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Cardiovascular disease remains the leading cause of death
in the Western world with as many as 350,000 Americans
and 700,000 Europeans sustaining cardiac arrest each year.
Despite major efforts to standardize cardiopulmonary resus-
citation (CPR) interventions, average survival rate presents a
large variation all over the world [1–3]. Moreover, besides the
initial success of CPR, the majority of victims die within 72
hours, due to the postcardiac arrest syndrome [4].

This difference in successful outcome may be mainly
related to the overall diversity and strength in local orga-
nizations and algorithms in pre- and postresuscitation care.
Indeed, resuscitation is a relatively modern science, although
its roots extend back in the centuries. Yet, as early as the
19th century, resuscitation by delivery of an electrical shock
was demonstrated. Modern CPR, however, emerged only
during the latter half of the 20th century, with the sequence
of interventions established in the 1960s under the acronym
ABCD: airway, breathing, chest compression, and defibrilla-
tion [5]. Since then, novel therapeutic approaches have been
conceived, introduced, and tested as new knowledge and
pathophysiology understanding of cardiac arrest increased.
Nevertheless, due to the complexity and interplay of events
occurring during cardiac arrest and after resuscitation, events
and mechanisms involved in resuscitation outcome are not

completely understood [6]. This special issue on cardiac
arrest and CPR, therefore, introduces brilliant contributions
from worldwide experts in the field of resuscitation, arising
and stimulating new strategies to improve outcome.

More specifically, space was provided to basic research
on pathophysiology of cardiac arrest as well as to bioengi-
neering developments. Thus, more clinically relevant and
severe models of cardiac arrest, that is, with an underlying
acute myocardial ischemia, a condition present in more
than 70% of cardiac arrest events, are presented, together
with investigations on the role of progressive mitochondrial
ischemia during cardiac arrest and a focus on the quality
of chest compression as determinant of resuscitation [7, 8].
Bioengineering research is also presented with the intro-
duction of new computerized approaches to ameliorate CPR
and postresuscitation care, including an reliable automated
cardiac rhythm analysis during chest compression, in order
to reduce detrimental interruptions in CPR [9]; an innova-
tive quantitative characterization of early postresuscitation
electroencephalogram; and an efficient automatic analysis
of data, documentation, and information recorded during
resuscitation. Finally, the quality of education and training
programs on CPR are other critical factors in improving
the effectiveness of resuscitation [10]. Survival rates after
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cardiac arrest depend, in fact, not only on the validity and
on reliability of guidelines and a well-functioning chain of
survival, but also on the quality of education. Thus, a report
on a different teaching approach engaging trainees in the
assessment of peer performance has been presented.

Translational research is a continuum loop in which basic
science discovering is integrated into clinical application,
while clinical observations are used to generate scientific
topics to be studied by basic science. This integration is
extremely important for medicine improvement [11]. Indeed,
advances in resuscitation science have improved resuscitation
care and ultimately survival of cardiac arrest over the years.
The present issue aimed to improve such knowledge although
only a limited number of researchers have found the appro-
priate space. Thus, special journal issues providing visibility
to new upcoming idea and hypothesis in resuscitation basic
science, translational studies, and bioengineering, like the
present issue, have to be supported, paving the way towards a
better comprehension of pathophysiology, mechanisms, and
management of sudden cardiac arrest and amelioration of
resuscitation care.

Giuseppe Ristagno
Tommaso Pellis

Yongqin Li
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Introduction. The aim of this study was to explore the learning effect of engaging trainees by assessing peer performance during
simulation-based training. Methods. Eighty-four final year medical students participated in the study. The intervention involved
trainees assessing peer performance during training. Outcome measures were in-training performance and performance, both of
which were measured two weeks after the course. Trainees’ performances were videotaped and assessed by two expert raters using
a checklist that included a global rating. Trainees’ satisfaction with the training was also evaluated. Results. The intervention group
obtained a significantly higher overall in-training performance score than the control group: mean checklist score 20.87 (SD 2.51)
versus 19.14 (SD 2.65) 𝑃 = 0.003 and mean global rating 3.25 SD (0.99) versus 2.95 (SD 1.09) 𝑃 = 0.014. Postcourse performance
did not show any significant difference between the two groups. Trainees who assessed peer performance were more satisfied with
the training than those who did not: mean 6.36 (SD 1.00) versus 5.74 (SD 1.33) 𝑃 = 0.025. Conclusion. Engaging trainees in the
assessment of peer performance had an immediate effect on in-training performance, but not on the learning outcome measured
two weeks later. Trainees had a positive attitude towards the training format.

1. Introduction

Assessing signs of critical illness is an essential skill for any
doctor. While junior doctors often perform the initial assess-
ment of acutely ill patients in hospitals [1] studies have shown
that newly qualified doctors are poorly prepared to manage
acutely ill patients [2, 3]. Hence, it is desirable to prepare
final year medical students for the initial management of
emergency situations.

Systematic assessment of critically ill patients using the
simple ABCDE mnemonic is widely accepted as a clinical
working tool [4]. The ABCDE acronym stands for airway,

breathing, circulation, disability, and exposure/environment,
describing the order in which the problems associated with
acute illness should be addressed.This approach is applicable
to all patients, as each step of the algorithm serves to assess
signs of critical illness, regardless of the underlying diagnosis.

Undergraduate teaching of acute care is often inconsistent
and lacks sufficient practice in core aspects of the ABCDE
assessment of critically ill patients [5, 6]. The opportu-
nities for medical students to develop and practise the
ABCDE approach in emergency situations are limited.There-
fore, simulation-based training that addresses the ABCDE
approach may be a suitable alternative that enables trainees
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to practise high-risk, low-frequency emergency situations in
a safe environment [7, 8]. However, the simulation-based
small-group training approach is expensive in terms of
utensils,mannequins, and instructors.Therefore, strategies to
maximize the learning outcome should be considered.

While active participation of trainees may be an effective
learning strategy, it is rarely possible to have the simultaneous
participation of all members of a group, which leaves some of
the trainees as passive observers. However, research suggests
that observation, especially when combined with physical
practice, can make a significant contribution to skill learning
[9] even when observing “unskilled” demonstrators such
as novices [10]. By observing other novices’ practice, the
trainees are typically engaged in reflection of their own
performance rather than imitating the skill. According to
Magill, a beneficial strategy could be to provide trainees
with a checklist containing key aspects of the skill while
observing [10]. The idea behind this strategy is that, under
these circumstances, trainees gain a sense of involvement,
which enhances motivation and encourages active problem
solving and hence may have a positive influence on learning
outcome and long-term retention.

The aim of this study was to explore the learning effect
of engaging trainees by assessing of peer performance during
a simulation-based course in which a critically ill patient
was assessed. The trainees’ performance was measured by
performance outcome during training and two weeks after
the course.The study also aimed to explore trainees’ reactions
to the training format.

2. Methods

This study was a randomised, experimental trial that com-
pared trainees who were engaged in assessment of peer
performance to trainees who were not.

2.1. Context of the Study. A four-hour, simulation-based
ABCDE training session was developed as part of a three-
week emergency medicine course that included faculty-led
didactic teaching sessions on a variety of emergencymedicine
topics and was situated at the end of an undergraduate six-
year medical curriculum.

2.2. Study Sample. A sample of eighty-six final year med-
ical students attending the emergency medicine course at
Rigshospitalet from 22 May until 13 June 2012 was invited to
take part in the study. Eighty-four of the students accepted
the invitation and were enrolled in the study. All of the
trainees were at the same educational level and comparable in
terms of advanced cardiac life support (ACLS) competence.
A fee of 400 DKK (approximately 50 Euros) was offered
for completing the study. A member of the research group
randomly allocated the trainees to either the intervention or
the control group using the trainees’ participant ID number
and randomisation sequences as well as tables created using
http://www.random.org/. In both groups, the sequence of
roles within the team was also part of the randomisation
process.

2.3. Ethics. The study protocol was submitted to the Danish
Bioethics Committee for the Capital Region, Copenhagen,
Denmark, which waived the requirement for full ethi-
cal approval (protocol number: H-4-2012-060). Participants
were informed about the purpose of the study and ensured
anonymity, and individual written consents were collected.

2.4. ABCDE Training. The ABCDE training, including an
ABCDE template (Figure 2), was designed by the research
group comprising anaesthesiologists and faculty from the
Centre for Clinical Education (CEKU).TheABCDE template
was introduced during the first session of the emergency
medicine course.The simulation-based ABCDE training ses-
sion comprised an introduction by the facilitator, a video
demonstration of the application of the ABCDE principles,
and subsequent training on six detailed, megacode scenarios,
each of which had an intended duration of 12 minutes. The
cases addressed both medical and surgical conditions fre-
quently seen in emergency departments but did not include
any trauma cases. The simulation sessions were conducted
in groups of six trainees on a Resusci-Anne mannequin
(Laerdal Medical Corporation, Stavanger, Norway). Each
group performed six scenarios facilitated by the same faculty
member fromCEKU. Each scenario had three active roles—a
team leader and two helpers—while the rest of the groupwere
observers. The six trainees took turns assuming these roles.
All scenarios were videotaped for subsequent assessment.
While facilitating the scenarios, the facilitator assessed the
performances of all team leaders using a checklist scoring
form (Table 2). The content of the checklist was very similar
to the ABCDE template provided to all trainees at the first
session of the emergency medicine course. The design of
the checklist scoring form was inspired by the advanced
life support Cardiac Arrest Scenario (CAS) test checklist. In
addition to the checklist items, the scoring form included an
overall global rating (scale 1–5), where a score ≥ 3 indicated
acceptable overall performance.

After each scenario, the facilitator provided postsimula-
tion debriefing, supplemented by comments from the peer
observers; however, detailed results of the assessment were
not provided.

2.5. Intervention Conditions. The intervention group under-
went the same ABCDE training as the control group. How-
ever, peer observers of the intervention group were asked to
assess the team leader’s performance during each scenario
using the same checklist scoring form as the facilitator. At the
end of each scenario, the scoring forms of the peer observers
were collected. The team leader was not informed of his/her
performance score.

2.6. Evaluation and Retention Test. After the ABCDE train-
ing, the trainees answered a single evaluation question about
their satisfaction with the training format; this was measured
using a seven-point Likert scale. Finally, two weeks after
the course, all trainees were invited to participate in the
assessment of their performance. During these two weeks,
the trainees did not have any further clinical or theoretical
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Figure 1: Flow chart showing the study design. Eighty-fourfinal year medical students were placed randomly into either the intervention
group or the control group. Observers of the intervention group assessed the team leader’s performance using a checklist scoring form. All
participants were invited to participate in the assessment of performance two weeks after the course. Trainees’ performances, in-training as
well as after the course, were videotaped and assessed by two expert raters.

training, as the course was carried out at the conclusion
of their time at the medical school. The trainees completed
the performance test individually, assuming the role as team
leader, and the facilitators acted as helpers. The performance
test scenario was different in content but similar to the
structure of the ABCDE training scenarios. As with the
ABCDE training scenarios, the performance test scenariowas

videotaped for subsequent assessment. The study design is
illustrated in Figure 1.

2.7. Outcome Measurements. This study included two out-
comemeasures: the trainees’ in-training performance and the
trainees’ individual performance assessed two weeks after the
ABCDE training (retention test).
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Assessments of performances were based on the video
recordings obtained during training and at the retention test.
For this purpose, all the videos were edited to show only
the simulation sessions; the debriefings, introduction to the
scenarios, and the like were edited out.

The video-recorded performances of the team leaders
were assessed by two trained independent and trained raters
with experience in advanced life cardiac support (ALCS)
teaching and testing. The raters were blinded with regard to
whether they were assessing the intervention group or the
control group. The raters used the same checklist scoring
form as that used by the facilitator and peer observers of the
intervention group during the ABCDE training.

2.8. Statistical Analysis. Interrater reliability was examined
using the intraclass-correlation coefficient. An average of
the raters’ scorings was used to compare the intervention
and control groups. An independent sample t-test was used
to compare the groups regarding overall in-training per-
formance and performance on the retention test. The two
groups were also compared regarding checklist scores, global
ratings, and satisfaction with the training format. Data were
analysed using the PASW statistical software package version
19.0 (SPSS Inc., Chicago, Illinois, USA). 𝑃 values < 0.05 were
considered statistically significant.

3. Results

Eighty-four out of the 86 trainees agreed to participate and all
84 completed the ABCDE training.

Interrater reliability was high on both the checklist score
and the global rating (ICC = 0.83 and 0.79, resp.).

The intervention group obtained a significantly higher
overall in-training performance score than the control group:
mean checklist score of 20.87 (SD 2.51) versus 19.14 (SD 2.65)
𝑃 = 0.003 and mean global rating of 3.25 SD (0.99) versus
2.95 (SD 1.09) 𝑃 = 0.014.

Students’ evaluation of the training format was signifi-
cantly higher in the intervention group: mean rating of 6.36
(SD 1.00) versus 5.74 (SD 1.33) in the control group,𝑃 = 0.025.

The dropout rate at the retention test was rather high in
both groups: 15 participants (37 percent) in the intervention
group and 11 participants (26 percent) in the control group,
𝑃 = 0.64.

The learning outcome, assessed two weeks after the
course, showed no significant difference between the two
groups, regarding either checklist scores (𝑃 = 0.923) or global
ratings (𝑃 = 0.322) (Table 1).

4. Discussion

This study has demonstrated that engaging trainees in struc-
tured assessment of their peers during observational phases
in a simulation-based ABCDE training session had a positive
effect on in-training performance. Through a simultaneous
combination of observation and assessment of peer perfor-
mance, the trainees of the intervention groupwere offered the
opportunity to extract features of the performance in order

to guide and develop their own performance of the skill [10].
However, the results of the retention test demonstrated no
significant difference between the two groups.

Students’ attitudes towards assessment of peer perfor-
mance highly endorsed the concept of active observation
during ABCDE training. Assessment of peer performance
has been increasingly adopted at a number of levels in the
education of healthcare professionals [11, 12]. Introducing
assessment of peer performance in undergraduate medical
education may offer insights into the students’ work habits
and those of their peers, which could foster motivation
and reflection of personal and professional competences.
Additional advantages of assessment of peer performance
include familiarisation with peer review from colleagues and
promotion of future learning and professional development
[13].

A phenomenon known as test-enhanced learning could
be relevant to this study. Test-enhanced learning implies
that being tested will enhance the long-term retention of
knowledge or skills. Hence, being tested in itself should affect
long-term retention positively [14, 15]. Kromann et al. inves-
tigated testing as part of a simulation-based resuscitation
course and found a significant higher learning outcome in the
intervention group, indicating that testing, in itself, may be an
effective strategy to increase learning outcome [15].

Observation, combined with simultaneous assessment of
peer performance, could generate a sense of a “testing effect.”
However, in our experimental setup both the intervention
group and the control group were tested during the training
(e.g., the facilitator used the checklist scoring form during
scenario training in both groups, video recordings of all sce-
narios, etc.). This meant that we were not able to investigate
the effect of testing.

Using e-learning programs could be a feasible strategy
to prolong retention after simulation-based skill courses.
However, Jensen et al. found that e-learning had no signif-
icant effect as a booster to maintain competences following
an advanced life support (ALS) course. The lack of social
interaction was identified as the major cause predicting the
use of e-learning [16]. Future studies that combine tests with
e-learning could demonstrate prolonged retention of skills
obtained in a simulated setting.

DeMaria et al. found that participants exposed to emo-
tional stress demonstrated greater anxiety, which correlated
with increased ACLS scores measured six months after the
course [17]. The participants of our study were exposed to
continuous assessment and video recording, which could
have generated emotional stress; however, no objective mea-
surement of this aspect was conducted.

One strength of this study is measuring learning out-
comes two weeks after the course (retention test). Potential
improvements in learning measured by later tests are in
accordance with general recommendations for evaluation of
skill learning, that is, to test learning outcomes after a pause in
training (retention of learning) in order to prove sustainable
skills [18]. Furthermore, using two raters with experience in
ALS training and assessment of skills ensured reliable ratings.

This study has certain limitations. The study includes a
risk of selection bias, as it is usually the most competent
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∙ Airway safe and clear?
Head tilt, chin lift, jaw thrust → look, listen, feel

Airway at risk?
Foreign bodies?

Consider use of airway devices: oropharyngeal airway, 
nasopharyngeal airway

∙ O2 : 15L using a mask with oxygen reservoir

∙ Assessment of breathing
Look: paradoxical chest movements (“see-saw”), central cyanosis
Listen: wheeze, stridor
Feel: surgical emphysema, crepitus

∙ Respiratory rate: alert if →>30/min or <10/min
∙ Pulse oximetry: aim for → saturation (SAT) ≥ 95%

∙ Auscultation of heart: murmurs, pericardial rub

∙ Arterial blood gas: oxygenation (PaO2), pH, PaCO2, base excess/HCO3

−

∙ Auscultation of lungs: crepitation, crackles, rhonchi, silent chest

∙ Percussion: dullness (blood, fluid, consolidation),
hyperresonance (pneumothorax)

∙ Blood pressure (BP): alert if → systolic BP < 90 or > 180mmHg
∙ Pulse: alert if →<50/min or >100/min

∙ ECG
∙ Skin (color/temperature): warm/cool versus dry/clammy versus

pallor/flush/cyanotic
∙ Capillary refilling: ≤2 seconds
∙ IV access: administer fluids/bloods with respect to haemodynamic status
∙ Relevant blood samples

∙ AVPU/Glasgow coma score (GCS): U on AVPU/9 on GCS
→ airway potentially at risk

∙ Pupils: size, equality, reaction to light
∙ Blood glucose: alert if →<2.5 or >12mmol/L
∙ Neurologic deficits: lateralizing signs, spinal cord injury
∙ Drugs: consider antidote

∙ Temperature: hypothermia < 35; fever > 38; hyperthermia > 41.1

∙ Head-to-toes clinical examination: undress the patient,
minimize heat loss

Airway

Breathing

Circulation

Disability

Exposure

ABCDE

Blood/secretion/vomit?—suction

© Center for clinical education, Copenhagen, Denmark.

Figure 2: The ABCDE template describing the order in which the problems associated with acute illness should be addressed.

students who volunteer for educational studies. Having said
that, almost 97 percent of the sample volunteered to partic-
ipate. There is also a risk of selection bias due to the fee for
participating in the study. However, the randomised design
and the relatively large sample aimed to minimise selection
bias. Furthermore, the dropout rate was almost similar in
both groups, despite the reward.The high dropout rate could

possibly be explained by a lack of motivation due to the fact
that the trainees had just qualified as doctors and might not
have felt the need for any additional training.

The students in the intervention group rated the training
format higher than the control group and hence engaging
students in peer assessment during ABCDE training may
represent a valuable addition. However, future research is
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Table 1: Performance of the intervention group compared with performance of the control group measured as in-training performance and
performance two weeks post-course.

Intervention group Control group

In-training performance 𝑁 = 41 𝑁 = 43
𝑃-value

Mean (SD) Mean (SD)
Checklist scores 20.87 (SD 2.51) 19.14 (SD 2.65) 0.003
Global rating 3.52 (SD 0.99) 2.95 (SD 1.09) 0.014

Two weeks post-course performance 𝑁 = 26 𝑁 = 32
𝑃-value

Mean (SD) Mean (SD)
Checklist scores 19.90 (SD 2.89) 19.84 (SD 1.75) 0.923
Global rating 3.52 (SD 0.98) 3.73 (SD 0.65) 0.322
Definition of abbreviations: SD: standard deviation.

Table 2:The checklist scoring form.The intervention group used the checklist to assess peer performance during the observational phases. In
addition, the facilitator and the two raters assessing in-training performance and performance twoweeks post-course used the same checklist.

A—Airway Tick the box if performed
1 Assess if the airway is open (patient talks/has normal respiration)
2 Ask helper to apply Hudson mask with reservoir and connect 10–15 L O2

B—Breathing Tick the box if performed
3 Assess respiration (looks, listens, feels)
4 Ask for respiratory frequency
5 Ask helper to apply pulse oximetry
6 Perform auscultation of the lungs

C—Circulation Tick the box if performed
7 Ask helper to perform blood pressure measurement
8 Ask helper to assess central pulse
9 Ask helper to measure ECG
10 Assess the skin: color/temperature
11 Assess capillary response
12 Perform auscultation of the heart
13 Ask helper to do a intravenous canulation
14 Ask helper to do an ABG
15 Ask helper to take out blood samples

D—Disability Tick the box if performed
16 Assess if the patient is concious (AVPU/GCS)
17 Assess and estimate size of pupiles
18 Ask for blood sugar value.
19 Examine motor function of limbs

E—Exposure/Enviroment Tick the box if performed
20 Ask helper to measure temperature
21 Head-to-toe examination

Analysis Tick the box if performed
22 Summary of ABCDE assessment
23 Correct analysis of ABG

Diagnostics and treatment Tick the box if performed
24 Propose relevant diagnosis
25 Outline clinical course

Global rating: Scale: 1–5 (Acceptable ≥ 3)
Overall assessment of team leader’s performance

Definition of abbreviations:
ECG: electrocardiogram.
ABG: arterial blood gas.
AVPU: Alert, Verbal, Pain and Unconsious.
GCS: Glascow Coma Scale.
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required to investigate how and if the assessment of peer
performance during ABCDE training enhances knowledge
and understanding and long-term learning outcome.

5. Conclusions

Engaging trainees in the assessment of peer performance
using a checklist scoring form during observational phases
in a four-hour, simulation-based ABCDE training course had
an immediate effect on in-training performance but not on
learning outcome measured two weeks later. In addition,
trainees had a positive attitude towards assessment of peer
performance.
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Interruptions in cardiopulmonary resuscitation (CPR) compromise defibrillation success. However, CPR must be interrupted to
analyze the rhythm because although currentmethods for rhythm analysis during CPR have high sensitivity for shockable rhythms,
the specificity for nonshockable rhythms is still too low.This paper introduces a new approach to rhythm analysis during CPR that
combines two strategies: a state-of-the-art CPR artifact suppression filter and a shock advice algorithm (SAA) designed to optimally
classify the filtered signal. Emphasis is on designing an algorithmwith high specificity.The SAA includes a detector for low electrical
activity rhythms to increase the specificity, and a shock/no-shock decision algorithm based on a support vector machine classifier
using slope and frequency features. For this study, 1185 shockable and 6482 nonshockable 9-s segments corrupted by CPR artifacts
were obtained from 247 patients suffering out-of-hospital cardiac arrest. The segments were split into a training and a test set. For
the test set, the sensitivity and specificity for rhythm analysis during CPR were 91.0% and 96.6%, respectively. This new approach
shows an important increase in specificity without compromising the sensitivity when compared to previous studies.

1. Introduction

Out-of-hospital cardiac arrest (OHCA) is a leading cause
of mortality in the industrialized world, with an estimated
annual incidence between 28 and 55 cases per 100,000
person-years [1]. Early cardiopulmonary resuscitation (CPR)
and early defibrillation are the key interventions for survival
after cardiac arrest [2]. Defibrillation may be administered
by an automated external defibrillator (AED), which incor-
porates a shock advice algorithm (SAA) that analyzes the
ECG to detect shockable rhythms. Current CPR guidelines
emphasize the importance of high quality CPR with minimal
interruptions in chest compressions (CCs) [3]. However, CPR
must be interrupted for a reliable rhythm analysis because
CCs produce artifacts in the ECG. These interruptions
adversely affect the probability of defibrillation success and

subsequent survival [4]. Currently, CPR is interrupted every
2 minutes for rhythm reassessment on an artifact-free ECG.

Although different approaches to rhythm analysis during
CPRhave been explored, for instance, algorithms that directly
diagnose the ECG corrupt with CPR artifacts [5, 6], filtering
the CPR artifact has been a major approach (see [7] for
a comprehensive review). The time-varying characteristics
of the CPR artifact and its spectral overlap with both
shockable and nonshockable cardiac arrest rhythmsmandate
the use of adaptive filters [8], which use reference signals
to model the CPR artifact. Over the years, many solutions
have been proposed, including Wiener filters [9], Match-
ing Pursuit Algorithms [10], Recursive Least Squares [11],
least mean squares (LMS) [12], or Kalman filters [13, 14].
Adaptive solutions using exclusively the ECG have also been
explored [15, 16], but the results were poorer. To evaluate
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the performance of these methods, researchers first filtered
the CPR artifact and then analyzed the rhythm using a
SAA to obtain the sensitivity and specificity of the method,
that is, the proportion of correctly diagnosed shockable and
nonshockable rhythms, respectively. However, the SAAs used
were originally designed to analyze artifact-free ECG instead
of the ECG after filtering.

Currently rhythm analysis during CPR is not possible
[17]. Most methods have sensitivity above 90%, the mini-
mum value recommended by the American Heart Associ-
ation (AHA) for SAA on artifact-free ECG [18]. However,
specificity rarely exceeds 85%, well below the 95% value
recommended by the AHA. A low specificity would result in
a large number of false shock diagnoses during CPR, which
would unnecessarily increase the number of interruptions
in CPR. Overall, the main cause of the low specificity is
filtering residuals in nonshockable rhythms. These residuals
frequently resemble a disorganized rhythm [10, 12] and are
oftenmisdiagnosed as shockable by SAAs designed to analyze
artifact-free ECG. This problem is more prominent when
the electrical activity of the underlying heart rhythm is
low, particularly for asystole (ASY) [14, 16], because filtering
residuals may have amplitudes comparable or larger than
those of the underlying ECG.

In this study we explore the possibility of combining
adaptive filtering techniques with a SAA designed to opti-
mally classify the rhythm after filtering.The aim is to improve
the accuracy of current approaches and in particular to
overcome the low specificity. When compared to previous
studies, our results showed an increased specificity without
compromising the sensitivity, for a comprehensive dataset of
OHCA rhythms.

2. Materials and Methods

2.1. Data Collection. The data for this study were extracted
from a large prospective study of OHCA conducted between
2002 and 2004 in three European sites [21, 22]. CPR was
delivered by trained ambulance personnel in adherence to the
2000 resuscitation guidelines. Episodes were recorded using
modified Laerdal Heartstart 4000 defibrillators (4000SP) and
an external CPR assist pad to acquire additional reference
signals. All signals were acquiredwith a 500Hz sampling rate.
The initial rhythmand all subsequent changes in rhythmwere
annotated by consensus of an experienced anesthesiologist
and a biomedical engineer, both specialized in resuscitation
[21, 22]. Rhythm annotations comprised five types (see [21]
for further details): VF and fast ventricular tachycardia
(VT) in the shockable category and ASY, pulseless electrical
activity (PEA), and pulse-generating rhythm (PR) in the
nonshockable category. Intervals with chest compressions
were annotated using the compression depth (CD) obtained
from the CPR assist pad.

For this study specific records containing the ECG and
CD signals were automatically extracted from the original
episodes. First rhythm transitions were identified using the
original annotations, and then for each interval without
rhythm transitions at most one record was extracted to avoid

bias due to data selection. Records were extracted if the
following criteria were met: duration of more than 20-s,
ongoing CCs, and the same rhythm annotation before and
after CCs. Following the AHA statement the records were
grouped into a shockable and a nonshockable category. The
amplitude thresholds adopted for coarse VF and ASY are
those accepted in the literature on SAAs [6, 18].The following
criteria and rhythm definitions were checked in the clean
intervals before and after CCs.

Shockable Rhythms.This category includes fast VT, with rate
above 150 beats per minute (bpm), and coarse VF. Coarse VF
was defined asVFwith peak-to-peak amplitude above 200 𝜇V
and a fibrillation frequency above 2Hz.

Nonshockable Rhythms. These rhythms were further divided
into the following:

(i) organized rhythms (ORG): all nonshockable rhythms
except ASY (PEA and PR),

(ii) asystole (ASY): rhythms with peak-to-peak ampli-
tudes below 100 𝜇V for at least 2-s.

All signals were resampled to 𝑓
𝑠
= 250Hz, a sampling rate

similar to that used by commercial AEDs. Inwhat follows, the
sample index and time variables are related by 𝑡 = 𝑛 ⋅𝑇

𝑠
(𝑇
𝑠
=

1/𝑓
𝑠
). The ECG was band limited to 0.5–30Hz (order 10

Butterworth filter), a typical ECG monitor bandwidth used
in AEDs [5, 6], which removes base line wander and high
frequency noise.

Following standard practice in SAA design, the rhythm
analysis method was designed to analyze three consecutive
3 s windows, so it gives a diagnosis every 9 s [23, 24]. A 3 s
window is sufficient to characterize the rhythm in terms of
rate, stability, and morphology and to make a shock (Sh)
or no-shock (NSh) decision [23]. SAA algorithms combine
several consecutive diagnoses to avoid errors due to rhythm
transitions and to avoid shock diagnoses for short bursts
of nonsustained VT. Therefore, each record was divided
into nonoverlapping 9 s segments. The 9 s segments were
randomly split into two separate sets, one to train the
algorithm and an independent set to test the algorithm, as
required by the AHA statement. In addition we made sure
that the patients on both sets were different (AHA statement)
and that the distribution of rhythm types was similar in both
sets.

2.2. Rhythm Analysis Method. The block diagram of the
rhythm analysis method is shown in Figure 1. First, a CPR
artifact suppression filter estimates the underlying rhythm,
that is, the filtered ECG signal, 𝑠filt. Then, a SAA diagnoses
every 3 s window of the filtered signal.The SAA is designed to
optimally classify the filtered signal and is further composed
of two sequential subalgorithms: (1) a detector of rhythms
with low electrical activity (LEA), that is, nonshockable
rhythmswithout distinguishableQRS complexes such as ASY
or idioventricular rhythms, and (2) a Sh/NSh algorithm that
classifies windows with electrical activity as shockable or
nonshockable.
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Figure 1: Block diagram of the new approach to rhythm analysis
during CPR in which an adaptive filter (LMS filter based on the CD
signal) is used in combination with a SAA designed to optimally
classify the filtered signal, 𝑠filt.
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2.3. Chest Compression Artifact Filter. CPR artifacts were
suppressed using a state-of-the-art method based on an LMS
filter [12]. In this method, CC artifacts are modeled as a
quasiperiodic interference with a time-varying fundamental
frequency, 𝑓

𝑜
(𝑛), which is the instantaneous frequency of

the CCs. This frequency is derived from the 𝑡
𝑘
instants, the

CC marks shown in Figure 2. The LMS algorithm adaptively
estimates the time-varying amplitudes, 𝑐

𝑘
(𝑛), and phases,

𝜙
𝑘
(𝑛), of the first 5 harmonics of the artifact by fitting the

following model:

𝑠cpr (𝑛) =
5

∑

𝑘=1

𝑐
𝑘
(𝑛) cos (𝑘 ⋅ 2𝜋𝑓

𝑜
(𝑛) ⋅ 𝑛 + 𝜙

𝑘
(𝑛)) ,

𝑓
𝑜
(𝑛) =

1

𝑡
𝑘
− 𝑡
𝑘−1

for 𝑡
𝑘−1

≤ 𝑛𝑇
𝑠
< 𝑡
𝑘
.

(1)

In summary, the LMS algorithm dynamically estimates the
CPR artifact by adaptively estimating its harmonic content.
For this study, we used the optimal values of the filter
parameters as described in [12, 19]. As shown in Figure 1, the
filtered signal was obtained by subtracting the estimated CPR
artifact from the corrupted ECG. Figure 2 shows those signals
for a 12-s segment with an underlying VF rhythm.

2.4. Shock Advice Algorithm. The SAA consists of a LEA
detector followed by the Sh/NSh algorithm.TheLEAdetector
identifies LEA windows as nonshockable; the rest of the
windows are further processed by the Sh/NSh algorithm for
a definitive diagnosis.

2.4.1. LEA Rhythm Detector. Some nonshockable rhythms
(ASY, bradyarrhythmias or idioventricular rhythms) may
not present QRS complexes in a 3 s analysis window. In
these cases, filtering the CC artifact results in 𝑠filt with
low amplitudes and short intervals in which the electrical
activity is very low (see Figure 3(a)). To further improve LEA
detection 𝑠filt was high pass filtered with a 2.5Hz cut-off
frequency using an order 5 Butterworth filter, which removed
slow fluctuations of the ECG in LEA rhythms but preserved
most frequency components of VF, as shown in Figure 3.The
resulting signal, 𝑠LEA, was used to obtain the following two
features:

(i) 𝑃LEA: energy of 𝑠LEA in the 3 s window:

𝑃LEA = ∑
𝑛

𝑠
2

LEA (𝑛) ; (2)

(ii) 𝐿min: minimum of the curve lengths of 𝑠LEA for
nonoverlapping 0.5-s intervals, which measures the
minimum electrical activity in 0.5-s intervals. In
discrete form, the curve length of the 𝑘th subinterval
is [25]

𝐿
𝑘
=

(𝑘+1)𝑓
𝑠
/2

∑

𝑛=𝑘𝑓
𝑠
/2+1

√Δ𝑠
2

LEA (𝑛) + 𝑇
2

𝑠
, (3)

where Δ𝑠LEA is the first difference of 𝑠LEA.

LEA rhythms have smaller values of 𝑃LEA and 𝐿min than
shockable rhythms, as shown in Figure 3. This block was
designed as a detector; that is, it gives a NSh diagnosis if
a LEA rhythm is detected; otherwise the window is further
processed by the Sh/NSh algorithm.
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Figure 3: Examples of a LEA rhythm (a) and a VF (b) window after filtering the CC artifact, 𝑠filt, and preprocessed to suppress components
under 2.5Hz, 𝑠LEA. Vertical lines separate the 0.5 subintervals, and the one with lowest activity (𝐿min) is shown in red.

2.4.2. Sh/NSh Algorithm. During resuscitation, ORG
rhythms with electrical activity may be very different in
terms of rate, QRS width, or QRS morphology. Furthermore,
even after CPR artifact suppression, rhythms may present
important filtering residuals that may resemble VF. Four
features derived from the frequency domain and slope
analyses were defined. For rhythms with electrical activity,
these features emphasize the differences between nonshock-
able (with QRS complexes) and shockable (without QRS
complexes) rhythms.

2.4.3. SlopeAnalysis Features. QRS complexeswere enhanced
in 𝑠filt by computing the moving average of the square of its
first difference (its slope):

𝑑filt (𝑛) =
1

𝑁

𝑁−1

∑

𝑘=0

(𝑠filt(𝑛 − 𝑘) − 𝑠filt (𝑛 − 𝑘 − 1))
2

, (4)

where 𝑁 corresponds to the number of samples in a 100ms
interval. Then, 𝑑filt was divided by its maximum value in the
analysis window to obtain 𝑑filt. As shown in Figure 4, in ORG
rhythms 𝑑filt is large only around QRS complexes and very
small otherwise, whereas in VF the values of 𝑑filt are more
evenly distributed and presentmany peaks. Two featureswere
defined to measure these differences:

(i) 𝑏𝑆: slope baseline, a measure of how concentrated
slope values are around small values (baseline), com-
puted as the 10th percentile of 𝑑filt,

(ii) 𝑛𝑃: number of peaks above a fixed threshold in 𝑑filt.

Shockable rhythms will present larger values of 𝑏𝑆 and 𝑛𝑃 as
shown in Figure 4.

2.4.4. Frequency Domain Features. For the frequency anal-
ysis, a Hamming window was applied to 𝑠filt and its zero
padded 1024-point FFT was computed. The power spectral

density was estimated as the square of the magnitude of the
FFT and normalized to total power of one to give 𝑃ss(𝑓).
As shown in Figure 5, VF concentrates most of its power
around the fibrillation frequency, whereasORG rhythmsmay
have important power content at higher frequencies, on the
harmonics of the heart rate. Two discrimination features
were defined, with limiting frequencies in line with the
characteristics of human VF [26, 27]:

(i) 𝑃fib: power proportion around the VF-fibrillation
band (2.5–7.5Hz),

(ii) 𝑃
ℎ
: power proportion in the high spectral bands

(above 12Hz).

Shockable rhythms have larger values of 𝑃fib but lower values
of 𝑃
ℎ
(see Figure 5).

2.4.5. Support Vector Machine (SVM) Classifier. The Sh/NSh
algorithm classified windows using a SVM with a Gaussian
kernel [28]. First, features were standardized to zero mean
and unit variance using the data in the training set. These
x
𝑖
vectors of four normalized features were arranged as

{(x
1
, 𝑦
1
), . . . , (x

𝑛
, 𝑦
𝑛
)} ∈ R4×{±1}, where 𝑦

𝑖
= 1 for shockable

and 𝑦
𝑖
= −1 for nonshockable windows. After training, the

discriminant function for a window with feature vector x is

𝑓 (x) =
𝑁
𝑠

∑

𝑖=1

𝛼
𝑖
𝑦
𝑖
exp (−𝛾󵄩󵄩󵄩󵄩x − x

𝑖

󵄩󵄩󵄩󵄩

2

) + 𝑏, (5)

where x
𝑖
are the support vectors, 𝑁

𝑠
is the number of

support vectors, and𝛼
𝑖
and 𝑏 are coefficients estimated during

training. Windows were classified as shockable for 𝑓(x) > 0
or nonshockable for 𝑓(x) ≤ 0. Selecting an optimal SVM
model for the classification problem involves selecting two
parameters: 𝐶 and 𝛾. The width of the Gaussian kernel,
𝛾, determines the flexibility of the decision boundary [28].
The soft margin parameter, 𝐶, is used exclusively in the
optimization process and is a tradeoff between classification



BioMed Research International 5

0.4

−0.4

0

s
fil

t
(
m

V
)

Time (s)
3210

0

1

0.5

Time (s)
3210

bS

bS

= 0.139

d
fil

t
(
n.

u)

nP = 19

(a)

1.4

−1.4

0

s
fil

t
(
m

V
)

Time (s)
3210

0

1

0.5

Time (s)
3210

bS

bS

= 0.014

d
fil

t
(
n.

u)

nP = 7

(b)

Figure 4: Example of the slope analysis for VF (a) and an ORG (b) window. During VF the slope, 𝑑filt, is irregular with many peaks, whereas
ORG rhythms are regular with fewer peaks and concentrate most 𝑑filt values around the baseline.

0.4

−0.4

0

s
fil

t
(
m

V
)

Time (s)
3210

0

Frequency (Hz)
3020100

0.04

P
ss
(
n.

u)

Pfib = 0.84 Ph = 0.01

(a) VF

1

−1

0

s
fil

t
(
m

V
)

Time (s)
3210

0

0.02

P
ss
(
n.

u)

Frequency (Hz)
3020100

Pfib = 0.50 Ph = 0.12

(b) ORG

Figure 5: Example of the frequency domain analysis for VF (a) and an ORG (b) window. VF concentrates most of its power around the
fibrillation band (blue). ORG rhythms have a spectrum with many harmonics of the heart rate and thus larger 𝑃

ℎ
(in green).

errors in training data and separating the rest of the training
data with maximummargin [28].

2.5. Data Analysis and Algorithm Optimization. The rate and
depth characteristics of CPR in our data were analyzed for
each 9 s segment. The distributions for rate and depth did
not pass the Kolmogorov-Smirnov test for normality and are
reported as median and 5–95 percentiles.

