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Sustainable transportation and power systems have the great
potential to significantly reduce hydrocarbon consumptions,
pollutant emissions, and carbon footprint [1]. The two key
energy sectors are intimately coupled. For instance, large-
scale deployment of electrified vehicles is considerably ben-
eficial to renewable ways of power generation by includ-
ing wind and solar energy sources. Such good synergies
between the transportation and power sectors expedite a
revolutionary transition towards a clean, high-efficiency, and
affordable energy future. The inevitably increasing system
complexity and the desire to make the most of sustainable
energy systems constitute a major incentive to leverage
advanced approaches of system modeling, simulation, con-
trol, optimization, diagnosis, and prognostics. In system-
level analysis, there are various modeling/control challenges
surrounding transportation electrification (e.g., alternative-
energy powertrains), intelligent transportation system (e.g.,
autonomous driving and connected vehicles), smart grid
(e.g., microgrids and renewables integrations), and vehicle-
traffic-grid-building interactions. A wealth of optimization
methods has been proposed to devise sophisticated energy
management strategies for tackling such challenges, includ-
ing dynamic programming (DP) [2], equivalent consumption
minimization strategy (ECMS) [3], Pontryagin’s minimum
principle (PMP) [4], convex programming [5], and model
predictive control [6]. In component-level analysis, there

are also plentiful modeling/control challenges surround-
ing energy storage systems (e.g., batteries, ultracapacitors,
fuel cells, flywheels, and hybrid storage schemes), electric
machine/motor drive systems, V2I/V2V communication,
and power electronic circuits, and so forth. For example,
diverse approaches have been utilized to establish high-
fidelity battery/ultracapacitormodels, including offline parti-
cle swarm optimization (PSO) algorithm, genetic algorithm,
fractional-order calculus, and online extended Kalman fil-
tering. A plethora of battery/ultracapacitor state estimation
and charging control techniques has also been reported in the
recent literature [7–9].

The main goal of this special issue is to provide
a professional platform sharing timely, advanced solu-
tions to modeling, simulation, control, optimization, and
fault diagnosis/prognosis of sustainable transportation and
power systems. Particular emphasis is placed on system-
level/component-level modeling, optimization, control, and
fault diagnosis/prognosis.

For this special issue, 84 submissions have been totally
received. After rigorous review processes, 37 manuscripts
have been ultimately accepted, which cover a broad range of
key modeling/control problems in sustainable transportation
and power systems. A brief snapshot of them is given below.

W. Song et al. proposed an intention-aware autonomous
driving decision making algorithm for an uncontrolled
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intersection scenario. Y. Ji et al. developed a feedback gating
control policy formitigating network congestion by adjusting
signal timings of gating intersections, based on a macro-
scopic fundamental diagram. J. Heng et al. devised a hybrid
power load forecasting method, which comprises empirical
mode decomposition, Cuckoo search algorithm, and wavelet
neural network. P. D. U. Coronado and H. Ahuett-Garza
synthesized a rule-based control strategy for a dual motor
propulsion systemwith a differential transmission. K. Hwang
et al. reported an autonomous coil alignment system using
fuzzy steering control for electric vehicles with dynamic
wireless charging. Z. Chen et al. discussed an online energy
management strategy of plug-in hybrid electric vehicles for
prolongation of all electric range based on dynamic pro-
gramming. H. Li et al. proposed an optimization scheduling
model forwindpower and thermal powerwith energy storage
system considering carbon emission trading. S. Zhu et al.
introduced a genetic algorithm-based micro-scale vehicle
emission model. X. Gong et al. presented a bus travel time
deviation analysis using automatic vehicle location data and
structural equation modeling. J. Zhao et al. delivered a
dynamic model of Kaplan turbine regulating system which is
suitable for power system assessment. X. Wu et al. proposed
a multistage CC-CV charging protocol for Li-ion batteries.
C. Peng et al. presented a wind power and load forecasting
method based on frequency control approach for a wind-
diesel-battery hybrid power system. S. Salas-Duarte et al.
evaluated a trapezoidal predictive controller for a four-wire
active power filter for utility equipment of metro railway
power-land substations. L. Pan and C. Zhang designed a high
power density integrated charger for electric vehicles with
active ripple compensation. C. T. Calafate et al. handled traffic
flow classification issue in traffic management as a service. D.
Wang et al. used polarity comparison principle to implement
ultra-high-speed travelling wave protection of transmission
line, based on empirical mode decomposition. C. Lu et al.
investigated intelligent ramp control for incident response by
means of Dyna-Q architecture. Y.-N. Zhao et al. proposed
an entropy-cost function evaluation method for unmanned
ground vehicles. H. Wang et al. presented dynamic modeling
and control strategy optimization of a hybrid electric tracked
vehicle. T. Zhao et al. devised a robust online SOC estimator
for a lithium-ion battery pack based on error sensitivity
analysis. J. Liu et al. built a modified quasi-steady state
model of DC system in transient stability simulation under
asymmetric faults. K. Yu et al. assessed model predictive
energymanagement for connected hybrid electric vehicles. T.
Chen et al. conducted a loss prediction and thermal analysis
of surface-mounted brushless AC PM machines for electric
vehicle application considering driving duty cycle. Y. Li et
al. presented a geometric-process-based batterymanagement
optimization policy for an electric bus. H. Tao et al. con-
structed a small-signal model of marine electromagnetic
detection transmitter controlled-source circuit. J. Wang et al.
studied the effect of the integrated service mode and travel
time uncertainty on taxis network equilibrium. J. Gao and
H. He compared several nonlinear filtering methods for SOC
estimation of a Li

4
Ti
5
O
12
Li-ion battery. P. Jiang and Q. Dong

proposed a new hybrid model for wind speed prediction

using an intelligent optimization algorithmand a data denois-
ing method. F. Chang et al. elucidated fault characteristics
and control strategies of multiterminal high voltage direct
current transmission based on modular multilevel converter.
Z. Shi et al. presented an improved macro model of traffic
flow with the consideration of ramps and numerical tests. S.
Toosi et al. studied operational modes and control strategies
of a multidirectional MC for battery-based systems. X. Meng
et al. presented a hybrid MMC topology with DC fault ride-
through capability for MTDC transmission system. W. Yang
et al. proposed a multiperiod vehicle lease planning policy
for urban freight consolidation network. X. Li et al. evaluated
robustness of some SOC estimation algorithms for EV Li-ion
batteries against modeling errors and measurement noise. C.
Piao et al. proposed a Li-ion battery cell-balancing algorithm
for battery management system based on real-time outlier
detection. C. Chu et al. presented a temporal-spatial analysis
of traffic congestion based on modified CTM. C. Zhang et al.
examined an improved adaptive control of static synchronous
compensator in power systems.
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Power load forecasting always plays a considerable role in the management of a power system, as accurate forecasting provides a
guarantee for the daily operation of the power grid. It has beenwidely demonstrated in forecasting that hybrid forecasts can improve
forecast performance compared with individual forecasts. In this paper, a hybrid forecasting approach, comprising Empirical Mode
Decomposition, CSA (Cuckoo Search Algorithm), and WNN (Wavelet Neural Network), is proposed. This approach constructs a
more valid forecasting structure and more stable results than traditional ANN (Artificial Neural Network) models such as BPNN
(Back Propagation Neural Network), GABPNN (Back Propagation Neural Network Optimized by Genetic Algorithm), andWNN.
To evaluate the forecasting performance of the proposed model, a half-hourly power load in New South Wales of Australia is used
as a case study in this paper. The experimental results demonstrate that the proposed hybrid model is not only simple but also able
to satisfactorily approximate the actual power load and can be an effective tool in planning and dispatch for smart grids.

1. Introduction

In a power system, the short-term power load forecasting is
very important for the stable operation of the system. Accu-
rate forecasting is a guarantee in the development of preven-
tive maintenance plans, which include generator safeguards,
power system reliability estimation, and scheduling dispatch
[1, 2]. High-accuracy power load forecasts improve the eco-
nomic and social benefits of power grid management, which
reduce generation costs, improve the security of power sys-
tems, and help administrators develop optimal plans. More-
over, accurate load forecasting is crucial in forecasts of the
power price in power markets [3]. Therefore, developing
power load forecasting techniques to achieve accurate, sim-
ple, and fast load forecasts is necessary.Thus far, many short-
term power load forecasting methods have been proposed,
and these methods can be mainly divided into three cat-
egories: conventional methods, modern forecasting meth-
ods, and hybrid forecasting methods. Conventional methods
include multiple linear regression analysis [4, 5], time series

[6, 7], state space models [8], general exponential smoothing
[9], and knowledge-based methods. However, these methods
cannot provide appropriate nonlinearmathematical relation-
ships to express actual power loads. The primary modern
forecasting methods are intelligent evolutionary algorithms
[10, 11], expert systems [12, 13], neural networks [14–17],
and fuzzy inference [18]. Intelligent algorithms and neural
networks obtain good performance because of their clear
patterns, easy implementation, and strong ability to address
the problem. Hybrid forecasting methods, proposed to avoid
the shortcomings that exist in individual forecasting meth-
ods, have become increasingly prevalent [19, 20]. A detailed
introduction of the three categories is given below.

The deduction processes of traditional forecasting meth-
ods are rigorous, and most of them are based on traditional
mathematics theories such as statistics, calculus, and model-
ing by subjective data analysis [21]. The main idea of trend
extrapolation technology is to look for the trend of data
changes, according to the trend equation, to forecast future
data.Themethod is simple, and, especially for smooth power
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load changes, it can achieve a good prediction effect. Its defi-
ciency is that its precision is greatly influenced by the random
load component [22].The regression analysis method is often
applied to short-term load forecasting [23]. This method has
many advantages such as a simple principle and better quality
of data which leads to better precision; however, the selection
of the main factors affecting power load in the model is
difficult as many factors that affect the forecasting accuracy
are hard to quantify. This model is lacking any self-study
capability, and the input variable and output variable cannot
be revised automatically [24].With years of development, the
time series forecasting method has become a mature theory
method and has been applied to power load forecasting [25].
The basic time series prediction models mainly include AR,
MA, and ARMA [26]. Although the time series forecasting
method has advantages such as only requiring a small volume
of historical data and a small amount of calculation and the
fast speed of its calculation, this method has certain limita-
tions such as its inability to reflect the influence of meteoro-
logical factors and how its forecasting accuracy will decrease
with the increase of the prediction step [27]. ANN [17] is a
type of nonlinear simulation of the human brain information
processing system with an intelligent processing process; for
an inaccurate variation trend, this method also has a good
ability to adapt, is able to grasp information and keep on
learning, and has good knowledge reasoning and self-optimi-
zation [28]. An expert system is a computer system based on
the knowledge of the programming approach, mainly a soft-
ware system, and the main components of an expert system
include the inference engine of the system, the expert knowl-
edge base, the explain interface, and the knowledge acquisi-
tionmodule. An expert system is a program that has decision-
making capabilities based on reasoned knowledge; however,
this method is limited by whether the expert knowledge is
complete [29]. The grey forecasting method is an important
technique in grey theory, and it uses approximate differential
equations to describe future tendencies for a time series [30].
The limitation of thismethod is that the greater the dispersion
degree of data, the worse the forecasting accuracy. Although
traditional forecasting methods and forecasting methods
based on intelligent computing have their respective appli-
cations, it is difficult to achieve better results when using one
of them by itself [31]. In the literature related to forecasting
[31–34], the forecasting results are not quite as good with any
single forecasting model. The primary reason is that single
forecasting models cannot extract the complicated factors
encountered in reality.

Due to the limitations of the forecasting capacity of a
single model, it cannot always be optimal in all cases. In this
paper, a novel hybrid model was developed with the hope
of obtaining more accurate power load forecasting results.
The proposed hybrid wind speed forecasting model can be
grouped into four steps. Firstly, we used the empirical model
decomposition technique, which represents a nonstationary
data analysis technique, to reconstruct the original wind
speed series. Secondly, aWNNmodel was employed to create
the power load forecasting, and the parameters in the WNN

model were tuned by the CSA. The simulation results illus-
trate that the hybrid model is an effective method in power
load forecasting. The main contributions of this paper are
summarized as follows:

(1) The CSA algorithm is applied to choose the optimal
initial weight in the WNNmodel, which always leads
to unstable forecasting error.

(2) In the field of power load forecasting, the proposed
hybrid model is manifested as a valid method with
efficient computation and satisfactory forecasting
accuracy.

(3) Considering the skewness and kurtosis of the fore-
casting accuracy distribution, the developed forecast-
ing availability is proposed as an effective evaluation
criterion for model selection in the power load fore-
casting field.

This paper is organized as follows. First, we outline the
concept of models used in this paper, including empirical
model decomposition, WNN, CSA, BPNN, GABPNN, and
EMD-CSAWNN. Second, the modeling processes of the
methodsmentioned above are introduced. Simulation results
are presented and analyzed. Finally, the overall conclusion is
included.

2. Methodology

In this section, the required individual tools will be presented
concisely, including the empirical model decomposition
technique, BPNN, the WNN model, and the CSA and GA
algorithms. Moreover, the proposed hybrid approach will be
described in detail. In addition, the structure of the feed-
forward neural network will be confirmed.

2.1. EmpiricalModeDecomposition. Empiricalmodel decom-
position was proposed by Karthikeyan and Kumar as an
adaptive method for nonstationary time series analysis, and
it is now widely used. It can be applied to any type of signal
decomposition [35]. Thus, it has obvious advantages in pro-
cessing nonstationary andnonlinear series.The foundation of
this technique is to decompose a time series into a finite set of
several IMFs and a residue [36].

Definition 1. All IMFs are defined to satisfy the following
conditions: (1) the number of local extreme points and the
number of zero crossings must be equal or at least differ by
only one; (2) the mean value of the upper envelope and lower
envelope is zero.

Definition 2. The stoppage criterion determined is defined as

SD𝑘 = ∑𝑇𝑡=0 ℎ1𝑘−1 (𝑡) − ℎ1𝑘 (𝑡)2∑𝑇𝑡=0 ℎ21𝑘−1 (𝑡) . (1)

The sifting process stops when SD𝑘 is smaller than a pre-
given value. The process of decomposition is over when the
value of SD𝑘 is between 0.2 and 0.3. Additional details of the
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Figure 1: The construction of empirical model decomposition.

empirical model decomposition technique are illustrated in
Figure 1.

2.2. Artificial Neural Network (ANN)
2.2.1. Confirmation of the Structure of the Network. TheANN
has received considerable attention as a powerful computa-
tional tool for forecasting in many fields since 1980. ANN
models always outperform statistical models because of their
ability tomap the inputs onto outputs via simple computation
[37]. We discuss the feed-forward neural network in this
paper because of its strong learning ability and simple
structure. The determination of the network structure is as
follows [38].

Definition 3. Given an arbitrary continuous function 𝑓 :[0, 1]𝑛 → 𝑅𝑚, 𝑓 can be accurately approximated using a
three-layer forward neural network realization.The first layer
of the network is the input layer, containing 𝑛 neurons. The
middle layer is the hidden layer, containing 2𝑛 + 1 neurons.
The third layer is the output layer, which has 𝑚 neurons.

Definition 4. Let 𝜙 be bounded continuous monotone in
function, let 𝐾 be the bounded compact subsets, and let𝐾 ⊂ 𝑅𝑛, 𝑓(𝑋) = 𝑓(𝑥1, 𝑥2, . . . , 𝑥𝑛) be a real continuous
function in 𝑓(𝑋) ∈ 𝐾. ∀𝜀 > 0, ∃ integer 𝑁, real constant𝐶𝑖, 𝜃𝑖 (𝑖 = 1, 2, . . . , 𝑁) and 𝑊𝑖𝑗 (𝑖 = 1, 2, . . . , 𝑁), such
that �̂�𝑖𝑗(𝑥1, 𝑥2, . . . 𝑥𝑛) = ∑𝑁𝑖=1 𝐶𝑖𝜙(∑𝑛𝑗=1𝑊𝑖𝑗𝑥𝑗 − 𝜃𝑖) satisfying
max |�̂�(𝑥1, . . . , 𝑥𝑛) − 𝑓(𝑥1, . . . , 𝑥𝑛)| < 𝜀. Note that, ∀𝜀 > 0,∃ a three-layer network structure, and the output function
of the hidden layer is 𝜙(𝑥), the output function of the
input and output layer is linear, and the total relationship of𝐼/0 is𝑓(𝑥1, . . . , 𝑥𝑛), such that max |�̂�(𝑥1, . . . , 𝑥𝑛) − 𝑓(𝑥1, . . . ,𝑥𝑛)| < 𝜀.
Proof. Because𝑓(𝑋) (𝑋 = (𝑥1, . . . , 𝑥𝑛)) is a continuous func-
tion, 𝑓(𝑋) ∈ 𝐾, 𝐾 ⊂ 𝑅𝑛, assume that 𝑓(𝑋) is a bounded𝐶∞ function. Based on the Paley-Wiener Theorem [39], the
Fourier transform 𝐹(𝑊) (𝑊 = (𝑊1, . . . , 𝑊𝑛)) is a real ana-
lytic function of 𝑓(𝑋), ∀ a constant 𝐶𝑁, such that |𝐹(𝑊)| ≤𝐶𝑁(1 + |𝑊|)−𝑁. We define such a function:

𝐼𝐴 (𝑥1, . . . , 𝑥𝑛) = ∫𝐴
−𝐴

⋅ ⋅ ⋅ ∫𝐴
−𝐴

𝜙 ( 𝑛∑
𝑖=1

𝑥𝑖𝑊𝑖 − 𝑊0) 1(2𝜋)𝑛 𝜙 (1) 𝐹 (𝑊1, . . . , 𝑊𝑛) exp (𝑖𝑊0) 𝑑𝑊0 ⋅ ⋅ ⋅ 𝑑𝑊𝑛,
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𝐼∞,𝐴 (𝑥1, . . . , 𝑥𝑛) = ∫𝐴
−𝐴

⋅ ⋅ ⋅ ∫𝐴
−𝐴

[∫∞
−∞

𝜙 ( 𝑛∑
𝑖=1

𝑥𝑖𝑊𝑖 − 𝑊0) 1(2𝜋)𝑛 𝜙 (1) 𝐹 (𝑊1, . . . , 𝑊𝑛) exp (𝑖𝑊0)] 𝑑𝑊0 ⋅ ⋅ ⋅ 𝑑𝑊𝑛,
𝐽𝐴 (𝑥1, . . . , 𝑥𝑛) = 1(2𝜋)𝑛 ∫∞

−∞
⋅ ⋅ ⋅ ∫∞
−∞

𝐹 (𝑊1, . . . , 𝑊𝑛) exp(𝑖 𝑛∑
𝑖=1

𝑥𝑖𝑊𝑖) 𝑑𝑊1 ⋅ ⋅ ⋅ 𝑑𝑊𝑛.
(2)

Using an estimation of 𝐹(⋅), lim𝐴→∞𝐽𝐴(𝑥1, . . . , 𝑥𝑛) =𝑓(𝑥1, . . . , 𝑥𝑛) can be proved: that is, 𝐽𝐴 is uniform conver-
gence. Thus, lim𝐴→∞𝐼∞,𝐴(𝑥1, . . . , 𝑥𝑛) = 𝑓(𝑥1, . . . , 𝑥𝑛). That
is, ∀𝜀 > 0, ∃𝐴 > 0, such that max𝑥∈𝑅𝑛 |𝐼∞,𝐴(𝑥1, . . . , 𝑥𝑛) −𝑓(𝑥1, . . . , 𝑥𝑛)| < 𝐸/2. Moreover, for 𝐴 > 0, let𝐼𝐴 ,𝐴(𝑥1, . . . , 𝑥𝑛) = ∫𝐴

−𝐴
⋅ ⋅ ⋅ ∫𝐴
−𝐴

[∫𝐴
−𝐴

𝜙(∑𝑛𝑖=1 𝑥𝑖𝑊𝑖 − 𝑊0) ⋅ (1/(2𝜋)𝑛𝜙(1))𝐹(𝑊1, . . . , 𝑊𝑛) ⋅ exp(𝑖𝑊0)]𝑑𝑊0 ⋅ ⋅ ⋅ 𝑑𝑊𝑛. For 𝜀 > 0,𝐴 > 0 can be found such that max𝑥∈𝐾|𝐼𝐴,𝐴(𝑥1, . . . , 𝑥𝑛) −𝐼∞,𝐴(𝑥1, . . . , 𝑥𝑛)| < 𝜀/2. That is to say, 𝑓(𝑋) is a uniform
approximation by the integral 𝐼𝐴 ,𝐴(𝑋), 𝐼𝐴 ,𝐴(𝑋) ∈ 𝐾. If𝐴 𝑖 > 0 (𝑖 = 1, 2, . . . , 𝑚), 𝐾 is a bounded subset, 𝐾 ⊂ 𝑅𝑛, andℎ𝑖 (𝑥1, . . . , 𝑥𝑚; 𝑡1, . . . , 𝑡𝑚) is a uniformly continuous function
of [−𝐴1, 𝐴1] × ⋅ ⋅ ⋅ × [−𝐴𝑚, 𝐴𝑚] × 𝐾. There are functions:

𝐻 (𝑡) = ∫𝐴1
−𝐴1

⋅ ⋅ ⋅ ∫𝐴𝑚
−𝐴𝑚

ℎ (𝑥1, . . . , 𝑥𝑚; 𝑡1, . . . , 𝑡𝑚) 𝑑𝑥1
⋅ ⋅ ⋅ 𝑑𝑥𝑚,

𝐻𝑁 (𝑡) = 2𝐴1 ⋅ ⋅ ⋅ 2𝐴𝑚𝑁𝑚 × 𝑁−1∑
𝑘1 ⋅⋅⋅𝑘𝑚=0

ℎ (−𝐴1
+ 𝑘1 ⋅ 2𝐴1𝑁 ⋅ ⋅ ⋅ 𝐴𝑚 + 𝑘𝑚 ⋅ 2𝐴𝑚𝑁 𝑡1 ⋅ ⋅ ⋅ 𝑡𝑚) .

(3)

∀𝜀 > 0, ∃𝑁0, 𝑁0 is a natural number, when 𝑁 ≥ 𝑁0, such that
max
𝑙∈𝐾

𝐻 (𝑡) − 𝐻𝑁 (𝑡) < 𝜀. (4)

Thus, 𝐼𝐴 ,𝐴(𝑋) is a uniform approximate on 𝐾,

𝜙 ( 𝑛∑
𝑖=0

𝑥𝑖𝑊𝑖 − 𝑊0) = 𝜙 ( 𝑛∑
𝑖=1

𝑊𝑖𝑥𝑖𝛿 − 𝑊0 + 𝛼)
− 𝜙 ( 𝑛∑

𝑖=1

𝑊𝑖𝑥𝑖𝛿 − 𝑊0 − 𝛼) .
(5)

The formula above can be achieved by a three-layer neural
network. Thus, 𝑓(𝑋) can be approximated by that neural
network.

Definition 5. ∀𝜀 > 0 and 𝑓 : [0, 1]𝑛 → 𝑅𝑚, there exists a
three-layer structure that can approximate 𝑓 in any square
error precision of 𝜀.

The definition above proves that, ∀𝑓 : [0, 1]𝑛 → 𝑅𝑚,
we can use a feed-forward neural network with a three-layer
structure 𝑛 × (2𝑛 + 1) × 𝑚 to approximate it accurately.

Thus, this part not only proves the existence of the mapping
network but also demonstrates the network structure of the
mapping. In summary, this paper adopts the three-layer
neural network as the basis neural network.

2.2.2. BPNN. BPNN is a type ofmultilayer feed-forward neu-
ral network with an error back propagation learning process.
The structure of BPNN is illustrated in Figure 2. Details of
BPNN are introduced in [40].

2.2.3. WNN. WNN, a feed-forward network, is generally
multilayer [41]. It is widely applied in signal processing
because of its advantages of the localization property and
generalization ability [42].The structure ofWNN is shown in
Figure 2.

2.3. Neural Network Optimized by an Intelligence Algorithm.
The intelligent optimization algorithm provides an efficient
and powerful mathematical tool for optimizing the initial
weights and thresholds of the ANN [43].

2.3.1. CSA. Cuckoo search is a heuristic swarm intelligence
algorithm inspired by the behavior of the obligating brood
parasitism of cuckoo species [44]. CSA is utilized in this
paper for its stronger capability of global optimization [43].

Definition 6. To simulate themode of cuckoo breeding, three
idealized assumptions are presented, as follows: (1) each
cuckoo selects nest randomly and dumps only one egg at a
time, (2) the eggs with high quality will be carried over to the
next generation, and (3) the available nest number 𝑛 is fixed,
and the probability of the host bird discovering the exotic egg
is 𝑝𝛼.
Definition 7. The Lévy flight model simulates the process
of the nest-seeking characteristic of cuckoo, and the update
formula of the path and location is as follows:

𝑋iter+1
𝑖 = 𝑋iter

𝑖 + 𝛼 ⊕ 𝐿 (𝜆) . (6)

𝑋iter
𝑖 represents the location of nest 𝑖 at generation iter, 𝛼

is the step length-controlled factor, ⊕ is the point-to-point
multiplication, and Levy(𝜆) obeys the Lévy distribution with
a random search path of parameter 𝜆:

𝐿 (𝜆) = 0.01 𝑢|V| (𝑋iter
𝑖 − 𝑋iter

∗ ) . (7)
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Figure 2: The construction of GABPNN and CSAWNN.

Here𝑢 = 𝑡−𝜆, 1 < 𝜆 < 3,𝑢 and V obey the normal distribution,𝑢 ∼ 𝑁(0, 𝜎2𝑢), V ∼ 𝑁(0, 1), 𝜎𝑢 = [Γ(𝜆) sin(0.5𝜋(𝜆 − 1))/2(𝜆−2)/2Γ(0.5𝜆)(𝜆 − 1)]1/(𝜆−1), 𝑋iter
∗ denotes the location of the

best nest at generation iter, and Γ is the standard gamma
function with unbounded variance and mean of the proba-
bility distribution.

2.3.2. GA. GA is a population-based optimization algorithm
that simulates natural genetic mechanisms and biological
evolutionism. It possesses a capacity for powerful global
optimization [45]. The principle of GA relies on a random
process, which is constituted by the processes of selection,
crossover, and mutation [46]. The implementation process is
shown in Figure 2.

2.4. GABPNN. The primary mechanism of GABPNN is
composed of three parts: GA optimization, determination of
the BPNN structure, and forecasting covered by BPNN [47].
The pseudo-code for GABPNN is as shown in Algorithm 1.

2.5. EMD-CSAWNN. In this paper, the proposed model,
which incorporates the empirical model decomposition tech-
nique into the WNN model based on CSA, is adopted for
short-term power load forecasts. Empirical model decompo-
sition represents a self-adaptive decomposition technique to
decompose short-term power load series into several IMFs
and one residual item. WNN is adopted as a forecasting
engine in the proposed approach because of its powerful
approximation and high computation speed. Additionally, to
avoid the deficiencies of WNN such as its unstable structure,
CSA is used to initialize and determine the weights and
thresholds of WNN, thereby imparting an outreach capacity
to WNN. Figure 3 illustrates the general structure of the
hybrid power load forecasting method. The pseudo-code for

the algorithm of the EMD-CSAWNN model is as shown in
Algorithm 2.

3. Experiments and Evaluations

Applications of the proposed hybrid approach and five com-
parison models are shown in this subsection. All algorithms
are operated on the given platform: 3.20GHz CPU, 8.00GB
RAM, Windows 7, and MATLAB R2012a. Meanwhile, taking
into account the randomness factors and to make sure the
final results are reliable and independent from the initial
weights, we carry out each ANN experiment 50 times and
then take the average value.

3.1. Region Description and Data Collection. Australia has
plentiful coal andwind resources across its coastline and land.
A power load data set from NSW, which is the state with
the largest population and highest levels of industrialization
and urbanization in Australia, is employed to validate each
model. In this paper, power load data are collected randomly
from NSW from January 12, 2009, to March 8, 2009, which
includes eight weeks of data. Among them, the data from
January 12, 2009, to February 1, 2009, is used as a training set
to obtain the appropriate model, and data from February 2,
2009, to March 1, 2009, is used as the testing set. The power
load data from January 12, 2009, to February 1, 2009, together
with their statistical measures, that is, minimum, maximum,
mean, and standard deviations, are shown in Figure 4(c); the
standard deviations are all above 1800, which implies that the
power load series fluctuates significantly with the minimum/
maximum of week one, week two, and week three, which
are 6049.94/13518.06 (MWh), 6280.27/13326.47, and 6375.84/
13096.37, respectively. This can be intuitively observed from
the amplitude and frequency of the series fluctuation, which
can change from very high to low values and vice versa.



6 Mathematical Problems in Engineering

(1) GENERATE iter = 0 /∗ Calculate the fitness of each individual in the population. ∗/
(2) DOWHILE iter ≤ itermax
(3) iter = iter + 1 /∗ Record the best fitness values and the average fitness values. ∗/
(4) FOR EACH 1 ≤ 𝑖 ≤ 𝑃 DO /∗The process of the select operation. ∗/
(5) 𝑝iter

𝑖 = 𝑓iter
𝑖 (⋅)/ ∑𝑃𝑖=1 𝑓iter

𝑖 (⋅)
(6) FOR EACH 1 ≤ 𝑗 ≤ 𝑠 DO /∗The process of the crossover and mutation operations. ∗/
(7) 𝑤iter

𝑘𝑗 = 𝑤iter
𝑘𝑗 (1 − 𝑏) + 𝑤iter

𝑙𝑗 𝑏 𝑤iter
𝑙𝑗 = 𝑤iter

𝑙𝑗 (1 − 𝑏) + 𝑤iter
𝑘𝑗 𝑏

(8) 𝑤iter
𝑖𝑗 = {{{

𝑤iter
𝑖𝑗 + (𝑤iter

𝑖𝑗 − 𝑤iter
max) 𝑟2 (1 − iter/𝐺max) 𝑟 ≥ 0.5

𝑤iter
𝑖𝑗 + (𝑤iter

min − 𝑤iter
𝑖𝑗 ) 𝑟2 (1 − iter/𝐺max) 𝑟 < 0.5

(9) END FOR; ENDWHILE
(10) 𝑊best = [𝜔𝑗𝑘 𝜔𝑖𝑗 𝑎𝑗 𝑏𝑘] /∗Initial weights and thresholds of BPNN by the obtained best individual. ∗/
(11) 𝑥𝑘 = (𝑥𝑘 − 𝑥min)/(𝑥max − 𝑥min), 𝑘 ∈ [1, 𝑞] /∗The process of training data normalization. ∗/
(12) iter = 0 /∗ Adjust the weights and threshold of BPNN according to the forecast error. ∗/
(13)DOWHILE iter ≤ itermax
(14) iter = iter + 1
(15) FOR EACH 1 ≤ 𝑖 ≤ 𝑛 DO
(16) FOR EACH 1 ≤ 𝑗 ≤ 𝑛Hidden DO
(17) 𝐻𝑗 = 𝑓(∑𝑛𝑖=1 𝜔𝑖𝑗𝑥𝑖 − 𝑎) /∗ Calculate the outputs of the hidden layer. ∗/
(18) FOR EACH 1 ≤ 𝑘 ≤ 𝑚 DO
(19) 𝑂𝑘 = ∑𝑙𝑗=1𝐻𝑗𝜔𝑗𝑘 − 𝑏𝑘 /∗ Calculate the outputs of the output layer. ∗/
(20) 𝑒𝑘 = 𝑦𝑛(𝑘) − 𝑂𝑘 /∗ Calculate the forecast error in the output layer. ∗/
(21) 𝜔𝑖𝑗 = 𝜔𝑖𝑗 + 𝜂𝐻𝑗(1 − 𝐻𝑗)𝑥(𝑖) ∑𝑚𝑘=1 𝜔𝑗𝑘𝑒𝑘 /∗ Update the connection weights ∗/
(22) 𝜔𝑗𝑘 = 𝜔𝑗𝑘 + 𝜂𝐻𝑗𝑒𝑘
(23) 𝑎𝑗 = 𝑎𝑗 + 𝜂𝐻𝑗(1 − 𝐻𝑗) ∑𝑚𝑘=1 𝜔𝑗𝑘𝑒𝑘 𝑏𝑘 = 𝑏𝑘 + 𝑒𝑘 /∗ Update the threshold. ∗/
(24) END FOR; ENDWHILE
(25) RETURN �̂�𝑓 = (�̂�(𝑞 + 1), �̂�(𝑞 + 2), . . . , �̂�(𝑞 + 𝑝))

Algorithm 1: GABPNN.

Figure 4(b) exhibits 1008 power load data points from
January 12, 2009, to February 1, 2009, divided into three
groups, with 336 data points in every group. Because the
power load data of NSW are collected once every half hour,
each day includes 48 data points. On different days of the
week, daily life and human economic production usually have
different behaviors; thus, the characteristics of the load are
different on different days. To minimize forecasting error as
much as possible, we forecast the load of different days in the
week separately. In this paper, the cycles of data division are
seven days; the first three weeks of Monday data, January 12,
January 19, and January 26, are employed to forecast the next
Monday load on February 2, 2009. Accordingly, the data on
January 13, January 20, and January 27 are employed to fore-
cast the power load on February 3, 2009.The rest can be con-
ducted in the samemanner.The structures of the training and
testing sets are illustrated in Figure 3(b).

3.2. EvaluationMetrics. Forecasting accuracy is an important
criterion for evaluating a forecastingmodel. In this paper, the
basic error calculation method is as follows:

MAE = 1𝑇
𝑇∑
𝑡=1

AE𝑡 = 1𝑇
𝑇∑
𝑡=1

𝑥𝑡 − �̂�𝑡 . (8)

Here, 𝑇 is the number of data points; the formula AE repre-
sents the absolute error between the observed value and the

forecasting value at time 𝑡, 𝑥 is the observed value, and �̂�𝑡 is
the forecasting value at time 𝑡. To avoid a positive or negative
offset in forecasting error, solve the problem for which pos-
itive and negative forecasting error cannot be added, adding
to the absolute value of the error, and take the average in the
end. This error belongs to the comprehensive index in error
analysis:

RMSE = √ 1𝑇
𝑇∑
𝑡=1

AE2𝑡 = √ 1𝑇
𝑇∑
𝑡=1

(𝑥𝑡 − �̂�𝑡)2. (9)

RMSE is the square root of the mean square error. It also
belongs to the comprehensive index in error analysis. Take the
square of the absolute error AE; thus, the role of great values
in the error will be strengthened, improving the sensitivity of
the indicators, which is the prevailing reason in the error
analysis:

MAPE = 1𝑇
𝑇∑
𝑡=1

 𝑥𝑡 − �̂�𝑡𝑥𝑡
 × 100%, (10)

where the symbolic meaning is as above. The indicator is the
average of the absolute error.The index is one of the compre-
hensive indexes in error analysis that usually occupies a very
important position in the analysis and forecasting perfor-
mance of the model.
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(1) /∗ Initialize SD0 = 1, 𝑟0(𝑡) = 𝑥(𝑡), ℎ𝑘−1(𝑡) = 𝑟𝑗−1(𝑡), 𝑘 = 1, 𝑗 = 1.∗/
(2) WHILE 𝑟𝑗(𝑡) is not a monotonic function DO
(3) WHILE SD𝑘 > 0.3 DO /∗ Find all local maxima and minima of ℎ𝑘−1(𝑡) by cubic spline.∗/
(4) /∗ Produce the upper and lower envelopes expressed as 𝑒max(𝑡) and 𝑒min(𝑡).∗/
(5) 𝑚𝑘(𝑡) = [𝑒max(𝑡) + 𝑒min(𝑡)]/2, ℎ𝑘(𝑡) = ℎ𝑘−1(𝑡) − 𝑚𝑘−1(𝑡), 𝑘 = 𝑘 + 1
(6) ENDWHILE
(7) IMF𝑗 = ℎ𝑘(𝑡), 𝑟𝑗(𝑡) = 𝑟𝑗−1(𝑡) − IMF𝑗, 𝑗 = 𝑗 + 1
(8) ENDWHILE
(9) 𝑥𝑘 = ∑𝑛𝑖=2 IMF𝑖 + 𝑟𝑛, 𝑘 ∈ [1, 𝑞]
(10) GENERATE iter = 0
(11)DOWHILE iter ≤ itermax
(12) iter = iter + 1 /∗ Generate a cuckoo egg 𝑋𝑖 by taking a Lévy flight from a random nest.∗/
(13) FOR EACH 1 ≤ 𝑖 ≤ 𝑛 DO/∗Calculate the fitness value 𝑓𝑖(⋅) and select the candidate. ∗/
(14) 𝑋iter+1

𝑖 = 𝑋iter
𝑖 + 𝛼 ⊕ 𝐿(𝜆)

(15) IF 𝑓iter(⋅) ≤ 𝑓iter+1(⋅) DO /∗ Replace the worse location of the nest by the better one.∗/
(16) 𝑋iter+1 = 𝑋iter

(17) ELSE 𝑋iter+1 = 𝑋iter+1

(18) rand = randn()
(19) IF rand > 𝑃𝛼 DO /∗ Discard the worst solution by 𝑃𝛼 and produce a new solution.∗/
(20) 𝑋iter+1

𝑖 = 𝑋iter
𝑖 + 𝑟(𝜒iter

𝑗 − 𝜒iter
𝑘 )

(21) ELSE 𝑋iter+1 = 𝑋iter+1

(22) END IF; END FOR; ENDWHILE
(23) 𝑋best = [𝜔𝑗𝑘 𝜔𝑖𝑗 𝑎𝑗 𝑏𝑗] /∗Initial weights and thresholds of WNN by obtaining the best individual. ∗/
(24) 𝑥𝑘 = (𝑥𝑘 − 𝑥min)/(𝑥max − 𝑥min), 𝑘 ∈ [1, 𝑞] /∗The process of training data normalization. ∗/
(25) iter = 0 /∗ Adjust the weights and threshold of WNN according to the forecast error. ∗/
(26)DOWHILE iter ≤ itermax
(27) iter = iter + 1
(28) FOR EACH 1 ≤ 𝑖 ≤ 𝑛 DO
(29) FOR EACH 1 ≤ 𝑗 ≤ 𝑛Hidden DO
(30) ℎ(𝑗) = ℎ𝑗((∑𝑘𝑖=1 𝜔𝑖𝑗𝑥𝑖 − 𝑏𝑗)/𝑎𝑗) /∗ Calculate the outputs of the hidden layer. ∗/
(31) FOR EACH 1 ≤ 𝑘 ≤ 𝑚 DO
(32) 𝑦(𝑘) = ∑𝑛𝐻𝑖=1 𝜔𝑖𝑗ℎ(𝑖) /∗ Calculate the outputs of the output layer. ∗/
(33) 𝑒𝑘 = 𝑦𝑛(𝑘) − 𝑦(𝑘) /∗ Calculate the forecast error in the output layer. ∗/
(34) 𝜔𝑖+1,𝑘 = 𝜔𝑖,𝑘 + Δ𝜔𝑖+1,𝑘 /∗ Update the connection weights ∗/
(35) 𝑎𝑘 = 𝑎𝑘 + Δ𝑎𝑘 𝑏𝑘 = 𝑏𝑘 + Δ𝑏𝑘 /∗ Update the threshold.∗/
(36) Δ𝜔𝑖+1,𝑘 = −𝜂(𝜕𝑒𝑘/𝜕𝜔𝑖,𝑘) Δ𝑎𝑘 = −𝜂(𝜕𝑒𝑘/𝜕𝑎𝑘) Δ𝑏𝑘 = −𝜂(𝜕𝑒𝑘/𝜕𝑏𝑘)
(37) END FOR; ENDWHILE
(38) RETURN �̂�𝑓 = (�̂�(𝑞 + 1), �̂�(𝑞 + 2), . . . , �̂�(𝑞 + 𝑝))

Algorithm 2: EMD-CSAWNN.

To determine the degree of correlation between different
forecasting model results with observed values, GRA [48] is
employed in this paper.

Definition 8 (determining the grey relational coefficient).{𝑥0(𝑖)}𝑛𝑖=1 is the reference sequence, {𝑥𝑗(𝑖)}𝑛𝑖=1 is the compara-
tive sequence, 𝑗 = 1, 2, . . . , 𝑚, and the relational coefficient of𝑥0 and 𝑥𝑗 in point 𝑘 is represented as

𝜉𝑗 (𝑘)
= min𝑗min𝑘

𝑥0 (𝑘) − 𝑥𝑗 (𝑘) + 𝜌max𝑗max𝑘
𝑥0 (𝑘) − 𝑥𝑗 (𝑘)𝑥0 (𝑘) − 𝑥𝑗 (𝑘) + 𝜌max𝑗max𝑘

𝑥0 (𝑘) + 𝑥𝑗 (𝑘) . (11)

Here,𝜌 is the distinguishing coefficient, and𝜌 ∈ [0, 1], usually𝜌 = 0.5.

Definition 9 (grey relational degree). By focusing the degree
of 𝜉𝑗(𝑘) at utter points, the algorithm on the grey relational
degree is

𝑟𝑖 = 1𝑛
𝑛∑
𝑘=1

𝜉𝑖 (𝑘) . (12)

Considering the generation capacity of the proposed
hybrid model, four statistical indices are employed as eval-
uation metrics to measure the forecasting accuracy, MAE,
RMSE, MAPE, and GRA. MAPE, MAE, and RMSE measure
the mean performance, and GRA illustrates how well the
forecasted data points fit the trend.

4. Results and Analysis

The experiments were divided into three parts, Experi-
ment 1, Experiment 2, Experiment 3, Experiment 4, and
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Figure 4: Description of observations in New South Wales of China. (a) Location of the study site. (b) The original power load series from
January 12 to February 1, 2009. (c) The statistical measures for the power load.

Experiment 5. Experiment 1, the primary experiment, aims
to compare the performance of different models in one
day (February 2, 2009) and, meanwhile, to compare the
ARIMA and ANN models. Experiment 2 aims to compare
the performance of different models between weekdays and
weekends. Experiment 3 aims to compare the performance
of different models in 28 days (from February 2, 2009, to
March 1, 2009). In order to further validate the hybrid model
we proposed Experiments 4 and 5 which are studied in this
paper. In addition, ENN(Elmanneural network) andRBFNN
(radial basis function neural network) are utilized in fur-
ther comparison. Experiment 4 aims at globally testing the
proposed hybrid model by using real power load data on
Thursday, April 24, 2008, and Tuesday, April 29, 2008, which
is selected from New South Wales of Australia randomly.
Experiment 5 aims to prove the general applicability of hybrid
model; thus, the power load data on Saturday, June 28, 2008,
and Monday, June 30, 2008, from Victoria of Australia are
chosen for forecasting.

Experiment 1. According to determination of the network
structure, 𝑛 × (2𝑛 + 1) × 𝑚 as the structure of the three-layer
neural network will achieve better forecasting results. The
network structure of the ANN model is 4-9-1 because of its
four nodes in the input layer and one node in the output layer.

The iteration time is set to 100, the learning rate is set to 0.01,
and the training requirement accuracy is set to 0.0004. To
forecast the power load onMonday, February 2, the historical
values from the Mondays of the first three weeks, January 12,
January 19, and January 26, are chosen. Test results (MAE,
RMSE, MAPE, and GRA) are presented in Tables 1 and 2,
Figures 5, 6, and 7. Each individual model exhibits its best
performance at a special time. For example, Figure 6 shows
that BPNN provides the lowest MAPE value at 3:00 among
all of the individual models, and CSAWNN yields the highest
accuracy forecasting value from 1:00 to 3:00 among all of
the individual models, whereas the maximum error is with
the BPNN forecasting model on February 2, with a MAPE
value of 10.12%.This result is due to the unstable initialization
of the ANN.The result of the original data of empirical model
decomposition is shown in Figure 3(a). The noise in the data
is eliminated by using the empirical model decomposition
technique; in this paper, the IMF1 is a high-frequency
sequencewith small values, which can be regarded as interfer-
ence factors. As a result, the rest of the IMFs and the remain-
der term can be constructed as the training input of the
CSAWNN model. Table 1 shows the experimental results for
Monday of six types of forecastingmodels.The average values
ofMAPE for sixmodels on February 2, 1.6% are 1.54%, 1.97%,
1.37%, 1.02%, and 1.94%, respectively; as shown in Table 2,
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Figure 5: The forecasting results and actual values for February 2.

theMAPE afforded by the hybridmodel decreased by 48.22%
compared with the maximum average value of MAPE. In
addition, it is shown that the value of MAPE offered by the
hybrid model is more stable than that of the other proposed
models, and the maximum value of MAPE is 2.54%. By com-
paring the hybrid model with the other models, it is shown
that the hybridmodel can provide high and stable forecasting
accuracy.

Experiment 2. Figure 8 and Table 3 describe the comparison
of six models with values on weekdays and weekends on dif-
ferent evaluationmetrics.Onweekdays, the best performance
model is the hybrid model and the value of MAPE is 0.82%;
on the contrary, the worst is the ARIMAmodel, whose value
of MAPE is 1.48%. The MAPE offered by the hybrid model
is 44.59% lower than that offered by the ARIMA model. On
weekends, the value of MAPE offered by the hybrid model
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Table 2: Comparison of power load forecasting result by using
different methods in Feb. 2.

Model MAPE (%)
Maximum Minimum Average

BPNN 10.12 0.05 1.6
GABPNN 7.6 0.03 1.54
WNN 8.07 0.12 1.97
CSAWNN 5.19 0.01 1.37
EMD-CSAWNN 2.54 0.03 1.02
ARIMA 8.67 0.03 1.94
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Figure 6: The BPNN, GABPNN, WNN, CSAWNN, EMD-
CSAWNN, and ARIMA forecasting MAPE (%) for February 2.

is 0.68%, which outperforms all other models and is 49.25%
lower than that of the worst model, ARIMA. Figure 8 indi-
cates that, except for the criterion RMSE, the weekdays out-
perform the weekends when utilizingWNN and the criterion
GRA, the weekdays outperform the weekends when utilizing
the BPNN, GABPNN,WNN, and CSAWNNmodels, and the
other performances on weekends are all better than those on
weekdays when utilizing the six models.The values of MAPE
offered by the six models on weekends are 1.23%, 1.05%,
1.27%, 1.13%, 0.68%, and 1.34%, which are 5.38%, 10.25%,
0.78%, 8.13%, 17.07%, and 9.46% lower than the correspond-
ing weekday values, respectively. This illustrates that the
forecasting results on weekends outperform those of week-
days.

Experiment 3. Figures 9 and 10 illustrate the forecasting
results of Experiment 3. In comparison with the BPNN,
WNN, GABPNN, CSWNN, and ARIMA models, the fore-
casting results offered by the hybridmodel aremore accurate.
The forecasting results are shown in Figure 10, and detailed
prediction results are shown in Table 4.Themaximum values
of MAPE offered by the six models are 1.28%, 1.14%, 1.27%,
1.2%, 0.78%, and 1.44%, respectively. The maximum value of
MAPE offered by the ARIMA model is 4.4% over 28 days.
Meanwhile, on all days of the test, the average values of
MAE, MAPE, and RMSE offered by the hybrid model are all
smaller than those of the other models. The average value of
MAPE offered by the hybrid model over four weeks is 0.78%,

and the highest decrease is 39.06% compared with the other
ANN models. This indicates that the hybrid model is an
effective power load forecasting approach. The GRA result
is shown in Table 5. In addition, on March 1, the GRA
of GABPNN is higher than that of the hybrid model; on
the remaining 27 days, the values of GRA offered by the
hybrid model are higher than those of the other five models.
According to the average value of GRA over the 28 days, the
forecasting effects of all six forecasting models are increas-
ing in the following order: ARIMA, BPNN, which is the
WNN, CSAWNN, GABPNN, and EMD-CSAWNN, which
concludes that the effect of the hybrid forecasting model is
the best model among the six forecasting models.

The higher the power load forecasting accuracy, the lower
the economic cost, which has actual economic significance
[49]. As is illustrated in this case, the ANN optimized by the
intelligence algorithm after denoising provides a better power
load forecasting effect.

Experiment 4. The power load on Thursday, April 24, 2008,
and Tuesday, April 29, 2008, from New South Wales of Aus-
tralia is used to globally testing the proposed hybrid model.
The results are shown as in Tables 6 and 7. To forecast the
power load onThursday, April 24, 2008, the historical values
from the Thursdays of the first three weeks, April 3, April 10,
and April 17, are chosen, respectively. To forecast the power
load on Tuesday, April 29, 2008, the historical values from the
Thursdays of the first three weeks, April 8, April 15, and April
22, are chosen, respectively. Test results (AE, MAE, RMSE,
and MAPE) are presented in Tables 6 and 7 and part (a)
of Figure 11. Table 6 indicates that EMD-CSAWNN has the
highest accuracy forecasting results on Thursday, April 24,
2008; the maximum, minimum, and average MAPE values
are 1.2355% at 2:00, 1.1836 at 14:00, and 1.2025%, respectively.
The second-highest to sixth-highest accurate models are
GABPNN, BPNN, RBFNN, CSAWNN, WNN, ENN, and
ARIMA with average MAPE values of 1.6436%, 1.7795%,
1.8314%, 2.3373%, 2.4141%, 3.1381%, and 5.5872%, respec-
tively. Table 7 indicates that EMD-CSAWNN still yields the
highest accuracy forecasting value from among all of other
models mentioned in this paper when forecasting power load
on Tuesday, April 29, 2008; the maximum, minimum, and
average MAPE values are 1.9844% at 14:00, 1.6033% at 12:00,
and 1.7811%, respectively. According to the average MAPE
value, CSANN is the second most accurate model, GABPNN
is the third most accurate model, RBFNN is the fourth most
accurate model, WNN is the fifth most accurate model,
BPNN is the sixthmost accuratemodel, ENN is the fifthmost
accuratemodel, andARIMA is the sixthmost accuratemodel
with average MAPE values of 2.5827%, 2.8472%, 2.8473%,
3.1717%, 3.2725%, 3.5151%, and 3.7549%, respectively. As
shown in Table 6, the average MAPE afforded by the hybrid
model decreased by 78.48% compared with the maximum
average MAPE value. In Table 7, the average MAPE afforded
by the hybrid model decreased by 52.57% compared with
the maximum average MAPE value. In addition, it is shown
that the value of MAPE offered by the hybrid model is more
stable than that of the other proposed models. By comparing



Mathematical Problems in Engineering 13

BPNN GABPNN WNN

6000

7000

8000

9000

10000

11000

12000

13000

Fo
re

ca
sti

ng
 p

ow
er

 lo
ad

 (M
W

h)

EMD-CSAWNN ARIMACSAWNN

0.847

0.7553

0.7
0.72
0.74
0.76
0.78
0.8

0.82
0.84
0.86

GRA

Model MAE RMSE MAPE (%) GRA
BPNN 158.4237 211.5302 1.6 0.7962
GABPNN 148.608 196.9762 1.54 0.8018
WNN 187.4212 233.0543 1.97 0.7582
CSAWNN 134.9193 186.0761 1.37 0.8186
EMD-CSAWNN 104.7161 130.6439 1.02 0.847
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Figure 7: The comprehensive evaluation of forecasting models for February 2. (a)The comparison of GRA by using six different models. (b)
The comparison of MAE, RMSE, and MAPE by using six different models. (c) The scatterplot of forecasting versus actual levels by using six
different models. (d) The evaluation results of six different models. The value in bold is the best value of each evaluation index.
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Table 3: Comparison of power load forecasting evaluation by using different methods between weekdays and weekends.

Model Date Evaluation criterion
MAPE (%) RMSE MAE GRA

BPNN Weekdays 1.30 164.97 118.03 0.8654
Weekends 1.23 148.35 101.40 0.8600

GABPNN Weekdays 1.17 154.94 106.05 0.8781
Weekends 1.05 137.21 88.33 0.8779

WNN Weekdays 1.28 162.09 114.33 0.8688
Weekends 1.27 162.83 108.65 0.8581

CSAWNN Weekdays 1.23 157.05 109.05 0.8737
Weekends 1.13 138.86 94.96 0.8689

EMD-CSAWNN Weekdays 0.82 101.56 72.77 0.9087
Weekends 0.68 87.00 55.19 0.9148

ARIMA Weekdays 1.48 184.23 128.98 0.8539
Weekends 1.34 169.06 109.09 0.8548

GABPNN, BPNN, CSAWNN, WNN, ARIMA, ENN, and
RBFNN, it is shown that the hybrid EMD-CSAWNN model
is better than that of single models.

Experiment 5. The power load on Saturday, June 28, 2008,
andMonday, June 30, 2008, fromVictoria of Australia is used
to further prove that the proposed hybrid model can improve
the performance of power load forecasting in different cases.
The historical values from the Saturday of the first three
weeks, June 7, June 14, and June 21, are chosen in order to
forecast the power load on Saturday, June 28, 2008.Moreover,
the historical values from theMonday of the first three weeks,
June 9, June 16, and June 23, are chosen in order to forecast
the power load on Monday, June 30, 2008. The experimental
results are presented in Tables 8 and 9 and part (b) of Fig-
ure 11. For Saturday (June 28, 2008) data, the average MAPE
values for the BPNN, GABPNN, WNN, CSAWNN, ARIMA,
ENN, RBFNN, and EMD-CSAWNN models are 3.3224%,
2.8656%, 3.2301%, 2.5248%, 3.7716%, 3.3890%, 3.1754%, and
1.7699%, respectively. The maximum MAPE values for the
six models are 3.5467% at 16:00, 3.3061% at 18:00, 3.5751%
at 4:00, 2.9527% at 16:00, 4.2174% at 0:00, 3.7591% at 20:00,
3.3889% at 10:00, and 2.0503% at 14:00, respectively, and the
minimum MAPE values are 2.9644% at 20:00, 2.2710% at
12:00, 2.7591% at 20:00, 2.1818% at 20:00, 3.4718% at 4:00,
3.1379% at 18:00, 2.8405% at 22:00, and 1.5798% at 10:00,
respectively. The differences between the maximum and
minimumMAPE values for themodels are 0.5823%, 1.0351%,
0.816%, 0.1936%, 0.7456%, 0.6212%, 0.5484%, and 0.4705%.
For Monday (June 30, 2008) data, the average MAPE values
for the BPNN, GABPNN, WNN, CSAWNN, ARIMA, ENN,
RBFNN, and EMD-CSAWNN model are 3.2747%, 2.8415%,
3.0806%, 2.5422%, 3.7656%, 3.4113%, 3.1982%, and 1.7312%,
respectively. The maximum MAPE values for the six models
are 3.9915% at 22:00, 3.4117% at 2:00, 3.6561% at 6:00, 2.8144%
at 0:00, 4.1783% at 22:00, 3.6738% at 8:00, 3.5262% at 0:00,
and 2.0361% at 12:00, respectively, and the minimum MAPE
values are 3.0113% at 20:00, 2.3376% at 22:00, 2.4491% at 16:00,
2.1398% at 20:00, 3.2795% at 0:00, 3.2235% at 4:00, 2.9466%
at 22:00, and 1.4521% at 10:00, respectively. The differences

between the maximum and minimum MAPE values for the
models are 0.9802%, 1.0741%, 1.207%, 0.6746%, 0.8988%,
0.4503%, 0.5796%, and 0.584%. Therefore, the proposed
hybrid EMD-CSAWNNmodel is not only the most accurate
but also the most stable of the investigated forecasting
models.

5. Discussion

In this section, we discuss two important evaluation metrics,
convergence speed and degree of certainty [50], offered by
the GABPNN and CSAWNN models to determine a more
practical forecasting model by considering reality factors
such as forecasting stability and calculation time. The results
illustrate that the CSAWNNmodel is more practical than the
GABPNN model in forecasting power load. In addition, we
propose forecasting availability to analyze and evaluate the
quality of power load forecasting.

5.1. Convergence Speed. The computational complexity of
evolutionary algorithms and swarm intelligence still remains
a challenging issue; here, we use convergence speed as
one of the evaluation metrics to examine the forecasting
performance of GABPNN and CSAWNN. We obtain the
computation time of the best fitness by analyzing the con-
vergence speed of GA and CSA for use in comparative
evaluation of optimization algorithm performance. However,
the exploration and development are always two competing
goals, and the conflict would exist between the convergence
speed and forecasting accuracy. We define performance less
than 10−5 as the convergence criteria.

We take the data from January 12, January 19, and January
26 as an example to illustrate the convergence speed of GA
and CSA; Figure 12 shows the results of the comparison of
evolutions among GA and CSA with different population
sizes. We observed that the fitness values monotonically
decrease as the iterations increase. In addition, when the
iterations are less than 100, the larger the population size, the
faster the convergence speed. We also observed that CSA has
better convergence speed than GA. At iteration 20, the
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Table 5: Comparison of power load forecasting GRA by using different methods from Feb. 2 to Mar. 1.

Time BPNN GABPNN WNN CSAWN EMD-CSAWNN ARIMA
GRA GRA GRA GRA GRA GRA

Feb. 2 0.7962 0.8018 0.7582 0.8186 0.8470 0.7553
Feb. 3 0.7587 0.7532 0.7756 0.7626 0.8121 0.7468
Feb. 4 0.7132 0.7077 0.7216 0.7429 0.7611 0.7076
Feb. 5 0.7225 0.7381 0.7672 0.7717 0.8032 0.7305
Feb. 6 0.7660 0.7991 0.8194 0.7800 0.8598 0.8027
Feb. 7 0.8555 0.8680 0.7952 0.8431 0.8839 0.8381
Feb. 8 0.7507 0.7184 0.7562 0.7504 0.8191 0.7541
Feb. 9 0.7622 0.7682 0.7495 0.7840 0.8352 0.7554
Feb. 10 0.7644 0.8003 0.7750 0.7993 0.8376 0.7573
Feb. 11 0.8297 0.8608 0.8479 0.8035 0.9109 0.8032
Feb. 12 0.7949 0.8509 0.8439 0.8074 0.9018 0.8169
Feb. 13 0.8262 0.8606 0.8396 0.8493 0.9050 0.8156
Feb. 14 0.7628 0.8064 0.7800 0.8067 0.8856 0.8058
Feb. 15 0.7392 0.7565 0.7716 0.7674 0.8262 0.7317
Feb. 16 0.8147 0.8298 0.8093 0.8291 0.8520 0.7859
Feb. 17 0.7927 0.7751 0.7656 0.7755 0.7964 0.7577
Feb. 18 0.7908 0.8114 0.7938 0.8043 0.8400 0.7791
Feb. 19 0.8254 0.8199 0.8227 0.8234 0.8756 0.7884
Feb. 20 0.7249 0.7719 0.7641 0.7901 0.7907 0.7340
Feb. 21 0.8555 0.8756 0.8473 0.8676 0.9334 0.8174
Feb. 22 0.7267 0.7600 0.7412 0.7624 0.8356 0.7547
Feb. 23 0.8258 0.8255 0.7912 0.7951 0.8670 0.7872
Feb. 24 0.7511 0.7630 0.7404 0.7642 0.8316 0.7363
Feb. 25 0.7932 0.7916 0.8259 0.8200 0.8331 0.7758
Feb. 26 0.7628 0.7983 0.7316 0.7402 0.8058 0.7063
Feb. 27 0.7440 0.7870 0.7203 0.7615 0.8257 0.7306
Feb. 28 0.8012 0.8331 0.7970 0.8011 0.8666 0.7607
Mar. 1 0.7681 0.8433 0.7974 0.7667 0.8214 0.7775
Maximum value 0.8555 0.8756 0.8479 0.8676 0.9334 0.8381
Minimum value 0.7132 0.7077 0.7203 0.7402 0.7611 0.7063
Average value 0.8673 0.8811 0.8692 0.8756 0.9127 0.8576

convergence of CSAWNN obtained the best speed in a
population of 50, and the convergence of GABPNN at the
iteration between 60 and 80, at the iteration 60, obtained the
best speed.

5.2. Degree of Certainty. The forecasting results of opti-
mization algorithm-NN are also usually different for each
experiment because of the probability mechanism of the
optimization algorithm. However, in the actual forecasting
field, the future values are not known; thus, we cannot obtain
which experiment will obtain the best result. Hence, we use
these evaluation metrics to determine the randomness.

We defined the degree of certainty as

DC (𝜎) = √∑𝑚𝑖=1 (𝜎𝑖 − 𝜎)2𝑚 , (13)

where 𝑚 is the number of experiments, 𝜎𝑖 is the value of 𝑖th
forecasting experiment on 𝜎, and 𝜎 is the average value of all

𝑛 experiments. It is clear that a smaller DC can bring a higher
degree of certainty.

The scatterplot in Figure 13 indicates the MAPE and
GRA distributions of different results of 100 experiments for
February 2 by, respectively, using GABPNN and CSAWNN.
Although the minimum value of MAPE of GABPNN is
smaller than that of CSAWNN and DC(𝜎) of CSAWNN,
both are smaller than those of GABPNN. DC (MAPE) and
DC (GRA) of CSAWNN are 0.0014 and 0.00016, and the
DC (MAPE) and DC (GRA) of GABPNN are 0.0016 and
0.00019. Thus, CSAWNN is a better forecasting method than
GABPNN in the actual forecasting field.

5.3. Forecasting Availability. Forecasting availability can be
measured not only by the square sum of forecasting error but
also by the mean andmean squared deviation of the forecast-
ing accuracy. In certain practical circumstances, the skewness
and kurtosis of the distribution of forecasting accuracy need
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Figure 8: The BPNN, GABPNN, WNN, CSAWNN, EMD-CSAWNN, and ARIMA forecasting results between weekdays and weekends.

further consideration; on that basis, this section will give a
general discrete form of forecasting availability [51].

Definition 10. Let

𝑒𝑖𝑡 =
{{{{{{{{{{{{{{{{{

−1, (𝑥𝑡 − 𝑥𝑖𝑡)𝑥𝑡 > 1
(𝑥𝑡 − 𝑥𝑖𝑡)𝑥𝑡 , −1 ≤ (𝑥𝑡 − 𝑥𝑖𝑡)𝑥𝑡1, (𝑥𝑡 − 𝑥𝑖𝑡)𝑥𝑡 > 1.

> 1 (14)

𝑒𝑖𝑡 denotes the relative forecasting error of 𝑖th forecasting
method at time 𝑡, 𝑖 = 1, 2, . . . , 𝑚, 𝑡 = 1, 2, . . . , 𝑁. The
matrix 𝐸 = (𝑒𝑖𝑡)𝑚 ×𝑁 is called the relative error matrix of the
forecasting model.

Definition 11. 𝐴 𝑖𝑡 = 1 − |𝑒𝑖𝑡| is called the forecasting accuracy
of 𝑖th forecasting method at time 𝑡, 𝑖 = 1, 2, . . . , 𝑚, and 𝑡 =1, 2, . . . , 𝑁.

Definition 12. 𝑚𝑘𝑖 = ∑𝑁𝑡=1 𝑄𝑡𝐴𝑘𝑖𝑡 is called 𝑘th-order forecasting
availability unit of 𝑖th forecasting method, 𝑘 is a positive
integer, 𝑖 = 1, 2, . . . , 𝑚, {𝑄𝑡, 𝑡 = 1, 2, . . . , 𝑁} is the discrete
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Figure 9: The forecasting results and actual values from February 2 to March 1.
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Figure 10: The comprehensive evaluation of forecasting models from February 2 to March 1. (a) The radar diagram of MAPE by using six
different models. (b) Comparison of forecasting MAPE by using the EMD-CSAWNN and ARIMA models. The red line is the polynomial
regression line. (c) The comparison of GRA and MAPE by using six different models. (d) The comparison of MAE and RMSE by using six
different models. (e) The scatterplot of forecasting versus actual levels by using six different models. The solid line represents the perfect fit:
that is, 𝑦 = 𝑥. (f) Evaluation results of six different models.The red font is the best value of every evaluation index; the green font is the worst.
(g) The comparison of the box plot by using six different models. The whiskers in the box plot indicate the primary range for the data, in
which the lowest data are 1.5 times the interquartile range of the lower quartile and the highest data are 1.5 times the interquartile range of
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Figure 11:The comprehensive evaluation of forecastingmodels in Experiments 4 and 5. (a) Comparison of forecasting results by eight models
onThursday, April 24, 2008, and Tuesday, April 29, 2008, from New South Wales of Australia. (b) Comparison of forecasting results by eight
models on Saturday, June 28, 2008, and Monday, June 30, 2008, from Victoria of Australia.
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probability distribution of 𝑚 types of methods at time 𝑡, and∑𝑁𝑡=1 𝑄𝑡 = 1, 𝑄𝑡 > 0.
Especially if the priori information of the discrete prob-

ability distribution of 𝑚 types of methods is unknown, we
define 𝑄𝑡 = 1/𝑁, 𝑡 = 1, 2, . . . , 𝑁.

Definition 13. 𝑚𝑘𝑖 is called the 𝑘-order forecasting availability
unit of 𝑖th forecasting method, and 𝐻 is a continuous
function of a certain 𝑘 unit. 𝐻(𝑚1𝑖 , 𝑚2𝑖 , . . . , 𝑚𝑘𝑖 ) is called the𝑘-order forecasting availability of 𝑖th forecasting method.

Definition 14. When 𝐻(𝑥) = 𝑥 is a continuous function of
one variable, 𝐻(𝑚1𝑖 ) = 𝑚1𝑖 is the 1-order forecasting availabil-
ity of 𝑖th forecastingmethod.When𝐻(𝑥, 𝑦) = 𝑥(1−√𝑦 − 𝑥2)

is a continuous function of two variables,𝐻(𝑚1𝑖 , 𝑚2𝑖 ) = 𝑚1𝑖 (1−√𝑚2𝑖 − (𝑚1𝑖 )2) is the 2-order forecasting availability of 𝑖th
forecasting method.

Especially if the first decimal of 𝐻(𝑚1𝑖 , 𝑚2𝑖 , . . . , 𝑚𝑘𝑖 ) is
the same, we define 𝐻(𝑚1𝑖 , 𝑚2𝑖 , . . . , 𝑚𝑘𝑖 ) = {10𝐻(𝑚1𝑖 , 𝑚2𝑖 , . . . ,𝑚𝑘𝑖 )}, where {⋅} denotes the fractional part.

Definition 14 illustrates that the 1st-order forecasting
availability is the expectation forecasting accuracy sequence.
The 2nd-order forecasting availability is the difference
between the expectation and standard deviation of the fore-
casting accuracy sequence.We use the forecasting availability
to evaluate the power load forecasting results in this paper.
ThroughFigure 14, we obtain that the 1st-order and 2nd-order
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forecasting availability offered by the hybridmodel are 0.9222
and 0.8366, respectively, which outperform those of the oth-
ers; this evaluation result corresponds to the previous evalu-
ation criterion.Thus, the hybrid model is a more valid model
than the others.

6. Conclusion

The one-day-ahead power load forecasting is an extremely
important problem in power load planning, secure operation,
and energy expenditure economy. Assessment of the power
load as accurately and quickly as possible is the primary
objective in power load forecasting. However, power load is
affected by various uncertain factors such as climate change
and the social environment, which may lead to difficulty in
obtaining accurate power load forecasts. The accuracy of tra-
ditional individual forecasting methods, which lack denois-
ing, is not satisfactory for power load forecasting. Herein,
a hybrid EMD-CSAWNN model for short-term power load
forecasting is developed.The empiricalmodel decomposition
technique is applied to reduce the high-frequency items. On
the basis that WNN can handle the data with nonlinear
features, the ensemble forecastingmethod is adopted to over-
come the uncertainty of the outcomes that can be attributed
to the randomness of the initialization of the single WNN.
Moreover, we use the CSA to optimize the parameter in the
ensemble forecasting model. Experimental studies of power
load forecasting in NSW demonstrate that the hybrid model
has higher precision than conventional forecasting models.
The proposed EMD-CSAWNN model can provide efficient

computation and satisfactory forecasting accuracy for this
type of data. Therefore, the developed hybrid approach is
suggested for broad application in power load forecasts or
even other fields such as wind speed and traffic flow forecasts.

Abbreviations

BPNN: Back Propagation Neural Network
WNN: Wavelet Neural Network
GA: Genetic Algorithm
CSA: Cuckoo Search Algorithm Back Propagation

Neural
GABPNN: Network Optimized by Genetic Algorithm
CSAWNN: Wavelet Neural Network Optimized by Cuckoo

Search Algorithm
AR: Autoregressive model
MA: Moving average model
ARIMA: Autoregressive integrated moving average

model
IMF: Intrinsic mode function
ANN: Artificial Neural Network
PSO: Particle swarm optimization algorithm
ACO: Ant colony optimization algorithm
SAO: Simulated annealing optimization algorithm
MAE: Mean absolute error
RMSE: Root mean square error
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GRA: Grey relational analysis𝑞: The number of sample data points used to

build the NN model
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𝑝: The number of data points to be forecasted in
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layer, with values belonging to [−1, 1]𝑓(⋅): The excitation function of the hidden layer𝜂: The learning rate of the NN, which is used to
adjust the weights and thresholds of the NN

itermax: The maximum number of iterations𝑃: The population size of the initial population
space𝑏: A random number belonging to [0, 1]𝑟: A random number belonging to [0, 1]𝑤iter

max, 𝑤iter
min: The higher and lower bounds of the value of

the gene 𝑤iter
𝑖𝑗𝐺max: The maximum number of generations𝑃𝛼: The possibility of finding an exotic egg by the

nest master𝑋iter
∗ : The location of the optimum nest in

generation iter𝜒iter
𝑗 , 𝜒iter
𝑘 : Two random numbers in generation iter.
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Empirical data from Yokohama, Japan, showed that a macroscopic fundamental diagram (MFD) of urban traffic provides for
different network regions a unimodal low-scatter relationship between network vehicle density and network space-mean flow.This
provides new tools for network congestion control. Based on MFD, this paper proposed a feedback gating control policy which
can be used to mitigate network congestion by adjusting signal timings of gating intersections.The objective of the feedback gating
control model is to maximize the outflow and distribute the allowed inflows properly according to external demand and capacity of
each gating intersection. An example network is used to test the performance of proposed feedback gating controlmodel. Two types
of background signalization types for the intersections within the test network, fixed-time and actuated control, are considered.The
results of extensive simulation validate that the proposed feedback gating control model can get a Pareto improvement since the
performance of both gating intersections and the whole network can be improved significantly especially under heavy demand
situations. The inflows and outflows can be improved to a higher level, and the delay and queue length at all gating intersections
are decreased dramatically.

1. Introduction

Traffic congestion in urban road networks is still a prob-
lem of modern society although it has been studied in a
variety of ways during the past decades. Due to the high
unpredictability of choices of travelers, realistic modeling
and efficient control of urban road networks remain a big
challenge. By increasing road capacity or reducing traffic
demand, we can change the situation of the congested
networks, while the provision of new infrastructure is usually
not a feasible solution, and we should make full use of the
existing infrastructure.There is a vast literature of congestion
dynamics, control, and spreading in urban road networks
traffic systems with different traffic modes and the gating
control is an import practical tool to realize the network
control strategy.

Gating control is frequently employed against oversat-
uration of significant or sensitive links, arterials, or urban

network parts [1]. The idea is to protect links from over-
saturation, whereby the level or duration of gating may
depend on real-time measurements from the protected links.
Gal-Tzur proposed a strategy which employs the concept
of metering for small congested networks with one critical
intersection [2]. However, gating is usually employed in an
ad hoc way (based on engineering judgment) regarding the
specific gating policy and quantitative details, which may
lead to insufficient or unnecessarily strong gating actions.
Moreover, the optimal condition of network is very important
for gating control, and how to define the optimal condition
remains the biggest obstacle to making use of gating control
in reality.

Recently, Daganzo proposed a new concept of macro-
scopic relationship between average network flow and den-
sity, which is called the Macroscopic Fundamental Diagram
(MFD) [3]. MFDs describe the relationship between inflows,
outflows, and number of vehicles in the network in a very
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clear and simple way, which provide an efficient tool for con-
trol and mitigate network congestion based on detected data.
This characterization of the traffic state makes it possible to
diagnose the emergence of congestion and choose measures
to mitigate traffic problems by redirecting flows to areas with
spare capacity [4].

Since then, the basic property and influence factors of
MFD have been done. Leclercq et al. [5] showed that the
MFDs are an envelope of possible traffic states. Christine
and Ladier [6] use all the data available for a medium-size
French city to explore the impact of heterogeneity on the
existence of a MFD. They studied the impact of differences
between the surface and highway network, distance between
loop detectors and traffic signals within the surface network,
and differences between penetrating and ring roads within
the highway network [6]. Geroliminis and Sun show that
different freeway subnetworks do not have a well-defined
MFD with low scatter because the aggregated patterns do
not just exhibit some high degree of random scatter [7].
Gayah and Daganzo studied the effect of turning volume on
MFD with the help of simulation [8]. Ji and Geroliminis also
explore the spatial and temporal characteristic of congestion
in urban networks [9]. Zhang et al. exploreMFDof a network
under three different adaptive traffic control modes (SCATS-
L, SCATS-F, and SOTL) [10]. Mühlich et al. [11] found from
simulation that when traffic density becomes higher, gridlock
may occur: queues remain on the intersections after the end
of a green phase, blocking the traffic flow for a following
signal phase. If this happens, the average flowdiminisheswith
growing traffic densities. Haddad and Geroliminis analyzed
the stability of traffic control for two-region urban cities [12]
and designed a robust perimeter controller for an urban
region [13]. Gayah et al. [14] examined the impact of locally
adaptive traffic signals on network stability and the MFD by
a family of signal control strategies.

The application of MFD to control a network is also a
very important branch. Geroliminis and Daganzo proposed
a control rule based on the MFD concept that maximizes
the network outflow; however, the proposed method cannot
be directly employed for practical use in urban networks
[15]. Li et al. introduced a fixed-time signal timing perimeter
control by exploiting the MFD, albeit without adaptation to
the prevailing real-time traffic conditions [16]. Aboudolas and
Geroliminis developed a PI regulator for multiple regions.
However, MPC calls for sufficiently accurate model and
external disturbance predictions, which may be a serious
impediment for practicable control [17]. Keyvan-Ekbatani
et al. proposed a generic real-time feedback-based gating
concept, which exploits the urban MFD for smooth and
efficient traffic control operations, with an application to the
network of Chania and Greece [18], which is different from
Aboudolas and Geroliminis [17] that researched the gating
control for only one urban network, while Aboudolas and
Geroliminis [17] separated thewhole network, and investigat-
ing the boundary control occurs at the intertransfers between
neighborhood reservoirs.

Keyvan-Ekbatani et al. demonstrated that efficient
feedback-based gating is actually possible with much less
real-time measurements, that is, at lower implementation
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Figure 1: MFD of network.

cost [19]. Keyvan-Ekbatani et al. further proposed a multiple
concentric-boundary gating strategy, which implements the
aforementioned feedback-based gating strategy, along with
considering the heterogeneity of a large-scale urban network
like San Francisco, USA [20]. Aboudolas and Geroliminis
extended the basic feedback approach for application to
multiple subnetworks with separate individual MFD in
a heterogeneous urban network [17]. Yildirimoglu et al.
[21] explored the effect of route choice behavior on MFD
modeling in case of heterogeneous urban networks by
extending two MFD-based traffic models with different
granularity of vehicle accumulation state and route choice
behavior aggregation.

Despite the informative results offered by previous stud-
ies, many issues on network gating control have not been
sufficiently addressed. The network related data such as
dynamic origin-destination (OD) needed by classical gating
control model, especially, is not easy to be obtained [3].
The optimization of signal timings has not been explicitly
addressed in very limited research on MFD-based network
control. How to balance between the performance of gating
intersections and target network is also a remaining problem.
In response to the above needs, this paper proposed a new
feedback gating control strategy with a model to distribute
allowed inflows among gating intersections based on MFD.

The paper is organized as follows. The gating control
model based on MFD is developed in Section 2. Section 3
presents evaluation and analysis results of the proposed
gating control model based on simulation. Conclusions and
future research needs are summarized in the last section.

2. Gating Control Model

2.1. The Control Strategy. MFD reflects the relation between
the vehicle accumulation in network and outflow of network.
It approximates a parabola going downward. Figure 1 show
the MFD of a network, the horizontal axis is the total vehicle
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in the network and the vertical axis is the total vehicles
that leave the network or arrive at the destination in the
network. When the vehicle accumulation in network is less
than the sweet spot, the outflow of network increases with
the increase of the accumulation and then arrives at the
optimal throughput. If the vehicle accumulation in network
is more than the sweet spot the outflow of network decreases
with the increase of the accumulation. Hence, we should
take some actions to control the number of vehicles entering
the network to prevent network congestion (e.g., maintain
the accumulation around the sweet spot to maximize the
outflow).

MFD of network can be divided into three parts: the
free flow condition, the saturation condition, and the over-
saturation condition. During the free flow condition, more
vehicles can get in network, while in the saturation condition
we should control the number of vehicles getting in network
to keep the accumulation around the sweet spot and then the
outflow around themaximum throughput; if the condition of
network is in the oversaturation condition we must control
the vehicle strictly to reduce the accumulation to prevent
network from getting blocked.

In order to control input vehicle, a feedback gating control
model is proposed. The blue circle in Figure 2 represents the
boundary of the network and the red dots represent the gating
intersections (GI); all vehicles get in/out of network through
gating intersections and intersections on the boundary (i.e.,
signalized intersection on the boundary of the network);
𝑞
𝑖,out(𝑡) represent the outflow of signalized intersection 𝑖 at
time 𝑡 represented by the red solid line in Figure 2; 𝑞

𝑖
(𝑡)

represents the demand of signalized intersection 𝑖 at time 𝑡,
𝐶
𝑖
(𝑡) represents the total capacity of all lane groups heading

to the network at intersection 𝑖, and 𝑞
𝑖,in(𝑡) represents the

permitted number of vehicles that gets in network through
signalized intersection 𝑖 at time 𝑡 just like the blue dash
line; 𝜆

𝑖
(𝑡) represent the controls parameter of signalized

intersection 𝑖 at time 𝑡 just like the yellow solid line; 𝑁(𝑡)

Table 1: Time parameters for 60-second cycle for 13 intersections.

Intersections 1 2 3 4 5 6 7 8 9 10 11 12 13
West-east 36 38 25 18 13 30 33 25 19 19 42 32 32
North-south 20 18 30 37 42 25 22 31 37 37 13 23 23

Table 2: Time parameters for 80-second cycle for 13 intersections.

Intersections 1 2 3 4 5 6 7 8 9 10 11 12 13
West-east 48 51 33 24 17 40 44 33 25 25 56 43 43
North-south 27 24 40 49 56 33 29 41 49 49 17 31 31

Table 3: Time parameters for 100-second cycle for 13 intersections.

Intersections 1 2 3 4 5 6 7 8 9 10 11 12 13
West-east 60 63 42 30 22 50 55 42 32 32 70 53 53
North-south 33 30 50 62 70 42 37 52 62 62 22 38 38

Table 4: Time parameters for 120-second cycle for 13 intersections.

Intersections 1 2 3 4 5 6 7 8 9 10 11 12 13
West-east 72 76 50 36 26 60 66 50 38 38 84 64 64
North-south 40 36 60 74 84 50 44 62 74 74 26 46 46

Table 5: Time parameters for 140-second cycle for 13 intersections.

Intersections 1 2 3 4 5 6 7 8 9 10 11 12 13
West-east 84 89 58 42 30 70 77 58 44 44 98 75 75
North-south 47 42 70 86 98 58 51 72 86 86 30 54 54

represent the accumulation of vehicles in network at time 𝑡
and𝑁max represent the sweet spot of network.

2.2. The Control Model

2.2.1. The Control Objective. In order to prevent network
from getting blocked and serve more vehicles, a suitable
control objective is to maximize the total vehicles that leave
the network (we do not consider the vehicle arriving at the
destination in the network). With this objective, the optimal
policy is to allow as many vehicles to enter the network
as possible without allowing the accumulation to reach
oversaturation condition. Hence if we keep the accumulation
around sweet spot, then the outflow is around the optimal
throughput, and more vehicles will leave the network which
means that more vehicles can get in the network.The control
objective as follows:

max 𝑍 = ∑

𝑖

∑

𝑡

𝑞
𝑖,out (𝑡) = ∫

𝑡

𝑡0

𝐺 (𝑁 (𝑡)) 𝑑𝑡, (1)

where 𝐺(𝑥) is the expression of MFD.
The signal control time table is calculated using Synchro

and the signal time parameters are shown in Tables 1–5.

2.2.2.The Feedback Gating Control Model. Equation (1) is not
easy to be implemented in practice. Hence, we transfer this
problem to a feedback control scheme.Whenwe get theMFD
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of a network we know the sweet spot of the network; namely,
we know the optimal number of vehicles in the network.
The number of vehicles entering, leaving, and remaining
in the network timely can be calculated based on detectors
located on the boundary intersections.Then we can calculate
the number of vehicles which can be allowed to get in the
network.

Note that 𝑞
𝑜𝑖
(𝑡) includes both internal (off-street parking

for taxis and pockets for private vehicles) and external
noncontrolled inflows. The conservation equation for the
network is

𝑑 (𝑁 (𝑡))

𝑑 (𝑡)
= 𝑄 (𝑡) + 𝑞𝑜𝑖 (𝑡) − 𝑞out (𝑡) , (2)

𝑞out (𝑡) = 𝐺 (𝑁 (𝑡)) . (3)

Combine (2) and (3); we get

𝑑 (𝑁 (𝑡))

𝑑 (𝑡)
= 𝑄 (𝑡) + 𝑞𝑜𝑖 (𝑡) − 𝐺 (𝑁 (𝑡)) . (4)

The linearization yields may be linearized around an
optimal steady state byTaylor expansion. Combiningwith the
research target, the best condition of network is the optimal
steady state. When the network is in the best condition,
the number of vehicles in the network will reach the best
condition, the number of vehicles outflowing the network
will be the maximum, the number of vehicles outflowing
the network from signal intersections will be the maximum,
and the number of vehicles outflowing the network from
uncontrolled intersections will be the maximum and satisfy
the following conditions:

𝑄 + 𝑞
𝑜𝑖
= 𝑞out,

Δ𝑄 (𝑡) = 𝑄 (𝑡) − 𝑄,

Δ𝑞
𝑜𝑖 (𝑡) = 𝑞𝑜𝑖 (𝑡) − 𝑞𝑜𝑖,

Δ𝑁 (𝑡) = 𝑁 (𝑡) − 𝑁,

Δ𝑞out (𝑡) = 𝑞out (𝑡) − 𝑞out = 𝐺 (𝑁 (𝑡)) − 𝐺 (𝑁) .

(5)

The results of linearization are

𝑑 (Δ𝑁 (𝑡))

𝑑 (𝑡)
= 𝐴Δ𝑄 (𝑡) + 𝐵Δ𝑞𝑜𝑖 (𝑡) − 𝐶Δ𝑁 (𝑡) ,

𝐴 =
𝜕𝐹

𝜕𝑄

𝑄(𝑡)=𝑄,𝑞
𝑜𝑖
(𝑡)=𝑞
𝑜𝑖
,𝑁(𝑡)=𝑁

,

𝐵 =
𝜕𝐹

𝜕𝑞

𝑄(𝑡)=𝑄,𝑞
𝑜𝑖
(𝑡)=𝑞
𝑜𝑖
,𝑁(𝑡)=𝑁

,

𝐶 =
𝜕𝐹

𝜕𝑁

𝑄(𝑡)=𝑄,𝑞
𝑜𝑖
(𝑡)=𝑞
𝑜𝑖
,𝑁(𝑡)=𝑁

.

(6)

From (2) to (6), we get

𝑑 (Δ𝑁 (𝑡))

𝑑 (𝑡)
= Δ𝑄 (𝑡) + Δ𝑞𝑜𝑖 (𝑡) − Δ𝑁 (𝑡) 𝐺


(𝑁) . (7)

Formula (7) can be denoted by

𝑑 (Δ𝑁 (𝑡))

𝑑 (𝑡)
= 𝐷 (Δ𝑄 (𝑡) + Δ𝑞𝑜𝑖 (𝑡)) + 𝐸Δ𝑁 (𝑡) . (8)

Formula (8) is temporal continuity, which can be dis-
cretized by Euler formula:

Δ𝑁 (𝑡 + 1) = 𝑌Δ𝑁 (𝑡) + 𝑍 (Δ𝑄 (𝑡) + Δ𝑞𝑜𝑖 (𝑡)) ,

𝑌 = 𝑒
𝐸𝑇
= 𝑒
−𝐺(𝑁)𝑇

,

𝑍 =
𝑌 − 1

𝐷
𝐸 = (𝑌 − 1) 𝐸

= (1 − 𝑒
−𝐺(𝑁)𝑇

)𝐺 (𝑁) .

(9)

Based on feedback control logic, the optimal inflow of
network at 𝑡 is given by

𝑄 (𝑡) = 𝑄 (𝑡 − 1) − 𝐾𝑃 [𝑁 (𝑡) − 𝑁 (𝑡 − 1)]

+ 𝐾
𝐼
(𝑁 − 𝑁 (𝑡)) .

(10)

Meanwhile, the external demand of each boundary inter-
section should also be taken into account. The total actual
inflow at time 𝑡 can be calculated by the following equation:

𝑞
𝑖,in (𝑡) = min

{

{

{

𝑄(𝑡) × 𝛼𝑖

𝑞
𝑖 (𝑡) .

(11)

2.2.3. The Inflow Distribution. In order to determine the
inflows at each boundary intersection evenly and minimize
the impacts of gating control on the performance of gating
intersections, both the demand and capacity of each bound-
ary intersection are taken into account. A parameter𝛼

𝑖
is used

to represent the ratio of inflows assigned to the intersection 𝑖;
it can be calculated by the following equation:

𝛼
𝑖
=
𝑞
𝑖 (𝑡)
2
[𝑆
𝑖
− 𝑆
𝑖 (𝑡)]

∑
𝑖
𝑞
𝑖 (𝑡)
2
[𝑆
𝑖
− 𝑆
𝑖 (𝑡)]

. (12)

Whenwe get the 𝑞
𝑖,in(𝑡) of each intersection, we can adjust

the green time of each intersection according to the data of
detector.

Then the green time of the lane group heading to network
at boundary intersection 𝑖 can be calculated as

𝑡
𝑖 (𝑡) = 𝑞𝑖,in (𝑡) ×

𝑇

𝑆
𝑖

. (13)

We also take the constraint condition of maximum and
minimum green time into consideration, as follows:

𝑡
𝑔,min ≤ 𝑡𝑖 (𝑡) ≤ 𝑡𝑔,max. (14)
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3. Simulation and Analysis

3.1. Network Description and Simulation Setup. In order
to test the feedback gating control model, we build a
microsimulation network by VISSIM. The network includes
13 intersections and 8 main roads; traffic signals are all
multiphase fixed-time operating on a common cycle length
of 120 s, shown in Figure 2 by the blue dotted line circle. The
red point represents the gating intersections at the border
of the protected network, which could be the intersections
upstream of the controlled network.

We consider vehicles entering the network if they pass
the gating intersections from outside and getting out of
the network if they pass the gating intersections to the
destination. The loop detectors have been installed at gating
intersections to collect the number of vehicles getting in/out
of the network.

Nine-hour simulation with time-dependent demand is
carried out to test the performance of the proposed feedback
control logic. The traffic demand on each entry lane of the
boundary intersections is evenly varied from0 to 900 vehicles
in one cycle of 30 minutes. The traffic demand on each
internal entrance is evenly varied from 0 to 450 vehicles in
one cycle of 30 minutes. The inflow, outflow, and number of
vehicles in the network are collected every 120 s.

3.2.Macroscopic Fundamental Diagrams. Through the timely
data fromdetectors, we can get theMFDof the test areawhich
reflects the relation of the outflow and vehicle accumulation
in the network. The MFD’s 𝑦-axis represents the number of
vehicles leaving the test area per control cycle (outflow), while
the 𝑥-axis represents the number of vehicles in the test area
(accumulation). The outflow and the vehicle accumulation
in the network are obtained from the (emulated) loop
measurements via the following equations:

Outflow (𝑡) = ∑
𝑖

𝑞
𝑖,out (𝑡) ,

accumulation = ∑
𝑖

∑

𝑡

(𝑞
𝑖,in (𝑡) − 𝑞𝑖,out (𝑡)) ,

(15)

where 𝑞
𝑖,out(𝑡) is the number of vehicles leaving the network

from intersection 𝑖 at time 𝑡; 𝑞
𝑖,in(𝑡) is the number of vehicles

getting in the network from intersection 𝑖 at time 𝑡. Then we
get the MFD of the test network as shown in Figure 3.

In Figure 3, at the beginning of simulation, the out-
flow per control cycle increases with the increase of the
number of vehicles in the test area (accumulation); when
the accumulation is around 800 (veh) and outflow around
225 (veh/cycle), the outflow does not increase with the
increase of the accumulation; it is in a relatively steady
state, while the outflow will decrease with the increase of
the accumulation steadily until the outflow is 0 (veh/cycle)
and the accumulation is 2500 (veh). Although there is a
fluctuation when the accumulation is around 1200 (veh), it
is not unstable. Hence the test area will operate at optimal
status when the accumulation is around 800 (veh) and the
outflow around 225 (veh/cycle), and this is our optimal state
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Figure 3: The MFD of the test area.

Accumulation (veh)

O
ut

flo
w

 (v
eh

/c
yc

le
)

300

250

200

150

100

50

0
0 500 1000 1500 2000 2500 3000

MFD

Fixed-time
Classical actuated control

Figure 4: Influence factors of MFD.

which ought to be reached by the proposed feedback control
method.

3.3. Experiment Design. In order to test the feedback gating
control and explore the influence of different control strategy
of intersection in the test area, the following two cases are
considered.

Case 1 (fixed-time control). The control plans are optimized
by Synchro.

Case 2 (classical actuated control). The classical control plans
illustrated in text book [22] are used.

As shown in Figure 4, different control strategies have
different influence on MFD. Generally speaking, comparing
with the MFD of fixed-time, actuated control improves the
maximum outflow slightly. The maximum outflow changes
from 250 (veh/cycle) to 280 (veh/cycle) while the accumula-
tion in network remains the same.
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Figure 5: The occupation of uncontrolled/controlled during the simulation.

4. Simulation Results

4.1. Network andGating Intersection PerformanceAnalysis. In
order to reveal the evolution process of the testing network
without and with feedback gating control under fixed-time
and classical actuated control cases, the occupation of the
network is extracted as shown in Figure 5, and the total
number of inflows, the queue length, and delay at gating
intersection are shown in Figures 6(a)–6(f).

In Figure 5, we choose three periods of simulation to
analyze the occupancy of network: the beginning of simu-
lation, the middle of simulation, and the end of simulation
time. The yellow line represents the roads in testing net-
work.

As shown in Figures 5(a), 5(c), 5(e), 5(b), 5(d), and 5(f),
the occupation of the network without control increases
as time goes by while occupation of the network under
control does not change significantly. Comparing Figures
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8 Mathematical Problems in Engineering

Accumulation (veh)

O
ut

flo
w

 (v
eh

/c
yc

le
)

300

250

200

150

100

50

0
0 500 1000 1500 2000 2500 3000

Control
Uncontrol

(a) Fixed-time intersection in test area

300

250

200

150

100

50

0
0 500 1000 1500 2000 2500 3000

Accumulation (veh)

O
ut

flo
w

 (v
eh

/c
yc

le
)

Control
Uncontrol

(b) Actuated control intersection in test area

Figure 7: The MFD of two situations.

Table 6: The index of the test area under two situations.

Index Fixed-time intersection in test area Actuated control intersection in test area
Control Without Control Optimized proportion Control Without control Optimized proportion

Average delay time
per vehicle (s) 923 3704 75% 928 3767 75%

Total delay time (h) 13756 26966 49% 13698 26881 49%
Number of vehicles
that have left the
network

50211 20318 147% 49711 19874 150%

Total travel time (h) 18985 29167 35% 18873 29038 35%

5(a) and 5(b), the occupation is the same for both situations
which means that at the beginning of simulation the network
does not have difference under controlled and uncontrolled
condition.The obvious differences shown in Figures 5(c) and
5(d) reflect that the test network without control becomes
congested in some parts while this phenomenon does not
appear in controlled condition since its occupation is still
low. As time goes by, congestion in the test network without
control keeps spreading and almost covers most of the
network. However, congestion does not appear in the test
network under control condition from the very beginning to
the end.

Figures 6(a) and 6(b) show that the total amount of
inflows from each gating intersection under the feedback
control is far more than that under the situation of without
control. Figures 6(c), 6(e), 6(d), and 6(f) reflect the same
tendency of queue length and delay. Hence, the results of
Figure 6 validate that the inflows are properly allocated to all
gating intersections, and the proposed gating control policy
reaches a Pareto improvement since the performance of all
gating intersections is improved in terms of inflow rate, delay,
and queue length.

In order to reveal the average improvements reached by
the proposed feedback gating control policy, four perfor-
mance measures including average delay, total delay, out-
flow, and total travel time are used to further evaluate the
impacts of the proposed feedback control method. As shown
in Table 6, all the performance indexes of network with
control are fully superior to the situation without control.
Moreover, there is no significant difference between fixed-
time control and the actuated control, which demonstrates
that the influence of the control policy implemented in the
intersections within the network on MFD is negligible.

4.2. The Comparing of MFD. The MFDs of the test network
with and without feedback control are presented in Figure 7.
It can be seen that before accumulation arrives at the sweep
spot, the two MFDs under the conditions of control and
uncontrol are the same.With the increasing of accumulation,
the network under the feedback gating control only displays
the left half of the totalMFDand reaches a stabile state around
the optimal state. In contrast, the network without gating
control has a complete MFD and the outflow approaches 0
as the accumulation exceeds the sweet point of the network.
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4.3. The Comparing of Inflow/Outflow/Accumulation. The
impacts of feedback control on inflow rate, outflow rate,
and accumulation of vehicles in the network are presented
in Figure 8. It can be seen from Figures 8(a) and 8(b)
that, at the beginning of simulation, the inflow, outflow, and
accumulation increase as the increase of demand outside
of gating intersection, and there is no difference between
feedback control and no control situations. However, before
the network reaches sweet point, the state of network with
and without feedback control exhibits different features. The
maximum inflow rate under feedback control is around
250 (veh/cycle) while that under no control condition is a
little bit higher, around 300 (veh/cycle). After 13000 s, the
inflow under control is remaining at 200–250 (veh/cycle)
while that under no control situation gradually decreases
to 0 (veh/cycle), and the network finally gets blocked. The
outflow of the network shows similar features as shown in
Figures 8(c) and 8(d).

As shown in Figure 8(c), the vehicles accumulation rate
of the network is the same for both control and uncontrol
situations. After around 15000 s, the differences of vehicle
accumulation rate under two situations becomes significant.
The vehicle accumulation rate gradually turns to be stabilized
at around 800 (veh). In contrast, the vehicle accumulation
rate under no control situation increased rapidly and finally
stabilized at around 2500 (veh), and the network gets blocked
at that time. Moreover, both actuated control and fixed-time
control exhibit similar features. The analysis results validate
that the proposed feedback control performs well in terms
of increasing inflow and outflow of networks and preventing
network congestion.

5. Conclusion

Based on the recently proposed concept of an operational
urban MFD, this paper proposed a feedback gating control
policy which can be used to mitigate network congestion by
adjusting signal timings of gating intersections.The objective
of the feedback gating control model is to maximize the
outflow and distribute the allowed inflows according to
external demand and capacity of each gating intersection. An
example network is used to test the performance of proposed
feedback gating control model. Two types of background sig-
nalization types for the intersections within the test network,
fixed-time and actuated control, are considered. Through
extensive simulation based analysis, this study has reached
the following tentative conclusions:

(1) The proposed feedback gating control model can
reach a Pareto improvement since the performance of
both gating intersections and the whole network are
improved.

(2) Under the feedback gating control, the inflows and
outflows can be stabilized at a very high level instead
of decreasing all the way to 0 as the increase of
external demand.

(3) Compared with no control case, especially under
heavy demand situations, the delay and queue length

at all gating intersections are decreased dramatically.
Moreover, the total inflows are distributed among
all gating intersections properly. In this sense, the
proposed approach reaches another Pareto improve-
ment in terms of balancing performance of gating
intersections.

Note that this paper has presented preliminary evaluation
results for the proposed model and only one small network
is used for testing. More extensive numerical experiments or
simulation tests will be conducted to assess the effectiveness
of the proposed model under various traffic demand patterns
and network geometry configurations. Another possible
extension to this study is to study a more comprehensive
control policy for a network with multiple subnetworks.

The Variables and Their Definitions

𝑁(𝑡): The number of vehicles in the network at
time 𝑡 (veh)

𝑄(𝑡): The number of vehicles inflowing the
network from controlled intersection at
time 𝑡 (veh)

𝑞
𝑜𝑖
(𝑡) : The number of vehicles inflowing the

network from uncontrolled intersection at
time 𝑡 (veh)

𝑞out(𝑡): The number of vehicles outflowing the
network at time 𝑡 (veh)

𝐺(𝑁(𝑡)): The calculating formulae of optimum
curve regression model of MFD

𝑁: The optimal number of vehicles in the
network (veh)

𝑞out: The maximum number of vehicles
outflowing the network (veh)

𝑄: The maximum number of vehicles
inflowing the network from controlled
intersection (veh)

𝑞
𝑜𝑖
: The maximum number of vehicles

outflowing the network from controlled
intersection (veh)

Δ𝑄(𝑡): The increment number of vehicles
inflowing the network from controlled
intersection at time 𝑡 (veh)

Δ𝑞
𝑜𝑖
(𝑡): The increment number of vehicles

inflowing the network from uncontrolled
intersection at time 𝑡 (veh)

Δ𝑞out(𝑡): The increment number of vehicles
outflowing the network at time 𝑡 (veh)

Δ𝑁(𝑡): The increment number of vehicles in the
network at time 𝑡 (veh)

𝑇: The cycle of controlled intersection (s)
𝐾
𝐼
: Integral gains of the feedback control

𝛼
𝑖
: The distribution ratio of the number of

vehicles inflowing the network from
controlled intersection at time 𝑡

𝑞
𝑖
(𝑡): The demand of controlled intersection 𝑖 at

time 𝑡 (veh)
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Figure 8: The comparing of under control and without control situations.
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𝑞
𝑖,in(𝑡): The number of vehicles allowed to inflow

to the network from controlled
intersection 𝑖 at time 𝑡 (veh)

𝑞
𝑖,out(𝑡): The number of vehicles allowed to outflow

to the network from intersection 𝑖 at time 𝑡
(veh)

𝑆
𝑖
: The capacity of intersection 𝑖 under the

maximum green time (veh/cycle)
𝑆
𝑖
(𝑡): The capacity of intersection 𝑖 at time 𝑡

(veh/cycle)
𝑡
𝑖
(𝑡): The green time of intersection 𝑖 at time 𝑡

(s)
𝑡
𝑔,max: The maximum green time (s)
𝑡
𝑔,min: The minimum green time (s)
𝐾
𝑃
: Proportional gains of the feedback control.
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Autonomous vehicles need to perform social accepted behaviors in complex urban scenarios including human-driven vehicles
with uncertain intentions. This leads to many difficult decision-making problems, such as deciding a lane change maneuver
and generating policies to pass through intersections. In this paper, we propose an intention-aware decision-making algorithm
to solve this challenging problem in an uncontrolled intersection scenario. In order to consider uncertain intentions, we first
develop a continuous hidden Markov model to predict both the high-level motion intention (e.g., turn right, turn left, and go
straight) and the low level interaction intentions (e.g., yield status for related vehicles).Then a partially observable Markov decision
process (POMDP) is built to model the general decision-making framework. Due to the difficulty in solving POMDP, we use
proper assumptions and approximations to simplify this problem. A human-like policy generation mechanism is used to generate
the possible candidates. Human-driven vehicles’ future motion model is proposed to be applied in state transition process and
the intention is updated during each prediction time step. The reward function, which considers the driving safety, traffic laws,
time efficiency, and so forth, is designed to calculate the optimal policy. Finally, our method is evaluated in simulation with
PreScan software and a driving simulator. The experiments show that our method could lead autonomous vehicle to pass through
uncontrolled intersections safely and efficiently.

1. Introduction

Autonomous driving technology has developed rapidly in the
last decade. In DARPA Urban Challenge [1], autonomous
vehicles showed their abilities for interacting in some typical
scenarios such as Tee intersections and lane driving. In
2011, Google released its autonomous driving platforms.
Over 10,000 miles of autonomous driving for each vehicle
was completed under various traffic conditions [2]. Besides,
many big automobile companies also plan to launch their
autonomous driving product in the next several years. With
these significant progresses, autonomous vehicles have shown
their potential to reduce the number of traffic accidents and
solve the problem of traffic congestions.

One key challenge for autonomous vehicles driven in the
real world is how to deal with the uncertainties, such as inac-
curacy perception and unclear motion intentions. With the
development of intelligent transportation system (ITS), the

perception uncertainty could be solved through the vehicle2X
technology and the interactions between autonomous vehi-
cles can be solved by centralized or decentralized cooperative
control algorithms. However, human-driven vehicles will still
be predominance in a short time and the uncertainties of
their driving intentions will still be retained due to the lack
of “intention sensor.” Human drivers anticipate potential
conflicts, continuously make decisions, and adjust their
driving behaviors which are often not rational. Therefore,
autonomous vehicles need to understand human drivers’
driving intentions and choose proper actions to behave
cooperatively.

In this paper, we focus on solving this problem in an
uncontrolled intersection scenario. The uncontrolled inter-
section is a complex scenario with high accident rate. In US,
stop signs can be used to normalize the vehicles’ passing
sequence. However, this kind of signs is rarely used in China
and the right first traffic laws are often broken by some
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Figure 1: Amotivation example. Autonomous vehicle B is going straight, while human-driven vehicle A has three potential driving directions:
going straight, turning right, or turning left. If vehicle A turns right, it will not affect the normal driving of autonomous vehicle B. But the
other maneuvers including turning left and going straight will lead to a passing sequence problem. Besides, if they have potential conflict,
autonomous vehicle B will simulate the trajectories of vehicle A in a prediction horizon and gives the best actions in the current scenario.The
vehicles drawn by dash lines are the future prediction positions. The red dash lines are the virtual lane assumption used in this paper, which
means that the vehicles are considered to be driven inside the lane. The dark blue area is the potential collision region for these two cars.

aggressive drivers. Perception failures, misunderstandings,
and wrong decisions are likely to be performed by human
drivers. In such cases, even with stop signs, the “first come,
first served” rule is likely to be broken. Besides, human
driving behaviors are likely to change as time goes on. With
these uncertain situations, specific layout, and the traffic
rules, when autonomous vehicles approach an intersection,
they should have potential ability to recognize the behavior
of other vehicles and give a suitable corresponding behavior
considering future evolution of the traffic scenario (see
Figure 1).

With these requirements, we propose an intention-aware
decision-making algorithm for autonomous driving in an
uncontrolled intersection in this paper. Specifically, we first
use easily observed features (e.g., velocity and position) and
continuous hidden Markov model (HMM) [3] to build the
intention prediction model, which outputs the lateral inten-
tions (e.g., turn right, turn left, and go straight) for human-
driven vehicles and longitudinal behavior (e.g., the yield-
ing status) for related vehicles. Then, a generative partially
observable Markov decision process (POMDP) framework
is built to model the autonomous driving decision-making
process. This framework is able to deal with the uncertain-
ties in the environment, including human-driven vehicles’
driving intentions. However, it is intractable to compute the
optimal policy for general POMDP due to its complexity.
We make reasonable approximations and assumptions to
solve this problem in a low computational way. A human-
like policy generation mechanism is used to compute the
potential policy set. A scenario predictionmechanism is used
to simulate the future actions of human-driven vehicles based
on their lateral and longitudinal intentions and the proper
reward functions are designed to evaluate each strategy.
Traffic time, safety, and laws are all considered to get the
final reward equations. The proposed method has been well

evaluated during simulation. The main contributions of this
paper are as follows:

(i) Modeling a generative autonomous driving decision-
making framework considering uncertainties (e.g.,
human driver’s intention) in the environment.

(ii) Building intention prediction model using easily
observed parameters (e.g., velocity and position)
for recognizing the realistic lateral and longitudinal
behaviors of human-driven vehicles.

(iii) Using reasonable approximations and assumption to
build an efficient solver based on the specific layout in
an uncontrolled intersection area.

The structure of this paper is as follows. Section 2 reviews
the related work and two-layer HMM-based intention pre-
diction algorithm is discussed in Section 3. Section 4 models
general autonomous driving decision-making process in a
POMDP, while the approximations and the simplified solver
are described in Section 5. In Section 6, we evaluate our
algorithm in a simulated uncontrolled intersection scenario
with PreScan software and a driver simulator. Finally, the
conclusion and future work are discussed in Section 7.

2. Related Work

The decision-making module is one of the most impor-
tant components of autonomous vehicles, connecting envi-
ronment perception and vehicle control. Thus, numerous
research works are performed to handle autonomous driv-
ing decision-making problem in the last decade. The most
common method is to manually define specific driving
rules corresponding to situations. Both finite state machines
(FSMs) and hierarchical state machines (HSMs) are used
to evaluate situations and decide in their framework [4–
6]. In DARPA Urban Challenge (DUC), the winner Boss



Mathematical Problems in Engineering 3

used a rule-based behavior generation mechanism to obey
the predefined driving rules based on the obstacle vehicles’
metrics [1, 6]. Boss was able to check vehicle’s acceleration
abilities and the spaces to decide whether merging into a new
lane or passing intersections is safe. Similarly, the decision-
making system of “Junior” [7], ranking second in DUC, was
based on a HSM with manually defined 13 states. Due to the
advantages including implementing simply and traceability,
this framework is widely used in many autonomous driving
platforms. However, these approaches always use constant
velocity assumptions and lack considering surrounding vehi-
cles future reactions to host vehicle’s actions. Without this
ability, the driving decisions could have potential risks [8].

In order to consider the evolution of future scenario, the
planning and utility-based approaches have been proposed
for decision-making. Bahram et al. proposed a prediction
based reactive strategy to generate autonomous driving
strategies [9]. A Bayesian classifier is used to predict the
future motion of obstacle vehicles and a tree-based searching
mechanism is designed to find the optimal driving strategy
using multilevel cost functions. However, the surrounding
vehicles’ reactions to autonomous vehicles’ actions are not
considered in their framework.Wei et al. proposed a compre-
hensive approach for autonomous driver model by emulating
human driving behavior [10]. The human-driven vehicles are
assumed to follow a proper social behavior model and the
best velocity profiles are generated in autonomous freeway
driving applications. Nonetheless, their method does not
consider the motion intention of human-driven vehicles and
only targets in-lane driving. In their subsequent work, Wei
et al. modeled traffic interactions and realized autonomous
vehicle social behavior in highway entrance ramp [11]. The
human-driven vehicles’ motion intentions are modeled by
a Bayesian model and the human-driven vehicles’ future
reactions are introduced, which is based on the yielding/not-
yielding intentions at the first prediction step. Autonomous
vehicles could perform social cooperative behavior using
their framework.However, they do not consider the intention
uncertainty over prediction time step.

POMDPs provide a mathematical framework for solv-
ing the decision-making problem with uncertainties. Bai et
al. proposed an intention-aware approach for autonomous
driving in scenarios with many pedestrians (e.g., in campus)
[12]. In their framework, the hybrid 𝐴∗ algorithm is used
to generate global path, while a POMDP planner is used
to control the velocity of the autonomous vehicle solving
by an online POMDP solver DESPOT [13]. Brechtel et al.
presented a probabilistic decision-making algorithm using
continuous POMDP [14]. They focus on dealing with the
uncertainties of incomplete and inaccurate perception in the
intersection area, while our goal is to deal with the uncertain
intentions of human-driven vehicles. However, the online
POMDP solver always needs large computation resource and
consumes much time [15, 16], which limits its use in real
world autonomous driving platform. Ulbrich and Maurer
designed a two-step decision-making algorithm to reduce
the complexity of the POMDP in lane change scenario [17].
Eight POMDP states are manually defined to simplify the
problem in their framework. Cunningham et al. proposed a

multipolicy decision-making method in lane changing and
merging scenarios [18]. POMDPs are used to model the
decision-making problem in their paper, while multivehicle
simulation mechanism is used to generate the optimal high-
level policy for autonomous vehicle to execute. However, the
motion intentions are not considered.

Overall, the autonomous driving decision-making prob-
lem with uncertain driving intention is still a challenging
problem. It is necessary to build an effective behavior predic-
tion model for human-driven vehicles. Besides, it is essential
to incorporate human-driven vehicles’ intentions and behav-
iors into autonomous vehicle decision-making system and
generate suitable actions to ensure autonomous vehicles drive
safely and efficiently. This work addresses this problem by
first building aHMM-based intention predictionmodel, then
modeling human-driven vehicle’s intentions in a POMDP
framework, and finally solving it in an approximate method.

3. HMM-Based Intention Prediction

In order to pass through an uncontrolled intersection,
autonomous vehicles should have the ability to predict the
driving intentions of human-driven vehicles. Estimating
driver’s behavior is very difficult, because the state of a vehicle
driver is in some high-dimensional feature space. Instead of
using driver related features (e.g., gas pedal, brake pedal, and
drivers’ vision), easily observed parameters are used to build
the intention prediction model in this paper.

The vehicle motion intention 𝐼 considered in this
paper is divided into two aspects, lateral intention 𝐼lat ∈

{𝐼TR, 𝐼TL, 𝐼GS, 𝐼S} (i.e., turn right, turn left, go straight, and
stop) and longitudinal intention 𝐼lon ∈ {𝐼Yield, 𝐼𝑁Yield}. The
lateral intention is a high-level driving maneuver, which is
determined by human drivers’ long term decision-making
process. This intention is not always changed in the driving
process and determines the future trajectory of human-
driven vehicles. In particular, the intention of stop is treated
as a lateral intention in our model because it can be predicted
only using data from human-driven vehicle itself. However,
the longitudinal intention is a cooperative behavior only
occurring when it interacts with other vehicles. We will
first describe the HMM and then formulize our intention
prediction model in this section.

3.1. HMM. A HMM consists of a set of 𝑁 finite “hidden”
states and a set of𝑀 observable symbols per state. The state
transition probabilities are defined as Α = {𝑎

𝑖𝑗
}, where

𝑎
𝑖𝑗
= 𝑃 [𝑞

𝑡+1
= 𝑗 | 𝑞

𝑡
= 𝑖] , 1 ≤ 𝑖, 𝑗 ≤ 𝑁. (1)

The initial state distribution is denoted as 𝜋 = {𝜋
𝑖
}, where

𝜋
𝑖
= 𝑃 [𝑞

1
= 𝑖] , 1 ≤ 𝑖 ≤ 𝑁. (2)

Because the observation symbols are continuous param-
eters, we use Gaussian Mixture Model (GMM) [19] to
represent their probability distribution functions (pdf):

𝑏
𝑗
(o) =

𝑀

∑

𝑘=1

𝑐
𝑗𝑘
N (o | 𝜇

𝑗𝑘
, Σ
𝑗𝑘
) , 1 ≤ 𝑗 ≤ 𝑁, (3)
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where 𝑐
𝑗𝑘

represents the mixture coefficient in the 𝑗th state
for the 𝑘th mixture. N is the pdf of a Gaussian distribution
with mean 𝜇 and covariance Σmeasured from observation o.
Mixture coefficient 𝑐 satisfies the following constraints:

𝑀

∑

𝑘=1

𝑐
𝑗𝑘
= 1, (4)

where 𝑐
𝑗𝑘
> 0, 1 ≤ 𝑗 ≤ 𝑁, 1 ≤ 𝑘 ≤ 𝑀.

And

∫

+∞

−∞

𝑏
𝑗
(o) 𝑑o = 1, 1 ≤ 𝑗 ≤ 𝑁. (5)

Then a HMM could be completely defined by hidden
states𝑁 and the probability tuples 𝜆 = (𝜋, 𝐴, 𝐶, 𝜇, Σ).

In the training process, we use the Baum-Welch method
[20] to estimate model parameters for different driver inten-
tion 𝐼. Once themodel parameters corresponding to different
driver intention have been trained, we can perform the
driver’s intention estimation in the recognition process. The
prediction process for lateral intentions can be seen in
Figure 2.

3.2. HMM-Based Intention Prediction Process. Given a con-
tinuous HMM, the intention prediction process is divided
into two steps. The first step focused on the lateral intention.
The training inputs of each vehicle’s lateral intention model
in time 𝑡 are defined as 𝐵lateral = {𝐿, V, 𝑎, yaw}, where 𝐿 is
the distance to the intersection, V is the longitudinal velocity,
𝑎 is the longitudinal acceleration, and yaw is the yaw rate,
while the output of this model is the motion intentions 𝐼lat ∈
{𝐼TR, 𝐼TL, 𝐼GS, 𝐼S}. The corresponding HMMs can be trained,
including 𝜆TR, 𝜆TL, 𝜆GS, and 𝜆𝑆.

The next step is about longitudinal intention. This prob-
ability could be decomposed based on the total probability
formula:

𝑃 (𝐼Yield | 𝐵) = ∑𝑃 (𝐼Yield | 𝐼lat, 𝐵) 𝑃 (𝐼lat | 𝐵)

= 𝑃 (𝐼Yield | 𝐼TR, 𝐵) 𝑃 (𝐼TR | 𝐵)

+ 𝑃 (𝐼Yield | 𝐼TL, 𝐵) 𝑃 (𝐼TL)

+ 𝑃 (𝐼Yield | 𝐼GS, 𝐵) 𝑃 (𝐼GS | 𝐵)

+ 𝑃 (𝐼Yield | 𝐼S, 𝐵) 𝑃 (𝐼S | 𝐵) ,

(6)

where 𝐵 is the behavior data including 𝐵lateral and 𝐵lon.
In this process, we assume that the lateral behavior 𝐼lat is

predicted correctly by a deterministic HMM in the first step,
and therefore 𝐼lat is determined by the lateral prediction result
𝐼latPredict, where 𝑃(𝐼lat | 𝐵, 𝐼lat = 𝐼latPredict) = 1 and 𝑃(𝐼lat | 𝐵,
𝐼lat! = 𝐼latPredict) = 0. And (6) is reformulated by

𝑃 (𝐼Yield | 𝐵) = 𝑃 (𝐼Yield | 𝐵, 𝐼latPredict) 𝑃 (𝐼latPredict | 𝐵)

= 𝑃 (𝐼Yield | 𝐵, 𝐼latPredict) .
(7)

The problem is changed to model 𝑃(𝐼Yield | 𝐵, 𝐼latPredict).
The features used in longitudinal intention prediction are

𝐵lon = {ΔV, Δ𝑎, ΔDTC}, where ΔV = Vsocial − Vhost, Δ𝑎 =

𝑎social − 𝑎host, and ΔDTC = DTCsocial −DTChost. DTC means
the distance to the potential collision area. The output of
the longitudinal intention prediction model is longitudinal
motion intention 𝐼lon ∈ {𝐼Yield, 𝐼𝑁Yield}.

Instead of building a generative model, we use a deter-
ministic approach to restrict 𝑃(𝐼Yield | 𝐵, 𝐼latPredict) as 0 or
1. Thus, two types of HMMs named 𝜆

𝑌,𝐼lat
, 𝜆
𝑁,𝐼lat

are trained
where 𝐼lat ∈ {𝐼TR, 𝐼TL, 𝐼GS, 𝐼S}. Two test examples for lateral
and longitudinal intention prediction are shown in Figures
3 and 4. Through these two figures, we can find that our
approach can recognize human-driven vehicle’s lateral and
longitudinal intention successfully.

4. Modeling Autonomous Driving
Decision-Making in a POMDP Framework

For the decision-making process, the key problem is how
to design a policy to perform the optimal actions with
uncertainties. This needs to not only obtain traffic laws
but also consider the driving uncertainties of human-driven
vehicles. Facing potential conflicts, human-driven vehicles
have uncertain probabilities to yield autonomous vehicles and
some aggressive drivers may violate the traffic laws. Such
elements should be implemented into a powerful decision-
making framework. As a result, we model autonomous
driving decision-making problem in a general POMDP
framework in this section.

4.1. POMDP Preliminaries. A POMDP model can be for-
mulized as a tuple{S,A, 𝑇,Z, 𝑂, 𝑅, 𝛾}, where S is a set
of states, A is the action space, and Z denotes a set of
observations. The conditional function 𝑇(𝑠, 𝑎, 𝑠) = Pr(𝑠 |
𝑠, 𝑎) models transition probabilities to state 𝑠 ∈ S, when
the system takes an action 𝑎 ∈ A in the state 𝑠 ∈ S. The
observation function 𝑂(𝑧, 𝑠, 𝑎) = Pr(𝑧 | 𝑠



, 𝑎) models the
probability of observing 𝑧 ∈ Z, when an action 𝑎 ∈ A is
taken and the end state is 𝑠 ∈ S. The reward function 𝑅(𝑠, 𝑎)
calculates an immediate reward when taking an action 𝑎 in
state 𝑠. 𝛾 ∈ [0, 1] is the discount factor in order to balance the
immediate and the future rewards.

Because the system contains partially observed state such
as intentions, a belief 𝑏 ∈ B is maintained. A belief update
function 𝜏 is defined as 𝑏 = 𝜏(𝑏, 𝑎, 𝑧). If the agent takes action
𝑎 and gets observation 𝑧, the new belief 𝑏 is obtained through
the Bayes’ rule:

𝑏


(𝑠


) = 𝜂𝑂 (𝑠


, 𝑎, 𝑧)∑

𝑠∈𝑆

𝑇 (𝑠, 𝑎, 𝑠


) 𝑏 (𝑠) , (8)

where 𝜂 = 1/∑
𝑠

∈𝑆
𝑂(𝑠


, 𝑎, 𝑧)∑
𝑠∈𝑆
𝑇(𝑠, 𝑎, 𝑠



)𝑏(𝑠) is a normal-
izing constant.

A key concept in POMDP planning is a policy, a mapping
𝜋 that specifies the action 𝑎 = 𝜋(𝑏) at belief 𝑏. To solve
the POMDP, an optimal policy 𝜋∗ should be designed to
maximize the total reward:

𝜋
∗

= argmax
𝜋

(𝐸(

∞

∑

𝑡=0

𝛾
𝑡

𝑅 (𝑠
𝑡
, 𝜋 (𝑏
𝑡
)) | 𝑏
0
, 𝜋)) , (9)

where 𝑏
0
is marked as the initial belief.
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arg max P(O | 𝜆i)
i

Figure 2: Prediction process for HMM.The observed sequence will be evaluated by four HMMs. Forward algorithm is used to calculate the
conditional probabilities and the intention corresponding to the largest value will be considered as the vehicle’s intention.
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Figure 3: Lateral intention prediction example. The true intention of human-driven vehicle is to turn left in this scenario. In the first figure,
the value 1 of the 𝑦 label means turn left, 2 means turn right, 3 represents go straight, and 4 corresponds to stop.

4.2. State Space. Because of the Markov property, sufficient
information should be contained in the state space S for
decision-making process [14]. The state space includes the
vehicle pose [𝑥, 𝑦, 𝜃], velocity V, the average yaw rate yawave,
and acceleration 𝑎ave in the last planning period for all
the vehicles. For the human-driven vehicles, the lateral and
longitudinal intentions [𝐼lat, 𝐼lon] also need to be contained
for state transition modeling. However, the road context
knowledge is static reference information so that it will be not
added to the state space.

The joint state 𝑠 ∈ S could be denoted as 𝑠 = [𝑠host, 𝑠1,

𝑠
2
, . . . , 𝑠

𝑁
]
𝑇, where 𝑠host is the state of host vehicle (auto-

nomous vehicle), 𝑠
𝑖
, 𝑖 ∈ {1, 2, 3, . . . , 𝑁}, is the state of

human-driven vehicles, and 𝑁 is the number of human-
driven vehicles involved. Let us define metric state 𝑥 =

[𝑥, 𝑦, 𝜃, V, 𝑎ave, yawave]
𝑇, including the vehicle position, head-

ing, velocity, acceleration, and yaw rate.Thus, the state of host
vehicle can be defined as 𝑠host = 𝑥host, while the human-
driven vehicle state 𝑠

𝑖
is 𝑠
𝑖
= [𝑥

𝑖
, 𝐼lat,𝑖, 𝐼lon,𝑖]

𝑇. With the
advanced perception system and V2V communication tech-
nology, we assume that the metric state 𝑥 could be observed.
Because the sensor noise is small and hardly affects decision-
making process, we do not model observation noise for the
metric state. However, the intention state cannot be directly
observed, so it is the partially observable variables in our
paper. The intention state should be inferred from obser-
vation data and predictive model over time.

4.3. Action Space. In our autonomous vehicle system, the
decision-making system is used to select the suitable tactical
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Figure 4: One example of predicting longitudinal intentions. This example is based on the scenario of Figure 1 and two vehicles both go
straight.The value 1 of 𝑦-axis in the first figure denotes the intention of yielding, while 2 represents not yielding. In the first 2.8 s, the intention
is yielding. After that, due to the acceleration action and less relative DTC, autonomous vehicle could understand human-driven vehicle’s
not-yielding intention.

maneuvers. Specifically, in the intersection area autonomous
vehicles should follow a global reference path generated by
path planning module. The decision-making module only
needs to generate acceleration/deceleration commands to the
control layer. As the reference path may not be straight, the
steering control module can adjust the front wheel angle
to follow the reference path. Therefore, the action space A
could be defined as a discrete set A = [acc, dec, con], which
contains commands including acceleration, deceleration, and
maintaining current velocity.

4.4. Observation Space. Similar to the joint state space, the
observation 𝑧 is denoted as 𝑧 = [𝑧host, 𝑧1, 𝑧2, . . . , 𝑧𝑁]

𝑇, where
𝑧host and 𝑧𝑖 are the host vehicle and human-driven vehicle’s
observations, respectively. The acceleration and yaw rate can
be approximately calculated by speed and heading in the
consecutive states.

4.5. State Transition Model. In state transition process, we
need to model transition probability Pr(𝑠 | 𝑠, 𝑎). This
probability is determined by each targeted element in the
scenario. So the transition model can be calculated by the
following probabilistic equation:

Pr (𝑠 | 𝑠, 𝑎) = Pr (𝑠host | 𝑠host, 𝑎host)
𝑁

∏

𝑖=1

Pr (𝑠
𝑖
| 𝑠
𝑖
) . (10)

In the decision-making layer, we do not need to consider
complex vehicle dynamic model. Thus, the host vehicle’s
motion Pr(𝑠host | 𝑠host, 𝑎host) can be simply represented by the
following equations given action 𝑎:

𝑥


= 𝑥 + (V +
𝑎Δ𝑡

2
)Δ𝑡 cos (𝜃 + Δ𝜃) ,

𝑦


= 𝑦 + (V +
𝑎Δ𝑡

2
)Δ𝑡 sin (𝜃 + Δ𝜃) ,

𝜃


= 𝜃 + Δ𝜃,

V = V + 𝑎Δ𝑡,

yawave =
Δ𝜃

Δ𝑡
,

𝑎


ave = 𝑎.

(11)

Thus, the key problem is converted to compute Pr(𝑠
𝑖
|

𝑠
𝑖
), the state transition probability of human-driven vehicles.

Based on the total probability formula, this probability can be
factorized as a sum in whole action space:

Pr (𝑠
𝑖
| 𝑠
𝑖
) = ∑

𝑎
𝑖

Pr (𝑠
𝑖
| 𝑠
𝑖
, 𝑎
𝑖
)Pr (𝑎

𝑖
| 𝑠
𝑖
) . (12)

With this equation, we only need to calculate the state
transition probability Pr(𝑠

𝑖
| 𝑠
𝑖
, 𝑎
𝑖
) given a specific action 𝑎

𝑖

and the probability of selecting this action Pr(𝑎
𝑖
| 𝑠
𝑖
) under

current state 𝑠
𝑖
.

Because the human-driven vehicles’ state 𝑠
𝑖
= [𝑥
𝑖
, 𝐼
𝑖
], the

probability Pr(𝑠
𝑖
| 𝑠
𝑖
, 𝑎
𝑖
) can be calculated as

Pr (𝑠
𝑖
| 𝑠
𝑖
, 𝑎
𝑖
) = Pr (𝑥

𝑖
, 𝐼


𝑖
| 𝑥
𝑖
, 𝐼
𝑖
, 𝑎
𝑖
)

= Pr (𝑥
𝑖
| 𝑥
𝑖
, 𝐼
𝑖
, 𝑎
𝑖
)Pr (𝐼

𝑖
| 𝑥


𝑖
, 𝑥
𝑖
, 𝐼
𝑖
, 𝑎
𝑖
) .

(13)

With a certain action 𝑎
𝑖
, Pr(𝑥
𝑖
| 𝑥
𝑖
, 𝐼
𝑖
, 𝑎
𝑖
) is equal to Pr(𝑥

𝑖
|

𝑥
𝑖
, 𝐼lat,𝑖, 𝑎𝑖).The lateral behavior 𝐼lat,𝑖 is considered to be a goal-

directed driving intention which will not be changed in the
driving process. So Pr(𝑥

𝑖
| 𝑥
𝑖
, 𝐼lat,𝑖, 𝑎𝑖) is equal to Pr(𝑥



𝑖
| 𝑥
𝑖
, 𝑎
𝑖
)

given a reference path corresponding to the intention of 𝐼lat,𝑖.
Using (11), Pr(𝑥

𝑖
| 𝑥
𝑖
, 𝑎
𝑖
) can be well solved.

The remaining problem for calculating Pr(𝑠
𝑖
| 𝑠
𝑖
, 𝑎
𝑖
) is

to deal with Pr(𝐼
𝑖
| 𝑥


𝑖
, 𝑥
𝑖
, 𝐼
𝑖
, 𝑎
𝑖
). The lateral intention 𝐼lat,𝑖

is assumed stable through the above explanation. And the
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longitudinal intention 𝐼


lon,𝑖 is assumed to be not updated
in this process. But it will be updated with new inputs in
observation space.

Now Pr(𝑠
𝑖
| 𝑠
𝑖
, 𝑎
𝑖
) is well modeled and the remaining

problem is to compute the probabilities Pr(𝑎
𝑖
| 𝑠
𝑖
) of human-

driven vehicles’ future actions:

Pr (𝑎
𝑖
| 𝑠
𝑖
) = Pr (𝑎

𝑖
| 𝑥
𝑖
, 𝐼
𝑖
)

= ∑

𝑥


host

Pr (𝑎
𝑖
| 𝑥


host, 𝑥𝑖, 𝐼𝑖)Pr (𝑥


host | 𝑥𝑖, 𝐼𝑖) .
(14)

Because 𝑥


host is determined by the designed policy,
Pr(𝑥host | 𝑥𝑖, 𝐼𝑖) could be calculated by (11) given an action
𝑎host. The probability Pr(𝑎

𝑖
| 𝑥


host, 𝑥𝑖, 𝐼𝑖) means the distribu-
tion of human-driven vehicles’ actions given the new state
𝑥


host of host vehicle, the current state of itself, and its
intentions. Instead of building a complex probability model,
we designed a deterministic mechanism to calculate themost
possible action 𝑎

𝑖
given 𝑥host, 𝑥𝑖, and 𝐼𝑖.

In this prediction process, the host vehicle is assumed to
be maintaining the current actions in the next time step and
the action 𝑎

𝑖
will be leading human-driven vehicle passing

through the potential collision area either in advance of host
vehicle under the intention 𝐼

𝑁Yield or behind the host vehicle
under the intention 𝐼Yield to keep a safe distance 𝑑safe. In the
case with the intention of 𝐼

𝑁Yield, we can calculate the low
boundary 𝑎

𝑖,low of 𝑎𝑖 through the above process anddetermine
the upper one using the largest comfort value 𝑎

𝑖,comfort. If
𝑎
𝑖,comfort < 𝑎

𝑖,low, 𝑎𝑖,low will be used as the human-driven
vehicle’s action. If not, we consider the targeted 𝑎

𝑖
following

a normal distribution with mean value 𝜇
𝑎
𝑖

between 𝑎
𝑖,low and

𝑎
𝑖,comfort. To simplify our model, we use the mean value of
these two boundaries to represent human-driven vehicle’s
action 𝑎

𝑖
. Similarly, the case with the intention of 𝐼Yield can

be analyzed in the same process.
After these steps, the transition probability Pr(𝑠 | 𝑠, 𝑎)

is well formulized and the autonomous vehicle could have
the ability to understand the future motion of the scenario
through this model.

4.6. Observation Model. The observation model is built to
simulate the measurement process. The motion intention
is updated in this process. The measurements of human-
driven vehicles are modeled with conditional independent
assumption. Thus, the observation model can be calculated
as

Pr (𝑧 | 𝑎, 𝑠) = Pr (𝑧host | 𝑠


host)
𝑁

∏

𝑖=1

Pr (𝑧
𝑖
| 𝑠


𝑖
) . (15)

The host vehicle’s observation function is denoted as

Pr (𝑧host | 𝑠


host) ∼N (𝑧host | 𝑥


host, Σ𝑧host) . (16)

But in this paper, due to the use of V2V communication
sensor, the observation error almost does not affect the deci-
sion-making result. The variance matrix is set as zero.

The human-driven vehicle’s observation will follow the
vehicle’s motion intentions. Because we do not consider

the observation error, the value in metric state will be the
same as the state transition results. But the longitudinal
intention of human-driven vehicles in the state space will be
updated using the new observations andHMMmentioned in
Section 3. The new observation space will be confirmed with
the above step.

4.7. Reward Function. The candidate policies have to satisfy
several evaluation criterions. Autonomous vehicles should be
driven safely and comfortably. At the same time, they should
follow the traffic rules and reach the destination as soon as
possible. As a result, we design objective function (17) consid-
ering three aspects including safety, time efficiency, and traffic
laws, where 𝜇

1
, 𝜇
2
, and 𝜇

3
are the weight coefficient:

𝑅 (𝑠, 𝑎) = 𝜇
1
𝑅safety (𝑠, 𝑎) + 𝜇2𝑅time (𝑠, 𝑎)

+ 𝜇
3
𝑅law (𝑠, 𝑎) .

(17)

The detailed information will be discussed in the follow-
ing subsections. In addition, the factor of comfort will be con-
sidered and discussed in policy generation part (Section 5.1).

4.7.1. Safety Reward. The safety reward function 𝑅safety(𝑠, 𝑎)
is based on the potential conflict status. In our strategy,
safety reward is defined as a penalty. If there are no potential
conflicts, the safety rewardwill be set as 0. A large penalty will
be assigned due to the risk of collision status.

In an uncontrolled intersection, the four approaching
directions are defined as 𝐴

𝑖
∈ {1, 2, 3, 4} (Figure 5). The

driver’s lateral intentions are defined as 𝐼lat ∈ {𝐼TR, 𝐼TL, 𝐼GS,
𝐼S}. So the driving trajectory for each vehicle in the inter-
section can be generally represented by 𝐴

𝑖
and 𝐼lat,𝑗, and we

marked it as 𝑇
𝐴
𝑖
,𝐼lat,𝑗

, 1 ≤ 𝑖 ≤ 4, 1 ≤ 𝑗 ≤ 4. The function 𝐹 is
used to judge the potential collision status, which is denoted
as

𝐹 (𝑇
𝑥
, 𝑇
𝑦
) =

{

{

{

1, if potential conflict,

0, otherwise,
(18)

where 𝑇
𝑥
and 𝑇

𝑦
are vehicles’ maneuver 𝑇

𝐴
𝑖
,𝐼lat,𝑗

.
𝐹(𝑥, 𝑦) can be calculated through relative direction

between two cars, which is shown in Table 1.
The safety reward is based on the following items:
(i) If 𝐹(𝑥, 𝑦) is equal to 0, then the safety reward is equal

to 0 due to the noncollision status.
(ii) If potential collision occurs, there will be a large

penalty.
(iii) If |TTC

𝑖
− TTChost| < 𝑡threshod, there is a penalty

depending on |TTC
𝑖
− TTChost| and TTChost.

4.7.2. Traffic Law Reward. Autonomous vehicles should fol-
low traffic laws to interactwith human-driven vehicles. Traffic
law is modeled as a function Law(𝑥, 𝑦) for each two vehicles
𝑥 and 𝑦

Law (𝑇
𝑥
, 𝑇
𝑦
) =

{

{

{

1, if 𝑥 is prior,

0, otherwise,
(19)
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Figure 5: One typical scenario for calculating safety reward.

Table 1: Safe condition judgments in the intersection.

Human-driven vehicle Left side Right side Opposite side Same side
Driving direction TL LK TR S TL LK TR S TL LK TR S TL LK TR S

Turn left ‰ ‰ I I ‰ ‰ I I ‰ ‰ ‰ I I I I I
Lane keeping ‰ ‰ I I ‰ ‰ ‰ I ‰ I I I I I I I
Turn right I ‰ I I I I I I ‰ I I I I I I I
Stop I I I I I I I I I I I I I I I I

‰ indicates potential collision. I indicates no potential collision.

where 𝑇
𝑥
and 𝑇

𝑦
are vehicles’ maneuver 𝑇

𝐴
𝑖
,𝑆
𝑗

. This function
Law(𝑇

𝑥
, 𝑇
𝑦
) is formulized as shown in Algorithm 1.

If the behavior will break the law, a large penalty is applied
and the behavior of obeying traffic laws will get a zero reward.

4.7.3. Time Reward. The time cost is based on the time to the
destination for the targeted vehicles in the intersection area:

Costtime =
DTG
Vhost

. (20)

DTG is the distance to the driving goal. In addition, we
also need to consider the speed limit, which is discussed in
policy generation part in Section 5.

5. Approximations on Solving
POMDP Problem

Solving POMDP is quite difficult. The complexity of search-
ing total brief space is O(|A|𝐻|Z|

𝐻

) [12], where 𝐻 is the
prediction horizon. In this paper, we model the intention
recognition process as a deterministic model and use com-
munication sensors to ignore the perception error, and thus
the size of |Z| is reduced to 1 in the simplified problem. To
solve this problem, we first generate the suitable potential
policies according to the property of driving tasks and then

select the reasonable total predicting interval time and total
horizon. After that, the approximate optimal policy can
be calculated through searching all possible policies with
maximum total reward.The policy selection process is shown
in Algorithm 2 and some detailed explanations are discussed
in the subsections.

5.1. Policy Generation. For autonomous driving near inter-
section, the desired velocity curves need to satisfy several
constraints. Firstly, except for emergency braking, the accel-
eration constraints are applied to ensure comfort. Secondly,
the speed limit constraints should be used in this process. We
aim to avoid the acceleration commands when autonomous
vehicle is reaching maximum speed limit. Thirdly, for the
comfort purpose, the acceleration command should not be
always changed. In otherwords, we need tominimize the jerk.

Similar to [11], the candidate policies are divided into
three time segments. The first two segments are like “keep
constant acceleration/deceleration actions,” while keeping
constant velocity in the third segment. We use 𝑡

1
, 𝑡
2
, and 𝑡

3

to represent the time periods of these three segments. To
guarantee comfort, the acceleration is limited to the range
from −4m/s2 to 2m/s2 and we discrete acceleration action
into a multiple of [−0.5, 0.5, 0]. Then, the action space can be
represented by a discretizing acceleration set.Then,we can set
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Law(𝑇
𝑥
, 𝑇
𝑦
) ← 0

𝑡
𝑥
← 𝑑
𝑥2𝐼
/V
𝑥

𝑡
𝑦
← 𝑑
𝑦2𝐼
/V
𝑦

if 𝑡
𝑥
< 𝑡
𝑦
− Δ𝑡, then

Law(𝑇
𝑥
, 𝑇
𝑦
) ← 1

else if |𝑡
𝑥
− 𝑡
𝑦
| < Δ𝑡, then

status← 𝐹(𝑇
𝑥
, 𝑇
𝑦
)

if status = 1, then
if 𝐼lat,𝑥 = lanekeeping and 𝐼lat,𝑦 <> lanekeeping, then
Law(𝑇

𝑥
, 𝑇
𝑦
) ← 1

else if 𝐼lat,𝑥, 𝐼lat,𝑦 = lanekeeping and 𝐴
𝑥
− 𝐴
𝑦
= 1 or −3, then

Law(𝑇
𝑥
, 𝑇
𝑦
) ← 1

else if 𝐼lat,𝑥 = turnleft and 𝐼lat,𝑦 = turnright, then
Law(𝑇

𝑥
, 𝑇
𝑦
) ← 1

end if
end if

end if
return Law(𝑇

𝑥
, 𝑇
𝑦
)

Algorithm 1: Traffic law formulization.

Input:
Predict horizon𝐻, time step Δ𝑡,
Current states: 𝑠host = 𝑥host, 𝑠human = [𝑥human, 𝐼human]

(1) 𝑃 ← genenratepolicyset()
(2) for each 𝜋

𝑘
∈ 𝑃, do

(3) for 𝑖 = 1 to𝐻/Δ𝑡, do
(4) 𝑎host ← 𝜋

𝑘
(𝑖)

(5) 𝑠


host ← updatestate(𝑠host, 𝑎host)
(6) 𝑎human ← predictactions(𝑠host, 𝑠human, 𝐼human)

(7) 𝑥


human ← updatestate(𝑥human, 𝑎human)

(8) 𝐼


human ← updateintention(𝑠host, 𝑥


human)

(9) 𝑠


human ← [𝑥


human, 𝐼


human]

(10) 𝑅(𝑖) = calculatereward(𝑠host, 𝑠


human)

(11) 𝑠host ← 𝑠


host
(12) 𝑠human ← 𝑠



human
(13) end
(14) 𝑅

total
𝑘

← ∑
𝑖
sum(𝑅(𝑖))

(15) end
(16) 𝑘∗ ← argmax

𝑘
(𝑅

total
𝑘

)

(17) 𝜋∗ ← 𝜋
𝑘
∗

(18) return 𝜋∗

Algorithm 2: Policy selection process.

the value of 𝑡
1
, 𝑡
2
, and 𝑡

3
and the prediction period of single

step. An example of policy generation is shown in Figure 6.

5.2. Planning Horizon Selection. After building policy gener-
ation model, the next problem is to select a suitable planning
horizon. Longer horizon can lead to a better solution but con-
suming more computing resources. However, as our purpose

is to deal with the interaction problem in the uncontrolled
intersection, we only need to consider the situation before
autonomous vehicle gets through. In our algorithm,we set the
prediction horizon as 8 seconds. In addition, in the process of
updating the future state of each vehicle using each policy, the
car following mode is used after autonomous vehicle passes
through the intersection area.
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Figure 6: An example of policy generation process. (a) is the generated policies and (b) is the corresponding speed profiles. The interval of
each prediction step is 0.5 s, current speed is 12m/s2, and the speed limit is 20m/s2. The bold black line is one policy. In the first 3 seconds,
autonomous vehicles decelerate in −3.5m/s2, then accelerate at 2m/s2 for 4 seconds, and finally stop in the last one second. In this case, 109
policies were generated, which is suitable for replanning fast.

A
B

Figure 7: Testing scenario. Autonomous vehicle B and human-driven vehicle A are both approaching the uncontrolled intersection. To go
across the intersection successfully, autonomous vehicle should interact with human-driven vehicle.

5.3. Time Step Selection. Another problem is the predic-
tion time step. The intention prediction algorithm and the
POMDP are computed in each step. If the time step is 𝑡step,
the total computation timeswill be𝐻/𝑡step.Thus, smaller time
step leads to more computation time. To solve this problem,
we use a simple adaptive time step calculation mechanism to
give a final value. The time step is selected based on the TTC
of autonomous vehicle. If the host vehicle is far away from the
intersection, we can use a very large time step. But if the TTC
is quite small, the low 𝑡step is applied to ensure safety.

6. Experiment and Results

6.1. Settings. In this paper, we evaluate our approach through
PreScan 7.1.0 [21], a simulation tool for autonomous driving
and connected vehicles. Using this software, we can build the
testing scenarios (Figure 7) and add vehicles with dynamic
model. In order to get a similar scenario considering social

interaction, the driver simulator is added in our experiment
(Figure 8). The human-driven vehicle is driven by several
people during the experiment and the autonomous vehicle
makes decisions based on the human-driven vehicle’s driving
behavior. The reference trajectory for autonomous vehicle
is generated from path planning module and the human-
driven vehicle’s data (e.g., position, velocity, and heading)
are transferred through V2V communication sensor. The
decision-making module sends desired velocity command to
the PID controlled to follow the reference path. All policies in
the experiment part use a planning horizon𝐻 = 8 s, which is
discretized into the time step of 0.5 s.

6.2. Results. It is difficult to compare different approaches
in the same scenario because the environment is dynamic
and not exactly the same. However, we select two typical
situations and special settings to make it possible. The same
initial conditions including position, orientation, and velocity
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Figure 8: Logitech G27 driving simulator.

T = 0, 1, 2, . . . , 6 s T = 5 s

T = 4 s

T = 3 s

T = 2 s

T = 1 s

T = 0 s

T = 6 s

(a)

T = 0, 1, 2, . . . , 9 s

T = 4 s

T = 5 s

T = 6 s
T = 7 s
T = 8 s

T = 9 s

T = 3 s

T = 2 s

T = 1 s

T = 0 s

(b)

Figure 9: The visualized passing sequence. (a) is the result of our approach and (b) represents the result of reactive approach without
considering intention. The black vehicle is an autonomous vehicle, while the red car is the human-driven vehicle. Each vehicle represents
the position in a specific time 𝑇 with an interval of 1 second.

for each vehicle are used in different tests. Besides, two
typical situations, including human-driven vehicle getting
through before or after autonomous vehicle, are compared
in this section. With the same initial state, different reac-
tions will occur based on various methods. We compare
our approach and reactive-based method [6] in this sec-
tion. The key difference for these two methods is that our
approach considers human-driven vehicle’s driving inten-
tion.

The first experiment is that human-driven vehicle tries
to yield autonomous vehicle in the interaction process. The
results are shown in Figures 9 and 10. Firstly, Figure 9 gives
us a visual comparison of the different approaches. From
almost the same initial state (e.g., position and velocity), our
approach could lead to autonomous vehicle passing through
the intersection more quickly and reasonable.

Then, let us look at Figure 10 for detailed explanation.
In the first 1.2 s in Figures 10(a) and 10(c), autonomous
vehicle maintains speed and understands that human-driven
vehicle will not perform yielding actions. Then, autonomous
vehicle gets yielding intention of human-driven vehicle and
understands that human-driven vehicle’s lateral intention
is to go straight. Based on candidate policies, autonomous
vehicle selects acceleration strategy with maximum reward
and finally crosses the intersection. In this process, we can
obviously find that autonomous vehicle understands human-
driven vehicle’s yielding intention. Figure 10(c) is an example
of understand human-driven vehicle’s behavior based on ego
vehicle’s future actions in a specific time. Our strategy pre-
dicts the future actions of human-driven vehicle. Although
the velocity curves after 1 s do not correspond, it does not
affect the performance of our methods. The reason is that
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Figure 10: Case test 1. In this case, human-driven vehicle passes through intersection after autonomous vehicle. (a), (c), and (e) are the
performance of our method, while (b), (d), and (f) are from the strategy without considering the driving intention. (a) and (b) are the velocity
profiles and the corresponding driving intention. For longitudinal intention, label 1 means yielding and label 2 means not yielding. In lateral
intention, 1 means turning left, 2 means turning right, 3 means going straight, and 4 means stop. The intentions in (b) are not used in that
method but for detailed analysis. (c) and (d) are the distance to collision area for autonomous vehicle and human-driven vehicle, respectively.
(e) and (f) are the prediction and true motions of human-driven vehicles in time 1.5 s with a prediction length of 8 s. The red curves in these
subfigures are from autonomous vehicle while blue lines are from human-driven vehicle. The green lines in (e) and (f) are the prediction
velocity curves of human-driven vehicle.
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Figure 11: The visualized passing sequence for the case of human-driven vehicle first getting through. (a) is the result of our approach and
(b) is the reactive-based approach.

we use a deterministic model in the prediction process and
the prediction value is inside two boundaries to ensure safety.
Besides, the whole actions of autonomous vehicle in this
process could also help human-driven vehicle to understand
not-yielding intention of autonomous vehicles. In this case,
cooperative driving behaviors are performed by both vehi-
cles.

However, if the intention is not considered in this process,
we can find the results in Figures 10(b), 10(d), and 10(f).
After 2 s in Figure 10(b), while the human-driven vehicle
gives a yielding intention, autonomous vehicle could not
understand and they find a potential collision based on the
constant velocity assumptions. Then, it decreases the speed
but the human-driven vehicle also slows down. The puzzled
behavior leads both vehicles to slow down near intersection.
Finally, human-driven vehicle stops at the stop line and then
autonomous vehicle could pass the intersection. In this strat-
egy, the human-driven vehicle’s future motion is assumed to
be constant (Figure 10(f)).Without understanding of human-
driven vehicle’s intentions, this strategy can increase conges-
tion problem.

Another experiment is that human-driven vehicle tries to
get through the intersection first. The results are shown in
Figures 11 and 12.This case is quite typical because many traf-
fic accidents in real world are happening in this situation. In
detail, if one vehicle tries to cross an intersection while violat-
ing the law, another vehicle will be in great danger if it does
not understand its behavior. From the visualized perform-
ance in Figure 11, our method is a little more safe than other
approaches as there is nearly collision situation in Figure
11(b). In detail, we can see from Figure 12(a) that our strategy
could perform deceleration actions after we understand the
not-yielding intention in 0.8 s.However, without understand-
ing human-driven vehicle’s motion intention, the response
time has a 1-second delay which may be quite dangerous.

In addition, it is shown that good performance is in the
predictions of human-driven vehicle’s future motion in our
methods (Figure 12(e)).

The results of these two cases demonstrate that our algo-
rithm could deal with typical scenarios and have better per-
formance than traditional reactive controller. Autonomous
vehicle could be driven more safely, fast, and comfortably
through our strategy.

7. Conclusion and Future Work

In this paper, we proposed an autonomous driving decision-
making algorithm considering human-driven vehicle’s uncer-
tain intentions in an uncontrolled intersection. The lat-
eral and longitudinal intentions are recognized by a con-
tinuous HMM. Based on HMM and POMDP, we model
general decision-making process and then use an approxi-
mate approach to solve this complex problem. Finally, we
use PreScan software and a driving simulator to emulate
social interaction process. The experiment results show that
autonomous vehicles with our approach can pass through
uncontrolled intersections more safely and efficiently than
using the strategy without considering human-driven vehi-
cles’ driving intentions.

In the near future, we aim to implement our approach into
a real autonomous vehicle and perform real world experi-
ments. In addition,more precious intention recognition algo-
rithm aims to be figured out. Somemethods like probabilistic
graphic model can be used to get a distribution of each inten-
tion. Finally, designing online POMDP planning algorithms
is also valuable.
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Figure 12: Case test 2. In this case, human-driven vehicle passes through intersection before autonomous vehicle through different strategies.
The definition of each subfigure is the same as in Figure 10.



Mathematical Problems in Engineering 15

Acknowledgments

This study is supported by the National Natural Science
Foundation of China (no. 91420203).

References

[1] C. Urmson, J. Anhalt, D. Bagnell et al., “Autonomous driving in
urban environments: boss and the urban challenge,” Journal of
Field Robotics, vol. 25, no. 8, pp. 425–466, 2008.

[2] J. Markoff, “Google cars drive themselves, in traffic,” New York
Times, vol. 9, 2010.

[3] L. R. Rabiner and B.-H. Juang, “An introduction to hidden
Markov models,” IEEE ASSP Magazine, vol. 3, no. 1, pp. 4–16,
1986.

[4] M. Buehler, K. Iagnemma, and S. Singh, The DARPA Urban
Challenge: Autonomous Vehicles in City Traffic, vol. 56, Springer,
2009.

[5] S. Kammel, J. Ziegler, B. Pitzer et al., “Team AnnieWAY’s auto-
nomous system for the 2007 DARPAUrban Challenge,” Journal
of Field Robotics, vol. 25, no. 9, pp. 615–639, 2008.

[6] C. R. Baker and J. M. Dolan, “Traffic interaction in the urban
challenge: putting boss on its best behavior,” in Proceedings
of the IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS ’08), pp. 1752–1758, IEEE, Nice, France,
September 2008.

[7] M. Montemerlo, J. Becker, S. Shat et al., “Junior: the Stanford
entry in the urban challenge,” Journal of Field Robotics, vol. 25,
no. 9, pp. 569–597, 2008.

[8] L. Fletcher, S. Teller, E. Olson et al., “TheMIT-Cornell collision
and why it happened,” Journal of Field Robotics, vol. 25, no. 10,
pp. 775–807, 2008.

[9] M. Bahram, A. Wolf, M. Aeberhard, and D. Wollherr, “A
prediction-based reactive driving strategy for highly automated
driving function on freeways,” in Proceedings of the 25th IEEE
Intelligent Vehicles Symposium, pp. 400–406, IEEE, Dearborn,
Mich, USA, June 2014.

[10] J. Wei, J. M. Dolan, and B. Litkouhi, “A prediction- and cost
function-based algorithm for robust autonomous freeway driv-
ing,” in Proceedings of the IEEE Intelligent Vehicles Symposium
(IV ’10), pp. 512–517, San Diego, Calif, USA, June 2010.

[11] J. Wei, J. M. Dolan, and B. Litkouhi, “Autonomous vehicle
social behavior for highway entrance ramp management,” in
Proceedings of the IEEE Intelligent Vehicles Symposium (IV ’13),
pp. 201–207, IEEE, Gold Coast, Australia, June 2013.

[12] H. Bai, S. Cai, N. Ye, D. Hsu, and W. S. Lee, “Intention-aware
online POMDP planning for autonomous driving in a crowd,”
in Proceedings of the IEEE International Conference on Robotics
and Automation (ICRA ’15), pp. 454–460, IEEE, Seattle, Wash,
USA, May 2015.

[13] A. Somani, N. Ye, D. Hsu, and W. S. Lee, “Despot: online
pomdp planning with regularization,” in Advances in Neural
Information Processing Systems, pp. 1772–1780, 2013.

[14] S. Brechtel, T. Gindele, and R. Dillmann, “Probabilistic deci-
sion-making under uncertainty for autonomous driving using
continuous POMDPs,” in Proceedings of the 17th IEEE Interna-
tional Conference on Intelligent Transportation Systems (ITSC
’14), pp. 392–399, Qingdao, China, October 2014.

[15] C. H. Papadimitriou and J. N. Tsitsiklis, “The complexity of
Markov decision processes,” Mathematics of Operations Re-
search, vol. 12, no. 3, pp. 441–450, 1987.

[16] O. Madani, S. Hanks, and A. Condon, “On the undecidability
of probabilistic planning and related stochastic optimization
problems,”Artificial Intelligence, vol. 147, no. 1-2, pp. 5–34, 2003.

[17] S. Ulbrich and M. Maurer, “Probabilistic online POMDP deci-
sion making for lane changes in fully automated driving,” in
Proceedings of the 16th International IEEE Conference on Intelli-
gent Transportation Systems (ITSC ’13), pp. 2063–2067, The
Hague, The Netherlands, October 2013.

[18] A. G. Cunningham, E. Galceran, R. M. Eustice, and E. Olson,
“MPDM: multipolicy decision-making in dynamic, uncertain
environments for autonomous driving,” in Proceedings of the
IEEE International Conference on Robotics and Automation
(ICRA ’15), pp. 1670–1677, Seattle, Wash, USA, May 2015.

[19] D. A. Reynolds and R. C. Rose, “Robust text-independent
speaker identification using Gaussian mixture speaker models,”
IEEE Transactions on Speech and Audio Processing, vol. 3, no. 1,
pp. 72–83, 1995.

[20] L. E. Baum and T. Petrie, “Statistical inference for probabilistic
functions of finite state Markov chains,” The Annals of Mathe-
matical Statistics, vol. 37, pp. 1554–1563, 1966.

[21] M. Tideman and M. Van Noort, “A simulation tool suite for
developing connected vehicle systems,” in Proceedings of the
IEEE Intelligent Vehicles Symposium (IEEE IV ’13), pp. 713–718,
Queensland, Australia, June 2013.



Research Article
Evaluation of a Trapezoidal Predictive Controller for
a Four-Wire Active Power Filter for Utility Equipment of
Metro Railway, Power-Land Substations

Sergio Salas-Duarte,1 Ismael Araujo-Vargas,1

Jazmin Ramirez-Hernandez,1 and Marco Rivera2
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The realization of an improved predictive current controller based on a trapezoidal model is described, and the impact of this
technique is assessed on the performance of a 2 kW, 21.6 kHz, four-wire, Active Power Filter for utility equipment of Metro Railway,
Power-Land Substations.The operation of the trapezoidal predictive current controller is contrasted with that of a typical predictive
control technique, based on a single Euler approximation, which has demonstrated generation of high-quality line currents, each
using a 400V DC link to improve the power quality of an unbalanced nonlinear load of Metro Railway. The results show that the
supply current waveforms become virtually sinusoidal waves, reducing the current ripple by 50% and improving its power factor
from 0.8 to 0.989 when the active filter is operated with a 1.6 kW load. The principle of operation of the trapezoidal predictive
controller is analysed together with a description of its practical development, showing experimental results obtained with a 2 kW
prototype.

1. Introduction

The use of Active Power Filters (APFs) in the electrical grid
is critical for on-land transportation applications, such as
Metropolitan Railway Substations, which reduce the flowing
of current harmonics caused by the increased utilization
of nonlinear loads, whilst improving the power quality of
the supply. APFs are an attractive solution to comply with
the national and international power quality standards at
every level of the network infrastructure, [1–3], since high-
performance switching devices appear available in themarket
to develop power converters [4]. In addition, the develop-
ment of fast and versatile microprocessors has facilitated the
implementation of nonlinear control techniques, and thereby,
APFs are becoming accurate power processors that reshape
clean sinusoidal supply currents [5–9].

Four-wire shunt APFs are a commonplace strategy
that exhibit attractive characteristics to inject currents and
reshape the line currents drawn by unbalanced nonlinear
loads, whilst providing a path to cancel the neutral current
by using either an additional switching limb or a split DC link
[10, 11].These circuits typically incur in the use of a power the-
ory to calculate the reference currents [12], such that the filter
may operate as a current amplifier that injects compensating
currents to the grid, causing a complex transistor switching
scheme since the generated filter currents must track the
references. Predictive control is an attractive method for con-
trolling current waveforms in three-phase converters [6, 7,
13–20], since a piecewise linearmodel of the converter is used
together with a cost function to determine an appropriate
converter switching.
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Figure 1: Four-wire shunt active filter and its corresponding control block diagram.

This paper presents the realization and experimental
verification of a trapezoidal predictive current controller for
a four-wire shunt APF that improves the power quality of
unbalanced AC loads in contrast to the typical predictive
Euler control strategy. The trapezoidal strategy relies its
operation on a discrete trapezoidal linear approximation that
more accurately determines the switching of the active filter
for the one-step ahead current sample, such that three signifi-
cant advantages are potentially exhibited: first, the trapezoidal
predictive controller slightly increments the processing time
without affecting the switching of the power converter;
second, in contrast to the typical Euler approximation used
in other works [6, 7, 13–20], the trapezoidalmethod generates
lower AC current ripple; and third, the convergence time and
load operating performance are wider than those obtained
using the typical predictive control strategy, which improves
the reference current tracking and, therefore, the power
quality. Experimental results obtainedwith a 2 kVAprototype
are presented, demonstrating that the trapezoidal predictive
control may accurately compensate the currents drawn by
an unbalanced nonlinear load under static and dynamic
conditions.

2. Four-Wire Shunt Active Filter

2.1. Circuit Description. The four-wire shunt APF is con-
nected in parallel to the unbalanced nonlinear load as shown
at the right-hand side of Figure 1, which consists of a split
DC link formed by 𝐶

1
and 𝐶

2
which refer to the AC supply

neutral node𝑁 to provide a path tomitigate a commonmode
current: a typical three-phase, current-feed active converter,
formed by transistors 𝑄

1
to 𝑄
6
and diodes 𝐷
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–𝐷
6
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line filter inductors 𝐿
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used to generate the filter current
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2.2. Principle of Operation of the Active Filter. The principle
of operation of the APF of Figure 1 may be described using
the control block diagram presented at the left-hand side of
Figure 1. An instantaneous active and reactive power theory,
P-Q theory block in Figure 1 [12], is used to obtain an effective
calculation of the reference currents that the APF may inject
to the supply to instantaneously mitigate the reactive and
distorted power components, drawn by the nonlinear load,
and balance the active power per phase. The P-Q theory uses
the Clarke transformation of the supply voltage and load
current as shown in
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such that the calculation of the active and reactive instanta-
neous powers in the 𝛼𝛽0 coordinate system is obtained as,
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where 𝑝
𝑇
is the real power or internal product of the voltage

and current vectors and 𝑞 is the imaginary vector power or
external product of the voltage and current vectors which
is composed of 𝑞

𝛼
, 𝑞
𝛽
, and 𝑞

0
. Since the load uses a fourth

conductor, namely, the neutral, which is very common in low-
voltage distribution system, the P-Q calculation may include
both zero-sequence voltage and current as shown in (2) and
(3). Therefore, the instantaneous powers defined above may
be combined in a single matrix transformation as shown as
follows:
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which is defined on the 𝛼𝛽0 reference frame. 𝑝
𝑇
and 𝑞 are

instantaneous power signals that have averaged and oscilla-
tory components that may be used to calculate a reference
current vector for the APF control system.The average of 𝑝

𝑇
,

𝑝, corresponds to the energy per time unity that is transferred
from the supply to the load and becomes the power that the
system truly uses [8]. In this way, the ideal condition would
be to remove the oscillatory portion of the real power 𝑝 and
the imaginary power 𝑞 of power drawn by the load, such that
the calculation of the reference currents for compensating
the currents drawn by the load may be given with

[
[

[

𝑖
𝛼ref
∗

𝑖
𝛽ref
∗

𝑖
0ref
∗

]
]

]

=
1

V2
𝛼𝛽𝜃

[
[
[

[

V
𝛼

0 V
𝜃

−V
𝛽

V
𝛽

−V
𝜃

0 V
𝛼

V
𝜃

V
𝛽

−V
𝛼

0

]
]
]

]

[
[
[
[
[

[

�̃�

𝑞
𝛼

∗

𝑞
𝛽

∗

𝑞
0

∗

]
]
]
]
]

]

(5)

which is represented in Figure 1 as the inverse P-Q theory
block, which subtracts 𝑝 from 𝑝 to obtain the oscillatory
component of 𝑝, �̃�. In this fashion, the reference currents of
(5) are used to operate the three-phase converter of Figure 1
as a current amplifier driven by the trapezoidal predictive
current controller block shown at the centre of Figure 1.

2.3. DC-Link Voltage Controller. The APF requires a fixed
DC-link capacitor voltage 𝐸 greater than the peak value of
the line-to-line supply voltage, for instance, 𝐸 = 400V when
a 220V, 60Hz supply is being used. Since the shunt APF
topology is identical to that of an active three-phase rectifier
[14], the circuit boosts the DC-link voltage using an external
voltage control loop that generates a loss power control signal,
𝑝loss, which is added to �̃� to supply energy for the DC-link
capacitor and compensate the power losses of theAPF circuit.
This is shown in the left bottom side of Figure 1, where a linear
control loop calculates 𝑝loss using the error between the 𝐸

reference, 𝐸ref , and the DC-link voltage 𝐸, which is obtained
adding the measured DC-link capacitor voltages, and com-
pensating this error with 𝐻

𝐸
(𝑠).

2.4. DC-Link Capacitor Voltage Balancing Controller. Since
the split DC-link node 𝑁 is used to draw a compensating
current for the neutral wire of the supply, the DC-link
capacitor voltages may become unbalanced due to the flow of
a small DC current. An additional zero-sequence, balancing
current, 𝑖

0bal, is used after the zero-sequence reference current
calculation to overcome a voltage unbalance between the
capacitors of the split DC link [21]. This is shown at the bot-
tom of Figure 1, where again a linear control loop calculates
𝑖
0bal by compensating the error between the DC-link capaci-
tor voltages, Vdif , with 𝐻bal(𝑠).

3. Trapezoidal Predictive Current Controller

3.1. Discrete Linear Model of the APF Converter. A space
vector AC-side model of the APF three-phase converter is
derived calculating the filter inductor voltage vector as shown
in

→V
𝐿𝛼𝛽0

= 𝐿
𝑑
→
𝑖
𝐿𝛼𝛽0

𝑑
𝑡

=
→V
𝑠𝛼𝛽0

−
→V
𝑐𝛼𝛽0

(6)

which may be solved to calculate the line current vector →𝑖
𝐿
as

shown as follows:

→
𝑖
𝐿𝛼𝛽0

(𝑡
1
) =

→
𝑖
𝐿𝛼𝛽0

(𝑡
1
+ 𝑘𝑇) + ∫

𝑡
1
+(𝑘+1)𝑇

𝑡
1
+𝑘𝑇

→V
𝐿𝛼𝛽0

(𝑡) 𝑑𝑡. (7)

A discrete time model of (7) may be obtained by using
the trapezoidal approximation shown in Figure 2, such that
(7) becomes

→
𝑖
𝐿𝛼𝛽0𝑘+1

≅
→
𝑖
𝐿𝛼𝛽0𝑘

+
𝑇
𝑠

2𝐿
[
→V
𝑠𝛼𝛽0𝑘

−
→V
𝑐𝛼𝛽0𝑘

+
→V
𝑠𝛼𝛽0𝑘+1

−
→V
𝑐𝛼𝛽0𝑘+1

] ,

(8)
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→�s𝛼𝛽0(t) −

→�c𝛼𝛽0(t)

Figure 2: Trapezoidal approximation of the volt-seconds integral of
(9).

where𝑇 is the sampling period thatmust be small to obtain an
accurate model approximation of the system. Since →V

𝑠𝛼𝛽0𝑘
≈

→V
𝑠𝛼𝛽0𝑘+1

, (8) is rewritten as follows:

→
𝑖
𝐿𝛼𝛽0𝑘+1

≅
→
𝑖
𝐿𝛼𝛽0𝑘

+
𝑇
𝑠

2𝐿
[2

→V
𝑠𝛼𝛽0𝑘

−
→V
𝑐𝛼𝛽0𝑘

−
→V
𝑐𝛼𝛽0𝑘+1

] (9)

which may produce eight one-step ahead current vectors,
→
𝑖
𝐿𝛼𝛽0

0

𝑘+1
to →

𝑖
𝐿𝛼𝛽0

7

𝑘+1
, since →V

𝑐𝛼𝛽0𝑘+1
has six active, →V

𝑐𝛼𝛽0

1 to
→V
𝑐𝛼𝛽0

6, and two neutral vectors, →V
𝑐𝛼𝛽0

0 and →V
𝑐𝛼𝛽0

7, that are
listed in Table 1 with respect to their transistor switching
states, assuming the common mode voltage due to the AC
neutral node connection to the DC link [15]. →

𝑖
𝐿𝛼𝛽0

0

𝑘+1
to

→
𝑖
𝐿𝛼𝛽0

7

𝑘+1
are dispersed around the 𝑘th current sample, →𝑖

𝐿𝛼𝛽0𝑘
,

as shown in 𝛼𝛽0 frame of Figure 3, such that one of thesemay
become near to the reference current sample →

𝑖
𝐿𝛼𝛽0

∗

𝑘
.

