐹 ([𝑥

𝑖−1
, 𝑥

𝑖
]))

+ (𝑃) ∑

𝑗∈𝐼𝑛

𝐷(𝑓 (𝜉
𝑗
) (𝑥

𝑗
− 𝑥

𝑗−1
) ,

(−1) ⋅ 𝐹 ([𝑥
𝑗
, 𝑥

𝑗−1
])) < 𝜀,

(13)

where 𝐾
𝑛
= {𝑖 ∈ {1, 2, . . . , 𝑛} such that 𝐹([𝑥

𝑖−1
, 𝑥

𝑖
]) is a fuzzy

number and 𝐼
𝑛
= {𝑗 ∈ {1, 2, . . . , 𝑛} such that 𝐹([𝑥

𝑗
, 𝑥

𝑗−1
]) is a

fuzzy number. We write 𝑓 ∈ 𝑆𝐹𝐻[𝑎, 𝑏].

Definition 6 (see [20]). A fuzzy-number-valued function 𝐹

defined on 𝑋 ⊂ [𝑎, 𝑏] is said to be 𝐴𝐶∗
(𝑋) if for every 𝜀 > 0

there exists 𝜂 > 0 such that for every finite sequence of
nonoverlapping intervals {[𝑎

𝑖
, 𝑏

𝑖
]}, satisfying∑𝑛

𝑖=1
|𝑏
𝑖
− 𝑎

𝑖
| < 𝜂

where 𝑎
𝑖
, 𝑏

𝑖
∈ 𝑋 for all 𝑖, we have

∑𝜔(𝐹, [𝑎
𝑖
, 𝑏

𝑖
]) < 𝜀, (14)

where 𝜔 denotes the oscillation of 𝐹 over [𝑎
𝑖
, 𝑏

𝑖
]; that is,

𝜔 (𝐹, [𝑎
𝑖
, 𝑏

𝑖
]) = sup {𝐷 (𝐹 (𝑦) , 𝐹 (𝑥)) ; 𝑥, 𝑦 ∈ [𝑎

𝑖
, 𝑏

𝑖
]} .

(15)

Definition 7 (see [20]). A fuzzy-number-valued function 𝐹 is
said to be𝐴𝐶𝐺∗ on𝑋 if𝑋 is the union of a sequence of closed
sets {𝑋

𝑖
} such that, on each𝑋

𝑖
, 𝐹 is 𝐴𝐶∗

(𝑋
𝑖
).

For the strong fuzzy Henstock integrable we have the
following theorems.

Theorem 8. Let 𝑓 : [𝑎, 𝑏] → 𝐸
𝑛. If 𝑓 = 0 a.e on [𝑎, 𝑏], then

𝑓 is 𝑆𝐹𝐻 integrable on [𝑎, 𝑏] and ∫𝑏
𝑎
𝑓(𝑡)d𝑡 = 0.

Theorem 9. Let 𝑓 : [𝑎, 𝑏] → 𝐸
𝑛 be 𝑆𝐹𝐻 integrable on [𝑎, 𝑏]

and let 𝐹(𝑥) = ∫
𝑥

𝑎
𝑓(𝑡)d𝑡 for each 𝑥 ∈ [𝑎, 𝑏]. Then

(a) the function 𝐹 is continuous on [𝑎, 𝑏];
(b) the function 𝐹 is differentiable a.e on [𝑎, 𝑏] and 𝐹

= 𝑓;
(c) 𝑓 is measurable.

Theorem 10 (controlled convergence theorem; see [20]).
Suppose that {𝑓

𝑛
} is a sequence of SFH integrable functions on

[𝑎, 𝑏] satisfying the following conditions:

(1) 𝑓
𝑛
(𝑥) → 𝑓(𝑥) a.e. in [𝑎, 𝑏] as 𝑛 → ∞;

(2) the primitives 𝐹
𝑛
of 𝑓

𝑛
are 𝐴𝐶𝐺∗ uniformly in 𝑛;

(3) the primitives 𝐹
𝑛
converge uniformly on [𝑎, 𝑏];

then 𝑓 is also SFH integrable on [𝑎, 𝑏] and

lim
𝑛→∞

∫

𝑏

𝑎

𝑓
𝑛 (𝑥) d𝑥 = ∫

𝑏

𝑎

𝑓 (𝑥) d𝑥. (16)
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3. Main Results

In this section we prove some existence theorems for the
problem (4).

For any bounded subset 𝐴 of the Banach space 𝑋, we
denote by 𝛼(𝐴) the Kuratowski measure of noncompactness
of 𝐴; that is, the infimum of all 𝜀 > 0 such that there exists
a finite covering of 𝐴 by sets of diameter less than 𝜀. For the
properties of 𝛼 we refer to [25], for example.

Lemma 11 (see [25]). Let 𝐻 ⊂ 𝐶(𝐼
𝛾
, 𝑋) be a family of strong

equicontinuous functions; then

𝛼
𝑐
(𝐻) = sup

𝑡∈𝐼𝛾

𝛼 (𝐻 (𝑡)) = 𝛼 (𝐻 (𝐼
𝛾
)) , (17)

where 𝛼
𝑐
(𝐻) denotes the Kuratowski measure of noncompact-

ness in 𝐶(𝐼
𝛾
, 𝑋) and the function 𝑡 → 𝛼(𝐻(𝑡)) is continuous.

Theorem 12 (see [25]). Let 𝐷 be a closed convex subset of 𝑋
and let 𝐹 be a continuous function from 𝐷 into itself. If, for
𝑥 ∈ 𝐷,

𝑉 = con ({𝑥} ∪ 𝐹 (𝑉)) ⇒ 𝑉 (18)

is relatively compact, then 𝐹 has a fixed point.

Theorem 13. If the fuzzy-number-valued function 𝑓 : 𝐼
𝑎
→

𝐸
𝑛 is (𝑆𝐹𝐻) integrable, then

∫
𝐼

𝑓 (𝑡) d𝑡 ∈ |𝐼| ⋅ conv𝑓 (𝐼) , (19)

where conv𝑓(𝐼) is the convex hull of 𝑓(𝐼), 𝐼 is an arbitrary
subinterval of 𝐼

𝑎
, and |𝐼| is the length of 𝐼.

Proof. Because 𝑗 ∘ 𝑓 is abstract (𝐻) integrable in a Banach
Space, by using the mean valued theorem of (𝐻) integrals, we
have

(𝐻)∫
𝐼

𝑗 ∘ 𝑓 (𝑡) d𝑡 ∈ |𝐼| ⋅ conv𝑗 ∘ 𝑓 (𝐼) = |𝐼| ⋅ 𝑗 ∘ conv𝑓 (𝑡) .

(20)

On the other hand, there exists (𝐻) ∫
𝐼
𝑗∘𝑓(𝑡)d𝑡 = 𝑗∘∫

𝐼
𝑓(𝑡)d𝑡.

So, we have 𝑗 ∘ ∫
𝐼
𝑓(𝑡)d𝑡 ∈ |𝐼| ⋅ conv𝑗 ∘ 𝑓(𝐼). And the set

{|𝐼| ⋅ conv𝑓(𝐼)} is a closed convex set; we have

∫
𝐼

𝑓 (𝑡) d𝑡 ∈ |𝐼| ⋅ conv𝑓 (𝐼) . (21)

Definition 14. A fuzzy valued function 𝑓 : 𝐼
𝛼
× 𝐸

𝑛
→ 𝐸

𝑛 is
a Caratheodory function if, for each 𝑥 ∈ 𝐸

𝑛, the fuzzy valued
function 𝑓(𝑡, 𝑥) is measurable in 𝑡 ∈ 𝐼

𝛼
, and for almost all

𝑡 ∈ 𝐼
𝛼
, the fuzzy valued function 𝑓(𝑡, 𝑥) is continuous with

respect to 𝑥.

For 𝑥 ∈ 𝐶(𝐼
𝑎
, 𝐸

𝑛
), we define the norm of 𝑥 by

𝐻(𝑥, 0̃) = sup
𝑡∈𝐼𝑎

𝐷(𝑥, 0̃) . (22)

Let

𝐵 (𝑝) = {𝑥 ∈ 𝐶 (𝐼
𝑎
, 𝐸

𝑛
) |

𝐻 (𝑥, 0̃) ≤ 𝐻 (𝑓 (⋅) , 0̃) + 𝑝, 𝑝 > 0} .

(23)

Obviously, the set 𝐵(𝑝) is closed and convex in 𝐸𝑛.
We define the operator 𝐹 : 𝐶(𝐼

𝑎
, 𝐸

𝑛
) → 𝐶(𝐼

𝑎
, 𝐸

𝑛
) by

𝐹 (𝑥) (𝑡) = 𝑓 (𝑡) + ∫

𝑎

0

𝑘
1
(𝑡, 𝑠) 𝑥 (𝑠) d𝑠

+ ∫

𝑎

0

𝑘
2
(𝑡, 𝑠) 𝑔 (𝑠, 𝑥 (𝑠)) d𝑠, 𝑡 ∈ 𝐼

𝑎
, 𝑥 ∈ 𝐵 (𝑝) ,

(24)

where integrals are taken in the sense of 𝑆𝐹𝐻. Moreover, let
Γ(𝑝) = {𝐹(𝑥) ∈ 𝐶(𝐼

𝑎
, 𝐸

𝑛
) | 𝑥 ∈ 𝐵(𝑝)}.

Definition 15. A continuous function 𝑥 : 𝐼
𝑎
→ 𝐸

𝑛 is said to
be a solution of the problem (4), if 𝑥(𝑡) satisfies

𝑥 (𝑡) = 𝑓 (𝑡) + ∫

𝑎

0

𝑘
1 (𝑡, 𝑠) 𝑥 (𝑠) d𝑠 + ∫

𝑎

0

𝑘
2 (𝑡, 𝑠) 𝑔 (𝑠, 𝑥 (𝑠)) d𝑠

(25)

or

𝑥 (𝑡) = 𝑓 (𝑡) + (−1) ⋅ ∫

𝑎

0

𝑘
1
(𝑡, 𝑠) 𝑥 (𝑠) d𝑠

+ (−1) ⋅ ∫

𝑎

0

𝑘
2 (𝑡, 𝑠) 𝑔 (𝑠, 𝑥 (𝑠)) d𝑠, 𝑡 ∈ 𝐼

𝑎
.

(26)

Theorem 16. Assume that, for each continuous function 𝑥(𝑡),
𝑔(⋅, 𝑥(⋅)) is (𝑆𝐹𝐻) integrable, and𝑔 is a Caratheodory function.
Let 𝑘

1
, 𝑘

2
: 𝐼

𝑎
× 𝐼

𝑎
→ 𝑅

+ be measure functions such that
𝑘
1
(𝑡, ⋅), 𝑘

2
(𝑡, ⋅) are continuous. Moreover, there exists 𝑃

0
> 0

and a Caratheodory function 𝜔 : 𝐼
𝑎
× 𝑅

+
→ 𝑅

+, with

𝛼 (𝑗 ∘ 𝑔 (𝑠, 𝑋)) ≤ 𝜔 (𝑠, 𝛼 (𝑗 ∘ 𝑋)) ,

𝑎.𝑒. 𝑠 ∈ 𝐼
𝑎
, 𝑋 ⊂ 𝐵 (𝑝

0
) ,

(27)

such that the zero function is the unique continuous solution of
the inequality

𝑞 (𝑡) ≤ 2 [∫

𝑐

0

𝑘
1
(𝑡, 𝑠) 𝑞 (𝑡, 𝑠) d𝑠 + ∫

𝑐

0

𝑘
2
(𝑡, 𝑠) 𝜔 (𝑠, 𝑞 (𝑠)) d𝑠] .

(28)

Suppose that Γ(𝑝
0
) is equicontinuous, equibounded, and uni-

formly 𝐴𝐶𝐺∗ on 𝐼
𝑎
. Then there exists at least a solution of the

problem (4) on 𝐼
𝑎
for some 0 < 𝑐 ≤ 𝑎 with continuous initial

function 𝑓.
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Proof. By equicontinuity and equiboundedness of Γ(𝑝
0
),

there exist some numbers 𝑐 (0 < 𝑐 ≤ 𝑎) such that

𝐻(∫

𝑐

0

[𝑘
1 (𝑡, 𝑠) 𝑥 (𝑠) + 𝑘2 (𝑡, 𝑠) 𝑔 (𝑠, 𝑥 (𝑠))] d𝑠, 0̃)

= sup
𝑡∈𝐼𝑐

𝐷(∫

𝑐

0

[𝑘
1
(𝑡, 𝑠) 𝑥 (𝑠) + 𝑘

2
(𝑡, 𝑠) 𝑔 (𝑠, 𝑥 (𝑠))] d𝑠, 0̃)

= sup
𝑡∈𝐼𝑐

max
𝑟∈[0,1]

{



∫

𝑐

0

[𝑘
1 (𝑡, 𝑠) 𝑥

+

𝑟
(𝑠)

+ 𝑘
2 (𝑡, 𝑠) 𝑔

+

𝑟
(𝑠, 𝑥 (𝑠))] d𝑠 − 0̃+

𝑟



,



∫

𝑐

0

[𝑘
1
(𝑡, 𝑠) 𝑥

−

𝑟
(𝑠)

+ 𝑘
2 (𝑡, 𝑠) 𝑔

−

𝑟
(𝑠, 𝑥 (𝑠))] d𝑠 − 0̃−

𝑟



} ≤ 𝑝
0

(29)

for 𝑡 ∈ 𝐼
𝑐
and 𝑥 ∈ 𝐵(𝑝

0
).

Next, we will prove that the operator 𝐹 is continuous. In
fact, let 𝑥

𝑛
→ 𝑥. Because the function 𝑔 is a Caratheodory

function, by the following equality

𝐻(𝐹 (𝑥
𝑛
) , 𝐹 (𝑥))

= 𝐻(∫

𝑐

0

(𝑘
1
(𝑡, 𝑠) (𝑥

𝑛
(𝑠) − 𝑥 (𝑠)) + 𝑘

2
(𝑡, 𝑠)

× (𝑔 (𝑠, 𝑥
𝑛 (𝑠)) − 𝑔 (𝑠, 𝑥 (𝑠)))) d𝑠, 0̃)

= sup
𝑡∈𝐼𝑐

𝐷(∫

𝑐

0

(𝑘
1
(𝑡, 𝑠) (𝑥

𝑛
(𝑠) − 𝑥 (𝑠)) + 𝑘

2
(𝑡, 𝑠)

× (𝑔 (𝑠, 𝑥
𝑛
(𝑠)) − 𝑔 (𝑠, 𝑥 (𝑠)))) d𝑠, 0̃)

(30)

andTheorem 10, we have 𝐹(𝑥
𝑛
) → 𝐹(𝑥).

Observe that a fixed point of 𝐹 is the solution of the
problem (4). Now we prove that 𝐹 has a fixed point using
Theorem 12.

Suppose that 𝑉(𝑡) = {V(𝑡) ∈ 𝐸
𝑛
| V ∈ 𝑉} ⊂ 𝐵(𝑝

0
) satisfies

condition 𝑉 = conv({𝑥} ∪ 𝐹(𝑉)) for some 𝑥 ∈ 𝐵(𝑝
0
), 𝑡 ∈ 𝐼

𝑐
.

Let 𝑉 ⊂ 𝐵(𝑝
0
), 𝐹(𝑉) ⊂ Δ(𝑝

0
); then 𝑉 ⊂ 𝑉 is equicontinuous.

By Lemma 11, 𝑡 → V(𝑡) = 𝛼(𝑗 ∘ 𝑉(𝑡)) is continuous on 𝐼
𝑐
.

Let ∫𝑐
0
𝑍(𝑠)d𝑠 = {∫

𝑐

0
𝑥(𝑠)d𝑠 | 𝑥 ∈ 𝑍} for any 𝑍 ∈ 𝐶(𝐼

𝑐
, 𝐸

𝑛
)

and let ℎ̃ denote the mapping defined by ℎ̃(𝑥(𝑠)) = 𝑔(𝑠, 𝑥(𝑠)),
for each 𝑥 ∈ 𝐵(𝑝

0
), 𝑠 ∈ 𝐼

𝑐
. Obviously, ℎ̃(𝑉(𝑠)) = 𝑔(𝑠, 𝑉(𝑠)),

and

𝐹 (𝑉 (𝑡)) = 𝑓 (𝑡) + ∫

𝑐

0

[𝑘
1 (𝑡, 𝑠) 𝑉 (𝑠) + 𝑘2 (𝑡, 𝑠) ℎ̃ (𝑉 (𝑠))] d𝑠

(31)

holds ture.

Using (27), Lemma 11, and the properties of measure of
noncompactness 𝛼, we have

𝛼 (𝑗 ∘ 𝐹 (𝑉 (𝑡)))

= 𝛼(𝑗 ∘ (𝑓 (𝑡) + ∫

𝑐

0

[𝑘
1
(𝑡, 𝑠) 𝑉 (𝑠)

+ 𝑘
2
(𝑡, 𝑠) ℎ̃ (𝑉 (𝑠))] d𝑠))

≤ 2𝛼(𝑗 ∘ (∫

𝑐

0

[𝑘
1 (𝑡, 𝑠) 𝑉 (𝑠) + 𝑘2 (𝑡, 𝑠) ℎ̃ (𝑉 (𝑠))] d𝑠))

≤ 2∫

𝑐

0

[𝑘
1 (𝑡, 𝑠) 𝛼 (𝑗 ∘ 𝑉 (𝑠))

+ 𝑘
2 (𝑡, 𝑠) 𝛼 (𝑗 ∘ 𝑔 (𝑠, 𝑉 (𝑠)))] d𝑠

≤ 2∫

𝑐

0

[𝑘
1 (𝑡, 𝑠) 𝛼 (𝑗 ∘ 𝑉 (𝑠))

+ 𝑘
2
(𝑡, 𝑠) 𝜔 (𝑠, 𝛼 (𝑗 ∘ 𝑉 (𝑠)))] d𝑠.

(32)

Because 𝑉 = conv ({𝑥} ∪ 𝐹(𝑉)), we have

V (𝑡) ≤ 2 [∫

𝑐

0

𝑘
1 (𝑡, 𝑠) V (𝑠) d𝑠 + ∫

𝑐

0

𝑘
2 (𝑡, 𝑠) 𝜔 (𝑠, V (𝑠)) d𝑠] .

(33)

By assumption, because the zero function is unique contin-
uous solution of the last inequality, so we have V(𝑡) = 𝛼(𝑗 ∘

𝑉(𝑡)) = 0. By Arzelá-AscoliTheorem,𝑉 is relatively compact.
So, by Theorem 12, 𝐹 has a fixed point which is a solution of
problem (4).

Next, we give another existence theorem for problem (4).
Let 𝛾(𝐾) be the spectral radius of the integral operator𝐾

defined by

𝐾 (𝑢) (𝑡) = ∫

𝑎

0

(𝑘
1
(𝑡, 𝑠) + 𝑘

2
(𝑡, 𝑠)) 𝑢 (𝑠) d𝑠,

𝑢 ∈ 𝐵 (𝑝
0
) , 𝑡 ∈ 𝐼

𝛼
.

(34)

Theorem 17. Assume that, for each continuous function 𝑥(𝑡),
𝑔(⋅, 𝑥(⋅)) is (𝑆𝐹𝐻) integrable, and 𝑔 is a Caratheodory function
and 𝑘

1
, 𝑘

2
: 𝐼

𝑎
× 𝐼

𝑎
→ 𝑅

+ are measure functions such that
𝑘
1
(𝑡, ⋅), 𝑘

2
(𝑡, ⋅) are continuous. Moreover, there exists 𝑃

0
> 0

and 𝐿 > 0 such that

𝛼 (𝑗 ∘ 𝑔 (𝐼, 𝑋)) ≤ 𝐿𝛼 (𝑗 ∘ 𝑋) (35)

for each 𝐼 ⊂ 𝐼
𝑎
, 𝑋 ⊂ 𝐵(𝑝

0
). Suppose that Γ(𝑝

0
) is equi-

continuous, equibounded, and uniformly𝐴𝐶𝐺∗ on 𝐼
𝑎
and (1+

𝐿)𝛾(𝐾) < 1. Then there exists at least a solution of the problem
(4) on 𝐼

𝑎
for some 0 < 𝑐 ≤ 𝑎 with continuous initial function

𝑓.

Proof. By equicontinuity and equiboundedness of Γ(𝑝
0
),

there exist some numbers 𝑐 (0 < 𝑐 ≤ 𝑎) such that

𝐻(∫

𝑐

0

(𝑘
1
(𝑡, 𝑠) + 𝑘

2
(𝑡, 𝑠)) 𝑢 (𝑠) d𝑠, 0̃) ≤ 𝑝

0
(36)
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for 𝑡 ∈ 𝑝
0
and 𝑥 ∈ 𝐵(𝑝

0
). By assumption, the operator 𝐹 is

well defined and maps 𝐵(𝑝
0
) into 𝐵(𝑝

0
). Now, we show that

the operator 𝐹 is continuous. In fact, let 𝑥
𝑛
→ 𝑥. Because the

function 𝑔 is a Caratheodory function, by following equality

𝐻(𝐹 (𝑥
𝑛
) , 𝐹 (𝑥))

= 𝐻(∫

𝑐

0

(𝑘
1 (𝑡, 𝑠) (𝑥𝑛 (𝑠) − 𝑥 (𝑠)) + 𝑘2 (𝑡, 𝑠)

× (𝑔 (𝑠, 𝑥
𝑛
(𝑠)) − 𝑔 (𝑠, 𝑥 (𝑠)))) d𝑠, 0̃)

= sup
𝑡∈𝐼𝑐

𝐷(∫

𝑐

0

(𝑘
1 (𝑡, 𝑠) (𝑥𝑛 (𝑠) − 𝑥 (𝑠)) + 𝑘2 (𝑡, 𝑠)

× (𝑔 (𝑠, 𝑥
𝑛
(𝑠)) − 𝑔 (𝑠, 𝑥 (𝑠)))) d𝑠, 0̃)

(37)

andTheorem 10, we have 𝐹(𝑥
𝑛
) → 𝐹(𝑥).

Observe that a fixed point of 𝐹 is the solution of the
problem (4). Now we prove that 𝐹 has a fixed point using
Theorem 12.

Suppose that 𝑉(𝑡) = {V(𝑡) ∈ 𝐸
𝑛
| V ∈ 𝑉} ⊂ 𝐵(𝑝

0
) satisfies

condition 𝑉 = conv({𝑥} ∪ 𝐹(𝑉)) for some 𝑥 ∈ 𝐵(𝑝
0
), 𝑡 ∈ 𝐼

𝑐
.

Let 𝑉 ⊂ 𝐵(𝑝
0
), 𝐹(𝑉) ⊂ Δ(𝑝

0
); then 𝑉 ⊂ 𝑉 is equicontinuous.

By Lemma 11, 𝑡 → V(𝑡) = 𝛼(𝑗 ∘ 𝑉(𝑡)) is continuous on 𝐼
𝑐
.

We divide the interval 𝐼
𝑐
: 0 = 𝑡

0
< 𝑡

1
< 𝑡

2
< ⋅ ⋅ ⋅ < 𝑡

𝑚
= 𝑐,

where 𝑡
𝑖
= 𝑖𝑐/𝑚, 𝑖 = 0, 1, . . . , 𝑚. Let 𝑉([𝑡

𝑖
, 𝑡

𝑖+1
]) = {𝑢(𝑠) ∈

𝐸
𝑛
: 𝑢 ∈ 𝑉, 𝑡

𝑖
≤ 𝑠 ≤ 𝑡

𝑡+1
, 𝑖 = 0, 1, . . . , 𝑚 − 1}. By Lemma 11 and

the continuity of V there exists 𝑠
𝑖
∈ 𝑇

𝑖
= [𝑡

𝑖
, 𝑡

𝑖+1
] such that

𝛼 (𝑗 ∘ 𝑉 ([𝑡
𝑖
, 𝑡

𝑖+1
])) = sup {𝛼 (𝑗 ∘ 𝑉 (𝑠)) : 𝑡

𝑖
≤ 𝑠 ≤ 𝑡

𝑡+1
}

= V (𝑠
𝑖
) .

(38)

In addition, by the definition of operator 𝐹 and
Theorem 16 we have
𝐹 (𝑢) (𝑡)

= 𝑓 (𝑡) +

𝑚−1

∑

𝑖=0

∫

𝑡𝑖+1

𝑡𝑖

[𝑘
1
(𝑡, 𝑠) 𝑢 (𝑠)

+ 𝑘
2 (𝑡, 𝑠) 𝑔 (𝑠, 𝑢 (𝑠))] d𝑠

∈ 𝑓 (𝑡) +

𝑚−1

∑

𝑖=0

(𝑡
𝑖−1

− 𝑡
𝑖
)

× conv [𝑘
1
(𝑡, 𝑇

𝑖
) 𝑉 (𝑇

𝑖
)

+ 𝑘
2
(𝑡, 𝑇

𝑖
) 𝑔 (𝑇

𝑖
, 𝑉 (𝑇

𝑖
))]

(39)

for all 𝑢 ∈ 𝑉, where 𝑘
𝑚
(𝑡, 𝑇

𝑖
) = {𝑘

𝑚
(𝑡, 𝑠), 𝑡, 𝑠 ∈ 𝑇

𝑖
} and 𝑔(𝑇

𝑖
,

𝑉(𝑇
𝑖
)) = {𝑔(𝑡, 𝑥(𝑡)) : 𝑡 ∈ 𝑇

𝑖
, 𝑥 ∈ 𝑉}. So, we have

𝐹 (𝑉) (𝑡)

⊂ 𝑓 (𝑡) +

𝑚−1

∑

𝑖=0

(𝑡
𝑖−1

− 𝑡
𝑖
) conv [𝑘

1
(𝑡, 𝑇

𝑖
) 𝑉 (𝑇

𝑖
)

+ 𝑘
2
(𝑡, 𝑇

𝑖
) 𝑔 (𝑇

𝑖
, 𝑉 (𝑇

𝑖
))] .

(40)

Using (35), (38) and the properties of measure of non-
compactness 𝛼, we have

𝛼 (𝑗 ∘ 𝐹 (𝑉) (𝑡))

≤

𝑚−1

∑

𝑖=0

(𝑡
𝑖+1

− 𝑡
𝑖
) [𝑘

1
(𝑡, 𝑇

𝑖
) 𝑗 ∘ V (𝑠

𝑖
) + 𝑘

2
(𝑡, 𝑇

𝑖
) 𝐿 ⋅ 𝑗 ∘ V (𝑠

𝑖
)]

=

𝑚−1

∑

𝑖=0

(𝑡
𝑖+1

− 𝑡
𝑖
) 𝑘

1
(𝑡, 𝑇

𝑖
) 𝑗 ∘ V (𝑠

𝑖
)

+ 𝐿

𝑚−1

∑

𝑖=0

(𝑡
𝑖+1

− 𝑡
𝑖
) 𝑘

2
(𝑡, 𝑇

𝑖
) 𝑗 ∘ V (𝑠

𝑖
)

≤

𝑚−1

∑

𝑖=0

(𝑡
𝑖+1

− 𝑡
𝑖
) sup
𝑠𝑖∈𝑇𝑖

𝑘
1
(𝑡, 𝑠

𝑖
) 𝑗 ∘ V (𝑠

𝑖
)

+ 𝐿 ⋅

𝑚−1

∑

𝑖=0

(𝑡
𝑖+1

− 𝑡
𝑖
) sup
𝑠𝑖∈𝑇𝑖

𝑘
2
(𝑡, 𝑠

𝑖
) 𝑗 ∘ V (𝑠

𝑖
)

=

𝑚−1

∑

𝑖=0

(𝑡
𝑖+1

− 𝑡
𝑖
) 𝑘

1
(𝑡, 𝑝

𝑖
) 𝑗 ∘ V (𝑠

𝑖
)

+ 𝐿 ⋅

𝑚−1

∑

𝑖=0

(𝑡
𝑖+1

− 𝑡
𝑖
) 𝑘

2
(𝑡, 𝑞

𝑖
) 𝑗 ∘ V (𝑠

𝑖
) ,

(41)

where 𝑠
𝑖
, 𝑝

𝑖
, 𝑞

𝑖
∈ 𝑇

𝑖
; so we get

𝛼 (𝑗 ∘ 𝐹 (𝑉) (𝑡))

≤

𝑚−1

∑

𝑖=0

(𝑡
𝑖+1

− 𝑡
𝑖
) 𝑘

1
(𝑡, 𝑝

𝑖
) 𝑗 ∘ V (𝑝

𝑖
)

+

𝑚−1

∑

𝑖=0

(𝑡
𝑖+1

− 𝑡
𝑖
) [𝑘

1
(𝑡, 𝑝

𝑖
) 𝑗 ∘ (V (𝑠

𝑖
) − V (𝑝

𝑖
))]

+ 𝐿

𝑚−1

∑

𝑖=0

(𝑡
𝑖+1

− 𝑡
𝑖
) 𝑘

2
(𝑡, 𝑞

𝑖
) 𝑗 ∘ V (𝑞

𝑖
)

+ 𝐿 ⋅

𝑚−1

∑

𝑖=0

(𝑡
𝑖+1

− 𝑡
𝑖
) [𝑘

2
(𝑡, 𝑞

𝑖
) 𝑗 ∘ (V (𝑠

𝑖
) − V (𝑞

𝑖
))]

=

𝑚−1

∑

𝑖=0

(𝑡
𝑖+1

− 𝑡
𝑖
) 𝑘

1
(𝑡, 𝑝

𝑖
) 𝑗 ∘ V (𝑝

𝑖
)

+
𝑐

𝑚

𝑚−1

∑

𝑖=0

[𝑘
1
(𝑡, 𝑝

𝑖
) 𝑗 ∘ (V (𝑠

𝑖
) − V (𝑝

𝑖
))]

+ 𝐿 ⋅

𝑚−1

∑

𝑖=0

(𝑡
𝑖+1

− 𝑡
𝑖
) 𝑘

2
(𝑡, 𝑞

𝑖
) 𝑗 ∘ V (𝑞

𝑖
)

+
𝐿 ⋅ 𝑐

𝑚

𝑚−1

∑

𝑖=0

[𝑘
2
(𝑡, 𝑞

𝑖
) 𝑗 ∘ (V (𝑠

𝑖
) − V (𝑞

𝑖
))] .

(42)
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By continuity of V we have V(𝑠
𝑖
) → V(𝑝

𝑖
) < 𝜀

1
and

V(𝑠
𝑖
) → V(𝑞

𝑖
) < 𝜀

2
as𝑚 → ∞. So, we have

𝛼 (𝑗 ∘ 𝐹 (𝑉) (𝑡))

< ∫

𝑐

0

𝑘
1 (𝑡, 𝑠) V (𝑠) d𝑠 + 𝑐 ⋅ sup

𝑝∈𝐼𝑐

𝑘
1
(𝑡, 𝑝) 𝜀

1

+ 𝐿 ⋅ ∫

𝑐

0

𝑘
2
(𝑡, 𝑠) 𝑗 ∘ V (𝑠) d𝑠 + 𝐿 ⋅ 𝑐 ⋅ sup

𝑞∈𝐼𝑐

𝑘
2
(𝑡, 𝑞) 𝜀

2
.

(43)

Therefore, we have

𝛼 (𝑗 ∘ 𝐹 (𝑉) (𝑡)) ≤ (1 + 𝐿)

⋅ 𝑗 ∘ ∫

𝑐

0

[𝑘
1
(𝑡, 𝑠) + 𝑘

2
(𝑡, 𝑠)] V (𝑠) d𝑠

(44)

for 𝑡 ∈ 𝐼
𝑐
. Since 𝑉 = conv({𝑢} ∪ 𝐹(𝑉)), by the properties of

measure of noncompactness 𝛼, we have

𝛼 (𝑗 ∘ 𝑉 (𝑡)) ≤ 𝛼 (𝑗 ∘ (𝐹 (𝑉) (𝑡))) , (45)

and so in view of (44) it follows that

V (𝑡) ≤ (1 + 𝐿) ∫

𝑐

0

[𝑘
1
(𝑡, 𝑠) + 𝑘

2
(𝑡, 𝑠)] V (𝑠) d𝑠 (46)

for 𝑡 ∈ 𝐼
𝑐
. Because this inequality holds for all 𝑡 ∈ 𝐼

𝑐
and

(1 + 𝐿)𝛾(𝐾) < 1, by applying Gronwall’s inequality, we get
that 𝛼(𝑗 ∘ 𝑉(𝑡)) = 0 for 𝑡 ∈ 𝐼

𝑐
. By Arzelá-Ascoli Theorem, 𝑉

is relatively compact. So, by Theorem 12, 𝐹 has a fixed point
which is a solution of problem (4).

4. Conclusion

In this paper, we deal with the existence problems of discon-
tinuous fuzzy integral equations involving the strong fuzzy
Henstock integral in fuzzy number space. The functions of
the equations are supposed to be discontinuous with respect
to some variables and satisfy nonabsolute fuzzy integrability.
Our result improves the result given in [15, 26] (where
uniform continuity was required), as well as those referred
to therein.
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For those semigroups, which may have power type singularities and whose generators are abstract multivalued linear operators,
we characterize the behaviour with respect to a certain set of intermediate and interpolation spaces. The obtained results are then
applied to provide maximal time regularity for the solutions to a wide class of degenerate integro- and non-integro-differential
evolution equations in Banach spaces.

1. Introduction

Let 𝑋 be a complex Banach space and let {T
𝐴
(𝑡)}

𝑡≥0
be a

semigroup of operators on 𝑋, which is generated by a multi-
valued linear operator 𝐴 : D(𝐴) ⊆ 𝑋 → 𝑋 and which may
have a power type singularity at the origin 𝑡 = 0, that is,

T𝐴 (𝑡)
L(𝑋)

≤ 𝐶
0
𝑡
]
, ∀𝑡 > 0,

T
𝐴
(0) 𝑥 = 𝑥, ∀𝑥 ∈ 𝑋,

(1)

for some nonnegative constant 𝐶
0
and nonpositive exponent

], where L(𝑋) denotes the Banach algebra of all endomor-
phisms of 𝑋 endowed with the uniform operator norm. In
this context our aimhere is twofold.Thefirst is to characterize
the behaviour of {T

𝐴
(𝑡)}

𝑡≥0
with respect to some intermedi-

ate and interpolation spaces between𝑋 and the domainD(𝐴)

of 𝐴. The second is to investigate how this behaviour reflects
on the question of maximal time regularity for the solutions
to a class of degenerate integro- and non-integrodifferential
initial value problems in𝑋.

The class of operators we will deal with consists precisely
of those multivalued linear operators 𝐴 whose single-valued
resolvents satisfy the following estimate:


(𝜆𝐼 − 𝐴)

−1L(𝑋)
≤ 𝐶(|𝜆| + 1)

−𝛽
, ∀𝜆 ∈ Σ

𝛼
. (2)

Here, 𝐼 is the identity operator, 𝐶 is a positive constant, 𝛽 ∈

(0, 1], and Σ
𝛼
is the complex region {𝑧 ∈ C : Re 𝑧 ≥

−𝑐(|Im 𝑧|+1)
𝛼
,Im 𝑧 ∈ R}, 𝑐 > 0, 𝛼 ∈ [𝛽, 1]. It thus happens

(cf. [1–3]) that𝐴 is the infinitesimal generator of a semigroup
of linear bounded operators in 𝑋 satisfying (1) with ] = ]

𝛼,𝛽
,

where ]
𝛼,𝛽

= (𝛽 − 1)/𝛼.
To outline the motivations of our research, let us assume

for a moment that𝐴 is a single-valued linear operator satisfy-
ing (2). It is well known that if 𝛽 = 1, then 𝐴 is the infinites-
imal generator of a bounded analytic semigroup. For this
case, an extensive literature exists concerning the behaviour
of {T

𝐴
(𝑡)}

𝑡≥0
with respect to the real interpolation spaces

(𝑋,D(𝐴))
𝛾,𝑝
, 𝛾 ∈ (0, 1), 𝑝 ∈ [1,∞], and its applica-

tion to questions of maximal regularity for the solutions
to nondegenerate (possibly nonautonomous) integro- and
non-integrodifferential abstract Cauchy problems. See, for
instance, [4–11]. Due to (1) with ] = ]

1,𝛽
, the case of 𝛼 =

1 and 𝛽 ∈ (0, 1) is definitely worsened and the literature
for it is considerably less conspicuous, although estimate of
type (2), with (Re 𝜆 + |Im 𝜆|

𝛽
)
−1 in place of (|𝜆| + 1)

−𝛽,
goes back even to [12, Remark p. 383] in the ambit of Abel
summable semigroups admitting uniform derivatives of all
orders. One of the main problems with the case 𝛽 ∈ (0, 1) is
that some equivalent characterizations of (𝑋,D(𝐴))

𝛾,𝑝
begin

to fail (cf. [13]), so that some spaces which were just real
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interpolation spaces between 𝑋 and D(𝐴) in the case 𝛽 =

1 become only intermediate spaces in the case 𝛽 ∈ (0, 1).
However, avoiding questions of interpolation theory and of
maximal regularity, a quite satisfactorily semigroup theory
for the single-valued case with 𝛽 ∈ (0, 1) and its application
to the unique solvability of some concrete partial (non-
integro-) differential equations have been developed in [14–
18]. Since the multivalued case embraces the single-valued
one, our contribution in this field is to fill this gap, supplying a
theory for the behaviour of singular semig 𝑛 intermediate and
interpolation spaces which, in the case 𝛽 = 1, reduces to that
in [9, 11]. As an effect of this theory, there is the possibility
of investigating questions of maximal time regularity for an
entire class of nondegenerate evolution equations which does
not fall within the case 𝛽 = 1.

The case when 𝐴 is really a multivalued linear operator
arises naturally when we shift our attention to degenerate
evolution equations of the type considered in [1–3]. There, a
semigroup theory for multivalued linear operators was intro-
duced as a tool to handle degenerate equations by means of
analogous techniques of the nondegenerate ones. Such a the-
ory has been then successfully applied to questions of maxi-
mal regularity for the solutions to a wide class of degenerate
integro- and non-integrodifferential equations. We quote [2,
19–23] where, in general and unless 𝛽 = 1, it is shown that
the time regularity of the solutions decreases with respect
to that of the data. In this respect, we mention the recent
results in [20] where, under an additional condition of space
regularity on the data and provided that 𝛼 and 𝛽 are large
enough, the loss of time regularity is restored. Regrettably
(cf. the appendix below), we have found some inaccuracies
in [20, Section 4], and for this reason we must indicate some
changes to that paper. On the other side, fortunately, the basic
idea in [20] is correct and remedy can be applied to all the
inappropriate items. Furthermore, unexpectedly, we will see
that the more delicate approach followed in this paper not
only corrects the mistakes in [20], but also gives rise to an
effective improvement of the achievable results. In fact, here,
we will straighten out, refine, and extend [20], enlarging the
class of the admissible spaces to which the data may belong,
weakening the assumption for the pair (𝛼, 𝛽), and complicat-
ing the structure of the underlying equations. This is why we
will first analyze the behaviour of the semigroup generated by
𝐴with respect to some intermediate and interpolation spaces
which turn out to be equivalent only in the case𝛽 = 1. Indeed,
the phenomena exhibited in [13] for the single-valued case
extend to themultivalued one (cf. [24]), and, until now, for the
mentioned behaviour there exist no more than some partial
results obtained in [2, 19, 24].

We now give the detailed plan of the paper. In Section 2,
for a multivalued linear operator 𝐴 having domain D(𝐴)

and satisfying (2), we introduce the corresponding generated
semigroup {e𝑡𝐴}

𝑡≥0
. This leads us to define also the linear

bounded operators [(−𝐴)𝜃]∘e𝑡𝐴, Re 𝜃 ≥ 0, 𝑡 > 0, ([(−𝐴)0]∘

e𝑡𝐴 = e𝑡𝐴) and to recall the fundamental estimates for
their L(𝑋)-norm. For the operators [(−𝐴)𝜃]∘e𝑡𝐴 a semi-
group type property is proven in Proposition 1. We then
introduce the spaces we will deal with in this paper, that is,

the interpolation spaces (𝑋,D(𝐴))
𝛾,𝑝

and the spaces 𝑋𝛾,𝑝

𝐴
,

𝛾 ∈ (0, 1), 𝑝 ∈ [1,∞]. Special attention is given
to the embeddings linking these two classes of spaces
which, in general, are equivalent only in the case 𝛽 =

1. Some relations existing between the spaces 𝑋
𝛾,𝑝

𝐴
for

different values of 𝛾 and 𝑝 are proven in Proposition 2
and discussed in Remarks 3–5. We conclude the sec-
tion recalling the estimates proven in [19, 24] for the
norms ‖[(−𝐴)𝜃]∘e𝑡𝐴‖L(𝑋;(𝑋,D(𝐴))𝛾,𝑝)

, Re 𝜃 ≥ 0, and ‖[(−𝐴)
1
]
∘

e𝑡𝐴‖L(𝑌
𝑝

𝛾 ;𝑋)
,𝑌𝑝

𝛾
∈ {(𝑋,D(𝐴))

𝛾,𝑝
, 𝑋

𝛾,𝑝

𝐴
}. In Remarks 7 and 8we

explain why, unless we renounce to optimality, in the case𝛽 <

1 these estimates can not be directly extended to the norms
‖[(−𝐴)

𝜃
]
∘e𝑡𝐴‖L(𝑋;𝑋

𝛾,𝑝

𝐴
)
and ‖[(−𝐴)

𝜃
]
∘e𝑡𝐴‖L(𝑌

𝑝

𝛾 ;𝑋)
, Re 𝜃 ≥ 1,

respectively.
In Section 3, we investigate the behaviour of the operators

[(−𝐴)
𝜃
]
∘e𝑡𝐴 with respect to both of the spaces (𝑋,D(𝐴))

𝛾,𝑝

and 𝑋
𝛾,𝑝

𝐴
. First, in Proposition 9, we deal with the norms

‖[(−𝐴)
𝜃
]
∘e𝑡𝐴‖L(𝑋;𝑋

𝛾,𝑝

𝐴
)
,Re 𝜃 ≥ 0, and we show that, except for

replacing (𝑋,D(𝐴))
𝛾,𝑝

with 𝑋𝛾,∞

𝐴
if 𝑝 = ∞ and with 𝑋𝛽𝛾,𝑝

𝐴

if 𝑝 ∈ [1,∞), the same estimates of [19] for the norms
‖[(−𝐴)

𝜃
]
∘e𝑡𝐴‖L(𝑋;(𝑋,D(𝐴))𝛾,𝑝)

continue to hold.The second sig-
nificant result is Proposition 12where, extending those in [24]
to values of 𝜃 other than one, we establish estimates for the
norms ‖[(−𝐴)𝜃]∘e𝑡𝐴‖L(𝑌

𝑝

𝛾 ;𝑋)
, Re 𝜃 ≥ 1, 𝑌𝑝

𝛾
∈ {(𝑋,D(𝐴))

𝛾,𝑝
,

𝑋
𝛾,𝑝

𝐴
}. As a byproductwe deduce the basicCorollary 14,which

in Section 5 will be a key tool in proving the equivalence
between the following problem (3) and the fixed-point equa-
tion (179). The estimates in Proposition 12 are then merged
together with those in [19] to achieve estimates for the norms
‖[(−𝐴)

𝜃
]
∘e𝑡𝐴‖L((𝑋,D(𝐴))𝛾,𝑝 ,(𝑋,D(𝐴))𝛿,𝑝)

, Re 𝜃 ≥ 1. In particular,
two different estimates are obtained, if 𝛾 + 𝛿 < 1 or not. For
if 𝛾 + 𝛿 < 1, then (cf. the proof of Proposition 16) we can take
advantage of the reiteration theorem for interpolation spaces
and obtain estimates that, unless 𝛽 = 1, are better than those
rougher estimates derived in the general case 𝛾, 𝛿 ∈ (0, 1) (see
Remarks 17 and 18). We stress that if 𝛽 = 1, 𝜃 ∈ N and 𝐴

is single-valued, then we restore the estimates in [9]. Finally,
in Proposition 20, a combination of Propositions 9 and 12
yields the estimate for the norms ‖[(−𝐴)𝜃]∘e𝑡𝐴‖

L(𝑋
𝛾,𝑝

𝐴
,𝑋
𝛿,𝑝

𝐴
)
,

Re 𝜃 ≥ 1. Since 𝛽 < 1, the spaces 𝑋𝜎,𝑞

𝐴
are, in general, only

intermediate spaces between𝑋 andD(𝐴) for 𝜎 ∈ (0, 𝛽); here
the reiteration theorem does not apply and a weaker result is
obtained (cf. (101)–(103)).

The estimates of Section 3 are applied in Section 4 to
study the time regularity of those operator functions 𝑄

𝑗
, 𝑗 =

1, . . . , 6, that we will need in Section 5. In particular (cf.
formula (106)), wemodify the definition of𝑄

2
in [20, Section

4] in order that it is well defined, at least when acting on
functions 𝑔 ∈ 𝐶

𝛿
([0, 𝑇]; 𝑋), 𝛿 ∈ ((2 − 𝛼 − 𝛽)/𝛼, 1) (cf.

Corollary 26). Consequently, operators 𝑄
3
and 𝑄

4
in [20]

change too, and the new 𝑄
5
and 𝑄

6
should be introduced

(cf. formulae (107)–(110)). The Hölder in time regularity of
the 𝑄

𝑗
’s is characterized in Lemmas 22, 24, 30, and 32 and

Propositions 29 and 36. The main feature of these results is
to show that the loss of regularity produced by 𝑄

2
and
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𝑄
5
can be restored, in 𝑄

3
and 𝑄

6
respectively, employing

the regularization property established in [20, Section 3] for
a wide range of general convolution operators.

In Section 5 we analyze the maximal time regularity of
the strict solutions V to the following class of degenerate
integrodifferential equations in a complex Banach space𝑋:

d
d𝑡

(𝑀V (𝑡)) = [𝜆
0
𝑀+ 𝐿] V (𝑡) +

𝑛1

∑

𝑖1=1

K (𝑘
𝑖1
, 𝐿

𝑖1
V) (𝑡)

+

𝑛2

∑

𝑖2=1

ℎ
𝑖2
(𝑡) 𝑦

𝑖2
+ 𝑓 (𝑡) , 𝑡 ∈ 𝐼

𝑇
,

𝑀V (0) = 𝑀V
0
.

(3)

Here, 𝐼
𝑇
= [0, 𝑇], 𝜆

0
∈ C, 𝑛

1
, 𝑛

2
∈ N, ℎ

𝑖2
: 𝐼

𝑇
→ C, 𝑦

𝑖2
∈ 𝑋,

𝑖
2
= 1, . . . , 𝑛

2
, whereas, 𝑍 being another complex Banach

space andP : 𝑍×𝑋 → 𝑋 being a bilinear bounded operator,
𝑘
𝑖1
: 𝐼

𝑇
→ 𝑍, andK(𝑘

𝑖1
, 𝐿

𝑖1
V)(𝑡) = ∫

𝑡

0
P(𝑘

𝑖1
(𝑡−𝑠), 𝐿

𝑖1
V(𝑠))d𝑠,

𝑖
1
= 1, . . . , 𝑛

1
. Of course, if 𝑍 = C, thenPmay be the scalar

multiplication in 𝑋. As𝑀, 𝐿, and 𝐿
𝑖1
, 𝑖
1
= 1, . . . , 𝑛

1
, we take

closed single-valued linear operators from 𝑋 to itself, whose
domains fulfill the relation D(𝐿) ⊆ ⋂

𝑛1

𝑖1=1
[D(𝑀) ∩ D(𝐿

𝑖1
)],

and we require 𝐿 to have a bounded inverse, allowing 𝑀

to be not invertible. Hence, in general, 𝐴 = 𝐿𝑀
−1 is only

a multivalued linear operator in 𝑋 having domain D(𝐴) =

𝑀(D(𝐿)). Assuming that 𝐴 satisfies (2) and that the data 𝑘
𝑖1
,

ℎ
𝑖2
, 𝑦

𝑖2
and 𝑓, 𝑖

𝑙
= 1, . . . , 𝑛

𝑙
, 𝑙 = 1, 2, are suitably chosen,

problem (3) is then reduced to an equivalent fixed point-
equation for the new unknown 𝑤 = 𝐿(V − V

0
), V

0
∈ D(𝐿).

It is here that the results of Sections 3 and 4 play their role,
leading us to Theorem 48. In that theorem, provided that
5𝛼 + 2𝛽 > 6, we will prove that if 𝑘

𝑖1
∈ 𝐶

𝜂𝑖1 (𝐼
𝑇
; 𝑍), ℎ

𝑖2
∈ 𝐶

𝜎𝑖2

(𝐼
𝑇
;C), 𝑦

𝑖2
∈ 𝑌

𝑟

𝛾𝑖2

, 𝑌𝑟
𝛾𝑖2

∈ {(𝑋,D(𝐴))
𝛾𝑖2
,𝑟
, 𝑋

𝛾𝑖2
,𝑟

𝐴
}, and 𝑓 ∈ 𝐶

𝜇

(𝐼
𝑇
; 𝑋) for opportunely chosen 𝜂

𝑖1
, 𝜎

𝑖2
, 𝛾

𝑖2
, and 𝜇, 𝑖

𝑙
=

1, . . . , 𝑛
𝑙
, 𝑙 = 1, 2, then problem (3) has a unique strict

solution V ∈ 𝐶
𝜏
(𝐼
𝑇
;D(𝐿)) satisfying V(0) = V

0
and

𝐿V, d𝑀V/d𝑡 ∈ 𝐶
𝜏
(𝐼
𝑇
; 𝑋), where 𝜏 = min

𝑖𝑙=1,...,𝑛𝑙,𝑙=1,2
{𝜂
𝑖1
, 𝜎

𝑖2
}

(cf. Remark 51). Section 5 concludes with applications of
Theorem 48 to integral and nonintegral subcases of (3), (cf.
Theorems 52–54 and 56). We stress that Theorem 48 repairs,
generalizes, and improves [20, Theorems 5.6 and 5.7], where
similar results were proven only for the case (𝑛

1
, 𝑛

2
, 𝑌

𝑝

𝜓) =

(1, 1, 𝑋
𝜓,𝑝

𝐴
) and under the stronger condition 3𝛼 + 8𝛽 > 10.

In Section 6, we give an application of Theorem 48 to a
concrete case of problem (3) arising in the theory of heat con-
duction for materials with memory. In particular, we show
how Theorem 48 characterizes the appropriate functional
framework where to search for the solution of the inverse
problem of recovering both V and the vector (𝑘

1
, . . . , 𝑘

𝑟1
), 𝑟

1
≤

𝑛
1
, in (3) with (𝑖

2
, 𝑛

2
) = (𝑖

1
, 𝑛

1
) and ℎ

𝑖1
= 𝑘

𝑖1
, 𝑖
1
= 1, . . . , 𝑛

1
.

Finally, in the Appendix we explain how to amend [20,
Theorems 5.6 and 5.7] in accordance to Theorem 48.

2. Multivalued Linear Operators,
Singular Semigroups, and the Spaces
(𝑋,D(𝐴))

𝛾,𝑝
and 𝑋

𝛾,𝑝

𝐴

Let 𝑋 be a complex Banach space endowed with norm ‖ ⋅ ‖
𝑋

and let P(𝑋) be the collection of all the subsets of 𝑋. For
a number 𝜆 ∈ C and elementsU,V,W ∈ P(𝑋) \ 0, 𝜆U, and
V +W denote the subsets of 𝑋 defined by {𝜆𝑢 : 𝑢 ∈ U} and
{V + 𝑤 : V ∈ V, 𝑤 ∈ W}, respectively. Then, a mapping 𝐴
from 𝑋 into P(𝑋) is called a multivalued linear operator in
𝑋 if its domainD(𝐴) = {𝑥 ∈ 𝑋 : 𝐴𝑥 ̸= 0} is a linear subspace
of 𝑋 and 𝐴 satisfies the following: (i) 𝐴𝑥 + 𝐴𝑦 ⊂ 𝐴(𝑥 + 𝑦),
for all 𝑥, 𝑦 ∈ D(𝐴); (ii) 𝜆𝐴𝑥 ⊂ 𝐴(𝜆𝑥), for all 𝜆 ∈ C, for all
𝑥 ∈ D(𝐴). From now on, the shortening m. l. will be always
used for multivalued linear.

The set R(𝐴) = ⋃
𝑥∈D(𝐴) 𝐴𝑥 is called the range of 𝐴. If

R(𝐴) = 𝑋, then 𝐴 is said to be surjective. The following
properties of a m. l. operator 𝐴 are immediate consequences
of its definition (cf. [1,Theorems 2.1 and 2.2]): (iii)𝐴𝑥+𝐴𝑦 =

𝐴(𝑥 + 𝑦), for all 𝑥, 𝑦 ∈ D(𝐴); (iv) 𝜆𝐴𝑥 = 𝐴(𝜆𝑥), for all 𝜆 ∈
C \ {0}, for all 𝑥 ∈ D(𝐴); (v) 𝐴0 is a linear subspace of 𝑋
and 𝐴𝑥 = 𝑦 + 𝐴0 for any 𝑦 ∈ 𝐴𝑥, 𝑥 ∈ D(𝐴). In particular, 𝐴
is single-valued if and only if 𝐴0 = {0}.

If𝐴 is anm. l. operator in𝑋, then its inverse𝐴−1 is defined
to be the operator having domainD(𝐴

−1
) = R(𝐴) such that

𝐴
−1
𝑦 = {𝑥 ∈ D(𝐴) : 𝑦 ∈ 𝐴𝑥}, 𝑦 ∈ D(𝐴

−1
). 𝐴−1 is an m. l.

operator in 𝑋 too, and (𝐴
−1
)
−1

= 𝐴. The set 𝐴−1
0 = {𝑥 ∈

D(𝐴) : 0 ∈ 𝐴𝑥} is called the kernel of 𝐴 and denoted by
N(𝐴). If N(𝐴) = {0}; that is, if 𝐴−1 is single-valued, then 𝐴
is said to be injective. Observe that (v) yields 𝐴𝑥 = 𝐴0 if and
only if 𝑥 ∈ N(𝐴).

Given U ∈ P(𝑋) \ 0, we write 𝐴(U) = ⋃
𝑢∈U∩D(𝐴) 𝐴𝑢,

so that, in particular, 𝐴(𝑋) = 𝐴(D(𝐴)) = R(𝐴). If 𝐴
𝑗
,

𝑗 = 1, 2 are m. l. operators in 𝑋 and 𝜆 ∈ C, then the scalar
multiplication 𝜆𝐴

1
, the sum 𝐴

1
+𝐴

2
, and the product 𝐴

1
𝐴
2

are defined by

D (𝜆𝐴
1
) = D (𝐴

1
) ,

(𝜆𝐴
1
) 𝑥 = 𝜆𝐴

1
𝑥, 𝑥 ∈ D (𝜆𝐴

1
) ,

D (𝐴
1
+ 𝐴

2
) = D (𝐴

1
) ∩D (𝐴

2
) ,

(𝐴
1
+ 𝐴

2
) 𝑥 = 𝐴

1
𝑥 + 𝐴

2
𝑥, 𝑥 ∈ D (𝐴

1
+ 𝐴

2
) ,

D (𝐴
1
𝐴
2
) = {𝑥 ∈ D (𝐴

2
) : 𝐴

1
(𝐴

2
𝑥) ̸= 0} ,

(𝐴
1
𝐴
2
) 𝑥 = 𝐴

1
(𝐴

2
𝑥) , 𝑥 ∈ D (𝐴

1
𝐴
2
) ,

(4)

where 𝜆𝐴
1
, 𝐴

1
+ 𝐴

2
and 𝐴

1
𝐴
2
are m. l. operators in 𝑋 and

(𝐴
1
𝐴
2
)
−1
= 𝐴

−1

2
𝐴
−1

1
.

Let 𝐴 and 𝐵 be m. l. operators in 𝑋. We write 𝐴 ⊂ 𝐵 if
D(𝐴) ⊆ D(𝐵) and𝐴𝑥 ⊆ 𝐵𝑥 for every 𝑥 ∈ D(𝐴). Clearly,𝐴 ⊂

𝐵 ⊂ 𝐴 if and only if 𝐴 = 𝐵. If 𝐴 ⊂ 𝐵 and 𝐴𝑥 = 𝐵𝑥 for every
𝑥 ∈ D(𝐴), then𝐵 is called an extension of𝐴. If a linear single-
valued operator 𝑆 has domainD(𝑆) = D(𝐴) and 𝑆 ⊂ 𝐴, that
is, 𝑆𝑥 ∈ 𝐴𝑥 for every 𝑥 ∈ D(𝐴), then 𝑆 is called a section of𝐴.
With an arbitrary section 𝑆, it holds𝐴𝑥 = 𝑆𝑥+𝐴0, 𝑥 ∈ D(𝐴),
andR(𝐴) = R(𝑆) + 𝐴0, but this latter sum may or may not
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be direct (cf. [25, p. 14]). A method for constructing sections
is provided in [25, Proposition I.5.2].

If 𝑋
𝑗
, 𝑗 = 1, 2, are two complex Banach spaces, then the

linear space of all bounded single-valued linear operators 𝐿
from 𝑋

1
= D(𝐿) to 𝑋

2
is denoted by L(𝑋

1
; 𝑋

2
) (L(𝑋

1
) if

𝑋
1
= 𝑋

2
) and it is equipped with the uniform operator norm

‖𝐿‖L(𝑋1 ;𝑋2)
= sup

‖𝑥‖𝑋1
≤1
‖𝐿𝑥‖

𝑋2
= inf

𝐾≥0
{‖𝐿𝑥‖

𝑋2
≤ 𝐾‖𝑥‖

𝑋1
:

𝑥 ∈ 𝑋
1
}. Then the resolvent set 𝜌(𝐴) of a m. l. operator 𝐴 is

defined to be the set {𝑧 ∈ C : (𝑧𝐼 − 𝐴)
−1

∈ L(𝑋)}, with 𝐼
being the identity operator in 𝑋. The basic properties of the
resolvent set of single-valued linear operators hold the same
for m. l. operators. First, if 𝜌(𝐴) ̸= 0, then 𝐴 is closed; that is,
its graph {(𝑥, 𝑦) ∈ 𝑋 × 𝑋 : 𝑥 ∈ D(𝐴), 𝑦 ∈ 𝐴𝑥} is closed (cf.
[25, p. 43]). Further (cf. [1,Theorem 2.6]), 𝜌(𝐴) is an open set
and the operator function 𝑧 ∈ 𝜌(𝐴) → (𝑧𝐼 − 𝐴)

−1
∈ L(𝑋)

is holomorphic. Finally (cf. [1, formula (2.1)]), the resolvent
equation (𝜆

2
−𝜆

1
)(𝜆

1
𝐼−𝐴)

−1
(𝜆

2
𝐼−𝐴)

−1
= (𝜆

1
𝐼−𝐴)

−1
−(𝜆

2
𝐼−

𝐴)
−1, 𝜆

1
, 𝜆

2
∈ 𝜌(𝐴), is satisfied, too. Unlike the single-valued

case, instead, for 𝑧 ∈ 𝜌(𝐴) the following inclusions hold (cf.
[1, Theorem 2.7]):

(𝑧𝐼 − 𝐴)
−1
𝐴 ⊂ 𝑧(𝑧𝐼 − 𝐴)

−1
− 𝐼 ⊂ 𝐴(𝑧𝐼 − 𝐴)

−1
. (5)

Then, in general, 𝑧(𝑧𝐼 −𝐴)−1 − 𝐼, 𝑧 ∈ 𝜌(𝐴), is only a bounded
section of the m. l. operator 𝐴(𝑧𝐼 − 𝐴)

−1. Throughout this
paper, we denote this bounded section by 𝐴∘

(𝑧𝐼 − 𝐴)
−1, but

we warn the reader that here 𝐴∘ does not necessarily denote
a section of 𝐴 itself. Of course, if 𝐴 is single-valued, then
𝐴
∘
(𝑧𝐼 − 𝐴)

−1 reduces to 𝐴(𝑧𝐼 − 𝐴)−1. Notice that (5) implies
that (𝑧𝐼−𝐴)−1𝐴, 𝑧 ∈ 𝜌(𝐴), is single-valued onD(𝐴) and (𝑧𝐼−
𝐴)

−1
𝐴𝑥 = (𝑧𝐼 − 𝐴)

−1
𝑦 with any 𝑦 ∈ 𝐴𝑥, 𝑥 ∈ D(𝐴). Another

difference with the single-valued case is that for every 𝑧 ∈

𝜌(𝐴) it holdsN((𝑧𝐼 − 𝐴)
−1
) = 𝐴0. Indeed, ((𝑧𝐼 − 𝐴)−1)−10 =

(𝑧𝐼 − 𝐴)0 = 𝐴0. Therefore, in the m. l. case, {0} ⊊ N((𝑧𝐼 −

𝐴)
−1
), 𝑧 ∈ 𝜌(𝐴). However (cf. [24, Lemma 2.1]), if 0 ∈ 𝜌(𝐴),

thenN(𝐴
∘
(𝑧𝐼 − 𝐴)

−1
) = {0}, and, in addition, 𝑥 ∉ 𝐴0 if and

only if 𝐴∘
(𝑧𝐼 − 𝐴)

−1
𝑥 ∉ 𝐴0, 𝑧 ∈ 𝜌(𝐴). We also recall that

for every 𝜆
1
, 𝜆

2
∈ 𝜌(𝐴) the following slight variants of the

resolvent equation hold (cf. [24, Lemma 2.2]):

(𝜆
2
− 𝜆

1
) (𝜆

1
𝐼 − 𝐴)

−1
𝐴
∘
(𝜆

2
𝐼 − 𝐴)

−1

= 𝐴
∘
(𝜆

1
𝐼 − 𝐴)

−1
− 𝐴

∘
(𝜆

2
𝐼 − 𝐴)

−1
,

(𝜆
2
− 𝜆

1
) 𝐴

∘
(𝜆

1
𝐼 − 𝐴)

−1
(𝜆

2
𝐼 − 𝐴)

−1

= 𝐴
∘
(𝜆

1
𝐼 − 𝐴)

−1
− 𝐴

∘
(𝜆

2
𝐼 − 𝐴)

−1
.

(6)

In particular, if 0 ∈ 𝜌(𝐴), then, since 𝐴∘
(0𝐼 − 𝐴)

−1
= −𝐼, the

first in (6) with (𝜆
1
, 𝜆

2
) = (0, 𝜆) yields 𝜆(−𝐴)−1𝐴∘

(𝜆𝐼−𝐴)
−1
=

−𝐼 − 𝐴
∘
(𝜆𝐼 − 𝐴)

−1
= −𝜆(𝜆𝐼 − 𝐴)

−1; that is,

𝐴
−1
𝐴
∘
(𝜆𝐼 − 𝐴)

−1
= (𝜆𝐼 − 𝐴)

−1
, 𝜆 ∈ 𝜌 (𝐴) . (7)

Let (𝐴,D(𝐴)) be am. l. operator in𝑋 satisfying the following
resolvent condition:

(H1) 𝜌(𝐴) contains a region Σ
𝛼
= {𝑧 ∈ C : Re 𝑧 ≥

−𝑐(|Im 𝑧| + 1)
𝛼
,Im 𝑧 ∈ R},

𝛼 ∈ (0, 1], 𝑐 > 0, and for some exponent 𝛽 ∈ (0, 𝛼]

and constant 𝐶 > 0 the following estimate holds:

(𝜆𝐼 − 𝐴)

−1L(𝑋)
≤ 𝐶(|𝜆| + 1)

−𝛽
, ∀𝜆 ∈ Σ

𝛼
. (8)

Introduce the family {e𝑡𝐴}
𝑡≥0

∈ L(𝑋) defined by e0𝐴 = 𝐼 and

e𝑡𝐴 =
1

2𝜋𝑖
∫
Γ

e𝑡𝜆(𝜆𝐼 − 𝐴)−1d𝜆, 𝑡 > 0, (9)

where Γ ⊊ Σ
𝛼
\ {𝑧 ∈ C : Re 𝑧 ≥ 0} is the contour parame-

trized by 𝜆 = −𝑐(|𝜂| + 1)
𝛼
+ 𝑖𝜂, 𝜂 ∈ (−∞,∞). Then (cf. [1, pp.

360, 361]), {e𝑡𝐴}
𝑡≥0

is a semigroup on𝑋, infinitely many times
strongly differentiable for 𝑡 > 0 with

𝐷
𝑘

𝑡
e𝑡A =

1

2𝜋𝑖
∫
Γ

𝜆
𝑘e𝑡𝜆(𝜆𝐼 − 𝐴)−1d𝜆,

𝑡 > 0, 𝑘 ∈ N = {1, 2, . . .} ,

(10)

where 𝐷𝑘

𝑡
= d𝑘/d𝑡𝑘. In general, no analyticity should be

expected for e𝑡𝐴. For if 𝛼 < 1 in (H1), then Σ
𝛼
does not con-

tain any sector Λ
𝜔+𝜋/2

= {𝑧 ∈ C \ {0} : | arg 𝑧| < 𝜔 +

𝜋/2}, 𝜔 ∈ (0, 𝜋/2), and [15, Theorem 5.3], which extends e𝑡𝐴
analytically to the sectorΛ

𝜔
containing the positive real axis,

is not applicable. We stress that (9) andN((𝑧𝐼 − 𝐴)
−1
) = 𝐴0,

𝑧 ∈ 𝜌(𝐴), imply 𝐴0 ⊆ N(e𝑡𝐴) for every 𝑡 > 0, whereas
N(e0𝐴) = N(𝐼) = {0}. Hence, if 𝐴 is really an m. l. operator,
then {0} ⊊ 𝐴0 ⊆ ⋂

𝑡>0
N(e𝑡𝐴). From the semigroup property

it also follows thatN(e𝑡0𝐴) ⊆ N(e𝑡1𝐴) for 𝑡
1
≥ 𝑡

0
≥ 0.

Now, for every 𝜃 ∈ C such thatRe 𝜃 ≥ 0 we set

[(−𝐴)
𝜃
]
∘

e𝑡𝐴 =
1

2𝜋𝑖
∫
Γ

(−𝜆)
𝜃e𝑡𝜆(𝜆𝐼 − 𝐴)−1d𝜆, 𝑡 > 0. (11)

Here, for themultivalued function (−𝜆)𝜃 = e𝜃Ln(−𝜆) we choose
the principal branch holomorphic in the region C \ {𝑧 ∈

C : Re 𝑧 ≥ 0}, where for principal branch we mean the
principal determination ln |𝑧| + 𝑖 arg(𝑧) of Ln(𝑧). We briefly
recall themain properties of operators [(−𝐴)𝜃]∘e𝑡𝐴. Of course,
[(−𝐴)

0
]
∘e𝑡𝐴 = e𝑡𝐴, 𝑡 > 0. As shown in [26, p. 426], [(−𝐴)𝑘]∘

e𝑡𝐴, 𝑘 ∈ N, 𝑡 > 0, is a section of (−𝐴)𝑘e𝑡𝐴, so that from (10) we
get

(−1)
𝑘
𝐷
𝑘

𝑡
e𝑡𝐴 = [(−𝐴)

𝑘
]
∘

e𝑡𝐴 ⊂ (−𝐴)
𝑘e𝑡𝐴, 𝑡 > 0, 𝑘 ∈ N.

(12)

Moreover (cf. [19, formula (22)] with 𝜃 ≥ 0 being replaced by
Re 𝜃 ≥ 0), we get

[(−𝐴)
𝜃
]
∘

e𝑡𝐴 − [(−𝐴)𝜃]
∘

e𝑠𝐴 = −∫

𝑡

𝑠

[(−𝐴)
𝜃+1

]
∘

e𝜉𝐴d𝜉,

Re 𝜃 ≥ 0, 0 < 𝑠 < 𝑡.

(13)

Finally, (H1) implies the following estimates (cf. [1, 24,
Section 3]):

[(−𝐴)

𝜃
]
∘

e𝑡𝐴
L(𝑋)

≤ 𝑐
𝛼,𝛽,𝜃

𝑡
(𝛽−Re 𝜃−1)/𝛼

, Re 𝜃 ≥ 0, 𝑡 > 0,

(14)
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where the 𝑐
𝛼,𝛽,𝜃

’s are positive constants depending on 𝛼, 𝛽,
and 𝜃. Thus, letting 𝜃 = 0 in (14), we see that if 𝛽 ∈ (0, 1),
then the operator function 𝑡 ∈ (0,∞) → e𝑡𝐴 ∈ L(𝑋) may
be singular at the origin and the semigroup is not necessarily
strongly continuous in the 𝑋-norm on the closure D(𝐴) of
D(𝐴) in 𝑋. Notice that if 𝛼 + 𝛽 > 1, then the singularity is a
weak one, in the sense that {e𝑡𝐴}

𝑡≥0
is integrable in norm in

any interval [0, 𝜏], 𝜏 > 0. Further (cf. [24, Lemma 3.9]), if
𝛼 + 𝛽 > 1, then 𝐴0 = ⋂

𝑡>0
N(e𝑡𝐴), and if 𝛼 = 1, then 𝐴0 =

N(e𝑡𝐴) for every 𝑡 > 0.
Observe that 𝐴0 ⊆ N([(−𝐴)

𝜃
]
∘e𝑡𝐴), Re 𝜃 ≥ 0, 𝑡 > 0,

so that 𝐴0 ⊆ ⋂
𝑡>0

N([(−𝐴)
𝜃
]
∘e𝑡𝐴), Re 𝜃 ≥ 0. The operators

[(−𝐴)
𝜃
]
∘e𝑡𝐴 satisfy the following semigroup type property.

Proposition 1. Let 𝜃
𝑗
∈ C,Re𝜃

𝑗
≥ 0, and let 𝑡

𝑗
> 0, 𝑗 = 1, 2.

Then

[(−𝐴)
𝜃1]

∘

e𝑡1𝐴[(−𝐴)𝜃2]
∘

e𝑡2𝐴 = [(−𝐴)
𝜃1+𝜃2]

∘

e(𝑡1+𝑡2)𝐴. (15)

Proof. First, the function 𝜆 ∈ 𝜌(𝐴) → (−𝜆)
𝜃e𝑡𝜆(𝜆𝐼 − 𝐴)−1 ∈

L(𝑋) being holomorphic for everyRe 𝜃 ≥ 0 and 𝑡 > 0, and
the contour Γ in (11) with (𝜃, 𝑡) = (𝜃

2
, 𝑡
2
) can be replaced with

the contour Γ ⊊ Σ
𝛼
\ {𝑧 ∈ C : Re 𝑧 ≥ 0} parametrized by

𝜇 = −𝑐

(|𝜂| + 1)

𝛼
+ 𝑖𝜂, 𝜂 ∈ (−∞,∞), 𝑐 ∈ (0, 𝑐), and lies to the

right of Γ. Then, for every 𝑥 ∈ 𝑋, from the resolvent equation
we obtain

[(−𝐴)
𝜃1]

∘

e𝑡1𝐴[(−𝐴)𝜃2]
∘

e𝑡2𝐴𝑥

= (
1

2𝜋𝑖
)

2

∫
Γ

(−𝜆)
𝜃1e𝑡1𝜆

× [∫
Γ


(−𝜇)
𝜃2e𝑡2𝜇(𝜆𝐼 − 𝐴)−1(𝜇𝐼 − 𝐴)−1𝑥 d𝜇]d𝜆

= (
1

2𝜋𝑖
)

2

∫
Γ

(−𝜆)
𝜃1e𝑡1𝜆(𝜆𝐼 − 𝐴)−1

× [(∫
Γ


(−𝜇)
𝜃2e𝑡2𝜇(𝜇 − 𝜆)−1d𝜇)𝑥] d𝜆

− (
1

2𝜋𝑖
)

2

∫
Γ


(−𝜇)
𝜃2e𝑡2𝜇(𝜇𝐼 − 𝐴)−1

× [(∫
Γ

(−𝜆)
𝜃1e𝑡1𝜆(𝜆 − 𝜇)−1d𝜆)𝑥] d𝜇.

(16)

Now, after having enclosed Γ and Γ on the left with an arcΔ
𝑅

of the circle {𝑧 ∈ C : |𝑧 + 𝑐

| = 𝑅}, 𝑅 > 𝑐 − 𝑐

, we apply the
residue theorem and let 𝑅 go to infinity. To this purpose, we
observe that since the contours Γ and Γ both lie in the half-
plane {𝑧 ∈ C : Re 𝑧 ≤ −𝑐


}, the arc Δ

𝑅
may be parametrized

in polar coordinates byRe 𝑧 = −𝑐

+𝑅 cos𝜑,Im 𝑧 = 𝑅 sin𝜑,

𝜑 ∈ (𝜋/2, 3𝜋/2). Then, for every 𝑧 ∈ Δ
𝑅
we have


(−𝑧)

𝜃e𝑡𝑧 = |𝑧|
Re 𝜃e−Im 𝜃 arg(−𝑧)e𝑡Re 𝑧

≤ (𝑅 + 𝑐

)
Re 𝜃

e(𝜋/2)|Im 𝜃|e−𝑡𝑐


e𝑡𝑅 cos𝜑
.

(17)

Since 𝑡 > 0 and 𝜑 ∈ (𝜋/2, 3𝜋/2), the right-hand side of the
latter inequality goes to zero as 𝑅 goes to infinity, so that
lim

𝑅→∞,𝑧∈Δ𝑅
(−𝑧)

𝜃e𝑡𝑧 = 0 for every Re 𝜃 ≥ 0 and 𝑡 > 0.
The residue theorem together with the fact that Γ lies to the
right of Γ thus yields ∫

Γ

(−𝜇)

𝜃2e𝑡2𝜇(𝜇−𝜆)−1d𝜇 = 2𝜋𝑖(−𝜆)
𝜃2e𝑡2𝜆

and ∫
Γ
(−𝜆)

𝜃1e𝑡1𝜆(𝜆−𝜇)−1d𝜆 = 0. Replacing these identities in
(16) and using the equality (−𝜆)𝜃1(−𝜆)𝜃2 = (−𝜆)

𝜃1+𝜃2 which
is satisfied for the principal branch of the function (−𝜆)

𝜃
=

e𝜃Ln(−𝜆), we finally find

[(−𝐴)
𝜃1]

∘

e𝑡1𝐴[(−𝐴)𝜃2]
∘

e𝑡2𝐴𝑥

=
1

2𝜋𝑖
∫
Γ

(−𝜆)
𝜃1+𝜃2e(𝑡1+𝑡2)𝜆(𝜆𝐼 − 𝐴)−1𝑥 d𝜆.

(18)

The right-hand side being precisely [(−𝐴)𝜃1+𝜃2]∘e(𝑡1+𝑡2)𝐴𝑥, the
proof is complete.

For an m. l. operator 𝐴 satisfying (H1) we introduce now
the spaces (𝑋,D(𝐴))

𝛾,𝑝
and𝑋𝛾,𝑝

𝐴
. We first specify a topology

onD(𝐴) equipping it with the norm ‖𝑥‖D(𝐴) = inf
𝑦∈𝐴𝑥

‖𝑦‖
𝑋
,

𝑥 ∈ D(𝐴). Since 𝐴−1
∈ L(𝑋), this norm is equivalent to the

graph norm andmakesD(𝐴) a complex Banach space (cf. [2,
Proposition 1.11]). As𝑋

1
and𝑋

2
being given normed complex

linear spaces, we will write 𝑋
1
→ 𝑋

2
if 𝑋

1
⊆ 𝑋

2
and there

exists a positive constant 𝐶
0
such that ‖𝑥‖

𝑋2
≤ 𝐶

0
‖𝑥‖

𝑋1
for

every 𝑥 ∈ 𝑋
1
. If 𝑋

1
→ 𝑋

2
→ 𝑋

1
, that is, if 𝑋

1
= 𝑋

2

and the norms ‖ ⋅ ‖
𝑋1

and ‖ ⋅ ‖
𝑋2

are equivalent, then we will
write 𝑋

1
≅ 𝑋

2
. Of course, D(𝐴) with the norm ‖ ⋅ ‖D(𝐴)

satisfies D(𝐴) → 𝑋. In fact, if 𝑥 ∈ D(𝐴), then for every
𝑦 ∈ 𝐴𝑥 we have 𝑥 = 𝐴

−1
𝑦, so that ‖𝑥‖

𝑋
≤ ‖𝐴

−1
‖L(𝑋)

‖𝑦‖
𝑋
≤

𝐶‖𝑦‖
𝑋
. Taking the infimum with respect to 𝑦 ∈ 𝐴𝑥, we thus

find ‖𝑥‖
𝑋
≤ 𝐶‖𝑥‖D(𝐴) for every 𝑥 ∈ D(𝐴). If 𝑌 is a Banach

space, we denote by 𝐶((0,∞); 𝑌) the set of all continuos
functions from (0,∞) to 𝑌, and for a 𝑌-valued strongly
measurable function 𝑔(𝜉), 𝜉 ∈ (0,∞), we set ‖𝑔(𝜉)‖

𝐿
∗

𝑞
(𝑌)

=

(∫
∞

0
‖𝑔(𝜉)‖

𝑞

𝑌
(d𝜉/𝜉))1/𝑞, 𝑞 ∈ [1,∞), and ‖𝑔(𝜉)‖

𝐿
∗

∞
(𝑌)

=

sup
𝜉∈(0,∞)

‖𝑔(𝜉)‖
𝑌
. Let 𝑝

0
, 𝑝

1
∈ [1,∞) or let 𝑝

0
= 𝑝

1
= ∞,

and for 𝛾 ∈ (0, 1) define 𝑝−1 = (1 − 𝛾)𝑝
−1

0
+ 𝛾𝑝

−1

1
if 𝑝

0
, 𝑝

1
∈

[1,∞) and 𝑝 = ∞ if 𝑝
0
= 𝑝

1
= ∞. Let us set

(𝑋,D (𝐴))
𝛾,𝑝

= {𝑥 ∈ 𝑋 : 𝑥 = V
0
(𝜉) + V

1
(𝜉) , 𝜉 ∈ (0,∞) ,

V
0
∈ 𝐶 ((0,∞) ;𝑋) , V1 ∈ 𝐶 ((0,∞) ;D (𝐴)) ,

𝜉
𝛾V

0 (𝜉)
𝐿∗
𝑝0
(𝑋)

+

𝜉
𝛾−1V

1 (𝜉)
𝐿∗
𝑝1
(D(𝐴))

< ∞} ,

‖𝑥‖(𝑋,D(𝐴))𝛾,𝑝

= inf
V0 ,V1

{
𝜉

𝛾V
0
(𝜉)

𝐿∗
𝑝0
(𝑋)

+

𝜉
𝛾−1V

1
(𝜉)

𝐿∗
𝑝1
(D(𝐴))

} .

(19)

This characterization of the spaces (𝑋,D(𝐴))
𝛾,𝑝

is that
obtained by the so-called “mean-methods”, and it is equiv-
alent to that performed by the “K-method” (cf. [27, The-
orem 1.5.2 and Remark 1.5.2/2]) and the “trace-method”
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(cf. [27, Theorem 1.8.2]). Then, due to [27, Theorem 1.3.3],
for every 𝛾 ∈ (0, 1) and 𝑝 ∈ [1,∞] the space (𝑋,D(𝐴))

𝛾,𝑝

is an exact real interpolation space of exponent 𝛾 between
𝑋 and D(𝐴). Observe that by exchanging the role of 𝑋 and
D(𝐴) and performing the transformation 𝜉 = 𝜏

−1, we get
(𝑋,D(𝐴))

𝛾,𝑝
= (D(𝐴), 𝑋)

1−𝛾,𝑝
. Also, if D(𝐴) = 𝑋, then

(𝑋,D(𝐴))
𝛾,𝑝

≅ 𝑋 (cf. [27, Theorem 1.3.3(f)]). The definition
of the spaces (𝑋,D(𝐴))

𝛾,𝑝
is meaningful even for the limiting

cases (𝛾, 𝑝) = (𝑖,∞), 𝑖 = 0, 1, whereas (𝑋,D(𝐴))
𝑖,𝑝
, 𝑖 = 0, 1,

𝑝 ∈ [1,∞), reduces to the zero element of 𝑋. In particular
(cf. [28, pp. 10–15]), denoting by �̃�𝑋 the completion ofD(𝐴)

relative to 𝑋 and endowing it with the norm ‖ ⋅ ‖
�̃�
𝑋 in [28, p.

14], we get (𝑋,D(𝐴))
0,∞

≅ 𝑋 and (𝑋,D(𝐴))
1,∞

≅ �̃�
𝑋. Let

𝛾
1
∈ (0, 1) and let 𝑝

𝑗
∈ [1,∞], 𝑗 = 1, 2. Then, for 𝛾

2
∈ (0, 𝛾

1
)

and 𝑞
𝑗
∈ [1, 𝑝

𝑗
], 𝑗 = 1, 2, the following chain of embeddings

holds:

D (𝐴) → (𝑋,D (𝐴))
1,∞

→ (𝑋,D (𝐴))
𝛾1,1

→ (𝑋,D (𝐴))𝛾1,𝑞1
→ (𝑋,D (𝐴))𝛾1,𝑝1

→ (𝑋,D (𝐴))𝛾2,1
→ (𝑋,D (𝐴))𝛾2,𝑞2

→ (𝑋,D (𝐴))
𝛾2,𝑝2

→ D (𝐴).

(20)

Let 𝛾 ∈ [0, 1]. Recall that a Banach space𝐸 is said to be of class
𝐽(𝛾, 𝑋,D(𝐴)) ∩ 𝐾(𝛾,𝑋,D(𝐴)) and shortened to 𝐸 ∈ 𝐽(𝛾) ∩

𝐾(𝛾), if𝐸 is an intermediate space between (𝑋,D(𝐴))
𝛾,∞

and
(𝑋,D(𝐴))

𝛾,1
, that is, if (𝑋,D(𝐴))

𝛾,1
→ 𝐸 → (𝑋,D(𝐴))

𝛾,∞
.

From (20) it thus follows that (𝑋,D(𝐴))
𝛾,𝑝

∈ 𝐽(𝛾) ∩ 𝐾(𝛾),
for every 𝛾 ∈ (0, 1) and 𝑝 ∈ [1,∞]. Moreover, since
(𝑋,D(𝐴))

𝑖,1
= {0}, 𝑖 = 0, 1, and (𝑋,D(𝐴))

0,∞
≅ 𝑋, we have

D(𝐴) ∈ 𝐽(1)∩𝐾(1) and𝑋 ∈ 𝐽(0)∩𝐾(0). Then (cf. [28, p. 12],
[27, Theorem 1.10.2], and [9, Section 1.2.3]), for 𝛾

𝑗
∈ (0, 1)

and 𝑝
𝑗
∈ [1,∞], 𝑗 = 0, 1, 2, the reiteration theorem yields

((𝑋,D (𝐴))𝛾1,𝑝1
, (𝑋,D (𝐴))𝛾2,𝑝2

)
𝛾0,𝑝0

≅ (𝑋,D (𝐴))(1−𝛾0)𝛾1+𝛾0𝛾2,𝑝0
,

((𝑋,D (𝐴))𝛾1 ,𝑝1
,D (𝐴))

𝛾0,𝑝0

≅ (𝑋,D (𝐴))(1−𝛾0)𝛾1+𝛾0,𝑝0
,

(𝑋, (𝑋,D (𝐴))
𝛾2,𝑝2

)
𝛾0,𝑝0

≅ (𝑋,D (𝐴))
𝛾0𝛾2,𝑝0

.

(21)

Finally (cf. [29, Theorem 1.II and Remark 1.III]), we recall
that if 𝑋

1
and 𝑋

2
are two complex Banach spaces and 𝑇 ∈

L(𝑋
1
; 𝑋

2
) is such that 𝑇 ∈ L(𝑌

1𝑘
; 𝑌

2𝑘
), 𝑌

𝑗𝑘
⊆ 𝑋

𝑗
, 𝑗, 𝑘 = 1, 2,

then 𝑇 ∈ L((𝑌
11
, 𝑌

12
)
𝛾0,𝑝0

; (𝑌
21
, 𝑌

22
)
𝛾0,𝑝0

), 𝛾
0
∈ (0, 1), 𝑝

0
∈

[1,∞], and

‖𝑇‖L((𝑌11
,𝑌12

)𝛾0,𝑝0
;(𝑌21

,𝑌22
)𝛾0,𝑝0

)
≤ ‖𝑇‖

1−𝛾0

L(𝑌11
;𝑌21

)
‖𝑇‖

𝛾0

L(𝑌12
;𝑌22

)
.

(22)

As a consequence of this general result and the identity

((𝑋,D (𝐴))𝛾1,𝑝1
, 𝑋)

𝛾0,𝑝0

= (𝑋, (𝑋,D (𝐴))𝛾1,𝑝1
)
1−𝛾0 ,𝑝0

,

(23)

from the third in (21) we find that if 𝑇 ∈ L(𝑋) is such that
𝑇 ∈ L(𝑋; (𝑋,D(𝐴))

𝛾1,𝑝1
) and 𝑇 ∈ L((𝑋,D(𝐴))

𝛾2,𝑝2
; 𝑋),

then 𝑇 ∈ L((𝑋,D(𝐴))
𝛾0𝛾2,𝑝0

; (𝑋,D(𝐴))
(1−𝛾0)𝛾1,𝑝0

), 𝛾
𝑗
∈ (0, 1),

𝑝
𝑗
∈ [1,∞], 𝑗 = 0, 1, 2, and the following estimate holds:

‖𝑇‖L((𝑋,D(𝐴))𝛾0𝛾2,𝑝0 ;(𝑋,D(𝐴))(1−𝛾0)𝛾1,𝑝0 )

≤ ‖𝑇‖
1−𝛾0

L(𝑋;(𝑋,D(𝐴))𝛾1,𝑝1 )
‖𝑇‖

𝛾0

L((𝑋,D(𝐴))𝛾2,𝑝2 ;𝑋)
.

(24)

Notice that here 𝛾
0
𝛾
2
+(1−𝛾

0
)𝛾
1
∈ (min{𝛾

1
, 𝛾
2
},max{𝛾

1
, 𝛾
2
}) ⊊

(0, 1) for every 𝛾
0
∈ (0, 1). Therefore, if we let 𝛾 = 𝛾

0
𝛾
2
and let

𝛿 = (1 − 𝛾
0
)𝛾
1
, then 𝛾 + 𝛿 < 1, 𝛾

1
= 𝛿/(1 − 𝛾

0
) > 𝛿, and 𝛾

2
=

𝛾/𝛾
0
> 𝛾. Hence, in order that the additional inequalities 𝛾

𝑗
<

1, 𝑗 = 1, 2, are satisfied, we have to choose 𝛾
0
∈ (𝛾, 1−𝛿). Aswe

will see this simple observation will be the key for the proof
of the second estimates (90) in the following Proposition 16.

We recall that for every fixed 𝑥 ∈ D(𝐴) the map 𝑇(𝜆) =
𝜆𝑥 satisfies ‖𝑇‖L(C;𝑋) = ‖𝑥‖

𝑋
, ‖𝑇‖L(C;D(𝐴)) = ‖𝑥‖D(𝐴) and

‖𝑇‖L(C,(𝑋,D(𝐴))𝛾,𝑝) = ‖𝑥‖
(𝑋,D(𝐴))𝛾,𝑝

. Then (22) with 𝑋
1
= 𝑌

11
=

𝑌
12
= C, 𝑋

2
= 𝑌

21
= 𝑋 and 𝑌

22
= D(𝐴) yields the interpola-

tion inequality:

‖𝑥‖(𝑋,D(𝐴))𝛾,𝑝
≤ 𝑐

0‖𝑥‖
1−𝛾

𝑋
‖𝑥‖

𝛾

D(𝐴)
,

𝑥 ∈ D (𝐴) , 𝛾 ∈ (0, 1) , 𝑝 ∈ [1,∞] ,

(25)

with 𝑐
0
being the positive constant depending on 𝛾 and𝑝 such

that ‖𝜆‖
(C,C)𝛾,𝑝 ≤ 𝑐

0
|𝜆|.

As another application of (22) and for further needs, we
also recall that if 𝐴 satisfies (H1), then 𝐴∘

(𝑧𝐼 − 𝐴)
−1 satisfies

the estimate (cf. [24, formulae (4.16) and (4.17)]).
Consider


𝐴
∘
(𝑧𝐼 − 𝐴)

−1L(𝑋)
≤ (𝐶 + 1) (|𝑧| + 1)

1−𝛽
, ∀𝑧 ∈ Σ

𝛼
,


𝐴
∘
(𝑧𝐼 − 𝐴)

−1L(D(𝐴);𝑋)
≤ 𝐶(|𝑧| + 1)

−𝛽
, ∀𝑧 ∈ Σ

𝛼
.

(26)

From (26), using (22) with 𝑋
𝑗
= 𝑌

𝑗1
= 𝑌

22
= 𝑋, 𝑗 = 1, 2, and

𝑌
12
= D(𝐴), it then follows for every 𝛾 ∈ (0, 1) and𝑝 ∈ [1,∞]


𝐴
∘
(𝑧𝐼 − 𝐴)

−1L((𝑋,D(𝐴))𝛾,𝑝 ;𝑋)

≤ 𝑐
1(𝐶 + 1)

1−𝛾
𝐶
𝛾
(|𝑧| + 1)

1−𝛽−𝛾
, ∀𝑧 ∈ Σ

𝛼
,

(27)

where 𝑐
1
is the positive constant depending on 𝛾 and 𝑝 such

that ‖𝑥‖
𝑋
≤ 𝑐

1
‖𝑥‖

(𝑋,𝑋)𝛾,𝑝
.

For 𝛾 ∈ (0, 1) and 𝑝 ∈ [1,∞] we now define the Banach
spaces𝑋𝛾,𝑝

𝐴
by

𝑋
𝛾,𝑝

𝐴
= {𝑥 ∈ 𝑋 : [𝑥]

𝑋
𝛾,𝑝

𝐴

:=

𝜉
𝛾
𝐴
∘
(𝜉𝐼 − 𝐴)

−1
𝑥
𝐿∗
𝑝
(𝑋)

< ∞} ,

‖𝑥‖
𝑋
𝛾,𝑝

𝐴

= ‖𝑥‖𝑋 + [𝑥]𝑋
𝛾,𝑝

𝐴

.

(28)

It is a well-known fact that if 𝐴 is single-valued and 𝛽 = 1 in
(H1), then (𝑋,D(𝐴))

𝛾,𝑝
≅ 𝑋

𝛾,𝑝

𝐴
(cf. [30,Theorem 3.1] and [27,

Theorem 1.14.2]). On the contrary, if 𝛽 ∈ (0, 1), then such
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an equivalence is no longer true, as first observed in [13,
Theorem 2] for single-valued operators and, in the case
𝑝 = ∞, in [2, Theorem 1.12] for the m. l. ones. Recently,
extending [13] to m. l. operators and [2] to 𝑝 ∈ [1,∞], in
[24, Proposition 4.3] it has been shown that the following
embedding relations hold:

𝑋
𝛾,𝑝

𝐴
→ (𝑋,D(𝐴))

𝛾,𝑝
, 𝛾 ∈ (0, 1) , 𝑝 ∈ [1,∞] , (29)

(𝑋,D(𝐴))
𝛾,𝑝

→ 𝑋
𝛾+𝛽−1,𝑝

𝐴
, 𝛾 ∈ (1 − 𝛽, 1) , 𝑝 ∈ [1,∞] .

(30)

Then, as in the single-valued case, (𝑋,D(𝐴))
𝛾,𝑝

≅ 𝑋
𝛾,𝑝

𝐴
if 𝛽 =

1 in (H1). More precisely (see the proof of [24, Proposition
4.3]), if 𝑥 ∈ 𝑋𝛾,𝑝

𝐴
, 𝛾 ∈ (0, 1), 𝑝 ∈ [1,∞], then

‖𝑥‖(𝑋,D(𝐴))𝛾,𝑝
≤ 2‖𝑥‖

𝑋
𝛾,𝑝

𝐴

, (31)

whereas if 𝑥 ∈ (𝑋,D(𝐴))
𝛾,𝑝
, 𝛾 ∈ (1 − 𝛽, 1), 𝑝 ∈ [1,∞], then

‖𝑥‖
𝑋
𝛾+𝛽−1,𝑝

𝐴

≤ 𝑐
2‖𝑥‖(𝑋,D(𝐴))𝛾,𝑝

, (32)

with 𝑐
2
being a positive constant depending on 𝛽, 𝛾 and 𝑝.

By setting 𝛿 = 𝛾+𝛽−1, 𝛾 ∈ (1−𝛽, 1), from (30) it follows

D (𝐴) → (𝑋,D(𝐴))1+𝛿−𝛽,𝑝 → 𝑋
𝛿,𝑝

𝐴
→ 𝑋,

𝛿 ∈ (0, 𝛽) , 𝑝 ∈ [1,∞] .

(33)

Then, if 𝛽 ∈ (0, 1), the spaces 𝑋𝛿,𝑝

𝐴
, 𝛿 ∈ (0, 1), 𝑝 ∈ [1,∞], are

intermediate spaces between𝑋 andD(𝐴) only for 𝛿 ∈ (0, 𝛽),
whereas, when 𝛿 ∈ [𝛽, 1), they may be smaller than D(𝐴).
In any case, when 𝛽 ∈ (0, 1), it is not known if the spaces
𝑋
𝛿,𝑝

𝐴
, 𝛿 ∈ (0, 𝛽), 𝑝 ∈ [1,∞], are only intermediate or just

interpolation spaces between𝑋 andD(𝐴).
Notice that [𝑋𝛾,𝑝

𝐴
∩ 𝐴0] = {0}, 𝛾 ∈ (0, 1), 𝑝 ∈ [1,∞].

Indeed, assume that there exists 𝑥 ̸= 0 such that 𝑥 ∈ [𝑋
𝛾,𝑝

𝐴
∩

𝐴0] for some 𝛾 ∈ (0, 1) and 𝑝 ∈ [1,∞]. Then, since 𝑥 ∈ 𝐴0 =
N((𝑧𝐼 − 𝐴)

−1
), 𝑧 ∈ 𝜌(𝐴), we have 𝐴∘

(𝜉𝐼 − 𝐴)
−1
𝑥 = 𝜉(𝜉 −

𝐴)
−1
𝑥−𝑥 = −𝑥 for every 𝜉 > 0 and [𝑥]

𝑋
𝛾,𝑝

𝐴

= ‖𝜉
𝛾
‖
𝐿
∗

𝑝
(𝑋)
‖𝑥‖

𝑋
=

∞, contradicting 𝑥 ∈ 𝑋
𝛾,𝑝

𝐴
. This property plays a key role in

the proof of many of the results in [24]. Further, due to (30), it
implies that [D(𝐴) ∩ 𝐴0] = [(𝑋,D(𝐴))

𝛾,𝑝
∩ 𝐴0] = {0}, 𝛾 ∈

(1 − 𝛽, 1), 𝑝 ∈ [1,∞]. On the contrary, since {0} may be a
proper subset of [(𝑋,D(𝐴))

𝛾,𝑝
∩𝐴0] for 𝛾 ∈ (0, 1 − 𝛽], 𝛽 < 1,

in general it is not true that [D(𝐴) ∩ 𝐴0] = {0}. This is true,
instead, if 𝛽 = 1. In this case the topological direct sum𝑋

0
=

D(𝐴) ⊕ 𝐴0 is a closed subspace of 𝑋, and if 𝑋 is reflexive, it
coincides with the whole𝑋 (cf. [3, Theorems 2.4 and 2.6]).

For every 𝛾 ∈ (0, 1) and 𝑝 ∈ [1,∞] from (27), (29), and
(31) it follows


𝐴
∘
(𝑧𝐼 − 𝐴)

−1L(𝑋
𝛾,𝑝

𝐴
;𝑋)

≤ 2𝑐
1(𝐶 + 1)

1−𝛾
𝐶
𝛾
(|𝑧| + 1)

1−𝛽−𝛾
, ∀𝑧 ∈ Σ

𝛼
.

(34)

Hence, for 𝛾 ∈ (0, 1) and 𝑝 ∈ [1,∞] we may rewrite (27) and
(34) more compactly as

𝐴
∘
(𝑧𝐼 − 𝐴)

−1L(𝑌
𝑝

𝛾 ;𝑋)
≤ 𝑐

3
(|𝑧| + 1)

1−𝛽−𝛾
, ∀𝑧 ∈ Σ

𝛼
, (35)

where 𝑌𝑝
𝛾

∈ {(𝑋,D(𝐴))
𝛾,𝑝
, 𝑋

𝛾,𝑝

𝐴
} and 𝑐

3
is equal to 𝑐

1
(𝐶 +

1)
1−𝛾

𝐶
𝛾 or 2𝑐

1
(𝐶 + 1)

1−𝛾
𝐶
𝛾 according that 𝑌𝑝

𝛾
= (𝑋,D(𝐴))

𝛾,𝑝

or 𝑌𝑝
𝛾
= 𝑋

𝛾,𝑝

𝐴
.

With the exception of the case 𝛽 = 1, in general it is not
clear if embeddings analogous to (20) hold even for the spaces
𝑋
𝛾,𝑝

𝐴
. In fact, using (20), (29), and (30) we can only prove that

if 𝛾 ∈ (1 − 𝛽, 1) and 1 ≤ 𝑞 ≤ 𝑝 ≤ ∞, then

𝑋
𝛾,𝑞

𝐴
→ (𝑋,D (𝐴))

𝛾,𝑞
→ (𝑋,D (𝐴))

𝛾,𝑞
→ 𝑋

𝛾+𝛽−1,𝑝

𝐴
, (36)

whereas if 1 − 𝛽 < 𝛾
2
< 𝛾

1
< 1 and 𝑝

1
, 𝑝

2
∈ [1,∞], then

𝑋
𝛾1,𝑝1

𝐴
→ (𝑋,D (𝐴))

𝛾1,𝑝1
→ (𝑋,D (𝐴))

𝛾2,𝑝2
→ 𝑋

𝛾2+𝛽−1,𝑝2

𝐴
.

(37)

What can be provedwithout invoking (20), (29), and (30) and
using only the definition of the norm ‖ ⋅ ‖

𝑋
𝛾,𝑝

𝐴

is instead the
following result, which extends to the spaces𝑋𝛾,𝑝

𝐴
the embed-

dings (𝑋,D(𝐴))
𝛾1,𝑝

→ (𝑋,D(𝐴))
𝛾2,𝑝

, and (𝑋,D(𝐴))
𝛾1,∞

→

(𝑋,D(𝐴))
𝛾2,𝑝

, 0 < 𝛾
2
< 𝛾

1
< 1, 𝑝 ∈ [1,∞] (cf. (20) with

(𝑝
1
, 𝑝

2
) = (𝑝, 𝑝) and (𝑝

1
, 𝑝

2
) = (∞, 𝑝)).

Proposition 2. Let 𝐴 be an m. l. operator satisfying the resol-
vent condition (H1). Then the following embeddings hold for
every 0 < 𝛾

2
< 𝛾

1
< 1 and 𝑝 ∈ [1,∞]:

𝑋
𝛾1,𝑝

𝐴
→ 𝑋

𝛾2,𝑝

𝐴
, (38)

𝑋
𝛾1,∞

𝐴
→ 𝑋

𝛾2,𝑝

𝐴
. (39)

Proof. If 𝛽 = 1 in (H1), then there is nothing to prove since
(𝑋,D(𝐴))

𝛾,𝑝
≅ 𝑋

𝛾,𝑝

𝐴
and both (38) and (39) follow from (20).

Therefore, without loss of generality, we assume that 𝛽 ∈

(0, 𝛼] is such that 𝛽 < 𝛼 if 𝛼 = 1. We begin by proving (38).
Let first 𝑝 ∈ [1,∞). For every 𝑥 ∈ 𝑋

𝛾1,𝑝

𝐴
, 0 < 𝛾

2
< 𝛾

1
< 1, we

write
[𝑥]

𝑝

𝑋
𝛾2,𝑝

𝐴

= 𝐼
1
+ 𝐼

2
, (40)

where

𝐼
𝑗
= ∫

𝑏𝑗

𝑎𝑗


𝜉
𝛾2𝐴

∘
(𝜉𝐼 − 𝐴)

−1
𝑥


𝑝

𝑋

d𝜉
𝜉
, 𝑗 = 1, 2, (41)

(𝑎
1
, 𝑏
1
, 𝑎

2
, 𝑏
2
) = (0, 1, 1,∞). Using the first inequality in (26)

we find

𝐼
1
≤ (𝐶 + 1)

𝑝
‖𝑥‖

𝑝

𝑋
∫

1

0

𝜉
𝛾2𝑝−1

(𝜉 + 1)
(1−𝛽)𝑝d𝜉

≤ 2
(1−𝛽)𝑝

(𝐶 + 1)
𝑝
‖𝑥‖

𝑝

𝑋
∫

1

0

𝜉
𝛾2𝑝−1d𝜉 ≤ [𝑐

4‖𝑥‖𝑋
𝛾1,𝑝

𝐴

]

𝑝

,

(42)

where 𝑐
4
= 2

1−𝛽
(𝐶+1)(𝛾

2
𝑝)

−1/𝑝. Concerning 𝐼
2
, instead, using

𝛾
2
− 𝛾

1
< 0, we get

𝐼
2
= ∫

∞

1

𝜉
(𝛾2−𝛾1)𝑝


𝜉
𝛾1𝐴

∘
(𝜉𝐼 − 𝐴)

−1
𝑥


𝑝

𝑋

d𝜉
𝜉

≤ ∫

∞

1


𝜉
𝛾1𝐴

∘
(𝜉𝐼 − 𝐴)

−1
𝑥


𝑝

𝑋

d𝜉
𝜉

≤ [𝑥]
𝑝

𝑋
𝛾1,𝑝

𝐴

≤ ‖𝑥‖
𝑝

𝑋
𝛾1,𝑝

𝐴

.

(43)
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Summing up (40)–(43) and setting 𝑐
5
= [(𝑐

4
)
𝑝
+ 1]

1/𝑝, it thus
follows ‖𝑥‖

𝑋
𝛾2,𝑝

𝐴

= ‖𝑥‖
𝑋
+[𝑥]

𝑋
𝛾2,𝑝

𝐴

≤ (1+𝑐
5
)‖𝑥‖

𝑋
𝛾1,𝑝

𝐴

, completing
the proof of (38) in the case 𝑝 ∈ [1,∞). Let 𝑝 = ∞. For every
𝑥 ∈ 𝑋

𝛾1,∞

𝐴
, 0 < 𝛾

2
< 𝛾

1
< 1, we write

[𝑥]
𝑋
𝛾2,∞

𝐴

= max {𝐼
3
, 𝐼
4
} , (44)

where 𝐼
𝑗
= sup

𝜉∈𝑈𝑗
‖𝜉

𝛾2𝐴
∘
(𝜉𝐼 − 𝐴)

−1
𝑥‖

𝑋
, 𝑗 = 3, 4, 𝑈

3
= (0, 1),

𝑈
4
= [1,∞). Again, the first inequality in (26) yields

𝐼
3
≤ (𝐶 + 1) ‖𝑥‖𝑋 sup

𝜉∈(0,1)

[𝜉
𝛾2
(𝜉 + 1)

1−𝛽
]

≤ 2
1−𝛽

(𝐶 + 1) ‖𝑥‖
𝑋
𝛾1,∞

𝐴

.

(45)

Instead, using 𝛾
2
− 𝛾

1
< 0, we have

𝐼
4
= sup

𝜉∈[1,∞)

𝜉
𝛾2−𝛾1


𝜉
𝛾1𝐴

∘
(𝜉𝐼 − 𝐴)

−1
𝑥
𝑋

≤ [𝑥]
𝑋
𝛾1,∞

𝐴

≤ ‖𝑥‖
𝑋
𝛾1,∞

𝐴

.

(46)

Summing up (44)–(46) and setting 𝑐
6
= 2

1−𝛽
(𝐶 + 1), we thus

find ‖𝑥‖
𝑋
𝛾2,∞

𝐴

= ‖𝑥‖
𝑋
+ [𝑥]

𝑋
𝛾2,∞

𝐴

≤ (1 + 𝑐
6
)‖𝑥‖

𝑋
𝛾1,∞

𝐴

. This com-
pletes the proof of (38) for the case 𝑝 = ∞. We now prove
(39). Due to (38) with 𝑝 = ∞, it suffices to assume that 𝑝 ∈

[1,∞). As above, for every 𝑥 ∈ 𝑋
𝛾1,∞

𝐴
, 0 < 𝛾

2
< 𝛾

1
< 1, we

write [𝑥]𝑝
𝑋
𝛾2,𝑝

𝐴

= 𝐼
1
+ 𝐼

2
, where 𝐼

1
and 𝐼

2
are defined by (41).

Hence, the same computations as in (42) yield

𝐼
1
≤ [𝑐

4‖𝑥‖𝑋
𝛾1,∞

𝐴

]
𝑝

. (47)

As far as 𝐼
2
is concerned, instead, we have

𝐼
2
≤ [𝑥]

𝑝

𝑋
𝛾1,∞

𝐴

∫

∞

1

𝜉
(𝛾2−𝛾1)𝑝−1d𝜉 ≤ [𝑐

7‖𝑥‖𝑋
𝛾1,∞

𝐴

]
𝑝

, (48)

where 𝑐
7
= [(𝛾

1
− 𝛾

2
)𝑝]

−1/𝑝. Summing up (47) and (48) and
setting 𝑐

8
= [(𝑐

4
)
𝑝
+ (𝑐

7
)
𝑝
]
1/𝑝, we deduce ‖𝑥‖

𝑋
𝛾2,𝑝

𝐴

≤ (1 +

𝑐
8
)‖𝑥‖

𝑋
𝛾1,∞

𝐴

. The proof is complete.

Remark 3. Notice that (37) with 𝑝
1
= 𝑝

2
= 𝑝 yields 𝑋𝛾1,𝑝

𝐴
→

𝑋
𝛾2+𝛽−1,𝑝

𝐴
, 1 − 𝛽 < 𝛾

2
< 𝛾

1
< 1, and this latter embedding is

less accurate than (38).

Remark 4. Themain problem for extending (20) to the spaces
𝑋
𝛾,𝑝

𝐴
in the case 𝛽 < 1 is that it is not clear if it holds 𝑋𝛾,𝑞

𝐴
→

𝑋
𝛾,𝑝

𝐴
, 1 ≤ 𝑞 < 𝑝 ≤ ∞. In fact, the embedding

(𝑋,D (𝐴))
𝛾,𝑞

→ (𝑋,D (𝐴))
𝛾,𝑞
,

𝛾 ∈ (0, 1) , 1 ≤ 𝑞 < 𝑝 ≤ ∞,

(49)

is a consequence of the property of the functional 𝐾 enter-
ing the definition of the interpolation spaces (𝑋,D(𝐴))

𝛾,𝑝

through the “𝐾-method”, and in particular of its mono-
tonicity (see the proof of [27, Theorem 1.3.3(c), (d)]). With
embedding (49) at hands, to derive (20) it thus suffices to

prove that (𝑋,D(𝐴))
𝛾1,∞

→ (𝑋,D(𝐴))
𝛾2,1

, 0 < 𝛾
2
< 𝛾

1
< 1

(see the proof of [27, Theorem 1.3.3(e)] taking there (𝐴
0
,

𝐴
1
, 𝜃, 𝜃) = (D(𝐴), 𝑋, 1−𝛾

1
, 1−𝛾

2
) and using (D(𝐴), 𝑋)

1−𝛾,𝑝
=

(𝑋,D(𝐴))
𝛾,𝑝
). If we try to repeat the proof of (49) for the

spaces 𝑋𝛾,𝑝

𝐴
, we will be faced with two problems. The first is

that we do not know if the function𝑔(𝜉) = ‖𝐴
∘
(𝜉𝐼 − 𝐴)

−1
𝑥‖

𝑋
,

𝜉 ∈ (0,∞), 𝑥 ∈ 𝑋, is monotone decreasing, which would
allow us to prove 𝑋𝛾,𝑝

𝐴
→ 𝑋

𝛾,∞

𝐴
, 𝛾 ∈ (0, 1), 𝑝 ∈ [1,∞). For

if 𝑔(𝜉) was monotone decreasing, then for every 𝜉 ∈ (0,∞)

and 𝑥 ∈ 𝑋𝛾,𝑝

𝐴
, 𝛾 ∈ (0, 1), 𝑝 ∈ [1,∞), we would find

𝜉
𝛾
𝑔 (𝜉) = 𝑐

9
(∫

𝜉

0

𝜇
𝛾𝑝 d𝜇

𝜇
)

1/𝑝

𝑔 (𝜉)

≤ 𝑐
9
(∫

𝜉

0

[𝜇
𝛾
𝑔 (𝜇)]

𝑝 d𝜇
𝜇
)

1/𝑝

≤ 𝑐
9[𝑥]𝑋

𝛾,𝑝

𝐴

,

(50)

where 𝑐
9
= (𝛾𝑝)

−1/𝑝. Taking the supremum with respect to
𝜉 ∈ (0,∞) in the latter inequality, we would get [𝑥]

𝑋
𝛾,∞

𝐴

≤

𝑐
9
[𝑥]

𝑋
𝛾,𝑝

𝐴

, proving 𝑋𝛾,𝑝

𝐴
→ 𝑋

𝛾,∞

𝐴
, 𝛾 ∈ (0, 1), 𝑝 ∈ [1,∞). The

second problem is that the function 𝜉𝛾𝑔(𝜉) is not necessarily
bounded for 𝑥 ∈ 𝑋𝛾,𝑝

𝐴
, 𝛾 ∈ (0, 1), 𝑝 ∈ [1,∞), precluding us to

prove 𝑋𝛾,𝑞

𝐴
→ 𝑋

𝛾,𝑝

𝐴
, 𝛾 ∈ (0, 1), 𝑞 ∈ [1, 𝑝). Indeed, from (35)

we can only find 𝜉𝛾𝑔(𝜉) ≤ 𝑐
3
𝜉
𝛾
(𝜉 + 1)

1−𝛽−𝛾
‖𝑥‖

𝑋
𝛾,𝑝

𝐴

, and when
𝛽 < 1, the right-hand side of this inequality goes to infinity
as 𝜉 goes to infinity. On the contrary, if 𝜉𝛾𝑔(𝜉)were bounded,
then for every 1 ≤ 𝑞 < 𝑝 < ∞ we would obtain

[𝑥]
𝑝

𝑋
𝛾,𝑝

𝐴

= ∫

∞

0

[𝜉
𝛾
𝑔 (𝜉)]

𝑝 d𝜉
𝜉

≤ ( sup
𝜉∈(0,∞)

𝜉
𝛾
𝑔 (𝜉))

𝑝−𝑞

∫

∞

0

[𝜉
𝛾
𝑔 (𝜉)]

𝑞 d𝜉
𝜉

= [𝑥]
𝑝−𝑞

𝑋
𝛾,∞

𝐴

[𝑥]
𝑝

𝑋
𝛾,𝑝

𝐴

.

(51)

If now in addition 𝑔(𝜉) were also monotone decreasing, in
order that [𝑥]

𝑋
𝛾,∞

𝐴

≤ 𝑐
9
[𝑥]

𝑋
𝛾,𝑞

𝐴

, from the latter inequality we
would get [𝑥]

𝑋
𝛾,𝑝

𝐴

≤ (𝑐
9
)
(𝑝−𝑞)/𝑝

[𝑥]
𝑋
𝛾,𝑞

𝐴

, completing the proof of
𝑋
𝛾,𝑞

𝐴
→ 𝑋

𝛾,𝑝

𝐴
, 𝛾 ∈ (0, 1), 1 ≤ 𝑞 < 𝑝 < ∞. Due to the former

computations, we can thus conclude that in the case 𝛽 < 1 the
quoted problems are the main obstacles which prevent us to
extend (49) and, as its consequence, (20) to the spaces𝑋𝛾,𝑝

𝐴
.

Remark 5. Let 0 < 𝛾
2
< 𝛾

1
< 1 be fixed and for every 𝑝 ∈

[1,∞] and let us set𝐴
𝑝
= 𝑋

𝛾2,𝑝

𝐴
and 𝐵

𝑝
= 𝑋

𝛾1,𝑝

𝐴
. We thus have

the two families of setsA = {𝐴
𝑝
}
𝑝∈[1,∞]

andB = {𝐵
𝑝
}
𝑝∈[1,∞]

.
Let first 𝛽 = 1. In this case, since (𝑋,D(𝐴))

𝛾,𝑝
≅ 𝑋

𝛾,𝑝

𝐴
, from

(20) we deduce that the sets 𝐴
𝑝
and 𝐵

𝑝
are related by the

following inclusions in which 1 < 𝑞
1
< 𝑞

2
< ∞:

𝐵
1
⊆ 𝐵

𝑞1
⊆ 𝐵

𝑞2
⊆ 𝐵

∞
⊆ 𝐴

1
⊆ 𝐴

𝑞1
⊆ 𝐴

𝑞2
⊆ 𝐴

∞
. (52)

Now let 𝛽 < 1. As observed in Remark 4, in this case the
embedding 𝑋𝛾,𝑞

𝐴
→ 𝑋

𝛾,𝑝

𝐴
, 1 ≤ 𝑞 < 𝑝 ≤ ∞, may be not
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satisfied and the chain of inclusions (52) could not take place.
However, (38) and (39) hold true and for every 𝑝 ∈ [1,∞],
and we have 𝐵

𝑝
⊆ 𝐴

𝑝
and 𝐵

∞
⊆ 𝐴

𝑝
.

We have already pointed out that {e𝑡𝐴}
𝑡≥0

may be not
strongly continuous in the 𝑋-norm on D(𝐴). On the con-
trary, the following result (cf. [24, Proposition 5.2] for the
proof) shows that the things are finer on (𝑋,D(𝐴))

𝛾,𝑝
and

𝑋
𝛾,𝑝

𝐴
. Later, we will need this fact.

Proposition 6. Let 𝐴 be as in Proposition 2. If 𝛾 ∈ (1 − 𝛽, 1);
then {e𝑡𝐴}

𝑡≥0
is strongly continuous in the 𝑋-norm on 𝑌

𝑝

𝛾
∈

{(𝑋,D(𝐴))
𝛾,𝑝
, 𝑋

𝛾,𝑝

𝐴
} for every 𝑝 ∈ [1,∞].

We conclude the section listing some estimates for the
operators [(−𝐴)𝜃]∘e𝑡𝐴 defined by (11) with respect to the
spaces (𝑋,D(𝐴))

𝛾,𝑝
and 𝑋

𝛾,𝑝

𝐴
. First, in [19, Lemma 3.1] it is

shown that [(−𝐴)𝜃]∘e𝑡𝐴𝑥 ∈ D(𝐴) for every𝑥 ∈ 𝑋 and that the
estimate ‖[(−𝐴)𝜃]∘e𝑡𝐴𝑥‖D(𝐴) ≤ ‖[(−𝐴)

𝜃+1
]
∘e𝑡𝐴𝑥‖

𝑋
is satisfied.

Hence, using (14), we get


[(−𝐴)

𝜃
]
∘

e𝑡𝐴
L(𝑋;D(𝐴))

≤ 𝑐
𝛼,𝛽,𝜃+1

𝑡
(𝛽−Re 𝜃−2)/𝛼

,

Re 𝜃 ≥ 0, 𝑡 > 0.

(53)

Combining (14) and (53) with (25) and letting 𝑐
10

= 𝑐
0

(𝑐
𝛼,𝛽,𝜃

)
1−𝛾

(𝑐
𝛼,𝛽,𝜃+1

)
𝛾, it thus follows (cf. [19, Proposition 3.1])

that for every 𝛾 ∈ (0, 1) and 𝑝 ∈ [1,∞] the following estimate
holds:


[(−𝐴)

𝜃
]
∘

e𝑡𝐴
L(𝑋;(𝑋,D(𝐴))𝛾,𝑝)

≤ 𝑐
10
𝑡
(𝛽−𝛾−Re 𝜃−1)/𝛼

,

Re 𝜃 ≥ 0, 𝑡 > 0.

(54)

Remark 7. We stress that if 𝛽 < 1, then we can not derive an
estimate for the L(𝑋;𝑋

𝛾,𝑝

𝐴
)-norm of [(−𝐴)𝜃]∘e𝑡𝐴 simply by

replacing (𝑋,D(𝐴))
𝛾,𝑝

with 𝑋𝛾,𝑝

𝐴
in (54). This is for two rea-

sons. First, when 𝛾 ∈ [𝛽, 1), we are not assured that [(−𝐴)𝜃]∘

e𝑡𝐴𝑥 ∈ 𝑋
𝛾,𝑝

𝐴
for every 𝑥 ∈ 𝑋. For if 𝛾 ∈ [𝛽, 1), then the

space 𝑋𝛾,𝑝

𝐴
may be smaller than the domain D(𝐴) to which

[(−𝐴)
𝜃
]
∘e𝑡𝐴𝑥 belongs by virtue of [19, Lemma 3.1]. The sec-

ond reason is that, even limiting to 𝛾 ∈ (0, 𝛽) in order
that D(𝐴) → 𝑋

𝛾,𝑝

𝐴
, from (31) we only get ‖[(−𝐴)𝜃]∘e𝑡𝐴

𝑥‖
(𝑋,D(𝐴))𝛾,𝑝

≤ 2‖[(−𝐴)
𝜃
]
∘e𝑡𝐴𝑥‖

𝑋
𝛾,𝑝

𝐴

, 𝑥 ∈ 𝑋, and we do not
know if the right-hand side can be bounded from above by
some constant times 𝑡(𝛽−𝛾−Re 𝜃−1)/𝛼

‖𝑥‖
𝑋
. Of course, we can

employ (32), but in this way all that we can reach is the
estimate


[(−𝐴)

𝜃
]
∘

e𝑡𝐴
L(𝑋;𝑋

𝛾+𝛽−1,𝑝

𝐴
)

≤ 𝑐
11
𝑡
(𝛽−𝛾−Re 𝜃−1)/𝛼

,

Re 𝜃 ≥ 0, 𝑡 > 0,

(55)

where 𝑐
11

= 𝑐
2
𝑐
10
, 𝛾 ∈ (1 − 𝛽, 1) and 𝑝 ∈ [1,∞]. Letting

𝛿 = 𝛾 + 𝛽 − 1, (55) can be rewritten equivalently as

[(−𝐴)

𝜃
]
∘

e𝑡𝐴
L(𝑋;𝑋

𝛿,𝑝

𝐴
)

≤ 𝑐
11
𝑡
(2𝛽−𝛿−Re 𝜃−2)/𝛼

,

Re 𝜃 ≥ 0, 𝑡 > 0,

(56)

where 𝛿 ∈ (0, 𝛽) and 𝑝 ∈ [1,∞]. When 𝛽 < 1, there are good
motivations to believe that estimate (56) is not the best one.
In fact, for instance, when (𝜃, 𝑝) = (0,∞), (56) leads us to an
estimate which is rougher than the estimate


e𝑡𝐴L(𝑋;𝑋

𝛿,∞

𝐴
)
≤ 𝑐

12
𝑡
(𝛽−𝛿−1)/𝛼

, 𝛿 ∈ (0, 1) , 𝑡 > 0, (57)

as shown in [2, Proposition 3.2], with 𝑐
12

being a positive
constant depending on 𝛼, 𝛽, and 𝛿. Also, (57) ensures that
e𝑡𝐴𝑥, 𝑥 ∈ 𝑋, belongs to 𝑋𝛿,∞

𝐴
for every 𝛿 ∈ (0, 1) and not

only for 𝛿 ∈ (0, 𝛽) as (56) suggests. Furthermore, due to (31),
estimate (57) yields (54) with (𝜃, 𝛾, 𝑝) = (0, 𝛿,∞). This leads
us to believe that (57) can be improved and that estimate (54)
holds the same if𝑋𝛾,∞

𝐴
is taken in place of (𝑋,D(𝐴))

𝛾,∞
.

Now let 𝑌𝑝
𝛾
∈ {(𝑋,D(𝐴))

𝛾,𝑝
, 𝑋

𝛾,𝑝

𝐴
}, 𝛾 ∈ (0, 1), 𝑝 ∈ [1,∞].

As far as the estimates for the L(𝑌
𝑝

𝛾
; 𝑋)-norm of operators

[(−𝐴)
𝜃
]
∘e𝑡𝐴 are concerned, instead, at the moment only the

following estimates for the case 𝜃 = 1 are available (cf. [24,
Lemma 5.1]):


[(−𝐴)

1
]
∘

e𝑡𝐴
L(𝑌

𝑝

𝛾 ;𝑋)

≤ 𝑐
13
𝑡
(𝛽+𝛾−2)/𝛼

,

𝑡 > 0, 𝛾 ∈ (0, 1) , 𝑝 ∈ [1,∞] ,

(58)

with 𝑐
13
being a positive constant depending on 𝛼, 𝛽, 𝛾, and𝑝.

Estimates (58) are successfully applied in [24, Corollary 5.4]
to prove that if 𝛼 + 𝛽 > 1, then the map 𝑡 → e𝑡𝐴 is Hölder
continuous from [0,∞) to L(𝑌

𝑝

𝛾
; 𝑋), 𝛾 ∈ (2 − 𝛼 − 𝛽, 1),

𝑝 ∈ [1,∞], with Hölder exponent 𝜎 = (𝛼 + 𝛽 + 𝛾 − 2)/𝛼.
In Section 3 we will extend (58), proving some estimates for
theL(𝑌

𝑝

𝛾
; 𝑋)-norm of [(−𝐴)𝜃]∘e𝑡𝐴,Re 𝜃 ≥ 1, which reduce

to (58) in the case 𝜃 = 1.

Remark 8. Observe that an estimate for the norm ‖[(−𝐴)
𝜃
]
∘

e𝑡𝐴‖L(𝑌
𝑝

𝛾 ;𝑋)
, Re 𝜃 ≥ 1, 𝑡 > 0, 𝑌𝑝

𝛾
∈ {(𝑋,D(𝐴))

𝛾,𝑝
, 𝑋

𝛾,𝑝

𝐴
}, 𝛾 ∈

(0, 1), 𝑝 ∈ [1,∞], can be obtained combining (14), (15), and
(58). Indeed, using (15), for everyRe 𝜃 ≥ 1, 𝑡 > 0 and 𝑥 ∈ 𝑌𝑝

𝛾
,

we have

[(−𝐴)

𝜃
]
∘

e𝑡𝐴𝑥
𝑋

=

[(−𝐴)

𝜃−1
]
∘

e(𝑡/2)𝐴[(−𝐴)1]
∘

e(𝑡/2)𝐴𝑥
𝑋

≤

[(−𝐴)

𝜃−1
]
∘

e(𝑡/2)𝐴
L(𝑋)


[(−𝐴)

1
]
∘

e(𝑡/2)𝐴𝑥
𝑋
.

(59)

Therefore, due to (14) and (58), from (59) we deduce that

[(−𝐴)

𝜃
]
∘

e𝑡𝐴
L(𝑌

𝑝

𝛾 ;𝑋)

≤ 𝑐
14
𝑡
(2𝛽+𝛾−Re 𝜃−2)/𝛼

,

Re 𝜃 ≥ 1, 𝑡 > 0,

(60)
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where 𝛾 ∈ (0, 1), 𝑝 ∈ [1,∞] and 𝑐
14

= 2
(2+Re 𝜃−𝛾−2𝛽)/𝛼

𝑐
𝛼,𝛽,𝜃−1

𝑐
13
. As we will see in the next section estimate (60) is

not optimal, in the sense that the negative exponent (2𝛽 +

𝛾 − Re 𝜃 − 2)/𝛼 can be refined; of course, unless 𝛽 = 1.
The main reason to believe that (60) can be improved is
that its derivation consists of two steps: the first in which
[(−𝐴)

𝜃
]
∘e𝑡𝐴 is decomposed with the help of (15), and the

second in which (60) is obtained combining estimates of
very different nature, such as (14) and (58). It is thus to be
expected that in this double step derivation some regularity
goes missing and that a better result can be reached analyzing
more detailedly [(−𝐴)𝜃]∘e𝑡𝐴𝑥 for 𝑥 ∈ 𝑌𝑝

𝛾
.

3. Behaviour of [(−𝐴)𝜃]∘e𝑡𝐴 in
(𝑋,D(𝐴))

𝛾,𝑝
and 𝑋

𝛾,𝑝

𝐴

According to Remark 7 we begin by improving (54), showing
that the same estimate holdswith (𝑋,D(𝐴))

𝛾,𝑝
being replaced

by𝑋𝛾,∞

𝐴
if 𝑝 = ∞ and by𝑋𝛽𝛾,𝑝

𝐴
if 𝑝 ∈ [1,∞).Throughout this

and the next section, 𝐴 will be an m. l. operator in 𝑋 having
nonempty domain D(𝐴) and satisfying the resolvent condi-
tion (H1) of Section 2.

Proposition 9. Let Re𝜃 ≥ 0, 𝛾 ∈ (0, 1) and let 𝑝 ∈ [1,∞].
Then, there exist positive constants 𝑐

𝑗
, 𝑗 = 15, 16, depending on

𝛼, 𝛽, 𝛾, 𝜃, and 𝑝 such that

[(−𝐴)

𝜃
]
∘

e𝑡𝐴
L(𝑋;𝑋

𝛾,∞

𝐴
)

≤ 𝑐
15
𝑡
(𝛽−𝛾−R e 𝜃−1)/𝛼

,

𝑡 > 0, 𝑝 = ∞,

(61)


[(−𝐴)

𝜃
]
∘

e𝑡𝐴
L(𝑋;𝑋

𝛽𝛾,𝑝

𝐴
)

≤ 𝑐
16
𝑡
(𝛽−𝛾−R e 𝜃−1)/𝛼

,

𝑡 > 0, 𝑝 ∈ [1,∞) .

(62)

Proof. If 𝛽 = 1, then (𝑋,D(𝐴))
𝛾,𝑝

≅ 𝑋
𝛾,𝑝

𝐴
and (61) and (62)

with 𝑐
𝑗
= 𝑐

2
𝑐
10
, 𝑗 = 15, 16, follow by taking 𝛽 = 1 in (32) and

(54).Therefore, without the loss of generality, we assume that
𝛽 ∈ (0, 𝛼] is such that 𝛽 < 𝛼 if 𝛼 = 1. Let 𝜃 ∈ C, Re 𝜃 ≥ 0,
𝛾 ∈ (0, 1), and 𝑝 ∈ [1,∞) be fixed and let 𝑥 be an arbitrary
element of𝑋. Then, for every 𝑡 > 0 we have

[(−𝐴)

𝜃
]
∘

e𝑡𝐴𝑥
𝑋
𝛾,∞

𝐴

=

[(−𝐴)

𝜃
]
∘

e𝑡𝐴𝑥
𝑋

+

𝜉
𝛾
𝐴
∘
(𝜉𝐼 − 𝐴)

−1
[(−𝐴)

𝜃
]
∘

e𝑡𝐴𝑥
𝐿∗
∞
(𝑋)

,

(63)

[(−𝐴)

𝜃
]
∘

e𝑡𝐴𝑥
𝑋
𝛽𝛾,𝑝

𝐴

=

[(−𝐴)

𝜃
]
∘

e𝑡𝐴𝑥
𝑋

+

𝜉
𝛽𝛾
𝐴
∘
(𝜉𝐼 − 𝐴)

−1
[(−𝐴)

𝜃
]
∘

e𝑡𝐴𝑥
𝐿∗
𝑝
(𝑋)

.

(64)

Of course, from estimate (54) we find

[(−𝐴)

𝜃
]
∘

e𝑡𝐴𝑥
𝑋

≤ 𝑐
𝛾,𝑝
𝑐
10‖𝑥‖𝑋𝑡

(𝛽−𝛾−Re 𝜃−1)/𝛼
,

𝑡 > 0,

(65)

with 𝑐
𝛾,𝑝

being such that ‖𝑦‖
𝑋
≤ 𝑐

𝛾,𝑝
‖𝑦‖

(𝑋,D(𝐴))𝛾,𝑝
, 𝑦 ∈ (𝑋,

D(𝐴))
𝛾,𝑝
, 𝑝 ∈ [1,∞]. It thus suffices to investigate only the

second terms on the right-hand side of (63) and (64). We
begin by proving (61). First, using the second identity in (6),
for every 𝜉 ∈ (0,∞) we get

𝜉
𝛾
𝐴
∘
(𝜉𝐼 − 𝐴)

−1
[(−𝐴)

𝜃
]
∘

e𝑡𝐴𝑥

=
1

2𝜋𝑖
∫
Γ

𝜉
𝛾
(−𝜆)

𝜃e𝑡𝜆𝐴∘
(𝜉𝐼 − 𝐴)

−1
(𝜆𝐼 − 𝐴)

−1
𝑥 d𝜆

= 𝜉
𝛾
[
1

2𝜋𝑖
∫
Γ

(−𝜆)
𝜃e𝑡𝜆(𝜆 − 𝜉)−1d𝜆]𝐴∘

(𝜉𝐼 − 𝐴)
−1
𝑥

−
1

2𝜋𝑖
∫
Γ

𝜉
𝛾
(−𝜆)

𝜃e𝑡𝜆(𝜆 − 𝜉)−1𝐴∘
(𝜆𝐼 − 𝐴)

−1
𝑥 d𝜆

= −
1

2𝜋𝑖
∫
Γ

𝜉
𝛾
(−𝜆)

𝜃e𝑡𝜆(𝜆 − 𝜉)−1 [𝜆(𝜆𝐼 − 𝐴)−1 − 𝐼] 𝑥 d𝜆

=
1

2𝜋𝑖
∫
Γ

𝜉
𝛾
(−𝜆)

𝜃+1e𝑡𝜆(𝜆 − 𝜉)−1(𝜆𝐼 − 𝐴)−1𝑥 d𝜆.

(66)

Here we have used twice the equality ∫
Γ
(−𝜆)

𝜃e𝑡𝜆(𝜆−𝜉)−1d𝜆 =
0, 𝜉 ∈ (0,∞), which follows from Cauchy’s formula after
having enclosed Γ on the left with an arc of the circle {𝑧 ∈

C : |𝑧 + 𝑐| = 𝑅}, 𝑅 > 0, and letting 𝑅 to infinity. From (66),
using ‖(𝜆𝐼 − 𝐴)−1‖L(𝑋)

≤ 𝐶(|𝜆| + 1)
−𝛽

≤ 𝐶|𝜆|
−𝛽, 𝜆 ∈ Σ

𝛼
, it

follows that


𝜉
𝛾
𝐴
∘
(𝜉𝐼 − 𝐴)

−1
[(−𝐴)

𝜃
]
∘

e𝑡𝐴𝑥
𝑋

≤ 𝐶(2𝜋)
−1
‖𝑥‖𝑋

× ∫
Γ

𝜉
𝛾
|𝜆|

1+Re 𝜃−𝛽e−Im 𝜃 arg(−𝜆)e𝑡Re𝜆𝜆 − 𝜉


−1

|d𝜆|

≤ 𝐶(2𝜋)
−1e(𝜋/2)|Im 𝜃|

‖𝑥‖𝑋

× ∫
Γ

(
𝜉

|𝜆|
)

𝛾

|𝜆|
𝛾+Re 𝜃−𝛽e𝑡Re𝜆



1 − (
𝜉

𝜆
)



−1

|d𝜆| .

(67)

Now, sinceRe 𝜆 ≤ −𝑐 <0 for every 𝜆∈Γ and since 𝜉 ∈ (0,∞),
we have



1 − (
𝜉

𝜆
)



=



1 − (
𝜉𝜆

|𝜆|
2
)



= [1 + (
𝜉

|𝜆|
)

2

−
2𝜉Re 𝜆
|𝜆|

2
]

1/2

≥ [1 + (
𝜉

|𝜆|
)

2

]

1/2

.

(68)
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Therefore, for every 𝜆 ∈ Γ and 𝜉 ∈ (0,∞) the following
inequality holds:

(
𝜉

|𝜆|
)

𝛾

1 − (
𝜉

𝜆
)



−1

≤ (
𝜉

|𝜆|
)

𝛾

[1 + (
𝜉

|𝜆|
)

2

]

−1/2

≤ 𝛾
𝛾/2
(1 − 𝛾)

(1−𝛾)/2
=: 𝑐

𝛾
,

(69)

where we have used the fact that the function 𝑓(𝑠) = 𝑠
𝛾
(1 +

𝑠
2
)
−1/2, 𝑠 ≥ 0, 𝛾 ∈ (0, 1), attains its maximum value 𝑐

𝛾
at the

point 𝑠
𝛾
= 𝛾

1/2
(1 − 𝛾)

−1/2. Coming back to (67) and setting
𝑐
17
= 𝐶(2𝜋)

−1e(𝜋/2)|Im 𝜃|
𝑐
𝛾
, we thus find (here we use also that

on Γ it holds |𝜆| ≥ 𝑐, so that Re 𝜆 = −𝑐(|Im 𝜆| + 1)
𝛼
≥ −𝑐

(1 + 𝑐
−1
)
𝛼
|𝜆|

𝛼):

𝜉
𝛾
𝐴
∘
(𝜉𝐼 − 𝐴)

−1
[(−𝐴)

𝜃
]
∘

e𝑡𝐴𝑥
𝑋

≤ 𝑐
17‖𝑥‖𝑋∫

Γ

|𝜆|
𝛾+Re 𝜃−𝛽e𝑡Re𝜆

|d𝜆|

≤ 𝑐
17‖𝑥‖𝑋∫

Γ

|𝜆|
𝛾+Re 𝜃−𝛽e−𝑐(1+𝑐

−1
)
𝛼
𝑡|𝜆|
𝛼

|d𝜆|

≤ 2𝑐
17‖𝑥‖𝑋∫

∞

0

𝜇
𝛾+Re 𝜃−𝛽e−𝑐𝛼𝑡𝜇

𝛼

d𝜇,

(70)

where 𝑐
𝛼
= 𝑐(1 + 𝑐

−1
)
𝛼. Finally, taking the supremum with

respect to 𝜉 ∈ (0,∞) in (70) and performing the transforma-
tion 𝑐

𝛼
𝑡𝜇
𝛼
= 𝑠 in the integral on the right, we obtain

𝜉
𝛾
𝐴
∘
(𝜉𝐼 − 𝐴)

−1
[(−𝐴)

𝜃
]
∘

e𝑡𝐴𝑥
𝐿∗
∞
(𝑋)

≤ 𝑐
18‖𝑥‖𝑋𝑡

(𝛽−𝛾−Re 𝜃−1)/𝛼
,

(71)

where 𝑐
18

= 2𝑐
17
𝛼
−1
𝑐
(𝛽−𝛾−Re 𝜃−1)/𝛼
𝛼

𝐸((𝛾 + Re 𝜃 + 1 − 𝛽)/𝛼),
𝐸(𝜒), 𝜒 > 0, being the Euler gamma function ∫∞

0
𝑠
𝜒−1e−𝑠d𝑠.

Then, summing up (65) and (71), from (63) it follows that

[(−𝐴)

𝜃
]
∘

e𝑡𝐴𝑥
𝑋
𝛾,∞

𝐴

≤ (𝑐
𝛾,∞

𝑐
10
+ 𝑐

18
) ‖𝑥‖𝑋𝑡

(𝛽−𝛾−Re 𝜃−1)/𝛼
,

Re 𝜃 ≥ 0, 𝑡 > 0.

(72)

Since 𝑥 ∈ 𝑋 was arbitrary, this completes the proof of (61)
with 𝑐

15
= 𝑐

𝛾,∞
𝑐
10
+ 𝑐

18
. Let us now prove (62). For every 𝑝 ∈

[1,∞) we write

𝜉
𝛽𝛾
𝐴
∘
(𝜉𝐼 − 𝐴)

−1
[(−𝐴)

𝜃
]
∘

e𝑡𝐴𝑥


𝑝

𝐿
∗

𝑝
(𝑋)

= 𝐼
1
+ 𝐼

2
, (73)

where 𝐼
𝑗
= ∫

𝑏𝑗

𝑎𝑗

‖𝜉
𝛽𝛾
𝐴
∘
(𝜉𝐼 − 𝐴)

−1
[(−𝐴)

𝜃
]
∘e𝑡𝐴𝑥‖

𝑝

𝑋
(d𝜉/𝜉), 𝑗 =

1, 2, (𝑎
1
, 𝑏
1
, 𝑎

2
, 𝑏
2
) = (0, 1, 1,∞). First, (35) with 𝑌

𝑝

𝛾
= (𝑋,

D(𝐴))
𝛾,𝑝

yields

𝐼
1
≤

[(−𝐴)

𝜃
]
∘

e𝑡𝐴𝑥


𝑝

(𝑋,D(𝐴))𝛾,𝑝
∫

1

0

𝜉
𝛽𝛾𝑝−1

[𝑐
3
(𝜉 + 1)

1−𝛽−𝛾
]
𝑝

d𝜉.

(74)

Therefore, since (𝜉 + 1)1−𝛽−𝛾 ≤ 𝑐
𝛽,𝛾

for every 𝜉 ∈ (0, 1], where
𝑐
𝛽,𝛾

= 2
1−𝛽−𝛾 or 𝑐

𝛽,𝛾
= 1 according that 𝛾 ∈ (0, 1 − 𝛽) or

𝛾 ∈ [1 − 𝛽, 1), from (54), we deduce that

𝐼
1
≤ [𝑐

𝛽,𝛾
𝑐
3
]
𝑝
[(−𝐴)

𝜃
]
∘

e𝑡𝐴𝑥


𝑝

(𝑋,D(𝐴))𝛾,𝑝
∫

1

0

𝜉
𝛽𝛾𝑝−1d𝜉

= [𝑐
19‖𝑥‖𝑋𝑡

(𝛽−𝛾−Re 𝜃−1)/𝛼
]
𝑝

,

(75)

with 𝑐
19

= 𝑐
𝛽,𝛾
𝑐
3
𝑐
10
(𝛽𝛾𝑝)

−1/𝑝. As far as 𝐼
2
is concerned,

exploiting (71) and recalling that we have assumed 𝛽 < 1, we
obtain

𝐼
2
= ∫

∞

1

𝜉
(𝛽−1)𝛾𝑝


𝜉
𝛾
𝐴
∘
(𝜉𝐼 − 𝐴)

−1
[(−𝐴)

𝜃
]
∘

e𝑡𝐴𝑥


𝑝

𝑋

d𝜉
𝜉

≤ [𝑐
18‖𝑥‖𝑋𝑡

(𝛽−𝛾−Re 𝜃−1)/𝛼
]
𝑝

∫

∞

1

𝜉
(𝛽−1)𝛾𝑝−1 d𝜉

≤ [𝑐
20‖𝑥‖𝑋𝑡

(𝛽−𝛾−Re 𝜃−1)/𝛼
]
𝑝

,

(76)

where 𝑐
20
= 𝑐

18
[(1−𝛽)𝛾𝑝]

−1/𝑝. Summing up (73)–(76), it thus
follows that


𝜉
𝛽𝛾
𝐴
∘
(𝜉𝐼 − 𝐴)

−1
[(−𝐴)

𝜃
]
∘

e𝑡𝐴𝑥
𝐿∗
𝑝
(𝑋)

≤ 𝑐
21‖𝑥‖𝑋𝑡

(𝛽−𝛾−Re 𝜃−1)/𝛼
,

(77)

where 𝑐
21
= [(𝑐

19
)
𝑝
+ (𝑐

20
)
𝑝
]
1/𝑝. Finally, (65) and (77) lead us

to

[(−𝐴)

𝜃
]
∘

e𝑡𝐴𝑥
𝑋
𝛽𝛾,𝑝

𝐴

≤ (𝑐
𝛾,𝑝
𝑐
10
+ 𝑐

21
) ‖𝑥‖𝑋𝑡

(𝛽−𝛾−Re 𝜃−1)/𝛼
,

Re 𝜃 ≥ 0, 𝑡 > 0.

(78)

Since 𝑥 ∈ 𝑋 was arbitrary, this completes the proof of (62)
with 𝑐

16
= 𝑐

𝛾,𝑝
𝑐
10
+ 𝑐

21
.

Remark 10. If 𝜃 = 0, then (61) is precisely the estimate (57). In
this sense our result improves [2] and shows that (54) holds
the same with (𝑋,D(𝐴))

𝛾,𝑝
being replaced with 𝑋𝛾,∞

𝐴
if 𝑝 =

∞ and 𝑋𝛽𝛾,𝑝

𝐴
and if 𝑝 ∈ [1,∞). Also, when 𝛽 < 1, (61) and

(62) are in two aspects better than the estimate (55) deduced
from (54) with the help of (32). First, here we do not need to
restrict 𝛾 to (1 − 𝛽, 1). Further, despite limiting 𝛾 to (1 − 𝛽, 1),
(61) and (62) show that [(−𝐴)𝜃]∘e𝑡𝐴𝑥,Re 𝜃 ≥ 0, 𝑡 > 0, 𝑥 ∈ 𝑋,
enjoys more regularity than that predicted by (55). For, since
when 𝛽 < 1 it holds 0 < 𝛾 + 𝛽 − 1 < 𝛽𝛾 < 𝛾, from (38) and
(39) it follows𝑋𝛾,∞

𝐴
→ 𝑋

𝛽𝛾,𝑝

𝐴
→ 𝑋

𝛾+𝛽−1,𝑝

𝐴
, 𝑝 ∈ [1,∞].

Remark 11. We recall that when 𝛽 < 1 the spaces 𝑋𝜎,𝑝

𝐴
, 𝜎 ∈

(0, 1), 𝑝 ∈ [1,∞], are intermediate spaces between 𝑋 and
D(𝐴) for 𝜎 ∈ (0, 𝛽), but they may be contained in D(𝐴)

for 𝜎 ∈ [𝛽, 1). Therefore, whereas (61) is satisfied for spaces
𝑋
𝜎,∞

𝐴
eventually smaller thanD(𝐴), for (62) to hold we have

to consider only spaces 𝑋𝜎,𝑝

𝐴
, 𝑝 ∈ [1,∞), bigger than D(𝐴).

In fact, letting 𝜎 = 𝛽𝛾, we have 𝜎 ∈ (0, 𝛽) for every 𝛾 ∈ (0, 1).
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In accordance with Remark 8 we now improve estimate
(58).

Proposition 12. Let Re𝜃 ≥ 1, 𝛾 ∈ (0, 1), 𝑝 ∈ [1,∞] and let
𝑌
𝑝

𝛾
∈ {(𝑋,D(𝐴))

𝛾,𝑝
, 𝑋

𝛾,𝑝

𝐴
}. Then, there exists a positive con-

stant 𝑐
22
depending on 𝛼, 𝛽, 𝛾, 𝜃, and 𝑝 such that


[(−𝐴)

𝜃
]
∘

e𝑡𝐴
L(𝑌

𝑝

𝛾 ;𝑋)

≤ 𝑐
22
𝑡
(𝛽+𝛾−R e 𝜃−1)/𝛼

, 𝑡 > 0. (79)

Proof. First, using the identity𝐴∘
(𝑧𝐼−𝐴)

−1
= 𝑧(𝑧𝐼−𝐴)

−1
−𝐼,

𝑧 ∈ Σ
𝛼
, for every 𝑥 ∈ 𝑋, we rewrite [(−𝐴)𝜃]∘e𝑡𝐴𝑥, Re 𝜃 ≥ 0,

in the following way:

[(−𝐴)
𝜃
]
∘

e𝑡𝐴𝑥

= −
1

2𝜋𝑖
∫
Γ

(−𝜆)
𝜃−1e𝑡𝜆𝜆(𝜆𝐼 − 𝐴)−1𝑥 d𝜆

= −
1

2𝜋𝑖
∫
Γ

(−𝜆)
𝜃−1e𝑡𝜆 [𝐴∘

(𝜆𝐼 − 𝐴)
−1
𝑥 + 𝐼] 𝑥 d𝜆

= −
1

2𝜋𝑖
∫
Γ

(−𝜆)
𝜃−1e𝑡𝜆𝐴∘

(𝜆𝐼 − 𝐴)
−1
𝑥 d𝜆, 𝑡 > 0.

(80)

Here we have used ∫
Γ
(−𝜆)

𝜃−1e𝑡𝜆d𝜆 = 0, which follows from
the Cauchy formula applied to (−𝜆)𝜃e𝑡𝜆 after having enclosed
Γ on the left with an arc of the circle {𝑧 ∈ C : |𝑧 + 𝑐| = 𝑅},
𝑅 > 0, and letting 𝑅 to infinity. Let now 𝜃 ∈ C, Re 𝜃 ≥ 1,
𝛾 ∈ (0, 1), and 𝑝 ∈ [1,∞] be fixed and let 𝑥 be an arbitrary
element of 𝑌𝑝

𝛾
. From (35) it then follows that


[(−𝐴)

𝜃
]
∘

e𝑡𝐴𝑥
𝑋

≤ c
23‖𝑥‖𝑌

𝑝

𝛾

∫
Γ

|𝜆|
Re 𝜃−1e𝑡Re𝜆

(|𝜆| + 1)
1−𝛽−𝛾

|d𝜆| , 𝑡 > 0,

(81)

where 𝑐
23
= (2𝜋)

−1e(𝜋/2)|Im 𝜃|
𝑐
3
. Now, recalling that |𝜆| ≥ 𝑐 >

0 for every 𝜆 ∈ Γ, we have |𝜆| ≤ |𝜆| + 1 ≤ (1 + 𝑐
−1
)|𝜆|, 𝜆 ∈ Γ.

As a consequence, the following inequality holds:

(|𝜆| + 1)
1−𝛽−𝛾

≤ 𝑐
𝛽,𝛾|𝜆|

1−𝛽−𝛾
, ∀𝜆 ∈ Γ, (82)

where 𝑐
𝛽,𝛾

= (1 + 𝑐
−1
)
1−𝛽−𝛾 or 𝑐

𝛽,𝛾
= 1 according that 𝛾 ∈

(0, 1 − 𝛽] or 𝛾 ∈ (1 − 𝛽, 1) ((0, 1 − 𝛽] = 0 if 𝛽 = 1). Therefore,
setting 𝑐

24
= 2𝑐

𝛽,𝛾
𝑐
23
, (81) and (82) yield


[(−𝐴)

𝜃
]
∘

e𝑡𝐴𝑥
𝑋

≤ 𝑐
24‖𝑥‖𝑌

𝑝

𝛾

∫

∞

0

𝜇
Re 𝜃−𝛽−𝛾e−𝑐𝛼𝑡𝜇

𝛼

d𝜇, 𝑡 > 0,

(83)

with 𝑐
𝛼
being as in (70). Finally, the transformation 𝑐

𝛼
𝑡𝜇
𝛼
= 𝑠

in the last integral leads us to the following estimate:

[(−𝐴)

𝜃
]
∘

e𝑡𝐴𝑥
𝑋

≤ 𝑐
25‖𝑥‖𝑌

𝑝

𝛾

𝑡
(𝛽+𝛾−Re 𝜃−1)/𝛼

, 𝑡 > 0, (84)

where 𝑐
25

= 𝑐
24
𝛼
−1
𝑐
(𝛽+𝛾−Re 𝜃−1)/𝛼
𝛼

𝐸((Re 𝜃 + 1 − 𝛽 − 𝛾)/𝛼),
𝐸(𝜒), 𝜒 > 0, is the Euler’s gamma function. Notice that here

Re 𝜃 ≥ 1 impliesRe 𝜃 + 1 − 𝛽 − 𝛾 ≥ 2 − 𝛽 − 𝛾 > 0 for every
𝛽 ∈ (0, 1] and 𝛾 ∈ (0, 1), so that 𝐸((Re 𝜃 + 1 − 𝛽 − 𝛾)/𝛼)

makes sense. Since (84) is satisfied for every arbitrary element
𝑥 ∈ 𝑌

𝑝

𝛾
, the proof is complete with 𝑐

22
= 𝑐

25
.

Remark 13. Estimate (79) is better than (60) obtained in
Remark 8 using (14), (15), and (58). In fact, for every 𝛽 ∈

(0, 𝛼], 𝛼 ∈ (0, 1], 𝛾 ∈ (0, 1) and Re 𝜃 ≥ 1, the following
inequality holds:

𝜌
1
:=

(2𝛽 + 𝛾 −Re 𝜃 − 2)
𝛼

≤
(𝛽 + 𝛾 −Re 𝜃 − 1)

𝛼
:= 𝜌

2
< 0.

(85)

Then, 𝑡𝜌2 ≤ 𝑡
𝜌1 , 𝑡 ∈ (0, 1], and (79) is more accurate than (60)

for small values of 𝑡.

Estimate (79) with 𝜃 = 1 yields the following result which
we will need in Section 5 to prove the equivalence between
problem (170) and the fixed-point equation (179).

Corollary 14. Let 𝛼+𝛽 > 1 in (H1). Then, for every 𝑥 ∈ 𝑋 the
following equalities hold:

𝐴
−1
(e𝑡𝐴 − 𝐼) 𝑥 = (e𝑡𝐴 − 𝐼)𝐴−1

𝑥 = ∫

𝑡

0

e(𝑡−𝑠)𝐴𝑥 d𝑠, 𝑡 ≥ 0.

(86)

Proof. The assertion is obvious for 𝑡 = 0. Let 𝑡 > 0 and let
𝑥 ∈ 𝑋. Commuting 𝐴−1

∈ L(𝑋) with the integral sign, from
(9) and the resolvent equation, we have 𝐴−1e𝑡𝐴𝑥 = e𝑡𝐴𝐴−1

𝑥,
which proves the first equality in (86). To prove the second
equality, we first write

(e𝑡𝐴 − 𝐼)𝐴−1
𝑥 = ∫

𝑡

0

[𝐷
𝑟
e𝑟𝐴]

𝑟=𝑡−𝑠
𝐴
−1
𝑥 d𝑠

= −∫

𝑡

0

[(−𝐴)
1
]
∘

e(𝑡−𝑠)𝐴𝐴−1
𝑥 d𝑠,

(87)

and we show that the latter integral is convergent. Indeed,
since 𝛼+𝛽 > 1, we may consider𝐴−1

𝑥 ∈ D(𝐴) as an element
of (𝑋,D(𝐴))

𝛾,𝑝
, where 𝛾 ∈ (2 − 𝛼 − 𝛽, 1) and 𝑝 ∈ [1,∞].

With this choice for 𝛾, from (79) with 𝜃 = 1 and (25) we
obtain (here we use also ‖𝐴−1

𝑥‖D(𝐴) = inf
𝑦∈𝐴(𝐴

−1
𝑥)
‖𝑦‖

𝑋
=

inf
𝑦∈(𝐴𝐴

−1
)𝑥
‖𝑦‖

𝑋
= ‖𝑥‖D(𝐴𝐴−1) ≤ ‖𝑥‖

𝑋
, due to 𝐼 ⊂ 𝐴𝐴

−1.
Then, ‖𝐴−1

𝑥‖
(𝑋,D(𝐴))𝛾,𝑝

≤ 𝑐
0
‖𝐴

−1
𝑥‖

1−𝛾

𝑋
‖𝐴

−1
𝑥‖

𝛾

D(𝐴) ≤ 𝑐
0

‖𝐴
−1
‖
1−𝛾

L(𝑋)
‖𝑥‖

𝑋
):



∫

𝑡

0

[(−𝐴)
1
]
∘

e(𝑡−𝑠)𝐴𝐴−1
𝑥 d𝑠

𝑋

≤ 𝑐
22


𝐴
−1
𝑥
(𝑋,D(𝐴))𝛾,𝑝

∫

𝑡

0

(𝑡 − 𝑠)
(𝛽+𝛾−2)/𝛼d𝑠

≤ 𝑐
22
𝑐
𝛼,𝛽,𝛾

𝑐
0


𝐴
−1

1−𝛾

L(𝑋)
‖𝑥‖𝑋𝑡

(𝛼+𝛽+𝛾−2)/𝛼
,

(88)
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where 𝑐
𝛼,𝛽,𝛾

= 𝛼(𝛼 + 𝛽 + 𝛾 − 2)
−1. We now recall that (cf. [24,

formula (3.21)])

[(−𝐴)
1
]
∘

e𝑡𝐴(−𝐴)−𝜁=[(−𝐴)1−𝜁]
∘

e𝑡𝐴, Re 𝜁 ∈ (1 − 𝛽, 1] ,

𝑡 > 0,

(89)

with (−𝐴)
−𝜁 being the negative fractional powers of −𝐴

defined by (cf. [24, Section 3]) (2𝜋𝑖)−1 ∫
Γ
(−𝜆)

−𝜁
(𝜆𝐼 − 𝐴)

−1d𝜆,
Re 𝜁 > 1 − 𝛽. To complete the proof it thus suffices to apply
(89) with 𝜁 = 1 to (87) and to recall that [(−𝐴)0]∘e𝑡𝐴 = e𝑡𝐴,
𝑡 > 0. Notice that the integral on the right-hand side of
(86) is convergent, too. In fact, from (14), it follows that
‖ ∫

𝑡

0
e(𝑡−𝑠)𝐴𝑥 d𝑠‖X ≤ 𝑐

𝛼,𝛽,0
‖𝑥‖

𝑋
∫
𝑡

0
(𝑡 − 𝑠)

(𝛽−1)/𝛼d𝑠 = 𝛼(𝛼 + 𝛽 −

1)
−1
𝑐
𝛼,𝛽,0

‖𝑥‖
𝑋
𝑡
(𝛼+𝛽−1)/𝛼.

Remark 15. In particular, from (86) it follows that if 𝛼+𝛽 > 1,
then ∫𝑡

0
e(𝑡−𝑠)𝐴𝑥 ds ∈ D(𝐴) for every 𝑥 ∈ 𝑋 and (e𝑡𝐴 − 𝐼)𝑥 ⊆

𝐴∫
𝑡

0
e(𝑡−𝑠)𝐴𝑥 ds. This extends to m. l. operators satisfying

(H1) the well-known result for sectorial single-valued linear
operators (see, for instance, [9, Proposition 2.1.4(ii)] and [11,
Proposition 1.2(ii)]).

With the help of (54) and Proposition 12, we can now
derive the following interpolation estimates (90) for the
operators [(−𝐴)𝜃]∘e𝑡𝐴, Re 𝜃 ≥ 1, which are considered as
operators from (𝑋,D(𝐴))

𝛾,𝑝
to (𝑋,D(𝐴))

𝛿,𝑝
. As we will see

in the proof of Proposition 16, here the fact that the spaces
(𝑋,D(𝐴))

𝜎,𝑝
are real interpolation spaces between 𝑋 and

D(𝐴) plays a key role. For it allows us to exploit the inter-
polation inequality (24) in the derivation of our estimates in
the case 𝛾 + 𝛿 < 1.

Proposition 16. Let Re𝜃 ≥ 1, 𝛾, 𝛿 ∈ (0, 1), and 𝑝 ∈ [1,∞].
Then, there exist positive constants 𝑐

𝑗
, 𝑗 = 26, 27, depending on

𝛼, 𝛽, 𝛾, 𝛿, 𝜃, and 𝑝 such that for every 𝑡 > 0


[(−𝐴)

𝜃
]
∘

e𝑡𝐴
L((𝑋,D(𝐴))𝛾,𝑝 ;(𝑋,D(𝐴))𝛿,𝑝)

≤ {
𝑐
26
𝑡
(2𝛽+𝛾−𝛿−R e 𝜃−2)/𝛼

, 𝛾, 𝛿 ∈ (0, 1) ,

𝑐
27
𝑡
(𝛽+𝛾−𝛿−R e 𝜃−1)/𝛼

, 𝑖𝑓 𝛾 + 𝛿 < 1.

(90)

Proof. For brevity, we will use the shortenings 𝑌𝑝
𝜎

= (𝑋,

D(𝐴))
𝜎,𝑝

, 𝜎 ∈ (0, 1), 𝑝 ∈ [1,∞]. We begin by proving the
first estimate in (90). Let 𝜃 ∈ C, Re 𝜃 ≥ 1, 𝛾, 𝛿 ∈ (0, 1)

and 𝑝 ∈ [1,∞] be fixed and let 𝑥 be an arbitrary element of
𝑌
𝑝

𝛾
. Moreover, let 𝜁 and 𝜁 be two arbitrary complex numbers

such that 𝜃 = 𝜁 + 𝜁
 and whose real parts satisfy Re 𝜁 ≥ 0

and Re 𝜁 ≥ 1. From the decomposition formula (15) it then
follows for every 𝑡 > 0:

[(−𝐴)

𝜃
]
∘

e𝑡𝐴𝑥
𝑌
𝑝

𝛿

=


[(−𝐴)

𝜁
]
∘

e(𝑡/2)𝐴[(−𝐴)𝜁


]

∘

e(𝑡/2)𝐴𝑥
𝑌
𝑝

𝛿

≤

[(−𝐴)

𝜁
]
∘

e(𝑡/2)𝐴
L(𝑋;𝑌

𝑝

𝛿
)


[(−𝐴)

𝜁


]

∘

e(𝑡/2)𝐴𝑥
𝑋

≤

[(−𝐴)

𝜁
]
∘

e(𝑡/2)𝐴
L(𝑋;𝑌

𝑝

𝛿
)


[(−𝐴)

𝜁


]

∘

e(𝑡/2)𝐴
L(𝑌

𝑝

𝛾 ;𝑋)

‖𝑥‖
𝑌
𝑝

𝛾

.

(91)

Therefore, using (54) and (79) with the triplet (𝜃, 𝛾, 𝑡) being
equal to (𝜁, 𝛿, 𝑡/2) and (𝜁, 𝛾, 𝑡/2), respectively, from (91) and
Re 𝜃 = Re 𝜁 +Re 𝜁, we deduce that

[(−𝐴)

𝜃
]
∘

e𝑡𝐴𝑥
𝑌
𝑝

𝛿

≤ 𝑐
10
𝑐
22
(
𝑡

2
)

(𝛽−𝛿−Re 𝜁−1)/𝛼
(
𝑡

2
)

(𝛽+𝛾−Re 𝜁−1)/𝛼
‖𝑥‖

𝑌
𝑝

𝛾

≤ 𝑐
26
𝑡
(2𝛽+𝛾−𝛿−Re 𝜃−2)/𝛼

‖𝑥‖
𝑌
𝑝

𝛾

, 𝑡 > 0,

(92)

where 𝑐
26
= 2

(2+Re 𝜃+𝛿−𝛾−2𝛽)/𝛼
𝑐
10
𝑐
22
. This completes the proof

of the first estimate in (90), due to the arbitrariness of 𝑥 ∈

𝑌
𝑝

𝛾
. Let us now prove the second estimate in (90). Let 𝜃 ∈ C,

Re 𝜃 ≥ 1, 𝛾, 𝛿 ∈ (0, 1), 𝛾 + 𝛿 < 1, and 𝑝 ∈ [1,∞] be fixed.
Using 𝛾 + 𝛿 < 1, we fix 𝛾

2
∈ (𝛾/(1 − 𝛿), 1) ⊊ (𝛾, 1), and we let

𝛾
1
= (𝛾

2
𝛿)/(𝛾

2
− 𝛾). Clearly, since 𝛾

2
∈ (𝛾/(1 − 𝛿), 1), we have

𝛾
1
∈ (𝛿, 1). In addition, it holds:

1 − 𝛿 >
𝛾
1
− 𝛿

𝛾
1

= (
𝛾
2
𝛿

𝛾
2
− 𝛾

− 𝛿)(
𝛾
2
− 𝛾

𝛾
2
𝛿

) =
𝛾

𝛾
2

> 𝛾. (93)

Due to (93), we now set 𝛾
0
= 𝛾/𝛾

2
= (𝛾

1
− 𝛿)/𝛾

1
∈ (𝛾, 1 − 𝛿),

so that 𝛾 = 𝛾
0
𝛾
2
and 𝛿 = (1 − 𝛾

0
)𝛾
1
. From (24) with 𝑝

0
= 𝑝 it

thus follows that

[(−𝐴)

𝜃
]
∘

e𝑡𝐴
L(𝑌

𝑝

𝛾 ;𝑌
𝑝

𝛿
)

≤

[(−𝐴)

𝜃
]
∘

e𝑡𝐴


1−𝛾0

L(𝑋;𝑌
𝑝1
𝛾1
)


[(−𝐴)

𝜃
]
∘

e𝑡𝐴


𝛾0

L(𝑌
𝑝2
𝛾2
;𝑋)

, 𝑡 > 0,

(94)

where 𝑝
𝑗
∈ [1,∞], 𝑗 = 1, 2. Applying (54) and (79) with the

pair (𝛾, 𝑝) being replaced with (𝛾
1
, 𝑝

1
) and (𝛾

2
, 𝑝

2
), respec-

tively, from (94) we finally obtain

[(−𝐴)

𝜃
]
∘

e𝑡𝐴
L(𝑌

𝑝

𝛾 ;𝑌
𝑝

𝛿
)

≤ [𝑐
10
𝑡
(𝛽−𝛾1−Re 𝜃−1)/𝛼

]
1−𝛾0

[𝑐
22
𝑡
(𝛽+𝛾2−Re 𝜃−1)/𝛼

]
𝛾0

≤ (𝑐
10
)
1−𝛾0

(𝑐
22
)
𝛾0
𝑡
[𝛽+𝛾0𝛾2−(1−𝛾0)𝛾1−Re 𝜃−1]/𝛼

= (𝑐
10
)
𝛿/𝛾1

(𝑐
22
)
𝛾/𝛾2

𝑡
(𝛽+𝛾−𝛿−Re 𝜃−1)/𝛼

, 𝑡 > 0.

(95)

This completes the proof of the second estimate in (90) with
𝑐
27
= (𝑐

10
)
𝛿/𝛾1(𝑐

22
)
𝛾/𝛾2 .
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Remark 17. We stress that if 𝛽 < 1 and 𝛾 + 𝛿 < 1, then the
first estimate in (90) is rougher than the second one for small
values of 𝑡, which justify our special attention to the case 𝛾 +
𝛿 < 1. Indeed, if 𝛽 < 1, then for everyRe 𝜃 ≥ 1 the following
inequality holds:

𝜌
3
:=

(2𝛽 + 𝛾 − 𝛿 −Re 𝜃 − 2)
𝛼

<
(𝛽 + 𝛾 − 𝛿 −Re 𝜃 − 1)

𝛼
=: 𝜌

4
< 0,

(96)

so that 𝑡𝜌4 ≤ 𝑡
𝜌3 for 𝑡 ∈ (0, 1]. In other words, if 𝛽 and

𝛾 + 𝛿 are both less than one, then the second estimate in (90)
establishes that the norm ‖[(−𝐴)

𝜃
]
∘e𝑡𝐴‖L((𝑋,D(𝐴))𝛾,𝑝 ;(𝑋,D(𝐴))𝛿,𝑝)

,
Re 𝜃 ≥ 1, may blow up as 𝑡 goes to 0, but with an order of
singularity lower than that predicted by the first estimate. In
this sense, though less general, the second estimate in (90) is
better than the first one.

Remark 18. The reasonwhy the second estimate in (90) yields
a better exponent than the first one is the same mentioned
in Remark 8. That is, while the first estimate is obtained in
two steps: decomposing [(−𝐴)𝜃]∘e𝑡𝐴 through (15) and then
applying (54) and (79), the second estimate is essentially
derived in a single step, using (24).

The following Remark 19 points out why, with the excep-
tion of the case when 𝛽 = 1 and 𝐴 is single-valued, to prove
(90) we can not proceed as in [9, Proposition 2.2.9].

Remark 19. In the optimal case 𝛽 = 1, the exponents in both
estimates (90) coincide equals to ] = 𝛾 − 𝛿 − Re 𝜃. Hence,
in this special case, the assumption 𝛾 + 𝛿 < 1 does not give
any enhancement. Also, if we further assume that 𝜃 ∈ N, then
we restore the same estimates as in [9, Proposition 2.2.9(i)].
In this respect, our result extends [9] to the m. l. case, even
though our proof really differs from that in [9]. For, there, the
norms in the spaces (𝑋,D(𝐴))

𝜎,𝑝
are replacedwith the norms

in the spacesD
𝐴
(𝜎, 𝑝), with the latter being the spaces of all

𝑥 ∈ 𝑋 such that ‖𝑥‖D𝐴(𝜎,𝑝) = ‖𝑥‖
𝑋
+ [𝑥]D𝐴(𝜎,𝑝)

< ∞, where
[𝑥]D𝐴(𝜎,𝑝)

= ‖𝜉
(2−𝛽−𝜎)/𝛼

[(−𝐴)
1
]
∘e𝜉𝐴‖

𝐿
∗

𝑝
(𝑋)

. It is well known
that if 𝛽 = 1 and 𝐴 is single-valued, then (𝑋,D(𝐴))

𝜎,𝑝
≅

D
𝐴
(𝜎, 𝑝) (cf. [31, Theorem 3], [9, Proposition 2.2.2] and [27,

Theorem 1.14.5]). On the contrary, if (𝛼, 𝛽) ̸= (1, 1) and/or 𝐴
is really an m. l. operator, such equivalence is no longer true
and we have

𝑋
𝜎,𝑝

𝐴
→ (𝑋,D (𝐴))𝜎,𝑝 → D

𝐴
(𝛼𝜎, 𝑝) , 𝑝 ∈ [1,∞) ,

𝑋
𝜎,∞

𝐴
→ (𝑋,D (𝐴))𝜎,∞ → D

𝐴 (𝜎,∞) , 𝑝 = ∞.

(97)

Differently from the spaces 𝑋𝜎,𝑝

𝐴
and as a consequence of

𝐴0 ⊆ ⋂
𝑡>0

N([(−𝐴)
1
]
∘e𝑡𝐴), the spaces D

𝐴
(𝜎, 𝑝) contain 𝐴0.

It can thus be shown that if 𝛼 + 𝛽 > 1, then for every
𝜎 ∈ (2 − 𝛼 − 𝛽, 1) and 𝜑 ∈ (0, (𝛼 + 𝛽 + 𝜎 − 2)/𝛼) (here

(𝛼 + 𝛽 + 𝜎 − 2)/𝛼 < 1, since 𝜎 < 1 ≤ 2 − 𝛽) the following
embeddings hold:

{0} ∪ [D𝐴
(𝜎, 𝑝) \ 𝐴0] → 𝑋

𝜑,𝑝

𝐴
→ (𝑋,D (𝐴))

𝜑,𝑝
,

𝑝 ∈ [1,∞) ,

{0} ∪ [D
𝐴
(𝜎,∞) \ 𝐴0] → 𝑋

(𝛼+𝛽+𝜎−2)/𝛼,∞

𝐴

→ (𝑋,D (𝐴))
(𝛼+𝛽+𝜎−2)/𝛼,∞

,

(98)

with {0} ∪ [D
𝐴
(𝜎, 𝑝) \ 𝐴0] being endowed with the norm

of D
𝐴
(𝜎, 𝑝). Obviously, due to (29), it suffices to prove the

embeddings on the right of (97) and on the left of (98). It is
out of the aims of this paper to go into the details of these
proofs, and for them we refer the readers to [24, Proposition
6.3]. Here we want only tomake clear that, with the exception
of the case when 𝛽 = 1 and 𝐴 is single-valued, embeddings
(97) and (98) prevent us from carrying out the proof of
estimates (90) simply by repeating the computations in [9].
Notice that, due to the property [𝑋𝜎,𝑝

𝐴
∩ 𝐴0] = {0}, from the

second embeddings in (97) and (98) it follows that if 𝛼+𝛽 > 1

and 𝜎 ∈ (2 − 𝛼 − 𝛽, 1), then

𝑋
𝜎,∞

𝐴
→ {0} ∪ [D

𝐴
(𝜎,∞) \ 𝐴0] → 𝑋

(𝛼+𝛽+𝜎−2)/𝛼,∞

𝐴
.

(99)

Since (𝛼+𝛽+𝜎−2)/𝛼 ≤ 𝜎 (indeed, 𝛼 ≤ 1 ≤ (2−𝛽−𝜎)/(1−𝜎)

implies 𝛼 + 𝛽 + 𝜎 − 2 ≤ 𝛼𝜎), (99) agrees with (38) for 𝑝 = ∞.
In addition, if 2𝛼 + 𝛽 > 2 and 𝜎 ∈ ((2 − 𝛼 − 𝛽)/𝛼, 1), then the
first embeddings in (97) and (98) yield for every 𝜑 ∈ (0, (𝛼 +

𝛽 + 𝛼𝜎 − 2)/𝛼) the following:

𝑋
𝜎,𝑝

𝐴
→ {0} ∪ [D

𝐴
(𝛼𝜎, 𝑝) \ 𝐴0] → 𝑋

𝜑,𝑝

𝐴
, 𝑝 ∈ [1,∞) .

(100)

Since 𝜑 < (𝛼 + 𝛽 + 𝛼𝜎 − 2)/𝛼 ≤ 𝜎, (100) agrees with (38) for
𝑝 ∈ [1,∞). Furthermore, if 𝛽 = 1, then from (29), (30), and
(99) it follows that (𝑋,D(𝐴))

𝜎,∞
≅ 𝑋

𝜎,∞

𝐴
≅ {0}∪[D

𝐴
(𝜎,∞)\

𝐴0], 𝜎 ∈ (0, 1). This confirms that in the real m. l. case the
equivalence between 𝑋

𝜎,𝑝

𝐴
, (𝑋,D(𝐴))

𝜎,𝑝
and D

𝐴
(𝜎, 𝑝) does

not hold even when 𝛽 = 1.

Using Propositions 9 and 12, we now obtain estimates for
the operators [(−𝐴)𝜃]∘e𝑡𝐴,Re 𝜃 ≥ 1, considered as operators
from 𝑋

𝛾,𝑝

𝐴
to 𝑋

𝛿,𝑝

𝐴
. Clearly, since 𝛽 < 1 the spaces 𝑋𝜎,𝑝

𝐴
may

be not real interpolation spaces between𝑋 andD(𝐴), we can
not proceed as in the proof of the second estimate in (90) and
a weaker result has to be expected.

Proposition 20. Let Re𝜃 ≥ 1, 𝛾, 𝛿 ∈ (0, 1), and 𝑝 ∈ [1,∞].
Then, there exist positive constants 𝑐

𝑗
, 𝑗 = 28, 29, 30, depending

on 𝛼, 𝛽, 𝛾, 𝛿, 𝜃, and 𝑝 such that

[(−𝐴)

𝜃
]
∘

e𝑡𝐴
L(𝑋

𝛾,∞

𝐴
;𝑋
𝛿,∞

𝐴
)

≤ 𝑐
28
𝑡
(2𝛽+𝛾−𝛿−Re𝜃−2)/𝛼

,

𝑝 = ∞, 𝑡 > 0,

(101)


[(−𝐴)

𝜃
]
∘

e𝑡𝐴
L(𝑋

𝛾,𝑝

𝐴
;𝑋
𝛽𝛿,𝑝

𝐴
)

≤ 𝑐
29
𝑡
(2𝛽+𝛾−𝛿−Re𝜃−2)/𝛼

,

𝑝 ∈ [1,∞) , 𝑡 > 0.

(102)
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Moreover, if 𝛾 ∈ (0, 1) and 𝛿 ∈ (1−𝛽, 1) are such that 𝛾+𝛿 < 1,
then


[(−𝐴)

𝜃
]
∘

e𝑡𝐴
L(𝑋

𝛾,𝑝

𝐴
;𝑋
𝛿+𝛽−1,𝑝

𝐴
)

≤ 𝑐
30
𝑡
(𝛽+𝛾−𝛿−R e −1)/𝛼

,

𝑝 ∈ [1,∞] , 𝑡 > 0.

(103)

Proof. Due to (61) and (79), in order to prove (101) and
(102) it suffices to repeat the same computations as in (91)
and (92), with the pair ((𝑋,D(𝐴))

𝛾,𝑝
, (𝑋,D(𝐴))

𝛿,𝑝
) being

replaced with (𝑋
𝛾,∞

𝐴
, 𝑋

𝛿,∞

𝐴
) or with (𝑋

𝛾,𝑝

𝐴
, 𝑋

𝛽𝛿,𝑝

𝐴
) provided

that 𝑝 = ∞ or 𝑝 ∈ [1,∞). In this way we derive (101) and
(102) with 𝑐

𝑗+13
= 2

(2+Re 𝜃+𝛿−𝛾−2𝛽)/𝛼
𝑐
𝑗
𝑐
22
, 𝑗 = 15, 16. As far

as (103) is concerned, we recall that if 𝑋
𝑗
, 𝑗 = 1, . . . , 4, are

four Banach spaces such that 𝑋
𝑗
→ 𝑋

𝑗+2
, 𝑗 = 1, 2, and

𝐿 ∈ L(𝑋
3
; 𝑋

2
), then 𝐿 ∈ L(𝑋

1
; 𝑋

4
) with ‖𝐿‖L(𝑋1 ;𝑋4)

≤

𝐶
1
𝐶
2
‖𝐿‖L(𝑋3 ;𝑋2)

,𝐶
1
and𝐶

2
being the positive constants such

that ‖𝑥‖
𝑋𝑗+2

≤ 𝐶
𝑗
‖𝑥‖

𝑋𝑗
, 𝑥 ∈ 𝑋

𝑗
, 𝑗 = 1, 2. Applying this

result to 𝐿 = [(−𝐴)
𝜃
]
∘e𝑡𝐴 with (𝑋

1
, 𝑋

2
, 𝑋

3
, 𝑋

4
) = (𝑋

𝛾,𝑝

𝐴
, (𝑋,

D(𝐴))
𝛿,𝑝
, (𝑋,D(𝐴))

𝛾,𝑝
, 𝑋

𝛿+𝛽−1,𝑝

𝐴
), from (29)–(32) and the

second estimate in (90) we deduce (103) with 𝑐
30

= 2𝑐
2
𝑐
27
.

This completes the proof.

Remark 21. The assumption 𝛾 + 𝛿 < 1 with 𝛾 ∈ (0, 1) and
𝛿 ∈ (1 − 𝛽, 1) implies that 𝛾 ∈ (0, 1 − 𝛿) ⊊ (0, 𝛽). Therefore
(cf. Remark 11), we conclude that for (103) to hold we have
to consider [(−𝐴)𝜃]∘e𝑡𝐴, Re 𝜃 ≥ 1, as an operator between
the intermediate spaces 𝑋𝛾,𝑝

𝐴
and 𝑋

𝜀,𝑝

𝐴
, where 𝛾, 𝜀 ∈ (0, 𝛽),

𝜀 = 𝛿 + 𝛽 − 1, 𝛿 ∈ (1 − 𝛽, 1), 𝛾 + 𝛿 < 1.

4. Hölder Regularity of Some
Operator Functions

Here, we study the Hölder regularity of those operator func-
tions that we will need in Section 5. From now on, with
(𝑍, ‖ ⋅ ‖

𝑍
) being a complex Banach space, 𝐶([𝑎, 𝑏]; 𝑍) =

𝐶
0
([𝑎, 𝑏]; 𝑍) and 𝐶

𝛿
([𝑎, 𝑏]; 𝑍), 𝛿 ∈ (0, 1), 𝑎 < 𝑏, denote,

respectively, the spaces of all continuous and 𝛿-Hölder con-
tinuous functions from [𝑎, 𝑏] into𝑍 endowed with the norms
‖𝑔‖

0,𝑎,𝑏;𝑍
= sup

𝑡∈[𝑎,𝑏]
‖𝑔(𝑡)‖

𝑍
and ‖𝑔‖

𝛿,𝑎,𝑏;𝑍
= ‖𝑔‖

0,𝑎,𝑏;𝑍
+

|𝑔|
𝛿,𝑎,𝑏;𝑍

, where |𝑔|
𝛿,𝑎,𝑏;𝑍

is the seminorm sup
𝑎≤𝑡1<𝑡2≤𝑏

(𝑡
2
−

𝑡
1
)
−𝛿
‖𝑔(𝑡

2
) − 𝑔(𝑡

1
)‖
𝑍
. We endow the subspace𝐶𝛿

0
([𝑎, 𝑏]; 𝑍) =

{𝑔 ∈ 𝐶
𝛿
([𝑎, 𝑏];Z) : 𝑔(𝑎) = 0}, 𝛿 ∈ [0, 1) with the norm

‖ ⋅ ‖
𝛿,𝑎,𝑏;𝑍

. Further, for 𝑘 ∈ N and 𝛿 ∈ (0, 1) we set 𝐶𝑘([𝑎, 𝑏];
𝑍) = {𝑔 ∈ 𝐶([𝑎, 𝑏]; 𝑍) : 𝐷

𝑘

𝑡
𝑔 ∈ 𝐶([𝑎, 𝑏]; 𝑍)}, ‖𝑔‖

𝑘,𝑎,𝑏;𝑍
=

∑
𝑘

0
‖𝐷

𝑗

𝑡
𝑔‖

0,𝑎,𝑏;𝑍
(𝐷0

𝑡
= 𝐼), and𝐶𝑘+𝛿([𝑎, 𝑏]; 𝑍) = {𝑔 ∈ 𝐶

𝑘
([𝑎, 𝑏];

𝑍) : 𝐷
𝑘

𝑡
𝑔 ∈ 𝐶

𝛿
([𝑎, 𝑏]; 𝑍)}, ‖𝑔‖

𝑘+𝛿,𝑎,𝑏;𝑍
= ‖𝑔‖

𝑘,𝑎,𝑏;𝑍
+ |𝐷

𝑘

𝑡

𝑔|
𝛿,𝑎,𝑏;𝑍

. Recall that if 0 ≤ 𝛿
2
≤ 𝛿

1
≤ 1, then 𝐶𝛿1([𝑎, 𝑏]; 𝑍) →

𝐶
𝛿2([𝑎, 𝑏]; 𝑍) and ‖𝑔‖

𝛿2,𝑎,𝑏;𝑍
≤ max{1, (𝑏 − 𝑎)𝛿1−𝛿2}‖𝑔‖

𝛿1,𝑎,𝑏;𝑍
,

𝑔 ∈ 𝐶
𝛿1([𝑎, 𝑏]; 𝑋). Finally, given three complexBanach spaces

(𝑋
𝑘
, ‖ ⋅ ‖

𝑋𝑘
), 𝑘 = 1, 2, 3, and a bilinear bounded operator P

from𝑋
1
×𝑋

2
to𝑋

3
with norm𝐶

0
, that is,P ∈ B(𝑋

1
×𝑋

2
; 𝑋

3
)

and ‖P‖B(𝑋1×𝑋2 ;𝑋3)
= sup

‖𝑥𝑘‖𝑋
𝑘
=1,𝑘=1,2

‖P(𝑥
1
, 𝑥

2
)‖
𝑋3

= 𝐶
0
,

we denote byK the convolution operator

K (V
1
, V
2
) (𝑡) = ∫

𝑡

0

P (V
1
(𝑡 − 𝑟) , V

2
(𝑟)) d𝑟,

𝑡 ∈ [0, 𝑏] , 𝑏 > 0,

(104)

where V
𝑘
: [0, 𝑏] → 𝑋

𝑘
, 𝑘 = 1, 2. Of course, if (𝑋

1
, 𝑋

2
) =

(C, 𝑋
3
) and if P is the scalar multiplication in 𝑋

3
, that is,

P(𝑧, 𝑥) = 𝑧𝑥, 𝑧 ∈ C, 𝑥 ∈ 𝑋
3
, then 𝐶

0
= 1 and K reduces

to the usual convolution operator K(V
1
, V
2
)(𝑡) = ∫

𝑡

0
V
1
(𝑡 −

𝑟)V
2
(𝑟) d𝑟. As usual, for every 𝑞 ∈ [1,∞], we will denote by

𝑞
 the conjugate exponent of 𝑞.

Now let𝑋
3
= 𝑋 and introduce the following linear oper-

ators 𝑄
𝑗
, 𝑗 = 1, . . . , 6, where 𝑔

𝑗
∈ 𝐶

𝛿𝑗([0, 𝑇]; 𝑋), 𝑗 = 1, 2, 5,
𝑔
𝑙𝑘
∈ 𝐶

𝛿𝑙
𝑘 ([0, 𝑇], 𝑋

𝑘
), 𝑙 = 3, 6, 𝑘 = 1, 2, 𝑔

4
∈ 𝐶

𝛿4([0, 𝑇];C),
𝑦 ∈ 𝑌

𝑝

𝛾
, 𝑌𝑝

𝛾
∈ {(𝑋,D(𝐴))

𝛾,𝑝
, 𝑋

𝛾,𝑝

𝐴
}, 𝑝 ∈ [1,∞], and 𝑡 ∈ [0, 𝑇],

𝑇 > 0 as follows:

[𝑄
1
𝑔
1
] (𝑡) := ∫

𝑡

0

e(𝑡−𝑠)𝐴𝑔
1
(𝑠) d𝑠, (105)

[𝑄
2
𝑔
2
] (𝑡) := ∫

𝑡

0

[(−𝐴)
1
]
∘

e(𝑡−𝑠)𝐴 [𝑔
2
(𝑠) − 𝑔

2
(𝑡)] d𝑠, (106)

[𝑄
3
(𝑔

31
, 𝑔

32
)] (𝑡) := [𝑄

2
K (𝑔

31
, 𝑔

32
)] (𝑡) , (107)

[𝑄
4
(𝑔

4
, 𝑦)] (𝑡) := [𝑄

2
(𝑔

4
𝑦)] (𝑡) , (108)

[𝑄
5
𝑔
5
] (𝑡) := [e𝑡𝐴 − 𝐼] 𝑔

5 (𝑡) , (109)

[𝑄
6
(𝑔

61
, 𝑔

62
)] (𝑡) := [𝑄

5
K (𝑔

61
, 𝑔

62
)] (𝑡) , (110)

with 𝑔
4
𝑦 being the function from [0, 𝑇] to 𝑌

𝑝

𝛾
defined by

(𝑔
4
𝑦)(𝑡) = 𝑔

4
(𝑡)𝑦. We will find conditions on 𝛿

𝑗
, 𝛿

𝑙𝑘
, 𝛿

4
, 𝛾 ∈

(0, 1), 𝑗 = 1, 2, 5, 𝑙 = 3, 6, 𝑘 = 1, 2, in order that 𝑄
𝑗
𝑔
𝑗
∈ 𝐶

𝜏𝑗

([0,𝑇];𝑋), 𝑄
𝑙
(𝑔

𝑙1
, 𝑔

𝑙2
) ∈ 𝐶

𝜏𝑙([0, 𝑇]; 𝑋) and 𝑄
4
(𝑔

4
, 𝑦) ∈ 𝐶

𝜏4

([0,𝑇];𝑋) for opportunely chosen 𝜏
𝑗
,𝜏
𝑙
,𝜏
4
∈ (0, 1).We empha-

size of the presence of the increment 𝑔
2
(𝑠) − 𝑔

2
(𝑡) inside the

integral defining 𝑄
2
𝑔
2
. As we will see, and differently from

𝑄
1
, it is just this presence which makes 𝑄

2
𝑔
2
well-defined

for smooth enough functions 𝑔
2
. This is the reason why the

operator𝑄
2
as it was defined in [20, formula (4.12)] canmake

no sense and has to be replaced with that defined by the
present (106) (cf. the appendix below). We begin our analysis
on the 𝑄

𝑗
’s with the following result proven in [20, Lemma

4.1]. Sincewewill need it later, here, removing somemisprints
in [20], we report its short proof for the reader’s convenience.

Lemma 22. Let 𝛼 + 𝛽 > 1 in (H1). Then, for every 𝛿
1
∈ (0,

(𝛼 + 𝛽 − 1)/𝛼), the operator 𝑄
1
defined by (105) maps 𝐶𝛿1

([0, 𝑇]; 𝑋) into 𝐶𝛿1
0
([0, 𝑇]; 𝑋), and for every 𝑡 ∈ [0, 𝑇] satisfies

the following estimate, where 𝑝 ∈ (𝛼/(𝛼 + 𝛽 − 1 − 𝛼𝛿
1
),∞) as

follows:

𝑄1
𝑔
1

𝛿1,0,𝑡;𝑋
≤ 𝐶

1 (𝑡) (∫

𝑡

0

𝑔1


𝑝

𝛿1,0,𝑠;𝑋
ds)

1/𝑝

. (111)

Here 𝐶
1
(𝑡) is a nondecreasing function of 𝑡 depending also on

𝛼, 𝛽, 𝛿
1
, and 𝑝.
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Proof. Let 𝑔
1
∈ 𝐶

𝛿1([0, 𝑇]; 𝑋), 𝛿
1
∈ (0, (𝛼 + 𝛽 − 1)/𝛼), and 𝑡 ∈

[0, 𝑇]. From (14) and the Hölder inequality with 𝑝 ∈ (𝛼/(𝛼 +

𝛽 − 1 − 𝛼𝛿
1
),∞) ⊊ (1,∞), for any 𝜏 ∈ [0, 𝑡], we deduce that

[𝑄1
𝑔
1
] (𝜏)

𝑋

≤ 𝑐
𝛼,𝛽,0

∫

𝜏

0

(𝜏 − 𝑠)
(𝛽−1)/𝛼𝑔1

0,0,𝑠;𝑋
d𝑠

≤ 𝑐
31
𝜏
[𝛼−(1−𝛽)𝑝


]/(𝛼𝑝

)
(∫

𝜏

0

𝑔1


𝑝

𝛿1,0,𝑠;𝑋
d𝑠)

1/𝑝

≤ 𝑐
31
𝜏
[𝛼−(1+𝛼𝛿1−𝛽)𝑝


]/(𝛼𝑝

)
𝜏
𝛿1(∫

𝜏

0

𝑔1


𝑝

𝛿1,0,𝑠;𝑋
d𝑠)

1/𝑝

,

(112)

where 𝑐
31
= 𝑐

𝛼,𝛽,0
𝛼
1/𝑝


[𝛼−(1−𝛽)𝑝

]
−1/𝑝


. Here 𝛼−(1+𝛼𝛿
1
−𝛽)

𝑝

> 0, since 𝑝 ∈ (1, 𝛼/(1 + 𝛼𝛿

1
− 𝛽)). For 1 − 1/𝑝 > 1 − (𝛼 +

𝛽 − 1 − 𝛼𝛿
1
)/𝛼 = (1 + 𝛼𝛿

1
− 𝛽)/𝛼. passing to the supremum

with respect to 𝜏 ∈ [0, 𝑡] in (112) we thus find

𝑄1
𝑔
1

0,0,𝑡;𝑋

≤ 𝑐
31
𝑡
[𝛼−(1+𝛼𝛿1−𝛽)𝑝


]/(𝛼𝑝

)
𝑡
𝛿1(∫

𝑡

0

𝑔1


𝑝

𝛿1,0,𝑠;𝑋
d𝑠)

1/𝑝

.

(113)

Now let (since [𝑄
1
𝑔
1
](0) = 0, the case 𝑡

1
= 0 follows from

(112) with 𝜏 = 𝑡
2
) 0 < 𝑡

1
< 𝑡

2
≤ 𝑡. The change of variable

𝑡 − 𝑠 = 𝑟 in (105) leads us to [𝑄
1
𝑔
1
](𝑡

2
) − [𝑄

1
𝑔
1
](𝑡

1
) = ∑

2

𝑘=1

𝐼
𝑘;𝑡1 ,𝑡2,𝑔1

, where 𝐼
1;𝑡1,𝑡2 ,𝑔1

:= ∫
𝑡2

𝑡1

e𝑟𝐴𝑔
1
(𝑡
2
− 𝑟) d𝑟 and 𝐼

2;𝑡1 ,𝑡2,𝑔1
:=

∫
𝑡1

0
e𝑟𝐴[𝑔

1
(𝑡
2
− 𝑟) − 𝑔

1
(𝑡
1
− 𝑟)] d𝑟. Reasoning as in (112) and

using the inequality 𝑡𝜇
2
− 𝑡

𝜇

1
≤ (𝑡

2
− 𝑡

1
)
𝜇, 𝜇 ∈ (0, 1], we get


𝐼
1;𝑡1,𝑡2 ,𝑔1

𝑋

≤ 𝑐
31
(𝑡
2
− 𝑡

1
)
[𝛼−(1−𝛽)𝑝


]/(𝛼𝑝

)
(∫

𝑡2

𝑡1

𝑔1


𝑝

𝛿1 ,0,𝑡2−𝑟;𝑋
d𝑟)

1/𝑝

≤ 𝑐
31
𝑡
[𝛼−(1+𝛼𝛿1−𝛽)𝑝


]/(𝛼𝑝

)

2
(𝑡
2
− 𝑡

1
)
𝛿1
(∫

𝑡

0

𝑔1


𝑝

𝛿1,0,𝑡−𝑟;𝑋
d𝑟)

1/𝑝

.

(114)

Similarly, but taking advantage from 𝑔
1
∈ 𝐶

𝛿1([0, 𝑇]; 𝑋), we
obtain


𝐼
2;𝑡1 ,𝑡2,𝑔1

𝑋

≤ 𝑐
𝛼,𝛽,0

(𝑡
2
− 𝑡

1
)
𝛿1
∫

𝑡1

0

𝑟
(𝛽−1)/𝛼𝑔1

𝛿1 ,0,𝑡2−𝑟;𝑋
d𝑟

≤𝑐
31
𝑡
[𝛼−(1+𝛼𝛿1−𝛽)𝑝


]/(𝛼𝑝

)

1
𝑡
𝛿1

1
(𝑡
2
− 𝑡

1
)
𝛿1
(∫

𝑡

0

𝑔1


𝑝

𝛿1,0,𝑡−𝑟;𝑋
d𝑟)

1/𝑝

.

(115)

Thus, letting 𝑐
1
(𝑡) = 𝑐

31
𝑡
[𝛼−(1+𝛼𝛿1−𝛽)𝑝


]/(𝛼𝑝

) from (114) and

(115) it follows that

[𝑄1
𝑔
1
] (𝑡

2
) − [𝑄

1
𝑔
1
] (𝑡

1
)
𝑋

≤ 𝑐
1
(𝑡) (𝑡

𝛿1 + 1) (𝑡
2
− 𝑡

1
)
𝛿1
(∫

𝑡

0

𝑔1


𝑝

𝛿1,0,𝑡−𝑟;𝑋
d𝑟)

1/𝑝

.

(116)

Finally, summing up (113) and (116) and using ∫𝑡
0
‖𝑔

1
‖
𝑝

𝛿1,0,𝑡−𝑟;𝑋

d𝑟 = ∫
𝑡

0
‖𝑔

1
‖
𝑝

𝛿1,0,𝑠;𝑋
d𝑠, we derive (111) with 𝐶

1
(𝑡) = 𝑐

1
(𝑡)(2𝑡

𝛿1 +

1). This completes the proof.

Remark 23. We stress that if we renounce to its Hölder
regularity, then for 𝑄

1
𝑔
1
to be well-defined it suffices that 𝛼

and𝛽 are as in Lemma 22 and that𝑔
1
ismerely in𝐶([0, 𝑇]; 𝑋).

In fact (see the last part of the proof of Corollary 14,
replacing there 𝑥 with 𝑔

1
(𝑠)), ‖[𝑄

1
𝑔
1
](𝑡)‖

𝑋
≤ 𝛼(𝛼 + 𝛽 −

1)
−1
𝑐
𝛼,𝛽,0

‖𝑔
1
‖
0,0,𝑡;𝑋

𝑡
(𝛼+𝛽−1)/𝛼, 𝑡 ∈ [0, 𝑇].

Lemma 24. Let 3𝛼 + 𝛽 > 3 in (H1). Then, for every 𝛿
2
∈

((3 − 2𝛼 − 𝛽)/𝛼, 1), the operator 𝑄
2
defined by (106) maps

𝐶
𝛿2([0, 𝑇]; 𝑋) into 𝐶]2

0
([0, 𝑇]; 𝑋), ]

2
= (𝛼𝛿

2
+ 2𝛼 + 𝛽 − 3)/𝛼 ∈

(0, 𝛿
2
], and for every 𝑡 ∈ [0, 𝑇] it satisfies the following estimate:

𝑄2
𝑔
2

]2,0,𝑡;𝑋
≤ 𝐶

2
(𝑡)

𝑔2
𝛿2,0,𝑡;𝑋

. (117)

Here 𝐶
2
(𝑡) is a nondecreasing function of 𝑡 depending also on

𝛼, 𝛽, and 𝛿
2
.

Proof. Denote by 𝛼 the number (1 −𝛼)/𝛼. In particular, since
3𝛼 + 𝛽 > 3 implies 𝛼 ∈ (2/3, 1], we have 𝛼 ∈ [0, 1/2). Let
𝑡 ∈ [0, 𝑇], 𝑔

2
∈ 𝐶

𝛿2([0, 𝑇]; 𝑋), 𝛿
2
∈ ((3 − 2𝛼 − 𝛽)/𝛼, 1), and

]
2
= (𝛼𝛿

2
+ 2𝛼 + 𝛽 − 3)/𝛼 ∈ (0, 𝛿

2
]. We notice that (𝛼𝛿

2
+ 𝛽 −

2)/𝛼 = ]
2
+ 𝛼 − 1 and (𝛼𝛿

2
+ 𝛽 − 3)/𝛼 = ]

2
− 2. Then, using

(14) with 𝜃 = 1, for every 𝜏 ∈ [0, 𝑡] we obtain

[𝑄2
𝑔
2
] (𝜏)

𝑋

≤ 𝑐
𝛼,𝛽,1

𝑔2
𝛿2,0,𝜏;𝑋

∫

𝜏

0

(𝜏 − 𝑠)
(𝛼𝛿2+𝛽−2)/𝛼d𝑠

= 𝑐
32

𝑔2
𝛿2,0,𝜏;𝑋

𝜏
]2+𝛼,

(118)

where 𝑐
32
= 𝑐

𝛼,𝛽,1
(]
2
+ 𝛼)

−1. Hence

𝑄2
𝑔
2

0,0,𝑡;𝑋
≤ 𝑐

32

𝑔2
𝛿2,0,𝑡;𝑋

𝑡
]2+𝛼. (119)

Now let (since [𝑄
2
𝑔
2
](0) = 0, the case 𝑡

1
= 0 follows

from (118) with 𝜏 = 𝑡
2
) 0 < 𝑡

1
< 𝑡

2
≤ 𝑡. We have
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[𝑄
2
𝑔
2
](𝑡

2
) − [𝑄

2
𝑔
2
](𝑡

1
) = ∑

3

𝑘=1
𝐽
𝑘;𝑡1 ,𝑡2 ,𝑔2

, where for a function
𝑔 : [0, 𝑇] → 𝑋 we set

𝐽
1;𝑡1 ,𝑡2,𝑔

:= ∫

𝑡1

0

{[(−𝐴)
1
]
∘

e(𝑡2−𝑠)𝐴 − [(−𝐴)1]
∘

e(𝑡1−𝑠)𝐴}

× [𝑔 (𝑠) − 𝑔 (𝑡
1
)] d𝑠,

𝐽
2;𝑡1 ,𝑡2,𝑔

:= ∫

𝑡1

0

[(−𝐴)
1
]
∘

e(𝑡2−𝑠)𝐴 [𝑔 (𝑡
1
) − 𝑔 (𝑡

2
)] d𝑠,

𝐽
3;𝑡1 ,𝑡2,𝑔

:= ∫

𝑡2

𝑡1

[(−𝐴)
1
]
∘

e(𝑡2−𝑠)𝐴 [𝑔 (𝑠) − 𝑔 (𝑡2)] d𝑠.

(120)

First, using (13) with (𝑠, 𝑡, 𝜃) = (𝑡
1
−𝑠, 𝑡

2
−𝑠, 1), 𝑠 ∈ (0, 𝑡

1
), and

(14) with 𝜃 = 2, and letting (𝑐
33
, 𝑐
34
) = (𝑐

𝛼,𝛽,2
(1−]

2
)
−1
, 𝑐
33
]−1
2
),

we get


𝐽
1;𝑡1 ,𝑡2 ,𝑔2

𝑋

≤ 𝑐
𝛼,𝛽,2

𝑔2
𝛿2,0,𝑡1 ;𝑋

∫

𝑡1

0

[∫

𝑡2−𝑠

𝑡1−𝑠

𝜉
(𝛽−3)/𝛼d𝜉] (𝑡

1
− 𝑠)

𝛿2d𝑠

≤ 𝑐
𝛼,𝛽,2

𝑔2
𝛿2,0,𝑡1 ;𝑋

∫

𝑡1

0

[∫

𝑡2−𝑠

𝑡1−𝑠

𝜉
(𝛼𝛿2+𝛽−3)/𝛼d𝜉] d𝑠

= 𝑐
33

𝑔2
𝛿2 ,0,𝑡1;𝑋

∫

𝑡1

0

[(𝑡
1
− 𝑠)

]2−1
− (𝑡

2
− 𝑠)

]2−1
] d𝑠

= 𝑐
34

𝑔2
𝛿2 ,0,𝑡1;𝑋

[𝑡
]2
1
+ (𝑡

2
− 𝑡

1
)
]2
− 𝑡

]2
2
]

≤ 𝑐
34

𝑔2
𝛿2 ,0,𝑡2;𝑋

(𝑡
2
− 𝑡

1
)
]2
.

(121)

Let us turn to 𝐽
2;𝑡1 ,𝑡2,𝑔2

. We first observe that the integral
∫
𝑡1

0
[(−𝐴)

1
]
∘e(𝑡2−𝑠)𝐴d𝑠 is convergent. For, ‖ ∫𝑡1

0
[(−𝐴)

1
]
∘e(𝑡2−𝑠)𝐴

d𝑠‖
𝑋
≤ 𝑐

𝛼,𝛽,1
∫
𝑡1

0
(𝑡
2
− 𝑠)

(𝛽−2)/𝛼d𝑠 ≤ 𝐶
𝛼,𝛽,𝑡1 ,𝑡2

, where 𝐶
𝛼,𝛽,𝑡1 ,𝑡2

is
equal to 𝑐

𝛼,𝛽,1
ln[𝑡

2
(𝑡
2
− 𝑡

1
)
−1
] if 𝛽 = 1 and to 𝛼(2 − 𝛼 − 𝛽)−1

𝑐
𝛼,𝛽,1

[(𝑡
2
− 𝑡

1
)
(𝛼+𝛽−2)/𝛼

− 𝑡
(𝛼+𝛽−2)/𝛼

2
] if 𝛽 ∈ (0, 1). Thus, we

may rewrite it as −∫𝑡2−𝑡1
𝑡2

[(−𝐴)
1
]
∘e𝑟𝐴d𝑟 = ∫

𝑡2−𝑡1

𝑡2

𝐷
𝑟
e𝑟𝐴d𝑟 =

e(𝑡2−𝑡1)𝐴 − e𝑡2𝐴. Consequently,


𝐽
2;𝑡1 ,𝑡2,𝑔2

𝑋

≤ 𝑐
𝛼,𝛽,0

[(𝑡
2
− 𝑡

1
)
(𝛽−1)/𝛼

+ 𝑡
(𝛽−1)/𝛼

2
]
𝑔2

𝛿2 ,0,𝑡2;𝑋
(𝑡
2
− 𝑡

1
)
𝛿2

≤ 𝑐
𝛼,𝛽,0

{1 + [𝑡
2
(𝑡
2
− 𝑡

1
)
−1
]
(𝛽−1)/𝛼

}

×
𝑔2

𝛿2,0,𝑡2;𝑋
(𝑡
2
− 𝑡

1
)
(𝛼𝛿2+𝛽−1)/𝛼

≤ 2𝑐
𝛼,𝛽,0

𝑔2
𝛿2,0,𝑡2;𝑋

(𝑡
2
− 𝑡

1
)
]2+2𝛼

,

(122)

where we have used [𝑡
2
(𝑡
2
− 𝑡

1
)
−1
]
(𝛽−1)/𝛼

≤ 1 and (𝛼𝛿
2
+

𝛽 − 1)/𝛼 = ]
2
+ 2𝛼. As far as 𝐽

3;𝑡1 ,𝑡2 ,𝑔2
is concerned, instead,

reasoning as in the derivation of (118) we find


𝐽
3;𝑡1 ,𝑡2,𝑔2

𝑋
≤ 𝑐

𝛼,𝛽,1

𝑔2
𝛿2,0,𝑡2 ;𝑋

∫

𝑡2

𝑡1

(𝑡
2
− 𝑠)

]2+𝛼−1d𝑠

= 𝑐
32

𝑔2
𝛿2,0,𝑡2;𝑋

(𝑡
2
− 𝑡

1
)
]2+𝛼

.

(123)

Then, summing up (121)–(123) and letting 𝑐
2
(𝑡) = 𝑐

34
+

2𝑐
𝛼,𝛽,0

𝑡
2𝛼
+ 𝑐

32
𝑡
𝛼, we obtain

[𝑄2
𝑔
2
] (𝑡

2
) − [𝑄

2
𝑔
2
] (𝑡

1
)
𝑋

≤

3

∑

𝑘=1


𝐽
𝑘;𝑡1 ,𝑡2 ,𝑔2

𝑋

≤ 𝑐
2
(𝑡)

𝑔2
𝛿2 ,0,𝑡;𝑋

(𝑡
2
− 𝑡

1
)
]2
.

(124)

Finally, (119) and (124) yield (117) with𝐶
2
(𝑡) = 𝑐

32
𝑡
]2+𝛼 +𝑐

2
(𝑡).

Remark 25. In particular, Lemma 24 establishes that, with the
exception of the case 𝛽 = 1 in which ]

2
= 𝛿

2
, 𝑄

2
produces a

loss of regularity equal to 𝛿
2
− ]

2
= (3 − 2𝛼 − 𝛽)/𝛼.

As Corollary 14, the next result will be needed to prove
the equivalence between problem (170) and the fixed-point
equation (179). From now on, if 𝐴−1

∈ L(𝑋) and 𝑔 ∈

𝐶
𝛿
([0, 𝑇]; 𝑋), 𝛿 ∈ [0, 1), with 𝐴

−1
𝑔 we will always mean

the function in 𝐶
𝛿
([0, 𝑇];D(𝐴)) defined by (𝐴

−1
𝑔)(𝑡) =

𝐴
−1
(𝑔(𝑡)). Notice that ‖𝐴−1

𝑔‖
𝛿,0,𝑡;D(𝐴) ≤ ‖𝑔‖

𝛿,0,𝑡;𝑋
, 𝑡 ∈ [0, 𝑇].

Corollary 26.

(i) Let 2𝛼 + 𝛽 > 2 in (H1). Then, for every 𝑔 ∈ 𝐶
𝛿

([0, 𝑇]; 𝑋), 𝛿 ∈ ((2 − 𝛼 − 𝛽)/𝛼, 1),

𝐴
−1
[𝑄

2
𝑔] (𝑡) = −∫

𝑡

0

e(𝑡−𝑠)𝐴 [𝑔 (𝑠) − 𝑔 (𝑡)] ds, t ∈ [0,T] .

(125)

(ii) Let 𝛼 + 𝛽 > 1 in (H1). Then, for every 𝑔 ∈ 𝐶([0, 𝑇]; 𝑋)

[𝑄
2
(𝐴

−1
𝑔)] (𝑡) = −∫

𝑡

0

e(𝑡−𝑠)𝐴 [𝑔 (𝑠) − 𝑔 (𝑡)] ds, t ∈ [0,T] .

(126)

Proof. Of course, it suffices to assume that 𝑡 ∈ (0, 𝑇]. Let us
first prove (i). So, let 2𝛼 + 𝛽 > 2, 𝑔 ∈ 𝐶

𝛿
([0, 𝑇]; 𝑋), 𝛿 ∈ ((2 −

𝛼 − 𝛽)/𝛼, 1), and 𝑡 ∈ (0, 𝑇], and we observe that both sides of
(125) are well defined. Indeed, replacing the pair (𝑔

2
, 𝛿

2
) with

(𝑔, 𝛿), from (118) we get

[𝑄2
𝑔] (𝑡)

𝑋

≤ 𝑐
𝛼,𝛽,1

𝛼(𝛼𝛿 + 𝛼 + 𝛽 − 2)
−1𝑔

𝛿,0,𝑡;𝑋
𝑡
(𝛼𝛿+𝛼+𝛽−2)/𝛼

.

(127)
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On the other side, 𝐼
𝑡,𝑔

= ∫
𝑡

0
e(𝑡−𝑠)𝐴[𝑔(𝑠) − 𝑔(𝑡)]d𝑠 satisfies


𝐼
𝑡,𝑔

𝑋
≤ 𝑐

𝛼,𝛽,0

𝑔
𝛿,0,𝑡;𝑋

∫

𝑡

0

(𝑡 − 𝑠)
(𝛼𝛿+𝛽−1)/𝛼d𝑠

≤ 𝑐
35

𝑔
𝛿,0,𝑡;𝑋

𝑡
(𝛼+𝛼𝛿+𝛽−1)/𝛼

,

(128)

where 𝑐
35

= 𝛼(𝛼𝛿 + 𝛼 + 𝛽 − 1)
−1
𝑐
𝛼,𝛽,0

. Then, commuting
𝐴
−1

∈ L(𝑋) with the integral signs, using (80) with 𝜃 = 1,
and taking into account (7), we find

𝐴
−1
[𝑄

2
𝑔
2
] (𝑡)

= 𝐴
−1
∫

𝑡

0

[−
1

2𝜋𝑖
∫
Γ

e(𝑡−𝑠)𝜆𝐴∘
(𝜆𝐼 − 𝐴)

−1d𝜆][𝑔
2 (𝑠) − 𝑔2 (𝑡)] d𝑠

=−∫

𝑡

0

[
1

2𝜋𝑖
∫
Γ

e(𝑡−𝑠)𝜆𝐴−1
𝐴
∘
(𝜆𝐼 − 𝐴)

−1d𝜆] [𝑔
2
(𝑠)−𝑔

2
(𝑡)] d𝑠

= −∫

𝑡

0

[
1

2𝜋𝑖
∫
Γ

e(𝑡−𝑠)𝜆(𝜆𝐼 − 𝐴)−1d𝜆] [𝑔2 (𝑠) − 𝑔2 (𝑡)] d𝑠.