For each discrimination feature of the SAA, statistical
differences in medians between the targeted classification
groups of each subalgorithmweremeasured using theMann-
Whitney𝑈 test. The optimization process was carried out for
the 3 s windows of the training set in two sequential steps.

(1) LEADetector. ASY and shockable rhythmswere used.
The detection thresholds were determined through a
greedy search on the two-dimensional feature space

to jointly maximize the number of detected ASY
and minimize the number of shockable windows
incorrectly detected as nonshockable. An additional
restriction was imposed: at maximum 5% of shock-
able windows could be incorrectly classified.

(2) Sh/NSh Algorithm. Shockable and ORGwindows not
detected as NSh by the LEA detector were used to
optimize the SVM classifier. To avoid overfitting the
SVM to the training set, 𝐶 and 𝛾 were selected using
5-fold crossvalidation [29] to optimize the balanced
error rate (BER):

BER = 1 − 1
2
(TPR + TNR) , (6)

where the true positive rate (TPR) and the true
negative rate (TNR) are the capacity of the SVM
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Table 1: Number of segments (patients in parenthesis) and characteristics of the CC rate and depth for the training and test datasets. Values
for CC rate and depth are presented as median with 5–95 percentiles in parenthesis.

Rhythm type Training Testing
9-s seg. Rate (cpm) Depth (mm) 9-s seg. Rate (cpm) Depth (mm)

Shockable 563 (35) 116 (92–143) 38 (25–47) 622 (34) 113 (89–157) 35 (20–50)
Nonshockable 3132 (110) 116 (88–155) 36 (20–51) 3350 (109) 116 (84–159) 35 (21–57)
AS 1173 (66) 118 (92–164) 35 (18–52) 1309 (60) 117 (89–151) 34 (21–52)
ORG 1959 (66) 114 (86–149) 37 (23–51) 2041 (76) 116 (79–164) 35 (21–59)
Total 3695 (123) 116 (89–151) 36 (21–51) 3972 (124) 116 (86–159) 35 (21–58)

classifier to detect shockable and ORG windows,
respectively. Weights were assigned to each class to
resolve the unbalance in the number of instances per
class [28]. The best SVMs using one, two, or three
features were compared to the optimal four-feature
SVM using McNemar’s test.

The performance of the algorithm was measured in the
test set in terms of sensitivity and specificity. Since both 3 s
windows and 9 s segments correspond to consecutive anal-
yses within a record, the sensitivities, specificities, and their
90% low one-sided confidence intervals (CI) were adjusted
for clustering (longitudinal data) within each record, using
a longitudinal logistic model fit by generalized estimating
equations (GEE) [30, 31]. The analysis was carried out in
𝑅 using the geepack library [32]. Finally, the algorithm
was programmed in MATLAB R2013a (Mathworks Inc.) for
Windows and processing time performance tests were carried
out on a 2.9GHz Intel i7 with 4GB of RAM.

3. Results

3.1. Database Description. Our data comprise 7667 9 s seg-
ments within 1396 records extracted from 247 OHCA patient
episodes.Themedian number of 9 s segments per record was
3 (1–19, range 1–44). Table 1 shows the number of 9 s segments
and the rate and depth of CCs for those segments in the
training and test sets. The median CC rate and depth were
116 (88–156) compressions per minute (cpm) and 36 (21–53)
mm, respectively.

3.2. Shock Advice Algorithm

3.2.1. Training. Figures 6(a) and 6(b) show the values of 𝑃LEA
and𝐿min for theASY and shockable rhythmswhich presented
significant differences between the two groups (𝑃 < 0.001).
The optimal detection thresholds of the LEA detector were

𝑃LEA < 0.44 or 𝐿min < 0.63. (7)

The LEA detector identified as NSh 72.1% of the ASY (true
detections) and 0.9% of the shockable (false detections)
windows. In addition, 38.8% of the ORG windows were
correctly identified as NSh; these rhythms corresponded to
very low rate and low electrical activity intervals of ORG
rhythms.

Figures 6(c)–6(f) show the values of the features used in
the SVM classifier; these values were statistically different for

theORGand shockable rhythms (𝑃 < 0.001).The SVMbased
on four features showed a significantly better performance
when compared to the SVMs based on the best single, pair,
or triplet of features (McNemar’s test 𝜒2 > 10, 𝑃 < 0.001, in
all three cases).The optimal working point of the four-feature
SVM was (𝐶 = 8.5, 𝛾 = 0.1), which produced a BER = 0.064,
TPR = 0.927, and TNR = 0.944 for the SVM classifier.
The receiver operating characteristics analysis on the SVM
features resulted in the following area under the curve (AUC)
values: 0.948, 0.928, 0.807, and 0.733 for 𝑏𝑆, 𝑛𝑃, 𝑃fib, and 𝑃ℎ,
respectively. When combined in the SVM the resulting AUC
was 0.971, which reveals the robustness of the classifier.

3.2.2. Test. The optimized SAA was used to classify the 3 s
windows in the test set; Table 2 shows a summary of the
results. The overall sensitivity and specificity were 89.7%
(low one-sided 90% CI, 85.5) and 95.1% (low 90% CI,
94.3), respectively. The 9 s segments were diagnosed using a
majority criterion on three consecutive window analyses, this
increased the overall sensitivity and specificity to 91.0% (low
90%CI, 86.6) and 96.6% (low 90%CI, 95.9), respectively, and
AHA recommendations were met for all rhythm types (see
Table 2).

Figure 7 shows two examples (Figures 7(a) and 7(c)) of
correctly diagnosed segments and two examples (Figures 7(b)
and 7(d)) of incorrectly diagnosed segments. The examples
(Figures 7(a) and 7(c)) show that the algorithm works
robustly even in the presence of important filtering resid-
uals. However, there were some instances of misdiagnosed
segments as shown in Figures 7(b) and 7(d). Errors were
generally caused by spiky filtering residuals in shockable
rhythms (Figure 7(b)) or large filtering residuals during ASY
(Figure 7(d)).

Processing time for the complete algorithm, CPR sup-
pression filter based on the LMS filter followed by the SAA,
was on average 8.7ms per 3 s segment. Processing time was
broken down into 5.8ms for the LMS filter and 2.9ms for
the SAA. For decisions taken by the LEA detector the SAA
required only 1.8ms, and for windows in which the LEA
detector and the SVM were used it increased to 4.1ms. In
the worst case scenario processing time for the complete
algorithm was under 10ms.

4. Discussion

This study presents the first attempt to combine two
approaches for rhythm analysis during CPR: adaptive filters
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Table 2: Final classification for the 3-s windows and 9-s segments of the test set compared to the AHA performance goals. Sensitivities,
specificities and low one-sided 90% CIs (in parenthesis) were obtained using GEE to adjust for clustering.

Rhythm type 3-s window 9-s segment AHA goal [18]
n Se/Sp n Se/Sp

Shockable 1866 89.7 (85.5) 622 91.0 (86.6) >90 (for VF)
Nonshockable 10050 95.1 (94.3) 3350 96.6 (95.9) >95
AS 3927 94.3 (93.1) 1309 96.5 (95.2) >95
ORG 6123 95.6 (94.6) 2041 96.7 (95.8) >95

Table 3: Comparative assessment in terms of accuracy and the composition of the databases (% of ASY in nonshockable rhythm in
parenthesis) between the method proposed in this study and previous methods tested on OHCA rhythms.

Authors Method Accuracy Testing datasets
Se (%) Sp (%) Sh NSh

Eilevstjønn et al. [10] MC-RAMP 96.7 79.9 92 174 (30%)
Aramendi et al. [19] LMS filter 95.4 86.3 87 285 (31%)
Tan et al. [20] ART filter 92.1 90.5 114 4155 (NA)
Li et al. [5] Direct analysis 93.3 88.6 1256 964 (4%)
Krasteva et al. [6] Direct analysis 90.1 86.1 172 721 (46%)
Proposed method Filtering + SAA 91.0 96.6 622 3350 (39%)

to suppress the CPR artifact and an SAA optimized to analyze
the rhythm after filtering. Our objective was to increase the
specificity, because the low specificity of current methods
has restrained their implementation in current defibrillators.
Our results indicate that our new design approach might
contribute to a substantial increase of the accuracy of rhythm
analysis methods during CPR, with results that marginally
meet AHA performance goals.

The design efforts were focused on obtaining a high speci-
ficity during CPR to allow CCs to continue uninterrupted
until the method gives a shock advice.The positive predictive
value (PPV) of the algorithm, that is, the confidence in a
shock diagnosis, must be kept high to avoid unnecessary
CPR interruptions if the underlying rhythm is nonshockable.
Since VF is the positive class, the PPV depends on the
sensitivity/specificity of the algorithm and on the prevalence
of VF, 𝑃vf, in the following way:

PPV (%) = 100 × TP
TP + FP

= 100 ×
Se ⋅ 𝑃vf

Se ⋅ 𝑃vf + (1 − Sp) ⋅ (1 − 𝑃vf)
.

(8)

The exact prevalence of VF (reported for the initially
observed rhythm as stated in [33]) is unknown and varies
among OHCA studies, with figures in the range of 23% to
67% [34, 35]. For the original OHCA studies from which our
datasets originated the prevalences of VF were 43% [21] and
41% [22], within the previous range. For the limits of the VF
prevalence range, the PPV of our algorithm is high, in the
88.9% to 98.2% range. Furthermore, since the PPV depends
on the prevalences, algorithms must be trained to optimize
sensitivity/specificity, with emphasis on a large specificity (a
specificity of 100% would result in a PPV of 100% regardless
of the prevalences).

To this date most methods for rhythm analysis during
CPR have focused on the accurate detection of shockable
rhythms, resulting in higher values for sensitivity than for
specificity. Table 3 compares the accuracy of our method to
that of five well-known methods tested on OHCA data that
represent the twomost successful strategies for rhythm analy-
sis during CPR.Three of thosemethods are based on adaptive
filters [10, 12, 20], and the other two are algorithms designed
to directly diagnose the corrupt ECG [5, 6]. Although the
sensitivity of ourmethod is up to 4 points below that reported
by methods based on adaptive filters, it is still above the value
recommended by the AHA, which ensures the detection of a
high proportion of shockable rhythms.The higher sensitivity
of methods based on adaptive filters may be explained by
the fact that filtering residuals are frequently diagnosed as
shockable by SAA designed to diagnose artifact-free ECG
[14]. In contrast, the 96.6% specificity of our approach is an
important improvement with respect to previous approaches
in which the specificity was below 91%. We showed that
combining the strong points of both approaches may result
in an increased accuracy.

The characteristics of the OHCA data used in these
studies may affect the sensitivity/specificity results, and in
particular the characteristics of CPR, the selection criteria
for VF, and the proportion of ASY among nonshockable
rhythms. Rate and depth values of CPR in our data are
similar to those reported in the original studies [21, 22] and
represent the wide range of CPR characteristics found in the
field. In particular, the CC rates are high (around 120 cpm),
the spectral overlap with OHCA rhythms is therefore large,
and suppressing the CPR artifact in our data should be
challenging [8]. The CC depth was low even according to
the 2000 resuscitation guidelines and lower than the 5 cm
recommended in current guidelines [36]. However, no clear
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correlation between depth and larger artifacts has been
demonstrated to date on human data. Our database only
included VF annotated as coarse, as stated in the AHA
statement. The three-phase model of cardiac arrest suggests
that fine VF occurs when VF transitions from the electric
phase into the circulatory or metabolic phases [37]. There
is no conclusive evidence that immediate defibrillation is
the optimal treatment in these latter phases of VF [38], so
from a SAA design perspective it is a sound decision to only
include coarseVF.On the other hand, our database has a large
proportion of ASY among nonshockable rhythms (39%),
in agreement with the fact that ASY is the most frequent
nonshockable OHCA rhythm [39].The high specificity of our
method for ASY is particularly important because ASY is the
most difficult nonshockable rhythm to detect during CPR
[14, 16].

Our study shows that combining adaptive filtering with
special SAAs that optimally diagnose the filtered ECG may
result in an increased overall accuracy. In addition, the
computational cost of the algorithm is low, as shown by the
processing time analysis. The SAA algorithm computes at
most six ECG features, and implementing our SVM in an
AED requires only a few kilobytes of memory for the support
vectors and the computation of the discriminant function
(see equation (5)). The LMS algorithm using 5 harmonics
involves only 10 coefficients [12], which substantially simpli-
fies the filter. In any case, incorporating a CPR artifact filter
to current AEDs is more complex than using algorithms that
directly analyze the corrupt ECG [5, 6]. Filtering techniques
based on the CD signal require the use of external CPR
quality devices [40, 41] or modified defibrillation pads [42,
43] to record the acceleration signal. Alternatively other
reference signals can be used, such as the thoracic impedance
recorded through the defibrillation pads [19]. CPR artifact
filters increase the complexity of the software and signal
processing units of the AED and may even demand changes
in its hardware to acquire reference signals.

Finally, several studies need to be completed before
any method could be safely taken to the field. First, more
conclusive results require testing the algorithm on data
recorded by equipment different from those used for this
study and with CPR delivered according to the latest 2010
CPR guidelines. In addition, retrospective studies based on
complete resuscitation episodes should be conducted. In
this way, the impact of using the method on CPR admin-
istration could be evaluated. This involves, among other
things, a statistical evaluation of whether the method avoids
unnecessary CPR interruptions in nonshockable rhythms
and unnecessary CPR prolongations in shockable rhythms
[36]. The methodology for such an evaluation has recently
been developed [44].

5. Conclusions

This work introduces a new method for rhythm analysis
during CPR with a novel design approach aimed at obtaining
a high specificity. The method combines an adaptive LMS

filter to suppress the CPR artifact with a new shock/no-
shock classification method based on the analysis of the
filtered ECG.The method resulted in an increased specificity
of 96.6% without compromising the sensitivity, with overall
performance figures that met AHA requirements.
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Current automated external defibrillators mandate interruptions of chest compression to avoid the effect of artifacts produced by
CPR for reliable rhythm analyses. But even seconds of interruption of chest compression during CPR adversely affects the rate
of restoration of spontaneous circulation and survival. Numerous digital signal processing techniques have been developed to
remove the artifacts or interpret the corrupted ECG with promising result, but the performance is still inadequate, especially for
nonshockable rhythms. In the present study, we suppressed the CPR artifacts with an enhanced adaptive filtering method. The
performance of the method was evaluated by comparing the sensitivity and specificity for shockable rhythm detection before and
after filtering the CPR corrupted ECG signals.The dataset comprised 283 segments of shockable and 280 segments of nonshockable
ECG signals during CPR recorded from 22 adult pigs that experienced prolonged cardiac arrest. For the unfiltered signals, the
sensitivity and specificity were 99.3% and 46.8%, respectively. After filtering, a sensitivity of 93.3% and a specificity of 96.0% were
achieved. This animal trial demonstrated that the enhanced adaptive filtering method could significantly improve the detection of
nonshockable rhythms without compromising the ability to detect a shockable rhythm during uninterrupted CPR.

1. Introduction

Early defibrillation is critical for the survival of patient who
suffered from cardiac arrest [1, 2]. However, the application
of high quality of cardiopulmonary resuscitation (CPR)
introduces strong artifact components into the electrocar-
diogram (ECG) signal, which reduces the accuracy of the
shock/nonshock decision of automated external defibrillators
(AEDs) [3]. Thus, chest compressions (CC) are mandated to
be interrupted in the current AEDs in order to perform a
reliable rhythm analysis and provide appropriate defibrilla-
tion prompt to the rescuers. But even seconds of interruptions
of CC adversely affects the rate of restoration of sponta-
neous circulation (ROSC) and survival [4]. According to an
experimental study, the likelihood of successful resuscitation
decreased as much as 50% with a 20-second interruption of
CC [5]. Actually, clinical studies have also confirmed that
longer pauses in CC before and after defibrillator shocks

were independently associated with a decrease in survival
to hospital discharge [6, 7]. When the hands-off intervals
were minimized, significantly better outcomes were achieved
and reported [8, 9]. Therefore, the latest guidelines from the
AmericanHeartAssociation (AHA) and theEuropeanResus-
citation Council (ERC) recommended minimizing these
hands-off intervals between compression and shock [10, 11].

If accurate cardiac rhythm analysis can be performed
during CPR, these interruptions will be minimized or totally
avoided. During the last decade, numerous digital signal
processing techniques have been developed to remove the
artifacts or interpret CC corrupted ECG during CPR. Sensi-
tivity and specificity are the proportion of correctly identified
shockable and nonshockable rhythms, respectively, and are
used to evaluate the performance of artifact suppression
method. Algorithms removing artifacts using only the ECG
signal, including independent component analysis (ICA) [12]
and coherent line removal algorithm [13], have improved the
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sensitivity to 99.8% and the specificity to 83.2% for detecting
a shockable rhythm. Methods filtering the CPR artifact
using additional references, such as Gabor multipliers [14],
Kalman filter [15], adaptive filter [16–19], and multichannel
recursive adaptive matching pursuit (MC-RAMP) filter [20],
have improved the sensitivity and specificity to 95.6% and
90.5%. To identify a shockable rhythm during CPR, Li et
al. [21] searched the identifiable components directly in
the corrupted ECG signal using morphology consistence
evaluation. A sensitivity of 93.3% and specificity of 88.6%
were reported in a dataset which consisted of 229 victims
during out-of-hospital cardiac arrest. Although the sensitivity
for detecting a shockable rhythm was significantly improved
with the application of these techniques, the specificity was
still below the 95% limit recommended by theAHA task force
onAEDs for accurately detecting nonshockable rhythms [22].
Further studies are, therefore, still required to analyze the
interaction between the artifact and underlying rhythms and
to improve the accuracy of nonshockable rhythm decision
[23, 24].

In the present study, the effects of CC on signal-to-noise
ratio (SNR) at different types of underlying rhythms (ven-
tricular fibrillation (VF), pulseless electrical activity (PEA),
and asystole (ASY)) were firstly analyzed in an adult porcine
model of prolonged cardiac arrest and CPR. An enhanced
adaptive filtering method was then developed to suppress the
CPR artifact and evaluated by comparing the sensitivity and
specificity for shockable rhythm detection before and after
filtering.

2. Materials and Methods

2.1. Experiment Procedure and Data Collection. The exper-
imental data were collected from 22 male adult pigs that
experienced prolonged cardiac arrest and CPR. The porcine
model has been well established to simulate real out-of-
hospital scenarios due to the fact that heart size, blood
pressure, and heart rate are similar to those in humans
[25]. Anesthesia was initiated by intramuscular injection of
ketamine (20mg/kg) andwas completed by ear vein injection
of sodium pentobarbital (30mg/kg). VF was electrically
induced by applying a 5mA alternate current through a
pacing catheter in the right ventricle. CPR, including CC
and ventilation, was begun after 6 minutes of untreated
VF (Group A) in 14 animals [26]. The compression depth
(CD) was randomized to either 25% or 17% of the anterior
posterior diameter of the chest during the first 4 minutes
of CPR and 20–25% after 4 minutes. In another 8 animals
with the same weight and chest size, CPR was begun after
11 minutes of untreated VF (Group B). CD was comparable
to 20–25% of the anterior posterior diameter of the chest.
For all of the animals, manual CC were performed by two
experienced emergency medical doctors at a rate above 100
per minute. The animals were manually ventilated with a
bag-valve device during CPR. CC were synchronized to
provide a compression/ventilation ratio of 30 : 2 with equal
compression-relaxation intervals. After 2 minutes of CC in
Group A and 6 minutes of compression in Group B, a

defibrillation was attempted with a single 120 J rectilinear
biphasic shock. One dose of epinephrine (30𝜇g⋅kg−1) was
given through the right atrial catheter after 2 minutes of
CPR in Group B. CC were immediately resumed followed
by ECG rhythm analysis within 5 seconds until confirmation
of spontaneous circulation. If spontaneous circulation was
not restored, CC were continued for another 2 minutes, after
which defibrillation was attempted with another single 120 J
shock.This sequence was repeated for amaximumof 5 cycles.

The ECG, acceleration, and transthoracic impedance
(TTI) waveform were continuously measured and recorded
through a data acquisition system supported by Windaq
hardware/software (Dataq Instruments Inc., Akron, OH,
USA) at a sample rate of 300Hz. During CC, the acceleration
and TTI signals also served as feedback to control the
compression rate and depth. The ECG was measured from
the output of a commercial defibrillator (M-Series, Zoll
medical corporation, Chelmsford, MA, USA) with the use
of a hard gel type of adult defibrillation/pacing pads (stat-
padz, Zoll Medical Corporation, Chelmsford, MA, USA)
that were applied with an anterior to lateral placement. TTI
waveform was recorded through a user designed circuit
which was parallelly connected with the defibrillator using a
sinusoid-wave excitation current of 2mA and 30 kHz across
the defibrillation pads. The acceleration signal was recorded
from an accelerometer-based handheld CPR device (CPR-D-
padz, Zoll Medical Corporation, Chelmsford,MA, USA) that
was placed on the surface of the animal’s chest just above the
heart and underneath the rescuer’s hands during CC.

Data were analyzed offline through user designed soft-
ware usingMatlab (TheMathWorks, Inc., Natick, MA, USA).
ECG, together with acceleration and TTI signals during
CPR, was extracted and annotated from the digitalized
experimental records.TheCDwas calculated from the double
integration of acceleration signal. Each segment consisted of
4-second corrupted signal and 3-second artifact-free signal,
either during ventilation or during rhythm analysis. These
segments were then annotated as VF, PEA, or ASY by an
experienced emergencymedical doctor. As shown in Figure 1,
a disordered electrical activity without the presence of obser-
vational QRS and with the peak-to-peak voltage greater than
0.1mV was annotated as VF. The presence of at least one
QRS complex in a segment was classified as PEA. A segment
with peak-to-peak voltage less than 0.1mV was annotated as
ASY. Segments with rhythm transitions or defibrillation were
excluded from the dataset.

2.2. Estimation of SNR. To investigate the effects of CC
on SNRo (before filtering) at different types of underlying
rhythms (VF, PEA, and ASY) and performance of the
proposed filtering method, we estimate the SNRo and the
SNRf (after filtering) of the CPR corrupted ECG based on
the contiguous artifact-free signal [27]. Assuming that the
underlying ECGandCPR artifact are uncorrelated, the power
of CPR artifact can be obtained through subtracting the
power of corrupted ECG by the power of clean ECG. Figure 2
shows the examples of signal selection for SNRo estimation in
each segment. A 3-second corrupted ECG signal and another
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Figure 1: Segments of ECG and reference signals during cardiopulmonary resuscitation (CPR). (a) Ventricular fibrillation with and without
chest compression (CC). (b) Pulseless electrical activity (PEA) without and with CC. (c) Asystole (ASY) with and without CC. TTI:
transthoracic impedance.
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Figure 2: Examples of signal selection for SNR estimation. The CPR corrupted signal was selected either from the latest 3 seconds of chest
compression (CC) (a) or 1 second after the beginning of CC (b).
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3-second artifact-free signal are used to calculate the SNRo
with the following equation:

SNR = 10 ⋅ log
10
(
𝜎
2

𝑠

𝜎2
𝑥
− 𝜎2
𝑠

) , (1)

where 𝜎2
𝑠
is the variance of underlying ECG signal and 𝜎2

𝑥

is the variance of corrupted ECG signal. The SNRf is also
estimated with (1), except that the variance of underlying
ECG is calculated by the filtered uncorrupted 3-second signal,
and the variance of artifact is calculated by the subtraction of
the variance of underlying ECG and the variance of filtered
corrupted ECG signal.

The estimation is based on the hypothesis that time-
limited VF and ASY can be considered quasi-stationary
signal. On the other hand, since the energy of a normal sinus
rhythm depends on the number of QRS complexes appearing
within a segment, we therefore exclude the segments that
have unequal numbers of QRS complex within the selected
artifact-free and corrupted ECG signals when the underlying
rhythm is annotated as PEA.

2.3. The Enhanced Adaptive Filtering Method. To suppress
the CC related artifacts (CC-artifact), an enhanced adaptive
filteringmethod is developed by estimating the proportion of
artifact within the CPR corrupted ECG signal. The flowchart
of the proposed method is shown in Figure 3.

The corrupted ECG and reference (TTI) signals are firstly
preprocessed by a 4th order Butterworth band-pass filter
(0.2–45Hz) to remove offset and high frequency noise. The
power spectral density (PSD) of reference and preprocessed
ECG signals are then calculated through dividing the square
of the amplitude of fast Fourier transform (FFT) by the length
of data points. The frequency of CC 𝑓CC is obtained by the
PSD of TTI:

𝑓CC = argmax
𝑓

𝑃TTI (𝑓) . (2)

The power of artifact is computed through the PSD of
corrupted ECG with the use of 𝑓CC and its harmonics. The
proportion of the artifact power pro is calculated by

pro =
∑
𝑁

𝑘=1
𝑃
𝑆
(𝑘 ⋅ 𝑓CC)

∑
𝑓
𝑆
/2

𝑓=0
𝑃
𝑆
(𝑓)

, (3)

where 𝑘 is the order of harmonics (𝑁 = 3) and 𝑓
𝑠
is the

sampling rate.
The proportion of the artifact power is then compared

with a predefined threshold. If the proportion pro is greater
than the preset threshold, the adaptive filter will be applied to
the ECG signal to suppress the CPR artifact.

In this enhanced adaptive filtering method, normalized
least mean squares (NLMS) is used to adjust the coefficient
matrix of adaptive filter, and the step size is dynamically
adjusted by the estimated artifact proportion pro:

𝑊(𝑛) = 𝑊 (𝑛 − 1) +
𝜇 ⋅ pro
‖𝑋‖
2
⋅ 𝑋 (𝑛 − 1) ⋅ 𝑒 (𝑛) . (4)

ECG and reference signals

Preprocess

Calculate the power spectral density of 
ECG and reference signals

Calculate the proportion of 
artifact power pro 

Pro > threshold?  

Yes

Adaptive filter

C alculate the power spectral 
density of filtered ECG signal

No

Rhythm analysis

Figure 3: Flowchart of the enhanced adaptive filtering method.

The step size 𝜇 is limited by the norm of reference signal ‖𝑋‖
and proportion of artifact pro.The coefficient matrix𝑊(𝑛) at
state 𝑛 is decided by the previous state𝑊(𝑛−1), the reference
signal TTI𝑋(𝑛 − 1), and the estimated ECG signal 𝑒(𝑛):

𝑒 (𝑛) = 𝑠in (𝑛) − 𝑊 (𝑛)𝑋 (𝑛) , (5)

where 𝑠in(𝑛) is the input corruptedECGsignal and𝑊(𝑛)𝑋(𝑛)
is the estimated CPR artifact.

After filtering, the proportion of artifact pro of the filtered
signal is recalculated to assess the SNRf level. If pro is still
greater than the preset threshold, another iteration of filtering
process will be applied to the filtered signal with updated step
size. Otherwise, the filtered ECG signal will be outputted for
rhythm analysis. In this study, the length of the coefficient
𝑊(𝑛) is 21, and the step size 𝜇 is 0.15.

In order to compare the performance with the traditional
fixed coefficient high-pass filter [28], a 4th order Butterworth
high-pass filter is performed to the corrupted ECG signal
to suppress the CPR artifact. Since the average compression
rate is 2.11 Hz in this study, the cutoff frequency is 6.5Hz to
remove the first 3 harmonics of the artifact.

2.4. Rhythm Classification Algorithm. To evaluate the perfor-
mance of the proposedmethod, the sensitivity and specificity
for detecting a shockable rhythm before and after filtering
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Table 1: Estimated signal-to-noise ratio (SNR) for pulseless electrical activity (PEA), ventricular fibrillation (VF), and asystole (ASY) before
and after filtering.

Unfiltered Adaptive filter High-pass filter
Medians (dB) (25/75 percentiles)

VF −9.3 (−14.9/−3.6)△△ 0.2 (−5.1/4.5)∗∗ 0.1 (−4.2/0.9)∗∗

PEA −6.2 (−9.0/−1.12)△△ 0.1 (−3.6/3.4)∗∗ −2.0 (−7.4/−0.6)∗∗

ASY −21.2 (−24.2/−18.5)△△ −12.7 (−15.0/−4.4)∗∗ −7.1 (−10.7/−6.3)∗∗

Range (dB) (min./max.)
VF −26.1/9.6 −18.2/20.0 −19.7/20.4
PEA −16.0/9.9 −7.6/19.9 −14.0/14.7
ASY −31.6/−10.0 −20.6/2.4 −18.4/1.7

∗∗Compared with unfiltered signal, 𝑃 < 0.001; △△comparison among rhythm types, 𝑃 < 0.001.

are compared with an established rhythm classification algo-
rithm named phase space reconstruction (RSR) [29, 30].This
specific algorithm is selected because it can provide accurate
rhythm classification within a relative short time window. In
this method, signal 𝑠(𝑡) is plotted on 𝑥-axis and 𝑠(𝑡+𝜏)with a
delay time of 𝜏 is plotted on𝑦-axis to form a two-dimensional
phase space diagram. A 40 × 40 grid is produced and the
number of boxes visited by the signal is counted. Ratio 𝑟󸀠 is
calculated through dividing the area that is filled with signal
curve 𝐵V by the total area of the diagram 𝐵

𝑎
. In the current

study, the maximum number of data points visited in the box
𝐶max is used to modify the ratio 𝑟󸀠 which is used to classify
PEA and VF:

𝑟
󸀠

=
𝐵V

𝐵
𝑎

+
1

𝐶max
. (6)

The average peak-to-peak amplitude of the filtered signal
𝐴
󸀠 is used to detect ASY. The 3- second ECG signal is

split into 3 rectangular nonoverlapping windows. And the
difference between maximum and minimum of the signal in
eachwindow is calculated and the average of these differences
is represented as the value of 𝐴󸀠.

A 3-second rectangular window is used to perform PSR,
and the value of 𝜏 is 0.5 seconds. The threshold of the ampli-
tude 𝐴󸀠 and the ratio 𝑟󸀠 are optimized with the artifact-free
ECG signals to produce the optimum sensitivity/specificity
values. The classification criteria are presented as

𝐴
󸀠

≤ 0.1mV ASY

𝐴
󸀠

> 0.1mV, 𝑟󸀠 ≤ 0.24 PEA

𝐴
󸀠

> 0.1mV, 𝑟󸀠 > 0.24 VF.

(7)

2.5. Statistical Presentation. The distributions of SNRo of the
CPR corrupted ECG signal did not pass the Kolmogorov-
Smirnov normality test andwere presented asmedians (25/75
percentile).TheWilcoxon rank sum test was used for median
values comparison. The relationship between SNRo and CD
was tested with Pearson correlation coefficients.

The performance of the filtering method was expressed
as sensitivity and specificity. Sensitivity and specificity of
ECG signals before and after filtering were compared with

the classification results of artifact-free ECG signals using
Chi-square test. A 𝑃 value of 0.01 was considered significant.

3. Results

The average duration of CPR was 6.8± 3.2minutes. A total of
624 segments were extracted and 61 segments were excluded
according to the exclusion criteria. Finally, a total of 563 CC
related segments, including 283 VF, 208 PEA, and 72 ASY,
were obtained for the study. The amplitude of artifact-free
ECG signals was 0.7 ± 0.6mV for VF, 0.8 ± 0.6mV for PEA,
and 0.05±0.04mV for ASY.The amplitude of corrupted ECG
signals was 2.1 ± 1.2mV for VF, 1.9 ± 0.8mV for PEA, and
1.0 ± 0.7mV for ASY.

3.1. Relationship between CC and SNR. A total of 107 seg-
ments of PEA were used for SNR estimation because the
numbers ofQRS complexwithin the selected artifact-free and
corrupted ECG signals were equal. Table 1 shows themedians
(25/75 percentiles) andminimum andmaximum value of the
estimated SNR based on annotated underlying rhythms. A
relative lower SNRo was observed for VF compared with that
of PEA (𝑃 < 0.001) and the SNRo of ASY was significantly
lower than PEA and VF (𝑃 < 0.001). After filtering with the
proposedmethod and high-pass filter, the SNRfs were greatly
improved in all of the rhythms (𝑃 < 0.001).

The linear regression result between SNRo and CD is
shown in Figure 4. The SNRo of the full database was nega-
tively correlated with the CD (𝑟 = −0.227, 𝑃 < 0.001). When
each of the rhythms was investigated individually, negative
correlation between CD and SNRo was only observed in VF
(𝑟 = −0.239 and 𝑃 < 0.001).

3.2. Performance of the Enhanced Adaptive Filtering Method.
Table 2 shows the rhythmclassification results for the artifact-
free, CPR corrupted, and filtered signals with the use of
PSR. The sensitivity and specificity were 99.0% and 98.2%
for artifact-free signal. However, the specificity decreased to
46.8% and the sensitivity increased to 99.3% when the ECG
signals were corrupted by CPR. After filtering by enhanced
adaptive filter and high-pass filter, a sensitivity of 93.3% and
93.0% and a specificity of 96.0% and 80.4% were achieved.
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Figure 4: Linear regression results between SNRo and CD for the full database and different types of underlying rhythms (ventricular
fibrillation, VF; pulseless electric activity, PEA; asystole, ASY).

Table 2: Sensitivity and specificity for the artifact-free ECG and CC corrupted signals before and after filtering.

Rhythm Number Artifact-free Unfiltered Adaptive High-pass
Shockable (sensitivity) VF 283 99.0% 99.3% 93.3%∗∗ 93.0%∗∗

Nonshockable (specificity)
All 280 98.2%∗∗ 46.8% 96.0%∗∗## 80.4%∗∗

PEA 208 98.6%∗∗ 53.9% 97.6%∗∗## 86.3%∗∗

ASY 72 97.2%∗∗ 26.4% 91.7%∗∗## 63.9%∗∗
∗∗Compared with unfiltered signals, 𝑃 < 0.001 and ##compared with high-pass filter, 𝑃 < 0.001. VF: ventricular fibrillation, PEA: pulseless electrical activity,
and ASY: asystole.

4. Discussion

Thepresent study confirmed that the SNRo of CPR corrupted
ECGwas negatively correlated with CD in a porcinemodel of
prolonged cardiac arrest and CPR. Based on this observation,
we developed an enhanced adaptive filtering method to
suppress the CC-artifact by estimating the proportion of
artifact within the corrupted ECG signal. The experimental
results demonstrated that the enhanced adaptive filtering
method could effectively reduce the residual component of
artifact and improve the SNR of the ECG signal as well as the
outcome of specificity.

4.1. Relationship between CC and SNR. The CC-artifact was
predominant from the electrode-skin interface and generated
by the contraction of thoracic muscles with direct impact

of the compressions on chest wall [31]. Therefore, it was
anticipated that deeper compression would cause more chest
movements and introduced severe artifact to the ECG. In
this animal study, we demonstrated that the SNRo of CPR
corrupted ECG signals was negatively related to CD. How-
ever, when each of the rhythm was investigated, the SNRo
was significantly lower for ASY compared to PEA and VF
and the negative correlation between CD and SNRo was only
observed in VF. For VF, the signal energy homogeneously
distributed among all VF segments, and the value of SNRo
was therefore correlated with the value of CD. For PEA,
the energy of underlying signal depended on the number
of QRS complexes appearing within a segment and might
impact the correlation between SNRo and CD. For ASY, the
energy of underlying signal is theoretically nearly 0 so that
the SNRo should be –∞. However, randomized noisy signal
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and power supply artifact, together with artifacts produced
by the amplifier and A/D converter, were introduced during
measurement. Even though a band-pass filter was applied
before analysis, the irregular residual signals within underly-
ing ASY might still affect the value of signal energy and lead
to insignificant correlation between SNRo and CD.

Compared with the result that was reported by de Gauna
et al. [27], a relatively lower SNRo was observed in our
study. The inconsistence may relate to the increased CD
recommendation of the latest guidelines, which require a
minimum of 50mm in CD to ensure high quality CPR [10,
32]. At the same time, signal characteristics of porcine ECG
such as amplitude and frequency might be different from
that of human. The resulted SNRo thus would be affected
by the spectral energy calculated from signal amplitude and
frequency.

4.2. Improved Performance for the EnhancedAdaptive Filtering
Method. Based on the findings that SNRo was negatively
correlated with CD, we developed an enhanced adaptive
filtering method to suppress the CPR artifact by estimating
the proportion of artifact with the use of TTI as refer-
ence. Compared with the corrupted signal, both traditional
fixed coefficient high-pass filter and proposed method could
greatly improve the SNR and specificity. But compared with
a specificity of 80.4% for high-pass filter, a remarkable
improvement was achieved for the proposed method with a
value of 96.0%.

The following modification in removing the CPR related
artifact might contribute to the improved performance of
the proposed method. Firstly, a parameter was introduced
to estimate the proportion of artifact from PSD of ECG
signal with the use of compression frequency as reference.
The proportion of artifact was correlated with the power of
artifact and therefore the SNR level. Secondly, the step size of
commonly used LMS adaptive filterwas dynamically adjusted
by referenced TTI signal and the estimated proportion of
artifact. This modification provided greater stability and
convergence speed compared with traditional LMS based
adaptive method which was used by Irusta et al. [17] and
Aramendi et al. [18].Therefore, the specificity of the proposed
method was greatly improved compared with their results
even though similar reference signals were used in both
studies.Thirdly, the proportion of artifact was also used as an
indicator to assess the artifact level in the filtered signal and
to control the filtering iteration. This process was terminated
only if the artifact level decreased to a predefined threshold.
Compared with the MC-RAMP method which took use of
several kinds of reference signals proposed by Husøy et al.
[33] and Eilevstjønn et al. [20], the residual component of
artifact could be further suppressed and the reliability for
detecting a nonshockable rhythm was markedly improved.

Besides the enhanced adaptive filter, the algorithm used
for rhythm classification also contributed to the improved
specificity.The parameters were optimized according to clean
ECG signals recorded from the animals when SPR was used
[29]. Firstly, the ratio 𝑟󸀠 was adjusted by the maximum
number of data points visited in the box. This adjustment
enlarged the difference between VF and PEA. Secondly,

both window size and delay time were optimized when the
phase space diagram was reconstructed. Consequently, the
threshold of 𝑟󸀠 increased from 0.15 to 0.24 for the detection
of VF.

Although the SNR and specificity were greatly improved
after filtering, the sensitivity decreased from 99.3% to 93.3%.
It is because the enhanced filtering method also suppressed
the component of underlying ECG signals while removing
the CPR related artifact. As a result, amplitude of fine
VF might be reduced to a level that is below the criteria
for classification. When the nonshockable rhythms were
investigated separately, the specificity for detecting ASY was
relatively lower comparedwith that of PEA and still below the
95% limit recommended by AHA task force on AEDs [22].
This was consistent with the observation that CPR artifact
suppression was particularly difficult in ASY [34, 35]. Yet,
the 91.7% specificity for detecting ASY was still superior to
reported results and the adverse effects of interruption of CC
are likely to override the decrease in correctly detecting ASY.

