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Treatment of chronic pain remains an unresolved problem
in human medicine which greatly impairs quality of life and
prolongs treatment. Solving this problem is difficult due to
a number of mechanisms and signalling pathways through
which chronic pain is generated [1]. A common underlying
mechanism of chronic pain is the presence of inflammation
at the site of the damaged or affected tissue. The release
of proinflammatory and immunoactive substances such as
cytokines, neurotrophic factors, and chemokines initiates
local actions and can result in a more generalized immune
response that leads to the chronic pain condition. Clinical
management of chronic pain, that is, neuropathic pain after
nerve injury or cancer pain in tumour invasion represents
therefore a real challenge due to our limited understanding
of the cellular mechanisms that initiate and maintain chronic
pain while many of them are closely overlapping with the
processes of inflammation, immune response, endocrine and
nerve system, and genetic factors as well [2, 3]. This special
issue aims to bring a current knowledge of the role of medi-
ators of inflammation in chronic pain, particularly molec-
ular mechanisms, signalling molecules, and their role in
the initiation and maintenance of chronic pain, as well as the
diagnostic and therapeutic challenges on this field. The brief
introductions of nine published papers are as follows.

The involvement of pro- and anti-inflammatory cytokines
and angiogenic factors in the pain, associated with brain
tumour progression, is shown in the paper entitled “Cytokine
patterns in brain tumour progression” R. Albulescu et al.
found significant changes in serum levels, with over threefold
up-regulation of cytokines IL-6, IL-15, TNF-a, and IL-10
and up to twofold up-regulation of cytokines IL-8, IL-2, and

GM-CSE, and angiogenic factors VEGF and FGF-2. All these
molecules are involved in tumour progression, and are also
involved in a generation of pain, associated with disease.
While pain is a frequent symptom caused by glioblastoma, the
authors concluded that determination of selected cytokines
could add to speed and accuracy, making thus possible earlier
diagnostics and onset of therapy.

Activation of N-methyl-D-aspartate (NMDA) receptor
leads to development of hyperalgesia. In the study called
“posttranslational nitration of tyrosine residues modulates glu-
tamate transmission and contributes to N-methyl-D-aspartate-
mediated thermal hyperalgesia,” C. Muscoli et al., showed that
thermal hyperalgesia, induced by intrathecal administration
of NMDA, is associated with spinal nitration of GluN1 and
GIluN2B receptor subunits, glutamine synthase, that normally
convert glutamate into nontoxic glutamine, and glutamate
transporter. Intrathecal injection of peroxynitrite decompo-
sition catalyst FeTM-4-PyP5+ prevents nitration and inhibits
NMDA-mediated thermal hyperalgesia. Their results support
the hypothesis that nitration of key proteins involved in the
regulation of glutamate transmission is a crucial pathway
through which peroxynitrite mediates the development and
maintenance of NMDA-mediated thermal hyperalgesia.

Inflammatory conditions, particularly in joint diseases,
induce an increase in reactive oxygen substances which have a
deleterious role in erosion, osteoarticular degeneration, and
pain. L. Di Cesare Mannelli et al. in the psper “Therapeutic
effects of the superoxide dismutase mimetic compound Mn'
Me,DO2A on experimental articular pain in rats” focused on
superoxide dismutases which are decreased in pain con-
ditions like joint inflammation, rheumatoid arthritis, and



osteoarthritis. They tested a superoxide dismutase mimetic
compound 4,10-dimethyl-1,4,7,10 tetraazacyclododecane-1,7-
diacetic acid Mn" complex (Mn''Me,DO2A), which has
potently relieved a pain in arthritis models, and they showed
that the effect differed from a direct inhibition of cyclooxyge-
nase enzymes. In chronic administration, it involved preven-
tion of tissue degenerative alterations induced by the oxida-
tive stress and reduction of a persistent inflammatory pain
via a direct antioxidant mechanism, while in acute admin-
istration, it may decrease the nociceptive nervous fiber
activation induced by the local production of reactive oxygen
substances. Given these properties and the low toxicity of
the molecule, Mn""Me,DO2A represents a novel compound
potentially suitable for the treatment of inflammatory and
neuropathic pain.

In the paper “Neurovascular unit in chronic pain,” B. M.
Radu et al. focused on the role of blood-brain barrier (BBB)
and blood-spinal cord barrier (BSCB) during the develop-
ment of chronic pain. Reviewing several inflammatory- and
nerve-injury-based pain models, they argue that the clari-
fication of molecular BBB/BSCB permeabilization events is
necessary for understanding chronic pain mechanisms. They
proposed that the understanding of chronic pain mechanisms
would benefit from the extension of research efforts to the
neurovascular unit as a whole and reviewed the available
evidence on the interaction between analgesic drugs and
the neurovascular unit. Furthermore, they discussed chronic
pain comorbidities, such as neuroinflammatory and neu-
rodegenerative diseases, in a view of neurovascular unit
changes, and innovative pharmacological solutions, targeting
neurovascular unit components in chronic pain treatment.

Pain perception displays large interindividual variability
in the population that affects selection of analgesics and
their dosing. In the comprehensive paper “Pharmacogenetics
of chronic pain and its treatment,” S. Svétlik et al. reviewed
the most recognized pharmacogenetic areas and variables in
the treatment of chronic pain. They focused on the impact
of genetic variability of drug metabolizing enzymes, trans-
porters, receptors, and pathways involved in chronic pain
perception and on the efficacy and safety of analgesics
and other drugs used for chronic pain treatment. Although
several candidate genes have been identified in the literature,
there is only limited clinical evidence substantiating for the
penetration of the testing for these candidate biomarkers into
the clinical practice. While the pain-perception regulation
and modulation are still not fully understood, the authors
have concluded that more complex knowledge of genetic and
epigenetic background for analgesia will be needed prior to
the clinical use of the candidate genetic biomarkers.

In autoimmune diseases of the nervous system, the
neuropathic pain is frequently presented. In the review
article “Neuropathic pain in animal models of nervous system
autoimmune diseases; D. H. Tian et al. focused on neuro-
pathic pain, associated with multiple sclerosis and Guillain-
Barre syndrome, as well as with experimental autoimmune
encephalomyelitis and experimental autoimmune neuritis, in
animal models which enable investigations of behavioural
changes, underlying mechanisms, and potential pharma-
cotherapeutic approaches for neuropathic pain, associated
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with these diseases. In this review, the symptoms, mecha-
nisms, and clinical therapeutic options in these conditions
are examined, and the value of experimental autoimmune
encephalomyelitis and experimental autoimmune neuritis
animal models for the study of neuropathic pain in multiple
sclerosis and Guillain-Barre syndrome is highlighted.

In the paper “Chronic pain treatment: the influence of
tricyclic antidepressants on serotonin release and uptake in
mast cells,” 1. Ferjan M. Lipnik-Stangeli discussed the role of
serotonin (5-HT), tricyclic antidepressants, and mast cells in
the generation of chronic pain in the periphery and central
nerve system. They showed that, besides inhibition of the pain
stimuli in the central nerve system, 5-HT might be associated
also by an increased pain transmission from the periphery,
where mast cells play an important role. The authors demon-
strated that tricyclic antidepressants are able to influence
mast cell-derived 5-HT levels via at least three different
mechanisms: secretion of 5-HT, uptake of exogenous 5-
HT, and reuptake of secreted 5-HT. They concluded that
analgesic effect of tricyclic antidepressants involved different
mechanisms of action.

Current evidence indicates lines of the prominent role of
gonadal hormones in affecting pain occurrence and intensity.
In the review article “Testosterone-induced effects on lipids and
inflammation,” S. Vodo et al. described interesting aspects
on the generation of chronic pain, influenced by andro-
gen hormones, particularly testosterone, and lipids, whose
altered metabolism is often accompanied by the release of
interleukins and lipid-derived pro-inflammatory mediators,
and based on interactions which are often not considered
in chronic pain mechanisms. Also important is the ability
of pain as well as pain therapies to affect gonadal hormone
metabolism. The authors concluded that lower testosterone
levels are associated with an increased metabolic risk, sys-
temic inflammation, and chronic pain.

In the paper “Inflammatory pain and corticosterone
response in infant rats: effect of 5-HT1A agonist buspirone prior
to gestational stress,” hypothalamo-pituitary-adrenal axis and
serotonin system interactions in the chronic pain are dis-
cussed. I. P. Butkevich et al. presented the effect of buspirone
on the dynamics of the inflammatory pain-like behaviour and
stress response of corticosterone during the formalin test in
the infant male rat offspring and evaluated the correlation
between pain-like and hormonal parameters. They concluded
that maternal buspirone, applicated before the stress dur-
ing gestation, may enhance an adaptive mechanism of the
inflammatory nociceptive system through activation of the
hypothalamo-pituitary-adrenal axis peripheral link.
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Inflammation represents the immune system response to external or internal aggressors such as injury or infection in certain tissues.
The body’s response to cancer has many parallels with inflammation and repair; the inflammatory cells and cytokines present in
tumours are more likely to contribute to tumour growth, progression, and immunosuppression, rather than in building an effective
antitumour defence. Using new proteomic technology, we have investigated serum profile of pro- (IL-1f3, IL-6, IL-8, IL-12, GM-
CSF, and TNF-«) and anti-inflammatory cytokines (IL-4, IL-10), along with angiogenic factors (VEGF, bFGF) in order to assess
tumoural aggressiveness. Our results indicate significant dysregulation in serum levels of cytokines and angiogenic factors, with
over threefold upregulation of IL-6, IL-13, TNF-a, and IL-10 and up to twofold upregulation of VEGE, FGF-2, IL-8, IL-2, and
GM-CSE. These molecules are involved in tumour progression and aggressiveness, and are also involved in a generation of disease

associated pain.

1. Introduction

Glioblastomas are the most aggressive type of intracranial
tumours, highly resistant to combined treatment, in patients
displaying a median survival time of 15 months [1]. The
molecular mechanisms underlying these clinical features are
the existence of specific genetic and molecular profiles of
these tumour cells. Recent reports show genomic instability
(especially in tumours from short-term survival patients),
chromosomal alterations, somatic mutations, and polymor-
phisms [2]. Knowing this particular brain tumour cell, one
can wonder if, besides the intrinsic cellular features, the
inflammatory milieu triggered by the development of such a
tumour cannot influence the particular clinical development
in glioblastomas as well.

The relationship between inflammation and cancer has
first been suggested in modern time, by Virchow in 1863,
who found “lymphoreticular infiltrates” in neoplastic tissues,

consequently suggesting that these reflect the origin of can-
cer of sites of chronic inflammation. Massive experimental
proofs appeared in the recent years to support Virchow’s
concept [3].

In a synthetic formulation, inflammation is defined as
“the seventh hallmark of cancer”, by Colotta et al. [4]. The
body’s response to cancer has many analogies with inflamma-
tion and repair; the inflammatory cells and cytokines present
in tumours are more likely to contribute to tumour growth,
progression, and immunosuppression, rather than in build-
ingan effective antitumour defence. Cancer susceptibility and
severity are often associated with functional polymorphisms
in cytokine genes. As plastically described by Balkwill and
Mantovani, if genetic damage is the “match that lights the fire”
of cancer, some types of inflammation may provide the “fuel
that feeds the flames” [3].

Tumour initiation and progression is a complex pro-
cess involving genomic mutations, micro environmental



factors, and inflammatory mediators. Within the tumour
environment inflammatory markers are responsible for cell
proliferation, tumour invasion, marked angiogenesis, and
suppression of certain immune functions [5].

Inflammation represents the immune system response to
external or internal aggressors, such as injury or infection
in certain tissues. Typical signs of inflammation include
swelling, redness, pain, temperature rise, and subsequently
loss of function. Numerous studies have shown that the
majority of tumour tissues are associated with inflammatory
signs. However, a clear connection between inflammation
and cancer has yet to be demonstrated.

Glioblastoma represents the most common and lethal
primary brain tumour. The prognosis is poor, especially for
higher grade glioma—the most common primary neoplasm
of the central nervous system, composing over 40% of all such
tumours, with an incidence ranging from 8% to 27% [6].

A broad array of cytokines displays modified expression
in cancers, including glioblastoma multiforme [7, 8].

The changes arise from the interaction of tumour cells and
nontumour cells, like macrophages, lymphocytes, or stromal
cells, and provide regulatory support for tumour growth,
angiogenesis, invasion, and metastasis [8-10].

The vascular system of brain cancers inappropriately
expresses membrane proteins, resulting in blood extravasa-
tion. The production of inflammatory mediators (such as
cytokines and nitric oxide), and tumour hypoxia have been
involved in these effects [11].

Pain belongs to the “classical” markers of inflammation,
described over 2000 years ago by Aulus Celsus (calor, rubor,
tumour et dolor). Various molecular actors of inflammation,
including mediators of pain have been described in the
recent years; a key role appears to be played by cytokines,
which sometimes appear to conduct the orchestra of small
molecule mediators, such as nitric oxide and prostaglandins.
Many studies show that inflammation may be involved in
different stages of tumour development. Several cancer risk
factors like cigarette smoke, alcohol and growth factors can
activate signaling pathways related with inflammation (such
as NFxB and STAT3 signaling). Some chronic infections lead
to inflammatory conditions and are associated with carcino-
genesis (e.g., hepatitis B virus). Chemotherapeutic agents
and gamma irradiation can also interfere in the regulation
of expression of some genes implicated in inflammation,
survival, proliferation, invasion, angiogenesis, and cancer
metastasis [12]. Inflammation may be involved in carcinogen-
esis through mutations, genomic instability, and epigenetic
modifications [13]. Also, inflammation can participate in
premalignant cells proliferation, stimulate angiogenesis, and
promote metastatic spread (Figure 1).

Among the cytokines, often found to be over expressed at
tumour level, IL1-beta, TNF-alpha, IL-6, IL-10, IFN-gamma,
CX3CLl1, to name just a few, have been closely related to pain
for a long time [14-16].

In the case of glioblastoma, headache is one of the most
frequently claimed signs by the patients, but also, very often
the diagnostic is set too late for a successful therapeutical
approach.
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nvironmental exposure
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Therapy induced
Microbial pathogens
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Initiation
Promotion
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FIGURE I: Implication of chronic inflammation in different stages
of tumour development. Mediators of inflammation, triggered by
different processes, may stimulate premalignant cell proliferation,
angiogenesis, and metastasis. Reversely, tumour cells have the
ability to stimulate other cells or to produce by themselves pro
inflammatory and pro-angiogenic factors.

Acknowledging the worldwide research effort in the field
of glioblastoma, we have embarked in the study of circulatory
cytokines to pinpoint the serum inflammatory pattern that
can characterize the glioblastoma patient’s evolution. There-
fore, our study investigated the serum levels of several pro-
and anti-inflammatory cytokines and of angiogenic factors
in brain tumour patients diagnosed in stages III and IV
(glioblastoma), in order to establish their roles and behaviour
in tumour progression.

2. Material and Method

2.1. Patients and Samples. Samples (serum) were collected
from 55 patients with glioblastoma (28 men and 27 women;
mean ages: 58 and 62 years, resp., range: 37-79 years) from
Neurology and Neurovascular Diseases National Institute,
Elias Hospital Neurosurgery Department and 20 controls
(healthy individuals with no known history of inflammatory
or neoplastic diseases, 12 men and 8 women; mean age:
57 vyears, range: 25-70 years). Written informed consent
has been obtained upon sample prelevation according to
Helsinki IT Declaration and Ethics Committee of Victor Babes
National Institute of Pathology that has approved the study.
The collection of total peripheral blood from patients and
controls has been achieved in vacutainers (Systems, Becton
Dickinson) without anticoagulant. Serum was aliquoted and
stored at —80°C until analysis.

2.2. xMAP Analysis and ELISA. The xMAP assay was per-
formed according to the manufacturers’ protocols, and the
plates were analysed using Luminex 200 system. Cytokines
levels and angiogenic factors were determined using the
Human cytokine 12-plex Kit, with 12 analyte-specific bead
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sets (simultaneous quantification)—pro-inflammatory IL-
13, IL-2, IL-6, IL-8, TNFa, GM-CSE and INFy, anti-
inflammatory IL-4, IL-10, and IL-12, and angiogenic factors
VEGF and FGF-2. Multiplex data acquisition and analysis
were performed using STarStation 2.3. Triplicate samples
were used for all specimens. Values for individual proteins
measured by this multiplexed protein array technology have
been shown to correlate with single ELISA measurements.

Immunoenzymatic ELISA analysis was performed with
Quantikine (R&D Systems). Serum level of growth factors
was determined according to the manufacturer’s protocol.
All samples were assayed in triplicate, and the mean values
of cytokines were taken into account. Optical density was
measured at 450 nm on an Anthos Zenith 3100 multimode
micro plate reader. Minimum detectable concentrations were
found to be less than 9.0 pg/mL for VEGF and less than
3.0 pg/mL for bFGE

2.3. Statistical Analysis. Data were collected and expressed
as the mean + standard error of three independent repeats.
Differences between groups were analysed by One Way
Anova; P values less than 0.05 were considered statistically
significant; Pearson correlation (r, p) was used to explore the
association between cytokine expressions. Statistical analysis
was performed using SPSS 19.0 software.

3. Results and Discussion

From multiplex assay (Luminex 200) a strong overexpression
was detected for IL-6, IL-13, TNF-«, and IL-10 (over 3-
fold stimulation in glioblastoma patients). Significant up-
regulation (up to 2-fold) was found for VEGE, FGF-2, IL-
8, IL-2, and GM-CSE. Cytokines expression was significantly
higher and strongly correlated with tumour grade, prolifer-
ation markers, and clinical aggressiveness in glioblastomas.
Comparing the patient groups and control for growth factors,
the obtained values by XM AP array were comparable to the
outline obtained by the ELISA analysis.

Based on xMAP analysis, the changes in average serum
levels (compared to the controls) are presented in Figure 2.

Several molecules display a modification in plasma levels
of more than 2-fold, which is, as a general practice, a criterion
of acceptance as potential marker. However, it also appears
evident that, for several cytokines, the intervals of variations
in patients were broad. Further details on expression are
provided in Figures 3, 4, and 5, where the distributions can
be better examined and also cover the behaviour of controls.

The enhanced expression of IL-1§ appears to directly
correlate with IL-6 and IL-8 levels and inversely correlate
with IL-4. In brain, IL-1f regulates survival and invasiveness
of glioblastoma cells, and anti-IL-1$ antibodies inhibit both
the growth and invasion of glioblastoma cells [17]. Wang et
al. showed that in LN-229 glioma cell line, IL-13 and TGF-
B can induce glioma stem cells phenotype and contribute
to carcinogenesis [18]. Enhanced secretion of IL-183, IL-6,
and IL-8 by glioma cells was reported by Yeung et al. [19],
and these cytokines are related with the expansion of GBM
(glioblastoma multiforme). In other types of cancers (gastric

Modulation of serum cytokine levels in glioblastoma patients
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FIGURE 2: Modulation of serum cytokine levels in glioblastoma
patients. The data represent group averages of fold modification
versus controls + standard deviations. Statistical significance (one
way ANOVA): pro-inflammatory cytokines, P < 0.05 for IL-1j3, IL-
6, and TNF«, GM-CSF; anti-inflammatory cytokines, P < 0.05 for
IL-4, and IL-10; angiogenic factors, P < 0.05 for bFGF and VEGE.
Expression levels of IL-2, IL-8, IFN-y, and IL-12 were modified, but
with low statistical significance.

and oesophageal), IL-1f3 was involved in carcinogenesis and
proliferation and played a crucial role in the development of
chemical carcinogen-induced tumours [20, 21].

IL-6 appeared overexpressed (average 4-fold) in glioblas-
toma patients. The determined serum levels are consistent
with the ability of tumour cell to secrete pro-inflammatory
cytokines, as well as with IL-6 role in stimulation of angio-
genesis. According to our data, IL-6 expression correlates
with IL-1f3, IL-8, and IFN-y. Ancrile et al. showed IL-6
is involved in carcinogenesis by angiogenesis and tumour
growth and may be a potential anti-invasion target [22].
In U251, T98G and U87 MG glioblastoma cell lines, IL-6
promotes vascular endothelial cell migration and facilitates
tumour angiogenesis and invasion [23, 24]. Amplification of
the IL-6 gene in patients with glioblastoma multiforme is
correlated with decreased survival [25].

Serum levels of TNFa appeared significantly enhanced
(P = 2.5E — 8), suggesting a strong correlation with the dis-
ease; however, the correlation with other molecules is not so
strong, suggesting its implication in distinct/complementary
regulatory cascades. Hagemann et al. suggested that TNF
is involved in tumour cell invasion through upregula-
tion of migration-inhibitory factor (MIF) and through
enhanced MMPs production in tumour cells via NF-xf3-
and JNK-signalling [26]. In ovarian cancer, TNFa stimu-
lated other cytokines (IL-6), angiogenic factors (VEGF), and
chemokines (CCL2 and CXCLI12) that promoted tumour
growth and metastases [27]. Other studies have showed
that TNF over-expression enhances migration and metastasis
through induction of CXCR4, MCP-1, and IL-8 and matrix
metalloproteinase [28, 29]. Recent studies on U373MG and
C6 human glioma cell lines showed that TNF-« induces
IL-6 synthesis through the JAK/STAT3 pathway and TNF
inhibitors can reduce tumour cell invasion [30, 31].

IL-8 has been found to be up-regulated (fold stimulation
1.9) in patient sera, compared to controls. Many studies
showed that IL8 is upregulated in gliomas and is involved in
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of IL-1f3, TNFa, IL-6, and GM-CSF in sera from glioblastoma patients compared to control.

the promotion of angiogenesis. In PTEN-deficient glioblas-
toma cells, repression of IL-8 can inhibit glioblastoma cell
proliferation and invasiveness [32].

Studies on murine models showed that transplanted
glioblastoma tumour cells, which express high levels of IL-
2, IL-4, or GM-CSF show enhanced tumour survival. U87-
MG glioblastoma cell line expressed high levels of GM-CSE,
and GM-CSF over-expression is found exclusively in cultures
derived from astrocytomas [33].

In glioblastoma patients, IL-2 overexpression averaged
2-fold, but the patient group has been distributed in one
subgroup of patients (55%) who displayed strongly enhanced
levels of expression (up to 5-fold) while 45% of the patients
displayed a moderate enhancement of expression—on aver-
age l.4-fold increase. The distribution could not be yet
correlated with other clinical data. Statistical analysis (¢-test)
suggests that the two subgroups represent distinct subpopu-
lation of glioblastoma patients, and so further investigations
and integration of more data is required to consolidate and
explain this segregation. IL-2 is reported in use for cancer
treatment, as a stimulator of T-cell mediated anti-tumour
activity.

Anti-inflammatory cytokines IL-4 and IL-12 appear at
lower level in patient’s sera at 57-80% compared to con-
trols group (Figure 3). IL-4 is involved in inhibition of cell
proliferation, regulation of adhesion molecules, and induc-
tion JAK/STAT signalling; IL-4 receptor is overexpressed
in malignant glioma cell lines and tumour specimens from
patients with glioblastoma, but his mechanism is still unclear
[34]. Many studies on murine models showed that IL-12 is
a powerful anticancer factor which can inhibit growth of
implanted glioblastoma and the increase survival time [35].

IL-10 levels are significantly increased (P < 0.001). At
a first glance, the strong increase in IL-10 looks paradox-
ical in the general balance of pro- and anti-inflammatory

cytokines; however, the finding confirms previous reports
of Kumar et al. [36], who reported significant increase of
IL-10 serum levels in patients with anaplastic astrocytoma
and glioblastoma. The increase in serum levels of IL-10 may
also be correlated with glioma induced immunosuppression.
The same study also detected significant decrease in serum
levels of glioblastoma and anaplastic astrocytoma, suggest-
ing a systemic impact of brain tumours on the immune
system. RT-PCR and immunoassay studies on glioblastoma
showed that IL-10 expression is significantly higher in stem-
cell-derived tumour sphere cells than in primary cultured
glioma cells from the same tumour [37]. IL-10 is significantly
overexpressed in high grade tumours and can contribute to
progression of astrocytomas [38].

Serum levels of angiogenic factors were considerably
elevated in glioblastoma patients, as measured by xMAP
analysis and confirmed by ELISA; both VEGF and bFGF were
significantly overexpressed (bFGE, 3.05-fold modification,
P = 0.002, VEGE 3.2-fold modification, P = 0.005),
see Figure 5. The expression and distribution profiles of
angiogenic factors were similar in both detection methods,
with an increase for bFGF of 2.99-fold in xMAP analysis and
3.22 in ELISA and for VEGF of 3.12 and 3.08, respectively.

In GBM, VEGF-VEGFR2 signalling is maintained by
continuous secretion of VEGF ligand and promotes tumour
growth, invasiveness and enhanced resistance to some treat-
ments [39]. Anti-VEGF therapy and VEGEFR inhibitors can
delay progression of glioblastoma, but this mechanism is not
well understood [40]. In vitro and in vivo studies showed
that stem-cell-like glioma cells secrete elevated levels of
VEGF induced by hypoxia, and anti-VEGF therapy cancel
proangiogenic effects of glioma [41-43].

FGEF-2 is involved in neoplastic transformation of glioma
cells by activating Ras/Raf/ERK signalling and can stimulate
angiogenesis in glioblastoma [44, 45].
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Our study was primarily aimed on the estimation of
serum level of several cytokines and angiogenic factors
in glioblastoma patients, in order to assess their suitabil-
ity as diagnostic, prognostic and monitoring biomarkers.
Nevertheless, many components of the investigated panel
are pleiotropic molecules, and, besides their primary role
as regulators of cell behaviour, they also play major roles
in inflammation and/or tumour related pain. The serum
levels of IL-18, TNF«, IFN-y, and GM-CSF were sig-
nificantly increased in glioblastoma patients. A previous
study of Makimura et al. [46] investigated the plasma
levels of 26 cytokines in cancer patients in correlation
with responses to morphine treatment; they could not
correlate the levels with pain levels, but were able to
correlate some of the investigated molecules with respon-
siveness to morphine treatment. According to Kawasaki et
al. [47] TNF and IL-1§ cause an increase in the activity

of AMPA (2-amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl)
propanoic acid) or NMDA (N-methyl-D-aspartate) recep-
tors, while IL-18 and IL-6 inhibit gamma-amino-butyric acid
(GABA) and glycine-induced ion currents in Rexed lamina
IT nociceptors, demonstrating that these pro-inflammatory
cytokines favour the increase in neuronal excitability.
Several studies showed that pro-inflammatory and anti-
inflammatory cytokines dysregulation is associated with
carcinogenesis and tumour progression of solid cancers, like
pancreatic and colorectal [48-50].

4. Conclusion

Our findings demonstrate that cytokines and angiogenic
factors levels are closely linked to the brain tumour behaviour.

Out of all potential biomarkers for glioblastoma staging
and prognostic, a panel of inflammatory cytokines and



angiogenic factors is more relevant than single molecules,
as proven by our study. Moreover, further investigation
could generate a multimolecular panel for better patient
stratification and more adequate therapeutical approaches.
The involvement of cytokines in inflammation and pain, as
well as the relevance of pain in glioblastoma makes them
reliable targets for investigation, with potential diagnostics
and therapeutic applications.

xMAP technology might be a suitable tool for evaluation
of tumoural development. The advantages of xMAP technol-
ogy could be less invasive techniques, screening for molecular
markers, and validation of putative therapeutic targets.

Further analysis on protein expression and signalling,
protein interaction networks, associated with the implemen-
tation of a clinical panel for pain scoring, may lead to
establish more clearly the connection between mediators of
inflammation, signaling pathways and targets for tumoural
progression, cancer therapy, and cancer pain therapy.

Pain is a frequent symptom accused by glioblastoma
patients and one of the primary signs conducting to inves-
tigation and diagnostics, but, unfortunately, most often the
diagnostics appear late or too late; the set of cytokines could
add in speed and accuracy, making thus possible earlier
diagnostics and onset of therapy.
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Activation of the N-methyl-D-aspartate receptor (NMDAR) is fundamental in the development of hyperalgesia. Overactivation
of this receptor releases superoxide and nitric oxide that, in turn, forms peroxynitrite (PN). All of these events have been linked
to neurotoxicity. The receptors and enzymes involved in the handling of glutamate pathway—specifically NMDARs, glutamate
transporter, and glutamine synthase (GS)—have key tyrosine residues which are targets of the nitration process causing subsequent
function modification. Our results demonstrate that the thermal hyperalgesia induced by intrathecal administration of NMDA
is associated with spinal nitration of GluN1 and GIuN2B receptor subunits, GS, that normally convert glutamate into nontoxic
glutamine, and glutamate transporter GLT1. Intrathecal injection of PN decomposition catalyst FeTM-4-PyP>" prevents nitration
and overall inhibits NMDA-mediated thermal hyperalgesia. Our study supports the hypothesis that nitration of key proteins
involved in the regulation of glutamate transmission is a crucial pathway used by PN to mediate the development and maintenance
of NMDA-mediated thermal hyperalgesia. The broader implication of our findings reinforces the notion that free radicals may
contribute to various forms of pain events and the importance of the development of new pharmacological tool that can modulate
the glutamate transmission without blocking its actions directly.

1. Introduction

NMDARs in the spinal dorsal horns play a critical role in
nociceptive transmission and modification [1, 2]. Glutamate-
mediated activation of the NMDAR is fundamental in the
development of hyperalgesic responses associated with pain
of various etiologies [2-4]. Thus, the hyperalgesic responses
detected in experimental models of acute inflammatory

and neuropathic pain are blocked by intrathecal delivery of
NMDAR antagonists [2, 3, 5-10].

We have reported that NMDAR activation releases super-
oxide (SO) which in turn is critical in mediating NMDA-
mediated hyperalgesia [2, 11]. A key mechanism in main-
taining and in sustaining high levels of SO at the sites of
action is nitration of endogenous manganese superoxide dis-
mutase (MnSOD), the enzyme that normally keeps SO under



tight control [12]. Nitration and subsequent deactivation of
MnSOD are carried out by PN [13-16], a product from
the reaction of SO with nitric oxide (NO) [17]. NMDAR
activation favors the accumulation of PN by forming SO [2,
11,18-20] and NO simultaneously [21-23]. Moreover, Muscoli
and coworkers demonstrated that SO-mediated nitration
and deactivation of spinal MnSOD are a novel pathway of
NMDA-mediated spinal hyperalgesia and hence of central
sensitization since it helps to maintain high levels of SO
that in turn maintains the nociceptive signaling [2, 11]. The
goals of this study were to elucidate how elevated levels of
SO maintain nociceptive signaling in response to NMDA.
To this end, we focused on the potential role of nitration
of key proteins involved in glutamate transmission, namely,
NMDAR, glutamate transporter, and glutamine synthase
(GS). cDNA cloning has revealed that the NMDAR is formed
by several NMDAR subunits. The coexpression of GluN1 with
various GluN2 subunits is required for a fully functional
ion channel receptor and the combined expression of GluN1
with different GluN2 subunits results in a channel with
distinct pharmacological and physiological properties that
define NMDAR heterogeneity [24, 25]. PN interacts with the
NMDAR leading to nitration of the tyrosine residues present
on the NMDAR subunits. This is an irreversible reaction
that leads to a constant potentiation of the synaptic currents
and calcium influx and ultimately excitotoxicity [26-28]. It
has been demonstrated that nitration of tyrosine residues
in proteins is sufficient to enhance the degradation of the
modified proteins by the proteasome in vivo [29] and could
be a critical event also for the turnover of the receptors.
Intrathecal administration of NMDA releases glutamate in
the synaptic cleft [30-32]. Thus, thermal hyperalgesia, in
response to intrathecal injection of NMDA, results from a
persistent state of NMDAR activation due to high levels of
glutamate in the synaptic cleft [3]. Once released, glutamate is
not metabolized by extracellular enzymes but is removed by
cellular uptake via glutamate transporters. GLTI, a selective
glial cells transporter, possesses an intracellular domain rich
in amino-acid residues susceptible to oxidation such as
cysteines and tyrosines [33, 34]. PN nitrates the glutamate
transporter lowering its capacity to remove glutamate from
the synaptic space and leading to neurotoxic concentration
of this neurotransmitter [2, 35-37]. Once glutamate is taken
up into glial cells, it is converted into nontoxic glutamine by
the glia-specific enzyme GS [38, 39]. Excitotoxic stimulation
occurring in brain tissues seems to inactivate GS leading
to reduced ability of astroglial cells to regulate glutamate
turnover via GS activity [40-42]. Inhibition of GS activity
increases central sensitization associated with inflammatory
hyperalgesia, neuropathic pain, and opioid tolerance [37, 43—
45].

The glutamate pathway proteins have key tyrosine
residues which can be nitrated by PN: the net result of the
posttranslational modifications of proteins involved in the
tight regulation of glutamate homeostasis such as NMDAR,
GLT-1, and GS provide a unifying link in signaling events
underlying the central sensitization. Central sensitization is
one form of long-term plasticity in the central nervous sys-
tem. Sustained activation of primary sensory fibers supplying
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dorsal horn can induce long-lasting increases in the discharge
amplitude of primary afferent synapses [46]. Central sensiti-
zation is an excitatory state of spinal cord dorsal horn neurons
that transmit nociception due to increased responsiveness
to suprathreshold and/or a lowered threshold to nociceptive
signals; this manifests behaviorally as hypersensitivity to
noxious (hyperalgesia) and nonnoxious (allodynia) stim-
uli. This state is a result of physiologic, biochemical, and
molecular changes within spinal and supraspinal nociceptive
modulating centers in the CNS and is partly responsible for
chronic pain pathology [47].

The results of our studies demonstrate that NMDA-
induced PN production maintains central sensitization and
hyperalgesia by modulating glutamate transmission through
posttranslational nitration of the NMDAR subunits, GLT1,
and GS.

2. Methods

2.1. Animals. Male Sprague-Dawley rats (225-250 g, Charles
River) used for these studies were purchased with intrathe-
cally implanted cannulas (32 gauge, polyurethane). For the
intrathecal catheters, briefly, the animal’s head was flexed
forward in the stereotaxic apparatus, an incision was made
in the skin at the back of the head and neck, and the
cisternal membrane was exposed by sharp dissection. The
membrane was gently punctured with the tip of a #15 scalpel
blade, and the distal end of a 75 cm long PE-10 catheter was
passed through the opening in the cisternal membrane, into
the intrathecal space. The catheter was loosely sutured to
subcutaneous tissue, leaving the proximal end external to the
animal and accessible to the experimenter, and the skin was
then approximated using 4-0 absorbable sutures (Ethicon).
All animals were housed and cared for in accordance with
the guidelines of the University of Magna Graecia, Catanzaro,
Italy, as well as complied with the Italian regulations for
the protection of animals used for experimental and other
scientific purposes (D.M. 116192), and with European Eco-
nomic Community regulations. The rats were maintained
in a controlled environment (12h light/dark cycle, room
temperature, 50-60% relative humidity). All experiments
took place during the light period between 7:00am and
10:00 am in a quiet room.

2.2. Measurements of Thermal Hyperalgesia. Hyperalgesic
responses to heat were determined as described by the
Hargreaves method [48] and a cutoff latency of 20 sec
was employed to prevent tissue damage in nonresponsive
animals. Animals were allowed to acclimate for 30 minutes
within a Plexiglas enclosure on a clear glass plate in a quiet
testing room. A mobile unit consisting of a high intensity
projector bulb was positioned to deliver a thermal stimulus
directly to an individual hind paw from beneath the chamber.
The withdrawal latency period of the right and left paw was
determined to the nearest 0.1sec with an electronic clock
circuit and thermocouple. If the animal failed to respond
within 20 sec, the test was terminated. Each point represents
the change (sec) in withdrawal latency [(withdrawal latency



Mediators of Inflammation

of right plus withdrawal latency of left paw)/2] at each time
point. Results are expressed as paw withdrawal latency (sec).
After thermal testing, all the animals were sacrificed and
the lumbar spinal cord (block from L4 to L6) was removed,
immediately frozen in liquid nitrogen, and was randomly
distributed for further analysis.

2.3. NMDA-Induced Hyperalgesia. Six groups were used.

Group 1. FeTM-4-PyP>" Vehicle + NMDA Vehicle: animals
(n = 8) received an intrathecal injection (10 uL followed by
a 10 L flush) of saline followed by an intrathecal injection of
10 L saline after 15 minutes which was followed by a 10 uL
flush of saline.

Group 2. FeTM-4-PyP>* + NMDA Vehicle (FeTM-4-PyP>*
was tested at the highest dose, 2nmol): animals (n = 8)
received an intrathecal injection of FeTM-4-PyP>* (2 nmol,
10 uL followed by a 10 uL flush) followed by an intrathecal
injection of 10 L saline after 15 minutes which was followed
by a 10 uL flush of saline.

Group 3. FeTM-4-PyP>" Vehicle + NMDA: animals (n = 8)
received an intrathecal injection (10 uL followed by a 10 uL
flush) of saline followed by an intrathecal injection of NMDA
(2nmol in 10 L, [49]) after 15 minutes which was followed by
a 10 pL flush of saline.

Groups 4-6. FeTM-4-PyP>" + NMDA (FeTM-4-PyP’" was
tested at 3 doses): animals (n = 8) received an intrathecal
injection of 0.5, 1, and 2nmol (10 uL followed by a 10 uL
flush, n = 8 for each dose) of FeTM-4-PyP>" followed by
an intrathecal injection of NMDA (2 nmol in 10 yL) after 15
minutes which was followed by a 10 4L flush of saline.

