Advances in Deep Learning
Methods for Cyber Attack

Recognition, Prediction, and
Mitigation

Lead Guest Editor: Robertas Damasevicius
Guest Editors: Nureni Ayofe Azeez and Lalit Garg

Advances in Deep Learning Methods for Cyber
Attack Recognition, Prediction, and Mitigation

Security and Communication Networks

Advances in Deep Learning Methods for
Cyber Attack Recognition, Prediction,
and Mitigation

Lead Guest Editor: Robertas Damasevicius
Guest Editors: Nureni Ayofe Azeez and Lalit Garg

Copyright © 2023 Hindawi Limited. All rights reserved.

This is a special issue published in “Security and Communication Networks.” All articles are open access articles distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

Chief Editor

Roberto Di Pietro, Saudi Arabia

Associate Editors

Jiankun Hu (), Australia
Emanuele Maiorana (), Italy
David Megias (), Spain
Zheng Yan (), China

Academic Editors

Saed Saleh Al Rabaee(2), United Arab
Emirates

Shadab Alam, Saudi Arabia
Goutham Reddy Alavalapati(), USA
Jehad Ali (%), Republic of Korea
Jehad Alj, Saint Vincent and the Grenadines
Benjamin Aziz ("), United Kingdom
Taimur Bakhshi (®), United Kingdom
Spiridon Bakiras (), Qatar

Musa Balta, Turkey

Jin Wook Byun (i), Republic of Korea
Bruno Carpentieri (), Italy

Luigi Catuogno (), Italy

Ricardo Chaves (), Portugal
Chien-Ming Chen (), China

Tom Chen (1), United Kingdom
Stelvio Cimato (1), Italy

Vincenzo Conti(l), Italy

Luigi Coppolino (1), Italy

Salvatore D'Antonio (9, Italy
Juhriyansyah Dalle, Indonesia
Alfredo De Santis, Italy

Angel M. Del Rey (), Spain

Roberto Di Pietro (2, France

Wenxiu Ding (2), China

Nicola Dragoni (), Denmark

Wei Feng (1), China

Carmen Fernandez-Gago, Spain
AnMin Fu(®, China

Clemente Galdi(), Italy

Dimitrios Geneiatakis (), Italy
Muhammad A. Gondal (), Oman
Francesco Gringoli (), Italy

Biao Han(»), China

Jinguang Han (), China

Khizar Hayat, Oman

Azeem Irshad, Pakistan

M.A. Jabbar (), India

Minho Jo (%), Republic of Korea
Arijit Karati(»), Taiwan

ASM Kayes (), Australia

Farrukh Aslam Khan (%), Saudi Arabia
Fazlullah Khan (%), Pakistan
Kiseon Kim (1), Republic of Korea
Mehmet Zeki Konyar, Turkey
Sanjeev Kumar, USA

Hyun Kwon, Republic of Korea
Maryline Laurent (), France
Jegatha Deborah Lazarus (), India
Huaizhi Li(®), USA

Jiguo Li(®), China

Xueqin Liang , Finland

Zhe Liu, Canada

Guangchi Liu (9, USA

Flavio Lombardi (), Italy

Yang Lu, China

Vincente Martin, Spain

Weizhi Meng (2), Denmark
Andrea Michienzi (), Italy

Laura Mongioi (), Italy

Raul Monroy (), Mexico
Naghmeh Moradpoor (), United Kingdom
Leonardo Mostarda (), Italy
Mohamed Nassar (), Lebanon
Qiang Ni, United Kingdom
Mahmood Niazi (), Saudi Arabia
Vincent O. Nyangaresi, Kenya

Lu Ou(}), China

Hyun-A Park, Republic of Korea
A. Peinado (19, Spain

Gerardo Pelosi (1), Italy

Gregorio Martinez Perez(2), Spain
Pedro Peris-Lopez (), Spain

Carla Rafols, Germany

Francesco Regazzoni, Switzerland
Abdalhossein Rezai(2), Iran
Helena Rifa-Pous (), Spain

Arun Kumar Sangaiah, India
Nadeem Sarwar, Pakistan

Neetesh Saxena, United Kingdom
Savio Sciancalepore(i2), The Netherlands

https://orcid.org/0000-0003-0230-1432
https://orcid.org/0000-0002-4312-6434
https://orcid.org/0000-0002-0507-7731
https://orcid.org/0000-0002-9697-2108
https://orcid.org/0000-0001-8842-493X
https://orcid.org/0000-0002-4335-8331
https://orcid.org/0000-0002-0589-7924
https://orcid.org/0000-0001-5089-2025
https://orcid.org/%200000-0003-4750-7864
https://orcid.org/0000-0002-8964-0746
https://orcid.org/0000-0002-5450-3207
https://orcid.org/0000-0003-1960-9986
https://orcid.org/0000-0002-6315-4221
https://orcid.org/0000-0002-4450-3983
https://orcid.org/0000-0002-6502-472X
https://orcid.org/0000-0001-8037-1685
https://orcid.org/0000-0003-1737-6218
https://orcid.org/0000-0002-8718-111X
https://orcid.org/0000-0002-2079-8713
https://orcid.org/0000-0001-9327-0138
https://orcid.org/0000-0002-3600-0016
https://orcid.org/0000-0003-1909-0336
https://orcid.org/0000-0002-8531-9226
https://orcid.org/0000-0001-9575-2990
https://orcid.org/0000-0002-8131-3206
https://orcid.org/0000-0002-1632-5737
https://orcid.org/0000-0002-2988-700X
https://orcid.org/0000-0001-6455-502X
https://orcid.org/0000-0003-1688-0113
https://orcid.org/0000-0003-2621-582X
https://orcid.org/0000-0002-5082-5727
https://orcid.org/0000-0002-4993-9452
https://orcid.org/0000-0003-4059-2728
https://orcid.org/0000-0001-7311-6459
https://orcid.org/0000-0001-5605-7354
https://orcid.org/0000-0002-2421-2214
https://orcid.org/0000-0002-7023-7172
https://orcid.org/0000-0003-4227-6067
https://orcid.org/0000-0001-9166-0570
https://orcid.org/0000-0002-7256-3721
https://orcid.org/0000-0001-8069-3801
https://orcid.org/0000-0002-5115-0928
https://orcid.org/0000-0002-6532-2081
https://orcid.org/0000-0003-4588-3196
https://orcid.org/0000-0003-0723-7847
https://orcid.org/0000-0003-4384-5786
https://orcid.org/0000-0001-8005-8701
https://orcid.org/0000-0003-2341-0996
https://orcid.org/0000-0002-3465-995X
https://orcid.org/0000-0002-8709-2678
https://orcid.org/0000-0001-8852-8317
https://orcid.org/0000-0001-8857-4436
https://orcid.org/0000-0001-7318-7644
https://orcid.org/0000-0002-8441-781X
https://orcid.org/0000-0003-1183-736X
https://orcid.org/0000-0002-3812-5429
https://orcid.org/0000-0001-5532-6604
https://orcid.org/0000-0001-6943-0760
https://orcid.org/0000-0001-8529-499X
https://orcid.org/0000-0003-0923-0235
https://orcid.org/0000-0003-0974-3639

De Rosal Ignatius Moses Setiadi (),
Indonesia

Wenbo Shi, China

Ghanshyam Singh (©), South Africa
Vasco Soares, Portugal

Salvatore Sorce (), Italy
Abdulhamit Subasi, Saudi Arabia
Zhiyuan Tan (%), United Kingdom
Keke Tang(®), China

Je Sen Teh ("), Australia

Bohui Wang, China

Guojun Wang, China

Jinwei Wang (), China

Qichun Wang (%, China

Hu Xiong (%), China

Chang Xu (), China

Xuehu Yan (%), China

Anjia Yang (), China

Jiachen Yang (), China

Yu Yao (), China

Yinghui Ye, China

Kuo-Hui Yeh (%), Taiwan

Yong Yu(), China

Xiaohui Yuan (), USA

Sherali Zeadally, USA

Leo Y. Zhang, Australia

Tao Zhang, China

Youwen Zhu (), China

Zhengyu Zhu (), China

https://orcid.org/0000-0001-6615-4457
https://orcid.org/0000-0002-5159-3286
https://orcid.org/0000-0003-1976-031X
https://orcid.org/0000-0001-5420-2554
https://orcid.org/0000-0003-0377-1022
https://orcid.org/0000-0001-5571-4148
https://orcid.org/0000-0002-9366-5671
https://orcid.org/0000-0003-3474-4115
https://orcid.org/0000-0001-6137-6667
https://orcid.org/0000-0002-9726-7232
https://orcid.org/0000-0001-6388-1720
https://orcid.org/0000-0002-7958-6571
https://orcid.org/0000-0003-2558-552X
https://orcid.org/0000-0001-5458-541X
https://orcid.org/0000-0003-0598-761X
https://orcid.org/0000-0003-0667-077X
https://orcid.org/0000-0001-6897-4563
https://orcid.org/0000-0003-4365-9713
https://orcid.org/0000-0001-6562-8243

Contents

LogPal: A Generic Anomaly Detection Scheme of Heterogeneous Logs for Network Systems
Lei Sun () and Xiaolong Xu
Research Article (12 pages), Article ID 2803139, Volume 2023 (2023)

Internet-of-Things-Based Suspicious Activity Recognition Using Multimodalities of Computer Vision
for Smart City Security

Amjad Rehman (), Tanzila Saba (), Muhammad Zeeshan Khan, Robertas Damasevi¢ius (), and Saeed Ali
Bahaj

Research Article (12 pages), Article ID 8383461, Volume 2022 (2022)

E-minBatch GraphSAGE: An Industrial Internet Attack Detection Model

Jin Lan (), Jia Z. Lu(®), Guo G. Wan, Yuan Y. Wang, Chen Y. Huang, Shi B. Zhang, Yu Y. Huang, and Jin N.
Ma

Research Article (12 pages), Article ID 5363764, Volume 2022 (2022)

Light Weighted CNN Model to Detect DDoS Attack over Distributed Scenario

Harish Kumar (), Yassine Aoudni (), Geovanny Genaro Reivan Ortiz ("), Latika Jindal (), Shahajan
Miah (), and Rohit Tripathi

Research Article (10 pages), Article ID 7585457, Volume 2022 (2022)

Memory-Augmented Insider Threat Detection with Temporal-Spatial Fusion
Dongyang Li(»), Lin Yang("), Hongguang Zhang (), Xiaolei Wang (), and Linru Ma
Research Article (19 pages), Article ID 6418420, Volume 2022 (2022)

A Deep Learning Method for Android Application Classification Using Semantic Features
Zhiqiang Wang (), Gefei Li(["), Zihan Zhuo (), Xiaorui Ren(), Yuheng Lin (), and Jieming Gu
Research Article (16 pages), Article ID 1289175, Volume 2022 (2022)

https://orcid.org/0009-0002-4495-4802
https://orcid.org/0000-0001-6254-5864
https://orcid.org/0000-0002-3817-2655
https://orcid.org/0000-0003-3138-3801
https://orcid.org/0000-0001-9990-1084
https://orcid.org/0000-0003-0548-5468
https://orcid.org/0000-0002-3760-8461
https://orcid.org/0000-0003-2302-5828
https://orcid.org/0000-0002-6851-9488
https://orcid.org/0000-0003-0643-8022
https://orcid.org/0000-0003-1773-2171
https://orcid.org/0000-0002-4928-3449
https://orcid.org/0000-0002-8877-6019
https://orcid.org/0000-0003-0818-2526
https://orcid.org/0000-0002-6956-8177
https://orcid.org/0000-0003-0734-0078
https://orcid.org/0000-0002-5342-4275
https://orcid.org/0000-0002-4530-5401
https://orcid.org/0000-0002-1789-8414
https://orcid.org/0000-0002-6851-437X
https://orcid.org/0000-0002-1426-4803
https://orcid.org/0000-0001-7655-0525
https://orcid.org/0000-0002-6953-2385
https://orcid.org/0000-0002-2466-988X

Hindawi

Security and Communication Networks
Volume 2023, Article ID 2803139, 12 pages
https://doi.org/10.1155/2023/2803139

Research Article

WILEY | Q@) Hindawi

LogPal: A Generic Anomaly Detection Scheme of Heterogeneous

Logs for Network Systems

Lei Sun®' and Xiaolong Xu ®"?

