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Robot is currently one of the exciting and fast developing
technologies changing the life of human being. It has been
widely applied in lots of areas such as industry, agriculture,
medicine, transportation, social service, military, space exp-
loration, and undersea exploiting. Increasing attention by
robot researchers has been paid to the robot sensor, as a key
component of the robot. During the last decade, much effort
has been done to develop robot sensors for robot perception,
robot control, autonomous robot, human-robot interaction,
and so forth. In spite of the large and increasing interest and
promising applications, robot sensor design is a significant
challenging, which is involved in not only sensor materials,
structure design, manufacturing process, and calibration
technique, but also signal processing, data fusion, and pattern
recognition. For instance, remarkable examples of tactile sen-
sors and systems have been proposed; however, their ability
to address specific applications and their extension to other
fields such as medical instrumentation, prosthetic devices,
and biomechanics test is questionable.

This special issue aims at exhibiting the latest research
achievements, ideas, and advances in robot sensors. The spe-
cial issue summarizes the most recent developments in the
field of sensors for robotics. The theme of 2015 special issue
focuses on the robot force and tactile sensor, robot sensor
fusion, and robot sensor applications.

Force and tactile sensors are absolutely necessary ele-
ments for robot when interacting with environment. The
paper by A. Almassri et al. surveys the state-of-the-art in
variety force sensors for designing and application of robotic
hand.This paper introduces the different techniques formea-
suring force or interface pressures. These techniques include

load cells, pressure indicating film, and tactile pressure
system. Similarly, a review on industry pressure sensing that
involves the pick andplace applications and algorithmcontrol
is also highlighted.The paper also discusses theMEMs sensor
technology and different types of sensors. At last, it discusses
the piezoresistive flexiforce sensor. Flexiforce sensor has a
good substrate material, which is a polymer that enhances
the force sensing and improves the performance of force,
linearity, hysteresis, drift, and temperature sensitivity com-
pared to any other thin film. Furthermore, it is flexible and
ultrathin enough so that it can be widely used as robot hand
force sensor and tactile sensor. The paper by C. Wu et al.
introduces the application of tactile sensor in prosthetic hand.
This paper proposes an EMGprosthetic hand control strategy
using force sensor and tactile sensor to improve the control
effectiveness and make the prosthetic hand not only con-
trollable but also perceivable. The control strategy consists of
EMG self-learning motion recognition, back stepping con-
troller, and force tactile representation. The force and tactile
information are not only used for hand grasp control but also
for haptic stimulating on user, which helps the user perceive
the states of the prosthetic hand.

Robots rely on multiple sensors to provide them with
information about their surroundings. Thus, sensor fusion
based robot sensing is always a key issue for object tracking,
robot path plan and navigation, environment understanding,
and autonomous behaviors. The paper by D. Tuvshinjargal
et al. proposes a sensor fusion based reactivemotion planning
method for an autonomous vehicle in dynamic environ-
ments. The dynamic motion planning method combines the
reactive motion planning technique with a sensor fusion
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based obstacle detection approach, which results in improv-
ing robustness and autonomy of vehicle navigation within
unpredictable dynamic environments. The key feature of the
motion planning method is based on a local observer in the
virtual plane which allows the effective transformation of
complex dynamic planning problems into simple stationary
in the virtual plane, and a sensor fusion based obstacle detec-
tion algorithm provides the pose estimation of moving
obstacles by using a Kinect sensor and a sonar sensor, which
helps to improve the accuracy and robustness of the reactive
motion planning approach in uncertain dynamic environ-
ments.

In the past decades, person tracking system using a robot
has achieved a lot of improvements. However, the problems
of distinguishing person and reliable following still exist. The
paper by S. Jia et al. proposes a person detection and tracking
method by representing a person with multicues based on
patches and designing a fuzzy based intelligent gear control
strategy (FZ-IGS). The person detection algorithm includes
a detector and a tracker. The detector divides a person into
many patches and represents a patch by the use of multicues
including depth, color, and texture. As track evolves, the
detector adjusts the person’s size according to depth infor-
mation. By analyzing the depth histograms and patches’
similarity with the given person, the detector can easily rec-
ognize the occlusion and then make a decision to update the
person’s appearance model and change the tracking strategy.
The tractor based on an extended Kalman filter predicts the
person’s position as a candidate sample for the detector.Then,
the designed FZ-IGS is used to change the turning gain
and linear velocity of the robot according to the position
of the person from the robot. The FZ-IGS drives the robot
towards the person continuously and stably. A conventional
method for automated guided vehicle (AGV) localization has
certain limitations, such as slip phenomena, because there
are variations in the surface of the road and ground friction.
Therefore, precise localization is a very important issue for
the inevitable slip phenomenon situation.The paper by S.-W.
Yoon et al. presents a sensor fusion method to cope with this
drawback by using the Kalman filter, which can eliminate the
disadvantages of each sensor, such as the image sensor and
encoder based sensor, and obtains the precise localization of
the AGV in a slip phenomenon situation.
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The Mecanum automated guided vehicle (AGV), which can move in any direction by using a special wheel structure with a LIM-
wheel and a diagonally positioned roller, holds considerable promise for the field of industrial electronics. A conventional method
for Mecanum AGV localization has certain limitations, such as slip phenomena, because there are variations in the surface of the
road and ground friction. Therefore, precise localization is a very important issue for the inevitable slip phenomenon situation.
So a sensor fusion technique is developed to cope with this drawback by using the Kalman filter. ENCODER and StarGazer were
used for sensor fusion. StarGazer is a position sensor for an image recognition device and always generates some errors due to the
limitations of the image recognition device. ENCODER has also errors accumulating over time. On the other hand, there are no
moving errors. In this study, we developed a Mecanum AGV prototype system and showed by simulation that we can eliminate the
disadvantages of each sensor. We obtained the precise localization of theMecanumAGV in a slip phenomenon situation via sensor
fusion using a Kalman filter.

1. Introduction

TheMecanumAGV automated guided vehicle (AGV), which
is mounted to a Mecanum wheel that is roller-attached to
the axis of rotation with angle of 45∘, can move in any
direction. Using this special wheel structure, the Mecanum
AGV can move in a narrow space and avoid obstacles easily.
Thus, it can reduce process time in factory automation. The
Mecanum AGV requires an autonomous navigation system
to operate in a factory automation environment. In this
autonomous navigation system, the core technology is indoor
localization.However, a conventionalmethod for aMecanum
AGVhas some limits in localization processes, such as the slip
phenomenon. Because of the special structure in which the
roller is attached to the axis of rotation, the Mecanum AGV
frequently slips in the variations of road’s surface and ground
friction. A conventional method such as the dead reckoning
method has accumulated errors because of the inevitable slip
phenomenon of the Mecanum wheel [1].

Laser navigation systems have been used in AGV local-
ization sensors. However, the sensor’s price is very expensive
and the response time is very slow, so a laser system is

inappropriate in an indoor navigation system [2]. Other
methods for absolute localization include radio frequency
identification (RFID) [3], which is an active badge system
using infrared light developed at AT&T Labs [4], MIT’s
cricket system based on ultrasonics [5], and Ubisense Com-
pany’s Ubitag based on UWB [6]. However, there is no
absolute solution regarding localization methods. The sensor
fusion method for the mobile robot localization uses a
Kalman filter [7, 8] and a particle filter [9, 10].These methods
are based on the Bayesian filter [11]. Many researchers have
studied sensor fusion technique using two or more sensors
formobile robot localization; for example, Lee et al. used laser
and encoder [12] and Rigatos used sonar and encoder [13]. In
this paper, the StarGazer localization sensor (HAGISONIC
Co. [14]) was used. As shown in Figure 1, this image sensor
analyzes an infrared ray image that is reflected from a
passive landmark with an independent ID. This image-based
sensor has the advantage of absolute position sensing of
the mobile robot. However, moving errors and unexpected
errors occur because of landmarkmisrecognition [15, 16]. On
the other hand, the localization method using ENCODER
generates accumulated errors, but there are nomoving errors
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Figure 1: Principle of StarGazer operation.

or unexpected errors. Thus, we obtained the advantages of
both types of sensor complementary by using Kalman filter
sensor fusion. Also, we prove the precise localization of the
Mecanum AGV in inevitable slip phenomenon situation by
simulation.

This paper is organized as follows. In Section 2, we
describe our analysis of the kinematic modeling of the
Mecanum AGV. In Section 3, we describe the Kalman filter
sensor fusion algorithms and system modeling. In Section 4,
we evaluate sensor fusion algorithms using MATLAB simu-
lation. Finally, our conclusions are given in Section 5.

2. Kinematics Modeling of the Mecanum AGV

A coordinate of a Mecanum AGV with a Mecanum wheel is
shown as an “𝑋” shape in the floor plan in Figure 2.Mecanum
AGV kinematics were analyzed for each coordinate [15].

We drew the kinematics modeling for Mecanum AGV
localization. On the plane, the velocity of theMecanumAGV
𝑉 = [𝑉

𝑋
𝑉
𝑌

𝜔
𝑍
]
𝑇 can represent the linear velocity of each

Mecanum wheel 𝑉
𝑖𝑊

= [𝑉
1𝑊

𝑉
2𝑊

𝑉
3𝑊

𝑉
4𝑊

]
𝑇. That is, the

Jacobian equation of the Mecanum AGV kinematics model
can represent 𝑉 = 𝐽

+

𝑉
𝑖𝑊
. Also, the reverse inverse Jacobian

equation can represent 𝑉
𝑖𝑊

= 𝐽𝑉.
We obtain (1) by representing the matrix equation as

𝑉
𝑖𝑊

= 𝐽𝑉:

[
[
[
[
[

[

𝑉
1𝑊

𝑉
2𝑊

𝑉
3𝑊

𝑉
4𝑊

]
]
]
]
]

]

= 𝐽
[
[

[

𝑉
𝑋

𝑉
𝑌

𝜔
𝑍

]
]

]

, where 𝐽 =

[
[
[
[
[

[

−1 1 − (𝑊 − 𝐿)

1 1 (𝑊 − 𝐿)

1 1 − (𝑊 − 𝐿)

−1 1 (𝑊 − 𝐿)

]
]
]
]
]

]

. (1)

To obtain the inverse of asymmetric matrix 𝐽, we used a
pseudoinverse matrix 𝐽

+

= (𝐽
𝑇

⋅ 𝐽)
−1

𝐽
𝑇:

𝐽
+

=
1

4

[
[
[
[

[

−1 1 1 −1

1 1 1 1

−
1

𝑎

1

𝑎
−
1

𝑎

1

𝑎

]
]
]
]

]

, where 𝑎 = (𝑊 − 𝐿) . (2)

W

Y

X

L

V1W V2W

V3W V4W

V1r
V2r

V3r V4r

VY
VX

𝜔Z

V1x

V1y V2y

V2x

V3y V4y

V3x V4x

Figure 2: Coordinate of Mecanum AGV.

Therefore, the Jacobian equation of 𝑉 = 𝐽
+

𝑉
𝑖𝑊

is given
by

[
[

[

𝑉
𝑋

𝑉
𝑌

𝜔
𝑍

]
]

]

= 𝐽
+

[
[
[
[
[

[

𝑉
1𝑊

𝑉
2𝑊

𝑉
3𝑊

𝑉
4𝑊

]
]
]
]
]

]

, where 𝐽
+

=
1

4

[
[
[
[

[

−1 1 1 −1

1 1 1 1

−
1

𝑎

1

𝑎
−
1

𝑎

1

𝑎

]
]
]
]

]

.

(3)

Each wheel’s linear velocity is the product of the angular
velocity and the radius of the wheel. Thus, 𝑉

𝑖𝑊
= 𝑅 ̇𝜃
𝑖
, where

𝑅 is Mecanum wheel radius and ̇𝜃
𝑖
is the wheel’s angular

velocity. This equation can be represented as

[
[

[

𝑉
𝑋

𝑉
𝑌

𝜔
𝑍

]
]

]

=
𝑅

4

[
[
[
[

[

−1 1 1 −1

1 1 1 1

−
1

𝑎

1

𝑎
−
1

𝑎

1

𝑎

]
]
]
]

]

[
[
[
[
[
[

[

̇𝜃
1

̇𝜃
2

̇𝜃
3

̇𝜃
4

]
]
]
]
]
]

]

. (4)

Now, [𝑉
𝑋

𝑉
𝑌

𝜔
𝑍
]
𝑇

= [𝑋
𝑋

̇𝑌
𝑌

̇𝜃
𝑍
]
𝑇 is a moving

coordinate so we must translate the reference coordinate
using a transformation matrix:

[
[
[

[

̇𝑥
𝑟

̇𝑦
𝑟

̇𝜃

]
]
]

]

=
[
[

[

cos 𝜃 − sin 𝜃 0

sin 𝜃 cos 𝜃 0

0 0 1

]
]

]

[
[

[

𝑉
𝑋

𝑉
𝑌

𝜔
𝑍

]
]

]

. (5)

We can obtain the position by integrating this velocity of the
reference coordinate [ ̇𝑥

𝑟

̇𝑦
𝑟

̇𝜃]
𝑇. This method is called dead
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(0) Prior knowledge of state

(2) Calculate Kalman gain

(3) Calculate estimation

(4) Calculate covariance

Measurement value Estimation value

(1) Prediction of x̂−k and P−k

x̂0, P0

x̂−k = Ax̂k−1

Pk = P−k − KkHP
−
k

x̂k = x̂−k + Kk(zk − Hx̂−k )Zk
x̂k

P−k = APk−1A
T + Q

Kk = P−k H
T(HP−k H

T + R)−1

Figure 3: Kalman filter algorithm.

reckoning, and a conventional mobile robot position system
typically uses this method.

3. Kalman Filter Sensor Fusion
Algorithms for Localization

The dead reckoning method described in Section 2 has
inevitable accumulated errors because of the Mecanum
wheel’s mechanical structure and variations in the road’s
surface. So, this approach can be used for short distances
but it cannot be used for long distances and path following.
Generally, long distances and path following use a sensor
fusion technique using dead reckoning and another sensor
for localization [16].

A Kalman filter operates recursively on streams of noisy
input data to produce a statistically optimal estimate of the
underlying system state. The filter is named after Rudolf
(Rudy) E. Kálmán, one of the primary developers of its
theory [17]. The Kalman filter has numerous applications in
technology. Common applications include guidance and the
navigation and control of vehicles, particularly aircraft and
spacecraft.

The Kalman filter algorithm consists of four processes,
as shown in Figure 3. The algorithm includes prediction and
estimation functions.

(1) Estimation.This is the first step, shown in Figure 3. Input
value using prior estimation value (𝑥

𝑘−1
) and covariance

(𝑃
−

𝑘−1

), and finally calculate estimation value (𝑥
−

𝑘

, 𝑃
−

𝑘

). These
values will be used in the prediction step.

(2) Prediction. This involves the second, third, and fourth
steps shown in Figure 3. The final value of these steps is an
estimation value (𝑥

𝑘
) and the covariance (𝑃

𝑘
). Input values

use estimation value (𝑥
−

𝑘

, 𝑃
−

𝑘

) of estimation step result and
measurement value (𝑧

𝑘
).

Here covariance (𝑃
𝑘
) is criterion, that is, difference

between real value and estimation value of Kalman filter:

𝑥
𝑘
∼ 𝑁 (𝑥

𝑘
, 𝑃
𝑘
) . (6)

This means variables 𝑥
𝑘
mean normal distribution that

average value is 𝑥
𝑘
and covariance is 𝑃

𝑘
. Kalman filter

algorithms choose estimation value using probability distri-
bution of estimation value 𝑥

𝑘
which becomes the maximum

probability value.
Figure 4 shows a Kalman filter sensor fusion-based

encoder and StarGazer for Mecanum AGV localization in
which the system model is ENCODER and the observation
model is StarGazer.

The Kalman filter discrete system modeling and
observation modeling based on Jacobian equation (3) of the
kinematics modeling of the Mecanum AGV are described as
follows.

(i) ENCODER-Based System Modeling. Consider

[𝑉
𝑋

𝑉
𝑌

𝜔
𝑍
]
𝑇

= [𝑋
𝑋

̇𝑌
𝑌

̇𝜃
𝑍

]
𝑇

, (7)
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𝑌

𝜃
𝑍

]
]

]
𝑘

=
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𝑋
𝑋

𝑌
𝑌

𝜃
𝑍

]
]

]
𝑘−1

+
𝑅

4

[
[
[
[

[

−1 1 1 −1

1 1 1 1

−
1
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1

𝑎
−
1

𝑎

1

𝑎

]
]
]
]

]

[
[
[
[
[
[

[

̇𝜃
1

̇𝜃
2

̇𝜃
3

̇𝜃
4

]
]
]
]
]
]

]
𝑘

× 𝑇 + 𝑤
𝑘
, where 𝑇: Sampling Time,

𝑥
𝑘
= 𝐴𝑥
𝑘−1

+ 𝐵𝑢
𝑘
, where 𝐴 = 𝐼

3
, 𝐵 =

𝑅

4
𝐽
+

,

(8)
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Figure 4: Diagram for Kalman filter sensor fusion.

Figure 5: Prototype of Mecanum AGV.

where ̇𝜃
𝑖
is control input 𝑢

𝑘
, which is the angular velocity

measured by ENCODER. The [𝑋
𝑋

𝑌 𝜃
𝑍
]
𝑇 is the moving

coordinate. So, using the transformation matrix, a transform
is made to the reference coordinate system:

[
[

[

𝑥
𝑟

𝑦
𝑟

𝜃

]
]

]

=
[
[

[

cos 𝜃 − sin 𝜃 0

sin 𝜃 cos 𝜃 0

0 0 1

]
]

]

[
[

[

𝑋
𝑋

𝑌
𝑌

𝜃
𝑍

]
]

]

. (9)

(ii) StarGazer-Based Observation Modeling. The observa-
tion model is the StarGazer sensor-based position value
𝑥
𝑘
(𝑋
𝑋

𝑌
𝑌

𝜃
𝑍
). Observationmodel is designed by including

disturbance (V
𝑘
):

𝑧
𝑘
= 𝐻𝑥
𝑘
+ V
𝑘
, where 𝐻 = 𝐼

3
, V
𝑘
= Experiment Value,

(10)

where the experiment value V
𝑘
is the measurement noise

of StarGazer following V
𝑘

∼ 𝑁(0, 0.1
2

). Following V
𝑘

∼

𝑁(0, 0.1
2

) is a normal distribution value where the mean
value is 0 and the standard deviation is 0.1.

The system model and observation model use Kalman
filter sensor fusion, where the position acquired by StarGazer
is in the measured value and (8) represents the system
model. Therefore, the Kalman filter sensor fusion attempts
to eliminate the StarGazer position error-based ENCODER
system model using Kalman filter algorithms.

Table 1: Specification of Mecanum AGV.

Chassis

Length 400mm
Width 360mm

Wheel Base 300mm
Speed 0.6m/s

Wheel Type Mecanum wheel
Diameter 100mm

Motor Type 12V DC coreless motor
RPM 120 rpm

Trajectory
Encoder
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Figure 6: Mecanum AGV localization for ENCODER.

4. Experiment and Simulation Results

4.1. Mecanum AGV Localization System Prototype. Figure 5
shows our prototype of the Mecanum AGV for localization.
MyRIO (NI Co.) was used for sensor data acquisition. We
developed a code to allow ENCODER and StarGazer sensor
data to use LabVIEW.

Specifications for the chassis, wheels, and motor are
shown in Table 1. The Mecanum wheel and roller were made
of aluminum and synthetic rubber, and the gear ratio is 64 : 1.
Two MAI-2MT-DC drivers were used as drive motors. The
optical encoder has 12 CPR (count per revolution) resolution.
StarGazer obtains position data ten times per second by
RS232 using MyRIO.

4.2. Localization by ENCODER. The localization experiment
using ENCODER was composed that Mecanum AGV drives
2m width and height square path and then integrates the
velocity of the reference coordinate [ ̇𝑥

𝑟

̇𝑦
𝑟

̇𝜃]
𝑇 o of (5).

Figure 6 shows that the localization by ENCODER has
accumulation errors because of integration errors and slip
phenomenon. Nevertheless, ENCODER has the advantage
that there is no dead-zone, and there are no moving errors.
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Figure 7: Landmark ID of StarGazer.
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Figure 8: Mecanum AGV localization for StarGazer.

4.3. Localization by StarGazer. In this localization experi-
ment, four landmark IDs are arranged in a square layout as
shown in Figure 7. Each landmark space out 1.8m, and each
landmark can measure data within a 2m radius. StarGazer
detected one Landmark with respect to another Landmark.
Then, the position value was calculated for the relative
coordinate of each landmark.

Figure 8 shows position data calculated by StarGazer.
The Mecanum AGV drove 2m space square path. A total
of 30 experiments were performed, and four experiment
cases are shown in Figure 8. The average moving error is less
than about 10 cm. As shown in Figure 8, unexpected large
position errors occurred.This is caused by StarGazer that can
be confused in overlapped area between one landmark and
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Figure 9: Square path experiment results of Mecanum AGV.

another. In experiment average unexpected large position
errors occurred 1.4 times of 30. These large position errors
caused unscented moving of the AGV. Because of these
errors, misunderstanding positions of AGV causes wrong
path following. So, these terms must be deleted in order
to follow the correct path. StarGazer, in comparison to
ENCODER, can calculate the absolute value of the mobile
robot with accumulated errors.