3.2. Cost Function of the Current Controller. An error current
vector, →

𝑖
𝐿𝑒𝛼𝛽0𝑘

, may be used as a cost function to evaluate
which of the transistor switching states causes the nearest
one-step ahead current sample to→

𝑖
𝐿𝛼𝛽0

∗

𝑘
, such that→𝑖

𝐿𝑒𝛼𝛽0𝑘
may

be expressed as shown as follows [16]:

→
𝑖
𝐿𝑒𝛼𝛽0

0−7

𝑘
=

→
𝑖
𝐿𝛼𝛽0

∗

𝑘
−

→
𝑖
𝐿𝛼𝛽0

0−7

𝑘+1
. (10)

The size of (10) may be evaluated using the Euclidean norm
of →𝑖
𝐿𝑒𝛼𝛽0

0−7

𝑘
, ‖→𝑖
𝐿𝑒𝛼𝛽0

0−7

𝑘
‖
2, which is equal to



→
𝑖
𝐿𝑒𝛼𝛽0

0−7

𝑘



2

=

𝑖
∗

𝐿𝛼𝑘
− 𝑖
0−7

𝐿𝛼 𝑘+1



2

+

𝑖
∗

𝐿𝛽𝑘
− 𝑖
0−7

𝐿𝛽 𝑘+1



2

+

𝑖
∗

𝐿0𝑘
− 𝑖
0−7

𝐿0 𝑘+1



2

(11)

such that theminimum ‖
→
𝑖
𝐿𝑒𝛼𝛽0

0−7

𝑘
‖
2 determines the transistor

switching state that may be used at the 𝑘th instant to
produce an appropriate three-phase, filter current tracking
with respect to the current reference vector [17].

3.3. Control Algorithm of the Four-Wire APF. Following the
description given above, a flow diagram of the APF control
algorithmof Figure 1 is shown in Figure 4.This diagram starts
with the parameters initialization of the microcontroller and
then enters to an iterative loop control cycle. In this cycle, all
the voltage and currents variables are sensed, such as the sup-
ply voltage→V

𝑠
, the filter current,→𝑖

𝐿
, the load current, ⃗𝑖Load, and

the DC-link voltage, 𝐸, where the AC inputs are converted to
𝛼𝛽0 plane using (1). Since the APF may operate with a dis-
torted voltage, or high source impedance [22],→V

𝑠
is processed

with a Phase Locked Loop (PLL) to obtain a clean three-phase
supply and phase reference.The next process in the algorithm
is the calculation of the two external voltage controllers used
to maintain charged and balanced DC-link capacitors at a
fixed voltage level, which contribute to calculate the reference
currents through the inverse P-Q theory, (4) and (5).Once the
reference currents are calculated, an “else-if” tree is started
to process the trapezoidal predictive current controller with
the eight possible transistor state combinations of the APF
converter, which uses the discrete current model of (7) and
the cost function of (10), such that eight one-step ahead
current values are evaluated and then weighted against the
current reference vector using (10). Finally, the converter state
vector that minimizes the cost function is determined and,
thereby, the algorithm applies the selected state vector to the
APF converter.

4. Experimental Verification

4.1. Prototype Description. A 2 kVA, four-wire shunt APF
prototype rig was built to evaluate the operation of the
APF of Figure 1. Table 2 lists the operating parameters and
components of the rig.

A 150MHz TMS320F28335 Digital Signal Processor
(DSP) was used to implement the control strategy of Figures 1
and 4 using a 32-bit data word length for floating point oper-
ations ensuring numerical stability. Additional hardware was
utilized to interface the DSP with the power converter, such
as voltage and current sensors, signal conditioners, IGBT
drivers, and fiber optic links. The APF was operated with
the aid of a PLL [22] and driven with either the trapezoidal
predictive controller (9) or a typical predictive controller that
uses the Euler approximation of

→
𝑖
𝐿𝛼𝛽0𝑘+1

≅
→
𝑖
𝐿𝛼𝛽0𝑘

+
𝑇
𝑠

𝐿
[
→V
𝑠𝛼𝛽0𝑘

−
→V
𝑐𝛼𝛽0𝑘+1

] (12)

to experimentally compare the performance.

4.2. Experimental Results. The 2 kVA APF prototype was
verified with the Euler and trapezoidal predictive current
controllers and a 127V, 60Hz line-to-neutral supply voltage
and under three nonlinear load conditions: a 1.6 kW, naturally
controlled three-phase rectifier with a 𝐿𝐶 filter, Figure 5(a);
a 0.9 kW, four-wire unbalanced load, Figure 5(b), that con-
sisted of two naturally controlled single-phase rectifiers, both
with a 𝐿𝐶 output filter and each supplied with different single
phases, and a resistive load supplied with a single phase; and a
1 kW unbalanced load condition, Figure 5(c), similar to
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Table 1: Normalized converter voltage space vectors with respect to the transistor switching states.

Transistor state combination →V
𝑐𝛼𝛽0

Normalized converter voltages
𝑄
1

𝑄
2

𝑄
3

𝑄
4

𝑄
5

𝑄
6

𝑉
𝛼
/E 𝑉

𝛽
/E 𝑉

0
/E

0 1 0 1 0 1 →V
𝑐𝛼𝛽0

0

0 0 −
1

2

1 1 0 0 0 1 →V
𝑐𝛼𝛽0

1

√
2

3
0 −

1

6

1 1 1 0 0 0 →V
𝑐𝛼𝛽0

2 √6

6

1

√2

1

6

0 1 1 1 0 0 →V
𝑐𝛼𝛽0

3

−
√6

6

1

√2
−
1

6

0 0 1 1 1 0 →V
𝑐𝛼𝛽0

4

−√
2

3
0

1

6

0 0 0 1 1 1 →V
𝑐𝛼𝛽0

5

−
√6

6

−
1

√2
−
1

6

1 0 0 0 1 1 →V
𝑐𝛼𝛽0

6 √6

6

−
1

√2

1

6

1 0 1 0 1 0 →V
𝑐𝛼𝛽0

7

0 0
1

2

Table 2: Operating parameters and components of the four-wire APF prototype.

Electrical parameters
Variable Value

Prototype power rating (laboratory design) 2 kW
Three-phase supply 𝑉

𝑆𝑁
127V, 60Hz

DC-link voltage reference 𝐸 400V
Sampling frequency 𝑓

𝑆
21.6 kHz

ADC resolution 12 bits
Prototype components

Line filters inductors 𝐿
𝑓

10mH
DC-link capacitors 𝐶 10mF
Power IGBTs BSM100GD60DLC, 1200V, 30A
IGBT drivers Infineon 2ED300CL7-s
AC/DC voltage sensors LEM LV 25-P
AC/DC current sensors Honeywell CSNA111
DC-link voltage controller 𝐻

𝐸
(𝑠) 3000𝑠 + 4.5e4

𝑠2 + 1000 − 6.71e − 8

DC-link voltage balance controller 𝐻bal(𝑠)
400𝑠 + 10

𝑠

the one used at a power substation of Line B, Metropolitan
Railway ofMexico City, for powering electronic utility equip-
ment.

Figure 6(a) shows the experimental supply currents 𝑖
𝑆𝑅
,

𝑖
𝑆𝑆
, and 𝑖

𝑆𝑇
and one supply phase voltage, V

𝑅𝑁
, obtained

with the load condition of Figure 6(a). The experimental line
current waveforms were typical of a three-phase, 6-pulse
rectifier without the operation of the APF, but, when the
APF was turned on using the Euler predictive controller, the
supply currents became virtually sinusoidal waveforms, with
the supply currents Total Harmonic Distortion (THD) and
the total power factor being improved from 29% to 15% and
from 0.95 to 0.98, respectively, which confirmed that the APF
was properly operating. Twomain characteristics were found
in the experimental supply current waveforms of Figure 6(a):
a 4.2 kHz, high-frequency ripple and a small glitch occurring
at every rising and falling slope of the load current waveform.

The first was attributed to the Euler approximation used with
the predictive control switching that continuously tracks the
reference currents [23], which was confirmed with a dynamic
condition of stepping the output filter inductance from
50mH to 100mH. Figure 6(b) shows that the operation of
the APF with the Euler predictive current control and the P-
Q theory is maintained throughout the filter inductance step,
since the sinusoidal waveformquality of the supply currents is
stable as shown in Figure 6(b), ensuring reliable operation of
the APF and, therefore, the predictive controller is likely to be
compliant under dynamic conditions, a typical requirement
for control techniques; however, the amplitude of the filter
current waveforms slightly fell from 2A to 1.5 A during
the transient response, with the supply current THD being
barely degraded around 24%. The second characteristic was
confirmed by contrasting the measured filter current 𝑖

𝐿𝑅

with its digital reference 𝑖
𝐿𝑅

∗, as shown in the left-hand side
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Figure 3: One-step ahead current samples, →𝑖
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0
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to →

𝑖
𝐿𝛼𝛽0

7

𝑘+1
, around →

𝑖
𝐿𝛼𝛽0𝑘

and →
𝑖
𝐿𝛼𝛽0

∗

𝑘
in the 𝛼𝛽0 current frame.

of Figure 6(c), revealing that the predictive current control
slightly follows the reference during the high 𝑑𝑖/𝑑𝑡 periods
of the load current waveforms due to the simple Euler
approximation used in the algorithm, reducing the tracking
accuracy of the references, and, therefore, introducing small
glitches to the supply current waveforms. This undesired
phenomenon was improved by changing the Euler approx-
imation of the predictive controller to the trapezoidal tech-
nique as shown in the right-hand side of Figure 6(c), which
reveals in its amplification shown in Figure 6(d) that the
trapezoidal predictive controller reduces the current ripple
amplitude by approximately 50%, increasing its frequency
rate from 4.2 kHz to 9.5 kHz and producing a lower supply
current THD, 10.2%, and a power factor of 0.989 in contrast
to the Euler technique, with the supply current waveforms
becoming virtually free of high-frequency glitches and ripple.

Figure 7(a) shows the experimental supply currents 𝑖
𝑆𝑅
,

𝑖
𝑆𝑆
, and 𝑖

𝑆𝑇
and the neutral current 𝑖

𝑁
obtained with the

unbalanced load condition of Figure 5(b) at 0.9 kW. This fig-
ure shows that the line currents are typical of an unbalanced
nonlinear load before the APF is activated, and, after the APF
is on, the supply currents become virtually balanced sinu-
soidal waveforms of 2.4 A, with the supply current THD and
the power factor being improved from an unbalanced 43% to
a balanced 25% and from 0.93 to 0.972, respectively, revealing
again that the active filter prototype is correctly operating
with a four-wire load. In addition, the same figure shows
that the power quality of the supply currents becomes much
more improved when the predictive controller is changed
from the Euler to the trapezoidal technique, with the supply
current THD and the power factor becoming 15% and 0.98,

respectively. These experimental current waveforms have
again a high-frequency ripple, being 4.2 kHz when the APF
is operated with the typical Euler technique and 9.5 kHz with
the proposed trapezoidal strategy. In Figure 7(a), the neutral
current 𝑖

𝑁
was virtuallymitigated after theAPFwas activated,

becoming more reduced when the APF was driven with the
trapezoidal controller.This experiment revealed the effective-
ness of the 4-wire, P-Q theory used in this work together
with the predictive current control switching.

Figure 7(b) shows the experimental supply currents 𝑖
𝑆𝑅
,

𝑖
𝑆𝑆
, and 𝑖

𝑆𝑇
and the neutral current 𝑖

𝑁
obtained with the

front-end, controlled rectifier drive andmonophasic resistive
load of Figure 5(c) at 0.9 kW. Before the APF is activated, as
shown in Figure 7(b), the experimental supply currents are
completely unbalanced, distorted, and phase-displaced due
to the biphasic connection of the front-end rectifier of the
motor drive and the resistive load connection; however, when
the APF is on using, firstly, the Euler predictive technique
and then the trapezoidal version, the supply currents become
again balanced with virtual sinusoidal waveforms, such that
their THD was improved from an unbalanced 40% to a
balanced 23% and 18% for the Euler and trapezoidalmethods,
respectively, and the power factor from 0.8 to 0.97 and 0.98
again for the Euler and trapezoidal methods, respectively. In
Figure 7(b), the neutral current 𝑖

𝑁
was again virtually miti-

gated after the APFwas activated, becoming almost cancelled
when the APF used the trapezoidal controller.

A power analyser was used to measure the supply active
power, 𝑃, the supply apparent power, 𝑆, the per-phase supply
current THD, 𝐼

𝑅𝑆
THD, 𝐼

𝑆𝑆
THD, and 𝐼

𝑇𝑆
THD, and the total

power factor during the experiments described above. The
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Figure 4: Algorithm flow diagram of the predictive current controller.

results are contrasted in the comparative bar plot of Figure 8
calculated with a 2 kVA APF rating, a 127V, 60Hz line-to-
neutral supply voltage, and a 400V APF DC link. Figure 8
shows that 𝑃 slightly rise by approximately 5%, 100W, when
the APF prototype was used to improve and balance the
supply currents among the experiments; the additional power
loss occurring in the transistors, filter inductors and DC-link
capacitors of the APF converter due to the high-frequency
operation. In comparison with the unbalanced load, the cur-
rent THD reduction is representative when the APF is used
together with the trapezoidal predictive controller to com-
pensate the drawn currents of the balanced load as shown in
Figure 8, whereas the current THD is slightly improved when
the APF is used together with the Euler strategy and the load
cases of Figure 5; nevertheless, the drawn current through the
neutral wire is noticeably cancelled when the APF is used
to correct the power quality of the four-wire AC loads of
Figures 5(b) and 5(c). In contrast with the balanced load, the
distribution between apparent and active power for the APF

with the unbalanced load becomes equilibrated due to cor-
rection of current phase displacement.

Closer inspection of the microprocessor operation
revealed that the total period to perform the algorithm
of Figure 4 was around 29 𝜇s with the Euler predictive
controller, which is well below the sampling period to ensure
minimal delay effects of the control system. Unlike the
experimental verification of the Euler predictive controller,
the experimental verification of the APF with the trapezoidal
predictive controller resulted in a slight increment of
algorithm processing time of Figure 4, from 29𝜇s to 30 𝜇s,
which was imperceptible during the experimental verifica-
tion of the APF.

The presented trapezoidal predictive controller is slightly
more complex than the typical predictive strategy to per-
form the current reference tracking and generates a slight
increase of power losses, which could make it inadequate
for implementation in low-rated rigs; nevertheless, the ripple
current reduction, closer current tracking, and power quality
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Figure 5: Nonlinear loads used to experimentally verify the APF and predictive current controller of Figure 1. (a) Balanced three-wire load,
(b) unbalanced four-wire load, and (c) unbalanced load used at a Metro Power Substation.
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Figure 6: Experimental verification of the APF prototype with the 1.6 kW balanced load of (a). (a) Measured waveforms V
𝑅𝑁

(yellow), 𝑖
𝑆𝑅

(green), 𝑖
𝑆𝑆
(red), and 𝑖

𝑆𝑇
(blue) before and after the activation of the APF. (b) Measured response of V

𝑅𝑁
(yellow), 𝑖

𝐿𝑅
(red), 𝑖Load𝑅 (green),

and 𝑖
𝑆𝑅

(yellow) to a filter inductance step from 50mH to 100mH. (c) Measured response of 𝑖
𝐿𝑅

(blue) and 𝑖
𝑆𝑅

(green) to a predictive current
controller step from Euler to the trapezoidal approximation, which is contrasted against the reference 𝑖

𝐿𝑅

∗ (red) and load current 𝑖Load𝑅. (d)
Time amplification of (c) at the instant of the predictive controller step. 127V, 60Hz supply, 400VAPFDC link, and a 21.6 kHz APF sampling
frequency.

improvement are important advantages to consider over the
traditional predictive controller technique. Furthermore, the
digital implementation is acceptable for fastmicrocontrollers,
such as a DSPs and hybrid digital controllers, and will be
used once the trapezoidal control strategy is implemented
to control other power converter systems, which would be
suitable to obtain high power quality results.

5. Conclusions

The utilization of a trapezoidal predictive technique to gen-
erate the filter currents of a four-wire, shunt APF allows the

power quality improvement of using unbalanced nonlinear
loads for on-land utility applications, such that the supply
currents become virtual sinusoidal waves. The latter makes
the current control strategy attractive for easy and straight
implementation on future power converters that require
high-performance power quality; nevertheless, the control
technique is suitable for a wide range of power converter
applications. In this work, the trapezoidal predictive con-
troller was experimentally verified and evaluated with the
four-wire APF under three load conditions; in the first, the
load was set up with a three-wire, balanced nonlinear circuit
to preliminary check the basic operation of the control
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Figure 7: (a) Measured supply current waveforms 𝑖
𝑆𝑅

(blue), 𝑖
𝑆𝑆
(yellow), 𝑖

𝑆𝑇
(red), and 𝑖

𝑁
(green) before and after the activation of the APF

with the Euler and Trapezoidal predictive controllers and the load condition of Figure 5(a). (b) Measured supply current waveforms 𝑖
𝑆𝑅
(red),

𝑖
𝑆𝑆
(yellow), 𝑖

𝑆𝑇
(green), and 𝑖

𝑁
(blue) before and after the activation of the APF with the Euler and trapezoidal predictive controllers and the

load condition of Figure 5(b). 127V, 60Hz supply, 400V APF DC link, and 21.6 kHz APF sampling frequency.
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Figure 8: Bar plot of the power quality results for the AC load
circuits of Figure 5 with the APF prototype operating with the
Euler and trapezoidal predictive techniques. 127V, 60Hz supply and
2 kVA APF rating.

technique, such that sinusoidal supply current waves were
generated and the power quality was improved. A current
THD of 10% and a power factor of 0.989 were measured in
the first experiment showing a noticeable improvement in
contrast to the traditional predictive technique.

In the second and third load conditions, the load was
four-wire, unbalanced nonlinear load, with the load currents
being much distorted and producing a neutral current path
in both load conditions. The supply current waveforms were
all improved and balanced when the APF and the trapezoidal

predictive controller were activated, with the neutral current
being mitigated; the current THD was 15% and 18%, respec-
tively, and the power factorwas 0.98 in both experiments with
a 127V, 60Hz three-phase supply voltage. The shape of the
supply current waveforms and the power quality were signif-
icantly improved in comparison with the original load cur-
rents and power quality, with the active power being slightly
increased, due to the high-frequency switching losses of the
APF power transistors.

The practical realization of the presented trapezoidal
predictive controller could consider the use of an extended
sampled-data horizon, either forward or backward, to achieve
a faster convergence and reduce the current ripple amplitude.
This would be convenient for developing power converters
with new generation of switching power devices for other
applications.
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Nacional (IPN) of Mexico, the Institute of Science and
Technology of Mexico City (ICyT), and the Universidad de
Talca, Chile, for their encouragement and the realization
of the prototype. Additionally, the authors acknowledge the
Metropolitan Railway Transportation System of Mexico City
(SCT Metro) for the support offered to obtain power quality
measurements at Line B installations.



Mathematical Problems in Engineering 11

References

[1] IEEEApplicationGuide for IEEE Standard 1547, “IEEE standard
for interconnecting distributed resources with electric power
systems,” IEEE Standard 1547.2-2008, 2008.

[2] S. W. Mohod andM. V. Aware, “A STATCOM—control scheme
for grid connected wind energy system for power quality
improvement,” IEEE Systems Journal, vol. 4, no. 3, pp. 346–352,
2010.

[3] IEEE, “IEEE recommended practices and requirements for
harmonic control in electrical power systems,” IEEE Standard
519-1992, 1992.

[4] J. D. vanWyk and F. C. Lee, “On a Future for Power Electronics,”
IEEE Journal of Emerging and Selected Topics in Power Electron-
ics, vol. 1, no. 2, pp. 59–72, 2013.

[5] P. Kanjiya, V. Khadkikar, and H. H. Zeineldin, “Optimal control
of shunt active power filter to meet IEEE Std. 519 current
harmonic constraints under nonideal supply condition,” IEEE
Transactions on Industrial Electronics, vol. 62, no. 2, pp. 724–
734, 2015.

[6] P. Acuna, L. Moran, M. Rivera, R. Aguilera, R. Burgos, and V.
G. Agelidis, “A single-objective predictive control method for a
multivariable single-phase three-level NPC converter-based
active power filter,” IEEE Transactions on Industrial Electronics,
vol. 62, no. 7, pp. 4598–4607, 2015.

[7] P. Acuna, L. Moran, M. Rivera, R. Aguilera, R. Burgos, and V.
G. Agelidis, “A single-objective predictive control method for
a multivariable single-phase three-level NPC converter-based
active power filter,” IEEE Transactions on Industrial Electronics,
vol. 62, no. 7, pp. 4598–4607, 2015.

[8] P. Jintakosonwit, H. Fujita, and H. Akagi, “Control and per-
formance of a fully-digital-controlled shunt active filter for
installation on a power distribution system,” IEEE Transactions
on Power Electronics, vol. 17, no. 1, pp. 132–140, 2002.

[9] Z. Xiao, X. Deng, R. Yuan, P. Guo, and Q. Chen, “Shunt active
power filter with enhanced dynamic performance using novel
control strategy,” IET Power Electronics, vol. 7, no. 12, pp. 3169–
3181, 2014.

[10] P. Acuna, L. Moran, M. Rivera, J. Rodriguez, and J. Dixon,
“Improved active power filter performance for distribution
systems with renewable generation,” in Proceedings of the 38th
Annual Conference on IEEE Industrial Electronics Society
(IECON ’12), pp. 1344–1349, Montreal, Canada, October 2012.

[11] P. Acuna, L. Moran, M. Rivera, J. Dixon, and J. Rodriguez,
“Improved active power filter performance for renewable power
generation systems,” IEEE Transactions on Power Electronics,
vol. 29, no. 2, pp. 687–694, 2014.

[12] H. Akagi, E. H. Watanabe, and M. Aredes, Instantaneous Power
Theory and Applications to Power Conditioning, IEEE Press
Series on Power Engineering, Wiley-IEEE Press, 2007.

[13] R. P. Aguilera and D. E. Quevedo, “Predictive control of power
converters: designs with guaranteed performance,” IEEE Trans-
actions on Industrial Informatics, vol. 11, no. 1, pp. 53–63, 2015.
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This paper presents a computationally efficient loss prediction procedure and thermal analysis of surface-mounted brushless AC
permanent magnet (PM) machine considering the UDDS driving duty cycle by using a lumped parameters’ thermal model. The
accurate prediction of loss and its variation with load are essential for thermal analysis. Employing finite element analysis (FEA) to
determine loss at every load point would be computationally intensive. Here, the finite element analysis and/or experiment based
computationally efficient winding copper and iron loss and permanent magnet (PM) power loss models are employed to calculate
the electromagnetic loss at every operation point, respectively. Then, the lumped parameter thermal method is used to analyse the
thermal behaviour of the driving PM machine. Experiments have been carried out to measure the temperature distribution in a
motor prototype. The calculation and experiment results are compared and discussed.

1. Introduction

Themassive application of electric vehicle (EV) is a significant
way to reduce the emission and to settle the energy crisis
[1]. In general, the types of EVs can be categorized as pure
electric vehicle (PEV), hybrid electric vehicle (HEV), and fuel
cell electric vehicle (FCEV) [1–3]. To all these subcategories,
electric machine is always the key traction component, which
needs to be well designed and manufactured.

Among all the types of electric machine, brushless AC
PM machine is a promising candidate for EV traction motor
due to its high power density, high efficiency, fast dynamics,
and compactness [4, 5]. However, this kind of machine
could easily suffer insulation failure of coils and irreversible
demagnetization due to the poor cooling condition on the
rotor side and excessive heat generation on the stator side,
especially for variable-speed application [6]. Therefore, the
accurate temperature prediction for traction brushless AC
PMmachine is of great importance at the design stage.

In fact, one of the key elements of accurate thermal anal-
ysis is the accurate losses calculation. Generally, there are two

main sources of loss within an electric machine: mechanical
and electromagnetic. Mechanical loss is attributed to the
frictional effects within the bearing assembly (bearing loss)
and fluid dynamics or aerodynamics effects within the motor
body (windage or drag loss) [7]; it can be easily obtained
according to the manufacturer’s manual. Electromagnetic
losses, which effect thermal analysis heavily, are usually
associated with active parts of the motor assembly and
include the iron, winding, and permanent magnet (PM) loss
components [8–10].

For electromagnetic losses prediction, two approaches are
widely used: analytical and numerical [11–19]. The analytical
approach for iron loss calculation was first developed by
Steinmetz [11] and then further modified by Bertotti [12].
The Bertotti formulation which divides the iron loss into
three individual parts, that is, eddy current loss, hysteresis
loss, and supplementary loss, is commonly used at current
electric machine design stage. The analytical winding loss
approaches have been well developed to account for the AC
effect, for example, the skin effect and the proximity effect
[13–15]. The AC equivalent resistance is the commonly used
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element to account for the AC effect. However, it is frequency
dependent and would change with the change of operation
point.Therefore, it would be difficult to calculate the winding
losses of all operation points accurately by a single value of
AC equivalent resistance. For PM power loss, a variety of
analytical techniques have been developed. These are based
on simplified assumptions of the field distribution and their
use is limited to the selected machine topologies for which
the assumptions hold [16, 17].

The numerical approach including time-stepping or fre-
quency domain FEA is a more accurate way to calculate
the electromagnetic losses [4, 18, 19]. However, it is time
consuming and computationally intensive. Therefore, the
numerical approach would not be suitable in the case that a
loss map or an efficiency map is required.

Besides the losses prediction approaches, the thermal
model is another important element for thermal analysis.
Two main models could be found from literatures: FE based
thermal model and lumped parameter thermal model [20,
21]. The FE based thermal model is accurate and capable
of predicting the hottest pot within a motor, while it is
time consuming. The lumped parameter thermal model is
quick, while it could be only capable of calculating the mean
temperature of each motor component. Thus, the choice of
thermal model strongly depends on the design goals.

In addition, there has been increased interest in predict-
ing temperature distribution under the driving duty cycle [4,
22]. A lumped parameter thermal model [20] has been used
to calculate the temperature distribution under the Chinese
city driving duty cycle in [4]. Good agreement is visible
between the analytical and experimental results. However,
the procedure presented is time consuming, since the FEA is
employed to calculate the loss at each operating point. Some
accurate and computationally efficient loss scaling techniques
[23–25] have been presented, and some of them have been
introduced into the analysis procedure and the equivalent-
circuit lumped parameter thermal model has been adopted
in the literature [22], while it does not take the PM loss
into account, which may be small but can directly heat up
magnets.

This paper proposes a computationally efficient loss pre-
diction procedure and a lumped parameter thermal analysis
of surface-mounted brushless AC PM machine considering
the UDDS driving duty cycle.Themachine is applied on a 10-
meter motor-direct-driving large coach bus. The FEA based
iron loss [23], copper loss [24], and PM loss [25] scaling
techniques are utilized to obtain the loss distribution under
the driving duty cycle in a timely manner. The equivalent
thermal parameter of winding [26] is calculated and intro-
duced into the thermal model. Finally, the temperature of
winding, stator, and PM is predicted and is compared with
the results from experiment.

The remainder of the paper is organised in the following
manner: Section 2 outlines the machine design exemplar
and the selected coach bus configuration; Section 3 describes
the analysis procedure and the electromagnetic loss scaling
technique; Section 4 details thermal modelling; Section 5
describes the experimental setup and results; Section 6 sum-
marizes the research findings.

Table 1: Selected details of driving motor.

Number of poles 8
Number of slots 48
Rated torque 928Nm
Rated power 350 kW
Motor outer diameter 480mm
Active length 210mm

Rotor

Shaft

Cooling jacket

Stator

Winding

Bandage

Permanent
magnet

Figure 1: Geometry of analysed PMmachine.

2. Study Machine and Bus Model

The analysed motor is a radial-flux, integer-slot, distributed-
wound internal-rotor PMmachine with water cooling jacket,
as shown in Figure 1. Selected details of the driving motor are
given in Table 1. And basic traction parameters of selected
coach bus are given in Table 2. Please note that the aim of
this paper is to accelerate the analysis speed by using compu-
tationally efficient loss mapping techniques. Therefore, some
of the coach bus traction parameters have been modified to
ensure that torque-speed characteristic of analyzed machine
can cover the torque-speed requirement.

3. Analysis Procedure

3.1. Outline of Analysis. In order to predict dynamic tem-
perature distribution of the driving motor under the driving
duty cycle, an analysis procedure is developed and shown in
Figure 2.

The limited number of FEAs is utilized in order to derive
the loss functions, which give access to loss predictions
over the entire torque-speed envelope quickly. Meanwhile,
the UDDS, shown in Figure 3, of EV is adopted. This duty
cycle contains 1370 points and each point runs one second.
The corresponding operating points of the driving motor
including speed and torque are obtained. Then, by the
computational loss derivations, the losses at each operating
point can be easily achieved. Based on the loss predictions,
the dynamic temperature distribution under the driving duty
cycle is predicted by using lumped parameter thermal model.
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Table 2: Traction parameters of coach bus.

Gross vehicle weight𝑚 14000 kg
Final drive ratio 𝑖

0
13

Frontal area 𝐴 6.6m2

Wheel radius 𝑅
𝑟

0.46m
Drivetrain efficiency 𝜂 95%
Rolling resistance coefficient 𝜇 0.0075
Aerodynamic drag coefficient 𝐶

𝐷
0.7

Vehicle rotary mass coefficient 𝜎 1.2

Driving duty cycle of EV 

Operating points of PM 
machine

Limited number of FEAs

Loss derivation

Loss calculation

Equivalent-circuit lumped 
parameter thermal model

Temperature distribution

Figure 2: Outlines of analysis procedure.

3.2. Motor Torque and Speed Calculation. The corresponding
operating points of the driving motor including speed and
torque are derived from the following equation:

𝑛 =

V𝑖0
0.377𝑅

𝑟

. (1)

Here, the unit of V is km/h, so the vehicle speed in UUDs
should be converted to km/h by multiplying 1.61:

𝑇 =

(𝜇𝑚𝑔 + 𝐶
𝐷
𝐴V2/21.15 + 𝜎𝑚𝑎)𝑅

𝑟

(𝑖0𝜂)
. (2)

The machine torque map under UDDs duty cycle is
shown on Figure 4. Here, the generator mode of analysed
machine is ignored.

3.3. Loss Derivation

3.3.1. Iron Loss. The total iron loss occurring in the stator can
be viewed as a superposition of two components. One stems
from themainmagnetizing flux pathwhich flows through the
teeth and back iron and couples the coils forming the stator
winding. The other occurs during field weakening and is
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Figure 3: The UDDS driving duty cycle.
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Figure 4: Torque requirement of UDDs duty cycle.

a result of flux emanating from the permanentmagnets which
flows across the face of the tooth tip and does not couple the
stator coils [23]:

𝑃iron = 𝑃1 +𝑃2, (3)

where

𝑃1 =
𝑎
ℎ

𝜆

𝑉
𝑚
+

𝑎
𝐽

𝜆
2𝑉

2
𝑚
+

𝑎ex
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1.5𝑉

1.5
𝑚
,
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ℎ
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𝑑
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𝑏ex
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1.5𝑉

1.5
𝑑
.

(4)

The 𝑉
𝑚
and 𝑉

𝑑
used in (4) are determined from the phasor

diagram of direct-quadrature 𝑑-𝑞 axes describing the brush-
less AC operation of the motor, where

𝜆 =

𝐸ph

𝑓

,

𝐼
𝑞
=

𝑇

𝑘
𝑇

,
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(5)

Here, 𝐸ph is the phase EMF, 𝑇 is the torque, 𝐼
𝑑
and 𝐼
𝑞
are the

magnitudes of the demagnetizing direct axis and quadrature
axis components of stator phase current, 𝑘

𝑇
is the motor

torque constant, and 𝐼SC is the short-circuit current calculated
from FE analysis. The coefficients 𝑎

ℎ,𝑗,ex and 𝑏
ℎ,𝑗,ex for the

hysteresis, Joule eddy-current, and excess losses have been
found from curve fitting (4) to the FE open-circuit and short-
circuit loss results across the operating frequency𝑓. Note that
the iron loss in rotor core is relatively small in this case, so it
can be neglected.

3.3.2. Copper Loss. The electrical resistivity of copper
increases with operating temperature elevating, which results
in simultaneous rise of DC loss component and reduction
of the AC loss component caused by skin, proximity, and
other eddy current effects [24]. The overall copper power
loss and its thermal variation at AC operation depend on
the balance between these two loss components [22]. Here,
the copper loss scaling approach proposed in [24] has been
employed. The end-winding copper loss will be separated
from the total copper loss bymultiplying a ratio between end-
winding length and total winding length.

𝑃AC



𝑇
= 𝐼

2
𝑅DC





𝑇0

(𝑅AC/𝑅DC



𝑇0
) − 1

√(1 + 𝛼 (𝑇 − 𝑇0))

+ 𝐼
2
𝑅DC





𝑇0
(1+𝛼 (𝑇−𝑇0)) ,

(6)

where 𝛼 is the temperature coefficient of resistivity of copper,
3.93𝑒−3K−1, and 𝐼2𝑅DC|𝑇0 is the DC copper loss at reference
temperature 𝑇

0
, which is set at 25∘C in this case.

3.3.3. PM Loss. The eddy current loss generated in the
magnet array stems from two effects.The first results from the
permeance variation caused by stator slotting and the second
from the armature reaction field. The complete functional
representation of PM loss catering for both constant torque
and constant power operating regions can be then written in
the following form [25]:

𝑃PM = (𝑎𝐼
2
𝑞
+ 𝑏𝐼

2
𝑑
+ 𝑐𝐼
𝑑
+𝑑)(

𝑛

𝑛
𝑊

)

2
. (7)

Here, the coefficients 𝑎, 𝑏, 𝑐, and 𝑑 can be derived from four
individual FEAs accounting for open-circuit, rated current
in the quadrature axis, rated current in the direct axis, and
reduced current in the direct axis. And 𝑛 is the rotatory speed;
𝑛
𝑊
is the reference speed which should be set within the field

weakened regime of operation.
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Figure 5: PM loss distribution under the UDDS driving duty cycle.
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Figure 6: Iron loss distribution under the UDDS driving duty cycle.

3.3.4. Other Losses. The bearing and frictional loss is calcu-
lated according to the manufacturer’s manual.

Figures 5 and 6 show the PM loss and iron loss distribu-
tion individually according to (3) and (7) in a single UDDS
driving duty cycle. And the mechanical loss distribution is
presented in Figure 7. Note that as the copper loss scaling
technique requires transient temperature, the copper loss
distribution remains unknown at this stage. However, the
copper loss at ambient temperature 25∘C is easily obtained
and would be used as initial condition.

Table 3 illustrates the comparison between the technique
proposed in [4] and the presented technique in the paper. As
only 6 steps of FEA are utilised in the presented technique,
the analysis time of complete duty cycle could be able to
be reduced from 2 hours to just several minutes, compared
to the previous technique where 1314 FEAs are adopted. In
addition, the PM loss is further taken into account in the
presented technique, which will result in a more accurate
thermal analysis. By using all these means, the analysis time
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Table 3: Comparison between previous technique in [3] and
proposed technique in this paper.

Technique in [3] Proposed
technique

Numbers of FEA 1314 6
Analysis time of
compete duty cycle

More than 2
hours Around 5min

Types of
electromagnetic loss

Winding loss,
iron loss, and
mechanical loss

Winding loss,
iron loss, PM loss,
and mechanical
loss

0 200 400 600 800 1000 1200 1400
Time (s)

0

200

400

600

800

1000

1200

1400

1600

1800

2000

M
ec

ha
ni

ca
l l

os
s (

W
)

Figure 7: Mechanical loss distribution under the UDDS driving
duty cycle.

could be reduced substantially, and the results could be more
reliable.

4. Thermal Analysis

4.1. Calculation of Thermal Parameters. Figure 5 shows the
general thermal network for component based on the
assumption that temperature in the PM machine is axially
symmetrical. Here, there are three unknown temperatures:
the outer surface 𝑇

𝑟,1, the inner surface 𝑇
𝑟,2, and the axial

edge 𝑇
𝑎
. And the four thermal resistances which constitute

the network can be calculated by the following equations:

𝑅1 =
1
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(8)
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Figure 8: Lumped parameter thermal model. 𝐶 = thermal capaci-
tance, 𝑢 = heat generation.

where 𝑟
1
and 𝑟
2
are the outer and inner radius of a general

cylindrical component, respectively, and 𝑘
𝑎
and 𝑘

𝑟
are the

axial and radial thermal conductivities of a general cylindrical
component, respectively.

The lump parameter thermal model is shown in Figure 8,
which contains nine key components of surface-mounted
brushless AC PM machine. Based on the previous assump-
tion, only half of the motor geometry is modelled. Also, it is
assumed that heat flows in the radial and axial direction are
independent and the heat generation is distributed inside the
PM machine.

As a key component of surface-mounted brushless AC
machine, the electrical winding is a heterogeneous material
consisting of conductors, electrical insulation, impregnation
insulation, and air and would easily suffer from severe ther-
mal load condition. A full representation of the individual
conductors and surrounding insulation system would add
considerable complexity to a thermalmodel and leads to long
solution times which limit the applicability of such models
to both transient problems and iterative design/optimization
procedures [26]. There are various modelling approaches to
capture the thermal parameters of electrical winding [27–
30]. This paper uses the methodology presented in [26] to
calculate the thermal conductivity and heat capacity:

V
𝑐
+ Vci = PF,

Vii = 1−PF,

V
𝑐
= PF

𝑟
2
𝑐

(𝑟
𝑐
+ 𝑙
𝑖
)
2 ,

Vci = PF
2𝑟
𝑐
𝑙
𝑖
+ 𝑙

2
𝑖

(𝑟
𝑐
+ 𝑙
𝑖
)
2 ,



6 Mathematical Problems in Engineering

𝑘
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𝑐
) 𝑘
𝑐
+ (1 − V

𝑐
) 𝑘
𝑎

(1 − V
𝑐
) 𝑘
𝑐
+ (1 + V

𝑐
) 𝑘
𝑎

,

𝑐
𝑒
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𝑝
𝑐
𝑝

PF (𝜌
𝑐
− 𝜌
𝑝
) + 𝜌
𝑝

,

(9)
where V

𝑐
, Vci, and Vii are the volume ratio of conductor, con-

ductor insulation, and impregnation insulation, respectively.
PF is the packing factor, 𝑟

𝑐
is the conductor radius, and

𝑙
𝑖
is the insulation thickness. 𝑘

𝑒
and 𝑘

𝑎
are the equivalent

thermal conductivity of winding and insulation amalgam,
respectively. 𝑘

𝑐
is the thermal conductivity of conductor. 𝑐

𝑒
is

the equivalent heat capacity, and 𝑐
𝑐
and 𝑐
𝑝
are the heat capacity

of conductor and impregnation compound. 𝜌
𝑐
and 𝜌
𝑝
are the

density of conductor and impregnation compound.
The heat transfer coefficient of the fully developed turbu-

lent flow in the spiral housing water jacket can be calculated
according to [31]

ℎ =

𝑘
𝑓
𝑁
𝑢

𝐷
ℎ

,

𝑁
𝑢
=

(𝑓/8) (𝑅
𝑒
− 1000) 𝑃

𝑟

1 + 12.7 (𝑓/8)2 (𝑃2/3𝑟 − 1)
,

(10)

where𝑁
𝑢
is the Nusselt number, 𝑘

𝑓
is the thermal conductiv-

ity of fluid, and 𝐷
ℎ
is the hydraulic diameter. 𝑅

𝑒
= 𝜌Vav𝐷ℎ/𝜇

is the Reynolds number, 𝜌 is the fluid density, Vav is the
fluid average velocity, 𝜇 is the fluid dynamic viscosity, 𝑃

𝑟
is

the Prandtl number, and 𝑓 is the friction factor for smooth
cooling duct.

4.2. Transient State Thermal Model Equation. In order to
predict the transient temperature distribution over the entire
driving duty cycle, the dynamic thermal equation is utilized
according to [31]

𝑑𝐾
𝑖

𝑑𝑡

= [𝐶
𝑡
]
−1
[𝑃
𝑡
] − [𝐶

𝑡
]
−1
([𝐺
𝑡
] + [𝐺fluid]) [𝐾𝑖] , (11)

where 𝐶
𝑡
is the thermal capacitance matrix, 𝑃

𝑡
is the heat loss

matrix,𝐾
𝑖
is the temperature rise matrix, 𝐺fluid is the cooling

fluid matrix, and 𝐺
𝑡
is the thermal conductance matrix.

Figure 9 shows the copper distribution individually
according to (6) in a single UDDS driving duty cycle. The
temperature at every single operating point is used to derive
the copper loss. And Figure 10 presents the temperature
variations. The highest temperature appears in the stator end
winding, which reaches to 93.3∘C. Over the entire driving
duty cycle, the highest temperature of magnet, stator back
iron, stator teeth, and winding is 41.3∘C, 57.4∘C, 59.1∘C, and
88.3∘C, respectively, and all of them come from the end of the
duty cycle. In this analysis, the ambient temperature is set to
25∘C.

5. Experimental Result

The test bench used to measure the temperature of the motor
prototype is shown in Figure 11. The temperature measuring
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Figure 9: Copper loss distribution under the UDDS driving duty
cycle.
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Figure 10: Dynamic temperature distribution under the UDDS
driving duty cycle.

sensor PT1000 is placed in the end winding, since the end
winding suffers from the most severe thermal condition. The
ambient temperature is 25∘C and the temperature difference
between inlet and outlet is 2-3∘C.

Both the traction motor and generator are water-cooled
and controlled by an integrated controller. The operation
points of the traction motor are calculated through (1) and
(2); each of them runs a single second. The end-winding
temperaturemeasured by the temperature sensor is manually
recorded every 20 seconds.

The test and calculated results are shown in Figure 12.
Good agreement in trend is visible, while the test results
are relatively lower than those derived from calculation. It
is important to note that the predicted temperature dropped
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Figure 11: Test bench for the temperature measure.
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Figure 12: Comparison of experimental and analytical temperature
distribution of end winding under one driving duty cycle.

rapidly at around 800 s, while the measured temperature
remains unchanged. This is caused by time delay of mechan-
ical coupling devices, and this is a drawback of using lumped
parameter thermal model. The rest of error component
can be attributed to the following issues: (a) simplifications
and assumptions used in analysis, (b) loss estimation error
comparing to real operating condition, and (c) unknown
material thermal property data.

6. Conclusion

A lumped parameter thermal model is used to study the
thermal behavior of a surface-mounted brushless AC PM
machine for electrical vehicle application under the UDDS
driving duty cycle. The equivalent thermal parameter of
winding is calculated and introduced into the thermalmodel.
The FEA based iron loss, PM loss, and copper loss scaling
techniques are utilized to obtain the loss distribution under
the duty cycle in a timely manner.The test bench for temper-
ature measurement has been set up to validate the proposed

analysis method. And the agreement between analysis and
experimental results shows this method is convincing.
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There is a need to match emission estimations accuracy with the outputs of transport models. The overall error rate in long-term
traffic forecasts resulting from strategic transport models is likely to be significant. Microsimulationmodels, whilst high-resolution
in nature, may have similar measurement errors if they use the outputs of strategic models to obtain traffic demand predictions.
At the microlevel, this paper discusses the limitations of existing emissions estimation approaches. Emission models for predicting
emission pollutants other than CO

2
are proposed. A genetic algorithm approach is adopted to select the predicting variables for the

black box model.The approach is capable of solving combinatorial optimization problems. Overall, the emission prediction results
reveal that the proposed new models outperform conventional equations in terms of accuracy and robustness.

1. Introduction

Fuel consumption and emission estimation can be critical for
comprehensive transportation planning. In light of the strong
relationship between CO

2
emissions and fuel consumption

[1] and the high volatility in crude oil prices, this requires
more accurate and robust tools to quantify environmental
impacts so that project evaluation can adequately address
community expectations. Quantitative travel demand and
emission models are necessary for the evaluation of future
transport/land use options, as well as for the management of
existing transport systems.Themodelling of emissions is seen
as an increasingly important tool in transportation planning
and management.

Historically, car-following and traffic flow models have
been developed using different theoretical basis. This has
given rise to two main kinds of models of traffic dynamics,
namely, microscopic representations, based on the descrip-
tion of the individual behavior of each vehicle, and macro-
scopic representations describing traffic as a continuous flow

obeying global rules [2]. Strategic travel demandmodels tend
to be large and regional in nature whereas microsimulation
models are used for detailed tactical or operational testing of
options. Taking the highest macroscopic level as an example,
the total vehicle flow and the average speed over an entire
network may be all that is provided [3]. At the lowest level
of the hierarchy, high-resolution microscopic transportation
models typically produce second-by-second vehicle trajec-
tories (location, speed, acceleration, etc.). Hence, the traffic
modelling and emissionmodelling shouldmatch by the accu-
racy level and aggregation level. For instance, driving cycles
used for vehicle emission testing are specified on a second-
by-second speed-time profile. Microscopic traffic models
should integrate real time emission predictionmodels, which
are able to utilize high-resolution transportation modelling
results, therefore generating potentially more precise emis-
sion estimations.

Taking the highest macroscopic level as an example,
the total vehicle flow and the average speed over an entire
network may be all that is provided [4]. Correspondingly,
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a number of emission models deliver the predictions based
on the aggregated traffic model outputs, for example, the
ARTEMIS in Europe and Mobile 6 from US [5, 6]. The
common macrolevel modelling approach used to produce
a mobile source emission inventory is based on two pro-
cessing steps. The first step consists of determining a set of
emission factors that specifies the rate at which emissions
are generated, and the second step is to produce an estimate
of vehicle activity. The emission inventory is then calculated
by multiplying the results of these two steps together. This
methodology has two major shortcomings as follows.

Inaccurate Characterization of Traffic Activities. The overall
rate of error in 20-year traffic forecasts resulting from
strategic transport models is likely to be large due to the
uncertainty attached to input forecasts. The predictive ability
of current emission models depends on (a) the errors in the
input data used to estimate the amount and characteristics of
traffic flow—such data are usually the result of travel demand
modelling analysis that is known to have a large degree of
uncertainty associated with it—and (b) the adequacy and
quality of the information on emission rates that is used in
the models.

Emissions Factors May Not Represent Actual Conditions Ade-
quately. The current methods used for determining emission
factors are based on average driving characteristics embodied
in a predetermined driving cycle. Emissionmeasurements are
used as base values to reconstruct statistically the relationship
between emission rates and average vehicle speeds. These
“averaged speeds” are at variance with the vehicle dynamic
operation in microscope.

At the lowest level of the hierarchy, high-resolution
microscopic transportation models typically produce sec-
ond-by-second vehicle trajectories (location, speed, and
acceleration). Driving cycles used for vehicle emission testing
are also specified on a second-by-second speed-time profile.
Microscopic models should be integrated with real time
emission prediction models which are able to utilize high-
resolution transportation modelling results, thereby gener-
ating potentially more precise emission estimates. Several
commercial microsimulation traffic packages are widely used
to estimate the emissions [7].

There have been a number of modelling approaches on
microlevel proposed to estimate future vehicle emissions in
conjunction with the outputs of transport models. One such
approach is the use of engine power as the main predictive
basis. Another is the use of vehicle speed and acceleration
as predictive variables. There are three main types of mod-
elling approaches, namely, power-based, speed-based, and
hybrid models. Two models from each category, as shown in
Table 1, have been analysed [13]. It is found that power-based
models have good performance on CO

2
emission and fuel

consumption. In contrast, the predicted HC, CO, and NOx
do not match well with the measured results [8]. Moreover,
it is difficult to collect some coefficients associated with
instantaneous power, such as aerodynamic drag coefficient,
vehicle frontal area, and gearing. The results from speed-
based models highlight the need to model acceleration,

Table 1: Emission models assessed.

General
approach Model Reference

Power-based

Commonwealth scientific and
industrial research organisation
(CRISCO)

[8]

Comprehensive modal emissions
model (CMEM) [3]

Speed-based Energy and emissions model (VT) [9]
Instantaneous traffic emissions [10]

Hybrid Microscale modelling [11]
Microscale modelling [12]

deceleration, and cruising stages of the urban cycle separately.
The instantaneous traffic emissions model, a speed-based
approach which utilises the microtransportation simulation
result as an input, was found to have merit based on the
evaluation results. More complexmodels, whilst theoretically
more desirable, may mean additional input measurement
errors, such that the overall effectmaynot yieldmore accurate
estimates [14].

The instantaneous traffic emissions model developed by
Int Panis et al. [10] has been adopted by the AIMSUN traffic
simulation model [7]. The latter integrates traffic simula-
tion results with emission prediction equations. Emission
functions for each vehicle were derived with instantaneous
speed and acceleration as parameters using nonlinear mul-
tiple regression techniques. The model, shown in (1), was
calibrated using data from twenty-five vehicles (six buses,
two trucks, and seventeen cars) in Europe. The pollutants
modelled are nitrogen oxide (NOx), hydrocarbon (HC),
carbon dioxide (CO

2
), and particulate matter (PM):

𝐸
𝑛
(𝑡) = max [𝐸

0
, 𝑓
1
+ 𝑓
2
V
𝑛
(𝑡) + 𝑓

3
V
𝑛
(𝑡)
2
+ 𝑓
4
𝑎
𝑛
(𝑡)

+ 𝑓
5
𝑎
𝑛
(𝑡)
2
+ 𝑓
6
V
𝑛
(𝑡) 𝑎
𝑛
(𝑡)] ,

(1)

where 𝐸
0
is a lower limit of emission (g/s) specified for each

vehicle and pollutant type; V
𝑛
(𝑡) is instantaneous speed of

vehicle 𝑛 at time 𝑡; 𝑎
𝑛
(𝑡) is acceleration of vehicle 𝑛 at time

𝑡; 𝑓
1
to 𝑓
6
are emission constants specific for each vehicle and

pollutant type determined by the regression analysis.
For certain pollutants, whenever visual inspection of

the data plot reveals a clear distinction in the scatter for
acceleration and deceleration, the approach suggests that
different functional forms should be derived for different
driving modes, such as acceleration (with 𝑎

𝑛
(𝑡) ≥ 0.5m/s2),

cruising (with −0.5m/s2 ≤ 𝑎
𝑛
(𝑡) < 0.5m/s2), and decel-

eration (with 𝑎
𝑛
(𝑡) < −0.5m/s2). The modelling results for

pollutant emissions such as HC are unsatisfactory, as shown
in Section 4.

The current paper aims to develop vehicle emission
models for predicting emission pollutants other than CO

2
.

The models adopt genetic algorithm (GA) for selection of
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Table 2: Selected average-aged vehicles for model development.

Vehicle(1) Variant Odometer (km) Engine displacement (L) Mass (kg)
323 Protégé 75,615 1.6 1215
Echo — 53,859 1.5 921
Vectra CD 81,666 2.0 1317
323 Protégé 62,229 1.8 1142
Camry CSI 81,783 2.2 1395
Tarago GLi 90,749 2.4 1615
Pulsar LX 65,120 1.6 1067
Commodore Executive 95,979 3.8 1654
(1)All vehicles are 4-cylinder except the Commodore (V6).

the predicting variables. This paper is structured as follows:
Section 2 briefly describes the data sources used and the
selection and validation prior to the model development;
Section 3 proposes the model development approach; and
Section 4 then discusses the findings. Finally, some overall
conclusions and limitations are drawn from the results and
future research avenues are recommended.

2. Data Sources, Selection, and Validation

Thedata used for analysis in the current paper were extracted
from the Australian national in-service emissions study
(NISE2) [15], which was developed using a Composite Urban
EmissionsDriveCycle (petrol CUEDC).This cycle represents
typical vehicle journeys in a given metropolitan study area,
where data were collected in the Brisbane, Sydney, Mel-
bourne, Adelaide, and Perth areas. The emission rates for
CO
2
, CO, HC, and NOx of the test-bed vehicles from the

NISE2 fleet, which travels on the composite urban driving
cycle (CUEDC),were recorded second-by-second in addition
to the instantaneous speed. Prior to analysis, the integrity
of the emission measurements from NISE2 was reconfirmed
and corrected to enhance the reliability of the instantaneous
emissions using the method followed by Smit et al. [16]. In
addition, cold start affected datasets were filtered prior to
analysis by adopting an approach recommended by Favez
et al. [17]. Eight average-aged passenger vehicles (which had
travelled approximately 50,000–100,000 km each), as listed in
Table 2, were shortlisted from the NISE2 database for model
development. The vehicles selected are similar to Australian
vehicle fleet characteristics (e.g., in mileage and age) [18].
The instantaneous emission observations were averaged over
those vehicles.

The AIMSUN emission methodology was adopted for
further evaluation using the NISE2 data subset described ear-
lier. Each vehiclewas “driven” through the speed profile of the
CUEDC drive cycle which was simulated using a purpose-
specific program. The averaged CO

2
emission observations

from the selected eight vehicles were compared with the pre-
dicted second-by-second output from the AIMSUN model.
The goodness of fit, 𝑅2, for the two sets of data was 0.80, as
shown in Figure 1.
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Figure 1: CO
2
by AIMSUN model predictions and averaged

observed data.

3. Development of Emission Models

Microsimulation basedmodelling results for pollutants other
than CO

2
are usually unsatisfactory [12]. The current paper

proposes a methodology to improve those results. The con-
cept is briefly described below.

Currentmicroscopicmodels use a combination of instan-
taneous velocity and acceleration to predict various gaseous
pollutants including HC and CO. Gaseous pollutants such
as HC and CO are primarily formed during in-cylinder
combustion processes depending on many factors such as
air-fuel ratio, cylinder temperature and pressure, and engine
speed [19]. The formation of HC and CO rises in a rich fuel
environment.Thus, the fact of high correlation between CO

2

emission rate and fuel consumptionwas taken into account in
themodelling of these gaseous pollutants. In addition, vehicle
acceleration or deceleration leads to substantial change in fuel
injection per combustion cycle. The change in air-fuel ratio
forces the engine to adapt to a new equilibrium and tends
to lead to a transient variation in pollutant formation [20].
This effect may be compounded by dynamic effects in the
catalyst and exhaust system, such as catalyst malfunctioning,
which can cause a sudden increase of the pollutant emissions.
For these reasons, modelling of HC and CO, as the products
of incomplete combustion fuel, should take the time-lag
effect described above into consideration. Hence, several
“historical” variables (i.e., variables at previous time steps of
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𝑡-1, 𝑡-2, 𝑡-3, or 𝑡-4 seconds) of the time-lag effect are
introduced into the models as predicting variables.

A range of variables for the instantaneous and “historical”
velocity, acceleration, and CO

2
emission rate were selected

and tested:

[𝐵
0
, 𝑉
𝑖
, 𝐴
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,

Rate CO
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],

where 𝐵
0
is constant;𝑉

𝑖
is velocity at time 𝑖;𝐴

𝑖
is acceleration

at time 𝑖; Rate CO
2𝑖
is CO

2
emission rate at time 𝑖.

A total of 23 candidate predicting variables were identi-
fied. An exhaustive enumeration method is not a practical
alternative, while stepwise and stagewise regression pro-
cedures produce only local optimum solutions [21]. Cur-
rent highly divided emissions models that are reviewed in
Section 1 cannot provide any prototype of variable combina-
tion. Compared with other artificial intelligent algorithms,
unsupervised heuristic genetic algorithm is independent
from any a priori knowledge, such as training dataset. In
addition, the GA is a stochastic search process that mimics
the natural process of “survival of the fittest” through the
manipulation of a population of chromosomes [22]. With
proper binary encoding, the GA can deliver a fair hybrid
emission model which synthesizes variables of different
models reviewed in Section 1. To be pointed out, the GAmay
not deliver an optimized result due to premature convergence
and “Hamming cliff” problems [23]. However, it is more
difficult, but not impossible, for a GA to become trapped
in a local minimum unlike the more conventional gradient
methods [24].

The elite individual solution is a balanced one with
high accuracy and consisting of strong statistically related
variables. The GA programme was compiled using Matlab
8.4. A selective weighted fitness for the GA, (2), was used
to implement an automated variables selection procedure to
build the calibrationmodels based on least-square regression:

Fitness
𝑖
=

1

√∑
𝑁

1
(𝑃
𝑖
− 𝑂
𝑖
)
2

/𝑁

, (2)

where 𝑃
𝑖
= ∑𝛼

𝑖
𝛽
𝑖
Variable

𝑖
; 𝑃
𝑖
is estimated instantaneous

emission rate at time 𝑖;𝑂
𝑖
is observed instantaneous emission

rate at time 𝑖; 𝛼
𝑖
is binary logic control parameter after

regression analysis;

𝛼
𝑖
=

{

{

{

1 if 𝑃 value < 0.05 this variable is included

0 otherwise;
(3)

𝛽
𝑖
is coefficient derived from regression analysis;𝑁 is number

of observations.
𝑃
𝑖
is the prediction of emission rate as a product of

selected coefficients and the corresponding candidate vari-
ables whose 𝑃 value of the 𝑡-statistical analysis is lower than
0.05. The reciprocal relationship of root-mean-square error
enables the accurate prediction of solutions with high fitness
values.

Table 3: Parameters tuning of genetic operators.

Population size (𝑁) 600
Crossover rate (𝐶) 1
Crossover type Uniform crossover
Scaling method Sigma
Sigma scaling coefficient 1
Mutation rate (𝑀) 0.003
Mutation method Bit string
Selection strategy (𝑆) Pure selection

Figure 2 shows the flowchart of the GA application.
Firstly, chromosomes that represent feasible solutions of
a nonlinear optimisation problem are randomly generated
to form the initial population following the fitness test
(see (2)). Each individual chromosome in binary format
symbolises a potential solution to the emission modelling
problem. Figure 3 demonstrates an example of an individual
chromosome consisting of 23 bits. Each bit represents a
corresponding variable in the list of all potential variables.
The dichotomous data on each bit are the choice of “included
in the model” valued 1 or “not included in the model” valued
0.The size of the solution is therefore 223. In determining the
fitness value, the chromosome tends to take more variables
for better prediction accuracy. This may include irrelevant
candidate variables and undermine the robustness of the
model. In order to avoid this from happening, the calculation
of the emission rate prediction, 𝑃

𝑖
, was limited to those statis-

tically significant variables (𝑃 < 0.05). In order to achieve
acceptable solutions, the calculations of the fitness values and
selection of chromosomes continued.This procedure evolves
through many generations by a natural genetic process. The
genetic process includes three types of operation, namely,
crossover, selection, and mutation [25]. It repeats until the
number of iterations exceeds a predefined limit. The number
of chromosomes in a population and the number of iterations
are set to 600 and 100, respectively. The tuning of genetic
operator parameters follows the simple genetic algorithm
proposed byMitchell [25]; the details are presented inTable 3.

Figures 4(a) and 4(b) show the maximum and averaged
fitness reached over the iterations. The averaged fitness for
each generation increases substantially at the beginning stage
and reaches stability towards the end. The elite fitness trends
upward and fluctuates at the beginning. After 20 generations’
evolution, the fitness becomes mature. These results indicate
that the chromosome evolvements improve the accuracy of
the solution and reach a saturated condition eventually. After
30–40 different runs, the paper shortlists the results and
selects the modelling equation based on statistical analysis.
Table 4 shows three candidates for acceleration-phase HC
emission modelling. Based on modelling fitness and variable
significance, this paper selects candidate 1 to be the promising
one. As the GA program can be configured to enable the
mutation operator only, a random solution is generated by
a 600 × 100 random process. The chosen one is compared
with the random solution. However, the randomly selected
candidate is hardly a solution, due to variable significance
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Table 4: HC acceleration phase modelling candidates.

(a) Candidate 1

Modeling 𝑅2 0.6474
Variable name 𝐵0 𝐴 𝑉𝐴 𝑉

3
𝑉
2
𝐴 𝑉

𝑖−1
CO
2

CO
2𝑖−3

𝑃 value 0.0151 0.0008 0.00172 5.52𝐸 − 05 0.003202 1.03𝐸 − 06 7.94𝐸 − 13 0.016642

(b) Candidate 2

Modeling 𝑅2 0.6449
Variable name 𝐵0 𝑉 𝑉𝐴 𝑉

3
𝑉
2
𝐴 𝑉

𝑖−1
𝐴
𝑖−3

CO
2

𝑃 value 0.0088 0.00264 5.99𝐸 − 03 0.000214 1.94𝐸 − 02 5.54𝐸 − 03 0.035107 1.19𝐸 − 10

(c) Candidate 3

Modeling 𝑅2 0.6493
Variable name 𝐵0 𝐴 𝑉

2
𝑉
3

𝑉𝐴
2

𝐴
𝑖−4

CO
2

𝑃 value 0.0492 0.01617 5.2𝐸 − 08 1.57𝐸 − 07 0.036635 0.022996 3.23𝐸 − 14

Initial generation

Select variables by individual chromosome and calculate the fitness for each

New generation

End criteria 

Return elite individual chromosome (combination of variables) 

Selection Crossover Mutation

individual chromosome in the evolvement 

Figure 2: Flowchart of genetic algorithm.

0 1 1 0 1 1 0 1 0

m variables included of all
potential variables

· · ·

Figure 3: An individual chromosome.

constraint (𝑃 value). Hence the elite chromosome can be
justified as the optimal (or subprime) solution.

4. Results and Main Findings

4.1. General. The proposed GA approach was applied to the
HC pollutant for different driving modes, namely, accelera-
tion, cruising, and deceleration. The models for the emission
rate, 𝑌, from the ultimate chromosome are presented in
(4), (5), and (6), respectively. All the predicting variables

selected are statistically significant at 𝑃 < 0.05. Both the
instantaneous traffic emissions model (see (1)) and the newly
modified equation parameters were calibrated by least-square
regression on the same test-bed dataset that was used to
develop the newmodel. To conduct meaningful comparisons
of modelling-induced error, the goodness of fit, 𝑅2, for the
three driving modes, between the newly modified model
and model (1) is shown in Table 5. The proposed new
approach significantly improved the modelling results for
HC, although the prediction accuracy for the deceleration
component was relatively low. The deceleration component
accounts for 42% of total driving cycle duration, but the
summation ofHCdeceleration component only takes up 25%
of total cycle measurements. As a result, the deceleration
component does not play an important role as a percentage
of total emissions. Due to the multidimensionality of the
solution search space, the GA method is not certain to lead
to a global optimum when formulated as an optimization
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Figure 4: (a) Averaged fitness over generations. (b) Maximum averaged fitness over generations.

problem.GAhas a tendency to converge towards local optima
or even arbitrary points rather than the global optimum
of the problem. This means that it is not wise to sacrifice
short-term fitness to gain longer-term fitness. To tackle this
issue, the proposed GA methodology relies on the fitness
function, which enables quantification of individual solution
appropriateness in terms of the statistical significance of both
model accuracy and shortlisted variables. To test the fitness
function, the size of the population was increased to 2,000
in order to enable more potential solutions to search in the
multidimensional space, the results being similar to those
previously presented. Moreover, taking the HC acceleration
component as an example, the new proposed equation 𝑅2 is
slightly lower than the theoretical maximum value by which
an individual chromosome includes all candidature variables.
Hence, the new equation selected by the new algorithm is a
close approximation to the global optimum.

Acceleration Component
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Deceleration Component
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where 𝑌 is emission rate (g/s) for each vehicle and pollutant
type; 𝑉

𝑖
is velocity at time 𝑖; 𝐴

𝑖
is acceleration at time 𝑖;

Table 5: Results of model development: goodness of fit, 𝑅2.

Driving mode Overall Acceleration Cruising Deceleration
𝑅
2

GA-based model 0.80 0.65 0.75 0.15
Equation (1) model 0.69 0.47 0.60 0.08
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Figure 5: New model predicted versus measured HC.

Rate CO
2𝑖
is CO
2
emission rate at time 𝑖.𝐵

1
to𝐵
𝑛
are emission

coefficients for each vehicle and pollutant type.
The same experimental dataset was used to test the pre-

diction accuracy of the model. Figure 5 shows the correlation
between modelling predictions and HC measurements, and
Figure 6 illustrates the corresponding residuals plots.

4.2. Modelling Results and Validations. The proposed new
models were validated on different sets of data with various
vehicle size and make for different age ranges, namely, new
vehicles with mileages from 1,000 to 11,000 km; middle-aged
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Figure 6: New model residuals.

vehicles with mileages from 75,000 to 95,000 km; and older
vehicles with mileages from 130,000 to 140,000 km.

Comparisons of the goodness of fit, 𝑅2, of the overall
modelling results for the three vehicle age ranges, between
the proposed new models (summation of (4) to (6)) and the
instantaneous traffic emissions model (1) are shown in Tables
6(a) to 6(c), respectively. Overall, the emission prediction
results prove that the proposednewmodels provide improved
results.The newmodels are more robust and accurate for HC
prediction.

Similarly, this methodology is applied to other pollutants
including CO and NOx. The new CO emission prediction
equations for acceleration, cruising, and deceleration compo-
nents are shown in (7), (8), and (9), respectively. The overall
𝑅
2 for whole test-bed dataset is 0.70.
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Cruising
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Deceleration
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New NOx emission prediction equations for acceleration,
cruising, and deceleration components are shown in (10),

(11), and (12), respectively. The overall 𝑅2 for whole test-bed
dataset is 0.82:
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5. Paralleled Genetic Algorithm

Cantú-Paz [26] classified parallel GAs into three main types:

(i) Global single-population master-slave GA.
(ii) Single-population fine-grained GA.
(iii) Multiple-population coarse grained GA.

Single-population fine-grained GA and multiple-population
coarse grained GAs are suitable to tackle dynamic function
optimization problems [27]. It has an important role in
optimizing complex functions whose optima vary in time
(learning-like process). In a master-slave GA there is a single
population, but the evaluation of fitness is distributed among
several processors. Matlab 8.4 enables the full functionality
of the parallel language features by creating a special job on a
pool of workers and connecting the pool to the Matlab client
[28]. Distributed synchronous GA is based on distribution
of workload among processors during the fitness function
evaluation phase followed by single central population regen-
eration. Hence, themassive fitness computations are assigned
to workers in order to improve the computation efficiency.
When testing on a workstation with i7 CPU (3.6GHz) and
32Gmemory, one generation of genetic algorithm consumes
44.0 seconds without paralleled configuration and 11.8 sec-
onds with 4-worker paralleled configuration.

6. Conclusions

Past research on modelling vehicle emissions other than
CO
2
reveals relatively weak predicting results. The current

paper proposes a GA based methodology to determine the
contributing variables for predicting vehicle emissions. This
method provides a new approach to the selection of a
combination of variables among a large potential set. The
applications of the new models show enhanced results for
modelling vehicle emissions, supporting the new variable
selection methodology using GA. The modified fitness func-
tion for the proposedGAdemonstrates the ability to establish
a balancedmultivariate model. In addition, the improvedHC
prediction results, obtained by introducing “historical” CO

2
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Table 6: (a) Model validation, 𝑅2 (new vehicles). (b) Model validation, 𝑅2 (middle-aged vehicles). (c) Model validation, 𝑅2 (older vehicles).

(a)

Vehicles
323 Echo Vectra 323 Camry Tarago Pulsar Commodore

GA-based model 0.68 0.59 0.84 0.51 0.82 0.80 0.41 0.84
Equation (1) model 0.61 0.55 0.79 0.44 0.80 0.72 0.38 0.80

(b)

Vehicles
323 Echo Vectra 323 Camry Tarago Pulsar Commodore

GA-based model 0.68 0.59 0.84 0.51 0.82 0.80 0.41 0.84
Equation (1) model 0.61 0.55 0.79 0.44 0.80 0.72 0.38 0.80

(c)

Vehicles
Festiva Lancer Astra Civic Astra Lancer Pulsar

GA-based model 0.69 0.74 0.61 0.23 0.79 0.85 0.62
Equation (1) model 0.56 0.69 0.53 0.16 0.67 0.82 0.27

emission rates, support the time-lag effect hypothesis. The
proposed GA methodology provides a solution for a com-
binatorial optimization problem, providing high modelling
accuracy with statistically significant relationships between
the selected predicting variables and the dependant variable.

Future research focus should extend the evaluation of
models to include the full set of particles matter (PM). In
addition, the accuracy of new models may be compromised
when driving with loading or in hilly terrain. Moreover, the
developedmodels produce relatively low accuracy in predict-
ing emissions in deceleration mode. According to Heywood
[19], HC, CO, and NOx emissions depend on the fuel-air
equivalence and injection timing. The sharp deceleration
(with 𝑎

𝑛
(𝑡) < −0.5m/s2) results in the misbalance of fuel-air

equivalence and variance of injection timing.
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The employed energymanagement strategy plays an important role in energy saving performance and exhausted emission reduction
of plug-in hybrid electric vehicles (HEVs). An application of dynamic programming for optimization of power allocation is
implemented in this paper with certain driving cycle and a limited driving range. Considering the DP algorithm can barely be
used in real-time control because of its huge computational task and the dependence on a priori driving cycle, several online useful
control rules are established based on the offline optimization results of DP. With the above efforts, an online energy management
strategy is proposed finally. The presented energy management strategy concerns the prolongation of all-electric driving range as
well as the energy saving performance. A simulation study is deployed to evaluate the control performance of the proposed energy
management approach. All-electric range of the plug-in HEV can be prolonged by up to 2.86% for a certain driving condition.
The energy saving performance is relative to the driving distance. The presented energy management strategy brings a little higher
energy cost when driving distance is short, but for a long driving distance, it can reduce the energy consumption by up to 5.77%
compared to the traditional CD-CS strategy.

1. Introduction

Circumstance pollution, energy crisis, and global warming
aggravated by urban transportation have attracted remark-
able attention recently, impelling the rapid development of
alternative energy-based vehicles, among which the HEVs
have been recognized as a promising type of vehicle due to
their potential to enhance the energy economy and reduce
exhausted emission [1]. The advantages of HEVs benefit
from two onboard energy sources, gasoline and electricity,
which enable the power demand to be split between the
engine and onboard battery pack. According to the capacity
of onboard battery pack and its capability to be recharged
directly from power grid, HEVs can be further categorized
into normal HEVs and plug-in HEVs. Unlike the traditional
normalHEVs that can only be operated at a charge sustaining
(CS) manner, plug-in HEVs can also be operated at charge

depleting (CD) manner thanks to the possession of onboard
large capacity battery pack [2]. Plug-inHEVs can achieve bet-
ter energy saving performance compared to normal HEVs,
but the operation manners and power allocation become
more complicated accordingly due to multiple operation
manners.

Energy management strategy plays a significant role in
the supervisory control of both normal HEVs and plug-in
HEVs to reach the optimal power split policy [3–5]. The
energy management problem can be normally formulated
as an optimization problem, which is to minimize a cost
function by determining the rational operation manner and
optimal power allocation. To resolve this problem, several
advance optimization algorithms have been employed [6–11],
the most representative of which is dynamic programming
(DP). For example, Zhang and Xiong [12] deployed DP-based
adaptive energymanagement on different driving conditions,
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incorporating a fuzzy driving condition recognition algo-
rithm for plug-in HEVs. Pérez and Pilotta [13] implemented
DP to resolve the energy management problem of HEVs on
the finite time horizon and used the optimization results as
a benchmark for other strategies’ design and components
sizing optimization. The implementation of DP relies on an
a priori driving cycle. According to the driving cycle it uses,
specific or random, DP algorithm can be further divided into
two categories: deterministic DP and stochastic DP.

Although the deterministic DP is effective in reaching the
global optimality, it can barely be used in real-time control
because the specific driving cycle is unknown. A viable
method for the deterministic DP to be utilized in the online
application is to operate DP offline with some representative
driving cycles first and then extract online control policy
from the optimization results [14]. The drawback of this
method is that the extraction process may lose optimality to
some extent. But control performance of the control policy
extracted from offline optimization has been recognized as
better than that of intuition-based control algorithm [15].
Unlike deterministic DP, stochastic DP is to implement DP
algorithm based on prediction of future driving condition,
which is obtained by stochastic method using a discrete-time
Markov chain [16, 17].The potential of stochastic DP if useful
information of driving cycle is available has been investigated
in [18] by dividing the prediction into three levels. Stochastic
DP can achieve a near-optimal control performance, and it
is time-invariant and capable of being implemented online.
Stochastic DP does not rely on a specific known driving cycle
as requisite to implement, but it is sensitive to the real-world
driving condition as well because the transition probabilities
in Markov chain are based on certain collected driving cycles
[19]; if the actual driving condition is obviously different from
the collected driving data, stochastic DP algorithm cannot
always guarantee the validity.

The method that extracts online control policy based on
offline DP optimization is employed in this paper. Three
contributions have been made. (1) The deterministic DP
algorithm is implemented based on certain driving cycle and
a limited driving distance.ThepresentedDP algorithm-based
optimal strategy is to determine the optimal control policy
of power allocation between engine and battery pack in the
CS operation manner. (2) An online energy management
approach is proposed for the uncertain real-time control
application with consideration of the prolongation of all-
electric driving range. In this approach, the CD manner
and CS manner are switched not only by battery state of
charge (SoC) but also by the power request level at each
time step. Power allocation in CS manner is determined by
the control policy extracted from DP to guarantee the near-
optimal energy saving performance. (3) The performance of
the presented energy management approach is evaluated by
a simulation study and compared to the traditional CD-CS
strategy.The correlation between energy saving performance
and driving distance is preliminarily disclosed.

The remainder of this paper is organized as follows:
configuration of the studied plug-in HEV is introduced and
modeled in Section 2; the formulation of energy manage-
ment problem and dynamic programming algorithm and its
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Figure 1: Configuration of the plug-in HEV power system.

implementation are described in Section 3.The online energy
management strategy against uncertain driving condition
is proposed in Section 4. Simulation results and analysis
are shown in Section 5 while the conclusions are listed in
Section 6.

2. System Model

Configuration of the powertrain in the studied plug-in HEV
is shown in Figure 1. An electric motor is coupled through an
automatic mechanical transmission (AMT) on the fist axle.
A lithium-ion battery pack is used as energy storage system
(ESS) while the engine-generator set is used as auxiliary
power unit (APU). Parameters of the main components are
listed in Table 1.

Dynamics effects of the powertrain components are
neglected because they are much faster than energy con-
sumption variation and do not affect the power flow distri-
bution [20]; thus, the power balance relationship is modeled
as

𝑃ESS (𝑡) + 𝑃APU (𝑡) = 𝑃req (𝑡) , (1)

where 𝑃ESS, 𝑃APU are output power from ESS and APU,
respectively, and 𝑃req is defined as the power request of
driving electric motor, calculated as follows:

𝑃ESS (𝑡) =
{{

{{

{

𝑃
𝐵 (𝑡) 𝜂batt, 𝑃

𝐵
≥ 0

𝑃
𝐵 (𝑡)

𝜂batt
, 𝑃

𝐵
< 0,

𝑃APU (𝑡) = 𝑃
𝐸 (𝑡) 𝜂𝐴,

𝑃req (𝑡) =
{

{

{

𝑇
𝑚 (𝑡) 𝜔𝑚 (𝑡)

𝜂mot
, 𝑇

𝑚 (𝑡) ≥ 0

𝑇
𝑚 (𝑡) 𝜔𝑚 (𝑡) 𝜂mot, 𝑇

𝑚 (𝑡) < 0,

(2)

where 𝑃
𝐵
(𝑡) is battery power, positive value represents dis-

charging, negative value represents charging, 𝑃
𝐸
(𝑡) is engine

power, 𝑇
𝑚

is the torque of electric motor, positive value
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Table 1: Parameters of main components.

Components Parameters Value

Engine Peak power (kW) 75
Optimal point (kW@r⋅min−1) 30@2200

Electric motor
Peak power (kW) 155

Maximum torque (Nm) 780
Maximum speed (r/min) 5500

Battery Capacity (Ah) 85
Rated voltage (V) 380

represents driving, negative value represents braking, 𝜔
𝑚
is

the rotate speed of electric motor, and 𝜂batt(𝑡), 𝜂𝐴(𝑡), and
𝜂mot(𝑡) are the efficiency of battery pack, APU, and electric
motor, respectively.

2.1. Battery Model. Battery pack is modeled by an equiva-
lent circuit analogy. The impact of temperature variation is
neglected in this study; then the battery terminal voltage is

𝑉batt (𝑡) = 𝑉oc (SoC (𝑡)) − 𝑅
0 (SoC (𝑡)) ⋅ 𝐼batt (𝑡) , (3)

where 𝑉oc and 𝑅
0
are the open circuit voltage and internal

resistance.
The Ampere-hour counting approach is adopted to cal-

culate SoC:

SoC (𝑡) = SoC (𝑡
0
) −

1

𝑄nom
∫
𝑡

𝑡0

𝐼batt (𝑡) 𝑑𝑡, (4)

where 𝑄nom is the nominal capacity of battery.

2.2. Engine-Generator Model. The electric generator driven
through a speed-increase gearbox by the engine is connected
with the DC bus by an uncontrolled rectifier. The equivalent
electric circuit diagram of electric generator and rectifier is
shown in Figure 2, while Figure 3 gives the efficiency map of
the engine. Based on the equivalent circuit, the relationship
among the engine-generator output current, the DC bus
voltage, the torque, and the speed of the electric generator can
be obtained as

𝜔
𝑔 (𝑡) =

𝑈dc (𝑡)

𝐾
𝑒
− 𝐼
𝐴 (𝑡) 𝐾𝑥

,

𝑇
𝑔 (𝑡) = 𝐾

𝑒
𝐼
𝐴 (𝑡) − 𝐾

𝑥
𝐼
𝐴 (𝑡)
2
,

(5)

where 𝑇
𝑔
(𝑡) and 𝜔

𝑔
(𝑡) are the output torque and speed of

the electric generator, respectively, 𝐼A(𝑡) is the current of DC
bus,𝐾

𝑒
is the equivalent electromotive force coefficient,𝐾

𝑥
is

the equivalent resistance coefficient, and𝑈dc(𝑡) is the DC bus
voltage.

According to the electric generator torque and the target
engine speed, the engine torque is dynamically adjusted by
the engine controller. The relationship between the engine
torque 𝑇

𝑒
and the electric generator torque 𝑇

𝑔
is

𝑇
𝑒 (𝑡) =

1

𝑖
𝑧
𝜂
𝑧

(𝑇
𝑔
− (

𝐽
𝑒

𝑖2
𝑧

+ 𝐽
𝑔
)
𝑑𝜔
𝑔 (𝑡)

𝑑𝑡
) , (6)
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Figure 2: Equivalent circuit of generator and rectifier.
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where 𝐽
𝑒
is engine rotational inertia, 𝐽

𝑔
is the electric gener-

ator rotational inertia, and 𝑖
𝑧
and 𝜂

𝑧
are the speed-increase

gearbox transmission ratio and mechanical efficiency.

2.3. Electric Motor Model. The electric motor is modeled
by using the steady-state experimental data with a dynamic
correction. Figure 4 gives the external characteristic and
efficiency map of the adopted electric motor. The torque
of electric motor is determined by the driver operation, as
shown in (7), in which the dynamic response process is
equivalent to a first-order delay:

𝑇
𝑚 (𝑡) =

{{

{{

{

1

1 + 𝜏𝑠
𝑇
𝑚 max (𝜔𝑚 (𝑡)) (𝜆

∗

𝑑
− 𝜀𝑢) , 𝜆∗

𝑑
≥ 0

1

1 + 𝜏𝑠
𝑇
𝑚 min (𝜔𝑚 (𝑡)) 𝜆

∗

𝑑
, 𝜆∗

𝑑
< 0,

(7)

where 𝜏 is the time constant of torque dynamic response,𝜆∗
𝑑
is

the operation signal of driver pedals, positive value represents
driving pedal, negative value represents braking pedal,𝑇

𝑚 max
and 𝑇

𝑚 min are the upper and lower limit of motor torque
under the current motor speed, 𝑢 is the vehicle velocity, and
𝜀 is a small positive constant, used as a velocity feedback gain
to improve the control stability.

2.4. Vehicle Model. Since the electric motor is mechanically
connected to the wheel, the motor rotate speed 𝜔

𝑚
(𝑡) can be
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calculated from the vehicle speed. For the energy manage-
ment problem, the yawing force is neglected, and then the
longitudinal dynamics is

𝑢 (𝑡)

=
1

𝛿𝑚
∫
𝑡

𝑡0

(
𝑇
𝑚 (𝑡) 𝑖𝑇𝜂mot

𝑟
𝑤

− 𝑚𝑔𝜓 −
1

2
𝐶
𝑑
𝜌
𝑎
𝐴𝑢 (𝑡)

2
)𝑑𝑡,

(8)

where𝑚 is vehicle mass, 𝛿 is correction coefficient of rotating
mass, 𝑔 is gravitational acceleration, 𝐶

𝑑
, 𝜌
𝑎
, and 𝐴 are

coefficient of air resistance, air density, and vehicle frontal
area, respectively, 𝜓 is coefficient of road resistance, 𝑖

𝑇
is

transmission ratio, and 𝑟
𝑤
is the radius of wheel.

The values of coefficients in models are shown in Table 2.

3. Optimization Algorithm

3.1. Formulation of Optimal Energy Management Problem.
The purpose of DP algorithm here is to obtain the optimal
power allocation between battery pack and engine in CS
manner. As mentioned above, plug-in HEVs can be operated
both in CD manner and in CS manner. The engine turns
off in CD manner and battery pack is used to supply power
to electric motor single-handedly so as to achieve a clean
and economically driving manner. Obviously, optimization
process does notwork at this situation because only electricity
is consumed. When CS manner is adopted, power demand is
split between engine and battery; this is where DP algorithm
comes in to play; the optimization objective is denoted as the
summation of energy cost from two energy sources:

𝐽 (𝑢) = 𝑚equ = ∫
𝑡𝑓

𝑡0

(�̇�
𝑓 (𝑡) + �̇�batt (𝑡)) 𝑑𝑡, (9)

where𝑚
𝑓
and𝑚batt are the fuel and electricity consumption,

respectively, 𝑡
0
represents the time moment that the vehicle

switches to CS manner, and 𝑡
𝑓
is the terminal time of CS

manner.

Table 2: The values of coefficients in models.

The coefficients Value or range
𝜆
𝑑

[−1, 1]
𝜀 0.002
𝑖
𝑧

2
𝐾
𝑒

1.65
𝐾
𝑥

0.00037
𝜏 0.46
𝐶
𝑑

0.3
𝐴 (m2) 2.2
𝜓 0.018

Considering the battery will be unsafe when SoC is quite
low, a penalty function is introduced into the “cost function,”
described as

𝐽 (𝑢) = 𝑚equ = ∫
𝑡𝑓

𝑡0

(�̇�
𝑓 (𝑡) + �̇�batt (𝑡)) 𝑑𝑡 + 𝜎 (SoC) , (10)

where 𝜎(SoC) is a penalty value when SoC is quite low.
The energy cost rate of oil and electricity can be calculated

by

�̇�
𝑓 (𝑡) = 𝑓

𝐸
(𝜔opt (𝑃𝐸 (𝑡)) , 𝑃𝐸 (𝑡)) ⋅ 𝑃𝐸 (𝑡) ,

�̇�batt (𝑡) = 𝑄equ ⋅ 𝑃𝐵 (𝑡) ,
(11)

where 𝑓
𝐸
( ) is the look-up table function from engine effi-

ciency map, 𝜔opt is rotate speed of engine corresponding
to optimal efficiency, and 𝑄equ is the equivalent factor to
transform the electric energy to fuel consumption.

The control variable is set as 𝑢 = [𝑃
𝐸
, 𝑃
𝐵
]𝑇; thus, the

optimal control problem can be described as to find an
optimal control policy 𝑢∗ to minimize the cost function:

𝐽 (𝑢
∗
) ≤ 𝐽 (𝑢) ∀𝑢 ∈ 𝑈. (12)

To ensure the optimal control policy obtained by DP
belongs to feasible solutions, the control variables are subject
to some constraints.

3.1.1. Inequality Constraints. Inequality constraints define
the power limitations for the operation characteristics of
components in power system, described as

0 ≤ 𝑃
𝐸
≤ 𝑃
𝐸 max,

𝑃
𝐵 min ≤ 𝑃

𝐵
≤ 𝑃
𝐵 max,

SoCmin ≤ SoC ≤ SoCmax,

(13)

where 𝑃
𝐸 max is upper limit of engine power, 𝑃batt min and

𝑃batt max are upper limit and lower limit of battery power,
respectively, and SoCmin and SoCmax are the upper limit and
lower limit of battery SoC, respectively.

3.1.2. Equality Constraints. The engine power and battery
power are subject to the equality constraint described in (1).
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The power request and battery SoC are used to represent
system state, denoted as 𝑥 = [𝑃req, SoC]

𝑇; the equality
constraint of initial system state is

𝑥 (𝑡
0
) = 𝑥
0
, (14)

where 𝑥
0
is the initial system state when CS manner is

switched on.
The system state is uncertain at terminal due to the

existence of CDmanner.Therefore, the equality constraint of
terminal should be eliminated for plug-in HEVs. However, in
order to implement the DP algorithm, an equality constraint
is put on the terminal state, described as

𝑥 (𝑡
𝑓
) = 𝑥
𝑓
, (15)

where 𝑥
𝑓
is the system state at the end of CS manner.

3.2. Dynamic Programming. A deterministic DP algorithm
is employed to resolve the optimization problem formulated
above. DP is a discrete-time global optimal algorithm based
on a property that no matter what the previous decisions
constitute, the remaining decisions should be an optimal
policy. Firstly the previous control problem is rewritten in a
discrete-time form for DP application, as shown in Figure 5.
At each time step 𝑘 (𝑘 = 𝑛−1, 𝑛−2, . . . , 0), the function 𝐽when
moving from the time step 𝑘 to the end of the optimization
horizon is calculated.

The optimization principle is applied from the end step;
when 𝑘 = 𝑛, there is 𝐽

𝑛
(𝑥) = 𝜑(𝑥

𝑛
). Then for each step,

𝐽
𝑘 (𝑥) = 𝐽

𝑘+1 (𝑥) +min
𝑢𝑘∈𝑈

(𝐿 (𝑥
𝑘
, 𝑢
𝑘
, 𝑡)) . (16)

Starting from the end step to first step, the total cost can
be deduced as

𝐽
0 (𝜋) = 𝜑 (𝑥

𝑛
) +

𝑛−1

∑
0

𝐿 (𝑥
𝑘
, 𝑢
𝑘
, 𝑡) , (17)

where 𝜋 = [𝑢
0
, 𝑢
1
, . . . , 𝑢

𝑛−1
] is the discrete control policy.

After the DP operates from the end step to the start
point, the optimal control policy 𝜋∗ can be determined. Since
engine power and battery power are subject to an equality
constraint, engine power 𝑃

𝐸
is chosen as the control variable

of DP to be discretized at each iterative step, as shown in
Figure 3. The terminal state variable is set in advance and
then, at each step, SoC

𝑘
can be deduced by SoC

𝑘+1
with the

control policy 𝑃
𝐸
(𝑘):

SoC (𝑘) = SoC (𝑘 + 1) +
(𝑃req (𝑘) − 𝑃

𝐸 (𝑘)) Δ𝑡

𝜂batt𝑄nom
. (18)

3.3. Implementation of Optimization Algorithm. Two driving
cycles (HWFET and IM240, as shown in Figure 6) are used to
implementDP algorithm to resolve the previous optimization
problem. As the power allocation is quite clear in CDmanner,
DP is only employed to obtain the optimal power allocation
in CS manner, in which the battery and engine output power
together meet the power demand.
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Figure 5: Discrete-time state for DP algorithm.
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Figure 6: Driving cycles for DP implementation.

Figure 7 shows the optimization results of power alloca-
tion in two driving cycles. Although DP cannot be directly
used in real-time control, it can provide some useful informa-
tion about the rational power allocation. Two thresholds 𝜒

1

and 𝜒
2
are defined as engine power control instructions with

the analysis of DP optimization results, described as follows:

(1) It can be concluded that the engine is turned off byDP
when the power request from engine is low. Thereby,
𝜒
1
is chosen as the threshold to determine the lower

limit of the engine output power (here, 𝜒
1
is assigned

as 30 kW).
(2) Similarly, 𝜒

2
is defined as a threshold corresponding

to the upper limits of engine output power in Figures
7(a) and 7(c) (here, 𝜒

2
is assigned as 42 kW). When

power request exceeds this threshold, the rest of
power demand is provided by the battery.

4. Online Energy Management Strategy

Based on the optimization results of power allocation by DP,
some specific control rules will be extracted and further form
the online energy management strategy in this section. As
mentioned above, the operation manner of plug-in HEVs is
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Figure 7: Optimization results of DP algorithm from two driving conditions. (a) Engine power in HWFET. (b) Battery power in HWFET.
(c) Engine power in IM240. (d) Battery power in IM240.

divided into CD and CS manner. The driving range covered
by CD manner is zero emissions, referred to as all-electric
range (AER). In existing research results, the most common
used online energy management approach is CD-CS strategy
[21], which utilizes the CD manner at first and switches to
CS manner when a long driving distance is required; the
boundary between CD and CS manner is usually controlled
according to the threshold of battery SoC. The shortage of
CD-CS strategy is that the control policies are independent
with power request of driving condition. For example, if
the front part of the route has a quite high power request,
according to the CD-CS strategy, vehicle will operate at CD
manner at first and the electricity will be consumed at a
rapid speed, resulting in a very short AER. In this paper,
prolongation of AER is considered as a control objective of
the online energy management.

The presented energy management strategy contains two
layers: the top layer is to determine the operationmanner and
the bottom layer concerns the specific power allocation based
onDP. Figure 8 shows operationmanner control policy in the
top layer. Unlike the traditional CD-CS strategy that uses a
clear boundary to divide the entire trip intoCDandCS stages,
here CD manner and CS manner are fused together with
each other during vehicle utilization. Besides battery SoC, the
power request level at each time is a reference of operation
manner control as well. The specific control rules in the top
layer can be further described as follows:

Critical Condition 1: High Power Request. When 𝑃req
exceeds a threshold 𝑃

𝑀
, no matter how high the

battery SoC is, the vehicle operation is switched to CS
manner, denoted as CS(𝑃), representing the fact that
this CS manner is triggered by power request. The
engine output power, according to DP, electricity will
continue being consumed in this manner due to the
high 𝑃req, but the rate of electricity consumption is
reduced.
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Figure 8: Schematic diagram of online operation manner control
strategy. (a) Power request. (b) Operation manner: CD or CS. (c)
Battery SoC.

Critical Condition 2: Low SoC. CS manner is adopted
when SoC reaches the threshold SoCLow, denoted as
CS(𝐵), representing the fact that this CS manner is
triggered by battery SoC. Different from CS(𝑃), in this
manner, electricity is not utilized to supply the power
request any longer.
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Figure 9:The adopted driving cycles in simulation study. (a), (b) Speed profile and power request, respectively, in cycle 1. (c), (d) Speed profile
and power request, respectively, in cycle 2. (e), (f) Speed profile and power request, respectively, in cycle 3.

Critical Condition 3: LowPowerRequest andHigh SoC.
The vehicle is operated at CD manner when 𝑃req is
below 𝑃

𝑀
and battery SoC is higher than SoCLow.

In control algorithm of bottom layer, power allocation is
based on the optimization result fromDP. Two thresholds are
used to divide the engine power into three parts according
to power request. To achieve the minimum of cost function,
DP turns engine off when the power request is low. This
control policy reduces the energy consumption but increases
the start-stop times of engine. Consequently, the power
allocation is modified when power request is low. The power
allocation control policy in bottom layer is described as

if 𝑃req (𝑡) > 𝑃
𝑀

and SoC ≥ SoCLow, calculate:

𝑃
𝐸 (𝑡) =

{{{{

{{{{

{

𝜒
2

if 𝑃req (𝑡) > 𝜒
2

𝑃req (𝑡) if 𝜒
1
< 𝑃req (𝑡) ≤ 𝜒

2

𝜒
1

if 𝑃req (𝑡) ≤ 𝜒
1

else if SoC < SoCLow, calculate:

𝑃
𝐸 (𝑡)

=
{

{

{

min {𝑃
𝐸 max, 𝑃req (𝑡)} if 𝑃req (𝑡) > 𝜒

1

𝜒
1

if 𝑃req (𝑡) ≤ 𝜒
1

else

𝑃
𝐸 (𝑡) = 0,

(19)
where 𝑃

𝑒 max is the maximum of engine power and 𝜒
1
and 𝜒

2

are two thresholds of engine power which are predetermined
by DP.

5. Simulation Results and Discussion

The presented energy management approach is evaluated by
a simulation study in this section. Three driving cycles are
used as simulation conditions. The speed profiles and power
requests of the adopted driving cycles are shown in Figure 9.
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Figure 10: Simulation results of power allocation. (a), (b) Engine power and battery power, respectively, in presented strategy. (c), (d) Engine
power and battery power, respectively, in CD-CS strategy.

To better analyze and assess the effectiveness of the presented
online energy management approach, the traditional CD-CS
strategy is adopted as a benchmark.

The simulation is repeated through the driving cycle until
the driving distance exceeds 60 km to make sure that the CS
manner could be reached. Results of power allocation of two
strategies in the three driving cycles are given in Figures 10–
12, respectively. The length of all-electric range is defined as
the summation of driving distance covered by CD manner.
The engine power indicates the distribution of CDmanner in
both strategies. In the presented energymanagement strategy,
the CD manner and the CS(𝑃) manner are interlaced while
the boundary of CD manner and CS manner is quite clear
in CD-CS strategy. This control performance will refrain the
battery from the overquick electricity consumption rate when
the battery SoC is high. At the last part of simulation, the
engine power is enhanced and battery no longer outputs
power because the electricity in battery is exhausted and the
CS(𝐵) manner is switched on. From the simulation result of
battery power, it is clear that the electricity consumption
rate in the presented strategy is lower than that in CD-CS

Table 3: The AER results in three cycles.

Cycles The presented
strategy

CD-CS
strategy Prolongation

1 45.76 km 44.61 km 2.58%
2 64.65 km 62.85 km 2.86%
3 65.16 km 64.03 km 1.76%

strategy at most situations and most of the transient large
power discharge situations in CD-CS strategy are eliminated
in the presented strategy. The lower battery power can result
in a more healthy battery working condition and a probably
longer AER. The lengths of AER with two strategies have
been recorded in three simulation driving cycles, described
in Table 3. Compared to traditional CD-CS strategy, the
presented strategy can prolong the ARE by up to 2.86% at
certain driving condition.

To assess the energy saving performance of the presented
strategy with uncertain driving distance, the comparison
of energy cost between presented strategy and traditional
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Figure 11: Simulation results of power allocation. (a), (b) Engine power and battery power, respectively, in presented strategy. (c), (d) Engine
power and battery power, respectively, in CD-CS strategy.

CD-CS strategy is calculated at 20 km, 40 km, and 60 km,
respectively. The comparison results in three driving cycles
are given in Figure 13. Apparently, the performance of energy
saving in the presented strategy is relative to the driving
distance. When the trip is quite short, the traditional CD-CS
strategy has an obvious advantage. When driving distance is
40 km, energy cost with the presented strategy is lower than
that with traditional CD-CS strategy by 5.77% in driving cycle
1. When the driving distance reaches 60 km, the reduction
of energy consumption compared to CD-CS strategy is
4.28%, 4.67%, and 4.06%, respectively, in three driving cycles.
This result indicates that the presented strategy can achieve
a better energy economy when driving distance is quite
long, but for a short distance trip, the traditional CD-CS
strategy still owns its advantage in terms of energy saving
performance.

6. Conclusions

A novel DP-based online energy management approach is
proposed for the plug-in HEVs in this paper. The presented
approach utilizes control policy extracted from optimization

results of DP to reduce the energy consumption. Both the
power request and the battery SoC are used to control
the operation manners for the prolongation of AER. Three
driving cycles are employed to evaluate the presented strategy.
Simulation results indicate that the AER in the presented
approach can be extended by up to 2.86% compared to CD-
CS strategy. The comparison result of energy saving perfor-
mance between the presented strategy and traditional CD-CS
strategy is related to the driving distance. For some certain
driving conditions, the reduction of energy consumption can
be up to 5.77%.
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Figure 12: Simulation results of power allocation. (a), (b) Engine power and battery power, respectively, in presented strategy. (c), (d) Engine
power and battery power, respectively, in CD-CS strategy.
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An autonomous coil alignment system (ACAS) using fuzzy steering control is proposed for vehicles with dynamicwireless charging.
Themisalignment between the power receiver coil and power transmitter coil is determined based on the voltage difference between
two coils installed on the front-left/front-right of the power receiver coil and is corrected through autonomous steering using fuzzy
control. The fuzzy control is chosen over other control methods for implementation in ACAS due to the nonlinear characteristic
between voltage difference and lateral misalignment distance, as well as the imprecise and constantly varying voltage readings from
sensors.The operational validity and feasibility of theACAS are verified through simulation, where the vehicle equippedwithACAS
is able to align with the power transmitter in the road majority of the time during operation, which also implies achieving better
wireless power delivery.

1. Introduction

It is notable that commercialization of electric vehicles (EVs)
is becoming more widespread around the world in order
to reduce the serious issues related to global warming and
energy depletion that are being faced today. However, the
EV poses some major flaws which are its high cost and
long charging times, which inevitably directs consumers to
still resort towards conventional internal combustion engine
(ICE) vehicles. Those major flaws are mainly caused due to
the drawbacks of current battery technology. To minimize
the drawbacks caused from batteries, EVs with dynamic
wireless charging systems have been developed. Dynamic
wireless charging system allows the vehicle to charge in real
time while in motion, which also allows the reduction of
the overall battery capacity in the vehicle. This provides
the benefit of reducing overall vehicle cost and reduced
charging times. Dynamic wireless charging systems are a part

of wireless power transfer (WPT) technology, where power
can be transferred from one circuit to another circuit without
any physical contact or wiring. WPT technologies are being
studied widely around the world as an anticipation to reduce
or eliminate any physical wiring elements that restrict power
supply to electric or electronic devices [1]. WPT technology
has been introduced by N. Tesla in 1914, but it is not until
recently that WPT technology has been applied into com-
mercial electronic devices, biomedical products, industrial
applications [1–4], and now stationary and dynamic wireless
charging vehicles.

A WPT system consists of the power transmitter portion
and power receiver portion. The power transmitter portion
is composed of a power source and coil, where the power
source is generated into an electromagnetic field as it enters
through the coil. The power receiver portion, which consists
of another coil, will convert the received electromagnetic field
into usable energy that can power another source [5–7].
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For everyWPT system, there is a specific alignment range
between the power transmitter and power receiver in which
maximum power can be transferred, and this alignment
range will vary by system due to its intrinsic parameters
such as resistance, inductance, and capacitance [2].When the
range goes past the specific alignment, the power transfer
capacity will drop or become near zero in certain cases
[7].

In the case of dynamic wireless charging systems for road
vehicles, keeping the alignment range becomes more difficult
since the vehicle’s lateral displacement will continuously
change during motion. To achieve maximum power, the
driver will have to pay careful attention in keeping the power
receiver on the vehicle aligned with the power transmitter,
which is installed beneath the center of each road lane. Even
when it is assumed that the driver kept the vehicle aligned
with the center of the road lane, it does not guarantee that
the vehicle’s receiver is in perfect alignment with the power
transmitter, since the power transmitter is not visible (as
it is installed beneath the road). In addition, keeping the
vehicle aligned at the center of the road will require a lot
of concentration, which can distract the driver to oncoming
dangers and can lead to potential car accidents.

To resolve such misalignment issues in dynamic wireless
charging systems, many researches have been conducted
to increase their alignment range through efficient power
receiving modules [6, 8–10]. However, in certain cases, these
methods may become difficult or very costly to implement
[2]. Therefore in this paper, an autonomous coil alignment
system (ACAS) is proposed, which can be implemented
for generally all vehicles equipped with dynamic wireless
charging systems. The proposed system will detect the mis-
alignment between the power receiver and power transmitter
through sensors. When misalignment is detected, the vehicle
will adjust itself through autonomous steering control in
order to correct the alignment between the vehicle’s power
receiver and the power transmitter. Through this system,
the vehicle will be able to achieve maximum power delivery
with minimum driver effort. In addition, since the ACAS
operates in a similar manner with the lane keeping assist
system (LKAS), the ACAS will be able to keep the vehicle
along the center of the road lane, thus providing more safety
for the driver as well.

The paper will first describe the principles of WPT
and the background research on dynamic wireless charging
of vehicles. Then the motivation of the proposed ACAS
and its technical operation concept is described, followed
by simulation settings and tests to verify its feasibil-
ity.

2. Principles of the Wireless Power Transfer
(WPT) System

The fundamental circuit of the wireless power transfer system
is described as shown in Figure 1. The system is comprised of
two RLC circuits: the circuit on the left-side is the source coil
circuit (power transmitter) and the circuit on the right side is
the load coil circuit (power receiver).

VS

RS CS CL

I1 LS LL

RL

I2

M

Figure 1: Circuit schematic of the source circuit and load circuit in
wireless power transfer (WPT).

The equation for source coil and the load coil based on
Figure 1 is expressed as

(𝑅𝑆 + 1
𝑗𝜔𝐶
𝑆

+ 𝑗𝜔𝐿𝑆) 𝐼1 − 𝑗𝜔𝑀𝐼2 − 𝑉𝑆 = 0,

(𝑅𝐿 + 1
𝑗𝜔𝐶
𝐿

+ 𝑗𝜔𝐿𝐿) 𝐼2 − 𝑗𝜔𝑀𝐼1 = 0.
(1)

In (1), each of 𝑅
𝑥
, 𝐶
𝑥
, and 𝐿

𝑥
represents the resistor,

capacitor, and inductor component, while 𝑆 or 𝐿 subscript of
a certain component represents the source coil or load coil,
respectively. 𝜔 represents the frequency, and 𝐼1, 𝐼2 represent
the current flowing in the source coil and the load coil,
respectively, which are expressed as follows:

𝐼
1
= 𝑅
𝐿
+ 1/𝑗𝜔𝐶

𝐿
+ 𝑗𝜔𝐿

𝐿

𝑗𝜔𝑀 𝐼
2
,

𝐼2 = 𝑗𝜔𝑀
(𝑅
𝑆
+ 1/𝑗𝜔𝐶

𝑆
+ 𝑗𝜔𝐿

𝑆
) (𝑅
𝐿
+ 1/𝑗𝜔𝐶

𝐿
+ 𝑗𝜔𝐿

𝐿
) + 𝜔2𝑀2

⋅ 𝑉𝑆.

(2)

𝑀 shown in (1) to (2) is the mutual inductance that occurs
between the source coil and load coil while operating in
resonant frequency. This is expressed as

𝑀 = 𝑘√𝐿
𝑆
𝐿
𝐿. (3)

In (3), 𝑘 is a value ranging between 0 and 1 and represents the
coupling coefficient between the source coil and the load coil.
When the value is near 1, it implies that the coupling between
the source coil and load coil is very strong and will result in
highermutual inductance.When the value is near 0, it implies
that the coupling between the source coil and load coil is very
weak and will result in a lower to near nonexistent mutual
inductance. InWPT, a larger𝑀 value usually facilitates more
effective power transfer [11]. Based on (2), the power from the
source coil can be determined as follows:

𝑃
𝑆
= 𝐼
1
𝑉
𝑆

= 𝑅
𝐿
+ 1/𝑗𝜔𝐶

𝐿
+ 𝑗𝜔𝐿

𝐿

(𝑅
𝑆
+ 1/𝑗𝜔𝐶

𝑆
+ 𝑗𝜔𝐿

𝑆
) (𝑅
𝐿
+ 1/𝑗𝜔𝐶

𝐿
+ 𝑗𝜔𝐿

𝐿
) + 𝜔2𝑀2

⋅ 𝑉2
𝑆
.

(4)
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Figure 2: Block diagram of the OLEV system.

Similarly, using (2), the power from the load coil can be
determined as

𝑃
𝐿

= 𝐼2
2
𝑅
𝐿

=


−𝜔2𝑀2
{(𝑅
𝑆
+ 1/𝑗𝜔𝐶

𝑆
+ 𝑗𝜔𝐿

𝑆
) (𝑅
𝐿
+ 1/𝑗𝜔𝐶

𝐿
+ 𝑗𝜔𝐿

𝐿
) + 𝜔2𝑀2}2


⋅ 𝑉2
𝑆
𝑅𝐿.

(5)

The equations shown from (1) to (5) are the general principle
guidelines used to design a WPT system including vehicles
with dynamic wireless charging systems, and the final gener-
ated power shown in (5) will power the components in the
power receiving portion.

3. Concept on Electric Vehicles (EVs) with
Dynamic Wireless Charging

The development on EVs using dynamic wireless charging
has been progressing on for the past few decades, and some of
the recent advancements (and commercialization) have been
made such as the online electric vehicle (OLEV) [11–15]. It
has been widely recognized and commercialization of these
vehicles is currently progressing in Korea [13]. Figure 2 shows
the basic principle of the EV’s dynamic wireless charging
system (OLEV).

The power transmitter part of the system consists of the
inverter and power line, where the inverter provides power to
the power lines that are installed beneath the road.The power
line is installed as power line segments, where the inverter
will only turn on the segment where the vehicle is located in
order tomitigate the inefficiency of the power supply [14].The
inverter receives 60Hz power from themain electrical power
plant and converts into a specific constant current at specific
resonant frequency. In OLEV systems, the constant current
ranges between 200A to 260A, and the resonant frequency
is set at 20 kHz [11].

The power receiving part of the system is attached on the
bottom of the vehicle chassis, which consists of the pick-up
coil, magnetic core, rectifier, and regulator.Themagnetic core
of the receiving system captures the magnetic flux from the
power lines and will induce voltage along the power lines.
The induced voltage is converted into DC voltage through

Pick-up coil

Power line

Pick-up coil width: 0.30m

Air gap: 0.20m
Pick-up coil length: 0.72mDistance between power lines: 0.72m

Figure 3: The model and parameters of the pick-up coil and power
line used in the Maxwell simulation.

the rectifier and then converted into the desired voltage range
through the regulator. A small portion of the received power
is used to drive the motor while the rest is used to charge the
battery when the vehicle is inmotion.When the vehicle is not
inmotion, all the received power is used to charge the battery.
The power receiving part is installed as modules, where each
power receiving module is capable of generating 20 kW of
power. In case of the OLEV bus, five modules were installed
in order to achieve a total of 100 kW target power [11].

4. Motivation for the Coil Alignment
System (ACAS)

Asmentioned earlier about EVswith dynamicwireless charg-
ing, lateral misalignment between the power transmitter and
the power receiver will inevitably occur, which will result in
reduced power transfer and efficiency.

As described earlier in the principles of WPT, as lateral
misalignment increases, it will reduce themutual inductance,
𝑀, due to reduced coupling coefficient, 𝑘, which will reduce
the output power that can be received from the power
receiver. To assess how much power is reduced due to lateral
misalignment, a simulation was conducted using ANSYS
Maxwell, where amodel of theOLEVpower line segment and
pick-up coil was modeled as shown in Figure 3, using similar
dimension parameters used in [11]. The electrical parameters
for the power line segment and pick-up coil are listed in
Table 1 as well.
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Table 1: Electrical parameters for power line segment and pick-up
coil in Maxwell.

Parameter Value
Operating frequency 20 kHz
Current fed through power line 200A
Power line

Number of turns 8
Inductance 842 uH

Pick-up coil
Number of turns 50
Inductance 2.71mH

The induced voltage of the model shown in Figure 3
was observed in ANSYS Maxwell while the misalignment
between the power line and pick-up coil was increased
from 0m (meaning that it is at perfect alignment) to 0.6m.
The misalignment was conducted only up to 0.6m because
exceeding this value will imply that the vehicle has crossed to
the other lane under the assumption that the vehicle width is
1.8m and thewidth of the road lane is 3.0m.After conducting
the simulation, the resultant mutual inductance, inductance
of power line and pick-up coil, and the induced voltage on
the pick-up coil were implemented into Agilent Advanced
Design System (ADS) program, which is an electronic design
automation (EDA) simulation tool that analyzes wireless
circuit systems. A similar circuit shown in Figure 1 was
designed in ADS, and the power generated from the power
line and pick-up coil was determined.The power determined
from the power line and pick-up based on (4) and (5) was
used to determine the power transfer efficiency of the WPT
system. It is an important factor in rating the WPT system’s
performance, and it is determined as follows:

𝜂 = 𝑃𝐿
𝑃𝑆 . (6)

The final results were analyzed, and the generated output
power from the pick-up coil as well as its efficiency at different
lateral alignments is shown in Figure 4.

From the simulation results, the pick-up coil was able
to receive 47.83 kW at 70.31% efficiency. But as lateral mis-
alignment increases, the received power and efficiency got
reduced significantly, where the output powerwas at 13.92 kW
at 40.57% efficiency evenwith 20 cmmisalignment. At 60 cm,
the received power was at 0.85 kW at 4.07% efficiency.
Although received power and efficiency can be improvedwith
better pick-up coil design, the lower receiving power and
efficiency are inevitable as the pick-up coil moves away from
the power line. Therefore, as described in the introduction
section, the driver should keep the vehicle aligned with
the power lines in order to maximize the power transfer
efficiency. However, keeping the vehicle aligned with the
power line at all times is near impossible for the driver
to conduct, especially since the power line cannot be seen.
Therefore, the ACAS system is proposed, which detects the
misalignment between the power line and pick-up coil and
autonomously steers the vehicle in order to maximize power
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13.92kW
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Figure 4: Simulation results showing reduction of power transfer to
pick-up coil and its efficiency with increased lateral misalignment.
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Figure 5: Overall block diagram of the coil alignment system
(ACAS).

transfer and efficiency and also increase the overall safety and
comfort for the driver.

5. Concept of the ACAS

For the ACAS system, the hardware requirements are the
electric power steering (EPS) system and sensors. The EPS
is typically equipped in modern commercialized vehicles.
The sensors are inexpensive and will detect the misalignment
between the pick-up coil and power line. In general, the
implementation of the ACAS system is inexpensive as it
requires minimum hardware modifications, and it is mainly
software implementation. The overall block diagram of the
ACAS is shown in Figure 5.

There are three subsystems in the ACAS, which consist
of the sensor system, misalignment conversion unit, and the
steering fuzzy controller. There are two outputs from the
sensor system: the output value of the difference between two
sensors that are installed on the left-side and right-side of
the pick-up coil and the output value of the sensor installed
at the pick-up coil regulator’s output. The two output values
are received by the conversion unit, which will determine the
lateral alignment value between the pick-up coil and power
line. The alignment value is received by the steering fuzzy
controller, where the necessary steering command will be
sent to the EPS system of the vehicle.

5.1. Sensor System for the ACAS. The sensor system plays a
crucial role in the ACAS system, and its block diagram is
shown in Figure 6.There are threemain sensor units: left-side
voltage sensor unit, right-side voltage sensor unit, and the
pick-up voltage sensor unit. The voltage difference between
the left-side and right-side voltage sensor unit outputs is
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Figure 6: Block diagram of the ACAS sensor system.
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Figure 7: Diagram of left-side coil and right-side coil placement on
pick-up coil shown in top view.

calculated by the voltage difference calculator. The calculated
output and the output from the pick-up voltage sensor unit
are sent to the misalignment conversion unit.

The main component of the pick-up voltage sensor unit
is the DC voltmeter, which will measure the voltage output
from the pick-up unit regulator. The components in the left-
side voltage sensor unit and the right-side voltage sensor unit
are the same; it consists of the coil, rectifier, regulator, and
voltmeter. The coils described as left-side coil and right-side
coil are smaller coils that arewrapped around the pick-up coil,
as shown in Figure 7. The two coils are wrapped around the
front side of the pick-up coil while keeping enough separation
gap between them.

The two coils can also be installed at the rear side of the
pick-up coil, but they must be installed along the front or
the rear of the pick-up coil because of the magnetic flow
direction between the power-line and pick-up coil apparent
in the simulation results shown in Figure 8.

Figures 8(a) and 8(b) show the magnetic flow direction
in front view and side view, respectively. While significant
magnetic flow is visible from the front view, themagnetic flow
from the side view is minimal. Even if the required voltage
from the two coils is small, the induced voltage from the two
coils if installed on the left/right side of the pick-up coil will
be near zero volts, which is not desired.

The number of turns and the coil length of the left-side
coil and the right-side coil should be kept at minimum, just
enough to induce a voltage that can be read by the voltmeter.
With bigger turns and bigger length of the two coils, it can
disrupt the magnetic flow between the power line and pick-
up coil, thus reducing the power transfer efficiency. In this
paper, the two coils have been designed to have lengths
of 7 cm with 25 turns, which were just enough to induce
voltage within 2.5 V while not affecting the power transfer
between the power line and pick-up coil. While using the
model shown in Figure 3 as a basis, the two coils with the
mentioned parameters were implemented and simulation
was conducted.The simulation results are shown in Figure 9.

Based on the results shown in Figure 9(a) through
Figure 9(d), it shows how the voltage of the left-side coil and
right-side coil varies as alignment is increased from 0 cm
to 60 cm. However, the output voltage is in AC, where the
difference between the two coils cannot be easily identified.
Therefore, the two output waveforms are rectified and regu-
lated intoDC voltage, which can be read by theDC voltmeter.
The resultant DC voltage output is then sent into the voltage
difference calculator, where it is calculated as follows:

𝑉𝑑 = 𝑉
𝑙
− 𝑉
𝑟
. (7)

𝑉
𝑙
,𝑉
𝑟
are the DC voltage readings from the left-side coil volt-

age sensor unit and right-side coil sensor unit, respectively.
The resultant voltage difference between the two coils relative
to its alignment is shown in Figure 10.



6 Mathematical Problems in Engineering

Pick-up coil

Power linex

y

z

3.9229e − 005
2.6989e − 004
5.0055e − 004
7.3121e − 004
9.6188e − 004
1.1925e − 003
1.4232e − 003
1.6539e − 003
1.8845e − 003
2.1152e − 003
2.3458e − 003
2.5765e − 003
2.8072e − 003
3.0378e − 003
3.2685e − 003
3.4992e − 003
3.7298e − 003

B (Tesla)

(a)

Pick-up coil

Power line
x

y

z

3.6012e − 005
2.7212e − 004
5.0822e − 004
7.4433e − 004
9.8043e − 004
1.2165e − 003
1.4526e − 003
1.6887e − 003
1.9249e − 003
2.1610e − 003
2.3971e − 003
2.6332e − 003
2.8693e − 003
3.1054e − 003
3.3415e − 003
3.5776e − 003
3.8137e − 003

B (Tesla)

(b)

Figure 8: Maxwell simulation results showing the magnetic flow between the power line and pick-up coil from (a) front view and (b) side
view.

However, based on the results shown in Figure 10, the
nonlinear relationship between lateral misalignment and
voltage difference can be observed, where the voltage differ-
ence reading can imply left or right misalignment simulta-
neously. This makes it difficult to determine the exact lateral
misalignment location. Therefore, the voltage reading of the
pick-up coil is needed in order to determine the exact lateral
misalignment location, which is implemented as input for the
misalignment conversion unit.

5.2. Misalignment Conversion Unit for the ACAS. The mis-
alignment conversion unit shown in Figure 11 will change
the nonlinear characteristic between the left-coil/right-coil
voltage difference and the lateral misalignment into a more
linear characteristic. It consists of the region selector unit,
which divides the voltage difference readings into several
regions. Each region consists of a model that has the linear

relationship between the voltage difference of the left-coil and
right-coil voltage sensor unit, which can be mathematically
expressed as follows:

𝑚
𝑛

= 𝑦max(𝑛) − 𝑦min(𝑛)

𝑉
𝑑 max(𝑛) − 𝑉

𝑑 min(𝑛)
. (8)

𝑚𝑛 refers to the slope of the specific linear region which
is identified as 𝐴, 𝐵, or 𝐵 and can go up to 𝑛 regions
depending on how many linear regions can be sectioned
from the nonlinear voltage difference/lateral misalignment
relationship. 𝑦max(𝑛), 𝑦min(𝑛), 𝑉𝑑 max(𝑛), and 𝑉𝑑 min(𝑛) refer to
the maximum and minimum lateral alignment distance and
voltage difference of a specific 𝑛 region, respectively. The
corresponding specific region model is selected by the region
selector switch when it meets the specific criteria as follows:

𝑚
𝑛

=

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

𝐴, if 𝑉𝐿 (𝑡) > 𝑉
𝑇1

𝐵, if (𝑉𝐿 (𝑡) < 𝑉𝑇1) , (𝑉𝑑 (𝑡) > 𝑉𝑑 (𝑡 − 1)) , (𝑉𝐿 (𝑡) > 𝑉𝐿 (𝑡 − 1))
𝐵, if (𝑉

𝐿 (𝑡) < 𝑉
𝑇1

) , (𝑉
𝑑 (𝑡) < 𝑉

𝑑 (𝑡 − 1)) , (𝑉
𝐿 (𝑡) < 𝑉

𝐿 (𝑡 − 1))
𝐵, if (𝑉

𝐿 (𝑡) < 𝑉
𝑇1

) , (𝑉
𝑑 (𝑡) > 𝑉

𝑑 (𝑡 − 1)) , (𝑉
𝐿 (𝑡) > 𝑉

𝐿 (𝑡 − 1))
𝐵, if (𝑉𝐿 (𝑡) < 𝑉

𝑇1) , (𝑉𝑑 (𝑡) < 𝑉
𝑑 (𝑡 − 1)) , (𝑉

𝐿 (𝑡) < 𝑉
𝐿 (𝑡 − 1))

...
𝑛, if (𝑉

𝑇1
< 𝑉
𝐿 (𝑡) < 𝑉

𝑇𝑛
) , (𝑉
𝑑 (𝑡) > 𝑉

𝑑 (𝑡 − 1)) , (𝑉
𝐿 (𝑡) > 𝑉

𝐿 (𝑡 − 1))
𝑛, if (𝑉

𝑇1
< 𝑉
𝐿 (𝑡) < 𝑉

𝑇𝑛
) , (𝑉
𝑑 (𝑡) < 𝑉

𝑑 (𝑡 − 1)) , (𝑉
𝐿 (𝑡) < 𝑉

𝐿 (𝑡 − 1))
𝑛, if (𝑉

𝑇1
< 𝑉
𝐿 (𝑡) < 𝑉

𝑇𝑛
) , (𝑉
𝑑 (𝑡) > 𝑉

𝑑 (𝑡 − 1)) , (𝑉
𝐿 (𝑡) > 𝑉

𝐿 (𝑡 − 1))
𝑛, if (𝑉

𝑇1
< 𝑉
𝐿 (𝑡) < 𝑉

𝑇𝑛
) , (𝑉
𝑑 (𝑡) < 𝑉

𝑑 (𝑡 − 1)) , (𝑉
𝐿 (𝑡) < 𝑉

𝐿 (𝑡 − 1)) .

(9)
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Figure 9: Diagram with alignment parameters (drawing not in scale) between pick-up coil and power line and simulation results showing
the induced voltage from the left-side coil and right-side coil at (a) 0 cm, (b) 20 cm, (c) 40 cm, and (d) 60 cm misalignment position.
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Figure 10: Simulation results showing the relationship between voltage difference of left-coil and right-coil and misalignment position.
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Figure 11: Block diagram of the ACAS misalignment conversion unit.

𝑚
𝑛
of the corresponding region will be selected depending

on the voltage threshold 𝑉
𝑇1
, voltage difference 𝑉

𝑑
, and the

measured voltage from the pick-up voltage sensor unit 𝑉
𝐿
.

In this paper, the number of regions is limited to region 𝐴,
region 𝐵, and region 𝐵 as shown in Figure 12. The upper
graph in the figure is the same graph shown in Figure 10, and
it can be seen that each region consists of a linear relationship
characteristic between the voltage difference and the lateral
misalignment.

The misalignment range for region 𝐴 is roughly between
±17 cm, while regions 𝐵 and 𝐵 range between −60 cm and
−18 cm and between 60 cm to 18 cm, respectively. If assuming
that region 𝐴 is selected by the region selector unit, it means
that𝑉

𝐿
is greater than the voltage threshold𝑉

𝑇1
. If𝑉
𝐿
is lower

than 𝑉
𝑇1
, the region selector unit will either select region 𝐵

or region 𝐵. As shown in the lower graph of Figure 12, 𝑉
𝑇1

is approximately 175 volts, which will toggle from region𝐴 to
region 𝐵 or region 𝐵s at ±17 cm.

The region selector will determine whether to select
region 𝐵 or region 𝐵 based on the previous and current
output values of 𝑉

𝐿
and 𝑉

𝑑
. As shown in (9), there are two

identical conditions that canmeet the criteria for each region.
If assuming that region 𝐵 is selected by the region selector
unit, it could either mean that the previous value of 𝑉

𝐿

and 𝑉
𝑑
is greater or less than its current 𝑉

𝐿
and 𝑉

𝑑
values.

This implies that the pick-up coil is moving either away or
towards the power line in region 𝐵, and the condition that
is moving towards the power line is always selected. The
final selected 𝑚

𝑛
value from the region selector unit will

be converted into estimated lateral displacement location 𝑦
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(desired) and the actual value that have been converted through the
ACAS misalignment conversion unit.

with the given voltage difference input in the voltage →
misalignment converter as shown in

𝑦 = 𝑚
𝑛
𝑉
𝑑
. (10)

To validate the feasibility of the misalignment conversion
unit, a simulation model was designed in SIMULINK that
replicates the equations shown in (8) to (10). The simulation
begins with misalignment between the power line and the
pick-up coil at −60 cm and progresses up until it reaches
misalignment of 60 cm. The simulation results are shown in
Figure 13. The dashed line is the desired lateral alignment
value versus time, and the bold line is the actual converted
misalignment value by the misalignment conversion unit.
Based on the results, it can be seen that at 0 to 17 sec and 22
to 40 sec range, the converted misalignment value has some

discrepancies with the desiredmisalignment value, where the
maximum error recorded was around 5 cm. However, this
is not of great significance as the fuzzy steering controller
can compensate for the discrepancies and still achieve high
performance to correct detected misalignment.

5.3. Steering Fuzzy Controller for the ACAS. The final sub-
system of the ACAS system is the steering fuzzy controller
system as shown in Figure 14. Fuzzy control has been used
to control the vehicle’s steering based on the misalignment
reference given by the misalignment conversion unit. Fuzzy
control has been used in various applications, such as energy
management for hybrid vehicles, parking finding services,
vehicle dynamics control, and many other applications [16–
19]. This control has also been applied to lane keeping assist
systems (LKAS), which has similar resemblances to the fuzzy
control specific for the ACAS [20, 21]. In addition, based
on the reasons described in [18], fuzzy control method
was specifically used for the ACAS application due to the
nonlinear characteristics and the imprecise varying variables
shown in Figures 12 and 13, respectively.

The received misalignment input is sent into the fuzzi-
fication unit, where it is converted into two fuzzy inputs:
misalignment and misalignment rate. Converting into a
“fuzzy” value means that a “crisp” value, a value that is
identified either as TRUE or FALSE, is converted into a value
that can be both TRUE and FALSE. The values received
as input are converted into a specific membership function
(MF). EachMF is a set that contains a certain range of values.
To convert into a “fuzzy” value, a triangular MF is used, and
it is mathematically expressed as follows:

MF (triangle) =

{{{{{{{{{
{{{{{{{{{{

0 if 𝑥 ≤ 𝑎1
𝑥 − 𝑎
1

𝑎2 − 𝑎1 if 𝑎
1
< 𝑥 ≤ 𝑎

2

𝑎
3
− 𝑥

𝑎
3
− 𝑎
2

if 𝑎
2
< 𝑥 ≤ 𝑎

3

0 if 𝑎3 < 𝑥.

(11)

𝑎
1
to 𝑎
3
represent the 𝑥 coordinates for the triangular MF,

where 𝑎
1
, 𝑎
2
, and 𝑎

3
represent the left vertex, center vertex,

and right vertex of the triangle, respectively. 𝑥 is the value
received as an input from the fuzzy logic system before it goes
through the “fuzzification” unit. However, there are certain
situations where the input value is desired more as a “crisp”
value than a “fuzzy” value. In this case, a trapezoidal MF is
used, which is mathematically expressed as follows:

MF (trapezoid) =

{{{{{{{{{{{{
{{{{{{{{{{{{{

0 if 𝑥 ≤ 𝑏
1

𝑥 − 𝑏
1

𝑏
2
− 𝑏
1

if 𝑏
1
< 𝑥 ≤ 𝑏

2

1 if 𝑏
2
< 𝑥 ≤ 𝑏

3

𝑏
4
− 𝑥

𝑏
4
− 𝑏
3

if 𝑏3 < 𝑥 ≤ 𝑏4
0 if 𝑏

4
< 𝑥.

(12)
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SN OKAY SP POSNEG

−0.5 0.50 1 1.5−1−1.5

1

0.5

0

(a)

NONE POSNEG

−0.2−0.3 −0.1 0.1 0.2 0.30

1

0.5

0

(b)

Figure 15: Fuzzy input set for (a) lateral displacement and (b) lateral displacement rate.

𝑏
1
to 𝑏
4
represent the 𝑥 coordinates for the trapezoidal MF,

where 𝑏
1
, 𝑏
2
, 𝑏
3
, and 𝑏

4
represent the left vertex, left-center

vertex, right-center vertex, and right vertex of the trapezoid,
respectively. Both the triangular and trapezoidal MFs have
been used for the ACAS fuzzy logic controller, and theMF set
for the lateral misalignment and its rate are shown in Figures
15(a) and 15(b), respectively.

In Figure 15(a), five MFs are defined: NEG (negative),
SN (small negative), OKAY, SP (small positive), and POS
(positive). Each MF has a specific misalignment range, while
the overall set ranges between −1.5m and 1.5m, which is
the maximum left or right position of one lane, respectively.
The SN, OKAY, and SP MFs are put closer together with
each other, while the NEG MF and the POS MF are put
further away. This is to allow more sensitivity in control
within the −1.1m to 1.1m range. However, with increased
sensitivity, this may increase the oscillation of the system. To
avoid this, another fuzzy input, which is the misalignment
error rate, is implemented as shown in Figure 15(b). Three
MFs are defined:NEG (negative), NONE, and POS (positive).
The NEG and POS are trapezoidal MFs while the NONE is
a triangular MF. This is to clearly define that the value is
negative or positive when the rate is below −0.2m or above
0.2m, respectively.

NC RL SL SR1

0.5

0
−0.6 −0.3−0.9 0.3 0.6 0.90

Figure 16: Fuzzy output set for the ACAS fuzzy controller.

The fuzzy output block is shown in Figure 16, which will
send the final “crisp” value command to the EPS unit of
the vehicle. 5 MFs are defined: L (left), SL (small left), NC
(no change), SR (small right), and R (right). The MFs range
from −0.9 to 0.9, which is the percentage of steering angle.
Although it is designed to havemaximum steering command,
the steering output will not go more than ±10 degrees due
to the given design constraints of the two fuzzy inputs and
the rule base. This is an ideal case for the vehicle because it
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Figure 17: Diagram showing the placement of power lines on the road for SIMULINK and CarSim simulation.

will prevent any extreme steering situations, which is highly
dangerous during high speed operations.

Rule Base for the Fuzzy Controller

(1) If “misalignment” is OKAY than “steering” is NC.
(2) If “misalignment” is POS then “steering” is R.
(3) If “misalignment” is SP then “steering” is SR.
(4) If “misalignment” is SN then “steering” is SL.
(5) If “misalignment” is NEG then “steering” is L.
(6) If “misalignment” is OKAY and “rate” is POS then

“steering” is SL.
(7) If “misalignment” is OKAY and “rate” is NEG then

“steering” is SR.

The rule base shown in the above list is what defines the
boundaries of the fuzzy logic controller. It determines the
degree of membership of each MF of its fuzzy input sets
through the decision-making unit. The degree of member-
ship on both 𝑦-axes of the two fuzzy inputs will define how
close the relationship is between each MF of its fuzzy set and
the rule base. If degree of membership is closer to 1, it means
that the relationship is strong, while 0 states the opposite.
For example, if looking at the first rule set, it is defined
that “misalignment” is OKAY. If the vehicle was positioned
at the 0 cm mark, this would mean that the OKAY MF at
the misalignment fuzzy input set will have a “1” degree of
membership. This degree of membership ranging from 0 to
1 is used to determine the “cut-line” for the output fuzzy set.
For example, if the degree of membership was at 0.7, this
wouldmean that the corresponding fuzzy output set will have
a “cut-line” at 0.7, where all area above the 0.7 threshold is
ignored. From here, the final “crisp” steering output ratio,
𝛿, will be determined in the defuzzification unit using the
Center of Gravity (COG) method as shown in (13).The COG
finds the center of area which is all output MFs 𝑥 that are
located within the corresponding fuzzy output set with the
“cut-line,” 𝑢

𝐴
, within the intervals of 𝑎 and 𝑏. 𝑎 and 𝑏 are the

corresponding 𝑥-axis limits of the fuzzy output set:

𝛿 = ∫𝑏
𝑎

𝑢
𝐴 (𝑥) 𝑥 𝑑𝑥

∫𝑏
𝑎

𝑢
𝐴 (𝑥) 𝑥 . (13)

Table 2: Parameters for vehicle model in CarSim.

Parameter Value
Model name C-Class, hatchback
Sprung mass 1274 kg
Length 3.35m
Wheelbase 2.58m
Width 1.74m
Height 1.48m
Power 125 kW
Tire 205/55 R16

To evaluate the response of the steering fuzzy controller, as
well as its ability to keep the vehicle within the power line, a
simulation was conducted using SIMULINK and CarSim. To
conduct the simulation, a road model similar to the diagram
as shown in Figure 17 was designed, where the three power
line segments of 300m length were installed 20m apart in a
1000m road lane. The first power line segment was installed
at the center of the road, and the second and third power line
segments were deviated 0.3m and 0.1m from the center of
lane, respectively. The vehicle model with the ACAS fuzzy
steering controller was also designed as well. The vehicle
model name and its parameters used in SIMULINK/CarSim
simulation are shown in Table 2. The fuzzy steering con-
troller was tested at four different speeds from 80 km/h up
to 140 km/h in 20 km/h increments. This was to observe
how well the ACAS fuzzy steering controller maintains its
performance as the vehicle’s speed was increased.

Figure 18 shows the results of the simulation, where
Figure 18(a) shows the lateral versus longitudinal displace-
ment of the vehicle during the simulation. The thickest
dash line is the desired position, which is the location
of the three power lines. The other lines show the lateral
versus longitudinal displacement of the vehicle at 80 km/h,
100 km/h, 120 km/h, and 140 km/h. Based on the result, the
fuzzy steering controllerwas able tomaintain its positionnear
the desired lateral alignment position, even with increasing
speeds.

Figure 18(b) shows the steering angle position of the fuzzy
steering controller for the four different vehicle speeds. It
can be seen that as vehicle speed increases, the oscillation
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Figure 18: Simulation results showing the performance of steering fuzzy controller (a) lateral versus longitudinal displacement, (b) steering
angle, and (c) lateral displacement error.

of the steering remained for a longer duration of the time.
However, the remaining oscillation of the steering angle was
very small, which was less than 1 degree. In addition, as
illustrated in Figure 18(b), the maximum steering angle was
at 6 degrees for all four vehicle speeds. This states that the
vehicle’s dynamic was still stable enough or the vehicle would
not have been able to maintain its desired path as shown
in the results in Figure 18(a). Figure 18(c) shows the lateral
displacement error between the desired and actual lateral
position. Even with small steering angles, the vehicle was able
to position its correct lateral position within 3 to 5 seconds
once a significant lateral alignment errorwas detected, even at
higher speeds. Overall, the results shown in Figure 18 validate
the performance of the steering fuzzy controller.

6. Comparison Analysis

The operational validity of each subsystem in the ACAS, the
sensor system, misalignment conversion unit, and the steer-
ing fuzzy controller have been validated through simulation
and show that each subsystem has performed as expected.

To view the feasibility of the overall ACAS system, the
mitigation of power transfer loss due to misalignment was
evaluated. To do so, another simulation was performed
using SIMULINK and CarSim. Two vehicles, one vehicle
with the ACAS controller and another vehicle without the
ACAS controller, were operated on the same road shown in
Figure 17. The first vehicle model is identical to the vehicle
model used to test the steering fuzzy controller performance.
The second vehicle is without the fuzzy controller model; it
will only try to maintain the vehicle at the center of the road
lane. This simulates a similar situation where the driver will
operate the vehicle’s steering to maintain the vehicle at the
center of the road lane as the driver assumes that the power
line is at the center of the road.

Figure 19 shows the results of the simulation, where
Figure 19(a) shows the amount of power being transferred to
the pick-up coil in the vehicle. At 0 cm misalignment posi-
tion, the two vehicles receive maximum power at 47.83 kW
based on the analysis conducted in Figure 4. However, as the
vehicles pass towards power lines 2 and 3, only the vehicle
with the ACAS was able to retain most of the maximum
power delivery, while the vehicle without ACAS could only
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Figure 19: Simulated results showing amount of power transferred
to vehicle with/without ACAS (a) and (b) accumulated energy to the
vehicle due to power transfer.

receive roughly 4.90 kW and 26.35 kW of power at power
lines 2 and 3, respectively.

Figure 19(b) shows the accumulated energy from the
transferred power during the simulation time. As shown in
the graph, the vehicle with the ACAS was able to accumulate
about 578Wh of energy at the end of the simulation, which is
approximately 97% of the total maximum energy at 596Wh.
This maximum energy could have been accumulated only if
the vehicle was at perfect alignment with the power line at all
times. In case of the vehicle without the ACAS, the vehicle
was only able to accumulate 311Wh of energy at the end of
the simulation, which is approximately 52% of the maximum
energy that could be accumulated.

7. Conclusion

In this paper, an autonomous coil alignment system (ACAS)
for vehicles with dynamic wireless charging is proposed.
This system can detect lateral misalignment through three
voltage sensors installed near the pick-up coil of the vehicle,
and the nonlinear relationship between the voltage difference
and misalignment position is converted into a more linear
characteristic through the misalignment conversion unit.
The lateral misalignment output from the misalignment
conversion unit is received by the steering fuzzy controller,
where the steering command is given to the electric power
steering (EPS) system to control the vehicle’s lateral posi-
tion. The performance and operational feasibility of each
subsystem have been verified through various simulations. In

the comparison analysis, it shows that the vehicle equipped
with ACAS improves the wireless power transfer efficiency,
allowing the vehicle to receive maximum power 97% of the
time. With improved pick-up coil designs in electric vehicles
with dynamic wireless charging, combination of the ACAS
system will certainly provide significant benefits as it will
be able to retain near maximum power transfer capacity
during operation, thus improving the overall power transfer
efficiency for the vehicle.
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A frequency control approach based on wind power and load power prediction information is proposed for wind-diesel-battery
hybrid power system (WDBHPS). To maintain the frequency stability by wind power and diesel generation as much as possible,
a fuzzy control theory based wind and diesel power control module is designed according to wind power and load prediction
information. To compensate frequency fluctuation in real time and enhance system disturbance rejection ability, a battery energy
storage system real-time control module is designed based on ADRC (active disturbance rejection control). The simulation
experiment results demonstrate that the proposed approach has a better disturbance rejection ability and frequency control
performance compared with the traditional droop control approach.

1. Introduction

Remote Area Power Supply (RAPS) systems which are used
to supply power for rural and remote areas, including island,
could not rely on the main grid supply system. The power
supply of such areas is always provided with diesel power
generation, due to its merits of low installation cost, high
reliability, and simple operation. The major drawbacks of
this type of power generation is finite fuel, low utilization
efficiency, high transportation cost, environmental pollution,
and so on [1].

Recently, more and more RAPS systems use renewable
power generation, such as wind power, to overcome the
draws of diesel power generation. However, the active power
output of wind power generation is random and fluctuant,
which will seriously affect the stability of RAPS [2]. To
solve this problem, wind-diesel-battery hybrid power system
(WDBHPS) is introduced, which have become a popular
power generation system used in RAPS. It could utilize wind
power generation to reduce the use of diesel generators and
environmental pollution and utilize battery energy storage
system (BESS) to compensate the wind power fluctuation.

Frequency stability reflects the active power balance
between the supply and demand, which is important factor

in operation security and stability of the wind-diesel-battery
hybrid power system.The fluctuation of wind and load would
cause system frequency deviation and fluctuation. Thus,
frequency control problem ismain problemwhich hinder the
development and utilization of wind-diesel-storage hybrid
system in practice.

Currently, more and more scholars focus on the research
on the frequency control of wind-diesel hybrid power system.
Droop control based frequency control approach is the
mostly used in wind-diesel hybrid power system in practice
[3].The traditional droop control use a fixed droop coefficient
to increase or decrease the active power output of power
sources when load demand changes. It could not avoid large
deviation of frequency or voltage amplitude for its fixed droop
coefficient. Therefore, many scholars studied the enhanced
droop control approach. To reduce magnitude of frequency
change, an adaptive droop control approach which could
adjust the droop coefficient according to the change of active
power and load was proposed in [4]. To eliminate the static
error of frequency, an integral controller is introduced into
frequency droop control in [5]. But its parameter selection is
troublesome. In [6], a centralized frequency control strategy
is presented, which calculates allocated active power of wind
power turbine, diesel generator, and discharging/charging
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Figure 1: Wind-diesel-battery hybrid power system.

power of BESS according to the deviation of frequency. In [7],
a proportional-integral (PI) control based frequency control
approach was presented to maintain the balance between
power generation and load demand. In [8], a fuzzy logic based
supervisory frequency control approach was proposed to
maintain the frequency stability of wind-diesel hybrid power
system.

Most above frequency control approaches only use BESS
to compensate the frequency deviation caused bywind power
and load fluctuation and maintain power-load balance by
diesel generator. Very few of them consider regulating the
active power output of wind turbine to reduce frequency
fluctuation. Meanwhile, they did not utilize prediction infor-
mation of wind power and load to stabilize WDBHPS’s
frequency. The developments of wind power prediction
technology and load prediction technology for microgrid,
such as wavelet transformed based wind power prediction
approach [9], grey model based wind power prediction
model [10], artificial neural network based load prediction
approach [11], and bilevel prediction strategy based load
prediction approach [12], make their application become
possible. If the prediction information could be taken into
account in frequency control, the active power output of wind
turbine and diesel generator could be regulated to reduce
the frequency deviation caused by wind power and load
fluctuation.

In this paper, a wind power and load prediction based
frequency control approach is proposed for WDBHPS. In
this approach, a fuzzy control based wind and diesel power
control module is used to reduce frequency deviation by
wind turbine and diesel generator according to the wind
power and load prediction information. To overcome the
draws of traditional droop control, such as difficulty of droop
coefficient adjusting, static error of frequency control, and
poor disturbance rejection ability, an ADRC based real-time
control module of BESS is used to compensate the real-time
frequency fluctuation.

2. Wind Power and Load Prediction Based
Frequency Control Approach

Wind-diesel-battery hybrid power system is shown in
Figure 1. As seen in Figure 1, this system consists of a wind
turbine, diesel generator, BESS, AC/AC transformers, and
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Figure 2: Control structure of wind power and load prediction
based frequency control.

DC/AC convert. The output power of wind turbine and
diesel generator and charging/discharging power of BESS are
controlled to keep power-load balance and frequency stable
in the system.

The control scheme of the proposed control approach
is shown in Figure 2, where 𝑃

𝑤ref and 𝑃
𝑤
are the reference

of active power output and actual active power output of
wind turbine, respectively, 𝑃

𝑑ref and 𝑃
𝑑
are the reference of

active power output and actual active power output of diesel
generator, respectively, and 𝑃

𝑏ref and 𝑃
𝑏
are the reference of

charging/discharging power and actual charging/discharging
power of BESS, respectively. 𝑃

𝐿
is the actual load of system,

and Δ𝑓 is the system frequency deviation.
As seen in Figure 2, the proposed frequency control sys-

tem mainly consists of two modules: wind-diesel power con-
trol module and BESS real-time control module. The wind-
diesel power control module regulates the active power out-
put of wind turbine and diesel generator according to wind
power and load prediction information. It could regulate the
active power output of wind turbine and diesel generator to
track the predicted load as close as possible, so as to reduce
the frequency deviation to be as small as possible. The wind-
diesel power control module is designed based on fuzzy con-
trol, which could choose different rules based on wind power
and load prediction information. An active disturbance rejec-
tion control (ADRC) based BESS real-time control module
is designed to compensate the frequency fluctuation in real
time, which could use the extended state observer to estimate
the disturbance and compensate the real-time frequency
fluctuation caused by wind power and load fluctuation.

3. Wind-Diesel Power Control Module

The scheme of wind-diesel power control module is shown
in Figure 3. It consists of three parts: interpolation module,
power control, and correction module.

3.1. Interpolation Module. The interpolation module deter-
mines the predictive value of wind power and load between
each two adjacent prediction periods for power control, when
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prediction period is unmatched with control period. The
interpolation module utilizes linear interpolation method
to calculate and smooth predictive value at control period.
Assumes that the prediction period is 𝑇 whose unit is s
(seconds), the predictive value is 𝑦

0
at 𝑡
0
, and the predictive

value is 𝑦
1
at 𝑡
0
+ 𝑇. The linear interpolation formula is as

follows:

𝑦 (𝑡) = 𝑎𝑡 + 𝑏, (1)

where 𝑡
0
≤ 𝑡 ≤ 𝑡

0
+𝑇. Replace 𝑡 and𝑦 in (1) by values of (𝑡

0
, 𝑦
0
)

and (𝑡
0
+ 𝑇, 𝑦

1
), and coefficients 𝑎 and 𝑏 can be obtained:

𝑎 =
𝑦
1
− 𝑦
0

𝑇
,

𝑏 =
(𝑇 + 𝑡

0
) 𝑦
0
− 𝑡
0
𝑦
1

𝑇
.

(2)

3.2. Power Calculation Module. The design objective of
power calculation module is to calculate reference power
for wind turbine and diesel generation, which could keep
the system power balance between generating power and
demanding load under the premise of using wind energy as
much as possible. Its control strategy is designed as follows:

(1) When 𝑃
𝐿 pre < 𝑃

𝑤 pre, that is, prediction value of
load is less than the prediction value of wind power,
the load fluctuation would be compensated by wind
turbine alone and reference power of diesel generator
could be zero.The control of the power value is shown
as follows:

𝑃
𝑤 ref = 𝑃

𝐿 pre,

𝑃
𝑑 ref = 0.

(3)

(2) When 𝑃
𝐿 pre < 𝑃

𝑤 pre, that is, prediction value of load
is equal to or greater than the prediction value of wind
power, the reference power of wind power could be
set to the prediction value of wind power tomaximize
the use of wind power and the frequency fluctuation
would be compensated by diesel generator. The cal-
culated reference power values for wind turbine and
diesel generator are shown as follows:

𝑃
𝑤 ref = 𝑃

𝑤 pre,

𝑃
𝑑 ref = 𝑃

𝐿 pre − 𝑃
𝑤 ref .

(4)
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Figure 4: Control structure of correction module.

3.3. CorrectionModule. Correctionmodule adjusts the refer-
ence power calculated by power calculation module accord-
ing to the restraints of active power output change of wind
turbine and diesel generator. When wind speed fluctuates
sharply, the active power output of wind turbine would
fluctuate sharply if wind turbine tracks the calculated refer-
ence power in (4) directly. Although diesel generator can be
controlled to output any value between zero and the rated
power, the rate of change of its power has its constraint.

The objective of correctionmodule is reducing the change
of active power output of wind turbine, the operation of diesel
generator. The correction module is designed based on fuzzy
control, which utilizes the wind power and load prediction
information to adjust the active power output of wind turbine
and diesel generator.

The fuzzy logic controller for correctionmodule uses two
single inputs and two-dimensional output of the structure. Its
structure is shown in Figure 4.

The input variables to the fuzzy logic controller are as
follows.

The first input variable is the error between reference
power and actual active power output of wind turbine Δ𝑃

𝑤
,

that is, 𝑃
𝑤 ref − 𝑃

𝑤
. The second input variable is the error

between reference power and actual active power output of
diesel generator Δ𝑃

𝑑
.

The output variable is adjusting power Δ𝑃 which is used
to adjust the reference power of wind turbine and diesel
generator calculated in power calculation module:

𝑃
𝑤ref = 𝑃

𝑤 ref + Δ𝑃,

𝑃
𝑑ref = 𝑃

𝑑 ref + Δ𝑃.

(5)

Define language variable of Δ𝑃
𝑤
as 𝐸
1
, language variable

of Δ𝑃
𝑑
as 𝐸
2
, language variable of Δ𝑃 as 𝑈, respectively. The

fuzzy set of input variables and output variable is {NB, NM,
NS, ZO, PS, PM, PB}, which means that the change of power
is {negative big, negativemiddle, negative small, zero, positive
small, positive middle, positive big}.

The membership function of the two inputs and output
of the fuzzy logic controller adopts the triangle membership
function and are shown in Figures 5, 6, and 7. Table 1 shows
the fuzzy control rule. The weighted average method is used
for defuzzification.
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Table 1: The rule of fuzzy controller.

𝑈 𝐸
1

NB NM NS ZO PS PM PB

𝐸
2

NB ZO PS PS PM PM PB PB
NM ZO ZO PS PS PM PM PB
NS NS ZO ZO PS PS PM PM
ZO NS NS ZO ZO ZO PS PS
PS NM NM NS NS ZO ZO PS
PM NB NM NM NS NS ZO ZO
PB NB NB NM NM NS NS ZO

1
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Figure 5: Membership function of the input 𝐸
1
.

4. Real-Time BESS Frequency Control Module

The design objective of the real-time BESS frequencymodule
is to compensate the frequency fluctuations caused by real-
time wind power and load fluctuation and maintain the
system frequency in rated frequency range to meet the active
power-load balance.

Figure 8 shows the control structure of the real-time BESS
frequency control module based on ADRC controller, where
Δ𝑓ref is reference frequency error, which is always given as
zero, that is, the real-time frequency error between rated
frequency and actual frequency, Δ𝑃

𝑓
is adjusting charging or

discharging power of BESS, and Δ𝑓 is the actual frequency
deviation of system. 𝑃

𝐿
−𝑃
𝑤
−𝑃
𝑑
is the actual power deviation

between load and power generated by wind turbine and
diesel. It could be seen as disturbance to system frequency.

In Figure 8, BESS could be seen as a first-order lag
loop [13]. Therefore, the whole controlled object can be
seen as a concatenation of two first-order loops. A second-
order ADRC controller is used for real-time frequency BEES
control.

Figure 9 shows the control structure of the second-order
ADRC controller, where 𝐺

1
is the TD (Tracking Difference),

𝐺
2
is the ESO (extended state observer), 𝐺

3
is NLSEF

(Nonlinear State Error Feedback), and 𝐺
0
is the controlled

object.

(a) Tracking Difference𝐺
1
.Themathmodel of TD is designed

as follows:

̇V
1
= V
2
,

̇V
2
= fst (V

1
, V
2
, 𝑟, ℎ) ,

(6)
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where function fst(V
1
, V
2
, 𝑟, ℎ) is determined by following

equation:

𝛿 = 𝑟 ⋅ ℎ,

𝛿
0
= 𝛿 ⋅ ℎ,

𝑦 = V
1
− Δ𝑓ref + ℎ ⋅ V

2
,
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𝑎
0
= √𝛿2 + 8𝑟

𝑦
,

𝑎 =

{{

{{

{

𝑥
2
+
𝑦

ℎ

𝑦
 ≤ 𝛿
0

𝑥
2
+
(𝑎
0
− 𝛿)

2
sign (𝑦) 𝑦

 > 𝛿
0
,

fst (V
1
, V
2
, 𝑟, ℎ) =

{

{

{

−
𝑟 ⋅ 𝑎

𝛿
|𝑎| ≤ 𝛿

−𝑟 ⋅ sign (𝑎) |𝑎| > 𝛿,

(7)

where 𝑟 is the speed factor, ℎ is the filter factor, sign is a sign
function, and 𝑟 and ℎ are adjustable parameters of TD.

(b) Extended State Observer 𝐺
2
. The math model of ESO is

designed as follows:

𝜀 = 𝑧
1
− 𝑦,

̇𝑧
1
= 𝑧
2
− 𝛽
01
⋅ 𝜀,

̇𝑧
2
= 𝑧
3
− 𝛽
02
⋅ fal (𝜀, 𝛼

1
, 𝛿
1
) + 𝑏
0
⋅ 𝑢,

̇𝑧
3
= −𝛽
03
⋅ fal (𝜀, 𝛼

2
, 𝛿
1
) ,

(8)

where function fal(𝜀, 𝛼, 𝛿) is given as follows:

fal (𝜀, 𝛼, 𝛿) =
{

{

{

|𝜀|
𝛼 sign (𝜀) |𝜀| > 𝛿 ≥ 0

𝜀

𝛿1−𝛼
|𝜀| ≤ 𝛿.

(9)

In (8), by choosing appropriate {𝛼
1
, 𝛼
2
, 𝛿
1
, 𝛽
01
, 𝛽
02
, 𝛽
03
}, 𝑧
1
,

𝑧
2
could be used to estimate the controlled variable 𝑦 and its

differential. 𝑧
3
could be used to estimate the disturbance.

(c) Nonlinear State Error Feedback 𝐺
3
. The math model of

NLSEF is designed as follows:

𝑒
1
= V
1
− 𝑧
1
,

𝑒
2
= V
2
− 𝑧
2
,

𝑢
0
= 𝑘
1
⋅ fal (𝑒

1
, 𝛼
3
, 𝛿
2
) + 𝑘
2
fal (𝑒
2
, 𝛼
4
, 𝛿
2
) ,

𝑢 = 𝑢
0
−
𝑧
3

𝑏
0

,

(10)

where function fal() is showed in (9), 𝑧
3
is the extended state

variable, and 𝑘
1
, 𝑘
2
,𝛼
3
,𝛼
4
, and𝛿

2
are the adjusting parameters

of NLSEF.

(d) Control Object 𝐺
0
. The structure of controlled object𝐺

0
is

shown in Figure 10, whose control variable is 𝑢 = Δ𝑃
𝑓
, output

variable is 𝑦 = Δ𝑓, and disturbance is 𝑃
𝐿
− 𝑃
𝑤
− 𝑃
𝑑
.

The transfer function of control object 𝐺
0
could be

written as follows:

𝐺 (𝑠) = −
1

𝑇
𝑏
𝑠 (𝑀𝑠 + 𝐷)

. (11)
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Figure 10: Control structure from control variable to output.
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The corresponding state space expression of 𝐺
0
could be

written as follows:

̇𝑥
1
=

1

𝑀
(−𝐷𝑥

1
+ 𝑥
2
) ,

̇𝑥
2
= −

1

𝑇
𝑏

𝑢,

(12)

where 𝑥 = [𝑥
1
, 𝑥
2
] = [Δ𝑓, 𝑃

𝑏
] is the state variable, 𝑦 = 𝑥

1
is

the output, and 𝑢 = Δ𝑃
𝑓
is the control variable.

5. Simulation and Analysis

In this section, the simulation experiment of frequency
control ofWPBHPS will be conducted to demonstrate the ef-
fectiveness of the proposed approach. A wind-diesel-battery
hybrid power system [14], which consists of a 750 kW wind
turbine, a 350 kW diesel generator, and a 300 kW BESS with
50 kW⋅h capacity is used in the simulation experiments.

For comparison, two different frequency control
approaches will be used in the simulation experiment: (a)
the proposed control approach and (b) the control approach
which control the active power output of wind turbine by
maximum power point tracking (MPPT) control approach
and compensate frequency deviation by diesel generator and
BESS only.

A load prediction method based on artificial neural
network [11] is used to predict the load. The actual load and
predictive load curve is shown in Figure 11.

The actual wind speed data of wind turbines is shown in
Figure 12.

A greymodel basedwind power predictionmethod [15] is
used to predict the available active power ofwind turbine.The
predictive power of the wind turbine is shown in Figure 13.
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Figure 14: Frequency fluctuation of system.

The results of frequency control simulation experiments
are shown in Figure 14. By using control approach (b), the
maximum and minimum frequency deviations are 1.2411Hz
and 0.4772Hz, respectively. The maximum frequency devi-
ation of control approach (a) is 0.4103Hz, which is 33.5%
of that of control approach (b). The minimum frequency
deviation of control approach (a) is 0.2920Hz, which is 61.2%
of that of control approach (b). It is obvious that the frequency
control performance of control approach (a) is better than
approach (b).

The active power output of wind turbine and diesel
generator are shown in Figures 15 and 16. As seen in them,
the active power output of wind turbine and diesel generator
by using control approach (a) is smoother than that by using
control approach (b).

The charging/discharging power curve and SOC of
BESS are shown in Figures 17 and 18. As seen in Figure 16,
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Figure 15: Active power output of wind turbine.

600

700

500

400

300

100

200

0 100 200 300 400 500 600

Time (s)

Po
w

er
 (k

W
)

Control approach (a)
Control approach (b)

Figure 16: Active power output of diesel generator.
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Figure 17: Charging/discharging power of BESS.

the charging and discharging power of BESS are much
smaller by using control approach (a) compared with control
approach (b). As seen in Figure 17, the initial SOC of BESS
is 0.5. By using control approach (a), the SOC of BESS is
around 0.5. By using control approach (b), the SOC of BESS
is far below 0.5.

6. Conclusions

This paper proposed a load and wind power prediction
based frequency control approach for wind-diesel-battery
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hybrid power system. In this control approach, a wind-
diesel power control module is designed to regulate the
active power output of wind turbine and diesel generator
according to the prediction information of load and wind
power, which not only reduces frequency deviation caused
by fluctuation of load and wind power but also maximizes
use of wind power and reduces operation of diesel generator.
A real-time BESS frequency control module based on ADRC
controller is used to compensate the disturbance caused by
load and wind power fluctuation in real time. The simu-
lation results demonstrate that the proposed approach has
a better disturbance rejection ability and frequency control
performance compared with the traditional control approach
without prediction information and traditional droop control
approach.
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Electric Vehicles withmore than one electric motor can offer advantages in saving energy from the batteries. In order to do that, the
control strategy plays an important role in distributing the required torque between the electric motors. A dual motor propulsion
systemwith a differential transmission is simulated in this work. A rule based control strategy for this propulsion system is proposed
and analyzed. Two parameters related to the output speed of the transmission and the required torque are used to switch the two
modes of operation inwhich the propulsion system canwork under acceleration.The effect of these parameters is presented over the
driving cycles of NEDC, UDDS, and NYCC, which are followed using a PID controller. The produced energy losses are calculated
as well as an indicator of drivability, which is related to the difference between the desired speed and the actual speed obtained.The
results show that less energy losses are present when the vehicle is maintained with one electric motor most of the time, switching
only when the extended speed granted by the second motor is required. The propulsion system with the proposed control strategy
represents a feasible alternative in the spectrum of sustainable transportation architectures with extending range capabilities.

1. Introduction

Compared with propulsion systems based on the Internal
Combustion Engine (ICE), the electric propulsion system
offers advantage in the efficiency in which the energy is
transformed into rotating movement. Typical Electric Vehicle
(EV) propulsion systems provide efficiencies between 53%
and 77%, which are superior when compared to propul-
sion systems based on ICEs, with efficiencies between 13%
and 20% [1]. However, the capacity to store energy in an
Electric Vehicle continues to represent a limitation for a
more widespread use of EVs. With current technologies,
the amount of energy that can be carried lies in a range
between 100 and 250Wh/kg [2, 3], significantly smaller than
the amount of energy stored in fossil fuels 15 kWh/kg [4].This
fact, combined with long charging periods and elevated cost,
results in EVswith limited driving range that cannot compete
with ICE cars.

To address this issue, several research lines have been
explored. Lightweightmaterials [5], new battery technologies
[3, 6], and more efficient motors and power electronics [7]

can be counted among the possible improvements. In parallel
with those research lines, it has been found that architectures
that depart from the traditional electric powertrain can offer
a more efficient use of the limited energy stored in the
batteries. In such systems, two or more electric motors are
used in combination with a planetary gear train, which
allows the load to be distributed among the motors. This
provides properties of speed ratios that cannot be achieved
by conventional transmissions. The control strategy for the
power distribution of energy between themotors is a decisive
factor in the minimization of power losses of the propulsion
system.

In the work of Zhang and coworkers [8], the dual
motor coupling propulsion system (DMCPS) is presented. The
DMCPS can work with one or two electric motors. The shift
between one or twomotors is producedwhen themainmotor
achieves certain speed, which is then maintained constant,
and, from that point, the vehicle speed is regulated only by
a smaller auxiliary motor. However, when there is a speed
differential between the branches of planetary systems, there
are also differences in the torque ratios between the power
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sources, an effect that was not specified in the cited article.
Efficiency analysis and EV driving range simulations have
found that efficiency and range are improved if the dual
motor type of propulsion systemworks either with onemotor
and the other motor locked or with the two motors at the
same speed [9]. The operation of the two motors at different
speeds can be used as a transition, as we propose in the
present work. In the work ofWang and Sun [10], a dual motor
propulsion system is also analyzed with an optimization of
the components of the powertrain; however details of the
control strategy of operation of the two motors were not
provided.

Theproposed power split control strategy has the capacity
to achieve vehicle speeds either working only with one
electric motor, working with two electric motors at the
same speed, or working with two electric motors at different
speeds. The goal is to analyze the input information that
the control strategy requires in real time to obtain lower
energy losses in the propulsion system during the vehicle
acceleration, with the best drivability possible. Due to its
simplicity and practicality, a rule based algorithmwas chosen
to design the control strategy over other popular alternatives
like dynamic programming [8, 11] or extremum seeking
algorithm [12] whose implementation could be unfeasible or
computationally expensive.

Considering the mentioned control strategies and opti-
mizations in powertrains with more than one electric motor,
this work aims to contribute with the design of a power
split control strategy for a dual motor type of propulsion
system for EVs, implementable in real time, which depend on
the monitoring of the driver torque request and the vehicle
speed. Also, the proposed control strategy was modelled
and simulated over driving cycles to analyze the effect of its
control parameters on the energy losses and drivability.

The organization of this work is as follows. Section 2
describes the powertrain architecture and Section 3 presents
the modelling of its components. Section 4 describes the
design of the control strategy. Section 5 provides the results
of the proposed control strategy and the effects of the input
parameters of the control strategy on energy losses and
drivability. Section 6 provides the conclusions of this study.

2. Powertrain Architecture

The powertrain used in this work is presented in the
schematic displayed in Figure 1. The first differential (D1)
is composed of side gears 1 and 2 (SG1 and SG2), a carrier
and planetary gears, and a ring gear (RG) which outputs the
torque. The torque is transmitted through a reduction gear
and from there to a second differential (D2), which transmits
the power to the wheels.

The figure shows that the torque request is sent to the
embedded system, which transmits the torque request to
the two motors. The control strategy is programmed in the
embedded system, which is in charge of the decision of when
it is more convenient to use one or both motors according
to the conditions of speed and available power. When both
motors are used, the torque is transmitted from them to
D1. When only one motor is used, one of the motor locks

Reduction 
gears

Motor 2Motor 1

To 
wheel

To 
wheel

Controller 1 Controller 1

Embedded 
systemTorque 

request
Torque 
request

L1 L2

D2

Torque 
request

D1
SG1 SG2

RG

Figure 1: Diagram of the propulsionmodule that shows the internal
component of the transmission (differentials and gear reduction)
and the motors, controllers, and embedded system.

(labeled in the diagram as L1 or L2) is activated to prevent
the rotation of the idle motor. The described powertrain was
simulated to account for the power losses incurred in the
electric motors. The control strategy objective is to provide
the necessary power, considering the torque request and
current speed, by choosing the operation mode (one or two
motors) that provides less energy losses. The models used for
the simulation are described in Section 3.

3. Component Modelling

The EV is modelled using the conventional longitudinal
dynamics equations for loads caused by rolling resistance
(𝐹rr), aerodynamic drag (𝐹ad), hill climbing (𝐹hc), and inertial
forces (𝐹la) in

𝐹rr = 𝐶rr ⋅ 𝑔 ⋅ 𝑚 ⋅ cos 𝜃,

𝐹ad =
1

2
⋅ 𝜌 ⋅ 𝐶

𝑎
⋅ 𝐴 ⋅ (
𝑑𝑥

𝑑𝑡
)

2

,

𝐹hc = 𝑔 ⋅ 𝑚 ⋅ sin 𝜃,

𝐹la = 𝑚 ⋅
𝑑
2

𝑥

𝑑𝑡2
.