Jiangsu Key Laboratory of Big Data Security & Intelligent Processing, Nanjing University of Posts and Telecommunications,

Nanjing 210023, China

2School of Computer Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China

Correspondence should be addressed to Xiaolong Xu; xuxl@njupt.edu.cn

Received 5 February 2022; Revised 26 September 2022; Accepted 12 October 2022; Published 11 April 2023

Academic Editor: Lalit Garg

Copyright © 2023 Lei Sun and Xiaolong Xu. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

As a key resource for diagnosing and identifying problems, network syslog contains vast quantities of information. And it is the
main source of data for anomaly detection of systems. Syslog presents the characteristics of large scale, diverse types and sources,
data noise, and quick evolvement, which makes the detection methods not generic enough. To effectively address problem of log
anomaly labelling caused by massive heterogeneous logs, we propose LogPal, a generic anomaly detection scheme of hetero-
geneous logs for network systems, which innovatively combines template sequences and raw log sequences to construct and
generate log pattern events. By improving the self-attention mechanism of transformer, LogPal proactively synthesizes self-
attention and handles log pattern events in a unique way. The model can make full use of log template and sequence semantic
information, by automatically becoming aware of the pattern of logs. We implemented experiments to evaluate the performance
of LogPal on publicly available datasets, and the outcome of the experiments shows that LogPal automatically adapts to log type

changes and improves precision, recall, and F1 score to 99% on publicly available datasets.

1. Introduction

When the system is running, syslog is used to record the
runtime state and events of the system, including the
anomalies of the system. As the most reliable source of
information for monitoring the health of a system, syslog
contains massive amounts of information and is the main
source of data for anomaly detection in the system [1]. For
traditional standalone systems, developers write specific
rules based on domain knowledge or manually check logs to
detect system anomalies.

However, modern information systems usually adopt a
distributed architecture. Syslog is multisourced and het-
erogeneous. Syslog usually originates from multiple sub-
systems with various types, structures, implementations,
versions, and deployment environments [2, 3]. The approach
to anomaly detection, which relies heavily on manual check
of logs, is almost unworkable for large-scale system.

Moreover, developers usually use free text to record system
time for convenience and flexibility. Examples of hetero-
geneous logs are shown in Table 1.

More importantly, just like any other software main-
tenance, syslog is constantly evolving. Developers may
frequently modify the source code, including logging
statements. So, this can create a new log pattern that has not
appeared and affected the results of anomaly detection. As
Kabinna et al. [4] observed, in their research project, about
20%~45% of the logging statements changed during their
lifecycle. Many new log events and log sequences are gen-
erated by dynamic logging statements.

Therefore, many automated anomaly detection methods
based on logs have been proposed in recent years, and these
methods are mainly classified into unsupervised learning
and supervised learning. Unsupervised learning methods
usually use machine learning techniques such as clustering
and PCA [5-8], but unsupervised learning tends to be less

mailto:xuxl@njupt.edu.cn
https://orcid.org/0009-0002-4495-4802
https://orcid.org/0000-0001-6254-5864
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/2803139

2 Security and Communication Networks
TaBLE 1: Examples of heterogeneous logs.
Log type Detailed message
Hadoop 2015-10-17 15:38:05,258 INFO [main] org.Apache.hadoop.metrics2.impl.MetricsSystemImpl: MapTask metrics system
started
Thunderbird 2005.11.09 #8# Nov 9 12:20:55 #8#/#8# sshd[16228]: password authentication for user #41# accepted

Blue gene (L)

2005-06-03-15.42.50.363779 R02-M1-N0O-C:J12-U11 RAS KERNEL INFO instruction cache parity error corrected

accurate compared to supervised learning methods. Su-
pervised learning methods generally learn the anomaly
patterns of logs based on anomaly labelling to achieve the
purpose of anomaly detection. And supervised learning
methods usually use deep learning methods such as LSTM
and CNN [9-12]. Although some of the above methods can
effectively detect anomalies, log sequence anomaly detection
problems face the following challenges:

(1) It is rather difficult to achieve a balance between
learning log templates and raw log semantic infor-
mation. Thanks to the rapid development of natural
language processing and deep learning, some
methods build log anomaly detection methods based
on raw log sequences when solving the heteroge-
neous log anomaly labelling problems, and there is
hardly any parsing of the raw log sequences, making
it difficult for models to utterly learn log word vector
semantics or patterns. There are also approaches that
parse the raw logs by extracting log sequence tem-
plates and use the log templates as input to build
template-based anomaly detection network models.
However, these approaches simply using log tem-
plate sequences as training data to obtain word
vectors for the templates, ignoring the key textual
information specific to the raw logs, which can lead
to more serious results. For example, two or more
normal log sequences and anomalous log sequences
are considered the same template by removing the
critical variable part, and the model “considers” log
sequences with different labels as the same input,
which is quite fatal for anomaly detection. Therefore,
how to make the model understand the log patterns
more easily while retaining all the information of log
semantics becomes one of the key issues for log-
based anomaly detection.

(2) There is a large amount of noise in log data. A certain
level of noise is inevitably interspersed in the col-
lection and preprocessing of log data [13]. Log data
are derived from various events that occur on dis-
tributed hardware and software systems. These
events include both events that characterize the
system as anomalous, such as being subject to DDoS
attacks, storage failures, anomalous system behavior,
and network jitter, and events that characterize the
system as normal, such as successful ping sessions,
successful subsystem startups, and file reads and
writes. Since logs are usually generated by multiple
processes or threads of the system, a log sequence
often contains multiple normal/anomalous. This
results in an anomalous log sequence often

interspersed with one or more normal logs, pre-
senting a significant challenge for log sequence
anomaly detection. In addition, in large-scale sys-
tems, many logs are generated individually by geo-
graphically distributed components and then
uploaded to a centralized location for further anal-
ysis. This collection process can lead to missing,
duplicated, or disordered log sequences (e.g., due to
network errors, limited system throughput, storage
issues, etc.) [14]. A McKinsey network survey [15]
found that 80% to 98% of logs are just noise, which
makes processing and analyzing log data tricky.
Noise in log data hinders the effectiveness of existing
log-based anomaly detection methods.

(3) Accuracy and recall are still difficult to balance. In
anomaly detection based on heterogeneous logs, the
precision rate refers to the proportion of true
anomalous logs among those predicted to be
anomalous; the recall rate refers to the proportion of
logs that are predicted to be anomalous among all
true anomalous logs. As we all know, there exists a
relation of “as one falls, another rises.” It is an uphill
battle to have both accuracy and recall. The system
can generate hundreds of millions of system logs in
just a few months, among which the anomalous logs
can reach hundreds of thousands; even if there is a
1% error in the precision rate, there may be thou-
sands of false positives, which is a great vexation for
operations staff. Likewise, if the recall rate has 1%
error, this means that there will be thousands of
anomalous logs ignored, and some of them may be
caused by fatal failures, which will cause serious
losses. How to balance and improve the two is one of
the most important challenges for researchers to
overcome today.

To solve the above key challenges, in this study, we
propose a generic anomaly detection mechanism for het-
erogeneous logs, called LogPal, which filters the raw system
logs, then uses the FT-tree method to parse the log templates,
and next splices the templates with the raw logs to generate
log pattern events, thus realizing the automatic parsing of
heterogeneous logs. Moreover, based on the semantic
similarity of the anomalous sequences of heterogeneous logs,
we combine natural language processing methods and deep
learning methods to improve the transformer model to learn
log patterns more adaptively and effectively to achieve
anomaly detection of heterogeneous logs. The contributions
of this study can be summarized in the following points:

(1) To address the difficult problem of balancing log
templates and all semantic information of the raw

Security and Communication Networks

logs, a new log pattern event generation method for
heterogeneous logs is proposed, which first filters the
log sequences for noise reduction, then uses the FT-
tree for template extraction, and then innovatively
combines the filtered log sequences to build log
pattern events, and the combined pattern events will
consist of two parts (template number and filtered
real logs).

(2) For the two parts that are different from each other
by log pattern events, after embedding the pattern
events into log pattern vectors, the synthetic atten-
tion approach is prospectively used to improve the
transformer model to process log pattern events
differently, so as to build a pattern-aware learning
model for heterogeneous logs.

(3) To address the large amount of noise present in log
sequences, in the synthetic attention part, the
model’s capability and computational complexity are
balanced by the relative deviations of different to-
kens. The input tokens focus on each token, thinning
out Tokens with different deviations away from itin a
fine-to-coarse fashion, as a way to reduce or even
ignore noise in the log sequence.

The rest of the study is organized as follows. Section 2
analyzes the work related to log-based anomaly detection. In
Section 3, we introduce the framework of LogPal and the
workflow of log parsing and anomaly detection in detail.
Section 4 describes the experimental environment and
datasets, evaluation indicators, experimental results, and the
corresponding analysis. Section 5 concludes the study and
looks forward to future work.

2. Related Work

The traditional machine learning approaches are playing an
increasingly influential role in log anomaly detection. For
example, Bodik et al. [16] use regression-based analysis
techniques to automatically classify and identify perfor-
mance crises by constructing a new representation of data
center state, called a fingerprint, which is constructed by
statistical selection and summarization of hundreds of
performance metrics typically collected on such systems. It
can be used to detect specific performance crises that have
been seen before, but has limited effects on new unseen
performance crises.

Chen et al. [17] proposed a decision tree learning method
to diagnose failures in large Internet sites, which is the first
application of decision trees to anomaly detection. The
method records the runtime attributes of each request and
applies automated machine learning and data mining
techniques to determine the cause of failure. The algorithm
was able to successfully identify 13 of the 14 true causes of
failure, achieving a 93% identification rate.

Although effective, traditional machine learning
methods often require manual extraction of features from
the raw logs, and the results of the model output depend
heavily on the extraction of features. In addition, traditional
machine learning methods cannot effectively address the

heterogeneity and evolution of logs, making the accuracy of
anomaly detection based on traditional machine learning
methods not very high. With the rapid development of deep
learning and natural language processing, research has fo-
cused on the application of sequence-based [9-12, 18-21]
models. Du et al. [9] designed the DeepLog framework using
LSTM neural networks to realize online anomaly detection
on system logs. DeepLog uses not only log keys, but also
metric values in log entries to detect anomalies, and it relies
only on a small training dataset consisting of “normal log
entries.” The LogMerge anomaly detection method pro-
posed by Zhang et al. [13] combines LSTM and CNN
methods to effectively extract the backward and forward
dependencies of log sequences, yet significantly reduces the
impact brought by noise in log sequences. LogMerge learns
the semantic similarity of multisyntax logs, which enables
the migration of log anomaly patterns across log types and
greatly reduces the anomaly annotation overhead. LSTM
with attention mechanism has also been used to improve the
performance of complex sequence modeling tasks, such as
those for which Zhang et al. [14] proposed the anomaly
detection method LogRobust. LogRobust extracts semantic
information of log events and represents them as semantic
vectors. Then, it detects anomaly using an attention-based
bi-LSTM model that captures contextual information in log
sequences and automatically learns the importance of dif-
ferent log events. In this way, LogRobust can identify and
handle unstable log events and sequences, is robust to
unstable log data, and solves the problems of unstable log
data in anomaly detection, but when the log sequences span
is large and the network is deep, it can greatly increase the
calculation. These are some explorations of log sequence
anomaly detection with LSTM, but further improvements
are needed in detecting accuracy and reducing computa-
tional overhead.