4.3. Limitations. There are limitations that need to be
acknowledged and addressed regarding the present study.
Firstly, although the SNRo of CPR corrupted ECG was
demonstrated to be negatively correlated with CD for the
full database, this correlation was only observed in VF
when different ECG rhythms were investigated individually.
Additionally, the anatomy structure of human chest was
different with that of the animals. Therefore the relationship
between artifact level and CD in human beings at different
underlying rhythms is still needed to be investigated. Sec-
ondly, only TTI signal was used as reference in this study;
the effects of different reference signals on the performance
of the proposed method have not been investigated. Thirdly,
although a great improvement in specificity was achieved
in this experimental trial, characteristics of ECG waveform,
together with the CPR related artifact, may differ from
the data that are recorded from patients who experienced
out-of-hospital cardiac arrest and CPR. Performance of the
proposed method therefore needs further clinical validating
studies. Finally, even though the specificity for detecting a
nonshockable rhythm was greatly improved and above the
95% limit recommended by theAHA task force onAEDs [22],
the accuracy for detecting ASY was still low. Further studies
that focused on the suppressing artifact of ASY, as well as the
classification betweenASY andVF, still need to be conducted.

5. Conclusion

This experimental animal trial demonstrated that the SNRo
of ECG signal corrupted by CPR artifact was negatively cor-
related with CD and the enhanced adaptive filtering method
could significantly improve the detection of nonshockable
rhythms without compromising the ability to detect a shock-
able rhythm during uninterrupted CPR.
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Recently published evidence has challenged some protocols related to oxygenation, ventilation, and airway management for
out-of-hospital cardiac arrest. Interrupting chest compressions to attempt airway intervention in the early stages of OHCA in
adults may worsen patient outcomes. The change of BLS algorithms from ABC to CAB was recommended by the AHA in
2010. Passive insufflation of oxygen into a patent airway may provide oxygenation in the early stages of cardiac arrest. Various
alternatives to tracheal intubation or bag-mask ventilation have been trialled for prehospital airway management. Simple methods
of airway management are associated with similar outcomes as tracheal intubation in patients with OHCA. The insertion of a
laryngeal mask airway is probably associated with worse neurologically intact survival rates in comparison with other methods
of airway management. Hyperoxemia following OHCA may have a deleterious effect on the neurological recovery of patients.
Extracorporeal oxygenation techniques have been utilized by specialized centers, though their use in OHCA remains controversial.
Chest hyperinflation and positive airway pressure may have a negative impact on hemodynamics during resuscitation and should
be avoided. Dyscarbia in the postresuscitation period is relatively common, mainly in association with therapeutic hypothermia,
and may worsen neurological outcome.

1. Introduction

Since the late 1950s, when Safar et al. described the ABC
principle in cardiopulmonary resuscitation [1, 2], the letters
“A” (airway) and “B” (breathing, ventilation) have been the
cornerstones of resuscitation in cardiac arrest. For many
years, this algorithm remained unchanged. Opening the
airway, delivering oxygen at 100% concentration, insertion
of a tracheal tube, and application of intermittent positive
pressure ventilation (IPPV) were considered “gold standards”
in oxygenation and airway management. This applied both
during cardiopulmonary resuscitation for cardiac arrest in
adults and also in the early period after restoration of sponta-
neous circulation (ROSC). However, the outcomes of patients
after out-of-hospital cardiac arrest (OHCA) remained quite
poor. In the United States, survival rate to hospital admission

is 26.3%, and only 9.6% of patients are able to be discharged
from inpatient care [3].

Many CPR standards have been challenged during the
last decade in adult cardiac arrest of nontraumatic origin.
This has included the method of delivering oxygen, its ideal
fraction, ventilation strategies, timing, and utilizing adjuncts
other than a tracheal tube for maintenance of airway patency.

2. Management during Resuscitation

2.1. Oxygenation in Cardiac Arrest. Oxygen requirements
in cardiac arrest and in the period after return of spon-
taneous circulation (ROSC) have been extensively studied
during recent years. Maximizing oxygen delivery (DO

2
) is

paramount during the period of cardiac arrest and ineffective
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circulation for aerobic metabolism and synthesis of adeno-
sine triphosphate (ATP) [4, 5]. High paO

2
does not cause

intracellular or tissue hyperoxia at this time.The consensus is
that, during cardiac arrest, 100% oxygen should be delivered
to victims in order to increase arterial and tissue pO

2
[6, 7].

Debate continues as to whether oxygen should be delivered
via bag-mask ventilation, tracheal tube, supraglottic airway
devices or via passive oxygenation [8, 9]. What is more
controversial is the most appropriate oxygen fraction (FiO

2
)

to deliver once restoration of spontaneous circulation has
been achieved [10]. Oxygenation strategies in the post-ROSC
period are described in detail in another section of this paper.

Novel and alternative oxygenationmethods and strategies
in adult out-of-hospital cardiac arrest are discussed in follow-
ing paragraphs.

2.2. Concept of Passive Oxygenation. The concept of contin-
uous passive flow of oxygen to the airway was developed
on animal models (dogs) in 1982 [11]. Same authors showed
that anesthetized and paralyzed dogs may be oxygenated
using this method for a relatively long period [12]. Passive
oxygenation was first described in humans in 1991 [13].
Brochard and colleagues used specially equipped tracheal
tubes with inserted microcannulas which allowed delivery
of a constant flow of concentrated oxygen in ICU patients
during disconnections of their breathing circuit. This study
was followed by Säıssy et al. who evaluated passive insuf-
flation of oxygen in adult patients during cardiac arrest
outside the healthcare facilities [14]. The design of this study
was prospective, randomized, and controlled. In total, 48
persons were managed using passive oxygenation, while,
in the control group, another 47 patients were ventilated
with intermittent positive pressure ventilation. There were
no differences in the main outcomes studied—percentage of
patients with ROSC or number of victims surviving until
hospital admission.

Unfortunately, the neurological outcome of resuscitated
individuals was not reported. A subsequent large prospec-
tive randomized trial evaluated 1,042 patients with OHCA,
assigned to receive either conventional mechanical ventila-
tion or constant flow insufflation of oxygen (CFIO) [15].
The authors did not find any difference in ROSC rates,
admissions to hospital, or successful discharge from intensive
care facilities. The ICU discharge rate was very low in both
groups (2.3% conventional ventilation versus 2.4% in CFIO
patients). These two studies used passive oxygen insufflation
through a modified tracheal tube (Boussignac tube).

Different results were reported by a group from Arizona.
In their first study, Bobrow et al. retrospectively analyzed
1,019 patients who were managed during resuscitation either
with positive pressure bag-mask ventilation or with passive
insufflation of oxygen through an oropharyngeal airway [16].
Significantly higher survival without neurological deficit was
found in the passive oxygen insufflation subgroup—38.2%
versus 25.8%, though only in witnessed VF/VT arrest. No
difference in outcomes was noted in this study for unwit-
nessed VF/VT arrest patients or for cardiac arrests caused
by nonshockable rhythms. The same group of researchers

evaluated in total 4415 scenarios of OHCA in adults caused
by a heart disease during a 5-year period [17]. Persons in this
study were found by lay bystanders. They were divided into
three groups according to the mode of CPR—conventional
CPR with chest compressions and mouth-to-mouth breath-
ing, chest compression-only CPR (COCPR), and no CPR
provided on scene. COCPR group had the highest survival
to discharge from hospital—13.3%. While the results of
previous studies suggested a beneficial role of passive oxygen
insufflation, the latest trial of Bobrow et al. [17] and results
of other studies [18] suggested that the main advantage of
this mode of resuscitation—COCPR or cardiocerebral resus-
citation (CCR)—is probably through the constant delivery
of chest compressions, without interruptions for advanced
airway interventions, than the passive application of oxygen
“per se.” Therefore, cardiocerebral resuscitation is accepted
in the early phases of OHCA of cardiac origin [19]. Several
animal studies have reported the usefulness of CFIO in the
early stages of cardiac arrest compared with conventional
ventilation, but their interpolation into human medicine
is problematic [20, 21]. Passive insufflation of oxygen is
probably not sufficient for an adequate gas exchange during
advanced stages of cardiac arrest when chest resistance is
higher and lung compliance significantly decreases [22].

Both ERC and AHA guidelines mention passive oxygen
delivery in their recent guidelines [6, 7] but do not recom-
mend its routine use during cardiopulmonary resuscitation
until more clinical data become available.

2.3. Airway Management Strategies. Management of the
patent airway during OHCA may be divided into basic
and advanced. Basic airway management consists of the
manual relieving of upper airway obstruction (“triplemaneu-
ver”), bag-valve mask ventilation (BMV), or the insertion of
oropharyngeal or nasopharyngeal airway [6, 7]. Techniques
of advanced airway management include the insertion of a
supraglottic airway device (SAD) [23], tracheal intubation
[24], insertion of Combitube [25], or cricothyrotomy [26].
For many years, all resuscitation algorithms and protocols
recommended early tracheal intubation as a part of prehos-
pital advanced life support (ALS). Arguments favoring early
tracheal intubation mainly revolved around expectations for
better control of the airway, protection against upper airway
obstruction, decreased risk for aspiration of gastric contents,
and better control of carbon dioxide removal [25]. The
strategy of airway management in OHCA in adult patients
has gradually shifted towards less invasive techniques during
the last decade. ERC guidelines from 2010 recommend per-
forming prehospital tracheal intubation only if a competent
intubator is present at the site of OHCA, and with only
minimal interruption of chest compressions [6, 8]. AHA
guidelines recommend using the most familiar device for
the rescuer and conclude that an insertion of supraglottic
airway device may be an equivalent to bag-mask ventilation
or tracheal intubation [7].

2.3.1. Tracheal Intubation. The major concerns associated
with prehospital tracheal intubation in OHCA include a low
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success rate, long duration of intubation attempts with inter-
ruption of chest compressions, and unrecognized tube mis-
placement or inadvertent esophageal insertion [27].The total
success rate of prehospital tracheal intubation performed by
nonphysicians varies between 75 and 90% [26–28]. Jones and
colleagues found that 5.8% of all patients intubated outside
hospital had their tracheal tube outside the trachea [29]. Bair
et al. reported a 2% incidence of incorrect positioning of
the tracheal tube at admission to hospital, unrecognized by
paramedics [30]. Other authors reported an even higher inci-
dence of tracheal tube malpositioning—6.7% of esophageal
intubation and 10.7% of endobronchial intubation [31]. The
correct positioning of the tracheal tube inside the trachea
should be always confirmed by an etCO

2
detection device. An

esophageal detector device can be used to avoid esophageal
placement [32].Wang et al. evaluated the impact of intubation
errors in the out-of-hospital setting on patient outcome [33].
One or more errors were reported in 22.7% of patients
(failed tracheal intubation in 15%, multiple attempts in 3%,
and tube malpositioning also in 3%). However, these errors
were not directly linked to increased mortality. Difficulties
with, and failures of, tracheal intubation in the prehospital
environment may be caused by conditions which are often
far from ideal—too little or too much light, patient position,
and lack of space—and exacerbated by the low exposure of
many paramedics to regular tracheal intubation. The average
incidence of tracheal intubation performed by individual
EMS providers is estimated at between 1 and 4 per annum
[27, 34]. The incidence of difficult intubation in prehospital
medicine is over 10%, with independent contributing factors
being obstructed airway, intubation on the floor, and a
distance between hyoid bone and tip of the chin less than
4.5 cm [35].

Attempts for tracheal intubation may cause significant
interruption to chest compressions during CPR for OHCA.
The median duration of interruptions caused by tracheal
intubation was 109.5 s, with more than one-third of patients
requiring more than two attempts for successful tracheal
intubation [36]. Another study evaluated the number of
attempts needed for successful tracheal tube placement in the
prehospital setting [37]. More than one attempt was required
in more than 30% of patients. Cumulative success rate in
OHCA for the first three intubation attempts was 69.9%,
84.9%, and 89.9%, respectively. However, the success rate
for tracheal intubation was significantly higher in OHCA
patients than in the scenario of nonarrested subjects requir-
ing sedation. Egly et al. studied the influence of prehospital
intubation on survival of patients with OHCA [38]. Retro-
spective analysis included 1515 cases of OHCA. Patients with
ventricular fibrillation or ventricular tachycardia who were
intubated showed lower survival rate to discharge while, in
the whole cohort, there was no difference found between
intubated and nonintubated subjects.

Some countries, as Germany, Austria, or the Czech
Republic, have physicians trained in anesthesia or emergency
medicine available as part of a coordinated prehospital
ambulance service response. The risks associated with tra-
cheal intubation amongst these services are therefore lower,
with the first pass and overall success rates being higher.

Under these conditions, prehospital tracheal intubation may
offer a benefit over other methods [39].

2.3.2. Supraglottic Airway Devices. Several studies have
compared the insertion of a supraglottic airway device (SAD)
with conventional tracheal intubation in cardiopulmonary
resuscitation in the adult population. Percieved benefits of
an alternative airway management using an SAD in cardiac
arrest include a shorter time of device insertion and higher
success rates than tracheal intubation when performed
by paramedics and other nonanesthesiologists [23]. Most
published studies are nonrandomized mainly due to ethical
reasons.

Tanabe and colleagues performed a nation-based study of
318141 patients with OHCA [40]. Advanced airway manage-
ment techniques were used in 43.5% and included esophageal
obturator (63%), laryngeal mask airway (25%), and tracheal
tube (12%). Both SADs were associated with significantly
worse neurological outcome than tracheal intubation. Kajino
et al. studied the influence of airway management technique
on outcome in OHCA using a prospective cohort design [41].
In total, 5377 cases received advanced airway management
following cardiac arrest (31.2% using tracheal intubation,
68.9% using a supraglottic airway device). There were no dif-
ferences either in survival or incidence of good neurological
outcome between devices, although tracheal intubation took
a significantly longer time. Shin and colleagues studied the
outcome of 5278 patients with OHCA whose airways were
managed using bag-mask ventilation, tracheal intubation,
or laryngeal mask airway [42]. The latter option showed
the lowest rates of survival to hospital admission and also
reduced survival to discharge from hospital. The main limi-
tation of the study was the significant disproportion between
the airway management techniques used (BMV 87.9%, TI
7.4%, and LMA 4.7%). Similar results were published by
Wang et al. who performed a secondary analysis of data
related to airway management from ROC PRIMED trial
[43, 44]. Successful tracheal intubation was associated with
better early survival and higher hospital discharge rates when
compared to insertion of an SAD during OHCA [43].

It is appropriate to mention some limitations of SAD use
during CPR for cardiac arrest. Laryngospasm is sometimes
present in the early stages of cardiac arrest as a protective
airway reflex against aspiration. Higher peak inspiratory
pressures are necessary to overcome laryngospasm and may
exceed themaximal seal pressure of the SADdevice, causing a
significant leak or ineffective ventilation [23]. During elective
surgical procedures under general anesthesia major leak is
seen only in 0–5% of cases [45, 46] while, during CPR, it
may reach more than 20% [47, 48]. SADs are also ineffective
in providing controlled ventilation in patients with very low
chest compliance and high rigidity, as seen in drowning
persons or in the advanced stages of cardiac arrest [49].
SADs furthermore provide only limited protection against
aspiration of gastric fluid and very low protection against
aspiration of solid gastric contents. However, most patients
with OHCA aspirate before arrival of the EMS and before
attempts for advanced airway management [50]. The 2nd
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generation SADs such as the ProSeal LMA, Supreme LMA,
and i-gel supraglottic airway [51] should theoretically provide
better protection against aspiration of gastric contents. Inser-
tion of the i-gel and Supreme LMA seems to be easier than
with the LMA Classic [23]. The i-gel resuscitation pack has
been developed specially for CPR scenarios and incorporates
a side channel for passive delivery of oxygen [52], but clinical
experience is so far very limited [53]. The i-gel airway
has showed 100% insertion success rate in OHCA with
97% of patients receiving effective ventilation. Furthermore,
insertion of the device did not cause any interruptions in
chest compressions in 74% of victims [48]. Other SADs
trialled in OHCA included laryngeal tube (85.3% insertion
success rate), which was not considered to be an appropriate
adjunct in CPR due to high incidence of failure and other
complications [47], intubating LMA, LMA Supreme, LMA
ProSeal, and CobraPLA. The Combitube has been trialled
for prehospital airway management mainly in the United
States. Wang et al. in their paper reported 1521 Combitube
insertions in out-of-hospital scenarios (1.7% of all airway
interventions) [27]. The Combitube has an overall insertion
success rate almost 98% but its use may be associated with
serious complications including esophageal perforation or
airway trauma and has proven difficult to insert in people
with neck immobilization with a cervical collar [54].

In conclusion, the laryngeal mask airways and the i-gel
might be considered as alternate airway devices in OHCA.
Other SADs have lower success rate or carry a higher risk of
potentially serious complications.

2.3.3. Bag-Valve Mask Ventilation. Bag-valve mask ventila-
tion (BMV) is a fundamental basic airway skill. During its
application with a self-inflating bag, maintenance of a patent
upper airway is mandatory. This can be achieved with a
“triplemaneuver” (jaw thrust and neck extension) or with the
insertion of an oropharyngeal or nasopharyngeal airway [25].
BMV is an easymethod, often applicable without difficulty by
paramedics or even by laypersons.Using intermittent positive
pressure ventilation, the main adverse effects associated with
BMV are stomach distension, airway leak (up to 40%), and
lack of protection of the airway against aspiration [50].
Regurgitation may occur in 12.4% of patients ventilated with
BMV during OHCA while insertion of LMA may decrease
this risk to 3.5% [50]. Another study showed an even higher
incidence of this complication—20% of patients regurgitated
at the scene and 24% of all resuscitated persons had radio-
logical findings of aspiration on chest X-ray after admission
to hospital [55]. All patients were intubated at the scene. A
prospective population-based study (All-Japan Utstein Reg-
istry) evaluated 649,359 patients with OHCA [56]. Primary
outcome of this trial was neurological outcome related to
different airway management technique during CPR and
prehospital emergency care after ROSC. In total, 57% of
patients were managed using bag-mask valve ventilation
while 37% of them had inserted a supraglottic airway device
and only 6% underwent prehospital tracheal intubation.
BMV was associated with a significantly higher chance for
neurologically favorable outcome than tracheal intubation or

supraglottic airway device insertion.No difference in terms of
neurologically intact survival was reported between patients
receiving tracheal intubation or a supraglottic airway device.

In another smaller study, a group of patients with OHCA
managed using BMV showed a comparable rate of survival
without neurological deficit compared to patientswho under-
went prehospital tracheal intubation [57].

2.4. Extracorporeal Oxygenation and Life Support. The term
extracorporeal cardiopulmonary resuscitation refers mainly
to the technique of venoarterial extracorporeal membrane
oxygenation (VA-ECMO) [58]. This technique may be indi-
cated in both out-of-hospital and in-hospital cardiac arrests,
mainly those refractory to conventional CPR. Venous blood
is led to a membrane oxygenator and then oxygenated
blood returned to the arterial circulation of the victim. VA-
ECMO is used as a bridging therapy in arrested patients
with severely impaired ventricular function, until either their
heart function improves or before utilization of a mechanical
ventricular assist device [59]. The main prerequisite for the
use of the VA-ECMO in cardiac arrest is undamaged or
only minimally affected brain function [60]. The use of
cardiopulmonary bypass in prolonged cardiac arrest was
firstly described by Safar et al. in 1990 [61]. Extracorporeal
support devices have undergone significant technological
advances over the years in terms of simplicity, portability, and
miniaturization.

Several studies have explored the efficacy of VA-ECMO
in cardiac arrest in terms of mortality and neurological
outcome. An initial report described up to 20% survival rate
after in-hospital cardiac arrest of adult patients [62].

Three-month neurological outcome following CPR for
nontraumatic cardiac arrest was evaluated in a cohort of 162
adult patients [63]. VA-ECMO was initiated in 53 patients
while conventional CPR was used in the remaining 109 vic-
tims. Survival with neurologically unchanged brain function
was significantly higher in the VA-ECMO group—29.2%
versus 8.3% (𝑃 = 0.018). The only independent predictor
associated with a favorable neurological outcome at 90 days
was the diameter of the victim’s pupils at time of hospital
admission.

Reports evaluating the efficacy of extracorporeal CPR in
adult OHCA were appraised in an article by Morimura et al
[60]. The authors collected a sample of 1282 victims (from
105 articles) who received the VA-ECMO during CPR. The
overall survival rate, including discharge from hospital, was
26.7%. Most surviving patients presented as neurologically
intact or having a mild disability only.

Chen and colleagues performed a three-year prospective
observational trial assessing the efficacy of VA-ECMO versus
conventional CPR in witnessed in-hospital cardiac arrest
[64]. They found a significantly higher 30-day survival rate,
discharge rate from hospital, and 1-year survival rate in the
extracorporeal support group.

Most centers have reported significantly lower survival of
patients with out-of-hospital cardiac arrest treated with the
VA-ECMOwhen compared with patients who had witnessed
cardiac arrest of cardiac origin in hospital [65, 66].
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Le Guen et al. in their study reported very low survival
rates (4%) in patients supported with VA-ECMO following
OHCA and recommended a rather restricted approach for its
use for this indication [67].

ERC guidelines recommend consideration of extracor-
poreal life support in various scenarios, but not in out-of-
hospital cardiac arrest of cardiac origin [6, 8]. AHA 2010
guidelines do not recommend extracorporeal life support
techniques for routine use in patients with cardiac arrest.The
use of extracorporeal techniques should be considered only
in specialized centers and in persons with a good chance for
neurological recovery [68].

2.5. Hyperventilation and the Effect of Positive Airway Pres-
sure. Hyperventilation and intermittent positive pressure
ventilation (IPPV) “per se” have negative effects on circula-
tion during CPR and after ROSC [69]. Positive airway and
intrathoracic pressures during the mechanical inspiration
phase of the breathing cycle cause a significant decrease in
venous return to the thoracic cavity, reducing preload to the
right heart [70]. Hyperinflation results not only in a fall in
cardiac output and performance of the right ventricle, but
also cause a significant reduction in coronary perfusion pres-
sure [69] enhancing hypotension [71]. In published studies,
most paramedics ventilated patients at a higher frequency
and at higher inspiratory pressures than recommended [72].
A special device—impedance threshold device (ITD)—has
been developed in order to reduce intrathoracic pressures,
with a resulting improvement in venous return and coronary
blood flow during CPR [73, 74]. A valve inside the ITD
closes during chest wall recoil and helps to create a negative
intrathoracic pressure as low as −13mmHg [75]. Various
clinical studies have assessed the effect of ITD on survival and
neurological outcome after OHCA. In total, seven random-
ized controlled trials have assessed the ITD in prehospital
emergency care. A study by Plaisance et al. showed better
coronary perfusion and higher diastolic pressures in patients
treated with ITD valve [76] while another trial compared
the use of ITD with a sham device during CPR in twenty-
two patients with OHCA and showed marked improvement
in systolic pressure in the ITD group [77]. Use of the
ITD combined with active compression-decompression was
associated with increased hospital admission and short-term
survival rates [78, 79]. Aufderheide et al. compared ITD
with a sham device during standard CPR in 230 patients
[71]. The subgroup of people who presented with a pulseless
electrical activity (PEA) showed higher 24 h survival, while
there was no difference in patients with VF or asystole.
A meta-analysis based on available trials [80] concluded
that the use of ITD may improve short-term outcome after
OHCA. None of the studies evaluated hospital discharge
rate in terms of neurological deficit. A robust multinational
study unfortunately did not confirm the conclusions of this
meta-analysis [81]. The authors evaluated 8,718 patients with
OHCA randomly allocated to an active treatment with ITD
and to sham group and found no differences in survival,
ROSC, or recovery without neurological dysfunction. Similar
concerns were also reported by some animal studies. These

trials reported either no positive effect of ITD [82, 83] or
indeed a worse outcome in the ITD groups [84].

On the other hand, if an ITD is combined with active
compression-decompression it improves hospital discharge
with neurologically favourable outcomewhen comparedwith
conventional CPR [78].

The real significance of clinical studies assessing the role
of ITD in OHCA might be confused by the fact that some
studies compared ITD use with conventional CPR only,
whilst other studies implemented ITD application with the
use of active compression-decompression CPR [81].

ERC guidelines do not recommend the routine use of
the ITD due to a lack of data confirming its benefit in long-
term survival of victims [6, 7]. AHA guidelines recommend
consideration of ITD use by the staff familiar with the device
during OHCA (level of evidence B, class IIb) [68].

3. Management after Resuscitation
(Post-ROSC Period)

3.1. Hyperoxemia after Resuscitation. Hypoxemia has dele-
terious and potentially lethal effects on vitally important
organs, mainly on the brain and myocardium. However,
recent studies have shown that hyperoxemia may also have
significant negative effects in the postcardiac arrest period,
primarily on neurological outcome [10, 85]. Excessive oxy-
gen is a precursor for reactive forms of oxygen (reactive
oxygen species—ROS, oxygen free radicals—OFR) which
are created after restoration of spontaneous circulation in
the tissues as a part of ischemia-reperfusion injury [5].
Mainly superoxide, hydroxyl radicals, and peroxynitrite
cause direct damage to the cells which may result in their
worsened function or death.

Several animal trials and data from three human studies
support this theory. The effect of different oxygen fraction
on neurological outcome after experimental cardiac arrest
in animals was firstly evaluated by Balan et al. 2006 [85].
The authors induced ventricular fibrillation in 17 dogs and
then resuscitated them using open-chest CPR.The dogs were
subsequently randomized to receive either 100% O

2
IPPV

or controlled ventilation with FiO
2
adjusted according to

pulse oximetry measurements (target spO
2
was 96%). In the

hyperoxemic subgroup paO
2
rose to 75.2 (±4.8) kPa while, in

the oximetry subgroup, it remained within the physiological
range—12.5 (±0.5) kPa. Hyperoxemic dogs showed a higher
incidence of neurological deficit at 23 hours, as well as a
higher number of pathologically altered neuronal changes in
the CA1 region of the dorsal hippocampus. Similar findings
were also reported by Liu et al, who demonstrated better neu-
rological recovery and a lower degree of lipid oxygenation in
the brain at 24 h on a canine model of ventricular fibrillation
in normoxemic animals (FiO

2
0.21) than in a hyperoxemic

group (FiO
2
1.0) [86]. Vereczki et al. performed another

study on a canine model of cardiac arrest and demonstrated
that normoxemic animals in the post-ROSC period had
a lower level of oxidative stress, decreased intraneuronal
protein nitration, and a lesser extent of neuronal death in
the hippocampus [87]. Another study performed on swine
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model ventilated with 100% oxygen for 60 min after ROSC
also showed a significantly higher degree of degeneration
of neural cells in the striatum when compared with the
group ventilated with FiO

2
0.21 10 minutes after ROSC

[88]. These findings are, however, disputable because of
the retrospective study design and insufficient number of
probands.

Angelos et al. demonstrated a deleterious effect of post-
ROSC hyperoxemia on a rat model. Sprague-Dawley rats
exposed to high-concentration oxygen for 60min presented
with significantly impaired function of myocardial mito-
chondria when compared with normoxemic rats [89].

The first human trial related to the oxygen fraction in
the postarrest period was published in 2006 [90]. In total,
28 patients who had witnessed OHCA were randomized to
receive controlled ventilation with FiO

2
1.0 or 0.3, respec-

tively, after the return of spontaneous circulation. Functional
neurological status and biochemical markers of neuronal
injury (neuron specific enolase—NSE, protein S100) were
measured for up to 48 h after ROSC. There was a higher
level of NSE at 24 h in the hyperoxemic group without any
difference in mortality or neurological outcome. However,
this study was significantly underpowered to detect changes
in neurological status between the groups.

More human data comes from a retrospective analysis
of 6,326 patients hospitalized in the ICU after CPR for
cardiac arrest [10]. These persons were divided into the three
groups—hypoxemia (PaO

2
less than 8.0 kPa), normoxemia

(PaO
2
between 8.0 and 40 kPa), and hyperoxemia (PaO

2

more than 40 kPa). A significantly higher hospital mortality
(63%) was demonstrated in the hyperoxemic patients, whilst
the lowest mortality was seen in normoxemic victims (44%).
Hyperoxemic patients also had the highest incidence of
neurological deficit at hospital discharge.

However, these findings were questioned by two recent
clinical studies [91, 92]. In total, 12,108 patients resuscitated
from nontraumatic cardiac arrest were divided into three
groups according to their PaO

2
. The authors studied the

outcomes of resuscitated adult patients divided into three
groups according to their worst PaO

2
within 24 h after

CPR. The hyperoxemic group showed slightly lower survival
rate than normoxemic victims but after adjustments and
Cox modelling the differences became statistically insignifi-
cant [91]. Spindelboeck and colleagues studied the outcome
of resuscitated adult patients divided into three groups
according to their PaO

2
at 60 min after commencing CPR.

Hyperoxemic group showed higher survival rates to the
hospital admission than normoxemic and hypoxemic groups
but differences in neurologically intact survival rates were
insignificant between the groups [92].

Another study explored the time frame of exposure to
hyperoxemia after cardiac arrest [93]. The authors found that
most patients were exposed to high values of PaO

2
in the

immediate period after ROSC or during the following 24
hours, suggesting that the highest hyperoxemic values are
associated with treatment in the prehospital phase and the
Emergency Department. Furthermore, patients after OHCA
had a higher incidence of hyperoxemia than patients after

in-hospital cardiac arrest. As in other published studies,
there have been extensive discussions over how to define
hyperoxemia.

Based on this evidence, a lower targeted oxygen therapy
(spO
2
or saO

2
between 94 and 98%) may be beneficial

in the period after ROSC. Both resuscitation guidelines
published recently—the American Heart Association (AHA)
guidelines and European Resuscitation Council guidelines
since 2010—highlight the harmful effect of hyperoxemia after
ROSC. They recommend consideration of a normoxemic
strategy controlled by spO

2
(94–98%) or saO

2
monitoring

[6, 7].

3.2. Ventilation and Carbon Dioxide Tension after ROSC.
Controlled ventilation affects carbon dioxide (CO

2
) tension

in the vascular system. Cardiac arrest is typically associated
with profound metabolic acidosis. Previously, strategies have
recommended hyperventilation after ROSC with the aim of
decreasing PaCO

2
and thus stabilizing the pH of arterial

blood. However, a deleterious effect on brain circulation is
seen if hyperventilation results in hypocapnia [94]. Cerebral
hyperperfusion occurs immediately after ROSC and can
persist for up to 30 minutes. The subsequent period is
characterized by significantly reduced cerebral blood flow.
Hypocapnia during this period potentiates vasoconstriction,
which can further aggravate postresuscitation hypoxic brain
injury [7]. On the other hand, insufficient CO

2
removal is

associated with hypercapnia contributing to the vasodilation
of cerebral vessels and elevated intracranial pressure (ICP).

Falkenbach et al. highlighted the effect of postresus-
citation therapeutic hypothermia on PaCO

2
level [95].

Hypothermia decreases metabolic rate and carbon dioxide
production. In their multicenter study, approximately 45%
of patients experienced hypocapnia or hypercapnia, both
of which negatively affect brain perfusion. The results of
this study support the necessity of frequent and regular
optimization of ventilator settings in the first 48 hours after
OHCA. A number of studies have evaluated the effects of
hypercapnia and hypocapnia on outcomes in adult patients
after cardiac arrest. The database of the Australian and New
Zealand Intensive Care Society (16,542 patients) has shown
higher mortality and lower discharge rates in hypocapnic
patients when compared with normocapnic and hypercapnic
victims [96]. Roberts and colleagues analyzed adult cardiac
arrest registry data from 193 victims and found that 69% of
them experienced pathological values of PaCO

2
after OHCA

[97]. Both hypocapnia and hypercapnia were associated
with worsened neurological outcome. Lee et al. studied the
relationship between blood gas tensions and outcome in 213
patients after OHCA treated with therapeutic hypothermia
[98]. Hypocapnia was associated with higher in-hospital
mortality; both hyperoxemia and hypoxemia were associated
with worsened neurological outcome.

ERC guidelines suggestmaintaining normocapnia during
postresuscitation care [6]. AHA 2010 guidelines recommend
monitoring of CO

2
tension with capnography and arterial

blood gas analysis and keeping its level within the physiolog-
ical range (PaCO

2
40–45mmHg; PetCO

2
35–40mmHg) [7].
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4. Conclusions

During last decade, many papers have evaluated the issues
of respiration, oxygenation, and airway management in
OHCA. Some of them have been high-quality random-
ized controlled trials, moving the science of resuscitation
forward and changing established algorithms and resus-
citation protocols. The main finding arising from these
studies is that, in OHCA of cardiac origin in adults,
significantly interrupting chest compressions for the pur-
poses of advanced airway management have a negative
impact on patient survival and neurological outcome [36,
99]. These findings have prompted changes in BLS of
adult patients with OHCA of nontraumatic origin. CAB
(circulation-airway-breathing) has evolved from ABC [100]
with the development of a new resuscitation philosophy—
cardiocerebral resuscitation (CCR) [101, 102].

Passive oxygenation has its advocates, but one can object
that its main beneficial effect is actually in minimizing
the interruption of chest compressions in comparison with
advanced airway management techniques.

The role of extracorporeal techniques on survival in
patients after OHCA remains unclear. A few studies have
demonstrated its benefit in patients with persisting cardiac
arrest and with reactive pupils, though other trials have failed
to report any significant benefit with this technique.

The choice of airway management technique in
OHCA remains controversial. Although bag-valve mask
ventilation has been repeatedly associated with better
survival—including better neurological function than
advanced techniques of airway management, the risk of
regurgitation and aspiration cannot be underestimated.
Tracheal intubation in the hands of experienced operators is
still a reliable method. The evidence would suggest, however,
that it should not be employed by individuals with low
skills, limited experience, or infrequent exposure [37, 103].
The insertion of a supraglottic airway device in OHCA is
probably associated with worse patient outcomes than other
methods of airway management.

A few studies have explored the harmful effects of
hyperoxemia, hyperventilation, and excessive chest inflation
on patient outcome following OHCA. A significant number
of these studies were performed on animal models with
a small number of probands, and their interpolation to
humans is difficult [104, 105]. Initial studies related to the
use of an impedance threshold device (ITD), which protects
against lung hyperinflation and helps to create a negative
intrathoracic pressure, were promising in patients with
OHCA of cardiac origin [73]. Unfortunately, a recent large
trial did not show any beneficial effect of ITD on long-term
survival with good neurological function [81].

The deleterious effects of pathological PaCO
2
values

after ROSC on neurological outcome have been repeatedly
described. Dyscarbia is a very common finding during
therapeutic hypothermia in the postresuscitation period
due to the decreased metabolic demand of patients [95].
Clinicians shouldmaintain PaCO

2
in the upper physiological

values after ROSC.
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and P. Rosenberg, “Comparison of 30 and the 100% inspired
oxygen concentrations during early post-resuscitation period:
a randomised controlled pilot study,” Resuscitation, vol. 69, no.
2, pp. 199–206, 2006.

[91] R. Bellomo, M. Bailey, G. M. Eastwood et al., “Arterial hyper-
oxia and in-hospital mortality after resuscitation from cardiac
arrest,” Critical Care, vol. 15, no. 2, article R90, 2011.

[92] W. Spindelboeck, O. Schindler, A.Moser et al., “Increasing arte-
rial oxygen partial pressure during cardiopulmonary resuscita-
tion is associated with improved rates of hospital admission,”
Resuscitation, vol. 84, no. 6, pp. 770–775, 2013.
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Postcardiac arrest brain injury significantly contributes to mortality and morbidity in patients suffering from cardiac arrest (CA).
Evidence that shows that mitochondrial dysfunction appears to be a key factor in tissue damage after ischemia/reperfusion
is accumulating. However, limited data are available regarding the cerebral mitochondrial dysfunction during CA and
cardiopulmonary resuscitation (CPR) and its relationship to the alterations of high-energy phosphate. Here, we sought to identify
alterations of mitochondrial morphology and oxidative phosphorylation function as well as high-energy phosphates during CA
and CPR in a rat model of ventricular fibrillation (VF). We found that impairment of mitochondrial respiration and partial
depletion of adenosine triphosphate (ATP) and phosphocreatine (PCr) developed in the cerebral cortex and hippocampus following
a prolonged cardiac arrest. Optimal CPR might ameliorate the deranged phosphorus metabolism and preserve mitochondrial
function. No obvious ultrastructural abnormalities of mitochondria have been found during CA. We conclude that CA causes
cerebral mitochondrial dysfunction along with decay of high-energy phosphates, which would be mitigated with CPR. This study
may broaden our understanding of the pathogenic processes underlying global cerebral ischemic injury and provide a potential
therapeutic strategy that aimed at preserving cerebral mitochondrial function during CA.

1. Introduction

Postcardiac arrest brain injury is a common cause of morbid-
ity and mortality in postcardiac arrest patients [1], leading
to death in 68% of patients after out-of-hospital cardiac
arrest [2] and significant cerebral dysfunction in survivors [1].
Brain tissue is especially susceptible to ischemic injury due to
several unusual features of its energy metabolism, including
a high metabolic rate, limited intrinsic energy stores, and
critical dependence on aerobic metabolism of glucose.

Recently, accumulating data have shown that mitochon-
dria, the crucial cellular organelles for energy production,

play a critical role as effectors and targets of ischemia and
reperfusion injury after cardiac arrest (CA) [3, 4]. Previ-
ously, our group [5] and others [6–8] have demonstrated
the impaired myocardial mitochondrial dysfunction and
ultrastructural alterations of mitochondria developed during
CA and following return of spontaneous circulation (ROSC).
These observations suggested that an impaired functional
capacity of myocardial mitochondria plays a pivotal role in
the development of postresuscitation myocardial dysfunc-
tion.More recently, Gazmuri et al. reported that the strategies
of preserving mitochondrial bioenergetic function in the
myocardium by using inhibitors of the sodium-hydrogen
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exchanger isoform-1 [9–12] and erythropoietin [13–15] help
restore cardiac activity and sustained postresuscitation circu-
lation.

However, there is a lack of sufficient evidence regarding
mitochondrial dysfunction and energy metabolic derange-
ments during CA and following cardiopulmonary resusci-
tation (CPR). Previously, studies had reported that mito-
chondrial dysfunction was impaired 1 h after successful
resuscitation in an aging rat model study [16]. At present,
our knowledge regardingmitochondrial function and energy
metabolism following global cerebral ischemia is largely
extrapolated fromother specific experimental settings such as
focal cerebral ischemia [17–19]. Because of many significant
pathophysiological differences between these heterogeneous
experimental settings, it is unknown whether these settings
and CA/CPR share common mechanisms. The changes in
cerebral metabolic activity during CA may therefore differ
from those described in other experimental settings. The
aim of the present study was to provide further insight into
the cerebralmitochondrial dysfunction and energymetabolic
disorders during CA and CPR.

Thus, the current study was undertaken in a rat model
of CA to test the hypothesis that prolonged VF will
lead to significantly impaired functional capacity of cere-
bral mitochondria and complete depletion of high-energy
nucleotides. Furthermore, we hypothesized that CPR with
optimal chest compressions andmechanical ventilation could
significantly ameliorate these cerebral mitochondrial defects
and metabolic disorders.