4.4. Kalman Filter Sensor Fusion Simulation Result. In this
experiment, the Mecanum AGV drove a square path (width
2m, height 2m) in an area with dimensions of 4m × 4m.The
measured values acquired by ENCODER and StarGazer were
used in simulation by MATLAB.Then, the localization value
from ENCODER by integrating (7), the localization value
from StarGazer, and the Kalman filter sensor fusion value
were compared.

As shown in Figure 9, the green line represents the
localization value by ENCODER and the blue line represents
the localization value by StarGazer. The red line represents
the Kalman filter sensor fusion localization value. Sensor
fusion can delete accumulated error of ENCODER and the
large position error because of the landmark misrecognition
problem. These results mean that localization errors by
StarGazer were deleted from using Kalman filter system
modeling based on Mecanum AGV kinematics model (9).
The resulting estimation path from the Kalman filter sensor
fusion deviated from the 2m square path due to theMecanum
AGV slip phenomenon.

5. Conclusion

This paper was written for sensing precise localization val-
ues of Mecanum AGV nevertheless unavoidable slip phe-
nomenon. To overcome this phenomenon, we used two

sensors: StarGazer and ENCODER. StarGazer can mea-
sure absolute localization values but produces large errors
because of landmark misrecognition. ENCODER does not
have moving errors and there is no dead zone, but there
are accumulated errors because of the integrating term and
slip phenomenon. A Kalman filter was also used to obtain
the advantages of both types of sensors. Our simulation
results show that the Kalman filter sensor fusion method
can delete accumulated errors of ENCODER and StarGazer
moving error and big error caused landmark misrecognition.
Mecanum AGV for autonomous driving can move narrow
path and sideway moving can easily approach conveyer line.
For autonomous driving, core technology is localization.This
method can suggest theMecanumAGV localization solution
to overcome such as unavoidable slip phenomenon by sensor
fusion ENCODER and StarGazer. The proposed method
in this paper is expected to bring innovation to factory
automation. Future research topics include path tracking,
path following, and the map building process method using
Mecanum AGV.
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A person tracking algorithm by fusing multicues based on patches is proposed to solve the problem of distinguishing person,
occlusion, and illumination variations. Kinect is mounted on the robot for providing color images and depth maps. A detector
representing a person by using the fusion of multicues based on patches is proposed. The detector divides the person into
many patches and then represents each patch by using depth-color histograms and depth-texture histograms. The appearance
representation, considering depth, color, and texture information, has powerful discrimination ability to handle the problems of
occlusion, illumination changes, and pose variations. Considering the motion of the robot and person, a tracker called motion
extendedKalman filter (MEKF) is presented to predict the person’s position.The result of the tracker is treated as a candidate sample
of the detector, and then the result of the detector is the previous knowledge of the tracker.The detector and tracker supplement each
other and improve the tracking performance. To drive the robot towards the given person precisely, a fuzzy based intelligent gear
control strategy (FZ-IGS) is implemented. Experiments demonstrate that the proposed approach can track a person in a complex
environment and have an optimum performance.

1. Introduction

With the popularity of robot in human environments, it is
necessary to detect and track a person in many applications
including surveillance, search, rescue, combat, and human
assistant. Person detecting and tracking are very challenging
computer vision tasks due to automatic initialization, pose
variations, expensive calculation cost, and occlusions in
complicated environments [1].

In real-world settings, persons are nonrigid and difficult
to be tracked. To resolve the problem, an efficient representa-
tion should be considered for an available appearance model.
Color is widely used for modeling a target, and one of the
best methods for color-based object tracking is to realize the
mean shift algorithm [2, 3]. Ning et al. [4] presented a scale
and orientation adaptive mean shift algorithm to handle the
problem of scale and orientation changes. Unfortunately, the

pixel-wise color density does not consider extreme geometric
changes of an object. It is vulnerable when there is occlusion
or similar background. Many researches have focused on
resolving the problem by utilizing the texture feature. Ning
et al. [5] used joint color-texture histograms for robustly
tracking a target in complex environment. Compared with
the traditional color histogram, the joint color-texture his-
tograms efficiently exploited a target’s structure information
and hence performed better when a target has similar color
appearance with the background.

To further eliminate the influence of background, depth
information captured from stereo cameras is employed.
The depth information easily performs the foreground-
background segmentation [6]. However, most stereo tracking
systems are implemented with known calibration parameters
[7]. In the last few years, stereocameras (e.g., Kinect [8]), with
no extensive knowledge of camera calibration parameters
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and low cost, have been widely used in computer vision
[9, 10]. Compared with the traditional stereocameras [7],
Kinect can provide higher quality color image and depthmap
and is widely employed recently. Xia et al. [10] considered
object tracking as foreground-background segmentation by
extracting contour information and depth feature from a
Kinect sensor. Zoidi et al. [6] represented an appearance by
fusing Local Steering Kernel features and 2D color-disparity
histograms. The method employed disparity information to
identify scale changes by analyzing disparity values. The
depth image (disparity image) indicates objects’ distances
in the complexity environment, which meets the human
visual perception system. Therefore, the depth information
is of great significance to discriminate the target from the
background.

Occlusion is a difficult problem in object tracking. To
cope with the problem, patches based algorithms were
proposed [11–14]. Adam et al. [11] presented a fragments-
based color histograms method. The method represented a
target by integrating each part’s color histograms to handle
partial occlusions and pose variations. Nejhum et al. [12] used
multiple blocks to model a frequently changing foreground
shape. The method successfully tracked objects undergoing
significant shape variations and illumination changes. Yang et
al. [13] proposed a spatially attentional patches based tracking
method which performed well on a large number of real-
world videos. Kwon and Lee [14] proposed a patches based
dynamic appearance model for representing a target. The
hue, saturation, and value features were adaptively selected
for calculating photometric likelihood, while the squared
differences between patches were adopted for representing
geometric likelihood. Unfortunately, it suffered from a high
computing burden due to the Basin Hopping Monte Carlo.

For a robot system in clustered environment, a con-
tinuous and stable controller is important for following a
person. However, to the author’s knowledge, many works
have focused on the problem of target detection and tracking
but rarely addressed the problem of designing a suitable con-
troller for driving a robot [15]. The existing controller mainly
includes the PID controller [16], visual based sliding mode
controller [15], fuzzy based controller [17], and intelligent
controller [7]. Ouadah et al. [15] presented two sliding mode
controllers to control the robot according to the person’s
position obtained from RFID system and visual system,
respectively. The robot can follow the given person when
there is a sudden turn. Jia et al. [7] presented an intelligent
speed controller considering the robot’s kinematics.However,
the algorithm often fails to follow the person because of the
fixed linear velocity.

In the past decades, person tracking system using a robot
has achieved a lot of improvements. However, the problems
of distinguishing person, occlusion, and safe following still
exist. We address the problem by representing a person
with multicues based on patches and designing a fuzzy
based intelligent gear control strategy (FZ-IGS). The person
detection algorithm includes a detector and a tracker. The
detector divides a person into many patches and represents
a patch by the use of multicues including depth, color,
and texture. The depth information, indicating the person’s

location, is combined with color and texture features for
generating depth-color histograms and depth-texture his-
tograms, respectively. As track evolves, the detector adjusts
the person’s size according to depth information. By analyzing
the depth histograms and patches’ similarity with the given
person, the detector can easily recognize the occlusion and
then make a decision to update the person’s appearance
model and change the tracking strategy. When there is a
partial occlusion, the detector recognizes the person by using
the patches which are not occluded.The tractor calledMEKF
is generated from the EKF by considering the motion of the
robot and person. The MEKF predicts the person’s position
as a candidate sample for the detector. Finally, FZ-IGS is
designed to change the turning gain and linear velocity of the
robot according to the position of the person from the robot.
The FZ-IGS drives the robot towards the person continuously
and stably.

The paper is organized as follows: the overview of the
proposed method is discussed in Section 2. In Section 3,
the multicues based detector is described. Section 4 details
the steps of processing person location and model update.
The fuzzy based controllers are described in Section 5. The
experimental results are detailed in Section 6. The paper
conclusion with a short summary is shown in Section 7.

2. Framework and Architecture

The section details the platform and the system overviews for
performing the person following task.

2.1. Development Platform and Environment. The platform
used for performing person following task is an American
Mobile Robots Inc. Pioneer 3-DX embedded with a Kinect,
illustrated in Figure 1. The Kinect is a new and widely
available device for the Xbox 360. The interest for Kinect is
increasing in computer vision due to its advantages of pro-
viding 3D information of the environment and low cost. The
device contains an RGB camera, a multiarray microphone,
and a depth sensor. Using these sensors, Kinect can capture
full body 3D motion. The Kinect hardware specification is
detailed as follows:

(1) RGB camera: 640 × 480 pixels/32 bit colour at 30
frames/sec,

(2) depth sensor: 320 × 240 pixels/16 bit greyscale at 30
frames/sec,

(3) sensor range: 1.2m–3.5m,
(4) field of view: horizontal: 57∘ (1.3m–3.8m); vertical:

43∘.

Using these sensors, the Kinect can provide two kinds
of images: depth image and color image. The depth image is
obtained by the depth sensor which contains a CMOS camera
and an infrared projector. The infrared projector produces
speckle pattern in the scene.Then, the CMOS camera records
the speckle pattern and results in the depth image. The color
image is produced by the RGB camera with a resolution of
640 × 480 pixels at 30 frames per second. The Kinect has a
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Figure 1: The platform for person tracking.

field of view 57∘ which can satisfy the need of object tracking.
The algorithm is implemented by VC++2008 and Opencv2.1.

2.2. System Overview. Given a stream of color images and
depth maps, our goal is to continuously track a person. The
overview of our system is presented in Figure 2. The system
includes a detector, a tracker, and an online update strategy.
The detector represents the person by using the depth,
color, and texture information obtained from the Kinect.
The tracker predicts the person’s position by considering
the person and robot’s motion. The result of the tracker is
treated as a candidate sample of the detector for determining
the person’s location, and then the result of the detector
is adopted as the previous information of the tracker. The
detector and tracker supplement and complement each other,
which improves the tracking performance. As track evolves,
the detector adjusts the person’s size according to depth
histograms and determines the occlusion problem based on
the depth histograms and patches’ appearance similarity.
Finally, the online update strategy adaptively updates the
person’s appearance to avoid introducing more inference and
handle the variations on illumination and pose.

3. Detector

It is reported that the appearance represented by a single
feature often fails in tracking process when there is similar
background. To handle the problem, we represent a person
by using multicues including depth, color, and texture.
The detector can successfully recognize a person by using

one feature while the other features are invalid. The depth
feature, easily discriminating the person from background,
is extracted for representing the person to overcome the
background’s inference. Furthermore, the detector detects the
problem of occlusion considering the depth histograms and
the patches’ appearance similarity and then adjusts the online
update strategy.

3.1. Depth Histograms. Depth map, captured from the sensor
Kinect, provides 3D information of the environment and is
invariant to illumination [6]. Comparedwith the color image,
the depth values provide an intuitive notion of the relative
person’s distance from the robot. The larger the depth value
is, the closer the person is to the robot. In our case, the robot
is controlled towards the given person and remains in a safety
distance from him. Therefore, the depth values of the person
are closest to the robot. Then, the depth segmentation can be
performed on the depth map for distinguishing the person
from the background.

The depth is discretely distributed in 𝑛 intervals. The
depth values are represented by a vector 𝑥∗

𝑖 𝑖=1,2,...,𝑀; 𝑀 is the
number of the depth value. A delta function 𝛿(⋅) is employed
to determine the interval for the depth value 𝑥

𝑖
. Then, depth

features, called depth histograms, are extracted by analyzing
the pixels of the depth image:

𝑞
𝑑
=

𝑀

∑

𝑖=1
𝛿 [𝑏 (𝑥

∗

𝑖

) − 𝑢] , (1)

where 𝑢 is an interval. During tracking, we assume that the
person is in front of the robot and his position from the robot
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does not change significantly from frame to frame.Therefore,
all of the person’s depth values will lie in the last bin of the
depth histograms and will be far from the background. Con-
sidering the depth histograms, the foreground-background
segmentation will be much easier. The depth histogram is
shown in Figure 3. Affected by the illumination, the depth
value in some region is higher than another region, shown
in Figure 3(a). Therefore, the bins belonging to the target are
the last two bins (181 and 211) shown in Figure 3(b).The depth
histogram for the target in the blue rectangle is shown in
Figure 3(c). It has two bins: bin 181 is for the regionwith lower
depth value; bin 211 is for the region with higher depth value.

Furthermore, the person’s size changes according to the
variation of his position from the robot in the tracking
process. The appearance model obtained by using the fixed
rectangle size will introduce background’s inference or lose
some important information when the distance changes.
While the distance is large, we expect the rectangle size to be
small for fitting the person. When the person is close to the
robot, we expect the rectangle size to be large to fit the person.
The depth information indicates the changes of the person’s
size. In the case in which the person’s position changes, the
bin values of the depth histograms will correspondingly vary.
Thus, we adaptively adjust the rectangle’s size based on the
depth histograms. The person’s current size is obtained as
follows:

sizenew = sizeold × 𝛾, (2)

where 𝛾 = 𝑞
𝑑
/𝑞base and 𝑞𝑑 is the target’s depth histogram.

𝑞base is the reference depth feature which is determined by
the initial object. 𝑐base is the adjustment parameter which is
determined by initial size of the target. sizeold = {𝑊,𝐻} is
the size of the person in previous frame. When the person’s

size changes due to the variations of the distance between
the person and the robot, the rectangle size is updated. The
obtained person’s rectangle size, fitting the variations of the
distance, can not only avoid inducing more inference from
background due to a larger rectangle but also avoid losing
important information because of the smaller rectangle. After
adjusting the person size, the detector collects the candidate
samples based on the new size and updates the appearance
model.

3.2. Depth-Color/Texture Detector. In order to successfully
discriminate a given person, multicues are employed for
representing the person. Color has been proved to be useful
for modeling a target. Compared with other features, color
is insensitive to scale and translation. Therefore, it has been
widely adopted for target representation. Texture, as another
effective description operator, indicates the pixels’ space
property. To obtain more powerful representation, color and
texture are mixed for modeling a target.

The traditional color and texture based object representa-
tion has successfully discriminated personwhen there is color
or texture clutter in background [5]. However, it can hardly
solve the problem of occlusion and complex background. In
our research, depth information is employed to handle color
or texture clutter in background due to the depth’s ability of
foreground-background segmentation. The disadvantage of
depth segmentation is that it cannot easily discriminate the
objects lying in the same distance from the robot. Fortunately,
this can be resolved by using the color or texture features.
The depth, color, and texture are combined to generate the
depth-color histograms and depth-texture histograms for
representing the person.Moreover, to deal with the occlusion
problem, patches based representation method is presented.
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Figure 3: The illustration of the depth histogram. (a) The depth image, the blue rectangle is for the target. (b) The depth histogram for the
depth image. (c) The depth histogram for the target in the blue rectangle.

The person in a rectangle is divided into 𝑁 × 𝑁 patches
and each patch is represented by the depth-color and depth-
texture histograms:

𝑞
𝑓,𝑛,𝑢

= 𝐶

𝑀

∑

𝑖=1
𝐾(𝑦0, 𝑥

∗

𝑖

) 𝛿 [𝑏 (𝑥
∗

𝑖

) − 𝑢] , (3)

where 𝑓 = 𝐶𝑑, 𝐿𝑑 indicates the depth-color and depth-
texture information, respectively. 𝑞

𝑓
is the obtained depth-

color histograms and depth-texture histograms. The color
feature is captured from the HSV space, while the texture
information is the uniform texture [5]. 𝑛 = 𝑁 × 𝑁 is the
number of the person’s patches. 𝐶 = 1/ ∑𝑀

𝑖=1 𝐾(𝑦0, 𝑥
∗

𝑖

) is
the normalized coefficient. {𝑥∗

𝑖

}
{𝑖=1,...,𝑀} is the pixels of each

patch; 𝑦0 is the center of each patch. 𝛿(⋅) is the 𝑑𝑒𝑙𝑡𝑎 function
for determining the feature’s bin number.𝐾(𝑦0, 𝑥

∗

𝑖

) is a kernel
function which affects the obtained features’ discriminative
power. The Epanechnikov function is commonly used. It
assigns a larger weight for the pixels in the center of the target
image and a smaller value for the pixels far away from the
center.This method can avoid introducing to a certain extent

the inference of the background around the person. However,
for the pixels far away from the center, its importance in
the appearance representation is reduced due to the smaller
weight. Furthermore, the edges and background far away
from the center of an irregular target (e.g., person) may be
confused. In such a case, the pixels in the background with
smaller weights are introduced into the appearance model.
To deal with the problem, depth information is used for
constructing the new kernel function for segmenting the
target from the background:

𝐾(𝑦0, 𝑥
∗

𝑖

) = 𝑀depth,𝑛 (𝑥
∗

𝑖

) , (4)

where

𝑀depth,𝑛 (𝑥
∗

𝑖

) =

{

{

{

𝑔 (𝑢
∗

) , 𝑥
∗

𝑖

∈ 𝑞
𝑑
(𝑢
∗

) ,

0, otherwise
(5)

is the mask image. 𝑢∗ is the bin belonging to the person.
The new kernel function avoids introducing the background’s
inference because the pixels with the value 𝑔(𝑢∗) in the mask
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Figure 4: The illustration of depth information when there is occlusion.

image belong to the person and the pixels with the value 0
belong to the background. Compared to the Epanechnikov
function, the new function assigns the pixels of the person the
same weights to improve the representation’s discrimination
ability.

The person is represented by modeling each patch using
the obtained depth-color and depth-texture histograms. The
color histograms describe the target integrally, while the tex-
ture histograms depict image’s local texture. The two features
somehow supplement each other. The depth information,
identifying the target from background, deals with the color
or texture clutter in background.

3.3. Occlusion Problem. As tracking evolves, there may be
occlusion which will result in tracking failure. The patches
based tracking algorithm was proposed to deal with the
problem [18].The person is divided into𝑁×𝑁 patches.When
there is partial occlusion, some patches are occluded and
others are free. We present a method to detect the occlusion
problembyusing the patches based appearance similarity and
the depth histograms. After detecting the occlusion, the per-
son is discriminated by processing the unoccluded patches.
The depth map with occlusion problem is shown in Figure 4.

For a person tracking system, the person’s depth infor-
mation lies in the last bin of the depth histograms and is far
away from the background usually. In the case in which the
person is occluded, the last two bins are next to each other.
The last bin belongs to the passerby, while the last bin but one
is for the person. As shown in Figure 4, the last bin “181” with
more than 1200 depth values belongs to the passerby that is
near the camera. The last bin but one “151” is for the person
that is occluded by the passerby.Then, for the person and the
passerby, we performdepth feature and the patches’ similarity
for detecting the occlusion problem.

In an ideal tracking process, the bin for the person
maintains stability. The depth feature similarity is calculated
as 𝑆
𝑞
= 𝑞
𝑑
− 𝑞
𝑡

𝑑

, where 𝑞𝑡
𝑑

is the depth feature in the current
frame. A threshold is set to determine whether the depth
feature belongs to the target.Moreover, the patches’ similarity
is processed to detect the person successfully, which will be
shown in Section 3.4.

3.4. Patches Based Multicues for Person Detection. Compared
with only one feature, to represent a person by extracting
different features can improve the model’s discrimination
ability. Once one feature fails to discriminate the person, the
other features are valid. The person is represented by many
patches which are in a decreasing order based on the depth-
color histograms and depth-texture histograms, respectively.
For a given threshold, th, the detector recognizes the per-
son according to their appearance similarity. Normally, the
candidate sample with the maximum overall similarity and
over 90% of the number of patches is the person. However,
some features (e.g., depth-color histograms) may change
much due to pose variations or illumination changes. Then,
the corresponding similarity will decrease and the overall
similarity will be less than the threshold, th. In such a case, the
detector will recognize the person based on the other feature’s
similarity (e.g., depth-texture histograms) and the number of
the patches. Once partial occlusion is detected, the detector
recognizes the person according to the patches which are
not occluded. The patches based multicues representation is
shown in Figure 5.

The patch’s similarity between the candidate sample and
the person is measured by using the cosine similarity metric:

𝜌
𝑓,𝑛
(𝑝
𝑓,𝑛
, 𝑞
𝑓,𝑛
) = cos (𝜃) =

⟨𝑝
𝑓,𝑛
, 𝑞
𝑓,𝑛
⟩


𝑝
𝑓,𝑛




𝑞
𝑓,𝑛



∈ [−1, 1] , (6)

where ⟨⋅⟩ is the inner product and ‖ ⋅ ‖ indicates the Euler
distance. 𝜃 is the angle between two vectors.

The similarity between the candidate sample and the
model is

𝜌
𝑓
=

𝑁×𝑁

∑

𝑛=1

𝜌
2
𝑓,𝑛

1 − 𝜌2
𝑓,𝑛

∈ [0, +∞] . (7)

The overall similarity is

𝜌 = 𝜌
𝐶𝑑
×𝜌
𝐿𝑑
. (8)
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occlusion.