Transformer [22] is a state-of-the-art NLP architecture
based on self-attention, it breaks the limitation that LSTM
models cannot be computed in parallel, and the self-at-
tention mechanism is a more interpretable model that has
achieved many impressive results on natural language
processing tasks, and in recent years, gradually more and
more researchers have been applying this model to the field
of log anomaly detection. For example, Nedelkoski et al. [18]
proposed Logsy, a classification-based method to learn log
representations that allow to distinguish between normal
system log data and anomaly samples from auxiliary log
datasets, easily accessible via the Internet. The idea behind
Logsy is that the auxiliary dataset is sufficiently informative
to enhance the representation of the normal data, yet diverse
enough to regularize against overfitting and improve gen-
eralization. Steverson et al. [19] detect attacks on an en-
terprise network by applying mining NLP techniques to
Windows Event Logs (WELs), using transformer models
and self-supervised training methods. A self-supervised
anomaly detection model was constructed by combining
deep learning methods, traditional machine learning, and
natural language processing. The model filters log into a
series of words with a few simple steps. The model does not
perceive template for input and has poor generalization

ability to logs of the same template that have not appeared, in
addition to the simple filtering of logs makes it difficult to
eliminate the effect of log noise and may even make log data
noisier. Le and Zhang [23] proposed NeuralLog, a novel log-
based anomaly detection approach that does not require log
parsing. NeuralLog extracts the semantics from raw log
sequences and represents them as semantic vectors. These
representation vectors are then used to detect anomalies
using a transformer-based classification model.

There are other deep learning methods for log anomaly
detection. Qi et al. [24] proposed a novel log-based anomaly
detection method called Adanomaly, which uses the BiIGAN
model for feature extraction and an ensemble approach for
anomaly detection. Han et al. [25] proposed a data aug-
mentation strategy that generates a set of anomalous se-
quences by negative sampling so that practitioners can use
the observed normal sequences and the generated anoma-
lous sequences to train a binary classification model.

3. Classification-Based Log Anomaly Detection

3.1. Framework. To address the challenges brought by the
heterogeneity, evolution, and data noise of logs, we propose
LogPal for generic anomaly detection for heterogeneous logs
under massive noise. LogPal can automatically parse het-
erogeneous logs and improve the accuracy of syslog anomaly
detection by combining the raw logs to obtain the final log
pattern events, and LogPal can sense the log patterns
through an improved transformer model to achieve anomaly
detection. This section describes the overall framework of
LogPal and the details of each part.

Figure 1 shows the overall framework of LogPal, which is
divided into two modules: the offline training module and
the online detection module. In the offline training module,
LogPal first uses the FT-tree method to extract templates
from the raw logs, and the templates are combined with the
raw logs to parse them into new log pattern events, and
construct pattern vectors based on the log pattern events.
LogPal inputs the pattern vectors into the transformer deep
neural network model of synthetic attention and trains a
general anomaly detection model for heterogeneous logs. In
the online detection module, LogPal maps online log se-
quences to pattern vectors based on the above method,
judges whether an online log sequence is anomalous
according to the trained anomaly detection model, and
generates an alarm if it is an anomalous log sequence.

3.2. Pattern Vector Construction. Syslog is usually an un-
structured natural language text written by different de-
velopers and often needs to be parsed by log parsers before it
can be effectively applied for anomaly detection based on
machine learning, deep learning, and other methods. Cur-
rently, it is a common practice to parse syslog by extracting
templates from the syslog. A template is usually an invariant
part of the syslog that represents the general type and
meaning of the event expressed by the log sequence, and
similar log sequences can be represented by the same
templates, e.g., “** startup succeeded” is “syslog: klogd

Security and Communication Networks

startup succeeded” which is a template for “syslog: klogd
startup succeeded.” Compared with the raw log, the template
removes the variable part “syslog: klogd” and keeps the main
part of the event, i.e., “A process or port started successfully.”
This template can represent not only the log sequence
“syslog: klogd startup succeeded,” but also other log se-
quences that describe the same event as this log sequence,
such as “syslog: syslogd startup succeeded.”

We use the FT-tree template parser [26] for template
extraction. FT-tree is an extended prefix tree structure with
the basic idea that a fixed part of a log sequence is usually the
longest combination of frequently occurring words.
Therefore, extracting templates is equivalent to identifying
the longest combination of frequently occurring words from
the logs. Numerous experiments based on production en-
vironment logs show that FT-tree supports incremental
learning with high accuracy and high template matching
efficiency. However, simply taking log template sequences as
training data and constructing template vectors based on
them, although effective, ignores key textual information
peculiar to the raw logs, which results in two or more normal
and exception log sequences, removing the critical variable
parts, and generating the same template. This makes the
model “think” of log sequences with different labels as the
same input, which is fatal for the log anomaly detection
model.

In the end, we adopt the frequently used textual pre-
processing library torchtext, which filters abundant numbers
and special character noise in the raw log sequences and
applies character case conversion, then uses FT-tree for
template extraction. The extracted log template sequences
are encoded as natural number sequences from 1 to #, and
each number represents the type of each template. So far, the
raw log sequences have been transformed into template tag
sequence, and finally new textual token sequences are
generated and combined with the raw syslog. A combined
pattern event will be composed of two parts (template
number and filtered syslog). The new textual tokens se-
quences not only abstract the main part of each log sequence
but also fully retains all the key information of the variable
part. In addition, to preserve the semantics of the two parts
of log pattern events and reduce or even eliminate the impact
of heterogeneous log anomaly detection, LogPal uses all log
pattern event tokens (template numbers arranged before
syslog sequences) as training data to obtain word vectors of
template words and raw syslog sequences and constructs
pattern vectors based on them. GloVe [27] integrates latent
semantic analysis based on singular value decomposition
and the word2vec algorithm by introducing co-occurrence
probabilities matrix, which uses both global statistical fea-
tures of the corpus and local context features. GloVe uses the
lexical co-occurrence statistics to change their weights in the
objective function J, which is specified as follows:

N
T=Y (X)) v+ b+ by~ log(X,), (1)
i,j

where v; and v; are the word vectors of words i and j, b; and
b; are two deviation terms, f is the weight function, and N is

Security and Communication Networks

Offline Training Module
Historical
Ul e Template 1
Template 2

[—————1, Template Extraction Template 3

Filtered Logs | g

i

Pattern Event 1
Pattern Event 2
Pattern Event 3

Labels of Logs

Pattern
Vectors

Word Embedding
Synthetic Anomaly
Pattern Attention Detection
Vectors Transformer Model

FIGURE 1: The framework of LogPal.

the size of the vocabulary table (co-occurrence matrix di-
mension is N x N). The pattern vectors of log pattern events
can be obtained by using GloVe. To facilitate the reader’s
understanding, Figure 2 shows the process of transforming
the raw logs into new pattern vectors.

3.3. Synthetic Attention Transformer. LogPal is modeled by
an encoder with a multihead attention transformer and takes
the constructed log pattern vectors as input, which differs
from the input of a traditional transformer in that each
pattern vector contains two parts of tokens (the template
number and the filtered real log). Therefore, an improved
transformer for synthesizing attention is designed to learn
the constructed log pattern vectors more efficiently.

Synthetic attention is represented by a synthetic atten-
tion matrix, which is divided into global attention and sparse
attention. Global attention is applied to the log template, and
sparse attention is applied to the log sequence. The log
template pays attention to every token of log pattern, in-
cluding the log template itself, because it can even directly
determine the anomaly itself.

However, not every token needs to deal with contextual
representation. In the typical self-attention mechanism,
every token needs to attend all other tokens; however, for a
trained transformer, the learned attention matrix K is usually
very sparse at most data points. Therefore, the computa-
tional complexity can be reduced by combining structural
biases to limit the number of keyword key pairs per query.
For a given input token, we can group its contexts into
nonoverlapping spans of different sizes, and the size of the
spans increases with their relative distance. That is, the input
token attends each token, processing the different spans

away from it in a fine-to-coarse fashion. To obtain the
synthetic attention keyword matrix, the template token
attention and the sparse log token attention are constructed
successively.

3.3.1. Template Global Attention. Global attention is used
for the template token of the constructed log vector, “global”
means that the template token can both attend all other
tokens and let all other tokens pay attention to it. The at-
tention formula is as

T
Attention (Q, K, V) = softmax(Qi)V, (2)

Vi
where Attention (Q, K, V) is the value of attention and Q, K,
and V are the query vector matrix, key vector matrix, and
value vector matrix, respectively. Every row of these three
matrices represents a vector corresponding to a token, and
we need to calculate a Score Matrix for the template vector
before calculates the template attention:

Score = QKT. (3)

Templates are very important for anomaly detection, so
global attention is applied to templates. That is, only the
attention between the template token and other tokens, and
the attention of other tokens with the template token are
calculated. Figure 3 illustrates this process.

3.3.2. Log Sparse Attention. Unlike templates, each token of
log sequences is processed from center to both ends. Every
token pays more attention to the log sequence token that is
closer to itself, and the further distant token is not as

Raw Log Sequences:

Logl: syslog: klogd startup succeeded.

Log2: syslog: syslogd startup succeeded.

Log3: MapTask metrics system stopped.

Log4: MapTask metrics system shutdown complete.
Templates > S/N:

Templatel >1: * * startup succeeded

Template2 52 : maptask metrics system * *

Pattern Tokens:
Patternl: 1 syslog klogd startup succeeded
[35, 1140, 805, 832, 3577, 1]
Pattern2: 1 syslog: syslogd startup succeeded
[35, 1140, 706, 832, 3577, 1]
Pattern3: 2 maptask metrics system stopped
[543, 1856, 653, 4551, 56, 1]
Pattern4: 2 maptask metrics system shutdown complete
[543, 1856, 653, 4551, 56, 1860]

Pattern Vectors:

Pattern Vectorl: [[-0.0411, -0.0023,...], [-0.0310, 0.0423,...], [...]...[...]]
Pattern Vector2: [[-0.0411, -0.0023,...], [-0.0310, 0.0423,...], [...]...[...]]
Pattern Vector3: [[0.1334, -0.6031,...], [-0.0654, -0.0630,...], [...]...[...]]
Pattern Vector4: [[0.1334, -0.6031,...], [-0.0654, -0.0630,...], [...]...[...]]

FiGure 2: Examples of mapping raw log to pattern vector.

W : Token,,,,,,
Other : Token

Sequence

F1GUure 3: Global attention process of template token vector.

concerned, which can significantly decrease the subsequent
parameters in quantity by sparsity. The following Q matrix,
K matrix, and Score matrix all only describe the raw log
sequence tokens, without the template tokens.

Security and Communication Networks

In the K matrix, we take a heterogeneous log sequence
with m tokens as an example. For a certain token;, the
distance deviations of every raw log token; (without con-
sidering the template token) from token; is calculated as
follows:

Deviation; =i — jl, (4)

and then, we input m deviations to the minimum heap

MinHeappeyiaion = {Deviationy, Deviation,, . . ., Deviation,,_; }.

(5)

By inputting the deviation into the minimum heap, we
can ensure that the next selected token has the minimum
deviation from token;. And then, LogPal selects several
groups of tokens from the minimum heap, and the
number of tokens in each group is 2°, 2', 2% ..., total N
tokens. The vector in each cluster takes the maximum
value. Next, the maximum vector is used to calculate the
Score vector. Then, process each token; in sequence to get
the sparse matrix W5, The ith row and jth column of
the raw log vectors (excluding the template vector) are the
sparse attention values of token; with its own and other
token, and finally further calculated by equation (2) to
obtain the sparse attention matrix from fine to coarse. This
is based on the assumption that for any token, the nearest
token requires more attention, while the distant token has
little impact on it. This can reduce the effect of noise away
from the distant token. At the same time, it also decreases
the parameter quantity of subsequent calculations. Fi-
nally, the sparse attention matrix obtained in part 2 is
spliced to the lower right of the template global attention
matrix.

Figure 4 illustrates the mapping process from the Q
matrix and K matrix to the Score matrix with the raw log
sequence whose length of token is 15 as an instance. token,
and tokeng are shown in Figure 4.

The pseudocode of the sparsity algorithm is shown in
Algorithm 1.

3.4. Parameter Setting. In the online detection module, every
pattern tokens in the log pattern events is mapped to a 300-
dimensional vector in the same way, 4 heads are used for
multihead attention, a cross-entropy function is used as the
loss function to train the LogPal neural network, and a
Dropout layer is used to prevent overfitting, a sigmoid layer
is employed to output the classification, and we use a weight
decay factor 0.001, the initial learning rate is set to 0.001 for
the Adam optimizer, and the final training epoch is set to 10.
In addition, the random seed can be initialized to a fixed
value to ensure that the experimental results can be
reproduced. Our model is implemented using PyTorch and
trained on an NVIDIA GeForce RTX 3090 GPU.