The thermal stimulus was applied separately to the right
and left hind paw and paw withdrawal latencies were assessed
immediately before and subsequently at 10, 20, and 40
minutes after NMDA injection. Results are expressed as
Paw withdrawal latency (sec); a decrease in paw withdrawal
latency relative to baseline is indicative of hyperalgesia.
Determination of antinociception was assessed between
7:00 am and 10:00 am (light period). In the behavioural study,
one person prepared the drugs and the other, blind to the
drugs and dosage, ran the behavioural observation. The blind
observer was identical throughout the study.

2.4. Tissue Preparation for Cytosolic Extraction. For cytoso-
lic extraction, tissues were homogenized with lysis buffer
with a 1:3 w/v ratio. The lysis buffer (20 mM Tris-base,
150 mM NaCl, 10% glycerol, 0.1% Triton-X-100, 1% Chaps,
2mM EGTA) contained 1% protease inhibitor cocktail (v/v).
Solubilized extracts were sonicated (5min) using a Soni-
cator (Fisher Scientific) and after 10 min of incubation in
ice the lysates were centrifuged (12500g, 30 min at 4°C).
These supernatants were stored immediately at —80°C and
were used to evaluate GS expression and activity. Protein
concentration was determined using the Bicinchoninic Acid

(BCA) protein assay (Pierce). All the experiments have been
repeated at least twice for each different animal.

2.5. Synaptosome Preparation. P2 membranes were obtained
as described before [50]. Briefly, the lumbar tract of the
spinal cord was homogenized in an ice-cold buffer (0.32M
sucrose, 100 uM sodium orthovanadate, 0.02 M glycerophos-
phate, and 1% protease inhibitor cocktail, Sigma) in a glass
homogenizer. The homogenates were centrifuged at 800 g
for 10 min at 4°C. The resulting pellets were rehomogenized
and centrifuged as before. The supernatants were combined
and centrifuged at 12500 g at 4°C for 30 min to obtain the
P2 pellet. This pellet was resuspended in homogenization
buffer and protein concentrations were determined using
BCA protein assay (Pierce). Samples were stored at —80°C
and were used to determine NMDAR subunits and GLT1
expression following western blotting protocol as described
below. All the experiments have been repeated at least twice
for each different animal.

2.6. Immunoprecipitation and Western Blot Analyses. Cytoso-
lic fractions and P2 membranes obtained as previously
described were used for immunoprecipitation and West-
ern blot analyses. For immunoprecipitation 300 ug of the
solubilized proteins were incubated with 10 ug of agarose-
conjugated anti-nitrotyrosine antibody (Upstate Biotechnol-
ogy) overnight at 4°C. Agarose beads were collected by
centrifugation (1 min at 12000 xg at 4°C) and washed in PBS
(pH 74) three times. The mixture of the beads-antibody
and binding proteins were resuspended in 50 uL of sample
buffer [2x, 0.5M Tris-HCl, (pH 6.8) 2.5% glycerol/0.5%
SDS/200 mM 2-mercaptoethanol/0.001% bromophenol blue]
and heated at 95°C (5 min). To determine whether GS, GLT-
1, and NMDAR subunits were nitrated, western blot of
immunoprecipitated protein complex and total lysates were
made using antibodies specific to these proteins. In brief,
the samples were loaded in 10% SDS-PAGE minigels for GS
detection and in 7.5% SDS-PAGE minigels for NMDAR and
GLT1 detection (Bio-Rad).

After separating by SDS/PAGE, proteins were transferred
electrophoretically to nitrocellulose membranes (Bio-Rad).
Ponceau red (Sigma) staining was used to ensure success-
ful protein transfer. Membranes were blocked (1hr, room
temperature) with 1% Bovine Serum Albumin (BSA)/0.1%
Thimerosal in 50 mM Tris-HCI, (pH 7.4)/150 mM NaCl/0.01%
Tween 20 (TBS/T). Membranes were incubated with mouse
monoclonal anti-GS (O/N, 4°C, 1:1000 dilution; Trans-
duction Laboratories), mouse monoclonal GluN1 anti-body
and rabbit polyclonal GluN2B (O/N, 4°C, 1:1000 dilution;
Upstate Biotechnology), and rabbit polyclonal GLT1 (O/N,
4°C, 1:1000 dilution; US Biological). After washing with
TBS/T, the membranes were incubated with anti-mouse
horseradish peroxidase-conjugated secondary antibody or
anti-rabbit horseradish peroxidase-conjugated secondary
antibody (1:15000 dilution or 1:10000 resp.; Amersham)
and the specific complex was detected by an enhanced
chemiluminescence detection system (ECL, Amersham).
Quantitation of nitration levels was then performed by



densitometry using ImageQuant 5.2 software by Molecular
Dynamics (Molecular Dynamics). Equal protein loading was
determined using S-actin expression as housekeeping gene.
SDS/PAGE was performed using 40 ug of solubilized protein
and subsequent transfer to nitrocellulose membrane (Bio-
Rad). Membranes were blocked (1h, room temperature)
with blocking solution and then incubated with mouse
monoclonal anti-$ actin (2h, room temperature, 1:5000
dilution; Sigma). After washing with TBS/T, the membranes
were incubated with anti-mouse horseradish peroxidase-
conjugated secondary antibody (1:15000 dilution; Amer-
sham) and the specific complex was detected by an enhanced
chemiluminescence detection system. No difference for -
actin was detected among the lanes. All the densitometry
units have been normalized against actin for each lane and
are expressed as the ratio of nitrated to unnitrated proteins.

2.7. Glutamine Synthase Activity. GS activity was determined
using a Glutamine/Glutamate Determination Kit (Sigma)
following the manufacturer’s protocol. In brief, samples
(25uL) in a final volume of 200 uL were incubated with
Acetate Buffer and Glutaminase for 1 hour at 37°C followed by
incubation with Tris-EDTA-hydrazine buffer, NAD solution,
ADP solution, and Glutamic Dehydrogenase for 40 minutes
at room temperature. To evaluate the conversion of NAD™
to NADH an absorbance of 340 nm was imposed. All the
experiments have been repeated at least twice for each
different animal.

2.8. Statistical Analysis. Results are given as mean + SEM.
Statistical analysis was performed using ANOVA followed
by Student-Newman-Keuls. P < 0.05 was considered
statistically significant.

3. Results

3.1. FeTM-4-PyP** Inhibits NMDA Mediated Thermal Hyper-
algesia. Intrathecal injection of NMDA in rats (2nmol;
[49]) produces a time-dependent development of thermal
hyperalgesia (Figure 1). Pretreatment of rats with the PN
decomposition catalyst FeTM-4-PyP>* (0.5-2nmol, given
intrathecally 15 minutes before NMDA) reduced the NMDA-
evoked thermal hyperalgesia in a dose-dependent fashion
(Figure 1). These results confirm our previous observations
[11] and emphasize the fact that free radicals are important
mediators of hyperalgesia induced by glutamate receptor
activation.

3.2. Intrathecal NMDA Induces Spinal GIuNI and GIuN2B
Tyrosine Nitration. Nitration of the tyrosine residues on
the GluN1 (Table1) and GIuN2B (Table 1) subunits of the
NMDAR occurred following thermal hyperalgesia that was
induced by intrathecal injection of NMDA (2nmol) as
assessed by immunoprecipitation and western blot analysis
(Figures 2 and 3). This effect was significantly reduced by
pretreatment of the rats with FeTM-4-PyP>* (2 nmol, given
intrathecally 15 min before NMDA) (Table 1).
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FIGURE 1: Intrathecal injection of NMDA (2 nmol, m) causes thermal
hyperalgesia when compared to vehicle ¢, and this response is
blocked by FeTM-4-PyP>" in a dose-dependent manner (0.5 nmol
(a), Inmol (), and 2nmol (O), given intrathecally 15 min before
NMDA). Intrathecal injection of FeTM-4-PyP’* alone (4, 2 nmol)
did not exert any effect. Results are expressed as mean + SEM for 8
rats; TP < 0.001 compared to vehicle and *P < 0.001 compared to
NMDA alone.

3.3. Superoxide-Mediated Nitration of Glutamate Transporter
GLT-1 Is Reversed by FeTM-4-PyP>*. Intrathecal NMDA
injection (2 nmol) leads to nitration of the glutamate trans-
porter GLT1 observed by immunoprecipitation assay in the
lumbar tract of the spinal cord (Table 1, Figure 4). Pretreat-
ment of the rats with FeTM-4-PyP>* (given intrathecally
15min before NMDA) prevents GLT1 nitration (Tablel,
Figure 4) together with the thermal hyperalgesia (Figure 1).

3.4. Intrathecal NMDA Induces Nitration of Glutamine Syn-
thase in Lumbar Tract of the Spinal Cord. In addition to
NMDAR subunits and GLT1, the intrathecal NMDA injection
(2nmol) also induces nitration of the tyrosine residues of
GS. This enzyme is found almost exclusively in astrocytes
and normally converts the synaptically released glutamate
into nontoxic glutamine. Tyrosine-nitrated proteins were
immunoprecipitated and analyzed by western blot for the
presence of nitrated GS. NMDA (2nmol, given intrathe-
cally) induces nitration of spinal GS (Tablel, Figure 5),
and its inactivation was shown by a significant reduction
of glutamine formation (Figure 6). FeTM-4-PyP>* (2 nmol,
given intrathecally 15min before NMDA) blocked PN-
mediated nitration (Table 1) and restored its enzymatic activ-
ity (Figure 6).

These data suggest that PN formation induced upon
NMDAR activation leads to posttranslational modification
of important proteins involved in the glutamate turnover
contributing to the nociceptive pathway.
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TaBLE 1: Densitometry data expressed in %.
Treatment Nitrated protein Total lysate B-actin
Naive 17.00 + 3.58 31.56 + 7.8 32.26+7.3
GluN1 NMDA (2 nmol, i.t.) 60.00 + 2.94 3544 +5.5 33.53+7.5
NMDA + FeTMPyP (2 nmol, i.t.) 23.48 + 1.43" 33.00 +3.5 34.21+6.2
Naive 14.67 £ 1.96 34.00 £ 3.5 32.26+7.3
GluN2B NMDA (2 nmol, i.t.) 65.58 + 3.35" 3373 +3.7 3353+ 7.5
NMDA + FeTMPyP (2 nmol, i.t.) 19.75 +2.28" 3227 +2.5 3421 +6.2
Naive 14.78 £ 2.34 3422+3.5 33.98+2.3
GLT-1 NMDA (2 nmol, i.t.) 70.31 +2.35 3436 + 4.5 33.10+5.8
NMDA + FeTMPyP (2 nmol, i.t.) 14.91 +2.18" 3142+ 4.8 32.92+6.8
Naive 514+ 1.12 33.10£4.2 32.78 £ 4.4
GS NMDA (2 nmol, i.t.) 84.46 +2.19" 33.40+3.1 32.67 £ 6.7
NMDA + FeTMPyP (2 nmol, i.t.) 10.40 + 0.1 33.50 +2.8 34.55+4.3
TP < 0.001 compared to vehicle and * P < 0.001 compared to NMDA alone.
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FIGURE 2: Inhibition of NMDA-induced hyperalgesia by FeTM-4-PyP*" is associated with the inhibition of spinal protein nitration ((a)-
(c)). As shown by immunoprecipitation, at the time of maximal NMDA mediated hyperalgesia (40 min), nitration of GluN1 was observed
at the level of the spinal cord ((a), (b)). FeTM—4—PyP5+ (2nmol given 15 min before NMDA) attenuates spinal GIuNI nitration ((a), (b)).
Immunoprecipitation data shown in (a) are representative of at least 6 gels from 3 different animals performed on different days. Bar graph in
(b) represents quantification by densitometric analysis. No difference for GIuNI or S-actin expression was detected among the lanes in these
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FIGURE 3: Inhibition of NMDA-induced hyperalgesia by FeTM-4-PyP5 " is associated with inhibition of spinal protein nitration ((a)-(c)). As
shown by immunoprecipitation, the time at which the NMDA mediated hyperalgesia was at its peak (40 minutes), nitration of GluN2B was
observed at the level of the spinal cord ((a), (b)). FeTM—4—PyP5+ (2nmol given 15 min before NMDA) attenuates spinal GluN2B nitration
((a), (b)). Immunoprecipitation data shown in (a) are representative of at least 6 gels from 3 different animals performed on different days.
Bar graph in (b) represents quantification by densitometric analysis. No difference for GIuN2B or -actin expression was detected among the
lanes in these conditions. 'P < 0.001 compared to vehicle and *P < 0.001 compared to NMDA alone.

4. Discussion

The dorsal horn of the spinal cord is the site where the mod-
ulation of incoming pain information takes place through
the release of glutamate by the C-fiber nociceptors. Here we
have shown that once released, glutamate exerts its action
on NMDAR increasing the production of reactive oxygen
species such as SO, NO, and in turn PN which leads to
nitration of tyrosine residues of key elements in the glutamate
transmission. After intrathecal NMDA administration, nitra-
tion of NMDAR subunits, glutamate transporter GLT1, and
GS synthase was observed in the spinal cord and these events
were associated with enhanced hyperalgesic response to heat.

The spinal cord neurons express three subtypes of glu-
tamate receptors: the NMDA and the kainate (KA)/the

AMPA (a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic
acid), which are both ligand-gated ion channels and the
metabotropic receptors (mGluRs) [51]. On the other hand,
the NMDAR activation is highly regulated and requires
several conditions to occur. Channel opening needs the
presence of depolarization, induced by the early activation
of AMPA receptors by primary afferent fibres, in order to
remove the magnesium physiological blockage that plugs
the channel in a voltage-dependent manner [52] and the
simultaneous activation by two agonists (glutamate and
glycine) [51, 53]. The enhanced sensitivity of the postsynaptic
cells evoked by glutamate, an event known as central sen-
sitization, occurs by either the removal of the magnesium
block in the NMDAR ion channel or via a posttranslational
changes mediated by the phosphorylation of the receptor
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FIGURE 4: NMDA (2 nmol) induced thermal hyperalgesia was also associated with nitration of the glutamate transporter GLT1 ((a)-(c)).
At the time at which hyperalgesia was at its peak (40 minutes), immunoprecipitation analysis revealed that FeTM-4-PyP>* (2 nmol given
15 min before NMDA) reduced the NMDA mediated nitration of GLT1 at the level of the spinal cord ((a), (b)). Inmunoprecipitation data
are representative of at least 6 gels from 3 different animals performed on different days. Bar graph in (b) represents quantification by
densitometric analysis. No difference for GLT-1 or B-actin expression was detected among the lanes in these conditions. 'P < 0.001 compared

to vehicle and *P < 0.001 compared to NMDA alone.

and this appears largely to be the mechanism involved in
the maintenance of central sensitization [54]. The balance
between phosphorylation/dephosphorylation on the tyrosine
residues of the NMDAR subunits is known to regulate
the activity of the receptor [55]. Receptor phosphorylation
potentiates synaptic currents, calcium influx, and AMPA-
receptor mediated responses known to be dependent on
NMDAR activation [51]. Phosphorylation of the NMDAR
on its tyrosine residues occurs via activation of Src kinase
family, which is highly activated by PN [56]. Tyrosine
nitration may keep the protein from performing the task
of the phosphorylated form or it may mimic the structural
changes imposed by phosphorylation and therefore imitate
the consequences of phosphorylation with the difference that
the nitration of the tyrosine residues is an irreversible process
and can alter the normal protein’s function by enhancing
or inhibiting their activity [57]. NMDAR presents potential
site for nitration and it has been previously demonstrated
that the nitration of the NMDAR subunits observed in vitro

and in vivo in a model of hypoxia leads to an increased
glutamate binding to the NMDAR and consequently an
increase in calcium influx and synaptic current [43, 58]. We
have previously shown that during central sensitization there
is an increased production of SO and in turn PN that leads to
nitration and deactivation of MnSOD [2, 11, 59]. Deactivation
of the endogenous scavenger of SO leads to an increased
production of free radicals that, at least in part, contributes
to the maintenance of the hyperalgesic state.

Glutamate metabolism takes place only within the glial
cells where the presence of specific transporters permits
glutamate removal from the synaptic cleft. It is known that
the uptake of glutamate by glutamate transporter system
is impaired by PN [35, 37]. Most likely, loss in glutamate
transporter activity is due to a posttranslational modification
since it is neither associated with a decrease of mRNA
nor to genomic mutations [60, 61]. PN lowers the capacity
of the glutamate transporters to remove glutamate from
the synaptic space leading to neurotoxic concentration of
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FIGURE 5: Nitration of glutamine synthase occurs following NMDA (2 nmol) induced thermal hyperalgesia ((a)-(c)). The time at which
the NMDA mediated hyperalgesia was at its peak (40 minutes), immunoprecipitation analysis revealed that FeTM-4-PyP>* (2 nmol given
15min before NMDA) reduced the NMDA mediated nitration of GS at the level of the spinal cord ((a)-(b)). Immunoprecipitation data
are representative of at least 6 gels from 3 different animals performed on different days. Bar graph in (b) represents quantification by
densitometric analysis. No difference for GS or f8-actin expression was detected among the lanes in these conditions. TP < 0.001 compared

to vehicle and “P < 0.001 compared to NMDA alone.

this neurotransmitter [35]. Dithiothreitol (DTT), a specific
disulphide reducing agent and Mn(III) TBAP, a nonselec-
tive antioxidant, restored the transporter activity [62, 63].
Tyrosine nitration is a posttranslational modification that
enhances susceptibility to degradation by the proteasome
[29]. During NMDA-mediated hyperalgesia, we found that
the transporter GLT-1undergoes SO/PN attack that finally led
to nitration of this protein.

Within the glial cells, glutamate catabolism occurs mainly
via glutamine formation by GS which is the only enzyme
in the CNS that is able to deactivate this excitatory amino

acid. GS is inactivated by free radicals attack [64] leading to
accumulation of synaptic glutamate and therefore prolonged
NMDAR stimulation. Glutamate neurotransmission medi-
ated via NMDAR plays a critical role in the development of
central sensitization. Spinal release of glutamate and subse-
quent NMDAR activation favors PN accumulation by form-
ing O,"” and NO simultaneously. Moreover, formation of NO,
0,"", and PN in spinal cord contributes to the development of
hyperalgesia that results from intrathecal delivery of NMDA
[2]. GS activity is regulated by adenylation on the tyrosine
residue in each of the 12 identical subunits of the enzyme
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FIGURE 7: Nitration of tyrosine residues modulates glutamate transmission in the spinal cord. NMDAR activation increases intracellular
calcium influx and leads to the production of peroxynitrite which in turn contributes to the hyperalgesic state by nitrating and subsequently
activating NMDAR subunits while inhibiting GLT-1 and GS. Removal of PN by antioxidant abolished NMDA-mediated hyperalgesia by

preventing tyrosine residues nitration of the glutamate pathway.

[65]. Nitration of the tyrosine residues leads to complete
loss of the catalytic activity of the adenylylated enzyme in
vitro [65, 66] and loss of GS activity was observed during
ischemia/reperfusion injury in a gerbil model [67]. During
enhanced pain, neuroplastic changes occur in the spinal and
supraspinal nociceptive modulating centers and may result in
a hypersensitive state termed as central sensitization, which is
thought to contribute to chronic pain states [47].

We have previously documented the role of PN in the
nociceptive cascade [2, 11, 37, 44, 59, 68]. Here we have
demonstrated that PN maintains central sensitization and
hyperalgesia by modulating glutamate transmission through

posttranslational nitration of the NMDAR subunits, GLT1,
and GS. These events are fundamental for the regulation of
glutamate turnover and consequently for the modulation of
the spinal neurons responsiveness to the inputs that regulate
the central sensitization as depicted in Figure 7.

The broader implication of our findings is that PN may
contribute to various forms of centrally induced hyperalgesia
that are driven by NMDAR activation. This data together with
our findings on the identification of free radicals scavengers
as novel nonnarcotic agents [11, 37, 59, 69] strongly supports
the notion that SO/PN is a viable therapeutic target for the
development of nonnarcotic analgesics in pain of various
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etiologies. In fact, we observed that spinal administration
of NMDA leads to GLT1, GS nitration and imbalance in
glutamine production that is associated with development of
thermal hyperalgesia.
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Superoxide anion (O, ") is overproduced in joint inflammation, rheumatoid arthritis, and osteoarthritis. Increased O,
production leads to tissue damage, articular degeneration, and pain. In these conditions, the physiological defense against O, ",
superoxide dismutases (SOD) are decreased. The Mn" complex MnL4 is a potent SOD mimetic, and in this study it was tested in
inflammatory and osteoarticular rat pain models. In vivo protocols were approved by the animal Ethical Committee of the University
of Florence. Pain was measured by paw pressure and hind limb weight bearing alterations tests. MnL4 (15mgkg ') acutely
administered, significantly reduced pain induced by carrageenan, complete Freund’s adjuvant (CFA), and sodium monoiodoacetate
(MIA). In CFA and MIA protocols, it ameliorated the alteration of postural equilibrium. When administered by osmotic pump in the
MIA osteoarthritis, MnL4 reduced pain, articular derangement, plasma TNF alpha levels, and protein carbonylation. The scaffold
ring was ineffective. MnL4 (10”7 M) prevented the lipid peroxidation of isolated human chondrocytes when O, *~ was produced
by RAW 264.7. MnL4 behaves as a potent pain reliever in acute inflammatory and chronic articular pain, being its efficacy related
to antioxidant property. Therefore MnL4 appears as a novel protective compound potentially suitable for the treatment of joint
diseases.

1. Introduction

Reactive oxygen species (ROS) are by-products of cellular
metabolism and can behave as second messengers in physio-
logical conditions. However, in degenerative and inflamma-
tory diseases, ROS production is dramatically increased and
can induce cell, tissue, and organ toxicity [1]. In particular,
ROS overproduction is a typical hallmark of rheumatoid
arthritis [2, 3] and osteoarthritis [4, 5]. In addition, ROS are
involved in pain sensation [6-9].

Superoxide anion (O,"") is one of the most harmful oxi-
dant species identified in the above pathological conditions

[2]. The superoxide dismutase enzymes (SOD) can reduce
O,"" toxicity. Three SOD families have been characterized:
the cytosolic Cu/Zn-SOD], the matrix mitochondrial Mn-
SOD2, and the extracellular EC-SOD3.

The importance of ROS in joint degeneration is indicated
by the finding that EC-SOD3-deficient mice show increased
severity of collagen-induced arthritis [10]. Moreover, in
inflammatory conditions, O," reacts with nitric oxide to
form peroxynitrite which can decrease SOD functionality [9].
In addition, Mn-SOD2 is downregulated in osteoarticular
cartilage [11,12]. EC-SOD?3 is also decreased in the cartilage of
osteoarthritic patients and in a mouse model of osteoarthritis



[13]. Of note, decreased SOD2 and SOD3 expression precedes
the appearance of histological lesions in osteoarticular carti-
lage [14].

All these data emphasize the concept that, during inflam-
mation and degenerative arthritis, the physiological defences
against O," are reduced, suggesting that compounds able to
decompose O," may be pharmacological aids for the treat-
ment of articular pain.

We have described the O,"” scavenging activity of some
polyamine-polycarboxylate-Mn" complexes [15]. Among
tested compounds, the 4,10-dimethyl-1,4,7,10 tetraazacyclod-
odecane-1,7-diacetic acid Mn" complex (Mn"Me,DO2A,
herein indicated as MnL4, Supplementary Material, See
Figure S1in Supplementary Material available online at http://
dx.doi.org/10.1155/2013/905360) is the most potent agent of
the series.

In a cellular environment, MnL4 (1uM-10nM) dose-
dependently reduces O," generated enzymatically (xan-
thine/xanthine oxidase) or by formyl-methionyl-leucyl-phe-
nylalanine- (fMLP-) activated macrophages. MnL4 (100 nM)
can cross cell membranes and significantly reduces oxidative
injury in cells exposed to O,"". Systemically administered to
mice (5-15mgkg™" body weight), MnL4 reduces the acute
pain induced by acetic acid (writhing test). Since this anti-
inflammatory effect has been observed with both intraperi-
toneal and oral administration, MnL4 demonstrates a favour-
able pharmacokinetic profile [15]. Moreover, MnL4 markedly
reduces lung inflammation, oxidative, injury, and breathing
dysfunction induced by exposure to the airborne allergen in
sensitized guinea pigs [16].

Compared with other SOD mimetics, MnL4 would have
the advantage of being a smaller, more lipophilic molecule,
capable of readily entering cells and decomposing O," at
cytoplasmic sites of generation [17]. The present study was
therefore designed to test the action of MnL4 in rodent
models currently used to reproduce acute inflammation,
rheumatoid arthritis, or osteoarthritis. According to the high
potency of this SOD mimetic compound, we used the low
dosage 15 mgkg ™.

2. Materials and Methods

2.1. Animals. Male Sprague-Dawley rats (Harlan, Varese,
Italy) weighing approximately 200-250 g at the beginning of
the experimental procedure were used for the experiments.
Four animals per cage were housed at 23 + 1°C under a
12 h light/dark cycle; they were fed with standard laboratory
diet and tap water ad libitum and used at least one week
after their arrival. The experimental protocol complied with
the European Community guidelines for animal care (DL
116/92, the European Communities Council Directive of
24 November 1986: 86/609/EEC) and was approved by the
animal subject reviews board of the University of Florence.
The ethical policy of the University of Florence complies
with the Guide for the Care and Use of Laboratory Animals
of the US National Institutes of Health (NIH Publication
no. 85-23, revised 1996; University of Florence assurance
number: A5278-01). Animals were anesthetized with 2%
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isoflurane before the surgical procedures and sacrifice, which
was performed by cervical dislocation. All efforts were made
to minimize suffering and reduce the number of animals
used. Rats were randomly assigned to each experimental
group and individually habituated to handling before testing.

2.2. Drug Administration. MnL4, H,L4, diclofenac, ibupro-
fen, and gabapentin were dissolved in sterile saline solution.
In a first experimental set, the abovementioned compounds
were administered acutely by intraperitoneal (i.p.) injections
at the indicated doses. MnL4 and H,L4 dosages were chosen
on the base of previous experiments [15]; typical doses were
chosen for diclofenac, ibuprofen, and gabapentin [18-20].

In asecond experimental set, MnL4 was given by continu-
ous subcutaneous (s.c.) delivery using an osmotic minipump
(Alzet 2002, Palo Alto, CA, USA) implanted on the back and
filled to deliver a daily dose of 15 mgkg™" for 14 days.

The organic ligand 4,10-dimethyl-1,4,7,10-tetraazacyclod-
odecane-1,7-diacetic acid (H,L4) was synthesized as previ-
ously reported. This compound was isolated as trihydrochlo-
ride salt (H,L4-3HCI [15]). Its Mn" complex, MnL4, was
obtained by reaction of MnSO, with H,L4-3HCI (1:1 molar
ratio) in aqueous solution at neutral pH under nitrogen
atmosphere; the MnL4 complex was then isolated as a white
solid by precipitation with an ethanol/diethyl ether 2:1
mixture, according to a previously described procedure [15].
The complex was further purified by recrystallization with
water/ethanol. The purity of both compounds was ascer-
tained by elemental analysis. Diclofenac, ibuprofen, gabapen-
tin, and fMLP were purchased from Sigma-Aldrich, Milan,
Italy.

2.3. Carrageenan-Induced Acute Inflammatory Pain. 100 uL
of carrageenan solution (Sigma-Aldrich; 1% in saline) was
injected intraplantarly into the left hindpaw. Three hours after
carrageen injection, MnL4, H,L4 (15 mgkg_l), diclofenac,
ibuprofen (15 and 100 mgkg™), or saline was i.p. adminis-
tered and their antihyperalgesic effect was measured along
the following 45 minutes (at time 15, 30, and 45 minutes) by
the paw pressure test. Control rats received 100 L of saline
solution intraplantarly and saline i.p.

2.4. Freunds Adjuvant-Induced Inflammatory Arthritis.
Articular damage was induced by injection of complete Fre-
und’s adjuvant (CFA, Sigma-Aldrich) into the tibiotarsal joint
[21]. Briefly, the rats were slightly anesthetized by 2% iso-
flurane, the left leg skin was sterilized with 75% ethyl alcohol,
and the lateral malleolus located by palpation; then, a
28-gauge needle was inserted vertically to penetrate the
skin and turned distally for insertion into the articular
cavity at the gap between the tibiofibular and tarsal bone
until a distinct loss of resistance was felt. A volume of
50 uL of CFA was then injected (day 0). The paw pressure
and the incapacitance tests (see below) were performed
7 days after CFA administration. MnL4 (5 and 15 mg kg™"),
H,Me,DO2A (15mg kg_l), ibuprofen (15 and 100 mg kg_l),
diclofenac (15 and 100mgkg™'), or saline was ip.
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administered. Control rats received 50 uL of saline solution
(day 0) in the tibiotarsal joint and saline i.p. at day 7.

2.5. Monoiodoacetate-Induced Osteoarthritis. Unilateral oste-
oarthritis was also induced by injection of monoiodoace-
tate (MIA, Sigma-Aldrich) into the tibiotarsal joint. On day
0, rats were slightly anesthetized by 2% isoflurane, the left
leg skin was sterilized with 75% ethyl alcohol, and the lateral
malleolus located by palpation; then, a 28-gauge needle
was inserted vertically to penetrate the skin and turned
distally for insertion into the articular cavity at the gap
between the tibiofibular and tarsal bone until a distinct
loss of resistance was felt. 2mg MIA in 25uL saline was
delivered into the left articular cavity. The paw pressure and
the incapacitance tests (see below) were performed at day 14.
MnL4 (15 mg kg '), H,Me,DO2A (15 mg kg '), gabapentin
(70mg kg '), or saline was i.p. administered. Control rats
received 25 uL of saline solution (day 0) in the tibiotarsal joint
and salinei.p. at day 14. To evaluate its preventive effect, MnL4
was administered by continuous s.c. infusion, from day 0 to
day 14, using the Alzet 2002 osmotic minipump (15 mg kg™
day).

2.6. Paw Pressure Test. The pain threshold in the rat was
determined with an analgesimeter (Ugo Basile, Varese, Italy)
as described [22]. Briefly, a constantly increasing pressure
was applied to a small area of the dorsal surface of the paw
using a blunt conical probe. Pressure was increased until a
vocalization or a withdrawal reflex occurred. The withdrawal
threshold was expressed in grams, the test was repeated
twice, and the mean was considered as the value for each
paw. Before starting experimental protocols, pain threshold
was evaluated and rats scoring below 50 g or over 80 g were
discarded. These limits assured a more precise determination
of mechanical withdrawal threshold in experiments aimed
to determine the effect of treatments. Mechanical pressure
application was stopped at 150 g independently of rat reflex.
Blind experiments were performed. In the saline + saline,
carrageenan + saline, CFA + saline, and MIA + saline
treated groups, recorded pressure values did not vary when
repetitively measured during the experimental session.

2.7 Incapacitance Test. Weight bearing changes were mea-
sured using an incapacitance apparatus (Linton Instrumen-
tation, UK) detecting changes in postural equilibrium after a
hind limb injury [23]. Rats were trained to stand on their hind
paws in a box with an inclined plane (65° from horizontal).
This box was placed above the incapacitance apparatus. This
allowed us to independently measure the weight that the
animal applied on each hind limb. The value considered for
each animal was the mean of 5 consecutive measurements.
In the absence of hind limb injury, rats applied an equal
weight on both hind limbs, indicating a postural equilibrium,
whereas an unequal distribution of the weight on hind limbs
indicated a monolateral decreased pain threshold. Data are
expressed as the difference between the weight applied on the
limb contralateral to the injury and the weight applied on the
ipsilateral one. Blind experiments were performed.

2.8. Histopathological and Biochemical Evaluations. Tissues
of rats used to study the preventive effect of MnL4 (minipump
infused) and their controls were analyzed as follows. (a)
Legs were cut under the knee, flayed, and fixed in 4%
formaldehyde in phosphate-buffered saline (PBS) for 48 h.
Samples were then rinsed in PBS and placed in decalcifying
solution (4N formic acid in distilled water), which was
changed every 7 days until bone demineralization was com-
plete (42 days). Samples were dehydrated in graded ethanol,
embedded in paraffin wax, cut into 6 um thick sections, and
stained with hematoxylin and eosin. Histological sections
taken in the midst of the tibiotarsal joint were viewed and
photographed under a light microscope equipped with a
digital camera. (b) After sacrifice, blood was collected in
heparin-treated tubes and plasma fraction was isolated by
centrifugation. Plasmatic TNF-« levels were evaluated by
ELISA method (eBioscience, San Diego, CA, USA), using
a specific antirat polyclonal antibody. In order to obtain
detectable levels of TNF plasma samples were lyophilized
and reconstituted in 1/5 of the initial volume. Range sen-
sitivity was 11.2-2.500 pg mL™". (c) Total plasma proteins
was quantified by bicinchoninic acid (BCA; Sigma-Aldrich)
assay. Then, 20 ug of each sample was denatured by 6% SDS
and derivatized by 15 min incubation with 2-4 dinitrophenyl
hydrazine (DNPH; Sigma-Aldrich) at room temperature in
order to evaluate carbonylated protein evaluation. Samples
were separated on a 10% sodium dodecyl sulphate- (SDS-
) polyacrylamide gel by electrophoresis and blotted onto
nitrocellulose membranes (BioRad, Milan, Italy). Membranes
were blocked with 5% non-fat dry milk in phosphate-
buffered saline (PBS) containing 0.1% Tween 20 (PBST)
and then incubated overnight with anti-DNPH primary
antibodies (Sigma-Aldrich; 1:5000 in PBST added with 5%
non-fat dry milk). After washing with PBST, the membranes
were incubated for 1h in PBST containing the appropri-
ate horseradish peroxidase-conjugated secondary antibody
(1:5000; Cell Signalling, USA) and thoroughly washed [24].
The chemiluminescent substrate ECL (Pierce, USA) was
used to visualize the peroxidase-coated bands. Densitometric
analysis was performed using the free-share Scion Image 4.03
image analysis software (Scion Corp., Frederick, MD, USA).
Ponceau-stained membranes were used as loading control
[25].

2.9. Patients Characteristics and Isolation of Human Chon-
drocytes. Human chondrocytes used for the experiments
were isolated from 3 patients requiring arthroplasty for
degenerative disorders of the knee. Slices of articular cartilage
were obtained from a peripheral zone of the affected joint,
outside regions with macroscopic degeneration but close
to the calcified cartilage layer, after administration of an
informed consent approved by the Local Ethical Committee.

Human chondrocytes (HCs) were isolated and cultured in
Dulbecco’s Modified Eagle’s Medium (DMEM) supplemented
with 10% fetal calf serum (FCS, Gibco, Invitrogen, Italy),
2mM L-glutamine, 100 TU mL™" penicillin, and 100 g mL™"
streptomycin in 5% CO, atmosphere at 37°C as described
[26].



2.10. Human Chondrocyte Lipid Peroxidation Induced by
Stimulated RAW264.7. For the experiments, HCs at the
3rd culture passage were used in 5 separate experiments.
They were grown to 90% confluence on 6-well cell culture
plates (Corning, Italy) and starved for 18h in serum-free
medium. The mouse leukemic monocyte macrophage cell
line (RAW 264.7) was obtained from American Type Culture
Collection (Rockville, MD, USA). RAW 264.7 were grown
in DMEM supplemented with 10% FCS, 2mM L-glutamine,
100 TU mL™" penicillin, and 100 ug mL™" streptomycin in 5%
CO, atmosphere at 37°C. 72h before experiments, cells
were detached, plated on the upper layer of polycarbonate
transwell dishes with a pore diameter of 3 ym (Corning,
Italy), and starved in serum-free medium for the last 18 h.
The transwells were then placed into HCs-containing wells,
and cells were coincubated together in DMEM without
phenol red for 30 min in the absence or presence of 10~ M
MnL4. Then, RAW 264.7 were activated with 10~ M fMLP
(dissolved in DMEM), while in control samples the same
volume of DMEM was added. According to previous data
[15], fMLP-activated RAW 264.7 produced a significant and
reproducible amount of O,"". The basal value of HCs lipid
peroxidation was obtained in cells not cocultured with
RAW 264.7. After 4h, the reaction was stopped on ice; the
upper layer with RAW 264.7 was removed. HCs were scraped
in 1mL of cold PBS, and the cell suspension was used to
measure the thiobarbituric acid reactive substances (TBARS),
assumed as a marker of cell oxidative injury. Briefly, the
suspensions were mixed with 4 mL thiobarbituric acid
(36 mM in acetic acid/sodium acetate, adjusted to pH 4 with
NaOH) and boiled for 1h. After cooling on ice, the mixture
was centrifuged at 5000 xg for 10 min and the absorbance
of the supernatant was spectrophotometrically evaluated at
the 532 nm wavelength against a standard curve of 1,1,3,3-
tetramethoxypropane. Protein concentration in the samples
was determined using the Coomassie protein assay (Pierce,
Rockford, IL, USA). TBARS values were expressed as gmol
mg ' of proteins. All reagents used were of the highest purity
grade.

2.11. Statistical Analysis. All experiments were evaluated
blind. Results were expressed as the means + s.e.m. Statistical
analysis of differences among the experimental groups was
performed using one-way ANOVA followed by Student-
Newman-Keuls post hoc test. A P value < 0.05 was considered
significant.