3.5. Tracker. EKF is a set of mathematical equations pro-
viding an efficient solution for prediction problem. The
algorithm is very powerful to deal with the short time
occlusion problem in tracking process. However, for the
person tracking system with a mobile robot, the EKF often
fails to accurately predict the person because the robot and
person are moving together. To deal with the problem, we
present a tracker called Motion EKF combining the motion
of the robot and the person:

𝑋
𝑡+1
𝑟

= 𝑓 (𝑋
𝑡

𝑟

, control
𝑡
) +𝑅
𝑡
𝑤
𝑡
,

𝑌
𝑡

𝑟

= 𝐻
𝑡
𝑋
𝑡

𝑟

+𝑝
𝑡
,

(9)

where 𝑋
𝑟
= [𝑥
𝑟
, 𝑦
𝑟
, 𝑧
𝑟
, ̇𝑥
𝑟
, ̇𝑦
𝑟
] is the state vector, (𝑥

𝑟
, 𝑦
𝑟
, 𝑧
𝑟
)

is the 3D position of the person in the robot coordinate
system, ̇𝑥

𝑟
, ̇𝑦
𝑟
are the velocity of the person in the horizontal

plane, and control
𝑡
= [V
𝑙
, V
𝑟
] is the control variable. 𝑝

𝑡
is

the observation noise, and its covariance matrix is 𝑅𝑡 =
Cov(𝑝

𝑡
) = 𝐸[𝑝

𝑡
, 𝑝
𝑇

𝑡

] = 𝜎
2
𝑝

[
1 0 0
0 1 0
0 0 1

]. 𝑌𝑡
𝑟

= (𝑥
𝑡

𝑟

, 𝑦
𝑡

𝑟

, 𝑧
𝑡

𝑟

) is the 3D
position of the target in time 𝑡.𝑤

𝑡
is the process noise, and its

covariance matrix is 𝑄
𝑡
= Cov(𝑤

𝑡
) = 𝐸[𝑤

𝑡
, 𝑤
𝑇

𝑡

] = 𝜎
2
𝑤

[
1 0
0 1 ].

Consider𝐻
𝑡
= [

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

].
Considering the robot’s motion, the state transition func-

tion is

𝑓
𝑡
(𝑥
𝑡

𝑟

, control
𝑡
)

=

[
[
[
[
[
[
[
[

[

(𝑥
𝑡

𝑟

+ Δ𝑡𝑥
𝑡

𝑟

− Δ𝑥
𝑟
) cosΔ𝜃 + (𝑦𝑡

𝑟

+ Δ𝑡𝑦
𝑡

𝑟

− Δ𝑦
𝑟
) sinΔ𝜃

− (𝑥
𝑡

𝑟

+ Δ𝑡𝑥
𝑡

𝑟

− Δ𝑥
𝑟
) sinΔ𝜃 + (𝑦𝑡

𝑟

+ Δ𝑡𝑦
𝑡

𝑟

− Δ𝑦
𝑟
) cosΔ𝜃

𝑧
𝑡

𝑟

𝑥
𝑡

𝑟

cosΔ𝜃 + 𝑦𝑡
𝑟

sinΔ𝜃 − V

−𝑥
𝑡

𝑟

sinΔ𝜃 + 𝑦𝑡
𝑟

cosΔ𝜃

]
]
]
]
]
]
]
]

]

.

(10)

The state equation and observation equation of theMEKF
are obtained by considering the robot and person’s motion.
Compared with EKF, MEKF introduces the robot’s trajec-
tories to improve the robustness of the tracking. Moreover,
the tracking result is a sample of the candidate set of
the detector. The detector recognizes the result from the
candidate set including the tracking result. The detector and
tracker complement each other, which improves the ability of
person detecting.

4. Person Location and Model Update

4.1. Person Location. The proposed tracking framework has
been detailed in Figure 2. In the framework, the person is
located by applying the detector and the tracker together.
During this procedure, the depth information is fused with
the color and texture information. Consequently, we obtain
depth-color histograms and depth-texture histograms.Then,
the person is represented with many patches’ appearance
models. Furthermore, to realize robustly tracking task, the
detector and tracker complement each other. The process for
identifying a person is as follows:

(1) Input is as follows: the depth image and color image.
(2) Get depth histograms for the depth image. Divide

the depth image and color image into 𝑁 × 𝑁 image
patches and then extract these patches’ depth-color
histograms and depth-texture histograms for model-
ing the person.

(3) For a new frame, candidate samples are obtained
around the result. MEKF predicts the person’s posi-
tion which is treated as a sample for detector. Extract
the candidate samples’ depth histograms and divide
the depth image and color image into𝑁 ×𝑁.

(4) 𝐹𝑜𝑟 𝑛 = 1 : 𝑁 × 𝑁,

(a) extract each patch’s depth-color histograms and
depth-texture histograms;

(b) compute the patch’s similarity of the depth-color
histograms and depth-texture histograms.

𝐸𝑛𝑑

(5) The patches will be in a decreasing order based on
𝜌
𝐶𝑑,𝑛

and 𝜌
𝐿𝑑,𝑛

. Compute the similarities 𝜌
𝐶𝑑

and 𝜌
𝐿𝑑
.

Compute the overall similarity according to 𝜌.
(6) Determine the occlusion problem based on the depth

histograms and image pieces’ similarity, and then
detect the person accordingly.

(7) Output is as follows: person’s position.

4.2. Model Update. Illumination changes and pose varia-
tions may result in appearance variation. To cope with
this problem, an efficient update strategy should be used
for adjusting to the appearance changes after detecting the
person. The update strategy studies the person’s appearance
model according to patches’ similarity in different tracking
circumstances:

𝑞
𝑡

𝑓,𝑛,𝑢

=

{

{

{

𝜆 × 𝑞
𝑡

𝑓,𝑛,𝑢

+ (1 − 𝜆) × 𝑞𝑡−1
𝑓,𝑛,𝑢

, 𝜆 > th,

𝑞
𝑡−1
𝑓,𝑛,𝑢

, otherwise,
(11)

where 𝜆 = 𝜌
𝑓

,𝑛
is the patches’ appearance similarity.

Normally, the 𝜆 is the smaller similarity value of depth-
color and depth-texture histograms. When one feature
changes too much due to pose or illumination variations and
fails to recognize the person, the 𝜆 will be determined by the
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Figure 6: The path of the robot towards the person.

other feature’s similarity. In such a case, both of the depth-
color and depth-texture histograms are updated based on
the 𝜆. In particular, the failure appearance model changes
adaptively. When there is partial occlusion, 𝜆 equals the
unconcluded pieces’ similarity.

5. Controller

Our goal is to design an efficient controller to drive the
robot towards a given person and remain at a secure distance
from him. To follow the robot smoothly and continuously,
an intelligence control strategy (IGS) was presented [7],
where the robot’s speed and steer are controlled through
introducing a turning-gain 𝑘. Using the turning gain, the
robot can adaptively change the turning radius to avoid losing
or crashing the person. The path of the robot towards the
person is shown in Figure 6.The person’s position 𝑥

𝑟
, 𝑦
𝑟
, 𝑧
𝑟
is

obtained from the detector mentioned above. 𝜌 is the turning
radius of the robot to follow the person.

For path B, the velocities of the robot’s wheels are
computed as follows:

V
𝑙
= V(1−

2𝑑𝑘𝑦
𝑟

(𝑥2
𝑟

+ 𝑦2
𝑟

)
) ,

V
𝑟
= V(1+

2𝑑𝑘𝑦
𝑟

(𝑥2
𝑟

+ 𝑦2
𝑟

)
) ,

(12)

where V
𝑙
and V
𝑟
are the velocities of the left wheel and right

wheel, respectively. 𝑥
𝑟
and 𝑦

𝑟
are the person’s positions in

the plane coordinate. 𝑥
𝑟
denotes the direction of the person,

while 𝑦
𝑟
is for his direction.

As following evolves, the turning-gain 𝑘 and the linear
velocity V from the IGS keep constant. For a small turning
gain, the turning radius 𝜌/𝑘 is large. When the direction of

Table 1: The fuzzy logic for velocity controller.

V V
𝑥

𝑥
𝑟

𝑁𝐹 𝑁𝑆 𝑍 𝑃𝑆 𝑃𝐹

𝑁𝐹 𝑉𝑆 𝑉𝑆 𝑆 𝑆 𝑍

𝑁𝑆 𝑉𝑆 𝑆 𝑆 𝑍 𝑍

𝑍 𝑉𝑆 𝑍 𝑍 𝐹 𝐹

𝑃𝑆 𝑍 𝐹 𝑉𝐹 𝑉𝐹 𝑉𝐹

𝑃𝐹 𝐹 𝑉𝐹 𝑉𝐹 𝑉𝐹 𝑉𝐹

the person is large (the person is far away from the center
of the field of view of the robot), the robot tends to lose the
person. In contrast, using a large turning gain, the robot often
fails to catch the person close to the center of the robot due
to the small turning radius. Similarly, the robot cannot follow
the person with large distance by using a small linear velocity
and will hit the person due to a large linear velocity. To deal
with these problems, we present a fuzzy based intelligent
control strategy (FZ-IGS). The strategy includes two fuzzy
controllers: a linear velocity controller and a turning-gain
controller.

5.1. Fuzzy Based Linear Velocity Controller. Our task is to
keep the robot in a safe distance from the person while both
the robot and person are moving. The distance between the
robot and person varies due to their motions. In order to
achieve a success track, the robot should change its linear
velocity according to the distance obtained from the detector.
Therefore, a fuzzy based linear velocity controller is designed
to adaptively adjust the robot’s velocity.

For the controller, the distance 𝑥
𝑟
and the person’s vertical

velocity V
𝑥
are chosen as inputs and the linear velocity V is

chosen as output. For the inputs, two kinds of membership
functions are used: the triangular membership function is for
the large distance and velocity and the Gaussian membership
function is for the small distance and velocity. For the output,
we choose the triangular membership function.The domains
of these parameters are 𝑥

𝑟
∈ [0, 3], V

𝑥
∈ [−1, 1], and V ∈

[0, 200]. The membership functions for these parameters are
shown in Figure 7(a).

The fuzzy logic is established based on the human
knowledge, which is shown in Table 1. According to the fuzzy
logic, an adaptive linear velocity is obtained to drive the robot.
In the case in which the distance and the speed of the person
are the largest (𝑥

𝑟
= 𝑃𝐹, V

𝑥
= 𝑃𝐹), the linear velocity will

be accelerated to the maximal value (V = 𝑃𝐹) for following
the person as soon as possible. In contrast, if the distance and
the person’s velocity are very small (𝑥

𝑟
= 𝑁𝐹, V

𝑥
= 𝑁𝐹),

the robot will be slowed down to avoid hitting the person
(V = 𝑁𝐹). The fuzzy based controller makes the robot adapt
its linear velocity according to the distance between the robot
and person and the person’s speed.

5.2. The Fuzzy Based Turning-Gain Controller. As following
evolves, the person often wanders from the center of the
robot’s field. In such a case, the robot should change its
turning radius in time to make sure that the person is in
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Figure 7: The membership functions for linear velocity controller and turning-gain controller.

the center of the robot’s field. To implement the task, a
fuzzy based turning-gain controller is designed, where the
robot’s turning gain is adjusted according to the direction
between the person and robot and the person’s horizontal
velocity.

The inputs for the fuzzy based turning-gain controller
are the direction 𝑦

𝑟
and horizontal velocity of the person V

𝑦
,

respectively. The output is the turning-gain 𝑘. The member-
ship functions of the parameters for the fuzzy based turning-
gain controller are the same as that of the fuzzy based linear
velocity controller, shown in Figure 7(b). The domains of
these parameters are 𝑦

𝑟
∈ [−1.25, 1.25], V

𝑦
∈ [−1, 1], and

𝑘 ∈ [0, 3].
The fuzzy logic is designed according to the human

knowledge to determine the robot’s turning-gain 𝑘. In the
case in which the person moves to the left (𝑦

𝑟
= 𝑃𝐹) at

positive fast speed (V
𝑦
= 𝑃𝐹), the robot will turn at a very

large turning gain (𝑘 = 𝐿) to make the human appear in
the center of the robot’s field again. When the person moves
to the right (𝑦

𝑟
= 𝑁𝐹) at the positive speed (V

𝑦
= 𝑃𝐹),

the robot should turn at a normal turning gain (𝑘 = 𝑁)
for implementing the following task. The fuzzy logic for the
turning gain is shown in Table 2.

6. Experimental Results

Our person tracking algorithm is conducted on the Pioneer
3-DX robot.

Table 2: The fuzzy logic for turning gain controller.

𝑘 V
𝑦

𝑦
𝑟

𝑁𝐹 𝑁𝑆 𝑍 𝑃𝑆 𝑃𝐹

𝑁𝐹 𝐿 𝐿 𝑁 𝑁 𝑁

𝑁𝑆 𝐿 𝐿 𝑁 𝑆 𝑆

𝑍 𝑁 𝑁 𝑆 𝑁 𝑁

𝑃𝑆 𝑆 𝑆 𝑁 𝐿 𝐿

𝑃𝐹 𝑁 𝑁 𝑁 𝐿 𝐿

6.1. User Is Moving but Robot Is Still. In this set of exper-
iments, our method is compared with the color-texture
based object representation algorithm [7].Thesemethods are
evaluated on the color and depth image sequences captured
from a still Kinect. The robot with the Kinect is still and a
given personmoves at about 1∼3m in front of the robot. In the
following process, the given personmoves here and there, and
another personwill pass by and occlude the given person.The
comparison results are shown in Figure 8. The results in the
first row are obtained by using the color-texture based algo-
rithm; these in the second row are for our proposed method.
When there is occlusion, the color-texture based method
often fails to locate the person and loses him after occlusion.
Using our method, the occlusion problem can be detected by
analyzing the depth histograms and patches’ similarity. Once
the occlusion is detected, the method can recognize the given
person by using the unoccluded patches’ appearance model
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Figure 8: The tracking result using CT algorithm and our method when user is moving but robot is still.

Figure 9: The tracking result using CT algorithm and our method when both of the user and the robot are moving.

represented by depth-color and depth-texture histograms.
The results show that the patches based algorithm is of benefit
to the occlusion problem. Furthermore, taking advantage
of depth information, the person representation makes the
foreground-background segmentation much easier.

6.2. Both the User and Robot Are Moving. In this section, our
method is evaluated on a moving robot. As tracking evolves,
there are occlusion, turning, appearance changes, andmotion
of both the robot and the given person. The tracking results
are shown in Figure 9. The method tracks the person by
adopting a patches based multicues detector and a MEKF
tracker. In the case in which there is partial occlusion, the
person is successfully detected by performing our method.
When the person is fully occluded, the MEKF predicts the
position of the person. Furthermore, an update strategy is
adopted for updating the appearance representation in the
tracking process. The experiment results illuminate that our
method performs well in case of occlusion and appearance
variations.

6.3. Robot Following Based on FZ-IGS. In this section, the
performance of the presented FZ-IGS is evaluated. The
given person’s 3D position (𝑥

𝑟
, 𝑥
𝑦
, 𝑥
𝑧
) was obtained from

the data provided by the Kinect and was sent to the robot’s
controllers. The fuzzy based velocity controller changes the
linear velocity according to the fuzzy logic. When there are
variations in terms of distance between the robot and person
(𝑥
𝑟
) or the person’s vertical speed (V

𝑥
), the linear velocity

will accordingly change to make sure that the person is
in a safe distance from the robot. Similarly, the turning-
gain controller determines the turning gain according to the
person’s direction (𝑥

𝑦
) and his speed (V

𝑦
) to keep the person

in the center of the field of view of the robot. The paths

for a person following robot are illustrated in Figure 10. For
Figure 10(a), the red symbols “+” denote the path of the
person, while the blue symbols “∘” are for the path of the
robot. “0” is the start point of the person. In the beginning,
the robot is still and the person is moving.When the distance
between the person and the robot is larger than the safe
distance (at about the point 𝑥 = 2000, 𝑦 = 0), the robot
starts to follow the person. The results show that the robot
can follow the person in a safe distance and keep him at
the center of its FOV. In the case in which the distance or
direction changes, the robot can vary its linear velocities and
the turning gain to make sure that the robot can follow the
robot stably. Figures 10(b) and 10(c) show the vertical distance
and horizontal distance between the robot and the target
according to time 𝑡, respectively. The results show that our
method can guarantee that the robot tracks the person in a
safe distance.

7. Conclusion

In this paper, we developed a new person tracking algorithm
for a mobile robot. The paper exhibited four contributions.
The first contribution concerned the person representa-
tion algorithm based on the fusion of multicues includ-
ing depth-color histograms and depth-texture histograms.
The color and texture information complement each other
which improves the appearance’s discrimination ability. The
depth information easily discriminates the person from the
background. The second contribution concerned patches
based detection algorithm which divided the person into
many patches. It could handle the partial occlusion problem
by analyzing the unoccluded patches’ similarity. The third
contribution concerned the tracker MEKF which considers
the motion of the robot and person. The fourth contribution
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Figure 10: The robots path for following the target in the Lab.

concerned the fuzzy based intelligent controllers (FZ-IGS)
which can adaptively change the linear velocity and turning-
gain according to the person’s positions obtained from the
detector. The experimental results have demonstrated that
the proposed method is able to track a person robustly and
accurately. In the future, we will study the obstacle avoidance
method in the tracking process.
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To improve the control effectiveness and make the prosthetic hand not only controllable but also perceivable, an EMG prosthetic
hand control strategy was proposed in this paper. The control strategy consists of EMG self-learning motion recognition,
backstepping controller with stiffness fuzzy observation, and force tactile representation. EMG self-learning motion recognition is
used to reduce the influence on EMG signals caused by the uncertainty of the contacting position of the EMG sensors. Backstepping
controller with stiffness fuzzy observation is used to realize the position control and grasp force control. Velocity proportional
control in free space and grasp force tracking control in restricted space can be realized by the same controller. The force tactile
representation helps the user perceive the states of the prosthetic hand. Several experiments were implemented to verify the effect
of the proposed control strategy. The results indicate that the proposed strategy has effectiveness. During the experiments, the
comments of the participants show that the proposed strategy is a better choice for amputees because of the improved controllability
and perceptibility.

1. Introduction

Prosthetic hands are of great importance to the upper limbs
amputees which can help them to complete some manipu-
lations such as grasping. How to make the prosthetic hand
grasp objects by following inclinations of amputees is amean-
ingful research direction. Scholars in this filed have done a lot
of research work and made some important development.

At present, there are some kinds of prosthetic hands:
decorative prosthetic hand (for the purpose of decoration,
without function), switches controlled prosthetic hand, elec-
tromyography (EMG) signal controlled prosthetic hand, and
so forth. A typical control scheme of EMG prosthetic hand
is shown in Figure 1 [1]. EMG

1
and EMG

2
are EMG signals

acquired from a pair of antagonistic muscles, 𝐾
𝐸
is the scale

factor, 𝐹
𝑑
is the expected grasp force, and 𝐹

𝑛
is the grasp force

measured by force sensors. 𝐾
𝑛
is the feedback gain and 𝐾

𝑝
is

the proportional gain for the force error. This control mode
is popular due to its simple operation and in accordance with
the operation habits of natural hand. However, there are still
some problems to be solved. Firstly, this control mode does
not fully consider the influence of EMG signals on control

strategy: the EMG signals measured from different persons
are different, and the EMG signals measured from different
state of the same individual may be different. Secondly, this
control mode lacks perceptibility: the user cannot perceive
the grasp force of the prosthetic hand when grasping an
object.

EMG motion pattern recognition is a basic technique
of EMG prosthetic hand; a great number of recognition
methods have been developed, such as time-domain method
and frequency-domain method [2]. Parameters of ARMA
model and Kalman filter were adopted as character vectors to
identify the movement patterns [3]. Khoshaba et al. used the
integral absolute value of the EMG signals to recognize the
movement patterns [4]. Autoregressive (AR) model, power
spectrum, wavelet coefficients, neural network, and some
signal processing methods were also used [5]. However,
due to the difference of the sticking positions of EMG
sensors and the difference of temperature and humidity of
the environment, the EMG signals measured from different
persons or different states of the same individual may lead
to different results. This kind of phenomenon may affect
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Figure 1: A typical control scheme of the EMG prosthetic hand.

the accuracy of the movement pattern recognition, which
may cause descending of the control effect.

The design of the controller is another important part
of the EMG prosthetic hand; most of the control strategies
for the prosthetic hands aimed at the controllability, such as
accuracy force tracking control and speed control of opening
and closing. In order to get a satisfying grasping performance,
Fassih et al. proposed a control strategy based on defining
virtual spring-damper model between two finger tips and
damping force at each finger joint [6]. Chen et al. focused on
hybrid of soft computing technique of adaptive neuron-fuzzy
inference system (ANFIS) and hard computing technique
of adaptive control for a two-dimensional movement with
thumb and index prosthetic hand [7]. A hybrid slidingmode-
backstepping (HSMBS) parallel force-velocity controller was
proposed to improve the control effect of powered prosthetic
hands by Engeberg and Meek [8]. According to the tactile
feedback and visual feedback, when grasping an object,
natural hand can adjust the grasp force in time. But for
prosthetic hand which has no tactile feedback to the user,
it is hard to obtain expected control effect. So a prosthetic
hand which is not only controllable but also appreciable
is probably a good choice for amputees. The controllability
of the prosthetic hand just functionally assists amputees to
complete some simple actions such as grasping. However, the
perceptibility of the prosthetic hand considersmore about the
amputee himself. It not only satisfies the functional needs of
the hands but alsomeets the psychological requirements. In a
view of the perceptibility of the prosthetic hand, amputees get
more information when using it. It shows a faster acceptance
for amputees when using the hand for a long time, and this
phantom limb feeling may also improve the control effect.