(129)

Since (2𝜋𝑖)−1 ∫
Γ
e(𝑡−𝑠)𝜆(𝜆𝐼 − 𝐴)

−1d𝜆 = e(𝑡−𝑠)𝐴, the proof of
(125) is complete. We now prove (ii). Let 𝛼 + 𝛽 > 1, 𝑔 ∈

𝐶([0, 𝑇]; 𝑋) and 𝑡 ∈ (0, 𝑇]. Then, for every 𝛾 ∈ (2 − 𝛼 − 𝛽, 1),
the same reasonings made to derive (88), except for replacing
𝑥 with g(𝑠) − 𝑔(𝑡), yield


[𝑄

2
(𝐴

−1
𝑔)] (𝑡)

𝑋

≤ 2𝑐
22
𝑐
𝛼,𝛽,𝛾

𝑐
0


𝐴
−1

1−𝛾

L(𝑋)

𝑔
0,0,𝑡;𝑋

𝑡
(𝛼+𝛽+𝛾−2)/𝛼

.

(130)

Hence, [𝑄
2
(𝐴

−1
𝑔)](𝑡) being meaningful, we obtain (126)

simply applying to it formula (89) with 𝜁 = 1 and then using
[(−𝐴)

0
]
∘e(𝑡−𝑠)𝐴 = e(𝑡−𝑠)𝐴, 𝑠 ∈ (0, 𝑡). In particular, a better

estimate than (130) holds. For, [𝑄
2
(𝐴

−1
𝑔)](𝑡) = − ∫

𝑡

0
e(𝑡−𝑠)𝐴

[𝑔(𝑠) − 𝑔(𝑡)]d𝑠 satisfies


[𝑄

2
(𝐴

−1
𝑔)] (𝑡)

𝑋
≤ 2𝑐

𝛼,𝛽,0

𝑔
0,0,𝑡;𝑋

∫

𝑡

0

(𝑡 − 𝑠)
(𝛽−1)/𝛼d𝑠

≤ 2𝑐
36

𝑔
0,0,𝑡;𝑋

𝑡
(𝛼+𝛽−1)/𝛼

,

(131)

where 𝑐
36
= 𝛼(𝛼 + 𝛽 − 1)

−1
𝑐
𝛼,𝛽,0

. The proof is complete.

Let us now examine the operator 𝑄
3
defined by (107). To

this purpose we need the following result which is proved in
[20, Corollary 3.2].

Lemma 27. Let 𝛿
3𝑘

∈ (0, 1), 𝑘 = 1, 2, be such that 𝜎
3
=

𝛿
31
+ 𝛿

32
∈ (0, 1/𝑝


), 𝑝 ∈ (1/(1 − 𝛿

31
),∞). Then the convolu-

tion operator K defined by (104) maps 𝐶𝛿31 ([0, 𝑇]; 𝑋
1
) ×

𝐶
𝛿32 ([0, 𝑇]; 𝑋

2
) into 𝐶𝜎3

0
([0, 𝑇]; 𝑋), and for every 𝑡 ∈ [0, 𝑇]

satisfies the following estimate:


K(𝑔

31
, 𝑔

32
)
𝜎3 ,0,𝑡;𝑋

≤ 𝑡
−𝜎3+1/𝑝



𝑐
3
(𝑡)


𝑔
31

𝛿31 ,0,𝑡;𝑋1
(∫

𝑡

0


𝑔
32



𝑝

𝛿32
,0,𝑠;𝑋2

ds)
1/𝑝

.

(132)

Here 𝑐
3
(𝑡) is a nondecreasing function of 𝑡 depending also on 𝛿

31

and 𝛿
32
. Further, in the cases 𝛿

31
∈ (0, 1), 𝛿

32
= 0, and 𝛿

31
=

𝛿
32
= 0, the following estimates hold, respectively, as follows:


K (𝑔

31
, 𝑔

32
)
𝛿31 ,0,𝑡;𝑋

≤ 𝐶
0
𝑡
1−𝛿31 (1 + 𝑡

𝛿31 )

𝑔
31

𝛿31 ,0,𝑡;𝑋1


𝑔
32

0,0,𝑡;𝑋2
,


K (𝑔

31
, 𝑔

32
)
0,0,𝑡;𝑋

≤ 𝐶
0
𝑡

𝑔
31

0,0,𝑡;𝑋1


𝑔
32

0,0,𝑡;𝑋2
.

(133)

From Lemmas 24 and 27 we obtain the following
Lemma 28.

Lemma 28. Let 𝛼 and 𝛽 be as in Lemma 24. Then, for every
𝛿
31
∈ ((3 − 2𝛼 − 𝛽)/𝛼, 1) and 𝛿

32
∈ (0, 1) such that 𝜎

3
= 𝛿

31
+

𝛿
32
∈ ((3−2𝛼−𝛽)/𝛼, 1/𝑝


), 𝑝 ∈ (1/(1−𝛿

31
),∞), the operator

𝑄
3
defined by (107) maps 𝐶𝛿31 ([0, 𝑇]; 𝑋

1
) × 𝐶

𝛿32 ([0, 𝑇]; 𝑋
2
)

into 𝐶]3
0
([0, 𝑇]; 𝑋), ]

3
= (𝛼𝜎

3
+ 2𝛼 + 𝛽 − 3)/𝛼, and for every

𝑡 ∈ [0, 𝑇] satisfies the following estimate:


𝑄
3
(𝑔

31
, 𝑔

32
)
]3 ,0,𝑡;𝑋

≤ t−𝜎3+1/𝑝


𝐶
2 (𝑡) 𝑐3 (𝑡)


𝑔
31

𝛿31 ,0,𝑡;𝑋1
(∫

𝑡

0


𝑔
32



𝑝

𝛿32
,0,𝑠;𝑋2

ds)
1/𝑝

.

(134)

Proof. First, if 𝛿
31

∈ ((3 − 2𝛼 − 𝛽)/𝛼, 1) and
𝑝 ∈ (1/(1 − 𝛿

31
),∞), then 1/𝑝


∈ (𝛿

31
, 1) ⊊ ((3 − 2𝛼 −

𝛽)/𝛼, 1). Consequently, the assumption 𝜎
3
= 𝛿

31
+ 𝛿

32
∈ ((3 −

2𝛼 − 𝛽)/𝛼, 1/𝑝

), 𝛿

32
∈ (0, 1), makes sense. Now, Lemma 27

yields K(𝑔
31
, 𝑔

32
) ∈ 𝐶

𝜎3

0
([0, 𝑇]; 𝑋) for any pair (𝑔

31
, 𝑔

32
) ∈

𝐶
𝛿31 ([0, 𝑇]; 𝑋

1
) × 𝐶

𝛿32 ([0, 𝑇]; 𝑋
2
). Then, recalling that

𝑄
3
(𝑔

31
, 𝑔

32
) = 𝑄

2
K(𝑔

31
, 𝑔

32
), the assertion follows from

Lemma 24, with 𝛿
2

and 𝑔
2

being replaced by 𝜎
3

and
K(𝑔

31
, 𝑔

32
), respectively. Finally, (134) follows from (117) and

(132).

We can now restore the loss of regularity produced by𝑄
2
.

Proposition 29. Let 5𝛼 + 2𝛽 > 6 in (H1). Then, for every
𝛿
3
∈ ((3 − 2𝛼 − 𝛽)/𝛼, 1/2), the operator 𝑄

3
defined by (107)

maps 𝐶𝛿3([0, 𝑇]; 𝑋
1
) ×𝐶

𝛿3([0, 𝑇]; 𝑋
2
) into 𝐶𝛿3

0
([0, 𝑇]; 𝑋), and
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for every 𝑡 ∈ [0, 𝑇] satisfies the following estimate, where 𝑝 ∈

(1/(1−2𝛿
3
),∞) and𝐶

3
(𝑡) = 𝐶

2
(𝑡)𝑐

3
(𝑡)max{1, 𝑡(𝛼𝛿3+2𝛼+𝛽−3)/𝛼}:


𝑄
3
(𝑔

31
, 𝑔

32
)
𝛿3 ,0,𝑡;𝑋

≤ 𝑡
1−2𝛿3−1/𝑝𝐶

3
(𝑡)


𝑔
31

𝛿3,0,𝑡;𝑋1
(∫

𝑡

0


𝑔
32



𝑝

𝛿3 ,0,𝑠;𝑋2

ds)
1/𝑝

.

(135)
Proof. Let 𝛿

3
∈ ((3 − 2𝛼 − 𝛽)/𝛼, 1/2) and let 𝑝 ∈ (1/(1 −

2𝛿
3
),∞) ⊊ (1/(1 − 𝛿

3
),∞). Then, 2𝛿

3
∈ ((6 − 4𝛼 −

2𝛽)/𝛼, 1/𝑝

) ⊆ ((3 − 2𝛼−𝛽)/𝛼, 1/𝑝


). We are thus in position

to apply Lemma 28 with 𝛿
31

= 𝛿
32

= 𝛿
3
from which we

deduce that 𝑄
3
maps 𝐶𝛿3([0, 𝑇]; 𝑋

1
) × 𝐶

𝛿3([0, 𝑇]; 𝑋
2
) into

𝐶
]3
0
([0, 𝑇]; 𝑋), ]

3
= (2𝛼𝛿

3
+ 2𝛼 + 𝛽 − 3)/𝛼. But, since our

choice for 𝛿
3
implies ]

3
> 𝛿

3
, we a fortiori have the fact that

𝑄
3
maps 𝐶𝛿3([0, 𝑇]; 𝑋

1
) × 𝐶

𝛿3([0, 𝑇]; 𝑋
2
) into 𝐶𝛿3

0
([0, 𝑇]; 𝑋).

Finally, (135) follows from (134) and the estimate ‖𝑔‖
𝛾,0,𝑡;𝑋

≤

max{1, 𝑡𝛿−𝛾}‖𝑔‖
𝛿,0,𝑡;𝑋

, 𝑔 ∈ 𝐶𝛿([0, 𝑇]; 𝑋), 𝛿 ≥ 𝛾.

The next Lemma 30 concerns the operator𝑄
4
. Its proof is

similar to that of Lemma 24, but with the essential difference
that the presence of 𝑦 ∈ 𝑌

𝑝

𝛾
allows us to use estimate (79)

in place of (14). As a consequence and provided to choose 𝛾
large enough, we will achieve a better result in which any loss
of regularity is observed.

Lemma 30. Let 2𝛼 + 𝛽 > 2 in (H1) and 𝑟 ∈ [1,∞]. Then, for
every 𝛿

4
∈ (0, 1) and 𝛾 ∈ (3−2𝛼−𝛽, 1) the operator𝑄

4
defined

by (108) maps 𝐶𝛿4([0, 𝑇];C) × 𝑌
𝑟

𝛾
, 𝑌𝑟

𝛾
∈ {(𝑋,D(𝐴))

𝛾,𝑟
, 𝑋

𝛾,𝑟

𝐴
},

into 𝐶
𝛿4

0
([0, 𝑇]; 𝑋), and for every 𝑡 ∈ [0, 𝑇] satisfies the

following estimate:
𝑄4

(𝑔
4
, 𝑦)

𝛿4,0,𝑡;𝑋
≤ 𝐶

4
(𝑡) 𝑡

(2𝛼+𝛽+𝛾−3)/𝛼𝑔4
𝛿4,0,𝑡;C

𝑦
𝑌𝑟
𝛾

.

(136)
Here 𝐶

4
(𝑡) is a nondecreasing function of 𝑡 depending on 𝛼, 𝛽,

𝛿
4
, 𝛾 and 𝑟.

Proof. Let 𝑡 ∈ [0, 𝑇], 𝑔
4
∈ 𝐶

𝛿4([0, 𝑇];C), 𝛿
4
∈ (0, 1), and

𝑦 ∈ 𝑌
𝑟

𝛾
, 𝛾 ∈ (3 − 2𝛼 − 𝛽, 1), 𝑟 ∈ [1,∞]. As in the proof of

Lemma 24 we set 𝛼 = (1 − 𝛼)/𝛼 and we observe that, since
2𝛼 + 𝛽 > 2 implies 𝛼 ∈ (1/2, 1], here 𝛼 ∈ [0, 1). Furthermore,
we denote by 𝜎

𝛼,𝛽,𝛾
the number (2𝛼 + 𝛽 + 𝛾 − 3)/𝛼 ∈ (0, 1), so

that the exponents (𝛽 + 𝛾 − 2)/𝛼 and (𝛽 + 𝛾 − 3)/𝛼 appearing
in (79) with 𝜃 = 1 and 𝜃 = 2may be rewritten, as 𝜎

𝛼,𝛽,𝛾
+𝛼−1

and 𝜎
𝛼,𝛽,𝛾

− 2, respectively. Then, using (79) with 𝜃 = 1, we
obtain
[𝑄4

(𝑔
4
, 𝑦)] (𝜏)

𝑋

≤ 𝑐
22

𝑔4
𝛿4,0,𝜏;C

𝑦
𝑌𝑟
𝛾

∫

𝜏

0

(𝜏 − 𝑠)
𝛿4+𝜎𝛼,𝛽,𝛾+𝛼−1d𝑠

= 𝑐
37

𝑔4
𝛿4,0,𝜏;C

𝑦
𝑌𝑟
𝛾

𝜏
𝛿4+𝜎𝛼,𝛽,𝛾+𝛼, ∀𝜏 ∈ [0, 𝑡] ,

(137)

where 𝑐
37
= 𝑐

22
(𝛿
4
+𝜎

𝛼,𝛽,𝛾
+𝛼)

−1. Hence, taking the supremum
with respect to 𝜏 ∈ [0, 𝑡], one has

𝑄4
(𝑔

4
, 𝑦)

0,0,𝑡;𝑋
≤ 𝑐

37

𝑔4
𝛿4,0,𝑡;C

𝑦
𝑌𝑟
𝛾

𝑡
𝛿4+𝜎𝛼,𝛽,𝛾+𝛼. (138)

Now, let (since [𝑄
4
(𝑔

4
, 𝑦)](0) = 0, the case 𝑡

1
= 0 follows

from (137) with 𝜏 = 𝑡
2
) 0 < 𝑡

1
< 𝑡

2
≤ 𝑡. We have

[𝑄
4
(𝑔

4
, 𝑦)](𝑡

2
) − [𝑄

4
(𝑔

4
, 𝑦)](𝑡

1
) = ∑

3

𝑘=1
𝐽
𝑘;𝑡1 ,𝑡2,𝑔4𝑦

, the
𝐽
𝑘;𝑡1 ,𝑡2,𝑔

’s, 𝑔 : [0, 𝑇] → 𝑋, being as in (120). Using (13) with
(𝑠, 𝑡, 𝜃) = (𝑡

1
− 𝑠, 𝑡

2
− 𝑠, 1), 𝑠 ∈ (0, 𝑡

1
), and (79) with 𝜃 = 2, and

letting (𝑐
38
, 𝑐
39
) = (𝑐

22
(1 − 𝛿

4
)
−1
, 𝑐
38
𝛿
−1

4
), we get


𝐽
1;𝑡1 ,𝑡2,𝑔4𝑦

𝑋

≤ 𝑐
22

𝑔4
𝛿4,0,𝑡1 ;C

𝑦
𝑌𝑟
𝛾

× ∫

𝑡1

0

[∫

𝑡2−𝑠

𝑡1−𝑠

𝜉
𝜎𝛼,𝛽,𝛾−2d𝜉] (𝑡

1
− 𝑠)

𝛿4d𝑠

≤ 𝑐
22

𝑔4
𝛿4,0,𝑡1 ;C

𝑦
𝑌𝑟
𝛾

∫

𝑡1

0

[∫

𝑡2−𝑠

𝑡1−𝑠

𝜉
𝛿4+𝜎𝛼,𝛽,𝛾−2d𝜉] d𝑠

≤ 𝑐
22

𝑔4
𝛿4,0,𝑡1 ;C

𝑦
𝑌𝑟
𝛾

× ∫

𝑡1

0

(𝑡
2
− 𝑠)

𝜎𝛼,𝛽,𝛾
[∫

𝑡2−𝑠

𝑡1−𝑠

𝜉
𝛿4−2d𝜉] d𝑠

≤ 𝑐
38

𝑔4
𝛿4,0,𝑡2 ;C

𝑦
𝑌𝑟
𝛾

𝑡
𝜎𝛼,𝛽,𝛾

2

× ∫

𝑡1

0

[(𝑡
1
− 𝑠)

𝛿4−1
− (𝑡

2
− 𝑠)

𝛿4−1
] d𝑠

= 𝑐
39

𝑔4
𝛿4,0,𝑡2 ;C

𝑦
𝑌𝑟
𝛾

𝑡
𝜎𝛼,𝛽,𝛾

2
[𝑡
𝛿4

1
+ (𝑡

2
− 𝑡

1
)
𝛿4
− 𝑡

𝛿4

2
]

≤ 𝑐
39

𝑔4
𝛿4,0,𝑡2 ;C

𝑦
𝑌𝑟
𝛾

𝑡
𝜎𝛼,𝛽,𝛾

2
(𝑡
2
− 𝑡

1
)
𝛿4
.

(139)

Now, let us examine 𝐽
𝑘;𝑡1 ,𝑡2,𝑔4𝑦

, 𝑘 = 2, 3. First, using (79) with
𝜃 = 1, we find

𝐽
2;𝑡1 ,𝑡2,𝑔4𝑦

𝑋

≤ 𝑐
22

𝑔4
𝛿4,0,𝑡2;C

𝑦
𝑌𝑟
𝛾

[∫

𝑡1

0

(𝑡
2
− 𝑠)

𝜎𝛼,𝛽,𝛾+𝛼−1d𝑠] (𝑡
2
− 𝑡

1
)
𝛿4

= 𝑐
40

𝑔4
𝛿4,0,𝑡2;C

𝑦
𝑌𝑟
𝛾

[𝑡
𝜎𝛼,𝛽,𝛾+𝛼

2
− (𝑡

2
− 𝑡

1
)
𝜎𝛼,𝛽,𝛾+𝛼

] (𝑡
2
− 𝑡

1
)
𝛿4

≤ 𝑐
40

𝑔4
𝛿4,0,𝑡2;C

𝑦
𝑌𝑟
𝛾

𝑡
𝜎𝛼,𝛽,𝛾+𝛼

2
(𝑡
2
− 𝑡

1
)
𝛿4
.

(140)

Instead, the same computations made to derive (137) yield

𝐽
3;𝑡1 ,𝑡2 ,𝑔4𝑦

𝑋

≤ 𝑐
22

𝑔4
𝛿4,0,𝑡2;C

𝑦
𝑌𝑟
𝛾

∫

𝑡2

𝑡1

(𝑡
2
− 𝑠)

𝛿4+𝜎𝛼,𝛽,𝛾+𝛼−1d𝑠

= 𝑐
37

𝑔4
𝛿4,0,𝑡2;C

𝑦
𝑌𝑟
𝛾

(𝑡
2
− 𝑡

1
)
𝛿4+𝜎𝛼,𝛽,𝛾+𝛼

.

(141)

From (139)–(141) and ‖[𝑄
4
(𝑔

4
, 𝑦)](𝑡

2
) − [𝑄

4
(𝑔

4
, 𝑦)](𝑡

1
)‖
𝑋
≤

∑
3

𝑘=1
‖𝐽
𝑘;𝑡1 ,𝑡2 ,𝑔4𝑦

‖
𝑋
, it follows that

[𝑄4
(𝑔

4
, 𝑦)] (𝑡

2
) − [𝑄

4
(𝑔

4
, 𝑦)] (𝑡

1
)
𝑋

≤ 𝑐
4
(𝑡) 𝑡

𝜎𝛼,𝛽,𝛾 𝑔4
𝛿4,0,𝑡;C

𝑦
𝑌𝑟
𝛾

(𝑡
2
− 𝑡

1
)
𝛿4
,

(142)
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where 𝑐
4
(𝑡) = 𝑐

39
+(𝑐

37
+𝑐

40
)𝑡
𝛼. Finally, summing up (138) and

(142) we get (136) with 𝐶
4
(𝑡) = 𝑐

37
𝑡
𝛿4+𝛼 + 𝑐

4
(𝑡). The proof is

complete.

Remark 31. Notice that if 𝑌𝑟
𝛾
= 𝑋

𝛾,𝑟

𝐴
, then in order to be sure

that the conclusions of Lemma 30 hold with 𝑦 which really
belongs to some intermediate space between𝑋 andD(𝐴) we
have to choose 𝛾 ∈ (3 − 2𝛼 − 𝛽, 𝛽). This is possible, provided
that the stronger assumption 2𝛼 + 𝛽 > 3 − 𝛽 ≥ 2 is satisfied.
Otherwise, if 2𝛼+𝛽 ∈ (2, 3−𝛽],𝛽 < 1, then 𝛾 ∈ (3−2𝛼−𝛽, 1) ⊊
[𝛽, 1) and 𝑦may be contained inD(𝐴).

Finally, for the operator 𝑄
5
we have the following result.

Again a loss of regularity is exhibited, even though of an
amount smaller than that in Lemma 24 (cf. Remark 33).

Lemma 32. Let 2𝛼 + 𝛽 > 2 in (H1). Then, for every 𝛿
5
∈

((2 − 𝛼 − 𝛽)/𝛼, 1), the operator 𝑄
5
defined by (109) maps

𝐶
𝛿5

0
([0, 𝑇]; 𝑋) into 𝐶]5

0
([0, 𝑇]; 𝑋), ]

5
= (𝛼𝛿

5
+ 𝛼 + 𝛽 − 2)/𝛼 ∈

(0, 𝛿
5
], and for every 𝑡 ∈ [0, 𝑇] satisfies the following estimate:

𝑄5
𝑔
5

]5 ,0,𝑡;𝑋
≤ 𝐶

5 (𝑡)
𝑔5

𝛿5 ,0,𝑡;𝑋
. (143)

Here 𝐶
5
(𝑡) is a nondecreasing function of 𝑡 depending also on

𝛼, 𝛽, and 𝛿
5
.

Proof. Let 𝑔
5
∈ 𝐶

𝛿5

0
([0, 𝑇]; 𝑋), 𝛿

5
∈ ((2 − 𝛼 − 𝛽)/𝛼, 1), and

]
5
= (𝛼𝛿

5
+ 𝛼 + 𝛽 − 2)/𝛼 ∈ (0, 𝛿

5
]. We still let 𝛼 = (1 − 𝛼)/𝛼

and as in Lemma 30 we have 𝛼 ∈ [0, 1). Further, observe that
𝛿
5
+ (𝛽 − 1)/𝛼 = ]

5
+ 𝛼 ∈ (0, 𝛿

5
]. Let 𝑡 ∈ [0, 𝑇]. Then, using

(14) and 𝑔
5
(0) = 0, we get

𝑄5
𝑔
5

0,0,𝑡;𝑋

≤ sup
𝜏∈[0,𝑡]

[𝑐
𝛼,𝛽,0

𝜏
(𝛽−1)/𝛼

+ 1]
𝑔5

𝛿5,0,𝜏;𝑋
𝜏
𝛿5

≤ [𝑐
𝛼,𝛽,0

+ 𝑡
(1−𝛽)/𝛼

]
𝑔5

𝛿5 ,0,𝑡;𝑋
𝑡
]5+𝛼.

(144)

Now, let (since [𝑄
5
𝑔
5
](0) = 0, the case 𝑡

1
= 0 follows from

(144) and ‖[𝑄
5
𝑔
5
](𝑡

2
)‖
𝑋
≤ ‖𝑄

5
𝑔
5
‖
0,0,𝑡2;𝑋

) 0 < 𝑡
1
< 𝑡

2
≤ 𝑡. We

have [𝑄
5
𝑔
5
](𝑡

2
) − [𝑄

5
𝑔
5
](𝑡

1
) = ∑

3

𝑘=1
𝑈
𝑘;𝑡1 ,𝑡2,𝑔5

, where for a
function 𝑔 : [0, 𝑇] → 𝑋 we let

𝑈
1;𝑡1 ,𝑡2,𝑔

:= e𝑡2𝐴 [𝑔 (𝑡
2
) − 𝑔 (𝑡

1
)] ,

𝑈
2;𝑡1 ,𝑡2,𝑔

:= (e𝑡2𝐴 − e𝑡1𝐴) 𝑔 (𝑡
1
) ,

𝑈
3;𝑡1,𝑡2 ,𝑔

:= 𝑔 (𝑡
1
) − 𝑔 (𝑡

2
) .

(145)

First, since 𝑡(𝛽−1)/𝛼
2

≤ (𝑡
2
− 𝑡

1
)
(𝛽−1)/𝛼 for every 𝛽 ∈ (0, 1], we

deduce that


𝑈
1;𝑡1 ,𝑡2,𝑔5

𝑋
≤ 𝑐

𝛼,𝛽,0
𝑡
(𝛽−1)/𝛼

2

𝑔5
𝛿5,0,𝑡2 ;𝑋

(𝑡
2
− 𝑡

1
)
𝛿5

≤ 𝑐
𝛼,𝛽,0

𝑔5
𝛿5,0,𝑡2 ;𝑋

(𝑡
2
− 𝑡

1
)
]5+𝛼

.

(146)

As far as 𝑈
2;𝑡1 ,𝑡2,𝑔5

is concerned, instead, rewriting e𝑡2𝐴 − e𝑡1𝐴

as −∫𝑡2
𝑡1

[(−𝐴)
1
]
∘e𝑟𝐴d𝑟 and using both 𝑔

5
(0) = 0 and (𝛼𝛿

5
+

𝛽 − 2)/𝛼 = ]
5
− 1, it follows that


𝑈
2;𝑡1 ,𝑡2,𝑔5

𝑋
≤ 𝑐

𝛼,𝛽,1

𝑔5
𝛿5,0,𝑡1 ;𝑋

𝑡
𝛿5

1
∫

𝑡2

𝑡1

𝑟
(𝛽−2)/𝛼d𝑟

≤ 𝑐
𝛼,𝛽,1

𝑔5
𝛿5,0,𝑡1 ;𝑋

∫

𝑡2

𝑡1

𝑟
]5−1d𝑟

≤ 𝑐
𝛼,𝛽,1

]−1
5

𝑔5
𝛿5,0,𝑡1;𝑋

(𝑡
]5
2
− 𝑡

]5
1
)

≤ 𝑐
𝛼,𝛽,1

]−1
5

𝑔5
𝛿5,0,𝑡1;𝑋

(𝑡
2
− 𝑡

1
)
]5
.

(147)

Then, since ‖𝑈
3;𝑡1 ,𝑡2,𝑔5

‖
𝑋
≤ |𝑔

5
|
𝛿5 ,0,𝑡2;𝑋

(𝑡
2
− 𝑡

1
)
𝛿5 , from (146)

and (147) we find
[𝑄5

𝑔
5
] (𝑡

2
) − [𝑄

5
𝑔
5
] (𝑡

1
)
𝑋

≤

3

∑

𝑘=1


𝑈
𝑘;𝑡1 ,𝑡2 ,𝑔5

𝑋
≤ 𝑐

5 (𝑡)
𝑔5

𝛿5 ,0,𝑡;𝑋
(𝑡
2
− 𝑡

1
)
]5
,

(148)

where 𝑐
5
(𝑡) = 𝑐

𝛼,𝛽,0
𝑡
𝛼
+𝑐

𝛼,𝛽,1
]−1
5
+𝑡

𝛿5−]5 . Summing up (144) and
(148) we obtain (143) with𝐶

5
(𝑡) = [𝑐

𝛼,𝛽,0
+𝑡

(1−𝛽)/𝛼
]𝑡
]5+𝛼+𝑐

5
(𝑡).

This completes the proof.

Remark 33. Thus, with the exception of 𝛽 = 1,𝑄
5
produces a

loss of regularity equal to 𝛿
5
− ]

5
= (2 − 𝛼 − 𝛽)/𝛼 ≤ (3 − 2𝛼 −

𝛽)/𝛼. In this sense 𝑄
5
behaves better than 𝑄

2
.

Remark 34. Notice that, under the weaker assumptions 𝛼 +
𝛽 > 1 and 𝑔

5
∈ 𝐶([0, 𝑇]; 𝑋), (86) with 𝑥 = 𝑔

5
(𝑡), 𝑡 ∈ [0, 𝑇],

yields 𝐴−1
[𝑄

5
𝑔
5
](𝑡) = [𝑄

5
(𝐴

−1
𝑔
5
)](𝑡) = ∫

𝑡

0
e(𝑡−𝑠)𝐴𝑔

5
(𝑡)d𝑠.

Similarly as we have done in Proposition 29 for restoring
the loss of regularity produced by 𝑄

2
, we now show how

Lemma 27 allows to restore that produced by 𝑄
5
. We begin

with the following version of Lemma 28 relative to 𝑄
6
, and

which is obtained combining Lemma 27 with Lemma 32
instead of Lemma 24.

Lemma 35. Let 𝛼 and 𝛽 be as in Lemma 32. Then, for every
𝛿
61
∈ ((2−𝛼−𝛽)/𝛼, 1) and 𝛿

62
∈ (0, 1) such that𝜎

6
= 𝛿

61
+𝛿

62
∈

((2 − 𝛼 − 𝛽)/𝛼, 1/𝑝

), 𝑝 ∈ (1/(1 − 𝛿

61
),∞), the operator 𝑄

6

defined by (110) maps 𝐶𝛿61 ([0, 𝑇]; 𝑋
1
) × 𝐶

𝛿62 ([0, 𝑇]; 𝑋
2
) into

𝐶
]6
0
([0, 𝑇]; 𝑋), ]

6
= (𝛼𝜎

6
+𝛼+𝛽−2)/𝛼, and for every 𝑡 ∈ [0, 𝑇]

satisfies the following estimate:

𝑄
6
(𝑔

61
, 𝑔

62
)
]6,0,𝑡;𝑋

≤ 𝑡
−𝜎6+1/𝑝



𝐶
5 (𝑡) 𝑐3 (𝑡)


𝑔
61

𝛿61 ,0,𝑡;𝑋1
(∫

𝑡

0


𝑔
62



𝑝

𝛿62
,0,𝑠;𝑋2

ds)
1/𝑝

.

(149)

Proof. First, if 𝛿
61
∈ ((2−𝛼−𝛽)/𝛼, 1) and𝑝 ∈ (1/(1−𝛿

61
),∞),

then 1/𝑝 ∈ (𝛿
61
, 1) ⊊ ((2 − 𝛼 − 𝛽)/𝛼, 1). Consequently, the

assumption 𝜎
6
= 𝛿

61
+𝛿

62
∈ ((2−𝛼−𝛽)/𝛼, 1/𝑝


)makes sense,
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provided to choose 𝛿
62
∈ (0, 1) small enough. Lemma 27 then

yields K(𝑔
61
, 𝑔

62
) ∈ 𝐶

𝜎6

0
([0, 𝑇]; 𝑋) for any pair (𝑔

61
, 𝑔

62
) ∈

𝐶
𝛿61 ([0, 𝑇]; 𝑋

1
) × 𝐶

𝛿62 ([0, 𝑇]; 𝑋
2
). Then, since 𝑄

6
(𝑔

61
, 𝑔

62
) =

𝑄
5
K(𝑔

61
, 𝑔

62
), the assertion follows from Lemma 32, with

the pair (𝛿
5
, 𝑔

5
) being replaced by (𝜎

6
,K(𝑔

61
, 𝑔

62
)). Finally,

(149) follows from (143) and (132).

From Lemma 35 we obtain the analogous of
Proposition 29 for 𝑄

6
.

Proposition 36. Let 3𝛼 + 2𝛽 > 4 in (H1). Then, for every
𝛿
6
∈ ((2 − 𝛼 − 𝛽)/𝛼, 1/2), the operator 𝑄

6
defined by (110)

maps 𝐶𝛿6([0, 𝑇]; 𝑋
1
) ×𝐶

𝛿6([0, 𝑇]; 𝑋
2
) into 𝐶𝛿6

0
([0, 𝑇]; 𝑋), and

for every 𝑡 ∈ [0, 𝑇] satisfies the following estimate, where 𝑝 ∈

(1/(1−2𝛿
6
),∞) and𝐶

6
(𝑡) = 𝐶

5
(𝑡)𝑐

3
(𝑡)max{1, 𝑡(𝛼𝛿6+𝛼+𝛽−2)/𝛼}:


𝑄
6
(𝑔

61
, 𝑔

62
)
𝛿6 ,0,𝑡;𝑋

≤ 𝑡
1−2𝛿6−1/𝑝𝐶

6
(𝑡)


𝑔
61

𝛿6,0,𝑡;𝑋1
(∫

𝑡

0


𝑔
62



𝑝

𝛿6 ,0,𝑠;𝑋2

ds)
1/𝑝

.

(150)

Proof. Let 𝛿
6
∈ ((2−𝛼−𝛽)/𝛼, 1/2) and𝑝 ∈ (1/(1−2𝛿

6
),∞) ⊊

(1/(1 − 𝛿
6
),∞). Then, 2𝛿

6
∈ ((4 − 2𝛼 − 2𝛽)/𝛼, 1/𝑝


) ⊆

((2−𝛼−𝛽)/𝛼, 1/𝑝

) andwe can apply Lemma 35with 𝛿

6𝑘
= 𝛿

6
,

𝑘 = 1, 2. We thus deduce that 𝑄
6
maps 𝐶𝛿6([0, 𝑇]; 𝑋

1
) ×

𝐶
𝛿6([0, 𝑇]; 𝑋

2
) into 𝐶]6

0
([0, 𝑇]; 𝑋), ]

6
= (2𝛼𝛿

6
+ 𝛼 + 𝛽 − 2)/𝛼.

But, since 𝛿
6
> (2 − 𝛼 − 𝛽)/𝛼 implies ]

6
> 𝛿

6
, we a fortiori

have the fact that 𝑄
6
maps 𝐶𝛿6([0, 𝑇]; 𝑋

1
) × 𝐶

𝛿6([0, 𝑇]; 𝑋
2
)

into 𝐶
𝛿6

0
([0, 𝑇]; 𝑋). Finally, (150) follows from (149) and

‖𝑄
6
(𝑔

61
, 𝑔

62
)‖
𝛿6,0,𝑡;𝑋

≤ max{1, 𝑡]6−𝛿6}‖𝑄
6
(𝑔

61
, 𝑔

62
)‖

]6,0,𝑡;𝑋
.

In Section 6wewill also encounter𝑄
5
acting on functions

which enjoy some space regularity, that is, functions 𝑔
5

which are Hölder continuous in time with values on 𝑌
𝑟

𝛾
∈

{(𝑋,D(𝐴))
𝛾,𝑟
, 𝑋

𝛾,𝑟

𝐴
}. In this case Lemma 32 can be refined,

and the loss of regularity produced by𝑄
5
is naturally restored

by the additional condition of space regularity on 𝑔
5
. In

some sense, the forthcoming Corollary 38 is the analogous of
Lemma 30, where the function 𝑔

4
𝑦 involved in the definition

of 𝑄
4
(𝑔

4
, 𝑦) (cf. (108)) was of class 𝐶𝛿4([0, 𝑇]; 𝑌𝑟

𝛾
).

Lemma 37. Let 𝛼 + 𝛽 > 1 in (H1) and 𝑌𝑟
𝛾
∈ {(𝑋,D(𝐴))

𝛾,𝑟
,

𝑋
𝛾,𝑟

𝐴
}, 𝛾 ∈ (2 − 𝛼 − 𝛽, 1), 𝑟 ∈ [1,∞]. Then, for every 𝛿

5
∈

(0, (𝛼 + 𝛽 + 𝛾 − 2)/𝛼], the operator 𝑄
5
defined by (109) maps

𝐶
𝛿5([0, 𝑇]; 𝑌

𝑟

𝛾
) into 𝐶

𝛿5

0
([0, 𝑇], 𝑋), and for every 𝑡 ∈ [0, 𝑇]

satisfies the following estimate:

𝑄5
𝑔
5

𝛿5,0,𝑡;𝑋
≤ 𝑐

41
𝑡
(𝛼+𝛽+𝛾−2−𝛼𝛿5)/𝛼 (2𝑡

𝛿5 + 1)
𝑔5

𝛿5,0,𝑡;𝑌
𝑟

𝛾

.

(151)

Here 𝑐
41
is a positive constant depending on 𝛼, 𝛽, 𝛾, and 𝑟.

Proof. Let 𝛾 ∈ (2 − 𝛼 − 𝛽, 1) ⊆ (1 − 𝛽, 1) and let 𝜒
𝛼,𝛽,𝛾

be the
number (𝛼 + 𝛽 + 𝛾 − 2)/𝛼 ∈ (0, 1), so that the exponent
(𝛽 + 𝛾 − 2)/𝛼 in (79) with 𝜃 = 1 is equal to 𝜒

𝛼,𝛽,𝛾
− 1.

Let 𝑔
5
∈ 𝐶

𝛿5([0, 𝑇]; 𝑌
𝑟

𝛾
), 𝛿

5
∈ (0, 𝜒

𝛼,𝛽,𝛾
], 𝑟 ∈ [1,∞]. Since

[𝑄
5
𝑔
5
](0) = 0, we assume that 𝑡 ∈ (0, 𝑇] and we observe that,

due to Propositions 6 and 12, [𝑄
5
𝑔
5
](𝑡) is rewritten as follows:

[𝑄
5
𝑔
5
] (𝑡) = [e𝑡𝐴 − 𝐼] 𝑔

5 (𝑡) = lim
𝜀→0
+

[e𝑡𝐴 − e𝜀𝐴] 𝑔
5 (𝑡)

= lim
𝜀→0
+

∫

𝑡

𝜀

𝐷
𝑠
e𝑠𝐴𝑔

5
(𝑡) d𝑠

= − lim
𝜀→0
+

∫

𝑡

𝜀

[(−𝐴)
1
]
∘

e𝑠𝐴𝑔
5 (𝑡) d𝑠

= −∫

𝑡

0

[(−𝐴)
1
]
∘

e𝑠𝐴𝑔
5
(𝑡) d𝑠.

(152)

Indeed, for every 𝜀 ∈ [0, 𝑡) and 𝑥 ∈ 𝑌𝑟
𝛾
, (79) with 𝜃 = 1 yields



∫

𝑡

𝜀

[(−𝐴)
1
]
∘

e𝑠𝐴𝑥 d𝑠
𝑋

≤ 𝑐
22‖𝑥‖𝑌𝑟

𝛾

∫

𝑡

𝜀

𝑠
𝜒𝛼,𝛽,𝛾−1d𝑠 ≤ 𝑐

41‖𝑥‖𝑌𝑟
𝛾

(𝑡 − 𝜀)
𝜒𝛼,𝛽,𝛾 ,

(153)

where 𝑐
41

= 𝑐
22
𝜒
−1

𝛼,𝛽,𝛾
. From (152) and (153) with (𝜀, 𝑡, 𝑥) =

(0, 𝜏, 𝑔
5
(𝜏)) we thus get

𝑄5
𝑔
5

0,0,𝑡;𝑋
= sup

𝜏∈[0,𝑡]

[𝑄5
𝑔
5
] (𝜏)

𝑋

≤ 𝑐
41

𝑔5
0,0,𝑡;𝑌𝑟

𝛾

𝑡
𝜒𝛼,𝛽,𝛾 .

(154)

Now, let 0 ≤ 𝑡
1
< 𝑡

2
≤ 𝑡. From (152) it follows that [𝑄

5
𝑔
5
](𝑡

2
)−

[𝑄
5
𝑔
5
](𝑡

1
) = −∑

2

𝑘=1
𝑉
𝑘;𝑡1 ,𝑡2 ,𝑔5

, where for every function 𝑔 :

[0, 𝑇] → 𝑌
𝑝

𝛾
we have set

𝑉
1;𝑡1 ,𝑡2,𝑔

:= ∫

𝑡1

0

[(−𝐴)
1
]
∘

e𝑠𝐴 [𝑔 (𝑡
2
) − 𝑔 (𝑡

1
)] d𝑠,

𝑉
2;𝑡1 ,𝑡2 ,𝑔

:= ∫

𝑡2

𝑡1

[(−𝐴)
1
]
∘

e𝑠𝐴𝑔 (𝑡
2
) d𝑠.

(155)

Hence, using (153) with the triplet (𝜀, 𝑡, 𝑥) being replaced
by (0, 𝑡

1
, 𝑔

5
(𝑡
2
) − 𝑔

5
(𝑡
1
)) and (𝑡

1
, 𝑡
2
, 𝑔

5
(𝑡
2
)), respectively, we

deduce that

𝑉
1;𝑡1 ,𝑡2,𝑔5

𝑋
≤ 𝑐

41

𝑔5
𝛿5,0,𝑡2 ;𝑌

𝑟

𝛾

𝑡
𝜒𝛼,𝛽,𝛾

1
(𝑡
2
− 𝑡

1
)
𝛿5
,


𝑉
2;𝑡1 ,𝑡2,𝑔5

𝑋
≤ 𝑐

41

𝑔5
0,0,𝑡2 ;𝑌

𝑟

𝛾

(𝑡
2
− 𝑡

1
)
𝜒𝛼,𝛽,𝛾

.

(156)

As a consequence, since 𝛿
5
∈ (0, 𝜒

𝛼,𝛽,𝛾
],

[𝑄5
𝑔
5
] (𝑡

2
) − [𝑄

5
𝑔
5
] (𝑡

1
)
𝑋

≤ 𝑐
41
𝑡
𝜒𝛼,𝛽,𝛾−𝛿5 (𝑡

𝛿5 + 1)
𝑔5

𝛿5,0,𝑡;𝑌
𝑟

𝛾

(𝑡
2
− 𝑡

1
)
𝛿5
.

(157)

Summing up (154) and (157), we obtain (151). The proof is
complete.

Since in Lemma 37 it is not required that 𝑔
5
(0) = 0, the

special case of the constant function 𝑔
5
(𝑡) = 𝑥 ∈ 𝑌

𝑝

𝛾
, 𝑡 ∈

[0, 𝑇], is admissible, and we obtain the following result.
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Corollary 38. Let 𝛼, 𝛽, and𝑌𝑟
𝛾
be as in Lemma 37, and let 𝑥 ∈

𝑌
𝑟

𝛾
, 𝛾 ∈ (2 − 𝛼 − 𝛽, 1), and 𝑟 ∈ [1,∞]. Then, for every 𝛿

7
∈

(0, (𝛼+𝛽+𝛾−2)/𝛼], the function [𝑄
7
𝑥](⋅) := (e⋅𝐴−𝐼)𝑥 belongs

to 𝐶𝛿7
0
([0, 𝑇]; 𝑋), and for every 𝑡 ∈ [0, 𝑇] satisfies the estimate

𝑄7
𝑥
𝛿7,0,𝑡;𝑋

≤ 𝑐
41
𝑡
(𝛼+𝛽+𝛾−2−𝛼𝛿7)/𝛼 (𝑡

𝛿7 + 1) 𝑐
41‖𝑥‖𝑌𝑟

𝛾

. (158)

Proof. Let 𝑔
5
(𝑡) = 𝑥 in the proof of Lemma 37, and observe

that𝑉
1,𝑡1 ,𝑡2 ,𝑔5

reduces to the zero element of𝑋. Estimate (158)
then follows from (154) and the second estimate in (156).

For later purposes, we conclude the section with the
following remark.

Remark 39. The condition 5𝛼 + 2𝛽 > 6 in (H1) required in
Proposition 29 is the strongest among the conditions for the
pair (𝛼, 𝛽) required in Corollary 14 and the other results of
this section. Indeed,

5𝛼 + 2𝛽 > 6 ⇒ 3𝛼 + 2𝛽 > 6 − 2𝛼 ≥ 4

⇒ 3𝛼 + 𝛽 > 4 − 𝛽 ≥ 3

⇒ 2𝛼 + 𝛽 > 3 − 𝛼 ≥ 2

⇒ 𝛼 + 𝛽 > 2 − 𝛼 ≥ 1.

(159)

Hence, if 5𝛼 + 2𝛽 > 6, then Corollary 14 and all the results
from Lemma 22 to Corollary 38 are applicable. Next we will
make large usage of this fact, but we warn the reader that, for
brevity and regarding it as acquired, we will not mention it
anymore.

5. Application to Maximal Time Regularity

Theresults of the previous sections are here applied to correct,
refine, and extend the results in [20] concerning the maximal
time regularity of the solutions to a class of degenerate
abstract evolution equations. Let (𝑋, ‖ ⋅ ‖

𝑋
) and (𝑍, ‖ ⋅ ‖

𝑍
)

be two complex Banach spaces, and consider the following
degenerate first-order integrodifferential Cauchy problem for
V : 𝐼

𝑇
→ 𝑋, where 𝐼

𝑇
= [0, 𝑇], 𝑇 > 0, and 𝑛

1
, 𝑛

2
∈ N:

𝐷
𝑡 (𝑀V (𝑡)) = [𝜆

0
𝑀+ 𝐿] V (𝑡) +

𝑛1

∑

𝑖1=1

K (𝑘
𝑖1
, 𝐿

𝑖1
V) (𝑡)

+

𝑛2

∑

𝑖2=1

ℎ
𝑖2
(𝑡) 𝑦

𝑖2
+ 𝑓 (𝑡) , 𝑡 ∈ 𝐼

𝑇
,

𝑀V (0) = 𝑀V
0
.

(160)

Here K is the convolution operator (104) in which
(𝑋

1
, 𝑋

2
, 𝑋

3
) = (𝑍,𝑋,𝑋), whereas 𝑀, 𝐿, and 𝐿

𝑖1
, 𝑖

1
=

1, . . . , 𝑛
1
, are closed single-valued linear operators from

𝑋 to itself, whose domains fulfill the relation D(𝐿) ⊆

⋂
𝑛1

𝑖1=1
[D(𝑀) ∩D(𝐿

𝑖1
)]. Further, we assume that

𝐿 admits a continuous inverse operator 𝐿
−1
∈ L (𝑋) ,

i.e., 0 ∈ 𝜌 (𝐿) ,
(161)

whereas we allow 𝑀 to have no bounded inverse. Hence, in
general, 𝐴 := 𝐿𝑀

−1 is only the m. l. operator defined by

D (𝐴) = {𝑥 ∈ D (𝑀
−1
) : 𝐿 (𝑀

−1
𝑥) ̸= 0}

= {𝑥 ∈ R (𝑀) : 𝑀
−1
𝑥 ∩D (𝐿) ̸= 0}

= {𝑥 ∈ R (𝑀) :

there exists 𝑦 ∈ D (𝐿) such that 𝑦 ∈ 𝑀
−1
𝑥}

= {𝑥 ∈ R (𝑀) : 𝑥 = 𝑀𝑦 for some 𝑦 ∈ D (𝐿)}

= 𝑀 (D (𝐿)) ,

𝐴𝑥 = ⋃

𝑦∈𝑀
−1
𝑥∩D(𝐿)

𝐿𝑦

= {𝐿𝑦 : 𝑦 ∈ D (𝐿) such that𝑥 = 𝑀𝑦} ,

𝑥 ∈ D (𝐴) .

(162)

Therefore, problem (160) can not be reduced, via the change
of unknown 𝑢 = 𝑀V, to an integrodifferential problem
related to single-valued linear operators. On the contrary,
due to (161) and the closed graph theorem, 𝑀𝐿

−1
, 𝐿

𝑖1
𝐿
−1

∈

L(𝑋), 𝑖
1
= 1, . . . , 𝑛

1
. As far as the data vector (𝜆

0
, V
0
, 𝑘

1
, . . . ,

𝑘
𝑛1
, ℎ

1
, . . . , ℎ

𝑛2
, 𝑦

1
, . . . , 𝑦

𝑛2
, 𝑓) is concerned, at the moment,

we only assume 𝜆
0
∈ C, V

0
∈ D(𝑀), 𝑘

𝑖1
: 𝐼

𝑇
→ 𝑍, ℎ

𝑖2
:

𝐼
𝑇
→ C, 𝑦

𝑖2
∈ 𝑋, 𝑖

𝑙
= 1, . . . , 𝑛

𝑙
, 𝑙 = 1, 2, and 𝑓 : 𝐼

𝑇
→ 𝑋, in

order that (160) makes sense in𝑋.This minimal assumptions
will be refined later. In general, only strict solutions V to
(160) shall be investigated, where (cf. [22, 23]) by a strict
solution V to (160) we mean that, D(𝐿) being endowed with
the graph norm ‖ ⋅ ‖D(𝐿) = ‖ ⋅ ‖

𝑋
+ ‖𝐿 ⋅ ‖

𝑋
, V ∈ 𝐶(𝐼

𝑇
;D(𝐿)),

𝑀V ∈ 𝐶
1
(𝐼
𝑇
; 𝑋), and (160) holds. Clearly, if 𝑀−1 is really a

m. l. operator, then𝑀V(0) = 𝑀V
0
does not necessarily mean

V(0) = V
0
, but only V(0) − V

0
∈ 𝑀

−1
0. As we will see below,

if V
0
∈ D(𝐿) and the data 𝑘

𝑖1
, ℎ

𝑖2
, 𝑦

𝑖2
and 𝑓, 𝑖

𝑙
= 1, . . . , 𝑛

𝑙
,

𝑙 = 1, 2, satisfy suitable assumptions, then for a strict solution
V to (160) it just holds V(0) = V

0
. Throughout the section, 𝑌𝑞𝜓,

𝜓 ∈ (0, 1), 𝑞 ∈ [1,∞], will always denote one between the
spaces (𝑋,D(𝐴))

𝜓,𝑞
and𝑋𝜓,𝑞

𝐴
, 𝐴 being defined by (162). That

is, 𝑌𝑞𝜓 ∈ {(𝑋,D(𝐴))
𝜓,𝑞
, 𝑋

𝜓,𝑞

𝐴
}. To avoid confusion, if more

than a single 𝑌𝑞𝜓 is involved in some statement, that is, if we
write 𝑥

𝑗
∈ 𝑌

𝑞

𝜓𝑗
, 𝑗 = 1, . . . , 𝑛, 𝑛 ∈ N, then it is understood that

the same choice has beenmade for all the𝑌𝑞𝜓𝑗 in the sense that
𝑌
𝑞

𝜓𝑗
= (𝑋,D(𝐴))

𝜓𝑗,𝑞
or 𝑌𝑞𝜓𝑗 = 𝑋

𝜓𝑗 ,𝑞

𝐴
for every 𝑗 = 1, . . . , 𝑛.

According to [2, Section 1.6], we recall that the𝑀-modi-
fied resolvent set 𝜌

𝑀
(𝐿) of 𝐿 is defined to be the set {𝑧 ∈ C :

(𝑧𝑀 − 𝐿)
−1

∈ L(𝑋)}. The bounded operator (𝑧𝑀 − 𝐿)
−1 is

called the𝑀 modified resolvent of 𝐿. It is easy to prove that
𝜌
𝑀
(𝐿) ⊆ 𝜌(𝐴) and that 𝑀(𝑧𝑀 − 𝐿)

−1
= (𝑧𝐼 − 𝐴)

−1, 𝑧 ∈

𝜌
𝑀
(𝐿) (cf. [2,Theorem 1.14]).With the notion of𝑀-modified

resolvent of 𝐿 at hand, we assume that

(H2) 𝜌
𝑀
(𝐿) contains a region Σ

𝛼
= {𝑧 ∈ C : Re 𝑧 ≥

−𝑐(|Im 𝑧| + 1)
𝛼
,Im 𝑧 ∈ R}, 𝛼 ∈ (0, 1], 𝑐 > 0, and
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for some exponent 𝛽 ∈ (0, 𝛼] and constant 𝐶 > 0 the
estimate ‖𝑀(𝜆𝑀 − 𝐿)

−1
‖L(𝑋)

≤ 𝐶(|𝜆|+1)
−𝛽 holds for

every 𝜆 ∈ Σ
𝛼
.

Before we proceed with our analysis we remark that, due
to the wide range of choices for the data vector, problem
(160) contains many subcases at its interior. So, in spite of the
case when at least one between the 𝑘

𝑖
’s is different from zero

and problem (160) is really an integrodifferential one, the
choice 𝑘

𝑖1
= 0, 𝑖

1
= 1, . . . , 𝑛

1
, yields to consider also various

nonintegrodifferential degenerate problems. For instance,
those corresponding to 𝜆

0
= 𝑘

𝑖1
= ℎ

𝑖2
= 0 and 𝜆

0
= 𝑘

𝑖1
=

𝑓 = 0, 𝑖
𝑙
= 1, . . . , 𝑛

𝑙
, 𝑙 = 1, 2, respectively:

𝐷
𝑡 (𝑀V (𝑡)) = 𝐿V (𝑡) + 𝑓 (𝑡) , 𝑡 ∈ 𝐼

𝑇
,

𝑀V (0) = 𝑀V
0
,

(163)

𝐷
𝑡 (𝑀V (𝑡)) = 𝐿V (𝑡) +

𝑛2

∑

𝑖2=1

ℎ
𝑖2
(𝑡) 𝑦𝑖2

, 𝑡 ∈ 𝐼
𝑇
,

𝑀V (0) = 𝑀V
0
.

(164)

Although (164) differs from (163) only in the fact that 𝑓
is replaced with ∑

𝑛2

𝑖2=1
ℎ
𝑖2
(𝑡)𝑦

𝑖2
; nevertheless a very different

result is achieved when the 𝑦
𝑖2
’s are assumed to belong to𝑌𝑟

𝛾𝑖2

,
at least for opportunely chosen 𝛾

𝑖2
∈ (0, 1), 𝑖

2
= 1, . . . , 𝑛

2
. As

we will see (cf. Remark 51 and Theorem 56), in this situation
the loss of time regularity for the pair (𝐿V, 𝐷

𝑡
𝑀V)with respect

to that of 𝑓, typical of the case 𝛽 < 1 in (H2) (see [21,
Theorem 9], [2, Theorem 3.26], and [22, Theorem 7.2]), can
be restored in order that (𝐿V, 𝐷

𝑡
𝑀V) possesses the maximal

time regularity which is the minimal between the time
regularities of the ℎ

𝑖2
’s.The same phenomenon is carried over

into the integrodifferential case for the following problems,
corresponding to 𝜆

0
= ℎ

𝑖2
= 0, 𝑖

2
= 1, . . . , 𝑛

2
, and 𝜆

0
= 𝑓 = 0:

𝐷
𝑡
(𝑀V (𝑡)) = 𝐿V (𝑡) +

𝑛1

∑

𝑖1=1

K (𝑘
𝑖1
, 𝐿

𝑖1
V) (𝑡) + 𝑓 (𝑡) ,

𝑀V (0) = 𝑀V
0
,

(165)

𝐷
𝑡
(𝑀V (𝑡)) = 𝐿V (𝑡) +

𝑛1

∑

𝑖1=1

K (𝑘
𝑖1
, 𝐿

𝑖1
V) (𝑡) +

𝑛2

∑

𝑖2=1

ℎ
𝑖2
(𝑡) 𝑦

𝑖2
,

𝑀V (0) = 𝑀V
0
,

(166)

𝑡 ∈ 𝐼
𝑇
. When 𝛽 < 1, the loss of time regularity for the pair

(𝐿V, 𝐷
𝑡
𝑀V) with respect to that of the vector (𝑘

1
, . . . , 𝑘

𝑛1
, 𝑓)

in problem (165) (cf. [22, Theorem 7.1] and [23, Theorem 2.1]
for 𝑛

1
= 1) can be restored in problem (166) assuming that

𝑦
𝑖2

∈ 𝑌
𝑟

𝛾𝑖2

, 𝑖
2
= 1, . . . , 𝑛

2
. In this context (cf. Remark 51

and Theorem 53) the pair (𝐿V, 𝐷
𝑡
𝑀V) has the maximal time

regularity which is the minimal between the time regularities
of the 𝑘

𝑖1
’s and ℎ

𝑖2
’s.

We stress that, if 𝛽 = 1, then no loss of time regularity
is observed and all the quoted results agree with the well-
known theory of maximal regularity in spaces of continuous

functions for the nondegenerate version of (160), corre-
sponding to the case when 𝑀 = 𝐼 and 𝐿 generates an
analytic semigroup. Hence, roughly speaking, one can verify
the consistency of any result on problem (160) with condition
(H2) simply by letting 𝛽 = 1 on its statement, and then
checking if it is compatible with those for the nondegenerate
case. To this purpose, we recall that the question of maximal
regularity for the nondegenerate (possibly nonautonomous)
version of (160) has been deeply investigated by several
authors. See, for instance, [4, 6–8, 10, 32] for problem (165)
with (𝑀, 𝛽, 𝑛

1
) = (𝐼, 1, 1) and [9, 11] for problem (163) with

(𝑀, 𝛽) = (𝐼, 1).
Finally, assumption (161) excludes the case of 𝐿 = 0 in

(160), so that our results cannot be comparedwith those in [5,
33, 34]. There, assuming that the bilinear bounded operator
P underlying the definition ofK is the scalar multiplication
in𝑋, the problem

𝐷
𝑡
V (𝑡) = K (𝑘

1
, 𝐿

1
V) (𝑡) + 𝑓 (𝑡) , 𝑡 ∈ 𝐼

𝑇
, V (0) = V

0

(167)

is treated under the following assumptions: (i) 𝐿
1
is a

closed densely defined linear operator generating an analytic
semigroup; (ii) 𝑘

1
: [0,∞) → R is absolutely Laplace trans-

formable. Observe that, if (𝑘
1
, 𝑓) = (1, 0), then problem

(167) reduces to the abstact wave equation 𝐷2

𝑡
V(𝑡) = 𝐿

1
V(𝑡),

𝐷
𝑡
V(0) = 0, V(0) = V

0
, whereas when𝑀 = 𝐼 and 𝜆

0
= 𝑘

𝑖1
=

ℎ
𝑖2
= 𝑓 = 0, 𝑖

𝑙
= 1, . . . , 𝑛

𝑙
, 𝑙 = 1, 2, problem (160) reduces to

the abstract heat equation 𝐷
𝑡
V(𝑡) = 𝐿V(𝑡), V(0) = V

0
. In other

words, whereas [5, 33, 34] are concerned with the hyperbolic
case, here we are concerned with the parabolic one.

Let us now come back to problem (160). Of course,
assumption (H2) implies that the operator𝐴 defined by (162)
satisfies (H1), so that it generates a semigroup {e𝑡𝐴}

𝑡≥0
defined

by e0𝐴 = 𝐼 and (9) and satisfying (14). Assuming that V
0
∈

D(𝐿), we let

𝑤 = 𝐿 (V − V
0
) ⇐⇒ V = 𝐿

−1
𝑤 + V

0
. (168)

Then, by setting

𝐹
𝑤
(𝑡) = 𝜆

0
𝐴
−1
𝑤 (𝑡)

+

𝑛1

∑

𝑖1=1

[K (𝑘
𝑖1
, 𝑆

𝑖1
𝑤) (𝑡) +K (𝑘

𝑖1
, 𝐿

𝑖1
V
0
) (𝑡)]

+

𝑛2

∑

𝑖2=1

ℎ
𝑖2
(𝑡) 𝑦

𝑖2
+ V

1
+ 𝑓 (𝑡) , 𝑡 ∈ 𝐼

𝑇
,

(169)

where 𝐴−1
= 𝑀𝐿

−1
∈ L(𝑋), 𝑆

𝑖1
= 𝐿

𝑖1
𝐿
−1

∈ L(𝑋), 𝑖
1
=

1, . . . , 𝑛
1
, and V

1
= (𝜆

0
𝑀 + 𝐿)V

0
, we see that V is a strict

solution to (160) if and only if 𝑤 satisfies (indeed, if V ∈

𝐶(𝐼
𝑇
;D(𝐿)), then ‖𝑤(𝑡) − 𝑤(𝑠)‖

𝑋
= ‖𝐿[V(𝑡) − V(𝑠)]‖

𝑋
≤

‖V(𝑡) − V(𝑠)‖D(𝐿) → 0 as 𝑠 → 𝑡, 𝑡, 𝑠 ∈ 𝐼
𝑇
, that is, 𝑤 ∈ 𝐶

(𝐼
𝑇
; 𝑋). Conversely, if 𝑤 ∈ 𝐶(𝐼

𝑇
; 𝑋), then V = 𝐿

−1
𝑤 + V

0
∈

D(𝐿) and ‖V(𝑡) − V(𝑠)‖D(𝐿) ≤ (‖𝐿
−1
‖L(𝑋)

+ 1)‖𝑤(𝑡) −

𝑤(𝑠)‖
𝑋

→ 0 as 𝑠 → 𝑡, 𝑡, 𝑠 ∈ 𝐼
𝑇
, that is, V ∈ 𝐶(𝐼

𝑇
;D(𝐿)).

Finally, since 𝑀V = 𝐴
−1
𝑤 + 𝑀V

0
, we have 𝑀V ∈ 𝐶

1
(𝐼
𝑇
; 𝑋)
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if and only if 𝐴−1
𝑤 ∈ 𝐶

1
(𝐼
𝑇
; 𝑋)) 𝑤 ∈ 𝐶(𝐼

𝑇
; 𝑋), 𝐴−1

𝑤 ∈

𝐶
1
(𝐼
𝑇
; 𝑋), and solves to the following problem:

𝐷
𝑡
(𝐴

−1
𝑤 (𝑡)) = 𝑤 (𝑡) + 𝐹𝑤 (𝑡) ∈ 𝐴 (𝐴

−1
𝑤 (𝑡)) + 𝐹𝑤 (𝑡) ,

𝑡 ∈ 𝐼
𝑇
,

𝐴
−1
𝑤 (0) = 0 (i.e., 𝑤 (0) ∈ 𝐴0) .

(170)

Now let 2𝛼 + 𝛽 > 2, and assume that 𝑘
𝑖1
∈ 𝐶

𝜂𝑖1 (𝐼
𝑇
; 𝑍), ℎ

𝑖2
∈

𝐶
𝜎𝑖2 (𝐼

𝑇
;C), and 𝑓 ∈ 𝐶

𝜇
(𝐼
𝑇
; 𝑋), where 𝜂

𝑖1
, 𝜎

𝑖2
, 𝜇 ∈ (2 − 𝛼 −

𝛽/𝛼, 1), 𝑖
𝑙
= 1, . . . , 𝑛

𝑙
, 𝑙 = 1, 2. Then, if 𝑤 ∈ 𝐶(𝐼

𝑇
; 𝑋) is a

solution to (170) such that𝐴−1
𝑤 ∈ 𝐶

1
(𝐼
𝑇
; 𝑋), the function 𝐹

𝑤

satisfies

𝐹
𝑤
∈ 𝐶

𝛿
(𝐼
𝑇
; 𝑋) ,

𝛿 = min
𝑖𝑘=1,...,𝑛𝑘, 𝑘=1,2

{𝜂
𝑖1
, 𝜎

𝑖2
, 𝜇} ∈ (

2 − 𝛼 − 𝛽

𝛼
, 1) .

(171)

Indeed, 𝛿 being the smallest Hölder exponent, for every 𝑖
𝑙
=

1, . . . , 𝑛
𝑙
, 𝑙 = 1, 2, we have 𝐴−1

𝑤, ℎ
𝑖2
𝑦
𝑖2
, 𝑓 ∈ 𝐶

𝛿
(𝐼
𝑇
; 𝑋) and

K(𝑘
𝑖1
, 𝑆

𝑖1
𝑤), K(𝑘

𝑖1
, 𝐿

𝑖1
V
0
) ∈ 𝐶

𝜂𝑖1

0
(𝐼
𝑇
; 𝑋) → 𝐶

𝛿

0
(𝐼
𝑇
; 𝑋) (cf.

Lemma 27 for the case (𝛿
31
, 𝛿

32
, 𝑋

1
, 𝑋

2
) = (𝜂

𝑖1
, 0, 𝑍,𝑋) with

the pair (𝑔
31
, 𝑔

32
) being replaced by (in fact, since 𝑆

𝑖1
=

𝐿
𝑖1
𝐿
−1

∈ L(𝑋), 𝑖
1
= 1, . . . , 𝑛

1
, if 𝑤 ∈ 𝐶(𝐼

𝑇
; 𝑋), then 𝑆

𝑖1
𝑤 ∈

𝐶(𝐼
𝑇
; 𝑋), whereas the constant functions 𝜅

𝑖1
(𝑡) = 𝐿

𝑖1
V
0
, 𝑡 ∈

𝐼
𝑇
, 𝑖
1
= 1, . . . , 𝑛

1
, obviously belong to 𝐶(𝐼

𝑇
; 𝑋)) (𝑘

𝑖1
, 𝑆

𝑖1
𝑤)

and (𝑘
𝑖1
, 𝐿

𝑖1
V
0
), resp.). Consequently (cf. [2, Theorem 3.7 and

Remark p. 54] with 𝑢
0

= 0), the solution 𝐴
−1
𝑤 to the

multivalued evolution problem 𝐷
𝑡
(𝐴

−1
𝑤) ∈ 𝐴(𝐴

−1
𝑤) + 𝐹

𝑤
,

𝐴
−1
𝑤(0) = 0 is necessarily of the form

𝐴
−1
𝑤 (𝑡) = [𝑄

1
𝐹
𝑤
] (𝑡) , 𝑡 ∈ 𝐼

𝑇
, (172)

with 𝑄
1
being the operator defined by (105). Further (cf. [2,

Remark p. 55] with 𝑢
0
= 0, and where 𝐴∘e𝑡𝐴 stands for

𝐷
𝑡
e𝑡𝐴 = −[(−𝐴)

1
]
∘e𝑡𝐴) the derivative of 𝐴−1

𝑤 is given by

𝐷
𝑡
(𝐴

−1
𝑤 (𝑡)) = e𝑡𝐴𝐹

𝑤
(𝑡) − [𝑄

2
𝐹
𝑤
] (𝑡) , 𝑡 ∈ 𝐼

𝑇
\ {0} ,

(173)

with 𝑄
2
being the operator in (106). Notice that 𝑄

2
𝐹
𝑤
is well

defined by virtue of (127) with 𝑔 = 𝐹
𝑤
. Now let 𝑦

𝑖2
∈ 𝑌

𝑟

𝛾𝑖2

and V
1
+ 𝑓(0) ∈ 𝑌

𝑟

𝜑
where 𝛾

𝑖2
, 𝜑 ∈ (1 − 𝛽, 1), 𝑖

2
= 1, . . . ,

𝑛
2
, and 𝑟 ∈ [1,∞]. Since 𝐴−1

𝑤(0) = K(𝑘
𝑖1
, 𝑆

𝑖1
𝑤)(0) =

K(𝑘
𝑖1
, 𝐿

𝑖1
V
0
)(0) = 0, 𝑖

1
= 1, . . . , 𝑛

1
, from (169) it thus follows

that 𝐹
𝑤
(0) := 𝑥

0
is independent on 𝑤 and

𝑥
0
=

𝑛2

∑

𝑖2=1

ℎ
𝑖2
(0) 𝑦

𝑖2
+ V

1
+ 𝑓 (0) ∈ 𝑌

𝑟

𝛾
,

𝛾 = min
𝑖2=1,...,𝑛2

{𝛾
𝑖2
, 𝜑} ∈ (1 − 𝛽, 1) .

(174)

Indeed (cf. (20) or (38)), we have 𝑌𝑟
𝛾𝑖2

→ 𝑌
𝑟

𝛾
, 𝑖
2
= 1, . . . , 𝑛

2
,

and 𝑌
𝑟

𝜑
→ 𝑌

𝑟

𝛾
, the embeddings being equalities for those

between the numbers 𝛾
1
, . . . , 𝛾

𝑛2
and 𝜑 which are equal to

𝛾. Then, under these assumptions on the data, formula (173)
for 𝐷

𝑡
(𝐴

−1
𝑤(𝑡)) can be extended until 𝑡 = 0. For, we have

lim
𝑡→0
+𝐷

𝑡
(𝐴

−1
𝑤(𝑡)) = 𝑥

0
∈ 𝐴0 + 𝑥

0
and the differential

equation in (170) is satisfied even at 𝑡 = 0. To see this, we
observe that


𝐷
𝑡
(𝐴

−1
𝑤 (𝑡)) − 𝑥

0

𝑋
≤ 𝐼

1
(𝑡) + 𝐼

2,𝑤
(𝑡) + 𝐼

3,𝑤
(𝑡) ,

𝑡 ∈ 𝐼
𝑇
\ {0} ,

(175)

where 𝐼
1
(𝑡) = ‖(e𝑡𝐴 − 𝐼)𝑥

0
‖
𝑋
, 𝐼

2,𝑤
(𝑡) = ‖e𝑡𝐴[𝐹

𝑤
(𝑡) − 𝑥

0
]‖
𝑋
,

and 𝐼
3,𝑤
(𝑡) = ‖[𝑄

2
𝐹
𝑤
](𝑡)‖

𝑋
. First, from Proposition 6 we get

lim
𝑡→0
+𝐼
1
(𝑡) = 0. On the other side, using 𝐹

𝑤
∈ 𝐶

𝛿
(𝐼
𝑇
; 𝑋),

𝛿 ∈ ((2 − 𝛼 − 𝛽)/𝛼, 1) ⊆ ((1 − 𝛽)/𝛼, 1), we obtain

𝐼
2,𝑤 (𝑡) ≤ 𝑐

𝛼,𝛽,0

𝐹𝑤
𝛿,0,𝑡;𝑋

𝑡
(𝛼𝛿+𝛽−1)/𝛼

, 𝑡 ∈ 𝐼
𝑇
\ {0} , (176)

so that lim
𝑡→0
+𝐼
2,𝑤
(𝑡) = 0. Finally, (127) with 𝑔 = 𝐹

𝑤
yields

lim
𝑡→0
+𝐼
3,𝑤
(𝑡) = 0, too. Formula (173) thus holds at 𝑡 = 0

with𝐷
𝑡
(𝐴

−1
𝑤(0)) = lim

𝑡→0
+𝐷

𝑡
(𝐴

−1
𝑤(𝑡)) = 𝑥

0
.

Remark 40. In [2, Remark p. 55], formula (173) was extended
until 𝑡 = 0 only under the more restrictive assumption 𝑥

0
∈

𝑋
𝛾,∞

𝐴
, 𝛾 ∈ (1 − 𝛽, 1). Indeed [24, Proposition 5.2] was not

available at the time of [2] and only the strong continuity of
{e𝑡𝐴}

𝑡≥0
in the 𝑋-norm on the spaces 𝑋𝛾,∞

𝐴
, 𝛾 ∈ (1 − 𝛽, 1),

was known (cf. [2, Theorem 3.3]). Notice that in the case of
problem (163) the element 𝑥

0
reduces to 𝐿V

0
+ 𝑓(0), so that

in the nondegenerate case (𝑀, 𝛽) = (𝐼, 1) we get back the
classical assumption 𝐿V

0
+ 𝑓(0) ∈ (𝑋,D(𝐿))

𝛾,𝑟
, 𝛾 ∈ (0, 1),

𝑟 ∈ [1,∞] (see, for instance, [9, Theorem 4.3.1(iii)] and [11,
Theorem 4.5]).

Since (170) implies that𝑤(𝑡) = 𝐷
𝑡
(𝐴

−1
𝑤(𝑡))−𝐹

𝑤
(𝑡), from

(173) we thus find that

𝑤 (𝑡) = [𝑄
7
𝑥
0
] (𝑡) + (e𝑡𝐴 − 𝐼) [𝐹

𝑤
(𝑡) − 𝑥

0
] − [𝑄

2
𝐹
𝑤
] (𝑡) ,

𝑡 ∈ 𝐼
𝑇
,

(177)

where, according to the notation in Corollary 38, we have set
[𝑄

7
𝑥
0
](𝑡) = (e𝑡𝐴 − 𝐼)𝑥

0
. In particular, 𝑤(0) = 0. We conclude

that, under the previous assumptions on the pair (𝛼, 𝛽) and
on the data vector (𝑘

1
, . . . , 𝑘

𝑛1
, ℎ

1
, . . . , ℎ

𝑛2
, 𝑦

1
, . . . , 𝑦

𝑛2
, 𝑓, V

1
), if

𝑤 ∈ 𝐶(𝐼
𝑇
; 𝑋) solves (170), then necessarily 𝑤 ∈ 𝐶

0
(𝐼
𝑇
; 𝑋). As

a consequence (cf. (168)), the strict solution V to (160) satisfies
the initial condition just in the sense V(0) = V

0
.

Introduce the functions 𝑓 : 𝐼
𝑇
→ 𝑋 and ℎ̃

𝑖2
: 𝐼

𝑇
→ 𝑌

𝑟

𝛾𝑖2

,
𝑖
2
= 1, . . . , 𝑛

2
, defined by

𝑓 (𝑡) = 𝑓 (𝑡) − 𝑓 (0) , ℎ̃
𝑖2
(𝑡) = [ℎ

𝑖2
(𝑡) − ℎ𝑖2

(0)] 𝑦𝑖2
,

𝑡 ∈ 𝐼
𝑇
.

(178)

Then, replacing 𝐹
𝑤
with the right-hand side of (169), using

(174), and recalling the definitions of the operators 𝑄
𝑗
,
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𝑗 = 2, . . . , 6, in (106)–(110), from (177) we deduce that𝑤 ∈ 𝐶
0

(𝐼
𝑇
; 𝑋) solves the fixed-point equation

𝑤 = 𝑤
0
+ 𝑤

1
+ 𝑅𝑤, (179)

the functions 𝑤
𝑙
, 𝑙 = 0, 1, and the operator 𝑅𝑤 being defined

by

𝑤
0
:= 𝑄

7
𝑥
0
+

𝑛1

∑

𝑖1=1

𝑄
6
(𝑘

𝑖1
, 𝐿

𝑖1
V
0
) +

𝑛2

∑

𝑖2=1

𝑄
5
ℎ̃
𝑖2
+ 𝑄

5
𝑓, (180)

𝑤
1
:= −

𝑛1

∑

𝑖1=1

𝑄
3
(𝑘

𝑖1
, 𝐿

𝑖1
V
0
) −

𝑛2

∑

𝑖2=1

𝑄
4
(ℎ

𝑖2
, 𝑦

𝑖2
) − 𝑄

2
𝑓, (181)

𝑅𝑤 := 𝜆
0
[𝑄

5
(𝐴

−1
𝑤) − 𝑄

2
(𝐴

−1
𝑤)]

+

𝑛1

∑

𝑖1=1

[𝑄
6
(𝑘

𝑖1
, 𝑆

𝑖1
𝑤) − 𝑄

3
(𝑘

𝑖1
, 𝑆

𝑖1
𝑤)] .

(182)

Conversely, let 𝑤 ∈ 𝐶
0
(𝐼
𝑇
; 𝑋) be a solution to the fixed-

point equation (179), and assume that the pair (𝛼, 𝛽) and the
data vector (𝑘

1
, . . . , 𝑘

𝑛1
, ℎ

1
, . . . , ℎ

𝑛2
, 𝑦

1
, . . . , 𝑦

𝑛2
, 𝑓, V

1
) satisfy

the assumptions below (170) and (173). Then, as before,
K(𝑘

𝑖1
, 𝑆

𝑖1
𝑤),K(𝑘

𝑖1
, 𝐿

𝑖1
V
0
) ∈ 𝐶

𝛿

0
(𝐼
𝑇
; 𝑋) and ℎ

𝑖2
𝑦
𝑖2
, 𝑓 ∈

𝐶
𝛿
(𝐼
𝑇
; 𝑋), 𝑖

𝑙
= 1, . . . , 𝑛

𝑙
, 𝑙 = 1, 2, 𝛿 ∈ ((2−𝛼−𝛽)/𝛼, 1) being as

in (171). We apply 𝐴−1
∈ L(𝑋) to both sides of (179), and we

show that 𝐴−1
𝑤 satisfies (172) with 𝐹

𝑤
∈ 𝐶(𝐼

𝑇
; 𝑋) as in (169),

so that 𝐴−1
𝑤 is a solution to problem (170). To this purpose,

we take into account Corollaries 14 and 26. Let 𝑡 ∈ 𝐼
𝑇
. First

(cf. Remark 34 and recall that𝑄
6
(⋅, ⋅) = 𝑄

5
K(⋅, ⋅)), using (86),

(174), and (178), we get

𝐴
−1
𝑤
0
(𝑡)

= ∫

𝑡

0

e(𝑡−𝑠)𝐴 [𝑥
0
+

𝑛1

∑

𝑖1=1

K (𝑘
𝑖1
, 𝐿

𝑖1
V
0
) (𝑡)

+

𝑛2

∑

𝑖2=1

ℎ̃
𝑖2
(𝑡) + 𝑓 (𝑡)] d𝑠

= ∫

𝑡

0

e(𝑡−𝑠)𝐴 [V
1
+

𝑛1

∑

𝑖1=1

K (𝑘
𝑖1
, 𝐿

𝑖1
V
0
) (𝑡)

+

𝑛2

∑

𝑖2=1

ℎ
𝑖2
(𝑡) 𝑦𝑖2

+ 𝑓 (𝑡)] d𝑠.

(183)

Instead, due to the definition of𝑄
3
and𝑄

4
, using (125) we

obtain

𝐴
−1
𝑤
1
(𝑡)

= ∫

𝑡

0

e(𝑡−𝑠)𝐴{
𝑛1

∑

𝑖1=1

[K (𝑘
𝑖1
, 𝐿

𝑖1
V
0
) (𝑠) −K (𝑘

𝑖1
, 𝐿

𝑖1
V
0
) (𝑡)]

+

𝑛2

∑

𝑖2=1

[ℎ
𝑖2
(𝑠) − ℎ

𝑖2
(𝑡)] 𝑦

𝑖2
+ 𝑓 (𝑠) − 𝑓 (𝑡)} d𝑠.

(184)

Therefore, from (183), (184), and the definition (105) of 𝑄
1
it

follows that

𝐴
−1
[𝑤

0
+ 𝑤

1
] (𝑡)

= [𝑄
1
(V

1
+

𝑛1

∑

𝑖1=1

K (𝑘
𝑖1
, 𝐿

𝑖1
V
0
) +

𝑛2

∑

𝑖2=1

ℎ
𝑖2
𝑦
𝑖2
+ 𝑓)] (𝑡) ,

(185)

the left-hand side being well-defined due to Remark 23. As
far as𝐴−1

[𝑅𝑤](𝑡) is concerned, we first observe that,𝑤 being
in 𝐶(𝐼

𝑇
; 𝑋), from formula (126) and Remark 34 it follows

that [𝑄
2
(𝐴

−1
𝑤)](𝑡) and [𝑄

5
(𝐴

−1
𝑤)](𝑡) are both well defined

and equal to −∫𝑡
0
e(𝑡−𝑠)𝐴[𝑤(𝑠) − 𝑤(𝑡)]d𝑠 and ∫𝑡

0
e(𝑡−𝑠)𝐴𝑤(𝑡) d𝑠,

respectively. Consequently

[𝑄
5
(𝐴

−1
𝑤) − 𝑄

2
(𝐴

−1
𝑤)] (𝑡)

= ∫

𝑡

0

e(𝑡−𝑠)𝐴𝑤 (𝑠) d𝑠 = [𝑄
1
𝑤] (𝑡) .

(186)

Hence, commuting 𝐴−1
∈ L(𝑋) with both the integral sign

and the semigroup, one has

𝐴
−1
[𝑄

5
(𝐴

−1
𝑤) − 𝑄

2
(𝐴

−1
𝑤)] (𝑡) = [𝑄

1
(𝐴

−1
𝑤)] (𝑡) .

(187)

Similarly, since Remark 34 and formula (125) yield

𝐴
−1
[𝑄

6
(𝑘

𝑖1
, 𝑆

𝑖1
𝑤)] (𝑡) = ∫

𝑡

0

e(𝑡−𝑠)𝐴K (𝑘
𝑖1
, 𝑆

𝑖1
𝑤) (𝑡) d𝑠,

𝐴
−1
[𝑄

3
(𝑘

𝑖1
, 𝑆

𝑖1
𝑤)] (𝑡)

= −∫

𝑡

0

e(𝑡−𝑠)𝐴 [K (𝑘
𝑖1
, 𝑆

𝑖1
𝑤) (𝑠) −K (𝑘

𝑖1
, 𝑆

𝑖1
𝑤) (𝑡)] d𝑠,

(188)

we find that

𝐴
−1
[𝑄

6
(𝑘

𝑖1
, 𝑆

𝑖1
𝑤) − 𝑄

3
(𝑘

𝑖1
, 𝑆

𝑖1
𝑤)] (𝑡)

= [𝑄
1
K (𝑘

𝑖1
, 𝑆

𝑖1
𝑤)] (𝑡) ,

(189)

𝑖
1
= 1, . . . , 𝑛

1
. In conclusion, from (187) and (189) it follows

that

𝐴
−1
[𝑅𝑤] (𝑡) = [𝑄

1
(𝜆

0
𝐴
−1
𝑤 +

𝑛1

∑

𝑖1=1

K (𝑘
𝑖1
, 𝑆

𝑖1
𝑤))] (𝑡) .

(190)

Summing up (185) and (190), we finally obtain 𝐴
−1
𝑤(𝑡) =

[𝑄
1
𝐹
𝑤
](𝑡), 𝐹

𝑤
being as in (169). This completes the proof of

the equivalence between problem (170) and the fixed point
equation (179), provided that the data satisfy the mentioned
assumptions.

Remark 41. We can summarize the previous reasonings as
follows: problem (160) has been reduced to the fixed-point
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equation (179) for the new unknow𝑤 = 𝐿(V− V
0
), V

0
∈ D(𝐿).

This fixed-point argument is similar to that first successfully
applied in [4, 7, 8, 32] to problem (165) with (𝑀, 𝛽, 𝑛

1
) =

(𝐼, 1, 1) and then generalized in [23] to the degenerate case.
A different approach has been followed in [6, 10] for the
nondegenerate case and in [22] for the degenerate one.There,
assuming that 𝑘

1
is absolutely Laplace transformable (cf.

[6, 22]) or of bounded variation (cf. [10]), problem (165) with
𝑛
1
= 1 is solved by constructing its relative resolvent operator.

We quote also [35] where themethod of constructing the fun-
damental solution for the equation without the integral term
is applied to a class of concrete degenerate integrodifferential
equations.

From now on, for 5𝛼 + 2𝛽 > 6, 𝛽 ∈ (0, 𝛼], 𝛼 ∈ (0, 1], and
] ∈ ((3−2𝛼−𝛽)/𝛼, 1), 𝐼

𝛼,𝛽,] ⊆ ((3−2𝛼−𝛽)/𝛼, 1/2) ⊆ (0, 1/2)

will denote the interval defined by

𝐼
𝛼,𝛽,]

=

{{{

{{{

{

(
3 − 2𝛼 − 𝛽

𝛼
, ]] , if ] ∈ (

3 − 2𝛼 − 𝛽

𝛼
,
1

2
) ,

(
3 − 2𝛼 − 𝛽

𝛼
,
1

2
) , if ] ∈ [1

2
, 1) .

(191)

Clearly, if ], 𝜌 ∈ ((3 − 2𝛼 − 𝛽)/𝛼, 1), ] ≤ 𝜌, then 𝐼
𝛼,𝛽,] ⊆ 𝐼

𝛼,𝛽,𝜌
.

Lemma42. Assume (161), and let 5𝛼+2𝛽 > 6 in (H2). Assume
that 𝑘

𝑖1
∈ 𝐶

𝜂𝑖1 (𝐼
𝑇
; 𝑍), 𝜂

𝑖1
∈ ((3 − 2𝛼 − 𝛽)/𝛼, 1), 𝑖

1
= 1, . . . , 𝑛

1
,

and let 𝜂 = min
𝑖1=1,...,𝑛1

𝜂
𝑖1
. Then, for every fixed 𝛿 ∈ 𝐼

𝛼,𝛽,𝜂
, the

operator 𝑅 defined by (182) maps continuously 𝐶𝛿(𝐼
𝑇
; 𝑋) into

𝐶
𝛿

0
(𝐼
𝑇
; 𝑋), and for every 𝑡 ∈ 𝐼

𝑇
satisfies the following estimate,

where 𝑝 ∈ (1/(1 − 2𝛿),∞):

‖𝑅𝑤‖𝛿,0,𝑡;𝑋 ≤ 𝑐
42
(𝑇) (∫

𝑡

0

‖𝑤‖
𝑝

𝛿,0,𝑠;𝑋
ds)

1/𝑝

, 𝑤 ∈ 𝐶
𝛿
(𝐼
𝑇
; 𝑋) .

(192)

Here 𝑐
42
(𝑇) is a positive constant depending only on 𝑇, 𝜆

0
, 𝛼,

𝛽, 𝜂
𝑖1
, 𝛿, 𝑝, ‖𝑘

𝑖1
‖
𝜂𝑖1
,0,𝑇;𝑍

and ‖𝑆
𝑖1
‖
L(𝑋)

, 𝑖
1
= 1, . . . , 𝑛

1
.

Proof. Let 𝑘
𝑖1
∈ 𝐶

𝜂𝑖(𝐼
𝑇
; 𝑍), 𝜂

𝑖1
∈ ((3 − 2𝛼 − 𝛽)/𝛼, 1), 𝑖

1
= 1,

. . . , 𝑛
1
, and let us fix an arbitrary number 𝛿 ∈ 𝐼

𝛼,𝛽,𝜂
, where

𝜂 = min
𝑖1=1,...,𝑛1

𝜂
𝑖
. In particular, since 𝛿 ≤ 𝜂 ≤ 𝜂

𝑖
, we have

𝑘
𝑖1
∈ 𝐶

𝛿
(𝐼
𝑇
; 𝑍) with ‖𝑘

𝑖1
‖
𝛿,0,𝑡;𝑍

≤ max{1, 𝑡𝜂𝑖1−𝛿}‖𝑘
𝑖1
‖
𝜂𝑖1
,0,𝑡;𝑍

,

𝑖
1
= 1, . . . , 𝑛

1
. Now let 𝑤 ∈ 𝐶

𝛿
(𝐼
𝑇
; 𝑋) and 𝑡 ∈ 𝐼

𝑇
. First,

formula (186) being applicable, we rewrite (182) as

𝑅𝑤 = 𝜆
0
𝑄
1
𝑤 +

𝑛1

∑

𝑖1=1

[𝑄
6
(𝑘

𝑖1 ,
𝑆
𝑖1
𝑤) − 𝑄

3
(𝑘

𝑖
, 𝑆

𝑖
𝑤)] . (193)

Now, we notice that 5𝛼 + 2𝛽 > 6 implies that

𝛼 + 𝛽 − 1

𝛼
=
5𝛼 + 2𝛽 − 3𝛼 − 2

2𝛼
>
4 − 3𝛼

2𝛼
≥
1

2
. (194)

Since (1 − 𝛽)/𝛼 ≤ (2 − 𝛼 − 𝛽)/𝛼 ≤ (3 − 2𝛼 − 𝛽)/𝛼, from (194)
it follows that 𝛿 ∈ 𝐼

𝛼,𝛽,𝜂
⊆ ((3 − 2𝛼 − 𝛽)/𝛼, 1/2) ⊆ ((2 − 𝛼 −

𝛽)/𝛼, 1/2) ⊊ ((1 − 𝛽)/𝛼, (𝛼 + 𝛽 − 1)/𝛼), and, consequently,

𝛼

𝛼 + 𝛽 − 1 − 𝛼𝛿
<

1

1 − 2𝛿
. (195)

We conclude (cf. Remark 39) that Lemma 22 and Proposi-
tions 29 and 36 are applicable with 𝛿 ∈ 𝐼

𝛼,𝛽,𝜂
and 𝑝 ∈ (1/(1 −

2𝛿),∞). Then, using estimates (111), (135), and (150) with the
pair (𝑔

1
, 𝛿

1
) and the quintuplets (𝑔

𝑙1
, 𝑔

𝑙2
, 𝛿

𝑙
, 𝑋

1
, 𝑋

2
), 𝑙 = 3, 6,

being replaced, respectively, by (𝑤, 𝛿) and (indeed, since 𝑆
𝑖1
=

𝐿
𝑖1
𝐿
−1
∈ L(𝑋), if 𝑤 ∈ 𝐶

𝛿
(𝐼
𝑇
; 𝑋), then 𝑆

𝑖1
𝑤 ∈ 𝐶

𝛿
(𝐼
𝑇
; 𝑋) with

‖𝑆
𝑖1
𝑤‖

𝛿,0,𝑡;𝑋
≤ ‖𝑆

𝑖1
‖
L(𝑋)

‖𝑤‖
𝛿,0,𝑡;𝑋

, 𝑖
1
= 1, . . . , 𝑛

1
) (𝑘

𝑖1
, 𝑆

𝑖1
𝑤,

𝛿, 𝑍,𝑋), 𝑖
1
= 1, . . . , 𝑛

1
, from (193) we finally obtain

‖𝑅𝑤‖𝛿,0,𝑡;𝑋 ≤
𝜆0𝑄1

𝑤
𝛿,0,𝑡;𝑋

+ ∑

𝑙=3,6, 𝑖1=1,...,𝑛1


𝑄
𝑙
(𝑘

𝑖1
, 𝑆

𝑖1
𝑤)

𝛿,0,𝑡;𝑋

≤ 𝑐
42
(𝑇) (∫

𝑡

0

‖𝑤‖
𝑝

𝛿,0,𝑠;𝑋
d𝑠)

1/𝑝

.

(196)

Here we have set 𝑐
42
(𝑇) = |𝜆

0
|𝐶

1
(𝑇) +

𝑇
1−2𝛿−1/𝑝

∑
𝑙=3,6, 𝑖1=1,...,𝑛1

𝐶
𝑙
(𝑇)‖𝑘

𝑖1
‖
𝛿,0,𝑇;𝑍

‖𝑆
𝑖1
‖
L(𝑋)

, where
𝐶
𝑙
(𝑇), 𝑙 = 1, 3, 6, are the values at 𝑡 = 𝑇 of the functions 𝐶

𝑙
(𝑡)

in Lemma 22 and Propositions 29 and 36.This completes the
proof.

Remark 43. Assume that in Lemma 42 the Hölder exponents
𝜂
𝑖1
∈ ((3−2𝛼−𝛽)/𝛼, 1) are such that 𝜂 = min

𝑖1=1,...,𝑛1
𝜂
𝑖
belongs

to ((3 − 2𝛼 − 𝛽)/𝛼, 1/2). In this case (cf. (191)), the choice
𝛿 = 𝜂 is admissible, and the meaning of Lemma 42 is that
the operator 𝑅 defined by (182) preserves the minimal of the
time regularities of 𝑘

1
, . . . , 𝑘

𝑛1
.

Corollary 44. Let the assumptions of Lemma 42 be satisfied,
and let 𝜂 and 𝑅 be as there. Then, for every fixed 𝛿 ∈ 𝐼

𝛼,𝛽,𝜂
, the

sequence {𝑅𝑛}∞
𝑛=0

(𝑅0 = 𝐼, 𝑅𝑛 = 𝑅𝑅
𝑛−1, 𝑛 ∈ N) satisfies the

following estimates, where 𝑤 ∈ 𝐶
𝛿
(𝐼
𝑇
; 𝑋) and 𝑝 ∈ (1/(1 −

2𝛿),∞):

𝑅
𝑛
𝑤
𝛿,0,𝑡;𝑋

≤ [𝑐
42 (𝑇)]

𝑛
(
𝑡
𝑛

𝑛!
)

1/𝑝

‖𝑤‖𝛿,0,𝑇;𝑋,

𝑡 ∈ 𝐼
𝑇
, 𝑛 ∈ N ∪ {0} .

(197)

Proof. Reasoning as in [23, p. 468], we prove (197) by
induction. Since for every fixed 𝛿 ∈ 𝐼

𝛼,𝛽,𝜂
the operator𝑅maps

𝐶
𝛿
(𝐼
𝑇
; 𝑋) in 𝐶

𝛿

0
(𝐼
𝑇
; 𝑋), replacing 𝑤 with 𝑅

𝑛
𝑤 in (192) and

introducing the sequence of scalar nonnegative nondecreas-
ing functions {𝜑

𝑛
}
∞

𝑛=0
defined by 𝜑

𝑛
(𝑡) = ‖𝑅

𝑛
𝑤‖

𝛿,0,𝑡;𝑋
, 𝑡 ∈ 𝐼

𝑇
,

from (192) we obtain

𝜑
𝑛+1 (𝑡) ≤ 𝑐

42 (𝑇) (∫

𝑡

0

𝜑𝑛 (𝑠)


𝑝d𝑠)
1/𝑝

,

𝑡 ∈ 𝐼
𝑇
, 𝑛 ∈ N ∪ {0} .

(198)
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Then, applying to (198) an induction argument in which the
first step of the induction follows from (192), we immediately
deduce the following estimates:

𝜑
𝑛 (𝑡) ≤ [𝑐

42 (𝑇)]
𝑛
(
𝑡
𝑛

𝑛!
)

1/𝑝

‖𝑤‖𝛿,0,𝑇;𝑋,

𝑡 ∈ 𝐼
𝑇
, 𝑛 ∈ N ∪ {0} .

(199)

The proof is complete.

Lemma 45. Let 5𝛼 + 2𝛽 > 6 in (H2) and V
0
∈ ⋂

𝑛1

𝑖1=1
D(𝐿

𝑖1
).

Assume that 𝑘
𝑖1
∈ 𝐶

𝜂𝑖1 (𝐼
𝑇
; 𝑍), ℎ

𝑖2
∈ 𝐶

𝜎𝑖2 (𝐼
𝑇
;C), and 𝑦

𝑖2
∈

𝑌
𝑟

𝛾𝑖2

, where 𝜂
𝑖1
, 𝜎

𝑖2
∈ ((3 − 2𝛼 − 𝛽)/𝛼, 1), 𝛾

𝑖2
∈ (3 − 2𝛼 −

𝛽, 1), 𝑖
𝑙
= 1, . . . , 𝑛

𝑙
, 𝑙 = 1, 2, and 𝑟 ∈ [1,∞]. Let 𝜏

1
=

min
𝑖𝑙=1,...,𝑛𝑙, 𝑙=1,2

{𝜂
𝑖1
, 𝜎

𝑖2
}. Then, for every fixed 𝛿 ∈ 𝐼

𝛼,𝛽,𝜏1
, the

function𝑤
1
defined by (181) belongs to𝐶𝛿

0
(𝐼
𝑇
; 𝑋), provided that

𝑓 ∈ 𝐶
𝜇
(𝐼
𝑇
; 𝑋), 𝜇 ∈ [𝛿 + 𝜇

𝛼,𝛽
, 1), 𝜇

𝛼,𝛽
= (3 − 2𝛼 − 𝛽)/𝛼.

Proof. Let us fix 𝛿 ∈ 𝐼
𝛼,𝛽,𝜏1

, 𝜏
1
= min

𝑖𝑙=1,...,𝑛𝑙, 𝑙=1,2
{𝜂
𝑖1
, 𝜎

𝑖2
}. Of

course, 𝑘
𝑖1
∈ 𝐶

𝛿
(𝐼
𝑇
; 𝑍) and ℎ

𝑖2
∈ 𝐶

𝛿
(𝐼
𝑇
;C), 𝑖

𝑙
= 1, . . . , 𝑛

𝑙
,

𝑙 = 1, 2. Then, Proposition 29 and Lemma 30 applied
with the quintuplets (𝑔

31
, 𝑔

32
, 𝛿

3
, 𝑋

1
, 𝑋

2
) and the quadruplet

(𝑔
4
, 𝑦, 𝛿

4
, 𝛾) being replaced, respectively, by (the constant

functions 𝜅
𝑖1
(𝑡) = 𝐿

𝑖1
V
0
, 𝑡 ∈ 𝐼

𝑇
, 𝑖 = 1, . . . , 𝑛

1
, being obviously

of class 𝐶
𝛿
(𝐼
𝑇
; 𝑋)) (𝑘

𝑖1
, 𝐿

𝑖1
V
0
, 𝛿, 𝑍,𝑋) and (ℎ

𝑖2
, 𝑦

𝑖2
, 𝛿, 𝛾

𝑖2
),

imply that 𝑄
3
(𝑘
𝑖1
, 𝐿

𝑖1
V
0
), 𝑄

4
(ℎ

𝑖2
, 𝑦

𝑖2
) ∈ 𝐶

𝛿

0
(𝐼
𝑇
; 𝑋), 𝑖

𝑙
=

1, . . . , 𝑛
𝑙
, 𝑙 = 1, 2. Now, since 𝛿 ∈ 𝐼

𝛼,𝛽,𝜏1
⊆ ((3 − 2𝛼 −

𝛽)/𝛼, 1/2) ⊆ (0, 1/2), the number 𝛿 + 𝜇
𝛼,𝛽

satisfies

3 − 2𝛼 − 𝛽

𝛼
< 𝛿 ≤ 𝛿 + 𝜇

𝛼,𝛽
<
6 − 3𝛼 − 2𝛽

2𝛼
< 1, (200)

and assumption 𝑓 ∈ 𝐶
𝜇
(𝐼
𝑇
; 𝑋), 𝜇 ∈ [𝛿 + 𝜇

𝛼,𝛽
, 1), is

meaningful. Lemma 24 with (𝑔
2
, 𝛿

2
) = (𝑓, 𝜇) then yields

𝑄
2
𝑓 ∈ 𝐶

]𝛼,𝛽,𝜇
0

(𝐼
𝑇
; 𝑋), ]

𝛼,𝛽,𝜇
= (𝛼𝜇 + 2𝛼 + 𝛽 − 3)/𝛼. Since

]
𝛼,𝛽,𝜇

≥ ]
𝛼,𝛽,𝛿+𝜇𝛼,𝛽

= 𝛿, we get𝑄
2
𝑓 ∈ 𝐶

𝛿

0
(𝐼
𝑇
; 𝑋), too. Summing

up, we get the assertion.

Before considering the function𝑤
0
in (180), we introduce

the following notation. In the sequel, for 3𝛼 + 2𝛽 > 4, 𝛽 ∈

(0, 𝛼], 𝛼 ∈ (0, 1], and ] ∈ ((2 − 𝛼 − 𝛽)/𝛼, 1), 𝐽
𝛼,𝛽,] ⊆ ((2 − 𝛼 −

𝛽)/𝛼, 1/2) ⊆ (0, 1/2) will denote the interval

𝐽
𝛼,𝛽,] =

{{{

{{{

{

(
2 − 𝛼 − 𝛽

𝛼
, ]] , if ] ∈ (

2 − 𝛼 − 𝛽

𝛼
,
1

2
) ,

(
2 − 𝛼 − 𝛽

𝛼
,
1

2
) , if ] ∈ [1

2
, 1) .

(201)

Notice that, since (2−𝛼−𝛽)/𝛼 ≤ (3−2𝛼−𝛽)/𝛼, if the stronger
condition 5𝛼 + 2𝛽 > 6 is satisfied, then (191) and (201) yield
𝐼
𝛼,𝛽,] ⊆ 𝐽

𝛼,𝛽,] for every fixed ] ∈ ((3 − 2𝛼 − 𝛽)/𝛼, 1). The
introduction of the intervals 𝐽

𝛼,𝛽,] is justified by Lemma 46,
which requires a weaker condition on the pair (𝛼, 𝛽) than the
one in Lemmas 42 and 45.

Lemma 46. Let 3𝛼 + 2𝛽 > 4 in (H2), and let V
0
∈ D(𝐿).

Assume that 𝑘
𝑖1
∈ 𝐶

𝜂𝑖1 (𝐼
𝑇
; 𝑋), ℎ

𝑖2
∈ 𝐶

𝜎𝑖2 (𝐼
𝑇
;C), 𝑦

𝑖2
∈ 𝑌

𝑟

𝛾𝑖2

,

and V
1
+ 𝑓(0) ∈ 𝑌

𝑟

𝜑
, where 𝜂

𝑖1
, 𝜎

𝑖2
∈ ((2 − 𝛼 − 𝛽)/𝛼, 1),

𝛾
𝑖2
, 𝜑 ∈ (4 − 2𝛼 − 2𝛽, 1), 𝑖

𝑙
= 1, . . . , 𝑛

𝑙
, 𝑙 = 1, 2, 𝑟 ∈ [1,∞],

and V
1
= (𝜆

0
𝑀 + 𝐿)V

0
. Let 𝛾 = min

𝑖2=1,...,𝑛2
{𝛾
𝑖2
, 𝜑} and 𝜏

0
=

min
𝑖𝑙=1,...,𝑛𝑙,𝑙=1,2

{𝜂
𝑖1
, 𝜎

𝑖2
, 𝜒

𝛼,𝛽,𝛾
}, where 𝜒

𝛼,𝛽,𝛾
= (𝛼+𝛽+𝛾−2)/𝛼.

Then, for every fixed 𝛿 ∈ 𝐽
𝛼,𝛽,𝜏0

, the function 𝑤
0
defined by

(180) belongs to 𝐶𝛿
0
(𝐼
𝑇
; 𝑋), provided that 𝑓 ∈ 𝐶

𝜇
(𝐼
𝑇
; 𝑋), 𝜇 ∈

[𝛿 + 
𝛼,𝛽
, 1), 

𝛼,𝛽
= (2 − 𝛼 − 𝛽)/𝛼.

Proof. Observe that (cf. (159)) all the results from Lemma 32
to Corollary 38 will be applicable. First, since 2𝛼 + 2𝛽 >

4 − 𝛼 ≥ 3, the choice 𝛾
𝑖2
, 𝜑 ∈ (4 − 2𝛼 − 2𝛽, 1), 𝑖

2
= 1, . . . , 𝑛

2
,

is meaningful. Moreover, since 𝛾 = min
𝑖2=1,...,𝑛2

{𝛾
𝑖2
, 𝜑} ∈

(4 − 2𝛼 − 2𝛽, 1), the number 𝜒
𝛼,𝛽,𝛾

= (𝛼 + 𝛽 + 𝛾 −

2)/𝛼 satisfies 𝜒
𝛼,𝛽,𝛾

∈ ((2 − 𝛼 − 𝛽)/𝛼, 1). Hence, 𝜏
0

=

min
𝑖𝑙=1,...,𝑛𝑙,𝑙=1,2

{𝜂
𝑖1
, 𝜎

𝑖2
, 𝜒

𝛼,𝛽,𝛾
} ∈ ((2 − 𝛼 − 𝛽)/𝛼, 1), too, and

𝐽
𝛼,𝛽,𝜏0

is well defined. Now, let 𝛿 ∈ 𝐽
𝛼,𝛽,𝜏0

be fixed. Due to (20)
or (38), the element𝑥

0
defined by (174) belongs to𝑌𝑟

𝛾
, whereas

the functions ℎ̃
𝑖2
defined by (178) are of class 𝐶𝛿

0
(𝐼
𝑇
; 𝑌

𝑟

𝛾𝑖2

) →

𝐶
𝛿

0
(𝐼
𝑇
; 𝑌

𝑟

𝛾
). Then, since 𝛾 ∈ (4 − 2𝛼 − 2𝛽, 1) ⊆ (2 − 𝛼 −

𝛽, 1), from Lemma 37 and Corollary 38 applied with the pairs
(𝑔

5
, 𝛿

5
) and (𝑥, 𝛿

7
) being replaced by (ℎ̃

𝑖2
, 𝛿) and (𝑥

0
, 𝛿),

respectively, we deduce that 𝑄
5
ℎ̃
𝑖2
, 𝑄

7
𝑥
0
∈ 𝐶

𝛿

0
(𝐼
𝑇
; 𝑋), 𝑖

2
=

1, . . . , 𝑛
2
. In addition, since the 𝑘

𝑖1
’s and the constant func-

tions 𝜅
𝑖1
(𝑡) = 𝐿

𝑖1
V
0
belong to 𝐶𝛿(𝐼

𝑇
; 𝑋), from Proposition 36

applied with (𝑔
61
, 𝑔

62
, 𝑋

1
, 𝑋

2
) = (𝑘

𝑖1
, 𝐿

𝑖1
V
0
, 𝑍, 𝑋), it follows

that 𝑄
6
(𝑘
𝑖1
, 𝐿

𝑖1
V
0
) ∈ 𝐶

𝛿

0
(𝐼
𝑇
; 𝑋), 𝑖

1
= 1, . . . , 𝑛

1
. Finally, since

𝛿 ∈ 𝐽
𝛼,𝛽,𝜏0

⊆ ((2 − 𝛼 − 𝛽)/𝛼, 1/2), the number 𝛿 + 
𝛼,𝛽

satisfies

2 − 𝛼 − 𝛽

𝛼
< 𝛿 ≤ 𝛿 + 

𝛼,𝛽
<
4 − 𝛼 − 2𝛽

2𝛼
< 1, (202)

and the assumption 𝑓 ∈ 𝐶
𝜇
(𝐼
𝑇
; 𝑋), 𝜇 ∈ [𝛿 + 

𝛼,𝛽
, 1), makes

sense. Then, the function 𝑓 = 𝑓 − 𝑓(0) being of class
𝐶
𝜇

0
(𝐼
𝑇
; 𝑋), Lemma 32 applied with (𝑔

5
, 𝛿

5
) = (𝑓, 𝜇) yields

𝑄
5
𝑓 ∈ 𝐶

]̃𝛼,𝛽,𝜇
0

(𝐼
𝑇
; 𝑋), ]̃

𝛼,𝛽,𝜇
= (𝛼𝜇 + 𝛼 + 𝛽 − 2)/𝛼. Since

]̃
𝛼,𝛽,𝜇

≥ ]̃
𝛼,𝛽,𝛿+𝛼,𝛽

= 𝛿, we conclude that 𝑄
5
𝑓 ∈ 𝐶

𝛿

0
(𝐼
𝑇
; 𝑋),

too. Summing up, we get the assertion.

Remark 47. We stress that, if 𝛽 ∈ (0, 1) in (H2), then 0 <

𝜌
𝛼,𝛽

≤ 𝜇
𝛼,𝛽

, so that in both Lemmas 45 and 46 we have to
assume that 𝑓 ∈ 𝐶

𝜇
(𝐼
𝑇
; 𝑋) with 𝜇 > 𝛿. This is necessary

in order to restore the loss of regularity produced by the
operators 𝑄

2
and 𝑄

5
.

We can now prove the main results of the section.

Theorem48. Assume (161) and V
0
∈ D(𝐿), and let 5𝛼+2𝛽 > 6

in (H2). Assume that 𝑘
𝑖1
∈ 𝐶

𝜂𝑖1 (𝐼
𝑇
; 𝑍), ℎ

𝑖2
∈ 𝐶

𝜎𝑖2 (𝐼
𝑇
;C), 𝑦

𝑖2
∈

𝑌
𝑟

𝛾𝑖2

, and V
1
+ 𝑓(0) ∈ 𝑌

𝑟

𝜑
, where 𝜂

𝑖1
, 𝜎

𝑖2
∈ ((3 − 2𝛼 − 𝛽)/𝛼, 1),

𝛾
𝑖2
, 𝜑 ∈ (5 − 3𝛼 − 2𝛽, 1), 𝑖

𝑙
= 1, . . . , 𝑛

𝑙
, 𝑙 = 1, 2, 𝑟 ∈ [1,∞],

and V
1
= (𝜆

0
𝑀 + 𝐿)V

0
. Let 𝛾 = min

𝑖2=1,...,𝑛2
{𝛾
𝑖2
, 𝜑} and 𝜏 =

min
𝑖𝑙=1,...,𝑛𝑙,𝑙=1,2

{𝜂
𝑖1
, 𝜎

𝑖2
, 𝜒

𝛼,𝛽,𝛾
}, where 𝜒

𝛼,𝛽,𝛾
= (𝛼+𝛽+𝛾−2)/𝛼.

Then, for every fixed 𝛿 ∈ 𝐼
𝛼,𝛽,𝜏

problem (160) admits a unique
strict solution V ∈ 𝐶

𝛿
(𝐼
𝑇
;D(𝐿)) satisfying V(0) = V

0
and such

that 𝐿V, 𝐷
𝑡
𝑀V ∈ 𝐶𝛿(𝐼

𝑇
; 𝑋), provided that 𝑓 ∈ 𝐶

𝜇
(𝐼
𝑇
; 𝑋), 𝜇 ∈

[𝛿 + 𝜇
𝛼,𝛽
, 1), 𝜇

𝛼,𝛽
= (3 − 2𝛼 − 𝛽)/𝛼.
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Proof. Of course, due to (159), the assumption 𝛾
𝑖2
, 𝜑 ∈ (5 −

3𝛼 − 2𝛽, 1), 𝑖
2
= 1, . . . , 𝑛

2
, makes sense. In addition, since

𝛾 = min
𝑖2=1,...,𝑛2

{𝛾
𝑖2
, 𝜑} ∈ (5 − 3𝛼 − 2𝛽, 1), we have 𝜒

𝛼,𝛽,𝛾
=

(𝛼 +𝛽+ 𝛾− 2)/𝛼 ∈ ((3 − 2𝛼 −𝛽)/𝛼, 1). Therefore, by virtue of
the choice of the Hölder exponents 𝜂

𝑖1
and 𝜎

𝑖2
, the number

𝜏 = min
𝑖𝑙=1,...,𝑛𝑙, 𝑙=1,2

{𝜂
𝑖1
, 𝜎

𝑖2
, 𝜒

𝛼,𝛽,𝛾
} belongs to ((3 − 2𝛼 −

𝛽)/𝛼, 1) too, and the interval 𝐼
𝛼,𝛽,𝜏

is well defined. Further, the
numbers 𝜂, 𝜏

1
, and 𝜏

0
being as in the statements of Lemmas

42, 45, and 46, respectively, we have 𝜏 = 𝜏
0
≤ 𝜏

1
≤ 𝜂. As a

consequence, since 𝐼
𝛼,𝛽,𝜏

⊆ 𝐼
𝛼,𝛽,𝜏1

⊆ 𝐼
𝛼,𝛽,𝜂

and 𝐼
𝛼,𝛽,𝜏

⊆ 𝐽
𝛼,𝛽,𝜏

,
all the mentioned lemmas are applicable with 𝛿 ∈ 𝐼

𝛼,𝛽,𝜏
. To

this purpose, we stress that since ((3−2𝛼−𝛽)/𝛼, 1) ⊆ ((2−𝛼−

𝛽)/𝛼, 1) and (5−3𝛼−2𝛽, 1) ⊆ (4−2𝛼−2𝛽, 1) ⊆ (3−2𝛼−𝛽, 1),
the conditions for the applicability of both Lemmas 45 and
46 are fulfilled. Hence, now let 𝛿 ∈ 𝐼

𝛼,𝛽,𝜏
being fixed. First,

due to Lemma 42, the operator �̃� = 𝑅|
𝐶
𝛿

0
(𝐼𝑇;𝑋)

, �̃�𝑔 = 𝑅𝑔,
𝑔 ∈ 𝐶

𝛿

0
(𝐼
𝑇
; 𝑋), a fortiori maps 𝐶𝛿

0
(𝐼
𝑇
; 𝑋) into itself. Then,

𝐶
𝛿

0
(𝐼
𝑇
; 𝑋) being endowed with the same norm ‖ ⋅ ‖

𝛿,0,𝑇;𝑋
of

𝐶
𝛿
(𝐼
𝑇
; 𝑋), from (197) we obtain the estimates


�̃�
𝑛L(𝐶

𝛿

0
(𝐼𝑇;𝑋))

≤ [𝑐
42
(𝑇)]

𝑛
(
𝑇
𝑛

𝑛!
)

1/𝑝

, 𝑛 ∈ N ∪ {0} ,

𝑝 ∈ (
1

1 − 2𝛿
,∞) .

(203)

In particular, (203) yields that ∑
∞

𝑛=0
�̃�
𝑛 converges in

L(𝐶
𝛿

0
(𝐼
𝑇
; 𝑋)). From generalized Neumann’s Theorem it thus

follows that 1 ∈ 𝜌(�̃�), the inverse (𝐼 − �̃�)−1 ∈ L(𝐶
𝛿

0
(𝐼
𝑇
; 𝑋))

being precisely ∑
∞

𝑛=0
�̃�
𝑛. Since Lemmas 45 and 46 (both

applied with (observe here that if 𝜇 ∈ [𝛿 + 𝜇
𝛼,𝛽
, 1),

then the exponent ]̃
𝛼,𝛽,𝜇

in the last part of the proof of
Lemma 46 satisfies ]̃

𝛼,𝛽,𝜇
≥ ]̃

𝛼,𝛽,𝛿+𝜇𝛼,𝛽
≥ ]̃

𝛼,𝛽,𝛿+𝛼,𝛽
= 𝛿. For,

]
𝛼,𝛽,𝛿+𝜇𝛼,𝛽

= (𝛼𝛿 + 1 − 𝛼)/𝛼 = 𝛿 + (1 − 𝛼)/𝛼)𝑓 ∈ 𝐶
𝜇
(𝐼
𝑇
; 𝑋),

𝜇 ∈ [𝛿+𝜇
𝛼,𝛽
, 1) ⊆ [𝛿+𝜌

𝛼,𝛽
, 1)) imply that𝑤

0
, 𝑤

1
∈ 𝐶

𝛿

0
(𝐼
𝑇
; 𝑋),

we conclude that the fixed-point equation (179) admits the
unique solution

𝑤 =

∞

∑

𝑛=0

�̃�
𝑛
(𝑤

0
+ 𝑤

1
) ∈ 𝐶

𝛿

0
(𝐼
𝑇
; 𝑋) . (204)

Observe now that the data vector (𝑘
1
, . . . , 𝑘

𝑛1
, ℎ

1
, . . . , ℎ

𝑛2
,

𝑓, 𝑦
1
, . . . , 𝑦

𝑛2
, V
1
+ 𝑓(0)) satisfies all the assumptions which

were needed to show the equivalence between the fixed-point
equation (179) and problem (170). Indeed, 𝛿 ≤ 𝜏 and 𝛿 ≤

𝛿 + 𝜇
𝛼,𝛽

≤ 𝜇 imply, respectively, that 𝑘
𝑖1
∈ 𝐶

𝛿
(𝐼
𝑇
; 𝑍), ℎ

𝑖2
∈

𝐶
𝛿
(𝐼
𝑇
;C) and 𝑓 ∈ 𝐶

𝛿
(𝐼
𝑇
; 𝑋), 𝑖

𝑙
= 1, . . . , 𝑛

𝑙
, 𝑙 = 1, 2, whereas,

as in Lemma 46, 𝛾 = min
𝑖2=1,...,𝑛2

{𝛾
𝑖2
, 𝜑} implies that 𝑦

𝑖2
, V
1
+

𝑓(0) ∈ 𝑌
𝑟

𝛾
. Therefore, since 𝐴−1

∈ L(𝑋), if 𝑤 ∈ 𝐶
𝛿

0
(𝐼
𝑇
; 𝑋) is

the solution to the fixed-point equation (179), then 𝐴
−1
𝑤 ∈

𝐶
𝛿

0
(𝐼
𝑇
; 𝑋), too, and the function 𝐹

𝑤
defined by (169) satisfies

𝐹
𝑤
∈ 𝐶

𝛿
(𝐼
𝑇
; 𝑋) ,

𝑥
0
= 𝐹

𝑤
(0) =

𝑛2

∑

𝑖2=1

ℎ
𝑖2
(0) 𝑦

𝑖2
+ V

1
+ 𝑓 (0) ∈ 𝑌

𝑟

𝛾
,

(205)

where 𝛿 ∈ 𝐼
𝛼,𝛽,𝜏

⊊ (2−𝛼−𝛽)/𝛼, 1), 𝛾 ∈ (5−3𝛼−2𝛽, 1) ⊊ (1−

𝛽, 1), and 𝑟 ∈ [1,∞]. Consequently, recalling (168), we have
proved that problem (160) has a unique strict global solution
V = 𝐿

−1
𝑤+V

0
∈ 𝐶

𝛿
(𝐼
𝑇
;D(𝐿)) satisfying V(0) = 𝐿

−1
𝑤(0)+V

0
=

V
0
and such that 𝐿V = 𝑤 + 𝐿V

0
∈ 𝐶

𝛿
(𝐼
𝑇
; 𝑋). As far as the

regularity of𝐷
𝑡
𝑀V is concerned, instead, it suffices to observe

that (168), (170), 𝑤 ∈ 𝐶
𝛿

0
(𝐼
𝑇
; 𝑋), and 𝐹

𝑤
∈ 𝐶

𝛿
(𝐼
𝑇
; 𝑋) yield

𝐷
𝑡
𝑀V = 𝐷

𝑡
𝐴
−1
𝑤 = 𝑤 + 𝐹

𝑤
∈ 𝐶

𝛿
(𝐼
𝑇
; 𝑋) . (206)

The proof is complete.

Remark 49. Theorem 48 improves the faulty Thereoms 5.6
and 5.7 in [20] in two aspects. First, the assumption 3𝛼+8𝛽 >

10 is weakened to 5𝛼 + 2𝛽 > 6. In fact, 3𝛼 + 8𝛽 > 10

implies that 5𝛼 + 2𝛽 = 3𝛼 + 8𝛽 + 2𝛼 − 6𝛽 > 10 − 4𝛼 ≥ 6.
Hence, in the special case 𝛼 = 1, the constraint 𝛽 > 7/8

in [20] reduces to the definitely weaker 𝛽 > 1/2. Second,
in [20], only for 𝑛

1
= 𝑛

2
= 1 and opportunely chosen 𝛾 <

𝛽, the data 𝑦
1
and V

1
+ 𝑓(0) were assumed to belong to

the intermediate spaces 𝑋𝛾,𝑟

𝐴
, whereas here, removing the

assumption 𝛾 < 𝛽 and considering the general case 𝑛
1
, 𝑛

2
∈

N, we allow 𝑦
1
, . . . , 𝑦

𝑛2
and V

1
+ 𝑓(0) to belong also to the

interpolation spaces (𝑋,D(𝐴))
𝛾,𝑟
. To emphasize how much

these aspects are decisive, let 𝛼 = 1 in Theorem 48. Then, if
𝛽 ∈ (1/2, 2/3] and the choice 𝑋𝜓,𝑟

𝐴
is understood for 𝑌𝑟

𝜓
, we

have 𝛾
𝑖2
, 𝜑 ∈ (2 − 2𝛽, 1) ⊊ [𝛽, 1), and the spaces 𝑋𝛾𝑖2

,𝑟

𝐴
and

𝑋
𝜑,𝑟

𝐴
, 𝑖
2
= 1, . . . , 𝑛

2
, may be smaller thanD(𝐴). However, the

choice 𝑌𝑟
𝜓
= (𝑋,D(𝐴))

𝜓,𝑟
being admissible, in this situation

too we can solve problem (160) with the data in spaces larger
than D(𝐴). Further, since 2/3 < 7/8, in this case the results
in [20] would not be applicable. These observations lead us
to conclude that the more delicate approach followed in this
paper with respect to that in [20, Sections 4 and 5], and
especially the sharper results of the present Sections 3 and
4, yield a valuable refinement in the treatment of questions
of maximal time regularity for the strict solutions to (160); of
course, unless that the not too much significant case 𝛽 = 1 is
assumed in (H2).

Remark 50. The assumption 5𝛼+2𝛽 > 6 in (H2) implies that
𝛽 ∈ ((6 − 5𝛼)/2, 𝛼] ⊆ (1/2, 1] and 𝛼 ∈ (6/7, 1]. In particular,
if 𝛼 = 1, then Theorem 48 holds with 𝛽 ∈ (1/2, 1], 𝜂

𝑖1
, 𝜎

𝑖2
∈

(1 − 𝛽, 1), 𝛾
𝑖2
, 𝜑 ∈ (2 − 2𝛽, 1), 𝑖

𝑙
= 1, . . . , 𝑛

𝑙
, 𝑙 = 1, 2, and

𝜇
1,𝛽

= 1−𝛽. Hence, 𝛾 ∈ (2−2𝛽, 1),𝜒
1,𝛽,𝛾

= 𝛽+𝛾−1 ∈ (1−𝛽, 𝛽),
and 𝛿 ∈ 𝐼

1,𝛽,𝜏
with 𝜏 ∈ (1 − 𝛽, 𝛽), where

𝐼
1,𝛽,𝜏

= (1 − 𝛽, 𝜏] , if 𝜏 ∈ (1 − 𝛽, 1
2
) ,

𝐼
1,𝛽,𝜏

= (1 − 𝛽,
1

2
) , if 𝜏 ∈ [1

2
, 𝛽) .

(207)

Clearly, if 𝛽 = 1, then 5𝛼 + 2𝛽 > 6 is redundant,
and Theorem 48 holds with 𝜂

𝑖1
, 𝜎

𝑖2
, 𝛾

𝑖2
, 𝜑 ∈ (0, 1), 𝑖

𝑙
=

1, . . . , 𝑛
𝑙
, 𝑙 = 1, 2, 𝜇

1,1
= 0, 𝛾 = 𝜒

1,1,𝛾
∈ (0, 1), and 𝛿 ∈ 𝐼

1,1,𝜏
,

𝜏 ∈ (0, 1), where 𝐼
1,1,𝜏

= (0, 𝜏] if 𝜏 ∈ (0, 1/2) and 𝐼
1,1,𝜏

=

(0, 1/2) if 𝜏 ∈ [1/2, 1).
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Remark 51. Observe that, if the 𝜂
𝑖1
’s and 𝜎

𝑖2
’s are assumed to

vary in the smaller interval 𝑈
𝛼,𝛽

:= ((3 − 2𝛼 − 𝛽)/𝛼, (𝛼 +

𝛽 − 1)/𝛼), then 𝜑 and the 𝛾
𝑖2
’s can be chosen such that

𝜏 = min
𝑖𝑙=1,...,𝑛𝑙, 𝑙=1,2

{𝜂
𝑖1
, 𝜎

𝑖2
}. To this purpose, letting 𝜌 =

max
𝑖𝑙=1,...,𝑛𝑙, 𝑙=1,2

{𝜂
𝑖1
, 𝜎

𝑖2
} ∈ 𝑈

𝛼,𝛽
, it suffices to take 𝛾

𝑖2
, 𝜑 ∈

𝑉
𝛼,𝛽,𝜌

, 𝑖
2
= 1, . . . , 𝑛

2
, where 𝑉

𝛼,𝛽,𝜌
:= [2 + 𝛼𝜌 − 𝛼 − 𝛽, 1) ⊊

(5 − 3𝛼 − 2𝛽, 1). Then 𝛾 = min
𝑖2=1,...,𝑛2

{𝛾
𝑖2
, 𝜑} ∈ 𝑉

𝛼,𝛽,𝜌
and

𝜒
𝛼,𝛽,𝛾

= (𝛼 + 𝛽 + 𝛾 − 2)/𝛼 ≥ 𝜌. In other words, provided
that the data vector (𝑦

1
, . . . , 𝑦

𝑛2
, V
1
+𝑓(0)) is smooth enough,

the pair (𝐿V, 𝐷
𝑡
𝑀V) has the maximal time regularities which

is the minimal between the time regularities of the 𝑘
𝑖1
’s and

ℎ
𝑖2
’s.

We conclude with the results which follow from
Theorem 48 for problems (163)–(166).

Theorem52. Assume (161) and V
0
∈ D(𝐿), and let 5𝛼+2𝛽 > 6

in (H2). Assume that 𝑘
𝑖1
∈ 𝐶

𝜂𝑖1 (𝐼
𝑇
; 𝑍) and 𝐿V

0
+ 𝑓(0) ∈ 𝑌

𝑟

𝛾
,

where 𝜂
𝑖1
∈ ((3 − 2𝛼 − 𝛽)/𝛼, 1), 𝑖

1
= 1, . . . , 𝑛

1
, 𝛾 ∈ (5 − 3𝛼 −

2𝛽, 1), and 𝑟 ∈ [1,∞]. Let 𝜏 = min
𝑖1=1,...,𝑛1

{𝜂
𝑖1
, 𝜒

𝛼,𝛽,𝛾
}, where

𝜒
𝛼,𝛽,𝛾

= (𝛼 + 𝛽 + 𝛾 − 2)/𝛼. Then, for every fixed 𝛿 ∈ 𝐼
𝛼,𝛽,𝜏

problem (165) admits a unique strict solution V ∈ 𝐶𝛿(𝐼
𝑇
;D(𝐿))

satisfying V(0) = V
0
and such that 𝐿V, 𝐷

𝑡
𝑀V ∈ 𝐶

𝛿
(𝐼
𝑇
; 𝑋),

provided that 𝑓 ∈ 𝐶
𝜇
(𝐼
𝑇
; 𝑋), 𝜇 ∈ [𝛿 + 𝜇

𝛼,𝛽
, 1), 𝜇

𝛼,𝛽
=

(3 − 2𝛼 − 𝛽)/𝛼.

Proof. Repeat the proofs of Lemmas 42, 45, and 46,
Corollary 44, and Theorem 48, letting there 𝜆

0
= ℎ

𝑖2
= 0,

𝑖
2
= 1, . . . , 𝑛

2
. To this purpose, observe that (169) and (174)

reduce to 𝐹
𝑤
(𝑡) = ∑

𝑛1

𝑖1=1
[K(𝑘

𝑖1
, 𝑆

𝑖1
𝑤)(𝑡) +K(𝑘

𝑖1
, 𝐿

𝑖1
V
0
)(𝑡)] +

𝐿V
0
+ 𝑓(𝑡) and 𝑥

0
= 𝐿V

0
+ 𝑓(0). Consequently, (180)–(182)

change to 𝑤
0
= 𝑄

7
𝑥
0
+ ∑

𝑛1

𝑖1=1
𝑄
6
(𝑘
𝑖1
, 𝐿

𝑖1
V
0
) + 𝑄

5
𝑓, 𝑤

1
=

−∑
𝑛1

𝑖1=1
𝑄
3
(𝑘
𝑖1
, 𝐿

𝑖1
V
0
) − 𝑄

2
𝑓, and 𝑅𝑤 = ∑

𝑛1

𝑖1=1
[𝑄

6
(𝑘
𝑖1
, 𝑆

𝑖1
𝑤) −

𝑄
3
(𝑘
𝑖1
, 𝑆

𝑖1
𝑤)].

Theorem53. Assume (161) and V
0
∈ D(𝐿), and let 5𝛼+2𝛽 > 6

in (H2). Assume that 𝑘
𝑖1
∈ 𝐶

𝜂𝑖1 (𝐼
𝑇
; 𝑍), ℎ

𝑖2
∈ 𝐶

𝜎𝑖2 (𝐼
𝑇
;C), 𝑦

𝑖2
∈

𝑌
𝑟

𝛾𝑖2

, and 𝐿V
0
∈ 𝑌

𝑟

𝜑
, where 𝜂

𝑖1
, 𝜎

𝑖2
∈ ((3 − 2𝛼 − 𝛽)/𝛼, 1), 𝛾

𝑖2
, 𝜑 ∈

(5 − 3𝛼 − 2𝛽, 1), 𝑖
𝑙
= 1, . . . , 𝑛

𝑙
, 𝑙 = 1, 2, and 𝑟 ∈ [1,∞]. Let

𝛾 = min
𝑖2=1,...,𝑛2

{𝛾
𝑖2
, 𝜑} and 𝜏 = min

𝑖𝑙=1,...,𝑛𝑙, 𝑙=1,2
{𝜂
𝑖1
, 𝜎

𝑖2
, 𝜒

𝛼,𝛽,𝛾
},

where 𝜒
𝛼,𝛽,𝛾

= (𝛼+𝛽+𝛾−2)/𝛼. Then, for every fixed 𝛿 ∈ 𝐼
𝛼,𝛽,𝜏

problem (166) admits a unique strict solution V ∈ 𝐶𝛿(𝐼
𝑇
;D(𝐿))

satisfying V(0) = V
0
and such that 𝐿V, 𝐷

𝑡
𝑀V ∈ 𝐶𝛿(𝐼

𝑇
; 𝑋).

Proof. Let 𝜆
0
= 𝑓 = 0 in the proofs of Lemmas 42, 45, and 46,

Corollary 44, and Theorem 48. In this case, (169) and (174)
reduce to 𝐹

𝑤
(𝑡) = ∑

𝑛1

𝑖1=1
[K(𝑘

𝑖1
, 𝑆

𝑖1
𝑤)(𝑡) +K(𝑘

𝑖1
, 𝐿

𝑖1
V
0
)(𝑡)] +

∑
𝑛2

𝑖2=1
ℎ
𝑖2
(𝑡)𝑦

𝑖2
+ 𝐿V

0
and 𝑥

0
= ∑

𝑛2

𝑖2=1
ℎ
𝑖2
(0)𝑦

𝑖2
+ 𝐿V

0
. Hence,

(180)–(182) change to 𝑤
0
= 𝑄

7
𝑥
0
+ ∑

𝑛1

𝑖1=1
𝑄
6
(𝑘
𝑖1
, 𝐿

𝑖1
V
0
) +

∑
𝑛2

𝑖2=1
𝑄
5
ℎ̃
𝑖2
, 𝑤

1
= −∑

𝑛1

𝑖1=1
𝑄
3
(𝑘
𝑖1
, 𝐿

𝑖1
V
0
) − ∑

𝑛2

𝑖2=1
𝑄
4
(ℎ

𝑖2
, 𝑦

𝑖2
),

and 𝑅𝑤 = ∑
𝑛1

𝑖1=1
[𝑄

6
(𝑘
𝑖1
, 𝑆

𝑖1
𝑤) − 𝑄

3
(𝑘
𝑖1
, 𝑆

𝑖1
𝑤)].

Let us now turn to the degenerate differential problems
(163) and (164).

Theorem54. Assume (161) and V
0
∈ D(𝐿), and let 5𝛼+2𝛽 > 6

in (H2). Assume that 𝐿V
0
+ 𝑓(0) ∈ 𝑌

𝑟

𝛾
, 𝛾 ∈ (5 − 3𝛼 − 2𝛽, 1),

𝑟 ∈ [1,∞], and let 𝜒
𝛼,𝛽,𝛾

= (𝛼 + 𝛽 + 𝛾 − 2)/𝛼. Then, for every
fixed 𝛿 ∈ 𝐼

𝛼,𝛽,𝜒𝛼,𝛽,𝛾
problem (163) admits a unique strict global

solution V ∈ 𝐶
𝛿
(𝐼
𝑇
;D(𝐿)) satisfying V(0) = V

0
and such that

𝐿V, 𝐷
𝑡
𝑀V ∈ 𝐶𝛿(𝐼

𝑇
; 𝑋), provided that 𝑓 ∈ 𝐶

𝜇
(𝐼
𝑇
; 𝑋), 𝜇 ∈ [𝛿 +

𝜇
𝛼,𝛽
, 1), 𝜇

𝛼,𝛽
= (3 − 2𝛼 − 𝛽)/𝛼.

Proof. Let 𝜆
0
= 𝑘

𝑖1
= ℎ

𝑖2
= 0, 𝑖

𝑙
= 1, . . . , 𝑛

𝑙
, 𝑙 = 1, 2, in

problem (160) and formulae (169), (174) and, (179)–(182).
Then, 𝐹

𝑤
(𝑡) = 𝐿V

0
+ 𝑓(𝑡), 𝑥

0
= 𝐿V

0
+ 𝑓(0) and 𝑤 =

𝑤
0
+ 𝑤

1
= 𝑄

7
𝑥
0
+ 𝑄

5
𝑓 − 𝑄

2
𝑓. Consequently, Lemma 42

and Corollary 44 are unneeded, and the proof ofTheorem 48
simplifies as follows. First, due to 𝛾 ∈ (5 − 3𝛼 − 2𝛽, 1) we
have 𝜒

𝛼,𝛽,𝛾
∈ ((3 − 2𝛼 − 𝛽)/𝛼, 1), and the interval 𝐼

𝛼,𝛽,𝜒𝛼,𝛽,𝛾
is

well defined. Hence, let 𝛿 ∈ 𝐼
𝛼,𝛽,𝜒𝛼,𝛽,𝛾

being fixed. Since (cf.
(200)) 𝑓 ∈ 𝐶

𝜇
(𝐼
𝑇
; 𝑋), 𝜇 ∈ [𝛿 + 𝜇

𝛼,𝛽
, 1) ⊊ ((3 − 2𝛼 − 𝛽)/𝛼, 1),

reasoning as in the last part of the proof of Lemma 45 we get
𝑄
2
𝑓 ∈ 𝐶

𝛿

0
(𝐼
𝑇
; 𝑋). Moreover (see the proof of Lemma 46),

since 𝑥
0
∈ 𝑌

𝑟

𝛾
, 𝛾 ∈ (5 − 3𝛼 − 2𝛽, 1) ⊆ (2 − 𝛼 − 𝛽, 1)

and 𝑓 ∈ 𝐶
𝜇

0
(𝐼
𝑇
; 𝑋), 𝜇 ∈ [𝛿 + 𝜇

𝛼,𝛽
, 1) ⊆ [𝛿 + 

𝛼,𝛽
, 1),


𝛼,𝛽

= (2−𝛼−𝛽)/𝛼, Corollary 38 and Lemma 32 applied with
(𝑥, 𝛿

7
) = (𝑥

0
, 𝛿) and (𝑔

5
, 𝛿

5
) = (𝑓, 𝛿+

𝛼,𝛽
) yield𝑄

7
𝑥
0
, 𝑄

5
𝑓 ∈

𝐶
𝛿

0
(𝐼
𝑇
; 𝑋). Summing up, we find that 𝑤 ∈ 𝐶

𝛿

0
(𝐼
𝑇
; 𝑋). The

assertion then follows from V = 𝐿
−1
𝑤 + V

0
and (cf. (206))

𝐷
𝑡
𝑀V = 𝑤 + 𝐿V

0
+ 𝑓.

Remark 55. We refer to [19, Theorem 5.3] for a result of both
time and space regularity for problem (163). There, provided
that 𝜓 and 𝛿 are opportunely chosen and the data satisfy
assumptions similar to those in Theorem 54, it is shown that
𝐷
𝑡
𝑀V ∈ 𝐶

𝛿
(𝐼
𝑇
; (𝑋,D(𝐴))

𝜓,𝑟
), and that the higher is the

order 𝜓 of the interpolation space where we look for space
regularity, the lower is the Hölder exponent 𝛿 of regularity
in time. Notice that 𝐿V = 𝐷

𝑡
𝑀V − 𝑓 has no space regularity,

unless 𝑓 has too.

Theorem56. Assume (161) and V
0
∈ D(𝐿), and let 5𝛼+2𝛽 > 6

in (H2). Assume that ℎ
𝑖2
∈ 𝐶

𝜎𝑖2 (𝐼
𝑇
;C), 𝑦

𝑖2
∈ 𝑌

𝑟

𝛾𝑖2

, and 𝐿V
0
∈

𝑌
𝑟

𝜑
, where 𝜎

𝑖2
∈ ((3 − 2𝛼 − 𝛽)/𝛼, 1), 𝛾

𝑖2
, 𝜑 ∈ (5 − 3𝛼 − 2𝛽, 1),

𝑖
2
= 1, . . . , 𝑛

2
, and 𝑟 ∈ [1,∞]. Let 𝛾 = min

𝑖2=1,...,𝑛2
{𝛾
𝑖2
, 𝜑} and

𝜏 = min
𝑖2=1,...,𝑛2

{𝜎
𝑖2
, 𝜒

𝛼,𝛽,𝛾
}, where 𝜒

𝛼,𝛽,𝛾
= (𝛼 + 𝛽 + 𝛾 − 2)/𝛼.

Then, for every fixed 𝛿 ∈ 𝐼
𝛼,𝛽,𝜏

, problem (164) admits a unique
strict global solution V ∈ 𝐶𝛿(𝐼

𝑇
;D(𝐿)) satisfying V(0) = V

0
and

such that 𝐿V, 𝐷
𝑡
𝑀V ∈ 𝐶𝛿(𝐼

𝑇
; 𝑋).

Proof. Let 𝜆
0
= 𝑘

𝑖1
= 𝑓 = 0, 𝑖

1
= 1, . . . , 𝑛

1
, in problem (160)

and formulae (169), (174), and (179)–(182). Then, 𝐹
𝑤
(𝑡) =

∑
𝑛2

𝑖2=1
ℎ
𝑖2
(𝑡)𝑦

𝑖2
+ 𝐿V

0
, 𝑥

0
= ∑

𝑛2

𝑖2=1
ℎ
𝑖2
(0)𝑦

𝑖2
+ 𝐿V

0
and 𝑤 =

𝑤
0
+𝑤

1
= 𝑄

7
𝑥
0
+∑

𝑛2

𝑖2=1
𝑄
5
ℎ̃
𝑖2
−∑

𝑛2

𝑖2=1
𝑄
4
(ℎ

𝑖2
, 𝑦

𝑖2
).Therefore, as

inTheorem 54, we do not need Lemma 42 and Corollary 44,
and the proof of Theorem 48 simplifies as follows. Again,
𝛾 = min

𝑖2=1,...,𝑛2
{𝛾
𝑖2
, 𝜑} ∈ (5 − 3𝛼 − 2𝛽, 1) implies that



30 Abstract and Applied Analysis

𝜒
𝛼,𝛽,𝛾

∈ ((3−2𝛼−𝛽)/𝛼, 1), so that 𝜏 = min
𝑖2=1,...,𝑛2

{𝜎
𝑖2
, 𝜒

𝛼,𝛽,𝛾
} ∈

((3 − 2𝛼 − 𝛽)/𝛼, 1), and the interval 𝐼
𝛼,𝛽,𝜏

is well defined. Let
𝛿 ∈ 𝐼

𝛼,𝛽,𝜏
be fixed. First (see the proof of Lemma 45), since

𝛾
𝑖2
∈ (5−3𝛼−2𝛽, 1) ⊆ (3−2𝛼−𝛽, 1), Lemma 30 applied with

(𝑔
4
, 𝑦, 𝛿

4
, 𝛾) = (ℎ

𝑖2
, 𝑦

𝑖2
, 𝛿, 𝛾

𝑖2
) yields 𝑄

4
(ℎ

𝑖2
, 𝑦

𝑖2
) ∈ 𝐶

𝛿

0
(𝐼
𝑇
; 𝑋),

𝑖
2
= 1, . . . , 𝑛

2
. On the other side (see the proof of Lemma 46),

since 𝑥
0
∈ 𝑌

𝑟

𝛾
and ℎ̃

𝑖2
∈ 𝐶

𝛿

0
(𝐼
𝑇
; 𝑌

𝑟

𝛾𝑖2

) → 𝐶
𝛿

0
(𝐼
𝑇
; 𝑌

𝑟

𝛾
), 𝛾 ∈ (5 −

3𝛼− 2𝛽, 1) ⊆ (2 −𝛼−𝛽, 1), from Lemma 37 and Corollary 38
appliedwith (𝑔

5
, 𝛿

5
) = (ℎ̃

𝑖2
, 𝛿) and (𝑥, 𝛿

7
) = (𝑥

0
, 𝛿)we deduce

that 𝑄
5
ℎ̃
𝑖2
, 𝑄

7
𝑥
0
∈ 𝐶

𝛿

0
(𝐼
𝑇
; 𝑋), 𝑖

2
= 1, . . . , 𝑛

2
. Summing up,

we find that 𝑤 ∈ 𝐶
𝛿

0
(𝐼
𝑇
; 𝑋), and the assertion again follows

from V = 𝐿
−1
𝑤 + V

0
and (cf. (206)) 𝐷

𝑡
𝑀V = 𝑤 + 𝐿V

0
+

∑
𝑛2

𝑖2=1
ℎ
𝑖2
𝑦
𝑖2
.

6. An Application to a Concrete Case

Theorem 48 is here applied to determine the right functional
framework where to search for the solution of an inverse
problem arising in the theory of heat conduction formaterials
with memory. To this purpose, let Ω ⊊ R𝑁, 𝑁 ∈ N, be
a bounded domain with boundary 𝜕Ω of class 𝐶1,1 (cf. [36,
p. 94]). If Ω represents a rigid thermal body with memory,
then the linearized theory of heat flow yields the following
equations linking the internal energy 𝑒, the heat flux q =

(𝑞
1
, . . . , 𝑞

𝑁
), and the temperature Θ (cf. [32, 37–40]):

𝑒 (𝑡, 𝑥) = 𝑒
0
+ 𝑎 (0, 𝑥)Θ (𝑡, 𝑥) + ∫

𝑡

0

𝐷
𝑡
𝑎 (𝑡 − 𝑠, 𝑥)Θ (𝑠, 𝑥) d𝑠,

𝑞
𝑗
(𝑡, 𝑥) = −

𝑟1

∑

𝑖=1

𝑏
𝑖
(0) 𝐶

𝑖,𝑗
(𝑥;𝐷

𝑥
)Θ (𝑡, 𝑥)

−

𝑟1

∑

𝑖=1

∫

𝑡

0

𝐷
𝑡
𝑏
𝑖
(𝑡 − 𝑠) 𝐶

𝑖,𝑗
(𝑥;𝐷

𝑥
)Θ (𝑠, 𝑥) d𝑠,

𝑗 = 1, . . . , 𝑁,

𝐷
𝑡
𝑒 (𝑡, 𝑥) = −div

𝑥
q (𝑡, 𝑥) + 𝑔 (𝑡, 𝑥)

= −

𝑁

∑

𝑗=1

𝐷
𝑥𝑗
𝑞
𝑗
(𝑡, 𝑥) + 𝑔 (𝑡, 𝑥) .

(208)

Here 𝑡 ∈ 𝐼
𝑇
, 𝐼
𝑇
= [0, 𝑇], 𝑇 > 0, 𝑥 = (𝑥

1
, . . . , 𝑥

𝑁
) ∈ Ω, 𝑟

1
∈ N,

𝑒
0
∈ R, and𝐷

𝑡
= 𝜕/𝜕𝑡, whereas the 𝐶

𝑖,𝑗
(𝑥; 𝐷

𝑥
)’s represent the

first-order linear differential operators

𝐶
𝑖,𝑗
(x; 𝐷

𝑥
) =

𝑁

∑

𝑘=1

𝑐
𝑖,𝑗,𝑘

(𝑥)𝐷
𝑥𝑘
, 𝑥 ∈ Ω,

𝑖 = 1, . . . , 𝑟
1
, 𝑗 = 1, . . . , 𝑁,

(209)

where 𝑐
𝑖,𝑗,𝑘

∈ 𝐶
1
(Ω;R) and 𝐷

𝑥𝑘
= 𝜕/𝜕𝑥

𝑘
, 𝑖 = 1, . . . , 𝑟

1
,

𝑗, 𝑘 = 1, . . . , 𝑁. According to the terminology of [39, 40], the
functions 𝑎, 𝑏

𝑖
, 𝑖 = 1, . . . , 𝑟

1
, and 𝑔 are called, respectively, the

energy-temperature relaxation function, the heat conduction

relaxation functions, and the heat supply function and we
assume that they satisfy the following conditions:

𝐷
𝑘

𝑡
𝑎 (⋅, 𝑥) ∈ 𝐶 (𝐼𝑇;R) , 𝑘 = 0, 1, 2,

𝑎 (0, 𝑥) ≥ 0, 𝑥 ∈ Ω,

(210)

𝐷
𝑘

𝑡
𝑏
𝑖
∈ 𝐶 (𝐼

𝑇
;R) , 𝑘 = 0, 1, 𝑖 = 1, . . . , 𝑟

1
,

𝑔 ∈ 𝐶
1
(𝐼
𝑇
× Ω;R) .

(211)

Notice that, different from [32, 37–40], here the energy-
temperature relaxation function 𝑎 is assumed to depend also
on the spatial variable 𝑥 ∈ Ω. In physical terms, this is
equivalent to say that Ω represents a rigid inhomogeneous
material with memory. Furthermore, in contrast with the
quoted papers where only the cases 𝑟

1
= 1 and 𝐶

1,𝑗
(𝑥; 𝐷

𝑥
) =

𝐷
𝑥𝑗
are treated, here we have assumed that the history record

ofΩ is kept by an arbitrary number 𝑟
1
∈ N of heat conduction

relaxation functions and that the 𝐶
𝑖,𝑗
’s are the more general

first-order differential operators defined in (209).
By setting

𝑎
𝑗,𝑘

=

𝑟1

∑

𝑖=1

𝑏
𝑖
(0) 𝑐

𝑖,𝑗,𝑘
∈ 𝐶

1
(Ω;R) , 𝑗, 𝑘 = 1, . . . , 𝑁, (212)

from (208) and (209), it thus follows that the temperature Θ
must satisfy the following equation:

𝑎 (0, 𝑥)𝐷
𝑡
Θ (𝑡, 𝑥) + 𝐷

𝑡
𝑎 (0, 𝑥)Θ (𝑡, 𝑥)

+ ∫

𝑡

0

𝐷
2

𝑡
𝑎 (𝑡 − 𝑠, 𝑥)Θ (𝑠, 𝑥) d𝑠 − 𝑔 (𝑡, 𝑥)

=

𝑁

∑

𝑗,𝑘=1

𝐷
𝑥𝑗
[𝑎

𝑗,𝑘 (𝑥)𝐷𝑥𝑘
Θ (𝑡, 𝑥)]

+

𝑟1

∑

𝑖=1

∫

𝑡

0

𝐷
𝑡
𝑏
𝑖 (𝑡 − 𝑠)

𝑁

∑

𝑗=1

𝐷
𝑥𝑗
𝐶
𝑖,𝑗
(𝑥;𝐷

𝑥
)Θ (𝑠, 𝑥) d𝑠.

(213)

Let us now assume that 𝑎 is of the following special form:

𝑎 (𝑡, 𝑥) =

2

∑

𝑛=1

𝑚
𝑛
(𝑥) 𝑢

𝑛
(𝑡) , (𝑡, 𝑥) ∈ 𝐼

𝑇
× Ω, (214)

where the functions𝑚
𝑛
and 𝑢

𝑛
, 𝑛 = 1, 2, satisfy the following

conditions (cf. (210)):

𝑚
𝑛
∈ 𝐿

∞
(Ω) , 𝑛 = 1, 2,

𝑚
1
≥ 0, 𝑚

2
> 0,

(215)

𝑢
𝑛
∈ 𝐶

2
(𝐼
𝑇
;R) , 𝑛 = 1, 2,

𝑢
2
(0) = 0, 𝑢

1
(0) > 0, 𝐷

𝑡
𝑢
2
(0) > 0.

(216)
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Here, 𝐿
𝑞
(Ω) = 𝐿

𝑞
(Ω;R), 𝑞 ∈ [1,∞], is the usual 𝐿

𝑞

space with norm ‖ ⋅ ‖
𝑞;Ω

(cf. [36, Chapter 7]). Using𝑚
2
, 𝑢

1
(0),

𝐷
𝑡
𝑢
2
(0) > 0, for 𝑡 ∈ 𝐼

𝑇
and 𝑥 ∈ Ω we now set

𝑎
0 (𝑥) = −[𝑢

1 (0)]
−1
𝑚
2 (𝑥)𝐷𝑡

𝑢
2 (0) < 0, (217)

𝑎
𝑗,𝑘 (𝑥) = [𝑢

1 (0)]
−1
𝑎
𝑗,𝑘 (𝑥) , 𝑗, 𝑘 = 1, . . . , 𝑁, (218)

𝐿 (𝑥;𝐷
𝑥
) =

𝑁

∑

𝑗,𝑘=1

𝐷
𝑥𝑗
[𝑎

𝑗,𝑘
(𝑥)𝐷

𝑥𝑘
] + 𝑎

0
(𝑥) , (219)

𝐿
𝑖
(𝑥;𝐷

𝑥
) = [𝑢

1 (0)]
−1

𝑁

∑

𝑗=1

𝐷
𝑥𝑗
𝐶
𝑖,j (𝑥;𝐷𝑥

) ,

𝑖 = 1, . . . , 𝑟
1
,

(220)

𝐿
𝑟1+𝑛

(𝑥;𝐷
𝑥
) = 𝐿

𝑟1+𝑛
(𝑥) = [𝑢

1 (0)]
−1
𝑚
𝑛 (𝑥) ,

𝑛 = 1, 2,

(221)

𝑘
𝑖
(𝑡) = 𝐷

𝑡
𝑏
𝑖
(𝑡) , 𝑖 = 1, . . . , 𝑟

1
,

𝑘
𝑟1+𝑛

(𝑡) = −𝐷
2

𝑡
𝑢
𝑛
(𝑡) , 𝑛 = 1, 2,

(222)

𝑔 (𝑡, 𝑥) = [𝑢
1
(0)]

−1
𝑔 (𝑡, 𝑥) ,

𝜆
0
= −[𝑢

1
(0)]

−1
𝐷
𝑡
𝑢
1
(0) ∈ R.

(223)

Then, since (214)–(216) yield 𝑎(0, 𝑥) = 𝑚
1
(𝑥)𝑢

1
(0) and

𝐷
𝑘

𝑡
𝑎(𝑡, 𝑥) = ∑

2

𝑛=1
𝑚
𝑛
(𝑥)𝐷

𝑘

𝑡
𝑢
𝑛
(𝑡), 𝑘 = 1, 2, if we multiply both

sides of (213) by [𝑢
1
(0)]

−1 and use (218)–(223), we are led to
the following basic differential equation for the temperature
Θ, where 𝑛

1
= 𝑟

1
+ 2:

𝐷
𝑡
[𝑚

1
(𝑥)Θ (𝑡, 𝑥)]

= 𝜆
0
𝑚
1
(𝑥)Θ (𝑡, 𝑥) + 𝐿 (𝑥;𝐷

𝑥
)Θ (𝑡, 𝑥) + 𝑔 (𝑡, 𝑥)

+

𝑛1

∑

𝑖=1

∫

𝑡

0

𝑘
𝑖 (𝑡 − 𝑠) 𝐿 𝑖 (𝑥;𝐷𝑥

)Θ (𝑠, 𝑥) d𝑠,

𝑡 ∈ 𝐼
𝑇
, 𝑥 ∈ Ω.

(224)

We endow this differential equation with the initial condition
Θ(0, 𝑥) = Θ

0
(𝑥), 𝑥 ∈ Ω, and the Dirichlet boundary

condition Θ(𝑡, 𝑥) = 0, 𝑡 ∈ 𝐼
𝑇
, 𝑥 ∈ 𝜕Ω.

We now suppress the dependence on 𝑥 ∈ Ω, and we
transform (224) in a degenerate integrodifferential Cauchy
problem in a Banach space𝑋. To this purpose, for every fixed
𝑞 ∈ (1,∞) and observing that 𝑚

𝑛
∈ 𝐿

∞
(Ω) implies that

‖𝑚
𝑛
𝑢‖

𝑞;Ω
≤ ‖𝑚

𝑛
‖
∞;Ω

‖𝑢‖
𝑞;Ω

for every 𝑢 ∈ 𝐿
𝑞
(Ω), 𝑛 = 1, 2,

we set

𝑋 = D (𝑀) = D (𝐿
𝑟1+𝑛

) = 𝐿
𝑞
(Ω) , 𝑛 = 1, 2, (225)

D (𝐿) = 𝑊
2

𝑞
(Ω) ∩

∘

𝑊

1

𝑞
(Ω) , D (𝐿

𝑖
) = 𝑊

2

𝑞
(Ω) ,

𝑖 = 1, . . . , 𝑟
1
,

(226)

𝑀,𝐿
𝑟1+𝑛

∈ L (𝑋) , 𝑀𝑢 = 𝑚
1
𝑢,

𝐿
𝑟1+𝑛

𝑢 = 𝐿
𝑟1+𝑛

(𝑥) 𝑢, 𝑢 ∈ 𝑋, 𝑛 = 1, 2,

(227)

𝐿 : D (𝐿) ⊆ 𝑋 → 𝑋,

𝐿𝑢 = 𝐿 (𝑥;𝐷
𝑥
) 𝑢, 𝑢 ∈ D (𝐿) ,

(228)

𝐿
𝑖
: D (𝐿

𝑖
) ⊆ 𝑋 → 𝑋,

𝐿
𝑖
𝑢 = 𝐿

𝑖
(𝑥;𝐷

𝑥
) 𝑢, 𝑢 ∈ D (𝐿

𝑖
) , 𝑖 = 1, . . . , 𝑟

1
.

(229)

Here (cf. [36, Chapter 7]),𝑊𝑘

𝑞
(Ω) = 𝑊

𝑘

𝑞
(Ω;R), 𝑘 ∈ N ∪ {0},

𝑞 ∈ (1,∞), denotes the usual Sobolev space endowed with
the norm ‖ ⋅ ‖

𝑘,𝑞;Ω
((𝑊0

𝑞
(Ω), ‖ ⋅ ‖

0,𝑞;Ω
) = (𝐿

𝑞
(Ω), ‖ ⋅ ‖

𝑞;Ω
)),

whereas
∘

𝑊

𝑘

𝑞
(Ω) denotes the completion of 𝐶∞

0
(Ω;R) in

𝑊
𝑘

𝑞
(Ω), 𝐶∞

0
(Ω;R) being the set of all real-valued infinitely

differentiable functions having compact support in Ω. We
further assume that there exists positive constant Λ

𝑖
, 𝑖 =

0, . . . , 𝑟
1
, such that for every (𝑥, 𝜉) ∈ Ω × R𝑁 the following

inequalities hold:

𝑁

∑

𝑗,𝑘=1

𝑐
𝑖,𝑗,𝑘 (𝑥) 𝜉𝑗𝜉𝑘 ≥ Λ

𝑖

𝜉


2
, 𝑖 = 1, . . . , 𝑟

1
,

𝑟1

∑

𝑗,𝑘=1

𝑏
𝑖
(0) Λ

𝑖
≥ Λ

0
,

(230)

where |𝜉|2 = ∑
𝑁

𝑙=1
𝜉
2

𝑙
. Therefore, from (212), (218), and (230)

we get

𝑁

∑

𝑗,𝑘=1

𝑎
𝑗,𝑘 (𝑥) 𝜉𝑗𝜉𝑘 = [𝑢

1 (0)]
−1

𝑟1

∑

𝑖=1

𝑏
𝑖 (0)

𝑁

∑

𝑗,𝑘=1

𝑐
𝑖,𝑗,𝑘

𝜉
𝑗
𝜉
𝑘

≥ [𝑢
1 (0)]

−1
Λ
0

𝜉


2
.

(231)

From (225)–(231) it follows that𝑀, 𝐿, and 𝐿
𝑖
, 𝑖 = 1, . . . , 𝑛

1
,

are closed linear operators from 𝑋 to itself, and the relation
D(𝐿) ⊊ ⋂

𝑛1

𝑖=1
[D(𝑀) ∩ D(𝐿

𝑖
)] = 𝑊

2

𝑞
(Ω) holds. In

addition, due to (212), (217), (218), and (231), from [36,
Theorem 9.15 and Lemma 9.17], it follows that for every
fixed 𝑞 ∈ (1,∞) the operator 𝐿 admits an inverse operator
𝐿
−1

∈ L(𝑋;𝑊
2

𝑞
(Ω)). Hence, a fortiori, 𝐿−1 ∈ L(𝑋) and

so condition (161) is satisfied (observe also that 𝐿−1 ∈

L(𝑋;𝑊
2

𝑞
(Ω)) implies that the norms ‖ ⋅ ‖

2,𝑞;Ω
and ‖ ⋅ ‖D(𝐿) =

‖ ⋅ ‖
𝑞;Ω

+ ‖𝐿 ⋅ ‖
𝑞;Ω

are equivalent onD(𝐿). In fact, if V ∈ D(𝐿),
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then ‖V‖
2,𝑞;Ω

= ‖𝐿
−1
𝐿V‖

2,𝑞;Ω
≤ ‖𝐿

−1
‖L(𝑋;𝑊

2

𝑞
(Ω))

‖V‖D(𝐿) ≤

𝐶‖𝐿
−1
‖L(𝑋;𝑊

2

𝑞
(Ω))

‖V‖
2,𝑞;Ω

,𝐶 being a positive constant depend-
ing on max

𝑗,𝑘=1,...,𝑁
‖𝑎

𝑗,𝑘
‖
𝐶
1
(Ω;R)). The closed graph theorem

then yield 𝑀𝐿
−1
, 𝐿

𝑖
𝐿
−1

∈ L(𝑋), 𝑖 = 1, . . . , 𝑛
1
. Moreover

(cf. [19, formula (77)], and [41, formula (2.16)]), the following
estimate holds (of course, here𝑋 = 𝐿

𝑞
(Ω;R) is replaced with

the more general𝑋 = 𝐿
𝑞
(Ω;C)):


𝑀(𝜆𝑀 − 𝐿)

−1L(𝑋)
≤ 𝐶(|𝜆| + 1)

−𝛽
, ∀𝜆 ∈ Σ

1
, 𝛽 =

1

𝑞
,

(232)

where Σ
1
= {𝑧 ∈ C : Re 𝑧 ≥ −𝑐(|Im 𝑧| + 1), Im 𝑧 ∈ R}, 𝑐

being a suitable positive constant depending on 𝑞 and
‖𝑚

1
‖
∞;Ω

. Hence, condition (H2) is satisfied with 𝑋 = 𝐿
𝑞
(Ω)

and (𝛼, 𝛽) = (1, 1/𝑞). Notice that, since 𝑚
1
may have zeros

in Ω,𝑀−1 is in general a m. l. operator, so that 𝐴 = 𝐿𝑀
−1 is

determined by (cf. (162)):

D (𝐴) = 𝑀 (D (𝐿)) = {𝑚
1
V : V ∈ D (𝐿)} ,

𝐴𝑢 = {𝐿V : V ∈ D (𝐿) such that 𝑢 = 𝑚
1
V} , 𝑢 ∈ D (𝐴) .

(233)

Using the convolution operator K in (104) in which for
the bilinear operator P we take the scalar multiplication in
𝑋, from (224)–(229) we finally obtain that the temperature
Θ(𝑡) = Θ(𝑡, ⋅) solves the following degenerate integrodiffer-
ential Cauchy problem in𝑋:

𝐷
𝑡
(𝑀Θ (𝑡)) = [𝜆

0
𝑀+ 𝐿]Θ (𝑡)

+

𝑛1

∑

𝑖=1

K (𝑘
𝑖
, 𝐿

𝑖
Θ) (𝑡) + 𝑔 (𝑡) , 𝑡 ∈ 𝐼

𝑇
,

Θ (0) = Θ
0
.

(234)

Now, assume for a moment that we are interested in solving
the inverse problem of recovering both the temperature Θ
and the memory kernels 𝑘

1
, . . . , 𝑘

𝑟1
in (234). Clearly, due to

(222), if we recover 𝑘
1
, . . . , 𝑘

𝑟1
, then the heat conduction

relaxation functions 𝑏
1
, . . . , 𝑏

𝑟1
will be known too, unless of

the 𝑟
1
arbitrary constants 𝑏

𝑖
(0), 𝑖 = 1, . . . , 𝑟

1
. Indeed, 𝑏

1
(𝑡) =

𝑏
𝑖
(0)+∫

𝑡

0
𝑘
𝑖
(𝑠)d𝑠, 𝑡 ∈ 𝐼

𝑇
. To solve such an inverse problem, we

need 𝑟
1
additional informations other than the initial condi-

tion Θ(0) = Θ
0
, which, in general, suffices only to guarantee

the well-posedness of the direct problem of recovering Θ in
(234). Suppose then that the following additional pieces of
information are given:

Ψ
𝑗 [𝑀Θ (𝑡)] = 𝑔

𝑗
(𝑡) , 𝑡 ∈ 𝐼

𝑇
, 𝑗 = 1, . . . , 𝑟

1
, (235)

where Ψ
𝑗
∈ 𝑋

∗
= L(𝑋;R) and 𝑔

𝑗
∈ 𝐶

2+]𝑗(𝐼
𝑇
;R), ]

𝑗
∈ (0, 1),

𝑗 = 1, . . . , 𝑟
1
. We will search for a solution vector

(Θ, 𝑘
1
, . . . , 𝑘

𝑟1
) of the inverse problem (234) and (235) such

that Θ ∈ 𝐶
1+𝛿

(𝐼
𝑇
;D(𝐿)) and 𝑘

𝑗
∈ 𝐶

𝜂𝑗(𝐼
𝑇
;R), 𝑗 = 1, . . . , 𝑟

1
,

with the Hölder exponents 𝛿 and 𝜂
𝑗
, 𝑗 = 1, . . . , 𝑟

1
, to be

made precise in the sequel. We stress that here we will not
solve completely the mentioned inverse problem. For, its
detailed treatment would lead us out of the aims of this
paper. Our intention here is only to highlight how the main
results of Section 5 allow to determine the correct functional
framework in which the solution of the inverse problem has
to be searched. However, a complete treatment of the inverse
problem will be the object of a future paper.

Assuming that Θ ∈ 𝐶
1+𝛿

(𝐼
𝑇
;D(𝐿)) solves (234), we

introduce the new unknown

V (𝑡, 𝑥) = 𝐷
𝑡
Θ (𝑡, 𝑥) ⇐⇒ Θ(𝑡, 𝑥) = Θ

0 (𝑥) + ∫

𝑡

0

V (𝑠, 𝑥) d𝑠.

(236)

Then, differentiating (234) with respect to time and using

𝐷
𝑡
K (𝑘

𝑖
, 𝐿

𝑖
Θ) (𝑡)

= 𝐷
𝑡
∫

𝑡

0

𝑘
𝑖 (𝑡 − 𝑠) 𝐿 𝑖Θ (𝑠) d𝑠 = 𝐷

𝑡
∫

𝑡

0

𝑘
𝑖 (𝑠) 𝐿 𝑖Θ (𝑡 − 𝑠) d𝑠

= 𝑘
𝑖 (𝑡) 𝐿 𝑖Θ (0) + ∫

𝑡

0

𝑘
𝑖 (𝑠) 𝐿 𝑖𝐷𝑡

Θ (𝑡 − 𝑠) d𝑠

= 𝑘
𝑖 (𝑡) 𝐿 𝑖Θ0

+ ∫

𝑡

0

𝑘
𝑖 (𝑡 − 𝑠) 𝐿 𝑖V (𝑠) d𝑠,

(237)

we find that V ∈ 𝐶𝛿(𝐼
𝑇
;D(𝐿)) solves the following degenerate

integrodifferential problem:

𝐷
𝑡
(𝑀V (𝑡))

=[𝜆
0
𝑀+ 𝐿] V (𝑡)+

𝑛1

∑

𝑖=1

[K (𝑘
𝑖
, 𝐿

𝑖
V) (𝑡) + 𝑘𝑖 (𝑡) 𝑦𝑖]+𝑓 (𝑡) ,

𝑡 ∈ 𝐼
𝑇
,

𝑀V (0) = 𝑀V
0
,

(238)

where 𝑦
𝑖
= 𝐿

𝑖
Θ
0
, 𝑖 = 1, . . . , 𝑛

1
, 𝑓 = 𝐷

𝑡
𝑔 and𝑀V

0
= [𝜆

0
𝑀+

𝐿]Θ
0
+ 𝑔(0, ⋅) (indeed, since𝑀 is the multiplication operator

by the function 𝑚
1
independent of 𝑡, from the differential

equation in (234) with 𝑡 = 0 we get 𝑀V(0) = 𝑀𝐷
𝑡
Θ(0) =

[𝜆
0
𝑀 + 𝐿]Θ(0) + 𝑔(0)). Of course, (238) is the special case

(𝑖
1
, 𝑖
2
, 𝑛

2
) = (𝑖, 𝑖, 𝑛

1
), ℎ

𝑖
= 𝑘

𝑖
, 𝑖 = 1 . . . , 𝑛

1
, of problem (160).

Conversely, assume that V ∈ 𝐶
𝛿
(𝐼
𝑇
;D(𝐿)) solves (238).

Then, the function Θ defined by (236) belongs to 𝐶
1+𝛿

(𝐼
𝑇
;D(𝐿)) and solves (234). Indeed, using the fact that 𝑚

1
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does not depend on time and that𝑀, 𝐿, and 𝐿
𝑖
, 𝑖 = 1, . . . , 𝑛

1
,

are closed, we obtain

𝐷
𝑡
(𝑀Θ (𝑡)) − [𝜆

0
𝑀+ 𝐿]Θ (𝑡)

−

𝑛1

∑

𝑖=1

K (𝑘
𝑖
, 𝐿

𝑖
Θ) (𝑡) − 𝑔 (𝑡)

= 𝐷
𝑡
[𝑀(Θ

0
+ ∫

𝑡

0

V (𝑠) d𝑠)]

− [𝜆
0
𝑀+ 𝐿] [Θ

0
+ ∫

𝑡

0

V (𝑠) d𝑠]

−

𝑛1

∑

𝑖=1

∫

𝑡

0

𝑘
𝑖
(𝑡 − 𝑠) 𝐿

𝑖
[Θ

0
+ ∫

𝑠

0

V (𝜉) d𝜉] d𝑠

− 𝑔 (0) − ∫

𝑡

0

𝐷
𝑠
𝑔 (𝑠) d𝑠

= 𝑀V (𝑡) − [𝜆
0
𝑀+ 𝐿]Θ

0

− ∫

𝑡

0

[𝜆
0
𝑀+ 𝐿] V (𝑠) d𝑠

−

𝑛1

∑

𝑖=1

∫

𝑡

0

𝑘
𝑖
(𝑡 − 𝑠) 𝐿

𝑖
Θ
0
d𝑠

−

𝑛1

∑

𝑖=1

∫

𝑡

0

𝑘
𝑖
(𝑡 − 𝑠) [∫

𝑠

0

𝐿
𝑖
V (𝜉) d𝜉] d𝑠

− 𝑔 (0) − ∫

𝑡

0

𝑓 (𝑠) d𝑠.

(239)

Now, observe that

𝑀V (𝑡) = 𝑀V
0
+ ∫

𝑡

0

𝐷
𝑠
(𝑀V (𝑠)) d𝑠

= [𝜆
0
𝑀+ 𝐿]Θ

0
+ 𝑔 (0) + ∫

𝑡

0

𝐷
𝑠
(𝑀V (𝑠)) d𝑠,

(240)

∫

𝑡

0

𝑘
𝑖
(𝑡 − 𝑠) 𝐿

𝑖
Θ
0
d𝑠 = ∫

𝑡

0

𝑘
𝑖
(𝑠) 𝐿

𝑖
Θ
0
d𝑠 = ∫

𝑡

0

𝑘
𝑖
(𝑠) 𝑦

𝑖
d𝑠,

𝑖 = 1, . . . , 𝑛
1
,

(241)

whereas an application of Fubini’s theorem combined with
the changes of variables 𝜉 = 𝑠 − 𝑟, 𝑟 − 𝑠 = 𝜏 and 𝑡 − 𝑠 = 𝜁

easily yields for every 𝑖 = 1, . . . , 𝑛
1
the following:

∫

𝑡

0

𝑘
𝑖 (𝑡 − 𝑠) [∫

𝑠

0

𝐿
𝑖
V (𝜉) d𝜉] d𝑠

= ∫

𝑡

0

𝑘
𝑖
(𝑡 − 𝑠) [∫

𝑠

0

𝐿
𝑖
V (𝑠 − 𝑟) d𝑟] d𝑠

= ∫

𝑡

0

[∫

𝑡

𝑠

𝑘
𝑖
(𝑡 − 𝑟) 𝐿

𝑖
V (𝑟 − 𝑠) d𝑟] d𝑠

= ∫

𝑡

0

[∫

𝑡−𝑠

0

𝑘
𝑖
(𝑡 − 𝑠 − 𝜏) 𝐿

𝑖
V (𝜏) d𝜏] d𝑠

= ∫

𝑡

0

K (𝑘
𝑖
, 𝐿

𝑖
V) (𝑡 − 𝑠) d𝑠

= ∫

𝑡

0

K (𝑘
𝑖
, 𝐿

𝑖
V) (𝜁) d𝜁 = ∫

𝑡

0

K (𝑘
𝑖
, 𝐿

𝑖
V) (𝑠) d𝑠.

(242)

Therefore, replacing (240)–(242) in (239), it follows for every
𝑡 ∈ 𝐼

𝑇
that

𝐷
𝑡
(𝑀Θ (𝑡)) − [𝜆

0
𝑀+ 𝐿]Θ (𝑡) −

𝑛1

∑

𝑖=1

K (𝑘
𝑖
, 𝐿

𝑖
Θ) (𝑡) − 𝑔 (𝑡)

= ∫

𝑡

0

{𝐷
𝑠
(𝑀V (𝑠)) − [𝜆

0
𝑀+ 𝐿] V (𝑠)

−

𝑛1

∑

𝑖=1

[K (𝑘
𝑖
, 𝐿

𝑖
V) (𝑠) + 𝑘𝑖 (𝑠) 𝑦𝑖] − 𝑓 (𝑠) } d𝑠,

(243)

and the latter integral is equal to zero by virtue of (238). Since
from (236) it follows that Θ(0) = Θ

0
, we have thus shown

that (234) and (238) are equivalent. Such an equivalence is
the first step in solving the mentioned inverse problem of
recovering the vector (Θ, 𝑘

1
, . . . , 𝑘

𝑟1
) with the help of the

additional information (235).
Let us now apply the linear functional Ψ

𝑗
, 𝑗 = 1 . . . , 𝑟

1
, to

(238). Using

Ψ
𝑗
[𝐷

𝑘

𝑡
(𝑀V (𝑡))] = Ψ

𝑗
[𝑀𝐷

𝑘+1

𝑡
Θ (𝑡)] = 𝐷

𝑘+1

𝑡
Ψ
𝑗 [𝑀Θ (𝑡)]

= 𝐷
𝑘+1

𝑡
𝑔
𝑗 (𝑡) , 𝑘 = 0, 1,

(244)

we thus find the following system of 𝑟
1
equations for the 𝑟

1

unknown 𝑘
1
, . . . , 𝑘

𝑟1
:

𝑟1

∑

𝑖=1

Ψ
𝑗
[𝑦

𝑖
] 𝑘

𝑖
(𝑡)

= 𝑁
𝑗 (𝑡) − Ψ𝑗 [𝐿V] −

𝑛1

∑

𝑖=1

Ψ
𝑗
[K (𝑘

𝑖
, 𝐿

𝑖
V) (𝑡)] ,

𝑗 = 1, . . . , 𝑟
1
,

(245)

where we have set (recall that 𝑘
𝑟1+𝑛

= −𝐷
𝑡
𝑢
𝑛
, 𝑛 = 1, 2, are

known)

𝑁
𝑗
(𝑡) = (𝐷

𝑡
− 𝜆

0
)𝐷

𝑡
𝑔
𝑗
(𝑡) − Ψ

𝑗
[𝑓 (𝑡)]

−

2

∑

𝑛=1

Ψ
𝑗
[𝑦

𝑟1+𝑛
] 𝑘

𝑟1+𝑛
(𝑡) , 𝑗 = 1, . . . , 𝑟

1
.

(246)
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Therefore, if the matrixU := U
𝑦1 ,...,𝑦𝑟1

Ψ1 ,...,Ψ𝑟1

= (Ψ
𝑖
[𝑦

𝑗
])
𝑖,𝑗=1,...,𝑟1

has
determinant detU ̸=0, then fromCramer’s formula it follows
that the solution (𝑘

1
, . . . , 𝑘

𝑟1
) of (245) is given by

𝑘
𝑗 (𝑡) = [detU]

−1

𝑟1

∑

𝑘=1

{𝑁
𝑘 (𝑡) − Ψ𝑘 [𝐿V]

−

𝑛1

∑

𝑖=1

Ψ
𝑘
[K (𝑘

𝑖
, 𝐿

𝑖
V) (𝑡)]}U

𝑘,𝑗

=: �̃�
𝑗
(V, 𝑘

1
, . . . , 𝑘

𝑟1
) (𝑡) , 𝑗 = 1, . . . , 𝑟

1
,

(247)

with U
𝑘,𝑗
, 𝑘, 𝑗 = 1, . . . , 𝑟

1
, being the cofactor of the element

Ψ
𝑘
[𝑦

𝑗
] of U (with the convention that U

1,1
= 1 in the case

of 𝑟
1
= 1). We have thus found a system of 𝑟

1
fixed-point

equations for the 𝑟
1
unknown 𝑘

1
, . . . , 𝑘

𝑟1
.

Now, let 𝑌𝑟
𝜓
∈ {(𝑋,D(𝐴))

𝜓,𝑟
, 𝑋

𝜓,𝑟

𝐴
}, 𝜓 ∈ (0, 1), 𝑟 ∈ [1,∞],

where 𝐴 is as in (233). Assume that V
0
in the initial condition

𝑀V(0) = 𝑀V
0
belongs toD(𝐿) and that

𝑘
𝑖
∈ 𝐶

𝜂𝑖 (𝐼
𝑇
,R) , 𝑓 ∈ 𝐶

𝜇
(𝐼
𝑇
; 𝑋) , 𝜂

𝑖
, 𝜇 ∈ (

1

𝑞
, 1) ,

𝑖 = 1, . . . , 𝑛
1
,

𝑦
𝑖
∈ 𝑌

𝑝

𝛾𝑖
, V

1
+ 𝑓 (0) ∈ 𝑌

𝑝

𝜑
, 𝛾

𝑖
, 𝜑 ∈ (

1

𝑞
, 1) ,

𝑝 ∈ [1,∞] , 𝑖 = 1, . . . , 𝑛
1
,

(248)

where V
1
= (𝜆

0
𝑀 + 𝐿)V

0
and 𝑞

 is the conjugate exponent
of 𝑞 ∈ (1,∞). Then (cf. (179) with (𝑖

1
, 𝑖
2
, 𝑛

2
) = (𝑖, 𝑖, 𝑛

1
),

(𝛼, 𝛽, 𝑍) = (1, 1/𝑞,R), and ℎ
𝑖
= 𝑘

𝑖
, 𝑖 = 1, . . . , 𝑛

1
), problem

(238) is equivalent to the fixed-point equation

𝑤 (𝑡) = 𝑅 (𝑤, 𝑘
1
, . . . , 𝑘

𝑟1
) (𝑡) +

1

∑

𝑙=0

𝑤
𝑙
(𝑘

1
, . . . , 𝑘

𝑟1
) (𝑡)

=: 𝑇 (𝑤, 𝑘
1
, . . . , 𝑘

𝑟1
) (𝑡) ,

(249)

where 𝑤 = 𝐿(V − V
0
) and

𝑤
0
(𝑘

1
, . . . , 𝑘

𝑟1
) = 𝑄

7
𝑥
0
+

𝑛1

∑

𝑖=1

[𝑄
6
(𝑘

𝑖
, 𝐿

𝑖
V
0
) + 𝑄

5
�̃�
𝑖
] + 𝑄

5
𝑓,

𝑤
1
(𝑘

1
, . . . , 𝑘

𝑟1
) = −

𝑛1

∑

𝑖=1

[𝑄
3
(𝑘

𝑖
, 𝐿

𝑖
V
0
) + 𝑄

4
(𝑘

𝑖
, 𝑦

𝑖
)] − 𝑄

2
𝑓,

𝑅 (𝑤, 𝑘
1
, . . . , 𝑘

𝑟1
) = 𝜆

0
[𝑄

5
(𝐴

−1
𝑤) − 𝑄

2
(𝐴

−1
𝑤)]

+

𝑛1

∑

𝑖=1

[𝑄
6
(𝑘

𝑖
, 𝑆

𝑖
𝑤) − 𝑄

3
(𝑘

𝑖
, 𝑆

𝑖
𝑤)] .

(250)

Here, the 𝑄
𝑗
’s, 𝑗 = 2, . . . , 6, are defined by (106)–(110), 𝑆

𝑖
=

𝐿
𝑖
𝐿
−1, and the functions 𝑓, �̃�

𝑖
and𝑄

7
𝑥
0
are defined by 𝑓(𝑡) =

𝑓(𝑡) − 𝑓(0), �̃�
𝑖
(𝑡) = [𝑘

𝑖
(𝑡) − 𝑘

𝑖
(0)]𝑦

𝑖
, and [𝑄

7
𝑥
0
](𝑡) = (e𝑡𝐴 −

𝐼)𝑥
0
, respectively, where (cf. (174)) 𝑥

0
= ∑

𝑛1

𝑖=1
𝑘
𝑖
(0)𝑦

𝑖
+ V

1
+

𝑓(0).
Then, since V = 𝐿

−1
𝑤 + V

0
, if we set 𝑅

𝑗
(𝑤, 𝑘

1
, . . . , 𝑘

𝑟1
) =

�̃�
𝑗
(𝐿

−1
𝑤 + V

0
, 𝑘

1
, . . . , 𝑘

𝑟1
), 𝑗 = 1, . . . , 𝑟

1
, and

Ξ (𝑤, 𝑘
1
, . . . , 𝑘

𝑟1
)

= (𝑇 (𝑤, 𝑘
1
, . . . , 𝑘

𝑟1
) , 𝑅

1
(𝑤, 𝑘

1
, . . . , 𝑘

𝑟1
) ,

. . . , 𝑅
𝑟𝑖
(𝑤, 𝑘

1
, . . . , 𝑘

𝑟1
)) ,

(251)

from (247) and (249)we deduce that to solve the inverse prob-
lems (234) and (235) for the unknown vector (Θ, 𝑘

1
, . . . , 𝑘

𝑟1
),

it suffices to show that the fixed-point equation

(𝑤, 𝑘
1
, . . . , 𝑘

𝑟1
) = Ξ (𝑤, 𝑘

1
, . . . , 𝑘

𝑟1
) (252)

has a unique solution. In general, this will be done by proving
that Ξ is a contraction map in the Banach space

𝑍
𝛿,𝜂1,...,𝜂𝑟1

= 𝐶
𝛿
(𝐼
𝑇
; 𝑋) × 𝐶

𝜂1 (𝐼
𝑇
;R) × ⋅ ⋅ ⋅ × 𝐶𝜂𝑟1 (𝐼

𝑇
;R) ,


(𝑓

0
, 𝑓

1
, . . . , 𝑓

𝑟1
)
𝑍𝛿,𝜂1,...,𝜂𝑟1

=
𝑓0

𝛿,0,𝑇;𝑋
+
𝑓1

𝜂1,0,𝑇;R
+ ⋅ ⋅ ⋅ +


𝑓
𝑟1

𝜂𝑟1 ,0,𝑇;R
,

(253)

at least for opportunely chosen Hölder exponents 𝛿 ∈ (0, 1)

and 𝜂
𝑖
∈ (1/𝑞


, 1), 𝑖 = 1, . . . , 𝑟

1
, and, eventually, sufficiently

small values of 𝑇 > 0. It is just in the choice of 𝛿 and
the 𝜂

𝑖
’s that the main result of Section 5 plays a key role.

The Hölder exponents have to be chosen so that the direct
problem (234) in which the 𝑘

𝑖
’s are assumed to be known is

well posed. Due to the shown equivalence between problems
(234) and (238), the well-posedness of the direct problem
(234) is then a consequence of Theorem 48 and formula
(236). More precisely, recalling Remark 50 for the case 𝛼 = 1,
an application of that theorem yields the following maximal
time regularity result for the solution Θ of (234).

Theorem 57. Let 𝑋, D(𝑀), D(𝐿), and D(𝐿
𝑖
), 𝑖 = 1, . . . , 𝑛

1
,

𝑛
1
= 𝑟

1
+ 2, 𝑟

1
∈ N, be defined by (225) and (226) with 𝑞 ∈

(1, 2). Let 𝑀, 𝐿, and 𝐿
𝑖
, 𝑖 = 1, . . . , 𝑛

1
, be defined by (227)–

(229) through (209), (212), and (215)–(221), and let (230) and
(231) be satisfied. Further, let (𝐴,D(𝐴)) be defined by (233),
and let 𝑌𝑟

𝜓
∈ {(𝑋,D(𝐴))

𝜓,𝑟
, 𝑋

𝜓,𝑟

𝐴
}, 𝜓 ∈ (0, 1), 𝑟 ∈ [1,∞]. Let

𝜂
𝑖
∈ (1/𝑞


, 1) and 𝛾

𝑖
, 𝜑 ∈ (2/𝑞


, 1), 𝑖 = 1, . . . , 𝑛

1
, and assume

that

𝑘
𝑖
∈ 𝐶

𝜂𝑖 (𝐼
𝑇
;R) , 𝑖 = 1, . . . , 𝑛

1
, Θ

0
∈ D (𝐿) ,

(𝜆
0
𝑀+ 𝐿)Θ

0
+ 𝑔 (0, ⋅) = 𝑀V

0
𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 V

0
∈ D (𝐿) ,

𝐿
𝑖
Θ
0
∈ 𝑌

𝑟

𝛾𝑖
, V

1
+ 𝐷

𝑡
𝑔 (0, ⋅) ∈ 𝑌

𝑟

𝜑
, 𝑖 = 1, . . . , 𝑛

1
,

𝑟 ∈ [1,∞] ,

(254)
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where 𝑘
𝑖
, 𝑖 = 1, . . . , 𝑛

1
, 𝑔 and𝜆

0
are defined by (222) and (223)

through (211) and (216), whereas V
1
= (𝜆

0
𝑀 + 𝐿)V

0
. Let 𝛾 =

min
𝑖=1,...,𝑛1

{𝛾
𝑖
, 𝜑} and 𝜏 = min

𝑖=1,...,𝑛1
{𝜂
𝑖
, 𝛾 − 1/𝑞


}, and let

𝐼
1,1/𝑞,𝜏

⊆ (1/𝑞

, 1/2) be the interval defined by (cf. (207) with

𝛽 = 1/𝑞)

𝐼
1,1/𝑞,𝜏

= (
1

𝑞
, 𝜏] , 𝑖𝑓 𝜏 ∈ (

1

𝑞
,
1

2
) ,

𝐼
1,1/𝑞,𝜏

= (
1

𝑞
,
1

2
) , 𝑖𝑓 𝜏 ∈ [

1

2
, 1) .

(255)

Then, for every fixed 𝛿 ∈ 𝐼
1,1/𝑞,𝜏

problem (234), or, equivalently,
problem (224), admits a unique strict solution Θ ∈ 𝐶

1+𝛿

(𝐼
𝑇
;D(𝐿)) satisfying𝐷

𝑡
Θ(0) = V

0
and such that𝐷

𝑡
𝑀Θ, 𝐿Θ ∈

𝐶
1+𝛿

(𝐼
𝑇
; 𝑋), provided that𝐷

𝑡
𝑔 ∈ 𝐶

𝜇
(𝐼
𝑇
; 𝑋), 𝜇 ∈ [𝛿 + 1/𝑞, 1).

Proof. Apply Theorem 48 with (𝑖
1
, 𝑖
2
, 𝑛

2
) = (𝑖, 𝑖, 𝑛

1
), (𝛼, 𝛽,

𝑍) = (1, 1/𝑞,R), and ℎ
𝑖
= 𝑘

𝑖
, 𝑖 = 1, . . . , 𝑛

1
, to the equivalent

problem (238). Since𝑀 is the multiplication operator by the
function𝑚

1
independent of 𝑡, the assertion then follows from

𝐷
𝑡
Θ = V ∈ 𝐶

𝛿
(𝐼
𝑇
;D(𝐿)), 𝐷

𝑡
Θ(0) = V(0), 𝐷

𝑡
𝐿Θ = 𝐿V ∈

𝐶
𝛿
(𝐼
𝑇
; 𝑋) and𝐷2

𝑡
𝑀Θ = 𝐷

𝑡
𝑀V ∈ 𝐶𝛿(𝐼

𝑇
; 𝑋).

Larger values of 𝑞 inTheorem 57 can be obtained assum-
ing more smoothness and some order of vanishing for the
function𝑚

1
. In fact, let𝑚

1
∈ 𝐶

1
(Ω) be such that the following

estimate holds for some positive constant𝐾:

∇𝑚1
(𝑥)

 :=

{

{

{

𝑁

∑

𝑗=1

[𝐷
𝑥𝑗
𝑚
1
(𝑥)]

2}

}

}

1/2

≤ 𝐾[𝑚
1
(𝑥)]

𝜗
,

𝑥 ∈ Ω, 𝜗 ∈ (0, 1) .

(256)

Then (232) holds with 𝛽 = 1/𝑞 being replaced by (cf. [41,
formulae (3.23) and (4.41)]):

𝛽 =
1

2 − 𝜗
, if 𝑞 ∈ (2 − 𝜗, 2) ,

𝛽 =
2

𝑞 (2 − 𝜗)
, if 𝑞 ∈ [2,∞) .

(257)

(precisely, in [41, formula (3.23)] it is shown that (|𝜆| +
1)‖𝑀𝑢‖

𝑞(2−𝜗)/2

𝑞;Ω
≤ 𝐶

𝑞
[‖𝑓‖

𝑞;Ω
‖𝑀𝑢‖

−1+𝑞(2−𝜗)/2

𝑞;Ω
+ ‖𝑓‖

𝑞(2−𝜗)/2

𝑞;Ω
],

where 𝑢 = (𝜆𝑀 − 𝐿)
−1
𝑓 and 𝑞 ∈ [2,∞). Using (cf. [41,

formula (2.15)]) ‖𝑀𝑢‖
𝑞;Ω

≤ ‖𝑚
1
‖
∞;Ω

‖𝑢‖
𝑞;Ω

≤ 𝐶‖𝑚
1
‖
∞;Ω

‖𝑓‖
𝑞;Ω

, we thus find that (|𝜆| + 1)‖𝑀𝑢‖
𝑞(2−𝜗)/2

𝑞;Ω
≤ 𝐶

𝑞
[(𝐶

‖𝑚
1
‖
∞;Ω

)
−1+𝑞(2−𝜗)/2

+ 1]‖𝑓‖
𝑞(2−𝜗)/2

𝑞;Ω
; that is, ‖𝑀(𝜆𝑀−

𝐿)
−1
‖L(𝑋)

≤ {𝐶
𝑞
[(𝐶‖𝑚

1
‖
∞;Ω

)
−1+𝑞(2−𝜗)/2

+ 1]}
2/[𝑞(2−𝜗)]

(|𝜆| +

1)
−2/[𝑞(2−𝜗)]). Under (256) we thus find the following better

result, where 𝑞may be greater than two.

Theorem 58. Let (256) holds, and let 𝑋, (𝑀,D(𝑀)), (𝐿,D
(𝐿)), (𝐿

𝑖
,D(𝐿

𝑖
)), 𝑖 = 1, . . . , 𝑛

1
, be as in Theorem 57, but with

𝑞 ∈ (2 − 𝜗, 2) ∪ [2, 4/(2 − 𝜗)). Let (254) be fulfilled, but with
𝜂
𝑖
∈ (1−𝛽, 1) and 𝛾

𝑖
, 𝜑 ∈ (2−2𝛽, 1), 𝑖 = 1, . . . , 𝑛

1
, where 𝛽 is as

in (257). Let 𝛾 = min
𝑖=1,...,𝑛1

{𝛾
𝑖
, 𝜑} and 𝜏 = min

𝑖=1,...,𝑛1
{𝜂
𝑖
, 𝛽 +

𝛾−1}, and let 𝐼
1,𝛽,𝜏

be as in (207).Then, for every fixed 𝛿 ∈ 𝐼
1,𝛽,𝜏

problem (234), or, equivalently, problem (224), admits a unique
strict solution Θ ∈ 𝐶

1+𝛿
(𝐼
𝑇
;D(𝐿)) satisfying 𝐷

𝑡
Θ(0) = V

0

and such that 𝐷
𝑡
𝑀Θ, 𝐿Θ ∈ 𝐶

1+𝛿
(𝐼
𝑇
; 𝑋), provided that 𝐷

𝑡
𝑔 ∈

𝐶
𝜇
(𝐼
𝑇
; 𝑋), 𝜇 ∈ [𝛿 + 1 − 𝛽, 1).

Proof. It suffices to observe that for every 𝜗 ∈ (0, 1) and 𝑞 ∈

(2 − 𝜗, 2) ∪ [2, 4/(2 − 𝜗)), the number 𝛽 in (257) satisfies 𝛽 >

1/2. Hence, proceeding as in the proofs ofTheorem 57, except
for replacing there 𝛽 = 1/𝑞 with 𝛽 as in (257), we get the
assertion.

Appendix

Herewe clarifywhy the definition of𝑄
2
in [20] has to bemod-

ified in accordance to that in this paper. To avoid confusion
with the present notation, we will denote the operator 𝑄

2
in

[20] with 𝑆
2
. Precisely, in [20, formula (4.12)], 𝑆

2
was defined

as follows:

[𝑆
2
𝑔
2
] (𝑡) := ∫

𝑡

0

[(−𝐴)
1
]
∘

e(𝑡−𝑠)𝐴𝑔
2
(𝑠) d𝑠, 𝑡 ∈ [0, 𝑇] ,

(A.1)

and considered as acting on functions 𝑔
2
∈ 𝐶

𝛿2

0
([0, 𝑇]; 𝑋),

𝛿
2
∈ ((3 − 2𝛼 − 𝛽)/𝛼, 1), 3𝛼 + 𝛽 > 3. Even though 𝑔

2
(0) = 0,

formula (A.1) may have no sense, since

𝑆2𝑔2 (𝑡)
𝑋

≤ 𝑐
𝛼,𝛽,1

𝑔2
𝛿2,0,𝑡;𝑋

∫

𝑡

0

(𝑡 − 𝑠)
(𝛽−2)/𝛼

𝑠
𝛿2 d𝑠, (A.2)

and the integral on the right is not convergent, the exponent
(𝛽 − 2)/𝛼 being less or equal than −1. It is for this reason that
𝑔
2
(𝑠) in (A.1) has to be replaced with the increment 𝑔

2
(𝑠) −

𝑔
2
(𝑡) as in formula (106) (see inequality (118)) and to intro-

duce the operator𝑄
5
as in (109). Of course, as a consequence,

the definitions of 𝑄
3
and 𝑄

4
in [20, Lemmas 4.6 and 4.8] as

𝑆
2
K(𝑔

31
, 𝑔

32
) and 𝑆

2
(𝑔

4
𝑦), respectively, have to be changed

too in accordance with the present formulae (107) and (108)
containing the incrementsK(𝑔

31
, 𝑔

32
)(𝑠)−K(𝑔

31
, 𝑔

32
)(𝑡) and

[𝑔
4
(𝑠) − 𝑔

4
(𝑡)]𝑦. To this purpose, we want to make clear that,

contrarily to [20, Lemma 4.4], the statement and the proof of
[20, Lemma 4.8] is correct, since there the function inside the
integral on the right-hand side of (A.1) takes its values in an
opportune intermediate space𝑋𝜃,𝑟

𝐴
. However, the correctness

of that lemma does not suffice to proceed as in [20, Section 5]
to solve problem (160) with 𝑛

1
= 𝑛

2
= 1.

For the reader’s convenience we thus now indicate how
to change the definitions of the functions 𝑤

𝑗
, 𝑗 = 0, 1, and

the operator 𝑅𝑤 in [20, formulae (5.8)–(5.10)], and we state
the amended version of [20, Theorems 5.6 and 5.7]. First,
according to [20] where only this case was treated, let 𝑛

1
=

𝑛
2
= 1 in problem (160), andwrite 𝑘, ℎ,𝑦 in place of 𝑘

1
, ℎ

1
and

𝑦
1
, respectively. Then, under the same assumptions on the

vector (𝛼, 𝛽, 𝑘, ℎ, 𝑓) as those in the present Section 5, it can
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be shown that problem (160) with 𝑛
1
= 𝑛

2
= 1 is equivalent

to the fixed-point equation (179), where (cf. (180)–(182))

𝑤
0
= 𝑄

7
𝑥
0
+ 𝑄

6
(𝑘, 𝐿

1
V
0
) + 𝑄

5
ℎ̃ + 𝑄

5
𝑓,

𝑤
1
= −𝑄

3
(𝑘, 𝐿

1
V
0
) − 𝑄

4
(ℎ, 𝑦) − 𝑄

2
𝑓,

𝑅𝑤 := 𝜆
0
[𝑄

5
(𝐴

−1
𝑤) − 𝑄

2
(𝐴

−1
𝑤)]

+ 𝑄
6 (𝑘, 𝑆𝑤) − 𝑄3 (𝑘, 𝑆𝑤) .

(A.3)

Here, 𝑥
0
= V

1
+ ℎ(0)𝑦 + 𝑓(0), V

1
= (𝜆

0
𝑀+ 𝐿)V

0
, is the value

at 𝑡 = 0 of the function 𝐹
𝑤
defined by (169) with 𝑛

𝑙
= 𝑛

2
= 1,

𝑄
7
𝑥
0
, 𝑓 and ℎ̃ are defined, respectively, by (e𝑡𝐴−𝐼)𝑥

0
, 𝑓(𝑡)−

𝑓(0) and [ℎ(𝑡) − ℎ(0)]𝑦, 𝑆 is the operator 𝐿
1
𝐿
−1
∈ L(𝑋), and

the 𝑄
𝑗
’s, 𝑗 = 2, . . . , 6, are as in (106)–(110). Formulae (A.3)

replace the definitions of 𝑤
0
, 𝑤

1
and 𝑅𝑤 in [20, formulae

(5.8)–(5.10)]. Therefore, from Lemmas 42, 45, and 46 and
Corollary 44with 𝑛

1
= 𝑛

2
= 1weobtain the following version

of Theorem 48.

TheoremA.1. Assume (161) and V
0
∈ D(𝐿), and let 5𝛼+2𝛽 >

6 in (H2). Assume that 𝑘 ∈ 𝐶
𝜂
(𝐼
𝑇
; 𝑍), ℎ ∈ 𝐶

𝜎
(𝐼
𝑇
;C), 𝑦 ∈ 𝑌

𝑟

𝜃
,

and (𝜆
0
𝑀+𝐿)V

0
+𝑓(0) ∈ 𝑌

𝑟

𝜑
, where 𝜂, 𝜎 ∈ ((3−2𝛼−𝛽)/𝛼, 1),

𝜃, 𝜑 ∈ (5 − 3𝛼 − 2𝛽, 1), and 𝑟 ∈ [1,∞]. Let 𝛾 = min{𝜃, 𝜑} and
𝜏 = min{𝜂, 𝜎, (𝛼+𝛽+𝛾−2)/𝛼}. Then, for every fixed 𝛿 ∈ 𝐼

𝛼,𝛽,𝜏

the problem

𝐷
𝑡
(𝑀V (𝑡)) = [𝜆

0
𝑀+ 𝐿] V (𝑡) +K (𝑘, 𝐿

1
V) (𝑡)

+ ℎ (𝑡) 𝑦 + 𝑓 (𝑡) , 𝑡 ∈ 𝐼
𝑇
,

𝑀V (0) = 𝑀V
0

(A.4)

admits a unique strict solution V ∈ 𝐶
𝛿
(𝐼
𝑇
;D(𝐿)) satisfying

V(0) = V
0
and such that 𝐿V, 𝐷

𝑡
𝑀V ∈ 𝐶𝛿(𝐼

𝑇
; 𝑋), provided that

𝑓 ∈ 𝐶
𝜇
(𝐼
𝑇
; 𝑋), 𝜇 ∈ [𝛿 + (3 − 2𝛼 − 𝛽)/𝛼, 1).

Theorem A.1 substitutes [20,Theorem5.6 and 5.7]. Notice
that, differently than [20], here only one statement occurs.
In fact, the more suitable procedure followed in this paper
makes the separation in [20] of two distinct intervals inwhich
𝛾 may vary totally unneeded. Finally, letting 𝑛

1
= 𝑛

2
= 1 in

Theorems 52, 5.14, 54, and 56, we obtain the correct versions
of [20, Theorems 5.11, 53, and 5.16] for the subcases of (A.4)
corresponding to the choices 𝜆

0
= ℎ = 0, 𝜆

0
= 𝑓 = 0,

𝜆
0
= 𝑘 = ℎ = 0, and 𝜆

0
= 𝑘 = 𝑓 = 0, respectively. For

saving space, we leave this easy task to the reader.
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Höldersteiger Funktionen,” Nachrichten der Akademie der Wis-
senschaften in Göttingen. II, vol. 11, pp. 231–258, 1972 (German).

[17] W. von Wahl, “Lineare und semilineare parabolische Dif-
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A numerical technique based on reproducing kernel methods for the exact solution of linear Volterra integral equations system
of the second kind is given. The traditional reproducing kernel method requests that operator a satisfied linear operator equation
𝐴𝑢 = 𝑓, is bounded and its image space is the reproducing kernel space 𝑊

1

2
[𝑎, 𝑏]. It limits its application. Now, we modify the

reproducing kernelmethod such that it can bemorewidely applicable.The n-term approximation solution obtained by themodified
method is of high accuracy.Thenumerical example comparedwith othermethods shows that themodifiedmethod ismore efficient.

1. Introduction

Thepurpose of this paper is to solve a systemof linearVolterra
integral equations

𝐹 (𝑠) = 𝐺𝑠 + ∫

𝑏

𝑎

𝐾 (𝑠, 𝑡) 𝐹 (𝑡) 𝑑𝑡, 𝑠 ∈ [0, 1] , (1)

where

𝐹 (𝑠) = [𝑓
1 (𝑠) , 𝑓2 (𝑠) , . . . , 𝑓𝑛 (𝑠)]

𝑇
,

𝐺 (𝑠) = [𝑔
1
(𝑠) , 𝑔
2
(𝑠) , . . . , 𝑔

𝑛
(𝑠)]
𝑇
,

𝐾 (𝑠, 𝑡) = [𝑘
𝑖,𝑗
] , 𝑖, 𝑗 = 1, 2, . . . , 𝑛.

(2)

In (1), the functions𝐾 and 𝐺 are given, and 𝐹 is the solu-
tion to be determined. We assume that (1) has a unique solu-
tion. Volterra integral equation arises in many physical appli-
cations, for example, potential theory and Dirichlet prob-
lems, electrostatics, mathematical problems of radiative equi-
librium, the particle transport problems of astrophysics and
reactor theory, and radiative heat transfer problems [1–5].
Several valid methods for solving Volterra integral equation
have been developed in recent years, including power series
method [6], Adomain’s decomposition method [7], homo-
topy perturbation method [8, 9], block by block method [10],
and expansion method [11].

Since the reproducing kernel space 𝑊
1

2
[𝑎, 𝑏], which is a

special Hilbert space, is constructed in 1986 [12], the repro-
ducing kernel theory has been applied successfully to many
linear and nonlinear problems, such as differential equation,
population model, and many other equations appearing in
physics and engineering [12–21]. The traditional reproducing
kernel method is limited, because it requires that the image
space of operator 𝐴 in linear operator equation 𝐴𝑢 = 𝑓 is
𝑊
1

2
[𝑎, 𝑏] and operator𝐴must be bounded. In order to enlarge

its application range, the MRKM removes the boundedness
of 𝐴 and weakens its image space to 𝐿

2
[𝑎, 𝑏]. Subsequently,

we apply the MRKM to obtain the series expression of the
exact solution for (1). The 𝑛-term approximation solution
is provided by truncating the series. The final numerical
comparisons between our method and other methods show
the efficiency of the proposed method. It is worth to mention
that the MRKM can be generalized to solve other system of
linear equations.

2. Preliminaries

2.1. The Reproducing Kernel Space𝑊1
2
[0, 1]. The reproducing

kernel space𝑊
1

2
[0, 1] consists of all absolute continuous real-

valued functions, which defined on the closed interval [0, 1],
and the first derivative functions belong to 𝐿

2
[0, 1].
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The inner product and the norm are equipped with

(𝑢, V)
𝑤
1

2

= 𝑢 (0) V (0) + ∫

1

0

𝑢

(𝑥) V (𝑥) 𝑑𝑥, ∀𝑢, V ∈ 𝑤

1

2
,

‖𝑢‖𝑊1
2

= √(𝑢, V)
𝑤
1

2

.

(3)

Theorem 1. 𝑊
1

2
[0, 1] is a reproducing kernel space with repro-

ducing kernel [22]

𝑅
𝑥
(𝑦) = {

1 + 𝑦, 𝑦 ≤ 𝑥

1 + 𝑥, 𝑦 > 𝑥;
(4)

that is, for every 𝑥 ∈ [0, 1] and 𝑢 ∈ 𝑊
1

2
, it follows that

(𝑢 (𝑦) , 𝑅
𝑥
(𝑦))
𝑤
1

2

= 𝑢 (𝑥) . (5)

2.2.The Reproducing Kernel Space𝑊2
2
[0, 1]. The reproducing

kernel space 𝑊
2

2
[0, 1] consists of all real-valued functions in

which the first derivative functions are absolute continuous
on the closed interval [0, 1] and the second derivative func-
tions belong to 𝐿

2
[0, 1].

The inner product and the norm are equipped with

(𝑢, V)
𝑊
2

2

=

1

∑

𝑘=0

𝑢
(𝑘)

(0) V(𝑘) (0)

+ ∫

1

0

𝑢

(𝑥) V (𝑥) 𝑑𝑥, ∀𝑢, V ∈ 𝑊

2

2
[0, 1] ,

‖𝑢‖𝑊2
2

= √(𝑢, 𝑢)
𝑤
2

2

.

(6)

Theorem2. 𝑊
2

2
[0, 1] is a reproducing kernel spacewith repro-

ducing kernel [22]

𝑄 (𝑥, 𝑦) =

{{{

{{{

{

1 + 𝑥 × 𝑦 +
𝑥 × 𝑦
2

2
−

𝑦
3

6
𝑦 ≤ 𝑥

1 + 𝑥 × 𝑦 +
𝑥
2
× 𝑦

2
−

𝑥
3

6
, 𝑦 > 𝑥;

(7)

that is, for every 𝑥 ∈ [0, 1] and 𝑢 ∈ 𝑊
2

2
, it follows that

(𝑢 (𝑦) , 𝑄 (𝑥, 𝑦))
𝑤
2

2

= 𝑢 (𝑥) . (8)

The proof of Theorems 1 and 2 can be found in [23].

2.3. Hilbert Space 𝐸. Hilbert space 𝐸 is defined by

𝐸 =

𝑛

⨁

𝑖=1

𝑊
1

2
= {(𝑢
1
, . . . , 𝑢

𝑛
)
𝑇

| 𝑢
𝑖
∈ 𝑤
1

2
, 𝑖 = 1, . . . , 𝑛} . (9)

The inner product and the norm are given by

(𝑢, V)
𝐸
=

𝑛

∑

𝑖=1

(𝑢
𝑖
, V
𝑖
)
𝑤
1

2

,

‖𝑢‖𝐸 = √(𝑢, 𝑢)𝐸.

(10)

It is easy to prove that 𝐸 is a Hilbert space.

3. The Exact Solution of (1)
3.1. Identical Transformation of (1). Consider the ith equation
of (1):

𝑓
𝑖
(𝑠) −

𝑛

∑

𝑗=1

∫

𝑠

0

𝐾
𝑖𝑗
(𝑠, 𝑡) 𝑓

𝑗
(𝑡) 𝑑𝑡 = 𝑔

𝑖
(𝑠) . (11)

Define operator 𝐴
𝑖𝑗

: 𝑊
1

2
→ 𝐿
2
[0, 1], 𝑗 = 1, . . . , 𝑛,

𝐴
𝑖𝑗

=

{{

{{

{

𝑢 (𝑠) − ∫
1

0
𝑘
𝑖𝑗
(𝑠, 𝑡) 𝑢 (𝑡) 𝑑𝑡, 𝑗 = 𝑖

−∫

𝑠

0

𝑘
𝑖𝑗 (𝑠, 𝑡) 𝑢 (𝑡) 𝑑𝑡, 𝑗 ̸= 𝑖,

(12)

where 𝑢 ∈ 𝑊
1

2
. Then, (1) can be turned into

𝐴
11
𝑓
1
+ 𝐴
12
𝑓
2
+ ⋅ ⋅ ⋅ + 𝐴

1𝑛
𝑓
1𝑛

= 𝑔
1
(𝑠)

𝐴
21
𝑓
1
+ 𝐴
22
𝑓
2
+ ⋅ ⋅ ⋅ + 𝐴

2𝑛
𝑓
1𝑛

= 𝑔
2 (𝑠)

...

𝐴
𝑛1
𝑓
1
+ 𝐴
𝑛2
𝑓
2
+ ⋅ ⋅ ⋅ + 𝐴

𝑛𝑛
𝑓
1𝑛

= 𝑔
𝑛
(𝑠) ,

(13)

where 𝐹(𝑠) = [𝑓
1
(𝑠), 𝑓
2
(𝑠), . . . , 𝑓

𝑛
(𝑠)]
𝑇

∈ 𝐸.

3.2. The Exact solution of (1). Let {𝑥
𝑖
}
∞

𝑖=1
be a dense subset of

interval [0, 1], and define

Ψ
𝑖𝑗
(𝑥) = (𝐴

𝑗1 ,𝑦
𝑅
𝑥
(𝑦)

𝑦=𝑥𝑖
, 𝐴
𝑗2 ,𝑦

𝑅
𝑥
(𝑦)

𝑦=𝑥𝑖
, . . . ,

𝐴
𝑗𝑛 ,𝑦

𝑅
𝑥
(𝑦)

𝑦=𝑥𝑖
)

𝑇
(14)

for every 𝑗 = 1, 2, . . . , 𝑛, 𝑖 = 1, 2, . . .; the subscript 𝑦 of 𝐴
𝑖𝑗,𝑦

means that the operator𝐴
𝑖𝑗
acts on the function of𝑦. It is easy

to prove that Ψ
𝑖𝑗

∈ 𝐸.

Theorem 3. {Ψ
𝑖1
, Ψ
𝑖2
, . . . , Ψ

𝑖𝑛
}
∞

𝑖=1
is complete in 𝐸.

