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With the advancement in modern computational technologies like cloud computing, there has been tremendous growth in the �eld 
of data processing and encryption technologies. In this contest there is an increasing demand for successful storage of the data in the 
encrypted domain to avoid the possibility of data breach in shared networks. In this paper, a novel approach for speech encryption 
algorithm based on quantum chaotic system is designed. In the proposed method, classical bits of the speech samples are initially 
encoded in nonorthogonal quantum state by the secret polarizing angle. In the quantum domain, encoded speech samples are 
subjected to bit-�ip operation according to the Controlled–NOT gate followed by Hadamard transform. Complete superposition 
of the quantum state in both Hadamard and standard basis is achieved through Hadamard transform. Control bits for C-NOT 
gate as well as Hadamard gate are generated with a modi�ed ��̇-hyperchaotic system. Secret nonorthogonal rotation angles and 
initial conditions of the hyperchaotic system are the keys used to ensure the security of the proposed algorithm. ­e computational 
complexity of the proposed algorithm has been analysed both in quantum domain and classical domain. Numerical simulation 
carried out based on the above principle showed that the proposed speech encryption algorithm has wider keyspace, higher key 
sensitivity and robust against various di�erential and statistical cryptographic attacks.

1. Introduction

1.1. Background. Speech encryption techniques have been 
widely used in con�dential areas such as defence, voice over IP, 
voice-conferencing, news telecasting, e-commerce etc. In these 
applications, Integrity protection of the voice data is the major 
security concern, which demands the development of secure 
speech cryptographic algorithms. Classical data encryption 
methods are poorly suited for audio encryption, due to its 
bulky data capacity, strong correlation between adjacent 
data samples and the presence of unvoiced data segments. 
Furthermore, there is no theoretical limit on cloning or copying 
of data in classical cryptography. Quantum information 
processing is one of the promising �elds of cryptography, 
in which the fundamental principles of quantum mechanics 
like Heisenberg uncertainty principle and principle of photon 
polarization are directly exploited [1]. Any attempt made by 
an intruder to clone or copy an unknown quantum state will 
destroy the state and it will be detected [2]. Furthermore, 
nonorthogonal quantum states cannot be readily distinguished 

even if the states are known. Quantum cryptography was 
developed in 1984 by the physicist Charles Henry Bennett 
and it was experimentally demonstrated in 1992 [3]. In 1982, 
Richard Feynman introduced the idea of a quantum computer, 
which uses the basic principles of quantum mechanics to its 
advantage [4]. Quantum computational model theoretically 
has high computational power to solve realtime mathematical 
problems much faster than classical computers [5, 6]. With the 
development in this �eld, computationally e¦cient quantum 
algorithms like Shores factoring algorithm, Grover’s searching 
algorithm and discrete algorithm have been designed which 
may threaten classical cryptosystem [6]. Also, quantum signal 
processing outperforms classical signal processing since 
quantum Fourier transform [7], quantum discrete cosine 
transform [8, 9] and quantum wavelet transforms [10] are more 
e¦cient than their classical counterparts. ­us, cryptanalysts 
have to design new algorithms according to the principle of 
quantum mechanics to protect classical information.

Chaos is another elucidating theory from the �eld of non-
linear dynamics, which has potential applications in several 
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functional areas of a digital system such as compression, 
encryption, and modulation. It is one of the subtle behaviours 
associated with the evolution of a nonlinear physical system 
with signi�cant properties such as topological transitivity, ape-
riodicity, deterministic pseudo randomness, and sensitive 
dependence on initial conditions [11]. ­e complex chaos the-
ory have been utilized in many conventional cryptographic 
approaches like RC5 stream cipher and elliptical curve cryp-
tography to strengthen the security of encryption processes 
[12, 13]. Cryptographic algorithms based on chaos theory 
consist of two operations such as permutation and di�usion. 
In the permutation process data samples in the plaintext is 
rearranged to destroy the local correlation, making the data 
unable to understand. While in the di�usion stage data sample 
is masked by the pseudorandom number generated with the 
chaotic systems to change the sample values. Amin and Abd 
El-Latif [14] proposed a secret sharing algorithm, which com-
bines random grids (RG), error di�usion (ED) and chaotic 
permutation to improve the security. Gopalakrihnan and 
Ramakrishnan [15] introduced an image encryption algorithm 
where they adopted multiple chaotic systems such as Logistic-
Tent Map (LTM), Logistic-Sin Map (LSM), and Tent-Sin Map 
(TSM) for intermediate chaotic keystream generation. ­e 
reproducibility and deterministic nature of chaotic functions 
add value to cryptographic processes since the process can be 
repeated for the same function and same initial conditions. 
­ese properties improve the security of the cryptographic 
process by multiple iterations of chaotic maps based on sub-
stitution and di�usion operations [16, 17]. Moreover, S–box 
generation mechanism based on chaotic function along with 
substitution and permutation process increases the complexity 
of the algorithm, consequentially enhances the security [18, 
19]. Wang et al. [20] proposed a dynamic keystream selection 
mechanism for � box generation, which avoids the possibility 
of the chosen plain text and chosen ciphertext attacks. Data 
encryption techniques based on a lower dimensional chaotic 
system have weak resistance to brute force attack, which cannot 
ensure the security of data due to the small keyspace. To 
improve the keyspace most of the chaos-based encryption algo-
rithms tend to take advantage of combining more than one 
chaotic system, but it increases the computational complexity, 
system resources and time. Consequently, encryption tech-
niques based on hyperchaotic systems have been introduced 
[21–23]. ­ese systems have more than one positive Lyapunov 
exponent and rich complex dynamic behaviour. Nonlinear 
dynamics and fractional order dynamical systems have been 
widely studied in recent years. Synchronization of fractional 
order complex dynamical systems has potential applications 
in secure communication systems. Sheue [24] proposed a 
speech encryption algorithm based on fractional order chaotic 
systems. It is based on two-channel transmission method where 
the original speech is encoded using a nonlinear function of 
the Lorenz chaotic system. ­ey also, analysed the conditions 
for synchronization between fractional chaotic systems theo-
retically by using the Laplace transform.

1.2. Review of Related Works. Quantitative modelling 
and �nite precision realization of nonlinear phenomenon 
could be easily realized with the development of quantum 

computational models. ­erefore researchers have attempted 
to combine two fundamental theories of physics like 
deterministic chaos and probabilistic quantum dynamics to 
develop new cryptographic algorithms. Vidal et al., introduced 
an encryption technique, which attributes rich dynamics 
of hyperchaotic system and some fundamental properties 
of quantum cryptography [25]. Arnold Cat transform is 
applied widely as a permutation matrix in several quantum 
data encryption algorithm [26–29]. Abd El-Latif et al., [26] 
proposed an image encryption algorithm method where he 
utilized the concept of toral automorphism, low frequency �
-luminance subband scrambling and quantum chaotic map. In 
this method discretized quantum chaotic Cat map is employed 
for substitution by generating an intermediate chaotic key 
stream. Jiang et al., proposed a quantum image scrambling 
circuit based on Arnold and Fibonacci transformation [27]. 
Zhou et al., proposed an algorithm based on double phase 
random coding and generalized Arnold transform [28], in 
which image pixels are permuted by the Arnold transform and 
grey level information is encrypted by the double random-
phase process. Akhshani et al., studied the nature of dissipative 
quantum systems and proposed an image encryption 
algorithm based on the quantum logistic map [29]. Liang et 
al., proposed a method, where quantum image is encrypted 
by XOR operation with C-NOT gate which is controlled 
by pseudorandom number generated by the Logistic map 
[30]. Gong et al., introduced an algorithm, in which Chen 
hyperchaotic system is utilized to control the C-NOT 
operation [31], where the grey level information is encoded 
by quantum XOR operation. Later, Li et al., [32] designed a 
quantum colour image encryption based on multiple discrete 
chaotic systems where Logistic map, Asymmetric Tent map 
and Logistic Chebyshev map are used to generate control bits. 
Recently researchers have attempted to develop quantum key 
distribution in chaotic regime [33, 34].

1.3. Motivation and Objective of the Present Work. Most of the 
proposed classical encryption methods are �awed by limited 
keyspace, computational complexity and weak resistance to 
di�erential attacks. However, the proposed chaotic-quantum 
algorithms are computationally e¦cient and unconditionally 
secure [26–35]. But they fail to provide complete superposition 
of quantum states in encrypted domain. ­is paper introduces 
a speech encryption algorithm in the quantum scenario, where 
in classical bits are encoded in the nonorthogonal quantum 
states. Nonorthogonal quantum states are prepared by unitary 
rotations of the classical bits through secret rotation angles. 
­en, the encoded qubits are encrypted by controlled-NOT 
operation followed by Hadamard transform based on the key 
generated by the hyperchaotic system. Here quantum gates 
are controlled by the keystreams generated with the four 
dimensional hyperchaotic system proposed by Zhou and 
Yang [35] based on 3D Lü system. ­is proposed algorithm 
extends the security by encrypting quantum messages in both 
Standard and Hadamard basis. Both secret rotating angles and 
initial conditions of the hyperchaotic systems constitute the 
key, which enlarges the keyspace. ­e resulting algorithm 
ensures security against various di�erential and statistical 
attacks due to its enlarged keyspace.
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The rest of this paper is organized as follows: The pre-
liminary study of the proposed speech encryption algo-
rithm is presented in Section 2. Theoretical framework of 
the proposed approach is given in Section 3. Numerical 
simulations and performance evaluations are discussed in 
Section 4. Comparison of the proposed method with other 
state-of-art is discussed in Section 5, followed by conclusion 
in Section 6.

2. Preliminary Studies

2.1. Encoding Classical Bits in Nonorthogonal Quantum 
States. Speech samples are mapped into quantum data 
media as nonorthogonal quantum state which could be in 
Standard or Hadamard basis. Figure 1 shows the two pairs of 
nonorthogonal quantum states in Standard and Hadamard 
basis. Unlike orthogonal quantum states, nonorthogonal 
quantum states cannot be discriminated deterministically. 
Quantum data that encode the classical bits into nonorthogonal 
quantum states increases the robustness against PNS (photon 
number splitting) attacks.

Classical bits of the speech samples are encoded in the 
nonorthogonal quantum state by secret polarizing angle 
through unitary rotations. Classical binary bit to be encoded 
in quantum state is �{0, 1}. Sender encodes the classical bits 
by choosing nonorthogonal angle �i randomly between 
[0 2�]. ­e rotation operator �(��) operates on classical bits 
�� results the nonorthogonal quantum states ������⟩. Tensor 
product generates the superposition states ������⟩ correspond-
ing to ������⟩.

­e rotation operator in matrix form is expressed by:

In order to retrieve the classical data, the receiver has to rotate 
the �thquantum bit by the secret angle in the opposite direction. 
­e rotation operator �(��) is unitary since �(��)�†(��)=I, 
where �†(��)is the adjoint of the matrix and I is the identity 
matrix.

Quantum states corresponding to each classical bit can be 
expressed as follows:

(1)�(��) = [ cos �� sin ��− sin �� cos �� ].

(2)

�(��)�†(��) = [ cos
2�� + sin2�� 0
0 cos2�� + sin2�� ] = [

1 0
0 1 ].

where ������⟩ is the quantum state corresponding to classical bits 
�� for the secret rotation angle ��. Tensor product between the 
quantum states refer to (3) generate the superposition states 
given as in (4):

Here the � qubit quantum system ������⟩, exist as the superpo-
sition of 2� states with equal probability.

Superposition states for a three qubit quantum system is 
described as follows:

2.2. Quantum Gates. Quantum gates are the basic tool for 
quantum information processing. It can be represented as unitary 
matrix of size 2� × 2�, if the quantum logic gates acts on a � qubit 
quantum system. A suitable network of quantum gates can process 
quantum information much faster than the corresponding 
classical networks. In the proposed algorithm, quantum gates like 
Controlled-NOT (C-NOT) gates and Hadamard gates are used.