3. Results

3.1. Effects of MnL4 on Carrageenan-Induced Acute Inflam-
matory Pain. Three hours after the administration of car-
rageenan, all inflammatory signs were observed (paw
swelling hyperaemia and hyperalgesia). The paw pressure test
was used to measure pain. In ipsilateral paw (carrageenan +
saline), the mechanical withdrawal threshold was signifi-
cantly decreased as compared to the controlateral paw and
control animals (saline + saline, Figure 1) and remained to
the same value for at least 1 h. MnL4 (15 mg kg ™) significantly

Mediators of Inflammation

80 1~

70 1 p

Weight (g)
3

wi
(=}
L

40 A

30 -

Saline + Car + 15 30 45
saline saline

Time after administration (minutes)

77 Contralateral paw

§ Ipsilateral paw

B Car + MnL4 (15mgkg ")

M Car+H,L4 (15mgkg ") Ipsilateral
[ Car+ ibuprofen (100mgkg ™) paw
E= Car + diclofenac (100mgkg™")

FIGURE 1: Effect of MnL4, H,L4, ibuprofen, and diclofenac on
carrageenan-induced acute inflammatory pain. Carrageenan (Car,
1%, 100 uL) was injected in the left posterior sole 3 hours before
pain evaluation by the paw pressure test. Molecules or saline was
administered i.p. at time 0 and measures were performed at time 15,
30, and 45 min. Values are the mean + s.e.m. of 6 animals. *P < 0.05
versus the ipsilateral paw of carrageenan + saline group.

increased mechanical withdrawal threshold in the ipsilateral
(carrageenan + MnL4) paw 30 min after its i.p. administra-
tion (Figure 1), but not modify the contralateral one (data not
shown). Neither H,L4 (Figure 1), nor ibuprofen or diclofenac
(not shown) at the same dosage of MnL4 were active, whereas
ibuprofen and diclofenac at 100 mg kg™ i.p. were effective
(Figure 1).

3.2. Effects of MnL4 on CFA-Induced Inflammatory Arthritis.
With the aim of testing the pharmacological activity of
MnlL4 in articular inflammatory damage resembling human
rheumatoid arthritis [27], the SOD mimetic compound
was evaluated in the CFA-model. The pain threshold was
measured 7 days after intra-articular CFA injection by paw
pressure and incapacitance tests. The mechanical withdrawal
threshold in ipsilateral- (CFA + saline) treated paw was signi-
ficantly reduced as compared to the controlateral paw and
control animals (saline + saline). MnL4 (15mg kg_l), 15
minutes after i.p. administration, increased the withdrawal
threshold and was still effective after 45 minutes while at
the dose of 5mgkg™" was effective 30 min after adminis-
tration (Figure 2). Ibuprofen and diclofenac at 100 mgkg™
i.p. were also active (Figure 2). H,L4 (Figure 2), ibuprofen,
or diclofenac (not shown) was ineffective at 15mgkg™".
Moreover, MnL4 significantly reduced hind paw unbalance in
a time-dependent manner, being particularly effective 30 min
after i.p. injection (Table 1).
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FIGURE 2: Effect of MnL4, H,14, ibuprofen, and diclofenac on com-
plete Freund’s adjuvant-induced inflammatory arthritis. Complete
Freund’s adjuvant (CFA, 50 yuL) was injected in the left posterior
tibiotarsal articulation 7 days before the pain evaluation by the
paw pressure test. Molecules or saline was administered i.p. at the
indicated doses at time 0 and measures were performed at time
15, 30, 45, and 60 min. Values are the mean + s.e.m. of 6 animals.
*P < 0.05and **P < 0.01 versus the ipsilateral paw of CFA + saline

group.

3.3. Effect of MnL4 on MIA-Induced Osteoarthritis. The effec-
tiveness of MnL4 was evaluated in the rat unilateral osteoar-
thritis induced by MIA according to two different protocols:
acute i.p. administration (15mgkg™', 15-60 minutes before
the test) or continuous subcutaneous infusion by osmotic
minipumps (15 mg kg™' day ™" for 14 days). Fourteen days
after MIA, the weight tolerated on the ipsilateral paw (MIA +
saline) was significantly reduced as compared to the contro-
lateral paw and control animals (saline + saline, Figure 3).
MnL4 (15mgkg™"), 15 minutes after i.p. administration,
increased the withdrawal threshold and was still effective
after 60 minutes. At the same dosage, H,L4 was ineffective
(Figure 3). Gabapentin (70 mg kg™') showed a higher effec-
tiveness than MnL4 30 min after administration, but was
similarly active at the other times (Figure 3).

Moreover, MnL4 significantly reduced hind limb weight
bearing alterations, being particularly effective 30 min after
i.p. injection (Table 1).

MnL4 (15mgkg ™" day™') was also effective when contin-
uously administered by s.c. route for 14 days (Figure 4(a)).
This functional effect was accompanied by a substantial
improvement of joint histopathology. Figure 4(b) shows rep-
resentative pictures of hematoxylin-eosin-stained longitudi-
nal sections of tibiotarsal joints in the different experimental
conditions: 14 days after injection, MIA caused intra-articular
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FIGURE 3: Effect of MnL4, H,L4, and gabapentin (acutely adminis-
tered) on monoiodoacetate- (MIA-) induced unilateral osteoarthri-
tis. MIA (2mg/25 uL) was injected in the left posterior tibiotarsal
articulation 14 days before pain evaluation by the paw pressure test.
Molecules or saline was administered i.p. at time 0 and measures
were performed at time 15, 30, 45, and 60 min. Values are the mean +
s.e.m. of 6 animals. “P < 0.05 versus the ipsilateral paw of MIA +
saline group, "P < 0.05 versus MIA + MnlL4 at the same time.

fibrin accumulation and extensive degeneration of the articu-
lar cartilage, that is, overall thinning, ulceration, and scarring.
These changes resulted in a marked reduction of the intra-
articular space compared to the normal joint (contralateral,
control). Continuous s.c. administration of MnL4 prevented
the appearance of these cartilage abnormalities and improved
the intra-articular space. This beneficial effect of long-term
MnlL4 treatment was confirmed by the dosage of TNF-«
plasma levels. As reported in Table 2, TNF-« was significantly
increased in MIA + saline-treated rats at day 14 compared
to naive animals; MnL4 completely prevented MIA-induced
TNF-« elevation. Moreover, in MIA + saline-treated rats,
systemic oxidative damage was also present, as evaluated by
the carbonylation of plasma proteins. In fact, on the 14th day,
plasma-carbonylated proteins increased up to twice the basal
level of naive animals (5.9 + 0.29; densitometric arbitrary
units). MnL4 (15mg kg™ day™") significantly reduced this
oxidation parameter (Figure 5).

3.4. Effect of MnL4 on Lipid Peroxidation in Human-Cultured
Chondrocytes. In order to study the effect of MnL4 on an
ROS attack in HCs, we performed experiments in a coculture
system of HCs and mouse leukaemic monocyte macrophage
cells (RAW 264.7). This experimental set allowed us to study
the effect of RAW 264.7-produced O,"” on HCs lipid per-
oxidation. In basal conditions (without coculture with RAW
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TaBLE 1: Effect of MnL4 on hind limb weight bearing alterations induced by CFA or MIA.

A Weight (g) (contralateral minus ipsilateral paw)

Treatment

0 min 15 min 30 min 45 min 60 min
Control (saline + saline) 52423 31+1.9 3.8+25 42+3.0 63+31
CFA +15mgkg ™ MnL4 58.8 + 1.6™ 379 +2.1° 287 +1.9* 348 £2.0" 40.6 +2.3"
Control (saline + saline) 32+12 —23+21 15431 -3.0+28 3.8+25
MIA +15mgkg ™' MnL4 61.3 +2.3™ 30.2+3.1° 201+ 3.6 403 +1.1° 553 +2.9

Hind limb weight bearing alterations were evaluated in rats by incapacitance test. In the absence of hind limb injury, rats applied an equal weight on both hind
limbs, whereas an unequal distribution of the weight on hind limbs indicated a monolateral decreased pain threshold. CFA was injected 7 days before the test,
MnL4 was acutely i.p. administered at time 0 min; MIA was injected 14 days before the test, MnL4 was acutely i.p. administered at time 0 min.

P < 0.01 in respect to control (saline + saline) group; “*P < 0.01 and * P < 0.05 with respect to the 0 min value of the same treatment.

Weight (g)

Control MIA + saline MIA + Mnl4
(a)

MIA + saline

FIGURE 4: Effect of MnL4 (continuously infused for 15 days) on monoiodoacetate- (MIA-) induced unilateral osteoarthritis. MIA (2 mg/25 uL)
was injected in the left posterior tibiotarsal articulation 14 days before the pain evaluation by the paw pressure test. At day 0, a minipump
containing MnL4 solution (15 mg kg™ day) was implanted on the back of MnL4-treated rats. Values are the mean + s.e.m. of 5 animals.
Panel (a): pain behavior; *P < 0.05 and **P < 0.01 versus MIA + saline. Panel (b): effect of MnL4 (continuously infused for 15 days) on
tibiotarsal articulation histopathology on MIA-induced osteoarthritis. Hematoxilin and eosin staining of longitudinal section of tibiotarsal
joint. Pictures are representative of histological preparations from 5 animals per group. Bars = 100 ym.
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FIGURE 5: Effect of MnL4 (15mgkg ™' continuously infused for 15 days) on plasma oxidation levels 14 days after MIA injection (2 mg/25 uL
in the left posterior tibiotarsal articulation on day 0). Immunoblot analysis was performed after a reaction with dinitrophenylhydrazine.
Densitometric analysis and representative Western blot are shown. Ponceau-stained membranes were used as loading control. Each value
represents the mean of 4 biological samples. “P < 0.05 and **P < 0.01 versus control rats; °P < 0.05 versus MIA + saline treatment.

TaBLE 2: TNFa« plasma levels in control, MIA- and MnL4 + MIA-
treated rats.

Control (saline + saline)  Saline + MIA  MnL4 + MIA
5.37 £ 1.77 16.86 + 2.02" 4.75 +1.69

Monoiodoacetate (MIA, 2mg/25uL) or saline was injected in the left
posterior tibiotarsal articulation 14 days before the test. At day 0, a minipump
containing MnL4 solution (15 mgkg " day) was implanted on the back of
MnL4 + MIA-treated rats. TNFa levels were measured in plasma samples by
ELISA.

*P < 0.01 versus saline + saline and the MnL4 + MIA groups.

pg/mL

264.7), membrane lipid peroxidation of HCs (expressed as
TBARS) was 1.24+0.14 gmol mg™" of proteins. This value was
not significantly modified when HCs were incubated with
unstimulated RAW 264.7 (1.65+0.18 umol mg ™" of proteins,
control) but was markedly and significantly increased up to
3.0 + 0.54 umol mg~' of proteins when RAW 264.7 were
stimulated with 107 M fMLP (Figure 6). When cells were

preincubated with 1077 M MnL4, lipid peroxidation was
totally prevented.

4. Discussion

Inflammatory conditions (and in particular, joint diseases)
induce an increase in ROS which have a deleterious role in
erosion, osteoarticular degeneration, and pain. Conversely,
ROS increase inflammatory mediators [28]. ROS are also
implicated in persistent pain behavior as already demon-
strated by several authors [25, 29, 30]. Therefore, molecules
able to reduce O, can be used to reduce pain and inflam-
mation.

Following this line of reasoning, extractive or recom-
binant SOD seems to be the most valid choice for such a
targeted therapeutic approach [31]. However, its clinical use
is hampered by multiple factors, including instability, limited
cellular accessibility, immunogenicity, short half-life, and
high production costs [32, 33]. Because of these limitations,
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FIGURE 6: Effect of 10”7 M MnL4 on the lipid peroxidation (TBARS)
induced by superoxide anion in human chondrocytes. Human
chondrocytes were coincubated with RAW 264.7 with or without
107 M MnL4. RAW 264.7 were activated by 10”7 M fMLP for 4h
to produce superoxide anions. Values are expressed as percentage of
control values (human chondrocytes coincubated with unstimulated
RAW 264.7). TBARS in control value was 1.65 + 0.18 4 moles mg "
of total proteins. Each value represents the mean of 5 experiments,
performed using chondrocytes isolated from 3 patients. “P < 0.05
versus all other conditions.

SOD mimetic compounds have been proposed as appropriate
strategies in many degenerative pathological conditions [32],
and pharmacological research has highlighted low molecular
weight compounds, such as the antioxidant Tempol [34] and
the Mn"' chelates with organic scaffolds [17, 35], capable of
catalyzing O,"” decomposition like authentic SOD. Tempol
and Mn" complexes with pentaazamacrocycles, salen-, and
porphyrin-based scaffolds have been reported to reduce
inflammation and pain in different animal models of articular
diseases [9, 34, 36, 37]. The SOD mimetic compound MnL4
has already been characterized as a membrane-permeable,
highly effective scavenger compound [15], possessing anti-
inflammatory properties in a model of allergic asthma [16].
Therefore, we studied it using a panel of in vivo rat models of
articular pain induced by acute and chronic inflammation.

Intra-articular injection of MIA provides a rodent model
of monolateral osteoarthritis with features resembling those
seen clinically. These include synovial thickening, loss of car-
tilage, formation of osteophytes, and eventual fibrillation of
cartilage [18, 38, 39]. Morphological alterations are associated
with a persistent inflammatory pain which, starting from
the 14th day after MIA injection, possesses a neuropathic
component [20]. Nonsteroidal anti-inflammatory drugs such
as diclofenac can reduce MIA-dependent pain during the
first inflammatory phase, but they are ineffective in the
degenerative neuropathic phase [40], while gabapentin, an
antiepileptic molecule widely used to treat neuropathic pain
in adult patients [41], is effective [20].

In the MIA model, acutely administered MnL4
(15mgkg™") causes a prolonged (60 min) reduction of
pain sensitivity during the phase when the neuropathic
component prevails over the inflammatory one and its
efficacy is quite similar to that of gabapentin administered at
typical dosage [20]. Its parent compound, H,L4, which lacks
ROS-scavenging effects, is totally ineffective.
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Although we injected MIA in tibiotarsal articulation,
several characteristics of our model resemble those observed
after MIA knee injection. Indeed, after 14 days from MIA
injection, the neuropathic component of pain predominates
as demonstrated by the high effectiveness of gabapentin.
Moreover, the histological analysis confirms a degeneration
pattern of the tibiotarsal joint similar to that described for
knee [23, 42]. The performed model permits us to directly
compare MnL4 as pain reliever in MIA and CFA.

In the same osteoarthritis model, MnL4, continuously
infused by an osmotic pump (chronic administration),
increases the pain threshold and ameliorates tibiotarsal joint
histopathological parameters. Moreover, in blood samples
obtained at the same stage of joint degenerative changes,
the SOD mimetic compound prevents the significant, TNF-«
increase induced by MIA and reduces protein carbonylation.
The proinflammatory cytokine, TNF-g, is a critical mediator
in osteoarthritis and rheumatic disease. Its serum level is
linearly related to disease activity clinical score in patients
with rheumatoid arthritis, and it has been proposed as clinical
marker of this pathology [43]. TNF-« upregulation is a
consequence of NFxB nuclear translocation which can be
due to the ROS-activated intracellular signaling cascade [44].
Carbonylation of proteins is an irreversible oxidative damage.
Carbonyl groups are introduced into protein side chains by
a site-specific mechanism often leading to a loss of protein
function. It is considered a widespread indicator of severe
oxidative damage and disease-derived protein dysfunction
[45]; its increase has been described in the plasma of human
subject affected by systemic rheumatic diseases [46].

CFA-induced inflammatory arthritis in rats presents
similar features to rheumatoid arthritis [27]. CFA-induced
inflammatory arthritis starts between the 3rd and 7th days
after inoculation; at this time, the pain threshold is sig-
nificantly decreased [47], while sensory neuron firing is
increased [48] leading to changes in gene expression and sen-
sitization of the nervous system. These functional alterations
contribute to the pain associated with joint injuries [49].
Seven days after CFA injection, 15mgkg™" MnL4, acutely
administered before the behavioral tests, increases the pain
threshold for at least 45min and prevents the hind limb
weight bearing alterations whereas the scaffold congener of
MnlL4 is totally ineffective.

Since acute inflammation occurs at the initial stage of
articular diseases, we tested MnL4 in carrageenan-induced
paw acute edema. In this condition, 30 min after admin-
istration, MnL4 enhances the pain threshold, decreasing
mechanical hypersensitivity by about 50%. However, the
effectiveness of MnL4 in this model is short lasting. At the
same dosage (15 mgkg™'), the well-known anti-inflammatory
NSAIDs ibuprofen and diclofenac are ineffective, being
their anti-inflammatory activity observed at higher dosages
(100 mgkg™") currently used in animal tests [18, 19].

Many of the effects of MnL4 are in agreement with the
antioxidant property of the compound [15, 16]: accumulating
evidence indicates that the production of ROS is increased in
the nociceptive system during persistent inflammatory and
neuropathic pain [50]. Since ROS have also been implicated
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in chondrocyte degeneration and death [4], we tested MnL4
activity against the oxidative stress induced by O," in
isolated human chondrocytes. According to previous data
of our laboratory on reproducibility and effectiveness of
RAW 264-7 in producing O, after fMLP stimulation [15],
we coincubated human chondrocytes with RAW 264-7.
This experimental condition simulates an ROS attack on
chondrocytes by infiltrating inflammatory cells. MnL4 at
107" M can totally prevent lipid peroxidation, suggesting an
important contribution to joint protection.

In conclusion, MnL4 behaves as a potent pain reliever
compound both in arthritis models and, to a lesser extent, in
acute inflammation. This effect is not related to a direct inhi-
bition of cyclooxygenase enzymes as already described [15]
but, conceivably, related to the SOD mimetic property of the
molecule as also demonstrated on HCs. The mechanism by
which MnL4 acts after chronic and acute administration may
be somewhat different. Namely, chronically administered
MnL4 may prevent tissue degenerative alterations induced
by the oxidative stress and reduce a persistent inflammatory
pain via a direct antioxidant mechanism; while in acute
administration, it may decrease the nociceptive nervous
fiber activation induced by the local production of ROS
[28, 50]. Given these properties and the low toxicity of the
molecule, MnL4 is a novel compound potentially suited for
the treatment of inflammatory and neuropathic pain.
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Chronic pain is a debilitating condition with major socioeconomic impact, whose neurobiological basis is still not clear. An
involvement of the neurovascular unit (NVU) has been recently proposed. In particular, the blood-brain barrier (BBB) and blood-
spinal cord barrier (BSCB), two NVU key players, may be affected during the development of chronic pain; in particular, transient
permeabilization of the barrier is suggested by several inflammatory- and nerve-injury-based pain models, and we argue that
the clarification of molecular BBB/BSCB permeabilization events will shed new light in understanding chronic pain mechanisms.
Possible biases in experiments supporting this theory and its translational potentials are discussed. Moving beyond an exclusive
focus on the role of the endothelium, we propose that our understanding of the mechanisms subserving chronic pain will benefit
from the extension of research efforts to the NVU as a whole. In this view, the available evidence on the interaction between analgesic
drugs and the NVU is here reviewed. Chronic pain comorbidities, such as neuroinflammatory and neurodegenerative diseases, are
also discussed in view of NVU changes, together with innovative pharmacological solutions targeting NVU components in chronic
pain treatment.

1. Introduction

According to the International Association for the Study of
Pain (IASP), pain is an unpleasant sensory and emotional
experience associated with actual or potential tissue damage,
or described in terms of such damage [1].

Chronic pain onset can be sudden or slow and progres-
sive, varies in intensity from mild to severe, and its end cannot
be predicted. The diagnosis of chronic pain requires that the
condition lasts longer than 3-6 months. Chronic pain canbe a
debilitating condition with potentially devastating impact on
the quality of life [2]. It occurs in a wide variety of conditions,
including peripheral neuropathy, stump pain, phantom pain,
complex regional pain syndrome, central pain, polymyalgia
rheumatica, fibromyalgia, pain of psychological origin, and

epilepsy. The recently revised taxonomy includes several
new conditions, such as chronic paroxysmal hemicrania:
remitting form, hemicrania continua, postlumbar puncture
headache, and so forth [1].

According to areport released in June 2011 by the Institute
of Medicine of the National Academies, chronic pain affects
about 100 million American adults—more than the total
affected by heart disease, cancer, and diabetes combined [3].
The 2010 Patient Protection and Affordable Care Act required
the Department of Health and Human Services of the United
States of America to consider pain as a public health problem.

A 2006 study in 15 European countries and Israel indi-
cates that chronic pain of moderate to severe intensity occurs
in 19% of adult Europeans, seriously affecting the quality of
their social and working lives [4]. A more recent evaluation



of chronic pain in the European Union reports an even higher
impact on the general adult population, with an average
prevalence of 27%, similar to the that of other common
chronic conditions [5].

Understanding the biological, cognitive, and psychologi-
cal underpinnings of chronic pain represents a major research
challenge. From a neurobiological standpoint, the cellular
and molecular communication between the central nervous
system (CNS) parenchyma and the circulating mediators of
the immune and inflammatory response is at the core of
such challenge. Indeed, an increasingly compelling body of
evidence highlights a major role for the role of nonneuronal
cells and diffusible mediators in the functional state of the
brain, including neuronal excitability. The concept is captured
in the term “neurovascular unit” (NVU), an ensemble of
cellular and noncellular players (neurons, endothelial cells,
glial cells, pericytes, the extracellular matrix, immune cells,
inflammatory mediators) which form an integrated func-
tional unit [6, 7].

In the context of the NVU, an obviously crucial role is
played by the blood-brain barrier (BBB) and of the blood-
spinal cord barrier (BSCB), both in general and with respect
to the pathophysiology of chronic pain.

The purpose of this review is to explore the role played
in the establishment and maintenance of chronic pain by the
NVU, emphasizing (but not limited to) BBB and/or BSCB
permeabilization phenomena. Chronic pain has a significant
prevalence in neurodegenerative and neuroinflammatory
pathologies, and BBB/BSCB permeabilization is discussed in
this extended context. Finally, novel strategies targeting the
NVU are considered for chronic pain relief.

2. BBB and BSCB in the Neurovascular Unit

The importance of a full understanding of BBB/BSCB func-
tion is emphasized by its well-known role in regulating
paracellular and transcellular drug transport, thus preventing
or allowing CNS-acting drugs for chronic pain relief to reach
their intended target [8]. In addition, there is a possibility that
BBB/BSCB permeability may be altered in association with
the development of chronic pain [9-12].

2.1. Anatomical Structure of Blood-Brain Barrier and Blood-
Spinal Cord Barrier. The BBB is the regulating interface
between circulating blood and brain parenchyma. Endothe-
lial cells of brain capillaries, unlike those of the periph-
eral circulation, are characterized by the absence of cell
membrane fenestrations, the presence of tight junctions,
having a high number of cytosolic mitochondria, and min-
imal pinocytotic activity [7]. As an exception, the so-called
circumventricular organs (CVOs) do possess fenestrated
vasculature. In particular, secretory CVOs (median eminence
and neurohypophysis) present a higher vascular permeability
for low-molecular-mass tracers compared to sensory CVOs
(organum vasculosum of lamina terminalis, subfornical
organ, and area postrema) [13].

The surface area of the BBB, depending on the anatomical
region, is between 150 and 200 cm*/g of tissue, resulting in a
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total area for blood-brain exchange between 12 and 18 m* for
the average human adult [14].

A functional equivalent of the BBB is the blood-spinal
cord barrier (BSCB), constituted by nonfenestrated endothe-
lial cells, basement membrane, pericytes, and astrocytic feet
processes [15]. Several aspects distinguish BSCB from BBB,
such as the glycogen deposits in the superficial vessels of
the spinal cord [16], increased permeability to tracers and
cytokines [17-19], decreased expression of tight-junction pro-
teins and adherens junction proteins [20]. Such differences
should be taken into account when these barriers are targeted
for chronic pain treatment.

2.2. Mechanisms of Transport through Blood-Brain Barrier.
The BBB has low passive permeability to many essential
water soluble nutrients and metabolites required by the
nervous tissue. However, in healthy conditions, the BBB
shows temporary increases in permeability, allowing access
to nutrients and oxygen. Since no brain cell is farther than
about 15 ym from a capillary [21], drugs and other solutes
can rapidly reach all neurons and glial cell bodies, once the
BBB has been crossed. Exchange of small organic compounds
between blood and brain is regulated by plasma membrane
transporters working either in the blood-to-brain direction,
the brain-to-blood direction, or both. The directionality of
transport is set by the subcellular location of the trans-
port system (blood-facing or brain-facing membrane of the
endothelial cells) and by the transport mechanism [8]. Several
transport pathways have been identified in the BBB, such
as (i) passive diffusion into brain of lipid soluble molecules
(e.g., oxygen and carbon dioxide); (i) ATP-binding cas-
sette transporters (ABC-transporter, see below) efflux (P-
glycoprotein (P-gp), multidrug resistance protein (MRP) 1-
6, and breast cancer resistance protein transporters (BCRP));
(iii) solute carriers—SLC (transporters of glucose, amino
acids, nucleosides, monocarboxylic acids, thyroid hormone,
organic anions, organic cations, amine, and choline); (iv)
transcytosis of macromolecules by receptor-mediated or
adsorptive-mediated mechanism (transport of transferrins,
lipoproteins, glycosylated proteins, IgG, insulin, leptin, tumor
necrosis factor-alpha (TNF-«), EGFE, LIF, cationised albumin,
cell penetrating peptides); and (v) mononuclear leukocyte
migration [22, 23]. In this review, particular attention will be
devoted to ABC transporters with regard to chronic pain and
BBB, as the majority of the analgesics are substrates for these
transporters, especially for P-gp transporter [24-28].

The endothelial cells of capillary vessels play a major
role in BBB physiology. The flattened cells present a luminal
and an abluminal surface, separated by a 300-500 nm thick
cytoplasm in human brain microvessels [29]. The tight
junctions (TJs) connecting adjacent cells represent the most
significant BBB structure and serve a dual purpose. On
one hand, by sealing the intercellular space, they control
the paracellular transport pathway (“gate function”). On the
other hand, they effectively subdivide the membrane into
two distinct functional domains (“fence function”) [30]. The
endothelial cell polarization arises in particular from the
differential expression of specific transporter proteins on
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either surface. The TJ-associated membrane proteins com-
prise occludin, tricellulin (also called marvelD2), cingulin,
claudins (CL-1, CL-3, CL-5), junction-associated molecules
of the immunoglobulin superfamily (JAMs), zona occludens
proteins (ZO-1, ZO-2, ZO-3), 7H6, and AF-6 [7, 31, 32].
Signaling pathways involved in TJs regulation include G-
proteins, serine-, threonine- and tyrosine-kinases, extra-
and intracellular calcium levels, CAMP levels, proteases, and
cytokines, and all these pathways share the modulation of
cytoskeletal elements and the connection of TJs’ transmem-
brane molecules to the cytoskeleton [31].

In pathological states, such as neurodegenerative diseases
(including stroke, multiple sclerosis, rheumatoid arthritis,
and AIDS dementia) or neuroinflammation, BBB has an
uncontrolled and prolonged increase in permeability that
results in vasogenic edema and leakage of neurotoxic plasma
constituents [33].

2.3. ABC Transporters in BBB and BSCB. ABC transporters
represent the largest family of transmembrane proteins.
Upon binding ATP, these proteins translocate a wide variety
of substrates across extra- and intracellular membranes,
including metabolic products, lipids and sterols, and drugs
[34]. Tight junctions and ABC transporters expressed in
the brain and spinal cord endothelial capillaries represent
the major “guardians” of the transport through BBB/BSCB
endothelium. ABC transporters, such as P-gp, MRP 1-6, and
BCRP, are expressed in the barriers endothelium both in
humans and rodents [27].

It is presumed that only efflux transporters located on
the luminal (apical) side of the endothelium can restrict
drug uptake into the brain [25]. However, transport balance
(influx/efflux) is dramatically affected by pathological stres-
sors, such as status epilepticus and neurodegenerative diseases
[47-49], and has been suggested to be also partly modified in
inflammatory pain [26, 36, 37]. P-gp and BCRP expression
in the BBB is regulated during early inflammatory stages by
TNF-« and IL-1f [50].

Table 1 summarizes some of the links established so far
between ABC transporters in BBB/BSCB and chronic pain.

In conclusion, ABC transporters appear to play an impor-
tant role in inflammatory pain and in analgesia (opioids or
nonsteroidal anti-inflammatory drugs). Knocking out genes
encoding ABC transporters has consequences in inflamma-
tory pain or analgesic profile. For example, knocking out
the gene encoding for MRP4 increases inflammatory pain
threshold [45] and knocking out the gene encoding for MRP3
alters morphine pharmacokinetics [44]. Therefore, these
transporters, in particular P-gp, represent key molecules that
might contribute to BBB/BSCB permeabilization induced by
inflammation-like stimuli in various pain syndromes [26, 36,
37].

3. Cross Talk between NVU Partners in

Chronic Pain

In vitro and in vivo animal studies have confirmed NVU
cellular crosstalk in inflammation-induced hyperalgesia or

nerve injury models and results can be extrapolated to
chronic pain.

3.1. Glia-Neuron Interactions. Glia are significantly activated
in response to trauma, ischemia, and invading pathogens
by means of cytokine release (IL-13, TNF-a) and may
contribute to the maintenance of chronic pain [51, 52]. In
addition to proinflammatory cytokine release at the periph-
eral site of injury, release also takes place in the CNS (spinal
cord, brainstem, and forebrain) [53-55]. Released cytokines
together with activated glia have been proved to influence
and modulate neurons in the trigeminal nucleus region in
a trigeminal model of inflammatory hyperalgesia [56]. On
the other hand, different signaling pathways mediate IL-13
actions in hippocampal neurons compared to astrocytes [57].

Glia activation within the CNS has been suggested to
maintain the pain sensation, even after the original injury
or inflammation has healed, and convert it into chronic pain
by altering neuronal excitability [58]. In a peripheral nerve
injury pain model, the inhibition of microglia after four
weeks from nerve injury normalized the pain threshold, while
removing the inhibitor immediately restored pain-related
phenomena [52].

3.2. Microglia-Astrocytes Interactions. Both in vitro and in
vivo data provide clues on how the crosstalk between
microglia and astrocytes may play a role in chronic pain
maintenance [59-63]. The activation of microglia has been
shown to cause astrocytic activation, with a delay of about
4 days [54, 64]. Preventing microglial activation (and sub-
sequent astrocyte activation) inhibits hyperalgesia or allo-
dynia [59, 61]. Once the astrocytes are activated, inhibiting
microglia has no effect on pain [59, 60]. On the other hand,
brain astrocytes can be activated in response to peripheral
nerve injury without prior microglia differentiation [65].
A dialogue between microglia expressing IL-18 and astro-
cytes expressing its receptor (IL-18R) was suggested to be
important in tolerance to morphine analgesia, by means
of a P2X7R/IL-18/D-serine/N-methyl-D-aspartate receptor
(NMDAR)/PKCy-mediated signaling pathway [62], but also
for tactile allodynia after nerve injury [66].

Increased monocyte chemotactic protein 3 (MCP-3,
known as CCL7) expression associated with IL-6-dependent
epigenetic modification at the MCP-3 promoter after nerve
injury, mostly in spinal astrocytes, may serve to facilitate
astrocyte-microglia interaction in the spinal cord and could
play a critical role in the neuropathic pain-like state [63].

Some studies suggest the importance of the triad neuron-
astrocyte-microglia in physiological and pathological inflam-
matory states [67].

3.3. Astrocyte-Endothelial Cell Interactions. Astroglial-endo-
thelial signalling is altered under pathological conditions,
such as infection, inflammation, stroke, or trauma, leading to
BBB opening [6]. The coupling between the abluminal capil-
lary cell membrane and the surrounding glial end-foot pro-
cesses is reduced in pathological conditions [68, 69]. Stimu-
lation of astrocytes, in coculture with brain endothelial cells,
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TABLE 1: ABC transporters presence in BBB and BSCB and their potential role in pain.
ABC transporter Loc.a hzatl.o T Direction of Implications in pain/analgesics or anti-inflammatory
BBB BSCB brain capillary .
(gene) . efflux/influx ~ drugs versus ABC transporters
endothelium
There is an increased P-gp expression and dynamic
redistribution between membrane domains of
. P-glycoprotein and caveolin-1 in peripheral
P-gp (ABCBI) Yes [24] Yes [35] Luminal [25] Blood [25] inflammatory pain [26, 36, 37]. P-gp is involved in pain
control with opioid analgesics [38]. Diclofenac is not
transported by P-gp [39].
The nonsteroidal anti-inflammatory drug
indomethacin, an efficient analgesic in some forms of
trigeminal autonomic cephalalgias (e.g., paroxysmal
Luminal [25] Blood [25] hemicrania) [41], was proved to inhibit MRPI function
MRPI(ABCCI)  Yes [24,25,40]  Yes [40] Abluminal [24] Brain [24] and expression in cancer cell lines [42]. Most probably
indomethachin inhibits MRPI in BBB.
Diclofenac, rofecoxib, and celecoxib are poor inhibitors
of MRPI in HEK293 cells [43].
MRP2 (ABCC2) Yes [24, 27] Yes [35] Luminal [25] Blood [25] Diclofenac is not transported by MRP2 [39].
Mice lacking MRP3 show altered morphine
MRP3 (ABCC3) Yes [24] ? Abluminal [24] Brain [24] pharmacokinetics and morphine-6-glucuronide
antinociception [44].
Mice lacking MRP4 show increases in inflammatory
pain threshold compared to wild-type mice [45].
Luminal [25] Blood [25] MRP4 acts as a prostaglandin efflux transporter and is
MRP4 (ABCC4)  Yes [24, 27] ? Abluminal Brain [25] inhibited by nonsteroidal anti-inflammatory drugs
[24, 25] (e.g., indomethacin, indoprofen, ketoprofen, and
flurbiprofen) [43]. Diclofenac, rofecoxib, and celecoxib
are poor inhibitors of MRP4 [43].
Luminal [25] Blood [25] )
MRP5 (ABCC5) Yes [24, 27] Abluminal [24] Brain [24] ’
MRP6 (ABCC6)  Yes [24, 27] P"[Zsél]’le Abluminal [24]  Brain [24]  ?
Luminal Diclofenac, an analgesic mainly used against cancer-
BCRP (ABCG2) Yes [24] Yes [35] [25] Blood [25] associated chronic pain, is efficiently transported by

murine BCRP1 and moderately by human BCRP [39].

with 5-hydroxytryptamine (5-HT) generated a pronounced
increase in intracellular Ca** release in the presence of
inflammatory or pain-mediating activators, such as substance
P, calcitonin gene-related peptide (CGRP), lipopolysaccha-
ride (LPS), or leptin [70]. Mu-opioid agonists inhibit the
enhanced intracellular Ca** responses in inflammatory-
activated astrocytes cocultured with brain endothelial cells
[70]. Overexpression of endothelin-1 in astrocytes, but not
in endothelial cells, ameliorates inflammatory pain response
after formalin injection [71]. The role played in chronic pain
development by in vivo endothelial-astrocyte interaction at
the barrier has not been investigated yet.

3.4. Pericyte-Endothelial Cell Interactions. In vivo studies in
wild-type mice have shown that pericytes are more numerous
in the brain than in the spinal cord [72]. Whereas brain
regions such as the neocortex, hippocampus, and caudate
nucleus show almost uniform presence of pericytes, the spinal
cord shows significantly nonuniform distributions along the
rostrocaudal extent, with the thoracic region being richer in
pericytes, but with no more than 70% of brain levels. This

reduced number of pericytes in the spinal cord correlates
with (i) a higher BSCB permeability, as probed by fluorescent
dextran and (ii) a diminished expression of tight junction
proteins ZO-1, occluding, and claudin-5. Compared to wild-
type mice, in Pdgfrf*’/*" pericyte-deficient mice, pericytes
are reduced more in spinal cord capillaries, leading to BSCB
disruption to serum proteins. ZO-1 and occludin are also
reduced, and the accumulation in motor neurons of cytotoxic
thrombin and fibrin leads to motor neuron loss [72]. In
another pericyte-deficient model, the Pdgfb™"/™" mouse, an
increase in BBB permeability to water and to a range of
low- as well as high-molecular-mass tracers has been shown
[73]. Pericytes express MRP1, MRP4, and MRP5 transporters,
which might imply a role played by these cells in regulating
xenobiotic transport through the BBB [74].

Abnormal interactions between pericytes and endothelial
cells have been implicated in a number of human pathological
conditions, including tumor angiogenesis, diabetic microan-
giopathy, ectopic tissue calcification, and stroke and dementia
syndrome CADASIL [75]. In pathological conditions imply-
ing BBB damage, such as stroke, hypoxia, and traumatic brain
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injury, the pericytes migrate away from brain microvessels
wall and it seems to have an important role in neurovascular
unit repair [76-78].

Morphine potentiates endothelial-pericyte interaction
via platelet-derived growth factor-BB (PDGF-BB)/PDGF
receptor- 3 (PDGEFR-f3) signaling and promotes tumor angio-
genesis, pericyte recruitment, and coverage of tumor vessels
[79]. The role of pericyte-endothelial cell interaction in
chronic pain development and the role of pericytes during
BBB disruption are still open topics.

4. BBB and BSCB in Chronic Pain: “To Be or
Not to Be” Permeabilized/Disrupted

4.1. Acute/Chronic Pain Induces Changes at the BBB and BSCB
Level. Does chronic pain cause BBB/BSCB permeabilization
or disruption? The variety and complexity of the clinical
conditions that involve chronic pain make a simple answer
impossible, and studies on animal models of acute/chronic
pain provide controversial responses to this hypothesis.

In the literature, the terms BBB “opening,” “leakage,
and “breakdown” are often used interchangeably, but more
caution should be paid, when choosing between them [80]. A
distinction should be made between BBB “permeabilization”
and BBB “disruption” in experimental animal models. For the
purpose of this review, the term BBB permeabilization refers
to leukocytic recruitment associated with increased endothe-
lial permeability, with no tight junction opening or altered
efflux transport. As BBB “opening” or “permeabilization” is a
physiological phenomenon, it should be reserved to transient
processes [80]. On the other hand, we consider the BBB
“disrupted” if Evans blue (EB) or albumins are extravasated
into brain or spinal cord parenchyma. BBB “disruption” or
“breakdown” represents a long-term opening associated with
often-irreversible phenomena [80-82].