Proof. Take 𝑢 = (𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑛
)
𝑇

∈ 𝐸 such that (𝑢(𝑥), Ψ
𝑖𝑗
(𝑥))

= 0 for every 𝑗 = 1, 2, . . . , 𝑛, 𝑖 = 1, 2, . . ..
From this fact, it holds that

(𝑢 (𝑥) , Ψ
𝑖𝑗
(𝑥))

= ((𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑛
)
𝑇
,

(𝐴
𝑗1,𝑦

𝑅
𝑥
(𝑦)

𝑦=𝑥𝑖
,

𝐴
𝑗2,𝑦

𝑅
𝑥
(𝑦)

𝑦=𝑥𝑖
, . . . , 𝐴

𝑗𝑛,𝑦
𝑅
𝑥
(𝑦)

𝑦=𝑥𝑖

)

𝑇

)

=

𝑛

∑

𝑘=1

𝐴
𝑗𝑘,𝑦

(𝑢
𝑘
(𝑥) , 𝑅

𝑥
(𝑦))
𝑤
1

2

𝑦=𝑥𝑖

=

𝑛

∑

𝑘=1

𝐴
𝑗𝑘
𝑢
𝑘
(𝑥
𝑖
) = 0,

(15)
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for every 𝑗 = 1, 2, . . . , 𝑛. The dense {𝑥
𝑖
}
∞

𝑖=1
assumes that

𝐴
11
𝑢
1
+ 𝐴
12
𝑢
2
+ ⋅ ⋅ ⋅ + 𝐴

1𝑛
𝑢
𝑛
= 0

𝐴
21
𝑢
1
+ 𝐴
22
𝑢
2
+ ⋅ ⋅ ⋅ + 𝐴

2𝑛
𝑢
𝑛
= 0

...

𝐴
𝑛1
𝑢
1
+ 𝐴
𝑛2
𝑢
2
+ ⋅ ⋅ ⋅ + 𝐴

𝑛𝑛
𝑢
𝑛
= 0.

(16)

Since (16) has a unique solution, it follows that 𝑢 =

𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑛

𝑇
= 0. This completes the proof.

We arrangeΨ
11
,Ψ
12
,. . .,Ψ

1𝑛
,Ψ
21
,Ψ
22
, . . .,Ψ

2𝑛
, . . .,Ψ

𝑖1
, Ψ
𝑖2
,

. . .,Ψ
𝑖𝑛
,. . ., denoted by {𝑟

𝑖
}
∞

𝑖=1
; that is, 𝑟

1
= Ψ
11
, 𝑟
2

= Ψ
12
,

. . . , 𝑟
𝑛

= Ψ
1𝑛
, 𝑟
𝑛+1

= Ψ
21
, 𝑟
𝑛+2

= Ψ
22
, . . . , 𝑟

𝑛+𝑛
= Ψ
2𝑛
, . . ..

In a general way, 𝑟
(𝑖−1)𝑛+𝑗

= Ψ
𝑖𝑗
, 𝑖 = 1, 2, 3, . . . ; 𝑗 = 1,

2,. . . ,𝑛. The orthogonal basis {𝑟
𝑖
}
∞

𝑖=1
in 𝐸 from Gram-Schmidt

orthogonalization of {𝑟
𝑖
}
∞

𝑖=1
is as follows:

𝑟
𝑖
=

𝑖

∑

𝑘=1

𝛽
𝑖𝑘
𝑟
𝑘
, 𝑖 = 1, 2, . . . . (17)

Theorem 4. The exact solution of (1) can be expressed by

𝐹 (𝑥) =

∞

∑

𝑖=1

𝑖

∑

𝑘=1

𝛽
𝑖𝑘
𝜌
𝑘
𝑟
𝑖
(𝑥) , (18)

where 𝜌
𝑘
= (𝐹(𝑥), 𝑟

𝑘
)
𝐸
; if 𝑟
𝑘
= Ψ
𝑗𝑙
, then 𝜌

𝑘
= 𝑔
𝑙
(𝑥
𝑗
).

Proof. Assume that 𝐹(𝑥) is the exact solution of (1). 𝐹(𝑥) can
be expanded to Fourier series in terms of normal orthogonal
basis {𝑟

𝑖
(𝑥)}
∞

𝑖=1
in 𝐸:

𝐹 (𝑥) =

∞

∑

𝑖=1

(𝐹, 𝑟
𝑖
)
𝐸
𝑟
𝑖
(𝑥) =

∞

∑

𝑖=1

𝑖

∑

𝑘=1

𝛽
𝑖𝑘
(𝐹, 𝑟
𝑘
)
𝐸
𝑟
𝑖
(𝑥) ; (19)

if 𝜌
𝑘
= (𝐹, 𝑟

𝑘
)
𝐸
, then

𝐹 (𝑥) =

∞

∑

𝑖=1

𝑖

∑

𝑘=1

𝛽
𝑖𝑗
𝜌
𝑘
𝑟
𝑖 (𝑥) . (20)

When 𝑟
𝑘
= Ψ
𝑗𝑙
, it holds that

𝜌
𝑘
= (𝐹,Ψ

𝑗𝑙
) =

𝑛

∑

𝑘=1

𝐴
𝑙𝑘
𝑢
𝑘
(𝑥
𝑗
) = 𝑔
𝑙
(𝑥
𝑗
) . (21)

Corollary 5. The approximate solution of (1) is

𝐹
𝑚 (𝑥) =

𝑚

∑

𝑖=1

𝑖

∑

𝑘=1

𝛽
𝑖𝑘
𝜌
𝑘
𝑟
𝑖 (𝑥) = (𝑓

1,𝑚
, 𝑓
2,𝑚

, . . . , 𝑓
𝑛,𝑚

)
𝑇
, (22)

and 𝑓
𝑖,𝑚

(𝑥) converges uniformly to 𝑓
𝑖
(𝑥) on [0, 1] as 𝑚 → ∞

for every 𝑖 = 1, 2, . . . , 𝑛.

Proof. Obviously, ‖𝐹
𝑚

− 𝐹‖
2

𝐸
→ 0 holds as 𝑚 → ∞; that is,

𝐹
𝑚
(𝑥) is the approximate solution of (1).

Note that ∑
𝑛

𝑖=1
‖𝑓
𝑖,𝑚

− 𝑓
𝑖
‖
2

𝑊
1

2

= ‖𝐹
𝑚

− 𝐹‖
2

𝐸
→ 0. Com-

bining with the expression of 𝑅
𝑥
(𝑦), we have

𝑓𝑖,𝑚 − 𝑓
𝑖

 =

(𝑓
𝑖,𝑚

(𝑦) − 𝑓
𝑖
(𝑦) , 𝑅

𝑥
(𝑦))
𝑊
1

2



≤
𝑓𝑖,𝑚 − 𝑓

𝑖

𝑊1
2

⋅
𝑅𝑥 (𝑦)

𝑊1
2

=
𝑓𝑖,𝑚 − 𝑓

𝑖

𝑊1
2

√𝑅
𝑥 (𝑥)

≤ √2
𝑓𝑖,𝑚 − 𝑓

𝑖

𝑊1
2

, ∀𝑥 ∈ [0, 1] .

(23)

It shows that 𝑓
𝑖,𝑚

converges uniformly to 𝑓
𝑖
on [0, 1] as𝑚 →

∞ for every 𝑖 = 1, 2, . . . , 𝑛. So the proof is complete.

Remark 6. If 𝑘
𝑖𝑗
(𝑠, 𝑡) ∈ 𝐶([0, 1] × [0, 1]) and 𝑔

𝑖
∈ 𝑊
2

2
in (1),

then it is reasonable to regard the unknown functions as the
elements of 𝑊2

2
.

4. Numerical Examples

Taking nodes {𝑥
𝑖
= (𝑖−1)/(𝑁−1)}

𝑁

𝑖=1
,𝑓
𝑖,𝑁

is the approximate
solutions of 𝑓

𝑖
, and 𝑒(𝑓

𝑖,𝑁
) denotes the absolute errors of

𝑓
𝑖
, 𝑖 = 1, 2, . . . , 𝑛. According to Remark 6, we solve the

following two examples appearing in [11] in 𝑊
2

2
.

Example 7. Consider the following systemofVolterra integral
equations of the second kind [11]:

𝑓
1 (𝑠) = 𝑔

1 (𝑠) + ∫

𝑠

0

(𝑠 − 𝑡)
3
𝑓
1 (𝑡) 𝑑𝑡 + ∫

𝑠

0

(𝑠 − 𝑡)
2
𝑓
2 (𝑡) 𝑑𝑡,

𝑓
2
(𝑠) = 𝑔

2
(𝑠) + ∫

𝑠

0

(𝑠 − 𝑡)
4
𝑓
1
(𝑡) 𝑑𝑡

+ ∫

𝑠

0

(𝑠 − 𝑡)
3
𝑓
2 (𝑡) 𝑑𝑡,

(24)

where 𝑔
1
(𝑠) and 𝑔

2
(𝑠) are chosen such that the exact solution

is 𝑓
1
(𝑠) = 1 + 𝑠

2
, 𝑓
2
(𝑠) = 1 + 𝑠 − 𝑠

3. The numerical results
obtained by using the present method are compared with [11]
in Table 1.

Example 8. Consider the following system of linear Volterra
integral equations of the second kind [11]:

𝑓
1 (𝑠) = 𝑔

1 (𝑠) + ∫

𝑠

0

(sin (𝑠 − 𝑡) − 1) 𝑓1 (𝑡) 𝑑𝑡

+ ∫

𝑠

0

(1 − 𝑡 cos 𝑠) 𝑓
2
(𝑡) 𝑑𝑡,

𝑓
2 (𝑠) = 𝑔

2 (𝑠) + ∫

𝑠

0

(𝑓
1 (𝑡)) 𝑑𝑡 + ∫

𝑠

0

(𝑠 − 𝑡) 𝑓2 (𝑡) 𝑑𝑡,

(25)

where 𝑔
1
(𝑠) and 𝑔

2
(𝑠) are chosen such that the exact solution

is 𝑓
1
(𝑠) = cos 𝑠, 𝑓

2
(𝑠) = sin 𝑠. The numerical results

obtained by using the present method are compared with [11]
in Table 2.
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Table 1: Absolute errors for Example 7.

Nodes 𝑥
𝑖

Errors 𝑒(𝑓
1
) [11] Errors 𝑒(𝑓

1,100
) Errors 𝑒(𝑓

2
) [11] Errors 𝑒(𝑓

2,100
) [11]

0.0 0 1.58309𝐸 − 10 0 3.98245𝐸 − 10

0.1 2.63472𝐸 − 7 3.92220𝐸 − 12 2.11685𝐸 − 8 3.94493𝐸 − 10

0.2 1.62592𝐸 − 5 3.21563𝐸 − 10 2.61132𝐸 − 6 4.72710𝐸 − 10

0.3 1.74905𝐸 − 4 5.95890𝐸 − 10 4.18979𝐸 − 5 6.19366𝐸 − 10

0.4 8.93799𝐸 − 4 5.11051𝐸 − 10 2.86285𝐸 − 4 6.95422𝐸 − 10

0.5 3.00491𝐸 − 3 2.46104𝐸 − 10 1.19940𝐸 − 3 4.19959𝐸 − 10

0.6 7.47528𝐸 − 3 1.98685𝐸 − 9 3.56141𝐸 − 3 5.90035𝐸 − 10

0.7 1.40733𝐸 − 2 5.01512𝐸 − 9 7.74239𝐸 − 3 2.83080𝐸 − 9

0.8 1.78384𝐸 − 2 9.62848𝐸 − 9 1.09171𝐸 − 2 6.94058𝐸 − 9

0.9 4.97756𝐸 − 3 1.61180𝐸 − 8 2.27326𝐸 − 3 1.36984𝐸 − 8

1.0 3.84378𝐸 − 2 2.49043𝐸 − 8 3.32111𝐸 − 2 2.42565𝐸 − 8

Table 2: Absolute errors for Example 8.

Nodes 𝑥
𝑖

Errors 𝑒(𝑓
1
) [11] Errors 𝑒(𝑓

1,100
) Errors 𝑒(𝑓

2
) [11] Errors 𝑒(𝑓

2,100
) [11]

0.0 0 6.93348𝐸 − 11 0 3.60316𝐸 − 11

0.1 1.37735𝐸 − 4 4.53518𝐸 − 09 1.52721𝐸 − 4 2.75123𝐸 − 08

0.2 9.27188𝐸 − 4 8.84879𝐸 − 09 1.14715𝐸 − 3 3.10611𝐸 − 08

0.3 2.67117𝐸 − 3 1.28253𝐸 − 08 3.71248𝐸 − 3 3.53307𝐸 − 08

0.4 5.45507𝐸 − 3 1.65442𝐸 − 08 8.57201𝐸 − 3 4.03402𝐸 − 08

0.5 9.22670𝐸 − 3 2.00881𝐸 − 08 1.64412𝐸 − 2 4.61209𝐸 − 08

0.6 1.38644𝐸 − 2 2.35657𝐸 − 09 2.78243𝐸 − 2 5.27214𝐸 − 08

0.7 1.92960𝐸 − 2 2.71160𝐸 − 08 4.25337𝐸 − 2 6.02041𝐸 − 08

0.8 2.56349𝐸 − 2 3.09302𝐸 − 08 5.91212𝐸 − 2 6.86601𝐸 − 08

0.9 3.31574𝐸 − 2 3.52645𝐸 − 08 7.48883𝐸 − 2 7.82029𝐸 − 08

1.0 4.19808𝐸 − 2 3.67322𝐸 − 08 8.70896𝐸 − 2 1.02387𝐸 − 07

5. Conclusion

In this paper, we modify the traditional reproducing kernel
method to enlarge its application range. The new method
named MRKM is applied successfully to solve a system of
linear Volterra integral equations.Thenumerical results show
that our method is effective. It is worth to be pointed out that
the MRKM is still suitable for solving other systems of linear
equations.
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The aim of this paper is to show the use of the coupled quasisolutions method as a useful technique when dealing with ordinary
differential equations with functional arguments of bounded variation. We will do this by looking for solutions for a first-order
ordinary differential equation with an advanced argument of bounded variation.Themain trick is to use the Jordan decomposition
of this argument in a nondecreasing part and a nonincreasing one. As a necessary step, we will also talk about coupled fixed points
of multivalued operators.

1. Introduction

In the paper [1], we proved a new result on the existence of
coupled fixed points for multivalued operators, and then we
used it to guarantee the existence of coupled quasisolutions
and solutions to a certain first-order ordinary differential
equation with state-dependent delay. In that paper, the
nonlinearity was allowed to have both nondecreasing and
nonincreasing arguments and the existence of solutions was
obtained under strong Lipschitz conditions. We pointed out
there that this tool could be useful when working with
arguments of bounded variation, but no literature about this
was written since then. So, the main goal in the present paper
is to develop the application of the coupled quasisolutions
technique in the framework of arguments of bounded vari-
ation, and we do it in an appropriate way, in order to take
advantage of the Jordan decomposition and avoid the use of
strong assumptions, as Lipschitz-continuity.

To show the application of this technique, we will study
throughout this paper the existence of solutions for the
following first-order problem:

𝑥

(𝑡) = 𝑓 (𝑡, 𝑥 (𝑡) , 𝑥 (𝜏 (𝑡))) , for a.a. 𝑡 ∈ 𝐼 = [𝑎, 𝑏] ,

𝑥 (𝑡) = 𝜙 (𝑡) , ∀𝑡 ∈ [𝑏, 𝑏 + 𝑟] ,

(1)

where 𝑟 ≥ 0, 𝜏 is a measurable function such that 𝜏(𝑡) ≥ 𝑡 for
a.a. 𝑡; that is, 𝜏 is an advanced argument, and 𝜙 is a bounded
function which represents the final state of the solution. By a
solution of (1), we mean a function 𝑥 ∈ C[𝑎, 𝑏 + 𝑟] such that
𝑥
|𝐼
∈ 𝐴𝐶(𝐼) and 𝑥 satisfies both the differential equation (a.e.

on 𝐼) and the final condition. We refer the readers to papers
[2–4] to see more results on the existence of solutions and
some applications of first-order problems with advance.

This paper is organized as follows. In Section 2, we gather
some preliminary concepts and results involving functions of
bounded variation and coupled fixed points of multivalued
operators. These preliminaries are used later, in Section 3,
to prove the existence of quasisolutions and solutions for
problem (1). In Section 4, we show how our results can be
adapted to deal with delay problems. Finally, in Section 5,
some examples of application are available.

2. Preliminaries on Bounded
Variation and Coupled Fixed Points of
Multivalued Operators

In this section, we introduce some preliminaries that we will
use throughout this work. First, we remember some concepts
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about functions of bounded variation. The reader can see
more about this in the monographs [5, 6].

Definition 1. Given a function 𝑓 : 𝐼 = [𝑎, 𝑏] ⊂ R → R and a
partition 𝑃 = {𝑥

0
, . . . , 𝑥

𝑛
} of 𝐼, one defines the variation of 𝑓

relative to the partition 𝑃 as the number

𝑉 (𝑓, 𝑃) =

𝑛

∑

𝑖=1

𝑓 (𝑥𝑖) − 𝑓 (𝑥𝑖−1)
 , (2)

and one defines the total variation of 𝑓 on 𝐼 as

𝑉
𝑏

𝑎
(𝑓) = sup

𝑃∈P

𝑉 (𝑓, 𝑃) , (3)

whereP = {𝑃 : 𝑃 is a partition of 𝐼}.
One says that 𝑓 is a function of bounded variation on 𝐼 if

𝑉
𝑏

𝑎
(𝑓) < +∞. In that case, one writes 𝑓 ∈ BV(𝐼).

Functions of bounded variation satisfy the followingwell-
known result, which becomes essential now for our purposes.

Proposition 2 (Jordan decomposition). A function 𝑓 is of
bounded variation on 𝐼 if and only if there exist a nondecreasing
function, 𝑔, and a nonincreasing one, ℎ, such that

𝑓 (𝑡) = 𝑔 (𝑡) + ℎ (𝑡) , ∀𝑡 ∈ 𝐼. (4)

The proof of Proposition 2 uses the fact that the function
𝑡 ∈ 𝐼 → 𝑉

𝑡

𝑎
(𝑓) is nondecreasing and 𝑡 → 𝑓(𝑡) − 𝑉

𝑡

𝑎
(𝑓) is

nonincreasing, and thus the desired decomposition is

𝑓 (𝑡) = 𝑉
𝑡

𝑎
(𝑓) + 𝑓 (𝑡) − 𝑉

𝑡

𝑎
(𝑓) . (5)

We remark that this decomposition is not unique. Finally,
notice that, as a consequence of this result, every function of
bounded variation is a.e. differentiable.

The set BV(𝐼) is an algebra which is included neither in
the set of continuous functions nor in its complementary.
Indeed, if𝑓 ismonotone on [𝑎, 𝑏], then𝑉𝑏

𝑎
(𝑓) = |𝑓(𝑏)−𝑓(𝑎)|,

and thus 𝑓 ∈ BV(𝐼). Then, there exist discontinuous func-
tions which are of bounded variation (e.g., step function). In
fact, it is also a well-known fact that if 𝑓 ∈ BV(𝐼), then 𝑓 has
only “jump” discontinuities. On the other hand, there exist
continuous functions which are not of bounded variation, as
(see [5, Example 6.3.1])

𝑓 (𝑡) =

{

{

{

𝑡 cos( 𝜋
2𝑡
) if 0 < 𝑡 ≤ 1,

0 if 𝑡 = 0.

(6)

To obtain our main result, we will use a generalized mon-
otone method in presence of lower and upper solutions.
This is a very well-known tool which is extensively used in
the literature of ordinary differential equations. The classical
version of this technique uses a pair of monotone sequences
which will converge to the extremal solutions of the problem.
The generalized version of this technique was developed in
[7], and it is used when the nonlinearity has discontinuous
arguments and therefore the pair of monotone sequences is

replaced by a monotone operator. As a novelty which respect
to themethod developed in [7] and related references, we will
use here a multivalued operator (i.e., a set-valued mapping)
defined in a product space and then we will look for coupled
fixed points. We concrete this idea in the following lines.

Definition 3. A metric space 𝑋 equipped with a partial
ordering ≤ is an ordered metric space if the intervals [𝑥) =
{𝑦 ∈ 𝑋 : 𝑥 ≤ 𝑦} and (𝑥] = {𝑦 ∈ 𝑋 : 𝑦 ≤ 𝑥} are closed for
every 𝑥 ∈ 𝑋. Let 𝑃 be a subset of an ordered metric space.
An operator 𝐴 : 𝑃 × 𝑃 → 𝑃 is said to be mixed monotone
if 𝐴(⋅, 𝑥) is nondecreasing and 𝐴(𝑥, ⋅) is nonincreasing for
each 𝑥 ∈ 𝑃. One says that 𝐴 satisfies the mixed monotone
convergence property (m.m.c.p.) if (𝐴(V

𝑗
, 𝑤
𝑗
))
∞

𝑗=1
converges

in 𝑋 whenever (V
𝑗
)
∞

𝑗=1
and (𝑤

𝑗
)
∞

𝑗=1
are sequences in 𝑃, one

being nondecreasing and the other nonincreasing.

Definition 4. Let𝑋 be a subset of an ordered metric space𝑋.
One defines a multivalued operator in the product 𝑋 × 𝑋 as
a mapping

A : 𝑋 × 𝑋 → 2
𝑋
\ 0. (7)

We say that V, 𝑤 ∈ 𝑋 are coupled fixed points of A if V ∈

A(V, 𝑤) and 𝑤 ∈ A(𝑤, V). We say that V
∗
, 𝑤∗ ∈ 𝑋 are the

extremal coupled fixed points ofA in𝑋 if V
∗
,𝑤∗ are coupled

fixed points ofA and if V, 𝑤 ∈ 𝑋 are another pair of coupled
fixed points ofA; then V

∗
≤ V and 𝑤 ≤ 𝑤

∗.

Theorem 5 (see [1, Theorem 2.1]). Let 𝑌 be a subset of an
ordered metric space 𝑋, [𝛼, 𝛽] be a nonempty closed interval
in 𝑌, and A : [𝛼, 𝛽] × [𝛼, 𝛽] → 2

[𝛼,𝛽]
\ 0 be a multivalued

operator.
If for all V, 𝑤 ∈ [𝛼, 𝛽], there exist

𝐴
∗
(V, 𝑤) = minA (V, 𝑤) ∈ [𝛼, 𝛽] ,

𝐴
∗
(V, 𝑤) = maxA (V, 𝑤) ∈ [𝛼, 𝛽] ,

(8)

and the (single-valued) operators 𝐴
∗
and 𝐴∗ are mixed mon-

otone and satisfy the m.m.c.p., then A has the extremal
coupled fixed points in [𝛼, 𝛽], V

∗
, V∗. Moreover, they satisfy the

following characterization:

(V
∗
, 𝑤
∗
) = min
⪯

{(V, 𝑤) : (𝐴∗ (V, 𝑤) , 𝐴
∗
(𝑤, V)) ⪯ (V, 𝑤)} ,

(9)

where

(V, 𝑤) ⪯ (V, 𝑤) ⇐⇒ V ≤ V, 𝑤 ≥ 𝑤. (10)

3. Main Result

Now, we develop our generalized monotone method applied
to problem (1). To do this, throughout this section, we will
assume the following.

(𝐻
1
) There exists a closed interval 𝐽 ⊂ R, such that for a.a.
𝑡 ∈ 𝐼 and all𝑥 ∈ R the function𝑓(𝑡, 𝑥, ⋅) is of bounded
variation on 𝐽.
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Assumption (𝐻
1
) implies that there exists a nondecreas-

ing function, 𝑔, and a nonincreasing one, ℎ, such that

𝑓 (𝑡, 𝑥, ⋅) = 𝑔 (𝑡, 𝑥, ⋅) + ℎ (𝑡, 𝑥, ⋅) , (11)

for all (𝑡, 𝑥) ∈ 𝐼 ×R.
Now, we define what we mean by lower and upper solu-

tions for problem (1).

Definition 6. One says that 𝛼, 𝛽 ∈ C[𝑎, 𝑏+𝑟] are, respectively,
a lower and upper solutions for problem (1), and if 𝛼

|𝐼
, 𝛽
|𝐼
∈

𝐴𝐶(𝐼),

[ min
𝑡∈[𝑎,𝑏+𝑟]

𝛼 (𝑡) , max
𝑡∈[𝑎,𝑏+𝑟]

𝛽 (𝑡)] ⊂ 𝐽, (12)

the compositions

𝑡 → 𝑓 (𝑡, 𝛼 (𝑡) , 𝑦) , 𝑡 → 𝑓 (𝑡, 𝛽 (𝑡) , 𝑦) (13)

are measurable for all 𝑦 ∈ 𝐽 and the following inequalities
hold:

𝛼

(𝑡) ≥ 𝑔 (𝑡, 𝛼 (𝑡) , 𝛽 (𝜏 (𝑡))) + ℎ (𝑡, 𝛼 (𝑡) , 𝛼 (𝜏 (𝑡))) ,

for a.a. 𝑡 ∈ 𝐼,

𝛼 (𝑡) ≤ 𝜙 (𝑡) , ∀𝑡 ∈ [𝑏, 𝑏 + 𝑟] ,

𝛽

(𝑡) ≤ 𝑔 (𝑡, 𝛽 (𝑡) , 𝛼 (𝜏 (𝑡))) + ℎ (𝑡, 𝛽 (𝑡) , 𝛽 (𝜏 (𝑡))) ,

for a.a. 𝑡 ∈ 𝐼,

𝛽 (𝑡) ≥ 𝜙 (𝑡) , ∀𝑡 ∈ [𝑏, 𝑏 + 𝑟] .

(14)

Remark 7. Notice that, under the previous definition, the
lower and the upper solutions appear “coupled.” On the other
hand, it is assumed that

min
𝑡∈[𝑎,𝑏+𝑟]

𝛼 (𝑡) ≤ max
𝑡∈[𝑎,𝑏+𝑟]

𝛽 (𝑡) . (15)

This is not a strong assumption, taking into account that, as
usual, we will ask the lower and the upper solutions to be well
ordered in the whole interval [𝑎, 𝑏 + 𝑟].

On the other hand, the fact that 𝑡 → 𝑓(𝑡, 𝛼(𝑡), 𝑦) and 𝑡 ∈
𝐼 → 𝑓(𝑡, 𝛽(𝑡), 𝑦) are being measurable for all 𝑦 ∈ 𝐽 implies
that the compositions

𝑡 ∈ 𝐼 → 𝑔 (𝑡, 𝛼 (𝑡) , 𝛽 (𝜏 (𝑡))) + ℎ (𝑡, 𝛼 (𝑡) , 𝛼 (𝜏 (𝑡))) ,

𝑡 ∈ 𝐼 → 𝑔 (𝑡, 𝛽 (𝑡) , 𝛼 (𝜏 (𝑡))) + ℎ (𝑡, 𝛽 (𝑡) , 𝛽 (𝜏 (t)))
(16)

aremeasurable too, because 𝑔 and ℎ are beingmonotonewith
respect to their last variables.

As we said in the Introduction, an essential tool in our
work is the use of coupled quasisolutions. So, we introduce
now this concept.

Definition 8. One says that two functions 𝑥
∗
, 𝑥
∗

∈

C[𝑎, 𝑏 + 𝑟]are coupled quasisolutions of problem (1), and if

𝑥
∗|𝐼
, 𝑥
∗

|𝐼
∈ 𝐴𝐶(𝐼), 𝑥

∗
(𝑡) = 𝑥

∗
(𝑡) = 𝜙(𝑡) for all 𝑡 ∈ [𝑏, 𝑏+𝑟] and

for a.a. 𝑡 ∈ 𝐼, they satisfy

𝑥


∗
(𝑡) = 𝑔 (𝑡, 𝑥

∗ (𝑡) , 𝑥
∗
(𝜏 (𝑡))) + ℎ (𝑡, 𝑥∗ (𝑡) , 𝑥∗ (𝜏 (𝑡))) ,

𝑥
∗

(𝑡) = 𝑔 (𝑡, 𝑥
∗
(𝑡) , 𝑥∗ (𝜏 (𝑡))) + ℎ (𝑡, 𝑥

∗
(𝑡) , 𝑥
∗
(𝜏 (𝑡))) .

(17)

We say that these coupled quasisolutions are extremal in a
subset𝑋 ⊂ C[𝑎, 𝑏+𝑟] if 𝑥

∗
, 𝑥∗ ∈ 𝑋 and 𝑥

∗
(𝑡) ≤ 𝑥

1
(𝑡), 𝑥
2
(𝑡) ≤

𝑥
∗
(𝑡) whenever 𝑥

1
, 𝑥
2
∈ 𝑋 is another pair of quasisolutions.

We need the following maximum principle related to
problems with advance, as an auxiliar tool, for proving our
main result. Compare it with [3, Lemma 3.2], [4, Lemma 1].

Lemma 9. Let 𝜏 : 𝐼 → [𝑎, 𝑏 + 𝑟] be a measurable function
such that 𝜏(𝑡) ≥ 𝑡 for a.a. 𝑡 ∈ 𝐼 and assume that 𝑝 ∈ C[𝑎, 𝑏+𝑟]

such that 𝑝
|𝐼
∈ 𝐴𝐶(𝐼) and satisfies

𝑝

(𝑡) ≥ 𝐾 (𝑡) 𝑝 (𝑡) − 𝐿 (𝑡) 𝑝 (𝜏 (𝑡)) for a.a. 𝑡 ∈ 𝐼,

𝑝 (𝑡) = 0, ∀𝑡 ∈ [𝑏, 𝑏 + 𝑟] ,

(18)

where𝐾, 𝐿 ∈ 𝐿1(𝐼) and 𝐿 ≥ 0 a.e.
If

∫

𝑏

𝑎

(𝐾
− (𝑡) + 𝐿 (𝑡)) 𝑑𝑡 < 1, (19)

where𝐾
−
= max{−𝐾, 0}, then 𝑝(𝑡) ≤ 0 for all 𝑡 ∈ [𝑎, 𝑏 + 𝑟].

Proof. Let 𝑡
1
∈ [𝑎, 𝑏 + 𝑟] such that

𝑝 (𝑡
1
) = max
𝑡∈[𝑎,𝑏+𝑟]

𝑝 (𝑡) (20)

and assume by contradiction that 𝑝(𝑡
1
) > 0. Then, 𝑡

1
∈ [𝑎, 𝑏).

Now, let 𝑡
2
∈ (𝑡
1
, 𝑏] such that 𝑝(𝑡

2
) = 0 and 𝑝(𝑡) ≥ 0 for all

𝑡 ∈ [𝑡
1
, 𝑡
2
]. Now, integrating 𝑡

1
and 𝑡
2
, we obtain

𝑝 (𝑡
1
) = −∫

𝑡2

𝑡1

𝑝

(𝑡) 𝑑𝑡

≤ −∫

𝑡2

𝑡1

𝐾 (𝑡) 𝑝 (𝑡) 𝑑𝑡 + ∫

𝑡2

𝑡1

𝐿 (𝑡) 𝑝 (𝜏 (𝑡)) 𝑑𝑡

≤ 𝑝 (𝑡
1
) ∫

𝑡2

𝑡1

(𝐾
−
(𝑡) + 𝐿 (𝑡)) 𝑑𝑡,

(21)

and then condition (49) provides the contradiction 𝑝(𝑡
1
) <

𝑝(𝑡
1
).

The main result on this paper concerns the existence of
extremal quasisolutions and solutions for problem (1). It is as
follows.

Theorem 10. Assume (𝐻
1
) and that there exist 𝛼, 𝛽 ∈ C[𝑎, 𝑏+

𝑟]which are, respectively, lower andupper solutions for problem
(1) such that 𝛼(𝑡) ≤ 𝛽(𝑡) for all 𝑡 ∈ [𝑎, 𝑏 + 𝑟] and

𝐸 = [ min
𝑡∈[𝑎,𝑏+𝑟]

𝛼 (𝑡) , max
𝑡∈[𝑎,𝑏+𝑟]

𝛽 (𝑡)] ⊂ 𝐽. (22)
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Assume moreover that the following conditions hold:

(𝐻
2
) for each 𝛾

1
, 𝛾
2
∈ [𝛼, 𝛽] = {𝛾 ∈ C[𝑎, 𝑏+𝑟] : 𝛼(𝑡) ≤

𝛾(𝑡) ≤ 𝛽(𝑡) for all 𝑡 ∈ [𝑎, 𝑏+𝑟]}, the final value problem

(𝑃
𝛾1,𝛾2

)

{{{{

{{{{

{

𝑥

(𝑡) = 𝐹

𝛾2,𝛾1
(𝑡, 𝑥 (𝑡))

:= 𝑔 (𝑡, 𝑥 (𝑡) , 𝛾2 (𝜏 (𝑡)))

+ℎ (𝑡, 𝑥 (𝑡) , 𝛾
1
(𝜏 (𝑡))) , 𝑓𝑜𝑟 𝑎.𝑎. 𝑡 ∈ 𝐼,

𝑥 (𝑏) = 𝜙 (𝑏)

(23)

has the extremal solutions in [𝛼, 𝛽];
(𝐻
3
) there exists 𝜓 ∈ 𝐿

1
(𝐼, [0, +∞)) such that for

a.a. 𝑡 ∈ 𝐼, all 𝑥 ∈ [𝛼(𝑡), 𝛽(𝑡)], and all 𝑦
1
, 𝑦
2
∈

[𝛼(𝜏(𝑡)), 𝛽(𝜏(𝑡))], one has
𝑔 (𝑡, 𝑥, 𝑦1) + ℎ (𝑡, 𝑥, 𝑦2)

 ≤ 𝜓 (𝑡) ; (24)

(𝐻
4
) there exists 𝐾

1
, 𝐾
2
, 𝐿
1
, 𝐿
2
∈ 𝐿
1
(𝐼) such that 𝐿

1
,

𝐿
2
≥ 0 a.e. and

𝑔 (𝑡, 𝑥, 𝑦) − 𝑔 (𝑡, 𝑥, 𝑦) ≥ 𝐾
1
(𝑡) (𝑥 − 𝑥) − 𝐿

1
(𝑡) (𝑦 − 𝑦) ,

ℎ (𝑡, 𝑥, 𝑦) − ℎ (𝑡, 𝑥, 𝑦) ≥ 𝐾
2
(𝑡) (𝑥 − 𝑥) − 𝐿

2
(𝑡) (𝑦 − 𝑦)

(25)

whenever 𝛼(𝑡) ≤ 𝑥 ≤ 𝑥 ≤ 𝛽(𝑡) and

min
𝑠∈[𝑏,𝑏+𝑟]

𝜙 (𝑠) − ∫

𝑏

𝑡

𝜓 (𝑠) 𝑑𝑠

≤ 𝑦 ≤ 𝑦 ≤ max
𝑠∈[𝑏,𝑏+𝑟]

𝜙 (𝑠) + ∫

𝑏

𝑡

𝜓 (𝑠) 𝑑𝑠.

(26)

Moreover,

∫

𝑏

𝑎

(𝐾
− (𝑡) + 𝐿 (𝑡)) 𝑑𝑡 < 1, (27)

where 𝐾 = 𝐾
1
+ 𝐾
2
, 𝐿 = 𝐿

1
+ 𝐿
2
and 𝐾

−
(𝑡) =

max{−𝐾(𝑡), 0}.

In these conditions, problem (1) has a unique solution in
[𝛼, 𝛽].

Proof. We consider the space 𝑋 = C[𝑎, 𝑏 + 𝑟] endowed with
the ordering

𝛾
1
≤ 𝛾
2
⇐⇒ 𝛾

1
(𝑡) ≤ 𝛾

2
(𝑡) , ∀𝑡 ∈ [𝑎, 𝑏 + 𝑟] , (28)

and we define a multivalued operator

A : [𝛼, 𝛽] × [𝛼, 𝛽] ⊂ 𝑋 × 𝑋 → 2
[𝛼,𝛽]

\ 0 (29)

as follows: for each 𝛾
1
, 𝛾
2
∈ [𝛼, 𝛽], we have𝑥 ∈ A(𝛾

1
, 𝛾
2
) if and

only if 𝑥 ∈ [𝛼, 𝛽], 𝑥
𝐼
is a solution of (𝑃

𝛾1,𝛾2
) and 𝑥

|[𝑏,𝑏+𝑟]
= 𝜙.

Step 1. Operator A has the extremal coupled fixed points in
[𝛼, 𝛽]. By virtue of condition (𝐻

2
), operatorA is well defined

and there exist

𝐴
∗
= minA (𝛾

1
, 𝛾
2
) , 𝐴

∗
= maxA (𝛾

1
, 𝛾
2
) . (30)

We will show now that 𝐴
∗
, 𝐴∗ are mixed monotone and

satisfy m.m.c.p. So, let

𝛾
1
, 𝛾
1
, 𝛾
2
, 𝛾
2
∈ [𝛼, 𝛽] (31)

such that 𝛾
1
≤ 𝛾
1
, 𝛾
2
≤ 𝛾
2
and put

𝑥
1
= 𝐴
∗
(𝛾
1
, 𝛾
2
) , 𝑥

1
= 𝐴
∗
(𝛾
1
, 𝛾
2
) , 𝑥

2
= 𝐴
∗
(𝛾
1
, 𝛾
2
) .

(32)

Then, for all 𝑡 ∈ [𝑏, 𝑏 + 𝑟], we have that 𝑥
1
(𝑡) = 𝑥

1
(𝑡) = 𝑥

2
(𝑡),

and for a.a. 𝑡 ∈ 𝐼, we have

𝑥


1
(𝑡) = 𝑔 (𝑡, 𝑥

1 (𝑡) , 𝛾2 (𝜏 (𝑡))) + ℎ (𝑡, 𝑥1, 𝛾1 (𝜏 (𝑡)))

≤ 𝑔 (𝑡, 𝑥
1
(𝑡) , 𝛾
2
(𝜏 (𝑡))) + ℎ (𝑡, 𝑥

1
, 𝛾
1
(𝜏 (𝑡))) .

(33)

And so, 𝑥
1
is an upper solution for problem (𝑃

𝛾1,𝛾2
). The fact

that 𝑥
1
is being the least solution of this problem in [𝛼, 𝛽]

implies that 𝑥
1
≥ 𝑥
1
and then 𝐴

∗
(⋅, 𝛾
2
) is nondecreasing. On

the other hand,

𝑥


1
(𝑡) = 𝑔 (𝑡, 𝑥

1 (𝑡) , 𝛾2 (𝜏 (𝑡))) + ℎ (𝑡, 𝑥1 (𝑡) , 𝛾1 (𝜏 (𝑡)))

≤ 𝑔 (𝑡, 𝑥
1
(𝑡) , 𝛾
2
(𝜏 (𝑡))) + ℎ (𝑡, 𝑥

1
(𝑡) , 𝛾
1
(𝜏 (𝑡))) ,

(34)

and therefore 𝑥
1
is an upper solution for problem (𝑃

𝛾1,𝛾2
).

Then, 𝑥
1
≥ 𝑥
2
, and so themapping𝐴

∗
(𝛾
1
, ⋅) is nonincreasing.

In the same way, we show that 𝐴∗ is mixed monotone.
To see that𝐴

∗
,𝐴∗ satisfy the m.m.c.p., let (V

𝑗
)
∞

𝑗=1
, (𝑤
𝑗
)
∞

𝑗=1

be sequences in [𝛼, 𝛽], one being nondecreasing and the
other being nonincreasing. As 𝐴

∗
, 𝐴∗ are mixed monotone

and bounded, we obtain that the sequences (𝐴
∗
(V
𝑗
, 𝑤
𝑗
))
∞

𝑗=1
,

(𝐴
∗
(V
𝑗
, 𝑤
𝑗
))
∞

𝑗=1
have their pointwise limit; say 𝑧

∗
, 𝑧∗. As

(𝐴
∗
(V
𝑗
, 𝑤
𝑗
))
∞

𝑗=1
, (𝐴∗(V

𝑗
, 𝑤
𝑗
))
∞

𝑗=1
are constant in [𝑏, 𝑏 + 𝑟], the

convergence is uniform in this interval. On the other hand,
for 𝑡, 𝑠 ∈ 𝐼, 𝑠 < 𝑡, and 𝑗 ∈ N, we have

𝑧
∗

𝑗
(𝑡) − 𝑧

∗

𝑗
(𝑠)


≤ ∫

𝑡

𝑠


𝑔 (𝑟, 𝑧

∗

𝑗
(𝑟) , 𝑤

𝑗
(𝜏 (𝑟))) + ℎ (𝑡, 𝑧

∗

𝑗
(𝑟) , V
𝑗
(𝜏 (𝑟)))


𝑑𝑟

≤ ∫

𝑡

𝑠

𝜓 (𝑟) 𝑑𝑟,

(35)

and thus (𝑧∗
𝑗
)
∞

𝑗=1
converges to 𝑧∗ uniformly on 𝐼. The same

argument is valid for 𝑧
∗
.

By application ofTheorem 5, operatorA has the extremal
coupled fixed points in [𝛼, 𝛽]; say 𝑥

∗
, 𝑥∗.

Step 2. Problem (1) has the extremal quasisolutions in [𝛼, 𝛽].
Indeed, we will show that the extremal coupled fixed points
of operators A, 𝑥

∗
, and 𝑥

∗ correspond with these extremal
quasisolutions. First, it is clear that if 𝑥, 𝑥 ∈ [𝛼, 𝛽] are coupled
fixed points of A, then they are coupled quasisolutions of
problem (1). On the other hand, if 𝑥, 𝑥 are quasisolutions of
problem (1), then 𝐴

∗
(𝑥, 𝑥) ≤ 𝑥 and 𝐴∗(𝑥, 𝑥) ≥ 𝑥, and then
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characterization (9) implies that 𝑥
∗
≤ 𝑥 and 𝑥 ≤ 𝑥

∗. This
shows that 𝑥

∗
, 𝑥∗ are the extremal quasisolutions of problem

(1) in [𝛼, 𝛽].

Step 3. Problem (1) has a unique solution in [𝛼, 𝛽]. We will
prove this by showing that the extremal quasisolutions 𝑥

∗
, 𝑥∗

are, in fact, the same functions, and thus defining a solution of
the problem. This solution must be unique in [𝛼, 𝛽] because
if 𝑥 ∈ [𝛼, 𝛽] is a solution of (1), then the pair 𝑥, 𝑥 is also a
quasisolution, and then 𝑥

∗
≤ 𝑥 ≤ 𝑥

∗.
To see that 𝑥

∗
= 𝑥
∗, first notice that as (𝑥

∗
, 𝑥
∗
) is a

pair of quasisolutions; then, the reversed pair, (𝑥∗, 𝑥
∗
), is

quasisolutions too, and then, extremality implies 𝑥
∗
≤ 𝑥
∗.

Moreover, condition (𝐻
3
) implies that for a.a. 𝑡 ∈ 𝐼

𝑥
∗ (𝑡) , 𝑥

∗
(𝑡) ∈ [𝜙 (𝑏) − ∫

𝑏

𝑡

𝜓 (𝑠) 𝑑𝑠, 𝜙 (𝑏) + ∫

𝑏

𝑡

𝜓 (𝑠) 𝑑𝑠] .

(36)

Now, define the function 𝑝(𝑡) = 𝑥
∗
(𝑡) −𝑥

∗
(𝑡) ≥ 0. On the

one hand, 𝑝(𝑡) = 0 for all 𝑡 ∈ [𝑏, 𝑏 + 𝑟]. On the other hand,
condition (𝐻

4
) implies for a.a. 𝑡 ∈ 𝐼 that

𝑝

(𝑡) = 𝑔 (𝑡, 𝑥

∗
(𝑡) , 𝑥
∗
(𝜏 (𝑡))) − 𝑔 (𝑡, 𝑥

∗
(𝑡) , 𝑥
∗
(𝜏 (𝑡)))

+ ℎ (𝑡, 𝑥
∗
(𝑡) , 𝑥
∗
(𝜏 (𝑡))) − ℎ (𝑡, 𝑥

∗
(𝑡) , 𝑥
∗
(𝜏 (𝑡)))

≥ 𝐾 (𝑡) (𝑥
∗
(𝑡) − 𝑥∗ (𝑡)) − 𝐿 (𝑡) (𝑥

∗
(𝜏 (𝑡)) − 𝑥∗ (𝜏 (𝑡))) ,

(37)

and then by virtue of Lemma 9, we obtain that 𝑝(𝑡) ≤ 0 on 𝐼.
We conclude that𝑝(𝑡) = 0 for all 𝑡 ∈ [𝑎, 𝑏+𝑟]; that is, 𝑥

∗
= 𝑥
∗.

This ends the proof.

Remark 11. Now, we point out some remarks related to
Theorem 10.

(1) Condition (𝐻
2
) could be replaced by any result on

the existence of extremal solutions between lower and
upper solutions for problem (𝑃

𝛾1,𝛾2
). For example, as

it is well known, if 𝐹
𝛾1,𝛾2

is a Carathéodory function,
then (𝐻

3
) implies that (𝑃

𝛾1,𝛾2
) has the extremal solu-

tions between 𝛼 and 𝛽. Moreover, there exists a very
extensive literature about the existence of extremal
solutions for problem (𝑃

𝛾1,𝛾2
) for discontinuous 𝐹

𝛾1,𝛾2
.

The reader is referred to [1, 8–10] and references
therein for some results of this type. Notice that
although most of these references deal with initial
value problems, these results can easily be adapted for
final value problems. Finally, notice that (𝐻

2
) implies,

in particular, measurability of the composition 𝑡 ∈

𝐼 → 𝐹
𝛾1,𝛾2

(𝑡, 𝑥(𝑡)) for all 𝑥 ∈ [𝛼, 𝛽].

(2) As we said in Section 2, a function of bounded
variation has only “jump” discontinuities. Although
condition (𝐻

4
) implies that for a.a. 𝑡 ∈ 𝐼 the function

𝑓 is continuous with respect to its third variable in the
interval

[ min
𝑠∈[𝑏,𝑏+𝑟]

𝜙 (𝑠) − ∫

𝑏

𝑡

𝜓 (𝑠) 𝑑𝑠,

max
𝑠∈[𝑏,𝑏+𝑟]

𝜙 (𝑠) + ∫

𝑏

𝑡

𝜓 (s) 𝑑𝑠] ,
(38)

a countable number of discontinuities are allowed to
exist outside this interval. Moreover, notice that this
interval can be improved if we find another function
�̃� satisfying (𝐻

3
) and such that �̃�(𝑡) ≤ 𝜓(𝑡) for a.a. 𝑡.

(3) For almost all 𝑡 ∈ 𝐼 and all 𝑥 ∈ [𝛼(𝑡), 𝛽(𝑡)] the
function 𝑓

𝑡,𝑥
(⋅) = 𝑓(𝑡, 𝑥, ⋅) is of bounded variation in

[𝛼(𝜏(𝑡)), 𝛽(𝜏(𝑡))], and thus there exists in this interval
a decomposition 𝑓

𝑡,𝑥
(⋅) = 𝑔

𝑡,𝑥
(⋅) + ℎ

𝑡,𝑥
(⋅), with 𝑔

nondecreasing and ℎ nonincreasing. Although all
conditions in Theorem 10 are stated for an arbitrary
Jordan decomposition of this type, all of them can be
rewritten with

𝑔
𝑡,𝑥
(𝑦) = 𝑉

𝑦

𝐴
(𝑓) ,

ℎ
𝑡,𝑥
(𝑦) = 𝑓

𝑡,𝑥
(𝑦) − 𝑉

𝑦

𝐴
(𝑓) ,

(39)

for any choice of 𝐴 ≤ min{𝛼(𝑡) : 𝑡 ∈ [𝑎, 𝑏 + 𝑟]}, 𝐴 ≥

min 𝐽.

Theorem 10 provides, in particular, a new result on
the existence of extremal solutions for problem (1) in the
case that function 𝑓 is nonincreasing with respect to its
third variable. In this case, the nondecreasing part of the
Jordan decomposition of 𝑓 does not exist, and therefore the
lower and upper solutions introduced in Definition 6 appear
uncoupled. Moreover, a pair of quasisolutions in the sense of
Definition 8 becomes, in fact, a pair of solutions, and then
extremal quasisolutions provided by Theorem 10 reduce to
extremal solutions. We specify these ideas in the following
corollary.

Corollary 12. Assume that there exist 𝛼, 𝛽 ∈ C[𝑎, 𝑏 + 𝑟] such
that 𝛼

𝐼
, 𝛽
𝐼
∈ 𝐴𝐶(𝐼), 𝛼 ≤ 𝛽 on [𝑎, 𝑏 + 𝑟] and the following

inequalities hold:

𝛼

(𝑡) ≥ 𝑓 (𝑡, 𝛼 (𝑡) , 𝛼 (𝜏 (𝑡))) , for a.a. 𝑡 ∈ 𝐼, 𝛼 (𝑡) ≤ 𝜙 (𝑡)

∀𝑡 ∈ [𝑏, 𝑏 + 𝑟] ,

𝛽

(𝑡) ≤ 𝑓 (𝑡, 𝛽 (𝑡) , 𝛽 (𝜏 (𝑡))) , for a.a. 𝑡 ∈ 𝐼, 𝛽 (𝑡) ≥ 𝜙 (𝑡)

𝑡 ∈ [𝑏, 𝑏 + 𝑟] .

(40)

Assume moreover that the following conditions hold:

(𝐻
2
)
 for all 𝛾 ∈ [𝛼, 𝛽], the final value problem

𝑥

(𝑡) = 𝑓 (𝑡, 𝑥 (𝑡) , 𝛾) , 𝑓𝑜𝑟 𝑎. 𝑎. 𝑡 ∈ 𝐼,

𝑥 (𝑏) = 𝜙 (𝑏)

(41)

has the extremal solutions in [𝛼, 𝛽];
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(𝐻
3
)
 there exists 𝜓 ∈ 𝐿

1
(𝐼, [0, +∞)) such that for a.a.

𝑡 ∈ 𝐼, all𝑥 ∈ [𝛼(𝑡), 𝛽(𝑡)], and all𝑦 ∈ [𝛼(𝜏(𝑡)), 𝛽(𝜏(𝑡))],
one has

𝑓 (𝑡, 𝑥, 𝑦)
 ≤ 𝜓 (𝑡) ; (42)

(𝐻
4
)
 for a.a. 𝑡 ∈ 𝐼 and all 𝑥 ∈ [𝛼(𝑡), 𝛽(𝑡)], the function

𝑓(𝑡, 𝑥, ⋅) is nonincreasing.

In these conditions problem (1) has the extremal solutions
in [𝛼, 𝛽].

4. Delay Problems

The results obtained in the previous section can be easily
reformulated in order to deal with problems with delay. We
concrete this idea in the following lines.

Consider the following problem:

𝑥

(𝑡) = 𝑓 (𝑡, 𝑥 (𝑡) , 𝑥 (𝜏 (𝑡))) , for a.a. 𝑡 ∈ 𝐼 = [𝑎, 𝑏] ,

𝑥 (𝑡) = 𝜙 (𝑡) , ∀𝑡 ∈ [𝑎 − 𝑟, 𝑎] ,

(43)

where 𝑟 ≥ 0, 𝜏 is a measurable function such that 𝜏(𝑡) ≤ 𝑡

for a.a. 𝑡; that is, 𝜏 is a delayed argument and 𝜙 is a bounded
function which represents the initial state of the solution.
Now, by a solution of (43), wemean a function 𝑥 ∈ C[𝑎−𝑟, 𝑏]
such that 𝑥

|𝐼
∈ 𝐴𝐶(𝐼) and 𝑥 satisfies both the differential

equation (a.e. on 𝐼) and the initial condition.
As we said, we will show now that we can use our tech-

nique to obtain a new result on the existence of solutions for
problem (43) in the case that function 𝑓(𝑡, 𝑥, ⋅) is of bounded
variation. We begin by reformulating the concept of lower
and upper solutions and coupled quasisolutions in order to
adapt them to our new problem. As in previous section, we
assume (𝐻

1
).

Definition 13. One says that𝛼,𝛽 ∈ C[𝑎−𝑟, 𝑏] are, respectively,
lower and upper solutions for problem (43), and if 𝛼

|𝐼
, 𝛽
|𝐼
∈

𝐴𝐶(𝐼),

[ min
𝑡∈[𝑎−𝑟,𝑏]

𝛼 (𝑡) , max
𝑡∈[𝑎−𝑟,𝑏]

𝛽 (𝑡)] ⊂ 𝐽, (44)

the compositions

𝑡 → 𝑓 (𝑡, 𝛼 (𝑡) , 𝑦) , 𝑡 → 𝑓 (𝑡, 𝛽 (𝑡) , 𝑦) (45)

are measurable for all 𝑦 ∈ 𝐽 and the following inequalities
hold:

𝛼

(𝑡) ≤ 𝑔 (𝑡, 𝛼 (𝑡) , 𝛼 (𝜏 (𝑡))) + ℎ (𝑡, 𝛼 (𝑡) , 𝛽 (𝜏 (𝑡))) ,

for a.a. 𝑡 ∈ 𝐼,

𝛼 (𝑡) ≤ 𝜙 (𝑡) , ∀𝑡 ∈ [𝑎 − 𝑟, 𝑎] ,

𝛽

(𝑡) ≥ 𝑔 (𝑡, 𝛽 (𝑡) , 𝛽 (𝜏 (𝑡))) + ℎ (𝑡, 𝛽 (𝑡) , 𝛼 (𝜏 (𝑡))) ,

for a.a. 𝑡 ∈ 𝐼,

𝛽 (𝑡) ≥ 𝜙 (𝑡) , ∀𝑡 ∈ [𝑎 − 𝑟, 𝑎] .

(46)

Definition 14. One says that two functions 𝑥
∗
, 𝑥∗ ∈ C[𝑎 −

𝑟, 𝑏] are coupled quasisolutions of problem (43) if 𝑥
∗|𝐼
, 𝑥
∗

|𝐼
∈

𝐴𝐶(𝐼), 𝑥
∗
(𝑡) = 𝑥

∗
(𝑡) = 𝜙(𝑡) for all 𝑡 ∈ [𝑎 − 𝑟, 𝑎] and for a.a.

𝑡 ∈ 𝐼, they satisfy

𝑥


∗
(𝑡) = 𝑔 (𝑡, 𝑥

∗ (𝑡) , 𝑥∗ (𝜏 (𝑡))) + ℎ (𝑡, 𝑥∗ (𝑡) , 𝑥
∗
(𝜏 (𝑡))) ,

𝑥
∗

(𝑡) = 𝑔 (𝑡, 𝑥
∗
(𝑡) , 𝑥
∗
(𝜏 (𝑡))) + ℎ (𝑡, 𝑥

∗
(𝑡) , 𝑥∗ (𝜏 (𝑡))) .

(47)

We say that these coupled quasisolutions are extremal in a
subset𝑋 ⊂ C[𝑎−𝑟, 𝑏]; if𝑥

∗
,𝑥∗ ∈ 𝑋 and𝑥

∗
(𝑡) ≤ 𝑥

1
(𝑡),𝑥
2
(𝑡) ≤

𝑥
∗
(𝑡) whenever 𝑥

1
, 𝑥
2
∈ 𝑋 is another pair of quasisolutions.

Before introducing our main result for problem (43), we
need a maximum principle for problems with delay, which is
as follows. Its proof is analogous to that done in Lemma 9, so
we omit it.

Lemma 15. Let 𝜏 : 𝐼 → [𝑎 − 𝑟, 𝑏] be a measurable function
such that 𝜏(𝑡) ≤ 𝑡 for a.a. 𝑡 ∈ 𝐼 and assume that 𝑝 ∈ C[𝑎−𝑟, 𝑏]
is such that 𝑝

|𝐼
∈ 𝐴𝐶(𝐼) and satisfies

𝑝

(𝑡) ≤ 𝐾 (𝑡) 𝑝 (𝑡) + 𝐿 (𝑡) 𝑝 (𝜏 (𝑡)) , for a.a. 𝑡 ∈ 𝐼,

𝑝 (𝑡) = 0, ∀𝑡 ∈ [𝑎 − 𝑟, 𝑎] ,

(48)

where𝐾, 𝐿 ∈ 𝐿1(𝐼) and 𝐿 ≥ 0 a.e.
If

∫

𝑏

𝑎

(𝐾
+ (𝑡) + 𝐿 (𝑡)) 𝑑𝑡 < 1, (49)

where𝐾
+
= max{𝐾, 0}, then 𝑝(𝑡) ≤ 0 for all 𝑡 ∈ [𝑎 − 𝑟, 𝑏].

Now, we state our main result in this Section.

Theorem 16. Assume (𝐻
1
) and that there exist 𝛼, 𝛽 ∈ C[𝑎 −

𝑟, 𝑏] which are, respectively, lower and upper solutions for
problem (43) such that 𝛼(𝑡) ≤ 𝛽(𝑡) for all 𝑡 ∈ [𝑎 − 𝑟, 𝑏] and

𝐸 = [ min
𝑡∈[𝑎−𝑟,𝑏]

𝛼 (𝑡) , max
𝑡∈[𝑎−𝑟,𝑏]

𝛽 (𝑡)] ⊂ 𝐽. (50)

Assume moreover that the following conditions hold:

(�̂�
2
) for each 𝛾

1
, 𝛾
2
∈ [𝛼, 𝛽] = {𝛾 ∈ C[𝑎 − 𝑟, 𝑏] :

𝛼(𝑡) ≤ 𝛾(𝑡) ≤ 𝛽(𝑡) for all 𝑡 ∈ [𝑎 − 𝑟, 𝑏]}, the initial
value problem

(�̂�
𝛾1,𝛾2

)

{{{{

{{{{

{

𝑥

(𝑡) = 𝐹

𝛾1,𝛾2
(𝑡, 𝑥 (𝑡))

:= 𝑔 (𝑡, 𝑥 (𝑡) , 𝛾
1
(𝜏 (𝑡)))

+ ℎ (𝑡, 𝑥 (𝑡) , 𝛾2 (𝜏 (𝑡))) , for a.a. 𝑡 ∈ 𝐼,
𝑥 (a) = 𝜙 (𝑎)

(51)

has the extremal solutions in [𝛼, 𝛽];
(𝐻
3
) there exists 𝜓 ∈ 𝐿

1
(𝐼, [0, +∞)) such that for

a.a. 𝑡 ∈ 𝐼, all 𝑥 ∈ [𝛼(𝑡), 𝛽(𝑡)], and all 𝑦
1
, 𝑦
2
∈

[𝛼(𝜏(𝑡)), 𝛽(𝜏(𝑡))], one has
𝑔 (𝑡, 𝑥, 𝑦1) + ℎ (𝑡, 𝑥, 𝑦2)

 ≤ 𝜓 (𝑡) ; (52)
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(�̂�
4
) there exists 𝐾

1
, 𝐾
2
, 𝐿
1
, 𝐿
2
∈ 𝐿
1
(𝐼) such that 𝐿

1
,

𝐿
2
≥ 0 a.e. and

𝑔 (𝑡, 𝑥, 𝑦) − 𝑔 (𝑡, 𝑥, 𝑦)

≤ 𝐾
1
(𝑡) (𝑥 − 𝑥) + 𝐿

1
(𝑡) (𝑦 − 𝑦) ,

ℎ (𝑡, 𝑥, 𝑦) − ℎ (𝑡, 𝑥, 𝑦)

≤ 𝐾
2 (𝑡) (𝑥 − 𝑥) + 𝐿2 (𝑡) (𝑦 − 𝑦)

(53)

whenever 𝛼(𝑡) ≤ 𝑥 ≤ 𝑥 ≤ 𝛽(𝑡) and

min
𝑠∈[𝑎−𝑟,𝑎]

𝜙 (𝑠) − ∫

𝑡

𝑎

𝜓 (𝑠) 𝑑𝑠

≤ 𝑦 ≤ 𝑦 ≤ max
𝑠∈[𝑎−𝑟,𝑎]

𝜙 (𝑠) + ∫

𝑡

𝑎

𝜓 (𝑠) 𝑑𝑠.

(54)

Moreover,

∫

𝑏

𝑎

(𝐾
+ (𝑡) + 𝐿 (𝑡)) 𝑑𝑡 < 1, (55)

where 𝐾 = 𝐾
1
+ 𝐾
2
, 𝐿 = 𝐿

1
+ 𝐿
2
and 𝐾

+
(𝑡) =

max{𝐾(𝑡), 0}.

In these conditions, problem (43) has a unique solution in
[𝛼, 𝛽].

Proof. Theproof is analogous to that done inTheorem 10, but
now, redefining operatorA in this way, first, we consider the
space𝑋 = C[𝑎 − 𝑟, 𝑏] endowed with the ordering

𝛾
1
≤ 𝛾
2
⇐⇒ 𝛾

1
(𝑡) ≤ 𝛾

2
(𝑡) , ∀𝑡 ∈ [𝑎 − 𝑟, 𝑏] . (56)

Then, we consider the operator

Â : [𝛼, 𝛽] × [𝛼, 𝛽] ⊂ 𝑋 × 𝑋 → 2
[𝛼,𝛽]

\ 0 (57)

as follows: for each 𝛾
1
, 𝛾
2
∈ [𝛼, 𝛽], we have𝑥 ∈ A(𝛾

1
, 𝛾
2
) if and

only if 𝑥 ∈ [𝛼, 𝛽], 𝑥
𝐼
is a solution of (�̂�

𝛾1,𝛾2
) and 𝑥

|[𝑎−𝑟,𝑎]
= 𝜙.

The rest of the proof is analogous, with obvious changes.

Now, Theorem 16 provides, in particular, a new result on
the existence of extremal solutions in the case that function
𝑓 is nondecreasing with respect to its third variable. For the
sake of completeness, we concrete this idea in the following
Corollary, which is the analogous to Corollary 12.

Corollary 17. Assume that there exist 𝛼, 𝛽 ∈ C[𝑎 − 𝑟, 𝑏] such
that 𝛼

𝐼
, 𝛽
𝐼
∈ 𝐴𝐶(𝐼), 𝛼 ≤ 𝛽 on [𝑎 − 𝑟, 𝑏] and the following

inequalities hold:

𝛼

(𝑡) ≤ 𝑓 (𝑡, 𝛼 (𝑡) , 𝛼 (𝜏 (𝑡))) , for a.a. 𝑡 ∈ 𝐼, 𝛼 (𝑡) ≤ 𝜙 (𝑡)

∀𝑡 ∈ [𝑎 − 𝑟, 𝑎] ,

𝛽

(𝑡) ≥ 𝑓 (𝑡, 𝛽 (𝑡) , 𝛽 (𝜏 (𝑡))) , for a.a. 𝑡 ∈ 𝐼, 𝛽 (𝑡) ≥ 𝜙 (𝑡)

∀𝑡 ∈ [𝑎 − 𝑟, 𝑎] .

(58)

Assume moreover that the following conditions hold:

(�̂�
2
)
 for all 𝛾 ∈ [𝛼, 𝛽], the initial value problem

𝑥

(𝑡) = 𝑓 (𝑡, 𝑥 (𝑡) , 𝛾) for a.a. 𝑡 ∈ 𝐼,

𝑥 (𝑎) = 𝜙 (𝑎)

(59)

has the extremal solutions in [𝛼, 𝛽];
(𝐻
3
)
 there exists 𝜓 ∈ 𝐿

1
(𝐼, [0, +∞)) such that for a.a.

𝑡 ∈ 𝐼, all𝑥 ∈ [𝛼(𝑡), 𝛽(𝑡)], and all𝑦 ∈ [𝛼(𝜏(𝑡)), 𝛽(𝜏(𝑡))],
one has

𝑓 (𝑡, 𝑥, 𝑦)
 ≤ 𝜓 (𝑡) ; (60)

(�̂�
4
)
 for a.a. 𝑡 ∈ 𝐼 and all 𝑥 ∈ [𝛼(𝑡), 𝛽(𝑡)], the function

𝑓(𝑡, 𝑥, ⋅) is nondecreasing.

In these conditions, problem (43) has the extremal solutions
in [𝛼, 𝛽].

5. Examples of Application

We finish this work with two applications of our main results.

Example 1. Consider the following problem with advance:

𝑥

(𝑡) = 𝑓 (𝑥 (4𝑡)) , for a.a. 𝑡 ∈ 𝐼 = [0,

𝜋

8
] ,

𝑥 (𝑡) = 𝜙 (𝑡) =
1

2
(𝑥 −

𝜋

2
) sin( 1

𝑥 − 𝜋/2
) , ∀𝑡 ∈ [

𝜋

8
,
𝜋

2
] ,

(61)

where 𝑓 is defined as follows: for each 𝑛 ∈ {1, 2, . . .}, we have

𝑓 (𝑦) =

{{

{{

{

1

10
𝑦, if 𝑦 ∈ (2𝑛 − 2, 2𝑛 − 1] ,

4𝑛 − 1

10
−

1

10
𝑦, if 𝑦 ∈ (2𝑛 − 1, 2𝑛] ,

(62)

and for 𝑦 ≤ 0, we define 𝑓(𝑦) = −𝑓(−𝑦).
Defined that way, 𝑓 is a function of bounded variation

in any bounded interval of R. Moreover, 𝑓 has a countable
number of both downwards and upwards discontinuities. We
will construct later a pair (𝛼, 𝛽) of coupled lower and upper
solutions for problem (1) such that for all 𝑡 ∈ [0, 𝜋/2], we have

−
𝜋

2
≤ 𝛼 (𝑡) ≤ 𝛽 (𝑡) ≤

𝜋

2
. (63)

And then, it suffices to consider a Jordan decomposition of 𝑓
in the interval [−2, 2]. So, we put 𝑓 = 𝑔 + ℎ, with

𝑔 (𝑦) = 𝑉
𝑦

−2
(𝑓) =

{{{{{{{

{{{{{{{

{

1

10
𝑦 +

2

10
, if 𝑦 ∈ [−2, −1) ,

1

10
𝑦 +

3

10
, if 𝑦 ∈ [−1, 1] ,

1

10
𝑦 +

4

10
, if 𝑦 ∈ (1, 2] ,
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ℎ (𝑦) = 𝑓 (𝑦) − 𝑉
𝑦

−2
(𝑓) =

{{{{{{{

{{{{{{{

{

−
2

10
𝑦 −

5

10
, if 𝑦 ∈ [−2, −1) ,

−
3

10
, if 𝑦 ∈ [−1, 1] ,

−
2

10
𝑦 −

1

10
, if 𝑦 ∈ (1, 2] .

(64)

We will show now that the functions 𝛼(𝑡) = 𝑡 − 𝜋/2 =

−𝛽(𝑡) are coupled lower and upper solutions for problem (1).
First, we have that 𝛼(𝑡) ≤ 𝜙(𝑡) ≤ 𝛽(𝑡) for all 𝑡 ∈ [𝜋/8, 𝜋/2].
On the other hand, for a.a. 𝑡 ∈ 𝐼 we have the following.

(i) If (𝜋/2) − 4𝑡 ∈ (1, 2], then 4𝑡 − (𝜋/2) ∈ [−2, −1) and
then

𝑉
𝛽(4𝑡)

−2
(𝑓) + 𝛼 (4𝑡) − 𝑉

𝛼(4𝑡)

−2
(𝑓)

=
8

10
(
𝜋

2
− 4𝑡) =

−8

10
(
𝜋

2
− 4𝑡) +

2

10
≤ 1 = 𝛼


(𝑡) ,

𝑉
𝛼(4𝑡)

−2
(𝑓) + 𝛽 (4𝑡) − 𝑉

𝛽(4𝑡)

−2
(𝑓)

=
8

10
(
𝜋

2
− 4𝑡) −

2

10
≥ −1 = 𝛽


(𝑡) .

(65)

(ii) If (𝜋/2) − 4𝑡 ∈ [0, 1], then 4𝑡 − (𝜋/2) ∈ [−1, 0] and
then

𝑉
𝛽(4𝑡)

−2
(𝑓) + 𝛼 (4𝑡) − 𝑉

𝛼(4𝑡)

−2
(𝑓)

=
8

10
(
𝜋

2
− 4𝑡) =

−8

10
(
𝜋

2
− 4𝑡) ≤ 1 = 𝛼


(𝑡) ,

𝑉
𝛼(4𝑡)

−2
(𝑓) + 𝛽 (4𝑡) − 𝑉

𝛽(4𝑡)

−2
(𝑓)

=
8

10
(
𝜋

2
− 4𝑡) ≥ −1 = 𝛽


(𝑡) .

(66)

Then, 𝛼 and 𝛽 are coupled lower and upper solutions for
problem (61), satisfying 𝛼 ≤ 𝛽 on [0, 𝜋/2].

Now, we check condition (𝐻
3
). We have for a.a. 𝑡 ∈ 𝐼, all

𝑥 ∈ [𝛼(𝑡), 𝛽(𝑡)], and all 𝑦
1
, 𝑦
2
∈ [𝛼(4𝑡), 𝛽(4𝑡)],

𝑔 (𝑡, 𝑥, 𝑦1) + ℎ (𝑡, 𝑥, 𝑦2)
 ≤

6

10
+

5

10
, (67)

and thus condition (𝐻
2
) is satisfied with 𝜓 ≡ 11/10.

Finally, notice that for a.a. 𝑡 ∈ 𝐼, it is

[ min
𝑠∈[𝜋/8,𝜋/2]

𝜙 (𝑠) − ∫

𝜋/8

𝑡

𝜓 (𝑠) 𝑑𝑠,

max
𝑠∈[𝜋/8,𝜋/2]

𝜙 (𝑠) + ∫

𝜋/8

𝑡

𝜓 (𝑠) 𝑑𝑠] ⊂ [−1, 1] ,

(68)

and thus condition (𝐻
4
) is satisfied with

𝐿
1
≡

1

10
, 𝐿

2
≡ 0. (69)

By application of Theorem 10, we conclude that problem
(61) has exactly one solution in the functional interval

[4𝑡 −
𝜋

2
,
𝜋

2
− 4𝑡] . (70)

In the following example, we consider a practical appli-
cation of Corollary 17. It involves a modified logistic-type
model with delay.

Example 2. Consider a bacterial culture governed by a logis-
tic-type equation of the form

𝑥

(𝑡) = 𝑟

1
𝑥 (𝑡) (𝐾 − 𝑥 (𝑡)) , (71)

where 𝑥 represents the population in thousands.
To counteract the effects of saturation term, we introduce

an electronic mechanism which acts as follows. It counts the
number of individuals and then it provides some food that
makes the population grow. The amount of food supplied by
the machine is proportional to the number of individuals.
Moreover, the machine can distinguish only thousands of
individuals and it supplies the food with a delay 𝜏 which
also depends on time; as time goes by, this delay increases.
Therefore, we can model this process with a differential
equation of the form

𝑥

(𝑡) = 𝑟

1
𝑥 (𝑡) (𝐾 − 𝑥 (𝑡)) + 𝑟

2 [𝑥 (𝑡 − 𝜏 (𝑡))] , 𝑡 ∈ [0, 1] ,

(72)

where 𝑟
1
, 𝑟
2
≥ 0, 𝐾 > 1, [⋅] means integer part and 𝜏 :

𝑡 ∈ [0, 1] → 𝜏(𝑡) ∈ [0, 𝑡] is measurable. We consider the
normalized time interval [0, 1] for simplicity.

Finally, we consider an initial population of one thousand
individuals.Therefore, we deal with the following initial value
problem with delay:

𝑥

(𝑡) = 𝑟

1
𝑥 (𝑡) (𝐾 − 𝑥 (𝑡)) + 𝑟

2 [𝑥 (𝑡 − 𝜏 (𝑡))] ,

for a.a. 𝑡 ∈ [0, 1] , 𝑥 (0) = 1.

(73)

We will show now that problem (73) has extremal solu-
tions between suitable lower and upper solutions.

First, notice that 𝛼 ≡ 1 and 𝛽 ≡ 𝐿, for large enough 𝐿,
are, respectively, lower and upper solutions for the problem.
Indeed, for all 𝑡 ∈ [0, 1], we have

0 = 𝛼

(𝑡) ≤ 𝑟

1 (𝐾 − 1) + 𝑟2,

0 = 𝛽

(𝑡) ≥ 𝑟

1
𝐿 (𝐾 − 𝐿) + 𝑟

2
𝐿, for large enough 𝐿.

(74)
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Then, 𝛼 and 𝛽 are, respectively, lower and upper solutions
for problem (73), which moreover satisfy 𝛼(𝑡) ≤ 𝛽(𝑡) for all
𝑡 ∈ [0, 1].

To check conditions (�̂�
2
)
, (�̂�
3
)
, and (�̂�

4
)
, notice that

the differential equation in (73) is defined by the function

𝑓 (𝑡, 𝑥, 𝑦) = 𝑟
1
𝑥 (𝐾 − 𝑥) + 𝑟

2
[𝑦] . (75)

First, for each continuous 𝛾 such that 1 ≤ 𝛾(𝑡) ≤ 𝐿 for all
𝑡 ∈ [0, 1], the function

𝑓
𝛾 (𝑡, 𝑥) = 𝑓 (𝑡, 𝑥, 𝛾) (76)

is the classical logistic function and then the initial value
problem

𝑥

(𝑡) = 𝑓

𝛾
(𝑡, 𝑥 (𝑡)) , for a.a. 𝑡 ∈ [0, 1] , 𝑥 (0) = 1 (77)

has extremal solutions (in fact, a unique solution) between 𝛼
and 𝛽. Therefore, condition (�̂�

2
)
 is satisfied.

Finally, as for 𝑥, 𝑦 ∈ [1, 𝐿], the function 𝑓 is bounded
and, moreover, 𝑓 is nondecreasing with respect to its third
variable; we conclude that (�̂�

3
)
 and (�̂�

4
)
 hold.

Therefore, we can apply Corollary 17 to ensure that prob-
lem (73) has the extremal solutions between 𝛼 and 𝛽.
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For solving Laplace’s equation in circular domains with circular holes, the null field method (NFM) was developed by Chen and
his research group (see Chen and Shen (2009)). In Li et al. (2012) the explicit algebraic equations of the NFMwere provided, where
some stability analysis was made. For the NFM, the conservative schemes were proposed in Lee et al. (2013), and the algorithm
singularity was fully investigated in Lee et al., submitted to Engineering Analysis with Boundary Elements, (2013). To target the
same problems, a new interior field method (IFM) is also proposed. Besides the NFM and the IFM, the collocation Trefftz method
(CTM) and the boundary integral equation method (BIE) are two effective boundary methods. This paper is devoted to a further
study on NFM and IFM for three goals. The first goal is to explore their intrinsic relations. Since there exists no error analysis for
the NFM, the second goal is to drive error bounds of the numerical solutions. The third goal is to apply those methods to Laplace’s
equation in the domains with extremely small holes, which are called actually punctured disks. By NFM, IFM, BIE, and CTM,
numerical experiments are carried out, and comparisons are provided. This paper provides an in-depth overview of four methods,
the error analysis of the NFM, and the intriguing computation, which are essential for the boundary methods.

1. Introduction

For circular domains with circular holes, there exist a number
of papers of boundary methods. In Barone and Caulk [1,
2] and Caulk [3], the Fourier functions are used for the
circular holes for boundary integral equations. In Bird and
Steele [4], the simple algorithms as the collocation Trefftz
method (CTM) in [5, 6] are used. In Ang and Kang [7],
complex boundary elements are studied. Recently, Chen and
his research group have developed the null filed method
(NFM), in which the field nodes 𝑄 are located outside of the
solution domain 𝑆. The fundamental solutions (FS) can be
expanded as the convergent series, and the Fourier functions
are also used to approximate the Dirichlet and Neumann
boundary conditions. Numerous papers have been published
for different physical problems. Since error analysis and

numerical experiments for four boundary methods are our
main concern, we only cite [8–14]. More references of NFM
are also given in [10–12, 14–17].

In [17], explicit algebraic equations of the NFM are
derived, stability analysis is first made for the simple annular
domain with concentric circular boundaries, and numerical
experiments are performed to find the optimal field nodes.
The field nodes can be located on the domain boundary: 𝑄 ∈
𝜕𝑆, if the solutions are smooth enough to satisfy 𝑢 ∈ 𝐻2(𝜕𝑆)
and 𝑢] ∈ 𝐻

1
(𝜕𝑆), where 𝑢] is the normal derivative and

𝐻
𝑘
(𝜕𝑆) (𝑘 = 1, 2) are the Sobolev spaces; see the proof in

[17]. It is discovered numerically that when the field nodes
𝑄 ∈ 𝜕𝑆, the NFM provides small errors and the smallest
condition numbers, compared with all 𝑄 ∈ 𝑆

𝑐. Moreover
for the NFM, the conservative schemes are proposed in [15],
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and the algorithm singularity is fully investigated in [16]. In
fact, the explicit algebraic equations can also be derived from
the Green representation formula with the field nodes inside
the solution domain. This method is called the interior field
method (IFM).

In addition to the NFM and IFM, the collocation Trefftz
method (CTM) and the boundary integral equation method
(BIE) are effective boundary methods too. Three goals are
motivated in this paper. The first goal is to explore the
intrinsic relations of NFM, IFM, CTM, and BIE with an
in-depth overview. So far, there exists no error analysis for
the NFM. The second goal is to derive error bounds of the
numerical solutions by the NFM. The optimal convergence
(or exponential) rates can be achieved. The third goal is to
solve a challenging problem: Laplace’s equation in the circular
domains with extremely small holes, which are called the
actually punctured disks in this paper. Four boundary meth-
ods, NFM, IFM, CTM, and BIE, are employed. Numerical
experiments are carried out, and comparisons are provided.
It is observed that the CTM is more advantageous in the
applications than the others.

Besides, the method of fundamental solutions (MFS) is
also popular in boundary methods, which originated from
Kupradze and Aleksidze [18] in 1964. For theMFS, numerous
computations are reviewed in Fairweather and Karageorghis
[19] and Chen et al. [20], but the error and stability analysis is
developed by Li et al. in [21, 22]. Both the CTM and the MFS
can be applied to arbitrary solution domains. However, the
MFS incurs a severe numerical instability for very elongated
domains [22]. Since the performance of the CTM is better
than that of the MFS, reported elsewhere, we do not carry
out the numerical computation of the MFS in this paper.
Moreover, the null-field method with discrete source (NFM-
DS) is effective and popular in light scattering (see Wriedt
[23]), where the transition (T) matrix is provided in Doicu
and Wriedt [24]. In fact, the null field equation (NFE) of the
Green representation formula in (9) can be employed on a
source outside the solution domain 𝑆, without a need of the
FS expansions, called the Tmatrixmethod [24]. Hence, the T
matrix method is valid for arbitrary solution domains. There
also occurs a severe numerical instability for very elongated
holes (i.e., particles). To improve the stability for this case,
different sources (i.e., discrete sources) may be utilized in the
NFM-DS, by means of the idea of the MFS. The techniques
for improving the stability by the NFM-DS are reported in
many papers; we only cite [23, 25].

This paper is organized as follows. In the next section,
the explicit discrete equations of NFM, IFM, CTM, and BIE
are given, and their relations and overviews are explored.
In Section 3, for the NFM some analysis is studied for
circular domains with concentric circular boundaries. In
Section 4, error bounds are provided without proof for the
NFM with eccentric circular boundaries of simple annular
domains. In Section 5, numerical experiments are carried out
for Laplace’s equation in the actually punctured disks. The
results are reported with comparisons. In the last section, a
few concluding remarks are addressed.

2. The Null Field Method and
Other Algorithms

2.1. The Null Field Method. For simplicity in description of
the NFM, we confine ourselves to Laplace’s equation and
choose the circular domain with one circular hole in this
paper. Denote the disks 𝑆

𝑅
and 𝑆

𝑅1
with radii 𝑅 and 𝑅

1
,

respectively. Let 𝑆
𝑅1
⊂ 𝑆
𝑅
, and the eccentric circular domains

𝑆
𝑅
and 𝑆
𝑅1
mayhave different origins.Hence 2𝑅

1
< 𝑅. Choose

the annular solution domain 𝑆 = 𝑆
𝑅
\ 𝑆
𝑅1

with the exterior
and the interior boundaries 𝜕𝑆

𝑅
and 𝜕𝑆

𝑅1
, respectively. The

following Dirichlet problems are discussed by Palaniappan
[26]:

Δ𝑢 =
𝜕
2
𝑢

𝜕𝑥2
+
𝜕
2
𝑢

𝜕𝑦2
= 0 in 𝑆,

𝑢 = 1 on 𝜕𝑆
𝑅
, 𝑢 = 0 on 𝜕𝑆

𝑅1
.

(1)

In [11], 𝑅 = 2.5 and 𝑅
1
= 1 and the origins of 𝑆

𝑅
and 𝑆
𝑅1

are
located at (0, 0) and (−𝑅

1
, 0), respectively. In this paper, we fix

𝑅 = 2.5, while 𝑅
1
may be infinitesimal; that is, 𝑅

1
≪ 1.

On the exterior boundary 𝜕𝑆
𝑅
, there exist the approxima-

tions of Fourier expansions:

𝑢 = 𝑢
0
:= 𝑎
0
+

𝑀

∑

𝑘=1

{𝑎
𝑘
cos 𝑘𝜃 + 𝑏

𝑘
sin 𝑘𝜃} on 𝜕𝑆

𝑅
, (2)

𝜕𝑢

𝜕]
= 𝑞
0
:= 𝑝
0
+

𝑀

∑

𝑘=1

{𝑝
𝑘
cos 𝑘𝜃 + 𝑞

𝑘
sin 𝑘𝜃} on 𝜕𝑆

𝑅
, (3)

where 𝑎
𝑘
, 𝑏
𝑘
, 𝑝
𝑘
, and 𝑞

𝑘
are coefficients. On the interior

boundary 𝜕𝑆
𝑅1
, we have similarly

𝑢 = 𝑢
0
:= 𝑎
0
+

𝑁

∑

𝑘=1

{𝑎
𝑘
cos 𝑘𝜃 + 𝑏

𝑘
sin 𝑘𝜃} on 𝜕𝑆

𝑅1
, (4)

𝜕𝑢

𝜕]
= −

𝜕𝑢

𝜕𝑟
= 𝑞
0
:= 𝑝
0
+

𝑁

∑

𝑘=1

{𝑝
𝑘
cos 𝑘𝜃+𝑞

𝑘
sin 𝑘𝜃} on 𝜕𝑆

𝑅1
,

(5)

where 𝑎
𝑘
, 𝑏
𝑘
, 𝑝
𝑘
, and 𝑞

𝑘
are coefficients. In (2)–(5), 𝜃 and 𝜃 are

the polar coordinates of 𝑆
𝑅
and 𝑆
𝑅1
with the origins (0, 0) and

(−𝑅
1
, 0), respectively, and ] and ] are the exterior normals

of 𝜕𝑆
𝑅
and 𝜕𝑆

𝑅1
, respectively. The Dirichlet, the Neumann

conditions, and their mixed types on 𝜕𝑆
𝑅
may be given with

known coefficients.
In 𝑆, denote two nodes x = 𝑄 = (𝑥, 𝑦) = (𝜌, 𝜃) and

y = 𝑃 = (𝜉, 𝜂) = (𝑟, 𝜙), where 𝑥 = 𝜌 cos 𝜃, 𝑦 = 𝜌 sin 𝜃,
𝜉 = 𝑟 cos𝜙, and 𝜂 = 𝑟 sin𝜙. Then 𝜌 = √𝑥2 + 𝑦2 and 𝑅 = 𝑟 =

√𝜉2 + 𝜂2. The FS of Laplace’s equation is given by ln𝑃𝑄 =
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ln{√𝜌2 − 2𝜌𝑟 cos(𝜃 − 𝜙) + 𝑟2}. From the Green representa-
tion formula, we have different formulas for different loca-
tions of the field nodes 𝑄(x):

∫
𝜕𝑆

{ln |𝑃𝑄|
𝜕𝑢 (y)
𝜕]

− 𝑢 (𝜉)
𝜕 ln |𝑃𝑄|
𝜕]

}𝑑𝜎
𝜉

=

{{

{{

{

−2𝜋𝑢 (𝑄) , 𝑄 ∈ 𝑆,

−𝜋𝑢 (𝑄) , 𝑄 ∈ 𝜕𝑆,

0, otherwise,

(6)

where 𝑃(y) ∈ (𝑆 ∪ 𝜕𝑆) and two kinds of series expansions of
the FS ln |𝑃𝑄| are given by (see [27])

ln |𝑃𝑄|

= ln 𝑃 (y) − 𝑄 (x)


= ln 𝑃 (𝑟, 𝜙) − 𝑄 (𝜌, 𝜃)


=

{{{{

{{{{

{

𝑈
𝑖
(x, y) = ln 𝑟 −

∞

∑

𝑛=1

1

𝑛
(
𝜌

𝑟
)

𝑛

cos 𝑛 (𝜃 − 𝜙) , 𝜌 < 𝑟,

𝑈
𝑒
(x, y) = ln 𝜌 −

∞

∑

𝑛=1

1

𝑛
(
𝑟

𝜌
)

𝑛

cos 𝑛 (𝜃 − 𝜙) , 𝜌 > 𝑟,

(7)

where x = (𝜌, 𝜃) and y = (𝑟, 𝜙). Then we have two kinds of
derivative expansions of FS

𝜕𝑈
𝑖
(x, y)
𝜕𝑟

=
1

𝑟
+

∞

∑

𝑛=1

(
𝜌
𝑛

𝑟𝑛+1
) cos 𝑛 (𝜃 − 𝜙) , 𝜌 < 𝑟,

𝜕𝑈
𝑒
(x, y)
𝜕𝑟

= −

∞

∑

𝑛=1

(
𝑟
𝑛−1

𝜌𝑛
) cos 𝑛 (𝜃 − 𝜙) , 𝜌 > 𝑟,

(8)

where the superscripts “e” and “i” designate the exterior and
interior field nodes x, respectively. Note that the boundary
element method (BEM) is based on the second equation of
the Green formula (6), but the NFM is based on the third
equation (i.e., the null field equation (NFE)) by using the FS
expansions. We have

∫
𝜕𝑆𝑅∪𝜕𝑆𝑅1

𝑈(x, y)
𝜕𝑢 (y)
𝜕]

𝑑𝜎y

= ∫
𝜕𝑆𝑅∪𝜕𝑆𝑅1

𝑢 (y)
𝜕𝑈 (x, y)
𝜕]

𝑑𝜎y, x ∈ 𝑆𝑐,

(9)

where 𝑆𝑐 is the complementary domain of 𝑆∪𝜕𝑆. Substituting
the Fourier expansions (7)–(8) into (9) yields the basic
algorithms of NFM, where the exterior normal of 𝜕𝑆

𝑅1
is

given by 𝜕𝑈(x, y)/𝜕] = −𝜕𝑈(x, y)/𝜕𝑟. In the Green formula
(9), the field point x = (𝜌, 𝜃) is supposed to locate outside of
the solution domain 𝑆 ∪ 𝜕𝑆 only, so the algorithm of Chen is
called the null field method (NFM) [8, 9, 11]. The field nodes
can also be located on the domain boundary: 𝑄 ∈ 𝜕𝑆, if the
solutions are smooth enough to satisfy 𝑢 ∈ 𝐻2(𝜕𝑆) and 𝑢] ∈
𝐻
1
(𝜕𝑆), where 𝑢] is the normal derivative and 𝐻𝑘(𝜕𝑆) (𝑘 =

1, 2) are the Sobolev spaces; see the rigorous proof in [17]. It is
discovered numerically that when the field nodes𝑄 ∈ 𝜕𝑆, the
NFM provides small errors and condition numbers and has
been widely implemented in many engineering problems.

Denote two systems of polar coordinates by (𝜌, 𝜃) and
(𝜌, 𝜃) with the origins (0, 0) and (𝑥

1
, 𝑦
1
) for 𝑆

𝑅
and 𝑆

𝑅1
,

respectively. There exist the following conversion formulas:

𝜌 = √(𝜌 cos 𝜃 + 𝑥
1
)
2

+ (𝜌 sin 𝜃 + 𝑦
1
)
2

,

tan 𝜃 =
𝜌 sin 𝜃 + 𝑦

1

𝜌 cos 𝜃 + 𝑥
1

,

(10)

𝜌 = √(𝜌 cos 𝜃 − 𝑥
1
)
2
+ (𝜌 sin 𝜃 − 𝑦

1
)
2
,

tan 𝜃 =
𝜌 sin 𝜃 − 𝑦

1

𝜌 cos 𝜃 − 𝑥
1

.

(11)

First, consider the exterior field nodes x = (𝜌, 𝜃) with 𝜌 >
𝑟 = 𝑅. The first explicit algebraic equations of the NFM are
given for the exterior field nodes (see [17])

Lext (𝜌, 𝜃; 𝜌, 𝜃)

:= −𝑅𝜋

𝑀

∑

𝑘=1

(
𝑅
𝑘−1

𝜌𝑘
) (𝑎
𝑘
cos 𝑘𝜃 + 𝑏

𝑘
sin 𝑘𝜃)

+ 𝑅
1
𝜋

𝑁

∑

𝑘=1

(
𝑅
𝑘−1

1

𝜌
𝑘
)(𝑎
𝑘
cos 𝑘𝜃 + 𝑏

𝑘
sin 𝑘𝜃)

− {2𝜋𝑅 (ln 𝜌) 𝑝
0
− 𝑅𝜋

𝑀

∑

𝑘=1

1

𝑘
(
𝑅

𝜌
)

𝑘

× (𝑝
𝑘
cos 𝑘𝜃 + 𝑞

𝑘
sin 𝑘𝜃) + 2𝜋𝑅

1
(ln 𝜌) 𝑝

0

− 𝑅
1
𝜋

𝑁

∑

𝑘=1

1

𝑘
(
𝑅
1

𝜌
)

𝑘

(𝑝
𝑘
cos 𝑘𝜃 + 𝑞

𝑘
sin 𝑘𝜃)} = 0.

(12)

Next, consider the interior field nodes x = (𝜌, 𝜃)with 𝜌 < 𝑟 =
𝑅
1
. The second explicit algebraic equations of the NFM are

given for the interior field nodes (see [17])

Lint (𝜌, 𝜃; 𝜌, 𝜃)

:= −2𝜋𝑎
0
− 𝑅
1
𝜋

𝑁

∑

𝑘=1

(
𝜌
𝑘

𝑅
𝑘+1

1

)(𝑎
𝑘
cos 𝑘𝜃 + 𝑏

𝑘
sin 𝑘𝜃)

+ 2𝜋𝑎
0
+ 𝑅𝜋

𝑀

∑

𝑘=1

(
𝜌
𝑘

𝑅𝑘+1
) (𝑎
𝑘
cos 𝑘𝜃 + 𝑏

𝑘
sin 𝑘𝜃)
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− {2𝜋𝑅
1
ln𝑅
1
𝑝
0
− 𝑅
1
𝜋

𝑁

∑

𝑘=1

1

𝑘
(
𝜌

𝑅
1

)

𝑘

× (𝑝
𝑘
cos 𝑘𝜃+𝑞

𝑘
sin 𝑘𝜃)+2𝜋𝑅 ln𝑅𝑝

0
−𝑅𝜋

𝑀

∑

𝑘=1

1

𝑘
(
𝜌

𝑅
)

𝑘

× (𝑝
𝑘
cos 𝑘𝜃 + 𝑞

𝑘
sin 𝑘𝜃)} = 0.

(13)

Since one of Dirichlet or Neumann conditions is given on
𝜕𝑆
𝑅
and 𝜕𝑆

𝑅1
, only 2(𝑀 + 𝑁) + 2 coefficients in (2)–(5) are

unknowns. We choose 2𝑀+1 and 2𝑁+1 field nodes located
uniformly on the exterior and the interior circles, respectively,

(𝜌, 𝜃) = (𝑅 + 𝜖, 𝑖Δ𝜃) , 𝑖 = 0, 1, . . . , 2𝑀,

(𝜌, 𝜃) = (𝑅
1
− 𝜖, 𝑖Δ𝜃) , 𝑖 = 0, 1, . . . , 2𝑁,

(14)

where 𝜖 ≥ 0, 0 ≤ 𝜖 < 𝑅
1
, Δ𝜃 = 2𝜋/(2𝑀 + 1), and Δ𝜃 =

2𝜋/(2𝑁 + 1). Denote the explicit equations (12) and (13) by

Lext (𝜌, 𝜃; 𝜌, 𝜃) = 0, Lint (𝜌, 𝜃; 𝜌, 𝜃) = 0. (15)

We obtain 2(𝑀 + 𝑁) + 2 discrete equations from (15)

Lext (𝑅 + 𝜖, 𝑖Δ𝜃; 𝜌𝑖, 𝜃𝑖) = 0, 𝑖 = 0, 1, . . . , 2𝑀,

Lint (𝜌𝑖, 𝜃𝑖; 𝑅1 − 𝜖, 𝑖Δ𝜃) = 0, 𝑖 = 0, 1, . . . , 2𝑁,

(16)

where the corresponding coordinates (𝜌
𝑖
, 𝜃
𝑖
) and (𝜌

𝑖
, 𝜃
𝑖
) are

obtained from (10) and (11). Hence from (16), we obtain the
following linear algebraic equations:

Fx = b, (17)

where the matrices F(∈ 𝑅𝑛×𝑛), the vector x(∈ 𝑅𝑛), and 𝑛 =
2(𝑀+𝑁)+2.The unknown coefficients can be obtained from
(17), if the matrix F is nonsingular. In this paper, we confine
the Dirichlet problems. The study of the Neumann problems
will be reported in a subsequent paper.

Once all the coefficients are known, based on the first
equation of the Green formula (6), the solution at the interior
nodes: x = (𝜌, 𝜃) ∈ 𝑆 is expressed by

𝑢 (x) = 𝑢 (𝜌, 𝜃) =

−
1

2𝜋
∫
𝜕𝑆𝑅∪𝜕𝑆𝑅1

{𝑈 (x, y)
𝜕𝑢 (y)
𝜕]

−𝑢 (𝜉)
𝜕𝑈 (x, y)
𝜕𝑟

}𝑑𝜎y

= −
1

2𝜋
{∫
𝜕𝑆𝑅

{𝑈
𝑖
(x, y)

𝜕𝑢 (y)
𝜕]

− 𝑢 (y)
𝜕𝑈
𝑖
(x, y)
𝜕𝑟

} 𝑑𝜎y

+∫
𝜕𝑆𝑅1

{𝑈
𝑒
(x, y)

𝜕𝑢(y)
𝜕]

+𝑢(y)
𝜕𝑈
𝑒
(x, y)
𝜕𝑟

}𝑑𝜎y}

x ∈ 𝑆.
(18)

For (𝜌, 𝜃) ∈ 𝑆, from (2)–(5) and (7)-(8), (2.20) leads to (see
[17])

𝑢
𝑀−𝑁

= 𝑢
𝑀−𝑁

(𝜌, 𝜃) = 𝑢
𝑀−𝑁

(𝜌, 𝜃)

= 𝑎
0
− 𝑅 ln𝑅𝑝

0
− 𝑅
1
ln 𝜌𝑝
0
+
𝑅

2

𝑀

∑

𝑘=1

1

𝑘
(
𝜌

𝑅
)

𝑘

× (𝑝
𝑘
cos 𝑘𝜃 + 𝑞

𝑘
sin 𝑘𝜃) + 𝑅

2

𝑀

∑

𝑘=1

(
𝜌
𝑘

𝑅𝑘+1
)

× (𝑎
𝑘
cos 𝑘𝜃 + 𝑏

𝑘
sin 𝑘𝜃) + 𝑅1

2

𝑁

∑

𝑘=1

1

𝑘
(
𝑅
1

𝜌
)

𝑘

× (𝑝
𝑘
cos 𝑘𝜃 + 𝑞

𝑘
sin 𝑘𝜃) + 𝑅1

2

𝑁

∑

𝑘=1

(
𝑅
𝑘−1

1

𝜌
𝑘
)

× (𝑎
𝑘
cos 𝑘𝜃 + 𝑏

𝑘
sin 𝑘𝜃) , (𝑟, 𝜃) ∈ 𝑆,

(19)

where (𝜌, 𝜃) are also given from (11).

2.2. Conservative Schemes. For some physical problems, the
flux conservation is imperative and essential. The conserva-
tive schemes of NFM can be designed to satisfy exactly the
flux conservation [15]

∫
𝑆𝑅

(𝑢
𝑀
)] + ∫

𝑆𝑅1

(𝑢
𝑁
)] = 0. (20)

Substituting (3) and (5) into (20) yields directly

𝑅𝑝
0
+ 𝑅
1
𝑝
0
= 0. (21)

We may use (21) to remove one coefficient, say 𝑝
0
,

𝑝
0
= −

𝑅

𝑅
1

𝑝
0
. (22)

By using (22), (12) and (13) lead to

L
𝐶

ext (𝜌, 𝜃; 𝜌, 𝜃)

:= −𝑅𝜋

𝑀

∑

𝑘=1

(
𝑅
𝑘−1

𝜌𝑘
) (𝑎
𝑘
cos 𝑘𝜃 + 𝑏

𝑘
sin 𝑘𝜃)

+ 𝑅
1
𝜋

𝑁

∑

𝑘=1

(
𝑅
𝑘−1

1

𝜌
𝑘
)(𝑎
𝑘
cos 𝑘𝜃 + 𝑏

𝑘
sin 𝑘𝜃)
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− {2𝜋𝑅(ln(
𝜌

𝜌
))𝑝
0
− 𝑅𝜋

𝑀

∑

𝑘=1

1

𝑘
(
𝑅

𝜌
)

𝑘

× (𝑝
𝑘
cos 𝑘𝜃 + 𝑞

𝑘
sin 𝑘𝜃) − 𝑅

1
𝜋

𝑁

∑

𝑘=1

1

𝑘
(
𝑅
1

𝜌
)

𝑘

× (𝑝
𝑘
cos 𝑘𝜃 + 𝑞

𝑘
sin 𝑘𝜃)} = 0,

L
𝐶

int (𝜌, 𝜃; 𝜌, 𝜃)

:= −2𝜋𝑎
0
− 𝑅
1
𝜋

𝑁

∑

𝑘=1

(
𝜌
𝑘

𝑅
𝑘+1

1

)

× (𝑎
𝑘
cos 𝑘𝜃 + 𝑏

𝑘
sin 𝑘𝜃) + 2𝜋𝑎

0

+ 𝑅𝜋

𝑀

∑

𝑘=1

(
𝜌
𝑘

𝑅𝑘+1
) (𝑎
𝑘
cos 𝑘𝜃 + 𝑏

𝑘
sin 𝑘𝜃)

− {−𝑅
1
𝜋

𝑁

∑

𝑘=1

1

𝑘
(
𝜌

𝑅
1

)

𝑘

× (𝑝
𝑘
cos 𝑘𝜃 + 𝑞

𝑘
sin 𝑘𝜃)

+ 2𝜋𝑅(ln 𝑅

𝑅
1

)𝑝
0
− 𝑅𝜋

𝑀

∑

𝑘=1

1

𝑘
(
𝜌

𝑅
)

𝑘

× (𝑝
𝑘
cos 𝑘𝜃 + 𝑞

𝑘
sin 𝑘𝜃)} = 0. (23)

Also the interior solution (19) leads to

𝑢
𝐶

𝑀−𝑁
= 𝑢
𝐶

𝑀−𝑁
(𝜌, 𝜃) = 𝑢

𝐶

𝑀−𝑁
(𝜌, 𝜃)

= 𝑎
0
− 𝑅(ln 𝑅

𝑅
1

)𝑝
0
+
𝑅

2

𝑀

∑

𝑘=1

1

𝑘
(
𝜌

𝑅
)

𝑘

× (𝑝
𝑘
cos 𝑘𝜃 + 𝑞

𝑘
sin 𝑘𝜃) + 𝑅

2

𝑀

∑

𝑘=1

(
𝜌
𝑘

𝑅𝑘+1
)

× (𝑎
𝑘
cos 𝑘𝜃 + 𝑏

𝑘
sin 𝑘𝜃) + 𝑅1

2

𝑁

∑

𝑘=1

1

𝑘
(
𝑅
1

𝜌
)

𝑘

× (𝑝
𝑘
cos 𝑘𝜃 + 𝑞

𝑘
sin 𝑘𝜃) + 𝑅1

2

𝑁

∑

𝑘=1

(
𝑅
𝑘−1

1

𝜌
𝑘
)

× (𝑎
𝑘
cos 𝑘𝜃 + 𝑏

𝑘
sin 𝑘𝜃) , (𝑟, 𝜃) ∈ 𝑆.

(24)

Hence, the total number of unknown coefficients is reduced
to 2(𝑀+𝑁)+1. Based on the analysis in [15], to remain good

stability, we still choose 2(𝑀+𝑁) + 2 collocation nodes as in
(16):

𝑤
𝑖
L
𝐶

ext (𝑅 + 𝜀, 𝑖Δ𝜃; 𝜌𝑖, 𝜃𝑖) = 0, 𝑖 = 0, 1, . . . , 2𝑀,

𝑤
𝑖
L
𝐶

int (𝜌𝑖, 𝜃𝑖; 𝑅1 − 𝜀, 𝑖Δ𝜃) = 0, 𝑖 = 1, 2, . . . , 2𝑁,

(25)

where the weights 𝑤
0
= 1, 𝑤

𝑖
= √2 for 𝑖 ≥ 1, Δ𝜃 =

2𝜋/(2𝑀 + 1), and Δ𝜃 = 2𝜋/(2𝑁 + 1). Equation (25) form
an overdetermined system, which can be solved by the QR
method or the singular value decomposition.

2.3. The Interior Field Method. In [17], we prove that when
𝑢 ∈ 𝐻

2
(𝜕𝑆) and 𝑢] ∈ 𝐻

1
(𝜕𝑆), the NFM remains valid for the

field nodes 𝑄 ∈ 𝜕𝑆; that is, 𝜌 = 𝑅 on 𝜕𝑆
𝑅
and 𝜌 = 𝑅

1
on 𝜕𝑆

𝑅1

and (23) and (24) hold. In fact, wemay use (24) only, because
(23) is obtained directly from the Dirichlet conditions on 𝜕𝑆

𝑅

and 𝜕𝑆
𝑅1
, respectively. Interestingly, (24) is obtained from the

interior (i.e., the first) Green formula in (6) only. For this
reason, the interior field method (IFM) is named. Evidently,
the IFM is equivalent to the special NFM. Based on this
linkage, the new error analysis in Section 4 is explored.

2.4.The First Kind Boundary Integral Equations. Wemay also
apply the series expansions of FS to the first kind boundary
integral equations. Consider the Dirichlet problem

Δ𝑢 = 0, in Ω = 𝑅
2
\ Γ,

𝑢 = 𝑓, on Γ,

𝑢 (𝑥) = 𝑂 (log |x|) , as |x| → ∞,

(26)

where |x| is the Euclidean distance. In (26), Γ(= ∪𝑑
𝑚=1

Γ
𝑚
) is an

open arc, and each of its edges, Γ
𝑚
(𝑚 = 1, . . . , 𝑑), is assumed

to be smooth. Let 𝐶
Γ
be the logarithmic capacity of Γ. From

the single layer potential theory [28–30], if𝐶
Γ
̸= 1, (26) can be

converted to the first kind boundary integral equation (BIE),

−
1

2𝜋
∫
Γ

V (x) ln x − 𝑦
 𝑑𝑠x = 𝑓 (y) (y ∈ Γ) , (27)

where V(x)(= (𝜕𝑢(x)/𝜕𝑛−) − (𝜕𝑢(x)/𝜕𝑛+)) is the unknown
function and 𝜕𝑢/𝜕𝑛± denote the normal derivatives along the
positive and negative sides of Γ. If𝐶

Γ
̸= 1, there exists a unique

solution of (27), see [28]. As soon as V(x) is solved from (27),
the solution 𝑢(x) (x ∈ Ω) of (26) can be evaluated by

𝑢 (x) = − 1
2𝜋

∫
Γ

V (x) ln x − y 𝑑𝑠x (y ∈ Ω) . (28)
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For the smooth solution 𝑢, we have V(x) = 2(𝜕𝑢/𝜕]), where ]
is the normal of Γ. We may assume the Fourier expansions of
V on Γ

V (𝑠) = V+ (𝑠) = 𝑞⋆
0

:= 𝑝
⋆

0
+

𝑀

∑

𝑘=1

{𝑝
⋆

𝑘
cos 𝑘𝜃 + 𝑞⋆

𝑘
sin 𝑘𝜃} on 𝜕𝑆

𝑅
,

V (𝑠) = V− (𝑠) = 𝑞⋆
0

:= 𝑝
⋆

0
+

𝑁

∑

𝑘=1

{𝑝
⋆

𝑘
cos 𝑘𝜃 + 𝑞⋆

𝑘
sin 𝑘𝜃} on 𝜕𝑆

𝑅1
,

(29)

where 𝑝⋆
𝑘
, 𝑞
⋆

𝑘
, 𝑝
⋆

𝑘
, and 𝑞⋆

𝑘
are the coefficients. We have from

[17]
𝑢 (x) = 𝑢 (𝜌, 𝜃)

= −
1

2𝜋
∫
𝜕𝑆𝑅∪𝜕𝑆𝑅1

𝑈(x, y) V (y) 𝑑𝜎y

= −
1

2𝜋
{∫
𝜕𝑆𝑅

𝑈
𝑖
(x, y) V (y) 𝑑𝜎y

+∫
𝜕𝑆𝑅1

𝑈
𝑒
(x, y) V (y) 𝑑𝜎y} , x ∈ 𝑆,

(30)
to give

𝑢
𝑀−𝑁

(𝜌, 𝜃) = −𝑅 ln𝑅𝑝⋆
0
− 𝑅
1
ln 𝜌𝑝⋆
0
+
𝑅

2

𝑀

∑

𝑘=1

1

𝑘
(
𝜌

𝑅
)

𝑘

× (𝑝
⋆

𝑘
cos 𝑘𝜃 + 𝑞⋆

𝑘
sin 𝑘𝜃) + 𝑅1

2

𝑁

∑

𝑘=1

1

𝑘
(
𝑅
1

𝜌
)

𝑘

× (𝑝
⋆

𝑘
cos 𝑘𝜃 + 𝑞⋆

𝑘
sin 𝑘𝜃) , (𝑟, 𝜃) ∈ 𝑆.

(31)

Note that the derivation of (31) in the first kind BIE is simpler,
because we do not need the series expansions of 𝜕𝑈𝑖(x, y)/𝜕𝑟
and 𝜕𝑈𝑒(x, y)/𝜕𝑟.This advantage is very important for elastic-
ity problems, because the displacement conditions are much
simpler than the traction ones.

2.5. The Collocation Trefftz Method. We also use the colloca-
tion Trefftz method (CTM). For (1), the particular solutions
of CTM are given by (see [6])

𝑢
𝑀−𝑁

(𝜌, 𝜃; 𝜌, 𝜃) = 𝑎
0
+

𝑀

∑

𝑖=1

(
𝜌

𝑅
)

𝑖

(𝑎
𝑖
cos 𝑖𝜃 + 𝑏

𝑖
sin 𝑖𝜃)

+ 𝑎
0
ln 𝜌 +

𝑁

∑

𝑖=1

(
𝑅
1

𝜌
)

𝑖

× (𝑎
𝑖
cos 𝑖𝜃 + 𝑏

𝑖
sin 𝑖𝜃) ,

𝜌 ≤ 𝑅, 𝜌 ≥ 𝑅
1
,

(32)

where 𝑎
𝑖
, 𝑏
𝑖
, 𝑎
𝑖
, and 𝑏

𝑖
are the coefficients. Evidently, the

admissible functions (19) of the IFM and (31) of the first kind
BIE are the special cases of (32). Equation (31) may be written
as (32) with the following relations of coefficients:

𝑎
0
:= −𝑅 ln𝑅𝑝⋆

0
, 𝑎

0
:= −𝑅

1
𝑝
⋆

0
,

𝑎
𝑘
:=

𝑅

2𝑘
𝑝
⋆

𝑘
, 𝑏

𝑘
:=

𝑅

2𝑘
𝑞
⋆

𝑘
,

𝑎
𝑘
:=
𝑅
1

2𝑘
𝑝
⋆

𝑘
, 𝑏

𝑘
:=
𝑅
1

2𝑘
𝑞
⋆

𝑘
.

(33)

Equation (19) can also be written as (32) with

𝑎
0
:= 𝑎

IFM
0

− 𝑅 ln𝑅𝑝IFM
0
, 𝑎

0
:= −𝑅

1
𝑝
IFM
0
,

𝑎
𝑘
:=

𝑅

2𝑘
𝑝
IFM
𝑘

+
1

2
𝑎
IFM
𝑘
, 𝑏

𝑘
:=

𝑅

2𝑘
𝑞
IFM
𝑘

+
1

2
𝑏
IFM
𝑘

,

𝑎
𝑘
:=
𝑅
1

2𝑘
𝑝
IFM
𝑘

+
1

2
𝑎
IFM
𝑘
, 𝑏

𝑘
:=
𝑅
1

2𝑘
𝑞
IFM
𝑘

+
1

2
𝑏
IFM
𝑘
,

(34)

where 𝑝IFM
𝑘
, 𝑞

IFM
𝑘
, . . . are the coefficients in (19) of the IFM.

Therefore, we may classify the IFM and the first kind
BIE into the TM family, and their analysis may follow the
framework in [6]. However, the particular solutions (32)
can be applied to arbitrary shaped domains, for example,
simply ormultiple-connected domains, but the functions (19)
and (31) are confined themselves to the circular domains
with circular holes only. The four boundary methods, NFM,
IFM, BIE, and CTM, are described together, with their
explicit algebraic equations. The relations of their expansion
coefficients are discovered at the first time.Moreover, Figure 1
shows clear relations among NFM, IFM, BIE, and CTM.The
intrinsic relations have been provided to fulfill the first goal
of this paper.

To close this section, we describe the CTM. Denote𝑉
𝑀−𝑁

the set of (32), and define the energy

𝐼 (𝑢) = ∫
Γ

(V − 𝑓)2, (35)

where Γ = 𝜕𝑆 and 𝑓 is the known function of Dirichlet
boundary conditions. Then the solution 𝑢

𝑀−𝑁
of the Trefftz

methods (TM) can be obtained by

𝐼 (𝑢
𝑀−𝑁

) = min
V∈𝑉𝑀−𝑁

𝐼 (V) . (36)

The TM solution 𝑢
𝑀−𝑁

also satisfies
𝑢 − 𝑢𝑀−𝑁

0,Γ
= min

V∈𝑉𝑀−𝑁
‖𝑢 − V‖0,Γ. (37)

When the integral in (35) involves numerical approximation,
the modified energy is defined as

𝐼 (V) =
̂

∫
Γ

(V − 𝑓)2, (38)

where ̂∫
Γ
is the numerical approximations of ∫

Γ
by some

quadrature rules, such as the central or the Gaussian rule.
Hence, the numerical solution �̂�

𝑀−𝑁
∈ 𝑉
𝑀−𝑁

is obtained by

𝐼 (�̂�
𝑀−𝑁

) = min
V∈𝑉𝑀−𝑁

𝐼 (V) . (39)
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IFM

IFM

With
FS expansions

With
FS expansions

New

BIE

CTM

NFM

BEM

Green formulas
ℒ(u, 𝜃) =

0,

−2𝜋u(𝜃),

Q ∈ S

−𝜋u(𝜃),

Q ∈ 𝜕S

Q → 𝜕S

Q (S ∪ 𝜕S)∈/

Figure 1: Relations among NFM, IFM, BIE, and CTM.

Wemay also establish the collocation equations directly from
the Dirichlet condition to yield

�̂�
𝑀−𝑁

(𝑃
𝑗
) = 𝑓
𝑀−𝑁

(𝑃
𝑗
) , 𝑃

𝑗
∈ Γ. (40)

Following [6], (40) is just equivalent to (38).

3. Preliminary Analysis of the NFM

In this section, a preliminary analysis of the NFM is made
for concentric circular boundaries. In the next section, error
analysis of the NFM with 𝜖 = 𝜖 = 0 is explored for eccentric
circular boundaries. Consider the simple domains of 𝑆 =

𝑆
𝑅
\ 𝑆
𝑅1
, where 𝑆

𝑅
and 𝑆
𝑅1
have the same origin. For the same

origin 𝑂 of 𝑆
𝑅
and 𝑆
𝑅1
, the same polar coordinates (𝜌, 𝜃) are

used, and the general solutions in 𝑆
𝑅
\ 𝑆
𝑅1

can be denoted by

𝑢 (𝜌, 𝜃) = 𝑎
∗

0
+

∞

∑

𝑘=1

𝜌
𝑘
{𝑎
∗

𝑘
cos 𝑘𝜃 + 𝑏∗

𝑘
sin 𝑘𝜃} + 𝑎∗

0
ln 𝜌

+

∞

∑

𝑘=1

𝜌
−𝑘
{𝑎
∗

𝑘
cos 𝑘𝜃 + 𝑏

∗

𝑘
sin 𝑘𝜃} ,

(41)

where 𝑎∗
𝑖
, 𝑏
∗

𝑖
, 𝑎
∗

𝑖
, 𝑏
∗

𝑖
are true coefficients and 𝑅

1
≤ 𝜌 ≤ 𝑅.

Then their derivatives are given by

𝜕

𝜕𝜌
𝑢 (𝜌, 𝜃) =

∞

∑

𝑘=1

𝑘𝜌
𝑘−1

{𝑎
∗

𝑘
cos 𝑘𝜃 + 𝑏∗

𝑘
sin 𝑘𝜃} + 𝑎∗

0

1

𝜌

−

∞

∑

𝑘=1

𝑘𝜌
−𝑘−1

{𝑎
∗

𝑘
cos 𝑘𝜃 + 𝑏

∗

𝑘
sin 𝑘𝜃} .

(42)

When 𝜌 = 𝑅, from (41) and (42), we have

𝑢 (𝜌, 𝜃)
𝜌=𝑅

= 𝑎
∗

0
+

∞

∑

𝑘=1

𝑅
𝑘
{𝑎
∗

𝑘
cos 𝑘𝜃 + 𝑏∗

𝑘
sin 𝑘𝜃} + 𝑎∗

0
ln𝑅

+

∞

∑

𝑘=1

𝑅
−𝑘
{𝑎
∗

𝑘
cos 𝑘𝜃 + 𝑏

∗

𝑘
sin 𝑘𝜃} ,

𝜕

𝜕𝜌
𝑢 (𝜌, 𝜃)

𝜌=𝑅

=

∞

∑

𝑘=1

𝑘𝑅
𝑘−1
{𝑎
∗

𝑘
cos 𝑘𝜃 + 𝑏∗

𝑘
sin 𝑘𝜃} + 𝑎∗

0

1

𝑅

−

∞

∑

𝑘=1

𝑘𝑅
−𝑘−1

{𝑎
∗

𝑘
cos 𝑘𝜃 + 𝑏

∗

𝑘
sin 𝑘𝜃} .

(43)

Comparing (43) with (2) and (3), we have the following
equalities of coefficients:

𝑎
0
= 𝑎
∗

0
+ 𝑎
∗

0
ln𝑅,

𝑎
𝑘
= 𝑅
𝑘
𝑎
∗

𝑘
+ 𝑅
−𝑘
𝑎
∗

𝑘
,

𝑏
𝑘
= 𝑅
𝑘
𝑏
∗

𝑘
+ 𝑅
−𝑘
𝑏
∗

𝑘
,

(44)

𝑝
0
= 𝑎
∗

0

1

𝑅
,

𝑝
𝑘
= 𝑘 {𝑅

𝑘−1
𝑎
∗

𝑘
− 𝑅
−𝑘−1

𝑎
∗

𝑘
} ,

𝑞
𝑘
= 𝑘 {𝑅

𝑘−1
𝑏
∗

𝑘
− 𝑅
−𝑘−1

𝑏
∗

𝑘
} ,

(45)

where 𝑎
𝑘
, 𝑏
𝑘
, 𝑝
𝑘
, and 𝑞

𝑘
are the coefficients of the NFM in

Section 2.1.
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Also, when 𝜌 = 𝑅
1
, from (41) and (42), we have

𝑢 (𝜌, 𝜃)
𝜌=𝑅1

= 𝑎
∗

0
+

∞

∑

𝑘=1

𝑅
𝑘

1
{𝑎
∗

𝑘
cos 𝑘𝜃 + 𝑏∗

𝑘
sin 𝑘𝜃}

+ 𝑎
∗

0
ln𝑅
1

+

∞

∑

𝑘=1

𝑅
−𝑘

1
{𝑎
∗

𝑘
cos 𝑘𝜃 + 𝑏

∗

𝑘
sin 𝑘𝜃} ,

𝜕

𝜕𝜌
𝑢 (𝜌, 𝜃)

𝜌=𝑅1

=

∞

∑

𝑘=1

𝑘𝑅
𝑘−1

1
{𝑎
∗

𝑘
cos 𝑘𝜃 + 𝑏∗

𝑘
sin 𝑘𝜃} + 𝑎∗

0

1

𝑅
1

−

∞

∑

𝑘=1

𝑘𝑅
−𝑘−1

1
{𝑎
∗

𝑘
cos 𝑘𝜃 + 𝑏

∗

𝑘
sin 𝑘𝜃} .

(46)

Comparing (46) with (4) and (5), we have

𝑎
0
= 𝑎
∗

0
+ 𝑎
∗

0
ln𝑅
1
,

𝑎
𝑘
= 𝑅
𝑘

1
𝑎
∗

𝑘
+ 𝑅
−𝑘

1
𝑎
∗

𝑘
,

𝑏
𝑘
= 𝑅
𝑘

1
𝑏
∗

𝑘
+ 𝑅
−𝑘

1
𝑏
∗

𝑘
,

(47)

𝑝
0
= −𝑎
∗

0

1

𝑅
1

,

𝑝
𝑘
= −𝑘 {𝑅

𝑘−1

1
𝑎
∗

𝑘
− 𝑅
−𝑘−1

1
𝑎
∗

𝑘
} ,

𝑞
𝑘
= −𝑘 {𝑅

𝑘−1

1
𝑏
∗

𝑘
− 𝑅
−𝑘−1

1
𝑏
∗

𝑘
} ,

(48)

where 𝑎
𝑘
, 𝑏
𝑘
, 𝑝
𝑘
, and 𝑞

𝑘
are also the coefficients of the NFM

in Section 2.1.
On the other hand, when (𝜌, 𝜃) = (𝜌, 𝜃), we have from the

first original equation (12)

− 𝑅𝜋

𝑀

∑

𝑘=1

(
𝑅
𝑘−1

𝜌𝑘
) (𝑎
𝑘
cos 𝑘𝜃 + 𝑏

𝑘
sin 𝑘𝜃)

+ 𝑅
1
𝜋

𝑁

∑

𝑘=1

(
𝑅
𝑘−1

1

𝜌𝑘
)(𝑎
𝑘
cos 𝑘𝜃 + 𝑏

𝑘
sin 𝑘𝜃)

= 2𝜋𝑅 (ln 𝜌) 𝑝
0
− 𝑅𝜋

𝑀

∑

𝑘=1

1

𝑘
(
𝑅

𝜌
)

𝑘

× (𝑝
𝑘
cos 𝑘𝜃 + 𝑞

𝑘
sin 𝑘𝜃) + 2𝜋𝑅

1
(ln 𝜌) 𝑝

0

− 𝑅
1
𝜋

𝑁

∑

𝑘=1

1

𝑘
(
𝑅
1

𝜌
)

𝑘

(𝑝
𝑘
cos 𝑘𝜃 + 𝑞

𝑘
sin 𝑘𝜃) .

(49)

Then for 𝜌 ≥ 𝑅, we obtain the following equalities, based on
the orthogonality of trigonometric functions:

(ln 𝜌) (𝑅𝑝
0
+ 𝑅
1
𝑝
0
) = 0, (50)

𝑅
𝑘
𝑎
𝑘
− 𝑅
𝑘

1
𝑎
𝑘
=
1

𝑘
𝑅
𝑘+1
𝑝
𝑘
+
1

𝑘
𝑅
𝑘+1

1
𝑝
𝑘
, (51)

𝑅
𝑘
𝑏
𝑘
− 𝑅
𝑘

1
𝑏
𝑘
=
1

𝑘
𝑅
𝑘+1
𝑞
𝑘
+
1

𝑘
𝑅
𝑘+1

1
𝑞
𝑘
. (52)

Similarly, from the second equation (13),

− 2𝜋𝑎
0
− 𝑅
1
𝜋

𝑁

∑

𝑘=1

(
𝜌
𝑘

𝑅
𝑘+1

1

)(𝑎
𝑘
cos 𝑘𝜃 + 𝑏

𝑘
sin 𝑘𝜃)

+ 2𝜋𝑎
0
+ 𝑅𝜋

𝑀

∑

𝑘=1

(
𝜌
𝑘

𝑅𝑘+1
) (𝑎
𝑘
cos 𝑘𝜃 + 𝑏

𝑘
sin 𝑘𝜃)

= 2𝜋𝑅
1
ln𝑅
1
𝑝
0
− 𝑅
1
𝜋

𝑁

∑

𝑘=1

1

𝑘
(
𝜌

𝑅
1

)

𝑘

× (𝑝
𝑘
cos 𝑘𝜃 + 𝑞

𝑘
sin 𝑘𝜃) + 2𝜋𝑅 ln𝑅𝑝

0

− 𝑅𝜋

𝑀

∑

𝑘=1

1

𝑘
(
𝜌

𝑅
)

𝑘

(𝑝
𝑘
cos 𝑘𝜃 + 𝑞

𝑘
sin 𝑘𝜃) .

(53)

Then for 𝜌 ≤ 𝑅
1
, we obtain

𝑎
0
− 𝑎
0
= 𝑅 ln𝑅𝑝

0
+ 𝑅
1
ln𝑅
1
𝑝
0
, (54)

1

𝑅𝑘
𝑎
𝑘
−
1

𝑅
𝑘

1

𝑎
𝑘
= −

1

𝑘

1

𝑅𝑘−1
𝑝
𝑘
−
1

𝑘

1

𝑅
𝑘−1

1

𝑝
𝑘
, (55)

1

𝑅𝑘
𝑏
𝑘
−
1

𝑅
𝑘

1

𝑏
𝑘
= −

1

𝑘

1

𝑅𝑘−1
𝑞
𝑘
−
1

𝑘

1

𝑅
𝑘−1

1

𝑞
𝑘
. (56)

Below, we prove that the true coefficients can be obtained
directly from the NFM based on (50)–(52) for 𝜌 ≥ 𝑅 and
on (54)–(56) for 𝜌 ≤ 𝑅

1
. Outline of the proof is as follows.

We will prove that the true solutions satisfy (50)–(52) and
(54)–(56) of the NFM. Based on the analysis in [16], when
𝑅 ̸= 1, there exists a unique solution of the special NFM with
𝜖 = 𝜖 = 0. Therefore, the true coefficients can be determined
by the IFM uniquely.

First to show (50). The consistent condition is given by

∫
𝜕𝑆𝑅

𝜕𝑢

𝜕]
+ ∫
𝜕𝑆𝑅1

𝜕𝑢

𝜕]
= 2𝜋𝑅𝑝

0
+ 2𝜋𝑅

1
𝑝
0
= 0. (57)

Equation (57) can also be obtained from (45) and (48).
Equations (57) and (50) are equivalent if ln 𝜌 ̸= 0 (i.e., 𝜌 ̸= 1),
which is also the necessary condition of nonsingularity of
matrix F in (17) [16]. Based on (57), the conservative schemes
are proposed in [15]. Equation (54) is shown next. We have
from (44) and (47)

𝑎
0
− 𝑎
0
= 𝑎
∗

0
ln𝑅 − 𝑎∗

0
ln𝑅
1

= 𝑅 ln𝑅(
𝑎
∗

0

𝑅
) + 𝑅

1
ln𝑅
1
(−

𝑎
∗

0

𝑅
1

)

= 𝑅 ln𝑅𝑝
0
+ 𝑅
1
ln𝑅
1
𝑝
0
,

(58)

where we have used (45) and (48).
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Equations (51) and (55) are shown below. Denote them in
matrix form

(

𝑅
𝑘
−𝑅
𝑘

1

1

𝑅𝑘
−
1

𝑅
𝑘

1

)(

𝑎
𝑘

𝑎
𝑘

) =
1

𝑘
(

𝑅
𝑘+1

𝑅
𝑘+1

1

−
1

𝑅𝑘−1
−

1

𝑅
𝑘−1

1

)(

𝑝
𝑘

𝑝
𝑘

) ,

(59)

and denote from (44) and (47)

(

𝑎
𝑘

𝑎
𝑘

) = (
𝑅
𝑘
𝑅
−𝑘

𝑅
𝑘

1
𝑅
−𝑘

1

)(

𝑎
∗

𝑘

𝑎
∗

𝑘

) , (60)

where 𝑎∗
𝑘
and 𝑎∗
𝑘
are true expansion coefficients. Also denote

from (45) and (48)

(

𝑝
𝑘

𝑝
𝑘

) = 𝑘(
𝑅
𝑘−1

−𝑅
−𝑘−1

−𝑅
𝑘−1

1
𝑅
−𝑘−1

1

)(

𝑎
∗

𝑘

𝑎
∗

𝑘

) . (61)

By substituting (60) and (61) into (59), its left-hand side leads
to

(

𝑅
𝑘
−𝑅
𝑘

1

1

𝑅𝑘
−
1

𝑅
𝑘

1

)(

𝑎
𝑘

𝑎
𝑘

) = (

𝑅
𝑘
−𝑅
𝑘

1

1

𝑅𝑘
−
1

𝑅
𝑘

1

)(
𝑅
𝑘
𝑅
−𝑘

𝑅
𝑘

1
𝑅
−𝑘

1

)(

𝑎
∗

𝑘

𝑎
∗

𝑘

)

= (
𝑅
2𝑘
− 𝑅
2𝑘

1
0

0 𝑅
−2𝑘

− 𝑅
−2𝑘

1

)(

𝑎
∗

𝑘

𝑎
∗

𝑘

) .

(62)

The right-hand side of (59) leads to

1

𝑘
(

𝑅
𝑘+1

𝑅
𝑘+1

1

−
1

𝑅𝑘−1
−

1

𝑅
𝑘−1

1

)(

𝑝
𝑘

𝑝
𝑘

)

=
1

𝑘
(

𝑅
𝑘+1

𝑅
𝑘+1

1

−
1

𝑅𝑘−1
−

1

𝑅
𝑘−1

1

)𝑘(

𝑅
𝑘−1

−𝑅
−𝑘−1

−𝑅
𝑘−1

1
𝑅
−𝑘−1

1

)(

𝑎
∗

𝑘

𝑎
∗

𝑘

)

= (
𝑅
2𝑘
− 𝑅
2𝑘

1
0

0 𝑅
−2𝑘

− 𝑅
−2𝑘

1

)(

𝑎
∗

𝑘

𝑎
∗

𝑘

) .

(63)

The second equality of the right-hand sides of (62) and (63)
yield (59).The proof for the validity of (52) and (56) is similar.
We write these important results as a proposition.

Proposition 1. For the concentric circular domains, when 𝜌 =
𝑅+𝜖 ̸= 1, the leading coefficients are exact by the NFM, and the
solution errors result only from the truncations of their Fourier
expansions.

4. Error Bounds of the NFM with 𝜖 = 𝜖 = 0

The NFM with the field nodes 𝑄 ∈ 𝜕𝑆 (i.e., 𝜖 = 𝜖 = 0)
located on the domain boundary is the most important
application for Chen’s publications (see [8–14]). We will
provide the errors bounds under the Sobolev norms of this
special NFM for circular domains with eccentric circular
boundaries without proof. Based on the equivalence of the
special NFM and the CTM, we may follow the framework
of analysis of Treffez method in [6]. The Sobolev norms for
Fourier functions are provided in Kreiss and Oliger [31],
Pasciak [32], and Canuto and Quarteroni [33].

Let the domain 𝑆 be divided into two subdomains 𝑆ext and
𝑆
int with an interface boundary Γ

0
∈ 𝑆. We have 𝑆 = 𝑆

ext
∪

𝑆
int
∪ Γ
0
and 𝑆ext ∩ 𝑆int = 0, where 𝜕𝑆ext = 𝜕𝑆

𝑅
∪ Γ
0
and 𝜕𝑆int =

𝜕𝑆
𝑅1
∪ Γ
0
. We assume that the true solutions have different

regularities

𝑢 ∈ 𝐻
𝑝+(1/2)

(𝑆
ext
) , 𝑢 ∈ 𝐻

𝜎+(1/2)
(𝑆

int
) , (64)

where 𝑝 ≥ 2 and 𝜎 ≥ 2. Then there are different regularities
on the boundary

𝑢 ∈ 𝐻
𝑝
(𝜕𝑆

ext
) , 𝑢] ∈ 𝐻

𝑝−1
(𝜕𝑆

ext
) ,

𝑢 ∈ 𝐻
𝜎
(𝜕𝑆

int
) , 𝑢] ∈ 𝐻

𝜎−1
(𝜕𝑆

int
) ,

(65)

where ] and ] are the exterior normal to 𝜕𝑆ext and 𝜕𝑆int,
respectively.Therefore, the true solutions can be expressed by
the Fourier expansions on 𝜕𝑆

𝑅

𝑢 (𝜌, 𝜃)
𝜕𝑆𝑅

= 𝑎
∘

0
+

∞

∑

𝑘=1

(𝑎
∘

𝑘
cos 𝑘𝜃 + 𝑏∘

𝑘
sin 𝑘𝜃) , (66)

𝜕

𝜕𝜌
𝑢 (𝜌, 𝜃)

𝜕𝑆𝑅

= 𝑝
∘

0
+

∞

∑

𝑘=1

(𝑝
∘

𝑘
cos 𝑘𝜃 + 𝑞∘

𝑘
sin 𝑘𝜃) , (67)

where 𝑎∘
𝑘
, 𝑏
∘

𝑘
, 𝑝
∘

𝑘
, 𝑞
∘

𝑘
, are the true boundary coefficients. Simi-

larly, we have

𝑢 (𝜌, 𝜃)
𝜕𝑆𝑅1

= 𝑎
∘

0
+

∞

∑

𝑘=1

(𝑎
∘

𝑘
cos 𝑘𝜃 + 𝑏

∘

𝑘
sin 𝑘𝜃) ,

𝜕

𝜕]
𝑢 (𝜌, 𝜃)

𝜕𝑆𝑅1

= 𝑝
∘

0
+

∞

∑

𝑘=1

(𝑝
∘

𝑘
cos 𝑘𝜃 + 𝑞∘

𝑘
sin 𝑘𝜃) ,

(68)

where 𝑎∘
𝑘
, 𝑏
∘

𝑘
, 𝑝
∘

𝑘
, 𝑞
∘

𝑘
, are the true boundary coefficients.

Denote finite terms of the Fourier expansions on 𝜕𝑆
𝑅
in

(66) and (67) by

𝑢
𝑀
= 𝑢
𝑀
(𝜌, 𝜃)

𝜕𝑆𝑅
= 𝑎
∘

0
+

𝑀

∑

𝑘=1

(𝑎
∘

𝑘
cos 𝑘𝜃 + 𝑏∘

𝑘
sin 𝑘𝜃) ,

𝑢
𝑀

𝜌
=
𝜕

𝜕𝜌
𝑢
𝑀
(𝜌, 𝜃)

𝜕𝑆𝑅

= 𝑝
∘

0
+

𝑀

∑

𝑘=1

(𝑝
∘

𝑘
cos 𝑘𝜃 + 𝑞∘

𝑘
sin 𝑘𝜃) ;

(69)
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Table 1: The errors and condition numbers by the conservative schemes of the IFM, where 𝑅 = 2.5 and 𝛿 = 𝑢 − 𝑢
𝑀−𝑁

.

𝑅
1

(𝑀,𝑁) ‖𝛿‖
∞,𝜕𝑆

‖𝛿‖
0,𝜕𝑆

Cond Cond eff
1 (24, 12) 1.52 (−8) 1.54 (−8) 8.48 (1) 2.70 (1)
0.5 (24, 12) 4.90 (−11) 4.70 (−11) 2.64 (2) 1.30 (2)
0.1 (24, 8) 6.81 (−12) 6.67 (−12) 1.62 (3) 9.21 (2)
0.1 (24, 7) 6.81 (−12) 6.67 (−12) 1.39 (3) 7.89 (2)
0.1 (24, 6) 6.81 (−12) 6.83 (−12) 1.16 (3) 6.58 (2)
0.1 (24, 5) 2.40 (−10) 9.34 (−11) 9.34 (2) 5.26 (2)
0.1 (24, 4) 1.58 (−8) 6.10 (−9) 7.05 (2) 3.95 (2)
10
−2 (24, 6) 3.69 (−12) 3.62 (−12) 1.97 (4) 1.16 (4)

10
−2 (24, 5) 6.69 (−12) 3.62 (−12) 1.57 (4) 9.26 (3)

10
−2 (24, 4) 3.69 (−12) 3.62 (−12) 1.18 (4) 6.94 (3)

10
−2 (24, 3) 6.10 (−10) 7.63 (−11) 7.91 (3) 4.63 (3)

10
−2 (24, 2) 4.80 (−7) 6.00 (−8) 3.98 (3) 2.31 (3)

10
−3 (24, 5) 2.58 (−12) 2.53 (−12) 2.22 (5) 1.32 (5)

10
−3 (24, 4) 2.58 (−12) 2.53 (−12) 1.67 (5) 9.93 (4)

10
−3 (24, 3) 2.58 (−12) 2.53 (−12) 1.11 (5) 6.62 (4)

10
−3 (24, 2) 3.35 (−9) 1.33 (−10) 5.58 (4) 3.31 (4)

10
−3 (24, 1) 3.52 (−5) 1.39 (−6) 1.09 (2) 7.90 (1)

10
−4 (24, 5) 1.98 (−12) 1.94 (−12) 2.87 (6) 1.72 (6)

10
−4 (24, 4) 1.98 (−12) 1.94 (−12) 2.15 (6) 1.29 (6)

10
−4 (24, 3) 1.98 (−12) 1.95 (−12) 1.44 (6) 8.62 (5)

10
−4 (24, 2) 2.57 (−11) 1.97 (−12) 7.20 (5) 4.31 (5)

10
−4 (24, 1) 2.70 (−6) 3.38 (−8) 1.40 (2) 1.03 (2)

Table 2: The leading coefficients by the conservative schemes of the IFM, where 𝑅 = 2.5.

𝑅
1

(𝑀,𝑁) 𝑝
0

𝑝
1

𝑝
1

1 (24, 12) 5.770780163555825 (−1) −5.770780163555787 (−1) 7.213475204444549 (−1)
0.5 (24, 12) 2.806196474263354 (−1) −2.358350543983467 (−1) 2.834834114319612 (−1)
0.1 (24, 8) 1.313991926276972 (−1) −1.053200366713576 (−1) 1.254266057498590 (−1)
0.1 (24, 7) 1.313991926276972 (−1) −1.053200366713574 (−1) 1.254266057498546 (−1)
0.1 (24, 6) 1.313991926276971 (−1) −1.053200366713574 (−1) 1.254266057498543 (−1)
0.1 (24, 5) 1.313991926276971 (−1) −1.053200366713575 (−1) 1.254266057498583 (−1)
0.1 (24, 4) 1.313991926276965 (−1) −1.053200366713555 (−1) 1.254266057489581 (−1)
10
−2 (24, 6) 7.480685008050482 (−2) −5.984662000415889 (−2) 7.124623469104319 (−2)

10
−2 (24, 5) 7.480685008050478 (−2) −5.984662000415886 (−2) 7.124623469102030 (−2)

10
−2 (24, 4) 7.480685008050478 (−2) −5.984662000415891 (−2) 7.124623469102347 (−2)

10
−2 (24, 3) 7.480685008050478 (−2) −5.984662000415888 (−2) 7.124623469085235 (−2)

10
−2 (24, 2) 7.480685008030524 (−2) −5.984662000262044 (−2) 7.124614851570256 (−2)

10
−3 (24, 5) 5.228968294193471 (−2) −4.183175432150129 (−2) 4.979970933244982 (−2)

10
−3 (24, 4) 5.228968294193472 (−2) −4.183175432150129 (−2) 4.979970933242725 (−2)

10
−3 (24, 3) 5.228968294193472 (−2) −4.183175432150130 (−2) 4.979970933271582 (−2)

10
−3 (24, 2) 5.228968294193472 (−2) −4.183175432150118 (−2) 4.979970873003448 (−2)

10
−3 (24, 1) 5.228968256993316 (−2) −4.183174605594654 (−2)

10
−4 (24, 5) 4.019180446935835 (−2) −3.215344363673135 (−2) 3.827790910656165 (−2)

10
−4 (24, 4) 4.019180446935836 (−2) −3.215344363673130 (−2) 3.827790910851808 (−2)

10
−4 (24, 3) 4.019180446935834 (−2) −3.215344363673132 (−2) 3.827790910677455 (−2)

10
−4 (24, 2) 4.019180446935835 (−2) −3.215344363673135 (−2) 3.827790909840129 (−2)

10
−4 (24, 1) 4.019180446716058 (−2) −3.215344357372844 (−2)
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Table 3: The errors and condition numbers by the original IFM,
where 𝑅 = 2.5 and 𝛿 = 𝑢 − 𝑢

𝑀−𝑁
.

𝑅
1

(𝑀,𝑁) ‖𝛿‖
∞,𝜕𝑆

‖𝛿‖
0,𝜕𝑆

Cond Cond eff
1 (24, 12) 8.94 (−9) 8.87 (−9) 1.38 (2) 1.85 (1)
0.5 (24, 12) 4.90 (−11) 4.70 (−11) 2.67 (2) 4.61 (1)
0.1 (24, 6) 6.81 (−12) 6.67 (−12) 8.32 (2) 5.19 (1)
10
−2 (24, 3) 3.69 (−12) 3.63 (−12) 5.20 (3) 4.54 (1)

10
−4 (24, 2) 1.98 (−12) 1.94 (−12) 3.88 (5) 5.57 (1)

also denote the circle ℓ
𝑟
= {(𝜌, 𝜃) | 𝜌 = 𝑟, 0 ≤ 𝜃 ≤ 2𝜋}. For

𝜕𝑆
𝑅
= ℓ
𝑅
, for the solution (66), the Sobolev norms are defined

as

|𝑢|0,ℓ𝑅
= 𝜋𝑅{(𝑎

∘

0
)
2

+

∞

∑

𝑘=1

[(𝑎
∘

𝑘
)
2

+ (𝑏
∘

𝑘
)
2

]}

1/2

,

|𝑢|𝑝,ℓ𝑅
= 𝜋𝑅{

∞

∑

𝑘=1

𝑘
2𝑝
[(𝑎
∘

𝑘
)
2

+ (𝑏
∘

𝑘
)
2

]}

1/2

, 𝑝 ≥ 1,

‖𝑢‖𝑝,ℓ𝑅
= {

𝑝

∑

𝑘=0

|𝑢|
2

𝑘,ℓ𝑅
}

1/2

.

(70)

We have the following lemma, whose proof can be found in
Canuto et al. [33, 34].

Lemma 2. Let (64) be given, for 𝜕𝑆
𝑅
= ℓ
𝑅
; there exist the

bounds of the remainders of (69)

𝑢 − 𝑢
𝑀𝑞,𝜕𝑆𝑅

≤ 𝐶
1

𝑀𝑝−𝑞
|𝑢|𝑝,𝜕𝑆𝑅

, 0 ≤ 𝑞 ≤ 𝑝,


𝑢
𝜌
− 𝑢
𝑀

𝜌

𝑞,𝜕𝑆𝑅
≤ 𝐶

1

𝑀𝑝−𝑞−1


𝑢
𝜌

𝑝−1,𝜕𝑆𝑅
, 0 ≤ 𝑞 ≤ 𝑝 − 1,

(71)

where 𝐶 is a constant independent of𝑀.

Also denote the finite terms of the Fourier expansions on
𝜕𝑆
𝑅1

in (68) by

𝑢
𝑁
= 𝑢
𝑁
(𝜌, 𝜃)

𝜕𝑆𝑅1
= 𝑎
∘

0
+

𝑁

∑

𝑘=1

(𝑎
∘

𝑘
cos 𝑘𝜃 + 𝑏

∘

𝑘
sin 𝑘𝜃) ,

𝑢
𝑁

] =
𝜕

𝜕]
𝑢 (𝜌, 𝜃)

𝜕𝑆𝑅1

= 𝑝
∘

0
+

𝑁

∑

𝑘=1

(𝑝
∘

𝑘
cos 𝑘𝜃 + 𝑞∘

𝑘
sin 𝑘𝜃) .

(72)

We can prove the following lemma similarly.

Lemma 3. Let (64) be given, for 𝜕𝑆
𝑅1
= ℓ
𝑅1
; there exist the

bounds of the remainders of (72)

𝑢 − 𝑢
𝑁𝑞,𝜕𝑆𝑅1

≤ 𝐶
1

𝑁𝑝−𝑞
|𝑢|𝑝,𝜕𝑆𝑅1

, 0 ≤ 𝑞 ≤ 𝑝,


𝑢] − 𝑢

𝑁

]
𝑞,𝜕𝑆𝑅1

≤ 𝐶
1

𝑁𝑝−𝑞−1

𝑢]
𝑝−1,𝜕𝑆𝑅1

, 0 ≤ 𝑞 ≤ 𝑝 − 1,

(73)

where 𝐶 is a constant independent of𝑁.

We have the following theorem.

Theorem 4. Let (64) and 𝑅 ̸= 1 hold. For the solution 𝑢
𝑁,𝑀

from the TM in (36), there exists the error bound

𝑢 − 𝑢𝑁,𝑀
0,𝜕𝑆

≤ 𝐶{
1

𝑀𝑝
|𝑢|𝑝,𝜕𝑆𝑅

+
1

𝑁𝜎
|𝑢|𝜎,𝜕𝑆𝑅1

} , (74)

where 𝐶 is a constant independent of𝑁 and𝑀.

Next, we study the errors of the interpolant solutions from
(16) of the NFM with 𝜖 = 𝜖 = 0,

Lext (𝑅, 𝑖Δ𝜃; 𝜌𝑖, 𝜃𝑖) = 0, 𝑖 = 0, 1, . . . , 2𝑀,

Lint (𝜌𝑖, 𝜃𝑖; 𝑅1, 𝑖Δ𝜃) = 0, 𝑖 = 0, 1, . . . , 2𝑁,

(75)

where the uniform nodes Δ𝜃 = 2𝜋/(2𝑀 + 1) and Δ𝜃 =

2𝜋/(2𝑁 + 1). Equation (75) is equivalent to

�̂�
𝑀−𝑁

(𝑅, 𝑖Δ𝜃; 𝜌
𝑖
, 𝜃
𝑖
) = 𝑢
0
(𝜃
𝑖
) , 𝑖 = 0, 1, . . . , 2𝑀,

�̂�
𝑀−𝑁

(𝜌
𝑖
, 𝜃
𝑖
; 𝑅
1
, 𝑖Δ𝜃) = 𝑢

0
(𝜃
𝑖
) , 𝑖 = 0, 1, . . . , 2𝑁,

(76)

where 𝑢
0
and 𝑢

0
are given in (2) and (4). We have the

following theorem.

Theorem 5. Let (64) and 𝑅 ̸= 1 hold. For the NFM with 𝜖 =
𝜖 = 0 and the uniform nodes, the interpolant solutions �̂�

𝑀−𝑁

from (76) have the same error bound of (74)

𝑢 − �̂�𝑁,𝑀
0,𝜕𝑆

≤ 𝐶{
1

𝑀𝑝
|𝑢|𝑝,𝜕𝑆𝑅

+
1

𝑁𝜎
|𝑢|𝜎,𝜕𝑆𝑅1

} , (77)

where 𝐶 is a constant independent of𝑁 and𝑀.

5. Numerical Experiments

5.1. IFM and Its Conservative Schemes. In this paper, we
choose the NFM with 𝜖 = 𝜖 = 0, which is equivalent to
the IFM, and its conservative schemes of [15]. For (1) with
symmetry, the explicit interior solution (24) is simplified as

𝑢
𝐶

𝑀−𝑁
(𝜌, 𝜃) = 𝑎

0
− 𝑅(ln 𝑅

𝑅
1

)𝑝
0
+
𝑅

2

𝑀

∑

𝑘=1

1

𝑘
(
𝜌

𝑅
)

𝑘

𝑝
𝑘
cos 𝑘𝜃

+
𝑅
1

2

𝑁

∑

𝑘=1

1

𝑘
(
𝑅
1

𝜌
)

𝑘

𝑝
𝑘
cos 𝑘𝜃, (𝜌, 𝜃) ∈ 𝑆.

(78)

In [17], when 𝑢 ∈ 𝐻2(𝑆), we may choose the field nodes to be
located on the solution boundary for (78): (𝜌, 𝜃) ∈ 𝜕𝑆

𝑅
and
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Table 4: The leading coefficients by the original IFM, where 𝑅 = 2.5.

𝑅
1

(𝑀,𝑁) 𝑝
0

𝑝
1

𝑝
0

𝑝
1

1 (24, 12) 5.770780163555844 (−1) −5.770780163555829 (−1) −1.442695040888961 (0) 7.213475204444735 (−1)
0.5 (24, 12) 2.806196474263354 (−1) −2.358350543983468 (−1) −1.403098237131676 (0) 2.834834114319622 (−1)
0.1 (24, 6) 1.313991926276971 (−1) −1.053200366713573 (−1) −3.284979815692429 (0) 1.254266057498605 (−1)
10
−2 (24, 3) 7.480685008050476 (−2) −5.984662000415886 (−2) −1.870171252012620 (1) 7.124623469101694 (−2)

10
−4 (24, 2) 4.019180446935834 (−2) −3.215344363673133 (−2) −1.004795111733959 (3) 3.827790910389037 (−2)

Table 5:The errors and condition numbers by the simple particular
solutions of the CTM, where 𝑅 = 2.5 and 𝛿 = 𝑢 − 𝑢

𝑀−𝑁
.

𝑅
1

(𝑀,𝑁) ‖𝛿‖
∞,𝜕𝑆

‖𝛿‖
0,𝜕𝑆

Cond Cond eff
1 (24, 12) 1.58 (−9) 1.57 (−9) 7.62 3.03
0.5 (24, 12) 8.68 (−12) 8.32 (−12) 4.59 3.93
0.1 (24, 5) 1.21 (−12) 1.19 (−12) 1.31 (1) 1.21 (1)
10
−2 (24, 3) 6.54 (−13) 6.41 (−13) 5.17 (1) 4.39 (1)

10
−3 (24, 2) 4.57 (−13) 4.48 (−13) 1.93 (2) 1.57 (2)

10
−4 (24, 1) 3.51 (−13) 3.44 (−13) 6.44 (2) 5.11 (2)

(𝜌, 𝜃) ∈ 𝜕𝑆
𝑅1
. Then we obtain two boundary equations of the

conservative schemes of the IFM from (78), (2), and (4)

L
𝐶

ext (𝑅, 𝜃; 𝜌, 𝜃) = −𝑅(ln
𝑅

𝑅
1

)𝑝
0
+
𝑅

2

M
∑

𝑘=1

1

𝑘
𝑝
𝑘
cos 𝑘𝜃

+
𝑅
1

2

𝑁

∑

𝑘=1

1

𝑘
(
𝑅
1

𝜌
)

𝑘

𝑝
𝑘
cos 𝑘𝜃

= 0, (𝑟, 𝜃) ∈ 𝜕𝑆𝑅,

L
𝐶

int (𝜌, 𝜃; 𝑅1, 𝜃) := 𝑎0 − 𝑎0 − 𝑅(ln
𝑅

𝑅
1

)𝑝
0

+
𝑅

2

𝑀

∑

𝑘=1

1

𝑘
(
𝜌

𝑅
)

𝑘

𝑝
𝑘
cos 𝑘𝜃

+
𝑅
1

2

𝑁

∑

𝑘=1

1

𝑘
𝑝
𝑘
cos 𝑘𝜃

= 0, (𝑟, 𝜃) ∈ 𝜕𝑆
𝑅1
.

(79)

The coefficients 𝑝
0
, 𝑝
𝑘
, 𝑝
𝑘
are unknowns, and the total num-

ber of unknowns is𝑀 + 𝑁 + 1. Based on [15], to bypass the
pseudosingularity, we still choose𝑀+𝑁+ 2 equations from
(79)

𝑤
𝑖
L
𝐶

ext (𝑅, 𝑖Δ𝜃; 𝜌𝑖, 𝜃𝑖) = 0, 𝑖 = 0, 1, . . . ,𝑀,

𝑤
𝑖
L
𝐶

int (𝜌𝑖, 𝜃𝑖; 𝑅1, 𝑖Δ𝜃) = 0, 𝑖 = 0, 1, . . . , 𝑁,

(80)

where 𝜖 ≥ 0, 0 ≤ 𝜖 < 𝑅
1
, Δ𝜃 = 2𝜋/(2𝑀 + 1) and

Δ𝜃 = 2𝜋/(2𝑁 + 1). The weights 𝑤
0
= 1 and 𝑤

𝑖
= √2

are defined for 𝑖 ≥ 1, based on the stability analysis in [17].

The overdetermined system of (80) is denoted by the linear
algebraic equations

Fx = b, (81)

where F ∈ 𝑅𝑚×𝑛 with 𝑛 = 𝑀 + 𝑁 + 1 and 𝑚 = 𝑀 + 𝑁 + 2.
The traditional condition number and the effective condition
number in [35] are defined by

Cond =
𝜎max
𝜎min

, Cond eff =
‖b‖

𝜎min ‖x‖
, (82)

where 𝜎max and 𝜎min are the maximal and the minimal
singular values of the matrix F in (81), respectively.

Next, we use the original IFM (i.e., the original NFMwith
𝜖 = 𝜖 = 0). The particular solutions (78) are replaced by

𝑢
𝑀−𝑁

(𝜌, 𝜃) = 𝑎
0
− 𝑅 ln 𝑅𝑝

0
− 𝑅
1
ln 𝜌𝑝
0

+
𝑅

2

𝑀

∑

𝑘=1

1

𝑘
(
𝜌

𝑅
)

𝑘

𝑝
𝑘
cos 𝑘𝜃

+
𝑅
1

2

𝑁

∑

𝑘=1

1

𝑘
(
𝑅
1

𝜌
)

𝑘

𝑝
𝑘
cos 𝑘𝜃, (𝑟, 𝜃) ∈ 𝑆.

(83)

In (83), both 𝑝
0
, 𝑝
0
are also unknown variables, and the total

number of unknowns is now 𝑀 + 𝑁 + 2. Then 𝑚 = 𝑛 =

𝑀 +𝑁 + 2 in (81).
Consider themodel problemwith𝑅 = 2.5 and𝑅

1
= 1 and

then shrink the interior hole 𝑆
𝑅1
by decreasing radius𝑅

1
from

1 down to 10−4.This reflects that Laplace’s equationmay occur
in an actually punctured disk, where there may be a very
small hole but not as a solitary point. For the conservative
schemes of the IFM, the errors, condition numbers, and the
leading coefficients are listed in Tables 1 and 2, where 𝛿 =

𝑢−𝑢
𝑀−𝑁

. For𝑅
1
= 0.1, 0.01, 0.001, 0.0001, the optimal results

are marked in bold. We also note that when 𝑅
1
decreases, the

errors decrease and the condition numbers increase. Table 2
lists the leading coefficients, 𝑝

0
, 𝑝
1
, and 𝑝

1
. All tables are

computed by MATLAB with double precision.
As for the computations by the original IFM, the errors,

condition numbers, and the leading coefficients are listed
in Tables 3 and 4, where only the optimal results are listed.
Comparing Table 3 with Table 1, the differences in terms
of errors and condition number are insignificant, but the
effective condition numbers are much smaller by the original
IFM. Strictly speaking, the conservative schemes satisfy the
flux conservative law exactly, but the original IFM does not.
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Table 6: The leading coefficients by the CTM, where 𝑅 = 2.5.

𝑅
1

(𝑀,𝑁) 𝑎
0

𝑎
1

𝑎
0

𝑎
1

1 (24, 12) −3.219280948873607 (−1) −7.213475204444795 (−1) 1.442695040888962 (0) 3.606737602222373 (−1)
0.5 (24, 12) 3.571770447036389 (−1) −2.947938179979336 (−1) 7.015491185658381 (−1) 7.087085285799036 (−2)
0.1 (24, 5) 6.990003440487363 (−1) −1.316500458391969 (−1) 3.284979815692430 (−1) 6.271330287492891 (−3)
10
−2 (24, 3) 8.286379414763349 (−1) −7.480827500519865 (−2) 1.870171252012619 (−1) 3.562311734550295 (−4)

10
−3 (24, 2) 8.802186203691674 (−1) −5.228969290187686 (−2) 1.307242073548369 (−1) 2.489985466613060 (−5)

10
−4 (24, 1) 9.079315551685712 (−1) −4.019180454591526 (−2) 1.004795111733959 (−1) 1.913895455111127 (−6)

Table 7: The errors and condition numbers by the BIE, where 𝑅 = 2.5 and 𝛿 = 𝑢 − 𝑢
𝑀−𝑁

.

𝑅
1

(𝑀,𝑁) ‖𝛿‖
∞,𝜕𝑆

‖𝛿‖
0,𝜕𝑆

Cond Cond eff
1 (24, 12) 8.94 (−9) 8.87 (−9) 1.38 (2) 2.66 (1)
0.5 (24, 12) 4.90 (−11) 4.70 (−11) 2.67 (2) 6.41 (1)
0.1 (24, 5) 7.27 (−12) 7.00 (−12) 7.36 (2) 8.71 (1)
10
−2 (24, 3) 3.69 (−12) 3.63 (−12) 5.20 (3) 1.12 (2)

10
−3 (24, 2) 2.58 (−12) 2.53 (−12) 3.88 (4) 1.22 (2)

10
−4 (24, 2) 1.98 (−12) 1.94 (−12) 3.88 (5) 1.59 (2)
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,𝜕
S

Figure 2:The curves of ‖𝛿‖
∞,𝜕𝑆

via 𝑅
1
by the conservative schemes,

the original IFM, and the CTM.

5.2.The CTMand the BIE. Bymeans of symmetry, we choose
the simple particular solutions in the CTM

𝑢
𝑀−𝑁

(𝜌, 𝜃; 𝜌, 𝜃) = 𝑎
0
+

𝑀

∑

𝑖=1

(
𝜌

𝑅
)

𝑖

𝑎
𝑖
cos 𝑖𝜃 + 𝑎

0
ln 𝜌

+

𝑁

∑

𝑖=1

(
𝑅
1

𝜌
)

𝑖

𝑎
𝑖
cos 𝑖𝜃, 𝜌 ≤ 𝑅, 𝜌 ≥ 𝑅

1
,

(84)
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Figure 3: The curves of Cond via 𝑅
1
by the conservative schemes,

the original IFM, and the CTM.

where 𝑎
𝑖
and 𝑎

𝑖
are the true coefficients and (𝜌, 𝜃) and (𝜌, 𝜃)

are the polar coordinates with the origins (0, 0) and (−1, 0),
respectively. We have also carried out the computation by
CTMandBIE andhave given their results in Tables 5, 6, 7, and
8. Comparing Table 7 of the BIE with Table 3 of the original
IFM, the errors and the condition numbers are the same, but
the effective condition numbers are slightly different.Thenwe
conclude that the performance of the original IFM and BIE
is the same. For comparisons of different methods, we draw
their curves of errors and condition numbers in Figures 2 and
3, and it is clear that CTM is the best.
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Table 8: The leading coefficients by the BIE, where 𝑅 = 2.5.

𝑅
1

(𝑀,𝑁) 𝑝
⋆

0
𝑝
⋆

1
𝑝
⋆

0
𝑝
⋆

1

1 (24, 12) 1.405353491806680 (−1) −5.770780163555832 (−1) −1.442695040888961 (0) 7.213475204444746 (−1)
0.5 (24, 12) −1.559230197485811 (−1) −2.358350543983469 (−1) −1.403098237131677 (0) 2.834834114319625 (−1)
0.1 (24, 5) −3.051434745472195 (−1) −1.053200366713573 (−1) −3.284979815692429 (0) 1.254266057498587 (−1)
10
−2 (24, 3) −3.617358170944118 (−1) −5.984662000415891 (−2) −1.870171252012620 (1) 7.124623469100554 (−2)

10
−3 (24, 2) −3.842529842329820 (−1) −4.183175432150123 (−2) −1.307242073548368 (2) 4.979970933294560 (−2)

10
−4 (24, 2) −3.963508627055583 (−1) −3.215344363673110 (−2) −1.004795111733959 (3) 3.827790910431746 (−2)

6. Concluding Remarks

To close this paper, let us make a few concluding remarks.
(1) By following [17] for the NFM, we propose the interior

field method (IFM). Since all boundary methods can be
applied to any annular domains, theymay be used for circular
domains with circular holes; in this paper, we employ the
first kind boundary integral equation (BIE) in [30] and the
collocation Trefftz method (CTM) in [6]. The relations of
expansion coefficients among NFM, IFM, BIE, and CTM are
found. The intrinsic relations among them are discovered, to
show that the IFM and the BIE are special cases of CTM.
Section 2 yields an in-depth overview of four methods for
circular domains with circular holes.

(2) For the NFM, some stability analysis in [17] was
made for concentric circular boundaries. The error analysis
of the NFM is challenging. Sections 3 and 4 are devoted to
the error analysis of the NFM. In Section 3, a preliminary
analysis is provided. In Section 4, for the special NFM with
𝜖 = 𝜖 = 0, the error bounds are provided without proof.
The optimal convergence rates can be achieved. The error
analysis is important and valid in wide applications, because
the special NFM offers the best numerical performance in
convergence and stability; see [17].

(3) Numerical experiments are carried out for a chal-
lenging problem of the actually punctured disks. We choose
NFM, IFM, CTM, and BIE and their conservative schemes.
Numerical results are reported from 𝑅

1
= 1 down to

𝑅
1
= 10

−4. Note that the popular methods, such as the
finite element method (FEM), the finite difference method
(FDM), and the boundary element method (BEM), may fail
to handle this problem. The actually punctured disks may be
regarded as a kind of singularity problems, and the localmesh
refinements and other innovations of FEM, FDM, and BEM
are indispensable. However, their algorithms are complicated
and troublesome; see [5]. Consequently, the computation of
this paper enriches the boundary methods [6].

(4) Numerical comparisons of different methods are
imperative in real application. Though their numerical per-
formances are basically the same, the CTM is best in accu-
racy, stability, and simplicity of algorithms. Moreover, the
CTM can always circumvent the degenerate scale problems
encountered in NFM, IFM, and BIE. More importantly, the
CTM can be applied to any shape domains and singularity
problems (see [5, 6]). In summary, three goalsmotivated have
been fulfilled.
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Some new oscillation criteria are given for first order neutral delay differential equations with variable coefficients. Our results
generalize and extend some of the well-known results in the literature. Some examples are considered to illustrate the main results.

1. Introduction

In recent years, oscillation of neutral delay differential equa-
tions (or NDDEs for short) has received great attention and
has been studied extensively. It is a relatively new field with
interesting applications from the real world. In fact, NDDEs
appear in modeling of the problems as transformation of
information, population dynamics, the networks containing
lossless transmission lines, and in the theory of automatic
control (see, e.g., [1–4] and references cited therein).

Consider the first order NDDE of the form

[𝑟(𝑡) (𝑥(𝑡) + 𝑝(𝑡)𝑥(𝑡 − 𝜏))]

+ 𝑞 (𝑡) 𝑥 (𝑡 − 𝜎) = 0, 𝑡 ≥ 𝑡

0
,

(1)

where

𝑝 ∈ 𝐶 [[𝑡
0
,∞) ,R] , 𝑟, 𝑞 ∈ 𝐶 [[𝑡

0
,∞) ,R

+
] , 𝜏, 𝜎 ∈ R

+
.

(2)

Let 𝑚 = max{𝜏, 𝜎}. By a solution of (1), we mean a
function 𝑥 ∈ 𝐶[[𝑡

1
− 𝑚,∞),R] for some 𝑡

1
≥ 𝑡
0
such

that 𝑥(𝑡) + 𝑝(𝑡)𝑥(𝑡 − 𝜏) is continuously differentiable, and
(1) is satisfied identically for 𝑡

1
≥ 𝑡
0
. Such a solution of

(1) is said to be oscillatory if it has arbitrarily large zeros
and nonoscillatory if it is eventually positive or eventually
negative.The NDDE (1) is called oscillatory if all its solutions
are oscillatory; otherwise, it is called nonoscillatory.

Recently, some investigations such as [5–7] have appeared
which are concerned with the oscillation as well as the
nonoscillation behaviour of NDDE (1). In fact, Zahariev
and Băınov [8] is the first work dealing with oscillation of
neutral equations. A systematic development of oscillation
theory of NDDEs was initiated by Ladas and Sficas [9].
For the oscillation of (1) when 𝑟(𝑡) = 1 and 𝑝(𝑡) and
𝑞(𝑡) are constants, we refer the readers to the articles by
Ladas and Schults [10], Sficas and Stavroulakis [11], Gram-
matikopoulos et al. [12], Zhang [13], and Gopalsamy and
Zhang [14]. For the oscillation of (1) when 𝑟(𝑡) = 1 and 𝑝(𝑡)
is equal to a constant, we refer the readers to the papers by
Grammatikopoulos et al. [15], Zhang [13], Gopalsamy and
Zhang [14], and Saker and Elabbasy [16] and the references
cited therein. Grammatikopoulos et al. [6], Ladas and Schults
[10], Chuanxi and Ladas [17, 18], Kubiaczyk and Saker [19],
and Karpuz and Ocalan [20] considered the NDDE (1) when
𝑟(𝑡) = 1 and established some new oscillation results sorted
by the value of function 𝑝(𝑡). For further oscillation results
on the oscillatory behaviour of solutions of (1), we refer the
readers to the monographs by Győri and Ladas [21] and
Erbe et al. [22] as well as the papers of Yu et al. [23], Choi
and Koo [24], Ocalan [25], and Candan and Dahiya [26].

The purpose of this work is to find some sufficient
conditions for the oscillation of all solutions of the first order
NDDE (1).
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Remark 1. (i) When we write a functional inequality we
assume that it holds for all sufficiently large 𝑡.

(ii) Without loss of generality, we will deal only with the
positive solutions of (1).

In the proof of our main results, we need the following
well-known lemmas which can be found in Chuanxi and
Ladas [17], Győri and Ladas [21], and Kulenović et al. [27].

Lemma 2. Assume that 𝜌 is a positive constant. Let ℎ ∈

𝐶[[𝑡
0
,∞),R+], and suppose that

lim
𝑡→∞

inf ∫
𝑡

𝑡−𝜌

ℎ (𝑠) 𝑑𝑠 >
1

𝑒
. (3)

Then
(i) the delay differential inequality

𝑥

(𝑡) + ℎ (𝑡) 𝑥 (𝑡 − 𝜌) ≤ 0, 𝑡 ≥ 𝑡

0
, (4)

has no eventually positive solution;

(ii) the delay differential inequality

𝑥

(𝑡) + ℎ (𝑡) 𝑥 (𝑡 − 𝜌) ≥ 0, 𝑡 ≥ 𝑡

0
, (5)

has no eventually negative solution;

(iii) the advanced differential inequality

𝑥

(𝑡) − ℎ (𝑡) 𝑥 (𝑡 + 𝜌) ≤ 0, 𝑡 ≥ 𝑡

0
, (6)

has no eventually negative solution;

(iv) the advanced differential inequality

𝑥

(𝑡) − ℎ (𝑡) 𝑥 (𝑡 + 𝜌) ≥ 0, 𝑡 ≥ 𝑡

0
, (7)

has no eventually positive solution.

Lemma 3. Consider the NDDE

(𝑥 (𝑡) + 𝑝 (𝑡) 𝑥 (𝑡 − 𝜏))

+ 𝑞 (𝑡) 𝑥 (𝑡 − 𝜎) = 0, 𝑡 ≥ 𝑡

0
, (8)

where 𝑝, 𝑞, 𝜏, and 𝜎 are as in (2). Assume that

∫

∞

𝑡0

𝑞 (𝑠) 𝑑𝑠 = ∞. (9)

Let 𝑥(𝑡) be an eventually positive solution of equation and set

𝑧 (𝑡) = 𝑥 (𝑡) + 𝑝 (𝑡) 𝑥 (𝑡 − 𝜏) . (10)

Then the following statements are true:

(i) 𝑧(𝑡) is an eventually decreasing function;

(ii) if 𝑝(𝑡) ≤ −1 then 𝑧(𝑡) < 0;
(iii) if −1 ≤ 𝑝(𝑡) ≤ 0 then 𝑧(𝑡) > 0 and lim

𝑡→∞
𝑧(𝑡) = 0.

Lemma 4. Assume that (9) holds and let 𝑥(𝑡) be an eventually
positive solution of NDDE

[(𝑥(𝑡) + 𝑝𝑥 (𝑡 − 𝜏))]

+ 𝑞 (𝑡) 𝑥 (𝑡 − 𝜎) = 0, 𝑡 ≥ 𝑡

0
, (11)

where 𝑝 ̸= 1, 𝑞 ∈ 𝐶[[𝑡
0
,∞),R+], and 𝜏, 𝜎 ∈ R+.

Set

𝑧 (𝑡) = 𝑥 (𝑡) + 𝑝𝑥 (𝑡 − 𝜏) . (12)

Then

(a) 𝑧(𝑡) is a decreasing function and either

lim
𝑡→∞

𝑧 (𝑡) = −∞ (13)

or

lim
𝑡→∞

𝑧 (𝑡) = 0. (14)

(b) The following statements are equivalent:

(i) (13) holds;
(ii) 𝑝 < −1;
(iii) lim

𝑡→∞
𝑥(𝑡) = ∞;

(iv) 𝑤(𝑡) > 0, 𝑤(𝑡) > 0.

(c) The following statements are equivalent:

(i) (14) holds;
(ii) 𝑝 > −1;
(iii) lim

𝑡→∞
𝑥(𝑡) = 0;

(iv) 𝑤(𝑡) > 0, 𝑤(𝑡) < 0.

2. Main Results

In this section we give some new sufficient conditions for all
solutions of NDDE (1) to be oscillatory.

Theorem 5. Assume that (2) and (9) hold, 𝑝(𝑡) ≤ −1, 𝜏 > 𝜎,
and

lim
𝑡→∞

inf ∫
𝑡+𝜏

𝑡+𝜎

[
𝑞 (𝑠 − 𝜏)

−𝑟 (𝑠 − 𝜎) 𝑝 (𝑠 − 𝜎)
] 𝑑𝑠 >

1

𝑒
. (15)

Then every solution of NDDE (1) is oscillatory.

Proof. Assume, for the sake of a contradiction, that (1) has an
eventually positive solution 𝑥(𝑡) > 0 for all 𝑡 ≥ 𝑡

0
> 0. Set

𝑧 (𝑡) = 𝑥 (𝑡) + 𝑝 (𝑡) 𝑥 (𝑡 − 𝜏) . (16)

Then by Lemma 3 we have

𝑧 (𝑡) < 0. (17)
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Observe that

𝑧 (𝑡) > 𝑝 (𝑡) 𝑥 (𝑡 − 𝜏) . (18)

From which we find eventually

1

𝑝 (𝑡 + 𝜏 − 𝜎)
𝑞(𝑡)𝑧(𝑡 + 𝜏 − 𝜎)< 𝑞(𝑡)𝑥(𝑡 − 𝜎)= −(𝑟 (𝑡) 𝑧 (𝑡))


,

(19)

and hence

𝑧

(𝑡) +

𝑟

(𝑡)

𝑟 (𝑡)
𝑧 (𝑡) +

𝑞 (𝑡)

𝑟 (𝑡) 𝑝 (𝑡 + 𝜏 − 𝜎)
𝑧 (𝑡 + 𝜏 − 𝜎) < 0.

(20)

Set

𝑧 (𝑡) = 𝑒
−∫
𝑡

𝑡0

(𝑟

(𝑠)/𝑟(𝑠))𝑑𝑠

𝑦 (𝑡) . (21)

This implies that 𝑦(𝑡) < 0.
Substituting in (20) yields for all 𝑡 ≥ 𝑡

0

𝑦

(𝑡) +

𝑞 (𝑡)

𝑟 (𝑡 + 𝜏 − 𝜎) 𝑝 (𝑡 + 𝜏 − 𝜎)
𝑦 (𝑡 + 𝜏 − 𝜎) < 0, (22)

or

𝑦

(𝑡) − [

𝑞 (𝑡)

−𝑟 (𝑡 + 𝜏 − 𝜎) 𝑝 (𝑡 + 𝜏 − 𝜎)
] 𝑦 (𝑡 + (𝜏 − 𝜎)) < 0.

(23)

In view of (15) and Lemma 2(iii), it is impossible for (23) to
have an eventually negative solution.This contradicts the fact
that 𝑦(𝑡) < 0 and the proof is complete.

Example 6. Consider NDDE

[
𝑒
𝑡+1

𝑡 + 1
(𝑥 (𝑡) −

𝑡 + 1

𝑡
𝑥 (𝑡 − 2))]



+ 𝑒
𝑡+2
𝑥 (𝑡 − 1) = 0, 𝑡 > 0.

(24)

Here we have

𝑝 (𝑡) = −
𝑡 + 1

𝑡
≤ −1, 𝑞 (𝑡) = 𝑒

𝑡+2
,

𝑟 (𝑡) =
𝑒
𝑡+1

𝑡 + 1
, 𝜏 = 2, 𝜎 = 1.

(25)

Then all the hypotheses of Theorem 5 are satisfied where

lim
𝑡→∞

inf ∫
𝑡+𝜏

𝑡+𝜎

𝑞 (𝑠 − 𝜏)

−𝑟 (𝑠 − 𝜎) 𝑝 (𝑠 − 𝜎)
𝑑𝑠

= lim
𝑡→∞

inf ∫
𝑡+2

𝑡+1

(𝑠 − 1) 𝑑𝑠 = lim
𝑡→∞

inf (𝑡 + 9

2
) = ∞ >

1

𝑒
.

(26)

Hence every solution of (24) is oscillatory.

Remark 7. Theorem 5 is an extent of [17, Theorem 2], [15,
Theorem 7], and [21, Theorem 6.4.3].

Theorem 8. Assume that (2) and (9) hold, −1 ≤ 𝑝(𝑡) ≤ 0, and

lim
𝑡→∞

inf ∫
𝑡

𝑡−𝜎

𝑞 (𝑠)

𝑟 (𝑠 − 𝜎)
𝑑𝑠 >

1

𝑒
. (27)

Then every solution of NDDE (1) oscillates.

Proof. Assume, for the sake of contradiction, that (1) has an
eventually positive solution 𝑥(𝑡) > 0 for all 𝑡 ≥ 𝑡

0
> 0. Set

𝑧 (𝑡) = 𝑥 (𝑡) + 𝑝 (𝑡) 𝑥 (𝑡 − 𝜏) . (28)

Then by Lemma 3, it follows that

𝑧 (𝑡) > 0. (29)

As 𝑥(𝑡) > 𝑧(𝑡), it follows from (1) that

(𝑟 (𝑡) 𝑧 (𝑡))

+ 𝑞 (𝑡) 𝑧 (𝑡 − 𝜎) ≤ 0. (30)

Dividing the last inequality by 𝑟(𝑡) > 0, we obtain

𝑧

(𝑡) +

𝑟

(𝑡)

𝑟 (𝑡)
𝑧 (𝑡) +

𝑞 (𝑡)

𝑟 (𝑡)
𝑧 (𝑡 − 𝜎) ≤ 0. (31)

Let

𝑧 (𝑡) = 𝑒
−∫
𝑡

𝑡0

(𝑟

(𝑠)/𝑟(𝑠))𝑑𝑠

𝑦 (𝑡) . (32)

This implies that 𝑦(𝑡) > 0.
Substituting in (31) yields for all 𝑡 ≥ 𝑡

0

𝑦

(𝑡) +

𝑞 (𝑡)

𝑟 (𝑡 − 𝜎)
𝑦 (𝑡 − 𝜎) ≤ 0, 𝑡 ≥ 𝑡

0
. (33)

In view of Lemma 2(i) and (27), it is impossible for (33) to
have an eventually positive solution.This contradicts the fact
that 𝑦(𝑡) > 0 and the proof is complete.

Example 9. Consider the NDDE

[
1

𝑡
(𝑥 (𝑡) −

𝑡

𝑡 + 1
𝑥 (𝑡 − 𝜏))]



+
1

𝑡 − (5𝜋/2)
𝑥 (𝑡 −

5𝜋

2
) = 0,

𝑡 >
5𝜋

2
.

(34)

Note that all the hypotheses of Theorem 8 are satisfied:

lim
𝑡→∞

inf ∫
𝑡

𝑡−𝜎

𝑞 (𝑠)

𝑟 (𝑠 − 𝜎)
𝑑𝑠 = lim
𝑡→∞

inf ∫
𝑡

𝑡−(5𝜋/2)

𝑑𝑠 =
5𝜋

2
>
1

𝑒
.

(35)

Therefore every solution of (34) is oscillatory.

Remark 10. Theorem 8 is an extent of [17,Theorem 3] and [21,
Theorem 6.4.2].

Theorem 11. Assume that (2) holds with 𝑝(𝑡) ≡ 𝑝 ̸= ±1, 𝑟(𝑡) ≡
𝑟 > 0, 𝑞(𝑡) being 𝜏 periodic, and

1

𝑟 (1 + 𝑝)
lim
𝑡→∞

inf ∫
𝑡−𝜏

𝑡−𝜎

𝑞 (𝑠) 𝑑𝑠 >
1

𝑒
. (36)
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Then every solution of NDDE

[𝑟 (𝑥(𝑡) + 𝑝𝑥 (𝑡 − 𝜏))]

+ 𝑞 (𝑡) 𝑥 (𝑡 − 𝜎) = 0, 𝑡 ≥ 𝑡

0
,

(37)

is oscillatory.

Proof. Assume, for the sake of contradiction, that (37) has an
eventually positive solution 𝑥(𝑡) > 0 for all 𝑡 ≥ 𝑡

0
> 0. Set

𝑧 (𝑡) = 𝑥 (𝑡) + 𝑝𝑥 (𝑡 − 𝜏) ,

𝑤 (𝑡) = 𝑧 (𝑡) + 𝑝𝑧 (𝑡 − 𝜏) .

(38)

It is easily seen, by direct substituting, that 𝑧(𝑡) and 𝑤(𝑡) are
also solutions of (37). That is,

𝑟𝑧

(𝑡) + 𝑝𝑟𝑧


(𝑡 − 𝜏) + 𝑞 (𝑡) 𝑧 (𝑡 − 𝜎) = 0, (39)

𝑟𝑤

(𝑡) + 𝑝𝑟𝑤


(𝑡 − 𝜏) + 𝑞 (𝑡) 𝑤 (𝑡 − 𝜎) = 0. (40)

By Lemma 4, 𝑧(𝑡) is decreasing and either (13) or (14) holds.
In either case we claim that

𝑤

(𝑡 − 𝜏) ≥ 𝑤


(𝑡) . (41)

Indeed,

𝑤

(𝑡) = −

1

𝑟
𝑞 (𝑡) 𝑧 (𝑡 − 𝜎) ≤ −

1

𝑟
𝑞 (𝑡) 𝑧 (𝑡 − 𝜎 − 𝜏)

= −
1

𝑟
𝑞 (𝑡 − 𝜏) 𝑧 (𝑡 − 𝜎 − 𝜏) = 𝑤


(𝑡 − 𝜏) .

(42)

Furthermore, we have by Lemma 4 that as long as 𝑝 ̸= ± 1,

𝑤 (𝑡) > 0. (43)

Using (41) in (40) implies

𝑟 (1 + 𝑝)𝑤

(𝑡 − 𝜏) + 𝑞 (𝑡) 𝑤 (𝑡 − 𝜎) ≤ 0 (44)

or

𝑤

(𝑡 − 𝜏) +

1

𝑟 (1 + 𝑝)
𝑞 (𝑡) 𝑤 (𝑡 − 𝜎) ≤ 0. (45)

Since 𝑞(𝑡) is periodic of period 𝜏, we find

𝑤

(𝑡) +

1

𝑟 (1 + 𝑝)
𝑞 (𝑡) 𝑤 (𝑡 − (𝜎 − 𝜏)) ≤ 0, if 1 + 𝑝 > 0,

(46)
or

𝑤

(𝑡) − [

1

−𝑟 (1 + 𝑝)
] 𝑞 (𝑡) 𝑤 (𝑡 + (𝜏 − 𝜎)) ≥ 0,

if 1 + 𝑝 < 0.

(47)

In view of Lemma 2((i) and (iv)) and (36), it is impossible
for (46) and (47) to have eventually positive solutions.
This contradicts the fact that 𝑤(𝑡) > 0 and the proof is
complete.

Remark 12. Theorem 11 extends [15, Theorems 8 and 10]. See
also [21, Theorem 6.4.4].
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Numerical algorithms for solving first-order fuzzy differential equations and hybrid fuzzy differential equations have been
investigated. Sufficient conditions for stability and convergence of the proposed algorithms are given, and their applicability is
illustrated with some examples.

1. Introduction

Hybrid systems are devoted to modeling, design, and val-
idation of interactive systems of computer programs and
continuous systems. That is, control systems that are capable
of controlling complex systems which have discrete event
dynamics as well as continuous time dynamics can be mod-
eled by hybrid systems. The differential systems containing
fuzzy valued functions and interaction with a discrete time
controller are named hybrid fuzzy differential systems.

TheHukuhara derivative of a fuzzy-number-valued func-
tion was introduced in [1]. Under this setting, the existence
and uniqueness of the solution of a fuzzy differential equation
are studied by Kaleva [2, 3], Seikkala [4], and Kloeden [5].
This approach has the disadvantage that it leads to solutions
which have an increasing length of their support [2]. A gen-
eralized differentiability was studied in [6–8]. This concept
allows us to resolve the previously mentioned shortcoming.
Indeed, the generalized derivative is defined for a larger
class of fuzzy-number-valued functions than the Hukuhara
derivative. Some applications of numerical methods in FDE
and hybrid fuzzy differential equation (HFDE) are presented

in [9–19]. Some other approaches to study FDE and fuzzy
dynamical systems have been investigated in [20–22].

In engineering and physical problems, Trapezoidal rule is
a simple and powerful method to solve numerically related
ODEs. Trapezoidal rule has a higher convergence order in
comparison to other one step methods, for instance, Euler
method.

In this work, we concentrate on numerical procedure for
solving FDEs and HFDEs, whenever these equations possess
unique fuzzy solutions.

In Section 2, we briefly present the basic definitions.
Trapezoidal rule for solving fuzzy differential equations is
introduced in Section 3, and convergence and stability of
the mentioned method are proved. The proposed algorithm
is illustrated by solving two examples. In Section 4 we
present Trapezoidal rule for solving hybrid fuzzy differential
equations.

2. Preliminary Notes

In this section the most basic definition of ordinary differen-
tial equations (ODEs) and notation used in fuzzy calculus are
introduced. See, for example, [23].



2 Abstract and Applied Analysis

Consider the first-order ordinary differential equation

𝑦

(𝑡) = 𝑓 (𝑡, 𝑦 (𝑡)) , 𝑦 (𝑡

0
) = 𝑦
0
, (1)

where 𝑓 : [𝑡
0
, 𝑡
𝑁
] ×R𝑛 → R𝑛 and 𝑡

0
∈ R. A linear multistep

method applied to (1) is

𝑘

∑

𝑖=0

𝛼
𝑖
𝑦
𝑚+𝑖
= ℎ

𝑘

∑

𝑖=0

𝛽
𝑖
𝑓 (𝑡
𝑚+𝑖
, 𝑦
𝑚+𝑖
) , (2)

with 𝛼
𝑖
, 𝛽
𝑖
∈ R, 𝛼

𝑘
̸= 0, given starting values 𝑦

0
, 𝑦
1
, . . . , 𝑦

𝑘−1
.

In the case 𝛽
𝑘
= 0, the correspondingmethods (2) are explicit

and are implicit otherwise. The constant step size ℎ > 0

leads to time discretizations with respect to the grid points
𝑡
𝑚
:= 𝑡
0
+𝑚ℎ.The value 𝑦

𝑚+𝑖
is an approximation of the exact

solution at 𝑡
𝑚+𝑖

. The special case of explicit methods, 𝑚 = 2,
𝛼
0
= −1, 𝛼

1
= 0, 𝛼

2
= 1, 𝛽

0
= 𝛽
2
= 0, and 𝛽

1
= 2, corresponds

to the Midpoint rule:

𝑦
𝑚+2

= 𝑦
𝑚
+ 2ℎ𝑓 (𝑡

𝑚+1
, 𝑦
𝑚+1
) , (3)

and the especial case of implicit methods, 𝑚 = 1, 𝛼
0
= −1,

𝛼
1
= 1, and𝛽

0
= 𝛽
1
= 1/2, corresponds to the Trapezoidal

rule:

𝑦
𝑚+1

= 𝑦
𝑚
+
ℎ

2
[𝑓 (𝑡
𝑚
, 𝑦
𝑚
) , 𝑓 (𝑡

𝑚+1
, 𝑦
𝑚+1
)] . (4)

For an explicit method, (2) yields the current value 𝑦
𝑚+𝑘

directly in terms of 𝑦
𝑚+𝑗

,𝑓
𝑚+𝑗

, 𝑗 = 0, 1, . . . , 𝑘 − 1, which, at
this stage of the computation, have already been calculated.
An implicit method will call for the solution, at each stage of
computation, of the the equation

𝑦
𝑚+𝑘

= ℎ𝛽
𝑘
𝑓 (𝑡
𝑚+𝑘
, 𝑦
𝑚+𝑘
) + 𝑔, (5)

where 𝑔 is a known function of previously calculated values
𝑦
𝑚+𝑗

, 𝑓
𝑚+𝑗

, 𝑗 = 0, 1, . . . , 𝑘 − 1. When the original differential
equation in (1) is linear, then (5) is linear in 𝑦

𝑚+𝑘
, and there

is no problem in solving it. When 𝑓 is nonlinear, for finding
solution of (1), we can use the following iteration:

𝑦
[𝑠+1]

𝑚+𝑘
= ℎ𝛽
𝑘
𝑓 (𝑡
𝑚+𝑘
, 𝑦
[𝑠]

𝑚+𝑘
) + 𝑔. (6)

Definition 1. Associated with the multistep method (2), we
define the first characteristic polynomial as follows:

𝜌 (𝜉) :=

𝑘

∑

𝑖=0

𝛼
𝑖
𝜉
𝑖
. (7)

Theorem 2. Amultistep method is stable if the first character-
istic polynomial satisfies the root condition, that is, the roots of
𝜌(𝜉) lie on or within the unit circle, and further the roots on the
unit circle are simple.

According toTheorem 2, we know theMidpoint rule and
Trapezoidal rule are stable.

Definition 3. The difference operator

L [𝑦 (𝑡) ; ℎ] =
𝑘

∑

𝑗=0

[𝛼
𝑗
𝑦 (𝑡 + 𝑗ℎ) − ℎ𝛽

𝑗
𝑦

(𝑡 + 𝑗ℎ)] (8)

and the associated linear multistep method (2) are said to be
of order 𝑝 if for the following equation:

L [𝑦 (𝑡) ; ℎ] = 𝐶0𝑦 (𝑡) + 𝐶1ℎ𝑦
(1)
(𝑡) + ⋅ ⋅ ⋅ + 𝐶𝑞ℎ

𝑞
𝑦
(𝑞)
(𝑡) + ⋅ ⋅ ⋅ ,

(9)

we have 𝐶
0
= 𝐶
1
= ⋅ ⋅ ⋅ = 𝐶

𝑝
= 0,𝐶

𝑝+1
̸= 0, where 𝐶

0
=

∑
𝑘

𝑗=0
𝛼
𝑗
and 𝐶

𝑖
= (1/𝑖!)(∑

𝑘

𝑗=0
𝛼
𝑗
𝑗
𝑖
− 𝑖∑
𝑘

𝑗=0
𝛽
𝑗
𝑗
𝑖−1
), for 𝑖 ≥ 1.

According toDefinition 3,Midpoint rule andTrapezoidal
rule are second-order methods.

We now recall some general concepts of fuzzy set theory;
see, for example, [2, 24].

Definition 4. Let 𝑋 be a nonempty set. A fuzzy set 𝑢 in 𝑋 is
characterized by its membership function 𝑢 : 𝑋 → [0, 1],
and 𝑢(𝑥) is interpreted as the degree of membership of an
element 𝑥 in fuzzy set 𝑢 for each 𝑥 ∈ 𝑋.

Let us denote by R
𝐹
the class of fuzzy subsets of the real

axis, that is,

𝑢 : R → [0, 1] , (10)

satisfying the following properties:

(i) 𝑢 is normal, that is, there exists 𝑠
0
∈ R such that

𝑢(𝑠
0
) = 1,

(ii) 𝑢 is a convex fuzzy set (i.e., 𝑢(𝑡𝑠 + (1 − 𝑡)𝑟) ≥

min {𝑢(𝑠), 𝑢(𝑟)}, ∀𝑡 ∈ [0, 1], 𝑠, 𝑟 ∈ R),
(iii) 𝑢 is upper semicontinuous on R,
(iv) cl{𝑠 ∈ R | 𝑢(𝑠) > 0} is compact, where cl denotes the

closure of a subset.

The spaceR
𝐹
is called the space of fuzzy numbers. Obviously,

R ⊂ R
𝐹
. For 0 < 𝛼 ≤ 1, we denote

[𝑢]
𝛼
= {𝑠 ∈ R | 𝑢 (𝑠) ≥ 𝛼} ,

[𝑢]
0
= cl {𝑠 ∈ R | 𝑢 (𝑠) > 0} .

(11)

Then from (i)–(iv), it follows that the 𝛼-level set [𝑢]𝛼 is a
nonempty compact interval for all 0 ≤ 𝛼 ≤ 1. The notation

[𝑢]
𝛼
= [𝑢
𝛼
, 𝑢
𝛼
] (12)

denotes explicitly the 𝛼-level set of 𝑢. The following remark
shows when [𝑢𝛼, 𝑢𝛼] is a valid 𝛼-level set.

Remark 5. The sufficient conditions for [𝑢𝛼, 𝑢𝛼] to define the
parametric form of a fuzzy number are as follows:

(i) 𝑢𝛼 is a bounded monotonic increasing (nondecreas-
ing) left-continuous function on (0, 1] and right-
continuous for 𝛼 = 0,

(ii) 𝑢𝛼 is a bounded monotonic decreasing (nonincreas-
ing) left-continuous function on (0, 1] and right-
continuous for 𝛼 = 0.

(iii) 𝑢𝛼 ≤ 𝑢𝛼, 0 ≤ 𝛼 ≤ 1.
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For 𝑢, V ∈ R
𝐹
and 𝜆 ∈ R, the sum 𝑢 + V and the product

𝜆𝑢 are defined by [𝑢 + V]𝛼 = [𝑢]𝛼 + [V]𝛼, [𝜆𝑢]𝛼 = 𝜆[𝑢]𝛼,
∀𝛼 ∈ [0, 1], where [𝑢]𝛼+[V]𝛼means the usual addition of two
intervals (subsets) of R, and 𝜆[𝑢]𝛼 means the usual product
between a scaler and a subset of R.

The metric structure is given by the Hausdorff distance

𝐷 : R
𝐹
×R
𝐹
→ R

+
∪ {0} , (13)

by

𝐷 (𝑢, V) = sup
𝛼∈[0,1]

max {𝑢
𝛼
− V𝛼 ,

𝑢
𝛼
− V𝛼} . (14)

The following properties are well known:

𝐷(𝑢 + 𝑤, V + 𝑤) = 𝐷(𝑢, V), ∀𝑢, V, 𝑤 ∈ R
𝐹
,

𝐷(𝑘𝑢, 𝑘V) = |𝑘|𝐷(𝑢, V), ∀𝑘 ∈ R, 𝑢, V ∈ R
𝐹
,

𝐷(𝑢 + V, 𝑤 + 𝑒) ≤ 𝐷(𝑢, 𝑤) + 𝐷(V, 𝑒), ∀𝑢, V, 𝑤, 𝑒 ∈ R
𝐹
,

and (R
𝐹
, 𝐷) is complete metric spaces.

Let 𝐼 be a real interval. A mapping 𝑦 : 𝐼 → R
𝐹
is called

a fuzzy process and its 𝛼-level set is denoted by

[𝑦 (𝑡)]
𝛼
= [𝑦
𝛼
(𝑡) , 𝑦
𝛼
(𝑡)] , 𝑡 ∈ 𝐼, 𝛼 ∈ (0, 1] . (15)

A triangular fuzzy number𝑁 is defined by an ordered triple
(𝑥
𝑙
, 𝑥
𝑐
, 𝑥
𝑟
) ∈ R3 with 𝑥𝑙 ≤ 𝑥𝑐 ≤ 𝑥𝑟, where the graph of 𝑁(𝑠)

is a triangle with base on the interval [𝑥𝑙, 𝑥𝑟] and vertex at
𝑠 = 𝑥
𝑐. An 𝛼-level of𝑁 is always a closed, bounded interval.

We write𝑁 = (𝑥𝑙, 𝑥𝑐, 𝑥𝑟); then

[𝑁]
𝛼
= [𝑥
𝑐
− (1 − 𝛼) (𝑥

𝑐
− 𝑥
𝑙
) , 𝑥
𝑐
+ (1 − 𝛼) (𝑥

𝑟
− 𝑥
𝑐
)] ,

(16)

for any 0 ≤ 𝛼 ≤ 1.

Definition 6. Let 𝑥, 𝑦 ∈ R
𝐹
. If there exists 𝑧 ∈ R

𝐹
such that

𝑥 = 𝑦 + 𝑧, then 𝑧 is called the H-difference of 𝑥 and 𝑦, and it
is denoted by 𝑥 ⊖ 𝑦.

In this paper the sign “⊖” stands always for H-difference,
and let us remark that 𝑥 ⊖ 𝑦 ̸=𝑥 + (−1)𝑦. Usually we denote
𝑥 + (−1)𝑦 by 𝑥 − 𝑦, while 𝑥 ⊖ 𝑦 stands for the H-difference.

Definition 7. Let 𝐹 : 𝐼 → R
𝐹
be a fuzzy function. We say 𝐹

is Hukuhara differentiable at 𝑡
0
∈ 𝐼 if there exists an element

𝐹

(𝑡
0
) ∈ R
𝐹
such that the limits

lim
ℎ→0

+

𝐹 (𝑡
0
+ ℎ) ⊖ 𝐹 (𝑡

0
)

ℎ
, lim

ℎ→0
+

𝐹 (𝑡
0
) ⊖ 𝐹 (𝑡

0
− ℎ)

ℎ

(17)

exist and are equal to 𝐹(𝑡
0
). Here the limits are taken in the

metric space (R
𝐹
, 𝐷).

Definition 8. Let [𝑎, 𝑏] ⊂ 𝐼. The fuzzy integral ∫𝑏
𝑎
𝑦(𝑡) 𝑑𝑡 is

defined by

[∫

𝑏

𝑎

𝑦(𝑡)𝑑𝑡]

𝛼

= [∫

𝑏

𝑎

𝑦
𝛼
(𝑡) 𝑑𝑡, ∫

𝑏

𝑎

𝑦
𝛼
(𝑡) 𝑑𝑡] , (18)

provided the Lebesgue integrals on the right exist.

Remark 9. Let [𝑎, 𝑏] ⊂ 𝐼. If 𝐹 : 𝐼 → R
𝐹
is Hukuhara

differentiable and its Hukuhara derivative 𝐹 is integrable
over [𝑎, 𝑏], then

𝐹 (𝑡) = 𝐹 (𝑡0) + ∫

𝑡

𝑡0

𝐹

(𝑠) 𝑑𝑠, (19)

for all values of 𝑡
0
, 𝑡, where 𝑎 ≤ 𝑡

0
≤ 𝑡 ≤ 𝑏.

Theorem 10. Let (𝑡
𝑖
, 𝑢
𝑖
), 𝑖 = 0, 1, . . . , 𝑛, be the observed data,

and suppose that each of the 𝑢
𝑖
= (𝑢
𝑙

𝑖
, 𝑢
𝑐

𝑖
, 𝑢
𝑟

𝑖
) is a triangular

fuzzy number. Then for each 𝑡 ∈ [𝑡
0
, 𝑡
𝑛
], the fuzzy polynomial

interpolation is a fuzzy-value continuous function 𝑓 : R →

R
𝐹
, where 𝑓(𝑡

𝑖
) = 𝑢
𝑖
, 𝑓(𝑡) = (𝑓𝑙(𝑡), 𝑓𝑐(𝑡), 𝑓𝑟(𝑡)) ∈ R

𝐹
, and

𝑓
𝑙
(𝑡) = ∑

𝐿 𝑖(𝑡)≥0

𝐿
𝑖
(𝑡) 𝑢
𝑙

𝑖
+ ∑

𝐿 𝑖(𝑡)<0

𝐿
𝑖
(𝑡) 𝑢
𝑟

𝑖
,

𝑓
𝑐
(𝑡) =

𝑛

∑

𝑖=0

𝐿
𝑖
(𝑡) 𝑢
𝑐

𝑖
,

𝑓
𝑟
(𝑡) = ∑

𝐿 𝑖(𝑡)≥0

𝐿
𝑖
(𝑡) 𝑢
𝑟

𝑖
+ ∑

𝐿 𝑖(𝑡)<0

𝐿
𝑖
(𝑡) 𝑢
𝑙

𝑖
,

(20)

such that 𝐿
𝑖
(𝑡) = ∏

𝑖 ̸=𝑗
((𝑡 − 𝑡

𝑗
)/(𝑡
𝑖
− 𝑡
𝑗
)).

Proof. See [25].

3. Fuzzy Differential Equations

Consider the first-order fuzzy differential equation 𝑦 =
𝑓(𝑡, 𝑦), where 𝑦 is a fuzzy function of 𝑡, 𝑓(𝑡, 𝑦) is a fuzzy
function of crisp variable 𝑡 and fuzzy variable 𝑦, and 𝑦 is
Hukuhara fuzzy derivative of 𝑦. If an initial value 𝑦(𝑡

0
) =

𝑦
0
∈ R
𝐹
is given, a fuzzy Cauchy problem of first order will

be obtained as follows:

𝑦

(𝑡) = 𝑓 (𝑡, 𝑦 (𝑡)) , 𝑡

0
≤ 𝑡 ≤ 𝑇,

𝑦 (𝑡
0
) = 𝑦
0
.

(21)

By Theorem 5.2 in [11] we may replace (21) by equivalent
system

𝑦

(𝑡) = 𝑓 (𝑡, 𝑦) = 𝐹 (𝑡, 𝑦, 𝑦) , 𝑦 (𝑡

0
) = 𝑦
0
,

𝑦

(𝑡) = 𝑓 (𝑡, 𝑦) = 𝐺 (𝑡, 𝑦, 𝑦) , 𝑦 (𝑡

0
) = 𝑦
0
.

(22)

The parametric form of (22) is given by

𝑦

(𝑡; 𝛼) = 𝐹 (𝑡, 𝑦 (𝑡; 𝛼) , 𝑦 (𝑡; 𝛼)) , 𝑦 (𝑡

0
; 𝛼) = 𝑦

𝛼

0
,

𝑦

(𝑡; 𝛼) = 𝐺 (𝑡, 𝑦 (𝑡; 𝛼) , 𝑦 (𝑡; 𝛼)) , 𝑦 (𝑡

0
; 𝛼) = 𝑦

𝛼

0
,

(23)

for 0 ≤ 𝛼 ≤ 1. In some cases the system given by (23) can
be solved analytically. In most cases analytical solutions may
not be found, and a numerical approach must be considered.
Some numerical methods such as the fuzzy Euler method,
Nyströmmethod, and predictor-corrector method presented
in [7, 10, 11, 13, 15]. In the following, we present a newmethod
to numerical solution of FDE.
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3.1. Trapezoidal Rule for Fuzzy Differential Equations. In the
interval 𝐼 = [𝑡

0
, 𝑇]we consider a set of discrete equally spaced

grid points 𝑡
0
< 𝑡
1
< 𝑡
2
< ⋅ ⋅ ⋅ < 𝑡

𝑁
= 𝑇. The exact and

approximate solutions at 𝑡
𝑛
, 0 ≤ 𝑛 ≤ 𝑁, are denoted by

[𝑦(𝑡
𝑛
)]
𝛼
= [𝑦
𝛼
(𝑡
𝑛
), 𝑦
𝛼
(𝑡
𝑛
)] and [𝑦

𝑛
]
𝛼
= [𝑦
𝛼

𝑛
, 𝑦
𝛼

𝑛
], respectively.

The grid points at which the solution is calculated are

𝑡
𝑛
= 𝑡
0
+ 𝑛ℎ, ℎ =

𝑇 − 𝑡
0

𝑁
, 0 ≤ 𝑛 ≤ 𝑁. (24)

Let 𝑦
𝑝
= [𝛾, 𝛾], 0 ≤ 𝑝 < 𝑁which 𝑓(𝑡

𝑝
, 𝑦
𝑝
) is triangular fuzzy

number. We have

𝑦 (𝑡
𝑝+1
) = 𝑦 (𝑡

𝑝
) + ∫

𝑡𝑝+1

𝑡𝑝

𝑓 (𝑡, 𝑦 (𝑡)) 𝑑𝑡. (25)

By fuzzy interpolation, Theorem 10, we get

𝑓
𝑙

𝐼
(𝑡, 𝑦 (𝑡)) = 𝑙0 (𝑡) 𝑓

𝑙
(𝑡
𝑝
, 𝑦
𝑝
) + 𝑙
1 (𝑡) 𝑓

𝑙
(𝑡
𝑝+1
, 𝑦
𝑝+1
) , (26)

𝑓
𝑐

𝐼
(𝑡, 𝑦 (𝑡)) = 𝑙

0
(𝑡) 𝑓
𝑐
(𝑡
𝑝
, 𝑦
𝑝
) + 𝑙
1
(𝑡) 𝑓
𝑐
(𝑡
𝑝+1
, 𝑦
𝑝+1
) , (27)

𝑓
𝑟

𝐼
(𝑡, 𝑦 (𝑡)) = 𝑙0 (𝑡) 𝑓

𝑟
(𝑡
𝑝
, 𝑦
𝑝
) + 𝑙
1 (𝑡) 𝑓

𝑟
(𝑡
𝑝+1
, 𝑦
𝑝+1
) , (28)

where 𝑓
𝐼
(𝑡, 𝑦(𝑡)) = (𝑓

𝑙

𝐼
(𝑡, 𝑦(𝑡)), 𝑓

𝑐

𝐼
(𝑡, 𝑦(𝑡)), 𝑓

𝑟

𝐼
(𝑡, 𝑦(𝑡))), inter-

polates 𝑓(𝑡, 𝑦(𝑡)) with the interpolation data given by the
value 𝑓(𝑡

𝑝
, 𝑦
𝑝
), and 𝑙

0
(𝑡) = (𝑡 − 𝑡

𝑝+1
)/(𝑡
𝑝
− 𝑡
𝑝+1
), 𝑙
1
(𝑡) =

(𝑡 − 𝑡
𝑝
)/(𝑡
𝑝+1
− 𝑡
𝑝
).

For 𝑡
𝑝
≤ 𝑡 ≤ 𝑡

𝑝+1
we have

𝑙
0 (𝑡) =

𝑡 − 𝑡
𝑝+1

𝑡
𝑝
− 𝑡
𝑝+1

≥ 0, 𝑙
1 (𝑡) =

𝑡 − 𝑡
𝑝

𝑡
𝑝+1
− 𝑡
𝑝

≥ 0. (29)

From (16) and (25) it follows that

[𝑦 (𝑡
𝑝+1
)]
𝛼

= [𝑦
𝛼
(𝑡
𝑝+1
) , 𝑦
𝛼
(𝑡
𝑝+1
)] , (30)

where

𝑦
𝛼
(𝑡
𝑝+1
) = 𝑦
𝛼
(𝑡
𝑝
)

+ ∫

𝑡𝑝+1

𝑡𝑝

{𝛼𝑓
𝑐
(𝑡, 𝑦 (𝑡)) + (1 − 𝛼) 𝑓

𝑙
(𝑡, 𝑦 (𝑡))} 𝑑𝑡,

(31)

𝑦
𝛼
(𝑡
𝑝+1
) = 𝑦
𝛼
(𝑡
𝑝
)

+ ∫

𝑡𝑝+1

𝑡𝑝

{𝛼𝑓
𝑐
(𝑡, 𝑦 (𝑡)) + (1 − 𝛼) 𝑓

𝑟
(𝑡, 𝑦 (𝑡))} 𝑑𝑡.

(32)

According to (25), if (26) and (27) are situated in (31), (27)
and (28) in (32), we obtain

𝑦
𝛼

𝑝+1
= 𝑦
𝛼

𝑝

+ ∫

𝑡𝑝+1

𝑡𝑝

{𝛼 [𝑙
0
(𝑡) 𝑓
𝑐
(𝑡
𝑝
, 𝑦
𝑝
) + 𝑙
1
(𝑡) 𝑓
𝑐
(𝑡
𝑝+1
, 𝑦
𝑝+1
)]

+ (1 − 𝛼)

× [𝑙
0 (𝑡) 𝑓

𝑙
(𝑡
𝑝
, 𝑦
𝑝
)

+𝑙
1
(𝑡) 𝑓
𝑙
(𝑡
𝑝+1
, 𝑦
𝑝+1
)]} 𝑑𝑡.

(33)

By integration we have

𝑦
𝛼

𝑝+1
= 𝑦
𝛼

𝑝
+
ℎ

2

× [𝛼𝑓
𝑐
(𝑡
𝑝
, 𝑦
𝑝
) + (1 − 𝛼) 𝑓

𝑙
(𝑡
𝑝
, 𝑦
𝑝
)

+𝛼𝑓
𝑐
(𝑡
𝑝+1
, 𝑦
𝑝+1
) + (1 − 𝛼) 𝑓

𝑙
(𝑡
𝑝+1
, 𝑦
𝑝+1
)] .

(34)

By (16) deduce

𝑦
𝛼

𝑝+1
= 𝑦
𝛼

𝑝
+
ℎ

2
[𝑓
𝛼
(𝑡
𝑝
, 𝑦
𝑝
) + 𝑓
𝛼
(𝑡
𝑝+1
, 𝑦
𝑝+1
)] . (35)

Similarly we obtain

𝑦
𝛼

𝑝+1
= 𝑦
𝛼

𝑝
+
ℎ

2
[𝑓
𝛼

(𝑡
𝑝
, 𝑦
𝑝
) + 𝑓
𝛼

(𝑡
𝑝+1
, 𝑦
𝑝+1
)] . (36)

Therefore, Trapezoidal rule is obtained as follows:

𝑦
𝛼

𝑝+1
= 𝑦
𝛼

𝑝
+
ℎ

2
[𝑓
𝛼
(𝑡
𝑝
, 𝑦
𝑝
) + 𝑓
𝛼
(𝑡
𝑝+1
, 𝑦
𝑝+1
)] ,

𝑦
𝛼

𝑝+1
= 𝑦
𝛼

𝑝
+
ℎ

2
[𝑓
𝛼

(𝑡
𝑝
, 𝑦
𝑝
) + 𝑓
𝛼

(𝑡
𝑝+1
, 𝑦
𝑝+1
)] ,

𝑦
𝛼

𝑝
= 𝛾, 𝑦

𝛼

𝑝
= 𝛾,

(37)

for 0 ≤ 𝑝 < 𝑁.

3.2. Convergence and Stability. Suppose the exact solution
(𝑌(𝑡; 𝛼), 𝑌(𝑡; 𝛼)) is approximated by some (𝑦(𝑡; 𝛼), 𝑦(𝑡; 𝛼)).
The exact and approximate solutions at 𝑡

𝑛
, 0 ≤ 𝑛 ≤ 𝑁, are

denoted by [𝑌
𝑛
]
𝛼
= [𝑌
𝛼

𝑛
, 𝑌
𝛼

𝑛
] and [𝑦

𝑛
]
𝛼
= [𝑦
𝛼

𝑛
, 𝑦
𝛼

𝑛
], respec-

tively. Our next result determines the pointwise convergence
of the Trapezoidal approximates to the exact solution. The
following lemmawill be applied to show convergence of these
approximates; that is,

lim
ℎ→0

𝑦 (𝑡; ℎ; 𝛼) = 𝑌 (𝑡; 𝛼) , lim
ℎ→0

𝑦 (𝑡; ℎ; 𝛼) = 𝑌 (𝑡; 𝛼) .

(38)



Abstract and Applied Analysis 5

Lemma 11. Let a sequence of numbers {𝑤
𝑛
}
𝑁

𝑛=0
satisfy

𝑤𝑛+1
 ≤ 𝐴

𝑤𝑛
 + 𝐵, 0 ≤ 𝑛 ≤ 𝑁 − 1, (39)

for some given positive constant 𝐴 and 𝐵. Then

𝑤𝑛
 ≤ 𝐴
𝑁 𝑤0

 + 𝐵
𝐴
𝑛
− 1

𝐴 − 1
, 0 ≤ 𝑛 ≤ 𝑁 − 1. (40)

Proof. See [15].

Let 𝐹(𝑡, 𝑢, V) and 𝐺(𝑡, 𝑢, V) be the functions 𝐹 and 𝐺 of
(22), where 𝑢 and V are constants and 𝑢 ≤ V. The domain
where 𝐹 and 𝐺 are defined is therefore

𝐾 = {(𝑡, 𝑢, V) | 𝑡
0
≤ 𝑡 ≤ 𝑇, −∞ < V < ∞, −∞ < 𝑢 ≤ V} .