2.2.1. Controlled-NOT Gate. Controlled-NOT (C-NOT) is 
the classical counter part of XOR gate. It has two input bits, 
one control bit and one target bit. If the control bit is set to 
|1⟩, the gate �ips the target qubit. If the control bit is set to 
|0⟩ target qubit remains same. Mathematical expression of the 
Controlled-NOT gate can be given as follows:

CNOT = [ I 00 � ] is the matrix form of CNOT gate, where 

I = [ 1 00 1 ]& � = [
0 1
1 0 ].

2.2.2. Hadamard Gate. In Hadamard basis qubit can be 
represented as {|+⟩, |−⟩}, which gives the sense of complete 
superposition between ground state |0⟩ and excited state |1⟩.

Hadamard gate operation on single qubit operation is given by:

(3)

�����1⟩ = cos �0|0⟩ + sin �0|1⟩,�����1⟩ = cos �0|0⟩ + sin �0|1⟩,�����1⟩ = cos �0|0⟩ + sin �0|1⟩,�����1⟩ = cos �0|0⟩ + sin �0|1⟩, 1 ∈ [1, �],

(4)������⟩ = �����1⟩ ⊗ �����2⟩ . . . ⊗ ������⟩ . . . ⊗ ������⟩.

(5)

������⟩ = 12�
2�−1∑
�=0

��������⟩ � ∈ [0, 2� − 1],
������⟩ = ����0102 . . . 0�⟩ + ����0102 . . . 1�⟩ . . . + ����. . . + ����1112 . . . 1�⟩����.

(6)

������⟩ = ����010203⟩ + 010213⟩ + 011203⟩ + ����011213⟩ + ����110203⟩
+ 110213 + ����111203⟩ + ����101113⟩.

(7)��,�|�⟩�����⟩→ |�⟩����� ⊕ �⟩ with �, � ∈ {0, 1}.

(8)
|+⟩ = 1√2(|0⟩ + |1⟩),
|−⟩ = 1√2(|0⟩ + |1⟩).

(9)� = 1√2[
1 1
1 −1 ] =

1
√2(� + �),

|1i

|+i |–i

|0i

|x

|y

θi

Figure 1: Nonorthogonal quantum pairs.
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Step 1. Set the values for initial conditions and system 
parameter for the hyperchaotic system. Generate four 
di�erent hyperchaotic sequences by iterating the hyperchaotic 
system by Runge-Kutta method for � = 2�.
­e generated sequences are {��}, {��}, {��}, and {��} (1 ≤ � ≤ �).
Step 2. Convert the four hyperchaotic sequences into integer 
sequences {�∗� }, {�∗� }, {�∗� }, and {�∗� } as follows:

Step 3. Generate keystream �1& �2 as control bits for C-NOT 
operation and Hadamard operation.

Control bits �1 for CNOT operation is given by:

Control bits �2 for Hadamard transform is given by:

Step 4. Controlled NOT gate perform bit �ip operation on quan-
tum speech sample ������⟩ according to the control bits �1.Where 
�1 is realized from keystream ��� {0, 1} generated with hypercha-
otic sequence. Construct a C-NOT operator ��1 as follows:

where � is the bit �ip operator, that operates on the quantum 
state ������⟩ according to the control bit ���  resulting into new 
state �������1⟩.

(13)

�∗� = �����fix(�� − fix(��)) × 1014�����mod2�,
�∗� = �����fix(�� − fix(��)) × 1014�����mod2�,
�∗� = �����fix(�� − fix(��)) × 1014�����mod2�,
�∗� = �����fix(�� − fix(��)) × 1014�����mod2�.

(14)
�1 = ��� , ��−1� . . . �0� , ��� ∈ {0, 1} ,
� = 0, 1, . . . , 2� − 1, � = 0, 1, . . . �.

(15)�2 = ��� , ��−1� . . . �0� , ��� ∈ {0, 1},
� = 0, 1, . . . , 2� − 1, � = 0, 1, . . . �.

(16)��1 = {�,when �
�
� = 0,�, ��� = 1,

where

General operation of Hadamard gate on target qubits, which 
is both in Standard and Hadamard basis are as follows:

2.3. Hyperchaotic System. To improve keyspace and security, 
hyperchaotic systems are widely used in data encryption 
systems. In the proposed algorithm, keystream for the 
encryption process is generated from the 4-D hyperchaotic 
system discovered by Zhou and Yang by the fourth order 
Runge-Kutta method. ­e system is described as follows:

It has in�nite number of real equilibrium. ­e system (12) 
shows multiple dynamic behaviour over a wide range of con-
trol parameter �. ­e evolution of chaotic dynamics such as 
periodic, quasi periodic and chaotic attractors in this system 
can be obtained by varying control parameter � [0, 25] by 
�xing all other parameters constant. When � ∈ [13, 25] the 
system generates hyperchaotic attractor and this region is uti-
lized for encryption purpose. ­e encryption process in higher 
dimensional space eliminates periodic window problems such 
as limited chaotic range and nonuniform distribution. Figure 2 
illustrates the bifurcation diagram of modi�ed ��̇ system.

3. Proposed Algorithm

3.1. Encryption Process. In this section we systematically 
demonstrate the various steps in encryption process. Figure 3 
illustrates the proposed algorithm.

(10)� = [ 0 11 0 ] � = [
1 0
0 −1 ].

(11)�|0⟩ = |+⟩; �|1⟩ = |−⟩; �|+⟩ = |0⟩; �|−⟩ = |1⟩.

(12)

�̇ = 36(� − �),
�̇ = −�� + ��,
�̇ = �� − 3�,
�̇ = 18� − 0.5�.

30

25

20

15

10

5

0

-5

-10
5 10 15 20 25

Bifuracation parameter c

x 
m

ax

Figure 2: Bifurcation diagram of modi�ed ��̇ system.
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Controlled Hadamard gate operator ��2 is given by:

Hadamard gate for the � qubit operation

Apply Hadamard gate ��������⟩ under the control of key element 
�2

where ��1� is the density matrix for the quantum state �������1�⟩, 
��1� = �������1�⟩⟨��1� �����. Hadamard transformation for three qubit 
system is given in Table 2.

(18)��2 = {�,when �
�
� = 0,�, ��� = 1.

(19)�⊗� = 1√2� ∑�,�{0,1} (−1)��.

(20)
�������2⟩ = 12�

2�−1∑
�=0

I ⊗ �������1�⟩⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
��� =0

+ 12�
2�−1∑
�=0
��1�⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

��� =1

⊗�⊗�,
Table 1, describe the whole possible quantum states for three 
qubit system and its C-NOT transformations.

Step 5. Hadamard gate operates on �������1⟩ a¹er the bit �ip 
operation performed by Controlled-NOT gate. In this 
operation �2 is the control bit and it is realized from keystream 
w
�
� {0, 1} generated with the hyperchaotic system. Hadamard 

gate operates on the target qubit only when the control qubit 
is |1⟩ or else the target qubit remains the same.

(17)

��������⟩ = 12�
2�−1∑
�=0
⊗�=��=0�������� ⊗ ��1⟩,

��1 = ��� , ��−1� . . . �0� , ��� ∈ {0, 1},
�������1⟩ = 12�

2�−1∑
�=0
⊗�=��=0�������� ⊗ ��� ⟩,

�������1⟩ = ��� , ��−1� . . . �0� , ���⊗��=0 12�
2�−1∑
�=0

��������⟩.

|m

m

|ψm1

|ψ

|ψm2
H n

|ψm2
H

Classical channel 

R (θ)
θ 

Ck1
Hk1

⊗

nm1

Figure 3: Block diagram of the proposed algorithm.

Table 1: Controlled-NOT operations.

��������⟩ ��1 �������1�⟩�������0⟩ = |000⟩ �����10⟩ = |100⟩ �������10⟩ = |100⟩�������1⟩ = |001⟩ �����11⟩ = |001⟩ �������11⟩ = |000⟩�������2⟩ = |001⟩ �����12⟩ = |110⟩ �������12⟩ = |100⟩�������3⟩ = |011⟩ �����13⟩ = |101⟩ �������13⟩ = |110⟩�������4⟩ = |100⟩ �����14⟩ = |111⟩ �������14⟩ = |011⟩�������5⟩ = |101⟩ �����15⟩ = |011⟩ �������15⟩ = |110⟩�������6⟩ = |110⟩ �����16⟩ = |010⟩ �������16⟩ = |100⟩�������7⟩ = |111⟩ �����17⟩ = |000⟩ �������17⟩ = |111⟩�������0⟩ = |000⟩ �����10⟩ = |100⟩ �������10⟩ = |100⟩

Table 2: Hadamard Transformations.

�������1�⟩ ��2 �������2�⟩�������10⟩ = |100⟩ �����20⟩ = |100⟩ �������20⟩ = |−00⟩�������11⟩ = |000⟩ �����21⟩ = |001⟩ �������21⟩ = |00+⟩�������12⟩ = |1000⟩ �����22⟩ = |110⟩ �������22⟩ = |− + 0⟩�������13⟩ = |110⟩ �����23⟩ = |101⟩ �������23⟩ = |−1+⟩�������14⟩ = |011⟩ �����24⟩ = |111⟩ �������24⟩ = |+ − −⟩�������15⟩ = |110⟩ �����25⟩ = |011⟩ �������25⟩ = |1 − +⟩�������16⟩ = |100⟩ �����26⟩ = |010⟩ �������26⟩ = |1 + 0⟩�������17⟩ = |111⟩ �����27⟩ = |000⟩ �������27⟩ = |111⟩�������10⟩ = |100⟩ �����20⟩ = |100⟩ �������20⟩ = |−00⟩
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R2013a (version) so¹ware. Eight voice samples of male and 
female speech signal with sampling rate of 8000 samples/sec 
are selected for the test. ­e initial conditions are set as 
�0 = 0.423, �0 = −0.531, �0 = 0.256, �0 = 1. Time step for the 
fourth order Runge-Kutta method is taken as 0.005.

4.1. Correlation Analysis. Correlation analysis is a statistical 
metric to evaluate the performance of cryptographic algorithm 
over various statistical attacks. Correlation coe¦cient analysis 
measures the mutual relationship between similar segments 
in the plain audio �le and the encrypted audio �le. A secure 
data encryption algorithm converts original data into random-
like noisy signal with low correlation coe¦cient [36]. Low 
correlation coe¦cient indicates the narrow correlation 
between original and encrypted speech �les. Correlation 

Detailed encryption process for a four qubit quantum system 
with �xed �����1⟩ = |0011⟩ and �����2⟩ = |1010⟩ is given in Table 3.

3.2. Decryption Process. ­e procedure of decryption process is 
reverse of the encryption process. Since rotation operator �(�), 
C-NOT gate and H-gate are unitary operators, decryption can 
be done easily by means of the pre-shared keys. ­e decryption 
process is described as follows:

Step 1. Generate the same keystream or control bits �1 and �2
according to the steps 1–3 in encryption process.

Step 2. Perform Hadamard operation on �������2⟩.�������1⟩ = �⊗��������2⟩; Since �2 = I
Step 3. Perform Controlled –NOT operation on �������2⟩

Step 4. Do the inverse rotation operation on ������⟩ to retrieve 
the classical data.

4. Numerical Simulation and Results

­e proposed algorithm is realized by classical counterpart of 
circuit elements equivalent to quantum circuit. ­e proposed 
algorithm is simulated on a classical computer with MATLAB 

(21)������⟩ = 12�
2�−1∑
�=0
⊗�=��=0�������1� ⊗ ��1⟩.