(1)

For the rolling resistance force, 𝐶rr, 𝑔, 𝑚, and 𝜃 are the
rolling resistance coefficient, gravity, vehicle mass, and slope
angle, respectively. For the aerodynamic drag, 𝜌, 𝐶

𝑎
, 𝐴, 𝑥,

and 𝑡 are the air density, aerodynamic drag coefficient, frontal
area, displacement, and time, respectively. These forces are
added to obtain the traction force (𝐹tr) in

𝐹tr = 𝐹rr + 𝐹ad + 𝐹hc + 𝐹la. (2)
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Table 1: Cases and conditions to obtain the output torque. The columns of L1 and L2 (locks 1 and 2) express whether the lock is activated (1)
or deactivated (0).

Operation mode (OM) Condition Output torque (𝑇D1)L1 L2 Driving link Driven link
1 0 1 SG1 RG 𝑇EM1 ⋅ 2

2 0 0 SG1, SG2 RG 𝑇EM1 ⋅ (2 ⋅ 𝜔EM1/(𝜔EM1 + 𝜔EM2)) + 𝑇EM2 ⋅ (2 ⋅ 𝜔EM2/(𝜔EM1 + 𝜔EM2))

3 0 0 SG2 SG1 0
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Figure 2: Efficiencymapused to represent the power losses incurred
in the electric motors.

The load torque transmitted to differential 1 (𝑇tr) passing
through differential 2 and the gear reduction is presented in
(3), where 𝑅

𝑤
is the wheels radius and 𝐺

𝑟
is the overall gear

ratio:

𝑇tr = 𝐹tr ⋅ 𝑅𝑤 ⋅ 𝐺𝑟. (3)

The model for the electric motor considers the power
losses as a function of the torque and speed [13–16]. The
efficiency of the motor (𝜂EM) is given by (4) in which 𝑇EM
and 𝜔EM are the torque and the angular speed of the electric
motor. The parameters 𝑘

𝑐
, 𝑘
𝑖
, 𝑘
𝜔
, and 𝐶 take the values 0.3,

0.01, 0.000005, and 600, respectively, to simulate a 100 kW
induction motor [13]. The efficiency of both electric motors
(𝜂EM1 and 𝜂EM2) in this study is calculated using (4). Figure 2
represents the efficiency map of the motor in its operation
range and the line of maximum torque. Consider

𝜂EM

=
𝑇EM ⋅ 𝜔EM

𝑇EM ⋅ 𝜔EM + 𝑘𝑐 ⋅ 𝑇EM
2

+ 𝑘
𝑖
⋅ 𝜔EM + 𝑘𝜔 ⋅ 𝜔EM

3 + 𝐶
.

(4)

In this case, the same characteristics for the two electric
motors were used. The output angular speed of differential
1 (𝜔D1) is a function of the speed of electric motors 1 and 2
(𝜔EM1 and 𝜔EM2) as shown in

𝜔D1 =
𝜔EM1 + 𝜔EM2
2
. (5)

The output torque of differential 1 (𝑇D1) is a function of
the torque of the electric motors (𝑇EM1 and 𝑇EM2) as shown
in Table 1. According to the table, Operation Mode 1 (OM 1)
corresponds to a situation in which lock 2 is actuated and,
as a consequence, 𝜔EM2 = 0. All the power for the vehicle
is provided by electric motor 1. In Operation Mode 2 (OM
2), both locks are deactivated and the vehicle is powered by
both of the electricmotors. InOperationMode 3 (OM3), both
locks are deactivated but one of the motors is being driven
by the other motor, and as a result 𝑇D1 = 0 is obtained.
This mode cannot accelerate the vehicle but can be useful in
regulating the speed of the electric motors. The three modes
are subjected to the condition of (6) which represents the
energy balance of the differential:

𝑇D1 ⋅ 𝜔D1 = 𝑇EM1 ⋅ 𝜔EM1 + 𝑇EM2 ⋅ 𝜔EM2. (6)

According to OM 3, a condition in which one of the
motors would operate at low speeds (and, e.g., at low
efficiencies according to the efficiency map) is avoided.

The diagrams of Figure 3 show the way in which the
acceleration is handled in this propulsion system. Figure 3(a)
shows the case in which the driver provides a torque request
(𝜏), which then produces a torque request for each motor
(𝜏EM1 and 𝜏EM2) and ultimately produces an output angular
speed (𝜔D1)which provides forwardmovement to the vehicle.
In Figure 3(b) the driver is replaced by a PID controller which
compares the obtained vehicle speed (V(𝑡)) with a set point
speed (VSP(𝑡)) defined by a driving cycle. The use of a driving
cycle provides a predefined standard speedwhich can be used
to produce comparisons in energy losses.

4. Control Strategy for the Propulsion System

Theobjective of the control strategy is to distribute the torque
request signal to each electric motor. The control strategy
starts working when a positive torque is requested to the
powertrain to produce acceleration in the vehicle (when 𝜏 >
0). According to the current speed and the requested torque,
a decision is made to calculate the torque request signal for
each motor. The inequalities in (7) show the possible values
that can be assigned for each torque request signal:

0 < 𝜏 < 1,

0 < 𝜏EM1 < 1,

0 < 𝜏EM2 < 1.

(7)

The boundaries of the control strategy consider the
limits of the parameters of the electric motors. The electric
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Figure 3: Block diagrams of (a) open loop control provided by a driver and (b) closed loop control to follow the speed of a driving cycle.

motor’s maximum speed used for this study is 800 rad/s. The
maximum achievable torque for the electric motors is shown
in Figure 2 in the torque limited zone (0–415 rad/s) and the
power limited zone (415 rad/s–800 rad/s).

From (5), the maximum output speed for differential 1
(𝜔D1|max) can be expressed according to (8) and (9) for OM 1
and OM 2 (previously defined in Table 1):

OM 1: 𝜔D1|max =
𝜔EM1|max

2
, (8)

OM 2: 𝜔D1|max =
𝜔EM1|max + 𝜔EM2|max

2
. (9)

The implication of (8) and (9) is that OM 2 enables higher
speeds (by a factor of two) than what is possible to achieve by
using OM 1. The transition speed (𝜔

1→2
) is the speed 𝜔D1 at

which the powertrain changes the operation from one motor
(OM 1) to two motors (OM 2). The possible values for 𝜔

1→2

are limited by (8) which result in

0 ≤ 𝜔
1→2
≤
𝜔EM1|max

2
. (10)

The transition torque request (𝜏
1→2

) is the torque request
signal at which the powertrain changes the operation from
one motor to two motors. The possible values for 𝜏

1→2
can

be in the range {0, 1}. The values chosen for 𝜔
1→2

and 𝜏
1→2

have an impact in the overall efficiency of operation of the
powertrain and in the longitudinal dynamics of the vehicle,
which is analyzed in the next section.

Figure 4 portrays the control logic in a flow diagram
for the transitions between the previously defined operation

Table 2: Value of parameters for the simulation of the powertrain.

Symbol Value
𝐶rr 0.007
𝜌 1.2 kg/(m3)
𝑅
𝑤

0.3m
Motor maximum torque 240Nm
𝑚 1700 kg
𝐶
𝑎

0.2
𝐺
𝑟

1/7
Motor maximum speed 800 rad/s
𝜃 0∘

A 2.11m2

g 9.81m/(s2)
Motor maximum power 100 kW

modes. According to the control logic, OM 3 is used to
regulate the speeds of both motors until they are similar
within certain range. For that reason OM 3 is used only to
transition from OM 1 (motor 1 has speed but motor 2 is
at rest) to OM 2 (both motors have speed). According to
the control logic, when 𝜏

1→2
and 𝜔

1→2
are small, there are

less chances for the powertrain to work on OM 1. On the
contrary, when 𝜏

1→2
and 𝜔

1→2
are large, the manifestation

of OM 3 and OM 2 is delayed.

5. Effect of 𝜔
1→2

and 𝜏
1→2

on Acceleration and
Power Losses

To run simulations on the powertrain, the values of the
parameters of the vehicle are shown in Table 2.



Mathematical Problems in Engineering 5

Start

OM 1

OM 3

True

False

True

False

True

False

True

False

OM 2

False

True

False

True

𝜏EM1 = 0

𝜏EM2 = 0
𝜏 > 0

𝜏 > 𝜏1→2

𝜔D1 > 𝜔1→2

or 𝜏 > 𝜏1→2

𝜔EM1∼𝜔EM2

𝜔D1 ∼ 0

and 𝜏 = 0

𝜔D1 ∼ 0

and 𝜏 = 0

Figure 4: Flow diagram of the control strategy programmed in the embedded system.

OM 3

0
40
80

120

Sp
ee

d 
(k

m
/h

)

25 50 75 100 125 150 175 200 225 2500
Time (s)

𝜏 = 0.4 𝜏 = 0.25 𝜏 = 0.1

Max. speed = 123 km/h

(a) Vehicle speed

0
300
600
900

A
ng

ul
ar

sp
ee

d 
(r

ad
/s

)

25 50 75 100 125 150 175 200 225 2500
Time (s)

𝜏 = 0.4 𝜏 = 0.25
𝜏 = 0.1

(b) Speed of electric motor 1

0
300
600
900

A
ng

ul
ar

sp
ee

d 
(r

ad
/s

)

25 50 75 100 125 150 175 200 225 2500
Time (s)

𝜏 = 0.4 𝜏 = 0.25 𝜏 = 0.1

(c) Speed of electric motor 2

Figure 5: Speed of the vehicle (a), electric motor 1 (b), and electric motor 2 (c) for 𝜏
1→2
= 0.5 and 𝜔

1→2
= 200 rad/s.

Figure 5(a) shows a simulation of the vehicle speed with
𝜏
1→2
= 0.5 and 𝜔

1→2
= 200 rad/s. The three curves shown

correspond to the torque requests 𝜏 = {0.1, 0.25, 0.4}. The
powertrain starts accelerating in OM 1, then it transitions
through a brief period of time in OM 3 (lasting 1.7 s), and
then it follows in OM 2. Figures 5(b) and 5(c) show the
rotational speed of electric motors 1 and 2, respectively. The
figures show that, in OM 1, only electric motor 1 provides
speed (𝜔EM1) for the powertrain. In OM 3, 𝜔EM1 decreases
and𝜔EM2 increases until they have the same speed. After that,
OM 2 begins to operate.

Figure 6(a) shows the vehicle speedwhen 𝜏 = 0.25 for two
different values of 𝜏

1→2
. When 𝜏

1→2
= 0.15 the acceleration

is handled by the two motors (OM 2). When 𝜏
1→2
= 0.35

the acceleration is first handled by only one motor (OM 1)
and, after the transition speed (𝜔

1→2
= 200 rad/s), the

powertrain passes through OM 3 to OM 2. According to the
figure, when the powertrain is using one motor only, the
vehicle achieves slightly higher acceleration; however, during
OM 3, the vehicle undergoes a period of coasting before the
powertrain (in OM 2) accelerates the vehicle again. Figures
6(b) and 6(c) show 𝜔EM1 and 𝜔EM2, respectively. The plots



6 Mathematical Problems in Engineering

0
40
80

120
Sp

ee
d 

(k
m

/h
)

10 20 30 40 50 60 700
Time (s)

𝜏 = 0.25, 𝜏1→2 = 0.15

𝜏 = 0.25, 𝜏1→2 = 0.35

(a) Vehicle speed

10 20 30 40 50 60 700
Time (s)

0
300
600
900

A
ng

ul
ar

sp
ee

d 
(r

ad
/s

)

𝜏 = 0.25, 𝜏1→2 = 0.15

𝜏 = 0.25, 𝜏1→2 = 0.35

(b) Speed of electric motor 1

0
300
600
900

A
ng

ul
ar

sp
ee

d 
(r

ad
/s

)

10 20 30 40 50 60 700
Time (s)

𝜏 = 0.25, 𝜏1→2 = 0.15

𝜏 = 0.25, 𝜏1→2 = 0.35

(c) Speed of electric motor 2

Figure 6: Effect of the transition torque request on the vehicle speed (a) and on the rotational speed of electric motors 1 (b) and 2 (c).
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corresponding to 𝜏
1→2
= 0.35 show 𝜔EM1 running at almost

400 rad/s just before the speed drops as a consequence of the
start of OM 3. At that moment, 𝜔EM2 starts to rise until the
two speeds are the same. The plots corresponding to 𝜏

1→2
=

0.15 show the powertrain operating in OM 2 all the time.
According to Figures 5 and 6, OM 3 produced a time

in which the vehicle is not accelerated. Drivability, which
“describes the driver’s complex subjective perception of the
interactions between driver and vehicle associated with the
longitudinal acceleration aspects” [17], is affected by the
implementation of OM 3. Next section continues the analysis
of the effects of 𝜔

1→2
and 𝜏
1→2

on the energy losses and the
drivability by using driving cycles.

5.1. Driving Cycle Simulation of the Control Strategy. The
torque request (𝜏) necessary to follow the driving cycle
was obtained using a PID. Figure 7(a) illustrates the New
European Driving Cycle (NEDC) and the speed followed by
the simulated vehicle using 𝜔

1→2
and 𝜏

1→2
with values of

200 rad/s and 0.5, respectively. The control strategy follows
closely the NEDC speed; however when OM 3 is present,
an error occurred (the error was magnified in the figure
for illustration purposes). The speed error (𝑒V(𝑡)) can be
expressed as shown in

𝑒V (𝑡) = VSP (𝑡) − V (𝑡) . (11)
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Figure 9: PID controller vehicle speed to follow the UDDS (a) and the NYCC (b).

In this research, the maximum 𝑒V(t) produced in the
driving cycle (𝑒V|MAX) is used as an indicator of drivability. An
improved drivability is obtained when 𝑒V|MAX is maintained
small. Figure 7(b) shows the speed of the electric motors
while being controlled to produce the speed of the NEDC.
Figure 7(c) shows the accumulated energy losses incurred
by the simulated vehicle while following the driving cycle
according to the model explained in Section 3.

The effect of 𝜔
1→2

and 𝜏
1→2

on the energy losses
while the vehicle follows NEDC is illustrated in Figure 8(a).
According to the figure, the energy losses increase when the
values of𝜔

1→2
and 𝜏
1→2

decrease.This situation corresponds
to an early switch from OM 1 to OM 2 or when the driving
cycle is handled almost completely in OM 2. The maximum
energy losses were found when 𝜔

1→2
has a value of 80 rad/s.

The maximum energy losses found in this study at the end of
the NEDC were of 1,199.753 kJ. The minimum energy losses
were found when 𝜔

1→2
has a value of 400 rad/s and 𝜏

1→2
>

0.70. The minimum energy losses found in this study at the
end of the NEDC were of 870.823 kJ.

The effect of 𝜔
1→2

and 𝜏
1→2

on 𝑒V|MAX while the vehicle
follows NEDC is illustrated in Figure 8(b). According to the
figure, 𝑒V|MAX decreases when the values of 𝜔

1→2
and 𝜏
1→2

decrease. This situation corresponds to a better drivability,

given that the driving cycle is handled almost completely in
OM 2 (OM 3 did not appear in the entire driving cycle or
appears at small values of speed). The best drivability was
found when 𝜔

1→2
has a value of 0 rad/s and 𝜏

1→2
< 0.25,

resulting in 𝑒V|MAX of 1.52 km/h. The worst drivability was
found when 𝜔

1→2
= 400 rad/s and 𝜏

1→2
> 0.4, with a value

of 𝑒V|MAX = 6.27 km/h. The plot reveals also a second worst
case of drivability when 𝜔

1→2
= 160 rad/s and 𝜏

1→2
> 0.25,

with a value of 𝑒V|MAX = 6.08 km/h.
TheUrban Dynamometer Driving Schedule (UDDS) and

the New York City Cycle (NYCC) are driving cycles that
present higher peak accelerations and lower speeds when
compared with the NEDC [18]. The effect of the proposed
control strategy under those driving cycles in terms of
energy losses and drivability (𝑒V|MAX) was also analyzed. The
UDDS and the NYCC are shown in Figures 9(a) and 9(b),
respectively, along with the speed profile produced by the
control strategy applied in the simulated EV.The figure shows
that themaximum speed achieved by the vehicle in theUDDS
is 91.25 km/h, while for the NYCC it is of 44.6 km/h.

The effect of 𝜔
1→2

and 𝜏
1→2

on UDDS and NYCC is
presented in Figure 10. For the UDDS the contour plot for
the energy losses (Figure 10(a)) looks similar to the contour
plot obtained for the NEDC (Figure 8(a)). The maximum
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Figure 10: Contour plots for energy losses and 𝑒V|MAX for the driving cycles of UDDS and NYCC.

energy losses were found when 𝜔
1→2

is less than 240 rad/s
(2,043.404 kJ).Theminimum energy losses were found when
𝜔
1→2

has a value of 400 rad/s and 𝜏
1→2
> 0.85 (1,233.674 kJ).

For drivability (Figure 10(b)), the results of the UDDS are
similar to those of NEDC. The best drivability was found
when 𝜔

1→2
has a value of 0 rad/s and 𝜏

1→2
< 0.85 (𝑒V|MAX =

2.89 km/h). The worst drivability was found when 𝜔
1→2

has
a value of 400 rad/s and 𝜏

1→2
= 0.55 (𝑒V|MAX = 13.29 km/h).

For the NYCC, according to Figure 10(c), the energy
losses follow the same pattern as NEDC and UDDS, increas-
ing in the zone of low 𝜔

1→2
and 𝜏

1→2
values (765.012 kJ)

and decreasing when 𝜔
1→2

and 𝜏
1→2

are high (501.146 kJ).
For the drivability, the NYYC presented the potential worst
case of drivability between the analyzed driving cycles with
𝑒V|MAX = 13.72 km/h found when 𝜔

1→2
has a value of more

than 80 rad/s and 𝜏
1→2
= 0.4. The best drivability was found

in the same zone as the UDDS and NEDC, when 𝜔
1→2

and
𝜏
1→2

have low values (𝑒V|MAX = 2.40 km/h).

5.2. Discussion. The energy losses in all modes were reduced
when a high transition speed (𝜔

1→2
) was set in combination

with a high transition torque request signal (𝜏
1→2

). This
indicates that energy losses were reduced when the driving
cycle is handled most of the time in OM 1, with only one
electric motor. To handle the whole driving cycle in OM 1
is only possible for the NYCC because of its low maximum
speed. For the UDDS and mainly for NEDC, the switching
from OM 1 to OM 2 was necessary to achieve the speeds
above 61.7 km/h, which correspond to the electric motor
maximum speed (of 800 rad/s) in OM 1.

The differences in energy losses can be explained by
analyzing the efficiency map of the motors and the zones
in which the operation points are located under different
values of𝜔

1→2
and 𝜏
1→2

. Figure 11 illustrates this by showing
the efficiency map of the motor with the operation points
produced superposed, when NEDC is followed. Figure 11(a)
uses the parameters 𝜔

1→2
and 𝜏
1→2

with values of 400 rad/s
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Figure 11: Operation points of the two electric motors for the NEDC, superposed in the electric motor efficiency map.

and 0.55, respectively. Figure 11(b) shows the operation points
produced when 𝜔

1→2
= 80 and 𝜏

1→2
= 0.4. Comparing

the figures, (a) has more operation points in the high speed
zone than (b). The high speed zone in the efficiency map
corresponds to the higher efficiency, while zones of low speed
present also low efficiencies. This produced a difference in
energy losses of 318.617 kJ less between the operation points
of (a) with respect to (b). Another observation that can be
drawn from Figure 11 is the low utilization of the torque
range by the NEDC. Driving cycles with higher accelerations
require higher torques. Also, variations in the design of the
powertrain can include different transmission gear ratios
(which modify the torque requirements in the motors) and
different sizes of electric motors to get a better fit of the
operation points.

In this work, two electric motors of the same charac-
teristics were used. The effect of having two electric motors
with different efficiency maps or size would be that the
control strategywould have to account for two types ofOM 1,
depending on which motor is actuated and which motor
is locked. Each motor could offer efficiency advantages in
certain conditions of torque and speed, which would add
flexibility to the system. On the other hand, twomotors of the
same characteristics simplify the control strategy and allow
fault tolerant traction in the case of failure of any of the
electric motors: independently of the faulty motor, any of the
motors can continue operating inOM 1 providing the vehicle
with the same output torque (however with the limitation in
maximum vehicle speed that appears with OM 1).

According to the results, high 𝜔
1→2

and high 𝜏
1→2

combination produces less energy losses but also produces
the highest 𝑒V|MAX for the driving cycles NEDC, UDDS, and
NYCC.

6. Conclusions

A control strategy for a dualmotor propulsion system for EVs
is established in this work. The control strategy receives the
torque demand and distributes it to the two electric motors to
provide the desired acceleration and speed. The objective of
the control strategy is to allow the desired acceleration while
maintaining low energy losses.

The proposed control strategy is based on rules, with
feasibility to be implemented in a real time control system.
The control strategy inputs are the current speed of the
electricmotors and the torque demand signal (𝜏).The control
strategy can be tuned using two parameters: the transition
speed (𝜔

1→2
) and the transition torque request signal (𝜏

1→2
).

These parameters define when to switch from the use of one
motor only (which is identified as OM 1) to two motors
(identified as OM 2). The switching produces a transition
mode (OM 3), which produces a brief period of coasting of
about 1.7 s in this work. This period of coasting can affect
drivability by producing a difference between the desired
speed and the actual speed. This error was calculated and
analyzed.

The effect of 𝜔
1→2

and the transition torque request
signal 𝜏

1→2
on energy losses and drivability was studied by

running simulations of the speed and energy losses produced
by the electric motors in an EV. The simulations made
use of three of the most popular driving cycles: NEDC,
UDDS, and NYCC. The results show that 𝜔

1→2
and 𝜏

1→2

have a significant effect on the energy losses and drivability.
According to the results, the combination of high 𝜔

1→2
and

high 𝜏
1→2

provides the best results overall in energy savings
in the analyzed driving cycles.The drivability as studied here,
using the indicator 𝑒V|MAX, is affected by driving cycles with
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high accelerations and also when the shifting between modes
is produced at higher speeds.
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This paper suggests a high power density on-board integrated charger with active ripple compensation circuit for electric vehicles.
To obtain a high power density and high efficiency, silicon carbide devices are reported to meet the requirement of high-switching-
frequency operation. An integrated bidirectional converter is proposed to function as AC/DCbattery charger and to transfer energy
between battery pack and motor drive of the traction system. In addition, the conventional H-bridge circuit suffers from ripple
power pulsating at second-order line frequency, and a scheme of active ripple compensation circuit has been explored to solve this
second-order ripple problem, in which a pair of power switches shared traction mode, a ripple energy storage capacitor, and an
energy transfer inductor. Simulation results inMATLAB/Simulink validated the eligibility of the proposed topology.The integrated
charger can work as a 70 kW motor drive circuit or a converter with an active ripple compensation circuit for 3 kW charging the
battery.The impact of the proposed topology and control strategy on the integrated charger power losses, efficiency, power density,
and thermal performance has also been analysed and simulated.

1. Introduction

It is a significant strategy on a global scale to replace fossil
fuels vehicles with electric vehicles (EVs) for protecting the
environment and achieving energy sustainability [1]. EVs
have gained wide attention from the past years as one of
the effective solutions for environment deterioration and
energy shortages. There are three barrier issues for gaining
tremendous acceptance for EVs, which include the high cost
and cycle life of batteries, the lock of charging infrastructure,
and integrations of chargers. Integrated charger can avoid
these problems by integrating with electric drive and battery
charger.Themain advantages of integrated chargingmethods
are that the weight, volume, and cost are reduced. The
configuration of a conventional EV is shown in Figure 1(a).
However, the components in the traction circuit, like the
inverter, are not used during the battery charging, so it is
possible to use it in the charger circuit. The typical structure
of an integrated charger is shown in Figure 1(b).

Several organizations such as Society of Automotive
Engineers (SAE) have supplied the utility interface for EV

conductive charge coupler. As shown in Table 1, most EV
charging can be installed at home where the EV can be
connected with a convenience household outlet for Level 1
charging. Level 1 charging requires a 120V or 230V outlet.
Usually single-phase converter is used for that solution. A
bidirectional on-board charger needs a highly efficient AC-
DC converter that boasts a high power density and fits the
limited space and weight requirements.

Battery charger plays an important role in the develop-
ment of EVs. In most of traditional distributed EVs electrical
systems, motor drive circuit and battery charger circuit are
separate, so two independent circuits are needed. However,
the integrated charger supplies flexibility for layout space,
weight, and cost for EVs to obtain high efficiency and
higher power density [2–4]. Different types of integrated
charger topologies design have been reported and explained
in previous papers [5–8]. Similar topologies are introduced in
[9–11], without further power losses analysis, efficiency, and
thermal stress issues. Besides these, an integrated charger for
plug-in electric vehicles based on a special interior permanent
magnet motor is introduced. An interior permanent magnet
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Table 1: Charging power levels (based in part on [37]).

Power level types Level 1 Level 2 Level 3

Supply voltage 120VAC (US) 240VAC (US) 208–600VAC or VDC230VAC (EU) 400VAC (EU)
Power level ≤3.7 kW 3.7–22 kW >50 kW
Charging time 11–36 hours 1–6 hours 0.2–1 hours

Charger location On-board On-board Off-board
1-phase 1-phase or 3-phase 3-phase

Energy supply interface Convenience household outlet Dedicated EV supply equipment Dedicated EV supply equipment
Battery capacity 16–50 kWh 16–50 kWh 16–50 kWh
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Figure 1: Configuration of electric vehicle: (a) configuration of a conventional electric vehicle and (b) configuration of an integrated charger
electric vehicle.
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Figure 2: Integrated charger with two motors and two inverters.

synchronous is designedwith a special winding configuration
for traction mode and charging mode [12]. For integrated
fast battery charger, a fast on-board battery charger using
the motor like filter and the same converter for traction and
charging mode is presented as well [13].

The topology as shown in Figure 2 is used for plug-in
hybrid vehicles. The two three-phase AC motors are used as
inductors for the converter with the neutral points connected
to the grid. In traction mode, motor-1 delivers energy as a
traction motor while motor-2 is used to charge the battery.

In the charging mode, both of the motors and converters
operate as AC-DC boost converter to charge the battery [14].
However, this topology needs two motors or special double
winding motor and converters to make the system complex.

A permanent magnet nonisolated integrated charger
topology is proposed in Figure 3. The AC three-phase grid
is connected to each winding neutral point of the motor.
The magnetic motive force is cancelled on the stator. The
magnetic decoupling between the stator and the rotor prevent
the rotor from vibrating during charging mode. No rotation
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is produced during the charging mode [15]. However, this
topology needs to use PMSM windings as coupling filter. It
is not proper to use if the motor winding inductance is less
than the filter requirement.

An integrated charger is shown in Figure 4. An interior
permanent magnet motor drive circuit is operated as a three-
phase PFC circuit during charging mode. No additional
filter is needed except for electric motor windings. The
disadvantage of this topology is a single-phase diode bridge
rectifier that is used as the battery charger [16]. Therefore,
a large buck capacitor is needed to divert the ripple power
from DC-link. The aluminium electrolytic capacitor offers
low cost and a high energy density. However, this type
of capacitors has a short lifetime which is unacceptable
in EVs application. Film capacitor is more reliable than
electrolytic capacitor for electric vehicles, which results in
low power density. This inevitably leads to an increased
system cost and degraded energy efficiency. Various active
ripple compensation methods are proposed to absorb the
low-frequency ripple energy. An active filter is used to divert
the ripple power from the DC-link in existing methods [17].

High efficiency and high power density are expected to
achieve for integrated charger design. The converter power
density is evaluated by measuring the volume of power mod-
ules, cooling system, line inductor, and DC-link capacitor
[18] as shown in Figure 5. In addition, the power density
is required to constraint on space and weight of the overall
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Inductor
core loss

Switching energy loss

Active ripple compensation

Figure 5: High power density converter design.

system.High power density system is considered by the use of
newmaterials switching devices, increase in integrated levels,
and design of innovative circuit to reduce the size of DC-link
capacitor in this paper.

Conventional converter based on silicon (Si) devices
typically operate at lower frequency contrasting with silicon
carbide (SiC) MOSFETs. SiC switching devices are develop-
ing rapidly in themarket in recent years.This supplies oppor-
tunities for smaller converter optimization design. High
switching frequency can directly affect the size of converter’s
heatsink, DC-link capacitor, line filter, and EMI filter [19]. In
order to optimise the integrated charger efficiency and power
density, the SiC switching devices are used as the switches in
this paper.

In this paper, a concept of high power density integrated
charger for electric vehicles with active ripple compensation
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is reported.The paper is organized as follows: the existing on-
board battery charger in EV/HEV applications is introduced
in Section 1. The topology of a high power density inte-
grated charger with active ripple compensation is explained
in Section 2. The design criteria of circuit components
are described in Section 3. Section 4 presents an active
ripple energy storage control method. Moreover, the main
energy storage component inductor method and capacitor
method are theoretically analysed and simulated. A capacitor
auxiliary energy storage circuit is designed in details. The
simulation results in Section 5 show that the design and
control strategy meet the demand. The integrated charger
system power losses and thermal performance are discussed
in Section 5. Finally, the conclusion is given in Section 6.

2. Concept of Integrated Charger with
Active Ripple Compensation

The concept of a high power density integrated charger for
electric vehicles with active ripple compensation is illustrated
in Figure 6. The switches and passive components are shared
and multiused for traction mode and charging mode. In
traction mode, the grid is not connected to the converter by
turning off the relays between grid and converter. The grid
current flows in the battery through the H-bridge converter
during the battery charging. By this way, the electrical motor
cannot rotate, because the relays beside themotor are open in
the driving mode [20].

2.1. Topology. A schematic of the proposed integrated charger
with active ripple compensation converter is shown in
Figure 6. It includes an electric motor, a battery pack, an
LC output filter, a DC-link capacitor, and an active ripple

reduction circuit. Relays are added to the circuit to achieve
different operations modes [21]. The motor drive system can
provide the required drive torque and battery charging in
AC power and DC power operational modes. The DC power
can be converted into AC power by a three-phase inverter to
charge the battery. The H-bridge rectifier can support both
AC and DC charging.The power flow between the motor, the
battery, and power source is shown in Figure 7.

2.1.1. Motor Drive Modes. In the motor drive mode, relay J1
is switched on for propulsion, and relay J2 and relay J3 are
open. The EV is operating at electric propelling mode, and
its power flows from the battery pack to the motor. Figure 6
shows the conventional three-phase voltage-source converter
structure. The three-phase rectifier circuit consists of three
legs A, B, and C. The output of each leg depends on DC-
link voltage and the switch status, and the output voltage is
independent of the output load current since one of the two
switches in a leg is always on at any instant. The DC voltage-
source battery feeds the main rectifier circuit, a three-phase
bridge.TheDCvoltage source is battery pack. Six switches are
used in the main circuit. Each is composed of a SiCMOSFET
and an antiparallel diode to provide bidirectional current flow
and unidirectional voltage blocking capability. The converter
works as a buck inverter for DC-to-AC power conversion.

2.1.2. AC Power Battery Charging Modes. The battery pack
can be charged by the external power supply. When in the
charging mode, the drive motor needs to be disengaged for
safety purpose. Therefore, relay J1 keeps open to disconnect
the three-phase windings in the motor. In addition, relays
J2 and J3 are closed for charging. The battery pack can be
charged by a low-voltage single-phase grid as a boost rectifier
for AC-to-DC power conversion [22].
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2.1.3. DC Power Battery Charging Modes. The battery pack
can be charged by low-voltage DC power, as shown in
Figure 8. Boost operation fromDC input voltage to the high-
voltage battery pack of the EV is shown in Figures 10(a) and
10(b).

In this mode, S
2
works for PWM switching, and D

1

provides a free-wheeling path. Other switches and diodes S
1
,

D
2
, S
3
, and S

4
maintain the OFF state. The state of charge

(SOC) should be regulated by measuring battery voltage and
current.

2.1.4. Regenerative Braking. The proposed bidirectional con-
verter is properly combined to select buck-and-boost modes
among voltage sources. Regenerative charging uses buck
operation from the high-voltage bus to the battery pack.

2.1.5. Vehicle-to-Grid (V2G). V2G is a modified version of
EVs for the next generation to spark a revolution in the
development of transportation and energy industries [23].
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Figure 9: Active ripple compensation circuit.

The V2G vehicles have capability of both charging from
the grid and discharging to the grid intelligently that utilize
bidirectional H-bridge converter properly.

2.1.6. Active Ripple Compensation Circuit. The grid voltage
and current are sinusoidal, and twice the line frequency ripple
will be generated on the DC-link, which is harmful to both
sides of the converter. Especially when a battery connected
on the DC-link, the pulsating power will lead to overheat.
A relatively large DC-link capacitor is usually used to limit
the ripple power, but it results in higher volume, weight, and
cost for the integrated charger. To solve this second-order
pulsating power, active ripple compensation methods have
been explored in the paper.

The active ripple compensation circuit is composed of the
active filter switches S

5
and S

6
which are shared with three-

phase rectifier for motor drive circuit, an energy store capac-
itor, and an energy transfer inductor, as shown in Figure 9.
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The C-phase accomplishes the DC side pulsating power at
twice the grid frequency.The effectiveness of the active ripple
compensation method is confirmed by simulation results.
When switch S

5
turns on, the active ripple compensation

circuit works as in buck phase. The capacitor and inductor
are charged by DC bus. The inductor will release its energy
to capacitor when the S

5
turns off. While switch S

6
is used

to control the active ripple compensation circuit works as
in boost phase. When the switch S

6
turns on, the capacitor

releases its energy to inductor. When the switch S
6
turns off,

the DC bus is charged by both of capacitor and inductor.
A DC bus capacitor 𝐶DC is still needed to filter the high
frequency ripple power of the PWM rectifier output. In this
case, 𝐶DC is smaller than conventional method without the
active ripple compensation storage circuit. The equivalent
circuit of active ripple compensation circuit for each stage of
operation is shown in Figure 11.

2.2. Instantaneous Power Balance Analysis. The grid-side
supply voltage 𝑢AC and current 𝑖AC are assumed to be
sinusoidal, the grid power supply can be written in (1),
and the power of the input inductor can be expressed as
(2):

𝑃AC = 𝑢AC (𝑡) ∗ 𝑖AC (𝑡)

=
1

2
𝑈AC𝐼AC cos𝜑 −

1

2
𝑈AC𝐼AC cos (2𝜔𝑡 − 𝜑) ,

(1)

where𝑈AC and 𝐼AC are the peak value of voltage and current,
respectively, 𝜔 is the angular frequency, and 𝜑 is the angle
between the grid supply voltage and current:

𝑃
𝐿
= 𝜔𝐿𝐼

2

AC sin (𝜔𝑡 − 𝜑) cos (𝜔𝑡 − 𝜑) . (2)

The input power of the single-phase converter after the
input inductor can be determined by (1) and (2), where 𝐿 is
the inductance of input filter:

𝑃in = 𝑃AC − 𝑃𝐿 =
1

2
𝑈AC𝐼AC cos𝜑

− (
1

2
𝑈AC𝐼AC cos (2𝜔𝑡 − 𝜑)

+
1

2
𝜔𝐿𝐼
2

AC sin (2𝜔𝑡 − 2𝜑)) .

(3)

As can be seen in (3), a constant power and twice the
fundamental frequency 2𝜔 power pulsating consist of the
input power of the single-phase battery charging circuit. To
ensure a low-frequency ripple in single-phase charger, a large
DC capacitor is required which results in low power density.
In order to avoid the second-order harmonic and minimize
the size of DC capacitor, a DC ripple current reduction
method on a single-phase PWM voltage-source rectifier has
been investigated in [24]. Several active solutions have been
explored to reduce the second-order ripple power, namely,
inductive storage method and capacitive storage method.
The active ripple compensation charging circuit is shown in
Figure 12.
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A conventional H-bridge rectifier consists of phase-A
and phase-B. The AC supply power is 𝑃AC which can be
expressed byAC source voltagemultipliedAC source current.
𝐿 is the input inductor which is used to keep a constant
current flowing to the load throughout the complete cycle
of the applied voltage. The input power of the H-bridge
rectifier after the input inductor is 𝑃in. It is known that there
exists second-order harmonic power 𝑃ripple on DC-link for
H-phase rectifier. The constant power on DC-link can be
expressed as 𝑃out. Generally speaking, the basic approach
behind the ripple reduction circuit involves storage of the
ripple power into inductor or capacitor. The comparison
between inductive storage method and capacitor method is
discussed in Section 3.

3. Design Criteria of Circuit Components

3.1. Selection of Motor Drive Circuit Components. A buck
converter with LC filter should be considered in the three-
phase inverter to reduce the ripple. An LC filter is critical for
ACmotor drive application.The capacitors can be configured
with a delta connection which has the benefit of smaller short
circuit current. Capacitor and choke values are derived to
optimize the two-level inverter output performance.Thefilter
is assumed to filter out all the PWM switching harmonics.
Damping is required to attenuate the resonance and the
output impedance of the filter should be as small as possible
across the frequency range. A series resonance occurs at
the output filter resonant frequency 𝑓

0
. Hence, the corner

frequency is kept below the switching frequency. The result
can be expressed as in

𝑓
0
=
𝜔
0

2𝜋
=

1

2𝜋√𝐿𝐶

, (4)

where𝑓
0
represents the corner frequency, for 10% attenuation

of switching frequency harmonics.L and𝐶 are the inductance
and capacitance, respectively. The key characteristics in the
driving mode are shown in Table 2.

3.2. Selection of Battery Charging Circuit Components. A typ-
ical H-bridge connected with an active ripple compensation
circuit works as battery charging converter. The A-phase
and B-phase operate as conventional PWM. A large filter

Table 2: Key characteristics in the motor drive mode.

Items Parameters
Rated output power 𝑃out 70 kW
Switching frequency 𝑓sw 10 kHz
Modulation index 0.9
Cooling method Water cooling
DC-link voltage VDC 320V
Output 𝐿𝐶 filter inductance 𝐿 267 𝜇H
Output 𝐿𝐶 filter capacitance 𝐶 10𝜇F

Table 3: Parameters in battery charging mode.

Items Parameters
AC voltage source VAC (RMS) 230V
Line frequency 𝑓 50Hz
Rated output power 𝑃out 3 kW
Input inductor 𝐿

1
4.35mH

DC-link capacitance 𝐶DC 4665 𝜇F
Switching frequency 𝑓sw 20 kHz
DC-link voltage VDC 320V
Modulation index 0.9
Cooling method Natural cooling

capacitor is connected on the DC side [25].The required DC-
link capacitance can be expressed as

𝐶DC ≥
𝑃avg

𝜔
0
⋅ Δ𝑉 ⋅ 𝑉DC

, (5)

where Δ𝑉 is the amplitude of DC-link voltage ripple, for
2% allowable voltage ripple, 𝐶DC is the value of DC-link
capacitor, 𝑉DC is the DC-link voltage, 𝜔

0
is the AC-side

circular frequency, and 𝑃avg is the average power flowing into
the converter. The complete parameters in battery charging
mode are listed in Table 3.

3.3. Selection of Ripple Energy Storage Circuit Components.
The ripple energy generated by H-bridge can be determined
in

𝐸
𝑟
=
𝑃
𝑟

𝜔

=

√𝑃
2

0
+ [(2𝜔𝐿𝑃

2

0
/𝑈
2

𝑠
cos2𝜑) − 𝑃

0
(sin𝜑/ cos𝜑)]2

𝜔
.

(6)

Equation (6) shows the relationship between ripple
energy, the angle of grid voltage, the output power, AC
supply voltage, the AC supply frequency, and current and
input inductor. The parameters of a 3 kW single-phase PWM
rectifier are given in Table 3.The relationship between various
and the ripple energy is plotted in Figures 13(a) and 13(b).

It can be observed that the phase inductor has an obvious
influence on the ripple energy. The higher inductance results
in a higher ripple energy. Meanwhile, the supply frequency
has an obvious influence on the ripple energy as well.
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Figure 13: Ripple energy: (a) relationship between angle of the supply voltage and current and supply frequency and (b) relationship between
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The lower supply frequency leads to a higher power pulsating.
The reason can be expressed in (6). Figure 13(b) shows that
there is aminimumof 4.67 J ripple energy for the 3 kWsingle-
phase rectifier system.

3.4. Inductive Storage Method. Figure 14 shows the circuit
configuration of inductive storage method. A conventional
single-phase rectifier consists of A-phase leg, B-phase leg,
input filter, and DC-link capacitor. An active ripple energy
storage circuit consists of C-phase leg and a ripple energy
storage inductor. One terminal of the storage inductor is
connected to the midpoint of the C-phase leg switches (con-
nection point of S

5
and S

6
), while the other terminal is tied

to B-phase leg of the H-bridge converter. The compensation
inductance 𝐿 used to store ripple energy should be selected
depending on the output power 𝑃out. A DC bus capacitor
𝐶DC is still necessary to filter the high switching harmonic.
TheDC ripple energy flows into the inductor.The inductance
can be selected in a wide rage when the inductor current is
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Figure 15: Compensation region of the inductor.

controlled properly. The maximum inductor current and the
minimum inductor current are shown in

𝐿max =
2𝐼AC𝑉AC
𝐼
2

min𝜔
,

𝐿min =
√2𝑉AC

2𝐷𝜆𝑓sw𝐼min
,

(7)

where 𝐿max is maximum inductance, 𝐿min is minimum
inductance, 𝜆 is modulation factor of the single-phase, and
𝑉AC and 𝐼AC are the grid voltage and grid current, respectively.
And𝐷 is the ratio between peak ripple current andminimum
ripple current. The compensation inductance and current
region are shown in Figure 15. Higher switching frequency
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Figure 16: Capacitive storage method: (a) circuit configuration of capacitive storage method, (b) capacitive ripple voltage, and (c) capacitive
ripple current.

results in less inductance. The trade-off between switching
frequency and losses needs to be considered.

3.5. Capacitive Storage Method. A capacitor is used as the
energy storage component is shown in Figure 16(a). One
terminal of the storage capacitor is tied to the midpoint
of the C-phase leg, while the other terminal is connected
to the ground. A ripple energy storage component 𝐶

𝑠
with

an energy transfer element 𝐿
𝑠
is used as an active ripple

compensation circuit.The ripple power can be determined in

𝑃ripple = 𝐸ripple ∗ 𝜔

= √𝑃
2

out + [(
2𝜔𝐿𝑃

2

out
𝑈
2

𝑠
cos2𝜑

) − 𝑃out (
sin𝜑
cos𝜑

)]

2

.

(8)

The ripple energy storage capacitor voltage and current
can be expressed as (9); Figures 16(b) and 16(c) show the

ripple voltage and ripple current in power pulsating storage
capacitor:

𝑈
𝑠
= √

𝑃ripple (𝑘 − cos (2𝜔𝑡))
𝐶
𝑠
𝜔

𝑖
𝑠
=

𝑃ripple sin (2𝜔𝑡)

√(𝑃ripple/𝐶𝑠𝜔) (𝑘 − cos (2𝜔𝑡))
,

(9)

where the coefficient 𝑘 is the ripple energy storage margin
coefficient defined by the maximum ripple energy and ripple
energy stored in the capacitor and 𝐶

𝑠
is energy storage

capacitance. The second-order ripple voltage and capacitive
ripple current stored in the capacitor are plotted in Figures
17(a) and 17(b).

The minimum capacitance can be derived as

𝐶
𝑠
=

2𝑃ripple

𝑈
2

𝑠
𝜔
. (10)
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Figure 17: Second-order capacitive ripple voltage and capacitive ripple current: (a) capacitive ripple voltage and (b) capacitive ripple current.
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Figure 18: Comparison results between the DC-link capacitance and active ripple compensation methods: (a) capacitance comparison result
and (b) current rating comparison result.

Equation (5) shows that the conventional design method
calculates capacitance 𝐶DC needed to filter the second-order
harmonic in DC bus, while (10) shows that the active ripple
storage capacitance 𝐶

𝑠
needed to meet the requirement of

filtering the second-order ripple power. Figure 18(a) shows
the capacitance comparison between the traditional method
and the activemethod. It can be seen the active ripplemethod
will decrease the capacitance 25.08 times compared with
the conventional method within the 2% DC-link harmonic
requirement.This indicates that the capacitance can decrease
from 4.665mF to 186 𝜇F.

The active ripple compensation circuit works in discon-
tinuous current mode (DCM) to meet the demand of main-
taining ripple energy transfer inductance transfer 2𝜔 power
pulsating to the ripple energy storage capacitor completely. In
DCM the current goes to zero during part of the switching
cycle. In order to maintain DCM operation, the ripple

energy transfer inductor selection limit can be expressed as
(11):

𝐿 ≤
𝑇sw
2 ∗ 𝑖
𝑠

𝑈
𝑑
𝑈
𝑠
− 𝑈
2

𝑠

𝑈
𝑑

. (11)

In addition, the active ripple compensation circuit
requires one-phase leg which can share with three-phase
inverter motor drive circuit, which has themaximum current
rating limitation. The inductor selection limit based on the
peak current requirement is expressed as

𝐿 ≥
2 ∗ 𝑖
𝑠
∗ 𝑇sw

𝐼
2

peak

𝑈
𝑑
𝑈
𝑠
− 𝑈
2

𝑠

𝑈
𝑑

. (12)

The inductance is selected as 50 𝜇H in the integrated
charger system using (11) and (12). Table 4 shows the cal-
culation results of inductive storage method and capacitive
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Table 4: Comparison of inductive storage method and capacitive
storage method.

Method Capacitance Inductance Volume Weight
Inductive storage
method — 68mH 2762 cm3 12.75 kg

Capacitive storage
method 298 𝜇F 50 𝜇H 2895 cm3 4 kg

storage method. Although the volume of the inductive
storage devices can be smaller than the capacitive storage
method, the weight of the inductor becomes much heavier
than the capacitor. This demonstrates that capacitive storage
method is superior to the inductive storage method in terms
of power density of the charging circuit.

Although inductor is superior to capacitors from the
viewpoint of ruggedness and reliability, inductor is inferior
from the viewpoint of power density and weight. Power
losses of inductor are also much higher than capacitor when
working in high switching circuits [26–28]. Therefore, in this
paper, an integrated charger topology employs a capacitor
as the ripple energy storage element and an inductor as the
ripple energy transfer component.

4. Control Design of Integrated Charger with
Active Ripple Compensation

4.1. Motor Drive Control. In the motor drive mode, a closed-
loop control schematic is illustrated in Figure 19. Both motor
speed and current are regulated by applying PWM control to
each phase switching device. The conventional PI controller
including DC-link voltage control loop and current control
loop are applied in three-phase inverter.

4.2. Battery Charging Control. The proposed active ripple
energy absorbing method can generate the compensation
ripple power successfully according to control capacitor
voltage and current based on (9).The waveforms of capacitor
reference voltage and reference current are essential issues to
be considered besides ripple energy storage components. In
Figure 16(b), the sharp turns at the bottom of the waveforms

demonstrate large harmonic which is difficult to track for
control strategy. It is possible to reduce the harmonic in
the voltage reference and current reference by increasing the
energy storage margin coefficient 𝑘 which is set to 2 in this
paper. The ripple current generated by H-bridge rectifier can
be expressed as

𝑖ripple = (2𝐷 − 1) 𝑖AC. (13)

The reference compensation current is taken as minus
ripple current for the active ripple compensation circuit,
where 𝐷 is duty cycle for H-bridge and 𝑖AC is the AC-side
current. The active ripple compensation circuit is controlled
in bulk type and boost type to charge and discharge the ripple
energy storage capacitor. The duty cycle for S

5
and S
6
can be

derived as (14) and (15), respectively:

𝐷charging = √
2 ⋅ 𝑖ripple ⋅ 𝑓sw

(𝑈
𝑑
− 𝑈
𝑠
) /𝐿

, (14)

𝐷discharging = √
2 ⋅ 𝑖ripple ⋅ 𝑓sw ⋅ (𝑈𝑑 − 𝑈𝑠) /𝐿

(𝑈
𝑠
/𝐿)
2

. (15)

Based on the above discussion, the control block diagram
is depicted in Figure 20.The upper part represents the control
schematic for the PWM rectifier battery charging circuit and
the lower part is the control strategy for the ripple reduction
circuit. For PWM rectifier circuit, the DC-link voltage, DC-
link current, and AC-side current are sensed to generate the
gate drive signals for the main switches S

1
, S
2
, S
3
, and S

4
.

In order to improve the performance of DC bus voltage, the
AC-side voltage feedforward is adopted. A phase-locked loop
(PLL) is constructed to track sinusoidal wave of the AC grid
voltage as well. Via the proportional-integral (PI) controller,
the command current 𝑖AC is obtained to be equal to the
command current 𝑖AC

∗. For ripple reduction circuit, the DC-
link voltage and ripple energy storage capacitor voltage are
sensed to generate the duty cycle for S

5
and S

6
. According

to the control method for C phase, if the compensation
current is positive, the ripple reduction circuit is controlled
to absorb the ripple energy from the DC-link charging the
ripple compensation capacitor. Similar, if the compensation
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Figure 21: Three-phase inverter simulation results: (a) the inverter output line voltage and (b) the inverter current.

current calculation result is negative, the ripple reduction
circuit is controlled to release the ripple power into DC-link
from ripple energy stored capacitor.

5. Simulation Results

The simulation parameters of the integrated charging con-
verter are summarized in Tables 2 and 3. To evaluate the
motor drive mode performance, a three-phase motor drive
converter is modeled under PWM control in the simulation.
Figure 21 presents the simulation results of motor drive.

Figure 22 presents the simulation results of battery
charging without active ripple compensation circuit. Battery
charging mode operation has been simulated under two
conditions where the AC input voltage is lower than battery
voltage, and DC input voltage is lower than battery voltage.
When the input voltage is 230VAC, Figure 22(a) shows the
output voltage. Figure 22(b) shows the maximum current
ripple in grid side. The boost operation from the low-voltage

bus to the battery has been simulated as shown in Fig-
ures 22(c)–22(f) with 𝑉batt = 320V and 𝑉lv = 200V.

Figures 23(a) and 23(b) show the integrated charger with
active ripple compendation circuit main switch components
duty cycle. It can be seen that the duty cycle for H-bridge
PWM rectifier and the active ripple compensation circuit are
decoupling. The most of the ripple power is stored in the DC
bus capacitor without the active ripple compensation circuit.
To meet the requirement of DC bus voltage ripple within 2%
limit, a 4665 𝜇F ripple energy storage capacitance is needed.
A comparison of the DC bus voltage ripple performance
without ripple reduction circuit and with active reduction
circuit is provided in Figure 23. The simulation result in
Figure 23(c) shows that theDCvoltage ripple remains 74.64V
without active ripple compensation. When the C-phase leg is
engaged, the 2𝜔 ripple power is absorbed by the capacitor. A
298 𝜇F capacitor and a 400 𝜇F DC-link capacitor are used to
be replaced by conventional large DC bus capacitor. The DC
bus ripple voltage decreases to 4.6V as shown in Figure 23(d).
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Figure 22: Simulation results for the AC/DC battery charging mode: (a) DC-link voltage and (b) AC-side maximum current ripple. Boost-
type charging: (c) steady state for 𝑉lv = 200V, (d) steady state for 𝑉batt = 320V, (e) low-voltage bus current, and (f) zoom low-voltage bus
current.

From Figures 23(e) and 23(f), it is shown that the DC ripple
has been absorbed by the ripple power storage capacitor.

A comparison of the volume of the main components in
the conventional method and the active ripple compensation
method is illustrated in Figures 24(a) and 24(b). Using the
active ripple compensation circuit to store the ripple energy
is more effective. Conclusively, the whole integrated charger
system volume decreases to 35% compared with the volume
of the conventional method.

6. Power Losses and Thermal Analysis

In order to evaluate the thermal performance of the inte-
grated charger with active ripple compensation converter

topology, the power losses and device junction temperature
are calculated and simulated. SiC-based devices meet the
power electronics market demand for high performance
1200V to 1700V devices. SiCMOSFETs have unique capabil-
ities such as lower switching loss, higher efficiency, and bet-
ter temperature performance compared to Si-based devices
when operating the same power rating which have essen-
tially reached state-of-the-art limits in performance. In this
paper, the performance of SiC MOSFET module from Cree
CAS300M12BM2 (1.2 kV, 300A) will be investigated. Figures
25(a) and 25(b) show the MOSFET and diode average losses
of the motor drive mode and battery charging mode, which
is derived by analytical models in [29]. Figure 25(c) shows
the efficiency variation with various switching frequencies
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Figure 23: Duty cycle for the integrated charger: (a) H-bridge recitifier duty cycle and (b) active ripple compensation circuit duty cycle.
Simulation results: (c) DC bus voltage without active ripple compensation circuit, (d) DC bus voltage with active ripple compensation circuit,
(e) ripple power storage capacitor voltage, and (f) ripple power storage capacitor current.

for traction and charging operation [30–32]. In comparison
to Si IGBT module from SK60GB128 (1.2 kV, 60A) and
SiC MOSFET (CAS300M12BM2) module, as expected, the
SiC MOSFET shows a higher efficiency in a wide switching
frequency range. With SiC MOSFET lower power losses and
operation capability at higher switching frequency, integrated
converter can operate up to 73 kHz switching frequency
compared to 20 kHz using Si IGBT. The above results show
that a clear advantage for SiC MOSFET is the candidate of
choice to meet the demand of high power density and high
efficiency in power converters application.

It is known that most of the failure mechanism such
as bond-wire breakage is related to excessive temperature.
Therefore, thermal behaviours management in power con-
verter is essential to increase reliability performance [33].
Real-time junction temperature estimation requires calcula-
tion of the instantaneous losses in each MOSFET and diode
device of the integrated charger. Therefore, the switching
device conduction and switching losses every switching
time cycle are calculated instantaneously [34]. The thermal
model network includes thermal resistance and capacitance,
which can transfer the power losses to the corresponding
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Figure 28: MOSFET/diode (battery charging mode) junction temperature variation: (a) single-phase circuit and (b) ripple energy storage
circuit.

temperature in power devices. In the simulation, the heatsink
temperature is assumed to be fixed at 80∘C due to its large
thermal time constant compared with converter devices
[35]. As shown in Figure 26, the Foster thermal network is
proposed which is used for junction temperature estimation.
The parameters of the thermal network elements are given in
the device datasheet [36].

The possible solution for junction temperature variation
calculation is shown in Figure 27. A simulation based on
transformation average losses to equivalent sinusoidal half

wave method is used to evaluate the junction temperature
variation of the battery charging mode. As shown in Fig-
ure 28(a), the single-phase SiC MOSFET junction temper-
ature varies between 87.5∘C and 90∘C. The diode junction
temperature varies between 82.5∘C and 83.5∘C. When the
ripple energy storage circuit is applied, the SiC MOSFET
temperature varies between 86.2∘Cand 87.7∘Cwhile the diode
temperature varies between 81.8∘C and 82.5∘C. The junction
temperature does not exceed the maximum allowable junc-
tion temperature 150∘C.
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7. Conclusion

In this paper, a concept of integrated charger with rip-
ple reduction circuit for EV applications is proposed. The
integrated converter reduces system cost, increases power
density, and may lead to improved efficiency. The proposed
integrated converter has been comparedwith existing topolo-
gies, and its advantages have been indicated. Additionally,
exact system parameters, control strategy, power losses based
on SiC MOSFET devices, efficiency, system power density,
and thermal stress are discussed. In order to verify the
proposed converter, the functionalities for different operating
modes, for example, the boost for charging battery, buck
for regenerative braking, and buck for motor drive, have
been simulated. According to input/output-voltage-current
conditions, the controller chooses the control schemes and
proper operating modes. The DC bus low-frequency power
pulsating generated from single-phase has been reduced effi-
ciently by active ripple energy compensation circuit. To verity
the practicality of the proposed converter for EV applications,
an on-board experiment needs to be tested in the future.
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Wind power has the characteristics of randomness and intermittence, which influences power system safety and stable operation. To
alleviate the effect of wind power grid connection and improve power system’s wind power consumptive capability, this paper took
emission trading and energy storage system into consideration and built an optimizationmodel for thermal-wind power system and
energy storage systems collaborative scheduling. A simulation based on 10 thermal units and wind farms with 2800MW installed
capacity verified the correctness of the models put forward by this paper. According to the simulation results, the introduction of
carbon emission trading can improve wind power consumptive capability and cut down the average coal consumption per unit
of power. The introduction of energy storage system can smooth wind power output curve and suppress power fluctuations. The
optimization effects achieve the best when both of carbon emission trading and energy storage system work at the same time.

1. Introduction

Carbon emission trading can promote large-scale wind
power development and help power industry achieve energy-
saving. Wind power output has the characteristics of ran-
domness and intermittence, which puts impact on power
system safety and stable operation and makes consumptive
problem become the major factor that hinders large-scale
wind power development. Power charging and discharging
function of energy storage system can smooth wind power
output curve, restrain power fluctuation, and provide backup
services for wind power grid integration. Therefore, analysis
optimization model for thermal-wind power system and
energy storage system collaboration scheduling considering
carbon emission trading has important sense in improving
power system’s wind power consumptive capability.

Literature [1] regarded carbon emission as virtual net-
work flow that attached to the power flow. Based on the anal-
ysis results of carbon emission trading and power industry
developing trend, a theoretical framework for power system
carbon emission was built. Literature [2–4] studied carbon
emission right definition problems in cross-regional power

trading. An emission right allocation principle was obtained
according to the carbon flow tracking mathematical model
put forward by those literatures. Literature [5–8] discussed
the effects of carbon emission trading. While meeting load
demand, CO

2
emission can be effectively controlled when

carbon trading and energy storage systems are both consid-
ered.

Wind power output is random and intermittent, which
makes its output hard to be accurately predicted [9]. This
factor makes wind power consumptive problem hard to be
solved. The most effective solution is to control wind power
output characteristics [10, 11]. Wind-thermal power system
and energy storage system collaborative scheduling provides
an effective way to solve this problem [12–14]. Literature
[15, 16] put forward an operation model for multiple-time-
scale hybrid system collaborative scheduling, which can
arrange wind power and energy storage online and provide
the specific scheduling information for system operators.
Literature [17, 18] studied specific energy storage measures
and built a planningmodel for hybrid system joint scheduling
model that combined wind power and pumped storage.
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The rest of this paper is structured as follows. Section 2
introduces the optimization models of wind-thermal sys-
tem in different scenarios, including the basic optimization
model, the model considering carbon emission trading, the
model considering energy storage system, and themodel con-
sidering both of carbon emission trading and energy storage
system. To verify the correctness of themodels put forward by
this paper and analyze the influence of carbon emission trad-
ing and energy storage system on power system’s wind power
consumptive capability, Section 3 demonstrates a numerical
example analysis based on 10 thermal power units and wind
farms with 2800MW installed capacity. Section 4 concludes
this paper.

2. Optimization for Wind-Thermal
System in Different Conditions

2.1. Optimization Model for Wind-Thermal System Collabo-
rative Scheduling. Wind-thermal system optimization col-
laborative scheduling is aimed at improving wind power
consumptive capability. However, wind power grid connec-
tion needs thermal power providing backup service to meet
demand load. Therefore, overemphasizing the improvement
of wind power consumptive capacity would require higher
backup service level, which makes related thermal units start
up and shut downmore frequently and bringsmore coal con-
sumption and pollutant emission. To improve wind power
consumptive capacity and control thermal units’ startup and
shutdown, this paper builds a scheduling optimizationmodel
of wind power and thermal power. Maximizing the total
profit is the optimization objective as follows:

max 𝑧
1
= 𝜋
𝑤
+ 𝜋
𝑐
, (1)

wherein 𝜋
𝑤

is the total profit of wind farms; 𝜋
𝑐
is the

total profit of thermal power units. 𝜋
𝑤

and 𝜋
𝑐
could be,

respectively, calculated by

𝜋
𝑤
= 𝑝
𝑤

𝑇

∑

𝑡=1

𝑄
𝑤,𝑡
(1 − 𝜃

𝑤
) −OM

𝑤
− 𝐷
𝑤
,

𝜋
𝑐
= 𝑝
𝑐

𝐼

∑

𝑖=1

𝑇

∑

𝑡=1

𝑄
𝑖,𝑡
(1 − 𝜃

𝑐,𝑖
) − 𝐶fuel −

𝐼

∑

𝑖=1

OM
𝑐,𝑖
−

𝐼

∑

𝑖=1

𝐷
𝑐,𝑖
,

(2)

wherein𝑝
𝑐
is the benchmark price of thermal power in power

output area; 𝑄
𝑖,𝑡
is the real-time output of thermal unit 𝑖 at

time 𝑡; 𝜃
𝑐,𝑖
is power consumption rate of thermal unit 𝑖; 𝐶fuel

is fuel cost; OM
𝑐,𝑖
is maintenance cost of thermal unit 𝑖; 𝐷

𝑐,𝑖

is depreciation cost of thermal unit 𝑖.
Fuel cost mainly consists of coal cost and oil cost as

follows:

𝐶fuel =
𝐼

∑

𝑖=1

𝑇

∑

𝑡=1

[𝑝coal𝑢𝑖,𝑡𝑓𝑖 (𝑄𝑖,𝑡) + 𝑢𝑖,𝑡 (1 − 𝑢𝑖,𝑡−1) SU𝑖

+ 𝑢
𝑖,𝑡−1
(1 − 𝑢

𝑖,𝑡
) SD
𝑖
] ,

(3)

wherein 𝑝coal is the procurement price of standard coal; 𝑄
𝑖,𝑡

is the real-time output of thermal unit 𝑖 at time 𝑡; 𝑢
𝑖,𝑡
𝑓
𝑖
(𝑄
𝑖,𝑡
)

is standard coal consumption of thermal unit 𝑖 with real-
time output 𝑄

𝑖,𝑡
; 𝑢
𝑖,𝑡
is an operation or stop status variable

of thermal unit 𝑖 at time 𝑡, if the unit stop 𝑢
𝑖,𝑡
= 0 and coal

consumption is 0; else 𝑢
𝑖,𝑡
= 1 and coal consumption could

be calculated by the consumption characteristic function
𝑓
𝑖
(⋅) and real-time generation output 𝑄

𝑖,𝑡
. The consumption

characteristic function is

𝑓
𝑖
(𝑄
𝑖,𝑡
) = 𝑎
𝑖
+ 𝑏
𝑖
𝑄
𝑖,𝑡
+ 𝑐
𝑖
𝑄
2

𝑖,𝑡
, (4)

wherein 𝑎
𝑖
, 𝑏
𝑖
, and 𝑐

𝑖
are parameters of coal consumption

function and all greater than 0; 𝑢
𝑖,𝑡
(1 − 𝑢

𝑖,𝑡−1
)SU
𝑖
is startup

cost of thermal power unit 𝑖 at time 𝑡, if and only if 𝑢
𝑖,𝑡
= 1

and 𝑢
𝑖,𝑡−1
= 0, and 𝑢

𝑖,𝑡
(1 − 𝑢

𝑖,𝑡−1
)SU
𝑖
does not equal zero; SU

𝑖

is the cost of a single startup of thermal unit 𝑖, including coal
and oil costs; 𝑢

𝑖,𝑡−1
(1 − 𝑢

𝑖,𝑡
)SD
𝑖
is shutdown cost of thermal

unit 𝑖 at time 𝑡, if and only if 𝑢
𝑖,𝑡−1

= 1 and 𝑢
𝑖,𝑡
= 0,

and 𝑢
𝑖,𝑡−1
(1 − 𝑢

𝑖,𝑡
)SD
𝑖
does not equal zero; SD

𝑖
is the cost of a

single shutdownof thermal unit 𝑖, including coal and oil costs.
The constraints mainly consist of three aspects, namely,

demand side, wind power, and thermal output constraints.

(1) Equilibrium Constraint of Power Supply and Demand.
Consider

𝐼

∑

𝑖=1

𝑢
𝑖,𝑡
𝑄
𝑖,𝑡
(1 − 𝜃

𝑖
) + 𝑄
𝑤,𝑡
(1 − 𝜃

𝑤
) =

𝐺
𝑡

(1 − 𝑙)

, (5)

wherein 𝐺
𝑡
is the demand load at time 𝑡; 𝑙 is the line losses

rate of power system.

(2) Backup Service Constraints.When power system operates,
generation side may be inconsistent with demand side. To
ensure real-time equilibrium between supply and demand,
thermal units should adjust their outputs to coordinate wind
power output to meet load demand. The adjustments should
meet some constraints, which are depending on thermal
units’ characteristics:

𝐼

∑

𝑖=1

𝑢
𝑖,𝑡
(𝑄

max
𝑖,𝑡
− 𝑄
𝑖,𝑡
) (1 − 𝜃

𝑖
) ≥ 𝑅

usr
𝑡
,

𝑄
max
𝑖,𝑡
= min (𝑢

𝑖,𝑡−1
𝑄
𝑖
, 𝑄
𝑖,𝑡−1
+ Δ𝑄
+

𝑖
) ⋅ 𝑢
𝑖,𝑡−1
,

𝑅
usr
𝑡
= 𝛽
𝑐

𝐼

∑

𝑖=1

𝑄
𝑖,𝑡
+ 𝛽
𝑤
𝑄
𝑤,𝑡
.

(6)

Equations (6) are upper spinning reserve constraints,
wherein 𝑄max

𝑖,𝑡
is the maximum possible output of unit 𝑖 at

time 𝑡; 𝑅usr
𝑡

is upper spinning reserve demand, depending on
thermal andwind power output in corresponding periods;𝑄

𝑖

is themaximumpossible output of unit 𝑖 in unit period, which
is determined by installed capacity; Δ𝑄+

𝑖
is the upper limit of

power climbing speed, namely, the biggest power increment
of unit 𝑖 in unit period; 𝛽

𝑐
is thermal power units’ power
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reserve coefficient; 𝛽
𝑤
is power reserve coefficient of wind

turbine. Consider

𝐼

∑

𝑖=1

𝑄
𝑖,𝑡
(𝑄
𝑖,𝑡
− 𝑄

min
𝑖,𝑡
) (1 − 𝜃

𝑖
) ≥ 𝑅

dsr
𝑡
,

𝑄
min
𝑖,𝑡+1
= max (𝑢

𝑖,𝑡
𝑄
𝑖
, 𝑄
𝑖,𝑡
− Δ𝑄
−

𝑖
) ⋅ 𝑢
𝑖,𝑡
,

𝑅
dsr
𝑡
= 𝛽
𝑤
𝑄
𝑤,𝑡
.

(7)

Equations (7) are lower spinning reserve constraints.𝑄min
𝑖,𝑡

is theminimumoutput of unit 𝑖 at time 𝑡, which is determined
by two factors: one is the minimum output of unit 𝑖 at the
starting state and the other is output-decreasing constraint
of unit 𝑖 in unit period; 𝑅dsr

𝑡
is the lower spinning reserve

demand, depending on wind power output in corresponding
period; 𝑄

𝑖
is the minimum output of unit 𝑖 at the starting

state in unit time, which is the same as the minimum real-
time power output; Δ𝑄−

𝑖
is output-decreasing speed of unit 𝑖,

namely, the maximum output decrement in unit time.

(3) Thermal Unit Real-Time Output Power Constraint. Real-
time output of a thermal power unit is limited by its installed
capacity and minimum power output as follows:

𝑢
𝑖,𝑡
𝑄
𝑖
≤ 𝑄
𝑖,𝑡
≤ 𝑢
𝑖,𝑡
𝑄
𝑖
. (8)

(4) Output Climbing Speed Constraints. Influenced by techni-
cal level, thermal power output changes in a unit period are
limited. Real-time output power increment and decrement
should meet

Δ𝑄
−

𝑖
≤ 𝑄
𝑖,𝑡
− 𝑄
𝑖,𝑡−1
≤ Δ𝑄
+

𝑖
. (9)

(5) Unit Startup and Shutdown Time Constraints. Frequently
startup and shutdown are harmful to unit’s performance
and cause more fuel cost. Therefore, constraints for the
continuous startup and shutdown time are necessary, as
shown in the following equations:

(𝑇
on
𝑖,𝑡−1
−𝑀

on
𝑖
) (𝑢
𝑖,𝑡−1
− 𝑢
𝑖,𝑡
) ≥ 0, (10)

(𝑇
off
𝑖,𝑡−1
−𝑀

off
𝑖
) (𝑢
𝑖,𝑡
− 𝑢
𝑖,𝑡−1
) ≥ 0. (11)

Equation (10) is the minimum startup time constraint;
𝑇
on
𝑖,𝑡−1

is continuous running time of unit 𝑖 at time 𝑡 − 1;
𝑀

on
𝑖

is the minimum continuous running time. Equation (11)
is the minimum downtime constraint; 𝑇off

𝑖,𝑡−1
is continuous

downtime of unit 𝑖 at moment 𝑡 − 1; 𝑀off
𝑖

is the minimum
continuous downtime.

(6) Wind Power Output Constraint. Wind turbine real-time
power output is determined by income air velocity:

𝑄
𝑤,𝑡
≤ 𝛿
𝑡
𝑃
𝑤
, (12)

wherein 𝛿
𝑡
is the equivalent efficiency of wind farms at time

𝑡; 𝑃
𝑤
is the total installed capacity of wind farms.

2.2. Optimization Model for Wind-Thermal System with Car-
bon Emission Trading. The introduction of carbon emission
trading would redefine thermal power marginal cost, which
consists of power generation cost and carbon emission cost.
Pollutant emission coefficients of different units are not the
same.Therefore, the introduction of carbon emission trading
would change the original scheduling plan. To maximize
system profit under carbon trading mechanism, this paper
built an optimizationmodel with the objective ofmaximizing
the total profit of thermal power and wind power as follows:

max 𝑧
2
= 𝜋
𝑐
+ 𝜋
𝑤
. (13)

The profit of thermal power 𝜋
𝑐
can be calculated by

𝜋
𝑐
= 𝑝
𝑐

𝐼

∑

𝑖=1

𝑇

∑

𝑡=1

𝑄
𝑖,𝑡
(1 − 𝜃

𝑐,𝑖
) − 𝐶
𝑐
−

𝐼

∑

𝑖=1

OM
𝑐,𝑖
−

𝐼

∑

𝑖=1

𝐷
𝑐,𝑖
, (14)

wherein𝑝
𝑐
is the benchmark price of thermal power in power

output area; 𝜃
𝑐,𝑖

is self-power-consumption rate of thermal
unit 𝑖; OM

𝑐,𝑖
is the maintenance cost of thermal unit 𝑖; 𝐷

𝑐,𝑖

is the depreciation cost of thermal power unit 𝑖.
Carbon emission trading mechanism uses emission cost

to measure the environmental value of power generation
plans. Without carbon emission trading, the variable cost
of thermal units mainly consists of coal cost, oil cost, and
water cost. But while carbon emission trading is considered,
the thermal unit must buy CO

2
emission right when its

emission exceeds the initial allocated quota level. Therefore,
the variable cost of thermal power could be calculated by

𝐶
𝑐
= 𝐶fuel + 𝐶CO

2

, (15)

wherein 𝐶fuel is the fuel cost that includes coal cost and oil
cost; 𝐶CO

2

is carbon emission cost, which could be calculated
by

𝐶CO
2

= (𝐸CO
2

− 𝐸
0
) 𝑝CO

2

, (16)

wherein 𝐸CO
2

is actual carbon emission amount of thermal
power; 𝐸

0
is the initial allocated carbon emission right,

namely, the allowed CO
2
emission amount; 𝑝CO

2

is car-
bon emission trading price, determined by the supply and
demand relationship in the carbon emission trading market.
To simplify the optimization model, this paper hypothesized
the price to be a constant value in a short period.

Thermal units’ carbon emission amount is related to its
power load rate. Generally speaking, carbon emission of
unit electricity production can be integrated as a quadratic
function as follows:

𝐸
𝑖
(𝑄
𝑖,𝑡
) = 𝑎CO

2
,𝑖
+ 𝑏CO

2
,𝑖
𝑄
𝑖,𝑡
+ 𝑐CO

2
,𝑖
𝑄
2

𝑖,𝑡
, (17)

wherein 𝑎CO
2
,𝑖
, 𝑏CO

2
,𝑖
, and 𝑐CO

2
,𝑖
are parameters of the carbon

emission function.
Total carbon emission of the system can be calculated by

𝐸CO
2

=

𝑇

∑

𝑡=1

𝐼

∑

𝑖=1

𝐸
𝑖
(𝑄
𝑖,𝑡
) . (18)
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Other constraints are the same as the basic model in
Section 1, from (6) to (12).

2.3. Optimization Model for Wind-Thermal System with
Energy Storage System. While energy storage system is con-
sidered, the stakeholders would change from two to three
parties. To maximize the total profit, the objective should be
changed into (23). Consider

max 𝑧
3
= 𝜋
𝑐
+ 𝜋
𝑤
+ 𝜋
𝑠
, (19)

wherein 𝜋
𝑠
is the profit of energy storage system, determined

by charge-discharge price, charge-discharge electric quantity,
and fixed cost. Consider

𝜋
𝑠
= 𝑝
𝑠,char

𝑇

∑

𝑡=1

𝑄
+

𝑠,𝑡
− 𝑝
𝑠,disc

𝑇

∑

𝑡=1

𝑄
−

𝑠,𝑡
− 𝐹
𝑠
, (20)

wherein𝑄+
𝑠,𝑡
is energy storage system’s charging power at time

𝑡; 𝑄−
𝑠,𝑡
is energy storage system’s discharging power at time 𝑡;

𝐹
𝑠
is the fixed cost of energy storage system; 𝑝

𝑠,char and 𝑝𝑠,disc
are, respectively, charging and discharging price.

Energy storage system can control power charging and
discharging, which make it have the characteristics of both
power and load. Wind power output opposite distributed
with demand load. In daytime, wind power is not sufficient
to satisfy demand load and the energy storage system would
act as power to meet the demand load. In night wind power
output is far exceeding demand load and energy storage
system would act as load to transform the extra wind power
into potential energy.

The charge and discharge process of energy storage
system is determined by real-time load equilibrium and the
charging-discharging capability of the energy storage system.
Assuming the power that energy storage stored in system 𝑠
at time 𝑡 is𝑄

𝑠,𝑡
, charge-discharge power balance should meet

(21). Consider

𝑄
𝑠,𝑡
= 𝑄
𝑠,𝑡−1
+ 𝑄
+

𝑠,𝑡
−

𝑄
−

𝑠,𝑡

(1 − 𝜃
𝑠
)

, (21)

wherein 𝜃
𝑠
is discharging power at time 𝑡; 𝜃

𝑠
is charge-

discharge power loss coefficient that is reflecting the power
loss during power transforming.

Charge-discharge capability in unit time is limited by
technical level of the energy storage system, as shown in (22)
and (23). Consider

𝑄
+

𝑠,𝑡
≤ 𝑄
𝑠
, (22)

𝑄
−

𝑠,𝑡
≤ 𝑄
𝑠
, (23)

wherein𝑄
𝑠
is the upper limit of energy storage system charge-

discharge power in unit time.
Energy storage system power storage capability also has

its upper limit.
Consider

𝑄
𝑠,𝑡
< 𝑄

max
𝑠
, (24)

wherein 𝑄max
𝑠

is the maximum storage capacity of storage
system.

For the entire study period, the charged power should be
equal to the discharged power as follows:

𝑇

∑

𝑡=1

𝑄
+

𝑠,𝑡
(1 − 𝜃

𝑠
) =

𝑇

∑

𝑡=1

𝑄
−

𝑠,𝑡
. (25)

Based on (25), to ensure energy storage system positive
profit, charge and discharge price should meet

𝑝
𝑠,char >

𝑝
𝑠,disc

(1 − 𝜃
𝑠
)

. (26)

At any moment power output should equal demand load
as follows:

𝐼

∑

𝑖=1

𝑢
𝑖,𝑡
𝑄
𝑖,𝑡
(1 − 𝜃

𝑖
) + 𝑄
𝑤,𝑡
(1 − 𝜃

𝑤
) + 𝑄
−

𝑠,𝑡

=

𝐺
𝑡

(1 − 𝑙)

+ 𝑄
+

𝑠,𝑡
.

(27)

Other constraints are the same as the basic model in
Section 1, namely, from (6) to (12).

2.4. Optimization Model for Wind-Thermal System with Car-
bon Emission Trading and Energy Storage System. The same
with Section 3, in this optimization model the optimization
objective is still consisting of three parts as follows:

max 𝑧
4
= 𝜋
𝑐
+ 𝜋
𝑤
+ 𝜋
𝑠
, (28)

wherein thermal power unit profit 𝜋
𝑐
is influenced by coal

consumption, coal price, carbon emission, and carbon emis-
sion price. 𝜋

𝑐
could be calculated by

𝜋
𝑐
= [𝑝
𝑐

𝐼

∑

𝑖=1

𝑇

∑

𝑡=1

𝑄
𝑖,𝑡
(1 − 𝜃

𝑐,𝑖
) − 𝐶fuel − 𝐶CO

2

−

𝐼

∑

𝑖=1

OM
𝑐,𝑖
−

𝐼

∑

𝑖=1

𝐷
𝑐,𝑖
] ,

(29)

wherein carbon emission cost is determined by the initial
allocated carbon emission right and carbon emission price.

Wind power and thermal power real-time output, energy
storage system charge-discharge power, and system load
should comply with

𝐼

∑

𝑖=1

𝑢
𝑖,𝑡
𝑄
𝑖,𝑡
(1 − 𝜃

𝑖
) + 𝑄
𝑤,𝑡
(1 − 𝜃

𝑤
) + 𝑄
−

𝑠,𝑡

=

𝐺
𝑡

(1 − 𝑙)

+ 𝑄
+

𝑠,𝑡
.

(30)

Other constraints are the same as the basic model in
Section 1, from (6) to (12).
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Table 1: Equivalent utilization of wind power units (MW).

Period Load Utilization ratio Period Load Utilization rate Period Load Utilization rate
1 1100 0.33 9 2300 0.28 17 1700 0.32
2 1200 0.55 10 2500 0.11 18 1900 0.29
3 1400 0.68 11 2600 0.26 19 2100 0.17
4 1600 0.76 12 2500 0.23 20 2500 0.13
5 1700 0.67 13 2400 0.12 21 2300 0.23
6 1900 0.51 14 2300 0.20 22 1900 0.38
7 2000 0.36 15 2100 0.09 23 1500 0.33
8 2100 0.32 16 1800 0.21 24 1300 0.38

Table 2: Dispatching optimization result of power system under different scenarios.

Scenario
Wind power Thermal power

Profit (104 Yuan)Output
(MW⋅h)

Grid accessed rate
(%)

Abandoned rate
(%)

Output
(MW⋅h)

Grid accessed
rate (%)

Coal consumption
(kg/MW⋅h)

1 18407.1 35.1 16.9 35274.8 64.9 343.5 327.8
2 18413.6 35.1 16.9 35294.8 64.9 346.8 295.9
3 18896.9 36.0 14.7 34772.9 64.0 344.4 305.6

3. Numerical Example Analysis

3.1. Basic Data. This paper did a simulation based on 10
thermal power units and wind power farms with 2800MW
installed capacity.Thermal power units’ operating parameters
are referred to in literature [19]. A typical day’s system load
and wind load output data is shown in Table 1. Assume
wind power tariff to be 540Yuan/MW⋅h, maintenance and
depreciation costs to be 600million, and thermal power tariff
to be 380 Yuan/MW⋅h, equivalent to 800Yuan/t of standard
coal price.

3.2. Numerical Example Results. With the optimization
objective of maximizing total profit, this paper solved the
scheduling optimization model of wind and thermal power
with or without carbon trading and energy storage system by
the mean of GAMS.

3.2.1. Carbon Emission Trading’s Impact on Wind Power
Consumption. To study different carbon emission prices’
impact on wind power consumption, three carbon emission
mechanisms scenarios are set. Carbon emission trading is not
considered in scenario 1; namely, the carbon trading is not
levied. In other two parts the part where carbon emission
quantity exceeds initial carbon emission right should levy
emission fee.The fee is 80 Yuan/t in scenario 2 and 100 Yuan/t
in scenario 3.

In scenario 1, total carbon emission is 29079.7 t. Assume
the allocated carbon emission right is 98% of the total
emission; the initial carbon emission right that thermal
power gains would be 28498.1 t. Wind power consumptive
optimization results under different carbon emission mecha-
nisms are listed in Table 2.

According to Table 2, price increasing of carbon emission
trading would increase wind power output and decrease
abandoned wind. In scenario 1, wind power generation
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Figure 1: Thermal power output with different carbon emission
trading prices.

is 18407.1MW⋅h. When carbon emission trading price is
80 Yuan/t, wind power output is increased to 18413.6MW⋅h.
When carbon emission trading price is 100 Yuan/t, wind
power output is 18896.9MW⋅h and abandoned wind rate
would decrease to 14.7%.Thermal power outputs with differ-
ent carbon emission trading prices are shown in Figure 1.

The introduction of carbon emission trading mechanism
makes thermal power market structure change with the
margin output cost. For example, units 2# and 3# are with
big carbon emission coefficients; the increasing of carbon
trading price would decrease their output. Contrarily, unit
5# has small carbon emission coefficients; then the increasing
of carbon emission trading would increase its power output.
To meet system supply and demand balance constraints,
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Table 3: Dispatching optimization result of power system under different scenarios.

Scenario
Wind power Thermal power

Profit (104 Yuan)Generation
(MW⋅h)

Electricity grid
accessed rate (%)

Wind abandon rate
(%) Generation Electricity grid

accessed rate (%)
Coal consumption

(kg/MW⋅h)
1 18407.1 35.1 16.9 35274.8 64.9 343.5 327.8
2 18542.1 35.3 16.3 35237.2 64.7 344.3 301.1
3 18620.6 35.4 15.9 35252.5 64.6 344.6 290.0

Table 4: Dispatching optimization result of power system under different scenarios.

Scenario
Wind power Thermal power

Profit (104 Yuan)Generation
(MW⋅h)

Electricity grid
accessed rate (%)

Wind abandon rate
(%)

Generation
(MW⋅h)

Electricity grid
accessed rate (%)

Coal consumption
(kg/MW⋅h)

1 18407.1 35.1 16.9 35274.8 64.9 343.5 327.8
2 18620.6 35.4 15.9 35252.5 64.6 344.6 290.0
3 18896.9 36.0 14.7 34772.9 64.0 344.4 305.6
4 18963.2 36.1 14.4 34837.5 63.9 342.6 296.4

unit backup constraints, and unit output constraints, thermal
power generation structure does not show obvious change
regulation.

3.2.2. Energy Storage System’s Impact on Wind Power Con-
sumption. To study energy storage system impact on wind
consumption, this paper sets three scenarios according to the
energy storage capacity. And optimization results are shown
in Table 3.

With the access and scale-expansion of energy storage
system, abandoned wind rate showed a downward trend
and unit utilization efficiency increased gradually. Without
energy storage system, abandoned wind rate is 16.9%. With
20MW energy storage system connected to the system,
abandonedwind rate decreased to 16.3% and electric quantity
increased by 135.0MW. With 40MW energy storage system
connected to the system, abandoned wind rate decreased to
15.9%, and electric quantity increased by 213.5MW.

When decreasing the abandoned wind rate, thermal
power output decreased and its net coal consumption rate
increased to some extent. Without energy storage system,
unit output coal consumption quantity is 343.5 kg/MW⋅h.
And when the connected energy storage system is with
20MW power storage capacity, the unit coal consumption
quantity changes to be 344.3 kg/MW⋅h and 344.6 kg/MW⋅h,
separately increased by 0.8 kg/MW⋅h and 1.1 kg/MW⋅h.

From the aspect of system profit, system profit decreased
with the increasing power storage capacity, which is because
of energy storage system’s high investment cost and lack of
commercial promotion in large scale. From the aspect of
policy, China’s policies gradually concentrate on large-scale
energy storage system development but still lack industrial
planning, industrial standards and financial subsidy, and
other substantive supports. From the aspect of economic
benefits, only pumped storage power plants can gain good
economic benefit; other storage techniques are constrained
by the high investment cost and unsound energy storage
electricity price mechanism.

The development of China’s large-scale energy storage
system means both opportunities and challenges. Currently,
challenges that are brought by price mechanism and invest-
ment cost are much more than opportunities. But in the long
run, with the establishment of price mechanism and mature
energy storage technology, China’s large-scale energy storage
system has a huge potential market.

3.2.3. Carbon Trading and Energy Storage System’s Impact on
Wind Consumption. To compare wind power consumption
of different combinations, 4 scenarios were set according to
wind consumption combinationwith assistance of generation
side. Scenario 1 is wind and thermal power joint scheduling
optimization. Scenario 2 is wind and thermal power, energy
storage system integrated scheduling optimization. Scenario
3 is wind and thermal power integrated scheduling opti-
mization under carbon trading mechanism. Scenario 4 is
wind power, thermal power, and energy storage system joint
scheduling optimization with carbon trading mechanism.
This paper uses GAMS to optimize. The optimization results
are listed in Table 4.

From the aspect of wind power output, when there are
only thermal power and wind power joint scheduled, the
abandoned wind rate is 16.9%. With the introduction of car-
bon emission trading or energy storage system, abandoned
wind rate decreased. And when both of carbon emission
trading and energy storage system are considered, abandoned
wind rate decreased to 14.4%, which achieves the minimum
in 4 scenarios. From the aspect of thermal power, its power
output and grid accessed rate decreased from scenario 1 to
scenario 4.

From the aspect of system total profits, due to the high
fixed cost of energy storage system, the profits will be higher
without energy storage system. For energy storage system,
its real-time charge and discharge power in scenario 4 and
system power storage are shown in Figure 2. In scenario
4, energy storage system total charged power quantity is
488.1MW⋅h, discharged power quantity is 346.9MW⋅h, and
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Figure 2: Charge and discharge optimization result of energy
storage system.
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Figure 3: Comparison of wind power output and charge-discharge
power of energy storage system.

final power storage is 80MW⋅h. According to (22), total
profit of energy storage system is −348000Yuan. Wherein
profit in charge-discharge process is 12000Yuan, fixed cost is
360000Yuan.

For energy storage system, it should release all the
power in the final time to gain more economic benefits by
selling the stored power. However, to reduce wind power
output fluctuation’s impact on system, charge and discharge
decisions are determined by wind power output, which can
reduce the pressure on thermal power peak shaving.

Figure 3 shows the change curves of real-time wind
power output and energy storage charge-discharge power. In
Figure 3, most of the charging time is in the wind power
output-increasing period and most of the discharging time
is in the wind power output-decreasing period.

From the aspect of system carbon emission level, thermal
power’s carbon emission is 28765.3 t in scenario 3, which is
267.2 t more than the initial allocated quota, and 26700Yuan
should be levied as the carbon emission cost.Thermal power’s
carbon emission is 28685.4 t in scenario 4, which is 187.3 t,

and ismore than the initial allocation quota, and 187000Yuan
should be levied as the carbon emission cost.

Based on the above analysis, the introduction of carbon
emission trading and energy storage systems can improve
wind power consumptive capacity, improve wind power
generation efficiency, and reduce thermal power output as
well as coal consumption. However, due to the high fixed
costs of energy storage system, power profits will be reduced
by the access of energy storage system. For the examples in
this paper, total charge quantity of the energy storage system
is 488.1MW⋅h, and total profit is −348000Yuan.

4. Conclusion

To promote large-scale wind power grid connection and
achieve energy-saving, this paper introduced carbon emis-
sion trading, which can bring economic benefits for wind
power. To alleviate randomness and intermittence of wind
power output and its impact on wind power consumptive
capacity, this paper introduced energy storage system to
provide backup services forwind power and built wind power
energy storage collaborative scheduling optimization model
with carbon emission trading andmade a numerical example;
the conclusions are as follows:

(1) Carbon emission trading can bring economic benefits
forwind power and transform its cleaning feature into
economic value, improve wind power grid connec-
tion, and reduce average coal consumption if there is
power generation.The introduction of energy storage
system can smooth wind power output, suppress
fluctuation, and provide backup services for wind
power that accessed the grid; electric quantity of
wind power paralleling in the grid increased with the
increasing capacity of energy storage system access.

(2) Energy storage system and carbon emission trad-
ing’s introduction can achieve security and stability
while running to maximize wind power capacity and
increase economic benefits of wind power. However,
due to the high fixed cost of energy storage sys-
tems, the above measures would reduce system total
profit.Therefore, tomaximize wind power utilization,
related subsidies for the energy storage systemneed to
be formulated.
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A new hybrid electric tracked bulldozer composed of an engine generator, two drivingmotors, and an ultracapacitor is put forward,
which can provide high efficiencies and less fuel consumption comparing with traditional ones. This paper first presents the
terramechanics of this hybrid electric tracked bulldozer. The driving dynamics for this tracked bulldozer is then analyzed. After
that, based on analyzing the working characteristics of the engine, generator, and drivingmotors, the power train systemmodel and
control strategy optimization is established by using MATLAB/Simulink and OPTIMUS software. Simulation is performed under
a representative working condition, and the results demonstrate that fuel economy of the HETV can be significantly improved.

1. Introduction

As a type of construction vehicle, the quantity of bulldozers is
increasing significantly with tremendous social development,
usually causing energy unsustainability and poor air qual-
ity. Additionally, the energy efficiency of the conventional
bulldozer is only 20%. The electrification of the bulldozer
as construction machinery is a good way to decrease air
pollution and oil shortages. For these reasons, developing an
electric bulldozer has significant effects on energy savings
and emission reductions [1]. Studies have been performed to
address these energy issues, notably regarding the utilization
of electricity as a viable replacement of oil. Hybrid power
systems aremore suitable than traditional power trains for the
reduction of fuel consumption and emissions. In the United
States, Caterpillar produced the first D7E hybrid electric
drive tracked bulldozer in March 2008. Compared with
traditional models, CO and NO

𝑥
emissions were reduced

by approximately 10% and 20%, respectively. The D7E can
improve fuel economy by 25% [2].

Hybrid electric tracked bulldozer is a complex system
due to its two power sources: engine-generator sets and
ultracapacitor. The working speeds of the engine and charge-
discharge properties of the ultracapacitor impact the fuel
economy of the bulldozer together. A reasonable energy
distribution control strategy could achieve theminimum fuel
consumption. How to coordinate the power flow between
engine-generator sets, ultracapacitor, and drive motor effec-
tively to achieve theminimum fuel consumption is a complex
design optimization problem.

In recent years, scholars have proposed a variety of dif-
ferent power allocation control strategies for electric vehicles
[3–8], which can be roughly classified into two categories:
thermostat type and power follow type [9–12]. The working
principle of the thermostat type control strategy is as follows:
engine outputs a set constant power when the SOC of battery
is lower than the set minimum value; engine does not work
when SOC is higher than the set maximum value. At this
time, the battery needs to meet the transient high power
discharge requirements that could do harm to the discharge
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efficiency and the lifetime of the battery. Power follow control
strategy requires the engine-generator sets output power to
always follow the load demand power of the vehicle, causing
engine speed frequently fluctuate and affecting the engine
efficiency and emission properties. Xiong et al. [13] adopted
the thermostat control strategy for PHEV, taking battery and
ultracapacitor as the auxiliary power source. This control
method improved the discharge efficiency and the lifetime
of the auxiliary power source. However, it is complex, rarely
used in the construction machinery vehicles, like bulldozer.
Kwon et al. [14] adopted power follow control strategy for
a series hybrid wheel excavator, taking ultracapacitor as the
auxiliary power source which improved the fuel economy by
24%. However, this control method limited the improvement
of the fuel economy as engine was controlled to work at one
single point.

In this paper, one power follow control strategy is put
forward to combine the working features of the proposed
series hybrid electric tracked bulldozers [15, 16]. Bulldozers
do not require high speed and acceleration performance. But
they demand power when low-speed operation fluctuates
remarkably. Considering working features of the bulldozer,
ultracapacitor is taken as the auxiliary power source due to
its high power density and short-term high power and cur-
rent output capabilities. By analyzing the engine-generator
working point and the SOC state of the ultracapacitor, a
reasonable power control strategy is proposed to improve the
fuel economy of the hybrid electric tracked bulldozer. Test
bench experiment was performed to collect actual test bench
data to correlate and validate the proposed control strategy
for this hybrid electric tracked bulldozer.

Parameter optimization for the power follow control
strategy is also researched because of the importance of accu-
rate match of control strategy parameters for fuel economy
improving [17, 18]. Commonly, genetic algorithm is famous
for its global optimization and parallel computing capabilities
[19–21] and has been widely used in multiple areas, including
parameter estimation in system identification, optimization,
and neural network training [22]. A genetic algorithm is
established to solve the parameter optimization problem in
the control strategy in this study.

The organization of this paper is as follows. In Section 2,
the new configuration of the hybrid electric tracked bulldozer
is described and the detailed terramechanics of the tracked
bulldozer is researched to provide the theoretical basis for
themodeling of the dynamics in Section 3.The power control
strategy is described in Section 4.The optimization problem,
procedure, and results of the control strategy are intro-
duced in Section 5. Finally, the conclusions are presented in
Section 6.

2. Terramechanics of the Tracked Bulldozer

2.1. Configuration of the Hybrid Electric Tracked Bulldozer.
The schematic of this hybrid electric tracked bulldozer
(using one traditional bulldozer as the prototype) is given
in Figure 1. This hybrid electric tracked bulldozer maintains
the vehicle body, hydraulic and operation system of the
traditional bulldozer, just changing the transmission form.

The paths for the electric power and mechanical power are
tandem in the series configurations. This construction sim-
plifies the propulsion and transmission system and provides
greater flexibility in the power train system.

This hybrid electric tracked bulldozer uses an integrated
controller to control two motors on both sides of the bull-
dozer independently and to transfer electric energy from the
DC BUS into mechanical energy to drive the bulldozer.

The terramechanics of this hybrid electric tracked bull-
dozer is the theoretical basis for further analysis of the driving
dynamics. The working states of the tracked bulldozer can
be divided into the following six stages: soil-cutting, soil-
transportation, returning, climbing, turning, and acceler-
ating. The external travel resistance, operating resistance,
driving force, and track slide curve under the working states
are researched in the following context.

2.2. External Travel Resistance, 𝐹
𝐸
. The resistance caused

by the vertical deformation of the soil under the anterior
track of the vehicle when driving is called external travel
resistance. It mainly results from the energy consumption of
soil compaction and the effects of bulldozing resistance. 𝐹

𝐸

can be written as the following [23]:

𝐹
𝐸
= 𝐹
𝑐
+ 𝐹
𝑏
,

𝐹
𝑐
=

2𝑏

(𝑛 + 1) 𝑘
1/𝑛

(
𝐺

2𝑏𝐿
)

(𝑛+1)/𝑛

,

𝐹
𝑏
= 𝛾𝑍
2

𝑏𝑘
𝛾
+ 2𝑏𝑍𝑐𝑘pc,

(1)

where

𝑘
𝛾
= (

2𝑁
𝛾

tan𝜓
+ 1) cos2𝜓,

𝑘pc = (𝑁𝑐 − tan𝜓) cos2𝜓,

(2)

where 𝐹
𝑐
is compaction resistance (N); 𝐹

𝑏
is bulldozing

resistance (N); 𝑏 is track width (m); 𝐺 is vehicle weight (N);
𝐿 is track length (m); 𝑐 is soil cohesion coefficient (KPa); 𝜓 is
soil internal friction angle (∘); 𝑛 is soil deformation index; 𝑘 is
soil deformation modulus (KN/m𝑛+2); 𝑍 is track amount of
sinkage (m); 𝛾 is unit weight (N/m3); and𝑁

𝛾
and𝑁

𝑐
are the

soil Terzaghi coefficients of bearing capacity [24].

2.3. Operating Resistance 𝐹
𝑇
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Figure 1: Configuration of hybrid electric tracked bulldozer.

where 𝐹
1
is soil-cutting resistance (N); 𝐹

2
is the pushing

resistance of the mound before the blade (N); 𝐹
3
is frictional

resistance between the ground and blade (N); 𝐹
4
is the

horizontal component of the frictional resistance when the
soil rises along the blade (N); 𝑘

𝑏
is cutting resistance per unit

area (MPa); 𝐵
1
is blade width (m); ℎ

𝑝
is average cutting depth

(m); 𝐺
𝑡
is the gravity of the mound in front of the bulldozing

plate; 𝜇
1
is the friction coefficient between soil particles; 𝜇

2
is

the friction coefficient between the soil and blade; 𝜃 is slope
(∘); 𝑉 is the volume of the mound in front of the bulldozing
plate; 𝑘

𝑠
is the loose degree coefficient of the soil; 𝑘

𝑚
is the

fullness degree coefficient of the soil;𝐻 is blade height (m);𝛼
0

is the natural slope angle of the soil (∘); 𝑘
𝑦
is cutting resistance

per unit area after the blade is pressed into the soil (MPa);𝑋 is
the length of the worn blade contacting the ground (m); and
𝛿 is the cutting angle of the blade (∘) [1].

2.4. Driving Force, 𝐹. The soil driving force is partly con-
sumedby overcoming external travel resistance andbulldozer
operation, acceleration, climbing, or load traction. The rela-
tionship between maximum driving force (adhesion force)
𝐹max and slide ratio 𝑖 is given as the following [25]:

𝐹max = 2𝑏𝐿𝑐 (1 +
2ℎ

𝑏
)

+ 𝐺 tan𝜑{1 + 0.64 [ℎ
𝑏
arc cot(ℎ

𝑏
)]} .

(4)

Thus, driving force 𝐹 can be written as the following:

𝐹 = 𝐹max [1 −
𝐾

𝑖𝐿
(1 − 𝑒

−𝑖𝐿/𝐾

)] , (5)

where ℎ is the grouser height (m) and𝐾 is the soil horizontal
shear deformation modulus (m):

𝑖 = 1 −
V

𝑟
0
𝑤
0

= 1 −
V
V
𝑇

=
V
𝑇
− V
V
𝑇

=

V
𝑗

V
𝑇

, (6)

where V is the actual speed of vehicle (m/s); 𝑤
0
is the angular

velocity of the sprocket wheel (rad/s); 𝑟
0
is the pitch radius of

the sprocket wheel (m); V
𝑇
is the theoretical speed of vehicle;

V
𝑗
is the track slip velocity relative to the ground (rad/s).

2.5. Track Slide Curve. Based on the parameters of the
bulldozer and sandy loam shown in Table 1, the track slide
curve of this hybrid electric tracked bulldozer on sandy loam
is shown in Figure 2.

Table 1: Parameters of the bulldozer and soil.

Name Value Unit
Vehicle weight (𝐺) 280 KN
Track width (𝑏) 0.61 m
Track length (𝐿) 3.05 m
Grouser height (ℎ) 0.07 m
Soil cohesion coefficient (𝑐) 13.79 KPa
Soil internal friction angle (𝜓) 28 Degree
Soil deformation index (𝑛) 0.3 Null
Soil deformation modulus (𝑘) 146 KN/m𝑛+2

Unit weight (𝛾) 17700 N/m3

Soil Terzaghi coefficients of bearing capacity
(𝑁
𝑐
) 10.8 Null

Soil Terzaghi coefficients of bearing capacity
(𝑁
𝑟
) 3.8 Null

Soil horizontal shear deformation modulus
(𝐾) 0.02 m

From Figure 2, the driving force reaches a maximum of
213 KN when the track slips completely (slide ratio 𝑖 = 1,
meaning that the track slip velocity relative to the ground is
equal to the theoretical speed of vehicle), and the difference
between the driving force and external travel resistance is
used for the operation, acceleration, climbing, and load
traction of the bulldozer.

3. Dynamic Modeling of the Hybrid Electric
Tracked Bulldozer

The series hybrid power system is composed of a diesel
engine, permanent magnet generator, motor drive system,
and tracks, as shown in Figure 1.The hybrid electric bulldozer
uses the integrated controller to control the motors on both
sides of the bulldozer independently and to transfer the
electric energy from the generator and auxiliary power supply
(also from DC BUS) into mechanical energy to drive the
bulldozer [26]. Based on the working principle analysis and
test bench experiment of various parts of the power train
system, a mathematical model of the hybrid power system
was established.

3.1. Engine-Generator Model. To ensure the accuracy of the
modeling, test bench experimental data are used to establish
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Figure 3: Diesel engine universal characteristic curve.

the diesel engine universal characteristic curve, as shown in
Figure 3.

The engine fuel injection amount is determined by
throttle position and engine speed. Engine output torque is
determined by the following:

𝑇
𝐷

𝑒
= 𝑇
𝑒
− 𝐽
𝑒

𝑑𝑤
𝑒

𝑑𝑡
,

𝑇
𝑒
= 𝛼 ∗ 𝑇

𝑒 max (𝑛𝑒) ,

(7)

where 𝑇𝐷
𝑒

is dynamic engine output torque; 𝑇
𝑒
is steady-

state engine flywheel output torque; 𝛼 is throttle position;
𝑇
𝑒 max(𝑛𝑒) is maximum torque at the engine speed 𝑛

𝑒
; and 𝐽

𝑒

is the rotary inertia of the rotating parts in the engine.
The engine fuel consumption 𝑏

𝑒
(g/kWh) is a function of

𝑇
𝑒
and 𝑛
𝑒
:

𝑏
𝑒
= 𝑓 (𝑇

𝑒
, 𝑛
𝑒
) =

𝑠

∑

𝑗=0

𝑗

∑

𝑖=0

𝐴
𝑘
∗ 𝑇
𝑖

𝑒
∗ 𝑛
𝑗−1

𝑒

(𝑖, 𝑗 = 0, 1, 2, . . . , 𝑠) ,

(8)
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Figure 4: Motor drive system efficiency.

where 𝑠 is model order number and 𝐴
𝑘
is the polynomial

coefficient 𝑘 = (𝑗2 + 𝑗 + 2 ∗ 𝑖)/2.
The generator provides current to DC BUS under gener-

ating mode; the kinetic equation for the generator is given as
the following:

𝐽
𝑔

𝑑𝑛
𝑔

𝑑𝑡
= 𝑇
𝑔
− 𝑇
𝐷

𝑒
, (9)

where 𝑇
𝑔
is generator shaft torque; 𝑛

𝑔
is generator speed; and

𝐽
𝑔
is the rotary inertia of the generator.
The relationship between generator shaft torque, speed

and output DC voltage, and current of the controller side is
given as the following:

𝑈
𝑔
⋅ 𝐼
𝑔

1000 ⋅ 𝜂
𝑔

=

𝑇
𝑔
⋅ 𝑛
𝑔

9549
, (10)

where 𝑈
𝑔
is output DC voltage from the generator; 𝐼

𝑔
is

output DC current; 𝜂
𝑔
is power generation efficiency.

3.2. Motor Model. A permanent magnet motor is adopted in
this hybrid bulldozer with a torque of 500/800N⋅m, a power
of 75/105 kW, a rated speed of 1430 rpm, and a maximum
speed of 6000 rpm. In this power train system, the twomotors
follow the instructions of the control unit for torque output.
The focus of the motor model is to establish the relationship
between the output torque, speed of the motor and the input
DC voltage, and current of the motor controller. Therefore,
the motor model is obtained based on the test bench data of
the motor drive system. Figure 4 shows the efficiency map of
the system.

Considering the response time of themotor drive system,
a first-order link is added between the target torque and the
actual output torque:

𝑇
𝑚
=

{{{

{{{

{

𝑇ref
𝜏𝑠 + 1

𝑇ref ≤ 𝑇max (𝑛)

𝑇max (𝑛)

𝜏𝑠 + 1
𝑇ref > 𝑇max (𝑛) ,

(11)

where 𝑇ref is target torque; 𝑇𝑚 is output torque; 𝑛 is motor
speed; 𝑇max(𝑛) is maximum torque at speed 𝑛; and 𝜏 is
response time.
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Figure 5: The power train system model of the hybrid electric tracked bulldozer.

The dynamic equation for the motor is as follows:

𝐽
𝑚

𝑑𝑛

𝑑𝑡

2𝜋

60
= 𝑇
𝑚
− 𝑇load, (12)

where 𝐽
𝑚
is motor rotational inertia and 𝑇load is load torque.

The relationship between the input DC voltage, current of
the motor controller and the shaft output torque, and speed
is as follows:

𝑈 ⋅ 𝐼 ⋅ 𝜂
𝑑

1000
=
𝑇
𝑚
⋅ 𝑛

9549
(𝑇
𝑚
> 0) ,

𝑈 ⋅ 𝐼

1000 ⋅ 𝜂
𝑏

=
𝑇
𝑚
⋅ 𝑛

9549
(𝑇
𝑚
< 0) ,

(13)

where𝑈 is the input DC voltage; 𝐼 is the input DC current; 𝜂
𝑑

is motor efficiency when driving; and 𝜂
𝑏
is motor efficiency

when braking.

3.3. Driving Dynamic Model. Based on the study of the
terramechanics of this hybrid electric tracked bulldozer, a
driving dynamic model is established as follows:

(𝑇
1
+ 𝑇
2
)
𝑖
0
𝜂

𝑟
− 𝑅
𝐿
− 𝑅
𝑅
= 𝑚V̇,

(𝑇
1
− 𝑇
2
)
𝑖
0
𝜂

𝑟

𝐵

2
+ (𝑅
𝐿
− 𝑅
𝑅
)
𝐵

2
− 𝑇
𝑟
= 𝐼�̇�,

𝑇
𝑟
=

{{{

{{{

{

0, 𝑤 = 0,

𝜇𝑙𝑚𝑔

4
[1 − (

2𝜆
1

𝑙
)

2

] , 𝑤 ̸= 0,

(14)

where𝑇
1,2

is motor output torque; 𝑖
0
is the gear ratio from the

motor to the driving wheel; 𝜂 is the efficiency from the motor
shaft to the track; 𝑟 is driving wheel radius; 𝑅

𝐿
and 𝑅

𝑅
are left

and right side track resistance, respectively;𝑚 is vehiclemass;
V is the vehicle drive speed along the longitudinal direction;𝑇

𝑟

is steering resistance torque; 𝐼 is vehicle rotational inertia; 𝑤
is vehicle angular velocity; 𝜇 is steering resistance coefficient;
𝑙 is vehicle length; and 𝜆

1
is the offset of the track contact with

the ground alone longitudinal direction.
The power train system simulation model of the hybrid

electric tracked bulldozer including the driver model, work-
ing condition model, engine-generator model, motor drive
system model, vehicle dynamics model, and control strategy
in MATLAB/Simulink is shown in Figure 5, where (1)∼(3)
and (14) are used in the module “dynamic”; (7)∼(8) are
used in the module “diesel engine”; (9)∼(10) are used in the
module “generator drive”; (11)∼(13) are used in the module
“motor drive 1” and “motor drive 2.”

3.4. Experiment Validity Analysis of the Dynamic Model of the
Hybrid Bulldozer. To verify the accuracy of the simulation
model of the hybrid electric tracked bulldozer, the parameters
and the real working conditions (as shown in Figure 6)
were substituted into this simulation model to compare the
simulation results with the real vehicle experimental data.

In Figure 6,𝑉 (km/h) is the bulldozer velocity; depth (m)
is soil-cut depth; and slope (∘) is bulldozer gradeability. The
working stages are described as follows: 1∼4 s traveling stage;
4∼16 s soil-cutting stage; 16∼31 s soil-transportation stage; 31∼
33 s unloading soil stage; and 33∼50 s no-load stage.

Figures 7 and 8 show the simulation result and real
bulldozer’s working velocities and drive forces of single track
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Figure 6: The real working condition of the bulldozer.
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Figure 7: Bulldozer velocities in the simulation and experiment.

under the working condition shown in Figure 6. Figure 9
shows the engine output power in the simulation and exper-
iment. Figure 10 shows the generator and motor efficiency
under the working condition.

As we can see from Figures 7 to 8, bulldozer velocities and
single track drive forces in the simulation and experimental
data are identical well. As can be seen fromdata, the variance’s
relative error of the single track drive forces in the simulation
and experimental data is 1.45%.

In Figure 9, the engine output power in the simulation
and experimental data are identical well-expected 4–16 s soil-
cutting stage. The engine output power in simulation is
higher about 15∼25 kW than that in experiment in 4–16 s soil-
cutting stage.This is because the efficiency of the power train
system is different in simulation (hybrid) and experiment
(traditional).The experiment transmission efficiency is set
approximately 0.9, which is higher than that of simulation
transmission. Figure 10 shows that the simulation efficiency
is below 0.90 for motor in 4–16 s soil-cutting stage. So the
engine must provide higher power in simulation than that in
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Figure 8: Single track drive forces in the simulation and experiment.
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Figure 9: Engine output power in the simulation and experiment.

experiment in order to satisfy the same demand power of the
bulldozer.

Under the state above, the simulation model (Figure 5) is
valid and can be used for the simulation research of control
strategy for the hybrid electric tracked bulldozer.

4. Control Strategy

4.1. Power Allocation Strategy. One power follow control
strategy is put forward to combine the working features of
the proposed series hybrid electric tracked bulldozers, which
should be able to coordinate the power supply and need
relationship among the engine generator, ultracapacitor, and
the motors. The engine output power should follow the load
demand power of the bulldozer, and the ultracapacitor should
supply the power shortage caused by the excessive load
demand power as the auxiliary power source.The SOC of the
ultracapacitor and load power requirement determines the
working point of the engine generator. The power allocation
strategy is shown in Table 2.

In Table 2, 𝑃∗ is the target demand mechanical power;
𝑃
𝑒
is engine output power; 𝑃

𝑒 max is engine maximum output
power; 𝑃

𝑒 min is engine minimum output power; 𝑃DC is DC
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Table 2: Power allocation strategy.

Judgment State of the
ultracapacitor Power supply

𝑃
∗

< 𝑃
𝑒 max

SOC < SOCmax
Charging 𝑃

𝑔
= 𝜂
1
∗ 𝑃
𝑒

𝑃uc = 𝑃DC − 𝑃𝑔

𝑃
∗

< 𝑃
𝑒 max

SOC ≥ SOCmax
Not working 𝑃

𝑔
= 𝜂
1
∗ 𝑃
𝑒

𝑃uc = 0

𝑃
∗

> 𝑃
𝑒 max

SOC > SOCmin
Discharging 𝑃

𝑔
= 𝜂
1
∗ 𝑃
𝑒 max

𝑃uc = 𝑃DC − 𝑃𝑔

𝑃
∗

> 𝑃
𝑒 max

SOC ≤ SOCmin
Not working 𝑃

𝑔
= 𝜂
1
∗ 𝑃
𝑒 max

𝑃uc = 0

BUS demand electric power; 𝑃
𝑔
is generator output power;

𝑃uc is ultracapacitor power; 𝜂
1
is power efficiency of the

generator; SOCmax and SOCmin are ultracapacitor maximum
and minimum state of charge, respectively.

𝑃
∗ is target demand mechanical power, which can be

given as

𝑃
∗

=
𝑃
∗

Track
𝜂
𝐸-𝑇

=
𝐹Track ∗ 𝑟

𝜂
𝐸-𝑇

=
(𝐹
𝐸
+ 𝐹
𝑇
) ∗ 𝑟

𝜂
𝐸-𝑇

, (15)

where 𝑃∗Track is the demand power of the track; 𝜂
𝑇-𝐸 is the

transmission efficiency from engine to track; 𝐹Track is the
off-road motion resistance; 𝐹

𝐸
is external travel resistance

calculated by (1)∼(2); 𝐹
𝑇
is operating resistance calculated by

(3).
As can be seen from (15) and (1)∼(3), we can conclude

that the average cutting depth ℎ
𝑝
and the volume of the

mound in front of the bulldozing plate 𝑉 are linear to 𝑃∗;
𝑃
∗ is a quadratic function of the track amount of sinkage 𝑍.

These primary parameters ℎ
𝑝
, 𝑉, and 𝑍 impact the energy

management at the above level.
The flowchart for the power allocation strategy is shown

in Figure 11. The driver’s intention is taken as the target
required power 𝑃∗, and the vehicle management system
(VMS) calculates the drive motor required power 𝑃∗

𝑚
accord-

ing to the working conditions of all components and the
vehicle. Simultaneously, the VMS calculates the engine target

Engine-generator set

Driver’s
intention

Drive motor 
system

VMS Vehicle

Ultracapacitor

n∗

P∗

I∗

Pm
∗

Peg

Pm

Puc

Figure 11: The flowchart for the power allocation strategy.

Table 3: Parameters of the control strategy.

Parameters Instructions
SOCmax Maximum SOC
SOCmin Minimum SOC
𝑁
1

Engine working speed 1
𝑁
2

Engine working speed 2
𝑁
3

Engine working speed 3

speed 𝑛∗ and the ultracapacitor target current 𝐼∗.The engine-
generator set makes the output power 𝑃eg, whereas the
ultracapacitormakes the output power𝑃uc according to a data
table lookup. The output power of the engine-generator set
and ultracapacitor is then sent to the drive motors through
DC BUS.

In this control strategy, the parameters must be properly
adjusted and optimized to reduce fuel consumption as much
as possible in order to satisfy the operational requirements.
The parameters of the control strategy are shown in Table 3.

4.2. Engine Control Strategy. An engine multipoint speed
switching control strategy is adopted here, and engine work-
ing speed is determined by the bulldozer load demand power.
The engine operates at low speeds when the load demand
power is low and operates at higher speeds when the load
demand power increases. Figure 12 shows the schematic of
the engine multipoint speed switching control strategy.

In Figure 12, 𝑥-axis represents engine speed and 𝑦-axis
represents load demand power. Load demand power is
divided into three areas: low, medium, and high. The engine
speed in each area is fixed as 𝑁

1
, 𝑁
2
, and 𝑁

3
. When the

load demand power is in low load area, engine speed will
be fixed at 𝑁

1
; as load demand power increases to medium

load area, engine speed will be fixed at 𝑁
2
; as load demand

power increases to high load area, engine speed will be fixed
at𝑁
3
. Power hysteresis band is set between each adjacent load

power area to avoid the engine speed frequent switching.

4.3. Real Experimental Testing of Control Strategy. Test bench
experiment was performed to collect actual test bench
data to correlate and validate the proposed power follow
control strategy for this hybrid electric tracked bulldozer.
The experimental bench consists of engine, generator, drive
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Figure 12: Schematic of the engine multipoint speed switching
control strategy.

Table 4: Basic parameters of the power train system.

Name Value Unit
Maximum power of the engine (𝑃

𝑒 max) 175 kW
Rated power of the motor (𝑃

𝑚 rated) 75 kW
Maximum power of the motor (𝑃

𝑚 max) 105 kW
Rated power of the generator (𝑃

𝑔 rated) 175 kW
Maximum power of the generator (𝑃

𝑔 max) 180 kW

motor system, auxiliary power source, dynamometer, and the
vehicle management system, as shown in Figure 13(a).

This test bench adopts power follow control strategy
which was written in the vehicle management system to
coordinate the power supply among the engine generator
and the motors. Dynamometer control interface shown in
Figure 13(b) controls the working speed of the dynamometer
and drive motor, and the drive motor controller controls the
load torque of the drive motor. In the process of test, the
load torque of the drive motor was increased up from 30N⋅m
to 100N⋅m suddenly and then down to 30N⋅m suddenly to
simulate the load sudden changes process of the bulldozer,
as shown in Figure 14. Load torque is linear related to the
accelerator pedal opening degree.

As we can see from the test bench result shown in
Figure 15, the engine-generator output power follows the load
demand power well under the working condition shown
in Figure 14. Under the state above, the proposed power
follow control strategy is effective and can be used for the
control strategy optimization for the hybrid electric tracked
bulldozer.

5. Control Strategy Optimization

5.1. OptimizationModel. To solve the problemof the parame-
ter optimization of the power follow control strategy, a math-
ematical model of the entire power train system including the
fuel consumption model is established based on the dynamic
modeling in Section 3 and the control strategy in Section 4.

The important parameters of the power train system of the
bulldozer are given in Table 4.

The fuel consumption model is obtained through the
fuel consumption MAP graph shown in Figure 16, where 𝑏

𝑒

(g/Kwh) is fuel consumption rate. Minimizing fuel consump-
tion is the optimization goal, and the working condition has
no effect on the control strategy put forward here. Therefore,
one representative bulldozer working condition is adopted
here, as shown in Figure 17.

In this optimization problem, the object function is
engine fuel consumption under the representative work-
ing condition. Engine minimum fuel consumption can be
obtained by integration [27]:

min𝐵 = ∫
𝑡
1

𝑡
0

𝐵 (𝑛, 𝑃
𝑒
, 𝑡) 𝑑𝑡, (16)

where 𝐵 is engine fuel consumption; 𝑛 is engine speed at
time 𝑡; 𝑃

𝑒
is engine output power at time 𝑡; and 𝑡

0
and 𝑡
1
are

the start and end time of the bulldozer working condition,
respectively.

In this problem, the SOC of the ultracapacitor at the start
and end times should remain identical. Therefore, the sum of
the ultracapacitor output and input energies is zero:

∫

𝑡
1

𝑡
0

𝑃uc (𝑡) 𝑑𝑡 = 0,

SOCmin ≤ SOC ≤ SOCmax.

(17)

The other constraint conditions are the following:

𝑃
𝑒 min ≤ 𝑃𝑒 ≤ 𝑃𝑒 max,

𝑛
𝑒 min ≤ 𝑛𝑒 ≤ 𝑛𝑒 max,

𝐼uc ≤ 𝐼uc max,

(18)

where 𝑛
𝑒 max and 𝑛

𝑒 min are the maximum and minimum
speeds of the engine, respectively, and 𝐼uc max is themaximum
charging/discharging current of the ultracapacitor.

5.2. Control Strategy Optimization. Based on the characteris-
tics of the series hybrid tracked bulldozer, a genetic algorithm
(GA) is adopted to solve the parameter optimization problem
in the control strategy. The engine working speeds 𝑁

1
, 𝑁
2
,

and 𝑁
3
at different power levels are set as the objective

optimized parameters. The initial values of 𝑁
1
, 𝑁
2
, and

𝑁
3
are determined by engineering experience. Because GA

cannot address the parameters directly, the parameters must
be converted into a chromosome composed of genes with
a certain structure. Therefore, the chromosome here is 𝑋

𝑖

(𝑁
1
, 𝑁
2
, 𝑁
3
). The GA operations are as follows: selection,

crossover, and mutation.
A design of experiment (DOE) is used to simplify the

calculation. As a design space exploration technique, DOE
is used for preliminary design space exploration to reflect
the relationship between the design variables and objective
function in fewer numbers of trials. According to the given
optimization variables, 16 test sample points are constructed
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Figure 13: Hardware setup for experiments. (a) Structure of the hybrid bulldozer test bench; (b) dynamometer control interface.
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Figure 14: The test bench working condition.

using an orthogonal design method. The response surface
is constructed on the basis of the DOE and can replace the
original model with certain accuracy. On the basis of the
DOE, the GA is then applied to optimize the parameters in
the solution space to determine the optimal solution [28, 29].
The GA work flow is then established (Figure 18) by setting
the minimum fuel consumption as the target function under
typical working conditions.

In this flowchart, 𝑓(𝑥) and 𝑔
𝑗
(𝑥) are the objective func-

tion and constraint conditions given in (16)∼(18). The main
optimization steps are as follows: (1) initialize the first-
generation chromosomes randomly, 𝑋

𝑖
, 𝑖 = 1; (2) simulate

the control strategy parameters represented by each chromo-
some using the vehicle simulation model for one complete
simulation and determine the fitness of each individual
according to the predetermined fitness function; (3) select a
new generation of chromosomes,𝑋

𝑖
, according to the fitness

values (the selected probability is greater when the fitness
is larger); (4) crossover and mutate, to generate the new
chromosomes, 𝑋

𝑖
, 𝑖 = 𝑖 + 1; (5) return to (2); and (6) halt

the process when satisfying the stopping condition.

Table 5: Optimization results for the parameters.

Parameters Before optimization After optimization
𝑁
1
(rpm) 1000 1102

𝑁
2
(rpm) 1400 1395

𝑁
3
(rpm) 1650 1621

𝐵 (g) 4200 3917

5.3. Optimization Results. Figure 19 shows the convergence
process of the control strategy parameters and the objective
function under the combined simulation. 𝑁

1
, 𝑁
2
, and 𝑁

3

are the engine working speeds at the engine power ranges of
0–60 kW, 60–120 kW, and 120–175 kW, respectively. With the
proceeding of the optimization process, 𝑁

1
, 𝑁
2
, and 𝑁

3
are

constantly adjusted in the engine working speed range and
gradually converge to stable values.

After 16 optimization calculations, through the optimiza-
tion in software environment of OPTIMUS, one solution in
the solution space is finally found as the optimal (Table 5).
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Figure 20 shows the right and left track velocity of
the hybrid bulldozer under the typical working condition
(Figure 17). As shown in Figure 21, the adjustment of the
engine speed is great after optimization, especially in low
load power and high load power areas. Engine speed was
adjusted from low efficiency to high efficiency working point
to improve the fuel economy of the bulldozer as shown in
Figure 22.

The adjustment of the engine speed impacts the power
allocation in a certain degree. As can be seen from Figure 21,
in the high load power area, the engine maximum output
power decreased due to the decreasing of the engine speed
after adjustment. Under the same working condition, the
ultracapacitor power supplement will be increased when the
demand power is very large. Discharge current will increase
to reduce the life of the ultracapacitor to some extent.

6. Conclusions

Based on the study of the terramechanics of the tracked bull-
dozer and test bench experimental data, a dynamic model of
the hybrid electric tracked bulldozer power train system was
established, combining the operation principle of each part of
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the system. To verify the accuracy of the dynamic simulation
model, the parameters and the real working conditions of
the prototype traditional bulldozer were substituted into the
simulation model, and the simulation results were compared
with the experimental data to analyze the accuracy of the sim-
ulation model. A power follow strategy is proposed, combin-
ing the working features of the series hybrid electric tracked
bulldozer. Test bench experiment was performed to collect
actual test bench data to correlate and validate the proposed
power follow control strategy for this hybrid electric tracked
bulldozer. Based on the dynamicmodel of this hybrid electric
tracked bulldozer, a genetic algorithm is proposed to solve the
control strategy parameter optimization problem. Based on
the optimized control strategy parameters, the simulation is
performed to compare engine fuel consumption before and
after control strategy optimization. By analyzing the opti-
mization results, the fuel consumption of the bulldozer after
optimization is reduced by approximately 6.74% compared
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with the former condition. This result verifies the validity
of the method proposed in this paper which can reduce the
difficulty of the design and optimize the control strategy.
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Accurate modeling of Kaplan turbine regulating system is of great significance for grid security and stability analysis. In this paper,
Kaplan turbine regulating systemmodel is divided into the governor systemmodel, the blade control systemmodel, and the turbine
and water diversion system model. The Kaplan turbine has its particularity, and the on-cam relationship between the wicket gate
opening and the runner blade angle under a certain water head on the whole range was obtained by high-order curve fitting
method. Progressively the linearized Kaplan turbine model, improved ideal Kaplan turbine model, and nonlinear Kaplan turbine
model were developed. The nonlinear Kaplan turbine model considered the correction function of the blade angle on the turbine
power, thereby improving the model simulation accuracy. The model parameters were calculated or obtained by the improved
particle swarm optimization (IPSO) algorithm. For the blade control system model, the default blade servomotor time constant
given by value of one simplified the modeling and experimental work. Further studies combined with measured test data verified
the established model accuracy and laid a foundation for further research into the influence of Kaplan turbine connecting to the
grid.

1. Introduction

Hydraulic turbine generator units are increasingly being
relied upon to meet a variety of control requirements as the
size and complexity of interconnected systems increase. To
establish models reflecting the actual characteristics of the
prime mover and its governor is an important foundation
work for the accuracy of power grid security and stability
analysis [1, 2]. It is necessary to adjust both the wicket
gate opening and the runner blade angle under different
water head by the governor to keep efficient operation of
a Kaplan turbine, which is one of the common forms of
turbines in hydropower systems [3, 4]. There is an urgent
need to establish Kaplan turbine regulating system dynamic
model suitable for power system analysis based on measured
experimental data to obtain the parameters [5].

There have been many studies on the modeling and
verification of Francis turbine [6–10]. The common Francis
turbine model contains the single regulator system model,
the wicket gate control system model, and the turbine and

water diversion system model. The ideal turbine model or
linearized turbine model reflects the basic characteristics of
the prime mover, but the ideal turbine model reflects unit
features at rated operating point and the linearized turbine
model is suitable for small power fluctuations [8, 9].

The operation of Kaplan turbine involves control of the
wicket gates and the runner blades position to regulate
the water flow into the turbine [2, 11]. Due to the on-cam
relationship between the wicket gate opening and the runner
blade angle, the impact of blade angle on Kaplan turbine
transient simulation accuracy should not be ignored [12, 13].
The linear fitting [14], polynomial interpolation and fitting
[15], or intelligent algorithm [16] was used to obtain the
on-cam relationship expression. However, the linear fitting
obtained via limited points [14] to an extent may fail to
reflect the function completely. Different Kaplan turbine and
water diversion system models based on different functions
of wicket gate opening multiplied by function of blade
angle as inputs of nonlinear turbine model were compared
[17]. The parameter identification of a turbine and water
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diversion system model may become difficult with high-
order fitting function of the wicket gate opening or the blade
angle. As a result, the applicability of the established model
declines.

The Kaplan turbine regulating system model contains
the mathematical models of the governor, the dual-regulated
vane control system and blade control system, and the
turbine and water diversion system. In this paper, the Kaplan
turbine regulating system dynamic model and parameters
were optimized suitable for power system analysis, experi-
mental measurement, and precision requirements. The main
contribution lies in the blade control system model simpli-
fication, the on-cam relationship obtainment, the derived
five-parameter linearized Kaplan turbine model, parameter
obtainment method, and different Kaplan turbine regulat-
ing system dynamic models comparison in gird connected
system. The structure is organized as follows. In Section 2,
the Kaplan turbine regulating system model is presented.
Section 3 contains the development of three kinds of Kaplan
turbine and water diversion systemmodel (i.e., the linearized
Kaplan turbinemodel, the improved ideal turbinemodel, and
the nonlinear Kaplan turbine model). The established model
is verified by comparisonwith themeasured data in Section 4.
The results and discussion are presented in Section 4 as well.
Section 5 presents the conclusions drawn thereof.

2. Kaplan Turbine Regulating System
Mathematical Model

Figure 1 shows the frame diagram of hydroelectric power
with double-regulated turbine [18]. The vane control system
is based on the same principle of Francis turbine.The on-cam
relationship presents the runner blade angle changes with
the wicket gate opening and the blade is kept in a certain
best angle fitting with the wicket gate opening to improve the
power generation efficiency.

𝜔 and 𝜔ref are the unit frequency and given frequency
value, respectively, and 𝑃ref and 𝑃𝑒 are the given power and
turbine load, respectively. 𝑦ref , 𝑦, and 𝑦𝑟 are the given wicket
gate opening, the actual wicket gate opening, and the blade
opening, respectively. The blade opening is transferred from
the blade angle with the maximum value no more than one.
𝑞 is the turbine working flow, ℎ is the turbine working head,
and 𝑃

𝑚
is the mechanical power output.

2.1. The Regulating System Model. The Kaplan turbine gov-
ernor system is consistent with that of the general Francis
turbine. Figure 2 shows the digital governor model. Also,
Figure 3 shows the vane control system model considering
the speed limit and the amplitude limit [18]. 𝐾

𝑃
, 𝐾
𝐼
, and 𝐾

𝐷

are the proportional, integral, and differential coefficients of
the governor, respectively. 𝐾

𝑠𝑝
, 𝐾
𝑠𝑖
, and 𝐾

𝑠𝑑
are the propor-

tional, integral, and differential coefficients of the integrated
amplifier module, respectively. 𝑒

𝑝
is the power deviation

magnification. 𝑇
𝑦
is the main servomotor time constant.

VELopen and VELclose are the open and close servomotor
speed limits, respectively. 𝑦

𝑔MAX and 𝑦
𝑔MIN are the limiting

values of the wicket gate opening.

2.2. Blade Control System Model. The principle of the blade
control system is similar to that of the vane control system,
assuming that the on-cam relationship between the wicket
gate opening and the runner blade angle is neglected [19].The
blade control valve adopts a proportional valve to handle the
blade servomotor. Figure 4 shows the blade control system
model under a certainwater head.𝑇

𝑦𝑟
is the blade servomotor

time constant. VELopen1 and VELclose1 are the open and close
servomotor speed limits, respectively. 𝑦

𝑟MAX and 𝑦
𝑟MIN are

the limiting values of the blade opening.
The function between the blade opening, the gate open-

ing, and the water head is expressed as

𝑦
𝑟
= 𝑓 (𝑦,𝐻) . (1)

Under a certain water head, the function of the wicket
gate opening and the runner blade opening is given by

𝑦
𝑟
= 𝑎
5
𝑦
5

+ 𝑎
4
𝑦
4

+ 𝑎
3
𝑦
3

+ 𝑎
2
𝑦
2

+ 𝑎
1
𝑦 + 𝑎
0
, (2)

where 𝑎
5
, 𝑎
4
, 𝑎
3
, 𝑎
2
, 𝑎
1
, and 𝑎

0
are the fitting coefficients.

3. Kaplan Turbine and Water Diversion
System Model

The linearized Kaplan turbine model, improved ideal turbine
model, and nonlinear Kaplan turbine model were devel-
oped. The five-parameter linearized Kaplan turbine model
was derived for parameters obtainment convenience. The
improved ideal turbine model and nonlinear turbine model
were demonstrated based on the principle of the turbine that
the blade opening affected the Kaplan turbine power like the
linearized turbine model did.

3.1. Model One: Linearized Kaplan Turbine Model. The dy-
namic characteristic of hydraulic turbine is associated with
the dynamic characteristic of the water flow in the pipe.
The turbine characteristics in the vicinity of the operating
point are approximately linear. Compared with the Francis
turbine [9], the torque and water flow of Kaplan turbine can
be expressed as

𝑚
𝑡
= 𝑒
𝑥
𝑥 + 𝑒
𝑦
𝑦 + 𝑒
𝑟
𝑦
𝑟
+ 𝑒
ℎ
ℎ,

𝑞 = 𝑒
𝑞𝑥
𝑥 + 𝑒
𝑞𝑦
𝑦 + 𝑒
𝑞𝑟
𝑦
𝑟
+ 𝑒
𝑞ℎ
ℎ,

(3)

where 𝑒
𝑥
, 𝑒
𝑦
, 𝑒
𝑟
, and 𝑒

ℎ
are the transfer coefficients of turbine

torque to the rotational speed, wicket gate opening, blade
opening, and water head, respectively. 𝑒

𝑞𝑥
, 𝑒
𝑞𝑦
, 𝑒
𝑞𝑟
, and 𝑒

𝑞ℎ

are the transfer coefficients of the water flow to the rotational
speed, wicket gate opening, blade opening, and water head,
respectively.

For the turbine water diversion system, considering the
wall elasticity of water flow and water diversion system and
ignoring the friction between them, the mathematical model
of water diversion system can be obtained as [6]

𝐺
ℎ
(𝑠) =

2𝑇
𝑤

𝑇
𝑟

1 − 𝑒
𝑇
𝑟
𝑠

1 + 𝑒
𝑇
𝑟
𝑠
, (4)
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where𝑇
𝑤
is the water inertia time constant and𝑇

𝑟
is the water

hammer phase length.

If the high level terms in the Taylor expression of (4) are
ignored, then the transfer function of the simplified elastic
model is given as

𝐺
ℎ
(𝑠) = −

𝑇
𝑤
𝑠 (1 + (1/24) 𝑇

𝑟

2

𝑠
2

)

1 + (1/8) 𝑇
𝑟

2

𝑠
2

. (5)

Furthermore, if the flexibility of the water flow and the
water diversion pipe is ignored, the transfer function of the
rigid water hammer model is expressed as

𝐺
ℎ
(𝑠) = −𝑇

𝑤
𝑠. (6)

The speed influence on the turbine power in (3) is
neglected due to the little unit speed change under the grid
connected condition. Figure 5 shows the linearized Kaplan
turbine model and its deformed five-parameter linearized
turbine model with rigid water hammer model, while 𝑎, 𝑏,
𝑐, 𝑑, and 𝑓 are constants above zero.

3.2. Model Two: Improved Ideal Turbine Model. Assume that
the transfer coefficients in (3) and the turbine efficiency are
certain under various working conditions and the wicket gate
opening varies linearly. Ignoring the unit speed influence on
turbine power, the ideal turbine model of the Francis turbine
at rated operating point is described as [8]

𝐺 (𝑠) =

1 − 𝑇
𝑤
𝑠

1 + 0.5𝑇
𝑤
𝑠

. (7)
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Figure 6 shows the improved ideal turbine considering
the effect of the wicket gate and the blade on Kaplan turbine
power. 𝑦NL is the equivalent no-load opening. 𝐴

𝑡
is the pro-

portional coefficient. The blade effect on the Kaplan turbine
power is reflected by the calculation of𝐴

𝑡
and 𝑦NL, which are

identified by an optimization algorithm in this paper.

3.3. Model Three: Nonlinear Kaplan Turbine Model. For the
Francis turbine, considering the relationship between the
turbine flow, wicket gate opening, and the water head as a
valve [19], the nonlinear turbine model is described by

𝑞 = 𝑦√ℎ,

𝑃
𝑚
= 𝑘
𝑝
(𝑞 − 𝑞

0
) ℎ,

̇𝑞 =

1

𝐺
ℎ
(𝑠)

(ℎ − ℎ
0
) ,

(8)

where 𝑞 is the water flow in the diversion pipeline, ̇𝑞 is the
derivative of 𝑞, ℎ

0
is the static head (its per unit value is 1),

and 𝑞
0
is no-load flow. 𝑘

𝑝
is proportional coefficient.

The nonlinear Kaplan turbine model is established based
on the following four aspects:

(a) Under the normal grid connected operation, the unit
speed is generally in the vicinity of rated speed, so the unit
speed impact on the turbine model is ignored.

(b) The hydraulic turbine with the water diversion pipe
length less than 800m can adopt the rigid water hammer
model to simulate the dynamic process of the water diversion
pipe.

(c) Consider the nonlinear relationship between the
wicket gate opening and the turbine mechanical power.

(d) The effect of the blade opening on the Kaplan turbine
is viewed as increasing flow amount.

The variable 𝐺 is introduced to represent the equivalent
opening for the combined effect of the wicket gate opening
and the blade opening given by

𝐺 = 𝑓 (𝑦) ⋅ 𝑓 (𝑦
𝑟
) , (9)

where 𝑓(𝑦) and 𝑓(𝑦
𝑟
) are the function of 𝑦 and 𝑦

𝑟
, respec-

tively.
Different to the Kaplan turbine and water diversion

system models based on concrete different functions of 𝑦
and 𝑦
𝑟
[17], function𝑓(𝑦) is represented by cubic polynomial

fitting and function𝑓(𝑦
𝑟
) is represented by linear fitting given

by

𝑓 (𝑦) = 𝑏
3
𝑦
3

+ 𝑏
2
𝑦
2

+ 𝑏
1
𝑦 + 𝑏
0
,

𝑓 (𝑦
𝑟
) = 𝑦
𝑟
⋅ 𝐵flow + 1,

(10)

where 𝑏
3
, 𝑏
2
, 𝑏
1
, and 𝑏

0
are the fitting coefficients. 𝐵flow is

the coefficient representing the blade angle impact on the
turbine water flow. Herein the effect of the blade opening
on the turbine is considered as incremental flow referring to
the principle of Kaplan turbine and the parameters in (10)
are easy to obtain for engineering application and model
validation, which reflects the nonlinear characteristics and
working principle of Kaplan turbine.

There is a time delay between the wicket gate movement
and the consequent blade angle movement in the case
studied. Figure 7 shows the nonlinear Kaplan turbine model
with rigid water hammer model considering the above four
aspects combined with (8)–(10).

4. Results and Discussion

The testing of the Kaplan turbine regulating system model is
based on the Kaplan turbine at Tukahe hydropower plant in
Yunnan province of West China.The hydropower station has
three units with one unit capacity of 55MW, normal reservoir
storage level of 368m, and rated head of 25m.

Different fitting functions of on-cam relationship were
compared based on the whole range measured under given
wicket gate opening disturbances while the gate-runner
relationship was determined from the turbine characteristics
(TC) data in [17]. The blade control effect is mainly deter-
mined by the on-cam relationship, speed limits, and blade
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servomotor time constant of the blade control systemmodel.
The default blade servomotor time constant given by value
of one simplified the modeling and experimental work. The
Kaplan turbine regulating system dynamic model and three
different turbine and water diversion system models were
compared for stability analysis in the grid connected power
system.

4.1. On-Cam Relationship Validation of Wicket Gate Opening
and Blade Opening. The fifth order polynomial fitting of the
on-cam relationship between the wicket gate opening and the
blade opening based on the measured data near the rated
water head is expressed as

𝑦
𝑟
= 24.36𝑦

5

− 76.29𝑦
4

+ 83.92𝑦
3

− 37.77𝑦
2

+ 7.187𝑦 − 0.4525.

(11)

The blade opening is set to a certain value near zero when
wicket gate opening is less than 40%.The best fitting function
is obtained through measured data depending on different
Kaplan turbines or different working heads. The relationship
between the wicket gate opening and the blade opening
needs to be revised with appropriate polynomial fitting at
other working heads. Figure 8(a) shows the simulated blade
opening of the blade control system model (see Figure 4)
using the expression in (11) under given wicket gate opening
disturbances of whole range.

As shown in Figure 8(a), when the wicket gate opening
is less than 0.4 by per unit value, the blade opening is
approximate to zero and the maximum blade opening is
about 0.9 by per unit value. The piecewise linear fitting result
fits with the measured data when the wicket gate opening is
less than 0.6 and has a difference as the wicket gate opening
over 0.6 by per unit value.The fifth order fitting shown in (11)
is closest to the measured data which shows a better on-cam
relationship than the other fitting methods. Given the wicket
gate opening disturbances, the simulation result using fifth
order fitting is consistent with themeasured data in the whole
operating range (see Figure 8(c)) and verifies the correctness
of the on-cam relationship function.

4.2. Influence of Blade Servomotor Time Constant on the Blade
Control System Model. The influence of blade servomotor
time constant on the blade control systemmodel was studied.
Figure 9 shows the simulation results with different 𝑇

𝑦𝑟

values.
The influence of different 𝑇

𝑦𝑟
values on the simulation

results shows that the bigger 𝑇
𝑦𝑟

is, the slower adjusted rate

is (see Figure 9), and thus 𝑇
𝑦𝑟

should be as small as possible.
Due to the rate restrictions of VELopen1 and VELclose1, the
result difference is not obvious when 𝑇

𝑦𝑟
is less than 1 s.

In conclusion, the blade servomotor time constant affects
the adjustment of blade control system model and should
be set in a reasonable range of value. 𝑇

𝑦𝑟
in this case is 1 s

considering that it is difficult to be tested. When 𝑇
𝑦𝑟
is about

1 s (i.e., the blade servomotor response time link is ignored),
it has little effect on the simulation result but simplifies the
modeling and experimental work.

4.3. Turbine Regulating System Model Validation. The im-
proved particle swarm optimization (IPSO) algorithm (i.e.,
the inertia weight is linearly changed and the chaos method
is used to generate initial particle population) is applied to
identify the model parameters [20]. The inertia weight is
introduced to revise the speed update equation to improve
search ability in the global scope. The chaos method is used
to generate good initial particle population.

The error evaluation index to quantize the simulation
agreement is defined as

𝜎 =

∑
𝑁

𝑖=1
(𝑌
𝑖
− 𝑌
𝑖
)

2

𝑁

,
(12)

where 𝑌
𝑖
is 𝑖th measured value, 𝑌

𝑖
is 𝑖th simulation value, and

𝑁 is the total number of sampling points.
Figure 10 shows the graphical representation of measured

behavior of power acquired at a certain head given in 2D and
3D space. 𝑦

𝑟
changes with 𝑦 when the wicket gate opening

is over a certain value. In addition, the relationship between
the wicket gate opening and the turbine mechanical power is
nonlinear.

The speed limits and amplitude limits of the vane control
system and blade control system were calculated under large
wicket gate opening disturbances while other parameters
were identified by the improved particle swarm optimiza-
tion (IPSO) algorithm under small wicket gate opening
disturbances and the parameters were revised through grid
connected simulation comparison. The maximum iteration
step of IPSO algorithm is 100. For the error function with
the extreme point of zero, the tolerance of error is set to 10−6.
The parameters generally range from slightly greater than 0 to
100 to get global solution as much as possible. Based on the
turbine power disturbance test data and the unit frequency
disturbance test data, Table 1 lists the cubic fitting relation
between variables 𝑦

𝑔
and 𝑦 (see Figure 7), the coefficient

representing blade angle impact on the turbine water flow,
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and other parameters of the double regulating system model
identified by the IPSO algorithm. Figure 11 shows the Kaplan
turbine regulating systemmodel simulation result using non-
linear Kaplan turbine model for unit frequency disturbance

Table 1: The parameter list.

Model Parameter Value

Vane control
system model

𝐾
𝑠𝑝

35
𝑇
𝑦

28 s
VELopen 0.15
VELclose −0.15

𝑦
𝑔MAX 1
𝑦
𝑔MIN 0

Blade control
system model

𝑇
𝑦𝑟

1 s
VELopen 1 0.020
VELclose 1 −0.017

𝑦
𝑟MAX 0.9
𝑦
𝑟MIN 0

Nonlinear Kaplan
turbine model

𝐵flow 0.6
𝑦
𝑔
= 0.267𝑦

3

− 1.42𝑦
2

+ 2.383𝑦 − 0.5916

test with disturbance values of ±0.2Hz under a certain unit
power value.
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Figure 10: Graphical representation of measured behavior of power acquired at a certain head. (a) 2D space. (b) 3D space.
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Figure 11: Simulation and measured results of unit frequency disturbance test. (a) Given unit frequency disturbance curve. (b) Wicket gate
opening and blade opening curves. (c) Mechanical power curves.

From the simulation results shown in Figure 11, the initial
recorded gate opening and blade opening are about 0.5 and
0.2 by per unit, respectively. The blade opening changes
linearly under the speed limits effect in the model and the
blade opening change is slower than the wicket gate opening

change which can be seen from Figure 8 and speed limit
differences listed in Table 1. There is little difference at the
final mechanical power value due to measured blade opening
difference when the unit frequency is recovered to 50Hz.The
wicket gate opening response and the blade opening response



8 Mathematical Problems in Engineering

P
m

(p
.u

.)

185 205
0.55

0.6
0.65

0.7

50 100 150 200 2500
Time (s)

Measured result
Model one result

Model two result
Model three result

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(a)

P
m

(p
.u

.)

Measured
Simulated

40 60 80 100 120 140 160 180 20020
Time (s)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(b)

Figure 12: Turbine power output comparison. (a) Turbine power rising disturbance test. (b) Turbine power decreasing disturbance test.

Table 2: The parameter list of Kaplan turbine model.

Model Parameter

Model one

𝑎 = 2.3238

𝑏 = 1.7365

𝑐 = 2.6712

𝑑 = 0.5552

𝑓 = 2.3238

Model two
𝑦NL = 0.3

𝐴
𝑡
= 1.6

𝑇
𝑤
= 1.8 s

Table 3: Simulation error comparison of power rising disturbance.

Turbine model 𝜎

Model one 5.5229 × 10
−5

Model two 1.7459 × 10
−4

Model three 4.4294 × 10
−5

results agree with the measured curve indicating that the
established vane and blade control model can effectively
reflect the dynamic characteristics of Kaplan turbine.

Table 2 shows the identified parameters of the Kaplan
turbine and water diversion system model using model one
and model two.

Figure 12 shows the comparison results of the turbine
power rising test using these three turbine models (i.e.,
model one, model two, and model three) and decreasing
disturbance test using model three with the same Kaplan
turbine regulating system mathematical model, respectively.
Also, Table 3 lists the power rising disturbance simulation
errors of three models.

The Kaplan turbine and water diversion system model
usingmodel one (i.e., the linearizedKaplan turbinemodel) to
a certain extent does not accurately reflect the hydroturbine
dynamic process when the power output is between 0.62 and
0.72 by per unit value (see Figure 12). As shown in Table 3,

model two failed to completely reflect dynamic change of
the blade opening and its simulation result has a significant
difference with the measured curve. The output of model
three (i.e., the nonlinear Kaplan turbine model) is basically
the same with the measured curve which is more accurate
than model two. In summary, model one and model three
apply dual input of the wicket gate opening and the blade
opening.These twomodels regard the effect of blade opening
on Kaplan turbine as increasing flow amount and, as a result,
influence the unit power output. Through verification of the
frequency disturbance test and turbine power disturbance
test, the nonlinear Kaplan turbine model can meet the needs
of the Kaplan turbine dynamic simulation better.

The generator rotor inertia time constant is obtained by
load rejection test. Figure 13 shows the measured curves and
the speed fitting result under load rejection of 25MW.

The rotor motion equation is given by

Δ𝑇
∗

𝑀
= 𝑇
𝑗
⋅ 𝛼
∗

, (13)

where 𝑇
𝑗
is the rotor inertia time constant. 𝛼∗ and Δ𝑇∗

𝑀
are

the rotor acceleration and rotor mechanical torque change by
per unit value, respectively. The calculated rotor inertia time
constant from linear segment of the speed change between 𝑡1
and 𝑡2 (see Figure 13(b)) is 5.3 s.

4.4. Grid Connected Simulation Analysis of Kaplan Turbine.
The Kaplan turbine regulating system model was established
and the simulation was performed on the IEEE 39-bus
system [21] with three different kinds of Kaplan turbine
and water diversion system models using model one, model
two, and model three in Section 3 and the same Kaplan
turbine regulating system mathematical model in Section 2,
respectively. The Kaplan turbine is connected to bus 18.
Figure 14 shows the revised 39-bus system diagram.

The generator parameters of bus 40 herein are as follows:
𝑋
𝑑
= 1.217, 𝑋

𝑑
= 0.600, 𝑋

𝑑
= 0.349, 𝑋

𝑞
= 0.600, 𝑋

𝑑
=

0.250, and𝑋
𝑞
= 0.250, and the rotor inertia time constant of
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Figure 13: Load rejection test. (a) Measured variables curves. (b) Linear segment of the speed change and the fitting curve.
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Figure 14: Revised 39-bus system diagram.

the generator is 6 s while the other parameters in the system
are not modified.

Assume that there is a three-phase short-circuit fault on
lines 17-18 near bus 18 at 1 s, and lines 17-18 are disconnected
at 1.1 s. Figure 15 shows the simulation results.

As shown in Figure 15, the terminal voltage of Kaplan
turbine is rapidly reduced to around zero when a three-phase

short-circuit fault occurs. Each observation returns to the
steady-state value after removing the fault line besides the
reactive power with value of a little increase. The terminal
voltage changes with the three kinds of the turbine regulating
system dynamic model (i.e., the Kaplan turbine and water
diversion system model using model one, model two, and
model three) are basically the same. Under the initial turbine
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Figure 15: Power grid fault simulation results. (a) Unit speed curves. (b) Active power curves. (c) Mechanical power curves. (d) Terminal
voltage curves. (e) Terminal current curves. (f) Reactive power curves.

mechanical power output of 0.45 (i.e., the mechanical power
is 27MW), the angle speed and the mechanical power fluctu-
ations of model two are larger than those of model one and
model three with themaximumdeviation being about 0.3Hz.
The maximum mechanical power fluctuation value of model
two is about 0.08 by per unit value (the reference capacity of

100MVA). In addition to different turbine and water diver-
sion system models, the governor parameters (the governor
converts the frequency deviation to wicket gate opening) also
influence the amount of mechanical power adjustment.

The adjustment of nonlinear turbinemodel was finer than
that of the improved ideal turbine model since the latter was
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derived based on the linearized model near the rated condi-
tion and its transfer function was simple. From the turbine
operating characteristics, the coefficients in (3) may change
significantly with turbine running in other conditions; thus,
the original parameters may cause a large amount of power
fluctuation.

5. Conclusion

Kaplan turbine model in this paper is divided into the
governor system model, the blade control system model, and
the turbine and water diversion system model. The detailed
dual-regulated vane control system model and blade control
systemmodel were developed.The comparison of simulation
and measured results showed the reasonableness and effec-
tiveness of the established model and parameters. The on-
cam relationship between the wicket gate opening and the
blade opening and the influence of the blade servomotor time
constant on the blade control systemmodel were studied.The
blade opening was transferred from the blade angle and the
fifth order polynomial fitting function could characterize the
on-cam relationship with amplitude limits set of the blade
opening in this study. The blade servomotor time constant
should be set in a reasonable range of value, but it was difficult
to be tested. In this study, 𝑇

𝑦𝑟
was 1 s, and thus the blade

servomotor response time link could be ignored. However,
it had a little effect on the simulation result and simplified the
modeling and the experimental work.

Progressively the linearized Kaplan turbine model,
improved ideal turbine model, and nonlinear Kaplan turbine
model are developed. The nonlinear Kaplan turbine model is
proposed which reflects the effects of the wicket gate opening
and the blade opening changes on the turbine mechanical
power (i.e., it regards the effect of blade opening on Kaplan
turbine as increasing flow amount) and has a high accuracy
through the comparison of the simulation and the measured
results. The power disturbance test and the frequency
disturbance test confirmed that the established governor
model, the dual-regulated vane and blade control system
model, and the nonlinear Kaplan turbine model reflected the
dynamic response of the Kaplan turbine adequately, which
could be applied in the power system analysis.
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To investigate the influences of causes of unreliability and bus schedule recovery phenomenon onmicroscopic segment-level travel
time variance, this study adopts Structural Equation Modeling (SEM) to specify, estimate, and measure the theoretical proposed
models. The SEM model establishes and verifies hypotheses for interrelationships among travel time deviations, departure delays,
segment lengths, dwell times, and number of traffic signals and access connections. The finally accepted model demonstrates
excellent fitness.Most of the hypotheses are supported by the sample dataset from busAutomatic Vehicle Location system.The SEM
model confirms the bus schedule recovery phenomenon.The departure delays at bus terminals and upstream travel time deviations
indeed have negative impacts on travel time fluctuation of buses en route. Meanwhile, the segment length directly and negatively
impacts travel time variability and inversely positively contributes to the schedule recovery process; this exogenous variable also
indirectly and positively influences travel times through the existence of signalized intersections and access connections.This study
offers a rational approach to analyzing travel time deviation feature. The SEM model structure and estimation results facilitate the
understanding of bus service performance characteristics and provide several implications for bus service planning, management,
and operation.

1. Introduction

Bus service reliability can have significant impacts on the ser-
vice providers and the existing and potential users [1]. From
the passenger’s perspective, reliable bus services present pre-
dictable travel times and wait times; from bus agencies point
of view, they benefit from stable ridership of passengers who
are satisfied with reliable services. As a result, the public
transit administrative authorities take service reliability as
one of the vital performancemeasures [2]; and transportation
researchers take into account the bus traveling randomness
in bus assignment modeling and network and operation
design [3–5]. For fixed-route bus services with fixed timeta-
bles and trajectories, on-time performance, and headway
regularity are the most commonly used reliability measures
[2], while travel time variability can be an important agencies-
concerned issue relating to these two service reliability mea-
sures. The focus of bus service operation and management is
on travel time reliability; travel times are core components of
travelers’ travel cost in transit assignment modeling. Thus, it

is of great importance to investigate bus travel time reliabil-
ity.

Many researchers havemade efforts to explore the indices
definition, overall features, and descriptive cause analysis of
travel time reliability [1, 6]. However, this study adopts Struc-
tural Equation Modeling (SEM) method to specify, estimate,
and measure the proposed theoretical model for analyzing
travel time deviation from schedules on the microscopic bus
route segment level. Compared with the previous studies
on transit reliability analysis employing regression methods
[7, 8], the SEM model establishes and verifies hypotheses
representing interrelationships among observed variables
based on existing theories and empirical results. The relevant
variables, denoting departure delays and upstream travel time
deviations, are embedded into the SEM models so as to
reveal bus schedule recovery phenomenon first investigated
by Kalaputapu and Demetsky [9]. Meanwhile, the availability
of bus Automatic Vehicle Location (AVL) systems makes it
feasible to conduct themicroscopicmodeling and analysis on
the bus segment level.
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This study begins with establishing hypotheses based
on literature review about bus service reliability analysis,
followed by Structural Equation Models specification. Then,
it conducts the SEMmodel testing andmodification by exam-
ining model estimation results in terms of estimates statistics
and multiple fitness measures. With the respecified SEM
model, the fitness of the entire model and estimates of path
coefficients are discussed. Finally, research conclusions and
relevant implications for bus service planning and operation
are present.

2. Literature Review and Research Hypotheses

In Structural Equation Modeling, five basic steps should be
followed, namely, model specification, model identification,
model estimation, model testing, and model modification.
The meaningfulness of correlation relationships in specified
models depends on the employed variables and reason-
able hypotheses. Hence, the theoretical hypotheses are very
important and should be based on previous research. This
section reviews related literature and proposes theoretical
assumptions for model specification.

As aforementioned, on-time performance and headway
regularity are key measures of bus service reliability, while
travel time variability performs as an important and essential
issue relating to these two reliability measures. This research
gets insight into the internal and external factors influencing
bus service reliability especially travel time deviations on the
bus route segment level.

2.1. Effects of Internal and External Factors on Bus Service
Reliability. Causes of unreliability analysis for bus service
have been well documented by Cham [1], TCRP-88 [2],
TCQSM [10], Abkowitz and Engelstein [11], and Abkowitz et
al. [12]. Deriving from the internal bus systems or external
traffic conditions, a number of factors affect bus travel times
resulting in travel time variability and service unreliability.
According to the previous research [1, 2], travel time delays
are impacted by major factors involving departure delays,
number of stops made, dwell times, number of traffic signals,
and so forth. Intuitively, the existence of signalized inter-
sections leads to the variability of travel times due to bus
random arrivals at traffic signals; access connections on the
road represent conflict points where buses interact with the
merging and diverging vehicles. Consequently, the following
hypotheses are inferred and present:

(H1) The dwell time has a direct and positive impact on
travel time deviation.

(H2) Number of signalized intersections has a direct and
positive impact on travel time deviation.

(H3) Number of access connections has a direct and posi-
tive impact on travel time deviation.

Apart from the above major interrelationships, it is likely
that departure deviations at bus terminals cause an increase in
passenger boarding (namely, dwell times) at bus stops further
downstream. Increased boarding at bus stops results in longer

dwell times, which increase total travel times [1]. Meanwhile,
longer bus stop spacing makes it more likely for buses to
traversemore traffic signals and access connections.Thus, the
following assumptions are proposed:

(H4) Departure delays directly and positively impact dwell
times.

(H5) Segment length directly and positively impacts num-
ber of traffic signals.

(H6) Segment length directly and positively impacts num-
ber of access connections.

2.2. Bus Drivers Schedule Recovery Behaviors. Provided that
bus travel time deviations from schedules exist, bus drivers
could be motivated to adjust travel speeds to ensure the
schedule adherence. This schedule recovery behavior of bus
drivers was first investigated by Kalaputapu and Demetsky
[9].Other researchers considered the schedule recovery effort
as a control factor in modeling bus arrival time prediction
and schedule optimization problems [13–15]. Chen et al. [14]
correlated the travel time delays on upstream segments with
the travel time deviation on the segment under consideration.
Similarly, Lin and Bertini [15] deem it reasonable that arrival
time delays at two adjacent stops are strongly correlated,
but delays for two stops far apart are usually weakly corre-
lated. Besides the upstream delays having been considered
above, departure punctuality at terminals is an important
measure of bus service performance, impacts dwell times
and travel times on downstream segments, and contributes
to bus drivers schedule recovery efforts. Therefore, this study
raises another two variables in SEM, departure delays at bus
terminals and accumulated delays (of travel time on upstream
segments), to explore schedule recovery phenomenon.

(H7) The accumulated delay has a direct and negative
influence on travel time deviation.

(H8) The departure delay has a direct and negative influ-
ence on travel time deviation.

(H9) The departure delay has a direct and negative influ-
ence on the accumulated delay.

According to Lin andBertini [15], how fast bus drivers can
bring the bus back on schedule depends on the magnitude of
deviation and the length of the remaining trip. Based on this
inference, the following hypotheses are established:

(H10) The segment length has a direct and negative influ-
ence on travel time deviation.

(H11) Percentage of completed trip has a direct and negative
influence on travel time deviation.

Based on the above eleven research hypotheses, there
are three exogenous variables which are assumed to be not
affected by other variables, and five endogenous variables
supposed to have unidirectional causal relationships with
exogenous variables or other endogenous variables. Assume
that the 𝑖th bus trip on the 𝑘th segment is under considera-
tion. The bus route segment 𝑘 originates from the bus stop
𝑘 and terminates at bus stop 𝑘 + 1, where 𝑘 = 1, 2, . . . , 𝑛.
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Figure 1: Path diagram of the original SEM model for bus travel time deviation analysis.

The regarding variables for the SEM models are notated and
described in Table 1.

3. SEM Model Specification

Structural EquationModeling uses various types ofmodels to
depict relationships among observed variables, with the same
basic goal of providing a quantitative test for the hypothesized
theoretical models [16]. In detail, this approach refers to a
series of statistical methodologies, including path analysis,
confirmatory factor analysis, and structural regression mod-
els. In the 1980s, researchers introduced this approach to
travel behavior studies [17, 18]. Until now, SEM methods
have been applied to transportation market segmentation
[19, 20], travel behavior analysis [21–23], and service quality
and satisfaction study [24–26].

Based on the inferred hypotheses in the previous section
and the corresponding variables depicted in Table 1, this
research develops a SEMmodel as follows.

𝜂 = 𝐵𝜂 + Γ𝜉 + 𝜁, (1)

where 𝜂 is the column vector of the five endogenous variables,
𝜉 is the column vector of the three exogenous variables, 𝐵
is the matrix of path coefficients denoting the direct effects
of endogenous variables on other endogenous variables, Γ is
the matrix of path coefficients indicating the direct effects
of exogenous variables on endogenous variables, and 𝜁 is
the column vector of estimation errors for five endogenous
variables.

Equation (1) can be expressed in the vector and matrix
form as (2). The relevant path diagram of the proposed
theoretical SEM model is shown in Figure 1. Consider
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(2)

Suppose that 𝑆 is the sample covariance matrix of the
exogenous and endogenous variables, and Σ is the theoretical
SEM (see (1) and (2)) implied covariance matrix. The SEM
models estimation process adopts particular fitting functions
to minimize the discrepancy between Σ and 𝑆 and to obtain
estimates for each of the parameters specified by SEMmodels.
In this study, the generalized least squares (GLS) method
is employed in SEM models estimation, given the specific
sample size [27].

According to previous research, a sample size needs to
be sufficient to achieve the desired precision level of path
coefficients estimates andmodel fit. On one hand, the sample
size should be greater than 200 for an acceptable model [28];
on the other hand, it should be ten times or fifteen times
the number of the observed variables [29].This study focuses
on peak hour periods when bus travel time deviations occur
frequently.The first sample used to test the proposed original
model includes 209 observations, deriving from the eleven
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Table 2: Model fit measures for the original and modified SEMmodels.

Measure name Acceptable level Original
model

Modified
Model A

Modified
Model B

Chi-square 𝜒2 The smaller the nonsignificant
(𝑝 > 0.050) value the better

96.500
(𝑝 = 0.000)

78.066
(𝑝 = 0.000)

21.399
(𝑝 = 0.045)

Ratio of Chi-square to the degrees of
freedom (df) 1 < 𝜒

2
/df < 3 reflects a good model fit 5.676 4.337 1.783

Goodness-of-fit (GFI) GFI > 0.95 reflects a good model fit 0.884 0.906 0.971
Adjusted GFI (AGFI) AGFI > 0.95 reflects a good model fit 0.754 0.812 0.931
Root-mean-square error of
approximation (RMSEA)

RMSEA < 0.05 indicates a good model fit
0.05∼0.08 indicates reasonable fit 0.150 0.127 0.061

bus trips in peak hour period (7:00-8:00) on May 14, 2012.
Another sample with 209 observations from eleven bus trips
during the same service period on May 15 is collected to
validate the modified models.

The data in the above samples derives from the AVL
archived records, the schemed timetable, and the field survey
data of a bus route numbered 102 in Suzhou City, China.
Specifically, the bus trip information (namely, actual depar-
ture times ADT and actual arrival times AAT) is directly
extracted fromAVL archived records; the bus route timetable
presents scheduled departure times SDT and scheduled travel
times STT; the data concerning bus route segments (lengths
𝐿, number of traffic signals TS, and number of access
connections AC) is collected by field surveys. Data entry and
editing are conducted in the statistical software package SPSS.
With the sample data and path diagram of theoretical SEM
model as inputs, the step of model estimation is performed
by using the SEM software, Amos of version 17.0.

4. SEM Model Testing and Modification

In order to inspect how well the sample data supports
the proposed theoretical SEM model, the model testing
procedure needs to be carried out by examining the goodness
of fit for the entire model and the statistical significance for
the individual parameters.The original model is estimated by
inputting the first sample which includes 209 observations,
deriving from the eleven bus trips in peak hour period (7:00-
8:00) onMay 14, 2012. Another sample with 209 observations
from eleven bus trips during the same service period onMay
15 is collected to validate the modified models.

As to the entire model fit test, SEM has a large number
of model fit measures. Most of these measures are established
based on the discrepancy between Σ and 𝑆, which is referred
to as Chi-square 𝜒2 [16, 21, 25]. The model fit measures
typically used are listed in Table 2. The third column in
Table 2 shows that the five fitness measures for the original
model defined by Figure 1 cannot reach the acceptable levels,
illustrating the poor fitness of the proposed original model.
To improve the goodness ofmodel fit, researchers are inclined
to add or remove paths in the originally proposed model
based on the statistical significance of path coefficients. As
a result, the following model modification and testing are
conducted.

4.1. Model Modification A. According to the critical ratios
(CR) and 𝑝 values for path coefficients in columns 2 and
3 of Table 3, most estimates of the path coefficients have
values significantly different from zero. But the 𝑝 value
(0.688) for the path, departure delay → dwell time, is
extremely great compared with 0.000. Correspondently, the
correlation between departure delay and dwell time in the
sample correlation matrix of Table 4 is −0.036 indicating
low correlativity. Accordingly, the path (denoting hypothesis
(H4)) is removed from the path diagramof the originalmodel
and Modified Model A is raised.