4.1.1. BSCB Permeabilization in Neuropathic Pain and Disrup-
tion in Chronic Pain Animal Models. Peripheral nerve injury
produced by either sciatic nerve constriction or selective
transection (peroneal and tibial nerve branches, but not sural
branch) causes a transient increase in BSCB permeability
in the lumbar and thoracic spinal cord, peaking about
24-48h. after injury and returning to normal levels after
7 days, as assessed by EB dye or horseradish peroxidase
accumulation in the parenchyma [10]. BSCB permeability
was also increased 24 hours after electrical stimulation of the
sciatic nerve at intensity sufficient to activate C-fibers, but not
A-fibers, or after capsaicin application on the sciatic nerve
[10].

Partial sciatic nerve ligation in rats, a model of neuro-
pathic pain, triggers an increase of BSCB permeability in
the lumbar, but not in the thoracic, spinal cord to tracers
of different size (e.g., EB, sodium fluorescein), which was
prominent between day 3 and day 7, stayed significant for at
least 4 weeks after injury, and returned to normal levels after
2 months [11]. Contrasting results on BSCB permeability in
extralumbar spinal cord regions (e.g., thoracic) [10, 11] could
likely be attributed to EB protocol differences.

Plasma proteins (IgG and fibronectin) immunopositive
deposits in the ipsilateral side of the spinal parenchyma and
downregulation of tight junction proteins (ZO-1, occludin-
1, and caveolin-1) in isolated microvessels of the spinal cord
were found 3 days after injury [11]. BSCB permeabilization
occurs independently of the activation of resident microglial
cells, EB extravasation being present while a microglial
inhibitor minocycline is infused intrathecally from day 0 to
day 7 [11]. Additionally, it was shown that the administration
in rats of high doses of IL-18 (intravenous) impairs BSCB
disruption, while TGF-1 and IL-10 (intrathecal) shut down
the openings in BSCB [11].

In a recent study of perispinal inflammation induced by
applying the toll-like receptor (TLR)-2 agonist zymosan to
the dorsal dural surface of the L1/L2 spinal cord, the lack of
BSCB permeabilization was inferred from the lack of serum
proteins in the spinal parenchyma 24 h after surgery [12].
No immunobhistological evidence of T-cell or Mac-1-positive
macrophages crossing into the parenchyma was found, but
ATF-3 (a transcription factor that is also a sensitive indicator
of neuronal injury) expression was observed in the dorsal
horn of the same spinal cord segments after 1 day [12].
Thus, inflammatory signals are indeed transduced across
the BSCB at the site of the inflammatory stimulus, within
a 400-500 ym radius. Astrocyte activation and gliosis are
significantly increased in the superficial dorsal horn 1-7 days
after surgery, with a transient recovery after 14 days, while
resident microglia cells show a steady increase in staining
density within the superficial dorsal horn beginning 1 day
after surgery [12].

Neuropathic pain induced by L4 spinal nerve lesions in
animal models is accompanied by astrocyte activation and
albumin leakage, revealing BSCB disruption more prominent
in the gray matter of the lesioned side compared to the con-
tralateral in both dorsal and ventral horns [83]. Inflammatory
events and changes in astrocyte and microglia reactivity at
the spinal level in response to injury or disease are important
processes that can initiate pain hypersensitivity [84, 85].
Studies conducted in a T-cell-deficient Ragl-null adult mouse
have shown that T-cell infiltration and activation in the
dorsal horn of the spinal cord following peripheral nerve
injury contribute to the evolution of neuropathic pain-like
hypersensitivity [86]. Most likely, the T-cell infiltration into
the spinal cord is higher than normal in the nerve-injured
animals, a fact that may be correlated with an increase in
BSCB permeability.

BSCB permeabilization is a delayed event with respect
to the initial injury and has a transient character. Studies
addressing the role of the endothelium in BSCB disruption
have been carried out, but the inclusion of the NVU as a
whole is needed [87]. While the activation of glia may be
important for the development of chronic pain, it is still
unclear if the activation is required for BSCB disruption or
if the two phenomena are independent. Peripheral inflam-
mation or nerve injury in animal models induces astrocytes
and microglia activation in the spinal cord [52, 88-91], but
in these studies evidence regarding BSCB permeabilization is
not available. In this view, new approaches connecting glia
activation to BSCB opening would be very useful.



4.1.2. BBB Permeabilization in Animal Models of Inflammatory
Pain. Inflammation induced by an intraplantar injection of
A-carrageenan into the rat hindpaw causes increased brain
uptake (in situ brain perfusion) of ["*C]sucrose at 1, 3, 6 and
48 h after injection [92]. In the same study, Western blot anal-
ysis on isolated cerebral microvessels indicated a transitory
increase in ZO-1 expression (increase after 1-6 h, returned to
control after 12h.) and a reduction in occludin expression
(after 1, 3, 6, 12, and 48h) [92]. These expression patterns
indicate increased BBB permeability and suggest a link with
the development of inflammatory pain. In another study
devoted to inflammatory pain, ["*C]sucrose in situ brain
uptake, [*H] in situ cerebral flow, and Western blot analysis
(occludin, ZO-1, CL-1, and actin expression) were performed
1h after formalin injection, 3 h after A-carrageenan injection
and 3 days after complete Freund’s adjuvant (CFA) injection,
and BBB permeabilization was observed [93].

In a rat model of inflammatory pain (injection of CFA
into the plantar hindpaw), significant edema formation and
hyperalgesia were observed 72h. after treatment, together
with significant increases in brain sucrose uptake. Expression
of the transmembrane TJ proteins occludin, claudin-3 and
-5, and junction adhesion molecule-1 (JAM-1) significantly
changed 24-72h after CFA injection, as proved by Western
blotting [9] and confocal microscopy [94].

The induction of peripheral inflammatory pain through
the injection of A-carrageenan was associated with increased
BBB permeability in a study that showed, by means of SDS-
PAGE/Western blot analysis, a significant change in the
relative amounts of oligomeric, dimeric, and monomeric
occludin isoforms in BBB endothelial cells, presumably
promoted by the disruption of disulfide-bonded occludin
oligomeric assemblies [95].

Expression of organic anion-transporting polypeptide
la4 (Oatpla4) is upregulated after 3h exposure to A-car-
rageenan; the upregulation is prevented by diclofenac, sug-
gesting the implication of acute/chronic inflammatory pain
[36]. This modulation of BBB permeability in inflamma-
tory pain appears to be controlled by the TGF-beta/activin
receptor-like kinase-5 (ALKS5) signaling pathway [96]. A-
carrageenan-induced peripheral inflammatory pain gener-
ates increased ["*C]sucrose and [*H]codeine in situ brain
uptake, and rats pretreated (10 min before A-carrageenan
injection) with tempol, a pharmacological ROS scavenger,
have an attenuated radiotracers uptake [97]. In the same
study, other indirect pieces of evidence for BBB modulation
have been presented consisting in increase of the nitrosylated
proteins in isolated brain vessels extract.

In a A-carrageenan inflammatory pain model, unidi-
rectional permeability coeflicients for several selected brain
regions (hypothalamus, cerebellum, midbrain, cerebrum,
hippocampus, brainstem, and thalamus) were calculated.
Three hours after A-carrageenan injection, the BBB resulted
in an increased permeability in cerebrum and brainstem;
diclofenac administration reversed this effect [98]. Western
blot analysis of occludin expression in the same brain regions,
however, did not reveal any significant changes [98]. In
conclusion, correlating occludin expression changes with
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BBB “permeabilization” is problematic on the basis of the
available data.

Administration of EB, which readily binds to serum
albumins, is “classically” employed to assess BBB integrity,
since in normal conditions the dye should not be found in
the brain parenchyma [10]. However, in order to be revealed
by EB, BBB disruption must be of a substantial degree (e.g.,
ischemic stroke [99]), while inflammatory pain per se does
not constitute sufficient stimulus [100]. Inflammatory pain is
more likely related to BBB permeabilization, as suggested by
["*C]sucrose transport through the BBB using in situ brain
perfusion [9].

Despite the valuable information contained in the above
described studies, there are several experimental pitfalls to
be considered. First, only indirect pieces of evidences are
available in support of the idea of BBB permeabilization in
inflammatory or chronic inflammatory pain. It is difficult to
assess BBB permeabilization based on changes in TJ protein
expression in an homogenate of isolated brain capillaries or to
expand results from in situ brain perfusion with radioactive
tracers to the BBB permeabilization. Another problem is
that relatively short experimental durations (such as 24-
72h) are considered equivalent to a “chronic” pain state [9],
while similar experiments on BSCB permeabilization were
carried out over a significantly longer time scale (1 week-2
months) [10-12]. More consistent studies, based on in vivo
brain uptake of Evans blue or ["*C]sucrose should be done
in order to prove BBB permeability changes. Alternative in
vivo methods, such as intravital microscopy [101] or nuclear
imaging of radioisotope-labeled leukocytes [72], are still
unexplored in the field of chronic pain. A regional brain
mapping of BBB permeabilization from the initial acute
pain induction to the late chronic pain phase would be of
significant use. In any case, clinical translation of the results
obtained with experimental inflammatory pain models is still
far from accomplished.

Possible changes in BBB and/or BSCB permeability as a
result of acute and chronic pain are shown in Figure 1.

4.2. Chronic Pain Treatments and NVU. Two major classes
of analgesic drugs are currently in use for chronic pain
treatment: opioids and nonsteroid anti-inflammatory drugs
(NSAIDs). NSAIDs are used to treat chronic mild to moder-
ate pain, while opioids are powerful analgesic agents used to
treat moderate to severe chronic pain [102].

On the other hand, beside a wide range of adverse effects,
long-term clinical administration of opioids (e.g., morphine)
in chronic pain therapy is prevented by tolerance and depen-
dence [102]. A classical dogma holds that agonist-induced p-
opioid receptor internalization contributes directly to func-
tional receptor desensitization and opioid tolerance [103].
By contrast, other studies suggest that opioid receptor inter-
nalization can reduce opioid tolerance in vivo (reviewed
by [103]). Beside neurons, other NVU players (e.g., glial
cells, pericytes) have been considered to contribute to opioid
tolerance development [62, 79, 104]. Endothelial cell lining
represents the first “defence” to be crossed by opioids before
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FIGURE 1: Acute pain occurs in a first step as a result of peripheral injury and/or inflammation. Chronic pain appears as a delayed event
associated with permeabilization or brain/spinal cord capillary endothelium disruption. Different processes, such as inflammatory mediator
release, changes in TJs protein and ABC transporters expression, activation of microglia and/or astrocytes, immune cells and albumin
extravasation, may occur independently or in an “orchestrated” manner, and might contribute to the process of BBB/BSCB permeabilization

or disruption.

interacting with CNS cells and therefore efflux alterations at
this level are crucial in opioid tolerance.

In the A-carrageenan rat model, acute inflammatory pain
generates an increased functional expression and trafficking
to membrane domains of endothelial efflux transporters (e.g.,
P-gp) in the BBB microvasculature [26, 37]. On the other
hand, the same rats treated with morphine show reduced
brain uptake of the drug due to increased P-gp activity [26].
Coadministration of cyclosporine A (P-gp inhibitor) with
morphine in rats increased morphine transport through the
BBB in a dose-dependent manner [26]. In the clinical prac-
tice, reducing tolerance to morphine by co-administration
with cyclosporine A is unfeasible due to severe side effects
(nephro- and neurotoxicity) [105, 106].

Chronic morphine treatment induced an increase in the
expression of interleukin (IL)-18 by microglia, IL-18 receptor
(IL-18R) by astrocytes, and protein kinase Cy (PKCy) by
neurons in the spinal dorsal horn. The results were inter-
preted by the authors as signs of a complex glia-neuron
dialogue in the process of developing tolerance to morphine
[62]. Morphine also potentiates endothelial-pericyte inter-
action via PDGF-BB/PDGFR-f signaling [79]. Morphine
upregulates sphingolipid ceramide (in spinal astrocytes and
microglia, but not in neurons) and spinal sphingosine-1-
phosphate [104]. In turn, sphingosine-1-phosphate modulates
spinal glial function, increasing the production of glial-
related proinflammatory cytokines, in particular TNF-a, IL-
153, and IL6 [104].

Another major line of chronic pain treatment is rep-
resented by nonopioid analgesics such as NSAIDs. These
drugs have several side effects, the most important being
the risk of serious upper gastrointestinal complications,
including bleeding, ulcers, and perforation [102]. NSAIDs

act on the descending pain control system, which includes
the periaqueductal gray matter and rostral ventromedial
region of the medulla, which are also targets for endogenous
opioids. Therefore, repeated administration of NSAIDs (e.g.,
metamizol, lysine-acetylsalicylate, analgine, ketorolac, and
xefocam) to rats induces tolerance to themselves and cross-
tolerance to opioids [107, 108].

Studies suggest that NSAIDs interact in several differ-
ent ways with the brain endothelium, either by reducing
edema and BBB/BSCB permeabilization [109, 110] or by
inhibiting endothelial ABC transporters (e.g., MRP1, MRP4)
[42, 43]. Diclofenac attenuates edema and hyperalgesia
induced by A-carrageenan in the cerebral and brainstem
regions [98]. Indomethacin, an inhibitor of cyclooxyge-
nase (COX)-1 and COX-2, reduces BBB damage induced
by intracerebral injection of TNF-a [109]. Pretreatment
with p-chlorophenylalanine, indomethacin, ibuprofen, and
nimodipine of rats with spinal cord injury, reduced edema
formation, BSCB permeabilization, and blood flow [110].
Indomethacin was shown to be an inhibitor of MRP1 func-
tion [42] and indomethacin, indoprofen, ketoprofen, and
flurbiprofen inhibit MRP4 [43]. Diclofenac is transported by
BCRP, but not by P-gp [39].

5. Comorbidities of Chronic Pain with
Neuroinflammatory and Neurodegenerative
Diseases: Role of the Neurovascular Unit

Chronic pain has an extensive palette of comorbidities,
but only neuroinflammatory and neurodegenerative dis-
eases with known alterations of the NVU are here dis-
cussed (Figure 2). High prevalence of chronic pain can be



observed in all these CNS pathologies. BBB/BSCB alter-
ations in epilepsy, Alzheimer’s disease, Parkinson’s disease,
multiple sclerosis, and amyotrophic lateral sclerosis will be
briefly described, with regard to chronic pain syndromes.
Understanding the exact role played by each pathology in
permeabilizing/disrupting brain and spinal cord capillaries’
endothelium is a crucial step in finding better therapeutic
solutions.

5.1. Epilepsy and Chronic Pain. Epilepsy is a set of chronic
neurological disorders characterized by abnormal, excessive,
or hypersynchronous neuronal activity in the brain. The
Epilepsy Comorbidities and Health (EPIC) Survey recently
performed in the United States indicated that epilepsy is
comorbid with several pain disorders, such as migraine,
chronic pain, fibromyalgia, and neuropathic pain [111]. Addi-
tionally, the EPIC study indicated that chronic pain is
prevalent in 25.4% of epileptic versus 17.7% of nonepileptic
survey responders [111]. Chronic pain and fibromyalgia may
be related to physical inactivity, which is more prevalent
among adults with a history of epilepsy than among those
without epilepsy [112].

The recent IASP taxonomy includes epilepsy in the list of
generalized syndromes of chronic pain and includes chronic
paroxysmal hemicrania—remitting form and hemicrania
continua in the list of the chronic pain conditions [1]. Epilepsy
and ictal epileptic headache share several pathophysiological
mechanisms, such as (i) EEG abnormalities—lateralized or
generalized, ipsilateral or contralateral, with focal theta activ-
ity or generalized spike-waves, and brief or longer-lasting
episodes and (ii) headache and EEG anomalies resolve within
minutes of i.v. antiepileptic medication administration [113].
The overlap between migraine and epilepsy may be partial
or complete, not necessarily synchronous (preictal, ictal, or
postictal), and in some cases the headache may represent the
only ictal phenomenon [113]. In pediatrics studies, 3.1% of
the patients suffered from idiopathic headache and idiopathic
or cryptogenic epilepsy or unprovoked seizures [114]. The
same study showed a strong association between migraine
and epilepsy: in migraineurs the risk of epilepsy was 3.2
times higher when compared to tension-type headache,
and children with epilepsy had a 4.5-fold increased risk
of developing migraine than tension-type headache [114].
Postictal headache occurred in 41% of temporal lobe epilepsy
patients, 40% of frontal lobe epilepsy patients, and 59% of
occipital lobe epilepsy patients [115].

Several mechanisms have been proposed to explain
comorbidity of epilepsy and chronic pain (such as that
characterizing migraine), such as (i) the essential role of
glutamate as a mediator of the hyperexcitability in both focal
seizures and migraine, considering that seizure generation
and spread are mediated by synaptically released glutamate
acting on AMPA receptors, while triggering of cortical
spreading depression depends on NMDA receptors and
spread does not require synaptic transmission; (ii) mutations
in genes for the membrane ion transport proteins CACNAIA
(P/Q-type voltage-gated calcium channel), ATP1A2 (Na+-K+
ATPase), and SCNIA (voltage-gated sodium channel) [116].
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Another important mechanism implied in chronic pain
comorbidity with epilepsy is NVU activation. In this respect,
brain endothelium seems to play an important role.

BBB disruption induces epileptiform activity [117-122].
We have previously shown that BBB leakage is induced by
acute seizure activity but prevented by blockade of leukocyte-
vascular adhesion, either with blocking antibodies or by
genetically interfering with P-selectin glycoprotein ligand-1
(PSGL-1) function in mice [123]. Endothelial proinflamma-
tory chemokines induce complex signal transduction path-
ways leading to integrin activation and controlling leukocyte
recruitment, and therefore play a critical role in epileptogen-
esis [124, 125].

ABC transporters in the BBB are also affected in epilepsy.
Shortly after status epilepticus, MRP1, MRP2, and BCRP are
upregulated in astrocytes within several limbic structures,
including hippocampus [47]. In chronic epileptic rats, these
proteins are overexpressed in the parahippocampal cortex,
specifically in blood vessels and astrocytes surrounding these
vessels [47].

Whether transient BBB opening occurs during migraine
attacks is controversial. Some magnetic resonance imaging
studies have reported negative results [126, 127] while others
have found indications of BBB leakage [128]. In migraine,
indirect evidence for BBB permeabilization is provided by
increased circulating levels of matrix metalloproteinases
(MMPs) 2 [129] and 9 [130] that have been attributed to
MMPs release from the extracellular matrix of the neurovas-
cular unit.

5.2. Alzheimer’s Disease and Chronic Pain. Alzheimer’s dis-
ease (AD) is the most common cause of dementia. It is a
neurodegenerative disorder characterized by synaptic and
neuronal loss, by the accumulation in the extracellular matrix
of beta-amyloid deposits, and by the presence of abnormal
aggregates of microtubule-associated proteins, the so-called
neurofibrillary tangles, in neuronal cell bodies.

Prevalence of pain in AD was estimated at 57% of
all patients [131], although such assessment is complicated
by two factors. First, pain processing may be altered in
dementias [132,133] including AD [134]. Second, the primary
method for pain assessment is patient reporting [135], but
pain affects cognitive function [136, 137] and cognitive func-
tion in turn affects pain [133], which makes pain assessment
in AD very difficult.

Astrocytes tend to localize around fibrillar amyloid
plaques, suggesting that A3 deposition is a potent trigger
of astroglial activation in the AD brain [138]. Additionally,
an increase in the number of IL-1 immunoreactive microglia
associated with AD plaques has been shown [139]. A variety
of biomarkers for microglial activation in AD have been pro-
posed, such as chitotriosidase, CCLI8 (pulmonary activation-
regulated chemokine; PARC), YKL-40, CCL2 (monocyte
chemoattractant protein 1; MCP-1), CDI14, and neopterin
(140].

Immunohistochemistry on postmortem human brains
affected by AD or vascular dementia indicated an increased
expression of CL-2, Cl-5, and CL-11 in neurons and of CL-2
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FIGURE 2: Similarities between chronic pain and NVU activation. Studies from the literature indicate that different NVU components are
activated in a given pathology (e.g., epilepsy, Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, amyotrophic lateral sclerosis, chronic
pain) with a special focus on BBB/BSCB permeability alterations. Neuroinflammatory/neurodegenerative diseases are associated with chronic
pain (see indicated percentages), but further studies are necessary to establish whether NVU activation may represent a “missing link” in the
association. While the intrinsic mechanisms relating NVU activation, chronic pain, and neuroinflammatory/neurodegenerative disorders

remain unclear, BBB/BSCB permeabilization appears to play a role.

and CL-11 in astrocytes and oligodendrocytes [141]. There is
a strong relationship between neurodegeneration, cognitive
decline, and BBB disruption in AD [142]. It was suggested
that during neurodegeneration the receptor for advanced
glycation end products (RAGE), which mediates transfer of
amyloid- 3 to the brain through the endothelial cells, can be
upregulated [143]. In AD transgenic mice, BBB alteration was
proven to precede accumulation of senile plaques [144].

Neuroinflammation represents a crucial part in the
pathogenesis of AD and other neurodegenerative dis-
eases [145]. Inflammatory mediators, such as IL-1§3, IL-6,
TNF-«, IL-8, transforming growth factor- (TGF-p), and
macrophage inflammatory protein-la (MIP-1«), are upregu-
lated in AD [146].

5.3. Parkinson’s Disease and Chronic Pain. Parkinson’s disease
(PD) is a degenerative disorder of the CNS, mainly charac-
terized by loss of dopamine-generating cells in the substantia
nigra. Prevalence of pain (musculoskeletal pain, neuritic or
radicular pain, dystonia-associated pain, primary or central
pain, and akathitic discomfort) in PD is estimated around 40-
60% [147, 148]. See [149] for a comprehensive review of pain
in PD.

Impairment of BBB function has been implicated in the
pathogenesis of PD. Accumulation of verapamil (normally
extruded from the brain by P-gp) in the brain of PD
patients proves a dysfunction of BBB [150]. Injection of
dopamine neurotoxin 6-hydroxydopamine (6OHDA, which
produces Parkinson’s-like dopaminergic neuron lesions) into
the striatum of rats induced FITC-labeled albumin leakage
in areas of the brain that are not protected by the BBB
(e.g., the hypothalamus around the third ventricle and area
postrema along the floor of the fourth ventricle) but no

leakage in BBB-protected areas (e.g., ipsilateral parietal cortex
or hippocampus, or into contralateral structures) [151]. The
presence of neuroinflammatory markers, such as activated
microglia or astrocytes, is also an important feature of PD
[152]. Microglia activation and upregulation of inflammatory
mediators can be induced by «-synuclein and contributes
to PD pathogenesis [153]. On the other hand, astrocyte
activation in PD is still under debate [152, 154-158]. In a
recent study performed on aged c-rel”’™ mice developing
PD-like degeneration of substantia nigra pars compacta, we
observed a marked microglia activation in the substantia
nigra pars compacta and striatum, but no GFAP-positive
astrocyte activation [159].

5.4. Multiple Sclerosis and Chronic Pain. Multiple sclero-
sis (MS) is a chronic inflammatory disease of the CNS,
which leads to demyelination, neurodegeneration, perivascu-
lar edema, and inflammatory infiltrates [160]. Prevalence of
pain in MS is estimated around 50-86% [161, 162]. A recent
classification based on pathophysiological mechanisms and
response to treatment identified nine types of MS-related
pain: trigeminal neuralgia and Lhermitte’s phenomenon
(paroxysmal neuropathic pain due to ectopic impulse gen-
eration along primary afferents), ongoing extremity pain
(deafferentation pain secondary to lesion in the spinothalam-
ocortical pathways), painful tonic spasms and spasticity pain
(mixed pains secondary to lesions in the central motor path-
ways but mediated by muscle nociceptors), pain associated
with optic neuritis (nerve trunk pain originating from nervi
nervorum), musculoskeletal pains (nociceptive pain arising
from postural abnormalities secondary to motor disorders),
migraine (nociceptive pain favored by predisposing factors or
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secondary to midbrain lesions), and treatment-induced pains
[163].

BBB disruption is an early event in the progression
of MS, as proved by magnetic resonance imaging studies
[164, 165]. Diapedesis of monocytes and subsequent traf-
ficking of monocyte-derived macrophages into the brain
are key mediators of demyelination and axonal damage in
MS. Endothelin 1 (ET-1), its type B receptor (ET(B)) and
endothelin-converting enzyme-1 (ECE-1) are mediators for
monocyte diapedesis through the human BBB and play
a key role in demyelination and axonal damage in MS
[166]. In experimental models of MS, such as experimental
autoimmune encephalomyelitis (EAE), BBB disruption is
induced by T-cells in conjunction with antigen-presenting
dendritic cells [167, 168], and monocytes [169]. MS lesions
are often found in proximity to blood vessels [170], associated
with loss of occludin and ZO-1 in the microvasculature [171-
173]. Leukocyte extravasation through BBB is mediated by
cytokines: TNF-q, IL-1B, and interferon-y [174]. Infiltration
of inflammatory cells are localized perivascularly, but can also
be located in the CNS parenchyma. In acute inflammatory
lesions, CD4" and CD8" T cells and B cells infiltrate the
lesion site. Lesions at later MS stages show an abundance of
macrophages with internalized myelin degradation products
and reactive proliferating astrocytes [175]. Sodium channels
contribute to activation of microglia and macrophages in
EAE [176].

MS is also characterized by significant changes in the
composition and dynamics of the BSCB [177]. CD3-positive
T-cells accumulate within the dorsal horn in mice with EAE,
early in the disease course when cold and tactile allodynia are
observed [178]. BSCB disruption is greatest at disease onset,
followed by inflammation and demyelination, indicating
that increased BSCB permeability precedes the destructive
inflammatory process [177]. A recent study showed that
autoreactive T cells access CNS via the fifth lumbar spinal
cord in EAE mouse model [179].

In an EAE model, a recent study suggested a signalling
role for Wnt (a family of secreted signaling proteins) in
MS-associated chronic pain pathogenesis, although only
neurons and glial cells were examined [180]. On the other
hand, Wnt signaling contributes to brain angiogenesis, BBB
formation, influences vascular sprouting, remodelling, and
arteriovenous specification by modulating the Notch pathway
[181]. Therefore, further studies on Wnt signalling in brain
microvasculature could bring new insights in to MS-related
pain syndromes.

5.5. Amyotrophic Lateral Sclerosis and Chronic Pain. Amy-
otrophic lateral sclerosis (ALS) is a chronic, progressive, and
ultimately fatal neurodegenerative disease of motor neurons
in the brain and spinal cord [182]. Prevalence of chronic
pain (especially located at the arms level) in ALS is estimated
around 15-20% [183, 184].

Increased permeability of the BSCB has been implicated
in the pathogenesis of ALS [185]. Studies conducted in the
ALS mouse model SOD1-G93A have shown BBB and BSCB
disruption [186, 187], in areas of motor neuron degeneration
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(early and late ALS stages) [186] and capillary rupture
in brainstem (early symptomatic ALS stage) [186]. Some
studies indicate reduction in tight junction proteins (ZO-
1, occluding, and claudin-5) before motor neuron loss, in
presymptomatic ALS stages [188], while other data point out
the reduction in tight junctions proteins (ZO-1and occludin)
and basement membrane protein agrin in symptomatic ALS
stages [187]. Therefore, it is still controversial if the BBB/BSCB
disruption is the cause or the consequence of ALS devel-
opment. In SOD1-G93A mice, an increase was detected in
mRNA and protein levels for P-gp and BCRP at the level of
capillary endothelium in several regions, such as whole spinal
cord, cerebral cortex, and cerebellum [189]. Additionally, the
transport activity of P-gp and BCRP increased with ALS
progression in spinal cord and cerebral cortex capillaries
[189].

T lymphocytes are able to cross into the brain and
spinal cord parenchyma, where they interact with resident
microglia, inducing them to adopt either an Ml (cyto-
toxic) or M2 (protective) phenotype, depending on ALS
stage [190]. Clinical studies evidenced perivascular and
intraparenchymal CD4" T-lymphocytes in the proximity
of degenerating corticospinal tracts and ventral horns in
two-thirds of ALS patients [191]. CD4" T-lymphocytes slow
disease progression, modify the microglial phenotypes, and
extend survival [192,193]. A potential mechanism behind the
longer life expectancy may be mediated by the augmented
secretion of IL-4 from mutant Cu**/Zn** superoxide dis-
mutase regulatory T lymphocytes that directly suppressed
the toxic properties of microglia [193]. It was suggested that
CD4*CD25"¢"FoxP3" regulatory T lymphocytes (Tregs) are
neuroprotective and slow ALS progression [194].

6. Potential Strategies Targeting BBB or
BSCB for Chronic Pain Relief

The molecular mechanisms of BBB/BSCB permeabilization
due to chronic pain have yet to be clarified. Nevertheless,
the barriers represent promising targets in designing new
therapeutic strategies for chronic pain. Several approaches
tested in preclinical and clinical studies, such as the use of
Rho-kinase inhibitors, antiepileptic compounds, and statins,
might turn out to be viable solutions in the future.

6.1. Rho-Kinase Inhibitor. Rho kinase (ROCK) is in- volved
in various physiological functions, including cell mo-
tility, vasoconstriction, and neurite extension. ROCK
inhibition reduces tissue-type plasminogen activator (t-
PA)/plasminogen-mediated increase in permeability of in
vitro models of the BBB [195]. Fasudil, a specific ROCK
inhibitor, partly alleviates EAE-dependent damage by
decreasing BBB and BSCB permeability [196]. In preclinical
models of pain, fasudil (30 mg/kg) significantly attenuated
mechanical allodynia in spinal-nerve ligation, chronic
constriction injury, capsaicin-induced secondary mechanical
hypersensitivity, sodium iodoacetate-induced pain, and
capsaicin-induced acute flinching behaviors, but failed
to attenuate or had only modest effects on inflammatory
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thermal hyperalgesia following carrageenan injection
and mechanical allodynia following complete Freund’s
Adjuvant injection [197]. Fasudil also proved to be efficient
in adjuvant-induced arthritis model (inflammatory arthritis
model) and a monoiodoacetate-induced arthritis model
(noninflammatory arthritis model) [198].

6.2. Antiepileptic Drugs. It is difficult to consider currently
market-available antiepileptic drugs (AEDs) as an alternative
for classical analgesics because of their side effects, potential
drug interactions, and unsatisfactory efficacy (epilepsy resis-
tance). Between 1990 and 2012, 16 new AEDs were approved,
most of them developed using mechanism-unbiased anticon-
vulsant animal models [199]. In order to be attractive for the
pharmaceutical industry, the future design of new AEDs must
also include a potential in nonepileptic CNS disorders, such
as bipolar disorder and neuropathic pain [199]. Resistance to
AEDs is encountered in more than 40% of epileptic patients
[25], probably due to upregulation of the efflux transporters
in brain capillary endothelium [200].

Only three AEDs are currently approved by the Food
and Drug Administration (FDA) and European Medicines
Agency (EMA) for the treatment of neuropathic pain:
carbamazepine (CBZ), gabapentin (GBP), and pregabalin
(PGB), all of them considered first-line treatment options
for several neuropathic pain conditions (reviewed by [199]).
Randomized clinical trials in spinal cord injury-related pain
indicate gabapentin and pregabalin as powerful analgesics
[201]. Cochrane Library reports based on extended clinical
trials indicate GBP, PGB, and lacosamide, but not valproic
acid, to be efficient against neuropathic pain or fibromyalgia
[202-205].

Levetiracetam (LEV) may constitute a novel approach for
BBB protection [206]. Clinical studies have evidenced the
effects of levetiracetam (LEV) in various pain conditions,
such as postmastectomy pain syndrome, trigeminal neural-
gia, chronic general or central pain in MS, lumbar radicu-
lopathy, chronic daily headache, polyneuropathy, and central
poststroke pain [207-212]. In a rat model of hypothermia-
induced cortical dysplasia, LEV and topiramate were found
to protect the BBB [212]. However, a recent clinical trial
failed to reveal significant effects of LEV against spinal cord
injury-related pain [213]. Despite LEV’s protective properties
on the BBB, clinical efficacy against chronic pain is still
controversial.

6.3. Statins. Beside the well-known efficacy of statins
(inhibitors of HMGCoA (3-hydroxy-3-methyl-glutaryl-
coenzyme A) reductase) in lowering plasma cholesterol
levels, these compounds show a large palette of pleiotropic
effects. Statins can improve endothelial function (thereby
regulating the BBB permeability), decrease the oxidative
stress and inflammation, and generally have a beneficial
effect on the immune system, central nervous system, and
bone [214]. Some of these effects point out statins as good
candidates for chronic pain treatment. In vivo preclinical
tests showed that Atorvastatin (a lipophilic statin) restored
the BBB permeability in mice fed with saturated fatty acids
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(which compromised BBB integrity) [215]. In primary
human skeletal muscle myoblast cells, atorvastatin and
rosuvastatin proved to be substrates for MRP1, MRP4, and
MRP5 transporters [216].

An analgesic effect was revealed by hot-plate test for some
statins [217]. Preclinical tests have been performed to evaluate
statin efficacy in neuropathic pain. Daily administration of
statin for two weeks completely prevented the development
of mechanical allodynia and thermal hyperalgesia in a nerve
injury model [218]. Such approaches provide promising
results for considering statins as a possible future generation
of drugs against chronic pain, especially for patients with
dislipidemy.

7. Future Perspectives

General mechanisms of chronic pain onset, development,
and maintenance still await clarification, and the partic-
ular relationship between chronic pain and NVU func-
tion is an especially complex issue. Whether permeabiliza-
tion/disruption of the endothelial barrier in brain or spinal
cord could be a cause and/or a consequence of chronic pain is
an open topic. Clearly, a better knowledge of the neurovascu-
lar unit contribution to chronic pain physiopathology would
be highly beneficial in the clinical practice, especially in view
of pharmacological targeting of the NVU.

The use of currently available analgesics (opioids and
NSAIDs, in particular) in chronic pain is limited by their side
effects and by the induction of tolerance and/or dependence.
In this review, we have described some aspects of the
neurobiological mechanisms of chronic pain, with partic-
ular emphasis on NVU players’ interactions, also in view
of present and future treatments. Future strategies against
chronic pain should take into account the essential role
played by the neurovascular unit in the efficacy of analgesics
in an effort to overcome the already-known problems.

As  many  neurodegenerative/neuroinflammatory
pathologies are comorbid with chronic pain in a significant
number of patients, the identification of dual-target
therapeutic strategies should be considered a priority.

With the NVU as an increasingly relevant target for the
treatment of chronic pain, development of immunologically
based strategies for preventing BBB and/or BSCB permeabi-
lization or disruption would also represent an opportunity.
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This paper reviews the impact of genetic variability of drug metabolizing enzymes, transporters, receptors, and pathways involved in
chronic pain perception on the efficacy and safety of analgesics and other drugs used for chronic pain treatment. Several candidate
genes have been identified in the literature, while there is usually only limited clinical evidence substantiating for the penetration
of the testing for these candidate biomarkers into the clinical practice. Further, the pain-perception regulation and modulation are
still not fully understood, and thus more complex knowledge of genetic and epigenetic background for analgesia will be needed

prior to the clinical use of the candidate genetic biomarkers.

1. Introduction

It is well recognized that pain perception as well as pain
relief after analgesic treatment display, large interindividual
variability in the population that affects selection of analgesics
and their dosing in the population. Age, gender, ethnicity,
and actual level of stress, mood, or diseases may modify indi-
vidual pain perception. This alters also the response to drug
treatment, which represents a complex interaction between
analgesic medication and organism. Several mechanisms may
be involved in the pain relief either as drug targets or as
drug metabolizing enzymes/transporters, and the genetic
variability in these processes influence the analgesic efficacy
in individual patients. This review is focused on highlighting
the genetic variability reported to affect chronic pain treat-
ment efficacy. This paper does not provide exhaustive list of
polymorphisms reported but focuses on the current status of
the most recognized pharmacogenetic areas and variables in
the treatment of chronic pain.

2. Neurotransmitters

At least 100 substances can act as neurotransmitters, some
of them being released after stimulation of sensory recep-
tors, for example, catecholamines, GABA, and serotonin.