4. Experiments

To quantify the performance of LogPal, we conducted
various experiments. We compare this method with four
exposed baselines on two real-world syslog datasets. We

Security and Communication Networks

(X

Token,

Token,

Wscore

FIGURE 4: Mapping process from Q matrix and K matrix to sparse score matrix.

Input: WQ, WK
Output: Wseore

(3) forrow,in W2 do
(4) for row; in WK do

12) end for;
(13) endfor;
(14) returnWsere;

(1) Array = Ny, N,, N3, ...and sum equals Token’s numbers;
(2) Min — Heap for offering and polling Deviation;

(5) Min — Heapadd |i —j;

(6) end for;

(7) for Ny in Array do

(8) while not end of Ny do

9) ListKey, add (Min — Heap poll);
(10) Key, «— Max (ListKey,);
an WK™ e Q- Ky

ALGORITHM 1: Sparsity of score matrix.

describe the main information in the datasets, discuss the
experimental settings and evaluation indicators, and give the
results.

4.1. Datasets. We evaluate the proposed method on the
following three open log datasets: BGL dataset [28], HDFS
dataset [7], and Thunderbird [28]. A brief summary is shown
in Table 2, and the details are as follows:

The BGL dataset is an open dataset of logs collected
from a BlueGene/L supercomputer system at Lawrence
Livermore National Labs (LLNL) in Livermore, Cal-
ifornia, with 131,072 processors and 32,768 GB mem-
ory. The log contains alert and nonalert sequences
identified by alert category tags. In the first column of
the log, “~” indicates nonalert sequences while others
are alert sequences. The label information is amenable
to alert detection and prediction research. It has been
used in several studies on log parsing, anomaly de-
tection, and fajlure prediction.

The HDES dataset is generated in a private cloud en-
vironment using benchmark workloads and manually
labeled through handcrafted rules to identify the
anomaly. The logs are sliced into traces according to
block IDs. The HDFS dataset marks each block se-
quence as normal or anomalous. The HDFS dataset
consists of 11,175,629 logs collected in 38.7 hours on
more than 200 Amazon EC2 nodes. There are 575,061

TaBLE 2: A brief summary of datasets.

Dataset Timespan Size No. of messages Anomalies

BGL 214.7 days 708 MB 4,747,963 348,460

HDEFS 38.7 1.47GB 11,175,629 288,250
hours

Thunderbird 244 days 29.60GB 211,212,192 43,087,287

log blocks in the dataset, of which 16,838 are marked as
“exception” by Hadoop experts.

Thunderbird dataset is an open dataset of logs collected
from a Thunderbird supercomputer system at Sandia
National Labs (SNL) in Albuquerque, with 9,024
processors and 27,072 GB memory. The log contains
alert and nonalert sequences identified by alert category
tags. In the first column of the log, “~” indicates
nonalert sequences, while others are alert sequences.

4.2. Experimental Setup. The experimental setup for this
study is explained as follows.

4.2.1. Comparisons

We compared LogPal with five published baseline
methods, namely, PCA [7], DeepLog [9], Swisslog [29],
HitAnomaly [30], and InterpretableSAD [26]. The
parameters of these methods have been optimized to

produce their best evaluation scores. A brief description
of these methods is as follows:

PCA: in this model, Logs are converted to count vectors
and divided into normal and anomaly spaces using a
principal component analysis (PCA) algorithm.

DeepLog: a deep neural network using LSTM models
the system logs as natural language sequences.

SwissLog: SwissLog combines semantic embedding and
time embedding methods to train a bi-LSTM model
based on unified attention for anomaly detection

HitAnomaly: a log sequence encoder and a parameter
value encoder are designed to obtain their corre-
sponding representations. The hierarchical transformer
structure is used to model the log template sequence
and parameter values.

Interpretable SAD: the authors propose a data aug-
mentation strategy that generates a set of anomalous
sequences with negative sampling so that a binary
classification model can be trained based on the ob-
served normal sequences and the generated anomalous
sequences.

4.2.2. Evaluation Indicators. To measure the effectiveness of
LogPal in anomaly detection, we use precision, recall, and F1
score as indicators.

Precision: it is the percentage of true anomalies among
all anomalies detected by the approach:

TP

PR=—"7—.
TP+ FP

(6)

Recall: it is the percentage of anomalies among the
dataset being detected:

TP
RC=———. 7
TP + FN ™
F1 score: it is the harmonic mean of precision and
recall:
2x PRx RC
Fl=————""— (8)
PR+ RC

TP is the number of anomalous log sequences correctly
detected by the model, FP is the number of normal log
sequences incorrectly identified as anomalies by the ap-
proach, FN is the number of anomalous log sequences that
are not detected by the approach, and F1 score is used as a
metric that considers both precision and recall, which does
not favor one metric over another and does not lose scientific
validity due to the imbalance problem of the dataset.

4.3. Experimental Results. Firstly, we compare LogPal with
transformer on BGL dataset and HDFS dataset. We convert
the log sequences of the datasets into log pattern vectors in
the same way, and then, these pattern vectors are input into
the transformer model, and relevant parameter settings are
consistent with LogPal. We conducted the comparison

Security and Communication Networks

experiment by controlling the ratios of the training set and
test set. Figures 5 and 6 show the comparative results of the
experiment.

The horizontal axis of Figures 5 and 6 represents the
ratios of the training set and test set, and the vertical axis
represents the F1 score of different anomaly detection
models. It can be seen that when the training set ratio of
LogPal is large, the optimal F1 score of the LogPal method
for anomaly detection is 99% and that of transformer model
is 98%, which has a weak advantage over transformer; when
the ratio of training sets is small, it can better reflect the
performance advantages of LogPal. It shows that even if a
small amount of training data is obtained from the target
syslog, LogPal can extract the key information leading to the
normal or anomalous log sequences and can produce ac-
curate prediction even in invisible samples. When the ratio
of training sets is 2:1, LogPal’s anomaly detection rate is
90%, while transformer is 86%, LogPal increased F1 score by
4.7%. Even with a large training set, the F1 score improves by
more than 1%. LogPal uses synthetic attention to perceive
the relationship between the template vector and the raw
vector differently and obtains a better F1 score than the
transformer model. The transformer model does not con-
sider this special feature of the raw log template but only
considers the self-attention relationship matrix of the raw
log sequence itself making a lot of important information
ignored, which may lead to false alarm. LogPal can quickly
perceive and learn the semantic information of the pattern
vectors to improve the accuracy of anomaly detection. In
addition, LogPal adopts a sparse attention method for the
raw log sequence token, which can reduce the noise impact
even in the long text log sequence and adopting a general
and unified pattern event extraction method to embed the
pattern vectors, as we expect, enable robust representation
and accurate anomaly detection even for heterogeneous logs
or invisible new logs.

To further evaluate the performance of LogPal, we also
evaluated LogPal and baselines on BGL dataset, HDFS
dataset, and Thunderbird dataset. We show the overall
performance of LogPal compared with baselines in Table 3
and Figures 7-9. Based on the three datasets, generally
speaking, LogPal has the best performance, and all evalu-
ation indicators are close to 99%. LogPal can generally filter
massive heterogeneous logs to generate pattern vectors and
perceive log templates and log sequences, respectively, by
synthetic attention. PCA and DeepLog use the index of log
template to learn anomalous and normal patterns. It ignores
the meaning of log sequences and words, and the actual
performance is not high. Although InterpretableSAD per-
forms well on the Thunderbird dataset, where all indicators
are balanced and the indicator value is not low, the method
does not perform so well on the BGL dataset and the HDFS
dataset, which may be related to the fact that the method is
not universal and may be more suitable for a certain dataset.

It is worth noting that comparing SwissLog and HitA-
nomaly, SwissLog has a precision of 97% and a recall of 100%
in the experiments on the BGL dataset and the HDEFS
dataset, while the two indicator values of HitAnomaly are
exactly the opposite, it has a precision of 100% and a recall of

Security and Communication Networks

100

95 -

F1-Score (%)
©
S
1

o2
w
1

80

2:1 3:1 4:1

- -~ Transformer
—— LogPal

5:1 6:1 7:1 8:1
Ratio

Figure 5: Comparisons of different ratios on the BGL dataset.

100

F1-Score (%)

2:1 3:1 4:1

- -~ Transformer
—— LogPal

5:1 6:1 7:1 8:1
Ratio

FiGUure 6: Comparisons of different ratios on the HDFS dataset.

TaBLE 3: Comparison of methods on three datasets.

Datasets
Methods BGL HDFS Thunderbird
PR (%) RC (%) Fl score (%) PR (%) RC (%) Flscore (%) PR (%) RC (%) F1 score (%)

PCA 98 67 80 50 61 55 87 90 89
DeepLog 95 96 93 92 92 91 95 92 93
HitAnomaly 100 97 98 100 97 98 97 96 97
SwissLog 97 100 929 97 100 98 95 97 96
InterpretableSAD 94 88 91 92 87 89 97 96 96
LogPal 929 929 929 98 29 99 98 97 98

The bold values show the best performances of method based on the experimental results with the specific indicator and dataset.

97% in the experiments. This means that SwissLog is more
inclined to detect log sequences as anomalous, in other
words, it is more capable of uncovering anomalous logs in
the logs. Although the recall rate is satisfactory, it is clear
from the precision rate that SwissLog mistakes some log

sequences that are really normal as anomalous. Thus, gen-
erating a large number of false positive predictions, and if a
log anomaly detection method generates too many false
alarms, which will consume energies of O&M staft to verify
the system condition and add a lot of unnecessary work; in

10
120
o
b
v
§
b
)
Presision
= PCA
DeepLog

¥ HitAnomaly

Recall

Security and Communication Networks

F1-score

= SwissLog
InterpretableSAD
5~ LogPal

FIGURE 7: Comparison of different methods on the BGL dataset.

120

100 +

60

40

20 +

Presision

¥ PCA
DeepLog
I HitAnomaly

F1-score

= SwissLog
5 InterpretableSAD
‘m LogPal

FIGURE 8: Comparison of different methods on the HDFS dataset.

120 -
100 +
u =
- | I
80 ! :. o
60 | e .: i
i | a!
40 - . i
- . o
00 : ': :5 :
0 - " T
Presision
W PCA
DeepLog

I HitAnomaly

= SwissLog
¥ InterpretableSAD
‘m LogPal

FIGURE 9: Comparison of different methods on the thunderbird dataset.

contrast, HitAnomaly can be very precise in logs identified
as anomalous, without so much false positive predictions.
But it misses some anomalous logs, thus generating a large
number of false negative predictions, which may be a more
serious problem if it fails to detect system anomaly. System
failures may not be resolved in a timely manner for a long
time, which will cause serious losses. Generally speaking,

LogPal is able to balance precision and recall and has an
improved overall performance. Overall, compares favorably
to baselines, LogPal not only learns the semantic informa-
tion of log word vectors but also focuses differently on the
attention relation between template tokens and log sequence
tokens. Finally, LogPal achieves an excellent performance on
the BGL dataset, the HDFS dataset, and the Thunderbird

Security and Communication Networks

dataset. Compared with existing methods, LogPal improves
the F1 score by 1% on the HDEFS dataset. Besides, LogPal
improves the precision and F1 score by 1% on the Thun-
derbird dataset.

5. Conclusion

As a kind of data reflecting system status and events, syslog
provides an important support for detecting various soft-
ware and hardware system anomalies. Many log-based
methods have been proposed to detect anomaly in large-
scale software and hardware systems. However, the existing
methods make it difficult to effectively deal with the labelling
problems in heterogeneous logs. To overcome these prob-
lems, this study proposes a generic anomaly detection
mechanism for heterogeneous logs, called LogPal. The
model innovatively utilizes the synthetic attention trans-
former encoder network, which prospectively thins out the
semantics of log sequences and weakens the influence of
noise. Compared with other methods, it achieves better
generalization ability on multisource and heterogeneous
samples. Experiments based on public datasets show that the
overall performance of LogPal is better than the current
machine learning and deep learning methods. In future
work, we will further improve the accuracy of anomaly
detection by introducing the weight coefficient to learn the
contribution degree of the template and the raw log token. In
addition, we will explore the synthesis strategy of synthetic
attention to reduce the computational complexity and im-
prove the early warning speed of anomaly detection.

Data Availability

Previously reported log data were used to support this study
and are available at https://doi.org/10.48550/arXiv.2008.
06448.