This paper describes a control strategy for the EMG
prosthetic hand, which mainly includes EMG self-learning
recognition, backstepping controller with stiffness fuzzy
observation, and grasp force tactile representation. EMG self-
learning recognition aims to reduce the influence on EMG
signals caused by the uncertainty of the contacting positions
of the EMG sensors. Backstepping controller with stiffness
fuzzy observation is used to realize the position control and
grasp force control. The grasp force tactile representation
aims to improve the proprioception of the prosthetic hand,
which can improve the control effect. Finally, experiments
were implemented to verify the proposed control strategy.

Figure 2: MPH-III prosthetic hand.

Figure 3: EMGs acquisition device.

2. System Components

The MPH-III prosthetic hand, which is designed by Robot
Sensor and Control Lab in Southeast University, is used
in this paper. The MPH-III consists of three components:
prosthetic hand, EMGs acquisition device, and tactile repre-
sentation device (see Figure 2).The lithium batteries are used
as power source for all components.

2.1. Prosthetic Hand. The MPH-III is a one-DOF (degree of
freedom) prosthetic hand, which is equipped with three force
sensors (to measure the grasp force) and a position sensor
(encoder). Wearing silicone glove, the MPH-III looks like
a natural hand. The core of the control system is a single
chip microcomputer (C8051F320, Silicon Laboratories) [9].
The control board has a USB interface on which data can
be exchanged between prosthetic hand’s control board and
computer.

2.2. EMGsAcquisitionDevice. TwoEMG sensors are adopted
to acquire EMG signals. A 10-bit A/D converter is used to
digitize signals (sampling ratio is 1 kHz). A Bluetoothmodule
is utilized to transmit the EMG signals to the controller of
prosthetic hand. All the components of the EMGs acquisition
device are fixed on a ribbon (see Figure 3) to make it
convenient for users to wear, and the positions of the EMG
sensors on the ribbon are adjustable because the detecting
positions for different users are different.

2.3. Tactile Representation Device. The tactile representation
device (TRD) consists of six vibration motors, which are
controlled by an electronic system equipped with a Bluetooth
module. The vibration motors are fixed on a ribbon (see
Figure 4). When the ribbon is worn on the upper arm, the
distribution of vibration motors is shown in Figure 5. These
vibration motors may generate stimulation on the skin of
the amputee. The TRD receives the force information of
the prosthetic hand from the control module via Bluetooth
module.Then command is generated to control the vibration
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Figure 4: Tactile representation device.

46 5

3 2

4

6

5

31

Figure 5: The distribution of the vibration motors.

motors orderly, so that the user can perceive the force states
of the prosthetic hand.

3. Design of the Control Strategy

The designed control strategy is based on manipulation
patterns of the natural hand. User plays a dominant role in
the system. When she/he intends to operate the prosthetic
hand, a control command will be generated from the brain
and transmitted to motor nerves through spinal cord. The
motor nerves control the muscle movement. And the EMG
signal will be generated on the surface of skin at that time.
These EMG signals can be used to control the prosthetic hand
after processing. Processing these EMG signals probably
involves amplifying, filtering, acquiring, feature extracting,
and motion identifying. The force sensors installed in fingers
of the prosthetic hand are used to detect the grasp force.
On one hand, the grasp force information feeds back to the
controller; on the other hand it feeds back to the user through
a certain tactile feedback type. According to the specialty of
the object, users can combine visual and tactile message and
adjust the control strategy in time. In this way, three closed
loops are achieved to control the prosthetic hand: the first one
is from user to prosthetic hand then back to the user through
tactile feedback device, the second one is from controller to
prosthetic hand then back to the controller, and the last one
is from the user to prosthetic hand then back to the user

through user’s eyes. The functional scheme of this control
strategy is shown in the Figure 6.

3.1. EMG Self-Learning Recognition. The accuracy of the
pattern recognition of EMG signals is directly related to the
control effect of the prosthetic hand.The surface EMG signal
can illustrate the activity of skeletalmuscles, and its amplitude
ranges from less than 50 𝜇V to 30mV, and the frequency
range is from dozens to hundreds Hz, depending on the
muscle under observed.

Because the EMG signal strengths of different users are
different and due to some other factors, an EMG self-learning
recognition method is proposed as shown in Figure 9. Before
the pattern recognition, EMG signals are processed as shown
in Figure 7.

EMG sensors are attached to the surface of the muscle to
acquire the EMG signals. Figures 8(a), 8(b), and 8(c) show
the amplified EMG signals, the shaped EMG signals, and the
filtered EMG signals, respectively.

In Figure 9, EMG
1
and EMG

2
are the EMG signals which

are preprocessed as shown in Figure 7. The values of EMG
1

and EMG
2
are between 0V and 3.3 V. The EMG learner is

designed to record and update the minimum and maximum
values of the EMG signals. Amoving window is adopted, and
the principles of the recording and updating are as follows:

Step 1. Calculate the average value (Ave) of the data inmoving
time window:

Ave = 1

𝑁

𝑁−1

∑

𝑛=0

EMG
1
(𝑡 − 𝑛) , (1)

whereN is the length of the timewindow. EMG
1
(𝑡) represents

the current data of the EMG signal and EMG
1
(𝑡 − 𝑛)

represents the previous 𝑛th data of the EMG signal.

Step 2. Update the data:

Max
𝐸1
=

{

{

{

Max
𝐸1
, Max

𝐸1
≥ Ave

Ave, Max
𝐸1
< Ave

Min
𝐸1
=

{

{

{

Min
𝐸1
, Min

𝐸1
≤ Ave

Ave, Min
𝐸1
> Ave,

(2)

where Max
𝐸1

and Min
𝐸1

are the maximum and minimum
values of the EMG

1
, respectively. The initial value of Max

𝐸1

is set to 0, and the initial value of Min
𝐸1

is set to 3.3.

Themaximumandminimumvalues of the EMG
2
,Max
𝐸2
,

and Min
𝐸2

are updated by using the same method.
Adjustable factors (𝐾

𝐸1
, 𝐾
𝐸2
) are defined as follows:

𝐾
𝐸1
=

1

Max
𝐸1
−Min

𝐸1

,

𝐾
𝐸2
=

1

Max
𝐸2
−Min

𝐸2

.

(3)
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The output, 𝐹
𝑑
, is determined by EMG

1
and EMG

2
, which is

as follows:
𝐹
𝑑
= [(EMG

1
−Min

𝐸1
) × 𝐾
𝐸1
− (EMG

2
−Min

𝐸2
) × 𝐾
𝐸2
]

× 𝐾
𝐸
,

(4)

where𝐾
𝐸
is the scale factor.

In free space, 𝐹
𝑑
reflects the closing or opening speed of

the prosthetic hand, and in restricted space, 𝐹
𝑑
reflects the

grasp force.
With the help of this recognitionmethod, the influence of

the diversity of the EMGsignals on the accuracy of the pattern
recognition is reduced.

3.2. Backstepping Controller with Stiffness Fuzzy Observation.
To realize the position control and grasp force control,
a backstepping controller with stiffness fuzzy observation
(BCSFO) is designed in this paper.The designed controller is
shown in Figure 10. The input signal, 𝐹

𝑑
, is the output of the

motion recognizer. 𝐹
𝑛
is the grasp force measured by force

sensor which is attached to the prosthetic hand’s finger, 𝐾
𝑛

is the scaling factor, 𝐾
𝑛𝑑

is the differential scaling factor, and
𝑢 is the voltage applied to motor. 𝑥

1
and 𝑥

2
are, respectively,

the position and velocity of the prosthetic hand’s finger. 𝑘 is
object’s stiffness and the stiffness is defined as

𝑘 =
𝐹
𝑛

𝑥
0
− 𝑥
1

(𝑁/∘) , (5)

where 𝑥
0
is the original size of the object and it is the position

of the prosthetic hand’s finger when the object and finger
contact for the first time.

In free space, the output of the planner is as follows:

𝜃
𝑑
= 𝜃
0
+ ∫(𝐹

𝑑
− 𝐾
𝑛
𝐹
𝑛
− 𝐾
𝑛𝑑

𝑑

𝑑𝑡
𝐹
𝑛
)𝑑𝑡 = 𝜃

0
+ ∫𝐹
𝑑
𝑑𝑡, (6)

where 𝜃
0
is the positionwhen prosthetic hand’s finger changes

from restricted space to free space.
In restricted space, the stiffness of the object and the

deformation of the structure may affect the relationship
between the grasp force of the prosthetic hand and the
angle of the motor rotation. Since the range of the designed
grasp force is relatively small (0∼30N), the influence of
the structure deformation is ignored, and the output of the
planner in restricted is as follows:

𝜃
𝑑
= 𝜃
𝑛
+
𝐹
𝑑
− (𝐾
𝑛
𝐹
𝑛
+ 𝐾
𝑛𝑑
(𝑑/𝑑𝑡) 𝐹

𝑛
)

𝑘
. (7)

The system model of prosthetic hand is selected as follows:

∙

𝑥
1
= 𝑥
2
,

∙

𝑥
2
= 𝑚 (𝑥

1
, 𝑥
2
) + 𝑛𝑢,

𝑚 (𝑥
1
, 𝑥
2
) = −

𝐵

𝐽
𝑥
2
−
𝐷

𝐽
,

(8)

where 𝐵, 𝐽, and𝐷 are, respectively, the inertia, damping, and
unknown nonlinear damping of the system. 𝑢 is the output of
the system, and it is the control voltage of the motor.
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Figure 8: Amplified, shaped, and filtered EMG signals.
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Two error subsystems are defined as
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Figure 10: The block diagram of the backstepping controller with
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where 𝛼
1
(𝑥
1
) is a virtual control variable (i.e., the estimate of

𝑥
2
):

∙

𝑍
1
=
∙

𝑥
1
= 𝑥
2
. (10)
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𝑍
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The Lyapunov function of the first error subsystem is defined
as
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The Lyapunov function of the second error subsystem is
defined as
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1
𝑍
2
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1
𝑍
2
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[𝑚 (𝑥
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∙

𝑍
1
]
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𝑍
2

1

+ 𝑍
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[𝑚 (𝑥

1
, 𝑥
2
) + 𝑛𝑢 − 𝑐

2
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𝑍
1
+ 𝑐
1
𝑍
2
] .

(13)

Take the control law for 𝑢 as follows:

𝑢 =
1

𝑛
[−𝑚 (𝑥

1
, 𝑥
2
) − (1 − 𝑐

2

1

)𝑍
1
− (𝑐
2
+ 𝑐
1
) 𝑍
2
] . (14)

Then

∙

𝑉
2
= −𝑐
1
𝑍
2

1

− 𝑐
2
𝑍
2

2

≤ 0, 𝑐
1
> 0, 𝑐

2
> 0. (15)

By the Lyapunov stability theory, the designed control system
can reach a steady state in a limited time, so the system has
the stability.

In order to grasp objects with different stiffness stably, a
stiffness fuzzy observer is designed to adjust 𝑚(𝑥

1
, 𝑥
2
). The

employed fuzzy logic reasoning has double inputs (𝑘 and
∙

𝑘)
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Table 1: Fuzzy reasoning rules.
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Figure 12: Input–output relationship surface map for fuzzy reason-
ing.

and a single output (𝑤). 𝑘 and
∙

𝑘 are, respectively, the stiffness
and the stiffness’ derivative.𝑚(𝑥

1
, 𝑥
2
) is adjusted as follows:

𝑚(𝑥
1
, 𝑥
2
) = − (1 + 𝑤)

𝐵

𝐽
𝑥
2
−
𝐷

𝐽
. (16)

During fuzzification and defuzzification, the inputs and the
output types are defined as several fuzzy sets with trigonom-
etry/trapezoidalmembership functions as shown in Figure 11.
The fuzzy reasoning rules for𝑤 are shown inTable 1. Figure 12
shows the overall input–output relationship of the fuzzy logic
reasoning.

3.3. Tactile Representation System. There are lots of neurons
distributed on the skin all over the body. The mechanism is
called tactile perception.These neurons can receive the infor-
mation (temperature, humidity, pain, pressure, vibration,
etc.) outside the body. One of the most common phenomena
of tactile perception is that when natural hand touches an
object, the characteristics of the object such as the shape and
surface roughness can be felt. Tactile perception is a way
to obtain information. It involves human physiology, tactile
physiology, tactile phenomenon, and so forth [10, 11].

Whenworking in this, tactile representation is important.
It is important to transmit grasp force and slide information
back to the user.

3.3.1. Grasp Force Detection. In order to achieve a more
comprehensive and more accurate measurement of the grasp
force, several force sensors are developed [12, 13]. Figure 13(a)
shows the thumb of the prosthetic hand. A force sensor
(FSS SMT Series, Honeywell) is installed on the tip of the
finger; the other two half bridges (Wheatstone half bridge)
are separately fixed on the middle and the root of the thumb.
This kind of distribution is utilized because the force points
on the finger may be different when user grasps objects.

The sensitivity of the force sensor is 12.2mV/N.The force,
𝐹
1
, applied to area 1 is as follows:

𝐹
1
=

𝑢
𝐹

12.2mV
, (17)

where 𝑢
𝐹
is the output of the force sensor.

Four strain gauges (sg1, sg2, sg3, and sg4) which have
the same properties (material, size, strain coefficient, etc.) are
attached to the thumb of the prosthetic hand as shown in
Figure 13. 𝑅

1
, 𝑅
2
, 𝑅
3
, and 𝑅

4
represent the resistance of these

strain gauges, respectively. And 𝑅
1
, 𝑅
2
, 𝑅
3
, and 𝑅

4
are of the

same value.
The thumb of the prosthetic hand is made of aluminum.

There is a deformation in the thumb when the force is
applied to it. The deformation of the thumb will lead to the
corresponding deformation of the strain gauges. And the
deformation of the strain gauges will lead to the change of
the resistances’ value of these strain gauges.

Take sg1 and sg2; for example, tensile deformation and
compressive deformation occurred in sg1 and sg2, respec-
tively, when the force is applied to the thumb. Tensile
deformation of sg1 results in the increasing of the resistance’
value of sg1. On the contrary, compressive deformation of sg2
results in the decreasing of the resistance’ value of sg2. The
variations of the resistance’ value of sg1 and sg2 are considered
to be the same for the reason that the deformation is small and
sg1 and sg2 have the same properties.

sg1 and sg2 are connected in the measurement circuit as
shown in Figure 13(b). sg1, sg2, and two additional resistances
(𝑅
𝑎1
, 𝑅
𝑎2
) constitute a Wheatstone bridge. The output of the

circuit, 𝑈
𝑔1
, is as follows:

𝑈
𝑔1
=

𝑅
2
− Δ𝑅

(𝑅
1
+ Δ𝑅) + (𝑅

2
− Δ𝑅)

× 𝐸 −
𝑅

𝑅 + 𝑅
× 𝐸

= −
Δ𝑅

2 × 𝑅
1

× 𝐸,

(18)

where 𝐸 is the power voltage supplied to the circuit, Δ𝑅 is the
change of resistance of sg1 and sg2, and 𝑅 is the value of 𝑅

𝑎1

and 𝑅
𝑎2
.

Because the force, 𝐹
2
, applied to area 2 (as shown in

Figure 13) is proportional to the deformation of the strain
gauges, it can be obtained by measuring the output of the
circuit (𝑈

𝑔1
, shown in Figure 13(b)).

The force, 𝐹
3
, applied to area 3 can be obtained by using

the same method.
When the prosthetic hand contacts the object in areas 1,

2, and 3, the grasp forces are measured by force sensor, half
bridge 1, and half bridge 2, respectively.
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Figure 13:The thumb of the prosthetic hand and the sensormeasure
circuit.

3.3.2. Sliding State Detection. A polyvinylidene fluoride
(PVDF) piezoelectric film is often used for tactile sensor
design to detect the sliding for its excellent dynamic char-
acteristics and physical characteristics, such as light quality,
soft, large contact resistance, and plasticity [14, 15]. In this
paper, a PVDF piezoelectric film is attached to the surface
of the silicone glove of the prosthetic hand. The signal in
Figure 14(a) shows a sliding during a grasp operation. In this
figure, 𝑇 indicates the time span of a sliding process.

To reduce the influence of noise on sliding detection,
the filtering process is implemented. In addition, a small
threshold is subtracted. Figure 14(b) shows the sliding signals
after these two processes. Compared with the sliding signals,
temperature is a slow change variable. The influence of the
temperature is ignored when using PVDF to detect the slide
state.

According to the signals shown in Figure 14 and the
characteristics of the PVDF, the number of zero-crossing per
time unit is adopted to indicate the sliding situation.

3.3.3. Tactile Representation. Themain tactile representation
techniques are pneumatic stimulation, vibration stimulation,
functional neuromuscular stimulation, thimble stimulation,
thermal stimulation, and so forth [16]. The vibration stim-
ulation is adopted because it is convenient to use and does
not cause damage to human body. The vibration coding
patterns, including vibration frequency, amplitude, duration,
rhythm, and order [17, 18], affect the accuracy of the tactile
perception of the user directly. However, due to the existence
of the tactile illusion phenomenon, an efficient vibration
coding pattern must be established. The tactile illusion is
a kind of phenomenon in which tactile perceptions do not
match the objective stimulation.Many kinds of tactile illusion
phenomena have already been discovered, such as phantom
sensation and apparentmovement.The reasonable utilization
of these phenomena may contribute to realization of the
tactile representation.
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Figure 14: Sliding signals.
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Figure 15: The coding pattern of the grasp force tactile representa-
tion.

A coding pattern (vibration coding) of grasp force is
designed. As shown in Figure 15, when the grasp force is
detected, motor number 2 begins to vibrate, and then motor
number 1 and motor number 3 begin to vibrate. 𝑡

0
is the

beginning time of motor number 2, 𝑡
1
is the beginning time

of motors number 1 and number 3, and 𝑡
2
is the ending time

of all these motors. 𝑡
0
is the time of grasp force being detected

as well, and 𝑡
2
shows the time when the grasp force reduces to

zero.The interval between 𝑡
0
and 𝑡
1
is 300ms.The grasp force

measured by the sensor is used to modulate the vibration
strength (VS) according to the principle as shown in formula
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Figure 16: The coding pattern of the sliding tactile representation.

Table 2: Relationship between vibration strength level and voltage
applied to motor.

Vibration strength level Voltage applied to motor (V)
I 1.0
II 2.0
III 3.0
IV 4.0
V 5.0

(19), and the vibration frequency is set to 100Hz. By this
method, the user may feel his/her arm being grasped:

VS =

{{{{{{{{{{

{{{{{{{{{{

{

I 0 < 𝑟 ≤ 0.2

II 0.2 < 𝑟 ≤ 0.4

III 0.4 < 𝑟 ≤ 0.6

IV 0.6 < 𝑟 ≤ 0.8

V 0.8 < 𝑟 ≤ 1.0,

(19)

where I, II, III, IV, and V are the vibration strength levels; the
relationship between vibration strength levels and the voltage
applied to the motor is as shown in Table 2. 𝑟 is the ratio of
grasp force detected by the force sensors to the maximum
allowable value of the grasp force:

𝑟 =
𝐹

𝐹max
, (20)

where 𝐹 is the grasp force detected by the force sensors and
𝐹max is the maximum allowable value of the grasp force.

A sliding tactile representation coding pattern is designed
according to the phenomenon of apparent movement (see
appendix) [19]. The vibration strength is set to level III,
and the vibration frequency is set to 100Hz. As shown in
Figure 16, 𝑡

0
, 𝑡
1
, and 𝑡

2
are, respectively, the beginning time of

the motors number 4, number 5, and number 6. The ending
times of these three motors, respectively, are 𝑡

2
, 𝑡
3
, and 𝑡

4
.

The time intervals of 𝑡
0
∼ 𝑡
1
, 𝑡
1
∼ 𝑡
2
, 𝑡
2
∼ 𝑡
3
, and 𝑡

3
∼ 𝑡
4
are
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Figure 17: Laminating position of the EMG sensors.
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Figure 18: EMG signals coming from 4 EMG sensors.

Table 3: Combination of the EMG signals.

Group Composition
1 Ch1 and Ch3
2 Ch1 and Ch4
3 Ch2 and Ch3
4 Ch2 and Ch4

250ms. 𝑡
0
is the time of sliding situation being detected as

well. By this method, the user may feel something sliding on
his/her arm.

4. Experiments and Results

To verify the validity of the control strategy presented in this
paper, lab-based experiments were carried out.

4.1. Evaluation Experiments of the EMG Self-Learning Motion
Recognition Method. Motion recognition experiment was
conducted to verify the effectiveness of the EMG self-learning
motion recognition method. In the experiment, four EMG
sensors were distributed on the participants’ forearms as
shown in Figure 17. The participants executed hand motions
(hand grasp and hand open) according to the commands.
Figure 18 shows the EMG signals when participants executed
the hand motions.