Genes associated with synthesis, release, or target proteins
for these pain neurotransmitters all represent candidate
genes for chronic pain treatment variability. Variation in
these pain-associated genes may result not only in variable
pain perception but also in variable drug efficacy. Chronic
pain and its association with gene polymorphism involved
in neurotransmission have been widely studied in animal
models. So far, 371 candidate genes have been identified in
mice (http://www.jbldesign.com/jmogil/enter.html, accessed
in December 2012), and some of them have been also shown
to be of clinical relevance for man. Overview of major recently
studied pain-associated genes in humans is presented in
Table 1. However, the clinical data suggesting possible routine
use of all these genetic biomarkers is unconvincing. Stud-
ies describing an association of various neurotransmission-
related gene polymorphisms with variability of drug response
in the treatment of chronic pain are listed in Table 2.
Recently, Klepstad et al. analyzed 112 SNPs in 25 candi-
date genes involved in opioid neurotransmission (OPRM],
OPRD1, OPRK1, ARRB2, GNAZ, HINTI, Stat6, ABCBI,
COMT, HRH1, ADRA2A, MCIR, TACRI, GCHI, DRD2,
DRD3, HTR3A, HTR3B, HTR2A, HTR3C, HTR3D, HTR3E,
HTRI, and CNRI) in a large cohort of oncologic patients [22].
No association of these SNPs with opioid dosing (oxycodone,
morphine, and fentanyl) was observed. However, haplotypes
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TABLE 1: Overview of recently released (2010-2012) studies assessing the influence of various gene polymorphisms on pain perception in

humans.
Gene Refrence Polymorphisms Populations Results
Hocki L 2010 _ 8572 1958 British birth No associations of either chronic widespread pain
ocking et al, Totally 11 SNPs n = 8572, 195 rish birth pain status with COMT genotypes or
1] cohort (83% Caucasians) hanl
aplotypes
Individuals with met/met genotype experienced a
greater decline in positive effect on days when
) n = 46 female fibromyalgia pain was elevated more than did either val/met or
Finan etal,, 2010 [2] 154680 patients (93.0% Caucasians) val/val individuals, COMT genotype contributing
1% of variance over and above the effect of pain on
PA
Associations between a haplotype created using
1$6269, rs4633, rs4818, n = 159/93 female/male 1s6269, rs4633, rs4818, and rs4680, and the
Fijal et al., 2010 [3] rs4680, and Caucasians with major proportion of female patients with “Pain While
haplotypes depressive disorder Awake” and “Overall Pain” at baseline. No
association was found in males
Children with chronic tension type headache
(CTTH) met/met genotype-longer headache
E dez-de-1 n = 70 children with history compared with met/val (P = 0.001) or
Pernan e?_ ZeO_lélis_ 4680 chronic tension type val/val (P = 0.002), children with CTTH,
:nas etal, IS headache, n = 70 healthy met/met genotype showed lower pressure pain
[4] children test score over upper trapezius and temporalis
muscles than children with CTTH with met/val or
val/val genotype.
SNP rs4818, the frequency of variant genotype CC
112 fib i was 73.21 and 39.09% for patients with FS and
n= romyalgia controls, respectively, Fibromyalgia Impact
COMT Barbosa et al., 2012 [5] rs4680 and rs4818 patients 'S Tesp Y onyas P .
— 110 healthy individual Questionnaire score was hlgher in patients with
n = 110 healthy individuals ., homozygous variant genotype for SNPs
rs4680 (87.92 points) and rs4818 (86.14 points)
met/met subjects exhibited stronger pain-related
fMRI signals than val/val in several brain
Loggia et al,, 2011 [6]  rs4680 n = 54 healthy subjects structures, including the periaqueductal gray
matter, lingual gyrus, cerebellum, hippocampal
formation, and precuneus
rs4633 T allele—greater improvement in ODI
. . (Oswestry disability index) score 1 year after
186269, rs4633, rs4818, n = 69 patients with low ATCA haplotvpe-APS ;
Dai et al., 2010 [7] rs4680, and back pain who underwent o2 aplotype-fite-avetage pail
aretal, hal > . p ) sensitivity (9.3% in the study population)—greater
aplotypes an intervention improvement in ODI. The greatest mean
improvement in ODI-ATCA-homozygotes
Association of rs4633 and rs4680 with
rs4633, rs4680, posttreatment improvement in VAS, for better
. rs4818, rs6269, N = 93 patients with low improvement among heterozygous patients
Omair et al., 2012 (8] rs2097603, and back pain compared to the homozygous ones, no association
haplotypes was observed for the analysis of the common
haplotypes
Fibromyalgia individuals with the met/met
. rs6269, rs4633, rs4818 N = 113 fibromyalgia genotype (Vall58Met SNP) or the high- and
Martinez-Jauand . average-pain sensitivity-associated haplotypes
rs4680, and patients . L
etal., 2013 [9] haplotypes 1 = 65 healthy controls showed higher sensitivity to thermal and pressure
plotyp B Y pain stimuli than patients carrying the LPS
haplotype or val alleles (Vall58Met SNP)
Klepstad et al., 2004 ALISG (£s1799971) N = 99 Caucasians Brief pain inventory average pain scores higher in
[10] AG heterozygotes
OPRMI N =258 patientswith e e e hemon,
Olsen etal., 2012 [11] Al8G lumbar disc herniation and ’

sciatic pain, Caucasians

while A/A women and A/A men had almost
exactly the same recovery rate
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TaBLE 1: Continued.

Gene Refrence Polymorphisms Populations Results
G118 allele carriers were more likely to be high
n = 153 chronic migraine  pain sufferers compared to homozygous carriers
Menon etal, 2012 [12] ALISG females, Caucasians of the Al118 allele (OR = 3.125, 95% CI = 1.41, 6.93,
P = 0.0037)
n = 46 female patients with  Patients with an 118G allele reported higher
Finan etal.,, 2010 [2] Al8G fibromyalgia 93.0% positive affect score across diary days than those
OPRMI Caucasians homozygous for 118A
n = 121 chronic,
non-cancer pain patients, ~ The frequency of 118G is significantly lower in the
o n = 101 opioid-naive subjects with chronic pain than in the group with
Janicki et al., 2006 [13] AlSG subjects with acute acute postoperative pain—0.079 versus 0.158;
postoperative P =0.009
pain, Caucasians
. £s8007267 1 = 98 women with Significant interaction effect of GCH1 gene
Heddini et al., 2012 . . polymorphism and hormonal contraceptive
GCHI [14] 183783641 provoked vestibulodynia, therapy on coital pain among patients with
rs10483639 healthy controls n = 102 Py P &P
current treatment (n = 36)
n = 1040 L . Lo
TRPV1 Carreno et al., 2012 222741 cases—Caucasians, 1037 Association of rs222741 with the overall migraine
[15] group
controls
AA or AG genotypes were present in 39.6%
SCN9A Reeder etal, 2013 [16] rs6746030 n = 53 biopsy specimens, patients with cy§t1'F1s/blad.deF pain
n = 26 control specimens  syndrome—statistically significant difference
compared with the controls: 11.5%
1734784 significantly associated with higher pain
scores in five of six independent patient cohorts,
KCNSI Costigan et al., 2010 £$734784 n = 1359 six independent lumb.ar.back pain Wlt.h dlS(.: .
[17] cohorts herniation—association with greater pain
outcome in homozygote patients. The combined P
value for pain association in all six cohorts
Nissenbaum et al - fjti breast cancer rs4820242, 152284015, rs2284017, rs2284018, and
CACNG2 v Totally 12 SNPs p ) 151883988 showed significant association with
2010 [18] n = 215 control group . .
n=334 chronic pain
H1/H2 and/or HI/H3—lowest
temporomandibular disorder incidence—1.3%,
Diatchenk 1 Totally 8 SNPs and HI/H1 elevated risk of developing
2()18t6c 1egn oetal, their n = 181 cohort of females temporomandibular disorder (RR = 8.0, 95% CI =
[(19] haplotypes H1, H2, (Caucasians) 1.2-52.2,99% CI = 0.815-79.7), H3/H3, H2/H3,
and H3 and H2/H3 H1 elevated risk of developing
ADRp2 temporomandibular disorder (RR =11.3, 95% CI =
1.95-67.9, and 99% CI = 1.38-102
Hocking etal, 2010 rs12654778 and n = 8572, 1958 Britsh birth 2 o ISI2654778 and rsi0a2713 were
[1] rs1042713 cohort (82.6% Caucasians) . . P P
alone or with pain status
rs12584920T (T/*, T/T) increased likelihood of
having chronic widespread pain (OR) = 1.64, 95%
confidence interval (95% CI) = 1.01-2.60
HTR2A Nicholl et al., 2011 Totally 47 SNPs n = 164, control group (P = 0.03) in the discovery cohort, and OR = 1.46,

(20]

n=172

95% CI =1.07-2.00 (P = 0.018) in the validation
cohort, similar association between rs17289394
and the maximum number of pain sites reported
in both cohorts

VAS: visual analogue scale, OR: odds ratio, RR: relative risk, CI: confidence interval, SNP: single-nucleotide polymorphism, fMRI: functional magnetic
resonance. GCHI1: GTP cyclohydrolase 1, the rate limiting enzyme in the biosynthesis of tetrahydrobiopterin is an essential cofactor in the synthesis of serotonin,
nitric oxide, and catecholamines. These neurotransmitters are known to modulate pain perception. TRPVI: transient receptor potential cation channel,
subfamily V, member 1, acts as an integrator of multiple painful stimuli in chronic pain conditions. SCN9A: sodium channel, voltage-gated, type IX, alpha
subunit encodes the voltage-gated sodium channel. Homozygotes with 2 loss-of-function alleles are congenitally indifferent to pain without other neurological
deficit. KCNSI: voltage-gated potassium channel 1. CACNG2: calcium channel, voltage-dependent, gamma-subunit 2, encodes the gamma-2 transmembrane
AMPA receptor protein (TARP) stargazin. This protein is known to be involved in the modulation of the ion channel function of glutamatergic AMPA receptors.
ADRB2-beta2-adrenergic receptor is a target for epinephrine. HTR2A: 5-hydroxytryptamine (serotonin) receptor 2A. P2X7: cAMP responsive element binding

protein 1.



[24]

of various origin
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TABLE 2: Trials assessing the influence of gene polymorphisms associated with neurotransmission on drug response in humans.
Gene  Refernces Drugs Polymorphisms Populations Results
Opioids n= 1579 cancer
Laugsand et al,, 2011 (morphine, rs4680, p;:ltlents C allele of rs165722, the T allele of rs4633 and the
[21] oxycodone, rs4633 (C uropean G allele of rs4680 had less nausea/vomiting
fentanyl, others) aucasians) from
the cohort of [22]
. Carriers of val/val and val/met genotype required
;{gg;s[—gl]bby etal, Morphine rs4680 n =207 cancer  63% and 23%, respectively, higher morphine dose
compared to carriers of met/met genotype
Létsch et al., 2009 . . 1 = 352 patients -
[24] Various opioids with c.hronlc.pfnn No association
of various origin
?2021‘1;};1(1)1)63 None of SNPs in the candidate genes
oxyco dor;e 112 SNPs in the 1 = 2294 cancer OPRM]1, OPRDI, OPRKI, ARRB2, GNAZ,
Klepstad et al., 2011 (n = 446) 25 candidate patients HINTI, Stat6, ABCBI, COMT, HRH1, ADRA2A,
COMT [22] ? fentanyl ? genes including Europea)n MCIR, TACRI, GCHI, DRD2, DRD3,
(n = 699), or OPRM1 Caucasians HTR3A, HTR3B, HTR2A, HTR3C,
. Al118G HTR3D, HTR3E, HTRI, or CNRI showed
other opioids L L . -
(n = 234) significant associations with opioid dose
11 SNP and r(lla_ui:Zian cancer The most frequent haplotype (34.5% rs2075507,
haplotypes, atient cohort 15737866, rs7287550R, 155746849, rs740603,
Rakvdg et al., 2008 Morphi including P . 1 rs6269, rs2239393, rs4818, rs4680 (Vall58 Met)
[25] phine 154680, receiving ora 15174699, rs165728 GACAAAACATT) associated
morphine . . . .
rs4633 not treatment for with lower morphine doses, with a reduction
included . factor of 0.71
cancer pain
Haplotype in intron 1 (AATTGAAATAATT) and
4873G genotype (10% is strongly associated with
somnolence), hallucinations and confusion after
13 SNPs, n =228 cancer  treatment with morphine (protective effect).
Ross et al., 2008 [26] Morphine rs4818 not patients on ABCBI genotypes and haplotypes investigated in
included morphine the study as well allele 21/2677G and 12/1236C
associated with somnolence, hallucinations, and
confusion after treatment with morphine
(protective effect)
Reyes-Gibby et al, . "= 207 cancer GG genotype required 93% higher morphine dose
2007 [23] Morphine Al18G patients, .
. compared to carriers of AA genotypes (P = 0.012)
Caucasians
No association with the intensities of symptoms
such as fatigue, nausea and vomiting, dyspnea,
n =99 cancer sleep disturbance, loss of appetite, and
ﬁ})e]pstad etal, 2004 Morphine AlI8G patients, constipation were similar between the three
Caucasians cohorts, The serum concentrations of morphine,
M6G, and M3G were higher in patients
homozygous for the 118G allele
Significant association of pain relief after
OPRM1 treatment with morphine with the allele. The
. association improved with the combination of the
Campa et al, 2008 Morphine Al18G "= 145. talian allele and polylr)norphism in ABCBI detection of
[27] Caucasians
three groups: strong responders, responders, and
nonresponders, sensitivity — — 100%,
specificity > 70%
Tendency towards increased pain in
_ . dose-dependent manner with the p-opioid
Lotsch et al., 2009 Various opioids  A118G :lvi;h?)f}?rgitilcegzsin receptor variant 118G. Daily opioid doses

significantly decreased in a gene dose-dependent
manner with the P-glycoprotein variant ABCB1
3435C>T
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TABLE 2: Continued.

Gene  Refernces Drugs Polymorphisms Populations Results
n = 96 patients
with . 1
adenocarcinoma The requirement for rescue analgesia higher for
of the colon or patients with G allele, AA genotype-better
rectum (1 = 84) analgesic effect than G allele variants (AG or GG
Liu and Wang 2012 Acetaminophen/ AL8G or s tomach_ > genotypes). Pretreatment and posttreatment VAS
(28] tramadol (n = 12) who scores for patients with G allele variants were 3.1
dev_elo ed and 2.6, respectively; for patients with AA
oxali 1131 tin- genotype, pretreatment and posttreatment VAS
in duge d painful scores were 3.0 and 0.9
neuropathy
n =121 chronic, The mean opioid dose is significantly larger in the
1 . noncancer pain  homozygous carriers of the wild-type 118A allele
OPRML Janicki et al, 2006 [13] Morphine AlIBG patients, when compared with the carriers of the variant
Caucasians allele
Morphine . .
(1 = 830) None of SNPs in the candidate genes
ox _co don,e 112 SNPs in the 1 = 2294 cancer OPRM]1, OPRDI, OPRKI, ARRB2, GNAZ,
Klenstad et al. 2011 (ny_ 446) 25 candidate Stionts HINT], Stat6, ABCBI, COMT, HRHI, ADRA2A,
N ’ enes includin ’ 8 , , ) )
[ 22]1’ . S g luding Eum o MCIR, TACRIL, GCHI, DRD2, DRD3
(e 659) or OPRMI Cauczsians HTR3A, HTR3B, HTR2A, HTR3C,
o th_er o i(;i ds AlI8G HTR3D, HTR3E, HTRI, or CNRI showed
(n= 233) significant associations with opioid dose
Droney et al.. 2013 n =264 cancer  Genetic factors only accounted for 12% of
orphine atients takin, variability in residual pain on morphine and 3%
[29] yetal, Morphi Al18G pati king iability i idual pai phi d 3%
oral morphine of variability in central side effects
rs2952768 was associated with more analgesic
Nishizawa et al., 2012 .. requirements, and consistent results were
obtained in patients who underwent abdomina
CREBI [30] Opioids btained in pati ho und bdominal
surgery
Opioids n = 1579 cancer
morphine, rs , " allele of rs , the T allele of rs , an
Laugsand et al.. 2011 ( phi 1176744 atients G allele of rs1176744, the T allele of rs3782025, and
oxycodone, rs. the T allele of rs were associated with less
HTR3B | 21]g . yeod 3782025 fEuro an he T allele of rs1672717 iated with 1
fentanyl, and 151672717 Caucaiians) nausea/vomiting
others)
%éilcﬁine n = 1579 cancer
CHRM3 Laugsand et al., 2011 ox Cf done’ rs10802789 patients T allele of rs10802789 associated with more
[21] fer?tan | ar; d rs685550 (European nausea/vomiting
b Caucasians)
others)
"= 352 The daily methadone substitution doses during
o _ioi d-treated the first therapy year were larger in the rs2070995
KCNJ6 Létsch et al., 2010 [31] Methadone 152070995 cﬁronic ain AA genotype (n = 4,119.7 + 49.6 mg/day) than in
atien tsp other rs2070995 genotypes
P (77.5 + 26.2 mg/day, P = 0.003)
n = 43 current
. . TT control subjects had lower pain threshold
DRD4 " Ho etal, 2008 [32] Heroin —S2C/T ?g;?;gllslses’ 66 versus CC/CT controls and versus TT addicts
rs6318 (Cys23Ser) in the HTR2C gene showed
Brash-Andersen et al n =34 patients  significant association with treatment response in
HTR2C " Escitalopram rs6318 with peripheral =~ men, with 75% carrying the C allele being

2011 [33]

neuropathic pain

responders. The same tendency was seen in
women

VAS: visual analogue scale. CREB1: cAMP responsive element binding protein 1 encodes a transcription factor, a member of the leucine zipper family of DNA
binding proteins. HTR3B: 5-hydroxytryptamine (serotonin) receptor 3B encodes subunit B of the type 3 receptor for serotonin (neurotransmitter, hormone,
and mitogen). Activation of the receptor leads to fast depolarizing responses in neurons. Pentaheteromeric complex with subunit A (HTR3A) displays the
full functional features of this receptor. HTR2C encodes the 2C subtype of serotonin receptor. CHRM3: the muscarinic cholinergic receptor 3, G-protein-
coupled receptor controls smooth muscle contraction, and its stimulation increases secretion of glandular tissue. KCNJ6: gene for potassium inwardly rectifying
channels, subfamily J, member 6 (Kir3.2, GIRK2). This G channel is important for opioid receptor transmission and is involved in opioid effects on postsynaptic
inhibition [34]. DRD4: dopamine receptor D4 belongs to the dopamine receptor D2-like family, which mediates reward and reinforcement effects (e.g., of

heroin) [35].



were not analyzed in this study. Laugsand et al. analyzed
96 single-nucleotide polymorphisms (SNPs) in 16 candidate
genes related to opioid or nausea/vomiting signaling path-
ways (ABCB1, OPRMI, OPRKI1, ARRB2, STAT6, COMT,
CHRM3, CHRM5, HRH1, DRD2, DRD3, TACR1, HTR3A,
HTR3B, HTR3C, and CNRI1) for the association with nausea
and vomiting in the same cohort of cancer patients. Totally
8 SNPs in 3 genes, COMT, HTR3B, CHRM3 (rs1176744,
rs3782025, rs1672717, 1s165722, rs4680, rs4633, rs10802789,
rs685550), were significantly associated with the interindivid-
ual differences in nausea and vomiting among cancer patients
treated with opioids [21].

Two candidate genes have been clinically studied most
widely so far (OPRM1 and COMT).

2.1. OPRM]I. The p-opioid receptor gene, OPRM], is the most
widely studied gene in association with different aspects of
chronic pain. Probable effect of its polymorphism Al18G
(rs1799971, Asn-40 — Asp) is recognized. In 1998, Bond et
al. demonstrated that Asp substitution on the extracellular
N-terminal of the receptor determines the same binding
affinity for endo- and exogenous opioids (morphine, fentanyl,
methadone, naloxone, and met- and leu-enkephalins) with
one exception; S-endorphin showed higher affinity to the
receptor in the 118G variant carriers [68]. This finding allowed
the authors to propose a hypothesis that there is a possible
connection between the allele and addiction. Somewhat later,
Zhang et al. found a 2-fold higher expression of y-opioid
receptor in brains of 118G heterozygotes [69]. In the study
by Oertel et al., a significant reduction in effectivity of
subsequent signaling pathways after the binding of a specific
agonist DAMGO was observed. Rate of G-protein coupling
in carriers of the G allele reached only 57% in comparison
with AA homozygotes [70]. Recently, 4-fold increase in
inhibition of Ca channels in the carriers of G-allele was
also demonstrated [71]. Contrary to the preclinical data,
the results of conducted clinical trials provide unconvincing
evidence only. Recent meta-analysis and in particular large-
scale cohort study found no evidence for an effect of this
polymorphism on opioid dose (oxycodone, morphine, and
fentanyl) in oncologic patients [22], although less frequent
nausea and vomiting were associated with the polymorphism
in the meta-analysis [72].

2.2. COMT. Catechol O-methyl transferase plays a central
role in extracellular inactivation of catecholamine neuro-
transmitters, including dopamine and norepinephrine, in the
central nervous system. Vall58Met variant (rs4680, G1947A)
showed higher enzymatic activity compared to wild type
in postmortem human brains [113]. It is associated with a
three-to-four-fold variation in COMT enzyme activity and
also with individual variation in COMT thermal instability.
Lower dopamine levels in carriers of this polymorphism
were associated with lower levels of enkephalins in animal
models, which in turn lead to downregulation of y-opioid
receptor [114, 115]. However, the clinical relevance of these
findings is still questionable. Polymorphism rs4680 did not
result in variable opioid dosing in the treatment of pain in
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oncologic patients [22]. Meta-analysis studying rs4680 in
different types of chronic pain demonstrated that fibromyal-
gia or chronic widespread pain could be influenced by the
presence of the variant allele. No association was observed
with migraineous headache or chronic musculoskeletal pain
conditions. According to systematic review of the literature,
low COMT activity enhances opioid analgesia and adverse
effects in some cancer pains via increasing the absolute
amount of opioid receptors [116]. Reyes-Gibby et al. observed
significantly lower doses of morphine in cancer patients,
carriers of OPRMI1 118 AA and COMT rs4680 met/met (P <
0.012) [23].

Three haplotypes (containing alleles rs6269, rs4633,
rs4818, and rs4680) which accounted for 96% of all hap-
lotypes observed in the Caucasian population have been
identified [79, 117]. Some haplotypes were associated with
different phenotypes: low-pain sensitivity, average-pain sen-
sitivity, and high-pain sensitivity, while the risk of developing
temporomandibular disorder could be predicted by a single
haplotype in this study [79]. Surprisingly, both the low- and
high-pain sensitivity-associated haplotypes possessed the val
variant of rs4680. According to Nackley et al., interaction of
rs4680 with other SNPs (silent mutations: rs6269, rs4633, and
rs4818) determines the changes in the secondary structure
of the messenger RNA, and these may modify the protein
translation and the real in vivo activity of the enzyme
[118]. The average-pain sensitivity-associated haplotype was
modestly associated with greater improvement on a long-
term VAS 1 year after lumbar surgery in patients with disc
herniation [8]. In another recent study, high-pain sensitivity
associated haplotype was associated with moderate or severe
headache and moderate or severe dizziness in patients after
motor vehicle collision [119]. However, Nicholl et al. found
no correlation between COMT “pain sensitivity” haplotypes
(rs6269, rs4633, rs4818 and rs4680 alleles) and chronic wide
spread pain in two case-control studies (cases n, = 164,
n, = 172; controls n; = 204, n, = 935) [120].

2.3. Candidate Genes in New Drug Development. With regard
to the preclinical studies, TPRV1 gene product (transient
receptor potential cation channel, subfamily V, member 1)
appears to be the most promising as a potential target
for therapeutic intervention. It is a polymodal nociceptor,
the expression of which is upregulated in several painful
disorders. Analysis of its function (including knockout mice)
revealed that it plays a crucial role in integrating multiple
painful stimuli in chronic pain conditions [121]. TRPVI gene
polymorphism might be an underlying cause of the inter-
subject variability in pain sensation and response to TRPV1
antagonists [15]. TRPV1 antagonists are undergoing clinical
trials in patients with chronic pain at present (reviewed in
[122]).

3. Proinflammatory Cytokines

Peripheral nociceptors are sensitized by proinflammatory
cytokines that are produced by inflammatory cells (CD4+
and CD8+ T cells) in response to disease as cancer or
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TABLE 3: Impact of genetic variability in genes for proinflammatory cytokines.
Gene product Genetic variability Effect Reference
TNFR2 TNFR2(~/-) mice Attenuated hyperalgesia [36]
TNE a A allele in ~308G/A (rs1800629) Higher pain severity [37-39]
G allele in ~308G/A (rs1800629) Qiﬁ'gif;:g}lzi;;rh’;treatmem suiecess [40]
LTA Variant allele in rs5275 Lower pain scores [41]
COX 2 CCinrs5275 Lower risk of severe pain [39]
G allele in rs5277 Higher pain scores [41]
IL-1x C889-T (rs1800587) Pain intensity
Occurrence of low back pain, the
IL-18 C3954-T (rs1143634) number of days with pain, and the [42]
number of days with limitations in
IL-IRN GI812-A daily activities due to pain
IL1-receptor 1 Variant allele in rs2110726 Less frequent breast pain [43]
IL-4 Varant allele in rs2243248 More frequent pain [44]
L6 -174G/G (rs1800795) Pain [45]
-174C/C (rs1800795) Higher opioid dosage (37, 38]
IL-8 T allele in 251T/A (rs4073) More frequent severe pain [46]
251T/T (rs4073) Least frequent severe pain [37]

its treatment, that is, cytostatics. This is one of the direct
mechanisms leading to hyperalgesia in chronic diseases [123].
Therefore, the research attributed to the polymorphisms in
genes coding for these cytokines and their relationship to
various diseases including pain and its treatment arises [124-
129].

Summary of known implications of genetic variability in
genes for proinflammatory cytokines is given in Table 3.

3.1. TNF-a. TNF-« is known to contribute to hyperalgesia
associated with chronic illness. After administration of bac-
terial endotoxin, hyperalgesia can be blocked by functional
antagonists of TNF-a, for example, TNF-« binding protein
[130]. Deletion of the tumor necrosis factor receptor type 2
(TNFR2) gene attenuated heat hyperalgesia in tumor-bearing
mice, whereas TNFRI gene deletion played only a minor role
[36]. There are few clinical trials suggesting that TNF «-308
G/A (rs1800629) is associated with chronic pain perception
and treatment success. Variant alleles in TNF «-308 G/A
were significantly associated with higher pain severity in a
study with 140 Caucasians newly diagnosed with nonsmall
cell lung cancer [37, 38], and this has been confirmed in
another study in newly diagnosed non-Hispanic Caucasian
lung cancer patients (n = 667) [39]. Higher chance for success
of anti-inflammatory phytotherapy treatment in TNF «-308
wild-type allele carriers with chronic pelvic pain syndrome
has been also proposed in a small study [40].

3.2. LTA. Lymphotoxin-alpha (LTA), also known as TNF-f3,
asamember of TNF family is also an important inflammatory
marker. In a recent study with lung cancer patients, variant
allele in rs5275 was associated with lower pain scores in
patients surviving for more than 5 years [41].

3.3. COX-2. Cyclooxygenase 2, a product of prostaglandin-
endoperoxide synthase 2 (PTGS2), is an enzyme responsible
for the production of prostaglandins and represents the
target for NSAIDs. As such, it plays a significant role in
inflammation and chronic, particularly cancer, pain [131,132].

Two recent studies reported an association between
PTGS2 polymorphisms and pain. In study [39], CC genotypes
for rs5275 were at lower risk for severe pain. Close SNP rs5277
was found to predict pain intensity in 1149 Caucasian lung
cancer patients in the Mayo Clinic Lung Cancer Epidemi-
ology Project. People carrying one or two minor (G) alleles
reported higher pain scores [41].

3.4.IL-1. 1L-1isafamily of 11 members produced during neu-
ropathic pain and inflammation [133, 134]. Its involvement
with pain mediation is undisputable as its, IL-1/3 to be precise,
intrathecal injection produces hyperalgesia [135, 136].

Polymorphisms in their genes, as well as in genes of their
receptor,have been reported to affect nociceptive response.
It was shown that the IL-1a (C889-T) (rs1800587) and IL-
13 (C3954-T) (rs1143634) [137, 138] polymorphisms, and
an 86-base pair repeat (VNTR polymorphism) in the IL-1
receptor antagonist (IL-1Ra) [139] genes are associated with
the regulation of the IL-1 and IL-1Ra production. Association
between IL-1x (C889-T) polymorphism with pain intensity
was revealed in study in Finnish men (n = 1832) with low
back pain. Moreover, it was implicated that IL-1f3 (C3954-
T) and the IL-IRN (Gl1812-A) polymorphisms, and their
composite genotype, are related to the 12-month occurrence
of low back pain, the number of days with pain, and the
number of days with limitations in daily activities due to pain
[42]. Carriers of variant allele in ILI-receptor 1 (rs2110726)
were less likely to report breast pain prior to surgery in a study
with 398 women [43].
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TaBLE 4: The principal polymorphic DMEs involved in the metabolism of drugs used for chronic pain.
Enzymes Important gene variants Influenced drug Proven effect on PK or References
Y P 8 group efficacy/safety in clinical trials
CYP2D6" 1-wt
CYP2D6"3
2549A>del Opioids (codeine, tramadol,
CYP2D6" 4 TCA hydrocodone, and oxycodone),
1846G>A . TCA (amitriptyline, nortriptyline,
CYP2D6 CYP2D6"5 Ogé?{lld s imipramine, and desipramine), and (47, 48]
CYP2D6"6 SSRI (fluoxetine, paroxetine, and
1707T>del citalopram)
MxN
CYP2D6"10
CYP2C9* 1-wt
NSAIDs
CYP2C9"2 (Cysl44Arg) . .
CYP2C9 CYP2C9*3 (Leu359Is0) SS;I;IISS Coxibs (celecoxib) [48-50]
CYP2C9*5
CYP2C19*1-wt
CYP2C1972 NSAID .
CYP2C19 CYP2CI9°3 Antidepressants SSRI (citalopram) [48, 51, 52]
CYP2C19"17-Ums
CYP2C8"1-wt
CYP2C8 CYP2C8"2 (11e269Phe) NSAID NSAID (ibuprofen and diclofenac) [48, 53-55]
CYP2C8"3 (Argl39Lys, Lys399Arg)
CYP3A4*1(2023G>A)
CYP3A4™2 .. .. (48, 56—
CYP3A4 CYP3A4*10 Opioids Opioids (methadone and fentanyl) 58]
CYP3A4%17
UGT1A671 NSAIDs, .. .
UGTI1A6 UGTIA6"2 anticonvulsants NSAID (acetylsalicylic acid) [59, 60]
. NSAID Opioids (morphine) and
UGT2B7 UGT2B7°2 (802C>T, H268Y), Opioids anticonvulsants (lamotrigine and [61-65]
161C>T . L
Anticonvulsants valproic acid)
UGTIAI UGTIAL*28 Paracetamol Paracetamol (62, 66]
Opioids
SULTI1A1 SULTIAL"2 (G638A; Arg213His) Paracetamol Paracetamol [67]

SULTI1A1"3 (A667; Met223Val)

3.5.IL-4. IL-4is produced by T cells, mast cells, eosinophilis,
and basophiles [140]. It coregulates the inflammatory
response by suppressing TNF-a and IL-1 expressions [141]
and by modulating B cells to undergo Ig isotype switching to
IgE [142]. Homozygotes for variant allele (rs2243248) in the
gene coding for this anti-inflammatory cytokine were found
to be more likely in patients with high degree of depression
and pain in a recent study with oncology patients (n = 168)
and their family caregivers (n = 85) [44].

3.6. IL-6. IL-6 has a role in the regulation of inflammatory
response. IL-6 knockout mice have had significantly higher
levels of other cytokines in response to endotoxin [143]. In
patients with juvenile rheumatoid arthritis, IL-6 genotype
-174G/G (rs1800795) was positively correlated with pain
[45]. Homozygous carriers of the IL-6 —174C allele required
4.7 times higher dose of opioids for pain relief relative as
compared with GG and GC newly diagnosed patients with
nonsmall cell lung cancer [37, 38].

3.7 IL-8. 1L-8 attracts the neutrophiles to the site of infection
or injury [144]. Its elevated concentrations are found in
various diseases, particularly associated with inflammation,
such as rheumatoid arthritis [145]. There are however very
few discrepant data on SNP IL8-251T/A (rs4073), where wild-
type allele was a predictor for severe pain in 168 Caucasian
patients—TT or AT subjects had more than a threefold risk
(OR = 3.23,95% CI = 1.4, 4.7) for severe pain compared to
the AA patients [46]; while in another study, TT homozygotes
had the least frequency of severe pain [37].

4. Drug Metabolism

The pharmacokinetics of drugs is subject to a large
interindividual variability, which is important cause for
adverse drug reactions and lack of drug response. In
therapy of pain, numerous genetic polymorphisms affecting
pharmacokinetics of drugs have been shown to contribute
in part to interindividual variability in drug -efficacy



Mediators of Inflammation

TABLE 5: Drugs used in pain treatment and its major DMEs emphazing FDA recommendations for genetic testing [73-75].

Major enzymes

FDA drug labels including

Drug class Drug pharmacogenetics
CYPs UGBTs information
Analgesic/ 3A4, 2E1, 2A6, 1A2, 2D6, In combination with
antipyretics Paracetamol 2C19, 2C9, 2E1, 2A6 146, 1A9 tramadol CYP2D6
2C9, 2C8, 3A4, 2C19, 2C9,
Ibuprofen 2C8. 3A4, 2C19 2B7,1A9, 1A3, 2B4
NSAIDs Diclofenac 2C9, 2C8, 3A4, 2C19 2B7, 2B4,1A3,1A9
Naproxen 2C9, 1A2
Ketoprofen 2B7
Meloxicam 2C9, 3A4
. Celecoxib 2C9, 3A4 CYP2C9
Coxibs
Etoricoxib 3A4, 2C9, 2D6, 1A2, 2C19
. . 2C19, 2C8, 2C9, 1A2, 2D6,
Amitriptyline 3B6, 3A4 1A3,1A4 CYP2D6
TCAs Nortiyptyline  2D6, 3A4 CYP2D6
Imipramine  2D6, 2Cl19, 1A2 CYP2D6
Desipramine ~ 2D6 CYP2D6
SNRIs Duloxetine 2D6, 1A2
Venlafaxine 2D6, 2C19, 2C9 CYP2D6
. In combination with
Fluoxetine 2C9, 3A4, 2D6, 2C19, 1A2 olanzapine, and CYP2D6
SSRIs Paroxetine 2D6 CYP2D6
Citalopram 3A4, 2C19, 2D6 CYPs 2C19, and 2D6
Antiepileptics Carbamazepine 3A4,2C8 2B7
Valproate 2B7,1A6,1A9
Buprenorphine 3A4, 2C8 1AL, 2B7,1A3
Codeine 2D6, 3A4 2B7, 2B4 CYP2D6
Dihydrocodeine 2D6, 3A4 2B7
. 2B7,1A8, 1A1, 1A3,
Opioids Morphine 3A4,2C8 1A10, 1A6, 1A1
Oxycodone 2D6, 3A4 2B7
Pethidine 3A4, 2B6, 2C19

Tilidine 3A

Tramadol 3A4, 2B6

In combination with
paracetamol CYP2D6

and safety [146]. The most important drug metabolizing
enzymes for pain treatment are cytochromes P450 (P450),
UDP-glucuronyltransferases (UGTs), and sulfotransferases
(SULTs) [59, 147]. Table4 summarizes the principal
polymorphic DMEs with its most important genetic variants
involved in the metabolism of drugs used for chronic pain.
Table 5 shows the drugs used in pain treatment and its major
DMEs emphasizing FDA recommendations. An example in
which pharmacogenetic testing of DMEs could be clinically
relevant is P450 and UDP-glucuronyltransferase [59].

Recently, comprehensive and in-depth monography con-
cerning drug metabolism (including impact of genetic poly-
morphisms) was published [73].

4.1. P450. Cytochrome P450 (P450) consists of heme-
containing monooxygenase enzymes located on the smooth
endoplasmic reticulum membranes of liver hepatocytes
and along the mucosal surface of the intestinal tract and
several other tissues including kidney, heart, and brain.
Research on human P450 polymorphisms began in the
1970s and continues till now [73]. Actual information con-
cerning P450 polymorphisms is compiled on the website
http://www.cypalleles.ki.se/.

4.2. CYP2D6. CYP2D6 accounts for 2-5% of the total hepatic
P450 enzymes; however, it is involved in the metabolism
of 25% of all drugs administered in clinical practice [47].
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It is also important for many drugs used in pain and
palliative medicine as it is responsible for metabolizing cer-
tain analgesics as opioids (codeine, tramadol, hydrocodone,
oxycodone), neuroleptics, and antidepressants; see Table 5.
CYP2D6 plays an important role not only in the metabolism
of exogenous opioids but also in the endogenous mor-
phine synthesis pathway. CYP2D6-metabolized drugs exhibit
nonlinear saturable kinetics owing to the low capacity of
CYP2D6. The existence of almost 80 CYP2D6 allelic variants
is known to lead to phenotype diversity within populations
[148]. Approximately 7-10% of people may be classified as
poor metabolizers (PM) and 3% as ultrarapid metabolisers
(UM) in the Caucasian populations [149, 150]. An example
in which pharmacogenetic testing of CYP2D6 is clinically
relevant is codeine. Codeine as a prodrug requires O-
demethylation catalyzed by CYP2D6 to be converted into
morphine and become analgesic. This metabolite pathway
accounts for 10% of codeine clearance in EMs but is much
more pronounced in UMs and far less pronounced in PMs;
so PMs suffer from a lack of analgesia, while UMs have
been shown to be more likely to experience side effects
and have 50% higher plasma concentration of morphine
compared to EMs [151]. Codeine as a weak opioid was
believed to be a relatively safe analgesic. However, after the
death of breastfed neonate through morphine overdose by
his mother taking codeine, the safety profile of codeine was
reevaluated and FDA published a warning on codeine use
in nursing mothers [152]. It is suggested that codeine should
be avoided in breastfeeding mothers, who are extensive
metabolizers (EMs) or UMs of CYP2Dé6 [153, 154]. The
European Medicines Agency started a review of codeine-
containing medicines on October 3, 2012, as well [155]. Young
and obese children with history of sleep apnea are also at
higher risk of developing severe opioid-related respiratory
depression. The adverse outcomes of codeine treatment could
be avoided and the safety of pain management could be
improved by CYP2D6 genetic testing before prescribing the
drug (tramadol, hydrocodone, or oxycodone) or by using
alternative analgesics [156]. Another analgesic agent which
is metabolized by CYP2D6 and where genetic examina-
tion is proposed is tramadol. The main metabolite is O-
desmethyltramadol; (+)-O-desmethyltramadol has 300-400
times greater affinity for y-opioid receptors than tramadol,
whereas (—)-O-desmethyltramadol mainly inhibits nora-
drenalin reuptake [157]. Production of O-desmethyltramadol
through mono-O-demethylation is mediated by polymorphic
CYP2D6. As consequence, PMs need approximately 30%
higher tramadol doses compared to EMs, and UMs are at
greater risk to develop adverse effects of tramadol [47, 158].
Genetic testing of variants CYP2D6 is commercially available
[159].