(41)

Theorem 12. Let 𝐹(𝑡, 𝑢, V) and𝐺(𝑡, 𝑢, V) belong to 𝐶2(𝐾), and
let the partial derivatives of 𝐹, 𝐺 be bounded over 𝐾. Then
for arbitrary fixed 𝛼 : 0 ≤ 𝛼 ≤ 1, the Trapezoidal rule
approximate of (37) converges to the exact solutions 𝑌(𝑡; 𝛼),
𝑌(𝑡; 𝛼) uniformly in 𝑡, for 𝑌, 𝑌 ∈ 𝐶3[𝑡

0
, 𝑇].

Proof. It is sufficient to show that

lim
ℎ→0

𝑦
𝛼

𝑁
= 𝑌 (𝑇; 𝛼) , lim

ℎ→0

𝑦
𝛼

𝑁
= 𝑌 (𝑇; 𝛼) . (42)

By using Taylor’s theorem, we get

𝑌
𝛼

𝑝+1
= 𝑌
𝛼

𝑝
+
ℎ

2

× [𝐹 (𝑡
𝑝
, 𝑌
𝛼

𝑝
, 𝑌
𝛼

𝑝
) + 𝐹 (𝑡

𝑝+1
, 𝑌
𝛼

𝑝+1
, 𝑌
𝛼

𝑝+1
)]

+
ℎ
3

12
𝑌

(𝜉
𝑝
) ,

𝑌
𝛼

𝑝+1
= 𝑌
𝛼

𝑝
+
ℎ

2

× [𝐺 (𝑡
𝑝
, 𝑌
𝛼

𝑝
, 𝑌
𝛼

𝑝
) + 𝐺 (𝑡

𝑝+1
, 𝑌
𝛼

𝑝+1
, 𝑌
𝛼

𝑝+1
)]

+
ℎ
3

12
𝑌


(𝜉
𝑝
) ,

(43)

where 𝑡
𝑝
< 𝜉
𝑝
, 𝜉
𝑝
< 𝑡
𝑝+1

. Consequently,

𝑌
𝛼

𝑝+1
− 𝑦
𝛼

𝑝+1

= 𝑌
𝛼

𝑝
− 𝑦
𝛼

𝑝
+
ℎ

2

× {𝐹 (𝑡
𝑝
, 𝑌
𝛼

𝑝
, 𝑌
𝛼

𝑝
) − 𝐹(𝑡

𝑝
, 𝑦
𝛼

𝑝
, 𝑦
𝛼

𝑝
) + 𝐹 (𝑡

𝑝+1
, 𝑌
𝛼

𝑝+1
, 𝑌
𝛼

𝑝+1
)

− 𝐹(𝑡
𝑝+1
, 𝑦
𝛼

𝑝+1
, 𝑦
𝛼

𝑝+1
)} +

ℎ
3

12
𝑌

(𝜉
𝑝
) ,

𝑌
𝛼

𝑝+1
− 𝑦
𝛼

𝑝+1

= 𝑌
𝛼

𝑝
− 𝑦
𝛼

𝑝
+
ℎ

2

× {𝐺 (𝑡
𝑝
, 𝑌
𝛼

𝑝
, 𝑌
𝛼

𝑝
) − 𝐺(𝑡

𝑝
, 𝑦
𝛼

𝑝
, 𝑦
𝛼

𝑝
)

+ 𝐺 (𝑡
𝑝+1
, 𝑌
𝛼

𝑝+1
, 𝑌
𝛼

𝑝+1
)

− 𝐺(𝑡
𝑝+1
, 𝑦
𝛼

𝑝+1
, 𝑦
𝛼

𝑝+1
)} +

ℎ
3

12
𝑌

(𝜉
𝑝
) .

(44)

Denote 𝑤
𝑛
= 𝑌
𝛼

𝑛
− 𝑦
𝛼

𝑛
and V
𝑛
= 𝑌
𝛼

𝑛
− 𝑦
𝛼

𝑛
. Then


𝑤
𝑝+1


≤

𝑤
𝑝


+ ℎ

× [𝐿
1
max {𝑤𝑝


,

V
𝑝


} + 𝐿
2
max {𝑤𝑝+1


,

V
𝑝+1


}]

+
ℎ
3

12
𝑀,

(45)

V
𝑝+1


≤

V
𝑝


+ ℎ

× [𝐿
1
max {𝑤𝑝


,

V
𝑝


} + 𝐿
2
max {𝑤𝑝+1


,

V
𝑝+1


}]

+
ℎ
3

12
𝑀,

(46)

where 𝑀 = max
𝑡0≤𝑡≤𝑇

|𝑌

(𝑡; 𝛼)| and 𝑀 =

max
𝑡0≤𝑡≤𝑇

|𝑌


(𝑡; 𝛼)|, and 𝐿
1
, 𝐿
2
> 0 is a bound for partial

derivatives of 𝐹 and 𝐺 in 𝑡
𝑝
, 𝑡
𝑝+1

. Thus,


𝑤
𝑝+1


+

V
𝑝+1



≤

𝑤
𝑝


+

V
𝑝


+ 2ℎ

× [𝐿
1
max {𝑤𝑝


,

V
𝑝


} + 𝐿
2
max {𝑤𝑝+1


,

V
𝑝+1


}]

+
ℎ
3

12
(𝑀 +𝑀)

≤

𝑤
𝑝


+

V
𝑝


+ 2ℎ

× [𝐿
1
(

𝑤
𝑝


+

V
𝑝


) + 𝐿
2
(

𝑤
𝑝+1


+

V
𝑝+1


)]

+
ℎ
3

12
(𝑀 +𝑀) .

(47)



6 Abstract and Applied Analysis

Table 1

𝛼 𝑦 𝑦
Mid 𝑌 𝑦 𝑦Mid 𝑌

0 0.9636348 0.9686955 0.9636356 1.0188934 1.0138372 1.0188941
0.1 0.9677550 0.9723098 0.9677558 1.0174878 1.0129374 1.0174885
0.2 0.9718752 0.9759241 0.9718760 1.0160820 1.0120376 1.0160828
0.3 0.9759954 0.9795385 0.9759961 1.0146763 1.0111377 1.0146772
0.4 0.9801155 0.9831529 0.9801163 1.0132707 1.0102379 1.0132715
0.5 0.9842358 0.9867672 0.9842365 1.0118650 1.0093381 1.0118657
0.6 0.9883559 0.9903815 0.9883567 1.0104593 1.0084382 1.0104601
0.7 0.9924761 0.9939959 0.9924769 1.0090537 1.0075384 1.0090544
0.8 0.9965963 0.9976103 0.9965971 1.0076480 1.0066386 1.0076487
0.9 1.0007164 1.0012246 1.0007173 1.0062424 1.0057387 1.0062431
1 1.0048367 1.0048389 1.0048374 1.0048367 1.0048389 1.0048374

If we put |𝑢
𝑝
| = |𝑤

𝑝
|+ |V
𝑝
| and 𝐿 = max {𝐿

1
, 𝐿
2
} < 1/2ℎ, then


𝑢
𝑝+1


≤ (1 + 2ℎ𝐿)


𝑢
𝑝


+ 2ℎ𝐿


𝑢
𝑝+1


+
ℎ
3

12
(𝑀 +𝑀)

≤ (
1 + 2ℎ𝐿

1 − 2ℎ𝐿
)

𝑢
𝑝


+

ℎ
3

12 (1 − 2ℎ𝐿)
(𝑀 +𝑀) .

(48)

Then by Lemma 11 and 𝑤
0
= V
0
= 0, we have


𝑢
𝑝


≤

ℎ
3

12 (1 − 2ℎ𝐿)
(𝑀 +𝑀)

((1 + 2ℎ𝐿) / (1 − 2ℎ𝐿))
𝑛
− 1

((1 + 2ℎ𝐿) / (1 − 2ℎ𝐿)) − 1
.

(49)

If ℎ → 0, then𝑤
𝑛
→ 0, V

𝑛
→ 0 which concludes the proof.

Remark 13. According to Definition 3, Trapezoidal rule is a
second-order method. In fact we may consider the definition
of convergence order given in Definition 3 for system of
ODEs.

Theorem 14. Trapezoidal rule is stable.

Proof. For Trapezoidal rule exists only one characteristic
polynomial 𝜌(𝜉) = 𝜉 − 1, and it is clear that satisfies the
root condition. Then by Theorem 2, the Trapezoidal rule is
stable.

3.3. Numerical Results. In this section we apply Trapezoidal
rule for numerical solution of two linear fuzzy differential
equations. We compare our results with Midpoint rule.
The authors in [13] have presented the Midpoint rule for
numerical solution of FDEs as follows:

𝑦
𝛼

𝑝+1
= 𝑦
𝛼

𝑝−1
+ 2ℎ𝑓

𝛼
(𝑡
𝑝
, 𝑦
𝑝
) ,

𝑦
𝛼

𝑝+1
= 𝑦
𝛼

𝑝−1
+ 2ℎ𝑓

𝛼

(𝑡
𝑝
, 𝑦
𝑝
) ,

𝑦
𝛼

𝑝−1
= 𝛼
0
, 𝑦

𝛼

𝑝
= 𝛼
1
, 𝑦

𝛼

𝑝
= 𝛼
2
, 𝑦

𝛼

𝑝−1
= 𝛼
3
.

(50)

TheMidpoint rule is a second-order and stable method [13].

In the following two examples, the implicit nature of
Trapezoidal rule for solving linear fuzzy differential equation
is implemented by solving a linear system at each stage of
computation.

Example 15 (see [13]). Consider the initial value problem

𝑦

(𝑡) = −𝑦 (𝑡) + 𝑡 + 1,

𝑦 (0) = [0.96 + 0.04𝛼, 1.01 − 0.01𝛼] .

(51)

The exact solution at 𝑡 = 0.1 for 0 ≤ 𝛼 ≤ 1 is given by

𝑌 (0.1; 𝛼) = 0.1 + (0.985 + 0.015𝛼) 𝑒
−0.1

− (1 − 𝛼) 0.025𝑒
0.1
,

𝑌 (0.1; 𝛼) = 0.1 + (0.985 + 0.015𝛼) 𝑒
−0.1

+ (1 − 𝛼) 0.025𝑒
0.1
.

(52)

A comparison between the exact solution, 𝑌(𝑡; 𝛼), and the
approximate solutions by Midpoint method [13], 𝑦Mid(𝑡; 𝛼),
and Trapezoidal method, 𝑦(𝑡; 𝛼), at 𝑡 = 0.1 with 𝑁 = 10, is
shown in Table 1 and Figure 1.

Example 16. Let us consider the first-order fuzzy differential
equation

𝑦

(𝑡) = −𝑦 (𝑡) , 𝑦 (0) = 𝑦

0
, (53)

where 𝑦
0
= [0.96 + 0.04𝛼, 1.01 − 0.01𝛼].

The exact solution at 𝑡 = 0.1 is given by

𝑌 (0.1; 𝛼) = (0.985 + 0.015𝛼) 𝑒
−0.1

− (1 − 𝛼) 0.025𝑒
0.1
,

𝑌 (0.1; 𝛼) = (0.985 + 0.015𝛼) 𝑒
−0.1

+ (1 − 𝛼) 0.025𝑒
0.1
.

(54)

A comparison between the exact solution, 𝑌(𝑡; 𝛼), and the
approximate solutions by Midpoint method, 𝑦Mid(𝑡; 𝛼), and
Trapezoidal method, 𝑦(𝑡; 𝛼), at 𝑡 = 0.1with𝑁 = 10, is shown
in Table 2 and Figure 2.
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Figure 1: (-) Exact solution, (∘) Trapezoidal, and (+) Midpoint
approximated points.

4. Hybrid Fuzzy Differential Equations

Consider the hybrid fuzzy differential equation

𝑦

(𝑡) = 𝑓 (𝑡, 𝑦 (𝑡) , 𝜆𝑘 (𝑦𝑘)) , 𝑡 ∈ [𝑡

𝑘
, 𝑡
𝑘+1
] ,

𝑘 = 0, 1, 2, . . . ,

𝑦 (𝑡
0
) = 𝑦
0
,

(55)

where {𝑡
𝑘
}
∞

𝑘=0
is strictly increasing and unbounded, 𝑦

𝑘

denotes 𝑦(𝑡
𝑘
), 𝑓 : [𝑡

0
,∞) × R

𝐹
× R
𝐹
→ R

𝐹
is continuous,

and each 𝜆
𝑘
: R
𝐹
→ R
𝐹
is a continuous function. A solution

𝑦 to (55) will be a function 𝑦 : [𝑡
0
,∞) → R

𝐹
satisfying

(55). For 𝑘 = 0, 1, 2, . . ., let 𝑓
𝑘
: [𝑡
𝑘
, 𝑡
𝑘+1
] × R
𝐹
→ R
𝐹
, where

𝑓
𝑘
(𝑡, 𝑦
𝑘
(𝑡)) = 𝑓(𝑡, 𝑦(𝑡), 𝜆

𝑘
(𝑦
𝑘
)). The hybrid fuzzy differential

equation in (55) can be written in expanded form as

𝑦

(𝑡) =

{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{

{

𝑦


0
(𝑡) = 𝑓 (𝑡, 𝑦0 (𝑡) , 𝜆0 (𝑦0)) ≡ 𝑓0 (𝑡, 𝑦0 (𝑡)) ,

𝑦
0
(𝑡
0
) = 𝑦
0
, 𝑡
0
≤ 𝑡 ≤ 𝑡

1
,

𝑦


1
(𝑡) = 𝑓 (𝑡, 𝑦

1
(𝑡) , 𝜆
1
(𝑦
1
)) ≡ 𝑓

1
(𝑡, 𝑦
1
(𝑡)) ,

𝑦
1
(𝑡
1
) = 𝑦
1
, 𝑡
1
≤ 𝑡 ≤ 𝑡

2
,

...
𝑦


𝑘
(𝑡) = 𝑓 (𝑡, 𝑦𝑘 (𝑡) , 𝜆𝑘 (𝑦𝑘)) ≡ 𝑓𝑘 (𝑡, 𝑦𝑘 (𝑡)) ,

𝑦
𝑘
(𝑡
𝑘
) = 𝑦
𝑘
, 𝑡
𝑘
≤ 𝑡 ≤ 𝑡

𝑘+1
,

...
(56)

and a solution of (55) can be expressed as

𝑦 (𝑡) =

{{{{{{{{

{{{{{{{{

{

𝑦
0
(𝑡) , 𝑡

0
< 𝑡 ≤ 𝑡

1
,

𝑦
1 (𝑡) , 𝑡

1
< 𝑡 ≤ 𝑡

2
,

...
𝑦
𝑘
(𝑡) , 𝑡

𝑘
< 𝑡 ≤ 𝑡

𝑘+1
,

...

(57)
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Figure 2: (-) Exact solution, (∘) Trapezoidal, and (+) Midpoint
approximated points.

We note that the solution 𝑦 of (55) is continuous and
piecewise differentiable over [𝑡

0
,∞) and differentiable on

each interval (𝑡
𝑘
, 𝑡
𝑘+1
) for any fixed 𝑦

𝑘
∈ R
𝐹
and 𝑘 =

0, 1, 2, . . ..

Theorem 17. Suppose for 𝑘 = 0, 1, 2, . . . that each 𝑓
𝑘
:

[𝑡
𝑘
, 𝑡
𝑘+1
] ×R
𝐹
→ R
𝐹
is such that

[𝑓
𝑘
(𝑡, 𝑦)]

𝛼
= [𝑓
𝑘

𝛼
(𝑡, 𝑦
𝛼
, 𝑦
𝛼
) , 𝑓
𝑘

𝛼

(𝑡, 𝑦
𝛼
, 𝑦
𝛼
)] . (58)

If for each 𝑘 = 0, 1, 2, . . . there exists 𝐿
𝑘
> 0 such that


𝑓
𝑘

𝛼
(𝑡
1
, 𝑥
1
, 𝑦
1
) − 𝑓
𝑘

𝛼
(𝑡
2
, 𝑥
2
, 𝑦
2
)


≤ 𝐿
𝑘
max {𝑡2 − 𝑡1

 ,
𝑥2 − 𝑥1

 ,
𝑦2 − 𝑦1

} ,


𝑓
𝑘

𝛼

(𝑡
1
, 𝑥
1
, 𝑦
1
) − 𝑓
𝑘

𝛼

(𝑡
2
, 𝑥
2
, 𝑦
2
)


≤ 𝐿
𝑘
max {𝑡2 − 𝑡1

 ,
𝑥2 − 𝑥1

 ,
𝑦2 − 𝑦1

} ,

(59)

for all 𝛼 ∈ [0, 1], then (55) and the hybrid system of ODEs

(𝑦
𝛼

𝑘
(𝑡))



= 𝑓
𝑘

𝛼
(𝑡, 𝑦
𝛼

𝑘
(𝑡) , 𝑦
𝛼

𝑘
(𝑡)) ,

(𝑦
𝛼

𝑘
(𝑡))

= 𝑓
𝑘

𝛼

(𝑡, 𝑦
𝛼

𝑘
(𝑡) , 𝑦
𝛼

𝑘
(𝑡)) ,

𝑦
𝛼

𝑘
(𝑡
𝑘
) = 𝑦
𝛼

𝑘−1
(𝑡
𝑘
) , if 𝑘 > 0, 𝑦𝛼

0
(𝑡
0
) = 𝑦
𝛼

0
,

𝑦
𝛼

𝑘
(𝑡
𝑘
) = 𝑦
𝛼

𝑘−1
(𝑡
𝑘
) , if 𝑘 > 0, 𝑦𝛼

0
(𝑡
0
) = 𝑦
𝛼

0

(60)

are equivalent.

Proof. See [19].

4.1. Trapezoidal Rule for Hybrid Fuzzy Differential
Equations. For each 𝛼 ∈ [0, 1], to numerically solve
(55) in [𝑡

0
, 𝑡
1
], [𝑡
1
, 𝑡
2
], . . . , [𝑡

𝑘
, 𝑡
𝑘+1
], . . ., replace each interval

[𝑡
𝑘
, 𝑡
𝑘+1
], 𝑘 = 0, 1, . . . by a set of 𝑁

𝑘+1
regularly spaced

grid points (including the endpoints). The grid point on
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Table 2

𝛼 𝑦 𝑦
Mid

𝑌 𝑦 𝑦Mid 𝑌

0 0.8636348 0.8686954 0.8636356 0.9188934 0.9138373 0.9188941
0.1 0.8677550 0.8723098 0.8677558 0.9174877 0.9129374 0.9174885
0.2 0.8718752 0.8759242 0.8718759 0.9160821 0.9120376 0.9160828
0.3 0.8759954 0.8795385 0.8759961 0.9146764 0.9111378 0.9146771
0.4 0.8801156 0.8831528 0.8801163 0.9132707 0.9102379 0.9132714
0.5 0.8842357 0.8867672 0.8842365 0.9118651 0.9093381 0.9118658
0.6 0.8883559 0.8903816 0.8883567 0.9104593 0.9084383 0.9104601
0.7 0.8924761 0.8939959 0.8924769 0.9090537 0.9075384 0.9090545
0.8 0.8965963 0.8976102 0.8965970 0.9076480 0.9066386 0.9076487
0.9 0.9007165 0.9012246 0.9007173 0.9062423 0.9057388 0.9062431
1 0.9048367 0.9048389 0.9048374 0.9048367 0.9048389 0.9048374

[𝑡
𝑘
, 𝑡
𝑘+1
] will be 𝑡

𝑘,𝑛
= 𝑡
𝑘
+ 𝑛ℎ
𝑘
, ℎ
𝑘
= (𝑡
𝑘+1

− 𝑡
𝑘
)/𝑁
𝑘
,

0 ≤ 𝑛 ≤ 𝑁
𝑘
at which the exact solution (𝑦𝛼(𝑡

𝑘,𝑛
), 𝑦
𝛼
(𝑡
𝑘,𝑛
))

will be approximated by some (𝑦𝛼
𝑘,𝑛
, 𝑦
𝛼

𝑘,𝑛
). We set 𝑦𝛼

0,0
= 𝑦
𝛼

0
,

𝑦
𝛼

0,0
= 𝑦
𝛼

0
and 𝑦𝛼

𝑘,0
= 𝑦
𝛼

𝑘−1,𝑁𝑘−1

, 𝑦𝛼
𝑘,0
= 𝑦
𝛼

𝑘−1,𝑁𝑘−1
if 𝑘 ≥ 1.

According to Section 3, by similar computationwe obtain
the Trapezoidal rule for solving (60) as follows:

𝑦
𝛼

𝑘,𝑛+1

= 𝑦
𝛼

𝑘,𝑛
+
ℎ

2

× [𝑓
𝑘

𝛼
(𝑡
𝑘,𝑛
, 𝑦
𝛼

𝑘,𝑛
, 𝑦
𝛼

𝑘,𝑛
) + 𝑓
𝑘

𝛼
(𝑡
𝑘,𝑛+1

, 𝑦
𝛼

𝑘,𝑛+1
, 𝑦
𝛼

𝑘,𝑛+1
)] ,

𝑦
𝛼

𝑘,𝑛+1

= 𝑦
𝛼

𝑘,𝑛
+
ℎ

2

× [𝑓
𝑘

𝛼

(𝑡
𝑘,𝑛
, 𝑦
𝛼

𝑘,𝑛
, 𝑦
𝛼

𝑘,𝑛
) + 𝑓
𝑘

𝛼

(𝑡
𝑘,𝑛+1

, 𝑦
𝛼

𝑘,𝑛+1
, 𝑦
𝛼

𝑘,𝑛+1
)] ,

𝑦
𝛼

𝑘,𝑛
= 𝑦
𝑘
, 𝑦

𝛼

𝑘,𝑛
= 𝑦
𝑘
,

(61)

for 0 ≤ 𝑛 < 𝑁
𝑘
, 𝑘 = 0, 1, 2, . . ..

Next, we give the algorithm to numerically solve (55) in
[𝑡
0
, 𝑡
1
], [𝑡
1
, 𝑡
2
], . . . , [𝑡

𝑘
, 𝑡
𝑘+1
], . . . .

First Step. {[(𝑦𝛼
0,𝑛
, 𝑦
𝛼

0,𝑛
)]}
𝑁0

𝑛=0
will be a numerical solution

generated by (61) for 𝑘 = 0 as follows:

(𝑦
𝛼

0
(𝑡))



= 𝑓
0

𝛼
(𝑡, 𝑦
𝛼

0
(𝑡) , 𝑦
𝛼

0
(𝑡)) ,

(𝑦
𝛼

0
(𝑡))

= 𝑓
0

𝛼

(𝑡, 𝑦
𝛼

0
(𝑡) , 𝑦
𝛼

0
(𝑡)) ,

𝑦
𝛼

0
(𝑡
0
) = 𝑦
𝛼

0,0
, 𝑦

𝛼

0
(𝑡
0
) = 𝑦
𝛼

0,0
.

(62)

{[(𝑦
𝛼

0,𝑛
, 𝑦
𝛼

0,𝑛
)]}
𝑁0

𝑛=0
is a numerical solution of (60) over [𝑡

0
, 𝑡
1
].

Second Step. For each 𝑘 ≥ 1, {[(𝑦𝛼
𝑘,𝑛
, 𝑦
𝛼

𝑘,𝑛
)]}
𝑁𝑘

𝑛=0
will be

numerical solution generated by (61) for

(𝑦
𝛼

𝑘
(𝑡))



= 𝑓
𝑘

𝛼
(𝑡, 𝑥
𝛼

𝑘
(𝑡) , 𝑥
𝛼

𝑘
(𝑡)) ,

(𝑦
𝛼

𝑘
(𝑡))

= 𝑓
𝑘

𝛼

(𝑡, 𝑥
𝛼

𝑘
(𝑡) , 𝑥
𝛼

𝑘
(𝑡)) ,

𝑦
𝛼

𝑘
(𝑡
𝑘
) = 𝑦
𝛼

𝑘,0
, 𝑦

𝛼

𝑘
(𝑡
𝑘
) = 𝑦
𝛼

𝑘,0
,

(63)

where 𝑦𝛼
𝑘,0
= 𝑦
𝑘−1,𝑁

𝛼

𝑘−1

, 𝑦𝛼
𝑘,0
= 𝑦
𝑘−1,𝑁

𝛼

𝑘−1

. {[(𝑦
𝛼

𝑘,𝑛
, 𝑦
𝛼

𝑘,𝑛
)]}
𝑁𝑘

𝑛=0
is a

numerical solution of (60) over [𝑡
𝑘
, 𝑡
𝑘+1
] for each 𝑘 ≥ 1.

For arbitrary fixed 𝛼 ∈ [0, 1] and 𝑘, we can prove that the
numerical solution of (55) converges to the exact solution;
that is,

lim
ℎ0 ,...,ℎ𝑘→0

𝑦
𝛼

𝑘,𝑁𝑘

= 𝑦 (𝑡
𝑘+1
) , lim

ℎ0 ,...,ℎ𝑘→0

𝑦
𝛼

𝑘,𝑁𝑘
= 𝑦 (𝑡

𝑘+1
) .

(64)

The Trapezoidal rule is a one-step method as the Euler
method. Therefore, the proof of the convergence closely
follows the idea of the proof of Theorem 3.2 in [18] and
Theorem 4.1 in [19].

Theorem 18. Consider the system of (55). Suppose for some
fixed 𝑘 and 𝛼 ∈ [0, 1] that {[(𝑦𝛼

𝑖,𝑛𝑖

, 𝑦
𝛼

𝑖,𝑛𝑖
)]}
𝑘

𝑖=0
, where 0 ≤ 𝑛

𝑖
≤ 𝑁
𝑖

is obtained by (61). Then

lim
ℎ0 ,...,ℎ𝑘→0

𝑦
𝛼

𝑘,𝑁𝑘

= 𝑦 (𝑡
𝑘+1
) , lim

ℎ0 ,...,ℎ𝑘→0

𝑦
𝛼

𝑘,𝑁𝑘
= 𝑦 (𝑡

𝑘+1
) .

(65)

Proof. See [19].

Example 19. Consider the following hybrid fuzzy system:

𝑦

(𝑡) = 𝑦 (𝑡) + 𝑚 (𝑡) 𝜆

𝑘
(𝑦 (𝑡
𝑘
)) , 𝑡 ∈ [𝑡

𝑘
, 𝑡
𝑘+1
] ,

𝑡
𝑘
= 𝑘, 𝑘 = 0, 1, 2, . . . ,

𝑦 (0) = 𝛾,

(66)
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Table 3

𝛼 𝑦 𝑦
Mid

𝑌 𝑦 𝑦Mid 𝑌

0 7.2644238 7.2370696 7.2577319 10.8966360 10.8556042 10.8865976
0.1 7.5065713 7.4783049 7.4996562 10.7755623 10.7349863 10.7656355
0.1 7.7487187 7.7195406 7.7415805 10.6544886 10.6143684 10.6446733
0.1 7.9908662 7.9607763 7.9835048 10.5334148 10.4937506 10.5237112
0.1 8.2330141 8.2020121 8.2254295 10.4123411 10.3731327 10.4027491
0.1 8.4751616 8.4432478 8.4673538 10.2912674 10.2525148 10.2817869
0.1 8.7173090 8.6844835 8.7092781 10.1701937 10.1318970 10.1608248
0.1 8.9594564 8.9257193 8.9512024 10.0491199 10.0112791 10.0398626
0.1 9.2016039 9.1669550 9.1931267 9.9280462 9.8906612 9.9189005
0.1 9.4437513 9.4081898 9.4350510 9.8069725 9.7700434 9.7979374
1 9.6858988 9.6494255 9.6769753 9.6858988 9.6494255 9.6769753

7 7.5 8 8.5 9 9.5 10 10.5 110

1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 3: (-) Exact solution, (∘) Trapezoidal, and (+) Midpoint
approximated points.

where 𝛾 is a triangular fuzzy number having 𝛼-level sets
[𝛾]
𝛼
= [0.75 + 0.25𝛼, 1.125 − 0.125𝛼],

𝑚(𝑡) = {
2 (𝑡 (mod1)) , if 𝑡 (mod1) ≤ 0.5,
2 (1 − 𝑡 (mod1)) , if 𝑡 (mod1) > 0.5,

𝜆
𝑘
(𝜇) = {

0̂, if 𝑘 = 0,
𝜇, if 𝑘 ∈ {1, 2, . . .} .

(67)

By [19, Example 1], we know (66) has a unique solution and
the exact solution on [0, 2] is given by

[𝑦 (𝑡)]
𝛼
= [(0.75 + 0.25𝛼) 𝑒

𝑡
, (1.125 − 0.125𝛼) 𝑒

𝑡
] ,

𝑡 ∈ [0, 1] ,

[𝑦 (𝑡)]
𝛼
= {
𝑦 (1) (3𝑒

𝑡−1
− 2𝑡) , 𝑡 ∈ [1, 1.5] ,

𝑦 (1) (2𝑡 − 2 + 𝑒
𝑡−1.5

(3√𝑒 − 4)) , 𝑡 ∈ [1.5, 2] .

(68)

To numerically solve the hybrid fuzzy initial value problem
(66) we apply the Trapezoidal rule for hybrid fuzzy differen-
tial equations.

A comparison between the exact solution and the
approximate solutions by Midpoint method and Trapezoidal
method at 𝑡 = 2with𝑁 = 10 is shown in Table 3 and Figure 3.

5. Conclusion

We have presented Trapezoidal rule for numerical solution
of first-order fuzzy differential equations and hybrid fuzzy
differential equations. Also convergence and stability of the
method are studied. To illustrate the efficiency of the new
method, we have compared our method with the Midpoint
rule in some examples. We have shown the global error in
Trapezoidal rule is much less than in Midpoint rule.

For future research, we will apply Trapezoidal rule to
fuzzy differential equations and hybrid fuzzy differential
equations under generalized Hukuhara differentiability. Also
one can apply Trapezoidal rule and Midpoint rule as a
predictor-corrector method to solve FDE and HFDE.
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We consider the homogenization of the linear parabolic problem 𝜌(𝑥/𝜀
2
)𝜕
𝑡
𝑢
𝜀
(𝑥, 𝑡) − ∇ ⋅ (𝑎(𝑥/𝜀

1
, 𝑡/𝜀
2

1
)∇𝑢
𝜀
(𝑥, 𝑡)) = 𝑓(𝑥, 𝑡) which

exhibits a mismatch between the spatial scales in the sense that the coefficient 𝑎(𝑥/𝜀
1
, 𝑡/𝜀
2

1
) of the elliptic part has one frequency

of fast spatial oscillations, whereas the coefficient 𝜌(𝑥/𝜀
2
) of the time derivative contains a faster spatial scale. It is shown that the

faster spatial microscale does not give rise to any corrector term and that there is only one local problem needed to characterize the
homogenized problem. Hence, the problem is not of a reiterated type even though two rapid scales of spatial oscillation appear.

1. Introduction

The field of homogenization has its main source of inspi-
ration in the problem of finding the macroscopic prop-
erties of strongly heterogeneous materials. Mathematically,
the approach is to study a sequence of partial differential
equations where a parameter 𝜀 associated with the length
scales of the heterogeneities tends to zero. The sequence
of solutions 𝑢𝜀 converges to the solution 𝑢 to a so-called
homogenized problem governed by a coefficient 𝑏, where
𝑏 gives the effective property of the material and can be
characterized by certain auxiliary problems called the local
problems.

In this paper, we study the homogenization of the linear
parabolic problem

𝜌(
𝑥

𝜀
2

) 𝜕
𝑡
𝑢
𝜀
(𝑥, 𝑡) − ∇ ⋅ (𝑎(

𝑥

𝜀
1

,
𝑡

𝜀
2

1

)∇𝑢
𝜀
(𝑥, 𝑡))

= 𝑓 (𝑥, 𝑡) in Ω
𝑇
,

𝑢
𝜀
(𝑥, 𝑡) = 0 on 𝜕Ω × (0, 𝑇) ,

𝑢
𝜀
(𝑥, 0) = 𝑢

0
(𝑥) in Ω,

(1)

whereΩ
𝑇
= Ω×(0, 𝑇),Ω is an open, bounded set inR𝑁 with

locally Lipschitz boundary, where both 𝑎 and 𝜌 possess unit

periodicity in their respective arguments and the scales 𝜀
1
, 𝜀
2
,

and 𝜀2
1
fulfill a certain separatedness assumption.

The problem exhibits rapid spatial oscillations in 𝜌 and
spatial as well as temporal oscillations in 𝑎. Furthermore,
there is a “mismatch” between the spatial scales in the sense
that the frequency of the spatial oscillations in 𝜌(𝑥/𝜀

2
) is

higher than that of 𝑎(𝑥/𝜀
1
, 𝑡/𝜀
2

1
). Since there are two spatial

microscales represented in (1), one might expect two local
problemswith respect to one corrector each, see, for example,
[1]. However, it is shown that no corrector corresponding
to the scale emanating from 𝜌(𝑥/𝜀

2
) appears in the local

and homogenized problem and accordingly there is only one
local problem appearing in the formulated theorem. Hence,
the problem is not of a reiterated type. We prove by means
of very weak multiscale convergence [2] that the corrector
𝑢
2
associated with the gradient for the second rapid spatial

scale 𝑦
2
actually vanishes. Already, in [3, 4], it was observed

that having more than one rapid temporal scale in parabolic
problems does not generate a reiterated problem and in this
paper we can see that nor does the addition of a spatial scale if
it is contained in a coefficient that is multiplied with the time
derivative of 𝑢𝜀.

Thinking in terms of heat conduction, our result means
that the heat capacity 𝜌 may oscillate with completely differ-
ent periodic patterns without making any difference for the
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homogenized coefficient as long as the arithmetic mean over
one period is the same.

Parabolic homogenization problems for 𝜌 ≡ 1 have been
studied for different combinations of spatial and temporal
scales in several papers by means of techniques of two-scale
convergence type with approaches related to the one first
introduced in [5], see, for example, [2, 3, 6–8], and in, for
example, [9–11], techniques not of two-scale convergence
type are applied. Concerning cases where, as in (1) above, we
do not have 𝜌 ≡ 1, Nandakumaran and Rajesh [12] studied
a nonlinear parabolic problem with the same frequency of
oscillation in time and space, respectively, in the elliptic part
of the equation and an operator oscillating in space with
the same frequency appearing in the temporal differentiation
term. Recently, a number of papers have addressed various
kinds of related problems where the temporal scale is not
assumed to be identical with the spatial scale, see for example,
[13, 14]. Up to the authors’ knowledge, this is the first study of
this type of problems where the oscillations of the coefficient
of the term including the time derivative do not match the
spatial oscillations of the elliptic part.

Notation. We denote 𝑌
𝑘
= (0, 1)

𝑁 for 𝑘 = 1, . . . , 𝑛, 𝑌𝑛 =
𝑌
1
× ⋅ ⋅ ⋅ × 𝑌

𝑛
, 𝑦𝑛 = (𝑦

1
, . . . , 𝑦

𝑛
), 𝑑𝑦𝑛 = 𝑑𝑦

1
⋅ ⋅ ⋅ 𝑑𝑦
𝑛
, 𝑆
𝑗
=

𝑆 = (0, 1) for 𝑗 = 1, . . . , 𝑚, 𝑆𝑚 = 𝑆
1
× ⋅ ⋅ ⋅ × 𝑆

𝑚
, 𝑠𝑚 =

(𝑠
1
, . . . , 𝑠

𝑚
), and 𝑑𝑠𝑚 = 𝑑𝑠

1
⋅ ⋅ ⋅ 𝑑𝑠
𝑚
. Let 𝜀

𝑘
(𝜀), 𝑘 = 1, . . . , 𝑛,

and 𝜀
𝑗
(𝜀), 𝑗 = 1, . . . , 𝑚, be positive and go to zero when 𝜀

does. Furthermore, let𝐹
♯
((0, 1)

𝑀
)be the space of all functions

in 𝐹loc(R
𝑀
) that are (0, 1)𝑀-periodic repetitions of some

function in 𝐹((0, 1)𝑀).

2. Multiscale Convergence

A two-scale convergence was invented by Nguetseng [15] as a
new approach for the homogenization of problems with fast
oscillations in one scale in space. The method was further
developed by Allaire [16] and generalized to multiple scales
by Allaire and Briane [1]. To homogenize problem (1), we use
the further generalization in the definition below, adapted to
evolution settings, see, for example, [8].

Definition 1. A sequence {𝑢𝜀} in 𝐿2(Ω
𝑇
) is said to (𝑛 + 1,𝑚 +

1)-scale converge to 𝑢
0
∈ 𝐿
2
(Ω
𝑇
× 𝑌
𝑛
× 𝑆
𝑚
) if

∫
Ω𝑇

𝑢
𝜀
(𝑥, 𝑡) V(𝑥, 𝑡,

𝑥

𝜀
1

, . . . ,
𝑥

𝜀
𝑛

,
𝑡

𝜀


1

, . . . ,
𝑡

𝜀
𝑚

)𝑑𝑥𝑑𝑡

→ ∫
Ω𝑇

∫
𝑌
𝑛

∫
𝑆
𝑚

𝑢
0
(𝑥, 𝑡, 𝑦

𝑛
, 𝑠
𝑚
)

× V (𝑥, 𝑡, 𝑦𝑛, 𝑠𝑚) 𝑑𝑦𝑛𝑑𝑠𝑚𝑑𝑥 𝑑𝑡,

(2)

for any V ∈ 𝐿2(Ω
𝑇
; 𝐶
♯
(𝑌
𝑛
× 𝑆
𝑚
)). We write

𝑢
𝜀
(𝑥, 𝑡)

𝑛+1,𝑚+1

⇀ 𝑢
0
(𝑥, 𝑡, 𝑦

𝑛
, 𝑠
𝑚
) . (3)

Usually, some assumptions aremade about how the scales
are related to each other. We say that the scales in a list
{𝜀
1
, . . . , 𝜀

𝑛
} are separated if

lim
𝜀→0

𝜀
𝑘+1

𝜀
𝑘

= 0, (4)

for 𝑘 = 1, . . . , 𝑛 − 1 and that the scales are well-separated if
there exists a positive integer 𝑙 such that

lim
𝜀→0

1

𝜀
𝑘

(
𝜀
𝑘+1

𝜀
𝑘

)

𝑙

= 0, (5)

for 𝑘 = 1, . . . , 𝑛 − 1.
The concept in the following definition is used as an

assumption in the proofs of the compactness results in The-
orems 3 and 7. For a more technically formulated definition
and some examples, see [17, Section 2.4].

Definition 2. Let {𝜀
1
, . . . , 𝜀

𝑛
} and {𝜀

1
, . . . , 𝜀



𝑚
} be lists of well-

separated scales. Consider all elements from both lists. If
from possible duplicates, where by duplicates we mean scales
which tend to zero equally fast, one member of each pair
is removed and the list in order of magnitude of all the
remaining elements is well separated, the lists {𝜀

1
, . . . , 𝜀

𝑛
} and

{𝜀


1
, . . . , 𝜀



𝑚
} are said to be jointly well separated.

In the theorem below, which will be used in the homog-
enization procedure in Section 3, 𝑊1

2
(0, 𝑇;𝐻

1

0
(Ω), 𝐿

2
(Ω))

denotes all functions 𝑢 ∈ 𝐿
2
(0, 𝑇;𝐻

1

0
(Ω)) such that 𝜕

𝑡
𝑢 ∈

𝐿
2
(0, 𝑇;𝐻

−1
(Ω)), see, for example, [18, Chapter 23].

Theorem 3. Let {𝑢
𝜀
} be a bounded sequence in

𝑊
1

2
(0, 𝑇;𝐻

1

0
(Ω), 𝐿

2
(Ω)), and suppose that the lists {𝜀

1
, . . . , 𝜀

𝑛
}

and {𝜀
1
, . . . , 𝜀



𝑚
} are jointly well separated. Then there exists a

subsequence such that

𝑢
𝜀
(𝑥, 𝑡) → 𝑢 (𝑥, 𝑡) 𝑖𝑛 𝐿

2
(Ω
𝑇
) ,

𝑢
𝜀
(𝑥, 𝑡) ⇀ 𝑢 (𝑥, 𝑡) 𝑖𝑛 𝐿

2
(0, 𝑇;𝐻

1

0
(Ω)) ,

(6)

∇𝑢
𝜀
(𝑥, 𝑡)

𝑛+1,𝑚+1

⇀ ∇𝑢 (𝑥, 𝑡) +

𝑛

∑

𝑗=1

∇
𝑦𝑗
𝑢
𝑗
(𝑥, 𝑡, 𝑦

𝑗
, 𝑠
𝑚
) , (7)

where 𝑢 ∈ 𝑊
1

2
(0, 𝑇;𝐻

1

0
(Ω), 𝐿

2
(Ω)), 𝑢

1
∈ 𝐿

2
(Ω
𝑇
×

𝑆
𝑚
; 𝐻
1

♯
(𝑌
1
)/R), and 𝑢

𝑗
∈ 𝐿
2
(Ω
𝑇
× 𝑌
𝑗−1

× 𝑆
𝑚
; 𝐻
1

♯
(𝑌
𝑗
)/R) for

𝑗 = 2, . . . , 𝑛.

Proof. See [17, Theorem 2.74].

To treat evolution problems with fast time oscillations,
such as (1), we also need the concept of very weak multiscale
convergence, see, for example, [2, 5].
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Definition 4. Asequence {𝑔𝜀} in𝐿1(Ω
𝑇
) is said to (𝑛+1,𝑚+1)-

scale converge very weakly to 𝑔
0
∈ 𝐿
1
(Ω
𝑇
× 𝑌
𝑛
× 𝑆
𝑚
) if

∫
Ω𝑇

𝑔
𝜀
(𝑥, 𝑡) V(𝑥,

𝑥

𝜀
1

, . . . ,
𝑥

𝜀
𝑛−1

)

× 𝑐(𝑡,
𝑡

𝜀


1

, . . . ,
𝑡

𝜀
𝑚

)𝜑(
𝑥

𝜀
𝑛

)𝑑𝑥𝑑𝑡

→ ∫
Ω𝑇

∫
𝑌
𝑛

∫
𝑆
𝑚

𝑔
0
(𝑥, 𝑡, 𝑦

𝑛
, 𝑠
𝑚
) V (𝑥, 𝑦𝑛−1)

× 𝑐 (𝑡, 𝑠
𝑚
) 𝜑 (𝑦
𝑛
) 𝑑𝑦
𝑛
𝑑𝑠
𝑚
𝑑𝑥 𝑑𝑡,

(8)

for any V ∈ 𝐷(Ω, 𝐶∞
♯
(𝑌
𝑛−1
)), 𝑐 ∈ 𝐷(0, 𝑇; 𝐶∞

♯
(𝑆
𝑚
)), and 𝜑 ∈

𝐶
∞

♯
(𝑌
𝑛
)/R, where

∫
𝑌𝑛

𝑔
0
(𝑥, 𝑡, 𝑦

𝑛
, 𝑠
𝑚
) 𝑑𝑦
𝑛
= 0. (9)

We write

𝑔
𝜀
(𝑥, 𝑡)

𝑛+1,𝑚+1

⇀
V𝑤

𝑔
0
(𝑥, 𝑡, 𝑦

𝑛
, 𝑠
𝑚
) . (10)

Remark 5. The requirement (9) is imposed in order to
ensure the uniqueness of the limit. For details, see [17,
Proposition 2.26].

Remark 6. The convergence in Definition 1 may take place
only if {𝑢𝜀} is bounded in 𝐿2(Ω

𝑇
) and hence also is a weakly

convergent in 𝐿2(Ω
𝑇
), at least up to suitable subsequences.

For veryweakmultiscale convergence, this is not so.Themain
intention with the concept is to study sequences of the type
{𝑢
𝜀
/𝜀
𝑛
}, which are in general not bounded in 𝐿2(Ω

𝑇
). This

requires a more restrictive class of test functions.

The theorem below is a key result for the homogenization
procedure in Section 3.

Theorem 7. Let {𝑢
𝜀
} be a bounded sequence in

𝑊
1

2
(0, 𝑇;𝐻

1

0
(Ω), 𝐿

2
(Ω)), and assume that the lists {𝜀

1
, . . . , 𝜀

𝑛
}

and {𝜀
1
, . . . , 𝜀



𝑚
} are jointly well separated. Then there exists a

subsequence such that

𝑢
𝜀
(𝑥, 𝑡)

𝜀
𝑛

𝑛+1,𝑚+1

⇀
vw

u
𝑛
(𝑥, 𝑡, 𝑦

𝑛
, 𝑠
𝑚
) , (11)

where, for 𝑛 = 1, 𝑢
1
∈ 𝐿
2
(Ω
𝑇
× 𝑆
𝑚
; 𝐻
1

♯
(𝑌
1
)/R) and, for 𝑛 =

2, 3, . . ., 𝑢
𝑛
∈ 𝐿
2
(Ω
𝑇
× 𝑌
𝑛−1

× 𝑆
𝑚
; 𝐻
1

♯
(𝑌
𝑛
)/R) are the same as

those in Theorem 3.

Proof. See [17, Theorem 2.54].

Remark 8. For a sequence of solutions {𝑢𝜀} to (1), we may
replace the requirement that {𝜕

𝑡
𝑢
𝜀
} should be bounded in

𝐿
2
(0, 𝑇;𝐻

−1
(Ω)) by the assumption that {𝑢𝜀} is bounded

in 𝐿
∞
(Ω
𝑇
) and still obtain (6), see [12, Lemmas 3.3 and

(4.1)] and thereby also (7) and (11). The only difference is
that 𝑢 will belong to 𝐿2(0, 𝑇;𝐻1

0
(Ω)) instead of the space

𝑊
1

2
(0, 𝑇;𝐻

1

0
(Ω), 𝐿

2
(Ω)). See also [13].

3. Homogenization

Let us now investigate the heat conduction problem

𝜌(
𝑥

𝜀
2

) 𝜕
𝑡
𝑢
𝜀
(𝑥, 𝑡) − ∇ ⋅ (𝑎(

𝑥

𝜀
1

,
𝑡

𝜀
2

1

)∇𝑢
𝜀
(𝑥, 𝑡))

= 𝑓 (𝑥, 𝑡) in Ω
𝑇
,

𝑢
𝜀
(𝑥, 𝑡) = 0 on 𝜕Ω × (0, 𝑇) ,

𝑢
𝜀
(𝑥, 0) = 𝑢

0
(𝑥) in Ω,

(12)

which takes into consideration heat capacity oscillations. We
assume that 𝜌 ∈ 𝐶∞

♯
(𝑌
2
), is positive, 𝑓 ∈ 𝐿2(Ω

𝑇
), 𝑢0 ∈ 𝐿2(Ω),

and

𝑎 (𝑦
1
, 𝑠) 𝜉 ⋅ 𝜉 ≥ 𝛼

𝜉


2 (13)

for some 𝛼 > 0, all (𝑦
1
, 𝑠) ∈ R𝑁+1, and all 𝜉 ∈ R𝑁, where

𝑎 ∈ 𝐶
♯
(𝑌
1
×𝑆)
𝑁×𝑁. Moreover, we assume that {𝑢𝜀} is bounded

in 𝐿
∞
(Ω
𝑇
), see Remark 8, and that the lists {𝜀

1
, 𝜀
2
} and

{𝜀
2

1
} are jointly well separated. Note that this separatedness

assumption implies, for example, that 𝜀
2
tends to zero faster

than 𝜀
1
, which means that we have a mismatch between the

spatial scales in (12).
We give a homogenization result for this problem in the

theorembelow. In the proof, it is shown that the local problem
associated with the slower spatial microscale is enough to
characterize the homogenized problem; that is, the fastest
spatial scale does not give rise to any corrector involved in
the homogenization. We also prove that the second corrector
𝑢
2
actually vanishes.

Theorem 9. Let {𝑢𝜀} be a sequence of solutions to (12). Then

𝑢
𝜀
(𝑥, 𝑡) ⇀ 𝑢 (𝑥, 𝑡) 𝑖𝑛 𝐿

2
(0, 𝑇;𝐻

1

0
(Ω)) , (14)

∇𝑢
𝜀
(𝑥, 𝑡)

3,2

⇀∇𝑢 (𝑥, 𝑡) + ∇𝑦1
𝑢
1
(𝑥, 𝑡, 𝑦

1
, 𝑠)

+ ∇
𝑦2
𝑢
2
(𝑥, 𝑡, 𝑦

2
, 𝑠) ,

(15)

where 𝑢 is the unique solution to

(∫
𝑌2

𝜌 (𝑦
2
) 𝑑𝑦
2
) 𝜕
𝑡
𝑢 (𝑥, 𝑡) − ∇ ⋅ (𝑏∇𝑢 (𝑥, 𝑡))

= 𝑓 (𝑥, 𝑡) 𝑖𝑛 Ω
𝑇
,

𝑢 (𝑥, 𝑡) = 0 𝑜𝑛 𝜕Ω × (0, 𝑇) ,

𝑢 (𝑥, 0) = 𝑢
0
(𝑥) 𝑖𝑛 Ω,

(16)

with

𝑏∇𝑢 (𝑥, 𝑡)

= ∫
𝑆

∫
𝑌1

𝑎 (𝑦
1
, 𝑠) (∇𝑢 (𝑥, 𝑡) + ∇

𝑦1
𝑢
1
(𝑥, 𝑡, 𝑦

1
, 𝑠)) 𝑑𝑦

1
𝑑𝑠.

(17)
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Here, 𝑢
1
∈ 𝐿
2
(Ω
𝑇
× 𝑆;𝐻

1

♯
(𝑌
1
)/R) uniquely solves

(∫
𝑌2

𝜌 (𝑦
2
) 𝑑𝑦
2
) 𝜕
𝑠
𝑢
1
(𝑥, 𝑡, 𝑦

1
, 𝑠)

− ∇
𝑦1
⋅ (𝑎 (𝑦

1
, 𝑠) (∇𝑢 (𝑥, 𝑡) + ∇

𝑦1
𝑢
1
(𝑥, 𝑡, 𝑦

1
, 𝑠))) = 0.

(18)

Furthermore, the corrector 𝑢
2
vanishes.

Remark 10. After a separation of variables, we can write the
local problem as

(∫
𝑌2

𝜌 (𝑦
2
) 𝑑𝑦
2
) 𝜕
𝑠
𝑧
𝑘
(𝑦
1
, 𝑠)

−

𝑁

∑

𝑖,𝑗=1

𝜕
𝑦𝑖
(𝑎
𝑖𝑗
(𝑦
1
, 𝑠) (𝛿

𝑗𝑘
+ 𝜕
𝑦𝑗
𝑧
𝑘
(𝑦
1
, 𝑠))) = 0

(19)

and the homogenized coefficient as

𝑏
𝑖𝑘
= ∫
𝑆

∫
𝑌1

𝑁

∑

𝑗=1

(𝑎
𝑖𝑗
(𝑦
1
, 𝑠) (𝛿

𝑗𝑘
+ 𝜕
𝑦𝑗
𝑧
𝑘
(𝑦
1
, 𝑠))) 𝑑𝑦

1
𝑑𝑠,

(20)

where 𝑘 = 1, . . . , 𝑁 and

𝑢
1
(𝑥, 𝑡, 𝑦

1
, 𝑠) =

𝑁

∑

𝑘=1

𝜕
𝑥𝑘
𝑢 (𝑥, 𝑡) ⋅ 𝑧𝑘 (𝑦1, 𝑠) . (21)

Remark 11. Periodic homogenization problems of, for exam-
ple, elliptic or parabolic type may be seen as special cases of
the more general concepts of 𝐺-convergence, which gives a
characterization of the limit problem but no suggestion of
how to compute the homogenized matrix. Essential features
of 𝐺-convergence for parabolic problems are that boundary
conditions, and initial conditions are preserved in the limit.
𝐺-convergence for linear parabolic problems were studied
already in [19] by Spagnolo and extended to the monotone
case by Svanstedt in [20]. A treatment of this problem in
a quite general setting is found in the recent work [21] by
Paronetto.

Proof of Theorem 9. Following the procedure in Section 23.9
in [18], we obtain that {𝑢𝜀} is bounded in 𝐿2(0, 𝑇;𝐻1

0
(Ω)), see

also [22]. Hence, (14) holds up to a subsequence. We proceed
by studying the weak form of (12); that is,

∫
Ω𝑇

−𝜌(
𝑥

𝜀
2

)𝑢
𝜀
(𝑥, 𝑡) V (𝑥) 𝜕𝑡𝑐 (𝑡)

+ 𝑎(
𝑥

𝜀
1

,
𝑡

𝜀
2

1

)∇𝑢
𝜀
(𝑥, 𝑡) ∇V (𝑥) 𝑐 (𝑡) 𝑑𝑥 𝑑𝑡

= ∫
Ω𝑇

𝑓 (𝑥, 𝑡) V (𝑥) 𝑐 (𝑡) 𝑑𝑥 𝑑𝑡,

(22)

for all V ∈ 𝐻
1

0
(Ω) and 𝑐 ∈ 𝐷(0, 𝑇). We pass to the limit

by applying (6), taking into consideration Remark 8, and (7)
with 𝑛 = 1 and𝑚 = 1 and arrive at the homogenized problem

∫
Ω𝑇

∫
𝑆

∫
𝑌1

−(∫
𝑌2

𝜌 (𝑦
2
) 𝑑𝑦
2
)𝑢 (𝑥, 𝑡) V (𝑥) 𝜕𝑡𝑐 (𝑡)

+ 𝑎 (𝑦
1
, 𝑠) (∇𝑢 (𝑥, 𝑡) + ∇

𝑦1
𝑢
1
(𝑥, 𝑡, 𝑦

1
, 𝑠))

× ∇V (𝑥) 𝑐 (𝑡) 𝑑𝑦
1
𝑑𝑠 𝑑𝑥 𝑑𝑡

= ∫
Ω𝑇

𝑓 (𝑥, 𝑡) V (𝑥) 𝑐 (𝑡) 𝑑𝑥 𝑑𝑡.

(23)

To find the local problem associated with 𝑢
1
, let us again

consider (22) in which we choose

V (𝑥) = 𝜀
1
V
1
(𝑥) V
2
(
𝑥

𝜀
1

) ; V
1
∈ 𝐷 (Ω) , V

2
∈

𝐶
∞

♯
(𝑌
1
)

R
,

(24)

𝑐 (𝑡) = 𝑐
1
(𝑡) 𝑐
2
(
𝑡

𝜀
2

1

) ; 𝑐
1
∈ 𝐷 (0, 𝑇) ; 𝑐

2
∈ 𝐶
∞

♯
(𝑆) ; (25)

that is, we study

∫
Ω𝑇

−𝜌(
𝑥

𝜀
2

)𝑢
𝜀
(𝑥, 𝑡) V1 (𝑥) V2 (

𝑥

𝜀
1

)

× (𝜀
1
𝜕
𝑡
𝑐
1
(𝑡) 𝑐
2
(
𝑡

𝜀
2

1

) + 𝜀
−1

1
𝑐
1
(𝑡) 𝜕
𝑠
𝑐
2
(
𝑡

𝜀
2

1

))

+ 𝑎(
𝑥

𝜀
1

,
𝑡

𝜀
2

1

)∇𝑢
𝜀
(𝑥, 𝑡)

⋅ (𝜀
1
∇V
1
(𝑥) V
2
(
𝑥

𝜀
1

) + V
1
(𝑥) ∇
𝑦1
V
2
(
𝑥

𝜀
1

))

× 𝑐
1 (𝑡) 𝑐2 (

𝑡

𝜀
2

1

)𝑑𝑥𝑑𝑡

= ∫
Ω𝑇

𝑓 (𝑥, 𝑡) 𝜀
1
V
1
(𝑥) V
2
(
𝑥

𝜀
1

) 𝑐
1
(𝑡) 𝑐
2
(
𝑡

𝜀
2

1

)𝑑𝑥𝑑𝑡.

(26)

We first investigate the second term of the part of the
expression containing time derivatives. We have

∫
Ω𝑇

−𝜌(
𝑥

𝜀
2

)𝑢
𝜀
(𝑥, 𝑡) V

1
(𝑥) V
2

× (
𝑥

𝜀
1

) 𝜀
−1

1
𝑐
1
(𝑡) 𝜕
𝑠
𝑐
2
(
𝑡

𝜀
2

1

)𝑑𝑥𝑑𝑡
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= ∫
Ω𝑇

−𝜀
−1

1
𝑢
𝜀
(𝑥, 𝑡) V

1
(𝑥) V
2

× (
𝑥

𝜀
1

)(𝜌(
𝑥

𝜀
2

) − ∫
𝑌2

𝜌 (𝑦
2
) 𝑑𝑦
2
)

× 𝑐
1
(𝑡) 𝜕
𝑠
𝑐
2
(
𝑡

𝜀
2

1

)𝑑𝑥𝑑𝑡

+ ∫
Ω𝑇

−𝜀
−1

1
𝑢
𝜀
(𝑥, 𝑡) V1 (𝑥) V2 (

𝑥

𝜀
1

)

× (∫
𝑌2

𝜌 (𝑦
2
) 𝑑𝑦
2
) 𝑐
1
(𝑡) 𝜕
𝑠
𝑐
2
(
𝑡

𝜀
2

1

)𝑑𝑥𝑑𝑡

→ ∫
Ω𝑇

∫
𝑆

∫
𝑌1

−(∫
𝑌2

𝜌 (𝑦
2
) 𝑑𝑦
2
)𝑢
1
(𝑥, 𝑡, 𝑦

1
, 𝑠)

× V
1
(𝑥) V
2
(𝑦
1
) 𝑐
1
(𝑡)

× 𝜕
𝑠
𝑐
2 (𝑠) 𝑑𝑦1𝑑𝑠 𝑑𝑥 𝑑𝑡,

(27)

where we have applied (11) with 𝑛 = 2 and 𝑚 = 1 and with
𝑛 = 1 and𝑚 = 1, respectively, in the last step. The passage to
the limit in the remaining part of (26) is a simple application
of (7) with 𝑛 = 1 and 𝑚 = 1. This provides us with the weak
form,

∫
Ω𝑇

∫
𝑆

∫
𝑌1

−(∫
𝑌2

𝜌 (𝑦
2
) 𝑑𝑦
2
)𝑢
1
(𝑥, 𝑡, 𝑦

1
, 𝑠)

× V
1
(𝑥) V
2
(𝑦
1
) 𝑐
1
(𝑡) 𝜕
𝑠
𝑐
2
(𝑠)

+ 𝑎 (𝑦
1
, 𝑠) (∇𝑢 (𝑥, 𝑡) + ∇

𝑦1
𝑢
1
(𝑥, 𝑡, 𝑦

1
, 𝑠))

⋅ V
1
(𝑥) ∇
𝑦1
V
2
(𝑦
1
) 𝑐
1
(𝑡) 𝑐
2
(𝑠) 𝑑𝑦

1
𝑑𝑠 𝑑𝑥 𝑑𝑡 = 0,

(28)

of the local problem (18). This means that 𝑢
1
, and thus also

𝑢, is uniquely determined and hence the entire sequence {𝑢𝜀}
converges and not just the extracted subsequence.

This far, we have only used test functions oscillatingwith a
period 𝜀

1
, and hence we have not given the coefficient 𝜌(𝑥/𝜀

2
)

a fair chance to produce a second corrector 𝑢
2
. In order to

do so, we use a slightly different set of test functions in (22).
Again, we let 𝑐 be as in (25), whereas V is chosen according to

V (𝑥) = 𝜀
2
V
1
(𝑥) V
2
(
𝑥

𝜀
1

) Ṽ(
𝑥

𝜀
2

) ;

V
1
∈ 𝐷 (Ω) , V

2
∈ 𝐶
∞

♯
(𝑌
1
) ,

(29)

where

Ṽ (𝑦
2
) = V
3
(𝑦
2
) −

𝐾

𝜌 (𝑦
2
)
; V
3
∈ 𝐶
∞

♯
(𝑌
2
) , (30)

with

𝐾 = ∫
𝑌2

𝜌 (𝑦
2
) V
3
(𝑦
2
) 𝑑𝑦
2
. (31)

Note that

∫
𝑌2

𝜌 (𝑦
2
) Ṽ (𝑦
2
) 𝑑𝑦
2
= 0, (32)

which means that 𝜌Ṽ ∈ 𝐶∞
♯
(𝑌
2
)/R. We get

∫
Ω𝑇

−𝜌(
𝑥

𝜀
2

)𝑢
𝜀
(𝑥, 𝑡) V1 (𝑥) V2 (

𝑥

𝜀
) Ṽ(

𝑥

𝜀
2

)

× (𝜀
2
𝜕
𝑡
𝑐
1
(𝑡) 𝑐
2
(
𝑡

𝜀
2

1

) +
𝜀
2

𝜀
2

1

𝑐
1
(𝑡) 𝜕
𝑠
𝑐
2
(
𝑡

𝜀
2

1

))

+ 𝑎(
𝑥

𝜀
1

,
𝑡

𝜀
2

1

)∇𝑢
𝜀
(𝑥, 𝑡)

⋅ (𝜀
2
∇V
1
(𝑥) V
2
(
𝑥

𝜀
1

) Ṽ(
𝑥

𝜀
2

)

+
𝜀
2

𝜀
1

V
1
(𝑥) ∇
𝑦1
V
2
(
𝑥

𝜀
1

) Ṽ(
𝑥

𝜀
2

)

+ V
1
(𝑥) V
2
(
𝑥

𝜀
1

)∇
𝑦2
Ṽ(

𝑥

𝜀
2

))

× 𝑐
1 (𝑡) 𝑐2 (

𝑡

𝜀
2

1

)𝑑𝑥𝑑𝑡

= ∫
Ω𝑇

𝑓 (𝑥, 𝑡) 𝜀2V1 (𝑥) V2 (
𝑥

𝜀
1

)

× Ṽ(
𝑥

𝜀
2

) 𝑐
1
(𝑡) 𝑐
2
(
𝑡

𝜀
2

1

)𝑑𝑥𝑑𝑡,

(33)

and applying (11) with 𝑛 = 2 and 𝑚 = 1 together with (15),
that is, (7) with 𝑛 = 2 and𝑚 = 1, we achieve

∫
Ω𝑇

∫
𝑆

∫
𝑌
2

𝑎 (𝑦
1
, 𝑠)

× (∇𝑢 (𝑥, 𝑡) + ∇
𝑦1
𝑢
1
(𝑥, 𝑡, 𝑦

1
, 𝑠) + ∇

𝑦2
𝑢
2
(𝑥, 𝑡, 𝑦

2
, 𝑠))

⋅ V
1
(𝑥) V
2
(𝑦
1
) ∇
𝑦2
Ṽ (𝑦
2
) 𝑐
1
(𝑡) 𝑐
2
(𝑠) 𝑑𝑦

2
𝑑𝑠 𝑑𝑥 𝑑𝑡=0.

(34)

Noting that 𝑎,𝑢, and𝑢
1
are all independent of𝑦

2
, (34) reduces

to

∫
Ω𝑇

∫
𝑆

∫
𝑌
2

𝑎 (𝑦
1
, 𝑠) ∇
𝑦2
𝑢
2
(𝑥, 𝑡, 𝑦

2
, 𝑠)

⋅ V
1
(𝑥) V
2
(𝑦
1
) ∇
𝑦2
Ṽ (𝑦
2
) 𝑐
1
(𝑡) 𝑐
2
(𝑠) 𝑑𝑦

2
𝑑𝑠 𝑑𝑥 𝑑𝑡 = 0.

(35)

Recalling (30), we have

∫
Ω𝑇

∫
𝑆

∫
𝑌
2

𝑎 (𝑦
1
, 𝑠) ∇
𝑦2
𝑢
2
(𝑥, 𝑡, 𝑦

2
, 𝑠)

⋅ V
1
(𝑥) V
2
(𝑦
1
) ∇
𝑦2
(V
3
(𝑦
2
) −

𝐾

𝜌 (𝑦
2
)
)

× 𝑐
1
(𝑡) 𝑐
2
(𝑠) 𝑑𝑦

2
𝑑𝑠 𝑑𝑥 𝑑𝑡 = 0,

(36)
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which after rearranging can be written as

∫
Ω𝑇

∫
𝑆

∫
𝑌
2

𝑎 (𝑦
1
, 𝑠) ∇
𝑦2
𝑢
2
(𝑥, 𝑡, 𝑦

2
, 𝑠)

⋅ V
1 (𝑥) V2 (𝑦1) ∇𝑦2V3 (𝑦2) 𝑐1 (𝑡) 𝑐2 (𝑠) 𝑑𝑦

2
𝑑𝑠 𝑑𝑥 𝑑𝑡

= 𝐾∫
Ω𝑇

∫
𝑆

∫
𝑌1

(∫
𝑌2

𝑎 (𝑦
1
, 𝑠) ∇
𝑦2
𝑢
2
(𝑥, 𝑡, 𝑦

2
, 𝑠)

⋅∇
𝑦2
(

1

𝜌 (𝑦
2
)
) 𝑑𝑦
2
)

× V
1 (𝑥) V2 (𝑦1) 𝑐1 (𝑡) 𝑐2 (𝑠) 𝑑𝑦1𝑑𝑠 𝑑𝑥 𝑑𝑡.

(37)

If we replace Ṽ with 1/𝜌 in (33), let 𝜀 → 0, and use (6) and
(7) with 𝑛 = 2 and𝑚 = 1, we find that

∫
Ω𝑇

∫
𝑆

∫
𝑌
2

𝑎 (𝑦
1
, 𝑠) ∇
𝑦2
𝑢
2
(𝑥, 𝑡, 𝑦

2
, 𝑠)

⋅ V
1
(𝑥) V
2
(𝑦
1
) ∇
𝑦2
(

1

𝜌 (𝑦
2
)
) 𝑐
1
(𝑡)

× 𝑐
2 (𝑠) 𝑑𝑦

2
𝑑𝑠 𝑑𝑥 𝑑𝑡 = 0.

(38)

This means that the right-hand side in (37) is zero. Applying
several times the variational lemma on the remaining part,
we obtain

∫
𝑌2

𝑎 (𝑦
1
, 𝑠) ∇
𝑦2
𝑢
2
(𝑥, 𝑡, 𝑦

2
, 𝑠) ⋅ ∇

𝑦2
V
3
(𝑦
2
) 𝑑𝑦
2
= 0, (39)

and hence the corrector 𝑢
2
is zero.

Remark 12. That 𝑢
2
vanishes means that 𝑢𝜀/𝜀

2
tends to zero

in the sense of very weak (3, 2)-scale convergence. However,
there might still be oscillations originating from the oscilla-
tions of 𝜌(𝑥/𝜀

2
) that have an impact on 𝑢𝜀. The possibility is

that their amplitude is so small that the magnification by 1/𝜀
2

is not enough for the oscillations to be recognized in the limit.
In this sense, the concept of veryweakmultiscale convergence
gives us a more precise idea of what a corrector equals zero
means.
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We deal with a constrained quasivariational inequality under a general form. We study existence of solutions in two situations
depending on whether the set of constraints is bounded or possibly unbounded.

1. Introduction and Statement of Main Results

Let𝑋 be a real reflexive and separable Banach space assumed
to be compactly embedded in a Banach space 𝑌. We denote
by𝑋

∗ the dual space of𝑋, by𝑌
∗ the dual space of𝑌, by ⟨⋅, ⋅⟩

𝑋

the duality brackets between 𝑋
∗ and 𝑋, by ⟨⋅, ⋅⟩

𝑌
the duality

brackets between 𝑌
∗ and 𝑌, by ‖ ⋅ ‖

𝑋
the norm of 𝑋, and by

‖ ⋅ ‖
𝑌
the norm of 𝑌. Given a function 𝜓 : 𝑋 → R ∪ {+∞},

we denote by 𝐷(𝜓) := {𝑥 ∈ 𝑋 : 𝜓(𝑥) < +∞} the effective
domain of 𝜓.

In this paper we deal with the following problem

Find 𝑢 ∈ 𝐾 such that (𝑢, 𝑢) ∈ 𝐷 (Φ) ,

⟨𝐴𝑢, V − 𝑢⟩𝑋 + Φ (𝑢, V) − Φ (𝑢, 𝑢) + 𝐽
0
(𝑢; V − 𝑢)

≥ ⟨𝑓, V − 𝑢⟩
𝑋
, ∀V ∈ 𝐾.

(1)

We describe the data entering problem (1):

(i) 𝐾 ⊂ 𝑋 is a nonempty, convex, closed subset;
(ii) 𝐴 : 𝑋 → 𝑋

∗ is a (possibly nonlinear) operator;
(iii) Φ : 𝑋 × 𝑋 → R ∪ {+∞} is such that, for all 𝜂 ∈

𝐾, the function Φ(𝜂, ⋅) : 𝑋 → R ∪ {+∞} is convex
with 𝐾 ∩ 𝐷(Φ(𝜂, ⋅)) ̸= 0; moreover, we will denote by
𝜕Φ(𝜂, ⋅) the convex subdifferential of Φ(𝜂, ⋅); that is,

𝜕Φ (𝜂, 𝑢) = {𝑤 ∈ 𝑋
∗
: Φ (𝜂, V) − Φ (𝜂, 𝑢)

≥ ⟨𝑤, V − 𝑢⟩𝑋, ∀V ∈ 𝑋} ;

(2)

(iv) 𝐽 : 𝑌 → R is a locally Lipschitz function, and
the notation 𝐽

0 stands for its generalized directional
derivative in the sense of Clarke [1]; that is,

𝐽
0
(𝑢; V)

= lim sup
𝑤→𝑢

𝜆→0
+

𝐽 (𝑤 + 𝜆V) − 𝐽 (𝑤)

𝜆
, ∀𝑢, V ∈ 𝑌.

(3)

In addition, we will denote by 𝜕𝐽 the generalized
gradient of 𝐽; that is,

𝜕𝐽 (𝑢)

= {𝑤 ∈ 𝑌
∗
: 𝐽

0
(𝑢; V) ≥ ⟨𝑤, V⟩𝑌, ∀V ∈ 𝑌} , ∀𝑢 ∈ 𝑌;

(4)

(v) 𝑓 ∈ 𝑋
∗.

Problem (1) is called a constrained quasivariational prob-
lem. Typically, we can choose 𝑋 to be the Sobolev space
(𝐻

1

0
(Ω), ‖∇ ⋅ ‖

𝐿
2
(Ω)

) defined as the closure of𝐶∞

𝑐
(Ω) in𝐻

1
(Ω)

for a bounded domain Ω ⊂ R𝑁 (𝑁 ≥ 1), 𝑌 to be the
Lebesgue space 𝐿

𝑝
(Ω) for 1 ≤ 𝑝 < 2

∗ (where 2
∗

=

+∞ if 𝑁 ∈ {1, 2} and 2
∗

= 2𝑁/(𝑁 − 2) if 𝑁 ≥ 3),
𝐾 = {𝑢 ∈ 𝐻

1

0
(Ω) : 𝑢 ≥ 0 a.e. in Ω }, 𝐴 = −Δ (the

negative Laplacian operator), Φ(𝑢, V) = ∫
Ω
𝑔(𝑢, V)𝑑𝑥 where

𝑔 : R2
→ R

+
is convex in the second variable (then

𝐷(Φ) = {(𝑢, V) ∈ 𝐻
1

0
(Ω) × 𝐻

1

0
(Ω) : 𝑔(𝑢, V) ∈ 𝐿

1
(Ω)}), and
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𝐽(𝑢) = ∫
Ω
𝑗(𝑥, 𝑢(𝑥))𝑑𝑥 where 𝑗 : Ω × R → R is locally

Lipschitz in the second variable. Constrained quasivaria-
tional problems were extensively studied; we refer, for exam-
ple, to [2–5] and to the references therein. We point out
three aspects which make our approach natural and general.
First, we deal with the general setting of a pair of Banach
spaces (𝑋, 𝑌) instead of focusing on spaces of functions;
in particular, our results can be applied to problems with
different boundary conditions. Second, the set of constraints
𝐾may be unbounded.Third, the form of the studied problem
allows both variational and hemivariational constraints as it
involves both a convex term Φ(𝑢, ⋅) and a generalized direc-
tional derivative 𝐽

0; this type of problems models important
processes in mechanics and engineering (see [6, 7]).

In this paper, we consider the following hypotheses on the
data described above:

(𝐻
1
) for every sequence {𝑢

𝑛
}
𝑛≥1

⊂ 𝐾 with 𝑢
𝑛
⇀ 𝑢 in𝑋, for

some 𝑢 ∈ 𝐾, one has

⟨𝐴𝑢, 𝑢 − V⟩𝑋

≤ lim sup
𝑛→∞

⟨𝐴𝑢
𝑛
, 𝑢

𝑛
− V⟩

𝑋
, ∀V ∈ 𝐾;

(5)

(𝐻
2
) whenever {(𝜂

𝑛
, 𝑢

𝑛
)}

𝑛≥1
⊂ (𝐾 × 𝐾) ∩ 𝐷(Φ), 𝜂

𝑛
⇀ 𝜂 in

𝑋, 𝑢
𝑛
⇀ 𝑢 in𝑋, one has (𝜂, 𝑢) ∈ (𝐾 ×𝐾) ∩𝐷(Φ) and

lim sup
𝑛→∞

(Φ (𝜂
𝑛
, V) − Φ (𝜂

𝑛
, 𝑢

𝑛
))

≤ Φ (𝜂, V) − Φ (𝜂, 𝑢) , ∀V ∈ 𝐾;

(6)

(𝐻
3
) given 𝜂 ∈ 𝐾, if 𝑢

1
, 𝑢

2
∈ 𝐾 satisfy (𝜂, 𝑢

1
) ∈ 𝐷(Φ),

(𝜂, 𝑢
2
) ∈ 𝐷(Φ) and

𝐽
0
(𝜂; 𝑢

2
− 𝑢

1
) + 𝐽

0
(𝜂; 𝑢

1
− 𝑢

2
)

≥ ⟨𝐴𝑢
2
− 𝐴𝑢

1
, 𝑢

2
− 𝑢

1
⟩
𝑋
,

(7)

then 𝑢
1
= 𝑢

2
.

Remark 1. We emphasize certain situations when hypotheses
(𝐻

1
)–(𝐻

3
) are satisfied.

(a) Hypothesis (𝐻
1
) is satisfied, for instance, if 𝐴 is

weakly strongly continuous, that is, 𝐴 is continuous from 𝑋

endowed with the weak topology to 𝑋
∗ endowed with the

norm topology.
(b) Note that (𝐻

1
) is satisfied, for instance, for 𝑋 =

𝐻
1

0
(Ω), any closed, convex subset 𝐾 ⊂ 𝑋, and 𝐴 : 𝐻

1

0
(Ω) →

𝐻
1

0
(Ω)

∗ defined by 𝐴 = −Δ, where Δ : 𝐻
1

0
(Ω) → 𝐻

1

0
(Ω)

∗

is the Laplacian operator, with Ω ⊂ R𝑁 (𝑁 ≥ 1) a bounded
domain. Indeed, let a sequence {𝑢

𝑛
}
𝑛≥1

⊂ 𝐾 with 𝑢
𝑛
⇀ 𝑢 in

𝐻
1

0
(Ω), for some 𝑢 ∈ 𝐾. Using the weak lower semicontinuity

of the norm, we can write

lim sup
𝑛→∞

⟨−Δ𝑢
𝑛
, 𝑢

𝑛
− V⟩= lim sup

𝑛→∞

(
𝑢𝑛



2

𝐻
1

0
(Ω)

− (𝑢
𝑛
, V)

𝐻
1

0
(Ω)

)

≥ lim inf
𝑛→∞

𝑢𝑛



2

𝐻
1

0
(Ω)

− (𝑢, V)
𝐻
1

0
(Ω)

≥ ‖𝑢‖
2

𝐻
1

0
(Ω)

− (𝑢, V)𝐻1
0
(Ω)

= ⟨−Δ𝑢, 𝑢 − V⟩
(8)

for all V ∈ 𝐻
1

0
(Ω). Here, ⟨⋅, ⋅⟩ are the duality brackets for the

pair (𝐻1

0
(Ω)

∗
, 𝐻

1

0
(Ω)) and (𝑢, V)

𝐻
1

0
(Ω)

= ∫
Ω
∇𝑢⋅∇V𝑑𝑥 denotes

the scalar product on𝐻
1

0
(Ω). Whence (𝐻

1
) holds in this case.

(c) Hypothesis (𝐻
2
) is fulfilled in the case where Φ is

sequentially weakly lower semicontinuous, 𝐷(Φ) is weakly
closed, and Φ(⋅, 𝑢) is weakly strongly continuous on its
effective domain for all 𝑢 ∈ 𝑋.

(d) If 𝐴 is strongly monotone, that is, there exists a
constant 𝑚 > 0 such that

⟨𝐴𝑢
2
− 𝐴𝑢

1
, 𝑢

2
− 𝑢

1
⟩
𝑋

≥ 𝑚
𝑢1

− 𝑢
2



2

𝑋
, ∀𝑢

1
, 𝑢

2
∈ 𝐾, (9)

and 𝜕𝐽 is bounded on 𝐾 in the sense that
𝜁

𝑌∗
≤ 𝑐‖𝑢‖𝑌, ∀𝜁 ∈ 𝜕𝐽 (𝑢) , ∀𝑢 ∈ 𝐾, (10)

with a positive constant 𝑐 < 𝑚/(2𝑐), where 𝑐 > 0 is the best
constant satisfying ‖𝑢‖

𝑌
≤ 𝑐‖𝑢‖

𝑋
, for all 𝑢 ∈ 𝑋 (which exists

by the continuity of the embedding of𝑋 in𝑌), then condition
(𝐻

3
) is satisfied.
(e) If 𝐴 is strictly monotone and 𝐽 is Gâteaux differen-

tiable and regular (see [1, Definition 2.3.4]), then condition
(𝐻

3
) is satisfied. In particular, if 𝐴 is strictly monotone and 𝐽

is continuously differentiable, then (𝐻
3
) is satisfied.

In this paper, we distinguish two cases depending on
whether the set𝐾 is bounded or not necessarily bounded.The
following result concerns the former situation.

Theorem 2. Assume that conditions (𝐻
1
) – (𝐻

3
) are satisfied

and that the closed, convex set𝐾 is bounded in𝑋.Then problem
(1) has at least one solution.

Remark 3. Note that the existence of a solution of problem (1),
which is the conclusion ofTheorem 2, forces the intersection
diag(𝐾) ∩ 𝐷(Φ) to be nonempty, where the notation diag(𝐾)

stands for the diagonal of the set 𝐾; that is, diag(𝐾) =

{(V, V) : V ∈ 𝐾}. The nonemptiness of this intersection is
not directly implied by the hypotheses (H

1
)–(H

3
), nor by

the assumption made that 𝐾 ∩ 𝐷(Φ(𝜂, ⋅)) ̸= 0 for all 𝜂 ∈

𝐾. However, Theorem 4 below incorporates hypothesis (𝐻
4
)

which assumes in particular that diag(𝐾) ∩ 𝐷(Φ) ̸= 0.
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Now, we deal with the case where 𝐾 is not assumed to be
bounded. In this case, we additionally suppose the following:

(𝐻
4
) there exist an element V

0
∈ 𝐾 with (𝜂, V

0
) ∈ 𝐷(Φ) for

all 𝜂 ∈ 𝐾 and a real 𝑝 ≥ 1 such that

lim sup
‖𝑤‖𝑋→∞

⟨𝐴𝑤,𝑤 − V
0
⟩
𝑋

‖𝑤‖
𝑝

𝑋

= +∞; (11)

(𝐻
5
) there exists a constant 𝑐

0
> 0 such that we have

⟨𝑧, V
0
− 𝑢⟩

𝑋

≤ 𝑐
0
(1 + ‖𝑢‖

𝑝

𝑋
) , ∀𝑧 ∈ 𝜕Φ (𝑢, ⋅) (V

0
) ,

‖𝑧‖𝑌∗ ≤ 𝑐
0
(1 + ‖𝑢‖

𝑝−1

𝑌
) , ∀𝑧 ∈ 𝜕𝐽 (𝑢) ,

(12)

for all 𝑢 ∈ 𝐾 with (𝑢, 𝑢) ∈ 𝐷(Φ), where V
0
and 𝑝 ≥ 1

are as in (𝐻
4
) .

We state now ourmain result for problem (1) dealing with
the case where the set 𝐾 is possibly unbounded.

Theorem 4. Assume that conditions (𝐻
1
)–(𝐻

5
) are satisfied.

Then problem (1) has at least a solution.

The rest of the paper is organized as follows. In Section 2,
we present the proof of Theorem 2, where we apply a version
of the Schauder fixed point theorem. In Section 3, we give the
proof of Theorem 4, which is actually based onTheorem 2.

2. Proof of Theorem 2

For each 𝜂 ∈ 𝐾, we consider the auxiliary problem

Find 𝑢 ∈ 𝐾 such that (𝜂, 𝑢) ∈ 𝐷 (Φ) ,

⟨𝐴𝑢, V − 𝑢⟩𝑋 + Φ (𝜂, V) − Φ (𝜂, 𝑢) + 𝐽
0
(𝜂; V − 𝑢)

≥ ⟨𝑓, V − 𝑢⟩
𝑋
, ∀V ∈ 𝐾.

(13)

Our first purpose, accomplished in Lemma 6 below, is to
show that problem (13) has a unique solution. To do this, we
need Fan’s lemma (see [8, page 208]) which we recall in the
following statement.

Theorem 5. Let𝑊 be a Hausdorff topological vector space, let
𝑍 be a nonempty subset of 𝑊, and let 𝐹 : 𝑍 → 2

𝑊 be such
that

(i) 𝐹(𝑥) is a nonempty, closed subset of 𝑊, for all 𝑥 ∈ 𝑍;
(ii) conv {𝑥

1
, . . . , 𝑥

𝑛
} ⊂ ⋃

𝑛

𝑖=1
𝐹(𝑥

𝑖
) for all {𝑥

1
, . . . , 𝑥

𝑛
} ⊂

𝑍;
(iii) there is 𝑥 ∈ 𝑍 for which 𝐹(𝑥) is compact.

Then ⋂
𝑥∈𝑍

𝐹(𝑥) ̸= 0.

Lemma6. Assume that hypotheses (H
1
)–(H

3
) are fulfilled and

that the closed, convex set 𝐾 is bounded in 𝑋. Then, for every
𝜂 ∈ 𝐾, problem (13) has a unique solution.

Proof. Fix 𝜂 ∈ 𝐾. Consider the set-valued mapping 𝐺 : 𝐾 ∩

𝐷(Φ(𝜂, ⋅)) → 2
𝑋 defined by

𝐺 (V) = {𝑢 ∈ 𝐾 ∩ 𝐷 (Φ (𝜂, ⋅)) : ⟨𝐴𝑢 − 𝑓, 𝑢 − V⟩
𝑋

− 𝐽
0
(𝜂; V − 𝑢)

+Φ (𝜂, 𝑢) − Φ (𝜂, V) ≤ 0}

(14)

for all V ∈ 𝐾 ∩ 𝐷(Φ(𝜂, ⋅)). We show that the assumptions of
Theorem 5 are satisfied for 𝑊 = 𝑋 endowed with the weak
topology, 𝑍 = 𝐾 ∩ 𝐷(Φ(𝜂, ⋅)), and 𝐹 = 𝐺.

For every V ∈ 𝐾 ∩ 𝐷(Φ(𝜂, ⋅)), we clearly have V ∈ 𝐺(V);
hence 𝐺(V) is nonempty.

We check that 𝐺(V) is weakly compact for every V ∈ 𝐾 ∩

𝐷(Φ(𝜂, ⋅)). To this end, we first prove that𝐺(V) is sequentially
weakly closed in 𝑋. Let a sequence {𝑢

𝑛
}
𝑛≥1

⊂ 𝐺(V) with
𝑢
𝑛

⇀ 𝑢 in 𝑋, for some 𝑢 ∈ 𝑋. Taking into account that
𝑋 is compactly embedded in 𝑌 it follows that 𝑢

𝑛
→ 𝑢

in 𝑌. Using the first part of assumption (𝐻
2
), we have that

𝑢 ∈ 𝐾 ∩ 𝐷(Φ(𝜂, ⋅)). As 𝑢
𝑛
∈ 𝐺(V), we know that

⟨𝐴𝑢
𝑛
, 𝑢

𝑛
− V⟩

𝑋

≤ ⟨𝑓, 𝑢
𝑛
− V⟩

𝑋
+ 𝐽

0
(𝜂; V − 𝑢

𝑛
) + Φ (𝜂, V) − Φ (𝜂, 𝑢

𝑛
) .

(15)

Passing to the lim sup as 𝑛 → ∞, we find

lim sup
𝑛→∞

⟨𝐴𝑢
𝑛
, 𝑢

𝑛
− V⟩

𝑋

≤ ⟨𝑓, 𝑢 − V⟩
𝑋

+ 𝐽
0
(𝜂; V − 𝑢) + Φ (𝜂, V) − Φ (𝜂, 𝑢) .

(16)

Here we made use of the weak convergence 𝑢
𝑛

⇀ 𝑢 in 𝑋,
the continuity of 𝐽0(𝜂; ⋅) on 𝑌, and the second part of (𝐻

2
).

Combining with (𝐻
1
), we obtain that 𝑢 ∈ 𝐺(V), thereby 𝐺(V)

is sequentially weakly closed in 𝑋.
Using that𝑋 is reflexive and separable and𝐾 is bounded,

convex, and closed, we deduce that 𝐾 is metrizable and
weakly compact (see, e.g., [9, pages 44–50]). Since 𝐺(V) ⊂ 𝐾

and using that 𝐺(V) is sequentially weakly closed, we derive
that 𝐺(V) is weakly compact whenever V ∈ 𝐾 ∩ 𝐷(Φ(𝜂, ⋅)).
Therefore conditions (i) and (iii) in Theorem 5 are fulfilled.

We focus now on the verification of condition (ii) in
Theorem 5. Arguing by contradiction, we suppose that there
exist V

1
, . . . , V

𝑛
∈ 𝐾 ∩ 𝐷(Φ(𝜂, ⋅)) and 𝑢

0
∈ conv{V

1
, . . . , V

𝑛
}

such that 𝑢
0

∉ ⋃
𝑛

𝑖=1
𝐺(V

𝑖
). The convexity of the set 𝐾 and of

the function Φ(𝜂, ⋅) ensures that 𝑢
0

∈ 𝐾 ∩ 𝐷(Φ(𝜂, ⋅)). Then
the assertion that 𝑢

0
∉ ⋃

𝑛

𝑖=1
𝐺(V

𝑖
) reads as

⟨𝐴𝑢
0
− 𝑓, 𝑢

0
− V

𝑖
⟩
𝑋

− 𝐽
0
(𝜂; V

𝑖
− 𝑢

0
)

+ Φ (𝜂, 𝑢
0
) − Φ (𝜂, V

𝑖
) > 0, ∀𝑖 ∈ {1, . . . , 𝑛} .

(17)
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Let

Λ := {V ∈ 𝐷 (Φ (𝜂, ⋅)) : ⟨𝐴𝑢
0
− 𝑓, 𝑢

0
− V⟩

𝑋

− 𝐽
0
(𝜂; V − 𝑢

0
)

+Φ (𝜂, 𝑢
0
) − Φ (𝜂, V) > 0} .

(18)

It is clear that V
𝑖
∈ Λ for all 𝑖 ∈ {1, . . . , 𝑛}. The convexity of the

functionsΦ(𝜂, ⋅) and 𝐽
0
(𝜂; ⋅) implies that Λ is a convex subset

in 𝑋. We infer that conv{V
1
, . . . , V

𝑛
} ⊂ Λ, so 𝑢

0
∈ Λ, which

is obviously impossible.This contradiction justifies condition
(ii) in Theorem 5. Thus all the assumptions of Theorem 5 are
satisfied.

ApplyingTheorem 5, we obtain

⋂

V∈𝐾∩𝐷(Φ(𝜂,⋅))

𝐺 (V) ̸= 0. (19)

This ensures the existence of an element 𝑢 ∈ 𝐾 ∩ 𝐷(Φ(𝜂, ⋅))

satisfying

⟨𝐴𝑢, V − 𝑢⟩𝑋 + Φ (𝜂, V) − Φ (𝜂, 𝑢)

+ 𝐽
0
(𝜂; V − 𝑢) ≥ ⟨𝑓, V − 𝑢⟩

𝑋

(20)

for all V ∈ 𝐾 ∩ 𝐷(Φ(𝜂, ⋅)). The above inequality being also
satisfied if V ∉ 𝐷(Φ(𝜂, ⋅)), we conclude that 𝑢 is a solution of
problem (13).

It remains to show that the solution of problem (13) is
unique. If 𝑢

1
, 𝑢

2
∈ 𝐾 are solutions of (13), then we have that

(𝜂, 𝑢
1
) ∈ 𝐷(Φ), (𝜂, 𝑢

2
) ∈ 𝐷(Φ), and

⟨𝐴𝑢
1
, V − 𝑢

1
⟩
𝑋

+ Φ (𝜂, V) − Φ (𝜂, 𝑢
1
)

+ 𝐽
0
(𝜂; V − 𝑢

1
) ≥ ⟨𝑓, V − 𝑢

1
⟩
𝑋
, ∀V ∈ 𝐾,

⟨𝐴𝑢
2
, V − 𝑢

2
⟩
𝑋

+ Φ (𝜂, V) − Φ (𝜂, 𝑢
2
)

+ 𝐽
0
(𝜂; V − 𝑢

2
) ≥ ⟨𝑓, V − 𝑢

2
⟩
𝑋
, ∀V ∈ 𝐾.

(21)

Letting V = 𝑢
2
in the first inequality and V = 𝑢

1
in the second

one and then adding the obtained relations, we arrive at

⟨𝐴𝑢
1
− 𝐴𝑢

2
, 𝑢

2
− 𝑢

1
⟩
𝑋

+ 𝐽
0
(𝜂; 𝑢

2
− 𝑢

1
)

+ 𝐽
0
(𝜂; 𝑢

1
− 𝑢

2
) ≥ 0.

(22)

By assumption (𝐻
3
), we conclude that 𝑢

1
= 𝑢

2
. The proof is

complete.

Denote by 𝑢
𝜂

∈ 𝐾 the unique solution of problem (13)
corresponding to 𝜂 ∈ 𝐾. Lemma 6 guarantees that 𝑢

𝜂
exists

and is unique. We define 𝜋 : 𝐾 → 𝐾 by

𝜋 (𝜂) = 𝑢
𝜂
, ∀𝜂 ∈ 𝐾. (23)

Lemma7. Assume that hypotheses (𝐻
1
)–(𝐻

3
) are fulfilled and

that the closed, convex set 𝐾 is bounded in 𝑋. Then, the map
𝜋 : 𝐾 → 𝐾 given in (23) is sequentially weakly continuous.

Proof. Let a sequence {𝜂
𝑛
}
𝑛≥1

⊂ 𝐾 such that 𝜂
𝑛

⇀ 𝜂 in 𝑋

for some 𝜂 ∈ 𝐾. We need to show that 𝜋(𝜂
𝑛
) ⇀ 𝜋(𝜂) as

𝑛 → ∞. To do this, it suffices to check that, for any relabeled
subsequence {𝜂

𝑛
}
𝑛≥1

, there is a subsequence of {𝜋(𝜂
𝑛
)}

𝑛≥1

weakly converging to 𝜋(𝜂).
By the compactness of the embedding of𝑋 in 𝑌, we have

that 𝜂
𝑛

→ 𝜂 in 𝑌. Denote, for simplicity, 𝜋(𝜂
𝑛
) = 𝑢

𝑛
. The

definition of 𝜋 yields (𝜂
𝑛
, 𝑢

𝑛
) ∈ 𝐷(Φ) and

⟨𝐴𝑢
𝑛
, 𝑢

𝑛
− V⟩

𝑋

≤ Φ (𝜂
𝑛
, V) − Φ (𝜂

𝑛
, 𝑢

𝑛
) + 𝐽

0
(𝜂

𝑛
; V − 𝑢

𝑛
)

+ ⟨𝑓, 𝑢
𝑛
− V⟩

𝑋
, ∀V ∈ 𝐾.

(24)

Since 𝐾 is bounded, {𝑢
𝑛
}
𝑛≥1

⊂ 𝐾 and 𝑋 is reflexive, we
know that along a subsequence, denoted again by {𝑢

𝑛
}
𝑛≥1

, we
have

𝑢
𝑛
⇀ 𝑤 in 𝑋 as 𝑛 → ∞, (25)

for some 𝑤 ∈ 𝑋. The first part of (𝐻
2
) yields (𝜂, 𝑤) ∈ (𝐾 ×

𝐾) ∩ 𝐷(Φ). Moreover, the compactness of the embedding of
𝑋 in𝑌 implies that 𝑢

𝑛
→ 𝑤 in 𝑌. Letting 𝑛 → ∞ in (24), by

means of (𝐻
1
), (𝐻

2
), the convergences 𝜂

𝑛
→ 𝜂 and 𝑢

𝑛
→ 𝑤

in 𝑌, and the upper semicontinuity of 𝐽0(⋅; ⋅) on 𝑌×𝑌, we get

⟨𝐴𝑤,𝑤 − V⟩𝑋 ≤ lim sup
𝑛→∞

⟨𝐴𝑢
𝑛
, 𝑢

𝑛
− V⟩

𝑋

≤ lim sup
𝑛→∞

(Φ (𝜂
𝑛
, V) − Φ (𝜂

𝑛
, 𝑢

𝑛
))

+ lim sup
𝑛→∞

𝐽
0
(𝜂

𝑛
; V − 𝑢

𝑛
) + ⟨𝑓, 𝑤 − V⟩

𝑋

≤ Φ (𝜂, V) − Φ (𝜂, 𝑤) + 𝐽
0
(𝜂; V − 𝑤)

+ ⟨𝑓,𝑤 − V⟩
𝑋
, ∀V ∈ 𝐾.

(26)

Thismeans that𝑤 ∈ 𝐾 is a solution of problem (13). Lemma 6
ensures that 𝑤 is the unique solution of (13). Thus, by (23),
we have 𝜋(𝜂) = 𝑤. Taking into account (25), it follows
that 𝜋(𝜂

𝑛
) ⇀ 𝜋(𝜂) as 𝑛 → ∞ up to a subsequence. This

completes the proof.

Remark 8. As noted in the proof of Lemma 6, the closed,
bounded, convex subset 𝐾 ⊂ 𝑋 is metrizable for the
weak topology. Therefore, Lemma 7 implies that 𝜋 is weakly
continuous.

We need the following version of the Schauder fixed point
theorem (see [10, page 452]).

Theorem 9. Suppose that

(i) 𝑋 is a reflexive, separable Banach space;
(ii) the map 𝑇 : 𝑀 ⊂ 𝑋 → 𝑀 is sequentially weakly

continuous;
(iii) the set 𝑀 is nonempty, closed, bounded, and convex.

Then 𝑇 has a fixed point.
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We are now in position to prove Theorem 2.

Proof of Theorem 2. In view of Lemma 7 and the assumptions
on 𝑋 and 𝐾, we may apply Theorem 9 which shows that the
map 𝜋 : 𝐾 → 𝐾 admits a fixed point 𝑢 ∈ 𝐾; that is, 𝜋(𝑢) = 𝑢.
Using the definition of 𝜋 (see (23)), we deduce that 𝑢 ∈ 𝐾 is
a solution of problem (1).

3. Proof of Theorem 4

It suffices to prove Theorem 4 when the set 𝐾 is unbounded
because for a bounded set 𝐾 the result is true according to
Theorem 2. Let 𝐾

𝑚
= {𝑥 ∈ 𝐾 : ‖𝑥‖

𝑋
≤ 𝑚}. Let 𝑚

0
≥ 1

be an integer such that ‖V
0
‖
𝑋

≤ 𝑚
0
, where V

0
is the element

entering (𝐻
4
). We claim that Theorem 2 can be applied with

𝐾 replaced by 𝐾
𝑚
whenever 𝑚 ≥ 𝑚

0
.

Note that V
0

∈ 𝐾
𝑚0
, so V

0
∈ 𝐾

𝑚
∩ 𝐷(Φ(𝜂, ⋅)) for all

𝜂 ∈ 𝐾, all 𝑚 ≥ 𝑚
0
(using the first part of (𝐻

4
)). Thus,

𝐾
𝑚

∩ 𝐷(Φ(𝜂, ⋅)) ̸= 0 for all 𝜂 ∈ 𝐾
𝑚
, all 𝑚 ≥ 𝑚

0
. Since 𝐾 is

convex and closed in𝑋, it turns out that𝐾
𝑚
is convex, closed,

and bounded in 𝑋, for all 𝑚 ≥ 𝑚
0
.

We check that assumptions (𝐻
1
)–(𝐻

3
) of Theorem 2

remain validwhen𝐾 is replaced by𝐾
𝑚
with𝑚 ≥ 𝑚

0
. Towards

this, we fix some𝑚 ≥ 𝑚
0
. If {(𝜂

𝑛
, 𝑢

𝑛
)}

𝑛≥1
⊂ (𝐾

𝑚
×𝐾

𝑚
)∩𝐷(Φ)

satisfies 𝜂
𝑛
⇀ 𝜂 in𝑋 and 𝑢

𝑛
⇀ 𝑢 in𝑋, then assumption (𝐻

2
)

(for 𝐾) implies (𝜂, 𝑢) ∈ (𝐾 × 𝐾) ∩ 𝐷(Φ). On the other hand,
the weak convergences ensure that

𝜂
𝑋

≤ lim inf
𝑛→∞

𝜂𝑛
𝑋

≤ 𝑚, ‖𝑢‖𝑋 ≤ lim inf
𝑛→∞

𝑢𝑛

𝑋
≤ 𝑚.

(27)

Hence, (𝜂, 𝑢) ∈ (𝐾
𝑚
×𝐾

𝑚
)∩𝐷(Φ).The second part of (H

2
) for

𝐾
𝑚
and conditions (H

1
) and (H

3
) for 𝐾

𝑚
hold because (H

1
),

(H
2
), and (H

3
) have been imposed for𝐾, which contains𝐾

𝑚
.

Thus it is permitted to applyTheorem 2 for𝐾
𝑚
in place of𝐾,

with any 𝑚 ≥ 𝑚
0
.

Applying Theorem 2, we find a sequence {𝑢
𝑚
}
𝑚≥𝑚0

in 𝑋

such that 𝑢
𝑚

∈ 𝐾
𝑚
, (𝑢

𝑚
, 𝑢

𝑚
) ∈ 𝐷(Φ), and

⟨𝐴𝑢
𝑚
, V − 𝑢

𝑚
⟩
𝑋

+ Φ (𝑢
𝑚
, V) − Φ (𝑢

𝑚
, 𝑢

𝑚
)

+ 𝐽
0
(𝑢

𝑚
; V − 𝑢

𝑚
) ≥ ⟨𝑓, V − 𝑢

𝑚
⟩
𝑋

(28)

for all V ∈ 𝐾
𝑚
, all 𝑚 ≥ 𝑚

0
. Letting V = V

0
(see (𝐻

4
)) in (28),

we obtain

⟨𝐴𝑢
𝑚
, 𝑢

𝑚
− V

0
⟩
𝑋

≤ Φ (𝑢
𝑚
, V

0
) − Φ (𝑢

𝑚
, 𝑢

𝑚
)

+ 𝐽
0
(𝑢

𝑚
; V

0
− 𝑢

𝑚
) + ⟨𝑓, 𝑢

𝑚
− V

0
⟩
𝑋

(29)

for all𝑚 ≥ 𝑚
0
. By the definition of the convex subdifferential

𝜕Φ(𝑢
𝑚
, ⋅), we have

Φ(𝑢
𝑚
, V

0
) − Φ (𝑢

𝑚
, 𝑢

𝑚
)

≤ ⟨𝑧, V
0
− 𝑢

𝑚
⟩
𝑋
, ∀𝑧 ∈ 𝜕Φ (𝑢

𝑚
, ⋅) (V

0
) , ∀𝑚 ≥ 𝑚

0
.

(30)

Then, invoking the growth condition for 𝜕Φ(𝑢
𝑚
, ⋅)(V

0
) in

(𝐻
5
), we see that

Φ(𝑢
𝑚
, V

0
) − Φ (𝑢

𝑚
, 𝑢

𝑚
) ≤ 𝑐

0
(1 +

𝑢𝑚



𝑝

𝑋
) , ∀𝑚 ≥ 𝑚

0
.

(31)

Recall that

𝐽
0
(𝑢; V) = max

𝑤∈𝜕𝐽(𝑢)

⟨𝑤, V⟩𝑌, ∀𝑢, V ∈ 𝑌 (32)

(see [1, Proposition 2.1.2(b)]). This fact combined with the
growth condition for the generalized gradient 𝜕𝐽(𝑢

𝑚
) as

stated in (𝐻
5
) enables us to write

𝐽
0
(𝑢

𝑚
; V

0
− 𝑢

𝑚
) = max

𝑤∈𝜕𝐽(𝑢𝑚)

⟨𝑤, V
0
− 𝑢

𝑚
⟩
𝑌

≤ 𝑐
0
(1 +

𝑢𝑚



𝑝−1

𝑌
)
V0 − 𝑢

𝑚

𝑌

(33)

for all 𝑚 ≥ 𝑚
0
. By the continuity of the embedding 𝑋 ⊂ 𝑌,

the inequality above leads to

𝐽
0
(𝑢

𝑚
; V

0
− 𝑢

𝑚
)

≤ 𝑐
1
(1 +

𝑢𝑚



𝑝−1

𝑋
)
V0 − 𝑢

𝑚

𝑋
, ∀𝑚 ≥ 𝑚

0
,

(34)

where 𝑐
1

> 0 is a constant. Combining (29), (31), and (34)
yields

⟨𝐴𝑢
𝑚
, 𝑢

𝑚
− V

0
⟩
𝑋

≤𝑐
0
(1 +

𝑢𝑚



𝑝

𝑋
)+[𝑐

1
(1 +

𝑢𝑚



𝑝−1

𝑋
)+

𝑓
𝑋∗

]
V0 − 𝑢

𝑚

𝑋

(35)

for all 𝑚 ≥ 𝑚
0
. Relation (35) ensures that the sequence

{𝑢
𝑚
}
𝑚≥𝑚0

is bounded in𝑋; indeed, if we suppose that we have
‖𝑢

𝑚
‖
𝑋

→ +∞ along a (relabeled) subsequence, then it is
seen from (35) that there is a constant 𝑐 > 0 such that

lim sup
𝑚→∞

⟨𝐴𝑢
𝑚
, 𝑢

𝑚
− V

0
⟩
𝑋

𝑢𝑚



𝑝

𝑋

≤ 𝑐, (36)

which contradicts hypothesis (𝐻
4
).

By the reflexivity of 𝑋, there exists a subsequence of
{𝑢

𝑚
}
𝑚≥𝑚0

, denoted again by {𝑢
𝑚
}
𝑚≥𝑚0

, such that

𝑢
𝑚

⇀ 𝑢 in 𝑋 as 𝑚 → ∞, (37)

for some 𝑢 ∈ 𝑋. Using hypothesis (𝐻
2
) with 𝜂

𝑚
= 𝑢

𝑚
, we

derive that (𝑢, 𝑢) ∈ (𝐾 × 𝐾) ∩ 𝐷(Φ).
It remains to show that 𝑢 verifies the inequality in

problem (1). Let an arbitrary element V ∈ 𝐾 and let 𝑚
1

=

𝑚
1
(V) ∈ N such that 𝑚

1
≥ max{𝑚

0
, ‖V‖

𝑋
}. Then V ∈ 𝐾

𝑚
for

each 𝑚 ≥ 𝑚
1
and so from (28), we have that

⟨𝐴𝑢
𝑚
, 𝑢

𝑚
− V⟩

𝑋
≤ Φ (𝑢

𝑚
, V) − Φ (𝑢

𝑚
, 𝑢

𝑚
)

+ 𝐽
0
(𝑢

𝑚
; V − 𝑢

𝑚
) + ⟨𝑓, 𝑢

𝑚
− V⟩

𝑋
.

(38)
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The compactness of the embedding𝑋 ⊂ 𝑌 and (37) guarantee
that 𝑢

𝑚
→ 𝑢 in 𝑌 as 𝑚 → ∞. Then the upper

semicontinuity of 𝐽0(⋅; ⋅) on 𝑌 × 𝑌 implies

lim sup
𝑚→∞

𝐽
0
(𝑢

𝑚
; V − 𝑢

𝑚
) ≤ 𝐽

0
(𝑢; V − 𝑢) . (39)

Assumptions (𝐻
1
) and (𝐻

2
) ensure that

⟨𝐴𝑢, 𝑢 − V⟩𝑋 ≤ lim sup
𝑚→∞

⟨𝐴𝑢
𝑚
, 𝑢

𝑚
− V⟩

𝑋
,

lim sup
𝑚→∞

(Φ (𝑢
𝑚
, V) − Φ (𝑢

𝑚
, 𝑢

𝑚
)) ≤ Φ (𝑢, V) − Φ (𝑢, 𝑢) .

(40)

Passing to the lim sup as 𝑚 → ∞ in (38) and using (39)
and (40), we get that 𝑢 ∈ 𝐾 satisfies the inequality in (1).
Since V was chosen arbitrarily in𝐾, we conclude that 𝑢 solves
problem (1). The proof of Theorem 4 is complete.
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Paris, 1983.

[10] E. Zeidler, Nonlinear Functional Analysis and Its Applications.
Vol. I. Fixed-Point Theorems, Springer, New York, NY, USA,
1986.



Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2013, Article ID 495408, 9 pages
http://dx.doi.org/10.1155/2013/495408

Research Article
Classical Solvability of a Free Boundary Problem for an
Incompressible Viscous Fluid with a Surface Density Equation

Yoshiaki Kusaka

Department ofMathematics, Faculty of Engineering, TamagawaUniversity, 6-1-1 Tamagawa-Gakuen,Machida, Tokyo 194-8610, Japan

Correspondence should be addressed to Yoshiaki Kusaka; kusaka@eng.tamagawa.ac.jp

Received 16 June 2013; Accepted 8 August 2013

Academic Editor: Rodrigo Lopez Pouso

Copyright © 2013 Yoshiaki Kusaka. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We investigate a mathematical model introduced by Shikhmurzaev to remove singularities that arise when classical hydrodynamic
models are applied to certain physical phenomena. The model is described as a free boundary problem consisting of the Navier-
Stokes equations and a surface mass balance equation. We prove the local-in-time solvability in Hölder spaces.

1. Introduction

Let a time-dependent bounded domain Ω
𝑡
⊂ R3 with the

outer boundary Γ
𝑡
≡ 𝜕Ω

𝑡
be filled with an incompressible

viscous fluid, and let Γ
𝑡
represent the interface. In Ω

𝑡
,

we assume that the flow is governed by the Navier-Stokes
equations:

𝜕v
𝜕𝑡
+ (v ⋅ ∇) v + ∇𝑝 − ]Δv = 0, ∇ ⋅ v = 0, (1)

where v is the velocity, 𝑝 is the pressure, and ], which is
assumed to be a positive constant, is the kinematic viscosity.

On Γ
𝑡
, we assume the following equations:

ΠT (v, 𝑝)n = ∇𝜎, n ⋅ T (v, 𝑝)n = 𝜎𝐻, (2)

𝐷𝜌
𝑠

𝐷𝑡
+ 𝜌

𝑠
∇ ⋅ v𝑠 = 𝜌 (v − v𝑠) ⋅ n, (3)

(v − v𝑠) ⋅ n = −
𝜌
𝑠

𝑒
− 𝜌

𝑠

𝜌𝜏
, Π (v − v𝑠) = −𝜒∇𝜎, (4)

𝜎 = 𝛾 (𝜌 − 𝜌
𝑠
) . (5)

Here v𝑠 and 𝜌𝑠 are the velocity and the density of surface
layer, respectively. T(v, 𝑝) = ]D(v) − 𝑝𝐼 is the stress tensor,
where D(v) = ((𝜕V

𝑖
/𝜕𝑥

𝑗
) + (𝜕V

𝑖
/𝜕𝑥

𝑗
))
𝑖,𝑗=1,2,3

is the velocity
deformation tensor.𝐻 is the twicemean curvature of Γ

𝑡
at the

point 𝑥, which is negative ifΩ
𝑡
is convex in the neighborhood

of 𝑥. n is the unit outward normal to Γ
𝑡
at the point 𝑥. Π is

the projection operator onto the tangent plane at the point
𝑥 on Γ

𝑡
. 𝐷/𝐷𝑡 denotes the derivative along the trajectory of

particle on Γ
𝑡
. ∇ is the gradient restricted to the surface. 𝜌, 𝜌𝑠

𝑒
,

𝜏, 𝜒, 𝛾, 𝜌 are positive constants; in particular, 𝜌 is the density
of the bulk and 𝜏 is the characteristic time scale over which
the surface density 𝜌𝑠 relaxes to its equilibrium value 𝜌𝑠

𝑒
.

Finally, to complete the problem, we give the initial
conditions:

v|𝑡=0 = v
0

on Ω ≡ Ω
0
, 𝜌

𝑠𝑡=0
= 𝜌

0
on Γ ≡ Γ

0
.

(6)

It is known that singularities arise when the the classical
hydrodynamic equations and modeling assumptions are
applied to certain physical phenomena. For example, the
application of the classical no-slip boundary condition to the
spreading of a drop on a plate gives rise to a nonintegrable
shear stress, and the application of the classical kinematic
condition at the free boundary to the formation of a cusp on
a free surface of a viscous fluid leads to an infinite energy
dissipation in the fluid (e.g., refer to [1] and the references
therein).

To remove the above mentioned singularities, we are
required to modify classical boundary conditions by tak-
ing into account molecular interaction near interfaces. The
molecule in the liquid region which is very close to another
phases experiences an asymmetric force due to the presence
of another materials. This gives rise to the variation in the
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density in the liquid region near to the adjacent phase, and
the surface tension occurs as a result of this variation in
density.The thin layer in the liquid region in which the above
mentioned density variation occurs is called the surface layer.

Through [1–4], Shikhmurzaev developed a theory to
remove the above mentioned singularities by introducing a
surface layer which is treated as a separate phase. In this
theory, the no-slip condition assumed in classical models
for dynamic wetting processes is modified as the Navier-
slip condition through thermodynamic considerations on
the surface layer (refer to [2, 3]). The formation of a free
surface cusp associated with fluid flow is also investigated
in [4]. In [4], the cusp formation is modeled as an interface
disappearance process. In this model, an internal surface
stretching from the cusp, which is referred to as “the surface-
tension-relaxation tail”, is introduced. The above mentioned
singularity associated with the modeling of cusp formation
arises owing to the absence of viscous stress at the cusp with
which the surface tension acting from the liquid surface is
balanced. In this model, the surface tension at the cusp can
be balanced by shear stresses acting on this tail.

The problem (1)–(6) is a model describing the behavior
of an isolated liquid drop in which the interface is modeled
as a surface layer based on Shikhmurzaev’s theory. The
dynamics of the liquid in this layer are governed by (3) which
represents conservation of mass. The right-hand side of (3)
represents the source consisting of a flow of molecules from
the bulk. Equations in (4) are conditions that minimize the
rate of entropy production in the surface layer. Equation (5)
represents a linearized state equation in the surface layer
(refer to [1] for details). In Shikhmurzaev’s theory, the surface
layer ismodeled as a sharp interface as a result of a continuum
approximation. Thus, in the above problem, the surface layer
is described by the equations given in (3)–(5) defined on a
geometric surface, and the behavior of the surface layer is
related to (1) in the bulk through the boundary conditions
given in (2).

In the present paper, we prove the local-in-time classi-
cal solvability of problem (1)–(6). As is mentioned above,
this model is important as a basic model to describe the
above mentioned physical phenomena; however, as far as
the author knows, any rigorous proofs on its solvability
have not been given. In the present paper, we consider the
case where the mass exchange between the interface and
the bulk does not occur. As is seen in Section 2, under
such an assumption, we can reformulate our problem as a
problem defined in a domain with a fixed known boundary
by introducing Lagrangian coordinates, and in Section 3, we
construct a unique solution of the reformulated problem
in Hölder spaces with the aid of the method of successive
approximations.

2. Reformulation of the Problem

In this section, we reformulate our problem in Lagrangian
coordinates. By Lagrangian coordinates we mean the initial
coordinates of the fluid particles. In the case where no
exchange of molecules occurs between the surface and the

bulk, (4)1 is reduced to v⋅n = v𝑠 ⋅n.This relation indicates that
the following kinematic condition at the interface is satisfied:
the interface consists of the particles located at the interface
at the initial time.This circumstance enables us to relate each
point 𝑥 ∈ Ω

𝑡
to its initial point 𝜉 ∈ Ω by relation (10) given

below.
Before reformulating our problem, we rewrite (3) as a

nonlinear parabolic equation on Γ
𝑡
with the time derivative

𝐷𝜌
𝑠
/𝐷𝑡, where 𝐷𝜌𝑠/𝐷𝑡 denotes the derivative along the

trajectory of particle on the interface with velocity v. Noting
the following relation (e.g., see [5]):

(
𝐷𝜌

𝑠

𝐷𝑡
)

𝑛

=
𝐷𝜌

𝑠

𝐷𝑡
− v𝑠 ⋅ ∇𝜌𝑠 = 𝐷𝜌

𝑠

𝐷𝑡

− v ⋅ ∇𝜌𝑠, (7)

where (𝐷𝜌𝑠/𝐷𝑡)
𝑛
represents the derivative along the trajec-

tory which is normal to the interface, (3) can be written as

𝐷𝜌
𝑠

𝐷𝑡

+ 𝜌
𝑠
∇ ⋅ v𝑠 = (v − v𝑠) ⋅ ∇𝜌𝑠. (8)

Then eliminating v𝑠 from the above equation with the aid of
the relation (4)2, we obtain the following equation:

𝐷𝜌
𝑠

𝐷𝑡

− 𝜒𝛾𝜌
𝑠

0
∇
2

𝜌
𝑠
= − 𝜌

𝑠
∇ ⋅ v

+ 𝜒𝛾 {(𝜌
𝑠
− 𝜌

𝑠

0
) ∇

2

𝜌
𝑠
+ ∇𝜌

𝑠
⋅ ∇𝜌

𝑠
} .

(9)

Now let us reformulate our problem.The Lagrangian and
Eulerian coordinates are related by

𝑥 = 𝑋
𝑢
(𝜉, 𝑡) ≡ 𝜉 + ∫

𝑡

0

u (𝜉, 𝜏) 𝑑𝜏, (10)

where u(𝜉, 𝜏) is the velocity at time 𝑡 of the particle which was
located at 𝜉 at 𝑡 = 0. By changing the variables from 𝑥 to 𝜉 by
relation (10), problem (1)–(6) is reformulated as the following
problem defined in the cylindrical domain Ω

0𝑇
= Ω × (0, 𝑇)

with the lateral boundary Γ
0𝑇
≡ Γ × (0, 𝑇):

𝜕u
𝜕𝑡
− ]∇2

𝑢
u + ∇

𝑢
𝑞 = 0, ∇

𝑢
⋅ u = 0 in Ω

0𝑇
, (11)

ΠΠ
𝑢
T
𝑢
(u, 𝑞)n

𝑢
= Π∇

Γ𝑡
𝜃,

n ⋅ T
𝑢
(u, 𝑞)n

𝑢
= 𝜃∇

2

Γ𝑡
𝑋

𝑢
(𝜉, 𝑡)

𝜉∈Γ
⋅ n + n ⋅ ∇

Γ𝑡
𝜃,

𝜕𝑟
𝑠

𝜕𝑡
− 𝜒𝛾𝜌

𝑠

0
∇
2

Γ𝑡
𝑟
𝑠

= −𝑟
𝑠
∇
Γ𝑡
⋅ u + 𝜒𝛾 {(𝑟𝑠 − 𝜌𝑠

0
) ∇

2

Γ𝑡
𝑟
𝑠
+ ∇

Γ𝑡
𝑟
𝑠
⋅ ∇

Γ𝑡
𝑟
𝑠
} ,

𝜃 = 𝛾 (𝜌 − 𝑟
𝑠
) on Γ

0𝑇
,

(12)

u|𝑡=0 = v
0

on Ω, 𝑟
𝑠𝑡=0

= 𝜌
𝑠

0
on Γ. (13)

In (11)–(13), u, 𝑞 and 𝑟𝑠 are v(𝑋
𝑢
(𝜉, 𝑡), 𝑡), 𝑝(𝑋

𝑢
(𝜉, 𝑡), 𝑡), and

𝜌
𝑠
(𝑋

𝑢
(𝜉, 𝑡), 𝑡), respectively. Consider ∇

𝑢
= (J−1

𝑢
)
𝑡
∇ ≡ J∗

𝑢
∇;

hereJ
𝑢
denotes the Jacobian matrix of 𝑋

𝑢
, and the notation
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𝐴
𝑡 means the transpose of the matrix 𝐴. n is the outward

unit normal to Γ at the point 𝜉, n
𝑢
= J∗

𝑢
n/|J∗

𝑢
n|, and Π

and Π
𝑢
are the operators defined by Πf = f − (f ⋅ n)f and

Π
𝑢
f = f −(f ⋅n

𝑢
)f , respectively. T

𝑢
(u, 𝑞) is the tensor with the

elements ]∑3

𝑘=1
(𝐴

𝑗𝑘
(𝜕𝑢

𝑖
/𝜕𝜉

𝑘
) + 𝐴

𝑖𝑘
(𝜕𝑢

𝑗
/𝜕𝜉

𝑘
)) − 𝑝𝛿

𝑖𝑗
, where

𝐴
𝑖𝑗
is the (𝑖, 𝑗)-element ofJ∗

𝑢
, and 𝛿

𝑖𝑗
is Kronecker’s delta.The

operators ∇
Γ𝑡
𝑓 and ∇

Γ𝑡
⋅ A are defined by

∇
Γ𝑡
𝑓 = ∑

𝛼,𝛽=1,2

𝑔
𝛼𝛽 𝜕𝑓

𝜕𝑠
𝛽

𝜕𝑋
𝑢 (𝑠)

𝜕𝑠
𝛼

,

∇
Γ𝑡
⋅ A = 1

√𝑔
∑

𝛼=1,2

𝜕

𝜕𝑠
𝛼

√𝑔𝐴𝛼
,

(14)

where 𝑔 = det(𝑔
𝛼𝛽
)
𝛼,𝛽=1,2

, 𝑔
𝛼𝛽
= (𝜕𝑋

𝑢
(𝑠)/𝜕𝑠

𝛼
) ⋅ (𝜕𝑋

𝑢
(𝑠)/

𝜕𝑠
𝛽
), 𝑔𝛼𝛽 denote the components of the inverse matrix of

(𝑔
𝛼𝛽
)
𝛼,𝛽=1,2

, 𝑋
𝑢
(𝑠) = 𝑋

𝑢
(𝜉(𝑠), 𝑡), 𝑠 = (𝑠

1
, 𝑠

2
) denotes the

local coordinates on Γ, and 𝐴
𝛼
denotes the components of

the vector A with respect to the basis (𝜕𝑋
𝑢
(𝑠)/𝜕𝑠

𝛼
), 𝛼 = 1, 2.

Finally, the operator ∇2

Γ𝑡
𝑓 is defined as

∇
2

Γ𝑡
𝑓 = ∇

Γ𝑡
⋅ ∇

Γ𝑡
𝑓 =

1

√𝑔
∑

𝛼,𝛽=1,2

𝜕

𝜕𝑠
𝛼

√𝑔𝑔
𝛼𝛽 𝜕𝑓

𝜕𝑠
𝛽

. (15)

Note that in derivation of (12)2, we have used the formula
𝐻n = ∇

2

𝑥 ≡ ∇
2

𝑋
𝑢
(𝜉, 𝑡). Note also that although (12)1,2

are different from the following formulas which are obtained
directly from (2):

Π
𝑢
T
𝑢
(u, 𝑞)n

𝑢
= ∇

Γ𝑡
𝜃,

n
𝑢
⋅ T

𝑢
(u, 𝑞)n

𝑢
= 𝜃∇

2

Γ𝑡
𝑋

𝑢
(𝜉, 𝑡)

𝜉∈Γ
⋅ n

𝑢
,

(16)

problem (11)–(13) is equivalent to problem (1)–(6) as far as the
condition n ⋅ n

𝑢
> 0, which is valid for sufficiently small 𝑡, is

satisfied.
We now introduce some function spaces. Let 𝐷 be a

domain in R𝑛, let 𝑇 be a positive constant, let 𝐷
𝑇
be a

cylindrical domain𝐷 × (0, 𝑇), let 𝑙 be a nonnegative integer,
and let 𝛼, 𝛾 ∈ (0, 1).

By𝐶𝑙+𝛼
(𝐷), we define the space of functions 𝑓(𝑥), 𝑥 ∈ 𝐷,

with the norm
𝑓


(𝑙+𝛼)

𝐷
≡ ∑

|𝑚|≤𝑙

𝜕
𝑚

𝑥
𝑓
𝐷
+ [𝑓]

(𝑙+𝛼)

𝐷
,

𝑓
𝐷
≡ sup

𝑥∈𝐷

𝑓 (𝑥)
 ,

[𝑓]
(𝑙+𝛼)

𝐷
≡ ∑

|𝑚|=𝑙

[𝜕
𝑚

𝑥
𝑓]

(𝛼)

𝐷
≡ sup
𝑥,𝑦∈𝐷,𝑥 ̸=𝑦

∑

𝑚=|𝑙|


𝜕
𝑚

𝑥
𝑓 (𝑥) − 𝜕

𝑚

𝑦
𝑓 (𝑦)


𝑥 − 𝑦



𝛼
,

|𝑚| =

𝑛

∑

𝑖=1

𝑚
𝑖
, 𝜕

𝑚

𝑥
=

𝜕
|𝑚|

𝜕
𝑚1
𝑥1
⋅ ⋅ ⋅ 𝜕

𝑚𝑛
𝑥𝑛

,

(17)

for a multi-index𝑚 = (𝑚
𝑖
) (𝑚

𝑖
≥ 0, 𝑖 = 1, . . . , 𝑛).

By 𝐶𝑙+𝛼,((𝑙+𝛼)/2)
(𝐷

𝑇
) we denote an anisotropic Hölder

space of functions whose norm is defined by

𝑓


(𝑙+𝛼,((𝑙+𝛼)/2))

𝐷𝑇
≡

𝑙

∑

2𝑟+|𝑚|=0

𝜕
𝑟

𝑡
𝜕
𝑚

𝑥
𝑓
𝐷𝑇
+ [𝑓]

(𝑙+𝛼,((𝑙+𝛼)/2))

𝐷𝑇
, (18)

where
𝑓
𝐷𝑇
≡ sup

(𝑥,𝑡)∈𝐷𝑇

𝑓 (𝑥, 𝑡)
 ,

[𝑓]
(𝑙+𝛼,((𝑙+𝛼)/2))

𝐷𝑇
≡

𝑙

∑

2𝑟+|𝑚|=𝑙−1

[𝜕
𝑟

𝑡
𝜕
𝑚

𝑥
𝑓]

(0,((𝑙+𝛼−(2𝑟+|𝑚|))/2))

𝐷𝑇

+ ∑

2𝑟+|𝑚|=𝑙

[𝜕
𝑟

𝑡
𝜕
𝑚

𝑥
𝑓]

(𝛼,0)

𝐷𝑇
.

(19)

Here,

[𝑓]
(0,(𝛼/2))

𝐷𝑇
≡ sup

(𝑥,𝑡),(𝑥,𝑡

)∈𝐷𝑇,𝑡 ̸=𝑡




𝑓 (𝑥, 𝑡) − 𝑓 (𝑥, 𝑡


)


𝑡 − 𝑡


(𝛼/2)
,

[𝑓]
(𝛼,0)

𝐷𝑇
≡ sup

(𝑥,𝑡),(𝑥

,𝑡)∈𝐷𝑇,𝑥 ̸=𝑥




𝑓 (𝑥, 𝑡) − 𝑓 (𝑥


, 𝑡)


𝑥 − 𝑥


𝛼
.

(20)

Finally, we introduce the function space 𝐶1+𝛼,𝛾
(𝐷

𝑇
)

equipped with the norm

𝑓


(1+𝛼,𝛾)

𝐷𝑇
≡
𝑓
𝐷𝑇
+
∇𝑓


(𝛼,(𝛼/2))

𝐷𝑇
+
𝑓


(1+𝛼,𝛾)

𝐷𝑇
, (21)

where

𝑓


(1+𝛼,𝛾)

𝐷𝑇
≡ sup

𝜏,𝑡∈(0,𝑇),𝜏 ̸=𝑡

𝑓 (⋅, 𝑡) − 𝑓 (⋅, 𝜏)


(𝛾)

𝐷

|𝑡 − 𝜏|
((1+𝛼−𝛾)/2)

. (22)

Now, let us state our main result.

Theorem 1. Let 𝛼, 𝛾 be constants satisfying 0 < 𝛼, 𝛾 < 1.
Assume that

v
0
∈ 𝐶

2+𝛼
(Ω) , 𝜌

𝑠

0
∈ 𝐶

2+𝛼
(Γ) , Γ ∈ 𝐶

3+𝛼
. (23)

Assume that there exist positive constants Δ
1
and Δ

2
such that

𝜌 − 𝜌
𝑠

0
≥ Δ

1
> 0 and 𝜌𝑠

0
≥ Δ

2
> 0 on Γ. In addition, assume

that the following compatibility conditions are satisfied:

∇ ⋅ v
0
= 0, (]ΠD (v

0
)n + 𝛾∇

Γ
𝜌
𝑠

0
)
Γ
= 0, (24)

where ∇
Γ
is the operator corresponding to ∇

Γ𝑡
with 𝑡 = 0;

namely, ∇
Γ
is given by the formula in (14) with𝑋

𝑢
(𝑠) = 𝜉(𝑠).

Then, for a positive constant 𝑇, problem (11)–(13) has a
unique solution (u, 𝑞, 𝑟𝑠) with the following smoothness:

u ∈ 𝐶2+𝛼,1+(𝛼/2)
(Ω

0𝑇
) ,

𝑞 ∈ 𝐶
1+𝛼,𝛾

(Ω
0𝑇
) ∩ 𝐶

1+𝛼,((1+𝛼)/2)
(Γ

0𝑇
) ,

𝑟
𝑠
∈ 𝐶

2+𝛼,1+(𝛼/2)
(Γ

0𝑇
) .

(25)

3. Proof of the Main Result

In this section, we will prove Theorem 1.
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We begin with preparing estimates of solutions to some
linear problems. For the following problem:

𝜕u
𝜕𝑡
− ]∇2

𝑤
u + ∇

𝑤
𝑞 = F

1
, ∇

𝑤
⋅ u = 𝐹

2
in Ω

0𝑇
,

]ΠΠ
𝑤
D

𝑤 (u)n𝑤
= F

3
,

n ⋅ T
𝑤
(u, 𝑞)n

𝑤
− Θn ⋅ ∇2

Γ̃𝑡
∫

𝑡

0

u𝑑𝜏 = 𝑏 + ∫
𝑡

0

𝐵𝑑𝜏 on Γ
0𝑇
,

u|𝑡=0 = v
0

on Ω,
(26)

the following result is given in [6]. In (26), ∇
𝑤
, Π

𝑤
, T

𝑤
(u, 𝑞)

(= ]D
𝑤
(u) − 𝑞𝐼), n

𝑤
are defined for a given vector w in the

same manner as ∇
𝑢
, Π

𝑢
, T

𝑢
(u, 𝑞), n

𝑢
are defined, and ∇

Γ̃𝑡
is

defined by (14) with𝑋
𝑢
= 𝑋

𝑤
.

Theorem 2. Let 𝑇 > 0, and let 𝛼, 𝛾 be positive constants
satisfying 0 < 𝛼, 𝛾 < 1. Assume that

Γ ∈ 𝐶
2+𝛼
, v

0
∈ 𝐶

2+𝛼
(Ω) ,

F
1
∈ 𝐶

𝛼,(𝛼/2)
(Ω

0𝑇
) , 𝐹

2
∈ 𝐶

1+𝛼,((1+𝛼)/2)
(Ω

0𝑇
) ,

F
3
∈ 𝐶

1+𝛼,((1+𝛼)/2)
(Γ

0𝑇
) , 𝑏 ∈ 𝐶

1+𝛼,((1+𝛼)/2)
(Γ

0𝑇
) ,

𝐵 ∈ 𝐶
𝛼,(𝛼/2)

(Γ
0𝑇
) , Θ ∈ 𝐶

𝛼
(Γ) .

(27)

Assume that there exists a positive constant Δ
1
such that

Θ ≥ Δ
1
> 0 on Γ. Assume that the following compatibility

conditions are satisfied:

∇ ⋅ v
0
= 𝐹

2
(𝜉, 0) , ]ΠD (v

0
)nΓ = F

3
(𝜉, 0) . (28)

Assume that there exist functions h ∈ 𝐶𝛼,(𝛼/2)
(Ω

0𝑇
), H

𝑘
, 𝑘 =

1, 2, 3, with a finite norm |H
𝑘
|
(1+𝛼,𝛾)

Ω0𝑇
satisfying the relation

𝜕𝐹
2

𝜕𝑡
− ∇

𝑤
⋅ F

1
= ∇ ⋅ h, h =

3

∑

𝑘=1

𝜕
𝜉𝑘
H

𝑘
, (29)

in the sense of distribution. Furthermore, assume that w ∈

𝐶
2+𝛼,1+(𝛼/2)

(Ω
0𝑇
) satisfies the inequality

(𝑇 + 𝑇
1/2
) |w|(2+𝛼,1+(𝛼/2))

Ω0𝑇
+ 𝑇

((1−𝛼+𝛾)/2)
𝜕
𝜉
wΩ0𝑇 ≤ 𝛿, (30)

for a sufficiently small positive constant 𝛿.

Then problem (26) has a unique solution (u, 𝑞) satisfying
the following inequality:

|u|(2+𝛼,1+(𝛼/2))
Ω0𝑇

+
𝑞


(1+𝛼,𝛾)

Ω0𝑇
+
𝑞


(1+𝛼,((1+𝛼)/2))

Γ0𝑇

≤ 𝐶
1
(𝑇){

F1


(𝛼,(𝛼/2))

Ω0𝑇
+
𝐹2


(1+𝛼,((1+𝛼)/2))

Ω0𝑇

+
F3


(1+𝛼,((1+𝛼)/2))

Γ0𝑇
+ |𝑏|

(1+𝛼,((1+𝛼)/2))

Γ0𝑇

+ |𝐵|
(𝛼,(𝛼/2))

Γ0𝑇
+
v0


(2+𝛼)

Ω
+ |h|(𝛼,(𝛼/2))

Ω0𝑇

+

3

∑

𝑘=1

H𝑘



(1+𝛼,𝛾)

Ω0𝑇
+𝑃

𝑇 (w) (
v0


(1)

Ω
+|𝑏 (⋅, 0)|Γ)} ,

(31)

where 𝑃
𝑇
(w) = 𝑇

((1−𝛼)/2)
|w|(1,0)

Ω0𝑇
+ |𝜕

𝜉
w|(𝛼,(𝛼/2))

Ω0𝑇
+

[𝜕
𝜉
w](0,((1+𝛼−𝛾)/2))

Ω0𝑇
and 𝐶

1
(𝑇) is a nondecreasing function

of 𝑇.

For the following problem:

𝜕𝑟
𝑠

𝜕𝑡
− 𝜒𝛾𝜌

𝑠

0
∇
2

Γ̃𝑡
𝑟
𝑠
= 𝐺 on Γ

0𝑇
,

𝑟
𝑠𝑡=0

= 𝜌
𝑠

0
on Γ,

(32)

we have the following theorem.The assertion of the theorem
immediately follows from the Hölder estimates for linear
parabolic equations (e.g., see [7]).

Theorem 3. Let 𝑇 > 0, and let 𝛼 be a positive constant
satisfying 0 < 𝛼 < 1. Assume that

Γ ∈ 𝐶
2+𝛼
, 𝜌

𝑠

0
∈ 𝐶

2+𝛼
(Γ) , 𝐺 ∈ 𝐶

𝛼,(𝛼/2)
(Γ

0𝑇
) . (33)

Assume that there exists a positive constant Δ
2
such that 𝜌𝑠

0
≥

Δ
2
> 0 on Γ. Further assume the same assumptions forw stated

in Theorem 2.
Then, problem (32) has a unique solution 𝑟𝑠 satisfying the

following inequality:

𝑟
𝑠

(2+𝛼,1+(𝛼/2))

Γ0𝑇
≤ 𝐶

2
(𝑇) (|𝐺|

(𝛼,(𝛼/2))

Γ0𝑇
+
𝜌

𝑠

0



(2+𝛼)

Γ
) , (34)

where 𝐶
2
(𝑇) is a nondecreasing function of 𝑇.
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Combining the above results, we can easily obtain Theo-
rem 4 given below for the following problem:

𝜕u
𝜕𝑡
− ]∇2

𝑤
u + ∇

𝑤
𝑞 = F

1
, ∇

𝑤
⋅ u = 𝐹

2
in Ω

0𝑇
,

]ΠΠ
𝑤
D

𝑤 (u)n𝑤
+ 𝛾Π∇

Γ̃𝑡
𝑟
𝑠
= F

3
,

n ⋅ T
𝑤
(u, 𝑞)n

𝑤
− Θn ⋅ ∇2

Γ̃𝑡
∫

𝑡

0

u𝑑𝜏 + 𝛾n ⋅ ∇
Γ̃𝑡
𝑟
𝑠

= 𝑏 + ∫

𝑡

0

𝐵𝑑𝜏 on Γ
0𝑇
,

u|𝑡=0 = v
0

on Ω,

𝜕𝑟
𝑠

𝜕𝑡
− 𝜒𝛾𝜌

𝑠

0
∇
2

Γ̃𝑡
𝑟
𝑠
= 𝐺 on Γ

0𝑇
,

𝑟
𝑠𝑡=0

= 𝜌
𝑠

0
on Γ.

(35)

The estimate given in the theorem will be essentially used in
the later argument to proveTheorem 1.

Theorem 4. Under the same assumptions given in Theorem 2
where only compatibility condition is replaced by

∇ ⋅ v
0
= 𝐹

2
(𝜉, 0) , (]ΠD (v

0
)n + 𝛾Π∇

Γ
𝜌
𝑠

0
)
Γ
= F

3
(𝜉, 0) ,

(36)

and Theorem 3, problem (35) has a unique solution (u, 𝑞, 𝑟𝑠)
satisfying the following inequality:

|u|(2+𝛼,1+(𝛼/2))
Ω0𝑇

+
𝑞


(1+𝛼,𝛾)

Ω0𝑇
+
𝑞


(1+𝛼,((1+𝛼)/2))

Γ0𝑇
+
𝑟
𝑠

(2+𝛼,1+(𝛼/2))

Γ0𝑇

≤ 𝐶
3
(𝑇) {

F1


(𝛼,(𝛼/2))

Ω0𝑇
+
𝐹2


(1+𝛼,((1+𝛼)/2))

Ω0𝑇

+
F3


(1+𝛼,((1+𝛼)/2))

Γ0𝑇
+ |𝑏|

(1+𝛼,((1+𝛼)/2))

Γ0𝑇

+ |𝐵|
(𝛼,(𝛼/2))

Γ0𝑇
+ |h|(𝛼,(𝛼/2))

Ω0𝑇
+

3

∑

𝑘=1

H𝑘



(1+𝛼,𝛾)

Ω0𝑇

+
v0


(2+𝛼)

Ω
+ |𝐺|

(𝛼,(𝛼/2))

Γ0𝑇
+
𝜌

𝑠

0



(2+𝛼)

Γ

+ 𝑃
𝑇
(w) (v0



(1)

Ω
+ |𝑏 (⋅, 0)|Γ)} ,

(37)

where 𝐶
3
(𝑇) is a nondecreasing function of 𝑇.

In addition, we prepare estimates forJ∗

𝑢
, which are used

later.

Lemma 5. Let J
𝑢
and J

𝑢
 be the Jacobian matrices of the

mappings 𝑋
𝑢
and 𝑋

𝑢
 , respectively. Let us assume that u and

u satisfy condition (30) for sufficiently small 𝛿 > 0. Then, the
following inequalities hold:

J
∗

𝑢



(1+𝛼,((1+𝛼)/2))

Ω0𝑇
,
J

∗

𝑢



(1+𝛼,𝛾)

Ω0𝑇
≤ 𝐶, (38)

where 𝐶 is a positive constant independent of 𝛿, and

J
∗

𝑢
−J

∗

𝑢




(1+𝛼,((1+𝛼)/2))

Ω0𝑇
,
J

∗

𝑢
−J

∗

𝑢




(1+𝛼,𝛾)

Ω0𝑇

≤ 𝜖

u − u

(2+𝛼,1+(𝛼/2))

Ω0𝑇

+ 𝐶 (𝜖) ∫

𝑇

0


u − u

(2+𝛼,1+(𝛼/2))

Ω0𝜏

𝑑𝜏,

(39)

for arbitrary 0 < 𝜖 < 1, where 𝐶(𝜖) is a positive constant
depending only on 𝜖.

Proof. In the following proof, 𝑐
1
, 𝑐

2
, and 𝑐

3
are positive

constants independent of 𝛿 and 𝜖. Let 𝑎
𝑖𝑗

be the (𝑖, 𝑗)-
component ofJ

𝑢
.

Then, we have

𝛿
𝑖𝑗
−



∫

𝑡

0

𝜕
𝜉𝑗
𝑢
𝑖
𝑑𝜏



≤ 𝑎
𝑖𝑗
≤ 𝛿

𝑖𝑗
+



∫

𝑡

0

𝜕
𝜉𝑗
𝑢
𝑖
𝑑𝜏



, (40)

where 𝛿
𝑖𝑗
denotes Kronecker’s delta. Then, using the inequal-

ity



∫

𝑡

0

𝜕
𝜉𝑗
𝑢
𝑖
𝑑𝜏

Ω0𝑇

≤ 𝑇|u|(1,0)
Ω0𝑇

≤ 𝛿, (41)

from (40), we have

𝛿
𝑖𝑗
− 𝛿 ≤


𝑎
𝑖𝑗

Ω0𝑇
≤ 𝛿

𝑖𝑗
+ 𝛿. (42)

This inequality implies that detJ
𝑢
> 0 holds for sufficiently

small 𝛿 > 0.
Now, let 𝑎

𝑖𝑗
be the (𝑖, 𝑗)-components of J

𝑢
 , and let 𝐴

𝑖𝑗

and 𝐴

𝑖𝑗
be the cofactors of 𝑎

𝑖𝑗
and 𝑎

𝑖𝑗
, respectively.

Then from the inequalities


𝑎
𝑖𝑗



(1+𝛼,((1+𝛼)/2))

Ω0𝑇

,

𝑎


𝑖𝑗



(1+𝛼,((1+𝛼)/2))

Ω0𝑇

≤ 𝑐
1
(1 + 𝛿) , (43)

we have


𝐴

𝑖𝑗



(1+𝛼,((1+𝛼)/2))

Ω0𝑇

,

𝐴

𝑖𝑗



(1+𝛼,𝛾)

Ω0𝑇

≤ 𝑐
2
. (44)

On the other hand, from the inequality


𝑎
𝑖𝑗
− 𝑎



𝑖𝑗



(1+𝛼,((1+𝛼)/2))

Ω0𝑇

≤ 𝜖

u − u

(2+𝛼,1+(𝛼/2))

Ω0𝑇

+ 𝑐
3
(1 + 𝜖

−((1+𝛼)/(2−𝛼))
)∫

𝑇

0


u − u

(2+𝛼,1+(𝛼/2))

Ω0𝜏

𝑑𝜏,

(45)
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which are obtained with the aid of the following inequality
which holds for arbitrary 0 < 𝜖 < 1:



∫

𝑡

0

𝑓(𝜉, 𝜏)𝑑𝜏



(1+𝛼,((1+𝛼)/2))

Ω0𝑇

≤ ∫

𝑇

0

𝑓


(1+𝛼,0)

Ω0𝜏
𝑑𝜏

+ sup
|𝑡

−𝑡

|<𝜖
(2/(1−𝛼))

(

𝑡

− 𝑡



−((1+𝛼)/2)

∫

𝑡


𝑡


𝑓 (𝜉, 𝜏)
Ω
𝑑𝜏

+

𝑡

− 𝑡



−(𝛼/2)

∫

𝑡


𝑡



𝜕
𝜉
𝑓 (𝜉, 𝜏)

Ω
𝑑𝜏)

+ sup
𝜖
(2/(1−𝛼))

<|𝑡

−𝑡

|≤𝑇

(

𝑡

− 𝑡



−((1+𝛼)/2)

∫

𝑡


𝑡


𝑓 (𝜉, 𝜏)
Ω
𝑑𝜏

+

𝑡

− 𝑡



−(𝛼/2)

∫

𝑡


𝑡



𝜕
𝜉
𝑓 (𝜉, 𝜏)

Ω
𝑑𝜏)

≤ 𝜖
𝑓


(1+𝛼,((1+𝛼)/2))

Ω0𝑇

+ 𝑐
3
(1 + 𝜖

−((1+𝛼)/(1−𝛼))
)∫

𝑇

0

𝑓


(1+𝛼,((1+𝛼)/2))

Ω0𝜏
𝑑𝜏,

(46)

we have


𝐴

𝑖𝑗
− 𝐴



𝑖𝑗



(1+𝛼,((1+𝛼)/2))

Ω0𝑇

,

𝐴

𝑖𝑗
− 𝐴



𝑖𝑗



(1+𝛼,𝛾)

Ω0𝑇

≤ 𝜖

u − u

(2+𝛼,1+(𝛼/2))

Ω0𝑇

+ 𝐶
1
(𝜖) ∫

𝑇

0


u − u

(2+𝛼,1+(𝛼/2))

Ω0𝜏

𝑑𝜏,

(47)

where 𝐶
1
(𝜖) is a positive constant depending only on 𝜖. From

(44) and (47), estimates (38) and (39) immediately follow.
Thus, the proof is completed.

Now, let us prove Theorem 1 by the method of successive
approximations. We take (u

0
, 𝑞

0
, 𝑟

𝑠

0
) = (0, 0, 0), and, for

the known 𝑛th approximation, we define the (𝑛 + 1)th
approximation by the solutions of the following problem:

𝜕u
𝑛+1

𝜕𝑡
− ]∇2

𝑢𝑛
u
𝑛+1
+ ∇

𝑢𝑛
𝑞
𝑛+1
= 0,

∇
𝑢𝑛
⋅ u

𝑛+1
= 0 in Ω

0𝑇
,

]ΠΠ
𝑢𝑛
D

𝑢𝑛
(u

𝑛+1
)n

𝑢𝑛
+ 𝛾Π∇

Γ𝑛,𝑡
𝑟
𝑠

𝑛+1
= 0,

n ⋅ T
𝑢𝑛
(u

𝑛+1
, 𝑞

𝑛+1
)n

𝑢𝑛
− Θn ⋅ ∇2

Γ𝑛,𝑡
∫

𝑡

0

u
𝑛+1
𝑑𝜏

+ 𝛾n ⋅ ∇
Γ𝑛,𝑡
𝑟
𝑠

𝑛+1

= 𝑏 (u
𝑛
, 𝑟

𝑠

𝑛
) + ∫

𝑡

0

𝐵 (u
𝑛
, 𝑟

𝑠

𝑛
) 𝑑𝜏 on Γ

0𝑇
,

u
𝑛+1

𝑡=0
= v

0
on Ω,

𝜕𝑟
𝑠

𝑛+1

𝜕𝑡
− 𝜒𝛾𝜌

𝑠

0
∇
2

Γ𝑛,𝑡
𝑟
𝑠

𝑛+1
= 𝐺 (𝑟

𝑠

𝑛
, u

𝑛
) on Γ

0𝑇
,

𝑟
𝑠

𝑛+1

𝑡=0
= 𝜌

𝑠

0
on Γ,

(48)

where

𝑏 (u
𝑛
, 𝑟

𝑠

𝑛
) = 𝜃

𝑛
(𝐻

0
+ n ⋅ ∫

𝑡

0

(∇
2

Γ𝑛,𝜏
)
𝜏
𝜉𝑑𝜏) ,

𝐻
0
= n ⋅ ∇2

Γ
𝜉

𝐵 (u
𝑛
, 𝑟

𝑠

𝑛
) = {

𝜕

𝜕𝜏
(𝜃

𝑛
− Θ)}n ⋅ ∇2

Γ𝑛,𝜏
∫

𝜏

0

u
𝑛 (𝜉, 𝑠) 𝑑𝑠

+ (𝜃
𝑛
− Θ)n ⋅ (∇2

Γ𝑛,𝜏
)
𝜏
∫

𝜏

0

u
𝑛 (𝜉, 𝑠) 𝑑𝑠

+ (𝜃
𝑛
− Θ)n ⋅ ∇2

Γ𝑛,𝜏
u
𝑛
,

𝜃
𝑛
= 𝛾 (𝜌 − 𝑟

𝑠

𝑛
) , Θ = 𝛾 (𝜌 − 𝜌

𝑠

0
) ,

𝐺 (u
𝑛
, 𝑟

𝑠

𝑛
) ≡ − 𝑟

𝑠

𝑛
∇
Γ𝑛,𝑡
⋅ u

𝑛

+ 𝜒𝛾 {(𝑟
𝑠

𝑛
− 𝜌

𝑠

0
) ∇

2

Γ𝑛,𝑡
𝑟
𝑠

𝑛
+ ∇

Γ𝑛,𝑡
𝑟
𝑠

𝑛
⋅ ∇

Γ𝑛,𝑡
𝑟
𝑠

𝑛
} .

(49)

In the above formulas, ∇
Γ𝑛,𝑡

is the operator corresponding to
∇
Γ𝑡
with𝑋

𝑢
= 𝑋

𝑢𝑛
, and (∇2

Γ𝑛,𝜏
)
𝜏
denotes the operator obtained

by differentiating the coefficients of ∇2

Γ𝑛,𝜏
with respect to 𝜏.

Now, let us verify that all terms of the sequence
{(u

𝑛
, 𝑞

𝑛
, 𝑟

𝑠

𝑛
)} are defined on some time interval independent

of 𝑛. We begin with the following lemma.

Lemma 6. Let 𝑇
𝑛
be a constant satisfying 0 < 𝑇

𝑛
≤ 1. Then

there exist positive constants 𝛿 and 𝛽 such that if u
𝑛
and 𝑟𝑠

𝑛

satisfy the following conditions:

(𝑇
𝑛
+ 𝑇

1/2

𝑛
)
u𝑛


(2+𝛼,1+(𝛼/2))

Ω0𝑇𝑛

+ 𝑇
((1−𝛼+𝛾)/2)

𝑛


𝜕
𝜉
u
𝑛

Ω0𝑇𝑛
≤ 𝛿,

(𝑇
𝑛
+ 𝑇

𝛽

𝑛
) (
u𝑛


(2+𝛼,1+(𝛼/2))

Ω0𝑇𝑛

+
𝑟
𝑠

𝑛



(2+𝛼,1+(𝛼/2))

Γ0𝑇𝑛

) ≤ 𝛿,

(50)

then the following inequality holds for a positive constant 𝐶
independent of u

𝑛
, 𝑟𝑠

𝑛
and 𝑇

𝑛
:

𝑏 (u𝑛, 𝑟
𝑠

𝑛
)


(1+𝛼,((1+𝛼)/2))

Γ0𝑇𝑛

+
𝐵 (u𝑛, 𝑟

𝑠

𝑛
)


(𝛼,(𝛼/2))

Γ0𝑇𝑛

+
𝐺 (u𝑛, 𝑟

𝑠

𝑛
)


(𝛼,(𝛼/2))

Γ0𝑇𝑛

+ 𝑃
𝑇𝑛
(u

𝑛
) ≤ 𝐶.

(51)

Proof. In the proof, 𝑐
1
, . . . , 𝑐

9
are positive constants indepen-

dent of u
𝑛
, 𝑟𝑠

𝑛
, and 𝑇

𝑛
.
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Choosing 𝑇((1−𝛼)/2𝛼)

𝑛
as 𝜖 in the following interpolation

inequality:
𝜃𝑛 − (𝜃𝑛

𝑡=0
)


(1+𝛼,((1+𝛼)/2))

Γ0𝑇𝑛

≤ 𝜖
𝑟
𝑠

𝑛
− 𝜌

𝑠

0



(2,1)

Γ0𝑇𝑛

+ 𝑐
1
𝜖
−(𝛼/(1−𝛼))𝑟

𝑠

𝑛
− 𝜌

𝑠

0

Γ0𝑇𝑛

≤ 𝜖
𝑟
𝑠

𝑛
− 𝜌

𝑠

0



(2,1)

Γ0𝑇𝑛

+ 𝑐
1
𝜖
−(𝛼/(1−𝛼))

∫

𝑇𝑛

0

𝜕𝜏 (𝑟
𝑠

𝑛
− 𝜌

𝑠

0
)
Γ0𝜏
𝑑𝜏,

(52)

we have the following estimate:
𝜃𝑛


(1+𝛼,((1+𝛼)/2))

Γ0𝑇𝑛

≤ 𝑐
2
(
𝜌

𝑠

0



(1+𝛼)

Γ
+
𝜃𝑛 − (𝜃𝑛

𝑡=0
)


(1+𝛼,((1+𝛼)/2))

Γ0𝑇𝑛

)

≤ 𝑐
3
{
𝜌

𝑠

0



(1+𝛼)

Γ
+ (𝑇

((1−𝛼)/2𝛼)

𝑛
+ 𝑇

(1/2)

𝑛
)
𝑟
𝑠

𝑛
− 𝜌

𝑠

0



(2,1)

Γ0𝑇𝑛

}

≤ 𝑐
4
(1 + 𝛿) .

(53)

With the aid of the above estimate, we can easily obtain the
desired estimate for 𝑏(u

𝑛
, 𝑟

𝑠

𝑛
).

𝐵(u
𝑛
, 𝑟

𝑠

𝑛
) is estimated as follows. With the aid of the

inequality



∫

𝑡

0

𝜕
2

𝜉
𝑓 (𝜉, 𝜏) 𝑑𝜏



(𝛼,(𝛼/2))

Γ0𝑇

≤ 𝑐
5
(𝑇 + 𝑇

1−(𝛼/2)
)
𝑓


(2+𝛼,1+(𝛼/2))

Γ0𝑇
,

(54)

we have


{
𝜕

𝜕𝑡
(𝜃

𝑛
− Θ)}n ⋅ ∇2

Γ𝑛,𝑡
∫

𝑡

0

u
𝑛
(𝜉, 𝜏) 𝑑𝜏

+ (𝜃
𝑛
− Θ)n ⋅ (∇2

Γ𝑛,𝑡
)
𝑡
∫

𝑡

0

u
𝑛
(𝜉, 𝜏) 𝑑𝜏



(𝛼,(𝛼/2))

Γ0𝑇𝑛

≤ 𝑐
6
(𝑇

𝑛
+ 𝑇

1−(𝛼/2)

𝑛
)
𝑟
𝑠

𝑛
− 𝜌

𝑠

0



(2+𝛼,1+(𝛼/2))

Γ0𝑇𝑛

u𝑛


(2+𝛼,1+(𝛼/2))

Γ0𝑇𝑛

≤ 𝑐
7
(1 + 𝛿

2
) .

(55)

On the other hand, with the aid of


𝜃
𝑛
− Θ



(𝛼,(𝛼/2))

Γ0𝑇𝑛

≤ ∫

𝑇𝑛

0


𝜕
𝜏
(𝜃

𝑛
− Θ)



(𝛼,(𝛼/2))

Γ0𝜏

𝑑𝜏

≤ 𝑇
𝑛

𝑟
𝑠

𝑛
− 𝜌

𝑠

0



(2+𝛼,1+(𝛼/2))

Γ0𝑇𝑛

,

(56)

we have

(𝜃

𝑛
− Θ)n ⋅ ∇2

Γ𝑛,𝑡
u
𝑛



(𝛼,(𝛼/2))

Γ0𝑇𝑛

≤ 𝑐
8
𝑇
𝑛

𝑟
𝑠

𝑛
− 𝜌

𝑠

0



(2+𝛼,1+(𝛼/2))

Γ0𝑇𝑛

u𝑛


(2+𝛼,1+(𝛼/2))

Γ0𝑇𝑛

≤ 𝑐
9
(1 + 𝛿

2
) .

(57)

From (55) and (57), we have the desired estimate for𝐵(u
𝑛
, 𝑟

𝑛

𝑠
).

𝐺(u
𝑛
, 𝑟

𝑠

𝑛
) and𝑃

𝑇𝑛
(u

𝑛
) are estimated in a similarmanner.Thus,

we have proved the lemma.

From this lemma, if u
𝑛
and 𝑟𝑠

𝑛
satisfy conditions (50), by

applying Theorem 4 to problem (3) we have the following
estimate of u

𝑛+1
and 𝑟𝑠

𝑛+1
:

u𝑛+1


(2+𝛼,1+(𝛼/2))

Ω0𝑇𝑛

+
𝑟
𝑠

𝑛+1



(2+𝛼,1+(𝛼/2))

Γ0𝑇𝑛

≤ 𝐶
3
(1) 𝐶, (58)

where 𝐶
3
(⋅) is the function given inTheorem 4.

Now, let us take 𝑇 satisfying the following conditions:

0 < 𝑇 ≤ 1, 𝐶
3 (1) 𝐶 (𝑇 + 𝑇

𝛽
) ≤ 𝛿. (59)

Here 𝛽 is assumed to be chosen, so that 𝛽 < 1/2 and 𝛽 <
(1−𝛼+𝛾)/2. Since (u

0
, 𝑟

𝑠

0
) = (0, 0), the zeroth approximation

(u
0
, 𝑟

𝑠

0
) obviously satisfies conditions (50) for the above 𝑇.

Hence, from (58), (u
1
, 𝑟

𝑠

1
) satisfies

u1


(2+𝛼,1+(𝛼/2))

Ω0𝑇
+
𝑟
𝑠

1



(2+𝛼,1+(𝛼/2))

Γ0𝑇
≤ 𝐶

3 (1) 𝐶. (60)

From (59), this inequality indicates that (u
1
, 𝑟

𝑠

1
) satisfies

conditions (50), and hence we can obtain the same estimate
as (60) for (u

2
, 𝑟

𝑠

2
). Thus, repeating this argument, we can

construct a sequence {(u
𝑛
, 𝑞

𝑛
, 𝑟

𝑠

𝑛
)} such that each term is

defined on (0, 𝑇).
Let us proceed to the proof of the convergence of the

sequence {(u
𝑛
, 𝑞

𝑛
, 𝑟

𝑠

𝑛
)}. In the following argument,𝐶

1
, . . . , 𝐶

10

denote positive constants independent of 𝑛 and 𝐶(𝜖) repre-
sents various positive constants depending only on 𝜖.

Let us set

𝑈
(𝑛+1)

≡ u
𝑛+1
− u

𝑛
,

𝑄
(𝑛+1)

≡ 𝑞
𝑛+1
− 𝑞

𝑛
, 𝑅

(𝑛+1)
≡ 𝑟

𝑠

𝑛+1
− 𝑟

𝑠

𝑛
.

(61)

Subtracting (3) with index 𝑛 from that with index 𝑛 + 1, we
have

𝜕𝑈
(𝑛+1)

𝜕𝑡
− ]∇2

𝑢𝑛
𝑈

(𝑛+1)
+ ∇

𝑢𝑛
𝑄

(𝑛+1)
= F

(𝑛)

1
,

∇
𝑢𝑛
⋅ 𝑈

(𝑛+1)
= F

(𝑛)

2
in Ω

0𝑇
,

]ΠΠ
𝑢𝑛
D

𝑢𝑛
(𝑈

(𝑛+1)
)n

𝑢𝑛
+ 𝛾Π∇

Γ𝑛,𝑡
𝑅
(𝑛+1)

= F
(𝑛)

3
,

n ⋅ T
𝑢𝑛
(𝑈

(𝑛+1)
, 𝑄

(𝑛+1)
)n

𝑢𝑛
− Θn ⋅ ∇2

Γ𝑛,𝑡
∫

𝑡

0

𝑈
(𝑛+1)

𝑑𝜏

+ 𝛾n ⋅ ∇
Γ𝑛,𝑡
𝑅
(𝑛+1)

= 𝑏
(𝑛)
+ ∫

𝑡

0

B
(𝑛)
𝑑𝜏 on Γ

0𝑇
,
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𝑈
(𝑛+1)𝑡=0

= 0 on Ω,

𝜕𝑅
(𝑛+1)

𝜕𝑡
− 𝜒𝛾𝜌

𝑠

0
∇
2

Γ𝑛,𝑡
𝑅
(𝑛+1)

= G
(𝑛) in Γ

0𝑇
,

𝑅
(𝑛+1)𝑡=0

= 0 on Γ,
(62)

where

F
(𝑛)

1
≡ ] (∇2

𝑢𝑛
− ∇

2

𝑢𝑛−1
) u

𝑛
− (∇

𝑢𝑛
− ∇

𝑢𝑛−1
) 𝑞

𝑛
,

F
(𝑛)

2
≡ − (∇

𝑢𝑛
− ∇

𝑢𝑛−1
) ⋅ u

𝑛
,

F
(𝑛)

3
≡ − ]Π{Π

𝑢𝑛
D

𝑢𝑛
(u

𝑛
)n

𝑢𝑛
− Π

𝑢𝑛−1
D

𝑢𝑛−1
(u

𝑛
)n

𝑢𝑛−1
}

− 𝛾Π (∇
Γ𝑛,𝑡
− ∇

Γ𝑛−1,𝑡
) 𝑟

𝑠

𝑛
,

𝑏
(𝑛)
≡ − n ⋅ {T

𝑢𝑛
(u

𝑛
, 𝑞

𝑛
)n

𝑢𝑛
− T

𝑢𝑛−1
(u

𝑛
, 𝑞

𝑛
)n

𝑢𝑛−1
}

− 𝛾n ⋅ (∇
Γ𝑛,𝑡
− ∇

Γ𝑛−1,𝑡
) 𝑟

𝑠

𝑛
+ 𝑏 (u

𝑛
, 𝑟

𝑠

𝑛
) − 𝑏 (u

𝑛−1
, 𝑟

𝑠

𝑛−1
) ,

B
(𝑛)
≡ Θn ⋅ (∇2

Γ𝑛,𝜏
− ∇

2

Γ𝑛−1,𝜏
)
𝜏
∫

𝜏

0

u
𝑛
(𝜉, 𝑠) 𝑑𝑠

+ Θn ⋅ (∇2

Γ𝑛,𝜏
− ∇

2

Γ𝑛−1,𝜏
) u

𝑛
+𝐵 (u

𝑛
, 𝑟

𝑠

𝑛
) −𝐵 (u

𝑛−1
, 𝑟

𝑠

𝑛−1
) ,

G
(𝑛)
≡ 𝜒𝛾𝜌

𝑠

0
(∇

2

Γ𝑛,𝑡
− ∇

2

Γ𝑛−1,𝑡
) 𝑟

𝑠

𝑛
+ 𝐺 (u

𝑛
, 𝑟

𝑠

𝑛
) − 𝐺 (u

𝑛−1
, 𝑟

𝑠

𝑛−1
) .

(63)

Now, noting that the relations ∑3

𝑗=1
𝜕
𝜉𝑗
𝐴

𝑖𝑗
= 0 hold for

the cofactors𝐴
𝑖𝑗
of the Jacobianmatrix of any transformation

from 𝜉 to 𝑥, by direct calculations, we can verify that the
following relations hold:

𝜕F
(𝑛)

2

𝜕𝑡
− ∇

𝑢𝑛
⋅F

(𝑛)

1
= ∇ ⋅ h(𝑛), h(𝑛) =

3

∑

𝑘=1

𝜕
𝜉𝑘
H(𝑛)

𝑘
, (64)

where

H(𝑛)

𝑘
= − (J

−1

𝑢𝑛
−J

−1

𝑢𝑛−1
) L(𝑛)

𝑘
−J

−1

𝑢𝑛
M(𝑛)

𝑘

+
1

4𝜋
𝜕
𝜉𝑘
∫
Ω

N(𝑛)

𝑘
(𝜂, 𝑡)

𝜉 − 𝜂


𝑑𝜂,

(65)

with

L(𝑛)
𝑘
≡ ]𝐴(𝑛−1)

𝑖𝑘
𝐴
(𝑛−1)

𝑖𝑙
𝜕
𝜉𝑙
u
𝑛
−J

∗

𝑢𝑛−1
e
𝑘
𝑞
𝑛
,

M(𝑛)

𝑘
≡ ] (𝐴(𝑛)

𝑖𝑘
𝐴
(𝑛)

𝑖𝑙
− 𝐴

(𝑛−1)

𝑖𝑘
𝐴
(𝑛−1)

𝑖𝑙
) 𝜕

𝜉𝑙
u
𝑛

− (J
∗

𝑢𝑛
−J

∗

𝑢𝑛−1
) e

𝑘
𝑞
𝑛
,

N(𝑛)

𝑘
≡ {𝜕

𝑡
(J

−1

𝑢𝑛
−J

−1

𝑢𝑛−1
)}u

𝑛

− {𝜕
𝜂𝑘
(J

−1

𝑢𝑛
−J

−1

𝑢𝑛−1
)} L(𝑛)

𝑘
− (𝜕

𝜂𝑘
J

−1

𝑢𝑛
)M(𝑛)

𝑘
.

(66)

In (66), the Einstein summation convention is used, 𝐴(𝑛)

𝑖𝑗

denotes the (𝑖, 𝑗)-component ofJ∗

𝑛
, and e

𝑘
, 𝑘 = 1, 2, 3, denote

fundamental unit vectors in R3.
For the terms in (63), h(𝑛), andH(𝑛)

𝑘
, we have the following

estimate for arbitrary 0 < 𝜖 < 1:


F

(𝑛)

1



(𝛼,(𝛼/2))

Ω0𝑇

+

F

(𝑛)

2



(1+𝛼,((1+𝛼)/2))

Ω0𝑇

+

F

(𝑛)

3



(1+𝛼,((1+𝛼)/2))

Γ0𝑇

+

𝑏
(𝑛)

(1+𝛼,((1+𝛼)/2))

Γ0𝑇

+

B

(𝑛)

(𝛼,(𝛼/2))

Γ0𝑇

+

h(𝑛)

(𝛼,(𝛼/2))

Ω0𝑇

+

3

∑

𝑘=1


H(𝑛)

𝑘



(1+𝛼,𝛾)

Ω0𝑇

+

G

(𝑛)

(𝛼,(𝛼/2))

Γ0𝑇

≤ 𝐶
1
{𝜖 (


𝑈

(𝑛)

(2+𝛼,1+(𝛼/2))

Ω0𝑇

+

𝑅
(𝑛)

(2+𝛼,1+(𝛼/2))

Γ0𝑇

)

+ 𝐶 (𝜖) ∫

𝑇

0

(

𝑈

(𝑛)

(2+𝛼,1+(𝛼/2))

Ω0𝜏

+

𝑅
(𝑛)

(2+𝛼,1+(𝛼/2))

Γ0𝜏

)𝑑𝜏} .

(67)

We will derive here the estimate only of H(𝑛)

𝑘
because the

other terms can be estimated in a similar and simplermanner.
Noting that the following estimates hold for u

𝑛
and 𝑞

𝑛
:

u𝑛


(2+𝛼,1+(𝛼/2))

Ω0𝑇
+
𝑞𝑛


(1+𝛼,𝛾)

Ω0𝑇
≤ 𝐶

2
, (68)

and with the aid of estimates (38) and (39), we have


(J

−1

𝑢𝑛
−J

−1

𝑢𝑛−1
) L(𝑛)

𝑘



(1+𝛼,𝛾)

Ω0𝑇

,

J

−1

𝑢𝑛
M(𝑛)

𝑘



(1+𝛼,𝛾)

Ω0𝑇

,

N(𝑛)

𝑘



(0,((1+𝛼)/2))

Ω0𝑇

≤ 𝐶
3
(𝜖

𝑈

(𝑛)

(2+𝛼,1+(𝛼/2))

Ω0𝑇

+𝐶 (𝜖) ∫

𝑇

0


𝑈

(𝑛)

(2+𝛼,1+(𝛼/2))

Ω0𝜏

𝑑𝜏) .

(69)

Noting also the following inequality:



𝜕
𝜉𝑘
∫
Ω

N(𝑛)

𝑘
(𝜂, 𝑡)

𝜉 − 𝜂


𝑑𝜂



(1+𝛼,𝛾)

Ω0𝑇

≤ 𝐶
4


N(𝑛)

𝑘



(0,((1+𝛼−𝛾)/2))

Ω0𝑇

, (70)

from estimate (69) for N(𝑛)

𝑘
, we have



𝜕
𝜉𝑘
∫
Ω

N(𝑛)

𝑘
(𝜂, 𝑡)

𝜉 − 𝜂


𝑑𝜂



(1+𝛼,𝛾)

Ω0𝑇

≤ 𝐶
5
(𝜖

𝑈

(𝑛)

(2+𝛼,1+(𝛼/2))

Ω0𝑇

+ 𝐶 (𝜖) ∫

𝑇

0


𝑈

(𝑛)

(2+𝛼,1+(𝛼/2))

Ω0𝜏

𝑑𝜏) .

(71)

Thus, from estimates (69) and (71), we have the desired
estimate forH(𝑛)

𝑘
.
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Now, applying Theorem 4 to problem (62), we have the
following estimate:


𝑈

(𝑛+1)

(2+𝛼,1+(𝛼/2))

Ω0𝑇

+

𝑄

(𝑛+1)𝑇
+

𝑅
(𝑛+1)

(2+𝛼,1+(𝛼/2))

Γ0𝑇

≤ 𝐶
6
{𝜖 (


𝑈

(𝑛)

(2+𝛼,1+(𝛼/2))

Ω0𝑇

+

𝑅
(𝑛)

(2+𝛼,1+(𝛼/2))

Γ0𝑇

)

+ 𝐶 (𝜖)∫

𝑇

0

(

𝑈

(𝑛)

(2+𝛼,1+(𝛼/2))

Ω0𝜏

+

𝑅
(𝑛)

(2+𝛼,1+(𝛼/2))

Γ0𝜏

)𝑑𝜏},

(72)

where the norm ‖𝑓‖
𝑇
is defined as ‖𝑓‖

𝑇
≡ |𝑓|

(1+𝛼,𝛾)

Ω0𝑇
+

|∇𝑓|
(𝛼,(𝛼/2))

Ω0𝑇
+ |𝑓|

(1+𝛼,((1+𝛼)/2))

Γ0𝑇
. Fixing 𝜖 so that 𝐶

6
𝜖 ≤ 1/2 and

summing the above inequalities from 𝑛 = 1 to 𝑛 = 𝑚, we have

𝑆
𝑚
(𝑇) ≤ 𝐶

7
(𝑆

1
(𝑇) + ∫

𝑇

0

𝑆
𝑚
(𝜏) 𝑑𝜏) , (73)

where

𝑆
𝑚
(𝑇) ≡

𝑚

∑

𝑛=1

(

𝑈

(𝑛)

(2+𝛼,1+(𝛼/2))

Ω0𝑇

+

𝑄

(𝑛)𝑇
+

𝑅
(𝑛)

(𝛼,(𝛼/2))

Γ0𝑇

) .

(74)

Then, using Gronwall’s inequality, from the above inequality,
we have

𝑆
𝑚 (𝑇) ≤ 𝐶8

(1 + 𝑇𝑒
𝐶9𝑇) . (75)

Noting that the right-hand side in (75) is independent of
𝑚, we can conclude that the sequence {(u

𝑛
, 𝑞

𝑛
, 𝑟

𝑠

𝑛
)} is conver-

gent in𝐶2+𝛼,1+(𝛼/2)
(Ω

0𝑇
)×(𝐶

1+𝛼,𝛾
(Ω

0𝑇
)∩𝐶

1+𝛼,((1+𝛼)/2)
(Γ

0𝑇
))×

𝐶
2+𝛼,1+(𝛼/2)

(Γ
0𝑇
).

Now, let us prove Theorem 1. Taking the limit as 𝑛 tends
to infinity in problem (3), we can easily see that the limit of
the sequence {(u

𝑛
, 𝑞

𝑛
, 𝑟

𝑠

𝑛
)} is a solution of problem (11)–(13).

The uniqueness can be proved as follows. Let (u, 𝑞, 𝑟𝑠) and
(ũ, 𝑞, 𝑟𝑠) be two solutions of problem (11)–(13). By subtracting
one equation from the other, we obtain the equations for the
differences 𝑉 ≡ u − ũ, 𝑃 ≡ 𝑞 − 𝑞, and 𝑅 ≡ 𝑟𝑠 − 𝑟𝑠, the form of
which is similar to (62). Then, in a similar manner to obtain
(72), we can obtain the following estimate:

|𝑉|
(2+𝛼,1+(𝛼/2))

Ω0𝑇
+ |𝑅|

(2+𝛼,1+(𝛼/2))

Γ0𝑇

≤ 𝐶
10
{𝜖 (|𝑉|

(2+𝛼,1+(𝛼/2))

Ω0𝑇
+ |𝑅|

(2+𝛼,1+(𝛼/2))

Γ0𝑇
)

+ 𝐶 (𝜖) ∫

𝑇

0

(|𝑉|
(2+𝛼,1+(𝛼/2))

Ω0𝜏
+ |𝑅|

(2+𝛼,1+(𝛼/2))

Γ0𝜏
) 𝑑𝜏} .

(76)

This inequality implies that 𝑉 = 0 and 𝑅 = 0, and as a
consequence, 𝑃 = 0 follows. Thus, the proof of Theorem 1
is completed.
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[7] O. A. Lady ženskaja, V. A. Solonnikov, andN.N.Ural’ceva, “Lin-
ear and quasi-linear equations of parabolic type,”Translations of
Mathematical Monographs, 1968.



Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2013, Article ID 659804, 7 pages
http://dx.doi.org/10.1155/2013/659804

Research Article
Inverse Coefficient Problem of the Parabolic Equation with
Periodic Boundary and Integral Overdetermination Conditions

Fatma Kanca

Department of Management Information Systems, Kadir Has University, 34083 Istanbul, Turkey

Correspondence should be addressed to Fatma Kanca; fatma.kanca@khas.edu.tr

Received 6 May 2013; Accepted 23 August 2013

Academic Editor: Daniel C. Biles

Copyright © 2013 Fatma Kanca.This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper investigates the inverse problem of finding a time-dependent diffusion coefficient in a parabolic equation with the
periodic boundary and integral overdetermination conditions. Under some assumption on the data, the existence, uniqueness,
and continuous dependence on the data of the solution are shown by using the generalized Fourier method. The accuracy and
computational efficiency of the proposed method are verified with the help of the numerical examples.

1. Introduction

Denote the domain𝐷
𝑇
by

𝐷
𝑇
= {(𝑥, 𝑡) : 0 < 𝑥 < 1, 0 < 𝑡 ≤ 𝑇} . (1)

Consider the equation

𝑢
𝑡
= 𝑎 (𝑡) 𝑢

𝑥𝑥
+ 𝐹 (𝑥, 𝑡) , (2)

with the initial condition

𝑢 (𝑥, 0) = 𝜑 (𝑥) , 0 ≤ 𝑥 ≤ 1, (3)

the periodic boundary condition

𝑢 (0, 𝑡) = 𝑢 (1, 𝑡) , 𝑢
𝑥
(0, 𝑡) = 𝑢

𝑥
(1, 𝑡) ,

0 ≤ 𝑡 ≤ 𝑇,

(4)

and the overdetermination condition

∫

1

0

𝑥𝑢 (𝑥, 𝑡) 𝑑𝑥 = 𝐸 (𝑡) , 0 ≤ 𝑡 ≤ 𝑇. (5)

The problem of finding a pair {𝑎(𝑡), 𝑢(𝑥, 𝑡)} in (2)–(5) will be
called an inverse problem.

Definition 1. The pair {𝑎(𝑡), 𝑢(𝑥, 𝑡)} from the class 𝐶[0, 𝑇] ×
𝐶
2,1
(𝐷
𝑇
) ∩ 𝐶
1,0
(𝐷
𝑇
) for which conditions (2)–(5) is satisfied

and 𝑎(𝑡) > 0 on the interval [0, 𝑇], is called a classical solution
of the inverse problem (2)–(5).

The parameter identification in a parabolic differential
equation from the data of integral overdetermination condi-
tion plays an important role in engineering and physics [1–7].
This integral condition in parabolic problems is also called
heat moments [5].

Boundary value problems for parabolic equations in one
or two local classical conditions are replaced by heatmoments
[8–13].These kinds of conditions such as (5) arise frommany
important applications in heat transfer, thermoelasticity,
control theory, life sciences, and so forth. For example, in heat
propagation in a thin rod, the law of variation𝐸(𝑡) of the total
quantity of heat in the rod is given in [8]. In [12], a physical-
mechanical interpretation of the integral conditions was also
given.

Various statements of inverse problems on determination
of thermal coefficient in one-dimensional heat equation were
studied in [4, 5, 7, 14]. In papers [4, 5, 7], the time-dependent
thermal coefficient is determined from the heat moment.

Boundary value problems and inverse problems for
parabolic equations with periodic boundary conditions are
investigated in [15, 16].
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In the present work, one heat moment is used with peri-
odic boundary condition for the determination of thermal
coefficient. The existence and uniqueness of the classical
solution of the problem (2)–(5) is reduced to fixed point
principles by applying the Fourier method.

This paper organized as follows. In Section 2, the exis-
tence and uniqueness of the solution of inverse problem (2)–
(5) are proved by using the Fourier method. In Section 3,
the continuous dependence on the solution of the inverse
problem is shown. In Section 4, the numerical procedure for
the solution of the inverse problem using the Crank-Nicolson
scheme combined with an iteration method is given. Finally,
in Section 5, numerical experiments are presented and dis-
cussed.

2. Existence and Uniqueness of
the Solution of the Inverse Problem

Wehave the following assumptions on the data of the problem
(2)–(5).

(𝐴
1
) 𝐸(𝑡) ∈ 𝐶

1
[0, 𝑇], 𝐸(𝑡) > 0, for all 𝑡 ∈ [0, 𝑇];

(𝐴
2
) 𝜑(𝑥) ∈ 𝐶

4
[0, 1];

(1) 𝜑(0) = 𝜑(1), 𝜑(0) = 𝜑

(1), 𝜑(0) = 𝜑


(1),

∫
1

0
𝑥𝜑(𝑥)𝑑𝑥 = 𝐸(0);

(2) 𝜑
𝑛
≥ 0, 𝑛 = 1, 2, . . .;

(𝐴
3
) 𝐹(𝑥, 𝑡) ∈ 𝐶(𝐷

𝑇
); 𝐹(𝑥, 𝑡) ∈ 𝐶

4
[0, 1] for arbitrary fixed

𝑡 ∈ [0, 𝑇];

(1) 𝐹(0, 𝑡) = 𝐹(1, 𝑡), 𝐹
𝑥
(0, 𝑡) = 𝐹

𝑥
(1, 𝑡), 𝐹

𝑥𝑥
(0, 𝑡) =

𝐹
𝑥𝑥
(1, 𝑡);

(2) 𝐹
𝑛
(𝑡) ≥ 0, 𝑛 = 1, 2, . . .,

where𝜑
𝑛
=∫
1

0
𝜑(𝑥) sin(2𝜋𝑛𝑥)𝑑𝑥,𝐹

𝑛
(𝑡)=∫

1

0
𝐹(𝑥, 𝑡) sin(2𝜋𝑛𝑥)𝑑𝑥,

𝑛 = 0, 1, 2, . . . .

Theorem 2. Let the assumptions (𝐴
1
)–(𝐴
3
) be satisfied. Then

the following statements are true.

(1) The inverse problem (2)–(5) has a solution in 𝐷
𝑇
.

(2) The solution of inverse problem (2)–(5) is unique in
𝐷
𝑇0
, where the number 𝑇

0
(0 < 𝑇

0
< 𝑇) is determined

by the data of the problem.

Proof. By applying the standard procedure of the Fourier
method, we obtain the following representation for the solu-
tion of (2)–(4) for arbitrary 𝑎(𝑡) ∈ 𝐶[0, 𝑇]:

𝑢 (𝑥, 𝑡) =

∞

∑

𝑛=1

[𝜑
𝑛
𝑒
−(2𝜋𝑛)

2
∫
𝑡

0
𝑎(𝑠)𝑑𝑠

+ ∫

𝑡

0

𝐹
𝑛
(𝜏) 𝑒
−(2𝜋𝑛)

2
∫
𝑡

𝜏
𝑎(𝑠)𝑑𝑠

𝑑𝜏]

× sin (2𝜋𝑛𝑥) .
(6)

The assumptions 𝜑(0) = 𝜑(1), 𝜑(0) = 𝜑

(1), 𝐹(0, 𝑡) =

𝐹(1, 𝑡), and𝐹
𝑥
(0, 𝑡) = 𝐹

𝑥
(1, 𝑡) are consistent conditions for the

representation (2) of the solution 𝑢(𝑥, 𝑡) to be valid. Further-
more, under the smoothness assumptions 𝜑(𝑥) ∈ 𝐶

4
[0, 1],

𝐹(𝑥, 𝑡) ∈ 𝐶(𝐷
𝑇
), and 𝐹(𝑥, 𝑡) ∈ 𝐶

4
[0, 1] for all 𝑡 ∈ [0, 𝑇], the

series (6) and its 𝑥-partial derivative converge uniformly in
𝐷
𝑇
since their majorizing sums are absolutely convergent.

Therefore, their sums 𝑢(𝑥, 𝑡) and 𝑢
𝑥
(𝑥, 𝑡) are continuous in

𝐷
𝑇
. In addition, the 𝑡-partial derivative and the 𝑥𝑥-second-

order partial derivative series are uniformly convergent for
𝑡 ≥ 𝜀 > 0 (𝜀 is an arbitrary positive number). Thus, 𝑢(𝑥, 𝑡) ∈
𝐶
2,1
(𝐷
𝑇
) ∩ 𝐶
1,0
(𝐷
𝑇
) and satisfies the conditions (2)–(4). In

addition, 𝑢
𝑡
(𝑥, 𝑡) is continuous in𝐷

𝑇
because the majorizing

sum of 𝑡-partial derivative series is absolutely convergent
under the condition 𝜑


(0) = 𝜑


(1) and 𝑓

𝑥𝑥
(0, 𝑡) = 𝑓

𝑥𝑥
(1, 𝑡)

in𝐷
𝑇
. Equation (6) can be differentiated under the condition

(𝐴
1
) to obtain

∫

1

0

𝑥𝑢
𝑡
(𝑥, 𝑡) 𝑑𝑥 = 𝐸


(𝑡) , (7)

and this yields

𝑎 (𝑡) = 𝑃 [𝑎 (𝑡)] , (8)

where

𝑃 [𝑎 (𝑡)]

=
𝐸

(𝑡) + ∑

∞

𝑛=1
(1/2𝜋𝑛) 𝐹

𝑛
(𝑡)

∑
∞

𝑛=1
2𝜋𝑛 (𝜑

𝑛
𝑒
−(2𝜋𝑛)

2
∫
𝑡

0
𝑎(𝑠)𝑑𝑠

+ ∫
𝑡

0
𝐹
𝑛
(𝜏) 𝑒
−(2𝜋𝑛)

2
∫
𝑡

𝜏
𝑎(𝑠)𝑑𝑠

𝑑𝜏)

.

(9)

Denote

𝐶
0
= min
𝑡∈[0,𝑇]

𝐸

(𝑡) + min
𝑡∈[0,𝑇]

(

∞

∑

𝑛=1

1

2𝜋𝑛
𝐹
𝑛 (𝑡)) ,

𝐶
1
= max
𝑡∈[0,𝑇]

𝐸

(𝑡) + max
𝑡∈[0,𝑇]

(

∞

∑

𝑛=1

1

2𝜋𝑛
𝐹
𝑛
(𝑡)) ,

𝐶
2
= 𝐸

(0) , 𝐶

3
=

∞

∑

𝑘=1

2𝜋𝑛(𝜑
𝑛
+ ∫

𝑇

0

𝐹
𝑛
(𝜏) 𝑑𝜏) .

(10)

Using the representation (8), the following estimate is true:

0 <
𝐶
0

𝐶
3

≤ 𝑎 (𝑡) ≤
𝐶
1

𝐶
2

. (11)

Introduce the set𝑀 as

𝑀 = {𝑎 (𝑡) ∈ 𝐶 [0, 𝑇] :
𝐶
0

C
3

≤ 𝑎 (𝑡) ≤
𝐶
1

𝐶
2

} . (12)

It is easy to see that

𝑃 : 𝑀 → 𝑀. (13)

Compactness of 𝑃 is verified by analogy to [7]. By virtue of
Schauder’s fixed-point theorem, we have a solution 𝑎(𝑡) ∈

𝐶[0, 𝑇] of (8).
Now let us show that there exists 𝐷

𝑇0
(0 < 𝑇

0
≤ 𝑇) for

which the solution (𝑎, 𝑢) of the problem (2)–(5) is unique in
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𝐷
𝑇0
. Suppose that (𝑏, V) is also a solution pair of the problem

(2)–(5). Then from the representations (6) and (8) of the
solution, we have

𝑢 (𝑥, 𝑡) − V (𝑥, 𝑡)

=

∞

∑

𝑛=1

𝜑
𝑛
(𝑒
−(2𝜋𝑛)

2
∫
𝑡

0
𝑎(𝑠)𝑑𝑠

− 𝑒
−(2𝜋𝑛)

2
∫
𝑡

0
𝑏(𝑠)𝑑𝑠

) sin 2𝜋𝑛 (𝑥)

+

∞

∑

𝑛=1

(∫

𝑡

0

𝐹
𝑛
(𝜏) (𝑒

−(2𝜋𝑛)
2
∫
𝑡

𝜏
𝑎(𝑠)𝑑𝑠

− 𝑒
−(2𝜋𝑛)

2
∫
𝑡

𝜏
𝑏(𝑠)𝑑𝑠

)𝑑𝜏)

× sin 2𝜋𝑛 (𝑥) ,

𝑎 (𝑡) − 𝑏 (𝑡) = 𝑃 [𝑎 (𝑡)] − 𝑃 [𝑏 (𝑡)] ,

(14)

where

𝑃 [𝑎 (𝑡)] − 𝑃 [𝑏 (𝑡)]

=
𝐸

(𝑡) + ∑

∞

𝑛=1
(1/2𝜋𝑛) 𝐹

𝑛
(𝑡)

∑
∞

𝑛=1
2𝜋𝑛 (𝜑

𝑛
𝑒
−(2𝜋𝑛)

2
∫
𝑡

0
𝑎(𝑠)𝑑𝑠

+ ∫
𝑡

0
𝐹
𝑛
(𝜏) 𝑒
−(2𝜋𝑛)

2
∫
𝑡

𝜏
𝑎(𝑠)𝑑𝑠

𝑑𝜏)

−
𝐸

(𝑡) + ∑

∞

𝑛=1
(1/2𝜋𝑛) 𝐹𝑛 (𝑡)

∑
∞

𝑛=1
2𝜋𝑛 (𝜑

𝑛
𝑒
−(2𝜋𝑛)

2
∫
𝑡

0
𝑏(𝑠)𝑑𝑠

+ ∫
𝑡

0
𝐹
𝑛 (𝜏) 𝑒

−(2𝜋𝑛)
2
∫
𝑡

𝜏
𝑏(𝑠)𝑑𝑠

𝑑𝜏)

.

(15)

The following estimate is true:

|𝑃 [𝑎 (𝑡)] − 𝑃 [𝑏 (𝑡)]|

≤

(𝐸

(𝑡) + ∑

∞

𝑛=1
(1/2𝜋𝑛) 𝐹

𝑛
(𝑡))

𝐶
2

2

⋅ (

∞

∑

𝑛=1

2𝜋𝑛𝜑
𝑛
(𝑒
−(2𝜋𝑛)

2
∫
𝑡

0
𝑎(𝑠)𝑑𝑠

− 𝑒
−(2𝜋𝑛)

2
∫
𝑡

0
𝑏(𝑠)𝑑𝑠

) +

∞

∑

𝑛=1

2𝜋𝑛

×(∫

𝑡

0

𝐹
𝑛 (𝜏) (𝑒

−(2𝜋𝑛)
2
∫
𝑡

𝜏
𝑎(𝑠)𝑑𝑠

− 𝑒
−(2𝜋𝑛)

2
∫
𝑡

𝜏
𝑏(𝑠)𝑑𝑠

)𝑑𝜏)) .

(16)

Using the estimates

𝑒
−(2𝜋𝑛)

2
∫
𝑡

0
𝑎(𝑠)𝑑𝑠

− 𝑒
−(2𝜋𝑛)

2
∫
𝑡

0
𝑏(𝑠)𝑑𝑠



≤ (2𝜋𝑛)
2
𝑇max
0≤𝑡≤𝑇

|𝑎 (𝑡) − 𝑏 (𝑡)| ,


𝑒𝑒
−(2𝜋𝑛)

2
∫
𝑡

𝜏
𝑎(𝑠)𝑑𝑠

− 𝑒
−(2𝜋𝑛)

2
∫
𝑡

𝜏
𝑏(𝑠)𝑑𝑠



≤ (2𝜋𝑛)
2
𝑇max
0≤𝑡≤𝑇

|𝑎 (𝑡) − 𝑏 (𝑡)| ,

(17)

we obtain

max
0≤𝑡≤𝑇

|𝑃 [𝑎 (𝑡)] − 𝑃 [𝑏 (𝑡)]| ≤ 𝛼max
0≤𝑡≤𝑇

|𝑎 (𝑡) − 𝑏 (𝑡)| . (18)

Let 𝛼 ∈ (0, 1) be arbitrary fixed number. Fix a number 𝑇
0
,

0 < 𝑇
0
≤ 𝑇, such that

𝐶
1
(𝐶
4
+ 𝐶
5
)

𝐶
2

2

𝑇
0
≤ 𝛼. (19)

Then from the equality (10), we obtain

‖𝑎 − 𝑏‖𝐶[0,𝑇0]
≤ 𝛼‖𝑎 − 𝑏‖𝐶[0,𝑇0]

, (20)

which implies that 𝑎 = 𝑏. By substituting 𝑎 = 𝑏 in (9), we have
𝑢 = V.

3. Continuous Dependence of
(𝑎, 𝑢) on the Data

Theorem3. Under assumptions (𝐴
1
)–(𝐴
3
), the solution (𝑎, 𝑢)

of the problem (2)–(5) depends continuously on the data for
small T.

Proof. Let Φ = {𝜑, 𝐹, 𝐸} and Φ = {𝜑, 𝐹, 𝐸} be two sets of the
data, which satisfy the assumptions (𝐴

1
)–(𝐴
3
). Then there

exist positive constants𝑀
𝑖
, 𝑖 = 1,2,3 such that

𝜑
𝐶4[0,1]

≤ 𝑀
1
,

‖𝐹‖
𝐶
4,0
(𝐷𝑇)

≤ 𝑀
2
,

‖𝐸‖𝐶1[0,𝑇] ≤ 𝑀
3
,

𝜑
𝐶4[0,1]

≤ 𝑀
1
,


𝐹
𝐶4,0(𝐷𝑇)

≤ 𝑀
2
,


𝐸
𝐶1[0,𝑇]

≤ 𝑀
3
.

(21)

Let (𝑎, 𝑢) and (𝑎, 𝑢) be solutions of the inverse problem
(2)–(5) corresponding to the data Φ and Φ, respectively. Ac-
cording to (8),

𝑎 (𝑡)

=
𝐸

(𝑡) + ∑

∞

𝑛=1
(1/2𝜋𝑛) 𝐹

𝑛
(𝑡)

∑
∞

𝑛=1
2𝜋𝑛 (𝜑

𝑛
𝑒
−(2𝜋𝑛)

2
∫
𝑡

0
𝑎(𝑠)𝑑𝑠

+ ∫
𝑡

0
𝐹
𝑛
(𝜏) 𝑒
−(2𝜋𝑛)

2
∫
𝑡

𝜏
𝑎(𝑠)𝑑𝑠

𝑑𝜏)

,

𝑎 (𝑡)

=
𝐸


(𝑡) + ∑
∞

𝑛=1
(1/2𝜋𝑛) 𝐹

𝑛
(𝑡)

∑
∞

𝑛=1
2𝜋𝑛 (𝜑

𝑛
𝑒
−(2𝜋𝑛)

2
∫
𝑡

0
𝑎(𝑠)𝑑𝑠

+ ∫
𝑡

0
𝐹
𝑛
(𝜏) 𝑒
−(2𝜋𝑛)

2
∫
𝑡

𝜏
𝑎(𝑠)𝑑𝑠

𝑑𝜏)

.

(22)
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First let us estimate the difference 𝑎 − 𝑎. It is easy to compute
that



𝐸

(𝑡)

∞

∑

𝑛=1

2𝜋𝑛𝜑
𝑛
𝑒
−(2𝜋𝑛)

2
∫
𝑡

0
𝑎(𝑠)𝑑𝑠

−𝐸


(𝑡)

∞

∑

𝑛=1

2𝜋𝑛𝜑
𝑛
𝑒
−(2𝜋𝑛)

2
∫
𝑡

0
𝑎(𝑠)𝑑𝑠



≤ 𝑀
4


𝐸 − 𝐸

𝐶1[0,𝑇]
+𝑀
5

𝜑 − 𝜑
𝐶4[0,1]

+𝑀
6‖𝑎 − 𝑎‖

𝐶[0,𝑇]
,



𝐸

(𝑡)

∞

∑

𝑛=1

2𝜋𝑛∫

𝑡

0

𝐹
𝑛
(𝜏) 𝑒
−(2𝜋𝑛)

2
∫
𝑡

𝜏
𝑎(𝑠)𝑑𝑠

𝑑𝜏

−𝐸


(𝑡)

∞

∑

𝑛=1

2𝜋𝑛∫

𝑡

0

𝐹
𝑛 (𝜏) 𝑒

−(2𝜋𝑛)
2
∫
𝑡

𝜏
𝑎(𝑠)𝑑𝑠

𝑑𝜏



≤ 𝑀
7
𝑇

𝐸 − 𝐸

𝐶1[0,𝑇]
+𝑀
5
𝑇

𝐹 − 𝐹


𝐶
4,0
(𝐷𝑇)

+𝑀
8‖𝑎 − 𝑎‖

𝐶[0,𝑇]
,



∞

∑

𝑛=1

1

2𝜋𝑛
𝐹
𝑛 (𝑡)

∞

∑

𝑛=1

2𝜋𝑛𝜑
𝑛
𝑒
−(2𝜋𝑛)

2
∫
𝑡

0
𝑎(𝑠)𝑑𝑠

−

∞

∑

𝑛=1

1

2𝜋𝑛
𝐹
𝑛
(𝑡)

∞

∑

𝑛=1

2𝜋𝑛𝜑
𝑛
𝑒
−(2𝜋𝑛)

2
∫
𝑡

0
𝑎(𝑠)𝑑𝑠



≤ 2√6𝑀
4


𝐹 − 𝐹

𝐶4,0(𝐷𝑇)
+ 2√6𝑀

7

𝜑 − 𝜑
𝐶4[0,1]

+𝑀
9‖𝑎 − 𝑎‖

𝐶[0,𝑇]
,



∞

∑

𝑛=1

1

2𝜋𝑛
𝐹
𝑛
(𝑡)

∞

∑

𝑛=1

2𝜋𝑛∫

𝑡

0

𝐹
𝑛
(𝜏) 𝑒
−(2𝜋𝑛)

2
∫
𝑡

𝜏
𝑎(𝑠)𝑑𝑠

−

∞

∑

𝑛=1

1

2𝜋𝑛
𝐹
𝑛 (𝑡)

∞

∑

𝑛=1

2𝜋𝑛∫

𝑡

0

𝐹
𝑛 (𝜏) 𝑒

−(2𝜋𝑛)
2
∫
𝑡

𝜏
𝑎(𝑠)𝑑𝑠

𝑑𝜏



≤ √6𝑇𝑀

𝐹 − 𝐹

𝐶4,0(𝐷𝑇)
+𝑀
10‖𝑎 − 𝑎‖

𝐶[0,𝑇]
,

(23)

where𝑀
𝑘
, 𝑘 = 4, . . . , 10, are some constants.

If we consider these estimates in 𝑎 − 𝑎, we obtain

(1 −𝑀
11
) ‖𝑎 − 𝑎‖𝐶[0,𝑇]

≤ 𝑀
12
(

𝐸 − 𝐸

𝐶1[0,𝑇]
+
𝜑 − 𝜑

𝐶4[0,1]
+

𝐹 − 𝐹

𝐶4,0(𝐷𝑇)
) .

(24)

The inequality𝑀
11

< 1 holds for small 𝑇. Finally, we obtain

‖𝑎 − 𝑎‖𝐶[0,𝑇] ≤ 𝑀
13


Φ − Φ


, 𝑀

13
=

𝑀
12

(1 −𝑀
11
)
,

(25)

where ‖Φ − Φ‖ = ‖𝐸 − 𝐸‖
𝐶
1
[0,𝑇]

+ ‖𝜑 − 𝜑‖
𝐶
4
[0,1]

+

‖𝐹 − 𝐹‖
𝐶
4,0
(𝐷𝑇)

.

From (6), a similar estimate is also obtained for the dif-
ference 𝑢 − 𝑢 as

‖𝑢 − 𝑢‖
𝐶(𝐷𝑇)

≤ 𝑀
14


Φ − Φ


. (26)

4. Numerical Method

We use the finite difference method with a predictor-correct-
or-type approach, that is suggested in [2]. Apply this method
to the problem (2)–(5).

We subdivide the intervals [0, 1] and [0, 𝑇] into 𝑁
𝑥
and

𝑁
𝑡
subintervals of equal lengths ℎ = (1/𝑁

𝑥
) and 𝜏 = (𝑇/𝑁

𝑡
),

respectively. Then we add two lines 𝑥 = 0 and 𝑥 = (𝑁
𝑥
+ 1)ℎ

to generate the fictitious points needed for dealing with the
second boundary condition. We choose the Crank-Nicolson
scheme, which is absolutely stable and has a second-order
accuracy in both ℎ and 𝜏 [15]. The Crank-Nicolson scheme
for (2)–(5) is as follows:

1

𝜏
(𝑢
𝑗+1

𝑖
− 𝑢
𝑗

𝑖
)

=
1

2
(𝑎
𝑗+1

+ 𝑎
𝑗
)

1

2ℎ2

× [(𝑢
𝑗

𝑖−1
− 2𝑢
𝑗

𝑖
+ 𝑢
𝑗

𝑖+1
) + (𝑢

𝑗+1

𝑖−1
− 2𝑢
𝑗+1

𝑖
+ 𝑢
𝑗+1

𝑖+1
)]

+
1

2
(𝐹
𝑗+1

𝑖
+ 𝐹
𝑗

𝑖
) ,

𝑢
0

𝑖
= 𝜙
𝑖
,

𝑢
𝑗

0
= 𝑢
𝑗

𝑁𝑥
,

𝑢
𝑗

1
= 𝑢
𝑗

𝑁𝑥+1
,

(27)

where 1 ≤ 𝑖 ≤ 𝑁
𝑥
and 0 ≤ 𝑗 ≤ 𝑁

𝑡
are the indices for the

spatial and time steps, respectively, 𝑢𝑗
𝑖
= 𝑢(𝑥

𝑖
, 𝑡
𝑗
), 𝜙
𝑖
= 𝜑(𝑥

𝑖
),

𝐹
𝑗

𝑖
= 𝐹(𝑥

𝑖
, 𝑡
𝑗
), and 𝑥

𝑖
= 𝑖ℎ, 𝑡

𝑗
= 𝑗𝜏. At the 𝑡 = 0 level,

adjustment should be made according to the initial condition
and the compatibility requirements.

Equation (27) form an𝑁
𝑥
×𝑁
𝑥
linear system of equations

𝐴𝑈
𝑗+1

= 𝑏, (28)

where

𝑈
𝑗
= (𝑢
𝑗

1
, 𝑢
𝑗

2
, . . . , 𝑢

𝑗

𝑁𝑥
)
tr
, 1 ≤ 𝑗 ≤ 𝑁

𝑡
,

𝑏 = (𝑏
1
, 𝑏
2
, . . . , 𝑏

𝑁𝑥
)
tr
,

𝐴=

[
[
[
[
[
[
[
[

[

−2 (1 + 𝑅) 1 0 ⋅ ⋅ ⋅ 0 1

1 −2 (1 + 𝑅) 1 0 ⋅ ⋅ ⋅ 0

0 1 −2 (1 + 𝑅) 1 0 ⋅ ⋅ ⋅ 0

... d

0 1 −2 (1 + 𝑅) 1

1 0 1 −2 (1 + 𝑅)

]
]
]
]
]
]
]
]

]

,



Abstract and Applied Analysis 5

𝑅 =
2ℎ
2

𝜏 (𝑎𝑗+1 + 𝑎𝑗)
, 𝑗 = 0, 1, . . . , 𝑁

𝑡
,

𝑏
1
= 2 (1 − 𝑅) 𝑢

𝑗

1
− 𝑢
𝑗

2
− 𝑢
𝑗

𝑁𝑥
− 𝑅𝜏 (𝐹

𝑗+1

1
+ 𝐹
𝑗

1
) ,

𝑗 = 0, 1, . . . , 𝑁
𝑡
,

𝑏
𝑁𝑥

= − 𝑢
𝑗

𝑁𝑥−1
+ 2 (1 − 𝑅) 𝑢

𝑗

𝑁𝑥
− 𝑢
𝑗

1

− 𝑅𝜏 (𝐹
𝑗+1

𝑁𝑥
+ 𝐹
𝑗

𝑁𝑥
) , 𝑗 = 0, 1, . . . , 𝑁

𝑡
,

𝑏
𝑖
= − 𝑢

𝑗

𝑖−1
+ 2 (1 − 𝑅) 𝑢

𝑗

𝑖
− 𝑢
𝑗

𝑖+1
− 𝑅𝜏 (𝐹

𝑗+1

𝑖
+ 𝐹
𝑗

𝑖
) ,

𝑖 = 2, 3, . . . , 𝑁
𝑥
− 1, 𝑗 = 0, 1, . . . , 𝑁

𝑡
.

(29)
Now, let us construct the predicting-correcting mecha-

nism. First, multiplying (2) by 𝑥 from 0 to 1 and using (4)
and (5), we obtain

𝑎 (𝑡) =

𝐸

(𝑡) − ∫

1

0
𝑥𝐹 (𝑥, 𝑡) 𝑑𝑥

𝑢
𝑥
(1, 𝑡)

. (30)

The finite difference approximation of (30) is

𝑎
𝑗
=

[((𝐸
𝑗+1

− 𝐸
𝑗
) /𝜏) − (Fin)𝑗] ℎ

𝑢
𝑗

𝑁𝑥+1
− 𝑢
𝑗

𝑁𝑥

, (31)

where 𝐸𝑗 = 𝐸(𝑡
𝑗
), (Fin)𝑗 = ∫

1

0
𝑥𝐹(𝑥, 𝑡

𝑗
)𝑑𝑥, 𝑗 = 0, 1, . . . , 𝑁

𝑡
.

For 𝑗 = 0,

𝑎
0
=

[((𝐸
1
− 𝐸
0
) /𝜏) − (Fin)0] ℎ

𝜙
𝑁𝑥+1

− 𝜙
𝑁𝑥

, (32)

and the values of 𝜙
𝑖
help us to start our computation. We

denote the values of 𝑎𝑗, 𝑢𝑗
𝑖
at the 𝑠th iteration step 𝑎𝑗(𝑠), 𝑢𝑗(𝑠)

𝑖
,

respectively. In numerical computation, since the time step
is very small, we can take 𝑎

𝑗+1(0)
= 𝑎
𝑗, 𝑢𝑗+1(0)
𝑖

= 𝑢
𝑗

𝑖
, 𝑗 =

0, 1, 2, . . . 𝑁
𝑡
, 𝑖 = 1, 2, . . . , 𝑁

𝑥
. At each (𝑠 + 1)th iteration step,

we first determine 𝑎𝑗+1(𝑠+1) from the formula

𝑎
𝑗+1(𝑠+1)

=

[((𝐸
𝑗+2

− 𝐸
𝑗+1

) /𝜏) − (Fin)𝑗+1] ℎ

𝑢
𝑗+1(𝑠)

𝑁𝑥+1
− 𝑢
𝑗+1(𝑠)

𝑁𝑥

. (33)

Then from (27) we obtain
1

𝜏
(𝑢
𝑗+1(𝑠+1)

𝑖
− 𝑢
𝑗+1(𝑠)

𝑖
)

=
1

4ℎ2
(𝑎
𝑗+1(𝑠+1)

+ 𝑎
𝑗+1(𝑠)

)

× [(𝑢
𝑗+1(𝑠+1)

𝑖−1
− 2𝑢
𝑗+1(𝑠+1)

𝑖
+ 𝑢
𝑗+1(𝑠+1)

𝑖+1
)

+ (𝑢
𝑗+1(𝑠)

𝑖−1
− 2𝑢
𝑗+1(𝑠)

𝑖
+ 𝑢
𝑗+1(𝑠)

𝑖+1
)]

+
1

2
(𝐹
𝑗+1

𝑖
+ 𝐹
𝑗

𝑖
) ,

𝑢
𝑗+1(𝑠)

0
= 𝑢
𝑗+1(𝑠)

𝑁𝑥
,

𝑢
𝑗+1(𝑠)

1
= 𝑢
𝑗+1(𝑠)

𝑁𝑥+1
, 𝑠 = 0, 1, 2, . . . .

(34)
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Figure 1:The analytical and numerical solutions of 𝑎(𝑡)when𝑇 = 1.
The analytical solution is shown with dashed line.
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Figure 2: The analytical and numerical solutions of 𝑢(𝑥, 𝑡) at the
𝑇 = 1. The analytical solution is shown with dashed line.

The system of (34) can be solved by the Gauss elimination
method and 𝑢𝑗+1(𝑠+1)

𝑖
is determined. If the difference of values

between two iterations reaches the prescribed tolerance, the
iteration is stopped and we accept the corresponding values
𝑎
𝑗+1(𝑠+1), 𝑢

𝑗+1(𝑠+1)

𝑖
(𝑖 = 1, 2, . . . , 𝑁

𝑥
) as 𝑎

𝑗+1, 𝑢𝑗+1
𝑖

(𝑖 =

1, 2, . . . , 𝑁
𝑥
), on the (𝑗 + 1)th time step, respectively. In virtue

of this iteration, we can move from level 𝑗 to level 𝑗 + 1.

5. Numerical Examples and Discussions

Example 1. Consider the inverse problem (2)–(5), with

𝐹 (𝑥, 𝑡) = (2𝜋)
2 sin (2𝜋𝑥) exp (𝑡) ,

𝜑 (𝑥) = sin (2𝜋𝑥) ,

𝐸 (𝑡) = −
1

2𝜋
exp (−𝑡) ,

𝑥 ∈ [0, 1] , 𝑡 ∈ [0, 𝑇] .

(35)
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Figure 3:The analytical and numerical solutions of 𝑎(𝑡)when𝑇 = 1.
The analytical solution is shown with dashed line.
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Figure 4: The analytical and numerical solutions of 𝑢(𝑥, 𝑡) at the
𝑇 = 1. The analytical solution is shown with dashed line.

It is easy to check that the analytical solution of the prob-
lem (2)–(5) is

{𝑎 (𝑡) , 𝑢 (𝑥, 𝑡)} = {
1

(2𝜋)
2
+ exp (2𝑡) , sin (2𝜋𝑥) exp (−𝑡)} .

(36)

Let us apply the scheme which was explained in the
previous section for the step sizes ℎ = 0.005, 𝜏 = 0.005.

In the case when 𝑇 = 1, the comparisons between the
analytical solution (36) and the numerical finite difference
solution are shown in Figures 1 and 2.

Example 2. Consider the inverse problem (2)–(5), with

𝐹 (𝑥, 𝑡) = (2𝜋)
2 sin (2𝜋𝑥) exp (−𝑡 + sin (4𝜋𝑡)) ,

𝜑 (𝑥) = sin (2𝜋𝑥) ,

𝐸 (𝑡) = −
1

2𝜋
exp (−𝑡) ,

𝑥 ∈ [0, 1] , 𝑡 ∈ [0, 𝑇] .

(37)

It is easy to check that the analytical solution of the prob-
lem (2)–(5) is

{𝑎 (𝑡) , 𝑢 (𝑥, 𝑡)}

= {
1

(2𝜋)
2
+ exp (sin (4𝜋𝑡)) , sin (2𝜋𝑥) exp (−𝑡)} .

(38)

Let us apply the scheme which was explained in the
previous section for the step sizes ℎ = 0.01, 𝜏 = ℎ/8.

In the case when 𝑇 = 1, the comparisons between the
analytical solution (38) and the numerical finite difference
solution are shown in Figures 3 and 4.

6. Conclusions

The inverse problem regarding the simultaneously identi-
fication of the time-dependent thermal diffusivity and the
temperature distribution in one-dimensional heat equation
with periodic boundary and integral overdetermination con-
ditions has been considered. This inverse problem has been
investigated from both theoretical and numerical points of
view. In the theoretical part of the paper, the conditions
for the existence, uniqueness, and continuous dependence
on the data of the problem have been established. In the
numerical part, the sensitivity of the Crank-Nicolson finite-
difference scheme combined with an iteration method with
the examples has been illustrated.
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We establish general conditions for the unique solvability of nonlinear measure functional differential equations in terms of
properties of suitable linear majorants.