According to the laminating positions of the EMG sen-
sors, EMGsignals coming from four sensors can be combined
into four groups as shown in Table 3. Two recognition
methods, including one shown in Figure 1 and the other EMG
self-learning recognition method, have been applied to these
four groups EMG signals. Figure 19 shows the recognition
results by using the recognitionmethod as shown in Figure 1,
and Figure 20 shows the recognition results by using the
EMG self-learning recognition method.
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Table 4: Correlation coefficients between every two recognition results by using the recognition method shown in Figure 1.

Correlation coefficient (%) Recognition results
of group 1

Recognition results
of group 2

Recognition results
of group 3

Recognition results
of group 4

Recognition results of group 1 100 89.39 94.35 87.84
Recognition results of group 2 100 90.49 97.91
Recognition results of group 3 100 91.58
Recognition results of group 4 100

Table 5: Correlation coefficients between every two recognition results by using the EMG self-learning recognition method.

Correlation coefficient (%) Recognition results
of group 1

Recognition results
of group 2

Recognition results
of group 3

Recognition results
of group 4

Recognition results of group 1 100 99.20 99.25 98.11
Recognition results of group 2 100 98.28 99.53
Recognition results of group 3 100 99.04
Recognition results of group 4 100
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Figure 19: Motion recognition results by using the recognition
method shown in Figure 1.

To evaluate the consistency of the recognition results,
the correlation coefficients between every two recognition
resultswere calculated as shown inTables 4 and 5. Correlation
coefficient (𝜌) is a measurement of the linear correlation
(dependence) between two variables 𝑋 and 𝑌. It is widely
used as a measurement of the degree of linear dependence
between two variables. The formula for 𝜌 is

𝜌
𝑋,𝑌

=
cov (𝑋, 𝑌)
𝜎
𝑋
𝜎
𝑌

=
𝐸 [(𝑋 − 𝜇

𝑋
) (𝑌 − 𝜇

𝑌
)]

𝜎
𝑋
𝜎
𝑌

, (21)

where cov is the covariance, 𝜎
𝑋
is the standard deviation of

𝑋, 𝜇
𝑋
is the mean of𝑋, and 𝐸 is the expectation.

From the results of the EMG motion recognition exper-
iment, recognition results by using the EMG self-learning
recognition method have a better consistency. EMG self-
learning can reduce the influence on EMG signals caused
by the uncertainty of the contacting position of the EMG
sensors.
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Figure 20: Motion recognition results by using the EMG self-
learning recognition method.

4.2. Evaluation Experiments of the Backstepping Controller.
To verify the effectiveness of the BCSFO, velocity tracking
and force tracking experiments were implemented. The
designed speed was inputted to the controller in free space,
while the designed grasp force was inputted to the controller
in restricted space.The results are shown in Figures 21 and 22.
The objects with different stiffness were grasped by prosthetic
hand in the experiment, and the results are shown in Table 6.
Table 6 contains the mean value (𝑒) andmean variance (𝑅) of
the force tracking error. The results show that the controller
can track the designed velocity and designed grasp force
quickly; the tracking error is in the acceptable range.

4.3. Tactile Representation Coding Experiment and Results.
Ten nonamputee volunteers (fivemales and five females, aged
from 22 to 27) were chosen to use the MPH-III. The EMG
acquisition device was worn on the forearm, and the EMG
sensors were put on a pair of antagonistic muscles. The TRD
was worn on the upper arm. Five minutes or more was given
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Figure 21: Results of the velocity tracking experiment. (a) Velocity
tracking curve and tracking error curve. (b) The expected position
and actual position.

to each participant to get familiar with the prosthetic hand.
After experiments, they graded these three control strategies.

The TRD outputs the grasp force vibration coding for
25 times. Among them, the sliding state vibration coding
occurs for five times randomly. The participants were asked
to record the vibration state according to their feelings. Each
vibration state occurs 5 times. Each participant accomplished
experiments without influence from others.The results of the
experiment are shown in Figures 23 and 24.

In Figure 23, 𝑥-axis represents the actual strength level
outputted by the TRD;𝑦-axis represents the times the partici-
pants recorded the strength level.The different strength levels
the participant felt are represented by different colors. That is
to say, the strength levels I, II, III, IV, and V the participants
felt are represented by red, yellow, blue, green, and black,
respectively. Red, yellow, blue, green, and black represent the
strength levels the participator felt which are I, II, III, IV, and
V, respectively.
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Figure 22: Force tracking curve and tracking error curve.

Table 6: Grasp results of different objects.

Object’s number Object’s stiffness (N/mm) 𝑒 (N) R (N)
1 0.5 0.82 1.00
2 1 1.46 1.33
3 2 0.88 1.02
4 4 1.43 1.27
5 10 1.22 1.10

Take the experimental results of participant 1; for exam-
ple, when the actual strength level is “I” (see 𝑥-axis), the
times of the strength levels I, II, III, IV, and V perceived by
the participants are 5, 0, 0, 0, and 0, respectively. When the
actual strength level is “II,” the times of the strength levels I,
II, III, IV, and V perceived by the participants are 0, 5, 0, 0,
and 0, respectively. When the actual strength level is “III,” the
times of the strength levels I, II, III, IV, and V perceived by
the participants are 0, 0, 4, 1, and 0, respectively. When the
actual strength level is “IV,” the times of the strength levels I,
II, III, IV, and V perceived by the participants are 0, 0, 1, 3,
and 1, respectively. When the actual strength level is “V,” the
times of the strength levels I, II, III, IV, and V perceived by
the participants are 0, 0, 0, 1, and 4, respectively.

Figure 24 shows the average values of each strength level
perceived by the participants in each actual strength level.

The results of Figures 23 and 24 show that the participants
can distinguish the strength level precisely when the strength
level of tests is given in low level (levels 1 and 2), while
on the condition of high level (levels 3 to 5), the strength
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Figure 23: Results of the grasp force coding experiment.
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Figure 24: Average values of each strength level perceived by the
participants in each actual strength level.

Figure 25: Experiment scene of grasping.

level perceived by the participants in each actual strength
level fluctuates around the actual strength level. The errors
between false records and correct records are no more than
1 level. The results of all the participants show the same
trend. In the view of the experimental results, this kind of
vibration coding can help users to perceive the grasp force
of the prosthetic hand.

The experimental result of tactile representation of sliding
state is as its expected because the coding pattern is simple
and there is no relationship between the siding coding pattern
and grasp force tactile feedback. Most of the participants can
make the judgment whether the sliding occurs or not.

4.4. Grasp Experiments and Results. The force control strat-
egy (M1) shown in Figure 1, the EMG self-learning control
strategy (M2), and control strategy shown in Figure 2 (M3)
were compared with each other. These three strategies all
contain visual feedback.The differences are thatM2 has EMG
self-learning function and the controller in M2 is BCSFO.
Besides the features of M2, M3 has an additional function of
tactile feedback. The experiments assume that the functions
of visual feedback in these three strategies are the same.
Five minutes was given for participants to get familiar with
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Figure 26: Grasp force curve.

these control strategies. Then, ten participants were asked
to grasp and lift a paper cup which was full of water (see
Figure 25). In this process, the participant should keep water
without overflowing or dropping. All control strategies were
tested for ten times. The number of successful lifting was
used to quantify the performance of the control strategy.
And the participants were asked to evaluate every control
strategy after experiments according to their feeling about
the performance of the control strategy. And the performance
includes flexibility and usability.The best control strategy was
marked as highest grade, 10. Table 7 shows the results of the
experiment. Figure 26 shows the grasp force curve which was
recorded in the process of a participant grasping a paper cup
by using the control strategy of M3.

In this experiment, the comments from all participants
show that theM3 is the best one among these three strategies.
When using prosthetic hand without EMG self-learning,
most of the participants have to adjust the positions of the
EMG sensors on the skin surface, while it is unnecessary to
adjust by using the strategies with EMG self-learning.

5. Conclusions

The control strategy with tactile feedback for EMG prosthetic
hand is described in detail. Aiming at reducing the influ-
ence on the EMG signals which comes from the attaching
positions of EMG sensors, an EMG self-learning recognition
method is proposed. A BCSFO is proposed to realize the
velocity proportional control in free space and grasp force
tracking control in restricted space. A tactile representation
system is designed to help the user perceive the state of the
prosthetic hand, and the states include grasp force and slid
information.

The experiments are implemented to verify the effect
of the proposed control strategy. And the results show that
the different contacting positions between sensors and arm
lead to the variance of the EMG signals, and this kind of
influence can be reduced by the proposed EMG self-learning
method. The proposed BCSFO can meet the requirements
of the prosthetic hand (velocity proportional control in free
space and grasp force tracking control in restricted space).
And the results of the grasping experiments show that the
strategy with EMG self-learning method and tactile feedback
(M3) is better than the strategy of the force control (M1) and
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Table 7: Results of the paper cup grasping experiment.

Mean success rate of paper
cup grasping (%)

Standard deviation of paper
cup grasping (%)

Mean score marked by the
test participants

Force control (M1) 51 18 6.35
EMG self-learning force control (M2) 59 20 7.25
EMG self-learning force control with
tactile feedback (M3) 79 15 10
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Figure 27: Diagram of the apparent movement.

the strategy of the EMG self-learning control (M2) in the
aspect of control effect of the prosthetic hand.

Moreover, all the participants think that the EMG signal
self-learning pattern recognition method is much more
helpful and convenient in the process of manipulating the
prosthetic hand.

For the future work, after lots of experiments we will
research a more effective coding pattern for tactile represen-
tation, which would be easily accepted by amputees.

Appendix

This phenomenon was described in detail in [19]. Its basic
principle is as follows.

(1) Point A starts to vibrate.

(2) Point B starts to vibrate.

(3) Point A stops.

By applying vibration stimulation in this order, the
participant will get an illusion that point A is moving towards
point B (see Figure 27).
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We survey the state of the art in a variety of force sensors for designing and application of robotic hand.Most of the force sensors are
examined based on tactile sensing. For a decade, many papers have widely discussed various sensor technologies and transducer
methodswhich are based onmicroelectromechanical system (MEMS) and siliconused for improving the accuracy andperformance
measurement of tactile sensing capabilities especially for robotic hand applications.We found that transducers andmaterials such as
piezoresistive and polymer, respectively, are used in order to improve the sensing sensitivity for graspingmechanisms in future.This
predicted growth in such applications will explode into high risk tasks which requires very precise purposes. It shows considerable
potential and significant levels of research attention.

1. Introduction

Robotic hand is a mechatronic machine that is made to
complete assignment whenever it is required, especially for
repetitive and dangerous tasks, and also during specific
applications such as military robots, home automation [1],
automotive industries, and nuclear industry robots. In fact,
many robotic hand applications were already developed as
in [2, 3]; for instance, dexterous manipulation [4–6], tactile
image perception [7, 8], artificial limbs [9], fingerprint
recognition [10], grasping objects [11–13], and pick and place
applications [14, 15] can also be widely seen in various
industries. Nonetheless, some of these robotic applications
require a lot of labor force, notably in terms of assembly line
and material handling.

Henceforth, there is a significant need to have a dedicated
machine, which is suitable for robust robotic application.
For example, robotic hands manufacturing industries for
pick and place mechanism are programed to complete task

where it takes a product from one spot and put it to a
different location. This technology has the advantages of
reducing the risk process associated with human operators
during the manufacturing process. Besides, it also saves time
and energy required for the labor. Therefore, tactile sensing
in the robotic hand is defined as a sensor device that is
good enough to measure various properties of an object
and provide information through physical touch between
a sensor and an object [16]. Recently, the enhancement of
the robotic hand sensor has received a substantial attention
and becomes crucial to our everyday life. Researchers have
recognized that equipping a robot with different sensors is
a way to perform tasks in unstructured environment and
enable the robot to cope with significant uncertainties. Due
to the demand of ensuring safety between robots and objects
during the mechanical touch, intelligent tactile sensing in
robotic hand with high capabilities is critical.

In this paper, the different techniques formeasuring force
or interface pressures are presented.These techniques include
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load cells, pressure indicating film, and tactile pressure
system. Similarly, a review on industry pressure sensing
that involves the pick and place applications and algorithm
control is also highlighted. The paper also discusses the
MEMS sensor technology and different types of sensors
while the last section of this part discusses the piezoresistive
flexiForce sensor. FlexiForce sensor has a good substrate
material, which is a polymer that enhances the force sensing
and improves the performance of force, linearity, hysteresis,
drift, and temperature sensitivity compared to any other thin
film. Furthermore, it is flexible and ultrathin enough as the
researchers and designers can use it in different integrated
applications as well as for applications that are oriented
to manipulative tasks with grippers of robotic hand. In a
nutshell, new applications for tactile pressure sensing show a
high increase in publications and research attention as viewed
in Table 2. As a result, the design of sensor becomes more
precise with higher reliability to overcome the problems.

2. Sense of Pressure: Methods

Pressure is force per unit area applied in a direction perpen-
dicular to the surface of an object. The formula is commonly
written as follows:

𝑃 =
𝐹

𝐴
, (1)

where 𝑃 is the pressure, 𝐹 is the normal force, and 𝐴 is
the area of the surface of contact. When two objects are
contacted, they exert force on each other. Thus, the average
interface pressure is the total force divided by the interface
region. In contrast, pressure measurement is necessary to get
a peak pressure when the interface pressure is not uniformly
distributed. In this context, there are three technologies and
methods to be considered to measure force or interface
pressures, load cells, pressure indicating film, and tactile
pressure sensor.

2.1. Load Cell. Load cell is a type of pressure sensor, which is
commonly used in industrial weighing product to measure
force such as goods and vehicles. The gripper of a robotic
hand that picks up an object can be equipped with load
cells in order to provide compression force feedback to
the control system which prevents damage to the object or
released too early. Also, load cells can be used to measure the
compression forces during a robot walk to provide data for
the equilibrium-controlling system. In industrial machinery,
rods, beams, wheels, and bars are instrumented in order
to control the forces exerted on them. Due to this variety
of possible applications, load cells are very important [23].
There are many types of technologies which are used to
measure loads such as strain gauges, piezoelectric elements,
and variable capacitance.

Moreover, depending on the applied force andmechanics
of application, multiple form factors of load cells are utilized.
Typically, multiaxis MEMS force-torque sensors are used
to measure the load. In the literature, a small number
of multiaxis MEMS sensors have been reported. In [24],

LCLC

LC LC

Figure 1: Pressure measurement using multiple load cells [30].

a capacitiveMEMS force sensor is presented, which assess the
force along two axes. In [25, 26], the design of a piezoresistive
three-axis force sensor is described. A piezoresistive torque
sensor has been presented in [27]. In addition, a three-axis
capacitive MEMS force-torque sensor has been reported in
[28] and this sensor is able to measure forces along two axes
and a torque perpendicular to these forces. Aswe know, forces
can be sensed in a plane, while a torque perpendicular to this
plane can bemeasured. In certain conditions, researchers can
usemultiple load cells tomeasure forces overmultiple regions
of a contact interface [29]. In Figure 1, an interface or contact
area is divided into four quadrants with an exclusive load
cell measuring each area. This arrangement provides more
details on the force distribution across the surface; the average
pressure in each zone will occur. Still, the disadvantage of this
technique is inconsistent because the load cell can show the
total force but cannot identify localized spikes in pressure.
There are many different types of load cells that operate in
different ways, but currently the most commonly used load
cell is the strain gage (or strain gauge) load cell.

2.1.1. Strain Gauge Load Cells. Strain gages are small patches
of silicone or metal that measure mechanical strain and
convert the load acting to electrical signals. This load cell is
considered as an analog type tool and utilized to measure
weight. When a load is applied to a stationary object, stress
and strain are the result. Stress is defined as the object’s
internal resisting forces, and strain is the displacement and
disfigurement that occurs [31], so the load causes deforma-
tions in the material or object that can be measured using
strain gauges. Two capacitive pressure gauges which have
been used extensively in the study of liquid and solid helium
are described [32]. Figure 2 illustrates a structure of strain
gauges. Here, more resistance in strain gauge will increase
the stability as seen in Figure 2. In fact, it also offers a wide
range of different patterns which means various applications
will occur.

2.2. Pressure Indicating Film. Pressure indicating film is
widely used to measure interface pressures between two
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Figure 2: Structure of strain gauge [31].
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Figure 3: Components of pressure indicating film [30].

surfaces. Two sheets of polyester are designed to measure
the force applied across the sensing area. Figure 3 shows
a pressure indicating film. Here, a colour material, under
a layer of polyester, is layered next to tiny microcapsules,
which are utilized to break under different pressures. When
pressure is applied to the film, the microcapsules are broken
and distributed ink where pressure is deformed, and the
colour intensity of the resulting image reveals the relative
amount of applied pressure. As a result, the greater the
pressure, the darker the colour and an image of the force
applied will be composed across the sensing area. Various
features cause the pressure indicating film to be used in a
wide range of applications including flexibility, being easy
to use, and thinness that plays a major role in capturing
image of applied pressure. Furthermore, there are no attached
electronics, that is, a good material or film to obtain the
pressure distribution without concern of crushing wires or
expensive electronics during the film feeding through rollers.
Pressure indicating film is used in applications that requires
static pressuremeasurements, visual pattern of peak pressure,
and one-time use [30].

2.3. Tactile Pressure Sensor. Tactile pressure sensor measures
various parameters of an object through physical touch
between sensor and an object [16]. The measured parameters
are, namely, pressure, temperature, normal and shear forces,
vibrations, slip, and torques. In this context, pressure and
torque are example of an important parameter, and it is
typically measured through physical touch. Detection and
measurement of a point contact force can also be considered
as a part of touch sensor for pressure and torque, but
then again, tactile sensing can also ease up the process

Conductive 
silver

Adhesive and
dielectric layers

Flexible 
substrates

Semiconductive 
material

Figure 4: Construction of a tactile pressure sensor [30].

of interpretation of the corresponding information for the
parameter.

By definition, tactile sensing means an array of a coordi-
nated group of touch sensors [33]. A common type of tactile
pressure sensor consists of an array sensor. For instance,
Figure 4 shows a unique piezoresistive material sandwiched
between two pieces of flexible polyester; each half of them
has printed silver conductors.The result is a very thin 0.004
(0.1mm) sensor, which can be used in various applications,
especially for industrial and medical robot. A conductive
track, which is composed of silver conductors, will scan the
electronics and transmit a signal through the piezoresistive
ink. The tactile array sensor signal can be processed to offer
a great deal of parameters about contact kinematics and
precise tactile information for robotics, haptic feedback, and
other contact applications. Among the parameters that can
be extracted are contact location, object shape, and effective
width of the pressure distribution.

The pressure distribution can be achieved by identifying
the position of all the applied forces. To do this, an array
sensor which has vertical and horizontal of piezoresistive
traces is needed. Here, each row and column intersecting in
one point are called a sensel. More intersection implies more
sensels whichmeans themore spatial resolution is the sensor.
Because of many human machine interfaces (e.g., wheelchair
seating systems, driver’s seats, bed mattresses, hospital beds)
[34, 35] and because human joint is incongruent, the sensor
should be in a wide range of resolutions. However, the tactile
pressure sensor array has a good spatial resolution of the
pressure distribution. Figure 5 illustrates the sensing system
and an electrical schematic of electronics that scan each
sensel. When force is applied to the sensel, the sensel which
is represented by a variable resistor will be changed and
the possible current will flow through the device, and then
the electronics will collect the analog data, which can be
compensated with proper calibration.

From the reviews that have been obtained, there are
several factors to be considered, specifically on technology
for interface force and pressure measurement between two
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Figure 5: Electric schematic of sensor [30].

surfaces for robotic hand applications purposes. Compar-
isonwise, load cells provide the most reliable data pressure
measurement, but the size and number of load cells limit the
density of measurement points. The total load can be easily
reported; however, the size of the load cell can be a limiting
factor when it reaches fine granularity due to its pressure
distribution.

Pressure indicating film can be used in variety of appli-
cations such as robotic hand, but the nature of the film will
only provide the peak pressure between interfaces during a
measurement. This has obvious limitations when trying to
measure dynamic applications and also the resulting data
pressure measurement has less accuracy, whereas tactile
pressure sensor can provide detailed dynamic measurements
of interface pressure with minimal impact on system dynam-
ics. The sensing elements need to be properly calibrated
to provide accurate data, but the resulting measurements
will provide the most in-depth analysis of interface system
dynamics. Depending on the information needed and the
physical constraints of the system being measured, load cells,
pressure indicating film, and tactile pressure sensors each
have advantages and constraints for providing accurate and
meaningful data pressure measurement. Understanding how
these strengths and limitations influence an application is
crucial.

3. Pressure Sensor: Design and Technology

A sensor is a device that measures a physical quantity and
converts it into a signal which can be read by an observer
or an instrument. There are various types of sensors: thermal
sensor, electromagnetic sensor, mechanical sensor, pressure
sensor, and others. Pressure is sensed bymechanical elements
such as plates, shells, and tubes that are designed and
constructed to deflect when pressure is applied. Deflection
of the elements must be transduced to obtain an electrical
or other output. Pressure sensor can differ in technology,
design, performance, application suitability, and cost. It can
be classified based on various transduction principles such
as resistive/piezoresistive, tunnel effect, capacitive, optical,
ultrasonic, magnetic, and piezoelectric. The relative merits

Ω

F

Figure 6: Piezoresistive tactile pressure sensor [38].

and demerits of different transduction methods are given
in Table 1. Worldwide, there are hundreds of different tech-
nologies used in pressure sensor designs such as sensing ele-
ment method, material, MEMS, nanotechnology, and others.
Furthermore, there are significant differences in the types of
pressure sensor results from different material used as well as
their functional properties.