4.3. CYP2C. The group of CYP2C subfamily consists of four
members: CYP2C8, CYP2C9, CYP2C18, and CYP2CI9. These
enzymes metabolize approximately 20% of clinically available
drugs. Their genes are tandemly located at 10q24 and there
is a linkage between them. Genetic variants in CYP2CS,
CYP2C9, and CYP2C19 have been shown to have clinical
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consequences. Among pain treatment, NSAIDs represent
typical substrates for CYP2C enzymes; however, the relative
role of CYP2C enzymes in primary metabolism differs among
different NSAIDs.

Common CYP2C8 and CYP2C9 polymorphisms were
studied by Blanco et al. in a cross-sectional study, involving
134 NSAID-related bleeding patients and 177 patients receiv-
ing NSAID with no adverse effects [160]. Among patients
with bleeding after NSAID (CYP2C8/9 substrates), the fre-
quencies of variant alleles carriers versus control patients
were 0.50 versus 0.23 (odds ratio (OR); 95% confidence
interval (CI) = 3.4; 1.5-7.5; P = 0.002), 0.48 versus 0.26
(OR; 95% CI = 2.7; 1.2-5.8; P = 0.013), and 0.24 versus
0.20 (OR; 95% CI = 1.3; 0.5-3.1; P = 0.578) for CYP2C8"3,
CYP2C9*2, and CYP2C9*3, respectively. These findings
were not influenced by gender, age, smoking, or drinking
habits. Among bleeding patients receiving NSAID that are
not extensively metabolized by CYP2C8/9, no differences
in genotypes or allele frequencies were observed as com-
pared to control patients. Similar findings have been shown
by other authors; individuals carrying the gene variants
CYP2C8"3 (rs11572080; rs10509681), CYP2C9* 2 (rs1799853),
or CYP2C9*3 (rs1057910) show increased risk of developing
acute gastrointestinal bleeding during the use of NSAID that
are CYP2C8 or CYP2C9 substrates [161, 162].

4.4. CYP2C19. Totally 36 alleles of gene CYP2C19 have been
identified and described so far [48]. CYP2CI9 is responsible
for the metabolism of several clinically important drugs as
citalopram, barbiturates, diazepam, and other drugs [52]. The
roles of the cytochrome P450 2C19 enzyme and cytochrome
P450 2D6 enzyme in citalopram metabolism were studied
[163]. The inactive CYP2C19"2 (rs4244285) allele was asso-
ciated with lower odd ratios for tolerance. The estimated
dose adjustments for CYP2C19 poor metabolizers suggest
using approximately 60% of the standard dose of citalo-
pram [164]. Also the allelic variant CYP2C19"3 (rs4986893
or rs57081121) influences the total concentration of the
active compounds venlafaxine and its active metabolite O-
desmethylvenlafaxine. Thus, CYP2C19 genotypes (together
with CYP2D6 genotypes) should be considered for dose
alterations of venlafaxine [165].

4.5. CYP2C9. The pharmacokinetics of ibuprofen is strongly
related to CYP2C8 and CYP2C9 genotypes. The effect of
CYP2C8"3 (rs10509681 or rs11572080) on ibuprofen clear-
ance is prominent; heterozygous and homozygous carriers of
this variant allele display clearance reduced to approximately
62% and 10% as compared to individuals lacking any variants
within CYP2C8 and CYP2C9 genes [166]. Although ini-
tial findings indicated association of CYP2C9*2 (rs1799853)
genotypes with ibuprofen clearance, it has been shown that
CYP2C9"2 alone, when it is not linked to CYP2C8"3, does
not translate into a major impairment of ibuprofen clearance.
Clearance values in subjects heterozygous and homozygous
for CYP2C9*2 not carrying any other mutations are 96
and 84%, respectively, as compared to individuals lacking
any mutations in CYP2C8 and CYP2C9 genes. Individuals
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carrying CYP2C9"3 (rs1057910) variant alleles display a mean
reduction of clearance of ~65% and 17% for heterozygous and
homozygous individuals, respectively [167].

Studies with tenoxicam have indicated that oral clearance
among carriers of CYP2C9*2 and CYP2C9*3 decreases to
~70 and 55% [168]; however, efficacy or safety data are not
available yet.

4.6. CYP2C8. CYP2C8 comprises 7% of the total hepatic
CYP content and plays an important role in the metabolism
of a diverse number of exogenous (e.g., NSAIDs, carba-
mazepine, diltiazem, methadone, morphine, and zopiclone)
and endogenous compounds (e.g., arachidonic acid) [55].
A number of common SNPs have been identified including
CYP2C8"2 (Ile269Phe and rs11572103), CYP2C8"3 (linked
polymorphism Argl39Lys and Lys399Arg, rs10509681, or
rs11572080), and CYP2C8™ 4 (Ile264Met and rs1058930). One
of the drugs implicated as CYP2C8 substrate is methadone.
In vitro, CYP2C8 was shown to metabolize both the R- and
S-enantiomers of methadone, with a greater selectivity for R-
enantiomer [169]. Considering that the R-enantiomer is the
more pharmacologically active form in vivo, the potential
influence of CYP2C8 polymorphism on the metabolism of
the R-enantiomer may be clinically significant and warrants
further studies.

Allelic variants of CYP2C8, UGT2B7, and ABCC2, which
may predispose for the formation and accumulation of
reactive diclofenac metabolites, are associated with diclofenac
hepatotoxicity [55]. Daly et al. showed that UGT2B7*2 allele
(rs7439366) was more common in patients with diclofenac-
induced hepatotoxicity when compared with hospital con-
trols (OR, 8.5, P = 0.03) or healthy controls (OR, 7.7,
P = 0.03). Further, the ABCC2 C-24T (rs717620) variant
was more common in patients with hepatotoxicity compared
with hospital (OR 5.0, P = 0.005) and healthy controls (OR
6.3, P = 0.0002). Haplotype distributions for CYP2C8 were
different between patients and hospital controls (P = 0.04).

4.7. CYP3A4. CYP3A4, coded by the gene located on chro-
mosome 7q2l.1, is involved in the oxidation of the largest
range of substrates of all the CYPs. CYP3A4 plays a role
in the metabolism of some opioids as fentanyl, oxycodone,
and methadone along with the other CYPs [148]. There
is little conclusive information about the importance of
genetic variation in the CYP3A pathway, but some studies of
postmortem forensic toxicology propose pharmacogenomics
of CYP3A4 as a kind of molecular autopsy in the analysis
of pain-medications-related deaths. In studies of fentanyl-,
oxycodone- or methadone-related deaths, the PM status was
a clear risk factor [170-172].

4.8.  UDP-Glucuronyltransferase. Glucuronidation is an
important pathway of human metabolism that leads to the
formation of water soluble glucuronides. The substrates
for glucuronidation include both endogenous substances,
such as bilirubin, steroid hormones, and bile acids, and
exogenous substances such as morphine, antidepressants, or
nonsteroidal anti-inflammatory drugs. The human genome
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codes for at least 19 different UDP-glucuronosyltransferases
(UGTs) classified within three subfamilies, UGTIA, 2A,
and 2B [173]. Genetic polymorphisms have been reported
in virtually every UGT family member and many of them
have potential clinical consequences. For example, morphine
undergoes extensive metabolism by glucuronidation
to form morphine-3-glucuronide and morphine-6-
glucuronide which possess significant analgesic activity.
The ability to glucuronidate morphine varies substantially
between individuals. The major enzyme responsible for
glucuronidation of morphine is UGT2B7 The variant
homozygotes for T/T802 (Y/Y268) displayed the strongest
catalyzing abilities toward morphine, and this genotype
has been considered as a one of the possible causes of
interindividual variability in therapeutic response to
morphine [174].

A small cross-sectional study observed faster in vivo con-
jugation of salicylic acid in patients genotyped UGT1A6"2/*2
(rs2070959) than in the wild-type carriers. The faster conju-
gation may subsequently influence the therapeutic response
to aspirin [175].

5. Drug Transport

There are many families of transporters and some of them are
known to be interacting with pathways of pain-transporting
analgesics, prostaglandins [22]. So far the most known and
best studied transporter is P-glycoprotein (Pgp), the first-
studied member of ATP-binding cassette (ABC) superfamily.
In humans, Pgp consists of two isoforms with 78% amino
acid homology. Overexpression of isoform I (ABCBI) in
cancer cells was linked with resistance to multiple drugs,
hence the name for this transporter multidrug resistance
protein 1 (MDR1). Isoform II (MDR2/ABCB4) transports
phosphatidylcholine into the bile and is not involved in drug
transport [176, 177].

Summary of known implications of genetic variability in
genes for drug and neurotransmitter transporters is given in
Tables 6 and 7, respectively.

5.1. MDRI/ABCBI. Pgp is known to show extremely broad
substrate specificity, including peptides, steroids, therapeu-
tic drug from very large and complex ones as paclitaxel
[178] to relatively simple as phenytoin, opioids, and other
analgesics [179] or even ions [180-186]. Substrates are often,
but not always (e.g., colchicine), amphipathic and relatively
hydrophobic. Planar aromatic ring and tertiary amino group
were also proposed as required structure elements, but many
peptides do not have them, and yet they are substrates of Pgp
(187].

In addition to this broad substrate specificity, Pgp is
also very abundant in the body as it can be found in most
tissues [188], although in significantly larger amount on
the apical surface of the endothelial cells lining the small
intestine, colon, kidney, adrenal gland, bile ductules, thus
in the tissues with excretory (or absorptive) function in
general. In addition, also in cells with “barrier” function,
that is, cells in blood brain [189], blood testis [190], blood
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TABLE 6: Impact of genetic variability in genes for drug transporters.
Transporter Drug Genetic variability Effect Reference
61 (rs9282564), 1199 (rs2229109), 1236
(rs1128503), 2677 (rs2032582), and 3435 Lower dosage [76]
(rs1045642)
C1236 (rs1128503) Higher dosage (771
61A (rs9282564) :1199G (rs2229109) : 1236C
(rs1128503) : 2677T (rs2032582) : 3435T Higher dosage (78]
Methadone (rs1045642)
61A (rs9282564) : 1199G (rs2229109) : 1236C
(rs1128503) : 2677 T (rs2032582) : 3435T Lower through concentrations [78]
(rs1045642)
61G (rs9282564) and 3435T (rs1045642) Lower through concentrations [79]
3435T (rs1045642) Higher dosage (80]
C3435T (rs1045642) Pain relief [27]
3435TT (rs1045642) Higher CSF concentrations (81]
. CC3435 (151045642) ngher‘CSF concentrations of (81]
Morphine morphine glucuronides
GG2677 (rs2032582) and CC3435 (rs1045642)  Fewer side effects [82]
G2677 (rs2032582) and C3435 (rs1045642) Vomiting [61]
3435T (rs1045642) Less frequent pain scores >6 (83]
Fentanyl 3435T (rs1045642) Suppression of respiratory rate [84]
MDRI/ABCBI Tramadol 3435TT (rs1045642) Higher C,,. (85]
o 3435T, 2677 A (rs2032582) Fewer side effects [86]
xycodone
2677A (rs2032582) Better analgesic activity (86]
Lamotrigine C1236 (rs1128503) Higher dose corrected (87
concentrations
. Trend towards higher
88
Gabapentin 2677T/A (rs2032582) AUC(0-15 h) [88]
CCl1236 (rs1128503) Significantly lower clearance [89]
Carbamazepine CC3435 (rs1045642) Lowest plasma levels [90]
3435TT (rs1045642) Decreased plasma levels [91]
Venlafaxine MDRI1/ABCBI(—/-) mice Higher plasma levels (92-94]
Venlafaxine’s . .
metabolites MDRI1/ABCBI(—/-) mice Higher plasma levels
Venlafaxine TT in rs2232583 Higher plasma levels [95]
Trimipramine MDRI/ABCBI(-/-) mice Higher plasma levels [96]
Amitriptyline MDR1/ABCBI1(—/-) mice Higher plasma levels [97, 98]
MRP2/ABCC2 Diclofenac MRP2/ABCC2(-/-) mice Impaired clearance [99]
Diclofenac 24T (rs717620) Hepatotoxicity [55]
. AA + AG in 152273697 Higher clearance
Carbamazepine
AA + AG in rs4148386 Higher clearance [89]
— rs2756109 Pain [100]
MRP3/ABCC3  Morphine MRP3/ABCC3(~/-) mice Increase in plasma levels ofits .,
glucuronides
MRP4/ABCCA MRP4/ABCC4(—/-) mice Decreased pain responsiveness [102]

rs9524885

Pain [100]
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TABLE 7: Impact of genetic variability in genes for transporters of neurotransmitters.
Transporter Drug Genetic variability Effect Reference
5-HTT Remifentanil Triallelic 5-HTTLPR Better analgesic effect [103]
— Low 5-HTT-expressing Higher pain thresholds [104, 105]
. Lesser temporomandibular joint pain and
Tandem-repeat polymorphism 2.10 dysfunction [106, 107]
10/12 and 10/10 STin2.12 alleles Protective effect against migraine [108]
14/14 sequence repeats Higher frequency of abdominal pain [109]
More frequent in fibromyalgia patients [110]
DAT - DAT*10 More frequent in [111]
migraine-without-aura-group
EAAT2 Analgesics A allele in —181A/C Higher usage [112]

mammary tissue [191], blood inner ear barrier [192], and in
placenta [193], protecting respective tissues (or fetus [194])
from toxins in the blood. Recent studies show that this
may not be the only one physiological function of Pgp or
even the crucial one. It seems that Pgp is involved in the
inhibition of apoptosis induced by a number of factors as
tumor necrosis factor and ultraviolet and gamma radiations
[195]. Further, it was shown that blocking Pgp by antibodies
induced apoptosis of activated lymphocytes in peripheral
blood, and MDR1/ABCBI seems to regulate even stem cells
[196]. Secretion of various cytokines (interleukin 2 and 4,
interferon y) is mediated by Pgp [197].

Pgp is a product of the ATP-binding cassette, subfamily
B (MDR/TAP), member 1 gene (ABCBI), gene of 209617 bp
with 29 exons of total length 4872 bp located on chromosome
7q2L.12. There are 1425 known SNPs to date with average.
distance of 161 bp; 46 of them are nonsynonymous: two of
them in introns and 46 in coding sequence of exons [198].
The synonymous SNPs and SNPs in promoter regions could
influence the expression level of MDR1/ABCB], for protein
activity, that is, its substrate binding, ATP hydrolysis and
folding, are most important probably the nonsynonymous
SNPs [195]. Because of the important role of Pgp in drug dis-
position, it seems as a fair presumption that such SNPs could
have clinical importance in drug pharmacokinetics and, by
extension, in pharmacodynamics (and even direct impact on
PD in tumor cells with overexpression of MDRI/ABCBI).
Campa et al. found that variability of pain relief in 145
patients on morphine treatment was significantly associated
with SNP C3435T (rs1045642). The association was stronger;
when C3435T was combined with A80G in OPRMI SNPs
were taken into account [27]. There were significant C3435T-
dependent differences in morphine concentrations in cere-
brospinal fluid (CSF) with the highest levels in CSF in TT
carriers of SNP C3435T and the highest morphine-6- and 3-
glucuronide concentrations in CSF in wild-type homozygotes
[81]. Response to morphine was dependent on SNP C3435T
in children in a recent study using Faces Pain Scale (FPS).
Scores >6 were more frequent in 11 checks during 24 hours
after orthopedic or abdominal surgery in carriers for the
wild-type alleles (adjusted risk ratio = 4.5; 95% confidence

interval (CI), 1.5-13.4; corrected CI for multiple comparisons,
0.98-20.55) [83].

For fentanyl, variability in suppression of respiratory rate
(significant only for C3435T and diplotype) and need for
oxygen (increased in carriers of 1236T (rs1128503) and 3435T
alleles, P = 0.0847) were observed, and significant differences
in the level of respiratory suppression were found in patients
with linked 3435T and 2677T (rs2032582) alleles [84].

The atypical opioid tramadol was proposed to be a
subject of P-glycoprotein-dependent transport, as there were
significant differences in its C,,,, and borderline significant
differences in AUC,_,, amongst different genotypes for
MDRI/ABCBI in CYP2D6 poor metabolizers [85]. Con-
versely, no significant differences among MDRI/ABCBI sub-
groups with regards of pain difference, drug consumption,
reporting of adverse reactions, need for rescue analgesic
medication, or verbal description of pain were observed [158].
For oxycodone, strong associations between variant alleles
3435T and 2677A and less adverse drug reactions and better
analgesic effect and variant 2677A were found in study with
33 healthy volunteers and experimental pain [86].

Apart from opioids, Pgp is believed to transport sev-
eral antiepileptic drugs (AED), for example, lamotrigine,
gabapentin, topiramate, valproic acid, and carbamazepine
and its ketoanalog oxcarbazepine, although there is no
consensus about this and studies with positive [199-201] or
negative results [202-204] may be found. The efflux may play
facilitatory role in refractory epilepsy [205-207], although
contradictory results are also available [208]. These agents are
widely used in the treatment of neuropathic pain. There are
only pharmacogenetic studies in epilepsy in association with
MDRI1/ABCBI polymorphisms, but their results could give
some guidance about the impact of SNPs in MDR1/ABCB1
in the treatment of neuropathic pain.

In the case of lamotrigine, homozygotes for the C allele
in CI236T have had significantly higher lamotrigine dose
corrected concentrations (0.068 gmol-1~'-mg™") than subjects
with CT or TT (0.053 gmol-1"" -mg™"). Furthermore, 1236C-
2677G-3435C carriers have had higher lamotrigine concen-
trations than 1236T-2677G-3435T carriers (P < 0.001),
followed by 1236T-2677T-3435C carriers (P < 0.001) [87].
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Change in gabapentins disposition due to 2677T/A
MDRI/ABCBI alleles was less pronounced resulting only in
trend toward higher values of the absorptive phase character-
ized by the AUC (0-1h) and AUC (0-1.5h) [88].

SNP C3435T did not influence disposition of valproic
acid as its serum concentrations of the patients with CT, TT
and CC genotypes were 72.92 + 20.55, 80.47 + 14.01, and
68.29+12.17 pg/mL, respectively, and there was no significant
difference [209].

Carbamazepine appears to be subject of Pgp transport, its
clearance was associated with rs1128503, being significantly
lower in subjects with alleles CC versus CT + TT [89]. The
median total carbamazepine plasma levels were the lowest in
CC (20 pmol/L) homozygotes followed by CT (23 ymol/L)
and TT (29 ymol/L) carriers of SNP 3435 [90]. However,
Meng et al. suggested that ABCBI 3435TT is associated
with decreased plasma carbamazepine levels in Chinese
patients with epilepsy [91]. On the other hand, Hung et al.
did not find any difference in carbamazepine levels among
genotype groups for SNPs C1236T, G2677T/A, and C3435T in
MDRI1/ABCBI [210]. Moreover, some studies did not found
any association between C3435T and epilepsy treatment
response [211] or with dosage [212].

Speaking of neuropathic pain, even tricyclic antidepres-
sant drugs, such as amitriptyline, nortriptyline, desipramine,
and SNRI (venlafaxine and duloxetine), are being used
for treating this condition, all of which are subject to the
Pgp mediated efflux [213-219], which was implicated to be
associated with refractory depression [220].

In knockout mice, venlafaxine and its three demethylated
metabolites reached significantly higher concentrations than
in wild-type mice [92-94]. Similar results were obtained with
trimipramine [96] and amitriptyline [97, 98].

Case study was reported in which SNP rs2232583 in
MDRI1/ABCBI apparently resulted in excessive plasma levels
of venlafaxine and its metabolite desmethylvenlafaxine in the
patient [95].

5.2. MRP. Multidrug resistance-associated proteins (MRP)
also belong to the ABC transporters family, subfamily ABCC,
which consists of 12 members, nine of them are MRPs.
Similar to MDRI/ABCBI, they utilize ATP but share only
24% of amino acid sequence homology [221]. Thus, there
are distinct substrate specificity, inhibitors, and tissue dis-
tribution as compared to P-glycoprotein. Mainly, three of
MRPs are known to interact with the pathways of pain:
MRP2/ABCC2, which transfers diclofenac’s metabolites [55,
99], MRP3/ABCC3, which was shown to transfer morphine
[101], and diclofenac’s glucuronides [99], and MRP4/ABCC4,
which transports most prostaglandins [222] (even proposed
as prostanoid export pump [223, 224]) and acetylsalicylic acid
(225, 226).

As for MRP2/ABCC2, genetic variability could lead to
impaired clearance of diclofenac and its glucuronides and
hence to hepatotoxicity, as it was shown with knockout mouse
[99]. One SNP (C24T, rs717620) in 5 -untranslated region
was associated with decreased mRNA expression [227, 228],
although many other SNPs have been found [229, 230].
Allele 24T was found to be more prevalent in patients with
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hepatotoxicity as compared with patients taking diclofenac
for 0.3-20 years (n = 48) without hepatotoxicity (OR 5.0,
P =0.005) and healthy controls (OR 6.3, P = 0.0002) [55].

Carbamazepine appears to be subject of ABCC2 trans-
port, as its clearance was significantly higher in subjects with
alleles AA + AG versus GG in rs2273697 and rs4148386 [89].
Ufer et al. strengthen this assumption since in their study
carriers of the ABCC2 1249G>A (rs934847) variant were
more frequently classified as responders to treatment and
this impact was even more pronounced among 64 patients
receiving carbamazepine or oxcarbazepine [231].

Involvement of MRP4/ABCC4 in export of prostanoids
could have significant clinical implication for nociception
and analgesia, as was shown in MRP4/ABCC4 knockout mice
in study by Lin et al.,, where disruption of MRP4/ABCC4
resulted in decreased pain responsiveness [102]. Further,
recent study associated SNP rs9524885 in MRP4/ABCCA4 (as
well as rs2756109 in MRP2/ABCC2) with pain in nonsmall-
cell lung cancer patients [100].

5.3. SLC22A6. Another drug transporter known to transport
analgesics, particularly NSAIDs [232], is SLC22A6, human
organic anion transporter 1. However, the clinical relevance
for chronic pain treatment of its variation has not been
clarified yet.

5.4. SLCOIBI. SLCOIB], also known as OATP2, was shown
to transport opioid peptides across blood brain barrier
[233] therefore, it is possible that genetic variability may
have influence on the pain perception. This has not been
clinically assessed yet, but immunofluorescence microscopy
and uptake measurements were used to study localization and
transport properties. The polymorphisms SLC21A6*1b and
SLC21A6"4 have been associated with altered transport of
cholyltaurine and 17 beta-glucuronosyl estradiol [234].

5.5.5-HTT. Genetic polymorphism of serotonin transporter
(5-HTT) has also been associated with alteration of pain
pathways. For example, study with 43 healthy volunteers
found that subjects with the triallelic 5-HTTLPR genotype
coding for low 5-HTT expression gained better analgesic
effect of remifentanil compared to those homozygous for
the 5-HTTLPR LA allele, although the baseline sensitivity
to heat pain was not affected by the triallelic 5-HTTLPR
polymorphism [103]. Low 5-HTT-expressing group com-
pared to the high 5-HTT-expressing group exhibited sig-
nificantly increased pressure pain and heat-pain thresholds
[104], while contradicting results have been described by
Aoki et al. [235]. Association between inferred low 5-
HTT expression and elevated thresholds to thermal pain
was found in 44 healthy nondepressed individuals [105].
Similarly, homozygotes for variable-number tandem-repeat
polymorphism 2.10 suffered less from temporomandibular
joint pain and dysfunction [106, 107]. Two recent meta-
analyses found that non-STin2.12 alleles possess protective
effect compared to STin2.12 alleles, respectively, 10/12 and
10/10 genotypes compared to the 12/12 genotype against
migraine among populations of European descent [108],
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while no overall association between the SLC6A4 5-HTTLPR
polymorphism and migraine among Europeans and Asians
was found, though gender and migraine aura status may have
modifying roles among Europeans [236].

Repeat variation polymorphism in 5-HTT gene consists
of a short (s) variation of 14 repeats of a sequence and
a long () variation of 16 repeats. Subjects with irritable-
bowel syndrome with s/s genotype for 5-HTT have suffered
more often from abdominal pain than l/s and /1 [109]. A
significantly higher frequency of the s/s genotype of the sero-
tonin transporter promoter region was found in fibromyalgia
patients (31%) compared with healthy controls (16%) in study
with 62 patients and 110 healthy controls [110], but this was
later contradicted in different study with 53 mentally healthy
subset of fibromyalgia patients and 60 healthy controls [237].

5.6. Others. Dopamine transporter (DAT, SLC6A3) and
glutamate transporter protein excitatory amino acid trans-
porter 2 (SLC1A2, EAAT?2) polymorphisms have also been
reported to affect pain perception. Allele DAT*10 was sig-
nificantly underrepresented in patients with chronic daily
headache associated with drug abuse when compared with
the migraine-without-aura group [111] and A allele carriers of
-181 A/C in EAAT2 polymorphism used significantly more
analgesics than non-A carriers in migraine patients with
chronic daily headache [112].

6. Conclusion

There is number of candidate genes whose genetic variability
may translate in either individual variation of chronic pain
perception or treatment response. The clinical data from
pharmacogenetic studies is still very limited and heteroge-
nous as a result of various methodologies used in differ-
ent studies, generally small sample sizes and heterogenous
patient populations. Therefore, there is still a need for further
clarifications of the clinical importance for all these findings,
but the recent research in the field that encompasses larger
studies and larger-scale genome perspectives may bring more
promising findings in the future.
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Neuropathic pain is a frequent chronic presentation in autoimmune diseases of the nervous system, such as multiple sclerosis (MS)
and Guillain-Barre syndrome (GBS), causing significant individual disablement and suffering. Animal models of experimental
autoimmune encephalomyelitis (EAE) and experimental autoimmune neuritis (EAN) mimic many aspects of MS and GBS,
respectively, and are well suited to study the pathophysiology of these autoimmune diseases. However, while much attention has
been devoted to curative options, research into neuropathic pain mechanisms and relief has been somewhat lacking. Recent studies
have demonstrated a variety of sensory abnormalities in different EAE and EAN models, which enable investigations of behavioural
changes, underlying mechanisms, and potential pharmacotherapies for neuropathic pain associated with these diseases. This review
examines the symptoms, mechanisms, and clinical therapeutic options in these conditions and highlights the value of EAE and EAN

animal models for the study of neuropathic pain in MS and GBS.

1. Introduction

Neuropathic pain is caused by a lesion or disease of the
somatosensory nervous system either at the peripheral or
central level and is a frequent presentation in a myriad
of medical conditions [1]. It is characterised by abnormal
sensations or hypersensitivity in the affected area, which
is often combined with, or is adjacent to, areas of sensory
deficit [2]. Symptoms include tactile or thermal hypoaesthe-
sia (reduced sensation to nonpainful stimuli), hypoalgesia
(reduced sensation to painful stimuli), loss of sensation,
paraesthesia (abnormal sensations such as skin crawling or
tingling), paroxysmal pain (e.g., shooting, electric shock-
like sensations), spontaneous ongoing pain (not induced
by stimulus e.g., burning sensation), and evoked pain (i.e.,
stimulus-induced pain), the last of which includes hyperal-
gesia (increased sensitivity to painful stimuli) and allodynia
(perception of innocuous/non-painful stimuli as painful) [2].
In particular, neuropathic pain is common in autoimmune
demyelinating diseases of the nervous system, such as multi-
ple sclerosis (MS) and Guillain-Barre syndrome (GBS), and
adversely affects millions of sufferers worldwide [3, 4].

Thus far, several animal models have been established
to mimic features of MS and GBS, so as to better enable

researchers to understand the underlying pathophysiology
and immune mechanisms and to investigate better ther-
apeutic options. For example, experimental autoimmune
encephalomyelitis (EAE) serves as the classic animal model
of multiple sclerosis, whereas experimental autoimmune
neuritis (EAN) mimics acute inflammatory demyelinating
polyneuropathy, the most common subtype of GBS [5-7].
These two models are the most widely used and accepted
analogues of MS and GBS and provide many immunological
parallels. In this review, we discuss the symptoms, mech-
anisms, and potential therapeutic strategies in neuropathic
pain associated with EAE and EAN.

2. Multiple Sclerosis and Experimental
Autoimmune Encephalomyelitis

Multiple sclerosis is a chronic, T-cell mediated autoimmune
inflammatory disease of the central nervous system (CNS)
that predominantly affects the myelin sheath. It is the most
common cause of acquired disability in young adults in the
western world [8-10]. Among the many sensory disturbances
present in MS, pain—nociceptive, neuropathic, or mixed—is
a highly prevalent symptom, reported by 25 to 90% of patients



[3, 11-17]. It negatively impacts on general health, energy and
vitality, mental health, and social functioning [17, 18], as well
as impinges on daily life [12, 14, 19]. Despite its prevalence,
the specific underlying mechanisms of MS pain are still not
well understood [20], although elucidation has been sought
through recent studies in animal models [21-23].

Experimental autoimmune encephalomyelitis has fre-
quently served as an animal model of MS. EAE is commonly
induced in genetically susceptible animal strains by immu-
nisation with a self-antigenic epitope of myelin, which causes
characteristic breakdown of the blood-brain barrier and mul-
tifocal infiltration of activated immune cells that attack the
myelin sheath [8]. The ensuing immunologic response leads
to chronic neuroinflammation, demyelination, and neuronal
damage in the CNS. The species-specific disease course
exhibits close clinical and histopathological similarities to
various forms of MS [24-26], thereby presenting EAE as a
suitable model to study multiple sclerosis [27, 28].

3. Symptoms of Neuropathic Pain in
MS and EAE

MS patients often experience a wide range of neuropathic
pain symptoms. This includes ongoing extremity pain (char-
acterised by constant pain in the legs and feet), trigeminal
neuralgia (characterised by paroxysmal attacks of electric-
shock-like sensations in specific facial or intraoral areas),
Lhermitte’s phenomenon (characterised by a transient elec-
trical sensation that runs down the back and is related to neck
movement), and thermal and mechanical sensory abnormal-
ities [18, 29]. As behavioural models of ongoing extremity
pain and paroxysmal pain in animals are currently unavail-
able, most animal studies have focused on thermal and
mechanical abnormalities (Table 1). EAE has thus far served
as the basis for preclinical research into the mechanisms of
these abnormalities. Genetic, clinical, and histopathological
heterogeneities of EAE models produce different sensory and
pathological changes, allowing for robust representation of
the various forms of pain in MS [30].

3.1. Heat Disturbances. In multiple sclerosis, neuroinflamma-
tory lesions in the CNS produce significant somatosensory
deficits, particularly for temperature discrimination, such as
paradoxical heat sensations and altered heat/cold thresholds
[38-40]. Up to 58% of MS patients have reported suffering
from heat sensitivities, which is a significant cause of fatigue,
concentration problems, and pain [41]. Such abnormalities
have been paralleled in several EAE studies.

In an early study, Duckers and associates noted 23%-
58% prolongation of reaction time to noxious heat at 10
and 18 weeks following EAE induction in Lewis rats, sug-
gestive of chronic hypoalgesia [31]. More recently, Aicher
and colleagues observed a dynamic thermal response in a
chronic relapsing-remitting form of EAE induced by a myelin
proteolipid protein (PLP). In both male and female SJL mice,
initial thermal hypoalgesia occurred concurrent with onset
of clinical symptoms, later manifesting as chronic thermal
hyperalgesia of the tail. Hyperalgesia was more sustained
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in female mice [21], reflecting a sex-linked disease profile
[42]. While the magnitude and duration of tail hyperalgesia
were seen to be related to the severity of motor symptoms,
thus potentially cofounding the results, it was noted that the
onset of hypoalgesic nociceptive responses preceded motor
dysfunctions by several days [21].

Similar studies in chronic EAE induced in C57BL/6
mice with myelin oligodendrocyte glycoprotein (MOG) also
reported heat hypoalgesia in the hindpaws, developing sub-
sequent to symptomatic onset of disease, although this was
also theorised by the investigators to be affected by concur-
rent gross locomotor disabilities [22]. In contrast, thermal
hyperalgesia in the hindpaws developed during the chronic
disease phase in SJL and C57BL/6 mice immunised with PLP
or MOG, respectively [30]. In a study of both acute and
chronic EAE induced by myelin basic protein (MBP) in rats,
comparable tail heat allodynia was reported, with the onset of
thermal abnormalities appearing prior to the development of
clinical signs [23].

These findings show differential thermal responses and
concur with case reports of heat hypoalgesia [43], as well as
thermal hyperalgesia [18, 44, 45] in MS patients.

3.2. Cold Disturbances. Cold allodynia, a reported sensory
disturbance in MS patients [18], has been observed in several
EAE models. In particular, cold allodynia in response to
application of acetone to the hindpaws has been demon-
strated in mice with a MOG-induced chronic-relapsing
EAE prior to and during onset of motor disturbances [22].
Similarly, cold sensitivity at the level of the hindpaws was
noted in EAE rats that were tested on a cold plate, starting
before and lasting during and after clinical signs [23]. In the
latter investigation, cold hyperalgesia at the level of the tail
was also observed, although this was only present prior to
clinical onset of EAE. Thibault and colleagues also detected
no significant differences in cold allodynia and hyperalgesia
between both acute and chronic EAE models, suggesting that
abnormalities to cold sensitivities are independent of EAE
phenotype [23]. The early onset of cold allodynia parallels
the observation that neuropathic pain in MS patients often
precedes or is present at clinical onset [11].

3.3. Mechanical Disturbances. In addition to thermal abnor-
malities, MS patients often experience tactile allodynia [11,
18, 46]. For example, both tactile hypoesthesia (reduced
sensation to touch) and allodynia have been reported in
relapsing remitting forms of MS [45, 47, 48]. A recent study
reported high prevalence of hypoesthesia and hyperesthesia
(61% and 34%) in patients with MS and central neuropathic
pain, although this was similar to a control group of MS
patients with painless sensory symptoms [40].

In chronic relapsing EAE models (using MOG;;_s5 in
mice), robust mechanical allodynia became apparent prior
to clinical signs [22], although the response times to tactile
stimuli increased during disease peak (hypoalgesia), and
reduced following partial amelioration of motor dysfunction.
Again, this suggests confounding influence of mechanical
paralysis. Similar studies using the same encephalitogenic
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antigen (MOG;;5_55) elicited comparable results of hyper-
nociception [33, 36], although without hypoalgesia at disease
peak. A recent study has demonstrated that the development
of mechanical sensitivity is dependent upon the EAE model
used; whereas SJL mice immunised with MOG developed
marked mechanical allodynia during the chronic phase of the
disease, C57BL/6 mice immunised with PLP developed only
minor mechanical allodynia during disease onset and peak
phases [30].

The robust nociceptive changes were similarly observed
in a study using a rat model of MOG-induced EAE, showing
periods of both decreased sensitivity to touch prior to the
onset of hindlimb paralysis and increased sensitivity to touch
(mechanical allodynia) during symptomatic remission [35].
Interestingly, a study using 2 doses of MOG in rats established
that a 12.5% reduction in the dosage of the encephalitogenic
peptide was sufficient to significantly ameliorate motor deficit
profiles but did not significantly alter the robust pain states,
thereby highlighting the partial independence of evoked pain
presentations to motor dysfunctions [37]. This is a concept
previously established through a novel study, whereby the
investigator observed the absence of vocalised pain response
despite noxious mechanical stimulation of the paralysed tail
[32]. As vocalisation reflex can occur unhindered by tail
paralysis, it can be surmised that motor paralysis (in this case,
of the tail) is not the sole cause of diminished pain behaviours.

4. Potential Mechanisms of Neuropathic Pain
in MS and EAE

As the importance of pain as a functional disability of
multiple sclerosis has only recently been recognised, a clear
understanding of its pathogenesis is still absent. Several
theories exist to explain its mechanism, including lesions
of CNS areas that process pain information, generation of
enhanced response to painful stimuli due to loss of descend-
ing inhibitory nociceptive pathways, damage to somatosen-
sory nerves, and inflammation of the spinal cord [10, 21, 29,
49].

Some of the proposed mechanisms of neuropathic pain in
MS patients include thalamic or cortical deafferentation due
to multiple lesions along the spinothalamocortical pathways
generating ongoing extremity pain, high-frequency ectopic
discharges due to demyelination of the trigeminal afferents
producing symptoms of trigeminal neuralgia, and high-
frequency ectopic discharges due to demyelination of the
dorsal column primary afferents causing Lhermitte’s phe-
nomenon [10]. While these mechanisms have not yet been
validated through animal studies, preclinical studies suggest
that inflammation and gliosis are key mediators in changes in
sensory functions (such as cold and tactile allodynia) seen in
EAE.

It is well accepted that inflammatory cells and immune-
like glial cells and their mediators facilitate central sensiti-
sation and contribute to neuropathic pain symptoms [50].
Indeed, a recent study has shown that animals with EAE did
not have altered expression of sensory neuropeptides but had
a significant influx of CD3+ T cells and increased astrocyte

and microglia/macrophage reactivity in the superficial dorsal
horn of the spinal cord, an area associated with pain process-
ing [22]. Furthermore, a significant increase in the level of
tumour necrosis factor & (TNF) expression in the dorsal root
ganglia (DRG) of EAE animals was found at disease peak [51].
A later study confirmed a correlation between the increase
in TNF gene and protein expression in the DRG and spinal
cord with the onset of neuropathic pain in rats with EAE
[52]. Similar increases in the gene expression of cytokines
interleukin (IL)-13 and IL-6 in the spinal cords of EAE
mice coincided with increased nociceptive sensitivity and
deficits in object recognition [53]. Gene therapy with anti-
inflammatory IL-10 in animals with EAE improved motor
and sensory function, prevented allodynia, and reduced glial
activation in the lumbar spinal cord [35].