1. Introduction, Motivation, and
Problem Setting

Let R = (−∞,∞), R𝑛 ∋ 𝑥 = (𝑥
𝑘
)
𝑛

𝑘=1
→ ‖𝑥‖ := max

1≤𝑘≤𝑛
|𝑥
𝑘
|

be the norm inR𝑛, and let BV([𝑎, 𝑏],R𝑛) be the Banach space
of functions of bounded variation with the standard norm
BV([𝑎, 𝑏],R𝑛) ∋ 𝑢 →‖𝑢‖BV := |𝑢(𝑎)| + Var

[𝑎,𝑏]
𝑢, where

−∞ < 𝑎 < 𝑏 < ∞.
Our aim is to examine the solvability of the equation

𝑢 (𝑡) = 𝜑 (𝑢) + ∫

𝑡

𝑎

(𝑓𝑢) (𝑠) 𝑑𝑔 (𝑠) , 𝑡 ∈ [𝑎, 𝑏] ; (1)

𝑓 : BV([𝑎, 𝑏],R𝑛) → BV([𝑎, 𝑏],R𝑛) is a, generally speaking,
nonlinear operator and 𝜑 : BV([𝑎, 𝑏],R𝑛) → R𝑛 is a
nonlinear vector functional. The integral on the right-hand
side of (1) is the Kurzweil-Stieltjes integral with respect to a
nondecreasing function 𝑔 : [𝑎, 𝑏] → R. We refer to [1–5]
for the definition and properties of this kind of an integral,
recalling only that (1) is a particular case of a generalised
differential equation [2, 6]. It is important to note that, for
any 𝑢 ∈ BV([𝑎, 𝑏],R𝑛), the Kurzweil-Stieltjes integral in (1)
exists (see, e.g., [4, 7]) and, therefore, the equation itselfmakes
sense.

By a solution of (1), we mean a vector function 𝑢 :

[𝑎, 𝑏] → R𝑛 which has bounded variation and satisfies (1)
on the interval [𝑎, 𝑏].

Equation (1) is an extension of a measure differential
equation studied systematically, for example, in [2, 8–10]. It
is a fairly general object which includes many other types of
equations such as differential equations with impulses [11] or
functional dynamic equations on time scales [12] (see, e.g.,
[13, 14]). In particular, if 𝑔(𝑠) = 𝑠, 𝑠 ∈ [𝑎, 𝑏], (1) takes the form

𝑢 (𝑡) = 𝜑 (𝑢) + ∫

𝑡

𝑎

(𝑓𝑢) (𝑠) 𝑑𝑠, 𝑡 ∈ [𝑎, 𝑏] , (2)

and, thus, in the absolutely continuous case, reduces to the
nonlocal boundary value problem for a functional differential
equation

𝑢

(𝑡) = (𝑓𝑢) (𝑡) , 𝑡 ∈ [𝑎, 𝑏] , 𝑢 (𝑎) = 𝜑 (𝑢) , (3)

whose various particular types are the object of investigation
of many authors (see, e.g., [15–19]). A more general choice
of 𝑔 in (1) allows one to cover further cases where solutions
lose their absolute continuity at some points. For example,
consider the impulsive functional differential equation [16,
page 191]

𝑢

(𝑡) = (𝑓𝑢) (𝑡) , 𝑡 ∈ [𝑎, 𝑏] \ {𝑡1, 𝑡2, . . . , 𝑡𝑚} ,

Δ𝑢 (𝑡) = 𝐼
𝑖
(𝑢 (𝑡)) for 𝑡 = 𝑡

𝑖
, 𝑖 ∈ {1, 2, . . . , 𝑚} ,

(4)

where Δ𝑢(𝑡) := 𝑢(𝑡+) − 𝑢(𝑡−) for any function 𝑢 from
BV([𝑎, 𝑏],R𝑛) (in fact, Δ𝑢(𝑡) = 𝑢(𝑡+) − 𝑢(𝑡) if, as is
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customary [11] in that context, a solution is assumed to be
left continuous). Here, 𝑓 = (𝑓

𝑘
)
𝑛

𝑘=1
: BV([𝑎, 𝑏],R𝑛) →

BV([𝑎, 𝑏],R𝑛), the jumps may occur at the preassigned times
𝑡
1
, 𝑡
2
, . . . , 𝑡

𝑚
, and their action is described by the operators

𝐼
𝑖
: R𝑛 → R𝑛, 𝑖 = 1, . . . , 𝑚. By the usual integration

argument [11], one can represent (4) alternatively in the form

𝑢 (𝑡) = 𝑢 (𝑎) + ∫

𝑡

𝑎

(𝑓𝑢) (𝑠) 𝑑𝑠

+ ∑

𝑘:𝑎<𝑡𝑘<𝑡,

𝐼
𝑘
(𝑢 (𝑡
𝑘
)) , 𝑡 ∈ [𝑎, 𝑏] .

(5)

It follows, in particular, from [14, Lemma 2.4] that (5) is
equivalent to the measure functional differential equation

𝑢 (𝑡) = 𝑢 (𝑎) + ∫

𝑡

𝑎

(𝑓𝑢) (𝑠) 𝑑𝑔 (𝑠) , 𝑡 ∈ [𝑎, 𝑏] , (6)

with 𝑔(𝑠) = 𝑠 + ∑
𝑚

𝑖=1
𝜒
(𝑡𝑖 ,𝑏]

(𝑠), 𝑠 ∈ [𝑎, 𝑏], and 𝑓 :

BV([𝑎, 𝑏],R𝑛) → BV([𝑎, 𝑏],R𝑛) defined by the relation

(𝑓𝑢) (𝑠) = {
(𝑓𝑢) (𝑠) if 𝑠 ∈ [𝑎, 𝑏] \ {𝑡1, 𝑡2, . . . , 𝑡𝑚} ,
𝐼
𝑖 (𝑢 (𝑠)) if 𝑠 ∈ {𝑡

1
, 𝑡
2
, . . . , 𝑡

𝑚
} .

(7)

Thus, system (4) can be considered as a particular case of
(1). Likewise, an appropriate construction [13, 20] allows
one to regard differential equations on time scales [12] as
measure differential equations.The same is true for equations
involving functional components; in the case of a differential
equation on a time scale with retarded argument, by choosing
𝑔 suitably [13], one arrives at the equation

𝑢 (𝑡) = 𝑢 (𝑎) + ∫

𝑡

𝑎

ℎ (𝑢
𝑠
, 𝑠) 𝑑𝑔 (𝑠) , 𝑡 ∈ [𝑎, 𝑏] ,

𝑢
𝑎
= 𝜙.

(8)

In (8), ℎ : 𝐶([−𝑟, 0],R𝑛) × [𝑎, 𝑏] → R𝑛 is a functional
in the first variable, 𝜙 is from the space 𝐶([−𝑟, 0],R𝑛) of
continuous functions on [−𝑟, 0], and the Krasovsky notation
𝑢
𝑡
: [−𝑟, 0] ∋ 𝑠 → 𝑢(𝑡 + 𝑠), 𝑟 > 0, is used [21, Chapter

VI]. Finally, eliminating the initial function 𝜙 from (8) in a
standard way by transforming it to a forcing term (see [15]),
we conclude that the resulting equation falls into the class of
equations of form (1).

Note that, by measure functional differential equations,
the Volterra type equations of form (8) are usually meant
in the existing bibliography on the subject (see, e.g., [8, 13,
22]), whereas equations with more general types of argument
deviation are rather scarce (we can cite, perhaps, only [4, page
217]). Comparing (8) with (1), we find that the latter includes
non-Volterra cases as well.

This list of examples can be continued. It is interesting
to observe that solutions of problems of type (3) studied
in the literature up to now are always assumed, at least
locally, to be absolutely continuous [16], or even continuously
differentiable [23]. In contrast to this, the gauge integral
involved in (1) allows one to deal with a considerably wider
class of solutions, which are, in fact, assumed to be of

bounded variation only. A possible noteworthy consequence
for systems with impulses may be that the unpleasant effect
of the so-called pulsation phenomenon [11, page 5] might be
more natural to be dealt with in the framework of the space
BV([𝑎, 𝑏],R𝑛). Our interest in (1), originally motivated by a
relation to problems of type (3), has strengthened still further
due to the last observation.

The general character of the object represented by (1)
suggests a natural idea to examine its solvability by comparing
it to simpler linear equations with suitable properties. Here,
we show that such statements can indeed be obtained rather
easily by analogy to [24–26]. The key assumption is that cer-
tain linear operators associated with the nonlinear operator
𝑓 appearing in (1) possess the following property.

Definition 1. Let ℎ : BV([𝑎, 𝑏],R𝑛) → R𝑛 be a linear map-
ping. One says that a linear operator 𝑝 : BV([𝑎, 𝑏],R𝑛) →

BV([𝑎, 𝑏],R𝑛) belongs to the setS
ℎ
([𝑎, 𝑏],R𝑛) if the equation

𝑢 (𝑡) = ℎ (𝑢) + ∫

𝑡

𝑎

(𝑝𝑢) (𝑠) 𝑑𝑔 (𝑠) + 𝑟 (𝑡) ,

𝑡 ∈ [𝑎, 𝑏]

(9)

has a unique solution 𝑢 for any 𝑟 from BV([𝑎, 𝑏],R𝑛), and,
moreover, the solution 𝑢 is nonnegative for any nonnegative
𝑟.

The property described by Definition 1, in fact, means
that the linear operator associated with (9) is positively
invertible on BV([𝑎, 𝑏],R𝑛), and thus it corresponds to the
existence and positivity of Green’s operator for a boundary
value problem [15].

Remark 2. The inclusion 𝑝 ∈ S
ℎ
([𝑎, 𝑏],R𝑛), generally

speaking, does not imply that 𝜆𝑝 ∈ S
ℎ
([𝑎, 𝑏],R𝑛) for 𝜆 ̸= 1!

The question on the unique solvability of (1) is thus
reduced to estimating the nonlinearities suitably, so that
the appropriate majorants generate linear equations with a
unique solution depending monotonously on forcing terms.
The problem of finding such majorants is a separate topic not
discussed here. We only note that, in a number of cases, the
existing results on differential inequalities can be applied (see,
e.g., [17–19]).

Note that, due to the nature of the techniques used,
statements of this kind available in the literature on problems
of type (3), as a rule, are established separately in every
concrete case (see, e.g., [27–29]). Here, we provide a simple
unified proof, which is, in a sense, independent on the
character of the equation and also allows one to gain a
considerable degree of generality. The results may be useful
in studies of the solvability of various measure functional
differential equations and, in particular, of problem (3) and
its generalisations (note that, e.g., rather complicated neutral-
type functional differential equations [23] can be formulated
in form (1); see also [4, 30]).
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2. Unique Solvability Conditions

We are going to show that the knowledge of the property 𝑝 ∈
S
ℎ
([𝑎, 𝑏],R𝑛) for certain linear operators 𝑝 and ℎ associated

with (1) allows one to guarantee its unique solvability.

2.1. Nonlinear Equations. The following statement is true.

Theorem 3. Assume that there exist certain linear operators
𝑝
𝑖
: BV([𝑎, 𝑏],R𝑛) → BV([𝑎, 𝑏],R𝑛), 𝑖 = 1, 2, such that

𝑝
2
(𝑢 − V) (𝑡) ≤ (𝑓𝑢) (𝑡) − (𝑓V) (𝑡)

≤ 𝑝
1 (𝑢 − V) (𝑡) , 𝑡 ∈ [𝑎, 𝑏] ,

(10)

for arbitrary functions 𝑢 : [𝑎, 𝑏] → R𝑛, V : [𝑎, 𝑏] → R𝑛 with
the property

𝑢 (𝑡) ≥ V (𝑡) ∀𝑡 ∈ [𝑎, 𝑏] . (11)

Furthermore, let the inclusions

𝑝
1
∈ S
ℎ1
([𝑎, 𝑏] ,R

𝑛
) ,

1

2
(𝑝
1
+ 𝑝
2
) ∈ S
(1/2)(ℎ1+ℎ2)

([𝑎, 𝑏] ,R
𝑛
)

(12)

be fulfilled with some linear functionals ℎ
𝑖
: BV([𝑎, 𝑏],R𝑛) →

R, 𝑖 = 1, 2. Then (1) has a unique solution for an arbitrary 𝜑
such that

ℎ
2
(𝑢 − V) ≤ 𝜑 (𝑢) − 𝜑 (V) ≤ ℎ

1
(𝑢 − V) (13)

whenever (11) holds.

The inequality sign and modulus for vectors in (10), (11),
(13), and similar relations below are understood component-
wise. The theorem as well as the other statements formulated
below will be proved later.

Theorem 4. Let there exist certain linear operators 𝑙
𝑖

:

BV([𝑎, 𝑏],R𝑛) → BV([𝑎, 𝑏],R𝑛), 𝑖 = 1, 2, and linear
functionals ℎ

𝑖
: BV([𝑎, 𝑏],R𝑛) → R, 𝑖 = 1, 2 satisfying the

inclusions

𝑙
1
+ 𝑙
2
∈ S
ℎ1
([𝑎, 𝑏] ,R

𝑛
) ,

𝑙
1
∈ S
(1/2)(ℎ1+ℎ2)

([𝑎, 𝑏] ,R
𝑛
) ,

(14)

and such that (13) and the inequality
(𝑓𝑢) (𝑡) − (𝑓V) (𝑡) − 𝑙1 (𝑢 − V) (𝑡)

≤ 𝑙
2 (𝑢 − V) (𝑡) , 𝑡 ∈ [𝑎, 𝑏] ,

(15)

is true for arbitrary functions𝑢 and V of bounded variationwith
property (11). Then (1) is uniquely solvable.

Theorem 4 is, in fact, an alternative form of Theorem 3,
where the estimate of a “linear part” is more visible.

In other statements, we need the following natural notion
of positivity of a linear operator in the space BV([𝑎, 𝑏],R𝑛).

Definition 5. A linear operator 𝑞 : BV([𝑎, 𝑏],R𝑛) →

BV([𝑎, 𝑏],R𝑛) will be called positive if 𝑞𝑢 is a nonnegative
function for an arbitrary nonnegative 𝑢 from BV([𝑎, 𝑏],R𝑛).

Note that no monotonicity assumptions are imposed on
𝑙
1
in Theorem 4. In the cases where the positivity of certain

linear majorants is known, the following statement may be of
use.

Corollary 6. Assume that there exist some positive linear
operators 𝑞

𝑖
: BV([𝑎, 𝑏],R𝑛) → BV([𝑎, 𝑏],R𝑛), 𝑖 = 1, 2, such

that the inequalities
(𝑓𝑢) (𝑡) − (𝑓V) (𝑡) + 𝑞2 (𝑢 − V) (𝑡) ≤ 𝑞1 (𝑢 − V) (𝑡) (16)

hold on [𝑎, 𝑏] for any 𝑢 and V fromBV([𝑎, 𝑏],R𝑛)with property
(11). Moreover, let one can specify linear functionals ℎ

𝑖
:

BV([𝑎, 𝑏],R𝑛) → R, 𝑖 = 1, 2, satisfying (13), and such that
the inclusions

𝑞
1
+ (1 − 2𝜃) 𝑞

2
∈ S
ℎ1
([𝑎, 𝑏] ,R

𝑛
) ,

−𝜃𝑞
2
∈ S
(1/2)(ℎ1+ℎ2)

([𝑎, 𝑏] ,R
𝑛
)

(17)

hold for a certain 𝜃 ∈ (0, 1). Then (1) has a unique solution.

Corollary 6 allows one to obtain, in particular, the follow-
ing statements.

Corollary 7. Assume that, for arbitrary 𝑢 and V from
BV([𝑎, 𝑏],R𝑛)with property (11),𝑓 and 𝜑 satisfy estimates (13)
and (16) with some linear functionals ℎ

𝑖
: BV([𝑎, 𝑏],R𝑛) →

R, 𝑖 = 1, 2 and positive linear operators 𝑞
𝑖
: BV([𝑎, 𝑏],R𝑛) →

BV([𝑎, 𝑏],R𝑛), 𝑖 = 1, 2. Then the inclusions

𝑞
1
∈ S
ℎ1
([𝑎, 𝑏] ,R

𝑛
) , −

1

2
𝑞
2
∈ S
(1/2)(ℎ1+ℎ2)

([𝑎, 𝑏] ,R
𝑛
)

(18)

guarantee that (1) is uniquely solvable.

Corollary 8. The assertion of Corollary 7 is true with (18)
replaced by the condition

𝑞
1
+
1

2
𝑞
2
∈ S
ℎ1
([𝑎, 𝑏] ,R

𝑛
) ,

−
1

4
𝑞
2
∈ S
(1/2)(ℎ1+ℎ2)

([𝑎, 𝑏] ,R
𝑛
) .

(19)

The statements formulated above express fairly general
properties of (1) and extend, in particular, the corresponding
results of [25, 27, 29, 31].

2.2. Linear Equations. Let us now assume that 𝑓 :

BV([𝑎, 𝑏],R𝑛) → BV([𝑎, 𝑏],R𝑛) in (1) is an affine mapping,
and, therefore, (1) has the form

𝑢 (𝑡) = ℎ (𝑢) + ∫

𝑡

𝑎

(𝑙𝑢) (𝑠) 𝑑𝑔 (𝑠) + 𝑦 (𝑡) , 𝑡 ∈ [𝑎, 𝑏] , (20)

where 𝑙 : BV([𝑎, 𝑏],R𝑛) → BV([𝑎, 𝑏],R𝑛) and ℎ :

BV([𝑎, 𝑏],R𝑛) → R𝑛 are linear, and 𝑦 ∈ BV([𝑎, 𝑏],R𝑛) is
a given function.
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Corollary 9. Assume that there exist certain linear operators
𝑝
𝑖
: BV([𝑎, 𝑏],R𝑛) → BV([𝑎, 𝑏],R𝑛), 𝑖 = 0, 1, and a linear

mapping ℎ : BV([𝑎, 𝑏],R𝑛) → R𝑛 such that the inclusions

𝑝
1
∈ S
ℎ
([𝑎, 𝑏] ,R

𝑛
) , 𝑝

0
+ 𝑝
1
∈ S
ℎ
([𝑎, 𝑏] ,R

𝑛
) (21)

hold, and the estimate
(𝑙𝑢) (𝑡) − (𝑝1𝑢) (𝑡)

 ≤ (𝑝0𝑢) (𝑡) , 𝑡 ∈ [𝑎, 𝑏] (22)

is satisfied for any nonnegative 𝑢 ∈ BV ([𝑎, 𝑏],R𝑛). Then (20)
has a unique solution.

We also have the following.

Corollary 10. Let there exist positive linear operators 𝑞
𝑖
:

BV([𝑎, 𝑏],R𝑛) → BV([𝑎, 𝑏],R𝑛), 𝑖 = 0, 1, satisfying the
inclusions

𝑞
1
∈ S
ℎ
([𝑎, 𝑏] ,R

𝑛
) , −

1

2
𝑞
2
∈ S
ℎ
([𝑎, 𝑏] ,R

𝑛
) , (23)

and such that the inequalities
(𝑙𝑢) (𝑡) + (𝑞2𝑢) (𝑡)

 ≤ (𝑞1𝑢) (𝑡) , 𝑡 ∈ [𝑎, 𝑏] (24)

are true for an arbitrary nonnegative function 𝑢 : [𝑎, 𝑏] → R𝑛

of bounded variation. Then (20) has a unique solution for any
𝑦 ∈ BV([𝑎, 𝑏],R𝑛).

We conclude this note by considering the case where 𝑙 in
(20) is a linear mapping admitting a decomposition into the
sum of its positive and negative parts; that is,

𝑙 = 𝑙
0
− 𝑙
1
, (25)

where 𝑙
𝑘
: BV([𝑎, 𝑏],R𝑛) → BV([𝑎, 𝑏],R𝑛), 𝑘 = 0, 1, are

linear and positive. In that case, for the equation of the form

𝑢 (𝑡) = ℎ (𝑢) + ∫

𝑡

𝑎

[(𝑙
0
𝑢) (𝑠) − (𝑙

1
𝑢) (𝑠)] 𝑑𝑔 (𝑠) + 𝑦 (𝑡) ,

𝑡 ∈ [𝑎, 𝑏] ,

(26)

where ℎ : BV([𝑎, 𝑏],R𝑛) → R𝑛 is linear and 𝑦 ∈

BV([𝑎, 𝑏],R𝑛), the following result is obtained.

Corollary 11. Let the linear vector functional ℎ :

BV([𝑎, 𝑏],R𝑛) → R𝑛 and the linear positive operators
𝑙
𝑖
: BV([𝑎, 𝑏],R𝑛) → BV([𝑎, 𝑏],R𝑛), 𝑖 = 1, 2, be such that

the inclusions

𝑙
0
∈ S
ℎ
([𝑎, 𝑏] ,R

𝑛
) ,

1

2
(𝑙
0
− 𝑙
1
) ∈ S
ℎ
([𝑎, 𝑏] ,R

𝑛
)

(27)

are satisfied. Then (26) has a unique solution for any 𝑦 ∈

BV([𝑎, 𝑏],R𝑛).

It is interesting to observe the second condition in (27); it
thus turns out that propertyS

ℎ
([𝑎, 𝑏],R𝑛) for one half of the

operator under the integral sign in (26) ensures the unique
solvability of the original equation (26).

3. Proofs

Let ⟨𝐸, ‖ ⋅ ‖⟩ be real Banach space, let 𝑧 ∈ 𝐸 be a given vector,
and let 𝐹 : 𝐸 → 𝐸 be a mapping. Let 𝐾

𝑖
⊂ 𝐸, 𝑖 = 1, 2,

be closed cones inducing the corresponding partial orderings
≦
𝐾𝑖
, so that 𝑥 ≦

𝐾𝑖
𝑦 if and only if 𝑦 − 𝑥 ∈ 𝐾

𝑖
. The following

statement [32, 33] on the abstract equation

𝐹𝑢 = 𝑧 (28)

will be used below.

Theorem 12 (see [33], Theorem 49.4). Let the cone 𝐾
2
be

normal and generating. Furthermore, let𝐵
𝑘
: 𝐸 → 𝐸, 𝑘 = 1, 2,

be linear operators such that 𝐵−1
1

and (𝐵
1
+ 𝐵
2
)
−1 exist and

possess the properties

𝐵
−1

1
(𝐾
2
) ⊂ 𝐾
1
, (𝐵

1
+ 𝐵
2
)
−1
(𝐾
2
) ⊂ 𝐾
1
, (29)

and, furthermore, let the order relation

𝐵
1
(𝑥 − 𝑦) ≦

𝐾2
𝐹𝑥 − 𝐹𝑦≦

𝐾2
𝐵
2
(𝑥 − 𝑦) (30)

be satisfied for any pair (𝑥, 𝑦) such that 𝑦 ≦
𝐾1
𝑥. Then (28) has

a unique solution for an arbitrary element 𝑧 ∈ 𝐸.

Recall that 𝐾
2
is normal if all the sets order bounded

with respect to ≦
𝐾2

are also norm bounded and that 𝐾
1
is

generating if and only if {𝑢 − V | {𝑢, V} ⊂ 𝐾
1
} = 𝐸 (see, e.g.,

[33, 34]).
Let BV+([𝑎, 𝑏],R𝑛) (resp., BV++([𝑎, 𝑏],R𝑛)) be the set of

all the nonnegative (resp., nonnegative and nondecreasing)
functions from BV([𝑎, 𝑏],R𝑛).

Lemma 13. (1) The set BV+([𝑎, 𝑏],R𝑛) is a cone in the space
BV([𝑎, 𝑏],R𝑛).

(2) The set BV++([𝑎, 𝑏],R𝑛) is a normal and generating
cone in BV([𝑎, 𝑏],R𝑛).

Proof. The first assertion of the lemma being obvious, only
the second one should be verified.

It follows directly from the definition of the set
BV++([𝑎, 𝑏],R𝑛) that it is a cone in BV([𝑎, 𝑏],R𝑛), which
is also generating due to the Jordan decomposition of a
function of bounded variation (see, e.g., [3]). In order
to verify its normality, it will be sufficient to show [32,
Theorem 4.1] that the set

𝐴 (𝛼, 𝛽) := {𝑥 ∈ BV ([𝑎, 𝑏] ,R
𝑛
) :

{𝑥 − 𝛼, 𝛽 − 𝑥} ⊂ BV++ ([𝑎, 𝑏] ,R𝑛)}
(31)

is bounded for any {𝛼, 𝛽} ⊂ BV([𝑎, 𝑏],R𝑛). Indeed, if 𝑥 ∈

𝐴(𝛼, 𝛽), then the functions 𝑥 − 𝛼 and 𝛽 − 𝑥 are both
nonnegative and nondecreasing. Therefore,

Var
[𝑎,𝑏]

(𝑥 − 𝛼) = 𝛼 (𝑎) − 𝛼 (𝑏) + 𝑥 (𝑏) − 𝑥 (𝑎) , (32)
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and, hence,

‖𝑥‖BV ≤ ‖𝛼‖BV + ‖𝑥 − 𝛼‖BV

= ‖𝛼‖BV + |𝑥 (𝑎) − 𝛼 (𝑎)| + Var
[𝑎,𝑏]

(𝑥 − 𝛼)

= ‖𝛼‖BV + 𝑥 (𝑏) − 𝛼 (𝑏) ≤ ‖𝛼‖BV + 𝛽 (𝑏) − 𝛼 (𝑏) .

(33)

The last estimate shows that the norms of all such 𝑥 are
uniformly bounded.

Let 𝑝 : BV([𝑎, 𝑏],R𝑛) → BV([𝑎, 𝑏],R𝑛) be a linear
operator and ℎ : BV([𝑎, 𝑏],R𝑛) → R a linear functional.
Let us put

𝑉
𝑝,ℎ
𝑢 := 𝑢 − ∫

⋅

𝑎

(𝑝𝑢) (𝜉) 𝑑𝑔 (𝜉) − ℎ (𝑢) (34)

for any 𝑢 from BV([𝑎, 𝑏],R𝑛). It follows immediately from
Definition 1 that the linear operator 𝑉

𝑝,ℎ
: BV([𝑎, 𝑏],R𝑛) →

BV([𝑎, 𝑏],R𝑛) defined by (34) has the following property.

Lemma 14. If 𝑝 is a linear operator such that

𝑝 ∈ S
ℎ
([𝑎, 𝑏] ,R

𝑛
) , (35)

then 𝑉
𝑝,ℎ

is invertible and, moreover, its inverse 𝑉−1
𝑝,ℎ

satisfies
the inclusion

𝑉
−1

𝑝,ℎ
(BV++ ([𝑎, 𝑏] ,R𝑛)) ⊂ BV+ ([𝑎, 𝑏] ,R𝑛) . (36)

We will also use the obvious identity

𝑉
𝑝1 ,ℎ1

+ 𝑉
𝑝2,ℎ2

= 2𝑉
(1/2)(𝑝1+𝑝2),(1/2)(ℎ1+ℎ2)

, (37)

which is valid for any linear 𝑝
𝑖

: BV([𝑎, 𝑏],R𝑛) →

BV([𝑎, 𝑏],R𝑛), 𝑖 = 1, 2.

3.1. Proof of Theorem 3. Let us set 𝐸 = BV([𝑎, 𝑏],R𝑛) and put

(𝐹𝑢) (𝑡) := 𝑢 (𝑡) − ∫

𝑡

𝑎

(𝑓𝑢) (𝑠) 𝑑𝑔 (𝑠) − 𝜑 (𝑢) , 𝑡 ∈ [𝑎, 𝑏] ,

(38)

for any 𝑢 from BV([𝑎, 𝑏],R𝑛). Then (1) takes the form of (28)
with 𝑧 = 0. Since 𝑓𝑢 and 𝑔 are both from BV([𝑎, 𝑏],R𝑛), it
follows (see, e.g., [30]) that the function

[𝑎, 𝑏] ∋ 𝑡 → ∫

𝑡

𝑎

(𝑓𝑢) (𝑠) 𝑑𝑔 (𝑠) (39)

also belongs to BV([𝑎, 𝑏],R𝑛).Therefore,𝐹 given by (38) is an
operator acting in 𝐸.

Note that relation (10) is equivalent to inequalities

−𝑝
1
(𝑢 − V) (𝑡) ≤ − (𝑓𝑢) (𝑡) + (𝑓V) (𝑡) ≤ −𝑝

2
(𝑢 − V) (𝑡) ,

(40)

for any 𝑡 ∈ [𝑎, 𝑏] and {𝑢, V} from BV([𝑎, 𝑏],R𝑛) with
properties (11). Integrating (40) with respect to 𝑔, we obtain

−∫

𝑡

𝑎

𝑝
1 (𝑢 − V) (𝑠) 𝑑𝑔 (𝑠) ≤ −∫

𝑡

𝑎

(𝑓𝑢) (𝑠) 𝑑𝑔 (𝑠)

+ ∫

𝑡

𝑎

(𝑓V) (𝑠) 𝑑𝑔 (𝑠)

≤ −∫

𝑡

𝑎

𝑝
2 (𝑢 − V) (𝑠) 𝑑𝑔 (𝑠) ,

(41)

and, therefore, according to (38),

𝑢 (𝑡) − V (𝑡) − ∫
𝑡

𝑎

𝑝
1 (𝑢 − V) (𝑠) 𝑑𝑔 (𝑠) − 𝜑 (𝑢) + 𝜑 (V)

≤ (𝐹𝑢) (𝑡) − (𝐹V) (𝑡)

≤ 𝑢 (𝑡) − V (𝑡) − ∫
𝑡

𝑎

𝑝
2
(𝑢 − V) (𝑠) 𝑑𝑔 (𝑠) − 𝜑 (𝑢) + 𝜑 (V) ,

(42)

for all 𝑡 ∈ [𝑎, 𝑏]. Taking assumption (13) into account and
using notation (34), we get

𝑉
𝑝1,ℎ1

(𝑢 − V) (𝑡) ≤ (𝐹𝑢) (𝑡) − (𝐹V) (𝑡) ≤ 𝑉𝑝2,ℎ2 (𝑢 − V) (𝑡) ,
(43)

for all 𝑡 ∈ [𝑎, 𝑏] and 𝑢 and V from BV([𝑎, 𝑏],R𝑛) with
properties (11). Furthermore, it follows immediately from
(34) and (38) that, for any 𝑡 ∈ [𝑎, 𝑏],

(𝐹𝑢) (𝑡) − (𝐹V) (𝑡) − 𝑉
𝑝1,ℎ1

(𝑢 − V) (𝑡)

= 𝜑 (V) − 𝜑 (𝑢)

+ ∫

𝑡

𝑎

[𝑝
1
(𝑢 − V) (𝑠) − (𝑓𝑢) (𝑠) + (𝑓V) (𝑠)] 𝑑𝑔 (𝑠) .

(44)

Therefore, by virtue of inequality (43) and assumption (10),
the function 𝐹𝑢 − 𝐹V − 𝑉

𝑝1,ℎ1
(𝑢 − V) is nonnegative and

nondecreasing and, hence,

𝐹𝑢 − 𝐹V − 𝑉
𝑝1,ℎ1

(𝑢 − V) ∈ BV++ ([𝑎, 𝑏] ,R𝑛) . (45)

In the same manner, one shows that

𝑉
𝑝2 ,ℎ2

(𝑢 − V) − 𝐹𝑢 + 𝐹V ∈ BV++ ([𝑎, 𝑏] ,R𝑛) . (46)

Considering (45) and (46), we conclude that 𝐹 satisfies
condition (30) with

𝐵
𝑖
= 𝑉
𝑝𝑖,ℎ𝑖

, (47)

𝑖 = 1, 2, and

𝐾
1
= BV+ ([𝑎, 𝑏] ,R𝑛) ,

𝐾
2
= BV++ ([𝑎, 𝑏] ,R𝑛) .

(48)
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By virtue of Lemma 13,𝐾
2
is a normal and generating cone in

BV([𝑎, 𝑏],R𝑛).
Since, by assumption (12), 𝑝

1
∈ S
ℎ1
, it follows that 𝑉

𝑝1 ,ℎ1

is invertible and the inclusion

𝑉
−1

𝑝1,ℎ1
(𝐾
2
) ⊂ 𝐾
1 (49)

holds. Furthermore, by (12) and Lemma 14, the opera-
tor (1/2)𝑉−1

(1/2)(𝑝1+𝑝2),(1/2)(ℎ1+ℎ2)
exists and coincides with the

inverse operator to 𝑉
𝑝1,ℎ1

+ 𝑉
𝑝2,ℎ2

. It is moreover positive in
the sense that

(𝑉
𝑝1,ℎ1

+ 𝑉
𝑝2 ,ℎ2

)
−1

(𝐾
2
) ⊂ 𝐾
1
. (50)

Combining (49) and (50), we see that the inverse operators
𝐵
−1 and (𝐵

1
+ 𝐵
2
)
−1 exist and possess properties (29) with

respect to cones (48). Applying now Theorem 12, we prove
the unique solvability of (28) and, hence, that of (1).

3.2. Proof of Theorem 4. Rewriting relations (15) in the form

𝑙
1
(𝑢 − V) (𝑡) − 𝑙

2
(𝑢 − V) (𝑡)

≤ (𝑓𝑢) (𝑡) − (𝑓V) (𝑡)

≤ 𝑙
2 (𝑢 − V) (𝑡) + 𝑙1 (𝑢 − V) (𝑡) , 𝑡 ∈ [𝑎, 𝑏] ,

(51)

and putting

𝑝
𝑖
:= 𝑙
1
− (−1)

𝑖
𝑙
2
, 𝑖 = 1, 2, (52)

we find that 𝑓 admits estimate (10) with 𝑝
1
and 𝑝

2
defined

by (52). Therefore, it remains only to note that assumption
(14) ensures the validity of inclusions (12), and to apply
Theorem 3.

3.3. Proof of Corollary 6. It turns out that, under assump-
tions (16) and (17), the operators 𝑙

𝑖
: BV([𝑎, 𝑏],R𝑛) →

BV([𝑎, 𝑏],R𝑛), 𝑖 = 1, 2, defined by the formulae

𝑙
1
:= −𝜃𝑞

2
, 𝑙

2
:= 𝑞
1
+ (1 − 𝜃) 𝑞

2 (53)

with 𝜃 ∈ (0, 1), satisfy conditions (14) and (15) of Theorem 4.
Indeed, estimate (16) and the positivity of the operator 𝑞

2

imply that, for any 𝑢 and V with properties (11) and all 𝑡 ∈
[𝑎, 𝑏], the relations

(𝑓𝑢) (𝑡) − (𝑓V) (𝑡) + 𝜃𝑞2 (𝑢 − V) (𝑡)

=
(𝑓𝑢) (𝑡) − (𝑓V) (𝑡) + 𝑞2 (𝑢 − V) (𝑡)

− (1 − 𝜃) 𝑞2 (𝑢 − V) (𝑡)

≤ 𝑞
1
(𝑢 − V) (𝑡) + (1 − 𝜃) 𝑞2 (𝑢 − V) (𝑡)

= 𝑞
1 (𝑢 − V) (𝑡) + (1 − 𝜃) 𝑞2 (𝑢 − V) (𝑡)

(54)

are true. This means that 𝑓 admits estimate (15) with the
operators 𝑙

1
and 𝑙
2
of form (53). It is easy to verify that

assumption (17) ensures the validity of inclusions (14) for
operators (53), and, therefore, Theorem 4 can be applied.

3.4. Proof of Corollaries 7 and 8. The results follow directly
from Corollary 6 if one puts 𝜃 = (1/2) and 𝜃 = (1/4),
respectively.

3.5. Proof of Corollary 9. If 𝑦 = 0, one should apply
Theorem 4 with 𝑓 = 𝑙, 𝑙

1
= 𝑝
1
, 𝑙
2
= 𝑝
0
, and ℎ

1
= ℎ,

ℎ
2
= ℎ. For a nonzero 𝑦 ∈ BV([𝑎, 𝑏],R𝑛), one can modify the

theorem slightly by incorporating the forcing term 𝑦 directly
into (1) similarly to (20). Then we find that the argument of
Section 3.1 remains almost unchanged.

3.6. Proof of Corollary 10. Corollary 7 with 𝑓 = 𝑙, ℎ
1
= ℎ, and

ℎ
2
= ℎ is applied.

3.7. Proof of Corollary 11. It is sufficient to note that, under
these assumptions, the linear operators 𝑝

𝑖
: BV([𝑎, 𝑏],R𝑛) →

BV([𝑎, 𝑏],R𝑛), 𝑖 = 1, 2, defined by the formulae

𝑝
0
:=

1

2
(𝑙
0
+ 𝑙
1
) , 𝑝

1
:=

1

2
(𝑙
0
− 𝑙
1
) , (55)

satisfy conditions (21) and (22) of Corollary 9.

4. Comments

The following can be pointed out in relation to the above said.

4.1. Remark on Constants. The conditions presented in Sec-
tions 2.1 and 2.2 are, in a sense, optimal and cannot be
improved. For example, it follows from [26] that assumption
(14) of Corollary 7 can be replaced neither by the condition

(1 − 𝜀) 𝑙
1
∈ S
ℎ
([𝑎, 𝑏] ,R

𝑛
) , 𝑙

0
+ 𝑙
1
∈ S
ℎ
([𝑎, 𝑏] ,R

𝑛
)

(56)

nor by the condition

𝑙
1
∈ S
ℎ
([𝑎, 𝑏] ,R

𝑛
) , (1 − 𝜀) (𝑙

0
+ 𝑙
1
) ∈ S
ℎ
([𝑎, 𝑏] ,R

𝑛
) ,

(57)

no matter how small 𝜀 ∈ (0,∞) may be. Likewise, coun-
terexamples show that the assertion of Corollary 11 is not true
any more if condition (27) is replaced by either of its weaker
versions

(1 − 𝜀) 𝑙
0
∈ S
ℎ
([𝑎, 𝑏] ,R

𝑛
) ,

1

2
(𝑙
0
− 𝑙
1
) ∈ S
ℎ
([𝑎, 𝑏] ,R

𝑛
) ,

(58)

and

𝑙
0
∈ S
ℎ
([𝑎, 𝑏] ,R

𝑛
) ,

1

2 + 𝜀
(𝑙
0
− 𝑙
1
) ∈ S
ℎ
([𝑎, 𝑏] ,R

𝑛
)

(59)

with a positive 𝜀. The same holds for the other inequalities
and constants.
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4.2. Equations with Matrix-Valued Functions. It is clear from
the proofs given above that similar statements can also be
obtained in the case where the integrals of matrix-valued
functions are considered in (1), as described, for example, in
[3, 4].

4.3. The Case of a Nonmonotone Measure. Results similar to
those stated above can also be formulated in the case where
the function𝑔 involved in (1) is of bounded variation only and
not necessarily nondecreasing. For this purpose, one should
use the representation

𝑔 = 𝑔
1
− 𝑔
2
, (60)

where 𝑔
𝑘
, 𝑘 = 1, 2, are nondecreasing functions, and modify

the definition of the set S
ℎ
([𝑎, 𝑏],R𝑛) in the following way.

Definition 15. A pair of operators (𝑞
1
, 𝑞
2
) is said to belong to

S
ℎ
([𝑎, 𝑏],R𝑛) if the equation

𝑢 (𝑡) = ℎ (𝑢) + ∫

𝑡

𝑎

(𝑞
1
𝑢) (𝑠) 𝑑𝑔

1
(𝑠)

− ∫

𝑡

𝑎

(𝑞
2
𝑢) (𝑠) 𝑑𝑔2 (𝑠) + 𝑟 (𝑡) , 𝑡 ∈ [𝑎, 𝑏] ,

(61)

has a unique solution 𝑢 for any 𝑟 from BV([𝑎, 𝑏],R𝑛) and,
moreover, the solution 𝑢 is nonnegative for nonnegative 𝑟.

In that case, an analogue of the assertion of Theorem 3
is obtained if assumption (12) is replaced by the pair of
conditions

(𝑝
1
, 𝑝
2
) ∈ S
ℎ1
([𝑎, 𝑏] ,R

𝑛
) ,

(
1

2
(𝑝
1
+ 𝑝
2
) ,
1

2
(𝑝
1
+ 𝑝
2
)) ∈ S

(1/2)(ℎ1+ℎ2)
([𝑎, 𝑏] ,R

𝑛
) .

(62)

The proof of this fact is pretty similar to the argument
given in Section 3.1 and uses Theorem 12 with the operators
𝐵
𝑘
: BV([𝑎, 𝑏],R𝑛) → BV([𝑎, 𝑏],R𝑛), 𝑘 = 1, 2,

(𝐵
𝑘
𝑢) (𝑡) := 𝑢 (𝑡) − ∫

𝑡

𝑎

(𝑝
𝑘
𝑢) (𝑠) 𝑑𝑔

1
(𝑠)

+ ∫

𝑡

𝑎

(𝑝
3−𝑘

𝑢) (𝑠) 𝑑𝑔2 (𝑠) − ℎ𝑘 (𝑢) , 𝑡 ∈ [𝑎, 𝑏] ,

(63)

instead of those defined by (47).
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References

[1] J. Kurzweil, “Generalized ordinary differential equations and
continuous dependence on a parameter,” Czechoslovak Mathe-
matical Journal, vol. 7, no. 82, pp. 418–449, 1957.

[2] S. Schwabik, Generalized Ordinary Differential Equations, vol. 5
of Series in Real Analysis, World Scientific, River Edge, NJ, USA,
1992.
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[4] M. Tvrdý, “Differential and integral equations in the space
of regulated functions,” Memoirs on Differential equations and
Mathematical Physics, vol. 25, pp. 1–104, 2002.
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A novel modification of the variational iteration method is proposed by means of Laplace transform and homotopy perturbation
method. The fractional lagrange multiplier is accurately determined by the Laplace transform and the nonlinear one can be easily
handled by the use ofHe’s polynomials. Several fractional nonlinear nonhomogeneous equations are analytically solved as examples
and the methodology is demonstrated.

1. Introduction

Recently, systems of fractional nonlinear partial differential
equations [1–3] have attracted much attention in a variety
of applied sciences. With the development of nonlinear
sciences, some numerical [4–6], semianalytical [7–12], and
analyticalmethods [13–15] have been developed for fractional
differential equations. So, the semianalytical methods have
largely been used to solve fractional equations. Most of
these methods have their inbuilt deficiencies like the cal-
culation of Adomian’s polynomials, the Lagrange multiplier,
divergent results, and huge computational work. Recently,
some improved homotopy perturbation methods [16, 17] and
improved variational iteration methods, [18, 19] have been
used by many researches.

The variational iteration method (VIM) [8, 9, 20] was
extended to initial value problems of differential equations
and has been one of the methods used most often. The key
problem of the VIM is the correct determination of the
Lagrange multiplier when the method is applied to fractional
equations; combined with the Laplace transform, the crucial
point of this method is solved efficiently by Wu and Baleanu
[21, 22]. Laplace transform overcomes principle drawbacks in
application of the VIM to fractional equations.

Motivated and inspired by the ongoing research in this
field, we give a new modification of variational iteration

method, combined with the Laplace transform and the
homotopy perturbation method. The fractional Lagrange
multiplier is accurately determined by the Laplace transform
and the nonlinear one can be easily handed by the use of
He’s polynomials. In this work, we will use this new method
to obtain approximate solutions of the fractional nonlinear
equations, and the fractional derivatives are described in the
Caputo sense.

2. Description of the Method

In order to illustrate the basic idea of the technique, consider
the following general nonlinear system:

𝜕
𝑚
𝑢 (𝑥, 𝑡)

𝜕𝑡𝑚
+ 𝑅 [𝑢 (𝑥, 𝑡)] + 𝑁 [𝑢 (𝑥, 𝑡)] = 𝑔 (𝑥, 𝑡) , (1)

𝑢
𝑘
(𝑥, 0
+
) = 𝑎
𝑘
, (2)

where 𝑘 = 0, . . . , 𝑚 − 1, 𝜕
𝑚
𝑢(𝑥, 𝑡)/𝜕𝑡

𝑚 is the term of the
highest-order derivative, 𝑔(𝑥, 𝑡) is the source term, 𝑁 repre-
sents the general nonlinear differential operator, and 𝑅 is the
linear differential operator.

Now, we consider the application of the modified VIM
[21, 22]. Taking the above Laplace transform to both sides
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of (1) and (2), then the linear part is transformed into an
algebraic equation as follows:

𝑠
𝑚
𝑈 (𝑥, 𝑠) − 𝑢

(𝑚−1)
(𝑥, 0) − ⋅ ⋅ ⋅ − 𝑠

𝑚−1
𝑢 (𝑥, 0)

+ 𝐿 [𝑅 [𝑢]] + 𝐿 [𝑁 [𝑢]] − 𝐿 [𝑔 (𝑥, 𝑡)] = 0,

(3)

where 𝑈(𝑥, 𝑠) = 𝐿[𝑢(𝑥, 𝑡)] = ∫
∞

0
𝑒
−𝑠𝑡
𝑢(𝑥, 𝑡)𝑑𝑡. The iteration

formula of (3) can be used to suggest the main iterative
scheme involving the Lagrange multiplier as

𝑈
𝑛+1 (𝑥, 𝑠) = 𝑈

𝑛 (𝑥, 𝑠) + 𝜆 (𝑠)

× [𝑠
𝑚
𝑈
𝑛
(𝑥, 𝑠) −

𝑚−1

∑

𝑘=0

𝑢
𝑘
(𝑥, 0
+
) 𝑠
𝑚−1−𝑘

+𝐿 [𝑅 [𝑢
𝑛 (𝑥, 𝑡)] + 𝑁 [𝑢

𝑛 (𝑥, 𝑡)] − 𝑔 (𝑥, 𝑡)]] .

(4)

Considering 𝐿[𝑅[𝑢
𝑛
(𝑥, 𝑡)] + 𝑁[𝑢

𝑛
(𝑥, 𝑡)]] as restricted

terms, one can derive a Lagrange multiplier as

𝜆 = −
1

𝑠𝑚
. (5)

With (5) and the inverse-Laplace transform 𝐿
−1, the

iteration formula (4) can be explicitly given as

𝑢
𝑛+1

(𝑥, 𝑡) = 𝑢
𝑛
(𝑥, 𝑡) − 𝐿

−1

× [
1

𝑠𝑚
[𝑠
𝑚
𝑈
𝑛
(𝑥, 𝑠) −

𝑚−1

∑

𝑘=0

𝑢
𝑘
(𝑥, 0
+
) 𝑠
𝑚−1−𝑘

+ 𝐿 [𝑅 [𝑢
𝑛 (𝑥, 𝑡)]

+𝑁 [𝑢
𝑛
(𝑥, 𝑡)] − 𝑔 (𝑥, 𝑡)] ]]

= 𝑢
0
(𝑥, 𝑡)

− 𝐿
−1
[
1

𝑠𝑚
[𝐿 [𝑅 [𝑢

𝑛
(𝑥, 𝑡)] + 𝑁 [𝑢

𝑛
(𝑥, 𝑡)]]]] ;

(6)

𝑢
0
(𝑥, 𝑡) is an initial approximation of (1), and

𝑢
0 (𝑥, 𝑡) = 𝐿

−1
(

𝑚−1

∑

𝑘=0

𝑢
𝑘
(𝑥, 0
+
) 𝑠
𝑚−1−𝑘

)

+ 𝐿
−1
[
1

𝑠𝑚
𝐿 [𝑔 (𝑥, 𝑡)]]

= 𝑢 (𝑥, 0) + 𝑢

(𝑥, 0) 𝑡 + ⋅ ⋅ ⋅ +

𝑢
𝑚−1

(𝑥, 0) 𝑡
𝑚−1

(𝑚 − 1)!

+ 𝐿
−1
[
1

𝑠𝑚
𝐿 [𝑔 (𝑥, 𝑡)]] .

(7)

In order to deal with the nonlinear term in the iteration
formula (6), combining with the homotopy perturbation
method, we give a new modification of the above method
[21, 22]. In the homotopymethod, the basic assumption is that
the solutions can be written as a power series in 𝑝:

𝑢 (𝑥, 𝑡) =

∞

∑

𝑛=0

𝑝
𝑛
𝑢
𝑛
(𝑥, 𝑡)

= 𝑢
0
+ 𝑝𝑢
1
+ 𝑝
2
𝑢
2
+ 𝑝
3
𝑢
3
+ ⋅ ⋅ ⋅ ,

(8)

and the nonlinear term can be decomposed as

𝑁𝑢 (𝑥, 𝑡) =

∞

∑

𝑛=0

𝑝
𝑛
H
𝑛 (𝑢) , (9)

where 𝑝 ∈ [0, 1] is an embedding parameter. H
𝑛
(𝑢) is He’s

polynomials [16, 23] can be generated by

H
𝑛
(𝑢
0
, . . . , 𝑢

𝑛
)

=
1

𝑛!

𝜕
𝑛

𝜕𝑝𝑛
[𝑁(

𝑛

∑

𝑖=0

𝑝
𝑖
𝑢
𝑖
)]

𝑝=0

, 𝑛 = 0, 1, 2, . . . .

(10)

This new modified method is obtained by the elegant
coupling of correction function (6) of variational iteration
method with He’s polynomials and is given by
∞

∑

𝑛=0

𝑝
𝑛
𝑢
𝑛
(𝑥, 𝑡) = 𝑢

0
(𝑥, 𝑡)

− 𝑝(𝐿
−1
[
1

𝑠𝑚
𝐿[𝑅

∞

∑

𝑛=0

𝑝
𝑛
𝑢
𝑛
(𝑥, 𝑡)]

+
1

𝑠𝑚
𝐿[

∞

∑

𝑛=0

𝑝
𝑛
H
𝑛 (𝑢)]]) ,

(11)

𝑢
0
(𝑥, 𝑡) represents the term arising from the source term and

the prescribed initial conditions. Equating the terms with
identical powers in 𝑝, we obtain the following approxima-
tions:

𝑝
0
: 𝑢
0
(𝑥, 𝑡) = 𝑢 (𝑥, 0) + 𝑢


(𝑥, 0) 𝑡 + ⋅ ⋅ ⋅

+
𝑢
𝑚−1

(𝑥, 0) 𝑡
𝑚−1

(𝑚 − 1)!
+ 𝐿
−1
[
1

𝑠𝑚
𝐿 [𝑔 (𝑥, 𝑡)]] ,

𝑝
1
: 𝑢
1 (𝑥, 𝑡) = −𝐿

−1
[
1

𝑠𝑚
𝐿 [𝑅𝑢

0 (𝑥, 𝑡)]

+
1

𝑠𝑚
𝐿 [H
0
(𝑢)]] ,

𝑝
2
: 𝑢
2 (𝑥, 𝑡) = −𝐿

−1
[
1

𝑠𝑚
𝐿 [𝑅𝑢

1 (𝑥, 𝑡)]

+
1

𝑠𝑚
𝐿 [H
1
(𝑢)]] ,

...
(12)
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The best approximations for the solution are

𝑢 (𝑥, 𝑡) =

∞

∑

𝑛=0

𝑢
𝑛
. (13)

This new modified method here transfers the problem into
the partial differential equation in the Laplace 𝑠-domain,
removes the differentiation with respect to time, and uses
He’s polynomials to deal with the nonlinear term. This new
method basically illustrates how three powerful algorithms,
variational iteration method, Laplace transformmethod, and
homotopy perturbation method, can be combined and used
to approximate the solutions of nonlinear equation. In this
work, we will use this method to solve fractional nonlinear
equations.

3. Illustrative Examples

Wewill apply the newmodifiedVIM to both PDEs and FDEs.
All the results are calculated by using the symbolic calculation
software Mathematica.

3.1. Partial Differential Equations

Example 1. Consider the following nonhomogeneous non-
linear Gas Dynamic equation [24]

𝜕𝑢

𝜕𝑡
+
1

2

𝜕𝑢
2

𝜕𝑥
− 𝑢 (1 − 𝑢) = −𝑒

𝑡−𝑥 (14)

with the initial condition

𝑢 (𝑥, 0) = 1 − 𝑒
−𝑥
. (15)

After taking the Laplace transform to both sides of (14)
and (15), we get the following iteration formula:

𝑈
𝑛+1

(𝑥, 𝑠) = 𝑈
𝑛
(𝑥, 𝑠) + 𝜆 (𝑠) [𝑠𝑈

𝑛
(𝑥, 𝑠) − 𝑢 (𝑥, 0)

+𝐿 [
1

2

𝜕𝑢
2

𝑛

𝜕𝑥
− 𝑢
𝑛
+ 𝑢
2

𝑛
+ 𝑒
𝑡−𝑥

]] .

(16)

Considering 𝐿[(1/2)(𝜕𝑢
2

𝑛
/𝜕𝑥) − 𝑢

𝑛
+ 𝑢
2

𝑛
] as restricted

terms, Lagrange multiplier can be defined as 𝜆(𝑠) = −1/𝑠;
with the inverse-Laplace transform, the approximate solution
of (16) can be given as

𝑢
𝑛+1

(𝑥, 𝑡) = 𝑢
𝑛
(𝑥, 𝑡) − 𝐿

−1

× [
1

𝑠
[𝑠𝑈
𝑛 (𝑥, 𝑠) − 𝑢 (𝑥, 0)

+𝐿 [
1

2

𝜕𝑢
2

𝑛

𝜕𝑥
− 𝑢
𝑛
+ 𝑢
2

𝑛
+ 𝑒
𝑡−𝑥

]]]

= 𝑢
0
(𝑥, 𝑡) − 𝐿

−1
[
1

𝑠𝛼
[𝐿[

1

2

𝜕𝑢
2

𝑛

𝜕𝑥
− 𝑢
𝑛
+ 𝑢
2

𝑛
]]] ,

(17)

where 𝑢
0
(𝑥, 𝑡) is an initial approximation of (14), and

𝑢
0
(𝑥, 𝑡) = 𝑢 (𝑥, 0) − 𝐿

−1
[
1

𝑠
𝐿 [𝑒
𝑡−𝑥

]] . (18)

Combiningwith the homotopy perturbationmethod, one has

∞

∑

𝑛=0

𝑝
𝑛
𝑢
𝑛 (𝑥, 𝑡)

= 𝑢
0
(𝑥, 𝑡) − 𝑝 [𝐿

−1
[
1

𝑠
𝐿 [

1

2

𝜕 (∑
∞

𝑛=0
𝑝
𝑛H
𝑛
(𝑢))

𝜕𝑥

−

∞

∑

𝑛=0

𝑝
𝑛
𝑢
𝑛
+

∞

∑

𝑛=0

𝑝
𝑛
H
𝑛 (𝑢)]]] ,

(19)

where H
𝑛
(𝑢) is He’s polynomials that represent nonlinear

term 𝑢
2; we have a few terms of the He’s polynomials for 𝑢2

which are given by

H
0
(𝑢) = 𝑢

2

0
,

H
1
(𝑢) = 2𝑢

0
𝑢
1
,

H
2
(𝑢) = 𝑢

2

1
+ 2𝑢
0
𝑢
2
,

...

(20)

Comparing the coefficient with identical powers in 𝑝,

𝑢
0
(𝑥, 𝑡) = 1 − 𝑒

𝑡−𝑥
,

𝑢
1
= −𝐿
−1
[
1

𝑠
[𝐿 [

1

2

𝜕𝑢
2

0

𝜕𝑥
− 𝑢
0
+ 𝑢
2

0
]]] = 0,

𝑢
2
= −𝐿
−1
[
1

𝑠
[𝐿 [

1

2

𝜕 (2𝑢
0
𝑢
1
)

𝜕𝑥
− 𝑢
1
+ 2𝑢
0
𝑢
1
]]]

= 𝑒
−𝑥 𝑡

2𝛼

Γ [1 + 2𝛼]
= 0,

...

(21)

and so on; in this manner the rest of component of the
solution can be obtained. The solution of (14) and (15) in
series form is given by

𝑢 (𝑥, 𝑡) = 1 − 𝑒
𝑡−𝑥

, (22)

which is the exact solution. For this equation, the first-
order approximate solution is justly the exact solution, and
this proposed new method provides the solution in a rapid
convergent. Furthermore, the new modified method can be
easily extended to FDEs and this is the main purpose of our
work.
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3.2. Fractional Differential Equations. Let us consider the
time fractional equation as follows:

𝐶

0
𝐷
𝛼

𝑡
𝑢 (𝑥, 𝑡) + 𝑅𝑢 (𝑥, 𝑡) + 𝑁𝑢 (𝑥, 𝑡) = 𝑔 (𝑥, 𝑡) , (23)

𝑢
𝑘
(𝑥, 0
+
) = 𝑎
𝑘
, (24)

where 𝑘 = 0, . . . , 𝑚 − 1, 𝑚 = [𝛼] + 1, 𝑔(𝑥, 𝑡) is the
source term, 𝑁 represents the general nonlinear differential
operator, and 𝑅 is the linear differential operator. And the
Caputo timefractional derivative operator of order 𝛼 > 0 is
defined as

𝐶

0𝐷
𝛼

𝑡
𝑢 (𝑥, 𝑡)

=
1

Γ (𝑚 − 𝛼)
∫

𝑡

0

(𝑡 − 𝜏)
𝑚−𝛼−1 𝜕

𝑚
𝑢 (𝑥, 𝜏)

𝜕𝜏𝑚
𝑑𝜏,

𝑚 = [𝛼] + 1, 𝑚 ∈ 𝑁,

(25)

where Γ(⋅) denotes the Gamma function.
Now, we consider the application of the modified VIM

[21, 22]. The following Laplace transform of the term
𝐶

0
𝐷
𝛼

𝑡
𝑢(𝑥, 𝑡) holds:

𝐿 [
𝐶

0𝐷
𝛼

𝑡
𝑢 (𝑥, 𝑡)] = 𝑠

𝛼
𝑈 (𝑥, 𝑠)

−

𝑚−1

∑

𝑘=0

𝑢
𝑘
(𝑥, 0
+
) 𝑠
𝛼−1−𝑘

,

𝑚 − 1 < 𝛼 ≤ 𝑚,

(26)

where 𝑈(𝑥, 𝑠) = 𝐿[𝑢(𝑥, 𝑡)] = ∫
∞

0
𝑒
−𝑠𝑡
𝑢(𝑥, 𝑡)𝑑𝑡. The detailed

properties of fractional calculus and Laplace transform can
be found in [1, 2]; we have chosen to the Caputo fractional
derivative because it allows traditional initial and boundary
conditions to be included in the formulation of the problem.
Taking the above Laplace transform to both sides of (23) and
(24), the iteration formula of (23) can be constructed as

𝑈
𝑛+1 (𝑥, 𝑠) = 𝑈

𝑛 (𝑥, 𝑠) + 𝜆 (𝑠)

× [𝑠
𝛼
𝑈
𝑛
(𝑥, 𝑠) −

𝑚−1

∑

𝑘=0

𝑢
𝑘
(𝑥, 0
+
) 𝑠
𝛼−1−𝑘

+𝐿 [𝑅 [𝑢
𝑛 (𝑥, 𝑡)] + 𝑁 [𝑢

𝑛 (𝑥, 𝑡)] − 𝑔 (𝑥, 𝑡)]] .

(27)

Considering 𝐿[𝑅[𝑢
𝑛
(𝑥, 𝑡)] + 𝑁[𝑢

𝑛
(𝑥, 𝑡)]] as restricted

terms, one can derive a Lagrange multiplier as

𝜆 =
−1

𝑠𝛼
. (28)

With (28) and the inverse-Laplace transform 𝐿
−1, the

iteration formula (27) can be explicitly given as

𝑢
𝑛+1

(𝑥, 𝑡) = 𝑢
𝑛
(𝑥, 𝑡) − 𝐿

−1

× [
1

𝑠𝛼
[𝑠
𝛼
𝑈
𝑛 (𝑥, 𝑠) −

𝑚−1

∑

𝑘=0

𝑢
𝑘
(𝑥, 0
+
) 𝑠
𝛼−1−𝑘

+ 𝐿 [𝑅 [𝑢
𝑛
(𝑥, 𝑡)]

+𝑁 [𝑢
𝑛
(𝑥, 𝑡)] − 𝑔 (𝑥, 𝑡)] ] ]

= 𝑢
0 (𝑥, 𝑡) − 𝐿

−1

× [
1

𝑠𝛼
[𝐿 [𝑅 [𝑢

𝑛
(𝑥, 𝑡)] + 𝑁 [𝑢

𝑛
(𝑥, 𝑡)]]]] ;

(29)

𝑢
0
(𝑥, 𝑡) is an initial approximation of (23), and

𝑢
0 (𝑥, 𝑡) = 𝐿

−1
(

𝑚−1

∑

𝑘=0

𝑢
𝑘
(𝑥, 0
+
) 𝑠
𝛼−1−𝑘

)

+ 𝐿
−1
[
1

𝑠𝛼
𝐿 [𝑔 (𝑥, 𝑡)]]

= 𝑢 (𝑥, 0) + 𝑢

(𝑥, 0) 𝑡 + ⋅ ⋅ ⋅ +

𝑢
𝑚−1

(𝑥, 0) 𝑡
𝑚−1

(𝑚 − 1)!

+ 𝐿
−1
[
1

𝑠𝛼
𝐿 [𝑔 (𝑥, 𝑡)]] .

(30)

In the homotopy method, the basic assumption is that the
solutions can be written as a power series in 𝑝:

𝑢 (𝑥, 𝑡) =

∞

∑

𝑛=0

𝑝
𝑛
𝑢
𝑛 (𝑥, 𝑡)

= 𝑢
0
+ 𝑝𝑢
1
+ 𝑝
2
𝑢
2
+ 𝑝
3
𝑢
3
+ ⋅ ⋅ ⋅ ,

(31)

and the nonlinear term can be decomposed as

𝑁𝑢 (𝑥, 𝑡) =

∞

∑

𝑛=0

𝑝
𝑛
H
𝑛
(𝑢) , (32)

where 𝑝 ∈ [0, 1] is an embedding parameter. H
𝑛
(𝑢) is He’s

polynomials [16, 23] that can be generated by

H
𝑛
(𝑢
0
, . . . , 𝑢

𝑛
)

=
1

𝑛!

𝜕
𝑛

𝜕𝑝𝑛
[𝑁(

𝑛

∑

𝑖=0

𝑝
𝑖
𝑢
𝑖
)]

𝑝=0

, 𝑛 = 0, 1, 2, . . . .

(33)



Abstract and Applied Analysis 5

The variational homotopy perturbation method is obtained
by the elegant coupling of correction function (29) of vari-
ational iteration method with He’s polynomials and is given
by

∞

∑

𝑛=0

𝑝
𝑛
𝑢
𝑛
(𝑥, 𝑡) = 𝑢

0
(𝑥, 𝑡)

− 𝑝(𝐿
−1
[
1

𝑠𝛼
𝐿[𝑅

∞

∑

𝑛=0

𝑝
𝑛
𝑢
𝑛
(𝑥, 𝑡)]

+
1

𝑠𝛼
𝐿[

∞

∑

𝑛=0

𝑝
𝑛
H
𝑛 (𝑢)]]) ,

(34)

𝑢
0
(𝑥, 𝑡) represents the term arising from the source term and

the prescribed initial conditions. Equating the terms with
identical powers in 𝑝, we obtain the following approxima-
tions:

𝑝
0
: 𝑢
0
(𝑥, 𝑡) = 𝑢 (𝑥, 0) + 𝑢


(𝑥, 0) 𝑡 + ⋅ ⋅ ⋅

+
𝑢
𝑚−1

(𝑥, 0) 𝑡
𝑚−1

(𝑚 − 1)!
+ 𝐿
−1
[
1

𝑠𝛼
𝐿 [𝑔 (𝑥, 𝑡)]] ,

𝑝
1
: 𝑢
1
(𝑥, 𝑡)

= −𝐿
−1
[
1

𝑠𝛼
𝐿 [𝑅𝑢

0 (𝑥, 𝑡)] +
1

𝑠𝛼
𝐿 [H
0 (𝑢)]] ,

𝑝
2
: 𝑢
2
(𝑥, 𝑡)

= −𝐿
−1
[
1

𝑠𝛼
𝐿 [𝑅𝑢

1 (𝑥, 𝑡)] +
1

𝑠𝛼
𝐿 [H
1 (𝑢)]] ,

...
(35)

The best approximations for the solution are 𝑢(𝑥, 𝑡) =

∑
∞

𝑛=0
𝑢
𝑛
. Let us apply the above method to solve fractional

nonlinear equations of Caputo type.

Example 2. Consider the following nonlinear space time
fractional equation [25]:

𝜕
𝛼
𝑢 (𝑥, 𝑡)

𝜕𝑡𝛼
+ 𝑢

𝜕
𝛽
𝑢 (𝑥, 𝑡)

𝜕𝑥𝛽
= 𝑥 + 𝑥𝑡

2
, (36)

𝑢 (𝑥, 0) = 0, (37)

where 0 < 𝛼, 𝛽 ⩽ 1, and the time-space fractional derivatives
definedhere are inCaputo sense.TheCaputo space-fractional
derivative operator of order 𝛽 > 0 is defined as

𝐶

0
𝐷
𝛽

𝑥
𝑢 (𝑥, 𝑡) =

1

Γ (𝑚 − 𝛽)
∫

𝑥

0

(𝑥 − 𝜉)
𝑚−𝛽−1 𝜕

𝑚
𝑢 (𝜉, 𝑡)

𝜕𝜉𝑚
𝑑𝜉,

𝑚 = [𝛽] + 1, 𝑚 ∈ 𝑁.

(38)

After taking the Laplace transform on both sides of (36) and
(37), we get the following iteration formula:

𝑈
𝑛+1

= 𝑈
𝑛
+ 𝜆 (𝑠) [𝑠

𝛼
𝑈
𝑛 (𝑥, 𝑠) − 𝑠

𝛼−1
𝑢 (𝑥, 0)

+𝐿 [𝑢
𝑛

𝜕
𝛽
𝑢
𝑛
(𝑥, 𝑡)

𝜕𝑥𝛽
− (𝑥 + 𝑥𝑡

2
)]] .

(39)

As a result, after the identification of a Lagrange multiplier
𝜆(𝑠) = −1/𝑠

𝛼, and with the inverse-Laplace transform, one
can derive

𝑢
𝑛+1

(𝑥, 𝑦, 𝑡) = 𝑢
0
(𝑥, 𝑦, 𝑡) − 𝐿 [𝑢

𝑛

𝜕
𝛽
𝑢
𝑛
(𝑥, 𝑡)

𝜕𝑥𝛽
] (40)

𝑢
0
(𝑥, 𝑦, 𝑡) is an initial approximation of (36), and

𝑢
0
(𝑥, 𝑡) = 𝐿

−1
[
1

𝑠𝛼
[𝐿 [𝑥 + 𝑥𝑡

2
]]] . (41)

Applying the variational homotopy perturbation method,
one has

∞

∑

𝑛=0

𝑝
𝑛
𝑢
𝑛
(𝑥, 𝑡)

= 𝑢
0 (𝑥, 𝑡) − 𝑝 [𝐿

−1
[
1

𝑠𝛼
[𝐿[

∞

∑

𝑛=0

𝑝
𝑛
H
𝑛 (𝑢)]]]] ,

(42)

where H
𝑛
(𝑢) is He’s polynomials that represent nonlinear

term 𝑢(𝜕
𝛽
𝑢(𝑥, 𝑡)/𝜕𝑥

𝛽
); we have a few terms of the He’s

polynomials for 𝑢(𝜕𝛽𝑢(𝑥, 𝑡)/𝜕𝑥𝛽) which are given by

H
0 (𝑢) = 𝑢

0

𝜕
𝛽
𝑢
0

𝜕𝑥𝛽
,

H
1
(𝑢) = 𝑢

0

𝜕
𝛽
𝑢
1

𝜕𝑥𝛽
+ 𝑢
1

𝜕
𝛽
𝑢
0

𝜕𝑥𝛽
,

H
2 (𝑢) = 𝑢

0

𝜕
𝛽
𝑢
2

𝜕𝑥𝛽
+ 𝑢
1

𝜕
𝛽
𝑢
1

𝜕𝑥𝛽
+ 𝑢
2

𝜕
𝛽
𝑢
0

𝜕𝑥𝛽
,

...

(43)
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Comparing the coefficient with identical powers in𝑝, one has

𝑢
0
(𝑥, 𝑡) =

𝑥𝑡
𝛼

Γ (1 + 𝛼)
+

2𝑥𝑡
𝛼+2

Γ (3 + 𝛼)
,

𝑢
1
= −𝐿
−1
[
1

𝑠𝛼
[𝐿[𝑢

0

𝜕
𝛽
𝑢
0

𝜕𝑥𝛽
]]]

= −
𝑡
3𝛼
𝑥
2−𝛽

Γ (1 + 2𝛼)

Γ2 (1 + 𝛼) Γ (1 + 3𝛼) Γ (2 − 𝛽)

−
4𝑡
4+3𝛼

𝑥
2−𝛽

Γ (5 + 2𝛼)

Γ2 (3 + 𝛼) Γ (5 + 3𝛼) Γ (2 − 𝛽)

−
4𝑡
2+3𝛼

𝑥
2−𝛽

Γ (3 + 2𝛼)

Γ (1 + 𝛼) Γ (3 + 𝛼) Γ (3 + 3𝛼) Γ (2 − 𝛽)
,

𝑢
2
= −𝐿
−1
[
1

𝑠𝛼
[𝐿[𝑢

0

𝜕
𝛽
𝑢
1

𝜕𝑥𝛽
+ 𝑢
1

𝜕
𝛽
𝑢
0

𝜕𝑥𝛽
]]]

=
𝑡
5𝛼
𝑥
3−2𝛽

Γ (1 + 2𝛼) Γ (1 + 4𝛼)

Γ3 (1 + 𝛼) Γ (1 + 3𝛼) Γ (1 + 5𝛼) Γ
2 (2 − 𝛽)

+
2𝑡
2+5𝛼

𝑥
3−2𝛽

Γ (1 + 2𝛼) Γ (3 + 4𝛼)

Γ2 (1 + 𝛼) Γ (3 + 𝛼) Γ (1 + 3𝛼) Γ (3 + 5𝛼) Γ
2 (2 − 𝛽)

+
4𝑡
2+5𝛼

𝑥
3−2𝛽

Γ (3 + 2𝛼) Γ (3 + 4𝛼)

Γ2 (1 + 𝛼) Γ (3 + 𝛼) Γ (3 + 3𝛼) Γ (3 + 5𝛼) Γ
2 (2 − 𝛽)

+
8𝑡
4+5𝛼

𝑥
3−2𝛽

Γ (3 + 2𝛼) Γ (5 + 4𝛼)

Γ (1 + 𝛼) Γ
2
(3 + 𝛼) Γ (3 + 3𝛼) Γ (5 + 5𝛼) Γ

2 (2 − 𝛽)

+
4𝑡
4+5𝛼

𝑥
3−2𝛽

Γ (5 + 2𝛼) Γ (5 + 4𝛼)

Γ (1 + 𝛼) Γ
2
(3 + 𝛼) Γ (5 + 3𝛼) Γ (5 + 5𝛼) Γ

2 (2 − 𝛽)

+
8𝑡
6+5𝛼

𝑥
3−2𝛽

Γ (5 + 2𝛼) Γ (7 + 4𝛼)

Γ3 (3 + 𝛼) Γ (5 + 3𝛼) Γ (7 + 5𝛼) Γ
2 (2 − 𝛽)

+ (4𝑡
2+5𝛼

𝑥
3−2𝛽

Γ (3 + 2𝛼) Γ (3 + 4𝛼) Γ (3 − 𝛽))

× (Γ
2
(1 + 𝛼) Γ (3 + 𝛼) Γ (3 + 3𝛼)

× Γ (3 + 5𝛼) Γ (3 − 2𝛽) Γ (2 − 𝛽) )
−1

+ (8𝑡
4+5𝛼

𝑥
3−2𝛽

Γ (3 + 2𝛼) Γ (5 + 4𝛼) Γ (3 − 𝛽))

× (Γ (1 + 𝛼) Γ
2
(3 + 𝛼) Γ (3 + 3𝛼)

× Γ (5 + 5𝛼) Γ (3 − 2𝛼) Γ (2 − 𝛽) )
−1

+ (4𝑡
4+5𝛼

𝑥
3−2𝛽

Γ (5 + 2𝛼) Γ (5 + 4𝛼) Γ (3 − 𝛽))

× (Γ (1 + 𝛼) Γ
2
(3 + 𝛼) Γ (5 + 3𝛼)

× Γ (5 + 5𝛼) Γ (3 − 2𝛽) Γ (2 − 𝛽) )
−1

+ (8𝑡
6+5𝛼

𝑥
3−2𝛽

Γ (5 + 2𝛼) Γ (7 + 4𝛼) Γ (3 − 𝛽))

× (Γ
3
(1 + 𝛼) Γ (5 + 3𝛼) Γ (7 + 5𝛼)

× Γ (3 − 2𝛼) Γ (2 − 𝛽) )
−1

,

...
(44)

The solution of (36) and (37) is given as 𝑢(𝑥, 𝑡) = 𝑢
0
+ 𝑢
1
+

𝑢
2
+ ⋅ ⋅ ⋅ . If we take 𝛼 = 𝛽 = 1, one has

𝑢
0
= 𝑥𝑡 +

𝑡
3
𝑥

3
,

𝑢
1
= −

𝑡
3
𝑥

3
−
2𝑡
5
𝑥

15
−
𝑡
7
𝑥

63
,

𝑢
2
=
2𝑡
5
𝑥

15
+
22𝑡
7
𝑥

315
+
38𝑡
9
𝑥

2835
+
2𝑡
11
𝑥

2079
,

...

(45)

The noise terms −(𝑡3𝑥/3) between the components 𝑢
0
and 𝑢

1

can be canceled and the remaining term of 𝑢
0
still satisfies the

equation. For this special case, the exact solution is therefore
𝑢(𝑥, 𝑡) = 𝑡𝑥 which was given in [25].

Example 3. Consider the following timefractional nonlinear
system arising in thermoelasticity [26]:

𝜕
𝛼
𝑢 (𝑥, 𝑡)

𝜕𝑡𝛼
− 𝑎 (𝑢

𝑥
, 𝜃) 𝑢
𝑥𝑥

+ 𝑏 (𝑢
𝑥
, 𝜃) 𝜃
𝑥
= 𝑓 (𝑥, 𝑡) ,

𝑐 (𝑢
𝑥
, 𝜃)

𝜕
𝛽V (𝑥, 𝑡)
𝜕𝑡𝛽

+ 𝑏 (𝑢
𝑥
, 𝜃) 𝑢
𝑥𝑡
− 𝑑 (𝑢

𝑥
, 𝜃) 𝜃
𝑥𝑥

= 𝑔 (𝑥, 𝑡) ,

(46)

where 𝑡 > 0, 𝑥 ∈ 𝑅
1
, 1 < 𝛼 ≤ 2, 0 < 𝛽 ≤ 1, and the time

fractional derivatives defined here are in Caputo sense. 𝑎, 𝑏, 𝑐,
and 𝑑 are defined by

𝑎 (𝑢
𝑥
, 𝜃) = 2 − 𝑢

𝑥
𝜃, 𝑏 (𝑢

𝑥
, 𝜃) = 2 + 𝑢

𝑥
𝜃,

𝑐 (𝑢
𝑥
, 𝜃) = 1, 𝑑 (𝑢

𝑥
, 𝜃) = 𝜃,

(47)

and the right-hand side of (46) is replaced by

𝑓 (𝑥, 𝑡) =
2

1 + 𝑥2
−

2 (1 + 𝑡
2
) (3𝑥
2
− 1)

(1 + 𝑥2)
3

𝑎 (𝑤, V)

−
2𝑥 (1 + 𝑡)

(1 + 𝑥2)
2
𝑏 (𝑤, V) ,

𝑔 (𝑥, 𝑡) =
1

1 + 𝑥2
𝑐 (𝑤, V) −

4𝑥𝑡

(1 + 𝑥2)
2
𝑏 (𝑤, V)

−

2 (1 + 𝑡) (3𝑥
2
− 1)

(1 + 𝑥2)
3

𝑑 (𝑤, V) ,

(48)
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where 𝑎, 𝑏, 𝑐, and 𝑑 are defined above and

𝑤 ≡ 𝑤 (𝑥, 𝑡) =

2𝑥 (1 + 𝑡
2
)

(1 + 𝑥2)
2
, 𝑤 ≡ 𝑤 (𝑥, 𝑡) =

1 + 𝑡

1 + 𝑥2
,

(49)

with the initial conditions

𝑢 (𝑥, 0) =
1

1 + 𝑥2
, 𝑢

𝑡
(𝑥, 0) = 0, V (𝑥, 0) =

1

1 + 𝑥2
;

(50)

thus the exact solution of system is 𝑢(𝑥, 𝑡) = (1 + 𝑡
2
)/(1 +

𝑥
2
), 𝜃 = (1 + 𝑡)/(1 + 𝑥

2
). After taking the Laplace transform

to both sides of (46) and (50), we get the following iteration
formula:

𝑈
𝑛+1

(𝑥, 𝑠) = 𝑈
𝑛
(𝑥, 𝑠) + 𝜆

1
(𝑠)

× [𝑠
𝛼
𝑈
𝑛 (𝑥, 𝑠) − 𝑠

𝛼−1
𝑢 (𝑥, 0) − 𝑠

𝛼−2
𝑢
𝑡 (𝑥, 0)

− 𝐿 [2𝑢
𝑛𝑥𝑥

− 2𝜃
𝑛𝑥
]

−𝐿 [𝑢
𝑛𝑥
𝜃
𝑛
𝑢
𝑛𝑥𝑥

+ 𝑢
𝑛𝑥
𝜃
𝑛
𝜃
𝑛𝑥
]] ,

Θ
𝑛+1 (𝑥, 𝑠) = Θ

𝑛 (𝑥, 𝑠) + 𝜆
2 (𝑠)

× [𝑠
𝛽
𝑈
𝑛 (𝑥, 𝑠) − 𝑠

𝛽−1
𝑢 (𝑥, 0)

+ 𝐿 [−2𝑢
𝑛𝑥𝑡
]

−𝐿 [𝑢
𝑛𝑥
𝜃
𝑛
𝑢
𝑛𝑥𝑡

− 𝜃
𝑛
𝜃
𝑛𝑥𝑥

]] ,

(51)

where Θ(𝑥, 𝑠) = 𝐿[𝜃(𝑥, 𝑡)] = ∫
∞

0
𝑒
−𝑠𝑡
𝜃(𝑥, 𝑡)𝑑𝑡. As a result,

after the identification of a Lagrange multiplier 𝜆
1
(𝑠) =

−1/𝑠
𝛼
, 𝜆
2
(𝑠) = −1/𝑠

𝛽 andwith the inverse-Laplace transform,
one can derive the following iteration formula:

𝑢
𝑛+1

= 𝑢
0
+ 𝐿
−1
[
1

𝑠𝛼
[𝐿 [2𝑢

𝑛𝑥𝑥
− 2𝜃
𝑛𝑥
]

−𝐿 [𝑢
𝑛𝑥
𝜃
𝑛
𝑢
𝑛𝑥𝑥

+ 𝑢
𝑛𝑥
𝜃
𝑛
𝜃
𝑛𝑥
]]] ,

𝜃
𝑛+1

= 𝜃
0
+ 𝐿
−1
[
1

𝑠𝛽
[𝐿 [−2𝑢

𝑛𝑥𝑡
]

−𝐿 [𝑢
𝑛𝑥
𝜃
𝑛
𝑢
𝑛𝑥𝑡

− 𝜃
𝑛
𝜃
𝑛𝑥𝑥

]]] ,

(52)

𝑢
0
(𝑥, 𝑡), V

0
(𝑥, 𝑡) is an initial approximation of (46), and

𝑢
0
(𝑥, 𝑡) = 𝑢 (𝑥, 0) + 𝐿

−1
[
1

𝑠𝛼
𝐿 [𝑓 (𝑥, 𝑡)]] ,

𝜃
0
(𝑥, 𝑡) = 𝜃 (𝑥, 0) + 𝐿

−1
[
1

𝑠𝛽
𝐿 [𝑔 (𝑥, 𝑡)]] .

(53)

Applying the variational homotopy perturbation method,
one has

∞

∑

𝑛=0

𝑝
𝑛
𝑢
𝑛
= 𝑢
0
+ 𝑝

× [𝐿
−1
[
1

𝑠𝛼
[𝐿[2

∞

∑

𝑛=0

𝑝
𝑛
𝑢
𝑛𝑥𝑥

− 2

∞

∑

𝑛=0

𝑝
𝑛
𝜃
𝑛𝑥
]

− 𝐿[

∞

∑

𝑛=0

𝑝
𝑛
H
1𝑛
(𝑢, 𝜃)

+

∞

∑

𝑛=0

𝑝
𝑛
H
2𝑛
(𝑢, 𝜃)]]]] ,

∞

∑

𝑛=0

𝑝
𝑛
𝜃
𝑛
= 𝜃
0
+ 𝑝[𝐿

−1
[
1

𝑠𝛽
[𝐿[−2

∞

∑

𝑛=0

𝑝
𝑛
𝑢
𝑛𝑥𝑡
]

− 𝐿[

∞

∑

𝑛=0

𝑝
𝑛
H
3𝑛
(𝑢, 𝜃)

−

∞

∑

𝑛=0

𝑝
𝑛
H
4𝑛
(𝑢, 𝜃)]]]] ,

(54)

where H
𝑖𝑛
(𝑢, 𝜃), 𝑖 = 1, 2, 3, 4, is He’s polynomials that rep-

resent nonlinear terms 𝑢
𝑥
𝜃𝑢
𝑥𝑥
, 𝑢
𝑥
𝜃𝜃
𝑥
, 𝑢
𝑥
𝜃𝑢
𝑥𝑡
, 𝜃𝜃
𝑥𝑥
, respec-

tively; we have a few terms of the He’s polynomials for these
nonlinear terms which are given by

H
10
(𝑢, 𝜃) = 𝑢

0𝑥
𝜃
0
𝑢
0𝑥𝑥

,

H
11 (𝑢, 𝜃) = 𝑢

0𝑥
𝜃
0
𝑢
1𝑥𝑥

+ 𝑢
0𝑥
𝜃
1
𝑢
0𝑥𝑥

+ 𝑢
1𝑥
𝜃
0
𝑢
0𝑥𝑥

,

...

H
20
(𝑢, 𝜃) = 𝑢

0𝑥
𝜃
0
𝜃
0𝑥
,

H
21
(𝑢, 𝜃) = 𝑢

0𝑥
𝜃
1
𝜃
0𝑥
+ 𝑢
0𝑥
𝜃
0
𝜃
1𝑥
+ 𝑢
1𝑥
𝜃
0
𝑢
0𝑥
,

...

H
30
(𝑢, 𝜃) = 𝑢

0𝑥
𝜃
0
𝑢
0𝑥𝑡
,

H
31
(𝑢, 𝜃) = 𝑢

0𝑥
𝜃
0
𝑢
1𝑥𝑡

+ 𝑢
0𝑥
𝜃
1
𝑢
0𝑥𝑡

+ 𝑢
1𝑥
𝜃
0
𝑢
0𝑥𝑡
,

...

H
40 (𝑢, 𝜃) = 𝜃

0
𝜃
0𝑥𝑥

,

H
41
(𝑢, 𝜃) = 𝜃

0
𝜃
1𝑥𝑥

+ 𝑢
0𝑥
𝜃
1
𝑢
0𝑥𝑥

,

...

(55)
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Comparing the coefficient with identical powers in𝑝, one has

𝑢
0
(𝑥, 𝑡) =

1

1 + 𝑥2

+ (
4𝑥 − 12𝑥

3

(1 + 𝑥2)
6
+

4𝑥
2

(1 + 𝑥2)
5
+
4 − 12𝑥

2

(1 + 𝑥2)
3

+
4𝑥

(1 + 𝑥2)
2
+

2

1 + 𝑥2
)

𝑡
𝛼

Γ (𝛼)

+ (
4𝑥 − 12𝑥

3

(1 + 𝑥2)
6
+

8𝑥
2

(1 + 𝑥2)
5
−

4

(1 + 𝑥2)
5
)

×
𝑡
1+𝛼

Γ (2 + 𝛼)
+ (

480𝑥 − 1440𝑥
3

(1 + 𝑥2)
6

)
𝑡
5+𝛼

Γ (6 + 𝛼)

+ (
16𝑥 − 48𝑥

3

(1 + 𝑥2)
6

+
16𝑥
2

(1 + 𝑥2)
5
+
8 + 24𝑥

2

(1 + 𝑥2)
3
)

×
𝑡
2+𝛼

Γ (3 + 𝛼)

+ (
48 − 144𝑥

3

(1 + 𝑥2)
6

+
48𝑥
2

(1 + 𝑥2)
5
)

𝑡
3+𝛼

Γ (4 + 𝛼)

+ (
96𝑥 − 288𝑥

3

(1 + 𝑥2)
6

+
96𝑥
2

(1 + 𝑥2)
5
)

𝑡
4+𝛼

Γ (5 + 𝛼)
,

𝜃
0
(𝑥, 𝑡) =

1

1 + 𝑥2
+ (

2 − 6𝑥
2

(1 + 𝑥2)
4
+

1

1 + 𝑥2
)

𝑡
𝛽

Γ (1 + 𝛽)

+ (
8𝑥
2

(1 + 𝑥2)
5
+
4 − 12𝑥

2

(1 + 𝑥2)
4
−

8𝑥

(1 + 𝑥2)
2
)

×
𝑡
1+𝛽

Γ (2 + 𝛽)

+ (
16𝑥
2

(1 + 𝑥2)
5
+
4 − 12𝑥

2

(1 + 𝑥2)
4
)

𝑡
2+𝛽

Γ (3 + 𝛽)

×
48𝑥
2

(1 + 𝑥2)
5

𝑡
3+𝛽

Γ (4 + 𝛽)

+
192𝑥
2

(1 + 𝑥2)
5

𝑡
4+𝛽

Γ (5 + 𝛽)
,

𝑢
1
(𝑥, 𝑡) = 𝐿

−1
[
1

𝑠𝛼
[𝐿 [2𝑢

0𝑥𝑥
− 2𝜃
0𝑥
]

−𝐿 [𝑢
0𝑥
𝜃
0
𝑢
0𝑥𝑡

+ 𝑢
0𝑥
𝜃
0
𝜃
0𝑥
]] ] ,

𝜃
1
(𝑥, 𝑡) = 𝐿

−1
[
1

𝑠𝛽
[𝐿 [−2𝑢

0𝑥𝑡
] − 𝐿 [𝑢

0𝑥
𝜃
0
𝑢
0𝑥𝑡

− 𝜃
0
𝜃
0𝑥𝑥

]]] ,

𝑢
2
= 𝐿
−1
[
1

𝑠𝛼
[𝐿 [2𝑢

1𝑥𝑥
− 2𝜃
1𝑥
]

− 𝐿 [𝑢
0𝑥
𝜃
0
𝑢
1𝑥𝑥

+ 𝑢
0𝑥
𝜃
1
𝑢
0𝑥𝑥

+ 𝑢
1𝑥
𝜃
0
𝑢
0𝑥𝑥

+ 𝑢
0𝑥
𝜃
1
𝜃
0𝑥

+𝑢
0𝑥
𝜃
0
𝜃
1𝑥
+ 𝑢
1𝑥
𝜃
0
𝑢
0𝑥
]]] ,

𝜃
2
= 𝐿
−1
[
1

𝑠𝛽
[𝐿 [−2𝑢

1𝑥𝑡
]

− 𝐿 [𝑢
0𝑥
𝜃
0
𝑢
1𝑥𝑡

+ 𝑢
0𝑥
𝜃
1
𝑢
0𝑥𝑡

+ 𝑢
1𝑥
𝜃
0
𝑢
0𝑥𝑡

− 𝜃
0
𝜃
1𝑥𝑥

+𝑢
0𝑥
𝜃
1
𝑢
0𝑥𝑥

]] ] ,

...
(56)

and so on; in this manner the rest of components of the solu-
tion can be obtained using theMathematica symbolic compu-
tation software for purpose of simlification, the approximate
solutions are not listed here.

4. Conclusion

In this paper, a new modification of variational iteration
method is considered, which is based on Laplace transform
and homotopy perturbation method. The fractional lagrange
multiplier is accurately determined by the Laplace transform
and the nonlinear one can be easily handled by the use of
He’s polynomials. Several fractional nonlinear nonhomoge-
neous equations are analytically solved as examples and the
methodology is demonstrated. Examples 1, 2, and 3 have been
successfully solved. And the results show that this method is
a powerful and reliable method for finding the solution of the
fractional nonlinear equations.
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We present the existence of extremal solution and relaxation problem for fractional differential inclusion with initial conditions.

1. Introduction

Differential equations with fractional order have recently
proved to be valuable tools in the modeling of many physical
phenomena [1–9]. There has also been a significant theoreti-
cal development in fractional differential equations in recent
years; see themonographs of Kilbas et al. [10],Miller andRoss
[11], Podlubny [12], and Samko et al. [13] and the papers of
Kilbas and Trujillo [14], Nahušev [15], Podlubny et al. [16],
and Yu and Gao [17].

Recently, some basic theory for initial value problems for
fractional differential equations and inclusions involving the
Riemann-Liouville differential operator was discussed, for
example, by Lakshmikantham [18] and Chalco-Cano et al.
[19].

Applied problems requiring definitions of fractional
derivatives are those that are physically interpretable for ini-
tial conditions containing 𝑦(0), 𝑦

(0), and so forth.The same
requirements are true for boundary conditions. Caputo’s
fractional derivative satisfies these demands. Formore details
on the geometric and physical interpretation for fractional
derivatives of both Riemann-Liouville and Caputo types, see
Podlubny [12].

Fractional calculus has a long history. We refer the reader
to [20].

Recently fractional functional differential equations and
inclusions and impulsive fractional differential equations

and inclusions with standard Riemann-Liouville and Caputo
derivatives with differences conditions were studied byAbbas
et al. [21, 22], Benchohra et al. [23], Henderson and Ouahab
[24, 25], Jiao and Zhou [26], and Ouahab [27–29] and in the
references therein.

In this paper, we will be concerned with the existence of
solutions, Filippov’s theorem, and the relaxation theorem of
abstract fractional differential inclusions. More precisely, we
will consider the following problem:

𝑐
𝐷

𝛼
𝑦 (𝑡) ∈ 𝐹 (𝑡, 𝑦 (𝑡)) , a.e. 𝑡 ∈ 𝐽 := [0, 𝑏] ,

𝑦 (0) = 𝑦
0
, 𝑦


(0) = 𝑦

1
,

(1)

𝑐
𝐷

𝛼
𝑦 (𝑡) ∈ ext𝐹 (𝑡, 𝑦 (𝑡)) , a.e. 𝑡 ∈ 𝐽 := [0, 𝑏] ,

𝑦 (0) = 𝑦
0
, 𝑦


(0) = 𝑦

1
,

(2)

where 𝑐
𝐷

𝛼 is the Caputo fractional derivatives, 𝛼 ∈ (1, 2],
𝐹 : 𝐽 × R𝑁

→ P(R𝑁
) is a multifunction, and ext𝐹(𝑡, 𝑦)

represents the set of extreme points of 𝐹(𝑡, 𝑦). (P(R𝑁
) is the

family of all nonempty subsets of R𝑁.
During the last couple of years, the existence of extremal

solutions and relaxation problem for ordinary differential
inclusionswas studied bymany authors, for example, see [30–
34] and the references therein.
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The paper is organized as follows. We first collect some
background material and basic results from multivalued
analysis and give some results on fractional calculus in
Sections 2 and 3, respectively.Then,wewill be concernedwith
the existence of solution for extremal problem.This is the aim
of Section 4. In Section 5, we prove the relaxation problem.

2. Preliminaries

The reader is assumed to be familiar with the theory of multi-
valued analysis and differential inclusions in Banach spaces,
as presented in Aubin et al. [35, 36], Hu and Papageorgiou
[37], Kisielewicz [38], and Tolstonogov [32].

Let (𝑋, ‖ ⋅ ‖) be a real Banach space, [0, 𝑏] an interval in 𝑅,
and 𝐶([0, 𝑏], 𝑋) the Banach space of all continuous functions
from 𝐽 into𝑋 with the norm

𝑦
∞

= sup {𝑦 (𝑡)
 : 0 ≤ 𝑡 ≤ 𝑏} . (3)

A measurable function 𝑦 : [0, 𝑏] → 𝑋 is Bochner
integrable if ‖𝑦‖ is Lebesgue integrable. In what follows,
𝐿
1
([0, 𝑏], 𝑋) denotes the Banach space of functions 𝑦 :

[0, 𝑏] → 𝑋, which are Bochner integrable with norm

𝑦
1
= ∫

𝑏

0

𝑦 (𝑡)
 𝑑𝑡.

(4)

Denote by 𝐿1

𝑤
([0, 𝑏], 𝑋) the space of equivalence classes of

Bochner integrable function 𝑦 : [0, 𝑏] → 𝑋 with the norm

𝑦
𝑤

= sup
𝑡∈[0,𝑡]



∫

𝑡

0

𝑦 (𝑠) 𝑑𝑠



. (5)

The norm ‖ ⋅ ‖
𝑤
is weaker than the usual norm ‖ ⋅ ‖

1
, and for a

broad class of subsets of 𝐿1
([0, 𝑏], 𝑋), the topology defined by

the weak norm coincides with the usual weak topology (see
[37, Proposition 4.14, page 195]). Denote by

P (𝑋) = {𝑌 ⊂ 𝑋 : 𝑌 ̸= 0} ,

Pcl (𝑋) = {𝑌 ∈ P (𝑋) : 𝑌 closed} ,

P
𝑏 (𝑋) = {𝑌 ∈ P (𝑋) : 𝑌 bounded} ,

Pcv (𝑋) = {𝑌 ∈ P (𝑋) : 𝑌 convex} ,

Pcp (𝑋) = {𝑌 ∈ P (𝑋) : 𝑌 compact} .

(6)

A multivalued map 𝐺 : 𝑋 → P(𝑋) has convex (closed)
values if 𝐺(𝑥) is convex (closed) for all 𝑥 ∈ 𝑋. We say that 𝐺
is bounded on bounded sets if 𝐺(𝐵) is bounded in 𝑋 for each
bounded set 𝐵 of𝑋 (i.e., sup

𝑥∈𝐵
{sup{‖𝑦‖ : 𝑦 ∈ 𝐺(𝑥)}} < ∞).

Definition 1. A multifunction 𝐹 : 𝑋 → P(𝑌) is said to be
upper semicontinuous at the point 𝑥

0
∈ 𝑋, if, for every open

𝑊 ⊆ 𝑌 such that 𝐹(𝑥
0
) ⊂ 𝑊, there exists a neighborhood

𝑉(𝑥
0
) of 𝑥

0
such that 𝐹(𝑉(𝑥

0
)) ⊂ 𝑊.

A multifunction is called upper semicontinuous (u.s.c. for
short) on𝑋 if for each 𝑥 ∈ 𝑋 it is u.s.c. at 𝑥.

Definition 2. A multifunction 𝐹 : 𝑋 → P(𝑌) is said to be
lower continuous at the point 𝑥

0
∈ 𝑋, if, for every open𝑊 ⊆

𝑌 such that 𝐹(𝑥
0
)∩𝑊 ̸= 0, there exists a neighborhood𝑉(𝑥

0
)

of 𝑥
0
with property that 𝐹(𝑥) ∩ 𝑊 ̸= 0 for all 𝑥 ∈ 𝑉(𝑥

0
).

A multifunction is called lower semicontinuous (l.s.c. for
short) provided that it is lower semicontinuous at every point
𝑥 ∈ 𝑋.

Lemma 3 (see [39, Lemma 3.2]). Let 𝐹 : [0, 𝑏] → P(𝑌)

be a measurable multivalued map and 𝑢 : [𝑎, 𝑏] → 𝑌 a
measurable function. Then for any measurable V : [𝑎, 𝑏] →

(0, +∞), there exists a measurable selection 𝑓V of 𝐹 such that
for a.e. 𝑡 ∈ [𝑎, 𝑏],

𝑢 (𝑡) − 𝑓V (𝑡)
 ≤ 𝑑 (𝑢 (𝑡) , 𝐹 (𝑡)) + V (𝑡) . (7)

First, consider the Hausdorff pseudometric

𝐻
𝑑
: P (𝐸) ×P (𝐸) → R

+
∪ {∞} , (8)

defined by

𝐻
𝑑
(𝐴, 𝐵) = max{sup

𝑎∈𝐴

𝑑 (𝑎, 𝐵) , sup
𝑏∈𝐵

𝑑 (𝐴, 𝑏)} , (9)

where 𝑑(𝐴, 𝑏) = inf
𝑎∈𝐴

𝑑(𝑎, 𝑏) and 𝑑(𝑎, 𝐵) = inf
𝑏∈𝐵

𝑑(𝑎, 𝑏).
(P

𝑏,cl(𝐸),𝐻𝑑
) is a metric space and (Pcl(𝑋),𝐻𝑑

) is a gener-
alized metric space.

Definition 4. A multifunction 𝐹 : 𝑌 → P(𝑋) is called
Hausdorff lower semicontinuous at the point 𝑦

0
∈ 𝑌, if for

any 𝜖 > 0 there exists a neighbourhood 𝑈(𝑦
0
) of the point 𝑦

0

such that

𝐹 (𝑦
0
) ⊂ 𝐹 (𝑦) + 𝜖𝐵 (0, 1) , for every 𝑦 ∈ 𝑈 (𝑦

0
) , (10)

where 𝐵(0, 1) is the unite ball in𝑋.

Definition 5. A multifunction 𝐹 : 𝑌 → P(𝑋) is called
Hausdorff upper semicontinuous at the point 𝑦

0
∈ 𝑌, if for

any 𝜖 > 0 there exists a neighbourhood 𝑈(𝑦
0
) of the point 𝑦

0

such that

𝐹 (𝑦) ⊂ 𝐹 (𝑦
0
) + 𝜖𝐵 (0, 1) , for every 𝑦 ∈ 𝑈 (𝑦

0
) . (11)

𝐹 is called continuous, if it is Hausdorff lower and upper
semicontinuous.

Definition 6. Let 𝑋 be a Banach space; a subset 𝐴 ⊂

𝐿
1
([0, 𝑏], 𝑋) is decomposable if, for all 𝑢, V ∈ 𝐴 and for every

Lebesgue measurable set 𝐼 ⊂ 𝐽, one has

𝑢𝜒
𝐼
+ V𝜒

[0,𝑏]\𝐼
∈ 𝐴, (12)

where 𝜒
𝐴
stands for the characteristic function of the set 𝐴.

We denote by Dco(𝐿1
([0, 𝑏], 𝑋)) the family of decomposable

sets.
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Let 𝐹 : [0, 𝑏] × 𝑋 → P(𝑋) be a multivalued map with
nonempty closed values. Assign to𝐹 themultivalued operator
F : 𝐶([0, 𝑏], 𝑋) → P(𝐿

1
([0, 𝑏], 𝑋)) defined by

F (𝑦) = {V ∈ 𝐿1
([0, 𝑏] , 𝑋) : V (𝑡) ∈ 𝐹 (𝑡, 𝑦 (𝑡)) ,

a.e. 𝑡 ∈ [0, 𝑏] } .
(13)

The operator F is called the Nemyts’kĭı operator associated
to 𝐹.

Definition 7. Let 𝐹 : [0, 𝑏] × 𝑋 → P(𝑋) be a multivalued
mapwith nonempty compact values.We say that𝐹 is of lower
semicontinuous type (l.s.c. type) if its associated Nemyts’kĭı
operator F is lower semicontinuous and has nonempty
closed and decomposable values.

Next, we state a classical selection theorem due to Bressan
and Colombo.

Lemma 8 (see [40]). Let𝑋 be a separable metric space and let
𝐸 be a Banach space.Then every l.s.c. multivalued operator𝑁 :

𝑋 → P
𝑐𝑙
(𝐿

1
([0, 𝑏], 𝐸)) with closed decomposable values has

a continuous selection; that is, there exists a continuous single-
valued function 𝑓 : 𝑋 → 𝐿

1
([0, 𝑏], 𝐸) such that 𝑓(𝑥) ∈ 𝑁(𝑥)

for every 𝑥 ∈ 𝑋.

Let us introduce the following hypothesis.

(H
1
) 𝐹 : [0, 𝑏]×𝑋 → P(𝑋) is a nonempty compact valued
multivalued map such that

(a) the mapping (𝑡, 𝑦) → 𝐹(𝑡, 𝑦) is L ⊗ B
measurable;

(b) the mapping 𝑦 → 𝐹(𝑡, 𝑦) is lower semicontinu-
ous for a.e. 𝑡 ∈ [0, 𝑏].

Lemma 9 (see, e.g., [41]). Let 𝐹 : 𝐽 × 𝑋 → P
𝑐𝑝
(𝐸) be an

integrably bounded multivalued map satisfying (H
1
). Then 𝐹

is of lower semicontinuous type.

Define

𝐹 (𝐾) = {𝑓 ∈ 𝐿
1
([0, 𝑏] , 𝑋) : 𝑓 (𝑡) ∈ 𝐾 a.e. 𝑡 ∈ [0, 𝑏]} ,

𝐾 ⊂ 𝑋,

(14)

where𝑋 is a Banach space.

Lemma 10 (see [37]). Let 𝐾 ⊂ 𝑋 be a weakly compact
subset of 𝑋. Then 𝐹(𝐾) is relatively weakly compact subset of
𝐿
1
([0, 𝑏], 𝑋). Moreover if 𝐾 is convex, then 𝐹(𝐾) is weakly

compact in 𝐿1
([0, 𝑏], 𝑋).

Definition 11. A multifunction 𝐹 : [0, 𝑏] × 𝑌 → P
𝑤cpcv(𝑋)

possesses the Scorza-Dragoni property (S-D property) if for
each 𝜖 > 0, there exists a closed set 𝐽

𝜖
⊂ [0, 𝑏]whose Lebesgue

measure 𝜇(𝐽
𝜖
) ≤ 𝜖 and such that 𝐹 : [0, 𝑏] \ 𝐽

𝜖
× 𝑌 → 𝑋 is

continuous with respect to the metric 𝑑
𝑋
(⋅, ⋅).

Remark 12. It is well known that if the map 𝐹 : [0, 𝑏] × 𝑌 →

P
𝑤cpcv(𝑋) is continuous with respect to 𝑦 for almost every

𝑡 ∈ [0, 𝑏] and is measurable with respect to 𝑡 for every 𝑦 ∈ 𝑌,
then it possesses the S-D property.

In what follows, we present some definitions and proper-
ties of extreme points.

Definition 13. Let𝐴 be a nonempty subset of a real or complex
linear vector space. An extreme point of a convex set 𝐴 is a
point 𝑥 ∈ 𝐴 with the property that if 𝑥 = 𝜆𝑦 + (1 − 𝜆)𝑧 with
𝑦, 𝑧 ∈ 𝐴 and 𝜆 ∈ [0, 1], then 𝑦 = 𝑥 and/or 𝑧 = 𝑥. ext(𝐴) will
denote the set of extreme points of 𝐴.

In other words, an extreme point is a point that is not an
interior point of any line segment lying entirely in 𝐴.

Lemma 14 (see [42]). A nonempty compact set in a locally
convex linear topological space has extremal points.

Let {𝑥

𝑛
}
𝑛∈N be a denumerable, dense (in 𝜎(𝑋

, 𝑋) topol-
ogy) subset of the set {𝑥 ∈ 𝑋 : ‖𝑥‖ ≤ 1}. For any 𝐴 ∈

Pcpcv(𝑋) and 𝑥


𝑛
define the function

𝑑
𝑛
(𝐴, 𝑢) = max {⟨𝑦 − 𝑧, 𝑥

𝑛
⟩ : 𝑦, 𝑧 ∈ 𝐴, 𝑢 =

𝑦 + 𝑧

2
} .

(15)

Lemma 15 (see [33]). 𝑢 ∈ ext(𝐴) if and only if 𝑑𝑛
(𝐴, 𝑢) = 0

for all 𝑛 ≥ 1.

In accordance with Krein-Milman and Trojansky theo-
rem [43], the set ext(𝑆

𝐹
) is nonempty and co(ext(𝑆

𝐹
)) = 𝑆

𝐹
.

Lemma 16 (see [33]). Let 𝐹 : [0, 𝑏] → P
𝑤𝑐𝑝𝑐V(𝑋) be a

measurable, integrably bounded map. Then

ext (𝑆
𝐹
) ⊆ 𝑆

𝐹
, (16)

where ext (𝑆
𝐹
) is the closure of set ext (𝑆

𝐹
) in the topology of

the space 𝐿1
([0, 𝑏], 𝑋).

Theorem 17 (see [33]). Let 𝐹 : [0, 𝑏] × 𝑌 → P
𝑤𝑐𝑝𝑐V(𝑋)

be a multivalued map that has the 𝑆-𝐷 property and let it be
integrable bounded on compacts from 𝑌. Consider a compact
subset 𝐾 ⊂ 𝐶([0, 𝑏], 𝑋) and define the multivalued map 𝐺 :

𝐾 → 𝐿
1
([0, 𝑏], 𝑋), by

𝐺 (𝑦 (⋅))

= {𝑓 ∈ 𝐿
1
([0, 𝑏] , 𝑋) : 𝑓 (𝑡) ∈ 𝐹 (𝑡, 𝑦 (𝑡)) 𝑎.𝑒. 𝑜𝑛 [0, 𝑏]} ,

𝑦 ∈ 𝐾.

(17)

Then for every 𝐾 compact in 𝐶([0, 𝑏], 𝑋), 𝜖 > 0 and any
continuous selection 𝑓 : 𝐾 → 𝐿

1
([0, 𝑏], 𝑋), there exists a

continuous selector𝑔 : 𝐾 → 𝐿
1
([0, 𝑏], 𝑋) of themap ext (𝐺) :

𝐾 → 𝐿
1
([0, 𝑏], 𝑋) such that for all 𝑦 ∈ 𝐶([0, 𝑏], 𝑋) one has

sup
𝑡∈[0,𝑏]



∫

𝑡

0

((𝑓𝑦) (𝑠) − (𝑔𝑦) (𝑠)) 𝑑𝑠



≤ 𝜖. (18)
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For a background of extreme point of 𝐹(𝑡, 𝑦(𝑡)) see
Dunford-Schwartz [42, Chapter 5, Section 8] and Florenzano
and Le Van [44, Chapter 3].

3. Fractional Calculus

According to the Riemann-Liouville approach to fractional
calculus, the notation of fractional integral of order 𝛼 (𝛼 > 0)
is a natural consequence of the well known formula (usually
attributed to Cauchy) that reduces the calculation of the
𝑛-fold primitive of a function 𝑓(𝑡) to a single integral of
convolution type. In our notation the Cauchy formula reads

𝐼
𝑛
𝑓 (𝑡) :=

1

(𝑛 − 1)!
∫

𝑡

0

(𝑡 − 𝑠)
𝑛−1
𝑓 (𝑠) 𝑑𝑠, 𝑡 > 0, 𝑛 ∈ N.

(19)

Definition 18 (see [13, 45]). The fractional integral of order
𝛼 > 0 of a function 𝑓 ∈ 𝐿

1
([𝑎, 𝑏],R) is defined by

𝐼
𝛼

𝑎
+𝑓 (𝑡) = ∫

𝑡

𝑎

(𝑡 − 𝑠)
𝛼−1

Γ (𝛼)
𝑓 (𝑠) 𝑑𝑠, (20)

where Γ is the gamma function. When 𝑎 = 0, we write
𝐼
𝛼
𝑓(𝑡) = 𝑓(𝑡)∗𝜙

𝛼
(𝑡), where 𝜙

𝛼
(𝑡) = 𝑡

(𝛼−1)
/Γ(𝛼) for 𝑡 > 0, and

we write 𝜙
𝛼
(𝑡) = 0 for 𝑡 ≤ 0 and 𝜙

𝛼
→ 𝛿(𝑡) as 𝛼 → 0, where

𝛿 is the delta function and Γ is the Euler gamma function
defined by

Γ (𝛼) = ∫

∞

0

𝑡
𝛼−1

𝑒
−𝑡
𝑑𝑡, 𝛼 > 0. (21)

For consistency, 𝐼0 = Id (identity operator), that is, 𝐼0𝑓(𝑡) =
𝑓(𝑡). Furthermore, by 𝐼𝛼𝑓(0+) we mean the limit (if it exists)
of 𝐼𝛼𝑓(𝑡) for 𝑡 → 0

+; this limit may be infinite.

After the notion of fractional integral, that of fractional
derivative of order 𝛼 (𝛼 > 0) becomes a natural requirement
and one is attempted to substitute 𝛼 with −𝛼 in the above
formulas. However, this generalization needs some care in
order to guarantee the convergence of the integral and
preserve the well known properties of the ordinary derivative
of integer order. Denoting by𝐷𝑛, with 𝑛 ∈ N, the operator of
the derivative of order 𝑛, we first note that

𝐷
𝑛
𝐼
𝑛
= Id, 𝐼

𝑛
𝐷

𝑛
̸= Id, 𝑛 ∈ N, (22)

that is,𝐷𝑛 is the left inverse (and not the right inverse) to the
corresponding integral operator 𝐽𝑛. We can easily prove that

𝐼
𝑛
𝐷

𝑛
𝑓 (𝑡) = 𝑓 (𝑡) −

𝑛−1

∑

𝑘=0

𝑓
(𝑘)
(𝑎

+
)
(𝑡 − 𝑎)

𝑘

𝑘!
, 𝑡 > 0. (23)

As a consequence, we expect that 𝐷𝛼 is defined as the left
inverse to 𝐼

𝛼. For this purpose, introducing the positive
integer 𝑛 such that 𝑛 − 1 < 𝛼 ≤ 𝑛, one defines the fractional
derivative of order 𝛼 > 0.

Definition 19. For a function 𝑓 given on interval [𝑎, 𝑏], the
𝛼th Riemann-Liouville fractional-order derivative of 𝑓 is
defined by

𝐷
𝛼
𝑓 (𝑡) =

1

Γ (𝑛 − 𝛼)
(
𝑑

𝑑𝑡
)

𝑛

∫

𝑡

𝑎

(𝑡 − 𝑠)
−𝛼+𝑛−1

𝑓 (𝑠) 𝑑𝑠, (24)

where 𝑛 = [𝛼] + 1 and [𝛼] is the integer part of 𝛼.

Defining for consistency, 𝐷0
= 𝐼

0
= Id, then we easily

recognize that

𝐷
𝛼
𝐼
𝛼
= Id, 𝛼 ≥ 0, (25)

𝐷
𝛼
𝑡
𝛾
=

Γ (𝛾 + 1)

Γ (𝛾 + 1 − 𝛼)
𝑡
𝛾−𝛼

,

𝛼 > 0, 𝛾 ∈ (−1, 0) ∪ (0, +∞) , 𝑡 > 0.

(26)

Of course, properties (25) and (26) are a natural generaliza-
tion of those known when the order is a positive integer.

Note the remarkable fact that the fractional derivative
𝐷

𝛼
𝑓 is not zero for the constant function 𝑓(𝑡) = 1, if 𝛼 ∉ N.

In fact, (26) with 𝛾 = 0 illustrates that

𝐷
𝛼
1 =

(𝑡 − 𝑎)
−𝛼

Γ (1 − 𝛼)
, 𝛼 > 0, 𝑡 > 0. (27)

It is clear that 𝐷𝛼
1 = 0, for 𝛼 ∈ N, due to the poles of the

gamma function at the points 0, −1, −2, . . ..
We now observe an alternative definition of fractional

derivative, originally introduced by Caputo [46, 47] in the
late sixties and adopted by Caputo and Mainardi [48] in
the framework of the theory of Linear Viscoelasticity (see a
review in [4]).

Definition 20. Let 𝑓 ∈ 𝐴𝐶
𝑛
([𝑎, 𝑏]). The Caputo fractional-

order derivative of 𝑓 is defined by

(
𝑐
𝐷

𝛼
𝑓) (𝑡) :=

1

Γ (𝑛 − 𝛼)
∫

𝑡

𝑎

(𝑡 − 𝑠)
𝑛−𝛼−1

𝑓
𝑛
(𝑠) 𝑑𝑠. (28)

This definition is of course more restrictive than
Riemann-Liouville definition, in that it requires the absolute
integrability of the derivative of order 𝑚. Whenever we use
the operator 𝐷𝛼

∗
we (tacitly) assume that this condition is

met. We easily recognize that in general

𝐷
𝛼
𝑓 (𝑡) := 𝐷

𝑚
𝐼
𝑚−𝛼

𝑓 (𝑡) ̸= 𝐽
𝑚−𝛼

𝐷
𝑚
𝑓 (𝑡) := 𝐷

𝛼

∗
𝑓 (𝑡) , (29)

unless the function 𝑓(𝑡), along with its first 𝑛 − 1 derivatives,
vanishes at 𝑡 = 𝑎+. In fact, assuming that the passage of the𝑚-
derivative under the integral is legitimate, we recognize that,
for𝑚 − 1 < 𝛼 < 𝑚 and 𝑡 > 0,

𝐷
𝛼
𝑓 (𝑡) =

𝑐
𝐷

𝛼
𝑓 (𝑡) +

𝑚−1

∑

𝑘=0

(𝑡 − 𝑎)
𝑘−𝛼

Γ (𝑘 − 𝛼 + 1)
𝑓

(𝑘)
(𝑎

+
) , (30)

and therefore, recalling the fractional derivative of the power
function (26), one has

𝐷
𝛼
(𝑓 (𝑡) −

𝑚−1

∑

𝑘=0

(𝑡 − 𝑎)
𝑘−𝛼

Γ (𝑘 − 𝛼 + 1)
𝑓

(𝑘)
(𝑎

+
)) = 𝐷

𝛼

∗
𝑓 (𝑡) . (31)
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The alternative definition, that is, Definition 20, for the
fractional derivative thus incorporates the initial values of the
function and of lower order. The subtraction of the Taylor
polynomial of degree 𝑛 − 1 at 𝑡 = 𝑎

+ from 𝑓(𝑡) means a sort
of regularization of the fractional derivative. In particular,
according to this definition, the relevant property for which
the fractional derivative of a constant is still zero:

𝑐
𝐷

𝛼
1 = 0, 𝛼 > 0. (32)

We now explore the most relevant differences between the
two fractional derivatives given in Definitions 19 and 20.
From Riemann-Liouville fractional derivatives, we have

𝐷
𝛼
(𝑡 − 𝑎)

𝛼−𝑗
= 0, for 𝑗 = 1, 2, . . . , [𝛼] + 1. (33)

From (32) and (33) we thus recognize the following state-
ments about functions which, for 𝑡 > 0, admit the same
fractional derivative of order 𝛼, with 𝑛 − 1 < 𝛼 ≤ 𝑛, 𝑛 ∈ N:

𝐷
𝛼
𝑓 (𝑡) = 𝐷

𝛼
𝑔 (𝑡) ⇐⇒ 𝑓 (𝑡) = 𝑔 (𝑡) +

𝑚

∑

𝑗=1

𝑐
𝑗
(𝑡 − 𝑎)

𝛼−𝑗
,

𝑐
𝐷

𝛼
𝑓 (𝑡) =

𝑐
𝐷

𝛼
𝑔 (𝑡) ⇐⇒ 𝑓 (𝑡) = 𝑔 (𝑡) +

𝑚

∑

𝑗=1

𝑐
𝑗(𝑡 − 𝑎)

𝑛−𝑗
.

(34)

In these formulas, the coefficients 𝑐
𝑗
are arbitrary constants.

For proving allmain results we present the following auxiliary
lemmas.

Lemma 21 (see [10]). Let 𝛼 > 0 and let 𝑦 ∈ 𝐿
∞
(𝑎, 𝑏) or

𝐶([𝑎, 𝑏]). Then

(
𝑐
𝐷

𝛼
𝐼
𝛼
𝑦) (𝑡) = 𝑦 (𝑡) . (35)

Lemma 22 (see [10]). Let 𝛼 > 0 and 𝑛 = [𝛼] + 1. If 𝑦 ∈

𝐴𝐶
𝑛
[𝑎, 𝑏] or 𝑦 ∈ 𝐶𝑛

[𝑎, 𝑏], then

(𝐼
𝛼 𝑐
𝐷

𝛼
𝑦) (𝑡) = 𝑦 (𝑡) −

𝑛−1

∑

𝑘=0

𝑦
(𝑘)
(𝑎)

𝑘!
(𝑡 − 𝑎)

𝑘
. (36)

For further readings and details on fractional calculus, we
refer to the books and papers by Kilbas [10], Podlubny [12],
Samko [13], and Caputo [46–48].

4. Existence Result

Definition 23. A function 𝑦 ∈ 𝐶([0, 𝑏],R𝑁
) is called mild

solution of problem (1) if there exist 𝑓 ∈ 𝐿
1
(𝐽,R𝑁

) such that

𝑦 (𝑡) = 𝑦
0
+ 𝑡𝑦

1
+

1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
1−𝛼

𝑓 (𝑠) 𝑑𝑠, 𝑡 ∈ [0, 𝑏] ,

(37)

where 𝑓 ∈ 𝑆
𝐹,𝑦

= {V ∈ 𝐿1
([0, 𝑏],R𝑁

) : 𝑓(𝑡) ∈ 𝐹(𝑡, 𝑦(𝑡)) a.e.
on [0, 𝑏]}.

We will impose the following conditions on 𝐹.

(H
1
) The function 𝐹 : 𝐽 ×R𝑁

→ Pcpcv(R
𝑁
) such that

(a) for all 𝑥 ∈ R𝑁, the map 𝑡 → 𝐹(𝑡, 𝑥) is
measurable,

(b) for every 𝑡 ∈ [0, 𝑏], the multivalued map 𝑥 →

𝐹(𝑡, 𝑥) is𝐻
𝑑
continuous

(H
2
) There exist 𝑝 ∈ 𝐿

1
(𝐽,R+

) and a continuous nonde-
creasing function 𝜓 : [0,∞) → (0,∞) such that

‖𝐹 (𝑡, 𝑥)‖P = sup {‖V‖ : V ∈ 𝐹 (𝑡, 𝑥)} ≤ 𝑝 (𝑡) 𝜓 (‖𝑥‖) ,

for a.e. 𝑡 ∈ [0, 𝑏] and each 𝑥 ∈ R
𝑁
,

(38)

with

∫

𝑏

0

𝑝 (𝑠) 𝑑𝑠 < ∫

∞

‖𝑦0‖+𝑏‖𝑦1‖

𝑑𝑢

𝜓 (𝑢)
. (39)

Theorem24. Assume that the conditions (H
1
)-(H

2
) and then

the problem (2) have at least one solution.

Proof. From (H
2
) there exists 𝑀 > 0 such that ‖𝑦‖

∞
≤ 𝑀

for each 𝑦 ∈ 𝑆
𝑐
.

Let

𝐹
1
(𝑡, 𝑦) =

{{

{{

{

𝐹 (𝑡, 𝑦) if 𝑦
 ≤ 𝑀,

𝐹(𝑡,
𝑀𝑦

𝑦


) if 𝑦
 ≥ 𝑀.

(40)

We consider
𝑐
𝐷

𝛼
𝑦 (𝑡) ∈ 𝐹

1
(𝑡, 𝑦 (𝑡)) , a.e. 𝑡 ∈ [0, 𝑏] ,

𝑦 (0) = 𝑦
0
, 𝑦


(0) = 𝑦

1
.

(41)

It is clear that all the solutions of (41) are solutions of (2).
Set

𝑉 = {𝑓 ∈ 𝐿
1
([0, 𝑏] ,R

𝑁
) :

𝑓 (𝑡)
 ≤ 𝜓∗

(𝑡)} ,

𝜓
∗ (𝑡) = 𝑝 (𝑡) 𝜓 (𝑀) .

(42)

It is clear that 𝑉 is weakly compact in 𝐿1
([0, 𝑏],R𝑁

). Remark
that for every 𝑓 ∈ 𝑉, there exists a unique solution 𝐿(𝑓) of
the following problem:

𝑐
𝐷

𝛼
𝑦 (𝑡) = 𝑓 (𝑡) , a.e. 𝑡 ∈ [0, 𝑏] ,

𝑦 (𝑡) = 𝑦
0
, 𝑦


(0) = 𝑦

1
;

(43)

this solution is defined by

𝐿 (𝑓) (𝑡) = 𝑦
0
+ 𝑡𝑦

1
+

1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑓 (𝑠) 𝑑𝑠,

a.e. 𝑡 ∈ [0, 𝑏] .
(44)

We claim that 𝐿 is continuous. Indeed, let 𝑓
𝑛
→ 𝑓 converge

in 𝐿1
([0, 𝑏],R𝑁

), as 𝑛 → ∞, set 𝑦
𝑛
= 𝐿(𝑓

𝑛
), 𝑛 ∈ N. It is clear
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that {𝑦
𝑛
: 𝑛 ∈ N} is relatively compact in 𝐶([0, 𝑏],R𝑁

) and 𝑦
𝑛

converge to 𝑦 ∈ 𝐶([0, 𝑏],R𝑁
). Let

𝑧 (𝑡) = 𝑦
0
+ 𝑦

1
𝑡 +

1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑓 (𝑠) 𝑑𝑠, 𝑡 ∈ [0, 𝑏] .

(45)

Then

𝑦𝑛
− 𝑧

∞
≤

𝑏
𝛼

Γ (𝛼)
∫

𝑏

0

𝑓𝑛 (𝑠) − 𝑓 (𝑠)
 𝑑𝑠 → 0,

as 𝑛 → ∞.

(46)

Hence 𝐾 = 𝐿(𝑉) is compact and convex subset of
𝐶([0, 𝑏],R𝑁

). Let 𝑆
𝐹
: 𝐾 → Pclcv(𝐿

1
([0, 𝑏],R𝑁

)) be the
multivalued Nemitsky operator defined by

𝑆
𝐹1
(𝑦) = {𝑓 ∈ 𝐿

1
([0, 𝑏] ,R

𝑁
) : 𝑓 (𝑡) ∈ 𝐹

1
(𝑡, 𝑦 (𝑡)) ,

a.e. 𝑡 ∈ [0, 𝑏] } := 𝑆𝐹1 ,𝑦.
(47)

It is clear that 𝐹
1
(⋅, ⋅) is 𝐻

𝑑
continuous and 𝐹

1
(⋅, ⋅) ∈

P
𝑤𝑘cpcv(R

𝑁
) and is integrably bounded, then byTheorem 17

(see also Theorem 6.5 in [32] or Theorem 1.1 in [34]), we can
find a continuous function 𝑔 : 𝐾 → 𝐿

1

𝑤
([0, 𝑏],R𝑁

) such that

𝑔 (𝑥) ∈ ext 𝑆
𝐹1
(𝑦) ∀𝑦 ∈ 𝐾. (48)

From Benamara [49] we know that

ext 𝑆
𝐹1
(𝑦) = 𝑆ext 𝐹1(⋅,𝑦(⋅)) ∀𝑦 ∈ 𝐾. (49)

Setting𝑁 = 𝐿 ∘ 𝑔 and letting 𝑦 ∈ 𝐾, then

𝑔 (𝑦) ∈ 𝐹
1
(⋅, 𝑦 (⋅)) ⇒ 𝑔 (𝑦) ∈ 𝑉 ⇒ 𝑁(𝑦)

= 𝐿 (𝑔 (𝑦)) ∈ 𝐾.

(50)

Now, we prove that 𝑁 is continuous. Indeed, let 𝑦
𝑛
∈ 𝐾

converge to 𝑦 in 𝐶([0, 𝑏],R𝑁
).

Then

𝑔 (𝑦
𝑛
) converge weakly to 𝑔 (𝑦) as 𝑛 → ∞. (51)

Since𝑁(𝑦
𝑛
) = 𝐿(𝑔(𝑦

𝑛
)) ∈ 𝐾 and 𝑔(𝑦

𝑛
)(⋅) ∈ 𝐹(𝑡, 𝑦

𝑛
(𝑡)), then

𝑔 (𝑦
𝑛
) (⋅) ∈ 𝐹 (⋅, 𝐵

𝑀
) ∈ Pcp (R

𝑁
) . (52)

FromLemma 10, 𝑔(𝑦
𝑛
) converge weakly to𝑦 in 𝐿1

([0, 𝑏],R𝑁
)

as 𝑛 → ∞. By the definition of𝑁, we have

𝑁(𝑦
𝑛
) = 𝑦

0
+ 𝑦

1
𝑡 +

1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑔 (𝑦
𝑛
) (𝑠) 𝑑𝑠,

𝑡 ∈ [0, 𝑏] ,

𝑁 (𝑦) = 𝑦
0
+ 𝑦

1
𝑡 +

1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑔 (𝑦) (𝑠) 𝑑𝑠,

𝑡 ∈ [0, 𝑏] .

(53)

Since {𝑁(𝑦
𝑛
) : 𝑛 ∈ N} ⊂ 𝐾, then there exists subsequence of

𝑁(𝑦
𝑛
) converge in 𝐶([0, 𝑏],R𝑁

). Then

𝑁(𝑦
𝑛
) (𝑡) → 𝑁(𝑦) (𝑡) , ∀𝑡 ∈ [0, 𝑏] , as 𝑛 → ∞.

(54)

This proves that 𝑁 is continuous. Hence by Schauder’s fixed
point there exists 𝑦 ∈ 𝐾 such that 𝑦 = 𝑁(𝑦).

5. The Relaxed Problem

In this section, we examine whether the solutions of the
extremal problem are dense in those of the convexified one.
Such a result is important in optimal control theory whether
the relaxed optimal state can be approximated by original
states; the relaxed problems are generally much simpler to
build. For the problem for first-order differential inclusions,
we refer, for example, to [35, Theorem 2, page 124] or [36,
Theorem 10.4.4, page 402]. For the relaxation of extremal
problems we see the following recent references [30, 50].

Now we present our main result of this section.

Theorem 25. Let 𝐹 : [0, 𝑏] × R𝑁
→ P(R𝑁

) be a
multifunction satisfying the following hypotheses.

(H
3
) The function 𝐹 : [0, 𝑏]×R𝑁

→ P
𝑐𝑝𝑐V(R

𝑁
) such that,

for all 𝑥 ∈ R𝑁, the map

𝑡 → 𝐹 (𝑡, 𝑥) (55)

is measurable.
(H

4
) There exists 𝑝 ∈ 𝐿1

(𝐽,R+
) such that

𝐻
𝑑
(𝐹 (𝑡, 𝑥) , 𝐹 (𝑡, 𝑦)) ≤ 𝑝 (𝑡)

𝑥 − 𝑦
 ,

for a.e. 𝑡 ∈ [0, 𝑏] and each 𝑥, 𝑦 ∈ R
𝑁
,

𝐻
𝑑
(𝐹 (𝑡, 0) , 0) ≤ 𝑝 (𝑡) for a.e. 𝑡 ∈ [0, 𝑏] .

(56)

Then 𝑆
𝑒
= 𝑆

𝑐
.

Proof. By Coviz and Nadlar fixed point theorem, we can
easily prove that 𝑆

𝑐
̸= 0, and since 𝐹 has compact and convex

valued, then 𝑆
𝑐
is compact in 𝐶([0, 𝑏],R𝑁

). For more infor-
mation we see [25, 27–29, 51, 52].

Let 𝑦 ∈ 𝑆
𝑐
; then there exists 𝑓 ∈ 𝑆

𝐹,𝑦
such that

𝑦 (𝑡) = 𝑦
0
+ 𝑦

1
𝑡 +

1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑓 (𝑠) 𝑑𝑠,

a.e. 𝑡 ∈ [0, 𝑏] .
(57)

Let𝐾 be a compact and convex set in 𝐶([0, 𝑏],R𝑁
) such that

𝑆
𝑐
⊂ 𝐾. Given that 𝑦

∗
∈ 𝐾 and 𝜖 > 0, we define the following

multifunction 𝑈
𝜖
: [0, 𝑏] → P(R𝑁

) by

𝑈
𝜖
(𝑡) = {𝑢 ∈ R

𝑁
:
𝑓 (𝑡) − 𝑢

 < 𝑑 (𝑓 (𝑡) , 𝐹 (𝑡, 𝑦 (𝑡))) + 𝜖,

𝑢 ∈ 𝐹 (𝑡, 𝑦
∗
(𝑡)) } .

(58)
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The multivalued map 𝑡 → 𝐹(𝑡, ⋅) is measurable and 𝑥 →

𝐹(⋅, 𝑥) is 𝐻
𝑑
continuous. In addition, if 𝐹(⋅, ⋅) has compact

values, then 𝐹(⋅, ⋅) is graph measurable, and the mapping
𝑡 → 𝐹(𝑡, 𝑦(𝑡)) is a measurable multivalued map for fixed 𝑦 ∈
𝐶([0, 𝑏],R𝑁

). Then by Lemma 3, there exists a measurable
selection V

1
(𝑡) ∈ 𝐹(𝑡, 𝑦(𝑡)) a.e. 𝑡 ∈ [0, 𝑏] such that

𝑓 (𝑡) − V
1
(𝑡)
 < 𝑑 (𝑓 (𝑡) , 𝐹 (𝑡, 𝑦 (𝑡))) + 𝜖; (59)

this implies that 𝑈
𝜖
(⋅) ̸= 0. We consider 𝐺

𝜖
: 𝐾 → P(𝐿

1
(𝐽,

R𝑁
) defined by

𝐺
𝜖
(𝑦) = {𝑓

∗
∈ F (𝑦) :

𝑓 (𝑡) − 𝑓∗ (𝑡)


< 𝜖 + 𝑑 (𝑓
∗
(𝑡) , 𝐹 (𝑡, 𝑦 (𝑡)))} .

(60)

Since the measurable multifunction 𝐹 is integrable bounded,
Lemma 9 implies that the Nemyts’kĭı operatorF has decom-
posable values. Hence 𝑦 → 𝐺

𝜖
(𝑦) is l.s.c. with decomposable

values. By Lemma 8, there exists a continuous selection 𝑓
𝜖
:

𝐶([0, 𝑏],R𝑁
) → 𝐿

1
(𝐽,R𝑁

) such that

𝑓
𝜖
(𝑦) ∈ 𝐺

𝜖
(𝑦) ∀𝑦 ∈ 𝐶 ([0, 𝑏] ,R

𝑁
) . (61)

FromTheorem 17, there exists function 𝑔
𝜖
: 𝐾 → 𝐿

𝑤
([0, 𝑏],

R𝑁
) such that

𝑔
𝜖
(𝑦) ∈ ext 𝑆

𝐹
(𝑦) = 𝑆ext 𝐹(⋅,𝑦(⋅)) ∀𝑦 ∈ 𝐾,

‖ 𝑔
𝜖
(𝑦) − 𝑓

𝜖
(𝑦) ‖

𝑤
≤ 𝜖, ∀𝑦 ∈ 𝐾.

(62)

From (H
3
) we can prove that there exists𝑀 > 0 such that

𝑦
∞

≤ 𝑀 ∀𝑦 ∈ 𝑆
𝑐
. (63)

Consider the sequence 𝜖
𝑛
→ 0, as 𝑛 → ∞, and set𝑔

𝑛
= 𝑔

𝜖𝑛
,

𝑓
𝑛
= 𝑓

𝜖𝑛
. Set

𝑉 = {𝑓 ∈ 𝐿
1
([0, 𝑏] ,R

𝑁
) :

𝑓 (𝑡)
 ≤ 𝜓 (𝑡) a.e. 𝑡 ∈ [0, 𝑏]} ,

𝜓 (𝑡) = (1 +𝑀)𝑝 (𝑡) .

(64)

Let 𝐿 : 𝑉 → 𝐶([0, 𝑏],R𝑁
) be the map such that each 𝑓 ∈ 𝑉

assigns the unique solution of the problem

𝑐
𝐷

𝛼
𝑦 (𝑡) = 𝑓 (𝑡) , a.e. 𝑡 ∈ [0, 𝑏] ,

𝑦 (0) = 𝑦
0
, 𝑦


(0) = 𝑦

1
.

(65)

As in Theorem 24, we can prove that 𝐿(𝑉) is compact in
𝐶([0, 𝑏],R𝑁

) and the operator 𝑁
𝑛
= 𝐿 ∘ 𝑔

𝑛
: 𝐾 → 𝐾 is

compact; then by Schauder’s fixed point there exists 𝑦
𝑛
∈ 𝐾

such that 𝑦
𝑛
∈ 𝑆

𝑒
and

𝑦
𝑛
(𝑡) = 𝑦

0
+ 𝑡𝑦

1
+

1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑔
𝑛
(𝑦

𝑛
) (𝑠) 𝑑𝑠,

a.e. 𝑡 ∈ [0, 𝑏] , 𝑛 ∈ N.

(66)

Hence

𝑦 (𝑡) − 𝑦𝑛 (𝑡)


≤
1

Γ (𝛼)



∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

[𝑔
𝑛
(𝑦

𝑛
) (𝑠) − 𝑓 (𝑠)] 𝑑𝑠



≤
1

Γ (𝛼)



∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

[𝑔
𝑛
(𝑦

𝑛
) (𝑠) − 𝑓

𝑛
(𝑦

𝑛
) (𝑠)] 𝑑𝑠



+
𝑏
𝛼

Γ (𝛼)
∫

𝑡

0

𝑓𝑛 (𝑦𝑛
) (𝑠) − 𝑓 (𝑠)

 𝑑𝑠

≤
1

Γ (𝛼)



∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

[𝑔
𝑛
(𝑦

𝑛
) (𝑠) − 𝑓

𝑛
(𝑦

𝑛
) (𝑠)] 𝑑𝑠



+
𝑏
𝛼

Γ (𝛼)
∫

𝑡

0

(𝜖
𝑛
+ 𝑑 (𝑓 (𝑠) , 𝑓

𝑛
(𝑦

𝑛
) (𝑠))) 𝑑𝑠

≤
1

Γ (𝛼)



∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

[𝑔
𝑛
(𝑦

𝑛
) (𝑠) − 𝑓𝑛 (𝑦𝑛

) (𝑠)] 𝑑𝑠



+
𝑏
𝛼

Γ (𝛼)
∫

𝑡

0

(𝜖
𝑛
+ 𝐻

𝑑
(𝐹 (𝑠, 𝑦 (𝑠)) , 𝐹 (𝑠, 𝑦

𝑛
(𝑠)))) 𝑑𝑠

≤
𝑏
𝛼+1

Γ (𝛼 + 1)
𝜖
𝑛
+
𝑏
𝛼+1

Γ (𝛼)
𝜖
𝑛
+ ∫

𝑡

0

𝑝 (𝑠)
𝑦 (𝑠) − 𝑦𝑛 (𝑠)

 .

(67)

Let 𝑦(⋅) be a limit point of the sequence 𝑦
𝑛
(⋅). Then, it follows

that from the above inequality, one has

𝑦 (𝑡) − 𝑦 (𝑡)
 ≤ ∫

𝑡

0

𝑝 (𝑠)
𝑦 (𝑠) − 𝑦 (𝑠)

 𝑑𝑠,
(68)

which implies 𝑦(⋅) = 𝑦(⋅). Consequently, 𝑦 ∈ 𝑆
𝑐
is a unique

limit point of 𝑦
𝑛
(⋅) ∈ 𝑆

𝑒
.

Example 26. Let 𝐹 : 𝐽 ×R𝑁
→ Pcpcv(R

𝑁
) with

𝐹 (𝑡, 𝑦) = 𝐵 (𝑓
1
(𝑡, 𝑦) , 𝑓

2
(𝑡, 𝑦)) , (69)

where 𝑓
1
, 𝑓

2
: 𝐽 × R𝑁

→ R𝑁 are Carathéodory functions
and bounded.

Then (2) is solvable.

Example 27. If, in addition to the conditions on 𝐹 of
Example 26, 𝑓

1
and 𝑓

2
are Lipschitz functions, then 𝑆

𝑒
= 𝑆

𝑐
.
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This paper is concernedwith the asymptotical behavior of solutions to the reaction-diffusion systemunder homogeneousNeumann
boundary condition. By taking food ingestion and species’ moving into account, the model is further coupled with Michaelis-
Menten type functional response and nonlocal delay. Sufficient conditions are derived for the global stability of the positive steady
state and the semitrivial steady state of the proposed problem by using the Lyapunov functional. Our results show that intraspecific
competition benefits the coexistence of prey and predator. Furthermore, the introduction of Michaelis-Menten type functional
response positively affects the coexistence of prey and predator, and the nonlocal delay is harmless for stabilities of all nonnegative
steady states of the system. Numerical simulations are carried out to illustrate the main results.

1. Introduction

The overall behavior of ecological systems continues to be
of great interest to both applied mathematicians and ecol-
ogists. Two species predator-prey models have been exten-
sively investigated in the literature. But recently more and
more attention has been focused on systems with three or
more trophic levels. For example, the predator-prey system
for three species with Michaelis-Menten type functional
response was studied by many authors [1–4]. However, the
systems in [1–4] are either with discrete delay or without
delay or without diffusion. In view of individuals taking
time to move, spatial dispersal was dealt with by introducing
diffusion term to corresponding delayed ODE model in
previous literatures, namely, adding a Laplacian term to the
ODEmodel. In recent years, it has been recognized that there
are modelling difficulties with this approach. The difficulty is
that diffusion and time delay are independent of each other,
since individuals have not been at the same point at previous
times. Britton [5] made a first comprehensive attempt to
address this difficulty by introducing a nonlocal delay; that

is, the delay term involves a weighted-temporal average over
thewhole of the infinite domain and thewhole of the previous
times.

There are many results for reaction-diffusion equations
with nonlocal delays [5–18]. The existence and stability of
travelingwave fronts were studied in reaction-diffusion equa-
tions with nonlocal delay [5–9]. The stability of impulsive
cellular neural networks with time varying was discussed
in [10] by means of new Poincare integral inequality. The
asymptotic behavior of solutions of the reaction-diffusion
equations with nonlocal delay was investigated in [11, 12] by
using an iterative technique and in [13–15] by the Lyapunov
functional.The stability and Hopf bifurcation were discussed
in [16] for a diffusive logistic populationmodel with nonlocal
delay effect.

Motivated by the work above, we are concerned with
the following food chain model with Michaelis-Menten type
functional response:

𝜕𝑢
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for 𝑡 > 0, 𝑥 ∈ Ω with homogeneous Neumann boundary
conditions

𝜕𝑢
1

𝜕]
=
𝜕𝑢
2

𝜕]
=
𝜕𝑢
3

𝜕]
= 0, 𝑡 > 0, 𝑥 ∈ 𝜕Ω, (2)

and initial conditions

𝑢
𝑖
(𝑡, 𝑥) = 𝜙

𝑖
(𝑡, 𝑥) ≥ 0 (𝑖 = 1, 2) , (𝑡, 𝑥) ∈ (−∞, 0] × Ω,

𝑢
3
(0, 𝑥) = 𝜙

3
(𝑥) ≥ 0, 𝑥 ∈ Ω,

(3)

where 𝜙
𝑖
is bounded, Hölder continuous function and satis-

fies 𝜕𝜙
𝑖
/𝜕] = 0 (𝑖 = 1, 2, 3) on (−∞, 0] × 𝜕Ω. Here, Ω is a

bounded domain in R𝑛 with smooth boundary 𝜕Ω and 𝜕/𝜕]
is the outward normal derivative on 𝜕Ω. 𝑢

𝑖
(𝑡, 𝑥) represents

the density of the 𝑖th species (prey, predator, and top predator
resp.) at time 𝑡 and location 𝑥 and thus only nonnegative
𝑢
𝑖
(𝑡, 𝑥) is of interest. The parameter 𝑎

1
is the intrinsic growth

rate of the prey, and 𝑎
2
and 𝑎

3
are the death rates of the

predator and top-predator. 𝑎
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is the intraspecific competitive

rate of the 𝑖th species. 𝑎
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is the maximum predation rate. 𝑎

23

and 𝑎
32
are the efficiencies of food utilization of the predator

and top predator, respectively. We assume the predator and
top predator show the Michaelis-Menten (or Holling type
II) functional response with 𝑢

1
/(𝑚
1
+ 𝑢
1
) and 𝑢

2
/(𝑚
2
+ 𝑢
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respectively, where 𝑚
1
and 𝑚

2
are half-saturation constants.

For a through biological background of similar models, see
[18, 19]. As our most knowledge, the tritrophic food chain
model has been found to have many interesting biological
properties, such as the coexistence and the Hopf bifurcation.
However, the effect of nonlocal time delays on the coexistence
has not been reported. Our paper mainly concerns this
perspective.

Additionally, ∫
Ω
∫
𝑡

−∞
(𝑢
𝑖
(𝑠, 𝑦)/(𝑚

𝑖
+ 𝑢
𝑖
(𝑠, 𝑦)))𝐾

𝑖
(𝑥, 𝑦, 𝑡 −

𝑠)𝑑𝑠 𝑑𝑦 (𝑖 = 1, 2) represents the nonlocal delay due to
the ingestion of predator; that is, mature adult predator can

only contribute to the production of predator biomass. The
boundary condition in (2) implies that there is no migration
across the boundary ofΩ.

The main purpose of this paper is to study the global
asymptotic behavior of the solution of system (1)–(3). The
preliminary results are presented in Section 2. Section 3 con-
tains sufficient conditions for the global asymptotic behaviors
of the equilibria of system (1)–(3) by means of the Lyapunov
functional. Numerical simulations are carried out to show the
feasibility of the conditions in Theorems 8–10 in Section 4.
Finally, a brief discussion is given to conclude this work.

2. Preliminary Results

In this section, we present several preliminary results that will
be employed in the sequel.

Lemma 1 (see [3]). Let 𝑎 and 𝑏 be positive constants. Assume
that 𝜙, 𝜑 ∈ 𝐶1(𝑎, +∞), 𝜑(𝑡) ≥ 0, and 𝜙 is bounded from
below. If 𝜙(𝑡) ≤ −𝑏𝜑(𝑡) and 𝜑(𝑡) ≤ 𝐾 in [𝑎, +∞) for some
positive constant 𝐾, then lim

𝑡→+∞
𝜑(𝑡) = 0.

The following lemma is the Positivity Lemma in [20].

Lemma 2. Let 𝑢
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and 𝑐
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≥ 0 for all 𝑖, 𝑗 = 1, 2, 3. Then 𝑢

𝑖
(𝑡, 𝑥) ≥ 0 on [0, 𝑇] × Ω.

Moreover, if the initial function is nontrivial, then 𝑢
𝑖
> 0 in

(0, 𝑇] × Ω.

Lemma 3 (see [20]). Let ĉ and c̃ be a pair of constant vector
satisfying c̃ ≥ ĉ and let the reaction functions satisfy local
Lipschitz condition withΛ = ⟨ĉ, c̃⟩.Then system (1)–(3) admits
a unique global solution u(𝑡, 𝑥) such that

ĉ ≤ u (𝑡, 𝑥) ≤ c̃, ∀𝑡 > 0, 𝑥 ∈ Ω, (5)

whenever ĉ ≤ 𝜙(𝑡, 𝑥) ≤ c̃, (𝑡, 𝑥) ∈ (−∞, 0] × Ω.

The following result was obtained by themethod of upper
and lower solutions and the associated iterations in [21].
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Lemma 4 (see [21]). Let 𝑢(𝑡, 𝑥) ∈ 𝐶([0,∞) × Ω) ∩

𝐶
2,1
((0,∞)×Ω) be the nontrivial positive solution of the system
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Throughout this paper, we assume that
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where𝐺
𝑖
(𝑥, 𝑦, 𝑡) is a nonnegative function, which is continu-

ous in (𝑥, 𝑦) ∈ Ω×Ω for each 𝑡 ∈ [0, +∞) and measurable in
𝑡 ∈ [0, +∞) for each pair (𝑥, 𝑦) ∈ Ω × Ω.

Now we prove the following propositions which will be
used in the sequel.

Proposition 5. For any nonnegative initial function, the
corresponding solution of system (1)–(3) is nonnegative.

Proof. Suppose that (𝑢
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𝑢
3𝑡
− 𝑑
3
Δ𝑢
3
= 𝐴
3
𝑢
3
, 0 < 𝑡 < 𝜏, 𝑥 ∈ Ω,

𝜕𝑢
𝑖

𝜕]
= 0, 0 < 𝑡 < 𝜏, 𝑥 ∈ 𝜕Ω,

𝑢
𝑖
(𝑡, 𝑥) ≥ 0 (𝑖 = 1, 2, 3) , 𝑡 ≤ 0, 𝑥 ∈ Ω,

(8)

where

𝐴
1
= 𝑎
1
− 𝑎
11
𝑢
1
−
𝑎
12
𝑢
2

𝑚
1
+ 𝑢
1

,

𝐴
2
= −𝑎
2
+ 𝑎
21
∫
Ω

∫

𝑡

−∞

𝑢
1
(𝑠, 𝑦)

𝑚
1
+ 𝑢
1
(𝑠, 𝑦)

× 𝐾
1
(𝑥, 𝑦, 𝑡 − 𝑠) 𝑑𝑠 𝑑𝑦

− 𝑎
22
𝑢
2
−
𝑎
23
𝑢
3

𝑚
2
+ 𝑢
3

,

𝐴
3
= −𝑎
3
+ 𝑎
32
∫
Ω

∫

𝑡

−∞

𝑢
2
(𝑠, 𝑦)

𝑚
2
+ 𝑢
2
(𝑠, 𝑦)

× 𝐾
2
(𝑥, 𝑦, 𝑡 − 𝑠) 𝑑𝑠 𝑑𝑦 − 𝑎

33
𝑢
3
.

(9)

It follows from Lemma 2 that 𝑢
𝑖
≥ 0, (𝑡, 𝑥) ∈ [0, 𝜏] × Ω. Due

to the arbitrariness of 𝜏, we have 𝑢
𝑖
≥ 0 for (𝑡, 𝑥) ∈ [0, 𝑇) ×

Ω.

Proposition 6. System (1)–(3) with initial functions 𝜙
𝑖
admits

a unique global solution (𝑢
1
, 𝑢
2
, 𝑢
3
) satisfying 0 ≤ 𝑢

𝑖
(𝑡, 𝑥) ≤

𝑀
𝑖
for 𝑖 = 1, 2, 3, where𝑀

𝑖
is defined as

𝑀
1
= max{ 𝑎1

𝑎
11

,
𝜙1 (𝑡, 𝑥)

𝐿∞((−∞,0]×Ω)
} ,

𝑀
2
= max{

(𝑎
21
− 𝑎
2
)𝑀
1
− 𝑚
1
𝑎
2

𝑎
22
(𝑚
1
+𝑀
1
)

,
𝜙2 (𝑡, 𝑥)

𝐿∞((−∞,0]×Ω)
} ,

𝑀
3
= max{

(𝑎
32
− 𝑎
3
)𝑀
2
− 𝑚
2
𝑎
3

𝑎
22
(𝑚
2
+𝑀
2
)

,
𝜙3 (𝑥)

𝐿∞(Ω)
} .

(10)

Proof. It follows from standard PDE theory that there exists
a 𝑇 > 0 such that problem (1)–(3) admits a unique solution
in [0, 𝑇) × Ω. From Lemma 2 we know that 𝑢

𝑖
(𝑡, 𝑥) ≥ 0 for

(𝑡, 𝑥) ∈ [0, 𝑇) × Ω. Considering the first equation in (1), we
have

𝜕𝑢
1

𝜕𝑡
− 𝑑
1
Δ𝑢
1
≤ 𝑢
1
(𝑎
1
− 𝑎
11
𝑢
1
) . (11)

Using themaximumprinciple gives that 𝑢
1
≤ 𝑀
1
. In a similar

way, we have 𝑢
𝑖
≤ 𝑀
𝑖
for 𝑖 = 2, 3. It is easy to see that (0, 0, 0)

and (𝑀
1
,𝑀
2
,𝑀
3
) are a pair of coupled upper and lower

solutions to system (1)–(3) from the direct computation. In
virtue of Lemma 3, system (1)–(3) admits a unique global
solution (𝑢

1
, 𝑢
2
, 𝑢
3
) satisfying 0 ≤ 𝑢

𝑖
(𝑡, 𝑥) ≤ 𝑀

𝑖
for 𝑖 = 1, 2, 3.

In addition, if 𝜙
1
(𝑡, 𝑥), 𝜙

2
(𝑡, 𝑥), 𝜙

3
(𝑥), (𝑡, 𝑥) ∈ (−∞, 0] × Ω is

nontrivial, it follows from the strongmaximumprinciple that
𝑢
𝑖
(𝑡, 𝑥) > 0 (𝑖 = 1, 2, 3) for all 𝑡 > 0, 𝑥 ∈ Ω.

3. Global Stability

In this section, we study the asymptotic behavior of the
equilibrium of system (1)–(3). In the beginning, we show the
existence and uniqueness of positive steady state.
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Figure 1: Graphs of the equations in (12). 𝐿
3
is the boundary

condition (𝑎
3
= 𝑎
32
V
2
/(𝑚
2
+ V
2
)) and 𝐿

2
corresponds to −𝑎

2
+

𝑎
21
(V
1
/(𝑚
1
+ V
1
)) − 𝑎

22
V
2
= 0, while 𝐿

1
corresponds to 𝑎

1
− 𝑎
11
V
1
−

𝑎
12
V
2
/(𝑚
1
+ V
1
) = 0. Intersection point between 𝐿

1
and 𝐿

2
gives the

positive solution (V∗
1
, V∗
2
) to (12). Parameter values are listed in the

example in Section 4.

Let us consider the following equations:

𝑎
1
− 𝑎
11
V
1
−
𝑎
12
V
2

𝑚
1
+ V
1

= 0,

− 𝑎
2
+
𝑎
21
V
1

𝑚
1
+ V
1

− 𝑎
22
V
2
= 0.

(12)

A direct computation shows that the above equations have
only one positive solution (V∗

1
, V∗
2
) if and only if

𝐻
1
: 𝑎
1
(𝑎
21
− 𝑎
2
) > 𝑚

1
𝑎
2
𝑎
11
, (13)

is satisfied. Taking𝐻
1
into account, we consider the equation

𝑎
3
= 𝑎
32
V∗
2
/(𝑚
2
+ V∗
2
), which corresponds to 𝐿

3
in Figure 1.

It is clear that if 𝑎
3
< 𝑎
32
V∗
2
/(𝑚
2
+ V∗
2
), the intersection

point (V∗
1
, V∗
2
) always lies in 𝐿

3
. Let

𝐻
2
: 𝑎
3
𝑚
2
< (𝑎
32
− 𝑎
3
) V∗
2
. (14)

Suppose that𝐻
1
and𝐻

2
hold. We take 𝑢

3
as a parameter and

consider the following system:

𝑎
1
− 𝑎
11
𝑢
1
−
𝑎
12
𝑢
2

𝑚
1
+ 𝑢
1

= 0,

− 𝑎
2
+
𝑎
21
𝑢
1

𝑚
1
+ 𝑢
1

− 𝑎
22
𝑢
2
−
𝑎
23
𝑢
3

𝑚
2
+ 𝑢
2

= 0,

− 𝑎
3
+
𝑎
32
𝑢
2

𝑚
2
+ 𝑢
2

− 𝑎
33
𝑢
3
= 0.

(15)

When the parameter 𝑢
3
is sufficiently small, the first two

equations in (15) can be approximated by (12). Moreover,

by continuously increasing the value of 𝑢
3
, 𝐿
3
goes up, and

meanwhile the intersection point between 𝐿
1
and 𝐿

2
also

goes up. However, 𝐿
3
goes up faster than 𝐿

2
, while 𝐿

1
keeps

still. In other words, there exists a critical value 𝑢
3
such

that the intersection point lies in 𝐿
3
, which implies that

there is a unique positive solution 𝐸∗(𝑢∗
1
, 𝑢
∗

2
, 𝑢
∗

3
) to (15), or

equivalently (1)–(3).

Lemma 7. Assume that𝐻
2
and 𝐺

2
hold, and then the positive

steady state𝐸∗ of system (1)–(3) is locally asymptotically stable.

Proof. We get the local stability of 𝐸∗ by performing a
linearization and analyzing the corresponding characteristic
equation. Similarly as in [22], let 0 < 𝜇

1
< 𝜇
2
< 𝜇
3
<

. . . be the eigenvalues of −Δ on Ω with the homogeneous
Neumann boundary condition. Let 𝐸(𝜇

𝑖
) be the eigenspace

corresponding to 𝜇
𝑖
in 𝐶1(Ω), for 𝑖 = 1, 2, 3, . . . . Let

X = {u = (𝑢
1
, 𝑢
2
, 𝑢
3
) ∈ [𝐶

1
(Ω)]
3

𝜕
𝜂
u = 0, 𝑥 ∈ 𝜕Ω} , (16)

{𝜑
𝑖𝑗
, 𝑗 = 1, . . . , dim𝐸(𝜇

𝑖
)} be an orthonormal basis of 𝐸(𝜇

𝑖
),

and X
𝑖𝑗
= {𝑐 ⋅ 𝜑

𝑖𝑗
| 𝑐 ∈ 𝑅

3
}. Then

X
𝑖
=

dim𝐸(𝜇𝑖)

⨁

𝑗=1

X
𝑖𝑗
, X =

∞

⨁

𝑖=1

X
𝑖
. (17)

Let 𝐷 = diag(𝐷
1
, 𝐷
2
, 𝐷
3
) and k = (V

1
, V
2
, V
3
), V
𝑖
=

𝑢
𝑖
− 𝑢
∗

𝑖
, (𝑖 = 1, 2, 3). Then the linearization of (1)

is k
𝑡
= 𝐿k = 𝐷Δk + Fk(E∗)k, Fk(E∗)k = {𝑐

𝑖𝑗
},

where 𝑐
𝑖𝑖

= 𝑏
𝑖𝑖
V
𝑖
, 𝑖 = 1, 2, 3, 𝑐

12
= 𝑏
12
V
2
, 𝑐
23

=

𝑏
23
V
3
, 𝑐
21
= 𝑏
21
∫
Ω
∫
𝑡

−∞
V
1
(𝑠, 𝑦)𝐾

1
(𝑥, 𝑦, 𝑡 − 𝑠)𝑑𝑠 𝑑𝑦, and 𝑐

32
=

𝑏
32
∫
Ω
∫
𝑡

−∞
V
2
(𝑠, 𝑦)𝐾

2
(𝑥, 𝑦, 𝑡 − 𝑠)𝑑𝑠 𝑑𝑦. The coefficients 𝑏

𝑖𝑗
are

defined as follows:

𝑏
11
= −𝑎
11
𝑢
∗

1
+
𝑎
12
𝑢
∗

1
𝑢
∗

2

(𝑚
1
+ 𝑢
∗

1
)
2
,

𝑏
12
= −

𝑎
12
𝑢
∗

1

𝑚
1
+ 𝑢
∗

1

, 𝑏
13
= 0,

𝑏
21
=
𝑎
21
𝑚
1
𝑢
∗

2

(𝑚
1
+ 𝑢
∗

1
)
2
,

𝑏
22
= −𝑎
22
𝑢
∗

2
+
𝑎
23
𝑢
∗

2
𝑢
∗

3

(𝑚
2
+ 𝑢
∗

2
)
2
, 𝑏

23
= −

𝑎
23
𝑢
∗

2

𝑚
2
+ 𝑢
∗

2

,

𝑏
31
= 0, 𝑏

32
=
𝑎
32
𝑚
2
𝑢
∗

3

(𝑚
2
+ 𝑢
∗

2
)
2
, 𝑏

33
= −𝑎
33
𝑢
∗

3
.

(18)

SinceX
𝑖
is invariant under the operator 𝐿 for each 𝑖 ≥ 1, then

the operator 𝐿 on X
𝑖
is k
𝑡
= 𝐿k = 𝐷𝜇

𝑖
k + Fk(E∗)k. Let V𝑖 =

𝑐
𝑖
𝑒
𝜆𝑡
(𝑖 = 1, 2, 3) and we can get the characteristic equation
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𝜑
𝑖
(𝜆) = 𝜆

3
+ 𝐴
𝑖
𝜆
2
+ 𝐵
𝑖
𝜆 + 𝐶

𝑖
= 0, where 𝐴

𝑖
, 𝐵
𝑖
, and 𝐶

𝑖
are

defined as follows:

𝐴
𝑖
= (𝑑
1
+ 𝑑
2
+ 𝑑
3
) 𝜇
𝑖
− 𝑏
11
− 𝑏
22
− 𝑏
33
,

𝐵
𝑖
= (𝑑
1
𝑑
2
+ 𝑑
2
𝑑
3
+ 𝑑
3
𝑑
1
) 𝜇
2

𝑖

+ [𝑑
3
(−𝑏
11
− 𝑏
22
) + 𝑑
1
(−𝑏
33
− 𝑏
22
)

+𝑑
2
(−𝑏
11
− 𝑏
33
)] 𝜇
𝑖

+ 𝑏
11
𝑏
22
+ 𝑏
11
𝑏
33
+ 𝑏
22
𝑏
33

− 𝑏
12
𝑏
21
∫

∞

0

𝑘
1
(𝑠) 𝑒
−𝜆𝑠
𝑑𝑠 − 𝑏

23
𝑏
32
∫

∞

0

𝑘
2
(𝑠) 𝑒
−𝜆𝑠
𝑑𝑠,

𝐶
𝑖
= 𝑑
1
𝑑
2
𝑑
3
𝜇
3

𝑖
+ [−𝑏
33
𝑑
1
𝑑
2
− 𝑏
11
𝑑
2
𝑑
3
− 𝑏
22
𝑑
1
𝑑
3
] 𝜇
2

𝑖

+ [𝑏
11
𝑏
22
𝑑
3
+ 𝑏
11
𝑏
33
𝑑
2
+ 𝑏
22
𝑏
33
𝑑
1
+ 𝑏
22
𝑏
33
𝑑
1

− 𝑑
3
𝑏
12
𝑏
21
∫

∞

0

𝑘
1 (𝑠) 𝑒
−𝜆𝑠
𝑑𝑠

−𝑑
1
𝑏
23
𝑏
32
∫

∞

0

𝑘
2
(𝑠) 𝑒
−𝜆𝑠
𝑑𝑠] 𝜇
𝑖

+ [−𝑏
11
𝑏
22
𝑏
33
+ 𝑏
12
𝑏
21
𝑏
33
∫

∞

0

𝑘
1 (𝑠) 𝑒
−𝜆𝑠
𝑑𝑠

+𝑏
11
𝑏
23
𝑏
32
∫

∞

0

𝑘
2
(𝑠) 𝑒
−𝜆𝑠
𝑑𝑠] .

(19)

It is easy to see that 𝑏
12
, 𝑏
23
, 𝑏
33
< 0 and 𝑏

21
, 𝑏
32
> 0. It

follows from assumption 𝐺
1
and 𝐺

2
that 𝑎

11
< 0, 𝑎

22
< 0.

So 𝐴
𝑖
> 0, 𝐵

𝑖
> 0, 𝐶

𝑖
> 0 and 𝐴

𝑖
𝐵
𝑖
− 𝐶
𝑖
> 0 for 𝑖 ≥ 1

from the direct calculation. According to the Routh-Hurwitz
criterion, the three roots 𝜆

𝑖,1
, 𝜆
𝑖,2
, 𝜆
𝑖,3

of 𝜑
𝑖
(𝜆) = 0 all have

negative real parts.
By continuity of the roots with respect to 𝜇

𝑖
and Routh-

Hurwitz criterion, we can conclude that there exists a positive
constant 𝜀 such that

Re {𝜆
𝑖,1
} ,Re {𝜆

𝑖,2
} ,Re {𝜆

𝑖,3
} ≤ −𝜀, 𝑖 ≥ 1. (20)

Consequently, the spectrum of 𝐿, consisting only of eigen-
values, lies in {Re 𝜆 ≤ −𝜀}. It is easy to see that E∗ is
locally asymptotically stable and follows fromTheorem 5.1.1
of [23].

Theorem 8. Assume that

𝐻
3
:
𝑎
1
(𝑎
21
− 𝑎
2
)

𝑚
1
𝑎
2

> 𝑎
11
>
𝑎
12
𝑢
∗

2

𝑚
2

1

, (21)

𝐻
2
and 𝐺

2
hold, and the positive steady state 𝐸∗ of system (1)–

(3) with nontrivial initial function is globally asymptotically
stable.

Proof. It is easy to see that the equations in (1) can be rewritten
as

𝜕𝑢
1

𝜕𝑡
− 𝑑
1
Δ𝑢
1
= 𝑢
1
[ − 𝑎
11
(𝑢
1
− 𝑢
∗

1
)

−
𝑎
12
(𝑢
2
− 𝑢
∗

2
)

𝑚
1
+ 𝑢
1

+
𝑎
12
𝑢
∗

2
(𝑢
1
− 𝑢
∗

1
)

(𝑚
1
+ 𝑢
1
) (𝑚
1
+ 𝑢
∗

1
)
] ,

𝜕𝑢
2

𝜕𝑡
− 𝑑
2
Δ𝑢
2
= 𝑢
2
[∫
Ω

∫

𝑡

−∞

𝐾
1
(𝑥, 𝑦, 𝑡 − 𝑠)

×
𝑎
21
𝑚
1
(𝑢
1
(𝑠, 𝑦) − 𝑢

∗

1
)

(𝑚
1
+ 𝑢
1
(𝑠, 𝑦)) (𝑚

1
+ 𝑢
∗

1
)
𝑑𝑠 𝑑𝑦

− 𝑎
22
(𝑢
2
− 𝑢
∗

2
) −
𝑎
23
(𝑢
3
− 𝑢
∗

3
)

𝑚
2
+ 𝑢
2

+
𝑎
23
𝑢
∗

3
(𝑢
2
− 𝑢
∗

2
)

(𝑚
2
+ 𝑢
2
) (𝑚
2
+ 𝑢
∗

2
)
] ,

𝜕𝑢
3

𝜕𝑡
− 𝑑
3
Δ𝑢
3
= 𝑢
3
[∫
Ω

∫

𝑡

−∞

𝐾
2
(𝑥, 𝑦, 𝑡 − 𝑠)

×
𝑎
32
𝑚
2
(𝑢
2
(𝑠, 𝑦) − 𝑢

∗

2
)

(𝑚
2
+ 𝑢
2
(𝑠, 𝑦)) (𝑚

2
+ 𝑢
∗

2
)
𝑑𝑠 𝑑𝑦

−𝑎
33
(𝑢
3
− 𝑢
∗

3
) ] .

(22)

Define

𝑉 (𝑡) = 𝛼∫
Ω

(𝑢
1
− 𝑢
∗

1
− 𝑢
∗

1
ln 𝑢1
𝑢
∗

1

)𝑑𝑥

+ ∫
Ω

(𝑢
2
− 𝑢
∗

2
− 𝑢
∗

2
ln 𝑢2
𝑢
∗

2

)𝑑𝑥

+ 𝛽∫
Ω

(𝑢
2
− 𝑢
∗

3
− 𝑢
∗

3
ln
𝑢
3

𝑢
∗

3

)𝑑𝑥,

(23)

where 𝛼 and 𝛽 are positive constants to be determined.
Calculating the derivatives 𝑉(𝑡) along the positive solution
to the system (1)–(3) yields

𝑉

(𝑡) = Φ

1
(𝑡) + Φ

2
(𝑡) , (24)

where

Φ
1 (𝑡) = −∫

Ω

(
𝛼𝑑
1
𝑢
∗

1

𝑢
2

1

∇𝑢1


2
+
𝑑
2
𝑢
∗

2

𝑢
2

2

∇𝑢2


2

+
𝛽𝑑
3
𝑢
∗

3

𝑢
2

3

∇𝑢3


2
)𝑑𝑥,
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Φ
2
(𝑡) = −∫

Ω

𝛼[𝑎
11
−

𝑎
12
𝑢
∗

2

(𝑚
1
+ 𝑢
1
) (𝑚
1
+ 𝑢
∗

1
)
] (𝑢
1
− 𝑢
∗

1
)
2
𝑑𝑥

− ∫
Ω

[𝑎
22
−

𝑎
23
𝑢
∗

3

(𝑚
2
+ 𝑢
2
) (𝑚
2
+ 𝑢
∗

2
)
] (𝑢
2
− 𝑢
∗

2
)
2
𝑑𝑥

− ∫
Ω

𝑎
33
𝛽(𝑢
3
− 𝑢
∗

3
)
2
𝑑𝑥

− ∫
Ω

𝑎
23
(𝑢
3
− 𝑢
∗

3
) (𝑢
2
− 𝑢
∗

2
)

𝑚
2
+ 𝑢
2

𝑑𝑥

− ∫
Ω

𝛼𝑎
12
(𝑢
2
− 𝑢
∗

2
) (𝑢
1
− 𝑢
∗

1
)

𝑚
1
+ 𝑢
1

𝑑𝑥

+∬
Ω

∫

𝑡

−∞

𝐾
1
(𝑥, 𝑦, 𝑡 − 𝑠)

×
𝑎
21
𝑚
1
(𝑢
1
(𝑠, 𝑦) − 𝑢

∗

1
) (𝑢
2
(𝑡, 𝑥) − 𝑢

∗

2
)

(𝑚
1
+ 𝑢
1
(𝑠, 𝑦)) (𝑚

1
+ 𝑢
∗

1
)

𝑑𝑠 𝑑𝑦 𝑑𝑥

+ 𝛽∬
Ω

∫

𝑡

−∞

𝐾
2
(𝑥, 𝑦, 𝑡 − 𝑠)

×
𝑎
32
𝑚
2
(𝑢
2
(𝑠, 𝑦) − 𝑢

∗

2
) (𝑢
3 (𝑡, 𝑥) − 𝑢

∗

3
)

(𝑚
2
+ 𝑢
2
(𝑠, 𝑦)) (𝑚

2
+ 𝑢
∗

2
)

𝑑𝑠 𝑑𝑦 𝑑𝑥.

(25)

Applying the inequality 𝑎𝑏 ≤ 𝜖𝑎2 + (1/4𝜖)𝑏2, we derive from
(25) that

Φ
2 (𝑡) ≤ −∫

Ω

𝛼[𝑎
11
−

𝑎
12
𝑢
∗

2

(𝑚
1
+ 𝑢
1
) (𝑚
1
+ 𝑢
∗

1
)
] (𝑢
1
− 𝑢
∗

1
)
2
𝑑𝑥

− ∫
Ω

𝑎
33
𝛽(𝑢
3
− 𝑢
∗

3
)
2
𝑑𝑥

− ∫
Ω

[𝑎
22
−

𝑎
23
𝑢
∗

3

(𝑚
2
+ 𝑢
2
) (𝑚
2
+ 𝑢
∗

2
)
] (𝑢
2
− 𝑢
∗

2
)
2
𝑑𝑥

+ ∫
Ω

𝛼𝑎
12

𝑚
1
+ 𝑢
1

[𝜖
1
(𝑢
1
− 𝑢
∗

1
)
2
+
1

4𝜖
1

(𝑢
2
− 𝑢
∗

2
)
2
] 𝑑𝑥

+ ∫
Ω

𝑎
23

𝑚
2
+ 𝑢
2

[
1

4𝜖
2

(𝑢
2
− 𝑢
∗

2
)
2
+ 𝜖
2
(𝑢
3
− 𝑢
∗

3
)
2
] 𝑑𝑥

+∬
Ω

∫

𝑡

−∞

𝐾
1
(𝑥, 𝑦, 𝑡 − 𝑠)

×
𝑎
21
𝑚
1

(𝑚
1
+ 𝑢
1
(𝑠, 𝑦)) (𝑚

1
+ 𝑢
∗

1
)

× [𝜖
3
(𝑢
1
(𝑠, 𝑦) − 𝑢

∗

1
)
2

+
1

4𝜖
3

(𝑢
2
(𝑡, 𝑥) − 𝑢

∗

2
)
2
] 𝑑𝑠 𝑑𝑦 𝑑𝑥

+∬
Ω

∫

𝑡

−∞

𝐾
2
(𝑥, 𝑦, 𝑡 − 𝑠)

×
𝑎
32
𝛽𝑚
2

(𝑚
2
+ 𝑢
2
(𝑠, 𝑦)) (𝑚

2
+ 𝑢
∗

2
)

× [
1

4𝜖
4

(𝑢
2
(𝑠, 𝑦) − 𝑢

∗

2
)
2

+𝜖
4
(𝑢
3
(𝑡, 𝑥) − 𝑢

∗

3
)
2
] 𝑑𝑠 𝑑𝑦 𝑑𝑥.

(26)

According to the property of the Kernel functions𝐾
𝑖
(𝑥, 𝑦, 𝑡),

(𝑖 = 1, 2), we know that

Φ
2 (𝑡) ≤ −∫

Ω

[𝛼𝑎
11
−
𝛼𝑎
12
𝑢
∗

2

𝑚
2

1

−
𝛼𝑎
12
𝜖
1

𝑚
1

] (𝑢
1
− 𝑢
∗

1
)
2
𝑑𝑥

− ∫
Ω

[𝑎
22
−
𝑎
23
𝑢
∗

3

𝑚
2

2

−
𝛼𝑎
12

4𝑚
1
𝜖
1

−
𝑎
23

4𝑚
2
𝜖
2

−
𝑎
21

4𝑚
1
𝜖
3

] (𝑢
2
− 𝑢
∗

2
)
2
𝑑𝑥

− ∫
Ω

[𝑎
33
𝛽 −

𝑎
23
𝜖
2

𝑚
2

−
𝑎
32
𝛽𝜖
4

𝑚
2

] (𝑢
3
− 𝑢
∗

3
)
2
𝑑𝑥

+
𝑎
21
𝜖
3

𝑚
1

∬
Ω

∫

𝑡

−∞

𝐾
1
(𝑥, 𝑦, 𝑡 − 𝑠)

× (𝑢
1
(𝑠, 𝑦) − 𝑢

∗

1
)
2
𝑑𝑠 𝑑𝑦 𝑑𝑥

+
𝑎
32
𝛽

4𝑚
2
𝜖
4

∬
Ω

∫

𝑡

−∞

𝐾
2
(𝑥, 𝑦, 𝑡 − 𝑠)

× (𝑢
2
(𝑠, 𝑦) − 𝑢

∗

2
)
2
𝑑𝑠 𝑑𝑦 𝑑𝑥.

(27)

Define a new Lyapunov functional as follows:

𝐸 (𝑡) = 𝑉 (𝑡)

+
𝑎
21
𝜖
3

𝑚
1

∬
Ω

∫

+∞

0

∫

𝑡

𝑡−𝑟

𝐾
1
(𝑥, 𝑦, 𝑟)

× (𝑢
1
(𝑠, 𝑦) − 𝑢

∗

1
)
2
𝑑𝑠 𝑑𝑟 𝑑𝑦 𝑑𝑥

+
𝑎
32
𝛽

4𝑚
2
𝜖
4

∬
Ω

∫

+∞

0

∫

𝑡

𝑡−𝑟

𝐾
2
(𝑥, 𝑦, 𝑟)

× (𝑢
2
(𝑠, 𝑦) − 𝑢

∗

2
)
2
𝑑𝑠 𝑑𝑟 𝑑𝑦 𝑑𝑥.

(28)
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It is derived from (27) and (28) that

𝐸

(𝑡) ≤ −∫

Ω

(
𝛼𝑑
1
𝑢
∗

1

𝑢
2

1

∇𝑢1


2
+
𝑑
2
𝑢
∗

2

𝑢
2

2

∇𝑢2


2

+
𝛽𝑑
3
𝑢
∗

3

𝑢
2

3

∇𝑢3


2
)𝑑𝑥

− [𝛼𝑎
11
−
𝛼𝑎
12
𝑢
∗

2

𝑚
2

1

−
𝛼𝑎
12
𝜖
1

𝑚
1

−
𝑎
21
𝜖
3

𝑚
1

]∫
Ω

(𝑢
1
− 𝑢
∗

1
)
2
𝑑𝑥

− [𝑎
22
−
𝑎
23
𝑢
∗

3

𝑚
2

2

−
𝛼𝑎
12

4𝑚
1
𝜖
1

−
𝑎
23

4𝑚
2
𝜖
2

−
𝑎
21

4𝑚
1
𝜖
3

−
𝑎
32
𝛽

4𝑚
2
𝜖
4

]∫
Ω

(𝑢
2
− 𝑢
∗

2
)
2
𝑑𝑥

− [𝑎
33
𝛽 −

𝑎
23
𝜖
2

𝑚
2

−
𝛽𝑎
32
𝜖
4

𝑚
2

]∫
Ω

(𝑢
3
− 𝑢
∗

3
)
2
𝑑𝑥.

(29)

Since (𝑢
1
, 𝑢
2
, 𝑢
3
) is the unique positive solution of system (1).

Using Proposition 5, there exists a constant𝐶which does not
depend on𝑥 ∈ Ω or 𝑡 ≥ 0 such that ‖𝑢

𝑖
(⋅, 𝑡)‖
∞
≤ 𝐶 (𝑖 = 1, 2, 3)

for 𝑡 ≥ 0. By Theorem 𝐴
2
in [24], we have

𝑢𝑖 (⋅, 𝑡)
𝐶2,𝛼(Ω)

≤ 𝐶, ∀𝑡 ≥ 1. (30)

Assume that

𝐺
1
: 𝑎
11
𝑚
2

1
> 𝑎
12
𝑢
∗

2
,

𝐺
2
: 𝑎
22
𝑚
2

2
> 𝑎
23
𝑢
∗

3
+
2𝑎
23
𝑎
32

𝑎
33

+
2𝑎
12
𝑎
21
𝑚
2

2

𝑎
11
𝑚
2

1
− 𝑎
12
𝑢
∗

2

,

(31)

and denote

𝑙
1
= 𝛼𝑎
11
−
𝛼𝑎
12
𝑢
∗

2

𝑚
2

1

−
𝛼𝑎
12
𝜖
1

𝑚
1

−
𝑎
21
𝜖
3

𝑚
1

,

𝑙
2
= 𝑎
22
−
𝑎
23
𝑢
∗

3

𝑚
2

2

−
𝛼𝑎
12

4𝑚
1
𝜖
1

−
𝑎
23

4𝑚
2
𝜖
2

−
𝑎
21

4𝑚
1
𝜖
3

−
𝑎
32
𝛽

4𝑚
2
𝜖
4

,

𝑙
3
= 𝑎
33
𝛽 −

𝑎
23
𝜖
2

𝑚
2

−
𝛽𝑎
32
𝜖
4

𝑚
2

.

(32)

Then (29) is transformed into

𝐸

(𝑡) ≤ −∫

Ω

(
𝛼𝑑
1
𝑢
∗

1

𝑢
2

1

∇𝑢1


2
+
𝑑
2
𝑢
∗

2

𝑢
2

2

∇𝑢2


2

+
𝛽𝑑
3
𝑢
∗

3

𝑢
2

3

∇𝑢3


2
)𝑑𝑥

−

3

∑

𝑖=1

𝑙
𝑖
∫
Ω

(𝑢
𝑖
− 𝑢
∗

𝑖
)
2
𝑑𝑥.

(33)

If we choose

𝛼 =
𝑎
21

𝑎
12

, 𝛽 =
𝑎
23

𝑎
32

, 𝜖
1
= 𝜖
3
=
𝑎
11
𝑚
2

1
− 𝑎
12
𝑢
∗

2

4𝑚
1
𝑎
12

,

𝜖
2
= 𝜖
4
=
𝑚
2
𝑎
33

4𝑎
32

,

(34)

then 𝑙
𝑖
> 0 (𝑖 = 1, 2, 3). Therefore, we have

𝐸

(𝑡) ≤ −

3

∑

𝑖=1

𝑙
𝑖
∫
Ω

(𝑢
𝑖
− 𝑢
∗

𝑖
)
2
𝑑𝑥. (35)

FromProposition 6 we can see that the solution of system
(1) and (3) is bounded, and so are the derivatives of (𝑢

𝑖
− 𝑢
∗

𝑖
)

(𝑖 = 1, 2, 3) by the equations in (1). Applying Lemma 1, we
obtain that

lim
𝑡→∞

∫
Ω

(𝑢
𝑖
− 𝑢
∗

𝑖
) 𝑑𝑥 = 0, (𝑖 = 1, 2, 3) . (36)

Recomputing 𝐸(𝑡) gives

𝐸

(𝑡) ≤ −∫

Ω

(
𝛼𝑑
1
𝑢
∗

1

𝑢
2

1

∇𝑢1


2
+
𝑑
2
𝑢
∗

2

𝑢
2

2

∇𝑢2


2

+
𝛽𝑑
3
𝑢
∗

3

𝑢
2

3

∇𝑢3


2
)𝑑𝑥

≤ −𝑐∫
Ω

(
∇𝑢1



2
+
∇𝑢2



2
+
∇𝑢3



2
) 𝑑𝑥 = −𝑔 (𝑡) ,

(37)

where 𝑐 = min{𝛼𝑑
1
𝑢
∗

1
/𝑀
2

1
, 𝑑
2
𝑢
∗

2
/𝑀
2

2
, 𝛽𝑑
3
𝑢
∗

3
/𝑀2
3
}. Using (30)

and (1), we obtain that the derivative of 𝑔(𝑡) is bounded in
[1, +∞). From Lemma 1, we conclude that 𝑔(𝑡) → 0 as 𝑡 →
∞. Therefore

lim
𝑡→∞

∫
Ω

(
∇𝑢1



2
+
∇𝑢2



2
+
∇𝑢3



2
) 𝑑𝑥 = 0. (38)

Applying the Poincaré inequality

∫
Ω

𝜆|𝑢 − 𝑢|
2
𝑑𝑥 ≤ ∫

Ω

|∇𝑢|
2
𝑑𝑥, (39)

leads to

lim
𝑡→∞

∫
Ω

(𝑢
𝑖
− 𝑢
𝑖
)
2
𝑑𝑥 = 0, (𝑖 = 1, 2, 3) , (40)

where 𝑢
𝑖
= (1/|Ω|) ∫

Ω
𝑢
𝑖
𝑑𝑥 and 𝜆 is the smallest positive

eigenvalue of−Δwith the homogeneousNeumann condition.
Therefore,

|Ω| (𝑢1 (𝑡) − 𝑢
∗

1
)
2
= ∫
Ω

(𝑢
1 (𝑡) − 𝑢

∗

1
)
2
𝑑𝑥

= ∫
Ω

(𝑢
1
(𝑡) − 𝑢

1
(𝑡, 𝑥) + 𝑢

1
(𝑡, 𝑥) − 𝑢

∗

1
)
2
𝑑𝑥

≤ 2∫
Ω

(𝑢
1
(𝑡) − 𝑢

1
(𝑡, 𝑥))

2
𝑑𝑥

+ 2∫
Ω

(𝑢
1
(𝑡, 𝑥) − 𝑢

∗

1
)
2
𝑑𝑥.

(41)
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So we have 𝑢
1
(𝑡) → 𝑢

∗

1
as 𝑡 → ∞. Similarly, 𝑢

2
(𝑡) → 𝑢

∗

2

and 𝑢
3
(𝑡) → 𝑢

∗

3
as 𝑡 → ∞. According to (30), there exists

a subsequence 𝑡
𝑚
, and non-negative functions 𝑤

𝑖
∈ 𝐶
2
(Ω),

such that
lim
𝑚→∞

𝑢𝑖 (⋅, 𝑡𝑚) − 𝑤𝑖 (⋅)
𝐶2(Ω)

= 0 (𝑖 = 1, 2, 3) . (42)

Applying (40) and noting that 𝑢
𝑖
(𝑡) → 𝑢

∗

𝑖
, we then have𝑤

𝑖
=

𝑢
∗

𝑖
, (𝑖 = 1, 2, 3). That is,

lim
𝑚→∞

𝑢𝑖 (⋅, 𝑡𝑚) − 𝑢
∗

𝑖

𝐶2(Ω)
= 0 (𝑖 = 1, 2, 3) . (43)

Furthermore, the local stability ofE∗ combiningwith (43)
gives the following global stability.

Theorem 9. Assume that

𝐻
5
:
𝑎
1
(𝑎
21
− 𝑎
2
)

𝑚
1
𝑎
2

> 𝑎
11
>
𝑎
12
V∗
2

𝑚
2

1

, (44)

𝐻
4
and 𝐺

4
hold, and then the semi-trivial steady state 𝐸

2

of system (1)–(3) with non-trivial initial functions is globally
asymptotically stable.

Proof. It is obvious that system (1)–(3) always has two non-
negative equilibria (𝑢

1
, 𝑢
2
, 𝑢
3
) as follows: 𝐸

0
= (0, 0, 0) and

𝐸
1
= (𝑎
1
/𝑎
11
, 0, 0). If 𝐻

1
and 𝐻

4
are satisfied, system (1) has

the other semitrivial solution denoted by 𝐸
2
(V∗
1
, V∗
2
, 0), where

𝐻
4
: 𝑎
3
𝑚
2
> (𝑎
32
− 𝑎
3
) V∗
2
. (45)

We consider the stability of 𝐸
2
under condition 𝐻

1
and

𝐻
4
. Equation (1) can be rewritten as

𝜕𝑢
1

𝜕𝑡
− 𝑑
1
Δ𝑢
1
= 𝑢
1
[−𝑎
11
(𝑢
1
− V∗
1
) −
𝑎
12
(𝑢
2
− V∗
2
)

𝑚
1
+ 𝑢
1

+
𝑎
12
V∗
2
(𝑢
1
− V∗
1
)

(𝑚
1
+ 𝑢
1
) (𝑚
1
+ V∗
1
)
] ,

𝜕𝑢
2

𝜕𝑡
− 𝑑
2
Δ𝑢
2

= 𝑢
2
[∫
Ω

∫

𝑡

−∞

𝐾
1
(𝑥, 𝑦, 𝑡 − 𝑠)

×
𝑎
21
𝑚
1
(𝑢
1
(𝑠, 𝑦) − V∗

1
)

(𝑚
1
+ 𝑢
1
(𝑠, 𝑦)) (𝑚

1
+ V∗
1
)
𝑑𝑠 𝑑𝑦

−𝑎
22
(𝑢
2
− V∗
2
) −

𝑎
23
𝑢
3

𝑚
2
+ 𝑢
2

] ,

𝜕𝑢
3

𝜕𝑡
− 𝑑
3
Δ𝑢
3

= 𝑢
3
[∫
Ω

∫

𝑡

−∞

𝐾
2
(𝑥, 𝑦, 𝑡 − 𝑠)

×
𝑎
32
𝑚
2
(𝑢
2
(𝑠, 𝑦) − V∗

2
)

(𝑚
2
+ 𝑢
2
(𝑠, 𝑦)) (𝑚

2
+ V∗
2
)
𝑑𝑠 𝑑𝑦

−𝑎
33
𝑢
3
] .

(46)

Similar to the argument ofTheorem 8, we have 𝑢
1
(𝑥, 𝑡) → V∗

1

and 𝑢
2
(𝑥, 𝑡) → V∗

2
as 𝑡 → ∞ uniformly on Ω provided that

the following additional condition holds:

𝐺
3
: 𝑎
11
𝑚
2

1
> 𝑎
12
V∗
2
,

𝐺
4
: 𝑎
22
𝑚
2

2
>
𝑎
23
𝑎
32

𝑎
33

+
2𝑎
12
𝑎
21
𝑚
2

2

𝑎
11
𝑚
2

1
− 𝑎
12
V∗
2

.

(47)

Next, we consider the asymptotic behavior of 𝑢
3
(𝑡, 𝑥). Let

𝜃 =
𝑎
3
− (𝑎
32
− 𝑎
3
) V∗
2

2𝛿
, 𝛿 =

𝑎32 − 𝑎3
 .

(48)

Then there exists 𝑡
1
> 0 such that

V∗
2
− 𝜃 < 𝑢

2
(𝑡, 𝑥) < V∗

2
+ 𝜃, ∀𝑡 > 𝑡

1
, 𝑥 ∈ Ω. (49)

Consider the following two systems:

𝑤
3𝑡
− 𝑑
3
Δ𝑤
3
= 𝑤
3
[−𝑎
3
+
𝑎
32
(V∗
2
+ 𝜃)

𝑚
2
+ V∗
2
+ 𝜃

− 𝑎
33
𝑤
3
] ,

(𝑡, 𝑥) ∈ [𝑡
1
, +∞) × Ω,

𝜕𝑤
3

𝜕]
= 0, (𝑡, 𝑥) ∈ [𝑡1, +∞) × 𝜕Ω,

𝑤
3
= 𝑢
3
, (𝑡, 𝑥) ∈ (−∞, 𝑡

1
] × Ω,

𝑊
3𝑡
− 𝑑
3
Δ𝑊
3
= 𝑊
3
[−𝑎
3
+
𝑎
32
(V∗
2
− 𝜃)

𝑚
2
+ V∗
2
− 𝜃

− 𝑎
33
V
3
] ,

(𝑡, 𝑥) ∈ [𝑡
1
, +∞) × Ω,

𝜕𝑊
3

𝜕]
= 0, (𝑡, 𝑥) ∈ [𝑡1, +∞) × 𝜕Ω,

𝑊
3
= 𝑢
3
, (𝑡, 𝑥) ∈ (−∞, 𝑡

1
] × Ω.

(50)

Combining comparison principle with (50), we obtain that

𝑊
3 (𝑡, 𝑥) ≤ 𝑢3 (𝑡, 𝑥) ≤ 𝑤3 (𝑡, 𝑥) , ∀𝑡 > 𝑡

1
, 𝑥 ∈ Ω. (51)

By Lemma 4, we obtain

0 = lim
𝑡→∞

𝑊
3
(𝑡, 𝑥) ≤ inf 𝑢

3
(𝑡, 𝑥) ≤ sup 𝑢

3
(𝑡, 𝑥)

≤ lim
𝑡→∞

𝑤
3 (𝑡, 𝑥) = 0, ∀𝑥 ∈ Ω,

(52)

which implies that lim
𝑡→∞

𝑢
3
(𝑡, 𝑥) = 0 uniformly onΩ.

Theorem 10. Suppose that𝐺
5
and𝐺

6
hold, and then the semi-

trivial steady state 𝐸
1
of system (1)–(3) with non-trivial initial

functions is globally asymptotically stable.
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Proof. We study the stability of the semi-trivial solution 𝐸
1
=

(�̃�
1
, 0, 0). Similarly, the equations in (1) can be written as

𝜕𝑢
1

𝜕𝑡
− 𝑑
1
Δ𝑢
1
= 𝑢
1
[−𝑎
11
(𝑢
1
− �̃�
1
) −

𝑎
12
𝑢
2

𝑚
1
+ 𝑢
1

] ,

𝜕𝑢
2

𝜕𝑡
− 𝑑
2
Δ𝑢
2

= 𝑢
2
[−𝑎
2
+ ∫
Ω

∫

𝑡

−∞

𝐾
1
(𝑥, 𝑦, 𝑡 − 𝑠)

×
𝑎
21
𝑚
1
(𝑢
1
(𝑠, 𝑦) − �̃�

1
)

(𝑚
1
+ 𝑢
1
(𝑠, 𝑦)) (𝑚

1
+ �̃�
1
)
𝑑𝑠 𝑑𝑦

+
𝑎
21
�̃�
1

𝑚
1
+ �̃�
1

− 𝑎
22
𝑢
2
−
𝑎
23
𝑢
3

𝑚
2
+ 𝑢
2

] ,

𝜕𝑢
3

𝜕𝑡
− 𝑑
3
Δ𝑢
3

= 𝑢
3
[−𝑎
3
+ ∫
Ω

∫

𝑡

−∞

𝐾
2
(𝑥, 𝑦, 𝑡 − 𝑠)

×
𝑎
32
𝑢
2
(𝑠, 𝑦)

𝑚
2
+ 𝑢
2
(𝑠, 𝑦)

𝑑𝑠 𝑑𝑦 − 𝑎
33
𝑢
3
] .

(53)

Define

𝑉 (𝑡) = 𝛼∫
Ω

[𝑢
1
− �̃�
1
− �̃�
1
log 𝑢1
�̃�
1

] 𝑑𝑥 + ∫
Ω

𝑢
2
𝑑𝑥

+ 𝛽∫
Ω

𝑢
3
𝑑𝑥.

(54)

Calculating the derivative of 𝑉(𝑡) along 𝐸
1
, we get from (54)

that

𝑉

(𝑡) ≤ −∫

Ω

[𝛼(𝑎
11
−
𝑎
12
𝜖
1

𝑚
1

)] (𝑢
1
− �̃�
1
)
2
𝑑𝑥

+ ∫
Ω

[𝑎
22
−
𝛼𝑎
12

4𝑚
1
𝜖
1

−
𝑎
23

4𝜖
2
𝑚
2

−
𝑎
21

4𝑚
1
𝜖
3

] 𝑢
2

2
𝑑𝑥

+ ∫
Ω

[𝛽𝑎
33
−
𝑎
23
𝜖
2

𝑚
2

] 𝑢
2

3
𝑑𝑥

− ∫
Ω

[(𝑎
2
−
𝑎
21
�̃�
1

𝑚
1
+ �̃�
1

)𝑢
2
+ 𝑎
3
𝑢
3
] 𝑑𝑥

+
𝑎
21
𝜖
3

𝑚
1

∫
Ω

∫

𝑡

−∞

𝐾
1
(𝑥, 𝑦, 𝑡 − 𝑠)

× (𝑢
1
(𝑠, 𝑦) − �̃�

1
)
2
𝑑𝑠 𝑑𝑦 𝑑𝑥

+
𝑎
32
𝛽

4𝜖
4
𝑚
2

∬
Ω

∫

𝑡

−∞

𝐾
2
(𝑥, 𝑦, 𝑡 − 𝑠)

× 𝑢
2

2
(𝑠, 𝑦) 𝑑𝑠 𝑑𝑦 𝑑𝑥.

(55)

Define
𝐸 (𝑡) = 𝑉 (𝑡)

+
𝑎
21
𝜖
3

𝑚
1

∬
Ω

∫

+∞

0

∫

𝑡

𝑡−𝑟

𝐾
1
(𝑥, 𝑦, 𝑟)

× (𝑢
1
(𝑠, 𝑦) − 𝑢

∗

1
)
2
𝑑𝑠 𝑑𝑟 𝑑𝑦 𝑑𝑥

+
𝑎
32
𝛽

4𝜖
4
𝑚
2

∬
Ω

∫

+∞

0

∫

𝑡

𝑡−𝑟

𝐾
2
(𝑥, 𝑦, 𝑟)

× (𝑢
2
(𝑠, 𝑦) − 𝑢

∗

2
)
2
𝑑𝑠 𝑑𝑟 𝑑𝑦 𝑑𝑥.

(56)

It is easy to see that

𝐸

(𝑡) ≤ −𝛼𝑑1�̃�1 ∫

Ω

∇𝑢1


2

𝑢
2

1

𝑑𝑥

− ∫
Ω

[𝛼(𝑎
11
−
𝑎
12
𝜖
1

𝑚
1

) −
𝑎
21
𝜖
3

𝑚
1

] (𝑢
1
− �̃�
1
)
2
𝑑𝑥

+ ∫
Ω

[𝑎
22
−
𝛼𝑎
12

4𝑚
1
𝜖
1

−
𝑎
23

4𝑚
2
𝜖
2

−
𝑎
21

4𝑚
1
𝜖
3

−
𝑎
32

4𝑚
2
𝜖
4

] 𝑢
2

2
𝑑𝑥

+ ∫
Ω

[𝛽𝑎
33
−
𝑎
23
𝜖
2

𝑚
2

−
𝑎
32
𝛽𝜖
4

𝑚
2

] 𝑢
2

3
𝑑𝑥

− ∫
Ω

[(𝑎
2
−
𝑎
21
�̃�
1

𝑚
1
+ �̃�
1

)𝑢
2
− 𝑎
3
𝛽𝑢
3
] 𝑑𝑥.

(57)

Assume that
𝐺
5
: 𝑎
1
(𝑎
21
− 𝑎
2
) < 𝑚

1
𝑎
2
𝑎
11
,

𝐺
6
: 𝑎
22
𝑚
2

2
>
𝑎
23
𝑎
32

𝑎
33

+
2𝑎
12
𝑎
21
𝑚
2

2

𝑎
11
𝑚
2

1

.

(58)

Let

𝑙
1
= 𝛼𝑎
11
−
𝛼𝑎
12
𝜖
1

𝑚
1

−
𝑎
21
𝜖
3

𝑚
1

,

𝑙
2
= 𝑎
22
−
𝛼𝑎
12

4𝑚
1
𝜖
1

−
𝑎
23

4𝑚
2
𝜖
2

−
𝑎
21

4𝑚
1
𝜖
3

−
𝑎
32
𝛽

4𝑚
2
𝜖
4

,

𝑙
3
= 𝑎
33
𝛽 −

𝑎
23
𝜖
2

𝑚
2

−
𝛽𝑎
32
𝜖
4

𝑚
2

.

(59)

Choose

𝛼 =
𝑎
21

𝑎
12

, 𝛽 =
𝑎
23

𝑎
32

, 𝜖
1
= 𝜖
3
=
𝑎
11
𝑚
1

4𝑎
12

,

𝜖
2
= 𝜖
4
=
𝑚
2
𝑎
33

4𝑎
32

.

(60)

Then we get 𝑙
𝑖
> 0 (𝑖 = 1, 2, 3). Therefore we have

lim
𝑡→∞

𝑢
1
(𝑡, 𝑥) = �̃�

1
, (61)

uniformly onΩ.
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Figure 2: Global stability of the positive equilibrium 𝐸∗ with an initial condition (𝜙
1
, 𝜙
2
, 𝜙
3
) = (2.7 + 0.5 sin𝑥, 2.7 + 0.5 cos 𝑥, 2.7 + 0.5 sin𝑥).

Next, we consider the asymptotic behavior of 𝑢
2
(𝑡, 𝑥) and

𝑢
3
(𝑡, 𝑥). For any 𝑇 > 0, integrating (57) over [0, 𝑇] yields

𝐸 (𝑇) + 𝛼𝑑1





∇𝑢
1

𝑢
1





2

2

+ 𝑙
1



𝑢1 − �̃�1




2

2

+ 𝑙
2



𝑢2




2

2
+ 𝑙
3



𝑢3




2

2
≤ 𝐸 (0) ,

(62)

where ‖|𝑢
𝑖
|‖
2

2
= ∫
𝑇

0
∫
Ω
𝑢
2

𝑖
𝑑𝑥 𝑑𝑡. It implies that ‖|𝑢

𝑖
|‖
2
≤ 𝐶
𝑖
(𝑖 =

2, 3) for the constant 𝐶
𝑖
which is independent of 𝑇. Now we

consider the boundedness of ‖|∇𝑢
2
|‖
2
and ‖|∇𝑢

3
|‖
2
. From the

Green’s identity, we obtain

𝑑
2
∫

𝑇

0

∫
Ω

∇𝑢2 (𝑡, 𝑥)


2
𝑑𝑥 𝑑𝑡

= −𝑑
2
∫

𝑇

0

∫
Ω

𝑢
2
(𝑡, 𝑥) Δ𝑢

2
(𝑡, 𝑥) 𝑑𝑥 𝑑𝑡

= −∫

𝑇

0

∫
Ω

𝑢
2

𝜕𝑢
2

𝜕𝑡
𝑑𝑥 𝑑𝑡 − 𝑎

2
∫

𝑇

0

∫
Ω

𝑢
2

2
𝑑𝑥 𝑑𝑡

− 𝑎
22
∫

𝑇

0

∫
Ω

𝑢
3

2
𝑑𝑥 𝑑𝑡 − 𝑎

23
∫

𝑇

0

∫
Ω

𝑢
2

2
𝑢
3

𝑚
2
+ 𝑢
3

𝑑𝑥 𝑑𝑡

+ 𝑎
21
∫

𝑇

0

∬
Ω

∫

𝑡

−∞

𝑢
1
(𝑠, 𝑦) 𝑢

2

2
(𝑡, 𝑥)

𝑚
1
+ 𝑢
1
(𝑠, 𝑦)

× 𝐾
1
(𝑥, 𝑦, 𝑡 − 𝑠) 𝑑𝑠 𝑑𝑦 𝑑𝑥 𝑑𝑡.

(63)

Note that

∫

𝑇

0

∫
Ω

𝑢
2 (𝑡, 𝑥)

𝜕𝑢
2
(𝑡, 𝑥)

𝜕𝑡
𝑑𝑥 𝑑𝑡

= ∫

𝑇

0

∫
Ω

1

2

𝜕𝑢
2

2

𝜕𝑡
𝑑𝑡 𝑑𝑥

=
1

2
∫
Ω

𝑢
2

2
(𝑇, 𝑥) 𝑑𝑥 −

1

2
∫
Ω

𝑢
2

2
(0, 𝑥) 𝑑𝑥 ≤ 𝑀

2

2
|Ω| ,

∫

𝑇

0

∫
Ω

𝑢
2

2
𝑢
3
𝑑𝑥 𝑑𝑡 ≤ 𝑀

3
∫

𝑇

0

∫
Ω

𝑢
2

2
𝑑𝑥 𝑑𝑡,
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Figure 3: Global stability of the positive equilibrium 𝐸
2
with an initial condition (𝜙

1
, 𝜙
2
, 𝜙
3
) = (2.7 + 0.5 sin𝑥, 2.7 + 0.5 cos 𝑥, 2.7 + 0.5 sin𝑥).

∫

𝑇

0

∫
Ω

𝑢
3

2
𝑑𝑥 𝑑𝑡 ≤ 𝑀

2
∫

𝑇

0

∫
Ω

𝑢
2

2
𝑑𝑥 𝑑𝑡,

∫

𝑇

0

∬
Ω

∫

𝑡

−∞

𝑢
1
(𝑠, 𝑦) 𝑢

2

2
(𝑡, 𝑥)

𝑚
1
+ 𝑢
1
(𝑠, 𝑦)

𝐾
1
(𝑥, 𝑦, 𝑡 − 𝑠) 𝑑𝑠 𝑑𝑦 𝑑𝑥 𝑑𝑡

≤ ∫

𝑇

0

∫
Ω

𝑢
2

2
(𝑡, 𝑥) 𝑑𝑥 𝑑𝑡.

(64)

Thus, we get ‖|∇𝑢
2
|‖
2
≤ 𝐶
4
. In a similar way, we have

‖|∇𝑢
3
|‖
2
≤ 𝐶
5
. Here 𝐶

4
and 𝐶

5
are independent of 𝑇.

It is easy to see that 𝑢
2
(𝑡, 𝑥), 𝑢

3
(𝑡, 𝑥) ∈ 𝐿

2
((0,∞);

𝑊
1,2
(Ω)). These imply that

lim
𝑡→∞

𝑢𝑖 (⋅, 𝑡)
𝑊1,2(Ω)

= 0, 𝑖 = 2, 3. (65)

From the Sobolev compact embedding theorem, we know

lim
𝑡→∞

𝑢𝑖 (⋅, 𝑡)
𝐶(Ω)

= 0, 𝑖 = 2, 3. (66)

In the end, we show that the trivial solution 𝐸
0
is an

unstable equilibrium. Similarly to the local stability to 𝐸∗, we
can get the characteristic equation of 𝐸

0
as

(𝜆 + 𝜇
𝑖
𝐷
1
− 𝑎
1
) (𝜆 + 𝜇

𝑖
𝐷
2
+ 𝑎
2
) (𝜆 + 𝜇

𝑖
𝐷
3
+ 𝑎
3
) = 0. (67)

If 𝑖 = 1, then 𝜇
1
= 0. It is easy to see that this equation admits

a positive solution 𝜆 = 𝑎
1
. According to Theorem 5.1 in [23],

we have the following result.

Theorem 11. The trivial equilibrium 𝐸
0
is an unstable equilib-

rium of system (1)–(3).

4. Numerical Illustrations

In this section, we performnumerical simulations to illustrate
the theoretical results given in Section 3.
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Figure 4: Global stability of the positive equilibrium 𝐸
1
with an initial condition (𝜙

1
, 𝜙
2
, 𝜙
3
) = (2.7 + 0.5 sin𝑥, 2.7 + 0.5 cos𝑥, 2.7 + 0.5 sin𝑥).

In the following, we always take Ω = [0, 𝜋], 𝐾
𝑖
(𝑥, 𝑦, 𝑡) =

𝐺
𝑖
(𝑥, 𝑦, 𝑡)𝑘

𝑖
(𝑡), where 𝑘

𝑖
(𝑡) = (1/𝜏

∗
)𝑒
−𝑡/𝜏
∗

(𝑖 = 1, 2) and

𝐺
1
(𝑥, 𝑦, 𝑡) =

1

𝜋
+
2

𝜋

∞

∑

𝑛=1

𝑒
−𝑑2𝑛
2
𝑡 cos 𝑛𝑥 cos 𝑛𝑦,

𝐺
2
(𝑥, 𝑦, 𝑡) =

1

𝜋
+
2

𝜋

∞

∑

𝑛=1

𝑒
−𝑑3𝑛
2
𝑡 cos 𝑛𝑥 cos 𝑛𝑦.

(68)

However, it is difficult for us to simulate our results directly
because of the nonlocal term. Similar to [25], the equations
in (1) can be rewritten as follows:

𝜕𝑢
1

𝜕𝑡
− 𝑑
1
Δ𝑢
1
= 𝑢
1
(𝑎
1
− 𝑎
11
𝑢
1
−
𝑎
12
𝑢
2

𝑚
1
+ 𝑢
1

) ,

𝜕𝑢
2

𝜕𝑡
− 𝑑
2
Δ𝑢
2
= 𝑢
2
(−𝑎
2
+ 𝑎
21
V
1
− 𝑎
22
𝑢
2
−
𝑎
23
𝑢
3

𝑚
2
+ 𝑢
3

) ,

𝜕𝑢
3

𝜕𝑡
− 𝑑
3
Δ𝑢
3
= 𝑢
3
(−𝑎
3
+ 𝑎
32
V
2
− 𝑎
33
𝑢
3
) ,

𝜕V
1

𝜕𝑡
− 𝑑
2
ΔV
1
=
1

𝜏∗
(

𝑢
1

𝑚
1
+ 𝑢
1

− V
1
) ,

𝜕V
2

𝜕𝑡
− 𝑑
3
ΔV
2
=
1

𝜏∗
(

𝑢
2

𝑚
2
+ 𝑢
2

− V
2
) ,

(69)

where

V
𝑖
= ∫

𝜋

0

∫

𝑡

−∞

𝐺
𝑖
(𝑥, 𝑦, 𝑡 − 𝑠)

1

𝜏∗
𝑒
−(𝑡−𝑠)/𝜏

∗ 𝑢
𝑖
(𝑠, 𝑦)

𝑚
𝑖
+ 𝑢
𝑖
(𝑠, 𝑦)

𝑑𝑦 𝑑𝑠,

𝑖 = 1, 2.

(70)

Each component is considered with homogeneous Neumann
boundary conditions, and the initial condition of V

𝑖
is

V
𝑖
(0, 𝑥) = ∫

𝜋

0

∫

0

−∞

𝐺
𝑖
(𝑥, 𝑦, −𝑠)

1

𝜏∗
𝑒
𝑠/𝜏
∗ 𝑢
𝑖
(𝑠, 𝑦)

𝑚
𝑖
+ 𝑢
𝑖
(𝑠, 𝑦)

𝑑𝑦 𝑑𝑠,

𝑖 = 1, 2.

(71)
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In the following examples, we fix some coefficients and
assume that 𝑑

1
= 𝑑
2
= 𝑑
3
= 1, 𝑎

1
= 3, 𝑎

12
= 1, 𝑚

1
= 𝑚
2
=

1, 𝑎
2
= 1, 𝑎

22
= 12, 𝑎

23
= 1, 𝑎

33
= 12, and 𝜏∗ = 1. The

asymptotic behaviors of system (1)–(3) are shownby choosing
different coefficients 𝑎

11
, 𝑎
21
, 𝑎
3
, and 𝑎

32
.

Example 12. Let 𝑎
11
= 53/9, 𝑎

21
= 81/13, 𝑎

3
= 1/13 and

𝑎
32
= 14.Then it is easy to see that the system admits a unique

positive equilibrium 𝐸
∗
(1/2, 1/12, 1/12). By Theorem 8, we

see that the positive solution (𝑢
1
(𝑡, 𝑥), 𝑢

2
(𝑡, 𝑥), 𝑢

3
(𝑡, 𝑥)) of

system (1)–(3) converges to 𝐸∗ as 𝑡 → ∞. See Figure 2.

Example 13. Let 𝑎
11

= 6, 𝑎
21

= 12, 𝑎
3
= 1/4 and

𝑎
32
= 1. Clearly, 𝐻

2
does not hold. Hence, the positive

steady state is not feasible. System (1) admits two semi-
trivial steady state 𝐸

2
(0.4732, 0.2372, 0) and 𝐸

1
(1/2, 0, 0).

According to Theorem 9, we know that the positive solution
(𝑢
1
(𝑡, 𝑥), 𝑢

2
(𝑡, 𝑥), 𝑢

3
(𝑡, 𝑥)) of system (1)–(3) converges to 𝐸

2

as 𝑡 → ∞. See Figure 3.

Example 14. Let 𝑎
11
= 6, 𝑎

21
= 2, 𝑎

3
= 1/4 and 𝑎

32
= 1.

Clearly,𝐻
1
does not hold. Hence, 𝐸∗ and 𝐸

2
are not feasible.

System (1) has a unique semi-trivial steady state 𝐸
1
(1/2, 0, 0).