Recently, pressure sensor using MEMS technology has
received enormous attention due to various advantages over
traditional electromechanical sensing technology. MEMS
offers small size, lowweight, low cost, high performance, large
scale integration, low power consumption, wider operating
temperature, and higher output signal [36]. This section
discusses in detail the three main types of pressure sensor
methods for robotic hand application: piezoresistive, piezo-
electric, and capacitive pressure sensor. Also, various designs
and technologies of the pressure sensor are explained in this
section.

3.1. Piezoresistive FlexiForce Sensor. As sensor technology
grows these days, there are many types of sensors that have
been used for pick and place application, especially resistive
method due to its stability and high sensitivity. Piezoresistive
sensors use the change of the electrical resistance in amaterial
when it has been mechanically deformed. The resistance of a
piezoresistor is given as follows:

𝑅 =
𝜌 × 𝑙

𝑡 × 𝜔
, (2)

where 𝜌, 𝑙, 𝑡, and 𝜔 denote the resistivity, length, thickness
of the piezoresistor, and the width of the contact, respec-
tively. Figure 6 shows an example of the piezoresistive tactile
pressure sensor. Due to the various features of piezoresis-
tive including low cost, good sensitivity, relatively simple
construction, long-term stability with low noise, accuracy,
and reliability, it shows the maturity of the technology. In
addition, the sensor is considered easy to fabricate and inte-
grate with electronic circuit according to the characteristic
of the piezoresistive material. However, it can measure only
one contact location and it will still need external power.
Though this limitation has been improved by [37], that allows
measuring many contact points by using parallel analog
resistive sensing strips.

The force sensing resistor (FSR) is based on piezoresistive
sensing technology. It can be made in a variety of shapes and
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Table 1: Relative merits and demerits of various tactile sensor types [17].

Type Merits Demerits

Resistive (i) Sensitive
(ii) Low cost

(i) High power consumption
(ii) Generally detect single contact point
(iii) Lack of contact force measurement

Piezoresistive

(i) Low cost
(ii) Good sensitivity
(iii) Low noise
(iv) Simple electronics

(i) Stiff and frail
(ii) Nonlinear response
(iii) Hysteresis
(iv) Temperature sensitive

Tunnel effect (i) Sensitive
(ii) Physically flexible (i) Nonlinear response

Capacitive
(i) Sensitive
(ii) Low cost
(iii) Availability of commercial A/D chips

(i) Hysteresis
(ii) Complex electronics

Optical

(i) Physically flexible
(ii) Sensitive
(iii) Fast
(iv) No interconnections

(i) Loss of light by micro bending chirping
(ii) Power consumption
(iii) Complex computations

Ultrasonic (i) Fast dynamic response
(ii) Good force resolution

(i) Limited utility at low frequency
(ii) Complex electronics
(iii) Temperature sensitive

Magnetic

(i) High sensitivity
(ii) Good dynamic range
(iii) No mechanical hysteresis
(iv) Physical robustness

(i) Suffer from magnetic interference
(ii) Complex computations
(iii) Somewhat bulky
(iv) Power consumption

Piezoelectric (i) Dynamic response
(ii) High bandwidth

(i) Temperature sensitive
(ii) Not so robust electrical connection

Conductive rubber (i) Physically flexible (i) Mechanical hysteresis
(ii) Nonlinear response

sizes and can be utilized in many applications in order to
measure a proportional change in force and rate of change
and also detects contact or touch between objects. FlexiForce
manufactured Tekscan is one of the most piezoresistive
sensors widely used in robotic hand. Figure 7 shows a tactile
force sensor or FlexiForce sensors. This sensor is considered
one of the best ideal force sensors for designers, researchers,
or anyone who needs to measure forces. With its thin
construction, flexibility, and force measurement ability, the
FlexiForce sensor can measure the force between any two
surfaces and is resilient to most environments. FlexiForce has
better force sensing properties, linearity, low hysteresis, drift,
and temperature sensitivity than any other thin film force
sensors according to the good substrate material which is a
polymer. This material has been considered suitable enough
to use in robotic hand for grasping objects effectively.

The structure of the force sensor is a substitute of amatrix
of sensing traces; the ink uniformly covers an area tomeasure
the total force applied to that space. The sensor consists of
two layers of substrate as shown in Figure 7. This substrate
is formed of polyester film and a conductive material, silver,
which applies to each layer. Layer of pressure sensitive ink is
then used, followed by adhesive to combine the two layers
of substrate together to compose the sensor. Additionally,
the FlexiForce sensor decreases the resistance of the sensing
element when the force applied increases. In this context,
various applications using FlexiForce sensor are implemented

by many researchers [39]. As an example, measurement
of interface pressure or force between two soft objects is
presented in [40]. Teleoperated robotic systems using tactile
force sensor for the design and development of a low cost
control rig to intuitively manipulate an anthropomorphic
robotic arm with gripping force sensing are reported in [41].
The measurement of low interface pressure between the skin
support surfaces and pressure garments is also discussed
in [42]. Thereupon, one good example of using FlexiForce
sensors is pick and place application which offers to achieve
high sensitivity and minimize slip movement and weight
measurement with a secure grasp.

3.2. Piezoelectric Pressure Sensor. Piezoelectric sensors con-
vert an applied stress or force into an electric voltage [43].
Piezoelectric material is considered a smart material due to
its property which can be used as a sensor and actuators.
Furthermore, the piezoelectric materials also have high
sensitivity with high voltage output when force is applied.
The sensitivity of piezoelectric force sensors is measured
in terms of C/N, with sensitivity reported up to 130pC/N
[39]. Piezoelectric is considered as a passive sensor which
offers a high reliability that is useful to be applied in various
applications. Yet, it is only suitable for detection of dynamic
forces because of the voltage output decreases over time
[44], because it is not able to measure a static force due to
their large internal resistance [45]. Piezoelectricmaterials like



6 Journal of Sensors

Ta
bl
e
2:
Pr
es
su
re

se
ns
or

w
ith

va
rio

us
ap
pl
ic
at
io
ns

ba
se
d
on

di
ffe
re
nt

tr
an
sd
uc
tio

n
m
et
ho

ds
.

Ye
ar

Au
th
or
/R
ef
.

Tr
an
sd
uc
er

m
et
ho

d

A
rr
ay

nu
m
be
ro

f
el
em

en
ts

M
at
er
ia
l

ty
pe

Fo
rc
e/
pr
es
su
re

se
ns
iti
vi
ty
or

re
so
lu
tio

n
[
N
]

Fo
rc
e/
pr
es
su
re

se
ns
iti
vi
ty
or

re
so
lu
tio

n
ra
ng
e[

N
]

Ap
pl
ic
at
io
n

Li
m
ita
tio

ns

Ad
va
nt
ag
es

W
ea
kn

es
s

20
13

A
sa
dn

ia
et
al
.[
18
]

Pi
ez
oe
le
ct
ric
2
×
5

Li
qu

id
cr
ys
ta
l

po
ly
m
er

3m
m
s−
1

(N
o)

—
U
nd

er
w
at
er

se
ns
in
g

(a
ut
on

om
ou

s)

(i)
D
et
ec
tv
er
y
lo
w

fre
qu

en
cy

(d
ow

n
to

0.
1H

z)
in

w
at
er

(ii
)H

ig
h
re
so
lu
tio

n
(3
m
m
s−

1 )
(ii
i)
Se
lf-
po

w
er
ed

an
d

pa
ss
iv
ely

se
ns
e

un
de
rw

at
er

ob
je
ct
s

(i)
Ap

pl
ie
d
un

de
rw

at
er

20
12

Aq
ila
h
et
al
.[
19
]

Re
sis
tiv

e
4
×
4

C
on

du
ct
iv
e

ru
bb

er
15
kg
/c
m

2
(N

o)
—

Ro
bo

tic
ha
nd

(i)
Fl
ex
ib
ili
ty
an
d

str
et
ch
ab
ili
ty

(ii
)L

in
ea
rit
y

(i)
N
ee
d
ex
te
rn
al
po

w
er

(ii
)M

ax
im

um
pr
es
su
re

is
lo
w

20
10

Ch
oi
[4
]

St
ra
in

ga
ug
e
4
×
4

Po
ly
m
er

20
6.
6m

V
(N

o)
70
.1
m
V
(S
h)

0–
0.
8
(N

o)
,(
Sh

)
D
ex
te
ro
us

m
an
ip
ul
at
io
n
(r
ob

ot
ic

fin
ge
rt
ip
)

(i)
M
ea
su
re

no
rm

al
an
d

sh
ea
rl
oa
ds

sim
ul
ta
ne
ou

sly

(i)
Lo

w
fo
rc
ec

ap
ac
ity

(0
.6
N
)

20
09

N
od

ae
ta
l.
[2
0]

Pi
ez
or
es
ist
iv
e

—
Si
lic
on

ru
bb

er
0.
01
%
(N

o)
0.
1%

(S
h)

0.
05
–3

(N
o)

0.
05
–3

(S
h)

D
ex
te
ro
us

m
an
ip
ul
at
io
n
(r
ob

ot
ic

ap
pl
ic
at
io
n)

(i)
H
ig
h
se
ns
iti
ve

se
ns
or

(i)
C
om

pl
ex

de
sig

n
(ii
)I
nfl

ex
ib
ili
ty

20
08

Le
ee

ta
l.
[9
]

Ca
pa
ci
tiv

e
8
×
8

Po
ly
m
er

2.
5%

m
N
(𝑥
-a
xi
s)

2.
9%

m
N
(𝑦
-a
xi
s)

3.
0%

m
N
(𝑧
-a
xi
s)

0–
0.
01

(N
o)
,(
Sh

)
A
rt
ifi
ci
al
ro
bo

tic
lim

bs
(i)

M
ea
su
re

no
rm

al
an
d

sh
ea
rf
or
ce

di
str

ib
ut
io
n

(i)
N
on

un
ifo

rm
ga
p

be
tw
ee
n
el
ec
tro

de
s

20
06

Ta
ka
o
et
al
.[
7]

Pi
ez
or
es
ist
iv
e
6
×
6

Si
lic
on

0.
5–
1V

/N
(N

o)
0.
02
1–
0.
17
6
(N

o)
Ta
ct
ile

im
ag
es

en
so
r

(r
ob

ot
ic
fin

ge
rt
ip
)

(i)
H
ig
h
sp
at
ia
l

re
so
lu
tio

n
(0
.4
2m

m
)

(ii
)L

ar
ge

sc
al
es

en
sin

g
ar
ra
y

(i)
C
om

pl
ex

de
sig

n

20
05

Sh
an

et
al
.[
21
]

Pi
ez
or
es
ist
iv
e
4
×
4

El
as
tic

ru
bb

er
22
8m

V
/N

(N
o)

34
m
V
/N

(S
h)

0–
2
(N

o)
N
on

pl
an
ar

su
rfa

ce
s

(ta
ct
ile

se
ns
or

sk
in
)

(i)
D
et
ec
t

th
re
e-
di
m
en
sio

na
lf
or
ce

(ii
)G

oo
d
fle
xi
bi
lit
y
an
d

ta
pe
d
on

no
np

la
na
r

su
rfa

ce

(i)
La
rg
ea

re
as

ki
n
w
ith

lo
w
de
ns
ity

of
re
ce
pt
or
s

20
00

Ka
ne

et
al
.[
8]

Pi
ez
or
es
ist
iv
e
6
4
×
6
4

Po
ly
sil
ic
on

1.5
9m

V
/K

Pa
(N

o)
0.
32

m
V
/K

Pa
(S
h)

0–
35

KP
a(

N
o)

0–
60

KP
a(

Sh
)

Ta
ct
ile

im
ag
in
g
an
d

pe
rc
ep
tio

n
(r
ob

ot
ic

ap
pl
ic
at
io
n)

(i)
H
ig
h
re
so
lu
tio

n
sh
ea
r

an
d
no

rm
al
fo
rc
e

(ii
)S

tre
ss

(i)
Se
ns
or

ar
ra
y
is
hi
gh

(6
4
×
6
4
)

(ii
)N

ee
d
co
m
pl
ex

sig
na
l

co
nd

iti
on

ci
rc
ui
t

19
97

Re
y
et
al
.[
10
]

Ca
pa
ci
tiv

e
1
2
8
×
1
2
8

Si
lic
on

0.
3
ba
rs
(N

o)
—

Fi
ng
er
pr
in
t

re
co
gn

iti
on

(s
en
so
ra

pp
lic
at
io
n)

(i)
Lo

w
co
st

(ii
)S

im
pl
ec

on
str

uc
tio

n

(i)
Lo

w
re
so
lu
tio

n
(0
.0
5m

m
)

(ii
)M

ea
su
re

no
rm

al
fo
rc
eo

nl
y

19
92

Fi
or
ill
o
[2
2]

U
ltr
as
on

ic
—

Fe
rr
oe
le
ct
ric

po
ly
m
er

3m
m

(N
o)

—
Ro

bo
tic

gr
ip
pe
r

(i)
O
pe
ra
te
at
hi
gh

er
fre

qu
en
ci
es

(i)
Lo

w
re
so
lu
tio

n
(<
3m

m
)

(ii
)A

bs
or
pt
io
n
of

th
e

ul
tr
as
on

ic
sig

na
li
n
ai
r

N
o:
no

rm
al
fo
rc
e;
Sh

:s
he
ar

fo
rc
e.



Journal of Sensors 7

Flexible substra
te

Flexible substra
te

Dielectric
 spacer

Adhesive

Adhesive

Resisti
ve ink and silv

er tra
ces

Silver conductor

Figure 7: Components of FlexiForce sensor [30].

v v

Figure 8: The behaviour of piezoelectric disk based on pressure
forces [30].

ceramic lead zirconate titanate (PZT), polymer polyvinyli-
dene fluoride (PVDF), and so forth are suitable for dynamic
tactile sensing. Although quartz and ceramic PZT have better
piezoelectric properties, the polymer PVDF ismore preferred
in touch sensors because of their excellent features including
mechanical flexibility, high piezoelectric coefficients, dimen-
sional stability, low weight, workability, chemical stability,
and chemical inertness [46–48]. The first time PVDF was
implemented for tactile sensing technology was reported in
[49] and, recently, it was used for environment perception
as discussed in [50]. Henceforth, to design the circuit of
piezoelectric sensor, an ultrathin input impedance is needed
as a considerable effect on response to the device. Figure 8
illustrates that a piezoelectric disk generates a voltage when
deformed.

3.3. Capacitive Pressure Sensor. Capacitive sensors consist
of a plate capacitor, in which the distance between the
plates or electrode area is changed when compressed, and it
has a suspended structure that can measure the change in

Pressure

d

Figure 9: Capacitive sensor with two parallel plates [30].

the capacitance between these two electrodes. For parallel
plate capacitors, capacitance can be expressed as follows:

𝐶 =
𝜀𝑜𝐾𝐴

𝑑
, (3)

where 𝐶 is the capacitance, 𝜀𝑜 is the relative permittivity
of free space constant, 𝐾 is the dielectric constant of the
material in the gap, 𝐴 is the area of the plates, and 𝑑 is
the distance between the plates. Capacitive tactile pressure
sensing is considered as one of the most sensitive techniques
for detecting small deflections of structures [51]. It has been
developed by researchers for many years due to its features
having high spatial resolution, good frequency response, low
power consumption, and a large dynamic range [45]. A capac-
itor sensor array is introduced in [52] and fabricated directly
on flexible thin films of polyamide with thickness 25𝜇m.The
sensors show a linear response to applied pressure. Also, few
instances of capacitive touch sensors are presented in [53].
Subsequently, an 8 × 8 capacitive tactile sensing array with
spatial resolution at least 10 times better than the human limit
of 1mm is reported in [54]. Two electrodes with air gap, 𝑑, are
shown in Figure 9.

As summarised, there is no ideal pressure sensor technol-
ogy that can be used in all applications, since each has specific
advantages and constraints. As a matter of fact, the pressure
sensor design is primarily determined by the application
requirements. It is not just the pressure sensor technology
that is vital, but also the practicalities of its implementation of
the pressure sensor design must be considered. Furthermore,
a wide variety of materials and technologies has been used
for the pressure sensor, resulting in performance versus cost
tradeoffs. The electrical output signal also provides a variety
of choices for various applications.

4. Robotic Hand: Applications

As we know, the human hand is one of the most important
parts in a body as it can arrive at narrow places and can
execute complex operations. Hence, it is essential for us
to have a robotic hand which can accomplish the same
procedure as a human hand does in real time. Back in the
days, the abilities of humanoid robots focused on walking.
Only just, some robotic hands have been developed and
there has been a mounting interest in supplying them with
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Figure 10: Robotic hand with tactile sensor [33].

proceedingmanipulation capabilities [55–58]. Robotic hands
have a lot of technologies to execute depending on the
required applications, in some instances, picking and sorting
cookies [59], military robots [60], welding robots [61], and
also nuclear industry robots [62]. Likewise, robotic hands can
also be found in various fields such as manufacturing indus-
try, military, space exploration, domestic, transportation, and
medical applications.

In this context, manipulation capabilities are one of the
robotic hand applications that are central to a robot system.
Figure 10 shows an example using commercial products,
a robotic hand with tactile sensors from Pressure Profile
Systems, Inc. (PPS). This tactile sensing technology gives
the robotic hand the ability to manipulate delicate objects
without breaking them. Moreover, they will also be able to
operate at optimized low powers for energy efficiency by
using minimized grasp force. Robotic platform using capaci-
tive sensors is also produced by Pressure Profile Systems, Inc.,
and it is described in [63].

Next, optical three-axis tactile sensors are shown in
Figure 11. It is used to improve sensitization quality in
robotic hand system [64]. The arm actuators use the tactile
information as feedback to execute and request the orders as
needed.

4.1. Tactile Transduction Techniques and Applications. Tactile
pressure sensor has beenmulled over to be one of the suitable
pressure sensors that allow humans to execute dexterous
manipulation and offer robot manipulators (hands/fingers)
with accurate information on the objects to grab, hold, and
handle. Dexterous robotic hands have been developed for the
purpose of grasping different objects and it is very challenging
for many researchers [65, 66]. Over the years, the change
from structured to unstructured environments has made the
development of different sensors a priority to enable robots to
cope with considerable uncertainties. Because of that, sensors
that can get back tactile information have been developed in
order to prepare robot hands with such a sense [67].

Figure 11: Optical three-axis tactile sensor [64].

There are many tactile pressure sensors that are based on
a variety of principles such as resistive, capacitive, optical,
ultrasonic, magnetic, piezoresistive, or piezoelectric sensors.
Up to date, a lot of tactile pressure sensors have been
developed. Some of these works, classified on the basis of
sensitivity, range of pressure, type of force, and resolution,
are given in Table 2. From 1992 to 2013 as viewed in Table 2,
methods miscellaneous technologies with various types of
materials have been used to sense the pressure in a wide
range of applications, particularly in robotic hand.During the
time, the size of the sensor design becomes small and delicate.
In comparison, an array of 64 × 64 elements was used in
tactile imaging and perception with piezoresistive transducer
in 2000 as shown in Table 2. On the other hand, after decade
of time, technology would have the potential to support the
development ofmore intelligent products in order to improve
the quality of human life as in 2012. In this year, many
researchers involve their products to achieve what human life
needed; a good example is a 4 × 4 array small in size and
conformable using the same transducer method comparing
with previous example but in a different type of material
which is conductive rubber. Additionally, tactile pressure
sensor can measure both normal and shear forces produced
through dexterous manipulation [68, 69]. However, most of
existing tactile sensors only detect the normal contact force
during handling objects in a robotic hand manipulation.
Hence, the measure of shear force is as important as a normal
force to emulate the human hand, which can simultaneously
sense the direction and the strength of the applied force
within sophisticated manipulation. Likewise, measure of the
mechanical contact forces allows controlling the grasp force,
which is essential for manipulator displacement and slip
movements.This slip detection between fingertip and objects
is still one of the main issues that researchers dedicated their
time to put an optimal solution to. In fact, thismatter required
analysing and measuring both shear and normal forces. For
this reason, shear information is considered of great impor-
tance to full grasp force and torque determination, especially
when the pressure does not exceed more than 0.1 N [4].
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These parameters will be used to predict and determine
slipping of the object.