Conflicts of Interest

The authors declare that they have no known conflicts of
financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgments

This work was supported by the National Natural Science
Foundation of China, under Grant 62072255.

References

[1] S.L.He, P.]. He, Z. B. Chen, T Yang, Y. Su, and M. R. Lyu, “A
A Survey on Automated Log Analysis for Reliability Engi-
neeringurvey on automated log analysis for reliability engi-
neering,” ACM Computing Surveys, vol. 54, no. 6, pp. 1-37,
2021.

[2] S. He, J. Zhu, and P. He, “Experience report: system log
analysis for anomaly detection,” in Proceedings of the 2016
IEEE 27th International Symposium on Software Reliability
Engineering (ISSRE), O. Ottawa, Ed., pp. 207-218, Ottawa,
ON, Canada, October 2016.

11

[3] H. Li and Y. Li, “LogSpy: system log anomaly detection for
network systems,” in Proceedings of the 2020 International
Conference on Artificial Intelligence and Computer Engi-
neering (ICAICE), pp. 347-352, Hangzhou, Zhejiang, China,
October 2020.

[4] S. Kabinna, C. P. Bezemer, W. Shang, MD Syer, and
AE Hassan, “Examining the stability of logging statements,”
Empirical Software Engineering, vol. 23, no. 1, pp. 290-333,
2018.

[5] J. Chen, J. Y. Ouyang, and A. Q. Feng, “DoS anomaly de-
tection based on isolation forest algorithm under edge
computing framework,” Computer Science, vol. 47, no. 2,
pp. 293-299, 2020.

[6] Q. W. Lin, H. Y. Zhang, and J. G. Lou, “Log clustering based
problem identification for online service systems,” in Pro-
ceedings of the 38th International Conference, pp. 102-111,
Austin, Texas, USA, May 2016.

[7] W. Xu, L. Huang, and A. Fox, “Detecting large-scale system
problems by mining console logs,” in Proceedings of the ACM
SIGOPS 22nd symposium on Operating systems principles,
pp- 117-132, Big Sky, Montana, USA, July 2009.

[8] S.Ying, B. M. Wang, L. Wang et al., “An An Improved KNN-
Based Efficient Log Anomaly Detection Method with Auto-
matically Labeled Samplesmproved KNN-based efficient log
anomaly detection method with automatically labeled sam-
ples,” ACM Transactions on Knowledge Discovery from Data,
vol. 15, no. 3, pp. 1-22, 2021.

[9] M. Du, F. Li, and G. Zheng, “Deeplog: anomaly detection and
diagnosis from system logs through deep learning,” in Pro-
ceedings of the 2017 ACM SIGSAC Conference, pp. 1285-1298,
Dallas, Texas, USA, July 2017.

[10] B. Sharma, P. Pokharel, and B. Joshi, “User behavior analytics
for anomaly detection using Istm autoencoder - insider threat
detection,” in Proceedings of the IOE GC, T. Bangkok, Ed.,
pp- 1-9, March 2020.

[11] X.Y.Duan,S. Ying, H. L. Cheng, W Yuan, and X Yin, “OILog:
An online incremental log keyword extraction approach
based on MDP-LSTM neural network,” Information Systems,
vol. 95, pp. 101618-11, 2021.

[12] S. Garg, K. Kaur, N. Kumar, G Kaddoum, AY Zomaya, and
R Ranjan, “A A Hybrid Deep Learning-Based Model for
Anomaly Detection in Cloud Datacenter Networksybrid deep
learning-based model for anomaly detection in cloud data-
center networks,” IEEE Transactions on Network and Service
Management, vol. 16, no. 3, pp. 924-935, 2019.

[13] S. L. Zhang, W. D. Li, and Y. Q. Sun, “Unified anomaly
detection for syntactically diverse logs in cloud,” Science
CSRD, vol. 57, no. 4, pp. 778-790, 2020.

[14] X. Zhang, Y. Xu, and Q. Lin, “Robust log-based anomaly
detection on unstable log data,” in Proceedings of the 2019 27th
ACM Joint Meeting, pp. 807-817, New York, NY, USA,
August 2019.

[15] I Kornoukhov and H. Soller, Mitigating Cyber Risks with Smart
Log Management, Mckinsey & Company, New York, NY, USA,
2020, https://www.mckinsey.com/business-functions/mckinsey-
digital/our-insights/tech-forward/mitigating-cyberrisks-with-sm
art-log-management.

[16] P. Bodik, M. Goldszmidt, and A. Fox, “Fingerprinting the
datacenter: automated classification of performance crises,” in
Proceedings of the European Conference on Computer Systems,
Proceedings of the 5th European conference on Computer
systems, pp. 111-124, New York, NY, USA, January 2010.

[17] M. Chen, A. X. Zheng, and J. Lloyd, “Failure diagnosis using
decision trees,” in Proceedings of the International Conference

https://doi.org/10.48550/arXiv.2008.06448
https://doi.org/10.48550/arXiv.2008.06448
https://www.mckinsey.com/business-functions/mckinsey-digital/our-insights/tech-forward/mitigating-cyberrisks-with-smart-log-management
https://www.mckinsey.com/business-functions/mckinsey-digital/our-insights/tech-forward/mitigating-cyberrisks-with-smart-log-management
https://www.mckinsey.com/business-functions/mckinsey-digital/our-insights/tech-forward/mitigating-cyberrisks-with-smart-log-management

12

on Autonomic Computing, 2004. Proceedings, pp. 36-43, New

York, NY, USA, May 2004.

S. Nedelkoski, J. Bogatinovski, and A. Acker, “Self-attentive

classification-based anomaly detection in unstructured logs,”

in Proceedings of the 2020 IEEE International Conference on

Data Mining (ICDM), pp. 1196-1201, Sorrento, FL, USA,

February 2020.

[19] K. Steverson, C. Carlin, and J. Mullin, “Cyber intrusion de-
tection using natural language processing on windows event
logs,” in Proceedings of the 2021 International Conference on
Military Communication and Information Systems (ICMCIS),
pp- 1-7, The Hague, Netherlands, May 2021.

[20] R. W. Wibisono and A. I. Kistijantoro, “Log anomaly de-
tection using adaptive universal transformer,” in Proceedings
of the 2019 International Conference of Advanced Informatics:
Concepts, Theory and Applications (ICAICTA), pp. 1-6,
Yogyakarta, Indonesia, September 2019.

[21] W. B. Meng, Y. Liu, and Y. C. Zhu, “Loganomaly: unsu-
pervised detection of sequential and quantitative anomalies in
unstructured logs,” in Proceedings of the International Joint
Conference on Artificial Intelligence, pp. 4739-4745, Macao,
China, August 2020.

[22] A. Vaswani, N. Shazeer, and N. Parmar, “Attention is all you
need,” in Proceedings of the Advances in Neural Information
Processing Systems 30 (NIPS 2017), pp. 5998-6008, Long
Beach, CA, USA, July 2017.

[23] V.-H. Le and H. Zhang, “Log-based anomaly detection
without log parsing,” in Proceedings of the 2021 36th IEEE/
ACM International Conference on Automated Software En-
gineering (ASE), pp. 492-504, Melbourne, Australia, August
2021.

[24] J. X. Qi, Z. Z. Luan, and S. H. Huang, “Adanomaly: adaptive
anomaly detection for system logs with adversarial learning,”
in Proceedings of the Network Operations and Management
Symposium, pp. 1-5, Budapest, Hungary, August 2022.

[25] X. Han, H. Cheng, and X. Depeng, “InterpretableSAD: in-

terpretable anomaly detection in sequential log data,” in

Proceedings of the 2021 IEEE International Conference on Big

Data (Big Data), pp. 1183-1192, Orlando, FL, USA, August

2021.

S. L. Zhang, W. B. Meng, and J. H. Bu, “Syslog processing for

switch failure diagnosis and prediction in datacenter net-

works,” in Proceedings of the 2017 IEEE/ACM 25th Interna-

tional Symposium on Quality of Service (IWQoS), pp. 1-10,

Barcelona, Spain, June 2017.

[27] J. Pennington, R. Socher, and C. Manning, “Glove: global

vectors for word representation,” in Proceedings of the 2014

Conference on Empirical Methods in Natural Language Pro-

cessing (EMNLP), pp. 1532-1543, Doha, Qatar, January 2014.

A. Oliner and J. Stearley, “What supercomputers say: a study

of five system logs,” in Proceedings of the 37th Annual IEEE/

IFIP International Conference on Dependable Systems and

Networks (DSN'07), pp. 575-584, Edinburgh, UK, June 2007.

[29] X. Y. Li, P. F. Chen, and L. X. Jing, “Swisslog: robust and

unified deep learning based log anomaly detection for diverse

faults,” in Proceedings of the 2020 IEEE 3l1st International

Symposium on Software Reliability Engineering (ISSRE),

pp- 92-103, Portugal, October 2020.

S. Huang, Y. Liu, C. Fung et al,, “HitAnomaly: HitAnomaly:

Hierarchical Transformers for Anomaly Detection in System

Logierarchical transformers for anomaly detection in system

log,” IEEE Transactions on Network and Service Management,

vol. 17, no. 4, pp. 2064-2076, 2020.

[18

[26

[28

[30

Security and Communication Networks

Hindawi

Security and Communication Networks
Volume 2022, Article ID 8383461, 12 pages
https://doi.org/10.1155/2022/8383461

Research Article

WILEY | Q@) Hindawi

Internet-of-Things-Based Suspicious Activity Recognition Using

Multimodalities of Computer Vision for Smart City Security

Amjad Rehman ,! Tanzila Saba ®,! Muhammad Zeeshan Khan,?
Robertas Damasevicius (,> and Saeed Ali Bahaj4

! Artificial Intelligence & Data Analytics Lab (AIDA) CCIS Prince Sultan University, Riyadh 11586, Saudi Arabia
2Intelligent Criminology Research Lab National Center of Artificial Intelligence, KICS, University of Engineering & Technology,
Lahore, Pakistan

Faculty of Applied Mathematics, Silesian University of Technology, Gliwice 44-100, Poland

*MIS Department College of Business Administration, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia

Correspondence should be addressed to Robertas Damasevicius; robertas.damasevicius@polsl.pl
Received 18 April 2022; Revised 17 August 2022; Accepted 29 August 2022; Published 5 October 2022
Academic Editor: Andrea Michienzi

Copyright © 2022 Amjad Rehman et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Automatic human activity recognition is one of the milestones of smart city surveillance projects. Human activity detection and
recognition aim to identify the activities based on the observations that are being performed by the subject. Hence, vision-based
human activity recognition systems have a wide scope in video surveillance, health care systems, and human-computer in-
teraction. Currently, the world is moving towards a smart and safe city concept. Automatic human activity recognition is the
major challenge of smart city surveillance. The proposed research work employed fine-tuned YOLO-v4 for activity detection,
whereas for classification purposes, 3D-CNN has been implemented. Besides the classification, the presented research model also
leverages human-object interaction with the help of intersection over union (IOU). An Internet of Things (IoT) based architecture
is implemented to take efficient and real-time decisions. The dataset of exploit classes has been taken from the UCF-Crime dataset
for activity recognition. At the same time, the dataset extracted from MS-COCO for suspicious object detection is involved in
human-object interaction. This research is also applied to human activity detection and recognition in the university premises for
real-time suspicious activity detection and automatic alerts. The experiments have exhibited that the proposed multimodal

approach achieves remarkable activity detection and recognition accuracy.

1. Introduction

In recent years, ever-increasing technological advances have
made automated human activity recognition a common
research subject. Video surveillance has a wide range of
applications. These applications include normal and suspi-
cious activities such as gaming, human-computer interac-
tion, exam invigilation, detecting chaos, analyzing sports,
predicting crowd behavior, etc. It is an important safety
aspect for indoor and outdoor environments [1].
Innovations are occurring rapidly, and since there is a
large amount of video data to process, manual intervention
is not feasible and is error-prone. Additionally, it is

exceedingly challenging to monitor public spaces constantly.
Hence, it is necessary to install intelligent video surveillance
that can track people’s movements in real time, classify them
as routine or exceptional, and provide alerts [2].