4.2. Model Testing A. Model estimation process is performed
for this modified SEM model with the new sample as inputs.
For Modified Model A, all of the model fit measures in
the fourth column in Table 2 cannot reach the good model
fit thresholds, reflecting that Modified Model A need to be
respecified further.

4.3. Model Modification B. By analyzing the CR and 𝑝 values
for path coefficients in columns 4 and 5 of Table 3, it is found
that the path, completed trip → travel time deviation, shows
low significance with the 𝑝 value of 0.401. Therefore, the
corresponding path (denoting hypothesis (H11)) is removed
to specify Modified Model B.

4.4.Model Testing B. It is shown in the fifth column of Table 2
that the vital fit measures for Modified Model B reflect good
or reasonable model fit. Meanwhile, the path coefficients
are statistically significant with all of the 𝑝 values less than
0.100 shown in columns 6 and 7 of Table 3. As a result, the
specification of ModifiedModel B with better parsimony and
model fit can be accepted finally.

The finally modified and accepted model denoted as
Modified Model B in Tables 2 and 3 can be represented by
the path diagram in Figure 2.

5. Empirical Results

5.1. Theoretical SEM Model Fitness. For the finally modified
and accepted model shown in Figure 2, the Chi-square value
is 21.399, the degrees of freedom are 12, and thus the ratio
of Chi-square to df, 𝜒2/df, is 1.783. Many researchers have
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Table 3: Path coefficients for original and modified SEMmodels.

Hypothesized paths Original model Modified Model A Modified Model B
CR 𝑝 CR 𝑝 CR 𝑝

H1: dwell time → travel time deviation 6.693 ∗ ∗ ∗ 3.368 ∗ ∗ ∗ 3.419 ∗ ∗ ∗

H2: number of traffic signals → travel time deviation 3.397 ∗ ∗ ∗ 3.028 0.002 3.053 0.002
H3: number of access connections → travel time deviation −1.183 0.237 −2.255 0.024 −2.352 0.019
H4: departure delay → dwell time −0.402 0.688 na na na na
H5: segment length → number of traffic signals 11.132 ∗ ∗ ∗ 12.054 ∗ ∗ ∗ 16.534 ∗ ∗ ∗

H6: segment length → number of access connections 4.839 ∗ ∗ ∗ 4.370 ∗ ∗ ∗ 4.472 ∗ ∗ ∗

H7: accumulated delay → travel time deviation −1.737 0.082 −1.813 0.07 −1.885 0.059
H8: departure delay → travel time deviation −2.563 0.01 −3.410 ∗ ∗ ∗ −3.483 ∗ ∗ ∗

H9: departure delay → accumulated delay −10.471 ∗ ∗ ∗ −12.560 ∗ ∗ ∗ −12.432 ∗ ∗ ∗

H10: segment length → travel time deviation −3.882 ∗ ∗ ∗ −3.577 ∗ ∗ ∗ −3.694 ∗ ∗ ∗

H11: completed trip → travel time deviation 1.062 0.288 0.839 0.401 na na
Note: ∗ ∗ ∗ denotes that 𝑝 value < 0.001. “na” denotes “not applicable.”

Table 4: Sample correlation matrix.

Percentage of
completed trip

Departure
delay

Segment
length

Dwell
time

Accumulated
delay

Number of
access

connections

Number of
traffic signals

Travel time
deviation

Percentage of
completed trip 1.000 −0.035 0.426 0.128 0.340 0.145 0.282 0.035

Departure delay na 1.000 0.000 −0.036 −0.566 0.000 0.000 −0.121
Segment length na na 1.000 0.008 0.027 0.326 0.737 −0.134
Dwell time na na na 1.000 −0.051 −0.036 −0.020 0.450
Accumulated delay na na na na 1.000 0.166 −0.122 −0.133
Number of access
connections na na na na na 1.000 0.200 −0.176

Number of traffic
signals na na na na na na 1.000 0.070

Travel time deviation na na na na na na na 1.000
Note: “na” denotes “not applicable.”

Travel time deviation

Segment length

signals
Number of access

connections

Departure delay

Dwell timeAccumulated delay

𝜁1 𝜁2

𝜉1

𝜉2

𝜂1

𝜂3

𝜂2

𝜂5
𝜂4

𝜁3

𝜁4

Number of traffic

H8: −0.301

H1: 0.224H7: −0.168

H3: −0.158H2: 0.312

H10: −0.381

H9: −0.666

H6: 0.302H5: 0.765

Figure 2: Path diagram of the modified SEMmodel for bus travel time deviation analysis.
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Table 5: Standardized direct, indirect, and total effects.

Departure
delay

Dwell
time

Segment
length

Accumulated
delay

Number of access
connections

Number of
traffic signals

Accumulated delay
Direct −0.666 na na na na na
Indirect 0.000 na na na na na
Total −0.666 na na na na na

Number of access
connections

Direct na na 0.302 na na na
Indirect na na 0.000 na na na
Total na na 0.302 na na na

Number of traffic signals
Direct na na 0.765 na na na
Indirect na na 0.000 na na na
Total na na 0.765 na na na

Travel time deviation
Direct −0.301 0.224 −0.381 −0.168 −0.158 0.312
Indirect 0.112 0.000 0.191 0.000 0.000 0.000
Total −0.189 0.224 −0.190 −0.168 −0.158 0.312

Note: “na” denotes “not applicable.”

suggested the use of the ratio as a measure of fit but different
values for acceptable levels to indicate a reasonable fit [25,
30]. However, the ratio less than 2.0 generally indicates a
reasonable fit between the hypothetical SEM model and the
sample data.The goodness of fit (GIF) and adjusted goodness
of fit (AGIF) for the modified SEMmodel are 0.971 and 0.931,
respectively, very close to 1.0. The value of RMSEA is 0.061.
Thesemeasures in the fifth columnof Table 2 yield supportive
indices for the reasonable SEM model structure and also
suggest that the sample data fits the final model well.

5.2. Hypothesis Testing Results. Figure 2 presents the path
diagram with the path coefficients representing standard-
ized estimates of regression weights. The standardized path
coefficients are useful in determining the relative importance
of each variable to other variables for a given sample. In
addition, standardized path coefficients make it feasible to
interpret interrelationships on the same scale ofmeasurement
[16]. Causal relationships between the physical features of
the bus route segment and travel time deviation, between
the departure and arrival delay and travel time deviation,
can be illustrated by the magnitude and sign of standardized
coefficients.

The path coefficients, from departure delay to accumu-
lated delay, from departure delay to travel time deviation,
and from accumulated delay to travel time deviation, are
−0.666, −0.301, and −0.168, respectively. The negative signs
verify hypotheses (H7), (H8), and (H9). They also imply
that bus drivers attempt to reduce travel time deviation and
pursue schedule adherence by schedule recovery behavior, in
cases where departure delay and travel time deviations from
upstream segments occur.

Dwell time does have a vital impact on travel time
variability as the path coefficient from dwell time to travel
time deviation takes a medium value of 0.224. It suggests that
passenger boarding and alighting at bus stops should be paid
attention to and treated as independent variable in service
reliability analysis and service planning modeling.

Causal relationships between physical feature of roadway
segment and travel time deviation are implied by path
coefficients for hypotheses (H2), (H3), (H5), (H6), and (H10).
The hypotheses, (H5) and (H6), take positive values of 0.765
and 0.302, respectively, consistent with the common sense
that buses traversemore intersections and access connections
with longer stop spacing. Compared with number of access,
traffic signals lead to the fluctuation of travel time more
intensively.We can infer that the stop delays for buses at traffic
signals make great contribution to the total bus delay on
segment. As supposed, the direct effect of segment length on
travel time deviation is negative. The greatest absolute value
of 0.381, among the coefficients for paths from other variables
to travel time deviation, proves that travel distance plays an
essential role in bus drivers’ schedule recovery behavior. It is
more likely for bus drivers to bring the buses back to schedule
with long travel distance.

5.3. Direct and Indirect Effects. It is shown that, in Table 5,
the exogenous variables, departure delay and segment length,
both have direct and indirect effects on the endogenous
variable travel time deviation.

The correlation (−0.189) between departure delay and
travel time deviation is the sum of (i) the direct effect (−0.301)
of departure delay on travel time deviation and (ii) the
indirect effect (0.112 = −0.666 ∗ (−0.168)) of departure
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delay on travel time deviation through accumulated delay.
The direct and indirect effects take reverse signs, representing
negative and positive influences, respectively.

Rather than comparing path coefficients −0.301 and
−0.168 directly, we suggest that departure delay and travel
time delay of upstream segments have a similar influence on
travel time variability as they have the correlations or total
effects of −0.189 and −0.168, respectively.

The correlation (−0.190) between segment length and
travel time deviation also consists of direct and indirect
effects. On one hand, segment length directly and negatively
impacts travel time variability and inversely positively con-
tributes to the schedule recovery process; on the other hand,
this exogenous variable indirectly and positively influences
the variance of segment travel times through the existence of
signalized intersections and access connections on the road.

6. Conclusions and Implications

This study investigates the influences of causes of unreli-
ability and bus drivers’ schedule recovery efforts on travel
time variance. The theoretical hypothesized SEM modeling
these interrelationships demonstrates excellent fitness with
multiplemeasures. In other words, most of the preestablished
hypotheses are adequately supported by the research sample
dataset from bus AVL system. The SEMmodel structure and
estimation results facilitate the understanding of bus service
performance characteristics and provide several implications
for bus service planning, management, and operation.

The final SEM model confirms the schedule recovery
phenomenon, namely, bus drivers’ active schedule adherence
behavior. The departure delays at the bus terminals and
upstream travel time deviations indeed have a negative
impact on travel time fluctuation of buses en route. It
also shows that these two portions of delays have similar
magnitudes of total effects on travel time deviations. Given
that upstream travel time delays have been taken into consid-
eration in bus service planning and arrival time prediction of
the existing research, particular emphasis should be placed
on departure delays at bus terminals. Thus, there is a need to
embed departure punctuality into bus operation modeling.

It is known that traffic signals on the road cause additional
travel time delays for the passing buses. In this study, the
number of signalized intersections on bus segments is taken
as an observed variable in SEMmodel and found to positively
affect travel time deviation. It comes to a conclusion that
treatments reducing the stop delays of buses at traffic signals
will make travel time deviations decrease. This kind of
treatments often refers to active and passive transit signal
priority controls.

As discussed in the last section, the segment length
or bus stop spacing directly and negatively impacts travel
time variability and inversely positively contributes to the
schedule recovery process; on the other hand, it indirectly
and positively influences travel time variance through the
existence of signalized intersections and access connections.
To optimize bus stop spacing, bus service researchers and

planners can refine stop spacing model by taking account of
its effects on travel time reliability and bus schedule recovery.

The parsimony for the proposed SEM model in this
study is promised, and all of the hypothesized paths are
based on well-known empirical research and supported by
real-world data. But in the future work, it is advised to
explore the correlation between bus service reliability and
additional observed variables, such as those regarding transit
preferential treatments.
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With the rapid development of the electric vehicle industry and promotive policies worldwide, the electric bus (E-bus) has been
adopted in many major cities around the world. One of the most important factors that restrain the widespread application of the
E-bus is the high operating cost due to the deficient battery management. This paper proposes a geometric-process-based (GP-
based) battery management optimizing policy which aims to minimize the average cost of the operation on the premise of meeting
the required sufficient battery availability. Considering the deterioration of the battery after repeated charging and discharging,
this paper constructs the model of the operation of the E-bus battery as a geometric process, and the premaintenance time has
been considered with the failure repairment time to enhance the GP-based battery operation model considering the battery cannot
be as good as new after the two processes. The computer simulation is carried out by adopting the proposed optimizing policy,
and the result verifies the effectiveness of the policy, denoting its significant performance on the application of the E-bus battery
management.

1. Introduction

With the intensification of the environmental pollution as
well as the fast development of the smart grid and the vehicle
industry, the electric vehicle (EV) will be a significant trend
in the vehicle industry for its environment-friendly, energy
saving, and high energy utilization rate characteristics [1, 2].
With the massive access of the EVs in the near future, the
electric bus, that is, E-bus, will constitute a significant part
in the public transportation [3]. And, with the development
of the battery-switching technology, the battery-switching
station (BSS) is the necessary refueling infrastructure for the
adoption of the E-bus [4, 5].

Due to the aging of the E-bus batteries through repeated
charging and discharging as well as stochastic impacts of
the daily usage, the state of health (SOH) of the batteries
degenerates, causing the rising of batteries failing probability.
Those disadvantages above will result in the reduction of the
battery life-cycle, the decline of the battery’s availability, and
the increasement of the E-bus daily cost-in-use. Therefore,
themanagement of the battery should be optimized to further
enhance the operating availability and reduce the long-run

average cost per unit time, andmany related studies have been
carried out focusing on the problems of battery operation and
repairment.

Gould et al. [6] propose an adaptive battery model to
observe the battery voltages and monitor the degradation of
the estimated dynamic model parameters, and Agarwal et al.
[7] build the battery model that incorporates with the
recovery effect for accurate life-cycle estimation and make
a suggestion about the maximum available energy approxi-
mated at charge/discharge nominal power level.

In the state of charge (SOC) estimation,Wang and Liu [8]
gather the parameters of battery voltage, current, and temper-
ature in real time and estimate the battery state of charge
as well as implementing the fault diagnosis or alarming
according to the battery status to achieve the full and efficient
use of battery power.

In the SOH monitoring, Li et al. [9] study the EV battery
monitoring and management system based on monitoring
and analyzing the performance of Li-ion battery and the
battery fault in the operation of electric vehicle; Han et al.
[10] propose a novel health prediction model of Li-ion
battery based on sample entropy and establish the prediction
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Figure 1: Life-cycle of the E-bus battery.

model by calculating the sample entropy, using Arrhenius
formula and optimizing and fitting polynomial; Paul-Henri
and Vincent [11] propose a scheme of state of charge and
state of health estimation using a hybridization of Kalman
filtering, Recursive Least Squares approach, and Support
Vector Machines learning; and Dung et al. [12] propose a
state of health estimation system based on time-constant-
ratio measurement, which achieves the purpose of an
environmental-impedance-free and fast SOH estimation.

However, the previous modeling, estimation, and moni-
toring studies related to the EV batteries mainly concentrate
on the prediction of the SOC or SOH and seldom consider
the effects of the battery premaintenance, which is critical in
prolonging the life-cycle of the battery. And the geometric-
process-based (GP-based) method, with its practical advan-
tages in characterizing the whole operation process of the
components in a system [13], gains worldwide scholar’s atten-
tion in recent years, and many researches have been carried
out based on GP in different application domains. Tan et al.
[14] and Jia et al. [15] study an optimal maintenance strategy
for one component and present the optimal tradeoff model
of cost and availability. Lam [16] introduces a geometric
process 𝛿-shock maintenance model for a repairable system
and adopts a replacement policy forminimizing the long-run
average cost per unit time.Wang and Zhang [17–20] as well as
Zhang [21] propose a GP-based preventive repairment policy
to solve the efficiency for a deteriorating and valuable system
tominimize the average cost rate, andHan et al. [22] present a
generalized formulation for determining the optimal operat-
ing strategy and cost optimization for battery and formulate
the operating strategy as a nonlinear optimization problem.
Most of the studies based on GP denote a good applicability
in the related fields, but their assumption that the property of
the component, for example, the EV battery, after premainte-
nance is as good as new is not fully compatible with the E-bus
battery considering its chemical reactions within. Aiming at
improving the insufficient aspectsmentioned above, themain
research work of this paper is carried out as follows:

(1) A monotone process model of the E-bus battery is
proposed by applying GP theory.

(2) The process of the premaintenance is modelled on
condition that the battery, after premaintenance, can-
not be as good as new.

(3) The long-run average cost per unit time is optimized
on the premise of meeting the required availability
under the proposed E-bus battery management opti-
mizing policy.

The content of the paper is arranged as follows: in
Section 2, the mathematical model is proposed for the E-bus
battery life-cycle based on GP, and the necessary definitions
and the assumptions are given; in Section 3, E-bus battery
management optimizing policy is applied to estimate the
long-run average cost per unit time under the constraint
of the availability; in Section 4, the simulation results are
evaluated for the 220Ah Li-ion battery and the effectiveness
of the proposed E-bus batterymanagement optimizing policy
is verified; and the paper concludes in Section 5.

2. Mathematical Model

Themathematical model of the E-bus battery life-cycle based
on GP is firstly proposed. Assume that the E-bus battery is
new at the beginning, and the initial state of health (SOH) is
𝑅0. When a single operation is completed, the E-bus battery
will be premaintained. Then the maintenance policy (𝑀,𝑁)

is applied, where the amount of the premaintenance within
a single failure repairment is 𝑀 while the failure repairment
amount during the battery life-cycle is𝑁.

By the definition of GP, a complete life-cycle of an E-bus
battery is actually a time interval between the beginning of
the battery’s initiated utilization and the first replacement or
a time interval between two consecutive replacements, and
the life-cycle of the E-bus battery is illustrated in Figure 1. For
𝑛 = 1, 2, . . . , 𝑁 − 1, the time interval between the (𝑛 − 1)th
and the 𝑛th failure repairment in a cycle can be defined as the
𝑛th period of the E-bus battery life-cycle. Given the battery
operating time after the 𝑖th premaintenance in the 𝑛th period
{𝑋
𝑖

𝑛
, 𝑛 = 1, 2, . . . , 𝑖 = 1, 2, . . .}, the 𝑖th premaintenance time

in the 𝑛th period {𝑌
𝑖

𝑛
, 𝑛 = 1, 2, . . . , 𝑖 = 1, 2, . . .}, and the

failure repairment time in the 𝑛th period {𝑍
𝑛
, 𝑛 = 1, 2, . . .},
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let {𝑀
𝑛
, 𝑛 = 1, 2, . . .} be the amount of the premaintenance

in the 𝑛th period and 𝐻 the replacement time. Finally, the
replacement policy (𝑀,𝑁) is applied by which the battery
is replaced by a new one at the time when the SOH is less
than or equal to the threshold 𝑅 after the 𝑁th period. And
the depleted battery that has been replaced will be sold or
recycled for the secondary usage.

Considering the chemical property of the battery, the
battery’s SOH will deteriorate in the process of repeated
charging and discharging. The following definitions and
assumptions are given.

Definition 1. The depreciation rate of the battery after a
single operation is 𝑤1, the recovery rate after a single
premaintenance is 𝑤2, and the descent rate after the failure
repairment is𝑤3, where (1+𝑤2)(1−𝑤1) < 1 denotes that the
premaintenance process will improve the performance of the
battery by reducing but not eliminating the loss of the SOH
during the operating process.

Definition 2. The successive battery operating time {𝑋
𝑖

𝑛
, 𝑖 =

1, 2, . . .} after premaintenance in the 𝑛th period forms a GP
with ratio 𝑎 and 𝐸(𝑋

1
1) = 𝜆, and the premaintenance time

{𝑌
𝑖

𝑛
, 𝑖 = 1, 2, . . .} in the 𝑛th period forms a GP with ratio 𝑏

and 𝐸(𝑌
1
1 ) = 𝜇, while the consecutive failure repairment time

{𝑍
𝑛
, 𝑛 = 1, 2, . . .} constitutes a GP with ratio 𝑐 and 𝐸(𝑍1) = 𝜐.

Besides, the replacement time 𝐻 is a random variable with
𝐸(𝐻) = 𝜏.

Definition 3. The premaintenance cost rate is 𝑐
𝑚
, the failure

repairment cost rate is 𝑐
𝑓
, the benefit rate of the battery

operating is 𝑐
𝑏
, the replacement cost rate is 𝑐

𝑟
corresponding

to the replacement time 𝐻, the cost of the new battery is 𝑐
𝑁
,

and the depleted battery recycling benefit is 𝑐
𝑐
.

Assumption 4. The processes of {𝑋𝑖
𝑛
, 𝑖 = 1, 2, . . .}, {𝑌𝑖

𝑛
, 𝑖 =

1, 2, . . .}, and {𝑍
𝑛
, 𝑛 = 1, 2, . . .} are independent. Besides, 𝑋𝑖

𝑛
,

𝑖 = 1, 2, . . . ,𝑀 + 1, 𝑛 = 1, 2, . . . , 𝑁 and 𝑌
𝑖

𝑛
, 𝑖 = 1, 2, . . . ,𝑀,

𝑛 = 1, 2, . . . , 𝑁 are independent and identically distributed
(i.i.d.) random variables.

Assumption 5. Neither the premaintenance nor the repair-
ment can repair the battery to be as good as new.

Based on Definitions 1–3 and Assumptions 4-5, the stud-
ied policy is based on the GP model with premaintenance.
The battery after premaintenance is not as good as new and
the successive operating time in one period will form a GP.
Furthermore, the GP model is a deteriorating system for 𝑎 >

1, and it is an improving system for 𝑏 < 1 and 𝑐 < 1.

3. E-Bus Battery Management
Optimizing Policy

The optimization of the E-bus battery management policy
is to find the proper 𝑀 and 𝑁 that minimize the long-run
average cost per unit time on the premise of meeting the
required availability. In the defined mathematical model, the
related functions are deduced.

The successive operating time with the ratio 𝑎 can be
derived through the following function:

𝐸[

𝑀+1
∑

𝑖=1
𝑋
𝑖

1] =

𝑀+1
∑

𝑖=1

𝜆

𝑎𝑖
,

𝐸 [

𝑀+1
∑

𝑖=1
𝑋
𝑖

2] = 𝐴

𝑀+1
∑

𝑖=1

𝜆

𝑎𝑖
,

.

.

.

𝐸 [

𝑀+1
∑

𝑖=1
𝑋
𝑖

𝑁
] = 𝐴

𝑁−1
𝑀+1
∑

𝑖=1

𝜆

𝑎𝑖
,

(1)

where 𝐴 = 𝑎
−𝑀 and𝑀 is the amount of the premaintenance;

then

𝐸

𝑁

∑

𝑛=1

𝑀+1
∑

𝑖=1
𝑋
𝑖

𝑛
=

𝑁

∑

𝑛=1
(𝐸

𝑀+1
∑

𝑖=1
𝑋
𝑖

𝑛
) =

1 − 𝐴
𝑁

1 − 𝐴

𝑀+1
∑

𝑖=1

𝜆

𝑎𝑖
. (2)

And the successive premaintenance time with the ratio 𝑏

can be derived through the following function:

𝐸[

𝑀

∑

𝑖=1
𝑌
𝑖

1] =

𝑀

∑

𝑖=1

𝜇

𝑏𝑖−1
,

𝐸 [

𝑀

∑

𝑖=1
𝑌
𝑖

2] = 𝐵

𝑀

∑

𝑖=1

𝜇

𝑏𝑖−1
,

.

.

.

𝐸 [

𝑀

∑

𝑖=1
𝑌
𝑖

𝑁
] = 𝐵

𝑁−1
𝑀

∑

𝑖=1

𝜇

𝑏𝑖−1
,

𝐸

𝑁

∑

𝑛=1

𝑀

∑

𝑖=1
𝑌
𝑖

𝑛
=

𝑁

∑

𝑛=1
(𝐸

𝑀

∑

𝑖=1
𝑌
𝑖

𝑛
) =

1 − 𝐵
𝑁

1 − 𝐵

𝑀

∑

𝑖=1

𝜇

𝑏𝑖−1
,

(3)

where 𝐵 = 𝑏
1−𝑀.

The long-run average cost per unit time on the premise
of meeting the required availability is the major target for
optimizing the E-bus battery management. For the commer-
cial operation of the BCS, the availability of the E-bus is the
ratio of the battery operation time to its total life-cycle. In
the proposed policy, firstly, the long-run average cost per unit
time 𝐶(𝑀,𝑁) is defined in function (4). Consider

𝐶 (𝑀,𝑁) =
𝐶Sum
𝑇

, (4)

where 𝐶Sum and 𝑇 are given by function (5). Consider

𝐶Sum = 𝐸(𝑐
𝑚

𝑁

∑

𝑛=1

𝑀

∑

𝑖=1
𝑌
𝑖

𝑛
− 𝑐
𝑏

𝑁

∑

𝑛=1

𝑀+1
∑

𝑖=1
𝑋
𝑖

𝑛
+ 𝑐
𝑓

𝑁−1
∑

𝑛=1
𝑍
𝑛
+ 𝑐
𝑟
𝐻

+𝑐
𝑁
− 𝑐
𝑐
) ,

𝑇 = 𝐸(

𝑁

∑

𝑛=1

𝑀+1
∑

𝑖=1
𝑋
𝑖

𝑛
+

𝑁

∑

𝑛=1

𝑀

∑

𝑖=1
𝑌
𝑖

𝑛
+

𝑁−1
∑

𝑛=1
𝑍
𝑛
+𝐻) .

(5)
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Then,

𝐶 (𝑀,𝑁) =
𝐸 (𝑐
𝑚
∑
𝑁

𝑛=1 ∑
𝑀

𝑖=1 𝑌
𝑖

𝑛
− 𝑐
𝑏
∑
𝑁

𝑛=1 ∑
𝑀+1
𝑖=1 𝑋

𝑖

𝑛
+ 𝑐
𝑓
∑
𝑁−1
𝑛=1 𝑍

𝑛
+ 𝑐
𝑟
𝐻 + 𝑐
𝑁
− 𝑐
𝑐
)

𝐸 (∑
𝑁

𝑛=1 ∑
𝑀

𝑖=1 𝑌
𝑖

𝑛
+ ∑
𝑁

𝑛=1 ∑
𝑀+1
𝑖=1 𝑋𝑖

𝑛
+ ∑
𝑁−1
𝑛=1 𝑍

𝑛
+ 𝐻)

=
𝑐
𝑚
((1 − 𝐵

𝑁
) / (1 − 𝐵))∑

𝑀

𝑖=1 (𝜇/𝑏
𝑖−1

) − 𝑐
𝑏
((1 − 𝐴

𝑁
) / (1 − 𝐴))∑

𝑀+1
𝑖=1 (𝜆/𝑎

𝑖
) + 𝑐
𝑓
∑
𝑁−1
𝑛=1 (𝜐/𝑐

𝑛
) + 𝑐
𝑟
𝜏 + 𝑐
𝑁
− 𝑐
𝑐

((1 − 𝐵𝑁) / (1 − 𝐵))∑
𝑀

𝑖=1 (𝜇/𝑏
𝑖−1) + ((1 − 𝐴𝑁) / (1 − 𝐴))∑

𝑀+1
𝑖=1 (𝜆/𝑎𝑖) + ∑

𝑁−1
𝑛=1 (𝜐/𝑐𝑛) + 𝜏

.

(6)

According to the update process with the E-bus battery
management optimizing policy, the availability 𝐴(𝑀,𝑁), as

another key constraint in the battery life-cycle, is calculated
through function (7). Consider

𝐴 (𝑀,𝑁) =
𝑇Operation

𝑇
=

𝐸 (∑
𝑁

𝑛=1 ∑
𝑀+1
𝑖=1 𝑋

𝑖

𝑛
)

𝐸 (∑
𝑁

𝑛=1 ∑
𝑀

𝑖=1 𝑌
𝑖

𝑛
+ ∑
𝑁

𝑛=1 ∑
𝑀+1
𝑖=1 𝑋𝑖

𝑛
+ ∑
𝑁−1
𝑛=1 𝑍

𝑛
+ 𝐻)

=
((1 − 𝐴

𝑁
) / (1 − 𝐴))∑

𝑀+1
𝑖=1 (𝜆/𝑎

𝑖
)

((1 − 𝐵𝑁) / (1 − 𝐵))∑
𝑀

𝑖=1 (𝜇/𝑏
𝑖−1) + ((1 − 𝐴𝑁) / (1 − 𝐴))∑

𝑀+1
𝑖=1 (𝜆/𝑎𝑖) + ∑

𝑁−1
𝑛=1 (𝜐/𝑐𝑖) + 𝜏

.

(7)

Considering the deteriorating performance of the battery
in the case of repeated charging and discharging, it will be
replaced by a new one when its SOH drops to 𝑅, while
𝑅(𝑀,𝑁) is correlatedwith the depreciation rate of the battery
after single operating 𝑤1 and the recovery rate after the
premaintenance 𝑤2. Firstly, at the end of the 1st period,
𝑅(𝑀, 1) is reduced to

𝑅 (𝑀, 1) = (1−𝑤1)
𝑀+1

(1+𝑤2)
𝑀

(1−𝑤3) 𝑅0. (8)

Then, before the replacement, the SOH after 𝑁th repair-
ment 𝑅(𝑀,𝑁) is shown in function (9) and is subject to
𝑅(𝑀,𝑁) ≥ 𝑅. Consider

𝑅 (𝑀,𝑁) = 𝑅 (𝑀, 1)𝑁−1 (1−𝑤1)
𝑀+1

(1+𝑤2)
𝑀

= ((1−𝑤1)
𝑀+1

(1+𝑤2)
𝑀
)
𝑁

(1−𝑤3)
𝑁−1

= (1−𝑤1)
𝑁(𝑀+1)

(1+𝑤2)
𝑁𝑀

(1−𝑤3)
𝑁−1

.

(9)

To acquire the relationship between variable 𝑀 and 𝑁,
take the logarithm for both sides of the inequation below:

𝑁(𝑀+ 1) ln (1−𝑤1) +𝑁𝑀 ln (1+𝑤2)

+ (𝑁− 1) ln (1−𝑤3) ≥ ln𝑅,

𝑀𝑁(ln (1−𝑤1) (1+𝑤2)) +𝑁 ln (1−𝑤1) (1−𝑤3)

− ln (1−𝑤3) ≥ ln𝑅,

𝑀𝑁(ln (1−𝑤1) (1+𝑤2))

+𝑁 ln (1−𝑤1) (1−𝑤3) ≥ ln𝑅 (1−𝑤3) ;

(10)

then the relationship between variable𝑀 and𝑁 will be
𝑁

= ⌊
ln𝑅 (1 − 𝑤3)

𝑀 (ln (1 − 𝑤1) (1 + 𝑤2)) + ln (1 − 𝑤1) (1 − 𝑤3)
⌋ .

(11)

With the certain parameter 𝑅 being the SOH of the bat-
tery at the time replacement occurred, functions (6) and (7)
are the bivariate functions about𝑀 and𝑁. When𝑀 is fixed,
the bivariate functions turn into univariate functions, and the
management optimizing policy𝑁∗ is determined analytically
or numerically. However, if𝑀 is a variable to be determined,
the optimizing about 𝐶(𝑀

∗
, 𝑁
∗
) and 𝐴(𝑀

∗
, 𝑁
∗
) needs to

be set up based on the rationalized configuration of 𝑀∗and
𝑁
∗. Therefore, the objective function is to determine an

optimal management policy (𝑀
∗
, 𝑁
∗
) for minimizing the

long-run average cost per unit time 𝐶(𝑀,𝑁) and limiting
the availability 𝐴(𝑀,𝑁) in a certain range, which can be
expressed as

𝐶 (𝑀
∗
, 𝑁
∗
): min 𝐶 (𝑀,𝑁) = min(

𝐶Sum
𝑇

)

s.t. 𝐴 (𝑀
∗
, 𝑁
∗
) =

𝑇Operation

𝑇
≥ 𝐴0,

(12)

where 𝐴0 is the threshold of the availability that meets the
minimum demand of the E-bus.

4. Simulation Results

The computer simulation is adopted to verify the proposed
GP-based E-bus battery management optimizing policy.
Originally from the 220Ah Li-ion battery, the main parame-
ters of theGP [22] are listed in Table 1, and the key parameters
of the cost in the simulation are listed in Table 2.
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Table 1: Parameters setting of the GP.

Parameter 𝑎 𝑏 𝑐 𝜆 𝜇 𝜐 𝜏 𝑤1 𝑤2 𝑤3 𝑅0

Value 1.02 0.995 0.8 10 3.5 9 5 0.8% 0.7% 1.5% 1

Table 2: Parameters setting of the cost.

Parameter 𝑐
𝑏

𝑐
𝑚

𝑐
𝑓

𝑐
𝑟

𝑐
𝑐

𝑐
𝑁

Value 10 12 25 40 500 2000
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Figure 2: The amount of the failure repairment𝑁 with different𝑀
and 𝑅.

In order to discover the relationship between 𝑀 and 𝑁

with different SOH thresholds, 𝑅, which empirically ranges
from 0.2 to 0.6, and its corresponding simulation are firstly
carried out and the results are illustrated in Figure 2.

Considering the long-run average cost per unit time
𝐶(𝑀,𝑁) according to the battery management optimizing
policy (𝑀,𝑁), the amounts of premaintenance and failure
repairment as well as their correspondence relations are
gained from the above simulation. Assume the SOH replace-
ment threshold of the battery is 0.4; that is, 𝑅 = 0.4;
then the average costs per unit time corresponding to the
different amounts of premaintenance and failure repairment
are shown in Figure 3.

Due to the fact that the failure repairment cost is much
more than the cost of the premaintenance, the higher average
cost per unit time appears at the point of the lower value of
𝑀 but higher value of𝑁. And the lower average cost per unit
time appears mostly at the point of higher value of 𝑀 but
lower value of 𝑁. Meanwhile, for the decline of the battery’s
SOH is presented in the process of repeated charging and
discharging, the operating time of themodel is a deteriorating
systemwhile the premaintenance time and failure repairment
time are improving systems. The average cost per unit time
declines at first and then increases gradually. So the lowest
average cost per unit time exists and the lowest value is at the
point where (𝑀∗, 𝑁∗) = (14, 4), as is shown in Table 3.

The optimal value of the average cost per unit time is
further calculated as in Table 3. The following simulation is
to verify if the availability corresponding to the selected point
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Figure 3: The average costs per unit time corresponding to the
different𝑀 and𝑁 with 𝑅 = 0.4.
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Figure 4: The availabilities with different𝑀 and𝑁.

(𝑀
∗
, 𝑁
∗
) = (14, 4) meets the proposed threshold 𝐴0, which

is set to be 0.5 according to the empirical statistics. Under the
same conditions of the previous simulations, the availabilities
in the different values of𝑀 and𝑁 are shown in Figure 4.

As is indicated in Figure 4, in the deteriorating system of
the operating time, the availability declines with the increas-
ing of the failure repairment times in a certain amount of
premaintenance, which fits the entire trend of the availability
and displays a strong consistency as is shown in Figure 4.The
exact values corresponding to Table 3 are shown in Table 4,
where the optimized value that meets the 0.5 availability
threshold is 𝐴(14, 4) = 0.567.

5. Conclusions

Oriented towards the batteries’ deteriorating characteristics
after times of repairment and the demand of the BSS
profit maximization while ensuring its battery availability,
this paper proposes a GP-based E-bus battery management
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Table 3: Average cost per unit time when 𝑅 = 0.4.

𝑀
𝑁

36 23 19 16 12 9 6 5 4 3
2 24.806 22.592 20.357 17.928 14.061 11.418 10.098 10.323 11.243 14.532
6 24.697 21.454 18.379 15.241 10.572 7.403 5.155 4.767 4.709 6.250
10 24.490 20.560 17.420 14.430 10.075 6.961 4.374 3.734 3.303 4.253
14 24.079 19.474 16.556 13.976 10.230 7.335 4.561 3.744 3.058∗ 3.635
16 23.752 18.860 16.126 13.786 10.372 7.618 4.797 3.908 3.118 3.545
24 21.125 16.270 14.540 13.135 10.930 8.799 6.025 4.956 3.857 3.818
28 18.976 15.124 13.903 12.879 11.150 9.309 6.655 5.548 4.352 4.141
32 16.704 14.192 13.392 12.671 11.327 9.746 7.246 6.129 4.866 4.516
36 14.819 13.489 13.000 12.506 11.468 10.116 7.786 6.678 5.377 4.918
44 12.802 12.644 12.497 12.280 11.669 10.687 8.704 7.657 6.342 5.742
∗The lowest average cost per unit time.

Table 4: Battery availability when 𝑅 = 0.4.

𝑀
𝑁

36 23 19 16 12 9 6 5 4 3
2 0.005 0.067 0.131 0.205 0.330 0.432 0.529 0.559 0.588 0.518
6 0.005 0.074 0.148 0.229 0.361 0.463 0.558 0.587 0.616 0.544
10 0.005 0.067 0.132 0.202 0.322 0.424 0.528 0.563 0.597 0.531
14 0.004 0.058 0.109 0.167 0.271 0.370 0.485 0.525 0.567∗ 0.509
16 0.004 0.052 0.098 0.150 0.246 0.343 0.462 0.505 0.550 0.496
24 0.003 0.032 0.059 0.092 0.162 0.246 0.371 0.423 0.480 0.442
28 0.003 0.023 0.044 0.070 0.130 0.207 0.330 0.384 0.446 0.414
32 0.002 0.016 0.032 0.053 0.104 0.174 0.293 0.348 0.413 0.387
36 0.001 0.011 0.023 0.039 0.083 0.145 0.259 0.315 0.381 0.360
44 0.000 0.005 0.011 0.022 0.052 0.102 0.202 0.256 0.324 0.309
∗The availability corresponding to the lowest average cost per unit time.

optimizing policy on condition that the battery, after pre-
maintenance and failure repairment, cannot be as good as
new. In addition, a deteriorating system is modeled for
the operating time and an improving system is modeled
for the premaintenance time as well as failure repairment
time. The application of the GP to the battery management
optimization reveals a good consistency and well reflects the
operation demand of BSS.Moreover, the simulation is carried
out for the analysis of the relationship between the amounts
of premaintenance and failure repairment with different SOH
thresholds when replacing the battery.Then the optimization
of the long-run average cost is taken by importing those
values. Finally, the simulation with the required availability
threshold is carried out to verify its effectiveness. The results
denote that the proposedmanagement optimizing policy will
prolong the life-cycle of the batteries and reduce the long-run
average cost on the premise of the high availability, which is of
much applicability on the batteries’ optimizing management.
And the future work is to apply the proposed GP-based E-
bus batterymanagement optimizing policy to the BSS and the
microgrid to study the total cost aiming at the massive access
of the E-buses and the EVs.

Nomenclature

E-bus: Electric bus
GP-based: Geometric-process-based
SOC: State of charge
SOH: State of health
𝑐
𝑚
: Premaintenance cost rate

𝑐
𝑓
: Failure repairment cost rate

𝑐
𝑟
: Replacement cost rate

𝑐
𝑏
: Benefit rate

𝑐
𝑁
: New battery cost

𝑐
𝑐
: Depleted battery recycling benefit

𝑤1: Depreciation rate of the battery
after a single operation

𝑤2: Recovery rate after a single
premaintenance

𝑤3: Descent rate after the failure
repairment

𝐴(𝑀,𝑁): Battery availability
𝐴0: Threshold of the battery

availability
𝐶(𝑀,𝑁): Long-run average cost per unit

time



Mathematical Problems in Engineering 7

𝐻: Replacement time
𝑀: Amount of the premain-

tenance before one failure
repairment

𝑁: Failure repairment amount
during the battery life-cycle

𝑅0: Initial value of SOH
𝑅: Threshold of SOH
𝑇: Life-cycle of the E-bus

battery
{𝑋
𝑖

𝑛
, 𝑛 = 1, 2, . . . , 𝑖 = 1, 2, . . .}: Battery operating time after

the 𝑖th premaintenance in
the 𝑛th period

{𝑌
𝑖

𝑛
, 𝑛 = 1, 2, . . . , 𝑖 = 1, 2, . . .}: The 𝑖th premaintenance

time in the 𝑛th period
{𝑍
𝑛
, 𝑛 = 1, 2, . . .}: Failure repairment time in

the 𝑛th period.
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This paper presents a newmodel predictive control system for connected hybrid electric vehicles to improve fuel economy.The new
features of this study are as follows. First, the battery charge and discharge profile and the driving velocity profile are simultaneously
optimized. One is energymanagement forHEV for𝑃batt; the other is for the energy consumptionminimizing problem of acc control
of two vehicles. Second, a system for connected hybrid electric vehicles has been developed considering varying drag coefficients
and the road gradients.Third, the fuel model of a typical hybrid electric vehicle is developed using the maps of the engine efficiency
characteristics. Fourth, simulations and analysis (under different parameters, i.e., road conditions, vehicle state of charge, etc.)
are conducted to verify the effectiveness of the method to achieve higher fuel efficiency. The model predictive control problem
is solved using numerical computation method: continuation and generalized minimum residual method. Computer simulation
results reveal improvements in fuel economy using the proposed control method.

1. Introduction

In recent years, the energy and environmental problems are
emphasized. In particular, energy consumption of vehicles
accounts for a substantial amount in the transportation
sector. There are various approaches to reduce the fuel
consumption of vehicles [1–5]. High efficient vehicles are
being developed to increase fuel economy using lightweight
automobiles, efficient power train systems, electric vehi-
cles, and hybrid vehicles [1]. On the other hand, the so-
called ecodriving can also reduce the fuel consumption [5–
9]. Ecodriving can be characterized as avoiding aggressive
acceleration or braking at any road-traffic situations, cruising
at steady speed, decelerating smoothly at stops with little or
no braking, and maintaining an optimal distance from the
preceding vehicle. An ecological control of a single vehicle on
a road with up-down shapes [2] and efficient spacing control
of multiple vehicles [10] were presented.

A lot of works have been published on the energy man-
agement problem of hybrid electric vehicle (HEV) and plug-
in hybrid electric vehicle (PHEV) systems. These approaches

are typical in a family of optimal control techniques. They
can be subdivided into four categories: numerical opti-
mization, analytical optimal control theories, instantaneous
optimization, and heuristic control techniques [11]. The
most representative of numerical optimization is dynamic
programming (DP) [11, 12]. However DP is based on fixed
speed patterns which are impossible to get in reality. A
kind of analytical optimal control techniques is Pontryagin’s
minimum principle [13]. It gives necessary conditions that
the optimal solution must satisfy. It also needs to know the
entire driving cycle in advance. The convex optimization
method [14] is also a kind of analytical optimal control
techniques. The global optimality is guaranteed and the
optimal solution can be rapidly and efficiently attained by
solvers available. The instantaneous optimization includes
the equivalent consumption minimization strategy (ECMS)
[2, 15]. It is based on instantaneous optimization and is easy
to implement in real-time. However it cannot guarantee the
optimality over the whole driving cycle. Heuristic control
techniques like rule-based control strategies [2] are robust,
but they are impossible to guarantee the optimality.

Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2015, Article ID 318025, 15 pages
http://dx.doi.org/10.1155/2015/318025

http://dx.doi.org/10.1155/2015/318025


2 Mathematical Problems in Engineering

To obtain even more fuel economy improvements, con-
nected hybrid electric vehicles can be considered to reduce
the air resistance. The air resistance of a vehicle is propor-
tional to the square of the vehicle speed. When a vehicle runs
at 100 km/h, its aerodynamic drag reaches more than sixty
percent of totalmotion resistance forces [16]. It is obvious that
its air resistance causes high fuel consumption. However, the
air resistance can be reduced by maintaining a short spacing
between two vehicles. Connected vehicles in an automated
highway system can lead to increased driver safety, decreased
road congestion, and improved fuel economy [17]. Connected
vehicles can improve fuel economy through reduced wind
resistance [18–20].

A low pressure area distributes in the rear of the lead
vehicle. The size of the area can be different by changing
the spacing between the vehicles. If the following vehicle
runs at the back of the lead vehicle with a short spacing, its
air resistance is decreased owing to improved airflow profile
between the vehicles. Furthermore, the air resistance of the
lead vehicle is also decreased by the smooth airflow [20].
Therefore, fuel consumption of both vehicles can be reduced.
However, it is difficult to follow the lead vehicle with a short
spacing at high speed by a human driver. Automated cruise
control of the vehicle should be introduced to achieve this.
Various conventional longitudinal control systems have been
proposed such as vehicle following method using informa-
tion of other vehicles [10] and point following method using
a certain decided phase point [21]. A control law for internal
combustion engine vehicles is proposed which uses relative
speed and spacing information from the preceding and fol-
lowing vehicles in order to choose the proper control action
for smooth vehicle following and for maintaining a desired
intervehicle spacing specified by the driver [22]. Connected
automatic guided electric vehicles to solve problems of traffic
saturation, relying on GPS sensors and intervehicle commu-
nication, are addressed in [23]. However, these conventional
methods consider string stability only.The quantitative effect
of road shape and air resistance on fuel consumption for
hybrid electric vehicles (HEVs) has not been researched.

For connected hybrid electric vehicles, it is necessary
to compute the optimum control inputs of the vehicles
by anticipating the future situations including road shape,
vehicles’ states, and road loads. Therefore, model predictive
control (MPC) method can be used.

This paper extends HEV energy management research by
adding two novel contributions. First, the battery charge and
discharge profile and the driving velocity profile are simul-
taneously optimized. We make the two connected problems
together: one is energy management for HEV for the battery;
the other is for the energy consumption minimizing problem
of speed control of two vehicles. In reality, the two connected
problems are coupled together and affect each other always.
The speed of the vehicle affects the charge and discharge
profile of the battery. The charge and discharge profile of
the battery affects the speed of the vehicle. Second, a new
policy between the global optimization method and the
instantaneous optimization method is developed. The global
optimization method like dynamic programming needs all
the information in the future to compute the global optimal

control input. The instantaneous optimization method needs
no information in the future to compute the control input.
The easiest way to deal with the complicated control system
is to divide the longitudinal vehicle control system into an
upper and lower level controller. The upper level controller
determines the desired acceleration of the vehicle on the
basis of the position and velocity relative to the other vehicles
in the string. The lower level controller determines the
input commands to the engine and the braking system, to
accomplish the desired acceleration. Also, there is possible to
consider road slope, wind, and so forth as a disturbance for
the problem. However, in this work we intended to optimize
the fuel economy and the speed profile for high fuel efficiency
and safety simultaneously. In the HEV operation it is desir-
able to charge or discharge the battery properly according
to the road loads. There is a problem between the fast
dynamics components like the engine and the slow dynamics
components like the battery. The prediction horizon of the
battery state is limited. We developed a new policy to predict
the battery state in a longer future for better performance.
The desired battery state of charge is designed according to
the road slopes for better recuperation of free braking energy.
The battery state of charge profile is scheduled systematically
to improve fuel economy inside the HEV considering the
effect of different parameters, that is, road conditions, battery
state of charge, and real-time implementation ability. The
quantitative analysis of the vehicle spacing influence and the
battery state of charge profile influence for the fuel economy
is presented. Performance of the proposed system has been
evaluated by computer simulation. The proposed system is
found to be more fuel efficient and safer for running over
several typical roads with up-down slopes.

The rest of this paper is organized as follows. In Section 2,
the nonlinear model of two connected power-split HEVs is
derived. Section 3 formulates the nonlinear model predictive
control algorithm. Section 4 presents comparative simulation
results. Section 5 provides conclusions.

2. Modeling of Two Connected HEVs

The configuration of the HEV system is shown in Figure 1.
FD represents the final drive. The power-split device (PSD)
is the key component of the power-split HEV system and has
both functionality of speed coupler and continuously variable
transmission (CVT).There are five dynamic components: the
engine, the battery, two motor/generators (𝑀/𝐺), and the
wheels in this power-split HEV system. The only dynamic
state to be considered in the optimal control problem based
on known driving cycle is the battery state of charge (SOC)
which can simplify the MPC algorithm for implementation.
This simplification is possible because this paper introduces
four constraints: the road load, the torque and speed relation-
ship of the speed coupler, the power flow relationship among
the five components, and the engine optimal operating line
(OOL) using CVT. In this work, we assume that the engine
works along its OOL using CVT. For simplicity, we assume
the two vehicle configurations are the same. It is assumed that
the central controller set in the lead vehicle controls the two
vehicles. The central controller computes the control inputs
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Figure 1: Configuration of the power-split HEV system. Diagram adapted from [12].

of the two vehicles. The control inputs of the two vehicles
are fed into the two vehicles, respectively. The states of the
two vehicles are measured and sent to the central controller.
In this way a closed control loop is formed. Here, we call it
central control system of connected vehicles. In a distributed
control system of connected vehicles [18–20], the individual
vehicles are controlled separately by its own controller. It
cannot predict other vehicles precisely. In a central control
system of connected vehicles, all the information of the
vehicles is shared, and the global optimality of all the vehicles
can be obtained. The distance between the two vehicles
changes (which affect the air drag coefficient) and the slope
changes; therefore the stability of this controller is very
important. However, the control scheme proposed in this
work is brandnew; the stability of this controller is completely
different from that of the distributed control system of
connected vehicles. Hence, we would like to add the stability
problem as our future directions because of its complexity.
The control signals are transmitted to the vehicles through
intervehicle communication. It is assumed that there is no
delay of the communication.The proposedmethodology will
work independently of other kinds of vehicles on the roadway
in the network if the vehicle has the functionality of CVT.This
paper divided the optimal control problem into two levels.
The high-level controller determines the optimal battery
power and the low-level controller determines the optimal
torque and speed of the engine and the motor/generators.
This paper focuses on the high-level controller.

The torque and speed relationship of the speed coupler
can be expressed as [24]

𝜏eng (𝑡) = − (1+
𝑅

𝑆
) 𝜏
𝑀/𝐺1 (𝑡) ,

𝜏eng (𝑡) = − (1+
𝑆

𝑅
)(𝜏
𝑀/𝐺2 (𝑡) −

𝜏req (𝑡)

𝑔
𝑓

) ,

𝑆𝜔
𝑀/𝐺1 (𝑡) + 𝑅𝜔𝑀/𝐺2 (𝑡) − (𝑆 +𝑅) 𝜔eng (𝑡) = 0,

(1)

where 𝑆 and 𝑅 are the number of sun gear and ring gear
teeth, respectively, 𝜏

𝑀/𝐺1, 𝜏𝑀/𝐺2, 𝜏req, and 𝜏eng are the torques

of𝑀/𝐺1,𝑀/𝐺2, the road load, and the engine, respectively,
and 𝜔

𝑀/𝐺1, 𝜔𝑀/𝐺2, and 𝜔eng are the angular speeds of𝑀/𝐺1,
𝑀/𝐺2, and the engine, respectively.

The power flow relationships among the five components
at the inverter and the power-split device in Figure 1 are given
as

𝑃batt (𝑡) = 𝑃𝑀/𝐺1 (𝑡) + 𝑃𝑀/𝐺2 (𝑡) ,

𝑃req (𝑡) = 𝑃𝑀/𝐺1 (𝑡) + 𝑃𝑀/𝐺2 (𝑡) + 𝑃eng (𝑡) ,
(2)

where 𝑃batt, 𝑃𝑀/𝐺1, 𝑃𝑀/𝐺2, 𝑃eng, and 𝑃req are the power of the
battery,𝑀/𝐺1,𝑀/𝐺2, the engine, and the road load.

This paper assumes that the engine always works along its
OOLusingCVTwhich can also be considered as a constraint.
When the engine power is known, by looking up the table of
OOL, the engine speed and torque can be obtained.

This paper evaluates the fuel consumption using Willans
line method to reduce the complexity of the engine fuel
consumption model. It was found that good approximations
are obtained using the Willans line method [25]. The fuel
consumption can be expressed as

�̇�
𝑓 (𝑡) = �̇�𝑓 (𝑃req (𝑡) − 𝑃batt (𝑡))

≈ 𝑐
𝑓
(𝑃req (𝑡) − 𝑃batt (𝑡)) ,

(3)

where 𝑐
𝑓
is a constant. The detailed explanation of this fuel

consumption model is included in Appendix A.
The road loads which are the vehicle speed and the

required power at the wheels are known when the driving
cycle is known. From the configuration of the power-split
HEV system,𝑀/𝐺2 speed is also known as

𝜔
𝑀/𝐺2 (𝑡) =

𝑔
𝑓

𝑟
𝑤

Vreq (𝑡) , (4)

where 𝜔
𝑀/𝐺2 is the speed of𝑀/𝐺2, 𝑔

𝑓
is the final drive gear

ratio, 𝑟
𝑤
is the wheel radius, and Vreq is the required vehicle

speed by the driving cycle.
For simplicity, it is assumed that there are two cars in this

central control system. When the driving cycle is unknown,
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the system dynamics includes the battery and the vehicle
dynamics. Both the fuel economy and the driving profile are
optimized. The system model is then represented by

�̇�

=

[
[
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[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
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−
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2
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,

(5)

𝑥 = [𝑝𝑝 V
𝑝
𝑧
𝑝
𝑥SOC𝑝 𝑧

ℎ
V
ℎ
𝑤
ℎ
𝑥SOCℎ]

𝑇

,

𝑢 = [𝑢𝑝 𝑃batt𝑝 𝑢
ℎ
𝑃battℎ]

𝑇

,

(6)

where 𝑝, V, and 𝑧 are the vehicle position, speed, and
acceleration or deceleration converted from the traction force
or brake force.The parameters 𝜌,𝐶

𝐷
,𝐴,𝑚, 𝑔, 𝜇, and 𝜃(𝑝) are

the air density, the air drag coefficient, the frontal area of the
vehicle, the vehicle mass, the gravity acceleration, the rolling
resistance coefficient, and the road grade. 𝑢

𝑝
, 𝑢
ℎ
, and 𝑘

𝑝
are

the vehicle acceleration or deceleration control inputs and
the delay constant. 𝑉OC, 𝑅batt, and 𝑄batt are the open-circuit
voltage, the internal resistance, and the capacity of the battery.
The suffixes 𝑝 and ℎ denote the parameters of the preceding
vehicle and the host vehicle.

The slope information from GPS or the digital map
is approximated by the sigmoid functions. This modeling
method of road slope is firstly proposed in this work.
A description of the modeling method is provided in
Appendix B.

3. Model Predictive Control

Thedriving control inputs are derived usingmodel predictive
control algorithm.The optimal control problem is defined as

Min. 𝐽 = ∫

𝑡+𝑇

𝑡

𝐿 (𝑥 (𝜏 | 𝑡) , 𝑢 (𝜏 | 𝑡)) 𝑑𝜏 (7)

subject to SOC
𝑝min ≤ 𝑥SOC𝑝 (𝜏 | 𝑡) ≤ SOC

𝑝max

𝑃batt𝑝min ≤ 𝑃batt𝑝 (𝜏 | 𝑡) ≤ 𝑃batt𝑝max

𝑢
𝑝min ≤ 𝑢𝑝 (𝜏 | 𝑡) ≤ 𝑢𝑝max

SOC
ℎmin ≤ 𝑥SOCℎ (𝜏 | 𝑡) ≤ SOC

ℎmax

𝑃battℎmin ≤ 𝑃battℎ (𝜏 | 𝑡) ≤ 𝑃battℎmax

𝑢
ℎmin ≤ 𝑢ℎ (𝜏 | 𝑡) ≤ 𝑢ℎmax,

(8)

where 𝑇 is the prediction horizon and min and max denote the
minimum and maximum bounds of the parameters.

The following objectives are considered in this optimal
control problem.

The term 𝐿
𝑥
: acceleration or deceleration of vehicles is

moderated.
The term 𝐿

𝑦
: the vehicle speed is kept near to its desired

value.
The term 𝐿

𝑧
: the fuel consumption is minimized.

The term 𝐿
𝑑
: the battery SOC is kept near to its desired

value. This is one of the cores of the proposed approach. This
paper adapts the battery energy to the vehicle future energy
requirements by setting the desired battery SOC as a function
of road slopes which represent the main part of the future
road load.

The term 𝐿
𝑒
: the battery energy ismade best use of.This is

one of the cores of the proposed approach.The battery energy
is firstly used to satisfy the required road load. If it is not
enough, the engine energy should be used, and the engine
can work along its OOL.

The term 𝐿
𝑓
: the battery SOC constraint is kept satisfied.

The term 𝐿
𝑔
: the desired vehicle spacing is kept. This is

one of the cores of the proposed approach. The following
distance constraint is kept in a predictive controller structure.
The following distance is varied above the minimum follow-
ing distance, which improves the freedom of ecodriving car
following control to optimize the driving profile for better fuel
economy.

The cost function 𝐿 is defined as follows:

𝐿 = 𝑤
𝑥
𝐿
𝑥
+𝑤
𝑦
𝐿
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𝑑
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𝑑
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𝑓
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2
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+

𝑐
𝑓ℎ
(𝑚
ℎ
𝑧
ℎ
V
ℎ
− 𝑃battℎ)

(1 + 𝑒(−𝛽(𝑚ℎ𝑧ℎVℎ−𝑃battℎ)))
,

𝐿
𝑑
= (𝑥SOC𝑝 − SOC

𝑑
(𝑝
𝑝
))

2

+ (𝑥SOCℎ − SOC
𝑑
(𝑝
ℎ
))

2
,

𝐿
𝑒
= (𝑚
𝑝
𝑤
𝑝
V
𝑝
−𝑃batt𝑝)

2
+ (𝑚
ℎ
𝑤
ℎ
V
ℎ
−𝑃battℎ)

2
,
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𝐿
𝑓
= − ln (𝑥SOC𝑝 − SOC

𝑝min)

− ln (SOC
𝑝max −𝑥SOC𝑝)

− ln (𝑥SOCℎ − SOC
ℎmin)

− ln (SOC
ℎmax −𝑥SOCℎ) ,

𝐿
𝑔
=
1
2
(𝑑 − 𝑑

𝑑
)
2
,

𝑑 = 𝑝
𝑝
−𝑝
ℎ
− 𝑙
𝑝
,

(9)

where𝑤
𝑥
,𝑤
𝑦
,𝑤
𝑧
,𝑤
𝑑
,𝑤
𝑒
,𝑤
𝑓
, and𝑤

𝑔
are the weights and V

𝑑
is

the desired vehicle speed.The parameters 𝑑, 𝑑
𝑑
, and 𝑙

𝑝
are the

vehicle spacing, the desired vehicle spacing, and the length
of the preceding vehicle. The parameter SOC

𝑑
is the desired

SOC value. The sigmoid function is chosen to evaluate the
vehicle brake fuel consumption. The log barrier function is
used as a penalizing term for violations of state constraints.

The structure of the nonlinear model predictive control
system is shown in Figure 2. The system inputs contain the
control inputs. The system outputs consist of the vehicle
states.Thepredictive controller uses terrain information from
a digital map to calculate SOC

𝑑
(𝑝) and 𝜃(𝑝).

At each time 𝑡, the optimal control input is computed
by solving the above optimal control problems during the
prediction horizon 𝑇. Only the first element of the optimal
control sequence is applied. At the next time step, the predic-
tion horizon moves forward, and the process is repeated.

4. Computer Simulations

4.1. Comparison Controllers. There are two simulations in
this work. They are the MPC approaches with fixed desired
battery SOC and variable desired battery SOC. The aim is
to demonstrate how the desired battery SOC affects the fuel
economy, the power-split profile, and the drag coefficients.

The desired battery SOC value is set according to the road
elevation.The authors think it is reasonable to utilize the road
elevation information since this future road load information
is known already. The desired battery SOC is assumed to use
the function as

SOC
𝑑
(𝑝)

= 𝑘SOC (
𝑠1

1 + 𝑒(𝑠3(𝑝−𝑠2))
+

𝑠4
1 + 𝑒(𝑠6(𝑝−𝑠5))

+ ⋅ ⋅ ⋅)

+ SOC
𝑘
,

(10)

where 𝑘SOC and SOC
𝑘
are constant parameters set as 𝑘SOC =

−2 and SOC
𝑘
= 0.7, respectively.

4.2. Simulation Conditions. In these simulations, the param-
eters of both HEVs are used from ADVISOR 2002 Toyota
Prius data (see Table 1). Seven tuning weights are used in this
cost function; this makes the performance very subjective
to choice of these weights. The goal is to minimize total
fuel used, so the real cost function should be integral of

HEV
Vehicle states

Real-time
optimal 

controller

Control inputs

Desired vehicle speed

Preceding vehicle position and speed

Vehicle 
position

Digital 
map

Slope

Desired
battery

SOC 
generator

Desired 
battery 

SOC

Figure 2: Structure of the model predictive control system.

Table 1: Simulation parameters.

Parameters Values
𝑚 1504
𝑐
𝑓

0.0874
𝑔 9.8 [m/s2]
𝑉OC 307.9 [V]
𝑄batt 6 [Ah]
𝑔
𝑓

3.93
𝑙
𝑝

4.31 [m]
ℎ
𝑡

0.1 [s]
SOCmin 0.6
𝑤
𝑥

100000
𝑤
𝑧

20
𝑤
𝑒

100
𝑤
𝑔

3000
𝜌 1.23 [kg/m3]
𝐴 1.746 [m2]
𝜇 0.015
𝑅batt 1.0 [Ω]
𝑟
𝑤

0.287 [m]
𝑘
𝑝

10
𝑑
𝑑

1 [m]
SOC
𝑑

0.7
SOCmax 0.8
𝑤
𝑦

2000
𝑤
𝑑

67000000
𝑤
𝑓

200000

fuel rate plus an equivalent fuel cost at the end of the MPC
horizon. Any other choice makes the cost function very
subjective and the optimal controller will not minimize fuel
use. Tuning of the weight parameters is an important issue
for attaining fuel efficient and safe behavior in the complex
system. Weight parameters are tuned manually by observing
the fuel economy and driving performance. 𝑤

𝑥
is tuned for

minimal fuel consumption by dynamic acceleration of the
vehicle. 𝑤

𝑧
is tuned for minimal fuel consumption by static

maps of the engine which cannot evaluate the dynamic fuel
consumption of the engine. 𝑤

𝑦
and 𝑤

𝑔
are tuned for safety

of driving to avoid real-ends collision. 𝑤
𝑑
and 𝑤

𝑒
are tuned
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Measure the host vehicle states, the preceding

Solve optimal control problem (7) with vehicle model (5) 

for a prediction horizon T, from

Implement the first element of the optimal control 
sequence as the current vehicle optimal control

vehicle states, and calculate SOCd(p) and 𝜃(p) from

GPS at time t = nh

𝜏 = nh to 𝜏 = nh + , and derive the optimal control sequenceT

n = n + 1

input: uopt
nh

(t) = u
opt
nh

(nh), nh ≤ t < (n + 1)h

{uopt
nh

(𝜏)}
𝜏=nh+T

𝜏=nh

Figure 3: Flowchart of the nonlinear real-time optimal control
algorithm.

for minimizing the equivalent fuel cost. 𝑤
𝑓
does not need

to be tuned ordinarily. The reason is that it is for the state
constraint. In reality, it is a physical constraint which cannot
be violated.

The model predictive control problem is solved using
the numerical computation method: the continuation and
generalized minimum residual (C/GMRES) method [26].
The C/GMRES method uses forward difference approach
and discretizes the HEV plant with a sampling interval
ℎ
𝑡
to implement the nonlinear real-time optimal control

algorithm. A brief description of the solution of the model
predictive control problem using the C/GMRES method is
included in Appendix C. The flowchart of the nonlinear
model predictive control algorithm implementation is shown
in Figure 3. Since the optimization problem is nonlinear
and nonconvex, its solution can be local optimal; it is
assumed that it can only be solved numerically. A detailed
mathematical analysis of robust stability and performance for
the proposedmethod can be found in [26].The fuel economy
is calculated using the engine fuel consumptionmap which is
obtained from ADVISOR 2002.

The MPC algorithm is realized by utilizing the C MEX
S-function builder in MATLAB/Simulink. First, the optimal
battery power is calculated by the high-level controller. Next,
this optimal value is fed into the low-level controller where
the optimal torque and speed of the engine and 𝑀/𝐺s are
determined. Finally, these actual control input signals are
applied to the vehicle. The fuel economy is calculated using
the quasi-static map of ADVISOR. The backward simulation
approach has been employed in this work, as ADVISOR
software based on quasi-static maps of power train elements
is utilized. However, (3) presents a different formula for fuel
consumption estimation which is not consistent with the way

Table 2: Comparison of the energy used bymotion resistance forces.

𝑐
11

4.498 × 10
−8

𝑐
12

−1.475 × 10
−6

𝑐
13

1.139 × 10
−5

𝑐
14

9.373 × 10
−5

𝑐
15

−0.002

𝑐
16

0.003
𝑐
17

0.035
𝑐
18

0.205
𝑐
21

1.326 × 10
−7

𝑐
22

−6.593 × 10
−6

𝑐
23

0.0001
𝑐
24

−0.0014

𝑐
25

0.0080
𝑐
26

−0.026

𝑐
27

0.046
𝑐
28

0.244

ADVISOR calculates the fuel consumption.The reason is that
(3) is for the control input calculation of the model predictive
control which needs to be continuous and have derivative,
and quasi-static maps of power train elements are used for
the output evaluation.

The parameters predicted are the road slope based on the
GPSdata and the traffic conditions.They are not embedded in
ADVISOR, as in this software the slope is assumed to be zero.
Quasi-static maps of power train elements in ADVISOR are
used only for the output evaluation.The traffic conditions and
their impact on the fuel consumption are predicted using the
connected vehicle model to achieve optimal vehicle spacing
for reducing air drag.

A set of data representing the relationship of the aero-
dynamic drag coefficient and the spacing obtained from
a wind tunnel experiment [20] is adopted. By using the
seventh-degree polynomial representation, the aerodynamic
drag coefficient 𝐶

𝑖
can be represented as

𝐶
𝑖 (𝑑 (𝑡)) = 𝑐𝑖1𝑑

7
(𝑡) + 𝑐𝑖2𝑑

6
(𝑡) + 𝑐𝑖3𝑑

5
(𝑡) + 𝑐𝑖4𝑑

4
(𝑡)

+ 𝑐
𝑖5𝑑

3
(𝑡) + 𝑐𝑖6𝑑

2
(𝑡) + 𝑐𝑖7𝑑 (𝑡) + 𝑐𝑖8,

(11)

where parameters 𝑐
𝑖1–𝑐𝑖8 are shown in Table 2. The approxi-

mation results of 𝐶
𝑖
are shown in Figure 4.

4.3. Simulation Results. The driving profile of the HEV using
the MPC algorithm with fixed desired battery SOC and
unfixed desired battery SOC (see Figures 5 and 6) shows
that the MPC algorithm can use the road slope information
well to reduce the fuel consumption. The rows of Figures
5 and 6 from the top are the slope of the road, the speed
of the preceding vehicle and the host vehicle, the battery
SOC of the preceding vehicle and the host vehicle, and the
vehicle distance between the preceding vehicle and the host
vehicle. The MPC algorithm simultaneously controls both
vehicles by predicting their states, and fast convergence
of their spacing is achieved. The vehicle accelerates before
the up slope to make use of the kinetic energy. The battery
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Table 3: Fuel economy comparison results.

Method Preceding vehicle
mileage (km/L)

Host vehicle
mileage (km/L)

Total
mileage (km/L)

MPC with unfixed SOC 31.9 (+2.9%) 20.4 (+3.0%) 12.4 (+2.5%)
MPC with fixed SOC 31.0 19.8 12.1

0 2 4 6 8 10 12
0.2

0.25

0.3

0.35

0.4

0.45

0.5

d (m)

C
i

C1

C2

Figure 4: Approximation of 𝐶1 and 𝐶2 with respect to the spacing
𝑑.

recuperates vehicle braking power during the vehicle down
slope driving. The preceding vehicle SOC variation range is
smaller than that of the host vehicle. The host vehicle SOC
variation range with unfixed desired battery SOC is smaller
than that with fixed desired battery SOC. Since the engine
needs to charge the battery too often, the overuse of the
battery leads to worse fuel economy.

The energy profile of the HEV using the MPC algorithm
with fixed desired battery SOC and unfixed desired battery
SOC (see Figures 7 and 8) shows that the MPC algorithm
canmake the vehicle drag coefficients converge to minimum.
The rows of Figures 7 and 8 from the top are the air drag
power of the preceding vehicle and the host vehicle, the drag
coefficients of the preceding vehicle and the host vehicle,
the fuel consumption rate of the preceding vehicle and the
host vehicle, and the total cumulative fuel consumption. The
drag coefficients of both vehicles are reduced significantly
as a result of the fast convergence of the vehicle distance.
Therefore, the drag force is reduced, and fuel savings are
achieved. The air drag power of the host vehicle is smaller
than that of the preceding vehicle because of the vehicle
platooning. The fuel consumption of the HEV with unfixed
desired battery SOC is smaller than that with fixed desired
battery SOC. The reason is that, during the down slope
driving, the MPC algorithm with unfixed desired battery
SOCmakes better use of themotor regenerative braking than
that with fixed desired battery SOC.

All the constraints are satisfied in the simulation. The
overall fuel economy results are presented in Table 3. It is
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Figure 5: Driving profile of the HEV using theMPC algorithmwith
fixed desired battery SOC.

shown that the MPC approach with unfixed desired battery
SOC can improve fuel economy and keep the final SOC near
the initial SOC compared to that with fixed desired battery
SOC. There are two reasons. The first reason is that the
MPC approach with unfixed desired battery SOC makes the
battery use less often than thatwith fixeddesired battery SOC.
The second reason is that the MPC approach with unfixed
desired battery SOC reduces the duration and magnitude of
the braking during the down slope driving period compared
with that with fixed desired battery SOC. To sum up, the
reason why MPC approach improves the fuel economy while
keeping the SOC near initial status is the variation of the
battery SOC. This variation can facilitate charging when the
vehicles decelerate. The proposed method can improve the
fuel economy of both the preceding vehicle and the host
vehicle.
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Figure 6: Driving profile of the HEV using the MPC algorithm with unfixed desired battery SOC.

The fuel economies with different desired vehicle speed,
prediction horizon, and control horizon using the proposed
method were shown in Figures 10, 11, and 12. It is shown that
the best fuel economy occurs when the desired vehicle speed
is equal to 50 km/h, the prediction horizon is equal to 2 s, and
the control horizon is equal to 0.2 s.

MPC is sensitive to process-model mismatch. Process-
model mismatch is always present: wheels, weather and
road conditions, sensor accuracy, and so on. Therefore
performance and stability under nominal conditions do not
guarantee the robust performance and stability of the real
car. In order to analyze the robust stability and performance
of the MPC method, errors in slope sensor are assumed to
exist while traveling. The proposed MPC method is found
to be very robust against slope-sensing error. Figure 9 shows
the deviation of the driving and power-split profiles due to
errors in slope sensor for the lead vehicle. An error of 20%
means that the sensor provides 1.2 times the actual value,
whereas −20% error means that the sensor provides 0.8 times
the actual value of the slope. Due to a sensing error of 20%,
the vehicle speed is a bit lower; the battery SOC is a bit
higher; and compared with the vehicle with no slope-sensing
error, fuel savings dropped 3%. Similarly, due to a sensing
error of −20%, the vehicle speed is a bit higher; the battery
SOC is a bit lower; and compared with the vehicle with no

slope-sensing error, fuel savings increased 0.8%. Therefore,
it can be concluded that, within a reasonable sensing error,
the system is robust to maintain its ecological performance
without significant deviation. Since the optimization problem
is nonlinear and nonconvex, its solution can be local optimal;
it is assumed that it can only be solved numerically. A detailed
mathematical analysis of robust stability and performance for
the proposed method can be found in [26].

The process-model mismatch can also give rise to impor-
tant unfeasibility issues when computing the MPC control
law. A policy to recover from unfeasibility issues is needed
to be developed. The numerical computation method cannot
manage unfeasibility by itself. Since we are dealing here with
vehicles (i.e., people), a policy to recover from unfeasibility
issues cannot be developed by reformulating the MPC prob-
lem with soft constraints. A switch policy is proposed to cope
with the unfeasibility issues. It is summarized as follows.

Step 1. Switch the MPC algorithm to the rule-based algo-
rithm [1] when unfeasibility issues occur.

Step 2. Use the rule-based algorithm for 5 s, and switch back
to the MPC algorithm.

Step 3. Go back to Step 1 when unfeasibility issues occur.
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Figure 7: Energy profile of the HEV using the MPC algorithm with
fixed desired battery SOC.

TheproposedMPCalgorithm is fast for computation.The
computer simulation time is 153 [s]. The computation time
of the proposed MPC algorithm is 14 [s]. The simulation is
run in aMATLAB/Simulink environment using a laptopwith
an Intel processor at 2.27 [GHz] processing speed and 2 [GB]
of RAM.The sampling interval is 100 [ms]. The computation
time per sampling interval of the proposed MPC algorithm
is 9 [ms]. So it is concluded that the MPC algorithm has the
potential for real-time vehicle control.

5. Conclusions

Amodel predictive control system for two connected power-
split HEVs considering the fuel economy, the aerodynamic
drag varied by vehicle spacing, and the road shape informa-
tion has been presented. The performance of the proposed
control system was confirmed by the computer simulations.
The proposed control method has produced the fast conver-
gence of the vehicle spacing. The excessive acceleration and
deceleration have been avoided by predicting the road shapes.
The results revealed improvements of the fuel economy con-
sidering the effect of different parameters, that is, road con-
ditions, battery state of charge, and real-time implementation
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Figure 8: Energy profile of the HEV using the MPC algorithm with
unfixed desired battery SOC.

ability. Since experiments of vehicles are expensive, we would
like to conduct experiments in the future. For the sake of
simplicity, we have considered only two cars. In the future,
we will add more vehicles to make the model more realistic.

Appendices

A. Engine Fuel Consumption Model

The proposed engine fuel consumption modeling method
is a special method using both Willans line method and
the assumption of operating the engine along the engine
optimal operating line and is introduced as follows.TheHEV
parameters are used from the ADVISOR 2002 Toyota Prius
HEV data [27].

The Willans line model consists of an affine representa-
tion relating the available energy, that is, the energy that is
theoretically available for conversion, to the useful energy
that is actually present at the output of the energy converter
[25]. Formally

𝑊out = 𝑒𝑊in −𝑊loss, (A.1)
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Figure 10: Effects of the desired vehicle speed on fuel economy.

where the parameter 𝑒 represents the peak intrinsic energy
conversion efficiency of the converter and 𝑊loss represents
external (parasitic) losses. In fact, this model of energy
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Figure 11: Effects of the prediction horizon on fuel economy.

conversion efficiency is nonlinear, in that the parameters
𝑒 and 𝑊loss are represented as explicit functions of the
output flow variable (e.g., engine speed) and are also implicit
functions of the effort variable.
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Figure 13: The engine efficiency map to the best engine operating
points.

The modeling method given above is for general engines.
However, in this work, the electric CVT can realize idle
stop, so 𝑊loss becomes zero. When it is assumed that the
engine operating points are maintained at the best efficiency,
the parameters 𝑒 can be approximated as a constant. In this
case, the fuel consumption rate corresponding to the optimal
operating line can be fitted using a linear function.

The engine optimal operating line can be plotted on
the engine map as shown in Figure 13. The engine optimal
operating points provide the highest efficiency for a given
power level. The engine best efficiency related to the engine
power according to the engine characteristics is shown in
Figure 14.

The fuel consumption rate is estimated as (see Figure 15)

�̇�
𝑓
=

𝑃eng

𝐶𝜂
≈ 𝑐
𝑓
𝑃eng, (A.2)
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where 𝐶 is the calorific value of the gasoline, which is equal
to 34.5 × 106 [J/l], and 𝜂 is the engine efficiency.

B. Road Slope Modeling Method

A brief description of the road slope modeling method is
provided as follows. In this research, the sigmoid function is
used to model the road slope. The general sigmoid function
to model the road slope is expressed as follows:

𝜃 (𝑝) =
𝑠1

1 + 𝑒(𝑠3(𝑝−𝑠2))
+

𝑠4
1 + 𝑒(𝑠6(𝑝−𝑠5))

+ ⋅ ⋅ ⋅ , (B.1)

where 𝑠1, 𝑠2, 𝑠3, 𝑠4, 𝑠5, and 𝑠6 are slope shape parameters.
The parameters 𝑠2, 𝑠5, . . . are position parameters where the
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Figure 16: The sigmoid function of the up slope.
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Figure 17: The sigmoid function of the down slope.

road slopes change. The parameters 𝑠3, 𝑠6, . . . are parameters
to decide the abruptness of the road slope.

When it is the up slope case, the sigmoid function is
expressed as follows:

𝜃 (𝑝) =
0.05

1 + 𝑒(−(𝑝−200))
+

−0.05
1 + 𝑒(−(𝑝−400))

. (B.2)

The figure of the sigmoid function is showed in Figure 16.
When it is the down slope case, the sigmoid function is

expressed as follows:

𝜃 (𝑝) =
−0.05

1 + 𝑒(−(𝑝−200))
+

0.05
1 + 𝑒(−(𝑝−400))

. (B.3)

The figure of the sigmoid function is showed in Figure 17.
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Figure 18: The sigmoid function of the up-down slope.

When it is the up-down slope case, the sigmoid function
is expressed as follows:

𝜃 (𝑝) =
0.05

1 + 𝑒(−(𝑝−200))
+

−0.1
1 + 𝑒(−(𝑝−400))

+
0.05

1 + 𝑒(−(𝑝−600))
.

(B.4)

The figure of the sigmoid function is showed in Figure 18.

C. Solution of the Model Predictive
Control Problem

A brief description of the solution of the model predictive
control problem is provided as follows.

To implement themodel predictive control algorithm, the
horizon 𝑇 is divided into 𝑁 steps, and the optimal control
problem is discretized. The general discretized optimal con-
trol problem is formulated as

min
𝑢

𝐽 =

𝑁−1
∑

𝑖=0
𝐿 (𝑥
𝑖 (𝜏 | 𝑡) , 𝑢𝑖 (𝜏 | 𝑡)) Δ𝜏 (𝑡)

subject to 𝑥
𝑖+1 (𝜏 | 𝑡)

= 𝑥
𝑖 (𝜏 | 𝑡)

+ 𝑓 (𝑥
𝑖 (𝜏 | 𝑡) , 𝑢𝑖 (𝜏 | 𝑡)) Δ𝜏 (𝑡)

𝐺 (𝑥
𝑖 (𝜏 | 𝑡) , 𝑢𝑖 (𝜏 | 𝑡)) ≤ 0,

(C.1)

where 𝑢 is the control input, 𝑥 is the state, and 𝐿 is the cost
function.𝑓(𝑥, 𝑢) is the state equation.𝐺(𝑥, 𝑢) is the inequality
constraint.

The inequality constraint in the optimal control problem
is converted to an equality constraint by introducing a
dummy input 𝑢

𝑑
for computation simplicity as follows:

𝐶 (𝑥 (𝑡) , 𝑢 (𝑡)) = 𝑢
2
(𝑡) + 𝑢

2
𝑑
(𝑡) − 𝑢

2
max = 0, (C.2)

where 𝑢max denotes the upper bound of the control input.
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To solve this optimal control problemwith the calculus of
variation method, the Hamiltonian function is defined by

𝐻(𝑥, 𝑢, 𝜆, 𝜓) = 𝐿 (𝑥, 𝑢) + 𝜆
𝑇
𝑓 (𝑥, 𝑢) +𝜓

𝑇
𝐶 (𝑥, 𝑢) , (C.3)

where 𝜆 denotes the costate and 𝜓 denotes the Lagrange
multiplier associated with the equality constraint.

The first-order necessary conditions for the optimal con-
trol input 𝑢, the multiplier 𝜓, and the costate 𝜆 are obtained
using the calculus of variation as

𝑥
𝑖+1 (𝑡) = 𝑥𝑖 (𝑡) + 𝑓 (𝑥𝑖 (𝑡) , 𝑢𝑖 (𝑡)) Δ𝜏 (𝑡)

𝑥0 (𝑡) = 𝑥 (𝑡) ,

𝜆
𝑖 (𝑡)

= 𝜆
𝑖+1 (𝑡)

+𝐻
𝑥
(𝑥
𝑖 (𝑡) , 𝑢𝑖 (𝑡) , 𝜆𝑖+1 (𝑡) , 𝜓𝑖 (𝑡)) Δ𝜏 (𝑡)

𝜆
𝑁 (𝑡) = 0,

𝐻
𝑢
(𝑥
𝑖 (𝑡) , 𝑢𝑖 (𝑡) , 𝜆𝑖+1 (𝑡) , 𝜓𝑖 (𝑡)) = 0

𝐶 (𝑥 (𝑡) , 𝑢 (𝑡)) = 0,

(C.4)

where 𝑥0 is the initial state.
To solve this optimal control problem, the continuation

and GMRES (C/GMRES) method is employed for computa-
tion cost reduction. The necessary conditions of optimality
for the constrained control input can be expressed as the
following equation:

𝐹 (𝑈 (𝜏 | 𝑡) , 𝑥 (𝜏 | 𝑡) , 𝑡)

:=

[
[
[
[
[
[
[
[
[

[

𝐻
𝑢
(𝑢0 (𝜏 | 𝑡) , 𝑥0 (𝜏 | 𝑡) , 𝜆1 (𝜏 | 𝑡) , 𝜓0 (𝜏 | 𝑡))

𝐶 (𝑢0 (𝜏 | 𝑡) , 𝑥0 (𝜏 | 𝑡))

.

.

.

𝐻
𝑢
(𝑢
𝑁−1 (𝜏 | 𝑡) , 𝑥𝑁−1 (𝜏 | 𝑡) , 𝜆𝑁 (𝜏 | 𝑡) , 𝜓𝑁−1 (𝜏 | 𝑡))

𝐶 (𝑢
𝑁−1 (𝜏 | 𝑡) , 𝑥𝑁−1 (𝜏 | 𝑡))

]
]
]
]
]
]
]
]
]

]

= 0,

𝑈 (𝑡)

:= [𝑢
𝑇

0 (𝜏 | 𝑡) , 𝜓
𝑇

0 (𝜏 | 𝑡) , . . . , 𝑢
𝑇

𝑁−1 (𝜏 | 𝑡) , 𝜓
𝑇

𝑁−1 (𝜏 | 𝑡)]
𝑇

.

(C.5)

𝐹(𝑈(𝑡), 𝑥(𝑡), 𝑡) = 0 is identical to

𝐹 (𝑈 (0) , 𝑥 (0) , 0) := 0,

�̇� (𝑈, 𝑥, 𝑡) = −𝐴 𝑠𝐹 (𝑈 (𝑡) , 𝑥 (𝑡) , 𝑡) ,

(C.6)

where𝐴
𝑠
is a stablematrix introduced to stabilize𝐹 = 0. If𝐹

𝑈

is nonsingular, a differential equation for𝑈(𝑡) can be obtained
as

�̇� = −𝐹
−1
𝑈
(𝐴
𝑠
𝐹−𝐹
𝑥
�̇� − 𝐹
𝑡
) . (C.7)

The above differential equation can be solved by the GMRES
method. The presented approach is also a kind of continua-
tion method.The solution curve𝑈(𝑡) is traced by integrating

the above differential equation. Because there is no need to
calculate the Jacobians and the linear equation iteratively,
C/GMRESmethod assures the real-time optimal control abil-
ity because of small computational cost.The detailed descrip-
tion of the solution for themodel predictive control algorithm
can be found [26].

Notations and Abbreviations

HEVs: Hybrid electric vehicles
MPC: Model predictive control
CVT: Continuously variable transmission
OOL: Optimal operating line
SOC: State of charge
PSD: Power-split device
𝑀/𝐺: Motor/generator
FD: Final drive
𝐴: Frontal area
𝐶
𝐷
: Aerodynamic drag coefficient

𝑔: Gravitational acceleration
𝑔
𝑓
: Final drive gear ratio

𝑚: Vehicle mass
𝑃batt: Battery power
𝑃eng: Engine power
𝑄batt: Battery nominal capacity
𝑟
𝑤
: Wheel radius

𝑅batt: Battery internal resistance
𝑉OC: Battery open-circuit voltage
𝜃: Road inclination
𝜇: Rolling friction coefficient
𝜌: Density of air
𝑆: The number of sun gear teeth
𝑅: The number of ring gear teeth
𝜏
𝑀/𝐺1: The torque of motor/generator 1
𝜏
𝑀/𝐺2: The torque of motor/generator 2
𝜏req: The torque of the road load
𝜏eng: The torque of the engine
𝜔
𝑀/𝐺1: The angular speed of motor/generator 1

𝜔
𝑀/𝐺2: The angular speed of motor/generator 2

𝜔eng: The angular speed of the engine
𝑃req: The power of the road load
𝑐
𝑓
: A constant for the fuel consumption

𝑝: The vehicle position
V: The vehicle speed
𝑤: The acceleration or deceleration

converted from the traction force or
brake force

𝑢
𝑝
: The acceleration or deceleration control

input of the preceding vehicle
𝑢
ℎ
: The acceleration or deceleration control

input of the host vehicle
𝑘
𝑝
: The delay constant

𝑠1, 𝑠2, 𝑠3, 𝑠4, 𝑠5,
and 𝑠6: Slope shape parameters
𝑇: The prediction horizon
min and max: The minimum and maximum bounds of

the parameters
𝑤
𝑥
, 𝑤
𝑦
, 𝑤
𝑧
, 𝑤
𝑑
,

𝑤
𝑒
, 𝑤
𝑓
, and 𝑤

𝑔
: The weights
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V
𝑑
: The desired vehicle speed

𝑑: The vehicle spacing
𝑑
𝑑
: The desired vehicle spacing

𝑙
𝑝
: The length of the preceding vehicle

SOC
𝑑
: The desired SOC value

𝑘SOC and SOC
𝑘
: Constant parameters

𝑐
𝑖1–𝑐𝑖8: Constant parameters for the

aerodynamic drag coefficients
𝐶: The calorific value of the gasoline
𝑢: The control input
𝑥: The state
𝐿: The cost function
𝑓(𝑥, 𝑢): The state equation
𝐺(𝑥, 𝑢): The inequality constraint
𝑢
𝑑
: The dummy input

𝑢max: The upper bound of the control input
𝜆: The costate
𝜓: The Lagrange multiplier associated with

the equality constraint
𝑥0: The initial state
𝐴
𝑠
: A stable matrix.
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Accurate and reliable state of charge (SOC) estimation is a key enabling technique for large format lithium-ion battery pack due to
its vital role in battery safety and effective management.This paper tries to make three contributions to existing literatures through
robust algorithms. (1) Observer based SOC estimation error model is established, where the crucial parameters on SOC estimation
accuracy are determined by quantitative analysis, being a basis for parameters update. (2) The estimation method for a battery
pack in which the inconsistency of cells is taken into consideration is proposed, ensuring all batteries’ SOC ranging from 0 to 1,
effectively avoiding the battery overcharged/overdischarged. Online estimation of the parameters is also presented in this paper.
(3)The SOC estimation accuracy of the battery pack is verified using the hardware-in-loop simulation platform.The experimental
results at various dynamic test conditions, temperatures, and initial SOC difference between two cells demonstrate the efficacy of
the proposed method.

1. Introduction

As one of the most important performance parameters
of traction batteries, real-time SOC estimation of battery
becomes necessary in the field of application of battery-
driven electric vehicles. Commonly used SOC estimation
methods for single battery are as follows [1, 2]: ampere
hour integration method; open circuit voltage method using
the corresponding relation between the open circuit voltage
and SOC; the algorithm based on electric circuit models or
electrochemical models and the typical methods which are
Kalman filters andmethods based on some observer; estima-
tion using fuzzy logic or methods of machine learning. Since
the dynamic battery shows high nonlinearity, these men-
tionedmethods have their own defects: ampere hour integra-
tion method has to know the exact SOC initial value and can
bring accumulative error; the open circuit voltage scheme has
strict requirements on measuring conditions and update of
OCV curves can be a difficult task, and it is therefore not suit-
able for electric vehicle during driving and would better be

used as auxiliary correction means; the accuracy of estima-
tion method based on circuit model depends on the model
parameters; however, adaptation of the model parameters
over the battery lifetime to any given battery aging state or
environment requires relatively complex algorithms and is
practical for only quite simplemodels. Some researches based
on Kalman filter have achieved online estimation [2–4], but
online realization is at the expense of additional computing
power and its robustness needs to be concerned; the elec-
trochemical method cannot be applied into operation due to
the complexity of the model itself [5]; fuzzy control or vector
machine algorithm requires a large number of sample data to
train the model and also is no longer applicable for aged
battery [6].

A large number of batteries are connected in series and
parallels when used in electric vehicles to reach the corre-
sponding level of voltage, power, and energy [3]. Therefore,
accurate estimation of state of charge for a battery pack is
remaining challenging. Typical SOC calculation method for
battery packs [7–10] takes the group as a large battery and
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Figure 1: The model of series-connected battery pack.

then applies one of the methods described in previous
sections, while inconsistent characteristics of cell capacity
and resistance cannot be ignored or lead to low management
efficiency. Somemethods calculate themean SOCof a battery
pack based on mean model or difference model considering
cells discordance [8, 11–13]; others estimate the SOC of every
cell in battery pack using common calculation methods and
then obtain the pack SOC [7, 14]. From the above references,
methods considering multiple cells are more reliable for
battery pack SOC estimation. However, in practical appli-
cation of pack SOC estimation, the operation conditions,
measurement accuracy, and computation of the algorithm
need to be considered in integration.

A key contribution of this paper is solving problems
in practical application of SOC estimation. In the paper,
SOC estimation error model is established, where the crucial
parameters on SOC estimation accuracy are determined by
quantitative analysis. Battery pack SOC estimation method
considered cell inconsistency is on the basis of cell SOC. And
single cell SOC is estimated through PI observer combined
ampere hour integration method. Also, online identification
of the model parameters can make sure of the applicability of
the algorithmunder different operating conditions during the
battery life cycle. In addition, a hardware-in-loop platform
is built to fulfill real-time estimation. The verification results
of the two series-connected battery packs under different
circumstances indicate that this method has a high accuracy
and achieves better convergence and stability.

The remainder of this paper is organized as follows:
Section 2 analyzes the SOC estimation error theoretically.
Section 3 builds series-connected battery pack model, gives
the SOC definition, and describes online model parameters
update. Our validation results and discussions for different
cases of battery pack are presented in Section 4. Section 5
summarizes the conclusions of the paper.

2. Sensitivity Analysis of SOC Estimation

2.1. The Proposed SOC Definition for a Battery Pack. For
series-connected battery packs, we adopt the model pre-
sented in Figure 1, which is a group model connected with
many first-order Thevenin models in series. The definition
for SOC of battery strings is given in formula (1), where𝑄𝐵max
denotes themaximum available capacity of the pack and𝑄𝐵rem
denotes residual capacity, namely, the maximum discharge
capacity for the group. As long as we know SOC value and the
maximum available capacity of each cell in packs, group SOC
will be achieved. Through the proposed SOC pack model,
battery pack SOC estimation with inconsistency among cells
can be considered on the one hand; on the other hand, as long
as the group SOC, namely, SOC𝐵, ranges from 0% to 100%,
all single cell SOC will change in the range of 0% to 100%.
Thus overcharging or overdischarging for the battery can be
effectively avoided, and it also can provide data support and
ensure secure use of the battery pack:

SOC𝐵 =
𝑄
𝐵

rem
𝑄𝐵max

× 100%

=
min (𝑄max [1] SOC [1] , . . . , 𝑄max [𝑛] SOC [𝑛])

min (𝑄max [1] SOC [1] , . . . , 𝑄max [𝑛] SOC [𝑛]) +min (𝑄max [1] (1 − SOC [1]) , . . . , 𝑄max [𝑛] (1 − SOC [𝑛]))

=
𝑄max [𝑖] SOC [𝑖]

𝑄max [𝑖] SOC [𝑖] + 𝑄max [𝑗] (1 − SOC [𝑗])
× 100%.

(1)

2.2. SOC Estimation Error Modeling. Based on the definition
of SOC for battery strings in Section 2.1, error of group SOC
comes from single cell SOC error.Therefore, error analysis in
this part aims for single cells.When the battery is in a different
environment or state, the model parameters are also not the

same. Through analyzing impact factors of SOC estimation
error and influencing degree of each impact factor, SOC esti-
mation accuracy can be improved effectively. Consequently,
SOC estimation error formula is deduced mathematically
based on the first-order Thevenin battery model [15, 16]. In
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the formula, parameters in the coefficientmatrices Ã, B̃, C̃, D̃
are estimation value and have difference with the true value
matricesA,B,C,D, whereA = [ −1/𝑅𝑝𝐶𝑝 0

0 0
], B = [ 1/𝐶𝑝

1/(3600⋅𝐶𝑛)
],

C = [1 𝑎
𝑖
], and D = 𝑅

𝑜
. The actual and estimated state

equations of battery are listed in (2), error is expressed in
(3), and the final SOC error expression is represented in (9),
where ẋ = [ �̇�𝑝

SȮC
], 𝑦 = 𝑈

𝑜
−𝑏
𝑖
, 𝑢 = 𝐼, and OCV = 𝑎

𝑖
⋅SOC+𝑏

𝑖
.

Consider

ẋ = Ax + B𝑢,

𝑦 = Cx +D𝑢,

̇̃x = Ãx̃ + B̃𝑢 + L (𝑈
𝑜
− �̃�
𝑜
) ,

𝑦 = C̃x̃ + D̃𝑢,

(2)

e = x̃ − x,

ė = ̇̃x − ẋ = Ãx̃ + B̃𝑢 + L (𝑈
𝑜
− �̃�
𝑜
) − [Ax + B𝑢]

= Ãx̃ − Ax + (B̃ − B) 𝑢

+ L [Cx − C̃x̃ + (D − D̃) 𝑢 + 𝑏
𝑖
− �̃�
𝑖
] ,

(3)

ė = Ãx̃ − Ãx + (Ã − A) x + (B̃ − B) 𝑢

− L [C̃x̃ − C̃x + (C̃ − C) x + (D̃ −D) 𝑢 + 𝑏
𝑖
− �̃�
𝑖
]

= Ã (x̃ − x) + ΔA ⋅ x + ΔB ⋅ 𝑢

− L [C̃ (x̃ − x) + ΔC ⋅ x + ΔD ⋅ 𝑢 − Δ𝑏𝑖]

= (Ã − LC̃) e + (ΔA − L ⋅ ΔC) ⋅ x

+ (ΔB − L ⋅ ΔD) ⋅ 𝑢 − L ⋅ 𝑏
𝑖
,

(4)

ė = [
̇𝑒
𝑈𝑝

̇𝑒SOC
]

= [

[

−
1

�̃�
𝑝
𝐶
𝑝

− 𝐿
1
−𝐿
1
𝑎
𝑖

−𝐿
2

−𝐿
2
𝑎
𝑖

]

]

[
𝑒
𝑈𝑝

𝑒SOC
]

+ [

[

−Δ
1

𝑅
𝑝
𝐶
𝑝

−𝐿
1
⋅ Δ𝑎
𝑖

0 −𝐿
2
⋅ Δ𝑎
𝑖

]

]

[
𝑈
𝑝

SOC
]

+ 𝑢
[
[
[

[

Δ
1

𝐶
𝑝

− 𝐿
1
⋅ Δ𝑅
𝑜

1

3600
⋅ (Δ

1

𝐶
𝑛

) − 𝐿
2
⋅ Δ𝑅
𝑜

]
]
]

]

− [
𝐿
1
⋅ Δ𝑏
𝑖

𝐿
2
⋅ Δ𝑏
𝑖

] .

(5)

The SOC error matrix can be expanded as follows:

̇𝑒SOC + 𝐿2𝑎𝑖 ⋅ 𝑒SOC = −𝐿2𝑒𝑈𝑝 − 𝐿2 ⋅ Δ𝑎𝑖 ⋅ SOC

+ 𝑢(
1

3600
⋅ Δ

1

𝐶
𝑛

− 𝐿
2
⋅ Δ𝑅
𝑜
)

− 𝐿
2
⋅ Δ𝑏
𝑖
,

(6)

𝑈
𝑝
= 𝑢 ⋅ 𝑅

𝑝
(1 − 𝑒

−𝑡/𝑅𝑝𝐶𝑝) + 𝑈
𝑝 (0)

⋅ 𝑒
−𝑡/𝑅𝑝𝐶𝑝 , 𝑈

𝑝 (0) = 0.

(7)

Equation (6) can be simplified to the following form:
̇𝑒SOC + 𝑝(𝑡) ⋅ 𝑒SOC = 𝑞(𝑡).

The corresponding solution to the equation is as follows:

𝑒SOC = 𝑐 ⋅ 𝑒
−∫𝐿2𝑎𝑖𝑑𝑡 + 𝑒

−∫𝐿2𝑎𝑖𝑑𝑡 ∫𝑞 ⋅ 𝑒
∫𝐿2𝑎𝑖𝑑𝑡𝑑𝑡

(𝑐 depends on 𝑒SOC (0)) ,

𝑞 = −𝐿
2
(𝑢 ⋅ �̃�

𝑝
(1 − 𝑒

−𝑡/�̃�𝑝�̃�𝑝) − 𝑢 ⋅ 𝑅
𝑝
(1 − 𝑒

−𝑡/𝑅𝑝𝐶𝑝))

− 𝐿
2
⋅ Δ𝑎
𝑖
⋅ SOC + 𝑢( 1

3600
⋅ Δ

1

𝐶
𝑛

− 𝐿
2
⋅ Δ𝑅
𝑜
)

− 𝐿
2
⋅ Δ𝑏
𝑖
,

𝑒SOC = 𝑐𝑒
−𝐿2𝑎𝑖𝑡

+
1

𝐿
2
𝑎
𝑖

[𝑢(
1

3600
⋅ Δ

1

𝐶
𝑛

− 𝐿
2
⋅ (Δ𝑅
𝑜
+ Δ𝑅
𝑝
))

− 𝐿
2
⋅ Δ𝑏
𝑖
− 𝐿
2
⋅ Δ𝑎
𝑖
⋅ SOC] + 𝐿

2
𝑢 [−�̃�

2

𝑝
𝐶
𝑝

⋅ 𝑒
(−1/�̃�𝑝�̃�𝑝)𝑡 + 𝑅

2

𝑝
𝐶
𝑝
⋅ 𝑒
(−1/𝑅𝑝𝐶𝑝)𝑡] .

(8)

When 𝑡 = 0, assuming that current 𝑢 is zero, the open
circuit voltage estimation error is zero; then 𝑐 = 𝑒SOC(0). In
conclusion, SOC error equation may be obtained as follows:

𝑒SOC = 𝑒SOC (0) 𝑒
−𝐿2𝑎𝑖𝑡 + 𝐿

2
𝑢 [−�̃�

2

𝑝
𝐶
𝑝
⋅ 𝑒
(−1/�̃�𝑝�̃�𝑝)𝑡 + 𝑅

2

𝑝
𝐶
𝑝
⋅ 𝑒
(−1/𝑅𝑝𝐶𝑝)𝑡]

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
transient error

+
1

𝐿
2
𝑎
𝑖

[𝑢(
1

3600
⋅ Δ

1

𝐶
𝑛

− 𝐿
2
⋅ (Δ𝑅
𝑜
+ Δ𝑅
𝑝
)) − 𝐿

2
⋅ Δ𝑏
𝑖
− 𝐿
2
⋅ Δ𝑎
𝑖
⋅ SOC]

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
steady-state error

= 𝑒SOC1 + 𝑒SOC2.
(9)
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Table 1: SOC estimation error with different parameter error for a battery with the capacity of 8.8 Ah.

Factors Factor error
0.2% 0.5% 1% 2% 5% 10% 20% 30%

𝑒SOC (%)
Δ𝑄 −0.0000037 −0.0000092 −0.0000183 −0.0000362 −0.0000879 −0.000168 −0.000308 −0.000426
Δ𝑅total 0.0296 0.074 0.148 0.296 0.74 1.48 2.96 4.44
Δ𝑎
𝑖

−0.2 −0.5 −1 −2 −5 −10 −20 −30
Δ𝑏
𝑖

1.45 3.62 7.24 14.5 36.2 — — —

For expression 𝑒SOC(0)𝑒
−𝐿2𝑎𝑖𝑡, because the maximum

value of 𝑒SOC is one and the value of 𝐿2𝑎𝑖 is not too small, thus
the value of 𝑒−𝐿2𝑎𝑖𝑡 will soon decline over time. Of course the
expression 𝑒SOC(0)𝑒

−𝐿2𝑎𝑖𝑡 can be ignored. As for other part of
the transient error 𝐿

2
𝑢[−�̃�
2

𝑝
𝐶
𝑝
⋅𝑒
(−1/�̃�𝑝�̃�𝑝)𝑡+𝑅

2

𝑝
𝐶
𝑝
⋅𝑒
(−1/𝑅𝑝𝐶𝑝)𝑡],

it will get small as time goes by and tend to zero gradually
after 360 s (6min), while the value of SOC decreases only
about 1.4% during this period of time. Transient error can be
ignored considering the actual application and the analysis.
And the example for transient error will be displayed in
Figure 1.

On the other hand, from the expression of the steady-
state error can we see that SOC estimation error is brought
by the error of capacity, total internal resistance, and OCV.
The variable 𝑒SOC2 is expressed in (10) and according to the
actual simulation data, the sensitivity of each factor for SOC
estimation will be analyzed furtherly. Consider

𝑒SOC2 =
𝑖

𝐿
2
⋅ 𝑎
𝑖

⋅
1

3600
⋅ Δ(

1

𝑄
) −

𝑖

𝑎
𝑖

⋅ Δ𝑅total

−
Δ𝑎
𝑖
⋅ SOC (𝑡)
𝑎
𝑖

−
Δ𝑏
𝑖

𝑎
𝑖

= 𝑒
1
− 𝑒
2
− 𝑒
3
− 𝑒
4
.

(10)

2.3. Quantified Analysis. TheSOC estimation error is divided
into transient and steady-state error from the analysis in
Section 2.2 and both will be discussed, respectively. Equation
(11) is used to calculate and analyze transient SOC error,
where resistance 𝑅

𝑝
, capacitance 𝐶

𝑝
, observer coefficient 𝐿

2
,

and input current 𝑢 are all based on the simulation value or
test data and they are assigned the value of 0.6 milliohms,
80000 F, 10, and DST operating current condition, respec-
tively, in this case. SOC transient error calculation results
are presented in Figure 2, in which the black line represents
the SOC transient error with 2% polarization resistance and
capacitance error while the red line is on behalf of SOC
transient error of 5% polarization resistance and capacitance
error; that is, the values of 𝑅

𝑝
and 𝐶

𝑝
are assigned to 1.02𝑅

𝑝
,

1.02𝐶
𝑝
/1.05𝑅

𝑝
, 1.05𝐶

𝑝
. Although the initial SOC transient

error is large, it will hold the tendency of decline over time
and decrease to almost zero within 360 s. And the value of
SOC only reduced about 1.4% during this time; thus it can be
ignored in practical application. Consider

𝑒SOC1

= 𝐿
2
𝑢 [−�̃�

2

𝑝
𝐶
𝑝
⋅ 𝑒
(−1/�̃�𝑝�̃�𝑝)𝑡 + 𝑅

2

𝑝
𝐶
𝑝
⋅ 𝑒
(−1/𝑅𝑝𝐶𝑝)𝑡] .

(11)

In terms of SOC steady-state error, conditions like differ-
ent capacity, different charge, or discharge current rates are
discussed, respectively.

(1)A Li(NiCoMn)O
2
battery with the capacity of 8.88Ah

is used for analysis. According to the parameter identification
results for this cell, taking SOC as 55% as an example, total
internal resistance equals 25 milliohms, the slope 𝑎

𝑖
of the

OCV-SOC line is 0.5, and intercept is 3.62; the value of cur-
rent is 1/3 C; observer coefficient is taken to be 10 according
to the simulation. Considering the error caused by Δ𝑎

𝑖
alone,

since the SOC ranges from 0 to 1, thus SOC maximum value
is taken as 1 in this case. The results of 𝑒

1
, 𝑒
2
, 𝑒
3
, 𝑒
4
with

different variable errors are shown in Table 1:

𝑒SOC (𝑡) =
2.96

10 ⋅ 0.5
⋅
1

3600
⋅ Δ(

1

𝑄
) −

2.96

0.5
⋅ Δ𝑅total

−
Δ𝑎
𝑖
⋅ SOC (𝑡)
0.5

−
Δ𝑏
𝑖

0.5

= 1.64 × 10
−4
Δ(

1

𝑄
) − 5.92 ⋅ Δ𝑅total − 2Δ𝑎𝑖

⋅ SOC (𝑡) − 2Δ𝑏𝑖.

(12)

(2) A C/LiMn
2
O
4
battery with the capacity of 90Ah is

considered as an example. Like in case one, total internal
resistance is 1.5 milliohms when 55% SOC is taken as an
example, the slope 𝑎

𝑖
of the OCV-SOC line is 0.4, and

intercept 𝑏
𝑖
is 3.786; current value is 1/3 C and observer

coefficient is taken to be 10 through simulation.The results of
𝑒
1
, 𝑒
2
, 𝑒
3
, 𝑒
4
with different variable errors are shown inTable 2.

(3) In terms of the same battery as in case (2), considering
the situations with different charge and discharge rates, since
only 𝑒

1
, 𝑒
2
are affected by the rate of current, we only discuss

these two. Comparison results are listed in Table 3 and we
can conclude 𝑒

1
is very small and tends to zero. On the

basis of this, SOC steady-state error under DST condition is
presented in Figure 3 which only considers the influence of
internal resistance error 𝑒

2
.

Both theoretical analysis and calculation results show
that the influencing degree of four impact factors for SOC
estimation error is closely related to the battery capacity and
charging or discharging current rate. The degree of influence
under the same error range ranks as follows: Δ𝑎

𝑖
> Δ𝑏
𝑖
>

Δ𝑅total > Δ𝑄. However, in a practical situation, when OCV-
SOC curve is linearized, error of 𝑎

𝑖
(the slope of the line) may

reach several tens of percent and 𝑏
𝑖
(the intercept of the line)
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Table 2: SOC estimation error with different parameter error for a battery with the capacity of 90Ah.

Factors Factor error
0.2% 0.5% 1% 2% 5% 10% 20% 30%

𝑒SOC (%)
Δ𝑄 −0.0000046 −0.000012 −0.000022 −0.000045 −0.00011 −0.00021 — —
Δ𝑅total 0.0225 0.0563 0.113 0.225 0.563 1.125 2.25 3.375
Δ𝑎
𝑖

−0.196 −0.49 −0.98 −1.96 −4.9 −9.8 −19.6 −29.4

Δ𝑏
𝑖

1.893 4.733 9.465 18.93 43.25 — — —

Table 3: SOC estimation error with different parameter error and
rate for a battery with the capacity of 90Ah.

Factor error Current rate
0.5 C 1 C 1.5 C 2C

𝑒SOC (%)
Δ𝑄

2% −0.00007 −0.00014 −0.00020 −0.00027
5% −0.00017 −0.00033 −0.00050 −0.00066
10% −0.00032 −0.00063 −0.00095 −0.0013
20% −0.00058 −0.00116 −0.00174 −0.00231

Δ𝑅total

2% 0.3375 0.6750 1.013 1.350
5% 0.8438 1.688 2.531 3.375
10% 1.688 3.375 5.063 6.750
20% 3.375 6.750 10.13 13.50
30% 5.063 10.13 15.19 20.25
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Figure 2: SOC estimation transient error with different polarization
resistance error under DST condition with two cycles.

error reaches one-thousandth over aging. Therefore, the
OCV-SOC curve has a great influence on SOC estimation
error and the accurate measurement of OCV is very helpful
to reduce the estimation error. Besides, the effect degree of
total internal resistance error on estimation is following and
the error of capacity is affected the least, while as charging
and discharging current rates get large, SOC estimation error
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Figure 3: SOC estimation steady-state error with different resis-
tance error under DST condition.

caused by these two factors will become larger and the impact
of total internal resistance error is especially marked. Based
on the quantitative calculation and analysis above, we can see
it is of profound significance for SOC estimation to improve
the accuracy of model parameters.

3. Battery Pack SOC Estimation

3.1. The Proposed SOC Estimation Method for a Battery Pack.
The group SOC estimation method adopted in this paper
is listed in Figure 4. The battery model parameters of each
cell are obtained by online identification. SOC of each cell
is estimated with PI observer estimation combined ampere
hour integration method; then group SOC can be calculated
according to the SOC pack model.

3.2. Online Update of Battery Model Parameters. With the
increase of actual use time of the battery and the change in
temperature of the environment, battery model parameters
like the internal resistance and OCV-SOC curve will also
change. In practice, if battery model parameters are not
updated, it will bring battery model error and lead to
SOC estimation error furtherly. To deal with this problem,
the recursive least square method will be employed for
online battery model parameters identification. Achievement
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Figure 4: The proposed group SOC estimation method.

of real-time update reduces parameter error and thereby
increases the SOC estimation accuracy. Principle of recursive
least square method is explained in [17]. For a given system
𝑦 = 𝜑 ⋅ 𝜃, where 𝑦 denote the output vector and 𝜑 and 𝜃
denote the data matrix and the parameter vector, separately.
The implementation process is as follows:

𝑈
𝑜
= 𝑈
𝑜𝑐
+ 𝐼𝑅
𝑜
+ 𝑈
𝑝
,

�̇�
𝑜
= �̇�
𝑜𝑐
+ ̇𝐼𝑅
𝑜
+ �̇�
𝑝
,

�̇�
𝑝
=
𝐼

𝐶
𝑝

+
−𝑈
𝑝

𝑅
𝑝
𝐶
𝑝

,

(13)

𝑈
𝑜,𝑘
− 𝑈
𝑜,𝑘−1

= (𝐼
𝑘
− 𝐼
𝑘−1
) ⋅ 𝑅
𝑜
+ 𝑇

⋅ (
𝐼
𝑘

𝐶
𝑝

−
𝑈
𝑜,𝑘
− 𝑈
𝑜𝑐,𝑘

− 𝐼
𝑘
𝑅
𝑜

𝑅
𝑝
𝐶
𝑝

) ,
(14)

(1 +
𝑇

𝑅
𝑝
𝐶
𝑝

)𝑈
𝑜,𝑘
= 𝑈
𝑜,𝑘−1

+ (𝑅
𝑜
+
𝑇

𝐶
𝑝

+
𝑇 ⋅ 𝑅
𝑜

𝑅
𝑝
𝐶
𝑝

)

⋅ 𝐼
𝑘
− 𝐼
𝑘−1

⋅ 𝑅
𝑜
+

𝑉
𝑜𝑐

𝑅
𝑝
𝐶
𝑝

𝑇,

(15)

𝑈
𝑜,𝑘
=

𝑅
𝑝
𝐶
𝑝

𝑅
𝑝
𝐶
𝑝
+ 𝑇

𝑈
𝑜,𝑘−1

+
𝑅
𝑜
𝑅
𝑝
𝐶
𝑝
+ 𝑇 (𝑅

𝑜
+ 𝑅
𝑝
)

𝑅
𝑝
𝐶
𝑝
+ 𝑇

𝐼
𝑘

−
𝑅
𝑜
𝑅
𝑝
𝐶
𝑝

𝑅
𝑝
𝐶
𝑝
+ 𝑇

𝐼
𝑘−1

+
𝑈
𝑜𝑐,𝑘

𝑅
𝑝
𝐶
𝑝
+ 𝑇

𝑇,

(16)

𝑈
𝑜,𝑘
= 𝜃
1
⋅ 𝑈
𝑜,𝑘−1

+ 𝜃
2
⋅ 𝐼
𝑘
+ 𝜃
3
⋅ 𝐼
𝑘−1

+ 𝜃
4
,

(17)

𝜑
𝑘
= [𝑈𝑜,𝑘−1 𝐼𝑘 𝐼𝑘−1 1] ,

𝜃
𝑘
= [𝜃1 𝜃2 𝜃3 𝜃4]

𝑇

.

(18)

Formula (13) describes the fundamental circuit relation-
ship of first-order RC battery model. In formulas (14)–
(16), 𝑇 is sampling interval, as 𝑇 is very small, so 𝑈

𝑜𝑐,𝑘
≈

𝑈
𝑜𝑐,𝑘−1

, and resistance and capacity can be deduced by (18).
Besides, traditional piecewise linear function relationship
between SOC and OCV cannot be identified online over the
whole range of SOC. Moreover, as open circuit voltage keeps
strictly monotone increasing relationship with SOC, thus we
refer to the new SOC-OCV functional model expressed in
formula (19) which is proposed in [18]. Besides, this function
model also applies to Li(NiCoMn)O

2
batteries; therefore, it

is reasonable to adopt this model for online identification
of open circuit curve. Take the SOC definition into formula
(20) and assume 𝑠(0) = 0. Supposing that resistance and
capacitance have been obtained through RLS identification
and (20) may take formula (19) then coefficient of OCV
function may be obtained through recursive least square
method. Formula (21) also clarifies the fundamental circuit
relationship of first-order RC battery model and formula (22)
is the discretization of formula (21). The detailed solution
procedure is as formula (22) to formula (25). Consider

𝑈
𝑜𝑐
= 𝑎 + 𝑏 ⋅ (− ln 𝑠)2.1 + 𝑐 ⋅ 𝑠 + 𝑑 ⋅ 𝑒𝑠 (𝑠 = SOC) , (19)

𝑠 (𝑡) = 𝑠 (0) +
∫ 𝑖 𝑑𝑡

𝑄
= 𝑠 (0) +

𝑞 (𝑡)

𝑄
, (20)

𝑈
𝑜
− 𝐼𝑅
𝑜
= 𝑈
1
= 𝑈
𝑜𝑐
+ 𝑈
𝑝
,

�̇�
𝑝
= −

𝑈
𝑝

𝑅
𝑝
𝐶
𝑝

+
𝐼

𝐶
𝑝

,

�̇�
1
= �̇�
𝑝
+ �̇�
𝑜𝑐
= �̇�
𝑜𝑐
−
𝑈
1
− 𝑈
𝑜𝑐

𝑅
𝑝
𝐶
𝑝

+
𝐼

𝐶
𝑝

,

(21)

𝑈
1,𝑘
− 𝑈
1,𝑘−1

𝑇
=
𝑈
𝑜𝑐,𝑘

− 𝑈
𝑜𝑐,𝑘−1

𝑇
+
𝐼
𝑘

𝐶
𝑝

−
𝑈
1,𝑘
− 𝑈
𝑜𝑐,𝑘

𝑅
𝑝
𝐶
𝑝

, (22)
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Figure 5: SOC estimation results before and after correction of the internal resistance.

𝑈
1,𝑘
− 𝑈
1,𝑘−1

+
𝑇 ⋅ 𝑈
1,𝑘

𝑅
𝑝
𝐶
𝑝

= 𝑈
𝑜𝑐,𝑘

+
𝑇 ⋅ 𝑈
𝑜𝑐,𝑘

𝑅
𝑝
𝐶
𝑝

− 𝑈
𝑜𝑐,𝑘−1

+ 𝑇 ⋅
𝐼
𝑘

𝐶
𝑝

,

(23)

𝑈
1,𝑘

=
𝑅
𝑝
𝐶
𝑝

𝑅
𝑝
𝐶
𝑝
+ 𝑇

⋅ 𝑈
1,𝑘−1

+
𝑇 ⋅ 𝑅
𝑝

𝑅
𝑝
𝐶
𝑝
+ 𝑇

⋅ 𝐼
𝑘
+ 𝑏

⋅ [(− ln
𝑞
𝑘

𝑄
)

2.1

− (− ln
𝑞
𝑘−1

𝑄
)

2.1

] +
𝑐

𝑄

⋅ (𝑞
𝑘
− 𝑞
𝑘−1
) + 𝑑 ⋅ (𝑒

𝑞𝑘/𝑄 − 𝑒
𝑞𝑘−1/𝑄)

+
𝑇 ⋅ 𝑎

𝑅
𝑝
𝐶
𝑝
+ 𝑇

,

(24)

𝑈
1,𝑘

= 𝜃
1
⋅ 𝑈
1,𝑘−1

+ 𝜃
2
⋅ 𝐼
𝑘
+ 𝜃
3

⋅ [(− ln
𝑞
𝑘

𝑄
)

2.1

− (− ln
𝑞
𝑘−1

𝑄
)

2.1

] + 𝜃
4

⋅ (𝑞
𝑘
− 𝑞
𝑘−1
) + 𝜃
5
⋅ (𝑒
𝑞𝑘/𝑄 − 𝑒

𝑞𝑘−1/𝑄) + 𝜃
6
.

(25)

Considering the real situation that the battery gets old
but model parameters are not updated timely, simulation
results before and after the parameter correction will be pre-
sented in following figures to validate the theoretical results.
Comparison of two estimation results which only update the
OCV-SOC curve but do not change the internal resistance of
aged battery under CCCV charging mode at 25∘C is shown
in Figure 5. It can be observed that SOC error with uncor-
rected, namely, not updated, internal resistance is larger and

the maximum error reaches about 6%. However, SOC esti-
mation error is greatly reduced and the maximum error
is within 1.5% after parameter correction. On the contrary,
Figure 6 presents comparison results for the same battery in
which only OCV-SOC curves are amended. Maximum error
reduces from 3.5% to 1% and the average error gets smaller.
Comparing Figures 5 and 6, the resistance error has greater
impact on SOC estimation precision in this case due to extent
of change on battery resistance and OCV caused by aging is
different. Simulation validation results at different tempera-
tures can get similar conclusions and all results will not be
enumerated here. All these verify the conclusion that accu-
racy of themodel parameters can improve the precision of the
SOC estimation.

4. Validation and Discussions

4.1. Hardware-in-Loop Experimental Platform. The real-time
current/voltage acquisition experimental platform is illus-
trated in Figure 7. Arbin BTS2000 is the charger to charge/
discharge the battery and the battery is laid in the ther-
mostat to maintain constant temperature. BMS includes
current/voltage acquisition board and CAN-TCP conversion
card. The computer is a monitor to control the experiments,
obtaining voltage/current data from sampling board, and
carry out the simulation under MATLAB/Simulink. Sam-
pling frequency of the voltage acquisition board is less than
30ms, voltage sampling error is less than 10mV, and current
sampling precision is less than 1%. The interface between
acquisition board and external communication is CAN buses
and CAN-TCP conversion card is added to receive the CAN
bus data frame. The S-function module is utilized to call the
CAN-TCP conversion card driver program and return cur-
rent/voltage data to Simulink space. Besides, real-time sync
module is used for synchronizing the simulation clock with
real-time clock. All modules in platform work together to
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Figure 6: SOC estimation results before and after the correction of the OCV-SOC curve.
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Figure 7: Experimental platform.

ensure that the current and voltage data flows into the
simulation space and online real-time simulation is achieved
eventually.

4.2. Experimental Results and Discussions. We take two
series-connected Li(NiCoMn)O

2
batteries with the capacity

of 28Ah as test objects. Considering that online identification
results of battery model parameters may lead to relatively
larger model error when at lower SOC, which leads to SOC
estimation error based on PI observer method increases at
low SOC, therefore, PI observer and ampere hour integration

method are combined to obtain SOC for a battery pack.
Besides, this combination also reduces computation cost to
some extent. The transforming SOC value from PI observer
to ampere hour integration method can be decided by the
practical experience. For batterymodel, resistance and capac-
itor parameters can be obtained under a certain SOC. We
can get some regular patterns that these battery parameters
have fluctuation change under low SOC, and there would be
some SOC value that can be defined as transforming SOC
value.During discharging of the battery, when estimated SOC
value based on PI observer is above 40%, we take the observer
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Figure 8: Real-time SOC estimation results under BJDST condition at different temperature.

estimation value as SOC output; however, as it is below 40%,
ampere hour integration value with the initial value of 40%
will be regarded as the SOC output. Figures 8 and 9 are SOC
estimation results with this method under different temper-
ature, dynamic working conditions, and initial SOC value,
respectively.

Because the low temperaturewill have a greater impact on
characteristics of batteries, we choose low temperature 10∘C
and room temperature 25∘C to do comparison and verifi-
cation experiments. Figure 8 shows SOC online estimation
results under BJDST current conditions at 25∘C and 10∘C,
respectively. Figures 8(b) and 8(d) are corresponding error
curves. As shown in Figure 8, maximum estimation error is
within 5% and average error is 2%. Besides, SOC error is
relatively higher at 10∘Cbecause of low temperature influence.
On the whole, this combination method notably increases
estimation precision during thewhole SOC interval. SOC cal-
culation results with 10% and 30% divergences of SOC initial
value between two cells are described in Figures 9(a) and 9(c)
separately. Figures 9(b) and 9(d) are also corresponding error

curves. It is noted that this combination method proposed in
the paper is also applicable to the case with inconsistencies
between the cells in a battery pack. Additionally, the precision
is within 3%; thus this method is reliable.

5. Conclusions

Recognizing that SOC estimation is affected by battery
model parameters, temperature, operation conditions, and
cell inconsistency, the estimation error sensitivity for model
parameters is firstly qualified and analyzed, concluding
that the SOC estimation error resulting from the internal
resistance inaccuracy will be enlarged as charge/discharge
current increase; the effect of polarization capacity on SOC
estimation can be neglected since it is involved with transient
error, and the SOC-OCV mapping is the most crucial func-
tion in SOC estimation. The SOC estimation method for a
lithium-ion battery pack taking error sensitivity analysis and
cell inconsistency into consideration is developed, and the
recursive parameters update method is also presented. Using
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Figure 9: Real-time SOC estimation results under DST condition at 25∘C with different SOC initial value.

the hardware-in-loop simulation platform, the experimental
results at various dynamic test conditions, temperatures, and
initial SOC difference between two cells demonstrate that the
estimation error can be controlled within 4%, verifying the
efficacy of the proposed method.
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This paper deals with the problems of “explosion of term,” uncertain parameter in static synchronous compensator (STATCOM)
system with nonlinear time-delay. An improved adaptive controller is proposed to enhance the transient stability of system states
and reduce computational complexity of STATCOM control system. In contrast to backstepping control scheme in high order
systems, the problem of “explosion of term” is avoided by designing dynamic surface controller. The low pass filter is included
to allow a design where the model is not differentiated and thus has prevented the mathematical complexities effectively. In
addition, unlike the traditional adaptive control schemes, the certainty equivalence principle is not required for estimating the
uncertain parameter by system immersion and manifold invariant (I&I) adaptive control. A smooth function is added to ensure
that the estimation error converges to zero in finite time.The effectiveness of the proposed controller is verified by the simulations.
Compared with adaptive backstepping and proportion integration differentiation (PID), the oscillation amplitudes of transient
response are reduced by nearly half, and the time of reaching steady state is shortened by at least 11%.

1. Introduction

As amember of flexible alternate current transmission system
(FACTS), static synchronous compensator (STATCOM) is
being widely used to compensate the reactive power with
fast response time by generating or absorbing reactive power
continuously in a power system [1–3]. Particularly in sus-
tainable transportation systems, the STATCOM can also be
used, such as energy storage [4], renewables integration [5],
synergy between electric vehicles, and power systems [6]. It
is an effective way of reducing voltage flicker emissions at
the point of common coupling (PCC), removing the external
fluctuations, and improving the transient stability of system
states. However, as dealing with the real STATCOM control
problem, the designers are unavoidably to face the difficulties
involving uncertain parameter, nonlinear time delay, and
complex mathematical models. The nonlinear time-delay is
caused by smoothing the harmonic currents and harmonic
voltage by using the digital filtering, calculatingmean value of
each DC voltage and transmitting to protection control unit.

The time-delay ranges from 0.01 s to 0.04 s. Furthermore,
the damping coefficient is difficult to measure accurately in
practice, which can be seen as uncertain parameter. Last
but most important, since the mathematical modeling is
more complicated, the computing complexity is improved
significantly in designing STATCOM controller. Therefore, it
is a hotspot to study an advanced, reliable, and low complex
nonlinear control scheme for STATCOM.

Recently, adaptive backstepping control has been shown
as an effective scheme to design STATCOM controllers
while keeping better performance [7, 8]. This method is
a vast of research, which is adapted by some intelligent
methods, for example, least-squares estimation [9] and var-
ious kalman filtering approaches [10–12]. Some STATCOM
controllers are designed by using backstepping technique
involving the nonlinear robust control law and a new esti-
mator to estimate the uncertain parameters [13–15]. However,
in the real STATCOM system, nonlinear time-delay is an
important factor that these adaptive backstepping schemes
did not include. Moreover, the adaptive backstepping is

Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2015, Article ID 746903, 9 pages
http://dx.doi.org/10.1155/2015/746903

http://dx.doi.org/10.1155/2015/746903


2 Mathematical Problems in Engineering

flawed with two shortcomings. Frist, the strong coupling
between state variables and estimation errors existed in
constructing the control Lyapunov function (CLF) for esti-
mating the uncertain parameter. If the estimator is fixed,
the estimation error will be accumulated and the error
of coupling term will in turn be accumulated as running
time increases [16]. Second, backstepping technique involves
model differentiation in STATCOM control system and
thus has suffered the “explosion of term.” So the com-
putational processes of nonlinear controller leads to high
complexity.

The method named the system immersion and manifold
invariant (I&I) adaptive control is developed in [17]. Since the
knowledge of the CLF is not required by this method, the
problem of the oscillation of states caused by the coupling
between state variables and estimation error can be avoided.
It has been proved that transient stability of the system
can be guaranteed even if estimators reach the limit of its
capacity [14]. Therefore, for nonlinear STATCOM system in
adaptive law design, this I&I adaptive control can be adopted
to estimate uncertain parameter by designing a smooth
function to offset the estimation error. Moreover, the stability
and the convergence of the adaptive law are achieved by
requiring the estimation error to converge to zero in the finite
time.

To overcome the “explosion of term” caused by adaptive
backstepping control, the method called dynamic surface
control was developed to simplify the controller designwhere
model differentiation can be avoided in higher systems [18].
The low pass filters are included to allow a design where the
model is not differentiated, at the same time, avoiding the
high computing complexity caused by the “explosion of term.”
For a class of pure-feedback nonlinear systems, the problem
explosion of complexity has been solved by using the dynamic
surface technique in [19]. Moreover, semiglobal uniform
ultimate boundedness of all signals is guaranteed in the
closed-loop system. However, the dynamic surface control
cannot be applied to nonlinear STATCOM systems with
uncertain parameter; it also did not consider the problem of
nonlinear time delay.

In this paper, an improved adaptive controller is proposed
to improve stability of STATCOM system by simultane-
ously addressing the problems involving “explosion of term,”
uncertain parameter, and nonlinear time-delay. The low pass
filters are included to allow a design where the model is
not differentiated based on dynamic surface control, at the
same time, avoiding the “explosion of term” caused by model
differentiation. Furthermore, based on the I&I adaptive
control, the existing uncertain parameter is estimated in
adaptive law design. The designed adaptive law can ensure
that the estimation error converges to zero in finite time.
Moreover, the nonnegative time-delay function is introduced
to overcome the effect of nonlinear time delay and achieve
the best possible control performance. It is proved that all
the state variables are globally bounded and converge to
the equilibrium points by using the proposed controller.
The simulation results show that transient stability and the
convergence speed of the system state variables are improved
effectively by the proposed controller.

G T

STATCOM

Inverter

X1
X2

VS

Figure 1: STATCOM single machine infinite system model.

2. System Model and Control Objective

Consider the single-machine infinite-bus system with STAT-
COM shown in Figure 1 [20], where 𝐺 is the alternating
current generator and 𝑇 is the transformer.

It is clearly shown that the STATCOM is installed on the
grid, which can instantly and continuously provide variable
reactive power in response to voltage transients, supporting
the stability of grid voltage.

Its mathematical equivalent system dynamic model can
be expressed in (1) by the following nonlinear differential
equations:
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(1)

where 𝑑 is delay time and the three state variables are
generator rotor angle 𝛿, generator rotor angular speed 𝜔, and
reactive current 𝐼

𝑞
where transient responses will be tracked.

It is noted that the vector [𝛿
0
, 𝜔
0
, 𝐼
𝑞0
]
𝑇 is the steady-state

operating point. This implies that the steady operation point
is the desired value or objective value [20, 21].The parameters
in (1) are expressed in Appendix A.

To simplify model (1), three state variables are redefined
as 𝑥
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− 𝑘
2
sin (𝛿
0
+ 𝑥
1
) [1 + 𝑓 (𝑥

1
) (𝑥
3
+ 𝐼
𝑞0
)] ,

�̇�
3
= 𝑘
3
(−𝑥
3
(𝑡 − 𝑑) + 𝑢

𝐵
) ,

(2)

where

𝑓 (𝑥
1
)

=
𝑋
1
𝑋
2

√(𝑋
2
𝐸
𝑞
)
2

+ (𝑋
1
𝑉
𝑆
)
2
+ 2𝑋
1
𝑋
2
𝐸
𝑞
𝑉
𝑆
cos (𝑥

1
+ 𝛿
0
)

,

𝑘
1
=
𝜔
0

𝐻
,

𝑘
2
=

𝜔
0
𝐸


𝑞
𝑉
𝑆

𝐻(𝑋
1
+ 𝑋
2
)
,

𝑘
3
=

1

𝑇
𝑞

.

(3)

The damping coefficient 𝐷 cannot be measured accu-
rately in STATCOM system and the inertia 𝐻 is a constant.
Therefore, the expression 𝜃 = −𝐷/𝐻 is also the uncertain
parameter.

The objective of designing STATCOM controller is to
guarantee that all the state variables are globally bounded and
converge to the desired points. This implies that generator
rotor angle, generator rotor angular speed, and reactive
current of the STATCOM can be adjusted to the equilibriums
in the finite time.

3. Design of STATCOM Controller

Three are three sections to introduce our proposed controller
in designing robust controller. In Section 3.1, I&I adaptive
control is adopted for designing adaptive law. In Section 3.2,
dynamic surface control is used for designing control law.
In Section 3.3, the stability of STATCOM control system is
verified.

3.1. Design of the Adaptive Law. The method I&I adaptive
control can be adopted to the estimate uncertain parameter
with the adaptive law design. By adopting this method, the
uncertain parameter is estimated in the following steps.

Define a manifold as

𝑒
𝜃
= 𝜃 − 𝜃 + 𝛽 (𝑥

1
, 𝑥
2
) , (4)

where 𝜃 is the uncertain parameter, 𝜃 is the estimation value
of 𝜃, and 𝛽(𝑥

1
, 𝑥
2
) is the smooth function to be designed.The

derivative of (4) is

̇𝑒
𝜃
=

̇̂
𝜃 +

2

∑

𝑘=1

𝜕𝛽

𝜕𝑥
𝑘

× �̇�
𝑘
=

̇̂
𝜃 +

𝜕𝛽

𝜕𝑥
1

𝑥
2
+

𝜕𝛽

𝜕𝑥
2

(𝜃𝑥
2
+ 𝑘
1
𝑃
𝑚

− 𝑘
2
sin (𝛿
0
+ 𝑥
1
) (1 + 𝑓 (𝑥

1
) (𝑥
3
+ 𝐼
𝑞0
))) .

(5)

In order to cancel the parameter-independent terms, ̇̂
𝜃 is

designed as

̇̂
𝜃 = −

𝜕𝛽

𝜕𝑥
1

𝑥
2
−

𝜕𝛽

𝜕𝑥
2

((𝜃 + 𝛽) 𝑥
2
+ 𝑘
1
𝑃
𝑚

⋅ −𝑘
2
sin (𝛿
0
+ 𝑥
1
) (1 + 𝑓 (𝑥

1
) (𝑥
3
+ 𝐼
𝑞0
))) .

(6)

Substituting (6) into (5), (5) can be rewritten as

̇𝑒
𝜃
= −

𝜕𝛽

𝜕𝑥
2

𝑒
𝜃
𝑥
2
. (7)

Lemma 1. Define a candidate Lyapunov function (CLF)

𝑉 (𝑒
𝜃
) =

1

2
𝑒
𝜃

2
. (8)

By selecting the smooth function 𝛽(𝑥
1
, 𝑥
2
), we have

lim
𝑡→∞

𝑒
𝜃
(𝑡) = 0.

Proof. Theoretically, we have large flexibility in selecting
𝛽(𝑥
1
, 𝑥
2
). For simplicity, we let 𝛽(𝑥

1
, 𝑥
2
) = (1/2)𝜌𝑥

2

2 with
𝜌 > 0.

�̇� (𝑒
𝜃
) = 𝑒
𝜃
̇𝑒
𝜃
= −

𝜕𝛽

𝜕𝑥
2

𝑒
𝜃

2
𝑥
2
= −𝑒
𝜃

2
𝑥
2

2
≤ 0. (9)

Since the derivative of the CLF (8) is negative semidefinite,
the manifold 𝑒

𝜃
can converge to zero in finite time based on

Lyapunov theorem. As a result, we have lim
𝑡→∞

𝑒
𝜃
(𝑡) = 0

Lemma 1 holds.

Remark 2. By using the designed smooth function, the
manifold 𝑒

𝜃
can converge to zero in finite time; that is

lim
𝑡→∞

𝑒
𝜃
(𝑡) = 0, based on Lyapunov stability theorem.

Therefore, based on the theory of immersion and manifold
invariant (I&I) adaptive control, the manifold 𝑒

𝜃
(𝑡) = 𝜃 −

𝜃 + 𝛽(𝑥
1
, 𝑥
2
) = 0 is invariant when lim

𝑡→∞
𝑒
𝜃
(𝑡) = 0, and

thus the parametric form manifold 𝐼
𝑒
= {(𝑥, 𝜃) ∈ 𝑅

3
× 𝑅
1
|

𝜃 − 𝜃 + 𝛽(𝑥
1
, 𝑥
2
) = 0} is invariant and attractive [9, 10].

3.2. Design of the Control Law. Based on dynamic surface
control, we can design control law (𝑢

𝐵
) in three steps.

Step 1. Error variables 𝑧
𝑖
(𝑖 = 1, 2, 3) can be defined as the

following:

𝑧
1
= 𝑥
1
,

𝑧
2
= 𝑥
2
− 𝑥
2

∗
,

𝑧
3
= 𝑥
3
− 𝑥
3

∗
,

(10)
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where 𝑥
1
, 𝑥
2
, and 𝑥

3
are the virtual controls and 𝑥

2

∗ and 𝑥
3

∗

are the stabilizing functions. The derivative of error variables
𝑧
𝑖
(𝑖 = 1, 2, 3) with (2) is

�̇�
1
= 𝑥
2
,

�̇�
2
= �̇�
2
− �̇�
2

∗

= 𝜃𝑥
2
+ 𝑘
1
𝑃
𝑚

− 𝑘
2
sin (𝛿
0
+ 𝑥
1
) (1 + 𝑓 (𝑥

1
) (𝑥
3
+ 𝐼
𝑞0
)) − �̇�

2

∗
,

�̇�
3
= �̇�
3
− �̇�
3

∗
= 𝑘
3
(−𝑥
3
(𝑡 − 𝑑) + 𝑢

𝐵
) − �̇�
3

∗
.

(11)

Choose the first CLF as

𝑉
1
=
1

2
𝑧
1

2
. (12)

The derivative of 𝑉
1
along with (12) is

�̇�
1
= 𝑧
1
𝑧
2
+ 𝑧
1
𝑥
2

∗
. (13)

Take the stabilizing function 𝑥
2

∗ as

𝑥
2

∗
= −𝑐
1
𝑥
1
, (14)

where 𝑐
1
is a nonnegative constant. It can be seen clearly that

�̇�
1
≤ 0 if 𝑧

2
= 0.

Step 2. The second energy storage function with respect to
Lyapunov function is

𝑉
2
=
1

2
𝑧
1

2
+
1

2
𝑧
2

2
. (15)

The derivative of 𝑉
2
is

�̇�
2
= 𝑧
1
�̇�
1
+ 𝑧
2
�̇�
2
. (16)

Substituting (11) and (14) into (16), the equation above is
manipulated as

�̇�
2
= 𝑧
1
�̇�
1
+ 𝑧
2
�̇�
2
= 𝑧
1
𝑧
2
− 𝑐
1
𝑧
1

2
+ 𝑧
2
(�̇�
2
− �̇�
2

∗
)

= 𝑧
1
𝑧
2
− 𝑐
1
𝑧
1

2
+ 𝑧
2
(�̇�
2
+ 𝑐
1
𝑧
2
− 𝑐
1

2
𝑧
1
) = (1 − 𝑐

1

2
)

⋅ 𝑧
1
𝑧
2
− 𝑐
1
𝑧
1

2
+ 𝑧
2
[𝜃𝑥
2
+ 𝑘
1
𝑃
𝑚

− 𝑘
2
sin (𝛿
0
+ 𝑥
1
) (1 + 𝑓 (𝑥

1
) (𝑥
3
+ 𝐼
𝑞0
)) + 𝑐
1
𝑧
2
] .

(17)

To guarantee this second-order subsystem satisfying Lya-
punov stability, the stabilizing function 𝑥

3

∗ must make (17)
satisfy the inequality that 𝑉

2
≤ 0. And then, 𝑥

3

∗ is

𝑥
3

∗

= (

(𝜃 + 𝛽) 𝑥
2
+ 𝑘
1
𝑃
𝑚
+ (1 − 𝑐

1

2
) 𝑧
1
+ 𝑐
1
𝑧
2
+ 𝑐
2
𝑧
2

𝑘
2
𝑓 (𝑥
1
) sin (𝛿

0
+ 𝑥
1
)

)

−
1

𝑓 (𝑥
1
)
− 𝐼
𝑞0
.

(18)

Remark 3. It would be a tremendous expansion of terms if
derivative of (18) is calculated.The problem of high computa-
tional complexity can be caused in the following control law
design by using backstepping control. The dynamic surface
control can be introduced to design the control law and solve
the problem of “explosion of term.”

The low pass filter 1/(𝜏𝑠 + 1) is included to design con-
trol law without model differentiation, which can avoid the
problem of “explosion of term” that has made other methods
difficult to implement in practice.

The stabilizing function 𝑥
3

∗ is the output of low-pass
filter, and the𝑥

3
is the input of low-pass filter.The relationship

between 𝑥
3

∗ and 𝑥
3
is

𝜏 (𝑥
3

∗
)

+ 𝑥
3

∗
= 𝑥
3
,

𝑥
3

∗
(0) = 𝑥

3 (0) .

(19)

From (19), we can obtain (𝑥
3

∗
)

= (𝑥
3
− 𝑥
3

∗
)/𝜏. The

filtering error can be defined as

𝑦 = 𝑥
3

∗
− 𝑥
3
. (20)

A CLF involving time-delay nonlinearity, error variables,
and filtering error is designed as

𝑉
3
=
1

2
𝑧
1

2
+
1

2
𝑧
2

2
+
1

2
𝑧
3

2
+
1

2
𝑦
2
+ ∫

𝑡

𝑡−𝑑

𝑞 (𝑥 (𝛼)) 𝑑𝛼, (21)

where 𝑞(𝑥(𝑡)) is a nonnegative function. We have the deriva-
tive of (21) being

�̇�
3
= 𝑧
1
�̇�
1
+ 𝑧
2
�̇�
2
+ 𝑧
3
�̇�
3
+ 𝑦�̇� + 𝑞 (𝑥 (𝑡))

− 𝑞 (𝑥 (𝑡 − 𝑑)) .

(22)

Substituting �̇�
3
= 𝑘
3
(−𝑥
3
(𝑡)+𝑢

𝐵
)−�̇�
3

∗, �̇� = (𝑥
3
−𝑥
∗

3
)/𝜏−

�̇�
3
= −𝑦/𝜏 + 𝐵

3
into (22), we can obtain

�̇�
3
= 𝑧
1
�̇�
1
+ 𝑧
2
�̇�
2
+ 𝑧
3
�̇�
3
+ 𝑦�̇� + 𝑞 (𝑥 (𝑡))

− 𝑞 (𝑥 (𝑡 − 𝑑)) = (1 − 𝑐
1

2
) 𝑧
1
𝑧
2
− 𝑐
1
𝑧
1

2
+ 𝑧
2
[𝜃𝑥
2

+ 𝑘
1
𝑃
𝑚
− 𝑘
2
sin (𝛿
0
+ 𝑥
1
) (1 + 𝑓 (𝑥

1
) (𝑥
3
+ 𝐼
𝑞0
))

+ 𝑐
1
𝑧
2
] + 𝑧
3
(𝑘
3
(−𝑥
3 (𝑡 − 𝑑) + 𝑢

𝐵
) − �̇�
3

∗
) + 𝑦 (

−𝑦

𝜏

+ 𝐵
3
) + 𝑞 (𝑥 (𝑡)) − 𝑞 (𝑥 (𝑡 − 𝑑)) ,

(23)

where 𝐵
3
= −�̇�
3
. Define ℎ(𝑥

3
(𝑡 − 𝑑)) = |𝑘

3
𝑥
3
(𝑡 − 𝑑)|, where

ℎ(𝑥
3
(𝑡−𝑑)) is a nonnegative time-delay functionwhich can be

compensated in the adaptive nonlinear controller design.The
nonnegative function can be defined as 𝑞(𝑥(𝑡)) = |𝑘

3
𝑧
3
𝑥
3
(𝑡)|,

which is a reduced form of satisfying Lyapunov stability, but
not the only form.

Based on Cauchy-Schwartz inequality theorem, a rela-
tional expression can be obtained

−𝑧
3
ℎ (𝑥
3
(𝑡 − 𝑑)) ≤

𝑘3𝑧3𝑥3 (𝑡 − 𝑑)


≤
𝑧3


𝑘3𝑥3 (𝑡 − 𝑑)

 .

(24)
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By 𝑞(𝑥(𝑡)) = |𝑘
3
𝑧
3
𝑥
3
(𝑡)|, we can get 𝑞(𝑥(𝑡 − 𝑑)) =

|𝑘
3
𝑧
3
𝑥
3
(𝑡 − 𝑑)|. Substituting 𝑞(𝑥(𝑡)), 𝑞(𝑥(𝑡 − 𝑑)) and (24) into

(23), we can obtain

�̇�
3
= 𝑧
1
�̇�
1
+ 𝑧
2
�̇�
2
+ 𝑧
3
�̇�
3
+ 𝑦�̇� + 𝑞 (𝑥 (𝑡))

− 𝑞 (𝑥 (𝑡 − 𝑑)) ≤ (1 − 𝑐
1

2
) 𝑧
1
𝑧
2
− 𝑐
1
𝑧
1

2
+ 𝑧
2
[𝜃𝑥
2

+ 𝑘
1
𝑃
𝑚
− 𝑘
2
sin (𝛿
0
+ 𝑥
1
) (1 + 𝑓 (𝑥

1
) (𝑥
3
+ 𝐼
𝑞0
))

+ 𝑐
1
𝑧
2
] + 𝑧
3
(𝑘
3
𝑢
𝐵
− �̇�
3

∗
) + 𝑦 (

−𝑦

𝜏
+ 𝐵
3
)

+
𝑘3𝑧3𝑥3 (𝑡)

 .

(25)

The control law is designed as

𝑢
𝐵
=

1

𝑘
3

�̇�
3

∗
−

𝑐
3

𝑘
3

𝑧
3
+ 𝜆

𝑥3 (𝑡)
 , (26)

where 𝑐
3
> 0, and 𝜆 is a sign function, which is defined as

𝜆 = −1 when 𝑧
3
> 0 and 𝜆 = 1 when 𝑧

3
< 0.

3.3. Proof of System Stability

Lemma 4. All of state variables of the closed-loop system are
bounded and converge to the equilibrium point, if 𝑉(0) ≤ 𝑝,
𝑝 > 0.

Proof. Let 𝑉 = (1/2)𝑧
1

2
+ (1/2)𝑧

2

2
+ (1/2)𝑧

3

2
+ (1/2)𝑦

2
= 𝑝,

𝐵
3
is bounded, which is denoted as 𝑀

3
, and then we have

𝐵
3

2
/𝑀
3

2
− 1 ≤ 0. Substituting (18) and (26) to (25), we can

obtain

�̇� = 𝑧
1
�̇�
1
+ 𝑧
2
�̇�
2
+ 𝑧
3
�̇�
3
+ 𝑦�̇�

≤ −𝑐
1
𝑧
1

2
− 𝑐
2
𝑧
2

2
− 𝑧
2
𝑥
2
𝑒
𝜃
− 𝑐
3
𝑧
3

2
+ 𝑦(

−𝑦

𝜏
+ 𝐵
3
) .

(27)

Based on Cauchy-Schwartz inequality theorem, (27) can
be rewritten as follows:

�̇� = 𝑧
1
�̇�
1
+ 𝑧
2
�̇�
2
+ 𝑧
3
�̇�
3
+ 𝑦�̇�

≤ −𝑐
1
𝑧
1

2
− 𝑐
2
𝑧
2

2
− 𝑧
2
𝑥
2
𝑒
𝜃
− 𝑐
2
𝑧
3

2
−
𝑦
2

𝜏
+
𝑦

𝐵3



≤ −𝑐
1
𝑧
1

2
− 𝑐
2
𝑧
2

2
− 𝑧
2
𝑥
2
𝑒
𝜃
− 𝑐
2
𝑧
3

2
−
𝑦
2

𝜏
+
1

2
𝐵
3

2
𝑦
2

+
1

2

= −𝑐
1
𝑧
1

2
− 𝑐
2
𝑧
2

2
− 𝑐
3
𝑧
3

2
− 𝑧
2
𝑥
2
𝑒
𝜃

+ (
1

2
𝐵
3

2
−
1

𝜏
) 𝑦
2
+
1

2
.

(28)

By designing 𝑐
1
≥ 𝑟, 𝑐
2
≥ 𝑟, 𝑐
3
≥ 𝑟, and 1/𝜏 ≥ (1/2)𝑀

3

2
+𝑟,

𝑟 ≥ 0, we can obtain

�̇� ≤ −𝑟𝑧
1

2
− 𝑟𝑧
2

2
− 𝑟𝑧
3

2
+ (

1

2
𝐵
3

2
−
𝑀
3

2

2
− 𝑟)𝑦

2

+
1

2
= −2𝑟𝑉 + (

𝑀
3

2𝑀
3

𝐵
3

2
−
𝑀
3

2

2
)𝑦
2
+
1

2

= −2𝑟𝑉 + (
𝐵
3

2

𝑀
3

− 1)
𝑀
3

2
𝑦
2

2
+
1

2
.

(29)

Substituting 𝑟 ≥ 1/4𝑝 into (29), (29) can be rewritten as

�̇� ≤ −2
1

4𝑝
𝑝 +

1

2
= 0. (30)

From (30), we have 𝑉(𝑡) ≤ 𝑝, if 𝑉(0) ≤ 𝑝, where 𝑡 ≥ 0.
Lemma 4 holds.

In addition, the convergence analysis is also given. From
(29), we can get

�̇� ≤ −2𝑟𝑉 +
1

2
. (31)

Solve this differential equation as

𝑉 ≤
1

4𝑟
+ (𝑉 (0) −

1

4𝑟
) 𝑒
−2𝑟𝑡

. (32)

If 𝑡 → ∞, 𝑉 → 1/4𝑟, and then we have 𝑉 → 1/4𝑟,
when 𝑟 → ∞. Furthermore, due to 1/𝜏 ≥ (1/2)𝑀

3

2
+1/2+𝑟,

we can obtain 𝑟 → ∞, when 𝜏 → 0. It is an important basis
for design of low pass filter 1/(𝜏𝑠 + 1).

4. Simulation Results and Discussion

In this section, the simulation model of adaptive nonlinear
controller has been established under theMATLAB/Simulink
environment for nonlinear STATCOM with nonlinear time-
delay. The parameters in (1) are given as follows.

Consider𝐻 = 8 s, 𝐸
𝑞
= 1.108 pu, 𝑃

𝑚
= 1.0 kw, 𝑉

𝑠
= 1 pu,

𝑋
1
= 0.84 pu,𝑋

2
= 0.52 pu, 𝑇

𝑞
= 0.03 s, 𝑝 = 2, 𝑐

1
= 1, 𝑐
2
= 1,

𝑐
3
= 1, and 𝑑 = 0.02 s, 0.04 s. The steady operation points are

given as 𝛿
0
= 57.1

∘, 𝜔
0
= 314.159 rad/s, 𝐼

0
= 0, and 𝑦(0) = 0.

The transient responses of the nonlinear STATCOM
system with time-delay are then discussed. A comparison
analysis with the conventional nonlinear controller is also
provided under the same conditions.

(1) Different Control Approaches. The comparison between
the proposed dynamic surface method for nonlinear STAT-
COM with time-delay based on system immersion and
manifold invariant methodology (DSMII) approach and
two approaches involving adaptive backstepping (AB) [21]
and proportion integration differentiation (PID) [22] were
investigated, when 𝑑 = 0.02 s.

Figures 2(a)–2(c) show the comparison between the
proposed controller and the two controllers when 𝑑 = 0.02 s.
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Figure 2: (a) Transient responses of rotor angle when 𝑑 = 0.02 s. (b) Transient responses of rotor angular speed when 𝑑 = 0.02 s. (c) Transient
responses of reactive current when 𝑑 = 0.02 s.

For the proposed controller, it can be clearly seen that the
convergences of transient responses trajectories are achieved
and the system tend to be stable state more rapidly after a
very short time. Taking Figure 2(c) for example, the transient
responses fluctuate fast and tend to be stable after 1.6 s ormore
under AB and PID. Instead, by using the proposed controller,
transient responses fluctuate more smoothly and converge to
stable state after 0.6 s, suggesting that the proposed controller
results in better system performance.

(2) Different Time Delay. Simulations of our proposed con-
troller are performed at 𝑑

1
= 0.02 and 𝑑

1
= 0.04, respectively.

In Figures 3(a)–3(c), we simulated the model in two
different delay times to investigate its influences. The tran-
sient trajectories depart from the initial state and fluctuate
strongly without an appropriate control. From the compar-
ison between Figures 2(a)–2(c) and Figures 3(a)–3(c), all
transient trajectories fluctuate faster, and system reaches the
stable state more quickly when 𝑑 = 0.02 s. Moreover, more

time is spent for the transient responses to converge to the
stable state when 𝑑 = 0.04 s. It is noted that the transient
trajectories fluctuate powerfully and cannot reach steady state
in finite time under AB. Consequently, the delay time 𝑑 is a
crucial nonlinear factor impacting the transient and steady
performance of the STATCOM system. A larger 𝑑 can result
in a poorer robustness and worse convergence. This result is
consistent with the theoretical analysis.

5. Conclusions

This paper presents an improved adaptive controller to
address the problems of “explosion of term” and uncertain
parameter in static synchronous compensator (STATCOM)
with nonlinear time delay. Improvements are achieved in
three aspects as follows.

(1) The uncertain parameter is estimated by I&I adaptive
control in designing adaptive law, which can ensure
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Figure 3: (a) Transient responses of rotor angle in different time delay. (b) Transient responses of rotor angular speed in different time delay.
(c) Transient responses of reactive current in different time delay.

that the estimation error converges to zero in finite
time.

(2) With regards to “explosion of term” caused by back-
stepping technology, a low pass filter is included to
allow a design where the model is not differentiated
by using dynamic surface control.

(3) Furthermore, the proposed method can add a non-
negative time-delay function to compensate the time-
delay term, which can avoid the influence of time-
delay term and achieve the best possible control
performance.

By comparing with some conventional controller, the
proposed controller has advantages in terms of enhancing
transient stability and reducing computational complexity.
Simulations results show that the proposed controller not
only is insensitive to time-delay term but also reduces the
convergence time and oscillation amplitude.

Appendices

A. Nomenclature

𝛿: Generator rotor angle
𝜔: Generator rotor angular speed
𝐼
𝑞
: Reactive current

𝑑: Time delay
𝑐: Adjustable parameter
𝑦: Output
𝐻: Inertia constant
𝐸


𝑞
: Transient electromotive force

𝑃
𝑚
: Mechanical power

𝐷: Damping coefficient
𝑋
1,2
: Equivalent impedance

𝑢
𝐵
: Equivalence input
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𝑇
𝑞
: Time constant

𝑉
𝑠
: Infinite bus voltage.

B. AB and PID Controller

The AB controller with the control law is

𝑢
𝐵
= 𝑥
3
+ 𝑇
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}

}

}

.

(B.1)

The parameters in simulations are given as follows.
𝐻 = 8 s, 𝐸

𝑞
= 1.108 pu, 𝑇

𝑞
= 0.03 s, 𝑐

1
= 2, 𝛾 = 0.2, 𝜌 = 2,

𝑞
1
= 0.4, 𝑞

2
= 0.6, 𝜎 = 1, 𝐸

𝑞
= 1.108 pu,𝑉

𝑠
= 1,𝑋

1
= 0.84 pu,

𝑋
2
= 0.52 pu, 𝛿

0
= 57.1

∘, 𝜔
0
= 314.159 rad/s, and 𝐼

0
= 0.

The PID controller with the control law is

𝑢
𝐵
= 𝑅 (𝑋) +

𝐻𝑋
Σ
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𝑇
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where

𝑅 (𝑋) =
𝑋
Σ

2
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(B.3)

The PID parameter is set as

[𝑘
𝑑
, 𝑘
𝑝
, 𝑘
𝑙
]
𝑇

= [1.3, 3.15, 4.2]
𝑇
. (B.4)

The parameters in simulations are given as follows: 𝐻 =

8 s, 𝐸
𝑞
= 1.108 pu, 𝑇

𝑞
= 0.03 s 𝑃

𝑚
= 1.0 kw, 𝑉

𝑠
= 1 pu, 𝑋

1
=

0.84 pu, 𝑋
2
= 0.52 pu, 𝛿

0
= 57.1

∘, 𝜔
0
= 314.159 rad/s, and

𝐼
0
= 0.
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Reinforcement learning (RL) has shown great potential for motorway ramp control, especially under the congestion caused by
incidents. However, existing applications limited to single-agent tasks and based on𝑄-learning have inherent drawbacks for dealing
with coordinated ramp control problems. For solving these problems, a Dyna-𝑄 based multiagent reinforcement learning (MARL)
system named Dyna-MARL has been developed in this paper. Dyna-𝑄 is an extension of 𝑄-learning, which combines model-
free and model-based methods to obtain benefits from both sides. The performance of Dyna-MARL is tested in a simulated
motorway segment in the UK with the real traffic data collected from AM peak hours. The test results compared with Isolated
RL and noncontrolled situations show that Dyna-MARL can achieve a superior performance on improving the traffic operation
with respect to increasing total throughput, reducing total travel time and CO

2
emission. Moreover, with a suitable coordination

strategy, Dyna-MARL can maintain a highly equitable motorway system by balancing the travel time of road users from different
on-ramps.

1. Introduction

Traffic congestion occurs when the traffic demand for a road
network approaches or exceeds its available road capacity.
Even slight losses of the balance between demand and
capacity on motorways can lead to long travel delays, high
energy consumptions, and severe environmental problems.
Therefore, how to alleviate traffic congestion and maintain
the demand-capacity balance has become one of the main
concerns of the transport community. To this end, a number
of traffic control devices, such as variable speed limit (VSL),
variable message sign (VMS), and ramp control systems, are
developed under the umbrella of intelligent transportation
systems (ITS). Among these advanced systems, ramp control
(also known as ramp metering) has been widely used and
proved to be an effective control method for different kinds
of congestion on motorways [1].

Generally, traffic congestion can be classified into two
categories: recurrent congestion and nonrecurrent conges-
tion. Recurrent congestion is caused by the daily traffic

operation with temporarily increased traffic demand in peak
hours [2]. Considering the daily peak traffic on motorways,
recurrent congestion is the main concern of many existing
ramp control systems. For instance, fixed-time systems (also
known as pretimed systems) use historical data collected
from daily peak hours to generate control strategies offline
and trigger these strategies at fixed times (e.g., morning or
evening peak hours) of each day [1]. Local traffic-responsive
systems such as demand-capacity method, ALINEA [3], and
its variations [4] can respond to the real-time traffic and
keep the outflow or road density of the motorway mainline
close to some target value (e.g., road capacity or critical
density). Usually, these target values should be defined in
advance according to the so-called fundamental diagram
which is derived from the daily traffic data. To deal with
network-wide problems, traffic-responsive systems have been
extended to coordinated ramp control systems, such as Flow
[5], System Wide Adaptive Ramp Metering (SWARM) [6],
and Zone algorithms [7]. Similar to local traffic-responsive
systems, these coordinated systems also attempt to make
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the outflow ofmotorwaymainline approach a predetermined
target value which is usually the road capacity. Another
group of systems focuses on formulating different control
scenarios as optimisation problems and using optimal control
techniques (e.g., model predictive control) to solve them.
The purpose of these systems is to maximise or minimise
an objective function, not to achieve some predefined target
value. Examples of these systems can be found in [8–12],
where macroscopic traffic flow models were combined with
control systems to formulate optimal control problems.

Although the aforementioned systems have shown their
effectiveness in different scenarios, recurrent congestion is
still themain focus of these systems and a component that can
deal with nonrecurrent congestion is not included in these
systems. Unlike recurrent congestion caused by the increased
traffic demand in peak hours, nonrecurrent congestion is
mainly induced by incidents, and thus, it is usually referred
to as incident-induced congestion [2, 13]. Traffic incidents
are nonrecurrent events such as road accidents, vehicle
breakdown, and unexpected obstacles that may block one or
more lanes of the motorway mainline. The temporary lane
blockage will interrupt the normal operation of traffic flow
and lead to a rapid reduction of road capacity [14]. In this
case, fixed-time and simple traffic-responsive systems, which
are dependent on the information collected from daily traffic
operation or a predefined target value, are not applicable.
Therefore, more sophisticated systems that can respond to
incidents are required. During the last decades, a series of
such kinds of ramp control systems have been designed,
most of which are based on optimisation techniques. For
example, an optimal control structure using a simple macro-
scopic traffic flow model was proposed in [15] to deal with
incident-induced congestion. A more complex system with
consideration of dynamic incident duration was developed
in [16] which can be solved by the linear programming
technique. In the research presented in [17, 18], both lane-
changing and queuing behaviour during the incident were
incorporated into a modelling structure and solved by a
stochastic optimal control system. Although these systems
are based on different technologies, they all need a model
to predict traffic conditions and use these predictions to
accomplish the control process.

Model-based methods usually have poor adaptability
when the mismatch between simulation models and the real
controlled environment emerges [19–21]. To overcome this
limitation, another optimisation-based method, reinforce-
ment learning (RL), was introduced to the ramp control area.
This method is based on theMarkov decision process (MDP)
and dynamic programming (DP), which can approximately
solve the optimisation problem through continuous learning
without any models. The first ramp control system using RL
to solve incident-induced problemswas developed in [19, 22].
The basic RL algorithm named 𝑄-learning was adopted by
this system to alleviate traffic congestion caused by incidents.
After this work, several𝑄-learning systems considering both
local (e.g., [23, 24]) and coordinated (e.g., [25, 26]) control
problems were proposed. However, 𝑄-learning can only
learn from real interactions with the traffic operation and
cannot make full use of historical data (or models). Because

of this limitation, 𝑄-learning usually has a low learning
speed and needs a great number of trials to obtain the best
control strategy in some complex scenarios, such as incident-
induced congestion [27]. This problem is even worse in
the coordinated ramp control problems with exponentially
increased state and action spaces, which will lead to the so-
called “curse of dimensionality” [28]. One solution to speed
up the learning process and deal with incidents efficiently has
been proposed in our previous work [27, 29]. This system
used the Dyna-𝑄 architecture to combine model-free 𝑄-
learning with a model-based method and can be used to
accomplish single-agent tasks.

In this paper, the previous single-agent system is extended
to a multiagent case that can deal with a network-wide
problem with multiple ramp controllers. We refer this system
to Dyna-MARL which adopts a multiagent RL (MARL)
strategy based on Dyna-𝑄 architecture.The rest of this paper
is organised as follows. Section 2 briefly introduces the basic
knowledge of RL including single-agent andmultiagent cases.
The architecture of Dyna-MARL is described in Section 3.
After that, Sections 4 and 5 give the detailed description of
the models, elements, and related algorithm of Dyna-MARL.
The simulation experiments and relevant results are discussed
in Section 6. Section 7 finally gives some conclusions and
introduces the future work.

2. Reinforcement Learning

RL is a subclass of machine learning. In the following
subsections, two kinds of RL problems, namely, single-agent
and multiagent RL, will be briefly introduced.

2.1. Single-Agent RL. The problem of single-agent RL is
usually defined as an MDP that can be represented by a
tuple (𝑆, 𝑃, 𝑅, 𝐶) [30]. 𝑆 is the state space used to describe the
external environment. 𝐶 is the control action set containing
executable actions of the agent. 𝑃 is the state transition
probability. For state pair (𝑠, 𝑠 ∈ 𝑆), 𝑃𝑐(𝑠, 𝑠) represents the
probability of reaching state 𝑠 after executing action 𝑐 at state
𝑠. 𝑅 : 𝑆 × 𝐶 → R is the reward function. 𝑅(𝑠, 𝑐) denotes the
immediate reward after taking action 𝑐 at state 𝑠. Based on
these definitions,𝑄 value is defined for each state-action pair
(𝑠, 𝑐) and shown below:

𝑄
𝜋
(𝑠, 𝑐)

= 𝐸{

∞

∑
𝑛=0

𝛾
𝑛
𝑅 (𝑠
𝑘+𝑛+1

, 𝑐
𝑘+𝑛+1

) | 𝑠
𝑘
= 𝑠, 𝑐

𝑘
= 𝑐} ,

(1)

where 𝑘 is the time index and 𝑛 is the number of time steps.
𝑠
𝑘
∈ 𝑆 and 𝑐𝑘 ∈ 𝐶 are the environment state and executed

control action at time step 𝑘, respectively. 𝛾 ∈ [0, 1] is
the discount factor which indicates the importance of the
following predicted rewards. For 𝛾𝑛, 𝑛 is the power. 𝜋 is the
policy corresponding to a sequence of actions. The optimal
policy can be obtained by maximising the 𝑄 value.