4.2. Pick and Place Applications. Robotic hands are widely
used in manufacturing industry. Typically, it is used for
pick and place robot (such as packaging and palletizing).
Pick and place process requires the use of robotic hands
in order to manipulate objects. In this field, robotic hands
have to be programmed in a familiar environment to avoid
probable conflict between tools and objects. The agricultural
robotic hand is also considered to be a good example to
ease up a farmer’s job in cutting grass [70]. This robot,
which contains a manipulator, a visual sensor, a travelling
device, and end-effectors, is able to do a number of tasks
by changing the end-effectors. Painting robotic is provided
with a door handler of the arm for opening and closing a
vehicle door before and after painting it [71]. Furthermore,
this system provides a robot for automatic painting vehicle
bodies and reduces the equipment’s cost by performing the
operations of painting vehicle bodies by itself. Similarly, a
robot laser welding system is a robot system that consists of
a servocontrolled, multiaxis mechanical hand, with a laser
cutting head mounted to the faceplate of the robotic hand.
The cutting head has focused optics for the laser light and
an integral height control mechanism. Most systems use a
laser generator that conveys the laser light to the robot cutting
head through an optical fiber cable. The benefits of laser
welding are that it will produce higher productivity, improved
flexibility, and quality welds [72, 73]. All of existing appli-
cations used a robotic hand, which are equipped by diverse
kinds of sensors to carry through the tasks as necessitated.
As a consequence, these missions cannot be accomplished as
requiredwithout algorithm, since it will be as a framework for
the mechanism of robotic hand. Likewise, high performance
and safe operating will occur within this algorithm.

4.3. Control Algorithm. From recent development, it is traced
thatmanipulation control is important for a robot.Manipula-
tion control requires some kind of feedback which could pro-
vide information about the interaction between the gripper
and the grasp objects. This feedback information can be used
to implement an algorithm control to achieve the function
operator of any robotic hand application as required. It has
also been reported that multifingered robotic hand executes
particular tasks of grasping an object, which needs to control
the measuring required forces for successful operation and
dexterous gripper. In addition, it can grasp various objects
by changing its shape. Nonetheless, in many cases they
lack linearity or sensitivity, especially, in terms of masterful
gripper [74]. The robotic hand gripper can increase the
sensitivity as well as linearity by using an intelligent feedback
control which will be doing the mechanism of gripper object
effectively. To wrap up everything, various robotic hand
applications using the different algorithm control had been
discussed based on tactile sensing capabilities to increase
accuracy, flexibility, and receptivity. Moreover, in future
robotic hand applications, the manipulators will have to be
made lighter and move faster with higher accuracy and work

Figure 12: The Shadow Dextrous Robot Hand [77].

independently. For instance, the automation of complex tasks
in industrial applications would be highly enhanced if robots
could operate at high speed with high accuracy. Nevertheless,
the current robot designs are mademassive in size in order to
increase rigidity; thereupon, these aims cannot be executed.
To achieve high speed operation and faster response for
robotic hands manipulations, we should reduce the driving
torque requirement. For this purpose, many one-arm flexible
robot arms have been built in laboratories [75, 76]. The
Shadow Dextrous Robot Hand, in Figure 12, is an advanced
humanoid robot hand system available for purchase and is
regarded as one of the most advanced robot hands in the
current world.

In a nutshell, various factors play an important role in
achieving the appropriate application as necessitated includ-
ing material type, transduction method, and conditioning
circuit. These factors set the limitation of every application
as viewed in Table 2. For instance, the polymer (polyimide)
utilized in the tactile pressure sensor fabrication is used
for dexterous robotic manipulation applications such as
grasping objects, due to it is advantages which are flexible as
well as robust enough to withstand forces during grasping.
Differently, the silicon MEMS technology used in a tactile
image and recognition in robotic applications requires less
flexibility but needs high spatial resolution and sensitivity.
Hence, the major application of polymer can be applied in
wide area tactile sensor like artificial skin and nonplanar
surface considered to be having lower fabrication cost than
silicon. Moreover, silicon MEMS also reduces the number of
electronic signalwireswhichmake it suitable for fingertip and
image recognition applications that need high resolution and
also suitable for flat surface.

Beside this, the best choice of transduction method and
conditioning circuit is very important as they set the limit of
power consumption, time response, and number of sensors,
allowed to be used in an array. Yet, although piezoresistive
sensors are commonly sensitive and economic, they still
consume a lot of power rather than others. In addition,
they are suitable for detecting dynamic force but have a
limitation in the robotic hand application due to voltage
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output decreases over time and large internal resistance
which make them not able to measure a static force.

5. Conclusion

In this paper, different techniques of pressure sensor types
have been reviewed including load cell, pressure indicating
film, and tactile pressure mapping system. Similarly, various
transactionmethods, including piezoresistive, capacitive, and
piezoelectric are discussed. Tactile pressure sensor based
on piezoresistive material for robotic hand application is
also presented. Different materials are used to sense the
pressure in many applications including conductive rubber,
elastic cantilevers, swollen silicon, elastic rubber, polysilicon,
ferroelectric, and polymer. Recently, piezoresistive methods
were used for robotic designed especially on grasping objects.
It was defined that the advantages were due to making use
of polymers which are more flexible, linear, and stretchable.
Therefore, it was found that the risk process to workers was
reduced and increased safety between the robotic hand and
the object during the interaction process.
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[27] S. Bütefisch, S. Büttgenbach, T. Kleine-Besten, and U. Brand,
“Micromechanical three-axial tactile force sensor for microma-
terial characterisation,” Microsystem Technologies, vol. 7, no. 4,
pp. 171–174, 2001.

[28] F. Beyeler, S. Muntwyler, Z. Nagy,M.Moser, and B. J. Nelson, “A
multi-axis MEMS force-torque sensor for measuring the load
on a microrobot actuated by magnetic fields,” in Proceedings
of the IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS ’07), pp. 3803–3808, San Diego, Calif, USA,
November 2007.

[29] J. L. Tan, J. Tien, D. M. Pirone, D. S. Gray, K. Bhadriraju, and C.
S. Chen, “Cells lying on a bed of microneedles: an approach to
isolate mechanical force,” Proceedings of the National Academy
of Sciences of the United States of America, vol. 100, no. 4, pp.
1484–1489, 2003.

[30] Tekscan, “FlexiForce Force Sensors,” September 2014,
http://www.tekscan.com/interface-pressure-measurement-
options.

[31] J. I. Bae, T. H. An, Y. S. Kim, and C. K. Ryu, “Analysis of digital
load cell using 2.4GHz band’s Zig-Bee,” in Proceedings of the
3rd IEEE Conference on Industrial Electronics and Applications
(ICIEA ’08), pp. 1358–1361, June 2008.

[32] E. D. Orth, “Semiconductor strain gage pressure transducer,”
Google Patents, 1972.

[33] P. S. Girão, P. M. P. Ramos, O. Postolache, and J. M. D. Pereira,
“Tactile sensors for robotic applications,”Measurement, vol. 46,
no. 3, pp. 1257–1271, 2013.

[34] D. E. Gyi, J. M. Porter, and N. K. B. Robertson, “Seat pressure
measurement technologies: considerations for their evaluation,”
Applied Ergonomics, vol. 29, no. 2, pp. 85–91, 1998.
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A new reactive motion planning method for an autonomous vehicle in dynamic environments is proposed. The new dynamic
motion planning method combines a virtual plane based reactive motion planning technique with a sensor fusion based obstacle
detection approach, which results in improving robustness and autonomy of vehicle navigation within unpredictable dynamic
environments. The key feature of the new reactive motion planning method is based on a local observer in the virtual plane which
allows the effective transformation of complex dynamic planning problems into simple stationary in the virtual plane. In addition,
a sensor fusion based obstacle detection technique provides the pose estimation of moving obstacles by using a Kinect sensor and a
sonar sensor, which helps to improve the accuracy and robustness of the reactive motion planning approach in uncertain dynamic
environments. The performance of the proposed method was demonstrated through not only simulation studies but also field
experiments using multiple moving obstacles even in hostile environments where conventional method failed.

1. Introduction

Thecapability ofmobile robots to autonomously navigate and
safely avoid obstacles plays a key role for many successful
real-world applications [1]. To date, a major research work
has been applied to analyze and solve the motion planning
in a completely known environment with largely static or, to
some extent, moving obstacles. Motion planning in dynamic
environments is still among the most difficult and important
problems in mobile robotics. The autonomous motion plan-
ning approaches for the robots can be classified into three
different paradigms such as the hierarchical, reactive, and
hybrid approach [2]. These paradigms in robot navigation
community point out to a major dichotomy classified into
two categories: planned based approach and behavior based
technique. The hierarchical (or planned based) navigation
approaches have a serial control architecture with which
robots sense the known world, plan their operations, and act
to follow a path expressed in global coordinates based on this
sensed model. For instance, deterministic and probabilistic
roadmap methods are widely used in [2–4]; potential field

based methods are suggested in [5, 6]. In [7], a collision-free
path planning approach was suggested based on Bezier
curves. A novel optimization method considering robot
posture and path smoothness is presented in [8]. Since there
is no direct connection between the sensing and acting,
the robot is limited to operate only in static environment.
In [9], a path planning based robot navigation approach
was proposed to cope with unexpected changing environ-
ment using 𝐷

∗ approach and automatic docking system
for recharging home surveillance robot system is proposed
in [10], but the performance is limited when obstacles are
allowed to move in the workspace.The feature of the planned
based approaches makes the robot difficult to manage to
interact with a constantly changing dynamic environment
while performing complex tasks at slow speed.

On the other hand, unlike the preceding methods, the
behavior based approaches [11–18] or called reactive based
methods utilize local control laws relative to local features
and rely on accurate local feature detection to cope with these
unexpected chances in a reactive way. Reactive navigation
differs from the planned navigation approach in the sense
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that when a mission is assigned or a goal location is given,
the robot does not plan its path but rather navigate itself
by reacting to its immediate environment in real time. The
main idea of the reactive paradigm is to separate the control
system into small units of sensor-action pairs with a layered
modular architecture resulting in fast execution of the control
algorithm [12]. There are other types of developments in
local reactive path planning approaches, such as Vector Field
Force (VFF) [13] andVector Field Histogram (VFH) [14].The
VFF and VFHmethods generate histograms from senor data
in order to generate control commands for the vehicle but
they do not take into account the dynamic and kinematic
constraints of the vehicle.

However, there have been a few reactive works that utilize
the kinematic or dynamic information of the environment
to compute the motion commands for avoiding unexpected
changes in the environment. When the velocity information
of the objects obtained from available sensors is utilized, the
robot navigation system can compute trajectories resulting in
improving the motion performance regarding other obstacle
avoidance methods [15–19]. The curvature velocity method
(CVM) [15] and the dynamic windows approach (DWA) [16]
search an appropriate control command in velocity space by
maximizing an objective function which has criteria such as
speed, distance between obstacles, and remaining distance
towards the final destination. The CVM and DWA method,
however, could increase the order of complexity resulting
from the optimization of the cost function. In [17–19], a veloc-
ity information based approach for navigation and collision
detection based on the kinematic equation is introduced by
using the notion of collision cones in the velocity space. In a
similar way, the concept of velocity obstacles [20, 21] takes the
velocity of the moving obstacles into account, which results
in a shift of the collision cones. This method is restricted
to obstacles with linear motion, and thus the nonlinear
velocity obstacle approach is introduced to extend to cope
with obstacles moving along arbitrary trajectories [22]. The
key concept of velocity obstacles is to transform the dynamic
problem into several static problems in order to increase the
capability of avoiding dynamic obstacle within unexpected
environment changes [23]. Meanwhile, sensor based motion
planning techniques are also widely used for robot navigation
applications in dynamic environments, where the pose esti-
mates of the moving obstacles are obtained by using sensory
systems [24–26]. These sensor based navigation approaches
also require the knowledge of the obstacle’s velocities for an
accurate navigation solution.

In this work, a new sensor fusion based hybrid reactive
navigation approach for autonomous robots is proposed in
dynamic environments. The contribution of the new motion
planning method lies on the fact that it integrates a local
observer in a virtual plane as a kinematic reactive path
planner [23] with a sensor fusion based obstacle detection
approach which can provide a relative information of moving
obstacles and environments, resulting in an improved robust-
ness and accuracy of the dynamic navigation capability. The
key feature of the reactive motion planning method is based
on a local observer in the virtual plane approachwhichmakes
the effective transformation of complex dynamic planning

problems into simple stationary ones along with a collision
cone in the virtual plane approach [23]. On the other hand,
a sensor fusion based planning technique provides the pose
estimation of moving obstacles by using sensory systems and
thus it could improve the accuracy, reliability, and robustness
of the reactive motion planning approach in uncertain
dynamic environments.Thehybrid reactive planningmethod
allows an autonomous vehicle to reactively change heading
and velocity to cope with an obstacle around in each planning
time. As a sensory system, Microsoft Kinect device [27]
which could obtain distance between the camera and target
objects is utilized. The advantage of using Kinect is on its
capability of calculating the distance between two objects
on the world coordinate frame. In case that the two objects
are placed closer, a sonar sensor mounted on the robot can
detect andmake a precise distance calculation in combination
with the Kinect sensor data. The integrated hybrid motion
planning with the integration of the virtual plane approach
and sensor based estimation method allows the robot to find
the appropriate windows for the speed and orientation to
move with a collision-free path in dynamic environments,
making its usage very attractive and suitable for real-time
embedded applications. In order to verify the performance
of the suggested method, real experiments are carried out for
the autonomous navigation of a mobile robot in the dynamic
environments using multiple moving obstacles. Here two
mobile robots act on the moving obstacles and one has to
avoid collision with the other robot.

The rest of the work is organized as follows. In Section 2
we introduce the kinematic equations and the geometry of
the dynamic motion planning problem. In Section 3, the
concept of the hybrid reactive navigation using virtual plane
approach is given.The configuration and system architecture
of the Kinect device is discussed in Section 4. Simulation and
experimental tests are shown and discussed in Section 5.

2. Definition of Dynamic Motion Planning

In this section, the relative velocity obstacle based motion
planning algorithms for collision detection and control laws
are defined [23]. Figure 1 shows some geometry parameters
for the navigation in dynamic environment for the mobile
robot. The world is attached to a global fixed reference frame
of coordinates {𝑊}, and its origin point is the origin 𝑂. It
is possible to attach local reference frames to every moving
object in the working space. The suggested method is a
reactive navigation method with which the robot needs to
change the path to avoid either moving or static obstacles
within a given radius, that is, the coverage area (CA).

The line of sight of the robot 𝑙
𝑟
is the imaginary straight

line that starts from the origin and is directed toward the
reference center point of the robot 𝑅. The line-of-sight angle
𝜃
𝑟
is the angle made by the sight 𝑙

𝑟
. The distance 𝑙

𝑔𝑟
between

robot 𝑅 and the goal 𝐺 is calculated by

𝑙
𝑔𝑟
= √(𝑥

𝑔
− 𝑥
𝑟
)
2

+ (𝑦
𝑔
− 𝑦
𝑟
)
2

, (1)
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Figure 1: Geometry of the navigation problem. Illustration of the
kinematic and geometric variables.

where (𝑥
𝑔
, 𝑦
𝑔
) is the coordinates of the final goal point and

(𝑦
𝑟
, 𝑥
𝑟
) is the state of the robot in {𝑊}. The mobile robot has

a differential driving mechanism using two wheels and the
kinematic equation of the wheeled mobile robot can be given
by

̇𝑥
𝑟
= V
𝑟
cos 𝜃
𝑟
,

̇𝑦
𝑟
= V
𝑟
sin 𝜃
𝑟
,

̇V
𝑟
= 𝑎
𝑟
,

̇𝜃
𝑟
= 𝑤
𝑟
,

(2)

where 𝑎
𝑟
is the robot’s linear acceleration and V

𝑟
and 𝑤

𝑟

are the linear and angular velocities. (𝜃
𝑟
, V
𝑟
) are the control

inputs of the mobile robot. The line-of-sight angle 𝜑
𝑔𝑟
which

is obtained from the anglemade by the line of sight 𝑙
𝑔𝑟
is given

by the following equations:

cos𝜑
𝑔𝑟
=

𝑥
𝑔
− 𝑥
𝑟

√(𝑥
𝑔
− 𝑥
𝑟
)
2

+ (𝑦
𝑔
− 𝑦
𝑟
)
2

tan𝜑
𝑔𝑟
=

𝑦
𝑔
− 𝑦
𝑟

𝑥
𝑔
− 𝑥
𝑟

.

(3)

Now, the kinematic equation of the 𝑖th obstacle 𝐷
𝑖
is

expressed by

̇𝑥
𝑖
= V
𝑖
cos 𝜃
𝑖
,

̇𝑦
𝑖
= V
𝑖
sin 𝜃
𝑖
,

̇𝜃
𝑖
= 𝑤
𝑖
,

(4)

where the obstacle has the linear velocity V
𝑖
and the angular

velocities 𝑤
𝑖
, and 𝜃

𝑖
is the orientation angle. The Euclidian

distance of the line of sight 𝑙
𝑖𝑟
between the robot and the 𝑖th

obstacle is calculated by

𝑙
𝑖𝑟
= √(𝑥

𝑖
− 𝑥
𝑟
)
2

+ (𝑦
𝑖
− 𝑦
𝑟
)
2 (5)

and the line-of-sight angle 𝜑
𝑖𝑟
is expressed by

tan𝜑
𝑖𝑟
=
𝑦
𝑖
− 𝑦
𝑟

𝑥
𝑖
− 𝑥
𝑟

. (6)

The evolution of the range and turning angle between the
robot and an obstacle for dynamic collision avoidance is
computed by using the tangential and normal component of
the relative velocity in the polar coordinates as follows:

̇𝑙
𝑖𝑟
= V
𝑖
cos (𝜃

𝑖
− 𝜑
𝑖𝑟
) − V
𝑟
cos (𝜃

𝑟
− 𝜑
𝑖𝑟
)

𝑙
𝑖𝑟

̇𝜑
𝑖𝑟
= V
𝑖
sin (𝜃
𝑖
− 𝜑
𝑖𝑟
) − V
𝑟
sin (𝜃
𝑟
− 𝜑
𝑖𝑟
) .

(7)

From these equations it is shown that a negative sign of ̇𝑙
𝑖𝑟

indicates that the robot is approaching obstacle 𝐷
𝑖
, and if

the rate is zero, the range implies constant distance between
the robot and the obstacle. Meanwhile, a zero rate for the
line-of-sight angle indicates the motion of 𝐷

𝑖
is a straight

line. The relative polar system presents a simple but very
effective model that allows real-time representation of the
relative motion between the robot and moving obstacle [23].

3. Hybrid Reactive Motion Planning Approach

3.1. Virtual Plane Based Reactive Motion Planning. In this
section, the virtual plane method which allows transforming
a moving object of interest into a stationary object is briefly
reviewed [23]. The transformation used in the virtual plane
is achieved by introducing a local observer that allows the
robot to find the appropriate windows for the speed and
orientation to move in a collision-free path. Through this
transformation, the collision course between the robot 𝑅 and
the 𝑖th obstacle 𝐷

𝑖
is reduced to a collision course between

the virtual robot 𝑅V and the initial position 𝐷
𝑖
(𝑡
0
) of a real

obstacle. The components of the relative velocity between 𝑅V

and𝐷
𝑖
(𝑡
0
) along and across ̇𝑙

𝑖𝑟
are given by

̇𝑙
𝑖𝑟
= −VV
𝑟

cos (𝜃V
𝑟

− 𝜑
𝑖𝑟
)

𝑙
𝑖𝑟

̇𝜑
𝑖𝑟
= −VV
𝑟

sin (𝜃V
𝑟

− 𝜑
𝑖𝑟
) ,

(8)

where VV
𝑟

and 𝜃V
𝑟

are the linear velocity and orientation of the
virtual robot. The linear velocity and orientation angle of 𝑅V

can be written as follows:

VV
𝑟

= √( ̇𝑥
𝑖
− ̇𝑥
𝑟
)
2

+ ( ̇𝑦
𝑖
− ̇𝑦
𝑟
)
2 (9)

tan 𝜃V
𝑟

=
̇𝑦
𝑖
− ̇𝑦
𝑟

̇𝑥
𝑖
− ̇𝑥
𝑟

. (10)

Note that the tangential and normal equations given in (7) for
the dynamic motion planning are rewritten in terms of the
virtual robot as an observer, leading to a stationary motion
planning problem. More details concerning the virtual plan-
ning method can be referred to in [23].

Collision detection is expressed in the virtual plane, but
the final objective is to make the robot navigate toward the
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goal with collision-free path in the real plane.The orientation
angle of the robot in the real plane is calculated by

̇𝑥
𝑟
= ̇𝑥

V
𝑟

+ ̇𝑥
𝑖

̇𝑦
𝑟
= ̇𝑦

V
𝑟

+ ̇𝑦
𝑖
.

(11)

This is the inverse transformation mapping the virtual plane
into the real plane and gives the velocity of the robot as a
function of the velocities of the virtual robot and the moving
object. The speed and orientation of the real robot can be
computed from the virtual robot and the moving object
velocities as follows:

V
𝑟
= √( ̇𝑥V

𝑟

+ ̇𝑥
𝑖
)
2

+ ( ̇𝑦V
𝑟

+ ̇𝑦
𝑖
)
2

tan 𝜃
𝑟
=

̇𝑦
V
𝑟

+ ̇𝑦
𝑖

̇𝑥V
𝑟

+ ̇𝑥
𝑖

.