Further mechanisms have implicated the accumulation of
infiltrating macrophages expressing purinergic P2X, recep-
tors (P2X,R) in CNS lesions of EAE animals [54]. As
activation of these receptors by adenosine triphosphate is
implicated in the microglial response to peripheral nerve
injury and neuropathic pain symptoms, an association
between P2X,R and neuropathic pain in EAE is suggested
[55]. Additionally, increased phosphorylation of transcrip-
tion factor cyclic AMP response element-binding protein
(CREB) has also been observed at disease peak in EAE
lesions, particularly in the dorsal horn sensory neurons [56],
which are associated with the generation and maintenance
of neuropathic pain. Similar involvement of chemokines in
leukocyte recruitment, immune regulation, and T-cell polar-
isation is believed to significantly impact on pain regulation.
For example, CCL2, a chemokine with elevated levels in
MS patients, amplifies inflammatory responses in EAE [57,
58], while intrathecal administration of CCL2 chemokine is
sufficient to induce mechanical allodynia in naive animals but
not in CCL2-receptor knockout mice [59-61].

Dysregulation of the glutamatergic system, caused by
reduced glutamate transporter expression in spinal cords, has
been implicated in abnormal pain sensitivity in mice with
MOGe-induced EAE. For example, EAE mice showed a lack of
behavioural response to formalin stimulation, a behavioural
model of injury-induced central sensitization. This hypore-
sponsiveness was attributed to a decreased expression of
the glutamate transporters EAAT-1 and EAAT-2 in the
spinal cord [34]. Furthermore, pharmacological treatment to
upregulate the levels of EAAT-2 in mice with EAE resulted
in prevention of tactile hypersensitivity and normalisation of
performance in cognitive assays [53].

5. Clinical Applications of EAE Neuropathic
Pain Models

EAE has proven to be a successful therapeutic preclinical
model for MS. Indeed, a number of approved drugs and
current phase II and IIT trials for MS were first examined in
EAE models [62].

Several pharmacotherapies used to treat pain in multiple
sclerosis have shown similar efficacies in EAE. For example,
Gabapentin, a y-aminobutyric acid (GABA) analogue used



by up to 19% of MS sufferers [63, 64], is highly effective
in ameliorating pain symptoms in MS, such as trigemi-
nal neuralgia and tonic spasms [65-68]. Moreover, using
Gabapentin, Thibault and colleagues demonstrated a signif-
icant reduction of mechanical hyperalgesia in EAE murine
models, highlighting the effectiveness of GABA analogues
and their therapeutic potentials on neuropathic pain in EAE
models [23].

There also exist several promising avenues of phar-
maceutical research. Lisi and associates have established
that prophylactic Rapamycin administration, a macrocyclic
antibiotic with immunosuppressive activity, is able to reduce
disease severity and ameliorate pain behaviour in EAE
animals [36], confirming similar rodent studies [69-71]. It
is theorised that by regulating effector T cell and regu-
latory T-cell function [72], Rapamycin is able to modu-
late cytokine release, particularly interferon (IFN)-y [73], a
potent cytokine implicated in neuropathic pain [50].

Another promising candidate for MS pain amelioration
targets glutamate transporters. MS patients are known to have
an elevated concentration and/or altered transport of gluta-
mate in the CNS [74-78], partly due to glutamate released
by invading T cells and macrophages [79, 80]. This increases
extracellular accumulation of glutamate through the down-
regulation of glutamate transporters and impairment of glial
glutamate uptake [81]. The excess glutamate concentrations
allow for prolongation of calcium-permeable ionotropic glu-
tamate receptor activation on neural and glial cells, leading to
excitotoxic CNS tissue damage [82, 83]. Studies in EAE rodent
models have demonstrated 50% reduction in glial glutamate
transporter (GLT-1) spinal expression compared to normal
animals [37, 84]. In chronic EAE models, administration
of ceftriaxone, a third-generation cephalosporin antibiotic
which upregulates CNS glutamate transporters, has not only
shown to limit and attenuate clinical symptoms [37, 85] but
also shown to significantly reverse tactile allodynia [37] and
normalise facets of cognitive functioning [53]. Normalisation
of pain behaviour has been confirmed using other com-
pounds known to promote glutamate transporter activity in
EAE models, such as MS-153 [34].

As MS is a predominantly proinflammatory disease,
anti-inflammatory agents predictably demonstrate signifi-
cant therapeutic potential. Currently, several drugs exist that
effectively target the inflammatory process in MS patients
[86-89]. In EAE, lumbar intrathecal injections of a plasmid
DNA with mutated IL-10 gene, designed to stimulate an
anti-inflammatory response, reduced disease course and pre-
vented mechanical allodynia [35]. Furthermore, FIY720, a
sphingosine 1-phosphate receptor modulator, has been shown
to suppress EAE development in several rodent models [90-
93] by reducing the infiltration of CD4+ T cells, macrophages,
and proinflammatory cytokines [93-96], as well as by mod-
ulating signalling pathways on glial cells [97, 98]. In addition
to confining lymphocytes to lymphoid tissue [94] and pre-
venting and reversing pathological disturbances to pre- and
postsynaptic glutamate transmission [99], FTY720 is thought
to induce endogenous repair mechanisms in the CNS, as
it preferentially localises to myelin sheath [100]. Clinically,
FTY720 has reduced MS relapse rates and lesion frequency
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[101-103]. While these studies focus on disease amelioration,
Balatoni and associates have demonstrated in a chronic EAE
model that prophylactic application of FTY720 prevented
evoked potential disturbances of the somatosensory system
[104], raising the possibility of using FTY720 to modulate
neuropathic pain. In support of this, a recent study has
shown that administration of FTY720 reduces mechanical
and thermal allodynia in animals with neuropathic pain
caused by peripheral nerve injury [105].

6. Guillain-Barre Syndrome and Experimental
Autoimmune Neuritis

Guillain-Barre syndrome is the most common acute inflam-
matory demyelinating neuropathy in the peripheral nervous
system (PNS), and as such can almost be considered a
counterpart to multiple sclerosis. It affects 1-2 individuals
per 100,000, with a greater disposition towards men [106].
GBS is a common cause of neuromuscular paralysis, char-
acterised by areflexia or acute hyperreflexia, and can be
effectively treated with immunotherapies such as intravenous
immunoglobulin. However, despite immunotherapy, GBS
has a 5% mortality rate, with up to 20% of patients remaining
severely disabled [107]. Other symptoms of GBS include
sensory impairments, such as moderate to severe nociceptive
and neuropathic pain [4, 108, 109]. In fact, pain is a highly
prevalent symptom, with 55-85% of sufferers complaining of
paraesthesia/dysaesthesia, backache and sciatica, neck pain,
muscle pain, joint pain, and visceral pain [4, 109].

Experimental autoimmune neuritis is a T-cell-mediated
acute demyelinating inflammatory disease of the PNS widely
used as an animal model of the acute inflammatory demyeli-
nating polyneuropathy, the most common form of GBS
[110]. First successfully induced in rabbits by Waksman and
Adams in 1955, EAN is characterised by degeneration of
myelin sheaths, proliferation of histiocytes, breakdown of
blood-nerve barrier, and localised PNS inflammation with
infiltration of lymphocytic and mononuclear cells [6].

EAN can be induced by immunisation with neuritogenic
peripheral nerve myelin components, purified myelin pro-
teins (such as PO, P2, or PMP-22), or synthetic peptides of
myelin proteins [111, 112], or by passive transfer of T cells
sensitised to these proteins. Susceptible animals (such as rats,
mice, rabbits, and guinea pigs) induced with EAN develop
monophasic disease characterised by weight loss, ascending
progressive paralysis, and spontaneous recovery.

7. Symptoms of Neuropathic Pain in
GBS and EAN

Neuropathic pain, primarily affecting the distal extremities,
represents a common and severe symptom in patients with
GBS and is more common and persistent than nonneuro-
pathic pain [113]. Dysaesthetic extremity pain, described as
burning, tingling, or shock-like sensations, has been reported
in up to 49% of GBS patients [109]. GBS patients also expe-
rience altered thermal sensations, with significantly higher
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warm threshold temperatures and lower cold threshold tem-
peratures as compared to age- and gender-matched controls
[114]. In support of this, a recent study has shown that GBS
patients have a significantly more severe impairment of cold
detection thresholds, heat pain thresholds, and responses
to suprathreshold heat stimuli in the foot, as compared to
patients with nonneuropathic pain or without pain [113]. In
addition, GBS patients suffer from brush-induced allodynia
[113].

The thermal and tactile sensory abnormalities evident in
GBS are reflected in EAN models (Table 2). Behavioural tests
of pain hypersensitivity in EAN, including thermal hyper-
algesia and mechanical allodynia, have frequently served
as tools to study GBS sensory dysfunctions. For example,
Moalem-Taylor and colleagues were able to observe signifi-
cant mechanical allodynia and thermal hyperalgesia in both
hindpaws and forepaws of rats with EAN [115]. A subsequent
study confirmed the development of neuropathic pain in
EAN animals and further demonstrated that mechanical allo-
dynia preceded the onset of neurological signs and persisted
after cessation of locomotor deficit [116].

8. Potential Mechanisms of Neuropathic Pain
in GBS and EAN

Despite its prevalence, the mechanisms of neuropathic pain
in GBS patients remain unknown. It has been suggested
that in the acute phase of GBS, neuropathic pain results
from nerve inflammation, whereas in the chronic phase
of the disease, neuropathic pain results from degeneration
of sensory nerve fibres [121]. Recently, it has been shown
that a considerable reduction in intraepidermal nerve fibre
density at the distal leg is evident early in the disease and
correlates with pain intensity in the acute phase of GBS
[122]. Furthermore, impairment of small myelinated and
unmyelinated nociceptive fibres is significantly greater in
GBS patients with neuropathic pain than in those without
neuropathic pain. The severity of such impairment during the
acute phase of GBS is predictive of chronic neuropathic pain
[113].

To date, very few research laboratories have studied the
mechanisms underlying neuropathic pain in EAN animals.
However, existing studies have implicated several inflamma-
tory mediators and cells in the initiation and maintenance
of neuropathic pain in EAN through secretion of inflam-
matory mediators that sensitise nociceptors to amplify pain
hypersensitivity. For example, greater numbers of T cells,
antigen-presenting cells, and macrophages were observed in
peripheral nerves of EAN animals [115]. These infiltrating
leukocytes in the PNS may play a role in EAN-induced
pain by releasing proinflammatory cytokines such as IL-
18 (an IFN-y inducing factor, produced by macrophages)
with significantly greater IL-18 expression observed in nerve
roots of EAN rats and significantly higher serum levels
of IL-18 detected in GBS patients as compared to control
subjects [123]. Cells immunoreactive for inducible nitric
oxide synthase and TNF have been also observed in the DRGs
of animals with EAN [124].

Additionally, there exists accumulating evidence that
microglia become activated following PNS damage and
contribute to sensitisation of central nociceptors through
the production of proinflammatory cytokines, chemokines,
and extracellular proteases [50]. Indeed, an increase in the
number of microglial cells has been demonstrated in rats
with EAN [116, 120]. In particular, the association of the
time course of mechanical allodynia and spinal upregulation
of P2X,R on spinal microglia in lumbar dorsal horns in
EAN rats has been successfully observed by Zhang and
colleagues [116]. This suggests that activation of P2X,R drives
the release of brain-derived neurotrophic factor from spinal
microglia, a cellular substrate that causes disinhibition of
pain-transmitting spinal lamina I neurons and mediates
aberrant nociceptive processing in the spinal cord [125].
The involvement of transmembrane chemokines such as
CX3CLI (fractalkine) has also been implicated, as it plays
a key role in mediating neuron-microglia interactions in
nociceptive transmission. Elevated levels of CX3CL1 have
been recorded in GBS patients [126], while in EAN rats,
extensive upregulation of immunoreactivity for CX3CL1 and
its receptor CX3CRI in the dorsal horn has been shown
to correlate with the establishment of mechanical allodynia
[120].

Taken together, development and maintenance of neuro-
pathic pain in EAN models may result from (a) demyelina-
tion and degeneration of sensory nerve fibres, (b) autoim-
mune inflammation in the PNS, and (c) spinal glial activation
in the CNS, therefore providing a useful model for finding
novel therapeutic approaches for GBS-related pain.

9. Clinical Applications of EAN Neuropathic
Pain Models

Although the studies on pain in EAN are inadequate to date,
there are a few significant approaches that may be therapeutic
in relieving pain in GBS patients.

Firstly, immunotherapeutic approaches that enhance the
numbers of immunosuppressive FoxP3" regulatory T (Treg)
cells and decrease neuroinflammation have demonstrated
potential. Recently, it has been shown that treatment with
CD28 superagonist, a Treg cell expander, resulted in a
significant amelioration of EAN severity and mechanical
allodynia, with associated reduction of neuroinflammatory
responses [119]. Treatment with Compound A, a plant-
derived ligand of glucocorticoid receptors that enhances Treg
cells in blood of EAN animals, is also able to attenuate
mechanical allodynia [118]. The same study further observed
that Compound A reduced microglial activation and IL-18
and TNF upregulation in the spinal cord, increased the num-
bers of anti-inflammatory M2 macrophages in sciatic nerves,
and modulated lymphoid cytokines to an anti-inflammatory
profile [118].

Furthermore, statins, which are used to treat hyperc-
holesterolaemia in humans, are reported to potentiate anti-
inflammatory and immunomodulatory effects, including
deviation of helper T cell Type1 (Thl) mediated proinflamma-
tory response to Th2 mediated anti-inflammatory response,
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inhibition of Thl and Th17 mediated autoimmune response,
inhibition of maturation and activation of antigen presenting
cells, and increasing the numbers of CD4*CD25"FoxP3"
Treg cells [127]. Recent studies have found that administra-
tion of atorvastatin reduces EAN severity through a similar
mechanism [127], while treatment with rosuvastatin and sim-
vastatin prevents the development of thermal hyperalgesia
and mechanical allodynia and significantly reduces spinal
glial activation following peripheral nerve injury [128]. This
highlights the potential for statins to manage neuropathic
pain in GBS.

In addition, the existing evidence for the role of microglia
in neuropathic pain suggests that controlling spinal glial
activation may result in pain amelioration in GBS. In par-
ticular, inhibition of microglial activation and alleviation
of mechanical allodynia has been successfully observed by
peritoneal administration of minocycline, which attenu-
ates TNF and decreases proinflammatory cytokine response
[117, 129]. Elevated levels of CX3CLl in GBS suggest
that inhibiting CX3CL1/CX3CRI interactions will negatively
affect microglial activation [120] and might prevent the
development of neuropathic pain.

Other possible therapeutic approaches include inhibit-
ing matrix metalloproteinases (MMPs). MMPs comprise
a large family of proteases that have been implicated in
the generation of neuroinflammation and the development
of neuropathic pain through the cleavage of extracellular
matrix proteins, cytokines, and chemokines [130]. MMP-9
and MMP-7 were found to be selectively upregulated during
EAN and expressed in nerves of GBS patients [131]. BB-1101,
a broad spectrum MMP inhibitor, has already demonstrated
potential in preventing the development of EAN [130], and
reduced expression of MMP-9 by treatment with minocycline
was associated with improved EAN outcome and reduced
mechanical allodynia [117].

10. Summary

Although much has been uncovered in the past few decades
about the nervous system autoimmune disorders of MS and
GBS, the clear pathogenesis of these diseases has not been
tully elucidated. However, utilisation of animal models, in
particular EAE and EAN, has significantly advanced our
understanding and provided a platform for development and
investigation of new therapies. Recently it has become clear
that neuropathic pain is a common debilitating symptom
in MS and GBS and that some of the changes in pain
sensitivity observed in these patients can be mimicked in EAE
and EAN animals. Tables 1 and 2 summarise neuropathic
pain symptoms observed in EAE and EAN, respectively,
and the therapeutic agents tested in these animal models.
Many complex mechanisms are involved in mediating the
various sensory changes, and we are only now beginning to
understand the mechanisms underlying neuropathic pain in
MS and GBS. A recent study in humans has demonstrated
an autoimmune basis for some types of chronic idiopathic
pain highlighting the role of autoimmune antibodies and cells
in pain mediation [132]. A concerted effort is required to

elicit more information regarding the mechanisms underly-
ing neuropathic pain in MS and GBS to better enable the
development of more effective treatments.
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The involvement of serotonin (5-HT) in chronic pain mechanisms is established. 5-HT inhibits central painful stimuli, but recent
data suggests that 5-HT could also enhance pain stimulus from the periphery, where mast cells play an important role. We aimed in
our study to clarify the influence of selected tricyclic antidepressants (TCAs) on mast cell function: secretion, uptake, and reuptake
of 5-HT, that could interfere with 5-HT levels and in this way contribute to the generation of pain. As an experimental model,
we used isolated rat peritoneal mast cells and incubated them with selected TCAs (clomipramine, amitriptyline, doxepin, and
imipramine) under different experimental conditions. 5-HT release, uptake, and reuptake were determined spectrofluorometrically.
We showed that TCAs were able to inhibit 5-HT secretion from mast cells, as well as uptake of exogenous 5-HT and reuptake of
secreted 5-HT back into mast cells. The effects of TCAs were concentration dependent; higher concentrations of TCAs inhibited the
secretion of 5-HT induced by compound 48/80, whereas lower concentrations of TCAs inhibited 5-HT uptake. The most effective
TCA was halogenated clomipramine. As TCAs are well introduced in chronic pain treatment, the insight into mechanisms of action

is important for an understanding of their effect in various pain conditions.

1. Introduction

Chronic pain is a complex neurobiological phenomenon
with a variety of factors contributing to peripheral and
central pain-signaling mechanisms. A common underlying
mechanism of chronic pain is the presence of inflammation at
the site of the damaged or affected tissue which causes release
of several inflammatory mediators such a prostaglandins,
bradykinin, and histamine. These agents increase the sen-
sitivity of primary sensory neurons to painful stimuli [1].
Strong activation by proinflammatory mediators also drives
the opening of voltage-gated sodium channels (VGSCs)
that are crucial for central and peripheral sensitization and
the excitability of neurons in the central and peripheral
nervous systems [2-4]. The release of proinflammatory and
immunoactive substances initiates therefore local actions and
can result in a more generalized response that leads to a
chronic pain condition.

Besides peripheral sensory pathways, there are central
inhibitory or facilitatory pathways where various neurotrans-
mitters and signaling molecules can contribute to the gen-
eration and/or maintenance of central as well as peripheral
painful stimuli [1]. Among them, serotonin (5-HT) plays a
complex role. In the central nervous system, monoaminergic
(noradrenaline and 5-HT) and opioidergic neurons from
descending pathways are inhibitory for pain transmission; in
neuropathic pain, persistent pain is thought to be principally
due to activation of descending pain facilitatory pathways
and deactivation of descending pain inhibitory pathways [5-
9]. In the spinal cord, convergence of peripheral inputs and
descending pathways occurs. Here, the inhibitory molecules
such as gamma-aminobutyric acid (GABA), endogenous opi-
oids, and monoamines control the transmission of noxious
stimuli [10, 11].

On the contrary of the inhibitory effect of 5-HT on
central painful stimuli, recent findings suggest that 5-HT



might enhance a pain stimulus from the periphery. It has been
found that the association between increased 5-HT levels
and increased number of mast cells in patients with chronic
abdominal pain [12-14]. A possible relationship between the
number of mucosal mast cells and rectal sensitivity has also
been demonstrated in humans [14]. There is also evidence
of a significant increase in mast cell numbers in patients
with intestinal bowel syndrome. Along with increased mast
cell counts, there is support that mast cell numbers directly
correlate with abdominal pain in those patients [15]. On
the other hand, we have only limited data about the role of
mast cells in the central nervous system in the occurrence of
chronic pain. The precise role of the mast cell-derived 5-HT
in the chronic pain mechanisms is therefore still unknown.

To date, selected antidepressants are considered as an
essential component of the therapeutic strategy for treatment
of different types of persistent pain like neuropathic pain,
painful polyneuropathy [16, 17], postherpetic neuralgia [18,
19] as well as rheumatoid arthritis, ankylosing spondylitis
[20], and fibromyalgia [21], although the exact mechanisms
involved in these processes are not fully known (for review
see [1]). The main mechanism of action of antidepressants
involves reinforcement of the descending inhibitory path-
ways by increasing the amount of noradrenaline and 5-HT
in the synaptic cleft at both supraspinal and spinal levels.
Further studies have demonstrated a critical role of VGSCs
in different types of chronic pain syndromes; in this sense,
antidepressants with property of blocking sodium channel
have been shown to be effective in suppression of persistent
pain signal [1]. We found in our previous studies that some
antidepressants are able to influence 5-HT secretion from the
mast cells [22, 23]. Since the impact of the mast-cells derived
5-HT in the persistent pain might be important, we were
interested in present work to clarify the influence of selected
antidepressants on different processes, controlled by mast
cells, like secretion, uptake, and reuptake that could interfere
with 5-HT levels and therefore with the generation and/or
maintenance of pain.

2. Materials and Methods

2.1. Materials. Serotonin, amitriptyline, doxepin, imipram-
ine, and clomipramine were obtained from Sigma, Stein-
heim, Germany. Compound 48/80, concanavalin A, bovine
serum albumin, glucose, Tris-HCI, and phthaldialdehyde
(OPT) were also obtained from Sigma Chemicals, Steinheim,
Germany. HEPES was purchased from Merck, Darmstadt,
Germany, and Percoll was obtained from Amersham Bio-
sciences, Uppsala, Sweden. All other chemicals were of ana-
lytical grade. Spectrofluorometry was carried out on the spec-
trofluorometer Shimadzu RF-1501.

2.2. Animals. Wistar rats (200-350 g) were obtained from our
own breeding colony. They were maintained under constant
environmental conditions, with an ambient temperature of
22 + 1°C, a relative humidity of 55 + 10%, and a natural
regimen of light-dark cycle. The animals were kept in cages
Ehret type 4 (Germany); bedding material was Lignocel 3/4.
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They received standard rodent diet Altormin (Germany) and
have free access to food and water. We used two animals for
each experiment. All animal procedures have been approved
by the National Animal Ethical Committee of the Republic of
Slovenia and were conducted in accordance with the Euro-
pean Convention for the Protection of Vertebrate Animals
Used for Experimental and Other Scientific Purposes (ETS
123).

2.3. Isolation of Mast Cells. Rat peritoneal mast cells were
isolated from peritoneal cavity as follows: 10 mL of buffered
salt solution was injected into the peritoneal cavity, and
then the abdomen was gently massaged for 1.5 min. Mixed
rat peritoneal cells were suspended in buffered salt solution
with the following composition (mmol/L): NaCl 134.0, KCl
4.7, MgSO, 1.2, CaCl, 1.0, Tris-HCl 12.5, bovine albumin
Img/mL, and pH 74. The cell suspension was then cen-
trifuged at 220 g for 10 min, and supernatants discarded. The
collected cells were resuspended in buffered salt solution
and centrifuged at 220 g for 10 min. For the preparation of
purified mast cells (>98%), the cells were transferred to a
HEPES-buffered (32 mmol/L) Percoll solution. A gradient of
Percoll was created by centrifugation at 21000 g for 30 min
at 4°C. After the centrifugation, Percoll was removed by
washing the mast cell fraction in buffered salt solution, and
additional centrifugation of the fraction, containing mast
cells.

2.4. Treatment of Mast Cells with TCAs. Mast cells were
resuspended in buffered salt solution (pH = 7.2) having the
following composition (mmol/L): Na,HPO, 6.7, KH,PO, 6.7,
NaCl 137, KCl 2.7, CaCl, 1.0, bovine albumin 0.5 mg/mL, and
glucose 1g/L. Each sample contains between 5.10° and 2.10°
mast cells.

(1) In the secretion experiments, mast cells were preincu-
bated with different concentrations (10"°-10"* mol/L)
of selected TCAs (amitriptyline, doxepin, imipram-
ine, and clomipramine) for 10 min and then incubated
in the presence of compound 48/80 (0.1 ug/mL) for
additional 10 min.

(2) In the uptake experiments, mast cells were incu-
bated with 5-HT (250 ng/sample) for 10, 30, or
60 min. The experiments were performed at 37°C
or at 0°C in the presence of extracellular Ca** ions
(10 mol/L) or in Ca®'-free medium. In the next
group of experiments, mast cells were preincubated
with different concentrations (107-10"* mol/L) of
selected TCAs (amitriptyline, doxepin, imipramine,
and clomipramine) for 10 min and then incubated
with 5-HT (250 ng/sample) for additional 30 min.

(3) In the reuptake experiments, mast cells were incu-
bated with compound 48/80 (0.2 ug/mL) for 10, 30,
or 60min. In the next set of experiments, mast
cells were preincubated with different concentrations
(1078-10"* mol/L) of selected TCAs (amitriptyline,
doxepin, imipramine, and clomipramine) for 10 min
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and then incubated in the presence of compound
48/80 (0.2 ug/mL) or concanavalin A (100.0 ug/mL)
for additional 60 min.

After the incubation, the secretion, uptake, or reuptake of 5-
HT was stopped by cooling the tubes in an ice-cold bath.

2.5. Determination of 5-HT Secretion, Uptake, and Reuptake.
5-HT was determined in the supernatants and in the cell
fraction, using a spectrofluorometric method and omitting
the extraction procedure (for details see [24]). Samples
(ImL) were warmed in the presence of 0.05mL cysteine
(3%), 1.1mLHCI (37%), and 0.07 mL OPT (0.2%) at 75°C
for 15 min. After that they were cooled in an ice-cold bath,
and 5-HT was measured spectrofluorometrically at excitation
wavelength 360 nm and emission wavelength 478 nm. 5-HT
was determined in the supernatants and in the cell fraction. 5-
HT release was expressed as a percentage of the total 5-HT in
the sample. All values were corrected for spontaneous 5-HT
release, which was always <7.0%.

2.6. Statistical Analyses. Determinations of 5-HT content are
shown as means + standard error of the mean (SEM) of
five independent assays. For each treatment and controls,
four samples were analyzed. Student’s ¢-test was used for
statistical analysis. For all tests, P < 0.05 was considered to
be statistically significant.

3. Results

3.1 Inhibitory Effect of Antidepressants on 5-HT Release. The
secretagogue, compound 48/80, releases 5-HT from mast
cells. After 10 min of incubation of mast cells with compound
48/80 (0.1 ug/mL) 5-HT release is approximately 42%. The
results show that TCAs are able to inhibit 5-HT secretion,
induced by compound 48/80 from mast cells. The effect
is dose dependent and occurs at higher concentrations of
TCAs only. The inhibitory effect of TCAs depends on the
polarity of the drug; the halogenated derivative clomipramine
is significantly more potent than other used antidepressants
(Figure 1).

3.2. The Effect of Antidepressants on 5-HT Uptake and Reup-
take into Mast Cells. 'The results show that mast cells are capa-
ble to remove exogenous 5-HT from incubation medium.
The uptake involves an active process which depends on
temperature and time of incubation of mast cells with
exogenous 5-HT. At 37°C it increases with time of incubation
of mast cells with exogenous 5-HT, whereas at 0°C it is
inhibited (Figure 2(a)). The uptake requires the presence of
extracellular Ca** ions. In the medium, containing extracel-
lular Ca** ions (10~° mol/L), the uptake increases with time of
incubation. In contrast, the uptake is significantly inhibited in
Ca**-free medium (Figure 2(b)).

In the presence of extracellular Ca** ions (107> mol/L),
TCAs inhibit 5-HT uptake into mast cells in a dose-depend-
ent manner. The most potent compound is halogenated
antidepressant clomipramine, where inhibition of exogenous
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FIGURE 1: The influence of selected TCAs on 5-HT release from mast
cells after stimulation of the cells with compound 48/80 (0.1 g/mL).
Mast cells were preincubated with different concentrations (10~
10 mol/L) of antidepressants (amitriptyline, doxepin, imipramine,
and clomipramine) for 10 min and then incubated with compound
48/80 for further 10 min. Results are expressed as a percentage of
the total 5-HT in the sample. Each point represents mean + SEM of
5 experiments. * P < 0.05 versus compound 48/80.

5-HT uptake is observed at concentration 10~°mol/L
(Figure 3).

In the next group of experiments, we demonstrated that
mast cells are able to reuptake released 5-HT after stimulation
of mast cells with compound 48/80. The reuptake is time
dependent; after 10 min of incubation of mast cells with
compound 48/80 (0.2 ug/mL), it releases an average 60%
of the total 5-HT. After 60 min of incubation, the amount
of 5-HT was significantly reduced in comparison to 10 min
incubation, which indicates that mast cells are capable to
reuptake released 5-HT from the medium (Figure 4).

In further experiments, we examined the influence of
selected TCAs on reuptake of 5-HT into mast cells after
long-term (60 min) incubation of mast cells with different
secretagogues, compound 48/80, and concanavalin A. Our
results show that preincubation of mast cells with selected
TCAs leads to inhibition of 5-HT reuptake into mast cells. The
inhibition is dose dependent and differs between used TCAs;
the most potent is halogenated antidepressant clomipramine.
In Figure 5, we show that 60 min after the stimulation of mast
cells by secretagogues (compound 48/80 and concanavalin
A), the released 5-HT in the medium represents 36% and
49%, respectively, in comparison to the total 5-HT of the
sample. The preincubation of mast cells with selected TCAs
in concentration range from 10™° to 10> mol/L leads to
inhibition of 5-HT reuptake into mast cells, in a dose-
dependent manner. Therefore, after 60 min preincubation
of mast cells with increasing concentrations of TCA, we
observed higher concentrations of released 5-HT in the
medium in comparison to the mast cell which have not been
preincubated with TCA (Figure 5).
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FIGURE 2: The effect of time of incubation on 5-HT uptake into mast cells. The mast cells were incubated with exogenous 5-HT (250 ng/sample)
for 10, 30, or 60 min. (a) The effect of temperature of the medium on 5-HT uptake: mast cells were incubated with 5-HT at 37°C or at 0°C.
(b) The effect of extracellular Ca*" ions on 5-HT uptake: mast cells were incubated with 5-HT in the presence of extracellular Ca" ions
(107> mol/L) or in Ca**-free medium. Each bar represents mean + SEM of 5 experiments.
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FIGURE 3: The influence of selected TCAs on the uptake of 5-
HT into mast cells. Mast cells were preincubated with different
concentrations (107*-10™ mol/L) of antidepressants (amitriptyline,
doxepin, imipramine, and clomipramine) for 10 min. After that,
mast cells were incubated with exogenous 5-HT (250 ng/sample) for
the next 30 min. Each point represents mean + SEM of 5 exper-
iments.

4. Discussion

Recent studies have indicated a strong communication
between immune, endocrine, and nervous systems in the
maintenance of chronic pain, where 5-HT plays significant
role [25]. So far, we believed that 5-HT inhibited the genera-
tion of painful stimuli on the central nervous system level, but
recent evidence indicates that 5-HT might be associated also

80

5-HT content (%)
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FIGURE 4: The effect of time of incubation on 5-HT content in the
medium after stimulation of mast cells with compound 48/80. Mast
cells were incubated with compound 48/80 (0.2 ug/mL) for 10, 30,
or 60 min. Each point represents mean + SEM of 5 experiments.

by an increase pain transmission from the periphery, where
mast cells play an important role [26, 27].

Using rat mast cells from peritoneal cavity, we show that
TCAs influence mast cell-derived 5-HT levels via at least
three different mechanisms: secretion of 5-HT, uptake of
exogenous 5-HT, and reuptake of secreted 5-HT. At first,
selected TCAs are able to inhibit the secretion of 5-HT from
mast cells. The inhibition is dose dependent, and halogenated
clomipramine has been found to be the most potent in
comparison to imipramine, doxepin, and amitriptyline. The
inhibition of 5-HT secretion from mast cells contributes to
lower concentration of 5-HT at periphery and therefore could
diminish sensitization of sensory nerve endings by 5-HT,
which is important for the generation of peripheral painful
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FIGURE 5: The influence of selected TCAs on 5-HT content after stimulation of mast cells with different secretagogues. (a) Mast cells were
preincubated with increasing concentrations (10°~10~* mol/L) of antidepressants (amitriptyline, doxepin, imipramine, and clomipramine)
for 10 min and then incubated with compound 48/80 (0.2 ug/mL) for the next 60 min. (b) Mast cells were preincubated with increasing
concentrations (10"°~10"* mol/L) of antidepressants (amitriptyline, doxepin, imipramine, and clomipramine) for 10 min and then incubated
with concanavalin A (100 pg/mL) for the next 60 min. Each point represents mean + SEM of 5 experiments. “P < 0.05 versus compound

48/80 (a) or concanavalin (b).

stimuli [28, 29]. It is already known that approximately 95%
of 5-HT in the body is produced in the peritoneal cavity,
and inhibition of 5-HT secretion from mast cells might be
beneficial in the treatment of chronic abdominal pain [12].
Our results support recent findings, where the association
between enhanced mast cells number and 5-HT levels has
been suggested in patients with chronic abdominal pain
[14, 15]. With this regard, 5-HT has been proposed as an
important mast cell mediator which could interact with
peripheral nerves leading to increased sensitivity in the gut
and chronic abdominal pain [30-33].

However, the precise role of mast cells in these cases
has not been clarified yet, and several issues remain to be
addressed. Beside 5-HT, mast cells release several medi-
ators like histamine, tryptase, proteoglycans, leukotriene
C4, platelet activating factor, and prostaglandin D2. All
of them can activate sensory nerves, leading to visceral
hyperalgesia/allodynia [29]. On the other hand, mast cells
not only degranulate and release proinflammatory substances
but also may be in closer proximity to the cholinergic
nerves thereby altering GI motility and hypersensitivity (i.e.,
increased abdominal pain). The detection of abnormalities
of 5-HT metabolism in the peritoneal cavity has therefore
generated a particular interest [34-36].

In the central nervous system, 5-HT contributes to the
inhibition of the pain signal transmission. In this process,
serotonergic neurons from descending inhibitory pathways,
and not mast cells, are crucial to derive 5-HT for synaptic
transmission. It is already known that TCAs inhibit 5-HT
uptake into serotonergic neurons and on this way enhance
the concentration of 5-HT in synaptic cleft and inhibition of

central painful stimuli. Moreover, the antidepressants with
a property of blocking sodium channel (i.e., VGSCs) have
been shown to be effective in suppression of persistent pain
signal because these channels play a fundamental role in the
excitability of neurons in the central and peripheral nervous
system, as well [25]. In addition, we show in our study that
TCAs are able to inhibit uptake of 5-HT into mast cells that
could also contribute to higher concentrations of 5-HT in the
central nervous system.

At the periphery, TCAs effects seem much more complex.
They inhibit secretion of 5-HT from mast cells, which leads
to diminished concentrations of 5-HT. In addition, they are
also able to inhibit an uptake of exogenous 5-HT, as well as
reuptake of secreted 5-HT from mast cells back into mast
cells, which causes higher levels of 5-HT in the environment.
In the peritoneal cavity, mast cells represent an important
source of 5-HT, and when the secretion of 5-HT from mast
cells is inhibited, the 5-HT-mediated sensitization of sensory
might be inhibited as well.

5. Conclusions

In summary, we have found that TCAs are able to inhibit 5-
HT secretion from mast cells, as well as uptake of exogenous
5-HT and reuptake of secreted 5-HT back into mast cells. All
of these events influence 5-HT levels and as a consequence
could contribute to a generation and maintenance of painful
stimuli in the body. As TCAs are well established in the
chronic pain treatment, the insight into their mechanisms
of action is crucial for an understanding of their effects



in various pain conditions. In this respect, our study provides
a simple in vitro approach for the mechanistic studies of
compounds, aimed for the modulation of 5-HT levels by mast
cells.
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Chronic pain has to be considered in all respects a debilitating disease and 10-20% of the world’s adult population is affected by
this disease. In the most general terms, pain is symptomatic of some form of dysfunction and (often) the resulting inflammatory
processes in the body. In the study of pain, great attention has been paid to the possible involvement of gonadal hormones,
especially in recent years. In particular, testosterone, the main androgen, is thought to play a beneficial, protective role in the
body. Other important elements to be related to pain, inflammation, and hormones are lipids, heterogenic molecules whose altered
metabolism is often accompanied by the release of interleukins, and lipid-derived proinflammatory mediators. Here we report data

on interactions often not considered in chronic pain mechanisms.

1. Introduction

Chronic pain and inflammation involve multiple pathophys-
iological systems described or only suggested to be involved
in their modulation, from genetic to environmental/cultural
influences. Among all these actors, gonadal hormones have
repeatedly been suggested to play a prominent role. Indeed,
a number of studies have shown the ability of gonadal
hormones to affect pain intensity and occurrence, for example
[1]. Also important is the ability of pain (and pain therapies)
to affect gonadal hormone metabolism, as recently reported
by our group [2-4]. Patients often suffer complex side effects
(fatigue, depression, osteoporosis, etc.) attributed to the orig-
inal disease and not to the drug-induced endocrinopathies,
and thus not adequately treated.