2. Method

All experimental procedures were approved by the Animal
Experimentation Ethics Committee, Sun Yat-sen University,
and were consistent with the Guidelines for Ethical Conduct
in the Care and Use of Experimental Animals published by
the Chinese Ministry of Science.

2.1. Animal Preparation. Healthy, male Sprague-Dawley rats
weighing 350–450 g fasted overnight before surgery (they
were given free access to water). Sodium pentobarbital was
administered intraperitoneally at 45mg kg−1 to provide anes-
thesia, and a number 14 tracheal sheath was directly inserted
through the mouth of each rat. A number 23 PE-50 catheter
was inserted into the left femoral artery to monitor mean
arterial pressure (MAP). A 3-French catheter was inserted
into the right external jugular vein to guide the guide wire
(anode) to the inner membrane of the right ventricle, and a
needle (cathode) was inserted subcutaneously to form a loop
and induce VF. TheWindaq data acquisition system (DataQ,
Akron, OH, USA) was used for continuous monitoring of
MAP and electrocardiography (ECG). Rectal temperature
was monitored continuously, and a heating lamp was used
to maintain animal body temperature at 37.0 ± 0.5∘C. Before
onset of VF, an Abbott bedside blood gas analyzer was used
to examine the arterial blood gas of the test animals.

2.2. Experimental Procedure. The experimental rats were
randomly divided into the following three groups of 20 each:
(1) sham group: anesthesia, endotracheal intubation, and
insertion of arterial and venous catheters were performed,
and VF was not induced; (2) ischemia group: VF-induced
CA for 15min, no CPR; (3) CPR group: VF-induced CA for
10min, and CPR was performed for 5min.

Before induction of VF, the animals were mechanically
ventilated with room air at a tidal volume of 0.55mL/100 g
and a frequency of 80 breaths/min. A progressive increase
in 60Hz current to a maximum of 3mA was then delivered
to the right ventricular endocardium. The current flow was
continued for 3min to preclude spontaneous reversal of
VF. Mechanical ventilation was discontinued after onset of
VF. For the CPR group, 5min of CPR including precordial
compressions and mechanical ventilation with 100% O

2
was

then performed 10min after the onset of VF. Precordial
compressions at a rate of 250min−1 were synchronized to
provide a compression/ventilation ratio of 5 : 1. Depth of
compression was adjusted to maintain an aortic diastolic
pressure of 26 to 28mmHg. In the ischemia group, no CPR
was attempted, resulting in 15min of untreated VF. After
15min of treated or untreated VF, all animals were imme-
diately sacrificed. Measurement of mitochondrial oxidative
phosphorylation parameters was performed in 8 animals for
each group by an investigator who is not responsible for the
isolation of brain mitochondria. Determination of adenine
nucleotides and lactate content by high-performance liquid
chromatography (HPLC) was performed in additional 8 ani-
mals per group by an independent experienced technician. In
addition, neuronal mitochondria were analyzed in a blinded
manner for qualitative ultrastructural changes (compared
with sham control) in another 4 animals for each group by
an experienced pathologist trained in EM who is unrelated
to the present study.

2.3. Isolation of Brain Mitochondria. The rats were decap-
itated and bilateral hippocampus brain tissues and equal
amounts of cortical tissues were separated rapidly, weighed,
and placed in an ice-cold Dounce homogenizer. Mitochon-
drial separation medium (215mMmannitol, 75mM sucrose,
0.1% bovine serum albumin, 20mMHEPES, 1mMEGTA,
adjusted to pH 7.2) was added at volume ratio 1 : 10, and 10
rounds of homogenization were performed (six with tight
fitting pellets and four with loose fitting pellets) to ensure that
no chunks of brain tissue remained. The homogenized tissue
mixture was then subjected to centrifugation at 1,300 g for
4min (4∘C). The supernatant was centrifuged at 12,000 g for
8min, and precipitate was resuspended and again centrifuged
at 12,000 g for 8min. Then the supernatant was discarded,
and separation medium without EGTA was added at a
volume ratio of 1 : 0.4 to resuspend the mitochondria. This
mitochondria suspension was then stored in an ice bath until
testing. A Qubit fluorometer (Invitrogen, Carlsbad, CA) was
used tomeasure the protein concentration of each sample. All
these operations were performed in a 0–4∘C ice bath.
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2.4. Determination of Mitochondrial Oxidative Phosphory-
lation Parameters. A Clark oxygen electrode system (Oxy-
graphTM, Hansatech Instruments, King’s Lynn, UK) was
used to test the mitochondrial oxidative phosphorylation
function. In a sealed reaction tank, 2.5mL reaction buffer
(225mM mannitol, 125mM KCl, 4mM MgCl

2
, 0.1%BSA,

2.5mM KH
2
PO
4
, 20mM HEPES, pH 7.4, 25∘C) was added

and stirred fully to a steady state. Then, 20𝜇L mitochon-
drial suspension was added for 1min until the recorded
curve stabilized. Next, 20𝜇L disodium succinate (4mM) was
added, and the oxygen concentration declined slowly; the
measured rate of oxygen consumption indicated respiratory
state 4 (R4). Then, 20 𝜇L adenosine diphosphate (ADP,
50mM) was added, and the oxygen concentration showed
a rapid decline. The measured rate of oxygen consumption
indicated state 3 respiration (R3). The unit of mitochondrial
respiration rate was oxygen consumption per nM/min/mg
protein. The mitochondrial respiratory control ratio (RCR)
was a ratio of state 3 and state 4 (R3/R4). RCR indicates
the integrity of the membraneand oxidative phosphorylation
in the mitochondrion, and the decrease of RCR suggests
impaired mitochondrial function.

2.5. Measurement of Phosphocreatine (PCR), Adenosine
Triphosphate (ATP), and Lactate Content. The brain tissue
was prepared according toPontén et al. [20]. The rats were
immersed in liquid nitrogen from head to shoulders for
5min for fast and complete freezing of the brain tissues.
Then, their heads were cut off. In a −20∘C freezer, bilateral
hippocampal and cortical tissues were rapidly separated and
stored in liquid nitrogen. HPLC was used to determine the
concentrations of PCr, ATP, and lactate in the brain tissues.
The frozen brain tissue samples were homogenized in 0.3M
perchloric acid (1mg : 6 𝜇L). The suspension was collected
and subjected to centrifugation at 3,000 rpm for 5min (4∘C).
The supernatants were collected, the pH was adjusted to 7.6–
7.8 with 0.5MKOH solution, and then the mixture was again
subjected to centrifugation at 3,000 rpm for 5min (4∘C). The
supernatants were collected and stored in liquid nitrogen. An
Agilent Technologies 1200 Series HPLC analyzer (Germany)
was used to test the samples. AWATERS C18 reversed-phase
HPLC columnwas selected, andKH

2
PO
4
solution (200mM),

10% acetonitrile, and TBA solution (3mM) were used to
prepare the mobile phase, and the pH was adjusted to 6.5
or 6.8, respectively. The concentrations of lactate and PCr
were measured at an absorption peak of 210 nm and mobile
phase pH 6.5. The concentration of ATP was measured at an
absorption peak of 260 nm and mobile phase pH 6.8.

2.6. Observation of Ultrastructure Using Electron Microscope.
A catheter was placed in the carotid artery of the anesthetized
rat, and the right atrial appendagewas cut open. Fixative solu-
tion (pH 7.4, precooled to 4∘C), made of 2.5% glutaraldehyde
and 2% paraformaldehyde, was perfused through the carotid
artery. The hippocampal CA1 and cortical area were iso-
lated, fixed with 1% osmium tetroxide, and then dehydrated
and embedded in epoxy resin. According to the standard
principle of three-dimensional localization, 80 nm sections

were randomly cut, mounted on coppermesh, double stained
with lead citrate and uranyl acetate, and then placed under
transmission electron microscope for observation of the
ultrastructure. Images were recorded.

2.7. Statistical Analysis. Measurement data was reported as
mean ± standard deviation. For comparison of mean values
amongmultiple groups, single-factor analysis of variance was
performed. For comparison of mean values between two
groups, the least significant difference t-test (LSD t-test) was
performed. 𝑃 < 0.05 was considered statistically signifi-
cant. All analyses were performed using the SPSS statistical
software package. Because PCr and lactate data failed the
homogeneity of variance test, logarithmic transformation of
the data was performed to satisfy homogeneity of variance
before further analyses.

3. Results

3.1. Basic Physiological Parameters and Hemodynamics. The
body weights, blood gas values before resuscitation, and
baseline hemodynamic parameters did not show significant
differences between the three groups of animals (Table 1).
At the end of 15min of CA, the aortic diastolic pressure in
the CPR group was maintained between 26 and 28mmHg
as previously described, whereas the aortic pressure in the
ischemia group was maintained at approximately 10mmHg
due to the remaining elastic properties of the arterial wall.

3.2. Determination of Mitochondrial Respiratory Function.
RCR reflects the efficiency of oxidative phosphorylation and
is closely related to mitochondrial function. The results
showed the hippocampal and cortical R3 of the ischemia
group to be significantly lower than those of the sham group
(𝑃 < 0.01). The cortical R4 of the ischemia group was sig-
nificantly lower than that of the sham group (𝑃 < 0.05). The
RCR of the ischemia group was 53% (hippocampus) and 51%
(cortex) lower than that of the sham group.The hippocampal
and cortical R3 of the CPR group was significantly lower
than that of the sham group, but it was significantly higher
than that of the ischemia group (𝑃 < 0.01). The R4 of the
CPR group tended to be lower than that of the ischemia
group. The RCR of the CPR group was 20% (hippocampus)
and 19% (cortex) lower than that of the sham group, but
it was significantly higher than that of the ischemia group
(𝑃 < 0.01).This suggests that CPRprotects themitochondrial
respiratory function of rat neurons during CA. There was no
significant difference in mitochondrial respiratory function
between hippocampal and cortical tissues (Figure 1). Figure 2
showed the typical mitochondria respiration trace in hip-
pocampus, depicting the sequence of substrate additions and
subsequent oxygen utilization rates. Similar mitochondrial
respiration traces were observed in cortex.

3.3. EnergyMetabolism of Brain Tissues. As shown in Table 2,
the PCr and ATP contents of the hippocampal and cortical
tissues in the ischemia group were significantly lower than
those in the sham group (𝑃 < 0.01), and the decrease in
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Table 1: Basic physiological parameters and hemodynamic values of the three groups (𝑛 = 20).

Sham group Ischemia group CPR group
Weight (g) 404 ± 26 403 ± 28 400 ± 31

Arterial pH 7.42 ± 0.05 7.45 ± 0.06 7.43 ± 0.05

Arterial PO2 (mmHg) 91.60 ± 4.32 93.10 ± 5.88 92.15 ± 4.76

Blood serum lactate (mmol/L) 0.63 ± 0.08 0.59 ± 0.07 0.59 ± 0.08

Heart rate (bpm) 297 ± 20 303 ± 20 299 ± 19

MAP (mmHg) 140 ± 15 145 ± 15 146 ± 16

Note: there were no significant differences in each group.
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Figure 1: Comparison of mitochondrial respiratory parameters in different parts of the brain among groups (𝑛 = 8). Values are means ± SD.

PCr content was more substantial. The lactate content of the
ischemia groups was significantly higher than that of the
sham group (𝑃 < 0.01). After 15 minutes of ischemia, the
hippocampal PCr and ATP levels of the ischemia group were
4.93% and 14.02% that of the sham group, respectively. The
cortical PCr and ATP contents of the CPR group were 5.66%
and 15.18% that of the sham group, respectively. The variance

in the PCr, ATP, and lactate levels was more pronounced
in the hippocampus than in the cortical tissues, but the
differences were not significant. The PCr/ATP ratio of the
ischemia group was significantly lower than that of the sham
group (𝑃 < 0.01).

Compared with the sham group, the PCr and ATP levels
in hippocampal and cortical tissues of the CPR group were
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Figure 2: Representative oxygraph respiratory traces of hippocampal mitochondria.

Table 2: Energy metabolism in different parts of the brain among groups (𝑛 = 8).

Hippocampus Cortex
Sham group Ischemia group CPR group Sham group Ischemia group CPR group

PCr (𝜇M/g) 3.65 ± 0.25 0.18 ± 0.04
∗∗

1.24 ± 0.14
∗∗#

3.89 ± 0.27 0.22 ± 0.05
∗∗

1.31 ± 0.11
∗∗#

ATP (𝜇M/g) 2.14 ± 0.15 0.30 ± 0.07
∗∗

0.85 ± 0.09
∗∗#

2.24 ± 0.12 0.34 ± 0.07
∗∗

0.82 ± 0.11
∗∗#

Lactate (𝜇M/g) 0.97 ± 0.08 14.32 ± 1.32
∗∗

9.03 ± 1.07
∗∗#

1.02 ± 0.09 13.90 ± 1.05
∗∗

9.37 ± 1.22
∗∗#

PCr/ATP 1.71 ± 0.12 0.59 ± 0.07
∗∗

1.46 ± 0.17
∗∗#

1.73 ± 0.10 0.64 ± 0.06
∗∗

1.61 ± 0.12
∗#

∗

𝑃 < 0.05 versus sham group; ∗∗𝑃 < 0.01 versus sham group; #
𝑃 < 0.01 versus ischemia group.

significantly lower (𝑃 < 0.01), but they were significantly
higher than in the ischemia group (𝑃 < 0.01). The lactate
content of the CPR group was significantly lower than that
of the ischemia group (𝑃 < 0.01). The hippocampal PCr
and ATP levels of the CPR group were 33.97% and 39.72%
that of the sham group, respectively. The cortical PCr and
ATP contents of the CPR group were 33.68% and 36.61%
that of the sham group, respectively. These results suggest
that CPR can significantly increase the concentration of high-
energy phosphate compounds and reduce the concentration

of lactate in brain tissues and so improve brain energy
metabolism during CA in rats.The PCr/ATP ratio of the CPR
group was significantly lower than that of the sham group
(𝑃 < 0.05), but it was significantly higher than that of the
ischemia group (𝑃 < 0.01).

3.4. Ultrastructure of Mitochondria. To assess the morpho-
logical changes, the ultrastructures of the hippocampal and
cortical mitochondria in different groups were observed.The
results did not show any notable structural damages in any



6 BioMed Research International

of the groups. Specifically, the mitochondria were round or
oval. The mitochondrial structure was clear with complete
inner and outer membranes. The electron density in the
matrix was uniform, and thematrix had abundant cristae that
were aligned nicely.There were no substantial morphological
differences in the mitochondria among different groups
(Figure 3).

4. Discussion

In the present study, using a rat model of prolonged VF,
we demonstrated that metabolic derangements including
impairment of mitochondrial respiration and partial deple-
tion ofATP andPCr developed in the cerebral cortex and hip-
pocampus following an untreated 15minCA. Furthermore,
CPR including closed chest compression and ventilation
cannot only ameliorate the deranged phosphorusmetabolism
but more importantly protect cerebral mitochondrial func-
tion as well.

To describe possible alterations of high-energy phosphate
compounds in the brain, it is essential to freeze the sample as
quickly as possible, due to their extreme lability. Otherwise,
delayed cooling will immediately result in hydrolysis of
metabolites and erroneous depletion of ATP and PCr. In view
of this, a well established in situ freezing technique [20] was
employed in this study to avoid postmortem alterations in
metabolites. Our results showed that baseline levels of the
adenylate nucleotides and PCr detected in our experiment
are similar to those previously published data [21], which
provided the rational basis for further consideration. The
mammalian structure is heterogeneous; therefore, previous
studies have suggested that the metabolic rate and energy
expenditure might be inconsistently apportioned among var-
ious regions [21]. In contrast to those reports, no significant
differences in metabolic profile between the hippocampus
and cortex were observed in this study.

The dynamic metabolite profile analysis of the VF ani-
mals verified that a progressive and severe cerebral energy
failure develops when CA occurs and cerebral blood flow
ceases, which was manifested by the breakdown of high-
energy phosphates and the increased lactate formation as a
consequence of increased anaerobic glycolysis. Currently, it
is widely accepted that cerebral ATP stores will be exhausted
within 5min in sudden normothermic CA [22]. Previous
studies by one group [23–26] and others [27], which exam-
ined metabolites by enzymatic fluorometric techniques, had
proven that asystolic CA caused the ATP and PCr values to
plummet to near zero within 5–10min. Interestingly, it was
unexpected to see that ATP, which was supposed to be at an
undetectable level after 15min of VF, was merely reduced to
14.02% in the hippocampus and 15.18% in the cortex of control
animals. This retarded rate of ATP depletion may be due to
the buffering effect of PCr; that is, ATP levels are initially
preserved at the expense of PCr [28, 29]. Several investiga-
tions conducted by different groups supported our findings.
In a perinatal rat model of hypoxia-ischemia, a more modest
decline in ATP and PCr, assayed either by nuclear magnetic
resonance spectroscopy or HPLC, has been observed with

the observing time ranging from 5min to 20min [29–32].
Very recently, using bioluminescent methods,Seidl et al.
[28] showed that myocardial ATP was depleted to less than
50% during the first 10min of ischemia in a comparable
rat model of VF. These discrepancies regarding the decline
in energy expenditure metabolic rate in brain tissue after
global ischemia may result from a variety of factors, such as
the severity of the ischemic insult in different experimental
procedure, the age/maturity of experimental animals, and the
accuracy and sensitivity of the techniques adopted for mea-
surement of the phosphate compounds. Here, we observed
that ATP in the brain tissue determined by HPLC drastically
but not totally decayed, suggesting the partially preserved
neuronal viability after 15min of untreated prolonged VF.
Therefore, our finding indicated that even after a prolonged
CA, the neurological functional integrity after damage from
CA still has the potential to be minimized or reversed when
cerebral blood flow can be adequately maintained following
ROSC.

The major finding of the present study is that mito-
chondrial respiratory function in the brain declines after
CA as shown by the respiratory control ratio (RCR) values,
which is consistent with the trend of decay of high-energy
phosphates. We believe that insufficient fuel and oxygen
supply due to circulatory collapse are the leading causes that
contribute to the cerebral metabolic failure. However, based
on our observations of reduced mitochondria respiratory
function and coincidently decreased high-energy phosphate
compounds, it is reasonable to conclude that such defects
in mitochondrial function are at least partly responsible
for the metabolic failure during CA and resuscitation. Our
group has previously reported myocardial mitochondrial
abnormalities of ultrastructure and incapability in utilizing
energy substrates and producing energy in this same animal
model [5]. Other investigators have also reported early
myocardial mitochondrial dysfunction after CA [33, 34].
However, limited data are available regarding the cerebral
mitochondrial dysfunction during CA and following ROSC.
Research by Xu et al. showed that RCR decreased by 26% in
the cortex and 28% in the brainstem 1 h after resuscitation
in an aging rat model of KCl-induced CA [16]. However,
currently there is a lack in data revealing the cerebral
mitochondrial dysfunction during CA and CPR and their
relationship with changes in levels of high-energy phosphate.
Therefore, our study provides evidence for the first time that
reveals that an impairment mitochondrial function develops
following CA and resuscitation, which may contribute to the
global neurological dysfunction.

The physiological mechanisms responsible for mitochon-
drial dysfunction following ischemia remain unclear. It has
been suggested that significant reductions in mitochondrial
respiratory complex I activity are the major determinant
of postresuscitation mitochondrial dysfunction [16]. Several
factors, including reduction of the hydrophilic flavoprotein
subunit and NADH-ferricyanide reductase, tissue acidosis,
loss of flavin mononucleotide, and ATP depletion may
account for the decrease in complex I activity [16, 35,
36]. However, the exact cellular and molecular mechanisms



BioMed Research International 7

(a) (b)

(c) (d)

(e) (f)

Figure 3: Electron micrographs in different parts of the brain among groups (magnification 23,000x). (a) Hippocampus of the sham group;
(b) hippocampus of the ischemia group; (c) hippocampus of the CPR group; (d) cortex of the sham group; (e) cortex of the ischemia group;
(f) cortex of the CPR group. Scale bars: 0.5 𝜇m.

involved in this cerebralmitochondrial dysfunction following
CA and CPR are not clear and deserve further investigation.

With respect to the morphological changes of mitochon-
dria, ultrastructural alterations of myocardial mitochondria
including swelling, edema, outer-membrane rupture, and loss
of inner-membrane cristae with amorphous densities have
been reported by our group and others [5, 33, 34] during CA
and CPR, either in the VF or asphyxia CA rat model. To our
surprise, we observed no significant ultrastructural morpho-
logical changes of cerebral mitochondria even following this
prolonged untreated VF, when severely impaired mitochon-
drial function and reduction of high-energy phosphates were
observed. The fact that the shape of mitochondria appeared
relatively normal in this study suggests that although the
cerebral mitochondrial function is impaired, the neurocytes
might be salvageable after restoration of adequate cerebral
blood flow.

Comparison between the CPR and VF groups shows that
a period of 5min CPR after 10min of VF can lead to less
mitochondrial damage and better energy preservation. Our

study indicated that CPR can slow the ongoing ischemic
insult imposed on mitochondrial bioenergetic function and
possibly extent the viability of brain after CA.These observa-
tions are compatible with previous studies that reported that
CPR can preserve myocardial mitochondrial function [34]
and restore ATP [29] after CA. Therefore, our data suggest
that preservation of mitochondrial function during CA may
be an important mechanism underlying the beneficial effects
of CPR. The effect of CPR on preserving mitochondrial
function and subsequently the energymetabolism has poten-
tial clinical implication. It suggests that in addition to high
quality CPR, additional intervention aiming at preserving
mitochondrial function and rapid reductions of cerebral
metabolism during CA, such as intra-arrest hypothermia and
pharmacologically induced cerebral hibernation, may be the
new strategies for neurological protection in CA and CPR.

Our study has several limitations. We focused on the
early changes of brain mitochondrial function and high-
energy phosphates after CA. Thus, our study was limited by
the absence of outcome data regarding the mitochondrial,
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morphological, and functional changes after ROSC due to
the current experimental design. Additional investigation is
needed to elucidate if preserved intra-arrest mitochondrial
function could be translated into improved cerebral function
following successful resuscitation. Moreover, our findings
should be more carefully interpreted when applied to clinical
practice because of the more complex clinical conditions and
the limitations of current animal model.

We conclude that CA causes cerebral mitochondrial dys-
function along with decay of high-energy phosphates, which
could be mitigated with the intervention of high quality
CPR.This may broaden our understanding of the underlying
pathophysiological processes involved in cerebral ischemic
injury and provide a new option for cerebral preservation
during the global cerebral ischemia of CA.
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Background. During resuscitation of cardiac arrest victims a variety of information in electronic format is recorded as part
of the documentation of the patient care contact and in order to be provided for case review for quality improvement. Such
review requires considerable effort and resources. There is also the problem of interobserver effects. Objective. We show that it
is possible to efficiently analyze resuscitation episodes automatically using a minimal set of the available information. Methods
and Results. A minimal set of variables is defined which describe therapeutic events (compression sequences and defibrillations)
and corresponding patient response events (annotated rhythm transitions). From this a state sequence representation of the
resuscitation episode is constructed and an algorithm is developed for reasoning with this representation and extract review
variables automatically. As a case study, the method is applied to the data abstraction process used in the King County EMS.
The automatically generated variables are compared to the original ones with accuracies ≥ 90% for 18 variables and ≥ 85% for
the remaining four variables. Conclusions. It is possible to use the information present in the CPR process data recorded by the
AED along with rhythm and chest compression annotations to automate the episode review.

1. Introduction

During resuscitation of cardiac arrest victims automated
external defibrillators (AEDs) record a variety of information
in electronic format. In many emergency medical service
(EMS) systems this electronic information is downloaded
to a computer system as part of the documentation of the
patient care contact and in order to be provided for review
of the case for quality improvement activities. The electronic
information will then be available as digital files which
include physiological signals and also operational data related
to the defibrillator (energy delivered, mode: automatic or
manual, impedance, time of each event, etc.) logged from the
defibrillator. Data related to operation of the defibrillator we
denote as “CPR process data.”This datamay be organized and
stored in a registry of the cardiac arrest cases. This registry
may then serve as a database that may be used in studies
of resuscitation strategies directed at improving survival

from cardiac arrest. The collected physiological data includes
the electrocardiogram recording the cardiac activity of the
patient and depending on the recording features of the device,
the impedance between electrodes, the acceleration and force
of chest compressions, end tidal CO

2
, blood pressure, and

possibly other biometric measures. The CPR process data
defined above also carries essential information about critical
time points such as the exact time the device is turned on, the
results of each shock advisory analysis, and the precise time
of defibrillation shocks. In addition to the CPR process data
that the devicemay produce, there are various written or elec-
tronically generated reports documenting the resuscitation
episode along with clinical and demographic information.
These reports are filed by dispatching centers and by the EMS
responders during and following the resuscitation. In many
systems an audio recording is made allowing a listener to
review the course of resuscitation to supplement the ECG
presentation and written reports.
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It is our belief that the integration of CPR process data
combined with an automatic analysis of the physiologic
signals would make it possible to objectively and efficiently
analyze resuscitation episodes in an objective reproducible
format. Such analysis is important as it provides the means
for analyzing and archiving parameters describing the quality
of cardiopulmonary resuscitation (CPR). A simple example
is the ratio of hands off intervals (HOI) during therapy.
In several studies both ECG and chest compression trac-
ings have been reviewed to accurately identify all such
HOI. These studies have shown that, despite the subjective
impression by rescuers that CPR delivery was adequate, in
fact the HOI duration exceeded the recommendations given
in the resuscitation guidelines [1, 2]. These findings had a
significant impact on the 2005 guidelines revision [3]. As
a result, an increased focus and attention to continuous
uninterrupted chest compressions has had a positive effect
on survival rates as reported in several studies [4–7]. For
these studies to give significant results, quite a large number
of resuscitation episodes were collected and reviewed. This
involved considerable effort for the reviewers and careful
definitions of the parameters to be recorded in order to make
the resulting analysis objective and relevant. Interobserver
variation is a significant confounding factor in these studies.
The interpretation often involves determining the cardiac
rhythm and the transitions between rhythms both with and
without the presence of chest compressions. These rhythm
and chest compression annotations involve interpretation of
the ECG for rhythm assessment and of the compression
signals for identifying chest compression sequences.

The present study is undertaken in order to determine
whether it is feasible to automate the process of data analysis
and extraction of the clinically relevant features. In particular
we seek to demonstrate that information which is currently
collected by manual review of cases of ventricular fibrilla-
tion cardiac arrest involving many hours of review can be
replicated using an automated extraction technique.This will
be done through the following three steps: (1) The concept
of a minimal information set defined by important events
during the resuscitation is proposed. (2) From the minimal
information set a state sequence model is constructed. (3)
Algorithms are designed to reason over the state sequence
model to automatically replicate the manual interpretation of
CPR process data.

2. Methods

There are several layers of information involved in the
interpretation of a resuscitation episode. Some of the clinical
variables are derived directly from the CPR process data
and annotations of rhythm and therapeutic events and
are therefore fundamental or primary. Other variables, the
secondary variables, can be inferred or calculated from the
primary variables. From these primary information variables
we furthermore propose a state sequencemodel fromwhich it
will be possible to design algorithms to perform the reasoning
to infer the secondary variables.

2.1. Defining the Primary Information Objects. In developing
the automation of such a process it was necessary to consider
the type of information to be retrieved. Some objects of
information are more fundamental than others. One may
distinguish a hierarchy of these objects as primary and
secondary in the sense that the secondary objects may be
determined from the information present in the primary
objects. Our hypothesis is that the secondary objects of
information can be derived automatically from the primary
objects by designing an algorithm that reasons on the primary
objects to produce the secondary objects. It is our hypothesis
that these primary objects include a subset of the elements
in the AED event record and of the annotations of rhythm
transitions and of the start and stop times of the chest
compression sequences.

To formalise this concept, we associate these primary
information objects to categories of important events dur-
ing a resuscitation episode. A resuscitation episode can be
described as an episode starting at time 𝑡

𝑠
and ending at

𝑡
𝑒
. Throughout the episode, there are important events 𝑒

𝑖

that can be associated with a given time 𝑡
𝑖
. In our model of

resuscitation, we define two important categories of events:
therapeutic and rhythmic events. (We will also refer to
rhythmic events and states as response events and states.)The
therapeutic events are limited to the set 𝑇

𝑒
= {c1, c2, d1, d2}

marking the start and end of a compression sequence (c1 and
c2) and start and end of a defibrillation (d1 and d2).

The rhythmic events represent rhythm transitions which
we limit to the set 𝑅

𝑒
= {vf, vt, as, pe, pr}marking transitions

into ventricular fibrillation (vf), ventricular tachycardia (vt),
asystole (as), pulseless electrical activity (pe), and pulse giving
rhythm (pr).

Examples of both types of annotations are shown at the
top and bottom inside each plot window of the tracings of
the AED signals in Figure 1 where CPR process data and
annotations are shown for three different types of AEDs.

The first step in the automated review process will be to
collect these events or primary information objects which we
denote as PIOs from the manually recorded data and from
the defibrillator. These PIOs will be processed to construct
the state sequence which we denote as the “Representation of
the Resuscitation Event” (RORE).The RORE (to be discussed
inmore detail below) is then input to the reasoning algorithm
which produces the secondary information objects (denoted
as SIO). The derived database can then be compared to the
original database to determine the accuracy and validity
of using only the PIOs to determine and define all of the
information present in the database. This serves the twofold
purpose of defining the minimal dataset (PIOs) which needs
to be collected by an automatic algorithm designed for this
purpose and also tests the ability of the RORE created only
from the PIO to serve as the sole source for an accurate
clinical database to be used in resuscitation research and
quality improvement activities.

2.2. Using Primary Information Objects to Create Representa-
tions of Resuscitation Episodes. In a previous article Eftestøl
et al. presented a conceptual framework for representing the
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data from resuscitation episodes [8]. This representation is
essentially a standardized data format developed to describe
a resuscitation episode. Briefly, the RORE involves two
aspects that are separately modeled, the therapy domain
state sequence and the response (or rhythmic) domain state
sequence. Generally, we denote a resuscitation episode as a
sequence of changing states.The individual states are defined
initially within either the therapy or the response domain and
these two aspects are put together in a combined sequence
to concisely describe the resuscitation. A change in either
domain constitutes a change in the state of the combined
episode representation. The transitions between the states
in each domain are represented as delimited time intervals,
where the start and end time for each interval is given for
that state. The start and end times therefore indicate the time
of transition into and out of the represented state. The time
of transition out of a specific state corresponds to the time of
transition into the next state. For the response domain, the
states are the various cardiac rhythms that occur throughout
a resuscitation episode. In the therapy domain, the states
are the interventional treatments given to the patient: in this
study these were the chest compression sequences, hands off
intervals, and defibrillation shocks. These two sequences or
representations and the combination of these two domains
constitutes the RORE.

A Formalised Description of the Concept in the Context of
the PIO Events. To be able to design algorithms that can
reason on the information we need a model that captures the
relationship between the elements both in terms of the course
of time and type of event.

To each type of event 𝑒
𝑖
, there is the time point 𝑡

𝑖

describing the transition or onset time. One can say that the
event marks a change of state, the state 𝐸

𝑖
determined by the

type of event at time 𝑡
𝑖
. The state is unchanged until the next

event 𝑒
𝑖+1

marks the transition into the next state 𝐸
𝑖+1

.
To each state, we define the corresponding time interval,
𝑇
𝑖
= [𝑡
𝑖
, 𝑡
𝑖+1

].Thus, the course of events during a resuscitation
episode will be defined as a continuous sequence of states 𝑆 =
{(𝑇
1
, 𝐸
1
), (𝑇
2
, 𝐸
2
), . . . , (𝑇

𝑁
, 𝐸
𝑁
)} where the time intervals are

ordered according to time since start of episode, 𝑡
𝑠
.

We define three sets of states.The first two sets are related
to the therapeutic and rhythmic events. The therapeutic
states are limited to the set 𝑆

𝑒
= {C,H,D} marking the

compression sequences (C), the hands-off intervals (H), and
the defibrillations (D). The rhythmic states are limited to
the set 𝑆

𝑟
= {VF,VT,AS,PE,PR} which represents ongoing

rhythms the start and end of which are defined by the
corresponding transition events. VF is the state ongoing in
the time interval the start of which ismarked by the transition
event vf and ended by one of the other transition events in𝑅

𝑒
.

The relationship between the other rhythmic events as, vt, pe,
and pr and states AS, VT, PE, and PR is similar. The third set
is constructed from the combination of the therapeutic and
rhythmic states in the time interval where the two types of
states are unchanged. If the rhythmic state sequence is

𝑆
𝑅
= {([𝑡

0
, 𝑡
3
] , 𝐸
𝑅1
) , ([𝑡
3
, 𝑡
4
] , 𝐸
𝑅2
)} (1)
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Figure 1: Signals and data recorded by three different automated
external defibrillators: (a) Philips Forerunner 2, (b) Philips MRx,
and (c) Physiocontrol Lifepak 12.The blue and red tracings show the
electrocardiogram and thoracic impedance, respectively. Examples
of information recorded in the defibrillator’s electronic log are
shown above each plot window. Annotations of rhythm transitions
and therapeutic events are shown at the top and bottom inside each
plot window.

and the corresponding therapeutic state sequence is

𝑆
𝑇
= {([𝑡

0
, 𝑡
1
] , 𝐸
𝑇1
) , ([𝑡
1
, 𝑡
2
] , 𝐸
𝑇2
) ,

([𝑡
2
, 𝑡
4
] , 𝐸
𝑇3
)} ,

(2)

the combined state sequence will be

𝑆
𝐶
= {([𝑡

0
, 𝑡
1
] , 𝐸
𝑇1
𝐸
𝑅1
) , ([𝑡
1
, 𝑡
2
] , 𝐸
𝑇2
𝐸
𝑅1
) ,

([𝑡
2
, 𝑡
3
] , 𝐸
𝑇3
𝐸
𝑅1
) , ([𝑡
3
, 𝑡
4
] , 𝐸
𝑇3
𝐸
𝑅2
)} .

(3)

Note how the state labels from SR and SC are concatenated.
For the tracing in Figure 1(a), the three state sequences

representing the part of the resuscitation episode that is
shown will be as follows:
𝑆
𝑇
= {([740.8, 805.2] ,H) , ([805.2, 887.2] ,C) ,

([887.2, 903.3] ,H) , ([903.3, 908.3] ,D) ,

([908.3, 938.8] ,H) , ([938.8, 1062.0] ,C)} ,

𝑆
𝑅
= {([793.6, 908.3] ,VF) , ([908.3, 944.0] ,PE) ,

([944.0, 1062.0] ,VF) } ,

(4)
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and the combined sequence will be

𝑆
𝐶
= {([793.6, 805.2] ,HVF) , ([805.2, 887.2] ,CVF) ,

([887.2, 903.3] ,HVF) , ([903.3, 908.3] ,DVF) ,

([908.3, 938.8] ,HPE) ,

([938.8, 944.0] ,CPE) , ([944.0, 1062.0] ,CVF)} .
(5)

2.3. Designing Algorithms Reasoning on the RORE. The
RORE is well suited for designing reasoning algorithms
which aims to mimic the interpretation a clinician will do.
The basic principle is that the algorithms can identify time
intervals in the state sequences fulfilling criteria expressed
by the state sequence labels. For example, in the current
study, the RORE was implemented in MATLAB where the
state sequences can be realised as a list with the sequence
labels. The time intervals are placed in corresponding lists
so that, if a specific state symbol is found in position 𝑖 in the
list of state sequence labels, the corresponding time interval
can be found in position 𝑖 in the list of state sequence time
intervals. The complete episode from which the tracing in
Figure 1(a) originates is represented by the therapy sequence
𝑆
𝑇
= {H,D,H,C,H,D,H,C,H,C,H,C,H,C,H,C}, the

rhythm sequence 𝑆
𝑅
= {VF,PE,VF,PE,VF,PE,VT,VF,PE,

VF,UN}, and the combined sequence 𝑆
𝐶
= {HVF,DVF,

HPE,CPE,CVF,HVF,DVF,HPE,CPE,CVF,CPE,HPE,CPE,
HPE,HVT, HVF,CVF,HVF,CVF,HPE,CPE,CVF, CUN}.
(Notice the use of UN for unknown state.) The framework
is quite flexible where the RORE serves as the vocabulary
on which it is possible to reason to derive the SIOs. For
example, the initial rhythm can be determined by retrieving
the first element from SR. The time of the defibrillations can
be determined by searching ST for occurrences of D and
retrieving the corresponding time intervals.

As we will see later, the review will be focused on the
pre- and postshock periods of each shock. This can be
done by repeating the analysis for each shock, wherein the
state sequences between the current and previous shock (or
beginning of episode) are extracted to represent the preshock
period.The states between the current and next shock (or end
of episode) are extracted to represent the postshock period.
Subsequently, the start of the first compression sequence and
the end of the last compression sequence can be found by
searching the preshock therapy sequence for the first and last
occurrences of C. The duration of the preshock compression
sequence can furthermore be by subtracting the start time for
the time interval of the first C from the end time of the last C.

We will use this kind of reasoning to illustrate how this
methodology can be used in the following case study.

3. A Case Study

The extraction from the King County database utilized in the
current study will act as a model for the design of automatic
data collection algorithms which is the goal of this study. By
using thismanually acquired data, a particular representation
of the cardiac arrest for each subject will be developed which

will contain the candidate set of variables to exactly describe
and document the resuscitation episode.These automatically
derived variables will be a replica of the original variables and
the two data sets will be compared for evaluation.

3.1. Current State of the Art. The EMS division of King
County has registered all sudden cardiac arrests treated in a
large metropolitan area surrounding Seattle, WA, since 1976
[6, 9, 10].This database has been used in several retrospective
studies, where the study objectives have been diverse. Specific
examples include the recording of Utstein elements to inves-
tigate long term survival among resuscitated patients [9], the
effect of time to EMS arrival on survival [10], and the effect
of resuscitation algorithm changes on survival [11], and the
application of public access defibrillation affects EMS therapy
[12]. In the scope of the present investigation, studies using
the information derived from interpretation of the CPR in
association with the analysis of the physiologic signal are of
particular relevance. For example, in one study the effect of a
change in the cardiac arrest protocol introduced to decrease
the hands off interval (HOI) associated with shock delivery
was assessed [6]. The effect of the protocol change was
evaluated by analyzing time intervals before and after shocks.
In another study designed to develop a method to predict
the outcome of defibrillation, ECG waveforms prior to the
first shock were extracted for analysis along with information
regarding whether ROSC occurred following the defibrilla-
tory shock [13]. For all of these studies, the abstraction of
information was carried out by following a carefully scripted
case review routine. This abstraction process includes review
of the EMS medical incident report forms using specif-
ically designed forms based on Utstein variables, review
of electronic recordings from the AEDs, again using well-
defined criteria, and using predefined time points for rhythm
assessment. In addition there was direct audio review of
dispatch recordings for each case.These records are reviewed
to determine various aspects of therapy, such as duration
and frequency of chest compressions, number and timing
of defibrillations, response to shocks, and the presence and
duration of HOI. In King County the review process is clearly
defined in a data dictionary where each variable generated
from the review is listed with an explanatory description and
the possible values it can have. After the review, the variables
are stored in an Access database (Microsoft Corporation).
The review itself is conducted by dedicated staff members
who receive extensive training in abstraction techniques prior
to performing independent reviews. All cases are abstracted
by a minimum of two reviewers. All cases with conflicts
are adjudicated by a supervising physician expert in ECG
analysis.