Table 3: Complete operation of four qubit quantum system.

��������⟩ ��1 �������1�⟩ ��2 �������2�⟩�������0⟩ = |0000⟩ �����1⟩ = |0011⟩ �������10⟩ = |0011⟩ �����2⟩ = |1010⟩ �������20⟩ = |−0 + 1⟩�������1⟩ = |0001⟩ �������11⟩ = |0010⟩ �������21⟩ = |−0 + 0⟩�������2⟩ = |0010⟩ �������12⟩ = |0001⟩ �������22⟩ = |−0 − 1⟩�������3⟩ = |0011⟩ �������13⟩ = |0000⟩ �������23⟩ = |−0 − 0⟩�������4⟩ = |0100⟩ �������14⟩ = |0111⟩ �������24⟩ = |−1 + 1⟩�������5⟩ = |0101⟩ �������15⟩ = |0110⟩ �������25⟩ = |−1 + 0⟩�������6⟩ = |0110⟩ �������16⟩ = |0101⟩ �������26⟩ = |−1 − 1⟩�������7⟩ = |0111⟩ �������17⟩ = |0100⟩ �������27⟩ = |−1 − 0⟩�������8⟩ = |1000⟩ �������18⟩ = |1011⟩ �������28⟩ = |+0 + 1⟩�������9⟩ = |1001⟩ �������19⟩ = |1010⟩ �������29⟩ = |+0 + 0⟩�������10⟩ = |1010⟩ �������110⟩ = |1001⟩ �������210⟩ = |+0 − 1⟩�������11⟩ = |1011⟩ �������111⟩ = |1000⟩ �������211⟩ = |+0 − 0⟩�������12⟩ = |1100⟩ �������112⟩ = |1111⟩ �������212⟩ = |+1 + 1⟩�������13⟩ = |1101⟩ �������13⟩ = |1110⟩ �������213⟩ = |+1 + 0⟩�������14⟩ = |1110⟩ �������14⟩ = |1101⟩ �������214⟩ = |+1 − 1⟩�������15⟩ = |1111⟩ �������15⟩ = |1100⟩ �������215⟩ = |+1 − 0⟩

Table 4: Encrypted signal numerical analysis.

Sample �les ��� Correlation PRD(Ø)
�. Male voice −12.45 dB 0.00669 0.521 × 105
�. Female voice −13.89 dB 0.00918 0.689 × 106
�. Male voice −21.89 dB 0.00693 0.723 × 105
�. Female voice −14.32 dB 0.00229 0.214 × 105
�. Male voice −22.89 dB 0.00527 0.934 × 105
�. Female voice −19.45 dB 0.00358 0.394 × 106
�. Male voice −11.76 dB 0.00992 0.861 × 105�. Female voice −23.23 dB 0.00136 0.231 × 106
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Scatter plot diagram is plotted for original and encrypted ver-
sion, which is shown in Figures 4(a) and 4(b) respectively. It 
clearly shows that the encrypted version is scattered or 
randomized.

4.2. Signal to Noise Ratio (SNR). Signal to noise ratio is one of 
the straight forward methods to validate the performance of 
data encryption algorithm. SNR measures the noise content in 
the encrypted data signal. Cryptanalyst always try to increase 
the noise content in the encrypted signal so as to minimize 
the information content in the encrypted data [37]. Figure 5 
displays the original and encrypted speech signal. It is clear 

coe¦cient is evaluated based on the equation (22) and it is 
tabulated in Table 4.

where �(�) and �(�) are mean and ��, �� are the standard 
deviation of the encrypted and decrypted speech signal. 

(22)

��� = ��v(�, �)���� ,

��� = (1/��)∑���=1(�� − �(�))(�� − �(�))√(1/��)∑���=1(�� − �(�))2√(
/��)∑���=1(�� − �(�))2 , ��,
�� ̸= 0,
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Figure 4: Scatter plot diagram of (a) original speech signal (b) encrypted speech signal.
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Figure 5: (a) Original signal. (b) Compressed signal. (c) Data samples a¹er permutations. (d) Data samples a¹er substitution. (e) Decrypted 
signal.
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measurement is based on the assumption that the spectrum 
of meaningful speech segment is correlated than the noisy 
signal. ­e spectral measurement compares the entropy where 
the amplitude component of the power spectrum is taken as 
a probability parameter in entropy calculation. ­e amount 
of information can be calculated as the negative of entropy or 
the negative logarithm of probability. ­us, meaningful speech 
segments shows low entropy since it contains organized data 
samples. However the encrypted speech signals have high 
entropy and large spectral peaks similar to noisy signal. ­e 
entropy �� can be measured as follows:

where ���� is the normalized power spectrum and �� is the 
frequency of the signal. Irregularities of amplitude in original 
and encrypted signals are shown in Figure 6.

4.5. Keyspace and Key Sensitivity Analysis. ­e secret 
rotation angles �� and initial conditions and system parameter 
(�0, �0, �0, �0, �) of the hyperchaotic system determine the 
keyspace. In the recommended algorithm, �oating point 
accuracy of 10–16is used for the key components. ­erefore the 
keyspace achieved in this scheme is �� × (10−16)5 = �� × 2224 

(25)

�� = ∑
�
����(��) log (����(��)); � = 1, 2, 3 . . . . . . , �,

that encrypted speech signal contains more noise content that 
in original speech signal. ­e SNR values of encrypted audio 
�les are calculated based on the following equation (23) and 
it is given in Table 4.

4.3. Percent Residual Deviation (PRD). Percentage Residual 
Deviation is another statistical tool to measure the variation 
of the encrypted speech signal from original signal. PRD can 
be calculated for the given plain audio signal �� and encrypted 
signal �� as follows:

­e calculated values of the percent residual deviation for var-
ious original and encrypted speech signals are given in Table 
4. It can be seen that the encrypted signal is highly deviated 
from its original signal.

4.4. Spectral Entropy. Spectral entropy measures the 
randomness in both encrypted and original speech signal. Its 

(23)��� = 10 ∗ log 10 ∑
��
�=1�2�

∑���=1(�� − ��)2
.

(24)0 = 100 × √∑��=1(�� − ��)2∑��=1�2� .
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Figure 6: Power spectral density of (a) Original speech signal. (b) Encrypted speech signal.
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Figure 7: Key sensitivity on encryption process (a) original speech signal (b) encrypted speech signal for key �0 = 0.413, �0 = −0.931, �0 = 0.465, �0 = 0 (c) encrypted speech signal for �0 = 0.913, �0 = −0.131, �0 = 0, �0 = 0.825.
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the slight variation in keyparameter will result completely 
di�erent encrypted signal. Figure 7 shows the encrypted 
signals with two di�erent initial conditions. To evaluate the 
key sensitivity of decrypted signal, encrypt the speech �le 
with one �xed secret key then decryption is performed with 
slightly di�erent keys. ­e resulting speech �les decrypted 
with wrong keys apparently looks di�erent and reveals no 
information.

Figure 8(a) shows the decrypted speech signal with correct 
key. Figures 8(b)–8(e) show the decrypted signal with slight 
variations in the initial conditions.

in classical computation. But in the quantum domain the 
keyspace exist as the superposition of 22224 quantum states, 
which is large enough to break various cryptographic attacks.

Key sensitivity is the essential quality for any good data 
encryption algorithm, which make sure that the security 
level of the algorithm against the brute-force attack. It 
means that a small variation for any key parameters bring 
an apparent change in both encrypted and decrypted speech 
signal. ­e e�ect of variation in keyparameter on encryption 
process is veri�ed by encrypting the signal with slightly dif-
ferent initial conditions. ­e simulation result shows that 
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Figure 8: Key sensitivity on decryption process (a) decrypted signal with correct key, decrypted signal with incorrect key (b) �0 + 10−15 (c) �0 + 10−15 (d) �0 + 10−15 (e) �0 + 10−15.

Table 5: Quality metrics comparison of encryption scheme with other methods.

Method Key length keyspace ��� NPCR UACI

AES 128,192,256 2128, 2192, 2256 0.009700 99.60327 33.4218
Ref [22] >264 >2624 0.00022 99.6399 33.8085
Ref [23] 744 2744 0.00121 99.6317 33.6781
Ref [26] >2107 2107 0.00321 99.6317 33.6782
[pro:meth] >2212 > 22212 0.000136 99.6320 33.6823
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realized with 22� XOR operations. ­erefore the computational 
complexity of classical encryption algorithm corresponding 
to its quantum version is �(2�).

5. Comparison with Existing Works

­e proposed algorithm is compared with existing algorithms 
in both quantum and classical domain. Various quality 
metrices such as key length, keyspace NPCR, UACI and cor-
relation coe¦cient between original and encrypted signals are 
analysed and tabulated in Table 5.

­e size of the proposed method’s key space is greater than 
2224 (Section 4.5). It is clear from the simulation results 
(Figure 4) that the encrypted speech signal contains more 
noise content that in the original speech signal. Correlation 
coe¦cient (CC) evaluated is almost zero (Table 4) for the pro-
posed algorithm. A standard Encryption Algorithm (AES), a 
fast colour image encryption algorithm based by hyperchaotic 
system [22], an algorithm based on hyperchaotic system and 
S boxes in the form of permutation–substitution network [23], 
and a colour image encryption based on quantum chaotic 
system [26] are taken for comparison.

6. Conclusion

In this paper, a new classical data encryption algorithm in 
quantum domain is proposed. ­e basic idea behind the secu-
rity of the proposed algorithm lies in protecting the classical 
information in the form of nonorthogonal quantum states. 
Furthermore the Controlled NOT operation and Hadamard 
operation in quantum domain extends the security of the pro-
posed algorithm. ­e introduction of modi�ed hyperchaotic 
��̇-system into quantum speech encryption algorithm 
increases the number of keys and improved the key sensitivity. 
Various simulations and numerical analysis have been carried 
on classical computer to evaluate the performance of the algo-
rithm. ­e simulation results demonstrated that the proposed 
approach is an excellent choice for classical data encryption 
in quantum domain.
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Representation of approximation for manifolds of the stochastic Swift-Hohenberg equation with multiplicative noise has been
investigated via non-Markovian reduced system. The approximate parameterizations of the small scales for the large scales are
given in the process of seeking for stochastic parameterizing manifolds, which are obtained as pullback limits of some
backward-forward systems depending on the time-history of the dynamics of the low modes in a mean square sense through the
nonlinear terms. When the corresponding pullback limits of some backward-forward systems are efficiently determined, the
corresponding non-Markovian reduced systems can be obtained for researching good modeling performances in practice.

1. Introduction

Recently, more and more authors have paid attention to con-
sidering the approximation problems of manifolds for the
stochastic partial differential equations (SPDEs). For decades,
various approximating methods have been given to solve
these problems, such as amplitude equations approach
[1–4] and the manifolds-based approaches [5–11].

In this paper, approximation of manifolds for the sto-
chastic Swift-Hohenberg equation with multiplicative noise
will be investigated in Stratonovich sense [12]. It is well
known that there have been some authors to consider
the approximation of manifolds in large probability sense
[1, 2, 13] and they have obtained some results until now.
In addition, approximation in parameterizing manifold for
a stochastic Swift-Hohenberg equation with additive noise
have been investigated by us in [14]. Furthermore, it is
needed to consider the problems in Stratonovich sense. Until
now, there have been few consideration from the point of
view of approximation in parameterizing manifold under
the pathwise sense for the stochastic Swift-Hohenberg equa-
tion with multiplicative noise. The ideas in [14] can be used
to consider the approximation of manifold for some stochas-

tic equations with multiplicative noise. Because the different
difficulties come from different noise terms, there are some
different methods and techniques in studying stochastic
equations with multiplicative noise. Here, we investigate the
corresponding problems for the stochastic Swift-Hohenberg
equation with multiplicative noise with pathwise and obtain
some new results for it. The results obtained in this paper
are different from those in [14], although there are some sim-
ilar sentences in some manuscripts. It is well known that var-
ious noises cause various stochastic processes for stochastic
equations with different noises. The main differences from
results in [14] are given by some formulas with various math-
ematics meanings, in which some different stochastic func-
tions are used. Because the different difficulties mainly
come from various noise terms, there are some new difficul-
ties coming from the multiplicative noise solved in our man-
uscript. So, some different techniques are used in studying
stochastic equations with multiplicative noise.