Human activity detection relies on sensors like radar,
cameras, and cell phones to identify abnormalities in
human behaviour. They are being used for human-com-
puter interaction, surveillance, monitoring suspicious ac-
tivities, and other security purposes [3, 4]. The majority of
today’s systems rely on video gathered from CCTV cam-
eras. If a crime or act of violence occurs, this footage will be
utilized in the investigation. It would be preferable, how-
ever, to build a system that might identify an anomalous or

mailto:robertas.damasevicius@polsl.pl
https://orcid.org/0000-0002-3817-2655
https://orcid.org/0000-0003-3138-3801
https://orcid.org/0000-0001-9990-1084
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/8383461

unexpected circumstance beforehand and notify the au-
thorities [5, 6].

In recent years, ever-increasing technological advances
have made automated human activity recognition a
common research subject. Video surveillance has a wide
range of applications. These applications may include
normal and suspicious activities such as gaming, human-
computer interaction, exam invigilation, detecting chaos,
analyzing sports, predicting crowd behavior, etc. It is an
important safety aspect for indoor and outdoor environ-
ments [7, 8].

Currently, innovations are occurring at a rapid pace. The
most popular exploration topic these days is robotized
human activity recognition. Since there is a large amount of
video data to process, manual intervention will not only be
tiring but also cause omissions, making the system effective
and error-prone. Automatic video surveillance has tacked on
this issue. It is impossible to monitor CCTV events man-
ually. Whether the event has already occurred or not,
searching for the desired event through recordings is ex-
tremely time-consuming. However, a system that auto-
matically senses any irregular or abnormal condition in
advance and alerts the appropriate authorities is more ap-
pealing. It can be used in indoor and outdoor settings [9, 10].

Different efficacious algorithms are used for automatic
activity recognition on roads, airports, educational institu-
tions, offices, etc. Computer vision has provided machines
with humanlike vision. Large datasets are accessible and can
be trained with GPUs’ to help make future predictions.
Computer vision technology has a few stages, like taking
input from surveillance cameras, separating the frames,
classifying and labeling the activity, and writing its de-
scription. Normally, two types of classification techniques
are used in computer vision. Supervised and unsupervised;
supervised classification requires manual labeling whereas
unsupervised is completely computer-based and does not
need computer intervention [11, 12].

Deep learning is the most exemplary architecture that
learns difficult tasks among other architectures. It extracts
features from images automatically and portrays significant
information about the image. Since it extracts features au-
tomatically, it makes it more convenient to use. CNN learns
visual patterns directly from pixels [13, 14]. Long short-term
memory (LSTM) models can be used for videos as they can
recall things for a longer time. The proposed work imple-
mented the YOLOV4 for detecting the different activities
related to surveillance and for recognizing the activities, 3D
CNN is used. Multiple cameras are connected to the cen-
tralized system via IoT (Internet of Things) protocols.
Ethernet communication creates a local server to access each
camera feed through its specific IP address used in the
centralized GPU for prediction [15, 16].

The remaining paper is organized as such: Section 2
explores the relevant state of art critically and highlights the
need for this research. Additionally, the main contributions
are also mentioned. Section 3 presents the proposed
methodology; Section 4 exhibits results and analysis at
length and datasets used for experiments. Finally, Section 5
concludes the research.

Security and Communication Networks

2. Background

Understanding human behaviour is now one of the most
significant areas of computer vision research. Human ac-
tivity identification uses data from sensors, such as a se-
quence of RGB camera images, range sensors, or other
sensing modalities [17, 18], to automatically identify and
understand human actions. Its applications include sur-
veillance, video processing, robotics, and a variety of systems
involving human-computer interaction [19, 20]. In the early
1980s, depth sensors improved human activity recognition.
Previous research has concentrated mainly on under-
standing and identifying behaviors from visible light video
streams. Several survey articles summarized these works at
various depths and perspectives [21].

Zhu et al. [22] used motion information and contextual
features for activity detection in a scene, arguing that actions
have a close relationship with context. Following the identifi-
cation and segmentation of behavior, a two-layered conditional
random field is used to recognize events from segmented
patterns and contextual knowledge. However, they did not use a
benchmark dataset, nor accuracy compared to the reported
literature. Yue et al. [23] compared two CNN architectures for
integrating color and optical flow data for action recognition
using the LSTM network. They claimed higher performance on
the Sports 1 million dataset (73.1% vs. 60.9%) and the UCF-101
datasets with (88.6% vs. 88.0%) and without (88.6% vs. 88.0%)
and without additional optical flow information (82.6% vs.
72.8%). Ibrahim et al. [24] came up with a two-stages of time
model to look at unusual activities in the community. They
made an LSTM model to show how a person acts in a series of
frames, while a second LSTM network adds up the represen-
tations at the individual level. Finally, they reported an 81.5%
detection accuracy. Khaire et al [25] used the CNN classifier
with skeletal data to recognize the different human activities.
They used two datasets and achieved 95.11% and 96.67% ac-
curacies. Mariem et al. [26] designed a model named the history
of binary motion image (HBMI). In this model, they introduced
a new method for foreground detection using the Gaussian
mixture model (GMM), including the Magnitude of Optical
Flow (MOF). To avoid irrelevant motion, they utilized the fast
frame skipping method. Hence, HBMI is a novel method of
portraying instructive notions for human activity recognition
based on the superposition of human shape. HBMI achieved
97.60% accuracy in the testing state. Xing et al. [27] designed a
system to detect driver activities using a deep learning approach.
With the help of a low-cost camera, the actions of ten drivers
have been recorded. The extracted images are then segmented
with a Gaussian mixture model (GMM). These preprocessed
images are applied to train AlexNet [28], GoogLeNet [29], and
ResNet-50 [30] on activities like texting, mirror checking, using
mobile phones, etc. Among these models, AlexNet out-
performed the other models with 81.6%, while GoogleNet and
ResNet scored 78.6% and 74.9%, respectively. By working on
static images only, Chang et al. [31] enhanced the approach of
integrated 3D data of human body movements to create a three-
dimensional motion history image. Xiaofei et al. [32] suggested
a spatiotemporal silhouette representation to describe motion
properties, including regular activities. Finally, multiclass SVM

Security and Communication Networks

was utilized, with each operation consisting of many views and
scenarios of motion descriptors. On the KTH dataset, they
attained an average accuracy of 94.10%. In order to simulate the
temporal distribution of players in a sporting event and foretell
the future course of action, Zhong et al. [33] used hierarchical
LSTMs for the temporal encoding of extracted features from
video frames and trajectory data. However, no accuracy was
reported.

Recently, Saba et al. [34] detected anomalies in smart
hospitals by using principal component analysis (PCA)
for activity feature extraction. Finally, an ensemble
classifier is employed for anomaly classification. Exper-
iments were performed on the KDDCup-“99” dataset and
93.2% accuracy was reported. Patalas-maliszewska et al.
[35] adopted CNN, Support Vector Machine (SVM), and
CNN region-based CNN (Yolov3 Tiny) for recognizing
completed work tasks in the industrial environment. The
work of Gonzalez et al. [36] was heavily focused on
achieving real-time results. They conducted extensive
research utilizing various datasets and trained Faster-
RCNN using Feature Pyramid Network with Resnet50,
and outperformed by 3.91 percent as compared to re-
ported techniques in the literature. Bhatti et al. [17]
extracted data from YouTube CCTV videos/GitHub re-
positories and used two approaches (sliding window/
classification and region proposal/object detection). They
tested several pretrained deep learning classifiers; how-
ever, Yolov4 had the best performance for detecting
suspicious activity, with an F1 score of 91% and an av-
erage accuracy of 91.73%.

Based on the literature analyzed, it is concluded most of
the research conducted did not consider a number of ex-
pected instances, mostly used static images, and was tailored
for specific purposes. However, the final aim of the proposed
research is to use the automatically identified behaviors and
activities in groups in live videos. Hence, in the proposed
research work, we first detect the area of interest and then
pass it to the classification network. The reduction of un-
necessary learning information increased efficiency and
accuracy.

This study has the following main contributions:

(1) A novel activity recognition and detection frame-
work utilizing the YOLOv4 version and the 3D-
CNN.

(2) Fine-tune convolution neural network architectures

for better object recognition accuracy by incorpo-
rating object spatial and temporal information.

(3) Internet of Things-based architecture has been uti-
lized to incorporate and manage the decision-

making of deep learning-based architectures
efficiently.
3. Proposed Methodology

The proposed methodology is based on two steps. First, we
detected the region of interest (ROI) using the fine-tuned
version of the Yolo-v4. Secondly, a sequence of 16 frames is

generated and ROI is passed through a sequence of frames
into the 3D-CNN for classification.

3.1. Activity Detection. The YOLOv4-tiny [37] object de-
tector is a light version of the YOLOv4 [38], enhancing the
detection speed. With this light version, YOLOV4 can attain
around 370 frames per second (FPS) with very good ac-
curacy on a GPU-enabled machine having a 1080Ti GPU.
The YOLOv4-tiny includes cross-stage partial connections
(CSP) Darket53-tiny as the backbone feature extractor in-
stead of CSPDarket53, which was used in the original
YOLOV4 [38]. The YOLOvV4-tiny network uses a cross-stage
partial block as a residual block, enhancing the accuracy but
increasing the model complexity and eventually decreasing
the FPS rate. A tradeoft is to proceed with object detection in
real time on embedded devices with better accuracy.
Therefore, an improved version of YOLOv4-tiny is
proposed.

Figure 1 exhibits the enhanced Residual block (Res-
Block instead of two CSPBlock as in YOLOv4-tiny to
improve processing speed. The Enhanced ResBlock unit
uses two direct path networks to handle the input rep-
resentation map. In this two-path network, the path T
network has three 1x1 and 3 x3 convolutional (Conv)
layers with stride 2, followed by another 1 x 1 Conv layer.
Another network, Path B, has two 3 x 3 max pooling with
stride 3 followed by a 1 x Conv layer. Compared to
CSPBlock used on the original YOLOv4-tiny [37], the
proposed ResBlock removes the first 3x3 Conv in
CSPBlock and replaces the consequent 3 x 3 Conv layers
with 1x 1 Conv layers in the Path T network to make the
detection network efficient as exhibited in Figure 1. The
proposed ResBlock unit adds pooling and Conv in the
Path B network. Still, this extra computation overhead is
minimal as compared to reduce in computation in the
Path T network. The floating-point operations (FLOPs)
are analyzed to determine the computational complexity
of the CSPBlock [37] and the proposed ResBlock. FLOPs
can be described as follows:

S
FLOPs =) M;.F;.C;,.C.. (1)
=1

Here, S is the sum of all the Conv layers, M? is the output
feature vector of the corresponding lth layer, F? is the filter
size, while C, and C,_; refer to output and input channel
count, respectively. For comparison, suppose an input of
224 x 244 with 64 channels, and using (1), FLOPs of Res-
Block are used in the proposed detection model as shown in
calculations in equations (2) and (3)

FLOPs = 104% 1% % 64 = 32 + 52% 3% x 327
+522 %1% %32%64+64%527 %22 + 522 x 12 x 642, (2)
FLOPs = 6.4x10.

The FLOPs of CSPBlock are used in YOLOvV4-tiny
against the same image

4 Security and Communication Networks

= () =
X & X
PathT | = z =
e @ 3

32x104x104 32x52x52 64x52x52

64x52x52 64x52x52

q
64x104x104 & = 128x52x52

0 X
S s
—> g g
PathB | & Q
& 3

FiGure 1: Enhanced ResBlock-D modules.

FLOPs = 104% % 3% % 642 + 104% % 3% x 64 % 32
+104% % 3% % 327 + 1047 * 17 % 64°, (3)
FLOPs = 7.4x10°.

From equations (2) and (3), we determine that 1:10 is
the computation of FLOPs in ResBlock and CSPBlock.
FLOPs comparison shows that ResBlock is much less
complex than CSPBlock.

Although the inclusion of ResBlock in the YOLOvV4-tiny
detector makes it much faster than CSPBlock, it affects
object detection accuracy. Therefore, two auxiliary residual
blocks are also built and included in the ResBlock unit to get
a better tradeoff between efficiency and accuracy. The
proposed backbone network is shown in Figure 2.