The most widely used algorithm in literature for esti-
mating the maximum 𝑄 value is 𝑄-learning [31]. By using
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the updating equation as given below, 𝑄-learning can max-
imise 𝑄 value for each state-action pair:

𝑄
𝑘+1
(𝑠
𝑘
, 𝑐
𝑘
) = 𝑄

𝑘
(𝑠
𝑘
, 𝑐
𝑘
) + 𝛼 [𝑅

𝑘
(𝑠
𝑘
, 𝑐
𝑘
)

+ 𝛾max
𝑐
𝑘+1

𝑄
𝑘
(𝑠
𝑘+1
, 𝑐
𝑘+1
) − 𝑄
𝑘
(𝑠
𝑘
, 𝑐
𝑘
)] ,

(2)

where 𝑄𝑘+1(𝑠𝑘, 𝑐𝑘) and 𝑄𝑘(𝑠𝑘, 𝑐𝑘) are the 𝑄 value for state-
action pair (𝑠𝑘, 𝑐𝑘) at the 𝑘+1th step and 𝑘th step, respectively,
and 𝑄𝑘(𝑠𝑘+1, 𝑐𝑘+1) is the 𝑄 value for the state-action pair
(𝑠
𝑘+1
, 𝑐
𝑘+1
) at the 𝑘th step. 𝛼 ∈ [0, 1] is the learning rate. 𝛾

and 𝛼 can be regulated according to different problems.

2.2. Multiagent Scenarios. In multiagent scenarios, an MDP
for single-agent case can be extended to a stochastic game
(SG) or Markov game, in which a group of agents try to
obtain some equilibrium solutions through coordination or
competition [28].

In the absence of competition, all agents involved in a
game have a common goal to maximise the global 𝑄 value,
which forms a coordinated MARL problem. In this case, the
policy optimisation is determined by actions executed by all
agents.

For solving a coordinated MARL problem, the update
equation (2) for 𝑄-learning can be easily extended to repre-
sent the global 𝑄 value update [28]:

𝑄
𝑘+1
(𝑠
𝑘
, 𝑐
𝑘

1
, . . . , 𝑐

𝑘

𝑛
) = 𝑄

𝑘
(𝑠
𝑘
, 𝑐
𝑘

1
, . . . , 𝑐

𝑘

𝑛
)

+ 𝛼 [𝑅
𝑘
(𝑠
𝑘
, 𝑐
𝑘

1
, . . . , 𝑐

𝑘

𝑛
)

+ 𝛾 max
𝑐
𝑘+1

1
,...,𝑐
𝑘+1
𝑛

𝑄
𝑘
(𝑠
𝑘+1
, 𝑐
𝑘+1

1
, . . . , 𝑐

𝑘+1

𝑛
)

− 𝑄
𝑘
(𝑠
𝑘
, 𝑐
𝑘

1
, . . . , 𝑐

𝑘

𝑛
)] .

(3)

The only difference with (2) is that𝑄 and 𝑅 in (3) relate to
𝑛 actions 𝑐

1
, . . . , 𝑐

𝑛
executed by 𝑛 agents rather than to a single

action 𝑐.

2.3. Solutions for Coordinated MARL. It can be seen from (3)
that as the number of agents grows, combinations of actions
and the resultant computational complexity are increased
exponentially, which may make the problem unsolvable
within a required time limit [28].Therefore, a commonly used
method is to decompose the global 𝑄 value to several local
𝑄 values, each of which can be maximised by a few relevant
agents rather than all agents [32]. Based on this distributed
method, several strategies have been proposed. In [28], these
strategies fall into three categories including coordination-
based, coordination-free, and indirect coordination strate-
gies.

Coordination-based strategies need local 𝑄 values to be
updated according to actions executed by all relevant agents

(named joint actions) at each time step [28]. The decision
making process of each agent is based on the information
received from all other related agents with sufficient com-
munication. This will complicate the problem. On the other
hand, coordination-free (or independent) strategies, such as
distributed 𝑄-leaning algorithm, make each agent update
the corresponding local 𝑄 values based on its own actions
[33].Therefore, each agent makes its decisions independently
without increasing computational complexity. However, this
computational efficiency is at the expense of nonguaranteed
convergence [32]. Indirect coordination strategies try to find
a balance between the above two methods. By applying
indirect strategies, each agent can maintain models for its
cooperative partners and update local 𝑄 values without
knowing all the information of other agents at each step [28].
Based on high-quality models, this method can reduce the
problem complexity and guarantee convergence with limited
coordination.

3. Dyna-𝑄 Based Indirect
Coordination Strategy

Because of the benefits introduced in the above section, the
indirect coordination strategy has been applied in [34] for
solving urban traffic control problems. In their work, each
agent maintains a model for estimating the action selection
probability of its neighbours and uses this information to
optimise control strategies. In this paper, we extend this
method to motorway systems by applying Dyna-𝑄 architec-
ture.

Under the Dyna-𝑄 architecture, a modified macroscopic
flow model named asymmetric cell transmission model
(ACTM) and𝑄-learning algorithm are combined together to
deal with coordinated MARL problems. In this section, the
application of Dyna-𝑄 will be introduced.

3.1. Dyna-𝑄 Architecture. Dyna-𝑄 architecture is an exten-
sion of standard 𝑄-learning that integrates planning, acting,
and learning together [30]. Unlike 𝑄-learning which learns
from the real experience without a model, Dyna-𝑄 learns
a model and uses this model to guide the agent [35]. After
capturing the real experience, two loops run to learn optimal
policies that can obtain the maximum 𝑄 value in Dyna-𝑄
architecture (see Figure 1).

In loop I, direct RL is the standard𝑄-leaning process that
can be used to interact with the real external environment.
Loop II contains two main tasks: (1) model learning is
used to improve the model accuracy through obtaining new
knowledge from real experience; (2) planning is the same
process of direct RL except that it is using the experience
generated by a model. Acting is the action execution process.

Applying a model, the agent can predict reactions of its
external environment and other agents before executing a
specific action, which provides an opportunity for agent to
update𝑄 value before receiving the real feedback. Simultane-
ously, direct RL is running to update the𝑄 value through the
real interaction.Therefore, optimal policy is learned through
both real experience and predictions. By using this strategy
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Figure 1: Dyna-𝑄 architecture.
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Figure 2: System architecture.

Dyna-𝑄 can learn faster than 𝑄-learning in many situations
[30].

Although a model is maintained in the Dyna-𝑄 archi-
tecture, the whole system is different from the model-based
control method such as model predictive control (MPC).
The model in Dyna-𝑄 architecture is a complementary
component, which is used to speed up the learning process
and simplify the coordination of agents. The optimal control
actions are learnt from both real and simulated experience.
Without models, the Dyna-𝑄 architecture is equivalent to
the 𝑄-learning technique and can still work as a model-free
system. MPC, on the other hand, is dependent on the model,
which means it cannot work without models. Therefore,
Dyna-𝑄 can be considered as a combination of model-free
and model-based method [27].

3.2. System Architecture. Each agent in the motorway control
system is designed on the basis of Dyna-𝑄 architecture which
controls one prespecified motorway section.

A simplified motorway segment is shown in Figure 2 for
analysis.This segment contains threemotorway sections (𝑖, 𝑖+
1, 𝑖 + 2)with detectors located at boundaries. Each motorway
section is divided into a number of cells (𝑗, 𝑗 + 1, . . . , 𝑗 + 8)
according to its layout and geometric features. Generally,
three kinds of cells exist in the motorway, such as on-ramp
cells that are linked with on-ramps (𝑗 + 2, 𝑗 + 5, 𝑗 + 8), off-
ramp cells linked with off-ramps (𝑗, 𝑗 + 1, 𝑗 + 6), and normal
cells (𝑗 + 1, 𝑗 + 4, 𝑗 + 7). In this paper, we define that each
motorway section can have at most one on-ramp cell.

The typical Dyna-𝑄 architecture presented in Figure 2 is
detailed for each agent here. Take agent 𝑖 + 1, for example;
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Figure 3: Fundamental diagram during the incident.

experience consists of traffic arrival and departure rates
observed from the detectors of motorway section 𝑖 + 1,
as well as the information received from agent 𝑖, which is
applied to improve models. In the model component, two
models are maintained. An asymmetric cell transmission
model (ACTM) with estimated traffic arrival and departure
rates is used to simulate the traffic flow dynamics in relevant
motorway sections. A probability model of action selection
of agent 𝑖 at the current state is updated for further planning
process.

To reduce the complexity of MARL, like many real
applications, some conventions are used to restrict the action
selection of an agent [28]. Specifically, in our design, each
agent only communicates with its spatial neighbours. For
instance, agent 𝑖 + 1 receives the control action and traffic
information from agent 𝑖 and sends its own information
to agent 𝑖 + 2. For the case shown in Figure 2, we assume
motorway section 𝑖 is the critical section where an incident
occurs. In this situation, agent 𝑖 plays a more important role
than other agents for dealing with incidents. Agent 𝑖 can
be considered as the chief controller that makes decisions
according to its own knowledge about the traffic and incident
situations. Other agents should regulate their control policies
based on the reaction of agent 𝑖.

Therefore, two 𝑄 values are defined for two kinds of
agents. Ifmotorway section 𝑖 is the critical section, the𝑄 value
of agent 𝑖 is only related to its own state and action space,
which can be updated by the same equation denoted by (2).

If motorway section 𝑖 is the normal section without
incidents, the 𝑄 value of agent 𝑖 can be calculated by

𝑄
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𝑖
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, 𝑐
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]

,
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| 𝑠
𝑘+1

𝑖
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count (𝑠𝑘+1
𝑖
, 𝑐
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𝑖−1
)

∑
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(4)

where 𝑅𝑘
𝑖
(𝑠
𝑘

𝑖
, 𝑐
𝑘

𝑖−1
, 𝑐
𝑘

𝑖
) is the immediate reward obtained by

agent 𝑖 at time step 𝑘, when actions 𝑐𝑘
𝑖−1
, 𝑐
𝑘

𝑖
are actions

executed by agent 𝑖 − 1 and 𝑖. Similarly, 𝑄𝑘+1
𝑖
(𝑠
𝑘

𝑖
, 𝑐
𝑘
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, 𝑐
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𝑘

𝑖
, 𝑐
𝑘

𝑖−1
, 𝑐
𝑘

𝑖
) are the 𝑄 values for agent 𝑖 at step 𝑘 + 1 and

step 𝑘, respectively. 𝐶
𝑖−1

is the action set of agent 𝑖 − 1.
count(𝑠𝑘+1

𝑖
, 𝑐
𝑘+1

𝑖−1
) returns the number of visits for state-action

pair (𝑠𝑘+1
𝑖
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) is the probability for

agent 𝑖 − 1 selecting action 𝑐𝑘+1
𝑖−1

at state 𝑠𝑘+1
𝑖

. Models and the
related symbols shown in Figure 2 will be specified in the
flowing section.

4. Modified Asymmetric Cell
Transmission Model

A first-order macroscopic traffic flow model named asym-
metric cell transmission model (ACTM) is applied as one of
the models in the Dyna-𝑄 architecture.This model is derived
from the widely used cell transmission model (CTM) [36]
and has been used for ramp control problems [11, 37]. In this
paper, we modify ACTM to incorporate the traffic dynamics
under incident conditions.

4.1. Traffic Dynamics during the Incident. As shown in
Figure 3(a), when an incident happens in the critical section,
one or more lanes of the motorway will be blocked according
to the incident extent. Because of the lane blockage, incident
may reduce the normal road capacity and spatial storage
space, which will produce a new relationship between traffic
flow and road density, that is, fundamental diagrampresented
in Figure 3(b). As suggested by [38], additional parameters
can be used to regulate fundamental diagram for incident sit-
uations. We introduce three parameters (𝜆

1
, 𝜆
2
, 𝜆
3
∈ [0, 1])

to reflect this new dynamics. These three parameters are
defined as 𝜆

1
= VIn
𝑗
/V
𝑗
, 𝜆
2
= 𝑤

In
𝑗
/𝑤
𝑗
, and 𝜆

3
= 𝑑

In,max
𝑗,main /𝑑

max
𝑗,main.

V
𝑗
and 𝑤

𝑗
are the free flow speed and congestion wave speed

of cell 𝑗. 𝑑max
𝑗,main is the maximum departure flow of cell 𝑗. VIn

𝑗
,

𝑤
In
𝑗
, and 𝑑In,max

𝑗,main are these three variables during the incident.
𝜌
𝑗,𝐶

and 𝜌In
𝑗,𝐶

are the critical densities for normal and incident
situations. 𝜌

𝑗,𝐽
and 𝜌In

𝑗,𝐽
are the jam densities for normal and

incident situations.
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4.2. Modified ACTM. Given three incident-related parame-
ters, the traffic dynamics in each cell can be derived from

the fundamental diagram illustrated in Figure 3(b) and rep-
resented by the following equations.

Departure rates of the mainline and on-ramp:

𝑑
𝑘

𝑗,main = min{𝜆
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, if 𝑗 is metered on-ramp cell,
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𝑗,main − 𝑞
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𝑗,main)

Δ𝑡
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, if 𝑗 is unmetered on-ramp cell.

(5)

Conservation of the mainline and on-ramp:

𝑞
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𝑗,main = 𝑞
𝑘

𝑗,main + Δ𝑡
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𝑞
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𝑘
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𝑘

𝑗,on − 𝑑
𝑘

𝑗,on) ,

(6)

where 𝑎𝑘
𝑗,main and 𝑑

𝑘

𝑗,main are the mainline arrival and depar-
ture rates for the cell 𝑗 at step 𝑘. 𝑎𝑘

𝑗,on and 𝑑𝑘
𝑗,on are the on-

ramp arrival and departure rates in cell 𝑗 at step 𝑘. 𝑑𝑘
𝑗,off is

the off-ramp departure rate for cell 𝑗 at step 𝑘 (if cell 𝑗 is
not an off-ramp cell, 𝑑𝑘

𝑗,off = 0). 𝑞
𝑘

𝑗,main represent the number
of vehicles on the mainline of cell 𝑗 at step 𝑘. 𝑞max

𝑗,main is the
maximumnumber of this value limited by themainline space
of cell 𝑗. Similarly, 𝑞𝑘

𝑗,on and 𝑞
max
𝑗,on denote the current (at step

𝑘) and maximum number of vehicles in the on-ramp of cell
𝑗, respectively. Δ𝑡 (min) is the time duration between each
two time steps. 𝑐𝑘

𝑖
is the metering rate for the on-ramp cell

of the 𝑖th motorway section at step 𝑘. 𝜂
𝑗
∈ [0, 1] is the flow

allocation parameter of cell 𝑗. 𝜃
𝑗
∈ [0, 1] is the flow blending

parameter of traffic flow from the on-ramp to the mainline
of cell 𝑗. The unit of all the arrival and departure rates is
modified to veh/min in this study.

For motorway section 𝑖 with 𝐽 cells, the number of
vehicles in the mainline can be calculated by 𝑞𝑘

𝑖,main =

∑
𝐽

𝑗=1
𝑞
𝑘

𝑗,main, while the number of vehicles in the on-ramp
of motorway section 𝑖 is presented by 𝑞𝑘

𝑖,on = 𝑞
𝑘

𝑗,on. In this
way, the maximum number of vehicles in the mainline and
on-ramp of motorway section 𝑖 is presented by 𝑞max

𝑖,main =

∑
𝐽

𝑗=1
𝑞
max
𝑗,main and 𝑞

max
𝑖,on = 𝑞

max
𝑗,on .

4.3. Estimation of Arrival and Departure Rates. Arrival rates
of the boundary cells in each motorway section (such as

𝑗 + 2, 𝑗 + 5, and 𝑗 + 8) and all the on-ramps, as well as the
departure rates of off-ramps, are inputs of the ACTM for each
planning step between two real control steps. Considering the
short time of planning process (10 steps), we assume these
rates can remain stable during the planning and are estimated
directly from the recent flow data collected from detectors.
The method described by Wang [16] is used here to do the
estimation, which simply averages themost recently observed
data to get the predicted flow rates. In our model, we use
the flow data collected from the last 𝑁 time steps (𝑁 = 5).
Therefore, these three rates can be calculated by

𝑎
𝑘,𝑘+1

𝑖,main = 𝑎
𝑘,𝑘+1

𝑗,main =
∑
𝑁−1

𝑛=0
𝑎
𝑘−𝑛

𝑗,main

𝑁
, if 𝑗 is the boundary cell,

𝑎
𝑘,𝑘+1

𝑖,on = 𝑎
𝑘,𝑘+1

𝑗,on =
∑
𝑁−1

𝑛=0
𝑎
𝑘−𝑛

𝑗,on

𝑁
, if 𝑗 is the on-ramp cell,

𝑑
𝑘,𝑘+1

𝑗,off =
∑
𝑁−1

𝑛=0
𝑑
𝑘−𝑛

𝑗,off

𝑁
, if 𝑗 is the off-ramp cell,

(7)

where 𝑎𝑘,𝑘+1
𝑗,main and 𝑎𝑘,𝑘+1

𝑗,on are the estimated arrival rates of
mainline and on-ramp of cell 𝑗 for the planning step between
real step 𝑘 and 𝑘+1. 𝑑𝑘,𝑘+1

𝑗,off is the estimated off-ramp departure
rate of cell 𝑗. If cell 𝑗 is the boundary cell of motorway section
𝑖, the arrival or departure rate of this cell is also the arrival or
departure rate of motorway section 𝑖.

5. Definition of RL Elements

Except for the architecture and models defined in Section 3,
three basic elements, environment state, control action, and
reward function, should be specified to form a RL problem.



Mathematical Problems in Engineering 7

This section details these three elements and the relevant
algorithm.

5.1. Environment State. Environment states of a motorway
section are composed of mainline states and on-ramp states.
The samemethodmentioned in [27, 29] is used here to obtain
the state space. Generally, for the mainline of motorway
section 𝑖, the number of vehicles ranges from 0 to the
maximum number 𝑞max

𝑖,main which is uniformly divided into
𝑛
𝑖
intervals. Each interval represents a state of the mainline.

Therefore, each mainline section can be represented by a
state set 𝑆

𝑖,main with 𝑛
𝑖
states. Similarly, on-ramp traffic is

represented by a state set 𝑆
𝑖,on with 𝑚

𝑖
states according to

the maximum number of vehicles 𝑞max
𝑖,on . 𝑛𝑖 and 𝑚𝑖 should

be adjusted for different motorway sections according to the
section length. In this way, if motorway section 𝑖 is the crit-
ical section, the external traffic environment is represented
by

𝑆
𝑖
= 𝑆
𝑖,main × 𝑆𝑖,on, 𝑠

𝑘

𝑖
∈ 𝑆
𝑖

(8)

which contains 𝑛
𝑖
⋅ 𝑚
𝑖
states. At each time step, a state 𝑠𝑘

𝑖
will

be selected from 𝑆
𝑖
as the environment state. If motorway

section 𝑖 is a normal section, state sets of its neighbour
agent should be incorporated.Thus, traffic state is represented
by

𝑆
𝑖
= 𝑆
𝑖,main × 𝑆𝑖,on × 𝑆𝑖−1,main × 𝑆𝑖−1,on, 𝑠

𝑘

𝑖
∈ 𝑆
𝑖

(9)

which contains 𝑛
𝑖
⋅ 𝑚
𝑖
⋅ 𝑛
𝑖−1
⋅ 𝑚
𝑖−1

states.

5.2. Control Action. In a ramp control problem, the aim of the
control action is to regulate the number of vehicles entering
mainline in each control step. Similar to [29], we adopt
flow control as the control action which can be presented
by an action set 𝐶 = {4, 6, 8, 10, 12, 14, 16, 18, 20} with 9
flow rates between the minimum (4 veh/min) and maximum
(20 veh/min) values.

Exploitation and exploration are two basic behaviours of
the RL agent. Exploitation means the agent takes the control
action that can get the most rewards from the previous
experience. Exploration instead means the agent tries new
actions with less rewards. In order to balance these two
behaviours, we use the 𝜀-greedy policy to select control
actions [30]. Specifically, this policy takes a random action
with probability 𝜀 and chooses the greedy action (with the
maximum𝑄 value)with probability 1−𝜀 for each control step.

The action selection probability can be formally expressed
as

𝑝 (𝑐
𝑘

𝑖
| 𝑠
𝑘

𝑖
)

=

{{

{{

{

1 − 𝜀, if 𝑐𝑘
𝑖
= arg max
𝑐
𝑘

𝑖

(𝑄
𝑘−1
(𝑠
𝑘

𝑖
, 𝑐
𝑘

𝑖
)) ,

𝜀, otherwise.

(10)

5.3. Reward Function. Reward function is used to calculate
the immediate reward after executing a specific action at each
time step, which guides the agent to achieve its objective.
Considering a common objective of traffic control system
(i.e., minimising total travel time), we define our reward to
guide the agent to minimise total time spent (TTS) through
learning process.

TTS is defined as the total time spent by vehicles in the
network during a period of time. For our case, TTS can be
obtained from the following equation:

TTS = Δ𝑡 ⋅
𝐾

∑

𝑘=0

(𝑞
𝑘

𝑖,main + 𝑞
𝑘

𝑖,on) . (11)

In the above equation, Δ𝑡 is a fixed value; therefore,
minimising TTS is equivalent to minimising the number of
vehicles on the network∑𝐾

𝑘=0
(𝑞
𝑘

𝑖,main +𝑞
𝑘

𝑖,on). To minimise this
value, the reward function defined here is composed of two
negative rewards used to indicate penalties for vehicles on the
mainline and on-ramp. The formal reward function at step 𝑘
is defined according to two situations.

(1) Motorway Section 𝑖 Is the Critical Section. Consider

𝑅
𝑘

𝑖
(𝑠
𝑘

𝑖
, 𝑐
𝑘

𝑖
)

=

{{{

{{{

{

−
𝑞
𝑘

𝑖,main + 𝑞
𝑘

𝑖,on

𝑞max
𝑖,main + 𝑞

max
𝑖,on

, if 𝑞𝑘
𝑖,main < 𝑞

max
𝑖,main, 𝑞

𝑘

𝑖,on < 𝑞
max
𝑖,on ,

−1, otherwise,

(12)

where 𝑅𝑘
𝑖
(𝑠
𝑘

𝑖
, 𝑐
𝑘

𝑖
) is the immediate reward for agent 𝑖 in state

𝑠
𝑘

𝑖
when executing action 𝑐𝑘

𝑖
at control step 𝑘. 𝑞max

𝑖,main and 𝑞
max
𝑖,on

are used to normalise the number of vehicles onmainline and
on-ramp, which guarantees that 𝑅𝑘

𝑖
(𝑠
𝑘

𝑖
, 𝑐
𝑘

𝑖
) ∈ [−1, 0].

(2) Motorway Section 𝑖 Is Not the Critical Section. Here a new
negative reward is introduced to maintain the system equity,
that is, to make sure that the on-ramp queues and related
travel times at different on-ramps should be close to each
other:

𝑅
𝑘

𝑖
(𝑠
𝑘

𝑖
, 𝑐
𝑘

𝑖−1
, 𝑐
𝑘

𝑖
) =

{{{{

{{{{

{

−
𝑞
𝑘

𝑖,main + 𝑞
𝑘

𝑖,on

𝑞max
𝑖,main + 𝑞

max
𝑖,on

−


𝑞
𝑘

𝑖,on − 𝑞
𝑘

𝑖−1,on


max (𝑞max
𝑖,on , 𝑞

max
𝑖−1,on)

, if 𝑞𝑘
𝑖,main < 𝑞

max
𝑖,main, 𝑞

𝑘

𝑖,on < 𝑞
max
𝑖,on ,

−2, otherwise.

(13)
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For each agent 𝑖 and episode do

𝐿 ← CEIL( IncidentDuration
Δ𝑡

)

IF 𝑖 is the critical section
Initialise 𝑅0

𝑖
(𝑠
𝑖
, 𝑐
𝑖
), 𝑄0
𝑖
(𝑠
𝑖
, 𝑐
𝑖
)

ELSE
Initialise 𝑅0

𝑖
(𝑠
𝑖
, 𝑐
𝑖−1
, 𝑐
𝑖
), 𝑄0
𝑖
(𝑠
𝑖
, 𝑐
𝑖−1
, 𝑐
𝑖
), 𝑃0
𝑖
(𝑠
𝑖
, 𝑐
𝑖−1
)

For each control step 𝑘 ∈ 𝐾 do (Loop I)
(i) get detected data from each cell 𝑗: 𝑎𝑘

𝑗,main, 𝑑
𝑘

𝑗,main, 𝑑
𝑘

𝑗,off , 𝑎
𝑘

𝑗,on, 𝑑
𝑘

𝑗,on
(ii) get state 𝑠𝑘

𝑖
through (8) and (9)

(iii) get action 𝑐𝑘
𝑖
by 𝜀-greedy policy (10)

(iv) get 𝑞𝑘
𝑗,main, 𝑞

𝑘

𝑗,on through (6) and do 𝑞𝑘
𝑖,main ← ∑

𝐽

𝑗=1
𝑞
𝑘

𝑗,main, 𝑞
𝑘

𝑖,on ← 𝑞
𝑘

𝑗,on
IF 𝑖 is the critical section
update 𝑅𝑘

𝑖
(𝑠
𝑘

𝑖
, 𝑐
𝑘

𝑖
), 𝑄𝑘
𝑖
(𝑠
𝑘

𝑖
, 𝑐
𝑘

𝑖
) through (2) and (12)

ELSE update 𝑅𝑘
𝑖
(𝑠
𝑘

𝑖
, 𝑐
𝑘

𝑖−1
, 𝑐
𝑘

𝑖
), 𝑄𝑘
𝑖
(𝑠
𝑘

𝑖
, 𝑐
𝑘

𝑖−1
, 𝑐
𝑘

𝑖
), 𝑝(𝑐𝑘
𝑖−1
| 𝑠
𝑘

𝑖
) through (4) and (13)

IF 𝑠𝑘
𝑖
= 𝑠

initial and 𝑘 + 1 ≥ 𝐿 end the algorithm
ELSE get 𝑎𝑘,𝑘+1

𝑖,main, 𝑎
𝑘,𝑘+1

𝑖,on , 𝑑𝑘,𝑘+1
𝑗,off by (7) and do 𝑙 ← 𝑘, 𝑠𝑙

𝑖
← 𝑠
𝑘

𝑖
, 𝑞𝑙
𝑗,main ← 𝑞

𝑘

𝑗,main, 𝑞
𝑙

𝑗,on ← 𝑞
𝑘

𝑗,on and start loop II
For each planning step 𝑙 ∈ 𝐿 do (Loop II)
(i) generate flow rates for each cell 𝑗: 𝑑𝑙

𝑗,main𝑑
𝑙

𝑗,on through (5)
(ii) get the state 𝑠𝑙

𝑖

(iii) get 𝑞𝑙
𝑗,main, 𝑞

𝑙

𝑗,on and do 𝑞𝑙
𝑖,main ← ∑

𝐽

𝑗=1
𝑞
𝑙

𝑗,main, 𝑞
𝑙

𝑖,on ← 𝑞
𝑙

𝑗,on
(iv) get action 𝑐𝑙

𝑖
by 𝜀-greedy policy

IF 𝑖 is the critical section
update 𝑅𝑙

𝑖
(𝑠
𝑙

𝑖
, 𝑐
𝑙

𝑖
), 𝑄𝑙
𝑖
(𝑠
𝑙

𝑖
, 𝑐
𝑙

𝑖
)

ELSE update 𝑅𝑙
𝑖
(𝑠
𝑙

𝑖
, 𝑐
𝑙

𝑖−1
, 𝑐
𝑙

𝑖
), 𝑄𝑙
𝑖
(𝑠
𝑙

𝑖
, 𝑐
𝑙

𝑖−1
, 𝑐
𝑙

𝑖
), 𝑝(𝑐𝑘
𝑖−1
| 𝑠
𝑘

𝑖
)

IF (𝑙 = 𝑘 + 9) or (𝑠𝑙
𝑖
= 𝑠

initial and 𝑙 + 1 ≥ 𝐿) go back to loop I
ELSE repeat loop II
EndFor

EndFor
EndFor

Algorithm 1: Algorithm for Dyna-MARL.

Compared to (12), a new term |𝑞
𝑘

𝑖,on − 𝑞
𝑘

𝑖−1,on|/
max(𝑞max

𝑖,on , 𝑞
max
𝑖−1,on) is added into (13), which is a penalty

for on-ramp queue difference in motorway section 𝑖 and
𝑖 − 1. As two adjacent agents cooperated in this situation,
𝑅
𝑘

𝑖
(𝑠
𝑘

𝑖
, 𝑐
𝑘

𝑖−1
, 𝑐
𝑘

𝑖
) is related to two control actions 𝑐𝑘

𝑖−1
and

𝑐
𝑘

𝑖
. max(⋅, ⋅) returns the maximum value of two given

parameters, which is used for normalisation.

5.4. Description of the Algorithm. Based on the Dyna-𝑄
architecture andRL elements defined in previous subsections,
an algorithm Dyna-MARL is developed and described in
this subsection. Two main loops corresponding to direct RL
and planning shown in Figure 1 are detailed in Dyna-MARL.
Between two real control steps in loop I, 10 planning steps
will be run in loop II. The pseudocode of Dyna-MARL can
be seen from Algorithm 1.

An episode in Dyna-MARL represents a control cycle
which starts from incident occurrence and terminates when
the traffic state returns to initial state 𝑠initial that is the traffic
state before the incident occurrence. Incident duration is
assumed to be known in advance.

6. Case Study and Results

One of the metered motorway segments (southbound direc-
tion) of M6 in the UK is chosen for the case study. This
segment is between junction 21A (J21A) and junction 25
(J25) with an approximate length of 12.4 km (see Figure 4).
Making the noncontrolled (NC) situation as the base line,
we designed a series of experiments to compare the pro-
posed Dyna-MARL algorithm with Isolated RL (𝑄-learning
without coordination). Experiments and relevant results are
described as follows.

6.1. Partitions of the Test Segment. The test motorway seg-
ment with a three-lane mainline, three metered on-ramps,
and five off-ramps is simulated by AIMSUN [39] which is
a microscopic traffic simulation package. According to the
detectors location and road layout, the whole segment is
divided into three sections. Each section contains a metered
on-ramp. Motorway section 3 is divided into 4 cells, and
motorway sections 2 and 3 are both divided into 3 cells.
The partitions of each section can be seen from Figure 5.
According to the section length, the maximum number of
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O1 (from A579)

Figure 4: Test motorway segment of M6.

J21A J22 J23 J25J24

D O

Section 1 Section 2 Section 3

1 1 1.1 1.8 1.51.51.5 1.3 1 1

1.3 1.6 0.7 1.72.10.74.3

Section boundary
Cell boundary

c b a

Road section length (unit: km)
Flow direction

D1 D2 D3 D4 D5O1 O2 O3

Figure 5: Partitions of test segment.

vehicles in each mainline section and on-ramps is as follows:
𝑞
max
1,main = 1860, 𝑞

max
2,main = 2880, 𝑞

max
3,main = 2880, 𝑞

max
1,on = 108,

𝑞
max
2,on = 90, and 𝑞

max
3,on = 120.

6.2. Real Data Source. Real detector data collected from 17
loop detectors located in the motorway segment (including
both mainline and on-/off-ramps) are used for case study,
which can be extracted from Traffic Information System
(HATRIS) [40]. These traffic count data are averaged from
April 2012 to March 2013 with 15-minute intervals. Only
working day data (from Monday to Friday) are used due to
the dramatic reduction of traffic load in weekends. Some of
the detector data collected frommainline and three on-ramps
are presented in Figure 6, from which we can see that two
peak periods including AM peak period (around 07:00:00–
09:00:00) and PM peak period (around 16:00:00–18:00:00)
exist during the daily traffic operation.

In the test site, ramp metering only works at peak hours.
Meanwhile, it is valuable to test the performance of the
proposed algorithm in the high demand situation. If it can
work under the high traffic load, it should be also useful for
common situations. Therefore, AM peak period with heavy
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Figure 6: Real averaged traffic data.

traffic load is considered for case study. Specifically, we use the
averaged traffic data during AM peak period collected from
TRADS to estimate O/D (origins and destinations) matrix
for the simulation. A model proposed in [41] is adopted by
AIMSUN to do the estimationwhere the number of iterations
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Table 1: O\Dmatrix estimated.

Origins\destinations D D5 D4 D3 D2 D1 Totals
O 2089 375 686 728 1169 771 5818
O3 875 65 212 193 117 46 1507
O
2

886 0 0 61 315 216 1477
O
1

824 0 0 0 292 226 1343
Totals 4675 440 898 981 1893 1258 10146

Table 2: Parameters for ACTM.

Parameter 𝑑
max
main V 𝑤 𝜃 𝜂 𝜆

1
𝜆
2
𝜆
3

Value 6300 veh/h 107 km/h 11.6 km/h 0.5 0.16 0.55 0.9 0.6

is set as 1000 to get convergence. Table 1 shows the O/D
matrix estimated from real traffic data.

6.3. Incident Scenarios. Considering the difficulty of captur-
ing real incident data, we simulate some incident scenarios
in AIMSUN. To make each ramp meter work during the
incident, the incident is located near the most downstream
motorway section, that is, motorway section 1. Therefore,
three incident scenarios A, B, andC are designed correspond-
ing to three different incident locations in a, b, and c (as
illustrated in Figure 5), respectively.

The simulation experiment lasts for one and a half hours
from 07:00:00 to 08:30:00 during AM peak period. After 30-
minute normal operation (for warm-up), the incident is trig-
gered at 07:30:00 and lasts for 30 minutes. In the preliminary
experiments designed in this paper, the incident with one
lane blocked is considered. Parameters introduced here can
also be regulated for multiple lane-blockage situations. The
incident extent is 50 meters which is assumed to be constant
during the incident.

Learning-related parameters are set as typical values [30];
that is, 𝛼 is 0.2, 𝛾 is 0.8, and 𝜀 is 0.1. Other parameters related
to ACTM are calibrated and summarised in Table 2. All the
cells have the same 𝜃 and 𝜂.

6.4. Results. The comparison of Dyna-MARL, Isolated RL,
and NC is conducted from three aspects: density evolution,
some general indicators, and the system equity. The experi-
mental results are described as follows.

(1) Density Evolution. We can see from Figure 7 that four
dense areas exist during the traffic operation. Three of them
near on-ramp entrances (motorway length around 0.5 km,
5 km, and 10 km) are caused by heavy traffic loads from on-
ramps. The dense area close to the segment end forms due to
the incident.

In scenario A, incident location is close to on-ramp 1
(O
1
). Without control, this incident leads to sever congestion

which blocks on-ramp 1 and propagates to motorway section
2 (around 9 km in Figure 7(a)). Under this scenario, Isolated
RL cannot alleviate incident-induced congestion effectively

(see Figure 7(b)). In the beginning of congestion formulation,
without coordination, only the nearest ramp controller reacts
to the congestion. Because of the space limit of on-ramp,
one ramp controller is insufficient to dissolve this congestion
that still propagates to motorway section 2. Dyna-MARL, on
the other hand, coordinates all three ramp controllers and
makes full use of the storage space of three on-ramps to
deal with incident-induced congestion. In this way, mainline
congestion can be restricted in a smaller area and will not
propagate to motorway section 2 (see Figure 7(c)).

For scenarios B and C, incidents are near the motorway
end and far from on-ramp 1. Without blocking on-ramp
1, incidents do not lead to sever congestion. Under such
circumstances, both Isolated RL and Dyna-MARL work well
on easing congestion in the mainline. As shown in Figures
7(e)–7(i), compared with the NC situation, both Isolated RL
and Dyna-MARL can restrict the congestion in a small range
near the on-ramp entrances.

(2) General Indicators. In this comparison, some general indi-
cators, including total travel time (should be reduced), total
throughput (should be improved), and total CO

2
emission

(should be reduced), are used to show how the proposed
system can benefit road users. These indicators are widely
used in the transport community to test the performance of
newly developed traffic control systems.

As shown in Figure 8(a), comparedwith theNC situation,
both Isolated RL and Dyna-MARL can reduce the total
travel time of road users in all three scenarios. Specifically,
Isolated RL decreases total travel time by up to 6.2%, while
Dyna-MARL achieves a maximum reduction of 12.2% (see
Figure 8(d)).The comparison of total throughput is presented
in Figure 8(b). Dyna-MARL can improve the total through-
put by up to 2.3% (see Figure 8(d)) which outperforms Iso-
lated RL in all three scenarios. In scenario B, Isolated RL even
fails to improve the total throughput. For the comparison of
total CO

2
emission (shown in Figure 8(c)), both Isolated RL

and Dyna-MARL achieve their best performance in scenario
Bwith a reduction of 4.7%and4.6%, respectively. In scenarios
A and C, Dyna-MARL has a much better performance than
Isolated RL.

Through the above comparison, we can see that Dyna-
MARL outperforms Isolated RL for almost all the scenarios
and indicators.

(3) System Equity. Although the general indicators presented
in comparison (2) have shown their effectiveness on testing
the performance of different systems, they cannot measure
the issue of system equity, which is also an important aspect
of the system performance. In this paper, we only consider
the spatial equity issue that is defined as a measurement
of equity of user delays on different on-ramps [42]. In this
study, we assume the road users from all three on-ramps have
the same importance. If all users from different on-ramps
can experience the similar travel time, the control system is
defined as an equitable system. This term is used to measure
the system equity; that is, a large queue difference leads to
a highly inequitable system. In [43], the variance of travel
time on different on-ramps is used as an indicator to measure
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Figure 7: Continued.
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Figure 7: Density profiles for (a) NC in scenario A, (b) Isolated RL in scenario A, (c) Dyna-MARL in scenario A, (d) NC in scenario B, (e)
Isolated RL in scenario B, (f) Dyna-MARL in scenario B, (g) NC in scenario C, (h) Isolated RL in scenario C, and (i) Dyna-MARL in scenario
C.

system equity. Similar to [43], for the sake of comparison, the
standard deviation is considered in our case.This indicator is
defined as

SD (𝑘) = √
∑
𝑛

𝑖=1
[𝑡
𝑘

− 𝑡
𝑘

𝑖
]
2

𝑛
,

(14)

where SD(𝑘) is the standard deviation of travel time of
different on-ramps at time step 𝑘. 𝑡𝑘

𝑖
is the estimated total

travel time of on-ramp 𝑖 at step 𝑘. 𝑡𝑘 is the averaged total travel
time of 𝑛 on-ramps at step 𝑘.

Results about the comparison of system equity can be
seen from Figure 9. For the NC situation, good equity can

be maintained due to no restrictions of entering vehicles
in scenarios B and C (as shown in Figures 9(b) and 9(c)).
However, when one of the on-ramp entrances is blocked by
the congestion in scenario A, a long queue forms and leads
to imbalance and resultant inequity for users on different
on-ramps (see Figure 9(a)). For controlled cases, Isolated
RL performs poorly in all scenarios. This is because the
ramp controller near congestion takes much more restricted
measures than other controllers on the controlled traffic.
Because of the coordination strategy, Dyna-MARL out-
performs Isolated RL on maintaining system equity in all
scenarios, especially during the incident (from 07:30:00 to
08:00:00).
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Figure 8: Comparison of general measures for different scenarios.

7. Conclusions and Future Work

A Dyna-𝑄 based multiagent reinforcement learning method
referred to as Dyna-MARL for motorway ramp control has
been developed in this paper. Dyna-MARL is compared
with Isolated RL (𝑄-learning without coordination) and
noncontrolled situation under the simulation environment.
Real traffic data collected from a metered motorway segment
in the UK are used to form the simulation.

Through a series of simulation-based experiments, we
can conclude the following: (1) Isolated RL can improve
the motorway performance in terms of increasing total
throughput, reducing total travel time and CO

2
emission, but

this improvement is at the expense of poor system equity on
different on-ramps; (2) with a suitable coordination strategy,

much higher system equity can be achieved by Dyna-
MARL; (3) in addition to the system equity, Dyna-MARL
outperforms Isolated RL in almost all scenarios regarding
all indicators, which means Dyna-MARL can deal with the
network-wide problems effectively.

Although the simulation tests have shown some positive
results regarding the performance of Dyna-MARL, a simpli-
fied incident scenario with fixed duration is considered in
the current work. In the practical situation, incident duration
is highly unstable and affected by a number of factors,
such as weather conditions, road conditions, and arriving
time of the incident management team. Therefore, incident
duration should be considered as an uncertainty which will
be investigated in our future work.
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To improve the technology of unmanned ground vehicles, it is necessary to conduct a proper evaluation on various technologies.
Previous evaluation methods are mainly based on completion of the task; this may mislead most of teams of unmanned ground
vehicles using a conservative strategy during the evaluation. In this paper, a new evaluation method is proposed. Based on typical
working conditions including intersection, car-following, and obstacle-avoiding, the new evaluation indicator system is established,
and the entropy-cost function method is applied to the comprehensive evaluation of unmanned ground vehicles. As reported in a
numerical example, the proposed evaluation method can get a quantitative result that authentically reflects the intelligent behavior
level of unmanned ground vehicles.

1. Introduction

Based on the preestablished evaluation system, the technol-
ogy of intelligent vehicles abroad has developed rapidly in
recent years. Obviously an excellent evaluation system can
guide participants to improve the performance of intelligent
vehicles in evaluation/test. For example, none unmanned
vehicles finished the entire race in the US intelligent vehicle
competitions DARPA 2004 [1]. Guided by the rules/evalua-
tion rules of Grand Challenge, the teams improved their
unmanned vehicles and five teams accomplished the entire
distance in 2005 competition [2]. In the history of technology
development, evaluation systemhas played an important role.

The 2nd DARPA Grand Challenge simply used the “the
number of finishing the races” and “the total number of gates
through” to rank the teams [3].The 3rd DARPAGrand Chal-
lenge, Urban Challenge, required that all participants must
obey traffic rules [4]. “Future Challenge 2009” was held in
June 2009 [5]; the race used the third-party testing to evaluate
the implementation efficiency of intelligent vehicles in com-
petitions.This attempt has promoted and facilitated the inno-
vation and development of vehicle verification platform [6].
“Future Challenge 2012” competition was held in November
2012, ChifengCity, InnerMongolia [7].The racemainly tested
the research level of cognitive computing about visual and

auditory information [8]. U-Turn evaluation environment
is accepted for more competitions in recent years, but the
evaluation environment cannot take more uncertain factors
into consideration [9, 10].

Most of existing foreign evaluation methods of domestic
and abroad intelligent vehicle competitions used themission-
driven evaluation approach, which has an obvious shortcom-
ing, leading many teams to adopt a conservative strategy [11].
For example, in order to avoid the violation of traffic regu-
lations, many teams chose to park and wait [12] rather than
interact with the environment as manned vehicles do. Even
though they can get high score, it is a departure from the pur-
pose of technological development [13]. As for domestic
methods, the evaluation system is obviously not comprehen-
sive; many factors are not considered in evaluation/test. For
example, the papers [7–10] just focus on dynamic driving
abilities and ignore static conditions, interactive abilities with
environment. In the future, intelligent vehicles will interact
withmore people and cars in complex scenes [14–16]; thus the
evaluation method needs improvement. The method must
takemore comprehensive evaluation factors into account and
reflect the performance of unmanned vehicles objectively.

This paper concentrates on proposing a novel evaluation
method for intelligent vehicles that is based on information
entropy and cost function. The information entropy checks
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Figure 1: The logic and construction of the paper.

all evaluation indicators’ weight from information amount
aspect to handle uncertainty problems in evaluation/test; the
cost function checks the intelligent level of each of abilities to
get specific evaluation score.The evaluationmethod also con-
cludes a new rigorous evaluation indicator system based on
typical working conditions; each typical working condition of
intelligent vehicles is subdivided into different physical indi-
cators to reflect real situation.Not only the completion time of
indicators but also all the details are taken into account, even
down to the completion quality and veracity of the various
secondary indicators. The new evaluation method refines
three aspects of evaluation process: evaluation indicator sys-
tem establishment, indicators’ weight arrangement, and eval-
uation score classification to guarantee the objectivity, com-
prehensiveness, and scientificalness of evaluation results.The
logic and construction of the paper are shown in Figure 1.

The final evaluation results can show the intelligent level
of unmanned vehicles and its weakness and then guide the
participating vehicles tomove in the right direction and goals
of high-tech development.

2. Foundation of the Evaluation
Indicator System

As described above, most of the practical evaluation activities
were mission-driven, which resulted in the incomprehensive
evaluation indicator system.Thus the evaluation results were
partial. Most participants could get higher score just because
of their own research superiorities. It is not fair and objective.
That means a proper selection of evaluation indicators is an
important part in the evaluation.

Evaluation of unmanned vehicle intelligent behavior is a
multilevel comprehensive evaluation problem. Considering
the characteristics of unmanned vehicles’ data which are
scattered and the advantages and disadvantages of traditional
evaluation indicators now, expert opinions and analysis of
typical working conditions are selected; this can not only
make full use of the experts’ cognitive knowledge of
unmanned vehicles but also avoid missing important indica-
tors.The result is relatively accurate with the rigorous indica-
tors selection process (see Figure 2).

The paper mainly takes two factors into consideration:
objective one and subjective one, which are given in Figure 2.
Objective working conditions reflect the external environ-
ment; subjective opinions from experts reflect the internal
attitude in the evaluation/test.

The typical working conditions are summarized from
many intelligent vehicle competitions. In each of intelligent

Table 1:The evaluation system of unmanned ground vehicles’ intel-
ligent behavior based on typical working conditions.

Evaluation
objective

Typical intelligent
behaviors

Evaluation auxiliary
indicators

Multi-indicator
evaluation
system for
unmanned
vehicles

Intersection
behavior

Parking precision
Restart ability
Speed capability
Braking deceleration

Obstacle-avoiding
behavior

Early warning
Avoidance in right angle
Path replanning

Car-following
behavior

Stimulation
Safe distance
Speed optimization

vehicle competitions, the participants will encounter three
main working conditions; those working conditions almost
conclude all of intelligent driving behaviors in evaluation/
test. According to the typical working conditions including
intersection, car-following [17], and obstacle-avoiding, the
paper analyzes the performance of different situations that
can show the real level of unmanned vehicles’ intelligence and
then summarizes essential features of each typical working
condition. Each typical working condition of intelligent
vehicles reflects main intelligent behavior; each behavior has
its tasks. Evaluation indicator structure is given in Table 1. All
indicators are established through considering real situations
in the driving process; the physical characteristics can be
reflected in the indicator system.

The indicator called “Parking precision” tests the ability to
park the vehicle at the right place and the right timewhen fac-
ing intersection. “Restart ability” tests the ability to identify
complex intersection conditions and participate in the traf-
fic intelligently. “Speed capability” reflects the performance
on the speed controlling, acceleration, and deceleration.
“Braking deceleration” tests braking quality. “Early warning”
tests video detection system and the ability to identify dif-
ferent obstacles. “Avoidance in right angle” tests whether the
vehicle can use less space to avoid the obstacles. “Path replan-
ning” can guarantee the vehicle will not abort the original
destination. “Stimulation” tests the ability to calculate the fore
car’s real-time speed, thus taking actions timely. “Safe dis-
tance” evaluates the stationary and the following model of
the intelligent vehicle [18, 19]. “Speed optimization” tests the
ability to control distance through keeping optimal speed.

3. Information Theory and Entropy for
Indicators’ Weight

This paper introduces knowledge of information theory to
determine the weight distribution parameters. In 1948, in the
paper “A Mathematical Theory of Communication,” Shan-
non used Probability and Statistics approach to the study of
communication systems, revealing that the object of com-
munication system is information and then proposed the
concept of entropy through describing the information quan-
titatively.
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Figure 2: Foundation of the evaluation indicator system.

Based on Shannon’s theory, the recipient cannot predict
themessage that will be received; therefore, uncertainty exists
objectively because of the message’s randomness. Delivery of
messages is a process to eliminate the uncertainty of informa-
tion, a process from uncertainty to certainty. Uncertainty in
information theory is a kind of inherent property existing in
working process, so the concept of entropy can be applied to
the evaluation of intelligent behaviors of unmanned ground
vehicles. Information entropy can determine the key indica-
tors in terms of the amount of information to calculate the
indicator weight parameters, and the entropy of information
can be calculated as follows:

𝐻(𝑥
𝑖
) =

𝑛

∑

𝑖=1

𝑝 (𝑥
𝑖
) log
2

1

𝑝 (𝑥
𝑖
)
= −

𝑛

∑

𝑖=1

𝑝 (𝑥
𝑖
) log
2
𝑝 (𝑥
𝑖
) . (1)

3.1. Judgment Matrix. To judge all factors with 1∼9 scaling
method to determine each indicator’s importance, experts’
suggestion is summarized to construct the judgment matrix
𝑋 = (𝑥

𝑖𝑗
)
𝑚×𝑛

of fractional values, and evaluation indicator
system has 𝑘 aspects behaviors,𝑚 objects, 𝑛 auxiliary indica-
tors, 1 ≤ 𝑖 ≤ 𝑚, and 1 ≤ 𝑗 ≤ 𝑛.

3.2. Matrix Data. According to the linear proportional rela-
tionship, the decision matrix 𝑋 = (𝑥

𝑖𝑗
)
𝑚×𝑛

is reformed as
standardization to get standardized matrix 𝑌 = (𝑦

𝑖𝑗
)
𝑚×𝑛

and
then normalize 𝑌 = (𝑦

𝑖𝑗
)
𝑚×𝑛

:

𝑝
𝑖𝑗
=

𝑦
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∑
𝑚

𝑖=1
𝑦
𝑖𝑗

, 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛. (2)

3.3. Information Entropy. Calculation of 𝑗 indicator’s infor-
mation entropy is as follows:

𝑒
𝑗
= −𝜆

𝑚

∑

𝑖=1

𝑝
𝑖𝑗
ln𝑝
𝑖𝑗
, 𝜆 = (ln𝑚)−1 . (3)

3.4. Information Utility Value. The real parameters that
reflect indicator weights are the values of information utility;
the values can be calculated by the following formula:

ℎ
𝑗
= 1 − 𝑒

𝑗
, 1 ≤ 𝑗 ≤ 𝑛. (4)

3.5. Total Indicator Weight. The importance weight of all fac-
tors of this layer corresponding to the above layer of a certain
factor that can be calculated using the result of all single
hierarchical sorts at the same hierarchy is as follows:

𝛽
𝑘
= (𝛽
𝑘1
, 𝛽
𝑘2
, . . . , 𝛽

𝑘𝑗
, . . . , 𝛽

𝑘𝑛
) ,

𝛽
𝑘𝑗
=

ℎ
𝑗

∑
𝑛

𝑗=1
ℎ
𝑗

.

(5)

𝛽
𝑘𝑗
is objective weight of each indicator.

4. Cost Function for Score Classification

According to the 2007 DARPA Urban Challenge’s low-speed,
low-density traffic environment issues, scholars at Carnegie
MellonUniversity proposed a kind of robust highway autono-
mous driving technology that is combined with the cost eval-
uation method [20]. The cost function method can also be
used in Chinese intelligent vehicle competitions to quantify
the indicators.The cost functionmethod is bound to promote
competition vehicles toward the direction of the minimum
cost function in the process of technology development, thus
leading unmanned ground vehicles to finish the task with
high-quality. The technological level of Chinese unmanned
vehicles on its natural environment perception and decision-
making capacity is gradually improving.

Taking the indicator “Path replanning” as a research
object, unmanned vehicles need to consider the process cost
control that means more planning time and more useless
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operating range deserve more penalty and higher process
cost. The cost can be calculated by the following formula:

𝐶 = 𝑡 ∗ 𝑑finish. (6)

To make sure of the comprehensive consideration for all
indicators and the full use of evaluation information, the
paper adopts a weighted average algorithm to get final evalu-
ation results by decomposing calculation. As for typical intel-
ligent behaviors, the paper presents each cost function as 𝐶

1
,

𝐶
2
, and 𝐶

3
. 𝐶
1
can be calculated as follows:

𝐶
1
=

{{

{{

{

𝑛

∑

𝑗=1

𝑐
1𝑗
𝜔
1𝑗

Participator

𝛽𝐶
𝑚
(𝛽 > 1, 𝛽 = 1.5) Abstainer.

(7)

𝑐
1𝑗
presents the cost of 𝑛 indicator of intersection behav-

ior; 𝜔
1𝑗

presents the weight of 𝑛 indicator of intersection
behavior; 𝐶

𝑚
presents the maximum value of the cost values;

𝛽 is the penalty factor. The final cost of unmanned vehicles
can be calculated as follows:

𝐶 = 𝐶
1
𝜔
1
+ 𝐶
2
𝜔
2
+ 𝐶
3
𝜔
3
. (8)

5. The Entropy-Cost Function
Evaluation Method

5.1. Weight Distribution of Each Indicator. According to the
evaluation indicators for unmanned vehicle intelligent behav-
ior comprehensive evaluation model, the judgment matrix of
each level is constructed following the 1∼9 scalingmethods by
expert group composed by researchmembers in related fields.
𝛽
𝑘𝑗
, calculated by formulae (2)–(5), is the weight in accor-

dance with the overall goal layer of 10 evaluation indicators.
According to the additivity of information entropy, theweight
of typical working conditions’ behavior can be calculated
through accumulating affiliated indicators directly as follows.

Typical working conditions’ behavior weight is as follows:

𝑊 = [0.417 0.267 0.317] . (9)

Affiliated indicators weight is as follows:

𝑊 = [0.113 0.110 0.092 0.102 0.112 0.067 0.088 0.112 0.087 0.116] . (10)

Then the level of indicators’ weight coefficients is deter-
mined, and the evaluation results will be more objective
because of different treatments of indicators.

5.2. Comprehensive Score Based on Cost Function. Theweight
of each indicator in the evaluation system has been calculated
in Section 5.1, and the cost combined with weight will be
the final value that represents the comprehensive score of
unmanned vehicles. In the testing, the paper uses ranking
method to define the basic cost value; the real performance
will be quantified in the corresponding rank. Taking “Parking
precision” as a research object, the cost can be represented as
follows:

𝑐
11
=

{{{{{{{{{{{{{

{{{{{{{{{{{{{

{

0 Ideal Condition

20 Score Rank 1

40 Score Rank 2

60 Score Rank 3

80 Score Rank 4

100 Eliminated District.

(11)

Since the data are rough, the score can just estimate a
general intelligent level of unmanned vehicles; two teams
with almost same scoremust make further comparison about

more details. The rest of the indicators’ cost value can be
calculated identically, and the first class indicators’ cost is

𝐶
1
=

3

∑

𝑖=1

𝑐
1𝑖
𝜔
1𝑖
= 𝑐
11
𝜔
11
+ 𝑐
12
𝜔
12
+ 𝑐
13
𝜔
13
. (12)

6. Unmanned Vehicle Intelligent
Behavior Evaluation

6.1. Each Indicator’s Score. Thescore of each indicator is given
based on the comparison between optimal performances and
minimum acceptable performances from manned driving
conditions roughly; the gap will be divided into several score
ranks (see Figure 3).

The method for calculating score is a transition from
manned driving to driverless. As unmanned vehicles’ devel-
opment direction is human-like capacity in driving, the
method is accordingly beneficial for technical updating.

6.2. Each Indicator’s Cost Value. Also taking the indicator
“Path replanning” as the research object, some data in “Future
Challenge 2012” competition are shown in Table 2.

Table 2 shows that car F’s data are invalid because of the
lane departure in this test. The score is corresponding to the
planning time and operating range, optimal condition in
manned driving cannot be quantified with 7–9 (s) and 5–
7 (m), and minimum acceptable condition is 18–20 (s) and
15–17 (m). The threshold value of score classification is based
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Table 2: The “Path replanning” data.

The competing teams A B C D E F
Planning time (s) 13 18 10 13 11 15
Operating range (m) 8.3 7.4 9.2 6.5 10.9 None
Cost value 40 60 20 20 60 100

Table 3: The data and score of team A in the competition.

Indicators 𝑍
11

𝑍
12

𝑍
13

𝑍
14

𝑍
21

𝑍
22

𝑍
23

𝑍
31

𝑍
32

𝑍
33

Data-1 0.7 4.5 59 12.3 30 1.3 13 7 3.6 36
Unit-1 m s h m s m s s M km/h
Data-2 13 1.5 2 89.3 53 8.3 18
Unit-2 s m/s2 m/s2 % ∘ m s
Cost 20 20 40 20 20 60 40 80 20 40

Performance

Score
Optimum

performance

Minimum acceptable
performance

Eliminated district

Real performance

0 points

100 points

S points

IdealCondition

ScoreRank1

ScoreRank2

ScoreRank3

ScoreRank4

Figure 3: Calculation of each indicator’s score.

on human experience, so the data can only be processed
roughly to get the score-rank of performance.

Analyzing the data of 10 indicators of team A in the com-
petition, “Parking precision” is corresponding to parking time
and the distance between the front of the vehicle and the stop
line; “Restart ability,” restart time and acceleration; “Speed
capability,” horsepower; “Braking deceleration,” deceleration
and braking distance; “Early warning,” lead time and accu-
racy rate; “Avoidance in right angle,” offset distance andmaxi-
mum offset angle; “Stimulation,” time gap in gear shift; “Safe
distance,” reasonable distance; “Speed optimization,” optimal
speed and adjustment time. The indicators’ data and the cor-
responding score are listed in Table 3.

6.3. Total Cost Value. Calculating the data fromTable 3 to get
A’s total cost value as described in Section 5.2, the cost values
of three typical intelligent behaviors are

𝐶
1
= 24.41;

𝐶
2
= 36.63;

𝐶
3
= 48.39.

(13)

The total cost is 𝐶 = 35.30.
The result shows that teamA is at 2nd (20–40) level in the

competition.

7. Conclusion

In this paper, the evaluation of unmanned ground vehicles
is studied. Based on the typical working conditions of
unmanned ground vehicles, a multilevel indicators evalua-
tion system is established. Because the uncertainty is intrinsic
property of each evaluation process, information entropy is
applied to quantify the weight of each indicator, and each
factor matches different weight coefficients to highlight the
importance of the evaluation factor. Then entropy-cost func-
tion evaluation method is proposed to evaluate team A’s
unmanned vehicle in “Future Challenge 2012” competition.
From the quantitative results, the teams can learn the vehicle’s
intelligent level generally and find their technical shortcom-
ings in some specific indicators; thus the team will get the
right development direction.

The first issue to be developed ismore detailed quantifica-
tion of indicators’ score.The technology development is from
manned driving to driverless, but manned driving behaviors
are also difficult to quantify. Therefore, the cost function
should be reformed for more precise cost value through both
qualitative and quantitative manned driving empirical data.
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Intelligent Transportation System (ITS) technologies can be implemented to reduce both fuel consumption and the associated
emission of greenhouse gases. However, such systems require intelligent and effective route planning solutions to reduce travel time
and promote stable traveling speeds. To achieve such goal these systems should account for both estimated and real-time traffic
congestion states, but obtaining reliable traffic congestion estimations for all the streets/avenues in a city for the different times of the
day, for every day in a year, is a complex task.Modeling such a tremendous amount of data can be time-consuming and, additionally,
centralized computation of optimal routes based on such time-dependencies has very high data processing requirements. In this
paper we approach this problem through a heuristic to considerably reduce the modeling effort while maintaining the benefits of
time-dependent traffic congestionmodeling. In particular, we propose grouping streets by taking into account real traces describing
the daily traffic pattern. The effectiveness of this heuristic is assessed for the city of Valencia, Spain, and the results obtained show
that it is possible to reduce the required number of daily traffic flow patterns by a factor of 4210 while maintaining the essence of
time-dependent modeling requirements.

1. Introduction

In densely populated urban areas, traffic-related problems,
such as air quality, noise, vibration, and accidents, are critical
issues for management authorities. In terms of solutions to
make traffic flow more efficient or to reduce it, especially in
downtowns, authorities develop initiatives to promote the use
of public transportation, forbid access to the most polluting
vehicles, alternate the days of downtown access according to
the vehicles’ plate number, charge drivers for access, and so
forth. In addition to these initiatives, traffic engineers analyze
the traffic flow in our cities taking into account important
factors like the adequate street directions to minimize travel
times, influence of traffic lights synchronization and place-
ment in traffic congestion, fuel consumption and CO

2
emis-

sions, traffic noise modeling [1–6], and so forth.
Particularly, in the field of fuel consumption and exhaust

pollutant, Intelligent Transportation Systems (ITS) have
recently emerged as a powerful ally in order to improve traffic
flows [7]. Moreover, the massive adoption of smartphones

and the ever increasing efforts to achieve smartphone-vehicle
integration [8, 9] pave the way towards novel traffic manage-
ment solutions where real-time interaction between drivers
and traffic management authorities becomes possible. Such
interaction provides mutual benefits since traffic authorities
are able to have real-time feedback about traffic congestion
states at different parts of a city, while drivers are also able to
have more information, aiding them in the decision process
of finding the optimal route.

In this paper we present a novel platform for centralized
traffic management in urban environments which attempts
to avoid known problems associated with current route
planning solutions based on fixed path costs. The proposed
solution takes into account the historical data about traffic
patterns in order to provide time-dependent route recom-
mendations to drivers traveling through dense traffic areas.
As a first approach to deploy this solution, we propose using
existing trafficmeasurements based on induction loop detec-
tions [10] in order to obtain all the required time-dependent
traffic flow models. We focus on the specific case of the city
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of Valencia, Spain, to gain further insight into the problem.
Based on the results obtained, we propose a heuristic to
address the problem efficiently by grouping elements with
a similar behavior, and we assess the effectiveness of the
proposed heuristic in terms of the number of interpolation
functions required. We show that it is possible to reduce the
required number of interpolations functions describing daily
traffic patterns by a factor of 4210, which significantly reduces
the problem complexity.

The paper is organized as follows: in the next section we
introduce some related works. In Section 3 we present the
proposed traffic management platform. Section 4 describes
the time-dependent traffic analysis problem and provides an
overview of the traffic patterns for the city of Valencia, Spain.
Section 5 describes the selected heuristic to the modeling
problem, along with the results achieved. Section 6 then pre-
sents the overall aggregation gains, detailing the origin of
those gains. Finally, in Section 7 we conclude the paper.

2. Related Works

After several decades of research, the existing traffic engi-
neering literature is quite broad and extensive. Recently, some
solutions have emerged that rely on mobile devices to mon-
itor the traffic in real time, for example, the Mobile Millen-
nium [11] project. Such information can be used for admin-
istrative purposes, for example, to visually analyze the traffic
conditions, but, in addition, it can also be useful to optimize
the routes taken by vehicles, as shown analytically by Kim
et al. [12].

Among these proposals we can find TrafficView [13],
which defines a framework to gather and disseminate infor-
mation about the vehicles on the road. With such a system,
drivers will be provided with road traffic information that
helps driving in adverse situations such as foggy weather or
finding an optimal route in a long trip. Work and Bayen [14]
highlight the potential of mobile devices to provide real-time
traffic information for the entire transportation network, pro-
viding some case studies. Claudel et al. [15] emphasize how
mobile devicesmay allow obtainingmore reliable estimations
about the time required to traverse specific routes. Leontiadis
et al. [16] propose an opportunistic traffic management sys-
tem where vehicles share traffic information in an ad hoc
manner, allowing them to dynamically reroute based on
individually collected traffic information. Recently, solutions
such as EcoTrec [2] introduced a VANET-based ecofriendly
routing algorithm for vehicular traffic which considers road
characteristics and traffic conditions to improve the fuel
savings of vehicles, thereby reducing gas emissions.

Moreover, when attempting to solve the vehicle route
planning problem in the most accurate way, we must take
into account the traffic variability throughout the day, as well
as other situations that take place in real life when driving
a vehicle [17, 18]. For instance, it is quite clear that, on large
metropolitan areas, the cost of traversing certain arteries,
especially large avenues, heavily depends on the time of day,
being critical at peak traffic hours [19]. However, it has been

proved that integrating time-dependencies in route optimiza-
tion algorithms significantly increases their complexity [20,
21].

To tackle this increase of complexity, we present in this
paper an approach to significantly reduce the amount of
data that our platform will need to find the time-dependent
shortest routes. Specifically, we detail how to aggregate large
amounts of historical traffic flow data into the most mean-
ingful set of information to properly describe traffic flow
variations throughout the day on the different streets and
avenues of a city.

To this aim, we will use a clustering technique. Cluster
analysis is an unsupervised learning technique used for the
classification of data. Data elements are partitioned into
groups called clusters that represent proximate collections of
data elements based on a distance or dissimilarity function.
There exist two main clustering methods. The hierarchical
methods basically start with each member of the set in a
cluster of its own and fuse nearest clusters until there are 𝑘
remaining. The partitioning methods start by building a set
of 𝑘 representative objects and cluster around those, iterating
until (locally) optimal clustering is found. See, for example,
the classical book by Kaufman and Rousseeuw [22] and Xu
and Wunsch II [23].

Clustering techniques have been already used in the last
years as part of ITS solutions in order to provide real insights
into traffic management policies. For briefness, we only refer
to some of these works.We recommend consultingGuardiola
et al. [24] for further information on the topic.

For example, Wang et al. [25] present a dynamic traffic
prediction model that deals with traffic flow data to convert
them into traffic status. In this model, two data mining tech-
niques, the clustering analysis and the classification analysis,
are applied to historical traffic flow data. Caceres et al. [26]
present a methodology for estimating traffic flows using road
features as clustering variables, so that it can be applied to
any road section, even without detector data. More recently,
Yildirimoglu and Geroliminis [27] partition the historical
data set from loop detectors on Californian freeways in clus-
ters with similar characteristics based on the traffic patterns
observed on the roadway.Thebuilding block of theirmethod-
ology is the development of stochastic congestion maps,
which identify the probability that a space-time domain is
congested. Finally, Guardiola et al. [24] present a newmetho-
dology for analyzing the daily traffic flow profile using
Functional Data Analysis.They claim that their methodology
allows a maximum exploitation of the recorded historical
data and results in the detection of changes in the flow pat-
tern, which would otherwise be difficult to detect via classical
statistical methods.

3. Traffic Management as a Service

Current vehicle navigation systems are typically based on
locally stored static information from which routes are cal-
culated. Among such systems we can find commercial appli-
cations like TomTom (http://www.tomtom.com/) or Garmin
(http://www.garmin.com/). There are also free tools, like
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Google Maps Navigator and OsmAnd (http://osmand.net/)
that operate in a similar manner.Themain drawbacks of nav-
igation systems based on static information are the inability
to adapt to traffic congestion states or unexpected events, like
accidents or other problems on the road, which cause travel
times to be much higher than expected.

More sophisticated route navigation solutions update
route information in real time, based on reported traffic con-
ditions. As an example, the TomTom navigation software has
been enhanced to support client-server interaction in order
to inform clients about alternative routes when atypical traffic
delays are detected.

In this paper wewill address the specific problemof traffic
congestion in urban environments. Instead of accidents and
other conditions causing atypical delays, we will focus on
predicting daily traffic flow patterns for a specific urban
environment, detailing how it is possible to reduce travel
times based on historical information about the traffic density
distribution throughout the day.

The proposed traffic management platform is named
ABATIS: Automatic Balancing of Traffic through the Inte-
gration of Smartphones with vehicles. The main novelty of
ABATIS as a route planning system is providing time-
dependent route recommendations based on traffic conges-
tion history. Specifically, it offers client-server interaction,
where the route selection process is performed at the route
server (see Figure 1) based on real-time information stored in
the route database and historical data.The traffic analysis and
visualization server allowsmaking traffic congestion forecasts
based on historical data while also allowing traffic manage-
ment authorities to check the traffic conditions in real time.

Clients contribute to improving the route database infor-
mation by providing real-time feedback about traffic conges-
tion conditions, which allows maintaining both a real-time
map of traffic fluidity in a city and accurate historical data
of traffic behavior. This approach supports global traffic load
balancing and event-basedmanagement (e.g., reducing traffic
congestion in the route of an ambulance).

This strategy, although offering significantly better routes,
has a higher cost since the estimated time for traversing each
path segmentwill no longer be a fixed value based on segment
length and speed limit, but instead it will vary dynamically
along the day. In order to achieve time-dependent costs for
the different streets and avenues in a city, ABATIS will use
existing historical data about traffic logs in a city to estimate
travel times. Since such logs provide per-hour congestion
measurements for all induction loop detectors in a city
for a whole year, they must be properly summarized and
synthesized by the traffic analysis server to allow seamlessly
integrating such information in the route server. Thus, in the
remainder of the paper, we will focus on the traffic analysis
component, proposing a heuristic able to reduce the complex-
ity of the problem by converting huge amounts of historical
data about traffic intensity into a small but representative
set of daily patterns able to describe the expectable traffic
behavior in the city along the day.

Route
server

Traffic analysis and
visualization server

Database

Figure 1: ABATIS traffic management architecture.

4. Flow Pattern Classification Problem

Attempting tomodel the daily traffic flowpattern of hundreds
of streets/avenues for every day of the year would lead to
hundreds of thousands of interpolation functions able to pro-
vide a smooth description of per-street traffic flow variations
throughout the day, based on several million input values
(assuming a per-hour granularity). Such modeling effort for
a single city can be considered excessive and, in addition,
causes route recommendation tasks at the server to have
an extremely high computational cost. Nevertheless, when
attempting to provide an accurate characterization of path
segment costs in a specific urban environment, it quickly
becomes clear that (i), from a yearly perspective, seasonal dif-
ferences are expectable as, for example, more people use
their vehicles during cold weather seasons than during the
warm and hot seasons where, for example, bicycles or public
transport can become a more attractive alternative; (ii), from
aweekly perspective, labor days are characterized bymobility
patterns and traffic congestion states that drastically differ
from the behavior during weekends and holidays; (iii),
from an hourly perspective, different hours of the day are
associated with different congestion levels (e.g., day versus
night); and finally (iv), from a spatial perspective, different
streets/avenues have different traffic levels at any time of the
day, requiring independent modeling.

Taking the aforementioned factors into consideration,
in this section we will take an in-depth look into traffic
behavior when focusing on amedium-size European city like
Valencia, Spain, which is the third largest metropolitan area
in Spain with about 1.77 million inhabitants. Detailed trace
files containing the amount of traffic flowing in each of the
streets/avenues each hour for a full year (2013) were provided
to us by Valencia’s City Hall TrafficDepartment, in particular,
data concerning the 421 most relevant streets/avenues (those
monitored by traffic services through induction loop detec-
tors).

Our goal is to obtain insight into the traffic flow, detecting
traffic patterns according to the day of the week, hour, and
type of street. Based on the traffic patterns detected, we will
propose a heuristic in order to simplify the number ofmodels
required while maintaining most of the time-dependent
modeling effectiveness. Although we use the city of Valencia
as the target of our analysis, the modeling methodology fol-
lowed is quite general, being applicable to other cities as well.
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Figure 2: Average traffic volume in Valencia per month.
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Figure 3: Average traffic volume in Valencia for the different days
of the week.

We start by analyzing the monthly traffic, assessing
whether we can detect significant seasonal differences. As
shown in Figure 2, there are minor fluctuations in terms of
overall traffic on a monthly basis. It quickly becomes evident
that holiday periods, like August and also Easter (in April),
have a clear and expectable impact on the overall traffic
volume. For the remaining months of the year the values can
be considered relatively similar, having a mean value of about
1 million vehicles.

For the analysis that follows we picked a month with
an average overall traffic volume close to the mean; specif-
ically, we selected November, which has no holiday periods.
Focusing on the traffic pattern variation throughout theweek,
Figure 3 shows that there are very significant differences bet-
ween the days of the week, especially between the weekend
and weekdays. Also, we can observe an overall increasing
trend fromMonday to Friday, with Friday being the weekday
with higher traffic volume.

In addition to the differences in terms of daily traffic vol-
ume, there are also clear differences in terms of the daily
traffic pattern itself. For instance, Figure 4 shows that on

Mondays the traffic follows a typical pattern where the peak
hour is between 8 and 9 a.m., when most people go to work.
Another peak occurs between 2 and 3 p.m., which denotes
mobility from people working in the afternoon. Finally, a
last traffic peak is detected between 6 and 8 p.m., when
workers return to their homes. Other weekdays follow a
similar pattern.

A totally different pattern is detected, for example, on
a Sunday. Compared to weekdays we find that (i) work-
related traffic peaks are no longer present; (ii) the total traffic
volume is significantly lower; and (iii) the peak hours differ.
In particular, peak hours are now related to mobility towards
food courts at lunch time (between 1 and 2 p.m.) andmobility
from relax areas to homes (between 6 and 8 p.m.).

When focusing on the traffic distribution throughout a
city, it is well known that main streets and avenues will
experience a much higher traffic load than secondary and
isolated ones.Discriminating between them is a relevant issue
since some streets barely experience any traffic load increase
during peak hours, meaning that travel times are not affected
by congestion in the same way as the main arteries of the city.

To be able to discriminate between the streets of Valencia
based on traffic flow, we first obtained the peak traffic
intensity per street during November, and we then obtained
the cumulative distribution for these values (see Figure 5).

We observe that 30.3% of all streets have a traffic intensity
lower than 690 vehicles/hour during peak hours, which
according to [28] means that these low traffic intensity streets
will not experience traffic congestion even at peak hours, and
so they can be discarded from our time-dependent mod-
eling efforts. Additionally, we observe that the number of
streets/avenues with very high traffic volumes (more than
10.000 vehicles during the peak hour) is rather limited (about
10%).Thus, themajority of the streets in a city will experience
moderate traffic volumes, and the global peak hour behavior
will not cause any noticeable effect on these streets. To
confirm this observation, Figure 6 shows the traffic load per
hour in two different streets for the same day. Notice that
although both share quite similar values for peak traffic inten-
sity, the daily traffic patterns significantly differ that the peaks
in one pattern often match valleys in the other pattern.

Observing the daily traffic pattern in Figure 6(a), we find
that it closely matches the traffic pattern of a typical Monday,
as shown in Figure 4(a); on the contrary, Figure 6(b) shows a
quite different traffic pattern. Hence, it becomes necessary to
discriminate between the different streets based on their daily
traffic pattern. To achieve this goal, we will apply a clustering
technique in order to automatically classify streets according
to their daily traffic pattern.

5. Clustering Heuristic

In this section we propose a heuristic to simplify traffic mod-
eling for the city of Valencia by taking into consideration the
results presented in the previous section.

The proposed heuristic aggregates into a single pattern all
those daily traffic patterns having a common behavior. This
is made possible by making the obtained time-dependent
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Figure 4: Average daily behavior for different days of the week.
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Figure 5: Cumulative distribution for traffic intensity using the
monthly peak hours.

models independent of the actual number of vehicles in each
street through normalization using the mean daily value.

To this aim, we use Mathematica 9.0.1 [29], which is a
widely recognized tool to solve mathematical problems,
especially in engineering. This tool provides function Find-
Clusters, which returns the number of clusters as well as the
elements on each cluster. This function has several options
and suboptions. In fact, we can choose between a hierarchical
method or a partitioning method. The partitioning method
it uses is based on the Partitioning Around Medoids (PAM)
algorithm [22], which seeks to find 𝑘 representative objects
called medoids from the data set such that the sum of the dis-
similarities within a cluster are minimized. A medoid can be
defined as that object of a cluster whose average dissimilarity
to all the objects in the cluster is minimal. After finding the
set of medoids, each object of the data set is assigned to the
nearest medoid.

We have chosen the partitioning method of FindClusters
for two reasons.The first one is that this method is the default

option, and the second and most important one is that the
PAM algorithm is the one used by reference authors on the
topic such as Guardiola et al. (see [24]), who claim that the
choice of PAM is due in part to the large number of statistics
it provides for thorough analysis of the resultant clusters.

At this point, we want to stress the fact that while [24]
(and also [27]) try to cluster different days corresponding to
the same section of a freeway, the aim of our procedure is
quite different; particularly, we attempt to cluster different
streets corresponding to the same day. Moreover, as far as we
know, the clustering distance that we will use here has not
been used in any previous paper on ITS.

Finally, note that although we have not made use of them,
function FindClusters has suboptions in order, for instance,
to fine-tune the number of clusters. Probably the best known
suboption to do this is the silhouette statistic [22], but accord-
ing to [23] there is no criterion providing evidence about its
superiority compared to others in the general case of adjus-
ting the number of clusters. In addition, notice that two
properties that define a good heuristic and that we have taken
into account to our aim are low time overhead and simplicity
of its steps.

Below we describe the five steps followed to reduce the
number of independent daily patterns to be modeled: (i)
select the appropriate clustering metric, (ii) find the optimal
number of clusters per day of the week, (iii) determine how
representativemean days are, (iv) group days of theweekwith
similar characteristics, and (v) group clusters with similar
daily patterns.

5.1. Selection of a Clustering Metric for Per-Hour Street Behav-
ior. If for each street (or street segment) we have the number
of cars that traverse it every hour, we can represent each street
by a point 𝑥 = (𝑥

1
, 𝑥
2
, . . . , 𝑥

24
) inR24, where 𝑥

𝑖
is the number

of cars traversing the street at hour 𝑖. Suppose we have two
streets 𝑥 = (𝑥

1
, 𝑥
2
, . . . , 𝑥

24
) and 𝑦 = (𝑦

1
, 𝑦
2
, . . . , 𝑦

24
). By

default, the distance used to form clusters is the Euclidean
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(a) Street following the expected pattern
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Figure 6: Daily traffic intensity pattern for streets with different characteristics.

distance, √∑24
𝑖=1
(𝑥
𝑖
− 𝑦
𝑖
)
2. If the Euclidean distance between

two points is relatively small, both streets will belong to the
same cluster. However, if we attempt to classify streets taking
into account the traffic variability as a function of the time of
day, we believe that this distance is not adequate. Let us take
a small illustrative example in this regard. Suppose that we
only consider six consecutive hours for four different streets
and that their respective points are 𝑎 = (12, 9, 10, 9, 8, 11),
𝑏 = (24, 20, 22, 20, 17, 21), 𝑐 = (6, 16, 20, 25, 17, 7), and 𝑑 =
(15, 35, 44, 48, 34, 17).

Streets 𝑎 and 𝑏 have a similar behavior: the relative
number of vehicles traversing them every hour is more or less
the same, within certain bounds. Although the actual number
of vehicles differs greatly from one street to another, both
streets should be in the same group encompassing all those
streets where there is little traffic variability, where vehicle
speeds can be consideredmostly constant over the considered
period.

With respect to streets 𝑐 and 𝑑, central hours are peak
periods where we have about three times the traffic volume
compared to edge values. Although the number of vehicles
differs greatly from one street to another, they should belong
to the same group characterized by a single peak correspond-
ing to hours in the mid-range and with much lower values on
the edges.

However, if we classify the four streets using the Euclidean
distance, the result is quite predictable: {𝑎, 𝑐} and {𝑏, 𝑑}. In
this example the Euclidean distance has created two clusters
grouping the two streets with less traffic and the two streets
with high traffic volume. To address this problem, we believe
that the distance metric that best fits our objective is the
correlation distance, defined as 1 − |𝑟

𝑥𝑦
|, where 𝑟

𝑥𝑦
is the

correlation coefficient:

𝑟
𝑥𝑦
=
∑
24

𝑖=1
(𝑥
𝑖
− 𝑥) ⋅ (𝑦

𝑖
− 𝑦)

√∑
24

𝑖=1
(𝑥
𝑖
− 𝑥)
2

⋅ ∑
24

𝑖=1
(𝑦
𝑖
− 𝑦)
2

. (1)

Recall that |𝑟
𝑥𝑦
| is always less than or equal to 1 and that

values close to 1 indicate that variables 𝑥 and 𝑦 have a direct
linear relationship,meaning that the graphical representation
of the 24 points (𝑥

𝑖
, 𝑦
𝑖
) is approximately a straight line.

Therefore, the higher the correlation between points 𝑥 and 𝑦
is, the closer to zero 1 − |𝑟

𝑥𝑦
| becomes, and so the probability

of belonging to the same cluster will increase. If we classify
the four streets according to correlation distance, the result
obtained is the desired one: {𝑎, 𝑏} and {𝑐, 𝑑}.

On the other hand, it is easy to see that the correlation
distance is the same if we work with the coordinates (𝑥

𝑖
, 𝑦
𝑖
)

or with coordinates (𝑥
𝑖
/∑
24

𝑗=1
𝑥
𝑗
, 𝑦
𝑖
/∑
24

𝑗=1
𝑦
𝑗
), taking into

account that, to compare streets considering traffic variability
throughout the day, it also seems useful to compare the
percentage of the daily traffic passing on every street for
each hour. This way, it does not matter whether we compare
both streets considering the number of cars per hour or the
percentage of traffic per hour: the classification using the
correlation distance will generate the same clusters. This is
obviously not true when adopting Euclidean distances.

5.2. Finding the Optimal Number of Clusters for Each Day of
the Week. Using the correlation distance defined previously,
in this section we will determine the optimal number of
clusters for the 292 streets in Valencia considered by the City
Hall as representative in terms of traffic flow for every day
of the week. Subsequently, to reduce the overall number of
clusters, we will attempt to join the different days in a week
whenever the same number of clusters are detected.

Therefore, for our analysis, we apply the FindClusters
function to each of the 28 days of November studied enabling
the correlation distance option. For each day, the function
will cluster the 292 points inR24 corresponding to the streets
taken for our study.

In the analysis that follows we work with the percentage
of vehicles traversing each street every hour with respect to
the overall daily value. As referred in the previous section,
the actual number of vehicles per se is not relevant to
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Table 1: Number of clusters obtained and associated statistics.

Mo Tu We Th Fr Sa Su
A: Week 1 3 3 1 2 1 2 3
B: Week 2 1 2 4 1 3 2 4
C: Week 3 5 3 1 4 2 2 3
D: Week 4 3 1 1 3 3 2 1
E: mean(A, B, C, D) 3 2.25 1.75 2.5 2.25 2 2.75
F: median(A, B, C, D) 3 2.5 1 2.5 2.5 2 3
G: average day 4 2 2 4 3 2 2
H: round(E) == G False True True False False True False
I: mean(E, F, G) 3.3(3) — — 3 2.58(3) — 2.58(3)
Number of clusters 3 2 2 3 3 2 3

Table 2: Percentages of matching for the different clusters compared to the average day clusters.

Mo Tu We Th Fr Sa Su
Number of clusters 3 2 2 3 3 2 3

Week 1
83.11 92.31 84.42 30.86 70.15 91.98 73.72
66.67 84.56 62.32 59.32 68.75 71.43 66.67
81.33 56.99 90.43 35.82

Week 2
60.14 89.74 80.52 81.48 70.15 96.26 74.36
55.07 58.09 59.42 43.22 60.64 81.90 69.56
80.00 58.06 51.56 73.13

Week 3
62.84 84.62 80.52 58.02 70.15 88.77 51.28
69.57 32.35 91.30 75.42 74.47 84.76 47.83
84.00 31.18 35.94 89.55

Week 4
81.76 96.15 74.68 62.96 86.57 97.87 82.05
88.41 84.56 82.61 74.58 65.96 53.30 59.42
76.00 65.59 56.25 58.21

Average 73.63 78.68 77.05 58.56 69.18 86.21 66.70

our purposes, and the correlation distance metric adopted
provides the same output on both cases.

Since our study period encompasses 4weeks, we create an
“average day” for each day of the week, which is calculated for
each street by averaging the number of vehicles traversing it
each hour. Such “average day” attempts to filter out the peculi-
arities of a specific day, obtaining a representative trend
instead.

Table 1 shows the results obtained, where the last row
shows the cluster allocation for each day of theweek. To attain
those values, we first apply function FindClusters to different
weeks (A–D) and to the “average days” (G). In addition, we
calculate the mean (E) and the median (F) for the cluster
groups corresponding to the different weeks. If this mean
value (E) is rounded to a number that matches the number of
clusters for the average day (G), then we define such value as
the number of clusters for that day of the week. Otherwise, we
obtain the average of the mean (E), median (F), and average
day (G) to obtain a value (I) that when rounded defines the
number of clusters to be used. We find that the proposed

number of clusters matches the rounded mean (E) except for
a minor change in one day.

5.3. Determining Cluster Matching on a Per-Day Basis. Once
the number of clusters for each day of the week was defined,
the next step was to validate that cluster elements for each day
of the week resembled the cluster elements obtained for the
average day. If a good degree ofmatching is obtained, then the
conclusions associated with streets in that cluster are valid;
otherwise, we could be considering that streets belong to a
group with a specific behavior, when in fact their behavior
significantly differs.

For our endeavor we apply the FindClusters function to
the 35 days (28 real days plus 7 average days), but this time
fixing the number of clusters defined a priori, as obtained in
the previous section. Afterwards, for each of the four weeks
under analysis, we compare the clusters obtained against
the average day of the week, determining the percentage of
streets that both clusters have in common. These results are
presented in Table 2.
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Table 3: Percentages of cluster matching for average days of the
week with same number of assigned clusters. Valid combinations are
shown in boldface.

Combinations Degree of
matching (%) Average matching (%)

Monday-Thursday
57.43

48.298.69
66.67

Monday-Friday
77.70

68.8472.46
48.00

Monday-Sunday
58.78

43.4927.54
28.00

Thursday-Friday
37.04

59.2571.19
63.44

Thursday-Sunday
30.86

41.7855.93
33.33

Friday-Sunday
61.94

51.3736.17
51.56

Tuesday-Wednesday 91.67 91.78
91.91

Tuesday-Saturday 71.15 58.56
44.11

Wednesday-Saturday 69.48 56.51
42.03

We find that the average degree of matching for all the
days of the week is 72.71%. Globally, we find that this value
is quite acceptable and that differences appearing on specific
days are expectable since traffic patterns may suffer some
changes depending onweather, special events, or other condi-
tions.

5.4. Grouping Days of the Week with Similar Cluster Char-
acteristics. The next step of our clustering procedure was to
assess the feasibility of grouping those days of theweek having
the same number of clusters. With this purpose we tested
all combinations and calculated the percentage of cluster
matching for each pair of mean days of the week. The results
are shown in Table 3.

All combinations show an average degree of matching
below 70%, except for the Tuesday-Wednesday combination
which is close to 92%.Thus, we agree that these two weekdays
can be combined as if they were a single day since similar
patterns are obtained in terms of traffic variability throughout
the day. Data shown earlier in Figure 3 also emphasize this
similitude.

To confirm that the grouping did not have a negative
impact on the error associated with specific days, we now

proceed to compare the degree of matching for the different
clusters against the average day, the crossed average day, and
the proposed union of both days. These results are shown in
Table 4.

We find that the differences between the three cases are
quite low. Specifically, the impact of grouping these two days
into one is of only 1.6%, which is quite acceptable.The results
using cross averages also strengthen the point of unifying
these two days. As a result, by accounting for the number
of clusters of each average day and by merging Tuesday and
Wednesday into a single day, we obtain a total of 16 different
traffic patterns.

5.5. GroupingClusters with SimilarDaily Patterns. In this sec-
tionwe present the normalized traffic patterns corresponding
to the 16 clusters created: 3 for Monday, 2 for Tuesday/
Wednesday, 3 forThursday, 3 for Friday, 2 for Saturday, and 3
for Sunday.

As shown in Figure 7, there are some pattern simili-
tudes between the first weekdays (Monday versus Tuesday/
Wednesday), between the last weekdays (Thursday versus Fri-
day), and between weekend days (Saturday versus Sunday).
However, this initial insight obtained visually must be con-
firmed through statistical evidence. With this purpose we
picked the clusters for those days which visually show some
similitude and calculated the correlation between the daily
patterns associated with each cluster for relevant time ranges.
The results of these analyses are presented in Table 5.

When comparing the daily pattern for the clusters of
Monday against Tuesday/Wednesday (see Table 5(a)), we find
that there is a high correlation (>92%) between the patterns
corresponding to the first 2 clusters of each of these days.
Thus, a singlemodel will suffice when attempting to represent
the daily pattern for these clusters that only a different model
is required for Monday’s Cluster number 3.

When comparing Thursday against Friday, we find that
only Cluster number 2 for Thursday and Cluster number 1
for Friday present a high correlation (∼94%).

Finally, when comparing Saturday against Sunday,we find
that Cluster number 1 and Cluster number 3 present a good
degree of matching (∼94%), and these two clusters can also
be represented through same daily pattern.

6. Generalization and Benefits of
the Proposed Model

In this section we assess the benefits of our model in terms
of the minimum number of patterns required to adequately
describe traffic intensity throughout the day for the city of
Valencia.Then, we detail how these differentmodels obtained
can be integrated in our traffic management platform to
predict route costs. Finally we summarize our proposal by
presenting the proposed heuristic in pseudocode format to
allow generalizing the proposed procedure to any target city.

6.1. Aggregation Gains Achieved. Below we discuss the differ-
ent aggregation techniques that integrate our heuristic and
the previous analysis.
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Table 4: Percentages of matching for the different clusters against the average day, the crossed average day, and the proposed union of both
days.

Original average days Crossed average days Union of average days
Tu We Tu We Tu We

Week 1 92.31 84.42 90.26 86.54 86.83 86.23
84.56 62.32 81.16 65.44 84.00 69.60

Week 2 89.74 80.52 89.61 78.21 85.63 77.25
58.09 59.42 57.25 58.09 56.80 60.00

Week 3 84.62 80.52 86.36 78.85 82.04 72.46
32.35 91.30 34.06 90.44 30.40 88.00

Week 4 96.15 74.68 95.45 73.08 92.22 68.26
84.56 82.61 82.61 81.62 86.40 80.00

Average 78.68 77.05 77.82 76.71 77.14 75.34

Table 5: Correlation between clusters (period between 7 a.m. and 9 p.m.).

(a) Monday and Tuesday/Wednesday

Tuesday/Wednesday
Cluster number 1 Cluster number 2

Monday
Cluster number 1 0.9221668 0.578729
Cluster number 2 0.6229643 0.9422671
Cluster number 3 0.5900097 0.7910942

(b) Thursday and Friday

Friday
Cluster number 1 Cluster number 2 Cluster number 3

Thursday
Cluster number 1 0.6741969 0.2552095 0.7292981
Cluster number 2 0.9393144 0.6691599 0.6666628
Cluster number 3 0.7247197 0.7841533 0.8645128

(c) Saturday and Sunday

Sunday
Cluster number 1 Cluster number 2 Cluster number 3

Saturday Cluster number 1 0.8859214 0.8585393 0.9368844
Cluster number 2 0.8948805 0.8840648 0.7977545

Yearly Analysis. The monthly behavior results shown before
allow assuming that traffic volumes throughout the year are
mostly constant, except for vacation periods like summer and
festivities lasting for long periods (e.g., Easter), meaning that
partitioning weeks into three groups (typical week, relevant
holiday period, and summer holidays) seems appropriate.

Monthly Analysis. Results have shown that, for the same
type of period, data is consistent across weeks, which allows
clustering the different days of a month in a single average
representative week.

Traffic Intensity Analysis. Concerning traffic congestion for
the different streets and avenues of a city, our heuristic
assumes that only a subset of these streets/avenues actually
face significant congestion problems deserving time-depend-
ent modeling, while for the rest, the use of traditional fixed-
cost approaches suffices. Based on the thresholds defined in
[28] for class IV (urban) arterial types, we consider that only

those streets with a peak traffic value surpassing 690 vehicles
per hour are actually experiencing congestion-related traffic
delays. This way, the target number of streets/avenues can be
reduced from 421 (total number of streets being monitored
by traffic services) to 292 (number of streets with a relevant
traffic load).

Clustering Analysis. Focusing on the street/avenue subset
significantly affected by congestion, the clustering analysis
showed that a small number of groups can be created, where
for each group all streets/avenues follow very similar traffic
congestion patterns. Thus, the target number of models
required can be reduced from 292 per 7 days in a week to
a total of 18, and this value can be further reduced to 16 by
noticing the similarity between Tuesday and Wednesday.

Daily Pattern Analysis. An analysis of the daily patterns
associated with the different clusters defined for the different
days of the week has shown that some of these clusters have
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Figure 7: Cluster description for the different average days considered.
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Table 6: Benefits of the proposed heuristic in terms of aggregation gain.

Target heuristic Number of elements Aggregation gains Independent modeling domains
Monthly patterns per year 12 12 : 3 3
Daily patterns per month

421 × 30

30 : 7

12
Traffic intensity analysis 421 : 292
Street clustering (292 × 7) : 18
Similar days clustering 18 : 16
Daily pattern analysis 16 : 12
Total 151,560 4210 36

a common behavior. This means, in general, that the same
group of streets behaves similarly across different days, which
allows slightly reducing the number of patterns from 16 to 12.

Based on aforementioned aggregation proposals for the
city of Valencia, in Table 6 we detail the benefits obtained
in terms of model simplification. As can be observed, street
clustering is the key element when reducing the number
of separate modeling domains required to characterize the
traffic behavior throughout the year. In particular, aggre-
gation based on the clustering analysis is the most critical
one, allowing for substantially reducing the number of
interpolation functions required. The second most relevant
aggregation gain is associated with yearly and week behavior,
based on segregating work periods from short/long holiday
periods and by finding that we have the same behavior
across the different weeks. Eliminating secondary streets
that experience fluid traffic throughout the whole year also
provides some contribution in terms of aggregation gain by
eliminating the need for modeling their traffic throughout
the day. Finally, the daily pattern analysis across clusters has
further helped reducing the number of models required.

Overall, the proposed heuristic allows reducing the req-
uired number of interpolation functions for the city of
Valencia by a factor of 4210 while maintaining the essence
of time-dependent modeling requirements. Such a signifi-
cant reduction certainly simplifies the integration of these
models in our ABATIS platform and allows accelerating the
associated calculations.This way, route decisions are taken in
a centralized route server based on traffic states prediction
throughout the day and for the different streets/avenues of a
city, thus providing the most time-efficient routes.

6.2. Applicability of the Model in the Context of ABATIS. The
relationship between traffic flow levels and average travel
speed is a well-known topic in traffic flow theory [30]. As
shown in Figure 8, this relationship can be closely approxi-
mated through a parabolic behavior represented through the
following expression, obtained by interpolating points (0, 0),
(𝑠
𝑓
/2, V
𝑚
), and (𝑠

𝑓
, 0):

V (𝑠) =
4 ⋅ V
𝑚

𝑠2
𝑓

⋅ 𝑠 ⋅ (𝑠
𝑓
− 𝑠) . (2)

As expected, average travel speed starts to decay when
traffic density per lane increases beyond a certain threshold
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Figure 8: Relationship between vehicle flow level and vehicle speed.

and becomes close to zero when approaching the maximum
road capacity.

Since ourmodels required a normalization of traffic levels
of each street in order to perform model aggregation for
similar patterns, given a street and an instant of time a vehicle
is expected to enter the street, we show below the four steps
involved in calculating the travel time for that street starting
at the given instant of time. Note that, for simplicity, we do
not put to the variables the subindexes corresponding to the
given street and instant of time.

(i) Find the normalized traffic intensity (pattern) 𝑛 at the
time the vehicle is expected to enter the target street,
using the daily pattern for the target street.

(ii) Obtain the expected traffic flow level V for that street
and instant of time by denormalizing the obtained
value using the mean traffic volume V for the target
street:

V = 𝑛 ⋅ V. (3)

(iii) Based on the average free-flow speed 𝑠
𝑓
and themaxi-

mumflow V
𝑚
for the target street (provided by author-

ities), the expected travel speed 𝑠V can be obtained
based on the predicted traffic flow level V. Specifically
and taking the behaviour of Figure 8 corresponding
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input: 3D array of traffic density per street, per hour, per day
output: pattern-dependant cluster classification
BEGIN
for each street in All streets do {
if (peak traffic intensity in 𝑃 < 690 veh/h) then
remove street from All streets

}

for each Week day in WEEK DAY do {
average Week day = get average pattern(Week day)
clusters[] = FindClusters(Week day, average Week day)
mean clusters = get average(clusters[Week day])
median clusters = get median(clusters[Week day])
if (clusters[average Week day] == round(mean clusters)) then
num clusters[week day] = clusters[average Week day]

else
num clusters[week day] = round(get average(mean clusters,

median clusters, clusters[average Week day]))
}

for all week day pairs (𝑤 𝑖, 𝑤 𝑗)
where num clusters[𝑤 𝑖] == num clusters[𝑤 𝑗] do {
if (Matching(cluster elements(𝑤 𝑖), cluster elements(𝑤 𝑗)) > 90%)
then pattern[𝑤 𝑖] = pattern[𝑤 𝑗]

}

for all week day pairs (𝑤 𝑖, 𝑤 𝑗) with different pattern do {
for all clusters 𝑐 𝑖 in 𝑤 𝑖 and 𝑐 𝑗 in 𝑤 𝑗 do {
if (correlation(average street(𝑐 𝑖), average street(𝑐 𝑗)) > 0.9)
then

pattern[𝑐 𝑖] = pattern[𝑐 𝑗]
}

}

RETURN cluster pattern classification
END algorithm

Algorithm 1: Cluster patterns.

to below flow saturation levels as reference (solid line
section), 𝑠V can be approximated as follows:

𝑠V =
𝑠
𝑓

2
⋅ (1 + √1 −

V
V
𝑚

) . (4)

(iv) Calculate the travel time 𝑡 for the target street with
length 𝐿 using the expected travel speed:

𝑡 =
𝐿

𝑠V
. (5)

Notice that, since the ABATIS platform is able to offer,
among others, Traffic Management as a Service, it is able
to serve optimal routes to clients. Currently, route costs are
calculated using free-flow speeds.Thus, the proposedmodels
can be integrated in the route calculation engine so that
optimality conditions now account for the updated path costs
using our predictive model. In addition, if the current
status of the traffic flow is available in the future, it can be
combined with the predicted value to further improve path
cost accuracy.

6.3. Pseudocode for the Proposed Heuristic. Let 𝑃 represent
the time period under analysis and let Week day represent

the set of days in 𝑃 corresponding to a particular day of the
week.WEEK DAY is a superset containing allWeek day sets
and All streets represents the set containing all the streets for
the target city.

Algorithm 1 shows the pseudocode that allows applying
the proposed heuristic in a systematic manner, thereby
making it applicable to any target city.

7. Conclusions

Traffic management has evolved substantially in the last dec-
ades. Nowadays, traffic engineers require effective solutions
to help them improve the traffic flow in cities, while minimiz-
ing travel times and tackling traffic-related problems such as
CO
2
emissions, noise, and accidents.

In this paper we define a procedure to obtain reliable
traffic congestion estimations for all the streets/avenues in a
city for the different times of the day and for every day in a
year. Considering the modeling effort required, we proposed
a heuristic that allows reducing the number of required inter-
polation functions characterizing daily traffic patterns.

By specifically addressing the city of Valencia, we made
a detailed analysis of traffic behavior on the different streets/
avenues of the city to determine (i) the behavior along the
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year, (ii) which days of the week show a similar pattern, (iii)
which streets/avenues experience more traffic congestion,
and (iv) how streets can be grouped into clusters based on
their daily traffic pattern. The results of our analysis show
that it is possible to model the traffic behavior in the city
by aggregating elements with a similar behavior in the same
interpolation function.Thisway,wewill be able to account for
the travel time variations along the main paths of a city, prov-
iding users with both optimized and accurate travel plans,
while reducing the modeling complexity.

As future work we will develop a smartphone application
that interacts with the ABATIS platform in order to obtain
the most efficient routes, and we will implement a route plan-
ning algorithm that allows selecting these best paths while
accounting for time-dependencies, FIFO restrictions, turn
penalties, and so forth.
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J. A. Portilla-Figueras, and S. Gil-López, “One-way urban
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State of charge (SOC) is one of the most important parameters in battery management system (BMS). There are numerous
algorithms for SOC estimation, mostly of model-based observer/filter types such as Kalman filters, closed-loop observers, and
robust observers.Modeling errors andmeasurement noises have critical impact on accuracy of SOC estimation in these algorithms.
This paper is a comparative study of robustness of SOC estimation algorithms against modeling errors and measurement noises.
By using a typical battery platform for vehicle applications with sensor noise and battery aging characterization, three popular
and representative SOC estimation methods (extended Kalman filter, PI-controlled observer, and 𝐻

∞
observer) are compared

on such robustness. The simulation and experimental results demonstrate that deterioration of SOC estimation accuracy under
modeling errors resulted from aging and larger measurement noise, which is quantitatively characterized. The findings of this
paper provide useful information on the following aspects: (1) how SOC estimation accuracy depends on modeling reliability and
voltage measurement accuracy; (2) pros and cons of typical SOC estimators in their robustness and reliability; (3) guidelines for
requirements on battery system identification and sensor selections.

1. Introduction

Electric vehicles (EVs), including hybrid electric vehicles
(HEVs), battery electric vehicles (BEVs), and plug-in hybrid
electric vehicles (PHEVs), have become a critical driving
force for green economy and attracted great research effort
recently. An appropriate battery management system (BMS)
is indispensable for safe, reliable, and efficient operations of
EV battery systems [1]. The state of charge (SOC) is one of
themost important state variables in BMS. Failure to estimate
SOC accurately may cause overdischarging or overcharging,
resulting in decreased battery longevity and even causing
dangerous accidents [2].

There are many methods to estimate the SOC, with their
own pros and cons. The Coulomb integral method [3] is
easy to implement, but it needs the prior knowledge of
the initial SOC and suffers from accumulated errors from
measurement noise and bias.The open circuit voltage (OCV)
method is amore reliable approach for SOCestimation.There

is a monotonic relationship between the OCV and SOC.
However, this relationship is accurate only at a steady-state
after several hours of open circuit condition. As a result,
the OCV method cannot be used reliably for online SOC
estimation [4].The Kalman filter [5, 6] and extended Kalman
filter (EKF) [7–12] have the appealing property ofminimizing
the mean-square estimation errors when the state and output
measurement noises are additive, independent, zero mean,
and Gaussian. On the other hand, they are susceptible to
modeling errors and noise feature variations. The nonlinear
observer method [13] employs a feedback mechanism to
correct SOC estimation errors. Although this method works
well under noise-free environment, its feedback gain must be
carefully designed to achieve noise attenuation and robust-
ness, which are highly challenging.

The accuracy of the model parameters is one of the main
reasons affecting the SOC estimation accuracy. In [14], the
researchers analyze the effects of themodel parameters on the
SOC estimation accuracy, when the model parameters drift
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due to battery aging. Various degrees of impact of different
model parameters are established, leading to some parameter
updating guidelines to focus on high-impact parameters so
that computational complexity can be reduced.

The paper is a comparative study of several typical SOC
estimation algorithms on their robustness against modeling
errors and measurement noises. We focus on variations of
model parameters caused by battery aging. Our simulation
results demonstrate that the Ohmic resistance 𝑅

𝑂
, polar-

ization resistance 𝑅
𝑃
, and the open circuit voltage OCV

are the key parameters affecting SOC estimation accuracy.
However, the polarization capacitor𝐶

𝑃
which is an important

parameter only influences the dynamic response characteris-
tics of SOC estimation and does not have noticeable effects
on the steady-state accuracy of SOC estimation. Within
the extended Kalman filter algorithm, 𝐻

∞
observer, and PI

observer studied in this paper, our results indicate that the
robustness and the estimation accuracy of the three methods
against modeling errors and measurement noises are similar.
However, in the view of application and SOC accuracy, the PI
observer has advantages over the 𝐻

∞
observer and the EKF

algorithm to be applied in BMS.
This paper reveals that SOC estimation accuracy depends

critically on voltage measurement errors. While random
noises in voltagemeasurements can be effectively filtered out,
any bias or persistent errors will cause substantial deteriora-
tion on SOC estimation accuracy, which is a major reason
for many algorithms to fail. Since voltage measurement accu-
racy varies substantially among BMS manufacturers, careful
examination and enhancement of robustness of algorithms
by design improvement and online parameter estimation are
of essential importance. This paper utilizes some common
scenarios of battery aging and parameter variations to study
this issue and provide some related guidelines on how to
select a robust method which has a strong tolerance towards
voltage measurement errors.

The main contributions of this paper are in the following
aspects which are essential for BMS design: (1) a clear
analysis of the influence of each model parameter on the
SOC estimation precision; (2) comparison of the robustness
of various SOC estimation algorithms against model errors;
(3) establishment of the quantitative relationship between
measurement noise and SOC estimation accuracy.

The remainder of this paper is organized as follows. The
battery model is introduced in Section 2.The three observer-
based algorithms under study are described. Estimation accu-
racy of these algorithms is evaluated in Section 3 and their
robustness is quantitatively compared. Section 4 investigates
adaptability of the three algorithms against system uncertain-
ties. Finally, some conclusions are drawn in Section 5.

2. Battery Model

Lithium-ion battery is a complex, nonlinear electrochemical
system. It is difficult to find a very accurate model to
describe the complex changes in its charging and discharging
processes. Extensive research on batteries has generated
many battery models [15–19]. In these battery models, the
equivalent circuit model is used commonly, including the
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Figure 1: First-order RC model.

Rint model, the first-order RC model, and the second-order
RC model [9, 20]. In general, an accurate battery model
is essential for precise battery state estimation. However,
high-fidelity battery models need more complex structures,
more parameters, and carry high computational complexity.
Therefore, it is necessary to find a compromise between
accuracy of SOC estimation and simplicity of the model. In
this paper, a first-order RC model is employed, shown in
Figure 1, in which the battery terminal voltage error is within
±20mV,meeting the requirements of the estimation accuracy.

One of the most important state variables in BMS is state
of charge (SOC), which is defined as

SOC (𝑡) = SOC
0
+

1

𝑄
∫

𝑡

0

𝜂𝐼 (𝜏) 𝑑𝜏, (1)

where SOC(𝑡) is the SOC at time 𝑡, SOC
0
the initial value,

𝑄 the battery nominal capacity, 𝐼(𝜏) the current at time 𝜏,
and 𝜂 the coulomb efficiency. The coulomb efficiency can be
considered to be 1 [21, 22].The influence of the self-discharge
on battery SOC estimation can be neglected.

According to Kirchhoff ’s current and voltage laws, it is
easy to obtain the following mathematical relationships:

𝑈
𝐿
= 𝑈OCV + 𝐼𝑅

𝑂
+ 𝑉
𝑃
, (2)

�̇�
𝑃

= −
1

𝑅
𝑃
𝐶
𝑃

𝑉
𝑃
+

1

𝐶
𝑃

𝐼, (3)

where 𝑅
𝑂

is the Ohmic resistance, 𝑅
𝑃

the polarization
resistance, 𝐶

𝑃
the polarization capacitor, 𝑈OCV the open

circuit voltage, 𝑈
𝐿
the terminal voltage, 𝑉

𝑅
the voltage across

𝑅
𝑂
, and 𝑉

𝑃
the polarization voltage.

According to (1), it can be converted into the derivative
equation as follows:

̇SOC =
𝐼

𝑄
. (4)

The relationship between the SOC andOCV is nonlinear.
In this paper, this function is represented by piecewise linear
segments,

𝑈OCV𝑖 = 𝑘
𝑖
SOC
𝑖
+ 𝑏
𝑖
= 𝑓 (SOC) , (5)

where 𝑘
𝑖
is the slope of the 𝑖th line segment and 𝑏

𝑖
is the

intercept. Their values are listed as in Table 1.



Mathematical Problems in Engineering 3

Table 1: The values of 𝑘
𝑖
and 𝑏
𝑖
.

𝑖 1 2 3 4 5 6 7 8 9 10
SOC
𝑖

0–7 7–12 12–17 17–22 22–27 27–31 31–36 36–41 41–46 46–51
𝑘
𝑖

6.48 1.75 0.60 0.64 0.52 0.49 0.60 0.59 0.44 0.41
𝑏
𝑖

3.20 3.53 3.67 3.66 3.69 3.69 3.66 3.67 3.73 3.74
𝑖 11 12 13 14 15 16 17 18 19 20
SOC
𝑖

51–56 56–61 61–66 66–71 71–76 76–80 80–85 85–90 90–95 95–100
𝑘
𝑖

0.40 0.32 0.29 0.28 0.39 0.50 0.37 0.38 0.52 1.05
𝑏
𝑖

3.75 3.79 3.81 3.82 3.74 3.66 3.76 3.75 3.62 3.12
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.

Figure 2: The general structure of the closed-loop observers.

If the state of the battery is defined as 𝑥 = [𝑉
𝑃
, SOC]

𝑇,
then the state equations of the battery in each segment are
linear

�̇� (𝑡) = 𝐴𝑥 (𝑡) + 𝐵𝑢 (𝑡) ,

𝑦 (𝑡) = 𝐶𝑥 (𝑡) + 𝐷𝑢 (𝑡) ,

(6)

where 𝐴 = [
−1/𝑅𝑃𝐶𝑃 0

0 0
], 𝐵 = [1/𝐶

𝑃
1/𝑄]
𝑇, 𝐶 = [1 𝑘

𝑖
], 𝐷 =

𝑅
𝑂
, 𝑢(𝑡) = 𝐼(𝑡), and 𝑦(𝑡) = 𝑈

𝐿
(𝑡).

3. SOC Estimation Algorithms and
Their Robustness

In this paper, three closed-loop observers are evaluated on
their accuracy and robustness in SOC estimation. The key
control principle of the closed-loop observers is to use the
difference between the measured terminal voltage and the
estimated value as the input to the feedback module with a
gain matrix to update the polarization voltage 𝑉

𝑃
and SOC.

The general structure of the closed-loop observers is shown
in Figure 2.

3.1. The 𝐻
∞

Observer. The 𝐻
∞

control theory was initiated
by Zames in his seminal paper [23]. Since then extensive

theoretical development, efficient solutions using frequency
domain methods, state space models, numerical algorithms,
and software packages have resulted in a rich treatise in
this field [24–26]. Numerous successful applications have
also been documented. In particular, numerical solutions to
standard 𝐻

∞
observers can be found by using the Robust

Control Tool Box and LMI model in MATLAB.
The main advantages of the 𝐻

∞
observer are as fol-

lows: (1) it is designed to attenuate disturbances of broader
types than Kalman filters and Wiener filters which target
Gaussian white noises; (2) it is robust against unstructured
model uncertainty. However, as a worst-case robust design
approach, it may be conservative, namely, nonoptimal, if the
noise spectrum is actually known.

Consider a generic nonlinear battery system described by

�̇� (𝑡) = 𝐴𝑥 (𝑡) + 𝐵𝑢 (𝑡) + 𝐹𝜆,

𝑦 (𝑡) = 𝐶𝑥 (𝑡) + 𝐷𝑢 (𝑡) + 𝐸 (𝑡) + 𝐺𝜆,

(7)

where 𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹, and 𝐺 are coefficient matrices, which
depend on the actual battery system, 𝑥(𝑡) is the state, and 𝑦(𝑡)

is the output. Consider 𝐸(𝑡) = 𝑏
𝑖
(𝑡), 𝜆 = [𝜔 ]]𝑇, 𝜔 = [

𝜔1

𝜔2
],

𝐹 = [
1 0 0

0 1 0
], and 𝐺 = [0 0 1].



4 Mathematical Problems in Engineering

The structure of the observer is
̂̇𝑥 (𝑡) = 𝐴𝑥 (𝑡) + 𝐵𝑢 (𝑡) + 𝐿 (𝑦 − 𝑦) , (8)

𝑦 (𝑡) = 𝐶𝑥 (𝑡) + 𝐷𝑢 (𝑡) + 𝐸 (𝑡) , (9)

where 𝑥(𝑡) and 𝑦(𝑡) are the estimates for 𝑥(𝑡) and 𝑦(𝑡) and 𝐿

is the gain vector of the observer.
Define the state estimation error 𝑒(𝑡) = 𝑥(𝑡) − 𝑥(𝑡). Then

the error dynamics is

̇𝑒 (𝑡) = �̇� (𝑡) − ̂̇𝑥 (𝑡) = (𝐴 − 𝐿𝐶) 𝑒 (𝑡) + (𝐹 − 𝐿𝐺) . (10)

Thegoal of the observer design is disturbance attenuation:
for a given (acceptable) sensitivity coefficient 𝛾 > 0, design
the observer gain 𝐿 such that the error system (10) is stable
and that the following inequality is met under the zero initial
condition:

‖𝑒 (𝑡)‖ ≤ 𝛾 ‖𝜆 (𝑡)‖ . (11)

The gain 𝐿 = 𝑃
−1

𝑋 may be numerically solved by using
the LMI approach [27]

min (𝛾
2

)

𝑃 > 0

[

𝐴
𝑇

𝑃 − 𝐶
𝑇

𝑋
𝑇

+ 𝑃𝐴 − 𝑋𝐶 + 𝐼 𝑃𝐹 − 𝑋𝐺

(𝑃𝐹 − 𝑋𝐺)
𝑇

−𝛾
2

] < 0,

(12)

where 𝑃 = 𝑃
𝑇, 𝑋 = 𝑃𝐿, for which the LMI Toolbox in

MATLAB can be used.The derivation of (12) is similar to the
derivation in [13].

Reference [13] has verified that the battery state space
model (8) is observable. As a result, the LMI approach is
applicable to design the 𝐻

∞
observer to estimate the SOC of

the battery system.

3.2. The PI Observer. The proportional control law is the
simplest most common control law. However, it carries
steady-state error which limits its applications alone. The
integral controller is not only related to the size of the input
bias but also related to the existence of time deviation. As
long as the bias exists, the output will continue to accumulate
until the bias is zero; it will stop accumulating.Therefore, the
integral control can eliminate steady-state error. Although the
integral control can eliminate residual error, it slows down
the control action, and as such it has detrimental effect on
stability and transient performance. By combining these two
control actions, the proportional and integral (PI) control
inherits the advantages of both.

The observability and stability of the PI observer estimat-
ing the battery SOC are proved in [28]. Therefore, the PI
observer can be utilized to estimate the battery SOC.

The relationship of the input and the output in the PI
observer is

𝜑 (𝑡) = 𝐾
𝑝
[𝑒 (𝑡) +

1

𝑇
𝑖

∫ 𝑒 (𝑡) 𝑑𝑡]

= 𝐾
𝑝
𝑒 (𝑡) + 𝐾

𝑖
∫ 𝑒 (𝑡) 𝑑𝑡,

(13)

where𝐾
𝑝
is the proportional gain of the observer, 𝑇

𝑖
the time

constant of integration, 𝐾
𝑖
the integral gain of the observer,

𝜑(𝑡) the output of the feedback system in the observer, and
𝑒(𝑡) the error between the estimated voltage and measured
value, which is the input to the feedback loop in the observer.

The Ziegler-Nichols tuning method [29] is a heuristic
method of tuning a PID controller. It was developed by
Nichols and Ziegler. It is performed by setting the integral
gain 𝐾

𝑖
to zero. The proportional gain 𝐾

𝑝
is then increased

(from zero) until it reaches the ultimate gain 𝐾
𝑢
, at which

the output of the control loop oscillates with a constant
amplitude. The ultimate gain 𝐾

𝑢
and the oscillation period

𝑇
𝑢
are used to set the proportional gain 𝐾

𝑝
and the integral

gain 𝐾
𝑖
. According to [29], the proportional gain 𝐾

𝑝
and the

integral gain 𝐾
𝑖
in the simulation are set as follows:

𝐾
𝑝

= 1.5,

𝐾
𝑖
= 0.3.

(14)

The PI observer takes the advantage of the proportional
control to generate control action immediately and that of
the integral control to eliminate residual error. The control
parameters must be properly designed to achieve a desirable
balance between dynamic quality and steady-state perfor-
mance of the observer.

3.3. The Extended Kalman Filter. In 1960, Kalman published
his famous paper describing a recursive solution to optimal
discrete-time linear filtering problems under additive and
independent Gaussian noise [30]. A Kalman filter estimates
the state of a dynamic systemwith a linear process model and
measurement model [31]. Its extension to nonlinear systems
employs local linearization, leading to the extended Kalman
filter (EKF) [32].

In its application to the battery systems considered in this
paper, the discrete-time nonlinear system with additive noise
is given by

[

𝑉
𝑃
(𝑘 + 1)

SOC (𝑘 + 1)
]

= [

[

exp(−
Δ𝑡

𝑅
𝑃
𝐶
𝑃

) 0

0 1

]

]

[

𝑉
𝑃
(𝑘)

SOC (𝑘)
]

+

[
[
[
[

[

𝑅
𝑃
(1 − exp(−

Δ𝑡

𝑅
𝑃
𝐶
𝑃

))

Δ𝑡

𝑄

]
]
]
]

]

𝐼 (𝑘) + [

𝜔
1

𝜔
2

] .

(15)

By substituting (5) into (2), the terminal voltage can be
expressed as

𝑈
𝐿
(𝑘) = 𝑘

𝑖
SOC (𝑘) + 𝐼 (𝑘) 𝑅

𝑂
+ 𝑉
𝑃
(𝑘) + 𝑏

𝑖
+ ] (𝑘) . (16)
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Therefore, coefficient matrices can be derived as

𝐴 = [

[

exp(−
Δ𝑡

𝑅
𝑃
𝐶
𝑃

) 0

0 0

]

]

,

𝐵 =

[
[
[
[

[

𝑅
𝑃
(1 − exp(−

Δ𝑡

𝑅
𝑃
𝐶
𝑃

))

Δ𝑡

𝑄

]
]
]
]

]

,

𝐶 = [1 𝑘
𝑖
] ,

𝐷 = 𝑅
𝑂
.

(17)

The EKF algorithm involves the following steps:

(i) Prediction update:

𝑥
−

𝑘
= 𝐴𝑥
𝑘−1

+ 𝐵𝐼
𝑘−1

,

𝑃
−

𝑘
= 𝐴𝑃
𝑘−1

𝐴
𝑇

+ 𝜀.

(18)

(ii) Measurement update:

𝑥
𝑘
= 𝑥
−

𝑘
+ 𝐾
𝑘
(𝑈
𝐿
(𝑘) − �̂�

𝐿
(𝑘)) ,

𝐾
𝑘
= 𝑃
−

𝑘
𝐶
𝑇

[𝐶𝑃
−

𝑘
𝐶
𝑇

+ 𝛿]
−1

,

𝑃
𝑘
= [1 − 𝐾

𝑘
𝐶]𝑃
−

𝑘
,

(19)

where 𝜀 and 𝛿 are the variances of the noises 𝜔(𝑘) and
](𝑘), respectively, and 𝑥

−

𝑘
is the updated state estimate

from the previous estimate 𝑥
𝑘−1

.

Implementation of the EKF is depicted by the flowchart
in Figure 3.

3.4. Experiments. In this paper, one battery with a nominal
capacity of 92Ah, whose anode is lithium manganese oxide
and whose cathode is graphite, is used in our experiments to
verify parameter identification and SOC estimation accuracy.
All experiments are accomplished on the battery testing
platform, shown in Figure 4, which includes the Arbin
Testing System, thermostat, PC, BMS, and a high precision
multimeter. The charge and discharge tests are finished by
the Arbin Instrument BT2000 battery testing system, whose
maximum voltage and charge/discharge current are 5V and
400A, respectively, in which the current can be set to the low
range (−1 A∼1 A), themiddle range (−50A∼50A), or the high
range (−400A∼400A), according to the required maximum
testing current. The controllable temperature range of the
thermostat is −373.15 K∼233.15 K. The BMS is manufactured
by Huizhou Epower Electronic Co., Ltd.The digital multime-
ter with a 6.5-digit resolution has a precision of 0.1mV, so the
voltage measured by this device is considered as true values.
The noise is acquired by subtracting the BMS measured
value from the digital multimeter measured value, whose
statistical distribution is shown in Figure 5. The statistical
characteristics of the terminal voltage measurement noise of
the BMS are specified in Table 2.

Table 2: Statistical properties of terminal voltage and current
measurement noise.

Mean Variance
The terminal
voltage
measurement noise
of the BMS

1.3 × 10
−3 V 4.1368 × 10

−7 V2

The tests are composed of two parts. One part is param-
eter identification experiment and the other part is SOC
estimation accuracy verification experiment. A 1/3C constant
current is used to charge the battery to 4.2 V, and the capacity
𝐶 in this paper refers to the maximum available capacity
of the battery in current state of health if not figured out
specifically. These experiments were first performed when
the battery was brand-new. When the capacity of the battery
was reduced to 74.5 Ah, the experiments were repeated to
analyze the impact of the model parameter variations caused
by battery aging. Data points are acquired at 1Hz during the
tests.

The battery model is built on the MATLAB/Simulink
platform. The measured data including the voltage and
current from the test bench are used as the input information
to the three algorithms to estimate the SOC value. The
SOC estimation accuracies are compared with the current
integration values which serve as the SOC reference values.

The current integration method has two disadvantages:
(a) it needs to know the initial SOCvalue in advance; (b) there
is an accumulated error caused by the current measurement
that is not accurate.

First, in this paper, the battery is discharged entirely
in advance, so the initial SOC value is 0. Therefore, the
initial SOC value is known. Second, the data used in the
paper is obtained by the Arbin Instrument BT2000 battery
testing system, and the precision of the current is 0.1% of
the measuring range. The current range in experiments is
set to the middle range (−50A∼50A), so the precision of
the current sampling is 0.1 A. When the battery is charged
in 1/3 C current rate, the maximum SOC accumulated error
in one full charging is (0.1A ∗ 3 h)/92Ah ∗ 100% = 0.32%,
which can be neglected. Therefore, the SOC value calculated
by the current integration method in instrument can serve as
the SOC reference values in this paper, which overcomes the
shortcomings of the current integration method effectively.

3.5. Verification. The SOC is estimated from experimental
data by using the three estimation methods, respectively.
Figure 6(a) shows the results of SOC estimation from the𝐻

∞

observer; Figure 6(b) shows the results of SOC estimation
from the PI observer; and Figure 6(c) shows the results of
SOC estimation from the EKF algorithm.The left𝑦-axis is the
SOC value, including the estimated value and experimental
data, and the right 𝑦-axis is the SOC estimation error, and the
𝑥-axis is the time. All of three observers demonstrate good
SOC estimation accuracy and convergence to the true SOC
value, with a very short response time.
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(1) Compute the Kalman gain

(3) Update the error covariance

(1) Project the state ahead

(2) Project the error covariance ahead

Time update (prediction) 
Measurement update (correction) 

Initial estimates for

Kk = P−k C
T[CP−k C

T + 𝛿]
−1

(2) Update estimate with measurement ULk

Pk = [1 − KkC]P−k

P−k = APk−1A
T + 𝜀

Ax̂k−1 + BIk−1x̂−k =

P−kx̂−k and

(ULk − ÛLk)x̂k = x̂−k + Kk

Figure 3: The operation of EKF.

Arbin

Digital
multimeter

BMS

PC

Thermostat

Figure 4: The battery testing platform.
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Figure 5:The statistical properties of the terminal voltage measure-
ment.

While the SOC estimation errors of the three estima-
tion methods have the same trends, there are important
differences among them, as indicated by Figure 6(d). In
Figure 6(d), it is apparent that the EKF algorithm has the
largest transient volatility, which is partially due to the initial
value of 𝑃

−

𝑘
, 𝜀, and 𝛿. After SOC estimation reaches steady-

state, the𝐻
∞
observer has the largest SOC estimation errors,

with the upper limit 1.67% and lower limit −0.79% implying
that the𝐻

∞
observer is least accurate.This may be attributed

to the fact that the 𝐻
∞

observer is a conservative estimation
method, which does not attenuate noise optimally.

The steady-state SOC estimation errors of the three
estimation methods can maintain between the 2% band and
−2% band when the SOC initial error is 20%, see Figure 6(d).

4. Robust Analysis of the Algorithms against
System Uncertainties

In this section, the adaptability of the noise characteristics
is discussed in detail. The noise is divided into two parts.
One is the modelling error due to parameter changes caused
by battery aging and the other is the terminal voltage
measurement noise caused by BMS sampling accuracy. The
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(d) Three estimation methods

Figure 6: The SOC estimation results when initial SOC error is 20%.

adaptability of the model noise is discussed in Section 4.1,
and the adaptability of the measurement noise is analyzed in
Section 4.2.

4.1.TheModel Parameter Perturbation. When the capacity of
the battery with nominal capacity 92Ah declines to 74.5 Ah,
other parameters of the battery will change too. If the
parameters for the new battery of capacity 92Ah are used to
estimate the SOC of the old battery of capacity 74.5 Ah, the
SOC estimation accuracy of the three estimation methods
will be affected significantly. Therefore, the impacts of the
inaccurate battery parameters caused by battery aging to the
SOC estimation accuracy are of essential importance.

In order to analyze the effects of parameter variations on
SOC estimation accuracy, four cases are considered in our
simulation.

Case 1. It is the process of estimating the SOC of the old
battery using the parameters of the new battery.

Figure 7 shows the results of the SOC estimation in
Case 1 using three algorithms. Using the 𝐻

∞
observer, the

maximumvalue of the SOC estimation error is 6.39%, and the
minimum value of the SOC estimation error is 0.4%. Using
the PI observer, the maximum value of the SOC estimation
error is 6.33%, and theminimumvalue of the SOC estimation
error is 0.42%. Using the EKF algorithm, themaximum value
of the SOC estimation error is 6.33%, and theminimumvalue
of the SOC estimation error is 1.54%.

Case 2. It is the process of estimating the SOC of the old
battery by updating the battery’s parameters used in Case 1
to the old battery’s parameters except the SOC-OCV curve.
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Figure 7: All parameters are the new battery’s ones.
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Figure 8: Only the OCV is the new battery’s one.

Figure 8 shows the results of the SOC estimation in
Case 2 using three algorithms. Using the 𝐻

∞
observer, the

maximumvalue of the SOC estimation error is 1.69%, and the
minimumvalue of the SOC estimation error is−4.96%.Using
the PI observer, the maximum value of the SOC estimation
error is 1.59%, and theminimum value of the SOC estimation
error is −4.42%. Using the EKF algorithm, the maximum
value of the SOC estimation error is 1.59%, and theminimum
value of the SOC estimation error is −4.41%.

Case 3. It is the process of estimating the SOC of the old
battery by updating only the SOC-OCV curve to the old

battery’s parameters, while the other parameters are the same
as in Case 1.

Figure 9 shows the results of the SOC estimation in
Case 3 using three algorithms. Using the 𝐻

∞
observer, the

maximumvalue of the SOCestimation error is 8.54%, and the
minimum value of the SOC estimation error is 0.38%. Using
the PI observer, the maximum value of the SOC estimation
error is 8.38%, and theminimumvalue of the SOC estimation
error is 0.40%. Using the EKF algorithm, themaximum value
of the SOC estimation error is 8.38%, and theminimumvalue
of the SOC estimation error is 1.40%.
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Figure 9: Only the OCV is the old battery’s one.
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Figure 10: All parameters are the old battery’s ones.

Case 4. It is the process of estimating the SOC of the old
battery by updating all the parameters to the old battery’s
parameters.

Figure 10 shows the results of the SOC estimation in
Case 4 using three algorithms. Using the 𝐻

∞
observer, the

maximum value of the SOC estimation error is 1.72%, and the
minimum value of the SOC estimation error is −1.69%. Using
the PI observer, the maximum value of the SOC estimation
error is 1.64%, and theminimum value of the SOC estimation
error is −1.63%. Using the EKF algorithm, the maximum

value of the SOC estimation error is 1.63%, and theminimum
value of the SOC estimation error is −1.62%.

Discussions. Note that

𝑦est = 𝑈OCV (SOC) + 𝑉
𝑃
+ 𝐼𝑅
𝑂
, (20)

Δ𝑦 = 𝑦exp − 𝑦est, (21)

ΔSOC = ∫

𝑡

0

(
1

𝑄
𝐼 + 𝐿
2
Δ𝑦)𝑑𝑡, (22)
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Table 3: The parameters changes.

The maximum The minimum The average
Δ𝑅
𝑂

= 𝑅
𝑂 old − 𝑅

𝑂new
= 𝑓(SOC) 0.87mΩ, 0.20mΩ, 0.28mΩ,

Δ𝑅
𝑃

= 𝑅
𝑃 old − 𝑅

𝑃new
= 𝑓(SOC) 1.6mΩ, 0.31mΩ, 0.64mΩ,

Δ𝐶
𝑃

= 𝐶
𝑃 old − 𝐶

𝑃new
= 𝑓(SOC) 5730 F −14968 F −604 F

ΔOCV = OCVold − OCVnew = 𝑓(SOC) 106mV −14.3mV 2.5mV

where 𝑦exp is the measured terminal voltage and 𝑦est is the
estimated terminal voltage.

From (21), since the measured terminal voltage 𝑦exp
is known, the estimated terminal voltage 𝑦est determining
the terminal voltage error Δ𝑦 affects the accuracy and
convergence time of the three SOC estimation methods. The
estimated terminal voltage 𝑦est includes open circuit voltage
𝑈OCV(SOC), polarization voltage𝑉

𝑃
, and 𝐼𝑅

𝑂
, as (20) shows.

Therefore, they have obvious effects on estimation accuracy
and robustness of the three SOC estimation methods, as (22)
shows, demonstrated by Figures 7–10.

The parameters changes from the new battery to the old
battery’s parameters are shown as in Table 3.

When the battery is aging from 92Ah to 74.5 Ah, dur-
ing a complete charging process in 1/3 C rate, the average
polarization voltage increase is 16mV, and the average Ohmic
voltage increase is 7mV. However, the average OCV decrease
is 2.5mV.

Whenwe use the parameters of the old battery to estimate
the SOC of the old battery, the SOC estimation error is only
caused by the battery model error.The terminal voltage error
caused by the battery model is considered to be Δ, and the
SOC estimation result is shown in Figure 10.

However, using the parameters of the new battery to
estimate the SOC of the old battery, which means that
the parameters are not updated, the estimated value of the
terminal voltage 𝑦est is (Δ + 20.5)mV smaller than the
measured terminal voltage value. This causes a great SOC
estimation error, whose maximum 𝐸1 max is between 2%
and 8%, as shown in Figures 7 and 10. By updating the Ohmic
resistance and the polarization resistance to the true values of
the old battery, the estimated value of the terminal voltage𝑦est
is (Δ − 2.5)mV smaller than the measured terminal voltage
value. This causes only a little SOC estimation error, whose
minimum 𝐸2 min is less than −2%, as shown in Figures 8
and 10. If the OCV is updated, but not other parameters, to
the value of the old battery, the estimated value of the terminal
voltage𝑦est is (Δ+23)mVsmaller than themeasured terminal
voltage value. Because (Δ+23)mV is larger than (Δ+20.5)mV,
estimation errors by using the updated OCV of old battery
are worst among all cases, whose maximum 𝐸3 max is more
than 8%, larger than 𝐸1 max, as shown in Figures 9 and 10.
The clear comparison is shown in Table 4.

In our recent studies [33], it is shown that SOC estimation
accuracy is dependent on the curve of SOC-OCV signifi-
cantly, if the SOC-OCV curve varies substantially. In this
study during the progress of the battery aging, the SOC-OCV
curve does not change much. The experimental results are
included in Figure 11. As a result, the impact of aging on the
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Figure 11: OCV-SOC curves at different aging states.

OCV has negligible effect on SOC estimation accuracy, as
analyzed in Section 4.1. In contrast, effect of aging on other
model parameters plays much more prominent roles in SOC
estimation accuracy.

In addition, we may conclude from comparing Figures 7,
8, 9, and 10 that the SOC estimation error when using the
parameters of the new battery to estimate the SOC of the old
battery is not a linear superposition of the SOC estimation
error caused by the changes of the resistance and capacitance
and the changes of the curve of SOC-OCV. This is clearly
indicated in Figure 12, taking the SOC estimation results of
the PI observer as an example.

4.2. The Terminal Voltage Measurement Errors. In order to
find the relationship between the SOC estimation accuracy
and the statistical characteristics of the terminal voltage
measurement noise, we further addmeasurement noises with
different means and variances to the experimental data of
the terminal voltage in Section 3.5. There are different SOC
estimation results using different estimation methods.

(i) The 𝐻
∞

Observer. When the mean of the measurement
noise changes from −6mV to 4mV and standard deviation
of the measurement noise increases from 0 to 10mV, the SOC
accuracy is depicted in Figure 13.
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Table 4: Terminal voltage error and SOC estimation error.

Cases estimating SOC of the old battery Δ𝑦 = 𝑦exp − 𝑦est SOC estimation error
Case 1: all parameters are the new battery’s ones (Δ + 22.5) mV 2% < 𝐸1 max < 8%
Case 2: only the OCV is the new battery’s one (Δ − 2.5) mV −5% < 𝐸2 min < −2%
Case 3: only the OCV is the old battery’s one (Δ + 23) mV 𝐸1 max < 8% < 𝐸3 max
Case 4: all parameters are the old battery’s ones ΔmV −2% < 𝐸4 < 2%
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Figure 12: The comparison of the SOC estimation errors.

If the SOC estimation error is required to be less than
2%, the mean and standard deviation of the measurement
noise must be confined from −3.172mV to 1.172mV and 0 to
3.43mV, respectively.

(ii) The PI Observer. When the mean of the measurement
noise changes from−6mV to 4mV and standard deviation of
the measurement noise increases from 0 to 10mV, the SOC
accuracy is shown in Figure 14.

If the SOC estimation error is required to be less than 2%,
the mean and standard deviation of the measurement noise
must be confined from−3.36mV to 1.172mV and 0 to 5.15mV,
respectively.

(iii) The EKF Algorithm.When the mean of the measurement
noise changes from −6mV to 4mV and standard deviation
of the measurement noise increases from 0 to 10mV, the SOC
accuracy is illustrated in Figure 15.

If the SOC estimation error is required to be less than 2%,
the mean and standard deviation of the measurement noise
must be confined from −3.36mV to 1.3mV, 0 to 3.535mV,
respectively.

(iv) Discussions. The principle of the 𝐻
∞

observer is similar
to the Luenberger observer, whose feedback gain is a propor-
tional gain. It controls quite aggressively with an expected fast
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Figure 13: The SOC estimation error of the 𝐻
∞

observer when
statistical characteristics of the noise change.

response. However, it shows certain levels of overreaction,
causing nonsmooth contours of SOC estimation errors. In
contrast the PI observer with its integral part acts as a signal
smoother (a low-pass filter type), so the contours of its SOC
estimation errors are smoother than that of the𝐻

∞
observer.

Note that the gain of the EKF algorithm is updated timely, so
the contours of its SOC estimation errors are the smoothest.

To capture transient errorsmore concretely, in Figures 13–
15, we define the area enclosed by the 𝑥-axis and the contour
line as the total absolute error.The total absolute error ratio is
then calculated as the total absolute error divided by the area
which is equal to the product of themaximum value of 𝑥-axis
and maximum value of 𝑦-axis in the figure. The ratios of the
three observers are shown in Figure 16.

Under the same SOC estimation accuracy, the adaptation
range against the measurement noise of the PI observer is
the biggest and that of the 𝐻

∞
observer is the smallest, as

Figure 16 shows. It is worth noting that Figures 13, 14, and
15 are not symmetrical about the mean, result from the total
effect of the terminal voltage noise mean and the inaccurate
parameters on the SOC estimation accuracy.

5. Conclusions

In this paper, several typical SOC estimation algorithms
including the 𝐻

∞
observer, PI observer, and extended
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Figure 14: The SOC estimation error of the PI observer when
statistical characteristics of the noise change.
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Figure 15: The SOC estimation error of the EKF observer when
statistical characteristics of the noise change.

Kalman filter are applied to estimate SOC. By considering
four categories of variations of model parameters caused by
battery aging and studying the influence of each category on
the SOC estimation precision, we compare the algorithms
in terms of their robustness against modeling errors. In
addition, their tolerance to voltage measurement errors is
quantitatively evaluated.

The robustness and the estimation accuracy of the three
methods against modeling errors and measurement noises
are similar.However, the𝐻

∞
observer needs to know the gain

𝐿, which needs to calculate the Linear Matrix Inequalities in
advance; the EKF algorithm needs to know the distribution
of the measurement noise, which is difficult to be obtained
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Figure 16: The total absolute error ratio of the measurement noise.

in fact. Compared to these two methods, the PI observer
can acquire the proportional gain 𝐾

𝑝
and the integral gain

𝐾
𝑖
depending on the experiences. Therefore, in the view of

application and SOCaccuracy, the PI observer has advantages
over the 𝐻

∞
observer and the EKF algorithm to be applied

in BMS. Through simulation results we reach the following
conclusions:

(1) The Ohmic resistance 𝑅
𝑂
, polarization resistance 𝑅

𝑃
,

and the open circuit voltage OCV are the key param-
eters affecting SOC estimation accuracy. However,
the polarization capacitor 𝐶

𝑃
, which is an important

parameter, only influences the dynamic response
characteristics of SOC estimation but does not have
noticeable effects on the steady-state accuracy of SOC
estimation.

(2) Under the same SOC estimation accuracy and the
robustness against modeling errors andmeasurement
noises, the PI observer has advantages over the 𝐻

∞

observer and the EKF algorithm to be applied in BMS.
(3) The relationship between SOC estimation accuracy

and voltage measurement errors has been resolved,
and some related guidelines on how to select a robust
method which has a strong tolerance against voltage
measurement errors are provided.

There are several important related topics that are not
covered in this paper. First, optimal design of PI observers
requires essential statistical information on measurement
noises and individualized models. Learning algorithms for
noise characterizations and parameter estimation can lead
to adaptive PI observers with improved SOC estimation
accuracy. Furthermore, implementation of SOC estimators in
battery management systems on electric vehicles encounters
hardware and computational complexity constraints. For
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example, sensor precision levels and sampling rates will limit
data flow rates and reliability. Analysis of the influence of
synchronous sampling, sampling rates, asynchronous sam-
pling, and quantization on SOC estimation accuracy will be
pursued in our future studies.
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This paper proposes a hybrid modular multilevel converter (MMC) topology based on mismatched-cascade mechanism. The
blocking conditions of different submodule (SM) structures under dc fault are analyzed and a series double submodule is presented.
With series-double submodules and mismatched-cascade submodules, the proposed hybrid MMC can ride-through the dc side
short-circuit fault and provide an output voltage with the feature of low harmonic content.This hybrid MMC topology can be used
in the VSC based multiterminal dc (VSC-MTDC) transmission system. The dc fault ride-through properties of the new structure
and the total harmonic distortion (THD) are analyzed compared with the previous full-bridge and clamp-double architectures.
An appropriate fault blocking procedure is presented, and a typical four-terminal dc transmission simulation system is given in
the power system simulation software. Finally, simulation of steady-state and dc bipolar short-circuit fault verifies that the MTDC
system based on this new hybrid MMC topology is stabilized and can block the dc fault and return the nonfault parts to normal.

1. Introduction

With the development of power electronic technology, the
voltage source converter (VSC) based on full-controllable
electric semiconductor device is widely applied to high
voltage direct current transmission field. Compared to the
traditional HVDC, VSC based high voltage dc (VSC-HVDC)
transmission systemhas the advantages such as flexible power
control, reactive power compensation, supplying power to
passive network, and forming multiterminal dc network [1–
5]. According to the different structures of voltage source
converter, VSC-HVDC can be divided into two kinds: the
low level traditional VSC-HVDC and modular multilevel
converter based high voltage dc (MMC-HVDC) transmission
system. MMC-HVDC is superior to the low level VSC-
HVDC in the following aspects: it has lower switching
frequency, lower switching loss, and higher scalability; it does
not need to switch the serial IGBTs at the same time and can
be applied in high voltage occasion. Consequently, it has been
rapidly developed for the last few years [6–8].

The present research of VSC-HVDC is mostly focused
on half-bridge MMC (HBMMC) and its control strategies.

However, half-bridge MMC cannot clear the fault current
when dc fault occurs because of the freewheeling diode
[9, 10]. At the same time, high power dc current breaker
for HVDC applications is not sufficiently mature and cost-
effective [11]. So, when dc fault occurs, the common method
is to turn off the whole dc systemwith ac circuit breakers [12].
This approach costs lots of time and reduces the reliability
of VSC-HVDC system. To avoid dc fault, cable with low
failure rate is used as transmission lines, but this increases
the engineering cost and is easily restricted by the working
environment. Thus, the present VSC-HVDC technology
could hardly be used in long distance or multiterminal dc
transmission system [13, 14].

To overcome the shortcomings of traditional MMC,
different topologies have been addressed by many scholars.
References [15, 16] propose an MMC-HVDC system based
on full-bridgeMMC (FBMMC) topology. FBMMC can block
the fault current when dc fault occurs. However, as too many
IGBTs are needed, under the same dc voltage and power
level, FBMMC’s engineering investment and operation cost
is high, which limits its application in engineering practice.
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In order to reduce the IGBT used quantity and make the
converter capable of blocking dc fault, a new kind of clamp-
double MMC (CDMMC) is proposed [14, 17, 18]. When
a fault occurs on the dc side, CDMMC turns off IGBTs
immediately and utilizes the diode reversed-phase blocking
ability to complete the fault handling process. CDMMCneeds
less semiconductors than FBMMC and also has the ability to
block dc fault. However, due to the characteristics of parallel
structure, the equivalent capacitance in a bridge arm shows
two kinds of states according to the different flows of short-
circuit current. So it requires longer time to cut off the short-
circuit current, and its dc fault blocking ability is inferior
compared with FBMMC [14, 19].

The contribution of this paper is to analyze the equivalent
states of various MMC topologies under the dc short-circuit
fault and propose an improvedMMC topology to improve its
performance. Based on the mismatched-cascade mechanism
and the principle of dc fault blocking, a hybrid MMC
topology which has dc fault ride-through capability and is
very suitable for MTDC system is presented. According to
the “handshaking method” of MTDC system [20, 21], the
process of clearing dc fault and recovering nonfault lines is
explained in detail. Finally, a typical four-terminal dc system
is introduced and a simulation model is built to verify the
system characteristics under the bipolar short-circuit fault
which is the most serious dc fault.

This paper is organized as follows: after introduction,
the dc fault blocking analysis, which includes analyzing the
fault blocking principle and the current paths of different
submodules under blocking states, is explained in detail in
Section 2. In Section 3, a new topology of hybridMMCbased
on the mismatched-cascade mechanism is introduced. In
Section 4, a four-terminal dc simulation model is built to
explain the application of the new hybrid MMC in MTDC
transmission system, including the process to remove the
fault lines and recover the nonfault lines under the dc
fault. This new hybrid MMC used in MTDC system is
tested with the steady-state and dc bipolar short-circuit fault
simulations in Section 5.The conclusion of this paper ismade
in Section 6.

2. Fault Blocking Ability Analysis

2.1. Fault Blocking Principle. An MMC topology consists of
two arms per each phase where each arm is comprised of 𝑛
series-connected submodules and a series-connected induc-
tor. These submodules of each bridge arm can be replaced
with an ideal voltage source. After the treatment of presenting
network parameter by per-unit value normalization, the
equivalent circuit under dc fault state is shown in Figure 1.

Considering the upper and lower loops, the dynamics of
the converter can be described as follows:
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Figure 1: Equivalent circuit under dc fault state.

𝑖𝑘 = 𝑖𝑘𝑛 − 𝑖𝑘𝑝

𝑖dc = ∑
𝑘

𝑖𝑘𝑝 = ∑

𝑘

𝑖𝑘𝑛,

(1)

where 𝑘 = 𝑎, 𝑏, 𝑐 and 𝐿, 𝑅, and 𝐿𝑇 represent the equivalent
values of the inductance, resistance, and transformer leakage
inductance.

The dynamics of the dc fault current 𝑖dc and voltage 𝑢dc
are expressed as

𝑖dc = 𝐶eq
𝑑∑
𝑘
𝑢𝑘𝑝

𝑑𝑡

= 𝐶eq
𝑑∑
𝑘
𝑢𝑘𝑛

𝑑𝑡

𝑢dc = 𝑢𝑑𝑝 −𝑢𝑑𝑛 = −𝐿dc
𝑑𝑖dc
𝑑𝑡

− (𝑅dc +𝑅𝑓) 𝑖dc,

(2)

where 𝐿dc and 𝑅dc represent the equivalent values of the dc
side inductance and resistance, 𝑅𝑓 represents the equivalent
value of the short-circuit fault resistance, and 𝐶eq represents
the equivalent value of the capacitance under the fault state.

Combining these aforementioned equations, the follow-
ing equation can be obtained:

𝑑
2
𝑖dc
𝑑𝑡

2 +
𝑅𝑒

𝐿𝑒

𝑑𝑖dc
𝑑𝑡

+

1
𝐿𝑒𝐶𝑒

𝑖dc = 0, (3)

where 𝐿𝑒 = 2𝐿/3+𝐿dc, 𝑅𝑒 = 2𝑅/3+𝑅dc +𝑅𝑓, and 𝐶𝑒 = 3𝐶eq.
Thus, the fault equivalent circuit is a second-order oscil-

lated discharging circuit. When dc fault occurs, the dc side
fault current can be determined by the derivative of (3) at
𝑡 = 0, which is expressed by

𝑖dc = 𝑒
−𝑡/𝜏
[−

𝐼dc0𝜔0
𝜔

sin (𝜔𝑡 − 𝛼) −
𝑈dc0
𝜔𝐿𝑒

sin (𝜔𝑡)] , (4)
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Figure 2: Schematic and block operation mode of FBSM: (a) schematic of FBSM; (b) block operation mode of FBSM.

where 𝐼dc0 and 𝑈dc0 are the initial values of 𝑖dc and 𝑢dc. 𝜏 =
2𝐿𝑒/𝑅𝑒, 𝜔 = √1/(𝐿𝑒𝐶𝑒) − [𝑅𝑒/(2𝐿𝑒)]2, 𝜔0 = √1/(𝐿𝑒𝐶𝑒), and
𝛼 = arctan(𝜔𝜏).

The short-circuit fault current can be calculated by (4).
The discharge process before converter blocking is an oscil-
lated discharge procedurewhich has already known the initial
conditions. The equivalent value of the capacitance changes
after the converter blocking. If and only if the equivalent
capacitor voltage under any circuit state is larger than the
ac line voltage amplitude, the short-circuit current can be
reduced to zero by the antiparallel diodes. Then, the dc fault
would be blocked.

2.2. SM Circuit Topologies under Blocking States

2.2.1. Full-Bridge Submodule. The full-bridge submodule is
as shown in Figure 2(a). The control system sends blocking
signals to all the IGBTs on the bridge arms when dc fault
is found. The path of the short-circuit current is shown
in Figure 2(b). The SM’s equivalent capacitor voltage after
blocking is in the opposite direction with the ac side voltage.
Thus, the short-circuit current is blocked from feeding into
the converter. However, because a full-bridge submodule
needs four IGBTs, the number of required components is
doubled to that of the half-bridge submodule needs. So, the
full-bridge submodule based MMC is not cost-effective.

2.2.2. Clamp-Double Submodule. The clamp-double sub-
module, as shown in Figure 3(a), is constituted by two

equivalent half-bridge SMs and an IGBT with freewheeling
diode. When the dc side fault occurs, the CDSM is switched
to the block mode, as shown in Figure 3(b). The equivalent
capacitor voltage can stop the fault current from feeding into
the converter. However, the equivalent capacitor voltages of
a SM are different when the flow of the fault current 𝑖sm
changes. If 𝑖sm > 0, the voltage is 2𝑈𝑐; otherwise, it turns to
be𝑈𝑐. Correspondingly, the equivalent capacitances are 𝐶0/2
and 2𝐶0 for each of them separately.Thus, during the dc fault
periods, the system charges the SMcapacitors repeatedly.This
leads to the delay of fault blocking time.

2.2.3. Series-Double Submodule. As the HBSM has the
advantages of having simple structure and mature control
strategy and being economical, reliable, and efficient, the
series-double submodule (SDSM) presented is based on two
HBSMs, as shown in Figure 4(a). Between the two HBSMs,
there is an IGBT with freewheeling diode to isolate them.
SDSM features are economical, reliable, and efficient as
HBSM and can block dc fault. Under steady-state operations,
the middle IGBT is turned on, and the SDSM is equivalent
to two HBSMs in series. At this point, the SDSM’s control
strategy is simple as the HBSM’s. When the dc side fault
happens, the control system sends blocking signals to all the
IGBTs. As shown in Figure 4(b), no matter how the current
flow direction is, the equivalent capacitor voltage of SDSM is
2𝑈𝑐, and the voltage direction is opposite to the alternating
voltage direction at any moment. So the short-circuit current
from the ac system is blocked, and the SDSMbasedMMChas
the dc fault ride-through capability.
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Figure 3: Schematic and block operation mode of CDSM: (a) schematic of CDSM; (b) block operation mode of CDSM.
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Figure 4: Schematic and block operation mode of SDSM: (a) schematic of SDSM; (b) block operation mode of SDSM.

As shown in Table 1, SDMMC needs less semiconductors
and has the same dc fault blocking capability compared
to FBMMC. As for CDMMC, due to the characteristics of
parallel structure, the equivalent capacitance in a bridge arm
shows two kinds of states according to the different flows of
short-circuit current, as shown in Figure 3(b). So it requires
longer time to cut off the short-circuit current, and its dc
fault blocking ability is inferior compared with FBMMC and
SDMMC.The comparison of dc fault blocking time of various
MMC configurations is shown in Figure 5. In consideration
of the number of semiconductors used and power losses,

SDMMC is better than FBMMC.Power losses are represented
by the estimated power losses, which is the ratio of converter’s
losses (primarily the IGBT switching losses) and the rated
capacity of MMC. Among these, the switching losses are
calculated by the on-off time and the single switch loss of
IGBT. The estimated power losses in Table 1 are under the
circumstances when 𝑁 is equal to 10. So SDSM is a kind of
good submodule topology applied into MMC structure with
dc fault ride-through capability.

Also, SDSM has a weakness as well as these advantages
above. When all the IGBTs are blocked, the semiconductors
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Table 1: Comparison of the MMC configurations with various SMs.

Features Half-bridge MMC Full-bridge MMC Clamp-double MMC Series-double MMC
SM circuit HBSM FBSM CDSM SDSM
dc fault blocking capability × √ √ √

Blocking time × 18ms 24ms 18ms
Number of SMs per arm 2𝑁 2𝑁 𝑁 𝑁

Number of IGBTs per arm 4𝑁 8𝑁 5𝑁 5𝑁

Number of diodes per arm 4𝑁 8𝑁 7𝑁 6𝑁

Number of capacitors per arm 2𝑁 2𝑁 2𝑁 2𝑁

Voltage levels 2𝑁 + 1 2𝑁 + 1 2𝑁 + 1 2𝑁 + 1

Estimated power losses 0.69% 0.96% 0.83% 0.83%

1.975 2.000 2.025 2.050 2.075 2.100 2.125

HBMMC
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Figure 5: dc fault blocking time of various MMC configurations.

𝑇5 and 𝐷6 need to support doubling the blocking voltage
(i.e., 2𝑈𝑐). So the related semiconductors (𝑇5 and 𝐷6) need a
special design to overcome this larger voltage than other ones.
A common method is to be realized by series connection of
two semiconductors. In this instance, the number of IGBTs
per arm needed by SDMMC is increased from 5𝑁 to 6𝑁.
It is a little more than CDMMC needed, but still less than
FBMMC used. So the power losses produced by SDMMC (𝑇5
is replaced by the series connection of two semiconductors)
are less than FBMMC but are a little more than CDMMC.
However, as shown in Figure 5 and Table 1, SDMMC is better
than CDMMC in dc blocking time. It will save 25% time
than the CDMMC to block the dc fault. Consequently, in
consideration of the double blocking voltage problem, the
proposed SDMMC still has its special advantages compared
with other MMC configurations.

3. Topology of Mismatched-Cascade
Mechanism Based Hybrid MMC

3.1. Application of Mismatched-Cascade Mechanism.
Mismatched-cascade mechanism can be used to improve
the quality of step wave. Firstly, it produces a small range
of dislocations to the basic waveform. Secondly, it stacks
these mismatched waveforms to produce a more meticulous
waveform. Mismatched-cascade mechanism based MMC
is constituted by adding a mismatched-cascade submodule
(MCSM) to the former structure. The MCSM is formed by

connecting some half-bridge units in series, as shown in
Figure 6.
𝑚 represents the number of half-bridge units in an

MCSM.𝑈mc represents the nominal voltage of the half-bridge
unit capacitor, and it must be restricted as

𝑈mc =
𝑈𝑐

𝑚 + 1
. (5)

When 𝑛 = 4, 𝑚 = 2, for example, then 𝑈mc = 𝑈𝑐/3;
the output voltage waveform in the effect of MCSM and the
switching mode of SMs are shown separately in Figure 7 and
Table 2. As the upper and lower bridges are symmetrical,
the output voltage waveform only considers the condition of
𝑢𝑎 > 0.

When the number of half-bridge units in upper bridge’s
MCSM is𝑚𝑝 = 1, correspondingly, the number of half-bridge
units in lower bridge’s MCSM is 𝑚𝑛 = 1; the output voltage
waveform remains precisely unchanged. However, when 𝑚𝑝
increases and 𝑚𝑛 decreases, on the contrary, the output
voltage levels can produce small dislocations, as shown in
Figure 7. The FFT analysis demonstrates that the output
voltage has a better quality (THD is changed from about 12%
to 4%) after the MCSMs are added to the MMC structure.

After the MCSM applied, the number of output voltage
levels is changed from (𝑛 + 1) to𝑁out:

𝑁out = (𝑛 + 1) (𝑚+ 1) . (6)

When 𝑛 = 20, 𝑚 = 2, for example, the number of output
voltage levels will be changed from 21 to 63 after the MCSM
applied. And the voltage total harmonic distortion (THD)
under different modulation ratio 𝑘 is shown in Figure 8.

Thus, it can be observed that only an MCSM is needed
to increase the number of output voltage levels several times
over, and the structure of MMC is not changed sharply. This
will reduce the harmonic content of output waveform largely.

3.2. Topology of Hybrid MMC. Based on the fault blocking
principle shown in Section 2 and the mismatched-cascade
mechanism shown above, a hybrid MMC topology is pre-
sented here. As stated above, HBSM has the advantages of
having simple structure and mature control strategy and
being economical, reliable, and efficient. SDSM has the
dc fault ride-through capability. And MCSM can optimize
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Table 2: Switching mode of SMs under different output states.

Number of SMs switched Number of HBSMs switched in MCSM Output voltage
Upper bridge Lower bridge Upper bridge Lower bridge
2 2 1 1 0
2 2 0 2 𝑈mc

1 3 2 0 2𝑈mc

1 3 1 1 3𝑈mc

1 3 0 2 4𝑈mc

0 4 2 0 5𝑈mc

0 4 1 1 6𝑈mc

0 4 0 2 7𝑈mc
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Figure 6: Topology structure of mismatched-cascade based MMC.
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Figure 7: Schematic diagram of voltage waveform in the effect of
MCSM.

the quality of output voltage waveform. So it is considered
to connect them to build a hybrid MMC which has all these
advantages. In the hybridMMC,𝑁𝑆 represents theminimum

number of SDSMs which a bridge arm needed. Considering
the constraint conditions of dc fault blocking, the equivalent
capacitor voltage must be larger than the reversed alternating
voltage at any moment. So 𝑁𝑆 must follow the principle as
follows:

𝑁𝑆 ≥

√3𝑈𝑚
4𝑈𝑐

, (7)

where 𝑈𝑚 represents the maximum value of ac side phase
voltage and 𝑈𝑐 represents the voltage of a single capacitor
in SDSM. On equal conditions, the reverse voltage is larger
when 𝑁𝑆 increases, and so the blocking time needed is
shorter. Thus, the hybrid MMC needs more time to block the
dc fault than theMMCmade up by SDSMonly. To balance dc
fault blocking capacity and economical efficiency, under the
premise of meeting the requirement of fault blocking time,
the number of SDSMs will be decreased as much as possible.
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Table 3: dc fault clearing time in different combinations of𝑁𝐻 and𝑁𝑆.

Scheme 𝑁𝐻 𝑁𝑆

dc fault
blocking
time/ms

Number of IGBTs
used in a

single-bridge arm
THD Efficiency of

each scheme
Estimated

power losses

1 12 4 25 44 0.04 0.477 0.79%
2 8 6 16 46 0.04 0.457 0.79%
3 4 8 12 48 0.04 0.438 0.79%
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Figure 8: The voltage THD changed after the MCSM applied.

Here 𝑁𝐻 is defined to represent the number of HBSMs on
a bridge arm, and 𝑁𝑆 is the number of SDSMs used. When
the total voltage level number𝑁𝑃 is fixed,𝑁𝐻 and𝑁𝑆 should
follow the principle as follows:

𝑁𝐻 + 2𝑁𝑆 + 1 = 𝑁𝑃. (8)

To determine the appropriate proportional relation of
the number of HBSMs and SDSMs, a simulation model for
hybrid MMC was built in PSCAD/EMTDC, and the dc fault
blocking time in different combinations of 𝑁𝐻 and 𝑁𝑆 was
measured as shown in Table 3.

As the SDSM is constituted by two HBSMs, and the
middle IGBT is turned on under steady-state operations, the
SDSM is equivalent to two HBSMs in series. So the THDs
and the estimated power losses of schemes 1∼3 are almost
equal. The efficiency of each scheme means each IGBT’s
contribution to the total output levels. It is the ratio of the
output levels and the number of IGBTs used in a single-
bridge arm. FromTable 3, it can be observed that scheme 1 has
the highest efficiency among all the three schemes since the
blocking time is the longest too. However, as all the blocking
time is less than 30ms which is short enough to block the
fault, scheme 1 is able to meet the dc fault blocking time
requirement when the target is not too strict. Under such
circumstances, the required number of IGBTs is suitable, and
the hybrid MMC based transmission project is economical.

When MCSM is added, the total voltage level number
would be changed from𝑁𝑃 to𝑁



𝑃
.𝑁𝑀 is defined to represent

the number of half-bridge units in an MCSM. Then, 𝑁
𝑃

should be processed as

𝑁


𝑃
= (𝑁𝐻 + 2𝑁𝑆 + 1) × (𝑁𝑀 + 1) . (9)

This means that the output voltage level number is
increased several times over when adding MCSM to the
hybrid MMC.

4. Application of Hybrid MMC in MTDC
Transmission System

The multiterminal direct current (MTDC) transmission sys-
tem can be divided into series, parallel, and hybrid forms, by
the different connection modes. Parallel connection mode is
themost popular one owing to its characteristics of simplicity,
flexibility, and expandability [5]. In this section, a typical
parallel four-terminal direct current transmission system is
utilized to analyze the procedure of the hybridMMC-MTDC
transmission system blocking dc side fault.

Reference [20] proposes a “handshaking method” and its
procedure to deal with the dc fault in two levels’ VSC-MTDC
transmission system. Using this method, the voltage stability
and power recovery after failure can be insured. However, as
circuit breakers are needed to cut off the short-circuit current
from ac side, the time required to block the fault and recover
the rest is too long. Meanwhile, the hybrid MMC presented
has the dc fault ride-through capability by itself, so the hybrid
MMC based MTDC transmission system can process the dc
fault much faster.

As is shown in Figure 9, hybrid MMC is applied in this
four-terminalMTDC. 𝑆1∼𝑆8 are the disconnecting switches
in each dc transmission line. Based on this system, the process
of the presented hybrid MMC-MTDC removing the fault
lines and recovering the nonfault lines under dc side fault is
as follows.

Step 1. Each converter monitors the dc side bus voltage and
current in real time. Using the dc fault detection method [20,
21], and combined with the system parameters, the control
system is able to acquire when the dc fault occurs and which
kind of it.

Step 2. After the dc fault is detected, according to the changes
of current, voltage, and power flow at the dc side bus of each
MMC, the potential fault lines can be detected [22].

Step 3. The disconnecting switches in the potential fault lines
are marked, so that the fault lines can be isolated after the dc
fault blocking.
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Figure 9: Structure of four-terminal MMC-MTDC system.

Step 4. Blocking signals are sent to the SMs which have the
dc fault ride-through capability in the hybrid MMC. At the
same time, all the by-pass switches paralleled with other SMs
are turned on to protect the semiconductor devices in them.
Considering the delay time of detecting fault and blocking
IGBTs, the time needed for MMC to deal with the dc fault is
within 5∼10ms.

Step 5. The disconnecting switches marked in Step 3 are
turned off. According to the simulation results and the dc
fault clearing time listed in Table 3, the switches should
be disconnected at about 30ms after the converters receive
blocking signals.

Step 6. The control system sends unblocking signals to the
converters to unblock all the IGBTs in MMC and turns off
the by-pass switches in Step 4.

Step 7. The converters are set to run in constant dc voltage
control mode until the dc bus voltage increases to its rated
value. At the moment, the disconnecting switches in the
potential fault lines measure the voltages on their both sides.
If the voltage difference is less than a certain value, the switch
would close itself.

Step 8. After the switches in the nonfault lines closed, all
of the converters are set to their original modes. And then,
the fault line is isolated and the nonfault lines are returned
to service. The hybrid MMC-MTDC transmission system
reaches a new steady state under the presupposed operating
conditions.

5. Simulation Analysis

To verify the reliability of the represented hybrid MMC-
MTDC transmission system and its capability to block dc
fault, a four-terminal MTDC simulation model is built in
PSCAD/EMTDC.WhereMMC1 uses the constant dc voltage
and ac voltage control mode, MMC2 adopts the dc voltage
drop and constant ac voltage control mode; both MMC3 and
MMC4 take the constant active and reactive power control
mode. Each bridge arm in hybrid MMC is consisted by 12
HBSMs, 4 SDSMs, and 1MCSM, and anMCSM ismade up by
4 half-bridge units. According to (9), the maximum number

of output voltage levels is changed from 21 to 105 afterMCSM
added. It reduces the harmonic content of output waveform
immensely.

The parameters of this hybrid MMC-HVDC simulation
system are listed in Table 4. The power direction flows into
the converter are set as positive. The converter transformers
adopt the YNd11 connection scheme. The converters are
connected by high voltage direct current cable, and the unit
of distance impedance is 0.01Ω/km.

5.1. Steady-State Simulation and Analysis. When the hybrid
MMC-MTDC transmission system is under the steady-state
operation, the active power of MMC3 is changed from
50MW to 80MW and the active power of MMC4 is changed
from 100MW to 50MW at 0.6 seconds. The active power of
MMC3 is changed from 80MW to 100MW and the active
power of MMC4 is turned from 50MW to −50MW at
0.8 seconds. The reactive power of MMC4 is turned from
−50Mvar to 50Mvar at 1.0 second. The active power of
MMC3 and MMC4 is resumed to 80MW and 100MW at 1.2
seconds. The simulation waveforms are shown in Figure 10.