We will extend the strategy introduced in [5, 6] to the
stochastic Swift-Hohenberg equation [12] with multiplicative
noise and obtain the approximation of parameterizing
manifolds and corresponding non-Markovian reduced sys-
tem. The key idea is mainly based on the approximate
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parameterizations of the small scales for the large scales via
the stochastic parameterizing manifolds. Random manifolds
will improve the partial knowledge of the solutions of SPDEs
in mean square error, when it is compared with its projection
onto the resolved modes. Approximation of parameterizing
manifolds can be obtained by representing the modes with
high wave numbers as the pullback limit depend on the
time-history of the modes with low wave numbers for the
corresponding backward-forward systems. Some conditions
with nonresonance conditions below are given and weaker
than those in the classical stochastic invariant manifold the-
ory (see [7, 15, 16] and references therein). On the base of
these approximations of parameterizing manifolds, when
the corresponding pullback limits of some backward-
forward systems are efficiently determined, the correspond-
ing non-Markovian stochastic reduced systems are given to
reach good modeling performances in practice and take the
form of stochastic differential equations with random coeffi-
cients, which convey memory effects via the history of the
Wiener process and arise from the nonlinear interactions
between the low modes embedded in the noise bath. These
random coefficients show an exponential decay of correla-
tions, whose rate depends explicitly on the gaps of the nonre-
sonance conditions. In fact, it is possible to achieve very good
parameterizing quality for the stochastic Swift-Hohenberg
equation with multiplicative noise from our results. And
the performances from the reduced system can be numeri-
cally assessed for a corresponding optimal or suboptimal
control problem.

The paper is organized as follows. In Section 2, we give
our functional framework, some definitions about parame-
terizing manifolds and some properties of some stochastic
processes being used. We have devoted Section 3 to studying
the representation of approximation of parameterizing man-
ifolds as pullback limits of the corresponding backward-
forward systems for a stochastic Swift-Hohenberg equation
with multiplicative noise. In Section 4, on the basis of the
approximation of parameterizing manifolds, the non-
Markovian stochastic reduced systems involving random
coefficients are obtained for the stochastic Swift-Hohenberg
with multiplicative noise.

2. Preliminaries

The functional framework spaces are a pair of Hilbert spaces
(H1, H) such that H1 is compactly and densely embedded in
H. Let A : H1 ⟶H be a sectorial operator [16] such that −A
is stable in the sense that its spectrum satisfies Re ðσð−AÞÞ
< 0. And we consider interpolated spaces Hα between H1
and H with α ∈ ½0, 1Þ along with the perturbations of the
linear operator −A given by a one parameter family Bλ of
bounded linear operators from Hα to H, depending continu-
ously on λ. Define Lλ = −A + Bλ, which maps H1 into H.

A local stochastic Swift-Hohenberg equation with multi-
plicative noise in Stratonovich sense [1] is written as follows:

du = λu − 1 + Δð Þ2u − u3
� �

dt + σu ∘ dWt

≔ Lλu + F uð Þð Þdt + σu ∘ dWt ,
ð1Þ

with Dirichlet boundary conditions uð0, t ; ωÞ = uðl, t ; ωÞ =
0, t > 0 and initial condition uðx, 0 ; ωÞ = u0ðxÞ, x ∈ ð0, lÞ,
where λ is a parameterizing variable, σ is positive, and u0 is
some appropriate initial datum with H = L2ð0, lÞ and H1 =
H4ð0, lÞ ∩H2

0ð0, lÞ; WðtÞ is a standard real valued one-
dimensional Brownian motion [17] with paths in C0ðℝ,ℝÞ;
and Ω being endowed with its corresponding Borel σ-alge-
bra ℱ , its filtration ℱ t , the Wiener measure ℙ.

Let FðuÞ = −u3, which is a continuous triple nonlinear
mapping from Hα into H, where α > ð1/3Þ. Obviously, func-
tion FðuÞ is a mapping from H1 into H. Assume Lλ = −A +
Bλ, where Bλ = λ and A = ð1 + ΔÞ2 is closed self-adjoint linear
operator with dense domain DðAÞ in H = L2ðDÞ. The opera-
tor Lλ is self-adjoint with an orthonormal basis of eigenfunc-
tions fek =

ffiffiffiffiffiffi
2/l

p
sin ðkπx/lÞgk∈ℕ in H with corresponding

eigenvalues fβkðλÞ = λ − ð1 − ðk2π2/l2ÞÞ2gk∈ℕ.
Then, problem (1) can be rewritten as

du = Lλu + F uð Þð Þdt + σu ∘ dWt , ð2Þ

with initial condition uðx, 0 ; ωÞ = u0ðxÞ, x ∈ ð0, lÞ and
Dirichlet boundary conditions uð0, t ; ωÞ = uðl, t ; ωÞ = 0,
t > 0. Now, we investigate the random dynamical systems
of system (2) in the sense of parameterizing manifolds in
[6, 17]. The stochastic parameterizing manifolds are mainly
considered for local stochastic Swift-Hohenberg equation
with multiplicative noise (2). Firstly, a stochastic parame-
terizing manifold M is seen as the graph of a random
function hpm, which is a mapping from Hc to Hα,s and
provides approximation parameterizations of the high part
usðt, ωÞ = Psuðt, ωÞ by using of the low part ucðt, ωÞ = Pcu
ðt, ωÞ. The scalar Langevin equation,

dz + zdt = σdW, ð3Þ

is given. A unique stationary solution zðθtωÞ of this equa-
tion is called the stationary Ornstein-Uhlenbeck (OU)
process. By simply integrating on the both sides of (3),
the identity

ðt
0
zσ θsωð Þds + zσ θtωð Þ = zσ ωð Þ + σWt ωð Þ, ∀t ∈ℝ, ð4Þ

holds, which is important for representation of approximation.

3. Representation of Manifolds with
Multiplicative Noise

Making use of the method in [6], we investigate the local sto-
chastic Swift-Hohenberg (equation (2)) with multiplicative
noise in Stratonovich sense. One considers the following
backward-forward system associated with SPDE (2).

dû 1ð Þ
c = Lcλû

1ð Þ
c ds + σû 1ð Þ

c ∘ dWs, s ∈ −T , 0½ �, ð5Þ

û 1ð Þ
c s, ωð Þ∣s=0 = ξ ∈Hc, ð6Þ
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dû 1ð Þ
s = Lsλû

1ð Þ
s + PsF û 1ð Þ

c s − T , ωð Þ
� �� �

ds

+ σû 1ð Þ
s ∘ dWs−T , s ∈ 0, T½ �,

ð7Þ

û 1ð Þ
s s, θ−Tωð Þ∣s=0 = 0, ð8Þ

where Lcλ ≔ PcLλ and Lsλ ≔ PsLλ. From system (5), (6), (7),
and (8), we know that the initial value of ûð1Þc is represented
in fiber ω and the initial value of ûð1Þs is prescribed in fiber
θ−Tω.

It is possible to obtain the solution of system (5) and (6)
by using a backward-forward integration procedure due to
the partial coupling between the equations constituting this
system, where ûð1Þc forces the evolution equation of ûð1Þs but

not reciprocally. In addition, since uð1Þc is emanated backward
from ξ in Hc and forces the equation ruling the evolution of
ûð1Þs , thus ûð1Þs depends naturally on ξ. One emphasizes this
dependence as ûð1Þs ½ξ� in the whole paper.

The nonresonance conditions should be given in follow-
ing theorem, under which the pullback limit of ûð1Þs ½ξ� exists.
Now, representation of an analytical description of such
parameterizing manifolds will be provided. In particularly,
it emphasizes the dependence on the part of the noise path
of the manifolds.

Theorem 1. Consider the SPDE (2) in the functional setting
of Section 2, with F assumed to be a trilinear function. Let
ℐ ≔ f1,⋯,mg with m = dim ðHcÞ.

Suppose also βnðλÞ < 0 for all n >m. Furthermore, assume
that the following nonresonance conditions for all ði1, i2, i3Þ
∈ℐ 3, n >m,

if < F ei1 , ei2 , ei3
� �

, en > ≠ 0,
then βi1

+ βi2
+ βi3

− βn > 0
ð9Þ

hold. Then, the pullback limit of the solution ûð1Þs ½ξ�ðT ,
θ−Tω ; 0Þ of (7) and (8) exists and is given by

ĥ
1ð Þ
λ ξ, ωð Þ = lim

T→+∞
û 1ð Þ
s ξ½ � T , θ−Tω ; 0ð Þj

=
ð0
−∞

e−L
s
λτ+2σWτ ωð ÞPsF eL

c
λτξ

� �
dτ, ∀ξ ∈Hc, ω ∈Ω,

ð10Þ

where ûð1Þc ðs, ω ; ξÞ is the solution of (5) and (6)

û 1ð Þ
c s, ω ; ξð Þ = eL

c
λs+σWs ωð Þξ: ð11Þ

Moreover, ĥ
ð1Þ
λ has the following analytic expression:

ĥ
1ð Þ
λ ξ, ωð Þ = 〠

∞

n=m+1
〠
m

i1=1
〠
m

i2=1
〠
m

i3=1
ξi1ξi2ξi3M

i1i2i3
n,λ ωð Þ

< F ei1 , ei2 , ei3
� �

, en > en,
ð12Þ

where ξi = <ξ, ei>, i = 1,⋯,m, and

Mi1i2i3
n,λ ωð Þ =

ð0
−∞

eτ βi1
λð Þ + βi2

λð Þ + βi3
λð Þ − βn λð Þ

� �
+ 2σWτ ωð Þdτ:

ð13Þ

Proof. Firstly, from (5), (6), (7), and (8), one introduces

two processes uð1Þc and uð1Þs for ûð1Þc and ûð1Þs as follows:

u 1ð Þ
c s, ω ; ξð Þ = e−zσ θsωð Þû 1ð Þ

c s, ω ; ezσ θsωð Þξ
� �

, 
s ∈ −T , 0½ �, ξ ∈Hc,

u 1ð Þ
s ξ½ � s, θ−Tω ; 0ð Þ = e−zσ θs−Tωð Þû 1ð Þ

s ezσ ωð Þξ
h i

s, θ−Tω ; 0ð Þ, 
s ∈ 0, T½ �:

ð14Þ

Here, via the above transformation processes, the
backward-forward system (5), (6), (7), and (8) is trans-
formed into the following system of random differential
equations:

du 1ð Þ
c

ds
= Lcλu

1ð Þ
c + zσ θsωð Þu 1ð Þ

c , s ∈ −T , 0½ �, ð15Þ

u 1ð Þ
c s, ωð Þ∣s=0 = ξ ∈Hc, ð16Þ

du 1ð Þ
s

ds
= Lsλu

1ð Þ
s + zσ θs−Tωð Þu 1ð Þ

s

+ e2zσ θs−Tωð ÞPsF u 1ð Þ
c s − T , ωð Þ

� �
, s ∈ 0, T½ �,

ð17Þ
u 1ð Þ
s s, θ−Tωð Þ∣s=0 = 0: ð18Þ

Using the variation of constants method, we can formally
obtain the solution of (15) and (16), which is followed by
making use of an integration by parts performed to the
resulting stochastic convolution terms

u 1ð Þ
c s, ω ; ξð Þ = eL

c
λs+
Ð s

0
zσ θrωð Þdrξ: ð19Þ

Similarly, the solution of (17) and (18) can be also
obtained at T , which is formed

u 1ð Þ
s ξ½ � T , θ−Tω ; 0ð Þ =

ð0
−T
e−τL

s
λ+2zσ ωð Þdr+2σWτ ωð ÞPsF eτL

c
λξ

� �
dτ,

ð20Þ

where uð1Þc ð⋅ ,ω ; ξÞ is taken as a form of (19). When
T ⟶ +∞, since condition (9), the limit of (20) exists,
which is formed

h 1ð Þ
λ ξ, ωð Þ = lim

T→+∞
u 1ð Þ
s ξ½ � T , θ−Tω ; 0ð Þ

=
ð0
−∞

e−τL
s
λ+2zσ ωð Þdr+2σWτ ωð ÞPsF eτL

c
λξ

� �
dτ:

ð21Þ
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Secondly, one investigates the analysis presentation
of this limit. Propose that

h 1ð Þ
λ ξ, ωð Þ = 〠

∞

n=m+1
h 1ð Þ,n
λ ξ, ωð Þen, ð22Þ

where

h 1ð Þ,n
λ ξ, ωð Þ = 〠

m

i1,i2,i3=1
e2zσ ωð Þξi1ξi2ξi3M

i1i2i3
n,λ ωð Þ

< F ei1 , ei2 , ei3
� �

, en > :

ð23Þ

Here, ij = 1,⋯,m and ξi j = <ξ, eij>, j = 1, 2, 3, and

Mi1i2i3
n,λ ωð Þ =

ð0
−∞

e

〠
3

j=1
β1 j λð Þ−βn λð Þ

 !
s+2σWs ωð Þ

ds: ð24Þ

According to the same assumptions and the inverse
transformation, (11) can be immediately obtained from

(19), and the analytic expression of ĥ
ð1Þ
λ has the form

of (12).

Furthermore, the approximation ĥ
ð1Þ
λ can be provided by

the above theorem, which constitutes a parameterizing man-
ifold function of SPDE (2). Moreover, the random coeffi-
cients Mn,λ have decaying property of correlations when it
is checked by similar calculations performing for the proof
of Lemma 5.1 in [6], which are solutions of auxiliary SDEs

dM = 1 − 〠
3

j=1
βi j

λð Þ − βn λð Þ
 !

M

 !
dt − σM ∘ dWt: ð25Þ

Remark 2. Here, the random coefficients Mi1i2i3
n,λ ðωÞ satisfied

the stochastic equation (25) and are different from Mi in
[14], since the stochastic processes’ transformations are var-
ious for stochastic equations with multiplicative noises. So,
Mi1i2i3

n,λ ðωÞ in this paper and Mi in [14] have different repre-
sentations by formulas. In this paper, the transformations
of stochastic processes are more difficult than those in [14].
So, the random coefficients Mi1i2i3

n,λ ðωÞ are much more com-
plex than those in [14]. Then, these differences hold in the
whole paper.

4. PM-Based Non-Markovian Reduced
System with Multiplicative Noise

In this section, the PM-based non-Markovian reduced
system of problem (2) is investigated in two cases that
are in two subspaces, Hc = spanfe1g or Hc = spanfe1, e2g,
respectively.

When one projects (2) into the subspace Hc, it yields that

duc = Lcλuc + PcF uc + usð Þð Þdt + σu ∘ dWt , ð26Þ

where uc = Pcu with Pc being the canonical projector on
subspace Hc. By replacing usðt, ωÞ = Psuðt, ωÞ with (12),

the pullback limit ĥ
ð1Þ
λ ðξ, θtωÞ, one yields the following

reduced system

dξ = Lcλξ + PcF ξ + ĥ
1ð Þ
λ ξ, θtωð Þ

� �� �
dt + σξ ∘ dWt , ð27Þ

which provides an approximation of the SPDE dynamics
projected onto the low modes.

From (12), the random coefficients of eiðxÞði = 1, 2,⋯Þ
contained in the expansion of ĥ

ð1Þ
λ exhibit the decaying

property of correlations. Therefore, extrinsic memory
effects in the Stratonovich sense are conveyed by the drift
part of (27), making such reduced systems be non-
Markovian (see [18, 19]).

The analytic form of ĥ
ð1Þ
λ from (12) can be used. The non-

linear interactions Fi1i2i3
n = <Fðei1 , ei2 , ei3Þ, en>, have the fol-

lowing form. When m = 1,

Fi1i2i3
3 = 1

2l , n = 3,

Fi1i2i3
n = 0, n = 2 or n ≥ 4:

ð28Þ

When m = 2,

Fi1i2i3
n = 1

2l , when i1 + i2 + i3 = n or i1 − i2 − i3 = n,

Fi1i2i3
n = −

1
2l , when i1 + i2 − i3 = n or i1 − i2 + i3 = n,

Fi1i2i3
n = 0, n ≥ 7:

ð29Þ

Firstly, we investigate the system in case m = 1. Since
approximation of parameterizing manifolds have been
obtained in Section 3, then one yields that

ĥ
1ð Þ
λ ξ, ωð Þ = 1

2l ξ
3
1M

111
3,λ ωð Þe3, ð30Þ

where ξ1 = <ξ, e1>, and

M111
3,λ ωð Þ =

ð0
−∞

e 3β1 λð Þ−β3 λð Þð Þs+2σWs ωð Þds: ð31Þ

In this case, the approximation is simple. However, it is
not enough to present the performances of the corresponding
dynamics. Furthermore, parameterizing manifolds in two-
dimensional case for low mode are considered, which per-
form more dynamics than in the above case.

Secondly, when m = 2, then one can obtain the more
complex results than in the case of m = 1.
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Here,

ĥ
1ð Þ
λ ξ, ωð Þ = 〠

∞

n−m+1
〠
m

i1,i2,i3=1
ξi1ξi2ξi3M

i1i2i3
n,λ ωð Þ < F ei1 , ei2 , ei3

� �
, en > en

= 1
2l ξ31M

111
3,λ − 3ξ1ξ22M122

3,λ

� �
e3 +

3
2l ξ

2
1ξ2M

112
4,λ e4

+ 3
2l ξ1ξ

2
2M

122
5,λ e5 +

1
2l ξ

3
2M

222
6,λ e6,

ð32Þ

where ξ1 = hξ, e1i, ξ2 = hξ, e2i, and

M111
3,λ ωð Þ =

ð0
−∞

e 3β1 λð Þ−β3 λð Þð Þs+2σWs ωð Þds,M122
3,λ ωð Þ

=
ð0
−∞

e β1 λð Þ+2β2 λð Þ−β3 λð Þð Þs+2σWs ωð Þds,

M112
4,λ ωð Þ =

ð0
−∞

e 2β1 λð Þ+β2 λð Þ−β4 λð Þð Þs+2σWs ωð Þds,

M122
5,λ ωð Þ =

ð0
−∞

e β1 λð Þ+2β2 λð Þ−β5 λð Þð Þs+2σWs ωð Þds, M222
6,λ ωð Þ

=
ð0
−∞

e 3β2 λð Þ−β6 λð Þð Þs+2σWs ωð Þds:

ð33Þ

However, it is complex to use directly the analytic for-

mula of ĥ
ð1Þ
λ to obtain the vector PcFðξ + ĥ

ð1Þ
λ ðξ, θtωÞÞ as ξ is

various in Hc in spite of any case in fact. So, we can use ûð1Þs

½ξðt, ωÞ�ðt + T , θTω ; 0Þ to take the place of ĥ
ð1Þ
λ ðξ, θtωÞ on

the fly along a trajectory ξðt, ωÞ of interest, where ûð1Þs is given
by integrating on both sides of the backward-forward system
(5), (6), (7), and (8), when T is chosen sufficiently large [6].
Then, it is natural to study the reduced system as follows:

dξt = Lcλξt + PcF ξt + û 1ð Þ
s ξ t, ωð Þ½ � t + T , θTω ; 0ð Þ

� �� �
dt

+ σξt ∘ dWt , ξ 0, ωð Þ = ϕ, t > 0,
ð34Þ

where ϕ is appropriately chosen according to the SPDE initial
datum and ûð1Þs ½ξðt, ωÞ� is given from the following system:

dû 1ð Þ
c = Lcλû

1ð Þ
c ds + σû 1ð Þ

c ∘ dWs, û 1ð Þ
c s, ωð Þ∣s=t = ξ t, ωð Þ,

 s ∈ t − T , t½ �,
dû 1ð Þ

s = Lsλû
1ð Þ
s + PsF û 1ð Þ

c s − T , ωð Þ
� �� �

ds + σû 1ð Þ
s ∘ dWs−T ,

 û 1ð Þ
s s, θ−Tωð Þ∣s=t = 0, s ∈ t, t + T½ �:

ð35Þ

Now, we give the corresponding non-Markovian systems
from the above system. Investigating them in two casesm = 1
and m = 2.

Firstly, when m = 1, one denotes ξ1ðt, ωÞ = ξ1ðt, ωÞe1,
with ξ1ðt, ωÞ = <ξðt, ωÞ, e1 > . Then, the system can be
written as in coordinate form

dξ1 = β1 λð Þξ1 −
3
2l ξ31 − ξ21y

1ð Þ
3 + ξ1 y 1ð Þ

3
h i2� �

dt + σξ1 ∘ dWt ,

 t > 0,
ð36Þ

with ξ1ð0, ωÞ = hϕ, e1i, where ξt = ξ1ðt, ωÞe1 and yð1Þj , j = 2,⋯,
are given from the following system:

dy 1ð Þ
1 = β1 λð Þ 1ð Þ

y1
ds + σy 1ð Þ

1 ∘ dWs, s ∈ t − T , t½ �,

dy 1ð Þ
2 = β2 λð Þy 1ð Þ

2 ds + σy 1ð Þ
2 ∘ dWs−T , s ∈ t, t + T½ �,

dy 1ð Þ
3 = β3 λð Þy 1ð Þ

3 + 1
2l y 1ð Þ

1 s − T , ωð Þ
h i3� �

ds + σy 1ð Þ
3 ∘ dWs−T , 
s ∈ t, t + T½ �,

dy 1ð Þ
j = βj λð Þy 1ð Þ

j ds + σy 1ð Þ
j ∘ dWs−T , s ∈ t, t + T½ �, j = 4,⋯,

ð37Þ

with yð1Þ1 ðs, ωÞ∣s=t = ξ1ðt, ωÞ, yð1Þj ðs, θ−TωÞ∣s=t = 0, j = 2⋯:

Secondly, when m = 2, one denotes ξðt, ωÞ = ξ1ðt, ωÞe1 +
ξ2ðt, ωÞe2, with ξiðt, ωÞ = <ξðt, ωÞ, ei>, i = 1, 2. Then, for
t > 0, the corresponding system can be written as in coordi-
nate form

dξ1 = β1 λð Þξ1 −
3
2l ξ

3
1 −

3
l
ξ1ξ

2
2 +

3
2l ξ21 − ξ22

� �
y 1ð Þ
3

�	

+ 2ξ1ξ2y
1ð Þ
4 + ξ22y

1ð Þ
5
�
+ 3ξ1

l
y 1ð Þ
3 y 1ð Þ

5 + y 1ð Þ
4 y 1ð Þ

6

�

− 〠
6

i=3
y 1ð Þ
i

h i2�
+ 3ξ2

l
y 1ð Þ
3 y 1ð Þ

6 − 〠
6

i=4
y 1ð Þ
i−1y

1ð Þ
i

 !