The output representation of ResBlock is fused with a
shallow representation of the backbone model through an
element-wise sum operation. This fused representation is
used as input to successive layers of the backbone model. The
fusing process of representation of ResBlock and the
backbone model can be expressed as

Oi _ fi(oi—l) +Of’i. (4)

Here in equation (4), i is the index of the layers, f " is the
fusion function between the input and output in the ith layer
network, O~ ! refers to the i-1th layer’s output and the i th
layer’s input, and Or' is the output of the proposed ResBlock.
This fusion catalyzes the convergence between deep and
shallow networks. Moreover, with the fusion mechanism,
the network learns more information to enhance the ac-
curacy while preventing the large step-sized calculation
increase.

In the backbone of YOLOv4-tiny [37], the Residual
network module uses 3 x 3 filters for feature extraction.
Although 3 x 3 receptive fields can extract more localized

information while losing global contextual information
and eventually reduces the detection accuracy. We have
compensated for this loss of global representations by
using two consecutive 3 x Conv layers to get the receptive
field of size 5 x5 in the auxiliary ResBlock. This auxiliary
model passes on the obtained global representation to the
backbone network. Then the backbone network joins the
local contextual information extracted from the smaller
(3 x 3) receptive field and global representation extracted
from the bigger (5x5) receptive field that gives extra
information about the object. This combining of global
and local information not only enhances the network
depth but also advances the semantic of information. The
attention mechanism can process and transmit the crucial
feature and eliminate the invalid features through channel
suppression. We have introduced spatial and channel
attention modules in the auxiliary network to extract
more effective feature representations. The channel at-
tention module emphasizes the interpretation of the in-
formative part of the given input image and sees its
meaning in it. The spatial attention module emphasizes
the spatial location of the informative part of the input,
supportive of channel attention. We have used the
Convolutional Block Attention Module (CBAM) [18]. The
used CBAM can be described as

F* = M‘(F')oF, (5)
F = M*(F)oF. (6)

Here in equations (5) and (6), F' € R™®W the input
feature map, “©” refers to element-wise multiple, F° and F*
are the output feature maps, M€ and M* are the channel and
spatial attention functions, respectively. The channel at-
tention function M¢(F’) and spatial attention function
M (F°) are expressed as

Security and Communication Networks

Auxiliary Network

Y
Porgsay
Arerxny

Conv
Conv

Yoo[gsoy
Arerrxny

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

A20[1ddSSO

Conv

Backbone Network

FIGURE 2: Proposed backbone network.

M°(F') = $(MLP(avgPooling(F')) + MLP(maxPooling(F'))
M’ (F) = C*° [maxPooling (F°); +avgPooling (F°)].
(7)

In equation (7), S is the sigmoid function, MLP () is the
multilayer perceptron, and C”*7 is the convolutional op-
eration having a filter size of 5 x 5. Max Pooling and average
pooling operations in spatial attention function are com-
bined through concatenation, referred to as “”

Figure 3 shows the proposed auxiliary network having two
convolution layers to obtain the global contextual information
and channel and spatial attention to get more effective infor-
mation. The output representation of the first convolution layer
output received from spatial attention operating is concatenated
to combine both outputs, the output of the auxiliary network.
Then the final output of the auxiliary network is combined with
the output of the residual network of the backbone network and
used as input for the next residual network there. This joining of
both outputs enhances the backbone network to extract local
and global information about the object and increases the
accuracy of the detection network.

The architecture of the whole YOLOv4-tiny object de-
tector is shown in Figure 4, where the proposed network is
distinguished by the blue color. Compared to YOLOv4-tiny
[37], the proposed object detector has replaced both
CSPBlock units with two ResBlock. Moreover, the auxiliary
network is also designed using two 3 x3 Conv layers, a
channel attention module and a spatial attention module,
and a concatenation operation to obtain global information.
Finally, auxiliary and backbone networks are combined to
make a feature extractor.

3.2. Activity Recognition. For the activity recognition in the
videos, we propose a 3D CNN where we use three-di-
mensional convolutions to count features in both the
temporal and spatial dimensions in the later stages of CNNGs.
Convoluting a three-dimensional kernel to the cube ob-
tained by assembling several spatiotemporal patches in a

contiguous manner yields the 3D convolution as shown in
Figure 5. The feature maps in the convolution layer are
connected to multiple frames arranged consecutively in the
previous layer to capture motion-related details [39]. If the
kernel weights are duplicated around the patch cube, the 3D
convolution kernel can only select one form of a function
from the patch cuboid. The number of feature maps expands
as the number of layers increases on CNN, which helps
create various sorts of features from the lowest available
maps.

To build the 3D cube, convolve a 3D filter kernel by
stacking multiple contiguous frames. The function maps are
linked to multiple adjacent frames using this operation. The
working mechanism of 3d CNN is described in (1), where
the value at position (a, b, ¢) in the kth feature map in the Ith
layer is described as

Xy—1 Y1 Z -1

vi’)‘f’c = tanh<ykl + z z Z

) T
m x=0 y=0 z=0

where wy)» is the feature map linked to the m™ value of the
kernel in the previous layer, and ZK is the 3D filter kernel
size along the temporal axis. The architecture of the pro-
posed model is shown in Figure 6.

To increase the model’s efficiency, it uses 3 layers, in-
cluding convolutional, pooling, and fully connected layers.
In the convolutional layer, a filter layer of learned parameters
converts images into processable data in this layer. Each
kernel filters for a different function, and each analysis
employs several kernels. In a convolution, only small parts of
an image are looked at. They are assigned and transformed to
an activation map that represents the image layers based on
how likely it is that they belong to a certain filter class. To
create three-dimensional activation maps, the kernels in a
3D CNN traverse across the three data dimensions of height,
length, and depth. In pooling layers. The activation maps
created during convolution are pooled or down-sampled.
Pooling is similar to convolution in that it involves moving a
filter around an activation map and testing a small segment
simultaneously. This filter abstracts either the scanned area’s

Security and Communication Networks

Channel attention Spatial attention

Conv 3x3 Conv 3x3
C/2x1x1 IXWxH
m Q Concat

C/2xWxH C/2xWxH
CxWxH CxWxH

FIGURE 3: Auxiliary residual network.

input (416=416x3]
*

Conv 32x32xMstride:2

BN _lealey (208, 208, 32)
*
Conv 64m3x3/ stride;2

BN leakey (104, 104, 64}

¥ | YOLO head {26, 26, 255) |
ResBlock i

| Conv 255 L« istride:1 |-l—

Out_size (56, 56, 128}

Conv 256x3x3stride:]

v BN _lealey {26, 26, 256)

Auxiliary ResBlock
Ot stz (56, 55, ResBlock Concat (26, 26, 512}
T
Out_size (26, 26, 256) , 5
L Upsample {26, 26. 256)
iy ediing: Conv 128 Lx1{stride:1
Out_size (26, 26, T
BN _leaky (104, 104, 64}
Auxiliary CSPBlock Conv 512x3x3/stride:1
Metwork e
Maxpooltx2/stride:2 ’
Owt_size {13, 13,512) Conv 51233 stride:]
EN_J-:&':'JI{[[.’-. 13, 512}
:

!

Cony 512x hedstride; = ; .
Cony 512x3x3istride:1 | Conv 255 1= 1istride:l |

P!
| YOLOD head {13, 13, 255) |

BN leaky {13 13,512)

F1GURE 4: YOLOV4-tiny architecture with proposed changes in blue color.

Security and Communication Networks

L

|
C

[B\D

%E

FiGURE 5: 3D-CNN architecture.

Activity
classes

3DCNN

Input
Frames

FIGURE 6: Flow of video recognition.

average, a weighted average dependent on the central pixel,
or the extreme value of a new map.

The output layers are compressed, the probabilities
found are evaluated, and the output is allotted a value, a logit,
after several iterations, often thousands, of convolution and
pooling. This analysis is carried out by the completely
connected layer, in which each flattened output layer is
interpreted by linked nodes, similar to a fully connected
neural network as exhibited in Figure 6. Using hyper-pa-
rameters such as zero-padding (P), receptive field (R), stride
length (S), and volume dimension (depth x width x height),
calculate the spatial size of the 3D CNN output volume. We
used image input of dimension Ix]xK, where =224,
J=224, and K=3 where] stands for row pixel values, I for
column pixel values, and K stands for the number of
channels in this work, which is three. To measure the
neurons in the Convolutional layer, multiply ((W- F + 16.P)/
S)+1. The input layer is ((224-11+16.0)/1)+1=229,
resulting in an output volume of 229 x229x 32, where
height, width =224 is the input frame’s height and width,
F=11x11x16 is the 3D filter depth, P=0 is the zero-
padding, and S=1 is the stride that leads to the output.

3.3. Smart Surveillance Using Internet of Things. The Internet
of Things (I0T) has been utilized for efficient decision-making
in real time. We utilized Ethernet communication to create
the local server such that we have assigned a specific L.P.
(Internet Protocol) address to access each camera feed present
in the particular location. The flow of IoT architecture in the
proposed architecture has been depicted in Figure 7. Ethernet

provides minimal latency in the IoT environment and LAN
(Local Area Network) for smooth communication of inter-
connected devices. Ethernet cables are not like other wires.
The stream of any particular camera is then passed to the
centralized GPU (Graphic Processing Unit) for processing
and making predictions. All the decisions based on the
predictions are then made available to the local network for
efficient and quick response. We utilized the IoT concept
because we could control each process remotely and monitor
it as well. We can use different communications protocols on
that according to system needs as well. The Ethernet com-
munication protocols use this architecture to control feed
monitoring and prediction remotely. The proposed work
utilized the Local Area Network (LAN) technology that
connects Internet devices using wired communication. It
described how data is shared through a physical medium from
one device to another network device. It is a link-layer
protocol in the TCP/IP stack. It is based on the IEEE 802.3
standard [36]. In the proposed work, Ethernet is used to
connect stationary or fixed IoT devices within an IoT system.
Ethernet cable served as a wired medium for connecting
computers, IP cameras, servers, switches, and routers.

We managed a stream of CCTV (Close Circuit Cameras)
using a Network Video Recorder (NVR) and BNC (Bayonet
Neill-Concelman) cable. The CCTV framework is arranged
to impart its signal to an advanced video recorder, i.e., a DVR
using BNC cable. The NVR contains five hard discs of 1
terabyte (TB) each for video film recording. It underpins
HDMI (High-Definition Multimedia Interface) or VGA
(Video Graphics Array) video yield, which permits focal
observation on the LCD screen or TV. The proposed DVR
includes video, live web-based streaming, and playback. An
LP surveillance camera communicates its signals alongside its
network. LP. security cameras used in the proposed system
utilized a CAT-6 link to convey signals to the network video
recorder (NVR). As a result, we achieved a higher resolution
stream, efficient, real-time accessibility, and video/sound
secured transmission using an IoT-based architecture.

In this work, cameras’ live recordings are accessed through
each specific I.P. address that is further processed by a cen-
tralized GPU-based server. The analysis and anomaly pre-
dictions are performed using the proposed computer vision-

Stream

Security and Communication Networks

CETV

1 - &

Ethernet

e e | ——— LU @ |

Ethernet

Results =

GPU Server

NVR Ethernet
Ethernet

L=

CCTV

CCTV

FIGURE 7: Internet of Things-based architecture for decision making.

based hybrid models (YOLO-v4 and 3D-CNN) to identify the
specific activities in the live recordings. In case of an emergency
or any suspicious activity, it can send alerts and notifications to
the relevant person or authority for immediate action.

4. Experimental Results and
Performance Analysis

4.1. Datasets. Benchmark datasets play a vital role in results
and performance analysis in the state of the art [14]. Sur-
veillance videos can capture a variety of real anomalies. The
proposed methodology is evaluated on two major datasets.
First, the UCF-Crime dataset [40] consists of various real-
world anomalies, including smoke fighting, robbery,
snatching, and vandalism, on which the proposed model is
evaluated. These acidities are selected because they are con-
sidered prohibited. These activities are recognized based on
the overall activity of the given sequence rather than the
individual activities of the actors. Each mentioned activity has
approximately 7000 frames in the used dataset. For training
and evaluation, around 2000 frames of each activity are se-
lected. A brief description of each activity chosen is given:

(a) Smoking: this event contains videos showing people
smoking in public places such as university
campuses.