3.2. Overview of Data Collection. The total data set consisted
of a convenience sample of 75 cardiac arrests from the
King County registry which were completely deidentified
using custom software written for this purpose. The study
was approved by the IRB of the University of Washington.
The study was divided into two phases. In the development
phase, 20 cases were randomly selected and used to create
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the algorithm which utilized the two sources of clinical
information available. The algorithm used both the raw
data from the original database which had been placed in
Excel formatted files and the CPR process data (from the
defibrillator downloads of the defibrillator data files) to create
the summary of the case termed the “Representation Of
the Resuscitation Episode” (RORE). Then this process was
reversed so that the RORE was used to recreate a second
database whose purpose was to determine if the original data
could be accurately abstracted from the RORE to recreate
the clinical record in an automatic algorithmically driven
manner. After the method had been adjusted to perform well
on the development set data, its accuracy was then tested on
a validation set of the remaining 55 cases from the database
(Figure 2).

3.3. Overview of the Variables to be Replicated. To begin the
process, data fields of interest were extracted from storage
in the King County EMS repository which is an Access
database by being exported to an Excel spreadsheet. The
patient population was restricted to those treated with MRx
AED devices (Philips Inc.) which uses a small “puck” placed
under the rescuers hands during chest compressions to
very accurately record the force and acceleration used in
chest compressions. The CPR process data consisted of the
electronic files stored by the MRx during each resuscitation
episode. The electronic data were downloaded to computer
archives immediately after the episode. The written report of
the patient care encounter as filed by the EMS crew following
the resuscitation was also used in the manual abstraction
process.

There are several types of variables in the database.
Variables describing the defibrillation shocks, chest compres-
sions, and patient response were included. Each of these
general categories of variables contain subsections which
detail the time of each event, the operation of the device (i.e.,
Joules delivered with each shock, impedance at each shock,
etc.), and variables describing transitions in rhythm related to
the patient’s response after each shock. Each row in the Excel
spreadsheet stores the variables related to one specific shock
and includes the following.
(1) Time Events. Each time event is given by three variables,
hour, minute, and second of the day. For example, “ECG start
time” corresponding to the AED power on time is registered

in the three variables: ecghr, ecgmn, and ecgsc. Each of
these is coded numerically: 0–23 for hour, 0–59 for minutes
and seconds. We will refer to these collectively as ecgtime
(hr:mn:sc) denoted by the variable name “ecgtm.” The other
time data points reported for a shock include the events
describing therapy prior to and including the shock: “First
compression time,” “Last compression time,” and “Shock
time” (variable names “fctm,” “lctm,” and “shktm”). The time
events following a shock describe the patient’s response and
give the time points for transitions to specific rhythms after
each shock is given: “VF onset time” and “ROSC time” (return
of spontaneous circulation) (variable names “vfonsettm” and
“rsctm”). Table 1 shows amore detailed view of the time event
variables.
(2) Device Operation andTherapy. “Shock number,” “Number
of shock sequences recorded,” and “Number of shocks in
sequence” record the shock sequence number, the number of
electrical shocks delivered to the patient, and the number of
“stacked” shocks without intervening CPR (variable names
“shkn,” “ssrecord,” and “shks”). The AED operating mode,
either “manual” or “advisory,” was coded in the variable
“mode.” EMS provision of CPR was coded in the variable
“CPR.” The energy and impedance of the shock are given by
the variables “enrgy” and “imp,” respectively. Table 2 shows
a more detailed view of the device operation and therapy
variables.

(3) Patient’s Response Following a Shock. For the initial
rhythm, the variable “init rhy” describing the rhythm at the
start of the ECG recording was captured. The rhythms at
10, 30, 60, and 120 seconds after the shock were recorded
in the variables “r10,” “r30,” “r60,” and “r120.” These time
points were originally developed in an effort to determine the
outcome of the defibrillatory shock as precisely as possible.
It was felt that the first 2 minutes after shock were most
important in determining if a shock had been successful
in producing an organized and possibly perfusing rhythm
and that, by using discrete, well-defined points, the rhythm
changes could be determined in a time window of relevance
to evaluating the effect of resuscitation therapies. In addition,
the variable “orgpr” is used to describe whether there was an
organized rhythm at any time during the interval before the
next shock (or the endof the recording if nomore shockswere
given). In a similar manner “vfpr” indicates whether there is
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Table 1: The time variables with descriptive names, variable names, coding, and explanation of each variable.

Variable
in Access
database

Possible values Description

ECG start time ecghr (0–23, 99)
99 = unknown The hour of actual start time of the ECG

ECG start time ecgmn (0–59, 99)
99 = unknown The minute of the actual start time of the ECG

ECG start time ecgsc (0–59, 99)
99 = unknown The second of the actual start time of the ECG

First compression time fchr
(0–23, 88, 99)
88 = no CPR administered,
99 = unknown

Hour of first compression, prior to shock. Record only if
first compression on record is actually the first
compression given

First compression time fcmn
(0–59, 88, 99)
88 = no CPR administered,
99 = unknown

Minute of first compression, prior to shock. Record only
if first compression on record is actually the first
compression given

First compression time fcsc
(0–59, 88, 99)
88 = no CPR administered,
99 = unknown

Second of first compression, prior to shock. Record only
if first compression on record is actually the first
compression given

Last compression time lchr
(0–23, 88, 99)
88 = no CPR administered,
99 = unknown

Hour of last compression before shock

Last compression time lcmn
(0–59, 88, 99)
88 = no CPR administered,
99 = unknown

Minute of last compression before shock

Last compression time lcsc
(0–59, 88, 99)
88 = no CPR administered,
99 = unknown

Second of last compression before shock

Shock time shkhr (0–23, 99)
99 = unknown Actual hour of shock delivery

Shock time shkmn (0–59, 99)
99 = unknown Actual minute of shock delivery

Shock time shksc (0–59, 99)
99 = unknown Actual second of shock delivery

VF onset time vfonsethr
(0–23, 99)
99 = no onset, patient remained in VF
blank indicates no vf

Hour of VF onset, best estimate when underneath CPR
artifact

VF onset time vfonsetmm
(0–59, 99)
99 = no onset, patient remained in VF
blank indicates no vf

Minute of VF onset, best estimate when underneath
CPR artifact

VF onset time vfonsetss
(0–59, 99)
99 = no onset, patient remained in VF
blank indicates no vf

Second of VF onset, best estimate when underneath
CPR artifact
Therefore a 99 : 99 : 99 indicates an unsuccessful
defibrillation

ROSC time rschr (0–23, 99) 99 = unknown Actual hour of ROSC
ROSC time rscmn (0–59, 99) 99 = unknown Actual minute of ROSC
ROSC time rscsc (0–59, 99) 99 = unknown Actual second of ROSC

a recurrence of VF prior to the next shock. Table 3 shows a
more detailed view of the patient’s response variables.

Primary and Secondary Information Objects. Table 4 provides
an overview of the primary information objects that we use
to construct the RORE. Considering the variables registered
during the manual review, some of these basically reflect the
same information as the primary information objects, while
the remaining variables correspond to secondary information
objects. Table 5 provides an overview of all the variables

handled in this study. Variables are categorized as describing
time events, patient response, and device operations and
therapy and primary and secondary information objects are
indicated by the acronyms PIO and SIO, respectively.

3.4. Generating the Representations. To generate the RORE,
the information recorded by the defibrillator and contained
in the CPR process data on the device is used directly for the
time and shock data: that is, the time the device is turned
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Table 2: The variables describing device operation and therapy with descriptive names, variable names, coding, and explanation of each
variable.

Variable
in Access
database

Possible values Description

Shock number shkn ≥0 and <21 Shock sequence number.

Number of shock
sequences recorded ssrecord (>0 and <31) or 99

99 = unknown

This describes the number of electrical shocks delivered
to the patient as recorded on the AED total shocks
received by the patient.

Number of shocks in
sequence shks 1–31

The number of shocks without intervening CPR. For
example, 1 = no stacked shocks while > 1 = stacked
shocks. After 2005 no case should have stacked shock.

Mode mode
1 = manual
2 = semiautomatic & advisory
9 = unknown

This is the mode of the AED at the time of the shock

EMS CPR prior to shock? cpr
1 = yes
2 = no
9 = unknown

Description of if EMS CPR was administered to patient
before shock was delivered.

Impedance at 1st shock imp Measured in Ohms Impedence at time of first shock sequence (50–200,
999) 999 = unknown.

Energy of 1st shock enrgy Measured in Joules Energy of first shock in sequence.

on, the exact time of each shock, number of joules delivered,
impedance at time of shock, and so forth are obtained directly
from the device event files. In addition, the information
for rhythms and chest compressions extracted by manual
review of the ECG using Event Review 3.1 is then recorded in
the ACCESS database and subsequently placed in the Excel
spreadsheet (Figure 2). Several PIOs are extracted from both
the written EMS reports and from the manual review. We
have observed and wish to stress that, in order to accurately
describe the rhythm data, the only data points required are
the times of rhythm transitions between different rhythm
types.This decreases the amount of information stored in the
RORE substantially.This is clearly illustrated in the following
example (see Figure 3).

In this resuscitation we are viewing the ECG (blue) and
the thoracic impedance (red).TheECG represents the cardiac
activity while the impedance indicates the chest compres-
sions.The time interval shownhere is from 180 seconds to 330
seconds.This shows a section of VF beginning at 180 seconds
with no CPR being performed and during which analysis of
the ECG has recommended a shock. The shock is delivered
at 198 seconds (d1) and CPR begins at 201 seconds. The CPR
artifact shows a possible QRS complex at 204 seconds and
a definite QRS at 221 seconds and again at 229 seconds. In
the database used for this study the rhythm was recorded at
predetermined time points (10, 30, 60, and 120 seconds). An
organized rhythm was defined as being at least 2 beats within
the 5 seconds before and after the time point. Since the 30-
second time point is 228 seconds this does not qualify as an
organized rhythm yet. At 60 seconds (258 sec.) an organized
rhythm is present without a pulse being detected. VF then
recurs at 282 seconds and persists with CPR artifact until the
end of the trace.One can easily appreciate that the description
of this 150-second period of resuscitation is complete but
quite lengthy. To condense the description for the KCEMS

database we attempted to reduce the record by focusing
on specific time points immediately after the shock. This is
recorded in the database as described above with the rhythm
at each time point recorded. Because discrete predetermined
time points are used there is an inherent inaccuracy in the
record. The rhythm transition points are only estimated by
the time points used and then only if the transition occurs
within the first two minutes after shock. In contrast, for the
PIO based data recorded in the response domain, only the
transitions in rhythm are recorded and these would ideally
be recorded at the precise time of occurrence. The episode
in the lengthy description above is shown in RORE format
in Figure 4. For the 180 to 330 time interval there are 5 lines
of notation in the therapy domain, 4 lines in the response
domain, and 8 lines in the overall episode representation
(Figure 4 outlined portion). Ideally, the rhythm transitions
would be determined exactly by direct manual review or
by an automatic computer algorithm with an overread by a
reviewer. This would provide the exact times of transition.
In this study, to determine “proof of concept,” the KCEMS
database was used to derive the time points of transitions,
while recognizing that they would be only estimates of these
transitions. Using the KCEMS database the response domain
is formed as follows. The events in the database are recorded
in seconds so that the initial rhythm of VF is noted to begin
at 46 seconds after the defibrillator is turned on at which
time the leads are connected. The next rhythm transition is
to asystole at 208 seconds (r10, 10 seconds after the shock)
followed by transition to an organized rhythmwithout a pulse
at 258 seconds (r60, 60 seconds after the shock) and a return
to VF at 283 seconds. Note that the reoccurrence of VF was
identified as accurately as possible by the reviewers while the
organized rhythms were recorded only at the 4 time points.
The response domain for these events is shown in seconds
as “46–208: VF” and then “208–258: AS” to indicate asystole
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Table 3: The response variables with descriptive names, variable names, coding, and explanation of each variable.

Variable
in Access
database

Possible values Description

Initial rhythm init rhy

1 = asystole,
2 = VF,
3 = pulseless VT,
4 = organized,
5 = indeterminate (VF/organized),
6 = indeterminate (VF/asystole),
7 = indeterminate (brady),
8 = indeterminate,
9 = unknown

Description of what the initial rhythm recorded was as
determined from the AED. Codes in parenthesis refer to
indeterminate between the two stated rhythms.
If initial rhythm NOT VF and patient subsequently fibrillates,
record original VF onset time, for substudy of secondary VF.

Preshock rhythm rhyb4

1 = asystole,
2 = vf,
3 = vt,
4 = org,
5 = indeterm-(vf/org),
6 = indeterm-(vf/asys),
7 = indeterm-brady,
8 = indeterm,
9 = unknown

Description of what the preshock rhythm recorded was.
Codes in parenthesis refer to indeterminate between the two
stated rhythms.

Rhythm 10 secs after
the last shock r10

1 = asystole,
2 = vf,
3 = vt,
4 = org,
5 = indeterm-(vf/org),
6 = indeterm-(vf/asys),
7 = indeterm-brady,
8 = indeterm,
9 = unknown

Description of what rhythm recorded 10 seconds after the
shock was. Codes in parenthesis refer to indeterminate
between the two stated rhythms.
Use discretion to take the rhythm ±5 seconds from 10
seconds after shock.

Rhythm 30 secs after
the last shock r30

1 = asystole,
2 = vf,
3 = vt,
4 = org,
5 = indeterm-(vf/org),
6 = indeterm-(vf/asys),
7 = indeterm-brady,
8 = indeterm,
9 = unknown

Description of what rhythm recorded 30 seconds after the
shock was. Codes in parenthesis refer to indeterminate
between the two stated rhythms.
Use discretion to take the rhythm ±5 seconds from 30
seconds after shock.

Rhythm 60 secs after
the last shock r60

1 = asystole,
2 = vf,
3 = vt,
4 = org,
5 = indeterm-(vf/org),
6 = indeterm-(vf/asys),
7 = indeterm-brady,
8 = indeterm,
9 = unknown

Description of what rhythm recorded 60 seconds after the
shock was. Codes in parenthesis refer to indeterminate
between the two stated rhythms
Use discretion to take the rhythm ±5 seconds from 60
seconds after shock.

Rhythm 120 sec after
the last shock r120

1 = asystole,
2 = vf,
3 = vt,
4 = org,
5 = indeterm-(vf/org),
6 = indeterm-(vf/asys),
7 = indeterm-brady,
8 = indeterm,
9 = unknown

Description of what rhythm recorded 120 seconds after the
shock was. Codes in parenthesis refer to indeterminate
between the two stated rhythms.
Use discretion to take the rhythm ±5 seconds from 120
seconds after shock.

VF prior to next
shock? vfpr 1 = yes, 2 = no, and 9 = unknown

Description of whether or not there was VF between shocks,
or between the last shock and the end of this recording as
determined from audio or the MRIF. Not to capture VF at
any time after device turned off.
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Table 3: Continued.

Variable
in Access
database

Possible values Description

Organized rhythm
prior to next shock? orgpr 1 = yes, 2 = no, and 9 = unknown

Description of whether or not there was an organized rhythm
between shocks, or between the last shock and the end of the
recording.
Best organized rhythm (wide/narrow, and rate) will be taken
within 3 minutes of the final shock on recording.

ROSC rosc 1 = yes, 2 = no, and 9 = unknown Description of whether return of spontaneous circulation
occurred.

Table 4: The primary information objects (PIO). These variables constitute the primary information objects (PIO) and are used to model
the entire resuscitation episode.The therapy and response domains are described independently. For each domain the entire time span of the
episode is described as a sequence of interchanging states. For each state change, the corresponding transition times are given which specify
the times entering and leaving the state.The entering time of a state corresponds to the leaving time of the prior state unless it is the beginning
of the episode. The leaving time of a state corresponds to the entering time for the next state unless it is the end of the episode.

Variable domain

Transition time Patient’s response Therapy
State Code State Code

Seconds Ventricular fibrillation VF Chest compressions C
Seconds Ventricular tachycardia VT Hands off interval H
Seconds Asystole AS Defibrillation D
Seconds Pulseless electrical activity PE Unknown U
Seconds Pulse generating rhythm PR
Seconds Unknown UN

as the rhythm at 10 seconds after the shock. Then there is a
transition to an organized rhythm without a pulse: “258–283:
PE” and another transition when VF recurs: “283–343: VF.”
This method produces a succinct record of rhythms as shown
in Figure 4.

The therapy domain states are presented in a similar
manner. The chest compression times are read directly from
the variables for first and last compression times prior to the
each of the shocks present in the ACCESS database. All other
information is read from the CPR process data as recorded in
the MRX defibrillator. For example, in the defibrillator event
log all events are listed along with the time in milliseconds.
The time for each shock can be found by doing a search of
the MRx recorded data for the text string “shock delivered”
indicating the shock events. Once found, the corresponding
time is given in milliseconds and is converted to seconds.
This is illustrated in Figure 3 in which the defibrillator log
events such as “shock delivered” can be seen outside the
trace boxes. In this figure the rhythms noted in the KCEMS
database have been inserted as rhythm annotations such as
“vf ” and “as” and are seen in the upper portion just inside
the boxes. The therapy related annotations shown at the
bottom inside of the boxes (“c1”/“c2” and “d1”/“d2”) are the
start and end of compression sequences and defibrillation
events respectively). The therapy domain representation was
created from the KCEMS database in a manner similar
to that described above for the response domain. For the
180–330-second period shown in Figure 3 there is a hands

off interval from the start at 180 seconds to the time of
the shock at 196 seconds. After the shock follows a brief
hands off interval continuing until compressions start at 200
seconds which continues with brief pauses for ventilations
until chest compressions are halted at 322 seconds. Lines
3–7 in the therapy domain (Figure 4) represent this period
of the resuscitation. The RORE is easily constructed by
combining the therapy and response representations and
gives a comprehensive picture of the relationship between the
provided therapy and the patient response to the treatment.
In the following, the therapy domain, response domain, and
the RORE make up the completed representation using the
PIOs as described above.

3.5. Reasoning from the Representation Back to Create the
Derived Data. The working principles of the reasoning
algorithms are described in the following. For increased
readability a prose form has been chosen rather than using
a pseudocode description. All the algorithms have been
implemented and run in MATLAB.

Before beginning to work back from the representations
to the database it is necessary to establish the precise absolute
time for the resuscitation. The KCEMS database uses the
absolute times at the data points as extracted by manual
review of the record.The times in the defibrillator log file and
subsequently the representation are relative or elapsed times.
In order to be able to calculate back to the absolute time used
in the manual registration it was necessary to use the time as
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Table 5:The variables in the original database which will be automatically replicated.The table is organized in columns to highlight the type
of information the variables provide: time events, patient’s response, and device operation and therapy. Each variable is labeled according to
it being a primary information object (PIO) or secondary information object (SIO). All the variables labeled as PIO can also be found in the
table listing the PIO variables (Table 4). The remaining variables labeled as SIO can be automatically derived from the PIO variables (listed
in table PIO) by designing proper reasoning algorithms.

Variable domain
Time events Patient’s response Device operation and therapy

First compression time PIO Initial rhythm SIO Shock number SIO
Last compression time PIO Preshock rhythm SIO Number of shock seq. recorded SIO
VF onset time PIO Rhythm 10 sec after last shock SIO Number of shocks in sequence SIO
ROSC time PIO Rhythm 30 sec after last shock SIO Mode SIO
Shock time PIO Rhythm 60 sec after last shock SIO EMS CPR prior to shock? SIO

Rhythm 120 sec after last shock SIO Impedance at 1st shock SIO
ECG start time SIO VF prior to next shock? SIO Energy of 1st shock SIO

Org. rhythm prior to next shock? SIO
ROSC SIO

recorded in the stored defibrillator files at the time the device
was turned on as the reference time for all events. Doing
this involved calculations to convert the start time from the
conventional time in year/month/day/hour/minute/second
format to a “serial date number” time (the number of days
from January 1, 0000) used by the algorithm.These times are
then converted to elapsed times for the representations. The
elapsed times are then converted back to absolute times via
the “serial date number” time for comparison to the original
times in the database. The comparison of the times from
the representations to the database can therefore be viewed
as a comparison of the accuracy of the manual method of
extraction by the reviewer to the automated method based
on the defibrillator’s internal files. In the automated method
the exact time the defibrillator is turned on is used as the
basis for developing the times of shocks and other events.The
assumption is made that the defibrillator has been correctly
synchronized with the local regional time. (See Appendix A.1
for details.)

The first primary information objects to be established
and compared are the defibrillation shocks. Using the therapy
domain representation, each shock in the therapy domain
is identified and its position noted; the absolute time is
calculated. Then the preshock and postshock periods can
be identified for each shock. A preshock period is the time
interval between the current shock and the previous shock
and the postshock period the interval between the current
shock and the next shock. If the current shock is the first
shock the previous shock is replaced by the beginning of
episode (BOE) marker. Likewise if it is the last shock of
the recording the “next shock” is replaced by the end of
episode (EOE) marker in the therapy domain. To determine
the “First compression time,” the preshock period of the
current shock as recorded in the therapy domain is used
as the time interval within which to search for the first
occurrence of the symbol used to identify compressions, “C.”
Likewise, “Last compression time” is determined by searching
the recorded preshock interval for the last occurrence of “H”
which signifies a change in state fromCPR to “hands off time”

prior to the defibrillatory shock “D.”The times for these PIOs
are then converted to absolute times.

The PIOs for the rhythm domain are handled in a
similar manner. Here the PIOs represent the rhythm domain
states and are VF (ventricular fibrillation), AS (asystole),
PE (pulseless electrical activity), PR (pulsatile rhythm), and
UN (unknown). These states are represented in the RORE.
Custom software was programmed to identify the preshock
and postshock periods of each shock in the RORE and then
to search these intervals for the first occurrence of the PIO of
interest (VF onset or ROSC onset). The time associated with
this event is then converted as noted above from seconds to a
computer time stamp known as SDN time (see Appendix A.1
for details) to hr:mn:sc format and is then compared to the
original KCEMS database.

The next step in the conversion process from the RORE
to the derived database is to derive the secondary information
objects (SIOs; Table 5) from the PIOs. Determination of the
Ecg start time and other time variables has been described
with the time conversion process. The rhythm variables are
handled by assuming that once a rhythm is present that it
remains in that state until the notation in the RORE indicates
a change in the rhythm state. The algorithm recreates the
rhythm at a specific time point simply by identifying the
time interval in the RORE containing this time point and
noting the corresponding rhythm symbol in the RORE
occurring immediately before this (for detail: Appendix A.2).
To determine if there are occurrences of VF or organized
rhythms before the next shock, the postshock interval is
searched for occurrences of the types of rhythms in question
and the results allocated to the variables “vfpr” and “orgpr.”

The device operation variables are also directly related to
the defibrillatory shocks. The number of each shock, “shkn,”
is determined by sorting the shocks in ascending order
according to the sample numbers and assigning to each shock
the number corresponding to its position in the ordered
sequence. The number of shocks without intervening CPR is
determined by initializing a counter to one. For each shock,
the preshock interval is searched for compression events. If
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Figure 3: Case recording from MRX defibrillator. The blue tracing
is the ECG. Impedance tracing is shown in red. The defibrillator log
events (shock advised, charge, shock delivered, analysis started, and
artifact detected), the rhythm transitions (vf: ventricular fibrillation,
as: asystole, and pe: pulseless electrical activity), and annotations
for start and end of compressions (c1 and c2) and defibrillations (d1
and d2) are shown. Refer to Figure 4 for the corresponding RORE
representation.

none are found, the counter is incremented. The counter
value is recorded in the variable “shks.” The variable, “ssrec,”
which gives the number of recorded shocks is determined as
the length of the ordered sequence of shocks. In the database,
the “mode” variable indicatingmanual or AEDmode is based
on the clinical impression of the reviewer rather than on
the CPR process data from the defibrillator log files. In the
algorithm implementation the “modeSwitchMonitor” and
“modeSwitchAED” in the defibrillator log file is used directly.
Once identified for each shock the mode is compared to the
database in accordance with the latest such entry prior to
the time of shock. The energy and impedance variables are
also manually estimated in the database by the reviewer. In
contrast, in the algorithm these were read directly from the

180 196 H
196 198 D
198 200 H
200 319 C
319 331 H

Therapy
domain

180 208 VF
208 258 AS
258 283 PE
283 331 VF

Response
domain

180 196 HVF
196 198 DVF
198 200 HVF
200 208 CVF
208 258 CAS
258 283 CPE
283 319 CVF
319 331 HVF

Representation
of

resuscitation
episode

Figure 4: The representation of the resuscitation episode (RORE)
including the therapy domain representation, the response domain
representation, and the episode representation (for detailed expla-
nation see Appendix C). UN = unknown, C = compressions, H =
hands off chest, D = shock, CVF = compressions during VF, CAS =
compressions during asystole, DVF = defibrillation for VF, PE =
pulseless electrical activity, and PR = pulsatile rhythm.

defibrillator log file in the information provided with each
shock. These values are then compared.

3.6. Comparing the Original and Replicated Databases. For
result evaluation, each of the automatically generated SIO
variable values based on the RORE representation are com-
pared to the corresponding manually registered values read
into MATLAB from the Excel spreadsheet. These compar-
isons were coded according to being correct, wrong, or
missing. These three categories are given the numeric codes
1, 2, and 3, respectively. The comparisons involve computing
the value difference and comparing this to the specified value
ranges for each of the three categories. As all values are
integers, the deviations will also be integers.The value ranges
are provided in the next section.

When comparing recorded event times, a deviation of
1 second or less was defined as correct, those larger than
this were defined as wrong, and deviations due to the codes
for persistent VF, no CPR data, and no data available were
defined as “missing”(see Appendices B.1 and B.2 for details).

After tuning the system on the first twenty, it was run on
the 55 episodes that had not been interpreted by the system
previously. One episode was excluded as the registration
was incomplete (shocks 2 and 3 missing). Error rates and a
detailed analysis of the etiology of each error were performed.

4. Results

Error rates are shown in Figure 5. Rhythm annotations (a)
were accurately reproduced in over 90% of cases. Discrep-
ancies were due primarily to inconsistencies in the original
database. The therapy variables showed the largest error
rates in mode (15%), impedance (12%), and energy (14%)
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Figure 5: Summary of the match rates comparing the manually and automatically derived variable values. (a) shows match rates for rhythms
at the preselected times from the database. (b) shows data regarding the defibrillator logs of shock data. (c) shows the times for ECG start,
shock times, first compression and last compression times, VF onset times, and time of return of spontaneous circulation. All results are given
in percentages of the ratio: correct/(correct + error). For the time variables, the lower row shows the ratio of automatically generated codes
for missing values matching the manually given missing codes (gray bars).

annotations (b). Defibrillator generated data for these vari-
ables differed from estimates by the reviewers taken directly
from defibrillator screen. Time variable (c) demonstrated a
large number of unknown values. For those values that were
present, the correlation of time values between the original
database and the values recreated by the algorithm was over
90%. The missing values accounted for a large portion of
values related to ECG start, first compression time, VF onset
time, and time of return of spontaneous circulation. These
are areas which require a judgment by the reviewer and
therefore have a subjective component or may be obscured
by CPR artifact or difficulty in ascertaining whether a pulse
or blood pressure was present due to lack of documentation.
The errors are divided between flaws in the algorithm and
inconsistencies in the manual annotations.

In the following a detailed discussion is given on the
various types of errors which occur.

4.1. Evaluation of the Replication of the Time Variables. The
time variable results are shown in Figure 5 (for additional
detail see Table 6).

For ECG start there are four errors. Three of these
correspond to deviations of 4, 66, and 69 seconds and might
be explained by special circumstances in the operation of the
AED (see Appendix B.3 for details). One error corresponds
to a deviation of more than 4 hours which we do not
have an explanation for. Two of these deviations seem to
propagate and might very well be the cause of corresponding
deviations and reported errors for time of shock and time
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Table 6: Results for the comparison betweenmanual and automatic recording of time event variables.The table counts the number of correct,
wrong, and missing values. An automatic recording is considered correct if the deviation from the manual recording is less than or equal to
one second. Otherwise the recording is considered wrong. A recording is considered missing if the code 66 : 66 : 66, 88 : 88 : 88, 99 : 99 : 99 is
used for either of the recordings or the manual recording was changed to 00 : 00 : 00 or 12 : 00 : 00.

Time variables
Time point ECG start Defib shock First compression Last compression VF onset ROSC pulse
Abbreviated ecgtm shktm fctm lctm vfonsettm rsctm
Correct 33 138 90 108 45 15
Wrong 4 2 0 1 5 0
Missing 17 0 50 31 90 125

of first and last compression. Missing values were noted
in 17 cases due to lack of a recorded value in the manual
database.The automatic procedure used the date stamp found
in the defibrillators files composing the CPR process data and
therefore was always available.

For the time of shock (shktm), there are two errors
propagated from deviations in ECG start time.

For the time of first compression (fctm) there are 50
deviations categorized as missing. In six of these cases
the manual registration has provided a time for start of
chest compressions corresponding to ECG start time. The
algorithm has been designed to interpret this situation as
“ongoing chest compressions” at the start of recording (see
Appendix B.4 for details). One case is propagated from the
large deviation in ECG start time (ectm). In the remaining 43
cases the algorithm produces the same missing codes as were
used in the manual registration.

For the time of last compression (lctm) there is one error
corresponding to a deviation of two seconds which we do
not consider to be unacceptable. There are 31 cases coded
as “missing.” There is one “missing” case where fc is given a
time and lc is coded as unknown in the manual registration.
The algorithm was designed to handle several variations of
special coding of lc/fc and this is the only case not handled
(see Appendix B.5 for details). One case corresponds to the
deviation propagated from ecg start time. In the remaining
29 cases the algorithm produces the same missing codes as
were used in the manual registration.

For the time of VF onset (vfonsettm) there are five devia-
tions considered as errors. Four of these errors are deviations
in the range 21-22 seconds. In the manual registration vfonset
is set at 11-12 seconds after start of shock. In these cases VF
is also annotated as reappearing 30 seconds after shock (r30).
The algorithm makes the determination of VF onset at r30
and produces this offset in time compared to the manually
derived reading by the reviewer. This discrepancy between
the manual review time and the automatically derived algo-
rithmic time appears to be explained by inaccuracies in
determining the time point for the end of the shock. When
the manual review noted the time at 10 seconds to be asystole
and also recorded the vfonset to be in the 11–15-second range,
the algorithm would define VF onset at the next rhythm time
check at r30. (See Appendix B.6 for details.)There is one case
where the deviation is one hour and the manual registration
obviously is wrong as the time given precedes the start of
episode. There are also six cases considered as “missing”

where the manual registration has provided a proper time
which the algorithm has interpreted as persistent VF. In all
these cases the manual rhythm annotations prior to and after
shock (rhyb4, r10, r30, and r60) indicate VF. The algorithm
is designed to recognize these cases as persistent VF (in
38 cases the algorithm and manual registration coincide).
There are two cases considered as missing where the manual
interpretation indicates persistent VFwhile the algorithmhas
yielded a proper time. In the first case the manual rhythm
annotations at 10 and 30 seconds after shock indicate asystole
and VF, respectively (r10 = 1 and r30 = 2). This is interpreted
by the algorithm as VF reappearing at 30 seconds. In the
second case shocks 2 and 3 are not registered. The study is
designed on the assumption that the episode registrations
are complete. In this case, the rhythm annotations will not
be correct as two shock registrations are missing. There is
one case where the manual interpretation has used the code
for persistent VF while the algorithm has used the “missing”
code 88 : 88 : 88. In this case the preshock rhythm is VF and
the rhythm at ten seconds is “unknown.” The algorithm has
not been designed to recognize this as persistent VF (in 43
cases the algorithm and manual registration coincide). So in
81 out of the 90 cases categorized as missing, the algorithm
produced the samemissing codes as were used in the manual
registration.

For time of ROSC (rsctm) there are 15 correct registra-
tions and 125 considered as missing. The only differences are
discrepancies in the use of codes for “unknown” 99 : 99 : 99
and 88 : 88 : 88 which the algorithm is not able to distinguish
and therefore uses the “unknown” code consistently.

4.2. Evaluation of the Replication of the Patient Response Vari-
ables. The patient response variables are coded as correct if
the manual and automatically generated values are identical.
Otherwise the automatically generated variable is considered
wrong. The patient response variables are shown in Figure 5
(for additional detail see Table 7). For the initial rhythm
(init rhy) there are no errors.

For the preshock rhythm (rhyb4), there are four errors.
In three of these cases the last rhythm registration prior to
the previous shock deviates from what has been manually
determined as the preshock rhythm. The algorithm deter-
mines rhyb4 from the last registration prior to the current
shock (r120, vfonsettm, or rosconsettm). The fourth error
corresponds to the case of two missing shock registrations
which corrupts the generation of RORE.
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Table 7: Results for the comparison between manual and automatic recording of patient response variables. The table counts the number
of correct and wrong values. An automatic recording is considered correct if the automatic recording is identical to the manual recording.
Otherwise the recording is considered wrong.

Response variables

Variable
name

Initial
rhythm

Preshock
rhythm

Rhythm
10 secs after
the last shock

Rhythm
30 secs after
the last shock

Rhythm
60 secs after
the last shock

Rhythm
120 secs after
the last shock

VF prior to
next shock?

Organized
rhythm prior
to next shock

ROSC

Abbreviated init rhy rhyb4 r10 r30 r60 r120 vfpr orgpr rosc
Correct 140 136 135 136 137 134 138 133 127
Wrong 0 4 5 4 3 6 2 7 3

There are five errors for the rhythm at 10 seconds after
shock (r10). For four of these cases, the manual registration
indicates a non-VF rhythm. At the same time, the manual
registrations of the time for VF onset (vfonsettm) are 13–16
seconds after shock. This will be reflected in the generation
of RORE and the algorithm will look for rhythm transitions
in a time window of five seconds that are present ten seconds
after end of shock (end of shock is set to three seconds after
shock is delivered). Thus, the algorithm will find a rhythm
transition to VF corresponding to the registered time of VF
onset. The fifth error corresponds to the case of two missing
shock registrations which corrupts the generation of RORE.

There are four errors for the registration of the rhythm
at 30 seconds after shock (r30). All of these are cases where
the algorithm indicates VF corresponding to a VF onset time
set at 30–35 seconds after shock rather than the manually
registered non-VF rhythm.The explanation for this is similar
to the one given for r10 above.

For the rhythm at 60 seconds after shock (r60) there
is one case corresponding to the problem with VF onset
and one corresponding to the 2 missing shock registrations
both described above. The third error corresponds to a case
where the manual registration has provided an unknown
rhythm. In RORE, the transition to unknown rhythm will
occur at 60 seconds. In the case of transition to unknown
rhythms around the time point under consideration the
algorithm is designed to choose the last known rhythm as
long as it is present within the time window. This special
handling was designed to handle transitions to unknown
rhythms generically but does not work well when the time
of rhythm transitions are not accurately represented. For
the rhythm at 120 seconds after shock (r120) there are six
errors. There are two cases corresponding to the problem
with VF onset and one corresponding to the 2 missing
shock registrations both described above. In another case,
the manual registration indicates a proper rhythm while the
algorithm has determined the rhythm as “unknown.” Here
the ECG recording ends at 111 seconds after shock. This is
represented in RORE as unknown rhythm (UN) and the
algorithm consequently sets the rhythm at 120 seconds as
“unknown.” There is also one case where the time of ROSC
onset is 100 seconds after shock and the manual registration
at 120 seconds indicates a transition to “unknown rhythm.”
In this case, the algorithmwill indicate the last known proper

rhythmas described above.There is also a casewithmismatch
between “undetermined” and “unknown” rhythm.

For the indication of whether VF occurs prior to the next
shock (vfpr), there are 2 errors. In both cases there is no
evidence of VF in the interval in question. In one of the cases
the algorithm states that there is no VF, contradicting the
manual registration of “yes.” In the other case, the algorithm
indicates “unknown” in contrast to the manually registered
“no” because the rhythm annotations indicate “unknown” or
“indeterminate” rhythm.

For the indication ofwhether an organized rhythmoccurs
prior to the next shock (orgpr), there are 7 errors. One
error corresponds to the last error described above where
there is no evidence of organized rhythm in the interval in
question. The algorithm indicates “unknown” in contrast to
the manually registered “no” because the rhythm annotations
indicate “unknown” or “indeterminate” rhythm. One of the
other errors is due to the problemwith the twomissing shocks
described above. In the five remaining cases, the rhythm
annotations indicate an organized rhythm in the interval
in question which the algorithm recognizes and determines
“yes” in contrast to the manual registration of “no.”

For the indication of presence of ROSC (rosc) there are
13 errors. In eight cases, the ROSC time is “no” and the
manual indication of ROSC is “yes.” The algorithm does
not interpret this correctly as it bases its interpretation
from RORE which does not carry information about any
occurrence of ROSC. In the five remaining cases the ROSC
time is “indeterminate” and the algorithm indicates “no”
ROSC as there is no evidence of ROSC in RORE while the
manual registration says “unknown.”

4.3. Evaluation of the Replication of the Therapy and Device
Operation Variables. The results for the therapy and device
operation variables are shown in Figure 5 (for additional
detail see Table 8). The variables are considered correct if
the manually registered and corresponding automatically
generated variables are identical.

There are no errors for the variables indicating shock
number (shkn), number of shock sequences (ssrecord), and
number of shocks in sequence (shks).

For the variable indicating the mode of the AED at the
time of shock (mode) there are 21 errors which all correspond
to the algorithm providing “yes” rather than “no” for manual
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Table 8: Results for the comparison between manual and automatic recording of device operation and therapy variables for the data set. The
table counts the number of correct and wrong values. For all variables except imp and enrgy an automatic recording is considered correct if
the automatic recording is identical to the manual recording. Otherwise the recording is considered wrong. For imp and enrgy the numeric
deviations between the manual and automatic recordings are considered. A deviation of zero is considered correct, and larger deviations are
counted as errors.

Therapy variables

Variable
name

Shock
number

Number of shock
sequences recorded

Number of
shocks in
sequence

Mode
EMS CPR
prior to
shock?

Impedance at
1st shock

Energy of 1st
shock

Abbreviated shkn ssrecord shks mode cpr imp enrgy
Correct 140 140 140 119 137 123 120
Wrong 0 0 0 21 3 17 20

mode. These are a result of the manual reviewer incorrectly
assuming the mode was for automatic mode when in fact the
device was in manual mode as indicated by the defibrillator
process files.