As shown in Figure 10, since MMC1 adopts the constant
dc voltage control mode and the power change is within the
adjustable range, the active power imbalance is compensated
by MMC1 at the time of 0.6 seconds. The active power of
MMC4 is changed significantly at the time of 0.8 seconds and
the power flow turns to the opposite direction. According
to the dc voltage control mode of MMC2, both MMC1 and
MMC2 are needed to compensate the active power and
stabilize the dc voltage. Meanwhile, the dc voltage of MMC4
is changed from slightly larger to less than 400 kV, so that
MMC4 can absorb the active power from the system. At the
time of 1.0 second, the reactive power of MMC4 changes
from −50Mvar to 50Mvar and the dc voltage ofMMC4 tends
towards stability after a slight oscillation. During this process,
the other converters’ dc voltages always keep stable. It means
that the change of reactive power rarely has influence on
the stability of the dc system. At the time of 1.2 seconds,
the power of MMC3 and MMC4 recovered, so MMC1 and
MMC2 changed their output to maintain the system stability.
During the whole process, after the changes of parameters,
the system restores to a steady state within a short time (less
than 50ms), and the fluctuation is within ±1%. All of these
indexes meet the requirements of the system stability.

5.2. Simulation of the DC Bipolar Short-Circuit Fault. To
verify the capability of the new hybrid MMC-MTDC under
dc side fault and analysis of the characteristic of nonfault
lines’ recovery, a dc fault in lines 1-2 close to MMC1 is set
at the time of 2 seconds. The dc fault can be divided into
three kinds: monopolar grounding fault, tripping fault, and
bipolar short-circuit fault. In all the three kinds of dc faults,
the bipolar short-circuit fault causes the most serious effect
[23]. So, to make the focal points stand out, only bipolar
short-circuit fault is simulated and analyzed in this section.
Combined with the control strategy presented in Section 4,
a hybrid MMC based four-terminal dc transmission system
is built in PSCAD/EMTDC, and the waveforms of fault state
simulation are shown in Figure 11.
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Table 4: Parameters of the hybrid MMC-HVDC simulation system.

Parameters MMC1 MMC2 MMC3 MMC4
Rated capacity of MMC 400MVA 300MVA 100MVA 100MVA
ac bus voltage 220 kV 220 kV 110 kV 110 kV
dc bus voltage ±200 kV
Rated capacity of transformer 400MVA 320MVA 120MVA 120MVA
Ratio of transformer 220 kV/230 kV 110 kV/230 kV
Leakage reactance 0.1 pu
Bridge arm reactance 32mH 55mH 165mH 165mH
HBSMs’ number 12
SDSMs’ number 4
MCSMs’ number 1
SM capacitance 3400𝜇F 2550 𝜇F 850 𝜇F 850 𝜇F
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Figure 10: Waveforms of steady-state simulation: (a) active power variations; (b) reactive power variations; (c) dc voltage variations.

As shown in Figures 11(a) and 11(b), after the dc fault
occurs, the hybrid MMC blocks itself; then the active power
and reactive power reduce to zero within 35∼40ms. When
the converter is unblocked, the dc voltage recovers to 400 kV;
then the active power and reactive power turn to their
new steady states. Due to the fact that the fault lines have
been isolated and that the system network parameters have
been changed, the transmission power of MMC1 and MMC2
changes from the original state to a new steady state.

As shown in Figures 11(c) and 11(d), after the dc fault
occurs, the fault current increases sharply and the dc voltage
falls off due to the capacitor discharge and the ac side through
fault current.Then, the control system sends blocking signals
to block the hybrid MMC. After blocking, the capacitor
voltage stops the ac current from flowing into the dc side.
Then, the short-circuit current and dc voltage go down to
zero, respectively. After that, the disconnecting switches are
turned off, and unblocking signals are sent to the converters.
At the same time, all the converters are set to run in constant
dc voltage control mode until the dc bus voltages increase
to their rated values. At this moment, the disconnecting
switches in the nonfault lines detect the voltage differences

are less than the set value and close themselves. At last, all the
converters are set to their original modes and 𝑖dc rises to a
new steady value.

As shown in Figures 11(e) and 11(f), the SMs’ voltages stay
near the rated voltage value 20 kV. So, after the fault line is
removed, there is no need to charge the capacitors in the SMs
again, and then the recovery time will not be too long.

As shown in Figures 11(g) and 11(h), the ac side current
decreases to zero during the blocking time and recovers to
the steady value when the system is put into operation again.
During this process, there is no off-limit condition, and the
ac voltage variation is less than 5%. So, all the results indicate
that the dc fault can hardly influence the ac system and
the new hybrid MMC-MTDC transmission system is stable
during the fault process.

6. Conclusions

In this paper, the mismatched-cascade mechanism and dc
fault blocking principle are implemented in a hybrid MMC
topology. Firstly, the dc fault blocking principle and different
topologies of submodules are presented to analyse the fault
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Figure 11: Waveforms of fault state simulation: (a) and (b) active and reactive power variations; (c) and (d) dc voltage and current of MMC1;
(e) and (f) upper and lower bridge SM capacitor voltages; (g) and (h) ac side three-phase voltage and current of MMC1.

ride-through capability. A new kind of series-double sub-
module is proposed. Based on this submodule, theMMC can
block dc fault and the number of semiconductor devices is
reduced. A new hybrid MMC topology constituted by half-
bridge SM, series-double SM, and mismatched-cascade SM
is proposed. The effect of this kind of MMC to block dc
fault is verified by simulation in PSCAD/EMTDC. Then, an
MTDC transmission system based on this hybrid MMC and
its process to remove the fault lines and recover the nonfault
lines are presented. Finally, a four-terminal dc simulation
model is built. Based on thismodel, both steady state and fault
state are analyzed by simulations. According to test results,
it is shown that dc system based on this new kind of hybrid
MMC can block the dc fault accurately and quickly. And the
nonfault parts can be restored to normal operation. With
the fault blocking ability and feasible control strategy, this
hybrid MMC presented can be applied into connecting the
renewable source to power grid and forming multiterminal
dc network.
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[8] R. José, L. G. Franquelo, K. Samir et al., “Multilevel converters:
an enabling technology for high-poer applications,” Proceedings
of the IEEE, vol. 97, no. 11, pp. 1786–1817, 2009.

[9] P. Bordignon, M. Marchesoni, G. Parodi, and L. Vaccaro,
“Modular multilevel converter in HVDC systems under fault
conditions,” in Proceedings of the 15th European Conference
on Power Electronics and Applications, pp. 1–10, Lille, France,
September 2013.

[10] X. Chen, C. Zhao, and C. Cao, “Research on the fault charac-
teristics of HVDC based on modular multilevel converter,” in
Proceedings of the IEEE Electrical Power and Energy Conference
(EPEC ’11), pp. 91–96, Winnipeg, MB, Canada, October 2011.

[11] C. M. Franck, “HVDC circuit breakers: a review identifying
future research needs,” IEEE Transactions on Power Delivery,
vol. 26, no. 2, pp. 998–1007, 2011.

[12] X. Li, Q. Song, W. Liu, H. Rao, S. Xu, and L. Li, “Protection
of nonpermanent faults on DC overhead lines in MMC-based
HVDC systems,” IEEE Transactions on Power Delivery, vol. 28,
no. 1, pp. 483–490, 2013.

[13] F. Chang, Z. Yang, Y. Wang, F. Lin, and S. Liu, “Fault character-
istics and control strategies of multiterminal high voltage direct
current transmission based on modular multilevel converter,”
Mathematical Problems in Engineering. In press.

[14] T. Modeer, H.-P. Nee, and S. Norrga, “Loss comparison of
different sub-module implementations for modular multilevel
converters in HVDC applications,” in Proceedings of the 14th
European Conference on Power Electronics and Applications
(EPE ’11), pp. 1–7, Birmingham, UK, September 2011.

[15] C. Zhao, J. Xu, and T. Li, “DC faults ride-through capability
analysis of full-bridge MMC-MTDC system,” Science China
Technological Sciences, vol. 56, no. 1, pp. 253–261, 2013.

[16] R. Marquardt, “Modular multilevel converter topologies with
DC-short circuit current limitation,” in Proceedings of the 8th
IEEE International Conference on Power Electronics and ECCE
Asia (ICPE & ECCE ’11), pp. 1425–1431, IEEE, Jeju, Republic of
Korea, May-June 2011.

[17] D. R. Trainer, C. C.Davidson, C.D.M.Oates, N.M.Macleod, D.
R. Critchley, and R. W. Crookes, “A new hybrid voltage sourced
converter for HVDC power transmission,” in Proceedings of the
Conference International des Grands Reseaux Electriques, pp. 1–
12, Paris, France, 2010.

[18] M. M. C. Merlin, T. C. Green, P. D. Mitcheson, D. R. Trainer,
D. R. Critchley, and R. W. Crookes, “A new hybrid multi-level
voltage-source converter with DC fault blocking capability,”
in Proceedings of the 9th IET International Conference on AC

and DC Power Transmission (ACDC ’10), pp. 1–5, London, UK,
October 2010.

[19] J. Qin, M. Saeedifard, A. Rockhill, and R. Zhou, “Hybrid design
of modular multilevel converters for HVDC systems based
on various submodule circuits,” IEEE Transactions on Power
Delivery, vol. 30, no. 1, pp. 385–394, 2015.

[20] L. Tang and B.-T. Ooi, “Locating and isolating DC faults
in multi-terminal DC systems,” IEEE Transactions on Power
Delivery, vol. 22, no. 3, pp. 1877–1884, 2007.

[21] J. Yang, J. E. Fletcher, and J. O’Reilly, “Short-circuit and ground
fault analyses and location in VSC-based DC network cables,”
IEEE Transactions on Industrial Electronics, vol. 59, no. 10, pp.
3827–3837, 2012.

[22] L. Tang and B.-T. Ooi, “Protection of VSC-multi-terminal
HVDC against DC faults,” in Proceedings of the IEEE 33rd
Annual Power Electronics Specialists Conference (PESC ’02), vol.
2, pp. 719–724, June 2002.

[23] D. Schmitt, Y.Wang, T.Weyh, and R.Marquardt, “DC-side fault
current management in extendedmultiterminal-HVDC-grids,”
in Proceedings of the 9th International Multi-Conference on
IEEE Systems, Signals and Devices, pp. 1–5, Chemnitz, Germany,
March 2012.



Research Article
An Improved Macro Model of Traffic Flow with
the Consideration of Ramps and Numerical Tests

Zhongke Shi, Wenhuan Ai, and Dawei Liu

College of Automation, Northwestern Polytechnical University, No. 127 Youyi Road (West), Beilin, Xi’an, Shaanxi 710072, China

Correspondence should be addressed to Zhongke Shi; shizknwpu@126.com

Received 8 April 2015; Revised 11 June 2015; Accepted 14 June 2015

Academic Editor: Xiaosong Hu

Copyright © 2015 Zhongke Shi et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We present an improved macro model for traffic flow based on the existing models. The equilibrium point equation of the model
is obtained. The stop-and-go traffic phenomenon is described in phase plane and the relationship between traffic jams and system
instability is clearly shown in the phase plane diagrams. Using the improved model, some traffic phenomena on a highway with
ramps are found in this paper. The numerical simulation is carried out to investigate various nonlinear traffic phenomena with a
single ramp generated by different initial densities and vehicle generation rates. According to the actual road sections of Xi’an-Baoji
highways, the situations of morning peak with several ramps are also analyzed. All these results are consistent with real traffic,
which shows that the improved model is reasonable.

1. Introduction

In recent years, traffic jams has become more and more
serious. They do not only cause a large number of costs
but they also have a negative impact on the environment
and energy sustainability. Therefore, researchers have made
many efforts to develop transportation electrification to
alleviate the impact. Hu et al. [1, 2] analyzed the energy
efficiencies of a series plug-in hybrid electric bus with
different energy management strategies and battery sizes
and comparatively examined three different electrochemical
energy storage systems for a hybrid bus powertrain. Recently,
they [3] also investigated the optimal component sizing and
power management of a fuel cell/battery hybrid bus. Sun
et al. [4] presented a traffic data-enabled predictive energy
management framework for plug-in hybrid electric vehicles.
Furthermore, they [5] studied the velocity predictors for
predictive energy management in hybrid electric vehicles.
However, many other physicists and engineers have tried to
develop traffic models with the aim of optimizing traffic flow.
During the past decades, lots of trafficmodels have been con-
structed to replicate the formation mechanism and inherent
law of the traffic phenomena. In microscopic view, the traffic
flow system was regarded as a complex self-driven many-
particle system composed of a large number of vehicles. The

microscopic traffic flow models investigated the dynamical
behavior of a single vehicle and the interactions between
the vehicles, so they can also describe the traffic phenomena
of the whole system. Among them, the car-following model
is a favorable type of traffic models describing the driver’s
following behavior in view of the stimulus from its preceding
vehicle. On the macroscopic view, physicists paid close atten-
tion on the collective behavior of traffic. Due to the analogy of
vehicle streamwith gas stream or fluid stream, large numbers
of the gas kinetic models or fluid-dynamic models have been
developed to approximately describe the traffic phenomena.
Based on these models, researchers can use a lot of system
simulation methods to analyze the traffic phenomena.

The trafficflowon a highwaywith the ramphas been stud-
ied for decades through observation and modeling. Lee et al.
[6] studied the presence of the external vehicle flux through
ramps and found a new kind of traffic phenomenon, called
“recurring humps” (RH). In this state, the density and the
flow oscillated periodically and the oscillations concentrated
around the ramp. Gupta and Katiyar [7] studied the phase
transition on a highway in a modified anisotropic continuum
model with an on-ramp. Huang [8] observed an interesting
phase: jam-max.-free when the on-ramp is placed before the
off-ramp. He also demonstrated that the bulk properties on
the roadway are totally controlled by the ramp flow through
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the boundaries. Tang et al. [9] indicated that ramps often have
different effects on the main road traffic during the morning
rush period and the evening rush period and that the effects
are related to the initial status of the main road traffic flow.

However, these models cannot completely describe the
various complex phenomena resulted by different input and
output conditions on ramps. In particular, the phenomena of
fixed vehicle generation rate but increasing initial homoge-
neous density with a single ramp, the situation of morning
peak, and the congested traffic stream with several ramps
are rarely studied in the past. In this paper, we present an
improved macro model for traffic flow to analyze these phe-
nomena on a highway with a single ramp andmultiple ramps.
Moreover, we introduce a completely different method to
describe traffic phenomena in the phase plane diagrams from
a stability perspective. The variable substitution is adopted
in the models and the traffic congestion corresponds to the
unstable system in phase plane. So the traffic flow problems
can be converted into the system stability problems.

The remainder of the paper is organized as follows. In
Section 2, we present an improved continuum model based
on the existing traffic flow model. In Section 3, we deduce
the equilibrium point equation of the model. In Section 4, we
analyze the well-known stop-and-go waves using the phase
plane diagrams based on the improved model and compare
them with the traditional temporal evolution of vehicle den-
sity. In Section 5, we use the improved model to describe var-
ious nonlinear phenomena on a highway with a single ramp.
In Section 6, the trafficflowon a highwaywithmultiple ramps
is also studied and the actual traffic phenomena of Xi’an-Baoji
highways are discussed. We conclude the paper in Section 7.

2. Models

The macroscopic traffic flow models consider vehicles as
interacting particles and consider traffic flow as a one-
dimensional compressible flow of these particles.The study of
macroscopic traffic flow models began with the LWR model
proposed by Lighthill and Whitham [10] and Richards [11].
To overcome the shortage of the LWR model, Payne [12]
developed a higher order model by using a dynamic equation
for the mean velocity. Hereafter, many researchers presented
a great number of models based on Payne’s model [13–15].
However, these models fail to describe the property that
the characteristic speeds are always less than or equal to
the macroscopic flow speed. Later, Zhang [16] proposed a
macroscopic traffic flow model which overcomes the back-
ward travel problem. Gupta and Katiyar [17] also developed
an anisotropic continuum model which is referred to as GK
model. Although these models can describe many complex
traffic phenomena, they cannot be used to directly explore
the effects of ramps since they do not consider this factor. So
far, some theoreticalmodels have been developed to study the
effects of ramps [6–9]. However, these models cannot com-
pletely describe the various complex phenomena resulted by
different input and output conditions on ramps. In particular,
the phenomena of fixed vehicle generation rate but increasing
initial homogeneous density with a single ramp, the situation
of morning peak, and the congested traffic stream with

several ramps are rarely studied in the past. In this paper,
we present an improved macro model for traffic flow on a
highway with ramps based on the GK model as follows:
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,

(1)

where 𝜌 is the density; V is the velocity; 𝑥 and 𝑡 represent
space and time, respectively; 𝜏 is the driver’s reaction time; 𝛽
is a nonnegative dimensionless parameter; 𝑉

𝑒
[𝜌(𝑥, 𝑡)] is the

optimal velocity function and has the following form [18]:
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(2)

Consider 𝑉
𝑒
(𝜌) = 𝑑𝑉

𝑒
(𝜌)/𝑑𝜌, V

𝑓
is the free-flow speed, 𝜌

𝑚

is the maximum or jam density, and 𝑐(𝜌) ≺ 0 is the traffic
sound speed given by

𝑐
2
(𝜌) = −

𝑎𝑉


𝑒
(𝜌)

2
. (3)

Consider 𝑠(𝑥, 𝑡) is the flow generation rate. For simplicity, we
here adopt the definition of flow generation rate in Jiang et
al. [19]; that is

𝑠 (𝑥, 𝑡) =
{

{

{

𝑞ramp

𝐿 ramp
∀𝑥 ∈ Ωramp,

0 else,
(4)

where Ωramp is the region of the ramp, 𝐿 ramp is the length of
the ramp, and 𝑞ramp is the total ramp flow. We here define
𝑞ramp as follows:

𝑞ramp = 𝑞
on
ramp − 𝑞

off
ramp, (5)

where 𝑞onramp is the input flow of the on-ramp and 𝑞offramp is the
output flow of the off-ramp.

Furthermore, we employ a simple transformation as
follows:

𝜎 =
1
V

𝜂 =
1

𝜌
𝑚
− 𝜌

.

(6)

Substituting the variables into (1), we have a new traffic
flow model as follows:
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Similarly, substituting the variables into (2), the equilib-
rium velocity V

𝑒
(𝜂) is as follows:

𝑉
𝑒
(𝜂)

= V
𝑓
{[1+ exp(

0.75 − 1/𝜂𝜌
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0.06
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−1
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(8)

According to the variable substitution 𝜎 = 1/V, we
can see that as long as the traffic becomes congested and
the vehicles velocity goes to zero, the state variable 𝜎 will
approach infinity. Likewise, from the variable substitution,
𝜂 = 1/𝜌

𝑚
− 𝜌, we can see that if the vehicle density becomes

saturated, the state variable 𝜂 will approach infinity in the
same way. So we can use the phase plane diagrams about the
variable 𝜂 or 𝜎 to describe clearly the relationship between
traffic jams and system instability. As long as the traffic has a
very small density fluctuation, the value of 𝜂 and𝜎will change
sharply. Moreover, as long as there is traffic jam formation,
the value of 𝜂 and 𝜎 will approach infinity. The more the
value of 𝜂 and 𝜎 increases, the greater the fluctuation of the
vehicle density is and the more unstable the traffic system
is. On the contrary, the system becomes more stable, so
the problem of traffic flow could be converted into that of
system stability. We can describe all kinds of nonlinear traffic
phenomena with the phase plane diagrams and determine
whether there will be traffic congestion or other abnormal
phenomena from a global stability point. It may be possible to
apply some mathematical tools such as branch and bound to
the nonlinear stability analysis of traffic system. We can find
the equilibrium solutions and some bifurcations of the new
model to regulate the stability of traffic system in the future
work.

3. The Equilibrium Point Equation Analysis

When the traffic system reaches equilibrium state, the density
and velocity of the whole road will not change with time.
Moreover, when the traffic system reaches some special
equilibrium points, the density and velocity of the whole road
will not change with time and displacement at the same time.
In order to find these equilibrium solutions of the newmodel,
the equilibrium point equation of the system is analyzed
firstly.

When system (7) does not change with time, we have

𝜕𝜂

𝜕𝑡
= 0,

𝜕𝜎

𝜕𝑡
= 0.

(9)

It is assumed that the input flow of the on-ramp is equal
to the output flow of the off-ramp. So we have 𝑠(𝑥, 𝑡) = 0.
By substituting (9) into (7), the equilibrium points satisfy the
formula as follows:
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Equation (10a) can be rewritten as
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So,
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By integrating (11) at both ends, we have

ln𝜎 = 𝑓 (𝜂) + const = ln 𝑘0 (𝜌𝑚 −
1
𝜂
) . (14)

𝑘0 is a nonzero constant and (14) can be rewritten as

𝜎 = 𝑘0 (𝜌𝑚 −
1
𝜂
) . (15)
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By substituting (15) and (11) into (10b), we obtain
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In summary, the system equilibrium points satisfy the
following equations:
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𝑘
2
0𝜂𝑉


𝑒
(𝜂) (𝜌

𝑚
𝜂 − 1)

6𝜏
𝜕
2
𝜂

𝜕𝑥2
+
𝑘
2
0𝑉


𝑒
(𝜂)

𝜏
[
1
3
(1−𝜌

𝑚
𝜂) −

1
2
]

⋅ (
𝜕𝜂

𝜕𝑥
)

2
+[

[

𝜂
2
− 2𝛽𝑘0𝜂 (𝜌𝑚𝜂 − 1)√−

𝑉


𝑒
(𝜂)

2𝜏

+
𝑘
2
0𝑉


𝑒
(𝜂) (𝜌

𝑚
𝜂 − 1)2

2𝜏
]

]

𝜕𝜂

𝜕𝑥

+
𝑘0𝜂 (𝜌𝑚𝜂 − 1)2

𝜏
[𝑘0 (𝜌𝑚𝜂 − 1) 𝑉𝑒 (𝜂) − 𝜂] = 0

𝑉
𝑒
(𝜂) = V

𝑓
{[1+ exp(12.5− 1

0.06𝜌
𝑚
𝜂
)]

−1
− 3.72

× 10−6} .

(17)

The meaning of every parameter is the same as above. If
the initial values of 𝜂 and 𝜎 are given by the solution of (17),
the density and velocity of the whole road will not change
with time. At the same time, we can see from (15) that the
product of density and velocity is equal to 1/𝑘0.

Furthermore, when system (17) also does not change with
displacement, we obtain the equilibrium points equation as
follows:

𝜎 = 𝑘0 (𝜌𝑚 −
1
𝜂
) , (18a)

𝑘0𝜂 (𝜌𝑚𝜂 − 1)2

𝜏
[𝑘0 (𝜌𝑚𝜂 − 1) 𝑉𝑒 (𝜂) − 𝜂] = 0. (18b)

Next, we analyze the solution of (18b). 𝜂 cannot be zero
according to 𝜂 = 1/(𝜌

𝑚
− 𝜌). If 𝜌

𝑚
𝜂 − 1 = 0, then 𝜌 is

equal to 0. In this case, 𝜂 is trivial equilibrium point and has
no practical significance. So we only need to investigate the
following equation:

𝑘0 (𝜌𝑚𝜂 − 1) 𝑉𝑒 (𝜂) − 𝜂 = 0. (19)

Equation (19) can be written as

𝑉
𝑒
(𝜂) =

𝜂

𝑘0 (𝜌𝑚𝜂 − 1)
. (20)

At the same time, (18a) can be written as 𝜎 = 𝑘0(𝜌𝑚𝜂 −
1)/𝜂. So we can see from (20) that 𝑉

𝑒
(𝜂) = 1/𝜎 = V.

Therefore, we may conclude that if the value of initial
density is set as a random constant in the reasonable range of
traffic flow and the initial velocity is given as the equilibrium
velocity which is corresponding to the initial density, the
density and velocity of the whole road will not change with
time and displacement. These conclusions are also consistent
with the phenomena observed in realistic traffic flow.

4. The Stop-and-Go Traffic Phenomena on
the Phase Plane

The stop-and-go traffic phenomena are international well-
known nonlinear phenomena. Traditional researches on it
mainly focused on using the figures of temporal development
of density through the original traffic flow models. The new
model mentioned above can also describe it through the
phase plane diagrams from a system stability perspective.
The comparisons and discussions between the two methods
by numerical experiments were given as follows. Here we
assume that the input flow of the on-ramp is equal to the
output flow of the off-ramp.

The stop-and-go phenomena can be observed in the
amplification of a small disturbance. In this section, we
simulate the stop-and-go phenomena with respect to an
amplified localized perturbation in an initial homogeneous
condition. The following initial variation of the average
density 𝜌0 is used as in [20]:

𝜌 (𝑥, 0) = 𝜌0 +Δ𝜌0 {cosh
−2
[
160
𝐿

(𝑥−
5𝐿
16
)]

−
1
4
cosh−2 [40

𝐿
(𝑥−

11𝐿
32

)]} 𝑥 ∈ [0, 𝐿]

V (𝑥, 0) = 𝑉 (𝜌 (𝑥, 0)) 𝑥 ∈ [0, 𝐿] ,

(21)

where 𝜌0 is the initial vehicle density, Δ𝜌0 = 0.01 veh/m is
the amplitude of localized perturbation, and 𝐿 = 32.2 km is
the length of road section under consideration. The dynamic
approximate boundary condition was given by

𝜌 (1, 𝑡) = 𝜌 (2, 𝑡) ,

𝜌 (𝐿, 𝑡) = 𝜌 (𝐿 − 1, 𝑡) ,

V (1, 𝑡) = V (2, 𝑡) ,

V (𝐿, 𝑡) = V (𝐿 − 1, 𝑡) .

(22)

For computational purpose, the space domain was
divided into equal intervals of length of 100m and time
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interval was chosen as 1 s. The related parameters of our
model were as follows:

𝛽 = 2,

𝜏 = 14 s,

V
𝑓
= 30m/s,

𝜌
𝑚
= 0.2 veh/m,

𝜌0 = 0.052 veh/m,

Δ𝜌0 = 0.01 veh/m.

(23)

The critical density values of the GK model corre-
sponding to the parameters above were 0.037 veh/m and
0.091 veh/m, which can easily be found out by the stability
condition [17]. The traffic flow will be unstable between
these critical densities. The small disturbance in these initial
homogeneous conditions will be amplified, and the stop-and-
go phenomena will occur.

Traditionally, people used the temporal evolution of
vehicle density or velocity to describe the stop-and-go waves,
such as in [17, 21–24]. In particular, [17] employed the GK
model to analyze it. The variation range of vehicle density
is 0–0.25 veh/m and velocity is 0–30m/s. So there are rather
limited changes in the diagrams about these variables. When
the traffic becomes congested, the vehicle density and velocity
both tend to a specific value. We cannot see significant
changes from the traditional temporal development of den-
sity or velocity. However, through our variable substitutions,
the state variable 𝜂 and 𝜎 both tend to infinity. As long as the
traffic has a small fluctuation, the value of 𝜂 or 𝜎 will change
sharply. Moreover, as long as there is traffic jam formation,
the value of 𝜂 or 𝜎 will approach infinity. Using the new
model by such variable substitution, we can describe clearly
the relationship between traffic jams and system instability
in the phase plane. The numerical solution of 𝜂 and 𝜎 can
be obtained by applying the finite difference method on the
new model. Then we analyze the stop-and-go phenomena
with four phase plane diagrams. The coordinate systems of
them are (𝜂, 𝜕𝜂/𝜕𝑡), (𝜂, 𝜕𝜂/𝜕𝑥), (𝜎, 𝜕𝜎/𝜕𝑡), and (𝜎, 𝜕𝜎/𝜕𝑥),
respectively.Through the four graphs the variation of density
or velocity with time or sections can be investigated more
clearly. Thus we can completely convert the fluctuations of
traffic flow into the stability analysis charts.

Figure 1 shows the unstable traffic situation with small
perturbations divergence when the initial density was set
to 0.052 veh/m. Figure 1(a) is the temporal evolution of
vehicle density. Since the value of initial density we set was
in the unstable range, the amplitude of the initial small
perturbations grows in time, leading to traffic instability. A
complex localized structure consisting of two ormore clusters
forms. This situation corresponds to stop-and-go traffic.

A cross-sectional analysis was made along a time axis of
Figure 1(a) to observe the variation of density with timewhen
the section is fixed. Since the state variable 𝜂 increases strictly
monotonously with the density, we draw the change curves
of 𝜂 with time on each road section in Figure 1(b). Similarly,

since 𝜎 is inversely proportional to the vehicle velocity, we
draw the change curves of 𝜎 with time on each road section
in Figure 1(d). If the traffic approaches congestion, the density
will approach the jam density and the velocity will be close to
zero. The state variables 𝜂 and 𝜎 will tend to infinity and the
system will become unstable.

If the curves in Figures 1(b) and 1(d) are drawn one
by one in the order of road section, we can find the curve
of each downstream section moved toward the outer ring
of upstream section. It shows that density fluctuations were
gradually amplified toward the upstream section and the
average velocity gradually reduced. The initial small pertur-
bations spread upstream and were divergent, leading to the
whole traffic system instability.

The phase plane diagrams emphasized the instable situa-
tion of the traffic systemwe are chiefly concerned about. It can
be seen that the value of 𝜂 and𝜎will change sharply in Figures
1(b) and 1(d) even when there is a very small fluctuation in
Figure 1(a).When the vehicle density approached congestion,
the value of 𝜂 and 𝜎 will get larger. The corresponding curves
of such traffic jams accounted for a large proportion in
the graphs, while most small amplitude density fluctuations
accounted for a quite small percentage and they are just
centered in a small area near the initial value.

Then wemade a cross-sectional analysis along a displace-
ment axis of Figure 1(a) to observe the variation of density
with displacement when time is fixed. Figures 1(c) and 1(e)
are, respectively, the change curves of 𝜂 and 𝜎 per second
on the whole road. If these curves are drawn one by one in
the order of time, we can see all the curves change with time
from the inner circle to the outer ring and many of them
tend to infinity. It also demonstrates that density fluctuations
of the whole road are gradually amplified with time. The
amplitude of the initial small perturbations grows in time.
The whole traffic system is unstable. Compared with the
temporal evolution of density, the phase plane diagrams can
more clearly reflect the density variation of current time and
the next time. So through the phase plane diagrams we can
convert directly the traffic jam phenomenon into the curves
of instability system. The result is more obvious when the
traffic system is more instable.

Figure 2 is the change curves of density and 𝜂 on the
ninetieth road section which changes along with time. It
can be seen from Figure 2(a) that there were many density
fluctuations at this road section in the first ten minutes and
this situation corresponds to stop-and-go traffic.

It reflects the density fluctuations outstandingly in
Figure 2(b). We find out the starting point of the curve to
observe its trajectory. It moves from the innermost point
which is labeled as 6.6225 to the outermost circle and
then turns toward the small circles inside. A circle of the
phase plane diagram corresponds to a density fluctuation
of the density curve chart. The variation of the circle ring
in horizontal direction corresponds to the amplitude of a
density fluctuation and in vertical direction it corresponds to
the change rate of a density fluctuation. So the phase plane
diagrams clearly reflect the size and speed of the density
fluctuations. These results are consistent with the stop-
and-go traffic phenomena described by the density curve
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Figure 1: Evolution of small perturbation under the initial density 0.052 veh/m. (a) The temporal evolution of vehicle density. (b) The phase
plane diagram of (𝜂, 𝜕𝜂/𝜕𝑡). (c)The phase plane diagram of (𝜂, 𝜕𝜂/𝜕𝑥). (d)The phase plane diagram of (𝜎, 𝜕𝜎/𝜕𝑡). (e)The phase plane diagram
of (𝜎, 𝜕𝜎/𝜕𝑥).
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Figure 2: (a)The density-time variation curve on the ninetieth road section. (b)The phase plane diagram of (𝜂, 𝜕𝜂/𝜕𝑡) on the ninetieth road
section.
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Figure 3: (a) Density-time variation curves on the ninetieth, the eightieth, the seventieth, the sixtieth, and the fiftieth road sections. (b) The
phase plane diagram of (𝜂, 𝜕𝜂/𝜕𝑡) on the ninetieth, the eightieth, the seventieth, the sixtieth, and the fiftieth road sections.

chart. Moreover, the phase plane diagrams mainly reflect the
unstable traffic conditions we are chiefly concerned with.

Figure 3 is the change curves of density and 𝜂 in the first
40 minutes on the ninetieth, the eightieth, the seventieth, the
sixtieth, and the fiftieth road sections which change along
with time. As you can see from Figure 3(a), the amplitude
of the density fluctuation on the 90th section is small, as
shown by the cyan line. It is growing toward the upper section
of the road because the initial small perturbations spread
upstream and are divergent. In Figure 3(b), the variation
of 𝜂 on the 90th section is small, as shown by the cyan

circle inside. It grows toward the upper sections and reaches
the largest on the 50th section as shown by the blue circle
outside. So it also shows the initial perturbation is amplified
upstream. Although there are very small density fluctuations
in Figure 3(a), the variation range of 𝜂 is big in Figure 3(b).
The phase plane diagram mainly reflects the density fluctua-
tions.

Figure 4(a) is the density variation curves of the 1100th,
the 1101st, the 1102nd, the 1103rd, the 1104th, the 1105th,
and the 1106th seconds of the whole road section. The
curves almost coincide together and we cannot see the
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Figure 4: (a) Density-space variation curves on the 1100th, the 1101st, the 1102nd, the 1103rd, the 1104th, the 1105th, and the 1106th seconds
of the whole road section. (b) The phase plane diagrams of (𝜂, 𝜕𝜂/𝜕𝑥) on the 1100th, the 1101st, the 1102nd, the 1103rd, the 1104th, the 1105th,
and the 1106th seconds of the whole road section.

obvious changes. Figure 4(b) is the phase plane diagrams
corresponding to these times and it can clearly show that the
curves enlarge per second from inside to outside; that means
the amplitude of the density on the whole road grows in time
and the traffic system is divergent.

Figure 5(a) is the velocity-space variation curves of the
679th, 680th, the 681st, the 682nd, the 683rd, the 684th,
and the 685th seconds on the whole road section. All of
the curves almost coincide together and we cannot see the
obvious changes. However, the corresponding phase plane
diagram in Figure 5(b) obviously shows that the inner circle
of the current time turns to the outer ring of the next second
and all of the curves tend to infinity. So it clearly reflects
unstable traffic phenomena.

Comparing the phase plane diagrams with the tempo-
ral evolution of density shows that the stop-and-go traffic
phenomena described by the new model are consistent with
that described by the original model. But, unlike the previous
temporal evolution of density, the phase plane diagram
focuses on the density fluctuationwemainly care for and does
not highlight the most homogeneous state of stable traffic
flow.Moreover, it describes the variation of density or velocity
with time or sections more clearly.

5. The Traffic Phenomena on a Highway with
a Single Ramp

Although some empirical studies have been conducted to
evaluate traffic data on highways with ramps, they cannot
completely describe the various complex phenomena of fixed
vehicle generation rate but increasing initial homogeneous

density with a single ramp and the situation of morning peak.
As it is very difficult to investigate the traffic phenomena
induced by ramps, we use simulations by our model to
describe the effects that ramps have on a main road. We
take the test road section as 32.2 km long and set a ramp in
the middle of the road section. We assume that the number
of vehicles through an on-ramp is 36 veh more than that
through an off-ramp every meter per hour. The length of
the ramp is 100m. So the fixed vehicle generation rate is
0.0001 veh/m/s. Other parameter values are the same as in
Section 4. The results are shown in Figure 6.

It is clear from Figure 6(a) that since the vehicle gen-
eration rate is a small constant and the initial density of
the main road is also lower than the down-critical unstable
density, the vehicles coming from the on-ramp can drive
quickly downstream and will not have any effect on the
upstream traffic. That is to say, vehicles upstream can keep
their speeds even when they drive past the ramp. So the
density increments just appear from the on-ramp and reduce
downstream gradually. The ramp has a small effect on the
main road at this situation and this phenomenon will seldom
appear because the main road density is relatively high.

In Figure 6(b), since the initial density is just above the
down-critical unstable density, the ramp can disturb the
stability of the main road traffic. A small quantity of vehicles
coming from the ramp can be seen as a small localized
perturbation on the initial homogeneous traffic flow. The
amplitude of perturbation grows in time and eventually forms
the stop-and-go traffic. So the ramp produces stop-and-go
traffic when the main road density is between two critical
values.Thefluctuation amplitude of traffic flow ismuch larger
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Figure 5: (a) Velocity-space variation curves on the 679th, the 680th, the 681st, the 682nd, the 683rd, the 684th, and the 685th seconds of
the whole road section. (b) The phase plane diagrams of (𝜎, 𝜕𝜎/𝜕𝑥) on the 679th, the 680th, the 681st, the 682nd, the 683rd, the 684th, and
the 685th seconds of the whole road section.

than the vehicle generation rate on ramp. These phenomena
often appear during the rush hours. In this case, the inflow of
the ramp should be reduced to improve the main road traffic.

Figure 6(c) shows that when the initial density becomes
greater than the up-critical density, a stable regime of the
model is reached again and the perturbation is dissipated.
Most of the cars which entered from the ramp accumulate on
the ramp road section and the ramp becomes jammed very
quickly. It shows the vehicles queue near the on-ramp when
the main road density is relatively high. The ramp should be
closed at this situation.

The phenomena described above are the situation of fixed
vehicle generation rate but increasing initial homogeneous
density. Next, we will analyze the phenomena of fixed initial
homogeneous density but changing vehicle generation rate.
The morning peak is a common phenomenon in traffic flow.
In order to simulate it approximately, we set the value of
vehicle generation rate on the ramp to change with a sine
wave and the maximal amplitude of it is 36 veh/m/h. The
number of vehicles which entered the ramp is increasing at
the beginning of the peak hours in the morning and again is
decreasing gradually after the peak hours.The initial uniform
density is set to 0.027 veh/m and other parameter values are
the same as above. The temporal evolution of vehicle density
is shown in Figure 7.

It is clear from Figure 7 that the density is increased
first and gradually decreased with the morning peak on the
ramp section which we set in the middle of the road. The
density increment of the ramp section spreads gradually
downstream. As the initial density of the main road is very

low and the vehicle generation rate is also small, the vehicles
coming from the on-ramp can drive quickly downstream.

6. The Traffic Phenomena on a Highway with
Multiple Ramps

This section primarily analyzes traffic phenomena on a
highway with multiple ramps by using the real traffic data.
According to the new model and phase plane diagrams,
several situations of morning traffic in Xi’an-Baoji Highway
(China) were simulated. The total length in Xi’an to Baoji
freeway is 187.404 kilometers and the station distances of all
road sections are shown in Table 1.

There are ramps on each toll station according to the
practical distribution. To simulate themorning traffic, we can
assume the values of vehicle generation rate on every ramp
all change with a sine wave and the maximal amplitude of
them are all 0.001 veh/m/s. Firstly, we set the initial density
of the whole road at 0.025 veh/m which is in the stable range
of our model. For computational purpose, the space domain
was divided into equal intervals of length of 200m and the
time interval was chosen as 1 s. Other parameter values used
were as follows:

𝛽 = 6,

V
𝑓
= 125m/s,

𝜏 = 14 s,

𝜌
𝑚
= 0.25 veh/m.

(24)
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Figure 6: The density temporal evolution with initial homogeneous traffic and fixed vehicle generation rate.
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Table 1: The general situation of Xi’an-Baoji highway.

Toll stations or
control points Sanqiao Xianyang

Xian
Yang
Xi

Xingping Wugong Yangling Jiang
Zhang Changxing Meixian Cai Jia

Po Guozhen Baoji

The station
distances (KM)

Starting
point 9.698 6.092 13.594 27.419 11.83 13.08 10.515 11.725 9.855 21.855 17.815
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Figure 9:The density temporal evolution and phase plane diagrams on the Xi’an-Baoji highway with initial homogeneous traffic of amplitude
𝜌0 = 0.12 veh/m. (a) The temporal evolution of vehicle density. (b) The phase plane diagram of (𝜂, 𝜕𝜂/𝜕𝑡).

The meanings of these parameters are the same as in
Section 2. The result illustrated by the temporal evolution of
density was shown in Figure 8.

Since we assumed that the number of vehicles which
entered the ramp was always greater than that exited the
ramp at rush hours, the values of vehicle generation rate on
every ramp were positive and this could eventually cause the
density of the whole road to increase continuously. However,
the densities were far less than the jam density and the traffic
did not reach the congestion state because of the small initial
homogeneous density.

To further simulate the morning traffic approaching
the value of jam density on the Xi’an-Baoji highway, we
increased the initial density of 0.12 veh/m and remained the
value of vehicle generation rate; the temporal evolution of
vehicle density and phase plane diagrams can be compared
in Figure 9.

In Figure 9(a), since the initial density is increased and
the vehicles continually enter from the ramp, the density
of the whole road increases greatly and some road sections

approach the congestion eventually. Figure 9(b) is the com-
bination of variation curves of 𝜂 on each road section during
the first 30 minutes. Since the number of the vehicles which
entered the ramp increases first and then decreases before and
after the morning peak, the trajectory of 𝜂 also increases first
and then decreases. So there are lots of irregular cycles in the
figure corresponding to different density fluctuations. When
the amplitude value of the density fluctuation is small, the
cycle radius is small. However, the radius of cycle becomes
very largewhen the density reaches the jamdensity. Although
such cycles are notmany, they account for very big proportion
in the graph.

If we continually increased the initial density of
0.127 veh/m and other conditions were the same as above,
the density of the whole road will increase continually with
time and reach the jam density eventually. When the sum
of the traffic demand of the upstream section and the traffic
flow expected into highway is greater than the traffic capacity
of the downstream section, ramp metering can be applied
usually to restrict the number of the vehicles which entered
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Figure 10:Thedensity temporal evolution and phase plane diagrams on theXi’an-Baoji highwaywith initial homogeneous traffic of amplitude
𝜌0 = 0.127 veh/m. (a) The temporal evolution of vehicle density. (b) The phase plane diagram of (𝜂, 𝜕𝜂/𝜕𝑡).

the ramp and excess vehicles will wait in the queue. So we
let 𝜌 = 𝜌

𝑚
− 10−2 when 𝜌 ≥ 𝜌

𝑚
− 10−2 and the results were

shown in Figure 10.
It is clear from Figure 10(a) that there are three con-

gested roads and the congestion spreads upstream gradually.
However, the phase plane diagrams mainly described the
instability of the system. When the vehicle density becomes
saturated, the state variable 𝜂 increases greatly. So we can see
three curves changing greatly from Figure 10(b). But most
small amplitude traffic flow fluctuations account for a small
proportion in the graphs and they are just centered in a small
area near the initial value.

7. Conclusions

The existing models cannot fully describe the phenomena
raised by different input and output on ramps and there
are few studies on the traffic phenomena using the phase
plane diagrams. In this paper, we present an improved macro
model for traffic flow on a highway with ramps based on the
existingmodels. Furthermore, two new variable substitutions
are adopted to extend the range of the variable from a specific
value to infinity, so the model is transformed into a new
model which is suitable for the stability analysis in phase
plane. The problem of traffic flow could be converted into
that of system stability. When the input flow of the on-ramp
is equal to the output flow of the off-ramp, the equilibrium
point equation of the model is calculated and the stop-and-
go traffic is described in phase plane.The results show that the
traffic phenomena described by the newmodel are consistent
with those of real traffic, which shows that the new model
is reasonable. When the stop-and-go waves appear and the
traffic flow fluctuations tend to be unstable, the curves in
phase plane diagrams are divergent andmany of them tend to
infinity.The phase plane analysis highlights the unstable traf-
fic phenomena we are chiefly concerned about and describes
the variation of density or velocity with time or sectionsmore

clearly. When the input flow of the on-ramp is unequal to
the output flow of the off-ramp, some traffic phenomena on a
highway with ramps are found by our model. The numerical
simulation shows that the model can reproduce some com-
plex phenomena of fixed vehicle generation rate but increas-
ing initial homogeneous density with a single ramp and the
situation of morning peak. According to the actual road
sections of Xi’an-Baoji highways, the traffic phenomena on
a highway with multiple ramps are also analyzed. As all these
numerical results are consistentwith general traffic situations,
the new model is reasonable. Moreover, the phase plane
diagrams highlight the instability of the system. As long as the
traffic becomes congested, the curves will be divergent and
approach infinity in phase plane. However, the continuously
changing vehicle generation rate and the varying initial den-
sity can pose more complex traffic phenomena. Our ongoing
researchwill study various phenomena induced by the ramps,
develop a rampmodel that takes more factors into considera-
tion, such as the road conditions, and examine the validation
of the model using actual traffic data collected from the field.
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A modified cell transmission model (CTM) is proposed to depict the temporal-spatial evolution of traffic congestion on urban
freeways. Specifically, drivers’ adaptive behaviors and the corresponding influence on traffic flows are emphasized. Two piecewise
linear regression models are proposed to describe the relationship of flow and density (occupancy). Several types of cellular
connections are designed to depict urban rapid roads with on/off-ramps and junctions. Based on the data collected on freeway of
Queen Elizabeth, Ontario, Canada, we show that the newmodel provides a relatively higher accuracy of temporal-spatial evolution
of traffic congestions.

1. Introduction

It is well known that traffic flow dynamics estimation is
important to transport engineering. To get an accurate
estimation, most existing models are based on macroscopic
continuum traffic flow modeling. The study of macroscopic
continuum traffic flow model began with the Lighthill-
Whitham-Richards (LWR) model independently proposed
by Lighthill and Whitham [1] and Richards [2]. The LWR
model formulated a hyperbolic partial differential equation
(PDE) to describe the temporal-spatial evolution of traffic
flow on a homogeneous highway.

Cell transmission model (CTM) is one of convergent
numerical approximations to LWRmodel and was developed
by adopting a simplified trapezoidal relationship between
traffic flow and traffic density to solve the scalar kinematic
wave model [3, 4]. It assumes a constant free flow speed, V𝑓,
when density is lower than the critical traffic density and a
constant backward shockwave speed, 𝑤, at a higher density.

Although the linear structure of CTM has the advan-
tage of simplifying traffic control analysis, design, and
data-estimation, the assumption of a simplified trapezoidal

fundamental diagram seems too strong for general appli-
cations. Some more complex models (e.g., Switching Mode
Model (SMM)) derived from CTM were presented to reflect
the temporal-spatial dynamic features of traffic congestion
[5]. Alternatively, the investigation of oscillating congested
traffic on freeways based on CTM, Lo et al. [6], leads to
a dynamic traffic control formulation designed as dynamic
intersection signal control optimization.

It was gradually found that the simple first-order contin-
uum model does not have the ability to explain the ampli-
fication of small disturbances on heavy traffic, because no
stability condition can be derived from themodel [7]. In addi-
tion to the simple continuum model, Payne [8] introduced a
higher-order model that is derived from car-following model
to overcome the shortcomings of LWR model. Based on
Payne’s model, the deterministic and stochastic finite differ-
ence equations of validated high-order model were employed
to describe freeway traffic flow dynamics, respectively [9–
12]. Another higher-order continuum model that includes
a dynamics equation developed from car-following theory
in addition to the conservation equation was introduced
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Figure 1: Three typical cell combinations of freeways: (a) with no ramps; (b) with one on-ramp; (c) with one off-ramp.

by Jiang et al. in [7]. This model overcomes the backward
travel problem that exists in many other higher-order con-
tinuummodels and can explain nonlinear dynamical spatial-
temporal phenomena on freeways like shock waves, rarefac-
tion waves, stop-and-go waves, and local cluster effects.

Theuncertainty of trafficflowalso attracts increasing con-
cerns. Alecsandru [13] developed a stochastic compositional
model of the evolution of traffic flows on freeways to extend
theDaganzo cell transmissionmodel by defining sending and
receiving functions explicitly as random variables and by also
specifying the dynamics of the average speed in each cell.
Differently, an entropy solution was proposed for the LWR
model with a flow density relationship of being piecewise
quadratic, continuous, and concave, but not differentiable at
the junction points where two quadratic polynomials meet
[14]. Several alternative models were also developed in [15,
16].

In this paper, a modified cell transmission model (CTM)
is proposed to depict the temporal-spatial evolution of traffic
congestion on urban freeways. Specifically, drivers’ adaptive
behaviors and the corresponding influence on traffic flows are
emphasized. Two piecewise linear regressionmodels are used
to describe the relationship of flow and density (occupancy).
Several types of cellular connections are designed to depict
urban rapid roads with on/off-ramps and junctions.

The rest of this paper is organized as follows. In Section 2,
a new formation of CTM is presented. Section 3 discusses two
critical issues when linear initialization of density and local
perturbation analysis are conducted to reflect the dynamic
and nonequilibrium properties of traffic flow. Section 4
addresses the two applications of spatial-temporal evolution
analysis based on the proposed method with real detective
data on unban freeways. Finally, main conclusions are sum-
marized in Section 5.

2. An Improved Spatial-Temporal Finite
Difference Model

The LWR model and the selected higher-order continuum
model can be written in two PDEs as follows:

𝜕𝜌

𝜕𝑡

+

𝜕𝜌V
𝜕𝑥

= 𝑔 (𝑥, 𝑡) , (1a)

𝜕V
𝜕𝑡

+ V
𝜕V
𝜕𝑥

=

V𝑒 (𝜌) − V
𝑇

− 𝑐 (𝜌, V)
𝜕𝑝 (𝜌, V)

𝜕𝑥

, (1b)

where 𝑡 and 𝑥 denote time and distance from the origin,
𝜌(𝑥, 𝑡) is the traffic density, V(𝑥, 𝑡) is the space mean speed,
𝑔(𝑥, 𝑡) is net-merging traffic flow, 𝑇 is the relaxation time,
V𝑒(𝜌) is the steady-state speed-density relationship implied by
car-following model, and 𝑝(𝜌, V) denotes the traffic pressure
from upstream, and 𝑐(𝜌, V) means the coefficient of traffic
pressure.

2.1. Finite Difference of the First-Order Equation. For the first-
order model, CTM is an efficient finite difference solution
scheme for realistic freeways and urban road networks.
Figure 1 demonstrates three typical cell combinations of
freeways, considering on/off-ramps.

For the basic segments without on/off-ramps demon-
strated in Figure 1(a), the conservation equation can be
derived from LWRmodel as follows:

𝜌𝑖 (𝑡 + 1) = 𝜌𝑖 (𝑡) +
𝑇𝑠

𝜆𝑖𝑙𝑖

[𝑞𝑖−1,𝑖 (𝑡) − 𝑞𝑖,𝑖+1 (𝑡)]

= 𝜌𝑖 (𝑡) +
𝑇𝑠

𝜆𝑖𝑙𝑖

[𝑞𝑖,in (𝑡) − 𝑞𝑖,out (𝑡)] ,

(2)

where 𝑖 denotes the cell number, 𝑇𝑠 is the time interval, 𝑙𝑖 is
the length of cell 𝑖, 𝜆𝑖 is the lane number of cell 𝑖, 𝜌𝑖(𝑡)means
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the vehicle density of cell 𝑖 at the time of 𝑡. And 𝑞𝑖,in(𝑡)
and 𝑞𝑖,out(𝑡), respectively, denote the traffic flow entering and
leaving cell 𝑖 during the 𝑡th time interval,𝑇𝑠[𝑡, 𝑡+1), including
flows along the mainline and the on- and off-ramps.

In order to refine the transmission rules, it is assumed
that two adjacent cells can be divided into one of five connec-
tion modes: (1) “free flow-free flow” (FF), (2) “congestion-
congestion” (CC), (3) “congestion free flow” (CF), (4) “free
flow congestion 1” (FC1), in which the wave front is mov-
ing downstream, and (5) “free flow congestion 2” (FC2),
in which the wave front is moving downstream [5]. The
SMM is composed of several linear models; straightforward
linear techniques for model analysis and control design can
be applied to the individual linear subsystems. The wave
propagation direction is usually difficult to detect exactly. So,

four distinguishable states are formulated in this paper as
follows:

FF:

𝑞𝑖−1,out (𝑡)

= min{𝑞𝑚,𝑖−1, 𝜌𝑖−1 (𝑡) V𝑓,𝑖−1,
𝜌𝑖−1 (𝑡) 𝜆𝑖𝑙𝑖−1

𝑇𝑠

} .

(3a)

CF:

𝑞𝑖−1,out (𝑡) = min{𝑞𝑚,𝑖−1,
𝜌𝑖−1 (𝑡) 𝜆𝑖𝑙𝑖−1

𝑇𝑠

} . (3b)

FC/CC:

𝑞𝑖−1,out (𝑡) = max{min{𝑞𝑚,𝑖−1, [𝜌𝐽,𝑖 (𝑡) − 𝜌𝑖 (𝑡)] 𝑤𝑖 −𝑅𝑖 (𝑡) ,
𝜌𝑖−1 (𝑡) 𝜆𝑖𝑙𝑖−1

𝑇𝑠

} , 0} . (3c)

According to the conservation law at the boundary of cell
𝑖 − 1 and cell 𝑖, we get

𝑞𝑖,in (𝑡) = 𝑞𝑖−1,out (𝑡) + 𝑅𝑖 (𝑡) , (4)

where 𝑅𝑖(𝑡) is the on-ramp flow and 𝜌𝐽,𝑖(𝑡) is the jam density
of cell 𝑖.

In this paper, we extend the above simple state switch
transmission rule to depict more complex cloverleaf junc-
tions. As shown in Figure 2, each ramp is considered as
a cell and the other types of junctions can be formulated
in the simplified expression. The traffic flow transmission
matrix can be denoted as the structure of (5). Here, wemainly
consider the properties of cell 𝑖𝑘 +2 (𝑘 = 1, 2, 3, 4) and ramp-
cells by the following rules:

{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{

{

Cell 𝑖𝑘 𝑖𝑘 + 1 𝑖𝑘 + 1 𝑖𝑘 + 1 𝑖𝑘 + 1
𝑖𝑘 0 𝑞𝑖𝑘 ,𝑖𝑘+1

𝑖𝑘 + 1 0 𝑞𝑖𝑘 ,𝑖𝑘+1

𝑖𝑘 + 2 0 𝑞𝑖𝑘 ,𝑖𝑘+1

𝑖𝑘 + 3 0 𝑞𝑖𝑘 ,𝑖𝑘+1

𝑖𝑘 + 4 0

}
}
}
}
}
}
}
}
}
}
}

}
}
}
}
}
}
}
}
}
}
}

}

,

𝑘 ∈ {1, 2, 3, 4} ,

{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{

{

Cell 𝑖𝑘+1 + 2 𝑖𝑘−1 + 4 𝑅𝑟𝑖𝑘
𝑅𝑙𝑖𝑘

𝑖𝑘 0 0 𝑞𝑖𝑘 ,𝑅𝑟𝑖𝑘
0

𝑖𝑘 + 2 0 0 0 𝑞𝑖𝑘+2,𝑅𝑙𝑖𝑘
𝑅𝑟𝑖𝑘

0 𝑞𝑅𝑟𝑖𝑘 ,𝑖𝑘−1+4
0 0

𝑅𝑙𝑖𝑘
𝑞𝑅𝑙𝑖𝑘 ,𝑖𝑘+1+2

0 0 0

}
}
}
}
}
}
}
}

}
}
}
}
}
}
}
}

}

,

𝑘 ∈ {1, 2, 3, 4} , 𝑖0 = 𝑖4, 𝑖5 = 𝑖1,

(5)

where

𝑞𝑖𝑘+1,in (𝑡) = 𝑞𝑖𝑘 ,𝑖𝑘+1 (𝑡) ,

𝑞𝑖𝑘+2,in (𝑡) = 𝑞𝑖𝑘+1,𝑖𝑘+2 (𝑡) + 𝑞𝑅𝑙𝑖𝑘−1 ,𝑖𝑘+2
(𝑡) ,

𝑞𝑖𝑘+3,in (𝑡) = 𝑞𝑖𝑘+2,𝑖𝑘+3 (𝑡) ,

𝑞𝑖𝑘+4,in (𝑡) = 𝑞𝑖𝑘+3,𝑖𝑘+4 (𝑡) + 𝑞𝑅𝑟𝑖𝑘+1 ,𝑖𝑘+4
(𝑡) ,

𝑞𝑅𝑟𝑖𝑘 ,in
(𝑡) = 𝑞𝑖𝑘 ,𝑅𝑟𝑖𝑘

(𝑡) ,

𝑞𝑅𝑙𝑖𝑘 ,in
(𝑡) = 𝑞𝑖𝑘+2,𝑅𝑙𝑖𝑘

(𝑡) .

(6)

Here, 𝑅𝑟𝑖𝑘 and 𝑅𝑙𝑖𝑘represent the right/left turning ramp-cell,
respectively.

2.2. Finite Difference of the Higher-Order Equation. In this
paper, we applied the PDE model proposed in [7]. This PDE
model replaces the density gradient term with the speed
gradient term to consider drivers’ anticipation as follows:

𝑑V (𝑥, 𝑡)
𝑑𝑡

=

𝜕V
𝜕𝑡

+ V
𝜕V
𝜕𝑥

=

V𝑒 (𝜌) − V
𝑇

+𝑤

𝜕V
𝜕𝑥

, (7)

where𝑤 represents the propagation speed of the disturbance.
In this model, the characteristic speed is equal to or smaller
than the macroscopic flow velocity. In reality, traffic density
𝜌(𝑥, 𝑡) is hard to investigate or estimated directly (Figure 8);
the most popular method is to monitor the time occupancy
of vehicles passing detection stations. A number of literatures
indicate that the time occupancy at 𝑥 is proportional to traffic
density around 𝑥.

Assuming there exist no merging or diverging in the
section, say 𝑔(𝑥, 𝑡) = 0, and applying the finite difference
method to discretize (1a) and (7), we obtain the following
difference equations based on point detectors like inductive
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Figure 2: Cell representation of a cloverleaf junction: (a) the layout of junction; (b) the corresponding division of cells; (c) the corresponding
CTM cells.

loops, microwave detectors, and radar sensors. The funda-
mental equation of traffic flow is

𝑞𝑖 (𝑡) =
𝜆𝑖𝑜𝑖 (𝑡) V𝑖 (𝑡)

𝑔𝑖 (𝑡)
+ 𝜁
𝑞
𝑖 (𝑡) , (8)

where 𝑜𝑖(𝑡) denotes the time occupancy at the upstream
boundary of cell 𝑖, 𝑔𝑖(𝑡) represents the effective vehicle length
which depends on both the actual vehicle length, which varies
by lane and over the course of a day, and the loop’s electrical
circuit, and 𝜁𝑞𝑖 (𝑡) is the zero-mean white noise acting on the
approximation to reflect the measurement inaccuracies and
fluctuations in the traffic flow.

During one time interval, the drivers in cell 𝑖 will adapt
their speed to the local traffic density and are thus impacted
by the traffic state in front of them. We suppose the adaptive
behavior is influenced by the composition of traffic density of
these two adjacent cells; it is a weighted average of the density
in cell 𝑖 and in cell 𝑖 + 1:

𝑜𝑖 (𝑡) = 𝑓𝑜 [𝛼𝑖 (𝑡) , 𝑜𝑖 (𝑡) , 𝑜𝑖+1 (𝑡)] . (9)

To simplify the combinational equations, we assume that
this adaptation is linear as

𝑜𝑖 (𝑡) = 𝛼𝑖𝑜𝑖 (𝑡) + (1−𝛼𝑖) 𝑜𝑖+1 (𝑡) , (10)

where the parameter 0 < 𝛼𝑖 < 1 weights how far ahead the
drivers look and how well they anticipate the traffic density
downstream. The drivers adapt the local traffic density more
habitually; 𝛼𝑖 is closer to 1.

Since each drivers’ aggressiveness is random, the antici-
pant average space speed of cell 𝑖 is relative to the speed of cell
𝑖 and cell 𝑖 + 1; the weighted factor 0 < 𝛽𝑖 < 1 expresses the
relative impact on the calculation of the speed of convective
and inertial behavior:

V𝑖 (𝑡) = 𝑓V [𝛽𝑖 (𝑡) , V𝑖 (𝑡) , V𝑖+1 (𝑡)] . (11)

Similarly, we assume that

V𝑖 (𝑡) = 𝛽𝑖V𝑖 (𝑡) + (1−𝛽𝑖) V𝑖+1 (𝑡) . (12)
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Because most of drivers tend to adapt their behavior
whose function reflects an deterministic statistical relation-
ship between the traffic flow and density or occupancy;
the anticipant traffic flow 𝑦𝑖,out(𝑡) that passes through the
boundary of cell 𝑖 and cell 𝑖 + 1 is approximately equal to
𝑜𝑖(𝑡)V𝑖(𝑡), when the stationary equivalent traffic flow is taken
into consideration.

Meanwhile, the transmission flow is also constrained by
the current sending capacity of cell 𝑖, that is, 𝑜𝑖(𝑡)𝑙𝑖/𝑇𝑠, and by
the receiving capacity of cell 𝑖 + 1, that is, [𝑜𝑚 − 𝑜𝑖(𝑡)]𝑙𝑖+1/𝑇𝑠,
where 𝑜𝑚 is the maximum occupancy; then it yields

𝑦𝑖,out (𝑡)

= min{
𝑜𝑖 (𝑡) 𝑙𝑖

𝑇𝑠

,

[𝑜𝑚 − 𝑜𝑖+1 (𝑡)] 𝑙𝑖+1
𝑇𝑠

, 𝛾𝑖𝑜𝑖 (𝑡) V𝑖 (𝑡)

+ (1− 𝛾𝑖) 𝑄𝑒 [𝑜𝑖 (𝑡)]} + 𝜁
𝑦
𝑖 (𝑡) ,

(A)

where 𝑄𝑒[𝑜𝑖(𝑡)] is the stationary equivalent traffic flow and
time occupancy relationship function,𝑄𝑒[𝑜𝑖(𝑡)] = 𝑄𝑒1[𝑜𝑖(𝑡)],
if 𝑜𝑖(𝑡) < 𝑜𝑐,𝑖(𝑡); 𝑄𝑒[𝑜𝑖(𝑡)] = 𝑄𝑒1[𝑜𝑖(𝑡)], otherwise. 𝑜𝑐,𝑖(𝑡) is
the critical time occupancy of cell 𝑖, and the coefficient 0 <

𝛾𝑖 < 1 expresses the relative impact on the calculation of the
equivalent traffic flow of convective and macroscopic stable
behavior and 𝜁𝑦𝑖 (𝑡) is a zero-mean white noise that describes
the uncertainty of traffic transmission between two adjacent
cells.

Thus, we can formulate the evolution of time occupancy
under the assumption that 𝑔𝑖(𝑡) is approximately equal to
𝑔𝑖+1(𝑡) by the following finite difference equation:

𝑜𝑖 (𝑡 + 1) = 𝑜𝑖 (𝑡) +
𝑇𝑠

𝜆𝑖𝑙𝑖

[𝑦𝑖,in (𝑡) − 𝑦𝑖,out (𝑡)] , (13)

where 𝑦𝑖,in(𝑡) is equal to 𝑦𝑖,out(𝑡) when there exist no on/off-
ramps.The formulas of conditions withmerging or diverging
areas can be obtained similarly as

V𝑖 (𝑡 + 1) =
{
{
{

{
{
{

{

V𝑖 (𝑡) +
𝑇𝑠

𝑙𝑖

[𝑤𝑖 − V𝑖 (𝑡)] [V𝑖+1 (𝑡) − V𝑖 (𝑡)] +
𝑇𝑠

𝑇

[𝑉𝑒 (𝑜𝑖 (𝑡)) − V𝑖 (𝑡)] + 𝜁
V
𝑖 (𝑡) , if V𝑖 (𝑡) < 𝑤𝑖

V𝑖 (𝑡) +
𝑇𝑠

𝑙𝑖

[𝑤𝑖 − V𝑖 (𝑡)] [V𝑖 (𝑡) − V𝑖−1 (𝑡)] +
𝑇𝑠

𝑇

[𝑉𝑒 (𝑜𝑖 (𝑡)) − V𝑖 (𝑡)] + 𝜁
V
𝑖 (𝑡) , if V𝑖 (𝑡) ≥ 𝑤𝑖,

(14)

where𝑤𝑖 represents the propagation speed of the disturbance
that is the backward speed of traffic shockwave and 𝜁

V
𝑖 (𝑡) is

a zero-mean white noise reflecting the fluctuations in the
drivers’ speed.

3. Simulation Results

In the following experiments, we apply the initial stationary
equivalent traffic speed and occupancy relationship function
as (15) and the corresponding traffic flow and time occupancy
relationship function as (16) given in [10]:

𝑉𝑒 [𝑜𝑖 (𝑡)] = V𝑓 exp[−
1
𝛼

(

𝑜𝑖 (𝑡)

𝑜𝑐,𝑖 (𝑡)
)

𝛼

] , (15)

𝑄𝑒 [𝑜𝑖 (𝑡)] = 𝑜𝑖 (𝑡) 𝑉𝑒 [𝑜𝑖 (𝑡)]

= V𝑓𝑜𝑖 (𝑡) exp[−
1
𝛼𝑚

(

𝑜𝑖 (𝑡)

𝑜𝑐,𝑖 (𝑡)
)

𝛼𝑚

] .

(16)

In the simulation of traffic density and speed evolution
of a segment of urban freeways with periodical boundary
conditions, the following constants that keep the same in all
cells are applied. Geometric conditions and temporal-spatial
discretization are

𝐿 = 10 km,

Δ𝐿 = 0.1 km,

𝑇𝑠 = 1 s,

𝑇 = 10 s,

𝑔 (𝑥, 𝑡) = 6.67m.

(17)

Coefficients of fundamental diagram are

V𝑓 = 80 km/h,

𝑤 = 30 km/h,

𝑜𝑐,𝑖 (𝑡) = 20%,

𝑄𝑚 = 1800 veh/h/lane.

(18)

Parameters of drivers’ adaptive behavior and standard devia-
tions of Gaussian noise are

𝛼𝑖 (𝑡) = 0.5,

𝛽𝑖 (𝑡) = 0.5,

𝛾𝑖 (𝑡) = 0.5,

𝜎 (𝜁
V
𝑖 (𝑡)) = 𝜎 (𝜁

𝑞
𝑖 (𝑡)) = 0.

(19)

Generally, the adaptive time can be chosen as 0 to 1. For
numerical tests shown in this section, we just choose adaptive
coefficients as 0.5 to show the influence of drivers’ adaptive
behavior.

3.1. Experiment 1: Linear Initialization of Density. In Experi-
ment 1, we test the influence of linear initialization of density
(Figure 5). During the whole process of simulation, lane
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Figure 3:The initial and finial spatial distributions of occupancy for
Experiment 1.

number and speed limit (equal to free-flow speed V𝑓) are
not changed. Four typical experiments are conducted with
the same critical occupancy of 20%; the boundary occupancy
conditions are [15%, 25%], [10%, 30%], [5%, 35%], and [0%,
40%], respectively. Therefore, the initial differences between
critical occupancy are 5%, 10%, 15%, and 20%.

The results show that a larger initial swing leads to a
more obvious backward moving jam that is observed in
Figure 3. Waves moving in the opposite directions meet at
around 3.5min and evolve into the backward moving jam
with a larger density and a smaller fluctuation that propagates
downstream especially obtained in the last experiment. Sim-
ilarly, the evolution pattern of traffic speed shows the wave
fluctuation phenomena of a moving jam in Figure 4.

When the initial density swing is small, the two reverse
waves meet and the gap arises but no moving jam is
achieved because of the lack of enough density difference
between adjacent cells where the fluctuations cross. The
scatter plot of fundamental diagram is illustrated in Figure 6;
the widest line represents the equivalent functions of traffic
speed/occupancy and traffic flow/occupancy with exponen-
tial expression showed in (16). Points of four different colors
are four experimental results, respectively. It indicates that a
linear initialization with a larger swing is more nonstable and
the results scatter in a larger area in the fundamental diagram.
The numerical results indicate that a larger initial difference
of density generally triggers a larger fluctuation of traffic flow.

3.2. Experiment 2: Local Cluster Effect. The local cluster effect
corresponds to the stop-and-go phenomena observed in the
field due to a small disturbance [7]. In this subsection, we
simulate the local cluster effect with respect to a localized
perturbation in an initial homogeneous condition.

The following initial variation of the average occupancy
𝑜0 is used as in [17]:

𝑜 (𝑥, 0) = 𝑜0 +Δ𝑜0 {cosh
−2
[

160
𝐿

(𝑥−

3𝐿
8
)]

−

1
4
cosh−2 [40

𝐿

(𝑥−

13𝐿
32

)]} ,

(20)

where V(𝑥, 0) = 𝑉𝑒[𝑜(𝑥, 0)]; the other parameters are the
same as the simulation of linear initialization and the second
term acts as a local perturbation to the unstable constant
distribution; then the combinatorial difference methods are
used to show the evolution pattern when 𝑜(𝑥, 0) increases.

Figure 7 shows the initial local perturbations with Δ𝑜0 =
5% eventually evolve into local cluster effects when initial
distribution of average time occupancy is limited in a specific
extent and periodic boundary conditions are applied. The
observed local cluster effects are also consistent with the
diverse nonlinear dynamics phenomena observed in realistic
traffic flow.

4. Model Validation and Application

The real data testing was conducted with traffic measure-
ments collected from a 4.7 km, 3-lane stretch of Queen
Elizabeth Way, Canada. As shown in Figure 9, it involves
two on-ramps and an off-ramp at stations 50 and 53; another
five loop detector stations were installed along this freeway
and three at the on/off-ramps. The test stretch is subdivided
into 8 segments, each with an approximate length of 650m.
Furthermore, a more refined cell division (where the size is
only about 125m) is conducted to explore the detailed spatial-
temporal evolution of traffic jam.

The individual vehicle datawere recorded by the detectors
from 6 am to 10 am on December 15, 1998. All data
were converted into aggregated traffic measurements of flow
and space mean speed with a temporal-resolution-level 20
seconds. Only traffic flow and occupancy data are used for
validation.

For the sake of simple and convenient computation, we
use piecewise linear assumption of fundamental diagram in
this section:

𝑄𝑒 [𝑜 (𝑥, 𝑡)] = V𝑓 (𝑥, 𝑡) 𝑜 (𝑥, 𝑡)

if 𝑜 (𝑥, 𝑡) < 𝑜𝑐 (𝑥, 𝑡) ;

(A-1)

𝑄𝑒 [𝑜 (𝑥, 𝑡)] = 𝑤 (𝑥, 𝑡) [𝑜𝐽 (𝑥, 𝑡) − 𝑜 (𝑥, 𝑡)] ,

otherwise.
(A-2)

Figure 10 shows the fundamental diagram defined in
this paper, where points A and B are the critical milestone
of the formation and dissipation of traffic congestion; the
corresponding occupancies are 𝑘𝑞 and 𝑘𝑑 where “𝑞” means
queuing and “𝑑” means dissipating. Regressive results of the
real traffic data show the occupancy gap is accepted that
midpoint of lineAB is the inflexion of traffic states. As a result,
the assumption of critical occupancy is approximately to 𝑘𝑐.
So, we determine that we meet a congested state if and only
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Figure 4: Occupancy evolution under linear initialization for Experiment 1.
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if the 𝑜(𝑥, 𝑡) > 𝑜𝑐(or 𝑘𝑐) and 𝑞(𝑥, 𝑡)/𝑜(𝑥, 𝑡) < [𝑞𝑞(𝑥, 𝑡) −

𝑞𝑑(𝑥, 𝑡)]/[𝑜𝑞(𝑥, 𝑡) − 𝑜𝑑(𝑥, 𝑡)].
It is supposed that the traffic data collected by station

49∼52 is unknown, and only date from stations 48 and 53
and the on/off-ramps is used to validate the finite different
method discussed in this paper. The comparative results
of measured and simulated occupancy data are shown in
Figure 11. The agreement between two kinds of data suggests
that this finite difference method is well applied to reflect the
traffic congestion and the influences of on/off-ramp.

Tests also show that the simulated results will significantly
deviate from the empirical measurements, if no drivers’
anticipation term is introduced in the traffic flow model.

5. Conclusive Remarks

An improved spatial-temporal finite differencemethod based
on LWR and a higher-order car-followingmodel is proposed.
A compositional model combining cell transmission model
(CTM) and drivers’ adaptive car-following behaviors is pro-
posed for the spatial-temporal evolution of traffic flows on
freeways.

Numerical tests verify that the model is able to simulate
complex traffic phenomena observed in the field such as
shock waves, stop-and-go waves, and local cluster effects.
Empirical traffic data are also used to validate the finite
difference method proposed in this paper. The results are
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Figure 8: Traffic density evolution under small local disturbance for Experiment 2.
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consistent with the nonlinear dynamic properties measured
in practice.
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A novel cell-balancing algorithm which was used for cell balancing of battery management system (BMS) was proposed in this
paper. Cell balancing algorithm is a key technology for lithium-ion battery pack in the electric vehicle field. The distance-based
outlier detection algorithm adopted two characteristic parameters (voltage and state of charge) to calculate each cell’s abnormal
value and then identified the unbalanced cells. The abnormal and normal type of battery cells were acquired by online clustering
strategy and bleeding circuits (R = 33 ohm) were used to balance the abnormal cells. The simulation results showed that with
the proposed balancing algorithm, the usable capacity of the battery pack increased by 0.614Ah (9.5%) compared to that without
balancing.

1. Introduction

Electric vehicles (EV) arewidely viewed as an important tran-
sitional technology for energy-saving and environmentally
sustainable transportation [1]. As the new traction battery
packs, critical energy sources of EV, lithium-ion (Li-ion)
battery pack is drawing a vast amount of attention for its
excellent advantages such as compact volume, large capacity,
lower weight, and higher safety [2–4]. Single battery cells
are serially connected to a battery stack to achieve higher
capacity and voltage. However, the charging process has to
stop as soon as one cell is completely charged and the dis-
charging process has to stop as soon as one cell is completely
discharged [5]. The capacity of the whole battery pack is
thus limited by the unbalanced cells required to be balanced
(also called abnormal cells in this paper) in the pack which
can reduce the usable capacity of the battery pack, decrease
the energy usage efficiencies, and shorten the lifetime of
battery pack.Therefore, battery cell balancing that is one basic
function of BMS is necessary for battery pack in EV [6–9].

Two algorithms are commonly used for cell balancing:
voltage-based balancing algorithm and state of charge-based

balancing algorithm. The voltage-based balancing is that
when the difference between one cell voltage and the mean
value of cell voltages is larger than the threshold 𝑉th, the
cell is probably considered to be an abnormal cell [10–
12]. This method is simple and easy operating while the
external voltage of the cell is affected by its internal state
and environment. On the other hand, some researchers
pointed that state of charge (SOC) can reflect the capacity
of the battery pack in essence and proposed the SOC-based
balancing algorithm which controls the range of the SOC
smaller than the threshold SOCth [13, 14]. However, SOC that
is affected by battery model, self-discharge, temperature, and
other factors can only be calculated by voltage or current
indirectly and it is still difficult to get the accurate SOCof each
cell. Unfortunately, there are still no observations at present
about applying outlier detection algorithm to cell balancing.

Outlier detection algorithmwhich is an important branch
of data mining is applied in many different domains [15–
17]. This paper innovatively proposed to use the algorithm
to identify the abnormal cells. The algorithm chooses char-
acteristic parameters of battery cells and develops a flexible
distance function to get outliers (viz. the unbalanced cells)
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effectively [18, 19]. After getting the accurate category of
normal and abnormal cells through clustering method, the
abnormal cells are balanced by passive balancing circuit. Out-
lier detection algorithm can recognize the abnormal battery
cell accurately and improve the performance of battery pack,
such as increasing the usable energy and extending lifetime.

The research work is organized as follows. Section 2
describes the detailed processes of the proposed balancing
algorithm.The simulationmodels and test cycle are described
in Section 3. In the final section, conclusions and final
remarks are given.

2. Balancing Algorithm Based on
Outlier Detection

2.1. Outlier Detection Algorithm. As shown in Figure 1, the
outlier detection balancing algorithm includes two modules:
the unbalanced cells recognition module and the balanc-
ing control module. The former module gets normal and
abnormal cells by outlier detection algorithm while the latter
balances the abnormal cells and gives feedback to the former.
There are 𝑁 battery cells in the power battery pack. And
the characteristic parameters of the cells are provided to the
unbalanced cell recognition module [20].

The Li-ion battery’s input-current 𝐼 and output-SOC,
current 𝐼, and terminal voltage 𝑈 are shown in Figure 2 [21].
The characteristic parameters of voltage and SOC are used to
calculate each cell’s outlier value.

2.2. Unbalanced Cell Recognition. Abnormal cells are picked
up as outlier point by the outlier detection method in
unbalanced cells recognitionmodule. First, 𝑧-score standard-
ized method is used to preprocess the attribute of battery.
Second, the outlier detectionmethod based on the distance of
multidimensional attribute is adopted to calculate each cell’s
outlier value which is the summation of distances from one
cell to the others. Third, the battery pack will be balanced if
the abnormality range is not less than the threshold signed
as VOA1, otherwise the unbalanced cells will be obtained
by the dynamic cluster method. Finally, passive equalization
is applied to the abnormal battery cells. Figure 3 shows the
progress of recognizing abnormal cells.

Input.The number of battery cells𝑁 and the initial threshold
of abnormality range VOA1 are input.

Step 1. If the attribute values of the battery cells are equal, the
process ends and the pack is considered balanced; otherwise
it goes to Step 2.

Step 2. 𝑍-score standardized method is adopted to pre-
process the characteristic parameters for eliminating the
influence of units. Namely, use the formula (1) to preprocess
the Voltage 𝑈 and the SOC as follows:

𝑍
𝑖𝑗
=

Cell
𝑖𝑗
− Cell

𝑗

𝛿
𝑗

,

Power battery system

Balancing control

Imbalanced
cells recognition

Figure 1: The design of the outlier detection balancing algorithm.

Lithium-ion battery

State of charge SOC

Current I Current I

Voltage U

Figure 2: Input and output parameters of lithium-ion battery
model.
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where 𝑍
𝑖𝑗
(𝑖 = 1, . . . , 40 and 𝑗 = 1, 2) is the standardization

form of 𝑗th characteristic parameter of the 𝑖th cell (i.e., 𝑍
12

denotes the standard SOC of the first cell); Cell
𝑖𝑗
represents

the original value of 𝑗th characteristic parameter of the 𝑖th
cell (i.e., Cell

21
denotes the original voltage of the second cell);

Cell
𝑗
describes the mean of 𝑗th parameters; 𝛿

𝑗
denotes the

standard deviation of the voltage or SOC when 𝑗 equals to 1
or 2, respectively; 𝑛 is the number of cells.

Then, Euclid-distance is used to calculate the abnormal
value of each cell in the pack. The calculation formula [22] is
defined as follows:
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where 𝐷
2
(𝑍
𝑚
, 𝑍
𝑛
) (𝑚 = 1, . . . , 40, 𝑛 = 1, . . . , 40, 𝑚 ̸= 𝑛)

represents the Euclid-distance between the 𝑚th cell and the
𝑛th cell; 𝑍

𝑚
represents the 𝑚th cell which has two attributes

(i.e., 𝑍
𝑚

= (𝑍
𝑚1
, 𝑍
𝑚2
)); 𝑊(𝑍

𝑚
) denotes the summation

of Euclid-distance betweenthe 𝑚th cell and the others. The
smaller the 𝑊(𝑍

𝑚
) is, the more normal the 𝑚th cell is. On

the contrary, the𝑚th battery is probably abnormal.

Step 3. If the range of outlier values (the difference outlier
value between cell with the lowest and that with the highest
outlier value) of the cells is smaller than the threshold
VOA1, the process ends and the pack is considered balanced;
otherwise it goes to Step 4. VOA1 is defined and updated by
the formulation as follows:

VOA1 =
∑
𝑛

𝑚=1
𝑊(𝑍
𝑚
)

𝑛
. (3)

Step 4. Set the cell with the lowest and that with the highest
outlier value as initial clustering centroids.

Step 5. The other cells are assigned to their nearest cluster
centroid, all at once, followed by recalculation of cluster
centroid. Then the other cells are individually reassigned
if doing so will reduce the sums of squared error, and
cluster centroids are recomputed after each reassignment

[23].The process of obtaining the minimum sums of squared
error 𝐽

𝑒
is formulated as follows:
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where 𝐽
𝑚
denotes the squared error of𝑚th cell; 𝐽

𝑒
is the sums

of all the squared errors;𝐶
𝑗
is initial cluster centroid; 𝑆

𝑗
is the

normal category or the abnormal category.
When 𝐽

𝑒
converges to a global minimum, the process

jumps to the next step.

Output. The battery pack is balanced or unbalanced.

By this time, the unbalanced cells are recognized by the
outlier detection algorithm and can be balanced with the
passive balancing circuit that will be described in detail in
next section.

2.3. Balancing Control. At present, the balancing circuit can
be divided into two main groups [24]: passive balancing
circuit and active cell balancing circuit. Typical passive cell
balancing circuit also named shunt method uses switches
to control balancing. Specifically, shunt method is designed
to use a resistor to discharge the unbalanced cell detected
by outlier detection algorithm. With active cell balancing
circuit, charge can be transferred between the cells in battery
pack by a capacitor or an inductor. Very little energy would
be wasted in this case compared to the passive balancing
method. However, more switches and associated components
are needed in the active balancing circuit. And these addi-
tional components may lead to higher cost and unreliability.
Passive balancing circuit has already been used in many
applications for its simple structure and reliability. Hence,
passive cell balancing circuit is applied in this paper. As
shown in Figure 4, every battery has a balancing circuit which
comprises a resistor and a switch in series.

3. Simulation Experiments

In order to compare the efficiency of the outlier detection
balancing algorithm with the traditional balancing algo-
rithms in detail, the constant-current charging-discharging
(CCCD)model and the software-in-the-loop platform (SILP)
model for the BMS were established in Sections 3.1 and 3.2,
respectively. The simulations were conducted on an Intel
2.3 GHz Windows platform with 4GB RAM, and imple-
mented in Matlab/Simulink. The battery pack is modeled in
Simulink, using the electric drives library. As can be seen
in Figure 5(a), the battery pack model consists of five Li-ion
batteries connected in series and each battery is made up of
eight cellswhich are also connected in series (see Figure 5(b)).
The rated capacity and nominal voltage of cell are 6.5 Ah
and 3.6V, respectively, and the values of other parameters are
shown in Table 1.
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Table 1: The parameters of battery cell.

Parameters Value Unit
Nominal voltage 3.6 V
Rated capacity 6.5 Ah
Maximum capacity 6.5 Ah
Fully charged voltage 4.2 V
Nominal discharge current 2.82 A
Internal resistance 0.005 Ohm
Capacity at nominal voltage 5.87 Ah

The switch control signal

S1 S2 SnR1 R2 Rn

− + − + − +

Cell1 Cell2 Celln

· · ·

· · ·

Figure 4: Passive cell balancing circuit.

And the SOC for a fully charged cell model is 100% and
for an empty cell model is 0%. The SOC is calculated based
on Coulomb-counting as

SOC = 100 (1 − 1

𝑄
∫

𝑡

0

𝑖 (𝑡) 𝑑𝑡) , (5)

where𝑄 is the rated capacity; 𝑡 is the charging or discharging
time; 𝑖(𝑡) is the charging or discharging current.

Here are several assumptions of the battery cell model in
Simulink [21]:

(a) The parameters of the model are deduced from
discharging characteristics and assumed to be the
same for charging.

(b) The internal resistance is supposed to be constant
during the charging and the discharging cycles and
does not vary with the different amplitude of the
current.

(c) The self-discharge of the battery is not represented
and the battery has no memory effect.

(d) The model does not take the temperature into
account.

3.1. Constant Current Charging-Discharging
Model and Simulation

3.1.1. CCCDModel and Test Condition. As shown in Figure 6,
the CCCD model provides a 6.5-A (1C) constant charging
and discharge current for the battery pack. In a serially
connected battery pack, discharging or charging progress has
to be stopped immediately as soon as one of the terminal
cell voltages falls below discharging voltage limit (DVL) or
exceeds charging voltage limit (CVL) [2]. The values of DVL

and CVL of the cell modeled in this paper are 3.749V and
4.2V, and the SOC correspondingly reaches 30% and almost
100%.

Figure 7 shows the simulated SOC, current, and voltage
of 10th cell during one CCCD cycle. The cell is charged by
a 6.5-A constant current until voltage reaches CVL (4.2 V)
and the corresponding SOC is almost 100%. It is discharged
by the same current until voltage reaches DVL (3.749V) and
the corresponding SOC is 30%. The initial SOC and voltages
of the cells in the battery pack is that one cell’s SOC and
voltage are 45.06% and 3.794V while other cells are 35.06%
and 3.769V, respectively. The initial value of threshold VOA1
of the proposed method is 12.33.

3.1.2. Simulation Results and Analysis. The simulation results
during whole CCCD test cycle are shown in Table 2 for differ-
ent balancing scenarios (no balancing, voltage-based balanc-
ing, SOC-based balancing and outlier detection balancing).
That the usable capacity calculated over balancing process
of abnormal cell decreased by 0.584Ah is the precondition
for comparing the simulation results for different balancing
scenarios.

With no balancing, the unbalanced cell (10th cell) in
the battery pack cannot be completely discharged before
charging and the normal cells cannot be completely charged
before discharging during the whole test cycle, as detailed
in Figure 8. Hence, the amount of usable energy of the
pack decreased at the end of the charging process. With
voltage-based balancing, the total voltage (charging cut-off)
increased to 163.017V and the SOC range of cells decreased
to 1.030%, but the frequency of balancing switch on/off
reaches as high as 352. With outlier detection balancing, the
frequency of the switching on/off was significantly reduced
from 352 to 2. And the voltage variance (charging cut-off)
and the SOC variance were reduced to 0.008 and 0.158,
respectively, when compared with voltage-based and SOC-
based balancing algorithm. Additionally, the charging time
(after CCCD testing, balancing algorithm off) of unbalanced
battery pack is 2091 s and the charging capacity is 3.775Ah
while balanced battery pack (same condition with unbal-
anced pack testing) is 2413 s and 4.389Ah, respectively.

The definitions of several evaluation standards in Table 2
are as follows.

Testing Time. Time of the whole simulation process.

Balancing Time. Sum of the balancing time.

Frequency of Switch on and off. Sum of the balancing circuit
switch on/off times.

Usable Capacity Decrease. This can be calculated by the
formula (6):

𝐶
𝑖
= ∫

𝑡

0

𝑖equ (𝑡) 𝑑𝑡,

𝑖equ (𝑡) =
𝑉
𝑖 (𝑡)

𝑅
,

(6)
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Figure 5: The schematic diagram of simulation model of pack (a) and battery (b).

where 𝐶
𝑖
is the decreased usable capacity of 𝑖th cell during

balancing process; 𝑡 represents the balancing time; 𝑖equ(𝑡) is
the balancing current; 𝑉

𝑖
(𝑡) denotes the voltage of battery at

𝑡 time; 𝑅 (33 ohm) represents the resistance in cell balancing
circuit.

As illustrated by Figure 9, when the voltage-based bal-
ancing algorithm determined on and off the 10th cell as
abnormal cell (upper plot), the outlier detection algorithm
constantly and accurately did that (lower plot). Meanwhile,
the testing time of the simulation decreased to 23037 s when
implemented outlier detection equalization algorithm on
CCCD model. The control signal “1” represents opening the
balancing circuit and “0” means shutting it down.

The process that the battery pack transferred from
unbalanced state to balanced state using different balancing

algorithms under CCCD cycle is shown as Figure 10. And
Figure 11 shows the position variation of the abnormal cell
(10th) detected by the proposed algorithm after balanced.The
abnormal cell was closer to the other cells after it was balanced
by outlier detection balancing algorithm.

3.2. Software-in-the-Loop Platform Model of
BMS and Simulation

3.2.1. SILP Model of BMS and ECE + EUDC Test Condition.
The software-in-the-loop platform (SILP) model of BMS for
electric vehicles gives a new idea to test the validity and
reliability for BMS and power battery in different properties
[20, 25]. Generally speaking, the model can also be used to
test the feasibility and effectiveness of balance algorithms in
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Table 2: Performance comparisons of 3 algorithms under CCCD condition.

Evaluation standard Balancing algorithm
No balancing Voltage-based balancing SOC-based balancing Outlier detection balancing

Testing time (S) — 37171 29048 23037
Balancing time (S) — 17681 17783 17775
Usable capacity decrease (AH) — 0.584 0.584 0.584
Frequency of switch on and off — 352 2 2
Charging cut-off

Total voltage (V) 161.214 163.017 162.939 165.738
Voltage range (V) 0.160 0.058 0.059 0.055
Voltage variance 0.025 0.009 0.009 0.008

Discharging cut-off
Total voltage (V) 149.994 149.965 154.481 149.965
Voltage range (V) 0.034 0.005 0.005 0.001
Voltage variance 0.005 0.001 0.001 0

Charging time (S) 2091 2413 2413 2413
SOC range of cells (%) 10% 1.030% 1.025% 0.999%
SOC variance of cells 1.581 0.162 0.162 0.158

the early stage of design, greatly improving the reliability of
the algorithms. In addition, the SILP model can simulate
more different working conditions and the simulation results
havemore significance in actual engineering when compared
with the CCCD model. The SILP model for BMS mainly
includes driving cycle model, driver model, vehicle control
unit model, battery management system software model,

battery model, power system model, and wheel model. The
whole virtual environment model is shown in Figure 12.

The ECE + EUDC test cycle is used for EU type approval
testing of emissions and fuel consumption from light duty
vehicles. As Figure 13 shows, ECE + EUDC (bottom chart)
cycle includes four ECE (upper left chart) segments repeated
without interruption, followed by one EUDC (upper right
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Figure 7: The SOC, current, and voltage of 10th cell during one 1C CCCD test cycle.
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Figure 8: SOC (a) and voltage (b) of the unbalanced pack.
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Figure 9: Balancing control signal of voltage-based (a) and outlier detection (b) balancing.

chart) segment. According to Figure 14, the battery pack is
discharged with two ECE + EUDC cycle until 2400 s and
charged by the generator in the next 822 s since the SOCof the
pack reduced to 30%. Simulation test starts in the situation
that there is one cell’s SOC and voltage value are 64.83% and
4.140V, and the others are 54.83% and 4.063V, respectively.

3.2.2. Simulation Result and Analysis. The simulation results
during thewhole ECE+EUDC test cycle are shown inTable 3
for different balancing scenarios (no balancing, voltage-
based balancing, SOC-based balancing, and outlier detection

balancing algorithm).That the usable capacity calculated over
balancing process of abnormal cell decreased by 0.584Ah is
the precondition for comparing the simulation results for
different balancing scenarios.

With no balancing, the unbalanced cell in the battery
pack could not be completely discharged before charging and
the normal cells could not be completely charged before dis-
charging during the whole test cycle, as detailed in Figure 15.
Hence, the amount of usable energy of the pack decreased at
the end of the charging process. With voltage-based balanc-
ing, the total voltage (charging cut-off) increased to 164.738V



8 Mathematical Problems in Engineering

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
20
40
60
80

100

Time (s)

SO
C 

(%
)

Voltage-based balance
SOC-based balance

Outlier detection blance
Normal cells

×10
4

(a)

Voltage-based balance
SOC-based balance

Outlier detection blance
Normal cells

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
3.6
3.7
3.8
3.9

4
4.1
4.2
4.3

Time (s)

Vo
lta

ge
 (V

)

×10
4

(b)

Figure 10: SOC (a) and voltage (b) of pack with balancing algorithms during CCCD cycle.
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Figure 11: The position of the abnormal cell before it was balanced (a) and after it was balanced (b).

and the voltage variance (discharging cut-off) decreased to
0.003, but the frequency of balancing switch on/off reaches as
high as 1150. With outlier detection balancing, the frequency
of the switching on/off was significantly reduced from 1150
to 2 and reduced the voltage variance (charging cut-off) and
the SOC variance to 0 and 0.157, respectively, when compared
with voltage-based and SOC-based balancing algorithm.
Furthermore, the proposed balancing algorithm increased
the total charging cut-off voltage from 161.214V to 165.738V
when compared with the pack without balancing. And it also
reduced the discharging cut-off voltage variance and the SOC
variance to 0 and 0.157, respectively.

The process in which the battery pack transferred from
unbalanced state to balanced state with different balancing
algorithms under ECE + EUDC test cycle is shown as

Figure 16. With outlier detection balancing algorithm, the
cells in the battery pack can be completely charged/discharge
at the same time and thus increase the available energy stored
in the pack.

4. Conclusions

Aiming at the problem that present cell-balancing algorithms
cannot identify the unbalanced cells in lithium-ion battery
pack accurately in real-time, an algorithm based on outlier
detection was proposed in this paper. The unbalanced cells
were identified by the proposed balancing algorithms and
balanced by shunt method using switches. After validating
the efficiency of the balancing algorithms on two simulation
models, the advantages of the proposed algorithm have been
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Table 3: Performance comparisons of 3 algorithms under 4 ∗ ECE + EUDC condition.

Evaluation standard Balancing algorithm
No balance Voltage-based balancing SOC-based balancing Outlier detection balancing

Testing time (S) — 57264 39074 22052
Balancing time (S) — 16666 15795 15752
Usable capacity decrease (AH) — 0.584 0.584 0.584
Frequency of switch on and off — 1150 2 2
Charging cut-off

Total voltage (V) 161.214 164.738 164.963 165.738
Voltage range (V) 0.174 0.058 0.003 0.003
Voltage variance 0.028 0.009 0.004 0

Discharging cut-off
Total voltage (V) 149.994 149.965 150.882 149.965
Voltage range (V) 0.034 0.005 0.002 0.002
Voltage variance 0.005 0.003 0 0

SOC range of cells (%) 10% 1.030% 1.025% 0.999%
SOC variance of cells 1.581 0.162 0.162 0.157
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Figure 14: Voltage, current, and SOC of the pack during one ECE + EUDC diving cycle.
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Figure 16: SOC (a) and voltage (b) of pack with balancing algorithms during ECE + EUDC test cycle.

pointed out in the context of simulation and analysis. The
outlier detection equalization algorithm is able to recognize
the abnormal battery cell accurately and to increase the usable
energy and extend the lifetime of battery pack, which has
extensive application prospect and theory value.

Further work will focus on taking the temperature of cells
into account during whole charging and discharging process.
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To enhance the performance of stand-alone battery based system and to achieve the continuous power transmission, the behavior
of multidirectional matrix converter (MDMC) has been analyzed in different operation modes. A systematic method interfacing a
renewable source, a storage battery, and a load is proposed for a stand-alone battery based power system (SABBPS) to utilize the
MDMCasPWMconverter, inverter, or PWMconverter and inverter in different operationmodes. In this study, the ExtendedDirect
Duty Pulse Width Modulation (EDDPWM) technique has been applied to control the power flow path between the renewable
source, load, and the battery. Corresponding to generator voltage, input frequency, and loads demands, several operating states
and control strategies are possible. Therefore, the boundaries and distribution of operation modes are discussed and illustrated to
improve the system performance. The mathematical equation of the EDDPWM under different operation modes has been derived
to achieve the maximum voltage ratio in each mode. The theoretical and modulation concepts presented have been verified in
simulation using MATLAB and experimental testing. Moreover, the THD, ripple, and power flow direction have been analyzed for
output current to investigate the behavior of system in each operation mode.

1. Introduction

Renewable sources, such as hydro, solar, and wind, have the
potential to play an important role in providing energy with
sustainability to the vast populations of the world who do not
have access to clean energy. Currently the stand-alone power
system supplies the local villages or individual users in remote
areawhere the grid extension is difficult or not economical. In
stand-alone renewable power system storage elements such
as battery or supercapacitor are used to supply power to the
loads continuously [1]. The complexity of the control system
remarkably rises by increasing the number of input sources as
several separate converters are employed to control the power
flow direction between the input ports and output ports of
system. The type and number of power electronic converters

change based on the type and number of energy sources and
loads.

Multi-input DC-DC converter has been proposed to
combine several types of energy sources and to obtain
a desired DC output voltage [2]. This type of converter
is commonly employed in the hybrid electric vehicles [3]
and renewable power system to stabilize the voltage and
frequency of system [4].

Several schemes of converter with two source inputs
and single output have been proposed for the stand-alone
hybrid renewable energy system in order to increase the
power quality and reliability of system [5, 6]. A double-input
sources’ single-output source power converter was developed
to combine the energy sources of wind and solar in one
power system [5]. However, it will be difficult to acquire
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the regulated voltage output if one of the DC sources is
diminished, since the input voltage variation is significant.
Therefore, Chen et al. (2001) proposed the high frequency
transformer for double source system with isolated electrical
circuit to reduce the voltage variation effect. These circuits
have no charging path for the backup battery storage and
could not control the power flow direction in system [6].

A multidirectional power converter (MDC) has been
presented byMei et al. (2006) for a battery based stand-alone
hybrid renewable energy system to supply the battery and
to control the power flow direction in a system. The MDC
provided a battery storage path to supply the power demand
in the days of deficit in solar and wind powers. However,
the proposed MDC control was very complicated due to
the number of modes and effect of power flow direction in
high frequency isolated converter [7]. Later, the directional
power converter is changed with bidirectional high-power-
density DC-DC converter to interface with multiple energy
storage components such as batteries and ultracapacitors.
The proposed system needs multiwinding transformer for
soft-switching conditions which cannot justify the unique
features of low component count and compact structure for
the integrated multiport converter [8].

Four-port DC/DC converter with bidirectional capability
and isolated output feature has been proposed to reduce
the size. Zero-voltage switching is introduced for all four
main switches. Three of the four ports were tightly regulated
by adjusting their independent duty-cycle values, while the
fourth port was left unregulated to maintain the power
balance for the system. In addition, a decoupling network is
introduced to allow the separate controller design for each
power port. This four-port converter is suitable for low-
power applications, where the energy storage is required
while allowing tight load regulation [9]. However, the major
problem is that the input and output port are DC and isolated
transformer is essential for this structure.

In order to achieve maximum power tracking (MPT)
through rotor speed control under varying wind speeds
and control of the magnitude and the frequency of the
load voltage, the new multiport system has been introduced
based on two back-to-back voltage source converters (VSCs)
with a battery energy storage system at their DC link. The
proposed hybrid system was able to control the power flow,
by which it controls the magnitude and the frequency of
the load voltage [10]. The number of converters and passive
components is still high and it is not suitable for the integrated
multiport converter. Moreover, the size and cost increase and
efficiency decreases due tomultiple-stage conversion through
the converters and transformers.

Most desired feature of multidirectional converter can be
fulfilled by using matrix converter (MC) structure. In the
MC, several bidirectional switches are used to couple the
power sources to load side. With proper switching method,
the bidirectional switches inMC can be utilized as inverter or
rectifier. The first principle of MC control has been proposed
by Venturini and Alesina in 1980, which is known as a “direct
transfer function” approach [11]. They also extended the
voltage ratio to 0.866 by using the third harmonic injection
technique [12]. In 1983, Rodriguez introduced the novel

control method based on “fictitious DC link” to reduce the
complexity of direct method [13]. Ziogas et al. expanded
Rodriguez’s “fictitious DC link” idea to provide a rigor-
ous mathematical explanation [14, 15]. Later, Kastner and
Rodriguez (1985) used space vectors modulation in the
switching control of matrix converters to increase the voltage
ratio and reduce the number of switching states [16, 17].
Several techniques have been reported which may have sim-
plified the modulation [18–21] and solved the commutation
problems in MC [22, 23]. Although the SVPWM technique
is the proper method for the three-phase matrix converters,
the complexity of the implementation remarkably rises by
increasing the number of inputs or outputs of MC and there
is no attention to the input current.

To synthesize the sinusoidal input current with unity
power factor and desired output voltage a new carrier
based modulation method has been proposed based on the
conventional space vector pulse modulation (SVPWM), with
complex calculation [24]. In order to simplify themodulation
method, the preliminary concepts of a new carrier based
PWM strategy, named direct duty ratio PWM (DDPWM),
are presented in [25]. They extended the DDPWM to vari-
ous topologies of matrix converter and derived the control
schemes for alternative structures converters in [26]. This
modulation scheme is highly flexible and intuitive and it can
be applied to any configuration of the matrix converter.

Toosi et al. in 2014 combined the characteristics of sev-
eral separate converters in multidirectional matrix converter
(MDMC) and proposed a novel modulation method that
can control the power flow direction between each of input
power supplies and output loads. The proposed modulation
method is able to inject power fromDC and AC supply to the
load simultaneously by using the proper switching pattern.
They validated that the MDMC with EDDPWM can work
as modular converter, where the frequency and voltage of
each output phase are independent of other output phases
[27]. However, the system has been tested in simulation and
operated in one mode.

Due to the high number of system parameters (i.e.,
number of inputs/outputs, load parameters and input filter,
output frequency, switching frequency, modulation meth-
ods, and number of passive components) and the inherent
differences between the converter topologies such as the
maximum voltage transfer ratio, it is difficult to compare the
proposedMDMCwith the othermultisource converters such
as multidirectional power converter [7], ZVS bidirectional
DC-DC converter [8], AC-DC-AC converter [28], multiport
with several voltage sources converter [10], integrated four-
port DC/DC converter [9], multi-input DC/DC converter
[2], and double-input single-output power converter [5].
The main advantage of the MDMC for multi-input/output
power system compared to other converters is its potential
to decrease size of system by combining all characteristics
of different rectifiers and inverters in one compact silicon
converter and eliminating the passive component such as
bulky capacitor and multiwinding transformer. In addition,
the EDDPWM technique can provide bidirectional power
flow, control input power factor, and synthesize the sinusoidal
input current and output voltage waveforms.
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Figure 1: Multidirectional matrix converter circuit.

The voltage ratio of MDMC varied when the system
switched from one operation mode to another mode. In
order to keep the output voltage constant, the output voltage
command should be calculated based on the type andnumber
of input sources and output loads which are connected to
the system. Accordingly, the behaviour of MDMC has been
investigated in different operation modes to achieve the
continuous power transmission and increase the efficiency
by reducing the number of switches and calculating the
maximum voltage ratio in each operationmode. By adjusting
the time subinterval in EDDPWMmethod and analysing the
power flow direction among the input and output ports of
system, MDMC can work as inverter, PWM converter, or
both PWM converter and inverter. In addition, this study
is dedicated to analysis of the output current quality and

derives the necessary equation of EDDPWMmethod in each
operation mode.

2. Principle of Extended Direct Duty PWM

The operating principle of the EDDPWMhas been described
in [27], for MDMC with 15 bidirectional switches. Figure 1
indicates the circuit configuration of the MDMC in stand-
alone battery based system (SABBS) when three-phase gen-
erator and two batteries are connected to the source side of
the MDMC. The 𝑅

𝐿-dc and 𝐿𝐿-dc and 𝑅𝐿-ac and 𝐿𝐿-ac indicate
the DC and AC load, respectively.

According to Figures 2 and 3, a switching period 𝑇
𝑠
is

divided into two time periods,𝑇
𝑐
and𝑇
3
. During𝑇

𝑐
, the input

phases of AC generator are connected to a corresponding
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Figure 3: Switching pattern II, output 𝑅 phase switching state.

output terminal, and during 𝑇
3
the input phases of DC

battery are connected to a corresponding output terminal. In
addition, the time interval 𝑇

𝑐
is divided into two periods, 𝑇

1

and𝑇
2
. Also, theMX,MD, andMN denote the instantaneous

values of maximum, medium, and minimum input voltages
of AC generator.

Furthermore, POS and NEG denoted the instantaneous
values of positive and negative input voltages of DC battery,
respectively. During 𝑇

1
, the line-to-line voltage between MX

and MN is used, which is the maximum line-to-line voltage
among three line-to-line input voltages of generator at the
sampling instant. During 𝑇

2
, the second maximum line-to-

line voltage is used which is MX to MD for switching pattern

I and MD to MN for switching pattern II. Finally, during 𝑇
3

the line-to-line voltage between POS and NEG is employed.

2.1. Switching Pattern I. Figure 2 indicates the switching
pattern I, where the 𝑅 phase duty ratio value (𝑑

𝑅1) is
compared with triangular carrier waveform to generate the 𝑅
phase output voltage.The output phase is changed during the
switching pattern I from MN → MX → MX → MD →

NEG → POS, consequently. As illustrated in Figure 2, the
output phase “𝑅” is connected to the input phase “MN”
during 𝑇

𝑅1
and when 𝑇

𝑠
is the sequence switching period.

And it is connected to phases “MX,” “MX,” “MD,” “NEG,”
and “POS” during time periods 𝑇

𝑅2
, 𝑇
𝑅3
, 𝑇
𝑅4
, 𝑇
𝑅5
, and 𝑇

𝑅6
,

respectively. These six time subintervals can be represented
as (1), where 𝑑

𝑅1
is the 𝑅 phase duty ratio value and carrier

slops are defined as𝑚 = 𝑇
1
/𝑇
𝑐
and 𝑛 = 𝑇

𝑐
/𝑇
𝑠
. Consider

𝑇
𝑅1
= 𝑑
𝑅1
⋅ 𝑚 ⋅ 𝑛 ⋅ 𝑇

𝑠
,

𝑇
𝑅2
= (1−𝑑

𝑅1
) ⋅ 𝑚 ⋅ 𝑛 ⋅ 𝑇

𝑠
,

𝑇
𝑅3
= (1−𝑑

𝑅1
) ⋅ (1−𝑚) ⋅ 𝑛 ⋅ 𝑇𝑠,

𝑇
𝑅4
= 𝑑
𝑅1
⋅ (1−𝑚) ⋅ 𝑛 ⋅ 𝑇𝑠,

𝑇
𝑅5
= 𝑑
𝑅1
⋅ (1− 𝑛) ⋅ 𝑇𝑠,

𝑇
𝑅6
= (1−𝑑

𝑅1
) ⋅ (1− 𝑛) ⋅ 𝑇𝑠.

(1)

The fluctuation of the input voltage is negligible during the
switching periods.Thus, the integration of the output voltage
V
𝑜𝑅

over 𝑇
𝑠
can be expressed in

∫

𝑇
𝑠

0
V
𝑜𝑅
𝑑𝑡 ≅ 𝑇

𝑅1
⋅MN+ (𝑇

𝑅2
+𝑇
𝑅3
) ⋅MX+𝑇

𝑅4
MD

+𝑇
𝑅5
⋅NEG+𝑇

𝑅6
⋅POS.

(2)

Based on (1) and (2), the average output voltage can be
expressed in terms of𝑚 and 𝑛 as presented in

V
𝑂𝑅
=

1
𝑇
𝑠

∫

𝑇
𝑠

0
V
𝑜𝑅
𝑑𝑡 ≅ 𝑑

𝑅1 (− (1− 𝑛) ⋅POS− 𝑛 ⋅MX

+ (1−𝑚) ⋅ 𝑛 ⋅MD+𝑚 ⋅ 𝑛 ⋅MN+ (1− 𝑛) ⋅NEG)

+ 𝑛 ⋅MX− (1− 𝑛) ⋅POS.

(3)

Therefore, for present switching cycle, the duty ratio value,
𝑑
𝑅1, can be written as

𝑑
𝑅1
=

(V∗
𝑜𝑅
− 𝑛 ⋅MX − (1 − 𝑛) ⋅ POS)

− (1 − 𝑛)POS − 𝑛 ⋅MX + (1 − 𝑚) ⋅ 𝑛 ⋅MD + 𝑚 ⋅ 𝑛 ⋅MN + (1 − 𝑛) ⋅NEG
, (4)

where V∗
𝑜𝑅

is the 𝑅 phase output voltage command which is
equal to V

𝑂𝑅
.

2.2. Switching Pattern II. Theprocedure to drive the equation
for switching pattern II is the same as the previous switching
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pattern. Figure 3 illustrates the case of switching pattern II
where the 𝑅 phase duty ratio value (𝑑

𝑅2
) is compared with

triangular carrier waveform to generate the 𝑅 phase output
voltage.Theoutput phase is changed during switching pattern
II from MN → MX → MD → MN → NEG → POS,
consequently.

Similarly, the integration of the output voltage V
𝑜𝑅

and the
average output voltage V

𝑂𝑅
is presented in

∫

𝑇
𝑠

0
V
𝑜𝑅
𝑑𝑡 ≅ (𝑇

𝑅1
+𝑇
𝑅4
) ⋅MN+𝑇

𝑅2
⋅MX+𝑇

𝑅3
⋅MD

+𝑇
𝑅5
⋅NEG+𝑇

𝑅6
⋅POS,

V
𝑂𝑅
=

1
𝑇
𝑠

∫

𝑇
𝑠

0
V
𝑜𝑅
𝑑𝑡 ≅ 𝑑

𝑅2 (− (1− 𝑛) ⋅POS−𝑚 ⋅ 𝑛

⋅MX− (1−𝑚) ⋅ 𝑛 ⋅MD+ 𝑛 ⋅MN+ (1− 𝑛) ⋅NEG)

+ (1− 𝑛) ⋅POS−𝑚 ⋅ 𝑛 ⋅MX+ (1−𝑚) ⋅ 𝑛 ⋅MD.

(5)

By letting V
𝑂𝑅

be equal to V∗
𝑜𝑅

the duty ratio value 𝑑
𝑅2 can be

written as

𝑑
𝑅2
= (V∗
𝑜𝑅
− 𝑛 ⋅MX− (1− 𝑛) ⋅POS) (− (1− 𝑛) ⋅POS

− 𝑛 ⋅MX+ (1−𝑚) ⋅ 𝑛 ⋅MD+𝑚 ⋅ 𝑛 ⋅MN+ (1− 𝑛)

⋅NEG)−1 .

(6)

When the switching state for output phase “𝑅” is POS, NEG,
MX, MD, or MN, the output phase “𝑅” is connected to the
input phase voltage POS,NEG,MX,MD, orMN, respectively.
In fact, by using logic devices such as FPGA, the circuit for
generating the PWM signal can easily be implemented.

It is possible to synthesize the input current and control
the power factor in EDDPWM by adjusting the amount of
𝑚 and 𝑛, when 𝑚 and 𝑛 are related to the maximum and
minimum current as represented:

𝑚 ≡
𝑇1
𝑇
𝑐

= −
𝑖
𝑠MX
𝑖
𝑠MN
,

𝑛 ≡
𝑇
𝑐

𝑇
𝑠

=
𝑖
𝑠MN

(𝑖
𝑠MN − 𝑖𝑠POS)

.

(7)

3. System Operation Modes

According to the type and number of outputs and inputs
connected to the system, the operation states of SABBPS
system can be classified into five possible modes which are
listed in Table 1. Whether energy sources provide power for
the load or battery, when the converter is connected to theAC
load and when the battery bank absorbs or supplies power. In
Table 1 the renewable source, supplying power to the battery,
or the AC load is defined by “O” or “X.” For the battery bank,
“” illustrates a discharge, whereas “” illustrates a charge. In
addition, the AC load connecting to the MDMC is indicated
by “O” or by “X.”

Power sources of the MDMC change for different opera-
tion modes. In operation mode 1, power is transferred from

Table 1: The operation states of SABBPS.

Parameters SABBS operation mode
1 2 3 4 5

Three-phase generator O O O X O
AC load O O X O O
Battery bank X    

O = connected, X = disconnected,  = charging, and  = discharging.

BB

G L

Mode 1 

BB

G L

Mode 2 

BB

G L

Mode 3 

BB

G L

Mode 5 

BB

G L

Mode 4 

G: generator

BB: battery bank
L: AC load

Figure 4: Simplified sketch of the SABBS under different operation
modes.

the AC generator to the AC output load. Thus, the battery
bank is disconnected from the system and theMDMC acts as
three-to-single-phase AC/AC converter. In operation mode
2, power is transferred from the AC generator to the battery
bank and the AC output load; thus, the MDMC supplies
power for the AC load and charges up the battery bank via the
charging controller circuit;MDMCacts as inverter and PWM
converter. In operation mode 3, the AC load is disconnected
from system; the variable speed turbine only exports energy
to the battery bank through the bidirectional switches of the
MDMC (just charges up the battery bank). Thus, MDMC
works as PWM converter. By following the above analytic
approach, other operation modes also can be educated.

Figure 4 indicates the simplified sketch of the stand-alone
battery based system under five different operation modes,
where “G,” “BB,” and “L” represent the three-phase generator,
the battery bank, and the AC load, respectively.

3.1. Battery Charging. Several methods, such as SOC esti-
mation based on the terminal voltage and internal resis-
tance [29], cell-impedance and impedance variation of
cells/batteries [30, 31], error-correction mechanism based
on Kalman filter for both state observation and prediction
problems [32, 33], SOC estimation based on artificial neural
networks [34], and fuzzy logic principles [35], have been
reported by researchers to predict SOC. According to [36] the
open circuit voltage method is online and cheap andmakes it
easily to determine SOC in battery based system.Open circuit
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Figure 5: Circuit configuration of MDMC in operation mode 1.

voltage technique for SOC estimation monitors the terminal
voltage and current under discharging state to determine the
voltage of a battery under load.

The MDMC with EDDPWMmethod introduced by [27]
is able to read the voltage at the DC side continually and
monitor the amount of current injection to DC load to
determine the SOC and charging the battery. Therefore, the
output phases 𝑆 and 𝑇 indicated in Figure 1 can be used for
battery charging or supplying the DC load. However, the
extra charge control circuit should be added to the system to
increase the safety and reduce the charging time of system.

4. Equivalent Circuit of the Converter

TheEDDPWMcontrol method can be applied to theMDMC
as a modular structure for each phase where each output
phase has the independent reference control signal. This
reference control signal can be different in terms of frequency,
waveform shape, and amplitude [27]. The MDMC works in
operation modes 1, 2, and 3 when the line-to-neutral voltage
of AC generator V

𝑠-rms is bigger than battery voltage V
𝑠-dc and

works in operation modes 4 and 5 when V
𝑠-dc is bigger than

the line-to-neutral V
𝑠-rms.

Regarding the semiconductor finite switching times and
propagation delays in practical, switches cannot be switched
on and off instantaneously in MDMC. In addition, due to
the lack of a natural free-wheeling in this structure, reliable
current commutation between switches in MDMC is too dif-
ficult. Therefore, in this study, current commutation or four-
step commutation method introduced by [37, 38] has been
improved based on MDMC structure for safe commutation
between an outgoing and an incoming switch. Furthermore,
in MDMC, any problem in supplying the current to load can
be generated over voltages at output phase. Also, overvoltages
can appear from the input side caused by line disturbance.
Hence, a clamp circuit introduced by [39] has been modified
based on MDMC structure to avoid overvoltages coming
from the grid and from the load to the system.

4.1. Operation Mode 1. In this mode, the MDMC acts as
three-phase to single-phase matrix converter. The power is
transferred through the three bidirectional switches which
are connected to input phases 𝑎, 𝑏, and 𝑐 to output phase 𝑅.
According to switching patterns I and IIwhen 𝑛 = 1, the input

of MDMC is connected to the AC generator and battery is
disconnected from the system. Figure 5 indicates the circuit
configuration of MDMC in operation mode 1 with neutral
connection.

According to EDDPWM switching method, output ter-
minals can separately be controlled to follow their reference
signals. Therefore, the EDDPWM can be used as modular
configuration at each output phase. The duty ratio for phase
𝑅 in operation mode 1 can be represented as (8). Due to the
existence of neutral connection in this mode the maximum
voltage ratio is limited to 𝑞max = 0.5. 𝑞 is the voltage
ratio of the input terminal voltage to the output terminal
voltage (V

𝑜-rms/V𝑠-rms). The duty cycle in operation mode 1 for
switching pattern I and switching pattern II can be calculated
in the same manner of (4) and (6) while 𝑛 = 1 in this
operation mode.The duty ratio can be represented as follows
for switching patterns I and II, respectively:

𝑑
𝑅1
=

V∗
𝑜𝑅
−MX

−MX + (1 − 𝑚) ⋅MD + 𝑚 ⋅MN
, (8)

𝑑
𝑅2
=

V∗
𝑜𝑅
− 𝑛 ⋅MX + (1 − 𝑚) ⋅MD

−𝑚 ⋅MX + (−1 + 𝑚) ⋅MD +MN
. (9)

The output voltage command V∗
𝑜𝑅

of the converter can be
represented as below:

V∗
𝑜𝑅
= √

2
3
⋅ 𝑞 ⋅ V
𝑠-rms ⋅ sin (2𝜋𝑓𝑜𝑡) , (10)

where V
𝑠-rms is the line-to-line RMS value and𝑓

𝑜
is the desired

output frequency for the corresponding phase.

4.2. Operation Mode 2. In this mode, the MDMC acts as
three-phase to single-phase matrix converter [40] (through
the switches 𝑆

𝑎𝑅
, 𝑆
𝑏𝑅
, and 𝑆

𝑐𝑅
) and two three-phase to single-

phase PWM converter (through the switches 𝑆
𝑎𝑆
, 𝑆
𝑏𝑆
, and 𝑆

𝑐𝑆

for output phase 𝑆 and 𝑆
𝑎𝑇
, 𝑆
𝑏𝑇
, and 𝑆

𝑐𝑇
for phase 𝑇). The

power is transferred through the nine bidirectional switches
which are connected to input phases 𝑎, 𝑏, and 𝑐 to output
phases 𝑅, 𝑆, and 𝑇. As described in operation mode 1 when
𝑛 = 1, the input of MDMC is connected to the AC generator
and battery is disconnected from the system. Figure 6 shows
the circuit configuration ofMDMC in operationmode 2 with
three output terminals.
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Figure 6: Circuit configuration of MDMC in operation mode 2.

Three bidirectional switches are used for each output
phase to apply the switching patterns I and II. The POS and
NEG input phases are always disconnected while MX, MD,
and MN are selected by instantaneous comparison of the
AC input phases. When the switching state for output phase
“𝑅” is MX, MD, or MN, the output phase “𝑅” is connected
to the input phase where the voltage is MX, MD, or MN,
respectively.The duty ratio formula is the same as direct duty
PWM presented in [25].

The duty ratio of phases 𝑆 and 𝑇 is indicated as 𝑑
𝑆
and 𝑑

𝑇

and can be derived in the same way of phase 𝑅 by letting V
𝑂𝑆

and V
𝑂𝑇

be equal to the 𝑆 and 𝑇 phase voltage commands V∗
𝑜𝑆

and V∗
𝑜𝑇
, respectively.The duty ratio for phases 𝑆 and 𝑇 can be

presented as

𝑑
𝑆
=

{{{{{

{{{{{

{

𝑑
𝑆1
=

V∗
𝑜𝑆
−MX

−MX + (1 − 𝑚) ⋅MD + 𝑚 ⋅MN

𝑑
𝑆2
=

V∗
𝑜𝑆
− 𝑛 ⋅MX + (1 − 𝑚) ⋅MD

−𝑚 ⋅MX + (−1 + 𝑚) ⋅MD +MN

𝑑
𝑇
=

{{{{{

{{{{{

{

𝑑
𝑇1
=

V∗
𝑜𝑇
−MX

−MX + (1 − 𝑚) ⋅MD + 𝑚 ⋅MN

𝑑
𝑇2
=

V∗
𝑜𝑇
− 𝑛 ⋅MX + (1 − 𝑚) ⋅MD

−𝑚 ⋅MX + (−1 + 𝑚) ⋅MD +MN
.

(11)

The voltage command for phase 𝑅 is the same as (10), and
the voltage command for phases 𝑆 and 𝑇 can be expressed as
follows:

V∗
𝑜𝑆
= − V∗
𝑜𝑇
= √

2
3
⋅ 𝑞 ⋅ V
𝑠-rms. (12)

4.3. Operation Mode 3. In this mode, the MDMC acts as
double three-phase to single-phase PWM converter. The
power is transferred through the six bidirectional switches
which are connected to input phases 𝑎, 𝑏, and 𝑐 to output
phases 𝑆 and 𝑇. The time subinterval for AC switch is equal
to switching period (𝑇

𝑐
= 𝑇
𝑠
), the input of MDMC is

connected to the AC generator, and battery is disconnected
from the system. Figure 7 illustrates the circuit configuration
of MDMC in operation mode 3 when the bidirectional
switches connected to phase 𝑅 are turned off.

The duty ratio for phases 𝑆 and 𝑇 can be calculated in the
sameway as (11).The voltage command is also the same as (12)
for phases 𝑆 and 𝑇. The DC voltage can be used for DC load
or charging the battery through the proper charging circuit.

4.4. Operation Mode 4. In this mode, the MDMC acts as
single PWM converter. The power is transferred through the
two bidirectional switches which are connected to DC input
phases 𝑃 and 𝑁 to output phase 𝑅. The time subinterval
for AC switch becomes zero (𝑛 = 𝑇

𝑐
= 0), the input
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Figure 8: Circuit configuration of MDMC in operation mode 4.

of MDMC is connected to the battery, and AC generator
is disconnected from the system. Figure 8 demonstrates the
circuit configuration of MDMC in operation mode 4 when
the bidirectional switches 𝑆

𝑃𝑅
and 𝑆
𝑁𝑅

are connected to phase
𝑅.

By putting 𝑛 = 0 in (4) and (6), the duty ratio for
operation mode 4 in switching patterns I and II can be
expressed as below:

𝑑
𝑅
=

V∗
𝑅
− POS

−POS +NEG
(13)

when the V∗
𝑅
is

V∗
𝑜𝑅
=

1
2√2

⋅ 𝑞 ⋅ V
𝑠-𝑃𝑁 ⋅ sin (2𝜋𝑓𝑜𝑡) . (14)

For this operationmode, the voltage ratio can be increased to
1/√2 ≈ 0.7 as the input is connected to DC sources.

4.5. Operation Mode 5. In conventional battery based sys-
tem when the generator power is less than load demands,
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Figure 9: Circuit configuration of MDMC in operation mode 5.

the generator is disconnected from system and battery will
supply the system. According to the EDDPWMmethod, the
generator and battery can supply the load, simultaneously.
Therefore, in this operation mode, the MDMC acts as five-
phase to single-phase converter. The power is transferred
through the five bidirectional switches which are connected
to AC and DC input phases 𝑎, 𝑏, 𝑐, 𝑃, and 𝑁 to output
phase 𝑅. The duty ratio of phase 𝑅 is indicated in (4) and
(6) for switching patterns I and II, respectively. The voltage
command for phase 𝑅 can be expressed as follows:

V∗
𝑜𝑅
=

1
2√2

⋅ 𝑞 ⋅ V
𝑠-𝑃𝑁 ⋅ sin (2𝜋𝑓𝑜𝑡) . (15)

Figure 9 demonstrates the circuit configuration of MDMC in
operation mode 5 when the bidirectional switches 𝑆

𝑎𝑅
, 𝑆
𝑏𝑅
,

𝑆
𝑐𝑅
, 𝑆
𝑃𝑅
, and 𝑆

𝑁𝑅
are connected to phase𝑅. For this operation

mode, the voltage ratio can be increased to 0.6 as the input is
connected to AC and DC sources.
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Figure 10: Simulation waveforms of operation mode 1.

Table 2: Simulation parameter.

Parameter Value
𝑅-𝐿 load 𝑅 = 5Ω, 𝐿 = 10mH
Input filter inductor 𝐿

𝑓
100𝜇H

Input filter capacitor 𝐶
𝑓

60 𝜇F
Input voltage
(line-to-neutral) 𝑉

𝑠-rms
56V

Battery voltage
(line-to-neutral) 𝑉

𝑠-dc
±48V

Input frequency 𝑓
𝑠

60Hz
Output frequency 𝑓

𝑜
50Hz

In this mode, the maximum voltage ratio can change
within 0.6 < 𝑞 < 0.7 as expressed in (14):

𝑞 =

{{{{

{{{{

{

0.7 − (𝑘 − 0.25
2.5

) for 𝑘 > 0.25,

0.7 − (0.25 − 𝑘
2.5

) for 𝑘 < 0.25,
(16)

where 𝑘 = V
𝑠-rms/(V𝑠-rms + V

𝑠𝑃
) indicates the magnitude

variation between line-to-neutral RMS value of input AC and
DC power supplies and V

𝑠-rms and V𝑠𝑃 indicate the RMS value
of generator input voltage and DC power supply, respectively.

5. Results and Discussion

5.1. Simulation Result. Simulation of the EDDPWMmethod
for MDMC is performed by using MATLAB software. The
voltage ratio has been changed in each operation mode to
investigate the stability of system. The switching period 𝑇

𝑠
is

assumed to be 200𝜇s in all operation modes. The simulation
parameters shown in Table 2 are the same for all operation
modes.

The input line-to-neutral input voltage (𝑉
𝑠-rms) in opera-

tionmodes 1, 2, and 3 is bigger than the battery voltage (𝑉
𝑠-dc)

as shown in Table 2.The AC voltage𝑉
𝑠-rms is less than𝑉𝑠-dc in

operation modes 4 and 5 and it is equal to 35V.

Figure 10 indicates the AC output voltage and current
waveforms of proposedMDMC in operation mode 1, respec-
tively. In this mode the voltage ratio (𝑞) has been increased
from 0.3 to 0.5 at time 𝑡 = 0.07 (s). The simulation result
indicates that the MDMC is able to reach the maximum
voltage ratio (𝑞 = 0.5) in operation mode 1 without any
distortion in output voltage or output current waveforms.

Figures 11(a) and 11(b) illustrate the line-to-line DC
output voltage of V

𝑜𝑆𝑇
and line-to-neutral and AC output

voltage of V
𝑜𝑅
. Figure 11(c) shows the simulated responses

of MDMC in operation mode 2 when the voltage ratio is
changed in AC and DC side at 𝑡 = 0.07 and 𝑡 = 0.09 s,
respectively. According to Figure 11(c), the current in 𝑖

𝑜𝑆
and

𝑖
𝑜𝑇

is constant at 𝑡 = 0.07 regardless of the changing in 𝑖
𝑜𝑅

which is increased by 0.4 pu. In addition, when the voltage
ratio for DC phase is reduced from 0.5 to 0.3, the current in
AC side remains constant at 𝑡 = 0.09 s. The simulation result
validates that the proposed EDDPWM is able to track the
variation in reference control signal for each phase without
disturbing the signal in other output terminals.

Figure 12 indicates the DC output voltage and current
waveforms of proposedMDMC in operationmode 3, respec-
tively. In this mode the voltage ratio (𝑞) has been reduced
from 0.5 to 0.3 at time 𝑡 = 0.09 (s). The simulation result
reveals that the MDMC is able to track the control signal in
terms of waveforms, frequency, and amplitude regardless of
the type and the number of outputs connected to the system.

Figure 13 illustrates the line-to-neutral AC load voltage
and current waveforms in operation mode 3, respectively.
According to Figure 13 the voltage ratio can reach 0.7 in
operationmode 4,when theACpower supply is disconnected
from the system.The simulation result reveals that the output
voltage has been synthesized well with maximum voltage
ratio of 0.7.

Meanwhile, the maximum voltage ratio is equal to 0.5 for
operation modes 1, 2, and 3 when the line-to-neutral voltage
of AC generator V

𝑠-rms is bigger than battery voltage V
𝑠-dc.

In conventional battery based system when the voltage
of generator is less than battery voltage, AC power supply
will be disconnected from system and demand power will
be supplied by battery bank. By using the EDDPWM for
MDMC, it is possible to inject the power from AC and DC
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Figure 11: Simulation waveforms of operation mode 2.
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Figure 12: Simulation waveforms of operation mode 3.

power supply and reach the maximum voltage ratio that is
expressed in (12).

Figure 14 indicates the AC output voltage and current
waveforms of proposedMDMC in operationmode 5, respec-
tively. In this mode the voltage ratio (𝑞) has been increased
from 0.4 to 0.63 at time 𝑡 = 0.07 (s).

It can be clearly seen from Figure 14 that the system is
able to track the variation of reference voltage output of
terminal 𝑅. Moreover, the simulation results exhibited that
the undershoot/overshoot and steady-state error for output
currents are acceptable in all operation modes.

5.2. Experimental Result. To verify the feasibility of the novel
EDDPWMmethod for the proposedMDMC, an experimen-
tal setup was built and the EDDPWM controller was imple-
mented using Xilinx Virtex-6 FPGA DSP development kit.
Figure 15 shows the experimental setup built in laboratory.

In order to test the stability of the system, reference
voltage is changed in AC and DC sides while the loads are
constant. Table 3 indicates the experimental parameters of
the proposed system when reference voltage is changed. The
output voltage variation is not visible in voltage waveform as
the switching frequency is high in this modulation method.
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Table 3: Dynamic state experimental parameter and reference volt-
age variation.

Parameter Value
𝑅-𝐿 load 𝑅 = 3.1Ω, 𝐿 = 6.4mH
AC input voltage
(line-to-neutral RMS) 𝑉

𝑠-RMS
30V

DC input voltage 𝑉
𝑠-dc ±24V

Input frequency 𝑓
𝑠

60Hz
Output frequency 𝑓

𝑜
50Hz

Switching frequency 𝑓sw 5KHz
Switching period 𝑇

𝑠
200 𝜇s

At constant load the current waveform increases or decreases
in accordance with sudden change of reference voltage
variation. Figure 16 shows the responses of MDMCwhen the
reference voltage is changed in AC and DC side at 𝑡 = 4.01 s
and 𝑡 = 5.27 s, respectively, in operation mode 2. According
to Figure 16(a), the output current 𝑖

𝑜𝑆
remains constant at

𝑡 = 4.01 s regardless of the changing in 𝑖
𝑜𝑅

which results in
voltage reduction of 0.4 pu, where the step change of Flag
signal indicates the instant change of the reference voltage.
Furthermore, when the DC reference voltage is reduced by
0.4 pu, as shown in Figure 16(b), the current in AC side
remains constant at 𝑡 = 5.27 s.

It can clearly be seen from Figure 16 that the system is
able to track the variation of reference voltage in each phase
separately. The experimental result validates that the refer-
ence control signal of each output terminal is independent
of other output terminals in terms of frequency, waveform
shape, and amplitude. Moreover, the experimental results
exhibited that the undershoot/overshoot and dynamic-state
error for current waveforms are acceptable for SABBS.

5.3. Total Harmonic Distortion. While there is no national
standard dictating total harmonic distortion limits on sys-
tems, there are suggested values for acceptable harmonic dis-
tortion. IEEE-519 provides recommended harmonic values
for power electronic systems.The allowable THD in the input

current of the power converter generally is restricted between
10 and 30% depending on the grid impedance limits [41, 42].

According to IEEE-519 standards, the maximum THD
in the grid current cannot exceed 5% for THD and 3%
for any single harmonic. It is important to note that the
recommendations and values given in this standard are
purely voluntary. However, keeping low THD values on a
systemwill further ensure proper operation of equipment and
a longer equipment life span.

Table 4 compares the DC output current ripple and AC
output current THD of simulation and experimental results
for MDMC in different operation modes. The results indi-
cated that the THD is different in each operationmode as the
number of switches, type of input/output, and input voltage
and frequency have been varied in each operation mode.
Furthermore, the nonideal characteristic of component, total
propagation delay of system, inherent noise and distortion
of input power supply, and finite switching times in practical
could be the reason for THD gap between the experimental
and simulation results. In addition, both generator and DC
power supply in experimental setup have some noise and
distortion which have direct effect on system performance
and output waveform quality.

According to Table 4 and waveform result, the highest
THD and ripple appear in operation mode 2 as the AC
and DC appear in output phase together. The THD in
operation mode 5 is less than other operation modes since 5
bidirectional switches are used to supply the load. In addition,
in operation mode 5 the AC voltage is less than the DC
voltage and input current has been synthesized by adjusting
two variables, 𝑛 and𝑚.Therefore, the input current distortion
is compensated by proper switching between the two input
power supplies.

6. Conclusion

This paper presents a systematic approach for MDMC based
on the power flowdirection among the input and output ports
to enhance the performance of stand-alone battery based
system and to achieve the continuous power transmission.
According to the proposed power flow strategy, the connected
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Table 4: Experimental and simulation distortions comparison.

Parameter Operation mode 1 Operation mode 2 Operation mode 3 Operation mode 4 Operation mode 5
Simulation THD 7.22% 7.29% — 5.7% 3.59%
Simulation DC current ripple — 4.1% 3.9% — —
Experimental THD 14.32% 14.54% — 13.95% 13.77%
Experimental DC current ripple — 11.2% 8.7% — —

input and output terminals with corresponding bidirectional
switches have been determined to supply the power demand
with minimum number of switches. The maximum possible
voltage ratio has been calculated in each operation mode.
The result validates that the MDMC can work as inverter,
PWMconverter, or PWMconverter and inverter by adjusting
the time subinterval in EDDPWM method. In addition, the
proposed EDDPWM was able to change the function of the
MDMC from inverter to rectifier, rectifier to inverter, rectifier
and inverter to inverter, or rectifier based on the operation
modes of system.

Particularly, this study exhibited that the maximum
voltage ratio is achievable for each operation mode when
the undershoot/overshoot and steady-state error for output
currents are acceptable in all operation modes. In addition,
the quality of output currents has been analysed in terms of
THD and ripples.

Based on the literature and result of the present study, as
the proposed converter switched from inverter to rectifier in
different operation mode, an active power filter can improve
the output waveform quality and reduce the noise in input
current.

In addition, the modulation control method can be
applied to the MDMC as a modular structure for each phase
where each output phase has the independent reference
control signal.Therefore, the proposedMDMC structure can
be used for programmable power supply and extended to
the hybrid system with higher number of input and output
phases.
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[1] S. Malo and R. Griñó, “Design, construction, and control of
a stand-alone energy-conditioning system for PEM-type fuel
cells,” IEEE Transactions on Power Electronics, vol. 25, no. 10, pp.
2496–2506, 2010.

[2] Y.-M. Chen, Y.-C. Liu, and F.-Y. Wu, “Multi-input DC/DC
converter based on themultiwinding transformer for renewable
energy applications,” IEEE Transactions on Industry Applica-
tions, vol. 38, no. 4, pp. 1096–1104, 2002.

[3] L. Solero, A. Lidozzi, and J. A. Pomilio, “Design of multiple-
input power converter for hybrid vehicles,” IEEE Transactions
on Power Electronics, vol. 20, no. 5, pp. 1007–1016, 2005.

[4] A. Iqbal, S. M. Ahmed, and H. Abu-Rub, “Space vector PWM
technique for a three-to-five-phase matrix converter,” IEEE

Transactions on Industry Applications, vol. 48, no. 2, pp. 697–
707, 2012.

[5] L. Solero, F. Caricchi, F. Crescimbini, O. Honorati, and F.
Mezzetti, “Performance of A 10 kW power electronic interface
for combinedwind/PV isolated generating systems,” inProceed-
ings of the 1996 27th Annual IEEE Power Electronics Specialists
Conference (PESC ’96), pp. 1027–1032, January 1996.

[6] Y.-M. Chen, Y.-C. Liu, F.-Y. Wu, and T.-F. Wu, “Multi-input
DC/DC converter based on the flux additivity,” in Proceedings
of the 36th IAS Annual Meeting. Conference Record of the IEEE
Industry Applications Conference, vol. 3, pp. 1866–1873, IEEE,
Chicago, Ill, USA, September-October 2001.

[7] Q. Mei, W.-Y. Wu, and Z.-L. Xu, “A multi-directional power
converter for a hybrid renewable energy distributed generation
system with battery storage,” in Proceedings of the 5th CES/IEEE
International Power Electronics and Motion Control Conference
(IPEMC ’06), pp. 1–5, IEEE, Shanghai, China, August 2006.

[8] D. Liu and H. Li, “A ZVS Bi-directional DC-DC converter for
multiple energy storage elements,” IEEE Transactions on Power
Electronics, vol. 21, no. 5, pp. 1513–1517, 2006.

[9] Z. Qian, O. Abdel-Rahman, and I. Batarseh, “An integrated
four-port DC/DC converter for renewable energy applications,”
IEEE Transactions on Power Electronics, vol. 25, no. 7, pp. 1877–
1887, 2010.

[10] P. K. Goel, B. Singh, S. S. Murthy, and N. Kishore, “Isolated
wind-hydro hybrid system using cage generators and battery
storage,” IEEE Transactions on Industrial Electronics, vol. 58, no.
4, pp. 1141–1153, 2011.

[11] M. Venturini and A. Alesina, “The generalised transformer—
a new bidirectional sinusoidal waveform frequency converter
with continuously adjustable input power factor,” in Proceedings
of the Power Electronics Specialists Conference (PESC ’80), pp.
242–252, 1980.

[12] A. Alesina and M. G. B. Venturini, “Analysis and design
of optimum-amplitude nine-switch direct AC-AC converters,”
IEEE Transactions on Power Electronics, vol. 4, no. 1, pp. 101–112,
1989.

[13] J. Rodriguez, “A new control technique for AC-AC converters,”
in Proceedings of the IFAC Control in Power Electronics and
Electrical Drives Conference, pp. 203–208, 1983.

[14] P. Ziogas, S. I. Khan, and M. Rashid, “Analysis and design of
forced commutated cycloconverter structures with improved
transfer characteristics,” in Proceedings of the 16th Annual Power
Electronics Specialists Conference (PESC ’85), Record (A86-
40426 19-33), pp. 610–622, Institute of Electrical and Electronics
Engineers, Toulouse, France, June 1985.

[15] P. D. Ziogas, S. I. Khan, and M. H. Rashid, “Some improved
forced commutated cycloconverter structures,” IEEE Transac-
tions on Industry Applications, vol. 21, no. 5, pp. 1242–1253, 1985.

[16] G. Kastner and J. Rodriguez, “A forced commutated cyclo-
converter with control of the source and load currents,” in
Proceedings of the EuropeanConference on Power Electronics and
Applications (EPE ’85), pp. 1141–1146, 1985.



14 Mathematical Problems in Engineering

[17] L. Huber and D. Borojevic, “Space vector modulator for forced
commutated cycloconverters,” in Proceedings of the Conference
Record of the IEEE IndustryApplications SocietyAnnualMeeting,
vol. 1, pp. 871–876, San Diego, Calif, USA, October 1989.

[18] L. Huber and D. Borojevic, “Space vector modulated three-
phase to three-phase matrix converter with input power factor
correction,” IEEE Transactions on Industry Applications, vol. 31,
no. 6, pp. 1234–1246, 1995.

[19] L. Huber, D. Borojevic, and N. Burany, “Digital implementation
of the space vector modulator for forced commutated cyclo-
converters,” in Proceedings of the 4th International Conference
on Power Electronics and Variable-Speed Drives, pp. 63–68, July
1990.

[20] L. Huber, D. Borojevic, X. F. Zhuang, and F. C. Lee, “Design
and implementation of a three-phase to three-phase matrix
converter with input power factor correction,” in Proceedings
of the 8th Annual Applied Power Electronics Conference and
Exposition (APEC ’93), pp. 860–865, IEEE, San Diego, Calif,
USA, March 1993.
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and A. B. Rey, “Comparative analysis of the techniques of
current commutation in matrix converters,” in Proceedings of
the IEEE International Symposiumon Industrial Electronics (ISIE
’07), pp. 521–526, June 2007.
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Marine electromagnetic transmitter transmits electromagnetic waves with large power frequency conversion to the seabed to
obtain the submarine structure and mineral resources. However, the current transmitter presents several problems, such as low
efficiency, serious heat, and poor adaptability to the load. Soft-switching controlled-source circuit is used to reduce circuit losses.
Themathematical model of controlled-source circuit should be established to realize a closed-loop control for increasing the output
transient performance of electromagnetic waves. Given that the soft-switching controlled-source circuit has more status and that
direct modeling is difficult, small-signal model of soft-switching controlled-source circuit is established based on that of hard-
switching controlled-source circuit by analyzing the effect of output filter inductor current transformer leakage inductance and
input voltage soft-switching controlled circuit on change in the duty cycle. Finally, experiments verify the accuracy and validity of
the model.

1. Introduction

The exploration and exploitation of marine resources have
high degrees of drilling and investment risks. To improve
the success rate of drilling, the major oil companies in the
world constantly conduct a variety of exploration activities
(seismic, gravity, magnetic, etc.) prior to well drilling. Marine
controlled-source electromagnetic detection has become an
important approach for reducing the risk in deep-water
drilling oil and gas resources by distinguishing between oil
and water traps nature, which, in turn, exposes “the high
impedance body” under the coverage [1]. Marine controlled-
source electromagnetic detection system supplies the trans-
mitter on the seabed by tugs. The multicomponent electro-
magnetic receiver laid on the seabed measures electromag-
netic field values. Calculating the apparent resistivity and
phase or directly using the electric andmagnetic fields detects
the distribution characteristics of underground electrical
current. Such a method can reveal the distribution of the
underlying structure, as well as oil, gas, and other mineral
resources [2].

Marine electromagnetic survey techniques and instru-
ments have been developed since the 1970s. The chief organ-
izations in this field include the United States Scripps Insti-
tution of Oceanography, the German Leibniz Institute of
Marine Sciences, the British Association of Subsea Equip-
ment, and Japanese TIERRA companies [3]. Meanwhile, the
major marine electromagnetic detection service companies
in the world, such as the Norwegian company Electro Mag-
netic Geo Services, the British company Offshore Hydro-
carbons Mapping, AGO company in the United States, and
MTEM company in the UK, have conducted numerous
marine electromagnetic detection projects [4].

Marine electromagnetic transmitter has a large size and
weight, low efficiency, and poor transient waveform emis-
sions; these properties hinder the fulfillment of the needs of
the oil exploration industry practice [2]. Based on conven-
tional hard-switching full-bridge DC/DC controlled-source
circuit, a soft-switching controlled-source circuit is designed.
The control circuit must be designed accordingly to obtain
good dynamic and static output characteristics [5, 6]. The
design of the control loop is closely related to themain circuit
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Figure 1: Diagram of marine electromagnetic transmitter.

structure and parameters [7]. Therefore, a mathematical
model of controlled-source circuit must be established prior
to designing the control system. However, the soft-switching
controlled-source circuit has 12 types of working conditions
in a duty cycle [8–10], thus causing difficulty in directly
obtaining the transfer function.

In this paper, the ideal, state-space averaged, and small-
signal models of hard-switching controlled-source circuit
are established. On this basis, a small-signal model of soft-
switching controlled-source circuit is established by analyz-
ing the effect of the output filter inductor current transformer
leakage inductance and input voltage source circuit on soft-
switching controllable duty cycle. Finally, the accuracy and
validity of the model are verified through an experiment.

2. Operation of Marine Electromagnetic
Detection Transmitter

The operation of a marine controlled-source electromagnetic
detection system is depicted in Figure 1. The system chiefly
includes shipboard diesel generators, deck-side rectifier filter
circuits, deck-side PC monitor unit, underwater streamers,
full-bridgeDC/DCconverter circuits, launch circuits, emitter
electrode, control unit of the transmission system, and carrier
communication.

The shipboard generator provides the initial energy for
the entire controlled-source electromagnetic detection sys-
tem. The deck-side rectifier filter circuits rectify the three-
phase AC voltage generated by the generator into a direct
current, reducing the transmission loss through shipboard
towing. After the electromagnetic detection transmitter gets
the seabed, the deck-side PC monitor unit can establish
remote communications between the underwater streamer
and the control unit of the transmitter. Moreover, the deck-
side PC monitor unit has a time service function for the
entire system. The ship underwater streamers connect the
ship and the transmitter for power and signal transmis-
sion. Underwater DC/DC converter circuits transform the
high-voltage direct current by the underwater streamers to

S1
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AUi

S4

S3

B

Cs3

T L

RC

DR1

DR2

DR3

DR4usec

usec

Figure 2: Controllable source circuit schematics.

a controllable DC current. The launch circuits subsequently
reverse this controllable DC current into a frequency tunable
square wave AC current. Ultimately, the final current would
be transmitted by the emitter electrode to the seawater. The
control unit of the transmission system with dual DSP could
control the DC-DC converter circuits and the launch circuits
and could detect the transmitter state.The underwater carrier
communication (i.e., two-way fiber optic communication)
establishes a communication connectionwith the transmitter
and PC monitor unit.

The DC/DC controlled-source transmitter circuit is a
key part of an ocean observation system, and its dynamic
characteristics and efficiency directly affect the performance
of the entire transmitter. Output voltage and current control
accuracy and circuit efficiency could be improved using
soft-switching controlled-source circuit. However, this circuit
requires the use of a closed-loop control system. Therefore,
a controlled-source circuit modeling is necessary. However,
this circuit requires the use of a closed-loop control system.
Thus, controlled-source circuit modeling is necessary, but
the soft-switching controlled-source circuit has 12 states for
one cycle, and direct modeling is difficult. The processes of
hard-switching and soft-switching controlled-source circuits
are initially analyzed to identify the differences and sim-
ilarities between the two circuits. A soft-switching small-
signal model of marine transmitter controlled-source circuit
is subsequently obtained based on the established hard-
switching controlled source of small-signal circuit model.

3. Operation Process Analysis of
Controlled-Source Circuit

3.1. Controlled-Source Circuit Structure. As shown in
Figure 2, the controlled-source circuit structure includes an
inverter bridge consisting of four IGBTs, a high-frequency
transformer with a center tap, and a high-frequency rectifier
filter. The major difference between hard-switching and soft-
switching controlled-source circuits is the value of the trans-
former leakage inductance 𝐿

𝑟
. The transformer leakage

inductance 𝐿
𝑟
in hard-switching controlled-source circuit is

extremely small, which can be negligible, to reduce the value
of impulse voltage of the primary side of the transformer
at IGBT turning-off time. For soft-switching circuit, trans-
former leakage inductance is large to provide bridge arm
capacitors with sufficient energy to achieve IGBT ZVS during
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Figure 3: Main waveform of hard-switching controlled-source cir-
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Figure 4: Main waveform of soft-switching controlled-source cir-
cuit.

the freewheeling period. In terms of control mode, hard-
switching circuit uses bipolar control, whereas soft-switching
circuit uses phase-shifted control.

3.2. Operation Process Analysis. Primary voltage and current
and secondary voltage waveform of high-frequency trans-
former for hard-switching controlled-source circuit and soft-
switching controlled-source circuit are shown in Figures
3 and 4, respectively. These figures show that the voltage
waveform type of these forms of circuit in a given duty
ratio control is approximation, and the difference is the duty
cycle loss because of leakage inductance in the soft-switching
controlled-source circuit.

Two equivalent circuits shown in Figure 5 can be obtained
through the analysis of controlled-source circuit from

the output. These circuits correspond to operation states
when power flows from the primary side of transformer
transfer to secondary side and when the secondary side is
freewheeling. Thus, a mathematical model of soft-switching
controlled-source circuit can be derived by obtaining the
mathematical model of hard-switching controlled-source
circuit.

4. Hard-Switching Controlled-Source
Circuit Modeling

4.1. Ideal Switch Model. According to the equivalent switch-
ing states illustrated in Figure 5 and Kirchhoff ’s voltage and
current law, the equation of state of the circuit can be obtained

�̇� = 𝐴
1
𝑥 + 𝐵
1
𝑢,

𝑦 = 𝐶
1
𝑥,

𝑡 ∈ [𝑡
𝑖
, 𝑡
𝑖
+ 𝐷𝑇
𝑠
] ,

�̇� = 𝐴
2
𝑥 + 𝐵
2
𝑢,

𝑦 = 𝐶
2
𝑥,

𝑡 ∈ [𝑡
𝑖
+ 𝐷𝑇
𝑠
, 𝑡
𝑖+1

] ,

(1)

where

𝐴
1
=

[
[
[

[

0 −
1

𝐿

1

𝐶
−

1

𝑅𝐶

]
]
]

]

,

𝐵
1
= [

[

1

𝑛𝐿

0

]

]

,

𝐶
1
= [

[

1

𝑛
0

0 1

]

]

,

𝐴
2
=

[
[
[

[

0 −
1

𝐿

1

𝐶
−

1

𝑅𝐶

]
]
]

]

,

𝐵
2
= [

0

0
] ,

𝐶
2
= [

0 0

0 1
] ,

𝑥 = [

𝑖
𝐿

𝑢
𝐶

] ,

𝑦 = [

𝑖
𝑖

𝑢
𝑜

] ,

𝑢 = [𝑢
𝑖
] .

(2)
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Figure 5: Equivalent switching state.

Ideal switch model is very close to the characteristics of the
actual circuit. The results using this model for analysis are in
accordance with the actual situation. However, ideal switch
model is a typical time-varying system. If the duty cycle is as
an input variable, then the product item of the input variable
and the input variable 𝑢 exist. Thus, the system is nonlinear.
Obtaining an analytical solution is difficult for nonlinear
time-varying systems. Hence, an ideal switch model needs to
eliminate the time-varying characteristics to obtain analytical
solutions.

4.2. State-Space Averaged Model. Ideal switch model is time-
varying, but its topology and state equation are determined
to be time-invariant when the switches are conducting and
is turned off. According to the circuit schematic and (1), 𝐴

1
,

𝐵
1
, and 𝐶

1
apply for the first (on) interval, or during𝐷 of the

switching time, while 𝐴
2
, 𝐵
2
, and 𝐶

2
exist during the 1 − 𝐷

(off) switching time interval.The system average approximate
state equation in a switching cycle can then be obtained

�̇� = 𝐴𝑥 + 𝐵𝑢,

𝑦 = 𝐶𝑥,

(3)

where 𝐴 = 𝐷𝐴
1
+ (1 − 𝐷)𝐴

2
, 𝐵 = 𝐷𝐵

1
+ (1 − 𝐷)𝐵

2
, 𝐶 =

𝐷𝐶
1
+ (1 − 𝐷)𝐶

2
.

Themodel described by (3) is the system state-space aver-
age model. The average state-space model is time-invariant
and can simplify the task of obtaining the analytical solution.
This model is important and effective for control system
analysis and design of the controlled-source circuit. The
following aspects must be considered:

(1) Compared with solutions derived from ideal switch
model, the solutions derived from state-space aver-
age model allow greater approximation. In addition,
fluctuations produced by state variables, such as the
inductor current, and capacitance voltage with the
switch turning-on and turning-off did not reflect in
the solutions of state-space average model.

(2) State-space average model is only applicable to lower
switch frequency range of 1/5–1/20 of the switching
frequency, and the result would be meaningless if the
frequency involved in the analysis process is close to
or greater than the switching frequency.

4.3. Small-Signal Model. The control circuit controls con-
trolled-source circuit by adjusting the duty cycle 𝐷. In this
case, the duty cycle 𝐷 is an input variable quantity of con-
trolled-source circuit but changes over time. Traditionally,
𝑑 is used and 𝐷 represents a fixed duty cycle. In the case
that a duty cycle is used as an input quantity, the state-space
average model is no longer linear. This phenomenon is due
to the presence of coupling between the state variables and
the control quantity, such as in (3), where the control amount
𝑑 and the system input amount 𝑢 multiply. Solving a local
linear system, which has been a small-signal model, is usually
necessary for conducting system analysis and design.

In state-space averaged model, the state equation of con-
trolled-source circuit can be represented as a unified form as
follows [11, 12]:

�̇� = 𝐹 (𝑥, 𝑢, 𝑑) . (4)

Assuming that the static operating point of the circuit is
(𝑥
0
, 𝑢
0
, 𝑑
0
), the right side of (4) is expanded as a Taylor series

in the vicinity of operation point, order 𝑥 = 𝑥−𝑥
0
, �̂� = 𝑢−𝑢

0
,

𝑑 = 𝑑 − 𝑑
0
, and higher-order infinite events are ignored

̇̂𝑥 =
𝜕𝐹 (𝑥
0
, 𝑢
0
, 𝑑
0
)

𝜕𝑥
𝑥 +

𝜕𝐹 (𝑥
0
, 𝑢
0
, 𝑑
0
)

𝜕𝑢
�̂�

+
𝜕𝐹 (𝑥
0
, 𝑢
0
, 𝑑
0
)

𝜕𝑑
𝑑.

(5)

In the above equation, to allow 𝐴 = 𝜕𝐹(𝑥
0
, 𝑢
0
, 𝑑
0
)/𝜕𝑥,

𝐵 = 𝜕𝐹(𝑥
0
, 𝑢
0
, 𝑑
0
)/𝜕𝑢, and 𝐶



= 𝜕𝐹(𝑥
0
, 𝑢
0
, 𝑑
0
)/𝜕𝑑, small-

signal model state equation can be obtained as follows:

̇̂𝑥 = 𝐴𝑥 + 𝐵�̂� + 𝐶


𝑑. (6)

Coefficient matrices 𝐴 and 𝐵 are the same as those in
(3). The static operating point of state variables and output
variables of controlled-source circuit can be obtained by (3)
[13, 14]

𝑋 = −𝐴
−1

𝐵𝑈,

𝑌 = (𝐸 − 𝐶𝐴
−1

𝐵)𝑈.

(7)

Then,

𝐶


= [(𝐴
1
− 𝐴
2
)𝑋 + (𝐵

1
− 𝐵
2
) 𝑈] . (8)
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Figure 6: Small-signal model of hard-switching full-bridge circuit.

Using Laplace transform on small-signal model state
equation (6), we can obtain small model state equation in
complex frequency domain

𝑠𝑥 (𝑠) = 𝐴𝑥 (𝑠) + 𝐵�̂� (𝑠)

+ [(𝐴
1
− 𝐴
2
)𝑋 + (𝐵

1
− 𝐵
2
) 𝑈] 𝑑 (𝑠) .

(9)

Transforming (9), we can derive the solution for small-
signal model state equation in the frequency domain:

𝑥 (𝑠)

= (𝑠𝐼 − 𝐴)
−1

𝐵�̂� (𝑠)

+ (𝑠𝐼 − 𝐴)
−1

[(𝐴
1
− 𝐴
2
)𝑋 + (𝐵

1
− 𝐵
2
) 𝑈] 𝑑 (𝑠) .

(10)

Small-signal model of hard-switching controlled-source
circuit is illustrated in Figure 6.

Based on the small-signal model diagram of hard-switch-
ing controlled-source circuit shown in Figure 6, we can
obtain control-output transfer function

�̂�
𝑜
(𝑠)

𝑑 (𝑠)

=
𝑈
𝑖

𝑛 ∗ (𝐿𝐶𝑠2 + 𝑠𝐿/𝑅 + 1)
. (11)

5. Soft-Switching Controlled-Source
Circuit Modeling

From the previous process analysis of hard-switching and
soft-switching controlled-source circuits, the major differ-
ence between soft-switching and hard-switching circuits is
the change of duty cycle, including static duty cycle loss and
small-signal duty cycle adjustment.

5.1. Static Duty Cycle Loss. Controlled-source circuit must
increase transformer leakage inductance to increase the load
range of the zero-voltage switches. However, large leakage
inductance induces the decline of primary current rise rate
when voltage is applied to the primary side of the transformer.
Current ramp reduces the effective duty 𝐷eff of transformer
secondary voltage and seriously affects the dynamic perfor-
mance of the converter.

The duty cycle of the primary side of the transformer can
be obtained according to Figure 4

𝐷 =
𝑡
5
− 𝑡
2

𝑇
𝑠
/2

. (12)

Secondary duty (effective duty) can be derived as follows:

𝐷eff =
𝑡
5
− 𝑡
4

𝑇
𝑠
/2

. (13)

In the presence of the transformer leakage inductance,
effective duty is smaller than the primary duty.The duty cycle
loss is given by

Δ𝐷 = 𝐷 − 𝐷eff, (14)

where 𝐷 is the duty cycle of the primary voltage determined
by the control circuit and Δ𝐷 represents the duty cycle loss.

The primary current at time instant 𝑡 = 𝑡
4
can be derived

as

𝐼
1
= 𝑛 (𝐼

𝐿
−

Δ𝐼

2
) , (15)

where at time instant 𝑡 = 𝑡
6

𝐼
2
= 𝑛(𝐼

𝐿
+

Δ𝐼

2
− (1 − 𝐷)

𝑉
𝑜
𝑇
𝑠

2𝐿
) . (16)

Based on Figure 4, Δ𝐷 can be derived as

Δ𝐷 =
𝐼
1
+ 𝐼
2

(𝑈
𝑖
/𝐿
𝑟
) (𝑇
𝑠
/2)

. (17)

By combining (15) and (16) into (17), we obtain

Δ𝐷 =
1

(𝑈
𝑖
/𝐿
𝑟
) (𝑇
𝑠
/2)

[2𝐼
𝐿
−

𝑢
𝑜

𝐿
(1 − 𝐷)

𝑇
𝑠

2
] . (18)

Considering (14), 𝐷eff can be obtained as follows:

𝐷eff = 𝐷 −
1

(𝑈
𝑖
/𝐿
𝑟
) (𝑇
𝑠
/2)

[2𝐼
𝐿
−

𝑢
𝑜

𝐿
(1 − 𝐷)

𝑇
𝑠

2
] . (19)

5.2. Small-Signal Duty Cycle Adjustment

(1) Duty Cycle Adjustment Caused by the Change of Out-
put Filter Inductor Current. When steady-state operation of
controlled-source circuit is perturbed by an increase of the
filter inductor current, assuming the filter inductor current
is denoted by �̂�

𝐿
, the primary current will reach the reflected

filter inductor current at later time than itwould in the steady-
state operation. This phenomenon will cause a reduction of
the duty cycle, which can be derived as follows:

𝑑
𝑖
= −

Δ𝑡

𝑇
𝑠
/2

= −
4𝑛𝐿
𝑟
𝑓
𝑠

𝑈
𝑖

�̂�
𝐿
. (20)

(2) Duty Cycle Adjustment Caused by the Change of Input Volt-
age. When steady-state operation of controlled-source circuit
is perturbed by an increase of the input voltage by the amount
�̂�
𝑖
, the slope of the primary current will increase to reach

the reflected filter inductor current sooner than it would in
the unperturbed operation. This phenomenon will cause an
increase of the duty cycle, which can be obtained as follows:

𝑑
𝑢
=

4𝑛𝑓
𝑠
𝐿
𝑟
𝐼
𝐿

𝑈
2

𝑖

�̂�
𝑖
. (21)
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Figure 7: Small-signal circuit model of soft-switching controlled-
source circuit.

5.3. Small-Signal Model. The above analysis is introduced
into small-signal circuit model of hard-switching full-bridge
circuit. In particular, 𝑑eff is used instead of 𝑑. Equivalent
small-signal circuit model of soft-switching phase-shifted
full-bridge converter can then be derived

𝑑eff = 𝑑 + 𝑑
𝑖
+ 𝑑
𝑢
. (22)

Small-signal circuit model of soft-switching controlled-
source is illustrated in Figure 7.

Based on the small-signal model of soft-switching con-
trolled-source circuit illustrated in Figure 7, the control-
output transfer function of the control system can be obtained

�̂�
𝑜
(𝑠)

𝑑eff (𝑠)

=
𝑈
𝑖

𝑛 ∗ (𝐿𝐶𝑠2 + 𝑠 (𝐿/𝑅 + 𝑅
𝑑
𝐶) + 𝑅

𝑑
/𝑅 + 1)

, (23)

where 𝑅
𝑑

= 4𝑛
2

𝐿
𝑟
𝑓
𝑠
. When 𝐿

𝑟
= 0, the model of soft-

switching controlled-source circuit is evolved into the model
of hard-switching controlled-source circuit.

As shown in (23), the function of internal current feed-
back reduces the low frequency gain of the transfer function,
which is due to 𝑅

𝑑
/𝑅. If 𝑅

𝑑
/𝑅 is controlled within reasonable

limits, which can be negligible, then

�̂�
𝑜
(𝑠)

𝑑eff (𝑠)

=
𝑈
𝑖
𝜔
2

0
/𝑛

𝑠2 + 2𝜔
0
𝜉𝑠 + 𝜔

2

0

, (24)

where 𝜔
2

0
= 1/𝐿𝐶, 𝜉 = (1/2𝑅)√𝐿/𝐶 + (𝑅

𝑑
/2)√𝐶/𝐿. The

first item of 𝜉 is damping item caused by hard-switching
controlled-source circuit. The second item is damping item
caused by soft-switching controlled-source circuit due to the
presence of the leakage inductance of the transformer.

6. Simulation and Experiment

Based on the preceding analysis, the small-signal model is
verified by simulation and experiment for a 6 kW marine
transmitter circuit shown in Figure 8. The circuit parameters
are as follows: input voltage 𝑈

𝑖
= 540V, switching frequency

𝑓
𝑠
= 20 kHz, output voltage 𝑈

𝑜
= 34V, output filter inductor

𝐿 = 20 𝜇H, output filter capacitor 𝐶 = 1000 𝜇F, transformer
leakage inductance 𝐿

𝑟
= 56 𝜇H, and load 𝑅 = 0.17Ω.

(1) Simulation Analysis. The amplitude-frequency and phase-
frequency characteristics of marine transmitter hard-switch-
ing controlled-source circuit are depicted by green lines and

Figure 8: Physical picture of marine electromagnetic transmitter
circuit.
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Figure 9: Control-to-output voltage transfer functions of hard-
switching (green lines) and soft-switching (blue lines) controlled-
source circuits.

those of marine transmitter soft-switching controlled-source
circuit are depicted by blue lines, as illustrated in Figure 9.
This figure shows that the resonance peaks of DC gain
between the two circuits are different. An inhibition term is
added in the soft-switching circuit because of the function
of the leakage inductance, which significantly reduced the
resonance peak.

(2) Experiment Verification. The contrast curves of mea-
sured and predicted amplitude-frequency characteristics of
the control-to-output transfer function are illustrated in
Figure 10. This figure shows that the measured curve and
prediction curve can be well fitted at low frequency, whereas
large error is found in the high frequency because of the
effect of high-frequency zero. The error of model prediction
at high-frequency range has little effect on the control of the
system.Hence, themodel accurately reflects the actual circuit.

Transformer primary voltage and current waveforms of
soft-switching controlled-source circuit and hard-switching
controlled-source circuit are illustrated in Figures 11 and
12, respectively. These figures show that the experimental
results are consistent with the theoretical analysis.The voltage
waveform is different from the current waveform as a result
of phase shifting control mode.

The high-frequency voltage transformer primary and
secondary voltage waveforms of soft-switching and hard-
switching controlled-source circuits are illustrated in Figures
13 and 14, respectively. These figures show that the exper-
imental results are consistent with the theoretical analysis.
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Figure 10: Control-to-output voltage transfer function of the con-
trolled-source circuit. Model prediction (solid lines) and experi-
mental measurement (dashed lines).
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Figure 11: Primary voltage and current waveforms in soft-switching
mode.