Gonadal hormones, androgen, and estrogen in particular
are steroids present in both male and female subjects at
different concentrations (Table 1), which depend mainly on
age but are also highly sensitive to many internal and external
factors. In both sexes, androgens are primarily synthe-
sized in the gonads but also by the reticular portion of
the adrenal gland as dehydroepiandrosterone (DHEA). The
amount of testosterone (T) synthesized is regulated by

the hypothalamic-pituitary-gonadal axis [5]. In males, T is
reduced to 5a-dihydrotestosterone (DHT) by 5«-reductase
(about 7%), an enzyme highly expressed in the urogenital
tract, hair follicles, skin, liver, and brain [6]. In addition,
0.3% of T is converted to estradiol (E2) [7] by the enzyme
aromatase, a member of the cytochrome P450 superfamily
expressed in brain, liver, and adipose tissue. Testosterone
and DHT bind to androgen receptors (AR) mostly located
in the brain, skin, muscle, kidney, liver, and bone [8]. E2
is the most potent estrogen and targets a variety of tissues
in the reproductive tracts, mammary gland and skeletal and
cardiovascular systems. E2 acts by binding to its specific
receptors (ER o and ).

In the “classic” pathway of action, steroid hormones
bind to their specific ligands and interact through the DNA
binding domain with specific DNA sequences, activating
or repressing transcription of target genes [9]. In addition
to these well-known genomic effects of gonadal hormones,
rapid effects appearing between seconds to a few minutes
from stimulation have been described in different cell models
(10].

Among the many effects of androgens and estrogens on
body functions, we have concentrated on that between T and



TaBLE 1: Hormone levels commonly recorded in adult men and
women. In females, the high variability of estradiol concentration
is due to the menstrual cycle variations. Note that testosterone is
expressed in ng/mL and estradiol in pg/mL (1ng = 1000 pg).

Hormones Adult men Adult women

Testosterone (ng/mL) 3-8 0.5-1

Estradiol (pg/mL) <50 20-400

Estriol (mg/dL) <2 <2

Estrone (pg/mL) 15-65 Pre-menopausal: 15-200
Post-menopausal: 15-55

Androstenedione ng/dL  50-220 30-285

SHBG nmol/L 14-71 20-155

DHEA ng/dL 180-1250 130-980

DHEA Sulfate ug/dL.  10-619 ~ ©re-menopausal: 12-535

Post-menopausal: 30-260

lipids, particularly in view of their involvement in inflam-
mation and pain. Firstly, T is described as being involved in
lipid modulation of inflammatory processes. Secondly, since
obesity and other pathological or physiological conditions
like aging can be accompanied by a hypogonadic state, we
report data on the possible role played by this condition in
the development of inflammation and pain.

2. Lipids and Testosterone

The first step to be considered is the possible interactions
between T and the other steroids, starting with cholesterol,
its precursor. Cholesterol is the major constituent of cell
membranes and serves as a precursor of important hormones
and other substances. Cholesterol is insoluble in blood and
is transported in the circulatory system bound to different
lipoproteins. Low-density lipoproteins (LDL-C) carry choles-
terol from the liver to cells of the body, particularly to organs
that require it in large amounts (such as endocrine glands
synthesizing steroids). The denser but smaller high-density
lipoproteins (HDL-C), mainly consisting of lipoproteins and
only a small cholesterol fraction, collect cholesterol from
peripheral tissue and take it to the liver where it is metab-
olized [11]. It has been suggested that HDL-C and their
protein and lipid constituents participate in body functions
related to oxidation, inflammation, coagulation, and platelet
aggregation [12].

The different concentrations of gonadal hormones in men
and women are thought to be important factors contributing
to the sex difference in lipoprotein profiles [13]. Epidemiolog-
ical data suggest that T levels are negatively associated with
total cholesterol, LDL-C, and triglyceride (TG) [14], while in
men T levels appear to have a complicated and controversial
relationship with HDL-C levels and cardiovascular risk. In
fact, androgen levels within the normal adult male range
were found to have a suppressive effect on HDL-C [15]. On
the other hand, several studies on patients with coronary
artery disease have shown that higher T levels are associated
with higher HDL-C concentrations [16]. In particular, it was
found that two genes involved in the catabolism of HDL-
C are upregulated by T, namely, hepatic lipase (HL) and
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scavenger receptor Bl (SR-B1). SR-Bl mediates the selective
uptake of HDL-C lipids into hepatocytes and steroidogenic
cells, including Sertoli and Leydig cells of the testes, as well as
cholesterol efflux from peripheral cells [5]. T upregulates SR-
Bl in the human hepatocyte and in macrophages and thereby
stimulates selective cholesterol uptake and cholesterol efflux,
respectively. HL hydrolyzes phospholipids on the surface of
HDL-C, facilitating the selective uptake of HDL-C lipids by
SR-B1. The activity of HL is increased after administration
of exogenous T [17]. The increases in both SR-Bl and HL
activities are consistent with the total cholesterol lowering
effect of T [5].

Obesity, and particularly visceral fat excess, is associated
with insulin resistance, hyperglycemia, atherogenic dyslipi-
demia, and hypertension, as well as prothrombotic and pro-
inflammatory states. Adiposity, with its associated hyperin-
sulinism, suppresses sex hormone-binding globulin (SHBG)
synthesis and therewith the levels of circulating total T [18].
It may also decrease the strength of luteinizing hormone
(LH) signaling to the testis [19]. In addition, insulin and
leptin have a suppressive effect on testicular steroidogenesis
[20, 21]. Visceral fat cells secrete a large number of cytokines
which impair testicular steroidogenesis [22]. Hence there are
reasons to believe that adiposity is a significant factor in
lowering circulating levels of T. Furthermore, white adipose
tissue, found in high levels in obese men, exhibits elevated
aromatase activity and secretes adipose-derived hormones
as well as adipokines. High levels of estrogens in obese
males result from the increased conversion of androgens to
estrogens, owing to the high bioavailability of these aromatase
enzymes [23]. Hammoud et al. [24] recently discovered
that an aromatase polymorphism modulates the relationship
between weight and E2 levels in obese men. Abdominal or
visceral fat is more likely to lead to changes in hormone levels
and to cause inflammation than fat stored in other parts of
the body [25]. An increase in aromatase activity also causes
an alteration in the estrogen/T ratio, which may contribute to
decreased androgen production.

Aromatase inhibitors were found to be an effective
treatment in restoring normal hormone levels: this led to
normalization of the patient’s T, LH and FSH hormone levels,
as well as suppression of the serum E2 levels [26].

3. Inflammation and Testosterone

Inflammation is the body’s response to cellular injury. The
inflammation process involves several reciprocally modu-
lating actors, from chemical factors derived from plasma
proteins to cells that mediate vascular and cellular inflam-
matory reactions. To appreciate the inflammatory process, it
is important to understand the role of chemical mediators
such as eicosanoids, kinins, complement proteins, histamine,
monokines, and cytokines, a group of soluble polypeptides.
Even excess body fat can produce inflammation [27]. These
inflammatory mediators act synergistically in the devel-
opment of pain and hyperalgesia [28-30]. Cytokines are
polypeptides produced by cells of both the innate and specific
compartments of the immune system. There are various types
of cytokines with widespread actions in the body. Many
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of these cytokines are produced by leukocytes, on which
they also exert their key actions; it is common to call them
interleukins (IL followed by a number). Although each one
has a specific function, it is possible to identify common basic
features: short period and self-limiting secretion, molecular
weight between 10 and 50kD, pleiotropic and redundant
actions, influence on other cytokines (synthesis; action),
systemic and local action, binding to membrane cell receptors
[31]. These substances are known to be involved in changes to
vascular permeability, the oxidative burst, and chemotaxis of
leukocytes.

In some cases, especially in the elderly, the body loses its
ability to stop the cytokine secretion [32]; indeed, aging is
accompanied by a pro-inflammatory state expressed by the
increasing levels of several cytokines, including interleukin-6
(IL-6). The need to focus attention on aging derives from the
evidence that in men over 45-50 years there is a progressive,
slow, but continuous decrease of serum T levels, and andro-
gens have been shown to inhibit the expression and release
of cytokines and chemokines [33, 34]. This relationship is
supported by the finding that androgen deprivation therapy is
associated with increased levels of pro-inflammatory factors
and decreased levels of anti-inflammatory cytokines [35, 36],
while observational and interventional studies indicate that
T supplementation reduces inflammatory markers in both
young and old hypogonadal men [35].

Moreover, several lines of evidence support a close associ-
ation between T levels, the evolution of diabetes secondary to
hyperglycemia and hyperlipidemia and oxidative stress [37].
This association is most likely the result of elevated metabolic
rates required to maintain normal biological processes and an
increased level of stress in the local testicular environment,
both of which naturally produce reactive oxygen species
(ROS).

As ROS are generated mainly as by-products of mito-
chondrial respiration, mitochondria are thought to be the
primary target of oxidative damage and play an important
role in aging. Emerging evidence has linked mitochondrial
dysfunction to a variety of age-related diseases, including
neurodegenerative diseases, cancer, and chronic inflamma-
tion [38].

Oxidative stress is the result of an imbalance between the
production of ROS and antioxidant defenses [39, 40]. In par-
ticular, ROS and reactive nitrogen species (RNS) are unstable
and very reactive by-products of normal metabolism, leading
to lipid peroxidation, nucleic acid oxidation (including DNA
modification and DNA strand breaks), protein oxidation, and
enzyme inactivation [39, 41-43].

Lipid peroxidation refers to the addition of oxygen
to unsaturated fatty acids to form organic hydroperoxides
(ROOH). Organic peroxyl (ROO") radicals arise during the
radical-initiated and O,-dependent peroxidation of lipids,
which can also produce alkoxyl radicals (RO’) in metal-
catalyzed reactions [44]. The oxidation of membrane phos-
pholipids in the plasma membrane, as well as within internal
organelle membranes such as the mitochondria, leads to
biophysical changes that disrupt membrane and organelle
function. While these processes may stimulate cellular sig-
naling pathways, they are generally associated with the

promotion of cell death. Breakdown of lipid peroxidation
yields additional reactive species (e.g., 4-hydroxynonenal,
4-HNE and malonyldialdehyde), which may contribute to
toxicity and/or cellular signaling [45]. In addition, an increase
in lipid peroxidation may be one of the factors responsible
for the disruption of the normal feedback mechanism in the
hypothalamus-pituitary-gonadal (HPG) axis [46].

Since T usually enhances the metabolic rate [47, 48], it
could be expected that high T levels might alter the balance
between ROS production and antioxidant defenses, resulting
in an enhanced risk of oxidative stress [49, 50]. Yet, closer
scrutiny of the available data reveals a more complex pattern,
and different studies indicate that the relationship between
T and oxidative stress can be more complex than previously
thought, as it is tissue- and gender-dependent [51, 52].

4. Testosterone, Aging, and Inflammation

Agingis associated with a decrease in circulating T levels. This
characteristic hormonal change of male aging is of interest
because lower T concentrations are commonly associated
with a number of clinical conditions of particular importance
such as metabolic syndrome, type 2 diabetes, carotid intima-
media thickness, and aortic and lower limb arterial disease
[53-55]. The effects related to the cardiovascular system are
particularly important because of the high personal and
economic costs. Putative mechanisms by which lower T levels
could contribute to an increased burden of cardiovascular
disease range from the loss of beneficial effects of T on
endothelial function and vasodilation to epidemiological
correlations between T and more favorable lipid profiles [56,
57]. Indeed, lower T is associated with higher body mass
index and fat mass, which are recognized cardiovascular risk
factors. A study by Nettleship et al. [58] provided evidence
that low serum T is linked to increased fatty streak formation.
Moreover, as already reported, many of these conditions
present in the elderly are accompanied by a pro-inflammatory
state expressed by the increasing levels of inflammatory
cytokines, including interleukin-6 (IL-6), tumor necrosis
factor alpha (TNF-alpha), and interleukin-1 beta (IL-1beta).
These inflammatory cytokines are known to modulate
lipid homeostasis, vascular endothelial function, plaque,
and atherosclerosis. During inflammation, peroxynitrite, a
potent pro-inflammatory nitro-oxidative species with an
established role in inflammation [59], induces endothelial
cell damage and increased microvascular permeability [60]
and activates redox-sensitive transcription factors, including
NF-xB and AP-1, which in turn regulate genes encoding the
pro-inflammatory and pronociceptive cytokines such as IL-
13, TNF-«, and IL-6 [61, 62]. Peroxynitrite also upregulates
adhesion molecules such as ICAM-1 and P-selectin to recruit
neutrophils at sites of inflammation [63] and autocatalyzes
the destruction of neurotransmitters and hormones such
as norepinephrine and epinephrine [64]. Age-associated
induction of NF-«B activation is especially interesting since
it seems to contribute significantly to endothelial activation
in aged vessels, a critical initial step in the development
of atherogenesis [65]. A significant clinical example of the
possible interaction between these factors is peripheral artery



disease (PAD), consisting of partial or complete obstruction
of the arteries in the lower limbs; it is one of the most common
manifestations of atherosclerosis and is more frequent in
aging men. Patients often describe claudication pain as
episodic, which may be accompanied by physical findings of
foot blanching and disappearance of pedal pulses. This was
attributed primarily to a flow-limiting stenosis or occlusion of
a conduit artery that limits oxygen delivery during exercise.
A large body of evidence indicates that, with exercise, limb
ischemia evokes an acute systemic response characterized
by increased oxidative stress, local and systemic inflamma-
tion and endothelial dysfunction [66, 67]. In patients with
claudication, these inflammatory responses to exercise may
have adverse interactions with both the microcirculation and
skeletal muscle metabolism, which could further compro-
mise exercise performance and increase pain.

5. Vitamin D, Testosterone, and Inflammation

Vitamin D, in particular its metabolite 25-hydroxyvitamin
D (25[OH]D), is widely recognized for its involvement
in calcium homeostasis and immunomodulatory effects.
Its hormonal action decreases the risk of many chronic
illnesses, including osteoporosis, osteoarthritis, metabolic
syndrome, fibromyalgia, and chronic fatigue syndrome [68-
70]. Vitamin D can be synthesized in the skin from sun
exposure and is found in salmon, mushrooms, eggs, and
dairy products.Biological actions of vitamin D are mediated
through the vitamin D receptor (VDR). The VDR is almost
ubiquitously expressed in human cells, which underlines the
clinical significance of the vitamin D endocrine system [68].
Altered vitamin D homeostasis is associated with increased
risk of developing obesity [71, 72], hypertension [73], glucose
intolerance, and metabolic syndrome [74]. Indeed, plasma
vitamin D levels were associated inversely with body mass
index (BMI) and fat levels and positively with HDL choles-
terol [75]. Furthermore, visceral adipose tissue was higher
in vitamin D deficient subjects. Sequestration of vitamin D
in body fat stores and its consequent reduced bioavailability
offer a plausible explanation for this association [76, 77].
Recent research revealed that calcitriol also exhibits multiple
anti-inflammatory effects. First, calcitriol inhibits the synthe-
sis and biological actions of pro-inflammatory prostaglandins
(PGs) by three mechanisms: suppression of the expression of
cyclooxygenase-2, the enzyme that synthesizes PGs; upregu-
lation of the expression of 15-hydroxyprostaglandin dehydro-
genase, the enzyme that inactivates PGs; and downregulation
of the expression of PG receptors that are essential for
PG signaling [78]. Moreover, vitamin D is able to suppress
the release of TNF-a and to enhance synthesis of the
anti-inflammatory cytokine IL-10 [79, 80]. Finally, vitamin
D enhances the effect of anti-estrogen-like substances. In
addition to these general/indirect effects, it has been shown
that vitamin D increases T levels. This is primarily due to
vitamin D being able to decrease the enzyme aromatase,
which converts T into E2.

In fact, vitamin D reduces the production of E2 itself
and blocks the production of the alpha-E2 receptor [81].
Thus, vitamin D increases T levels, as further confirmed by
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a study in which men with sufficient 25(OH)D levels had
significantly higher levels of T and significantly lower levels
of SHBG than 25(OH)D-insufficient men [82]. Moreover,
Pilz and colleagues reported that vitamin D supplementation
increases T levels [83]. Symptoms of T deficiency, which may
be indirectly contributed to by a lack of vitamin D, include
fatigue, depression, and muscle wasting. This reduced muscle
mass could promote pain in muscles, causing older men to
attribute muscle aches and pains to the aging process.

6. Clinical Aspects

As we have shown, there are various problems related to
androgen dysfunction and inflammation such as fatigue,
obesity, glycemic imbalance and altered immunity. These may
represent the precursors of more severe conditions leading to
disease in many individuals [84-86].

The neurodegenerative disorder X-linked-adrenoleukod-
ystrophy (X-ALD) is an example of interesting links between
T, lipid metabolism and inflammation. In X-ALD, a certain
percentage of patients present hypogonadism. Moreover, due
to the mutation of a peroxisomal transport protein, the
metabolic pathways of specific long chain fatty acids (FA,
very long chain fatty acids) are impaired [87, 88]. These FA
accumulate abnormally in plasma and in all tissues, although
the most affected ones are the nervous system, the adrenal
and the testis, all characterized by elevated steroidogenesis.
FA can be esterified in different forms, an important compo-
nent being FA esterified with cholesterol. They are vehicled
by lipoproteins. The adrenal cortex and testis of affected
patients contain intracytoplasmic lamellar inclusions consist-
ing of FA-cholesteryl esters [89]. Cholesterol, as mentioned
above, can be metabolized into androgens. In steroidogenic
tissues, free cholesterol can be obtained in three ways: after
cholesteryl ester hydrolysis, de novo synthesis from acetate,
or mainly imported from lipoproteins by specific receptor-
mediated pathways. In the adrenals, this mechanism is
mediated by adrenocorticotropic hormone (ACTH).

In X-ALD, since cholesterol is entrapped as esters in the
lamellar inclusions, it cannot be normally metabolized into T.
Moreover, the functionality of the T-converting enzyme 5a-
reductase is altered in X-ALD [90, 91], indicating an alteration
of the homeostasis of androgens. In X-ALD and in other
chronic disorders, alterations of lipid metabolism, such as
FA peroxisomal catabolism and esterification processes, and
the presence of secondary inflammation, augmented by the
release of interleukins and lipid-derived pro-inflammatory
mediators, can contribute to a T deficit or generally to an
alteration of T homeostasis and to the consequent clinical
symptoms of the patients.

7. Conclusion (See Figure 1)

Androgens are large functional molecules able to greatly
affect body functions. In this paper, we have considered the
relationships between the main androgen hormone, T, and
some aspects of inflammatory processes in order to high-
light possible mechanisms able to affect pain chronicization.
Indeed, it is becoming increasingly clear that inflammation,
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FIGURE 1: Representative schema of the clinical consequences suggested to be related to androgen deficiency. Lower testosterone levels are
associated with an increased metabolic risk, systemic inflammation, and chronic pain.

often not clearly acknowledged, is involved in many chronic
painful syndromes still far from being explained by the
“usual” pain system alterations.

Database

The methodology utilized here follows a narrative review
process. Some aspects of the systematic review process were
derived from observational studies along with previous sys-
tematic reviews. The search involved multiple sources includ-
ing PubMed. The search terminology included testosterone,
lipids, and inflammation.
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1. Introduction

Interrelations
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License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Our researches have shown that gestational stress causes exacerbation of inflammatory pain in the offspring; the maternal 5-HT1A
agonist buspirone before the stress prevents the adverse effect. The serotonergic system and hypothalamo-pituitary-adrenal (HPA)
axis are closely interrelated. However, interrelations between inflammatory pain and the HPA axis during the hyporeactive period
of the latter have not been studied. The present research demonstrates that formalin-induced pain causes a gradual and prolonged
increase in plasma corticosterone level in 7-day-old male rats; twenty-four hours after injection of formalin, the basal corticosterone
level still exceeds the initial basal corticosterone value. Chronic treatments of rat dams with buspirone before restraint stress
during gestation normalize in the offspring pain-like behavior and induce during the acute phase in the formalin test the stronger
corticosterone increase as compared to the stress hormonal elevation in animals with other prenatal treatments. Negative correlation
between plasma corticosterone level and the number of flexes+shakes is revealed in buspirone+stress rats. The new data enhance
the idea about relativity of the HPA axis hyporeactive period and suggest that maternal buspirone prior to stress during gestation
may enhance an adaptive mechanism of the inflammatory nociceptive system in the infant male offspring through activation of the
HPA axis peripheral link.

in response to pain impact found [8, 9, 17-19]. The HPA
axis during the postnatal development goes through the

between the serotonergic system and  period of hyporesponsiveness, which extends from the

hypothalamo-pituitary-adrenal (HPA) axis determine the
formation of mechanisms of stress adaptation [1-6]. Pain is a
stress and therefore can activate the HPA axis [7-15]. In this
case, inflammatory pain is still not clearly understood, and
the data available are inconsistent [9, 14-17]. In a widely used
model of inflammatory pain, the formalin test, activation
of the HPA axis with the nociceptive stimulus formalin
has been shown on adult awake rodents and differences
in the dynamics of release of ACTH and corticosterone

second to fourteenth postnatal days and is characterized
by a low level of the response of adrenals to many stress
stimuli [20]. Investigations of formalin-induced pain effects
on the HPA axis in infant rats could elucidate unexplored
previously interrelations between the tonic nociceptive and
stress systems during the period of hyporesponsiveness of
the latter. We revealed for the first time that prenatal stress
induces strengthening inflammatory pain-related response
in the formalin test and decrease of adaptive capacities in



infant rats; chronic injections of an agonist of serotonin
(5-HT) receptors 1A (5-HT1A) buspirone to dams prior
to stress during gestation cancel the adverse consequences
of the stress in the offspring [21]. In prenatally stressed
individuals, abnormalities in the HPA axis function [22] and
neurotransmitter systems including the serotonergic one
[23] were shown.

Serotonin acts as a growth factor in early cell division,
migration, and differentiation in the brain specifically in
development of the serotonergic system [24-27]. Many of
regulator influences on developing neurons 5-HT mediates
through presynaptic 5-HT1A autoreceptors in the raphe
nuclei [28, 29]. Later 5-HT and 5-HTIA receptors take part
in many kinds of behavior. The serotonergic system plays
an important role in pain transmission, its processing and
regulation [30-33]. Buspirone, serotoninergic anxiolytic and
antidepressant, mediates its effect through the serotonergic
system and the HPA axis. There are synergistic interrela-
tions between these systems impaired in prenatally stressed
individuals [23, 34-36]. A peculiar mechanism of buspirone
action has not been completely understood; it is also true for
its analgesic effect. Studies of effects of buspirone, an agonist
of presynaptic and a partial agonist of 5-HTIA receptors, on
the nociceptive system are limited, and the results obtained
do not coincide [37, 38]. Prenatal effect of buspirone on the
nociceptive system has not been studied until our researches.
Activation of the antinociceptive descending serotonergic
system and the decrease in hyperactivity of the HPA axis are
considered as potential mechanisms of analgesic action of
antidepressants. Activating effects of buspirone on the HPA
system are found in adult persons [39]. It may be suggested
that the period of hyporesponsiveness of the HPA, which is
characterized by alow level of reaction of adrenals in response
to many stress stimuli [20], will allow to prevent activating
influences of buspirone on the HPA axis.

The aim of our work was to study effects of maternal
buspirone prior to stress during gestation on the dynamics of
the inflammatory pain-like behavior and stress response of
corticosterone during the formalin test in the infant male rat
offspring and also to evaluate correlation between pain-like
and hormonal parameters.

2. Materials and Methods

2.1. Animals. All experimental procedures were approved by
the Local Ethics Committee for Animal Experiments of the
L. P. Pavlov Institute of Physiology and followed the guide-
lines published by the Committee for Research and Ethical
Issues of the IASP on ethical standards for investigations of
experimental pain in animals.

Adult female rats and male rats (Wistar) at the age
of 90 days were obtained from the vivarium of the I. P.
Pavlov Institute of Physiology RAN, St. Petersburg, Russia.
Two days after adaptation, the rats were mated. The days
of insemination and delivery were considered as gestational
day (GD) 0 and postnatal day (PD) 0, respectively. All
animals were maintained at constant temperature (20-22°C)
under the standard light-dark cycle (8.00 AM-8.00 PM) with
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unrestricted access to food and water. Seventeen rat dams
(controls) were not exposed to any impacts during gestation.
The equal number of remaining dams (n = 68) was ran-
domly treated with the 5-HT1A agonist buspirone (buspirone
hydrochloride, Sigma, 3 mg/kg, 1mL, i.p. at 9 AM) or with
injection of saline (control animals from the same litters, in
the same conditions of injections) from GD9 to GD2I. A half
of the treated rats from each group were randomly exposed to
restraint stress for 60 min (in 5 min after buspirone injection)
from GDI15 to GD21. All influences on gestational females
were identical to those used in our previous study [21]. The
dose of buspirone was sufficient for inducing an anxiolytic
effect in adult rats [40] and did not exceed the dose used for
pregnant rat dams to protect the fetal serotonergic system
against damaging effects of in utero ethanol exposure [41].
It should be noted that such dose of buspirone was not able
to implicate dopamine and norepinephrine in the mediation
of buspirone effects [42, 43]. Litters were called to 8 pups
(4 females and 4 males, as far as possible) in 48 hours after
birth. In the study, 7-day-old males born to the dams with the
above-mentioned treatments during gestation and to control
dams were used; females and remaining males were used in
other researches. There were 245 males offspring of control,
saline, saline + stress, buspirone, and buspirone + stress dams
in the study with formalin injection (about 6-8 males per a
group, no more than 3 animals from one dam); in addition,
80 male rats from the same litters were used as control for the
formalin, with saline injection into the hind limb.

2.2. Experimental Formalin-Induced Inflammatory Pain in
Infant Male Rats. Formalin test is widely used for evaluation
of tonic inflammatory pain and analgesic effects of various
pharmacological drugs [9, 44-47]. Flexing and shaking
behaviors are the specific expression of inflammatory pain-
related behavior in the formalin test in both infant and
adult rats [44, 45, 48, 49]; we used the formalin test as
previously described [21]. The formalin test allows evaluating
acute nociception (the first phase, 5-10 min after formalin
injection), tonic persistent nociception (the second phase
about 30-40 min), and functional activity of the descending
serotonergic inhibitory system (the interphase about 3-
10 min). The second phase appears during postnatal devel-
opment when the descending serotonergic inhibitory system
matures [45, 46]. Characteristics of the phases depend on
many factors including age and sex [50].

Each male rat was taken from the nest, injected intraplan-
tarly to the left hindpaw with formalin solution (2.5%, 10 uL),
and placed singly in a warm (25°C) chamber (25 x 20 x 10 cm)
with transparent glass walls encircled by mirrors to improve
the observation of the animal’s behavior [21, 51]. The number
of flexes + shakes was recorded using a computer program
that allows recording, quantifying, and analyzing the pain-
related behavior. In each group of the males, the number of
flexes + shakes was averaged for 3, 9, 21, 30, and 60 min after
formalin injection. Each animal was used only once.

2.3. Corticosterone Determination in Infant Male Rats. Blood
samples were collected by decapitation in the rats with differ-
ent prenatal treatments and in controls at 09:00-10:00 before
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and 24 hours after the formalin test for determination of basal
plasma corticosterone levels. During the formalin-induced
pain, blood sampling by decapitation occurred at 3, 9, 21, 30,
and 60 min after formalin injection. The blood samples were
centrifuged and the plasma was kept at —20°C no more than a
week. The plasma corticosterone (SIGMA-ALDRICH, USA)
levels (pg/dL) were measured by microfluorometry [52].

2.4. Statistical Analysis. Data are presented as mean +
S.D. Formalin-evoked flexing + shaking, and corticosterone
responses were analyzed by two-way ANOVA, with treatment
(control, saline, saline + stress, buspirone, and buspirone +
stress) and time as factors. Behavioral and corticosterone
responses during 3,9, 21, 30, and 60 minutes were separately
evaluated. Comparisons between the basal levels and the
data over time as well as comparisons between groups
with different types of treatment were conducted using tests
of simple effects. Besides pairwise comparisons, t-test and
Mann-Whitney test were performed. Pearson and Spear-
man Correlations were calculated to estimate relationships
between behavioral and hormonal variables. For all tests, P <
0.05 was considered to be statistically significant.

3. Results

Two-way ANOVA applied to pain-like responses (Figure 1)
resulted in a significant effect of the factor prenatal treatments
(F(4,114) = 5.094, P = 0.001); (F(3,114) = 56.545, P < 0.001).
Tests of simple effects showed a significant increase in the
number of flexes + shakes at 9, 30, and 60 min after formalin
injection in saline + stress as compared to saline (P < 0.05,
P < 0.05, and P = 0.014, resp.) and in saline + stress
as compared to the control (P = 0.002, P = 0.03, resp.)
(Figure 1). Tests of simple effects showed a decrease in the
number of flexes + shakes at 9, 21, 30, and 60 min after
formalin injection in buspirone + stress as compared to saline
+ stress (P = 0.002, P < 0.05, P < 0.05, and P = 0.002, resp.)
(Figure 1).

Two-way ANOVA applied to the level of plasma cor-
ticosterone (Figure 2) resulted in a significant effect of the
factor prenatal treatments (F(4,170) = 2.706, P = 0.002)
and time (F(5,170) = 22.574, P < 0.001). The significant
effects of factor prenatal treatment on dependent variable
corticosterone were revealed at 3 and 9 min (F(4,170) = 2.322,
P < 0.05; F(4,170) = 3.634, P < 0.007, resp.). Tests of simple
effects showed the corticosterone level at 3 min after formalin
injection was higher than basal level (P = 0.037) in buspirone
+ stress males; during the following time periods (9, 21, 30,
and 60 min), corticosterone was higher than basal level in
animals with all prenatal treatments (P < 0.05) (Figure 2).
Tests of simple effects (pairwise comparisons) or/and Mann-
Whitney test showed that only in buspirone + stress males
at 3 and 9min after formalin injection, the corticosterone
level was higher than similar hormonal level in animals
with all different prenatal treatments (P < 0.05). During
the following time course of formalin-induced pain, there
were no differences in the stress level of hormone between
animals with different prenatal treatments. Tests of simple

effects (pairwise comparisons) or/and Mann-Whitney test
showed that in the course of inflammatory pain, the level of
plasma corticosterone gradually increased (F5,170) = 22.574,
P < 0.001) and to the end of the formalin test (at 60 min)
was significantly higher than basal level (P = 0.001). Pairwise
comparisons showed that basal level 24 h after the formalin
test was greater than that prior to the formalin test (P = 0.001)
in animals with all prenatal treatments (P < 0.05) (Figure 2).

There were no significant differences in indices under
study in buspirone, saline, and control animals.

Correlation between plasma corticosterone level and the
number of flexes + shakes was revealed in buspirone + stress
male rats at 3 (- = 0.925, P = 0.008), 9 min (- = 0.937,P =
0.002), and 60 min (-7 = 0.690, P = 0.05) and in control rats
at 3min (-r = 0.90, P = 0.037) after injection of formalin.

Injection of saline to the left hindpaw (controls for
formalin injection) resulted in a few weak flexes + shakes
during some first minutes after injection only in prenatally
stressed males. Corticosterone response to pain was a specific
reaction; in control animals, an increase in the plasma
corticosterone in response to the procedure of saline injection
into the paw was less prolonged (no more than 30 min)
and did not exceed the value of corticosterone response to
formalin-induced pain (the data are not shown in the table).

4. Discussion

The dynamics of corticosterone stress response to inflam-
matory pain and participation of 5-HTIA receptors in it
were investigated in the present study in 7-day-old male
rats with various prenatal treatments. Evidence of increased
formalin-induced pain in prenatally stressed animals is in
agreement with the data that we obtained earlier [21]. Chronic
treatments of rat dams with the 5-HT1A agonist buspirone
prior to stress during gestational period increased resistance
of the tonic nociceptive system normalizing behavior in the
inflammatory pain model and changed the time course of
stress corticosterone response to formalin-induced pain in
the offspring.

Before our studies, in a widely accepted model of inflam-
matory pain, the formalin test, it was demonstrated in adult
awake rats that the nociceptive stimulus formalin induced
activation of the HPA axis and increased concentration of
ACTH and corticosterone [9,13,19]. Interestingly, the authors
that found the peak of the corticosterone release at 30 min
and its restored level at 80 min after formalin injection
concluded that the resulting release of corticosterone is
not antinociceptive as neither adrenalectomy nor high-dose
dexamethasone changed behavioral nociceptive responses
[9]. It is worthy to note that peaked time in release of
corticosterone in response to the formalin test as well as
the time of the hormonal restoration level after formalin
injection vary according to the authors from the 15-60 min
to 60-120 min, respectively [9, 13, 19]. These differences
may be attributed to peculiarities of the formalin test. The
behavioral response in the formalin test, represented by acute
and tonic phases of different chemical nature, depends on
concentrations and volumes of formalin solution, a place
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FIGURE : Pain-like responses recorded over different periods of time
(3,9, 21, 30, and 60 min) after injection of formalin (mean + SEM)
in 7-day-old male rats with different prenatal treatments. P < 0.05
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FIGURE 2: Basal levels of corticosterone and plasma corticosterone
levels (ug/dl) determined 3, 9, 21, 30, and 60 min after injection
of formalin (mean + SEM) in 7-day-old male rats with different
prenatal treatments. *P < 0.05 different from the basal level; *P <
0.05 different from the control, saline, saline + stress, and buspirone;
*P < 0.05 different from the basal level before injection of formalin.

of its injection, temperature in the room, a strain of rats,
and conditions of experimental performances [9, 50, 53,
54]. These factors determine involvement in the response of
various mediators influencing the intensity and dynamics of
release of corticosterone.

Our study is the first to evaluate the dynamics of corticos-
terone release in conditions of inflammatory pain in infant
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rats during the hyporesponsive period of the HPA axis [20].
The new data obtained testify that inflammatory formalin-
induced pain evokes the stress response of corticosterone in
male rats during the hyporesponsive period of the HPA axis.
This reaction is a specific reaction to pain; in control animals,
an increase in the plasma corticosterone in response to the
procedure of saline injection into the paw was less prolonged
and weaker than the hormonal response to formalin-induced
pain. We have revealed that the characteristic feature of the
dynamics of corticosterone response to inflammatory pain
in infant rats is a gradual increase of hormonal release in
the formalin test, so to the end of the response the level of
corticosterone considerably exceeded its initial level. Most
importantly, the results indicate that 24 hours after the
formalin test, the corticosterone level still exceeds the basal
corticosterone value before the formalin test in males of all
the groups under study. This fact cannot be associated with
an increase in corticosterone basal level in intact 8-day-old
male rats as compared to that in 7-day-olds, as available data
and our own results indicate equal value in the basal level
of plasma corticosterone in 5-8-day-old male rats that were
not exposed to any prenatal impacts [55]. Based on these
results, we conclude that the peripheral link of the HPA axis
responds to inflammatory pain in the formalin test in infant
rats with a prolonged reaction. Experimental data reported
here enhance the idea of relativity of hyporesponsive period
of the HPA axis [20]. Up to now, there has not been any
detailed work done to find a clear explanation for this period
in the development of the HPA axis.

The results obtained provide new important information
that maternal 5-HT1A agonist buspirone prior to stress
during gestation induces in the offspring during the acute
phase in the formalin test the stronger corticosterone increase
as compared to the stress hormonal elevation in animals with
other prenatal treatments. In the following time periods of
formalin-induced pain, the animals with different prenatal
treatments do not show significant differences in stress
corticosterone level. Negative correlation revealed between
the corticosterone concentration and the number of flexes
+ shakes during the first nine minutes after injection of
formalin in buspirone + stress male rats is noteworthy. These
results suggest that activation of the corticosterone release via
5-HTI1A receptors may facilitate some adaptive mechanisms
associated with a decrease of inflammatory pain in buspirone
+ stress rats.

There are multiple pathways through which 5-HT and
its agonists may stimulate the HPA axis [56]. It is shown
that formalin activates ascending ways to the HPA [57]. The
chemical stimulus formalin induces appearance of “inflam-
matory soup” from various chemical substances including 5-
HT released from platelets and also activation of neutrophils
and leucocytes that produce proinflammatory cytokines IL-
6 [17]. Cytokines contribute to the increase in ACTH and
corticosterone [17] and to the exacerbation of nociceptive
processing [58]. Interaction between the HPA axis and 5-
HT system would be dependent on concentration of 5-HT
released from platelets during inflammation which reaches
the central nervous sites, but this question is poorly known.
Both systems are highly plastic during maturation [6], and
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prenatal stress impairs interaction between the HPA axis and
5-HT system and alters their functional activity in adults
[2, 35]. The expression of 5-HT1A receptors is found during
the initial stages of prenatal development of the hippocampus
[59] and prenatal stress impairs their development [60]. There
is evidence that buspirone penetrates through the placental
and blood brain barriers [61] and is able to exert the protective
effects presumably through its ability to overcome the deficit
of fetal serotonin and to stimulate fetal 5-HT1A receptors
[62]. Further studies are needed to evaluate influences of
maternal buspirone prior to stress during gestation to the
HPA axis response during the inflammatory pain immedi-
ately after finishing the period of responsiveness in the HPA
axis development. Thus, new data indicate an important role
of 5-HT1A receptors in the development of close relationships
between the HPA axis and tonic nociceptive system that
mediate adaptation of organism to extreme conditions.

5. Summary

The formalin-induced pain causes a gradual and prolonged
increase in plasma corticosterone level during the persistent
pain-like behavior in 7-day-old male rats. Chronic treatments
of rat dams with buspirone before restraint stress during
gestation normalize in the offspring inflammatory pain
behavior and induce during the acute phase in the formalin
test the stronger corticosterone increase as compared to the
stress hormonal elevation in animals with other prenatal
treatments. Buspirone + stress rats display the negative cor-
relation between plasma corticosterone level and the number
of flexes + shakes. Thus, the new data enhance the idea about
relativity of the HPA axis hyporeactive period and suggest
that maternal buspirone prior to stress during gestation
may enhance an adaptive mechanism of the inflammatory
nociceptive system in the infant male offspring through
activation of the HPA axis peripheral link.
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