According to Theorem 10 we know that the positive solution
(𝑢
1
(𝑡, 𝑥), 𝑢

2
(𝑡, 𝑥), 𝑢

3
(𝑡, 𝑥)) of system (1)–(3) converges to 𝐸

1

as 𝑡 → ∞. See Figure 4.

5. Discussion

In this paper, we incorporate nonlocal delay into a three-
species food chain model with Michaelis-Menten functional
response to represent a delay due to the gestation of the preda-
tor. The conditions, under which the spatial homogeneous
equilibria are asymptotically stable, are given by using the
Lyapunov functional.

We now summarize the ecological meanings of our
theoretical results. Firstly, the positive equilibrium 𝐸

∗ of
system (1)–(3) exists under the high birth rate of the prey
(𝑎
1
) and low death rates (𝑎

2
and 𝑎

3
) of predator and top

predator. 𝐸∗ is globally stable if the intraspecific competition
𝑎
11
is neither too big nor too small and the maximum harvest

rates 𝑎
12
, 𝑎
23

are small enough. Secondly, the semi-trivial
equilibrium 𝐸

2
of system (1)–(3) exists if the birth rate of the

prey (𝑎
1
) is high, death rate of predator 𝑎

2
is low, and the death

rate (𝑎
3
) exceeds the conversion rate from predator to top

predator (𝑎
32
). 𝐸
2
is globally stable if the maximum harvest

rates 𝑎
12
, 𝑎
23
are small and the intra-specific competition 𝑎

11

is neither too big nor too small. Thirdly, system (1)–(3) has
only one semi-trivial equilibrium 𝐸

1
when the death rate (𝑎

2
)

exceeds the conversion rate from prey to predator (𝑎
21
). 𝐸
1

is globally stable if intra-specific competitions (𝑎
11
, 𝑎
22
, and

𝑎
33
) are strong. Finally, 𝐸

0
is unstable and the non-stability of

trivial equilibrium tells us that not all of the populations go
to extinction. Furthermore, our main results imply that the
nonlocal delay is harmless for stabilities of all non-negative
steady states of system (1)–(3).

There are still many interesting and challenging problems
with respect to system (1)–(3), for example, the permanence

and stability of periodic solution or almost periodic solution.
These problems are clearly worthy for further investigations.

Acknowledgments

This work is partially supported by PRC Grants NSFC
11102076 and 11071209 andNSF of theHigher Education Insti-
tutions of Jiangsu Province (12KJD110002 and 12KJD110008).

References

[1] R. Xu and M. A. J. Chaplain, “Persistence and global stability
in a delayed predator-prey system with Michaelis-Menten type
functional response,” Applied Mathematics and Computation,
vol. 130, no. 2-3, pp. 441–455, 2002.

[2] H. F. Huo andW. T. Li, “Periodic solution of a delayed predator-
prey system with Michaelis-Menten type functional response,”
Journal of Computational and AppliedMathematics, vol. 166, no.
2, pp. 453–463, 2004.

[3] Z. Lin and M. Pedersen, “Stability in a diffusive food-chain
model with Michaelis-Menten functional response,” Nonlinear
Analysis: Theory, Methods & Applications, vol. 57, no. 3, pp. 421–
433, 2004.

[4] B. X. Dai, N. Zhang, and J. Z. Zou, “Permanence for the
Michaelis-Menten type discrete three-species ratio-dependent
food chain model with delay,” Journal of Mathematical Analysis
and Applications, vol. 324, no. 1, pp. 728–738, 2006.

[5] N. F. Britton, “Spatial structures and periodic travelling waves
in an integro-differential reaction-diffusion population model,”
SIAM Journal on Applied Mathematics, vol. 50, no. 6, pp. 1663–
1688, 1990.

[6] S. A. Gourley and N. F. Britton, “Instability of travelling wave
solutions of a population model with nonlocal effects,” IMA
Journal of Applied Mathematics, vol. 51, no. 3, pp. 299–310, 1993.

[7] X. Zhang and R. Xu, “Traveling waves of a diffusive predator-
prey model with nonlocal delay and stage structure,” Journal of
Mathematical Analysis and Applications, vol. 373, no. 2, pp. 475–
484, 2011.

[8] Z. C. Wang, W. T. Li, and S. G. Ruan, “Existence and stability of
traveling wave fronts in reaction advection diffusion equations
with nonlocal delay,” Journal of Differential Equations, vol. 238,
no. 1, pp. 153–200, 2007.

[9] S. A. Gourley and S. G. Ruan, “Convergence and travelling
fronts in functional differential equations with nonlocal terms:
a competition model,” SIAM Journal on Mathematical Analysis,
vol. 35, no. 3, pp. 806–822, 2003.

[10] X. H. Lai and T. X. Yao, “Exponential stability of impul-
sive delayed reaction-diffusion cellular neural networks via
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We study the final state problem for the Dirac-Klein-Gordon equations (DKG) in two space dimensions. We prove that if the
nonresonance mass condition is satisfied, then the wave operator for DKG is well defined from a neighborhood at the origin in
lower order weighted Sobolev space to some Sobolev space.

1. Introduction

We study the final state problem for the Dirac-Klein-Gordon
equations (DKG) in two space dimensions:

(𝜕
𝑡
+ 𝛼 ⋅ ∇ + 𝑖𝑀𝛽)𝜓 = 𝜙𝛽𝜓,

(𝜕
2

𝑡
− Δ + 𝑚

2
) 𝜙 = 𝜓

∗
𝛽𝜓,

(𝑡, 𝑥) ∈ R ×R
2
, (DKG)

where (𝜓, 𝜙) is a C2
× R-valued unknown function of

(𝑡, 𝑥), 𝜓 = (𝜓
1
, 𝜓

2
)
𝑡 stands a spinor field and 𝜙 denotes a

scalar field,𝑀,𝑚 > 0 denote masses of the spinor field and
the scalar field, respectively, and 𝜓

∗ denotes a transposed
conjugate to 𝜓. The operators 𝛼 ⋅ ∇ and Δ are defined by
𝛼 ⋅ ∇ = ∑

2

𝑗=1
𝛼
𝑗
𝜕
𝑥𝑗

and Δ = ∑
2

𝑗=1
𝜕
2

𝑥𝑗
, respectively. Here,

𝛼
𝑗
(𝑗 = 1, 2) and 𝛽 are Dirac matrices, that is, 2 × 2 self-

adjoint matrices with constant elements such that

𝛼
2

𝑗
= 𝛽

2
= 𝐼, 𝛼

𝑗
𝛽 + 𝛽𝛼

𝑗
= 𝑂, for 𝑗 = 1, 2,

𝛼
𝑗
𝛼
𝑘
+ 𝛼

𝑘
𝛼
𝑗
= 𝑂, for 𝑗, 𝑘 = 1, 2, 𝑗 ̸= 𝑘.

(1)

Our aim in the present paper is to show existence of the
wave operator for the DKG system (DKG) under the nonres-
onance mass condition𝑚 ̸= 2𝑀 in two space dimensions.

First, we recall some well-posedness results for (DKG).
Many local well-posedness results in low-order Sobolev
spaces have been obtained for these ten years (for recent
information see, e.g., [1, 2] and references therein). Global

well-posedness results in 2d case were also obtained (see, e.g.,
[3]). Moreover, very recently, unconditional uniqueness in 2d
case was discussed in [4, 5]. On the other hand, there are few
results about scattering for (DKG) in 2d case.

In [6, 7], the asymptotic behavior of solutions for DKG
system was studied in 3d case by reducing it to a nonlinear
Klein-Gordon system (KG). DenoteD

±
≡ 𝜕

𝑡
± (𝛼 ⋅ ∇ + 𝑖𝑀𝛽).

In view of the properties (1), we have

D
−
D

+
= 𝜕

2

𝑡
− (𝛼 ⋅ ∇ + 𝑖𝑀𝛽) (𝛼 ⋅ ∇ + 𝑖𝑀𝛽) = 𝜕

2

𝑡
+ ⟨∇⟩

2

𝑀
,

(2)

where ⟨∇⟩
𝑀
≡ √𝑀2 − Δ. Hence, multiplying both sides of

the Dirac part byD
−
, we obtain

(𝜕
2

𝑡
+ ⟨∇⟩

2

𝑀
) 𝜓 = D

−
(𝜙𝛽𝜓)

= (D
−
𝜙) 𝛽𝜓 − 𝑖𝑀𝜙𝐼𝜓 + 𝜙𝛽D

+
𝜓

= ((D
−
𝜙) 𝛽 − 𝑖𝑀𝜙𝐼 + 𝜆𝜙

2
𝐼) 𝜓,

(3)

where we have used the fact that 𝜓 is the solution of the DKG
system. Thus, the solution of the DKG system satisfies the
following KG one:

(𝜕
2

𝑡
+ ⟨∇⟩

2

𝑀
) 𝜓 = ((D

−
𝜙) 𝛽 − 𝑖𝑀𝜙𝐼 + 𝜆𝜙

2
𝐼) 𝜓,

(𝜕
2

𝑡
+ ⟨∇⟩

2

𝑚
) 𝜙 = 𝜓

∗
𝛽𝜓.

(4)
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If we want to obtain a priori estimates to the local solution
for the DKG system, we can use estimates to solutions for
the above KG one. Moreover, in the present two-dimensional
case, the initial value problem for nonlinear KG systems
including (4) was studied in [8] (see also [9]). In [8],
Sunagawa proved existence of a unique global asymptotically
free solution under the nonresonance mass conditions, if the
initial data are sufficiently small, smooth and decay fast at
infinity. However, asymptotic behavior of solutions for DKG
is not clear because (DKG) is not equivalent to (4) in general.
In this paper, we will consider the DKG system itself without
reducing it into (4) such as in [10]. Though the initial value
problem for DKG was treated in [11], the final value problem
which will be discussed in this paper is more delicate because
of the derivative loss difficulties.

In [10], the wave operator for the DKG system has been
obtained in a three-dimensional case. They dealt with the
DKG system itself. Nevertheless, from a point of time decay
property for the free solutions of the DKG system, two
dimensional-case is critical, that is, borderline case between
the long range scattering and the short range one. Therefore,
their argument cannot be applicable to the two-dimensional
case. To overcome the lack of time decay property, we will use
the algebraic normal form transformation developed in paper
[8] and the decomposition of the Klein-Gordon operator, that
is,

𝜕
2

𝑡
+ ⟨∇⟩

2

𝑀
= D

+
D

−
. (5)

By this combination, we will find a suitable second approxi-
mate solution to 𝜓 (given by (42)). We note that the implicit
null structure for (DKG) was discovered in [12], and it was
used to prove local well-posedness in low regular setting in
[2]. On the other hand, in this paper, by explicit null structure,
wave operator for (DKG) will be constructed.

Next, we recall the problem of existence of the wave
operator for (DKG). We define the free-Dirac-and Klein-
Gordon evolution groups as follows:

V
𝐷
(𝑡) ≡ 𝐼 cos (𝑡⟨∇⟩𝑀) − (𝛼 ⋅ ∇ + 𝑖𝑀𝛽) ⟨∇⟩

−1

𝑀
sin (𝑡⟨∇⟩𝑀) ,

V
𝐾
(𝑡) ≡ (

cos (⟨∇⟩𝑚𝑡) sin (⟨∇⟩𝑚𝑡)
− sin (⟨∇⟩𝑚𝑡) cos (⟨∇⟩𝑚𝑡)

) .

(6)

For given final data (𝜓+, (⟨∇⟩
𝑚
𝜙
+

1
, 𝜙

+

2
)) ∈ (X)4 with some

Banach spaces X defined explicitly later, we put

𝜓
0
(𝑡) ≡V

𝐷
(𝑡) 𝜓

+
,

(
𝜙
0
(𝑡)

⟨∇⟩
−1

𝑚
𝜕
𝑡
𝜙
0 (𝑡)

) ≡V
𝐾 (𝑡) (

𝜙
+

1

⟨∇⟩
−1

𝑚
𝜙
+

2

) .

(7)

We will look for a unique time local solution of (DKG)which
satisfies the final state conditions as follows:

lim
𝑡→∞

𝜓 (𝑡) − 𝜓0 (𝑡)
X̃ = 0, (8)

lim
𝑡→∞



(
⟨∇⟩

1/2

𝑚
𝜙 (𝑡)

⟨∇⟩
−1/2

𝑚
𝜕
𝑡
𝜙 (𝑡)

) − (
⟨∇⟩

1/2

𝑚
𝜙
0
(𝑡)

⟨∇⟩
−1/2

𝑚
𝜕
𝑡
𝜙
0
(𝑡)
)

X̃
= 0, (9)

where X̃ is also a suitable Banach space. If there exist
𝑇 > 0 and a unique solution (𝜓, ⟨∇⟩

1/2

𝑚
𝜙, ⟨∇⟩

−1/2

𝑚
𝜕
𝑡
𝜙) ∈

(C([𝑇,∞); X̃))4 for (DKG) satisfying (8)-(9), then the wave
operatorW+ for (DKG) is defined by the mapping as follows:

W
+
: (X)2 × (⟨∇⟩−1X × X)

→ (X̃)
2

× (⟨∇⟩
−1/2X̃ × ⟨∇⟩

1/2X̃) ,

(𝜓 (𝑡) , (𝜙 (𝑡) , 𝜕𝑡𝜙 (𝑡))) =W
+
(𝜓

+
, (𝜙

+

1
, 𝜙

+

2
)) ,

for 𝑡 ∈ [𝑇,∞) ,

(10)

where ⟨∇⟩−𝑠X ≡ {𝜙; ‖⟨∇⟩
𝑠
𝜙‖X < ∞}.

2. Several Notations and Main Results

We introduce several notations to state our main results. For
𝑚, 𝑘 ∈ R, and 1 ≤ 𝑝 ≤ ∞, we introduce the weighted Sobolev
space as follows:

𝐻
𝑚,𝑘

𝑝
= {𝜙;

𝜙
𝐻𝑚,𝑘
𝑝

≡

⟨𝑥⟩

𝑘
⟨∇⟩

𝑚
𝜙
𝐿𝑝

< ∞} , (11)

where ⟨𝑥⟩ = (1 + |𝑥|2)1/2, ⟨∇⟩ = (1 − Δ)1/2. We also write for
simplicity 𝐻𝑚,𝑘

= 𝐻
𝑚,𝑘

2
, 𝐻𝑚

= 𝐻
𝑚,0

2
, and 𝐻𝑚

𝑝
= 𝐻

𝑚,0

𝑝
, and

so we usually omit the index 0 and 𝑝 = 2 if it does not cause
a confusion.

We now state ourmain results in this paper.We introduce
the function space as follows:

𝐷
𝑞
≡ 𝐻

4−4/𝑞

𝑞/(𝑞−1)
∩ 𝐻

5/2,1
∩ 𝐻

2

1
. (12)

Theorem 1. Let 𝑚,𝑀 > 0, 𝑚 ̸= 2𝑀, 4 < 𝑞 ≤ ∞

and (𝜓
+
, (⟨∇⟩𝜙

+

1
, 𝜙

+

2
)) ∈ (𝐷

𝑞
)
4. If the norm 𝜌 ≡

‖(𝜓
+
, (⟨∇⟩𝜙

+

1
, 𝜙

+

2
))‖

𝐻
2

1

is sufficiently small, then there exist a
positive constant 𝑇 > 0 and a unique solution

(𝜓 (𝑡) , (
⟨∇⟩

1/2

𝑚
𝜙 (𝑡)

⟨∇⟩
−1/2

𝑚
𝜕t𝜙 (𝑡)

)) ∈ (𝐶 ([𝑇,∞) ;𝐻
1/2
))

4

, (13)

for the system (DKG). Moreover, there exists a positive constant
𝐶 > 0 such that the following estimate

𝜓 (𝑡) − 𝜓0 (𝑡)
𝐻1/2

+



(
𝜙 (𝑡)

⟨∇⟩
−1

𝑚
𝜕
𝑡
𝜙 (𝑡)

) − (
𝜙
0
(𝑡)

⟨∇⟩
−1

𝑚
𝜕
𝑡
𝜙
0
(𝑡)
)

𝐻1

≤ 𝐶𝑡
−𝜇

(14)

is true for all 𝑡 ≥ 𝑇, where 1/2 < 𝜇 < 1 − 2/𝑞 and (𝜓
0
, 𝜙

0
) is

given by (7).

By Theorem 1, we can get existence of the wave operator
for (DKG) as follows.

Corollary 2. Let 𝑚,𝑀 > 0, 𝑚 ̸= 2𝑀, and 4 ≤ 𝑞 < ∞. Then
the wave operatorW+ for (DKG) is well defined from a neigh-
borhood at the origin in the space (𝐷

𝑞
)
2
× (⟨∇⟩

−1
𝐷
𝑞
× 𝐷

𝑞
)

to the space (𝐻1/2
)
2

× (𝐻
1
× 𝐿

2
).
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The rest of this paper is organized as follows. In Section 3,
we state some basic estimates for free solutions of the DKG
system and we introduce “null forms” and state their prop-
erties. In Section 4, we decompose two harmful terms by the
algebraic normal form transformation and we find a second
approximation for𝜓 through the decomposition of theKlein-
Gordon operator by the Dirac one. In Section 5, following
paper [10], we will also change the transformed DKG system
into another form in order to apply the Strichartz type
estimates to the Dirac part. In Section 6, we will prove
Theorem 1 by an iteration scheme based on paper [13].

3. Elementary Estimates and Null Forms

Through the paper, wewrite𝐴 ≃ 𝐵 if there exist some positive
constants 𝐶

1
, 𝐶

2
> 0 such that 𝐶

1
𝐵 ≤ 𝐴 ≤ 𝐶

2
𝐵, and we also

write 𝐴 ≲ 𝐵 if there exists a positive constant 𝐶 > 0 such that
𝐴 ≤ 𝐶𝐵.

We introduce the free evolution groups as follows:

U
±,𝑚

(𝑡) ≡ 𝑒
±𝑖𝑡⟨∇⟩𝑚 = F

−1
𝑒
±𝑖𝑡⟨𝜉⟩

𝑚F. (15)

Then, we have the following decomposition:

V
𝐷 (𝑡) = ∑

±

U
±,𝑀 (𝑡)A

𝐷

±
, (16)

where

A
𝐷

±
≡
1

2
(𝐼 ± 𝑖⟨∇⟩

−1

𝑀
(𝛼 ⋅ ∇ + 𝑖𝑀𝛽)) (17)

is 0th order matrix operator. We note that for any C2-valued
function 𝜓, the following equivalency is valid:


A

𝐷

±
𝜓
𝐻𝑚,𝑘
𝑝

≃
𝜓
𝐻𝑚,𝑘
𝑝

. (18)

Now, we state 𝐿𝑝 − 𝐿𝑞 time decay estimates through the
free evolution groupsU

±,𝑚
(𝑡) obtained in paper [14].

Lemma 3. Let𝑚 ̸= 0 and 2 ≤ 𝑝 ≤ ∞. Then the estimate

U±,𝑚
(𝑡) 𝜙

𝐿𝑝
≲ 𝑡

2/𝑝−1𝜙
𝐻
2(1−2/𝑝)

𝑞

(19)

is true for any 𝑡 > 0, where 𝑞 is a conjugate exponent of 𝑝:
1/𝑝 + 1/𝑞 = 1.

By the lemma, we can easily get 𝐿𝑝 − 𝐿
𝑞 time decay

estimates to free solutions for the DKG system.

Corollary 4. Under the same assumption of Lemma 3 and
𝑀 > 0, the following estimates

V𝐷
(𝑡) 𝜓

+𝐿𝑝
≲ 𝑡

2/𝑝−1𝜓
+𝐻
2(1−2/𝑝)

𝑞

,



V
𝐾 (𝑡) (

𝜙
+

1

⟨∇⟩
−1

𝑚
𝜙
+

2

)

𝐿𝑝
≲ 𝑡

2/𝑝−1



(
𝜙
+

1

⟨∇⟩
−1

𝑚
𝜙
+

2

)

𝐻
2(1−2/𝑝)

𝑞

(20)

are valid for any 𝑡 > 0, where 𝑞 is a conjugate exponent of 𝑝:
1/𝑝 + 1/𝑞 = 1.

Remark 5. Let 𝜅 ∈ R, 𝑀,𝑚 ̸= 0, and 2 ≤ 𝑝 < ∞. Then the
following estimates

V𝐷 (𝑡) 𝜓
+𝐻𝜅
𝑝

≲ 𝑡
2/𝑝−1𝜓

+𝐻𝜅+2−4/𝑝,1
,



V
𝐾
(𝑡) (

𝜙
+

1

⟨∇⟩
−1

𝑚
𝜙
+

2

)

𝐻𝜅
𝑝

≲ 𝑡
2/𝑝−1



(
𝜙
+

1

⟨∇⟩
−1

𝑚
𝜙
+

2

)

𝐻𝜅+2−4/𝑝,1

(21)

hold for any 𝑡 > 0.

Next, we introduce the Strichartz estimates, which enable
us to treat the problem in lower order Sobolev spaces. Denote
the space-time norm

𝜙
𝐿𝑟
𝑡
(𝐼;𝐿
𝑞

𝑥)
≡


𝜙 (𝑡)
𝐿
𝑞

𝑥

𝐿𝑟
𝑡
(𝐼)
, (22)

where 𝐼 is a bounded or unbounded time interval. We define
the integral operator as follows:

G
±,𝑚

[𝑔] (𝑡) ≡ ∫

𝑡

𝑇

U
±,𝑚 (𝑡 − 𝜏) ⟨∇⟩

−1

𝑚
𝑔 (𝜏) 𝑑𝜏 (23)

for any 𝑇 ∈ 𝐼, where 𝑚 > 0. By the duality argument of [15]
along with Lemma 3, we have the following (see also [10, 13]).

Lemma 6. Let 2 ≤ 𝑞 < ∞ and 2/𝑟 = 1 − (2/𝑞). Then for any
time interval 𝐼, the following estimates are true:

G±,𝑚
[𝑔]

𝐿𝑟
𝑡
(𝐼;𝐿
𝑞

𝑥)
≲
𝑔
𝐿𝑟


𝑡
(𝐼;𝐻
2𝛾−1

𝑞


)
,

G±,𝑚
[𝑔]

𝐿∞
𝑡
(𝐼;𝐿
2

𝑥
)
≲
𝑔
𝐿𝑟


𝑡
(𝐼;𝐻
𝛾−1

𝑞

)
,

G±,𝑚
[𝑔]

𝐿𝑟
𝑡
(𝐼;𝐿
𝑞

𝑥)
≲
𝑔
𝐿1
𝑡
(𝐼;𝐻
𝛾−1

)
,

(24)

where 𝑟 = 𝑟/(𝑟 − 1), 𝑞 = 𝑞/(𝑞 − 1) and 𝛾 = 1 − (2/𝑞).

Next, we introduce the Leibniz rule for fractional deriva-
tives.

Lemma 7. Let 𝜅 > 0, 1 < 𝑝, 𝑞
1
, 𝑞

2
< ∞, 1 < 𝑟

1
, 𝑟

2
≤ ∞,

and 1/𝑝 = 1/𝑞
1
+ 1/𝑟

1
= 1/𝑞

2
+ 1/𝑟

2
. Then the following

estimate holds:

‖𝑢V‖𝐻𝜅
𝑝

≲ ‖𝑢‖𝐻𝜅
𝑞1

‖V‖𝐿𝑟1 + ‖V‖𝐻𝜅
𝑞2

‖𝑢‖𝐿𝑟2 . (25)

For the proof of (25) see, for example, [16].
We introduce the operator Z = (Z

1
,Z

2
), where Z

𝑘
≡

𝑥
𝑘
𝜕
𝑡
+ 𝑡𝜕

𝑘
for 𝑘 = 1, 2. Let Z𝛼

= Z
𝛼1

1
Z

𝛼2

2
for a multi-

index 𝛼 = (𝛼
1
, 𝛼

2
) ∈ (N ∪ {0})

2. We can see the commutation
relations (see [6, 17]) as follows:

[D
+
,Z

𝑘
− (

1

2
) 𝛼

𝑘
] = 𝛼

𝑘
D

+
,

[𝜕
2

𝑡
− Δ + 𝑚

2
,Z

𝑘
] = 0,

(26)

for 𝑘 = 1, 2, where [𝐴, 𝐵] ≡ 𝐴𝐵 − 𝐵𝐴.
We introduce the quadratic null forms as follows:

Q
0
(𝑓, 𝑔) ≡ (𝜕

𝑡
𝑓) (𝜕

𝑡
𝑔) − (∇𝑓) ⋅ (∇𝑔) ,

Q
𝑗,𝑘
(𝑓, 𝑔) ≡ (𝜕

𝑗
𝑓) (𝜕

𝑘
𝑔) − (𝜕

𝑘
𝑓) (𝜕

𝑗
𝑔) ,

(27)
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for 0 ≤ 𝑗 < 𝑘 ≤ 2, where 𝜕 ≡ (𝜕
0
, ∇) ≡ (𝑖𝜕

𝑡
, 𝜕

1
, 𝜕

2
).

In particular, Q
𝑗,𝑘

is called a strong null form and has an
additional time decay property through the operator Z

𝑘
,

obtained in [18] (see also [8, 13, 19], etc.).

Lemma 8. Let 𝑗, 𝑘 = 1, 2. Then, for any smooth function 𝑓, 𝑔,
the identities

Q
0,𝑗
(𝑓, 𝑔) = 𝑡

−1
(𝜕

0
𝑓) (Z

𝑗
𝑔) − 𝑡

−1
(Z

𝑗
𝑓) (𝜕

0
𝑔) ,

Q
𝑗,𝑘
(𝑓, 𝑔) = 𝑡

−2
(Z

𝑗
𝑔) (Z

𝑘
𝑓)

− 𝑡
−2
(Z

𝑗
𝑓) (Z

𝑘
𝑔) + 𝑡

−1
(𝜕

𝑗
𝑓) (Z

𝑘
𝑔)

− 𝑡
−1
(𝜕

𝑗
𝑔) (Z

𝑘
𝑓) + 𝑡

−1
(Z

𝑗
𝑓) (𝜕

𝑘
𝑔)

− 𝑡
−1
(Z

𝑗
𝑔) (𝜕

𝑘
𝑓)

(28)

are valid for any 𝑡 ∈ R \ {0}.

4. Decomposition of Critical Terms

We study a structure of some harmful terms of (DKG). By the
difference of (DKG) and the free DKG system, it follows that

D
+
(𝜓 − 𝜓

0
) = (𝜙 − 𝜙

0
) 𝛽𝜓

+ 𝜙
0
𝛽 (𝜓 − 𝜓

0
) + 𝜙

0
𝛽𝜓

0
,

(◻ + 𝑚
2
) (𝜙 − 𝜙

0
) = (𝜓 − 𝜓

0
)
∗
𝛽𝜓

+ 𝜓
∗

0
𝛽 (𝜓 − 𝜓

0
) + 𝜓

∗

0
𝛽𝜓

0
,

(29)

where ◻ = 𝜕2
𝑡
− Δ. The last two terms 𝜙

0
𝛽𝜓

0
and 𝜓∗

0
𝛽𝜓

0
are

critical, both of which have the worst time decay property.
Especially, since

𝜙
0
𝛽𝜓

0
, 𝜓

∗

0
𝛽𝜓

0
= 𝑂 (𝑡

−1
) in 𝐿2 as 𝑡 → +∞ (30)

(see Corollary 4), the𝐿2-normof these terms is not integrable
with respect to time 𝑡 over [1,∞). Therefore, it can not be
expected that usual perturbation technique is applicable to
(29). To overcome this lack of time decay property, we will
decompose them into an image of a Klein-Gordon operator
and a remainder term following paper [8], based on papers
[19–21].

Let (V
1
, V

2
) be a solution for the following homogeneous

KG system with masses𝑀
1
,𝑀

2
> 0,

(◻ +𝑀
2

𝑗
) V

𝑗
= 0, (𝑡, 𝑥) ∈ R ×R

2
, for 𝑗 = 1, 2. (31)

By the masses 𝑀
1
, 𝑀

2
, we introduce the symmetric matrix

as follows:

M =M (𝑀
1
,𝑀

2
) = (

𝑀
2

1
+𝑀

2

2
2𝑀

1
𝑀

2

2𝑀
1
𝑀

2
𝑀

2

1
+𝑀

2

2

) . (32)

We have the following.

Lemma 9 (see [8]). Let �̃� > 0 with det (�̃�2
𝐼 −M) ̸= 0. Then

the quadratic term V
1
V
2
can be decomposed as

V
1
V
2
=

1

det (�̃�2𝐼 −M)
{(◻ + �̃�

2
) 𝑓 − 4R} , (33)

where

𝑓 = 𝑓 (V
1
, V

2
) ≡ (−𝑀

2

1
−𝑀

2

2
+ �̃�

2
) V

1
V
2
− 2Q

0
(V

1
, V

2
) ,

R =R (V
1
, V

2
) ≡

2

∑

𝑚=1

Q
0,𝑚

(𝜕
𝑡
V
1
, 𝜕

𝑚
V
2
)

+

2

∑

𝑚=1

Q
0,𝑚

(𝜕
𝑡
V
2
, 𝜕

𝑚
V
1
) − Q

1,2
(𝜕

1
V
1
, 𝜕

2
V
2
)

− Q
2,1
(𝜕

2
V
1
, 𝜕

1
V
2
) .

(34)

Under the nonresonance mass condition 𝑚,𝑀 > 0, and
𝑚 ̸= 2𝑀, we can apply Lemma 9 to the critical terms 𝜙

0
𝛽𝜓

0

and 𝜓∗
0
𝛽𝜓

0
. Before doing so, we prepare for several notations.

We put

M̃ ≡
1

𝑚2
(2𝑀 + 𝑚) (𝑚 − 2𝑀)

(35)

which is well defined if 𝑚,𝑀 > 0 and 𝑚 ̸= 2𝑀. For a real-
valued function 𝜙 and a C2-valued function 𝜓 = (𝜓

1
, 𝜓

2
)
𝑡,

we define C2-valued functions of bilinear form:

𝑓
𝐷
= 𝑓

𝐷
(𝜙, 𝜓) ≡ (𝑓 (𝜙, 𝜓

1
) , 𝑓 (𝜙, 𝜓

2
))
𝑡
,

R
𝐷
=R

𝐷
(𝜙, 𝜓) ≡ (R (𝜙, 𝜓

1
) ,R (𝜙, 𝜓

2
))
𝑡
,

Q
𝐷

0
= Q

𝐷

0
(𝜙, 𝜓) ≡ (Q

0
(𝜙, 𝜓

1
) ,Q

0
(𝜙, 𝜓

2
))
𝑡
,

(36)

Moreover, for C2-valued functions 𝜑 = (𝜑
1
, 𝜑

2
)
𝑡, 𝜓 =

(𝜓
1
, 𝜓

2
)
𝑡, we put the following bilinear forms:

𝑓
𝐾
= 𝑓

𝐾
(𝜑

𝑡
, 𝜓) ≡

2

∑

𝑗=1

𝑓 (𝜑
𝑗
, 𝜓

𝑗
) ,

R
𝐾
=R

𝐾
(𝜑

𝑡
, 𝜓) ≡

2

∑

𝑗=1

R (𝜑
𝑗
, 𝜓

𝑗
) ,

Q
𝐾

0
= Q

𝐾

0
(𝜑

𝑡
, 𝜓) ≡

2

∑

𝑗=1

Q
0
(𝜑

𝑗
, 𝜓

𝑗
) .

(37)

We have the following.

Corollary 10. Let 𝑚,𝑀 > 0, 𝑚 ̸= 2𝑀, and (𝜓
0
, 𝜙

0
) be a

free solution for the Dirac-Klein-Gordon equations. Then the
quadratic terms 𝜙

0
𝛽𝜓

0
, 𝜓∗

0
𝛽𝜓

0
can be expressed as

𝜙
0
𝛽𝜓

0
= M̃ {(◻ +𝑀

2
) 𝑓

𝐷
(𝜙

0
, 𝛽𝜓

0
) − 4R

𝐷
(𝜙

0
, 𝛽𝜓

0
)} ,

𝜓
∗

0
𝛽𝜓

0
= M̃ {(◻ + 𝑚

2
) 𝑓

𝐾
(𝜓

∗

0
, 𝛽𝜓

0
) − 4R

𝐾
(𝜓

∗

0
, 𝛽𝜓

0
)} .

(38)
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Proof. We consider the Dirac part of (38). Multiplying byD
−

both hand sides ofD
+
𝜓
0
= 0, we get

D
−
D

+
𝜓
0
= (◻ +𝑀

2
) 𝜓

0
= 0, (39)

which implies that 𝜓
0
= (𝜓

0,1
, 𝜓

0,2
)
𝑡 is also a solution of the

free KG equation. Note that by the condition 𝑚,𝑀 > 0 and
𝑚 ̸= 2𝑀, we can apply Lemma 9 with �̃� = 𝑀, V

1
= 𝜙

0
, and

V
2
= 𝜓

0,𝑘
to get, for 𝑘 = 1, 2,

𝜙
0
𝜓
0,𝑘
= M̃ {(◻ +𝑀

2
) 𝑓 (𝜙

0
, 𝜓

0,𝑘
) − 4R (𝜙

0
, 𝜓

0,𝑘
)} . (40)

Thus, by a simple calculation, we obtain (38). Next, note
that from equality (39), we see that 𝜓

0
satisfies the free KG

equation. Thus in the same manner as the proof of the Dirac
part, we can prove the KG part, which completes the proof of
the corollary.

Next, we will change the DKG equations into another
form without critical nonlinearities. We introduce a new
unknown function (Ψ,Φ) as follows:

Ψ ≡ 𝜓 − 𝜓
0
− 𝑓

𝐷
≡ �̃� − 𝑓

𝐷
,

Φ ≡ 𝜙 − 𝜙
0
− 𝑓

𝐾
≡ 𝜙 − 𝑓

𝐾
,

(41)

where (𝜓
0
, 𝜙

0
) is defined by (7) and

𝑓
𝐷
= 𝑓

𝐷
(𝜙

0
, 𝜓

0
) ≡ M̃D

−
𝑓
𝐷
(𝜙

0
, 𝛽𝜓

0
)

= M̃ (𝑓
𝐷
(D

−
𝜙
0
, 𝛽𝜓

0
) − 𝑖𝑀𝑓

𝐷
(𝜙

0
, 𝜓

0
)) ,

(42)

𝑓
𝐾
= 𝑓

𝐾
(𝜓

0
) ≡ M̃𝑓

𝐾
(𝜓

∗

0
, 𝛽𝜓

0
) (43)

are the second approximate solution to (𝜓, 𝜙), where we have
used the identities 𝛼

𝑗
𝛽 + 𝛽𝛼

𝑗
= 𝑂, 𝛽2 = 𝐼 and D

+
𝜓
0
= 0 to

obtain the third equality in (42).
Here, we remember that by the anticommutation rela-

tions (1) of the Dirac matrices, we can decompose the KG
operator as follows:

◻ +𝑀
2
= D

+
D

−
. (44)

By combining Corollary 10 and this decomposition, we can
rewrite (DKG) as follows.

Lemma 11. Let 𝑚,𝑀 > 0 and 𝑚 ̸= 2𝑀. Then (𝜓, 𝜙) satisfies
(DKG) if and only if the new variable (Ψ,Φ) defined by (41) is
a solution of

D
+
Ψ = 𝐹,

(◻ + 𝑚
2
)Φ = 𝐺,

(𝑡, 𝑥) ∈ R ×R
2
, (45)

where
𝐹 = 𝐹 (𝜙, �̃�)

≡ 𝜙𝛽�̃� + 𝜙𝛽𝜓
0
+ 𝜙

0
𝛽�̃� − 4M̃R

𝐷
(𝜙

0
, 𝛽𝜓

0
) ,

𝐺 = 𝐺 (�̃�)

≡ �̃�
∗
𝛽�̃� + �̃�

∗
𝛽𝜓

0
+ 𝜓

∗

0
𝛽�̃� − 4M̃R

𝐾
(𝜓

∗

0
, 𝛽𝜓

0
) ,

(46)

and M̃, R
𝐷

and R
𝐾

are defined by (35), (36), and (37),
respectively.

This lemma enables us to treat the Dirac-Klein-Gordon
equations (DKG) as well as the reduced KG system (4) in two
space dimensions.

Proof. From (29), we see that (𝜓, 𝜙) is a solution of (DKG) if
and only if the new variable (�̃�, 𝜙) satisfies the followingDKG
equations:

D
+
�̃� = 𝜙𝛽�̃� + 𝜙𝛽𝜓

0
+ 𝜙

0
𝛽�̃� + 𝜙

0
𝛽𝜓

0
,

(◻ + 𝑚
2
) 𝜙 = �̃�

∗
𝛽�̃� + �̃�

∗
𝛽𝜓

0
+ 𝜓

∗

0
𝛽�̃� + 𝜓

∗

0
𝛽𝜓

0
.

(47)

We consider the Dirac part of (47) only, since it is easier to
handle the KG part. Note that by the assumption 𝑚,𝑀 > 0

and 𝑚 ̸= 2𝑀, we can apply Corollary 10 to 𝜙
0
𝛽𝜓

0
. Thus, we

have

𝜙
0
𝛽𝜓

0
= M̃ {(◻ +𝑀

2
) 𝑓

𝐷
(𝜙

0
, 𝛽𝜓

0
) − 4R

𝐷
(𝜙

0
, 𝛽𝜓

0
)} .

(48)

Moreover, by the decomposition (44), we can transform the
first term of the right hand side of (48) as follows:

𝜆M̃ (◻ +𝑀
2
) 𝑓

𝐷
(𝜙

0
, 𝛽𝜓

0
)

= M̃D
+
D

−
𝑓
𝐷
(𝜙

0
, 𝛽𝜓

0
) = D

+
𝑓
𝐷
,

(49)

where we have used the definition of 𝑓
𝐷

given by (42).
Inserting (48) and (49) into the Dirac part of (47), we obtain
the Dirac part of (45), which completes the proof of the
lemma.

Remark 12. The null structure of (DKG)was characterized in
[12] by using Fourier space. On the other hand, we note that
in the above argument, Fourier space does not appear at all.

5. Reduction to Some First Order System

To construct a solution for the final value problemof theDKG
system, we will use the Strichartz type estimates (Lemma 6).
However, it seems difficult to apply these estimates to the
Dirac part for (45) due to a derivative loss difficulty. To gain
first order differentiability properties of nonlinear term, we
use the matrix operators

B
𝐷

±
≡
1

2
𝐼 (1 ∓ 𝑖⟨∇⟩

−1

𝑀
𝜕
𝑡
) = ∓

𝑖

2
⟨∇⟩

−1

𝑀
L

𝐷

∓
,

L
𝐷

±
≡ (𝜕

𝑡
∓ 𝑖⟨∇⟩𝑚) 𝐼,

(50)

though we do not necessarily need the operatorB in dealing
with the initial value problem for the DKG system (see [11]).
We will construct the desired solution (𝜓, 𝜙) for the DKG
system by the iteration scheme. Let {(𝜓𝑙, 𝜙𝑙)}

𝑙≥0
be a sequence

such that

D
+
𝜓
𝑙+1

= 𝜙
𝑙
𝛽𝜓

𝑙
,

(◻ + 𝑚
2
) 𝜙

𝑙+1
= (𝜓

𝑙
)
∗

𝛽𝜓
𝑙
,

𝑙 ≥ 0,

(𝜓
0
, 𝜙

0
) = (𝜓

0
, 𝜙

0
) ,

(51)
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under the final conditions

lim
𝑡→∞


𝜓
𝑙
(𝑡) − 𝜓

0
(𝑡)
𝐻1/2

= 0, (52)

lim
𝑡→∞



(
𝜙
𝑙
(𝑡)

⟨∇⟩
−1

𝑚
𝜕
𝑡
𝜙
𝑙
(𝑡)
) − (

𝜙
0
(𝑡)

⟨∇⟩
−1

𝑚
𝜕
𝑡
𝜙
0
(𝑡)
)

𝐻1

= 0, (53)

for 𝑙 ≥ 0, where (𝜓
0
, 𝜙

0
) is given by (7). It suffices to prove

that the sequence {𝜓𝑙, (⟨∇⟩1/2
𝑚
𝜙
𝑙
, ⟨∇⟩

−1/2

𝑚
𝜕
𝑡
𝜙
𝑙
)}
𝑙≥0

is a Cauchy
one in the Banach space (𝐶([𝑇,∞);𝐻

1/2
))
4

for some 𝑇 > 0.
As the previous section, we introduce the new sequence

{(Ψ
𝑙
, Φ

𝑙
)} as follows:

Ψ
𝑙
≡ 𝜓

𝑙
− 𝜓

0
− 𝑓

𝐷
≡ �̃�

𝑙
− 𝑓

𝐷
,

Φ
𝑙
≡ 𝜙

𝑙
− 𝜙

0
− 𝑓

𝐾
≡ 𝜙

𝑙
− 𝑓

𝐾
.

(54)

By Lemma 11, the sequence {(𝜓𝑙, 𝜙𝑙)} is a solution of (51) if and
only if the new one {(Ψ𝑙

, Φ
𝑙
)} satisfies the transformed DKG

equations as follows:

D
+
Ψ
𝑙+1

= 𝐹
𝑙
,

(◻ + 𝑚
2
)Φ

𝑙+1
= 𝐺

𝑙
,

𝑙 ≥ 1, (55)

(Ψ
0
, Φ

0
) = − (𝑓

𝐷
, 𝑓

𝐾
) , (56)

where

𝐹
𝑙
≡ 𝐹 (𝜙

𝑙
, �̃�

𝑙
) , 𝐺

𝑙
≡ 𝐺 (�̃�

𝑙
) , (57)

for 𝑙 ≥ 0 (𝑓
𝐷
, 𝑓

𝐾
, and 𝐹 and 𝐺 are defined by (42)-(43) and

(46), resp.).
By the decomposition of the Klein-Gordon operator by

the Dirac operator, we have

L
𝐷

±
B

𝐷

±
= ∓

𝑖

2
⟨∇⟩

−1

𝑀
𝐼 (𝜕

2

𝑡
+ ⟨∇⟩

2

𝑀
) = ∓

𝑖

2
⟨∇⟩

−1

𝑀
D

−
D

+
. (58)

Thus, from the Dirac part for (55), we can deduce the
following:

L
𝐷

±
B

𝐷

±
Ψ
𝑙+1

= ∓
𝑖

2
⟨∇⟩

−1

𝑀
D

−
D

+
Ψ
𝑙+1

= ⟨∇⟩
−1

𝑀
𝐹
𝑙

±
, (59)

for 𝑙 ≥ 0, where 𝐹𝑙
±
≡ ∓(𝑖/2)D

−
𝐹
𝑙. Therefore, from Dirac part

of (55), we have

L
𝐷

±
B

𝐷

±
Ψ
𝑙+1

= ⟨∇⟩
−1

𝑀
𝐹
𝑙

±
, 𝑙 ≥ 0,

B
𝐷

±
Ψ
0
= −B

𝐷

±
𝑓
𝐷
.

(60)

Remark 13. By properties (1) of the Dirac matrices, we can
transform 𝐹

𝑙

±
into another form without any derivatives of

�̃� or the free solution 𝜓
0
(see (78)-(79), precisely). This fact

enables us to use the Strichartz estimates for (60).

Next we will also transform the KG part of (55) as in
[10, 13]. We also use the operator (1-component version of the
Dirac part) as follows:

B
𝐾

±
≡
1

2
(1 ∓ 𝑖⟨∇⟩

−1

𝑚
𝜕
𝑡
) , L

𝐾

±
≡ 𝜕

𝑡
∓ 𝑖⟨∇⟩𝑚. (61)

We can see that the sequence {Φ𝑙
} is a solution of the KG part

for (55) if and only if the sequence {B𝐾

±
Φ
𝑙
} satisfies

L
𝐾

±
B

𝐾

±
Φ
𝑙+1

= ⟨∇⟩
−1

𝑚
𝐺
𝑙

±
, for 𝑙 ≥ 0,

B
𝐾

±
Φ
0
= −B

𝐾

±
𝑓
𝐾
,

(62)

where 𝐺𝑙

±
≡ 𝐺

𝑙

±
(�̃�

𝑙
) ≡ ∓(𝑖/2)𝐺

𝑙.
Therefore, by (60) and (62), we get

L𝐷

±
B𝐷

±
Ψ
𝑙+1

= ⟨∇⟩
−1

𝑀
𝐹
𝑙

±
,

L𝐾

±
B𝐾

±
Φ
𝑙+1

= ⟨∇⟩
−1

𝑚
𝐺
𝑙

±
,

for 𝑙 ≥ 0, (63)

(B
𝐷

±
Ψ
0
,B

𝐾

±
Φ
0
) = − (B

𝐷

±
𝑓
𝐷
,B

𝐾

±
𝑓
𝐾
) . (64)

Remark 14. The identity ∑
±
B∗

±
= 𝐼 holds, which enables us

to reconstruct a solution (Ψ,Φ) for (45) from (B𝐷

±
Ψ,B𝐾

±
Φ).

Inserting the identities

�̃�
𝑙
= ∑

±

B
𝐷

±
Ψ
𝑙
+ 𝑓

𝐷
, 𝜙

𝑙
= ∑

±

B
𝐾

±
Φ
𝑙
+ 𝑓

𝐾
, (65)

into the nonlinearities𝐹𝑙
±
, 𝐺𝑙

±
, we can express (63) by the new

variable (B𝐷

±
Ψ
𝑙
,B𝐾

±
Φ
𝑙
) only without (𝜙𝑙, �̃�𝑙).

At the end of this section, we will lead the integral
equations associated with (63).We introduce a new unknown
function sequence {V𝑙} whose components are defined by

V𝑙 ≡ (B𝐷

+
Ψ
𝑙
,B

𝐷

−
Ψ
𝑙
, ⟨∇⟩

1/2

𝑚
B

𝐾

+
Φ
𝑙
, ⟨∇⟩

1/2

𝑚
B

𝐾

−
Φ
𝑙
)
𝑡

, (66)

a nonlinear term

N =N (V𝑙) ≡ (⟨∇⟩−1
𝑀
𝐹
𝑙

+
, ⟨∇⟩

−1

𝑀
𝐹
𝑙

−
, ⟨∇⟩

−1/2

𝑚
𝐺
𝑙

+
, ⟨∇⟩

−1/2

𝑚
𝐺
𝑙

−
)
𝑡

(67)

for 𝑙 ≥ 0, and a matrix-operator L ≡ diag (L𝐷

+
,

L𝐷

−
,L𝐾

+
,L𝐾

−
). Then by using these notations, (63) can be

simplified as

LV𝑙+1 =N (V𝑙) for 𝑙 ≥ 0. (68)

To lead the integral equations for (68), we need to study the
asymptotic behavior of the new variable V𝑙. We can obtain the
following.

Lemma 15. Let (𝜓+, (⟨∇⟩𝜙+
1
, 𝜙

+

2
)) ∈ (𝐻

5/2,1
)
4

. The function
(𝜓

𝑙
, 𝜙

𝑙
) defined by (51) satisfies (52)-(53) for any 𝑙 ≥ 0 if and

only if the new function V𝑙 satisfies (68) and

lim
𝑡→∞


V𝑙
𝐻1/2

= 0, for 𝑙 ≥ 0. (69)

The proof of the lemma will be given in Appendix.
We introduce a matrix evolution operator as follows:

U (𝑡) ≡ diag (U
+,𝑀

(𝑡) ,U
−,𝑀

(𝑡) ,U
+,𝑚

(𝑡) ,U
−,𝑚

(𝑡)) . (70)

From Lemma 15, we can lead the integral equations associ-
ated with (68) as follows:

V𝑙+1 (𝑡) = −∫
∞

𝑡

U (𝑡 − 𝑠)N (V𝑙) 𝑑𝑠. (71)
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6. Proof of Theorem 1

In this section, we give a proof of Theorem 1. Note that the
identities

𝜕
𝑡
Ψ
𝑙
= 𝑖⟨∇⟩𝑀 (V𝑙

1
− V𝑙

2
) ,

𝜕
𝑡
Φ
𝑙
= 𝑖⟨∇⟩

1/2

𝑚
(V𝑙

3
− V𝑙

4
)

(72)

hold; the nonlinearityN(V𝑙) can be expressed in terms of the
space derivatives of V𝑙 (so excluding the time derivatives).

For 𝑇 > 1, where 𝑇 is sufficiently large, we introduce the
following function space:

X
𝑇
= {V ∈ (𝐶 ([𝑇,∞) ;𝐻

1/2
))

6

; ‖V‖X𝑇 < ∞} , (73)

with the norm

‖V‖X𝑇 ≡ sup
𝑡∈[𝑇,∞)

𝑡
𝜇
(‖V‖𝐿4

𝑡
(𝐼;𝐿
4
)
+ ‖V‖

𝐿
∞

𝑡
(𝐼;𝐻
1/2
)
) , (74)

where 1/2 < 𝜇 < 1 − 2/𝑞, 4 < 𝑞 ≤ ∞, and 𝐼 = [𝑡,∞). We
define

𝐴 ≡ 𝐶
(𝜓

+
, (⟨∇⟩ 𝜙

+

1
, 𝜙

+

2
))
𝐻
4−4/𝑞

𝑞/(𝑞−1)
∩𝐻
5/2,1 . (75)

In order to obtain the theorem,wewill show that the sequence
{V𝑙} is a Cauchy one in a closed ballX

𝑇,𝐴
for appropriate𝑇 and

𝜌, where X
𝑇,𝐴

≡ {V ∈ X
𝑇
; ‖V‖X𝑇 ≤ 𝐴}.

Hereafter, we will use the notation 𝐿𝑟
𝑡
𝑋 = 𝐿

𝑟

𝑡
(𝐼; 𝑋), D =

D
−
and

BΨ =B
𝐷

±
Ψ, BΦ =B

𝐾

±
Φ, (76)

for simplicity if it does not cause a confusion.

Proof. Wewill prove that V𝑙 ∈ X
𝑇,𝐴

for any 𝑙 ≥ 0 by induction.
In the case of 𝑙 = 0, it is easy to see that V0 ∈ X

𝑇,𝐴
for some 𝑇

and𝜌.We omit the details. For 𝑙 ≥ 1, we assume that V𝑘 ∈ X
𝑇,𝐴

for 0 ≤ 𝑘 ≤ 𝑙. We will show that V𝑙+1 ∈ X
𝑇,𝐴

for some 𝑇 and 𝜌.
First, by the identitiesD

+
𝜓
0
= 0 andD

+
𝜓
𝑙
= 𝜆𝜙

𝑙−1
𝛽𝜓

𝑙−1

for 𝑙 ≥ 1, we get, for 𝑙 ≥ 1,

D
−
(𝜙

𝑙
𝛽�̃�

𝑙
) = (D

−
𝜙
𝑙
) 𝛽�̃�

𝑙

− 𝑖𝑀𝜙
𝑙
𝐼�̃�

𝑙
+ 𝜆𝜙

𝑙
𝜙
𝑙−1
𝐼�̃�

𝑙−1

+ 𝜆𝜙
𝑙
𝜙
𝑙−1
𝐼𝜓

0
+ 𝜆𝜙

𝑙
𝜙
0
𝐼�̃�

𝑙−1

+ 𝜆𝜙
𝑙
𝜙
0
𝐼𝜓

0
,

D
−
R

𝐷
(𝜙

0
, 𝛽𝜓

0
) =R

𝐷
(D

−
𝜙
0
, 𝛽𝜓

0
) − 𝑖𝑀R

𝐷
(𝜙

0
, 𝛽𝜓

0
) .

(77)

From these identities, we can express 𝐹𝑙
±
as follows:

𝐹
𝑙

±
= ∓

𝑖

2

3

∑

𝑗=1

𝐹
𝑙

𝑗
+ “remainder” for 𝑙 ≥ 1, (78)

where

𝐹
𝑙

1
≡ (D

−
𝜙
𝑙
) 𝛽�̃�

𝑙
, 𝐹

𝑙

2
≡ (D

−
𝜙
0
) 𝛽�̃�

𝑙
+ (D

−
𝜙
𝑙
) 𝛽𝜓

0
,

(79)

𝐹
𝑙

3
≡ 4𝑖M̃R

𝐷
(D

−
𝜙
0
, 𝛽𝜓

0
) . (80)

Here, we note that “remainder” (given by (78)) can be handled
in the same manner as 𝐹𝑙

𝑗
(𝑗 = 1, 2, or 3). Thus, we will

omit the estimate of them. We also decompose 𝐺𝑙

±
as 𝐺𝑙

±
=

∓(𝑖/2)∑
3

𝑗=1
𝐺
𝑙

𝑗
, where

𝐺
𝑙

1
= (�̃�

𝑙
)
∗

𝛽�̃�
𝑙
, 𝐺

𝑙

2
= (�̃�

𝑙
)
∗

𝛽𝜓
0
+ 𝜓

∗

0
𝛽�̃�

𝑙
,

𝐺
𝑙

3
= 4𝑖M̃R

𝐾
(𝜓

∗

0
, 𝛽𝜓

0
) .

(81)

Taking 𝐿4
𝑡
𝐿
4

𝑥
-norm and 𝐿∞

𝑡
𝐻

1/2-norm of (71) and applying
Lemma 6 with (𝑞, 𝑟, 𝛾) = (4, 4, 1/2) and (2,∞, 0), we have


V𝑙+1

𝐿4
𝑡
𝐿
4

𝑥

+

V𝑙+1

𝐿∞
𝑡
𝐻
1/2

≲

𝐹
𝑙

1

𝐿
4/3

𝑡
𝐿
4/3

𝑥

+

𝐺
𝑙

1

𝐿
4/3

𝑡
𝐻
1/2

4/3

+ ∑

𝑗=2,3

(

𝐹
𝑙

𝑗

𝐿1
𝑡
𝐻
−1/2

+

𝐺
𝑙

𝑗

𝐿1
𝑡
𝐿
2

𝑥

) .

(82)

Moreover, we remember that (𝜙𝑙, �̃�𝑙) is expressed as (65).
Now, we will estimate 𝐹𝑙

1
. By the Hölder inequality, we

have

(DBΦ

𝑙
)BΨ

𝑙𝐿
4/3

𝑡
𝐿
4/3

𝑥

≲




BΦ

𝑙
(𝑠)
𝐻1


BΨ

𝑙
(𝑠)
𝐿4
𝑥

𝐿
4/3

𝑡

≲ 𝐴


𝑠
−𝜇

BΨ
𝑙
(𝑠)
𝐿4
𝑥

𝐿
4/3

𝑡

≤ 𝐴

BΨ

𝑙𝐿4
𝑡
𝐿
4

𝑥

𝑠
−𝜇𝐿2

𝑡
(𝐼)

≲ 𝐴
2
𝑡
1/2−2𝜇

,

(83)

for any 𝑡 ≥ 𝑇 since V𝑘 ∈ X
𝑇,𝐴

for 0 ≤ 𝑘 ≤ 𝑙. By the Hölder
inequality and Remark 5 with 𝑝 = 8, we obtain


𝑓
𝐷
(𝑠)
𝐿4

≲
𝜙0 (𝑠)

𝐻2
8

𝜓0 (𝑠)
𝐻1
8

≲ 𝐴
2
𝑠
−3/2

, (84)

for any 𝑠 ≥ 𝑡. In the same manner as the proof of the estimate
(83), we also obtain


(DBΦ

𝑙
) 𝑓

𝐷

𝐿
4/3

𝑡
𝐿
4/3

𝑥

≲ 𝐴
3
𝑡
−3/4−𝜇

, (85)

for all 𝑡 ≥ 𝑇, due to V𝑘 ∈ X
𝑇,𝐴

for 0 ≤ 𝑘 ≤ 𝑙 and (84). By the
Hölder inequality and Remark 5 with 𝑝 = 8/3, 8, we obtain


D𝑓

𝐾
(𝑠)
𝐿2

≲
𝜓0 (𝑠)

𝐻2
8/3

𝜓0 (𝑠)
𝐻1
8

≲ 𝑠
−1𝜓

+𝐻
5/2

8/5

𝜓
+𝐻
5/2

8/7

≲ 𝐴
2
𝑠
−1

(86)
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for any 𝑠 ≥ 𝑡, where we have used properties (1) of 𝛼, 𝛽, and
D

+
𝜓
0
= 0. Thus, in the same manner as the proof of the

estimate (83), we obtain

(D𝑓

𝐾
)BΨ

𝑙𝐿
4/3

𝑡
𝐿
4/3

𝑥

≲ 𝐴
3
𝑡
−1/2−𝜇

, (87)

for all 𝑡 ≥ 𝑇 due to V𝑙 ∈ X
𝑇,𝐴

and (86). By the Hölder
inequality and estimates (84) and (86), we get


(D𝑓

𝐾
) 𝑓

𝐷

𝐿
4/3

𝑡
𝐿
4/3

𝑥

≲




D𝑓

𝐾
(𝑠)
𝐿2
𝑥


𝑓
𝐷
(𝑠)
𝐿4
𝑥

𝐿
4/3

𝑡
(𝐼)

≲ 𝐴
4
𝑡
−7/4

,

(88)

for all 𝑡 ≥ 𝑇. Thus by combining (83), (85), and (87)-(88), we
obtain


𝐹
𝑙

1

𝐿
4/3

𝑡
𝐿
4/3

𝑥

≲ 𝐴
2
𝑡
1/2−2𝜇

, (89)

for 𝑡 ≥ 𝑇 ≥ 1 since 𝜇 < 1. Next, we consider 𝐹𝑙
2
. We have


𝐹
𝑙

2

𝐿1
𝑡
𝐻
−1/2

≤

(D𝜙

𝑙
) 𝜓

0

𝐿1
𝑡
𝐿
2

𝑥

+

(D𝜙

0
) �̃�

𝑙𝐿1
𝑡
𝐿
2

𝑥

. (90)

By Corollary 4 with 𝑝 = ∞, we have

(DBΦ

𝑙
) 𝜓

0

𝐿1
𝑡
𝐿
2

𝑥

≲



BΦ

𝑙
(𝑠)
𝐻1

𝜓0 (𝑠)
𝐿∞
𝑥

𝐿1
𝑡

≲ 𝜌𝐴𝑡
−𝜇
,

(91)

for all 𝑡 ≥ 𝑇 since V𝑘 ∈ X
𝑇,𝐴

for 0 ≤ 𝑘 ≤ 𝑙. In the samemanner
as the estimate (91), we get


(D𝑓

𝐾
) 𝜓

0

𝐿1
𝑡
𝐿
2

𝑥

≲




D𝑓

𝐾
(𝑠)
𝐿2
𝑥

𝜓0 (𝑠)
𝐿∞
𝑥

𝐿1
𝑡

≤ 𝜌𝐴
2
𝑡
−1
,

(92)

for any 𝑡 ≥ 𝑇, where we have used the estimate (86).
Moreover, we also have


(D𝜙

0
)BΨ

𝑙𝐿1
𝑡
𝐿
2

𝑥

≲



𝜙0 (𝑠)
𝐻1
∞


BΨ

𝑙
(𝑠)
𝐿2
𝑥

𝐿1
𝑡

≤ 𝐴𝜌𝑡
−𝜇
,

(93)

for all 𝑡 ≥ 𝑇 since V𝑙 ∈ X
𝑇,𝐴

. In the same proof as the estimate
(84), by the Hölder inequality and Remark 5 with 𝑝 = 4, we
get


𝑓
𝐷
(𝑠)
𝐿2

≲
𝜙0 (𝑠)

𝐻2
4

𝜓0 (𝑠)
𝐻1
4

≲ 𝐴
2
𝑠
−1
, (94)

for any 𝑠 ≥ 𝑡. By estimate (94) and Corollary 4 with 𝑝 = ∞,
we have

(D𝜙

0
) 𝑓

𝐷

𝐿1
𝑡
𝐿
2

𝑥

≲



𝜙0 (𝑠)
𝐻1
∞


𝑓
𝐷 (𝑠)

𝐿2
𝑥

𝐿1
𝑡

≲ 𝜌𝐴
2
𝑡
−1
, (95)

for all 𝑡 ≥ 𝑇.Therefore, by combining estimates (90)–(93) and
(95), we obtain


𝐹
𝑙

2

𝐿1
𝑡
𝐻
−1/2

≲ 𝜌𝐴𝑡
−𝜇
, (96)

for any 𝑡 ≥ 𝑇 ≥ 1 since 𝜇 < 1. Next, we consider 𝐹𝑙
3
. By the

definition ofR
𝐷
, we have

R𝐷
(D𝜙

0
, 𝜓

0
)
𝐿1
𝑡
𝐻
−1/2 ≲ ∑

𝑗=1,2


R (D𝜙

0
, 𝜓

0,𝑗
)
𝐿1
𝑡
𝐿
2

𝑥

, (97)

where we put 𝜓
0
= (𝜓

0,1
, 𝜓

0,2
)
𝑡. By Lemma 8, we can express

R as

R (D𝜙
0
, 𝜓

0,𝑗
) ≡ 𝑠

−1
𝑍
1
+ 𝑠

−2
𝑍
2
, (98)

for 𝑠 ∈ R \ {0}, where

𝑍
1
≡ (𝜕

0
𝜕
𝑡
D𝜙

0
) (Z

1
𝜕
1
𝜓
0,𝑗
)

− (Z
1
𝜕
𝑡
D𝜙

0
) (𝜕

0
𝜕
1
𝜓
0,𝑗
) + similar,

𝑍
2
≡ − (Z

1
𝜕
2
𝜓
0,𝑗
) (Z

2
𝜕
1
D𝜙

0
)

+ (Z
1
𝜕
1
D𝜙

0
) (Z

2
𝜕
2
𝜓
0,𝑗
) + similar.

(99)

By applying the Hölder inequality, we have


𝑠
−1
𝑍
1

𝐿1
𝑡
𝐿
2

𝑥

≲ ∫

∞

𝑡

𝑠
−1
(
𝜙0

𝐻3
𝑞

Z𝜓
0

𝐻1
2𝑞/(𝑞−2)

+
𝜓0

𝐻2
𝑞

Z𝜙
0

𝐻2
2𝑞/(𝑞−2)

)𝑑𝑠.

(100)

By Corollary 4 with 𝑝 = 𝑞, we get
𝜙0 (𝑠)

𝐻3
𝑞

≲ 𝑠
−1+2/𝑞(⟨∇⟩ 𝜙

+

1
, 𝜙

+

2
)
𝐻
4−4/𝑞

𝑞/(𝑞−1)

≲ 𝐴𝑠
−1+2/𝑞

,

𝜓0 (𝑠)
𝐻2
𝑞

≲ 𝑠
−1+2/𝑞𝜓

+𝐻
4−4/𝑞

𝑞/(𝑞−1)

≲ 𝐴𝑠
−1+2/𝑞

,

(101)

for any 𝑠 ≥ 𝑡. On the other hand, note that the commutation
relations (26) hold. By applying the Sobolev inequality and
the charge and energy conservation laws, we obtain
Z𝜓

0

𝐻1
2𝑞/(𝑞−2)

≲
Z𝜓

0

𝐻1+2/𝑞

≲
Z𝜓

0

𝐻3/2
≲
(Z𝜓

0
) (0)

𝐻3/2
≲ 𝐴,

Z𝜙
0

𝐻2
2𝑞/(𝑞−2)

≲
Z𝜙

0

𝐻2+2/𝑞

≲
Z𝜙

0

𝐻5/2
≲
(Z𝜙

0
) (0)

𝐻5/2
≲ 𝐴,

(102)

since 𝑞 > 4. Thus, by combining (100)–(102), we get

𝑠
−1
𝑍
1

𝐿1
𝑡
𝐿
2

𝑥

≲ 𝐴
2
𝑡
−1+2/𝑞

, (103)

for any 𝑡 ≥ 𝑇. By the Hölder inequality, we have


𝑠
−2
𝑍
2

𝐿1
𝑡
𝐿
2

𝑥

≲ ∫

∞

𝑡

𝑠
−2Z𝜓

0
(𝑠)
𝐻1
4

Z𝜙
0
(𝑠)
𝐻2
4

𝑑𝑠

≲ 𝐴
2
𝑡
−1
,

(104)

since in the same manner as the proof of estimates (102), we
obtain

Z𝜓
0
(𝑠)
𝐻1
4

+
Z𝜙

0
(𝑠)
𝐻2
4

≲ 𝐴, (105)
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for any 𝑠 ≥ 𝑡.Therefore, combining (97)-(98), (103), and (104),
we have


𝐹
𝑙

3

𝐿1
𝑡
𝐻
−1/2

≲ 𝐴
2
𝑡
−1+2/𝑞

, (106)

for all 𝑡 ≥ 𝑇 ≥ 1 since 𝑞 > 4.
Next, we will estimate 𝐺l

1
. By the Leibniz formula (25)

with 𝜅 = 1/2, 𝑝 = 4/3, 𝑞
1
= 𝑞

2
= 2, and 𝑟

1
= 𝑟

2
= 4 and

the Hölder inequality, we obtain

(BΨ

𝑙
)
∗

BΨ
𝑙
𝐿
4/3

𝑡
𝐻
1/2

4/3

≲




BΨ

𝑙
(𝑠)
𝐻1/2


BΨ

𝑙
(𝑠)
𝐿4
𝑥

𝐿
4/3

𝑡

≲ 𝐴


𝑠
−𝜇

BΨ
𝑙
(𝑠)
𝐿4
𝑥

𝐿
4/3

𝑡

≲ 𝐴
𝑠
−𝜇𝐿2

𝑡
(𝐼)


BΨ

𝑙𝐿4
𝑡
𝐿
4

𝑥

≲ 𝐴
2
𝑡
1/2−2𝜇

,

(107)

for any 𝑡 ≥ 𝑇 since V𝑙 ∈ X
𝑇,𝐴

. By the fractional Leibniz rule
(25) again and Remark 5 with 𝑝 = 4, we have


𝑓
𝐷
(𝑠)
𝐻1/2

≲
𝜙0 (𝑠)

𝐻
5/2

4

𝜓0 (𝑠)
𝐻
3/2

4

≲ 𝐴
2
𝑠
−3/2

, (108)

for any 𝑠 ≥ 𝑡. In the same manner as the proof of the estimate
(107), we obtain

(BΨ

𝑙
)
∗

𝑓
𝐷

𝐿
4/3

𝑡
𝐻
1/2

4/3

≲



BΨ

𝑙
(𝑠)
𝐻1/2


𝑓
𝐷
(𝑠)
𝐻1/2

𝐿
4/3

𝑡

≲ 𝐴
3
𝑡
−3/4−𝜇

,

(109)

for any 𝑡 ≥ 𝑇 due to V𝑙 ∈ X
𝑇,𝐴

and (108). In the same manner
as the proof of the estimate (109), we get


(𝑓

𝐷
)
∗

𝑓
𝐷

𝐿
4/3

𝑡
𝐻
1/2

4/3

≲ 𝐴
4
𝑡
−7/4

, (110)

for all 𝑡 ≥ 𝑇. Thus, by combining the estimates (107) and
(109)-(110), we obtain


𝐺
𝑙

1

𝐿
4/3

𝑡
𝐻
1/2

4/3

≲ 𝐴
2
𝑡
1/2−2𝜇

, (111)

for 𝑡 ≥ 𝑇 ≥ 1 since 𝜇 < 1. In the same manner as the proof of
the estimates (96) and (106), we obtain


𝐺
𝑙

2

𝐿1
𝑡
𝐿
2

𝑥

≲ 𝜌𝐴𝑡
−𝜇
,


𝐺
𝑙

3

𝐿1
𝑡
𝐿
2

𝑥

≲ 𝐴
2
𝑡
−1+2/𝑞

, (112)

for any 𝑡 ≥ 𝑇. Finally, by combining (82), (89), (96), (106),
and (111)-(112), we obtain


V𝑙+1

X𝑇
≲ 𝐴 (𝐴𝑇

1/2−𝜇
+ 𝜌 + 𝐴𝑇

−1+𝜇+2/𝑞
) , (113)

for 𝑇 ≥ 1. By the estimate (113) and 1/2 < 𝜇 < 1 − 2/𝑞, there
exist a large 𝑇 > 0 and a small 𝜌 > 0 such that V𝑙+1 ∈ X

𝑇,𝐴
.

In the same manner as the proof of (113), we can prove the
estimate


V𝑙+1 − V𝑙

X𝑇
≤
1

2


V𝑙 − V𝑙−1

X𝑇
, (114)

for 𝑙 ≥ 1 if 𝑇 > 1 is sufficiently large and 𝜌 > 0 is sufficiently
small, which implies that {V𝑙}

𝑙≥0
is a Cauchy sequence in

X
𝑇,𝐴

. Theorem 1 is proved.

Appendix

In this section, we give a proof of Lemma 15. First, we prepare
the following.

Lemma 16 (see [10]). Let 𝜅 ∈ R and let 𝜓+ = 𝜓+(𝑥) be a C2-
valued given function. Then, for any C2-valued function 𝜓 =

𝜓(𝑡, 𝑥), the equivalency

𝜓 (𝑡) −V
𝐷 (𝑡) 𝜓

+𝐻𝜅
≃ ∑

±


A

𝐷

±
𝜓 (𝑡) −U

±,𝑀 (𝑡)A
𝐷

±
𝜓
+𝐻𝜅

(A.1)

holds for all 𝑡 ∈ R.

For the proof of the lemma, see [10].
By the lemma and a decay property of 𝑓

𝐷
given by (42),

we also have the following.

Corollary 17. Let (𝜓+, (⟨∇⟩𝜙+
1
, 𝜙

+

2
)) ∈ (𝐻

5/2,1
)
4

. The final
state condition (8) with X = 𝐻

1/2 holds if and only if the
identity

lim
𝑡→∞

∑

±


A

𝐷

±
Ψ (𝑡)

𝐻𝜅
= 0 (A.2)

is valid, where Ψ is defined by (41).

Before proving the corollary, we remember some proper-
ties of the operatorsA𝐷

±
given by (17) (see [10] in detail). We

note that the identity

(𝛼 ⋅ ∇ + 𝑖𝑀𝛽)
2
= −⟨∇⟩

2

𝑀
𝐼 (A.3)

holds due to properties (1) of Dirac matrices. Hence, by a
direct calculation, we get the following identities:

A
𝐷

±
A

𝐷

∓
= 𝑂, ∑

±

A
𝐷

±
= 𝐼, (A

𝐷

±
)
2

= A
𝐷

±
. (A.4)

We put 𝐵 = ‖(𝜓+, (⟨∇⟩𝜙+
1
, 𝜙

+

2
))‖

𝐻
5/2,1 .

Proof. By Lemma 16, we see that (8) with X = 𝐻
1/2 is

equivalent to

lim
𝑡→∞

∑

±


A

𝐷

±
𝜓 (𝑡) −U

±,𝑀
(𝑡)A

𝐷

±
𝜓
+𝐻1/2

= 0. (A.5)

By decomposition (16) and identities (A.4), we have


A

𝐷

±
Ψ (𝑡)

𝐻1/2
=

A

𝐷

±
𝜓 (𝑡) −U

±,𝑀
(𝑡)A

𝐷

±
𝜓
+
−A

𝐷

±
𝑓
𝐷

𝐻1/2
.

(A.6)

By estimate (18), the fractional Leibniz rule (25) with 𝑝 = 2

and 𝑞
𝑖
= 𝑟

𝑖
= 4 (𝑖 = 1, 2), and Remark 5 with 𝑝 = 4, we get


A

𝐷

±
𝑓
𝐷

𝐻1/2
≲
𝜙0

𝐻
5/2

4

𝜓0
𝐻
3/2

4

≲ 𝑡
−1
𝐵
2
, (A.7)

for all 𝑡 > 0, which completes the proof of the corollary.
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Next we will prove Lemma 15.

Proof of Lemma 15. First we prove the Dirac part. By
Corollary 17, we see that (52) is equivalent to

lim
𝑡→∞

∑

±


A

𝐷

±
Ψ
𝑙
(𝑡)
𝐻1/2

= 0 for 𝑙 ≥ 0. (A.8)

Note that the identity

A
𝐷

±
−B

𝐷

±
= ±

𝑖

2
⟨∇⟩

−1

𝑀
D

+
(A.9)

holds. From the Dirac part of (55), we have

B
𝐷

±
Ψ
𝑙+1

= A
𝐷

±
Ψ
𝑙+1
− ⟨∇⟩

−1

𝑀
𝐹
𝑙 for 𝑙 ≥ 0. (A.10)

Thus, it is sufficient to show that

lim
𝑡→∞


𝐹
𝑙𝐻−1/2

= 0 for 𝑙 ≥ 0. (A.11)

By the Sobolev inequality and the Hölder inequality, we have,
for 𝑙 ≥ 1,


𝐹
𝑙𝐻−1/2

≲

𝜙
𝑙𝐻1/2


�̃�
𝑙𝐻1/2

+

𝜙
𝑙𝐻1/2

𝜓
+𝐻1/2

+ (
𝜙

+

1

𝐻1/2
+
𝜙

+

2

𝐻−1/2
)

�̃�
𝑙𝐻1/2

+
𝜙0

𝐻2
8

𝜓0
𝐻2
8/3

.

(A.12)

By Remark 5 with 𝑝 = 8, 8/3, we get

𝜙0
𝐻2
8

≲ 𝑡
−3/4

𝐵,
𝜓0

𝐻2
8/3

≲ 𝑡
−1/2

𝐵. (A.13)

Thus, by assumptions and estimates (A.12)-(A.13), we obtain
(A.11) for 𝑙 ≥ 1. In the case of 𝑙 = 0, it is easy to see (69). We
omit the details. Conversely, assume (69) and will prove (52).
By the decomposition 𝐼 = ∑

±
B𝐷

±
, we have only to show that

lim
𝑡→∞

∑

±


B

𝐷

±
𝑓
𝐷

𝐻1/2
= 0. (A.14)

We have

B𝑓

𝐷

𝐻1/2
≲

BQ

𝐷

0
(D𝜙

0
, 𝜓

0
)
𝐻1/2

+ remainder, (A.15)

BQ

𝐷

0
(D𝜙

0
, 𝜓

0
)
𝐻1/2

≲

Q
𝐷

0

𝐻1/2
+

𝜕
𝑡
Q
𝐷

0

𝐻1/2
. (A.16)

By the Hölder inequality and Remark 5 with 𝑝 = 8, 8/3, we
obtain


𝜕
𝑡
Q
0
(D𝜙

0
, 𝜓

0,𝑗
)
𝐻−1/2

≲
𝜙0

𝐻3
8/3

𝜓0
𝐻1
8

+
𝜙0

𝐻2
8

𝜓0
𝐻2
8/3

≲ 𝑡
−1
𝐵
2
.

(A.17)

Since the remainder terms in (A.15) can be estimated in the
same manner as the proof of (A.17), we obtain


B𝑓

𝐷

𝐻1/2
≲ 𝑡

−1
𝐵
2
, (A.18)

from which (A.14) follows.

Next, we consider the KG part. By the identity

𝑓 + 𝑔


2

𝐻
𝜅 +

𝑓 − 𝑔


2

𝐻
𝜅 = 2 (

𝑓


2

𝐻
𝜅 +

𝑔


2

𝐻
𝜅) , (A.19)

we can see that (53) is equivalent to

∑

±


B

𝐾

±
(𝜙

𝑙
(𝑡) − 𝜙

0
(𝑡))

𝐻1
. (A.20)

In the same manner as the proof of estimate (A.18), we can
obtain


B𝑓

𝐾

𝐻1
≲ 𝑡

−1
𝐵
2
, (A.21)

which completes the proof of the lemma.
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We prove the existence and uniqueness of a positive continuous solution to the following singular semilinear fractional Dirichlet
problem (−Δ)𝛼/2𝑢 = 𝑎

1
(𝑥)𝑢

𝜎1 + 𝑎
2
(𝑥)𝑢

𝜎2 , in 𝐷 lim
𝑥→𝑧∈𝜕𝐷

(𝛿(𝑥))
1−(𝛼/2)

𝑢(𝑥) = 0, where 0 < 𝛼 < 2, 𝜎
1
, 𝜎

2
∈ (−1, 1), 𝐷 is a bounded

𝐶
1,1-domain inR𝑛

, 𝑛 ≥ 2, and 𝛿(𝑥) denotes the Euclidian distance from 𝑥 to the boundary of𝐷.The nonnegative weight functions
𝑎
1
, 𝑎

2
are required to satisfy certain hypotheses related to theKaramata class.We also investigate the global behavior of such solution.

1. Introduction

In the last two decades, several studies have been performed
for the so-called fractional Laplacian, (−Δ)𝛼/2, 0 < 𝛼 < 2,
which can be defined by the integral representation

(−Δ)
𝛼/2
𝑢 (𝑥) = 𝑐

𝑛,𝛼
lim
𝜀↘0

∫
(|𝑥−𝑦|>𝜀)

𝑢 (𝑥) − 𝑢 (𝑦)

𝑥 − 𝑦


𝑛+𝛼
𝑑𝑦, (1)

where 𝑐
𝑛,𝛼

= (𝛼2
𝛼−1
/𝜋

𝑛/2
)(Γ((𝑛 + 𝛼)/2)/Γ(1 − (𝛼/2))) is

a normalization constant; see, for instance, [1, 2]. From a
probabilistic point of view, the fractional Laplacian appears
as the infinitesimal generator of the stable Lévy process
[3, 4]; see also [5]. The fractional powers of the Laplacian
arise in a numerous variety of equations in mathematical
physics and related fields (see, for instance, [6–11] and the
references therein). Motivation from mechanics appears in
the Signorini problem (cf. [12, 13]). And there are applications
in fluid mechanics, (cf. [14]). The systematic study of the
corresponding PDE models is more recent and many of the

results have arisen in the last decade. The linear or quas-
ilinear elliptic theory has been actively studied recently in the
works of Caffarelli and collaborators [15, 16], Kassmann [17],
Silvestre [18], andmany others.The standard linear evolution
equation involving fractional diffusion is

𝜕𝑢

𝜕𝑡
+ (−Δ)

𝛼/2
𝑢 = 0. (2)

This is a model of the so-called anomalous diffusion, a much
studied topic in physics, probability, and finance (see [19–
23] and their references). For more applications, we refer the
reader to the survey papers [24, 25].

Throughout this paper, we consider a bounded 𝐶1,1-
domain 𝐷 in R𝑛, 𝑛 ≥ 2, and we denote by 𝛿(𝑥) the Euclidian
distance from 𝑥 to the boundary of 𝐷. For two nonnegative
functions 𝑓 and 𝑔 defined on a set 𝑆, the notation 𝑓(𝑥) ≈
𝑔(𝑥), 𝑥 ∈ 𝑆, means that there exists 𝑐 > 0 such that
(1/𝑐)𝑓(𝑥) ≤ 𝑔(𝑥) ≤ 𝑐𝑓(𝑥), for all 𝑥 ∈ 𝑆.
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Recently, in [26], the authors considered the following
problem:

{{

{{

{

(−Δ)
𝛼/2
𝑢 = 𝜑 (⋅, 𝑢) in𝐷(in the sense of distributions),

𝑢 > 0 in 𝐷,
lim
𝑥→𝑧∈𝜕𝐷

(𝛿 (𝑥))
1−(𝛼/2)

𝑢 (𝑥) = 0,

(3)

where 0 < 𝛼 < 2 and 𝜑 is a positive measurable function in
𝐷 × (0,∞) satisfying the following:
(A

1
) themap 𝑡 → 𝜑(𝑥, 𝑡) is continuous and nonincreasing
in (0,∞), for 𝑥 ∈ 𝐷;

(A
2
) for each 𝑐 > 0, the function 𝑥 →

(𝛿(𝑥))
1−(𝛼/2)

𝜑(𝑥, 𝑐(𝛿(𝑥))
(𝛼/2)−1

) is in 𝐾
𝛼
(𝐷) (see

Definition 1 below).
They have proved that problem (3) has a positive contin-

uous solution 𝑢 in𝐷 satisfying, for each 𝑥 ∈ 𝐷,

𝑢 (𝑥) = ∫
𝐷

𝐺
𝛼

𝐷
(𝑥, 𝑦) 𝜑 (𝑦, 𝑢 (𝑦)) 𝑑𝑦, (4)

where 𝐺𝛼

𝐷
(𝑥, 𝑦) denotes the Green function of the fractional

Laplacian (−Δ)𝛼/2 in 𝐷. However they have not investigated
the asymptotic behavior of such solution.

As a typical example of function 𝜑 satisfying (A
1
) and

(A
2
), we quote 𝜑(𝑥, 𝑢) = 𝑎(𝑥)𝑢𝜎, where 𝜎 ≤ 0 and 𝑎 is a

positive measurable function in𝐷 such that the function

𝑥 → (𝛿 (𝑥))
((𝛼/2)−1)(𝜎−1)

𝑎 (𝑥) (5)

belongs to the Kato class 𝐾𝛼
(𝐷) defined as follows.

Definition 1 (see [26]). A Borel measurable function 𝑞 in 𝐷
belongs to the Kato class 𝐾𝛼

(𝐷) if

lim
𝑟→0

(sup
𝑥∈𝐷

∫
(|𝑥−𝑦|≤𝑟)∩𝐷

(
𝛿 (𝑦)

𝛿 (𝑥)
)

𝛼/2

𝐺
𝛼

𝐷
(𝑥, 𝑦)

𝑞 (𝑦)
 𝑑𝑦) = 0.

(6)

It has been proved in [26] that the function

𝑥 → (𝛿 (𝑥))
−𝜆 belongs to 𝐾𝛼

(𝐷) iff 𝜆 < 𝛼. (7)

For more examples of functions belonging to𝐾𝛼
(𝐷), we refer

to [26]. Note that for the classical case (i.e., 𝛼 = 2) the class
𝐾

2
(𝐷) was introduced and studied in [27].
On the other hand, Chemmam et al. considered in [28]

the following semilinear fractional Dirichlet problem:

{{

{{

{

(−Δ)
𝛼/2
𝑢 = 𝑎 (𝑥) 𝑢

𝜎 in𝐷(in the sense of distributions),
𝑢 > 0 in 𝐷,
lim
𝑥→𝑧∈𝜕𝐷

(𝛿 (𝑥))
1−(𝛼/2)

𝑢 (𝑥) = 0,

(8)

where 0 < 𝛼 < 2, 𝜎 < 1, and 𝑎 satisfies the following
hypothesis:
(H

0
) 𝑎 ∈ 𝐶

𝛾

loc(𝐷), 0 < 𝛾 < 1, satisfying𝐷,

𝑎 (𝑥) ≈ (𝛿 (𝑥))
−𝜆
𝐿 (𝛿 (𝑥)) , (9)

where 𝜆 < (𝛼/2)(1+𝜎)+1−𝜎 and 𝐿 belongs to the Karamata
classK defined as follows.

Definition 2. The class K is the set of all the Karamata
functions 𝐿 defined on (0, 𝜂] by

𝐿 (𝑡) := 𝑐 exp(∫
𝜂

𝑡

𝑧 (𝑠)

𝑠
𝑑𝑠) , (10)

where 𝜂 > diam(𝐷), 𝑐 > 0, and 𝑧 ∈ 𝐶([0, 𝜂]) such that 𝑧(0) =
0.

As a typical example of a function belonging to the class
K(see [29–31]), we quote

𝐿 (𝑡) =

𝑚

∏

𝑘=1

(log
𝑘
(
𝜔

𝑡
))

−𝜉𝑘

, (11)

where 𝜉
𝑘
are real numbers, log

𝑘
𝑥 = log ∘ log ∘ ⋅ ⋅ ⋅ log𝑥

(𝑘 times), and 𝜔 is a sufficiently large positive real number
such that 𝐿 is defined and positive on (0, 𝜂].

Using a fixed-point argument, the authors have proved in
[28] the existence and uniqueness of a positive continuous
solution 𝑢 for (8) satisfying, for 𝑥 ∈ 𝐷,

𝑢 (𝑥) ≈ (𝛿 (𝑥))
min(𝛼/2,(𝛼−𝜆)/(1−𝜎))

Ψ
𝐿,𝜆,𝜎

(𝛿 (𝑥)) , (12)

where the function Ψ
𝐿,𝜆,𝜎

is defined on (0, 𝜂) by

Ψ
𝐿,𝜆,𝜎

(𝑡) :=

{{{{{{{{{{{{{{

{{{{{{{{{{{{{{

{

(𝐿 (𝑡))
1/(1−𝜎)

,

𝛼

2
(1 + 𝜎) < 𝜆

<
𝛼

2
(1 + 𝜎) + 1 − 𝜎,

(∫

𝜂

𝑡

𝐿 (𝑠)

𝑠
𝑑𝑠)

1/(1−𝜎)

,

if 𝜆 = 𝛼
2
(1 + 𝜎) ,

1, if 𝜆 < 𝛼
2
(1 + 𝜎) .

(13)

In particular, they have extended the results of [32, 33].
In the present paper, we aim at studying the follow-

ing fractional nonlinear problem involving both singular
and sublinear nonlinearities with the reformulated Dirichlet
boundary condition:

{{{{{{{{

{{{{{{{{

{

(−Δ)
𝛼/2
𝑢 = 𝑎

1
(𝑥) 𝑢

𝜎1 + 𝑎
2
(𝑥) 𝑢

𝜎2

in 𝐷(in the sense of
distributions),

𝑢 > 0
in 𝐷,

lim
𝑥→𝑧∈𝜕𝐷

(𝛿 (𝑥))
1−(𝛼/2)

𝑢 (𝑥) = 0,

(14)

where 0 < 𝛼 < 2 and 𝜎
1
, 𝜎

2
∈ (−1, 1). We will address the

question of existence, uniqueness, and global behavior of a
positive continuous solution to problem (14).
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In the elliptic case (i.e., 𝛼 = 2), problems related to (14)
have been studied by several authors (see, e.g., [34–39] and
references therein). Using the subsupersolution method, the
authors in [36] have established the existence and uniqueness
of a positive continuous solution to (14) for 𝛼 = 2, 𝜎

1
, 𝜎

2
<

1, where the functions 𝑎
1
, 𝑎

2
are required to satisfy some

adequate assumptions related to the Karamata classK.
Here, our goal is to study problem (14) for 0 < 𝛼 < 2. To

this end, we assume that the potential functions 𝑎
1
, 𝑎

2
satisfy

the following hypothesis.
(H) for 𝑖 ∈ {1, 2}, 𝑎

𝑖
∈ 𝐶

𝛾

loc(𝐷), 0 < 𝛾 < 1, and satisfies,
for 𝑥 ∈ 𝐷,

𝑎
𝑖
(𝑥) ≈ (𝛿 (𝑥))

−𝜆𝑖𝐿
𝑖
(𝛿 (𝑥)) , (15)

where 𝜆
𝑖
< (𝛼/2)(1+𝜎

𝑖
)+1−𝜎

𝑖
and 𝐿

𝑖
∈K defined on (0, 𝜂]

with 𝜂 > diam(𝐷).
As it turns out, estimates (12) depend closely on

min(𝛼/2, (𝛼−𝜆)/(1−𝜎)). Also, as it will be seen, the numbers

𝛽
1
:= min(𝛼

2
,
𝛼 − 𝜆

1

1 − 𝜎
1

) , 𝛽
2
:= min(𝛼

2
,
𝛼 − 𝜆

2

1 − 𝜎
2

) (16)

play an important role in the combined effect of singular and
superlinear nonlinearities in (14) and lead to a competition.
It is not obvious which wins, essentially in the estimates of
solution. From here on and without loss of generality, wemay
assume that (𝛼 − 𝜆

1
)/(1 − 𝜎

1
) ≤ (𝛼 − 𝜆

2
)/(1 − 𝜎

2
) and we

introduce the function 𝜃 defined on (0, 𝜂) by

𝜃 (𝑡) = {

𝑡
𝛽1Ψ

𝐿1,𝜆1 ,𝜎1
(𝑡) if 𝛽

1
< 𝛽

2
,

𝑡
𝛽1 (Ψ

𝐿1,𝜆1,𝜎1
(𝑡) + Ψ𝐿2,𝜆2 ,𝜎2

(𝑡)) if 𝛽
1
= 𝛽

2
.

(17)

For an explicit form of the function 𝜃, see (36).
Throughout this paper, we define the potential kernel 𝐺𝛼

𝐷

by

𝐺
𝛼

𝐷
𝑓 (𝑥) := ∫

𝐷

𝐺
𝛼

𝐷
(𝑥, 𝑦) 𝑓 (𝑦) 𝑑𝑦, for 𝑥 ∈ 𝐷, 𝑓 ∈ 𝐵+ (𝐷) ,

(18)

where 𝐵+(𝐷) denotes the set of the nonnegative Borel meas-
urable functions in𝐷.

Our main results are the following.

Theorem 3. Let 𝜎
1
, 𝜎

2
∈ (−1, 1) and assume (𝐻). Then one

has, for 𝑥 ∈ 𝐷,

𝐺
𝛼

𝐷
[𝑎

1
𝜃
𝜎1
(𝛿 (⋅)) + 𝑎

2
𝜃
𝜎2
(𝛿 (⋅))] (𝑥) ≈ 𝜃 (𝛿 (𝑥)) . (19)

UsingTheorem 3 and the Schauder fixed-point theorem,wewill
prove the following.

Theorem 4. Let 𝜎
1
, 𝜎

2
∈ (−1, 1) and assume (𝐻). Then

problem (14) has a unique positive continuous solution 𝑢 in 𝐷
satisfying, for 𝑥 ∈ 𝐷,

𝑢 (𝑥) ≈ 𝜃 (𝛿 (𝑥)) . (20)

In particular, we generalize the result obtained in [36] to the
fractional setting and we recover the result obtained in [28].

The content of this paper is organized as follows. In
Section 2, we collect some properties of functions belonging
to the Karamata classK and the Kato class𝐾𝛼

(𝐷), which are
useful to establish our results. In Section 3, we prove ourmain
results.

As usual, we denote by 𝐶
0
(𝐷) the set of continuous

functions in 𝐷 vanishing continuously on 𝜕𝐷. Note that
𝐶
0
(𝐷) is a Banach space with respect to the uniform norm

‖𝑢‖
∞
= sup

𝑥∈𝐷
|𝑢(𝑥)|. As in the elliptic case, if 𝑓 ∈ 𝐵+(𝐷)

satisfies ∫
𝐷
(𝛿(𝑦))

𝛼/2
𝑓(𝑦)𝑑𝑦 < ∞, then the functions 𝑓 and

𝐺
𝛼

𝐷
𝑓 are in 𝐿1loc(𝐷) and we have in the distributional sense

(−Δ)
𝛼/2
𝐺
𝛼

𝐷
𝑓 = 𝑓, in 𝐷. (21)

2. The Karamata Class K and the
Kato Class 𝐾𝛼

(𝐷)

We collect in this paragraph some properties of the Karamata
classK and the Kato class𝐾𝛼

(𝐷). We recall that a function 𝐿
defined on (0, 𝜂] belongs to the classK if

𝐿 (𝑡) := 𝑐 exp(∫
𝜂

𝑡

𝑧 (𝑠)

𝑠
𝑑𝑠) , (22)

where 𝜂 > diam(𝐷), 𝑐 > 0, and 𝑧 ∈ 𝐶([0, 𝜂]) such that 𝑧(0) =
0.

Proposition 5 (see [30, 31]). (i) A function 𝐿 is in K if and
only if 𝐿 is a positive function in 𝐶1

((0, 𝜂]) such that

lim
𝑡→0
+

𝑡𝐿

(𝑡)

𝐿 (𝑡)
= 0. (23)

(ii) Let 𝐿
1
, 𝐿

2
∈K, 𝑝 ∈ R. Then one has

𝐿
1
+ 𝐿

2
∈K, 𝐿

1
𝐿
2
∈K, 𝐿

𝑝

1
∈K. (24)

(iii) Let 𝐿 ∈K and 𝜀 > 0. Then one has

lim
𝑡→0
+

𝑡
𝜀
𝐿 (𝑡) = 0. (25)

ApplyingKaramata’s theorem (see [30, 31]), we get the fol-
lowing.

Lemma 6. Let 𝜇 ∈ R and let 𝐿 be a function in K. One has
the following:

(i) if 𝜇 < −1, then ∫𝜂
0
𝑠
𝜇
𝐿(𝑠)𝑑𝑠 diverges and ∫𝜂

𝑡
𝑠
𝜇
𝐿(𝑠)

𝑑𝑠 ∼
𝑡→0
+(−𝑡

1+𝜇
𝐿(𝑡))/(𝜇 + 1);
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(ii) if 𝜇 > −1, then ∫𝜂
0
𝑠
𝜇
𝐿(𝑠)𝑑𝑠 converges and ∫𝑡

0
𝑠
𝜇
𝐿(𝑠)

𝑑𝑠 ∼
𝑡→0
+(𝑡

1+𝜇
𝐿(𝑡))/(𝜇 + 1).

Lemma 7 (see [36]). Let 𝐿 be a function inK. Then one has

lim
𝑡→0
+

𝐿 (𝑡)

∫
𝜂

𝑡
(𝐿 (𝑠) /𝑠) 𝑑𝑠

= 0. (26)

In particular

𝑡 → ∫

𝜂

𝑡

𝐿 (𝑠)

𝑠
𝑑𝑠 ∈K. (27)

Proposition 8 (see [40, 41]). For (𝑥, 𝑦) ∈ 𝐷 × 𝐷, one has

𝐺
𝛼

𝐷
(𝑥, 𝑦) ≈

𝑥 − 𝑦


𝛼−𝑛 min(1,
(𝛿(𝑥)𝛿(𝑦))

𝛼/2

𝑥 − 𝑦


𝛼
) . (28)

Proposition 9 (see [26, Corollary 6]). Let 𝑞 be a nonnegative
function in 𝐾𝛼

(𝐷); then the family of functions

Λ
𝑞
={𝑥 →∫

𝐷

(
𝛿 (𝑦)

𝛿 (𝑥)
)

(𝛼/2)−1

𝐺
𝛼

𝐷
(𝑥, 𝑦) 𝑓 (𝑦) 𝑑𝑦,

𝑓
 ≤ 𝑞}

(29)

is uniformly bounded and equicontinuous in 𝐷. Consequently
Λ

𝑞
is relatively compact in 𝐶

0
(𝐷).

3. Proofs of the Main Results

In this section we aim at proving Theorems 3 and 4. To this
end, we need the following lemmas.

3.1. Technical Lemmas

Lemma 10. For 𝑟, 𝑠 > 0, one has

2
−max(1−𝜎1 ,1−𝜎2)

(𝑟 + 𝑠)

≤ 𝑟
1−𝜎1
(𝑟 + 𝑠)

𝜎1 + 𝑠
1−𝜎2
(𝑟 + 𝑠)

𝜎2 ≤ 2 (𝑟 + 𝑠) .

(30)

Proof. Let 𝑟, 𝑠 > 0 and put 𝑡 = 𝑟/(𝑟 + 𝑠). Since 0 ≤ 𝑡 ≤ 1, then
we get obviously

2
−max(1−𝜎1 ,1−𝜎2) ≤ 𝑡1−𝜎1 + (1 − 𝑡)

1−𝜎2 ≤ 2. (31)

Lemma 11 provides sharp estimates on some Riesz potential
functions.

Lemma 11 (see [28, Proposition 3.1]). Let 𝜇 ≤ (𝛼/2) + 1 and
let 𝐿 be a function inK such that ∫𝜂

0
𝑡
(𝛼/2)−𝜇

𝐿(𝑡)𝑑𝑡 < ∞. Let 𝑞
be a positive measurable function in𝐷 such that, for 𝑥 ∈ 𝐷,

𝑞 (𝑥) ≈ (𝛿 (𝑥))
−𝜇
𝐿 (𝛿 (𝑥)) . (32)

Then, for 𝑥 ∈ 𝐷, one has

𝐺
𝛼

𝐷
𝑞 (𝑥) ≈ 𝜓 (𝛿 (𝑥)) , (33)

where 𝜓 is the function defined on (0, 𝜂) by

𝜓 (𝑡) :=

{{{{{{{{{{

{{{{{{{{{{

{

𝑡
(𝛼/2)−1

∫

𝑡

0

𝐿 (𝑠)

𝑠
𝑑𝑠, if 𝜇 = 𝛼

2
+ 1,

𝑡
𝛼−𝜇
𝐿 (𝑡) , if 𝛼

2
< 𝜇 <

𝛼

2
+ 1,

𝑡
𝛼/2
∫

𝜂

𝑡

𝐿 (𝑠)

𝑠
𝑑𝑠, if 𝜇 = 𝛼

2
,

𝑡
𝛼/2
, if 𝜇 < 𝛼

2
.

(34)

Lemma 12. Assume (𝐻). Let 𝑢 be a continuous function in 𝐷
such that, for 𝑥 ∈ 𝐷, 𝑢(𝑥) ≈ 𝜃(𝛿(𝑥)). Then 𝑢 is a solution of
problem (14) if and only if

𝑢 (𝑥) = ∫
𝐷

𝐺
𝛼

𝐷
(𝑥, 𝑦) [𝑎

1
(𝑦) 𝑢

𝜎1 (𝑦) + 𝑎
2
(𝑦) 𝑢

𝜎2 (𝑦)] 𝑑𝑦,

𝑥 ∈ 𝐷.

(35)

Proof. Assume (H). First we will give an explicit form of the
function 𝜃. We recall that, for 𝑖 ∈ {1, 2}, 𝜆

𝑖
< (𝛼/2)(1 + 𝜎

𝑖
) +

1 − 𝜎
𝑖
and 𝛽

𝑖
:= min(𝛼/2, (𝛼 − 𝜆

𝑖
)/(1 − 𝜎

𝑖
)). Since 𝛽

1
< 𝛽

2

is equivalent to (𝛼 − 𝜆
1
)/(1 − 𝜎

1
) < (𝛼 − 𝜆

2
)/(1 − 𝜎

2
) and

(𝛼/2)(1 + 𝜎
1
) < 𝜆

1
, we deduce that, for 𝑡 ∈ (0, 𝜂), we have

𝜃 (𝑡) =

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{

𝑡
(𝛼−𝜆1)/(1−𝜎1)(𝐿

1 (𝑡))
1/(1−𝜎1)

,

if 𝛼 − 𝜆1
1 − 𝜎

1

<
𝛼 − 𝜆

2

1 − 𝜎
2

,

𝛼

2
(1 + 𝜎

1
) < 𝜆

1
,

𝑡
(𝛼−𝜆1)/(1−𝜎1)𝐿 (𝑡) ,

if 𝛼 − 𝜆1
1 − 𝜎

1

=
𝛼 − 𝜆

2

1 − 𝜎
2

,

𝛼

2
(1 + 𝜎

1
) < 𝜆

1
,

𝑡
𝛼/2
𝑀(𝑡) ,

if 𝜆
1
=
𝛼

2
(1 + 𝜎

1
) ,

𝜆
2
=
𝛼

2
(1 + 𝜎

2
) ,

𝑡
𝛼/2
(∫

𝜂

𝑡

𝐿
1
(𝑠)

𝑠
𝑑𝑠)

1/(1−𝜎1)

,

if 𝜆
1
=
𝛼

2
(1 + 𝜎

1
) ,

𝜆
2
<
𝛼

2
(1 + 𝜎

2
) ,

𝑡
𝛼/2 if 𝜆

1
<
𝛼

2
(1 + 𝜎

1
) ,

(36)

where

𝐿 (𝑡) := (𝐿1 (𝑡))
1/(1−𝜎1)

+ (𝐿
2 (𝑡))

1/(1−𝜎2)
,

𝑀 (𝑡) := (∫

𝜂

𝑡

𝐿
1
(𝑠)

𝑠
𝑑𝑠)

1/(1−𝜎1)

+ (∫

𝜂

𝑡

𝐿
2
(𝑠)

𝑠
𝑑𝑠)

1/(1−𝜎2)

.

(37)

Now using the fact that 𝑢(𝑥) ≈ 𝜃(𝛿(𝑥)), we deduce by simple
computation from hypothesis (H), (36), and Proposition 5
that

𝑎
1
(𝑥) 𝑢

𝜎1
(𝑥) + 𝑎

2
(𝑥) 𝑢

𝜎2
(𝑥) ≈ (𝛿 (𝑥))

(𝛼/2)−1
ℎ (𝛿 (𝑥)) , (38)

where ℎ is defined in (0, 𝜂) by
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ℎ (𝑡) :=

{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{

{

𝑡
1−(𝛼/2)−((𝜆1−𝛼𝜎1)/(1−𝜎1))(𝐿

1 (𝑡))
1/(1−𝜎1)

, if 𝛼 − 𝜆1
1 − 𝜎

1

<
𝛼 − 𝜆

2

1 − 𝜎
2

,
𝛼

2
(1 + 𝜎

1
) < 𝜆

1
,

𝑡
1−(𝛼/2)−((𝜆1−𝛼𝜎1)/(1−𝜎1)) (𝐿

1
𝐿
𝜎1 + 𝐿

2
𝐿
𝜎2) (𝑡) , if 𝛼 − 𝜆1

1 − 𝜎
1

=
𝛼 − 𝜆

2

1 − 𝜎
2

,
𝛼

2
(1 + 𝜎

1
) < 𝜆

1
,

𝑡
1−𝛼
(𝐿

1
𝑀

𝜎1 + 𝐿
2
𝑀

𝜎2) (𝑡) , if 𝜆
1
=
𝛼

2
(1 + 𝜎

1
) , 𝜆

2
=
𝛼

2
(1 + 𝜎

2
) ,

𝑡
1−𝛼
𝐿
1
(𝑡) (∫

𝜂

𝑡

𝐿
1
(𝑠)

𝑠
𝑑𝑠)

𝜎1/(1−𝜎1)

, if 𝜆
1
=
𝛼

2
(1 + 𝜎

1
) , 𝜆

2
<
𝛼

2
(1 + 𝜎

2
) ,

𝑡
1+(𝛼/2)(𝜎1−1)−𝜆1𝐿

1
(𝑡) + 𝑡

1+(𝛼/2)(𝜎2−1)−𝜆2𝐿
2
(𝑡) , if 𝜆

1
<
𝛼

2
(1 + 𝜎

1
) .

(39)

We point out that for each case, the function ℎ(𝑡) can be
written as a sum of terms of the form 𝑡−𝜇�̃�(𝑡), where 𝜇 < 𝛼.
By Proposition 5 and Lemma 7, we have �̃� ∈ K. On
the other hand, since by Proposition 5, the function 𝑥 →

(𝛿(𝑥))
(𝛼−𝜇)/2

�̃�(𝛿(𝑥)) is positive and belongs to 𝐶
0
(𝐷), then

there exists 𝑐 > 0 such that for each 𝑥 ∈ 𝐷

0 < (𝛿 (𝑥))
−𝜇
�̃� (𝛿 (𝑥)) ≤ 𝑐(𝛿 (𝑥))

−(𝛼+𝜇)/2
. (40)

Hence we deduce from (7) that the function 𝑥 → ℎ(𝛿(𝑥)) is
in𝐾𝛼

(𝐷).
Now using Proposition 9, we obtain that 𝑥 →

(𝛿(𝑥))
1−(𝛼/2)

𝐺
𝛼

𝐷
[𝑎

1
𝑢
𝜎1 + 𝑎

2
𝑢
𝜎2](𝑥) is in 𝐶

0
(𝐷). In particular,

we have

lim
𝑥→𝑧∈𝜕𝐷

(𝛿 (𝑥))
1−(𝛼/2)

𝐺
𝛼

𝐷
(𝑎

1
𝑢
𝜎1 + 𝑎

2
𝑢
𝜎2) (𝑥) = 0,

(−Δ)
𝛼/2
𝐺
𝛼

𝐷
(𝑎

1
𝑢
𝜎1 + 𝑎

2
𝑢
𝜎2) = 𝑎

1
(𝑥) 𝑢

𝜎1 + 𝑎
2
(𝑥) 𝑢

𝜎2

in 𝐷 (in the sense of distributions) .

(41)

Consequently, it follows by (41) that 𝑢 is a weak continuous
solution of problem (14) if and only if 𝑢 satisfies

{

(−Δ)
𝛼/2
(𝑢 − 𝐺

𝛼

𝐷
(𝑎

1
𝑢
𝜎1 + 𝑎

2
𝑢
𝜎2)) = 0 in 𝐷

lim
𝑥→𝑧∈𝜕𝐷

(𝛿 (𝑥))
1−(𝛼/2)

(𝑢 − 𝐺
𝛼

𝐷
(𝑎

1
𝑢
𝜎1 + 𝑎

2
𝑢
𝜎2)) = 0.

(42)

We deduce by [26,Theorem 6] that 𝑢−𝐺𝛼

𝐷
(𝑎

1
𝑢
𝜎1 +𝑎

2
𝑢
𝜎2) = 0

in𝐷. The proof is complete.

Lemma 13. For 𝑖 ∈ {1, 2}, let 𝐿
𝑖
∈ K defined on (0, 𝜂] with

𝜂 > diam(𝐷) and let 𝑀 be the function given by (37). Then
one has, for 𝑡 ∈ (0, 𝜂),

∫

𝜂

𝑡

(𝐿
1
𝑀

𝜎1 + 𝐿
2
𝑀

𝜎2) (𝑠)

𝑠
𝑑𝑠 ≈ 𝑀 (𝑡) . (43)

Proof. The proof can be found in [36].

Now we are ready to prove our main results.

3.2. Proof of Theorem 3. Assume (H). For 𝑖 ∈ {1, 2}, let
𝐿
𝑖
∈ K defined on (0, 𝜂] with 𝜂 > diam(𝐷) and define the

nonnegative functions 𝑏
𝑖
in (0, 𝜂) by

𝑏
𝑖
(𝑡) = (∫

𝜂

𝑡

𝐿
𝑖
(𝑠)

𝑠
𝑑𝑠)

1/(1−𝜎𝑖)

. (44)

Let 𝜃 be the function given by (36). To prove Theorem 3, we
distinguish the following cases.

Case 1. (𝛼−𝜆
1
)/(1−𝜎

1
) < (𝛼−𝜆

2
)/(1−𝜎

2
) and (𝛼/2)(1+𝜎

1
) <

𝜆
1
< (𝛼/2)(1 + 𝜎

1
) + 1 − 𝜎

1
.

Since 𝜃(𝑡) = 𝑡(𝛼−𝜆1)/(1−𝜎1)(𝐿
1
(𝑡))

1/(1−𝜎1), then we have

𝑎
1
(𝑥) 𝜃

𝜎1
(𝛿 (𝑥)) ≈ (𝛿 (𝑥))

(𝛼𝜎1−𝜆1)/(1−𝜎1)(𝐿
1
(𝛿 (𝑥)))

1/(1−𝜎1)
,

𝑎
2
(𝑥) 𝜃

𝜎2
(𝛿 (𝑥))

≈ (𝛿 (𝑥))
((𝛼−𝜆1)/(1−𝜎1))𝜎2−𝜆2 (𝐿

2
𝐿
𝜎2/(1−𝜎1)

1
) (𝛿 (𝑥)) .

(45)

Using the fact that (𝛼𝜎
1
−𝜆

1
)/(1−𝜎

1
) < ((𝛼−𝜆

1
)/(1−𝜎

1
))𝜎

2
−

𝜆
2
, we deduce by Proposition 5 that

𝑎
1 (𝑥) 𝜃

𝜎1
(𝛿 (𝑥)) + 𝑎2 (𝑥) 𝜃

𝜎2
(𝛿 (𝑥))

≈ (𝛿 (𝑥))
(𝛼𝜎1−𝜆1)/(1−𝜎1)(𝐿

1 (𝛿 (𝑥)))
1/(1−𝜎1)

.

(46)

Since, for 𝜇 = (𝜆
1
− 𝛼𝜎

1
)/(1 − 𝜎

1
) ∈ (𝛼/2, (𝛼/2) + 1), we have

∫
𝜂

0
𝑡
(𝛼/2)−𝜇

(𝐿
1
(𝑡))

1/(1−𝜎1)𝑑𝑡 < ∞, then applying Lemma 11, we
deduce that

𝐺
𝛼

𝐷
[𝑎

1
𝜃
𝜎1
(𝛿 (⋅)) + 𝑎

2
𝜃
𝜎2
(𝛿 (⋅))] (𝑥)

≈ 𝐺
𝛼

𝐷
[(𝛿 (⋅))

(𝛼𝜎1−𝜆1)/(1−𝜎1)(𝐿
1
(𝛿 (⋅)))

1/(1−𝜎1)
] (𝑥)

≈ (𝛿 (𝑥))
(𝛼−𝜆1)/(1−𝜎1)(𝐿

1
(𝛿 (𝑥)))

1/(1−𝜎1)
= 𝜃 (𝛿 (𝑥)) .

(47)

Case 2. (𝛼−𝜆
1
)/(1−𝜎

1
) = (𝛼−𝜆

2
)/(1−𝜎

2
) and (𝛼/2)(1+𝜎

1
) <

𝜆
1
< (𝛼/2)(1 + 𝜎

1
) + 1 − 𝜎

1
.

In this case 𝜃(𝑡) = 𝑡(𝛼−𝜆1)/(1−𝜎1)𝐿(𝑡). Therefore

𝑎
1
(𝑥) 𝜃

𝜎1
(𝛿 (𝑥)) ≈ (𝛿 (𝑥))

(𝛼𝜎1−𝜆1)/(1−𝜎1) (𝐿
1
𝐿
𝜎1) (𝛿 (𝑥)) .

(48)
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So we obtain by Proposition 5 and Lemma 11 with 𝜇 = (𝜆
1
−

𝛼𝜎
1
)/(1 − 𝜎

1
) ∈ (𝛼/2, (𝛼/2) + 1),

𝐺
𝛼

𝐷
[𝑎

1
𝜃
𝜎1
(𝛿 (⋅))] (𝑥) ≈ (𝛿 (𝑥))

(𝛼−𝜆1)/(1−𝜎1) (𝐿
1
𝐿
𝜎1) (𝛿 (𝑥)) .

(49)

Similarly, since (𝛼/2)(1 + 𝜎
2
) < 𝜆

2
< (𝛼/2)(1 + 𝜎

2
) + 1 − 𝜎

2
,

we obtain

𝐺
𝛼

𝐷
[𝑎

2
𝜃
𝜎2
(𝛿 (⋅))] (𝑥)

≈ (𝛿 (𝑥))
(𝛼−𝜆2)/(1−𝜎2) (𝐿

2
𝐿
𝜎2) (𝛿 (𝑥))

≈ (𝛿 (𝑥))
(𝛼−𝜆1)/(1−𝜎1) (𝐿

2
𝐿
𝜎2) (𝛿 (𝑥)) .

(50)

Hence by using (30), we deduce that

𝐺
𝛼

𝐷
[𝑎

1
𝜃
𝜎1
(𝛿 (⋅)) + 𝑎

2
𝜃
𝜎2
(𝛿 (⋅))] (𝑥)

≈ (𝛿 (𝑥))
(𝛼−𝜆1)/(1−𝜎1) (𝐿

1
𝐿
𝜎1 + 𝐿

2
𝐿
𝜎2) (𝛿 (𝑥))

≈ (𝛿 (𝑥))
(𝛼−𝜆1)/(1−𝜎1)𝐿 (𝛿 (𝑥)) = 𝜃 (𝛿 (𝑥)) .

(51)

Case 3. If 𝜆
1
= (𝛼/2)(1+𝜎

1
) and 𝜆

2
= (𝛼/2)(1+𝜎

2
) and since

𝜃(𝑡) = 𝑡
𝛼/2
𝑀(𝑡), then we have

𝑎
1
(𝑥) 𝜃

𝜎1
(𝛿 (𝑥)) + 𝑎

2
(𝑥) 𝜃

𝜎2
(𝛿 (𝑥))

≈ (𝛿 (𝑥))
−𝛼/2

(𝐿
1
𝑀

𝜎1 + 𝐿
2
𝑀

𝜎2) (𝛿 (𝑥)) .

(52)

So by Proposition 5, Lemma 11 with 𝜇 = 𝛼/2, and Lemma 13,
we deduce that

𝐺
𝛼

𝐷
[𝑎

1
𝜃
𝜎1
(𝛿 (⋅)) + 𝑎

2
𝜃
𝜎2
(𝛿 (⋅))] (𝑥)

≈ (𝛿 (𝑥))
𝛼/2
∫

𝜂

𝛿(𝑥)

(𝐿
1
𝑀

𝜎1 + 𝐿
2
𝑀

𝜎2) (𝑠)

𝑠
𝑑𝑠

≈ (𝛿 (𝑥))
𝛼/2
𝑀(𝛿 (𝑥)) = 𝜃 (𝛿 (𝑥)) .

(53)

Case 4. 𝜆
1
= (𝛼/2)(1 + 𝜎

1
) and 𝜆

2
< (𝛼/2)(1 + 𝜎

2
).

In this case 𝜃(𝑡) = 𝑡𝛼/2𝑏
1
(𝑡). Since 𝜆

2
− (𝛼𝜎

2
/2) < (𝛼/2),

we deduce by Proposition 5 that

𝑎
1 (𝑥) 𝜃

𝜎1
(𝛿 (𝑥)) + 𝑎2 (𝑥) 𝜃

𝜎2
(𝛿 (𝑥))

≈ (𝛿 (𝑥))
−𝛼/2

(𝐿
1
𝑏
𝜎1

1
) (𝛿 (𝑥))

+ (𝛿 (𝑥))
(𝛼𝜎2/2)−𝜆2 (𝐿

2
𝑏
𝜎2

1
) (𝛿 (𝑥))

≈ (𝛿 (𝑥))
−𝛼/2

(𝐿
1
𝑏
𝜎1

1
) (𝛿 (𝑥)) .

(54)

Hence applying Lemma 11 with 𝜇 = 𝛼/2, we obtain

𝐺
𝛼

𝐷
[𝑎

1
𝜃
𝜎1
(𝛿 (⋅)) + 𝑎2𝜃

𝜎2
(𝛿 (⋅))] (𝑥)

≈ 𝐺
𝛼

𝐷
[(𝛿 (⋅))

−𝛼/2
(𝐿

1
𝑏
𝜎1

1
) (𝛿 (⋅))] (𝑥)

≈ (𝛿 (𝑥))
𝛼/2
∫

𝜂

𝛿(𝑥)

(𝐿
1
𝑏
𝜎1

1
) (𝑠)

𝑠
𝑑𝑠

≈ (𝛿 (𝑥))
𝛼/2
𝑏
1 (𝛿 (𝑥)) = 𝜃 (𝛿 (𝑥)) .

(55)

Case 5. 𝜆
1
< (𝛼/2)(1 + 𝜎

1
).

We have 𝜃(𝑡) = 𝑡𝛼/2. So

𝑎
1
(𝑥) 𝜃

𝜎1
(𝛿 (𝑥)) ≈ (𝛿 (𝑥))

−(𝜆1−(𝛼𝜎1/2))𝐿
1
(𝛿 (𝑥)) . (56)

Applying again Lemma 11 with 𝜇 = 𝜆
1
− (𝛼𝜎

1
/2) < (𝛼/2), we

obtain

𝐺
𝛼

𝐷
[𝑎

1
𝜃
𝜎1
(𝛿 (⋅))] (𝑥) ≈ (𝛿 (𝑥))

𝛼/2
. (57)

On the other hand, since (𝛼/2) < (𝛼 − 𝜆
1
)/(1 − 𝜎

1
) ≤ (𝛼 −

𝜆
2
)/(1 − 𝜎

2
), then 𝜆

1
< (𝛼/2)(1 + 𝜎

1
) and therefore

𝐺
𝛼

𝐷
[𝑎

2
𝜃
𝜎2
(𝛿 (⋅))] (𝑥) ≈ (𝛿 (𝑥))

𝛼/2
. (58)

Hence

𝐺
𝛼

𝐷
[𝑎

1
𝜃
𝜎1
(𝛿 (⋅)) + 𝑎

2
𝜃
𝜎2
(𝛿 (⋅))] (𝑥) ≈ (𝛿 (𝑥))

𝛼/2
= 𝜃 (𝛿 (𝑥)) .

(59)

The proof is complete.

3.3. Proof ofTheorem 4. Let 𝜎
1
, 𝜎

2
∈ (−1, 1), assume (H), and

consider V := 𝐺𝐷

𝛼
[𝑎

1
𝜃
𝜎1(𝛿(⋅))+𝑎

2
𝜃
𝜎2(𝛿(⋅))]. UsingTheorem 3,

there exists𝑚 > 1 such that
1

𝑚
V (𝑥) ≤ 𝜃 (𝛿 (𝑥)) ≤ 𝑚V (𝑥) . (60)

Put 𝜎 := max(|𝜎
1
|, |𝜎

2
|), 𝑐 := 𝑚𝜎/(1−𝜎) and consider the set

Γ := {𝜔 ∈ 𝐶
0
(𝐷) :

1

𝑐
(𝛿 (𝑥))

1−(𝛼/2)V (𝑥) ≤ 𝜔 (𝑥)

≤ 𝑐(𝛿 (𝑥))
1−(𝛼/2)V (𝑥) , 𝑥 ∈ 𝐷} .

(61)

Let ℎ be the function given by (39). Since 𝑎
1
(𝑥)𝜃

𝜎1(𝛿(𝑥)) +

𝑎
2
(𝑥)𝜃

𝜎2(𝛿(𝑥)) ≈ (𝛿(𝑥))
(𝛼/2)−1

ℎ(𝛿(𝑥)) and the function 𝑥 →
ℎ(𝛿(𝑥)) is in 𝐾

𝛼
(𝐷), it follows by Proposition 9 that 𝑥 →

(𝛿(𝑥))
1−(𝛼/2)V(𝑥) is in 𝐶

0
(𝐷). So Γ is a nonempty, closed,

bounded, and convex set in 𝐶
0
(𝐷). Define the operator 𝑇 on

Γ by

𝑇𝜔 (𝑥) := (𝛿 (𝑥))
1−(𝛼/2)

𝐺
𝐷

𝛼
(((𝛿 (⋅))

(𝛼/2)−1
𝜔)

𝜎1

𝑎
1

+((𝛿 (⋅))
(𝛼/2)−1

𝜔)
𝜎2

𝑎
2
) (𝑥) .

(62)

We will prove that 𝑇 has a fixed point. Since there exists a
constant 𝑐 > 0 such that for all 𝜔 ∈ Γ we have

𝑎
1
(𝑥) ((𝛿 (𝑥))

(𝛼/2)−1
𝜔 (𝑥))

𝜎1

+𝑎
2
(𝑥) ((𝛿 (𝑥))

(𝛼/2)−1
𝜔 (𝑥))

𝜎2 
≤ 𝑐(𝛿 (𝑥))

(𝛼/2)−1
ℎ (𝛿 (𝑥)) ,

(63)

where the function 𝑥 → ℎ(𝛿(𝑥)) is in 𝐾
𝛼
(𝐷), it follows that

𝑇(Γ) ⊂ Λ
ℎ(𝛿(⋅))

, where Λ
ℎ(𝛿(⋅))

is given by (29). Therefore by
Proposition 9, the family of functions {𝑥 → 𝑇𝜔(𝑥), 𝜔 ∈ Γ} is
relatively compact in 𝐶

0
(𝐷).

Next, we will prove that 𝑇maps Γ into itself.
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Indeed, by using (60) we have for all 𝜔 ∈ Γ

𝐺
𝐷

𝛼
(𝑎

1
((𝛿 (⋅))

(𝛼/2)−1
𝜔)

𝜎1

+ 𝑎
2
((𝛿 (⋅))

(𝛼/2)−1
𝜔)

𝜎2

)

≤ 𝐺
𝐷

𝛼
(𝑎

1
𝑐
𝜎
𝑚

𝜎
𝜃
𝜎1
(𝛿 (⋅)) + 𝑎

2
𝑐
𝜎
𝑚

𝜎
𝜃
𝜎2
(𝛿 (⋅)))

= 𝑐V.

(64)

On the other hand, we have

𝐺
𝐷

𝛼
(𝑎

1
((𝛿 (⋅))

(𝛼/2)−1
𝜔)

𝜎1

+ 𝑎
2
((𝛿 (⋅))

(𝛼/2)−1
𝜔)

𝜎2

)

≥ 𝐺
𝐷

𝛼
(𝑎

1
𝑐
−𝜎
𝑚

−𝜎
𝜃
𝜎1
(𝛿 (⋅)) + 𝑎2𝑐

−𝜎
𝑚

−𝜎
𝜃
𝜎2
(𝛿 (⋅)))

=
1

𝑐
V.

(65)

This implies that 𝑇(Γ) ⊂ Γ.
Now, we will prove the continuity of the operator 𝑇 in Γ

in the supremum norm. Let (𝜔
𝑘
)
𝑘∈N be a sequence in Γwhich

converges uniformly to a function 𝜔 in Γ. Then, for each 𝑥 ∈
𝐷, we have
𝑇𝜔𝑘 (𝑥) − 𝑇𝜔 (𝑥)



≤ (𝛿 (𝑥))
1−(𝛼/2)

𝐺
𝐷

𝛼
(𝑎

1
(𝛿 (.))

((𝛼/2)−1)𝜎1 𝜔
𝜎1

𝑘
− 𝜔

𝜎1 

+𝑎
2
(𝛿 (⋅))

((𝛼/2)−1)𝜎2 𝜔
𝜎2

𝑘
− 𝜔

𝜎2 ) (𝑥) .

(66)

On the other hand, by similar arguments to the previous ones,
we have

𝑎
1
(𝑥) (𝛿 (𝑥))

((𝛼/2)−1)𝜎1 𝜔
𝜎1

𝑘
− 𝜔

𝜎1  (𝑥)

+ 𝑎
2 (𝑥) (𝛿 (𝑥))

((𝛼/2)−1)𝜎2 𝜔
𝜎2

𝑘
− 𝜔

𝜎2  (𝑥)

≤ 𝑐(𝛿 (𝑥))
(𝛼/2)−1

ℎ (𝛿 (𝑥)) .

(67)

We conclude by Proposition 9 and the dominated conver-
gence theorem that, for all 𝑥 ∈ 𝐷,

𝑇𝜔
𝑘
(𝑥) → 𝑇𝜔 (𝑥) as 𝑘 → +∞. (68)

Consequently, as 𝑇(Γ) is relatively compact in 𝐶
0
(𝐷), we

deduce that the pointwise convergence implies the uniform
convergence; namely,

𝑇𝜔𝑘 − 𝑇𝜔
∞
→ 0 as 𝑘 → +∞. (69)

Therefore, 𝑇 is a compact operator from Γ into itself. So the
Schauder fixed-point theorem implies the existence of 𝜔 ∈ Γ
such that

𝜔 (𝑥) = (𝛿 (𝑥))
1−(𝛼/2)

𝐺
𝐷

𝛼
(𝑎

1
((𝛿 (⋅))

(𝛼/2)−1
𝜔)

𝜎1

+𝑎
2
((𝛿 (⋅))

(𝛼/2)−1
𝜔)

𝜎2

) (𝑥) .

(70)

Put 𝑢(𝑥) = (𝛿(𝑥))
(𝛼/2)−1

𝜔(𝑥). Then 𝑢 is continuous and
satisfies

𝑢 (𝑥) = 𝐺
𝐷

𝛼
(𝑎

1
𝑢
𝜎1 + 𝑎

2
𝑢
𝜎2) (𝑥) . (71)

Hence by Lemma 12 andTheorem 3, 𝑢 is a required solution.

Next, we aim at proving the uniqueness in the cone

𝑆 := {𝑢 ∈ 𝐶 (𝐷) : 𝑢 (𝑥) ≈ 𝜃 (𝛿 (𝑥))} . (72)

Let 𝑢 and V be two solutions of (14) in 𝑆. Then there exists a
constant𝑚 > 1 such that

1

𝑚
≤
𝑢

V
≤ 𝑚. (73)

This implies that the set

𝐽 = {𝑡 ∈ (1,∞) ,
1

𝑡
V ≤ 𝑢 ≤ 𝑡V} (74)

is not empty. Let 𝑐
0
:= inf 𝐽 and put 𝑤 = V − 𝑐−𝜎

0
𝑢 with 𝜎 =

max(|𝜎
1
|, |𝜎

2
|).

We claim that 𝑐
0
= 1. Indeed, assume that 𝑐

0
> 1; then by

using Lemma 12, we deduce that

𝑤 = 𝐺
𝐷

𝛼
(𝑎

1
(V𝜎1 − 𝑐−𝜎

0
𝑢
𝜎1) + 𝑎

2
(V𝜎2 − 𝑐−𝜎

0
𝑢
𝜎2))

≥ 0 in 𝐷,
(75)

which implies that

V ≥ 𝑐−𝜎
0
𝑢. (76)

By symmetry, we deduce that

V ≤ 𝑐𝜎
0
𝑢. (77)

So 𝑐𝜎
0
∈ 𝐽. Since 𝜎 < 1, then we have 𝑐𝜎

0
< 𝑐

0
. This is a

contradiction to the fact that 𝑐
0
:= inf 𝐽. Hence 𝑐

0
= 1 and

so 𝑢 = V. This completes the proof.

Example 14. Let 𝜎
1
∈ (−1, 0), let 𝜎

2
∈ (0, 1), and put 𝑑 =

diam(𝐷). For 𝑖 ∈ {1, 2}, let 𝑎
𝑖
∈ 𝐶

𝛾

loc(𝐷), 0 < 𝛾 < 1, satisfying

𝑎
1
(𝑥) ≈ (𝛿 (𝑥))

−𝜆1(log( 3𝑑
𝛿 (𝑥)

))

−1

,

𝑎
2 (𝑥) ≈ (𝛿(𝑥))

−𝜆2 ,

(78)

where 𝜆
𝑖
< (𝛼/2)(1+𝜎

𝑖
) + 1−𝜎

𝑖
, such that (𝛼−𝜆

1
)/(1−𝜎

1
) ≤

(𝛼 − 𝜆
2
)/(1 − 𝜎

2
). Then using Theorem 4, problem (14) has

a unique positive continuous solution 𝑢 in 𝐷 satisfying the
following estimates:

(i) if (𝛼 − 𝜆
1
)/(1 − 𝜎

1
) < (𝛼 − 𝜆

2
)/(1 − 𝜎

2
) and (𝛼/2)(1 +

𝜎
1
) < 𝜆

1
, then, for 𝑥 ∈ 𝐷,

𝑢 (𝑥) ≈ (𝛿 (𝑥))
(𝛼−𝜆1)/(1−𝜎1)(log( 3𝑑

𝛿 (𝑥)
))

−1/(1−𝜎1)

; (79)

(ii) if (𝛼 − 𝜆
1
)/(1 − 𝜎

1
) = (𝛼 − 𝜆

2
)/(1 − 𝜎

2
) and (𝛼/2)(1 +

𝜎
1
) < 𝜆

1
, then, for 𝑥 ∈ 𝐷,

𝑢 (𝑥) ≈ (𝛿 (𝑥))
(𝛼−𝜆1)/(1−𝜎1); (80)

(iii) if 𝜆
1
= (𝛼/2)(1 + 𝜎

1
) and 𝜆

2
= (𝛼/2)(1 + 𝜎

2
), then, for

𝑥 ∈ 𝐷,

𝑢 (𝑥) ≈ (𝛿 (𝑥))
𝛼/2
(log( 3𝑑

𝛿 (𝑥)
))

1/(1−𝜎2)

; (81)
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(iv) if 𝜆
1
= (𝛼/2)(1 + 𝜎

1
) and 𝜆

2
< (𝛼/2)(1 + 𝜎

2
), then, for

𝑥 ∈ 𝐷,

𝑢 (𝑥) ≈ (𝛿 (𝑥))
𝛼/2
(log ∘ log( 3𝑑

𝛿 (𝑥)
))

1/(1−𝜎1)

; (82)

(v) if 𝜆
1
< (𝛼/2)(1 + 𝜎

1
), then, for 𝑥 ∈ 𝐷,

𝑢 (𝑥) ≈ (𝛿 (𝑥))
(𝛼/2)
. (83)
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Neutral differential equations have been used to describe the systems that not only depend on the present and past states but
also involve derivatives with delays. This paper considers hybrid nonlinear neutral stochastic functional differential equations
(HNSFDEs)without the linear growth condition and examines the boundedness and exponential stability. Two illustrative examples
are given to show the effectiveness of our theoretical results.

1. Introduction

Many dynamic systems not only depend on the present and
past states but also involve derivatives with delays. Neutral
differential equations have been used to model such systems.
Deterministic neutral differential equations were introduced
by Hale and Meyer [1] and discussed in Hale and Lunel
(see [2]) and Kolmanovskii et al. (for details see also [3, 4]),
among others. Such equations were used to study two or
more simple oscillatory systems with some interconnections
between them, such as Brayton [5], Rubanik [6], and Driver
[7].

Generally speaking, many practical systems commonly
encounter stochastic perturbations and may experience
abrupt changes in their structure and parameters caused
by phenomena such as component failures or repairs and
abrupt environmental disturbances. Of course, there is no
exception to neutral systems, mentioned previous. Tak-
ing these stochastic factors into account, Mao and Yuan
developed hybrid systems driven by Brownian motion and
continuous-time Markovian chain to cope with such a sit-
uation (see [8]). Hu et al. [9] investigated the stability and
boundedness of stochastic differential delay equations with
Markovian switching. Kolmanovskii et al. [10] discussed the

neutral stochastic delay differential equations with Marko-
vian switching, also known as hybrid neutral stochastic delay
differential equations (HNSDDEs).

The boundedness and stability analysis of the neutral
stochastic systems without switching has attracted much
attention; see [11–18] to mention a few. For hybrid neutral
systems, studying boundedness and stability of the solutions
is also a challenging and interesting work. Kolmanovskii et
al. [10] established a fundamental theorem of HNSDDEs and
discussed the boundedness and exponential stability of the
solutions.They also gave an example to show that Markovian
can average the subsystems; that is, when some subsystems
are stable and others are not stable, the overall system formed
by the Markovian switching may be stable. Bao et al. [19]
discussed stability in distribution of the HNSDDEs. Hu
and Wang [20] studied the stability in distribution for the
general HNSFDEs. The stability of HNSDDEs with interval
uncertainty was investigated in [21]. Mao et al. [22] gave
a criterion related to almost surely asymptotic stability of
HNSDDEs. These results are undoubtedly remarkable.

However, there are few publications on the boundedness
and exponential stability of the generalHNSFDEswith highly
nonlinear terms. To fill in this gap, this work gives the
boundedness and exponential stability criterions for such
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HNSFDEs. Moreover, when this HNSFDE degenerates to the
HNSDDE, our stability criterions improve the related results
in [10]. Further, these stability criterions can also be used to
investigate the exponential stability of NSFDEs or NSDDEs
with more accurate Lyapunov exponent bound than that
obtained in [23, 24].

The rest of the paper is arranged as follows. The next
section provides necessary notations and definitions for
the use of this paper. Section 3 establishes the bounded-
ness and exponential stability criterions of the solutions to
HNSFDEs. Section 4 further gives the generalized results
for the HNSDDEs with variable time delay. Finally, two
illustrative examples are provided to show the effectiveness
of our theoretical results.

2. Notations and Definitions

Throughout this paper, unless otherwise specified, we use
the following notations. | ⋅ | denotes both the Euclidean
vector norm in R𝑛 and Frobenius matrix norm in R𝑛×𝑑.
If 𝐴 is a vector or matrix, its transpose is denoted by
𝐴
𝑇. If 𝐴 is a matrix, its trace norm is denoted by |𝐴| =

√trace(𝐴𝑇𝐴). Let (Ω,F, 𝑃) be a complete probability space
with a filtration {Ft}𝑡≥0 satisfying the usual conditions; that
is, it is right continuous and increasing while F

0
contains all

𝑃-null sets. Let 𝑤(𝑡) = (𝑤
1
(𝑡), . . . , 𝑤

𝑑
(𝑡)) be a 𝑑-dimensional

Brownian motion defined on this probability space. LetR
+
=

[0,∞) and 𝜏 > 0. Denote by 𝐶([−𝜏, 0],R𝑛
) the family of

continuous functions from [−𝜏, 0] toR𝑛 with the norm ‖𝜑‖ =

sup
−𝜏≤𝜃≤0

|𝜑(𝜃)|. Let 𝐶𝑏

F0
([−𝜏, 0],R𝑛

) be the family of all F
0
-

measurable bounded 𝐶([−𝜏, 0],R𝑛
) valued random variables

𝜉 = {𝜉(𝜃) : −𝜏 ≤ 𝜃 ≤ 0}. 𝑎 ∨ 𝑏 represents max{𝑎, 𝑏}, and 𝑎 ∧ 𝑏

denotes min{𝑎, 𝑏}.
Let 𝑟(𝑡) be a Markov chain (independent of 𝑤(𝑡)) taking

values in a finite state space S = {1, 2, . . . , 𝑚}. Assume the
generator of 𝑟(𝑡) is denoted by Γ = (𝛾

𝑖𝑗
)
𝑚×𝑚

, so that

P {𝑟 (𝑡 + 𝛿) = 𝑗 | 𝑟 (𝑡) = 𝑖} = {
𝛾
𝑖𝑗
𝛿 + 𝑜 (𝛿) , if 𝑖 ̸= 𝑗,

1 + 𝛾
𝑖𝑗
𝛿 + 𝑜 (𝛿) , if 𝑖 = 𝑗,

(1)

where 𝛿 > 0. Here 𝛾
𝑖𝑗
is the transition rate from 𝑖 to 𝑗 and 𝛾

𝑖𝑗
>

0 if 𝑖 ̸= 𝑗 while 𝛾
𝑖𝑖
= −∑

𝑗 ̸= 𝑖
𝛾
𝑖𝑗
. Let us consider the following

𝑛-dimensional nonlinear HNSFDE:

𝑑 [𝑥 (𝑡) − 𝑢 (𝑥
𝑡
, 𝑟 (𝑡))]

= 𝑓 (𝑥
𝑡
, 𝑟 (𝑡)) 𝑑𝑡 + 𝑔 (𝑥

𝑡
, 𝑟 (𝑡)) 𝑑𝑤 (𝑡) , 𝑡 ≥ 0,

(2)

with initial data 𝑥
0
= 𝜉 ∈ 𝐶

𝑏

F0
([−𝜏, 0];R𝑛

) and 𝑟(0) = 𝑟
0
∈ S,

where

𝑥
𝑡
= {𝑥 (𝑡 + 𝜃) ; −𝜏 ≤ 𝜃 ≤ 0} ∈ 𝐶 ([−𝜏, 0] ;R

𝑛
) , (3)

𝑢 : 𝐶([−𝜏, 0],R𝑛
) × S → R𝑛, 𝑓 : 𝐶([−𝜏, 0],R𝑛

) × S → R𝑛,
and 𝑔 : 𝐶([−𝜏, 0],R𝑛

)×S → R𝑛×𝑑. In order to guarantee the
existence and uniqueness of the solution to (2), we give the
following assumptions for the functionals 𝑢, 𝑓, and 𝑔.

Assumption 1 (local Lipschitz condition). 𝑓 and 𝑔 satisfy
the local Lipschitz condition; that is, for each 𝑗 > 0 there
exists a positive constant 𝐶

𝑗
such that for any maps 𝜙, 𝜑 ∈

𝐶([−𝜏, 0];R𝑛
) with ‖𝜙‖ ∨ ‖𝜑‖ ≤ 𝑗

𝑓 (𝜙, 𝑖) − 𝑓 (𝜑, 𝑖)
 ∨

𝑔 (𝜙, 𝑖) − 𝑔 (𝜑, 𝑖)


≤ 𝐶
𝑗

𝜙 − 𝜑
 , ∀𝑖 ∈ S,

(4)

where ‖𝜙 − 𝜑‖ ≤ sup
−𝜏≤𝜃≤0

|𝜙(𝜃) − 𝜑(𝜃)|.

Assumption 2 (contractive mapping). There exists a positive
constant 𝜅 ∈ (0, 1) such that for all 𝜙, 𝜑 ∈ 𝐶([−𝜏, 0];R𝑛

) and
𝑖 ∈ S

𝑢 (𝜙, 𝑖) − 𝑢 (𝜑, 𝑖)
 ≤ 𝜅

𝜙 − 𝜑
 (5)

and 𝑢(0, 𝑖) = 0.

Note that the previous assumptions are standard for
the existence and uniqueness of the local solutions (see
[19, 22]). Additional conditions should be imposed for the
local solution to be global. In view of this, we need a
few more notations. Let 𝐶2

(R𝑛
× S;R

+
) denote the family

of all nonnegative functions 𝑉(𝑥, 𝑖) on R𝑛
× S which are

continuously twice differentiable in 𝑥. For each 𝑉(𝑥, 𝑖) ∈

𝐶
2
(R𝑛

×S;R
+
), define an operatorL𝑉 from𝐶([−𝜏, 0];R𝑛

)×

S to R:

L𝑉 (𝜑, 𝑖)

= 𝑉
𝑥
(𝜑 (0) − 𝑢 (𝜑, 𝑖) , 𝑖) 𝑓 (𝜑, 𝑖)

+ ∑

𝑗∈S

𝛾
𝑖𝑗
𝑉 (𝜑 (0) − 𝑢 (𝜑, 𝑖) , 𝑗)

+
1

2
trace [𝑔𝑇 (𝜑, 𝑖) 𝑉

𝑥𝑥
(𝜑 (0) − 𝑢 (𝜑, 𝑖) , 𝑖) 𝑔 (𝜑, 𝑖)] ,

(6)

where

𝑉
𝑥
(𝑥, 𝑖) = (

𝜕𝑉 (𝑥, 𝑖)

𝜕𝑥
1

, . . . ,
𝜕𝑉 (𝑥, 𝑖)

𝜕𝑥
𝑛

) ,

𝑉
𝑥𝑥

(𝑥, 𝑖) = (
𝜕
2
𝑉 (𝑥, 𝑖)

𝜕𝑥
𝑗
𝜕𝑥

𝑙

)

𝑛×𝑛

.

(7)

In the following sections, we will impose the some con-
ditions on the diffusion operator L𝑉 for the global solution
and its asymptotic behavior.

3. The Boundedness and Exponential
Stability of HNSFDEs

The following theorem gives the boundedness and exponen-
tial stability criterions of the solution to (2).

Theorem 3. Let Assumptions 1 and 2 hold. Assume that there
are two functions 𝑉 ∈ 𝐶

2
(R𝑛

× S;R
+
), 𝑈 ∈ 𝐶(R𝑛

;R
+
),

three probability measures 𝜂, 𝜇, 𝜇 on [−𝜏, 0], and a number
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of positive constants 𝜅 ∈ (0, 1), 𝑐, 𝑐
1
, 𝑐

2
, 𝑝 ≥ 1, 𝜆

1
, 𝜆

2
, 𝜆

3
, 𝜆

4

such that for any 𝑥 ∈ R𝑛 and (𝜑, 𝑖) ∈ 𝐶([−𝜏, 0],R
+
) × S

𝑢 (𝜑, 𝑖)
 ≤ 𝜅∫

0

−𝜏

𝜑 (𝜃) 𝜂 (𝑑𝜃) , (8)

𝑐
1|𝑥|

𝑝
≤ 𝑉 (𝑥, 𝑖) ≤ 𝑐

2|𝑥|
𝑝
, (9)

L𝑉 (𝜑, 𝑖)

≤ 𝑐 − 𝜆
1

𝜑 (0)


𝑝
+ 𝜆

2
∫

0

−𝜏

𝜑 (𝜃)


𝑝
𝜇 (𝑑𝜃) − 𝜆

3
𝑈(𝜑 (0))

+ 𝜆
4
∫

0

−𝜏

𝑈(𝜑 (𝜃)) 𝜇 (𝑑𝜃) .

(10)

If 𝜆
1
> 𝜆

2
and 𝜆

3
> 𝜆

4
, then we have the following assertions:

(i) for any given initial data 𝜉 ∈ 𝐶
𝑏

F0
([−𝜏, 0],R𝑛

), there
is a unique global solution 𝑥(𝑡) = 𝑥(𝑡; 𝜉) to the hybrid
system (2) on 𝑡 ∈ [−𝜏,∞);

(ii) the solution 𝑥(𝑡) obeys

lim sup
𝑡→∞

E
𝑥 (𝑡) − 𝑢 (𝑥

𝑡
, 𝑟 (𝑡))



𝑝
≤

𝑐

Λ
, (11)

lim sup
𝑡→∞

1

𝑡
∫

𝑡

0

E𝑈 (𝑥 (𝑠)) 𝑑𝑠 ≤
𝑐

𝜆
3
− 𝜆

4

, (12)

whereΛ := 𝛾∧(1/𝜏) log(𝜆
3
/𝜆

4
)∧𝑟with 𝛾 and 𝑟 defined

by

𝛾 = max{𝑞 > 0; 𝑐
2
𝑞(1 + 𝜀

1/(𝑝−1)
)
𝑝−1

− 𝜆
1

+ [𝑐
2
𝑞(1 + 𝜀

1/(𝑝−1)
)
𝑝−1 𝜅

𝑝

𝜀
+ 𝜆

2
] 𝑒

𝑞𝜏
= 0, 𝜀 > 0}

(13)

and 𝑟 := (𝑝/𝜏) log(1/𝜅) − ℓ for sufficiently small ℓ > 0.
(iii) If, in addition, 𝑐 = 0, then the solution of (2) has

properties that

lim sup
𝑡→∞

log (E|𝑥 (𝑡)|
𝑝
)

𝑡
≤ −Λ, (14)

∫

∞

0

E𝑈 (𝑥 (𝑠)) 𝑑𝑠

≤
1

𝜆
3
− 𝜆

4

[E𝑉 (𝑦
0
, 𝑟 (0)) + 𝜆

2
∫

0

−𝜏

E|𝑥 (𝑠)|
𝑝
𝑑𝑠

+ 𝜆
4
E∫

0

−𝜏

𝑈 (𝑥 (𝑠)) 𝑑𝑠] ,

(15)

where 𝑦
0
= 𝑥(0) − 𝑢(𝑥

0
, 𝑟(0)).

Proof. We prove these three assertions, separately. For any
given initial data 𝜉 ∈ 𝐶

𝑏

F0
([−𝜏, 0],R𝑛

), by Assumptions 1 and
2, there exists a unique maximal local strong solution 𝑥(𝑡) to

(2) on 𝑡 ∈ [−𝜏, 𝜌
𝑒
), where 𝜌

𝑒
is the explosion time. To show

that this solution is global, we only need to prove that 𝜌
𝑒
= ∞

a.s. Define 𝑦
𝑡
= 𝑥(𝑡) − 𝑢(𝑥

𝑡
, 𝑟(𝑡)), then by Assumption 2, we

have

𝑦0
 ≤ |𝑥 (0)| +

𝑢 (𝑥
0
, 𝑟 (0))

 ≤ (1 + 𝜅)
𝜉
 . (16)

Let 𝑘
0
be sufficiently lager positive number, such that ‖𝜉‖ <

𝑘
0
. For each 𝑘 > (1 + 𝜅)𝑘

0
, define the stopping time 𝜌

𝑘
=

inf{𝑡 ∈ [0, 𝜌
𝑒
) : |𝑦

𝑡
| ≥ 𝑘}. Clearly, 𝜌

𝑘
is increasing as 𝑘 → ∞

and 𝜌
𝑘

→ 𝜌
∞

≤ 𝜌
𝑒
a.s. If we can show 𝜌

∞
= ∞ a.s., then

𝜌
𝑒
= ∞, which implies that the solution𝑥(𝑡) is actually global.

By the generalized Itô formula (see [20]) and condition (10),
we can obtain that, for any 𝑘 > 𝑘

0
and 𝑡 ≥ 0,

E𝑉(𝑦
(𝑡∧𝜌𝑘)

, 𝑟 (𝑡 ∧ 𝜌
𝑘
))

= E𝑉 (𝑦
0
, 𝑟 (0)) + E∫

𝑡∧𝜌𝑘

0

L𝑉 (𝑥
𝑠
, 𝑟 (𝑠)) 𝑑𝑠

≤ 𝑐𝑡 + E𝑉 (𝑦
0
, 𝑟 (0)) − 𝜆

1
E∫

𝑡∧𝜌𝑘

0

|𝑥 (𝑠)|
𝑝
𝑑𝑠

+ 𝜆
2
E∫

𝑡∧𝜌𝑘

0

∫

0

−𝜏

|𝑥 (𝑠 + 𝜃)|
𝑝
𝜇 (𝑑𝜃) 𝑑𝑠

− 𝜆
3
E∫

𝑡∧𝜌𝑘

0

𝑈 (𝑥 (𝑠)) 𝑑𝑠

+ 𝜆
4
E∫

𝑡∧𝜌𝑘

0

∫

0

−𝜏

𝑈 (𝑥 (𝑠 + 𝜃)) 𝜇 (𝑑𝜃) 𝑑𝑠.

(17)

By the Fubini theorem, we compute

E∫

𝑡∧𝜌𝑘

0

∫

0

−𝜏

|𝑥 (𝑠 + 𝜃)|
𝑝
𝑑𝜇 (𝜃) 𝑑𝑠

= E∫

0

−𝜏

∫

𝑡∧𝜌𝑘

0

|𝑥 (𝑠 + 𝜃)|
𝑝
𝑑𝑠 𝑑𝜇 (𝜃)

≤ ∫

0

−𝜏

E|𝑥 (𝑠) |
𝑝
𝑑𝑠 + E∫

𝑡∧𝜌𝑘

0

|𝑥 (𝑠)|
𝑝
𝑑𝑠.

(18)

Similarly,

E∫

𝑡∧𝜌𝑘

0

∫

0

−𝜏

𝑈 (𝑥 (𝑠 + 𝜃)) 𝜇 (𝑑𝜃) 𝑑𝑠

≤ ∫

0

−𝜏

E𝑈 (𝑥 (𝑠)) 𝑑𝑠 + E∫

𝑡∧𝜌𝑘

0

𝑈 (𝑥 (𝑠)) 𝑑𝑠.

(19)
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Substituting (18) and (19) into (17) yields

E𝑉(𝑦
(𝑡∧𝜌𝑘)

, 𝑟 (𝑡 ∧ 𝜌
𝑘
))

≤ E𝑉 (𝑦
0
, 𝑟 (0))

+ 𝜆
2
∫

0

−𝜏

E|𝑥 (𝑠)|
𝑝
𝑑𝑠 + 𝜆

4
E∫

0

−𝜏

𝑈 (𝑥 (𝑠)) 𝑑𝑠

+ 𝑐𝑡 − (𝜆
1
− 𝜆

2
)E

× ∫

𝑡∧𝜌𝑘

0

|𝑥 (𝑠)|
𝑝
𝑑𝑠 − (𝜆

3
− 𝜆

4
)E∫

𝑡∧𝜌𝑘

0

𝑈 (𝑥 (𝑠)) 𝑑𝑠

≤ 𝐻
0
+ 𝑐𝑡,

(20)

where

𝐻
0
= E𝑉 (𝑦

0
, 𝑟 (0)) + 𝜆

2
∫

0

−𝜏

E|𝑥 (𝑠)|
𝑝
𝑑𝑠

+ 𝜆
4
E∫

0

−𝜏

𝑈 (𝑥 (𝑠)) 𝑑𝑠.

(21)

Note that

E𝑉(𝑦
(𝑡∧𝜌𝑘)

, 𝑟 (𝑡 ∧ 𝜌
𝑘
))

≥ E [𝑉 (𝑦
(𝑡∧𝜌𝑘)

, 𝑟 (𝑡 ∧ 𝜌
𝑘
)) 1

{𝜌𝑘≤𝑡}
] ≥ 𝑐

1
𝑘
𝑝
P {𝜌

𝑘
≤ 𝑡} .

(22)

Hence,

𝑐
1
𝑘
𝑝
P {𝜌

𝑘
≤ 𝑡} ≤ 𝐻

0
+ 𝑐𝑡. (23)

Then, for any 𝑡 > 0,

lim
𝑘→∞

P {𝜌
𝑘
≤ 𝑡} = 0, (24)

which together with the arbitrariness of 𝑡 implies that 𝜌
∞

=

∞ a.s. Therefore, the solution 𝑥(𝑡) is global, and assertion (i)
follows.

Then by Itô’s formula and condition (10), we have, for any
𝛾 > 0,

E𝑒
𝛾(𝑡∧𝜌𝑘)𝑉(𝑦

(𝑡∧𝜌𝑘))
, 𝑟 (𝑡 ∧ 𝜌

𝑘
))

= E𝑉 (𝑦
0
, 𝑟 (0))

+ E∫

𝑡∧𝜌𝑘

0

𝑒
𝛾𝑠
[𝛾𝑉 (𝑦

𝑠
, 𝑟 (𝑠)) +L𝑉 (𝑥

𝑠
, 𝑟 (𝑠))] 𝑑𝑠

≤ E𝑉 (𝑦
0
, 𝑟 (0)) + 𝛾E∫

𝑡∧𝜌𝑘

0

𝑒
𝛾𝑠
𝑉 (𝑦

𝑠
, 𝑟 (𝑠)) 𝑑𝑠

− 𝜆
1
E∫

𝑡∧𝜌𝑘

0

𝑒
𝛾𝑠
|𝑥 (𝑠)|

𝑝
𝑑𝑠

+ 𝜆
2
E∫

𝑡∧𝜌𝑘

0

∫

0

−𝜏

𝑒
𝛾𝑠
|𝑥 (𝑠 + 𝜃)|

𝑝
𝜇 (𝑑𝜃) 𝑑𝑠

+ 𝑐∫

𝑡

0

𝑒
𝛾𝑠
𝑑𝑠

− 𝜆
3
E∫

𝑡∧𝜌𝑘

0

𝑒
𝛾𝑠
𝑈 (𝑥 (𝑠)) 𝑑𝑠

+ 𝜆
4
E∫

𝑡∧𝜌𝑘

0

𝑒
𝛾𝑠
∫

0

−𝜏

𝑈 (𝑥 (𝑠 + 𝜃)) 𝜇 (𝑑𝜃) 𝑑𝑠.

(25)

For 𝑝 ≥ 1 and any 𝜀 > 0, we have

𝑉 (𝑦
𝑠
, 𝑟 (𝑠))

≤ 𝑐
2

𝑥 (𝑠) − 𝑢 (𝑥
𝑠
, 𝑟 (𝑠))



𝑝

≤ 𝑐
2
[1 + 𝜀

1/(𝑝−1)
]
𝑝−1

(|𝑥 (𝑠)|
𝑝
+
1

𝜀

𝑢 (𝑥
𝑠
, 𝑟 (𝑠))



𝑝
)

≤ 𝑐
2
[1 + 𝜀

1/(𝑝−1)
]
𝑝−1

[|𝑥 (𝑠)|
𝑝
+
𝜅
𝑝

𝜀
∫

0

−𝜏

|𝑥 (𝑠 + 𝜃)|
𝑝
𝑑𝜂 (𝜃)] ,

(26)

where we used the Hölder inequality and condition (8).
Substituting (26) into (25), we obtain

𝑒
𝛾(𝑡∧𝜌𝑘)E𝑉(𝑦

(𝑡∧𝜌𝑘)
, 𝑟 (𝑡 ∧ 𝜌

𝑘
))

≤ E𝑉 (𝑦
0
) + [𝑐

2
𝛾(1 + 𝜀

1/(𝑝−1)
)
𝑝−1

− 𝜆
1
]

× E∫

𝑡∧𝜌𝑘

0

𝑒
𝛾𝑠
𝑉 (𝑥 (𝑠)) 𝑑𝑠

+ 𝑐
2
𝛾(1 + 𝜀

1/(𝑝−1)
)
𝑝−1 𝜅

𝑝

𝜀

× E∫

𝑡∧𝜌𝑘

0

∫

0

−𝜏

𝑒
𝛾𝑠
|𝑥 (𝑠 + 𝜃)|

𝑝
𝜂 (𝑑𝜃) 𝑑𝑠

+ 𝜆
2
E∫

𝑡∧𝜌𝑘

0

∫

0

−𝜏

𝑒
𝛾𝑠
|𝑥 (𝑠 + 𝜃)|

𝑝
𝜇 (𝑑𝜃) 𝑑𝑠 + 𝑐∫

𝑡

0

𝑒
𝛾𝑠
𝑑𝑠

− 𝜆
3
E∫

𝑡∧𝜌𝑘

0

𝑒
𝛾𝑠
𝑈 (𝑥 (𝑠)) 𝑑𝑠

+ 𝜆
4
E∫

𝑡∧𝜌𝑘

0

𝑒
𝛾𝑠
∫

0

−𝜏

𝑈 (𝑥 (𝑠 + 𝜃)) 𝜇 (𝑑𝜃) 𝑑𝑠.

(27)

Define a probability measure ] on [−𝜏, 0]

𝑑] (𝜃) =
𝑐
2
𝛾(1 + 𝜀

1/(𝑝−1)
)
𝑝−1

(𝜅
𝑝
/𝜀) 𝜂 (𝜃) + 𝜆

2
𝜇 (𝜃)

𝑐
2
𝛾(1 + 𝜀1/(𝑝−1))

𝑝−1

(𝜅
𝑝/𝜀) + 𝜆

2

; (28)
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then from (27), we have

E𝑒
𝛾(𝑡∧𝜌𝑘)𝑉(𝑦

(𝑡∧𝜌𝑘)
, 𝑟 (𝑡 ∧ 𝜌

𝑘
))

≤ E𝑉 (𝑦
0
) + 𝑐∫

𝑡

0

𝑒
𝛾𝑠
𝑑𝑠

+ [𝑐
2
𝛾(1 + 𝜀

1/(𝑝−1)
)
𝑝−1

− 𝜆
1
]

× E∫

𝑡∧𝜌𝑘

0

𝑒
𝛾𝑠
𝑉 (𝑥 (𝑠)) 𝑑𝑠

+ [𝑐
2
𝛾(1 + 𝜀

1/(𝑝−1)
)
𝑝−1 𝜅

𝑝

𝜀
+ 𝜆

2
]

× E∫

𝑡∧𝜌𝑘

0

𝑒
𝛾𝑠
∫

0

−𝜏

|𝑥 (𝑠 + 𝜃)|
𝑝] (𝑑𝜃) 𝑑𝑠

− 𝜆
3
E∫

𝑡∧𝜌𝑘

0

𝑒
𝛾𝑠
𝑈 (𝑥 (𝑠)) 𝑑𝑠

+ 𝜆
4
E∫

𝑡∧𝜌𝑘

0

𝑒
𝛾𝑠
∫

0

−𝜏

𝑈 (𝑥 (𝑠 + 𝜃)) 𝜇 (𝑑𝜃) 𝑑𝑠.

(29)

By the Fubini theorem

∫

𝑡

0

𝑒
𝛾𝑠
∫

0

−𝜏

|𝑥 (𝑠 + 𝜃)|
𝑝
𝑑] (𝜃) 𝑑𝑠

= ∫

0

−𝜏

∫

𝑡

0

𝑒
𝛾(𝑠+𝜃)

|𝑥 (𝑠 + 𝜃)|
𝑝
𝑑𝑠 𝑑] (𝜃)

≤ 𝑒
𝛾𝜏
∫

0

−𝜏

𝑒
𝛾𝑠
|𝑥 (𝑠)|

𝑝
𝑑𝑠 + 𝑒

𝛾𝜏
∫

𝑡

0

𝑒
𝛾𝑠
|𝑥 (𝑠)|

𝑝
𝑑𝑠,

(30)

we have from (29)

E𝑒
𝛾(𝑡∧𝜌𝑘)𝑉(𝑦

(𝑡∧𝜌𝑘)
, 𝑟 (𝑡 ∧ 𝜌

𝑘
))

≤ E𝑉 (𝑦
0
) + [𝑐

2
𝛾(1 + 𝜀

1/(𝑝−1)
)
𝑝−1 𝜅

𝑝

𝜀
+ 𝜆

2
]

× 𝑒
𝛾𝜏
∫

0

−𝜏

𝑒
𝛾𝑠
E𝑉 (𝑥 (𝑠)) 𝑑𝑠 + 𝑐∫

𝑡

0

𝑒
𝛾𝑠
𝑑𝑠

+ (𝑐
2
𝛾(1 + 𝜀

1/(𝑝−1)
)
𝑝−1

−𝜆
1
+ [𝑐

2
𝛾(1 + 𝜀

1/(𝑝−1)
)
𝑝−1 𝜅

𝑝

𝜀
+ 𝜆

2
] 𝑒

𝛾𝜏
)

× E∫

𝑡∧𝜌𝑘

0

𝑒
𝛾𝑠
𝑉 (𝑥 (𝑠)) 𝑑𝑠

+ 𝜆
4
𝑒
𝛾𝜏
∫

0

−𝜏

𝑒
𝛾𝑠
E𝑈 (𝑥 (𝑠)) 𝑑𝑠 − [𝜆

3
− 𝜆

4
𝑒
𝛾𝜏
]

× E∫

𝑡∧𝜌𝑘

0

𝑒
𝛾𝑠
𝑈 (𝑥 (𝑠)) 𝑑𝑠.

(31)

Denote

𝑙 (𝛾) = 𝜆
3
− 𝜆

4
𝑒
𝛾𝜏
,

ℎ (𝛾, 𝜀) = 𝑐
2
𝛾(1 + 𝜀

1/(𝑝−1)
)
𝑝−1

− 𝜆
1
+ [𝑐

2
𝛾(1 + 𝜀

1/(𝑝−1)
)
𝑝−1 𝜅

𝑝

𝜀
+ 𝜆

2
] 𝑒

𝛾𝜏
.

(32)

Let 𝜀be fixed; then it is easy to obtainℎ
𝛾
(𝛾, 𝜀) > 0 andℎ(0, 𝜀) =

−𝜆
1
+𝜆

2
< 0, which implies that for any fixed 𝜀 > 0, function

ℎ(⋅, 𝜀) has a unique positive root, denoted by 𝑞. Choose a 𝜀 =

𝜀
∗
> 0 such that

𝛾 = sup
𝜀>0,ℎ(𝑞,𝜀)=0

𝑞 = sup
ℎ(𝑞,𝜀
∗
)=0

𝑞. (33)

Noting that for any 𝛾 ∈ (0, Λ], ℎ(𝛾, 𝜀∗) ≤ 0 and 𝑙(𝛾) ≥ 0, we
therefore have

E𝑒
𝛾(𝑡∧𝜌𝑘)𝑉(𝑦

(𝑡∧𝜌𝑘)
, 𝑟 (𝑡 ∧ 𝜌

𝑘
))

≤ E𝑉 (𝑦
0
) + 𝜆

4
𝑒
𝛾𝜏
∫

0

−𝜏

𝑒
𝛾𝑠
E𝑈 (𝑥 (𝑠)) 𝑑𝑠 + 𝑐∫

𝑡

0

𝑒
𝛾𝑠
𝑑𝑠

+ [𝑐
2
𝛾(1 + 𝜀

∗(1/(𝑝−1))
)

𝑝−1 𝜅
𝑝

𝜀∗
+ 𝜆

2
] 𝑒

𝛾𝜏

× ∫

0

−𝜏

𝑒
𝛾𝑠
E𝑉 (𝜉 (𝑠)) 𝑑𝑠

≤ 𝑐
1
𝐶
0
sup

−𝜏≤𝜃≤0

E
𝜉 (𝜃)



𝑝
+ 𝑐

𝑒
𝛾𝑡

𝛾

(34)

for some positive constant 𝐶
0
> 1. Letting 𝑘 → ∞, we have

𝑒
𝛾𝑡
E𝑉 (𝑦

𝑡
, 𝑟 (𝑡)) ≤ 𝑐

1
𝐶
0
sup

−𝜏≤𝜃≤0

E
𝜉 (𝜃)



𝑝
+ 𝑐

𝑒
𝛾𝑡

𝛾
, (35)

which implies the desired assertion (11). Assertion (12) can be
obtained from (20) by letting 𝑘 → ∞. Hence assertion (ii)
follows.

Let 𝑐 = 0. For any 𝜖 > 0, we have that

|𝑥 (𝑠)|
𝑝
≤ [1 + 𝜖

1/(𝑝−1)
]
𝑝−1

× [
𝑦𝑠



𝑝
+

𝑢 (𝑥
𝑠
, 𝑟 (𝑠))



𝑝

𝜖
]

≤ [1 + 𝜖
1/(𝑝−1)

]
𝑝−1

× [
𝑦𝑠



𝑝
+
𝜅
𝑝

𝜖
∫

0

−𝜏

|𝑥 (𝑠 + 𝜃)|
𝑝
𝑑𝜂 (𝜃)] .

(36)
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By (34) and (36), we have for 𝑡 > 𝑠 > 0

𝑒
𝛾𝑠
E|𝑥 (𝑠)|

𝑝

≤ [1 + 𝜖
1/(𝑝−1)

]
𝑝−1

× [𝑒
𝛾𝑠
E
𝑦𝑠



𝑝
+
𝜅
𝑝

𝜖
𝑒
𝛾𝑠
∫

0

−𝜏

E|𝑥 (𝑠 + 𝜃)|
𝑝
𝑑𝜂 (𝜃)]

≤ [1 + 𝜖
1/(𝑝−1)

]
𝑝−1

× [𝑒
𝛾𝑠
E
𝑦𝑠



𝑝
+
𝜅
𝑝

𝜖
𝑒
𝛾𝜏 sup
𝑠−𝜏≤𝜃≤𝑠

[𝑒
𝛾𝜃
E|𝑥 (𝜃)|

𝑝
]]

≤ [1 + 𝜖
1/(𝑝−1)

]
𝑝−1

× [𝐶
0
sup

−𝜏≤𝜃≤0

E
𝜉 (𝜃)



𝑝
+
𝜅
𝑝

𝜖
𝑒
𝛾𝜏 sup
−𝜏≤𝜃≤𝑡

[e𝛾𝜃E|𝑥 (𝜃)|
𝑝
] .

(37)

This inequality also holds for all −𝜏 ≤ 𝑠 ≤ 0. In view of 𝛾 ≤

𝑟 < (𝑝/𝜏) log(1/𝜅), there exists a positive number 𝜖
0
> 0 such

that

𝑎 (𝜖
0
) :=[1 + 𝜖

1/(𝑝−1)

0
]
𝑝−1𝜅

𝑝

𝜖
0

𝑒
𝛾𝜏
=[1 +

1

𝜖
1/(𝑝−1)

0

]

𝑝−1

𝜅
𝑝
𝑒
𝛾𝜏

< 1.

(38)

Therefore,

sup
−𝜏≤𝑠≤𝑡

𝑒
𝛾𝑠
E|𝑥 (𝑠)|

𝑝

≤ [1 + 𝜖
1/(𝑝−1)

0
]
𝑝−1

𝐶
0
sup

−𝜏≤𝜃≤0

E
𝜉 (𝜃)



𝑝

+ 𝑎 (𝜖
0
) sup
−𝜏≤𝑠≤𝑡

𝑒
𝛾𝑠
E|𝑥 (𝑠)|

𝑝
,

(39)

which implies

𝑒
𝛾𝑡
E|𝑥 (𝑡)|

𝑝
≤

[1 + 𝜖
1/(𝑝−1)

0
]
𝑝−1

𝐶
0

1 − 𝑎 (𝜖
0
)

sup
−𝜏≤𝑡≤0

E
𝜉 (𝑡)



𝑝
. (40)

Finally, the required inequality (14) follows by taking log-
arithm and limitation. Inequality (15) can be also obtained
from (20) by letting 𝑘 → ∞. Hence assertion (iii)
follows.

Remark 4. If theMarkovian switching vanishes,Theorem 3 is
also true and gives the 𝑝thmoment exponential stability with
the decay rate bigger than that in [24, Theorem 2]. Since the
decay rate in [24] is the special case of Theorem 3 with 𝜀 = 1

in (13).

If 𝜆
3

= 𝜆
4

= 0, then we directly obtain the following
corollary.

Corollary 5. Let Assumptions 1 and 2 hold. Assume that there
exist a function 𝑉 ∈ 𝐶

2
(R𝑛

× S;R
+
) × S, two probability

measures 𝜂, 𝜇 on [−𝜏, 0], and a number of positive constants
𝜅 ∈ (0, 1), 𝑐

1
, 𝑐

2
, 𝑝 ≥ 1, 𝜆

1
, 𝜆

2
such that for any 𝑥 ∈ R𝑛 and

(𝜑, 𝑖) ∈ 𝐶([−𝜏, 0],R
+
) × S

𝑢 (𝜑, 𝑖)
 ≤ 𝜅∫

0

−𝜏

𝜑 (𝜃) 𝜂 (𝑑𝜃) ,

𝑐
1|𝑥|

𝑝
≤ 𝑉 (𝑥, 𝑖) ≤ 𝑐

2|𝑥|
𝑝
,

L𝑉 (𝜑, 𝑖) ≤ −𝜆
1

𝜑 (0)


𝑝
+ 𝜆

2
∫

0

−𝜏

𝜑 (𝜃)


𝑝
𝜇 (𝑑𝜃) .

(41)

If 𝜆
1
> 𝜆

2
, then for any given initial data 𝜉 ∈ 𝐶

𝑏

F0
([−𝜏, 0],R𝑛

),
the solution of (2), denoted by 𝑥(𝑡) = 𝑥(𝑡; 𝜉), has property that

lim sup
𝑡→∞

log (E|𝑥 (𝑡)|
𝑝
)

𝑡
≤ − (𝛾 ∧ 𝑟) , (42)

where 𝛾 and 𝑟 satisfy

𝛾 = max{𝑞 > 0; 𝑐
2
𝑞(1 + 𝜀

1/(𝑝−1)
)
𝑝−1

− 𝜆
1

+[𝑐
2
𝑞(1 + 𝜀

1/(𝑝−1)
)
𝑝−1 𝜅

𝑝

𝜀
+ 𝜆

2
] 𝑒

𝑞𝜏
= 0, 𝜀 > 0}

(43)

and 𝑟 := (𝑝/𝜏) log(1/𝜅) − ℓ for sufficiently small ℓ > 0.

Although the 𝑝th moment exponential stability and
almost sure exponential stability of the exact solution do not
imply each other in general, under a restrictive condition
the 𝑝th moment exponential stability implies almost sure
exponential stability (cf. [11]). Here, we give the following
theorem about the almost sure exponential stability of the
exact solution to (2).

Theorem 6. Let 𝑝 ≥ 1. Assume that there exists a constant
𝐾 > 0 such that

𝑓 (𝜑, 𝑖)
+

𝑔 (𝜑, 𝑖)
 ≤ 𝐾

𝜑
 , ∀ (𝜑, 𝑖)∈𝐶 ([−𝜏, 0] ,R+

) × S.

(44)

Then (42) implies

lim sup
𝑡→∞

1

𝑡
log |𝑥 (𝑡)| ≤ −

𝛾 ∧ 𝑟

𝑝
𝑎.𝑠. (45)

In other words, the pth moment exponential stability implies
almost sure exponential stability.

Remark 7. One may question that whether the semimartin-
gale technique can be used to obtain the almost sure expo-
nential stability directly. In fact, semimartingale technique
may fail, since it may not be true to transfer the almost sure
exponential stability from 𝑥(𝑡) − 𝑢(𝑥

𝑡
, 𝑟(𝑡)) to 𝑥(𝑡).
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4. The Boundedness and Exponential
Stability of HNSDDEs

In this section, we investigate the exponential stability of the
hybrid NSDDE with varying delay

𝑑 [𝑥 (𝑡) − 𝑁 (𝑥 (𝑡 − 𝜏 (𝑡)) , 𝑟 (𝑡))]

= 𝐹 (𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏 (𝑡)) , 𝑟 (𝑡)) 𝑑𝑡

+ 𝐺 (𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏 (𝑡)) , 𝑟 (𝑡)) 𝑑𝑤 (𝑡) ,

(46)

where 𝜏(𝑡) : R+
→ [0, 𝜏] is a continuously differentiable

function such that
𝑑𝜏 (𝑡)

𝑑𝑡
≤ 𝜏 (47)

for some constant 𝜏 < 1, while
𝑁 : R

𝑛
× S → R

𝑛
,

𝐹 : R
𝑛
×R

𝑛
× S → R

𝑛
, 𝐺 : R

𝑛
×R

𝑛
× S → R

𝑛×𝑑
.

(48)

For (46), we impose the following assumptions.

Assumption 8 (local Lipschitz condition). 𝐹 and 𝐺 satisfy the
local Lipschitz condition; that is, for each 𝑗 > 0 there exists a
positive constant 𝐶

𝑗
such that

𝐹 (𝑥, 𝑦, 𝑖) − 𝐹 (𝑥, 𝑦, 𝑖)
 ∨

𝐺 (𝑥, 𝑦, 𝑖) − 𝐺 (𝑥, 𝑦, 𝑖)


≤ 𝐶
𝑗
(|𝑥 − 𝑥| +

𝑦 − 𝑦
)

(49)

for all 𝑖 ∈ S and 𝑥, 𝑦, 𝑥, 𝑦 ∈ R𝑛 with |𝑥| ∨ |𝑦| ∨ |𝑥| ∨ |𝑦| ≤ 𝑗.

Assumption 9 (contractivemapping). 𝑁 is a contractivemap-
ping; that is, there exists a positive constant 𝜅 ∈ (0, 1) such
that for all 𝑥, 𝑦 ∈ R𝑛 and 𝑖 ∈ S

𝑁 (𝑥, 𝑖) − 𝑁 (𝑦, 𝑖)
 ≤ 𝜅

𝑥 − 𝑦
 . (50)

Under the previous two assumptions, HNSDDE (46)
admits a unique local solution.We also needmore conditions
to guarantee that the local solution is actually global. So we
introduce an operator 𝐿𝑉 from R𝑛

×R𝑛
× S to R by

𝐿𝑉 (𝑥, 𝑦, 𝑖)

= 𝑉
𝑥
(𝑥 − 𝑁 (𝑦, 𝑖) , 𝑖) 𝐹 (𝑥, 𝑦, 𝑖)

+ ∑

𝑗∈S

𝛾
𝑖𝑗
𝑉 (𝑥 − 𝑁 (𝑦, 𝑖) , 𝑗)

+
1

2
trace [𝐺𝑇

(𝑥, 𝑦, 𝑖) 𝑉
𝑥𝑥

(𝑥 − 𝑁 (𝑦, 𝑖) , 𝑖) 𝐺 (𝑥, 𝑦, 𝑖)]

(51)

for each 𝑉(𝑥, 𝑖) ∈ 𝐶
2
(R𝑛

× S;R
+
), and we will impose the

same conditions on the diffusion operator 𝐿𝑉 for the global
solution and its asymptotic behavior.

AlthoughHNSDDE can be regarded as the special case of
HNSFDEs, we still establish the boundedness and exponen-
tial stability criterions of the solution for (46) so as to obtain
more accurate results.

Theorem 10. Let Assumptions 8 and 9 hold. Assume that there
are functions𝑉 ∈ 𝐶

2
(R𝑛

×S;R
+
),𝑈 ∈ 𝐶(R𝑛

;R
+
) as well as a

number of positive constants 𝑐, 𝑐
1
, 𝑐
2
, 𝑝 ≥ 1, 𝜆

1
, 𝜆

2
, 𝜆

3
, 𝜆

4
such

that for any 𝑥, 𝑦 ∈ R𝑛 and 𝑖 ∈ S,

𝑐
1|𝑥|

𝑝
≤ 𝑉 (𝑥, 𝑖) ≤ 𝑐

2|𝑥|
𝑝
, (52)

𝐿𝑉 (𝑥, 𝑦, 𝑖)

≤ 𝑐 − 𝜆
1|𝑥|

𝑝
+ 𝜆

2

𝑦


𝑝
− 𝜆

3
𝑈 (𝑥) + 𝜆

4
𝑈 (𝑦) .

(53)

If 𝜆
1
> 𝜆

2
/(1−𝜏) and 𝜆

3
> 𝜆

4
/(1−𝜏), then for any given initial

data 𝜉 ∈ 𝐶
𝑏

F0
([−𝜏, 0],R𝑛

), (46) admits a unique global solution
𝑥(𝑡) = 𝑥(𝑡; 𝜉). Moreover, we have the following assertions:

(i) the solution 𝑥(𝑡) obeys

lim sup
𝑡→∞

E|𝑥 (𝑡) − 𝑁 (𝑥 (𝑡 − 𝜏 (𝑡)) , 𝑟 (𝑡))|
𝑝
≤

𝑐

Λ
, (54)

lim sup
𝑡→∞

1

𝑡
∫

𝑡

0

E𝑈 (𝑥 (𝑠)) 𝑑𝑠 ≤
𝑐

𝜆
3
− 𝜆

4
/ (1 − 𝜏)

, (55)

whereΛ := 𝛾∧(1/𝜏) log(𝜆
3
/𝜆

4
)∧𝑟with 𝛾 and 𝑟 defined

by

𝛾 = max{𝑞 > 0; 𝑐
2
𝑞(1 + 𝜀

1/(𝑝−1)
)
𝑝−1

− 𝜆
1

+[𝑐
2
𝑞(1 + 𝜀

1/(𝑝−1)
)
𝑝−1 𝜅

𝑝

𝜀
+ 𝜆

2
] 𝑒

𝑞𝜏
= 0, 𝜀 > 0}

(56)

and 𝑟 := (𝑝/𝜏) log(1/𝜅) − ℓ for sufficiently small ℓ > 0.

(ii) If, in addition, 𝑐 = 0, then the solution to (46) has
properties that

lim sup
𝑡→∞

log (E|𝑥 (𝑡)|
𝑝
)

𝑡
≤ −Λ, (57)

∫

∞

0

E𝑈 (𝑥 (𝑠)) 𝑑𝑠

≤
1

𝜆
3
− 𝜆

4
/ (1 − 𝜏)

× [E𝑉 (𝑥 (0) − 𝑁 (𝑥 (−𝜏 (0)) , 𝑟 (0)) , 𝑟 (0))

+
𝜆
2

1 − 𝜏
∫

0

−𝜏

E|𝑥 (𝑠)|
𝑝
𝑑𝑠 +

𝜆
4

1 − 𝜏
E∫

0

−𝜏

𝑈 (𝑥 (𝑠)) 𝑑𝑠] .

(58)

Proof. The proof is similar to that of Theorem 3, so we only
give an outlined one. Denote 𝑦

𝑡
= 𝑥(𝑡) − 𝑁(𝑥(𝑡 − 𝜏(𝑡)), 𝑟(𝑡)).

Let 𝜌
𝑘
be the stopping time defined similarly in the proof
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of Theorem 3. By the generalized Itô formula (see [10]) and
condition (53), we can obtain that, for any 𝑘 > 𝑘

0
and 𝑡 ≥ 0,

E𝑉(𝑦
(𝑡∧𝜌𝑘)

, 𝑟 (𝑡 ∧ 𝜌
𝑘
))

≤ 𝑐𝑡 + E𝑉 (𝑦
0
, 𝑟 (0)) − 𝜆

1
E∫

𝑡∧𝜌𝑘

0

|𝑥 (𝑠)|
𝑝
𝑑𝑠

+ 𝜆
2
E∫

𝑡∧𝜌𝑘

0

|𝑥 (𝑠 − 𝜏 (𝑠))|
𝑝
𝑑𝑠

− 𝜆
3
E∫

𝑡∧𝜌𝑘

0

𝑈 (𝑥 (𝑠)) 𝑑𝑠

+ 𝜆
4
E∫

𝑡∧𝜌𝑘

0

𝑈 (𝑥 (𝑠 − 𝜏 (𝑠))) 𝑑𝑠.

(59)

Noting that

∫

𝑡

0

|𝑥 (𝑠 − 𝜏 (𝑠))|
𝑝
𝑑𝑠

≤
1

1 − 𝜏
∫

0

−𝜏

|𝑥 (𝑠)|
𝑝
𝑑𝑠

+
1

1 − 𝜏
∫

𝑡

0

|𝑥 (𝑠)|
𝑝
𝑑𝑠,

(60)

then we have

E𝑉(𝑦
(𝑡∧𝜌𝑘)

, 𝑟 (𝑡 ∧ 𝜌
𝑘
))

≤ 𝑐𝑡 + E𝑉 (𝑦
0
, 𝑟 (0)) +

𝜆
2

1 − 𝜏
E∫

0

−𝜏

|𝑥 (𝑠)|
𝑝
𝑑𝑠

+
𝜆
4

1 − 𝜏
∫

0

−𝜏

E𝑈 (𝑥 (𝑠)) 𝑑𝑠

− (𝜆
1
−

𝜆
2

1 − 𝜏
)E∫

𝑡∧𝜌𝑘

0

|𝑥 (𝑠)|
𝑝
𝑑𝑠

− (𝜆
3
−

𝜆
4

1 − 𝜏
)E∫

𝑡∧𝜌𝑘

0

𝑈 (𝑥 (𝑠)) 𝑑𝑠.

(61)

Then by the similar arguments used in the proof of Theo-
rem 3, we easily obtain 𝜌

𝑘
→ ∞ as 𝑘 → ∞; that is, the

solution 𝑥(𝑡) is global. The desired assertions (55) and (58)
follow from (61) by letting 𝑘 → ∞.

Applying Itô’s formula to 𝑒
𝛾𝑡
𝑉(𝑦

𝑡
, 𝑟(𝑡)) and using condi-

tion (53), we have for any 𝛾 ∈ (0, Λ]

E𝑒
𝛾(𝑡∧𝜌𝑘)𝑉 (𝑦

𝑡
, 𝑟 (𝑡))

= E𝑉 (𝑦
0
, 𝑟 (0))

+ E∫

𝑡∧𝜌𝑘

0

𝑒
𝛾𝑠
[𝛾𝑉 (𝑦

𝑠
, 𝑟 (𝑠))

+ 𝐿𝑉 (𝑥 (𝑠) , 𝑥 (𝑠 − 𝜏 (𝑠)) , 𝑟 (𝑠))] 𝑑𝑠

≤ E𝑉 (𝑦
0
, 𝑟 (0)) + 𝛾E∫

𝑡∧𝜌𝑘

0

𝑒
𝛾𝑠
𝑉 (𝑦

𝑠
, 𝑟 (𝑠)) 𝑑𝑠

− 𝜆
1
E∫

𝑡∧𝜌𝑘

0

𝑒
𝛾𝑠
|𝑥 (𝑠)|

𝑝
𝑑𝑠

+ 𝜆
2
E∫

𝑡∧𝜌𝑘

0

𝑒
𝛾𝑠
|𝑥 (𝑠 − 𝜏 (𝑠))|

𝑝
𝑑𝑠

− 𝜆
3
E∫

𝑡∧𝜌𝑘

0

𝑒
𝛾𝑠
𝑈 (𝑥 (𝑠)) 𝑑𝑠

+ 𝜆
4
E∫

𝑡∧𝜌𝑘

0

𝑒
𝛾𝑠
𝑈 (𝑥 (𝑠 − 𝜏 (𝑠))) 𝑑𝑠.

(62)

For 𝑝 ≥ 1 and any 𝜀 > 0, we have

𝑉 (𝑦
𝑠
, 𝑟 (𝑠))

≤ 𝑐
2|𝑥 (𝑠) − 𝑁 (𝑥 (𝑠 − 𝜏 (𝑠)) , 𝑟 (𝑠))|

𝑝

≤ 𝑐
2
[1 + 𝜀

1/(𝑝−1)
]
𝑝−1

× (|𝑥 (𝑠)|
𝑝
+
1

𝜀
|𝑁 (𝑥 (𝑠 − 𝜏 (𝑠)) , 𝑟 (𝑠))|

𝑝
)

≤ 𝑐
2
[1 + 𝜀

1/(𝑝−1)
]
𝑝−1

× [|𝑥 (𝑠)|
𝑝
+
𝜅
𝑝

𝜀
|𝑥 (𝑠 − 𝜏 (𝑠))|

𝑝
] ,

(63)

where we used the H ̈older inequality and Assumption 9. Sub-
stituting (63) into (62), we therefore obtain

E𝑒
𝛾(𝑡∧𝜌𝑘)𝑉(𝑦

(𝑡∧𝜌k)
, 𝑟 (𝑡 ∧ 𝜌

𝑘
))

≤ E𝑉 (𝑦
0
) + [𝑐

2
𝛾(1 + 𝜀

1/(𝑝−1)
)
𝑝−1

− 𝜆
1
]

× E∫

𝑡∧𝜌𝑘

0

𝑒
𝛾𝑠
𝑉 (𝑥 (𝑠)) 𝑑𝑠

+ 𝑐
2
𝛾(1 + 𝜀

1/(𝑝−1)
)
𝑝−1 𝜅

𝑝

𝜀
E

× ∫

𝑡∧𝜌𝑘

0

𝑒
𝛾𝑠
|𝑥 (𝑠 − 𝜏 (𝑠))|

𝑝
𝑑𝑠

+ 𝜆
2
E∫

𝑡∧𝜌𝑘

0

𝑒
𝛾𝑠
|𝑥 (𝑠 − 𝜏 (𝑠))|

𝑝
𝑑𝑠

− 𝜆
3
E∫

𝑡∧𝜌𝑘

0

𝑒
𝛾𝑠
𝑈 (𝑥 (𝑠)) 𝑑𝑠

+ 𝜆
4
E∫

𝑡∧𝜌𝑘

0

𝑒
𝛾𝑠
𝑈 (𝑥 (𝑠 − 𝜏 (𝑠))) 𝑑𝑠.

(64)
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Noting that

∫

𝑡

0

𝑒
𝛾𝑠
|𝑥 (𝑠 − 𝜏 (𝑠))|

𝑝
𝑑𝑠

≤ 𝑒
𝛾𝜏
∫

𝑡

0

𝑒
𝛾(𝑠−𝜏(𝑠))

|𝑥 (𝑠 − 𝜏 (𝑠))|
𝑝
𝑑𝑠

≤
𝑒
𝛾𝜏

1 − 𝜏
∫

0

−𝜏

𝑒
𝛾𝑠
|𝑥 (𝑠)|

𝑝
𝑑𝑠

+
𝑒
𝛾𝜏

1 − 𝜏
∫

𝑡

0

𝑒
𝛾𝑠
|𝑥 (𝑠)|

𝑝
𝑑𝑠,

(65)

then we have from (64)

E𝑒
𝛾(𝑡∧𝜌𝑘)𝑉(𝑦

(𝑡∧𝜌𝑘)
, 𝑟 (𝑡 ∧ 𝜌

𝑘
))

≤ E𝑉 (𝑦
0
) + [𝑐

2
𝛾(1 + 𝜀

1/(𝑝−1)
)
𝑝−1 𝜅

𝑝

𝜀
+ 𝜆

2
]

× 𝑒
𝛾𝜏
∫

0

−𝜏

𝑒
𝛾𝑠
E𝑉 (𝑥 (𝑠)) 𝑑𝑠

+ ℎ (𝛾, 𝜀)E∫

𝑡∧𝜌𝑘

0

𝑒
𝛾𝑠
𝑉 (𝑥 (𝑠)) 𝑑𝑠

− 𝑙 (𝛾)E∫

𝑡∧𝜌𝑘

0

𝑒
𝛾𝑠
𝑈 (𝑥 (𝑠)) 𝑑𝑠

+ 𝜆
4

𝑒
𝛾𝜏

1 − 𝜏
∫

0

−𝜏

𝑒
𝛾𝑠
E𝑈 (𝑥 (𝑠)) 𝑑𝑠,

(66)

where

𝑙 (𝛾) = 𝜆
3
− 𝜆

4

𝑒
𝛾𝜏

1 − 𝜏
,

ℎ (𝛾, 𝜀) = 𝑐
2
𝛾(1 + 𝜀

1/(𝑝−1)
)
𝑝−1

− 𝜆
1
+ [𝑐

2
𝛾(1 + 𝜀

1/(𝑝−1)
)
𝑝−1 𝜅

𝑝

𝜀
+ 𝜆

2
] 𝑒

𝛾𝜏
.

(67)

Let 𝜀be fixed; then it is easy to obtainℎ
𝛾
(𝛾, 𝜀) > 0 andℎ(0, 𝜀) =

−𝜆
1
+ 𝜆

2
< 0, which implies that for any fixed 𝜀 > 0 function

ℎ(⋅, 𝜀) has a unique positive root denoted by 𝑞. Choose a 𝜀 =

𝜀
∗
> 0 such that

𝛾 = sup
𝜀>0,ℎ(𝑞,𝜀)=0

𝑞 = sup
ℎ(𝑞,𝜀
∗
)=0

𝑞. (68)

Noting that for any 𝛾 ∈ (0, Λ], ℎ(𝛾, 𝜀∗) ≤ 0 and 𝑙(𝛾) ≥ 0. We
therefore have

E𝑒
𝛾(𝑡∧𝜌𝑘)𝑉(𝑦

(𝑡∧𝜌𝑘)
, 𝑟 (𝑡 ∧ 𝜌

𝑘
))

≤ E𝑉 (𝑦
0
) + 𝜆

4

𝑒
𝛾𝜏

1 − 𝜏
∫

0

−𝜏

𝑒
𝛾𝑠
E|𝑥 (𝑠)|

𝑞
𝑑𝑠

+ [𝑐
2
𝛾(1 + 𝜀

∗(1/(𝑝−1))
)

𝑝−1 𝜅
𝑝

𝜀∗
+ 𝜆

2
]

× 𝑒
𝛾𝜏
∫

0

−𝜏

𝑒
𝛾𝑠
E𝑉 (𝜉 (𝑠)) 𝑑𝑠

≤ 𝑐
1
𝐶
0
sup

−𝜏≤𝜃≤0

E
𝜉 (𝜃)



𝑝

(69)

for some positive constant 𝐶
0
> 1. By the similar skills used

in the proof of Theorem 3, we can easily obtain the desired
assertions (54) and (57).

If the delay 𝜏(𝑡) = 𝜏 is a fixed constant, then 𝜏 = 0. Hybrid
system (46) becomes the following HNSDDE:

𝑑 [𝑥 (𝑡) − 𝑁 (𝑥 (𝑡 − 𝜏) , 𝑟 (𝑡))]

= 𝐹 (𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏) , 𝑟 (𝑡)) 𝑑𝑡

+ 𝐺 (𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏) , 𝑟 (𝑡)) 𝑑𝑤 (𝑡) .

(70)

Resorting to Theorem 10, we have the following corollary.

Corollary 11. Let Assumptions 8 and 9 hold. Assume that there
are functions𝑉 ∈ 𝐶

2
(R𝑛

×S;R
+
),𝑈 ∈ 𝐶(R𝑛

;R
+
) as well as a

number of positive constants 𝑐, 𝑐
1
, 𝑐
2
, 𝑝 ≥ 1, 𝜆

1
, 𝜆

2
, 𝜆

3
, 𝜆

4
such

that for any 𝑥, 𝑦 ∈ R𝑛 and 𝑖 ∈ S

𝑐
1|𝑥|

𝑝
≤ 𝑉 (𝑥, 𝑖) ≤ 𝑐

2|𝑥|
𝑝
,

𝐿𝑉 (𝑥, 𝑦, 𝑖) ≤ 𝑐 − 𝜆
1|𝑥|

𝑝

+ 𝜆
2

𝑦


𝑝
− 𝜆

3
𝑈 (𝑥) + 𝜆

4
𝑈 (𝑦) .

(71)

If 𝜆
1

> 𝜆
2
and 𝜆

3
> 𝜆

4
, then for any given initial data

𝜉 ∈ 𝐶
𝑏

F0
([−𝜏, 0],R𝑛

), (70) admits a unique global solution𝑥(𝑡).
Moreover, we have the following assertions:

(i) the solution 𝑥(𝑡) obeys

lim sup
𝑡→∞

E|𝑥 (𝑡) − 𝑁 (𝑥 (𝑡 − 𝜏) , 𝑟 (𝑡))|
𝑝
≤

𝑐

Λ
, (72)

lim sup
𝑡→∞

1

𝑡
∫

𝑡

0

E𝑈 (𝑥 (𝑠)) 𝑑𝑠 ≤
𝑐

𝜆
3
− 𝜆

4

, (73)

whereΛ := 𝛾∧(1/𝜏) log(𝜆
3
/𝜆

4
)∧𝑟with 𝛾 and 𝑟 defined

by

𝛾 = max{𝑞 > 0; 𝑐
2
𝑞(1 + 𝜀

1/(𝑝−1)
)
𝑝−1

− 𝜆
1

+[𝑐
2
𝑞(1 + 𝜀

1/(𝑝−1)
)
𝑝−1 𝜅

𝑝

𝜀
+ 𝜆

2
] 𝑒

𝑞𝜏
= 0, 𝜀 > 0}

(74)

and 𝑟 := (𝑝/𝜏) log(1/𝜅) − ℓ for sufficiently small ℓ > 0.
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(ii) If, in addition, 𝑐 = 0, then the solution of (70) has
properties that

lim sup
𝑡→∞

log (E|𝑥 (𝑡)|
𝑝
)

𝑡
≤ −Λ,

∫

∞

0

E𝑈 (𝑥 (𝑠)) 𝑑𝑠

≤
1

𝜆
3
− 𝜆

4

× [E𝑉 (𝑦
0
, 𝑟 (0)) + 𝜆

2
∫

0

−𝜏

E|𝑥 (𝑠)|
𝑝
𝑑s

+ 𝜆
4
E∫

0

−𝜏

𝑈 (𝑥 (𝑠)) 𝑑𝑠] .

(75)

Further, if 𝑈(𝑥) ≡ 0, Corollary 11 implies.

Corollary 12. Let Assumptions 8 and 9 hold. Assume that
there is a function𝑉 ∈ 𝐶

2
(R𝑛

×S;R
+
) and a number of positive

constants 𝑐
1
, 𝑐
2
, 𝑝 ≥ 1, 𝜆

1
, 𝜆

2
such that for any 𝑥, 𝑦 ∈ R𝑛 and

𝑖 ∈ S

𝑐
1|𝑥|

𝑝
≤ 𝑉 (𝑥, 𝑖) ≤ 𝑐

2|𝑥|
𝑝
,

𝐿𝑉 (𝑥, 𝑦, 𝑖) ≤ −𝜆
1|𝑥|

𝑝
+ 𝜆

2

𝑦


𝑝
.

(76)

If 𝜆
1
> 𝜆

2
, then for any given initial data 𝜉 ∈ 𝐶

𝑏

F0
([−𝜏, 0],R𝑛

),
(70) admits a unique global solution 𝑥(𝑡). Moreover, the
solution 𝑥(𝑡) obeys

lim sup
𝑡→∞

log (E|𝑥 (𝑡)|
𝑝
)

𝑡
≤ −Λ, (77)

where Λ := 𝛾 ∧ 𝑟 with 𝛾 and 𝑟 defined by

𝛾 = max{𝑞 > 0; 𝑐
2
𝑞(1 + 𝜀

1/(𝑝−1)
)
𝑝−1

− 𝜆
1

+[𝑐
2
𝑞(1 + 𝜀

1/(𝑝−1)
)
𝑝−1 𝜅

𝑝

𝜀
+ 𝜆

2
] 𝑒

𝑞𝜏
= 0, 𝜀 > 0}

(78)

and 𝑟 := (𝑝/𝜏) log(1/𝜅) − ℓ for sufficiently small ℓ > 0.

Remark 13. Corollary 12 improves Theorem 5.2 in [10, Chap.
5, pp. 838]. In [10],Theorem 5.2 states that if the assumptions
and conditions in Corollary 12 hold, then

lim sup
𝑡→∞

1

𝑡
log (E|𝑥 (𝑡)|

𝑝
) ≤ −Λ

∗
, (79)

where

Λ
∗
= 𝛾

∗
∧

1

2𝜏
log(1

𝜅
) (80)

with 𝛾
∗
> 0 being the unique root to equation

𝛾
∗
𝑐
2
(1 + 𝜅)

𝑝−1
+ 𝑒

𝛾
∗
𝜏
[𝜆

2
+ 𝛾

∗
𝑐
2
𝜅(1 + 𝜅)

𝑝−1
] = 𝜆

1
. (81)

It is easy to see 𝛾 ≥ 𝛾
∗. Moreover, (𝑝/𝜏) log(1/𝜅) >

(1/2𝜏) log(1/𝜅). That means Λ
∗

≤ Λ for sufficiently small
ℓ > 0, where Λ is defined in Corollary 12.

5. Examples

In this section, we give an example to illustrate the usefulness
and flexibility of the theorems developed previously. Let𝑤(𝑡)

be a scalar Brownian motion. Let 𝑟(𝑡) be a right-continuous
Markov chain value in S = {1, 2} with generator

Γ = (𝛾
𝑖𝑗
)
2 × 2

= (
−2 2

1 −1
) . (82)

Assume that 𝑤(𝑡) and 𝑟(𝑡) are independent.

Example 1. Consider the one-dimensional linear HNSDDEs

𝑑 [𝑥 (𝑡) − 𝜅 (𝑟 (𝑠)) ∫

0

−𝜏

𝑥 (𝑠 + 𝜃) 𝑑𝜃]

= [𝜇 (𝑟 (𝑠)) 𝑥 (𝑡) − 2𝑥(𝑡)
3
+ ∫

0

−𝜏

𝑥 (𝑡 + 𝜃) 𝑑𝜃] 𝑑𝑡

+ [𝜎 (𝑟 (𝑠)) ∫

0

−𝜏

|𝑥 (𝑡 + 𝜃)|
2
𝑑𝜃 + 𝑐] 𝑑𝑤 (𝑡) ,

(83)

where 𝜅(1) = 1/8, 𝜅(2) = 1/4, 𝜇
1
= −3, 𝜇

2
= −4, 𝜎(1) =

1/√8, 𝜎(2) = 1/√2, and 𝜏 = 1. To find out whether (83)
is mean-square exponential stability, we use the Lyapunov
function

𝑉 (𝑥, 𝑖) = 𝑞
𝑖|𝑥|

2
, (84)

where 𝑞
1
= 1 and 𝑞

2
= 0.5. One can show that

L𝑉 (𝜑, 𝑖)

= 2𝑞
𝑖
[𝜑 (0) + 𝜅 (𝑖) ∫

0

−1

𝜑 (𝜃) 𝑑𝜃]

× [𝜇 (𝑖) 𝜑 (0) − 3𝜑(0)
3
+ ∫

0

−1

𝜑 (𝜃) 𝑑𝜃]

+ ∑

𝑗=1,2

𝛾
𝑖𝑗
𝑞
𝑗



𝜑 (0) +
1

8
∫

0

−1

𝜑 (𝜃) 𝑑𝜃



2

+ 2𝑞
𝑖
𝜎(𝑖)

2



∫

0

−1

𝜑 (𝜃)


2
𝑑𝜃



2

+ 2𝑐
2
.

(85)
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By the elementary inequalities 𝑎
𝛼
𝑏
𝛽

≤ (𝛼/(𝛼 + 𝛽))𝑎
𝛼+𝛽

+

(𝛽/(𝛼 + 𝛽))𝑏
𝛼+𝛽, we have

L𝑉 (𝜑, 1)

≤ 2 [ − 3
𝜑 (0)



2
− 3

𝜑 (0)


4

+
1

2
(
𝜑 (0)



2
+ ∫

0

−1

𝜑 (𝜃)


2
𝑑𝜃)

+
3

8

1

2
(
𝜑 (0)



2
+ ∫

0

−1

𝜑 (𝜃)


2
𝑑𝜃)

+
3

8
(
3

4

𝜑 (0)


4
+
1

4
∫

0

−1

𝜑 (𝜃)


4
𝑑𝜃)]

− 𝜑 (0) +
1

8
∫

0

−1

𝜑 (𝜃) 𝑑𝜃


2
+
1

4
∫

0

−1

𝜑 (𝜃)


4
𝑑𝜃 + 2𝑐

2

≤ 2𝑐
2
−
45

8

𝜑 (0)


2

+
97

64
∫

0

−1

𝜑 (𝜃)


2
𝑑𝜃 −

87

16

𝜑 (0)


4
+

7

16
∫

0

−1

𝜑 (𝜃)


4
𝑑𝜃.

(86)

Similarly,

L𝑉 (𝜑, 2)

≤ 2𝑐
2
−
29

8

𝜑 (0)


2

+
13

32
∫

0

−1

𝜑 (𝜃)


2
𝑑𝜃 −

39

16

𝜑 (0)


4

+
23

16
∫

0

−1

𝜑 (𝜃)


4
𝑑𝜃.

(87)

Let 𝜆
1
= 29/8, 𝜆

2
= 97/64, 𝜆

3
= 39/16, and 𝜆

4
= 23/16.

Then we have from (86), and (87) for each 𝑖 ∈ S,

L𝑉 (𝜑, 𝑖)

≤ 2𝑐
2
− 𝜆

1

𝜑 (0)


2

+ 𝜆
2
∫

0

−1

𝜑 (𝜃)


2
𝑑𝜃 − 𝜆

3

𝜑 (0)


4
+ 𝜆

4
∫

0

−1

𝜑 (𝜃)


4
𝑑𝜃.

(88)

Then one can compute Λ = 0.5281 by Theorem 3. If 𝑐 ̸= 0,
then

lim sup
𝑡→∞

E
𝑥 (𝑡) − 𝑢 (𝑥

𝑡
, 𝑟 (𝑡))



2
≤

2𝑐
2

0.5281
,

lim sup
𝑡→∞

1

𝑡
∫

𝑡

0

E|𝑥 (𝑠)|
4
𝑑𝑠 ≤

2𝑐
2

𝜆
3
− 𝜆

4

.

(89)

If 𝑐 = 0, the solution to HNSDDE (83) has the property

lim sup
𝑡→∞

log (E|𝑥 (𝑡)|
2
)

𝑡
≤ −0.5281. (90)

Example 2. Consider the HNSDDE:

𝑑 [𝑥 (𝑡) − 𝑁 (𝑥 (𝑡 − 𝜏) , 𝑟 (𝑡))]

= 𝐹 (𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏) , 𝑟 (𝑡)) 𝑑𝑡

+ 𝐺 (𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏) , 𝑟 (𝑡)) 𝑑𝑤 (𝑡) ,

(91)

where the functions 𝑁(𝑦, 1) = 1/3𝑦, 𝑁(𝑦, 2) = 1/4𝑦,
𝐹(𝑥, 𝑦, 1) = −2𝑥 − 3𝑥

3
+ 𝑦/4, 𝐹(𝑥, 𝑦, 2) = −3𝑥 − 4𝑥

3
+ 𝑦/2,

𝐺(𝑥, 𝑦, 1) = 1/2𝑦
2, and 𝐺(𝑥, 𝑦, 2) = 𝑦/2. Let 𝑉(𝑥, 𝑖) = 𝑞

𝑖
|𝑥|

2

for 𝑞
1
= 1, 𝑞

2
= 0.5. Then one can compute

𝐿𝑉 (𝑥, 𝑦, 1) ≤ −
41

2
𝑥
2
+
23

24
𝑦
2
−
21

4
𝑥
4
+
1

6
𝑦
4
,

𝐿𝑉 (𝑥, 𝑦, 2) ≤ −
29

16
𝑥
2
+
31

64
𝑦
2
−
13

4
𝑥
4
+
1

4
𝑦
4
.

(92)

Then we have from (92) that for 𝑖 ∈ S

𝐿𝑉 (𝑥, 𝑦, 𝑖) ≤ −
29

16
𝑥
2
+
23

24
𝑦
2
−
13

4
𝑥
4
+
1

4
𝑦
4
. (93)

One can compute Λ = 0.2767 by Corollary 11. Then the
solution to HNSDDE (91) has the property

lim sup
𝑡→∞

log (E|𝑥 (𝑡)|
2
)

𝑡
≤ −0.2767. (94)
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The motion of dilute charged particles can be modeled by Vlasov-Poisson-Boltzmann system. We study the large time stability of
the VPB system. To be precise, we prove that when time goes to infinity, the solution of VPB system tends to global Maxwellian
state in a rate 𝑂(𝑡−∞), by using a method developed for Boltzmann equation without force in the work of Desvillettes and Villani
(2005). The improvement of the present paper is the removal of condition on parameter 𝜆 as in the work of Li (2008).

1. Introduction

Large time behavior for the Boltzmann equation and related
systems is an important topic for both physicists and math-
ematicians. We consider the Cauchy problem for Vlasov-
Poisson-Boltzmann system in a torus T𝑁:

𝑓
𝑡
+ V ⋅ ∇

𝑥
𝑓 + ∇

𝑥
𝜙 ⋅ ∇V𝑓 = 𝑄 (𝑓, 𝑓) , on T

𝑁
, (1)

Δ𝜙 = ∫
R𝑁
𝑓𝑑V − 𝜌

0
, on T

𝑁
, (2)

𝑓 (0, 𝑥, V) = 𝑓
0
(𝑥, V) , (3)

𝑄 (𝑓, 𝑓) = ∫
R𝑁
∫
S𝑁−1

(𝑓

𝑓


∗
− 𝑓𝑓

∗
) 𝑞 (V − V

∗
, 𝜎) 𝑑𝜎 𝑑V

∗
. (4)

𝑓 = (𝑡, 𝑥, V), which represents the distribution of particles,
is a function of time 𝑡 ∈ R+, particle velocity V ∈ R𝑁,
and position 𝑥 ∈ T𝑁. The force ∇𝜙 in (1) is controlled
by Poisson equation (2), which comes intrinsically by the
nonequilibrium distribution of particles.

The quadratic term 𝑄(𝑓, 𝑓) is the collision operator and
𝑞(V − V

∗
, 𝜎) is the corresponding cross-section. It is well-

known by the conservation of mass that 𝜌
0
= ∫

T𝑁×R𝑁
𝑓
0
𝑑𝑥 𝑑V

is a fixed constant which represents the background charge.

Without loss of generality, we can assume |T𝑁| = 1, 𝜌
0
=

1. Define 𝜌, 𝑢, 𝑇, which are functions of 𝑡 and 𝑥 by

𝜌 = ∫
R𝑁
𝑓𝑑V, 𝜌𝑢 = ∫

R𝑁
𝑓V 𝑑V,

𝜌|𝑢|
2
+ 𝑁𝜌𝑇 = ∫

R𝑁
𝑓|V|2𝑑V.

(5)

Physically, they represent themacroscopic quantities: density,
bulk velocity, and temperature, respectively. It is well known
that the conservation of mass, momentum, and energy holds:

𝑑

𝑑𝑡
∫
T𝑁
𝜌 𝑑𝑥 = 0,

𝑑

𝑑𝑡
∫
T𝑁
𝜌𝑢 𝑑𝑥 = 0,

𝑑

𝑑𝑡
∫
T𝑁
(
𝜌|𝑢|

2

2
+
𝑁𝜌𝑇

2
+

∇𝜙


2

2
)𝑑𝑥 = 0.

(6)

Here, the total energy consists of the kinetic energy 𝜌|𝑢|2/2,
the internal heat energy 𝑁𝜌𝑇/2, and the electric potential
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energy |∇𝜙|2/2. By simple translation and dilation, 𝜌, 𝑢,𝑇 can
be normalized as

∫
T𝑁×R𝑁

𝑓𝑑V 𝑑𝑥 = ∫
T𝑁
𝜌 𝑑𝑥 = 𝜌

0
= 1,

∫
T𝑁×R𝑁

𝑓 V 𝑑V 𝑑𝑥 = ∫
T𝑁
𝜌𝑢 𝑑𝑥 = 0,

∫
T𝑁×R𝑁

(𝑓
|V|2

2
+

∇𝜙


2

2
)𝑑V 𝑑𝑥

= ∫
T𝑁
(
𝜌|𝑢|

2

2
+
𝑁𝜌𝑇

2
+

∇𝜙


2

2
)𝑑𝑥 =

𝑁

2
.

(7)

If the initial datum 𝑓
0
satisfies the conservation laws (7),

then the stationary solution is a global Maxwellian𝑀, in the
form of

𝑀 = 𝑀
[1,0,1]

=
1

(2𝜋)
𝑁/2

exp{−|V|
2

2
} , (8)

where the subscript [1, 0, 1] represents the corresponding
macroscopic quantities: density, bulk velocity, and tempera-
ture, respectively.

Traditional method for studying the asymptotic behavior
is using linearization around local or globalMaxwellian state.
Without external force, Ukai [1] proved an exponential decay
rate for the cutoff hard potential in a torus in 1974. In 1980,
Caflisch [2] obtained a rate like 𝑂(𝑒−𝑡

𝛽

) for the cutoff soft
potential with 𝛾 ≥ −1 in a torus, where 𝛽 = 2/(2 − 𝛾) ∈ [0, 1].
Strain and Guo [3] extend Caflisch’s result in 2008 and get a
convergence rate like 𝑂(𝑒−𝑡

𝑃

) (0 < 𝑃 < 1) for the very soft
potential case (𝛾 < −1). The previous results all make use of
the linearization.

However, by using some estimates on systems of second-
order differential inequalities, Desvillettes and Villani [4]
obtain an almost exponential convergence rate like 𝑂(𝑡−∞).
The result is weaker than using linearization, but the small-
ness assumption on initial data 𝑓

0
− 𝑀 is removed and the

conclusion holds for noncutoff collision kernels as well.
Our work is inspired by the work of Desvillettes and

Villani [4]. We extend their result for Boltzmann equation
without external force to the Vlasov-Poisson-Boltzmann
system.

In a previous work [5], the Vlasov-Poisson-Boltzmann
system with (2) replaced by

𝜆Δ𝜙 = ∫
R𝑁
𝑓𝑑V − 𝜌

0 (9)

is proved to satisfy the following theorem.