(12)

3.2. Navigation Laws. In order to make the robot navigate
toward the final goal, a kinematic based linear navigation law
is used as [23]

𝜃
𝑟
= 𝑀𝜑

𝑔𝑟
+ 𝑐
1
+ 𝑐
0
𝑒
−𝑎𝑡

, (13)

where 𝜑
𝑔𝑟

is the line-of-sight angle of the robot final goal,
and the variables are deviation terms characterizing the final
desired orientation angle of the robot and indicating the
initial orientation of the robot. The term 𝑀 is a navigation
parameter with 𝑀 > 1, and 𝑎 is a given positive gain. On
the other hand, the collision course in the virtual plane with
𝐷
𝑖
(𝑡
0
) is characterized by

𝜃
V
𝑟

∈ CCVP
𝑖
. (14)

The collision cone in the virtual plane (CCVP) is given by

CCVP
𝑖
= [𝜑
𝑖𝑟
− 𝛽
𝑖
, 𝜑
𝑖𝑟
+ 𝛽
𝑖
] , (15)

where 𝛽
𝑖
is the angle between the lines of the upper and lower

tangent limit points in𝐷
𝑖
.The direct collision course between

𝑅 and𝐷
𝑖
is characterized by

tan 𝜃V
𝑟

=
̇𝑦
𝑖
− ̇𝑦
𝑟

̇𝑥
𝑖
− ̇𝑥
𝑟

= [tan (𝜑
𝑖𝑟
− 𝛽
𝑖
) , tan (𝜑

𝑖𝑟
+ 𝛽
𝑖
)] . (16)

After the orientation angle 𝜃V
𝑟

of the virtual robot is computed
in terms of the linear velocity of the robot and the moving
obstacles as given in (10), it is possible to write the expressions
of the orientation angle 𝜃

𝑟
and the speed V

𝑟
for the real robot

controls V
𝑟
or in terms of the linear velocity and orientation

angle of the moving obstacle and the virtual robot as follows:

V
𝑟
=
V
𝑖
(tan 𝜃V

𝑟

cos 𝜃
𝑖
− sin 𝜃

𝑖
)

tan 𝜃V
𝑟

cos 𝜃
𝑟
− sin 𝜃

𝑟

𝜃
𝑟
= 𝜃

V
𝑟

− arcsin[
V
𝑖
sin (𝜃V
𝑟

− 𝜃
𝑖
)

V
𝑟

] .

(17)

For the robot control, the desired value of the orientation
angle in the virtual plane can be expressed based on using
the linear navigation law as

𝜃
V∗
𝑟

(𝑡) = 𝛼
𝑖,𝑘
+ 𝑐
1
+ 𝑐
0
exp {−𝑎 (𝑡 − 𝑡

𝑑
)} , 𝑘 = 1, 2, (18)

LED Vision camera Microphone 
array

Microphone 
array

3D depth sensor cameras Motorized tilt

Figure 2: Architecture of Microsoft Kinect sensor.

where 𝑡
𝑑
denotes the time when the robot starts deviation

for collision avoidance, and 𝛼
𝑖,1
and 𝛼

𝑖,2
are the left and right

line-of-sight angles between the reference deviation points
and the points on the collision cone in the virtual plane.
Finally, based on the desired orientation in the virtual plane,
the corresponding desired speed value V∗

𝑟

for the robot is
calculated by

V∗
𝑟

=

V
𝑖
(tan 𝜃V

∗

𝑟

cos 𝜃
𝑖
− sin 𝜃

𝑖
)

tan 𝜃V∗
𝑟

cos 𝜃
𝑟
− sin 𝜃

𝑟

. (19)

In a similar way, the corresponding desired orientation value
can be expressed by

tan 𝜃∗
𝑟

=

VV
𝑟

sin (𝜃V
∗

𝑟

) + V
𝑖
sin (𝜃
𝑖
)

VV
𝑟

cos (𝜃V∗
𝑟

) + V
𝑖
cos (𝜃

𝑖
)
. (20)

Note that, for the robot navigation including a collision
avoidance technique within dynamic environments, either
the linear velocity control expressed in (19) or the orientation
angle control in (20) can be utilized.

3.3. Sensor Fusion Based Range and Pose Estimation. Low-
cost range sensors are an attractive alternative to expensive
laser scanners in application areas such as motion planning
and mapping. The Microsoft Kinect [26] is a sensor which
consists of an IR sensor, an IR camera, an RGB camera, a
multiarray microphone, and an electrical motor, providing
the tilt function to the sensor (shown in Figure 2). The
Kinect sensor captures not only depth but also color images
simultaneously at a frame rate of up to 30 fps. Some key
features are illustrated in [26–29]. The RGB video stream
uses 8-bit VGA resolution (640 × 480 pixels) with a Bayer
color filter at a frame rate 30Hz. The monochrome depth
sensing video stream has a VGA resolution (640×480 pixels)
with 11-bit depth, which provides 2048 levels of sensitivity.
Depth data is acquired by the combination of IR projector and
IR camera. The microphone array features four microphone
capsules and operates with each channel processing 16-bit
audio at a sampling rate of 16 kHz. The motorized pivot
is capable of tilting the sensor up to 27∘ either up or
down.

The features of Kinect device make its application very
attractive to autonomous robot navigation. In this work, the
Kinect sensor is utilized for measuring range to moving
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Table 1: Kinect’s focal length and field of view.

Camera Focal length (pixel) Field of view (degrees)
Horizontally Vertically

RGB 525 63 50
IR 580 57 43

Detectable
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depth camera
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Figure 3: Kinect depth measurement and actual distance.

obstacles and estimating color-based locations of objects for
dynamic motion planning.

Before going into detail, the concept of the calculation
of the real coordinates is discussed. Kinect camera has
some good advantages such as depth sensor with minimum
800mm and maximum range 4000mm. Camera focus is
constant and given and thus real distance between camera
and chosen target is easily calculated. The parameters used
in Kinect sensor are summarized in Table 1.

Two similar equations have been proposed by researcher,
where one is based on the function 1/𝐷value and the other is
using tan(𝐷value).The distance between a camera and a target
object 𝑧

𝑤
is expressed by

𝑧
𝑤
=

1

(𝐷value × (−0.0030711016) + 3.3309495161)
(21)

𝑧
𝑤
= 0.1236 × tan(

𝐷value
2842.5 + 1.1863

) . (22)

Figure 3 shows the detectable ranges of a depth camera where
the distances in world coordinate based on the above two
equations are computed by limiting the raw depth to 1024 that
corresponds to about 5 meters.

Figure 4 shows the error results of distance measure-
ment experiments using a Kinect’s depth camera. In this
experiment, the measured distance using a ruler is noted by
green which gives a reference distance, and three repetitive
experiments are carried out and they are drawn in red, light
blue, and blue colors. From the experiment, it is shown that
the errors of the depth measurements from the Kinect sensor
are proportional to the distance.
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Figure 4: Kinect depth camera measurement experiment and error.
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Figure 5: Robot and obstacle localization using the Kinect sensor
for ranging and positioning computation.

Figure 5 shows a general schematics of geometric
approach to find the 𝑥 and 𝑦 coordinates using the Kinect
sensor system, where ℎ is the screen height in pixels and 𝛽 is
the field of view of the camera. The coordinates of a point on
the image plane of the robot 𝑃

𝑟

and goal 𝑃
𝑔

are transformed
into the world coordinates 𝑃

𝑟
and 𝑃

𝑔
, and it is calculated by

𝑃 = (𝑥
𝑤
, 𝑦
𝑤
) → 𝑃



= (𝑥
𝑠
, 𝑦
𝑠
, 𝑧
𝑠
)

𝑥
𝑤
=
𝑥
𝑠

𝑧
𝑤

, 𝑦
𝑤
=
𝑦
𝑠

𝑧
𝑤

.

(23)
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Figure 6: Robot heading angle computation approach.

Each of coordinates 𝑥
𝑤
, 𝑦
𝑤
, 𝑧
𝑤
of two red (robot) and green

(goal) points is used as the input into the vision system, and
𝑃
 is computed by

(

𝑥
𝑠

𝑦
𝑠

𝑧
𝑠

) = (

𝑓 0 0 0

0 𝑓 0 0

0 0 1 0

)(

𝑥
𝑤

𝑦
𝑤

𝑧
𝑤

1

), (24)

where 𝑓 is the focal length of the camera. 𝑃 is calculated at
the pixel coordinates divided by 𝜌

𝑢
and 𝜌V, and the values of

the pixel of the image 𝑢 and V are the pixel coordinates and
they are obtained from the following equations:

(

𝑢


V

𝑤


) =(

1

𝜌
𝑢

0 𝑢
0

0
1

𝜌V
V
0

0 0 1

)(

𝑓 0 0 0

0 𝑓 0 0

0 0 1 0

)(

𝑋
𝑊

𝑌
𝑊

𝑍
𝑊

1

)

𝑃


= (

𝑢

V
) = (

𝑢


𝑤

V

𝑤

), (

𝑢


V

𝑤


) = 𝐶(

𝑥
𝑤

𝑦
𝑤

𝑧
𝑤

1

).

(25)

In the experiment, the final goal and robots are recognized by
a built-in RGB camera. In addition, the distance of an object
is measured within mm accuracy using IR camera, and the
target object’s pixel coordinates (𝑥

𝑠
, 𝑦
𝑠
) are estimated by using

a color-based detection approach. In this work, the distance
measured between the planning field and the Kinect sensor
is 2700mm which becomes the depth camera’s detectable
range. The horizontal and vertical coordinates of an object
are calculated as follows:

(1) horizontal coordinate:

𝛼 = arctan(
𝑥
𝑠

𝑓
)

𝑥
𝑤
= 𝑧
𝑤
× sin𝛼;

(26)

(2) vertical coordinate:

𝛼 = arctan(
𝑦
𝑠

𝑓
)

𝑦
𝑤
= 𝑧
𝑤
× sin𝛼,

(27)

where 𝑧
𝑤
is the distance to the object obtained from

Kinect sensor. Now, those real-world coordinates
obtained in the above are used in dynamic path
planning procedures.

In general, the camera intrinsic and extrinsic parameters
of the color and depth cameras are set as default values,
and thus it is necessary to calibrate them for accurate tests.
The calibration of the depth and RGB color cameras in the
Kinect sensor can be applied by using a mathematical model
of depth measurement and creating a depth annotation of a
chessboard by physically offsetting the chessboard from its
background, and details of the calibration procedures can be
referred to in [30, 31].

As indicated in the previous section, for the proposed
relative velocity obstacle based dynamic motion planning,
the accurate estimates of the range and orientation of an
object play an important role. In this section, an efficient new
approach is proposed to estimate the heading information of
the robot using a color detection approach. First, the robot is
covered by green and red sections shown in Figure 6.

Then, using a color detectionmethod [32] the center loca-
tion of the robot is calculated, and after finding denominate
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Input: Coordinate of Robot, obstacle 1, obstacle 2 and goal
Output: Speed of robot’s right and left wheels
Calculate 𝑙

𝑔𝑟

using Kinect
While 𝑙

𝑔𝑟

> 0 do
Calculate 𝑙

𝑔𝑟

and 𝜙
𝑔𝑟

Send robot speed
if All𝐷

𝑖

in CA
Calculate ̇𝑙

𝑖𝑟

using Kinect
if All ̇𝑙

𝑖𝑟

> 0 then
There is no collision risk, keep send robot speed

else
Construct the virtual plane
Test the collision in the virtual plane
if there is a collision risk then
Check sonar sensor value
if sonar value is too small then
Chose 𝜃

𝑟

of quick motion control
Send robot speed

else
Construct the 𝜃-window
Chose the appropriate values for 𝜃

𝑟

Send robot speed
end if

end if
end if

end while

Algorithm 1: Hybrid reactive dynamic navigation algorithm.

heading angle 𝜃 as shown in (28), new heading information
in each four different phase sections is computed by using the
following equations:

Δ𝑥 = 𝑥
𝑔
− 𝑥
𝑟

Δ𝑦 = 𝑦
𝑔
− 𝑦
𝑟

𝜃 = tan−1 (
𝑦
𝑔
− 𝑦
𝑟

𝑥
𝑔
− 𝑥
𝑟

)

(28)

(1) 𝑥
𝑔
> 𝑥
𝑟
, 𝑦
𝑔
> 𝑦
𝑟

𝜃 = 𝜃 + 0

(2) 𝑥
𝑔
< 𝑥
𝑟
, 𝑦
𝑔
> 𝑦
𝑟

𝜃 = 3.14 − 𝜃

(3) 𝑥
𝑔
< 𝑥
𝑟
, 𝑦
𝑔
< 𝑦
𝑟

𝜃 = 3.14 + 𝜃

(4) 𝑥
𝑔
> 𝑥
𝑟
, 𝑦
𝑔
< 𝑦
𝑟

𝜃 = 6.28 − 𝜃.

(29)

Finally, the relative velocity obstacle based reactive
dynamic navigation algorithm with the capability of collision
avoidance is summarized in Algorithm 1.

4. Experimental Results

For the evaluation and verification of the proposed sensor
based reactive dynamic navigation algorithms, both simu-
lation study and experimental tests are carried out with a
realistic experimental setup.

4.1. Experimental Scenario and Setup. For experimental tests,
two robots are assigned asmoving obstacles and the third one
is used as a master robot that generates control commands to
avoid the dynamic obstacles based on the suggested reactive
motion planning algorithms. For the moving obstacles, two
NXT Mindstorm based vehicles that can either move in a
random direction or follow a designated path are developed.
The HBE-RoboCAR equipped with ultrasonic and encoder
sensors is used as a master robot as shown in Figure 7.

TheHBE-RoboCAR [33] has 8-bit AVRATmega128L pro-
cessor. The robot is equipped with multiembedded processor
modules (embedded processor, FPGA, MCU). It provides
detection of obstacles with ultrasonic and infrared sensor,
motion control with acceleration sensor, and motor encoder.
HBE-RoboCAR has the ability to communicate with other
device either wireless or wired technology such as Bluetooth
module and ISP, UART interfaces, respectively. In this work,
HBE-RoboCAR is connected to a computer on the ground
control station using Bluetooth wireless communication.
Figure 7 shows the hardware specification and sensor systems
for the robot platform, and Figure 8 shows the interface and
control architecture for the embedded components of HBE-
RoboCAR [33].
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Figure 7: Mobile robot hardware and sensor systems (HBE-RoboCAR [33]).
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For the dynamic obstacle avoidance, the relative velocity
obstacle based navigation laws require the range and heading
information from sensors. For the range estimation, Kinect
sensor is utilized. If the Kinect sensor detects the final goal
using a color-based detection algorithm [32, 34, 35], it sends
the information to the master robot. After receiving the
target point, the master robot starts the onboard navigation
algorithm to reach the goal while avoiding dynamic obstacles.
When the robot navigates in the experimental field, the
distance to each moving obstacle is measured by the Kinect
sensor and the range information is fed back to the master
robot via Bluetooth communication as inputs to the reactive
motion planning algorithms. The detailed scenario for the
experimental setup is illustrated in Figure 9.

4.2. Simulation Results. Figure 10 shows the simulation
results of the reactive motion planning on both the virtual
plane and the real plane. In this simulation, the trajectories
of two obstacles were described by the blue and black color
lines, the trajectory of the master robot was depicted in the
red line, and the goal was indicated by green dot. As can
be clearly seen in the real plane and the virtual plane in
Figures 10(b) and 10(a), the master robot avoided the first
obstaclewhichwasmoving into themaster robot and success-
fully reached the target goal after avoiding the collision with
the second moving obstacle just before reaching the target.
While the master robot avoids the obstacles, it generates a
collision cone by choosing a deviation point on the virtual
plane. On the virtual plane, the radius of the collision cone
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Figure 10: Simulation results on virtual plane and real plane.
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Figure 11: Orientation angle information: target angle, robot head-
ing angle, and variance angle.

is the same as the obstacle’s one, and the distance between
the deviation point and the collision cone is dependent on
the radius of the master robot.The ellipses indicate the initial
locations of the robot and the obstacles.

In Figure 11, the orientation angle information used for
the robot control was illustrated. The upper top plot showed
the angle of the moving robot to the target from the virtual
plane, the second plot showed the robot heading angle
commanded for the navigation control, and the third plot
showed the angle difference between the target and robot
heading angle. At the final stage of the path planning, the
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Figure 12: Results of firstmoving obstacle’s orientation angle, speed,
and position in 𝑥-𝑦 coordinates.

commanded orientation angle and the target angle to the goal
point become the same. Instead of controlling the robot with
the orientation angle, the speed of the master robot can be
used to avoid the moving obstacles.

Figures 12 and 13 show each moving obstacle’s heading
angle, linear velocity, and trajectory. As can be seen, in order
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Figure 14: Results of robot’s trajectory, speed, and right and left
wheels speed.

to carry out a dynamic path planning experiment, the speed
and the heading angle were changed during the simulation,
resulting in uncertain cluttered environments.

Figure 14 shows the mobile robot’s trajectory from the
start point to the goal point, and also the forward velocity and
each wheel speed from encoder. As can be seen, the trajectory
of the robot has a sharp turn around the location (1500mm,
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Figure 15: (a) Experiment environment (initial stage). (b) Plots of
the experimented data at initial stage.

1000mm) in order to avoid the second moving obstacle. It is
seen that the right and left wheel speeds are mirrored along a
time axis. Also, we can see relationship of the variance angle
and robot’s right and left wheels speed.

4.3. Field Test and Results. Further verification of the per-
formance of the proposed hybrid dynamic path planning
approach for real experiments was carried out with the
same scenario used in the previous simulation part. In the
experiment, two moving obstacles are used and a master
robot moves without any collision with the obstacles to the
target point as shown in Figure 15(a), and the initial locations
of the obstacles and the robot are shown in Figure 15(b). The
red dot is the initial starting position of the master robot at
(2750mm, 2126mm), the black dot is the initial location of
the second obstacle at (2050mm, 1900mm), and the blue dot
is the initial location of the first moving obstacle at (1050mm,
2000mm). In the virtual plane, the collision cone of the first
obstacle is depicted as shown in the top plot of Figure 15(b),
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Figure 16: (a) Experiment result of collision avoidance with the first
obstacle. (b) Plot of the trajectories of the robot and the obstacles in
the virtual and real planes during the collision avoidance with the
first moving obstacle.

and the robot carries out its motion control based on the
collision cone in the virtual plane until it avoids the first
obstacle.

Figure 16 showed the collision avoidance performance
with the fist moving obstacle, and as can be seen, the master
robot avoided the commanded orientation control into the
left direction without any collisions, which is described in
detail in the virtual plane in the top plot of Figure 16(b). The
trajectory and movement of the robot and the obstacles were
depicted in the real plane in Figure 16(b) for the detailed
analysis.

In a similar way, Figure 17(a) illustrated the collision
avoidance with the second moving obstacle, and the detailed
path and trajectory are described in Figure 17(b). The top
plot of Figure 17(b) shows the motion planning in the
virtual plane, where the initial location of the second moving
obstacle is recognized at the center of (2050mm, 1900mm).
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Figure 17: (a) Experiment result of collision avoidance with the
second obstacle. (b) Plot of the trajectories of the robot and the
obstacles in the virtual and real planes during the collision avoidance
with the second moving obstacle.

Based on this initial location, the second collision cone is
constructed with a big green ellipse that allows the virtual
robot to navigate without any collision with the second
obstacle. The trajectory of the robot motion planning in the
real plane is depicted in the bottom plot of Figure 17(b).

Now, at the final phase after avoiding all the obstacles, the
master robot reached the target goal with a motion control
as shown in Figure 18(a). The overall trajectories of the robot
from the starting point to the final goal target in the virtual
plane were depicted in the top plot of Figure 18(a), and the
trajectories of the robot in the real plane were depicted in
the bottom plot of Figure 18(b). Note that the trajectories of
the robot location differ from each other in the virtual plane
and the real plane. However, the orientation change gives the
same direction change of the robot in both the virtual and
the real plane. In this plot, the green dot is the final goal
point and the robot trajectory is depicted with the red dotted
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Figure 18: (a) Experiment result after the collision avoidance with
all obstacles. (b) Plot of the trajectories of the robot and the obstacles
in the virtual and real planes during the collision avoidance with all
the moving obstacles.

circles. The smooth trajectory was generated by using the
linear navigation laws as explained.

From this experiment, it is easily seen that the pro-
posed hybrid reactive motion planning approach designed
by the integration of the virtual plane approach and a
sensor based planning is very effective to dynamic collision
avoidance problems in cluttered uncertain environments.
The effectiveness of the hybrid reactive motion planning
method makes its usage very attractive to various dynamic
navigation applications of not only mobile robots but also
other autonomous vehicles such as flying vehicles and self-
driving vehicles.

5. Conclusion

In this paper, we proposed a hybrid reactive motion plan-
ning method for an autonomous mobile robot in uncertain

dynamic environments.The hybrid reactive motion planning
method combined a reactive path planning method which
could transform dynamic moving obstacles into stationary
ones with a sensor based approach which can provide relative
information of moving obstacles and environments. The key
features of the proposed method are twofold; the first key
feature is the simplification of complex dynamic motion
planning problems into stationary ones using the virtual
plane approach while the second feature is the robustness of
a sensor basedmotion planning in which the pose estimation
of moving obstacles is made by using a Kinect sensor which
provides a ranging and color detection. The sensor based
approach improves the accuracy and robustness of the reac-
tive motion planning approach by providing the information
of the obstacles and environments. The performance of
the proposed method was demonstrated through not only
simulation studies but also field experiments using multiple
moving obstacles.

In the further work a sensor fusion approach which could
improve the heading estimation of a robot and the speed
estimation of moving objects will be investigated more for
more robust motion planning.
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