For the variable indicating if there was EMS CPR prior to
shock or not there are three errors. For two of the cases both
start and end times of compressions prior to shock are set
to “unknown.” The algorithm consistently interprets this as
CPR being present (reducing error rates in tuning phase).The
third error is due to the problemwith the four-hourmismatch
in the ECG start time variable.

For the variable indicating the impedance at first shock
(imp) there are 17 errors.

For the variable indicating the energy of the first shock
there are 20 errors.

The algorithm registers the impedance and energy for
each individual shock. For these variables (except cpr) the
automatically derived information is read directly from the
log data file and is therefore exact. It is therefore an error
caused by the person performing the manual extraction
estimating the value and is not due to errors in the reasoning
process of the algorithm.

5. Discussion

We have presented a method for replicating the manually
annotated variables in an EMS registry database.Themethod
was developed according to the principles presented by
Eftestøl et al. [8] and implemented in MATLAB. To our
knowledge, this is the first time automated review has been
performed on resuscitation data.

In addition, the times, impedances, and defibrillation
energies were obtained directly from the device logs andwere
inherently more accurate than visual estimates by reviewers.
One of the main objectives of this study was to verify how
closely the automated review can approximate the original
data when one has access to the true annotations. These
annotations are also the key information components used in
the construction of the response and therapy representations
that is fundamental to this method. As we discussed in the
methods section, we used these representations to identify
the shocks and determine the pre- and postshock events for
each of these.

For the time variables, deviations larger than 1 second
were categorized as errors. 5 seconds seemsmore appropriate
as 1 second is very restrictive and identifies differences that
are too small to be clinically significant. We suggest using a
5-second threshold in future studies. In the test data, there
were only two errors in the 2–5-second range.

In the evaluation of the results, we have used the terms
correct and wrong, but it is important to consider that we
are really considering deviations between the manual and
automatic registrations.The detailed review of the deviations
showed that some of these were caused by errors in the
manual registrations and others by errors in the automatic
registrations. For the time variables, determining the vfonset
was one such example where the problem was identified
to be associated with the fact that manual interpretation of
persistent VF is done in a time interval after shock and that
the endpoint of a shock is not clearly defined for manual
interpretation which it has to be for automatic interpretation.
Otherwise, it seems that the algorithm greatly improves the
accuracy over the human reviewer and is much more accu-
rate. The machine is accurate to the millisecond providing
that it has been properly synchronized to a “GMT” time and
that relative times are clearly accurate to amillisecond barring
machinemalfunction.Human reviewers can only be accurate
to about 1 to 2 seconds as we have shown in this work. As for
the patient response variables, errors in the evaluation 10 sec-
onds after shock can largely be associated with the nonprecise
definition of the end of shock time. There are also errors
that are caused by inconsistencies in the manual annotations.
Generally speaking, the manual interpretation might cause
errors in the sense that two different variables express the
same information, like, for example, last rhythmchange in the
postshock period which is the same as the preshock rhythm
in the next preshock sequence. The automatic annotations
base its interpretation on considering the rhythms between
uniquely defined rhythm transition times and thus avoids
these kinds of inconsistencies. As for the interpretation of
ROSC the algorithm does not interpret this correctly as it
bases its interpretation from RORE which does not carry
information about any occurrence of ROSC. For this case, the
rhythm interpretation should distinguish between pulseless
and pulse giving organised rhythms. For the therapy and
device operation variables, the errors will mostly reflect
errors in the manual registration as the algorithm reads this
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information directly from the electronic log files which will
be reliable as long as the correct information is read. We have
shown that we can replicate the review process of a given EMS
system fairly accurately. To further develop this system and to
handle the errors in the algorithms one would need to adjust
the manual review process so that the critical time points are
more clearly defined, make a dedicated study, and compare
automatic and manual registrations again to see if errors are
reduced. In an implementation, the automatic registrations
should be checked and overread by a clinician.

The comparison shown above (Figure 5) demonstrates
the inherent variability of a human reviewer in interpreting
the data from the arrest and indicates several areas in which
improvement can be made using an automated reasoning
algorithm. One clear necessity is that all of the definitions
must be made explicit so that a rule can be applied that will
in every case provide the same result. This would allow the
coding of computer algorithms to follow these definitions. In
several cases (i.e., if VF that recurs after a shock is “persistent”
or “recurrent” may depend on the duration of the period of
asystole occurring after the shock). This study also clearly
demonstrates that computer logs and times should be used
in all cases as being more reliable than estimates and error
pronemanual data entry by reviewers. In this study themode
of defibrillator operation was incorrectly inferred by the
reviewers in a high proportion of cases when the defibrillator
log was able to provide this information accurately from the
digitized files. In addition, a large number of errors which
are “propagated” because the initial time point is unknown
or recorded incorrectly can be reduced by improvements in
using the time stamps from the defibrillator logs directly.
These are examples of systematic deviations that further
work with automatic methods of analysis can readily be
programmed to reduce and eliminate.

The next step in developing this system will be to develop
algorithms for automated rhythm annotations and chest
compression detections. Our approach to do that will be to
extract rhythm segments from the ECG tracings and catego-
rize them according to the annotations used in the registry.
The start and end points for each of these segments can be
determined by using the same representations constructed
in the present study. For example, all ECG tracings of VF
segments without CPR artifacts can be found by searching
the combined representation for each patient episode for
the string “VF.” For all matches the VF segments can then
be extracted from the ECG tracing as specified by the
interval start and end sample given in the representation.
Furthermore, signal processing algorithms for discriminating
between the different rhythm categories will be developed.
The discriminative power of these algorithms can be eval-
uated against the categorized collection of labeled rhythm
segments. Correspondingly, methods for detecting chest
compressions will be developed, applying the same principles
for collecting segments with ongoing compressions from the
signals carrying information about the presence of chest
compressions. In this way, an EMS specific annotator can
be made. This rhythm detector will replicate annotations as
verified by blinded review by experts. Once rhythm and chest
compression annotations are automated, the same algorithms

used in this study for the construction of the representations
from the manually extracted data can be applied. To evaluate
the system, the performance of the fully automated system
can be compared to the performance of the semiautomated
and “expert reviewed” system which can be regarded as the
gold standard.

In the current study, the presence of chest compres-
sions was evaluated based on the compression depth signal
derived from the acceleration measurements from the chest
compression puck placed on the victim’s chest. In the case
where such information is not available, one might consider
using the impedance data to follow respirations and one of
our group is looking at how reliable this might be and also
into adding the ETCO2 to the detail when it is available.
The use of impedance for determining presence of CPR has
been found to be reliable in a study by Stecher et al. [14].
This will allow the automatic reading using impedance in
machines from other manufacturers who do not have the
“puck” and in instances where the puck is not used even
though it is at the scene. The impedance can also be used to
automatically determine the presence of ventilations [15] and
circulation [16] which has been demonstrated by Risdal et al.
A future RORE can be extended to include information about
ventilations, circulation, and possibly drug administration.

One method to validate the automatic analysis of the
rhythm states would be for three expert reviewers to inde-
pendently review the rhythm transitions and classifications
as performed by the algorithm and to indicate errors or
disagreements. One might then classify an “error” as any
indication of disagreement with the algorithm that is noted
by at least 2 of the 3 reviewers. Consideration of when the
automatic method is accurate enough to be used without
expert “overreading” would be based on a low error rate,
perhaps less than 1%.

Of course, there are variables in the registry database
that require manual interpretation. For example, there are
variables describing the cause of CPR interruptions related
to each shock and other variables for describing use of
medications. The registration of these variables will still
require manual interpretation.

Once a fully automated system is considered to perform
satisfactorily, it will not only increase the efficiency for data
interpretation at the EMS system from which it has been
developed. It will also be possible to apply the automated
review system to data from other EMS systems, thus enabling
efficient multicenter data analysis without the need for
centralized data storage. The results generated from data in
this fashion will in general be anonymous with respect to
issues of patient confidentiality. This method does access the
CPR process data directly in the format downloaded from
the AED device, thus making it independent from the local
database structure used by the EMS. Thus interfacing the
system directly to the raw data should make it easier to
adopt it at other EMS sites with different registry database
structures. Software interfaces will have to be adapted to
read clinical information and translate it into the appropriate
format.
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In the present study we only considered a population of
patients restricted to those treated with Philips AED device.
In the case that we want to study data from different EMS
services, the algorithms should also be able to handle data
from other types of AED devices. One of the important
aspects of this work is that as long as we are able to construct
the state sequence models, we can apply the algorithms. So as
long as the primary information objects are available through
interpretation of the CPR process data it will be possible to
apply the methods described here, independent of the type
of AED device. Another objective of the present study was to
demonstrate the applicability of the resuscitation data repre-
sentation scheme presented by Eftestøl et al. [8]. The scheme
was developed without knowledge of the data reviewmethod
used in the King County EMS system. As was stated in that
study, “We have discussed a methodology for representing
resuscitation data emphasizing that such a representation
scheme should offer a flexible format for efficient analysis of
a variety of resuscitation research objectives.” In the present
study we have demonstrated that the representation scheme
offers a flexible format for efficient analysis. By applying the
method to a research objective for which it was not originally
intended, the representations in the three domains have been
shown to be robust as well.

6. Conclusion

We have demonstrated that it is possible to use the infor-
mation present in the CPR process data recorded by the
AED during resuscitation along with rhythm and chest
compression annotations to automate the episode review.
This automated review is based on representing the resus-
citation episode with sufficient detail using a minimal but
sufficient set of transitions between rhythm states and therapy
states which can be combined into a representation of the
resuscitation episode which communicates the necessary
information in a brief and compact format. This method can
be automated to allow the development of a large database
of resuscitation data for use in clinical studies of care and
therapy for the cardiac arrest patient.

Appendices

A. Supplement—Reasoning from
the Representation Back to Create
the Derived Data

A.1. Time Data Conversions. The initial time event retrieved
from the defibrillator is the “powerCycleOn” which
corresponds to the time the ECG recording is started
(0 seconds). This date stamp gives the date and time
(“yyyy:mm:dd:hr:mn:sc”) at the start of the recording and
is used to determine “ecgtm.” The datestamp is converted
to a serial date number (“SDN time”) which gives the time
in number of days from January 1, 0000, and this is the
SDN time for the start of the recording. This initial event
is called “Start SDN.” The time as recorded in the RORE
for all subsequent events found in the representations can

then be converted to the SDN time by taking the time (in
seconds) recorded in the RORE for that event and convert
it to an SDN time which is in “Days Since 0000” as follows:
SDN time = Start SDN + (Event Seconds/60/60/24). The
second term converts the number of seconds elapsed to the
number of days elapsed as coded in SDN time. Thus, to
reason backwards, in order to determine the shock times in
SDN time from the RORE times recorded in seconds, the
representation is searched for the symbol used to identify
a shock, “D.” The time interval in seconds that coincides
with each match is then converted to the SDN format which
provides the elapsed time in days from Start SDN. When
this elapsed time is added to the Start SDN it gives the year,
date, and time accurately as encoded in the SDN format.This
format could be used by itself as a reliable and reproducible
time variable. In this study the data in the original ACCESS
database was in the hour:minute:second format. For this
reason we transformed the SDN format to hr:mn:sc format
so that the derived data could be compared with the original
data directly.

A.2. Determining the Postshock Rhythms at 10, 30, 60, and
120 Seconds. The postshock rhythms along with the start,
end time and duration of each rhythm are derived from
the postshock interval as it is displayed in the episode
representation. If the rhythm at 10 seconds after shock is
to be determined, the postshock rhythm with the transition
time closest to ten seconds bounded upwards to 15 seconds is
allocated to the variable “r10.”The same procedure is repeated
for the variables “r30,” “r60,” and “r120” (always looking 5
seconds beyond the time in question).

B. Supplement to the Results Section

B.1. Systematic Deviations in the ECG Start Time. When it
comes to deviations in ecgtm, the algorithm differs between
systematic and nonsystematic deviation. In the result evalua-
tion of the manual and the automatically generated variables
these two types of deviations were handled differently. When
the manual given time was 00:00:00 or 12:00:00, these are
considered systematic and are compensated for in the evalua-
tion of error so that a single early or initial deviation does not
propagate to the subsequent time variables. These deviations
are not considered as errors. For ecgtm the code “missing”
is used. The nonsystematic deviations are not compensated
for in the evaluation of the other variables and possible
systematic components in the deviations might propagate
and be counted as errors in the other time variables.

B.2. Use of Special Codes for “Missing” Information. In the
original database several codes were used to indicate persis-
tent VF recurring immediately after a defibrillation shock,
“no CPR data available” due to failure to use the puck or other
technical problem and “unknown” when no information
could be recorded because of severe artifact, failure to record,
and so forth.
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B.3. Nonsystematic Deviations in the ECG Start Time. A
possible explanation for these errors might be that defibril-
lator was turned on and the leads were not attached to the
patient for about 1 minute in two of these cases and that the
manual abstractor started the “ECG time” when the leads
were hooked up, but the “auto” reading from the CPR process
defibrillator data gives the time when the device was turned
on.This is an error of process in the manual part because the
reader interprets the start differently from the machine start.

B.4. Deviations Categorized as Missing for the Start of Com-
pression Times. These are all cases where fctm is manually
registered to be at the start of the ECG recording or previous
to this. The algorithm sets the state of therapy to “unknown”
in the period prior to the start of the ECG recording. The
corresponding therapy representation will then start with
the symbols U, C where the time for the transition to
compressions corresponds to the ECG start time. When the
algorithm interprets this symbol sequence, it determines fctm
as unknown. This was a way of handling the cases were the
manual registration of “fctm” was “unknown” (41 cases).

B.5. Deviations Categorized as Missing for the End of Com-
pression Times. In RORE this is coded with the end of
the compression sequence coinciding with the defibrillation.
In some cases where both fctm and/or lctm are coded as
“unknown,” the RORE will set fctm to correspond to the
start of ECG recording and lctm to correspond to the time
of defibrillation. This is unrealistic but was done so that
the algorithm could be designed to recognize the case of
both variables manually registered as “unknown.” This is the
sole case where only lctm is registered as “unknown” so the
algorithm was not designed to recognize this.

B.6. Deviations in VF Onset Time. The algorithm evaluates
rhythms with reference to end of the shock which is set
to 3 seconds after start of shock. In all these cases, the
variable indicating the rhythm prior to shock (rhyb4) has
been annotated as VF while the annotation for the rhythm
at ten seconds after the shock given as non-VF. In RORE,
the transition time to non-VF is set at ten seconds, and the
algorithm interprets this as a VF that persists for less than
10 seconds after shock which is not considered when looking
for vfonsettm. If it lasts longer it is considered persistent.
This is a problem that arises because there is no accurate
rhythm annotation immediately after shock.This error could
be eliminated by using the shock time as a rhythm transition
point. Essentially the rhythmwould be considered “unknown’
until the ECG voltage returned to baseline after the shock at
which time a determination could be made.

C. Detailed Explanation of
the RORE in Figure 4

The time shown corresponds to 0 to 1057 seconds. The
tracings shown in Figure 3 correspond only to the period
from 180 to 330 seconds. The left column is the therapy
representation, showing the therapeutic interventions. For

the first 46 seconds there is no ECG, so this is represented by
“UN” (unknown therapy). At 46 seconds recording of ECG
starts and compressions are observed on the compression
depth signal. At 180 seconds, the chest compressions are
interrupted and a hands off interval follows (represented
by an “H”) and lasts until a shock is given at 196 seconds
(represented by a “D”). The remainder of the case shows
similar sequences of hands off interval, chest compressions,
and defibrillations until no further annotations are given at
the end of the recording.

The patient response representation is shown in the
middle. It represents the same time span, showing the cardiac
rhythms presented by the ECG. As for the therapy repre-
sentation, the rhythm for the first 46 seconds is unknown
(“UN”). At 46 seconds, the initial rhythm was recorded as
“VF.” The next observation was made at 208 seconds (ten
seconds after shock) and asystole was recorded (“AS”). This
continued until 258 seconds where an organized rhythm was
observed (‘represented by “PE”). The remainder of the case
shows similar transitions between rhythms, first to “VF” and
then to “PE” again and finally ROSC at 469 seconds. The
documentation of rhythms ends at 856 seconds.

The episode representation combines the therapy and
response representations showing the interaction between
therapy and response. From 46 to 190 seconds, compressions
are provided during VF. Compressions are interrupted at 180
seconds, preparing for the shock given at 196 seconds. The
effect of the shock is observed at 208 seconds.This is an effect
of the extrapolation of the response representation from the
spreadsheet information. The true transition time should be
prior to this. Following this, the effect of the compressions
is evident through transitions from asystole to organized
rhythm and then to VF. Following this compressions are
interrupted and a new shock is given resulting in an organized
rhythm and finally ROSC before documentation ends.
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Survival from out-of-hospital cardiac arrest depends largely on two factors: early cardiopulmonary resuscitation (CPR) and early
defibrillation. CPRmust be interrupted for a reliable automated rhythm analysis because chest compressions induce artifacts in the
ECG. Unfortunately, interrupting CPR adversely affects survival. In the last twenty years, research has been focused on designing
methods for analysis of ECG during chest compressions. Most approaches are based either on adaptive filters to remove the CPR
artifact or on robust algorithmswhich directly diagnose the corrupted ECG. In general, all themethods report low specificity values
when tested on short ECG segments, but how to evaluate the real impact on CPR delivery of continuous rhythm analysis during
CPR is still unknown. Recently, researchers have proposed a new methodology to measure this impact. Moreover, new strategies
for fast rhythm analysis during ventilation pauses or high-specificity algorithms have been reported. Our objective is to present a
thorough review of the field as the starting point for these late developments and to underline the open questions and future lines
of research to be explored in the following years.

1. Introduction

In the early 1990s, the American Heart Association (AHA)
established the chain of survival [1] to describe the sequence
of actions for a successful resuscitation in the event of an
out-of-hospital cardiac arrest (OHCA). The chain of survival
involves four links: early recognition, early bystander car-
diopulmonary resuscitation (CPR), early defibrillation, and
early advanced care. The most influential factor explaining
survival is the interaction between CPR and defibrillation
administered in the first minutes from collapse [2]. Survival
from witnessed ventricular fibrillation (VF) decreases by 10–
12% for every minute defibrillation is delayed [3, 4], but
when CPR is provided the decline in survival is only 3-4%
per minute [4–6]. CPR and defibrillation can be successfully
taught to laypeople, and the use of automated external
defibrillators (AED) by the public may shorten the time to
defibrillation [7].

Over the years, evidence has accumulated suggesting
that minimizing the interruptions in chest compressions
during CPR is determinant for survival from OHCA [8–
11]. Consequently, current resuscitation guidelines emphasize
the importance of high-quality CPR with minimal interrup-
tions in chest compressions [12, 13]. However, CPR must
be interrupted for a reliable AED rhythm analysis. The
mechanical activity from the chest compressions introduces
artifacts in the ECG that substantially lower the capacity of
an AED’s shock advice algorithm (SAA) to detect shockable
(sensitivity) and nonshockable (specificity) rhythms [14, 15].
Interruptions for rhythm analysis alone take between 5.2 s
and 28.4 s in commercial AEDs [16]. These interruptions,
known as hands-off intervals, adversely affect the probability
of restoration of spontaneous circulation (ROSC) after the
delivery of the shock [17] and compromise circulation [18].
In fact, a recent multicenter study found an 18% decrease
in survival to hospital discharge for every 5 s increase in
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preshock pause length [19]. Therefore, reliable rhythm anal-
ysis methods during chest compressions would be of great
value.

Over the last 15 years, many efforts have been made
to reliably analyze the rhythm during CPR. Strategies have
focused either on adaptive filters to suppress the CPR artifact
[20] or, more recently, on approaches based on the direct
analysis of the corrupted ECG. Most studies report sensitiv-
ities above 90%, the minimum value recommended by the
AHA for AED performance [21]. However, the specificity
rarely exceeds 85%, well below the 95% AHA goal. As Li and
Tang phrased it back in 2009, performance is good but not
enough [22]. In addition, the impact these methods would
have on CPR delivery is unknown. The current evaluation
standard is based on the sensitivity and specificity of a single
analysis using short duration (10–20 s) segments. This does
not reflect the real application scenario in which the objective
would be to continuously analyze the rhythm during CPR.
In this context, the fundamental question is whether rhythm
analysis improves CPR delivery compared to the standard
treatment, that is, cycles of 2 minutes of uninterrupted CPR
followed by a hands-off interval for rhythm assessment. This
change of focus was stressed by the International Consensus
on CPR and Emergency Cardiovascular Care Science with
Treatment Recommendations (CoSTR) in 2010 [23].

Recent developments preclude the start of a new era in
the field of rhythm analysis during CPR. A newmethodology
has just been developed to measure the impact of continuous
rhythm analysis on CPR delivery [24]. In addition, new
ideas have been explored, like the possibility of assessing the
rhythm during ventilation pauses [25] using SAAs capable of
diagnosing the rhythm in less than 5 s [26]. At this point a
review paper that goes beyond the compilation and summary
of filtering methods is well justified. Our objective is to
present a thorough review of the field as the starting point for
these late developments and to underline the open questions
and future lines of research to be explored in the coming
years.

The paper is structured as follows. Section 2 describes the
characteristics of the CPR artifact and presents the problem
of rhythm analysis during CPR. Section 3 is a review of the
approaches to rhythm analysis during CPR up to year 2012,
grouped by the evaluation methodology. Section 4 describes
a new methodology to quantify the impact on CPR delivery
of rhythm analysis during chest compressions. Section 5
presents the late developments in rhythm analysis during
CPR.

2. Context

Chest compressions introduce an artifact in the ECG that
substantially modifies its waveform. For example, Figure 1
shows three OHCA segments where CPR corrupts the ECG
during the first 15 s of the segment. During the last 15 s chest
compressions ceased, revealing the underlying rhythms: VF,
pulseless electrical activity (PEA), and asystole. During CPR,
the artifact sometimes resembles a regular rhythm with rates
around 100 compression per minute (cpm). In these case the
AED may give a wrong no shock diagnosis if the underlying

rhythm is shockable, that is, VF or fast ventricular tachy-
cardia (VT). Conversely, chest compression artifacts may
also introduce fast and disorganized artifacts which might
cause an erroneous shock diagnosis if the underlying rhythm
is nonshockable. Consequently, the accuracy of commercial
AEDs substantially decreases in the presence of CPR artifacts.
For example, sensitivity/specificity values of 58.4%/90.8%
and 81.5%/67.2% have been reported [14, 15], although these
figures are extremely dependent on the design characteristics
of each SAA.

The origin of the CPR artifact is not fully understood.
Langhelle et al. [32] conjectured that the CPR artifact is
an additive noise and identified four possible sources for
the artifact: the mechanical stimulation of the heart, the
mechanical stimulation of the thoracic muscles, electrode
tapping or dragging, and static electricity. Later, Fitzgibbon
et al. [33] experimentally concluded that the main source
of noise was the skin-electrode interface, specifically, that
the noise was related to the electrical properties of the
electrode. When chest compressions are delivered manually
the characteristics of the artifact are very variable and depend
on how the compressions are administered (rate, depth, and
pauses) and on the characteristics of both the patient and the
recording system.

The nature of the CPR artifact is best analyzed when CPR
is performed on patients in asystole (no underlying heart
rhythm) because the ECG only reflects the presence of the
artifact, as shown in the last example of Figure 1. The artifact
presents an almost periodic waveform, with its fundamental
frequency being that of the chest compressions. However, the
waveform and spectral characteristics of the artifact are very
variable within a resuscitation episode and between episodes.
Within an episode these variations may reflect changes on
how CPR is administered by a rescuer, rescuer fatigue, or
the intervention of several rescuers. For example, Figure 2
shows two short segments of CPR artifacts with very different
waveforms and spectral content. In addition to its interpatient
and interrescuer variability, on average the artifact presents
an important spectral overlap with human ECG recorded
during cardiac arrest.This is best seen by analyzing the power
spectral density (PSD) of the CPR artifact and the different
OHCA rhythms, as shown in Figure 3 for shockable (VF and
VT) and nonshockable (PEA and pulse-giving rhythm, PR)
rhythms. As shown in the figure the overlap is specially large
for nonshockable rhythms, which anticipates the challenge
of rhythm analysis during CPR for underlying nonshockable
rhythms.

In conclusion, a reliable rhythm analysis during CPR
involves advanced signal processing techniques to address
the time-frequency variability of the artifact and its spectral
overlap with human OHCA rhythms. These techniques are
described in the following section. To conclude, Figure 4
illustrates the use of an adaptive filter for rhythm analysis
during CPR. In the top panel of the figure the underlying
VF is corrupted by CPR artifacts, although it is visible in
the 5 s interval without chest compressions. The artifacts
provoke erroneous no-shock diagnoses by an AED. Applying
an adaptive filter reveals the underlying VF, and the AED
correctly diagnoses the rhythm as shockable.
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Figure 1: ECG segments in mV recorded in patients in OHCA. The top panel shows a VF, the middle panel shows a PEA, and the bottom
panel shows an asystole. In all cases CPR artifacts corrupt the ECG in the initial 15 s interval. In the second 15 s interval chest compressions
were stopped and the ECG shows the underlying rhythm.
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Figure 2: Two examples in the time and frequency domain of CPR artifacts recorded in OHCA patients in asystole. The figures show the
ECG in mV and the normalized power spectral density (PSD) in the frequency domain. The first example has pauses in chest compressions,
a rate of 133 cpm (2.22Hz), and small harmonic content. The second example has no pauses, a rate of 116 cpm (1.93Hz), and large harmonic
content.

3. Overview of Rhythm Analysis during CPR

Research on the suppression of the CPR artifact started in
the mid 1990s within the field of VF waveform analysis.
VF waveform analysis for shock outcome prediction is
beyond the scope of this paper; excellent reviews of this
topic are available in the literature [34, 35]. In the first
study by Strohmenger et al. [36] and in subsequent ones
[37, 38], VF was induced in pigs and chest compressions
were administered using a pneumatic piston at a constant
chest compression rate of 80 cpm (1.33Hz). The CPR artifact
was successfully removed using digital high-pass filters with
cut-off frequencies between 4 and 4.5Hz [37, 38], because

the dominant frequency of VF is around 9–11Hz in pigs.
However, in the human case VF dominant frequencies fall
between 3 and 5Hz [39], the spectral overlap with the CPR
artifact is large, and the artifact cannot be removed using a
simple high-pass filter [32, 39].

Given the characteristics of the CPR artifact, suppressing
it from the human ECG requires adaptive filters, most of
which use reference signals correlatedwith the artifact. Refer-
ence signals such as the thoracic impedance, the compression
depth, or the compression force have been frequently used.
Over the years many adaptive solutions have been proposed
and evaluated. The methodology followed in these studies
depended largely on the data available to the researchers.
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Studies can be grouped into two broad categories: those based
on the artificial mixture of ECG data and CPR artifacts and
those based on cardiac arrest data recorded during CPR.

3.1. Studies Based on Artificial Mixtures. The mixture model
was introduced early in 2000 by Langhelle et al. [32] and
Aase et al. [40]. This model assumes that the CPR artifact,
𝑠cpr, is an additive noise independent of the underlying ECG,
𝑠ecg. Based on this assumption, filtering methods can be
tested using independently recorded human ECG and CPR
artifacts, added at different signal-to-noise ratios (SNRs)
according to

𝑠cor = 𝑠ecg + 𝛼SNR ⋅ 𝑠cpr, with 𝛼SNR = √
𝑃ecg

𝑃cpr ⋅ 10
SNR/10 .

(1)

The SNR in dB is adjusted in the artificial mixture, 𝑠cor, using
the 𝛼SNR coefficient, where 𝑃ecg and 𝑃cpr are the power of the
underlying ECG and the CPR artifact, respectively. Figure 5
shows an example of how a human VF and a CPR artifact are
combined when the additive model is used.

Typically these mixtures are formed with SNR values
in the −10 dB (strong corruption) to 10 dB (low corruption)
range. CPR artifacts are recorded during asystole, together
with the reference signals used by the adaptive filters tomodel
the artifact. The corrupted signal is fed to the filter which
estimates the underlying ECG, and the estimated and the
original ECGs are compared to quantify the efficiency of the
filter in terms of the improvement of the SNR after filtering
[32, 40]. In addition, the clinical accuracy of the method can
be assessed using the filtered ECG to evaluate the sensitivity
and specificity of an AED’s SAA.

Langhelle et al. combined 25 human VF with CPR arti-
facts recorded fromone pig, withCPRdelivered by amechan-
ical device at a constant rate of 90 cpm (1.5Hz). Their con-
jugate gradient adaptive filter could only use one reference
channel besides the ECG (dual-channel methods), and the
best filtering results were obtained for a reference that
combined the thoracic impedance and the chest displacement
measured at the mechanical device. Furthermore, when
compared to a high-pass filter with 4.9Hz cut-off frequency,
their adaptive solution presented higher SNR improvement,
with differences of up to 10 dB for low corruption levels.
Aase et al. combined 200 human VF and 71VT with CPR
artifacts obtained from two pigs, with CPR delivered by a
mechanical device at rates of 60, 90, and 120 cpm (1, 1.5, and
2Hz). Although their Wiener filter could use an arbitrary
number of reference signals (multichannel methods), they
used only two: the thoracic impedance acquired via the
defibrillation pads and the chest displacement. Not only they
did optimize and test their method in terms of how filtering
improved the SNR, but also they were the first to report
the sensitivity of a SAA after filtering. They showed that the
SNR after filtering was lower for higher compression rates
(120 cpm) due to the increased spectral overlap and that
filtering improved the sensitivity for low SNR. These results
were extended byHusøy et al. [41] using the same human data

combined with CPR artifacts recorded from pigs. This time
CPR was delivered manually at 120 cpm rate, which reflects
better the variability of the artifact found in real cardiac
arrest episodes. The compression depth was calculated in
this study from an external accelerometer based device [42].
Their Multichannel Recursive Adaptive Matching Pursuit
(MC-RAMP) filter substantially lowered the computational
demands of the Wiener filter and yielded comparable SNR
results after filtering.

In a set of complementary studies, a group of Austrian
researchers analyzed various dual-channel methods. They
used an invasive arterial blood pressure signal as the reference
to model the CPR artifact. They proposed two dual-channel
methods, a Kalman state-space filter [43], and a filter based
on the Gabor transform (time-frequency analysis) of the
corrupted ECG and the reference signal [44]. These filters
were optimized using mixtures of CPR artifacts recorded
in pigs with 14 human VF samples. CPR was manually
delivered at a rate of 80 cpm. Furthermore, Werther et al.
[45] presented a comprehensive comparative assessment of
these filters extending their rhythmdatabase to 104 shockable
and 281 nonshockable rhythms (other than asystole).Werther
et al. compared the performance of four filters in a dual-
channel configuration based on the blood pressure signal:
their Kalman and Gabor filters, the MC-RAMP filter [41],
and a recursive least squares (RLS) filter [46]. They tuned
the filters for maximum SNR improvement and analyzed
the performance of a SAA in terms of both sensitivity and
specificity. All filters showed a comparable performance with
good sensitivities, above 95%, but with specificities below
90%, caused by the higher spectral overlap of nonshockable
rhythms with the CPR artifact. Later, Granegger et al. [47]
applied independent component analysis (ICA) to 8 leads
recorded in the surface of a dead pig after injecting human
emergency ECGs close to the heart of the pig.Their database,
which is fully described in [48], comprised 431 shockable and
487 nonshockable (20 asystole) records, with CPR delivered
manually according to the 2005 guidelines. After applying
ICA, they obtained a sensitivity of 99.7% and a specificity
of 83.2% using the SAA of a commercial AED. These results
marginally improved those obtained on the same data for
the MC-RAMP filter using the force as reference [47].
Furthermore, a multilead configuration is not available in an
AED environment.

Efforts have been made to adaptively filter the CPR
artifact based only on the ECG because reference signals
other than the thoracic impedance may not be available in
AEDs. In these methods the fundamental frequency and
harmonic content of the artifact are obtained from the
spectral analysis of the corrupted ECG. These characteristics
are then used to fit the adaptive filter, with solutions like an
adaptive notch filter [49], a Kalman filter [27], or the coherent
line removal algorithm [50]. Aramendi et al. [49] and Ruiz de
Gauna et al. [27] introduced twomethodological innovations
by considering mixtures of shockable rhythms with CPR
artifacts recorded from OHCA patients in asystole and by
optimizing filter performance in terms of the sensitivity after
filtering. In addition, Ruiz de Gauna et al. [45] used the
mixturemodel to optimize their algorithm and reported their
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(a) Two ECG segments independently recorded in humans during OHCA.
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Figure 5: The mixture model: combination of a human VF and a human CPR artifact recorded from a patient in asystole at different SNR.

final results for human cardiac arrest data recorded during
CPR.

However, adaptive filters based only on the ECG have
poorer performance than adaptive filters using reference
signals [27].

In summary, the mixture model is an excellent signal
processing framework to test filter performance in terms of
improvements in SNR and can serve well to optimize the
parameters of a filter. However, SNR in real cardiac arrest data
is not known, and how improvements in SNR are translated
to the more clinically relevant sensitivity/specificity figures
is not well understood [51] and may depend greatly on
the SAA used. Finally, CPR may modify the dynamics
of the underlying rhythm which violates the fundamental
assumption of the independence of the ECG and the CPR
artifact.

3.2. Studies Based on Cardiac Arrest Data Recorded during
CPR. The limitations of the mixture model can be overcome
using cardiac arrest data recorded while delivering CPR.
During chest compressions the underlying rhythm is not
directly observable, so these data are annotated by expert
clinicians by assessing the rhythm in the intervals right
after CPR and assuming the same rhythm for the preceding
interval. Figure 1 shows three examples of these type of data:
a VF, a PEA, and an asystole. Researchers then use short
rhythm intervals (10–15 s) during CPR to optimize and test
their rhythm analysis methods in terms of sensitivity and
specificity. In this framework, rhythm analysis during CPR
has been approached in two ways: adaptive filters followed by
a SAAdesigned to diagnose artifact-free ECGs and new SAAs
that directly analyze the corrupted ECG.

Most works covered in this section are based on human
data, although a study by Berger et al. [46] investigated
filtering schemes using an animal model of cardiac arrest.
They induced asystole and VF in 13 pigs under normal sinus
rhythm and delivered CPR to the pigs through a mechanical
device (Zoll AutoPulse), which worked at a constant rate
of 80 cpm [52]. They used an adaptive RLS filter based on
the force signal provided by the compression device and
analyzed the performance of three commercial AEDs. In
these favorable conditions, porcine VF and low compression
rates, they obtained a mean sensitivity and specificity of 97%
and 95%, respectively, for 13 normal sinus rhythms, 8 asystole,
and 109 VF records.

In 2004, Eilevstjønn et al. [14] published the first study
that analyzed an adaptive filter to suppress theCPR artifact on
recordings fromOHCA victims.The study was based on data
recorded in a clinical study [9] using a commercial defibril-
lator modified to acquire several additional reference signals,
including those from a device to monitor CPR quality based
on accelerometers. Eilevstjønn et al. adapted the MC-RAMP
filter introduced by Husøy et al. [36] and used four reference
signals to model the artifact: the thoracic impedance, the
ECG common mode, the compression acceleration and the
compression depth. Their database contained 184 shockable
rhythms and 348 nonshockable rhythms randomly split into
a training and a test set. After filtering, they obtained an
excellent sensitivity of 96.7% but a low specificity of 79.9%.

Researchers then focused on reducing or eliminating the
need for additional reference signals, in an effort to adapt
these methods to a realistic AED scenario. (Some of these
studies were based on the mixture model and are described
in Section 3.1.) The Kalman filter based only on the ECG
proposed by Ruiz de Gauna et al. [27] was tested on 131
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shockable and 347 nonshockable rhythms extracted from the
same original study used by Eilevstjønn et al. [14]. However,
the overall results were poorer, 90.1% sensitivity and 80.4%
specificity. Their results underlined the importance of using
additional reference information to model the CPR artifact.

Using a dual-channel approach, Irusta et al. [15] proposed
a CPR artifact model based on a time-varying Fourier
series representation, which could be built using only the
instantaneous frequency of the chest compressions. They
obtained this frequency from the compression depth signal
and adjusted the time-varying Fourier coefficients using a
least mean squares (LMS) filter. The LMS filter was tested on
89 shockable and 292 nonshockable rhythms, with a sensi-
tivity and specificity of 95.6% and 85.6%, respectively. Using
this same database, Ruiz et al. [53] fitted the time-varying
Fourier series model of the artifact by means of a Kalman
filter. Furthermore, they conducted a spectral analysis of the
rhythms and the CPR artifact and proved that the spectral
overlap was larger for nonshockable rhythms, particularly
for PEA. Aramendi et al. [28] showed that the instantaneous
frequency used by the LMS filter could be derived from
the thoracic impedance signal which is recorded by current
AEDs through the defibrillation pads. This would eliminate
the need of a chest device for acquiring additional reference
signals. Finally, Ruiz de Gauna et al. [54] used an LMS finite
impulse response filter to estimate the artifact using the force
signal, in an effort to replicate the good results reported by
Berger et al. [46] for a porcine model.Themethod was tested
on 88 shockable and 292 nonshockable records; the sensitivity
was 95.5% but the specificity after filtering was only 86.6%.

Tan et al. [29] introduced their artifact reduction and
tolerant (ART) adaptive filter, which is currently integrated
in a commercial AED (See-Thru CPR, ZOLL Medical), as
a clinical support tool. Their adaptive filter is based on the
CPR sternal velocity signal obtained by this particular AED
from an accelerometer incorporated to the defibrillation pads
which is placed beneath the rescuers hand. When tested on
114 shockable and 4155 nonshockable rhythms the method
showed a sensitivity of 92.1% and a specificity of 90.5%.

In addition to adaptive filters, methods based on the
direct analysis of the corrupted ECG have also been explored.
In 2008, Li et al. [30] presented the first rhythm anal-
ysis method to directly diagnose the ECG corrupted by
CPR artifacts, which was based on an ECG feature that is
marginally affected by the artifact. This feature was obtained
from the wavelet transform and the correlation function.
The algorithm was validated with 1256 shockable and 964
nonshockable rhythms recorded from 229 OHCA patients
during CPR, yielding a sensitivity of 93.3% and a specificity
of 88.6%. Their method was proved to be more reliable for
VF detection in the presence of CPR artifacts than several
classical VF detection methods [55]. More recently, Krasteva
et al. [31] presented a second method, this time based on
features derived from the corrupted ECG and a reconstructed
version of the ECG. After optimization, Krasteva et al. tested
their algorithm on 172 shockable and 721 nonshockable
rhythms obtained from 100 OHCA patients, for a sensitivity
of 90.1% and a specificity of 86.1%.