Theorem 1. Let 𝑞(V − V
∗
, 𝜎) satisfy

𝑞 ≥ 𝐾
𝐵
min (V − V

∗



𝛾−
,
V − V

∗



−𝛽−
) , (10)

and let the collision operator satisfy
𝑄(𝑔, ℎ)

𝐿2(R𝑁V )
≤ 𝐶

𝐵

𝑔
𝐻
𝑘0
𝑠0
(R𝑁V )

‖ℎ‖
𝐻
𝑘0
𝑠0
(R𝑁V )

, (11)

for some 𝑘
0
, 𝑠
0
≥ 0, where 𝐾

𝐵
and 𝐶

𝐵
are positive constants.

Let (𝑓)
𝑡≥0

be a smooth solution of the problem (1), (9), and (3),
such that, for all 𝑘, 𝑠 > 0,

sup
𝑡≥0

𝑓
𝐻𝑘
𝑠
(T𝑁×R𝑁)

≤ 𝐶
𝑘,𝑠
< +∞, (12)

and for all 𝑡 > 0, 𝑥 ∈ T𝑁, and V ∈ R𝑁,

𝑓 (𝑥, V) ≥ 𝐾
0
𝑒
−𝐴0|V|

𝑞0

(𝐴
0
, 𝐾

0
> 0; 𝑞

0
≥ 2) . (13)

Then ∃𝜆
0
, such that, for all 𝜆 > 𝜆

0
, the solution 𝑓 converges to

𝑀 in an almost exponential rate; that is, for any small positive
constant 𝜖 > 0,

𝑓 −𝑀
 = 𝑂 (1) 𝑡

−1/700𝜖
, (14)

where𝑂(1) depends on𝐾
𝐵
, 𝛾
−
, 𝛽

−
, 𝐶

𝐵
, 𝑘

0
, 𝑠
0
, 𝐶

𝑘,𝑠
,𝐾

0
, 𝐴

0
, 𝑞

0
,

and 𝜖.

The present paper extends the result of [5] by removing
the condition on 𝜆 and considers system (1)–(3). To be
precise, the main result of this paper is as follows.

Theorem 2. Under condition (10)–(13), the solution 𝑓 of
problem (1)–(3) converges to𝑀 in an almost exponential rate;
that is, for any small positive constant 𝜖 > 0,

𝑓 −𝑀
 = 𝑂 (1) 𝑡

−1/700𝜖
, (15)

where 𝑂(1) depends on the constants in (10)–(13) and 𝜖.

Now, we state some results on the existence of solutions of
VPB system.The global existence of solutions is proved in [6]
in a torus and [7–9] in the whole space with small perturbed
initial data. The existence result in [7] also holds for a more
general case, like the Vlasov-Maxwell-Boltzmann system.

The following is devoted to the proof of Theorem 2.
Section 2 gives some lemmas which will be used later. Proof
of the main result is given in Section 3.

2. Preliminaries

First, denote some local Maxwellian states in forms of 𝜌, 𝑢, 𝑇.
Define𝑀

[𝜌,𝑢,𝑇]
,𝑀

[𝜌,𝑢,⟨𝑇⟩]
,𝑀

[𝜌,0,⟨𝑇⟩]
,𝑀

[𝜌,0,1]
as follows:

𝑀
[𝜌,𝑢,𝑇]

(V) =
𝜌

(2𝜋𝑇)
𝑁/2

exp{−|V − 𝑢|
2

2𝑇
} ,

𝑀
[𝜌,𝑢,⟨𝑇⟩]

(V) =
𝜌

(2𝜋 ⟨𝑇⟩)
𝑁/2

exp{−|V − 𝑢|
2

2 ⟨𝑇⟩
} ,

𝑀
[𝜌,0,⟨𝑇⟩]

(V) =
𝜌

(2𝜋 ⟨𝑇⟩)
𝑁/2

exp{− |V|2

2 ⟨𝑇⟩
} ,

𝑀
[𝜌,0,1] (V) =

𝜌

(2𝜋)
𝑁/2

exp{−|V|
2

2
} ,

(16)

where ⟨𝑇⟩ = ∫ 𝜌𝑇𝑑𝑥 stands for the mean temperature.
As we will show in Section 3, the gradient of tempera-

ture prevents 𝑓 from being close to 𝑀
[𝜌,𝑢,𝑇]

for too long;
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the symmetric gradient of velocity prevents 𝑓 from being
close to𝑀

[𝜌,𝑢,⟨𝑇⟩]
for long, that is, the local Maxwellians with

constant temperature; and finally, the gradient of 𝜌 and 𝜙
prevents 𝑓 from being close to𝑀

[𝜌,0,⟨𝑇⟩]
and𝑀

[𝜌,0,1]
for long.

In order to estimate the distance between two distributions,
we need to define 𝐻 functional and relative information
(or relative entropy) between two distributions, which is
the main measure of the distance between 𝑓 and the local
Maxwellians.

Definition 3. Suppose 𝑓 and 𝑔 are two distributions on T𝑁 ×

R𝑁, s.t.:

∫
T𝑁×R𝑁

𝑓 = ∫
T𝑁×R𝑁

𝑔. (17)

Define the H functional (negative of the entropy) and the
Kullback relative information by

𝐻(𝑓) = ∫
T𝑁×R𝑁

𝑓 log𝑓, 𝐻 (𝑓 | 𝑔) = ∫
T𝑁×R𝑁

𝑓 log
𝑓

𝑔
.

(18)

Proposition 4. The well-known Csiszár-Kullback inequality
asserts

𝐻(𝑓𝑔) ≥
1

4

𝑓 − 𝑔


2

𝐿
1
(𝑥,V), (19)

if 𝑓 and 𝑔 are two distributions on T𝑁 ×R𝑁. Moreover, if 𝑓 is
the solution of (1), (2) and satisfies (7), then

𝐻(𝑓 | 𝑀) = 𝐻 (𝑓) − 𝐻 (𝑀) −
1

2
∫
T𝑁

∇𝜙


2
. (20)

Proof. Define 𝜑(ℎ) = ℎ log(ℎ); then since ∫𝑓 = ∫𝑔 = 1, we
have

𝐻(𝑓 | 𝑔) = ∫𝑓 log
𝑓

𝑔
= ∫𝑓 log𝑓 − 𝑓 log𝑔 − 𝑓 + 𝑔

= ∫𝑓 log𝑓 − 𝑔 log𝑔 − (log𝑔 + 1) (𝑓 − 𝑔)

= ∫𝜑 (𝑓) − 𝜑 (𝑔) − 𝜑

(𝑔) (𝑓 − 𝑔)

=
1

2
∫𝜑


(ℎ)

𝑓 − 𝑔


2

=
1

2
∫
1

ℎ

𝑓 − 𝑔


2
,

(21)

where ℎ stands for a positive function between 𝑓 and 𝑔.
The last equality is obtained by using second-order Taylor
expansion. By Hölder’s inequality, we have

∫
𝑓 − 𝑔

 ℎ
−1/2

ℎ
1/2

≤ (∫
1

ℎ

𝑓 − 𝑔


2
)

1/2

(∫ℎ)

1/2

, ∀ℎ > 0.

(22)

Since ℎ lies between 𝑓 and 𝑔, notice that distributions 𝑓, 𝑔
are nonnegative; thus ℎ ≤ 𝑓 + 𝑔. We have

∫
1

ℎ

𝑓 − 𝑔


2
≥

(∫
𝑓 − 𝑔

)
2

∫ (𝑓 + 𝑔)

=
1

2
(∫

𝑓 − 𝑔
)

2

, (23)

and (19) is obtained. Equation (20) follows directly from (7).

We now state the quantitative version of𝐻-theorem. See
[10] for the proof.

Theorem 5 (Quantitative 𝐻-Theorem). If (𝑓)
𝑡≥0

is a smooth
solution of the VPB equation (1), (2), then the H functional
𝐻(𝑓) is nonincreasing as a function of 𝑡, and the decreasing
rate

𝑑

𝑑𝑡
𝐻 (𝑓) = −∫

T𝑁
𝐷(𝑓 (𝑥, ⋅)) 𝑑𝑥, (24)

where

𝐷(𝑓) =
1

4
∫
R𝑁×R𝑁×S𝑁−1

(𝑓

𝑓


∗
− 𝑓𝑓

∗
) log

𝑓

𝑓


∗

𝑓𝑓
∗

𝐵𝑑𝜎𝑑V 𝑑V
∗

(25)

is a positive definite functional.
Moreover, if the collision kernel 𝑞 satisfies (10), and 𝑓 com-

plies with (12), then

𝐷(𝑓) ≥ 𝐾
𝜖
(∫

R𝑁
𝑓 log

𝑓

𝑀
[𝜌,𝑢,𝑇]

)

1+𝜖

,

−
𝑑

𝑑𝑡
𝐻 (𝑓) ≥ 𝐾

𝐻
𝐻(𝑓 | 𝑀

[𝜌,𝑢,𝑇]
)
1+𝜖

.

(26)

The only set that can make 𝐷 vanish is the local Maxwellian
state.

We state some notations here for the fluency of descrip-
tion. Let 𝐴 and 𝐵 be matrices; let the operation 𝐴 : 𝐵 =

∑
𝑖𝑗
𝐴
𝑖𝑗
𝐵
𝑖𝑗
. For a vector-valued function 𝑢, the divergence is

∇
𝑥
⋅ 𝑢 = ∑

𝑖

𝜕𝑢
𝑖

𝜕𝑥
𝑖

, (27)

the elements of gradient matrix ∇
𝑥
𝑢 satisfy

(∇
𝑥
𝑢)

𝑖𝑗
=

𝜕𝑢
𝑗

𝜕𝑥
𝑖

, (28)

the symmetric part of ∇𝑢 is

∇
sym
𝑥
𝑢 =

∇
𝑥
𝑢 + (∇

𝑥
𝑢)

𝑇

2
, (29)

and the traceless part of ∇sym
𝑥
𝑢 is symbolized by {∇

𝑥
𝑢}:

{∇
𝑥
𝑢} = ∇

sym
𝑥
𝑢 −

∇
𝑥
⋅ 𝑢

𝑁
𝐼
𝑁
. (30)
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We expect to estimate decay rate of the distance between
𝑓 and𝑀, and the distance is measured by Kullback relative
information. By using conservation laws, a direct computa-
tion will show that the relative information between 𝑓 and𝑀
can be decomposed into a purely hydrodynamic part and a
purely kinetic part:

𝐻(𝑓 | 𝑀) =H (𝜌, 𝑢, 𝑇) + 𝐻(𝑓 | 𝑀
[𝜌,𝑢,𝑇]

) ,

H (𝜌, 𝑢, 𝑇) = ∫
𝑇
𝑁

𝜌 log 𝜌 + 𝑁
2
∫
𝑇
𝑁

𝜌 (𝑇 − log𝑇 − 1)

+ ∫
𝑇
𝑁

𝜌
|𝑢|

2

2

=:H (𝜌 | 1) +H (𝑇 | 1) +H (𝑢 | 0) ,

(31)

where

H (𝑢 | 0) = ∫𝜌
|𝑢|

2

2
,

H (𝜌 | 1) = ∫
𝑇
𝑁

𝜌 log 𝜌 = ∫
𝑇
𝑁

𝜌 log 𝜌 − 𝜌 + 1
(32)

are nonnegative since 𝜌 log 𝜌 − 𝜌 + 1 is convex with the
minimum zero at 𝜌 = 1.

Moreover, denote Ψ(𝑋) = (𝑁/2)(𝑋 − ln𝑋 − 1); we can
further decomposeH(𝑇 | 1) into

H (𝑇 | 1) =H (𝑇 | ⟨𝑇⟩) +H (⟨𝑇⟩ | 1) , (33)

where

H (𝑇 | ⟨𝑇⟩) = ∫𝜌Ψ (𝑇) − Ψ (⟨𝑇⟩) ,

H (⟨𝑇⟩ | 1) = Ψ (⟨𝑇⟩) .

(34)

It is easy to check that each of the previous terms is nonneg-
ative by using Jensen’s inequality and convexity of functions
Ψ(𝑋).

It is easy to verify the following.

Lemma 6. Use the previously mentioned notations; then one
has the following additivity roles:

𝐻(𝑓 | 𝑀
[𝜌,𝑢,𝑇]

) +H (𝑇 | ⟨𝑇⟩) = 𝐻(𝑓 | 𝑀
[𝜌,𝑢,⟨𝑇⟩]

) ,

𝐻 (𝑓 | 𝑀
[𝜌,𝑢,⟨𝑇⟩]

) +
1

⟨𝑇⟩
H (𝑢 | 0) = 𝐻 (𝑓 | 𝑀

[𝜌,0,⟨𝑇⟩]
) ,

𝐻 (𝑓 | 𝑀
[𝜌,0,⟨𝑇⟩]

) +H (⟨𝑇⟩ | 1) + (1 −
1

⟨𝑇⟩
)H (𝑢 | 0)

= 𝐻 (𝑓 | 𝑀
[𝜌,0,1]

) ,

𝐻 (𝑓 | 𝑀
[𝜌,0,1]

) +H (𝜌 | 1) = 𝐻 (𝑓 | 𝑀) .

(35)

Moreover, one has

𝐻(𝑓 | 𝑀
[𝜌,𝑢,𝑇]

) ≥ 𝐾
𝐼


𝑓 −𝑀

[𝜌,𝑢,𝑇]



2(1+𝜖)

𝐿
2

,

𝐻 (𝑓 | 𝑀
[𝜌,𝑢,⟨𝑇⟩]

) ≥ 𝐾
𝐼


𝑓 −𝑀

[𝜌,𝑢,⟨𝑇⟩]



2(1+𝜖)

𝐿
2

,

𝐻 (𝑓 | 𝑀
[𝜌,0,⟨𝑇⟩]

) ≥ 𝐾
𝐼


𝑓 −𝑀

[𝜌,0,⟨𝑇⟩]



2(1+𝜖)

𝐿
2

,

𝐻 (𝑓 | 𝑀
[𝜌,0,1]

) ≥ 𝐾
𝐼


𝑓 −𝑀

[𝜌,0,1]



2(1+𝜖)

𝐿
2

.

(36)

Here nonnegative termsH(𝜌 | 1),H(𝑢 | 0),H(𝑇 | ⟨𝑇⟩),
H(⟨𝑇⟩ | 1) are parts of the relative entropy, 𝐾

𝐼
> 0.

Proof. Additivity rules can be verified by direct computation.
By using Csiszár-Kullback inequality and the interpolation
from 𝐿

2 into 𝐿1, we can get (36). See [4] or [5] for more
details.

Now we assert the key lemma of the paper, which asserts
the instability of hydrodynamic descriptions for 𝑓.

Lemma7. The following four second-order differential inequa-
lities hold:

𝑑
2

𝑑𝑡2


𝑓 −𝑀

[𝜌,𝑢,𝑇]



2

𝐿
2
(𝑥,V)

≥ 𝐾
1
[∫

𝑇
𝑁

|∇𝑇 (𝑥)|
2
𝑑𝑥 + ∫

𝑇
𝑁

|{∇𝑢 (𝑥)}|
2
𝑑𝑥]

−
𝐶
1

𝛿
1−𝜖

1

(

𝑓 −𝑀

[𝜌,𝑢,𝑇]



2

𝐿
2
)

1−𝜖

− 𝛿
1
𝐻(𝑓 | 𝑀) ,

(37)

𝑑
2

𝑑𝑡2


𝑓 −𝑀

[𝜌,𝑢,⟨𝑇⟩]



2

𝐿
2
(𝑥,V)

≥ 𝐾
2
∫
𝑇
𝑁

∇
sym
𝑢


2
𝑑𝑥

−
𝐶
2

𝛿
1−𝜖

2

(

𝑓 −𝑀

[𝜌,𝑢,⟨𝑇⟩]



2

𝐿
2
)

1−𝜖

− 𝛿
2
𝐻(𝑓 | 𝑀) ,

(38)

𝑑
2

𝑑𝑡2


𝑓 −𝑀

[𝜌,0,⟨𝑇⟩]



2

𝐿
2
(𝑥,V)

≥ 𝐾
3
[∫

𝑇
𝑁

∇𝜙


2
𝑑𝑥 + ∫

𝑇
𝑁

∇𝜌


2
𝑑𝑥]

−
𝐶
3

𝛿
1−𝜖

3

(

𝑓 −𝑀

[𝜌,0,⟨𝑇⟩]



2

𝐿
2
)

1−𝜖

− 𝛿
3
𝐻(𝑓 | 𝑀) ,

(39)

𝑑
2

𝑑𝑡2


𝑓 −𝑀

[𝜌,0,1]



2

𝐿
2
(𝑥,V)

≥ 𝐾
4
[∫

𝑇
𝑁

∇𝜙


2
𝑑𝑥 + ∫

𝑇
𝑁

∇𝜌


2
𝑑𝑥]

−
𝐶
4

𝛿
1−𝜖

4

(

𝑓 −𝑀

[𝜌,0,1]



2

𝐿
2
)

1−𝜖

− 𝛿
4
𝐻(𝑓 | 𝑀) .

(40)

Here 𝛿
1
, 𝛿

2
, 𝛿

3
, 𝛿

4
are small enough constants, and all constants

are positive.
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Roughly speaking, the previous inequalities show that
𝑓 cannot stay near local Maxwellian states. The gradient of
𝑇 prevents 𝑓 from staying close to 𝑀

[𝜌,𝑢,𝑇]
for long; the

symmetric gradient of 𝑢 prevents 𝑓 from staying close to
𝑀

[𝜌,𝑢,⟨𝑇⟩]
for long; finally, the gradient of 𝜌 prevents 𝑓 from

staying close to𝑀
[𝜌,0,⟨𝑇⟩]

and𝑀
[𝜌,0,1]

. It left𝑀 = 𝑀
[1,0,1]

as
the only stable state.

To prove Lemma 7, the following lemma is needed, whose
proof can be found in [4].

Lemma 8. Let ℎ be a smooth function of 𝑥, V. Then, for all
multi-indexes 𝛼, 𝛽, and for all 𝜂 < 1,

∫(V𝛼𝜕𝛽
𝑥,Vℎ)

2

𝑑V 𝑑𝑥 ≤ ‖ℎ‖2𝜂
𝐻
|𝛽|

|𝛼|/𝜂

‖ℎ‖
2𝜂(1−𝜂)

𝐻
|𝛽|/𝜂

‖ℎ‖
2(1−𝜂)

2

𝐿
2

. (41)

Proof of Lemma 7. Most of the proof is similar to that in [4, 5];
the only difference is in estimating terms with 𝜙. We will only
prove (39) as an example of how to estimate terms with 𝜙.

We have

𝑑
2

𝑑𝑡2


𝑓 −𝑀

[𝜌,0,⟨𝑇⟩]



2

𝐿
2

= 2∫(
𝜕

𝜕𝑡
(𝑓 −𝑀

[𝜌,0,⟨𝑇⟩]
))

2

𝑑V 𝑑𝑥

+ 2∫ (𝑓 −𝑀
[𝜌,0,⟨𝑇⟩]

)
𝜕
2

𝜕𝑡2
(𝑓 − 𝑔) 𝑑V 𝑑𝑥

= 𝐴 + 𝐵.

(42)

At the moment when 𝑓 = 𝑀
[𝜌,0,⟨𝑇⟩]

, 𝐵 vanishes, so we
only need to estimate 𝐴:

𝜕

𝜕𝑡
(𝑓 −𝑀

[𝜌,0,⟨𝑇⟩]
) = −V ⋅ ∇

𝑥
𝑓 − ∇

𝑥
𝜙 ⋅ ∇V𝑓 + 𝑄 (𝑓, 𝑓)

−
𝜕

𝜕𝑡
𝑀

[𝜌,0,⟨𝑇⟩]

= −(
𝜕

𝜕𝑡
+ V ⋅ ∇

𝑥
+ ∇

𝑥
𝜙 ⋅ ∇V)𝑀[𝜌,0,⟨𝑇⟩]

.

(43)

From (1) we have

𝜌
𝑡
+ ∇

𝑥
⋅ (𝜌𝑢) = 0,

(𝜌𝑢)
𝑡
+ ∇

𝑥
⋅ (𝜌𝑢 ⊗ 𝑢 + 𝜌𝑇𝐼

𝑁
+ 𝐷) − 𝜌∇

𝑥
𝜙 = 0,

(𝜌|𝑢|
2
+ 𝑁𝜌𝑇)

𝑡
+ ∇

𝑥

⋅ (𝜌|𝑢|
2
𝑢 + (𝑁 + 2) 𝜌𝑢𝑇 + 2𝐷𝑢 + 2𝑅)

− 2𝜌𝑢 ⋅ ∇
𝑥
𝜙 = 0.

(44)

Here, 𝐷 and 𝑅 are matrix-valued and vector-valued func-
tions, respectively, defined by

𝐷
𝑖𝑗
(𝑥) = ∫

𝑅
𝑁

𝑓 (𝑥, V)

× [(V − 𝑢)
𝑖
(V − 𝑢)

𝑗
−
|V − 𝑢|2

𝑁
𝛿
𝑖𝑗
]𝑑V,

𝑅 (𝑥) = ∫
𝑅
𝑁

𝑓 (𝑥, V)
|V − 𝑢|2

2
(V − 𝑢) 𝑑V.

(45)

Then, we obtain

(𝜕
𝑡
+ 𝑢 ⋅ ∇) 𝜌 + 𝜌∇ ⋅ 𝑢 = 0,

(𝜕
𝑡
+ 𝑢 ⋅ ∇) 𝑢 + ∇𝑇 +

𝑇∇𝜌

𝜌
+
∇ ⋅ 𝐷

𝜌
− ∇

𝑥
𝜙 = 0,

(𝜕
𝑡
+ 𝑢 ⋅ ∇) 𝑇 +

2𝑇

𝑁
∇ ⋅ 𝑢 +

2

𝜌𝑁
(∇𝑢 : 𝐷 + ∇ ⋅ 𝑅) = 0.

(46)

Also, we get

𝜕
𝑡 ⟨𝑇⟩ = [∫ (𝜕𝑡𝜌) 𝑇 + ∫𝜌 (𝜕𝑡𝑇)]

= [−∫∇ ⋅ (𝜌𝑢) 𝑇 − ∫𝜌𝑢 ⋅ ∇𝑇 −
2

𝑁
∫𝜌𝑇∇ ⋅ 𝑢

−
2

𝑁
∫∇𝑢 : 𝐷 −

2

𝑁
∫∇ ⋅ 𝑅]

= [−
2

𝑁
∫𝜌𝑇∇ ⋅ 𝑢 −

2

𝑁
∫∇𝑢 : 𝐷] .

(47)

Then the equations of𝑀
[𝜌,0,⟨𝑇⟩]

can be stated as follows:

(𝜕
𝑡
+ V ⋅ ∇

𝑥
+ ∇

𝑥
𝜙 ⋅ ∇V)𝑀[𝜌,0,⟨𝑇⟩]

= 𝑀
[𝜌,0,⟨𝑇⟩]

× {[
𝜕
𝑡
𝜌

𝜌
−
𝑁

2

𝜕
𝑡 ⟨𝑇⟩

⟨𝑇⟩
]

+V ⋅ [
∇𝜌

𝜌
−
∇
𝑥
𝜙

⟨𝑇⟩
] + |V|2 [

𝜕
𝑡 ⟨𝑇⟩

2⟨𝑇⟩
2
]} .

(48)

From (46) and (47), we have

𝜕
𝑡
(𝑓 −𝑀

[𝜌,0,⟨𝑇⟩]
)

= −𝑀
[𝜌,0,⟨𝑇⟩]

× {[
𝜕
𝑡
𝜌

𝜌
−
𝑁

2

𝜕
𝑡 ⟨𝑇⟩

⟨𝑇⟩
]

+V ⋅ [
∇𝜌

𝜌
−
∇
𝑥
𝜙

⟨𝑇⟩
] + |V|2 [

𝜕
𝑡 ⟨𝑇⟩

2⟨𝑇⟩
2
]} .

(49)
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Note that𝑀
[𝜌,0,⟨𝑇⟩]

, |V|2𝑀
[𝜌,0,⟨𝑇⟩]

, |V|2𝑀
[𝜌,0,⟨𝑇⟩]

are linearly
independent in weighted 𝐿2((1/𝑀

[𝜌,0,⟨𝑇⟩]
)𝑑V) space. There-

fore,

𝑑
2

𝑑𝑡2


𝑓 −𝑀

[𝜌,0,⟨𝑇⟩]



2

𝐿
2

𝑓=𝑀[𝜌,0,⟨𝑇⟩]

≥ 𝜅∫
𝑇
𝑁



∇𝜌

𝜌
−
∇
𝑥
𝜙

⟨𝑇⟩



2

𝑑𝑥

= 𝜅 [∫



∇𝜌

𝜌



2

+ ∫



∇
𝑥
𝜙

⟨𝑇⟩



2

− 2∫
∇𝜌 ⋅ ∇𝜙

𝜌 ⟨𝑇⟩
] ,

(50)

where

−2∫
∇𝜌 ⋅ ∇𝜙

𝜌 ⟨𝑇⟩
= −

2

⟨𝑇⟩
∫∇ ln 𝜌 ⋅ ∇𝜙

=
2

⟨𝑇⟩
∫ ln 𝜌Δ𝜙 = 2

⟨𝑇⟩
∫ ln 𝜌 (𝜌 − 1) .

(51)

It is easy to verify the convexity and nonnegativity of ln 𝜌(𝜌−
1). Therefore,

𝑑
2

𝑑𝑡2


𝑓 −𝑀

[𝜌,0,⟨𝑇⟩]



2

𝐿
2

𝑓=𝑀[𝜌,0,⟨𝑇⟩]

≥ 𝜅[∫



∇𝜌

𝜌



2

+ ∫



∇
𝑥
𝜙

⟨𝑇⟩



2

]

≥ 𝐾
3
[∫

𝑇
𝑁

∇𝜌


2
𝑑𝑥 + ∫

𝑇
𝑁

∇𝑥𝜙


2
𝑑𝑥] .

(52)

When 𝑓 does not coincide with 𝑀
[𝜌,0,⟨𝑇⟩]

, we need to
estimate two terms 𝐴 and 𝐵 of (42) separately. The detailed
calculation can be found in [4, 5]. Also, we just emphasize
the estimates for terms with 𝜙 here.

Notice that, when estimating 𝐵, we need to control
‖𝜕

2
𝑓/𝜕𝑡

2
‖
𝐿
2 by ‖𝑓 −𝑀‖1−𝛼

𝐿
2 . Substitute the Vlasov-Poisson-

Boltzmann equation (1) into 𝜕2𝑓/𝜕𝑡2; we get terms of 𝜙.
(a) 𝐿2 norm estimate of ∇

𝑥
𝜙
𝑡
⋅ ∇V𝑓.

It is obvious that
∇𝑥𝜙𝑡 ⋅ ∇V𝑓

𝐿2

≤
∇𝑥𝜙𝑡 ⋅ ∇V(𝑓 −𝑀)

𝐿2
+
∇𝑥𝜙𝑡 ⋅ ∇V𝑀

𝐿2

≤ 𝐶(∫
∇V (𝑓 −𝑀)



2
𝑑𝑥 𝑑V)

1/2

+ 𝐶(∫
∇𝑥𝜙𝑡



2
𝑑𝑥)

1/2

.

(53)

The first term is bounded by 𝐶‖𝑓 −𝑀‖1−𝛼
𝐿
2 by interpolation

lemma. As for the second term, since

∫
∇𝑥𝜙𝑡



2
𝑑𝑥 = −∫Δ𝜙

𝑡
⋅ 𝜙

𝑡
𝑑𝑥 = −∫𝜌

𝑡
𝜙
𝑡
𝑑𝑥

= ∫∇
𝑥
⋅ (𝜌𝑢) 𝜙

𝑡
𝑑𝑥 = −∫𝜌𝑢 ⋅ (∇

𝑥
𝜙
𝑡
) 𝑑𝑥

≤ (∫𝜌
2
𝑢
2
𝑑𝑥)

1/2

(∫
∇𝑥𝜙𝑡



2
𝑑𝑥)

1/2

,

(54)

we have

∫
∇𝑥𝜙𝑡



2
𝑑𝑥 ≤ 𝐶∫𝜌

2
𝑢
2
𝑑𝑥 ≤ 𝐶H (𝑢 | 0)

≤ 𝐶𝐻 (𝑓 | 𝑀) ≤ 𝐶
𝑓 −𝑀



2

𝐿
2 .

(55)

Hence, ‖∇
𝑥
𝜙
𝑡
⋅ ∇V𝑓‖𝐿2 ≤ 𝐶‖𝑓 −𝑀‖

1−𝛼

𝐿
2 .

(b) 𝐿2 norm estimate of (V ⊗ ∇V𝑀) : (∇
2

𝑥
𝜙).

Note that𝑀 is a Gaussian distribution, so that𝑀2 times
any polynomials of V is integrable:


(V ⊗ ∇V𝑀) : (∇

2

𝑥
𝜙)


2

𝐿
2

=

(V ⊗ V) : (∇2

𝑥
𝜙)𝑀



2

𝐿
2

= ∑

𝑖,𝑗,𝑘,𝑙

∫ V
𝑖
V
𝑗
V
𝑘
V
𝑙
𝑀

2
𝜕
𝑥𝑖𝑥𝑗
𝜙𝜕

𝑥𝑘𝑥𝑙
𝜙𝑑V 𝑑𝑥

≤ 𝐶∑

𝑖,𝑗

∫𝜕
𝑥𝑖𝑥𝑖
𝜙𝜕

𝑥𝑗𝑥𝑗
𝜙𝑑𝑥

= 𝐶∫ (Δ𝜙)
2
𝑑𝑥 = 𝐶∫

𝜌 − 1


2
𝑑𝑥

≤ 𝐶H (𝜌 | 1) ≤ 𝐶𝐻 (𝑓 | 𝑀) ≤ 𝐶
𝑓 −𝑀



2

𝐿
2 .

(56)

(c) 𝐿2 norm estimate of (∇
𝑥
𝜙 ⊗ ∇

𝑥
𝜙) : ∇

2

V𝑀.
Similarly as in the previous argument, 𝑀2 times any

polynomials of V is integrable. Also, 𝜙 and 𝜕𝜙 are bounded
by Schauder estimate because it is constrained by a Poisson
equation.

Note that Δ𝜙 = 𝜌 − 1; we have

∫
𝑇
𝑁

∇𝜙


2
𝑑𝑥 = −∫Δ𝜙 (𝜙 − 𝜙) 𝑑𝑥

= −∫ (𝜌 − 1) (𝜙 − 𝜙) 𝑑𝑥

≤ (∫ (𝜌 − 1)
2
)

1/2

(∫ (𝜙 − 𝜙)
2

)

1/2

≤ 𝐾
1/2

𝑃
(∫ (𝜌 − 1)

2
)

1/2

(∫
∇𝜙



2
)

1/2

.

(57)

Here,𝐾
𝑃
is the constant appearing in the Poincaré inequality,

which is only relevant to the domain 𝑇𝑁. Thus,

∫
∇𝜙



2
≤ 𝐾

𝑃
∫ (𝜌 − 1)

2
≤ 𝐾

2

𝑃
∫
∇𝜌



2
. (58)
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Therefore,


(∇

𝑥
𝜙 ⊗ ∇

𝑥
𝜙) : ∇

2

V𝑀


2

𝐿
2

=
(∇𝑥𝜙 ⊗ ∇𝑥𝜙) : (V ⊗ V − 𝐼)𝑀

2

𝐿
2

= ∑

𝑖,𝑗,𝑘,𝑙

∫𝜕
𝑖
𝜙𝜕

𝑗
𝜙𝜕

𝑘
𝜙𝜕

𝑙
𝜙 (V

𝑖
V
𝑗
− 𝛿

𝑖𝑗
)

× (V
𝑘
V
𝑙
− 𝛿

𝑘𝑙
)𝑀

2
𝑑V 𝑑𝑥

≤ 𝐶∑

𝑖,𝑗

∫(𝜕
𝑖
𝜙𝜕

𝑗
𝜙)

2

𝑑𝑥 ≤ 𝐶∑

𝑖

∫ (𝜕
𝑖
𝜙)

2
𝑑𝑥

= 𝐶∫
∇𝜙



2
𝑑𝑥 ≤ 𝐶∫

𝜌 − 1


2
𝑑𝑥 ≤ 𝐶H (𝜌 | 1)

≤ 𝐶𝐻 (𝑓 | 𝑀) ≤ 𝐶
𝑓 −𝑀



2

𝐿
2 .

(59)

(d) 𝐿2 norm estimate of 𝑄sym
(𝑓, ∇

𝑥
𝜙 ⋅ ∇V𝑀).

From themomentum and energy conservation of particle
collisions, it is easy to verify that

𝑄
sym

(𝑀, V
𝑖
𝑀) = 0. (60)

Thus,

𝑄
sym

(𝑓, ∇
𝑥
𝜙 ⋅ ∇V𝑀) = 𝑄

sym
(𝑓 −𝑀,∇

𝑥
𝜙 ⋅ V𝑀) . (61)

Then, using our continuity assumption (11) on 𝑄(𝑔, ℎ) and
the interpolation Lemma 8, we can estimate 𝐿2 norm of
𝑄

sym
(𝑓, ∇

𝑥
𝜙 ⋅ ∇V𝑀) by ‖𝑓 −𝑀‖

1−𝛼

𝐿
2 . Therefore, we have

∀0 < 𝛼 < 𝜂 < 1,



𝜕
2
𝑓

𝜕𝑡2

𝐿2
≤ 𝐶

𝛼

𝑓 −𝑀


1−𝛼

𝐿
2 ≤ 𝐶

𝜂

𝑓 −𝑀


1−𝜂

𝐿
1 .

(62)

The rest of the proof is similar to that in [5]. Now we
complete the proof of the lemma.

Notice that there is the symmetric gradient of 𝑢 in (38);
the next lemma can provide a method to control this term.

Lemma 9. One has the Korn-type inequality:

∫
𝑇
𝑁

∇
sym
𝑢


2
𝑑𝑥 ≥ 𝐾

𝐾
∫
Ω

|∇𝑢|
2
𝑑𝑥 (63)

and the following Poincaré-type inequalities:

∫
𝑇
𝑁

|∇𝑇|
2
𝑑𝑥 ≥ 𝐾

𝑇
H (𝑇 | ⟨𝑇⟩) ,

∫
𝑇
𝑁

|∇𝑢|
2
𝑑𝑥 ≥ 𝐾

𝑢
H (𝑢 | 0) ,

∫
𝑇
𝑁

∇𝜌


2
𝑑𝑥 ≥ 𝐾

𝜌
H (𝜌 | 1) .

(64)

Here all constants are positive.

Lemma 10. One has estimates on damping of hydrodynamic
oscillations with 𝐶

𝑆
> 0,



𝑑

𝑑𝑡
H (𝜌 | 1) ,

𝑑

𝑑𝑡
H (𝑢 | 0) ,

𝑑

𝑑𝑡
H (⟨𝑇⟩ | 1) ,

𝑑

𝑑𝑡
H (𝑇 | ⟨𝑇⟩)



≤ 𝐶
𝑆
𝐻(𝑓 | 𝑀)

1−𝜖
.

(65)

See [4] or [5] for the proof of the previous two lemmas.
Inequalities of Lemma 9 provide estimates of the right-hand
side of second-order differential inequalities in Lemma 7.
Lemma 10 provides the decay rate for hydrodynamic oscil-
lations.

3. Proof of the Main Result

Use the previous lemmas; we are now ready to prove
Theorem 2. The main idea is similar to that in [5]; for
convenience of the reader, we restate the sketch of the proof
and make it more complete by proving Lemma 11.

From 𝐻-theorem (Theorem 5), the convergence rate
of 𝐻(𝑓) to 𝐻(𝑀) is determined by entropy production
functional 𝐷(𝑓). But there are many local Maxwellians,
which make our entropy production functional𝐷(𝑓) vanish.
Therefore it is impossible to get a uniform lower bound on the
entropy production. To overcome this difficulty, it is natural
to estimate the average value of entropy production. Suppose
that

𝛼
0
= 𝐻(𝑓) − 𝐻(𝑀)

𝑡=𝑡0
. (66)

We wish to find an upper bound on a duration 𝑇
0
(it is

possible since𝐻(𝑓) is monotone nonincreasing), such that

𝐻(𝑓) − 𝐻(𝑀)
𝑡=𝑡0+𝑇0

= 𝜎𝛼
0
, (67)

where 𝜎 ∈ (0, 1) is fixed; say 𝜎 = 4/5. Therefore, we have

4

5
𝛼
0
≤ 𝐻 (𝑓) − 𝐻 (𝑀) ≤ 𝛼0. (68)

Lemma 11. Choose that 𝜖 > 0 is small enough, like 𝜖 < 0.01, if
one can show

𝑇
0
≤ 𝐶

0
(𝜖) 𝛼

−699𝜖

0
, (69)

where 𝐶
0
depends on 𝜖 and the various constants appearing in

lemmas of Section 2. Then

𝐻(𝑓) − 𝐻 (𝑀) = 𝑂 (𝑡
−1/700𝜖

) . (70)

Proof. Fix 𝜖 > 0 sufficiently small. Denote 𝐻(𝑓) − 𝐻(𝑀)
by 𝑔(𝑡). It is not hard to prove the continuity of 𝑔(𝑡). From
the boundedness of initial data 𝑓

0
, we can denote 𝑡

0
:= 0,

𝑔(𝑡)|
𝑡=0

= 𝑔(0) =: 𝛽
0
. It is sufficient to prove that, for all 𝑡 > 0,

𝑡
1/700𝜖

𝑔(𝑡) or equivalently 𝑡𝑔(𝑡)700𝜖 is uniformly bounded.
Define a sequence {𝑡

𝑖
}, such that

𝑔(𝑡)
𝑡=𝑡𝑖

= 𝜎
𝑖
𝛽
0
. (71)
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Correspondingly, we can define {𝑇
𝑖
}, 𝑇

𝑖
= 𝑡

𝑖
− 𝑡

𝑖−1
. From

the estimate of 𝑇
0
in (69), we have

𝑇
𝑖
≤ 𝐶

0
(𝜖) (𝜎

𝑖−1
𝛽
0
)
−699𝜖

. (72)

Therefore,

𝑡
𝑖
=

𝑖

∑

𝑘=1

𝑇
𝑘
≤ 𝐶

0 (𝜖) (𝛽0)
−699𝜖 𝜎

−699𝜖(𝑖−1)
− 1

𝜎−699𝜖 − 1
. (73)

It is obvious that 𝑡
𝑖
→ ∞, as 𝑖 → ∞.

For any 𝑡 > 0, we can find an interval such that 𝑡 ∈

[𝑡
𝑖−1
, 𝑡
𝑖
]. Now we are ready to estimate 𝑡𝑔(𝑡)700𝜖. From the

monotonicity of 𝑔(𝑡), we have

𝑡𝑔(𝑡)
700𝜖

≤ 𝑡
𝑖
𝑔(𝑡

𝑖−1
)
700𝜖

≤ 𝐶
0
(𝜖) (𝛽

0
)
−699𝜖 𝜎

−699𝜖(𝑖−1)
− 1

𝜎−699𝜖 − 1

× (𝜎
𝑖−1
𝛽
0
)
700𝜖

≤ 𝐶,

(74)

where the constant is independent of 𝑖, since 𝜎 < 1 is fixed
and 𝜖 > 0 can be chosen to be sufficiently small.

Once condition (69) is proved, the main theorem is a
direct consequence of𝐻(𝑓 | 𝑀) = 𝑂(𝐻(𝑓)−𝐻(𝑀)). Indeed,
from (58) and (20), we have

∫
∇𝜙



2
≤ 𝐾

𝑃
∫ (𝜌 − 1)

2
≤ 𝐾


H (𝜌 | 1) ≤ 𝐾


𝐻(𝑓 | 𝑀) ,

𝐻 (𝑓 | 𝑀) ≤ 𝐻 (𝑓) − 𝐻 (𝑀) = 𝐻 (𝑓 | 𝑀) + ∫
1

2

∇𝜙


2

≤ (1 +
𝐾


2
)𝐻 (𝑓 | 𝑀) .

(75)

Therefore, it remains to prove condition (69). Detailed
proof can be found in the last part of [5] for Vlasov-Poisson-
Boltzmann equations; we only describe the idea of the proof
for the completion of this paper. Consider

4

5
𝛼
0
≤ 𝐻 (𝑓) − 𝐻 (𝑀) ≤ 𝛼

0
, (76)

on interval 𝐼 := [𝑡
0
, 𝑡
0
+𝑇

0
]; that is,𝐻(𝑓)−𝐻(𝑀) has variation

𝛼
0
/5. In order to prove (69), it is sufficient to prove that the

average value of −(𝑑/𝑑𝑡)𝐻(𝑓) on interval 𝐼 satisfies

⟨−𝐻 (𝑓)⟩
𝐼
≥

𝐶𝛼
0

𝐶
0 (𝜖) 𝛼

−699𝜖

0

= 𝐶𝛼
1+699𝜖

0
. (77)

Now we proceed the proof of Theorem 2 step by step.

(1) 𝐼
𝐺
: Subinterval of 𝐼 Where 𝐻(𝑓 | 𝑀

[𝜌,𝑢,𝑇]
) Is Large.

Fromquantitative𝐻-Theorem 5, ⟨−𝐻(𝑓)⟩
𝐼𝐺
can be estimated

directly on subinterval of 𝐼 where 𝐻(𝑓 | 𝑀
[𝜌,𝑢,𝑇]

) is large.
The subinterval can be called 𝐼

𝐺
, which means good interval.

Other interval is called 𝐼
𝐵
, bad interval.

Notice the entropy additivity rules in Lemma 6; we actu-
ally have

𝐻(𝑓) − 𝐻 (𝑀) = 𝐻 (𝑓 | 𝑀) + ∫
1

2

∇𝜙


2

≤ (1 +
𝐾


2
)H (𝜌 | 1) +H (𝑢 | 0)

+H (𝑇 | ⟨𝑇⟩)

+H (⟨𝑇⟩ | 1) + 𝐻 (𝑓 | 𝑀
[𝜌,𝑢,𝑇]

) .

(78)

(2) 𝐼
𝐵𝐺
: Subinterval of 𝐼

𝐵
Where H(𝑇 | ⟨𝑇⟩) Is Large. On

interval 𝐼
𝐵
, 𝐻(𝑓 | 𝑀

[𝜌,𝑢,𝑇]
) is small, while 𝐻(𝑓) − 𝐻(𝑀)

has lower bound (4/5)𝛼
0
.Then by entropy additivity rules, we

must have thatH(𝜌 | 1)+H(𝑢 | 0)+H(𝑇 | ⟨𝑇⟩)+H(⟨𝑇⟩ | 1)

cannot be small.
Denote the subinterval of 𝐼

𝐵
by 𝐼

𝐵𝐺
where H(𝑇 |

⟨𝑇⟩) is large. Then from the Poincaré-type inequalities of
Lemma 9, we have that ∫

𝑇
𝑁
|∇𝑇|

2
𝑑𝑥 is large. Therefore, the

right hand side of (37) is large. By an argument for second-
order differential inequalities (Lemma 12 of Desvillettes and
Villani in [4]), we can conclude that either the average value
of ‖𝑓 −𝑀

[𝜌,𝑢,𝑇]
‖
𝐿
2
is large (so is𝐻(𝑓|𝑀

[𝜌,𝑢,𝑇]
)) or the length

of interval is small enough to be absorbed. 𝐻-theorem then
asserts that average value ⟨−𝐻(𝑓)⟩

𝐼𝐵𝐺
is large.

(3) 𝐼
𝐵𝐵𝐺

: Subinterval of 𝐼
𝐵𝐵

Where H(𝑢 | 0) Is Large. On
interval 𝐼

𝐵𝐵
, 𝐻(𝑓 | 𝑀

[𝜌,𝑢,𝑇]
), H(𝑇 | ⟨𝑇⟩) is small, while

𝐻(𝑓)−𝐻(𝑀) has lower bound (4/5)𝛼
0
.Then similarly,H(𝜌 |

1) +H(𝑢 | 0) +H(⟨𝑇⟩ | 1) cannot be small.
Denote the subinterval of 𝐼

𝐵𝐵
by 𝐼

𝐵𝐵𝐺
where H(𝑢 |

0) is large. Then from the Poincaré-type and Korn-type
inequalities of Lemma 9, we have that ∫ |∇sym

𝑢|
2
𝑑𝑥 is large.

Therefore, the right-hand side of (38) is large. By an argu-
ment for second-order differential inequalities (Lemma 12 of
Desvillettes and Villani in [4]), we can conclude that either
the average value of ||𝑓 − 𝑀

[𝜌,𝑢,⟨𝑇⟩]
||
𝐿
2 is large (so is 𝐻(𝑓 |

𝑀
[𝜌,𝑢,⟨𝑇⟩]

)) or the length of interval is small enough to be
absorbed. But the first line of (35) shows that𝐻(𝑓 | 𝑀

[𝜌,𝑢,𝑇]
)

must be large in average.𝐻-theorem then asserts that average
value ⟨−𝐻(𝑓)⟩

𝐼𝐵𝐵𝐺
is large.

(4) 𝐼
𝐵𝐵𝐵𝐺

: subinterval of 𝐼
𝐵𝐵𝐵

where H(⟨𝑇⟩|1) is large. On
interval 𝐼

𝐵𝐵𝐵
,𝐻(𝑓 | 𝑀

[𝜌,𝑢,𝑇]
),H(𝑇 | ⟨𝑇⟩),H(𝑢 | 0) is small,

while𝐻(𝑓)−𝐻(𝑀) has lower bound (4/5)𝛼
0
.Then similarly,

H(𝜌 | 1) +H(⟨𝑇⟩ | 1) cannot be small.
Denote the subinterval of 𝐼

𝐵𝐵𝐵
by 𝐼

𝐵𝐵𝐵𝐺
whereH(⟨𝑇⟩ | 1)

is large. From the conservation of energy, we have

|⟨𝑇⟩ − 1| =
2

𝑁
H (𝑢 | 0) +

1

𝑁
∫
𝑇
𝑁

∇𝜙


2
𝑑𝑥. (79)

Because of the Lipschitz continuity ofH(⟨𝑇⟩ | 1) = Ψ(⟨𝑇⟩),

H (⟨𝑇⟩ | 1) ≤ 𝐿 |⟨𝑇⟩ − 1| . (80)
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Since H(𝑢 | 0) is sufficiently small in 𝐼
𝐵𝐵𝐵𝐺

, therefore, (79)
turns to be

H (⟨𝑇⟩ | 1) ≤ 𝐿 |⟨𝑇⟩ − 1| ≤ 𝐶∫
𝑇
𝑁

∇𝜙


2
𝑑𝑥 ≤ 𝐶H (𝜌 | 1) .

(81)

Therefore, the right-hand side of (40) and (39) is large. By
a similar argument as in previous subintervals, we can also
show that average value ⟨−𝐻(𝑓)⟩

𝐼𝐵𝐵𝐵𝐺
is large. By a careful

calculation to absorb all the bad intervals into good ones, we
can prove that average value ⟨−𝐻(𝑓)⟩

𝐼
is large on interval 𝐼.

Thus, the whole proof is complete.
To conclude the paper, we remove the condition in

Theorem 1 by making a crucial estimates on terms with 𝜙.
The main differences with previous works [5] are in proving
Lemma 7. We also complete the gap in the last part of [4, 5]
by proving Lemma 11.
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The global asymptotic behavior of a nonautonomous competitor-competitor-mutualist model is investigated, where all the coeffi-
cients are time-dependent and asymptotically approach periodic functions, respectively. Under certain conditions, it is shown that
the limit periodic system of this asymptotically periodic model admits two positive periodic solutions (𝑢𝑇

1
, 𝑢
2𝑇
, 𝑢
𝑇

3
), (𝑢
1𝑇
, 𝑢
𝑇

2
, 𝑢
3𝑇
)

such that 𝑢
𝑖𝑇
≤ 𝑢
𝑇

𝑖
(𝑖 = 1, 2, 3), and the sector {(𝑢

1
, 𝑢
2
, 𝑢
3
) : 𝑢
𝑖𝑇
≤ 𝑢
𝑖
≤ 𝑢
𝑇

𝑖
, 𝑖 = 1, 2, 3} is a global attractor of the asymptotically

periodic model. In particular, we derive sufficient conditions that guarantee the existence of a positive periodic solution which is
globally asymptotically stable.

1. Introduction

In this paper, we investigate the global asymptotic behavior of
solutions for the following competitor-competitor-mutualist
diffusion model:

𝑢
1𝑡
− 𝑑
1
Δ𝑢
1

= 𝑔
1
𝑢
1
(1 −

𝑢
1

𝑎
1

−
𝑎
2
𝑢
2

1 + 𝑎
3
𝑢
3

) in Ω × (0,∞) ,

𝑢
2𝑡
− 𝑑
2
Δ𝑢
2

= 𝑔
2
𝑢
2
(1 − 𝑏

1
𝑢
1
−
𝑢
2

𝑏
2

) in Ω × (0,∞) ,

𝑢
3𝑡
− 𝑑
3
Δ𝑢
3

= 𝑔
3
𝑢
3
(1 −

𝑢
3

𝑐
1
+ 𝑐
2
𝑢
1

) in Ω × (0,∞) ,

(1)

𝜕𝑢
𝑖

𝜕𝑛
= 0 on 𝜕Ω × (0,∞) , 𝑖 = 1, 2, 3, (2)

𝑢
𝑖
(𝑥, 0) = 𝑢

𝑖0
(𝑥) on Ω, 𝑖 = 1, 2, 3, (3)

where 𝑢
1
(𝑥, 𝑡), 𝑢

2
(𝑥, 𝑡), and 𝑢

3
(𝑥, 𝑡) are the densities of a

mutualist-competitor, a competitor, and a mutualist popula-
tion, respectively.Ω ⊂ R𝑁 is a bounded smooth domain, 𝜕/𝜕𝑛
is an outward normal derivative on 𝜕Ω.

In 1983, Rai et al. [1] firstly presented and studied a general
competitor-competitor-mutualist ordinary differential equa-
tion (ODE) model. Zheng [2] studied the problem (1)–(3)
in the case where all coefficients are positive constants. He
proved the local stability of the unique positive constant
steady-state solution under suitable condition on the reac-
tion rates by the method of spectral analysis for linearized
operator. Xu [3] investigated the global asymptotic stability of
the unique positive constant steady-state solution under some
assumptions by the iteration method. Pao [4] considered the
model with time delays, and, under a very simple condi-
tion on the reaction rates, proved that the time-dependent
solution with any nontrivial initial function converges to the
positive steady-state solution by the method of upper and
lower solutions. Chen and Peng [5] proved some existence
results concerning nonconstant positive steady-states for the
model with cross-diffusion and demonstrated that the cross-
diffusion can create patterns when the corresponding model
without cross-diffusion fails. Li et al. [6] proved that this
model with cross-diffusion possesses at least one coexistence
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state if cross-diffusions and cross-reactions are weak by the
Schauder fixed point theory and the method of upper and
lower solutions and its associated monotone iterations. Fu et
al. [7] investigated the global asymptotic behavior and the
global existence of time-dependent solutions for the model
with cross-diffusion when the space dimension is at most 5.
Very recently, Tian and Ling [8] proved that, under some con-
ditions, a corresponding predator-prey-mutualist model with
cross-diffusion admits at least a nonhomogeneous stationary
solution by the stability analysis for the positive uniform
solution and the Leray-Schauder degree theory and carried
out numerical simulations for a Turing pattern.

For the model (1) with 𝑇-periodic coefficients, Tineo [9]
studied the asymptotic behavior of positive solutions by the
method of upper and lower solutions. Du [10] investigated
the existence of positive 𝑇-periodic solutions by using the
degree and bifurcation theories. Pao [11] proved the existence
of maximal andminimal 𝑇-periodic solutions by the method
of upper and lower solutions. Wang et al. [12] considered the
local asymptotic behavior of the time-dependent solutions
and the existence of periodic solutions to the model in an
unbounded domain. Zhou and Fu [13] investigated the global
asymptotic behavior of the time-dependent solutions and the
existence of periodic solutions for the model with discrete
delays. Very recently, replacing the usual −Δ𝑢 term by a
degenerate elliptic operator as −Δ𝑢

𝑚, Wang and Yin [14]
proved the existence of maximal and minimal 𝑇-periodic
solutions to the model with time delays by the Schauder fixed
point theorem. It is important to note that the uniqueness of
positive periodic solution is not considered in the previous
references.

When 𝑎
3
= 0, (1) reduces to the competition diffusion

system

𝑢
𝑡
− 𝑑
1
Δ𝑢 = 𝑢 (𝑎 − 𝑏𝑢 − 𝑐V) ,

V
𝑡
− 𝑑
2
ΔV = V (𝑑 − 𝑒𝑢 − 𝑓V) ,

(4)

where 𝑎 = 𝑔
1
, 𝑏 = 𝑔

1
/𝑎
1
, 𝑐 = 𝑔

1
/𝑎
2
, 𝑑 = 𝑔

2
, 𝑒 = 𝑔

2
𝑏
1
, and

𝑓 = 𝑔
2
/𝑏
2
. The system (4) is a diffusion extension of the well-

known Lotka-Volterra system

𝑑𝑢

𝑑𝑡
= 𝑢 (𝑎 − 𝑏𝑢 − 𝑐V) ,

𝑑V
𝑑𝑡

= V (𝑑 − 𝑒𝑢 − 𝑓V) .

(5)

In the case that 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, and 𝑓 are positive 𝑇-periodic
functions, the existence and asymptotic stability of periodic
solutions for (5) was studied by Gopalsamy [15], Alvarez
and Lazer [16], and Ahmad [17] in the 1980’s. The global
asymptotic behavior of (5) was studied by Ahmad and Lazer
[18] and Tineo [19]. Denote 𝑓

𝐿
= inf

𝑥∈𝑋
𝑓(𝑥) and 𝑓

𝑀
=

sup
𝑥∈𝑋

𝑓(𝑥) for any function𝑓 : 𝑋 → R. If 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, and 𝑓
are positive asymptotically 𝑇-periodic functions on R, Peng
and Chen [20] proved that if the conditions

𝑎
𝐿
− 𝜀
0

𝑑
𝑀
+ 𝜀
0

>
𝑐
𝑀
+ 𝜀
0

𝑓
𝐿
− 𝜀
0

,
𝑑
𝐿
− 𝜀
0

𝑎
𝑀
+ 𝜀
0

>
𝑒
𝑀
+ 𝜀
0

𝑏
𝐿
− 𝜀
0

(6)

are satisfied for a certain sufficiently small 𝜀
0
> 0, then any

positive solutions of (5) asymptotically approach the unique
positive periodic solution for the limit periodic system of (5).

It is well known that periodic reaction diffusion equations
are of particular interests since they can take into account
seasonal fluctuations occurring in the phenomena appearing
in the models, and they have been extensively studied by
many researchers (see, e.g., [9–14, 19, 21]). However, so far,
the researchwork on asymptotically periodic systems ismuch
fewer than on the periodic ones. In fact, asymptotically
periodic systems describe our world more realistically and
more accurately than periodic ones to some extent.Therefore,
for asymptotically periodic systems, studying the dynamics
behavior is important and necessary (see, e.g., [22–27]).

In this paper, we study the global asymptotic behavior of
positive solutions for the asymptotically periodic system (1).
Under some conditions, it is shown that any positive solutions
of the models asymptotically approach the unique strictly
positive periodic solutions of the corresponding periodic
system.Thismeans that the results inTineo [9] and the results
for ODEmodel in Peng and Chen [20] can be extended to the
asymptotically periodic reaction diffusion system and the 3-
species diffusion system, respectively. Furthermore, using the
method of the present paper, we note that the corresponding
conclusions hold for the time-dependent 𝑛-species Lotka-
Volterra systems. More specifically, we provide a way of how
to use the method of upper and lower solutions to study
asymptotic behavior of solutions for asymptotically periodic
reaction diffusion systems. As one can see, the optimal
bounds and uniqueness of positive periodic solutions will
play an important role in the study of the global asymptotic
behavior of periodic solutions.

2. Permanence and Extinction

For the sake of convenience, we introduce the two signs
∼ and ≺ for functions 𝑢, V : Ω × R → [0,∞). 𝑢 is
said to approach V asymptotically in notation, 𝑢 ∼ V,
if lim

𝑡→∞
|𝑢(𝑥, 𝑡) − V(𝑥, 𝑡)| = 0 uniformly for 𝑥 in Ω.

Furthermore, if (𝜑
1
, 𝜑
2
, . . . , 𝜑

𝑛
) and (𝜓

1
, 𝜓
2
, . . . , 𝜓

𝑛
) are vector

functions, then (𝜑
1
, 𝜑
2
, . . . , 𝜑

𝑛
) ∼ (𝜓

1
, 𝜓
2
, . . . , 𝜓

𝑛
) if and

only if 𝜑
𝑖
∼ 𝜓
𝑖
(𝑖 = 1, 2, . . . , 𝑛). We say that 𝑢(𝑥, 𝑡) is

asymptotically smaller than V(𝑥, 𝑡) and write 𝑢(𝑥, 𝑡) ≺ V(𝑥, 𝑡)
if lim
𝑡→∞

(𝑢(𝑥, 𝑡) − V(𝑥, 𝑡)) ≤ 0 uniformly for 𝑥 ∈ Ω. It is
clear that 𝑢(𝑥, 𝑡) ≺ V(𝑥, 𝑡) if and only, if for any 𝜀 > 0, there
exists a corresponding 𝑡

1
> 0 such that 𝑢(𝑥, 𝑡) < V(𝑥, 𝑡) + 𝜀 on

Ω × [𝑡
1
,∞).

Assume the following.

(H
1
) 𝑑
𝑖
, 𝐴
𝑖
, 𝐵
𝑖
, 𝐶
𝑖
, and 𝐺

𝑖
are positive smooth and 𝑇-

periodic functions onΩ × R.

(H
2
) 𝑎
𝑖
, 𝑏
𝑖
, 𝑐
𝑖
, and𝑔

𝑖
are positive smooth functions onΩ×R,

and

(𝑎
𝑖
, 𝑏
𝑖
, 𝑐
𝑖
, 𝑔
𝑖
) ∼ (𝐴

𝑖
, 𝐵
𝑖
, 𝐶
𝑖
, 𝐺
𝑖
) . (7)
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By (H
2
), the limit periodic system of (1), (2) is given as

follows:

𝑢
1𝑡
− 𝑑
1
Δ𝑢
1

= 𝐺
1
𝑢
1
(1 −

𝑢
1

𝐴
1

−
𝐴
2
𝑢
2

1 + 𝐴
3
𝑢
3

) in Ω × (0,∞) ,

𝑢
2𝑡
− 𝑑
2
Δ𝑢
2

= 𝐺
2
𝑢
2
(1 − 𝐵

1
𝑢
1
−
𝑢
2

𝐵
2

) in Ω × (0,∞) ,

𝑢
3𝑡
− 𝑑
3
Δ𝑢
3

= 𝐺
3
𝑢
3
(1 −

𝑢
3

𝐶
1
+ 𝐶
2
𝑢
1

) in Ω × (0,∞) ,

𝜕𝑢
𝑖

𝜕𝑛
= 0 on 𝜕Ω × (0,∞) (𝑖 = 1, 2, 3) .

(8)

As a complement, we state the following main result
which comes from [9, Theorem 0.3].

Theorem 1. Assume that (𝐻
1
) holds, and

𝐴
2𝑀

𝐵
2𝑀

< 1 + 𝐴
3𝐿
𝐶
1𝐿
, (9)

𝐴
1𝑀

𝐵
1𝑀

< 1. (10)

Then (8) has the periodic solutions (𝑢𝑇
1
, 𝑢
2𝑇
, 𝑢
𝑇

3
) and (𝑢

1𝑇
,

𝑢
𝑇

2
, 𝑢
3𝑇
) such that 𝑢𝑇

𝑖
≥ 𝑢
𝑖
≥ 𝑢
𝑖𝑇

> 0 (𝑖 = 1, 2, 3) for any
positive 𝑇-periodic solution (𝑢

1
, 𝑢
2
, 𝑢
3
) of (8). Moreover, given

that 𝜀 > 0 and a solution (𝑢
1
, 𝑢
2
, 𝑢
3
) of (8) with 𝑢

𝑖
(𝑥, 0) ≥

( ̸≡ )0, there exists 𝑡
1
> 0 such that 𝑢

𝑖𝑇
(𝑥, 𝑡) − 𝜀 < 𝑢

𝑖
(𝑥, 𝑡) <

𝑢
𝑇

𝑖
(𝑥, 𝑡) + 𝜀 on Ω × (𝑡

1
,∞).

In order to get the conditions for the permanence of (1)–
(3), we need to make the following optimal bounds.

Lemma 2. If (9) and (10) hold and (𝑢
1
, 𝑢
2
, 𝑢
3
) is a positive

smooth 𝑇-periodic solution of (8), then

𝜀
𝑢𝑖
≤ 𝑢
𝑖
≤ 𝛿
𝑢𝑖

(𝑖 = 1, 2, 3) , (11)

where 𝛿
𝑢1
is the unique positive root of 𝑝

1
𝑥
2
+𝑞
1
𝑥+𝑟
1
= 0 and

𝑝
1
= 𝐴
3𝑀

𝐶
2𝑀

,

𝑟
1
= 𝐴
1𝑀

(𝐴
2𝐿
𝐵
2𝐿
− 1 − 𝐴

3𝑀
𝐶
1𝑀

) ,

𝑞
1
= 1 + 𝐴

3𝑀
𝐶
1𝑀

− 𝐴
1𝑀

𝐴
3𝑀

𝐶
2𝑀

− 𝐴
1𝑀

𝐴
2𝐿
𝐵
1𝑀

𝐵
2𝐿
.

(12)

𝜀
𝑢1
is the unique positive root of 𝑝

2
𝑥
2
+ 𝑞
2
𝑥 + 𝑟
2
= 0, and

𝑝
2
= 𝐴
3𝐿
𝐶
2𝐿
,

𝑟
2
= 𝐴
1𝐿
(𝐴
2𝑀

𝐵
2𝑀

− 1 − 𝐴
3𝐿
𝐶
1𝐿
) ,

𝑞
2
= 1 + 𝐴

3𝐿
𝐶
1𝐿
− 𝐴
1𝐿
𝐴
3𝐿
𝐶
2𝐿
− 𝐴
1𝐿
𝐴
2𝑀

𝐵
1𝐿
𝐵
2𝑀

,

𝛿
𝑢2
= 𝐵
2𝑀

− 𝐵
1𝐿
𝐵
2𝑀

𝜀
𝑢1
,

𝜀
𝑢2
= 𝐵
2𝐿
− 𝐵
1𝑀

𝐵
2𝐿
𝛿
𝑢1
,

𝛿
𝑢3
= 𝐶
1𝑀

+ 𝐶
2𝑀

𝛿
𝑢1
, 𝜀

𝑢3
= 𝐶
1𝐿
+ 𝐶
2𝐿
𝜀
𝑢1
.

(13)

Proof. By themaximum principle (see Lemma 1.2 of [18]), we
have

1 −
𝑢
1𝑀

𝐴
1𝑀

−
𝐴
2𝐿
𝑢
2𝐿

1 + 𝐴
3𝑀

𝑢
3𝑀

≥ 0,

1 −
𝑢
1𝐿

𝐴
1𝐿

−
𝐴
2𝑀

𝑢
2𝑀

1 + 𝐴
3𝐿
𝑢
3𝐿

≤ 0,

1 − 𝐵
1𝐿
𝑢
1𝐿
−
𝑢
2𝑀

𝐵
2𝑀

≥ 0,

1 − 𝐵
1𝑀

𝑢
1𝑀

−
𝑢
2𝐿

𝐵
2𝐿

≤ 0,

1 −
𝑢
3𝑀

𝐶
1𝑀

+ 𝐶
2𝑀

𝑢
1𝑀

≥ 0,

1 −
𝑢
3𝐿

𝐶
1𝐿
+ 𝐶
2𝐿
𝑢
1𝐿

≤ 0.

(14)

Hence, 𝑝
1
𝑢
2

1𝑀
+ 𝑞
1
𝑢
1𝑀

+ 𝑟
1
≤ 0. Since 𝑝

1
> 0 and 𝑟

1
< 0 (by

(9)), we can see immediately that 𝑢
1𝑀

≤ 𝛿
𝑢1
. Similarly, if 𝜀

𝑢1
is

the unique positive root of 𝑝
2
𝑥
2
+𝑞
2
𝑥+𝑟
2
= 0, then 𝑢

1𝐿
≥ 𝜀
𝑢1
.

So,

𝜀
𝑢2
≤ 𝑢
2𝐿

≤ 𝑢
2𝑀

≤ 𝛿
𝑢2
,

𝜀
𝑢3
≤ 𝑢
3𝐿

≤ 𝑢
3𝑀

≤ 𝛿
𝑢3
.

(15)

Evidently, 𝜀
𝑢3
> 0. By (9) and (10), we have

𝑝
1

𝐵
2

1𝑀

+
𝑞
1

𝐵
1𝑀

+ 𝑟
1
> 0, (16)

from which it follows that 𝜀
𝑢2

> 0. This completes the proof.

Corollary 3. Assume that (9) and (10) hold. If 𝐴
𝑖
, 𝐵
𝑖
, and 𝐶

𝑖

are positive constants, then (9) has the unique positive periodic
solution (𝑟, 𝐵

2
(1−𝐵
1
𝑟), 𝐶
1
+𝐶
2
𝑟), where 𝑟 is the unique positive

root of 𝑝
1
𝑥
2
+ 𝑞
1
𝑥 + 𝑟
1
= 0.
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The main results in this section are the following theo-
rems.

Theorem 4 (permanence). Assume that (𝐻
1
), (𝐻
2
), (9), and

(10) hold. Then (8) has the positive 𝑇-periodic solutions
(𝑢
1𝑇
, 𝑢
𝑇

2
, 𝑢
3𝑇
) and (𝑢

𝑇

1
, 𝑢
2𝑇
, 𝑢
𝑇

3
) such that 𝑢

𝑖𝑇
≤ 𝑢
𝑇

𝑖
(𝑖 =

1, 2, 3). Moreover, if (𝑢
1
, 𝑢
2
, 𝑢
3
) is the solution of (1)–(3) with

smooth initial values 𝑢
𝑖0
(𝑥) ≥ ( ̸≡ )0, then

𝑢
𝑖𝑇
≺ 𝑢
𝑖
≺ 𝑢
𝑇

𝑖
(𝑖 = 1, 2, 3) . (17)

Remark 5. Under the assumptions of Theorem 4, the system
(1), (2) is permanent, the sector ⟨𝑢

𝑇
, 𝑢
𝑇
⟩ = {𝑢 ∈ 𝐶(Ω × R) :

𝑢
𝑇

≤ 𝑢 ≤ 𝑢
𝑇
} is a global periodic attractor of (1), (2),

and its trivial and semitrivial periodic solutions are unstable.
Furthermore, if 𝐴

𝑖
, 𝐵
𝑖
, and 𝐶

𝑖
are positive constants, then

(𝑟, 𝐵
2
(1−𝐵
1
𝑟), 𝐶
1
+𝐶
2
𝑟) is the unique globally asymptotically

stable solution of (8).

Theorem 6. Assume that (𝐻
1
) and (𝐻

2
) hold. Then one has

the following conclusions.

(1) (Extinction of 𝑢
2
) Assume that (9) holds and that

𝐴
1𝐿
𝐵
1𝐿

≥ 1. Then (8) has a 𝑇-periodic solution
(𝑈
1
, 𝑈
2
, 𝑈
3
) such that 𝑈

1
> 0, 𝑈

2
= 0, 𝑈

3
> 0, and

lim
𝑡→∞

𝑢𝑖 (𝑥, 𝑡) − 𝑈
𝑖
(𝑥, 𝑡)

 = 0 (𝑖 = 1, 2, 3) (18)

uniformly onΩ, for any positive solution (𝑢
1
, 𝑢
2
, 𝑢
3
) of

(1)–(3).

(2) (Extinction of 𝑢
1
) Assume that (10) holds and that

𝐴
2𝐿
𝐵
2𝐿

≥ 1 + 𝐴
3𝑀

𝐶
1𝑀

+ 𝐴
3𝑀

𝐴
1𝑀

𝐶
2𝑀

. (19)

Then (8) has a 𝑇-periodic solution (𝑈
1
, 𝑈
2
, 𝑈
3
) with

𝑈
1
= 0, 𝑈

2
> 0, and 𝑈

3
> 0 satisfying (18), where

(𝑢
1
, 𝑢
2
, 𝑢
3
) is any positive solution of (1)–(3).

Proof of Theorem 4. By (9) and (10), there exists a sufficiently
small 𝜀

0
> 0 such that, for 𝛿 ∈ (0, 𝜀

0
),

[
(𝐺
1
+ 𝛿) (𝐴

2
+ 𝛿)

𝐺
1
− 𝛿

]

𝑀

[
(𝐺
2
+ 𝛿) (𝐵

2
+ 𝛿)

𝐺
2
− 𝛿

]

𝑀

< 1 + (𝐴
3𝐿
− 𝛿) [

(𝐺
3
− 𝛿)(𝐶

1
− 𝛿)

𝐺
3
+ 𝛿

]

𝐿

,

(20)

[
(𝐺
1
+ 𝛿)(𝐴

1
+ 𝛿)

𝐺
1
− 𝛿

]

𝑀

[
(𝐺
2
+ 𝛿)(𝐵

1
+ 𝛿)

𝐺
2
− 𝛿

]

𝑀

< 1. (21)

Consider two auxiliary systems as follows:

𝑢
1𝑡
− 𝑑
1
Δ𝑢
1

= 𝑢
1
[(𝐺
1
+ 𝛿) −

(𝐺
1
− 𝛿) 𝑢

1

𝐴
1
+ 𝛿

−
(𝐺
1
− 𝛿) (𝐴

2
− 𝛿) 𝑢

2

1 + (𝐴
3
+ 𝛿) 𝑢

3

] in Ω × (0,∞) ,

𝑢
2𝑡
− 𝑑
2
Δ𝑢
2

= 𝑢
2
[ (𝐺
2
− 𝛿) − (𝐺

2
+ 𝛿) (𝐵

1
+ 𝛿) 𝑢

1

−
(𝐺
2
+ 𝛿) 𝑢

2

𝐵
2
− 𝛿

] in Ω × (0,∞) ,

𝑢
3𝑡
− 𝑑
3
Δ𝑢
3

= 𝑢
3
[ (𝐺
3
+ 𝛿)

−
(𝐺
3
− 𝛿) 𝑢

3

(𝐶
1
+ 𝛿) + (𝐶

2
+ 𝛿) 𝑢

1

] in Ω × (0,∞) ,

𝜕𝑢
𝑖

𝜕𝑛
= 0 on 𝜕Ω × (0,∞) (𝑖 = 1, 2, 3) ,

(22)

𝑢
1𝑡
− 𝑑
1
Δ𝑢
1

= 𝑢
1
[(𝐺
1
− 𝛿) −

(𝐺
1
+ 𝛿) 𝑢

1

𝐴
1
− 𝛿

−
(𝐺
1
+ 𝛿) (𝐴

2
+ 𝛿) 𝑢

2

1 + (𝐴
3
− 𝛿) 𝑢

3

] in Ω × (0,∞) ,

𝑢
2𝑡
− 𝑑
2
Δ𝑢
2

= 𝑢
2
[ (𝐺
2
+ 𝛿) − (𝐺

2
− 𝛿) (𝐵

1
− 𝛿) 𝑢

1

−
(𝐺
2
− 𝛿) 𝑢

2

𝐵
2
+ 𝛿

] in Ω × (0,∞) ,

𝑢
3𝑡
− 𝑑
3
Δ𝑢
3

= 𝑢
3
[(𝐺
3
− 𝛿) −

(𝐺
3
+ 𝛿) 𝑢

3

(𝐶
1
− 𝛿) + (𝐶

2
− 𝛿) 𝑢

1

]

in Ω × (0,∞) ,

𝜕𝑢
𝑖

𝜕𝑛
= 0 on 𝜕Ω × (0,∞) (𝑖 = 1, 2, 3) .

(23)

By (20), (21), and Theorem 1, (22) has the positive 𝑇-
periodic solutions (𝑈

1𝛿
, 𝑢
𝛿

2
, 𝑈
3𝛿
) and (𝑈

𝛿

1
, 𝑢
2𝛿
, 𝑈
𝛿

3
) such that

𝑈
𝑖𝛿

≤ 𝑢
𝑖
≤ 𝑈
𝛿

𝑖
(𝑖 = 1, 3) and 𝑢

2𝛿
≤ 𝑢
2
≤ 𝑢
𝛿

2
, for any

positive 𝑇-periodic solution (𝑢
1
, 𝑢
2
, 𝑢
3
) of (22). Moreover, if
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(𝑢
1
, 𝑢
2
, 𝑢
3
) is a solution of (22) with nontrivial nonnegative

initial values, then, for any 𝜀 > 0, there exists 𝑡
𝜀
> 0 such that

𝑈
𝑖𝛿 (𝑥, 𝑡) − 𝜀 < 𝑢

𝑖 (𝑥, 𝑡) < 𝑈
𝛿

𝑖
(𝑥, 𝑡) + 𝜀 (𝑖 = 1, 3) ,

𝑢
2𝛿
(𝑥, 𝑡) − 𝜀 < 𝑢

2
(𝑥, 𝑡) < 𝑢

𝛿

2
(𝑥, 𝑡) + 𝜀,

(24)

for all 𝑥 ∈ Ω and 𝑡 > 𝑡
𝜀
. Similarly, (23) has the positive 𝑇-

periodic solutions (𝑢
1𝛿
, 𝑈
𝛿

2
, 𝑢
3𝛿
) and (𝑢

𝛿

1
, 𝑈
2𝛿
, 𝑢
𝛿

3
) such that

𝑢
𝑖𝛿

≤ 𝑢
𝑖
≤ 𝑢
𝛿

𝑖
(𝑖 = 1, 3) and 𝑈

2𝛿
≤ 𝑢
2
≤ 𝑈
𝛿

2
, for any

positive𝑇-periodic solution (𝑢
1
, 𝑢
2
, 𝑢
3
) of (23). Furthermore,

if (𝑢
1
, 𝑢
2
, 𝑢
3
) is a solution of (23) with nontrivial nonnegative

initial values, then, for the previous 𝜀 > 0, there exists 𝑡
𝜀
> 0

such that, for all 𝑥 ∈ Ω and 𝑡 > 𝑡


𝜀
,

𝑢
𝑖𝛿
(𝑥, 𝑡) − 𝜀 < 𝑢

𝑖
(𝑥, 𝑡) < 𝑢

𝛿

𝑖
(𝑥, 𝑡) + 𝜀 (𝑖 = 1, 3) ,

𝑈
2𝛿
(𝑥, 𝑡) − 𝜀 < 𝑢

2
(𝑥, 𝑡) < 𝑈

𝛿

2
(𝑥, 𝑡) + 𝜀.

(25)

Now we prove

𝑢
𝑖𝛿
≤ 𝑢
𝑖𝑇
≤ 𝑈
𝑖𝛿
, 𝑢

𝛿

𝑖
≤ 𝑢
𝑇

𝑖
≤ 𝑈
𝛿

𝑖
, (26)

where (𝑢
1𝑇
, 𝑢
𝑇

2
, 𝑢
3𝑇
) and (𝑢𝑇

1
, 𝑢
2𝑇
, 𝑢
𝑇

3
) are positive 𝑇-periodic

solutions of (8) (seeTheorem 1). Let (𝑈
1
, 𝑢
2
, 𝑈
3
), (𝑝
1
, 𝑝
2
, 𝑝
3
),

and (𝑢
1
, 𝑈
2
, 𝑢
3
) be the solutions of (22), (8), and (23),

respectively, which all satisfy the same initial conditions. It
is easily testified that (𝑈

1
, 𝑈
2
, 𝑈
3
), (𝑢
1
, 𝑢
2
, 𝑢
3
) are the upper

and lower solutions of (8) and (3), respectively. So from [28,
Corollary 5.2.10], we see that

𝑢
𝑖
≤ 𝑝
𝑖
≤ 𝑈
𝑖

(𝑖 = 1, 2, 3) . (27)

For sufficiently small𝑚 > 0 and 𝛿 > 0, define

𝑟
1
= [

(𝐺
1
+ 𝛿)(𝐴

1
+ 𝛿)

𝐺
1
− 𝛿

]

𝑀

,

𝑟
2
= [

(𝐺
2
+ 𝛿)(𝐵

2
+ 𝛿)

𝐺
2
− 𝛿

]

𝑀

,

𝑟
3
= [

(𝐺
3
+ 𝛿)(𝐶

1
+ 𝛿)

𝐺
3
− 𝛿

]

𝑀

+ [
(𝐺
3
+ 𝛿)(𝐶

2
+ 𝛿)

𝐺
3
− 𝛿

]

𝑀

𝑟
1
,

𝑠
0
= [

(𝐺
3
− 𝛿)(𝐶

1
− 𝛿)

𝐺
3
+ 𝛿

]

𝐿

+ [
(𝐺
3
− 𝛿)(𝐶

2
− 𝛿)

𝐺
3
+ 𝛿

]

𝐿

𝑚.

(28)

Choose (𝑢
10
(𝑥), 𝑢
20
(𝑥), 𝑢
30
) = (𝑟

1
, 𝑚, 𝑟
2
). Then (𝑟

1
, 𝑟
2
, 𝑟
3
)

and (𝑚,𝑚, 𝑠) are the ordered upper and lower solutions of
(22) and (3) (also of (23) and (3) and of (8) and (3)). Applying
the same technique from [18, Theorem 4.1], we can prove
that the solution (𝑈

1
, 𝑢
2
, 𝑈
3
) of (22) and (3), the solution

(𝑢
1
, 𝑈
2
, 𝑢
3
) of (23) and (3), and the solution (𝑝

1
, 𝑝
2
, 𝑝
3
) of (8)

and (3) satisfy, respectively,

lim
𝑛→∞

(𝑈
1
(𝑥, 𝑡 + 𝑛𝑇) , 𝑢

2
(𝑥, 𝑡 + 𝑛𝑇) , 𝑈

3
(𝑥, 𝑡 + 𝑛𝑡))

= (𝑈
𝛿

1
(𝑥, 𝑡) , 𝑢2𝛿 (𝑥, 𝑡) , 𝑈

𝛿

3
(𝑥, 𝑡)) ,

lim
𝑛→∞

(𝑢
1 (𝑥, 𝑡 + 𝑛𝑡) , 𝑈2 (𝑥, 𝑡 + 𝑛𝑇) , 𝑢3 (𝑥, 𝑡 + 𝑛𝑇))

= (𝑢
𝛿

1
(𝑥, 𝑡) , 𝑈

2𝛿
(𝑥, 𝑡) , 𝑢

𝛿

3
(𝑥, 𝑡)) ,

lim
𝑛→∞

(𝑝
1
(𝑥, 𝑡 + 𝑛𝑇) , 𝑝

2
(𝑥, 𝑡 + 𝑛𝑇) , 𝑝

3
(𝑥, 𝑡 + 𝑛𝑇))

= (𝑢
𝑇

1
(𝑥, 𝑡) , 𝑢

2𝑇
(𝑥, 𝑡) , 𝑢

𝑇

3
(𝑥, 𝑡)) .

(29)

It follows from (27) that 𝑢𝛿
𝑖
≤ 𝑢
𝑇

𝑖
≤ 𝑈
𝛿

𝑖
(𝑖 = 1, 3) and that

𝑢
2𝛿

≤ 𝑢
2𝑇

≤ 𝑈
2𝛿
. Similarly, choose (𝑢

10
(𝑥), 𝑢
20
(𝑥), 𝑢
30
(𝑥)) =

(𝑚, 𝑟
2
, 𝑠); we can prove the other inequalities of (26).

Denote by 𝜀
1𝑢𝑖
, 𝛿
1𝑢𝑖
, 𝜀
2𝑢𝑖
, and 𝛿

2𝑢𝑖
the optimal bounds for

the positive periodic solutions of problems (22) and (23),
respectively, (see Lemma 2). Then

𝛿
2𝑢𝑖

≤ 𝛿
𝑢𝑖
≤ 𝛿
1𝑢𝑖
,

𝜀
2𝑢𝑖

≤ 𝜀
𝑢𝑖
≤ 𝜀
1𝑢𝑖

(𝑖 = 1, 3) ,

𝛿
1𝑢2

≤ 𝛿
𝑢2
≤ 𝛿
2𝑢2

, 𝜀
1𝑢2

≤ 𝜀
𝑢2
≤ 𝜀
2𝑢2

.

(30)

Moreover,

𝜀
2𝑢𝑖

≤ 𝑢
𝑖𝛿
≤ 𝑈
𝛿

𝑖
≤ 𝛿
1𝑢𝑖

(𝑖 = 1, 3) ,

𝜀
1𝑢2

≤ 𝑢
2𝛿
≤ 𝑈
𝛿

2
≤ 𝛿
2𝑢2

,

𝑢
𝑖𝛿1

< 𝑢
𝑖𝛿2
, 𝑈

𝛿1

𝑖
> 𝑈
𝛿2

𝑖

(31)

for 0 < 𝛿
2
< 𝛿
1
< 𝜀
0
. By using the dominated convergence

theorem and the bootstrap arguments (see [18]), we have

lim
𝛿→0+

(𝑈
𝛿

1
, 𝑢
2𝛿
, 𝑈
𝛿

3
) = (𝑢

𝑠

1
, 𝑢
2𝑠
, 𝑢
𝑠

3
) ,

lim
𝛿→0+

(𝑢
1𝛿
, 𝑈
𝛿

2
, 𝑢
3𝛿
) = (𝑢

1𝑠
, 𝑢
𝑠

2
, 𝑢
3𝑠
)

(32)

uniformly for (𝑥, 𝑡) onΩ×R, and (𝑢
1𝑠
, 𝑢
𝑠

2
, 𝑢
3𝑠
) and (𝑢𝑠

1
, 𝑢
2𝑠
, 𝑢
𝑠

3
)

are the positive 𝑇-periodic solutions of (8).
From Theorem 1, we see that 𝑢

𝑖𝑇
≤ 𝑢
𝑖𝑠
and 𝑢

𝑠

𝑖
≤ 𝑢
𝑇

𝑖
(𝑖 =

1, 2, 3). It follows from (26) and (32) that 𝑢
𝑖𝑠

≤ 𝑢
𝑖𝑇
, 𝑢
𝑇

𝑖
≤

𝑢
𝑠

𝑖
(𝑖 = 1, 2, 3). So,

𝑢
𝑠

𝑖
= 𝑢
𝑇

𝑖
, 𝑢

𝑖𝑠
= 𝑢
𝑖𝑇 (𝑖 = 1, 2, 3) . (33)

Therefore, given that 𝜀 > 0, by (32) and (33), there exists
𝛿
0
∈ (0, 𝜀

0
) such that

𝑢
𝑖𝑇
−
𝜀

2
< 𝑢
𝑖𝛿0

≤ 𝑈
𝛿0

𝑖
< 𝑢
𝑇

𝑖
+
𝜀

2
(𝑖 = 1, 2, 3) . (34)

Since (𝑎
𝑖
, 𝑏
𝑖
, 𝑐
𝑖
, 𝑔
𝑖
) ∼ (𝐴

𝑖
, 𝐵
𝑖
, 𝐶
𝑖
, 𝐺
𝑖
), for the previous 𝛿

0
, there

exists 𝑇
𝛿0
> 0 such that, for 𝑡 > 𝑇

𝛿0
,

𝐴
𝑖
− 𝛿
0
< 𝑎
𝑖
< 𝐴
𝑖
+ 𝛿
0
, . . . , 𝐺

𝑖
− 𝛿
0
< 𝑔
𝑖
< 𝐺
𝑖
+ 𝛿
0
. (35)
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Denote by (𝑢
1
, 𝑢
2
, 𝑢
3
) the solution of (1)–(3), and denote

by (𝑢∗
1
, 𝑢
2∗
, 𝑢
∗

3
), (𝑈
1
, 𝑈
2
, 𝑈
3
), and (𝑢

1∗
, 𝑢
∗

2
, 𝑢
3∗
) the solutions

of problems (22), (8), and (23), respectively, which all satisfy
the same initial conditions 𝑢

𝑖
(𝑥, 𝑇
𝛿0
+1) = 𝑢

𝑖0
(𝑥) ≥ ( ̸≡ )0 (𝑖 =

1, 2, 3). Analogous to (27), we have 𝑢
𝑖∗
≤ 𝑢
𝑖
≤ 𝑢
∗

𝑖
(𝑖 = 1, 2, 3)

for 𝑡 > 𝑇
𝛿0
. By (24), there exists 𝑇

1
> 𝑇
𝛿0
+ 1 such that

𝑈
𝑖𝛿0

−
𝜀

2
< 𝑢
∗

𝑖
< 𝑈
𝛿0

𝑖
+
𝜀

2
(𝑖 = 1, 3) ,

𝑢
2𝛿0

−
𝜀

2
< 𝑢
2∗

< 𝑢
𝛿0

2
+
𝜀

2

(36)

for 𝑡 > 𝑇
1
. Similarly, by (25), there exists 𝑇

2
> 𝑇
𝛿0
+ 1 such

that

𝑢
𝑖𝛿0

−
𝜀

2
< 𝑢
𝑖∗
< 𝑢
𝛿0

𝑖
+
𝜀

2
(𝑖 = 1, 3) ,

𝑈
2𝛿0

−
𝜀

2
< 𝑢
∗

2
< 𝑈
𝛿0

2
+
𝜀

2

(37)

for 𝑡 > 𝑇
2
. Hence, by (34)–(37), we have

𝑢
𝑖𝑇
− 𝜀 < 𝑢

𝑖∗
≤ 𝑢
𝑖
≤ 𝑢
∗

𝑖
< 𝑢
𝑇

𝑖
+ 𝜀 (38)

for 𝑡 > max{𝑇
1
, 𝑇
2
}. This completes the proof.

3. Global Stability

In order to get conditions of global stability for (1)–(3), we
need the following result.

Lemma 7. Let (𝑢, V, 𝑤) be a 𝑇-periodic solution for the linear
problem

𝑢
𝑡
− 𝑑
1
Δ𝑢 − Σ𝑎

𝑖
𝑢
𝑥𝑖
= 𝑀
1
(−𝐴𝑢 + 𝐵V − 𝐶𝑤) ,

V
𝑡
− 𝑑
2
ΔV − Σ𝑏

𝑖
V
𝑥𝑖
= 𝑀
2
(𝐷𝑢 − 𝐸V) ,

𝑤
𝑡
− 𝑑
3
Δ𝑤 − Σ𝑐

𝑖
𝑤
𝑥𝑖
= 𝑀
3
(𝐹𝑢 − 𝐺𝑤) ,

𝜕𝑢

𝜕𝑛
=
𝜕V
𝜕𝑛

=
𝜕𝑤

𝜕𝑛
= 0 on 𝜕Ω × R,

(39)

where 𝑑
𝑖
, 𝑀
𝑖
, 𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹, and 𝐺 are positive smooth 𝑇-

periodic functions onΩ×R and where 𝑎
𝑖
, 𝑏
𝑖
, and 𝑐

𝑖
are smooth

𝑇-periodic functions. If

𝐵(
𝐷

𝐸
)
𝑀

+ 𝐶(
𝐹

𝐺
)
𝑀

< 𝐴, (40)

then 𝑢 = V = 𝑤 = 0.

Proof. Let (𝑢, V, 𝑤) be a smooth 𝑇-periodic solution of (39),
and let positive constants 𝜀,𝑚, 𝑘, and 𝑙 be chosen so that

𝑀
1𝐿
(𝐴 − 𝐵𝑘 − 𝐶𝑙) ≥ 𝜀, 𝑀

2𝐿
(𝐸𝑘 − 𝐷) ≥ 𝜀𝑘,

𝑀
3𝐿 (𝐺𝑙 − 𝐹) ≥ 𝜀𝑙, 𝑢

𝑀
≤ 𝑚,

V
𝑀
≤ 𝑚𝑘, 𝑤

𝑀
≤ 𝑚𝑙.

(41)

Such choices are obviously possible because (40) holds.

It is easy to verify that𝑚(1, 𝑘, 𝑙)𝑒−𝜀𝑡 and −𝑚(1, 𝑘, 𝑙)𝑒−𝜀𝑡 are
a pair of ordered upper and lower solutions of (39). Thus,
−𝑚𝑒
−𝜀𝑡

≤ 𝑢(𝑥, 𝑡) ≤ 𝑚𝑒
−𝜀𝑡. This implies that 𝑢(𝑥, 𝑡) = 0

because 𝑢(𝑥, 𝑡) is 𝑇-periodic in 𝑡.
Similarly, V = 0 = 𝑤. This completes the proof.

Lemma 8 (uniqueness). Assume that (9) and (10) hold. If

𝐵
1𝑀

𝐵
2𝑀

𝜀
𝑢2

+

𝐴
3𝑀

𝐶
2𝑀

𝛿
2

𝑢3

(1 + 𝐴
3𝐿
𝜀
𝑢3
) 𝜀2
𝑢3

<

𝜀
𝑢1
(1 + 𝐴

3𝐿
𝜀
𝑢3
)

𝐴
1𝑀

𝐴
2𝑀

𝛿
𝑢1
𝛿
𝑢2

,

(42)

then the problem (8) has a unique positive 𝑇-periodic solution.

Proof. Let 𝛼 = 𝑢
𝑇

1
/𝑢
1𝑇
−1, 𝛽 = 1−𝑢

2𝑇
/𝑢
𝑇

2
and 𝛾 = 𝑢

𝑇

3
/𝑢
3𝑇
−1.

By Theorem 1, we have

𝛼
𝑡
− 𝑑
1
Δ𝛼 −

2𝑑
1

𝑈
1𝑇

Σ𝑢
1𝑇𝑥𝑖

𝛼
𝑥𝑖

=
𝑔
1
𝑢
𝑇

1

𝑢
1𝑇

[
−𝑢
1𝑇
𝛼

𝐴
1

+
𝐴
2
𝑢
𝑇

2
𝛽

1 + 𝐴
3
𝑢
𝑇

3

−
𝐴
2
𝐴
3
𝑢
𝑇

2
𝑢
3𝑇
𝛾

(1 + 𝐴
3
𝑢
𝑇

3
) (1 + 𝐴

3
𝑢
3𝑇
)
] ,

𝛽
𝑡
− 𝑑
2
Δ𝛽 −

2𝑑
2

𝑈
𝑇

2

Σ𝑢
𝑇

2𝑥𝑖
𝛽
𝑥𝑖

=
𝑔
2
𝑢
2𝑇

𝑢
𝑇

2

[𝐵
1
𝑢
1𝑇
𝛼 −

𝑢
𝑇

2
𝛽

𝐵
2

] ,

𝛾
𝑡
− 𝑑
3
Δ𝛾 −

2𝑑
3

𝑈
3𝑇

Σ𝑢
3𝑇𝑥𝑖

𝛾
𝑥𝑖

=
𝑔
3
𝑢
𝑇

3

(𝐶
1
+ 𝐶
2
𝑢
1𝑇
) 𝑢
3𝑇

[
𝐶
2
𝑢
1𝑇
𝑢
𝑇

3
𝛼

𝐶
1
+ 𝐶
2
𝑢
𝑇

1

− 𝑢
3𝑇
𝛾] ,

𝜕𝛼

𝜕𝑛
=
𝜕𝛽

𝜕𝑛
=
𝜕𝛾

𝜕𝑛
= 0 on 𝜕Ω × (0,∞) .

(43)

It follows from Lemmas 2 and 7 and the conditions (9), (10),
and (42) that 𝛼 = 𝛽 = 𝛾 = 0. This completes the proof.

Theorem 9. If all conditions of Theorem 4 and (42) are
satisfied, then

(𝑢
1𝑇
, 𝑢
𝑇

2
, 𝑢
3𝑇
) = (𝑢

𝑇

1
, 𝑢
2𝑇
, 𝑢
𝑇

3
) ∼ (𝑢

1
, 𝑢
2
, 𝑢
3
) (44)

for any positive solution (𝑢
1
, 𝑢
2
, 𝑢
3
) of (1)–(3).

Proof. By some elementary calculations, we know that
Theorem 9 is an immediate corollary of Theorem 4 and
Lemma 8.
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Example 10. Consider the following asymptotically periodic
system:

𝑢
1𝑡
− (2 + sin 𝑡) 𝑢

1𝑥𝑥

= (1 + sin2 (𝑡 + 𝑥) 𝑒
−𝑡
2

) 𝑢
1
(1 − 𝑢

1
−

𝑢
2

1 + 𝑢
3

) ,

𝑢
2𝑡
− (2 − sin 𝑡) 𝑢

2𝑥𝑥

= 𝑢
2
(1 − (

3

8
+

1

24
cos2 (𝑡 + 𝑥)) 𝑢1 − 𝑢

2
) in (0, 1) × R,

𝑢
3𝑡
− 𝑢
3𝑥𝑥

= 𝑢
3
(1 −

𝑢
3

5/12 + (7/12) sin2 (𝑡 − 𝑥) + 𝑢
1

) ,

𝑢
𝑖𝑥
(0, 𝑡) = 𝑢

𝑖𝑥
(1, 𝑡) = 0 on R (𝑖 = 1, 2, 3) .

(45)

It is not hard to verify that all conditions of Theorem 9 are
satisfies. Thus, any positive solution of (45) asymptotically
approach the unique positive periodic solution of the limit
periodic system of (45).

4. Case 𝑎
3
= 0

The following results are natural generalizations of the main
results in [20] which can be proved in the similar way as to
proveTheorems 4 and 9.

Theorem 11. Assume the following.
(A
1
) 𝑑
1
, 𝑑
2
, 𝐴, 𝐵, 𝐶, 𝐷, 𝐸, and 𝐹 are positive smooth 𝑇-

periodic functions on Ω × R.
(A
2
) 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, and 𝑓 are positive smooth functions onΩ×

R:
(𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓) ∼ (𝐴, 𝐵, 𝐶,𝐷, 𝐸, 𝐹) ,

(
𝐹

𝐷
)
𝐿

> (
𝐶

𝐴
)
𝑀

, (
𝐵

𝐴
)
𝐿

> (
𝐸

𝐷
)
𝑀

.

(46)

Then the limit periodic system of (4)

𝑈
𝑡
− 𝑘
1
Δ𝑈 = 𝑈 (𝐴 − 𝐵𝑈 − 𝐶𝑉) 𝑖𝑛 Ω × R,

𝑉
𝑡
− 𝑘
2
Δ𝑉 = 𝑉 (𝐷 − 𝐸𝑈 − 𝐹𝑉) 𝑖𝑛 Ω × R,

𝜕𝑈

𝜕𝑛
= 0 =

𝜕𝑉

𝜕𝑛
𝑜𝑛 𝜕Ω × R

(47)

has the positive 𝑇-periodic maxmini solution (𝑈
𝑇
, 𝑉
𝑇
) and

minimax solution (𝑈
𝑇
, 𝑉
𝑇
). Moreover, if (𝑢, V) is any positive

solution of (4) with smooth initial value (𝑢
0
, V
0
), then 𝑈

𝑇
≺

𝑢 ≺ 𝑈
𝑇 and 𝑉

𝑇
≺ V ≺ 𝑉

𝑇. In addition, if

(
𝐶

𝐴
)
𝑀

(
𝐸

𝐷
)
𝑀

[(
𝐹

𝐷
)
𝑀

− (
𝐶

𝐴
)
𝐿

] [(
𝐵

𝐴
)
𝑀

− (
𝐸

𝐷
)
𝐿

]

< (
𝐵

𝐴
)
𝐿

(
𝐹

𝐷
)
𝐿

[(
𝐹

𝐷
)
𝐿

− (
𝐶

𝐴
)
𝑀

] [(
𝐵

𝐴
)
𝐿

− (
𝐸

𝐷
)
𝑀

] ,

(48)

then (47) has the unique positive 𝑇-periodic solution (𝑈, 𝑉)

and

(𝑢 (⋅, 𝑡) , V (⋅, 𝑡)) ∼ (𝑈 (⋅, 𝑡) , 𝑉 (⋅, 𝑡)) . (49)
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The main feature of the boundary layer flow problems is the inclusion of the boundary conditions at infinity. Such boundary
conditions cause difficulties for any of the seriesmethodswhen applied to solve suchproblems. To the best of the authors’ knowledge,
two procedures were used extensively in the past two decades to deal with the boundary conditions at infinity, either the Padé
approximation or the direct numerical codes. However, an intensive work is needed to perform the calculations using the Padé
technique. Regarding this point, a new idea is proposed in this paper. The idea is based on transforming the unbounded domain
into a bounded one by the help of a transformation. Accordingly, the original differential equation is transformed into a singular
differential equation with classical boundary conditions.The current approach is applied to solve a class of the Blasius problem and
a special class of the Falkner-Skan problem via an improved version of Adomian’s method (Ebaid, 2011). In addition, the numerical
results obtained by using the proposed technique are compared with the other published solutions, where good agreement has
been achieved.Themain characteristic of the present approach is the avoidance of the Padé approximation to deal with the infinity
boundary conditions.

1. Introduction

During the past two decades much effort has been spent
in the numerical treatment of boundary value problems
over an unbounded domain. In fact, these problems arise
very frequently in many fields such as in fluid dynamics,
aerodynamics, and quantummechanics. A fewnotable exam-
ples are the Blasius and Falkner-Skan equations. The Blasius
equation is one of the basic equations in fluid dynamics. It
describes the velocity profile of the fluid in the boundary
layer theory [1, 2] on a half-infinite interval. Several analytical
and numerical methods have been proposed in [1–11] to
handle this problem.The two forms of the Blasius problemare
represented by the same differential equation with different
sets of boundary conditions, as will be indicated later. The
main feature of the Blasius problem is the existence of the
boundary conditions at infinity. Such conditions at infinity
cause difficulties for any of the series methods, such as the
Adomian decomposition method [12–14] and the differential
transformationmethod (or the Taylor series method) [15, 16].

This is because the infinity boundary condition cannot be
imposed directly in the series, where the Padé approximation
should be established before applying the boundary condition
at infinity. It was observed in the past two decades that
many authors [17–25] have been resorted to either the Padé
technique or some numerical methods to treat the boundary
conditions at infinity. Although the results obtained by
using the Padé technique were accurate in many cases, a
massive computational work was needed to obtain accurate
approximate solutions. A possible way to avoid the Padé
technique is to change the boundary conditions at infinity
into classical conditions. Therefore, a suggestion is proposed
in this paper to transform the domain of the problem from
an unbounded domain into a bounded one with the help of a
simple transformation.

According to the suggested transformation, the original
Blasius equation is transformed into a system of two singular
differential equations. Hence, the two mentioned forms are
described by this system with two different sets of boundary
conditions at classical point.The transformed singular system
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will be solved by a recent version of the ADM [26]. The first
form of the original Blasius problem is given by [6]

𝑓

(𝜂) +

1

2
𝑓 (𝜂) 𝑓


(𝜂) = 0, (1)

subject to the following boundary conditions:

𝑓 (0) = 0, 𝑓

(0) = 1, 𝑓


(∞) = 0, (2)

while the second form is given by (1) with the following
boundary conditions:

𝑓 (0) = 0, 𝑓

(0) = 0, 𝑓


(∞) = 1. (3)

A class of Blasius problem is given by

𝑓

(𝜂) + 𝛾𝑓 (𝜂) 𝑓


(𝜂) = 0, (4)

subject to the following boundary conditions:

𝑓 (0) = 0, 𝑓

(0) = 1 − 𝜖, 𝑓


(∞) = 𝜖, (5)

where 𝛾 and 𝜖 are finite constants.This class will be studied for
𝜖 ∈ [0, 1]. Here, it is noted that (2) and (3) are special examples
of (5) for 𝜖 = 0 and 𝜖 = 1, respectively. In addition, the class
(4)-(5) reduces to the two forms of the Blasius problem when
(𝛾 = 1/2, 𝜖 = 0) and (𝛾 = 1/2, 𝜖 = 1), respectively. At the same
time, when 𝛾 = 1, the suggested class reduces to a special class
of the Falkner-Skan problem, at 𝛿 = 0, which is well known
as [27]

𝑓

(𝜂) + 𝑓 (𝜂) 𝑓


(𝜂) + 𝛿 [𝜖

2
− (𝑓

(𝜂))
2

] = 0, (6)

with the class of boundary conditions (5), where 𝛿 refers
to the pressure gradient parameter, while 𝜖 refers to the
velocity ratio parameter, 𝜖 = 𝑈

∞
/(𝑈
∞

+ 𝑈
𝑤
). Equation (6)

with the boundary conditions (5) is a new version of the
Falkner-Skan equation relating free stream velocity 𝑈

∞
to

composite reference velocity, that is, sum of the velocities of
stretching boundary 𝑈

𝑤
and free stream 𝑈

∞
. In order to use

the improved Adomian’s method [26] to solve the class (4)-
(5), we first transform the governing equation (4) into the
following system of differential equations:

𝑓

(𝜂) = 𝑢 (𝜂) ,

𝑢

(𝜂) + 𝛾𝑓 (𝜂) 𝑢


(𝜂) = 0.

(7)

Here, we may indicate that in the theory of the boundary
layer, it is usually important to get information about three
quantities: the skin-friction coefficient 𝑓(0), the fluid veloc-
ity 𝑓(𝜂), and the stream function 𝑓(𝜂). Also, it is well known
that at 𝜖 = 1 the problem reduces to one of the two forms
of the Blasius problem which has been studied extensively
during the past decades.

2. A Transformation and a New System

The unbounded domain of the independent variable 𝜂 ∈

[0,∞) can be changed into a bounded one by using a new

independent variable 𝑡 (say) ∈ [0, 1) using the transformation
𝑡 = 1 − 𝑒

−𝜂. Accordingly, the governing system should be
expressed in terms of the new variable 𝑡. In order to do that,
we introduce the following relations between the derivatives
with respect to 𝜂 and the derivatives with respect to 𝑡:

𝑑

𝑑𝜂
(◻) = (1 − 𝑡)

𝑑

𝑑𝑡
(◻) ,

𝑑
2

𝑑𝜂2
(◻) = (1 − 𝑡)

2 𝑑
2

𝑑𝑡2
(◻) − (1 − 𝑡)

𝑑

𝑑𝑡
(◻) .

(8)

The relations given by (8) are obtained by using the chain rule
in the differential calculus.Therefore, the system (7) becomes

𝑓

(𝑡) = (

1

1 − 𝑡
) 𝑢 (𝑡) , (9)

𝑢

(𝑡) = (

1

1 − 𝑡
) 𝑢

(𝑡) − 𝛾 (

1

1 − 𝑡
)𝑓 (𝑡) 𝑢


(𝑡) , (10)

subject to the following set of boundary conditions:

𝑓 (0) = 0, 𝑢 (0) = 1 − 𝜖, 𝑢 (1) = 𝜖. (11)

Equation (9) with the initial condition 𝑓(0) = 0 can
be easily integrated as an initial value problem, while (10)
with the boundary conditions given in (11) should be solved
as a two-point boundary value problem. In this regard, the
improved Adomian decomposition method is suggested to
deal with such a singular two-point boundary value problem.
Before launching into the the main idea of this paper, we
give an analysis for the improved Adomian decomposition
method in the next section to solving (10) with general two-
point boundary conditions 𝑢(𝑎) = 𝛼 and 𝑢(𝑏) = 𝛽.

3. The Improved Adomian
Decomposition Method

Consider the second order differential equation:

𝑢

(𝑡) + 𝑝 (𝑡) 𝑢


(𝑡) + 𝑞 (𝑡) 𝑓 (𝑡) 𝑢


(𝑡) = 0, (12)

subject to the boundary conditions

𝑢 (𝑎) = 𝛼, 𝑢 (𝑏) = 𝛽, (13)

where at least one of the functions 𝑝(𝑡) and 𝑞(𝑡) has a singular
point and 𝑓(𝑡) is an unspecified function. In order to apply
the approach suggested in [26], we first rewrite (12) as

𝑢

(𝑡) = −𝑝 (𝑡) 𝑢


(𝑡) − 𝑞 (𝑡) 𝑓 (𝑡) 𝑢


(𝑡) . (14)

Now, suppose that 𝑝(𝑡) and 𝑞(𝑡) have the same singular point
(𝑡 = 𝑡

0
, say), Ebaid [26] proposed the following inverse

operator to solve (14) with the boundary conditions (13):

𝐿
−1
[⋅] = ∫

𝑡

𝑎

𝑑𝑡

∫

𝑡


𝑐

[⋅] 𝑑𝑡

−
𝑡 − 𝑎

𝑏 − 𝑎
∫

𝑏

𝑎

𝑑𝑡

∫

𝑡


𝑐

[⋅] 𝑑𝑡

,

𝑎 ̸= 𝑏, 𝑐 (arbitrary) ̸= 𝑡
0
.

(15)
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Operating both sides of (14) with this inverse operator, we
have

𝑢 (𝑡) − 𝑢 (𝑎) −
𝑡 − 𝑎

𝑏 − 𝑎
[𝑢 (𝑏) − 𝑢 (𝑎)]

= −𝐿
−1
[𝑝 (𝑡) 𝑢


(𝑡) + 𝑞 (𝑡) 𝑓 (𝑡) 𝑢


(𝑡)] ,

(16)

which can be rewritten as

𝑢 (𝑡) = 𝛼 +
𝑡 − 𝑎

𝑏 − 𝑎
(𝛽 − 𝛼)

− 𝐿
−1
[𝑝 (𝑡) 𝑢


(𝑡) + 𝑞 (𝑡) 𝑓 (𝑡) 𝑢


(𝑡)] .

(17)

Based on Adomian’s method, the solutions 𝑢(𝑡) and 𝑓(𝑡) of
system (9)-(10) are assumed in the following form:

𝑢 (𝑡) =

∞

∑

𝑛=0

𝑢
𝑛 (𝑡) , 𝑓 (𝑡) =

∞

∑

𝑛=0

𝑓
𝑛 (𝑡) . (18)

Inserting these series into (17), we obtain

∞

∑

𝑛=0

𝑢
𝑛
(𝑡) = 𝛼 +

𝑡 − 𝑎

𝑏 − 𝑎
(𝛽 − 𝛼)

− 𝐿
−1
[𝑝 (𝑡)

∞

∑

𝑛=0

𝑢


𝑛
(𝑡) + 𝑞 (𝑡)

∞

∑

𝑛=0

𝑛

∑

𝑖=0

𝑓
𝑖
(𝑡) 𝑢


𝑛−𝑖
(𝑡)] .

(19)

Substituting 𝑝(𝑡) = −(1/(1 − 𝑡)) and 𝑞(𝑡) = 𝛾(1/(1 − 𝑡)) into
the last equation yields

∞

∑

𝑛=0

𝑢
𝑛 (𝑡) = 𝛼 +

𝑡 − 𝑎

𝑏 − 𝑎
(𝛽 − 𝛼)

+ 𝐿
−1
[(

1

1 − 𝑡
)

∞

∑

𝑛=0

𝑢


𝑛
(𝑡)

− 𝛾 (
1

1 − 𝑡
)

∞

∑

𝑛=0

𝑛

∑

𝑖=0

𝑓
𝑖 (𝑡) 𝑢


𝑛−𝑖
(𝑡)] .

(20)

To overcome the difficulty of the singular point, we may
replace the function 1/(1 − 𝑡) with the series form ∑

∞

𝑛=0
𝑡
𝑛,

where 𝑡 ∈ [0, 1). Thus, we have

∞

∑

𝑛=0

𝑢
𝑛
(𝑡) = 𝛼 +

𝑡 − 𝑎

𝑏 − 𝑎
(𝛽 − 𝛼)

+ 𝐿
−1 [

[

∞

∑

𝑛=0

𝑛

∑

𝑖=0

𝑡
𝑛−𝑖

𝑢


𝑖
(𝑡)

− 𝛾

∞

∑

𝑛=0

(

𝑛

∑

𝑗=0

𝑗

∑

𝑖=0

𝑡
𝑛−𝑗

𝑓
𝑖
(𝑡) 𝑢


𝑗−𝑖
(𝑡))]

]

.

(21)

According to the modified decomposition method [18], the
solution 𝑢(𝑡) can be evaluated by using the recurrence
scheme:

𝑢
0
(𝑡) = 𝛼,

𝑢
1 (𝑡) =

𝑡 − 𝑎

𝑏 − 𝑎
(𝛽 − 𝛼) + 𝐿

−1
[𝑢


0
(𝑡) − 𝛾𝑓

0 (𝑡) 𝑢


0
(𝑡)] ,

𝑢
𝑛+1

(𝑡) = 𝐿
−1 [

[

𝑛

∑

𝑖=0

𝑡
𝑛−𝑖

𝑢


𝑖
(𝑡) − 𝛾(

𝑛

∑

𝑗=0

𝑗

∑

𝑖=0

𝑡
𝑛−𝑗

𝑓
𝑖
(𝑡) 𝑢


𝑗−𝑖
(𝑡))]

]

,

𝑛 ≥ 1.

(22)

On integrating (9) with respect to 𝑡 form 0 to 𝑡, it then follows
that

𝑓 (𝑡) = 𝑓 (0) + ∫

𝑡

0

(
1

1 − 𝑧
) 𝑢 (𝑧) 𝑑𝑧. (23)

Hence, 𝑓(𝑡) is given by the recurrence scheme:

𝑓
0
(𝑡) = 0, 𝑓

𝑛+1
(𝑡) = ∫

𝑡

0

𝑧
𝑛−𝑖

𝑢
𝑖
(𝑧) 𝑑𝑧, 𝑛 ≥ 0. (24)

The algorithms given by (22) and (24) are applied in the next
section to construct the approximate solutions.

4. Applications

4.1. A Class of the Blasius Problem. Here, we show how to
implement (22) and (24) to solve the class of the Blasius
problem. On substituting 𝛾 = 1/2, 𝑎 = 0, 𝑏 = 1, 𝛼 = 1−𝜖, and
𝛽 = 𝜖 into (22), and using (24) we obtain

𝑢
0 (𝑡) = 1 − 𝜖,

𝑓
0
(𝑡) = 0,

𝑢
1 (𝑡) = (2𝜖 − 1) 𝑡,

𝑓
1
(𝑡) = (1 − 𝜖) 𝑡,

𝑢
𝑛+1

(𝑡) = 𝐿
−1 [

[

𝑛

∑

𝑖=0

𝑡
𝑛−𝑖

𝑢


𝑖
(𝑡) −

1

2
(

𝑛

∑

𝑗=0

𝑗

∑

𝑖=0

𝑡
𝑛−𝑗

𝑓
𝑖
(𝑡) 𝑢


𝑗−𝑖
(𝑡))]

]

,

𝑓
𝑛+1

(𝑡) = ∫

𝑡

0

(
1

1 − 𝑧
) 𝑢
𝑛
(𝑧) 𝑑𝑧, 𝑛 ≥ 1,

𝐿
−1
[⋅] = ∫

𝑡

0

𝑑𝑡

∫

𝑡


𝑐

[⋅] 𝑑𝑡

− 𝑡∫

1

0

𝑑𝑡

∫

𝑡


𝑐

[⋅] 𝑑𝑡

,

𝑐 ̸= 1 (𝑐 = 0, for simplicity) .
(25)
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The first few terms of the stream function 𝑓(𝑡) are evaluated
by implementing the previous algorithm and are listed in the
following:

𝑓
0
(𝑡) = 0,

𝑓
1 (𝑡) = (1 − 𝜖) 𝑡,

𝑓
2 (𝑡) = (

𝜖

2
) 𝑡
2
,

𝑓
3
(𝑡) = (

1

4
−
𝜖

2
) 𝑡
2
+ (−

1

6
+
2𝜖

3
) 𝑡
3
,

𝑓
4 (𝑡) = (

𝜖

24
−

𝜖
2

12
) 𝑡
2
+ (

1

4
−
𝜖

2
) 𝑡
3

+ (−
3

16
+
29𝜖

28
+

𝜖
2

24
) 𝑡
4
,

𝑓
5 (𝑡) = (

1

96
−

𝜖

48
) 𝑡
2
+ (

𝜖

24
−

𝜖
2

12
) 𝑡
3

+ (
7

32
−
41𝜖

96
−

𝜖
2

48
) 𝑡
4

+ (−
43

240
+
41𝜖

40
+

𝜖
2

15
) 𝑡
5
.

(26)

The desired 𝑚th order approximate solution 𝜙
𝑚
(𝜂) obtained

by Adomian’s method is expressed as

𝜙
𝑚
(𝜂) =

𝑚−1

∑

𝑛=0

𝑓
𝑛
(𝜂) . (27)

Hence, the approximate solutions 𝜙
3
(𝜂), 𝜙
5
(𝜂), and 𝜙

7
(𝜂) are,

respectively, given in terms of the original variable 𝜂 as

𝜙
3
(𝜂) = (1 − 𝜖) (1 − 𝑒

−𝜂
) +

1

4
(1 − 𝑒

−𝜂
)
2

+ (−
1

6
+
2𝜖

3
) (1 − 𝑒

−𝜂
)
3

,

𝜙
5
(𝜂) = (1 − 𝜖) (1 − 𝑒

−𝜂
) + (

25

96
+

𝜖

48
−

𝜖
2

12
) (1 − 𝑒

−𝜂
)
2

+ (
1

12
+
5𝜖

24
−

𝜖
2

12
) (1 − 𝑒

−𝜂
)
3

+ (
1

32
+
17𝜖

96
+

𝜖
2

48
) (1 − 𝑒

−𝜂
)
4

+ (−
43

240
+
41𝜖

40
+

𝜖
2

15
) (1 − 𝑒

−𝜂
)
5

,

𝜙
7
(𝜂) = (1 − 𝜖) (1 − 𝑒

−𝜂
)

+ (
171

640
+

𝜖

72
−
553𝜖
2

5760
−

𝜖
3

960
) (1 − 𝑒

−𝜂
)
2

+ (
47

480
+
11𝜖

60
−
53𝜖
2

576
+

𝜖
3

1440
) (1 − 𝑒

−𝜂
)
3

+ (
31

768
+
451𝜖

2304
−

59𝜖
2

1152
−

𝜖
3

288
) (1 − 𝑒

−𝜂
)
4

+ (
11

960
+
137𝜖

720
−

7𝜖
2

288
−

𝜖
3

240
) (1 − 𝑒

−𝜂
)
5

+ (
31

5760
+
367𝜖

2880
+

65𝜖
2

1152
+

𝜖
3

960
) (1 − 𝑒

−𝜂
)
6

+ (−
13

8960
+
5921𝜖

40320
−

83𝜖
2

24192
+

89𝜖
3

34560
−

19𝜖
4

120960
)

× (1 − 𝑒
−𝜂
)
7

.

(28)

Here, we refer to that the series solution obtained previous
leads to an exact solution at 𝜖 = 0.5. In this case, the approxi-
mate solutions become

𝜙
3
(𝜂) =

1

2
(1 − 𝑒

−𝜂
) +

1

4
(1 − 𝑒

−𝜂
)
2

+
1

6
(1 − 𝑒

−𝜂
)
3

=
1

2

3

∑

𝑟=1

1

𝑟
(1 − 𝑒

−𝜂
)
𝑟

,

𝜙
5
(𝜂) =

1

2
(1 − 𝑒

−𝜂
) +

1

4
(1 − 𝑒

−𝜂
)
2

+
1

6
(1 − 𝑒

−𝜂
)
3

+
1

8
(1 − 𝑒

−𝜂
)
4

+
1

10
(1 − 𝑒

−𝜂
)
5

=
1

2

5

∑

𝑟=1

1

𝑟
(1 − 𝑒

−𝜂
)
𝑟

,

𝜙
7
(𝜂) =

1

2
(1 − 𝑒

−𝜂
) +

1

4
(1 − 𝑒

−𝜂
)
2

+
1

6
(1 − 𝑒

−𝜂
)
3

+
1

8
(1 − 𝑒

−𝜂
)
4

+
1

10
(1 − 𝑒

−𝜂
)
5

+
1

12
(1 − 𝑒

−𝜂
)
6

+
1

14
(1 − 𝑒

−𝜂
)
7

=
1

2

7

∑

𝑟=1

1

𝑟
(1 − 𝑒

−𝜂
)
𝑟

.

(29)

Therefore, the𝑚-term series solution is given by

𝜙
𝑚
(𝜂) =

1

2

𝑚

∑

𝑟=1

1

𝑟
(1 − 𝑒

−𝜂
)
𝑟

, (30)
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and thus, the following exact solution is obtained as𝑚 → ∞:

𝑓 (𝜂) = lim
𝑚→∞

𝜙
𝑚
(𝜂)

=
1

2

∞

∑

𝑟=1

1

𝑟
(1 − 𝑒

−𝜂
)
𝑟

= −
1

2
ln [1 − (1 − 𝑒

−𝜂
)] =

𝜂

2
.

(31)

This exact solution satisfies the boundary conditions and can
be easily verified by direct substitution. For more validation,
the results obtained by the present technique are checked here
via a comparison with those published in the literature. It
is well known that at 𝜖 = 1, the problem reduces to one of
the two forms of the Blasius problem. In that case, the skin-
friction coefficient is computed bymany authors as discussed
in Section 5.

4.2. Special Class of the Falkner-Skan Problem. Here, the
proposed approach is applied to a special class of the Falkner-
Skan problem. Asmentioned before, this special class is given
by (4)-(5) at 𝛾 = 1. Proceeding as in the previous example, the
approximate solution can be obtained by using the recurrence
scheme:

𝑢
0 (𝑡) = 1 − 𝜖,

𝑓
0
(𝑡) = 0,

𝑢
1
(𝑡) = (2𝜖 − 1) 𝑡,

𝑓
1 (𝑡) = (1 − 𝜖) 𝑡,

𝑢
𝑛+1

(𝑡) = 𝐿
−1 [

[

𝑛

∑

𝑖=0

𝑡
𝑛−𝑖

𝑢


𝑖
(𝑡) −

𝑛

∑

𝑗=0

𝑗

∑

𝑖=0

𝑡
𝑛−𝑗

𝑓
𝑖
(𝑡) 𝑢


𝑗−𝑖
(𝑡)]

]

,

𝑓
𝑛+1

(𝑡) = ∫

𝑡

0

(
1

1 − 𝑧
) 𝑢
𝑛
(𝑧) 𝑑𝑧, 𝑛 ≥ 1,

𝐿
−1
[⋅] = ∫

𝑡

0

𝑑𝑡

∫

𝑡


𝑐

[⋅] 𝑑𝑡

− 𝑡∫

1

0

𝑑𝑡

∫

𝑡


𝑐

[⋅] 𝑑𝑡

, 𝑐 ̸= 1.

(32)

The first few terms of the stream function 𝑓(𝑡) are evaluated
by implementing the algorithm given in (32) and are listed in
the following:

𝑓
0
(𝑡) = 0,

𝑓
1 (𝑡) = (1 − 𝜖) 𝑡,

𝑓
2
(𝑡) = (

𝜖

2
) 𝑡
2
,

𝑓
3
(𝑡) = (

1

4
−
𝜖

2
) 𝑡
2
+ (−

1

6
+
2𝜖

3
) 𝑡
3
,

𝑓
4
(𝑡) = (−

1

24
+
𝜖

6
−
𝜖
2

6
) 𝑡
2
+ (

1

4
−
𝜖

2
) 𝑡
3

+ (−
1

6
+
13𝜖

24
+

𝜖
2

12
) 𝑡
4
,

𝑓
5
(𝑡) = (−

1

24
+
𝜖

6
−
𝜖
2

6
) 𝑡
3
+ (

5

24
−
19𝜖

48
−

𝜖
2

24
) 𝑡
4

+ (−
17

120
+
5𝜖

12
+
2𝜖
2

15
) 𝑡
5
.

(33)

Hence, the approximate solutions 𝜙
3
(𝜂), 𝜙
5
(𝜂), and 𝜙

7
(𝜂) are,

respectively, given in terms of the original variable 𝜂 as

𝜙
3
(𝜂) = (1 − 𝜖) (1 − 𝑒

−𝜂
) +

1

4
(1 − 𝑒

−𝜂
)
2

+ (−
1

6
+
2𝜖

3
) (1 − 𝑒

−𝜂
)
3

,

𝜙
5
(𝜂) = (1 − 𝜖) (1 − 𝑒

−𝜂
) + (

5

24
+
𝜖

6
−
𝜖
2

6
) (1 − 𝑒

−𝜂
)
2

+ (
1

24
+
𝜖

3
−
𝜖
2

6
) (1 − 𝑒

−𝜂
)
3

+ (
1

24
+
7𝜖

48
+

𝜖
2

24
) (1 − 𝑒

−𝜂
)
4

+ (−
17

120
+
5𝜖

12
+
2𝜖
2

15
) (1 − 𝑒

−𝜂
)
5

,

𝜙
7
(𝜂) = (1 − 𝜖) (1 − 𝑒

−𝜂
)

+ (
191

960
+
19𝜖

96
−
91𝜖
2

480
−

𝜖
3

240
) (1 − 𝑒

−𝜂
)
2

+ (
13

360
+
17𝜖

48
−
3𝜖
2

16
+

𝜖
3

360
) (1 − 𝑒

−𝜂
)
3

+ (
1

144
+
9𝜖

32
−

𝜖
2

12
−

𝜖
3

72
) (1 − 𝑒

−𝜂
)
4

+ (
1

480
+
17𝜖

80
−

𝜖
2

40
−

𝜖
3

60
) (1 − 𝑒

−𝜂
)
5

+ (
1

30
+
13𝜖

288
+
31𝜖
2

288
+

𝜖
3

240
) (1 − 𝑒

−𝜂
)
6

+ (−
67

630
+
25𝜖

84
+
181𝜖
2

1680
+

41𝜖
3

2520
) (1 − 𝑒

−𝜂
)
7

.

(34)

The effectiveness of the present technique is used here not
only to obtain the exact solution of the Falkner-Skan equation
at 𝛿 = 0 and 𝜖 = 0.5 but also to get numerical solutions with
good accuracy. On inserting 𝜖 = 0.5 into the approximate
solutions given by (34), we have

𝜙
3
(𝜂) =

1

2
(1 − 𝑒

−𝜂
) +

1

4
(1 − 𝑒

−𝜂
)
2

+
1

6
(1 − 𝑒

−𝜂
)
3

=
1

2

3

∑

𝑟=1

1

𝑟
(1 − 𝑒

−𝜂
)
𝑟

,



6 Abstract and Applied Analysis

𝜙
5
(𝜂) =

1

2
(1 − 𝑒

−𝜂
) +

1

4
(1 − 𝑒

−𝜂
)
2

+
1

6
(1 − 𝑒

−𝜂
)
3

+
1

8
(1 − 𝑒

−𝜂
)
4

+
1

10
(1 − 𝑒

−𝜂
)
5

=
1

2

5

∑

𝑟=1

1

𝑟
(1 − 𝑒

−𝜂
)
𝑟

,

𝜙
7
(𝜂) =

1

2
(1 − 𝑒

−𝜂
) +

1

4
(1 − 𝑒

−𝜂
)
2

+
1

6
(1 − 𝑒

−𝜂
)
3

+
1

8
(1 − 𝑒

−𝜂
)
4

+
1

10
(1 − 𝑒

−𝜂
)
5

+
1

12
(1 − 𝑒

−𝜂
)
6

+
1

14
(1 − 𝑒

−𝜂
)
7

=
1

2

7

∑

𝑟=1

1

𝑟
(1 − 𝑒

−𝜂
)
𝑟

.

(35)

As indicated in Section 4.1, these approximate solutions lead
to the same exact solution given by (31): 𝑓(𝜂) = 𝜂/2 in the
limit.

5. Results and Discussion

At 𝜖 = 1, Bairstow [29] found that 𝑓(0) = 0.335 using
a power series, whereas Goldstein [30] obtained 𝑓


(0) =

0.332. Besides, using a finite difference method, Falkner [31]
computed that 𝑓


(0) = 0.3325765, and Horwarth [32]

yields that 𝑓

(0) = 0.332057. In [33], Fazio computed

that 𝑓

(0) = 0.332057336215. Also, in [34] Boyd used

Töpfer’s algorithm to obtain the accurate value 𝑓

(0) =

0.33205733621519630. Adomain’s method was implemented
in [35] by Abbasbandy, and it was found that 𝑓


(0) =

0.333329, whereas a variational iteration method with the
Padé approximants allows Wazwaz [6] to calculate the value
𝑓

(0) = 0.3732905625. Tajvidi et al. [28] apply the modified

rational Legendre functions to get a value of𝑓(0) = 0.33209.
The values of the skin-friction coefficient are given in Table 1
at 𝜖 = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1 using
11, 13, and 15 terms of the series (27). The current method
finds that the skin-friction at 𝜖 = 1 approximately equals
𝜙


15
(0) = 0.331775, which is very close to those values

discussed previously.
Regarding the stream function 𝑓(𝜂), it is plotted in

Figure 1 using 15 terms, and the fluid velocity𝑓(𝜂) is depicted
in Figure 2 using the approximate solutions 𝜙

7
(𝜂), 𝜙

9
(𝜂),

𝜙
11
(𝜂), 𝜙

13
(𝜂), and 𝜙

15
(𝜂) at 𝜖 = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6,

0.7, 0.8, 0.9, and 1. It is observed from Figure 2 that the
approximate solutions using a few terms of Adomian’s series
converge rapidly to a certain curve at some values of the
parameter 𝜖.

The exact solution 𝑓(𝜂) = 𝜂/2 obtained in Section 4.2 for
the Falkner-Skan equation at 𝜖 = 0.5 has been reported very
recently by Kudenatti [27]. He has derived the exact solution
to the Falkner-Skan equation for general values of the
pressure gradient parameter 𝛿. In order to check the accuracy
of our approach, the values of the skin-friction coefficient are

Table 1: The approximate values of the skin-friction coefficient
𝑓

(0) for the class of the Blasius problem using 11, 13, and 15 terms

of Adomian’s series.

𝜖 𝜙


11
(0) 𝜙



13
(0) 𝜙



15
(0)

0.0 −0.456523 −0.454506 −0.453122

0.1 −0.356731 −0.354995 −0.353838

0.2 −0.261082 −0.259650 −0.258715

0.3 −0.169677 −0.168611 −0.167920

0.4 −0.082616 −0.082014 −0.081624

0.5 0.000000 0.000000 0.000000
0.6 0.078072 0.077292 0.076775
0.7 0.151503 0.149723 0.148522
0.8 0.220194 0.217151 0.215060
0.9 0.284048 0.279437 0.276206
1.0 0.342969 0.336441 0.331775

1 2 3 4 5 6

0.5

1.0

1.5

𝜂

f
(𝜂

)

𝜖 = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1

Figure 1:The stream function for the class of the Blasius problem at
different values of 𝜖 using 15 terms of the current method.

𝜂

1 2 3 4 5 6

0.2

0.4

0.6

0.8

1.0
𝜖 = 1.0 𝜖 = 0.9

𝜖 = 0.8

𝜖 = 0.7

𝜖 = 0.6

𝜖 = 0.5

𝜖 = 0.4

𝜖 = 0.3

𝜖 = 0.2

𝜖 = 0.1

𝜖 = 0.0

f
 (𝜂

)

Figure 2: The fluid velocity for the class of the Blasius problem at
different values of 𝜖 using 7, 9, 11, 13, and 15 terms of the current
method.

compared in Table 2 with those exactly obtained by Kudenatti
[27] in the range 0 < 𝜖 < 0.5. The results reveal that a good
agreement has been achieved via the present approach. In
addition, the stream function 𝑓(𝜂) is graphed in Figure 3 at
several values of the parameter 𝜖 by using 15 terms of the
decomposition series. At the same values and in Figure 4,
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Table 2: The approximate values of the skin-friction coefficient
𝑓

(0) for the class of the Falkner-Skan problem using 11, 15, and 33

terms of Adomian’s series.

𝜖 𝜙


11
(0) 𝜙



15
(0) 𝜙



33
(0)

Exact values
Reference [28]

0.0 −0.617661 −0.622494 −0.625945 −0.627504

0.1 −0.479542 −0.485036 −0.490729 −0.492625

0.2 −0.348276 −0.353437 −0.360126 −0.363901

0.3 −0.224304 −0.228296 −0.234485 −0.237219

0.4 −0.108067 −0.110256 −0.114249 −0.115811

0.5 0.000000 0.000000 0.000000 0.000000
0.6 0.099467 0.101753 0.107483
0.7 0.189909 0.194253 0.207152
0.8 0.270907 0.276719 0.297613
0.9 0.342046 0.34835 0.377038
1.0 0.402921 0.408321 0.443088

1 2 3 4 5 6

0.5

1.0

1.5

𝜂

f
(𝜂

)

𝜖 = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1

Figure 3: The stream function for the class of the Falkner-Skan
problem at different values of 𝜖 using 15 terms of the currentmethod.

the fluid velocity is depicted by using the approximate
solutions 𝜙

11
(𝜂), 𝜙
13
(𝜂), and 𝜙

15
(𝜂). It can be concluded from

Figure 4 that our results are a coincidence with those exactly
obtained in [27] at the values 𝜖 = 0.1, 0.2, 0.3, 0.4, 0.5, 0.7, and
1, while the fluid velocity at the other values 𝜖 = 0, 0.6, 0.8, and
0.9 was not discussed by Kudenatti [27].

6. Conclusion

An approach is presented in this paper to treat the bound-
ary condition at infinity which is the main feature of the
boundary layer equations. The suggested approach is based
on changing the boundary condition at infinity to a classical
one by the help of a transformation. The current approach is
applied to solve a class of the Blasius problem and a special
class of the Falkner-Skan problem via an improved version of
Adomian’s method. Moreover, exact solutions are deduced at
a certain value of the velocity ratio parameter 𝜖. In addition,
the current numerical results are compared with the other
published solutions, where good agreement is found. One of

𝜂

1 2 3 4 5 6

0.2

0.4

0.6

0.8

1.0
𝜖 = 1.0 𝜖 = 0.9

𝜖 = 0.8

𝜖 = 0.7

𝜖 = 0.6

𝜖 = 0.5

𝜖 = 0.4

𝜖 = 0.3

𝜖 = 0.2

𝜖 = 0.1

𝜖 = 0.0

f
 (𝜂

)

Figure 4: The fluid velocity for the class of the Falkner-Skan prob-
lem at different values of 𝜖 using 11, 13, and 15 terms of the current
method.

the main advantages of the present approach is the avoidance
of the Padé approximation to deal with the infinity boundary
condition.

References

[1] Z. Belhachmi, B. Brighi, and K. Taous, “On the concave solu-
tions of the Blasius equation,” Acta Mathematica Universitatis
Comenianae, vol. 69, no. 2, pp. 199–214, 2000.

[2] B. K. Datta, “Analytic solution for the Blasius equation,” Indian
Journal of Pure and AppliedMathematics, vol. 34, no. 2, pp. 237–
240, 2003.

[3] H. K. Kuiken, “On boundary layers in fluid mechanics that
decay algebraically along stretches of wall that are not vanish-
ingly small,” IMA Journal of Applied Mathematics, vol. 27, no. 4,
pp. 387–405, 1981.

[4] H. K. Kuiken, “A “backward” free-convective boundary layer,”
The Quarterly Journal of Mechanics and Applied Mathematics,
vol. 34, no. 3, pp. 397–413, 1981.

[5] J. He, “Approximate analytical solution of Blasius’ equation,”
Communications in Nonlinear Science and Numerical Simula-
tion, vol. 3, no. 4, pp. 260–263, 1998.

[6] A.-M. Wazwaz, “The variational iteration method for solving
two forms of Blasius equation on a half-infinite domain,”
Applied Mathematics and Computation, vol. 188, no. 1, pp. 485–
491, 2007.

[7] B. I. Yun, “Intuitive approach to the approximate analytical
solution for the Blasius problem,” Applied Mathematics and
Computation, vol. 215, no. 10, pp. 3489–3494, 2010.

[8] S. Abbasbandy and C. Bervillier, “Analytic continuation of
Taylor series and the boundary value problems of some nonlin-
ear ordinary differential equations,” Applied Mathematics and
Computation, vol. 218, no. 5, pp. 2178–2199, 2011.

[9] M. Khan and M. A. Gondal, “Homotopy perturbation Padé
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We use the reproducing kernel Hilbert space method to solve the fifth-order boundary value problems. The exact solution to the
fifth-order boundary value problems is obtained in reproducing kernel space.The approximate solution is given by using an iterative
method and the finite section method. The present method reveals to be more effective and convenient compared with the other
methods.

1. Introduction

The reproducing kernel Hilbert space method has been
shown [1–7] to solve effectively, easily, and accurately a large
class of linear and nonlinear, ordinary, partial differential
equations. However, in [1–7], it cannot be used directly
boundary value problems with mixed boundary conditions,
since it is very difficult to obtain a reproducing kernel
function satisfying mixed nonlinear boundary conditions.
The aim of this work is to fill this gap. In [8], we give a new
reproducing kernel Hilbert space for solving singular linear
fourth-order boundary value problems withmixed boundary
conditions. In this paper, we use the new reproducing kernel
Hilbert function space method to solve the nonlinear fifth-
order boundary value problems.

Singular fifth-order boundary value problems arise in
the fields of gas dynamics, Newtonian fluid mechanics,
fluid mechanics, fluid dynamics, elasticity, reaction-diffusion
processes, chemical kinetics, and other branches of applied
mathematics.

Let us consider the following class of singular fifth-order
mixed boundary value problems:

𝑢
(5)
(𝑥) +

𝑝
1
(𝑥)

𝑥𝛼1(1 − 𝑥)
𝛽1

𝑢
(4)
(𝑥) + ⋅ ⋅ ⋅ +

𝑝
4
(𝑥)

𝑥𝛼4(1 − 𝑥)
𝛽4

𝑢

(𝑥)

+
𝑝
5 (𝑥)

𝑥𝛼5(1 − 𝑥)
𝛽5

𝑢 (𝑥) = 𝑓 (𝑥) , 𝑥 ∈ (0, 1) ,

𝐵
𝑖
𝑢 = 𝑟
𝑖
, (𝑖 = 1, 2, . . . , 5) ,

(1)

where 𝑝
𝑗
(𝑥), 𝑓(𝑥) ∈ 𝐿

2
[0, 1] (𝑗 = 1, . . . , 5) are known

functions. 𝐵
𝑖
𝑢 (𝑖 = 1, 2, . . . , 5) are linear conditions. We

assume that (1) has a unique solution which belongs to
𝑊
6

2
[0, 1], where𝑊6

2
[0, 1] is a reproducing kernel space.

Remark 1. If 𝐵
𝑖
𝑢 = 𝑢

(𝑖)
(0) (𝑖 = 1, . . . , 𝑚), then (1) is an initial

value problem. If 𝐵
𝑖
𝑢 = 𝑢(𝑥

𝑖
) (𝑖 = 1, 2, . . . , 𝑚), then (1) is

a multipoint problem and so on. That is, problem (1) has a
rather general form.

Let 𝛼 = max
1≤𝑖≤5

{𝛼
𝑖
} and 𝛽 = max

1≤𝑖≤5
{𝛽
𝑖
}, 𝐹(𝑥) =

𝑥
𝛼
(1 − 𝑥)

𝛽
𝑓(𝑥).

Consider

(𝐿𝑢) (𝑥) = 𝑥
𝛼
(1 − 𝑥)

𝛽
𝑢
(5)
(𝑥)

+ 𝑥
𝛼−𝛼1
(1 − 𝑥)

𝛽−𝛽1𝑝
1
(𝑥) 𝑢
(4)
(𝑥)

+ ⋅ ⋅ ⋅ + 𝑥
𝛼−𝛼4
(1 − 𝑥)

𝛽−𝛽4𝑝
4
(𝑥) 𝑢

(𝑥)

+ 𝑥
𝛼−𝛼5
(1 − 𝑥)

𝛽−𝛽5𝑝
5
(𝑥) 𝑢 (𝑥) .

(2)
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It is easy to prove that 𝐿 : 𝑊
6

2
[0, 1] → 𝐿

2
[0, 1] is a

bounded linear operator. On the other hand, we suppose that
the linear conditions can also always be homogenized; after
homogenization of these conditions, we put these conditions
into the reproducing kernel space𝑊6

2
[0, 1] constructed in the

following section. Equation (1) can be transformed into the
following form in𝑊6

2
[0, 1]:

(𝐿𝑢) (𝑥) = 𝐹 (𝑥) . (3)

2. Reproducing Kernel Hilbert Space

Definition 2. Let 𝐻 be a real Hilbert space of functions 𝑓 :
Ω → 𝑅. A function 𝐾 : Ω × Ω → 𝑅 is called reproducing
kernel for𝐻 if

(i) 𝐾(𝑥, ⋅) ∈ 𝐻 for all 𝑥 ∈ Ω,

(ii) 𝑓(𝑥) = ⟨𝑓,𝐾(⋅, 𝑥)⟩
𝐻
for all 𝑓 ∈ 𝐻 and all 𝑥 ∈ Ω.

Definition 3. A real Hilbert space 𝐻 of functions on a set Ω
is called a reproducing kernel Hilbert space if there exists a
reproducing kernel 𝐾 of𝐻.

One defines that the inner product space 𝑊𝑚+1
2
[0, 1] =

{𝑢 | 𝑢, 𝑢

, . . ., 𝑢

(𝑚) are absolutely continuous function,
𝑢
(𝑚+1)

∈ 𝐿
2
[0, 1]}.

The inner product in𝑊𝑚+1
2
[0, 1] is given by

⟨𝑢 (𝑥) , V (𝑥)⟩

=

𝑚

∑

𝑖=0

𝑢
(𝑖)
(0) V(𝑖) (0) + ∫

1

0

𝑢
(𝑚+1)

(𝑡) V(𝑚+1) (𝑡) 𝑑𝑡.
(4)

Theorem 4 (see [8]). The space 𝑊𝑚+1
2
[0, 1] is a reproducing

kernel space, and its reproducing kernel is

𝑅
{𝑚+1}

(𝑥, 𝑦) =

{{{{{{{{{{{{

{{{{{{{{{{{{

{

𝑚

∑

𝑖=0

1

(𝑖!)
2
𝑥
𝑖
𝑦
𝑖

+
1

(𝑚!)
2
∫

𝑥

0

(𝑥− 𝑡)
𝑚
(𝑦− 𝑡)

𝑚
𝑑𝑡,

𝑥<𝑦,

𝑚

∑

𝑖=0

1

(𝑖!)
2
𝑥
𝑖
𝑦
𝑖

+
1

(𝑚!)
2
∫

𝑦

0

(𝑥− 𝑡)
𝑚
(𝑦− 𝑡)

𝑚
𝑑𝑡,

𝑦<𝑥.

(5)

For studying the solution of (1) in the homogenized form,
we give space (6) as follows:

𝑊
6

2
[0, 1] = {𝑢 | 𝑢 ∈ 𝑊

6

2
[0, 1] , 𝐵𝑖𝑢 = 0, 𝑖 = 1, 2, . . . , 5} .

(6)

𝑊
6

2
[0, 1] is equipped with the same inner product𝑊6

2
[0, 1].

In the following, we construct a reproducing kernel for the
space𝑊6

2
[0, 1], and we give Lemmas 5 and 6.

Lemma 5. Let 𝐴 : 𝐻[𝑎, 𝑏] → 𝐿
2
[𝑎, 𝑏] be a bounded

linear operator; function 𝑅
𝑥
(𝑦) is the reproducing kernel of

space 𝐻[𝑎, 𝑏]. Let 𝑔
𝑧
(𝑥) = (𝐴

𝑠
𝑅
𝑥
(𝑠))(𝑧); then ‖𝑔

𝑧
(𝑥)‖
2
=

(𝐴
𝑠
(𝐴
𝑡
𝑅
𝑠
(𝑡))(𝑧))(𝑧), where 𝐻[𝑎, 𝑏] denotes any reproducing

kernel space of functions over [𝑎, 𝑏], the symbol 𝐴
𝑠
indicates

that the operator 𝐴 applies to functions of the variable 𝑠, and
the symbol (𝐴

𝑠
𝑅
𝑥
(𝑠))(𝑧) indicates that the operator 𝐴 applies

to function 𝑅
𝑥
(𝑠) of the variable 𝑠 and 𝑠 = 𝑧.

Proof. Consider
𝑔𝑧 (𝑥)



2
= ⟨(𝐴

𝑠
𝑅
𝑥
(𝑠)) (𝑧) , (𝐴

𝑡
𝑅
𝑥
(𝑡)) (𝑧)⟩

= (𝐴
𝑠
(𝐴
𝑡
⟨𝑅
𝑥 (𝑠) , 𝑅𝑥 (𝑡)⟩) (𝑧)) (𝑧)

= (𝐴
𝑠
(𝐴
𝑡
𝑅
𝑠
(𝑡)) (𝑧)) (𝑧) .

(7)

Lemma 6. If 𝐴, 𝑔
𝑧
(𝑥), and 𝑅

𝑥
(𝑦) are defined as in Lemma 5,

let 𝐾
𝑥
(𝑦) = 𝑅

𝑥
(𝑦) − 𝑔

𝑧
(𝑥)𝑔
𝑧
(𝑦)/‖𝑔

𝑧
(𝑥)‖
2; consider the space

𝐻
1
= {𝑢(𝑦) | 𝑢(𝑦) ∈ 𝐻[𝑎, 𝑏], and (𝐴

𝑦
𝑢(𝑦))(𝑧) = 0}, then,

𝐾
𝑥
(𝑦) is the reproducing kernel of space𝐻

1
.

Proof. For any 𝑢(𝑦) ∈ 𝐻
1
, next, wewill prove ⟨𝑢(𝑦), 𝐾

𝑥
(𝑦)⟩ =

𝑢(𝑥).
Consider

⟨𝑢 (𝑦) , 𝐾
𝑥
(𝑦)⟩ = ⟨𝑢 (𝑦) , 𝑅

𝑥
(𝑦) −

𝑔
𝑧
(𝑥) 𝑔
𝑧
(𝑦)

𝑔𝑧 (𝑥)


2
⟩

= ⟨𝑢 (𝑦) , 𝑅
𝑥
(𝑦)⟩−⟨𝑢 (𝑦) ,

𝑔
𝑧
(𝑥) 𝑔
𝑧
(𝑦)

‖ 𝑔
𝑧
(𝑥) ‖
2
⟩

=𝑢 (𝑥)−𝑔
𝑧
(𝑥)

⟨𝑢 (𝑦) , (𝐴
𝑠
𝑅
𝑦 (𝑠)) (𝑧)⟩

𝑔𝑧 (𝑥)


2

= 𝑢 (𝑥) − 𝑔𝑧 (𝑥)

(𝐴
𝑠
⟨𝑢 (𝑦) , 𝑅

𝑦
(𝑠)⟩) (𝑧)

𝑔𝑧 (𝑥)


2

= 𝑢 (𝑥) −
𝑔
𝑧
(𝑥) (𝐴

𝑠
𝑢 (𝑠)) (𝑧)

𝑔𝑧 (𝑥)


2
= 𝑢 (𝑥) .

(8)

Let ℎ
1
(𝑥) = 𝐵

1𝑦
𝑅
{6}
(𝑥, 𝑦), ℎ

2
(𝑥) = 𝐵

2𝑦
(𝑅
{6}
(𝑥, 𝑦) −

ℎ
1
(𝑥)ℎ
1
(𝑦)/‖ℎ

1
(𝑥)‖
2
), ℎ
3
(𝑥) = 𝐵

3𝑦
(𝑅
{6}
(𝑥, 𝑦) − ℎ

1
(𝑥)ℎ
1
(𝑦)/

‖ℎ
1
(𝑥)‖
2
− ℎ
2
(𝑥)ℎ
2
(𝑦)/‖ℎ

2
(𝑥)‖
2
), ℎ
4
(𝑥) = 𝐵

4𝑦
(𝑅
{6}
(𝑥, 𝑦) −

ℎ
1
(𝑥)ℎ
1
(𝑦)/‖ℎ

1
(𝑥)‖
2
− ℎ
2
(𝑥)ℎ
2
(𝑦)/‖ℎ

2
(𝑥)‖
2
− ℎ
3
(𝑥)ℎ
3
(𝑦)/

‖ℎ
3
(𝑥)‖
2
), and ℎ

5
(𝑥) = 𝐵

5𝑦
(𝑅
{6}
(𝑥, 𝑦)−ℎ

1
(𝑥)ℎ
1
(𝑦)/‖ℎ

1
(𝑥)‖
2
−

ℎ
2
(𝑥)ℎ
2
(𝑦)/‖ℎ

2
(𝑥)‖
2
− ℎ
3
(𝑥)ℎ
3
(𝑦)/‖ℎ

3
(𝑥)‖
2
− ℎ
4
(𝑥)ℎ
4
(𝑦)/

‖ℎ
4
(𝑥)‖
2
), where the symbol 𝐵

𝑖𝑦
(𝑖 = 1, 2, 3, 4, 5) indicates

that the operator 𝐵
𝑖
(𝑖 = 1, 2, 3, 4, 5) applies to functions of

the variable 𝑦. Using Lemma 6, we get Theorem 7.
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Table 1: The numerical results of Example 12.

𝑥 𝑢
𝑇
(𝑥) 𝑢

100
(𝑥) |𝑢

20
(𝑥) − 𝑢

𝑇
(𝑥)| |𝑢

40
(𝑥) − 𝑢

𝑇
(𝑥)| |𝑢

100
(𝑥) − 𝑢

𝑇
(𝑥)| |𝑢



100
(𝑥) − 𝑢



𝑇
(𝑥)|

0 0 0 0 0 0 0
0.08 −0.00150556 −0.00149854 3.11533 × 10

−4
2.12134 × 10

−4
7.01613 × 10

−6
4.26411 × 10

−5

0.16 −0.00300419 −0.00299716 5.86206 × 10
−4

4.03105 × 10
−4

7.02601 × 10
−6

3.96519 × 10
−5

0.24 −0.000739712 −0.000738437 1.36893 × 10
−4

1.08655 × 10
−4

1.27471 × 10
−6

1.06360 × 10
−4

0.32 0.00926282 0.00925363 1.38316 × 10
−3

9.02756 × 10
−4

9.18729 × 10
−6

1.59425 × 10
−4

0.4 0.0316161 0.0315926 4.00907 × 10
−3

2.65016 × 10
−3

2.34247 × 10
−5

1.93257 × 10
−4

0.48 0.0717954 0.0717548 7.49348 × 10
−3

4.96714 × 10
−3

4.06485 × 10
−5

2.28313 × 10
−4

0.56 0.136337 0.136276 1.13395 × 10
−3

7.52215 × 10
−3

6.03524 × 10
−5

2.58664 × 10
−4

0.64 0.23304 0.232959 1.48395 × 10
−3

9.84568 × 10
−3

8.01808 × 10
−5

2.77257 × 10
−4

0.72 0.371189 0.371084 1.71134 × 10
−3

1.13541 × 10
−3

1.04886 × 10
−4

2.93384 × 10
−4

0.8 0.561801 0.561673 1.71481 × 10
−3

1.13757 × 10
−3

1.27883 × 10
−4

3.40704 × 10
−4

0.88 0.817902 0.817739 1.38345 × 10
−3

9.1769 × 10
−3

1.63033 × 10
−4

6.89140 × 10
−4

0.96 1.15484 1.15458 5.99608 × 10
−3

3.97735 × 10
−3

2.60877 × 10
−4

1.51714 × 10
−3

Theorem 7. The space𝑊6
2
[0, 1] is a reproducing kernel space,

and its reproducing kernel is

𝐾(𝑥, 𝑦) = 𝑅
{6}
(𝑥, 𝑦) −

ℎ
1
(𝑥) ℎ
1
(𝑦)

ℎ1 (𝑥)


2
−
ℎ
2
(𝑥) ℎ
2
(𝑦)

ℎ2 (𝑥)


2

−
ℎ
3
(𝑥) ℎ
3
(𝑦)

ℎ3 (𝑥)


2
−
ℎ
4
(𝑥) ℎ
4
(𝑦)

ℎ4 (𝑥)


2
−
ℎ
5
(𝑥) ℎ
5
(𝑦)

ℎ5 (𝑥)


2
.

(9)

3. Analytical Solution

Let 𝜓
𝑖
(𝑥) = (𝐿

𝑦
𝐾(𝑥, 𝑦))(𝑥

𝑖
), 𝑖 = 1, 2, . . .. Via Gram-Schmidt

orthonormalization for {𝜓
𝑖
(𝑥)}
∞

𝑖=1
, we get

𝜓
𝑖
(𝑥) =

𝑖

∑

𝑘=1

𝛽
𝑖𝑘
𝜓
𝑘
(𝑥) , (10)

where the 𝛽
𝑖𝑘

are the coefficients resulting from Gram-
Schmid orthonormalization.

Lemma 8. If {𝑥
𝑖
}
∞

𝑖=1
are distinct points dense in [0, 1] and 𝐿−1

is existent, then {𝜓
𝑖
(𝑥)}
∞

𝑖=1
is a complete function system in

𝑊
m+1
2
[0, 1].

Proof. For each fixed 𝑢(𝑥) ∈ 𝑊m+1
2
[0, 1], if ⟨𝑢(𝑥), 𝜓

𝑖
(𝑥)⟩ = 0,

then

⟨𝑢 (𝑥) , 𝜓
𝑖
(𝑥)⟩

= (𝐿
𝑦
⟨𝑢 (𝑥) , 𝐾 (𝑥, 𝑦)⟩) (𝑥

𝑖
) = (𝐿

𝑦
𝑢 (𝑦)) (𝑥

𝑖
) = 0.

(11)

Taking into account the density of {𝑥
𝑖
}
∞

𝑖=1
, it results in

(𝐿
𝑦
𝑢(𝑦))(𝑥) = 0. It follows that 𝑢(𝑥) ≡ 0 from the existence

of 𝐿−1.

Theorem9. If {𝑥
𝑖
}
∞

𝑖=1
are distinct points dense in [0, 1] and 𝐿−1

is existent, then

𝑢 (𝑥) =

∞

∑

𝑖=1

𝑖

∑

𝑘=1

𝛽
𝑖𝑘
𝐹 (𝑥
𝑘
) 𝜓
𝑖
(𝑥) (12)

is an analytical solution of (3).

Proof. 𝑢(𝑥) can be expanded to Fourier series in terms of
normal orthogonal basis {𝜓

𝑖
(𝑥)}
∞

𝑖=1
in𝑊𝑚+1
2
[0, 1] as follows:

𝑢 (𝑥) =

∞

∑

𝑖=1

⟨𝑢 (𝑥) , 𝜓
𝑖
(𝑥)⟩ 𝜓

𝑖
(𝑥)

=

∞

∑

𝑖=1

𝑖

∑

𝑘=1

𝛽
𝑖𝑘
⟨𝑢 (𝑥) , 𝜓

𝑘
(𝑥)⟩ 𝜓

𝑖
(𝑥)

=

∞

∑

𝑖=1

𝑖

∑

𝑘=1

𝛽
𝑖𝑘
⟨𝑢 (𝑥) , (𝐿

𝑠
𝐾
𝑥
(𝑠)) (𝑥

𝑘
)⟩ 𝜓
𝑖
(𝑥)

=

∞

∑

𝑖=1

𝑖

∑

𝑘=1

𝛽
𝑖𝑘
(𝐿
𝑠
⟨𝑢 (𝑥) , 𝐾

𝑥
(𝑠)⟩) (𝑥

𝑘
) 𝜓
𝑖
(𝑥)

=

∞

∑

𝑖=1

𝑖

∑

𝑘=1

𝛽
𝑖𝑘
(𝐿
𝑠
𝑢 (𝑠)) (𝑥

𝑘
) 𝜓
𝑖
(𝑥)

=

∞

∑

𝑖=1

𝑖

∑

𝑘=1

𝛽
𝑖𝑘
𝐹 (𝑥
𝑘
) 𝜓
𝑖
(𝑥) .

(13)

4. Numerical Solution

We define an approximate solution 𝑢
𝑛
(𝑥) by

𝑢
𝑛
(𝑥) =

𝑛

∑

𝑖=1

𝑖

∑

𝑘=1

𝛽
𝑖𝑘
𝐹 (𝑥
𝑘
) 𝜓
𝑖
(𝑥) . (14)
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Table 2: Comparison of the absolute error of Example 13.

𝑥
Solution Absolute error

𝑢
𝑇
(𝑡, 𝑥) Reference [9] 𝑢

100
(𝑥) |𝑢

50
(𝑥) − 𝑢

𝑇
(𝑥)| Reference [9] |𝑢

100
(𝑥) − 𝑢

𝑇
(𝑥)|

0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.1249 0.0000752 0.0000754 0.0000754 8.11621 × 10

−7
2 × 10

−7
2.74983 × 10

−7

0.2431 0.0013039 0.0013043 0.0013037 3.70493 × 10
−6

4 × 10
−7

1.13843 × 10
−7

0.3806 0.0080242 0.0080249 0.0080244 7.8819 × 10
−6

7 × 10
−7

2.32339 × 10
−7

0.4195 0.0116531 0.0116538 0.0116533 8.85202 × 10
−6

7 × 10
−7

2.59035 × 10
−7

0.5 0.0220970 0.0220978 0.0220972 1.01895 × 10
−5

8 × 10
−7

2.94629 × 10
−7

0.6923 0.0588207 0.0588201 0.0588209 8.5994 × 10
−6

6 × 10
−7

2.44068 × 10
−7

0.7854 0.0723723 0.0723726 0.0723724 5.68292 × 10
−6

4 × 10
−7

1.60302 × 10
−7

0.8917 0.0646361 0.0646363 0.0646366 1.96562 × 10
−6

2 × 10
−7

5.51306 × 10
−7

1.0 0.0 0.0 0.0 0.0 0.0 0.0

Table 3: The numerical results of Example 13.

𝑥 𝑢


𝑇
(𝑥) 𝑢



100
(𝑥) |𝑢



100
(𝑥) − 𝑢



𝑇
(𝑥)| 𝑢



𝑇
(𝑥) 𝑢



100
(𝑥) |𝑢



100
(𝑥) − 𝑢



𝑇
(𝑥)|

0.0 0 0 0 0 0 0
0.1 0.0012491 0.00125306 3.95623 × 10

−6 0.0419792 0.0420291 4.98366 × 10
−5

0.2 0.0121642 0.0121721 7.93764 × 10
−6 0.193196 0.193223 2.63540 × 10

−5

0.3 0.0421473 0.0421562 8.95432 × 10
−6 0.410381 0.410375 6.05312 × 10

−6

0.4 0.0930975 0.0931043 6.87917 × 10
−6 0.591978 0.591944 3.40825 × 10

−5

0.5 0.15468 0.154682 2.49761 × 10
−6 0.596621 0.59657 5.13938 × 10

−5

0.6 0.200775 0.200773 2.91343 × 10
−6 0.250969 0.250915 5.41587 × 10

−5

0.7 0.186533 0.186526 7.76184 × 10
−6

−0.645692 −0.645732 3.97775 × 10
−5

0.8 0.0457947 0.0457844 1.023370 × 10
−5

−2.31836 −2.31836 6.35516 × 10
−6

0.9 −0.311216 −0.311224 8.34947 × 10
−6

−5.01403 −5.01398 4.75597 × 10
−5

1.0 −1 −1 6.12843 × 10
−14

−9 −8.99988 1.23122 × 10
−5

Theorem 10. Let 𝜀2
𝑛
= ‖𝑢(𝑥) − 𝑢

𝑛
(𝑥)‖
2, where 𝑢(𝑥) and 𝑢

𝑛
(𝑥)

are given by (12) and (14); then the sequence of real numbers
𝜀
𝑛
(𝑥) is monotonously decreasing and 𝜀

𝑛
(𝑥) → 0.

Proof. We have

𝜀
2

𝑛
=
𝑢 (𝑥) − 𝑢𝑛 (𝑥)



2
=



∞

∑

𝑖=𝑛+1

⟨𝑢 (𝑥) , 𝜓
𝑖
(𝑥)⟩ 𝜓

𝑖
(𝑥)



2

=

∞

∑

𝑖=𝑛+1

(⟨𝑢 (𝑥) , 𝜓
𝑖
(𝑥)⟩)
2
.

(15)

Clearly, 𝜀
𝑛−1

≥ 𝜀
𝑛
and consequently {𝜀

𝑛
} is monotonously

decreasing in the sense of ‖ ⋅ ‖. By Theorem 9, we know that
∑
∞

𝑖=1
⟨𝑢(𝑥), 𝜓

𝑖
(𝑥)⟩𝜓

𝑖
(𝑥) is convergent in the norm of ‖ ⋅ ‖; then

we have

𝜀
2

𝑛
=
𝑢 (𝑥) − 𝑢𝑛 (𝑥)



2
→ 0. (16)

Hence, 𝜀
𝑛
→ 0.

Theorem 11 (convergence analysis). 𝑢
𝑛
(𝑥) and 𝑢(𝑘)

𝑛
(𝑥) are

uniformly convergent to 𝑢(𝑥) and 𝑢(𝑘)(𝑥), 𝑘 = 0, 1, 2, . . . , 𝑚,
where 𝑢(𝑥) and 𝑢

𝑛
(𝑥) are given by (12) and (14).

Proof. For any 𝑥 ∈ [0, 1], 𝑘 = 0, 1, 2, . . . , 5,


𝑢
(𝑘)

𝑛
(𝑥) − 𝑢

(𝑘)
(𝑥)

=



⟨𝑢
𝑛 (𝑡) − 𝑢 (𝑡) ,

𝜕
𝑘
𝐾 (𝑥, 𝑡)

𝜕𝑥𝑘
⟩



≤
𝑢𝑛 (𝑡) − 𝑢 (𝑡)

 ⋅



𝜕
𝑘
𝐾 (𝑥, 𝑡)

𝜕𝑥𝑘



.

(17)

Then there exists 𝐶
𝑘
> 0 such that


𝑢
(𝑘)

𝑛
(𝑥) − 𝑢

(𝑘)
(𝑥)

≤ 𝐶
𝑘

𝑢𝑛 (𝑡) − 𝑢 (𝑡)


= 𝐶
𝑘
𝜀
𝑛
→ 0.

(18)

The numerical solution to (3) can be obtained using the
following method:

𝑢
𝑛
(𝑥) =

𝑛

∑

𝑖=1

𝑑
𝑖
𝜓
𝑖
(𝑥) , (19)

where the coefficients 𝑑
𝑖
, 𝑖 = 1, . . . , 𝑚, are determined by the

equation
𝑛

∑

𝑖=1

𝑑
𝑖
𝐿𝜓
𝑖
(𝑥) |
𝑥=𝑥𝑗

= 𝐹 (𝑥
𝑗
) , 𝑗 = 1, 2, . . . , 𝑛. (20)

Using (19) and (20), we have (𝐿𝑢
𝑚
)(𝑥
𝑗
) = 𝐹(𝑥

𝑗
), 𝑗 =

1, 2, . . . , 𝑛. So, 𝑢
𝑛
(𝑥) is the approximation solution of (3).



Abstract and Applied Analysis 5

Table 4: The numerical results of Example 13.

𝑥 𝑢
(3)

𝑇
(𝑥) 𝑢

(3)

100
(𝑥) |𝑢

(3)

100
(𝑥) − 𝑢

(3)

𝑇
(𝑥)| 𝑢

(4)

𝑇
(𝑥) 𝑢

(4)

100
(𝑥) |𝑢

(4)

100
(𝑥) − 𝑢

(4)

𝑇
(𝑥)|

0.1 0.971215 0.971117 9.72528 × 10
−5 11.8289 11.8244 4.50235 × 10

−3

0.2 1.97221 1.9719 3.12435 × 10
−4 7.04361 7.0429 7.15499 × 10

−4

0.3 2.19979 2.19947 3.16007 × 10
−4

−3.23499 −3.2345 4.83768 × 10
−4

0.4 1.19534 1.19511 2.34524 × 10
−4

−17.4321 −17.431 1.09059 × 10
−3

0.5 −1.39212 −1.39222 1.05489 × 10
−4

−34.8029 −34.8014 1.46428 × 10
−3

0.6 −5.85595 −5.8559 5.44543 × 10
−5

−54.8995 −54.8978 1.72026 × 10
−3

0.7 −12.4526 −12.4524 2.36294 × 10
−4

−77.4172 −77.4153 1.90772 × 10
−3

0.8 −21.4126 −21.4122 4.34553 × 10
−4

−102.132 −102.13 2.05168 × 10
−3

0.9 −32.9466 −32.9459 6.45658 × 10
−4

−128.873 −128.871 2.16643 × 10
−3

1.0 −47.25 −47.2491 9.67158 × 10
−4

−157.5 −157.498 2.26074 × 10
−3

5. Numerical Experiment

In this section, two numerical examples are studied to
demonstrate the accuracy of the present method.

Example 12. Consider the following fifth-order boundary
value problem with nonclassical side condition (the right-
hand side of this problem has a singularity at 𝑥 = 0, 𝑥 = 1):

𝑢
(5)
(𝑥) − 𝑒

𝑥 𝑥

1 − 𝑥
𝑢

(𝑥) + 𝑒

𝑥 𝑥

1 − 𝑥
𝑢 (𝑥) = 𝑓 (𝑥) ,

0 < 𝑥 < 1,

𝑢 (0) = 𝑢

(0) = 𝑢 (

1

4
) = 0,

5𝑢

(0) + 42∫

1

0

𝑒
−𝑥
𝑢 (𝑥) 𝑑𝑥 = 0,

4𝑢

(1) + 𝑢


(1) = 10𝑢


(1) ,

(21)

where 𝑓(𝑥) = 𝑒𝑥(−45 + 195𝑥 − 750𝑥2 + 320𝑥5/2 − 600𝑥3 −
32(5 + 𝑒

𝑥
)𝑥
7/2
+ 40(20 + 3𝑒

𝑥
)𝑥
4
− 16(9 + 4𝑒

𝑥
)𝑥
9/2
+ 16(23 +

10𝑒
𝑥
)𝑥
5
−16𝑥
11/2
+32𝑥
6
)/32(−1+𝑥)𝑥

5/2.The exact solution is
𝑢
𝑇
(𝑥) = 𝑥

2
(√𝑥 − 1/2)𝑒

𝑥. The numerical results are presented
in Table 1.

Example 13 (see [9]). Consider the following fifth-order
boundary value problem (the right-hand side of this problem
has a singularity at 𝑥 = 0):

𝑢
(5)
(𝑥) − 𝑒

−𝑥
𝑢 (𝑥)

= −𝑒
−𝑥
𝑥

9

2 (1 − 𝑥) +
945 (1 − 11𝑥)

32√𝑥
, 0 < 𝑥 < 1,

𝑢 (0) = 𝑢

(0) = 𝑢


(0) = 𝑢 (1) = 0, 𝑢


(1) = −1,

(22)

where the exact solution is 𝑢
𝑇
(𝑥) = 𝑥

9/2
(1 − 𝑥). By the

homogeneous process of the boundary condition, letting

V(𝑥) = 𝑢(𝑥) − 𝑥3(1 − 𝑥), the problem can be transformed
into the equivalent form

V(5) (𝑥) − 𝑒−𝑥V (𝑥)

= −𝑒
−𝑥
(𝑥

9

2 − 𝑥
3
)(1 − 𝑥) +

945 (1 − 11𝑥)

32√𝑥
, 0 ≤ 𝑥 ≤ 1,

V (0) = V (0) = V (0) = V (1) = V (1) = 0.
(23)

The numerical results are presented in Tables 2, 3, and 4.

6. Conclusions and Remarks

In this paper, a new reproducing kernel space satisfying
mixed boundary value conditions is constructed skillfully.
This makes it easy to solve such kind of problems. Further-
more, the exact solution of the problem can be expressed in
series form. The numerical results demonstrate that the new
method is quite accurate and efficient for singular problems of
fifth-order ordinary differential equations. All computations
have been performed using the Mathematica 7.0 software
package.
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A class of nonlinear elliptic problems driven by 𝑝(𝑥)-Laplacian-like with a nonsmooth locally Lipschitz potential was considered.
Applying the version of a nonsmooth three-critical-point theorem, existence of three solutions of the problem is proved.

1. Introduction

Since many free boundary problems and obstacle problems
may be reduced to partial differential equations with dis-
continuous nonlinearities, the existence of multiple solu-
tions of the problems with discontinuous nonlinearities has
been widely investigated in recent years. In 1981, Chang
[1] extended the variational methods to a class of nondif-
ferentiable functionals and directly applied the variational
methods for nondifferentiable functionals to prove some
existence theorems for PDE with discontinuous nonlin-
earities. Soon thereafter, Kourogenis and Papageorgiou [2]
extend the nonsmooth critical point theory of Chang [1],
by replacing the compactness and the boundary condi-
tions. In [3], by using the Ekeland variational principle
and a deformation theorem, Kandilakis et al. obtained
the local linking theorem for locally Lipschitz functions.
In the celebrated work [4], Ricceri elaborated a Ricceri-
type variational principle for Gateaux differentiable func-
tionals. Later, Marano and Motreanu [5] extended Ric-
ceri’s result to a large class of nondifferentiable function-
als and gave an application to a Neumann-type problem
involving the 𝑝-Laplacian with discontinuous nonlineari-
ties.

In this paper, we consider a nonlinear elliptic problem
driven by 𝑝(𝑥)-Laplacian-like with a nonsmooth locally

Lipschitz potential (hemivariational inequality):

− div((1+
|∇𝑢|

𝑝(𝑥)

√1 + |∇𝑢|
2𝑝(𝑥)

)|∇𝑢|
𝑝(𝑥)−2

∇𝑢)∈𝜆𝜕𝐹 (𝑥, 𝑢) ,

a.e. in Ω,

𝑢 = 0, on 𝜕Ω,
(P)

where Ω ⊂ R𝑁 is a bounded domain with 𝐶1-boundary 𝜕Ω.
𝑝 ∈ 𝐶(Ω), 2 ≤ 𝑁 < 𝑝

−
:= inf

𝑥∈Ω
𝑝(𝑥) ≤ 𝑝

+
:= sup

𝑥∈Ω
𝑝(𝑥) <

+∞, 𝐹 ∈ 𝐶(Ω×R), and 𝐹 : Ω×R → R is a locally Lipschitz
with respect to the second variable. By 𝜕𝐹(𝑥, 𝑢), we denote the
generalized subdifferential of the locally Lipschitz function
𝑢 → 𝐹(𝑥, 𝑢). Our goal is to establish the same results under
different assumptions.

The study of differential equations and variational prob-
lems with variable exponent has been a new and interesting
topic. It arises from nonlinear elasticity theory, electrorhe-
ological fluids, and so forth (see [6, 7]). The study on
variable exponent problems attracts more and more interest
in recent years. Many results have been obtained on this kind
of problems, for example, [8–14]. Neumann-type problems
involving the 𝑝(𝑥)-Laplacian have been studied, for instance,
in [15–18].
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Recently, Rodrigues [19] has considered the existence of
nontrivial solution for the Dirichlet problem involving the
𝑝(𝑥)-Laplacian-like of the type

− div((1 +
|∇𝑢|

𝑝(𝑥)

√1 + |∇𝑢|
2𝑝(𝑥)

)|∇𝑢|
𝑝(𝑥)−2

∇𝑢)=𝜆𝑓 (𝑥, 𝑢) ,

a.e. inΩ,

𝑢 = 0, on 𝜕Ω,
(1)

where Ω ⊂ R𝑁 is a bounded domain with smooth boundary
𝜕Ω, 𝑝 ∈ 𝐶(Ω)with 𝑝(𝑥) > 2, for all 𝑥 ∈ Ω, and 𝑓 : Ω×R →

R satisfies the Caratheodory condition. We emphasize that,
in our approach, no continuity hypothesis will be required for
the function 𝑓 with respect to the second argument. So, (P)
need not have a solution. To avoid this situation, we consider
such function𝑓(𝑥, ⋅)which is locally essentially bounded and
fill the discontinuity gap of𝑓(𝑥, ⋅), replacing𝑓 by the interval
[𝑓

1
, 𝑓

2
], where

𝑓
1 (𝑥, 𝑡) := lim

𝑠→0
+

ess inf
|𝑠−𝑡|<𝛿

𝑓 (𝑥, 𝑠) ,

𝑓
2
(𝑥, 𝑡) := lim

𝑠→0
+

ess sup
|𝑠−𝑡|<𝛿

𝑓 (𝑥, 𝑠) .

(2)

On the other hand, it is well known that if 𝐹(𝑥, 𝑢) =

∫
𝑢

0
𝑓(𝑥, 𝑡)𝑑𝑡, then 𝐹 become locally Lipschitz and 𝜕𝐹(𝑥, 𝑢) =

[𝑓
1
(𝑥, 𝑢), 𝑓

2
(𝑥, 𝑢)] (see [1, 20]).

The aim of the present paper is to establish a three-
solution theorem for the nonlinear elliptic problem driven
by 𝑝(𝑥)-Laplacian-like with nonsmooth potential (see
Theorem 6) by using a consequence (see Theorem 4) of the
three-critical-point theorem established firstly by Marano
and Motreanu in [20], which is a non-smooth version of
Ricceri’s three-critical-point theorem (see [21]). The paper is
organized as follows. In Section 2, we present some necessary
preliminary knowledge on variable exponent Sobolev spaces
and the generalized gradient of the locally Lipschitz function.
In Section 3, we give the main result of this paper and use
the non-smooth three-critical-point theorem to prove it.

2. Preliminary

In order to discuss problem (P), we need some theories
on 𝑊

1,𝑝(𝑥)

0
(Ω) and the generalized gradient of the locally

Lipschitz function. Firstly we state some basic properties
of space 𝑊

1,𝑝(𝑥)

0
(Ω) which will be used later (for details,

see [10–12]). Denote by 𝑆(Ω) the set of all measurable real
functions defined onΩ. Two functions in 𝑆(Ω) are considered
as the same element of 𝑆(Ω) when they are equal almost
everywhere.

Put 𝐶
+
(Ω) = {𝑝 ∈ 𝐶(Ω) : 𝑝(𝑥) > 1, ∀𝑥 ∈ Ω}.

If 𝑝 ∈ 𝐶(Ω), then write

𝐿
𝑝(𝑥)

(Ω) = {𝑢 ∈ 𝑆 (Ω) : ∫
Ω

|𝑢 (𝑥)|
𝑝(𝑥)

𝑑𝑥 < +∞} , (3)

with the norm |𝑢|
𝐿
𝑝(𝑥)

(Ω)
= |𝑢|

𝑝(𝑥)
= inf{𝜆 > 0 : ∫

Ω
|𝑢(𝑥)/

𝜆|
𝑝(𝑥)

𝑑𝑥 ≤ 1}, and

𝑊
1,𝑝(𝑥)

(Ω) = {𝑢 ∈ 𝐿
𝑝(𝑥)

(Ω) : |∇𝑢| ∈ 𝐿
𝑝(𝑥)

(Ω)} , (4)

with the norm ‖𝑢‖
𝑊
1,𝑝(𝑥)

(Ω)
= |𝑢|

𝐿
𝑝(𝑥)

(Ω)
+ |∇𝑢|

𝐿
𝑝(𝑥)

(Ω)
. Denote

by𝑊1,𝑝(𝑥)

0
(Ω) the closure of 𝐶∞

0
(Ω) in𝑊1,𝑝(𝑥)

(Ω).
We remember that the variable exponent Lebesgue spaces

are separable and reflexive Banach spaces. Denote by 𝐿𝑞(𝑥)(Ω)
the conjugate Lebesgue space of 𝐿𝑝(𝑥)(Ω) with 1/𝑝(𝑥) +

1/𝑞(𝑥) = 1; then the Hölder-type inequality

∫
Ω

|𝑢V| 𝑑𝑥 ≤ (
1

𝑝−
+

1

𝑞−
) |𝑢|𝑝(𝑥)|V|𝑞(𝑥),

𝑢 ∈ 𝐿
𝑝(𝑥)

(Ω) , V ∈ 𝐿𝑞(𝑥) (Ω)

(5)

holds. Furthermore, if we define themapping 𝜌 : 𝐿𝑝(𝑥)(Ω) →
R by

𝜌 (𝑢) = ∫
Ω

|𝑢 (𝑥)|
𝑝(𝑥)

𝑑𝑥, (6)

then the following relations hold:

|𝑢|𝑝(𝑥) > 1 ⇒ |𝑢|
𝑝
−

𝑝(𝑥)
≤ 𝜌 (𝑢) ≤ |𝑢|

𝑝
+

𝑝(𝑥)
,

|𝑢|𝑝(𝑥) < 1 ⇒ |𝑢|
𝑝
+

𝑝(𝑥)
≤ 𝜌 (𝑢) ≤ |𝑢|

𝑝
−

𝑝(𝑥)
.

(7)

Proposition 1 (see [12]). In 𝑊
1,𝑝(𝑥)

0
(Ω) Poincare’s inequality

holds; that is, there exists a positive constant 𝐶
0
such that

|𝑢|𝑝(𝑥) ≤ 𝐶
0|∇𝑢|𝑝(𝑥), ∀𝑢 ∈ 𝑊

1,𝑝(𝑥)

0
(Ω) . (8)

So |∇𝑢|
𝑝(𝑥)

is an equivalent norm in𝑊1,𝑝(𝑥)

0
(Ω).

We will use the equivalent norm in the following discus-
sion and write ‖𝑢‖ = |∇𝑢|

𝑝(𝑥)
for simplicity.

Proposition 2 (see [10]). If 𝑞 ∈ 𝐶
+
(Ω) and 𝑞(𝑥) < 𝑝

∗
(𝑥) for

any 𝑥 ∈ Ω, then the embedding from𝑊
1,𝑝(𝑥)

(Ω) to 𝐿𝑞(𝑥)(Ω) is
compact and continuous.

Consider the following function:

𝐽 (𝑢) = ∫
Ω

1

𝑝 (𝑥)
(|∇𝑢|

𝑝(𝑥)
+ √1 + |∇𝑢|

2𝑝(𝑥)
)𝑑𝑥,

𝑢 ∈ 𝑊
1,𝑝(𝑥)

0
(Ω) .

(9)

We know that (see [1]).
If one denotes𝐴 = 𝐽


: 𝑊

1,𝑝(𝑥)

0
(Ω) → (𝑊

1,𝑝(𝑥)

0
(Ω))

∗, then

⟨𝐴 (𝑢) , V⟩

= ∫
Ω

(|∇𝑢|
𝑝(𝑥)−2

+
|∇𝑢|

2𝑝(𝑥)−2

√1 + |∇𝑢|
2𝑝(𝑥)

)(∇𝑢, ∇V)R𝑁𝑑𝑥,

(10)

for all 𝑢, V ∈ 𝑊1,𝑝(𝑥)

0
(Ω).
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Proposition 3 (see [19]). Set 𝑋 = 𝑊
1,𝑝(𝑥)

0
(Ω); 𝐴 is as shown,

then

(1) 𝐴 : 𝑋 → 𝑋
∗ is a convex, bounded previously; and

strictly monotone operator;

(2) 𝐴 : 𝑋 → 𝑋
∗ is a mapping of type (𝑆)

+
; that is, 𝑢

𝑛

𝑤

→

𝑢 in 𝑋 and lim sup
𝑛→∞

⟨𝐴(𝑢
𝑛
), 𝑢

𝑛
− 𝑢⟩ ≤ 0 implies

𝑢
𝑛
→ 𝑢 in𝑋;

(3) 𝐴 : 𝑋 → 𝑋
∗ is a homeomorphism.

Let (𝑋, ‖ ⋅ ‖) be a real Banach space, and let 𝑋∗ be its
topological dual. A function 𝑓 : 𝑋 → R is called locally
Lipschitz if each point 𝑢 ∈ 𝑋 possesses a neighborhood Ω

𝑢

such that |𝑓(𝑢
1
) − 𝑓(𝑢

2
)| ≤ 𝐿 ‖𝑢

1
− 𝑢

2
‖ for all 𝑢

1
, 𝑢

2
∈ Ω

𝑢
,

for a positive constant 𝐿 depending on Ω
𝑢
. The generalized

directional derivative of 𝑓 at the point 𝑢 ∈ 𝑋 in the direction
ℎ ∈ 𝑋 is

𝑓
0
(𝑢; ℎ) = lim sup

V→𝑢; 𝑡↓0

𝑓 (V + 𝑡ℎ) − 𝑓 (V)
𝑡

. (11)

The generalized gradient of 𝑓 at 𝑢 ∈ 𝑋 is defined by

𝜕𝑓 (𝑢) = {𝑢
∗
∈ 𝑋

∗
: ⟨𝑢

∗
, ℎ⟩ ≤ 𝑓

0
(𝑢; ℎ) ∀ℎ ∈ 𝑋} , (12)

which is a nonempty, convex, and 𝑤
∗-compact subset of 𝑋,

where ⟨⋅, ⋅⟩ is the duality pairing between 𝑋∗ and 𝑋. One says
that 𝑢 ∈ 𝑋 is a critical point of 𝑓 if 0 ∈ 𝜕𝑓(𝑢).

For further details, we refer the reader to the work of
Chang [1].

Finally, for proving our results in the next section, we
introduce the following theorem.

Theorem 4 (see [22, 23]). Let 𝑋 be a separable and reflexive
real Banach space, and let Φ,Ψ : 𝑋 → R be two locally
Lipschitz functions. Assume that there exists 𝑢

0
∈ 𝑋 such that

Φ(𝑢
0
) = Ψ(𝑢

0
) = 0 and Φ(𝑢) ≥ 0 for every 𝑢 ∈ 𝑋 and that

there exist 𝑢
1
∈ 𝑋 and 𝑟 > 0 such that

(1) 𝑟 < Φ(𝑢
1
);

(2) sup
Φ(𝑢)<𝑟

Ψ(𝑢) < 𝑟(Ψ(𝑢
1
)/Φ(𝑢

1
)), and further, one

assumes that function Φ − 𝜆Ψ is sequentially lower
semicontinuous and satisfies the (PS)-condition;

(3) lim
‖𝑢‖→∞

(Φ(𝑢) − 𝜆Ψ(𝑢)) = +∞ for every 𝜆 ∈ [0, 𝑎],
where

𝑎 =
ℎ𝑟

𝑟 (Ψ (𝑢
1
) /Φ (𝑢

1
)) − sup

Φ(𝑢)<𝑟
Ψ (𝑢)

, with ℎ > 1.

(13)

Then, there exist an open interval Λ
1
⊆ [0, 𝑎] and a positive

real number 𝜎 such that, for every 𝜆 ∈ Λ
1
, the functionΦ(𝑢)−

𝜆Ψ(𝑢) admits at least three critical points whose norms are less
than 𝜎.

3. Existence Results

In this part, we will prove that there exist three solutions for
problem (P) under certain conditions.

Definition 5. We say that 𝐼 satisfies (PS)
𝑐
-condition if any

sequence {𝑢
𝑛
} ⊂ 𝑊

1,𝑝(𝑥)

0
(Ω), such that 𝐼(𝑢

𝑛
) → 𝑐 and

𝑚(𝑢
𝑛
) → 0, as 𝑛 → +∞, has a strongly convergent

subsequence, where𝑚(𝑢
𝑛
) = inf{‖𝑢∗‖

𝑋
∗ : 𝑢

∗
∈ 𝜕𝐼(𝑢

𝑛
)}.

By a solution of (P), we mean a function 𝑢 ∈ 𝑊
1,𝑝(𝑥)

0
(Ω)

to which there corresponds a mapping Ω ∋ 𝑥 → 𝑤(𝑥) with
𝑤(𝑥) ∈ 𝜕𝐹(𝑥, 𝑢) for almost every 𝑥 ∈ Ω having the property
that, for every V ∈ 𝑊1,𝑝(𝑥)

0
(Ω), the function 𝑥 → 𝑤(𝑥)V(𝑥) ∈

𝐿
1
(Ω) and

∫
Ω

(|∇𝑢|
𝑝(𝑥)−2

+
|∇𝑢|

2𝑝(𝑥)−2

√1 + |∇𝑢|
2𝑝(𝑥)

)(∇𝑢, ∇V)R𝑁𝑑𝑥

= 𝜆∫
Ω

𝑤 (𝑥) V (𝑥) 𝑑𝑥.

(14)

We know that𝑊1,𝑝(𝑥)

0
(Ω) is compactly embedded into 𝐶(Ω)

(by𝑁 < 𝑝
−
< 𝑝

∗
(𝑥)). So there is a constant 𝑐

0
> 0 such that

|𝑢|
∞
≤ 𝑐

0
‖𝑢‖, for all 𝑢 ∈ 𝑊1,𝑝(𝑥)

0
(Ω).

Set Φ(𝑢) = ∫
Ω
(1/𝑝(𝑥))(|∇𝑢|

𝑝(𝑥)
+ √1 + |∇𝑢|2𝑝(𝑥))𝑑𝑥,

Ψ(𝑢) = ∫
Ω
𝐹(𝑥, 𝑢)𝑑𝑥, 𝑢 ∈ 𝑊

1,𝑝(𝑥)

0
(Ω) and 𝜑(𝑢) = Φ(𝑢) −

𝜆Ψ(𝑢), for all 𝑢 ∈ 𝑊1,𝑝(𝑥)

0
(Ω).

We know that the critical points of 𝜑 are just the weak
solutions of (P).

We consider a non-smooth potential function 𝐹 : Ω ×

R → R such that 𝐹(𝑥, 0) = 0 a.e. on Ω satisfying the
following conditions:

H(j):

(h1) 𝐹(⋅, 𝑡) is measurable for all 𝑡 ∈ R;
(h2) 𝐹(𝑥, ⋅) is locally Lipschitz for a.e. 𝑥 ∈ Ω;
(h3) there exist 𝑎 ∈ 𝐿∞(Ω)+, 𝑐 > 0 such that

|𝑤| ≤ 𝑎 (𝑥) + 𝑐|𝑡|
𝛼(𝑥)−1

, a.e. 𝑥 ∈ Ω, ∀𝑡 ∈ R, (15)

where 𝑤 ∈ 𝜕𝐹(𝑥, 𝑡) and 1 < 𝛼
−
≤ 𝛼

+
< 𝑝

−;
(h4) there exists 𝑞 ∈ 𝐶(Ω) with 𝑝

+
< 𝑞

−
≤ 𝑞(𝑥) <

𝑝
∗
(𝑥), such that lim

|𝑡|→0
(𝐹(𝑥, 𝑡)/|𝑡|

𝑞(𝑥)
) = 0

uniformly a.e. 𝑥 ∈ Ω;
(h5) sup𝑡∈R𝐹(𝑥, 𝑡) > 0, for all 𝑥 ∈ Ω.

Theorem 6. Let (h1)–(h5) hold. Then, there are an open
interval Λ ⊆ [0, +∞) and a number 𝜎 such that, for every 𝜆
belonging to Λ, problem (P) possesses at least three solutions in
𝑊

1,𝑝(𝑥)

0
(Ω) whose norms are less than 𝜎.

Proof. Weobserve thatΨ(𝑢) is Lipschitz on𝐿𝛼(𝑥)(Ω) and, tak-
ing into account that 𝛼(𝑥) < 𝑝

∗
(𝑥),Ψ is also locally Lipschitz

on𝑊1,𝑝(𝑥)

0
(Ω) (see Proposition 2.2 of [15]).Moreover it results

in 𝜕Ψ(𝑢) ⊆ ∫
Ω
𝜕𝐹(𝑥, 𝑢)𝑑𝑥 (see [24]). The interpretation
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of 𝜕Ψ(𝑢) ⊆ ∫
Ω
𝜕𝐹(𝑥, 𝑢)𝑑𝑥 is as follows: to every 𝑤 ∈ 𝜕Ψ(𝑢)

there corresponds a mapping 𝑤(𝑥) ∈ 𝜕𝐹(𝑥, 𝑢) for almost all
𝑥 ∈ Ω having the property that for every V ∈ 𝑊

1,𝑝(𝑥)

0
(Ω) the

function 𝑤(𝑥)V(𝑥) ∈ 𝐿1(Ω) and ⟨𝑤, V⟩ = ∫
Ω
𝑤(𝑥)V(𝑥)𝑑𝑥 (see

[24]). The proof is divided into the following five steps.

Step 1. We show that 𝜑 is coercive.
By (h2), for almost all 𝑥 ∈ Ω, 𝑡 → 𝐹(𝑥, 𝑡) is differentiable

almost everywhere on R and we have

𝑑

𝑑𝑡
𝐹 (𝑥, 𝑡) ∈ 𝜕𝐹 (𝑥, 𝑡) . (16)

From (h3), there exist positive constants 𝑎1, 𝑎2 such that

𝐹 (𝑥, 𝑡) = 𝐹 (𝑥, 0) + ∫

𝑡

0

𝑑

𝑑𝑠
𝐹 (𝑥, 𝑠) 𝑑𝑠

≤ 𝑎 (𝑥) 𝑡 +
𝑐

𝛼 (𝑥)
|𝑡|

𝛼(𝑥)
≤ 𝑎

1
+ 𝑎

2|𝑡|
𝛼(𝑥)

(17)

for a.e. 𝑥 ∈ Ω and 𝑡 ∈ R.
Note that 1 < 𝛼(𝑥) ≤ 𝛼

+
< 𝑝

−
< 𝑝

∗
(𝑥); then by

Proposition 2, we have 𝑊
1,𝑝(𝑥)

0
(Ω) → 𝐿

𝛼(𝑥)
(Ω) (compact

embedding). Furthermore, there exists 𝑐
1
such that |𝑢|

𝛼(𝑥)
≤

𝑐
1
‖𝑢‖.
So, for |𝑢|

𝛼(𝑥)
> 1 and ‖𝑢‖ > 1, we have ∫

Ω
|𝑢|

𝛼(𝑥)
𝑑𝑥 ≤

|𝑢|
𝛼
+

𝛼(𝑥)
≤ 𝑐

𝛼
+

1
‖𝑢‖

𝛼
+

.
Hence,

𝜑 (𝑢)

= ∫
Ω

1

𝑝 (𝑥)
(|∇𝑢|

𝑝(𝑥)
+ √1 + |∇𝑢|

2𝑝(𝑥)
)𝑑𝑥 − 𝜆

× ∫
Ω

𝐹 (𝑥, 𝑢) 𝑑𝑥

≥
2

𝑝+
∫
Ω

|∇𝑢|
𝑝(𝑥)

𝑑𝑥 − 𝜆∫
Ω

𝐹 (𝑥, 𝑢) 𝑑𝑥

≥
2

𝑝+
‖𝑢‖

𝑝
−

− 𝜆𝑎
1
meas (Ω) − 𝜆𝑎

2
𝑐
𝛼
+

1
‖𝑢‖

𝛼
+

→ +∞,

(18)

as ‖𝑢‖ → +∞.

Step 2. We show that 𝜑 is weakly lower semicontinuous.
Let 𝑢

𝑛
⇀ 𝑢 weakly in 𝑊

1,𝑝(𝑥)

0
(Ω), and by Proposition 2,

we obtain the following results:

𝑊
1,𝑝(𝑥)

0
(Ω) → 𝐿

𝑝(𝑥)
(Ω) ; 𝑢

𝑛
→ 𝑢 in 𝐿

𝑝(𝑥)
(Ω) ;

𝑢
𝑛
→ 𝑢 for a.a. 𝑥 ∈ Ω;

𝐹 (𝑥, 𝑢
𝑛
(𝑥)) → 𝐹 (𝑥, 𝑢 (𝑥)) for a.a. 𝑥 ∈ Ω.

(19)

By Fatou’s lemma, we have

lim sup
𝑛→∞

∫
Ω

𝐹 (𝑥, 𝑢
𝑛
(𝑥)) 𝑑𝑥 ≤ ∫

Ω

𝐹 (𝑥, 𝑢 (𝑥)) 𝑑𝑥. (20)

Thus,
lim inf
𝑛→∞

𝜑 (𝑢
𝑛
)

= ∫
Ω

1

𝑝 (𝑥)
(
∇𝑢𝑛



𝑝(𝑥)
+ √1 +

∇𝑢𝑛


2𝑝(𝑥)
)𝑑𝑥

− 𝜆 lim sup
𝑛→∞

∫
Ω

𝐹 (𝑥, 𝑢
𝑛
) 𝑑𝑥

≥ ∫
Ω

1

𝑝 (𝑥)
(|∇𝑢|

𝑝(𝑥)
+ √1 + |∇𝑢|

2𝑝(𝑥)
)𝑑𝑥

− 𝜆∫
Ω

𝐹 (𝑥, 𝑢) 𝑑𝑥 = 𝜑 (𝑢) .

(21)

Step 3.We show that (PS)-condition holds.
Suppose {𝑢

𝑛
}
𝑛≥1

⊆ 𝑊
1,𝑝(𝑥)

0
(Ω) such that |𝜑(𝑢

𝑛
)| ≤ 𝑐 and

𝑚(𝑢
𝑛
) → 0 as 𝑛 → +∞. If 𝑢∗

𝑛
∈ 𝜕𝜑(𝑢

𝑛
) is such that𝑚(𝑢

𝑛
) =

‖𝑢
∗

𝑛
‖
(𝑊
1,𝑝(𝑥)

0
)
∗ , 𝑛 ≥ 1, then we know that

𝑢
∗

𝑛
= Φ


(𝑢

𝑛
) − 𝜆𝑤

𝑛
, (22)

where the nonlinear operator Φ
: 𝑊

1,𝑝(𝑥)

0
→ (𝑊

1,𝑝(𝑥)

0
)
∗ is

defined as

⟨Φ

(𝑢) , V⟩

= ∫
Ω

(|∇𝑢|
𝑝(𝑥)−2

+
|∇𝑢|

2𝑝(𝑥)−2

√1 + |∇𝑢|
2𝑝(𝑥)

)(∇𝑢, ∇V)R𝑁𝑑𝑥,

(23)

for all 𝑢, V ∈ 𝑊
1,𝑝(𝑥)

0
(Ω). From the work of Chang [1], we

know that if 𝑤
𝑛

∈ 𝜕Ψ(𝑢
𝑛
), then 𝑤

𝑛
∈ 𝐿

𝛼

(𝑥)
(Ω), where

1/𝛼

(𝑥) + 1/𝛼(𝑥) = 1.
Since 𝜑 is coercive, {𝑢

𝑛
}
𝑛≥1

is bounded in𝑊1,𝑝(𝑥)

0
(Ω) and

there exists 𝑢 ∈ 𝑊
1,𝑝(𝑥)

0
(Ω) such that a subsequence of

{𝑢
𝑛
}
𝑛≥1

, which is still denoted as {𝑢
𝑛
}
𝑛≥1

, satisfies 𝑢
𝑛
⇀ 𝑢

weakly in 𝑊
1,𝑝(𝑥)

0
(Ω). Next we will prove that 𝑢

𝑛
→ 𝑢 in

𝑊
1,𝑝(𝑥)

0
(Ω).

By𝑊1,𝑝(𝑥)

0
(Ω) → 𝐿

𝛼(𝑥)
(Ω), we have 𝑢

𝑛
→ 𝑢 in 𝐿𝛼(𝑥)(Ω).

Moreover, since ‖𝑢∗
𝑛
‖
∗
→ 0, we get |⟨𝑢∗

𝑛
, 𝑢

𝑛
⟩| ≤ 𝜀

𝑛
.

Since 𝑢∗
𝑛
= Φ


(𝑢

𝑛
) − 𝜆𝑤

𝑛
, we obtain

⟨Φ

(𝑢

𝑛
) , 𝑢

𝑛
− 𝑢⟩ − 𝜆∫

Ω

𝑤
𝑛
(𝑢

𝑛
− 𝑢) 𝑑𝑥 ≤ 𝜀

𝑛
, ∀𝑛 ≥ 1.

(24)

Moreover, since𝑢
𝑛
→ 𝑢 in𝐿𝛼(𝑥)(Ω) and {𝑤

𝑛
}
𝑛≥1

are bounded
in 𝐿𝛼


(𝑥)
(Ω), where 1/𝛼(𝑥) + 1/𝛼(𝑥) = 1, one has ∫

Ω
𝑤
𝑛
(𝑢

𝑛
−

𝑢)𝑑𝑥 → 0. Therefore,

lim sup
𝑛→∞

⟨Φ

(𝑢

𝑛
) , 𝑢

𝑛
− 𝑢⟩ ≤ 0. (25)

But we know that Φ
 is a mapping of type (𝑆

+
) (by

Proposition 3). Thus we obtain

𝑢
𝑛
→ 𝑢 in 𝑊

1,𝑝(𝑥)

0
(Ω) . (26)
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Step 4. There exists a 𝑢
1
∈ 𝑊

1,𝑝(𝑥)

0
(Ω) \ {0} such that Ψ(𝑢

1
) >

0.
By (h5), for each 𝑥 ∈ Ω, there is 𝑡

𝑥
∈ R such that

𝐹(𝑥, 𝑡
𝑥
) > 0.

For 𝑥 ∈ R𝑁, denote by𝑁
𝑥
a neighborhood of 𝑥 which is

the product of𝑁 compact intervals. From (h5) and 𝐹(𝑥, 𝑡) ∈
𝐶(Ω × R), for any 𝑥

0
∈ Ω, there are 𝑁

𝑥0
⊂ R𝑁, 𝑡

𝑥0
∈ R and

𝛿
0
> 0, such that 𝐹(𝑥, 𝑡

𝑥0
) > 𝛿

0
> 0 for all 𝑥 ∈ 𝑁

𝑥0
⋂ Ω.

SinceΩ ⊆ R𝑁 is bounded,Ω is compact.Thenwe can find
𝑁
𝑥1
, 𝑁

𝑥2
, . . . , 𝑁

𝑥𝑛
such that Ω ⊂ ⋃

𝑛

𝑖=1
𝑁
𝑥𝑖
and 𝑁

𝑥𝑖
⋂𝑁

𝑥𝑗
=

𝜕𝑁
𝑥𝑖
⋂𝜕𝑁

𝑥𝑗
, (𝑖 ̸=𝑗) and, also, we can find 𝑡

𝑥1
, 𝑡
𝑥2
, . . . , 𝑡

𝑥𝑛
∈

R, and 𝑛 positive numbers 𝛿
1
, 𝛿

2
, . . . , 𝛿

𝑛
such that

𝐹 (𝑥, 𝑡
𝑥𝑖
) > 𝛿

𝑖
> 0 uniformly for 𝑥 ∈ 𝑁

𝑥𝑖
⋂Ω,

𝑖 = 1, 2, . . . , 𝑛.

(27)

Now, set 𝛿
0
= min{𝛿

1
, 𝛿

2
, . . . , 𝛿

𝑛
}, and 𝑡

0
= max{𝑡

𝑥1
,

𝑡
𝑥2
, . . . , 𝑡

𝑥𝑛
}, and

sup
|𝑡|<|𝑡0|; 𝑥∈Ω

|𝐹 (𝑥, 𝑡)| = 𝑀. (28)

Then, we can find a closed set Ω
𝑥𝑖
⊂ int(𝑁

𝑥𝑖
⋂Ω) such that

meas (Ω
𝑥𝑖
) >

𝑀meas (𝑁
𝑥𝑖
⋂Ω)

𝛿
0
+𝑀

, (29)

where meas(𝐴) denote the Lebesgue measure of set 𝐴. We
consider a function 𝑢

1
∈ 𝑊

1,𝑝(𝑥)

0
(Ω) such that |𝑢

1
(𝑥)| ∈ [0, 𝑡

0
]

and 𝑢
1
(𝑥) ≡ 𝑡

𝑥𝑖
for all 𝑥 ∈ Ω

𝑥𝑖
. For instance, we can set

𝑢
1
(𝑥) = ∑

𝑛

𝑖=1
𝑢
𝑖

1
(𝑥), where 𝑢𝑖

1
∈ 𝐶

∞

0
(𝑁

𝑥𝑖
⋂Ω) and

𝑢
𝑖

1
(𝑥) = {

𝑡
𝑥𝑖
, 𝑥 ∈ Ω

𝑥𝑖
,

0 ≤ 𝑢
𝑖

1
(𝑥) < 𝑡

𝑥𝑖
, 𝑥 ∈ (𝑁

𝑥𝑖
∩ Ω) \ Ω

𝑥𝑖
.

(30)

Then, from (27)–(29), we have

Ψ (𝑢
1
) = ∫

Ω

𝐹 (𝑥, 𝑢
1
) 𝑑𝑥 = ∫

⋃
𝑛

𝑖=1
𝑁𝑥𝑖

∩Ω

𝐹 (𝑥, 𝑢
1
) 𝑑𝑥

= ∫
⋃
𝑛

𝑖=1
Ω𝑥𝑖

𝐹 (𝑥, 𝑢
1
) 𝑑𝑥

+ ∫
(⋃
𝑛

𝑖=1
𝑁𝑥𝑖

∩Ω)\⋃
𝑛

𝑖=1
Ω𝑥𝑖

𝐹 (𝑥, 𝑢
1
) 𝑑𝑥

≥

𝑛

∑

𝑖=1

𝛿
𝑖
meas (Ω

𝑥𝑖
)

−

𝑛

∑

𝑖=1

𝑀[meas (𝑁
𝑥𝑖
⋂Ω) −meas (Ω

𝑥𝑖
)]

>

𝑛

∑

𝑖=1

[(𝛿
0
+𝑀)meas (Ω

𝑥𝑖
) −𝑀meas (𝑁

𝑥𝑖
⋂Ω)]

> 0.

(31)

Step 5. We show that Φ, Ψ satisfy conditions (1) and (2) of
Theorem 4.

Let 𝑢
0
= 0; then we can easily find Φ(𝑢

0
) = Ψ(𝑢

0
) = 0.

From (7) and Proposition 1, we have the following:
if ‖𝑢‖ ≥ 1, then

2

𝑝+
‖𝑢‖

𝑝
−

≤ Φ (𝑢) ≤
2 + |Ω|

𝑝−
‖𝑢‖

𝑝
+

; (32)

if ‖𝑢‖ < 1, then
2

𝑝+
‖𝑢‖

𝑝
+

≤ Φ (𝑢) ≤
2 + |Ω|

𝑝−
. (33)

From (h4), there exist 𝜂 ∈ ]0, 1[ and 𝐶
3
> 0 such that

𝐹 (𝑥, 𝑡) ≤ 𝐶
3|𝑡|

𝑞(𝑥)
≤ 𝐶

3|𝑡|
𝑞
−

, ∀𝑡 ∈ [−𝜂, 𝜂] , 𝑥 ∈ Ω.

(34)

In view of (h3), if we put

𝐶
4
= max{𝐶

3
, sup
𝜂≤|𝑡|<1

𝑎
1
+ 𝑎

2|𝑡|
𝛼
−

|𝑡|
𝑞
−

, sup
|𝑡|≥1

𝑎
1
+ 𝑎

2|𝑡|
𝛼
+

|𝑡|
𝑞
−

} , (35)

then we have

𝐹 (𝑥, 𝑡) ≤ 𝐶
4|𝑡|

𝑞
−

, ∀𝑡 ∈ R, 𝑥 ∈ Ω. (36)

Fix 𝑟 such that 0 < 𝑟 < 1. And when (2/𝑝
+
)max{‖𝑢‖𝑝

−

,

‖𝑢‖
𝑝
+

} < 𝑟 < 1, by Sobolev Embedding Theorem
(𝑊1,𝑝(𝑥)

0
(Ω) → 𝐿

𝑞
−

(Ω)), we have (for suitable positive
constants 𝐶

5
, 𝐶

6
)

Ψ (𝑢) = ∫
Ω

𝐹 (𝑥, 𝑢) 𝑑𝑥 ≤ 𝐶
4
∫
Ω

|𝑢|
𝑞
−

𝑑𝑥 ≤ 𝐶
5‖𝑢‖

𝑞
−

< 𝐶
6
𝑟
𝑞
−
/𝑝
−

(or 𝐶
6
𝑟
𝑞
−
/𝑝
+

) .

(37)

Since 𝑞− > 𝑝
+
≥ 𝑝

−, we have

lim
𝑟→0
+

sup
(2/𝑝
+
)max{‖𝑢‖𝑝

−

, ‖𝑢‖
𝑝
+

}<𝑟
Ψ (𝑢)

𝑟
= 0. (38)

And so, taking into account (32) and (33),

lim
𝑟→0
+

sup
Φ(𝑢)<𝑟

Ψ (𝑢)

𝑟
= 0. (39)

From Step 4, there exists 𝑢
1
∈ 𝑊

1,𝑝(𝑥)

0
(Ω) \ {0} such that

Ψ(𝑢
1
) > 0. Thanks to (32) and (33), we have

0 <
2

𝑝+
max {𝑢1



𝑝
−

,
𝑢1



𝑝
+

} ≤ Φ (𝑢
1
) , (40)

and so
Ψ (𝑢

1
)

Φ (𝑢
1
)
> 0. (41)

By (32), (33), and (39), there exists 𝑟
0
< (2/𝑝

+
)max{‖𝑢

1
‖
𝑝
−

,

‖𝑢
1
‖
𝑝
+

} ≤ Φ(𝑢
1
) such that, for each 𝑟 ∈ ]0, 𝑟

0
[,

sup
Φ(𝑢)<𝑟

Ψ (𝑢) < 𝑟
Ψ (𝑢

1
)

Φ (𝑢
1
)
. (42)

By choosing 𝑟 ∈ ]0, 𝑟
0
[, conditions (1) and (2) requested in

Theorem 4 are verified and so the proof is complete.
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We study a slow diffusive 𝑝-Laplace equation in a bounded domain with the Neumann boundary conditions. A natural energy is
associated to the equation. It is shown that the solution blows up in finite time with the nonpositive initial energy, based on an
energy technique. Furthermore, under some assumptions of initial data, we prove that the solutions with bounded initial energy
also blow up.

1. Introduction

In this paper, we consider a slowdiffusive𝑝-Laplace equation:

𝑢
𝑡
− div (|∇𝑢|𝑝−2∇𝑢) = |𝑢|

𝑞−1
𝑢 − −∫
Ω

|𝑢|
𝑞−1

𝑢 𝑑𝑥,

(𝑥, 𝑡) ∈ Ω × (0, 𝑇) ,

𝜕𝑢

𝜕𝑛
= 0, (𝑥, 𝑡) ∈ 𝜕Ω × (0, 𝑇) ,

𝑢 (𝑥, 0) = 𝑢
0
(𝑥) , 𝑥 ∈ Ω

(1)

with −∫
Ω
𝑢
0
𝑑𝑥 = 0, whereΩ is a bounded smooth domainΩ ⊂

R𝑁, 𝑝 > 2, 𝑞 > 𝑝 − 1, and 𝑢
0
∈ 𝐿
∞
(Ω) ∩ 𝑊

1,𝑝
(Ω), 𝑢

0
̸≡ 0,

and denote −∫
Ω
𝑓𝑑𝑥 = (1/|Ω|) ∫

Ω
𝑓𝑑𝑥. It is easy to check that

∫
Ω
𝑢 𝑑𝑥 = 0; that is, the mass of 𝑢 is conserved.
The problem (1) with 𝑝 = 2 can be used to model phe-

nomena in population dynamics and biological sciences
where the total mass of a chemical or an organism is con-
served [1, 2]. If 𝑝 > 2, the problem (1) is the degenerate
parabolic equation and appears to be relevant in the theory
of non-Newtonian fluids (see [3]). Here, we are mainly
interested in the case 𝑝 > 2, namely, the degenerate one.

When 𝑝 = 2, (1) becomes the heat equation which has been
deeply studied in [4, 5].When 1 < 𝑝 < 2, (1) is singular, which
can be handled similar to that of [6].

As an important feature of many evolutionary equations,
the properties of blow-up solution have been the subject of
intensive study during the last decades. Among those inves-
tigations in this area, it was Fujita [7] who first established
the so-called theory of critical blow-up exponents for the
heat equation with reaction sources in 1966, which can be, of
course, regarded as the elegant description for either blow-
up or global existence of solutions. From then on, there
has been increasing interest in the study of critical Fujita
exponents for different kinds of evolutionary equations; see
[8, 9] for a survey of the literature. In recent years, special
attention has been paid to the blow-up property to nonlinear
degenerate or singular diffusion equations with different
nonlinear sources, including the inner sources, boundary
flux, or multiple sources; see, for example, [3, 10, 11].

In some situations, we have to deal with changing sign
solutions. For instance, the changing sign solutions were
considered in [1] for the nonlocal and quadratic equation

𝑢
𝑡
= Δ𝑢 + 𝑢

2
− −∫
Ω

𝑢
2
𝑑𝑥 (2)
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with the Neumann boundary condition. The study in [5] for

𝑢
𝑡
= Δ𝑢 + |𝑢|

𝑝
− −∫
Ω

|𝑢|
𝑝
𝑑𝑥, (3)

a natural generalization of (2), proposed with 1 < 𝑝 ≤ 2

a global existence result (for small initial data) and a new
blow-up criterion (based on the partial maximum principle
and a Gamma-convergence argument). The authors also
conjectured that the solutions blow up when 𝑝 > 2, which
was then provedwith a positive answer [4].The changing sign
solutions to the reaction-diffusion equation

𝑢
𝑡
= Δ𝑢 + 𝑓 (𝑢, 𝑘 (𝑡)) (4)

were discussed in [2], with such as 𝑓(𝑢, 𝑘(𝑡)) = |𝑢|
𝑝−1

𝑢−𝑘(𝑡).
The blow-up of solutions was obtained even under the source
with −∫

Ω
𝑓𝑑𝑥 = 0. The semilinear parabolic equation [12]

𝑢
𝑡
= Δ𝑢 + |𝑢|

𝑝−1
𝑢 − −∫
Ω

|𝑢|
𝑝−1

𝑢 𝑑𝑥 (5)

with a homogeneous Neumann’s boundary condition is stud-
ied. A blow-up result for the changing sign solution with
positive initial energy is established. In [6], a fast diffusive 𝑝-
Laplace equation with the nonlocal source

𝑢
𝑡
− div (|∇𝑢|𝑝−2∇𝑢) = |𝑢|

𝑞
− −∫
Ω

|𝑢|
𝑞
𝑑𝑥,

(𝑥, 𝑡) ∈ Ω × (0, 𝑇) ,

𝜕𝑢

𝜕𝑛
= 0, (𝑥, 𝑡) ∈ 𝜕Ω × (0, 𝑇) ,

𝑢 (𝑥, 0) = 𝑢
0 (𝑥) , 𝑥 ∈ Ω,

(6)

was considered. The authors showed that a critical blow-
up criterion was determined for the changing sign weak
solutions, depending on the size of 𝑞 and the sign of the
natural energy associated.The relationship between the finite
time blow-up and the nonpositivity of initial energy was
discussed, based on an energy technique.