500V/div
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Figure 12: Primary voltage and current waveforms in hard-switch-
ing mode.

The duty cycle is less than the effective control duty cycle
because of the presence of the leakage inductance of the
transformer.

500V/div

50V/div

Figure 13: Primary and secondary voltage waveforms of trans-
former in soft-switching mode.

500V/div

50V/div

Figure 14: Primary and secondary voltage waveforms of trans-
former in hard-switching mode.

Output voltage and current waveforms of transmitter
transmitting electrode in soft-switching and hard-switching
modes are depicted in Figures 15 and 16, respectively. The
emission frequency is 50Hz, the transmitting voltage is
34V, and the emission current is 200A. The output of elec-
tromagnetic transients is significantly improved by using
controller designed with the proposed mathematical models.

The measure efficiency curves of marine electromagnetic
detection transmitter using soft-switching controlled-source
circuit and using hard-switching controlled-source circuit are
illustrated in Figure 17.Themaximum efficiency of the trans-
mitter circuit using soft-switching controlled-source circuit
is at 90% (including self-excitation auxiliary power supply),
and the maximum efficiency of the transmitter circuit using
hard-switching controlled-source circuit is at 83%.

7. Conclusions

(1) Based on the analysis of the operation process of
marine transmitter hard-switching and soft-switch-
ing controlled-source circuits, similarities and dif-
ferences between the two circuits have been identi-
fied, and two equivalent circuits of controlled-source
operation are obtained. On this basis, a mathematical
model of controlled-source circuit can be established.
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Figure 15: Output voltage and current waveforms of transmitter
transmitting electrode in soft-switching mode.
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Figure 16: Output voltage and current waveforms of transmitter
transmitting electrode in hard-switching mode.
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(2) Ideal switch model, state-space average model, and
small-signalmodel are established based on the ideal-
ization method and abstract extent of hard-switching
controlled-source circuit.

(3) Small-signalmodel and transmission function of soft-
switching controlled circuit are obtained based on
the mathematical modeling of hard-switching con-
trolled-source circuit by analyzing the effect of output
filter inductor current transformer leakage induc-
tance and input voltage soft-switching controlled
source on change in the duty cycle.

(4) The proposed small-signal model is verified by sim-
ulation and experiment. The results are consistent
with theoretical analysis.The controller designedwith
the proposed model has significantly improved the
control accuracy and transient performance of the
output electromagnetic wave of marine electromag-
netic transmitter.
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To mitigate the increase of anxiety resulting from the depletion of fossil fuels and destruction of the ecosystem, wind power, as
the most common renewable energy, is a flourishing industry. Thus, accurate wind speed forecasting is critical for the efficient
function of wind farms. However, affected by complicated influence factors in meteorology and volatile physical property, wind
speed forecasting is difficult and challenging. Based on previous research efforts, an intelligent hybrid model was proposed in this
paper in an attempt to tackle this difficult task. First, wavelet transform was utilized to extract the main components of the original
wind speed data while eliminating noise. Tomake better use of the back-propagation artificial neural network, the initial parameters
of the network are substituted with optimized ones, which are achieved by using the artificial fish swarm algorithm (AFSA), and
the final combination model is employed to conduct wind speed forecasting. A series of data are collected from four different
observation sites to test the validity of the proposed model. Through comprehensive comparison with the traditional models, the
experiment results clearly indicate that the proposed hybrid model outperforms the traditional single models.

1. Introduction

With fossil fuels gradually drying up and the aftermath of
the polluted environment becoming increasingly obvious, the
world is sparing no effort to explore and exploit renewable
energy for future power generation [1]. However, intermit-
tence is the nature of the most renewable energy sources,
which presents a great challenge to maintain and ensure the
stability and reliability of power network [2]. Thus, effective
energy storage technologies play a paramount role in miti-
gating the volatility [3]. As key ingredients, electric vehicles
(EVs) would be widely regarded as an integral part of such a
renewable energy system if they use electricity generated by
a renewable energy source [4]. Besides, oil and coal supply
uncertainty, growing mobility demand, and increasingly
stringent regulations on pollutants and carbon footprints are
expediting a paradigm shift towards sustainable power sys-
tem and transportation [5, 6]. Until now, even though numer-
ous clean energy technologies, such as plug-in hybrid electric
vehicles (PHEVs) [7], batterymanagement system (BMS) [8],

and battery electric vehicles (BEVs) [9], are being widely
deployed and developed to significantly reduce the fuel
consumption and the carbon emission throughout the world,
they also increase the demand of power in the meantime.
Thus, expanding investment on exploration and exploitation
of the supplement of traditional energy is badly needed.

Wind power, the most recognized renewable energy
source (RES), definitely possesses the prominent potential to
become the resource of electricity, which plays a fundamental
and indispensable role in social modernization [10]. Among
different types of renewable energy, such as solar, wind,
geothermal, and tidal energy, wind power is the fastest-
developing and the most widely used one and also meets the
demand for large scale commercial exploitation, owing to the
maturity of the technology [11].

Currently, the technology of wind power has attracted
worldwide attention and occupied a considerable share in the
proportion of energy construction. Many countries take the
development of wind power as an effective action to improve
their domestic energy structures, preserve the ecological
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environment, alleviate environmental pollution, and even
integrate it into the strategic development planning for the
entire power system.

China, with such a great population, will soon replace
America as the leading energy consuming country [12].
Depending on a series of positive policies, the wind power
industry has stepped into rapid development and the present
scale is exciting. The capacity of exploitable wind power is
on rise year by year as technology progresses. According
to a study started by the National Energy Administration
(NEA), in the national wind power long-term plan, it is
explicitly proposed that, to 2020, the national wind power
installed capacity goal is 20,000,000 kilowatts [13]. In order
to achieve such a capacity of power, nearly 708 million tons
coal are needed according to the internationally accepted
conversion standard, and the accompanying carbon emission
even reaches to 480 million tons.Therefore, developing wind
power efficiently does not only have economic significance,
but also high ecological value.

With such a large capacity of wind power, the integration
of wind power becomes an issue. Furthermore, high random-
ness of wind brings a big problem for a wind farm to provide
electric grids to meet its necessary need of power, and this
characteristic of wind power is a big challenge to traditional
power system which has a relatively mature operation mode.
Hence, accurate wind speed forecasting, as a necessary step in
wind power integration, is particularly important, and these
are the contributions of this paper.

There are three acknowledged methods for forecasting
wind speed, including long-term prediction, medium-term
prediction, and short-term prediction [14]. Briefly, long-
term forecasting is used in the process of site selection for
wind farms and in the maintenance and overhaul of the
power network. When researching the dynamic economic
dispatch scheme in a grid-connected wind power system,
the medium-term forecasting of wind that usually spans
a few days or weeks comes in handy. As for the latter
method, it mostly works to meet the control requirements of
wind turbines. Overall, apparently, forecast error will become
greater as the forecast horizon increases. Thus, the accuracy
of short-term forecasting is particularly important, for it lays
the foundation of the renewable energy program, security
evaluation, optimal dispatching model, and other critical
decisions in power network dispatching.

Until now, many scientists have devoted research efforts
to short-term wind speed forecasting, and various achieve-
ments have been successfully applied. Numerical simulation,
as early results, is usually used to construct mathematical
models to simulate the dynamical physical behaviour ofwind.
These models include many linear, nonlinear, difference,
and differential equations related with many conditions of
wind, and those numerical solutions are usually achieved by
calculation and iterative methods. However, because of the
astatic and chaotic characteristics of the factors involved in
the numerical simulation, as well as many uncertainties in
the forecasting process, the results of these methods usually
cannot meet the requirements of precision [15].

To solve these difficulties, many new models have been
applied, which can roughly be categorized into physical, such

as the Numerical Weather Prediction systems (NWPs), sta-
tistical, containing linear methods such as the Auto Regres-
sive model (AR), Moving Average (MA), Auto Regressive
Integrated Moving Average (ARIMA) model, and intelli-
gent methods, which come from artificial intelligence and
machine learning fields, such as the artificial neural networks
(ANN) [16], and even by hybrid approachmethods, which are
combination of statistical and physical methods that use the
analysis of a time series [17].

ARIMA, as a traditional statistical approach, has been
proposed by some researchers to forecast wind speed, though
it should be improved when dealing with the volatility and
chaotic characteristics of wind speed. Ernst et al. supplied a
method using past power measurements and meteorological
predictions of the data of wind speed and direction inter-
polated at a wind farm [18]. The Grey prediction model
GM(1, 𝑛), as a novel method for wind speed forecasting, as
well as a wind power predictor, that reflects a Greymodel that
has a differential equationwith a single variable, was provided
by El-Fouly. The structure of the artificial neural network,
which was applied for forecasting the mean monthly wind
speed in regions of Cyprus, is discussed by Baran, though
the data were not sufficient [19]. In addition, a hybrid model
that combined theKalmanfilter (KF)with the artificial neural
network was proposed based on an ARIMAmodel to further
enhance the forecasting accuracy of wind speed. Sideratos
andHatziargyriou [20] employed a hybridmethod to forecast
wind speed in which three independent algorithms had been
adopted. They were the Seasonal Adjustment Algorithm,
the Exponential Smoothing Method (ESM), and the Radial
Basis Function (RBF) neural network, and the final results
indicated that the suggested hybrid method had satisfactory
performance.

Back-propagation, as one of the most common learning
algorithms among the artificial neural networks, has obvi-
ous advantages in nonlinear model fitting and predication
because of its unique characteristic in terms of high tolerance
with data errors. From the operational principle of the learn-
ing algorithm of the BPANN model, it can be observed that
the initial weights and thresholds of the back-propagation
neural network have a serious impact on the accuracy of the
model [21].

In addition to the model, the characteristic of the initial
data can also affect the final forecasting of the wind speed.
In fact, the original data from the wind farm usually can-
not be used in the model directly because there is much
chaotic and scrambled information [22]; then, the WT is
employed in this work to preprocess the data of ten-minute
wind speed to eliminate the high frequency disturbance.
For the sake of improving the accuracy of wind speed
forecasting further, a new optimization algorithm called the
artificial fish swarm algorithm (AFSA) is proposed in this
paper. The AFSA adapted here is used to find the proper
parameters of the initial back-propagation artificial neural
network, whose input is the processed ten-minutewind speed
data. The final results of the data showed that the hybrid
optimal AFSA and BPANN method can perform better in
short-term wind speed forecasting compared with previous
models.
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The rest of this paper is organized as follows.The analysed
data are described in Section 2. A general description of
relative methods is provided in Section 3. In Section 4, the
hybrid optimal model is discussed in detail; specifically, the
process of selection of the optimal parameters of the propaga-
tion and the overall structure of the WAFSA-BPANN model
will be presented and introduced explicitly. In Section 5, the
simulation of the model and the evaluation of its final perfor-
mance of wind speed forecasting are discussed in detail. The
conclusions of this paper are presented in Section 6.

2. The Sources and Characteristics of
the Data Set

To meet the demands of the model proposed in this paper,
a variety of data were collected from turbines of wind
farms from the Shandong Peninsula of China. Owing to its
abundant sources of wind from the sea, which are richly
endowed by nature, the Shandong Peninsula plays a more
and more important role within the entire large sector of
the Chinese wind power structure. However, it is difficult
to forecast and evaluate wind speed because there are too
many factors that can affect the changing of the wind speed.
Our effective and reliable method is to find out the valuable
and useful information, which the proposed model can then
utilize to display the forecasting through the historical data.

The data used in this paper are collected from three
different turbines of a wind farm. To ensure the fairness and
consider the potential periodicity of seasons, the involved
data series of wind speed cover four seasons in 2011. To be
specific, data from four representative months in different
seasons are chosen to implement the simulation and forecast-
ing, namely, January, May, July, and September. For instance,
ten-minute wind speed data series from January 1 to January
31 in 2011 are collected. Each day, the data series span from
00:00 to 23:50, and thewind speed data are recorded every ten
minutes. Figure 1 shows the whole profile of the wind speed
data series spanning four seasons in one of the three chosen
observation sites.

From Figure 1, the obvious feature of fluctuation and
undulation of the original wind speed data series can be
observed, and there are no rules that may be utilized to
conduct forecasting through simple estimation. Besides, the
results of parameter estimation and testing indicate that wind
speed data series fit the Weibull distribution. Though many
models can tolerate the instability of the original data, the
accuracy of the forecasting models can still be impaired by
the noise and disturbance suffused in them. Thus, there are
active imperious demands to preprocess the initial data series
to achieve a relatively smooth time series. Herein, wavelet
transformwas proposed to dispose the wind speed data series
firstly, and preprocessed data were applied to execute the
hybrid model, which will be discussed in the next section.

3. Description of Relative Models

Several methods are referred to in this paper, such as wavelet
transform, back-propagation artificial neural network, and

artificial fish swarm algorithm; each of themwill be explained
briefly below.

3.1. Wavelet Transform (WT). Wavelet transform is a type
of denoising method that can decompose signals with dif-
ferent frequencies. The essence of WT is to transform a
one-dimensional signal in the time domain into a two-
dimensional time-frequency signal. WT can carry out the
multiresolution analysis, which indicates that WT has a high
time resolution and low frequency resolution in the high
frequency part; in the low frequency part, WT has a high
frequency resolution and low time resolution [23]. The basic
idea of WT is to approach the primitive function by using
two of the above functions. Assume that the signal𝑋(𝑡) is the
square integrable function; then, the WT of the signal is the
inner product with 𝜓(𝛼,𝜏)(𝑡):

WT𝑋 (𝛼, 𝜏) =
1

√𝛼
∫𝑋 (𝑡) 𝜓

∗
(
𝑡 − 𝜏

𝛼
) 𝑑𝑡

= ⟨𝑋 (𝑡) , 𝜓(𝛼,𝜏) (𝑡)⟩ ,

(1)

where𝛼 and 𝜏 are the scaling and shift factor, respectively, and
𝜓∗(𝑡) is the adjoin function of 𝜓(𝑡).

The basic steps of WT are as follows.

Step 1 (Decompose the original signal). Choose the wavelet
basis and decomposition hierarchy and calculate coefficients
of wavelet decomposition in each layer.

Step 2 (Address the threshold value of high frequency coef-
ficients). Choose a threshold value for each decomposition
hierarchy and process the high frequency coefficients to
eliminate the noise centred on the high frequency part.

Step 3 (Carry out wavelet reconstruction of signal). Carry out
the wavelet reconstruction for low frequency coefficients and
high frequency coefficients such that the threshold value is
processed quantitatively [24].

Through the wavelet transform, the high frequency wind
speed data series with significant noise is eliminated, and
the residual of the subseries is combined to substitute the
original data. From Figure 2, it is obvious that the denoising
data series is more smooth and stable than the original data.
The simulation and forecasting results upon the preprocessed
data employed in this paper also indicate the necessity and
superiority of the wavelet transform.

It should be noted here that the entire preprocessed data
are only used to train the hybrid model involved hereinafter.
To be specific, wind speed data during the whole month
are employed to use the wavelet transform, and the final
forecasting of the next week is achieved from the original real
wind speed data.

3.2. Back-Propagation Artificial Neural Network (BPANN).
The schematic of the BP artificial neural network is plotted
in Figure 3(a). Applying the classic back-propagation optimal
algorithm, the BPANN is widely used in multidomains. This
particular BP neural network has three layers: the input layer,
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Weibull distribution 
parameters a(scale) estimate b(shape) estimate Std. err.Std. err.

Data series 1 8.47768 0.0450284 2.97928 0.0342044
Data series 2 7.73254 0.0400057 2.03995 0.0233793
Data series 3 5.90159 0.0408818 2.29143 0.025865
Data series 4 7.157 0.0448423 2.09438 0.0247107
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Figure 1: Original wind speed data collected every 10 minutes in four seasons in 2011 and basic information of these data series.
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Figure 2: Comparison of the original wind speed data series and the results of WT.

the hidden layer, and the output layer [25].The number of the
nodes of the input layer 𝑛 is determined by our concrete data
of wind speed. Herein, our data series is the ten-minute wind
speed time series, and three nodes were selected as the input
layer [26, 27]. This choice is based on extensive experiments:
the prediction results obtained with three nodes in the input
layer are much better than other cases. According to the
data series of wind speed, these three input nodes represent
the history data at continuous time epochs. Similarly, only
one node of the output layer is also used to adapt our data
series. As to the hidden layer, it is not difficult to find that
it has a great effect on the robustness and stability of the
neural network. According to Hecht-Nielsen [28], the proper
number of the nodes of the hidden layer, that is, 𝑙 = 2𝑛 + 1,
was selected.

Before implementing the network, it is necessary to
normalize the data sets, with both the input and the output
data included. Thereafter, the outputs 𝑦𝑗 of all hidden layer
nodes are calculated as

𝑦𝑗 = 𝑓(∑
𝑖

𝑤𝑖𝑗𝑥𝑖 + 𝑏𝑗) ,

(𝑖 = 1, . . . , 𝑛; 𝑗 = 1, . . . , 2𝑛 + 1) ,

(2)

where 𝑤𝑖𝑗 is the weight connected from input nodes 𝑖 to
hidden nodes 𝑗, while the bias of neural is 𝑏𝑗, 𝑓 is the sigmoid

function, and 𝑥𝑖 represents the value of each input node.
Then, calculate the output𝑊1 of neural network:

𝑊1 = 𝑓0 (∑
𝑗

𝑤𝑗𝑦𝑗 + 𝑏0) , (𝑗 = 1, . . . , 2𝑛 + 1) , (3)

where 𝑤𝑗 is the connection weight from hidden layer to
output layer, 𝑏0 is the corresponding bias of neural cell, and
the activation function is 𝑓0. At last, minimize the error
via the training process. In this paper, the network was
trained firstly; then, the network was validated, and finally we
performed model testing. To see more details of the BPANN,
[29] can be referred to.

3.3. Artificial Fish Swarm Algorithm (AFSA). Artificial fish
swarm algorithm is an effective optimal algorithm for
increasing the exploitation capability during the process of
searching. As we all know, fish can easily find the area with
more nutrition through individual searching or following
after the ambient fishes. Li et al. [30] introduced this efficient
algorithm in 2002, which models the behaviours of fishes to
get the global optimal solution.

The state of the artificial fish can be described as 𝑋 =

(𝑥1, 𝑥2, . . . , 𝑥𝑛), and 𝑥𝑖 (𝑖 = 1, 2, . . . , 𝑛) represents the initial
variable. As the objective function, 𝑌 = 𝑓(𝑋) is the
consistency of the current position where the fish is in. 𝑑𝑖,𝑗 =
‖𝑥𝑖−𝑥𝑗‖ represents the distance of individual fish.Visual is the
cognitive distance, while Step and 𝛿 represents the maximum
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step size and factor of congestion degree, respectively. There
are four types of behaviours in the AFSA:

(1) Foraging behaviour: the current status of an artificial
fish is 𝑋𝑖, and the fish selects a state 𝑋𝑗 in its sensing
range randomly; if the problem is approximately
maximum and 𝑌𝑖 < 𝑌𝑗 (or 𝑌𝑖 > 𝑌𝑗 if the problem
is approximately minimum; because problems that
are approximately maximum or minimum can be
converted to each other; in the following, we only
discuss the problem that is approximatelymaximum),
then make a step forward in this direction; other-
wise, randomly select state 𝑋𝑗 again and determine
whether it meets the condition to move forward; after
attempting for try number times, if the condition still
cannot be met, then choose a direction randomly to
move a step:

𝑋𝑗 = 𝑋𝑖 + (2rand () − 1)Visual,

𝑋𝑖 = 𝑋𝑖 + (2rand () − 1) Step.
(4)

(2) Swarming behaviour: 𝑋𝑖 represents the current posi-
tion of an artificial fish; the task is to explore the
numbers of partners 𝑛𝑓 and the central location𝑋𝑐 in
the neighbourhood of the current position. If𝑌𝑐/𝑛𝑓 >
𝛿𝑦𝑖, which indicates that there is more nutrition
at the centre of partners and less competitiveness,
then make a step forward towards the direction of
the central of partner; otherwise, execute foraging
behaviour:

𝑋𝑖 = 𝑋𝑖 rand () ⋅ Step ⋅
𝑋𝑐 − 𝑋𝑖
𝑋𝑐 − 𝑋𝑖


. (5)

(3) Following behaviour: the current status of the arti-
ficial fish is 𝑋𝑖; explore the number of partners 𝑌𝑗
and the biggest partner 𝑋𝑗 in the neighbourhood
of the current position. If 𝑌𝑐/𝑛𝑓 > 𝛿𝑦𝑖, which
indicates that the surroundings of 𝑋𝑗 have more
nutrition and are not so congested, then make a
step forward towards the direction of 𝑋𝑗; otherwise,
execute foraging behaviour:

𝑋𝑖 = 𝑋𝑖 + rand () ⋅ Step ⋅
𝑋𝑔best − 𝑋𝑖

𝑋𝑔best − 𝑋𝑖



. (6)

(4) Random behaviour: implementation of random
behaviour is relatively simple; the action is to move a
step in a direction that is randomly picked in the field.
In fact, this is a default behaviour during foraging
behaviour.

There is a bulletin board in the algorithm, which is also
defined as an artificial fish, to record the information of
the optimal individual [31]. Each of the artificial fish would
compare its current state with the state recorded in the
bulletin board after every movement, and then substitute it
if the current state of the individual is superior to the one
recorded in bulletin board before.

According to the nature of the problem to be solved,
evaluate the current environment of the fish and then choose
a corresponding behaviour. A common method is to choose
a behaviour from the alternative behaviours that can make
the most progress toward the optimal direction; if there is no
choice that can make the next state better than the current
state, then the fish has to take a random action.

4. The Structure of Hybrid
WAFSA-BPANN Model

Just as in the aforementioned references, the initial data of
wind speed usually contain much interference, which can
affect the accuracy of forecasting; it is therefore a critical
procedure for optimal models to select valuable information
while filtering the disturbance. Therefore, a relatively mature
WT model was introduced to preprocess the original data
series, which is nonstationary wind speed data.The sublayers
wind speed is a much more stable and smooth time series.
Meanwhile, because the initial weights and thresholds of
back-propagation artificial neural networks are initialized
randomly, it is difficult to reach the best state in most cases.
Therefore, finding the best initial parameters of the initial
network is greatly needed [32]. Herein, the artificial fish
swarm algorithm was applied to finish this work. Based on
theWAFSA-BPANNmodel, the steps of training are depicted
as follows.

Step 1. Given the structure of the back-propagation artificial
neural network, there are three layers in the network, and the
number of nodes is 𝐼, 𝐽, 𝐾 in the input layer, the hidden layer,
and the output layer, respectively [33].

Step 2. Set the dimensions of the artificial fish, including the
weights and thresholds of the artificial neural network:

𝑋 = 𝑋 (V11, . . . , V𝐼1, 𝜇1, . . . , V1𝐽, . . . , V𝐼𝐽, 𝜇𝐽, . . . , 𝑤1𝐾, . . . ,

𝑤𝐽𝐾, 𝜃𝐾) .
(7)

Step 3. Initialize the basic parameters of the artificial fish
swarm algorithm, such as the size of the population pop size,
the cognitive distance Visual, the maximum step size Step,
and the factor of congestion degree 𝛿, while Max Gen
represents the maximum number of iterations and 𝜀 the
objective value.

Step 4. Initialize the iteration step Gen = 0. Produce artificial
fish individuals with a population of pop size randomly in the
feasible region as the initial fish; meanwhile, the component
of each individual fish should strictly be random, with digits
between (−1, 1).

Step 5. Calculate the food concentration 𝑌 of the current
position of each individual fish, choose the best one, and
mark it on the bulletin board.

Step 6. Simulate each individual fish to execute the following
behaviour and swarming behaviour, and then calculate 𝑌;
after comparing and determining the bigger 𝑌, execute
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Input:
𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑑)

𝑇—A sequence of training data.
Output:
𝑥try number|next—The returned value with the best fitness in the search domain.
Parameters:
try number—The attempted times in the behaviour of prey.
friend number—The number of friends around AF.
AF 𝑋[𝑛]—The position of AF.
AF step—The distance that AF can move for each step.
AF visual—The visual distance of AF.
AF delta—The condition of jamming.

(1) /∗Generate an initial population of 𝑛 AF 𝑥𝑖(𝑖 = 1, 2, . . . , 𝑛)∗/
(2) /∗AF prey()∗/
(3) FOR EACH 𝑖 : 0 ≤ 𝑖 ≤ try number DO
(4)𝑋𝑖 = 𝑋𝑗 + Visual ⋅ Rand();
(5) IF 𝑌𝑖 < 𝑌𝑗 THEN
(6)𝑋𝑖|next = 𝑋𝑖 + 𝑋𝑗 − 𝑋𝑖/‖𝑋𝑗 − 𝑋𝑖‖ ⋅ Step ⋅ Rand();
(7) ELSE 𝑋𝑖|next = 𝑋𝑖 + Step ⋅ Rand() END END
(8) /∗AF swarm()∗/
(9) FOR EACH 𝑖 : 0 ≤ 𝑖 ≤ f riend number
(10) IF (𝑑𝑖,𝑗 < Visual) DO
(11) 𝑛𝑓 = 𝑛𝑓 + 1;
(12) 𝑋𝑐 = 𝑋𝑐 + 𝑋𝑗 END
(13)𝑋𝑐 = 𝑋𝑐/𝑛𝑓
(14) IF (𝑌𝑐/𝑛𝑓 > 𝛿𝑦𝑖) THEN
(15)𝑋𝑖|next = 𝑋𝑖 + 𝑋𝑐 − 𝑋𝑖/‖𝑋𝑐 − 𝑋𝑖‖ ⋅ Step ⋅ Rand();
(16) ELSE AF prey() = 0 END END
(17) /∗AF follow()∗/
(18) FOR EACH 𝑖 : 0 ≤ 𝑖 ≤ f riend number
(19) IF (𝑑𝑖,𝑗 < Visual&&𝑌𝑗 > 𝑌max) THEN
(20) 𝑌max > 𝑌𝑗;
(21)𝑋𝑗 > 𝑋max; END
(22) 𝑛𝑓 = 0;
(23) IF (𝑑𝑖,𝑗 < Visual) THEN
(24) 𝑛𝑓 = 𝑛𝑓 + 1;
(25) END IF (𝑌max/𝑛𝑓 > 𝛿𝑌𝑖)

(26)𝑋𝑖|next = 𝑋𝑖 + 𝑋max − 𝑋𝑖/‖𝑋𝑔𝑏𝑒𝑠𝑡 − 𝑋𝑐‖ ⋅ Step ⋅ Rand();
(27) ELSE AF prey()

Algorithm 1: AFSA.

the corresponding behaviour (the default action is to execute
the foraging behaviour).

Step 7. Update the bulletin board after each iteration, and
always substitute the exiting 𝑌 with more optimal 𝑌 in fish
individuals.

Step 8. Judge if the iteration times Gen have already reached
Max Gen or if the error 𝜀 has met the requirement, and
output the digit 𝑌 on the bulletin board once the termination
condition ismet; otherwise, makeGen = Gen+1 and go back
to Step 6.

The pseudocode of the artificial fish swarm algorithm is
listed in Algorithm 1.

Specifics parameters of the AFSA algorithm are presented
in Table 1.

Table 1:The value of the parameters of AFSA adopted in this paper.

Parameters Value
Population size 40
Maximum iterations 1000
Visual of each individual 0.5
Step of each fish 0.01
Try number of each fish 10
Congestion degree 11
Objective value 0.0001
Time complexity 𝑂(106)
Space complexity 𝑂(10)

The hybrid method has better performance than the
traditional back-propagation artificial neural network and
other singlemodels, and the structure of theWAFSA-BPANN
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is briefly shown in Figure 3, from which a visualized under-
standing of the hybrid optimummodel can be got.

5. Simulation and Analysis

By means of the aforementioned hybrid model and the time
series wind speed data, a series of simulations and forecasting
have been operated using Matlab R2012b, and the results are
discussed as follows.

5.1. Related Index. To ensure fairness and real forecasting
results, the data volume, training data set, and forecasting
data set are kept unchanged. Herein, three common indexes
of error, such as the mean square error (MSE), mean absolute
percentage error (MAPE), and the mean absolute error
(MAE), are adopted to evaluate the performance of related
models, and their specific formulations are shown below:

MAPE =
1
𝑀

𝑀

∑
𝑘=1



𝑥𝑘 − 𝑥𝑘

𝑥𝑘


,

MAE =
1
𝑀

𝑀

∑
𝑘=1

𝑥𝑘 −𝑥𝑘
 ,

MSE =
1
𝑀

𝑀

∑
𝑘=1

(𝑥𝑘 −𝑥𝑘)
2
,

(8)

where 𝑥𝑘(𝑘 = 1, 2, . . . ,𝑀) represents the concrete value of
forecasting series and 𝑀 is the length of the series, while the
corresponding value of original data series is 𝑥𝑘.

5.2. Discussion of the Results from Different Seasons. Affected
by many meteorological factors which are usually erratic,
wind speed fluctuates all of the time, making it difficult to
forecast. Based on a previous study, a hybrid new model is
proposed in this paper. To achieve intuitive results of the
hybrid model, the specific prediction data with a certain
time interval on the first weeks of February, June, August,
and October are collected, while the training data sets span
the whole month of January, May, July, and September,
respectively. Thus, the length of the prediction series is 1008
because of the time intervals, which makes it improper to list
all these data under the limited space. In this case, forecasting
data from several comparative models are recorded every
6 hours. The results from our hybrid model are compared
with those from other traditional hybrid models. In this
experiment, preprocessed data from four months in different
seasons are utilized to train the neural network, and upon
training the neural network, the final forecasting is made.
Herein, data collected from January 1 to January 31 are utilized
as the training set to train the network, upon which the
prediction of wind speed from February 1 to February 7 is
achieved. Next, preprocessed data acquired from May 1 to
May 31 are used to train the artificial neural network, and
the data from June 1 to June 7 are the relevant testing set.
According to the same principle, the remaining training data
series are formed. For example, the testing data fromAugust 1

to August 7 are obtained from the neural network, which are
trained by wind speed data spanning July 1 to July 31.

Tables 2, 3, 4, and 5 display the prediction results of four
seasons, respectively. To be specific, forecasting results in the
first week of February obtained from different models are
presented in Table 2. Similarly, Tables 3, 4, and 5 represent
the forecasting results in other three seasons.

As is depicted in Tables 2, 3, 4, and 5 and Figure 4, the
specific forecasting results are enumerated vividly based on
four different models: the initial back-propagation artificial
neural network, the ARIMA model, the ARIMA with data
fromwavelet transforming (WT-ARIMA), and the hybrid BP
network with optimal parameters as well as the preprocessed
data. Through the comparison of data, it can be found that
the MAPE ofWAFSA-BPANN is relatively more smooth and
smaller than the other three models. Here, we can know that
the wind speed in February has a remarkable fluctuation,
which results in a relatively big error in all four models.
Through further analysis, a rough speculation can be formed:
compared with other times, the falling of temperature in the
winter may lead to the fluctuation of the wind speed.

5.3. Discussion of the Results from Different Observation
Sites. To test the stability of the experiments as well as the
effectiveness of the proposed hybrid model, the scope of
the training data and testing data was enlarged, including
four whole months in different seasons. At the same time,
horizontal comparison is also employed to strengthen the
validity of the proposed hybrid models. Furthermore, to
eliminate random error in wind speed data, data fields from
three different observation sites are applied in the process of
simulation and forecasting. All these efforts aim to reduce
the randomness of the experiments as well as testify the
effectiveness of the proposed models, and the analysis results
of data series gathered from three different observation sites
are presented in Tables 6–9.

Obvious improvements in the performance of the hybrid
models can be noticed, which can be read from all three error
criteria. And the superiority of our WAFSA-BPANN model
exists in observation site 1, site 2, and site 3. As is depicted in
Table 6, it is not hard to find that there are 1.28%, 1.6%, 1.31%,
1.18%, and 1.13% reductions in MAPE, 0.1419, 0.1586, 0.1447,
0.1113, and 0.1199 reductions in MSE, and 0.0871, 0.1048,
0.0888, 0.073, and 0.0779 reductions in MAE, respectively,
of the hybrid model proposed in this paper when compared
with BPANN, ARIMA, AFSA-BPANN, WT-BPANN, and
WT-ARIMA model.

On other aspects, through the horizontal comparison
of the data shown in Tables 6, 7, 8, and 9, WT’s superior
performance on the three error indexes, compared with the
performances of the other traditional models, can be seen.
The average index of errors in all tables covering four seasons
also indicates this rule: the hybrid model indeed has much
more superiority when dealing with the original data set,
which contains much noise and fluctuation. In other words,
the process of denoising of WT has a critical effect on the
final forecasting when analysing the comprehensive compar-
ison, from which we can find an obvious improvement for
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Figure 4: The specific results of different models.

the model when the wavelet transform is added. Synthesizing
these diagrams, a rough rule can be observed, showing that
the wavelet transform has an impact on simulation and fore-
casting: the tendency of the error index is more flat compared
with the original error. The hybrid model (WAFSA-BPANN)

can at least be confirmed to finish forecasting the wind speed
with a tolerated error.

Moreover, it is necessary to consider the running time
when implementing these models. On average, the BPANN
model is the fastest which usually costs less than two seconds,
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Table 2: The forecasting results of February from observation site 1 on a given time interval.

Date
February Time (h) Actual

value
BPANN ARIMA WT-ARIMA WAFSA-BPANN

Forecasting MAPE (%) Forecasting MAPE (%) Forecasting MAPE (%) Forecasting MAPE (%)

Feb. 1

0:00
6:00
12:00
18:00

7.9
7.4
3.1
4.4

7.025
7.082
3.123
4.385

11.071
4.292
0.743
0.339

7.080
7.085
3.014
4.287

10.378
4.253
2.782
2.571

7.759
7.140
2.981
4.268

1.779
3.513
3.832
3.003

7.681
7.171
3.158
4.404

2.778
3.094
1.880
0.102

Feb. 2

0:00
6:00
12:00
18:00

5
4.7
2.8
8.2

4.619
4.877
2.825
7.712

7.614
3.760
0.899
5.946

4.320
4.789
2.492
7.623

13.609
1.900
10.995
7.033

4.500
4.767
2.570
7.859

9.998
1.429
8.218
4.158

4.370
4.844
2.823
7.859

12.597
3.069
0.838
4.153

Feb. 3

0:00
6:00
12:00
18:00

8.3
8.4
4.6
5.4

8.179
8.388
5.234
5.167

1.461
0.146
13.778
4.314

8.180
8.253
5.172
5.139

1.443
1.746
12.440
4.829

8.221
8.442
5.239
5.107

0.947
0.505
13.895
5.431

8.478
8.520
5.224
5.375

2.150
1.428
13.568
0.469

Feb. 4

0:00
6:00
12:00
18:00

3
4.7
5.6
5.6

3.048
4.553
5.046
5.650

1.616
3.126
9.896
0.888

2.948
4.692
4.412
5.596

1.728
0.165
21.211
0.079

2.867
4.383
4.785
5.583

4.435
6.750
14.558
0.304

3.056
4.831
4.639
5.519

1.869
2.783
17.166
1.452

Feb. 5

0:00
6:00
12:00
18:00

6
3
6.3
7.5

6.075
3.325
6.925
8.285

1.255
10.835
9.914
10.467

6.073
3.256
6.936
8.300

1.214
8.517
10.096
10.672

5.960
3.176
6.875
8.118

0.669
5.874
9.130
8.236

6.196
3.274
6.701
8.306

3.264
9.138
6.360
10.742

Feb. 6

0:00
6:00
12:00
18:00

15
9.4
8.6
6.5

13.412
9.374
9.010
6.402

10.590
0.274
4.771
1.502

13.409
9.309
8.956
6.300

10.606
0.965
4.136
3.073

13.222
9.445
9.058
6.421

11.850
0.475
5.323
1.214

14.511
9.136
8.938
6.601

3.263
2.809
3.933
1.556

Feb. 7

0:00
6:00
12:00
18:00

4.6
3.4
8.7
7.9

4.679
3.716
10.145
8.217

1.721
9.308
16.614
4.010

4.659
3.488
10.084
8.219

1.278
2.591
15.904
4.044

4.601
3.610
10.176
7.995

0.023
6.177
16.970
1.196

4.502
3.556
9.207
8.179

2.135
4.583
5.830
3.535

and this can be seen in Tables 6, 7, 8, and 9. It is still very quick
even the process of wavelet transform is added. The ARIMA
and WT-ARIMA model are relatively fast with the running
time about forty seconds.However, the speed ofmodel always
slows down when it involves the AFSA algorithm, which
usually lasts 150 seconds. Through further analysis, it is not
hard to explain the longer period of hybrid model proposed
in this paper since there are so many loops and iterations in
the AFSA algorithm.

Though much more time is needed when applying the
hybrid model, it is still a reasonable choice to make wind
speed forecasting for wind farms, for the improvement of
prediction accuracy can compensate the costs in time and
bring more profits both in technology and economy.

5.4. Comprehensive Comparison between Different Models.
Table 10 shows the final comprehensive comparison between
the traditional and hybrid models. Based on the metrics
tabularized in Table 10, the overall perspective of each model
can be seen distinctly. It should be noted here that all of those
digits are the means of the whole experiment. For instance,
the MAE of the BPANN model is 0.4284, which is the mean
of the aforementioned forecasting results from these three

observations sites covering four seasons.TheMSE andMAPE
are formed in the similar way.

It can be found that, when compared with BPANN,
ARIMA, AFSA-BPANN, WT-BPANN, and WT-ARIMA,
there are 24.7%, 25.5%, 24.78%, 24.64%, and 25.53% improve-
ments in MAE, 45.25%, 46.2%, 45.01%, 45.58%, and 46.93%
improvements in MSE, and 21.28%, 21.17%, 21.87%, 20.1%,
and 20.52% improvements in MAPE, respectively, of the
hybrid model proposed in this paper. Similarly, reductions
in MAPE, MSE, and MAE occurred at all three observation
sites in four seasons which are presented in aforementioned
tables.

Through the aforementioned table and analysis, a general
rule could be summarised now: the proposed WAFSA-
BPANN can always perform better than other referred
models, which is obviously embodied in MAPE, MAE, and
MSE. Above all, a visualized conclusion can be reached: the
proposed hybrid model performs better than the others. In
summary, the proposed optimal hybrid model can, to some
extent, make relatively better forecasts than the traditional
prediction models. In other words, the optimal algorithm
introduced in this paper is suitable to be applied to optimizing
the traditional back-propagation artificial neural network
based on the wind speed data.
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Table 3: The forecasting results of June from observation site 1 on a given time interval.

Date
June Time (h) Actual

value
BPANN ARIMA WT-ARIMA WAFSA-BPANN

Forecasting MAPE (%) Forecasting MAPE (%) Forecasting MAPE (%) Forecasting MAPE (%)

June. 1

0:00
6:00
12:00
18:00

2.9
3.7
2.6
1.8

4.423
2.748
3.235
2.309

52.508
25.728
24.425
28.265

4.293
2.653
3.144
2.138

48.044
28.287
20.929
18.759

3.292
2.540
3.126
2.078

13.530
31.358
20.230
15.423

3.529
3.387
2.991
2.151

21.693
8.449
15.027
19.499

June. 2

0:00
6:00
12:00
18:00

1.6
0.7
6.1
9.5

1.690
1.389
6.150
9.949

5.632
98.435
0.817
4.728

1.464
1.091
6.133
9.949

8.529
55.881
0.537
4.726

1.385
1.105
6.247
10.032

13.407
57.881
2.403
5.595

1.730
1.543
6.261
9.857

8.116
120.427
2.636
3.758

June. 3

0:00
6:00
12:00
18:00

10.8
12
8.9
2.4

10.788
12.724
9.151
1.813

0.112
6.034
2.815
24.455

10.685
12.742
9.332
1.785

1.063
6.183
4.859
25.627

10.748
12.790
9.199
1.631

0.481
6.581
3.357
32.040

10.982
12.276
9.304
2.172

1.684
2.300
4.542
9.482

June. 4

0:00
6:00
12:00
18:00

2.4
1.9
2.9
5.4

2.376
2.143
3.028
4.435

0.983
12.795
4.404
17.873

2.200
1.901
2.844
4.395

8.338
0.049
1.943
18.611

2.207
1.900
2.915
4.410

8.022
0.024
0.504
18.337

2.340
1.922
2.872
4.398

2.509
1.150
0.970
18.551

June. 5

0:00
6:00
12:00
18:00

8
1.3
2.2
5.9

7.444
1.570
2.652
5.879

6.956
20.753
20.543
0.351

7.369
1.400
2.482
5.781

7.886
7.701
12.801
2.015

7.566
1.269
2.487
5.895

5.429
2.365
13.066
0.081

7.321
1.763
2.665
5.704

8.491
35.644
21.118
3.321

June. 6

0:00
6:00
12:00
18:00

7.8
8.3
9.5
14.2

7.861
8.286
8.627
12.340

0.776
0.167
9.190
13.098

7.841
8.312
8.635
12.331

0.525
0.150
9.106
13.165

7.884
8.277
8.702
12.412

1.081
0.283
8.398
12.593

8.072
8.431
9.268
12.911

3.482
1.581
2.443
9.078

June. 7

0:00
6:00
12:00
18:00

11.4
7
7.3
10.3

10.582
6.839
6.744
10.616

7.179
2.302
7.614
3.068

10.742
6.859
6.845
10.546

5.775
2.014
6.235
2.388

10.578
6.914
6.794
10.748

7.214
1.229
6.938
4.348

11.174
6.988
7.374
10.445

1.982
0.175
1.013
1.404

6. Conclusions

With the ongoing need for wind power, accurate wind speed
forecasting has a strong impact on wind farm management,
even on the entire wind power dispatch hybrid system.
Therefore, a new hybrid model is proposed in this paper to
solve this tough task. Firstly, based on WT, extra noise in
the original wind speed data series which are nonstationary
is eliminated while the remaining data contain most of
the effective information, which is critical for forecasting
wind speed. Next, to achieve the most proper parameters
of the back-propagation artificial neural network, AFSA, as
an effective method, is applied in this paper, and with the
optimal parameters, the initial network is formed. Then, the
preprocessedwind speed data are utilized to train the BPANN
artificial neural network; in the final process, the forecasting
of wind speed is obtained from the trained network. A num-
ber of sets of wind speed data from four different observation
sites are gathered to execute the simulation and forecasting.
Meanwhile, three error metrics are built up to evaluate the
performance of the models. Through comprehensive com-
parison, the conclusion elicited is that the proposed intelli-
gent hybrid model (WAFSA-BPANN) outperforms the other
traditionalmodels, such as BPANN,ARIMA, AFSA-BPANN,

WT-BPANN, and WT-ARIMA. Hence, WAFSA-BPANN is
an effective and reliable model for short-term wind speed
forecasting in wind farms of China.

Though relatively superior precision of wind speed pre-
diction can be obtained applying the hybrid model proposed
in this paper, there is still room for improvements. Investigat-
ing these forecasting approaches, such as the combination of
numerical simulation and intelligence algorithms, could be a
future research topic.

Abbreviations

AFSA: Artificial fish swarm algorithm
ANN: Artificial neural network
AR: Auto Regressive Model
ARIMA: Auto Regressive Integrated Moving Average
BEVs: Battery electric vehicles
BMS: Battery management system
BPANN: Back-propagation artificial neural network
ESM: Exponential Smoothing Method
EVs: Electric vehicles
GM(1, 𝑛): Grey prediction model
KF: Kalman filter
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Table 4: The forecasting results of August from observation site 1 on a given time interval.

Date
August Time (h) Actual

value
BPANN ARIMA WT-ARIMA WAFSA-BPANN

Forecasting MAPE (%) Forecasting MAPE (%) Forecasting MAPE (%) Forecasting MAPE (%)

Aug. 1

0:00
6:00
12:00
18:00

4.8
4.1
2.4
1.7

4.539
4.536
2.586
1.751

5.448
10.642
7.731
3.013

4.595
4.529
2.434
1.566

4.263
10.454
1.437
7.872

4.403
4.442
2.493
1.510

8.263
8.341
3.869
11.184

4.639
3.897
2.579
1.838

3.356
4.951
7.472
8.139

Aug. 2

0:00
6:00
12:00
18:00

3.5
3
2.4
3.3

3.865
2.971
2.912
3.421

10.423
0.959
21.340
3.669

3.787
2.850
2.796
3.323

8.201
4.986
16.501
0.702

3.775
2.816
2.835
3.302

7.845
6.137
18.126
0.049

3.848
2.838
2.642
3.352

9.951
5.413
10.068
1.585

Aug. 3

0:00
6:00
12:00
18:00

2.8
5.1
4.3
2

2.853
4.442
3.970
2.168

1.900
12.903
7.675
8.380

2.816
4.376
3.939
2.060

0.583
14.201
8.400
2.978

2.682
4.345
3.886
2.087

4.230
14.800
9.621
4.344

2.875
4.379
3.775
2.383

2.676
14.141
12.218
19.144

Aug. 4

0:00
6:00
12:00
18:00

2.3
3
3.1
2.8

1.925
3.221
2.504
2.912

16.306
7.362
19.233
3.999

1.740
3.134
2.418
2.858

24.338
4.451
22.009
2.064

1.743
3.099
2.411
2.815

24.214
3.287
22.242
0.521

2.298
3.428
3.022
2.661

0.088
14.257
2.504
4.980

Aug. 5

0:00
6:00
12:00
18:00

1.8
0.8
1.4
4.8

1.648
1.581
1.718
4.287

8.435
97.609
22.680
10.696

1.529
1.474
1.567
4.256

15.072
84.254
11.911
11.328

1.479
1.398
1.609
4.387

17.849
74.703
14.911
8.607

1.888
1.514
1.897
4.635

4.861
89.304
35.478
3.429

Aug. 6

0:00
6:00
12:00
18:00

1.3
3.3
3.9
1.9

1.444
3.136
3.719
2.598

11.099
4.964
4.651
36.716

1.284
3.120
3.689
2.455

1.226
5.445
5.399
29.233

1.161
3.076
3.600
2.511

10.729
6.792
7.684
32.145

1.746
3.039
3.472
2.490

34.313
7.923
10.980
31.040

Aug. 7

0:00
6:00
12:00
18:00

2.6
3.8
4.5
12.1

2.796
3.768
4.019
10.417

7.526
0.837
10.688
13.907

2.764
3.710
3.996
10.259

6.291
2.381
11.189
15.216

2.782
3.772
3.995
10.559

7.007
0.733
11.233
12.733

2.787
3.762
3.973
11.377

7.203
0.989
11.722
5.975

Table 5: The forecasting results of October from observation site 1 on a given time interval.

Date
October Time (h) Actual

value
BPANN ARIMA WT-ARIMA WAFSA-BPANN

Forecasting MAPE (%) Forecasting MAPE (%) Forecasting MAPE (%) Forecasting MAPE (%)

Oct. 2

0:00
6:00
12:00
18:00

7.5
8.5
9.1
10.7

7.452
8.185
9.412
11.173

0.645
3.706
3.431
4.423

7.384
8.129
9.422
10.695

1.541
4.368
3.543
0.051

6.322
8.368
9.511
10.442

15.709
1.548
4.513
2.408

7.160
7.955
9.228
10.988

4.527
6.406
1.408
2.690

Oct. 3

0:00
6:00
12:00
18:00

10.5
6.5
5.7
4.4

11.719
6.817
5.273
4.188

11.610
4.883
7.492
4.818

11.723
6.912
5.344
4.166

11.649
6.337
6.247
5.316

11.765
6.770
5.082
4.199

12.052
4.148
10.841
4.571

10.970
7.017
5.796
4.207

4.480
7.957
1.683
4.394

Oct. 4

0:00
6:00
12:00
18:00

3.8
3.3
3.1
2.9

4.424
3.432
3.176
2.579

16.428
3.986
2.442
11.065

4.477
3.353
2.955
2.474

17.817
1.592
4.673
14.683

4.434
3.392
3.075
2.476

16.675
2.781
0.795
14.619

4.179
3.212
2.574
2.667

9.983
2.677
16.962
8.043

Oct. 5

0:00
6:00
12:00
18:00

4.3
3.8
6.6
7.5

4.483
3.921
6.225
6.712

4.267
3.187
5.685
10.508

4.449
3.918
6.190
6.557

3.459
3.114
6.214
12.568

4.499
3.894
6.159
6.865

4.622
2.481
6.687
8.468

4.317
4.034
6.106
7.105

0.392
6.146
7.480
5.272

Oct. 6

0:00
6:00
12:00
18:00

9.4
8.6
6.8
4.2

8.985
8.160
7.209
4.300

4.412
5.116
6.008
2.391

8.982
8.164
7.286
4.402

4.450
5.067
7.140
4.814

9.020
8.075
7.216
4.275

4.038
6.103
6.119
1.794

9.024
8.192
7.328
4.621

4.000
4.740
7.765
10.013

Oct. 7

0:00
6:00
12:00
18:00

3.9
2.6
3.1
4.6

4.456
2.573
3.502
4.641

14.266
1.038
12.952
0.884

4.519
2.512
3.448
4.675

15.864
3.398
11.232
1.624

4.371
2.484
3.519
4.632

12.067
4.467
13.511
0.689

4.354
2.441
3.046
4.670

11.645
6.111
1.744
1.522
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Table 6: Errors of different traditional models in February.

Models MAE (m/s) MSE (m2/s2) MAPE (%) Running time (s)

Observation
site 1

BPANN 0.3911 0.3041 6.68 2.8502
ARIMA 0.4088 0.3208 7 47.2708
AFSA-BPANN 0.3928 0.3069 6.71 105.3652
WT-BPANN 0.3770 0.2735 6.58 5.1081
WT-ARIMA 0.3819 0.2821 6.53 40.7528
WAFSA-BPANN 0.3040 0.1622 5.4 156.3590

Observation
site 2

BPANN 0.4219 0.3304 9.5 2.0659
ARIMA 0.4415 0.3526 9.94 35.5574
AFSA-BPANN 0.4307 0.3389 9.78 106.2827
WT-BPANN 0.4087 0.3045 9 2.4668
WT-ARIMA 0.4130 0.3109 9.03 42.0537
WAFSA-BPANN 0.3134 0.1674 7.44 148.8582

Observation
site 3

BPANN 0.3975 0.2845 8.27 0.5424
ARIMA 0.4098 0.3021 8.43 42.4113
AFSA-BPANN 0.3949 0.2793 8.24 105.7024
WT-BPANN 0.3833 0.2654 8.05 0.7321
WT-ARIMA 0.3849 0.2694 7.92 40.7567
WAFSA-BPANN 0.3055 0.1601 6.87 146.8292

Table 7: Errors of different traditional models in June.

Models MAE (m/s) MSE (m2/s2) MAPE (%) Running time (s)

Observation site 1

BPANN 0.4637 0.4260 10.48 0.8509
ARIMA 0.4617 0.4215 10.06 37.0557
AFSA-BPANN 0.4701 0.4267 10.91 104.7545
WT-BPANN 0.4625 0.4278 10.05 1.4735
WT-ARIMA 0.4663 0.4315 10.08 37.9540
WAFSA-BPANN 0.3381 0.2066 8.14 145.9524

Observation site 2

BPANN 0.4446 0.3783 9.99 1.1537
ARIMA 0.4442 0.3737 9.78 41.4958
AFSA-BPANN 0.4443 0.3770 10.07 108.9195
WT-BPANN 0.4450 0.3849 9.76 73.93
WT-ARIMA 0.4462 0.3859 9.78 42.0491
WAFSA-BPANN 0.3441 0.2084 8.27 143.1720

Observation site 3

BPANN 0.4716 0.3987 11.78 0.5463
ARIMA 0.4671 0.3930 11.09 36.7596
AFSA-BPANN 0.4720 0.3989 11.7 104.6663
WT-BPANN 0.4700 0.4144 11.17 0.7220
WT-ARIMA 0.4727 0.4198 11.08 41.9609
WAFSA-BPANN 0.3353 0.2008 8.64 142.3210

MA: Moving Average Model
MAE: Mean absolute error
MAPE: Mean absolute percentage error
MSE: Mean square error
NWPs: Numerical Weather Prediction

Systems
NEA: National energy administration
PHEVs: Plug-in hybrid electric vehicles

RBF: Radial Basis Function
RES: Renewable energy source
WT: Wavelet transform.
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Table 8: Errors of different traditional models in August.

Models MAE (m/s) MSE (m2/s2) MAPE (%) Running time (s)

Observation site 1

BPANN 0.4595 0.3856 7.95 1.0696
ARIMA 0.4657 0.3989 8.05 39.0358
AFSA-BPANN 0.4612 0.3840 7.98 102.2733
WT-BPANN 0.4668 0.3956 8.05 1.0735
WT-ARIMA 0.4787 0.4201 8.25 43.0450
WAFSA-BPANN 0.3377 0.2055 5.94 147.2995

Observation site 2

BPANN 0.4189 0.3351 8.12 0.4442
ARIMA 0.4189 0.3396 8.13 37.0051
AFSA-BPANN 0.4139 0.3259 8 105.3182
WT-BPANN 0.4239 0.3438 8.17 0.9281
WT-ARIMA 0.4303 0.3563 8.3 37.1158
WAFSA-BPANN 0.3043 0.1831 6.07 145.4899

Observation site 3

BPANN 0.4601 0.3883 8.26 2.2823
ARIMA 0.4689 0.3981 8.48 37.7879
AFSA-BPANN 0.4600 0.3850 8.32 102.6349
WT-BPANN 0.4665 0.3928 8.39 2.0385
WT-ARIMA 0.4727 0.4044 8.48 40.7267
WAFSA-BPANN 0.3407 02140 6.35 142.8692

Table 9: Errors of different traditional models in October.

Models MAE (m/s) MSE (m2/s2) MAPE (%) Running time (s)

Observation site 1

BPANN 0.3824 0.2768 7.2 0.5651
ARIMA 0.3827 0.2766 7.18 32.6927
AFSA-BPANN 0.3827 0.2752 7.22 110.4872
WT-BPANN 0.3898 0.2954 7.25 0.6419
WT-ARIMA 0.3930 0.3019 7.27 35.1270
WAFSA-BPANN 0.2963 0.1503 5.79 151.7133

Observation site 2

BPANN 0.4141 0.3206 8.05 0.8032
ARIMA 0.4122 0.3257 7.89 33.0404
AFSA-BPANN 0.4157 0.3238 8.11 109.5214
WT-BPANN 0.4274 0.3511 8.11 0.8312
WT-ARIMA 0.4301 0.3526 8.16 35.2028
WAFSA-BPANN 0.3164 0.1983 6.34 147.8061

Observation site 3

BPANN 0.4156 0.3245 8.75 0.5211
ARIMA 0.4148 0.3242 8.85 35.9502
AFSA-BPANN 0.4085 0.3132 8.78 105.3837
WT-BPANN 0.4167 0.3288 8.9 0.5227
WT-ARIMA 0.4297 0.3504 9.15 36.1737
WAFSA-BPANN 0.3356 0.2173 7.45 142.9675

Table 10: Comprehensive comparison of the performances of models involved.

Model MAE
(m/s)

Improvement
(%)

MSE
(m2/s2)

Improvement
(%)

MAPE
(%)

Improvement
(%)

Running time
(s)

BPANN 0.4284 24.70 0.3461 45.25 8.7525 21.28 1.14
ARIMA 0.4330 25.50 0.3522 46.20 8.74 21.17 38.0052
AFSA-BPANN 0.4289 24.78 0.3446 45.01 8.8183 21.87 105.9424
WT-BPANN 0.4281 24.64 0.3482 45.58 8.6233 20.1 1.4398
WT-ARIMA 0.4332 25.53 0.3571 46.93 8.6691 20.52 39.4098
WAFSA-BPANN 0.3226 — 0.1895 — 6.89 — 146.8031
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This paper considers a multiperiod vehicle lease planning problem for urban freight consolidation centers (UFCCs) in the urban
freight transport network where short-term-leased and long-term-leased vehicles are hired together.The objective is to allocate the
two kinds of leased vehicles optimally for direct transportation services from the associated origin node to the associated UFCC
or from the associated UFCC to the associated destinations so as to satisfy a given set of period-to-period freight demands over a
given planning horizon at total minimum vehicle allocation cost subject to demand-dependent transportation time restriction.The
problem is formulated as an integer programming model and proven to be NP-hard in a strong sense.Thus, a Lagrangian heuristic
is proposed to find a good solution efficiently. Numerical experiments show that the proposed algorithm finds good lower and
upper bounds within reasonable time.

1. Introduction

Recent worldwide economic growth has accelerated urban-
ization, and people have been moving to cities for better
jobs and more fulfilling lifestyle. In the late 2000s, it was
reported that more people lived in cities than in rural areas,
and it is expected that more people will move to urban areas
in the near future [1, 2]. According to Blanco and Fransoo
[3], the number of megacities with at least 10 million people
is increasing, and in a decade, their contribution to world
economy will steadily grow and constitute more than 20%
of world GDP. As people start to live in concentrated and
sometimes congested areas, traffic jams and air pollution
continue to increase. As a result, many researchers have
started to investigate the impacts of congestion due to urban
transportation systems [2, 4].

Freight transportation is one of the key contributors to
traffic congestion and harmful pollutants in cities. Unlike
typical passenger cars, freight vehicles are bigger in size and
move more frequently due to the nature of their business.

Furthermore, a recent trend toward just-in-time delivery
makes the problem even worse [5]. To survive in competition
and to meet increased customer expectation about timely
delivery, companies have dispatched small packages more
frequently to customers insidemetropolitan areas. As average
vehicle utilization went down and the number of vehicles
dispatched increased, traffic congestion and the subsequent
problems have been exacerbated to such an extent that
they could cause serious social issues. To deal with the
problems caused by urban freight transportation, integrated
approaches for city logistics systems have been proposed.
Crainic et al. [5] proposed an integrated short-term schedul-
ing of operations management of logistics resources. Ehmke
[1] and Ehmke et al. [6] proposed efficient routing systems
integrating traffic information and logistics. Yang et al. [7]
investigated a problem of designing a city logistics network
considering green-house gas emissions. Thus, the research
goal of urban freight transportation and city logistics should
be aligned with congestion and pollution reduction with less
degradation of the city center commercial activities. In this
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regard, multitier urban freight transportation system with
consolidation and in-out synchronization, so-called urban
freight consolidation, has been proposed as an alternative
transportation infrastructure for city logistics.

Urban freight consolidation center (UFCC) is a logistics
facility located at the boundary of urban areas to serve freight
transportation to city centers including retailers, buildings,
and construction sites [8]. Products are transported from
their origins such as manufacturers to their destinations
in cities through urban consolidation centers. They are
first moved to urban consolidation centers, where incoming
shipments are unloaded, sorted, and consolidated with other
products from different origins. Sorted and consolidated
products are then transferred directly to outbound vehicles
without storage. In just-in-time delivery environment, it is
quite important to send orders to customers when necessary,
even though shipment size is not enough to fill a full
truck load. By consolidating products in an intermediate
point between origins and destinations, urban consolidation
centers can contribute to an increase of vehicle utilization,
an increase of average size of vehicles involved, and the
reduction of delivery frequency. In addition to this, the
usage of environmentally friendly vehicles such as electric
and clean natural gas power vehicles could often contribute
to the decrease of overall harmful emissions from freight
transportation vehicles. By improving the overall loading
factor of a vehicle destined for congested city centers, urban
consolidation centers could effectively reduce the total travel
distance and further reduce the impact of freight operations
on traffic congestion [9]. In fact, the concept of UFCC has
been tested with real business practice in European countries
and Toronto, Canada [10–12].

Research on urban freight consolidation centers focuses
on the economic analysis of the consolidated freight trans-
portation system. Su and Roorda [12] and Triantafyllou et
al. [13] showed that urban consolidation centers can be
successfully operated in real urban environments. It was
reported that the trial systems were able to reduce harmful
emissions and traffic congestion in city centers when prop-
erly managed and synchronized. Marcucci and Danielis [8]
showed that, in their analysis, urban consolidation centers
could attract a considerable amount of freight shipments
bound to urban areas. Zhou andWang [14] studied the issues
related to development and construction of consolidation
centers and showed that proper strategies based on public-
private partnership can increase overall economic benefits
of the system to participants in city logistics. While the
feasibility of urban freight consolidation centers has been
studied in depth, operation and network planning issues
have been discussed (e.g., [15–17]) but still not been fully
investigated yet. The detailed analysis of operation and
planning of urban freight consolidation system should be
done to be deployed in real business practice. In the supply
chain context, an urban consolidation center is similar to
the transportation system with cross-docking terminals. In
cross-docking network, goods are moved through cross-
docking terminals where shipments are sorted, consolidated,
and transferred to outbound vehicles in a synchronized
manner.

Research on operation and management of the cross-
docking based consolidation strategy has progressed in two
directions. One is concerned with problems that are related
to the internal operations at the consolidation center. Gue
[18] analyzed the effects of scheduling trailers into doors on
a layout of a freight consolidation center. Bartholdi III and
Gue [19, 20] designed the layout of a freight consolidation
center. Li et al. [21] studied a scheduling problem tominimize
storage and order picking in a consolidation center. On the
other hand, planning problems on a network level have
been considered to locate consolidation centers, to allocate
vehicles, and to make vehicle consolidation schedules. Ratliff
et al. [22] andChen et al. [23] considered a problemofmaking
vehicle consolidation schedules for a transportation network.
Donaldson et al. [24] considered a problem of allocating
vehicles and making vehicle consolidation schedules. Sung
and Song [25] and Sung and Yang [26] studied an inte-
grated model of locating consolidation centers and allocating
vehicles. All the works on a network level about consoli-
dation based transportation have considered static freight
demands, not varying with time. However, freight demands
in various industries such as food, apparel, electronic goods,
and logistics may be dynamic. Especially in urban freight
transportation, demands tend to fluctuate over time. As a
cost-efficient way of allocating vehicles to satisfy dynamic
freight demands, the issue of vehicle supply on lease has
received much research attention, in the situation where the
unit-period vehicle lease cost depends on the lease term.The
unit-period long-term vehicle lease cost is generally cheaper
than the unit-period short-term vehicle lease cost [27–29]. In
the case of static freight demands, the long-term vehicle lease
is obviously better than the short-term vehicle lease, while
in the case of dynamic freight demands, either one does not
dominate over the other so that the two lease options need
to be considered together. Furthermore, in an urban freight
consolidation setting, we need to consider consolidation of
shipments which makes the lease planning more difficult.

Therefore, this paper considers amultiperiod vehicle lease
planning problem in an urban freight consolidation network
(MVLPUC).Theproblem, denoted byPMVLPUC, is concerned
with optimally allocating the two kinds of leased vehicles
for inbound and outbound transportation services so as
to satisfy a given set of period-to-period freight demands
over a given planning horizon at total minimum vehicle
allocation cost subject to demand-dependent transportation
time restriction.The planning horizon is divided into discrete
time periods such as weeks ormonths. It is assumed that each
freight demand is transported through a single path via one
urban consolidation center (where the operations of sorting
and consolidating are handled) located between origin and
destination nodes, and each outbound vehicle at each urban
consolidation center departs as soon as all the associated
inbound vehicles arrive and the associated freight demands
are sorted appropriately. It is also assumed that an unlimited
number of homogeneous capacitated vehicles can be acquired
through either long-term lease or short-term lease, with
the unit-period short-term vehicle lease cost being greater
than or equal to the unit-period long-term vehicle lease
cost.
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This paper is organized as follows: Section 2 introduces
the problem formulation for PMVLPUC. In Section 3, we dis-
cuss the procedure for solvingPMVLPUC based on Lagrangian
relaxation and problem decompositions. We present the
numerical experiments in Section 4 and then conclude our
discussion in Section 5.

2. Model

In this section, we present the mathematical formulation for
Problem PMVLPUC. Before introducing the model formula-
tion, all the parameters and decision variables used in this
paper are given as follows.

Sets and Parameters

I,J,K,V: sets of origin nodes representing man-
ufacturers, destination nodes representing retailers,
intermediate nodes representing UFCCs, and all
nodes (i.e.,V = I ∪K ∪J), respectively.
EIN,EOUT: sets of edges representing potential direct
services from origin nodes to intermediate nodes
and from intermediate nodes to destination nodes,
respectively (EIN = {𝑒 = (𝑖, 𝑘) | 𝑖 ∈ I, 𝑘 ∈ K}

and EOUT = {𝑒 = (𝑘, 𝑗) | 𝑘 ∈ K, 𝑗 ∈ J}).
E: set of all edges (i.e., E = EIN ∪EOUT).
Q: set of freight demands, defined by an ordered pair
of two nodes (𝑖, 𝑗) for all 𝑖 ∈ I and 𝑗 ∈ J.
Q𝑘: subset of Q, each demand of which can be
transported through the intermediated node 𝑘 ∈ K
within the associated transportation time restriction
(to be explained later).
T: set of time periods.
𝑑𝑖𝑗𝑝: quantity of freight demand (𝑖, 𝑗) ∈ Q at time
period 𝑝 ∈ T.
ℎ

𝐿

𝑖𝑘
, ℎ

𝐿

𝑘𝑗
: unit-period long-term vehicle lease cost for

(𝑖, 𝑘) ∈ EIN and (𝑘, 𝑗) ∈ EOUT, respectively.
ℎ

𝑆

𝑖𝑘𝑝
, ℎ

𝑆

𝑘𝑗𝑝
: unit-period short-term vehicle lease cost for

(𝑖, 𝑘) ∈ EIN and (𝑘, 𝑗) ∈ EOUT, respectively, at time
period 𝑝 ∈ T (ℎ𝐿

𝑖𝑘
≤ ℎ

𝑆

𝑖𝑘𝑝
and ℎ

𝐿

𝑘𝑗
≤ ℎ

𝑆

𝑘𝑗𝑝
).

Γ: vehicle capacity.
𝑡𝑖𝑘, 𝑡𝑘𝑗: transportation time elapsed for each (𝑖, 𝑘) ∈

EIN and (𝑘, 𝑗) ∈ EOUT, respectively.
𝑜𝑘: handling (sorting and consolidating) time at the
intermediate node 𝑘 ∈ K.
TL𝑖𝑗: transportation time restriction required for
freight demand (𝑖, 𝑗) ∈ Q.

Decision Variables

𝑋𝑖𝑗𝑘𝑝: 1 if freight demand (𝑖, 𝑗) ∈ Q is transported in
period 𝑝 ∈ T through the intermediate node 𝑘 ∈ K
and 0 otherwise.
𝑌𝑖𝑘, 𝑌𝑘𝑗: numbers of long-term-leased vehicles allo-
cated for (𝑖, 𝑘) ∈ EIN and (𝑘, 𝑗) ∈ EOUT, respectively.

𝑍𝑖𝑘𝑝, 𝑍𝑘𝑗𝑝: numbers of short-term-leased vehicles
allocated for (𝑖, 𝑘) ∈ EIN and (𝑘, 𝑗) ∈ EOUT, respec-
tively, in period 𝑝 ∈ T.

We note that, for notational simplicity, notations (or sub-
scripts) 𝑒 and (𝑖, 𝑘) (or (𝑘, 𝑗)) are used alternately to refer to
freight demand (𝑖, 𝑘) (or (𝑘, 𝑗)) on the corresponding edge 𝑒.
Furthermore, the two terms “edge” and “direct service” are
used interchangeably in this paper. Then, we now present the
problem formulation for Problem PMVLPUC as follows.

Problem P𝑀𝑉𝐿𝑃𝑈𝐶

min ∑

(𝑖,𝑘)∈EIN

(|T| ℎ

𝐿

𝑖𝑘
𝑌𝑖𝑘 + ∑

𝑝∈T

ℎ

𝑆

𝑖𝑘𝑝
𝑍𝑖𝑘𝑝)

+ ∑

(𝑘,𝑗)∈EOUT

(|T| ℎ

𝐿

𝑘𝑗
𝑌𝑘𝑗 + ∑

𝑝∈T

ℎ

𝑆

𝑘𝑗𝑝
𝑍𝑘𝑗𝑝)

(1a)

subject to ∑

{𝑘∈K|(𝑖,𝑗)∈Q𝑘}

𝑋𝑖𝑗𝑘𝑝 = 1,

∀ (𝑖, 𝑗) ∈ Q, ∀𝑝 ∈ T

(1b)

∑

{𝑗∈J|(𝑖,𝑗)∈Q𝑘}

𝑑𝑖𝑗𝑝𝑋𝑖𝑗𝑘𝑝 ≤ Γ (𝑌𝑖𝑘 + 𝑍𝑖𝑘𝑝) ,

∀ (𝑖, 𝑘) ∈ EIN, ∀𝑝 ∈ T

(1c)

∑

{𝑖∈I|(𝑖,𝑗)∈Q𝑘}

𝑑𝑖𝑗𝑝𝑋𝑖𝑗𝑘𝑝 ≤ Γ (𝑌𝑘𝑗 + 𝑍𝑘𝑗𝑝) ,

∀ (𝑘, 𝑗) ∈ EOUT, ∀𝑝 ∈ T

(1d)

𝑌𝑖𝑘, 𝑍𝑖𝑘𝑝, 𝑌𝑘𝑗, 𝑍𝑘𝑗𝑝 ∈ Z
+
,

𝑋𝑖𝑗𝑘𝑝 ∈ {0, 1} .

(1e)

The objective function (1a) represents the cost of allocating
any long-term-leased and short-term-leased vehicles for
edges. Constraints (1b) imply that all the freight demands
have to be serviced for each period. Constraints (1c) and
(1d) require that the total amount of demands transported
through any edge should not exceed the total capacity of any
allocated vehicles for each period. In regard to the set Q𝑘 in
constraints (1b), (1c), and (1d), we assume that there exists the
transportation time limit TL𝑖𝑗 for each freight demand (𝑖, 𝑗)

such that the sum of the transportation times between nodes
and the handling time at an intermediate node 𝑘 does not
exceed TL𝑖𝑗 (i.e., 𝑡𝑖𝑘 + 𝑜𝑘 + 𝑡𝑘𝑗 ≤ TL𝑖𝑗). Thus, for each 𝑘 ∈ K,
the elements of set Q𝑘 can be identified as freight demands
(𝑖, 𝑗) inQ that satisfy the aforementioned condition with TL𝑖𝑗

at a preprocessing stage.

3. Solution Approach

In this section, we propose a heuristic approach based on
Lagrangian relaxation. Problem PMVLPUC can be proven
as NP-hard in a strong sense in the same manner as
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shown in Sung and Song [25]. Moreover, PMVLPUC consid-
ers time-varying demands, so it may be too complex to
derive an exact algorithm to find optimal solutions even
for small-sized problem instances. Therefore, we here pro-
pose an efficient heuristic method based on the Lagrangian
relaxation.

3.1. Lagrangian Relaxation. Before relaxing constraints in
PMVLPUC for Lagrangian relaxation heuristic, the following
problem PMVLPUC+ is derived by introducing another deci-
sion variable𝑋𝑖𝑗𝑘𝑝 (equivalent to variables𝑋𝑖𝑗𝑘𝑝) and adding
a set of constraints𝑋𝑖𝑗𝑘𝑝 ≤ 𝑋𝑖𝑗𝑘𝑝 to PMVLPUC.

Problem P𝑀𝑉𝐿𝑃𝑈𝐶+

𝜐OPT =min ∑

(𝑖,𝑘)∈EIN

(|T| ℎ

𝐿

𝑖𝑘
𝑌𝑖𝑘 + ∑

𝑝∈T

ℎ

𝑆

𝑖𝑘𝑝
𝑍𝑖𝑘𝑝)

+ ∑

(𝑘,𝑗)∈EOUT

(|T| ℎ

𝐿

𝑘𝑗
𝑌𝑘𝑗 + ∑

𝑝∈T

ℎ

𝑆

𝑘𝑗𝑝
𝑍𝑘𝑗𝑝)

(2a)

subject to ∑

{𝑘∈K|(𝑖,𝑗)∈Q𝑘}

𝑋𝑖𝑗𝑘𝑝 = 1,

∀ (𝑖, 𝑗) ∈ Q, ∀𝑝 ∈ T

(2b)

∑

{𝑗∈J|(𝑖,𝑗)∈Q𝑘}

𝑑𝑖𝑗𝑝𝑋𝑖𝑗𝑘𝑝 ≤ Γ (𝑌𝑖𝑘 + 𝑍𝑖𝑘𝑝) ,

∀ (𝑖, 𝑘) ∈ EIN, ∀𝑝 ∈ T

(2c)

𝑋𝑖𝑗𝑘𝑝 ≤ 𝑋𝑖𝑗𝑘𝑝,

∀𝑘 ∈ K, ∀ (𝑖, 𝑗) ∈ Q𝑘, ∀𝑝 ∈ T
(2d)

∑

{𝑖∈I|(𝑖,𝑗)∈Q𝑘}

𝑑𝑖𝑗𝑝𝑋𝑖𝑗𝑘𝑝 ≤ Γ (𝑌𝑘𝑗 + 𝑍𝑘𝑗𝑝) ,

∀ (𝑘, 𝑗) ∈ EOUT, ∀𝑝 ∈ T

(2e)

𝑌𝑖𝑘, 𝑍𝑖𝑘𝑝, 𝑌𝑘𝑗, 𝑍𝑘𝑗𝑝 ∈ Z
+
,

𝑋𝑖𝑗𝑘𝑝, 𝑋𝑖𝑗𝑘𝑝 ∈ {0, 1} .

(2f)

Problem PMVLPUC+ has some obviously redundant variables
𝑋𝑖𝑗𝑘𝑝 and the associated constraints (2d) while it yields
the interesting problem structure which is good to apply
the Lagrangian relaxation method. That is, if constraints
(2b) and (2d) in PMVLPUC+ are Lagrangian relaxed, then
the resulting problem can be decomposed into single-edge
problems. Thus, constraints (2b) and (2d) are Lagrangian
relaxed with Lagrange multipliers 𝜇



𝑖𝑗𝑝
(unrestricted) and

𝜇



𝑖𝑗𝑘𝑝
(≥0), respectively. For given 𝜇 ≡ (𝜇



𝑖𝑗𝑝
, 𝜇



𝑖𝑗𝑘𝑝
)∀𝑖,𝑗,𝑘,𝑝, the

resulting problem PLR𝜇 can be derived as follows.

Problem P𝐿𝑅𝜇

𝜐 (𝜇) =min ∑

(𝑖,𝑗)∈Q

∑

𝑝∈T

𝜇



𝑖𝑗𝑝
+ ∑

(𝑖,𝑘)∈EIN

[

[

|T| ℎ

𝐿

𝑖𝑘
𝑌𝑖𝑘 + ∑

𝑝∈T

(ℎ

𝑆

𝑖𝑘𝑝
𝑍𝑖𝑘𝑝 − ∑

{𝑗∈J|(𝑖,𝑗)∈Q𝑘}

𝜃𝑖𝑗𝑘𝑝𝑋𝑖𝑗𝑘𝑝)
]

]

+ ∑

(𝑘,𝑗)∈EOUT

[

[

|T| ℎ

𝐿

𝑘𝑗
𝑌𝑘𝑗 + ∑

𝑝∈T

(ℎ

𝑆

𝑘𝑗𝑝
𝑍𝑘𝑗𝑝 − ∑

{𝑖∈I|(𝑖,𝑗)∈Q𝑘}

𝛿𝑖𝑗𝑘𝑝𝑋𝑖𝑗𝑘𝑝)
]

]

subject to (2c) , (2e) , (2f) ,

where 𝜃𝑖𝑗𝑘𝑝 = 𝜇



𝑖𝑗𝑝
− 𝜇



𝑖𝑗𝑘𝑝
, 𝛿𝑖𝑗𝑘𝑝 = 𝜇



𝑖𝑗𝑘𝑝
.

(3)

It is evident that 𝜐(𝜇) is a lower bound on 𝜐OPT for any
given 𝜇. Let 𝜐∗

(𝜇) = max𝜇𝜐(𝜇), and let 𝜐LP be a lower
bound (on 𝜐OPT) obtained by solving the linear programming
(LP) relaxation problem of PMVLPUC+ . Then, the proposed
Lagrangian relaxation PLR𝜇 provides a good lower bound
as indicated in Proposition 1. Since the proposition below is
obvious to show, we omit the proof.

Proposition 1. Consider 𝜐𝑂𝑃𝑇 ≥ 𝜐

∗
(𝜇) ≥ 𝜐𝐿𝑃.

Furthermore, as mentioned earlier, Problem PLR𝜇 can be
decomposed into single-edge problems of selecting demand
and allocating vehicles (SEPDV), resulting in PSEPDV𝑖𝑘,𝜇 and
PSEPDV𝑘𝑗,𝜇 for each (𝑖, 𝑘) ∈ EIN and (𝑘, 𝑗) ∈ EOUT, respectively,
as follows.

Problem P𝑆𝐸𝑃𝐷𝑉𝑖𝑘,𝜇

𝜐

𝑖𝑘

SEPDV (𝜇) =min |T| ℎ

𝐿

𝑖𝑘
𝑌𝑖𝑘 + ∑

𝑝∈T

(ℎ

𝑆

𝑖𝑘𝑝
𝑍𝑖𝑘𝑝 − ∑

{𝑗∈J|(𝑖,𝑗)∈Q𝑘}

𝜃𝑖𝑗𝑘𝑝𝑋𝑖𝑗𝑘𝑝) (4a)
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subject to ∑

{𝑗∈J|(𝑖,𝑗)∈Q𝑘}

𝑑𝑖𝑗𝑝𝑋𝑖𝑗𝑘𝑝 ≤ Γ (𝑌𝑖𝑘 + 𝑍𝑖𝑘𝑝) , ∀𝑝 ∈ T (4b)

𝑌𝑖𝑘, 𝑍𝑖𝑘𝑝 ∈ Z
+
, 𝑋𝑖𝑗𝑘𝑝 ∈ {0, 1} , ∀𝑝 ∈ T. (4c)

Problem P𝑆𝐸𝑃𝐷𝑉𝑘𝑗,𝜇

𝜐

𝑘𝑗

SEPDV (𝜇) =min |T| ℎ

𝐿

𝑘𝑗
𝑌𝑘𝑗

+ ∑

𝑝∈T

(ℎ

𝑆

𝑘𝑗𝑝
𝑍𝑘𝑗𝑝 − ∑

{𝑖∈I|(𝑖,𝑗)∈Q𝑘}

𝛿𝑖𝑗𝑘𝑝𝑋𝑖𝑗𝑘𝑝)

subject to ∑

{𝑖∈I|(𝑖,𝑗)∈Q𝑘}

𝑑𝑖𝑗𝑝𝑋𝑖𝑗𝑘𝑝 ≤ Γ (𝑌𝑘𝑗 + 𝑍𝑘𝑗𝑝) ,

∀𝑝 ∈ T

𝑌𝑘𝑗, 𝑍𝑘𝑗𝑝 ∈ Z
+
, 𝑋𝑖𝑗𝑘𝑝 ∈ {0, 1} , ∀𝑝 ∈ T.

(5)

It is straightforward to show that, for given 𝜇,

𝜐 (𝜇) = ∑

(𝑖,𝑗)∈Q

∑

𝑝∈T

𝜇



𝑖𝑗𝑝
+ ∑

(𝑖,𝑘)∈EIN

𝜐

𝑖𝑘

SEPDV (𝜇)

+ ∑

(𝑘,𝑗)∈EOUT

𝜐

𝑘𝑗

SEPDV (𝜇)

(6)

and hence, 𝜐(𝜇) can be evaluated through 𝜐

𝑖𝑘

SEPDV(𝜇) and
𝜐

𝑘𝑗

SEPDV(𝜇). Since PSEPDV𝑖𝑘,𝜇 and PSEPDV𝑘𝑗,𝜇 have the same
problem structure, we only discuss the procedure for solving
PSEPDV𝑖𝑘,𝜇 in the next section.

3.2. SolvingPSEPDV𝑖𝑘,𝜇 . In this section, we present the solution
procedure forPSEPDV𝑖𝑘,𝜇 so that we can eventually evaluate the
value 𝜐(𝜇) of PLR𝜇 for each 𝜇. First, for given 𝜇, Proposition 2
and Corollary 3 are characterized so as to reduce the solution
space of𝑋 and (𝑌, 𝑍) variables, respectively, in PSEPDV𝑖𝑘,𝜇 .

Proposition 2. For given 𝜇, the following statements hold in
P𝑆𝐸𝑃𝐷𝑉𝑖𝑘,𝜇

:

(a) If 𝜃𝑖𝑗𝑘𝑝 ≤ 0 for some 𝑗 ∈ J and 𝑝 ∈ T, then there is an
optimal solution with𝑋𝑖𝑗𝑘𝑝 = 0.

(b) If 𝜃𝑖𝑗𝑘𝑝 ≥ ℎ

𝑆

𝑖𝑘𝑝
⌈𝑑𝑖𝑗𝑝/Γ⌉ for some 𝑗 ∈ J and 𝑝 ∈ T, then

there is an optimal solution with𝑋𝑖𝑗𝑘𝑝 = 1.

Proof. (a) Let us compare the situations of 𝑋𝑖𝑗𝑘𝑝 = 1 and
𝑋𝑖𝑗𝑘𝑝 = 0 for some 𝑗 ∈ J and 𝑝 ∈ T such that 𝜃𝑖𝑗𝑘𝑝 ≤

0. The value of the objective function (4a) for the for-
mer case cannot be smaller than that for the latter case
because the coefficient of the 𝑋 variable in (4a) is non-
negative. Also, the former case makes the constraint (4b)
tighter than the latter case. Therefore, the former case (i.e.,
𝑋𝑖𝑗𝑘𝑝 = 1) cannot give a better solution than the latter case
(i.e.,𝑋𝑖𝑗𝑘𝑝 = 0).

(b)This can be shown in the samemanner as in the proof
of (a), and hence we omit its proof.

LetQ𝑖𝑘 be a set of freight demands that can be transported
through (𝑖, 𝑘) where 𝑖 ∈ I and 𝑘 ∈ K. Note that
Q𝑘 = ⋃

𝑖∈I Q𝑖𝑘. For 𝑝 ∈ T, let ̃Q0

𝑖𝑘𝑝
and ̃Q1

𝑖𝑘𝑝
be subsets

of Q𝑖𝑘 satisfying Propositions 2(a) and 2(b) in PSEPDV𝑖𝑘,𝜇 ,
respectively, and let ̃Q𝑖𝑘𝑝 =

̃Q0

𝑖𝑘𝑝
∪
̃Q1

𝑖𝑘𝑝
.

Corollary 3. For given 𝜇 and {𝑋𝑖𝑗𝑘𝑝} fixed at the associated
values according to Proposition 2, there is an optimal solution
in P𝑆𝐸𝑃𝐷𝑉𝑖𝑘,𝜇

with (𝑌𝑖𝑘, 𝑍𝑖𝑘𝑝) ∈ {(𝑦, 𝑧𝑝) |
̃
𝑌

min
𝑖𝑘

≤ 𝑦 ≤

̃
𝑌

max
𝑖𝑘

, 0 ≤ 𝑧𝑝 ≤
̃
𝑍

max
𝑖𝑘𝑝,𝑦

, ∀𝑝 ∈ T}, where

̃
𝑌

min
𝑖𝑘

=
[

[

[

[

min𝑝∈T ∑
{𝑗∈J|(𝑖,𝑗)∈Q̃1

𝑖𝑘𝑝
}
𝑑𝑖𝑗𝑝

Γ

]

]

]

]

,

̃
𝑌

max
𝑖𝑘

=
[

[

[

[

max𝑝∈T ∑
{𝑗∈J|(𝑖,𝑗)∈Q𝑖𝑘\Q̃

0

𝑖𝑘𝑝
}
𝑑𝑖𝑗𝑝

Γ

]

]

]

]

,

̃
𝑍

max
𝑖𝑘𝑝,𝑦

=
[

[

[

[

∑
{𝑗∈J|(𝑖,𝑗)∈Q𝑖𝑘\Q̃

0

𝑖𝑘𝑝
}
𝑑𝑖𝑗𝑝

Γ

]

]

]

]

− 𝑦.

(7)

Proof. The constraint (4b) can be rewritten as

∑

{𝑗∈J|(𝑖,𝑗)∈Q̃1
𝑖𝑘𝑝

}

𝑑𝑖𝑗𝑝 + ∑

{𝑗∈J|(𝑖,𝑗)∈Q𝑖𝑘\Q̃𝑖𝑘𝑝}

𝑑𝑖𝑗𝑝𝑋𝑖𝑗𝑘𝑝

≤ Γ (𝑌𝑖𝑘 + 𝑍𝑖𝑘𝑝)

(8)

for all 𝑝 ∈ T. Since all the variables are binary variables,
̃
𝑌

min
𝑖𝑘

≤ ⌈∑
{𝑗∈J|(𝑖,𝑗)∈Q̃1

𝑖𝑘𝑝
}
𝑑𝑖𝑗𝑝/Γ⌉ ≤ (𝑌𝑖𝑘 + 𝑍𝑖𝑘𝑝) holds for all

𝑝 ∈ T. Since it is assumed that 0 < ℎ

𝐿

𝑖𝑘
≤ ℎ

𝑆

𝑖𝑘𝑝
for all

𝑝 ∈ T, any feasible solution with (𝑋𝑖𝑗𝑘𝑝, 𝑌𝑖𝑘, 𝑍𝑖𝑘𝑝) = (𝑥𝑗𝑝,

𝑦, 𝑧𝑝), where 𝑦 <
̃
𝑌

min
𝑖𝑘

cannot yield a better solution value
than the feasible solution with (𝑋𝑖𝑗𝑘𝑝, 𝑌𝑖𝑘, 𝑍𝑖𝑘𝑝) = (𝑥𝑗𝑝,

̃
𝑌

min
𝑖𝑘

,

max{0, 𝑧𝑝 −
̃
𝑌

min
𝑖𝑘

+ 𝑦}). Moveover, any feasible solution with
(𝑋𝑖𝑗𝑘𝑝, 𝑌𝑖𝑘, 𝑍𝑖𝑘𝑝) = (𝑥𝑗𝑝, 𝑦, 𝑧𝑝), where 𝑦 >

̃
𝑌

max
𝑖𝑘

cannot
yield a better solution value than the feasible solution with
(𝑋𝑖𝑗𝑘𝑝, 𝑌𝑖𝑘, 𝑍𝑖𝑘𝑝) = (𝑥𝑗𝑝,

̃
𝑌

max
𝑖𝑘

, 0). Therefore, there is an
optimal solution with ̃

𝑌

min
𝑖𝑘

≤ 𝑌𝑖𝑘 ≤
̃
𝑌

max
𝑖𝑘

. Also, with 𝑌𝑖𝑘

fixed at 𝑦 ∈ {𝑦


∈ Z+

|
̃
𝑌

min
𝑖𝑘

≤ 𝑦


≤

̃
𝑌

max
𝑖𝑘

}, it is obvious
that there is an optimal solution with 0 ≤ 𝑍𝑖𝑘𝑝 ≤

̃
𝑍

max
𝑖𝑘𝑝,𝑦

.

Then, the restricted problem with 𝑌𝑖𝑘 fixed at 𝑦 ∈ {𝑦


∈

Z+
|
̃
𝑌

min
𝑖𝑘

≤ 𝑦


≤

̃
𝑌

max
𝑖𝑘

} in PSEPDV𝑖𝑘,𝜇 , denoted by PSEPDV𝑖𝑘,𝜇,𝑦 ,
can be decomposed into single-period bounded knapsack
problems (BKP), PBKP𝑖𝑘𝑝,𝜇,𝑦 , as follows.
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Problem P𝐵𝐾𝑃𝑖𝑘𝑝,𝜇,𝑦

𝜐

𝑖𝑘𝑝

BKP (𝜇, 𝑦) =max ℎ

𝑆

𝑖𝑘𝑝
𝑍𝑖𝑘𝑝 + ∑

{𝑗∈J|(𝑖,𝑗)∈Q𝑖𝑘\Q̃
0

𝑖𝑘𝑝
}

𝜃𝑖𝑗𝑘𝑝𝑋𝑖𝑗𝑘𝑝

subject to ∑

{𝑗∈J|(𝑖,𝑗)∈Q𝑖𝑘\Q̃𝑖𝑘𝑝}

𝑑𝑖𝑗𝑝𝑋𝑖𝑗𝑘𝑝 + Γ𝑍𝑖𝑘𝑝 ≤ Γ
[

[

[

[

∑
{𝑗∈J|(𝑖,𝑗)∈Q𝑖𝑘\Q̃

0

𝑖𝑘𝑝
}
𝑑𝑖𝑗𝑝

Γ

]

]

]

]

− ∑

{𝑗∈J|(𝑖,𝑗)∈Q̃1
𝑖𝑘𝑝

}

𝑑𝑖𝑗𝑝

𝑍𝑖𝑘𝑝 ∈

{

{

{

0, 1, . . . , (
[

[

[

[

∑
{𝑗∈J|(𝑖,𝑗)∈Q𝑖𝑘\Q̃

0

𝑖𝑘𝑝
}
𝑑𝑖𝑗𝑝

Γ

]

]

]

]

− 𝑦)

}

}

}

, 𝑋𝑖𝑗𝑘𝑝 ∈ {0, 1} .

(9)

Note that 𝑍𝑖𝑘𝑝 =
̃
𝑍

max
𝑖𝑘𝑝,𝑦

− 𝑍𝑖𝑘𝑝. We next discuss how to
solve PBKP𝑖𝑘𝑝,𝜇,𝑦 . Let 𝜐

𝑖𝑘

SEPDV(𝜇, 𝑦) denote the optimal value of
PSEPDV𝑖𝑘,𝜇,𝑦 . We first transformPBKP𝑖𝑘𝑝,𝜇,𝑦 into the associated 0-
1 knapsack problem, and the knapsack problem can be solved
by the dynamic programming algorithm proposed by Toth
[30]. We remark that 𝑍𝑖𝑘𝑝 takes the finite number of integer
values in the set Ψ ≡ {0, 1, . . . , (⌈∑

{𝑗∈J|(𝑖,𝑗)∈Q𝑖𝑘\Q̃
0

𝑖𝑘𝑝
}
𝑑𝑖𝑗𝑝/Γ⌉ −

𝑦)}. Furthermore, for each value of 𝑍𝑖𝑘𝑝 in Ψ, it is straight-
forward to show that the problem PBKP𝑖𝑘𝑝,𝜇,𝑦 reduces to a 0-
1 knapsack problem with decision variables 𝑋𝑖𝑗𝑘𝑝 for all 𝑗.
Therefore, we iteratively solve a 0-1 knapsack problem for
each value of𝑍𝑖𝑘𝑝 inΨ, compare the objective function values
for each case, and then identify the optimal solution for
PBKP𝑖𝑘𝑝,𝜇,𝑦 . Once all the problems of PBKP𝑖𝑘𝑝,𝜇,𝑦 are solved for
each value of 𝑌𝑖𝑘 as mentioned above, the optimal value of
the problem PSEPDV𝑖𝑘,𝜇 , 𝜐

𝑖𝑘

SEPDV(𝜇), is computed as

𝜐

𝑖𝑘

SEPDV (𝜇) = min
�̃�min
𝑖𝑘

≤𝑦≤�̃�max
𝑖𝑘

𝜐

𝑖𝑘

SEPDV (𝜇, 𝑦) = min
�̃�min
𝑖𝑘

≤𝑦≤�̃�max
𝑖𝑘

[

[

[

|T|

⋅ ℎ

𝐿

𝑖𝑘
𝑦

+ ∑

𝑝∈T

(ℎ

𝑆

𝑖𝑘𝑝
̃
𝑍

max
𝑖𝑘𝑝,𝑦

− 𝜐

𝑖𝑘𝑝

BKP (𝜇, 𝑦) − ∑

{𝑗∈J|(𝑖,𝑗)∈Q̃1
𝑖𝑘𝑝

}

𝜃𝑖𝑗𝑘𝑝)
]

]

]

.

(10)

Thenumber of problemsPBKP𝑖𝑘𝑝,𝜇,𝑦 andPSEPDV𝑖𝑘,𝜇,𝑦 to be solved
can be further reduced by Propositions 4(a) and 4(b), respec-
tively. Let (𝑋∗

𝑖𝑗𝑘𝑝,𝑦
, 𝑍

∗

𝑖𝑘𝑝,𝑦
) be the optimal solution of PBKP𝑖𝑘𝑝,𝜇,𝑦

with explicit dependence on𝑦, and furthermore, let us denote
T𝑟𝑦 as T𝑟𝑦 = {𝑝 ∈ T | 𝑍

∗

𝑖𝑘𝑝,𝑦
≤

̃
𝑍

max
𝑖𝑘𝑝,𝑦

− 𝑟 =
̃
𝑍

max
𝑖𝑘𝑝,(𝑦+𝑟)

}

for ̃
𝑌

min
𝑖𝑘

≤ 𝑦 ≤
̃
𝑌

max
𝑖𝑘

and 0 < 𝑟 ≤
̃
𝑍

max
𝑖𝑘𝑝,𝑦

. Note that T𝑟𝑦 ⊂

T𝑙𝑦 ⊂ T for 0 ≤ 𝑙 < 𝑟 ≤
̃
𝑍

max
𝑖𝑘𝑝,𝑦

.

Proposition 4. (a) Given (𝑋

∗

𝑖𝑗𝑘𝑝,𝑦
, 𝑍

∗

𝑖𝑘𝑝,𝑦
) for some 𝑦 ∈ {𝑦


∈

Z+
|
̃
𝑌

min
𝑖𝑘

≤ 𝑦


≤
̃
𝑌

max
𝑖𝑘

} and some 𝑝 ∈ T, if 𝑝 ∈ T𝑟𝑦 for some
𝑟 ∈ {𝑟


∈ Z+

| 0 < 𝑟


≤

̃
𝑍

max
𝑖𝑘𝑝,𝑦

}, then (𝑋

∗

𝑖𝑗𝑘𝑝,(𝑦+𝑟)
, 𝑍

∗

𝑖𝑘𝑝,(𝑦+𝑟)
) =

(𝑋

∗

𝑖𝑗𝑘𝑝,𝑦
, 𝑍

∗

𝑖𝑘𝑝,𝑦
).

(b) Given (𝑋

∗

𝑖𝑗𝑘𝑝,𝑦
, 𝑍

∗

𝑖𝑘𝑝,𝑦
) for some 𝑦 ∈ {𝑦


∈ Z+

|
̃
𝑌

min
𝑖𝑘

≤

𝑦


≤

̃
𝑌

max
𝑖𝑘

} and all 𝑝 ∈ T, if ∑
𝑝∈T𝑟𝑦

ℎ

𝑆

𝑖𝑘𝑝
≥ |T|ℎ

𝐿

𝑖𝑘
for some

𝑟 ∈ {𝑟


∈ Z+

| 0 < 𝑟


≤

̃
𝑍

max
𝑖𝑘𝑝,𝑦

}, then 𝜐

𝑖𝑘

𝑆𝐸𝑃𝐷𝑉
(𝜇, 𝑦 + 𝑙) ≥

𝜐

𝑖𝑘

𝑆𝐸𝑃𝐷𝑉
(𝜇, 𝑦 + 𝑟) for 0 ≤ 𝑙 < 𝑟.

In summary, we now present the solution procedure for
PSEPDV𝑖𝑘,𝜇 , PROC(SEPDV𝑖𝑘,𝜇), in Algorithm 1 based on the
whole discussion above. For reference, Figure 1 illustrates the
relationship among all the problems discussed in this section.

3.3. Finding the Lagrange Multipliers. So far, we examined
how to address the problem PSEPDV𝑖𝑘,𝜇 for each (𝑖, 𝑘) ∈ EIN
when the Lagrangian multiplier 𝜇 is given. We now discuss
the procedure for finding the Lagrangianmultiplier 𝜇. For the
purpose, we adapt the subgradient optimization procedure
which is one of the most popular methods to find a good
set of Lagrange multipliers [31]. Specifically, the Lagrange
multipliers 𝜇 ≡ (𝜇



𝑖𝑗𝑝
, 𝜇



𝑖𝑗𝑘𝑝
)∀𝑖,𝑗,𝑘,𝑝 are generated iteratively as

(i) 𝜇

𝑖𝑗𝑝,𝑠+1
= 𝜇



𝑖𝑗𝑝,𝑠
+ 𝛾𝑠𝐺



𝑖𝑗𝑝,𝑠
for all (𝑖, 𝑗) ∈ Q𝑘, 𝑝 ∈ T,

(ii) 𝜇

𝑖𝑗𝑘𝑝,𝑠+1
= max{0, (𝜇

𝑖𝑗𝑘𝑝,𝑠
+𝛾𝑠)} + 𝛾𝑠𝐺



𝑖𝑗𝑝,𝑠
for all 𝑘 ∈ T,

(𝑖, 𝑗) ∈ Q𝑘, 𝑝 ∈ T,
where 𝐺



𝑖𝑗𝑝,𝑠
and 𝐺



𝑖𝑗𝑘𝑝,𝑠
are the subgradients for constraints

(2b) and (2d), respectively, and 𝛾𝑠 is the stepsize at iteration 𝑠.
When it comes to the subgradients 𝐺

𝑖𝑗𝑝,𝑠
and 𝐺



𝑖𝑗𝑘𝑝,𝑠
in

the formulas above, they are determined by the solution of
PLR𝜇 given 𝜇 as follows: 𝐺

𝑖𝑗𝑝,𝑠
= 1 − ∑

{𝑘∈K|(𝑖,𝑗)∈Q𝑘}
𝑋𝑖𝑗𝑘𝑝 for

all (𝑖, 𝑗) ∈ Q𝑘, 𝑝 ∈ T, and 𝐺



𝑖𝑗𝑘𝑝,𝑠
= 𝑋𝑖𝑗𝑘𝑝 − 𝑋𝑖𝑗𝑘𝑝 for all

𝑘 ∈ K, (𝑖, 𝑗) ∈ Q𝑘, 𝑝 ∈ T. Moreover, the stepsize 𝛾𝑠 at
iteration 𝑠 is determined by

𝛾𝑠

=

𝜂 [UB − 𝜐 (𝜇𝑠)]

∑
(𝑖,𝑗)∈Q ∑𝑝∈T [(𝐺



𝑖𝑗𝑝,𝑠
)

2

+ ∑
{𝑘∈K|(𝑖,𝑗)∈Q𝑘}

(𝐺



𝑖𝑗𝑘𝑝,𝑠
)

2

]

,

(11)

where UB represents the best upper bound of 𝜐OPT found
up to iteration 𝑠 and 𝜂 is a control parameter for 𝛾𝑠. In this
paper, 𝜂 is set to 2 at the beginning and then halved if the
lower bound is not improved in a predetermined number of
consecutive iterations.
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PROC(SEPDV𝑖𝑘,𝜇)
begin
(1) Let 𝑌∗

𝑖𝑘
, 𝑍

∗

𝑖𝑘𝑝
for all 𝑝 ∈ T and𝑋

∗

𝑖𝑗𝑘𝑝
for all 𝑗 ∈ {𝑗 ∈ J | (𝑖, 𝑗) ∈ Q𝑘} be 𝑌, 𝑍 and𝑋-variables of

the optimal solution of PSEPDV𝑖𝑘,𝜇 respectively;
(2) Set 𝜐𝑖𝑘

SEPDV(𝜇) = ∞;
(3) Fix some𝑋

𝑖𝑗𝑘𝑝
𝑠 at the associated values according to Proposition 2 and determine ̃

𝑌

min
𝑖𝑘

,
̃
𝑌

max
𝑖𝑘

and ̃
𝑍

max
𝑖𝑘𝑝,𝑦

for all 𝑦 ∈ {𝑦


∈ Z+

|
̃
𝑌

min
𝑖𝑘

≤ 𝑦


≤
̃
𝑌

max
𝑖𝑘

} by Corollary 3;
(4) SetT𝑟𝑦 = 𝜙 for all 𝑟 ∈ {𝑟


∈ Z+

| 0 < 𝑟


≤
̃
𝑍

max
𝑖𝑘𝑝,𝑦

} and 𝑦 ∈ {𝑦


∈ Z+

|
̃
𝑌

min
𝑖𝑘

≤ 𝑦


≤
̃
𝑌

max
𝑖𝑘

};
(5) Set 𝛼𝑦 = 0 and 𝛽𝑝𝑦 = 0 for all 𝑦 ∈ {𝑦


∈ Z+

|
̃
𝑌

min
𝑖𝑘

≤ 𝑦


≤
̃
𝑌

max
𝑖𝑘

} and 𝑝 ∈ T where 𝛼𝑦 and
𝛽𝑝𝑦 are binary variables having 1 only if PSEPDV𝑖𝑘,𝜇 and PBKP𝑖𝑘𝑝,𝜇,𝑦 are not necessary
to be solved respectively, and 0 otherwise;

(6) Set 𝑦 =
̃
𝑌

min
𝑖𝑘

;
(7) while 𝑦 ≤

̃
𝑌

max
𝑖𝑘

do
(8) if 𝛼𝑦 = 0 then
(9) Set 𝑝 = 1;
(10) while 𝑝 ≤ |T| do
(11) if 𝛽𝑝𝑦 = 0 then
(12) Solve PBKP𝑖𝑘𝑝,𝜇,𝑦 and set the resulting solution as (𝑋∗

𝑖𝑗𝑘𝑝,𝑦
, 𝑍

∗

𝑖𝑘𝑝,𝑦
);

(13) SetT𝑟−𝑙,𝑦+𝑙 = T𝑟−𝑙,𝑦+1 ∪ {𝑝} for all 𝑟 ∈ {𝑟


∈ Z+

\ {0} | 𝑍

∗

𝑖𝑘𝑝,𝑦
≤
̃
𝑍

max
𝑖𝑘𝑝,𝑦

− 𝑟


} and 𝑙 ∈ {𝑙


∈ Z+

| 0 ≤ 𝑙


< 𝑟};

end
(14) Set (𝑋∗

𝑖𝑗𝑘𝑝,𝑦+𝑟
, 𝑍

∗

𝑖𝑘𝑝,𝑦+𝑟
) = (𝑋

∗

𝑖𝑗𝑘𝑝,𝑦
, 𝑍

∗

𝑖𝑘𝑝,𝑦
) and 𝛽

𝑝,𝑦+𝑟
= 1 for all

𝑟 ∈ {𝑟


∈ Z+

\ {0} | 𝑍

∗

𝑖𝑘𝑝,𝑦
≤
̃
𝑍

max
𝑖𝑘𝑝,𝑦

− 𝑟


} by Proposition 4(a);

(15) Set 𝑝 = 𝑝 + 1;
end

(16) Set 𝛼𝑦+𝑙 = 1 for all 𝑙 ∈ {𝑙


∈ Z+

| 0 < 𝑙


< 𝑟

∗
} by Proposition 4(b) where

𝑟

∗
= max𝑟∈R𝑟 such thatR = {𝑟 ∈ Z+

| 0 < 𝑟 ≤
̃
𝑍

max
𝑖𝑘𝑝,𝑦

, ∑
𝑝∈T𝑟𝑦

ℎ

𝑆

𝑖𝑘𝑝
≥ |T|ℎ

𝐿

𝑖𝑘
};

(17) if 𝜐𝑖𝑘

SEPDV(𝜇, 𝑦) < 𝜐

𝑖𝑘

SEPDV(𝜇) then
(18) Set 𝜐𝑖𝑘

SEPDV(𝜇) = 𝜐

𝑖𝑘

SEPDV(𝜇, 𝑦) (refer to (10));
(19) Set 𝑌∗

𝑖𝑘
= 𝑦 and (𝑋

∗

𝑖𝑗𝑘𝑝
, 𝑍

∗

𝑖𝑘𝑝
) = (𝑋

∗

𝑖𝑗𝑘𝑝,𝑦
,
̃
𝑍

max
𝑖𝑘𝑝,𝑦

− 𝑍

∗

𝑖𝑘𝑝,𝑦
) for all 𝑝 ∈ T;

end
end

(20) Set 𝑦 = 𝑦 + 1;
end

end

Algorithm 1: Solution procedure for PSEPDV𝑖𝑘,𝜇 .

3.4. Finding a Feasible Solution. A solution obtained by
solving PLR𝜇 based on the discussion in Section 3.2 may be
infeasible to PMVLPUC+ , and hence we propose a two-phase
heuristic to deal with infeasibility issues as follows: In the
first phase, a construction heuristic (CH) is derived to modify
any infeasible solutions to PMVLPUC+ into feasible ones, and
then, in the second phase, a tabu search-based heuristic (TSH)
is utilized to improve the solution of (CH). The details are
presented in the subsequent sections.

3.4.1. Construction Heuristic (CH). As mentioned above, a
construction heuristic (CH) intends to deal with possible
infeasibility issues of solutions obtained by solving PLR𝜇 , and
(CH) is performed at each subgradient iteration. Let 𝑋∗

𝑖𝑗𝑘𝑝

and 𝑋

∗

𝑖𝑗𝑘𝑝
be the 𝑋- and 𝑋-variable values of the optimal

solution of PSEPDV𝑖𝑘,𝜇 and PSEPDV𝑘𝑗,𝜇 , respectively. First, the
corresponding demand for all (𝑖, 𝑗) ∈ Q and 𝑝 ∈ T is

reassigned to the UFCC with the lexicographical maximum
value of the three-tuple relation ((𝑋

∗

𝑖𝑗𝑘𝑝
+ 𝑋

∗

𝑖𝑗𝑘𝑝
), (𝜃𝑖𝑗𝑘𝑝𝑋

∗

𝑖𝑗𝑘𝑝
+

𝛿𝑖𝑗𝑘𝑝𝑋

∗

𝑖𝑗𝑘𝑝
), −(ℎ

𝐿

𝑖𝑘
+ℎ

𝐿

𝑘𝑗
)). Then, from the reassigned demands,

demand quantity𝐷𝑒𝑝 for all 𝑒 ∈ E and 𝑝 ∈ T is computed as
𝐷𝑒𝑝 = ∑

{𝑗∈J|(𝑖,𝑗)∈Q𝑘}
𝑑𝑖𝑗𝑝𝑋𝑖𝑗𝑘𝑝 or𝐷𝑒𝑝 = ∑

{𝑖∈I|(𝑖,𝑗)∈Q𝑘}
𝑑𝑖𝑗𝑝𝑋𝑖𝑗𝑘𝑝.

Finally, to allocate vehicles for each 𝑒 ∈ E at the minimum
vehicle cost, we solve the following vehicle allocation problem
(VAP), PVAP𝑒 .

Problem P𝑉𝐴𝑃𝑒

𝜐

𝑒

VAP =min |T| ℎ

𝐿

𝑒
𝑌𝑒 + ∑

𝑝∈T

ℎ

𝑆

𝑒𝑝
𝑍𝑒𝑝 (12a)

subject to 𝐷𝑒𝑝 ≤ Γ (𝑌𝑒 + 𝑍𝑒𝑝) , ∀𝑝 ∈ T (12b)

𝑌𝑒, 𝑍𝑒𝑝 ∈ Z
+
, ∀𝑝 ∈ T. (12c)

Proposition 5 characterizes the optimal solutions of PVAP𝑒 .
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P

P
+

PLR𝜇

PSEPDV𝑖𝑘,𝜇,𝑦

PSEPDV𝑖𝑘,𝜇

PBKP𝑖𝑘𝑝,𝜇,𝑦

∀y ∈ {y ∈ Z+ | Ỹ
min
ik ≤ y ≤ Ỹ

max
ik }

𝜐

𝜐(𝜇)

𝜐ik (𝜇) 𝜐kj

𝜐ik , y)

𝜐 (𝜇, y)

P
𝑖𝑘,𝜇

P
𝑘j,𝜇

Reformulation

Lagrangian relaxed

∀(i, k) ∈ 𝜀IN

as

∀p ∈ 𝒯

∀(k, j) ∈ 𝜀OUT

OPT

𝜐OPT

SEPDV

(𝜇SEPDV

ikp
BKP

(𝜇)SEPDV
SEPDV

SEPDV

MVLPUC

MVLPUC

Has the same problem
structure

Figure 1: Problem decomposition of PMVLPUC.

Proposition 5. There is an optimal solution of P𝑉𝐴𝑃𝑒
with

(𝑌𝑒, 𝑍𝑒𝑝) ∈ {(𝑦, 𝑍𝑒𝑝,𝑦) | 𝑦 = 𝑦[1], . . . , 𝑦[|T|]}, where 𝑍𝑒𝑝,𝑦 =

max{0, (⌈𝐷𝑒𝑝/Γ⌉ − 𝑦)} and 𝑦[𝑖] is the 𝑖th largest 𝑦.

Proof. As in Corollary 3, it is straightforward to show that
there is an optimal solution of PVAP𝑒 with (𝑌𝑒, 𝑍𝑒𝑝) ∈

{(𝑦, 𝑍𝑒𝑝,𝑦) | 𝑦[1] ≤ 𝑦 ≤ 𝑦[|T|]}. For an integer 𝑚 such that
𝑦[𝑛] ≤ 𝑚 < 𝑦[𝑛+1] and for 𝑛 ∈ {1, . . . , |T| − 1},

𝑍𝑒[𝑝],𝑚 =

{

{

{

0 if 𝑝 ≤ 𝑛

(𝑦[𝑝] − 𝑚) otherwise,

𝑍𝑒[𝑝],𝑚+1 =

{

{

{

0 if 𝑝 ≤ 𝑛

(𝑦[𝑝] − (𝑚 + 1)) otherwise.

(13)

Let 𝜐

𝑒

VAP(𝑦) be the value of the objective function (12a)
associated with 𝑌𝑒 fixed at 𝑦 ∈ [𝑦1, 𝑦[|T|]] in PVAP𝑒 . Then,
𝜐

𝑒

VAP(𝑚 + 1) − 𝜐

𝑒

VAP(𝑚) = [(𝑚 + 1)|T|ℎ

𝐿

𝑒
− ∑

|T|

𝑝=1
𝑍𝑒[𝑝],𝑚+1] −

[𝑚|T|ℎ

𝐿

𝑒
− ∑

|T|

𝑝=1
𝑍𝑒[𝑝],𝑚] = |T|ℎ

𝐿

𝑒
− ∑

|T|

𝑝=𝑛+1
ℎ

𝑆

𝑒[𝑝]
. It implies

that 𝜐𝑒

VAP(𝑚) is a linear function in 𝑚 over the range 𝑦[𝑛] ≤

𝑚 < 𝑦[𝑛+1]. Therefore, there is an optimal solution of PVAP𝑒
with (𝑌𝑒, 𝑍𝑒𝑝) ∈ {(𝑦, 𝑍𝑒𝑝,𝑦) | 𝑦 = 𝑦[1], . . . , 𝑦[|T|]}.

By Proposition 5, PVAP𝑒 can be solved by finding a
solution of having the minimum cost among |T| number
of solutions which are associated with 𝑌𝑒 fixed at 𝑦[𝑝] for all
𝑝 ∈ T.

3.4.2. Tabu Search-Based Heuristic (TSH). After the first
phase (CH), a tabu search-based heuristic (TSH) is performed
to improve the solution obtained from (CH). We note that
(TSH) is expected to require much more computational time
than (CH), and hence, to save the elapsed time of the overall

algorithm, (TSH) is executed only at the subgradient iterations
satisfying the following two conditions ((a) and (b)) together:
(a) the best lower bound is improved and (b) the solution
obtained by (CH) at the current subgradient iteration is
different from the solutions obtained by (CH) so far. In this
paper, we call the conditions (a) and (b) as “(TSH)-activating
conditions.”

Tabu search is one of the popularmetaheuristics designed
to escape the trap of local optimality [32], and it has been used
frequently in various network-related problems as in Sung
and Song [25], Crevier et al. [33], and Üster and Maheshwari
[34]. We now explain the main features of the tabu search
used in (TSH), including move operation, tabu restriction
and aspiration criterion, move evaluation, and termination
condition.

The move operation used in this paper is to modify
assignment of some freight demand, say 𝑞 = (𝑖, 𝑗) ∈ Q, from
its current UFCC, say 𝑙 ∈ K, to the alternative UFCC, say 𝑘 ∈

K, for some period, say 𝑝 ∈ T. It corresponds to modifying
the value of𝑋𝑖𝑗𝑙𝑝 from 1 to 0 and the value of𝑋𝑖𝑗𝑘𝑝 from 0 to 1
in Problem PMVLPUC+ . The tabu restriction is employed such
that the UFCC assignment for any freight demand should not
be changed during tabu size number of iterations except for
the case that satisfies the aspiration criterion (to be explained
later). To implement the tabu restriction, as a new solution
is selected, the information of the freight demand associated
with the move operation is recorded in a list (called tabu list)
and kept in the list over the tabu size number of iterations.
In this paper, the tabu size is chosen randomly from the
discrete uniform distribution in the closed interval [10, 20].
The aspiration criterion adapted here is as follows: a solution
from the move operation for the freight demands recorded
in the tabu list is eligible to be chosen as a new solution
only if the move improves the best upper bound. Moreover,
when we choose a new solution among neighbor solutions
at each iteration, the move evaluation function used in this
paper is to maximize {mv − 𝐴 ⋅ 𝑛} where mv, 𝑛, and 𝐴

represent the decrease amount of the objective function value,
the frequency that the correspondingmove is used to produce
a new solution so far, and the associated penalty with the
frequency, respectively. When it comes to mv, it is computed
simply by subtracting the objective value of the new solution
from the objective value of the current solution, and if mv
is positive, 𝐴 is set to 0 and 50 otherwise. We note that this
move evaluation function is known to have an advantage in
diversifying the search direction efficiently [32]. Lastly, if the
total number of performed iterations amounts to max iter
or the best upper bound has not been improved during
max no imp consecutive iterations, (TSH) is terminated. In
this paper, max iter and max no imp are set at 500 and 30,
respectively.

3.5. Overall Solution Algorithm. We now summarize all
the discussion and present the algorithm PROC(MVLPUC)
for solving PMVLPUC in Algorithm 2. It can be terminated
either after a predetermined number (1000 in this paper) of
iterations or when 𝜂 gets too small (i.e., 𝜂 ≤ 0.005 in this
paper). It can also be terminatedwhen (((UB−LB)/LB)×100)
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PROC(MVLPUC)
begin
(1) Initialize the necessary parameters and Lagrange multipliers (i.e., 𝑠 = 1, 𝛾𝑠 = 2, 𝜂 = 2,

LB = −∞, UB = ∞, 𝜇

𝑖𝑗𝑝,𝑠
= 1 and 𝜇



𝑖𝑗𝑘𝑝,𝑠
= 1);

(2) Initialize NILB = 0 where NILB represents the number of consecutive iterations for
which the best lower bound has not been improved;
repeat

(3) Solve the Lagrangian problem P
𝐿(𝜇𝑠)

, and let 𝜐(𝜇
𝑠
) be the resulting objective value;

if LB < 𝜐(𝜇𝑠) then
(4) Set LB = 𝜐(𝜇𝑠) and NILB = 0;

else
(5) Set NILB = NILB + 1

end
(6) Find a feasible solution (𝑋,𝑋, 𝑌, 𝑍)UB,𝑠 by (CH) where (𝑋,𝑋, 𝑌, 𝑍)UB,𝑠 represents the

feasible solution to PMVLPUC+ at iteration 𝑠;
if (TSH)-activating conditions are satisfied then

(7) Update (𝑋,𝑋, 𝑌, 𝑍)UB,𝑠 by (TSH);
end

(8) Let 𝜐UB,𝑠 be the objective value of the solution (𝑋,𝑋, 𝑌, 𝑍)UB,𝑠 for PMVLPUC+ ;
(9) if UB > 𝜐UB,𝑠 then
(10) Set UB = 𝜐UB,𝑠, and set (𝑋,𝑋, 𝑌, 𝑍)

∗
= (𝑋,𝑋, 𝑌, 𝑍)UB,𝑠 where (𝑋,𝑋, 𝑌, 𝑍)

∗ represents
the best feasible solution searched until iteration 𝑠;

end
if NILB = 30 then

(11) Set 𝜂 = 𝜂/2 and NILB = 0;
end

(12) Update 𝜇 by the subgradient optimization procedure (refer to Section 3.3);
(13) Set 𝑠 = 𝑠 + 1;

until the aforementioned termination conditions (i.e., 𝑠 > 1000, 𝜂 ≤ 0.005 or ((UB − LB/LB) × 100) < 0.1) are met;
end

Algorithm 2: Overall solution procedure for PMVLPUC.

is less than 0.1%, where UB and LB represent the best upper
and lower bounds searched so far, respectively.

4. Numerical Experiments

This section presents the numerical results on the perform-
ance of the proposed Lagrangian heuristic algorithm
PROC(MVLPUC) forPMVLPUC.ThealgorithmPROC(MVLPUC)
was implemented in C/C++ language, and the perform-
ance of PROC(MVLPUC) is compared with those of the
following three algorithms as benchmarks: (a) the Lagrangian
heuristic where only (CH) is used in PROC(MVLPUC) while
(TSH) is excluded, (b) a commercial optimization software
IBM ILOGCPLEXOptimization Studio, and (c) the algorithm
where (CH) is applied at every node of the branch-and-bound
tree for IBM ILOG CPLEX. The three algorithms are denoted
by (LCH), (CX), and (CXCH), respectively.

For the numerical experiments, a variety of problem
instances were randomly generated according to the under-
lying network structure, the number of nodes (i.e., |V|), and
the number of time periods (i.e., |T|). Three types of under-
lying networks were considered in the experiments includ-
ing origin-centric, equal, and destination-centric networks
according to the number of origin and destination nodes.
Origin-centric networks (destination-centric networks) have

larger numbers of origin (destination) nodes than those of
destination (origin) nodes, and equal networks have almost
equivalent numbers of origin nodes as those of destination
nodes. Moreover, three |V| values including 30, 40, and 50

and three |T| including 3, 6, and 12 were considered in the
experiment.

To generate problem instances, each node was randomly
selected on a 100 × 100 grid. Some of the nodes were
connected by arcs, which were also chosen randomly. Unit-
period long-term vehicle lease cost ℎ𝐿

𝑒
was calculated based

on Euclidean distance between nodes, and unit-period short-
term vehicle lease cost ℎ𝑆

𝑒𝑝
was randomly chosen in the range

from 1.5 to 2 times of ℎ𝐿

𝑒
. Such a structure of vehicle lease

costs reflects the actual practice in Korean logistics industry.
Moreover, transportation time 𝑡𝑒 was randomly chosen in the
range from 0.8 to 1.2 times of ℎ𝐿

𝑒
, and handling time at 𝑘 ∈ K,

𝑜𝑘, was set as 𝑜𝑘 = min{min𝑖∈I𝑡𝑖𝑘,min𝑗∈J𝑡𝑘𝑗}. Transportation
time restriction TL𝑖𝑗 was set as TL𝑖𝑗 = 0.1(min𝑘∈K{𝑡𝑖𝑘 + 𝑜𝑘 +

𝑡𝑘𝑗}) + 0.9(max𝑘∈K{𝑡𝑖𝑘 + 𝑜𝑘 + 𝑡𝑘𝑗}). Demand quantity 𝑑𝑖𝑗𝑝

was randomly selected in the range from 1 to 90, and vehicle
capacity Γwas set at 100. For each combination of underlying
network structure, number of nodes, and number of periods,
four problem instances were generated, and hence, in total,
108 problem instances were generated.
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Tables 1–3 show the experimental results for the problem
instances with |V| = 30, 40 and 50 nodes, respectively.
The tables present the best lower bound (LB), the best
upper bound (UB), the percentage deviation between the two
(%Gap), and the elapsed time in seconds (Time [s]). The
percentage deviation, %Gap, is computed as ((UB−LB)/LB)×
100.

For the problem instances with |V| = 30,
PROC(MVLPUC) gave solutions with the following
performance: (a) the duality gap (shown in the “%Gap”
column) ranges from 5.26% to 12.99% with the average
of 7.98%, and (b) the elapsed time ranges from 33.77 s to
691.83 s with the average of 175.12 s.The duality gap does not
seem to be dependent on both |T| and the network structure,
as observed that the duality gap does not change consistently
according to them. On the other hand, the elapsed time
seems to increase not exponentially but linearly as |T|

increases while it does not seem to be dependent on the
network structure. For example, the average elapsed times
for the problem instances with |T| = 3, 6, and 12 are 80.06 s,
158.05 s, and 287.26 s, respectively. The aforementioned
trends can be observed in the problem instances with
|V| = 40 and 50 as well.

From all the experiments, the performance changes of the
proposed algorithm according to the number of nodes (i.e.,
|V|) can be summarized as follows. As |V| increases, the
duality gap seems to marginally increase. For example, the
average duality gaps for the problem instances with |V| =

30, 40, and 50 are 7.98%, 8.58%, and 9.44%, respectively,
and this may be due to the fact that, as |V| increases,
the number of the associated Lagrange multipliers greatly
increases as shown in 𝜇



𝑖𝑗𝑘𝑝
, and hence, the associated lower

bound may become looser accordingly. We also observe that,
as |V| increases, the elapsed time increases rapidly, but not
exponentially. For example, the average elapsed times for the
problem instances with |V| = 30, 40, and 50 are 175.12 s,
654.59 s, and 2591.26 s, respectively.

We now compare the performance of PROC(MVLPUC)
with those of the aforementioned three algorithms includ-
ing (LCH), (CX), and (CXCH), respectively. They were tested
on the small-sized problem instances (or instances with
|V| = 30). For (LCH), the same termination conditions as
in PROC(MVLPUC)were used, while for (CX) and (CXCH), an
execution time limit of five hourswas applied as a termination
condition.

Table 4 shows the numerical results of the compared
algorithms for the problem instances with |V| = 30. The
table gives the percentage deviations between the best lower
bounds obtained from each of the compared algorithms and
the best lower bound obtained by the proposed algorithm
(LB in Table 1) and the percentage deviations between the
best upper bounds obtained by each of the compared algo-
rithms and the best upper bound obtained by the proposed
algorithm (UB in Table 1). For (LCH) and both of (CX) and
(CXCH), the percentage deviations of the lower bounds are
denoted by ILBLCH and ILBCX, respectively. Note that (CX)
and (CXCH) give the same lower bound obtained from the
LP relaxation of Problem PMVLPUC. For (LCH), (CX), and

(CXCH), the percentage deviations of the upper bounds are
denoted by IUBLCH, IUBCX, and IUBCXCH, respectively. In
detail, the percentage deviations of the lower bounds and the
percentage deviations of the upper bounds were computed
by ((LB − LB𝐶)/LB𝐶) × 100 and ((UB𝐶 − UB)/UB𝐶) × 100,
respectively, where LB𝐶 and UB𝐶 are the best lower bound
and the best upper bound obtained by the corresponding
compared algorithm, respectively. For example, if IUBLCH is
positive, it means that the best upper bound of the proposed
algorithm is better than that of (LCH) at the associated rate.
From the table, the proposed algorithm may give the almost
same lower bounds as (LCH) and better upper bounds than
(LCH) from the fact that ILBLCH is almost zero and ULBLCH
ranges from 0.36% to 11.88%. This may imply that (TSH)
embedded in PROC(MVLPUC) improves the upper bound
significantly. Moreover, PROC(MVLPUC) may give better
lower bounds than (CX) and (CXCH). For the long planning
horizon, PROC(MVLPUC) may give better upper bounds
than (CX) and (CXCH), while for the short planning horizon, it
may not. For example, the associated average values of IUBCX
with |T| = 3, 6, and 12 are −2.35%, 2.56%, and 6.44%,
respectively. This may imply that the proposed algorithm is
suitable for the large-sized problem instances. Also, it can be
observed that (CXCH) outperforms (CX) marginally.

In summary, the proposed algorithm PROC(MVLPUC)
may give good lower and upper bounds within reasonable
time, and the duality gap seems not to be dependent on the
network structure and the number of time periods, while it
seems to increase a little, as |V| increases. Furthermore, as
presented in Table 3, the average duality gap for the problem
instances with |V| = 50 is still less than 10%, and the
elapsed time seems not to be dependent on the network
structure, while it increases as |V| or |T| increases. However,
the increase in the elapsed time is not exponential in either
case.

5. Concluding Remarks

In this paper, a multiperiod vehicle lease planning problem
in an urban freight distribution network with UFCCs is
considered where vehicles for each direct service are leased
in short term or long term.The problem under consideration
is motivated by the realistic situation where the freight
demands fluctuate dynamically in time, and urban freight
distribution can be made through UFCCs. The problem is
formulated as an integer programming model and can be
proven to be NP-hard in a strong sense. Thus, we propose
a Lagrangian-based heuristic to address the concomitant
problem. Various numerical experiments are performed to
evaluate the performance of the proposed algorithm, and
they indicate that the proposed algorithm works well. The
proposed algorithm may be applied to vehicle lease planning
for industrial logistic services for handling various products
including food, apparel, electronic goods, and logistics com-
panies.

As extended research, several models derived from the
proposedmodel in this paper can be considered. For example,
a problem where each freight demand can be delivered
through more than a single UFCC may be interesting.
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Table 4: Test results of the compared algorithms for the problem instances with |V| = 30.

|I||K| |J|

|T| = 3 |T| = 6 |T| = 12

ILBLCH ILBCX IUBLCH IUBCX IUBCXCH ILBLCH ILBCX IUBLCH IUBCX IUBCXCH ILBLCH ILBCX IUBLCH IUBCX IUBCXCH

20 5 5 0.01 10.58 5.52 −0.17 −1.17 −0.19 11.45 3.73 1.38 1.16 −0.09 9.37 3.53 4.14 0.26

20 5 5 0.00 11.14 3.90 −6.46 −6.35 −0.14 10.38 4.68 −2.77 −2.27 −0.08 10.21 4.66 3.61 −0.32

22 3 5 0.45 9.55 11.88 2.30 −0.43 0.00 9.18 8.11 10.27 2.05 0.09 9.22 4.08 7.54 4.11

22 3 5 −0.01 8.48 4.00 −3.38 −0.76 0.02 8.88 6.29 −0.47 −1.72 0.04 8.65 3.97 9.44 4.98

13 5 12 −0.14 10.05 2.80 1.12 −1.10 −0.13 9.25 7.05 3.18 1.54 −0.71 8.34 3.92 6.77 3.88

13 5 12 −0.31 9.50 5.78 −2.84 −2.72 −0.56 8.76 6.76 1.07 1.87 0.11 9.65 6.44 7.89 6.85

13 3 14 −0.26 5.17 5.96 1.13 0.01 −0.17 5.52 4.07 8.08 3.13 −0.09 5.60 5.75 11.74 7.45

13 3 14 −0.20 6.19 5.09 −1.86 −1.45 −0.07 6.33 5.61 8.67 5.70 −0.08 6.29 6.29 9.87 8.04

5 5 20 −0.05 15.65 4.44 −1.48 −1.26 −0.56 16.84 5.09 1.00 0.12 −0.26 16.59 3.19 0.36 1.32

5 5 20 −0.02 12.99 0.36 −8.46 −8.34 0.00 16.94 3.87 −5.58 −5.31 −0.16 16.57 4.13 1.42 0.17

5 3 22 −0.06 13.93 2.91 −1.57 −1.87 0.02 13.92 3.82 0.99 −0.39 −0.58 12.42 3.86 4.14 6.70

5 3 22 −0.01 13.45 3.48 −6.51 −6.97 −0.16 12.66 3.17 −2.62 −2.75 −0.68 11.69 2.96 5.66 3.84

Average −0.05 10.56 4.68 −2.35 −2.70 −0.18 10.39 5.13 2.56 0.69 −0.16 9.97 4.47 6.44 4.32

Moreover, it may be necessary to deal with vehicle specific
lease periods. Lastly, proposing the efficient heuristic-based
approach for solving large-scale problems would be the topic
for the future research.
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Accurate state of charge (SoC) estimation is of great significance for the lithium-ion battery to ensure its safety operation and to
prevent it from overcharging or overdischarging. To achieve reliable SoC estimation for Li

4
Ti
5
O
12
lithium-ion battery cell, three

filtering methods have been compared and evaluated. A main contribution of this study is that a general three-step model-based
battery SoC estimation scheme has been proposed. It includes the processes of battery data measurement, parametric modeling,
and model-based SoC estimation. With the proposed general scheme, multiple types of model-based SoC estimators have been
developed and evaluated for battery management system application. The detailed comparisons on three advanced adaptive filter
techniques, which include extend Kalman filter, unscented Kalman filter, and adaptive extend Kalman filter (AEKF), have been
implementedwith a Li

4
Ti
5
O
12
lithium-ion battery.The experimental results indicate that the proposedmodel-based SoC estimation

approach with AEKF algorithm, which uses the covariance matching technique, performs well with good accuracy and robustness;
the mean absolute error of the SoC estimation is within 1% especially with big SoC initial error.

1. Introduction

To address the two urgent tasks nowadays of protecting
the environment and achieving energy sustainability, it is
of a strategic significance on a global scale to replace the
oil-dependent vehicles with electric vehicles. Lithium-ion
batteries are currently considered to be the development
trends of traction batteries and have beenwidely used in plug-
in hybrid electric vehicles (PHEVs) due to its high power and
energy density, its high voltage, being pollution-free, having
nomemory effect, its long cycle life, and its low self-discharge
[1–3]. Battery management system (BMS) is essential for
the lithium-ion battery to maximize its performance, ensure
its safety, and extend its life. Estimation for battery state
of charge (SoC) is one of the most key techniques in the
BMS. Nevertheless, it is difficult to accurately estimate SoC,
because SoC is an inner state of each battery cell which cannot
be directly measured and is greatly influenced by many
factors, including ambient temperature, discharging current,
and battery aging [4, 5]. Therefore, the battery SoC has to be

estimated with specific estimation techniques according to
measured battery parameters, such as voltage, current, and
temperature.

A wide variety of SoC estimation methods have been
put forward to improve battery SoC determination, each
one having its own advantage, most of which can be
divided into four categories: looking-up table based meth-
ods, ampere-hour integral method, data-driven estimation
methods, and model-based estimation methods [6–21]. In
terms of the looking-up table based methods, the measure-
ments of battery impedance, open circuit voltage, and so
forth are commonly used to infer the SoC of batteries [6–
9]. References [10, 11] put forward methods to determine
battery SoC based on impedance measurements. Unfortu-
nately, due to the uncertainty of driving cycles and the
variable application environment, it is hard to measure these
characteristic parameters accurately in real-time.The second
type is the ampere-hour integral method, which has been
widely applied to BMS and battery simulations of PHEVs
[12]. The ampere-hour integral method acquires the SoC
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by integrating the current over the time. This method is
simple and can be easily implemented on-board, so that
it has been widely used in practice. However, as an open-
loop estimation algorithm, it cannot deal with problems
caused by measurement noise and inaccurate initial SoC
[13]. The third type is the data-driven estimation methods.
Data-driven control methods merely use input-output data
of the system to develop a controller. Since these methods
do not require an accurate plant model, the estimations
and assumptions introduced in the plant modeling step are
omitted. For instance, the battery state estimations based
on artificial neural network and fuzzy logic models are
demonstrated with good accuracy [14, 15]. However, these
algorithms are very sensitive to their parameters and they
may even be not convergent with bad parameters selection
when the train data cannot completely cover the present
operating conditions.The last type ismodel-based estimation
method [16–20]. Plett used an extended Kalman filter (EKF)
to identify unknown parameter and adaptively estimate the
battery’s SoC [16–18]. An inappropriate matrix of the system
noisemay lead to remarkable errors and even divergence [19].
As an alternative approach, SoC estimation via SoC-OCV
look-up table is put forward and the battery open circuit
voltage (OCV) is estimated in real-time with a recursive
least squares algorithm [21]. Additionally, the unscented
Kalman filter (UKF) is also investigated to estimate the
lithium-ion battery (LiB) SoC [20]. However, the OCV-based
SoC estimation method can hardly safeguard the estimation
accuracy dynamically for its open-loop characteristics.

In view of battery behavior and performance being
relatively vulnerable to operating conditions and aging levels,
what is important for us to do is to achieve the accurate
SoC estimation in the long-term. In this point, there are
three difficulties that should be considered seriously for
achieving efficient and reliable battery SoC estimation for
BMS: (1) accurate parametricmodeling approach, (2) reliable
and robust state estimation algorithm, and (3) systematic
modeling and estimation scheme.

In solving the first problem, different kinds of battery
models have been proposed and applied to their application
field. However, if one applied them to BMS, they can hardly
achieve desired performance. It is because of that the adaptive
parameter update technique has been neglected; as a result,
the model error will be larger as the battery aged or operated
conditions changed. In dealing with the second problem,
several advanced Kalman filters [13, 16–18] have been widely
used and the estimation accuracies are appropriate for BMS
application in a limited operating condition. For overcoming
the last difficulties, the offline model and adaptive filters
are widely used. However, it is limited by the unupdated
battery model; the SoC estimation will be influenced by
the unavoidable uncertainties from battery which aged and
operating conditions varied.

The Li
4
Ti
5
O
12
which can release lithium ions repeatedly

for recharging and quickly for high current has been accepted
as a novel anode material in Li

4
Ti
5
O
12

LiB. Nevertheless,
its dynamic behavior is very different from other LiBs.
Traditional battery model fails to ensure high prediction
precision in its voltage prediction. A key contribution of this

study is that a general three-step model-based battery SoC
estimation scheme,which includes adaptivemodel parameter
updating technique for improving the parametric modeling
performance, an open interface for employing adaptive filters
to solve the hidden states from strong time-varying dynamic
system and series structure based systematic modeling and
estimation approach. With the proposed scheme, we have
compared the performance of three commonly used filters,
which include EKF algorithm-based SoC observer, UKF
algorithm-based SoC observer, and AEKF algorithm-based
SoC observer. In addition, the Gaussian model describing
the open circuit voltage behavior has been developed to
improve the performance of the battery model, and then
the improved lumped-parameter battery model was applied
to the three filters based SoC estimator to improve their
prediction performance for Li

4
Ti
5
O
12
LiB (its voltage bounds

are 2.7 V and 1.5 V, resp.).
This paper is organized as follows. A description of the

general model-based battery SoC estimation scheme is given
in Section 2. The verification experiments and results are
described in Section 3. A detailed comparison among the
EKF-based, UKF-based, and AEKF-based SoC estimation
approaches is illustrated in Section 4. Finally, conclusions are
drawn in Section 5.

2. Model-Based SoC Estimator

2.1. General Model-Based Battery SoC Estimation Scheme.
Figure 1 presents the model-based battery SoC estimation
scheme. It contains three steps.

Step 1 (real-time measurement). After the driving cycles
loaded on the battery, the data-samplingmodule canmeasure
battery current and voltage in real-time. The measured
current and voltage are served as input data for the next
modeling and state estimation steps.

Step 2 (parametricmodeling). Based on the previous research
experience on battery model selection [21, 22], one RC
network based lumped-parameter battery model (shown
in Figure 2) has been chosen for describing the dynamic
behavior of the LiB cell. In parametric modeling step, the
battery model has been divided into two parts: OCV and
dynamic voltage. Considering that OCV varies with battery
SoC, it is common to use variation of OCV to achieve an
accurate feedback of SoC. Therefore, we use a nonlinear
battery OCV model to describe battery voltage source. With
the estimated SoC, the OCV will be updated accordingly.
For dynamic voltage part, we use recursive least squares with
optimal forgetting factor to identify the parameter in real-
time. The description of recursive least squares can be found
in [22]. Through the process of Step 2, we can get online
model parameter with real-time measurements of battery
current and voltage.

Step 3 (model-based approach). With the real-time battery
model from Step 2, we can build the state-space function of
the battery accordingly. With the state-space function, the
adaptive filters can be used to estimate the hidden state (SoC)
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Figure 1: General model-based battery SoC estimation scheme.

through operation processes of prior estimation, posterior
estimation, and feedback control. In this study, we use three
kinds of Kalman filters to verify this approach [21, 23, 24].The
three kinds of advanced Kalman filters have been employed
to develop the SoC estimator and their performance has been
analyzed and evaluated in Section 4.

It is noted that in essence the Kalman filter based SoC
estimation approach is a fusion method. It fuses the estima-
tion results ofOCV-based look-up tablemethod and ampere-
hour counting method through the state-space function of
battery. SoC serves the communication link between OCV-
based look-up table method and ampere-hour counting
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Figure 2: The schematic diagram of the lumped-parameter model.

method; an inaccurate ampere-hour counting method will
lead to inaccurate SoC estimate and results in a larger
erroneous OCV, which will bring bigger voltage error in turn.
Thus, the OCV can be served as a feedback control link to
regulate the SoC estimation error in ampere-hour counting
method. Therefore, the fusion method has optimal SoC
estimation from its capacities of correction, weighting, and
filtering. Lastly, together with the real-time measurements of
battery current and voltage for online identification of the
parameter of battery model, the proposed scheme in fact is
model-based fusion method.

2.2. Battery Model. In order to execute the state estimation
with state-space-based filter algorithm, we need a model
to describe relationship between SoC with battery voltage.
According to our previous experience in battery modeling
[21], one RC network based lumped-parameter model was
chosen for this study. However, to improve the model’s
accuracy and enhance the relationship between the SoC
with battery voltage, a Gaussian model [17] is developed to
improve its prediction precision; the model is illustrated in
Figure 2. The main dynamic voltage behavior is described by

�̇�
𝑝
= −

1
𝐶
𝑝
𝑅
𝑝

𝑈
𝑝
+

1
𝐶
𝑝

𝐼
𝐿
,

𝑈
𝑡
= 𝑈oc −𝑈𝑝 − 𝐼𝐿𝑅𝑜,

(1)

where𝑈oc and 𝐼𝐿 are the OCV and load current, respectively.
𝑈
𝑡
and𝑅

𝑜
denote the terminal voltage and ohmic resistance of

battery, respectively.The RC network is employed to describe
the dynamic voltage behavior including polarization resis-
tance 𝑅

𝑝
and polarization capacitance 𝐶

𝑝
, and 𝑈

𝑝
represents

the polarization voltage across𝐶
𝑝
. It is noted that the positive

value of battery current is assumed for discharging operation
while the negative value is assumed for charging operation.

To describe the nonlinear characteristic of battery open
circuit voltage, the Gaussian model has been selected:

𝑈oc = 𝑎1 exp(−(
(𝑧 − 𝑏1)

𝑐1
)

2

)

+𝑎2 exp(−(
(𝑧 − 𝑏2)

𝑐2
)

2

)

+𝑎3 exp(−(
(𝑧 − 𝑏3)

𝑐3
)

2

) ,

(2)

where 𝑎
𝑖
, 𝑏
𝑖
, 𝑐
𝑖
(𝑖 = 1, 2, 3) are the constants chosen to make

the𝑈oc model fit the SoC-OCVwell and 𝑧 is the abbreviation
of battery SoC.

2.3. Parameters Identification. For identifying the parameters
of the lumped-parameter battery model, a regression equa-
tion in discretization form for (1) is needed which has been
rewritten as follows [3]:

𝑈
𝑝,𝑘+1 = 𝑒

−Δ𝑡/𝜏
𝑈
𝑝,𝑘
+ (1− 𝑒−Δ𝑡/𝜏) 𝑅

𝑝
𝐼
𝐿,𝑘
,

𝑈
𝑡,𝑘
= 𝑈oc,𝑘 −𝑈𝑝,𝑘 − 𝐼𝐿,𝑘𝑅𝑜,

(3)

where Δ𝑡 denotes the sampling interval and 𝑈
𝑝,𝑘+1

can be
equivalent to𝑈

𝑝
((𝑘 + 1)Δ𝑡) at the (𝑘 + 1)th sampling times. 𝜏

denotes the time constant and equals 𝜏 = 𝑅
𝑝
× 𝐶
𝑝
. 𝐼
𝐿,𝑘

is the
current at the time index 𝑘, and 𝑈

𝑡,𝑘
and 𝑈oc,𝑘 are terminal

voltage and OCV at the time index 𝑘, respectively.
With (3),

𝑈
𝑡,𝑘+1

= 𝑈oc,𝑘+1 − (𝑒
−Δ𝑡/𝜏

𝑈
𝑝,𝑘
+ (1 − 𝑒

−Δ𝑡/𝜏
) 𝑅
𝑝
𝐼
𝐿,𝑘
)

− 𝐼
𝐿,𝑘+1

𝑅
𝑜
.

(4)

Defining 𝐸
𝑡
= 𝑈
𝑡
− 𝑈oc, then (4) can be rewritten by

𝐸
𝑡,𝑘+1

= − (𝑒
−Δ𝑡/𝜏

𝑈
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𝑝
𝐼
𝐿,𝑘
)

− 𝐼
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𝑜
.

(5)

The difference equation of (5) can be used to eliminate
𝑈
𝑝,𝑘
; then,

𝐸
𝑡,𝑘+1

= 𝑒
−Δ𝑡/𝜏
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(6)

Thus,

𝐸
𝑡,𝑘+1
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1
𝐸
𝑡,𝑘
+𝛼
2
𝐼
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+𝛼
3
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where

𝛼1 = 𝑒
−Δ𝑡/𝜏

,

𝛼2 = −𝑅𝑜,

𝛼
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(8)

From (8), we can obtain

𝑅
𝑖
= −𝛼2,

𝑅
𝑝
=
𝛼1𝛼2 + 𝛼3
𝛼1 − 1

,

𝐶
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(𝛼1𝛼2 + 𝛼3) log (𝛼1)

.

(9)

We assume 𝑦
𝑘
= Φ
𝐿𝑠,𝑘
𝜃
𝐿𝑠,𝑘

, where

𝑦
𝑘
= 𝐸
𝑡,𝑘
,

Φ
𝐿𝑠,𝑘

= [𝑈𝑡,𝑘−1 𝐼𝐿,𝑘 𝐼𝐿,𝑘−1] ,
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,

(10)
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where Φ
𝐿𝑠,𝑘

and 𝜃
𝐿𝑠,𝑘

denote matrixes of input data and
parameters at time index 𝑘, respectively.

We use the recursive least squares to implement the
parameters estimating process; the parameter estimates are
updated at each sampling intervals. The forgetting factor 𝜆
is optimized by the genetic algorithm and the optimization
objective is to achieve the minimum sum of squares of the
estimated voltage error. After presetting initial vector 𝜃

𝐿𝑠,0

and its error covariance matrix P
𝐿𝑠,0

, the parameter vector
𝜃
𝐿𝑠,𝑘

can be determined.

2.4. SoC Estimation with the Kalman Filter Algorithm. As
mentioned in the introduction section, SoC is a necessary
index for ensuring the safety operation of the batteries. SoC
can be calculated by the following equation:

𝑧
𝑘
= 𝑧
𝑘−1

−
𝜂
𝑖
𝐼
𝐿,𝑘
Δ𝑡

𝐶
𝑎

, (11)

where 𝑧
𝑘
denotes the SoC at the 𝑘th sampling interval and 𝜂

𝑖

denotes the columbic efficiency of battery. Δ𝑡 is the sampling
interval. 𝐶

𝑎
denotes the maximum available capacity of

battery.
Based on the dynamic voltage model of battery and the

SoC computational equation, we can build the state equation
for recursive prediction and the state equation is described by
the following equation:

X
𝑘+1 = 𝑓 (X𝑘, u𝑘) +𝜔𝑘,

Y
𝑘
= ℎ (X

𝑘
, u
𝑘
) + 𝜐
𝑘
,

(12)

where the function 𝑓(𝑋, 𝑢) is used to describe the state
transition of the nonlinear system, the parameter X denotes
the system state, and the u denotes the input of this system.
The function 𝑔(𝑋, 𝑢) is used to describe the measurement
process of this nonlinear system, 𝑌 denotes the measurement
of the system. To describe the unavoidable noise information,
a Gaussian white noise was assumed to describe the process
noise (w) and measurement noise (k). These two types of
noise possess zero of mean values, and their covariance is
described by vectorsQ and R, respectively.

A few of nonlinear filteringmethods have been applied to
determining the SoC for electric vehicles batteries, especially
of Kalman filtering methods. They are extensively used not
only for parameter identification and stats estimation, but
also for other typical engineering problems such as global
positioning system [16–18, 21]. Based on [16–18], we can con-
clude the detailed computational process for EKF algorithm
and AEKF algorithm, which have been listed below. And the
algorithm of UKF algorithm can be found in [13].

Summary of the EKF algorithm is as follows.

Step 1 (initialization). For 𝑘 = 0, set

X̂+0 = 𝐸 [𝑋0] ,

P+0 = 𝐸 [(𝑋0 − X̂
+

0 ) (𝑋0 − X̂
+

0 )
𝑇

] .

(13)

Step 2 (computation). For 𝑘 = 1, 2, . . ., compute the follow-
ing.

State estimate time update is as follows:

X̂−
𝑘
= 𝑓 (X̂+

𝑘−1, u𝑘) . (14)

Error innovation is as follows:

e
𝑘
= Y
𝑘
−𝑔 (X̂−

𝑘
, u
𝑘
) . (15)

Error covariance time update is as follows:

P−
𝑘
= A
𝑘
P
𝑘−1A
𝑇

𝑘
+Q
𝑘
. (16)

Kalman gain matrix is as follows:

K
𝑘
= P−
𝑘
C𝑇
𝑘
(C
𝑘
P−
𝑘
C𝑇
𝑘
+R
𝑘
)
−1
. (17)

State estimate measurement update is as follows:

X̂+
𝑘
= X̂−
𝑘
+K
𝑘
e
𝑘
. (18)

Noise and error covariance measurement update is as
follows:

P+
𝑘
= (I−K

𝑘
C
𝑘
)P−
𝑘
, (19)

where

A
𝑘
=
𝜕𝑓 (X

𝑘
, u
𝑘
)

𝜕X

X=X̂−
𝑘

,

C
𝑘
=
𝜕ℎ (X

𝑘
, u
𝑘
)

𝜕X

X=X̂−
𝑘

,

(20)

whereK
𝑘
is Kalman gain matrix at the 𝑘th sampling time; X̂−

𝑘

is the priori estimate ofX
𝑘
before themeasurementY

𝑘
is taken

into account, X̂+
𝑘
is the estimate of X

𝑘
after the measurement

Y
𝑘
is taken into account, which is called posteriori estimate;

𝑈
𝑡,𝑘
and �̂�

𝑡,𝑘
are the terminal voltagemeasured and estimated

by the battery model at the 𝑘th sampling time, respectively.

Summary of the AEKF algorithm is as follows.

Step 1 (initialization). For 𝑘 = 0, set:

X̂+0 = 𝐸 [𝑋0] ,

P+0 = 𝐸 [(𝑋0 − X̂
+

0 ) (𝑋0 − X̂
+

0 )
𝑇

] .

(21)

Step 2 (computation). For 𝑘 = 1, 2, . . ., compute the follow-
ing.

State estimate time update is as follows:

X̂−
𝑘
= 𝑓 (X̂+

𝑘−1, u𝑘) . (22)

Error innovation is as follows:

e
𝑘
= Y
𝑘
−𝑔 (X̂−

𝑘
, u
𝑘
) . (23)
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Table 1: Results of the coulomb efficiency.

Current/A 3 10 20 40 60 80
Coulombic efficiency in discharging process 1 1 0.99 0.98 0.95 0.91
Coulombic efficiency in charging process 1 1 0.99 0.97 — —

Adaptive law-covariance matching is as follows:

H
𝑘
=

1
𝑀

𝑘

∑
𝑖=𝑘−𝑀+1

e
𝑘
e𝑇
𝑘
,

R
𝑘
= H
𝑘
−C
𝑘
P−
𝑘
C𝑇
𝑘
.

(24)

Error covariance time update is as follows:

P−
𝑘
= A
𝑘
P
𝑘−1A
𝑇

𝑘
+Q
𝑘
. (25)

Kalman gain matrix is as follows:

K
𝑘
= P−
𝑘
C𝑇
𝑘
(C
𝑘
P−
𝑘
C𝑇
𝑘
+R
𝑘
)
−1
. (26)

State estimate measurement update is as follows:

X̂+
𝑘
= X̂−
𝑘
+K
𝑘
e
𝑘
. (27)

Noise and error covariance measurement update is as
follows:

Q
𝑘
= K
𝑘
H
𝑘
K𝑇
𝑘
,

P+
𝑘
= (I−K

𝑘
C
𝑘
)P−
𝑘
,

(28)

where H
𝑘
is the innovation covariance matrix based on the

innovation sequence e
𝑘
inside moving estimation window of

size𝑀 at the 𝑘th sampling time.

3. Experimental Configurations and
Battery Test

A test platform introduced in our previous work [21] was
employed to implement the systematic test for evaluating the
performance of the proposed model-based SoC estimation
algorithm. Battery used in the test is the Li

4
Ti
5
O
12

lithium-
ion battery.The battery was placed in a thermal chamber and
the test schedule can be found in [21].Themaximumavailable
capacity of the battery is 9.8 Ah [25]. After the static capacity
test, an efficiency test has been implemented for determining
the coulomb efficiency of the Li

4
Ti
5
O
12
; the results are listed

in Table 1 [21].
Whenwe know the exact capacity and coulomb efficiency,

we can carry out the OCV test to calibrate the relationship
between battery SoC and OCV, and we use 3A to charge and
discharge the cell. In this paper, the hysteresis is ignored.The
OCV curves are plotted in Figure 3.

Figure 3 gives the OCV comparison between the model
estimates and the test data. It suggests that the proposed
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2
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SoC

OCV data
Model prediction

U
oc
/V

Figure 3:TheOCV curves of the test data and themodel prediction.

model can track the battery OCV behavior closely. The OCV
function can be described by the following equation:

𝑈oc = 2.85 exp(−((𝑧 − 1.614)
1.78

)
2
)

+ 0.69 exp(−((𝑧 − 0.027)
0.56

)
2
)

+ 0.28 exp(−((𝑧 − 0.071)
0.025

)
2
) .

(29)

In addition to the above three types of test, the hybrid
pulse power characteristic (HPPC) [26] and the dynamic
stress test (DST) have been carried out for verifying the
proposed general model-based SoC estimation method. The
measurements of HPPC test and DST are plotted in Figures 4
and 5, respectively.

To achieve an exact SoC, we first charged the battery
with CCCV charge mode at the nominal current. Then we
discharged some capacity of the battery with the nominal
current to achieve an accurate initial SoC. Afterwards, the
DST test was loaded and executed. Lastly, a further nom-
inal current discharge experiment was conduct to gain an
accurate terminal SoC. Based on the known exact SoC and
accurate coulomb efficiency, we can determine the reference
SoC profiles with the SoC definition-based ampere-hour
counting method. The SoC profiles of DST test shown in
Figure 5(c) will serve as a reference SoC for the evaluation the
robust SoC estimation, and its actual initial SoC is 0.8075.
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Figure 4: Profiles of the HPPC test: (a) battery current of one cycle; (b) battery terminal voltage (SoC = 0.8); (c) battery current for ten cycles;
and (d) complete voltage profile.
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Figure 6: The comparisons profiles of the observer and experiment: (a) voltage; (b) voltage error.

4. Verification Analysis and Discussion

4.1. Parametric Modeling. Through the online parameter
identification operation, we can get the real-time battery
model. The voltage profiles of the experimental data and
observer are presented in Figure 6(a), and the voltage error
is shown in Figure 6(b). A statistical analysis on the terminal
voltage errors has been conducted and the result is listed in
Table 2. It shows that the maximum error of the terminal
voltage is less than 2% of its nominal voltage. Additionally,
its mean error is 6mV. It can be concluded that the proposed
improved model has good dynamic voltage prediction per-
formance.

4.2. Analysis on the SoC Estimation Results. The following
verification and analysis are based on the AEKF algorithm,
and the other two Kalman filters will be discussed in the
Section 4.3. The SoC estimation is conducted and the results
are shown in Figure 8. Figure 7(a) presents the comparison
profiles of the voltages between the estimations and the exper-
imental result. Figure 7(b) presents the voltage error curve for
Figure 7(a). Figure 7(c) presents the SoC comparison profiles
between the estimations and the reference SoC. Figure 7(d)
presents the SoC estimation error.

We can observe that the prediction inaccuracy of the
battery terminal voltage is below 1%, which is lower than
the prediction result plotted in Figure 6(b). The prediction
precision depends adaptively on correction performance by
adjusting the Kalman filter gain matrix based on the voltage
error bound. Figure 7(d) indicates that the SoC estimation
error arises with the terminal voltage estimation error, while
the AEKF approach can correct the voltage error adaptively
and quickly. It also shows that the model precision is impor-
tant during the estimation for battery SoC.

4.3. Evaluation on the Robust Performance. With an accurate
initial SoC, most of the SoC estimators can achieve desired
estimation performance in a period of time, such as ampere-
hour integral method. However, the estimation accuracy
against different unknown initial SoC makes lots of methods

Table 2: The statistics list of the terminal voltage error.

Error Maximum/V Minimum/V Mean/V Covariance/V2

Value 0.0416 −0.0218 0.0060 3.88𝑒 − 005

unacceptable for electric vehicles application. In this section,
we will discuss whether the AEKF-based SoC estimation can
achieve accurate SoC estimation with the erroneous initial
SoC. Two types of erroneous initial SoC, 0.95 and 0.50, are
applied to implement the evaluation. The estimation results
are plotted in Figure 8.

From Figures 8(a) and 8(c), we can observe that the
performance of the model-based SoC estimator cannot be
affected by the erroneous initial SoC. In contrast, the con-
vergence trajectories of the SoC estimations are very similar,
especially when the initial error in battery SoC has been
corrected. We also can observe that the SoC estimation
errors are less than 1%. In order to evaluate the estimation
performancemore intuitively, we select the index of themean
absolute error (MAE) to describe the convergence trajectory.
The MAE can be calculated by the following equation:

𝑧mae,𝑘 =
∑
𝑘

𝑗=0

SoC
𝑘
− ŜoC

𝑘



𝑘 + 1
, (30)

where 𝑧mae,𝑘 represents the MAE index of the battery SoC
estimations up to and involving the 𝑘th sample time; ŜoC

𝑘

denotes the SoC estimation value under the time index 𝑘.
Figure 9 shows theMAE results. It indicates that theMAE

of the SoC estimations which started with incorrect initial
SoC values can converge to within 1% in 1 minute (60 sample
intervals).

4.4. Discussion. Based on the above analysis, we can find
that the AEKF algorithm is suitable for applying to proposed
general model-based battery SoC estimation scheme, and it
can reach high estimation accuracy. To discuss the suitability
of the proposed general SoC estimation scheme and compare
the AEKF algorithm with other widely used methods, UKF
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Figure 7: SoC estimation with AEKF approach: (a) voltage; (b) voltage error; (c) SoC; (d) SoC error.

algorithm and EKF algorithm, we have made systematical
analysis. The real-time model-based SoC estimation results
using the EKF and UKF are plotted in Figure 10. The esti-
mation errors between the EKF-based SoC estimations and
UKF-based estimations are plotted in Figure 11 and the MAE
index is plotted in Figure 12.

From Figures 8–12, it can be observed that the AEKF-
based approach achieves the best accuracy in these three
approaches. Additionally, the AEKF-based SoC estimation
is more precise than the EKF-based SoC estimation. The
better estimation performance of the AEKF algorithm based
method is due to the fact that the adaptively updating for
the error covariance greatly improves the estimation perfor-
mance. The SoC estimation error between the EKF-based
method and theUKF-basedmethod is virtually indiscernible.

The comparisons between the estimation inaccuracies
and MAE index of the AEKF-based, EKF-based and UKF-
based methods, show that the maximum MAE of the EKF-
based and UKF-based approaches are around 3%, which
is higher than the AEKF-based approach. In conclusion,
the proposed general model-based battery SoC estimation
scheme can be applied to estimate the SoC of batteries
accurately with good robust performance. More importantly,

the performance of the proposed scheme is not sensitive with
the operated nonlinear filtering methods. For the algorithms
of AEKF, EKF, and UKF, all of their estimation errors are
less than 5%. It is acceptable for the current requirements
of the battery management system. Furthermore, the AEKF
algorithm, which can update the error covariance matrix
adaptively, has the best estimation accuracy when applied to
the proposed scheme and Li

4
Ti
5
O
12
lithium-ion battery cell.

5. Conclusions

This paper presents a comparison of nonlinear filtering
methods for estimating the SoC of Li

4
Ti
5
O
12

lithium-ion
battery. The Gaussian model has been selected to improve
the prediction precision of the dynamic battery model. With
the new battery model, general model-based battery SoC
estimation has been proposed. It contains the adaptive model
parameter updating technique for improving the parametric
modeling performance, an open interface for employing
adaptive filters to solve the hidden states from strong time-
varying dynamic system, and series structure based system-
atic modeling and estimation approach. Three Kalman filters
are employed to build model-based SoC estimator. With
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Figure 8: Self-correcting capability for erroneous initial SoC: (a) estimation with SoC
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the proposed model-based scheme, three advanced Kalman
filters, which include extended Kalman filter, unscented
Kalman filter, and adaptive extended Kalman filter, have been
employed to develop the SoC estimator.

The detailed evaluation and comparison are made for
model-based SoC estimator. A comparison for the SoC
estimation approach among the AEKF-based, EKF-based,
and UKF-based algorithms with the Li

4
Ti
5
O
12

lithium-
ion battery shows that the proposed method has superior
performance, which indicates that the covariance matching
approach for EKF is a useful way to improve its filter
performance. Adaptive extended Kalman filter is an optimal
choice for battery SoC estimation. Experimental results show
that the AEKF-based approach can estimate the battery SoC
accurately. Further, for different SoC initial values with big
error, the mean absolute errors of the SoC estimation are all
within 1%; more importantly, the AEKF-based approach can
ensure the estimates converge to true values quickly, less than
60 sample intervals.
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Themodular multilevel converter (MMC) is an emerging voltage source converter topology suitable for multiterminal high voltage
direct current transmission based on modular multilevel converter (MMC-MTDC). This paper presents fault characteristics
of MMC-MTDC including submodule fault, DC line fault, and fault ride-through of wind farm integration. Meanwhile, the
corresponding protection strategies are proposed. The correctness and effectiveness of the control strategies are verified by
establishing a three-terminalMMC-MTDC system under the PSCAD/EMTDC electromagnetic transient simulation environment.

1. Introduction

The rapid development of power electronic technology has
promoted the development of sustainable transportation
and power systems [1–5]. The modular multilevel converter
(MMC) was first introduced in 2001 [6] and has drawn
great attention due to its excellent output waveform and high
efficiency [7, 8]. As a new topology of voltage sourced con-
verter based high voltage direct current transmission (VSC-
HVDC),MMC-HVDC has prodigious potential in transmis-
sion and distribution applications, such as wind farm con-
nection [9–13], multiterminal operation [14], and a passive
network power supply [15].

Multiterminal HVDC transmission based on MMC
(MMC-MTDC) is defined as the flexibleHVDC transmission
system which has three or more voltage source converters
(VSCs) under the same DC grid [16]. Its prominent feature
lies in providing multiple power supplies, power receiving in
multiple places. As a more flexible and efficient power trans-
missionmode,MMC-MTDC shows great potential in renew-
able energy connection, urban DC distribution network, and
so on. In the world, there are only twoMMC-MTDC projects
and they are all in China [17]. One of which is Nanao three-
terminal MMC-MTDC project constructed in Dec. 2013
which is the world’s first MMC-MTDC project; the other one

is Zhoushan five-terminal MMC-MTDC project constructed
in Jul. 2014 which is the world’s largest number of terminals
in MMC-MTDC projects.

At present, the research of MMC-MTDC is focused on
DC voltage stability [17], which can be divided into two
categories, including controlwith communication or no com-
munication. The control with no communication is basically
adopted in the actual project which includes DC voltage
slope control and DC voltage deviation control. However, the
related research on fault protection is also rarely reported [18],
in which, a multipoint DC voltage control strategy based on
DC voltage margin method is proposed. Furthermore, the
impact of different DC faults of the system is analyzed and
the corresponding control and protection strategies are given.
This paper has been further research on fault characteristics
and control strategies ofMMC-MTDC, including submodule
fault, DC line fault, and fault ride-through of wind farm
integration.

2. MMC-MTDC System

MMC-MTDC system is composed of three or more MMC
converter stations and DC power transmission interconnec-
tion lines, as shown in Figure 1. Wherein, the structure of
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Figure 2: Structure of MMC converter station.

MMC converter station is shown in Figure 2. The system has
the advantages of providing multiple power supplies, power
receiving in multiple places, and linking several AC systems
or separating one AC system into several independent grids.

2.1. Topology of MMC. The main circuit topology of a three-
phase MMC is shown in Figure 2; the basic circuit unit of
MMC is known as submodule (SM). Each bridge arm is
constructed by a certain number of submodules and an arm
reactance 𝐿 in series.TheMMC topology can change the out-
put voltage and power level of converter in a flexible way, only
by changing the number of submodules. As a consequence,
the MMC topology has less switching losses and harmonic
distortion. In addition, the MMC topology has positive and
negative DC bus, which is especially suitable for HVDC
applications.

2.2. Mathematical Model of MMC. Considering the circum-
stances of bridge reactance, the simplified equivalent circuit
of MMC is illustrated in (1), where 𝑢

𝑠𝑎
, 𝑢
𝑠𝑏
, and 𝑢

𝑠𝑐
are

the fundamental components of the three-phase voltage in
AC side, respectively. 𝑖

𝑠𝑎
, 𝑖
𝑠𝑏
, and 𝑖

𝑠𝑐
are the fundamental

components of the three-phase current in AC side, separately.
𝐿 is the sum of bridges’ inductance which is in single-phase
as well as leakage inductance of the converter transformer.
𝑅 is the equivalent resistance which consists of bridge reactor
and converter transformer. 𝑢

𝑎
, 𝑢
𝑏
, and 𝑢

𝑐
are the fundamental

components of the three-phase voltage in converter side,
respectively [19]:

𝐿
𝑑𝑖
𝑠𝑎

𝑑𝑡
+ 𝑖
𝑠𝑎
𝑅 = 𝑢

𝑠𝑎
−𝑢
𝑎
,

𝐿
𝑑𝑖
𝑠𝑏

𝑑𝑡
+ 𝑖
𝑠𝑏
𝑅 = 𝑢

𝑠𝑏
−𝑢
𝑏
,

𝐿
𝑑𝑖
𝑠𝑐

𝑑𝑡
+ 𝑖
𝑠𝑐
𝑅 = 𝑢

𝑠𝑐
−𝑢
𝑐
.