−
1
l

y 1ð Þ
3

h i2
y 1ð Þ
5 + 2y 1ð Þ

3 y 1ð Þ
4 y 1ð Þ

6

� �

−
1
2l y

1ð Þ
3 y 1ð Þ

3 y 1ð Þ
5 + y 1ð Þ

4 y 1ð Þ
6

� �

dt + σξ1 ∘ dWt ,

dξ2 = β2 λð Þξ1 −
3
l
ξ21ξ2 −

3
2l ξ

3
2 +

3
2l ξ21y

1ð Þ
4

�	

+ 2ξ1ξ2 −y 1ð Þ
3 + y 1ð Þ

5
� �

+ ξ22y
1ð Þ
6

�

+ 3ξ1
l

y 1ð Þ
3 y 1ð Þ

6 − 〠
6

i=4
y 1ð Þ
i−1y

1ð Þ
i

 !
−
3ξ2
l
〠
6

i=3
y 1ð Þ
i

h i2

−
3
2l y 1ð Þ

3
h i2

y 1ð Þ
4 + 2y 1ð Þ

3 y14y
1ð Þ
5 + y 1ð Þ

3 y 1ð Þ
5 y 1ð Þ

6

�

+ y 1ð Þ
4

h i2
y 1ð Þ
6

�

dt + σξ2 ∘ dWt ,

ð38Þ
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with ξ1ð0, ωÞ = hϕ, e1i, ξ2ð0, ωÞ = hϕ, e2i, where ξt = ξ1ðt, ωÞ
e1 + ξ2ðt, ωÞe2 and yð1Þj , j = 3,⋯, are given from following
system

dy 1ð Þ
1 = β1 λð Þy 1ð Þ

1 ds + σy 1ð Þ
1 ∘ dWs, s ∈ t − T , t½ �,

dy 1ð Þ
2 = β2 λð Þy 1ð Þ

2 ds + σy 1ð Þ
2 ∘ dWs, s ∈ t − T , t½ �,

dy 1ð Þ
3 = β3 λð Þy 1ð Þ

3 + 1
2l y 1ð Þ

1 s − T , ωð Þ
h i3��

− 3y 1ð Þ
1 s − T , ωð Þ y 1ð Þ

2 s − T , ωð Þ
h i2��

ds

+ σ3y
1ð Þ
3 ∘ dWs−T , s ∈ t, t + T½ �,

dy 1ð Þ
4 = β4 λð Þy 1ð Þ

4 + 3
2l y 1ð Þ

1 s − T , ωð Þ
h i2

y 1ð Þ
2 s − T , ωð Þ

� �
ds

+ σy 1ð Þ
4 ∘ dWs−T , s ∈ t, t + T½ �,

dy 1ð Þ
5 = β5 λð Þy 1ð Þ

4 + 3
2l y

1ð Þ
1 s − T , ωð Þ y 1ð Þ

2 s − T , ωð Þ
h i

2
� �

ds

+ σy 1ð Þ
5 ∘ dWs−T , s ∈ t, t + T½ �,

dy 1ð Þ
6 = β6 λð Þy 1ð Þ

6 + 1
2l y 1ð Þ

2 s − T , ωð Þ
h i3� �

ds

+ σy 1ð Þ
6 ∘ dWs−T , s ∈ t, t + T½ �,

dy 1ð Þ
j = βj λð Þy 1ð Þ

j ds + σy 1ð Þ
j ∘ dWs−T , s ∈ t, t + T½ �, j = 7,⋯,

ð39Þ

with yð1Þ1 ðs, ωÞjs=t = ξ1ðt, ωÞ, yð1Þ2 ðs, ωÞjs=t = ξ2ðt, ωÞ, yð1Þj ðs,
θ−TωÞjs=t = 0,  j = 3,⋯:.

From the above equations, the representations of
approximation for manifold and the corresponding reduced
non-Markovian systems for stochastic Swift-Hohenberg
equation with multiplicative noise are obtained. And the
performances given by the above non-Markovian reduced
system should have approximate dynamics on the Hc modes
in modeling of the pathwise SPDE (2). It is more important
that one should give partial dynamics in approximation
sense on the Hc modes in modeling of the pathwise SPDEs
in practice. The performances from the reduced system
may be numerically assessed for a corresponding optimal
or suboptimal control problems in the deduced processes.
The numerical results will be further shown in the future.
The processes deduced in this manuscript offered an idea
in order to further investigate the approximation of stochas-
tic manifold for some quantum stochastic equations with
multiplicative noise.
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In this paper, we investigate the Lorentzian generalized Sasakian-space-form. We give the necessary and sufficient conditions for
the Lorentzian generalized Sasakian-space-form to be projectively flat, conformally flat, conharmonically flat, and Ricci
semisymmetric and their relationship between each other. As the application of our theorems, we study the Ricci almost soliton
on conformally flat Lorentzian generalized Sasakian-space-form.

1. Introduction

Gauge theory, as we all know, has a lot of profound intension
and it has permeated all aspects of theoretical physics. It will
surely guide future developments in theoretical physics.
Gauge theory and principal fiber bundle theory are inextrica-
bly linked with each other (see [1]). For instance, the field
strength f κμν of gauge theory is exactly the curvature of a
manifold (see [2]). So if we know the curvature properties
of a manifold, we can get the distribution of field strength
f κμν. The purpose of our paper is to clarify the unsteady field
around Lorentzian generalized Sasakian-space-forms in view
of principal fiber bundle theory.

In differential geometry, the curvature tensor R is very
significant to the nature of a manifold. Many other curvature
tensor fields defining on the manifold are related with curva-
ture tensor, for instance, Ricci tensor S, scalar curvature r,
and conharmonic curvature tensor K . It has been proven that
the curvature depends on sectional curvatures entirely. If a
manifold is of constant sectional curvature, then we call it a
space-form.

For a Sasakian manifold, we have the definition of
ϕ-sectional curvature and it plays the same role as a sectional
curvature. If the ϕ-sectional curvature of a Sasakian manifold
is constant, then the manifold is a Sasakian-space-form
(see [3]). As a generalization of Sasakian-space-form,-

generalized Sasakian-space-form was introduced and investi-
gated in [4] and the authors also gave some examples. In
short, a generalized Sasakian-space-form is an almost contact
metric manifold that the curvature tensor R is related with
three smooth functions f1, f2, and f3 defined on the manifold.

In [5], the authors defined the generalized indefinite
Sasakian-space-form. It is the generalized Sasakian-space-
form with a semi-Riemannian metric. In this paper, we are
most interested in the Lorentzian manifold because it is very
useful in Einstein’s general relativity. We call it Lorentzian
generalized Sasakian-space-form, and to make our paper
more concise, we will write it as LGSSF for short. We give
the necessary and sufficient condition of the LGSSF with
the dimension equal to or greater than five to be some certain
curvature tensor conditions. We also clarify the necessary
and sufficient condition that LGSSF is Ricci semisymmetric.
It is meaningful to dig into LGSSF satisfying these conditions
because we can understand the relationship between the
functions f1, f2, and f3 and the curvature properties of
the manifold.

Ricci flow is a powerful tool to investigate manifolds. It
was first introduced by Hamilton in [6], and he used it to
investigate Riemannian manifolds with positive curvature.
There are many solutions to Ricci flow, and the Ricci soliton
is the self-similar solution of it. Physicists are also interested
in the Ricci soliton because in physics, it is regarded as a
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quasi-Einstein metric. In our paper, we give the Ricci soliton
equation as follows:

LWg + 2S = 2λg: ð1Þ

In the equation, LW denotes the Lie derivative, S denotes
the Ricci tensor, g denotes the Riemannian metric, and λ
is a real scalar. We call it the triple (g, W, and λ) Ricci
soliton on the manifold. People can also use the Ricci soliton
to study semi-Riemannian manifolds and refer to [7–9] for
more details.

In [10], Pigola et al. introduced and studied the Ricci
almost soliton. They replaced the real scalar λ by a
smooth function defining the manifold and called it the triple
(g, W, and λ) Ricci almost soliton. In our paper, we apply
the Ricci almost soliton to LGSSF, and in consideration of
the curvature properties of the manifolds, we get some
interesting results.

We organize our paper as follows. In Section 2, readers
can get several basic definitions about LGSSF. Sections 3, 4,
5, and 6 are dedicated to showing how a LGSSF can be pro-
jectively flat, conformally flat, conharmonically flat, and Ricci
semisymmetric. In Section 7, we apply what we get from
Sections 3, 4, 5, and 6 to a Ricci almost soliton on LGSSF
and give two examples.

We use U , W, V , X, Y , and Z to denote the smooth tan-
gent vector fields on the manifold, and all manifolds and
functions mentioned in our paper are smooth.

2. Preliminaries

If a semi-Riemannian manifold M admits a vector field ζ
(we call it a Reeb vector field or characteristic vector field),
a 1-form η, and a (1,1) tensor field ϕ satisfying

ϕζ = 0,

η ∘ ϕ = 0,

ϕ2 = −id + η ⊗ ζ,

η ζð Þ = 1,

η Uð Þ = εg ζ,Uð Þ,
g U ,Wð Þ = g ϕU , ϕWð Þ + εη Uð Þη Wð Þ,

ð2Þ

where ε = gðζ, ζÞ = ±1, then we call such a manifold an
ε-almost contact metric manifold [11] or almost contact
pseudometric manifold [12], and we call it the triple
(ϕ, ζ, and η) almost contact structure on the manifold.

If the 2-form dη and the metric g satisfy

dη U ,Wð Þ = g U , ϕWð Þ, ð3Þ

then the manifoldM is a contact pseudometric manifold and
the triple (ϕ, ζ, and η) is a contact structure on the manifold.

We define a vector field on the product ℝ ×M2n+1 by
ðhðd/dxÞ,UÞ; x is the coordinate on ℝ and h is a C∞

function on ℝ ×M2n+1. We define an almost complex
structure J on ℝ ×M2n+1 by

J h
d
dx

,U
� �

= η Uð Þ d
dx

, ϕU − hζ
� �

, ð4Þ

and it is easy to check J2 = −id. Moreover, if J is integrable,
then we will say the almost contact structure (ϕ, ζ, and η) is
normal (see [3]). We call an ε-normal contact metric
manifold an indefinite Sasakian manifold or an ε-Sasakian
manifold.

Now we give the definition of the ϕ-sectional curvature.
The plane spanned by U and ϕU is called ϕ-section if U is
orthogonal to ζ. The ϕ-sectional curvature is the sectional
curvature KðU , ϕUÞ. The curvature of an indefinite Sasakian
manifold is determined by ϕ-sectional curvatures entirely.

If the ϕ-sectional curvature of an ε-Sasakian manifold is a
constant c, then the curvature tensor of the manifold has the
following form [13]:

R U ,Wð ÞX =
c + 3ε
4

g W, Xð ÞU − g U , Xð ÞWf g

+
c − ε

4
g U , ϕXð ÞϕW − g W, ϕXð ÞϕUf

+ 2g U , ϕWð ÞϕXg + c − ε

4
η Uð Þη Xð ÞWf

− η Wð Þη Xð ÞU + εg U , Xð Þη Wð Þζ
− εg W, Xð Þη Uð Þζg:

ð5Þ

In [5], the author replaced the constants with three
smooth functions defining the manifold. For an ε-almost
contact metric manifoldM, if the curvature tensor is given by

R U ,Wð ÞX = f1 g W, Xð ÞU − g U , Xð ÞWf g
+ f2 g U , ϕXð ÞϕW − g W, ϕXð ÞϕUf
+ 2g U , ϕWð ÞϕXg + f3 η Uð Þη Xð ÞWf
− η Wð Þη Xð ÞU + εg U , Xð Þη Wð Þζ
− εg W, Xð Þη Uð Þζg,

ð6Þ

where f1, f2, f3 ∈ C∞ðMÞ, then we call M the generalized
indefinite Sasakian-space-form.