Table 1 summarizes the results reported by six represen-
tative methods for rhythm analysis during CPR tested on
human cardiac arrest data. The results cannot be directly
compared for two reasons. First, the studies are based on
different data, with very different prevalence of the rhythm
types and different selection criteria for the rhythms. For
example, these studies have large differences in the propor-
tion of asystole among nonshockable rhythms, which may
have important implications in the results given that asystole
is the nonshockable rhythm with the largest prevalence [56]
and the main cause of the low specificity [27]. Second, the
studies based on adaptive filtering use different SAAs that
may diagnose the filtered ECG differently. In fact, adaptive
filters have been shown to have very similar sensitivities and
specificities when tested using the same data and the same
SAA [45, 57].

In any case, all these studies have some common limi-
tations. Although the sensitivity is good, all studies present
specificities well below the 95% recommended by the AHA.
This would result in a large number of erroneous shock
diagnoses during CPR, which would cause unnecessary CPR
interruptions for nonshockable rhythms. In addition, these
methods are evaluated using short rhythm intervals (10–
20 s), which are sufficient for a shock/no-shock diagnosis
and an evaluation of the method in terms of sensitivity
and specificity. However, rhythm analysis during CPR is
conceived to continuously diagnose the rhythm with the
objective of improving CPR delivery compared to the stan-
dard CPR protocol, which requires interrupting CPR every
twominutes for rhythmanalysis. In this scenario themethods
must be evaluated using long duration records, and a new
methodology that goes beyond sensitivity/specificity for a
single analysis is needed to quantify the effect of using
these methods on the delivery of CPR. Over the last year,
some studies have addressed and partially overcome these
limitations. The following two sections describe these late
advances in detail.

4. Rhythm Analysis during CPR:
Impact on CPR Delivery

Current CPR guidelines recommend 2 minutes of unin-
terrupted CPR followed by a pause for rhythm reassess-
ment [12, 13]. Rhythm analysis methods during CPR are
conceived to improve CPR delivery compared to these rec-
ommendations. In this context, a rhythm analysis method
would continuously analyze/monitor the rhythmduring CPR
with two objectives. First, advancing the shock to patients
with shockable rhythms, which could be beneficial given
the high oxygen demands of recurrent VF [58]. Second,
prolong uninterrupted CPR beyond two minutes for patients
with nonshockable rhythms, therefore increasing the chest
compression fractionwhich increases the likelihood of ROSC
[11].

In 2005, Eilevstjønn et al. [59] proposed a set of mod-
ifications in AED operation to potentially reduce no-flow
times (NFT), which is equivalent to increasing the chest com-
pression fraction. These modifications included continuous
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Table 1: Comparison of six different approaches to rhythm analysis during CPR tested on OHCA registers. The confidence intervals for
sensitivity (Se) and specificity (Sp) were computed usingWald’s interval for binomial proportions. For the number of nonshockable rhythms
the proportion is indicated in parenthesis, and NA stands for not available.

Authors Method Se (%) Sp (%) Testing datasets
S NS

Eilevstjønn et al. [14] MC-RAMP 96.7 (87.6–98.0) 79.9 (73.3–85.2) 92 174 (30%)
Ruiz de Gauna et al. [27] Kalman filter 90.1 (83.6–94.2) 80.4 (75.9–84.3) 131 347 (43%)
Aramendi et al. [28] LMS filter 95.4 (88.4–98.6) 86.3 (81.8–89.9) 87 285 (31%)
Tan et al. [29] ART filter 92.1 (86.8–95.5) 90.5 (89.7–91.2) 114 4155 (NA)
Li et al. [30] Direct analysis 93.3 (92.0–94.4) 88.6 (86.8–90.2) 1256 964 (4%)
Krasteva et al. [31] Direct analysis 90.1 (85.6–94.6) 86.1 (83.6–88.7) 172 721 (46%)

rhythm analysis during CPR and, in the event of a shockable
rhythm, a short hands-off period for rhythm verification
in which the capacitor would also be charged. In addition,
they proposed 1min of uninterrupted CPR immediately
after a shock and rhythm analysis during CPR starting
after that minute. They analyzed 105 complete resuscitation
episodes and concluded that the median NFT could be
theoretically reduced from 51% to 34% and from 49% to
39% for patients in shockable and nonshockable rhythms,
respectively. Eilevstjønn et al. did not consider the impact
of misdiagnosing the rhythm during chest compressions in
their estimations of the potential reduction in NFT. However,
errors in diagnosis would be frequent given the low specificity
of current methods. Consequently, the real impact on CPR
delivery of continuous rhythm analysis was not assessed.

Ruiz et al. [24] recently introduced a methodology to
evaluate the real impact of rhythm analysis methods on
CPR delivery. The methodology is based on the evaluation
scenario described in Figure 6. This scenario starts with 1
minute of uninterrupted CPR, as introduced by Eilevstjønn
et al. [59], to guarantee a minimum period of blood flow.
Then rhythm analysis during CPR starts and CPR continues
until a shock is advised. In this scenario, the time to the first
shock diagnosis determines the duration of the uninterrupted
CPR time (𝑡uCPR). For an adaptive filter followed by a
SAA, Ruiz et al. computed 𝑡uCPR on 242 shockable and 634
nonshockable long duration OHCA segments. Then they
estimated the probability of interrupting CPR as a function of
time using Kaplan-Meier survival curves for both shockable
and nonshockable rhythms.

The rhythm analysis method had a sensitivity of 94% and
specificity of 81%, that is, an accuracy comparable to those
reported in the literature. However the estimated impact on
CPR delivery was much larger than anticipated. Although
100% of patients in shockable rhythms would receive a shock
earlier, CPR would be interrupted before 2 minutes in 42%
of patients in nonshockable rhythms. This would reduce
the chest compression fraction in a large number of cases
resulting in a compromised probability of survival.

Methodologically, the study by Ruiz et al. starts a new
stage in rhythm analysis during CPR centered on evaluating
the effects on CPR delivery of using these methods. Their
results confirm and amplify a well known problem; the
specificity of current methods is still too low. However,

CPR
Rhythm analysis during CPR
Rhythm analysis

sCPR: start CPR
sRA: start rhythm analysis
eCPR: end CPR
FSD: first shock diagnosis

CPR
Rhythm analysis during CPR
Rhythm analysis

sCPR: start CPR
sRA: start rhythm analysis
eCPR: end CPR
FSD: first shock diagnosis

0 1 2

Time (min)

sCPR

sCPR eCPR

sRA FSD/eCPR

Evaluation
scenario

Guidelines

1min

tuCPR

tuCPR = 2min

0 1 2

Time (min)

Figure 6: Evaluation scenario proposed by Ruiz et al. [24] for
continuous rhythm analysis during CPR, which consists of 1 minute
of uninterrupted CPR followed by rhythm analysis during CPR.
CPR stops when the rhythm analysis method gives the first shock
diagnosis.The 𝑡uCPR obtained in thismanner is then compared to the
guideline’s recommendation of 2 minutes of 𝑡uCPR after a shock or a
pause for rhythm reassessment. The figure has been adapted from
Ruiz et al. [24].

the impact of the low specificity on CPR delivery is much
larger than anticipated. New strategies to reduce interrup-
tions in CPR delivery are needed.

5. New Strategies to Rhythm Analysis
during CPR

To date, the methods for rhythm analysis during CPR have
focused mainly on two key ideas: (1) analyzing the rhythm
during chest compressions and (2) prioritizing the detection
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Figure 7: Examples of rhythm analysis during the ventilation pauses; in both examples the top panels show the ECG in mV and the lower
panel shows the thoracic impedance in Ω. In the impedance channel chest compression artifacts (fast fluctuations) and ventilation artifacts
(slow fluctuations) are visible. During the pauses for ventilation there are no chest compression artifacts in the ECG and the high temporal-
resolution SAA gives an accurate diagnosis using 3 s windows. The examples have been adapted from Ruiz et al. [25].

of shockable records above the detection of nonshockable
records. Unfortunately the accuracy of the methods has not
improved much over these last years. Consequently, some
recent efforts have started to explore new strategies for
rhythm analysis during CPR.

5.1. Rhythm Analysis during Chest Compression Pauses.
Before tracheal intubation current resuscitation guidelines
recommend a 30 : 2 compression to ventilation (CV) ratio
for CPR. Each cycle of 30 chest compressions, which at
the standard rates takes approximately 18 s, is followed by a
pause for two rescue breaths. Although the guidelines limit
the time for two rescue breaths to 5 s, in real practice the
median pause duration is 7 s [60]. During ventilations there
are no visible artifacts that may affect rhythm analysis, as
shown in Figure 7. Based on this premise, Ruiz et al. [25]
proved that it was possible to analyze the rhythmduring chest
compression pauses, ventilation or nonventilation pauses,
using a high temporal-resolution SAA, that is, an algorithm
capable of giving an accurate diagnosis in 3 s [26]. Figure 7
illustrates this method for a shockable and a nonshockable
rhythm. They analyzed 110 shockable and 466 nonshockable

long duration OHCA segments and manually identified a
total of 4476 pauses in chest compressions, of which 2183
were ventilation pauses with two rescue breaths. The pauses
had a median duration of 6.1 s, 5.5 s for those with two
rescue breaths, and 91% of all the pauses and 95% of the
ventilation pauses with two breaths were longer than 3 s,
which made them suitable for a rhythm analysis by the
SAA. The sensitivity and specificity were 95.8% and 96.8%,
respectively, well above the AHA recommendations.

A key component to incorporate this solution into a
defibrillator is the automatic identification of the intervals
without chest compressions. Depending on the available
equipment, different reference channels could be used for this
purpose. In a scenario with an external CPR assist device
the identification could be performed using the compression
depth or the force channels. However, most defibrillators do
not incorporate this technology, so a more general solution
based on the impedance signal should be explored. Pauses
in chest compressions [61], ventilations [62], and the end of
chest compressions [63] have already been detected on the
impedance, although a complete valid systemhas not yet been
demonstrated.



10 BioMed Research International

Devices incorporating this solution would have an accu-
rate rhythm analysis approximately every 18 s for CPR deliv-
ered at a 30 : 2 CV ratio for a standard compression rate
of 100 cpm. The AED could then guide therapy using this
feedback to monitor nonshockable rhythms or for early
recognition of recurrent VF, converting AEDs into intelligent
devices.

5.2. Rhythm Analysis during Chest Compressions. In the last
years there has been an increasing debate about the need for
active ventilations during CPR. Several studies have shown
an increased survival rate when compression only CPR
(COCPR) was administered compared with the standard
30 : 2 CV ratio CPR [64, 65]. In the future resuscitation guide-
lines may recommend COCPR. In fact, current guidelines
state that COCPR may be used by untrained bystanders or
bystanders unwilling to give rescue breaths [12, 13]. In this
scenario, new and reliable methods to analyze the rhythm
during chest compressions should be developed.

As shown in Section 4, in a continuous rhythm analysis
scenario CPRwould only be stoppedwhen a shock is advised.
If the patient presents a shockable rhythm, an erroneous no-
shock diagnosis could be corrected in the upcoming rhythm
analyses if the sensitivity of the method is not too low.
On the other hand, for patients in nonshockable rhythms
a single erroneous shock diagnosis entails an unnecessary
CPR interruption. Consequently, efforts should focus on
increasing the specificity. Based on our 10-year experience on
this field, we believe that the following three strategies should
be explored and combined.

(1) From a SAA design perspective the accuracy of the
method could be increased by merging the two most
successful strategies for rhythm analysis during CPR:
adaptive filters to suppress the CPR artifact combined
with rhythm analysis algorithms designed to work
during CPR. Although adaptive filters substantially
reduce the CPR artifact, with SNR improvements of
up to 35 dB [29], a filtering residual always remains.
These residuals frequently resemble a disorganized
rhythm [14, 15, 53] andmay produce a shock diagnosis
in SAAs designed for artifact free ECGs. This is par-
ticularly severe when the underlying nonshockable
rhythm has low electrical activity like during asytole
or low rate PEA. SAAs designed to analyze the ECG in
the presence of filtering residuals should be designed
with emphasis on increasing the specificity.

(2) Sometimes the chest compression artifact is so large
that even state of the art adaptive filters cannot effec-
tively eliminate it. In these cases the rhythm analysis
following filtering is grossly equivalent to a coin toss.
However, if the rhythm is continuously analyzed these
unreliable analyses can be safely ignored until the
amplitude of the artifact decreases. SAAs could add
a block before rhythm analysis to identify large chest
compression artifacts and wait until a safe rhythm
analysis is possible.

(3) The confidence in a shock decision could be further
increased by efficiently combining several rhythm
analysis decisions. For instance, instead of using a
shock/no-shock decision per analysis window, the
algorithm could return an estimate of the probability
of having a shockable rhythm. In a continuous rhythm
analysis scenario several of these probabilities could
be conservatively combined before a shock is actually
decided.

Rhythm analysis during CPR could be further enhanced
if these strategies were combined with techniques to deter-
mine the optimal time for shock delivery. In the past 20
years, considerable efforts have been made on VF waveform
analysis to define predictors of defibrillation success and
outcome such as median slope [66], scaling exponent [67],
and amplitude Spectrum Analysis (AMSA) [68, 69]. Incor-
porating rhythm analysis during CPR and assessment of the
optimal time to defibrillate would lead to a new generation of
intelligent AEDs, capable of guiding therapy individually.

Finally, rhythm analysis methods during chest com-
pressions should be evaluated in terms of their impact on
CPR delivery, as described in Section 4. Ruiz et al. [24]
proposed that for nonshockable rhythms these methods
should guarantee a probability greater than 95% of delivering
at least 2 minutes of uninterrupted CPR (meet guidelines)
and a probability greater than 90% of delivering at least 3
minutes of uninterrupted CPR (improve chest compression
fraction compared to guidelines). In addition, they should
guarantee that the shock is advanced in at least 90% of
shockable rhythms. Although these recommendations seem
reasonable, they should be appraised by the resuscitation
research community.

6. Conclusions

Currently, there is insufficient evidence to support or refute
the use of algorithms for rhythm analysis during CPR. The
evaluation of these algorithms in terms of sensitivity and
specificity on short ECG segments does not accurately predict
their impact on CPR delivery. As stated by the CoSTR,
studies must demonstrate that rhythm analysis during CPR
optimizes the time of appropriate chest compressions. To this
aim, the probability of interrupting CPR as a function of time
has been proposed as a new evaluation figure. In this new
framework, the classical sensitivity/specificity goals would
change to new goals for uninterrupted CPR time.

Recently, new solutions have been proposed for rhythm
analysis during CPR. Hands-off intervals for rhythm analysis
could be completely eliminated by assessing the rhythm
during ventilation pauses using a high temporal-resolution
SAA. On the other hand, accurate SAAs with high specificity
should be designed to work during chest compressions for
COCPR scenarios. Retrospective studies with large databases
of complete OHCA episodes should be conducted to simulate
continuous rhythm analysis and measure the impact on CPR
delivery. Later, prospective studies using defibrillators incor-
porating these algorithms could definitely prove if survival
improves.
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Patients with chronic left ventricular (LV) dysfunction are assumed to have a lower chance of successful CPR and lower likelihood of
ultimate survival. However, these assumptions have rarely been documented. Therefore, we investigated the outcome of prolonged
ventricular fibrillation (VF) andCPR in a ratmodel of chronic LVdysfunction. Sprague-Dawley rats were randomized to (1) chronic
LV dysfunction: animals underwent left coronary artery ligation; and (2) sham control. Echocardiography was used to measure
cardiac performance before surgery and 4 weeks after surgery. Four weeks after surgical intervention, 8min of VF was induced and
defibrillation was delivered after 8min of CPR. LV dilation and low ejection fraction were observed 4 weeks after coronary ligation.
With optimal chest compressions, coronary perfusion pressure values during CPR were well maintained and indistinguishable
between groups. There were no differences in resuscitability and numbers of shock required for successful resuscitation between
groups. Despite the significantly decreased cardiac index in LV dysfunction animals before induction of VF, no differences in
cardiac index were observed between groups following resuscitation, which was associated with the insignificant difference in
postresuscitation survival. In conclusion, the outcomes of CPR were not compromised by the preexisting chronic LV dysfunction.

1. Introduction

A majority of episodes of sudden cardiac deaths occur
in victims with ischemic heart disease. Ischemic heart
disease may develop over a lengthy span of time and is
often associated with left ventricular (LV) remodeling. This
ultimately leads to chronic ischemic LV dysfunction with
subsequent congestive heart failure. Lower ejection fraction
(EF) has been consistently demonstrated to be the strongest
independent predictor of sudden cardiac death [1–3]. When
cardiac arrest occurs in patients with chronic ischemic LV
dysfunction, they are assumed to have a lower chance of
successful cardiopulmonary resuscitation (CPR) and lower
likelihood of ultimate survival. However, these assumptions
have rarely been documented. Little is known about prognos-
tic information concerning the outcomes of CPR in patients
with chronic ischemic LV dysfunction.

The goals of the present study were therefore to
obtain prognostic information on the outcome of prolonged

ventricular fibrillation (VF) and CPR in the chronic ischemic
LV dysfunction due to complete left coronary artery ligation
in Sprague-Dawley rats. We hypothesized that when under-
going prolonged VF/CPR, chronic ischemic LV dysfunction
animals would be less likely to be resuscitated. If resuscitated,
such animals would be likely to have more severe postresus-
citation myocardial dysfunction and decreased duration of
postresuscitation survival.

2. Materials and Methods

This study was approved by the Institutional Animal Care
and Use Committee of the Weil Institute of Critical Care
Medicine. All animals received humane care in compliance
with the Principles of Laboratory Animal Care formulated
by the National Society for Medical Research and the Guide
for the Care and Use of Laboratory Animals prepared by the
Institute of Laboratory Animal Resources and published by
the National Institutes of Health.
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2.1. Study Design. Fourteen male Sprague-Dawley rats
weighing 500 ± 50 g were randomized into (1) chronic
ischemic LV dysfunction group (𝑛 = 7): the animals
underwent left coronary artery ligation 4 weeks before
induction of VF; and (2) control group (𝑛 = 7). The animals
received sham operation without coronary artery ligation 4
weeks before induction of VF.

2.2. Chronic Ischemic LV Dysfunction Model. The animals
were fasted overnight except for free access to water. They
were anesthetized by intraperitoneal injection of pentobarbi-
tal (45mg/kg). The animals were then orally intubated and
mechanically ventilated with room air. Electrocardiogram
(ECG) was continuously monitored. After measurements of
baseline myocardial function using noninvasive transtho-
racic echocardiography, a thoracotomy via the third left
intercostal space was performed. The atrial appendage was
elevated and the left coronary artery near its origin was
ligated. Successful ligation was confirmed by the ST segment
elevation. The chests were then closed, and the animals were
returned to their cages. Postsurgical pain was controlled with
intramuscular injection of ketorolac (0.4mg/kg). Control rats
were prepared similarly except that the coronary artery was
not ligated.

2.3. Experimental Procedures of VF/CPR. Four weeks after
surgical intervention, the animals were reanesthetized and
intubated. Cardiac geometry and function were assessed
by echocardiography. A PE-50 catheter (Becton Dickinson)
was advanced from the right carotid artery into the left
ventricle for measurement of LV pressure. A PE-50 catheter
was advanced through the left external jugular vein into
the right atrium for measurement of right atrial pressure.
For electrical induction of VF, a 4 French PE catheter was
advanced through the right external jugular vein into the
right atrium, and through its lumen a precurved guide wire
was then advanced into the right ventricle for electrically
inducing VF. A PE-50 catheter was advanced through the
left femoral artery into the thoracic aorta for measurement
of mean aortic pressure (MAP). A thermocouple microprobe
(9030-12-D-34, Columbus Instruments; Columbus, OH) was
advanced from the right femoral artery into the descending
thoracic aorta for measurement of blood temperature. ECG
was recorded. A heat lamp was used to maintain body
temperature at 36.8∘C (±0.2%).

The animals were mechanically ventilated with room air
at a tidal volume of 0.55 mL/100 g and a frequency of 100
breaths/min. A progressive increase in 60Hz current to a
maximumof 4mAwas then delivered to the right ventricular
endocardium. The current flow was continued for 3min to
preclude spontaneous reversal of VF. Mechanical ventilation
was discontinued after onset of VF. Precordial compression
was then begun andmechanical ventilationwith 100%O

2
was

resumed 8min after the onset of VF. Precordial compression
at a rate of 200min−1 was synchronized to provide a compres-
sion/ventilation ratio of 2 : 1. The depth of compression was
adjusted to maintain a coronary perfusion pressure (CPP)
at 24 ± 2mmHg. Resuscitation was attempted with up to

three 2-J biphasic waveform countershocks (CodeMaster XL,
Heartstream Operation, Philips; Seattle, WA) after 8min of
CPR. Return of spontaneous circulation (ROSC) was defined
as an organized rhythm with MAP ≥60mmHg for ≥5min.

Following ROSC, the animals were monitored for 4
hours. All catheters were then removed. The animals were
observed for an additional 68 hours after which they were
euthanized with an intraperitoneal injection of pentobarbital
sodium (150mg/kg). An autopsy was performed to confirm
the complete ligation of left coronary artery, and organs
were inspected for gross abnormalities, including evidence
of traumatic injuries consequent to cannulation, airway
management, or precordial compression.

2.4. Measurements. LV geometry and cardiac function prior
to and 4 weeks after ligation was quantitated with a Sonos
2500 echocardiographic system utilizing a 7.5Hz transducer
(Model 21363A, Hewlett-Packard Co., Medical Products
Group, Andover, MA).The animal hearts were imaged in the
parasternal short-axis plane through the anterior chest. At
two-dimensional imaging of short-axis view, left ventricular
end-systolic volumes (LVESV) and left ventricular end-
diastolic volumes (LVEDV) were calculated by the method of
discs (Acoustic Quantification Technology, Hewlett-Packard,
Andover, MA). From these, EF was computed.

Aortic, LV, right atrial pressures, and ECG were recorded
via a WinDaqdata-acquisition system (DataQ; Akron, OH).
CPPwas calculated as the difference between aortic and time-
coincident right atrial pressures in the interval between chest
compressions.

Myocardial function during VF/CPR experimental phase
was assessed from measurements of LV pressure and car-
diac output. The rate of LV pressure increase at 40mmHg
(𝑑𝑃/𝑑𝑡

40
) was measured by analog differentiation as an

indicator of isovolumic contractility. The rate of LV pressure
decline (−𝑑𝑃/𝑑𝑡) wasmeasured as an indicator ofmyocardial
relaxation. Cardiac output wasmeasured by a thermodilution
technique with the aid of a cardiac-output computer fabri-
cated at our institute.The data were reported as cardiac index
(CI) values as an indicator of global pump function.

2.5. Analyses. Measurements are reported as means ± SD.
Comparisons between groups before surgical operation and
4 weeks after coronary ligation were performed by using
Student’s 𝑡-test. FollowingROSC, comparisons between time-
basedmeasurements within each group were performedwith
analysis of variance for repeated measurements. The success
of resuscitation and 72-hour survival rate were analyzed with
Fisher’s exact test. Survival analysis was performed with the
Kaplan-Meier method. A value of 𝑃 < 0.05 was regarded as
significant.

3. Results

Before surgical operations, there were no differences in
baseline values of echocardiographically measured LVEDV,
LVESV, and EF between groups (Figure 1). Significant
decreases in EF and increases in LVEDV and LVESV were
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Table 1: Effects of intervention on ROSC, number of 72-hour survival, and number of defibrillations.

Group ROSC 72-hour survival Number of shocks
Chronic LV dysfunction 6/7 3/6 1.2 ± 0.4

Control 5/7 3/5 1.4 ± 0.9

Values are means ± SD. ROSC: return of spontaneous circulation.
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Figure 1: Echocardiographic measurements at baseline (BL) and
4 weeks after left coronary artery ligation. Values are means ±
SD. LVEDV: left ventricular end-diastolic volume; LVESV: left
ventricular end-systolic volume; EF: ejection fraction.

documented in chronic ischemic LV dysfunction animals 4
weeks after coronary ligation.

CPP values were maintained at 24 ± 2mmHg for all
animals during the entire period of CPR. There were no
differences in resuscitability and total shock energy required
for ROSC between groups (Table 1).

Before induction of VF and following ROSC, there were
no significant differences in both MAP and heart rate in
heart failed animals when compared with control animals
(Figure 2).

Myocardial function, as measured by 𝑑𝑃/𝑑𝑡
40

and
−𝑑𝑃/𝑑𝑡, was significantly decreased in LV dysfunction ani-
mals before induction of VF and over 4 hours after resusci-
tation compared with control animals (Figure 3). Similarly,
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Figure 2:Mean aortic pressure and heart rate before onset of cardiac
arrest and following resuscitation. Values are means ± SD. MAP:
mean aortic pressure; BL: baseline; VF: ventricular fibrillation; PC:
precordial compression; DF: defibrillation.

LV end-diastolic pressure (LVDP) was significantly increased
in LV dysfunction animals at baseline before induction of
VF and following ROSC compared with control animals
(Figure 4). Four weeks after coronary ligation but prior to
induction of VF, the resting CI in LV dysfunction animals
was significantly lower than that of control animals. How-
ever, no significant difference in CI was observed between
groups following resuscitation (Figure 5). No differences in
the number of animals surviving 72 hours and duration
of survival (survival curve) were observed between groups
(Table 1; Figure 6).

At autopsy, transmural scar formation of the LV anterior
wall was observed in LV dysfunction animals. No gross
abnormalities were observed at autopsy in any animals.
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Figure 3: 𝑑𝑃/𝑑𝑡
40

and −𝑑𝑃/𝑑𝑡 before onset of cardiac arrest and
following resuscitation. Values are means ± SD; ∗𝑃 < 0.05; ∗∗𝑃 <
0.01 versus control. BL: baseline; VF: ventricular fibrillation; PC:
precordial compression; DF: defibrillation.

4. Discussion

In this study, CPR was performed effectively after prolonged
VF in a rat model of chronic ischemic LV dysfunction.
With optimal chest compressions, the ease of defibrillation
and cardiac resuscitability were not compromised by the
preexisting chronic LV dysfunction. Furthermore, this study
revealed that it was the systemic blood that flows through
the circulation following ROSC, rather than the preexisting
chronic LV dysfunction, which was the predominant deter-
minant of postresuscitation survival.

Fewer studies have directly evaluated the influence of pre-
existing chronic ischemic LVdysfunction on the likelihood of
resuscitability and ultimate postresuscitation survival. Previ-
ously we have demonstrated the feasibility of applying CPR
in a rat model of chronic nonocclusive left coronary artery
constriction [4]. It is unexpected to notice that no differences
in resuscitability and postresuscitation short-term outcome
were observed between coronary constriction animals and
control animals. We suppose that this may be due to the
possibilities that heart function is less impaired after coronary
artery narrowing and that downtime of VF/CPR is too short
to differentiate the effects of myocardial ischemia on the
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Figure 4: LV end-diastolic pressure (LVDP) before onset of cardiac
arrest and following resuscitation. Values are means ± SD; ∗𝑃 <
0.05; ∗∗𝑃 < 0.01 versus control. BL: baseline; VF: ventricular
fibrillation; PC: precordial compression; DF: defibrillation.

survival outcome [4]. The goals of the present study were
therefore to obtain prognostic information on the outcome of
prolonged VF/CPR in chronic ischemic LV dysfunction due
to left coronary artery complete ligation.

Overt LV dysfunction and extensive ventricular remod-
eling were observed in left coronary artery ligation animals.
Myocardial function as assessed by EF, CI, 𝑑𝑃/𝑑𝑡

40
, and

−𝑑𝑃/𝑑𝑡 was significantly depressed and LVDP was signif-
icantly increased 4 weeks after coronary ligation. The LV
remodelingwasmanifested by the significantly larger LVEDV
and LVESV. Taken together, our results suggested the severe
deterioration in LVpumpdynamics and extensive ventricular
remodeling in this rat model.

In the current study, the number of defibrillations and
resuscitability in LV dysfunction animals did not differ
from thoat in control. It is well known that the myocardial
blood flow is the overriding determinant for the success of
resuscitation effort, especially when the duration of untreated
cardiac arrest is prolonged [5, 6]. It has also been suggested
that CPP correlates well with myocardial blood flow [7–9]
and has served as the most reliable quantitative predictor of
the success of resuscitation in experimental models and in
human patients [10, 11]. Following the prolonged period of
untreated cardiac arrest, the rationale of chest compression
is to rapidly restore threshold levels of CPP and, therefore,
myocardial blood flow. In the present study, all animals were
submitted to identical qualities of external chest compres-
sions and mechanical ventilations. The fact that CPP values
during CPR were comparable between groups demonstrated
that the qualities of chest compressions were well controlled
for all animals. Our findings therefore suggested that the ease
of defibrillation and resuscitability are not diminished by the
preexisting chronic LVdysfunction but largely determined by
the quality of CPR efforts.

Following ROSC, the primary goal of patient care is to
ensure that the patient has adequate spontaneous circulation,
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such that the whole-body ischemia/reperfusion injury can be
prevented,minimized, or reversed; subsequently, the ultimate
postresuscitation survival with intact organ function might
be improved. Reversible myocardial dysfunction has been
observed after ROSC in experimental models [12] and in
human patients [13, 14]. This dysfunction may result in acute
hemodynamic compromise leading to profound hypoperfu-
sion that adds additional ischemic injury to vital organs, and
has been associated with early death after initial successful
resuscitation [15]. In the present investigation, myocardial
contractile dysfunction as assessed by decreased 𝑑𝑃/𝑑𝑡

40
and

CI and diastolic dysfunction assessed by decreased −𝑑𝑃/𝑑𝑡
were observed in all animals after resuscitation. Among these
standard measurements, the index of resting CI represents
global blood flow through the entire systemic circulation
to vital organs. The positive correlation between CI and
duration of postresuscitation survival has previously been
demonstrated by us in a rodent model of VF/CPR [16, 17].
These observations indicated that inadequate systemic blood
flow was associated with poor postresuscitation survival.
In the present investigation, the fact that there was no
difference in postresuscitation CI between groups suggested
the comparable global organ blood flow after resuscitation.
These may in part explain the insignificant difference in
duration of postresuscitation survival between groups.

It is interesting to notice that no difference in CI
following ROSC was observed between groups regardless of
the significant difference before induction of VF. Previously
the phenomenon of adaptive process of chronic hypoxia
conferring myocardial tolerance to subsequent acute severe
hypoxia/reoxygenation or ischemia/reperfusion injury has
been observed in cardiac myocytes models [18, 19] and
isolated perfused heart models [20]. Such observations have
been supported by clinical investigation of coronary artery
bypass surgery [21], in which investigators found that similar
severity of ischemia/reperfusion induced moderate overall
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ultrastructural changes in normally contracting myocardium
whereas onlyminor overall ultrastructural changes in postre-
perfusion hibernating myocardium. Similar to these obser-
vations, our work suggested that chronic heart failure might
increase myocardial ischemic tolerance against impending
insult of VF/CPR, which was manifested as the insignificant
difference in postresuscitation CI, and subsequently the
insignificant difference in postresuscitation survival between
groups.

There are limitations that need to be acknowledged
and addressed regarding the present study. Clinically, most
episodes of VF are caused by ischemic heart disease rather
than electric shock. We recognized that despite the minimal
level of current flow, the potential electrical injury to the
myocardium would likely compromise the clinical relevance
of this rat model of VF/CPR. Regardless of this potential
shortcoming, this, however, did not alter our conclusion since
all the animals receive the same procedure. In this prelim-
inary study, CPP is adopted as a reflection of myocardial
blood flow. We admitted that ideally myocardial blood flow
should be measured by real-time techniques during CPR
and following resuscitation. However, aiming to observe the
effect of chronic ischemic LV dysfunction on the duration
of postresuscitation survival and the technical difficulties
of directly measuring myocardial blood flow during chest
compressions do not enable us to perform suchmeasurement
in real time. Nevertheless, based on the current data, we
cautiously draw the conclusion that the extent of levels of CPP
can, in part, reflect myocardial blood flow. In addition, we
admit that our current studies lack direct evidence about the
underlying mechanisms responsible for the phenomenon of
“myocardial ischemic tolerance to insult of cardiac arrest and
CPR.” This relatively preserved postresuscitation myocardial
function in the chronic ischemic heart deserves further inves-
tigation. Finally, we admit that LVEF values before induction
of VF are greater than those we usually observed in patients
with chronic heart failure. Nevertheless, we do observe that
the outcomes of CPR were not compromised by preexisting
chronic ischemic LV dysfunction. The appropriate animal
model and optimal experimental design will be considered in
our future investigations, so that the effect of more depressed
LVEF on the outcome of CPR can be further revealed.
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Our findings may have potential clinical implications.
First, our work indicates that efficacy of chest compressions
during CPR overrides the detrimental effect of preexisting
chronic heart failure in determining the likelihood of success-
ful resuscitation. Second, since postresuscitation outcome
was largely determined by the systemic bloodflow, the postre-
suscitation patient care should be focused onmaintaining and
improving global blood flow following resuscitation, such
that the ultimate postresuscitation survival with intact organ
function might be improved.
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Purpose. To investigate the effect of hypothermia on 96 hr neurological outcome and survival by quantitatively characterizing
early postresuscitation EEG in a rat model of cardiac arrest.Materials and Methods. In twenty male Sprague-Dawley rats, cardiac
arrest was induced through high frequency transesophageal cardiac pacing. Cardiopulmonary resuscitation was initiated after
5mins untreated arrest. Immediately after resuscitation, animals were randomized to either 2 hrs of hypothermia (𝑁 = 10) or
normothermia (𝑁 = 10). EEG, ECG, aortic pressure, and core temperature were continuously recorded for 6 hrs. Neurological
outcome was evaluated daily during the 96 hrs postresuscitation period. Results. No differences in the baseline measurements
and resuscitation outcome were observed between groups. However, 96 hr neurological deficit score (204 ± 255 versus 500 ± 0,
𝑃 = 0.005) and survival (6/10 versus 0/10, 𝑃 = 0.011) were significantly better in the hypothermic group. Quantitative analysis
of early postresuscitation EEG revealed that burst frequency and spectrum entropy were greatly improved in the hypothermic
group and correlated with 96 hr neurological outcome and survival. Conclusion. The improved burst frequency during burst
suppression period and preserved spectrum entropy after restoration of continuous background EEG activity for animals treated
with hypothermia predicted favorable neurological outcome and survival in this rat model of cardiac arrest.

1. Introduction

Out-of-hospital cardiac arrest (CA) is a major public health
problem all over the world. Each year, an estimated 325,000
victims in USA, 350,000 in Europe, and 544,000 in China
suffer out-of-hospital CA [1–3]. Despite efforts to improve
outcomes from CA, the overall survival is less than 10%
among patients successfully resuscitated [4, 5]. In patients
who achieved return of spontaneous circulation (ROSC), the
resulting anoxic ischemia brain injury is a major cause of
morbidity and mortality [6, 7].The greatest postresuscitation
emphasis has mainly been on preserving neurologic function
[8].

Among all postresuscitation care suggested and/or rec-
ommended, therapeutic hypothermia (TH) is the most

persuasive intervention that can significantly improve neu-
rologic recovery and survival after resuscitation from CA
[9, 10]. However, patient selection and the optimization of
postarrest hypothermia treatment remain problematic issues
because there are no clinically validated tools to determine
who might benefit from the therapy, how long hypothermia
should be conducted, and how to avoid/reduce occurrence
of complications [9, 10]. Early prediction of outcome may
be, in fact, an important aspect to be considered during
the postresuscitation care in order to avoid the likelihood
of unnecessary prolongation of TH when a good functional
recovery has already been achieved or to avoid unjustified
withdrawal of care if the protection has not been fully
achieved yet. For years, neurological examination and elec-
trophysiological studies have guided physicians in predicting
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outcome in comatose survivors of CA, including pupillary
light response, serum neuron-specific enolase, somatosen-
sory evoked potentials, and combinations thereof [11–14].
But early prognostication remains challenging, especially
because the predictive values of clinical, biochemical, and
electrophysiological variables have become uncertain after
the introduction of TH [15–17].

The electroencephalogram (EEG), which reflects part of
the function of cortical neurons, is very sensitive to ischemia.
Previous studies found that EEG burst characteristics were
associated with neurological recovery in animal model of CA
from asphyxia [18, 19]. At the same time, observational clin-
ical studies reported that persistence of isoelectric activity,
burst suppression, or generalized epileptiform discharges on
EEG was associated with poor outcomes [20–23]. Although
unprocessed EEG interpretation observed during the early
stage after resuscitation has been used to assist the pre-
diction of a poor outcome in comatose survivors without
hypothermia with some success, the prognostic accuracy
was insufficient, especially in the era of hypothermia [24–
27]. Meanwhile, the EEG literatures of clinical study are
confounded by different classification systems, causes of
CA, arrest time, duration of cardiopulmonary resuscitation
(CPR), medications used, and intervals of recordings after
resuscitation [28]. The characteristics of EEG during early
postresuscitation period and the effect of hypothermia on
EEG recovery and its prognostication value are still unclear
[9, 10, 28].

In the present study, we investigated the effect of mild
hypothermia on EEG recovery, as well as the relationship
between characteristics of early postresuscitation EEG activ-
ities and 96 hr neurological outcome and survival in a rat
model of CA.

2. Materials and Methods

This study was approved by the ethics of animal investiga-
tion committee of Guangxi Medical University. All animals
received humane care in compliance with the Principles of
Laboratory Animal Care and Guide for the Care and Use of
Laboratory Animals [29].

2.1. Animal Preparation. Twenty male Sprague-Dawley rats
weighing 230 to 334 g were fasted overnight but had free
access to water. Anesthesia was initiated by intramuscular
injection of (0.3 g/kg) chloral hydrate. Additional doses of
0.03 g/kg were administered at intervals of 1 hr or when
required to maintain anesthesia, except when no anesthetic
agents were administrated for 30mins before induction CA.
The trachea was orally intubated with a 14-gauge cannula
for mechanical ventilation by a volume-controlled ventilator
(ALC-V9, Alcott Biotech CO., Shanghai, China) at tidal
volume of 6mL/kg. A polyethylene tubing PE50 (Instech
Laboratories Inc. PlymouthMeeting, PA,USA)was advanced
from the left femoral artery into the thoracic/descending
aorta for measurement of arterial pressure.Through the right
external jugular vein, another PE50 catheter was advanced
into the right atrium for measurement of right atrial pressure
and for the administration of chloral hydrate. Aortic and

right atrial pressures weremeasuredwith two high-sensitivity
transducers via amultiparameter patientmonitor (Datascope
3000, Datascope Corp. Paramus, NJ, USA). A thermocouple
microprobe (IT-21, Physitemp Instruments, Clifton,NJ,USA)
was inserted into the right femoral artery and advanced to
the descending aorta for measurement of blood temperature.
A 5F pacing electrode with two 1mm ring electrodes and
an interelectrode distance of 5mm was inserted orally into
the esophagus of the rats about 7 cm in depth for inducing
ventricular fibrillation (VF). All of the catheters were flushed
intermittently with saline containing 5 IU/mL of crystalline
bovine heparin.