Notice that (1) is degenerate if 𝑝 > 2 at points where ∇𝑢 =
0; therefore, there is no classical solution in general. For this,
a weak solution for problem (1) is defined as follows.

Definition 1. A function 𝑢 ∈ 𝐿
∞
(Ω × (0, 𝑇)) ∩ 𝐿

𝑝
(0, 𝑇,

𝑊
1,𝑝
(Ω))with 𝑢

𝑡
∈ 𝐿
2
(Ω× (0, 𝑇)) is called a weak solution of

(1) if

∫

𝑡

0

∫
Ω

[𝑢
𝜕𝜑

𝜕𝑠
− |∇𝑢|

𝑝−2
∇𝑢 ⋅ ∇𝜑 + (|𝑢|

𝑞
− −∫
Ω

|𝑢|
𝑞
)𝜑] 𝑑𝑥 𝑑𝑠

= ∫
Ω

𝑢 (𝑥, 𝑡) 𝜑 (𝑥, 𝑡) 𝑑𝑥 − ∫
Ω

𝑢
0
(𝑥) 𝜑 (𝑥, 0) 𝑑𝑥

(7)

holds for all 𝜑 ∈ 𝐶
1
(Ω × [0, 𝑇]).

The local existence of the weak solutions can be obtained
via the standard procedure of regularized approximations

[10]. Throughout the paper, we always assume that the weak
solution is appropriately smooth for convenience of argu-
ments, instead of considering the corresponding regularized
problems.

This paper is organized as follows. In Section 2, we show
that the solutions to (1) blow up with nonpositive initial
energy. In Section 3, under some assumptions of initial data,
we prove that the solutions with bounded initial energy also
blow up in finite time.

2. Nonpositive Initial Energy Case

The technique used here is the same as in [4]; define the
energy functional by

𝐸 (𝑡) =
1

𝑝
∫
Ω

|∇𝑢|
𝑝
𝑑𝑥 −

1

𝑞 + 1
∫
Ω

|𝑢|
𝑞+1

𝑑𝑥. (8)

and denote

𝑀(𝑡) =
1

2
∫
Ω

𝑢
2
(𝑥, 𝑡) 𝑑𝑥, 𝐻 (𝑡) = ∫

𝑡

0

𝑀(𝑠) 𝑑𝑠. (9)

Theorem 2. Assume that 𝑝 > 2, 𝑞 > 𝑝− 1, and 𝑢
0
∈ 𝐿
∞
(Ω) ∩

𝑊
1,𝑝
(Ω), 𝑢

0
̸≡ 0, and let the initial energy

𝐸 (0) =
1

𝑝
∫
Ω

∇𝑢0


𝑝
𝑑𝑥 −

1

𝑞 + 1
∫
Ω

𝑢0


𝑞+1
𝑑𝑥 (10)

be nonpositive. Then, there exists 𝑇
0
with 0 < 𝑇

0
< ∞, such

that

lim
𝑡→𝑇0

𝑀(𝑡) = +∞. (11)

We need three lemmas for the functionals𝐸(𝑡),𝑀(𝑡), and
𝐻(𝑡), respectively.

Lemma 3. The energy 𝐸(𝑡) is a nonincreasing function and

𝐸 (𝑡) = 𝐸 (0) − ∫

𝑡

0

∫
Ω

(𝑢
𝑡
)
2
𝑑𝑥 𝑑𝑠. (12)

Proof. A direct computation using (1) and by parts yields

𝑑

𝑑𝑡
𝐸 (𝑡) = ∫

Ω

(|∇𝑢|
𝑝−2

∇𝑢 ⋅ ∇𝑢
𝑡
− |𝑢|
𝑞−1

𝑢𝑢
𝑡
) 𝑑𝑥

= ∫
Ω

(− div (|∇𝑢|𝑝−2∇𝑢) − |𝑢|𝑞−1𝑢) 𝑢𝑡𝑑𝑥

= ∫
Ω

(−𝑢
𝑡
− −∫
Ω

|𝑢|
𝑞−1

𝑢 𝑑𝑥) 𝑢
𝑡
𝑑𝑥

= −∫
Ω

(𝑢
𝑡
)
2
𝑑𝑥.

(13)

Integrate from 0 to 𝑡 to get (12).

Lemma 4. Assume that 𝑝 > 2, 𝑞 > 𝑝− 1, and 𝐸(0) ≤ 0. Then,
𝑀(𝑡) satisfies the following inequality:

𝑀

(𝑡) ≥ (𝑞 + 1)∫

𝑡

0

∫
Ω

(𝑢
𝑡
)
2
𝑑𝑥 𝑑𝑠. (14)
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Proof. An easy computation using (1) and the fact∫
Ω
𝑢 𝑑𝑥 = 0

and by parts shows that

𝑀

(𝑡) = ∫

Ω

𝑢𝑢
𝑡
𝑑𝑥

= ∫
Ω

𝑢 (div (|∇𝑢|𝑝−2∇𝑢) + |𝑢|𝑞−1𝑢 − −∫
Ω

|𝑢|
𝑞−1

𝑢 𝑑𝑥)

= −∫
Ω

|∇𝑢|
𝑝
𝑑𝑥 + ∫

Ω

|𝑢|
𝑞+1

𝑑𝑥

= − (𝑞 + 1) 𝐸 (𝑡) +
𝑞 + 1 − 𝑝

𝑝
∫
Ω

|∇𝑢|
𝑝
𝑑𝑥.

(15)

The last equality implies

𝑀

(𝑡) ≥ − (𝑞 + 1) 𝐸 (𝑡)

= − (𝑞 + 1) 𝐸 (0) + (𝑞 + 1) ∫

𝑡

0

∫
Ω

(𝑢
𝑡
)
2
𝑑𝑥 𝑑𝑠

≥ (𝑞 + 1)∫

𝑡

0

∫
Ω

(𝑢
𝑡
)
2
𝑑𝑥 𝑑𝑠,

(16)

because of (12) of Lemma 3 and the assumption𝐸(0) ≤ 0.

Lemma 5. Assume that 𝑝 > 2, 𝑞 > 𝑝 − 1, and 𝐸(0) ≤ 0. Then,
𝐻(𝑡) satisfies

𝑞 + 1

2
(𝐻

(𝑡) − 𝐻


(0))
2

≤ 𝐻 (𝑡)𝐻

(𝑡) . (17)

Proof. Note the definition of 𝑀(𝑡) and 𝐻(𝑡), and a simple
calculation shows that

𝐻

(𝑡) − 𝐻


(0)

= 𝑀 (𝑡) − 𝑀 (0)

= ∫

𝑡

0

𝑀

(𝑠) 𝑑𝑠 = ∫

𝑡

0

∫
Ω

𝑢𝑢
𝑡
𝑑𝑥 𝑑𝑠

≤ (∫

𝑡

0

∫
Ω

𝑢
2
𝑑𝑥 𝑑𝑠)

1/2

(∫

𝑡

0

∫
Ω

(𝑢
𝑡
)
2
𝑑𝑥 𝑑𝑠)

1/2

≤ (
2

𝑞 + 1
)

1/2

(𝐻 (𝑡))
1/2
(𝑀

(𝑡))
1/2

= (
2

𝑞 + 1
)

1/2

(𝐻 (𝑡))
1/2
(𝐻

(𝑡))
1/2

.

(18)

Furthermore,

𝐻

(𝑡) − 𝐻


(0) = ∫

𝑡

0

𝑀

(𝑠) 𝑑𝑠

≥ (𝑞 + 1) 𝑡 ∫

𝑡

0

∫
Ω

(𝑢
𝑡
)
2
𝑑𝑥 𝑑𝑠 ≥ 0.

(19)

Therefore,
𝑞 + 1

2
(𝐻

(𝑡) − 𝐻


(0))
2

≤ 𝐻 (𝑡)𝐻

(𝑡) . (20)

Proof of Theorem 2. Assume for contradiction that the solu-
tion 𝑢 exists for all 𝑡 > 0. We claim that

∫

𝑡0

0

∫
Ω

(𝑢
𝑡
)
2
𝑑𝑥 𝑑𝑠 > 0 (21)

for any 𝑡
0
> 0. Otherwise, there exists 𝑡

0
> 0 such that

∫

𝑡0

0

∫
Ω

(𝑢
𝑡
)
2
𝑑𝑥 𝑑𝑠 = 0, (22)

and hence 𝑢
𝑡
= 0 for a.e. (𝑥, 𝑡) ∈ Ω × (0, 𝑡

0
]. Therefore, notic-

ing 𝐸(𝑡) ≤ 0 by Lemma 3, we have from (15) that

∫
Ω

|∇𝑢|
𝑝
𝑑𝑥 = 0 (23)

for a.e. 𝑡 ∈ (0, 𝑡
0
]. Using the Poincaré inequality with

∫
Ω
𝑢 𝑑𝑥 = 0, we have 𝑢 = 0 for a.e. (𝑥, 𝑡) ∈ Ω × (0, 𝑡

0
]. This

contradicts 𝑢
0

̸≡ 0.
Integrating (14) from 𝑡

0
to 𝑡, we have

𝑀(𝑡) ≥ 𝑀(𝑡
0
) + (𝑞 + 1)∫

𝑡

𝑡0

∫

𝜏

0

∫
Ω

(𝑢
𝑡
)
2
𝑑𝑥 𝑑𝑠 𝑑𝜏, (24)

which implies that

lim
𝑡→∞

𝐻

(𝑡) = lim
𝑡→∞

𝑀(𝑡) = +∞. (25)

Thus, there exists 𝑡∗ ≥ 𝑡
0
such that for all 𝑡 ≥ 𝑡

∗

3𝑞 + 5

4
(𝐻

(𝑡))
2

≤ (𝑞 + 1) [𝐻

(𝑡) − 𝐻


(0)]
2

. (26)

Thus, combining (17), we further have

3𝑞 + 5

4
(𝐻

(𝑡))
2

≤ 2𝐻 (𝑡)𝐻

(𝑡) (27)

for all 𝑡 ≥ 𝑡
∗. Now, we consider the function 𝐺(𝑡) =

(𝐻(𝑡))
−((𝑞−1)/4). Combining with the above inequality and a

simple calculation shows that

𝐺

(𝑡) =

𝑞 − 1

4
(𝐻 (𝑡))

(−𝑞−7)/4

× (
𝑞 + 3

4
(𝐻

(𝑡))
2

− 𝐻 (𝑡)𝐻

(𝑡))

≤ −
(𝑞 − 1)

2

32
(𝐻 (𝑡))

(−𝑞−7)/4
(𝐻

(𝑡))
2

≤ 0

(28)

for all 𝑡 ≥ 𝑡
∗. However, since

lim
𝑡→∞

𝐻(𝑡) = lim
𝑡→∞

𝑀(𝑡) = ∞, (29)

we also have

lim
𝑡→∞

𝐺 (𝑡) = 0, (30)

which is a contradiction.
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3. Bounded Initial Energy Case

Define

𝑊(Ω) = {𝑢 ∈ 𝑊
1,𝑝

(Ω) | ∫
Ω

𝑢 𝑑𝑥 = 0} (31)

with the norm ‖𝑢‖ = (∫
Ω
|∇𝑢|
𝑝
𝑑𝑥)
1/𝑝. Let 𝐵 be the optimal

constant of the embedding inequality

‖𝑢‖𝑞+1 ≤ 𝐵‖∇𝑢‖𝑝, (32)

where 𝑝 − 1 < 𝑞 ≤ (𝑁𝑝/(𝑁 − 𝑝)
+
) − 1. Set

𝛼
1
= 𝐵
−(𝑞+1)/(𝑞−𝑝+1)

,

𝐸
1
= (

1

𝑝
−

1

𝑞 + 1
)𝐵
−𝑝(𝑞+1)/(𝑞−𝑝+1)

> 0.

(33)

Theorem6. Assume that𝑝 > 2,𝑝−1 < 𝑞 ≤ (𝑁𝑝/(𝑁−𝑝)
+
)−1.

Let the initial data 𝑢
0
satisfying 𝐸(0) ≤ 𝐸

1
and ‖∇𝑢

0
‖
𝑝
> 𝛼
1
.

Then, there exists 𝑇
1
with 0 < 𝑇

1
< ∞, such that

lim
𝑡→𝑇1

𝑀(𝑡) = +∞. (34)

First, we prove the following two Lemmas, similar to the
idea in [13].

Lemma 7. Assume that 𝑢 is a solution of the system (1). If
𝐸(0) < 𝐸

1
and ‖∇𝑢

0
‖
𝑝
> 𝛼
1
. Then, there exists a positive con-

stant 𝛼
2
> 𝛼
1
, such that

‖∇𝑢‖𝑝 ≥ 𝛼
2
, for any 𝑡 ≥ 0, (35)

‖𝑢‖𝑞+1 ≥ 𝐵𝛼
2
, for any 𝑡 ≥ 0. (36)

Proof. Let ‖∇𝑢‖
𝑝
= 𝛼 and by (32), we have

𝐸 (𝑡) =
1

𝑝
∫
Ω

|∇𝑢|
𝑝
𝑑𝑥 −

1

𝑞 + 1
∫
Ω

|𝑢|
𝑞+1

𝑑𝑥

≥
1

𝑝
‖∇𝑢‖
𝑝

𝑝
−

1

𝑞 + 1
𝐵
𝑞+1

‖∇𝑢‖
𝑞+1

𝑝

=
1

𝑝
𝛼
𝑝
−

1

𝑞 + 1
𝐵
𝑞+1

𝛼
𝑞+1

.

(37)

For convenience, we define

𝑔 (𝛼) =
1

𝑝
𝛼
𝑝
−

1

𝑞 + 1
𝐵
𝑞+1

𝛼
𝑞+1

. (38)

It is easy to find that 𝑔 increases if 0 < 𝛼 < 𝛼
1
and decreases if

𝛼 > 𝛼
1
. Moreover, 𝑔(𝛼) → −∞ as 𝛼 → ∞ and 𝑔(𝛼

1
) = 𝐸
1
.

Due to 𝐸(0) < 𝐸
1
, there exists 𝛼

2
> 𝛼
1
such that 𝑔(𝛼

2
) =

𝐸(0). Let ‖∇𝑢
0
‖
𝑝
= 𝛼
0
; thus 𝛼

0
> 𝛼
1
. Then by (37) and (38),

we have 𝑔(𝛼
0
) ≤ 𝐸(0) = 𝑔(𝛼

2
), which implies that 𝛼

0
≥ 𝛼
2
.

For contradiction to establish (35), we assume that there exists
𝑡
0
> 0 such that

𝛼
1
<
∇𝑢 (⋅, 𝑡0)

𝑝
< 𝛼
2
. (39)

It follows from (37) and (38) that

𝐸 (𝑡
0
) ≥ 𝑔 (

∇𝑢 (⋅, 𝑡0)
𝑝
) > 𝑔 (𝛼

2
) = 𝐸 (0) , (40)

which is in contradiction with Lemma 3. Hence, (35) is
established.

Next to prove (36),

𝐸 (𝑡) =
1

𝑝
∫
Ω

|∇𝑢|
𝑝
𝑑𝑥 −

1

𝑞 + 1
∫
Ω

|𝑢|
𝑞+1

𝑑𝑥 ≤ 𝐸 (0) , (41)

which implies that

1

𝑞 + 1
∫
Ω

|𝑢|
𝑞+1

𝑑𝑥 ≥
1

𝑝
∫
Ω

|∇𝑢|
𝑝
𝑑𝑥 − 𝐸 (0) ≥

1

𝑝
𝛼
𝑝

2
− 𝑔 (𝛼

2
) .

(42)

Therefore, (36) is concluded.

Define

𝐹 (𝑡) = 𝐸
1
− 𝐸 (𝑡) , for any 𝑡 ≥ 0. (43)

Then, we have the following.

Lemma 8. Assume that 𝑢 is a solution of the system (1). If
𝐸(0) < 𝐸

1
and ‖∇𝑢

0
‖
𝑝
> 𝛼
1
. Then for all 𝑡 ≥ 0,

0 < 𝐹 (0) ≤ 𝐹 (𝑡) ≤
1

𝑞 + 1
∫
Ω

|𝑢|
𝑞+1

𝑑𝑥. (44)

Proof. By Lemma 3, we know that 𝐹(𝑡) ≥ 0. Thus,

𝐹 (𝑡) ≥ 𝐹 (0) = 𝐸
1
− 𝐸 (0) > 0. (45)

According to (35) of Lemma 7, a simple computation shows
that

𝐹 (𝑡) = 𝐸
1
−
1

𝑝
∫
Ω

|∇𝑢|
𝑝
𝑑𝑥 +

1

𝑞 + 1
∫
Ω

|𝑢|
𝑞+1

𝑑𝑥

≤ 𝐸
1
−
1

𝑝
𝐵
−𝑝(𝑞+1)/(𝑞−𝑝+1)

+
1

𝑞 + 1
∫
Ω

|𝑢|
𝑞+1

𝑑𝑥

= −
1

𝑞 + 1
𝐵
−𝑝(𝑞+1)/(𝑞−𝑝+1)

+
1

𝑞 + 1
∫
Ω

|𝑢|
𝑞+1

𝑑𝑥

≤
1

𝑞 + 1
∫
Ω

|𝑢|
𝑞+1

𝑑𝑥,

(46)

which guarantees the conclusion of the lemma.

At the end, let us finish the proof of Theorem 6.

Proof of Theorem 6. According to (15), we have

𝑀

(𝑡) = −∫

Ω

|∇𝑢|
𝑝
𝑑𝑥 + ∫

Ω

|𝑢|
𝑞+1

𝑑𝑥

= ∫
Ω

|𝑢|
𝑞+1

𝑑𝑥 − 𝑝𝐸 (𝑡) −
𝑝

𝑞 + 1
∫
Ω

|𝑢|
𝑞+1

𝑑𝑥

=
𝑞 + 1 − 𝑝

𝑞 + 1
∫
Ω

|𝑢|
𝑞+1

𝑑𝑥 − 𝑝𝐸
1
+ 𝑝𝐹 (𝑡) .

(47)
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By using (33) and (36), we obtain

𝑝𝐸
1
= (1 −

𝑝

𝑞 + 1
)𝐵
−𝑝(𝑞+1)/(𝑞+1−𝑝)

=
𝛼
𝑞+1

1

𝛼
𝑞+1

2

𝑞 + 1 − 𝑝

𝑞 + 1
𝐵
𝑞+1

𝛼
𝑞+1

2

≤
𝛼
𝑞+1

1

𝛼
𝑞+1

2

𝑞 − 𝑝 + 1

𝑞 + 1
∫
Ω

|𝑢|
𝑞+1

𝑑𝑥.

(48)

Combining (47) and (48), we get

𝑀

(𝑡) ≥ (1 −

𝛼
𝑞+1

1

𝛼
𝑞+1

2

)
𝑞 + 1 − 𝑝

𝑞 + 1
∫
Ω

|𝑢|
𝑞+1

𝑑𝑥 + 𝑝𝐹 (𝑡)

≥ (1 −
𝛼
𝑞+1

1

𝛼
𝑞+1

2

)
𝑞 + 1 − 𝑝

𝑞 + 1
|Ω|
(1−𝑞)/2

𝑀
(𝑞+1)/2

.

(49)

Since 𝑞 > 𝑝 − 1 > 1,𝑀(𝑡) blows up at a finite time.The proof
of Theorem 6 is complete.

Remark 9 (behavior of the energy 𝐸(𝑡)). Similar to Theorem
1.3 of [5], it is easy to be proved. Let 𝑝 > 2, 𝑝 − 1 < 𝑞 ≤

(𝑁𝑝/(𝑁 − 𝑝)
+
) − 1, and let 𝑢 be a weak solution of (1). If

there exists a constant𝐶
0
> 0 and a time𝑇

0
> 0, such that the

solution 𝑢 exists on [0, 𝑇
0
) and satisfies𝐸(𝑡) ≥ −𝐶

0
on [0, 𝑇

0
),

then 𝐹(𝑡) is bounded on [0, 𝑇


0
). Thus, the above result and

Theorem 6 reveal that even though the initial energy could be
chosen as positive, the energy 𝐸(𝑡) needs to become negative
at a certain time and then goes to −∞. Otherwise, 𝐸(𝑡) has a
lower bound on [0, +∞); thus 𝐹(𝑡) is bounded on [0, +∞). It
is in contradiction withTheorem 6.
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We give an overview on some recent results concerning the study of the Dirichlet problem for second-order linear elliptic partial
differential equations in divergence form and with discontinuous coefficients, in unbounded domains. The main theorem consists
in an 𝐿𝑝-a priori bound, 𝑃 > 1. Some applications of this bound in the framework of non-variational problems, in a weighted and
a non-weighted case, are also given.

1. Introduction

The aim of this work is to give an overview on some recent
results dealingwith the study of a certain kind of theDirichlet
problem in the framework of unbounded domains. To be
more precise, given an unbounded open subset Ω of R𝑛,
𝑛 ≥ 2, we are concerned with the elliptic second-order linear
differential operator in variational form

𝐿 = −

𝑛

∑

𝑖,𝑗=1

𝜕

𝜕𝑥
𝑗

(𝑎
𝑖𝑗

𝜕

𝜕𝑥
𝑖

+ 𝑑
𝑗
) +

𝑛

∑

𝑖=1

𝑏
𝑖

𝜕

𝜕𝑥
𝑖

+ 𝑐, (1)

with coefficients 𝑎
𝑖𝑗
∈ 𝐿
∞
(Ω) and with the associated Dirich-

let problem

𝑢 ∈
∘

𝑊
1,2

(Ω) ,

𝐿𝑢 = 𝑓, 𝑓 ∈ 𝑊
−1,2

(Ω) .

(2)

As far as we know, were Bottaro and Marina the first
to approach this kind of problem who proved, in [1], an
existence anduniqueness theorem for the solution of problem
(2), for 𝑛 ≥ 3, assuming that

𝑎
𝑖𝑗
∈ 𝐿
∞
(Ω) , 𝑖, 𝑗 = 1, . . . , 𝑛, (3)

𝑏
𝑖
, 𝑑
𝑖
∈ 𝐿
𝑛
(Ω) , 𝑖 = 1, . . . , 𝑛,

𝑐 ∈ 𝐿
𝑛/2

(Ω) + 𝐿
∞
(Ω) ,

(4)

𝑐 −

𝑛

∑

𝑖=1

(𝑑
𝑖
)
𝑥𝑖
≥ 𝜇, 𝜇 ∈ R

+
. (5)

The study was later on generalized in [2] weakening the
hypothesis (4) by considering coefficients 𝑏

𝑖
, 𝑑
𝑖
, and 𝑐 satisfy-

ing (4) only locally and for 𝑛 ≥ 2. Further improvements have
been achieved in [3], for 𝑛 ≥ 3, since the 𝑏

𝑖
, 𝑑
𝑖
, and 𝑐 are taken

in suitable Morrey type spaces with lower summabilities.
In [1–3], the authors also provide the bound

‖𝑢‖𝑊1,2(Ω) ≤ 𝐶
𝑓
𝑊−1,2(Ω)

, (6)

giving explicit description of the dependence of the constant
𝐶 on the data of the problem.

In two recent works, [4, 5], considering a more regular
set Ω and supposing that the lower order terms coefficients
are as in [3] for 𝑛 ≥ 3 and as in [2] for 𝑛 = 2, we prove that
if 𝑓 ∈ 𝐿

2
(Ω) ∩ 𝐿

∞
(Ω), then there exists a constant 𝐶, whose

dependence is completely described, such that

‖𝑢‖ 𝐿𝑝(Ω) ≤ 𝐶
𝑓
 𝐿𝑝(Ω)

, (7)
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for any bounded solution 𝑢 of (2) and for every 𝑝 > 2.
This can be done taking into account two different sign
hypotheses, namely, (5) and the less common

𝑐 −

𝑛

∑

𝑖=1

(𝑏
𝑖
)
𝑥𝑖
≥ 𝜇, 𝜇 ∈ R

+
. (8)

Successively, in [6], we deepen the study begun in [4, 5]
showing that to a bounded datum 𝑓 ∈ 𝐿

2
(Ω) it corresponds

a bounded solution 𝑢. This allows us to prove, by means of an
approximation argument, that if 𝑓 belongs to 𝐿2(Ω) ∩ 𝐿𝑝(Ω),
𝑝 > 2, then the solution is in 𝐿

𝑝
(Ω) too and verifies (7).

Putting together the two preliminary 𝐿𝑝-estimates, 𝑝 > 2,
obtained under the different sign assumptions and adding the
further hypothesis that the 𝑎

𝑖𝑗
are also symmetric, by means

of a duality argument, we finally obtain (7) for 𝑝 > 1, for each
sign hypothesis, assuming no boundedness of the solution
and for 𝑓 ∈ 𝐿

2
(Ω) ∩ 𝐿

𝑝
(Ω).

To conclude, we provide two applications of our final
𝐿
𝑝-bound, 𝑝 > 1, recalling the results of [7, 8] where our

estimate plays a fundamental role in the study of certain
weighted and non-weighted non-variational problems with
leading coefficients satisfying hypotheses of Miranda’s type
(see [9]).Thenodal point in this analysis is the existence of the
derivatives of the leading coefficients that allows us to rewrite
the involved operator in variational form and avail ourselves
of the above-mentioned a priori bound.

Always in the framework of unbounded domains, the
study of different variational problems can be found in
[10, 11]. Quasilinear elliptic equations with quadratic growth
have been considered in [12]. In [13–15] a very general
weighted case, with principal coefficients having vanishing
mean oscillation, has been taken into account.

2. A Class of Spaces of Morrey Type

In this section we recall the definitions and the main prop-
erties of a certain class of spaces of Morrey type where the
coefficients of our operators belong. These spaces generalize
the classical notion of Morrey spaces to unbounded domains
and were introduced for the first time in [3]; see also [16]
for some details. Thus, from now on, let Ω be an unbounded
open subset of R𝑛, 𝑛 ≥ 2. By Σ(Ω) we denote the 𝜎-algebra
of all Lebesgue measurable subsets of Ω. For 𝐸 ∈ Σ(Ω), 𝜒

𝐸

is its characteristic function, |𝐸| its Lebesgue measure, and
𝐸(𝑥, 𝑟) = 𝐸 ∩ 𝐵(𝑥, 𝑟) (𝑥 ∈ R𝑛, 𝑟 ∈ R

+
), where 𝐵(𝑥, 𝑟) is the

open ball with center in 𝑥 and radius 𝑟. The class of
restrictions to Ω of functions 𝜁 ∈ 𝐶

∞

∘
(R𝑛) is D(Ω). For

𝑞 ∈ [1, +∞[, 𝐿𝑞loc (Ω) is the class of all functions 𝑔 : Ω → R

such that 𝜁 𝑔 ∈ 𝐿𝑞(Ω) for any 𝜁 ∈ D(Ω).
For 𝑞 ∈ [1, +∞[ and 𝜆 ∈ [0, 𝑛[, the space of Morrey type

𝑀
𝑞,𝜆
(Ω) is made up of all the functions 𝑔 in 𝐿𝑞loc (Ω) such that

𝑔
𝑀𝑞,𝜆(Ω)

= sup
𝜏∈]0,1]

𝑥∈Ω

𝜏
−𝜆/𝑞𝑔

 𝐿𝑞(Ω(𝑥,𝜏))
< +∞, (9)

equipped with the norm defined in (9).

The closures of 𝐶∞
∘
(Ω) and 𝐿∞(Ω) in𝑀𝑞,𝜆(Ω) are deno-

ted by𝑀𝑞,𝜆
∘
(Ω) and �̃�𝑞,𝜆(Ω), respectively.

The following inclusion holds true:

𝑀
𝑞,𝜆

∘
(Ω) ⊂ �̃�

𝑞,𝜆
(Ω) . (10)

Moreover,

𝑀
𝑞,𝜆

(Ω) ⊆ 𝑀
𝑞0,𝜆0

(Ω) if 𝑞
0
≤ 𝑞,

𝜆
0
− 𝑛

𝑞
0

≤
𝜆 − 𝑛

𝑞
.

(11)

We put 𝑀𝑞(Ω) = 𝑀
𝑞,0
(Ω), �̃�𝑞(Ω) = �̃�

𝑞,0
(Ω), and

𝑀
𝑞

∘
(Ω) = 𝑀

𝑞,0

∘
(Ω).

Now, let us define the moduli of continuity of functions
belonging to �̃�

𝑞,𝜆
(Ω) or 𝑀𝑞,𝜆

∘
(Ω). For ℎ ∈ R

+
and 𝑔 ∈

𝑀
𝑞,𝜆
(Ω), we set

𝐹 [𝑔] (ℎ) = sup
𝐸∈Σ(Ω)

sup
𝑥∈Ω
|𝐸(𝑥,1)|≤1/ℎ

𝑔𝜒𝐸

𝑀𝑞,𝜆(Ω)
.

(12)

Given a function 𝑔 ∈ 𝑀
𝑞,𝜆
(Ω), the following characteriza-

tions hold:

𝑔 ∈ �̃�
𝑞,𝜆

(Ω) ⇐⇒ lim
ℎ→+∞

𝐹 [𝑔] (ℎ) = 0,

𝑔 ∈ 𝑀
𝑞,𝜆

∘
(Ω)

⇐⇒ lim
ℎ→+∞

(𝐹 [𝑔] (ℎ) +
 (1 − 𝜁ℎ) 𝑔

𝑀𝑞,𝜆(Ω)
) = 0,

(13)

where 𝜁
ℎ
denotes a function of class 𝐶∞

𝑜
(𝑅
𝑛
) such that

0 ≤ 𝜁
ℎ
≤ 1,

𝜁
ℎ|
𝐵(0,ℎ)

= 1,

supp 𝜁
ℎ
⊂ 𝐵 (0, 2ℎ) .

(14)

Thus, if 𝑔 is a function in �̃�𝑞,𝜆(Ω), amodulus of continuity of
𝑔 in �̃�𝑞,𝜆(Ω) is a map �̃�𝑞,𝜆[𝑔] : R

+
→ R
+
such that

𝐹 [𝑔] (ℎ) ≤ �̃�
𝑞,𝜆

[𝑔] (ℎ) ,

lim
ℎ→+∞

�̃�
𝑞,𝜆

[𝑔] (ℎ) = 0.

(15)

While if 𝑔 belongs to𝑀𝑞,𝜆
𝑜
(Ω), amodulus of continuity of 𝑔 in

𝑀
𝑞,𝜆

𝑜
(Ω) is an application 𝜎𝑞,𝜆

𝑜
[𝑔] : R

+
→ R
+
such that

𝐹 [𝑔] (ℎ) +
 (1 − 𝜁ℎ) 𝑔

𝑀𝑞,𝜆(Ω)
≤ 𝜎
𝑞,𝜆

𝑜
[𝑔] (ℎ) ,

lim
ℎ→+∞

𝜎
𝑞,𝜆

𝑜
[𝑔] (ℎ) = 0.

(16)

We finally recall two results of [4, 7], obtained adapting to
our needs a more general theorem proved in [17], providing
the boundedness and some embedding estimates for the
multiplication operator

𝑢 → 𝑔𝑢, (17)

where the function 𝑔 belongs to suitable spaces of Morrey
type.
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Theorem 1. If 𝑔 ∈ 𝑀
𝑞,𝜆
(Ω), with 𝑞 > 2 and 𝜆 = 0 if 𝑛 = 2,

and 𝑞 ∈ ]2, 𝑛] and 𝜆 = 𝑛 − 𝑞 if 𝑛 > 2, then the operator in
(17) is bounded from

∘

𝑊
1,2

(Ω) to 𝐿2(Ω). Moreover, there exists
a constant 𝐶 ∈ R

+
such that

𝑔𝑢
 𝐿2(Ω)

≤ 𝐶
𝑔
𝑀𝑞,𝜆(Ω)‖

𝑢‖𝑊1,2(Ω) ∀𝑢 ∈
∘

𝑊
1,2

(Ω) , (18)

with 𝐶 = 𝐶(𝑛, 𝑞).
Let 𝑝 > 1 and 𝑟, 𝑡 ∈ [𝑝, +∞[. If Ω is an open subset of R𝑛

having the cone property and 𝑔 ∈ 𝑀
𝑟
(Ω), with 𝑟 > 𝑝 if 𝑝 = 𝑛,

then the operator in (17) is bounded from 𝑊
1,𝑝
(Ω) to 𝐿𝑝(Ω).

Moreover, there exists a constant 𝑐 ∈ R
+
such that

𝑔𝑢
 𝐿𝑝(Ω)

≤ 𝑐
𝑔
𝑀𝑟(Ω)‖

𝑢‖𝑊1,𝑝(Ω) ∀𝑢 ∈ 𝑊
1,𝑝

(Ω) , (19)

with 𝑐 = 𝑐 (Ω, 𝑛, 𝑝, 𝑟).
If 𝑔 ∈ 𝑀

𝑡
(Ω), with 𝑡 > 𝑝 if 𝑝 = 𝑛/2, then the operator in

(17) is bounded from𝑊
2,𝑝
(Ω) to 𝐿𝑝(Ω). Moreover, there exists

a constant 𝑐 ∈ R
+
such that

𝑔𝑢
 𝐿𝑝(Ω)

≤ 𝑐
𝑔

𝑀𝑡(Ω)‖
𝑢‖𝑊2,𝑝(Ω) ∀𝑢 ∈ 𝑊

2,𝑝
(Ω) (20)

with 𝑐 = 𝑐

(Ω, 𝑛, 𝑝, 𝑡).

3. The Variational Problem

Consider, in an unbounded open subset Ω of R𝑛, 𝑛 ≥ 2, the
second-order linear differential operator in divergence form

𝐿 = −

𝑛

∑

𝑖,𝑗=1

𝜕

𝜕𝑥
𝑗

(𝑎
𝑖𝑗

𝜕

𝜕𝑥
𝑖

+ 𝑑
𝑗
) +

𝑛

∑

𝑖=1

𝑏
𝑖

𝜕

𝜕𝑥
𝑖

+ 𝑐. (21)

Assume that the leading coefficients satisfy the hypotheses

𝑎
𝑖𝑗
∈ 𝐿
∞
(Ω) , 𝑖, 𝑗 = 1, . . . , 𝑛,

∃] > 0 :

𝑛

∑

𝑖,𝑗=1

𝑎
𝑖𝑗
𝜉
𝑖
𝜉
𝑗
≥ ]𝜉



2 a.e. in Ω, ∀𝜉 ∈ R
𝑛
.

(ℎ
1
)

For the lower order terms coefficients suppose that

𝑏
𝑖
, 𝑑
𝑖
∈ 𝑀
2𝑡,𝜆

𝑜
(Ω) , 𝑖 = 1, . . . , 𝑛,

𝑐 ∈ 𝑀
𝑡,𝜆
(Ω) ,

with 𝑡 > 1 and 𝜆 = 0 if 𝑛 = 2,

with 𝑡 ∈ ]1,
𝑛

2
] and 𝜆 = 𝑛 − 2𝑡 if 𝑛 > 2.

(ℎ
2
)

Furthermore, let one of the following sign assumptions hold
true:

𝑐 −

𝑛

∑

𝑖=1

(𝑑
𝑖
)
𝑥𝑖
≥ 𝜇, (ℎ

3
)

or

𝑐 −

𝑛

∑

𝑖=1

(𝑏
𝑖
)
𝑥𝑖
≥ 𝜇, (ℎ

4
)

in the distributional sense onΩ, with 𝜇 positive constant.

We are interested in the study of the Dirichlet problem

𝑢 ∈
∘

𝑊
1,2

(Ω) ,

𝐿𝑢 = 𝑓, 𝑓 ∈ 𝑊
−1,2

(Ω) ,

(22)

(ℎ
1
)–(ℎ
3
) or (ℎ

1
), (ℎ
2
), and (ℎ

4
) being satisfied.

It is natural to associate to 𝐿 the bilinear form

𝑎 (𝑢, V) = ∫
Ω

(

𝑛

∑

𝑖,𝑗=1

(𝑎
𝑖𝑗
𝑢
𝑥𝑖
+ 𝑑
𝑗
𝑢) V
𝑥𝑗

+(

𝑛

∑

𝑖=1

𝑏
𝑖
𝑢
𝑥𝑖
+ 𝑐𝑢) V)𝑑𝑥,

(23)

𝑢, V ∈
∘

𝑊
1,2

(Ω), and observe that, in view of Theorem 1, the
form 𝑎 is continuous on

∘

𝑊
1,2

(Ω) ×
∘

𝑊
1,2

(Ω) and so the
operator 𝐿 :

∘

𝑊
1,2

(Ω) → 𝑊
−1,2

(Ω) is continuous too.
Let us start collecting some preliminary results concern-

ing the existence and uniqueness of the solution of problem
(22), as well as some a priori estimates. For the case where
assumptions (ℎ

1
)–(ℎ
3
) are taken into account and for 𝑛 = 2,

we refer to [2] while for 𝑛 ≥ 3 details can be found in [3].
If (ℎ
1
), (ℎ
2
), and (ℎ

4
) hold true, the results are proved in the

more recent [5].

Theorem 2. Under hypotheses (ℎ
1
)–(ℎ
3
) (or (ℎ

1
), (ℎ
2
), and

(ℎ
4
)), problem (22) is uniquely solvable and its solution 𝑢

satisfies the estimate

‖𝑢‖𝑊1,2(Ω) ≤ 𝐶
𝑓
𝑊−1,2(Ω)

, (24)

where 𝐶 is a constant depending on 𝑛, 𝑡, ], 𝜇, ||𝑏
𝑖
− 𝑑
𝑖
||
𝑀
2𝑡,𝜆
(Ω)

,
𝑖 = 1, . . . , 𝑛.

The next step in our analysis is to achieve an 𝐿𝑝-estimate,
𝑝 > 2, for the solution of (22) (see Theorem 8). This requires
some additional hypotheses on the regularity of the set and
on the datum 𝑓, and some preparatory results that essentially
rely on the introduction of certain auxiliary functions𝑢

𝑠
, used

for the first time by Bottaro and Marina in [1] and employed
in the framework of Morrey type spaces in [3]. Let us give
their definition and recall some useful properties.

Let ℎ ∈ R
+
∪ {+∞} and 𝑘 ∈ R, with 0 ≤ 𝑘 ≤ ℎ. For each

𝑡 ∈ R we set

𝐺
𝑘ℎ
(𝑡) =

{

{

{

𝑡 − 𝑘 if 𝑡 > 𝑘,

0 if − 𝑘 ≤ 𝑡 ≤ 𝑘, if ℎ = +∞,

𝑡 + 𝑘 if 𝑡 < −𝑘,

𝐺
𝑘ℎ
(𝑡) = 𝐺

𝑘∞
(𝑡) − 𝐺

ℎ∞
(𝑡) , if ℎ ∈ R

+
.

(25)

Lemma 3. Let 𝑔 ∈ 𝑀
𝑞,𝜆

𝑜
(Ω), 𝑢 ∈

∘

𝑊
1,2

(Ω), and 𝜀 ∈ R
+
. Then

there exist 𝑟 ∈ N and 𝑘
1
, . . . , 𝑘

𝑟
∈ R, with 0 = 𝑘

𝑟
< 𝑘
𝑟−1

<

⋅ ⋅ ⋅ < 𝑘
1
< 𝑘
0
= +∞, such that set

𝑢
𝑠
= 𝐺
𝑘𝑠𝑘𝑠−1

(𝑢) , 𝑠 = 1, . . . , 𝑟, (26)
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one has 𝑢
1
, . . . , 𝑢

𝑟
∈
∘

𝑊
1,2

(Ω) and

𝑔𝜒supp (𝑢𝑠)𝑥

𝑀𝑞,𝜆(Ω)
≤ 𝜀, 𝑠 = 1, . . . , 𝑟, (27)

𝑢𝑠
 ≤ |𝑢| , 𝑠 = 1, . . . , 𝑟, (28)

𝑢
1
+ ⋅ ⋅ ⋅ + 𝑢

𝑟
= 𝑢, (29)

𝑟 ≤ 𝑐, (30)

with 𝑐 = 𝑐 (𝜀, 𝑞, ‖𝑔‖
𝑀
𝑞,𝜆
(Ω)
) positive constant.

In order to prove a fundamental preliminary estimate,
obtained for 𝑝 > 2 (seeTheorem 7), we need to take products
involving the above defined functions 𝑢

𝑠
as test functions in

the variational formulation of our problem (23). To be more
precise, in the first set of hypotheses ((ℎ

1
)–(ℎ
3
)), the test

functions needed are |𝑢|𝑝−2𝑢
𝑠
. The following result ensures

that these functions effectively belong to
∘

𝑊
1,2

(Ω).

Lemma 4. If Ω has the uniform 𝐶
1-regularity property, then

for every 𝑢 ∈
∘

𝑊
1,2

(Ω) ∩ 𝐿
∞
(Ω) and for any 𝑝 ∈ ]2, +∞[ one

has

|𝑢|
𝑝−2

𝑢
𝑠
∈
∘

𝑊
1,2

(Ω) , 𝑠 = 1, . . . , 𝑟. (31)

Lemma 4, whose rather technical proof can be found in [4],
is a generalization of a known result by Stampacchia (see
[18], or [19] for details), obtained within the framework of
the generalization of the study of certain elliptic equations
in divergence form with discontinuous coefficients on a
bounded open subset of R𝑛 to some problems arising
for harmonic or subharmonic functions in the theory of
potential.

Once achieved (31), always in [4], we could prove the
next lemma. Let 𝑢

𝑠
be the functions of Lemma 3 obtained

in correspondence of a given 𝑢 ∈
∘

𝑊
1,2

(Ω) ∩ 𝐿
∞
(Ω), of

𝑔 = ∑
𝑛

𝑖=1
|𝑏
𝑖
− 𝑑
𝑖
| and of a positive real number 𝜀 specified

in the proof of Lemma 4.1 of [4]. One has the following.

Lemma 5. Let 𝑎 be the bilinear form defined in (23). If Ω
has the uniform𝐶

1-regularity property, under hypotheses (ℎ
1
)–

(ℎ
3
), there exists a constant 𝐶 ∈ R

+
such that

∫
Ω

|𝑢|
𝑝−2

((𝑢
𝑠
)
2

𝑥
+ 𝑢
2

𝑠
) 𝑑𝑥 ≤ 𝐶

𝑠

∑

ℎ=1

𝑎 (𝑢, |𝑢|
𝑝−2

𝑢
ℎ
) ,

𝑠 = 1, . . . , 𝑟, ∀𝑝 ∈ ]2, +∞[,

(32)

where 𝐶 depends on 𝑠, ], 𝜇.

If we consider the second set of hypotheses ((ℎ
1
), (ℎ
2
),

and (ℎ
4
)), the test functions required in (23) are the prod-

ucts |𝑢
𝑠
|
𝑝−2

𝑢
𝑠
, obtained in correspondence of a fixed 𝑢 ∈

∘

𝑊
1,2

(Ω) ∩ 𝐿
∞
(Ω), of 𝑔 = ∑

𝑛

𝑖=1
|𝑑
𝑖
− 𝑏
𝑖
| and of a positive real

number 𝜀 specified in the proof of Lemma 4.1 of [5]. In this
last case and if Ω has the uniform 𝐶

1-regularity property, a
result of [20] applies giving that |𝑢

𝑠
|
𝑝−2

𝑢
𝑠
∈
∘

𝑊
1,2

(Ω), for any
𝑝 > 2, 𝑠 = 1, . . . , 𝑟. Hence, in [5] we could show the result.

Lemma 6. Let 𝑎 be the bilinear form in (23). If Ω has the
uniform 𝐶

1-regularity property, under hypotheses (ℎ
1
), (ℎ
2
),

and (ℎ
4
), there exists a constant 𝐶 ∈ R

+
such that

∫
Ω

𝑢𝑠


𝑝−2
((𝑢
𝑠
)
2

𝑥
+ 𝑢
2

𝑠
) 𝑑𝑥 ≤ 𝐶

𝑟

∑

ℎ=s
𝑎 (𝑢,

𝑢ℎ


𝑝−2
𝑢
ℎ
) ,

𝑠 = 1, . . . , 𝑟, ∀𝑝 ∈ ]2, +∞[,

(33)

where 𝐶 depends on 𝑠, 𝑟, ], 𝜇.

The two lemmas just stated put us in a position to prove
the following preliminary 𝐿

𝑝-a priori estimate, 𝑝 > 2, in
both sets of hypotheses; see also [4, 5]. We stress that here we
require that both the datum𝑓 and the solution𝑢 are bounded.

Theorem 7. Under hypotheses (ℎ
1
)–(ℎ
3
) or (ℎ

1
), (ℎ
2
), and

(ℎ
4
) and if Ω has the uniform 𝐶

1-regularity property, 𝑓 is in
𝐿
2
(Ω) ∩ 𝐿

∞
(Ω) and the solution 𝑢 of (22) is in

∘

𝑊
1,2

(Ω) ∩

𝐿
∞
(Ω), then 𝑢 ∈ 𝐿𝑝(Ω) and

‖𝑢‖ 𝐿𝑝(Ω) ≤ C𝑓
 𝐿𝑝(Ω)

, ∀𝑝 ∈ ]2, +∞[, (34)

where𝐶 is a constant depending on 𝑛, 𝑡, 𝑝, ], 𝜇, ||𝑏
𝑖
−𝑑
𝑖
||
𝑀
2𝑡,𝜆
(Ω)

,
𝑖 = 1, . . . , 𝑛.

Proof. Fix 𝑝 ∈ ]2, +∞[. We provide two different proofs in
the cases that hypotheses (ℎ

3
) or (ℎ

4
) hold true.

Let (ℎ
1
)–(ℎ
3
) be satisfied. We consider the functions 𝑢

𝑠
,

𝑠 = 1, . . . , 𝑟, obtained in correspondence of the solution 𝑢 and
of 𝑔 = ∑

𝑛

𝑖=1
|𝑑
1
− 𝑏
𝑖
| and of 𝜀 as in Lemma 4.1 of [4]. In view

of (29) we get

∫
Ω

|𝑢|
𝑝−2

(𝑢
2

𝑥
+ 𝑢
2
) 𝑑𝑥

≤ 𝑐
0
∫
Ω

|𝑢|
𝑝−2

𝑟

∑

𝑠=1

((𝑢
𝑠
)
2

𝑥
+ 𝑢
2

𝑠
) 𝑑𝑥,

(35)

with 𝑐
0
= 𝑐
0
(𝑟).

Hence, (32) entails that

∫
Ω

|𝑢|
𝑝−2

(𝑢
2

𝑥
+ 𝑢
2
) 𝑑𝑥

≤ 𝑐
0

𝑟

∑

𝑠=1

𝐶
𝑠

𝑠

∑

ℎ=1

𝑎 (𝑢, |𝑢|
𝑝−2

𝑢
ℎ
)

≤ 𝐶

𝑟

∑

𝑠=1

𝑎 (𝑢, |𝑢|
𝑝−2

𝑢
𝑠
) ,

(36)

with 𝐶
𝑠
= 𝐶
𝑠
(𝑠, ], 𝜇) and 𝐶 = 𝐶(𝑟, ], 𝜇).

From the linearity of 𝑎, (29), and (30), we have then

∫
Ω

|𝑢|
𝑝−2

(𝑢
2

𝑥
+ 𝑢
2
) 𝑑𝑥 ≤ 𝐶𝑎 (𝑢, |𝑢|

𝑝−2
𝑢) , (37)

with 𝐶 = 𝐶(𝑛, 𝑡, 𝑝, ], 𝜇, ||𝑏
𝑖
− 𝑑
𝑖
||
𝑀
2𝑡,𝜆
(Ω)
).
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Using this last inequality and Hölder inequality we
conclude our proof, since

‖𝑢‖
𝑝

𝐿
𝑝
(Ω)

≤ ∫
Ω

|𝑢|
𝑝−2

(𝑢
2

𝑥
+ 𝑢
2
) 𝑑𝑥

≤ 𝐶𝑎 (𝑢, |𝑢|
𝑝−2

𝑢) = 𝐶∫
Ω

𝑓|𝑢|
𝑝−2

𝑢𝑑𝑥

≤ 𝐶∫
Ω

𝑓
 |𝑢|
𝑝−1

𝑑𝑥 ≤ 𝐶
𝑓
 𝐿𝑝(Ω)‖

𝑢‖
𝑝−1

𝐿
𝑝
(Ω)
.

(38)

If (ℎ
1
), (ℎ
2
), and (ℎ

4
) hold, we consider again the

functions 𝑢
𝑠
, 𝑠 = 1, . . . , 𝑟, obtained in correspondence of

the solution 𝑢 and of 𝑔 as in the previous case, and of 𝜀 as
in Lemma 4.1 of [5]. In this second case, easy computations
together with (29) give

∫
Ω

|𝑢|
𝑝
𝑑𝑥 ≤ 𝑐

0

𝑟

∑

𝑠=1

∫
Ω

𝑢𝑠


𝑝
𝑑𝑥, (39)

with 𝑐
0
= 𝑐
0
(𝑟, 𝑝).

Thus, from (33), we deduce that

∫
Ω

|𝑢|
𝑝
𝑑𝑥 ≤ 𝑐

0

𝑟

∑

𝑠=1

𝐶s

𝑟

∑

ℎ=s
𝑎 (𝑢,

𝑢ℎ


𝑝−2
𝑢
ℎ
)

≤ 𝑐
1

𝑟

∑

𝑠=1

𝑎 (𝑢,
𝑢𝑠


𝑝−2
𝑢
𝑠
) ,

(40)

with 𝐶
𝑠
= 𝐶
𝑠
(𝑠, 𝑟, ], 𝜇) and 𝑐

1
= 𝑐
1
(𝑟, 𝑝, ], 𝜇).

Hence, by (28) and Hölder inequality we obtain

‖𝑢‖
𝑝

𝐿
𝑝
(Ω)

≤ 𝑐
1

𝑟

∑

𝑠=1

∫
Ω

𝑓
𝑢𝑠


𝑝−2
𝑢
𝑠
𝑑𝑥

≤ 𝑟𝑐
1
∫
Ω

𝑓
 |𝑢|
𝑝−1

𝑑𝑥

≤ 𝑟𝑐
1

𝑓
 𝐿𝑝(Ω)‖

𝑢‖
𝑝−1

𝐿
𝑝
(Ω)
.

(41)

This ends the proof, in view of (30).

In the later paper [6], estimate (34) has been improved
dropping the hypotheses on the boundedness of 𝑓 and 𝑢, by
means of the theorem below.

Theorem 8. Assume that hypotheses (ℎ
1
)–(ℎ
3
) or (ℎ

1
), (ℎ
2
),

and (ℎ
4
) are satisfied. If the setΩ has the uniform𝐶

1-regularity
property and the datum 𝑓 ∈ 𝐿

2
(Ω) ∩ 𝐿

𝑝
(Ω), for some 𝑝 ∈

]2, +∞[, then the solution 𝑢 of problem (22) is in 𝐿𝑝(Ω) and

‖𝑢‖ 𝐿𝑝(Ω) ≤ 𝐶
𝑓
 𝐿𝑝(Ω)

, (42)

where𝐶 is a constant depending on 𝑛, 𝑡, 𝑝, ], 𝜇, ||𝑏
𝑖
−𝑑
𝑖
||
𝑀
2𝑡,𝜆
(Ω)

,
𝑖 = 1, . . . , 𝑛.

The proof, which is different according to hypothesis (ℎ
3
)

or (ℎ
4
), is essentially performed into two steps. In the first

step, we show some regularity results, exploiting a technique

introduced by Miranda in [21]. Namely, we prove that if 𝑢 ∈
∘

𝑊
1,2

(Ω) is the solution of (22) with𝑓 ∈ 𝐿
2
(Ω)∩𝐿

∞
(Ω), then,

the datum 𝑓 being more regular, one also has 𝑢 ∈ 𝐿
∞
(Ω).

Thus Theorem 7 applies giving that 𝑢 ∈ 𝐿
𝑝
(Ω) and satisfies

(34). The second step consists in considering a datum 𝑓 ∈

𝐿
2
(Ω) ∩ 𝐿

𝑝
(Ω) and then one can conclude by means of some

approximation arguments; see also [16].
Finally, in [6], we prove the main result, that is, the

claimed 𝐿𝑝-bound, 𝑝 > 1. To this aim, a further assumption
on the leading coefficients is required:

𝑎
𝑖𝑗
= 𝑎
𝑗𝑖
, 𝑖, 𝑗 = 1, . . . , 𝑛. (ℎ

0
)

Then one has the following.

Theorem 9. Assume that hypotheses (ℎ
0
)–(ℎ
3
) or (ℎ

0
), (ℎ
2
),

and (ℎ
4
) are satisfied. If the setΩ has the uniform𝐶

1-regularity
property and the datum 𝑓 ∈ 𝐿

2
(Ω) ∩ 𝐿

𝑝
(Ω), for some 𝑝 ∈

]1, +∞[, then the solution 𝑢 of problem (22) is in 𝐿𝑝(Ω) and

‖𝑢‖ 𝐿𝑝(Ω) ≤ 𝐶
𝑓
 𝐿𝑝(Ω)

, (43)

where𝐶 is a constant depending on 𝑛, 𝑡, 𝑝, ], 𝜇, ||𝑏
𝑖
−𝑑
𝑖
||
𝑀
2𝑡,𝜆
(Ω)

,
𝑖 = 1, . . . , 𝑛.

Proof. For 𝑝 ≥ 2, Theorems 2 and 8 already prove the result.
It remains to show it for 1 < 𝑝 < 2.

We assume that hypotheses (ℎ
0
)–(ℎ
3
) hold true. Under

hypotheses (ℎ
0
), (ℎ
2
), and (ℎ

4
), a similar argument, with

suitable modifications, can be used (we refer the reader to [6]
for the details).

Let us define the bilinear form

𝑎
∗
(𝑤, V) = 𝑎 (V, 𝑤) , 𝑤, V ∈

∘

𝑊
1,2

(Ω) . (44)

By (ℎ
0
) one has

𝑎
∗
(𝑤, V)

= ∫
Ω

(

𝑛

∑

𝑖,𝑗=1

(𝑎
𝑖𝑗
𝑤
𝑥𝑖
+𝑏
𝑗
𝑤) V
𝑥𝑗
+(

𝑛

∑

𝑖=1

𝑑
𝑖
𝑤
𝑥𝑖
+𝑐𝑤) V)𝑑𝑥.

(45)

Now consider the problem

𝑤 ∈
∘

𝑊
1,2

(Ω) ,

𝑎
∗
(𝑤, V) = ∫

Ω

𝑔V 𝑑𝑥, 𝑔 ∈ 𝐿
2
(Ω) ∩ 𝐿

𝑝


(Ω) ,

(46)

where, since 1 < 𝑝 < 2, one gets 𝑝 = 𝑝/(𝑝 − 1) > 2.
As a consequence of Theorem 2 (in the second set of

hypotheses) the solution 𝑤 of (46) exists and is unique.
Furthermore, byTheorem 8 (in the second set of hypotheses)
one also has

‖𝑤‖
𝐿
𝑝


(Ω)
≤ 𝐶

𝑔
 𝐿𝑝


(Ω)
. (47)

Hence, if we denote by 𝑢 the solution of

𝑢 ∈
∘

𝑊
1,2

(Ω) ,

𝐿𝑢 = 𝑓, 𝑓 ∈ 𝐿
2
(Ω) ∩ 𝐿

𝑝
(Ω) ,

(48)
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which exists and is unique in view of Theorem 2 (in the first
set of hypotheses), we obtain

∫
Ω

𝑔𝑢 𝑑𝑥 = 𝑎
∗
(𝑤, 𝑢) = 𝑎 (𝑢, 𝑤) = ∫

Ω

𝑓𝑤 𝑑𝑥

≤
𝑓
 𝐿𝑝(Ω)‖

𝑤‖
𝐿
𝑝


(Ω)
≤ 𝐶

𝑓
 𝐿𝑝(Ω)

𝑔
 𝐿𝑝


(Ω)
.

(49)

Finally, taking 𝑔 = |𝑢|
𝑝−1 sign 𝑢 in (49), we get the claimed

result.

4. Non-Variational Problems

In this section, we show two applications of ourmain estimate
(43).

To this aim, let 𝑝 > 1 and assume that

Ω has the uniform 𝐶
1,1-regularity property. (ℎ



0
)

Consider, then, the non-variational differential operator

𝐿 = −

𝑛

∑

𝑖,𝑗=1

𝑎
𝑖,𝑗

𝜕
2

𝜕𝑥
𝑖
𝜕𝑥
𝑗

+

𝑛

∑

𝑖=1

𝑎
𝑖

𝜕

𝜕𝑥
𝑖

+ 𝑎, (50)

with the following conditions on the leading coefficients:

𝑎
𝑖𝑗
= 𝑎
𝑗𝑖
∈ 𝐿
∞
(Ω) , 𝑖, 𝑗 = 1, . . . , 𝑛,

∃] > 0 :

𝑛

∑

𝑖,𝑗=1

𝑎
𝑖𝑗
𝜉
𝑖
𝜉
𝑗
≥ ]𝜉



2 a.e in Ω, ∀𝜉 ∈ R
𝑛
,

(𝑎
𝑖𝑗
)
𝑥ℎ

∈ 𝑀
𝑞,𝜆

𝑜
(Ω) , 𝑖, 𝑗, ℎ = 1, . . . , 𝑛, with

𝑞 > 2, 𝜆 = 0 for 𝑛 = 2,

𝑞 ∈ ] 2, 𝑛 [, 𝜆 = 𝑛 − 𝑞 for 𝑛 > 2.

(ℎ


1
)

Suppose that the lower order terms are such that

𝑎
𝑖
∈ 𝑀
𝑟

𝑜
(Ω) , 𝑖 = 1, . . . , 𝑛, with

𝑟 > 2 if 𝑝 ≤ 2, 𝑟 = 𝑝 if 𝑝 > 2 for 𝑛 = 2,

𝑟 ≥ 𝑝 , 𝑟 ≥ 𝑛, with 𝑟 > 𝑝 if 𝑝 = 𝑛 for 𝑛 > 2,

(ℎ


2
)

𝑎 ∈ �̃�
𝑡
(Ω) , with

𝑡 = 𝑝 for 𝑛 = 2,

𝑡 ≥ 𝑝 , 𝑡 ≥
𝑛

2
, with 𝑡 > 𝑝 if 𝑝 =

𝑛

2
for 𝑛 > 2,

ess inf
Ω

𝑎 = 𝑎
0
> 0.

(ℎ


3
)

In view of Theorem 1, under the assumptions (ℎ
0
)–(ℎ
3
), the

operator 𝐿 : 𝑊2,𝑝(Ω) → 𝐿
𝑝
(Ω) is bounded.

The first application is contained in Theorem 3.2 and
Corollary 3.3 of [7] (see also [22] where the case 𝑝 = 2 is
considered) and reads as follows.

Theorem 10. Let 𝐿 be defined in (50). If hypotheses (ℎ
0
)–(ℎ
3
)

are satisfied, then there exists a constant 𝑐 ∈ R
+
such that

‖𝑢‖𝑊2,𝑝(Ω) ≤ 𝑐

𝐿𝑢
 𝐿𝑝(Ω)

∀𝑢 ∈ 𝑊
2,𝑝

(Ω) ∩
∘

𝑊
1,𝑝

(Ω) , (51)

with 𝑐= 𝑐(Ω, 𝑛, ], 𝑝, 𝑟, 𝑡, ||𝑎
𝑖𝑗
||
𝐿
∞
(Ω)
, 𝜎
𝑞,𝜆

𝑜
[(𝑎
𝑖𝑗
)
𝑥ℎ
], 𝜎
𝑟

𝑜
[𝑎
𝑖
], �̃�
𝑡
[𝑎],

𝑎
0
).
Moreover, the problem

𝑢 ∈ 𝑊
2,𝑝

(Ω) ∩
∘

𝑊
1,𝑝

(Ω) ,

𝐿𝑢 = 𝑓, 𝑓 ∈ 𝐿
𝑝
(Ω)

(52)

is uniquely solvable.

The nodal point in achieving these results consists in the
existence of the derivatives of the 𝑎

𝑖𝑗
. Indeed, this consents

to rewrite the operator 𝐿 in divergence form and exploit
(43) in order to obtain an estimate as that in (51) but for
more regular functions. Then, one can prove (51) by means
of an approximation argument. Estimate (51) immediately
takes to the solvability of problem (52) via a straightforward
application of the method of continuity along a parameter,
see, for instance, [23], and by the already known solvability
of an opportune auxiliary problem.

As second application of (43), we obtain, in [8], an
analogous of Theorem 10, in a weighted framework. Namely,
we consider a weight function 𝜌𝑠 that is a power of a function
𝜌 of class 𝐶2(Ω) such that 𝜌 : Ω → R

+
and

sup
𝑥∈Ω

𝜕
𝛼
𝜌 (𝑥)



𝜌 (𝑥)
< +∞, ∀ |𝛼| ≤ 2,

lim
|𝑥|→+∞

(𝜌 (𝑥) +
1

𝜌 (𝑥)
) = +∞,

lim
|𝑥|→+∞

𝜌
𝑥
(𝑥) + 𝜌

𝑥𝑥
(𝑥)

𝜌 (𝑥)
= 0.

(53)

For instance, one can think of 𝜌 as the function

𝜌 (𝑥) = (1 + |𝑥|
2
)
𝑡

, 𝑡 ∈ R \ {0} . (54)

For 𝑘 ∈ N
0
, 𝑝 ∈ [1, +∞[ and 𝑠 ∈ R, and given 𝜌 satisfying

(53), we define the weighted Sobolev space 𝑊𝑘,𝑝
𝑠

(Ω) as the
space of distributions 𝑢 onΩ such that

‖𝑢‖
𝑊
𝑘,𝑝

𝑠 (Ω)
= ∑

|𝛼|≤𝑘

𝜌
𝑠
𝜕
𝛼
𝑢
 𝐿𝑝(Ω)

< +∞, (55)

endowed with the norm in (55). Furthermore, we denote the
closure of 𝐶∞

∘
(Ω) in𝑊𝑘,𝑝

𝑠
(Ω) by

∘

𝑊
𝑘,𝑝

𝑠
(Ω) and put𝑊0,𝑝

𝑠
(Ω) =

𝐿
𝑝

𝑠
(Ω).
In Theorems 4.2 and 5.2 of [8] we showed the following.

Theorem 11. Let 𝐿 be defined in (50). If hypotheses (ℎ
0
)–(ℎ
3
)

are satisfied, then there exists a constant 𝑐 ∈ R
+
such that

‖𝑢‖
𝑊
2,𝑝

𝑠 (Ω)
≤ 𝑐


𝐿𝑢
 𝐿
𝑝

𝑠 (Ω)
∀𝑢 ∈ 𝑊

2,𝑝

𝑠
(Ω) ∩

∘

𝑊
1,2

𝑠
(Ω) ,

(56)
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with 𝑐 = 𝑐(Ω, 𝑛, 𝑠, ], 𝑝, 𝑟, 𝑡, ||𝑎
𝑖𝑗
||
𝐿
∞
(Ω)
, ||𝑎
𝑖
||
𝑀
𝑟
(Ω)

, 𝜎𝑞,𝜆
𝑜
[(𝑎
𝑖𝑗
)
𝑥ℎ
],

𝜎
𝑟

𝑜
[𝑎
𝑖
], �̃�
𝑡
[𝑎], 𝑎
0
).

Moreover, the problem

𝑢 ∈ 𝑊
2,𝑝

𝑠
(Ω) ∩

∘

𝑊
1,2

𝑠
(Ω) ,

𝐿𝑢 = 𝑓, 𝑓 ∈ 𝐿
𝑝

𝑠
(Ω)

(57)

is uniquely solvable.

One of the main tools in the proof of Theorem 11 is given
by the existence of a topological isomorphism from𝑊

𝑘,𝑝

𝑠
(Ω)

to𝑊𝑘,𝑝(Ω) and from
∘

𝑊
𝑘,𝑝

𝑠
(Ω) to

∘

𝑊
𝑘,𝑝

(Ω).This isomorphism
consents to deduce by the non-weighted bound in (51) the
corresponding weighted estimate in (56), taking into account
also the imbedding results of Theorem 1. The existence and
uniqueness of the solution of problem (57) follow then, as in
the previous case, from a direct application of the method of
continuity along a parameter by the solvability of a suitable
auxiliary problem.
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[4] S. Monsurrò and M. Transirico, “An 𝐿
𝑝-estimate for weak

solutions of elliptic equations,” Abstract and Applied Analysis,
vol. 2012, Article ID 376179, 15 pages, 2012.
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We firstly study the existence of PC-mild solutions for impulsive fractional semilinear integrodifferential equations and then present
controllability results for fractional impulsive integrodifferential systems in Banach spaces. The method we adopt is based on fixed
point theorem, semigroup theory, and generalized Bellman inequality.The results obtained in this paper improve and extend some
known results. At last, an example is presented to demonstrate the applications of our main results.

1. Introduction

Fractional calculus is an area having a long history whose
infancy dates back to three hundred years. However, at the
beginning of fractional calculus, it develops slowly due to the
disadvantage of technology. In recent decades, as the ancient
mathematicians expected, fractional differential equations
have been found to be a powerful tool in many fields, such as
viscoelasticity, electrochemistry, control, porous media, and
electromagnetic. For basic facts about fractional derivative
and fractional calculus, one can refer to the books [1–4].
Since the fractional theory has played a very significant role
in engineering, science, economy, and many other fields,
during the past decades, fractional differential equations
have attracted many authors, and there has been a great
deal of interest in the solutions of fractional differential
equations in analytical and numerical sense (see, e.g., [5–10]
and references therein).

On the other hand, the impulsive differential systems are
used to describe processes which are subjected to abrupt
changes at certain moments [11–13]. The study of dynamical
systems with impulsive effects has been an object of intensive
investigations. It is well known that controllability is a key
topic for control theory. Controllability means that it is
possible to steer any initial state of the system to any final
state in some finite time using an admissible control.We refer
the readers to the survey [14] and the reference therein for
controllability of nonlinear systems in Banach spaces. The

sufficient controllability conditions for fractional impulsive
integrodifferential systems in Banach spaces have already
been obtained in [15–18].

Balachandran and Park [17] studied the controllability
of fractional integrodifferential systems in Banach spaces
without impulse

𝑑
𝑞
𝑥 (𝑡)

𝑑𝑡𝑞
= 𝐴𝑥 (𝑡) + 𝑓(𝑡, 𝑥 (𝑡) , ∫

𝑡

0

ℎ (𝑡, 𝑠, 𝑥 (𝑠)) 𝑑𝑠)

+ 𝐵𝑢 (𝑡) , 𝑡 ∈ 𝐽 = [0, 𝑏] ,

𝑥 (0) = 𝑥
0
∈ X,

(1)

where 0 < 𝑞 < 1, the state 𝑥(⋅) takes values in the Banach
spaceX, 𝑓 : 𝐽 ×X×X → X, ℎ : Δ×X → X are continuous
functions, and here Δ = {(𝑡, 𝑠) : 0 ≤ 𝑠 ≤ 𝑡 ≤ 𝑏}. The control
function 𝑢 ∈ 𝐿

2
[𝐽, 𝑈], a Banach space of admissible control

functions with 𝑈 as a Banach space, and 𝐵 : 𝑈 → X is a
bounded linear operator.

In [19], Mophou considered the existence and uniqueness
of a mild solution for impulsive fractional semilinear differ-
ential equation

𝐷
𝛼

𝑡
𝑥 (𝑡) = 𝐴𝑥 (𝑡) + 𝑓 (𝑡, 𝑥 (𝑡)) , 𝑡 ∈ 𝐼 = [0, 𝑇] , 𝑡 ̸= 𝑡

𝑘
,

𝑥 (0) = 𝑥
0
∈ X,

Δ𝑥|𝑡=𝑡𝑘
= 𝐼
𝑘
(𝑥 (𝑡
−

𝑘
)) , 𝑘 = 1, 2, . . . , 𝑚,

(2)
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where 𝐷𝛼
𝑡
is the Caputo fractional derivative, and 0 < 𝛼 < 1.

The operator 𝐴 : 𝐷(𝐴) ⊂ X → X is a generator of C
0
-

semigroup (𝑇(𝑡))
𝑡≥0

on a Banach space X, and 𝐼
𝑘
: X → X

are impulsive functions.
To consider fractional systems in the infinite dimensional

space, the first important step is to define a new concept of
themild solution. Unfortunately, ByHernández et al. [20], we
know that the concept of mild solutions used in [15–17, 19],
inspired by Jaradat et al. [21], was not suitable for fractional
evolution systems at all. Therefore, it is necessary to restudy
this interesting and hot topic again.

Recently, in Wang and Zhou [18], a suitable concept of
mild solutions was introduced, using Krasnoselskii’s fixed
point theorem and Sadovskii’s fixed point theorem, inves-
tigating complete controllability of fractional evolution sys-
tems in the infinite dimensional spaces

𝑐

𝐷
𝑞

𝑡
𝑥 (𝑡) = 𝐴𝑥 (𝑡) + 𝑓 (𝑡, 𝑥 (𝑡)) + 𝐵𝑢 (𝑡) ,

𝑡 ∈ 𝐽 = [0, 𝑏] ,

𝑥 (0) = 𝑥
0
∈ X,

(3)

where 𝑐𝐷𝑞
𝑡
is the Caputo fractional derivative of the order

0 < 𝑞 ≤ 1 with the lower limit zero, the state 𝑥(⋅) takes values
in Banach space X, and the control function 𝑢(⋅) is given in
𝐿
2
[𝐽, 𝑈], with𝑈 as a Banach space.𝐴 : 𝐷(𝐴) ⊂ X → X is the

infinitesimal generator of a strongly continuous semigroup
(𝑇(𝑡))

𝑡≥0
in X, 𝐵 is a bounded linear operator from 𝑈 to

X, and 𝑓 : 𝐽 × X → X is given X-value functions.
Some sufficient conditions for complete controllability of the
previous system were obtained.

Inspired by the work of the previous papers and many
known results in [22–24], we study the existence ofmild solu-
tions for impulsive fractional semilinear integrodifferential
equation

𝐷
𝑞

𝑡
𝑥 (𝑡) = 𝐴𝑥 (𝑡) + 𝑓 (𝑡, 𝑥 (𝑡) , (𝐻𝑥) (𝑡)) ,

𝑡 ∈ 𝐼 = [0, 𝑏] , 𝑡 ̸= 𝑡
𝑘
,

𝑥 (0) = 𝑥
0
∈ X,

Δ𝑥|𝑡=𝑡𝑘
= 𝐼
𝑘
(𝑥 (𝑡
−

𝑘
)) , 𝑘 = 1, 2, . . . , 𝑚,

(4)

where 𝐷𝑞
𝑡
is the Caputo fractional derivative, 0 < 𝑞 < 1, the

state 𝑥(⋅) takes values in Banach space X. 𝐴 : 𝐷(𝐴) ⊂ X →

X is the infinitesimal generator of a strongly continuous
semigroup (𝑇(𝑡))

𝑡≥0
of a uniformly bounded operator on X,

and 𝐴 is a bounded linear operator. 𝑓 : 𝐽 × X × X → X is
givenX-value functions,𝐻 is defined as

(𝐻𝑥) (𝑡) = ∫

𝑡

0

ℎ (𝑡, 𝑠, 𝑥 (𝑠)) 𝑑𝑠, (5)

where ℎ : Δ × X → X are continuous, here Δ = {(𝑡, 𝑠) : 0 ≤

𝑠 ≤ 𝑡 ≤ 𝑏}, 𝐼
𝑘
: X → X are impulsive functions, 0 = 𝑡

0
<

𝑡
1
< ⋅ ⋅ ⋅ < 𝑡

𝑚
< 𝑡
𝑚+1

= 𝑏, Δ𝑥|
𝑡=𝑡𝑘

= 𝑥(𝑡
+

𝑘
) − 𝑥(𝑡

−

𝑘
), and 𝑥(𝑡+

𝑘
) =

lim
ℎ→0

+𝑥(𝑡
𝑘
+ℎ) and 𝑥(𝑡−

𝑘
) = lim

ℎ→0
−𝑥(𝑡
𝑘
+ℎ) represent the

right and left limits of 𝑥(𝑡) at 𝑡 = 𝑡
𝑘
, respectively.

We also define a control 𝑢 and present controllability
results for fractional integrodifferential systems in Banach
spaces

𝐷
𝑞

𝑡
𝑥 (𝑡) = 𝐴𝑥 (𝑡) + 𝑓 (𝑡, 𝑥 (𝑡) , (𝐻𝑥) (𝑡)) + 𝐵𝑢 (𝑡) ,

𝑡 ∈ 𝐼 = [0, 𝑏] , 𝑡 ̸= 𝑡
𝑘
,

𝑥 (0) = 𝑥
0
∈ X,

Δ𝑥|𝑡=𝑡𝑘
= 𝐼
𝑘
(𝑥 (𝑡
−

𝑘
)) , 𝑘 = 1, 2, . . . , 𝑚,

(6)

where 𝐵 is a bounded linear operator from 𝑈 to X, and the
control function 𝑢(⋅) is given in 𝐿2[𝐽, 𝑈], with 𝑈 as a Banach
space. The method we adopt is based on the ideas in [17–
19, 22–24]. Comparedwith the previous results, this paper has
three advantages. Firstly, we add operator𝐻 in the nonlinear
term 𝑓 and introduce a suitable concept of mild solutions
of (4) and (6). Secondly, we not only study the existence of
PC-mild solutions for impulsive fractional semilinear inte-
grodifferential equation (4) but also present controllability
results for fractional impulsive integrodifferential systems
(6), and the results in [17, 19] could be seen as the special
cases.Thirdly, ourmethod avoids the compactness conditions
on the semigroup (𝑇(𝑡))

𝑡≥0
, and some other hypotheses are

more general compared with the previous research (see the
conditions (𝐻

1
)–(𝐻
3
) and (𝐻

5
)–(𝐻
8
)).

The rest of the paper is organized as follows. In Section 2,
we present some preliminaries and lemmas that are to be used
later to prove our main results. In Section 3, the existence
of PC-mild solutions for (4) is discussed. In Section 4, by
introducing a class of controls, we present the controllability
results for fractional impulsive integrodifferential systems
(6). In Section 5, an example is given to illustrate the theory.

2. Preliminaries and Lemmas

Let us consider the set of functions PC[𝐼,X] = {𝑥 : 𝐼 →

X : 𝑥 ∈ 𝐶[(𝑡
𝑘
, 𝑡
𝑘+1

),X], and there exist 𝑥(𝑡−
𝑘
) and 𝑥(𝑡

+

𝑘
),

𝑘 = 0, 1, 2, . . . , 𝑚 with 𝑥(𝑡
−

𝑘
) = 𝑥(𝑡

𝑘
)}. Endowed with the

norm ‖𝑥‖PC = sup
𝑡∈𝐼
‖𝑥(𝑡)‖, it is easy to know that (PC[𝐼,X],

‖ ⋅ ‖PC) is a Banach space. Throughout this paper, let 𝐴 be
the infinitesimal generator of a 𝐶

0
-semigroup (𝑇(𝑡))

𝑡≥0
of a

uniformly bounded operators onX. Let 𝐿
𝐵
(X) be the Banach

space of all linear and bounded operator on X. For a 𝐶
0
-

semigroup (𝑇(𝑡))
𝑡≥0

, we set𝑀
1
= sup

𝑡∈𝐼
‖𝑇(𝑡)‖

𝐿𝐵(X)
. For each

positive constant 𝑟, set 𝐵
𝑟
= {𝑥 ∈ PC[𝐼,X] : ‖𝑥‖ ≤ 𝑟}.

Definition 1. The fractional integral of order 𝛾 with the lower
limit zero for a function 𝑓 is defined as

𝐼
𝛾
𝑓 (𝑡) =

1

Γ (𝛾)
∫

𝑡

0

𝑓 (𝑠)

(𝑡 − 𝑠)
1−𝛾

𝑑𝑠, 𝑡 > 0, 𝛾 > 0, (7)

provided that the right side is point-wise defined on [0, +∞),
where Γ(⋅) is the gamma function.
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Definition 2. TheRiemann-Liouville derivative of the order 𝛾
with the lower limit zero for a function 𝑓 : [0,∞] → 𝑅 can
be written as
𝐿
𝐷
𝛾
𝑓 (𝑡) =

1

Γ (𝑛 − 𝛾)

𝑑
𝑛

𝑑𝑡𝑛

× ∫

𝑡

0

𝑓 (𝑠)

(𝑡 − 𝑠)
1−𝑛+𝛾

𝑑𝑠, 𝑡 > 0, 𝑛 − 1 < 𝛾 < 𝑛.

(8)

Definition 3. The Caputo derivative of the order 𝛾 for a
function 𝑓 : [0,∞] → 𝑅 can be written as

𝐷
𝛾
𝑓 (𝑡) =

𝐿
𝐷
𝛾

(𝑓 (𝑡) −

𝑛−1

∑

𝑘=0

𝑡
𝑘

𝑘!
𝑓
(𝑘)
(0)) ,

𝑡 > 0, 𝑛 − 1 < 𝛾 < 𝑛.

(9)

Remark 4. (1) If 𝑓(𝑡) ∈ 𝐶𝑛[0,∞), then

𝐷
𝛾
𝑓 (𝑡) =

1

Γ (𝑛 − 𝛾)
∫

𝑡

0

𝑓
(𝑛)
(𝑠)

(𝑡 − 𝑠)
1−𝑛+𝛾

𝑑𝑠

= 𝐼
𝑛−𝑟
𝑓
(𝑛)
(𝑡) , 𝑡 > 0, 𝑛 − 1 < 𝛾 < 𝑛.

(10)

(2) The Caputo derivative of a constant is equal to zero.
(3) If 𝑓 is an abstract function with values in X, then

integrals which appear in Definitions 1, 2, and 3 are taken in
Bochner’s sense.

Definition 5 (see [22]). A mild solution of the following
nonhomogeneous impulsive linear fractional equation of the
form
𝐷
𝑞

𝑡
𝑥 (𝑡) = 𝐴𝑥 (𝑡) + ℎ (𝑡) , 𝑡 ∈ 𝐼 = [0, 𝑏] , 0 < 𝑞 < 1, 𝑡 ̸= 𝑡

𝑘
,

𝑥 (0) = 𝑥
0
∈ X,

Δ𝑥|𝑡=𝑡𝑘
= 𝐼
𝑘
(𝑥 (𝑡
−

𝑘
)) , 𝑘 = 1, 2, . . . , 𝑚,

(11)

is given by

𝑥 (𝑡) =

{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{

{

T (𝑡) 𝑥0+∫

𝑡

0

(𝑡−𝑠)
𝑞−1

S (𝑡−𝑠) ℎ (𝑠) 𝑑𝑠, 𝑡∈[0, 𝑡
1
] ,

T (𝑡) 𝑥
0
+T (𝑡−𝑡

1
) 𝐼
1
(𝑥 (𝑡
−

1
))

+∫

𝑡

0

(𝑡−𝑠)
𝑞−1

S (𝑡−𝑠) ℎ (𝑠) 𝑑𝑠, 𝑡∈(𝑡
1
, 𝑡
2
] ,

...

T (𝑡) 𝑥
0
+

𝑚

∑

𝑘=1

T (𝑡−𝑡
𝑘
) 𝐼
𝑘
(𝑥 (𝑡
−

𝑘
))

+∫

𝑡

0

(𝑡−𝑠)
𝑞−1

S (𝑡−𝑠) ℎ (𝑠) 𝑑𝑠, 𝑡∈(𝑡
𝑚
, 𝑏] ,

(12)

whereT(⋅) and S(⋅) are called characteristic solution opera-
tors and given by

T (𝑡) = ∫

∞

0

𝜉
𝑞
(𝜃) 𝑇 (𝑡

𝑞
𝜃) 𝑑𝜃,

S (𝑡) = 𝑞∫

∞

0

𝜃𝜉
𝑞
(𝜃) 𝑇 (𝑡

𝑞
𝜃) 𝑑𝜃,

(13)

and for 𝜃 ∈ (0,∞),

𝜉
𝑞 (𝜃) =

1

𝑞
𝜃
−1−(1/𝑞)

𝜛
𝑞
(𝜃
−1/𝑞

) ≥ 0,

𝜛
𝑞
(𝜃) =

1

𝜋

∞

∑

𝑛=1

(−1)
𝑛−1

𝜃
−𝑞𝑛−1

Γ (𝑛𝑞 + 1)

𝑛!
sin (𝑛𝜋𝑞) ,

(14)

where 𝜉
𝑞
is a probability density function defined on (0,∞);

that is,

𝜉
𝑞 (𝜃) ≥ 0, 𝜃 ∈ (0,∞) , ∫

∞

0

𝜉
𝑞 (𝜃) 𝑑𝜃 = 1. (15)

Definition 6. By a PC-mild solution of (4), we mean that a
function 𝑥 ∈ PC[𝐼,X], which satisfies the following integral
equation:

𝑥 (𝑡) =

{{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{{

{

T (𝑡) 𝑥0+∫

𝑡

0

(𝑡−𝑠)
𝑞−1

S (𝑡−𝑠)

×𝑓 (𝑠, 𝑥 (𝑠) , (𝐻𝑥) (𝑠)) 𝑑𝑠, 𝑡∈[0, 𝑡
1
] ,

T (𝑡) 𝑥
0
+T (𝑡 − 𝑡

1
) 𝐼
1
(𝑥 (𝑡
−

1
))

+∫

𝑡

0

(𝑡−𝑠)
𝑞−1

S (𝑡−𝑠)

×𝑓 (𝑠, 𝑥 (𝑠) , (𝐻𝑥) (𝑠)) 𝑑𝑠, 𝑡∈(𝑡
1
, 𝑡
2
] ,

...

T (𝑡) 𝑥
0
+

𝑚

∑

𝑘=1

T (𝑡−𝑡
𝑘
) 𝐼
𝑘
(𝑥 (𝑡
−

𝑘
))

+∫

𝑡

0

(𝑡−𝑠)
𝑞−1

S (𝑡−𝑠)

×𝑓 (𝑠, 𝑥 (𝑠) , (𝐻𝑥) (𝑠)) 𝑑𝑠, 𝑡∈( 𝑡
𝑚
, 𝑏] .

(16)

Definition 7. By a PC-mild solution of the system (6), we
mean that a function 𝑥 ∈ PC[𝐼,X], which satisfies the follow-
ing integral equation:

𝑥 (𝑡)=

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{

T (𝑡) 𝑥0 + ∫

𝑡

0

(𝑡−𝑠)
𝑞−1

S (𝑡−𝑠)

×[𝑓 (𝑠, 𝑥 (𝑠) , (𝐻𝑥) (𝑠))

+𝐵𝑢 (𝑠) ] 𝑑𝑠, 𝑡∈[0, 𝑡
1
] ,

T (𝑡) 𝑥
0
+T (𝑡−𝑡

1
) 𝐼
1
(𝑥 (𝑡
−

1
))

+∫

𝑡

0

(𝑡−𝑠)
𝑞−1

S (𝑡−𝑠)

×[𝑓 (𝑠, 𝑥 (𝑠) , (𝐻𝑥) (𝑠))

+𝐵𝑢 (𝑠) ] 𝑑𝑠, 𝑡∈(𝑡
1
, 𝑡
2
] ,

...

T (𝑡) 𝑥
0
+

𝑚

∑

𝑘=1

T (𝑡−𝑡
𝑘
) 𝐼
𝑘
(𝑥 (𝑡
−

𝑘
))

+∫

𝑡

0

(𝑡−𝑠)
𝑞−1

S (𝑡−𝑠)

×[𝑓 (𝑠, 𝑥 (𝑠) , (𝐻𝑥) (𝑠))

+𝐵𝑢 (𝑠) ] 𝑑𝑠, 𝑡∈( 𝑡
𝑚
, 𝑏] .

(17)

Definition 8. The system (6) is said to be controllable on the
interval 𝐽 if, for every 𝑥

0
, 𝑥
1
∈ X, there exists a control 𝑢 ∈

𝐿
2
(𝐽, 𝑈) such that a mild solution 𝑥 of (6) satisfies 𝑥(𝑏) = 𝑥

1
.
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Definition 9 (see [25]). Let X be a Banach space, and a one
parameter family 𝑇(𝑡), 0 ≤ 𝑡 < +∞, of bounded linear
operators from X to X is a semigroup of bounded linear
operators onX if

(1) 𝑇(0) = 𝐼 (here, 𝐼 is the identity operator onX);
(2) 𝑇(𝑡 + 𝑠) = 𝑇(𝑡)𝑇(𝑠) for every 𝑡, 𝑠 ≥ 0 (the semigroup

property).

A semigroup of bounded linear operator, 𝑇(𝑡), is uniformly
continuous if lim

𝑡↓0
‖𝑇(𝑡) − 𝐼‖ = 0.

Lemma 10 (see [25]). Linear operator 𝐴 is the infinitesimal
generator of a uniformly continuous semigroup if and only if𝐴
is a bounded linear operator.

Lemma 11 (see [19]). Let 𝑇 be a continuous and compact
mapping of a Banach space X into itself, such that

{𝑥 ∈ X : 𝑥 = 𝜆𝑇𝑥 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 0 ≤ 𝜆 ≤ 1} (18)

is bounded. Then, 𝑇 has a fixed point.

Lemma 12. The operators T(𝑡) and S(𝑡) have the following
properties.

(i) For any fixed 𝑡 ≥ 0, T(𝑡) and S(𝑡) are linear and
bounded operators; that is, for any 𝑥 ∈ X,

‖T (𝑡) 𝑥‖ ≤ 𝑀
1 ‖𝑥‖ , ‖S (𝑡) 𝑥‖ ≤

𝑞𝑀
1

Γ (1 + 𝑞)
‖𝑥‖ . (19)

(ii) {T(𝑡), 𝑡 ≥ 0} and {S(𝑡), 𝑡 ≥ 0} are strongly continuous.
(iii) {T(𝑡), 𝑡 ≥ 0} and {S(𝑡), 𝑡 ≥ 0} are uniformly

continuous; that is, for each fixed 𝑡 > 0, and 𝜖 > 0,
there exists ℎ > 0 such that

‖T (𝑡 + 𝜖) −T (𝑡)‖ ≤ 𝜀, 𝑓𝑜𝑟 𝑡 + 𝜖 ≥ 0, |𝜖| < ℎ,

‖S (𝑡 + 𝜖) −S (𝑡)‖ ≤ 𝜀, 𝑓𝑜𝑟 𝑡 + 𝜖 ≥ 0, |𝜖| < ℎ.

(20)

Proof. For the proof of (i) and (ii), the reader can refer to [23,
Lemma 2.9] and [24, Lemmas 3.2–3.5]. For each fixed 𝑡 > 0,
and ℎ > 𝜖 > 0, one can obtain

‖T (𝑡 + 𝜖)−T (𝑡)‖

≤∫

∞

0

𝜉
𝑞
(𝜃)

𝑇 ((𝑡 + 𝜖)
𝑞
𝜃)−𝑇 (𝑡

𝑞
𝜃)
 𝑑𝜃

≤𝑀
1
∫

∞

0

𝜉
𝑞 (𝜃)

𝑇 ((𝑡 + 𝜖)
𝑞
𝜃−𝑡
𝑞
𝜃) − 𝐼

 𝑑𝜃,

‖S (𝑡 + 𝜖) −S (𝑡)‖

≤ 𝑞𝑀
1
∫

∞

0

𝜃𝜉
𝑞
(𝜃)

𝑇 ((𝑡 + 𝜖)
𝑞
𝜃 − 𝑡
𝑞
𝜃) − 𝐼

 𝑑𝜃.

(21)

Because 𝐴 is a bounded linear operator, from Lemma 10 and
Definition 9, we know that𝐴 is the infinitesimal generator of

a uniformly continuous semigroup.Thus, by the properties of
uniformly continuous semigroup (𝑇(𝑡))

𝑡≥0
, we get

‖T (𝑡 + 𝜖) −T (𝑡)‖ ≤ 𝜀,

‖S (𝑡 + 𝜖) −S (𝑡)‖ ≤ 𝜀;

(22)

that is, {T(𝑡), 𝑡 ≥ 0} and {S(𝑡), 𝑡 ≥ 0} are uniformly
continuous.

We list here the hypotheses to be used later.

(𝐻
1
) 𝑓 : 𝐼 × X × X → X is continuous and there exist
functions 𝜇

1
, 𝜇
2
∈ 𝐿[𝐼,R+] such that

𝑓 (𝑡, 𝑥1, 𝑦1) − 𝑓 (𝑡, 𝑥2, 𝑦2)


≤ 𝜇
1
(𝑡)

𝑥1 − 𝑥2
 + 𝜇2 (𝑡)

𝑦1 − 𝑦2
 ,

𝑥
1
, 𝑥
2
, 𝑦
1
, 𝑦
2
∈ X.

(23)

(𝐻
2
) ℎ : Δ × X × X → X is continuous and there exist
function ]

1
∈ 𝐶[𝐼,R+] such that

ℎ (𝑡, 𝑠, 𝑥1) − ℎ (𝑡, 𝑠, 𝑥2)
 ≤ ]
1
(𝑡)

𝑥1 − 𝑥2
 , 𝑥

1
, 𝑥
2
∈ X.

(24)

(𝐻
3
) There exist 𝜔

𝑘
∈ 𝐶[𝐼,R+] such that

𝐼𝑘 (𝑥1) − 𝐼𝑘 (𝑥2)
 ≤ 𝜔
𝑘 (𝑡)

𝑥1 − 𝑥2
 ,

𝑥
1
, 𝑥
2
∈ X, 𝑘 = 1, 2, . . . , 𝑚.

(25)

(𝐻
4
) The functionΩ

𝑚
(𝑡) : 𝐼 → R+ is defined by

Ω
𝑚 (𝑡) =

𝑞𝑀
1

Γ (1 + 𝑞)
∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

(𝜇
1 (𝑠) + ]0

1
𝑏𝜇
2 (𝑠)) 𝑑𝑠

+ 𝑚𝜔
0
𝑀
1
,

(26)

where ]0
1
= max{]

1
(𝑡) | 𝑡 ∈ 𝐼}, 𝜔

0
= max{𝜔

𝑘
(𝑡)𝑡 ∈

𝐼, 𝑘 = 1, 2, . . . , 𝑚}, and 0 < Ω
𝑚
(𝑡) < 1, 𝑡 ∈ 𝐼.

(𝐻
4
) The constantsΩ

𝑢
andΩ

𝑚
(𝑡) : 𝐼 → R+ are defined by

Ω
𝑢
=

𝑞𝑀
1
𝐾

Γ (1 + 𝑞)
∫

𝑏

0

(𝑏 − 𝑠)
𝑞−1

(𝜇
1
(𝑠) + ]0

1
𝑏𝜇
2
(𝑠)) 𝑑𝑠

+ 𝜔
0
𝑚𝑀
1
,

Ω


𝑚
(𝑡) =

𝑞𝑀
1

Γ (1 + 𝑞)
∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

(𝜇
1
(𝑠) + ]0

1
𝑏𝜇
2
(𝑠)) 𝑑𝑠

+
𝑞𝑀
1
Ω
𝑢

Γ (1 + 𝑞)
∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

𝑑𝑠 + 𝜔
0
𝑚𝑀
1
,

(27)

and 0 < Ω


𝑚
(𝑡) < 1, 𝑡 ∈ 𝐼.
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3. Existence of Mild Solutions

Theorem 13. If the hypotheses (𝐻
1
)–(𝐻
4
) are satisfied, then

the fractional impulsive integrodifferential equation (4) has a
unique mild solution 𝑥 ∈ PC[𝐼,X].

Proof. Define an operator 𝑄 on PC[𝐼,X] by

(𝑄𝑥) (𝑡)=

{{{{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{{{{

{

T (𝑡) 𝑥0+∫

𝑡

0

(𝑡−𝑠)
𝑞−1

S (𝑡−𝑠)

× 𝑓 (𝑠, 𝑥 (𝑠) ,

(𝐻𝑥) (𝑠)) 𝑑𝑠, 𝑡∈[0, 𝑡
1
] ,

T (𝑡) 𝑥0+T (𝑡−𝑡
1
) 𝐼
1
(𝑥 (𝑡
−

1
))

+∫

𝑡

0

(𝑡−𝑠)
𝑞−1

S (𝑡−𝑠)

×𝑓 (𝑠, 𝑥 (𝑠) , (𝐻𝑥) (𝑠)) 𝑑𝑠, 𝑡∈( 𝑡
1
, 𝑡
2
] ,

...

T (𝑡) 𝑥
0
+

𝑚

∑

𝑘=1

T (𝑡−𝑡
𝑘
) 𝐼
𝑘
(𝑥 (𝑡
−

𝑘
))

+∫

𝑡

0

(𝑡−𝑠)
𝑞−1

S (𝑡−𝑠)

×𝑓 (𝑠, 𝑥 (𝑠) , (𝐻𝑥) (𝑠)) 𝑑𝑠, 𝑡∈( 𝑡
𝑚
, 𝑏] .

(28)

We will show that 𝑄 is well defined on PC[𝐼,X]. For 0 ≤ 𝜏 <

𝑡 ≤ 𝑡
1
, applying (28), we obtain

‖(𝑄𝑥) (𝑡) − (𝑄𝑥) (𝜏)‖

≤ ‖T (𝑡) −T (𝜏)‖
𝑥0



+



∫

𝑡

𝜏

(𝑡 − 𝑠)
𝑞−1

S (𝑡 − 𝑠) 𝑓 (𝑠, 𝑥 (𝑠) , (𝐻𝑥) (𝑠)) 𝑑𝑠

+ ∫

𝜏

0

(𝑡 − 𝑠)
𝑞−1

S (𝑡 − 𝑠) 𝑓 (𝑠, 𝑥 (𝑠) , (𝐻𝑥) (𝑠)) 𝑑𝑠

+ ∫

𝜏

0

(𝑡 − 𝑠)
𝑞−1

S (𝜏 − 𝑠) 𝑓 (𝑠, 𝑥 (𝑠) , (𝐻𝑥) (𝑠)) 𝑑𝑠

− ∫

𝜏

0

(𝑡 − 𝑠)
𝑞−1

S (𝜏 − 𝑠) 𝑓 (𝑠, 𝑥 (𝑠) , (𝐻𝑥) (𝑠)) 𝑑𝑠

− ∫

𝜏

0

(𝜏 − 𝑠)
𝑞−1

S (𝜏 − 𝑠) 𝑓 (𝑠, 𝑥 (𝑠) , (𝐻𝑥) (𝑠)) 𝑑𝑠



≤ ‖T (𝑡) −T (𝜏)‖
𝑥0



+



∫

𝑡

𝜏

(𝑡 − 𝑠)
𝑞−1

S (𝑡 − 𝑠) 𝑓 (𝑠, 𝑥 (𝑠) , (𝐻𝑥) (𝑠)) 𝑑𝑠



+



∫

𝜏

0

(𝑡 − 𝑠)
𝑞−1

[S (𝑡 − 𝑠) −S (𝜏 − 𝑠)]

× 𝑓 (𝑠, 𝑥 (𝑠) , (𝐻𝑥) (𝑠)) 𝑑𝑠



+



∫

𝜏

0

[(𝑡 − 𝑠)
𝑞−1

− (𝜏 − 𝑠)
𝑞−1

]

×S (𝜏 − 𝑠) 𝑓 (𝑠, 𝑥 (𝑠) , (𝐻𝑥) (𝑠)) 𝑑𝑠



.

(29)

From the well-known inequality |𝑡
𝜎
− 𝜏
𝜎
| ≤ (𝑡 − 𝜏)

𝜎 for
𝜎 ∈ (0, 1] and 0 < 𝜏 ≤ 𝑡 and Lemma 12, it is obvious that
‖(𝑄𝑥)(𝑡) − (𝑄𝑥)(𝜏)‖ → 0 as 𝑡 → 𝜏. Thus, we deduce that
𝑄𝑥 ∈ 𝐶[[0, 𝑡

1
],X].

For 𝑡
1
< 𝜏 < 𝑡 ≤ 𝑡

2
, we have

‖(𝑄𝑥) (𝑡) − (𝑄𝑥) (𝜏)‖

≤ ‖T (𝑡) −T (𝜏)‖
𝑥0



+
T (𝑡 − 𝑡

1
) −T (𝜏 − 𝑡

1
)


𝐼1 (𝑥 (𝑡
−

1
))


+



∫

𝑡

𝜏

(𝑡 − 𝑠)
𝑞−1

S (𝑡 − 𝑠) 𝑓 (𝑠, 𝑥 (𝑠) , (𝐻𝑥) (𝑠)) 𝑑𝑠



+



∫

𝜏

0

(𝑡 − 𝑠)
𝑞−1

[S (𝑡 − 𝑠) −S (𝜏 − 𝑠)]

×𝑓 (𝑠, 𝑥 (𝑠) , (𝐻𝑥) (𝑠)) 𝑑𝑠



+



∫

𝜏

0

[(𝑡 − 𝑠)
𝑞−1

− (𝜏 − 𝑠)
𝑞−1

]

×S (𝜏 − 𝑠) 𝑓 (𝑠, 𝑥 (𝑠) , (𝐻𝑥) (𝑠)) 𝑑𝑠



.

(30)

It is easy to get that, as 𝑡 → 𝜏, the right-hand side of the
previous inequality tends to zero. Thus, we can deduce that
𝑄𝑥 ∈ 𝐶[(𝑡

1
, 𝑡
2
],X]. By repeating the same procedure, we can

also obtain that 𝑄𝑥 ∈ 𝐶[(𝑡
2
, 𝑡
3
],X], . . . , 𝑄𝑥 ∈ 𝐶[(𝑡

𝑚
, 𝑏],X].

That is, 𝑄𝑥 ∈ PC[𝐼,X].
Take 𝑡 ∈ [0, 𝑡

1
]; then,

(𝑄𝑥) (𝑡) − (𝑄𝑦) (𝑡)


≤ ∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1 S (𝑡 − 𝑠)

× (𝑓 (𝑠, 𝑥 (𝑠) , (𝐻𝑥) (𝑠))

−𝑓 (𝑠, 𝑦 (𝑠) , (𝐻𝑦) (𝑠)))
 𝑑𝑠

≤
𝑞𝑀
1

Γ (1 + 𝑞)
∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

× (𝜇
1
(𝑠)

𝑥 (𝑠) − 𝑦 (𝑠)


+𝜇
2
(𝑠)

(𝐻𝑥) (𝑠) − (𝐻𝑦) (𝑠)
) 𝑑𝑠.

(31)

From (𝐻
2
) and (𝐻

4
), we obtain

(𝑄𝑥) (𝑡) − (𝑄𝑦) (𝑡)


≤
𝑞𝑀
1

Γ (1 + 𝑞)
∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

(𝜇
1 (𝑠) + ]0

1
𝑏𝜇
2 (𝑠))

×
𝑥 (𝑠) − 𝑦 (𝑠)

 𝑑𝑠.

(32)

So we deduce that
(𝑄𝑥) (𝑡) − (𝑄𝑦) (𝑡)

PC

≤
𝑞𝑀
1

Γ (1 + 𝑞)
∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

(𝜇
1 (𝑠) + ]0

1
𝑏𝜇
2 (𝑠)) 𝑑𝑠

×
𝑥 − 𝑦

PC.

(33)
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In general, for each 𝑡 ∈ (𝑡
𝑖
, 𝑡
𝑖+1
], 1 ≤ 𝑖 ≤ 𝑚, using the assump-

tions,
(𝑄𝑥) (𝑡) − (𝑄𝑦) (𝑡)

PC

≤
𝑞𝑀
1

Γ (1+𝑞)
∫

𝑡

0

(𝑡−𝑠)
𝑞−1

(𝜇
1
(𝑠)+]0
1
𝑏𝜇
2
(𝑠)) 𝑑𝑠

𝑥−𝑦
PC

+



𝑖

∑

𝑘=1

T (𝑡 − 𝑡
𝑘
) 𝐼
𝑘
(𝑥 (𝑡
−

𝑘
))

−

𝑖

∑

𝑘=1

T (𝑡 − 𝑡
𝑘
) 𝐼
𝑘
(𝑦 (𝑡
−

𝑘
))



≤ (
𝑞𝑀
1

Γ (1 + 𝑞)
∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

(𝜇
1
(𝑡) + ]0

1
𝑏𝜇
2
(𝑡)) 𝑑𝑠

+𝑖𝜔
0
𝑀
1
)
𝑥 − 𝑦

PC

≤ Ω
𝑖
(𝑡)

𝑥 − 𝑦
PC;

(34)

when 𝑖 = 𝑚, obviously
(𝑄𝑥) (𝑡) − (𝑄𝑦)(𝑡)

PC

≤ (
𝑞𝑀
1

Γ (1 + 𝑞)
∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

(𝜇
1
(𝑠) + ]0

1
𝑏𝜇
2
(𝑠)) 𝑑𝑠

+𝑚𝜔
0
𝑀
1
)
𝑥 − 𝑦

PC

≤ Ω
𝑚 (𝑡)

𝑥 − 𝑦
PC.

(35)

Noting that Ω
𝑖
(𝑡) ≤ Ω

𝑚
(𝑡), with assumption (𝐻

4
) and in the

view of the contraction mapping principle, we know that 𝑄
has a unique fixed point 𝑥 ∈ PC[𝐼,X]; that is,

𝑥 (𝑡)=

{{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{{

{

T (𝑡) 𝑥0+∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

S (𝑡 − 𝑠)

×𝑓 (𝑠, 𝑥 (𝑠) , (𝐻𝑥) (𝑠)) 𝑑𝑠, 𝑡∈[0, 𝑡
1
] ,

T (𝑡) 𝑥0 +T (𝑡 − 𝑡
1
) 𝐼
1
(𝑥 (𝑡
−

1
))

+∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

S (𝑡 − 𝑠)

× 𝑓 (𝑠, 𝑥 (𝑠) , (𝐻𝑥) (𝑠)) 𝑑𝑠, 𝑡∈(𝑡
1
, 𝑡
2
] ,

...

T (𝑡) 𝑥
0
+

𝑚

∑

𝑘=1

T (𝑡−𝑡
𝑘
) 𝐼
𝑘
(𝑥 (𝑡
−

𝑘
))

+∫

𝑡

0

(𝑡−𝑠)
𝑞−1

S (𝑡−𝑠)

×𝑓 (𝑠, 𝑥 (𝑠) , (𝐻𝑥) (𝑠)) 𝑑𝑠, 𝑡∈(𝑡
𝑚
, 𝑏] ,

(36)

is a PC-mild solution of (4).

In order to obtain results by the Schaefer fixed point
theorem, let us list the following hypotheses.

(𝐻
5
) 𝑓 : 𝐼 × X × X → X is continuous and there exist
functions 𝜇

3
, 𝜇
4
, 𝜇
5
∈ 𝐿[𝐼,R+] such that

𝑓 (𝑡, 𝑥, 𝑦)
≤𝜇3 (𝑡) + 𝜇4 (𝑡) ‖𝑥‖+𝜇5 (𝑡)

𝑦
 , 𝑡∈𝐼, 𝑥, 𝑦∈X.

(37)

(𝐻
6
) ℎ : Δ × X × X → X is continuous and there exist
functions ]

2
, ]
3
∈ 𝐶[𝐼,R+] such that

‖ℎ (𝑡, 𝑠, 𝑥)‖ ≤ ]
2
(𝑠) + ]

3
(𝑠) ‖𝑥‖ , 𝑥 ∈ X. (38)

(𝐻
7
) There exist 𝜓

𝑘
∈ 𝐶[𝐼,R+] such that

𝐼𝑘 (𝑥)
 ≤ 𝜓
𝑘
(𝑡) ‖𝑥‖ , 𝑥 ∈ X. (39)

(𝐻
8
) For all bounded subsets 𝐵

𝑟
, the set

Π
ℎ,𝛿
(𝑡) = {T

𝛿
(𝑡) 𝑥
0

+ ∫

𝑡−ℎ

0

(𝑡 − 𝑠)
𝑞−1

S
𝛿
(𝑡 − 𝑠) 𝐹 (𝑠) 𝑑𝑠

+

𝑚

∑

𝑘=1

T
𝛿
(𝑡 − 𝑡
𝑘
) 𝐼
𝑘
(𝑥 (𝑡
−

𝑘
)) : 𝑥 ∈ 𝐵

𝑟
}

(40)

is relatively compact in X for arbitrary ℎ ∈ (0, 𝑡) and
𝛿 > 0, where

T
𝛿 (𝑡) = ∫

∞

𝛿

𝜉
𝑞 (𝜃) 𝑇 (𝑡

𝑞
𝜃) 𝑑𝜃,

S
𝛿
(𝑡) = 𝑞∫

∞

𝛿

𝜃𝜉
𝑞
(𝜃) 𝑇 (𝑡

𝑞
𝜃) 𝑑𝜃.

(41)

(𝐻
8
) For all bounded subsets 𝐵

𝑟
, the set

Π


ℎ,𝛿
(𝑡) = {T

𝛿
(𝑡) 𝑥
0

+ ∫

𝑡−ℎ

0

(𝑡 − 𝑠)
𝑞−1

S
𝛿
(𝑡 − 𝑠) [𝐹 (𝑠) + 𝐵𝑢 (𝑠)] 𝑑𝑠

+

𝑚

∑

𝑘=1

T
𝛿
(𝑡 − 𝑡
𝑘
) 𝐼
𝑘
(𝑥 (𝑡
−

𝑘
)) : 𝑥 ∈ 𝐵

𝑟
}

(42)

is relatively compact in X for arbitrary ℎ ∈ (0, 𝑡) and
𝛿 > 0.

Theorem 14. If the hypotheses (𝐻
5
)–(𝐻
8
) are satisfied, the

fractional impulsive integrodifferential equation (4) has at least
one mild solution 𝑥 ∈ PC[𝐼,X].
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Proof. FromTheorem 13, we know that operator𝑄 is defined
as follows:

(𝑄𝑥) (𝑡) =

{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{

{

T (𝑡) 𝑥
0
+ ∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

S (𝑡 − 𝑠)

× 𝑓 (𝑠, 𝑥 (𝑠) ,

(𝐻𝑥) (𝑠)) 𝑑𝑠, 𝑡 ∈ [0, 𝑡
1
] ,

T (𝑡) 𝑥
0
+T (𝑡 − 𝑡

1
) 𝐼
1
(𝑥 (𝑡
−

1
))

+ ∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

S (𝑡 − 𝑠)

× 𝑓 (𝑠, 𝑥 (𝑠) , (𝐻𝑥) (𝑠)) 𝑑𝑠, 𝑡 ∈ ( 𝑡
1
, 𝑡
2
] ,

...

T (𝑡) 𝑥
0
+

𝑚

∑

𝑘=1

T (𝑡 − 𝑡
𝑘
) 𝐼
𝑘
(𝑥 (𝑡
−

𝑘
))

+ ∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

S (𝑡 − 𝑠)

× 𝑓 (𝑠, 𝑥 (𝑠) , (𝐻𝑥) (𝑠)) 𝑑𝑠, 𝑡 ∈ ( 𝑡
𝑚
, 𝑏] .

(43)

We will prove the results in five steps.

Step 1 (continuity of 𝑄 on (𝑡
𝑖
, 𝑡
𝑖+1
] (𝑖 = 0, 1, 2, . . . , 𝑚)). Let

𝑥
𝑛
, 𝑥 ∈ PC[𝐼,X] such that ‖ 𝑥

𝑛
− 𝑥
∗
‖PC → 0 (𝑛 → +∞),

and then 𝑟 = sup
𝑛
‖𝑥
𝑛
‖PC < ∞ and ‖𝑥

∗
‖PC < 𝑟; for every

𝑡 ∈ (𝑡
𝑖
, 𝑡
𝑖+1
] (𝑖 = 0, 1, 2, . . . , 𝑚), we have

(𝑄𝑥𝑛) (𝑡) − (𝑄𝑥) (𝑡)


≤
𝑞𝑀
1

Γ (1 + 𝑞)
∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

×
𝑓 (𝑠, 𝑥𝑛 (𝑠) , (𝐻𝑥𝑛) (𝑠))

−𝑓 (𝑠, 𝑥 (𝑠) , (𝐻𝑥) (𝑠))
 𝑑𝑠

+



𝑚

∑

𝑘=1

T (𝑡−𝑡
𝑘
) 𝐼
𝑘
(𝑥
𝑛
(𝑡
−

𝑘
))−

𝑚

∑

𝑘=1

T (𝑡−𝑡
𝑘
) 𝐼
𝑘
(𝑥 (𝑡
−

𝑘
))



.

(44)

Since the functions 𝑓 and 𝐼
𝑘
are continuous,

𝑓 (𝑠, 𝑥
𝑛
(𝑠) , (𝐻𝑥

𝑛
) (𝑠)) → 𝑓 (𝑠, 𝑥 (𝑠) , (𝐻𝑥) (𝑠)) ,

𝐼
𝑘
(𝑥
𝑛
(𝑡
−

𝑘
)) → 𝐼

𝑘
(𝑥 (𝑡
−

𝑘
)) 𝑛 → ∞.

(45)

By conditions (𝐻
5
) and (𝐻

6
), we know that

𝑓 (𝑠, 𝑥𝑛 (𝑠) , (𝐻𝑥𝑛) (𝑠)) − 𝑓 (𝑠, 𝑥 (𝑠) , (𝐻𝑥) (𝑠))


≤ 2𝜇
3
(𝑠) + 𝜇

4
(𝑠) (‖𝑥‖ +

𝑥𝑛
)

+ 𝜇
5 (𝑠) (‖𝐻𝑥‖ +

𝐻𝑥𝑛
)

≤ 2𝜇
3 (𝑠) + 2𝜇5 (𝑠) ∫

𝑠

0

]
2 (𝜃) 𝑑𝜃

+ (𝜇
4
(𝑠) + 𝜇

5
(𝑠) ∫

𝑠

0

]
3
(𝜃) 𝑑𝜃) (‖𝑥‖ +

𝑥𝑛
)

≤ 2𝜇
3
(𝑠) + 2𝜇

5
(𝑠) ∫

𝑠

0

]
2
(𝜃) 𝑑𝜃

+ (2𝜇
4
(𝑠) + 2𝜇

5
(𝑠) ∫

𝑠

0

]
3
(𝜃) 𝑑𝜃) 𝑟.

(46)

Hence,

(𝑡 − 𝑠)
𝑞−1 𝑓 (𝑠, 𝑥𝑛 (𝑠) , (𝐻𝑥𝑛) (𝑠))

−𝑓 (𝑠, 𝑥 (𝑠) , (𝐻𝑥) (𝑠))
 ∈ 𝐿
1
[𝐼,R
+
] .

(47)

By the Lebesgue dominated convergence theorem, we get

∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1 𝑓 (𝑠, 𝑥𝑛 (𝑠) , (𝐻𝑥𝑛) (𝑠))

−𝑓 (𝑠, 𝑥 (𝑠) , (𝐻𝑥) (𝑠))
 𝑑𝑠 → 0.

(48)

It is easy to obtain that

lim
𝑛→∞

(𝑄𝑥𝑛)(𝑡) − (𝑄𝑥)(𝑡)
PC = 0. (49)

Thus, 𝑄 is continuous on (𝑡
𝑖
, 𝑡
𝑖+1
] (𝑖 = 0, 1, 2, . . . , 𝑚).

Step 2 (𝑄maps bounded sets into bounded sets in PC[𝐼,X]).
From (43), we get

‖(𝑄𝑥) (𝑡)‖

≤
T (𝑡) 𝑥0

 +
𝑞𝑀
1

Γ (1 + 𝑞)

×∫

𝑡

0

(𝑡−𝑠)
𝑞−1𝑓 (𝑠, 𝑥 (𝑠) , (𝐻𝑥) (𝑠))

 𝑑𝑠

+ 𝑚
T (𝑡 − 𝑡

𝑘
) 𝐼
𝑘
(𝑥 (𝑡
−

𝑘
))
 ,

(50)

and we know that
𝑓 (𝑠, 𝑥 (𝑠) , (𝐻𝑥) (𝑠))



≤ 𝜇
3 (𝑠) + 𝜇5 (𝑠) ∫

𝑠

0

]
2 (𝜃) 𝑑𝜃

+(𝜇
4
(𝑠)+𝜇

5
(𝑠) ∫

𝑠

0

]
3
(𝜃) 𝑑𝜃) ‖𝑥‖

≤ 𝜑
1 (𝑠) + 𝜑2 (𝑠) ‖𝑥‖ .

(51)

From (50) and (51), we obtain
‖(𝑄𝑥) (𝑡)‖ ≤ 𝑀

1

𝑥0
 + 𝑚𝑀1𝜓0 ‖𝑥‖

+
𝑞𝑏
𝑞
𝑀
1

Γ (1 + 𝑞)
∫

𝑡

0

(𝜑
1 (𝑠) + 𝜑2 (𝑠) ‖𝑥‖) 𝑑𝑠,

(52)

where 𝜓
0
= max{𝜓

𝑘
(𝑡) | 𝑡 ∈ 𝐼, 𝑘 = 1, 2, . . . , 𝑚}. Thus, for any

𝑥 ∈ 𝐵
𝑟
= {𝑥 ∈ PC[𝐼,X] : ‖𝑥‖PC ≤ 𝑟},

‖(𝑄𝑥) (𝑡)‖

≤ 𝑀
1

𝑥0
 +

𝑞𝑏
𝑞
𝑀
1

Γ (1 + 𝑞)
∫

𝑏

0

𝜑
1 (𝑠) 𝑑𝑠

+ (
𝑞𝑏
𝑞
𝑀
1

Γ (1 + 𝑞)
∫

𝑡

0

𝜑
2
(𝑠) 𝑑𝑠 + 𝑚𝑀𝜓

0
) 𝑟 = 𝛾

1
.

(53)

Hence, we deduce that ‖(𝑄𝑥)(𝑡)‖ ≤ 𝛾
1
; that is, 𝑄 maps

bounded sets to bounded sets in PC[𝐼,X].
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Step 3. (𝑄(𝐵
𝑟
) is equicontinuous with 𝐵

𝑟
on (𝑡
𝑖
, 𝑡
𝑖+1
] (𝑖 = 0, 1,

2, . . . , 𝑚)). For any𝑥 ∈ 𝐵
𝑟
, 𝑡, 𝑡 ∈ (𝑡

𝑖
, 𝑡
𝑖+1
] (𝑖 = 0, 1, 2, . . . , 𝑚),

we obtain

(𝑄𝑥) (𝑡


) − (𝑄𝑥) (𝑡


)


≤

T (𝑡

) 𝑥
0
−T (𝑡


) 𝑥
0



+



∫

𝑡


0

(𝑡

− 𝑠)
𝑞−1

S (𝑡

− 𝑠) 𝐹 (𝑠) 𝑑𝑠

−∫

𝑡


0

(𝑡

− 𝑠)
𝑞−1

S (𝑡

− 𝑠) 𝐹 (𝑠) 𝑑𝑠



+



𝑚

∑

𝑘=1

T (𝑡

− 𝑡
𝑘
) 𝐼
𝑘
(𝑥 (𝑡
−

𝑘
))

−

𝑚

∑

𝑘=1

T (𝑡

− 𝑡
𝑘
) 𝐼
𝑘
(𝑥 (𝑡
−

𝑘
))



;

(54)

after some elementary computation, we have

(𝑄𝑥) (𝑡


) − (𝑄𝑥) (𝑡


)


≤

T (𝑡

) −T (𝑡


)


𝑥0


+



∫

𝑡


𝑡


(𝑡

− 𝑠)
𝑞−1

S (𝑡

− 𝑠) 𝐹 (𝑠) 𝑑𝑠



+



∫

𝑡


0

[(𝑡

− 𝑠)
𝑞−1

− (𝑡

− 𝑠)
𝑞−1

]S (𝑡

− 𝑠) 𝐹 (𝑠) 𝑑𝑠



+



∫

𝑡


0

(𝑡

− 𝑠)
𝑞−1

[S (𝑡

− 𝑠) −S (𝑡


− 𝑠)] 𝐹 (𝑠) 𝑑𝑠



+ 𝑚

T (𝑡

− 𝑡

)


𝐼𝑘 (𝑥 (𝑡
−

𝑘
))
 .

(55)

Using the fact that T(𝑡) and S(𝑡) are uniformly continuous,
and the well-known inequality |𝑡𝜎 − 𝑡

𝜎
| ≤ (𝑡


− 𝑡

)
𝜎 for

𝜎 ∈ (0, 1] and 0 < 𝑡


≤ 𝑡
, we can conclude that

lim
𝑡

→𝑡
‖(𝑄𝑥)(𝑡


) − (𝑄𝑥)(𝑡


)‖ = 0. Thus 𝑄(𝐵

𝑟
) is equicon-

tinuous with 𝐵
𝑟
on (𝑡
𝑖
, 𝑡
𝑖+1
] (𝑖 = 0, 1, 2, . . . , 𝑚).

Step 4 (𝑄 maps 𝐵
𝑟
into a precompact set in X). We define

Π = 𝑄𝐵
𝑟
and Π(𝑡) = {(𝑄𝑥)(𝑡) : 𝑥 ∈ 𝐵

𝑟
} for 𝑡 ∈ 𝐼. Set

Π
ℎ,𝛿
(𝑡) = {(𝑄

ℎ,𝛿
𝑥) (𝑡) : 𝑥 ∈ 𝐵

𝑟
} , (56)

where

Π
ℎ,𝛿
(𝑡) = {T

𝛿
(𝑡) 𝑥
0
+ ∫

𝑡−ℎ

0

(𝑡 − 𝑠)
𝑞−1

S
𝛿
(𝑡 − 𝑠) 𝐹 (𝑠) 𝑑𝑠

+

𝑚

∑

𝑘=1

T
𝛿
(𝑡 − 𝑡
𝑘
) 𝐼
𝑘
(𝑥 (𝑡
−

𝑘
)) : 𝑥 ∈ 𝐵

𝑟
} .

(57)

From Lemma 12(ii)-(iii), (𝐻
8
), and the same method used in

Theorem 3.2 of [18], we can verify that the set Π(𝑡) can be
arbitrary approximated by the relatively compact set Π

ℎ,𝛿
(𝑡).

Thus, 𝑄(𝐵
𝑟
)(𝑡) is relatively compact inX.

Step 5 (the set 𝐸 = {𝑥 ∈ PC[𝐼,X] : 𝑥 = 𝜆𝑄𝑥 for some 0 < 𝜆 <

1} is bounded). Let 𝑥 ∈ 𝐸, and then

𝑥 (𝑡) =

{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{

{

𝜆T (𝑡) 𝑥
0
+ 𝜆∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

S (𝑡 − 𝑠)

× 𝑓 (𝑠, 𝑥 (𝑠) , (𝐻𝑥) (𝑠)) 𝑑𝑠, 𝑡 ∈ [0, 𝑡
1
] ,

𝜆T (𝑡) 𝑥
0
+ 𝜆T (𝑡 − 𝑡

1
) 𝐼
1
(𝑥 (𝑡
−

1
))

+ 𝜆∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

S (𝑡 − 𝑠)

× 𝑓 (𝑠, 𝑥 (𝑠) , (𝐻𝑥) (𝑠)) 𝑑𝑠, 𝑡 ∈ (𝑡
1
, 𝑡
2
] ,

...

𝜆T (𝑡) 𝑥
0
+ 𝜆

𝑚

∑

𝑘=1

T (𝑡 − 𝑡
𝑘
) 𝐼
𝑘
(𝑥 (𝑡
−

𝑘
))

+ 𝜆∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

S (𝑡 − 𝑠)

× 𝑓 (𝑠, 𝑥 (𝑠) , (𝐻𝑥) (𝑠)) 𝑑𝑠, 𝑡 ∈ (𝑡
𝑚
, 𝑏] .

(58)

Similar to the results of (53), we know that

‖𝑥 (𝑡)‖ ≤ 𝜆𝑀
1

𝑥0
 +

𝜆𝑞𝑏
𝑞
𝑀
1

Γ (1 + 𝑞)
∫

𝑏

0

𝜑
1
(𝑠) 𝑑𝑠

+ 𝜆(
𝑞𝑏
𝑞
𝑀
1

Γ (1 + 𝑞)
∫

𝑡

0

𝜑
2
(𝑠) 𝑑𝑠 + 𝑚𝑀

1
𝜓
0
) ‖𝑥 (𝑡)‖ .

(59)

Obviously there exists 𝜆 sufficiently small such that 𝜌 = 1 −

𝜆𝑚𝑀
1
𝜓
0
> 0, and then we get

‖𝑥 (𝑡)‖ ≤
𝜆𝑀
1

𝜌

𝑥0
 +

𝜆𝑞𝑏
𝑞
𝑀
1

𝜌Γ (1 + 𝑞)
∫

𝑏

0

𝜑
1 (𝑠) 𝑑𝑠

+
𝜆𝑞𝑏
𝑞
𝑀
1

𝜌Γ (1 + 𝑞)
∫

𝑡

0

𝜑
2
(𝑠) ‖𝑥 (𝑠)‖ 𝑑𝑠.

(60)

Let

𝑁
3
=
𝜆𝑀
1

𝜌

𝑥0
 +

𝜆𝑞𝑏
𝑞
𝑀
1

𝜌Γ (1 + 𝑞)
∫

𝑏

0

𝜑
1 (𝑠) 𝑑𝑠,

𝑓 (𝑡) =
𝜆𝑞𝑏
𝑞
𝑀
1

𝜌Γ (1 + 𝑞)
∫

𝑡

0

𝜑
2
(𝑠) 𝑑𝑠.

(61)

It is clear that 𝑓(𝑡) is nonnegative continuous function on
[0, +∞), and generalized Bellman inequality implies that

‖𝑥 (𝑡)‖ ≤ 𝑁
3
𝑒
∫
𝑡

0
𝑓(𝑠)𝑑𝑠

≤ 𝑁
3
𝑒
∫
𝑏

0
𝑓(𝑠)𝑑𝑠

= 𝐶
0
, (62)

where 𝐶
0
is a constant. Obviously, the set 𝐸 is bounded

on (𝑡
𝑖
, 𝑡
𝑖+1
] (𝑖 = 0, 1, 2, . . . , 𝑚). Since 𝑄 is continuous and

compact, thanks to Schaefer’s fixed point Theorem, 𝑄 has a
fixed point (36) which is a PC-mild solution of (4).

4. Controllability Results

By introducing a class of controls, we present the controllabil-
ity results for fractional impulsive integrodifferential systems
(6).
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(𝐻
9
) The linear operator 𝑊

𝑖
from 𝐿

2
[(𝑡
𝑖−1
, 𝑡
𝑖
], 𝑈] into X

defined by

𝑊
𝑖
𝑢 = ∫

𝑡𝑖

0

(𝑡
𝑖
− 𝑠)
𝑞−1

S (𝑡
𝑖
− 𝑠) 𝐵𝑢 (𝑠) 𝑑𝑠,

𝑖 = 1, 2, . . . , 𝑚,𝑚 + 1,

(63)

induces an invertible operator �̃�
−

𝑖
defined on

𝐿
2
[(𝑡
𝑖−1
, 𝑡
𝑖
], 𝑈]/Ker𝑊

𝑖
, and there exists a positive

constant𝐾 > 0 such that ‖𝐵�̃�−
𝑖
‖ ≤ 𝐾.

Theorem 15. If the hypotheses (𝐻
1
)–(𝐻
3
), (𝐻
4
), and (𝐻

9
)

are satisfied, then the fractional impulsive integrodifferential
system (6) is controllable on 𝐼.

Proof. Using the condition (𝐻
9
), for an arbitrary function

𝑥(⋅), define the control

𝑢 (𝑡) =

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{

�̃�
−

1
[𝑥
0
+
𝑥
1
− 𝑥
0

𝑚 + 1
−T (𝑡

1
) 𝑥
0

−∫

𝑡1

0

(𝑡
1
− 𝑠)
𝑞−1

S (𝑡
1
− 𝑠)

× 𝑓 (𝑠, 𝑥 (𝑠) , (𝐻𝑥) (𝑠)) 𝑑𝑠] (𝑡) , 𝑡 ∈ [0, 𝑡
1
] ,

�̃�
−

2
[𝑥
0
+
2 (𝑥
1
− 𝑥
0
)

𝑚 + 1
−T (𝑡

2
) 𝑥
0

−∫

𝑡2

0

(𝑡
2
− 𝑠)
𝑞−1

S (𝑡
2
− 𝑠)

×𝑓 (𝑠, 𝑥 (𝑠) , (𝐻𝑥) (𝑠)) 𝑑𝑠

−T (𝑡
2
− 𝑡
1
) 𝐼
1
(𝑥 (𝑡
−

1
)) ] (𝑡) , 𝑡 ∈ (𝑡

1
, 𝑡
2
] ,

...

�̃�
−

𝑚+1
[𝑥
1
−T (𝑏) 𝑥

0

−∫

𝑏

0

(𝑏 − 𝑠)
𝑞−1

S (𝑏 − 𝑠)

×𝑓 (𝑠, 𝑥 (𝑠) , (𝐻𝑥) (𝑠)) 𝑑𝑠

−

𝑚

∑

𝑘=1

T (𝑏 − 𝑡
𝑘
) 𝐼
𝑘
(𝑥 (𝑡
−

𝑘
))] (𝑡) , 𝑡 ∈ (𝑡

𝑚
, 𝑏] .

(64)

Define the operator 𝑄 : PC[𝐼,X] → PC[𝐼,X], where

(𝑄𝑥) (𝑡) =

{{{{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{{{{

{

T (𝑡) 𝑥
0
+ ∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

S (𝑡 − 𝑠)

× [𝑓 (𝑠, 𝑥 (𝑠) , (𝐻𝑥) (𝑠))

+𝐵𝑢 (𝑠) ] 𝑑𝑠, 𝑡 ∈ [0, 𝑡
1
]

T (𝑡) 𝑥
0
+T (𝑡 − 𝑡

1
) 𝐼
1
(𝑥 (𝑡
−

1
))

+ ∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

S (𝑡 − 𝑠)

× [𝑓 (𝑠, 𝑥 (𝑠) , (𝐻𝑥) (𝑠))

+𝐵𝑢 (𝑠) ] 𝑑𝑠, 𝑡 ∈ ( 𝑡
1
, 𝑡
2
] ,

...

T (𝑡) 𝑥
0
+

𝑚

∑

𝑘=1

T (𝑡 − 𝑡
𝑘
) 𝐼
𝑘
(𝑥 (𝑡
−

𝑘
))

+ ∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

S (𝑡 − 𝑠)

× [𝑓 (𝑠, 𝑥 (𝑠) , (𝐻𝑥) (𝑠))

+𝐵𝑢 (𝑠) ] 𝑑𝑠, 𝑡 ∈ ( 𝑡
𝑚
, 𝑏] .

(65)

By Theorem 13, we know that 𝑄 is well defined, and we will
prove that when using the previous control, operator 𝑄 has a
fixed point. Clearly, this fixed point is a PC-mild solution of
the control problem (6) and 𝑥(𝑏) = 𝑥

1
; that is, the control we

defined steers the system (6) from initial 𝑥
0
to 𝑥
1
in the time

𝑏.
For any 𝑥

1
, 𝑥
2
∈ 𝐶[(𝑡

𝑖
, 𝑡
𝑖+1
],X] (𝑖 = 0, 1, 2, . . . , 𝑚), by

conditions (𝐻
1
)–(𝐻
3
), (𝐻
4
), and (𝐻

9
), we get

𝐵𝑢1 (𝑡) − 𝐵𝑢2 (𝑡)


≤ (
𝑞𝑀
1
𝐾

Γ (1 + 𝑞)
∫

𝑏

0

(𝑏 − 𝑠)
𝑞−1

× (𝜇
1
(𝑠) + ]0

1
𝑏𝜇
2
(𝑠)) 𝑑𝑠

+𝜔
0
𝑚𝑀
1
)

×
𝑥1(𝑠) − 𝑥2(𝑠)

PC

≤ Ω
𝑢

𝑥1 (𝑠) − 𝑥2 (𝑠)
PC,

(66)

(𝑄𝑥1) (𝑡)−(𝑄𝑥2) (𝑡)


≤∫

𝑡

0

(𝑡−𝑠)
𝑞−1 S (𝑡−𝑠)

× [𝑓 (𝑠, 𝑥
1
(𝑠) , (𝐻𝑥

1
) (𝑠))

−𝑓 (𝑠, 𝑥
2 (𝑠) , (𝐻𝑥2) (𝑠))]

 𝑑𝑠

+∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

×
S (𝑡−𝑠) [𝐵𝑢

1
(𝑠)−𝐵𝑢

2
(𝑠)]

 𝑑𝑠

+

𝑚

∑

𝑘=1

T (𝑡−𝑡
𝑘
) (𝐼
𝑘
(𝑥
1
(𝑡
−

𝑘
))

−𝐼
𝑘
(𝑥
2
(𝑡
−

𝑘
)))

 .

(67)

Therefore,
(𝑄𝑥1) (𝑡) − (𝑄𝑥2) (𝑡)



≤ (
𝑞𝑀
1

Γ (1 + 𝑞)
∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

(𝜇
1
(𝑠) + ]0

1
𝑏𝜇
2
(𝑠)) 𝑑𝑠

+
𝑞𝑀
1
Ω
𝑢

Γ (1 + 𝑞)
∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

𝑑𝑠 + 𝜔
0
𝑚𝑀
1
)

×
𝑥1(𝑠) − 𝑥2(𝑠)

PC

≤ Ω


𝑚
(𝑡)

𝑥1(𝑠) − 𝑥2(𝑠)
PC.

(68)

Since 0 < Ω


𝑚
(𝑡) < 1, then 𝑄 is contraction mapping. Any

fixed point of 𝑄 is a PC-mild solution of (6) which satisfies
𝑥(𝑏) = 𝑥

1
. Thus, the system (6) is controllable on 𝐼.

Theorem 16. If the hypotheses (𝐻
5
)–(𝐻
7
), (𝐻
8
), and (𝐻

9
) are

satisfied, the fractional impulsive integrodifferential system (6)
is controllable on 𝐼.
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Proof. Using the condition (𝐻
9
), for an arbitrary function

𝑥(⋅), define the control

𝑢 (𝑡) =

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{

�̃�
−

1
[𝑥
0
+
𝑥
1
− 𝑥
0

𝑚 + 1
−T (𝑡

1
) 𝑥
0

−∫

𝑡1

0

(𝑡
1
− 𝑠)
𝑞−1

S (𝑡
1
− 𝑠)

× 𝑓 (𝑠, 𝑥 (𝑠) , (𝐻𝑥) (𝑠)) 𝑑𝑠] (𝑡) , 𝑡∈[0, 𝑡
1
] ,

�̃�
−

2
[𝑥
0
+
2 (𝑥
1
−𝑥
0
)

𝑚 + 1
−T (𝑡

2
) 𝑥
0

−∫

𝑡2

0

(𝑡
2
−𝑠)
𝑞−1

S (𝑡
2
−𝑠)

× 𝑓 (𝑠, 𝑥 (𝑠) , (𝐻𝑥) (𝑠)) 𝑑𝑠

−T (𝑡
2
−𝑡
1
) 𝐼
1
(𝑥 (𝑡
−

1
)) ] (𝑡) , 𝑡∈( 𝑡

1
, 𝑡
2
] ,

...

�̃�
−

𝑚+1
[𝑥
1
−T (𝑏) 𝑥

0

−∫

𝑏

0

(𝑏−𝑠)
𝑞−1

S (𝑏−𝑠)

× 𝑓 (𝑠, 𝑥 (𝑠) , (𝐻𝑥) (𝑠)) 𝑑𝑠

−

𝑚

∑

𝑘=1

T (𝑏−𝑡
𝑘
) 𝐼
𝑘
(𝑥 (𝑡
−

𝑘
))] (𝑡) , 𝑡∈( 𝑡

𝑚
, 𝑏] .

(69)

We will prove that when using the previous control, operator
𝑄 defined in (65) has a fixed point.

We discuss that in five steps.

Step 1 (continuity of 𝑄 on (𝑡
𝑖
, 𝑡
𝑖+1
] (𝑖 = 0, 1, 2, . . . , 𝑚)). Let

𝑥
𝑛
, 𝑥 ∈ PC[𝐼,X] such that ‖𝑥

𝑛
− 𝑥
∗
‖PC → 0 (𝑛 → +∞),

and then 𝑟 = sup
𝑛
‖𝑥
𝑛
‖PC < ∞ and ‖𝑥∗‖PC < 𝑟. For every

𝑡 ∈ (𝑡
𝑖
, 𝑡
𝑖+1
] (𝑖 = 0, 1, 2, . . . , 𝑚), we have

𝑄𝑥𝑛 (𝑡) − 𝑄𝑥 (𝑡)


≤
𝑞𝑀
1

Γ (1 + 𝑞)
∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

×
𝑓 (𝑠, 𝑥𝑛 (𝑠) , (𝐻𝑥𝑛) (𝑠))

−𝑓 (𝑠, 𝑥 (𝑠) , (𝐻𝑥) (𝑠))
 𝑑𝑠

+
𝑞𝑀
1

Γ (1 + 𝑞)
∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1 𝐵𝑥𝑛 (𝑠) − 𝐵𝑥 (𝑠)

 𝑑𝑠

+ 𝜓
0
𝑀
1

𝑚

∑

𝑘=1

𝐼𝑘 (𝑥𝑛 (𝑡
−

𝑘
)) − 𝐼
𝑘
(𝑥 (𝑡
−

𝑘
))
 .

(70)

Since
𝐵𝑥𝑛 (𝑠) − 𝐵𝑥 (𝑠)



≤ (
𝑞𝑀
1
𝐾

Γ (1 + 𝑞)
∫

𝑏

0

(𝑏 − 𝑠)
𝑞−1

×
𝑓 (𝑠, 𝑥𝑛 (𝑠) , (𝐻𝑥𝑛) (𝑠))

−𝑓 (𝑠, 𝑥 (𝑠) , (𝐻𝑥) (𝑠))
 𝑑𝑠)

+ 𝜓
0
𝑀

𝑚

∑

𝑘=1

𝑥𝑛 (𝑡
−

𝑘
) − 𝑥 (𝑡

−

𝑘
)
 ,

(71)

by (47), (71), and the Lebesgue dominated convergence
theorem, it is easy to know that

lim
𝑛→∞

(𝑄𝑥𝑛) (𝑡) − (𝑄𝑥) (𝑡)
PC = 0. (72)

Consequently,𝑄 is continuous on (𝑡
𝑖
, 𝑡
𝑖+1
] (𝑖 = 0, 1, 2, . . . , 𝑚).

Step 2. (𝑄maps bounded sets into bounded sets in PC[𝐼,X]).
Since

‖𝐵𝑢 (𝑠)‖ ≤

𝐵�̃�
−

𝑖



× (
𝑥0

 + 2
𝑥1

 +𝑀1
𝑥0

 +
𝑞𝑀
1

Γ (1 + 𝑞)

× ∫

𝑏

0

(𝑏 − 𝑠)
𝑞−1 𝑓 (𝑠, 𝑥 (𝑠) , (𝐻𝑥) (𝑠))

 𝑑𝑠

+ 𝜓
0
𝑀

𝑚

∑

𝑘=1

𝑥 (𝑡
−

𝑘
)
)

≤

𝐵�̃�
−

𝑖


× (

𝑞𝑀
1

Γ (1 + 𝑞)
∫

𝑏

0

(𝑏 − 𝑠)
𝑞−1

𝜑
1
(𝑠) 𝑑𝑠

𝑥0


+ 2
𝑥1

 +𝑀1
𝑥0

 +
𝑞𝑀
1 ‖𝑥‖

Γ (1 + 𝑞)

× ∫

𝑏

0

(𝑏 − 𝑠)
𝑞−1

𝜑
2
(𝑠) 𝑑𝑠

+𝜓
0
𝑀

𝑚

∑

𝑘=1

𝑥 (𝑡
−

𝑘
)
)

≤ 𝑁
1
+ 𝑁
2 ‖𝑥‖ ,

(73)

thus, from (65), we get, for any 𝑥 ∈ 𝐵
𝑟
= {𝑥 ∈ PC[𝐼,X] :

‖𝑥‖PC ≤ 𝑟},

‖(𝑄𝑥) (𝑡)‖

≤ 𝑀
1

𝑥0
 +

𝑞𝑏
𝑞
𝑀
1

Γ (1 + 𝑞)
∫

𝑏

0

(𝜑
1
(𝑠) + 𝑁

1
) 𝑑𝑠

+ (
𝑞𝑏
𝑞
𝑀
1

Γ (1 + 𝑞)
∫

𝑏

0

(𝜑
2 (𝑠) + 𝑁2) 𝑑𝑠 + 𝑚𝑀𝜓

0
) 𝑟 = 𝛾

2
.

(74)

Hence, we deduce that ‖(𝑄𝑥)(𝑡)‖ ≤ 𝛾
2
; that is, 𝑄 maps

bounded sets to bounded sets in PC[𝐼,X]. Using the same
method used in Theorem 14, we can verify that 𝑄(𝐵

𝑟
) is

equicontinuous with 𝐵
𝑟
on (𝑡
𝑖
, 𝑡
𝑖+1
] (𝑖 = 0, 1, 2, . . . , 𝑚), 𝑄

maps 𝐵
𝑟
into a precompact set inX, and𝑄(𝐵

𝑟
)(𝑡) is relatively

compact inX. Steps 3 and 4 are omitted.

Step 5 (the set 𝐸 = {𝑥 ∈ PC[𝐼,X] : 𝑥 = 𝜆𝑄𝑥 for some 0 <

𝜆 < 1} is bounded). Let 𝑥 ∈ 𝐸, and similar to the results (74)
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we know that
‖𝑥 (𝑡)‖ ≤ 𝜆𝑀

1

𝑥0


+
𝜆𝑞𝑏
𝑞
𝑀
1

Γ (1 + 𝑞)
∫

𝑡

0

(𝜑
1
(𝑠) + 𝑁

1
) 𝑑𝑠

+ (
𝜆𝑞𝑏
𝑞
𝑀
1

Γ (1 + 𝑞)
∫

𝑡

0

(𝜑
2 (𝑠) + 𝑁2) 𝑑𝑠 + 𝜆𝑚𝑀𝜓

0
)

× ‖𝑥 (𝑡)‖ .

(75)

There exists a 𝜆 sufficiently small such that 𝜌
2
= 1−𝜆𝑚𝑀𝜓

0
>

0, and then

‖𝑥 (𝑡)‖ ≤
𝜆𝑀
1

𝜌
2

𝑥0
 +

𝜆𝑞𝑏
𝑞
𝑀
1

𝜌
2
Γ (1 + 𝑞)

∫

𝑏

0

(𝜑
1
(𝑠) + 𝑁

1
) 𝑑𝑠

+
𝜆𝑞𝑏
𝑞
𝑀
1

𝜌
2
Γ (1 + 𝑞)

∫

𝑡

0

(𝜑
1 (𝑠) + 𝑁1) ‖𝑥 (𝑠)‖ 𝑑𝑠.

(76)

Let

𝑁
4
=
𝜆𝑀
1

𝜌
2

𝑥0
 +

𝜆𝑞𝑏
𝑞
𝑀
1

𝜌
2
Γ (1 + 𝑞)

∫

𝑏

0

(𝜑
1
(𝑠) + 𝑁

1
) 𝑑𝑠,

𝑓 (𝑠) =
𝜆𝑞𝑏
𝑞
𝑀
1

𝜌
2
Γ (1 + 𝑞)

∫

𝑡

0

(𝜑
2 (𝑠) + 𝑁2) 𝑑𝑠.

(77)

It is clear that 𝑓(𝑠) is nonnegative continuous function on
[0, +∞), and generalized Bellman inequality implies that

‖𝑥 (𝑡)‖ ≤ 𝑁
4
𝑒
∫
𝑡

0
𝑓(𝑠)𝑑𝑠

≤ 𝑁
4
𝑒
∫
𝑏

0
𝑓(𝑠)𝑑𝑠

= 𝐶
1
, (78)

where 𝐶
1
is a constant. Thus the set 𝐸 is bounded. Since 𝑄

is continuous and compact, thanks to Schaefer’s fixed point
Theorem, 𝑄 has a fixed point (36), and this fixed point is a
PC-mild solution of (6) which satisfies 𝑥(𝑏) = 𝑥

1
. Hence, the

system (6) is controllable on 𝐼.

5. An Example

Consider the following nonlinear partial integrodifferential
equation of the form

𝜕
2/3

𝜕𝑡2/3
𝑧 (𝑡, 𝑦) = ∫

1

0

(𝑦 − 𝑠) 𝑧 (𝑠, 𝑦) 𝑑𝑠

+ 𝑓 (𝑡, 𝑧 (𝑡, 𝑦) ,𝐻𝑧 (𝑡, 𝑦))

+ 𝜇 (𝑡, 𝑦) , 𝑡 ∈ 𝐽 = [0, 1] ,

𝑧 (𝑡, 0) = 𝑧 (𝑡, 1) = 0,

𝑧 (0, 𝑦) = 0, 0 < 𝑦 < 1,

Δ𝑧|𝑡=1/2 = 𝐼
1
(𝑧(

1

2

−

, 𝑦)) ,

(79)

where 0 < 𝑞 < 1, 𝜇 : 𝐽 × (0, 1) → (0, 1) is continuous. Let us
take X = 𝐶([0, 1]). Consider the operator 𝐴 : 𝐷(𝐴) ⊂ X →

X defined by

(𝐴𝑤) (𝑡) = ∫

1

0

(𝑦 − 𝑠)𝑤 (𝑠) 𝑑𝑠. (80)

It is easy to get

‖𝐴𝑤‖ = ‖𝑤‖∫

1

0

𝑦 − 𝑠
 𝑑𝑠 = (

1

2
− 𝑦 (1 − 𝑦)) ‖𝑤‖ ≤

1

2
‖𝑤‖ ;

(81)

clearly 𝐴 is the infinitesimal generator of a uniformly con-
tinuous semigroup (𝑇(𝑡))

𝑡≥0
on X. Put 𝑥(𝑡) = 𝑧(𝑡, ⋅) and

𝑢(𝑡) = 𝜇(𝑡, ⋅), and take

𝑓 (𝑡, 𝑥,𝐻𝑥) = 𝑒
𝑡
+ 𝑎 (𝑡) (

‖𝑥‖

1 + ‖𝑥‖
)

+ ∫

𝑡

0

𝑘 (𝑡, 𝑠) (
‖𝑥‖

1 + ‖𝑥‖
) 𝑑𝑠,

𝐼
1
(𝑥) = ‖𝑥‖ ,

(82)

where 𝑎(𝑡) ∈ 𝐶[0, 1], 𝑘(𝑡, 𝑠) ∈ 𝐶([0, 1] × [0, 1]). Then
clearly, 𝑓 : [0, 1] × R × R → R and 𝐼

1
: R → R

are continuous functions. 𝑓, 𝐼
1
, and ℎ satisfy (𝐻

5
)–(𝐻
8
),

respectively. Equations (79) are an abstract formulation of
(6). For 𝑦 ∈ (0, 1), we define

𝑊
1
𝑢 = ∫

1/2

0

(
1

2
− 𝑠)

−1/3

S(
1

2
− 𝑠)𝐵𝑢 (𝑠) 𝑑𝑠,

𝑊
2
𝑢 = ∫

1

0

(1 − 𝑠)
−1/3

S (1 − 𝑠) 𝐵𝑢 (𝑠) 𝑑𝑠,

(83)

where

T (𝑡) 𝑤 (𝑠) = ∫

∞

0

𝜉
2/3

(𝜃) 𝑤 (𝑡
2/3
𝜃 + 𝑠) 𝑑𝜃,

S (𝑡) 𝑤 (𝑠) =
2

3
∫

∞

0

𝜃𝜉
2/3

(𝜃) 𝑤 (𝑡
2/3
𝜃 + 𝑠) 𝑑𝜃,

(84)

and for 𝜃 ∈ (0,∞),

𝜉
2/3

(𝜃) =
3

2
𝜃
−5/2

𝜛
2/3

(𝜃
−3/2

) ,

𝜛
2/3

(𝜃) =
1

𝜋

∞

∑

𝑛=1

(−1)
𝑛−1

𝜃
−((2𝑛+3)/3) Γ ((2𝑛 + 3) /3)

𝑛!
sin(2𝑛𝜋

3
) .

(85)

Assume that the linear operator𝑊
𝑖
from 𝐿

2
[(𝑡
𝑖−1
, 𝑡
𝑖
], 𝑈] (𝑖 =

1, 2) into X induces an invertible operator �̃�−
𝑖
defined on

𝐿
2
[(𝑡
𝑖−1
, 𝑡
𝑖
], 𝑈]/Ker𝑊

𝑖
and there exists a positive constant

𝐾 > 0 such that ‖𝐵�̃�−
𝑖
‖ ≤ 𝐾. Moreover, (𝐻

9
) is satisfied.

All conditions of Theorem 16 are now fulfilled, so we deduce
that (79) is controllable on 𝐼. On the other hand, we have

𝑓 (𝑡, 𝑥,𝐻𝑥) − 𝑓 (𝑡, 𝑦,𝐻𝑦)


≤ 𝑎 (𝑡)
𝑥 − 𝑦

 + ∫

𝑡

0

𝑘 (𝑡, 𝑠)
𝑥 − 𝑦

 𝑑𝑠,

𝑘 (𝑡, 𝑠) ‖𝑥‖ − 𝑘 (𝑡, 𝑠)
𝑦
 ≤ 𝑘
0
(‖𝑥‖ −

𝑦
) ,

𝑘
0
= max {𝑘 (𝑡, 𝑠) | (𝑡, 𝑠) ∈ 𝐼 × 𝐼} ,
𝐼1 (𝑥) − 𝐼1 (𝑦)

 ≤
𝑥 − 𝑦

 .

(86)
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Further, other conditions (𝐻
1
)–(𝐻
3
) are satisfied and it is

possible to choose 𝑎(𝑡), 𝑘(𝑡, 𝑠) in such a way that condition
(𝐻


4
) is satisfied. Hence, by Theorem 15, the system (79) is

controllable on 𝐼.
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We give some sufficient conditions forΨ-uniform stability of the trivial solutions of a nonlinear differential system and of nonlinear
Volterra integro-differential systems with time delay.

1. Introduction

Akinyele [1] introduced the notion ofΨ-stability of the degree
𝑘 with respect to a function Ψ ∈ 𝐶(𝑅

+
-𝑅
+
), increasing and

differentiable on 𝑅 and such that Ψ(𝑡) ≥ 1 for 𝑡 ≥ 0 and
lim
𝑡→∞
Ψ(𝑡) = 𝑏, 𝑏 ∈ [1,∞). Constantin [2] introduced the

notions of degree of stability and degree of boundedness of
solutions of an ordinary differential equation, with respect to
a continuous positive and nondecreasing functionΨ : 𝑅

+
→

𝑅
+
; some criteria for these notions are proved there too.
Morchało [3] introduced the notions of Ψ-stability, Ψ-

uniform stability, and Ψ-asymptotic stability of trivial solu-
tion of the nonlinear system 𝑥 = 𝑓(𝑡, 𝑥). Several new and
sufficient conditions for the mentioned types of stability are
proved for the linear system 𝑥 = 𝐴(𝑡)𝑥; in this paper
Ψ is a scalar continuous function. In [4, 5], Diamandescu
gives some sufficient conditions for Ψ-asymptotic stability
and Ψ-(uniform) stability of the nonlinear Volterra integro-
differential system 𝑥 = 𝐴(𝑡)𝑥 + ∫𝑡

0
𝐹(𝑡, 𝑠, 𝑥(𝑠))𝑑𝑠; in these

papers Ψ is a matrix function. Furthermore, in [6], sufficient
conditions are given for the uniform Lipschitz stability of the
system 𝑥 = 𝑓(𝑡, 𝑥) + 𝑔(𝑡, 𝑥).

In paper [7], for the nonlinear system

𝑦

= 𝑓 (𝑡, 𝑦) + 𝑔 (𝑡, 𝑦) (1)

and the nonlinear Volterra integro-differential system

𝑧

= 𝑓 (𝑡, 𝑧) + ∫

𝑡

0

𝐹 (𝑡, 𝑠, 𝑧 (𝑠)) 𝑑𝑠, (2)

by using the knowledge of fundamental matrix and nonlinear
variation of constants, we give some sufficient conditions for
Ψ-(uniform) stability of trivial solution for the system. The
purpose of this paper is to provide sufficient conditions forΨ-
uniform stability of trivial solutions for the nonlinear delayed
system

𝑥

(𝑡) = 𝑓 (𝑡, 𝑥 (𝑡)) + 𝑔 (𝑡, 𝑥 (𝑡 − 𝜏 (𝑡))) (3)

and the nonlinear delayed Volterra integro-differential sys-
tems

𝑥

(𝑡) = 𝑓 (𝑡, 𝑥 (𝑡)) + 𝑔 (𝑡, 𝑥 (𝑡 − 𝜏 (𝑡)))

+ 𝑝 (𝑡, 𝑥 (𝑡)) ∫

𝑡

0

𝑞 (𝑠, 𝑥 (𝑠 − 𝜏 (𝑠))) 𝑑𝑠,

(4)

𝑥

(𝑡) = 𝑓 (𝑡, 𝑥 (𝑡)) + 𝑔 (𝑡, 𝑥 (𝑡 − 𝜏 (𝑡)))

+ 𝑝 (𝑡, 𝑥 (𝑡 − 𝜏 (𝑡))) ∫

𝑡

0

𝑞 (𝑠, 𝑥 (𝑠)) 𝑑𝑠,

(5)

where 𝑓, 𝑔, 𝑝, 𝑞 ∈ 𝐶(R
+
× R𝑛,R𝑛), 𝑓(𝑡, 0) = 𝑔(𝑡, 0) =

𝑝(𝑡, 0) = 𝑞(𝑡, 0) = 0 for 𝑡 ∈ R
+
, and 𝜏 ∈ 𝐶1(R

+
,R
+
) with
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𝜏(𝑡) ≤ 𝑡 on R
+
. The systems studied in [7] do not include

time delay, whereas all the systems studied in this paper have
time delay.

In this paper, we investigate conditions on the functions
𝑓, 𝑔, 𝑝, 𝑞 under which the trivial solutions of systems (3),
(4), and (5) are Ψ-stability on R

+
; the main tool used is the

integral inequalities and the integral technique. Here Ψ is
a matrix function whose introduction allows us to obtain
a mixed behavior for the components of solutions.

Let R𝑛 denote the Euclidean 𝑛-space. For 𝑥 = (𝑥
1
, 𝑥
2
,

𝑥
3
, . . . , 𝑥

𝑛
)
𝑇
∈ R𝑛, let ‖𝑥‖ = max{|𝑥

1
|, |𝑥
2
|, . . . , |𝑥

𝑛
|} be the

norm of 𝑥. For an 𝑛 × 𝑛matrix 𝐴 = (𝑎
𝑖𝑗
), we define the norm

|𝐴| = sup
‖𝑥‖≤1
‖𝐴𝑥‖. It is well known that

|𝐴| = max
1≤𝑖≤𝑛

𝑛

∑

𝑗=1


𝑎
𝑖𝑗


. (6)

Let Ψ
𝑖
: R
+
→ (0,∞), 𝑖 = 1, 2, . . . , 𝑛, be continuous

functions and Ψ = diag[Ψ
1
, Ψ
2
, . . . , Ψ

𝑛
].

Now we give the definitions of Ψ-(uniform) stability that
we will need in the sequel.

Definition 1 (see [4, 8]). The trivial solution of (3) ((4) or (5))
is said to beΨ-stable onR

+
if for every 𝜀 > 0 and any 𝑡

0
∈ R
+
,

there exists 𝛿 = 𝛿(𝜀, 𝑡
0
) > 0 such that any solution 𝑥(𝑡) of (3)

((4) or (5)), which satisfies the inequality ‖Ψ(𝑡
0
)𝑥(𝑡
0
)‖ < 𝛿,

exists and satisfies the inequality ‖Ψ(𝑡)𝑥(𝑡)‖ < 𝜀 for all 𝑡 ≥ 𝑡
0
.

Definition 2 (see [4, 8]). The trivial solution of (3) ((4) or (5))
is said to be Ψ-uniformly stable on R

+
if it is Ψ-stable on R

+

and the previous 𝛿 is independent of 𝑡
0
.

2. Ψ-Stability of the Systems

To prove our theorems, we need the following lemmas.

Lemma 3. Let ℎ, 𝑘, 𝑝, 𝑞 ∈ 𝐶(R
+
× R
+
,R
+
) with (𝑡, 𝑠) →

𝜕
𝑡
ℎ(𝑡, 𝑠), 𝜕

𝑡
𝑘(𝑡, 𝑠), 𝜕

𝑡
𝑝(𝑡, 𝑠), 𝜕

𝑡
𝑞(𝑡, 𝑠) ∈ 𝐶(R

+
× R
+
,R
+
).

Assume, in addition, that 𝑏 ∈ 𝐶(R
+
,R
+
) and 𝛼 ∈ 𝐶1(R

+
,R
+
)

are nondecreasing functions and 𝛼(𝑡) ≤ 𝑡 for 𝑡 ≥ 0. If 𝑢 ∈
𝐶(R
+
,R
+
) satisfies

𝑢 (𝑡) ≤ 𝑏 (𝑡) + ∫

𝑡

0

ℎ (𝑡, 𝑠) 𝑢 (𝑠) 𝑑𝑠 + ∫

𝛼(𝑡)

0

𝑘 (𝑡, 𝑠) 𝑢 (𝑠) 𝑑𝑠

+ ∫

𝑡

0

𝑝 (𝑡, 𝑠) 𝑢 (𝑠) (∫

𝛼(𝑠)

0

𝑞 (𝑠, V) 𝑢 (V) 𝑑V)𝑑𝑠,

(7)

for 𝑡 ≥ 0, and 𝑏(𝑡) ∫𝑡
0
𝑅(𝑠)𝑄(𝑠)𝑑𝑠 < 1, then

𝑢 (𝑡) ≤
𝑏 (𝑡) 𝑄 (𝑡)

1 − 𝑏 (𝑡) ∫
𝑡

0
𝑅 (𝑠) 𝑄 (𝑠) 𝑑𝑠

, 𝑡 ≥ 0, (8)

where 𝑄(𝑡) = exp(∫𝑡
0
ℎ(𝑡, 𝑠)𝑑𝑠 + ∫

𝛼(𝑡)

0
𝑘(𝑡, 𝑠)𝑑𝑠), 𝑅(𝑡) = (𝑑/𝑑𝑡)

∫
𝑡

0
𝑝(𝑡, 𝑠)(∫

𝛼(𝑠)

0
𝑞(𝑠, V)𝑑V)𝑑𝑠.

Proof. Let 𝑇 ≥ 0 be fixed and denote

𝑥 (𝑡) =∫

𝑡

0

ℎ (𝑡, 𝑠) 𝑢 (𝑠) 𝑑𝑠 + ∫

𝛼(𝑡)

0

𝑘 (𝑡, 𝑠) 𝑢 (𝑠) 𝑑𝑠

+∫

𝑡

0

𝑝 (𝑡, 𝑠) 𝑢 (𝑠)(∫

𝛼(𝑠)

0

𝑞 (𝑠, V) 𝑢 (V) 𝑑V)𝑑𝑠, 𝑡 ≥ 0,

(9)

then 𝑢(𝑡) ≤ 𝑏(𝑡) + 𝑥(𝑡), and 𝑥 is nondecreasing on R
+
. For

𝑡 ∈ [0, 𝑇], by calculations we get the following:

𝑥

(𝑡) = [ℎ (𝑡, 𝑡) 𝑢 (𝑡) + ∫

𝑡

0

𝜕
𝑡
ℎ (𝑡, 𝑠) 𝑢 (𝑠) 𝑑𝑠]

+ [𝑘 (𝑡, 𝛼 (𝑡)) 𝑢 (𝛼 (𝑡)) 𝛼

(𝑡)+∫

𝛼(𝑡)

0

𝜕
𝑡
𝑘 (𝑡, 𝑠) 𝑢 (𝑠) 𝑑𝑠]

+ [𝑝 (𝑡, 𝑡) 𝑢 (𝑡) ∫

𝛼(𝑡)

0

𝑞 (𝑡, V) 𝑢 (V) 𝑑V

+∫

𝑡

0

𝜕
𝑡
𝑝 (𝑡, 𝑠) 𝑢 (𝑠) (∫

𝛼(𝑠)

0

𝑞 (𝑠, V) 𝑢 (V) 𝑑V)𝑑𝑠]

≤[𝑏 (𝑇)+𝑥 (𝑡)][
𝑑

𝑑𝑡
(∫

𝑡

0

ℎ (𝑡, 𝑠) 𝑑𝑠+∫

𝛼(𝑡)

0

𝑘 (𝑡, 𝑠) 𝑑𝑠)]

+ [𝑏 (𝑇) + 𝑥 (𝑡)]
2 𝑑

𝑑𝑡
∫

𝑡

0

𝑝 (𝑡, 𝑠) (∫

𝛼(𝑠)

0

𝑞 (𝑠, V) 𝑑V)𝑑𝑠.

(10)

Suppose that 𝑏(0) > 0 (if 𝑏(0) = 0, carry out the following
arguments with 𝑏(𝑡) + 𝜀 instead of 𝑏(𝑡), where 𝜀 > 0 is an
arbitrary small constant, and subsequently pass to the limit
as 𝜀 → 0 to complete the proof), then we get

𝑥

(𝑡)

[𝑏 (𝑇) + 𝑥 (𝑡)]
2

−
1

𝑏 (𝑇) + 𝑥 (𝑡)

𝑑

𝑑𝑡
(∫

𝑡

0

ℎ (𝑡, 𝑠) 𝑑𝑠 + ∫

𝛼(𝑡)

0

𝑘 (𝑡, 𝑠) 𝑑𝑠)

≤
𝑑

𝑑𝑡
∫

𝑡

0

𝑝 (𝑡, 𝑠) (∫

𝛼(𝑠)

0

𝑞 (𝑠, V) 𝑑V)𝑑𝑠.

(11)

Let

𝑧 (𝑡) =
1

𝑏 (𝑇) + 𝑥 (𝑡)
,

𝑞 (𝑡) = ∫

𝑡

0

ℎ (𝑡, 𝑠) 𝑑𝑠 + ∫

𝛼(𝑡)

0

𝑘 (𝑡, 𝑠) 𝑑𝑠,

𝑄 (𝑡) = exp (𝑞 (𝑡))

= exp(∫
𝑡

0

ℎ (𝑡, 𝑠) 𝑑𝑠 + ∫

𝛼(𝑡)

0

𝑘 (𝑡, 𝑠) 𝑑𝑠) ,

𝑅 (𝑡) =
𝑑

𝑑𝑡
∫

𝑡

0

𝑝 (𝑡, 𝑠) (∫

𝛼(𝑠)

0

𝑞 (𝑠, V) 𝑑V)𝑑𝑠,

(12)
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then, we have

𝑧

(𝑡) + 𝑧 (𝑡) (

𝑑

𝑑𝑡
𝑞 (𝑡)) ≥ −𝑅 (𝑡) . (13)

Multiplying the above inequality by 𝑒𝑞(𝑡) = 𝑄(𝑡), we get

𝑑

𝑑𝑡
(𝑧 (𝑡) 𝑄 (𝑡)) ≥ −𝑄 (𝑡) 𝑅 (𝑡) . (14)

Consider now the integral on the interval [0, 𝑡] to obtain

𝑧 (𝑡) 𝑄 (𝑡) ≥ 𝑧 (0) − ∫

𝑡

0

𝑄 (𝑠) 𝑅 (𝑠) 𝑑𝑠, 0 ≤ 𝑡 ≤ 𝑇, (15)

so

𝑧 (𝑡) =
1

𝑏 (𝑇) + 𝑥 (𝑡)

≥ [
1

𝑏 (𝑇)
− ∫

𝑡

0

𝑄 (𝑠) 𝑅 (𝑠) 𝑑𝑠]
1

𝑄 (𝑡)

=

1 − 𝑏 (𝑇) ∫
𝑡

0
𝑄 (𝑠) 𝑅 (𝑠) 𝑑𝑠

𝑏 (𝑇)𝑄 (𝑡)

(16)

for 0 ≤ 𝑡 ≤ 𝑇. Let 𝑡 = 𝑇, since 𝑏(𝑇) ∫𝑇
0
𝑄(𝑠)𝑅(𝑠)𝑑𝑠 < 1, then

we have

𝑏 (𝑇) + 𝑥 (𝑇) ≤
𝑏 (𝑇)𝑄 (𝑇)

1 − 𝑏 (𝑇) ∫
𝑇

0
𝑄 (𝑠) 𝑅 (𝑠) 𝑑𝑠

. (17)

Since 𝑇 ≥ 0 was arbitrarily chosen, considering 𝑢(𝑡) ≤ 𝑏(𝑡) +
𝑥(𝑡), we get (8).

Lemma 4. Let ℎ, 𝑘, 𝑝, 𝑞, 𝑏, 𝛼 be as in Lemma 3. If 𝑢 ∈

𝐶(R
+
,R
+
) satisfies

𝑢 (𝑡) ≤ 𝑏 (𝑡) + ∫

𝑡

0

ℎ (𝑡, 𝑠) 𝑢 (𝑠) ds + ∫
𝛼(𝑡)

0

𝑘 (𝑡, 𝑠) 𝑢 (𝑠) 𝑑𝑠

+ ∫

𝛼(𝑡)

0

𝑝 (𝑡, 𝑠) 𝑢 (𝑠) (∫

𝑠

0

𝑞 (𝑠, V) 𝑢 (V) 𝑑V)𝑑𝑠,

(18)

for 𝑡 ≥ 0, and 𝑏(𝑡) ∫𝑡
0
𝑅(𝑠)𝑄(𝑠)𝑑𝑠 < 1, then

𝑢 (𝑡) ≤
𝑏 (𝑡) 𝑄 (𝑡)

1 − 𝑏 (𝑡) ∫
𝑡

0
𝑅 (𝑠) 𝑄 (𝑠) 𝑑𝑠

, 𝑡 ≥ 0, (19)

where 𝑄(𝑡) = exp(∫𝑡
0
ℎ(𝑡, 𝑠)𝑑𝑠 + ∫

𝛼(𝑡)

0
𝑘(𝑡, 𝑠)𝑑𝑠), 𝑅(𝑡) =

(𝑑/𝑑𝑡) ∫
𝛼(𝑡)

0
𝑝(𝑡, 𝑠)(∫

𝑠

0
𝑞(𝑠, V)𝑑V)𝑑𝑠.

The proof is similar to the proof of Lemma 3, we omit the
details.

Theorem 5. If there exist functions 𝑎(𝑡, 𝑠), 𝑏(𝑡, 𝑠) ∈ 𝐶(R
+
×

R
+
,R
+
) with (𝑡, 𝑠) → 𝜕

𝑡
𝑎(𝑡, 𝑠), 𝜕

𝑡
𝑏(𝑡, 𝑠) ∈ 𝐶(R

+
× R
+
,R
+
)

such that
Ψ (𝑡) 𝑓 (𝑠, 𝑥)

 ≤ 𝑎 (𝑡, 𝑠) ‖Ψ (𝑠) 𝑥‖ ,

Ψ (t) 𝑔 (𝑠, 𝑥)
 ≤ 𝑏 (𝑡, 𝑠) ‖Ψ (𝑠) 𝑥‖ ,

(20)

for 0 ≤ 𝑠 ≤ 𝑡 and for all 𝑥 ∈ R𝑛. Moreover,

lim sup
t→∞

∫

𝑡

0

(𝑎 (𝑡, 𝑠) + 𝑏 (𝑡, 𝑠)) 𝑑𝑠 = 𝐿
1
,


Ψ (𝑡) Ψ

−1
(𝑠)

≤ 𝐿
2

for 0 ≤ 𝑠 ≤ 𝑡,
(21)

and |Ψ(𝑡)𝑥(𝛼(𝑡))| ≤ |Ψ(𝛼(𝑡))𝑥(𝛼(𝑡))|, where 𝐿
1
, 𝐿
2
are

nonnegative constants. If 𝛼(𝑡) = 𝑡 − 𝜏(𝑡) is an increasing
diffeomorphism of R

+
. Then, the trivial solution of system (3)

is Ψ-uniformly stable on R
+
.

Proof. Suppose that 𝑥(𝑡, 𝑡
0
, 𝑥
0
) := 𝑥(𝑡) is the unique solution

of system (3) which satisfies 𝑥(𝑡
0
) = 𝑥
0
, since

𝑥 (𝑡) = 𝑥
0
+ ∫

𝑡

𝑡0

𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠 + ∫

𝑡

𝑡0

𝑔 (𝑠, 𝑥 (𝛼 (𝑠))) 𝑑𝑠

= 𝑥
0
+ ∫

𝑡

𝑡0

𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠 + ∫

𝛼(𝑡)

𝛼(𝑡0)

𝑔 (𝛼
−1
(𝑟) , 𝑥 (𝑟))

𝛼 (𝛼−1 (𝑟))
𝑑𝑟,

(22)

after performing the change of variables 𝑟 = 𝛼(𝑠) in the
second integral, and 𝛼−1 is the inverse of the diffeomorphism
𝛼 then, it follows that

‖Ψ (𝑡) 𝑥 (𝑡)‖ ≤

Ψ (𝑡) Ψ

−1
(𝑡
0
) Ψ (𝑡
0
) 𝑥
0



+ ∫

𝑡

𝑡0

Ψ (𝑡) 𝑓 (𝑠, 𝑥 (𝑠))
 𝑑𝑠

+ ∫

𝛼(𝑡)

𝛼(𝑡0)



Ψ (𝑡)

𝑔 (𝛼
−1
(𝑟) , 𝑥 (𝑟))

𝛼 (𝛼−1 (𝑟))



𝑑𝑠

≤ 𝐿
2

Ψ (𝑡0) 𝑥0
 + ∫

𝑡

𝑡0

𝑎 (𝑡, 𝑠) ‖Ψ (𝑠) 𝑥 (𝑠)‖ 𝑑𝑠

+ ∫

𝛼(𝑡)

𝛼(𝑡0)

𝑏 (𝑡, 𝛼
−1
(𝑟))

𝛼 (𝛼−1 (𝑟))
‖Ψ (𝑟) 𝑥 (𝑟)‖ 𝑑𝑟,

(23)

this implies by Lemma 3 that

‖Ψ (𝑡) 𝑥 (𝑡)‖ ≤ 𝐿2
Ψ (𝑡0) 𝑥0

 exp

× (∫

𝑡

𝑡0

𝑎 (𝑡, 𝑠) 𝑑𝑠 + ∫

𝛼(𝑡)

𝛼(𝑡0)

𝑏 (𝑡, 𝛼
−1
(𝑟))

𝛼 (𝛼−1 (𝑟))
𝑑𝑟)

= 𝐿
2

Ψ (𝑡0) 𝑥0
 exp(∫

𝑡

𝑡0

(𝑎 (𝑡, 𝑠) + 𝑏 (𝑡, 𝑠)) 𝑑𝑠)

≤ 𝐿
2
𝑒
𝐿1 Ψ (𝑡0) 𝑥0

 ,

(24)

so for every 𝜀 > 0, choose 𝛿 = 𝜀/(𝐿
2
𝑒
𝐿1), then

‖Ψ (𝑡) 𝑥 (𝑡)‖ ≤ 𝐿2𝑒
𝐿1 Ψ (𝑡0) 𝑥0

 < 𝜀
(25)

for ‖Ψ(𝑡
0
)𝑥
0
‖ < 𝛿 and for all 0 ≤ 𝑡

0
≤ 𝑡 < ∞. Hence, the

conclusion of the theorem follows.
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Theorem 6. Let all the conditions inTheorem 5 hold. Suppose
further that there exist functions 𝑚(𝑡, 𝑠), 𝑛(𝑡, 𝑠) ∈ 𝐶(R

+
×

R
+
,R
+
) with (𝑡, 𝑠) → 𝜕

𝑡
𝑚(𝑡, 𝑠), 𝜕

𝑡
𝑛(𝑡, 𝑠) ∈ 𝐶(R

+
× R
+
,R
+
)

such that


Ψ (𝑡) 𝑝 (𝑠, 𝑥)Ψ

−1
(𝑠)

≤ 𝑚 (𝑡, 𝑠) ‖Ψ (𝑠) 𝑥‖ ,

Ψ (𝑡) 𝑞 (𝑠, 𝑥)
 ≤ 𝑛 (𝑡, 𝑠) ‖Ψ (𝑠) 𝑥‖ ,

(26)

for 0 ≤ 𝑠 ≤ 𝑡 and for all 𝑥 ∈ R𝑛, moreover,

lim sup
𝑡→∞

∫

𝑡

0

𝑚(𝑡, 𝑠) (∫

𝑠

0

𝑛 (𝑠, 𝑢) 𝑑𝑢)𝑑𝑠 = 𝐿
3
, (27)

where 𝐿
3
is a nonnegative constant. Then, the trivial solutions

of systems (4) and (5) are Ψ-uniformly stable on R
+
.

Proof. For that system (4), suppose 𝑥(𝑡, 𝑡
0
, 𝑥
0
) := 𝑥(𝑡) is the

unique solution of system (4) which satisfies 𝑥(𝑡
0
) = 𝑥
0
, since

𝑥 (𝑡) = 𝑥
0
+ ∫

𝑡

𝑡0

𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠 + ∫

𝑡

𝑡0

𝑔 (𝑠, 𝑥 (𝛼 (𝑠))) 𝑑𝑠

+ ∫

𝑡

𝑡0

𝑝 (𝑠, 𝑥 (𝑠)) ∫

𝑠

0

𝑞 (𝑢, 𝑥 (𝛼 (𝑢))) 𝑑𝑢 𝑑𝑠, 0 ≤ 𝑡0 ≤ 𝑡,

(28)

it follows that

‖Ψ (𝑡) 𝑥 (𝑡)‖ ≤

Ψ (𝑡) Ψ

−1
(𝑡
0
) Ψ (𝑡
0
) 𝑥
0



+ ∫

𝑡

𝑡0

Ψ (𝑡) 𝑓 (𝑠, 𝑥 (𝑠))
 𝑑𝑠

+ ∫

𝛼(𝑡)

𝛼(𝑡0)


Ψ (𝑡) 𝑔 (𝛼

−1
(𝑟) , 𝑥 (𝑟))



𝛼 (𝛼−1 (𝑟))
𝑑𝑟

+ ∫

𝑡

𝑡0


Ψ (𝑡) 𝑝 (𝑠, 𝑥 (𝑠)) Ψ

−1
(𝑠)


× (∫

𝛼(𝑠)

0


Ψ (𝑠) 𝑞 (𝛼

−1
(𝑟) , 𝑥 (𝑟))



𝛼 (𝛼−1 (𝑟))
𝑑𝑟)𝑑𝑠

≤ 𝐿
2

Ψ (𝑡0) 𝑥0
 + ∫

𝑡

𝑡0

𝑎 (𝑡, 𝑠) ‖Ψ (𝑠) 𝑥 (𝑠)‖ 𝑑𝑠

+ ∫

𝛼(𝑡)

𝛼(𝑡0)

𝑏 (𝑡, 𝛼
−1
(𝑟))

𝛼 (𝛼−1 (𝑟))
‖Ψ (𝑟) 𝑥 (𝑟)‖ 𝑑𝑟

+ ∫

𝑡

𝑡0

𝑚(𝑡, 𝑠) ‖Ψ (𝑠) 𝑥 (𝑠)‖

× (∫

𝛼(𝑠)

0

𝑛 (𝑠, 𝛼
−1
(𝑟)) ‖Ψ (𝑟) 𝑥 (𝑟)‖

𝛼 (𝛼−1 (𝑟))
𝑑𝑟)𝑑𝑠

(29)

after performing the change of variables 𝑟 = 𝛼(𝑠) (or 𝑟 =
𝛼(𝑢)) at some intermediate step, and 𝛼−1 is the inverse of the
diffeomorphism 𝛼. Denote

𝑄 (𝑡) = exp(∫
𝑡

𝑡0

𝑎 (𝑡, 𝑠) 𝑑𝑠 + ∫

𝛼(𝑡)

𝛼(𝑡0)

𝑏 (𝑡, 𝛼
−1
(𝑟))

𝛼 (𝛼−1 (𝑟))
𝑑𝑟)

= exp(∫
𝑡

𝑡0

(𝑎 (𝑡, 𝑠) + 𝑏 (𝑡, 𝑠)) 𝑑𝑠) ,

𝑅 (𝑡) =
𝑑

𝑑𝑡
[∫

𝑡

𝑡0

𝑚(𝑡, 𝑠) (∫

𝛼(𝑠)

0

𝑛 (𝑠, 𝛼
−1
(𝑟))

𝛼 (𝛼−1 (𝑟))
𝑑𝑟)𝑑𝑠]

=
𝑑

𝑑𝑡
[∫

𝑡

𝑡0

𝑚(𝑡, 𝑠) (∫

𝑠

0

𝑛 (𝑠, 𝑢) 𝑑𝑢)𝑑𝑠] .

(30)

This implies by Lemma 3 that

‖Ψ (𝑡) 𝑥 (𝑡)‖

≤ 𝐿
2

Ψ (𝑡0) 𝑥0


𝑄 (𝑡)

1 − 𝐿
2

Ψ (𝑡0) 𝑥0
 ∫
𝑡

0
𝑄 (V) 𝑅 (V) 𝑑V

≤
Ψ (𝑡0) 𝑥0



𝐿
2
𝑒
𝐿1

1 − 𝐿
2

Ψ (𝑡0) 𝑥0
 𝑒
𝐿1 ∫
𝑡

0
𝑅 (V) 𝑑V

=
Ψ (𝑡0) 𝑥0



×
𝐿
2
𝑒
𝐿1

1 − 𝐿
2

Ψ (𝑡0) 𝑥0
 𝑒
𝐿1 ∫
𝑡

𝑡0

𝑚(𝑡, 𝑠) (∫
𝑠

0
𝑛 (𝑠, 𝑢) 𝑑𝑢) 𝑑𝑠

≤
Ψ (𝑡0) 𝑥0



𝐿
2
𝑒
𝐿1

1 − 𝐿
2
𝐿
3

Ψ (𝑡0) 𝑥0
 𝑒
𝐿1

(31)

for 𝐿
2
𝐿
3

Ψ(𝑡0)𝑥0
 𝑒
𝐿1 < 1 and 0 ≤ 𝑡

0
≤ 𝑡. So, for every 𝜀 > 0

and 𝑡
0
≥ 0, let 0 < 𝑞 < 1/𝐿

2
𝐿
3
𝑒
𝐿1 be a constant and choose

𝛿 = min{𝑞, ((1 − 𝑞𝐿
2
𝐿
3
𝑒
𝐿1)𝜀)/𝐿

2
𝑒
𝐿1}, then

‖Ψ (𝑡) 𝑥 (𝑡)‖ <

(1 − 𝑞𝐿
2
𝐿
3
𝑒
𝐿1) 𝜀

𝐿
2
𝑒𝐿1

×
𝐿
2
𝑒
𝐿1

1 − 𝑞𝐿
2
𝐿
3
𝑒𝐿1
= 𝜀 (32)

for Ψ(𝑡0)𝑥0
 < 𝛿 and for all 0 ≤ 𝑡0 ≤ 𝑡 < ∞. This proves that

the trivial solution of system (4) isΨ-uniformly stable onR
+
.

Using Lemma 4, the proof of system (5) is similar to that
of system (4) and the details are left to the readers.

Remark 7. For Ψ
𝑖
= 1, 𝑖 = 1, 2, . . . , 𝑛, we obtain the theorems

of classical stability and uniform stability.

3. Examples

Example 8. Consider the nonlinear differential system

𝑥


1
(𝑡) = 𝑥

1
(𝑡) + 𝑥

1
(
𝑡

2
) sin 𝑡,

𝑥


2
(𝑡) = −𝑥

2
(𝑡) + 𝑥

2
(
𝑡

2
) cos 𝑡.

(33)
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In (33), 𝑓(𝑡, 𝑥(𝑡)) = (𝑥
1
(𝑡), −𝑥

2
(𝑡))
𝑇, 𝑔(𝑡, 𝑥(𝑡/2)) = (𝑥

1
(𝑡/2)

sin 𝑡, 𝑥
2
(𝑡/2) cos 𝑡)𝑇. Let Ψ(𝑡) = ( 𝑒−𝑡 0

0 𝑒
−𝑡 ), then 𝑎(𝑡, 𝑠) =

𝑏(𝑡, 𝑠) = 𝑒
−(𝑡−𝑠) for 0 ≤ 𝑠 ≤ 𝑡 ≤ ∞, it is easy to verify

that 𝐿
1
= 2, 𝐿

2
= 1, and all the assumptions in Theorem 5

satisfied, so the trivial solution of system (33) is 𝜓-uniformly
stable on R

+
.

Example 9. Consider the nonlinear Volterra integro-differ-
ential system as follows:

𝑥


1
(𝑡) = 𝑥

1
(𝑡) + 𝑥

1
(𝑡) 𝑒
−𝑡
∫

𝑡

0

𝑥
1
(
𝑠

2
) cos 𝑠 𝑑𝑠,

𝑥


2
(𝑡) = −𝑥2 (𝑡) + 𝑥2 (𝑡) 𝑒

−𝑡
∫

𝑡

0

𝑥
2
(
𝑠

2
) sin 𝑠 𝑑𝑠.

(34)

In (34), 𝑓(𝑡, 𝑥(𝑡)) = (𝑥
1
(𝑡), −𝑥

2
(𝑡))
𝑇, 𝑔 ≡ 0, 𝑝(𝑡, 𝑥(𝑡)) =

(𝑥
1
(𝑡)𝑒
−𝑡
, 𝑥
2
(𝑡)𝑒
−𝑡
)
𝑇, 𝑞(𝑠, 𝑥(𝑠/2)) = (𝑥

1
(𝑠/2) cos 𝑠, 𝑥

2
(𝑠/2)

sin 𝑠)𝑇. Choose the same matrix function Ψ(𝑡), then 𝑎(𝑡, 𝑠) =
𝑛(𝑡, 𝑠) = 𝑒

−(𝑡−𝑠), 𝑏(𝑡, 𝑠) ≡ 0, 𝑚(𝑡, 𝑠) = 𝑒−2(𝑡−𝑠) for 0 ≤ 𝑠 ≤ 𝑡 ≤
∞, it is easy to verify that 𝐿

1
= 𝐿
2
= 1, 𝐿

3
= 1/2, and all the

assumptions inTheorem 6 are satisfied, so the trivial solution
of system (34) is 𝜓-uniformly stable on R

+
.
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Inverse problem for the Bessel operator is studied. A set of values of eigenfunctions at some internal point and parts of two spectra
are taken as data. Uniqueness theorems are obtained.The approach that was used in investigation of problems with partially known
potential is employed.

1. Introduction

Inverse spectral analysis involves the problem of restoring a
linear operator from some of its spectral parameters. Cur-
rently, inverse problems are being studied for certain special
classes of ordinary differential operators. The simplest of
these is the Sturm-Liouville operator 𝐿𝑦 = −𝑦


+ 𝑞(𝑥)𝑦. For

the case where it is considered on the whole line or half line,
the Sturm-Liouville operator together with the function 𝑞(𝑥)

has been called a potential. In this direction, Borg [1] gave
important results. He showed that, in general, one spectrum
does not determine a Sturm-Liouville operator, so the result
of Ambarzumyan [2] is an exception to the general rule. In
the same paper, Borg showed that two spectra of a Sturm-
Liouville operator determine it uniquely. Later, Levinson
[3], Levitan [4], and Hochstadt [5] showed that when the
boundary condition and one possible reduced spectrum
are given, then the potential is uniquely determined. Using
spectral data, that is, the spectral function, spectrum, and
norming constant, different methods have been proposed
for obtaining the potential function in a Sturm-Liouville
problem. Such problems were subsequently investigated by
other authors [4–6]. On the other hand, inverse problems
for regular and singular Sturm-Liouville operators have been
extensively studied by [7–15].

The inverse problem for interior spectral data of the
differential operator consists in reconstruction of this oper-
ator from the known eigenvalues and some information
on eigenfunctions at some internal point. Similar problems
for the Sturm-Liouville operator and discontinuous Sturm-
Liouville problem were formulated and studied in [16, 17].

The main goal of the present work is to study the inverse
problem of reconstructing the singular Sturm-Liouville oper-
ator on the basis of spectral data of a kind: one spectrum and
some information on eigenfunctions at the internal point.

Consider the following singular Sturm-Liouville operator
𝐿 satisfying (1)–(3):

𝐿𝑦 = −𝑦

+ [

ℓ (ℓ + 1)

𝑥2
+ 𝑞 (𝑥)] 𝑦 = 𝜆𝑦, 0 < 𝑥 < 1 (1)

with boundary conditions,

𝑦 (0) = 0, (2)

𝑦

(1, 𝜆) + 𝐻𝑦 (1, 𝜆) = 0, (3)

where 𝑞(𝑥) is a real-valued function and 𝑞 ∈ 𝐿
2
(0, 1), 𝜆

spectral parameter, ℓ ∈ N
0
, 𝐻 ∈ R. The operator 𝐿 is self

adjoint on the 𝐿
2
(0, 1) and has a discrete spectrum {𝜆

𝑛
}.
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Let us introduce the second singular Sturm-Liouville op-
erator �̃� satisfying

�̃�𝑦 = −𝑦

+ [

ℓ (ℓ + 1)

𝑥2
+ 𝑞 (𝑥)] 𝑦 = 𝜆𝑦, 0 < 𝑥 < 1, (4)

subject to the same boundary conditions (2), (3), where 𝑞(𝑥)
is a real-valued function and 𝑞 ∈ 𝐿

2
(0, 1). The operator �̃� is

self adjoint on the 𝐿
2
(0, 1) and has a discrete spectrum {�̃�

𝑛
}.

2. Main Results

Before giving some results concerning the Bessel equation,
we should give its physical properties. The total energy of the
particle is given by 𝐸 = 𝑝

2
/2𝑀 = ℎ

2
𝑘
2
/2𝑀 = 𝑘

2, where 𝑝 is
its initial or final momentum, and 𝑘 the corresponding wave
number, ℎ planck constant, 𝑀 particle’s mass, and 𝐸 energy.
The reduced radial Schrödinger equation for the partial wave
of angular momentum ℓ then reads [18]

𝑑
2

𝑑𝑟2
Ψ
1
(𝑘, 𝑟) + (𝑘

2
−
ℓ (ℓ + 1)

𝑟2
)Ψ
1
(𝑘, 𝑟) = 𝑉 (𝑟)Ψ

1
(𝑘, 𝑟) .

(5)

When 𝑉 = 0, the above equation reduces to the classical
Bessel equation in the form

𝑑
2

𝑑𝑟2
Ψ
1
(𝑘, 𝑟) + (𝑘

2
−
ℓ (ℓ + 1)

𝑟2
)Ψ
1
(𝑘, 𝑟) = 0. (6)

This equation has the solution 𝐽
ℓ
(𝑟), called the Bessel func-

tion.
Eigenvalues of the problem (1)–(3) are the roots of (3).

This spectral characteristic satisfies the following asymptotic
expression [19, 20]:

𝜆
𝑛
= (𝑛 +

ℓ

2
)

2

𝜋
2
+ ∫

1

0

𝑞 (𝑥) 𝑑𝑥 − 𝑙 (𝑙 + 1) + 𝑎
𝑛
, (7)

where the series ∑∞
𝑛=1

𝑎
2

𝑛
< ∞. Next, we present the main

results in this paper. When 𝑏 = 1/2, we get the following
uniqueness Theorem 1.

Theorem 1. If for every 𝑛 ∈ N one has

𝜆
𝑛
= �̃�
𝑛
,

𝑦


𝑛
(1/2)

𝑦
𝑛 (1/2)

=
𝑦


𝑛
(1/2)

𝑦
𝑛 (1/2)

(8)

then

𝑞 (𝑥) = 𝑞 (𝑥) 𝑎.𝑒 𝑜𝑛 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑟V𝑎𝑙 (0, 1) . (9)

In the case 𝑏 ̸= 1/2, the uniqueness of 𝑞(𝑥) can be proved
if we require the knowledge of a part of the second spectrum.

Let {𝑚(𝑛)}
𝑛∈N be a sequence of natural numbers with a

property

𝑚(𝑛) =
𝑛

𝜎
(1 + 𝜀

𝑛
) , 0 < 𝜎 ≤ 1, 𝜀

𝑛
→ 0. (10)

Lemma 2. Let {𝑚(𝑛)}
𝑛∈N be a sequence of natural numbers

satisfying (10) and 𝑏 ∈ (0, 1/2) are so chosen that 𝜎 > 2𝑏. If for
any 𝑛 ∈ N

𝜆
𝑚(𝑛)

= �̃�
𝑚(𝑛)

,

𝑦


𝑚(𝑛)
(𝑏)

𝑦
𝑚(𝑛)

(𝑏)
=

𝑦


𝑚(𝑛)
(𝑏)

𝑦
𝑚(𝑛)

(𝑏)
(11)

then

𝑞 (𝑥) = 𝑞 (𝑥) 𝑎.𝑒 𝑜𝑛 (0, 𝑏] . (12)

Let {𝑙(𝑛)}
𝑛∈N and {𝑟(𝑛)}

𝑛∈N be a sequence of natural
numbers such that

𝑙 (𝑛) =
𝑛

𝜎
1

(1 + 𝜀
1,𝑛
) , 0 < 𝜎

1
≤ 1, 𝜀

1,𝑛
→ 0, (13)

𝑟 (𝑛) =
𝑛

𝜎
2

(1 + 𝜀
2,𝑛
) , 0 < 𝜎

2
≤ 1, 𝜀

2,𝑛
→ 0 (14)

and let 𝜇
𝑛
be the eigenvalues of (1), (2), and (15) and 𝜇

𝑛
be the

eigenvalues of (4), (2), and (15)

𝑦

(1, 𝜆) + 𝐻

1
𝑦 (1, 𝜆) = 0, 𝐻 ̸=𝐻

1
. (15)

Using Mochizuki and Trooshin’s method from Lemma 2 and
Theorem 1, we will prove that the followingTheorem 3 holds.

Theorem 3. Let {𝑙(𝑛)}
𝑛∈N and {𝑟(𝑛)}

𝑛∈N be a sequence of
natural numbers satisfying (13) and (14), and 1/2 < 𝑏 < 1

are so chosen that 𝜎
1
> 2𝑏 − 1, 𝜎

2
> 2 − 2𝑏. If for any 𝑛 ∈ N

one has

𝜆
𝑛
= �̃�
𝑛
, 𝜇

𝑙(𝑛)
= 𝜇
𝑙(𝑛)

,

𝑦


𝑟(𝑛)
(𝑏)

𝑦
𝑟(𝑛)

(𝑏)
=

𝑦


𝑟(𝑛)
(𝑏)

𝑦
𝑟(𝑛)

(𝑏)
(16)

then

𝑞 (𝑥) = 𝑞 (𝑥) 𝑎.𝑒 𝑜𝑛 (0, 1) . (17)

3. Proof of the Main Results

In this section, we present the proofs of main results in this
paper.

Proof of Theorem 1. Before proving Theorem 1, we will men-
tion some results, whichwill be needed later.We get the initial
value problems

−𝑦

+ [

ℓ (ℓ + 1)

𝑥2
+ 𝑞 (𝑥)] 𝑦 = 𝜆𝑦, 0 < 𝑥 < 1, (18)

𝑦 (0) = 0, (19)

−𝑦

+ [

ℓ (ℓ + 1)

𝑥2
+ 𝑞 (𝑥)] 𝑦 = 𝜆𝑦, 0 < 𝑥 < 1, (20)

𝑦 (0) = 0. (21)

As known from [18], Bessel’s functions of the first kind of
order V = ℓ − 1/2 are

𝐽V (𝑥) =

∞

∑

𝑘=0

(−1)
𝑘
𝑥
V+2𝑘

2V+2𝑘𝑘!Γ (V + 𝑘 + 1)
(22)
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and asymptotic formulas for large argument

𝐽V (𝑥) = √
2

𝜋𝑥
{cos [𝑥 −

V𝜋
2

−
𝜋

4
] + 𝑂(

1

𝑥
)} ,

𝐽


V (𝑥) = −√
2

𝜋𝑥
{sin [𝑥 −

V𝜋
2

−
𝜋

4
] + 𝑂(

1

𝑥
)} .

(23)

It can be shown [19] that there exists a kernel
𝐻(𝑥, 𝑡)(�̃�(𝑥, 𝑡)) continuous in the triangle 0 ≤ 𝑡 ≤ 𝑥 ≤ 1

such that by using the transformation operator every solution
of (18), (19) and (20), (21) can be expressed in the form [8, 21],

𝑦 (𝑥, 𝜆) =
√𝑥

(√𝜆)
V 𝐽V (

√𝜆𝑥) + ∫

𝑥

0

𝐻(𝑥, 𝑡)
√𝑡

(√𝜆)
V 𝐽V (

√𝜆𝑡) 𝑑𝑡,

(24)

𝑦 (𝑥, 𝜆) =
√𝑥

(√𝜆)
V 𝐽V (

√𝜆𝑥) + ∫

𝑥

0

�̃� (𝑥, 𝑡)
√𝑡

(√𝜆)
V 𝐽V (

√𝜆𝑡) 𝑑𝑡,

(25)

respectively, where the kernel𝐻(𝑥, 𝑡) (�̃�(𝑥, 𝑡)) is the solution
of the equation

𝜕
2
𝐻(𝑥, 𝑡)

𝜕𝑥2
+
ℓ (ℓ + 1)

𝑥2
𝐻(𝑥, 𝑡)

=
𝜕
2
𝐻(𝑥, 𝑡)

𝜕𝑡2
+ (

ℓ (ℓ + 1)

𝑡2
+ 𝑞 (𝑡))𝐻 (𝑥, 𝑡)

(26)

subject to the boundary conditions

2
𝑑𝐻 (𝑥, 𝑥)

𝑑𝑥
= 𝑞 (𝑥) ,

lim
𝑡→0

𝐻(𝑥, 𝑡) 𝑡
V−1/2

= 0, [𝐽


V (𝑡, 𝜆) = 𝑂 (𝑡
V−1/2

)] .

(27)

After the transformations

𝜉 =
1

4
(𝑥 + 𝑡)

2
, 𝜂 =

1

4
(𝑥 − 𝑡)

2
,

𝐻 (𝑥, 𝑡) = (𝜉 − 𝜂)
−V+1/2

𝑈 (𝜉, 𝜂) ,

(28)

we obtain the following problem:

𝜕
2
𝑈

𝜕𝜉𝜕𝜂
−

1

4 (𝜉 − 𝜂)

𝜕𝑈

𝜕𝜉
+

1

4 (𝜉 − 𝜂)

𝜕𝑈

𝜕𝜂

=
1

4√𝜉𝜂

𝑞 (√𝜉 + √𝜂)𝑈,

𝑈 (𝜉, 𝜉) = 0,

𝜕𝑈

𝜕𝜉
+
𝛼

𝜉
𝑈 =

1

4
𝑞 (√𝜉) 𝜉

V−1
, 𝛼 = −V +

1

2
.

(29)

This problem can be solved by using the Riemannmethod
[21].

Multiplying (18) by 𝑦(𝑥, 𝜆) and (20) by 𝑦(𝑥, 𝜆), subtract-
ing and integrating from 0 to 1/2, we obtain

∫

1/2

0

(𝑞 (𝑥) − 𝑞 (𝑥)) 𝑦 (𝑥, 𝜆) 𝑦 (𝑥, 𝜆) 𝑑𝑥

= [𝑦(𝑥, 𝜆)𝑦

(𝑥, 𝜆) − 𝑦(𝑥, 𝜆)𝑦


(𝑥, 𝜆)]



1/2

0
.

(30)

The functions 𝑦(𝑥, 𝜆) and 𝑦(𝑥, 𝜆) satisfy the same initial
conditions (19) and (21), that is,

𝑦 (0, 𝜆) 𝑦

(0, 𝜆) − 𝑦 (0, 𝜆) 𝑦


(0, 𝜆) = 0. (31)

Let

𝑄 (𝑥) = 𝑞 (𝑥) − 𝑞 (𝑥) , (32)

𝐾 (𝜆) = ∫

1/2

0

𝑄 (𝑥) 𝑦 (𝑥, 𝜆) 𝑦 (𝑥, 𝜆) 𝑑𝑥. (33)

If the properties of 𝑦(𝑥, 𝜆) and 𝑦(𝑥, 𝜆) are considered, the
function𝐾(𝜆) is an entire function.

Therefore the condition of Theorem 1 implies

𝑦(
1

2
, 𝜆
𝑛
)𝑦

(
1

2
, 𝜆
𝑛
) − 𝑦(

1

2
, 𝜆
𝑛
)𝑦

(
1

2
, 𝜆
𝑛
) = 0 (34)

and hence

𝐾(𝜆
𝑛
) = 0, 𝑛 ∈ N. (35)

In addition, using (24) and (33) for 0 < 𝑥 < 1,

|𝐾 (𝜆)| ≤ 𝑀
1

𝜆V
, (36)

where𝑀 is constant.
Introduce the function

𝑊(𝜆) = 𝑦

(1, 𝜆) + 𝐻𝑦 (1, 𝜆) . (37)

By using the asymptotic forms of 𝑦 and 𝑦
, we obtain

𝑊(𝜆) = √𝜆 sin(√𝜆 −
V𝜋
2

−
𝜋

4
) + 𝑂 (1) . (38)

The zeros of 𝑊(𝜆) are the eigenvalues of 𝐿 and hence it
has only simple zeros 𝜆

𝑛
because of the seperated boundary

conditions. From (38), 𝑊(𝜆) is an entire function of order
1/2 of 𝜆. Since the set of zeros of the entire function𝑊(𝜆) is
contained in the set of zeros of𝐾(𝜆), we see that the function

Ψ (𝜆) =
𝐾 (𝜆)

𝑊 (𝜆)
(39)

is an entire function on the parameter 𝜆. From (36), (38), and
(39), we get

|Ψ (𝜆)| = 𝑂(
1

𝜆V+1/2
) . (40)

So, for all 𝜆, from the Liouville theorem,

Ψ (𝜆) = 0, (41)
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or

𝐾 (𝜆) = 0. (42)

It was proved in [19] that there exists absolutely continu-
ous function ̃̃

𝐻(𝑥, 𝜏) such that we have

𝑦 (𝑥, 𝜆) 𝑦 (𝑥, 𝜆) =
1

2
{1 + cos 2 [√𝜆𝑥 −

V𝜋
2

−
𝜋

4
]

+ ∫

𝑥

0

̃̃
𝐻 (𝑥, 𝜏)

× cos 2 [√𝜆𝜏 −
V𝜋
2

−
𝜋

4
] 𝑑𝜏} ,

(43)

where

̃̃
𝐻 (𝑥, 𝑡) = 2 [𝐻 (𝑥, 𝑥 − 2𝜏) + �̃� (𝑥, 𝑥 − 2𝜏)]

+ 2 [∫

𝑥

−𝑥+2𝜏

𝐻(𝑥, 𝑠) �̃� (𝑥, 𝑠 − 2𝜏) 𝑑𝑠

+∫

𝑥−2𝜏

−𝑥

𝐻(𝑥, 𝑠) �̃� (𝑥, 𝑠 + 2𝜏) 𝑑𝑠] .

(44)

We are now going to show that𝑄(𝑥) = 0 a.e. on (0, 1/2]. From
(33), (43) we have

1

2
∫

1/2

0

𝑄 (𝑥) {1 + cos 2 [√𝜆𝑥 −
V𝜋
2

−
𝜋

4
]

+ ∫

𝑥

0

̃̃
𝐻 (𝑥, 𝜏)

× cos 2 [√𝜆𝜏 −
V𝜋
2

−
𝜋

4
] 𝑑𝜏} 𝑑𝑥 = 0.

(45)

This can be written as

∫

1/2

0

𝑄 (𝑥) 𝑑𝑥 + ∫

1/2

0

cos 2 [√𝜆𝜏 −
V𝜋
2

−
𝜋

4
]

× [𝑄 (𝜏) + ∫

1/2

0

𝑄 (𝑥)

×
̃̃
𝐻 (𝑥, 𝜏) 𝑑𝑥] 𝑑𝜏 = 0.

(46)

Let 𝜆 → ∞ along the real axis, by the Riemann-Lebesgue
lemma, one should have

∫

1/2

0

𝑄 (𝑥) 𝑑𝑥 = 0,

∫

1/2

0

cos 2 [√𝜆𝜏 −
V𝜋
2

−
𝜋

4
]

× [𝑄 (𝜏) + ∫

1/2

𝜏

𝑄 (𝑥)
̃̃
𝐻 (𝑥, 𝜏) 𝑑𝑥] 𝑑𝜏 = 0.

(47)

Thus from the completeness of the functions cos, it follows
that

Q (𝜏) + ∫

1/2

𝜏

𝑄 (𝑥)
̃̃
𝐻 (𝑥, 𝜏) 𝑑𝑥 = 0, 0 < 𝑥 <

1

2
. (48)

But this equation is a homogeneous Volterra integral equa-
tion and has only the zero solution. Thus we have obtained

𝑄 (𝑥) = 𝑞 (𝑥) − 𝑞 (𝑥) = 0, (49)

or

𝑞 (𝑥) = 𝑞 (𝑥) (50)

almost everywhere on (0, 1/2]. Therefore Theorem 1 is
proved.

Theorem 4. To prove that 𝑞(𝑥) = 0 on [1/2, 1) almost every-
where, we should repeat the above arguments for the supple-
mentary problem

𝐿𝑦 = −𝑦

+ [

ℓ (ℓ + 1)

(1 − 𝑥)
2
+ 𝑞 (1 − 𝑥)] 𝑦, 0 < 𝑥 < 1 (51)

subject to the boundary conditions

𝑦 (1) = 0,

𝑦

(0, 𝜆) + 𝐻𝑦 (0, 𝜆) = 0.

(52)

Consequently

𝑞 (𝑥) = 𝑞 (𝑥) a.e on the interval (0, 1) . (53)

Next, we show that Lemma 2 holds.

Proof of Lemma 2. As in the proof ofTheorem 1 we can show
that

𝐺 (𝜌) = ∫

𝑏

0

𝑄 (𝑥) 𝑦 (𝑥, 𝜆) 𝑦 (𝑥, 𝜆) 𝑑𝑥

= [𝑦 (𝑥, 𝜆) 𝑦

(𝑥, 𝜆) − 𝑦 (𝑥, 𝜆) 𝑦


(𝑥, 𝜆)]

𝑥=𝑏
,

(54)

where 𝜌 = √𝜆 = 𝑟𝑒
𝑖𝜃 and 𝑄(𝑥) = 𝑞(𝑥) − 𝑞(𝑥). From the

assumption

𝑦


𝑚(𝑛)
(𝑏)

𝑦
𝑚(𝑛) (𝑏)

=

𝑦


𝑚(𝑛)
(𝑏)

𝑦
𝑚(𝑛) (𝑏)

(55)

together with the initial condition at 0 it follows that,

𝐺 (𝜌
𝑚(𝑛)

) = 0, 𝑛 ∈ N. (56)

Next, we will show that 𝐺(𝜌) = 0 on the whole 𝜌 plane.
The asymptotics (23) imply that the entire function 𝐺(𝜌) is
a function of exponential type ≤ 2𝑏.

Define the indicator of function 𝐺(𝜌) by

ℎ (𝜃) = lim
𝑟→∞

sup
ln 

𝐺 (𝑟𝑒
𝑖𝜃
)


𝑟
. (57)
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Since | Im√𝜆| = 𝑟| sin 𝜃|, 𝜃 = arg√𝜆 from (23) it follows that

ℎ (𝜃) ≤ 2𝑏 |sin 𝜃| . (58)

Let us denote by 𝑛(𝑟) the number of zeros of 𝐺(𝜌) in the
disk {|𝜌| ≤ 𝑟}. According to [22] set of zeros of every entire
function of the exponential type, not identically zero, satisfies
the inequality

lim
𝑟→∞

inf 𝑛 (𝑟)
𝑟

≤
1

2𝜋
∫

2𝜋

0

ℎ (𝜃) 𝑑𝜃, (59)

where 𝑛(𝑟) is the number of zeros of 𝐺(𝜌) in the disk |𝜌| ≤ 𝑟.
By (58),

1

2𝜋
∫

2𝜋

0

ℎ (𝜃) 𝑑𝜃 ≤
𝑏

𝜋
∫

2𝜋

0

|sin 𝜃| 𝑑𝜃 =
4𝑏

𝜋
. (60)

From the assumption and the known asymptotic expression
(7) of the eigenvalues√𝜆

𝑛
we obtain

𝑛 (𝑟) ≥ 2 ∑

(𝜋𝑛/𝜎)[1+𝑂(1/𝑛)]<𝑟

1 =
2

𝜋
𝜎𝑟 (1 + 𝑜 (1)) , 𝑟 → ∞.

(61)

For the case 𝜎 > 2𝑏,

lim
𝑟→∞

𝑛 (𝑟)

𝑟
≥

2

𝜋
𝜎 >

4𝑏

𝜋
= 2𝑏∫

2𝜋

0

|sin 𝜃| 𝑑𝜃 ≥
1

2𝜋
∫

2𝜋

0

ℎ (𝜃) 𝑑𝜃.

(62)

The inequalities (59) and (62) imply that 𝐺(𝜌) = 0 on the
whole 𝜌 plane.

Similar to the proof of Theorem 1, we have

𝑞 (𝑥) = 𝑞 (𝑥) a.e on the interval (0, 𝑏] . (63)

This completes the proof of Lemma 2.

Now we prove that Theorem 3 is valid.

Proof of Theorem 3. From

𝜆
𝑟(𝑛)

= �̃�
𝑟(𝑛)

,

𝑦


𝑟(𝑛)
(𝑏)

𝑦
𝑟(𝑛)

(𝑏)
=

𝑦


𝑟(𝑛)
(𝑏)

𝑦
𝑟(𝑛)

(𝑏)
, (64)

where {𝑟(𝑛)}
𝑛∈N satisfies (14) and 𝜎

2
> 2 − 2𝑏. Similar to the

proof of Lemma 2, we get

𝑞 (𝑥) = 𝑞 (𝑥) a.e on [𝑏, 1) . (65)

Thus, it needs to be proved that 𝑞(𝑥) = 𝑞(𝑥) a.e on (0, 𝑏].
The eigenfunctions 𝑦

𝑛
(𝑥, 𝜆
𝑛
) and 𝑦

𝑛
(𝑥, 𝜆
𝑛
) satisfy the same

boundary condition at 1. It means that

𝑦
𝑛
(𝑥, 𝜆
𝑛
) = 𝜉
𝑛
𝑦
𝑛
(𝑥, 𝜆
𝑛
) (66)

on [𝑏, 1] for any 𝑛 ∈ N where 𝜉
𝑛
are constants.

Let 𝜌
𝑛
= √𝜆
𝑛
, 𝑠
𝑛
= √𝜇
𝑛
. From (54) and (66) we obtain

𝐺 (𝜌
𝑛
) = 0, 𝑛 ∈ N,

𝐺 (𝑠
𝑙𝑛
) = 0, 𝑛 ∈ N.

(67)

We are going to show that inequality (59) fails and con-
sequently, the entire function of exponential type 𝐺(𝜌)

vanishes on the whole 𝜌-plane. The 𝜌
𝑛
and 𝑠
𝑛
have the same

asymptotics (7). Counting the number of 𝜌
𝑛
and 𝑠
𝑛
located

inside the disc of radius 𝑟, we have

1 +
2

𝜋
𝑟 [1 + 𝑂(

1

𝑛
)] (68)

of 𝜌
𝑛
’s and

1 +
2

𝜋
𝑟𝜎
1
[1 + 𝑂(

1

𝑛
)] . (69)

of 𝑠
𝑛
’s.
This means that

𝑛 (𝑟) = 2 +
2

𝜋
[𝑟 (𝜎
1
+ 1) + 𝑂(

1

𝑛
)] ,

lim
𝑟→∞

𝑛 (𝑟)

𝑟
=

2

𝜋
(𝜎
1
+ 1) .

(70)

Repeating the last part of the proof of Lemma 2, and
considering the condition 𝜎

1
> 2𝑏 − 1, we can show that

𝐺(𝜌) = 0 identically on the whole 𝜌-plane which implies that

𝑞 (𝑥) = 𝑞 (𝑥) a.e on (0, 𝑏] (71)

and consequently

𝑞 (𝑥) = 𝑞 (𝑥) a.e on (0, 1) . (72)

Hence the proof of Theorem 3 is completed.
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