In our paper, we only focus on the Lorentzian situation:
ε = −1 and the index of the metric is one. We call such man-
ifold the Lorentzian generalized Sasakian-space-form, and in
our paper, we denote it by M2n+1

1 ð f1, f2, f3Þ. Because some of
the curvature tensor fields we studied are not suitable for
three manifolds, in the following, the dimension of LGSSF
M2n+1

1 ð f1, f2, f3Þ is greater than three, that is, n > 1.
For a LGSSF M2n+1

1 ð f1, f2, f3Þ, we have two useful equa-
tions from (6):

R U ,Wð Þζ = f1 + f3ð Þ η Uð ÞW − η Wð ÞUð Þ, ð7Þ

R ζ,Uð ÞW = f1 + f3ð Þ g U ,Wð Þζ + η Wð ÞUð Þ: ð8Þ
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Lemma 1. For a LGSSF M2n+1
1 ð f1, f2, f3Þ, the Ricci tensor S is

S U ,Wð Þ = 2nf 1 + 3f2 + f3ð Þg U ,Wð Þ
+ 3f2 − 2n − 1ð Þf3ð Þη Uð Þη Wð Þ, ð9Þ

so the Ricci operator Q and scalar curvature r are

QU = 2nf 1 + 3f2 + f3ð ÞU + 2n − 1ð Þf3 − 3f2ð Þη Uð Þζ, ð10Þ

r = 2n 2n + 1ð Þf1 + 6nf 2 + 4nf 3: ð11Þ

Proof. As we all know for a semi-Riemannian manifold of
dimension n, the Ricci tensor S and the scalar curvature r are

S U ,Wð Þ = 〠
n

i=1
εig R U , Eið ÞEi,Wð Þ,

r = 〠
n

i=1
εiS Ei, Eið Þ,

ð12Þ

where fEi,⋯, Eng is a local orthonormal frame field on the
manifold and εi is the signature of Ei. The curvature tensor
of M2n+1

1 ð f1, f2, f3Þ is given by (6) and we know gðU ,WÞ =
∑εigðU , EiÞgðX, EiÞ, so we can easily get (9), (10), and (11).

We can use warped product to construct LGSSF (see [5]).
Let h > 0 be a function onℝ and (N2n, J , and G) be an almost
complex manifold. Then, the warped product M =ℝ × hN is
a LGSSF with the Lorentzian metric given by

gh = −π∗ gℝð Þ + h ∘ πð Þ2σ∗ Gð Þ, ð13Þ

where π is the projection from ℝ ×N to ℝ and σ is the
projection to N . The almost contact structure is

ζ =
∂
∂x

,

η Uð Þ = −gh U , ζð Þ,
ϕ Uð Þ = Jσ∗Uð Þ∗:

ð14Þ

Theorem 2 (see [5]). Given a generalized complex space-form
N2nðF1, F2Þ. Then, M2n+1

1 ð f1, f2, f3Þ =ℝ × hN is LGSSF, with
functions

f1 =
F1 ∘ πð Þ + h′2

h2
,

f2 =
F2 ∘ π
h2

,

f3 = −
F1 ∘ πð Þ + h′2

h2
+
h″
h
:

ð15Þ

3. Projectively Flat Lorentzian
Generalized Sasakian-Space-Form

For a (2n + 1)-dimensional (n > 1) smooth manifold M, the
projective curvature tensorP is defined by

P U ,Wð ÞX =
1
2n

S U , Xð ÞW − S W, Xð ÞUf g + R U ,Wð ÞX:
ð16Þ

It is a way to measure whether a manifold is a space-form
because if M is projectively flat (P = 0), then it must be of
constant curvature and the converse is also true. For more
details, readers can refer to [14].

Theorem 3. A LGSSF M2n+1
1 ð f1, f2, f3Þðn > 1Þ is projectively

flat if and only if f2 = f3 = 0.

Proof. Firstly, we suppose that PðU ,WÞX = 0. Put U = ζ and
replace X by ϕX, then equation (16) will be

P ζ,Wð ÞϕX =
1
2n

2n − 1ð Þf3 − 3f2ð Þg W, ϕXð Þζ = 0: ð17Þ

In consideration of gðW, ϕXÞ ≠ 0, we have

2n − 1ð Þf3 − 3f2 = 0: ð18Þ

Then, equation (9) will be

S W,Uð Þ = 2nf 1 + 3f2 + f3ð Þg W,Uð Þ = 2n f1 + f3ð Þg W,Uð Þ:
ð19Þ

By the above equation, we can write (16) as

g P U ,Wð ÞX, Zð Þ = f2 g U , ϕXð Þg ϕW , Zð Þf
− g W, ϕXð Þg ϕU , Zð Þ
+ 2g U , ϕWð Þg ϕX, Zð Þg
− f3 η Wð Þη Xð Þg U , Zð Þf
− η Uð Þη Xð Þg W , Zð Þ + η Wð Þη Zð Þg U , Xð Þ
− η Uð Þη Zð Þg W, Xð Þ + g W, Xð Þg U , Zð Þ
− g U , Xð Þg W, Zð Þg = 0:

ð20Þ

Setting U = ϕU and W = ϕW, we have

g P ϕU , ϕWð ÞX, Zð Þ = f2 g ϕU , ϕXð Þg ϕ2W, Z
� ��

+ 2g ϕU , ϕ2W
� �

g ϕX, Zð Þ
− g ϕW, ϕXð Þg ϕ2U , Z

� �g
+ f3 g ϕU , Xð Þg ϕW, Zð Þf
− g ϕW, Xð Þg ϕU , Zð Þg = 0:

ð21Þ

Let us denote the orthonormal local basis of TM by
fe1,⋯, e2n, e2n+1 = ζg. Obviously, the signature of the local
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basis is f+, ⋯ , + , − g and we denote it by fε1,⋯,
ε2n, ε2n+1g. Putting W = ei and Z = εiei in the above
equation and summing over i, we will have the follow-
ing equation:

f3 − 2n + 1ð Þf2ð Þg ϕU , ϕXð Þ = 0, ð22Þ

since gðϕU , ϕXÞ =∑2n+1
i=1 εigðϕU , eiÞgðϕX, eiÞ. Because of

gðϕU , ϕXÞ ≠ 0, we get

f3 − 2n + 1ð Þf2 = 0: ð23Þ

Taking consideration of ð2n − 1Þf3 − 3f2 = 0 and n > 1,
we get

f2 = f3 = 0: ð24Þ

Conversely, we suppose that f2 = f3 = 0 then use (6)
and (9), then (16) will be

P U ,Wð ÞX = f1 g U , Xð ÞW − g W, Xð ÞUf g
− f1 g U , Xð ÞW − g W, Xð ÞUf g = 0:

ð25Þ

In order to get the next theorem of our paper, we
first introduce the following famous theorem.

Schur.Theorem (see [15]). If Mnðn ≥ 3Þ is a connected
semi-Riemannian manifold, and for each m ∈M, the sec-
tional curvature KðmÞ is a constant function on the nonde-
generate planes in TmM, then KðmÞ is a constant function
on the manifold.

From Theorem 3, we can get if a LGSSF M2n+1
1 ð f1, f2, f3Þ

is projectively flat, then KðmÞ = f1. Using Schur.Theorem, we
have the following theorem.

Theorem 4. If a LGSSFM2n+1
1 ð f1, f2, f3Þðn > 1Þ is projectively

flat, then f1 is a constant function.

4. Conformally Flat Lorentzian
Generalized Sasakian-Space-Form

The conformal curvature tensor C is an important curvature
tensor for a manifold, apart from the projective curvature
tensor. For a (2n + 1)-dimensional (n > 1) smooth manifold,
it is given by

C U ,Wð ÞX =
1

2n − 1
S U , Xð ÞW − S W, Xð ÞUf

+ g U , Xð ÞQW − g W, Xð ÞQUg
+

r
2n 2n − 1ð Þ g W, Xð ÞU − g U , Xð ÞWf g

+ R U ,Wð ÞX:
ð26Þ

Conformal curvature tensor C is the invariant of
conformal transformation. In gauge field theory, it is
used to classify the regular form of a curvature tensor when

Sðei, ejÞ ≠ 0. If the metric of a manifold is conformally related
with a flat metric, then we will say the manifold is confor-
mally flat (C = 0).

Theorem 5. A LGSSF M2n+1
1 ð f1, f2, f3Þðn > 1Þ is conformally

flat if and only if f2 = 0.

Proof. From (6), (9), (10), and (11), equation (26) becomes

C U ,Wð ÞX = f2 g X, ϕWð ÞϕU − g X, ϕUð ÞϕWf
+ 2g U , ϕWð ÞϕXg
−

3
2n − 1

f2 g W, Xð ÞU − g U , Xð ÞWf
+ η Wð Þη Xð ÞU − η Uð Þη Xð ÞW
+ g U , Xð Þη Wð Þζ − g W, Xð Þη Uð Þζg:

ð27Þ

So if f2 = 0, then C is zero.
Conversely, we suppose that CðU ,WÞX = 0; first, we put

U = ϕW in the above equation, then we will have

C U ,Wð ÞX = 3f2 g ϕW, Xð ÞW − g W, Xð ÞϕWf
− η Wð Þη Xð ÞϕW − g ϕW, Xð Þη Wð Þζg
+ 2n − 1ð Þf2 g X, ϕWð Þ −W + η Wð Þζð Þf
+ g W, Xð ÞϕW + η Uð Þη Wð ÞϕW
+ 2g W,Wð ÞϕX + 2η Wð Þη Wð ÞϕXg

= 3f2g ϕW, Xð ÞW − 3f2η Wð Þη Xð ÞϕW
− 3f2g W, Xð ÞϕW
− 3f2g ϕW, Xð Þη Wð Þζ 2n − 1ð Þf2
� g X, ϕWð Þη Wð Þζ − g X, ϕWð ÞWf
+ g W, Xð ÞϕW + η Xð Þη Wð ÞϕW + 2g W,Wð Þ
+ 2η Wð Þη Wð ÞϕXg = 0:

ð28Þ

Then, we have

n − 2ð Þf2 g ϕW, Xð ÞW − g W, Xð ÞϕW − g X, ϕWð Þη Wð Þζf
− η Wð Þη Xð ÞϕWg − 2n − 1ð Þf2 η Wð Þη Wð ÞϕXf
+ g W,Wð ÞϕXg = 0:

ð29Þ

Again we use the local orthonormal basis fe1,⋯, e2n,
e2n+1 = ζg with signature fε1,⋯, ε2n, ε2n+1 = εg; we choose
X =W = ekð1 ≤ k ≤ 2nÞ, so gðW, ζÞ = gðX, ζÞ = 0 and the
above equation becomes

n − 2ð Þf2εkϕek + 2n − 1ð Þf2εkϕek = 0, ð30Þ

thus, we have

n − 1ð Þf2ϕek = 0: ð31Þ

Because n is greater than one, we get f2 = 0.
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From Theorem 3, we can get the following theorem.

Theorem 6. If a LGSSFM2n+1
1 ð f1, f2, f3Þðn > 1Þ is projectively

flat, then it is conformally flat.