(1)

3. Submodule Fault

Normally, the submodule fault occursmainly due to overvolt-
age, overcurrent or excessive 𝑑V/𝑑𝑡, 𝑑𝑖/𝑑𝑡, or the control fault
due to false triggering pulses. The system operation should
not be influenced by one or several fault submodules, so the
submodule needs fault redundancy protection to make the
converter have the ability of fault tolerance and improve the
reliability of the system.

3.1. Fault Characteristics. Taking phase 𝑎, for example, the
upper and lower arms energy of MMC𝑊

𝑝𝑎
and𝑊

𝑛𝑎
can be

expressed as [20]

𝑊
𝑝𝑎
=
1
2
𝐶𝑁𝑢

2
𝑐𝑝𝑎

= ∫

𝑇
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𝑈dc
2
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𝑊
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2
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(2)



Mathematical Problems in Engineering 3

1.5 2 2.5 3

0

5

10

15

20

25

30

t (s)

Ed
a (

kV
)

Eda2n

−5

(a)

0
0.2
0.4
0.6
0.8

1
1.2

−0.2

−0.4
1.5 2 2.5 3

t (s)

i d
c1

(k
A

)

(b)

Figure 3: Fault characteristics of submodule. (a) Capacitor voltage of submodules. (b) DC current.

wherein 𝐶 is capacitance value; 𝑁 is the number of sub-
modules of each bridge arm; 𝑢

𝑐𝑝𝑎
, 𝑢
𝑐𝑛𝑎

are, respectively, any
submodule voltage of upper and lower arms of phase 𝑎; 𝑇 is
frequency cycle; 𝑈dc is DC voltage; 𝑚 is voltage modulation
ratio, which ranges within (0, 1]; 𝑖

𝑝𝑎
, 𝑖
𝑛𝑎

are, respectively, the
upper and lower arms’ currents of phase 𝑎; and𝑈

𝐶
is the rated

voltage of submodule during normal operation.
By formula (2), it can be seen, when the submodule of

upper bridge arm of phase 𝑎was fault and bypass, the number
of submodules of bridge arm will be less than𝑁. In this case,
the energy of upper bridge arm of phase 𝑎 will be less than
the other bridge arm, causing the fluctuation of submodule
capacitor voltage increase, eventually leading to fluctuations
in DC current.

This part describes short-circuit fault of submodule
caused by false triggering pulses which correspond to a
fault at point 1 in Figure 1 and its simulation parameters are
shown inTable 1.Moreover, the simulationwaveforms of fault
characteristics of submodule are shown in Figure 3. When
𝑡 = 2.1 s, fault occurs in number 2 submodule of lower bridge
arm of MMC1 phase 𝑎 because the upper and lower IGBT
simultaneously turned on. Figure 3 shows that the capacitor
voltage of fault submodule rapidly drops to 0 that means
this submodule stops working and the output voltage of the
fault phase will decrease. In addition, because of the parallel
connection of three phases, DC current oscillates between
the fault phase and the other two phases and may flow into
bridge arm and pass through IGBT to cause the fluctuation
of capacitor voltage of submodule.

3.2. Fault Redundancy Protection. Redundancy protection in
cascaded H-bridge converter obtains lots of research and can
be classified into two methods [21, 22].

Method One. In normal working state, the minority of redun-
dancy submodules are in hot standby mode and the majority
are in cold standby mode. Once the submodule fails, the hot
standby submodules will replace the cold standby ones and
the cold standby submodules will become hot state. The
shortcoming is that it takes some time for the action of
redundancy submodules and capacitor recharging.

Table 1: Simulation parameters of MMC-MTDC system.

Parameters Values
Rated capacity of MMC1 100MVA
Rated capacity of MMC2 50MVA
Rated capacity of MMC3 25MVA
Transformer ratio of MMC1 (𝑌/Δ) 110 kV/86 kV
Transformer ratio of MMC2 (𝑌/Δ) 110 kV/86 kV
Transformer ratio of MMC3 (𝑌/Δ) 110 kV/86 kV
DC voltage 160 kV
Number of submodules of bridge arm 10
Modulation strategy Nearest level modulation
Capacitor voltage balancing strategy Capacitor voltage sort
Control mode of MMC1 𝑈dc, 𝑄

Control mode of MMC2 𝑃,𝑄

Control mode of MMC3 𝑃,𝑄

Method Two. The redundant submodules will not be in hot
standby state or in cold standby state but will be directly
involved in the normal operation. And once fault occurs in
the submodules which are being bypassed, DC voltage will
be shared by the remaining submodules in the bridge arm. In
order to maintain symmetric operation, the remaining nor-
mal operation phases can be bypassed by the same number of
submodules in fault phase.

By analyzing the redundancy protection method of cas-
caded H-bridge converter, this paper proposes a redundancy
protection method of MMC. This method will bypass the
monitored submodules when fault occurs and then bypass
the same number of submodules in the other bridge arm of
the same phase to keep the upper and lower bridge arms sym-
metric. Finally by adjusting the control strategies of MMC
a transition is achieved from a full submodules operation
mode to (𝑁 − 𝑥) submodules operation mode, where 𝑋
means the number of fault submodules. Generally, 𝑥 < 4.
If 𝑥 ⩾ 4, the system should stop.

Taking that fault occurring in one submodule, for exam-
ple, the specific processes of fault redundancy protection are
shown in Figure 4.
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some electrical parameters

Determining whether
the submodule is fault or not 

Blocking and bypassing
the fault submodule

Blocking and bypassing the
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Adjusting the number of submodule
in nearest level modulation

Adjusting the number of submodule in
balancing control strategy of capacitor voltage

Yes

No

Achieving a transition from a full submodule 

in the fault phase
operating mode to (N− x) submodule operating mode

Figure 4: Protection strategies flow chart of submodules fault.

(1) Monitor some electrical parameters including capaci-
tor voltage, capacitor current, and PWMpulses. Once
the submodule is at fault, block the fault submodule
and bypass it. At this time, the number of submodules
in the fault bridge arm changes to (𝑁 − 𝑥), while the
number of submodules in nonfault arm bridge of the
same phase is still𝑁.

(2) To maintain a constant DC voltage and the same
number of submodules in the upper and lower bridge
arms of the same phase, it is needed to bypass 𝑥
submodules in another arm bridge of the same phase.
At this time, the total number of submodules in the
fault phase becomes 2 ∗ (𝑁 − 𝑥), the number of
conduction submodules becomes (𝑁 − 𝑥), and the
capacitor voltage of each submodule rises to𝑈dc/(𝑁−
𝑥).

(3) The number of submodules will affect the control
strategies of pulses and DC balance; therefore the
number of submodules needs to be adjusted corre-
spondingly in the two control strategies. For example,
the total number of levels in NLM (Nearest Level
Modulation) should be reduced by one, from (𝑁 + 1)

to𝑁; sorting control should only work in the remain-
ing 2 ∗ (𝑁 − 1) submodules.

But it is important to note that the redundancy protection
should cooperate with other protections. After the fault sub-
module and its complementary submodule being bypassed,
because of the three-phase is in parallel, the normal phasewill
charge the capacitor of the remaining submodules of the fault
phase and the capacitor voltage of the fault phase will gradu-
ally rise to 𝑈dc/(𝑁 − 𝑥), so the fault phase inevitably under-
goes transient process of DC current rising. The transient
processmay cause the bridge arm short-time overcurrent and
the overcurrent will disappear after one cycle. Because the
overcurrent time is too short to accumulate enough heating
power to burn the device, and the submodule fault should
not cause overcurrent protection of the entire bridge arm to
act, this lastly causes thewhole converter to block or even shut
down.Therefore it is reasonable to set bridge arm overcurrent
protection threshold and submodules protection threshold
or to extend the action time of bridge arm overcurrent
protection to prevent the protection malfunction.

The simulation after adding redundancy protection is
shown in Figure 5. Because of the rapid blocking of the 2nd
fault submodule of lower bridge arm in 𝑎 phase (Eda2n),
Eda2n retains a certain amount of capacitor voltage, the
capacitor voltage of the complementary submodule remains
near the rating, the capacitor voltage of the rest of the normal
submodules in the fault phase rises to rating𝑁/(𝑁−1) times
of rating value andwill be stable after a short transient process
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Figure 5: Simulation effect after adding fault redundancy protection. (a) Capacitor voltage of submodule of phase 𝑎. (b) DC current. (c) DC
voltage. (d) Active power transmission.

(as shown in Figure 5(a)); the oscillation component of DC
current gradually decays to zero (as shown in Figure 5(b));
and DC voltage stability and power transmission normal are
shown in Figures 5(c) and 5(d). In summary, the redundancy
protection can make the entire system stable when the fault
occurs in submodule.

4. DC Line Fault

MMC-MTDC is a potential candidate for renewable energy
integration over long distances. DC fault is an issue that
MMC-MTDC must deal with, especially for the nonperma-
nent faults when using overhead lines. This section proposed
a protection scheme to implement fast fault clearance and
automatic recovery for nonpermanent faults on DC lines.

DC overhead line may cause bipolar short-circuit fault
due to tree branches. Compared with unipolar ground short-
circuit fault, the probability of bipolar short-circuit fault is
smaller, but the fault consequences are much more serious.
So it is necessary to research fault feature and design fault
protection specially.

Most of the overhead line faults are nonpermanent faults
and should not result in the system outage, so the system
should automatically restart after fault source disappeared

and quickly restore power supply. Therefore, the protection
is designed with the following objectives. Firstly, IGBT and
freewheeling diode should be protected. Secondly, the pro-
tection should eliminate DC arc of the fault point under the
premise of still working.Thirdly, the system can automatically
restart and quickly restore power supply after fault source
disappear andDC arc extinguish for nonpermanent fault, but
the system needs outage and overhaul for permanent fault.
Specific protection methods are as follows.

4.1. Double Thyristor Switches. A single thyristor is usually
enough if the aim is just to protect the diode from overcur-
rent. In this paper, in order to make MMC able to quickly
clear the fault current and restart power transmission after
nonpermanent faults on DC overhead line, double thyristor
switches are alternatively employed as shown in Figure 6.
The two thyristors are controlled by the same gate signal.
During normal operation, the thyristor switches are kept in
off-state condition. During DC fault, the thyristor switches
are switched on. Since bidirectional thyristor switches are
employed, not only is the fault current transferred from
diodes to thyristors, but also the aforementioned diode
freewheeling effect can be eliminated, whichmakes it possible
to extinguish the DC fault current [23].
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In the proposed protection scheme, all IGBTs should be
blocked as soon as DC fault is monitored. Simultaneously,
all thyristors should be switched on to eliminate the rectifier
mode ofMMC.The fault equivalent circuit ofMMCusing the
proposed protection scheme is shown in Figure 7. Different
from the rectifier bridges, six MMC arms become six 𝑅-𝐿
branches after all thyristors are switched on. Because of
the three-phase upper and lower arm symmetrical, DC line
positive and negative electric potential is basically the same;
DC side of MMC can be equivalent to withstand a relatively
small voltage. DC short-circuit current gradually attenuates
and disappears; the short point is naturally cut off.The role of
the bypass switch is equivalent to convert DC fault into AC
fault, thereby enabling the fault natural arcing.

4.2. The Specific Protection Process as Shown in Figure 8.
Setting the protection action threshold of DC current is 𝐼act
and the rated DC line current is 𝐼dc in normal operation
mode. Generally, 𝐼act is set to be two or three times the size
of 𝐼dc. If 𝐼dc < 𝐼act, MMC converter works in the normal
operation mode. If 𝐼dc > 𝐼act, it indicates that DC current
increases because short circuit occurs in DC line and protec-
tion acts to make MMC converter work in fault protection
mode.

Set the protection returning threshold of DC line current
as 𝐼ret in fault protection mode. Generally, 𝐼ret is set to be
a little bigger than zero. If 𝐼dc > 𝐼ret, it indicates that DC
current was not completely interrupted and still makesMMC
converter maintained in fault protection mode. If 𝐼dc < 𝐼ret, it

indicates that short-circuit current has disappeared, soMMC
converter goes into automatic recovery mode.

In automatic recovery mode, compare 𝐼dc with 𝐼act once
again. If 𝐼dc < 𝐼act, it indicates that DC fault is nonpermanent
fault, making MMC converter transfer to normal operation
mode and restore power. If 𝐼dc > 𝐼act, it indicates that DC
fault is permanent fault, so making protection act open the
breaker of AC side and conduct outage maintenance.

When 𝑡 = 0.8 s, bipolar short-circuit fault occurs in DC
overhead lines and the simulation waveforms after adding
protection are shown in Figures 9 and 10. System structure,
fault point, and simulation parameters are shown in Figure 1,
point 2 in Figure 1, and Table 1, respectively. Figure 9 shows
the simulationwaveformwhen nonpermanent fault occurs in
overhead lines. Set 𝐼act as 3 kA and 𝐼ret as 0. After monitoring
DC lines fault, fast blocking pulse acts to protect the switching
devices in case of overcurrent and keeps the capacitor voltage
of the submodule. The turning-on of bypass switch changes
the structure of fault circuit and DC fault current attenu-
ates. After the fault current arc extinguishing automatically,
applied the zero level signal to bypass thyristors, until after
20ms, all thyristors reliable shutdown, and then deblocking
IGBT,MMC converter can achieve the automatic restart. Due
to the fact that the fault is nonpermanent, the fault source has
disappeared; the DC line will not cause the second-time DC
line overcurrent and MMC converter works in the normal
mode.

The simulation waveform of permanent fault is shown in
Figure 10. Second-time overcurrent occurs when autorestart
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Figure 8: Specific flowchart of fault protection methods.

takes place. Protection AC breaker turns off, system stops
totally, and it is time-consuming to recover power supply.

5. Fault Ride-through of Wind
Farm Integration

When the wind farm connects AC grid through MMC-
MTDC system, if AC grid of the receiving end fails, then
the output power capacity of the receiving end will decrease,
while power transmission of the wind farm will be not
affected, so that active power transmission between the
sending and receiving end becomes unbalanced and that will
result in DC line voltage being too high. Therefore, control
strategy must be taken to make MMC-MTDC system pass
through AC grid fault of the receiving end, that is, the issue
of fault ride-through (FRT). By installing unloading load in
parallel in DC side to eliminate power imbalance in order to
maintain a constant DC voltage. This paper further proposes
the small and distributed unloading load which adopts

a unified control, which can not only reduce the design and
construction difficulty of the unloading load, but also can
improve the reliability of the unloading load.

The unloading load can be installed in parallel in DC side
which is a resistor controlled by IGBT, as shown in Figure 11.
When triggering IGBT to conduct, the unloading load begins
to consume energy; if IGBTworks in PWMmode, the energy
consumption of the unloading load can be quantitatively con-
trolled. The unloading load can consume power difference
thatMMC-MTDC system cannot eliminate so as to maintain
DC line voltage constant. The control strategies of suppress-
ing DC over voltage are as follows:

(1) MonitoringDC line voltage to determinewhetherDC
line is overvoltage.

(2) Setting overvoltage allowable value that is typically
1.01 to 1.05 times of rated voltage.

(3) When the monitored value of DC voltage rises more
than the allowable value, measuring the input and
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Figure 9: Simulation waveforms in nonpermanent fault after adding protection. (a) Submodule capacitor voltage of phase 𝑎. (b) DC line
voltage. (c) DC line current.
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Figure 11: Structure of the unloading load.
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Figure 12: Control block diagram of the unloading load.

output power of transmission system 𝑃gen, 𝑃out. In
order to eliminate the second harmonic fluctuations
brought by negative sequence component, 𝑃gen and
𝑃out need to filter by low pass filter (LPF).

The duty cycle of IGBT can be calculated according to
power difference, as in the following formula; the control
block diagram is shown in Figure 12:

𝐷 =

√(𝑃gen − 𝑃out) ⋅ 𝑅

𝑈
∗

dc
. (3)

This paper puts forward small and distributed unloading
load by a unified control. That is,

(1) Installed locations dispersion: it should be set at DC
outlet of MMC2 and MMC3 in the wind farm side
rather than only at DC outlet of MMC1.

(2) Installed capacity dispersion: multiple smaller capac-
ity unloading load should be chosen, whose capacity
is proportional to the capacity of MMC converter
station in the wind farm side, respectively, rather than
only a large unloading load matching with MMC1.
This not only reduces the design and construction
difficulty of the unloading load but also improves the
reliability of the unloading load.

(3) Unified control by using a set of controller: set the
input power as 𝑃gen 𝑖 (𝑖 = 1, 2, . . . , 𝑛) and the output
power as 𝑃out. According to the proportion of rated
capacity 𝑃

𝑁 𝑖
to allocate the balance of power, and

respectively calculate the turn-on duty cycle of IGBT
of each unloading load 𝐷

𝑖
(𝑖 = 1, 2, . . . , 𝑛), as in
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Figure 13: New control block diagram of the unloading load.

Table 2: Simulation parameters of three-terminal MMC-HVDC
system.

Parameters Value
Rated capacity of AC grid 300MVA
Rated capacity of wind farm 1 100MVA
Rated capacity of wind farm 2 200MVA
Transformer ratio of MMC1 (𝑌/Δ) 220 kV/150 kV
Transformer ratio of MMC1 (𝑌/Δ) 110 kV/150 kV
Transformer ratio of MMC1 (𝑌/Δ) 110 kV/150 kV
Voltage of DC bus ±150 kV
Number of submodules of bridge arm 4
Control mode of MMC1 𝑈dc, 𝑄

Control mode of MMC2 𝑉,𝑓

Control mode of MMC3 𝑉,𝑓

Modulation strategy Carrier phase-shifted
modulation

Capacitor voltage balancing strategy Capacitor voltage sort

the following formula; the control block diagram is
shown in Figure 13:

𝐷
𝑖
=

√(∑
𝑛

𝑖=1 𝑃gen 𝑖 − 𝑃out) ⋅ (𝑃𝑁 𝑖/∑
𝑛

𝑖=1 𝑃𝑁 𝑖) ⋅ 𝑅𝑖

𝑈
∗

dc
. (4)

Taking grounding short-circuit fault of phase 𝑎, for
example, which corresponds to point 1 in Figure 14, the
simulation parameters are shown in Table 2. The simulation
waveforms according to the above control strategy are shown
in Figure 15.The out power of wind farm 1 is 160MW/10Mvar
and the out power of wind farm 2 is 80MW/20Mvar in
steady-state operation. Unloading load 1 is placed in MMC2
and the resistance value is 900 ohm; the maximum 100MW
power can be consumed by unloading load 1. Unloading load
2 is placed in MMC3 and the resistance value is 1800 ohm;
the maximum 50MW power can be consumed by unloading
load 2. The trigger threshold of both unloading loads is set
to 1.05 times of DC voltage reference value. When 𝑡 = 1.5 s,
the grounding short-circuit fault of phase 𝑎 occurs, the asym-
metric component of AC line voltage emerges (Figure 15(a)).
Due to the short-circuit fault, the active power transmission
of MMC1 drops to about 120MW (Figure 15(b)). But due
to the inertia effect, active power transmission sent by two
wind farms remains 160MW and 80MW (Figure 15(c)). The
imbalance of active power transmission is reflected to DC
voltage and then the unloading load is triggered to consume
excess energy, so that making DC voltage in the vicinity of
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Figure 14: Structure of three-terminal MMC-HVDC system.
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Figure 15: Simulation waveforms of grounding short-circuit fault of phase 𝑎 in AC grid. (a) Line voltage of AC grid. (b) Power transmission
of MMC1. (c) Power transmission of MMC2 and MMC3. (d) DC bus voltage.

the reference value (Figure 15(d)) and ensuring that MMC-
MTDC system maintains the maximum power transmission
during fault.

6. Conclusions

This paper firstly described submodule fault characteristics
and proposed submodule redundancy protection for MMC-
MTDC system. Secondly, we proposed a protection scheme
to implement fast fault clearance and automatic recovery for
nonpermanent faults on DC lines. Lastly, a new fault ride-
through method for wind farm connection was proposed.

Our future work would focus on the experiment using RT-
LAB.
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As using the classical quasi-steady state (QSS) model could not be able to accurately simulate the dynamic characteristics of DC
transmission and its controlling systems in electromechanical transient stability simulation, when asymmetric fault occurs in AC
system, a modified quasi-steady state model (MQSS) is proposed. The model firstly analyzes the calculation error induced by
classical QSS model under asymmetric commutation voltage, which is mainly caused by the commutation voltage zero offset thus
making inaccurate calculation of the averageDC voltage and the inverter extinction advance angle.The newMQSSmodel calculates
the average DC voltage according to the actual half-cycle voltage waveform on the DC terminal after fault occurrence, and the
extinction advance angle is also derived accordingly, so as to avoid the negative effect of the asymmetric commutation voltage.
Simulation experiments show that the new MQSS model proposed in this paper has higher simulation precision than the classical
QSSmodel when asymmetric fault occurs in the AC system, by comparing both of themwith the results of detailed electromagnetic
transient (EMT) model of the DC transmission and its controlling system.

1. Introduction

By the end of 2013, China has built over 15 EHV and
UHV DC transmission lines; both the total length and
transmission capacity are the largest in the world [1]. These
DC transmission systems are suitable to transmit large-scale
renewable electric power generation [2–9] to the remote load
center or link the energy storage [10] and electric vehicle-to-
grid [11] devices. Due to the intervention of large-scale DC
transmission systems, especially the popular multiterminal
VSC-based DC transmission [12–15], large amount of power
electronic devices and other nonlinear elements have been
introduced into the traditional AC power systems; the fast
dynamic process of these components might increase the
difficulty in performing the electromechanical transient sim-
ulation of hybrid AC/DC systems.

In order to improve the precision and speed of elec-
tromechanical transient simulation in hybrid AC/DC system,
researchers have developed a variety of models for the DC
system, including equivalent circuit model, dynamic phasor

model, small signal linearizedmodel, and classic quasi-steady
state (QSS) model, for transient stability simulation.

The equivalent circuit DC systemmodels mainly adopted
the variable topology of converters, to establish the “center-
process” method [16], Kron’s method of tensor analysis
by studying the state matrix of inverters [17], and the
cut set matrix analysis method based on graph theoretical
framework [18]. All the equivalent circuit based DC system
models need a relatively large amount of computation for
complicated operation states of thyristors. In order to save
calculation time, other models such as the piecewise lin-
earized model are used for DC system dynamic simulation
[19]. However, these methods cannot be used in complex DC
systems, such as bipolar or multiterminal DC systems, as it
would be difficult to segment the complex converter topology.

Dynamic phasor method was firstly presented in [20];
its application for modeling of DC system, through Fourier
series expansion, has beenmainly used for harmonic analysis
of hybrid AC/DC system [21–26].

Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2015, Article ID 103649, 12 pages
http://dx.doi.org/10.1155/2015/103649

http://dx.doi.org/10.1155/2015/103649


2 Mathematical Problems in Engineering

Small signal linearizedmodel was established by applying
the actual sampling data to model the DC transmission
system in the 𝑑𝑞 reference frame [19, 27]. It is able to take
into account the nonlinear dynamic characteristics of the
converters but only suitable for the small signal dynamic
analysis, which cannot directly be transplanted to the elec-
tromechanical transient stability simulation problem.

Classical QSSmodel for the DC transmission and its con-
trolling system has the advantage of fast computation; thus
it has been widely used in hybrid AC/DC system simulation
[28]. Although several techniques have been presented to
improve the accuracy, such as adopting different step lengths
during simulation [29], classical QSS model would still give
wrong results under asymmetric faulted condition. To deal
with the DC system modeling problem for transient stability
simulation, a modified quasi-steady state (MQSS) model for
DC system is established in this study.

The structure of the paper is as follows. The next section
introduces the error causes for the classical QSS model. The
modifiedQSSmodel is presented in Section 3; it uses the inte-
gral of the actual half-cycle voltage on the DC terminals and
then calculates the average DC voltage, commutation angle,
and the extinction advance angle accordingly. Effectiveness of
the proposed model is tested on CIGRE HVDC benchmark
system in Section 4, by comparing with the simulation results
of EMT simulation software PSCAD/EMTDC. Finally, the
conclusions are given in Section 5, which show that the
proposed MQSS model has higher accuracy than classical
QSS model, while increasing very limited computational
complexity.

2. Classic QSS Model of DC System

The basic function of DC transmission system is to complete
the AC to DC (rectifier) and DC to AC (inverter) conversion
and transmission of electrical energy [30]. Taking the single
bridge rectifier as an example, the connection topology
of the converter system is shown in Figure 1. The single
bridge converter has six bridge arms; each bridge arm is
composed of one thyristor valve together with its triggering
pulse control circuit. The most important advantage of DC
system lies in its capability of controlling the converters’ firing
angles to adjust the operation mode of power systems very
quickly.

2.1. Converter Bridge Model. This section describes the clas-
sical quasi-steady state model succinctly [31]. First of all, it
is necessary to introduce the assumptions for classical QSS
model as follows:

(1) The AC system is assumed to be three-phase sym-
metric sinusoidal system, with a frequency of 50Hz
(60Hz in other countries or regions), regardless
of the harmonics and the influence of the neutral
shift.

(2) The inductance value of the series smoothing reactor
on DC side is large enough, and the performance of
DC filters is ideal, so that the influence of the ripples
can be neglected in the direct current.

Id(t)

Ud(t)

Phase a

Phase b

Phase c

1

2

3

4

5

6

Figure 1: The principal wiring diagram of single bridge rectifier.

(3) The converter transformer is thought of as ideal,
regardless of the saturation effect, excitation
impedance and copper loss, and so forth.

(4) The characteristics of thyristor valves are ideal,
namely, the voltage drop during conducting state
and the leakage current during blocking state can be
ignored, and the six valves are triggered to enter the
conducting state in turn with an equal time interval
of 1/6 cycle.

Define the firing delay angle as𝛼
𝑅
and commutation angle

as 𝜇
𝑅
; then the DC voltage of both ends of the rectifier to the

neutral point can be shown in Figure 2, where 𝑒
𝑎
, 𝑒
𝑏
, and 𝑒

𝑐

denote the three-phase symmetric voltage on the AC side of
rectifier and the symbol of𝑉

𝑖,𝑗
means that valve 𝑖 commutates

to valve 𝑗.
The instantaneous three-phase voltages can be expressed

in (1), in which 𝑈 is the RMS value of phase voltage:

𝑒
𝑎 (𝜔𝑡) =

√2𝑈 sin (𝜔𝑡) ,

𝑒
𝑏 (𝜔𝑡) =

√2𝑈 sin(𝜔𝑡 − 2𝜋
3
) ,

𝑒
𝑐 (𝜔𝑡) =

√2𝑈 sin(𝜔𝑡 + 2𝜋
3
) .

(1)

In classical QSS model, the average DC voltage can be
directly calculated according to the symmetric three-phase
commutation voltage waveform. Taking the commutation
period of valve 3 to valve 4 (the shaded area in Figure 2), for
example, the area of the shaded part can be seen as the average
DC voltage of the rectifier bridge:

𝑈
𝑑𝑅

= ∫

𝛼𝑅+7𝜋/6

𝛼𝑅+5𝜋/6
(𝑒
𝑏
− 𝑒
𝑐
) 𝑑 (𝜔𝑡) −Δ𝑉, (2)

where Δ𝑉 denotes the voltage drop caused by the com-
mutation process, which can be generally expressed as the
product of the equivalent commutation resistance𝑅

𝑅
and the

DC current on rectifier side 𝐼
𝑑𝑅

(the subscript 𝑅 indicates
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Figure 2: DC voltage on rectifier side under symmetric AC voltage
waveform.

the variables are on the rectifier side; the subscript 𝐼 shows
those belong to the inverter side).

Substitute (1) into (2):

𝑈
𝑑𝑅

=
3√2
𝜋

𝐸
𝑅
cos𝛼
𝑅
−𝑅
𝑅
𝐼
𝑑𝑅
,

𝑅
𝑅
=
3𝜔𝐿
𝑅

𝜋
,

(3)

where 𝐸
𝑅
is the RMS value of the commutation line voltage

on rectifier side/kV, 𝐼
𝑑𝑅

is the DC current on rectifier side,
𝛼
𝑅
is the firing delay angle on rectifier side/rad, and 𝐿

𝑅
is the

equivalent commutation inductance of the rectifier side/H.
The commutation angle on rectifier side can be given as

𝜇
𝑅
= cos−1 (cos𝛼

𝑅
−
√2𝜔𝐿

𝑅

𝐸
𝑅

)−𝛼
𝑅
. (4)

The RMS value of AC current on rectifier side will be

𝐼
𝑅
=
√6
𝜋

𝐼
𝑑𝑅
. (5)

The active power consumption by the converters and
corresponding power factor on rectifier side can be written
as

𝑃
𝑅
= 𝑃
𝑑𝑅

= 𝑈
𝑑𝑅
𝐼
𝑑𝑅
,

cos𝜑
𝑅
≈
1
2
[cos𝛼

𝑅
+ cos (𝛼

𝑅
+𝜇
𝑅
)] .

(6)

The formulas on inverter side of the DC transmission
system are similar to the rectifier side in the classical QSS
model; we only need to replace the variable of firing delay
angle 𝛼

𝑅
with the extinction advance angle 𝛿

𝐼
.

2.2. DC Transmission Line Model. DC line model can be
generally classified as lumped parameter circuit model,
segmented 𝜋-type equivalent circuit model [32], Bergeron
model based on distributed parameter [33], and frequency-
dependent circuit model [34], and so forth. The researchers
can choose among these different DC line models, according

UdR(t)

Id(t)

LsR Rl Ll LsI

UdI(t)

Figure 3: The equivalent circuit of the DC transmission lines.

to different accuracy requirements. In this study, it is mainly
focused on the influence of asymmetric voltage on the firing
angles of converters among different quasi-steady state mod-
els during electromechanical transient simulations; therefore,
the DC transmission line model is selected as simple lumped
parameter circuit model, such as the 𝑅-𝐿 circuit shown in
Figure 3.

According to Figure 3, it is easy to write the differential
equation of DC transmission line during the electromechan-
ical transient simulation as

(𝐿
𝑙
+𝐿
𝑠𝑅
+𝐿
𝑠𝐼
)
𝑑𝐼
𝑑 (𝑡)

𝑑𝑡
+𝑅
𝑙
𝐼
𝑑 (𝑡) = 𝑈

𝑑𝑅 (𝑡) −𝑈𝑑𝐼 (𝑡) , (7)

where 𝑅
𝑙
is the equivalent resistance of the DC transmission

line/Ω, 𝐿
𝑙
is the equivalent inductance of the DC transmis-

sion line/H, and 𝐿
𝑠𝑅

and 𝐿
𝑠𝐼
are the equivalent inductances

of smoothing reactors on each side of the DC system/H.

2.3. DC Control System Model. The DC control system
model is adopted as the CIGRE HVDC control system,
the block diagram is shown in Figure 4, and it is easy to
get the corresponding differential equation according to the
transfer function of each block. The initial value of all state
variables can be obtained from steady state power flow results.
Combining the differential equations of both the control
system and the DC transmission line equations, it is sufficient
to solve the key parameters in DC systems, such as the firing
delay angle 𝛼

𝑅
(𝑡+Δ𝑡) and the extinction advance angle 𝛿

𝐼
(𝑡+

Δ𝑡), in which Δ𝑡 denotes the step length for time domain
simulation.

2.4. Error Analysis of the Classical Quasi-Steady State Model.
From the modeling of the three parts of DC systems from
Sections 2.1 to 2.3, it can be seen that the classical QSS model
only considers the situation when the commutation voltages
are symmetric. In fact, during electromechanical transient
simulation, the last three assumptions in Section 2.1 are easily
satisfied, but the first assumption may not always be obeyed,
because the AC bus voltage will no longer be symmetric
during single phase or double phase short-circuit faults in the
AC system. If we still use the symmetric waveform related
formulas to fire the thyristors, it may bring serious deviation
to the simulation results.

The asymmetric commutation voltage in the AC system
may cause potential calculation errors for the classical QSS
model in the following ways:

(1) If the average voltage of DC side is still com-
puted according to formulas under symmetric voltage
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Figure 4: The control system of CIGRE HVDC test system.

assumption, all other parameters in the DC side will
have inevitable deviation and thus affect the accuracy
of calculation.Therefore,more precise formulas of the
average DC voltage should be derived, according to
the actual AC system operation status.

(2) If the rectifier firing delay angle and the inverter
extinction advance angle are calculated using the
symmetric waveform, the triggering pulse cannot
consider the influence of the commutation voltage
zero offset, which might lead to commutation failure
or pole blocking for the DC system.

3. The Modified QSS Model for the DC System

It has been shown that the classical QSS model could not
provide reliable simulation results under the condition of
asymmetric commutation voltage. To address this main
defect, a modified quasi-steady state model of DC system
is proposed in this paper. It would be better to use the
actual voltage waveform on the DC terminals to calculate
the average DC voltage, so as to avoid the error caused by
symmetric assumption. Before this, it should be better to find
the exact commutation voltage zero point for the triggering

pulse of each valve so as to compute the DC voltage and
extinction advance angle. Taking the inverter side of six-pulse
converter as an example, it is easy to illustrate the situation.

3.1. Exact Zero Point Prediction of Commutation Line Voltage.
Since we only care about the fundamental components dur-
ing electromechanical simulation, the influence of harmonics
and interharmonics is not considered in this study. For a given
operation status of three-phase voltage amplitude and phase
angle, formulas can be derived for predicting the six zero
points within one cycle; the detailed process is as follows.

Suppose the instantaneous three-phase asymmetric com-
mutation voltages are expressed as

𝑒
𝑎 (𝜔𝑡) =

√2𝑈
𝑎
sin (𝜔𝑡 + 𝜃

𝑎
) ,

𝑒
𝑏 (𝜔𝑡) =

√2𝑈
𝑏
sin (𝜔𝑡 + 𝜃

𝑏
) ,

𝑒
𝑐 (𝜔𝑡) =

√2𝑈
𝑐
sin (𝜔𝑡 + 𝜃

𝑐
) ,

(8)

using phase 𝑎 and phase 𝑐 to derive the prediction formula of
the first line voltage zero point 𝐶

1
. From (8), the line voltage

𝑒
𝑎𝑐
(𝜔𝑡) can be written as

𝑒
𝑎𝑐 (𝜔𝑡) =

√2𝑈
𝑎
sin (𝜔𝑡 + 𝜃

𝑎
) −√2𝑈

𝑐
sin (𝜔𝑡 + 𝜃

𝑐
) . (9)
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At the line voltage zero point 𝐶
1
, it should satisfy that

𝑒
𝑎𝑐
(𝐶
1
) = 0, according to (9):

𝑈
𝑎
sin (𝐶1 + 𝜃𝑎) = 𝑈

𝑐
sin (𝐶1 + 𝜃𝑐) . (10)

Applying the trigonometric transformation, the zero
point 𝐶

1
can be calculated by (12). Consider

sin (𝐶1) [𝑈𝑎 cos (𝜃𝑎) −𝑈𝑐 cos (𝜃𝑐)]

= cos (𝐶1) [𝑈𝑐 sin (𝜃𝑐) −𝑈𝑎 sin (𝜃𝑎)] ,
(11)

𝐶1 = arctan(
𝑈
𝑐
sin 𝜃
𝑐
− 𝑈
𝑎
sin 𝜃
𝑎

𝑈
𝑎
cos 𝜃
𝑎
− 𝑈
𝑐
cos 𝜃
𝑐

)±𝜋. (12)

The calculation formulas for the rest five line voltage zero
points within one cycle can be acquired similarly, which are
listed in

𝐶2 = arctan(
𝑈
𝑏
sin 𝜃
𝑏
− 𝑈
𝑐
sin 𝜃
𝑐

𝑈
𝑐
cos 𝜃
𝑐
− 𝑈
𝑏
cos 𝜃
𝑏

)±𝜋,

𝐶3 = arctan(
𝑈
𝑎
sin 𝜃
𝑎
− 𝑈
𝑏
sin 𝜃
𝑏

𝑈
𝑏
cos 𝜃
𝑏
− 𝑈
𝑎
cos 𝜃
𝑎

)±𝜋,

𝐶4 = 𝐶1 +𝜋,

𝐶5 = 𝐶2 +𝜋,

𝐶6 = 𝐶3 +𝜋.

(13)

3.2. Determination of Triggering Pulse. During the simulation
process of asymmetric faults, due to the influence of the line
voltage zero offset, phase locking device, and the DC control
system, the actual firing delay angles for thyristor valves will
not be equal to the initial angles given by the triggering pulse
control system.

In order to address the influence of zero offset on the
DC control system, the firing angle 𝛼 by the control system
is calculated by average value of the three adjacent zeros to
determine a more accurate triggering pulse for each valve.
This method is able to avoid the inaccurate triggering effect
of classical QSS model during asymmetric faults. According
to the exact commutation line voltage zero instants calculated
by (12) and (13), triggering pulse of valve 3 can be acquired,
and then the other five pulses can be obtained through the
equidistant firing control as follows:

𝑝3 =
(𝐶1 + 𝛼

𝐼
+ 2𝜋/3 + 𝐶2 + 𝛼

𝐼
+ 𝜋/3 + 𝐶3 + 𝛼

𝐼
)

3
,

𝑝2 = 𝑝3 −
𝜋

3
,

𝑝1 = 𝑝2 −
𝜋

3
,

𝑝6 = 𝑝1 −
𝜋

3
,

𝑝5 = 𝑝6 −
𝜋

3
,

𝑝4 = 𝑝5 −
𝜋

3
,

(14)

Table 1: The relationship between 𝑝, 𝑞, and 𝑟 and three-phase 𝑎, 𝑏,
and 𝑐 for each triggering pulse.

Pulses 𝑝
1

𝑝
2

𝑝
3

𝑝
4

𝑝
5

𝑝
6

𝑝 𝑎 𝑐 𝑏 𝑎 𝑐 𝑏

𝑞 𝑐 𝑏 𝑎 𝑐 𝑏 𝑎

𝑟 𝑏 𝑎 𝑐 𝑏 𝑎 𝑐

p5 p6 p1 p2 p3 p4
pp3 pp2 pp1

C1

C2

C3

𝛼1

𝛼1 + 2𝜋/3

𝛼1 + 𝜋/3

Angle (rad)
0 𝜋/2 𝜋 3𝜋/2

ea

eb ec

Vo
lta

ge
 (k

V
)

0

Figure 5:The determination of triggering pulse for the valves on the
inverter side.

where 𝛼
𝐼
is the inherent firing delay angle on the inverter side

that is initially set by the DC control system/rad.
Figure 5 shows the schematic diagram of triggering pulse

of each valve on the inverter side, according to fault fun-
damental component of asymmetric commutation voltage
by (8), where the parameters are chosen as 𝛼

𝐼
= 2.3 rad,

𝑈
𝑎
= 51.249 kV, 𝑈

𝑏
= 113.268 kV, 𝑈

𝑐
= 119.422 kV, 𝜃

𝑎
=

−0.7187 rad, 𝜃
𝑏
= −1.8384 rad, and 𝜃

𝑐
= −4.3136 rad.

It can be seen in Figure 5 that the three dashed lines of
pulse 𝑝𝑝

1
, 𝑝𝑝
2
, and 𝑝𝑝

3
are firing time instants for valve 3

by applying the three zeros 𝐶
1
, 𝐶
2
, and 𝐶

3
, respectively. The

solid line pulse 𝑝
3
is the average of these three firing angles,

according to (14), and then the firing angles for other valves
can be obtained by the equidistant firing control.

During the commutation process, three valves are partici-
pating; thus the valves can be divided into three classes. In this
study, the valve that is entering into the commutation status
is defined as 𝑝 phase, and exiting phase is defined as the 𝑞
phase, and the other half bridge that remains conducting is
called the 𝑟 phase. For example, the relationship between 𝑝,
𝑞, and 𝑟 and original three-phase 𝑎, 𝑏, and 𝑐 for each triggering
pulse plotted in Figure 5 can be shown in Table 1.

3.3. Average DC Voltage Calculation. Similar to the classical
QSS model in Section 2.1, the average DC voltage under
asymmetric faults can be calculated by the integral of actual
commutation line voltage waveform on the DC terminals.
Also, the voltage drop Δ𝑉 caused by DC current during the
commutation process can still be replaced by the voltage drop
on the equivalent commutation resistance.

According to Table 1, it is easy to obtain the entering,
exiting, or conducting state of all the valves on the inverter
side during the commutation period, and it is sufficient to
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calculate the exact DC voltage waveform and thus the DC
voltage calculation formulas, which are shown in Table 2. In
Table 2, 𝑝

𝑖
denotes the firing angle for valve 𝑖 (𝑖 = 1, 2, . . . , 6),

and 𝜇
𝑖
is the commutation angle of the valve 𝑖 after it has been

triggered.
Using the last column of Table 2 to succinctly express the

exact DC voltage waveform, then the average DC voltage can
be calculated by the integral of six segments within one cycle:

𝑈
𝑑𝐼
= −

1
2𝜋

6
∑

𝑖=1
(−1)𝑖−1 (∫

𝑝𝑖+1

𝑝𝑖

𝑒
𝑝𝑟𝑖 (𝜔𝑡) 𝑑𝜔𝑡 −Δ𝑉) , (15)

where 𝑒
𝑝𝑟𝑖
(𝜔𝑡) is the general DC voltage formula in the last

column of Table 2 within each time period, Δ𝑉 is the voltage
drop caused by commutation/kV, and 𝑝

𝑖
is the electric angle

of the triggering pulse for valve 𝑖/rad.
Similar to classical QSS model, the voltage drop Δ𝑉

caused by commutation can also be calculated approximately
through the voltage drop on equivalent resistance of the
inverter side. Accordingly, the DC average voltage on the
inverter side of the new MQSS model can be derived as
follows:

𝑈
𝑑𝐼
= −

1
2𝜋

6
∑

𝑖=1
(−1)𝑖−1 (∫

𝑝𝑖+1

𝑝𝑖

𝑒
𝑝𝑟𝑖 (𝜔𝑡) 𝑑𝜔𝑡)−𝑅

𝐼
𝐼
𝑑𝐼
. (16)

Considering that the commutation voltage contains only
the fundamental component, it is sufficient to integrate the
average DC voltage by half-cycle voltage waveform. Taking
the half-cycle voltage waveform from the triggering point
of valve 6 to valve 3 of the inverter side as an example, the
actual DC terminal voltage waveform on the inverter side can
be shown as the shaded part in Figure 6, according to the
expressions of DC voltages of Table 2.

Then the average DC voltage from 𝑝
6
to 𝑝
3
can be

calculated as

𝑈
𝑑𝐼
= −{

1
𝜋
(∫

𝑝1

𝑝6

𝑒
𝑐𝑏 (𝜔𝑡) 𝑑𝜔𝑡 +∫

𝑝2

𝑝1

𝑒
𝑎𝑏 (𝜔𝑡) 𝑑𝜔𝑡

+∫

𝑝3

𝑝2

𝑒
𝑎𝑐 (𝜔𝑡) 𝑑𝜔𝑡)−𝑅

𝐼
𝐼
𝑑𝐼
} .

(17)

Solving the integral formula above, we can get the average
DC voltage on the inverter side as shown in (18), under
asymmetric commutation voltage:

𝑈
𝑑𝐼
= −{

√2
𝜋

[𝑈
𝑏
(cos (𝑝6 + 𝜃𝑏) − cos (𝑝5 + 𝜃𝑏))

−𝑈
𝑐
(cos (𝑝6 + 𝜃𝑐) − cos (𝑝5 + 𝜃𝑐))

+𝑈
𝑏
(cos (𝑝5 + 𝜃𝑏) − cos (𝑝4 + 𝜃𝑏))

−𝑈
𝑎
(cos (𝑝5 + 𝜃𝑎) − cos (𝑝4 + 𝜃𝑎))

+𝑈
𝑐
(cos (𝑝4 + 𝜃𝑐) − cos (𝑝3 + 𝜃𝑐))

−𝑈
𝑎
(cos (𝑝5 + 𝜃𝑎) − cos (𝑝3 + 𝜃𝑎))] − 𝑑𝐼𝐼𝑑𝐼} .

(18)

p5 p6 p1 p2 p3 p4

C1

C2

C3

C4

C5

C6

ΔV

eac

eab

ecb

ea

eb ec

Angle (rad)

Vo
lta

ge
 (k

V
)

0

0

𝜋/2 𝜋 3𝜋/2

Figure 6: Actual DC voltage waveform analysis on the inverter side
during asymmetric commutation line voltage.

The calculation process of average DC voltage on the
rectifier side is similar. After obtaining the DC voltages on
both sides of each DC system, other variables of DC system
can then be calculated.

4. Model Validation

In order to test the validity of the proposed MQSS model,
simulations are performed onCIGREHVDCbenchmark test
system; according to the newmodel, the classical QSSmodel,
and the power system EMT model from PSCAD software,
results from PSCAD are chosen as the comparison reference,
because it contains the full electromagnetic transient models
that can take into consideration all dynamic performance of
the DC system.

4.1. Three-Phase Symmetric Short-Circuit Fault on Inverter
Side. At 1.0 s, a three-phase symmetric short-circuit ground-
ing fault occurs on the AC bus of the inverter side, the
grounding resistance is set as 0Ω, the fault lasts for 0.1 s,
and the total simulation time is 1.5 s. With the same initial
steady state and faulted operation conditions, the calculation
results of the three models for the DC system, namely, the
newmodified quasi-steady statemodel (marked with “new”),
the electromagnetic transient model (marked with “EMT”),
and classical quasi-steady state model (marked with “QSS”),
are shown in Figures 7–9. Among them, the ordinates are
DC current of the inverter side, DC voltage on inverter side,
and DC voltage on rectifier side in per unit system, and the
abscissas are simulation time in seconds.

It can be seen from the curves of Figures 7–9 that
the simulation results of both the new MQSS model (the
solid blue curve) and the classical QSS model (the dotted
green curve) match well with results of the EMT simulation
(the dashed magenta curve), which demonstrates that both
models are suitable to model three-phase faults since the
commutation voltages are symmetric.Thepercent overshoots
of the new MQSS model when the fault occurs and is being
cleared are a bit more than the classical QSS model, because
we use the measured half-cycle AC voltage waveform to
calculate the DC variables, but the AC voltage waveform
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Table 3: Steady state DC values and errors during the 100ms three-phase short-circuit fault for both QSS and MQSS models.

EMT model (pu) QSS model (pu) Modified model (pu) Absolute error
of QSS model

Absolute error
of modified

model
𝐼
𝑑

0.5500 0.5500 0.5500 0 0
𝑈
𝐷𝐼

0 0.0561 0.056 0.0561 0.0560
𝑈
𝐷𝑅

0.0050 0.0670 0.0670 0.0170 0.0170

t (s)

1.8
1.6
1.4
1.2
1

0.8
0.6
0.4
0.2
0
0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

I d
(p

u)

Id_new
Id_EMT
Id_QSS

Figure 7: DC current transient waveform on the inverter side
during three-phase grounding fault.
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Figure 8:DCvoltage transientwaveformon the inverter side during
three-phase grounding fault.

immediately after fault’s occurrence and clearance is highly
distorted. In electromechanical transient stability study, we
care more about the AC fundamental components and the
steady state DC values during and after faults; therefore, the
comparison of steady state DC values during faults (from
time 1.0 s to 1.1 s) and corresponding errors of the two QSS
models to EMT model are given in Table 3.

It can be seen from Table 3 that there is only slight
differences between the calculation results of all threemodels;
the steady state DC values during the 100ms fault period
for classical QSS model and new MQSS model are similar.
This demonstrates that new MQSS model is reasonable and
credible under symmetric commutation voltage condition,

1.2

1

0.8

0.6

0.4

0.2

0

−0.2

−0.4

t (s)
0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

U
D
R

(p
u)

UDR_new
UDR_EMT
UDR_QSS

Figure 9:DC voltage transient waveformon the rectifier side during
three-phase grounding fault.

although it utilizes the half-cycle measured faulted voltage
waveform to predict the commutation voltage zero points and
triggering pulse even during symmetric short-circuit faults.

4.2. Single Phase Grounding Fault on Inverter Side. Under
asymmetric fault occurring on theACbus of the inverter side,
the voltage asymmetry is mainly decided by fault resistance.
If the fault resistances are different, the asymmetric degree of
the AC bus voltage will also be different. In this study, we use
different values of the AC fault resistance under asymmetric
faults to investigate the validity of the proposedMQSSmodel.

At 1.0 s, a single phase grounding fault occurs on the AC
bus of the inverter side, grounding resistance is 10Ω, and
the fault lasts for 0.1 s, and the simulation results for the new
model, EMT model, and classical QSS model are shown in
Figure 10 to Figure 12.

It can be seen from Figures 10–12 that the calculation
results of the new MQSS model are closer to EMT model
than to the classical QSS model with same asymmetric fault
conditions, although the percent overshoots of our MQSS
model when the fault occurs and is being cleared are a bit
more than the classical QSS model, which is caused by the
fast controlling effect of the converters in the DC systems.
The steady state values of the DC variables have higher
accuracy using the new model, because it is able to address
the zero point offsets and triggering pulse shifts during
electromechanical transient stability simulation.

The comparison of steady state DC values during the
single phase grounding fault (from time 1.0 s to 1.1 s) and
corresponding errors of the two QSS models to EMT model
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Table 4: Steady state DC values and errors during the 100ms single phase grounding fault for QSS and MQSS models.

Single phase
grounding
resistance (Ω)

Parameters EMT model (pu) QSS model (pu) Modified model (pu)
Relative error
of QSS model

(%)

Relative error of
modified model

(%)

0
𝐼
𝑑

0.5500 0.6000 0.5481 9.09 0.34
𝑈
𝐷𝐼

0 0.4267 0.1954 — —
𝑈
𝐷𝑅

0.0507 0.4600 0.1843 807.30 263.51

10
𝐼
𝑑

0.5820 0.7338 0.5512 44.81 5.29
𝑈
𝐷𝐼

0.2929 0.5925 0.3331 102.29 13.72
𝑈
𝐷𝑅

0.3000 0.6139 0.3440 104.63 14.67

20
𝐼
𝑑

0.6823 0.8426 0.7164 23.49 5.00
𝑈
𝐷𝐼

0.5400 0.6929 0.5846 28.31 8.26
𝑈
𝐷𝑅

0.5600 0.7360 0.6001 34.73 7.16
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Figure 10: DC current transient waveform on the inverter side
under single phase grounding fault.
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Figure 11: DC voltage transient waveform on the inverter side under
single phase grounding fault.

are given in Table 4. It can be seen from the data in Table 4
that the simulation errors of proposed new MQSS model
are comparatively smaller than the classical QSS model,
because the new model is able to consider the asymmetric
commutation voltage under single phase grounding fault, and

Table 5: Simulation results forQSS andMQSSmodels under double
phase-grounded faults with small grounding resistances.

Double
phase-grounded
resistance (Ω)

EMTModel QSS model 𝛼
𝐼

(rad) Modified model

0 Blocking Blocking Blocking
20 Blocking 2.1817 Blocking
40 Blocking 2.2689 Blocking
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Figure 12:DCvoltage transientwaveformon the rectifier side under
single phase grounding fault.

the deviations of classical QSS model to the EMT model are
relatively larger. For example, when the grounding resistance
is 10Ω, the error rate of the calculated DC average voltage
on the inverter side 𝑈

𝐷𝐼
during the 100ms fault period

by the new model has reduced by 88.57%, comparing to
the calculated value by the classical QSS model; the error
rate of the DC average voltage on the rectifier side 𝑈

𝐷𝑅
is

reduced by 89.96%, and the error rate of the DC average
current 𝐼

𝑑
is reduced by 39.52%. It demonstrates that the

newmodified quasi-steady statemodel has excellent ability to
simulate the DC system under asymmetric faulted situation
for electromechanical transient stability simulations.
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Table 6: Steady state DC values and errors during the 100ms double phase-grounded fault for QSS and MQSS models.

Double
phase-grounded
resistance (Ω)

Parameters EMT model (pu) QSS model (pu) Modified model (pu) Relative error of
QSS model (%)

Relative error of
modified model

(%)

60
𝐼
𝑑

0.6500 0.8500 0.7470 30.77 14.92
𝑈
𝐷𝐼

0.4800 0.7400 0.6217 54.17 29.31
𝑈
𝐷𝑅

0.4750 0.7250 0.6380 52.63 34.32

80
𝐼
𝑑

0.7050 0.8840 0.7069 25.39 0.27
𝑈
𝐷𝐼

0.5700 0.7790 0.5733 36.67 5.79
𝑈
𝐷𝑅

0.5750 0.7800 0.6424 35.65 11.72

100
𝐼
𝑑

0.7900 0.9200 0.8104 16.46 2.58
𝑈
𝐷𝐼

0.6500 0.8000 0.6486 23.08 0.22
𝑈
𝐷𝑅

0.6520 0.8150 0.6623 25.00 1.58

4.3. Double Phase-Grounded Fault on Inverter Side. Since
double phase-grounded fault usually induces more severe
asymmetry than phase-to-phase short-circuit, the phase-to-
phase short-circuit asymmetric fault type is not included in
this study. At 1.0 s, a double phase-grounded fault (assuming
to be phase 𝑎 and phase 𝑏) occurs on the AC bus of the
inverter side, and the fault lasts for 0.1 s. Since the waveforms
for the DC variables of the new model, EMT model, and
classical QSS model are similar to the figures shown in
Section 4.2, the figures are omitted, and the simulation results
of the newMQSSmodel are closer to EMTmodel than to the
classical QSS model under identical fault conditions.

Typically, the smaller the short-circuit grounding resis-
tance, the lower theACvoltage; thus the commutation voltage
asymmetry degree is larger. It is essential to simulate the
more serious condition, such as commutation failure andpole
blocking for the DC system.

In the accurate EMT simulation model, continuous com-
mutation failure and HVDC pole blocking for the DC system
can be encountered when the grounding resistance is from 0
to 40Ω, with the initial firing delay angle of the inverter side
𝛼
𝐼
equal to 1.57 rad. However, no pole blocking phenomenon

appears when the grounding resistance is 20 to 40Ω for the
classical QSS model, and the pole blocking phenomenon can
be reflected accurately by our new MQSS model, as shown
in Table 5. It can be indicated from Table 5 that the modified
QSS model is able to simulate the continuous commutation
failure and pole blocking of the DC system during severely
asymmetric AC faults; the simulation results are consistent
with the accurate EMT model.

For larger grounding resistance from 60 to 100Ω under
double phase-grounded fault, the simulation results and
corresponding errors of the two QSS models to referenced
EMT model are given in Table 6. It can be seen from the
data in Table 6 that the simulation errors of new MQSS
model proposed in this paper are comparatively smaller than
the classical QSS model. During the 100ms (1.0 s–1.1 s) fault
period, the relative errors of the average DC current and
voltage variables by the new MQSS model are smaller than
classical QSS model; the error can be reduced by 15% at
least.

To conclude, the QSS-type models are developed for
electromechanical transient simulation, which has much
larger time steps and simulation duration than electromag-
netic transient simulation. Therefore, the requirements are
to reduce the amount of calculation time of electromagnetic
computation, while maintaining high accuracy. It is well
accepted that the detailed electromagnetic transient simu-
lation programs, such as PSCAD/EMTDC, can provide the
reference values; thus we compare both the proposed MQSS
and the conventional QSS with the results of PSCAD. The
accuracy of our MQSS model has shown to be substantially
improved comparing with the conventional QSS model dur-
ing asymmetric faults. And the computation time does not
increase much, as indicated by the additional multiplications
and additions in (12), (13), and (14) during the processes of
zero point prediction and triggering pulse determination.

5. Conclusion

In power system electromechanical transient stability studies,
the classical quasi-steady state (QSS) model is not able
to accurately simulate the dynamic characteristics of DC
transmission and its controlling system when asymmetric
fault occurs in AC system; therefore, a new modified quasi-
steady statemodel (MQSS) is proposed in this paper.The new
MQSS model utilizes the actual half-cycle voltage waveform
on the DC terminals to predict the exact zero points of
commutation voltages and then calculate the average DC
voltages and the extinction advance angles, so as to avoid
the negative effect of the asymmetric commutation voltage
distortion. Simulation experiments show that the newMQSS
model proposed in this paper can reduce the simulation
error by 15% at least compared to the classical QSS model,
under single phase grounding and double phase-grounded
asymmetric faults in the AC system, by comparing both of
the two models with the results of the detailed EMT model.
Because the new MQSS model is capable of reflecting the
dynamic characteristics of DC systems without consider-
ing the complicated electromagnetic transient processes in
typical EMT models, it is very suitable for transient stability
simulation in hybrid AC/DC power systems.
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This paper aims to discuss the trip mode choice problem by using cumulative prospect theory (CPT) rather than utility
maximization from the network uncertainty perspective and evaluates the effect of the integrated service mode on taxi network
equilibrium.The integrated servicemodemeans taxis either are activelymoving through traffic zones to pick up customers (cruising
mode) or are queued at the center of a zone waiting for customers (dispatch mode). Based on this, CPT models are adopted to
analyze the choice of customers’ trip mode. The travel time uncertainty of the network and the applicability of CPT are considered
first, and theNested Logit model was used to complete the tripmode split problem. Further, several relevant relationships including
supply-demand equilibrium, network conditions, taxi behavior, and customer behavior perspectives were analyzed with respect to
the integrated mode. Moreover, a network equilibrium model was established and its algorithm was designed. Finally, this paper
presented a numerical example and discussed the taxi network equilibrium’s characteristic after introducing the integrated service
mode.

1. Introduction

Public transport via taxi has increasingly become an impor-
tant service tomodernity because of its personalized and flex-
ible service, comfort, and available speed among other things.
Despite its growing popularity, problems have emerged in
the practical operation of the taxi market. For instance, it
is well known that automobiles used in the taxi service are
responsible for consuming a considerable amount of energy.
This energy consumption is magnified under the conditions
where there is a higher vacancy ratio in the taxi market. The
pollution produced as a by-product of this industry is there-
foremuchworse and seriously threatens energy sustainability
as well as posing a serious risk to the environment. Based on
this, two types of measures are needed in order to alleviate
the negative impacts of such an important transportation
service. To address the environmental impact of taxi trip,
both the alternatively fueled vehicles and cleaner fuels have
been proposed to provide taxi service [1]. Management
policies which effectively advance the operational efficiency

needed to be explored have also been proposed as a means
of curbing the concerns associated with the industry. This
investigation seeks to elucidate ways to improve the level of
service and the operational situation through improvement
to the management policies.

Different taxi policies have been heavily researched since
the 1970s with current policies in the taxi field primarily
concentrated on market regulations (i.e., entry restrictions
and price control). Douglas, who first studied the aggregated
model as a precursor in the realm of taxi networks, intro-
duced the realm to economists that have proceeded to inves-
tigate the characteristics of different taxi markets, enabling
them to understand the equilibrium between supply and
demand in regulatedmarkets [2–7].Despite all the research, it
is known and accepted that the taximarket is not the idealized
market for conventional economic analyses since the spatial
features of the road network are not considered [8]. From
this standpoint, Yang and Wong et al. devised a series of
models considering fluctuations in supply and demand over
variations in time and space of Hong Kong for 1998–2011.
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In a previous attempt, Yang et al. sought to characterize taxi
movements in a road network for a given origin-destination
demand pattern, discussing the relationship between cus-
tomer demand and taxi utilization by analyzing the impact of
congestion, various markets, multiple user classes, stochastic
travel time, and price formulation among other things [9–
14]. Yang et al. [15] analyzed bilateral searching and meeting
relationships between taxis and customers and studied fare
control in competitive taxi markets. Further, by considering
Pareto efficiency, Yang et al. [16] were able to evaluate quality
of service and taxi utilization.

Despite all of the research over the years, models dis-
cussed typically account for the cruising service mode when
determining regulations and the equilibrium problem; lim-
ited attention has been paid to othermodes. In one of the first
studies discussing multiple modes, Arnott [17] suggested that
the dispatch mode was more effective in small cities and the
cruising mode was more effective in large cities. von Massow
and Canbolat [18] developed a model used to simulate the
dispatchmode.One of the first to suggest this,Maria Salanora
et al. [19], asserted that the integrated taxi service mode (e.g.,
cruising and dispatch modes) would be better in big cities.

Recently, in terms of prospect theory which assumes
that lotteries are evaluated in a two-step process: an initial
phase of editing and a subsequent phase of evaluation, a
lot of achievements have been also published [20]. van de
Kaa [21, 22] investigated the application of prospect theory
and expected utility theory (EUT) where it is assumed that
decision maker’s attitude toward risk can be rationalized
by an expected utility function in trip choice behavior and
concluded that, by extending the prospect theory further, it
would be suitable to describe traveler behavior. Supporting
this assumption, Li and Hensher [23] demonstrated that
prospect theory was more suitable for researching travelers
decision by analyzing the application of prospect theory in
physics, behavior economics, and transportation fields and
finally summarized the application constraints of prospect
theory in transportation field.

By constructing and analyzing a supply-demand model,
the impact factor on the market is evaluated as well as the
taxis. The aim was to explore the essential characteristics of
the taxi market and provide effective, valuable management
policies based on the findings.

In this model, the expected utility theory was replaced
with cumulative prospect theory to describe the split in
customer trip mode. Cumulative prospect theory is regarded
as a bounded rationality model reflective of the uncertainty
and complication inherent to real road networks, expressing
a decision maker’s attitude toward risk. Based on this, we
consider the coexistence of cruising and dispatch modes
to generate the model used for this paper. The equilibrium
model describes the customer-search behavior of vacant-taxi
drivers and the interactions between cruising and dispatch
modes. Finally, parameters, such as customer-waiting time
and taxi-searching time, were identified and evaluated based
on variation in traffic zones and fleet sizes.

The rest of this paper is structured as follows: Section 2
is an analysis of the applicable characteristics of cumulative
prospect theory and establishes the trip mode model for

travelers based on CPT. Section 3 describes the relation-
ship between cruising mode and dispatch modes presenting
a supply-demand equilibrium relationship with customer
demand variation in taxi market. Section 4 promotes a joint
taxi network model of trip distribution and assignment.
Section 5 explains the detailed steps of the algorithm devel-
oped to establish the supply-demand equilibrium mode.
Section 6 describes the network conditions and parameters
utilizing a numerical example and discusses the characteristic
of equilibrium state with respect to the results. Finally, the last
section makes a conclusion and proposes future extensions
for the current taxi model.

2. The Trip Mode Choice Model Based on CPT

It was assumed that there are two modes of taxi service
available (i.e., cruising and dispatch) as well as other transit
modes (bus, rail system, etc.) for customers on a given
network. In terms of cruisingmode, it means that taxi cruises
on roadway to pick up next customers. In terms of dispatch
mode, its implementation effect is greatly dependent on the
installation rate of in-vehicle navigation system. However,
there is a smaller popularizing rate of intelligent system in
most current taxi markets. Thus, this paper adopts a simple
dispatch policy which means that taxis were required to
queue at the center of zone or the gravity point of zone to
search for next customers by means of the achievements of
vonMassow andCanbolat [18]. Based on this assumption, the
trip mode choice process may be broken down as follows.

From Figure 1, it can be seen that subsets of alternatives
whose properties are similar are grouped in hierarchies or
nests. The multinominal logit model (MNL) is used to esti-
mate the probability of trip mode choice for the alternatives
of the lower nest, including both cruising and dispatching
servicemodes. And furthermore, at the higher nest, theMNL
model consisting of composite taxi mode and other transit
modes can be also estimated. Thus, the Nested Logit model
is suitable to be used to study the trip mode choice problem
described by this paper.

2.1.TheDescriptions of Travel Cost. The total travel time from
zone 𝑖 to zone 𝑗 of customers involves the travel time on
roadway and the waiting time which may be expressed as

𝑡
𝑐
= 𝑡
𝑖𝑗

𝑐
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𝑐𝑐

𝑖
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In the preceding equations 𝑡
𝑐
is the total time of cruising

mode, 𝑡
𝑑
is the total time of dispatch mode, and 𝑡

𝑇
is the total

time of other transit modes, while 𝑡
𝑖𝑗

𝑐
and 𝑡
𝑖𝑗

𝑑
are the travel

time of taxis and 𝑡
𝑖𝑗

𝑇
is the travel time of other forms of transit

from zone 𝑖 to zone 𝑗. 𝑊𝑐𝑐
𝑖

is the waiting time of customers
that choose cruising mode in zone 𝑖 and 𝑊

𝑑𝑐

𝑖
is the waiting

time of customers choosing cruisingmode in zone 𝑖, and𝑊
𝑇𝑐

𝑖

refers to the waiting time of customers choosing other modes
of transit in zone 𝑖.
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The trip mode choice of travelers
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Figure 1: The trip mode choice process of travelers.

With 𝑈 defined as trip cost the variable 𝑈(𝑡
𝑙
) indicates

the cost brought by the perception time of mode 𝑙 while
𝑈(𝑡expected) denotes the cost of the expected travel time
relevant to a reference point and can be expressed as follows:

𝑈(𝑡
𝑙
) = 𝜃trip𝑡𝑙,

𝑈 (𝑡expected) = 𝜃trip𝑡expected,

𝑥 = 𝑈 (𝑡expected) −𝑈 (𝑡
𝑙
) .

(2)

In the model, 𝑥 refers to the gain obtained by trip mode if
𝑈(𝑡expected) ≥ 𝑈(𝑡

𝑙
), while 𝑥 is the loss obtained by trip mode

if 𝑈(𝑡expected) < 𝑈(𝑡
𝑙
).

A set reference point makes distinguishing between gain
and loss of a trip with respect to CPT possible for prospective
customers. Customers typically perceive gain or loss by
comparing trip cost with the reference point cost. In this
context, it was assumed that a reference point may be related
to the actual travel time experienced, typically about 30
minutes, and was thus used for this study [20].

2.2. Cumulative Prospect Theory. CPT refers to the applica-
tion of cumulative function to gains and losses. An uncertain
prospect 𝑓 is a function that assigns to each state of 𝑆 a
corresponding outcome. The prospect values are required to
be arranged in increasing order to calculate the cumulative
function. The prospect 𝑓 can be regarded as a sequence of
pairs (𝑥

𝑙
, 𝐴
𝑙
), which yields𝑥

𝑙
if𝐴
𝑙
occurs, and𝐴

𝑙
is a partition

of 𝑆. The variable 𝑓
+ indicates the positive outcomes of 𝑓

and 𝑓
− does the negative outcomes. For 𝑓 = (𝑥

𝑙
, 𝐴
𝑙
) and

−𝑚 ≤ 𝑙 ≤ 𝑛, the relevant expressions are as follows:

𝑉 (𝑓) = 𝑉 (𝑓
+

) +𝑉 (𝑓
−

) , (3)

𝑉 (𝑓
+

) =

𝑛

∑

𝑙=1
𝜋
+

𝑙
(𝑓
+

) V (𝑥
𝑙
) , (4)

𝑉 (𝑓
−

) =

−1
∑

𝑙=−𝑚

𝜋
−

𝑙
(𝑓
−

) V (𝑥
𝑙
) , (5)

where𝑉(𝑓
+

) is the projected gains and𝑉(𝑓
−

) is the projected
losses. Further, if 𝐴

𝑙
is given by a probability distribution

𝑃(𝐴
𝑙
) = 𝑃

𝑙
, 𝑓 can be regarded as an uncertain prospect

(𝑥
𝑙
, 𝑃
𝑙
). Here, 𝜋+

𝑙
(𝑓
+

) can be expressed as

𝜋
+

𝑛
= 𝑤
+

(𝑝
𝑛
) 𝑙 = 𝑛, (6)

𝜋
+

𝑙
= 𝑤
+

(𝑝
𝑙
+ ⋅ ⋅ ⋅ + 𝑝

𝑛
) −𝑤
+

(𝑝
𝑙+1 + ⋅ ⋅ ⋅ + 𝑝

𝑛
)

0 ≤ 𝑙 ≤ 𝑛 − 1.
(7)

With the assumption of continuous traffic flow on a given
roadway the distribution function can be introduced into this
model as shown in

𝑝
𝑙
+ ⋅ ⋅ ⋅ + 𝑝

𝑛
= 1− (𝑝

−𝑚
+ ⋅ ⋅ ⋅ + 𝑝

𝑙−1) = 1−𝐹 (𝑥
𝑙−1) ,

𝑝
−𝑚

+ ⋅ ⋅ ⋅ + 𝑝
𝑙
= 𝐹 (𝑥

𝑙
) .

(8)

When combined with (8), (7) can be expressed as follows:

𝜋
+

𝑙
= 𝑤
+

(1−𝐹 (𝑥
𝑙−1)) −𝑤

+

(1−𝐹 (𝑥
𝑙
))

= −
𝑑𝑤
+

(1 − 𝐹 (𝑥))

𝑑𝑥
𝑑𝑥.

(9)

𝜋
−

𝑙
(𝑓
−

) can be also defined by

𝜋
−

−𝑚
= 𝑤
−

(𝑝
−𝑚

) 𝑙 = −𝑚, (10)

𝜋
−

𝑙
= 𝑤
−

(𝑝
−𝑚

+ ⋅ ⋅ ⋅ + 𝑝
𝑙
) −𝑤
−

(𝑝
−𝑚

+ ⋅ ⋅ ⋅ + 𝑝
𝑙−1)

1 − 𝑚 ≤ 𝑙 ≤ 0.
(11)

From (8), (11) can also be expressed as

𝜋
−

𝑙
=

𝑑𝑤
−

(𝐹 (𝑥))

𝑑𝑥
𝑑𝑥. (12)

Thus cumulative prospect theory may be defined as
follows:

𝑉 = 𝑉
+

+𝑉
−

= ∫

∞

𝑥0

−
𝑑𝑤
+

(1 − 𝐹 (𝑥))

𝑑𝑥
V (𝑥) 𝑑𝑥

+∫

𝑥0

−∞

𝑑𝑤
−

(𝐹 (𝑥))

𝑑𝑥
V (𝑥) 𝑑𝑥,

(13)

where 𝑤
+ and 𝑤

− are the functions for gains and losses,
respectively [24], and are defined by

𝑤
+

(𝑝) =
𝑝
𝑟

[𝑝𝑟 + (1 − 𝑝)
𝑟

]
1/𝑟

,

𝑤
−

(𝑝) =
𝑝
𝛿

[𝑝𝛿 + (1 − 𝑝)
𝛿

]

1/𝛿

.

(14)

From (4) and (5), it is known that V(𝑥) is defined as the
value function with the following formulation:

V (𝑥) =
{

{

{

𝑥
𝛼

𝑥 ≥ 0

−𝜆 (−𝑥)
𝛽

𝑥 < 0,
(15)
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where 𝑥 is the gain or loss; the variable 𝑥 is defined as a gain
if 𝑥 > 0 and a loss if 𝑥 < 0.

In these formulations, the parameters are 𝛼 = 𝛽 =

0.88, 𝜆 = 2.25, 𝑟 = 0.61, and 𝛿 = 0.69 [24].
Based on this, the cumulative prospect theory of trip

modes can be obtained so that a customer may choose the
trip mode based on maximal cumulative prospect value.

2.3. The Relationship between Trip Mode Choices. Including
cruising mode, dispatch mode, and other transit modes
within the network the O-D pair (𝑉𝑐𝑐

𝑖𝑗
, 𝑉
𝑑𝑐

𝑖𝑗
, and 𝑉

𝑇

𝑖𝑗
) is used

to indicate the cumulative prospect values, respectively.
By adopting the Nested Logit model, the probability 𝑃

𝑐𝑐

𝑖𝑗

that a customer originating in zone 𝑖 chooses cruising mode
to travel to zone 𝑗 is given as follows:

𝑃
𝑐𝑐

𝑖𝑗

=

exp {−ln [exp (𝜃
𝑓

𝑉
𝑐𝑐

𝑖𝑗
) + exp (𝜃

𝑓

𝑉
𝑑𝑐

𝑖𝑗
)]}

exp (𝑉
𝑇

𝑖𝑗
) + exp {− ln [exp (𝜃𝑓𝑉

𝑐𝑐

𝑖𝑗
) + exp (𝜃𝑓𝑉

𝑑𝑐

𝑖𝑗
)]}

⋅

exp (𝜃
𝑓

𝑉
𝑐𝑐

𝑖𝑗
)

exp (𝜃𝑓𝑉
𝑐𝑐

𝑖𝑗
) + exp (𝜃𝑓𝑉

𝑑𝑐

𝑖𝑗
)

.

(16)

When the parameter 𝜃𝑓 is nonnegative, it may be used to
reflect the degree of uncertainty in service from customers’
perspective.

Meanwhile, the probability 𝑃
𝑑𝑐

𝑖𝑗
of customers choosing

dispatch mode is given as follows:

𝑃
𝑑𝑐

𝑖𝑗

=

exp {−ln [exp (𝜃
𝑓

𝑉
𝑐𝑐

𝑖𝑗
) + exp (𝜃

𝑓

𝑉
𝑑𝑐

𝑖𝑗
)]}

exp (𝑉
𝑇

𝑖𝑗
) + exp {−ln [exp (𝜃𝑓𝑉

𝑐𝑐

𝑖𝑗
) + exp (𝜃𝑓𝑉

𝑑𝑐

𝑖𝑗
)]}

⋅

exp (𝜃
𝑓

𝑉
𝑑𝑐

𝑖𝑗
)

exp (𝜃𝑓𝑉
𝑐𝑐

𝑖𝑗
) + exp (𝜃𝑓𝑉

𝑑𝑐

𝑖𝑗
)

.

(17)

Therefore, the demand of customers choosing cruising
service can be defined as follows:

𝑄
𝑐𝑐

𝑖𝑗
= 𝑄
𝑐

𝑖𝑗
𝑃
𝑐𝑐

𝑖𝑗
, (18)

where𝑄𝑐𝑐
𝑖𝑗
is the customer demand for cruising mode and𝑄

𝑐

𝑖𝑗

is the total customer demand for taxis in a network from zone
𝑖 to zone 𝑗.

Similarly, the customer demand for dispatch service may
be defined as

𝑄
𝑑𝑐

𝑖𝑗
= 𝑄
𝑐

𝑖𝑗
𝑃
𝑑𝑐

𝑖𝑗
, (19)

where 𝑄
𝑑𝑐

𝑖𝑗
is the customer demand for dispatch mode.

Based on this, the total customer demand for taxi service is
expressed by the following formula:

𝑄
tc
𝑖𝑗

= 𝑄
𝑐𝑐

𝑖𝑗
+𝑄
𝑑𝑐

𝑖𝑗
, (20)

where 𝑄
tc
𝑖𝑗
is the total customer demand for taxi service from

zone 𝑖 to zone 𝑗.

3. Characteristics of Taxi Movement in
a Network

3.1. Basic Assumptions of theModel. Thebasic assumptions of
the model established in this paper are described as follows:

(1) Assume that all occupied taxis follow the shortest path
choice principle.

(2) Once a taxi is occupied in zone 𝑖, a driver will choose
the shortest route to go to zone 𝑗.

(3) Given an O-D pair, (𝑖, 𝑗), for example, after a taxi
has delivered customers to zone 𝑗, the taxi driver
either stays in the same zone or moves to other
zones in search of the next customer in an attempt at
minimizing search time.

(4) Based on the context, all taxis in a network are divided
into one of three types: occupied taxis from zone 𝑖 to
zone 𝑗, vacant taxis moving from zone 𝑗 to zone 𝑖, or
taxis searching for customers in zone 𝑖.

(5) The vacant taxi driver in zone 𝑖 can choose between
cruising mode and dispatch mode to provide service
for customers.

In other words, taxis on roadways can be divided into
two types (occupied or vacant) and beginning to search for
customers after arriving at zone 𝑖; those taxis can decide to
make service mode choice.

3.2. Introduction of Network Model Variables. Suppose that
a road network with a taxi market is in a state of supply-
demand equilibrium, defined as𝐺(𝑉,𝐴), where𝑉 is the set of
nodes and𝐴 is the set of links. 𝐼 and 𝐽 are the set of origination
and destination zones, respectively. 𝑡(V

𝑎
) is expressed as the

travel time on link 𝑎 (𝑎 ∈ 𝐴) and V
𝑎
is expressed as link flow

including taxis and sources of traffic flow. Here, suppose that
a taxi is only occupied by a customer.

Assume that 𝑡𝑘
𝑖𝑗
is the travel time on route 𝑘 between O-D

pair (𝑖, 𝑗) and is expressed as follows:

𝑡
𝑘

𝑖𝑗
= ∑

𝑎∈𝐴

𝑡 (V
𝑎
) 𝛿
𝑎𝑘

𝑖𝑗
. (21)

Further, 𝛿𝑎𝑘
𝑖𝑗

= 1 if route 𝑘 between O-D pair (𝑖, 𝑗) uses
link 𝑎 and 0 otherwise; 𝑘 is included in the set 𝑅

𝑖𝑗
which is

the set of routes between O-D pair (𝑖, 𝑗).
Based on this context, 𝑡

𝑖𝑗
is considered as the travel time

via the shortest route from zone 𝑖 to zone 𝑗:

𝑡
𝑖𝑗
= min (𝑡

𝑘

𝑖𝑗
) 𝑘 ∈ 𝑅

𝑖𝑗
. (22)

3.3. The Choice Relationship of Taxi Service Modes. In accor-
dance with basic assumptions above, the probability that
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a vacant taxi arriving at zone 𝑖 chooses cruising mode to
search for the next customer is given as follows:

𝑝
𝑐𝑡

=
exp (−𝜃

𝑡

𝑤
𝑐𝑡

𝑖
)

exp (−𝜃𝑡𝑤
𝑐𝑡

𝑖
) + exp (−𝜃𝑡𝑤

𝑑𝑡

𝑖
)
, (23)

where 𝑝
𝑐𝑡 is the probability of taxis choosing cruising mode,

while 𝜃
𝑡 is a nonnegative parameter, 𝑤𝑐𝑡

𝑖
is the search time

of taxi drivers that chose the cruising mode, and 𝑤
𝑑𝑡

𝑖
is the

search time of taxi drivers that chose dispatch mode.
Similarly, the probability of vacant taxis choosing dis-

patchmode to search for the next customer is given as follows:

𝑝
𝑑𝑡

=

exp (−𝜃
𝑡

𝑤
𝑑𝑡

𝑖
)

exp (−𝜃𝑡𝑤
𝑐𝑡

𝑖
) + exp (−𝜃𝑡𝑤

𝑑𝑡

𝑖
)
, (24)

where 𝑝
𝑑𝑡 is the probability of taxis choosing dispatch mode.

3.4. Taxi Service to Time Relationship. There is a given
demandmatrix OD and the 1 h interval is studied.This paper
assumes that the total number of taxis in a network including
occupied and vacant ones is Num and it is a constant.

The total number of occupied taxis is given as
∑
𝑖∈𝐼

∑
𝑗∈𝐽

𝑇
ot
𝑖𝑗
𝑡
𝑖𝑗
, with 𝑇

ot
𝑖𝑗
defined as the number of occupied

taxis in the studied 1-h interval from zone 𝑖 to zone 𝑗; “ot”
refers to occupied taxis.

Similarly, the total number of vacant taxis can be
expressed as follows:

∑

𝑗∈𝐽

∑

𝑖∈𝐼

𝑇
vt
𝑗𝑖
𝑡
𝑗𝑖
+∑

𝑗∈𝐽

∑

𝑖∈𝐼

𝑇
vt
𝑗𝑖
𝑝
𝑐𝑡

𝑤
𝑐𝑡

𝑖
+∑

𝑗∈𝐽

∑

𝑖∈𝐼

𝑇
vt
𝑗𝑖
𝑝
𝑑𝑡

𝑤
𝑑𝑡

𝑖
, (25)

where 𝑇
vt
𝑗𝑖

is the number of vacant taxis in the studied 1-h
interval from zone 𝑗 to zone 𝑖; “vt” refers to vacant taxis. In the
above relationship, ∑

𝑗∈𝐽
∑
𝑖∈𝐼

𝑇
vt
𝑗𝑖
𝑡
𝑗𝑖
is the number of vacant

taxis on roadway;∑
𝑗∈𝐽

∑
𝑖∈𝐼

𝑇
vt
𝑗𝑖
𝑝
𝑐𝑡

𝑤
𝑐𝑡

𝑖
is the number of vacant

taxis choosing cruising mode to search for customer in zone
𝑖; ∑
𝑗∈𝐽

∑
𝑖∈𝐼

𝑇
vt
𝑗𝑖
𝑝
𝑑𝑡

𝑤
𝑑𝑡

𝑖
is the number of vacant taxis choosing

dispatch mode in zone 𝑖.
Therefore, the total number of taxis in a network can be

expressed as

∑

𝑖∈𝐼

∑

𝑗∈𝐽

𝑇
ot
𝑖𝑗
𝑡
𝑖𝑗
+∑

𝑗∈𝐽

∑

𝑖∈𝐼

𝑇
vt
𝑗𝑖
𝑡
𝑗𝑖
+∑

𝑗∈𝐽

∑

𝑖∈𝐼

𝑇
vt
𝑗𝑖
𝑝
𝑐𝑡

𝑤
𝑐𝑡

𝑖

+∑

𝑗∈𝐽

∑

𝑖∈𝐼

𝑇
vt
𝑗𝑖
𝑝
𝑑𝑡

𝑤
𝑑𝑡

𝑖
= Num.

(26)

3.5. Behavior Model of Taxi Drivers. The expected search
time of drivers in one zone is assumed to be distributed in
accordance with the Gumbel density function. Here 𝑤

𝑡

𝑖
is the

total searching time of vacant taxis in zone 𝑖 and expressed as
follows:

𝑤
𝑡

𝑖
= 𝑝
𝑐𝑡

𝑤
𝑐𝑡

𝑖
+𝑝
𝑑𝑡

𝑤
𝑑𝑡

𝑖
. (27)

The probability that a vacant taxi originating in zone 𝑗

eventually meets a customer in zone 𝑖 is given by

𝑃 =

exp {−𝜃 (𝑡
𝑗𝑖
+ 𝑝
𝑐𝑡

𝑤
𝑐𝑡

𝑖
+ 𝑝
𝑑𝑡

𝑤
𝑑𝑡

𝑖
)}

∑
𝑚∈𝐼

exp {−𝜃 (𝑡
𝑗𝑚

+ 𝑝𝑐𝑡𝑤𝑐𝑡
𝑚

+ 𝑝𝑑𝑡𝑤𝑑𝑡
𝑚
)}

,

𝑖 ∈ 𝐼, 𝑚 ∈ 𝐼, 𝑗 ∈ 𝐽,

(28)

where 𝑃 is the probability that a taxi meets the next customer
in zone 𝑖 after having delivered a customer to zone 𝑗, 𝜃 is a
nonnegative parameter and its explanation is referred to by
Wong et al. [13].

3.6. The Relationship between Customer Wait Time and Taxi
Search Time. According to Yang et al. [15], the function
relationship between customer and taxi wait time can be
described by applying the Cobb-Douglas model describing
customer-taxi meeting function which is given by

𝑊
𝑐𝑐

𝑖
=

1
0.01∑

𝑗∈𝐽
𝑇
vt
𝑗𝑖
𝑝𝑐𝑡𝑤
𝑐𝑡

𝑖

, (29)

𝑊
𝑑𝑐

𝑖
=

1
104 ∑

𝑗∈𝐽
𝑇
vt
𝑗𝑖
𝑝𝑑𝑡𝑤
𝑑𝑡

𝑖

, (30)

where𝑊𝑐𝑐
𝑖
is the average waiting time of customers choosing

cruising mode in zone 𝑖 and 𝑊
𝑑𝑐

𝑖
is the average waiting time

of customers choosing dispatch mode in zone 𝑖.

3.7. The Supply-Demand Equilibrium Relationship. When in
an equilibrium state, the number of vacant taxis in a network
should meet all customers’ demands in their respective
origination zones. That is to say, taxi service is available to
every customer. Therefore, the supply-demand equilibrium
relationship in a network is given as follows:

∑

𝑖∈𝐼

𝑇
vt
𝑗𝑖

= 𝑄
tc
𝑗

= ∑

𝑖∈𝐼

𝑄
tc
𝑖𝑗
, 𝑗 ∈ 𝐽,

∑

𝑗∈𝐽

𝑇
vt
𝑗𝑖

= 𝑄
tc
𝑖

= ∑

𝑗∈𝐽

𝑄
tc
𝑖𝑗
, 𝑖 ∈ 𝐼.

(31)

In terms of cruising mode, its supply-demand equilib-
rium relationship is given by

∑

𝑗∈𝐽

𝑄
𝑐𝑐

𝑖𝑗
= ∑

𝑗∈𝐽

𝑇
vt
𝑗𝑖
𝑝
𝑐𝑡

. (32)

In terms of dispatch mode, its supply-demand equilib-
rium relationship is expressed by

∑

𝑗∈𝐽

𝑄
𝑑𝑐

𝑖𝑗
= ∑

𝑗∈𝐽

𝑇
vt
𝑗𝑖
𝑝
𝑑𝑡

. (33)
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4. A Mathematical Programming Model

4.1. The Model Descriptions. A joint taxi network model of
trip distribution and assignment can be given as follows:

minimize 𝑍

= ∑

𝑎∈𝐴

∫

V
𝑎

0
𝑡
𝑎
(𝜔) 𝑑𝜔

+
1
𝜃
∑

𝑗∈𝐽

∑

𝑖∈𝐼

𝑇
vt
𝑗𝑖

(ln𝑇
vt
𝑗𝑖

− 1)

−∑

𝑖∈𝐼

∑

𝑗∈𝐽

∫

𝑄
𝑡𝑐

𝑖𝑗

0
𝑄
−1
𝑖𝑗

(𝜔) 𝑑𝜔

(34)

subject to: ∑

𝑖∈𝐼

𝑇
vt
𝑗𝑖

= 𝑄
𝑡𝑐

𝑗 (34a)

∑

𝑗∈𝐽

𝑇
vt
𝑗𝑖

= 𝑄
𝑡𝑐

𝑖 (34b)

∑

𝑘∈𝑅
𝑖𝑗

𝑓
𝑘

𝑖𝑗
= 𝑇
𝑛

𝑖𝑗
+𝑇

ot
𝑖𝑗

+𝑇
vt
𝑖𝑗 (34c)

V
𝑎
= ∑

𝑖∈𝐼

∑

𝑗∈𝐽

∑

𝑘∈𝑅
𝑖𝑗

𝛿
𝑎𝑘

𝑖𝑗
𝑓
𝑘

𝑖𝑗 (34d)

𝑓
𝑘

𝑖𝑗
≥ 0 (34e)

𝑇
vt
𝑗𝑖

> 0, (34f)

where𝑇𝑛
𝑖𝑗
is normal traffic flow in the studied 1-h interval from

zone 𝑖 to zone 𝑗 and 𝑓
𝑘

𝑖𝑗
is the traffic flow on route 𝑘 in the

studied 1-h interval.
In terms of the established supply-demand equilibrium

model, the following Lagrangian function can be formed:

𝐿 = ∑

𝑎∈𝐴

∫

V
𝑎

0
𝑡
𝑎
(𝜔) 𝑑𝜔+

1
𝜃
∑

𝑗∈𝐽

∑

𝑖∈𝐼

𝑇
vt
𝑗𝑖

(ln𝑇
vt
𝑗𝑖

− 1)

−∑

𝑖∈𝐼

∑

𝑗∈𝐽

∫

𝑄
𝑡𝑐

𝑖𝑗

0
𝑄
−1
𝑖𝑗

(𝜔) 𝑑𝜔+∑

𝑖∈𝐼

𝛼
𝑖
(∑

𝑗∈𝐽

𝑇
vt
𝑗𝑖

−𝑄
𝑡𝑐

𝑖
)

+∑

𝑗∈𝐽

𝛽
𝑗
(∑

𝑖∈𝐼

𝑇
vt
𝑗𝑖

−𝑄
𝑡𝑐

𝑗
)

+∑

𝑖∈𝐼

∑

𝑗∈𝐽

𝜇
𝑖𝑗
(𝑇
𝑛

𝑖𝑗
+𝑇

ot
𝑖𝑗

+𝑇
vt
𝑖𝑗

− ∑

𝑘∈𝑅
𝑖𝑗

𝑓
𝑘

𝑖𝑗
) .

(35)

After differentiating the Lagrangian function and apply-
ing Kuhn-Tucker conditions, the following relationship can
be obtained in an equilibrium state:

𝑇
vt
𝑗𝑖

= exp (−𝜃 (𝑡
𝑗𝑖
+𝛼
𝑖
+𝛽
𝑗
))

= exp (−𝜃𝑡
𝑗𝑖
) exp (−𝜃𝛼

𝑖
) exp (−𝜃𝛽

𝑗
) .

(36)

4.2. The Deduction Process of the Model. Firstly, (36) can be
rewritten as the following form of gravity model:

𝑇
vt
𝑗𝑖

= 𝐴
𝑖
𝐵
𝑗
exp (−𝜃𝑡

𝑗𝑖
) , 𝑗 ∈ 𝐽, 𝑖 ∈ 𝐼, (37)

where 𝐴
𝑖
= exp(−𝜃𝛼

𝑖
) and 𝐵

𝑗
= exp(−𝜃𝛽

𝑗
).

By using (34a) and (34b), it can be expressed as follows:

𝐴
𝑖
=

𝑄
𝑡𝑐

𝑖

∑
𝑗∈𝐽

𝐵
𝑗
exp (−𝜃𝑡

𝑗𝑖
)

, 𝑖 ∈ 𝐼,

𝐵
𝑗
=

𝑄
𝑡𝑐

𝑗

∑
𝑖∈𝐼

𝐴
𝑖
exp (−𝜃𝑡

𝑗𝑖
)

, 𝑗 ∈ 𝐽,

(38)

by first assuming 𝐵
𝑗
= 1 and then alternatively solving (38)

until converged.
Secondly, according to (34a), (36) is also changed as

follows:

∑

𝑖∈𝐼

𝑇
vt
𝑗𝑖

= ∑

𝑖∈𝐼

exp (−𝜃 (𝑡
𝑗𝑖
+𝛼
𝑖
+𝛽
𝑗
))

= ∑

𝑖∈𝐼

exp (−𝜃 (𝑡
𝑗𝑖
+𝛼
𝑖
)) exp (−𝜃𝛽

𝑗
) = 𝑄

𝑡𝑐

𝑗
,

𝑗 ∈ 𝐽.

(39)

Then, by combining (36) with (39), the following relation-
ship is established:

𝑇
vt
𝑗𝑖

= 𝑄
𝑡𝑐

𝑗

exp (−𝜃 (𝑡
𝑗𝑖
+ 𝛼
𝑖
))

∑
𝑚∈𝐼

exp (−𝜃 (𝑡
𝑗𝑚

+ 𝛼
𝑚
))

. (40)

By comparing (40) with (27), 𝛼
𝑖
can now be interpreted

as the taxi searching time 𝑤
𝑡

𝑖
in zone 𝑖. After making a set of

deductions, 𝑤𝑡
𝑖
can be given as follows:

𝑤
𝑡

𝑖
= −

ln (𝜏𝐴
𝑖
)

𝜃
. (41)

Here, the variable 𝜏 can be calculated by using

𝜏 = exp
{

{

{

−𝜃 (Num − ∑
𝑖∈𝐼

∑
𝑗∈𝐽

𝑇
ot
𝑖𝑗
𝑡
𝑖𝑗
− ∑
𝑗∈𝐽

∑
𝑖∈𝐼

𝑇
vt
𝑗𝑖
𝑡
𝑗𝑖
) − ∑
𝑖∈𝐼

∑
𝑗∈𝐽

𝑄
𝑡𝑐

𝑖𝑗
ln𝐴
𝑖

∑
𝑖∈𝐼

∑
𝑗∈𝐽

𝑄
𝑡𝑐

𝑖𝑗

}

}

}

. (42)
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The theoretical process of (41) and (42) can be derived in
detail [13]. By substituting the solution to 𝐴

𝑖
in (42), the taxi

searching time 𝑤
𝑡

𝑖
in zone 𝑖 can be then obtained.

Furthermore, by combining (28) with (41), the following
form is also established as follows:

𝑤
𝑡

𝑖
= −

ln (𝜏𝐴
𝑖
)

𝜃
= 𝑝
𝑐𝑡

𝑤
𝑐𝑡

𝑖
+𝑝
𝑑𝑡

𝑤
𝑑𝑡

𝑖
. (43)

4.3. The Existence of Equilibrium. In the taxi supply rela-
tionships, by combining (42) and (43), it can be seen that
the taxi-searching time, 𝑤

𝑡

𝑖
, is a continuous function of

customer demand vector 𝑄
𝑡𝑐. Furthermore, based on the

assumption of the meeting function, (29) and (30), it can be
discerned that customer wait time, 𝑊

𝑖
, varies continuously

with taxi search time, 𝑤𝑡
𝑖
, in zone 𝑖. Thus, it is concluded

that the customer wait time 𝑊
𝑖
is a continuous function

of 𝑄
𝑡𝑐; continuous mapping relationship can be expressed

as 𝑊
𝑖

= 𝑊
𝑖
(𝑄
𝑡𝑐

). In the customer demand relationships,
it can be seen that customer demand 𝑄

𝑡𝑐 is a continuous
function of the cumulative prospect vector 𝑉. Additionally,
based on the relationship between cumulative prospect 𝑉

and trip cost 𝑈 it may be deduced that cumulative prospect
𝑉 varies continuously with customer wait time 𝑊

𝑖
. Such a

continuous mapping relationship is also regarded as 𝑄
𝑡𝑐

=

𝑄
𝑡𝑐

(𝑊
𝑖
). Thus, the relationship is 𝑄

𝑡𝑐

= Γ(𝑄
𝑡𝑐

). In addition,
the solution set of equilibrium model variables is a compact
and convex set Ω and the relationship Γ(𝑄

𝑡𝑐

) ∈ Ω exists.
By applying Brouwer’s fixed-point theorem, it is easily con-
cluded that Γ has at least one fixed point in Ω. Therefore
the existence of the equilibrium solution is guaranteed
[25].

5. The Solution Algorithm

The iterative algorithm of taxi equilibrium problem of a
network considering the trip mode choice model based on
CPT is as follows.

Step 1. Initialize customer waiting time as follows.
Set an initial set of customer waiting times 𝑊

𝑐𝑐(0)

𝑖
and

𝑊
𝑑𝑐(0)

𝑖
, 𝑖 ∈ 𝐼, then let 𝑛 = 𝑛 + 1.

Step 2. Updated customer demand value is as follows.
Substitute𝑊𝑐𝑐(𝑛)

𝑖
and𝑊

𝑑𝑐(𝑛)

𝑖
into the cumulative prospect

function and update 𝑉
𝑐𝑐(𝑛)

𝑖𝑗
, 𝑉𝑑𝑐(𝑛)
𝑖𝑗

, and 𝑉
𝑇

𝑖𝑗
. Then 𝑄

𝑐𝑐(𝑛)

𝑖𝑗
and

𝑄
𝑑𝑐(𝑛)

𝑖𝑗
are updated in accordance with (16) and (17).

Step 3. Updated taxi search time is as follows.

(1) Utilize the equilibrium model for taxis in a network.

By applying the iterative balancing algorithm,𝐴
𝑖
, 𝐵
𝑗
, and

𝑇
vt
𝑗𝑖

can be obtained. Substituting a set of variable values
involving 𝐴

𝑖
, 𝐵
𝑗
, 𝑇vt
𝑗𝑖
, 𝑄𝑐𝑐(𝑛)
𝑖𝑗

, and 𝑄
𝑑𝑐(𝑛)

𝑖𝑗
, and so forth into

(43) a formula involving 𝑤
𝑐𝑡(𝑛)

𝑖
and 𝑤

𝑑𝑡(𝑛)

𝑖
is established. The

formula is defined by

𝑝
𝑐𝑡(𝑛)

𝑤
𝑐𝑡(𝑛)

𝑖
+𝑝
𝑑𝑡(𝑛)

𝑤
𝑑𝑡(𝑛)

𝑖
= −

ln (𝜏𝐴
𝑖
)

𝜃

𝑖 = 1, 2, . . . , 6.
(44)

(2) Update the supply-demand equilibrium relationship.

Substitute 𝑇
vt
𝑗𝑖

and 𝑄
𝑐𝑐(𝑛)

𝑖𝑗
into (32) or substitute 𝑇

vt
𝑗𝑖

and
𝑄
𝑑𝑐(𝑛)

𝑖𝑗
into (33). Then update the appropriate variables. From

this condition, another formulation is expressed as (45) and
it includes 𝑤𝑐𝑡(𝑛)

𝑖
and 𝑤

𝑑𝑡(𝑛)

𝑖
.

∑

𝑗∈𝐽

𝑇
vt
𝑗𝑖
𝑝
𝑐𝑡(𝑛)

= ∑

𝑗∈𝐽

𝑄
𝑐𝑐(𝑛)

𝑖𝑗
𝑖 = 1, 2, . . . , 6. (45)

(3) Combining (44) with (45) makes it possible to solve
for the values of 𝑤𝑐𝑡(𝑛)

𝑖
and 𝑤

𝑑𝑡(𝑛)

𝑖
.

Step 4. Update customer wait time as follows.
Substituting 𝑤

𝑐𝑡(𝑛)

𝑖
and 𝑤

𝑑𝑡(𝑛)

𝑖
into the relationship

between taxi search time and customer wait time, (29) and
(30), respectively, makes it permissible to update 𝑊

𝑐𝑐(𝑛)

𝑖
and

𝑊
𝑑𝑐(𝑛)

𝑖
.

Step 5. Check the following.
The standard to stop iteration is defined by

√∑
𝑖
[𝑊
𝑐𝑐(𝑛+1)

𝑖
− 𝑊
𝑐𝑐(𝑛)

𝑖
]
2

∑
𝑖
𝑊
𝑐𝑐(𝑛)

𝑖

≤ 𝜀,

√∑
𝑖
[𝑊
𝑑𝑐(𝑛+1)

𝑖
− 𝑊
𝑑𝑐(𝑛)

𝑖
]
2

∑
𝑖
𝑊
𝑑𝑐(𝑛)

𝑖

≤ 𝜀,

(46)

where 𝜀 is a condition of iterative convergence.
If (46) is achieved, then stop. Otherwise, let 𝑛 = 𝑛+1 and

go to Step 2.

6. A Numerical Example Analysis

A simple numerical example is given in order to check
the convergence of the algorithm and present the resulting
analysis of the equilibrium model.

6.1. Introduction of a Numerical Example. For the model a
six-zone network is utilized with nodes representing traffic
zones, arcs representing relationship of adjacent nodes, and
arrows indicating road direction (Figure 2). Further, each
node represents a potential origin or a potential destination
for customers, as well as a searching location for vacant taxis.

The travel time function for the links is defined as follows
[26]:

𝑡
𝑎
= 𝑡

0
𝑎
[1+ 0.15 (

V
𝑎

𝐶
)

4
] . (47)
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Table 1: The parameters in the travel impedance functions.

Link Start node End node 𝑡
0

𝑎
(h) 𝐶 (veh/h)

1 1 2 0.25 250
2 1 4 0.20 200
3 2 1 0.25 300
4 2 3 0.15 200
5 2 5 0.30 250
6 4 1 0.25 200
7 4 5 0.15 150
8 5 4 0.20 200
9 5 6 0.25 250
10 5 2 0.30 300
11 3 2 0.15 150
12 3 6 0.15 150
13 6 5 0.20 200
14 6 3 0.20 200

Table 2: Matrix of the total customer demand of different zones.

𝑄
𝑐

𝑖𝑗
(person/h) 1 2 3 4 5 6 Total

1 0 50 20 20 10 15 115
2 40 0 15 25 20 10 110
3 20 10 0 50 10 25 115
4 10 20 30 0 20 15 95
5 25 20 15 20 0 20 100
6 15 30 25 25 20 0 115
Total 110 130 105 140 80 85 650

Values for the parameters are obtained from Table 1.
A matrix of the total customer demands for taxis and

other transit modes from zone 𝑖 to zone 𝑗 is supposed in
Table 2.

The parameters used in the example were 𝜃trip =
15 yuan/h, 𝜃𝑓 = 0.3, 𝜃𝑡 = 0.5, 𝜃 = 0.3, 𝜀 = 0.03, 𝑊𝑐𝑐(0)

𝑖
=

𝑊
𝑑𝑐(0)

𝑖
= 5min. Additionally, the 30-minute time used in

this example was regarded as a reference point for different
tripmodes in the CPT function.Whenmaking the sensitivity
analysis, this paper set 1000, 1100, 1200, 1300, and 1400 as the
values of Num, respectively.

6.2. Result Analysis. Figure 3 shows the relationship of the
taxi-searching times of dispatchmode versus the taxi fleet size
in six zones. It can be seen that the taxi-searching times in
zones are all positive and increase linearly with an increase
in the taxi fleet size. This may be due to the fact that an
increase in the taxi fleet size only enhances the availability of
those taxis choosing dispatching service mode in taxi market
but cannot decrease the searching time of dispatching service
and achieve the improvement of dispatching service quality.
That is to say, the changing trend of graphic in Figure 3
indicates that the demand for dispatch mode is less than its
supply in taximarket. Specifically, taking a fixed taxi fleet size,
for example, the taxi-searching times of dispatch mode in
different zones are also different as shown in Figure 3. This is

1 2 3

4 5 6

Figure 2: Network of the numerical example.
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Figure 3:The taxi-searching time of dispatch mode versus taxi fleet
size in six zones.

mainly because both the number of customer which chooses
the dispatch mode and the one of taxi which provides the
dispatching service are different in six zones. Figure 3 shows
that, in terms of the taxi-searching time of dispatch mode,
zone 4 is maximal and zone 6 is minimal. In addition, it can
be seen from Figure 3 that the maximal gap of taxi-searching
time in different zones reaches at least 0.7 h considering the
taxi fleet size. It can be shown that the characteristic of a traffic
zone should be discussed in terms of service and operation of
taxi market.

Figure 4 presents the relationship of the taxi-searching
times of cruising mode versus the taxi fleet size in six zones.
These taxi-searching times in zones are all positive and
increase nonlinearly with an increase in the taxi fleet size.
It is attributed to the fact that an increase in the taxi fleet
size leads to more greater supply of cruising mode and more
worse service quality. Specifically, taking a fixed taxi fleet size,
for example, the taxi-searching times of cruising mode in
different zones are also different as depicted in Figure 4. It can
be shown that, in terms of the taxi-searching time of cruising
mode, zone 4 ismaximal and zone 3 isminimal.Themaximal
gap of taxi-searching time in different zones reaches at least
0.6 h considering the taxi fleet size. In addition, combining
Figure 3 with Figure 4, it can be seen that the taxi-searching
times of cruising mode in zones are greater than the ones
of dispatch mode, which reflects that the service quality of
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Figure 4:The taxi-searching time of cruising mode versus taxi fleet
size in six zones.

dispatch mode is better than the one of cruising mode in taxi
market.

Figure 5 depicts the relationship between the probability
of differentmodes chosen and an increase in the taxi fleet size
in six zones. Figure 5 shows that, in terms of these two service
modes, their values have no great changes with an increase
in the taxi fleet size. And furthermore, compared with the
probabilities of dispatch mode chosen in six zones, the ones
of cruising mode chosen are relatively less, which is mainly
attributed to the policy of dispatch mode and its parameters
adopted by this paper.

Figure 6 depicts the relationship of the total taxi-
searching time versus the taxi fleet size in six zones. Figure 6
indicates that the total taxi-searching times in zones are
all positive and increase linearly with an increase in the
taxi fleet size. This is due to the fact that the increased
taxis mainly search for customers instead of providing the
occupied service. That is to say, an increase in the taxi fleet
size can enhance taxi’s availability in taxi market but cannot
indicate the improvement of service quality.The complicated
relationship between taxi supply and customer demand is
totally determined by the market and network conditions.
This conclusion is consistent with the achievement fromYang
et al. [15]. And furthermore, taking a fixed taxi fleet size,
for example, total taxi-searching times in different zones are
also different as shown in Figure 6. This is mainly because
customer demands and network conditions (e.g., the travel
time to traverse OD pair) are different in six zones. Figure 6
shows that, in terms of the total taxi-searching time, zone 4
is maximal, zone 6 is minimal, and zone 3 is nearly equal to
zone 6. And moreover, Figure 6 indicates that the maximal
gap of total taxi-searching time in different zones reaches
at least thirty minutes considering the taxi fleet size. This
means the characteristic of a traffic zone directly influences
taxi’s availability and further the level of service quality in taxi
market.

Figure 7 gives the relationship of the customer-waiting
time in cruising mode versus the taxi fleet size in different
zones. Figure 7 shows that the customer-waiting times in
six zones are all positive and decrease nonlinearly with an
increase in the taxi fleet size. This indicates that the marginal
effect of advancing the taxi fleet size in improving service
quality is diminishing. In terms of a given taxi fleet size, the
customer-waiting times of cruising mode are different in six
zones as shown in Figure 7. Figure 7 shows that, in terms
of the customer-waiting time, zone 3 is maximal, zone 4 is
minimal, and zone 4 is nearly equal to zone 5. And,moreover,
Figure 7 indicates that the maximal gap of the customer-
waiting time in different zones reaches at least three minutes.
And, furthermore, this gap in six zones is decreasing with an
increase in taxi fleet size, which means that the distribution
and utilization of taxis in six zones will become similar with
an increase in the taxi fleet size.

Figure 8 presents the relationship between the customer-
waiting time of dispatchmode and an increase in the taxi fleet
size in six zones. Figure 8 shows that the customer-waiting
times in six zones are all positive and decrease nonlinearly
with an increase in the taxi fleet size. In terms of a single
taxi fleet size, the customer-waiting time of dispatch mode
in zone 6 is maximal and the customer-waiting time of zone
4 is minimal. The maximal gap of this index in different
zones reaches about six minutes. The tendency that the gap
of customer-waiting time in dispatch mode in six zones
is decreasing with an increase in the taxi number is then
reflected.

7. Conclusions

This paper considered the effect of the integrated service
mode including cruising and dispatch modes and the travel
time uncertainty on taxi network equilibrium. To facilitate
this aim the cumulative prospect theory was adopted to
study the trip mode choice problem. Based on the elasticity
of customer demand, a mathematical programming model
was established to describe the supply-demand equilibrium
relationship of taxi service on a network with respect to the
integrated servicemode. From this an iterative algorithmwas
designed to present the optimal solutions of cruising mode’s
parameters, dispatch mode’s parameters, and taxis network’s
parameters in an equilibrium state. Finally, a numerical
example was used to present the achievement of supply-
demand equilibrium state and determine the outcomes of key
parameters.

The results provided interesting insights and valuable rec-
ommendations for improving taxi market operation. Specifi-
cally, using taxi network equilibrium, the taxi-searching and
customer-waiting time in six zones were obtained with an
increase in the taxi fleet size.We found that the taxi-searching
times of both dispatch mode and cruising mode in zones
were positive and increased with an increase in the taxi
fleet size, while the customer-waiting times of both dispatch
mode and cruising mode in zones were also positive but
decreased with an increase in the taxi fleet size. Moreover,
the taxi-searching time of cruising mode was greater than
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Figure 5: The probability of different modes chosen versus taxi fleet size in six zones.
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Figure 6: The total taxi-searching time versus taxi fleet size in six
zones.

the one of dispatch mode, while the customer-waiting time
of cruising mode was also longer than the one of dispatch
mode in six zones. Further, the algorithm indicated that the
probability of dispatch mode being chosen by a customer
was greater than cruising mode in the six zones considered.
Finally, based on the above results from different service
modes, the total taxi-searching times of integrated taxi mode
were also obtained. Thus, from the practical point of view,
these results should enable policymakers to know current
operation situations in taxi market and to further adjust
and formulate the reasonable operation policies in terms of
integrated service mode.

However, tomake thismathematical modelmore suitable
for reality, several relationships in the model still need
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Figure 7: Customer-waiting time in cruising mode versus taxi fleet
size in zones.

to be further improved. Firstly, the dispatch policy used
in the model is a little simple so it cannot offer further
insights into the interactions of cruising and dispatch modes.
Therefore, applying a complicated dispatch policy will be
more meaningful. Secondly, in the application of CPT, the
reference points in those designed zones are only considered
as constants instead of relevant functions, which need a
suitable method to replace the current situation. And fur-
thermore, an uncertainty of customers choosing trip mode
should be reflected by adopting a continuous probability
distribution function instead of the discrete function, which
will be attempted to make further improvement.
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Figure 8: Customer-waiting time in dispatch mode versus taxi fleet
size in zones.
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Charging the Li-ion battery with constant current and constant voltage (CC-CV) strategy at −10∘C can only reach 48.47% of the
normal capacity. To improve the poor charging characteristic at low temperature, the working principle of charging battery at low
temperature is analyzed using electrochemical model and first-order RC equivalent circuit model; moreover, the multistage CC-
CV strategy is proposed. In the proposed multistage CC-CV strategy, the charging current is decreased to extend the charging
process when terminal voltage reaches the charging cut-off voltage.The charging results of multistage CC-CV strategy are obtained
at 25∘C, 0∘C, and −10∘C, compared with the results of CC-CV and two-stage CC-CC strategies. The comparison results show that,
at the target temperatures, the charging capacities are increased with multistage CC-CV strategy and it is notable that the charging
capacity can reach 85.32% of the nominal capacity at −10∘C; also, the charging time is decreased.

1. Introduction

With the advantages of zero pollution, high energy efficiency,
and pluralistic energy sources, electric vehicle (EV) has been
the new development point of motor industry [1–3]. Li-
ion battery has been widely used in EV for its high energy
density, long cycle life, and high safety level [4]. But the
battery technology still cannot meet the EV demand of long
travel distance, fast capacity recovery, and low temperature
utilization [5]. At low temperature, battery chemical activity
decreases, resistance increases, and capacity is decreased.
Charging process is more difficult than the discharging
process at low temperature [6, 7].

Muchwork has been done on charging strategies in recent
years. In [8] a three-step charging method for Ni/MH battery
was proposed to obtain the rapid charge. In [9], an optimum
current charging strategy based on the boundary charging
current curves was proposed.The boundary charging current
curves were obtained by analysis of temperature rise and
polarization voltage in charging process.The charging period
was decreased and capacity was increased with the strat-
egy. Reference [10] proposed a duty-varied voltage charging
strategy that can detect and dynamically track the suitable
duty of the charging pulse. Compared with conventional

CC-CV strategy, the charging speed was increased by 14%,
and charging efficiency was increased by 3.4%. Reference
[11] constructed a SOC estimation model and the CC-
CV charging process was controlled by battery SOC. The
charging capacity can be monitored to gain a higher level
charging degree and avoid being overcharged. In [12], an Ant
Colony System algorithm was used to select the optimum
charging current among five charging states and the charging
time was decreased and battery cycle life was extended
by 25%. In [13], a Taguchi-based algorithm was used to
obtain rapid charge. With the charging strategy, the battery
capacity could reach to 75% in 40min. In [14], a constant-
polarization-based fuzzy-control charging method was pro-
posed to adapt charging current acceptance with battery
SOC stages. The charging strategy could shorten charging
time with no obvious temperature rise. Ruan et al. and
Zhao et al. [15, 16] studied the temperature characteristic of
charging and discharging process.The temperature increased
more in discharging process compared to the temperature
increase in charging process. The pulse charging/discharging
process was added before charging process so the battery
could be preheated. The battery could start charging process
at relatively high temperature and charging capacity was
increased at low temperature.
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Table 1: Equipment parameters.

Battery equipment
Maximum test current 20A
Maximum test voltage 5V

Test accuracy 0.1%

Temperature chamber
Maximum temperature 150∘C
Minimum temperature −40∘C
Temperature tolerance 0.01∘C

T

PC
Battery tester

Battery 

Temperature chamber 

Battery 
data

Temperature 
data

Figure 1: Experimental setup.

All the charging strategies increase the battery charging
characteristic at different degrees proposed in [8–14]. But the
charging performance at low temperature is not considered.
Although the preheating charging strategy at low temperature
proposed in [15, 16] can increase the charging capacity, the
self-preheating process costs toomuch time and cannot work
at low SOC condition. This paper analyzes the charging
characteristic of a Li-ion battery at different temperature, uses
electrochemical model and first-order 𝑅𝐶 equivalent circuit
model to analyze the bad low temperature characteristic of
Li-ion battery in theory, and proposes a multistage CC-CV
strategy. The multistage CC-CV strategy is compared with
CC-CV and two-stage CC-CV strategies at 25∘C, 0∘C, and
−10∘C.

2. Experimental

2.1. Battery and Equipment. The battery used is 18650 cylin-
drical Li-ion battery with normal capacity of 1.37 Ah, a
normal voltage of 3.2 V, and a cut-off voltage of 3.6 V. The
maximum charging and discharging rates are 1 C and 2C,
respectively. The positive electrode material is LiFePO

4
, and

negative electrode material is LiC
6
. The battery tester is LD

battery tester with 8 test channels and the test process can be
programmed and monitored by computer. The battery was
tested in a temperature chamber to ensure the temperature
parameter to be constant. The detailed parameters of battery
tester and temperature chamber are shown in Table 1. The
experimental setup can be described as in Figure 1.

2.2. Experimental Process. The battery charging strategies
tested in experiments were CC-CV, two-stage CC-CV, and
multistage CC-CV. The test temperature points were 25∘C,
0∘C, and −10∘C. The charging strategies are explained as
follows.
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Figure 2: CC-CV strategy charging capacities at different tempera-
ture.

For the CC-CV strategy, the constant current process
was charging at 0.3 C to the cut-off voltage of 3.6 V and the
constant voltage process was charging at 3.6 V for 5min.

For the two-stage CC-CV strategy, the first constant
current process was charging at 1 C to the cut-off voltage
of 3.6 V. Then in the second constant current process, the
charging current was decreased to 0.5 C. Since the charging
current was decreased, the terminal voltage was decreased
below 3.6V allowing the constant current process to be
extended, until the terminal voltage reached the cut-off
voltage once again.The constant voltage process was charging
at 3.6 V for 5min [17].

For the multistage CC-CV strategy, the constant current
process was divided into ten stages. The maximum and min-
imum rates were 1 C and 0.1 C, respectively, and the charging
current was decreased by 0.1 Cwhen terminal voltage reached
the cut-off voltage.The constant voltage process was charging
at 3.6 V for 5min.

3. Charging Characteristic of Battery at
Low Temperature

3.1. Charging Capacity Characteristic at Different Tempera-
ture. The selected battery was charged by CC-CV strategy
at 25∘C, 0∘C, and −10∘C to obtain the charging capacity
characteristic at low temperature. Before every charging
process at different temperature, the battery was discharged
empty at 25∘C and kept for six hours to ensure the whole
battery temperature to be uniform. As shown in Figure 2,
the charging capacities at 25∘C, 0∘C, and −10∘C are 1.309Ah,
1.196Ah, and 0.664Ah, respectively. The charging capacity is
decreased by 8.6% at 0∘C and 49.3% at −10∘C compared with
that at 25∘C. The charging capacity has a great decrease at
−10∘C.

3.2. OCVCharacteristic at Different Temperature. Thebattery
was tested by hybrid pulse power characteristic (HPPC)
rule that is detailed in “Freedom CAR Battery Test Manual”
[18] to obtain OCV, ohmic resistance (𝑅

𝑟
), and polarization
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Figure 3: OCV curves at different temperature.

resistance (𝑅
𝑝
). SOC can be calculated by the following

formula:

SOC = SOC
0
−

1

AHC
∫

𝑡

0

𝑖 𝑑𝜏,
(1)

where SOC
0
is the initial SOC of the battery, AHC is the

normal capacity of the battery at 25∘C, and 𝑖 is the discharge
(positive 𝑖) or charge (negative 𝑖) current. As the OCV curves
shown in Figure 3, theOCV reflects increasing tendencywith
temperature decreasing and the difference ofOCVat different
temperature is relatively more obvious at low SOC.

3.3. 𝑅

𝑟
and 𝑅

𝑝
Characteristic at Different Temperature.

As shown in Figures 4 and 5, both 𝑅

𝑟
and 𝑅

𝑝
increase

with temperature decreasing. 𝑅
𝑟
remains steady with SOC

increasing, and the increase is nearly 258% at −10∘C. 𝑅
𝑝

increases with SOC increasing and temperature decreasing,
and themaximum increase in𝑅

𝑝
is nearly 257% at−10∘Cwith

90% of SOC.

4. Electrochemical and First-Order 𝑅𝐶
Equivalent Circuit Model

4.1. Electrochemical Li-Ion Battery Model. Doyle et al. have
proposed the porous electrode theory for the analysis of
electrochemical process of Li-ion battery [19]. The one-
dimensional geometry consists of negative/positive current
collector, negative/positive electrodes, and separator. The
negative current collector material is copper, and positive
current collector material is aluminum. The positive elec-
trode active material is LiFePO

4
, and negative electrode

active material is LiC
6
. The separator is polyolefin porous

membrane. The electrolyte is lithium salt dissolved in 1 : 1 or
2 : 1 liquid mixture of ethylene carbonate (EC) and dimethyl
carbonate (DMC). The one-dimensional geometry example
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Figure 4: 𝑅
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of charging process is shown in Figure 6 [20] and the charging
chemical equation is

Negative Electrode: Li
𝑥−𝑧

𝐶

6
+ 𝑧Li+ + 𝑧𝑒−

Charge
→ Li

𝑥
𝐶

6
,

Positive Electrode: Li
𝑦
FePO

4

Charge
→ Li

𝑦−𝑧
FePO

4
+ 𝑧Li+ + 𝑧𝑒−

(2)

In the charging process, the electrons move from the
positive electrode to the negative electrode through the
external circuit, and Li+ moves from the positive electrode
to the negative electrode through the separator in electrolyte.
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Figure 6: One-dimensional geometry example of charging process.

As the charging process is a chemical reaction, the reaction
characteristic is influenced by concentration and Li+ diffu-
sion. The Li-ion concentration in electrolyte phase changes
with time and can be described by Fick’s second law along
the 𝑥-coordinate shown in Figure 6 [21]:

𝜕𝐶

𝑒

𝜕𝑡

=

𝜕

𝜕𝑥

(𝐷

𝑒

𝜕𝐶

𝑒

𝜕𝑥

) +

1 − 𝑡

0

+

𝐹

𝑗

Li
,

(3)

where 𝐶
𝑒
is the concentration of Li-ion in electrolyte phase,

𝐷

𝑒
is Li+ diffusion coefficient in electrolyte phase, 𝑡0

+

is the
transference number of lithium ions with respect to the
velocity of the solvent, 𝐹 is Faraday constant, and 𝑗

Li is
charging transfer current density.

The distribution of Li-ion in solid state phase is also
described by Fick’s second law of diffusion in polar coordi-
nates [21]:

𝜕𝐶

𝑠

𝑑𝑡

=

𝐷

𝑠

𝑟

2

𝜕

𝜕𝑟

(𝑟

2
𝐶

𝑠

𝜕𝑟

) ,

(4)

where 𝐶
𝑠
is the concentration of Li-ion in solid,𝐷

𝑠
is the Li+

diffusion coefficient in solid state phase, and 𝑟 is radius of
spherical particle.

TheArrhenius formula shows the Li+ diffusion coefficient
𝐷

𝑠
in solid state phase as shown below [21]:

𝐷

𝑠
(𝑇) = 𝐷ref exp [

𝐸

𝑎𝐷

𝑅

(

1

𝑇ref
−

1

𝑇

)] , (5)

where 𝐸

𝑎𝐷
is the activation energy for diffusion. 𝑅 is the

universal gas constant, 𝐷ref is the reference diffusion coeffi-
cient at 𝑇ref , 𝑇ref is the reference temperature, and 𝑇 is the
temperature. Formula (5) shows that the diffusion coefficient
decreases with the temperature decreasing. Reference [14]
indicates that the solid state phase diffusion polarization
dominates the total polarization and the solid state phase
polarization is increased with diffusion coefficient decreas-
ing.The increase of polarization results in higher polarization
voltage compared with that of normal temperature, the
terminal voltage increasing space during constant current
charging process is decreased, and the charging capacity will
be decreased.

The charging transfer current density can be obtained
using the following Butler-Volmer formula [20]:

𝑗

Li
= 𝑗

0
{exp [

𝛼

𝑎
𝐹

𝑅𝑇

𝜂] − exp [
𝛼

𝑐
𝐹

𝑅𝑇

𝜂]} ,
(6)

where 𝑗
0
is the exchange current density, 𝛼

𝑎
and 𝛼

𝑐
are the

transfer coefficients of anode and cathode, and 𝜂 is the surface
over potential, which can be obtained using the following
formula [20]:

𝜂 = 𝜙

𝑠
− 𝜙

𝑒
− 𝑈ocv, (7)

where𝜙
𝑠
is the solid phase potential,𝜙

𝑒
is the electrolyte phase

potential, and 𝑈ocv is the open circuit voltage.
𝑗

0
can be described as shown below [20]:

𝑗

0
= 𝐹𝑘

0
𝐶

𝛼
𝑎

𝑒

(𝐶

𝑠,max − 𝐶𝑠,surf)
𝛼
𝑎

𝐶

𝛼
𝑎

𝑠,surf , (8)

where 𝑘
0
is the reaction rate coefficient, 𝐶

𝑠,max is the maxi-
mum Li-ion concentration in the electrodes, and 𝐶

𝑠,surf is the
Li-ion concentration on the active particles surface.

𝑘

0
can be obtained using the following formula [20]:

𝑘

0
(𝑇) = 𝑘

0,ref exp [
𝐸

𝑎𝑅

𝑅

(

1

𝑇ref
−

1

𝑇

)] , (9)

where 𝐸

𝑎𝑟
is the reaction activation energy and 𝑘

𝑜,ref is
the reaction rate coefficient at 𝑇ref . With the temperature
decreasing, reaction rate coefficient is decreased. As formula
(7) shows, 𝑘

0
is decreased with temperature decreasing. The

charging reaction is impeded for the reaction rate coefficient
decreasing. As the parameter is time-invariant, the charging
obstruction can be considered as a resistive process. The
increase of impedance also results in the terminal voltage
increase and the decrease of charging capacity.

The electrochemistry model analysis of the charging
process at low temperature shows that the main obstruc-
tion consists of polarization and impedance increase. This
increase can be analyzed by the equivalent circuit model, the
polarization can be modeled by capacitance and resistance in
parallel, and the impedance can be modeled by resistance. A
first-order 𝑅𝐶 equivalent circuit model is used in the next
part.



Mathematical Problems in Engineering 5

Up

Cp

Rp

Uo
OCV

+

−

Rr

Ur I

Figure 7: First-order 𝑅𝐶 equivalent circuit model.

4.2. First-Order 𝑅𝐶 Equivalent Circuit Model. The first-order
𝑅𝐶 equivalent circuit model is used to analyze the charging
process [21, 22]. As shown in Figure 7, 𝑅

𝑟
represents the

ohmic resistance, 𝑈
𝑟
is the voltage on 𝑅

𝑟
, 𝐶
𝑝
and 𝑅

𝑝
, respec-

tively, represent the polarization capacity and polarization
resistance, 𝑈

𝑝
is the voltage on 𝐶

𝑝
and 𝑅

𝑝
, OCV is the open

circuit voltage,𝑈
𝑜
is the terminal voltage, and 𝐼 is the charging

current. The following formulas can be obtained:

𝐶

𝑝

𝑑𝑢

𝑝
(𝑡)

𝑑𝑡

+

𝑢

𝑝
(𝑡)

𝑅

𝑝

= 𝑖 (𝑡) ,

𝑢

0
(𝑡) = 𝑢ocv (𝑡) + 𝑖 (𝑡) 𝑅𝑟 + 𝑢𝑝 (𝑡) .

(10)

With assumption of 𝑖(0) = 𝐼 and 𝑢
𝑝
(0) = 0, the following

can be obtained:

𝑢

𝑝
(𝑡) = 𝐼𝑅

𝑝
(1 − 𝑒

−𝑡/𝜏

) ,

𝑢

0
(𝑡) = 𝑢ocv (𝑡) + 𝐼𝑅𝑟 + 𝑢𝑝 (𝑡) ,

(11)

where 𝜏 = 𝑅

𝑝
𝐶

𝑝
.

It can be seen from formulas (10)-(11) that 𝑈
𝑜
is deter-

mined by OCV, 𝑅
𝑝
, 𝑅
𝑟
, and 𝐼. As is mentioned above,

OCV changes little with temperature decreasing, while 𝑅
𝑟

and 𝑅

𝑝
increase significantly with temperature decreasing.

The increase of 𝑅
𝑝
can be explained by the slow kinetics

of electrochemical reaction influenced by temperature. The
constant current process of CC-CV strategy is limited by
cut-off voltage and the charging capacity mainly depends
on the constant current process. At low temperature, 𝑅

𝑟

and 𝑅

𝑝
increase making 𝑈

𝑟
and 𝑈

𝑝
increase, and 𝑈

0
is

higher than that at normal temperature. The cut-off voltage
is reached earlier and the constant current process is stopped
earlier [23]. The increasing of 𝑅

𝑝
and 𝑅

𝑟
depends on the

battery design parameters and cannot be controlled during
the charging process. The only parameter which can be
controlled is the charging current. As proposed in [17], for
a two-stage CC-CV strategy, the constant current charging
process was divided into two stages.The first stage is charging
battery with the maximum charging rate until the cut-off
voltage is reached. The second stage charging current was
decreased to half of the maximum charging rate, and the
terminal voltage can be decreased to extend the constant
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Figure 8: Charging curves of CC-CV strategy at 25∘C.

current charging process to increase capacity. According to
the current decrease process of the two-stageCC-CV strategy,
amultistage CC-CV strategy withmore detailed current rates
is proposed in this paper. Once the cut-off voltage is rapidly
reached at a low temperature, the terminal voltage can be
decreased with charging current decreasing, and the constant
current charging process can be repeatedly extended to
increase charging capacity. Meanwhile, the charging current
is decreased from the maximum rate, and the multistage can
automatically and degressively select the optimal charging
current to use high charging rate as far as possible and shorten
the charging period.

5. Result and Discussion

5.1. Different Charging Strategy Analysis at 25∘C. Figures 8–
10 show the terminal voltage curves with different charging
strategies at 25∘C. The terminal voltage of CC-CV strategy
increases to 3.25V at the low SOC range of 0%–10%,while the
terminal voltages of two-stage CC-CV and multistage CC-
CV strategies increase to near 3.4 V. The terminal voltage of
CC-CV strategy increases to 3.4 V with SOC reaching 90%
and has a huge increase to 3.6 V at the end of charging.
The terminal voltages of two-stage CC-CV and multistage
CC-CV strategies increase to 3.6 V with SOC of 85%. With
current decreasing, the terminal voltage of two-stage CC-CV
strategy decreases to 3.49V and increases to 3.6 V again with
SOC increasing of 7%. Unlike two-stage CC-CV strategy,
the terminal voltage of multistage CC-CV strategy has more
decreasing times to extend the charging SOC to a higher level.

Figure 11 shows the SOC curves of different charging
strategies at 25∘C. The charging capacities of CC-CV, two-
stage CC-CV, and multistage CC-CV charging strategies are
1.309Ah, 1.299Ah, and 1.368Ah, respectively. The capacities
of two-stage CC-CV and multi-CC-CV strategies are higher
than that of CC-CV strategy for current decreasing process.
The multi-CC-CV has the highest charging capacity because
the current decrease process of multistage CC-CV strategy
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Figure 9: Charging curves of two-stage CC-CV strategy at 25∘C.
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Figure 10: Charging curves of multistage CC-CV strategy at 25∘C.

has more gradients than two-stage CC-CV strategy. The
charging periods of CC-CV, two-stage CC-CV, and multi-
stage CC-CV charging strategies are 223min, 67.4min, and
94.7min, respectively. It is obvious that the CC-CV charging
strategy has the longest charging period for a low constant
charging rate. Although the whole charging period of two-
stage CC-CV is shorter than that of the multistage CC-CV,
multistage CC-CV charging strategy has a larger charging
capacity. The charging period of multistage CC-CV strategy
is shorter than that of two-stage CC-CV strategy at the same
charging SOC point 94.8%.

5.2. Different Charging Strategy Analysis at 0∘C. As shown in
Figure 12, unlike the terminal voltage at 25∘C, the terminal
voltage of CC-CV strategy increases to 3.35V at low SOC
range of 0%–10%.The terminal voltage increase slope during
SOC range of 10%–80% is enhanced. The terminal voltage
increase towards the cut-off voltage and sharp increase
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Figure 11: SOC curves of different charging strategies at 25∘C.

at 25∘C with SOC range beyond 80% are vanished. The
increase in terminal voltage indicates that the normal CC-CV
charging process has been changed by the increase in internal
resistance at low temperature.

As shown in Figures 13-14, the first charging stage of two-
stage CC-CV strategy does not last long before the cut-off
voltage is reached for the increase in internal resistance and
the high charging rate. The second charging stage decreases
the charging current rate by 0.5 C, and the terminal voltage
decreases by 0.23V and keeps on increasing until the cut-off
voltage is reached. Unlike the two-stage CC-CV strategy, the
current decreases by 0.1 C of the multistage CC-CV strategy.
The terminal voltages of 1 C–0.7 C constant current charging
stages increase rapidly with SOC below 22%. Terminal volt-
ages of 0.6 C–0.4 C constant current charging stages increase
slower with SOC between 22% and 73.4%. Terminal voltages
of 0.3 C–0.1 C constant current charging stages increase
rapidly again with SOC beyond 73.4%. The terminal voltage
curve of multistage CC-CV indicates that multistage CC-CV
strategy can automatically select the optimal charging current
by cut-off voltage limiting and current decreasing.

The charging result at 0∘C shows that the capacities of
CC-CV, two-stage CC-CV, and multistage CC-CV charging
strategies are 1.196Ah, 0.758Ah, and 1.246Ah, respectively.
Compared with the charging result at 25∘C, the charging
capacities of CC-CV, two-stage CC-CV, and multistage CC-
CV charging strategies decrease by 8.2%, 39.5%, and 8.9%,
respectively. As the main charging rate of two-stage CC-CV
strategy is 0.5 C higher than 0.3 C of CC-CV strategy and
the charging rate does not decrease further, the two-stage
CC-CV strategy has the largest decrease in charging capacity
decrease at 0∘C. As multistage CC-CV strategy has 0.2 C and
0.1 C charging rate lower than 0.3 C of CC-CV strategy, the
charging capacity of multistage CC-CV strategy is higher
than that of CC-CV strategy.

Figure 15 shows the SOC curves of different charging
strategies at 0∘C. The charging periods of CC-CV, two-
stage CC-CV, and multistage CC-CV charging strategies
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Figure 12: Charging curves of CC-CV strategy at 0∘C.
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Figure 13: Charging curves of two-stage CC-CV strategy at 0∘C.
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Figure 14: Charging curves of multistage CC-CV strategy at 0∘C.
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Figure 15: SOC curves of different charging strategies at 0∘C.

are 183.4min, 68.7min, and 148min. The curve tendency
of multistage CC-CV charging strategy shows the obvious
capacity increasing speed, although the speed is slowed
down for the current decrease at later period. As the dotted
line shows, the charging period of multistage CC-CV is
shorter than that of two-stage CC-CV strategy with the same
charging SOC of 55.32%. The multistage CC-CV still has the
maximum charging capacity and minimum charging period
at 0∘C.

5.3. Different Charging StrategyAnalysis at−10∘C. Figures 16–
18 show the terminal voltage curves with different charging
strategies at −10∘C. The terminal voltage of CC-CV strategy
reaches cut-off voltage at SOC point of 48.67%. The termi-
nal voltage of the first stage of two-stage CC-CV strategy
increases straightly towards the cut-off voltage and the second
stage only extends the SOC to 32.26%. All the terminal
voltages of charging current at 1 C–0.6 C of multistage CC-
CV strategy increase rapidly to the cut-off voltage with SOC
growth less than 10%. The terminal voltages of charging
current at 0.5 C–0.1 C increase slower with near 75% of SOC
growth. All the terminal voltage curves indicate that the
voltage increases faster at the lower temperature and higher
charging current rate.

The charging result at −10∘C shows that the capacities of
CC-CV, two-stage CC-CV, and multistage CC-CV charging
strategies are 0.664Ah, 0.442Ah, and 1.169Ah, respectively.
Compared with the charging result at 25∘C, the charging
capacities of CC-CV, two-stage CC-CV, and multistage CC-
CV charging strategies decrease by 47.08%, 62.56%, and
14.53%, respectively. It can be indicated that the charging
capacity of CC-CV decreases badly and the first stage of
two-stage CC-CV strategy oppositely becomes the capacity
limit. The multistage CC-CV strategy can keep the charging
capacity beyond 80% even at −10∘C.

Figure 19 shows SOC curves of different charging strate-
gies at −10∘C, and the charging periods of CC-CV, two-stage
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Figure 16: Charging curves of CC-CV strategy at −10∘C.
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Figure 17: Charging curves of two-stage CC-CV strategy at −10∘C.
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Figure 18: Charging curves of multistage CC-CV strategy at −10∘C.
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Figure 19: SOC curves of different charging strategies at −10∘C.

CC-CV, and multistage CC-CV charging strategies are
101.7min, 39.38min, and 197.1min, respectively. The curve of
two-stage CC-CV charging strategy shows the obvious dif-
ficulty of capacity increasing at such temperature. Although
the terminal voltage increasing slope of two-stage CC-CV
strategy is close to that of multistage CC-CV strategy, the
charging capacity is significantly different.The comparison of
the SOC curves shows that the charging period of multistage
CC-CV strategy is still the shortest at the same SOC point.
The multistage CC-CV still has maximum charging capacity
at −10∘C.

5.4. Analysis of Multistage CC-CV Strategy. Figure 20 shows
the capacity curves of different charging current rates of
multistage CC-CV strategy at different temperature, and the
high charging capacity corresponding charging current rate
decreaseswith temperature decreasing.The charging capacity
of 1 C is 1.162Ah, beyond 80% of battery capacity, and the
other charging rates only need to recover the rest of capacity
at 25∘C.While the high charging rate does not work well with
temperature decreasing, the charging current rate with the
maximum charging capacity of 0.28Ah is 0.5 C at 0∘C. The
charging current rate with the maximum charging capacity
of 0.266Ah is 0.3 C at −10∘C. The main capacity is charged
with a range of charging current rates at low temperature.
The multistage CC-CV can automatically select the optimal
charging current rate for two reasons. (1)The cut-off voltage
limit can stop the charging stage of the not optimal charging
current rate. (2) The multistage has ten charging current
rates from the maximum 1C to the minimum 0.1 C ensuring
the charging demands at different temperature points. The
multistage CC-CV strategy is a wide temperature range
charging strategy that keeps high charging capacity and low
charging period.

6. Conclusion

It can be seen from the presentation above that the charging
capacity of the CC-CV strategy can be only 48.47% of the
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Figure 20: Capacity curves of different charging current rates of
multistage CC-CV strategy at different temperature.

normal capacity at −10∘C. The charging process is analyzed
by electrochemical Li-ion battery model and first-order 𝑅𝐶
equivalent circuitmodel.The increase in internal resistance is
the main limitation of charging capacity at low temperature.
The proposed multistage CC-CV strategy can extend the
constant current charging process to obtain a larger capacity
by decreasing the charging rate when the terminal voltage
reaches the cut-off voltage. Experimental results indicate that
the charging capacities with multistage CC-CV strategy at
25∘C, 0∘C, and −10∘C are 1.368Ah, 1.246Ah, and 1.169Ah,
respectively. Compared with CC-CV and two-stage CC-CV
strategies, the multistage CC-CV strategy has the largest
charging capacities and the shortest charging periods at the
target temperatures.
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The traditional polarity comparison based travelling wave protection, using the initial wave information, is affected by initial fault
angle, bus structure, and external fault. And the relationship between the magnitude and polarity of travelling wave is ignored.
Because of the protection tripping and malfunction, the further application of this protection principle is affected. Therefore, this
paper presents an ultra-high-speed travelling wave protection using integral based polarity comparison principle. After empirical
mode decomposition of the original travelling wave, the first-order intrinsic mode function is used as protection object. Based on
the relationship between the magnitude and polarity of travelling wave, this paper demonstrates the feasibility of using travelling
wave magnitude which contains polar information as direction criterion. And the paper integrates the direction criterion in a
period after fault to avoid wave head detection failure. Through PSCAD simulation with the typical 500 kV transmission system,
the reliability and sensitivity of travelling wave protection were verified under different factors’ affection.

1. Introduction

According to the protection principle, travelling wave protec-
tion methods include travelling wave differential protection,
travelling wave distance protection, travelling wave ampli-
tude comparison protection, and travelling wave polarity
comparison protection [1, 2].

Travelling wave differential protection principle is simple
and clear. But travelling wave has attenuation characteristic.
There may be large unbalance current in the transmission
line to cause wrong operation. And it is also affected by
the bus structure [3–5]. Travelling wave distance protection
cannot protect the whole line and does not have direction
discrimination ability. Same with differential protection, it
is affected by bus structure, too [6–9]. Travelling wave
amplitude comparison protection principle has improved
much compared to other protection principles. But it is
affected by the bus structures, fault inception angles, and dif-
ferent thresholds, too.The traditional travelling wave polarity
comparison protection principle has a lot of advantages: high

operation speed, clear direction discrimination, and simple
protection principle. But it is also affected by some things:
fault initial angles, different bus structures, different fault
locations, and even threshold. If those disadvantages can be
overcome, a new travelling wave protection principle can be
got [10–12].

The traditional travelling wave protection principle’s
application is limited by the transformer technology. The
traditional current transformer (CT) and voltage transformer
(VT) cannot transfer the travelling wave signal correctly.
Currently, Rogowski based electronic current transformer (R-
ECT) and capacitive divider electronic voltage transformer
(C-EVT) have been able to transfer current travelling wave
and voltage travelling wave accurately. And the output of C-
EVT and R-ECT is the differential signal of the input. By
integration circuit, the original signal can be regained exactly.
So there is no transformer technology limit in the travelling
wave protection principle anymore [13–16].

This paper compares the polarity relationship between
voltage travelling wave and current travelling wave with
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Table 1: Analysis of travelling wave polarity comparison protection.

Fault location Superimposed voltage
polarity

M side N side Schematic of fault superimposed
state circuitVoltage Current Voltage Current

Internal fault +
−
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+ +
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−
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different fault directions. Combined with empirical mode
decomposition algorithm (EMD), the new travelling wave
polarity comparison protection principle based on the inte-
gration of amplitude is derived. It not only uses the initial
travelling wave but also uses the travelling wave after fault
happens. So it is a reliable protection principle with obvious
direction discrimination. By the way, this new protection
principle is not affected by different initial angles, different
grounding resistance, different bus structures, and different
fault locations. To verify the characteristics of the new prin-
ciple, a simulation based on PSCAD/EMTDC is carried on.
And the PSCAD simulation proved that this new protection
principle has the characteristics mentioned above indeed.

The high operation speed is a very important advantage
for travelling wave protection. Considering the different
parts of the new travelling wave’s operation time, the new
protection principle can determine if the fault is internal or
external in 5ms. Then it can send the signal to breaker to
operate. So, it can be called an ultra-high-speed travelling
wave protection.

2. Traditional Travelling Wave Polarity
Comparison Protection

The direction element of the protection principle is a polarity
comparison relay. It detects the initial voltage travelling wave
and current travelling wave as comparison objects. When
the voltage travelling wave and current travelling wave have
opposite polarities of both sides, the internal fault can be
determined. When the voltage travelling wave and current
travelling wave have same polarities of any side, the external
fault can be determined.The schematic of protection is shown
in Table 1. (Superimposed voltage in the table appears at the
moment that fault happens. It has same value and opposite
polarity with the voltage on the transmission line just before
the fault moment. And it is the voltage source in the circuit of
the table indeed.)

3. Empirical Mode Decomposition

The empirical mode decomposition algorithm can distin-
guish the different scale fluctuations or trends in the signal
gradually. And the result of EMD is a series of different
characteristic scales data called intrinsic mode functions
(IMF) [17–19].

The result of EMD can be described as

𝑆 (𝑡) =

𝑁

∑

𝑖=1

IMF
𝑖 (
𝑡) + 𝑅 (𝑡) ,

(1)

where 𝑆(𝑡) is the EMD result, IMF
𝑖
(𝑡) is 𝑖 order intrinsicmode

function, and 𝑅(𝑡) is trends signal.
Intrinsic mode function is a single component signal and

it must meet the following two conditions: (1) difference
between the number of extreme points and zero crossing
points is not more than one over the entire length of the
signal; (2) the envelope of IMF is symmetry about time axis.

The processes of EMD are described as the following
steps.

(1) Find all the maxima of the original signal 𝑆(𝑡). Then
the maxima envelope 𝐸

+
(𝑡) can be calculated based on cubic

spline interpolation. Similarly, the minimum envelope 𝐸

−
(𝑡)

can also be calculated. Then, the average envelope 𝑀(𝑡) can
be defined as

𝑀(𝑡) =

𝐸

+ (
𝑡) + 𝐸

− (
𝑡)

2

.

(2)

(2) Let 𝑆(𝑡) be minus𝑀(𝑡) to get a new signal𝐻1
1
(𝑡):

𝐻

1

1
(𝑡) = 𝑆 (𝑡) − 𝑀 (𝑡) .

(3)

Then check if the following condition can be met:

∑[𝐻

𝑘

1
(𝑡) − 𝐻

𝑘−1

1
(𝑡)]

2

∑[𝐻

𝑘−1

1
(𝑡)]

2
≤ 𝜀,

(4)
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where 𝑘 is the cycle number and the value of 𝜀 is between 0.2
and 0.3. This paper selects 0.3.

If (4) cannot be met, return to step (1).
If (4) can be met after 𝑘 cycles, then IMF

1
(𝑡) can be

defined as

IMF
1 (

𝑡) = 𝐻

𝑘

1
(𝑡) .

(5)

(3) Let original signal be minus IMF
1
(𝑡) to get a residual

signal 𝑅(𝑡) as

𝑅 (𝑡) = 𝑆 (𝑡) − IMF
1 (

𝑡) . (6)

Repeat steps (1) to (3) to get another intrinsic mode
function IMF

2
(𝑡). Repeat steps (1) to (3) until residual signal

𝑅(𝑡) is small enough or monotonic function.
Based on EMD, the first IMF of voltage travelling wave

and current travelling wave can be calculated as Figure 1.
The first figure and second figure are the voltage and current
travellingwave before EMD, respectively.The third figure and
fourth figure are the voltage and current travelling wave after
EMD, respectively. As we can see, the similarity of the voltage
and current travelling wave using EMD is more obvious than
before. So it is more convenient to construct a protection
principle using intrinsic mode function.

4. New Travelling Wave Polarity
Comparison Protection

4.1. Derivation of Direction Criterion. As shown in Figure 2,
fault component voltage appears between the fault location
𝐹 in transmission line and the earth at time 𝑡 = 0.
Then, the transmission line will be charged. After a short
time Δ𝑡, a short length of transmission line Δ𝑥 is charged
to Δ𝑄 = 𝐶𝑢

0
Δ𝑥 (𝐶 is the capacitance value per unit

length of transmission line). An electrical field 𝐸 will appear
surrounding this short transmission line. And the flow of
current will form a magnetic field around the line. If Δ𝑥 is
small enough, the current 𝑖

0
can be described as

𝑖

0
= lim
Δ𝑥→0

Δ𝑄

Δ𝑡

= lim
Δ𝑥→0

𝐶𝑢

0
Δ𝑥

Δ𝑡

= 𝐶𝑢

0
V, (7)

where V is the speed of the wave and𝐶 is the capacitance value
per unit length of transmission line.

Now the magnetic flux around Δ𝑥 is ΔΦ = 𝐿𝑖Δ𝑥.
According to the law of electromagnetic induction, the
electromotive force is described as

𝐸 = lim
Δ𝑥→0

ΔΦ

Δ𝑡

= lim
Δ𝑥→0

𝐿𝐶𝑢

0
VΔ𝑥

Δ𝑡

= 𝐿𝐶𝑢

0
V2, (8)

where V is the speed of the wave, 𝐶 is the capacitance value
per unit length of transmission line, and 𝐿 is the inductance
value per unit length of transmission line.

Because the voltage on capacitance cannot change sud-
denly and Δ𝑥 is small enough, 𝐸 equals voltage 𝑢

0
. Then the

wave speed will be

V =

1

√

𝐿𝐶

. (9)
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Figure 1: The comparison of travelling wave and travelling wave
after EMD.
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Take (9) to (7) to get

𝑢

0

𝑖

0

=

√

𝐿

𝐶

.
(10)

Aswe can see, the ratio of voltage and current is a constant
value called wave impedance.

Define voltage amplitude conditioning factor 𝑘:

𝑘 =

|𝑖|

|𝑢|

. (11)

And the value of 𝑘 is approximately equal to√𝐶/𝐿.
Considering the initial polarity of voltage and current

travelling wave, define a factor 𝜆 to identify the fault direc-
tion:

𝜆 =

∫

𝑡𝐹+𝑑

𝑡=𝑡𝐹

𝑘𝑢 (𝑡) 𝑖 (𝑡) 𝑑𝑡

∫

𝑡𝐹+𝑑

𝑡=𝑡𝐹

𝑖

2
(𝑡) 𝑑𝑡

, (12)
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where 𝑡

𝐹
is the arrival point of the travelling wave, 𝑑 is the

length of the integration time, and 𝑘 is the voltage amplitude
conditioning factor defined above.

The discretization of (12) can be described as

𝜆 =

∑

𝑡𝐹+𝑑

𝑡=𝑡𝐹
𝑘𝑢 (𝑡) 𝑖 (𝑡)

∑

𝑡𝐹+𝑑

𝑡=𝑡𝐹
𝑖

2
(𝑡)

. (13)

Considering different fault directions, the value of 𝜆 can
be calculated.

(1) If the fault happens as Figure 2 shows, it will be
forward fault type for R1. Assume the transmission line is
lossless.When the travelling wave arrived, the travelling wave
signal of R1 will be

𝑢 = 𝑢

+
+ 𝑢

−
= (1 + 𝑘

𝑢𝑓
) 𝑢

−
,

𝑖 = 𝑖

+
+ 𝑖

−
= (1 + 𝑘

𝑖𝑓
) 𝑖

−
,

(14)

where 𝑢 is the voltage travelling wave, 𝑖 is the current
travelling wave, 𝑢

+
is the forward voltage travelling wave, 𝑢

−

is the reverse voltage travelling wave, 𝑖
+
is the forward current

travelling wave, 𝑖
−
is the reverse current travelling wave, 𝑘

𝑢𝑓

is the voltage reflection coefficient at the bus, and 𝑘

𝑖𝑓
is the

current reflection coefficient at the bus. And the inequality
relationship will be 0 ≤ |𝑘

𝑢𝑓
|, |𝑘

𝑖𝑓
| ≤ 1.

Now the amplitude conditioning factor can be calculated:

𝑘 =

|𝑖 (𝑡)|

|𝑢 (𝑡)|

=

(1 + 𝑘

𝑖𝑓
)

(1 + 𝑘

𝑢𝑓
)









𝑖

− (
𝑡)

















𝑢

− (
𝑡)









. (15)

Because it is a forward direction fault for R1, the reverse
voltage and current travelling wave have different polarities.
So (15) can be simplified as

𝑘 = −

(1 + 𝑘

𝑖𝑓
)

(1 + 𝑘

𝑢𝑓
)

𝑖

− (
𝑡)

𝑢

− (
𝑡)

. (16)

Take (14) and (16) to (13):

𝜆 =

∑

𝑡𝐹+𝑑

𝑡=𝑡𝐹
𝑘𝑢 (𝑡) 𝑖 (𝑡)

∑

𝑡𝐹+𝑑

𝑡=𝑡𝐹
𝑖

2
(𝑡)

= −1. (17)

Aswe can see, the value of𝜆 is a constant number−1 when
it is a forward direction fault. And it is not affected by the
reflection coefficient and the construction of the bus.

(2) If the fault happens as Figure 2 shows, it will be reverse
fault type for R2. Assume the transmission line is lossless.
When the travelling wave arrived, the travelling wave signal
of R2 will be

𝑢 = 𝑢



+
= 𝑘

𝑢𝑧
𝑢

−
,

𝑖 = 𝑖



+
= 𝑘

𝑖𝑧
𝑖

−
,

(18)

where 𝑢 is the voltage travelling wave, 𝑖 is the current
travelling wave, 𝑢

+
is the forward voltage travelling wave at

R2, 𝑖
+
is the forward current travelling wave at R2, 𝑢

−
is the

−1 +10

Forward fault Reverse fault
−1 ≤ 𝜆 < 0 0 < 𝜆 ≤ 1

Figure 3: Fault direction discrimination schematic.

reverse voltage travelling wave at R1, 𝑖
−
is the reverse current

travelling wave at R1, 𝑘
𝑢𝑧

is the voltage refractive coefficient
at bus, and 𝑘

𝑖𝑧
is the current refractive coefficient at bus. And

there is an inequality relationship 𝑘

𝑢𝑧
, 𝑘

𝑖𝑧
≥ 0.

Now the amplitude conditioning factor can be calculated:

𝑘 =

|𝑖 (𝑡)|

|𝑢 (𝑡)|

=









𝑘

𝑖𝑧
𝑖

− (
𝑡)

















𝑘

𝑢𝑧
𝑢

− (
𝑡)









. (19)

Because it is a reverse direction fault for R2 and also a
forward direction fault for R1, the reverse voltage and current
travelling wave have different polarities. And the forward
direction of R2 is opposite to R1. So (19) can be simplified as

𝑘 =

|𝑖 (𝑡)|

|𝑢 (𝑡)|

=

𝑘

𝑖𝑧

𝑘

𝑢𝑧

𝑖

− (
𝑡)

𝑢

− (
𝑡)

. (20)

Take (18) and (20) to (13):

𝜆 =

∑

𝑡𝐹+𝑑

𝑡=𝑡𝐹
𝑘𝑢 (𝑡) 𝑖 (𝑡)

∑

𝑡𝐹+𝑑

𝑡=𝑡𝐹
𝑖

2
(𝑡)

= 1. (21)

As we can see, the value of 𝜆 is a constant number 1 when
it is a reverse direction fault. And it is not affected by the
reflection coefficient and the construction of the bus.

Taking a variety of errors in the actual system into
account, the fault direction discrimination schematic is
shown in Figure 3. When forward fault happens, the value of
𝜆 is less than zero. When reverse fault happens, the value of
𝜆 is greater than zero. If two fault direction discrimination
results of both ends are forward fault, an internal fault can
be determined. If one of the fault direction discrimination
results of both ends is reverse fault, an external fault can be
determined.

4.2. Protection Scheme. The protection scheme is shown
in Figure 4. First of all, the three-phase voltage and cur-
rent should be decoupled using Clark transformation. Then
amplitude conditioning factor, defined above, can be calcu-
lated point by point in 𝑑 length of time. After that, the value of
𝜆 can be calculated. Because the other end of the transmission
line needs the value of 𝜆 to identify the fault section, the value
of 𝜆 should send to another end though fiber path. Then the
value of factor 𝜆 can be checked to identify the external fault
type. If it is a forward fault for the relay, the value of factor 𝜆
from another end will be received and checked to identify the
external fault. If 𝜆 and 𝜆

 are both less than zero, an internal
fault can be determined. At last, the breaker will clear the
transmission line fault.

5. Simulation Analysis

5.1. Simulation Model in PSCAD. The 500 kV power trans-
mission system is constructed in PSCAD/EMTDC as shown
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Figure 4: Flow chart of travelling wave protection.

Table 2: Transmission line parameters.

𝑅 𝑋 𝐺 𝐵

(Ω/km) (Ω/km) (S/km) (S/km)
Positive sequence 0.01798 0.29278 1 × 108 3.93905 × 10−6

Negative sequence 0.01798 0.29278 1 × 108 3.93905 × 10−6

Zero sequences 0.28662 1.08210 1 × 108 2.43767 × 10−6

in Figure 5. The system includes three transmission lines
whose lengths are 100 km, 200 km, and 100 km, respectively.
R1 and R2 are two relays on the middle line. Now the
new travelling wave polarity comparison protection can be
studied by different fault locations and different fault types.

The transmission line uses frequency-dependent model
and has uniform transposition.The transmission line param-
eters for per km length are shown in Table 2. The bus stray
capacitance to ground is set to 𝐶

𝑆
= 0.01 𝜇F. Taking the past

studies into account, the sampling rate is set to 1MHz. The
integration time 𝑑 is 0.1ms.

5.2. Typical Fault Examples. In order to verify the protection
principle’s operating characteristics, A phase to ground fault

M N
R1 R2F1F2 F3

CSCSCSCS

L2 = 100 km L1 = 200 km L3 = 100 km

Figure 5: Model of 500 kV power transmission system.
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Figure 6: Comparison chart of 𝑘𝑢 and 𝑖 of M side.

is set located at F3.The initial fault angle is 45∘ and the ground
resistance is 50Ω. Using empirical mode decomposition
algorithm, the first-order intrinsic mode function of voltage
and current travelling wave of both sides can be calculated.

Take 𝑘𝑢 and 𝑖 data in Figure 6 to (13) to calculate the 𝜆 =

−0.8710. Then the forward fault of R1 can be determined.
Take 𝑘𝑢 and 𝑖 data in Figure 7 to (13) to calculate the 𝜆 =

0.9811. Then the reverse fault of R2 can be determined.
As we can see, the fault discrimination results of R1 and

R2 are corrected. Taking the protection scheme of Figure 4
into account, an external fault type can be determined.

5.3. Relater Factors

5.3.1. Different Fault Location. Based on some different fault
locations at F1 andF2, the fault discrimination factor𝜆of both
M and N side is calculated.

Table 3 is the simulation results for different fault loca-
tions. The fault distance in the table is from the bus of M
side to fault location. As can be seen, the fault principle based
on EMD can identify fault direction correctly. Even at the
beginning or end of the transmission line, it can still identify
fault direction correctly.

5.3.2. Grounding Resistance. Based on some different
grounding resistance at F1 (100 km away from the bus of M
side) and F2 (10 km away from the bus of M side), the fault
discrimination factor 𝜆 of both M and N side is calculated.

Table 4 is the simulation results for different grounding
resistance. As can be seen, the fault principle based on
EMD can identify fault direction correctly. With the increas-
ing of grounding resistance, protection’s sensitivity will not
change.
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Figure 7: Comparison chart of 𝑘𝑢 and 𝑖 of N side.

5.3.3. Fault Initial Angle. Based on some different fault initial
angel at F1 (100 km away from the bus of M side) and F2
(10 km away from the bus of M side), the fault discrimination
factor 𝜆 of both M and N side is calculated.

Table 5 is the simulation results for different fault initial
angles. As can be seen, the fault principle based on EMD
can identify fault direction correctly. Even with small fault
angles, it can still identify fault direction correctly. And, with
the decreasing of fault initial angle, protection’s sensitivitywill
reduce slowly.

5.3.4. Different Fault Types. Based on some different fault
types at F1 (100 km away from the bus of M side) and F2
(10 km away from the bus of M side), the fault discrimination
factor 𝜆 of both M and N side is calculated.

Table 6 is the simulation results for different fault types.
As can be seen, the fault principle based on EMD can identify
fault direction correctly.

5.3.5. Sampling Rate. Based on some different sampling rate
and AG fault at F1 (100 km away from the bus of M side)
and F2 (10 km away from the bus of M side), the fault
discrimination factor 𝜆 of both M and N side is calculated.

Table 7 is the simulation results for different sampling
rate. As can be seen, the fault principle based on EMD can
identify fault direction correctly with the change of sampling
rate.

5.3.6. Bus Structure. Traditional travelling wave protection
principle is affected by the number of transmission lines
connected to the bus. To verify the new EMD based
protection principle, a new power transmission system is
constructed in PSCAD as Figure 8.

Table 8 is the simulation results for different fault loca-
tions. As can be seen, the fault principle based on EMD can
identify fault direction correctly with different bus structure.

6. Operation Time of Protection

The operation time of the travelling wave protection using
polarity comparison principle based on EMD includes three
parts: algorithm time, detection time, and propagation time.
This new travelling wave protection principle can determine
if the fault is inside or outside of the protection region in

M NR1 R2F1

F2

L2 = 100 km L1 = 200 km L3 = 100 km

CS CS CS CS

F3

Figure 8: Model of 500 kV power transmission system with differ-
ent bus structures.
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Figure 9: Schematic diagram of detection time.

5ms. Then it can send the signal to breaker to operate. So it
can be called ultra-high-speed travellingwave protection.The
following is the introduction and analysis of the three parts.

6.1. Algorithm Time. Algorithm time includes two parts: the
integration time and calculation time of the principle. In this
paper, integration time length (the factor 𝑑 in (12) and (13))
is 0.1ms. Considering the computing power of the protection
unit now, the calculation time of algorithm is not longer than
0.5ms. So, the algorithm time is not longer than 1ms.

6.2. Detection Time. Detection time is the time difference of
two sides’ travellingwave arrival point. Aswe can see, the fault
may happen everywhere in the transmission line. Then the
arrival times of two sides are different, except that the fault
happens in the middle of the line. As a protection principle
which needs two sides’ information to decide the operation
of breaker, the time difference will delay the operation time.
As shown in Figure 9, 𝑡

𝑓
, 𝑡
𝑚
, and 𝑡

𝑛
are the fault time,M side’s

arrival time, and N side’s arrival time, respectively. And the
time difference can be described as

Δ𝑡 = 𝑡

𝑚
− 𝑡

𝑛
=

𝐿

1
− 𝐿

2

V
.

(22)

And V is the travelling wave speed.
Because the transmission line is generally several hun-

dred kilometers, this time is obviously not longer than 2ms.

6.3. Propagation Time. After the direction discrimination of
one side, as shown in Figure 10, the value of 𝜆 should transfer
to another side. Propagation time is the time from one side to
another side. As the length of transmission line is generally
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Table 3: Simulation results for different fault locations.

Fault location Fault distance/km M side N side Results
𝜆 Direction 𝜆 Direction

F1
10 −0.8160 Forward −0.5732 Forward Internal
100 −0.8763 Forward −0.4071 Forward Internal
190 −0.9378 Forward −0.7965 Forward Internal

F2
10 0.9972 Reverse −0.9603 Forward External
50 0.9980 Reverse −0.3843 Forward External
90 0.9972 Reverse −0.9603 Forward External

Table 4: Simulation results for different grounding resistance.

Fault location Grounding resistance/Ω M side N side Results
𝜆 Direction 𝜆 Direction

F1
1 −0.4944 Forward −0.8818 Forward Internal
100 −0.4829 Forward −0.8802 Forward Internal
300 −0.4984 Forward −0.8839 Forward Internal

F2
1 0.9978 Reverse −0.9438 Forward External
100 0.9963 Reverse −0.8730 Forward External
300 0.8522 Reverse −0.9033 Forward External

Table 5: Simulation results for different fault angles.

Fault location Initial angle/∘ M side N side Results
𝜆 Direction 𝜆 Direction

F1
1 −0.3884 Forward −0.3256 Forward Internal
45 −0.4291 Forward −0.8732 Forward Internal
90 −0.4944 Forward −0.8818 Forward Internal

F2
1 0.9972 Reverse −0.2356 Forward External
45 0.9997 Reverse −0.9687 Forward External
90 0.9997 Reverse −0.9700 Forward External

Table 6: Simulation results for different fault types.

Fault location Fault type M side N side Results
𝜆 Direction 𝜆 Direction

F1

AG −0.4944 Forward −0.8818 Forward Internal
AC −0.9600 Forward −0.9602 Forward Internal
ABG −0.4471 Forward −0.8804 Forward Internal
ABCG −0.9664 Forward −0.7452 Forward Internal

F2

AG 0.9972 Reverse −0.9700 Forward External
AC 0.9991 Reverse −0.6022 Forward External
ABG 0.8275 Reverse −0.4659 Forward External
ABCG 0.9997 Reverse −0.9586 Forward External

Table 7: Simulation results for different sampling rate.

Fault location Sampling rate/Hz M side N side Results
𝜆 Direction 𝜆 Direction

F1
100 k −0.9794 Forward −0.6816 Forward Internal
500 k −0.7345 Forward −0.9637 Forward Internal
1M −0.5018 Forward −0.8825 Forward Internal

F2
100 k 0.9751 Reverse −0.9807 Forward External
500 k 0.9994 Reverse −0.9055 Forward External
1M 0.9979 Reverse −0.9684 Forward External
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Table 8: Simulation results for different fault locations.

Fault location M side N side Results
𝜆 Direction 𝜆 Direction

F1 −0.9731 Forward −0.9603 Forward Internal
F2 0.9980 Reverse −0.9779 Forward External
F3 −0.9718 Forward 0.9992 Reverse External

M N
R1 R2F

L

L2L1

CS CS

𝜆m 𝜆n

Figure 10: Schematic diagram of propagation time.

several hundred kilometers, propagation time is no longer
than 2ms.

7. Conclusion

Comparing with the traditional polarity comparison trav-
elling wave protection, the new travelling wave protection
combines the relationship between amplitude and polarity.
Based on empirical mode decomposition, the derivation
of the direction criterion is finished. And this protection
criterion not only uses the initial travelling wave front but
also uses short time’s (0.1ms in the paper) travelling wave
information after the initial travelling wave front. Through
the integration of travelling wave, it can avoid the failure of
the travellingwave’s detection. So it can increase the reliability
of the protection principle.

To verify the new protection principle, a simulation
based on PSCAD is carried on. Taking the simulation results
into account, this new protection principle is not affected
by different fault locations, different fault types, different
initial angels, different grounding resistance, and different
bus structures. So it is a reliable travelling wave protection.

Operation speed is an important advantage for travelling
wave protection. Because the new protection principle can
send the operation signal to breaker in 5ms, it can be called
ultra-high-speed travelling wave protection.
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