2.2. Experimental Procedures. After collection of baseline
data, VF was induced through high frequency trans-
esophageal cardiac pacing with an alternating voltage of 24V
as previously described [30]. The stimulation was continued
for 1min to prevent spontaneous cardiac reversion. Mechan-
ical ventilation was discontinued when cardiac pacing was
started. After 5mins of untreatedCA, CPR, includingmanual
chest compression and mechanical ventilation with air, was
begun. Chest compression was performed at a rate of 200
compressions per minute, with a depth of 25%–30% of the
anterior posterior diameter of the animal’s chest and with
equal compression-relaxation duration by the same investi-
gator. After 1min of CPR, one dose of epinephrine (20𝜇g/kg)
was given through the right atrial catheter. An organized
cardiac rhythm with mean aortic pressure of >60mmHg
for a minimum of 5mins was defined as successful ROSC.
CPR was continued unless the animal was either successfully
resuscitated or pronounced dead after a total of 15mins CPR.

Immediately after resuscitation, animals were random-
ized to hypothermic or normothermic group and monitored
in an intensive care setting for additional 6 hrs. For animals
assigned to TH, surface cooling was induced with the aid of
ice packs and an electrical fan. Once the target temperature
reached 33.5∘C, it was maintained over the first 2 hr of
postresuscitation and then gradually returned to 37.0∘C over
a rewarming period of 2 hrs. For those animals subjected to
normothermic control, blood temperature was maintained at
37.0 ± 0.3∘C during the 6 hrs postresuscitation observational
period. All catheters, including the temperature transducer
and endotracheal tube, were then removed and wounds were
surgically sutured. Animals were then returned to their cages
and observed for 96 hrs.

The neurological functions were assessed daily during the
96 hr postresuscitation period according to neurologic deficit
scores (NDS), which was developed to evaluate neurological
outcome after global cerebral ischemia for rats [31]. Details of
NDS scales are illustrated in Table 1. The total score ranges
from 0 to 500, representing no observational neurological
deficit and brain death.

2.3. Measurements. The ECG, EEG, pressure measurements,
and core temperature were continuously measured and
recorded through a data acquisition system supported
by WinDaq hardware/software (DATAQ Instruments Inc.,
Akron, OH, USA) at a sample rate of 300Hz. Four subdermal
needle electrodes (right-frontal, right-parietal, left-frontal,
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Table 1: Neurological deficit score (NDS) scale.

Category Item Score

Level of consciousness (spontaneous attention to
environment and reaction to pinching of ear or tail)

Good attention and brisk response 0
Sluggish response and no attention 50

No response 100

Respiration (breathing frequency)
Normal or higher (over 80/min) 0

Decreased 50
Apnea 100

Cornea reflex (touch center of cornea with hemostat)
Brisk 0

Sluggish 20
Absent 40

Cranial reflex or gag reflex (stimulation with catheter)
Brisk 0

Sluggish 15
Absent 30

Auditory reflex (bang metal cop with clamp)
Brisk 0

Sluggish 15
Absent 30

Motor sensory function (righting reflex)
Turn spontaneously 0
Sluggish, partly 50

No turning attempts 100

Behavior (spontaneous or stimulated)
Moving body, forward movements walking 0
Movements of the head, looking around 50

No movements except breathing or not at all 100

and left-parietal) placed over the surface of the skull were
used for bipolar EEG measurement and recording. A two-
channel EEG differential preamplifier (PRE-ISO.EEG100,
Xiangyun Computing Technology, Beijing, China) was used
for signal amplification and condition. The amplifier gain of
each channel was set at 10,000 and the cutoff frequencies were
set at 0.3 and 70Hz for the high-pass and low-pass filters,
respectively.

EEG analysis was performed offline after the experi-
ment was concluded. All of the EEG patterns were visually
annotated by an investigator and were further confirmed by
another medical doctor who was blinded to the outcome.
During the 6 hrs observational period, the EEG pattern
was classified as one of the three following categories [25,
32]: isoelectric/suppression, burst suppression, and contin-
uous background EEG activity. Isoelectric/suppression was
defined as total absence of any visible EEG activity during
a 60 secs recording episode. Burst suppression was defined
by the presence of clear increases in amplitude (bursting)
followed by interburst intervals of at least 0.5 sec without EEG
activity or low amplitude activity (less than 10𝜇V). Bursts
were required to have EEG amplitude >10 𝜇V in both left and
right channels. Characteristics of earlier postresuscitation
EEG, including the onset time of identifiable EEG burst, the
frequency of bursts during the burst suppression period, the
time of recovery of continuous background EEG activity, and
the spectral entropy (SE) of continuous background EEG
[33], were quantitatively analyzed.

SE was calculated using the Welch averaged periodo-
gram method from consecutive nonoverlapping epochs of
60 seconds by MATLAB 7.0 (The MathWorks, Inc., Natick,
MA, USA). Linear detrending and Hanning windowing were
applied to the signal before applying the Fast Fourier Trans-
form. The sum of the magnitudes (EEG power in different
subbands) in each individual predetermined frequency band
that represents Delta (0.5–4Hz), Theta (4–8Hz), Alpha (8–
13Hz), and Beta (13–30Hz) waves was calculated and the
probability density function of each wave band was then
computed as

𝑝
𝑖

=
𝑋
𝑖

∑
𝑁

𝑖=1
𝑋
𝑖

, (1)

where𝑋
𝑖
represents the total energy of the 𝑖th band, 𝑝𝑖 is the

probability mass function of the spectrum in each band, and
𝑁 is the total number of bands. The SE was calculated as
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2.4. Statistical Analysis. Data were presented as Mean ± SD.
The 6 hrs EEG analysis and 96 hrs neurologic outcome and
survival served as primary variables between experimen-
tal groups. For baseline and experimental measurements
between groups, two-tailed Student’s 𝑡-test was used. Quanti-
tative EEG characteristics were analyzed by two-way analysis
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Figure 1: Core temperature before and after resuscitation. PR: post-
resuscitation. ∗∗𝑃 < 0.01 compared with normothermic control.

of variance (ANOVA) for post hoc comparison between
the two experimental groups. Kaplan-Meier analysis and
the log-rank test were used to calculate survival rates. The
associations between characteristic indices of EEG and 96 hr
neurologic outcome and survival were analyzed using Spear-
man’s correlation and logistic regression. A 𝑃 < 0.05 was
regarded as statistically significant.

3. Results and Discussions

3.1. Results. Thedetailed baseline and experimentalmeasure-
ments are presented in Table 2. There were no differences in
body weight and baseline measurements of heart rate, body
temperature, and mean arterial pressure between groups.

CA was successfully induced in all animals after 1min of
transesophageal cardiac pacing. The cardiac rhythm rapidly
deteriorated from VF to pulseless electrical activity (PEA)
before CPR was initiated. All of the twenty rats were suc-
cessfully resuscitated without the aid of defibrillatory shocks
and survived to 6 hrs. No differences in the duration of
CPR time (93.3 ± 19.6 versus 86.1 ± 11.9 secs, 𝑃 = 0.34)
and coronary perfusion pressure during CPR (21.6 ± 3.7
versus 21.2 ± 3.5mmHg, 𝑃 = 0.78) were observed between
groups. Figure 1 shows the core temperaturemeasured during
the experiment. For control group, the body temperature
was maintained between 36.6∘C and 37.4∘C during the 6 hrs
observational period. For hypothermic group, the target core
temperature was obtained within 26.9mins (15.7 ± 5.0mins)
and maintained for 2 hrs.

As illustrated in Figure 2, all of the animals showed the
same EEG recovery pattern during the 6 hrs EEG recording
period in the order of isoelectric tracing, burst suppression,
and continuous background EEG activity. However, the onset
time of identifiable EEG burst (15.1 ± 1.9 versus 21.5 ±
6.0mins, 𝑃 = 0.008) and the time of recovery of contin-
uous background EEG activity (171.2 ± 15.2 versus 239.5 ±
38.4mins,𝑃 = 0.0002) were significantly shorter in the hypo-
thermic group compared to the normothermic one. For rats
treated with hypothermia, the frequency of burst was con-
tinuously increasing during the first 2 hrs after resuscitation.
For normothermic rats, burst frequency was also increasing
during the first 90mins but this trend was not persisted
at later burst suppression period. The burst frequency was

significantly higher in the hypothermic group compared with
that in control (Figure 3).

Since no difference in SE measurements was observed
between the two EEG channels during the observational
period, data were reported by the average of left and
right channels. The baseline and postresuscitation SE mea-
surements of continuous background EEG are reported in
Figure 4.There were no differences in baselinemeasurements
between groups (0.829 ± 0.133 versus 0.811 ± 0.096, 𝑃 =
0.740). Four hrs after ROSC, the EEG evolved to continuous
background activity in all of the hypothermic animals, but 5
of the normothermic animals were still on the stage of burst
suppression pattern and eventually evolved to continuous
background EEG activity within an additional 1 hr. Five hrs
after ROSC, SE was restored to baseline in the hypothermic
animals (0.741 ± 0.088 versus 0.829 ± 0.133, 𝑃 = 0.080) and
was significantly improved compared with that in normoth-
ermic ones (0.741 ± 0.088 versus 0.597 ± 0.146, 𝑃 = 0.018),
whereas a significant reduction in the control group was
observed compared with baseline (0.597 ± 0.146 versus 0.811
± 0.096, 𝑃 = 0.003). This trend persisted to the end of the
6 hrs recording period (Figure 4) and the SE was significantly
higher for hypothermic rats compared with normothermic
control (0.776 ± 0.112 versus 0.563 ± 0.179, 𝑃 = 0.009).

The neurological outcome measured by NDS was sig-
nificantly better in the hypothermic animals compared with
that in control during the 96 hrs postresuscitation period
(Table 3). As shown in the survival curve (Figure 5), all of
the hypothermic animals survived to 24 hrs and 6 of them
survived to 96 hrs. On the contrary, 8 of the normothermic
animals survived to 24 hrs and none survived to 72 hrs.

The correlation analysis showed that the onset time of
EEG bursting (𝑟 = 0.532, 𝑃 = 0.016), burst frequency at 2 hr
(𝑟 = −0.685, 𝑃 = 0.001), the time of recovery of contin-
uous background EEG activity (𝑟 = 0.692, 𝑃 = 0.001),
and 6 hr SE (𝑟 = −0.501, 𝑃 = 0.024) were correlated with
96 hr neurological outcome. Single logistic regression ana-
lysis (Figure 6) indicated that burst frequency at 2 hr postre-
suscitation (𝑃 = 0.030) and SE at 6 hr postresuscitation (𝑃 =
0.047) were independently predictive of 96 hr survival.

3.2. Discussion. This study demonstrated thatmild hypother-
mia improved the recovery of earlier postresuscitation EEG
by shortening the isoelectric period, increasing the burst
frequency, accelerating the restoration of continuous back-
ground EEG activity, and enhancing the irregularity of brain
rhythm in a rat model of CA. The results indicated that
quantitative EEG characteristics of earlier postresuscitation
EEG activity, including improved burst frequency during
hypothermia and preserved SE during normothermia, cor-
related with better neurologic recovery and independently
predicted 96 hr survival.

Ischemic brain injury affects synaptic transmission,
axonal conduction, and cellular action potential firing in
a sequential manner and plays a critical role in determin-
ing characteristics of EEG [20]. Since the EEG provides
an insight into the thalamocortical function and has been
used for prognostication after resuscitation from CA during
normothermia, the development of accurate monitoring
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Table 2: Baseline and experimental measurements.

Measurements Hypothermia (𝑁 = 10) Control (𝑁 = 10) P value
Body weight, (g) 281.9 ± 34.5 295.8 ± 21.4 0.30
Heart rate, (beats/min) 389.8 ± 53.2 385.1 ± 44.0 0.83
Baseline temperature, (∘C) 36.8 ± 0.2 36.9 ± 0.2 0.54
Mean arterial pressure, (mmHg) 109.9 ± 11.5 104.4 ± 16.3 0.40
Cardiopulmonary resuscitation time, (secs) 93.3 ± 19.6 86.1 ± 11.9 0.34
Coronary perfusion pressure, (mmHg) 21.6 ± 3.7 21.2 ± 3.5 0.78
Total chloride hydrate volume, (mL) 1.1 ± 0.2 0.9 ± 0.1 0.07
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Figure 2: Examples of the evolution of EEG patterns for normothermia (a) and hypothermia (b). BL: baseline. PR: postresuscitation.
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Table 3: Neurological deficit score (NDS) and survival.

Outcome 24 hr 48 hr 72 hr 96 hr
NDS

Hypothermia 35.0 ± 9.7
∗∗

139.5 ± 199.3
∗∗

210.5 ± 249.3
∗∗

204.0 ± 254.8
∗∗

Control 370.5 ± 123.1 462.0 ± 85.0 500.0 ± 0.0 500.0 ± 0.0

Survival
Hypothermia 10/10 8/10# 6/10# 6/10#

Control 8/10 2/10 0/10 0/10
∗∗P < 0.01 hypothermic versus normothermic control with student’s 𝑡-test.
#P < 0.05 hypothermic versus normothermic control with Fisher’s exact test.
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techniques employing EEG to evaluate the effectiveness of
hypothermia and early prediction of neurological outcome
may be anticipated [24]. Earlier studies that investigated the
effects of changes in brain temperature on EEG showed that
hypothermia had a similar influence on EEG in animals
and humans [34]. In animal models of asphyxia, hypother-
mia has been demonstrated to improve EEG restoration
after reperfusion by increasing the burst frequency during
the early postresuscitation period [35–37]. But in another
study investigating the early EEG recovery with temperature
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Figure 5: Kaplan-Meier analysis of cumulative survival at 96 hrs
postresuscitation.

manipulation after CA in rats, Jia et al. [38] reported that
burst frequency correlated strongly with 72 hr NDS in nor-
mothermic rats but not in hypothermic or hyperthermic rats.
In attempt to determine a prognostic indicator, quantitative
EEG analysis including cepstral distance, EEG entropy, and
information quantity has been applied in animal studies
[37–39]. Although these measurements were proved to be
associated with neurological recovery, the prognostication
for survival has not been demonstrated in these studies.
Moreover, the animal model of CA induced from asphyxia
was more gradual and caused different morphologic patterns
of brain damage in contrast to the sudden onset of VF, which
was the predominant cause of CA in out-of-hospital adults
[40, 41]. Effects of temperature manipulation on EEG and its
prognostic ability have also been studied in patients treated
with hypothermia, in whom standard EEG was performed
after they were successfully resuscitated from CA. Rundgren
et al. [25, 26] found that a continuous EEG pattern at the time
of normothermiawas discriminative for regaining conscious-
ness for hypothermia-treated CA survivors. Wennervirta
et al. [42] demonstrated that quantitative EEG variables,
including burst suppression ratio, response entropy, state
entropy, and wavelet subband entropy differed between good
and poor outcome groups in hypothermia-treated patients.
Rossetti et al. [16] showed that hypothermiamightmodify the
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Figure 6: Logistic regression analysis of probability of survival.

outcome prediction after CA: an unreactive EEG background
was incompatible with good long-term neurological recovery
but strongly associated with in-hospital mortality. Leary et
al. [43] reported that bispectral index (BIS) values of EEG at
24 hr postresuscitationwere correlatedwith neurological out-
comes in patients who underwent hypothermia treatment.
But BIS was insufficient to predict good neurologic survival.
Cloostermans et al. [27] proved that continuous EEGpatterns
within 12 hrs predicted good outcome while an isoelectric
or low-voltage electroencephalograms after 24 hrs predicted
poor outcome in patients treated with hypothermia. But the
sensitivity for prediction of good outcomewas low (43%). Oh
et al. [44] confirmed that a continuous normal voltage EEG
activity immediately after ROSC predicted good outcome,
with a sensitivity of 57% and specificity of 96%. All of these
studies suggested the need for continuous EEG monitoring
in patients treated with hypothermia to aid in prognosis and
guide management.

In our study, the recovery of EEG activity was con-
sistent with earlier animal studies. But the isoelectric and
burst suppression period were significantly shorter and the
bursting frequency was significantly higher in the animals
treated with hypothermia that had a good neurological
outcome compared to those that were normothermic and
had a poor neurological recovery. Furthermore, both the
onset time of EEG bursting and the time of recovery of
continuous background EEG activity were correlated with
96 hr neurological outcome. The neuroprotection effects of
hypothermia therefore could be reflected by the improve-
ments in the characteristics of early postresuscitation EEG
activity, including shortening the isoelectric period, acceler-
ating the restoration of continuous background EEG, and the
increasing the frequency of burst.

Even though characteristics of burst provided important
prognostic information after treated with hypothermia, but
morphological pattern of EEG activity might not be entirely
a marker of good/poor neurological outcome. In our study,
EEG was evolved from burst suppression to continuous
background activity within 5 hrs in both hypothermic and

normothermic groups. This was controversial with previous
reports that appearing of continuous background EEG activ-
ity was associated with good outcome [25–27, 42, 44]. To
quantitatively characterize EEG waveform when continuous
background activity was restored, the SE, which provides a
quantitative measure of the degree of disorder in brain injury
and recovery, was analyzed [45]. For animals treated with
hypothermia, the SE was restored to baseline at 5 hr postre-
suscitation and had significantly higher values in contrast to
normothermic animals. The preserved SE after the restora-
tion of continuous background EEG activity was associated
with good neurological outcome and predictive survival.
C characteristics of early postresuscitation EEG activity at
different stages therefore provided indicative information of
hypothermic management, especially for those patients who
still had a poor neurological prognostication after hypother-
mia therapy.The potential clinical application of this result is
that severely abnormal EEG during earlier postresuscitation
period with high probability of poor outcome may indicate
the need for hypothermia, while EEG remains discontinuous
or continuous EEG background with low probability of good
outcome after rewarming may suggest a severe brain injury
and the requirement for deeper/longer hypothermia or other
postresuscitation cares.

There are several limitations to be considered in the
current study. First, although a rat model of VF was used in
this study, VF evolved to PEA after successful induction of
CA in all animals and no defibrillation shock was needed to
resuscitate the animals. Therefore the effect of TH on EEG
activity and its prognostic value for CA that was treated with
defibrillatory shocks still need to be investigated. Secondly,
our study suggested that characteristics of burst suppression
and preserved SE may serve as predictors of favourable
neurologic outcome after CA in rats treated with hypother-
mia, but effects of delayed hypothermia or different cooling
methods on EEG recovery have not been evaluated. Thirdly,
although EEG analysis may provide useful information of
neurologic recovery during TH, whether EEG measurement
can be used to guide hypothermia therapy is still uncertain.
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Therefore, a combination of EEG and other methods such
as heart rate variability analysis together with biochemical
markers may improve the prognostication capability.

4. Conclusion

The present study suggests that mild hypothermia greatly
improved EEG recovery after resuscitation. Improved burst
frequency and preserved SE for animals treated with
hypothermia were associated with better neurological out-
come and predicted 96 hr survival in this rat model of CA.
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Objective. Untrained bystanders usually delivered suboptimal chest compression to victims who suffered from cardiac arrest in
out-of-hospital settings. We therefore investigated the hemodynamics and resuscitation outcome of initial suboptimal quality of
chest compressions compared to the optimal ones in a porcine model of cardiac arrest.Methods. Fourteen Yorkshire pigs weighted
30± 2 kgwere randomized into good andpoor cardiopulmonary resuscitation (CPR) groups. Ventricular fibrillationwas electrically
induced and untreated for 6mins. In good CPR group, animals received high quality manual chest compressions according to the
Guidelines (25% of animal’s anterior-posterior thoracic diameter) during first twominutes of CPR compared with poor (70% of the
optimal depth) compressions. After that, a 120-J biphasic shock was delivered. If the animal did not acquire return of spontaneous
circulation, another 2mins of CPR and shock followed. Four minutes later, both groups received optimal CPR until total 10mins
of CPR has been finished. Results. All seven animals in good CPR group were resuscitated compared with only two in poor CPR
group (𝑃 < 0.05). The delayed optimal compressions which followed 4 mins of suboptimal compressions failed to increase the
lower coronary perfusion pressure of five non-survival animals in poor CPR group. Conclusions. In a porcine model of prolonged
cardiac arrest, even four minutes of initial poor quality of CPR compromises the hemodynamics and survival outcome.

1. Introduction

Cardiac arrest (CA) is still a major public health problem
around the world. It might contribute to more than 800,000
victims in western industrialized society and 540,000 in
developing China annually with limited survival rate [1–3].
Over the decades, the implementation of survival chain has
obtained beneficial outcomes from out-of-hospital cardiac
arrest (OHCA) in some communities. Therefore, it is gener-
ally accepted and undoubtfully regarded that the measures
of early chest compression and rapid defibrillation were the
cornerstone of effective resuscitation especially in the absence
of EMS personnel in out-of-hospital setting.

Although scene rapid defibrillation had been feasible with
the aid of automatic external defibrillator (AED) and public

access defibrillation (PAD), the quality of chest compression
is still a critical determinant in preshock interval. Based on
investigation data on animal and human, sufficient blood
flow of vital organs produced by optimal cardiopulmonary
resuscitation (CPR) was supposed to hold promise to the suc-
cessful defibrillation following ventricular fibrillation (VF)
and survival discharged with intact neurological behavior
[4–6]. However, most CA patients can not usually received
CPR or effective CPR whether witnessed or not. It was
reported that this percentage was 37 to 42 in OHCA for those
who received bystander CPR in which only 28% adhered
to the target depth in the first 5mins of CPR as guideline
recommended [7, 8].

The data stated that shallow compression depth, inap-
propriate rate, incomplete thoracic recoil, and unnecessary
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compression interruption usually lead to the failure on
establishment of spontaneous circulation [1, 9–11]. All these
deficiencies that exacerbated outcome were commonly seen
and inevasible in actual resuscitation episode, especially for
those laypersons without basic life support training. In other
words, bystander CPR improves survival in CA [12], however,
the quality of bystander CPR should be monitored and
focused [13, 14]. In the present study, we therefore sought
to evaluate the hemodynamics and resuscitation outcome
in those received suboptimal quality of CPR in initial four
minutes compared to good CPR originally. We hypothesized
that the initial suboptimal CPR might compromise the
resuscitation outcomes of cardiac arrest animals.

2. Method

2.1. Study Design. This prospective, randomized, single cen-
ter and controlled experiment was designed to simulate the
suboptimal bystander CPR and investigate its consequence.
Experiments were performed in an established swine model
of electrically induced cardiac arrest in Laboratory Animal
Center of Sun Yat-sen University (Guangzhou, China). All
animals received humane care and the experiments were con-
ducted after approval of the Animal Ethics Committee, Sun
Yat-sen University. The protocol was performed according to
institutional guidelines.

2.2. Animal Preparation. Fourteen male Yorkshire pigs,
weighting 30 ± 2 kg, were fasted overnight except for free
excess to water. Anesthesia was initiated by intramuscular
injection of ketamine (20mg/kg) and completed by ear vein
injection of sodium pentobarbital (30mg/kg). Additional
doses of sodium pentobarbital (8mg/kg) were injected at
intervals of approximately 1 hr to maintain anesthesia. A
cuffed endotracheal tube was advanced into the trachea. Ani-
mals were mechanically ventilated with a volume-controlled
ventilator (T-Bird AVIII, Bird Products Corporation, Palm
Springs, CA), with a tidal volume of 15mL/kg and FiO

2
of

21%.
For the measurement of aortic pressure, a 6F fluid-

filled angiographic catheter (model 070, Cordis Corporation,
Miami Lakes, FL, USA) was advanced from the surgically
exposed right femoral artery into the thoracic aorta. For
measurements of right atrial pressure and pulmonary arterial
pressure, a 7F pentalumen thermodilution-tipped catheter
(model 131HF7, Swan-Ganz TD, Edwards Life sciences,
CA, USA) was advanced from the surgically exposed right
femoral vein and flow directed into the pulmonary artery.
For inducing VF, a 5-Fr pacing catheter (Cordis Corpora-
tion, Miami Lakes, FL, USA) was advanced from the right
jugular vein into the right ventricle until an endocardial
electrocardiogram confirmed endocardial contact via a multi
parameter monitor (78352C, HP Corporation, Palo Alto,
CA, USA). The hard gel type of adult defibrillation/pacing
pads (stat-padz, Zoll Medical Corporation, Chelmsford, MA,
USA) was applied with an anterior to lateral placement.
An accelerometer-based handheld CPR device (CPR-D-
padz, Zoll Medical Corporation, Chelmsford, MA, USA)

was placed on the surface of the animal’s chest just above
the heart and underneath the rescuer’s hands during chest
compression. Cardiac output was measured by the thermod-
ilution technique with the aid of a cardiac output computer
(Baxter COM-2TM, Edwards Division, Santa Ana, CA, USA)
after a bolus injection into the right atrium of 5mL cold
saline solution, which had been maintained at a temperature
between 0∘C and 2∘C. Aortic blood gases were measured
with the aid of a handheld blood analyzer (model CG4+
Cartridge, Abbott i-STAT System, Princeton, NJ, USA). Res-
piratory frequency was adjusted tomaintain PetCO

2
between

35mmHg and 40mmHg before inducing cardiac arrest and
whenmechanical ventilationwas resumed after resuscitation.

2.3. Experimental Procedure. After collection of baseline
data, cardiac arrest was induced with a 2mA alternating
current delivered to the endocardium of the right ventricle.
After VF had been successfully induced, mechanical ventila-
tion was discontinued and cardiac arrest was untreated for
a total of 6mins. Animals were then randomized to one of
the following two groups: good CPR, where manual chest
compressionwas performed by an emergencymedical doctor
at a rate of 100 per min and a depth comparable to 25% of the
anterior posterior diameter of the chest, which represented
approximately 50mm; poor CPR, where chest compression
was operated by another emergency medical doctor at the
same rate, but the chest was compressed to 70% of the depth
of good CPR group, which was equivalent to approximately
17% of the anterior posterior diameter of 35mm [8, 15].
The poor depth represented a value corresponding to the
average suboptimal depth of compression recorded during
out-of-hospital CPR [8, 16, 17]. During chest compression,
the rescuer was blinded from the monitored compression
depth and CPP values but with acknowledgment of whether
his compressions were below or above 38mm. The animal’s
chest wall was allowed to completely recoil in both groups.
The animals were manually ventilated with a bag-valve
device during CPR. Chest compression was synchronized
to provide a compression/ventilation ratio of 30 : 2 with
equal compression-relaxation intervals. No epinephrine or
other vasopressor agents were administered. After 2mins of
compression in each group, a defibrillation was attempted
with a single 120-J rectilinear biphasic shock (M-Series,
Zoll Medical corporation, Chelmsford, MA, USA). Chest
compression was immediately resumed followed by ECG
rhythm analysis within 5 secs until confirmation of sponta-
neous circulation. The defibrillation attempt was regarded
as successful when the electrical shock converted VF to an
organized rhythm with a mean aortic pressure of ≥60mmHg
for an interval≥10 sec [17]. If spontaneous circulationwas not
restored, in goodCPR group, high quality chest compressions
were continued for another 2mins, after which defibrillation
was attempted with another single 120 J shock, this sequence
was repeated for a maximum of 5 cycles. But in poor CPR
group, another 2mins of low quality chest compressions were
continued, followed another single 120 J shock, and then
high quality of CPR immediately followed after defibrillation
until the spontaneous circulation was restored. Otherwise,
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resuscitation procedures were terminated after a maximum
of another 3 high quality CPR cycles.

Catheters were removed after 1 hr of postresuscitation
monitoring, and the animals were euthanized by injection of
150mg/kg intravenous pentobarbital.

2.4. Measurement. Baseline measurements were obtained,
including ECG, the aortic pressure, right atrial pressure,
cardiac output, and blood gas analysis. The ECG, pressure
measurements and acceleration signals were continuously
measured and recorded through a data acquisition system
supported byWindaq hardware/software (Dataq Instruments
Inc., Akron, OH, USA) at a sample rate of 300Hz. The
coronary perfusion pressure (CPP) was digitally computed
from the differences in time-coincident diastolic aortic and
right atrial pressures. The compression rate and depth were
calculated from the double integration of acceleration signals
recorded from accelerometer by MATLAB7.0 (The Math
Works, Inc., Natick, MA, USA).

2.5. Statistical Analyses. Data are presented as mean ± stan-
dard deviation (SD). Differences in compression depth and
CPP between the two groups were analyzed by two-tailed
Student’s 𝑡-test for independent samples test. A two-tailed
Fisher’s exact test was performed for rate comparison. A 𝑃
value <0.05 was regarded as statistically significant.

3. Results

Baseline measurements did not differ significantly between
the two groups before inducing cardiac arrest (Table 1).

During initial 2mins of CPR, the measured compression
depth was ranged from 19.00 to 38.50mm in poor CPR group
and between 35.20 and 57.00mm in good CPR group. As
shown in Figure 1, the compression depth was significantly
higher in good CPR group during the first 2mins of chest
compression (𝑃 < 0.05). As anticipated, CPP was signifi-
cantly higher in good CPR group compared with poor CPR
group (𝑃 < 0.05, Figure 2).

In poor CPR group, the measured compression depth of
the first 4mins of CPR significantly increased after is being
changed to good quality compression for the last 6mins of
CPR (30.40 ± 4.70 versus 44.70 ± 6.80, 𝑃 < 0.05). However,
the CPP of the animals in this group was not significantly
increased correspondingly, as shown in Figure 3.

The defibrillation success rate for the first shock was
higher in the good CPR group than in the poor CPR group,
but a statistical significance was not achieved (100% versus
71.43%, 𝑃 = 0.46). In poor CPR group, although VF was
terminated in 5 pigs after the first shock, 3 animals were
sustained in pulseless electric activity (PEA) without ROSC
after 10mins of resuscitation efforts.

All of the 7 animals hadROSC after high quality compres-
sions, while only 2 of the animals had ROSC with 4mins of
low quality compressions (100% versus 28.57%, 𝑃 = 0.021).
No rib fractures were observed in both groups.

Table 1: Baseline characteristics.

G-CPR (𝑛 = 7) P-CPR (𝑛 = 7) 𝑃 value
Body weight (kg) 31.64 ± 2.37 31.93 ± 2.42 0.82
Thoracic A-P diameter
(cm) 22.27 ± 0.56 22.07 ± 0.73 0.58

Hemodynamic status
Mean aorta pressure
(mmHg) 103.86 ± 21.67 105.14 ± 14.01 0.90

Right atrium pressure
(mmHg) 1.24 ± 0.77 0.93 ± 0.67 0.43

Heart rate (bpm) 112 ± 12.70 114.29 ± 13.94 0.75
Cardiac output
(L/min) 4.76 ± 0.72 4.49 ± 1.19 0.76

Blood-gas analysis
Core temperature
(∘C) 37.90 ± 0.42 38.10 ± 0.58 0.47

pH 7.49 ± 0.10 7.54 ± 0.13 0.39
PaCO2 (mmHg) 36.61 ± 1.85 36.36 ± 1.26 0.77
PaO2 (mmHg) 81.29 ± 8.54 83.00 ± 9.49 0.73
Lactate (mmol/L) 1.76 ± 0.30 1.86 ± 0.34 0.57

Based on analysis of variance test as appropriate. Values are expressed as
mean ± SD.
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Figure 1: Comparison of compression depth values between the two
groups during initial 2mins of cardiopulmonary resuscitation. ∗𝑃 <
0.05. PC = chest compression.

4. Discussion

Our present study demonstrated that initial 4mins of low
quality compression followed by high quality of CPR com-
promised the outcomes significantly compared with good
CPR from the beginning. Additionally, we also found that
coronary flow produced by subsequent optimal chest com-
pression could not provide a favorable outcome to those who
experienced a low quality of CPR.

Base on previous studies and the current guideline, early
and immediate bystander CPR was of importance in treating
arrest patients before paramedic arrived, and if it is avail-
able, it may improve outcome on survival and neurological
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Figure 2: Comparison of coronary perfusion pressure (CPP) values
between the two groups during initial 2mins of cardiopulmonary
resuscitation. ∗𝑃 < 0.05. PC = chest compression.
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Figure 3: The characteristics of compression depth and coronary
perfusion pressure (CPP) in poor CPR group during the entire
10mins of cardiopulmonary resuscitation procedure. PC = chest
compression.

function. However, initiation of CPR for a bystander was still
hesitating and the quality of this CPR was rarely satisfying. In
a perspective observational trial by Kitamura and his team
[7], they pointed out there were only 40% laypersons that
which tended to perform CPR when witnessed a collapse
patient. In the scenarios of cardiac arrest, only 24% of chest
compressions performed by untrained laypersons reached
the target depth of 38 to 51mm. The situation still did not
take a favorable turn when bystander was a professional
physician. Studies carried out by Wik and his colleagues
[8] had demonstrated that only 30% of compression depth
reached a target value of 31–50mm in the first 5mins of CPR
and even undertook by ambulance personnel, and nearly half
of those compressions (47%) did not achieve the adequate
depth even under the condition of application of automated
feedback system to assist CPR. Incomplete compression was

usually performed in prehospital setting either by layperson
or physician.

For chest compression, the fact that CPP was a positive
associated with compression depth had been well doc-
umented. Sufficient compression depth may bring better
blood perfusion to cardiomyodium and produce optimistic
resuscitation outcome in animal model of prolonged VF and
CPP of ≥15mmHg in the period of chest compression was
considered as an essential condition with the purpose of
subsequently successful electrical shock and return of spon-
taneous circulation [18]. In our present study, it maintained
a level of 12 to 15mmHg in poor CPR comparing with 25
to 30mmHg in good CPR during the first 2 minutes of
chest compression. Similarly, Babbs et al. firstly demonstrated
a linear relationship displayed between depth and cardiac
output in the range of 23 to 60mm in the canine model of VF
[19]. Besides, according to analyzing the electrocardiogram
waveform of VF during compression, Li and his colleagues
also concluded that CPP had improved accompanying with
the increasing depth [17]. However, in our present study,
when compression was transformed from suboptimal to
optimal pattern, CPP still persistently declined even a 6mins
of optimal compression was provided. One of the possible
explanations this decreasing CPP may be presented with an
elevated right atrial pressure contributed to a “stone heart”
observed in final autopsy and described by Ventura-Clapier
as global ischemic contracture resulting in firm myocardium
[20]. It was a deleterious network that decreased coronary
blood flow exacerbating ischemia-induced myocardial stiff-
ness when spontaneously coupled with the gradual rising
right atrial pressure further precluded coronary perfusion.

The other explanation of deteriorative CPP in following
optimal compression might be partially contributed to the
decreasing compliance of chest. After 4mins of low quality of
compression, the thoracic elasticity decreased. Then incom-
plete recoil of chest wall and subsequently decreased CPP and
myocardial blood flow even only 10–20% leaning attended in
CPR.

Rapid defibrillation has been recommended as a critical
and primary treatment for cardiac arrest with initial shock-
able rhythm as VF or pulseless ventricular tachycardia (VT)
[21]. To produce higher success of defibrillation, outcome
was primarily determined by two factors: shock time and
blood flow of myocardium. In our present study, shock
was attempted every 2mins when ECG was still VF or
VT. It was also coincident with the current guideline as 5
cycles of CPR (approximately 2mins) following by a single
120-J shock. The blood perfusion of heart was essentially
associated with performance of CPR. Delayed shocks usually
indicated prolonged ischemia and poor CPR brought insuf-
ficient perfusion to stiff myocardium. In an observational
study of adult cardiac resuscitation [22], the investigator
demonstrated that successful defibrillation was associated
with shorter preshock pause and higher mean compression
depth. Similar results came from a laboratory investigation,
the investigator concluded that coronary flow had a strong
positive relationship with CPP and the final resuscitation
depended on this “threshold CPP” [23]. This might be the
answer that two animals in poor CPR group achieved ROSC
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in first shockwith averageCPPof 13.50 to 13.80mmHg,which
was close to 15mmHg.

The finding of this study indicated that there was no
statistic difference of the first shock success in both groups.
However, 5 animals in poor CPR group failed to return per-
fused rhythm and functional arterial pressure which finally
lead to the significant difference with subsequent final ROSC.
For a cardiac arrest porcine model, 6mins of untreated VF
was not long enough to guarantee the difference. A canine
model of 5mins of VF demonstrated that immediate defibril-
lation without preshock CPR brought none of animals ROSC
(0/10), but resulted in 30% successful defibrillation (3/10)
[24]. In a prospective cohort study, Stiell found that there was
only of 25.7% patients who returned spontaneous circulation
with 36.6% of bystander CPR and 46% of EMS compression
depth within recommended range. As previously reported,
they also did not notify the outcome in those bystander and
subsequent EMSCPR group but declared a strong association
between survival outcomes and increased compression depth
[25]. In a porcine model of 4mins of VF, Wu compared
two different patterns of chest compression and found that
the standard compression (rate: 100 ± 5 cpm, depth: 50 ±
1mm) produced higher ROSC and survival rate than that
in simulated clinical compression (rate: 80 ± 5 cpm; depth:
37 ± 1mm) [26]. Besides, they acquired similar results as
ours in shock attempts without consideration of resuscitation
procedure. These conclusions may be partially supported by
the concept of “circulatory phase,” a time-duration definition
that ranges from approximately 4 to 10mins of VF [27].
Outcomes were prone to be improved when some limited
blood circulationwith partial substrates was established prior
to defibrillation. In our present study, it was the 2mins of
optimal CPR rather than 4mins of suboptimal CPR, which
could make the different ischemic myocardial condition to
prepare for the coming counter shock.

It is well known that, with every minute without CPR
following sudden cardiac arrest, the probability of survival
reduces by 7%–10% per minute [28]. When bystander CPR is
delivered, the patient stands a better chance as the probability
for survival reduces to 3%-4% per minute. Overall, bystander
CPR increases that survival 2-3 times compared to no
bystander CPR [13, 14, 29]. When Health Care Professionals
deliver quality CPR, research indicates survival rates can
increase 4 times, compared to poorCPR [30–32]. Our present
study also demonstrated the importance of CPR quality in
the initial 4mins during CPR. In most regions and countries,
it can be speculated that no less than 4mins would be
taken to activate and receive EMS assist without satisfying
communication and traffic condition [33]. Instead of health
care professionals, bystander CPR was encouraged to deliver
these basic life support as soon as witnessed an arrest
presumed a cardiac origin. The initial quality of compression
should be guaranteed by the rescuer, so good training system
and useful tools for CPR quality monitor and guidance were
totally welcome for the future implementation [34].

We realized that there were some limitations in this
study. Firstly, we did not compare the poor CPR group with
prolonged (10mins) untreated VF animals to evaluate if the
initial poor rescue actionmight result in worse outcomes.We

need deeply investigation to answer this question. Secondly,
the healthy swine model is not always indicated a real
condition of patients in clinical setting. People in VF usually
suffered from coronary artery occlusion or asphyxia; besides,
the successful resuscitation are not usually benefited from
only CPR and counter shock if suspected coronary artery was
not under revascularization. After all, despite these limita-
tions existed, the facts that the suboptimal CPR impairedCPP
was confirmed, and if it occurs, even a delayed optimal CPR
may fail to improve the limited survival opportunities.

5. Conclusion

In this porcine model of prolonged cardiac arrest, even four
minutes of initial poor quality of CPR compromises the
survival outcome.
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