5. Conharmonically Flat Lorentzian
Generalized Sasakian-Space-Form

The conharmonic transformation is a kind of special confor-
mal transformation. In general, a conformal transformation
does not preserve the harmonic function defined on the man-
ifold. In [16], Ishii introduced and studied the conharmonic
transformation, which preserved a special kind of harmonic
function. He also proved that a manifold could be reduced
to a flat space by a conharmonic transformation if and only
if the conharmonic curvature tensor K vanished everywhere
on the manifold. In other words, the manifold is conhar-
monically flat (K = 0). For a (2n + 1)-dimensional (n > 1)
smooth manifold, the conharmonic curvature tensorK is
given by

K U ,Wð ÞX = 1
2n − 1

g U , Xð ÞQW − g W, Xð ÞQUf
+ S U , Xð ÞW − S W, Xð ÞUg + R U ,Wð ÞX:

ð32Þ

Definition 7. A (2n + 1)-dimensional (n > 1) LGSSF is said
to be ζ-conharmonically flat if it satisfies

K U ,Wð Þζ = 0: ð33Þ

Lemma 8. A LGSSF M2n+1
1 ð f1, f2, f3Þðn > 1Þ is ζ-conhar-

monically flat if and only if ð2n + 1Þf1 + 3f2 + 2f3 = 0.

Proof. From (7) and (10), equation (33) becomes

K U ,Wð Þζ = 1
2n − 1

2n f1 + f3ð Þη Wð ÞUf
− 2n f1 + f3ð Þη Uð ÞW
+ 2nf 1 + 3f2 + f3ð Þη Wð ÞU
− 2nf 1 + 3f2 + f3ð Þη Uð ÞWg
+ f1 + f3ð Þ η Uð ÞW − η Wð ÞUf g

=
1

2n − 1
2n − 1ð Þf1 + 3f2 + 2f3ð Þ η Wð ÞU − η Uð ÞWf g:

ð34Þ

So M2n+1
1 ð f1, f2, f3Þ is ζ-conharmonically flat if and only

if ð2n + 1Þf1 + 3f2 + 2f3 = 0.

From equation (11) and Lemma 8, we have the following
theorem.

Theorem 9. A LGSSF M2n+1
1 ð f1, f2, f3Þðn > 1Þ is ζ-conhar-

monically flat if and only if its scalar curvature r = 0.

By Theorem 3 and Lemma 8, we have the following
theorem.

Theorem 10. If a LGSSF M2n+1
1 ð f1, f2, f3Þðn > 1Þ is ζ-conhar-

monically flat and projectively flat, then it is a flat manifold.

We know that being conharmonically flat is the sufficient
condition of ζ-conharmonically flat. So we have the following
theorem.

Theorem 11. If a LGSSF M2n+1
1 ð f1, f2, f3Þðn > 1Þ is conhar-

monically flat and projectively flat, then it is a flat manifold.

It is very important for us to know how a LGSSF can be
conharmonically flat.

Theorem 12. A LGSSF M2n+1
1 ð f1, f2, f3Þðn > 1Þ is conharmo-

nically flat if and only if f2 = 0 and ð2n + 1Þf1 + 2f3 = 0.

Proof. Comparing (26) with (32), we can get

C U ,Wð ÞX = 2n − 1ð Þf1 + 3f2 + 2f3
2n − 1

� g W, Xð ÞU − g U , Xð ÞWf g + K U ,Wð ÞX:
ð35Þ

If f2 = 0 and ð2n + 1Þf1 + 2f3 = 0, then from Theorem 4

K U ,Wð ÞX = C U ,Wð ÞX −
2n + 1ð Þf1 + 3f2 + 2f3

2n − 1
� g W, Xð ÞU − g U , Xð ÞWf g = 0:

ð36Þ

Conversely, if KðU ,WÞX = 0, we know that the conhar-
monic transformation is a kind of conformal transformation,
so if a manifold is conharmonically flat, then it must be con-
formally flat. In other words, we can get CðU ,WÞX = 0
(equals to f2 = 0) from KðU ,WÞX = 0, that is

K U ,Wð ÞX = C U ,Wð ÞX −
2n + 1ð Þf1 + 3f2 + 2f3

2n − 1
� g W, Xð ÞU − g U , Xð ÞWf g

= −
2n + 1ð Þf1 + 2f3

2n − 1
g W , Xð ÞU − g U , Xð ÞWf g = 0:

ð37Þ

We can get ð2n + 1Þf1 + 2f3 = 0.

Theorem 13. A LGSSF M2n+1
1 ð f1, f2, f3Þðn > 1Þ is conharmo-

nically flat if and only if f2 = 0 and scalar curvature r = 0.

6. Ricci Semisymmetric Lorentzian
Generalized Sasakian-Space-Form

There are many classes of smooth manifolds such as locally
symmetric and Ricci symmetric. A smooth manifold is Ricci
semisymmetric when the curvature operator RðU ,WÞ acting
on S vanishes identically, that is

R U ,Wð Þ ⋅ S = 0: ð38Þ
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Theorem 14. A (2n + 1)-dimensional (n > 1) LGSSF M2n+1
1

ð f1, f2, f3Þ is Ricci semisymmetric if and only if f1 + f3 = 0 or
3f2 = ð2n − 1Þf3.

Proof. First, we suppose that M2n+1
1 ð f1, f2, f3Þ is Ricci semi-

symmetric, that is

R U ,Wð Þ ⋅ Sð Þ Y , Zð Þ = −S Y , R U ,Wð ÞZð Þ − S R U ,Wð ÞY , Zð Þ = 0:
ð39Þ

Put U = ζ in the above equation, then we will have

S R ζ,Wð ÞY , Zð Þ + S Y , R ζ,Wð ÞZð Þ = 0: ð40Þ

Then, using (8), we can get

f1 + f3ð Þ g W, Yð ÞS ζ, Zð Þ + η Yð ÞS W, Zð Þf
+ g W, Zð ÞS ζ, Yð Þ + η Zð ÞS W, Yð Þg

= f1 + f3ð Þ 2n − 1ð Þf3 − 3f2ð Þ −2η Yð Þη Wð Þη Zð Þf
− η Zð Þg W, Yð Þ − η Yð Þg W, Zð Þg = 0:

ð41Þ

Again we use the orthonormal basis fe1,⋯, e2n+1 = ζg
with signature fε1,⋯, ε2n, ε2n+1 = εg, and this time,
in the above equation, we suppose W = ei and Z =
εieið1 ≤ i ≤ 2n + 1Þ, and taking summation over i, we can get

2n f1 + f3ð Þ 2n − 1ð Þf3 − 3f2ð Þη Yð Þ = 0: ð42Þ

Hence, we get f1 + f3 = 0 or ð2n − 1Þf3 − 3f2 = 0.
Conversely, if ð2n − 1Þf3 − 3f2 = 0, then by direct

calculation,

R U ,Wð Þ ⋅ Sð Þ Y , Zð Þ = −S Y , R U ,Wð ÞZð Þ − S R U ,Wð ÞY , Zð Þ
= − 2nf 1 + 3f2 + f3ð Þ g R U ,Wð ÞZ, Yð Þf

+ g R U ,Wð ÞY , Zð Þg = 0:
ð43Þ

If f1 + f3 = 0, we notice that ηðRðU ,WÞXÞ = 0, then we
will have

R U ,Wð Þ ⋅ Sð Þ Y , Zð Þ = −S Y , R U ,Wð ÞZð Þ − S R U ,Wð ÞY , Zð Þ
= 2n − 1ð Þf3 − 3f2ð Þ g R U ,Wð ÞZ, Yð Þf

+ g R U ,Wð ÞY , Zð Þg = 0:
ð44Þ

Theorem 15. If a LGSSF M2n+1
1 ð f1, f2, f3Þðn > 1Þ is conhar-

monically flat and Ricci semisymmetric, then it is a flat
manifold.

Proof. From Theorem 12 and Theorem 14, we know that if a
LGSSF is conharmonically flat and Ricci semisymmetric,
then we will have f2 = 0, ð2n + 1Þf1 + 2f3 = 0, and 3f2 =
ð2n − 1Þf3 or f1 + f3 = 0. In any case, we get f1 = f2 = f3 = 0.

Notice that f2 = f3 = 0 satisfies ð2n − 1Þf3 − 3f2 = 0, so we
can get the following theorem.

Theorem 16. If a LGSSF M2n+1
1 ð f1, f2, f3Þðn > 1Þ is projec-

tively flat, then it is Ricci semisymmetric.

7. Ricci Almost Soliton on Lorentzian
Generalized Sasakian-Space-Form

According to [10], we give the definition of the Ricci almost
soliton. For a manifoldM, if the metric g, along with a vector
field W and a function λ defining on M satisfies

LWg + 2S = 2λg, ð45Þ

where LW denotes the Lie derivative, then we call it the triple
(g,W, and λ) Ricci almost soliton on the manifold. IfW = ∇f
where f : M⟶ R, then we call it the (g, ∇f , and λ) gradient
Ricci almost soliton. In this case, we call f the potential func-
tion and equation (45) will be

S +Hess fð Þ = λg: ð46Þ

According to [17], we have the following definition.

Definition 17. A vector field W on a LGSSF M2n+1
1 ð f1, f2, f3Þ

is said to be a conformal vector field on the manifold
if it satisfies

LWgð Þ V , Xð Þ = −2ρg V , Xð Þ: ð47Þ

ρ is a smooth function on M2n+1
1 ð f1, f2, f3Þ.

We apply some of our theorems to the Ricci almost soli-
ton and then give two examples to illustrate the application of
the following theorem.

Theorem 18. Let (g,W, and λ) be a Ricci almost soliton on a
conformally flat LGSSF M2n+1

1 ð f1, f2, f3Þðn > 1Þ. If W is a
conformal vector field, then the manifold is projectively flat,
so it is Ricci semisymmetric and Einstein.

Proof. ifW is a conformal vector field, we have equation (47).
From (45), we get

S = ρ + λð Þg: ð48Þ

Comparing the above equation with (9), we will have the
following equations:

ρ + λ = 2nf 1 + 3f2 + f3,

3f2 − 2n − 1ð Þf3 = 0:
ð49Þ

Because M2n+1
1 ð f1, f2, f3Þ is conformally flat, we have

f2 = 0 (Theorem 5). Then,

f2 = f3 = 0: ð50Þ
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So M2n+1
1 ð f1, f2, f3Þ is projectively flat using Theorem 3,

and then it is Ricci semisymmetric using Theorem 16.
From Theorem 4, f1 is a constant function. So

S = ρ + λð Þg = 2nf 1g: ð51Þ

M2n+1
1 ð f1, f2, f3Þ is Einstein.

Example 19. Let N2nð−2, 0Þðn > 1Þ be a generalized complex
space-form, then M2n+1

1 = ð−π/4, π/4Þ × hN is LGSSF, where

h tð Þ = sin t + cos t, ð52Þ

and it is conformally flat. The function f ðt, xÞ = f ðtÞ = a
Ð t
0h

ðsÞds + b, a, b ∈ℝ is a potential function. Set W = −∇f and
λðtÞ = −ah′ðtÞ − 2n, then we have (gh, W, and λ) a gradient
Ricci almost soliton on the manifold. M is projectively flat,
Einstein and Ricci semisymmetric.

Example 20. In this instance, we consider the generalized
complex space-form N2nð3, 0Þðn > 1Þ, and the warped prod-
uct function h is

h tð Þ = sinh t + 2 cosh t: ð53Þ

The warped product M2n+1
1 =ℝ × hN is LGSSF and it is

conformally flat.

We have (gh, W, and λ) a gradient Ricci almost soliton
on the manifold thatW = −∇f and λðtÞ = −ah′ðtÞ + 2n, with
f ðt, xÞ = f ðtÞ = a

Ð t
0hðsÞds + b, a, b ∈ℝ. The manifold is

projectively flat, Einstein and Ricci semisymmetric.

8. Conclusion

We present the necessary and sufficient conditions for LGSSF
to be projectively flat, conformally flat, conharmonically flat,
and Ricci semisymmetric. We also study the Ricci almost
soliton on LGSSF. As a result, we know how to construct
a Lorentzian manifold with certain curvature tensor con-
ditions, which is useful in gauge theories because of the
correspondence between curvature and field strength.
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