(b) Fighting: this activity is based on fighting between or
among people in public places such as university
campuses.

(c) Snatching: this activity is based on various objects
snatching, including purses, handbags, cell phones,
and laptops.

(d) Gun pointing: in addition to fighting, this activity
class requires gun objects in the sequence.

(e) Vandalism: this class represents a group action in-
volving deliberate destruction of or damage to ob-
jects like buildings, vehicles, furniture, etc.

Moreover, we gathered a dataset of suspicious objects
involved in those activities. We used images from the UCF
crime dataset [40] and the COCO dataset [41]. Additionally,
we performed preprocessing and annotation labeling on the
data collected from datasets.

We have pretrained the Modified-YOLOv4, 3D-CNN
network on COCO, and the whole network is fine-tuned on
the CUF crime dataset, which has approximately 2000
frames for each of the five activities. The Modified-YOLOv4
is trained on the 2000 frames of each activity for 1500
epochs, while the 3D-CNN model is trained for 2000 epochs
such that 80% of the dataset is devoted to training and 20%
to validation. Figure 8 shows the Modified-YOLOvV4 accu-
racy graph, from the discrepancy between training and
validation accuracy. It can be deduced that the model is
somewhat overfitting training data, a characteristic of deep
learning models. The Modified-YOLOv4 has a training
accuracy of 96.2% and a validation accuracy of 94.21%. After
1500 epochs, the training loss for Modified-YOLOv4 de-
creased from 8.6 to 0.19, while the validation loss decreased
from 8.7 to 0.25. Figure 9 depicts the loss progression of
Modified-YOLOv4 throughout training.

Figure 10 demonstrates that the 3D CNN module was
similarly susceptible to overfitting since there was a dis-
crepancy between training and validation accuracy, with
validation accuracy remaining lower than training accuracy.

Security and Communication Networks
1.0
0.8

0.6

Accuracy

0.4

0.2
~ Training
=~ Validation

0.0

500

10

Loss

1000 1500

Epoch
FI1GURE 8: Accuracy graph of Modified-YOLOv4.

= Training
o L= Validation
500 1000 1500
Epoch
FIGURE 9: Loss graph of Modified-YOLOV4.
1.0
0.8
g 0.6
-
=1
3
< 04
0.2
~ Training
00 _— Validation
500 1,000 1,500 2,000
Epoch

FIGURE 10: Training and validation accuracy graph of 3D CNN.

At the conclusion of the previous period, training accuracy
was 94.8% and validation accuracy was 89.0%. Training loss
(Figure 11) began decreasing from around 9.2 to 0.11,
whereas validation loss began at 9.8 and finished at 0.22 in
the final epoch. At some epochs, validation loss was less than
training loss, but it remained significant for most of the
training period.

Table 1 shows the aggregated confusion matrix of the
activity recognition network. We have achieved 93.2% ac-
curacy, 91.01% precision, and 90.1% recall. The proposed
activity recognition model performed slightly poorly on the
fighting and vandalism activities, while performance was
highest on the gun pointing and smoking. Both precision
and recall are lower because a few of the activities are

10

10

Loss

== Training

= Validation

Security and Communication Networks

500

1,000 1,500 2,000

Epoch

FiGURE 11: Training and validation Loss graph of 3D CNN.

TaBLE 1: Confusion Matrix on proposed activities.

Actual activity

Smoking
Smoking 48
. .. Gun pointing 1
Predicted activity Snatching _
Fighting —
Vandalism —

Gun pointing Snatching Fighting Vandalism
1 1 — —
49 — — —
1 47 2 —
— 3 44 4
— — 5 45

confusing. 50 activities in each category are used for this
confusion matrix.

5. Conclusion

Human suspicious activity recognition is a challenging task
with vast applications in video surveillance, intelligent
transport systems, entertainment, and anomaly detection.
Whether the event has already occurred or not, searching
for the desired event through recordings is extremely time-
consuming. However, a system that automatically senses
any irregular or abnormal condition in advance and alerts
the appropriate authorities is more appealing, and it can be
used in both indoor and outdoor settings. Automatic video
surveillance has tackled this issue. It is impossible to
monitor CCTV events manually. Many researchers have
worked on spatial information with temporal sequences for
human activity recognition and detection. However, they
failed to achieve impressive results in real-time. This paper
presents a hybrid model which first detects the area of
interest using the YOLO-v4 architecture where an anomaly
or unusual activity is happening and then passes it to the
3D-CNN architecture for activity recognition based on the
temporal information. The experiments performed on
benchmark datasets and the 94.21% accuracy attained show
the significance and robustness of the proposed
architecture.

Furthermore, an IoT-based architecture has been
utilized for real-time processing and efficient decision-
making. The proposed multimodal is customizable, flex-
ible, and extendable. Therefore, the system can quickly

adopt new activities such as pose points, hand tracking,
etc.

Data Availability

The data used in this paper are available from the corre-
sponding author upon reasonable request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This research is financially supported by Prince Mohammad
bin Fahd Center for Futuristic Studies at the Prince
Mohammad bin Fahd University and the World Futures
Studies Federation. The authors are thankful for the support.

References

[1] T. Saba, A. Rehman, R. Latif, S. M. Fati, M. Raza, and
M. Sharif, “Suspicious activity recognition using proposed
deep L4-branched-ActionNet with entropy coded ant colony
system optimization,” IEEE Access, vol. 9, pp. 89181-89197,
2021.

[2] A. R. Khan, T. Saba, M. Z. Khan, S. M. Fati, and

M. U. G. Khan, “Classification of human’s activities from

gesture recognition in live videos using deep learning,”

Concurrency and Computation: Practice and Experience,

vol. 34, no. 10, Article ID e6825, 2022.

T. Saba, A. Rehman, T. Sadad, H. Kolivand, and S. A. Bahaj,

“Anomaly-based intrusion detection system for IoT networks

[3

Security and Communication Networks

(4]

(5]

(9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

through deep learning model,” Computers ¢ Electrical En-
gineering, vol. 99, Article ID 107810, 2022.

I. Imran, S. Din, G. Jeon, and G. Fortino, “Towards collab-
orative robotics in top view surveillance: a framework on
using deep learning,” IEEE/CAA Journal of Automatica Sinica,
vol. 8, no. 7, pp. 1253-1270, 2021.

M. A. Khan, H. Arshad, R. Damasevicius et al., “Human Gait
Analysis: A Sequential Framework of Lightweight Deep
Learning and Improved Moth-Flame Optimization Algo-
rithm,” Computational Intelligence and Neuroscience,
vol. 2022, 2022.

Y. Al-Hamar, H. Kolivand, M. Tajdini, T. Saba, and
V. Ramachandran, “Enterprise credential spear-phishing at-
tack detection,” Computers & Electrical Engineering, vol. 94,
Article ID 107363, 2021.

H. Yar, T. Hussain, Z. A. Khan, D. Koundal, M. Y. Lee, and
S. W. Baik, “Vision sensor-based real-time fire detection in
resource-constrained IoT environments,” Computational In-
telligence and Neuroscience, vol. 2021, pp. 1-15, 2021.

F. Orujov, R. Maskelitinas, R. Damasevicius, W. Wei, and
Y. Li, “Smartphone based intelligent indoor positioning using
fuzzy logic,” Future Generation Computer Systems, vol. 89,
pp. 335-348, 2018.

I. Abunadi, “Enterprise architecture best practices in large
corporations,” Information, vol. 10, no. 10, p. 293, 2019.

B. Al, F. Orujov, R. Maskelitinas, R. Damasevi¢ius, and
A. Venckauskas, “Fuzzy logic type-2 based wireless indoor
localization system for navigation of visually impaired people
in buildings,” Sensors, vol. 19, no. 9, p. 2114, 2019.

G. Vallathan, A. John, C. Thirumalai, S. Mohan, G. Srivastava,
and J. C. W. Lin, “Suspicious activity detection using deep
learning in secure assisted living IoT environments,” The
Journal of Supercomputing, vol. 77, no. 4, pp. 3242-3260, 2021.
M. Yousuf, Z. Mehmood, H. A. Habib, T. Mahmood, and
M. Rehman, “A novel technique based on visual words fusion
analysis of sparse features for effective content-based image
retrieval,” Mathematical Problems in Engineering, vol. 2018,
pp. 1-13, 2018.

I. M. Nasir, M. Raza, J. H. Shah, S. H. Wang, U. Tariq, and
M. A. Khan, “HAREDNet: a deep learning based architecture
for autonomous video surveillance by recognizing human
actions,” Computers & Electrical Engineering, vol. 99, Article
ID 107805, 2022.

J. L. Gonzdlez, C. Zaccaro, J. A. Garcia, L. M. Morillo, and
F. Caparrini, “Real-time gun detection in CCTV: an open
problem,” Neural Networks, vol. 132, pp. 297-308, 2020.
C.D.]J. L Zong, “Smart security system for suspicious activity
detection in volatile areas,” Journal of Information Technology
and Digital World, vol. 02, no. 01, pp. 64-72, 2020.

H. Kolivand, M. S. Rahim, M. S. Sunar, A. Z. A. Fata, and
C. Wren, “An integration of enhanced social force and crowd
control models for high-density crowd simulation,” Neural
Computing & Applications, vol. 33, no. 11, pp. 6095-6117,
2021.

M. E. Issa, A. M. Helmi, M. A. A. Al-Qaness, A. Dahou,
M. A. Elaziz, and R. Damasevi¢ius, “Human activity recog-
nition based on embedded sensor data fusion for the internet
of healthcare things,” Healthcare, vol. 10, no. 6, p. 1084, 2022.
G. Sengil, E. Ozcelik, S. Misra, R. Damasevicius, and
R. Maskelitinas, “Fusion of smartphone sensor data for
classification of daily user activities,” Multimedia Tools and
Applications, vol. 80, no. 24, pp. 33527-33546, 2021.

(19]

(20]

[21

[22

(23]

(24]

[25

(26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

11

M. T. Bhatti, M. G. Khan, M. Aslam, and M. J. Fiaz, “Weapon
detection in real-time CCTV videos using deep learning,”
IEEE Access, vol. 9, pp. 34366-34382, 2021.

F. Afza, M. A. Khan, M. Sharif et al., “A framework of human
action recognition using length control features fusion and
weighted entropy-variances based feature selection,” Image
and Vision Computing, vol. 106, Article ID 104090, 2021.

P. Turaga, R. Chellappa, V. S. Subrahmanian, and O. Udrea,
“Machine recognition of human activities: a survey,” IEEE
Transactions on Circuits and Systems for Video Technology,
vol. 18, no. 11, pp. 1473-1488, 2008.

Y. ZhuZhu, N. M. Nayak, and A. K. Roy-Chowdhury,
“Context-aware activity modeling using hierarchical condi-
tional random fields,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 37, no. 7, pp. 1360-1372, 2015,
Jul.

J. Yue-Hei Ng, M. Hausknecht, S. Vijayanarasimhan,
O. Vinyals, R. Monga, and G. Toderici, “Beyond short
snippets: deep networks for video classification,” in Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 4694-4702, Boston, MA, USA, June
2015.

M. S. Ibrahim, S. Muralidharan, Z. Deng, A. Vahdat, and
G. Mori, “A hierarchical deep temporal model for group
activity recognition,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 1971-1980, Las
Vegas, NV, USA, June 2016.

P. Khaire, P. Kumar, and J. Imran, “Combining CNN streams
of RGB-D and skeletal data for human activity recognition,”
Pattern Recognition Letters, vol. 115, pp. 107-116, 2018.

M. Gnouma, A. Ladjailia, R. Ejbali, and M. Zaied, “Stacked
sparse autoencoder and history of binary motion image for
human activity recognition,” Multimedia Tools and Appli-
cations, vol. 78, no. 2, pp. 2157-2179, 2019.

Y. Xing, C. Lv, H. Wang, D. Cao, E. Velenis, and F. Y. Wang,
“Driver activity recognition for intelligent vehicles: a deep
learning approach,” IEEE Transactions on Vehicular Tech-
nology, vol. 68, no. 6, pp. 5379-5390, 2019.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet
classification with deep convolutional neural networks,”
Advances in Neural Information Processing Systems, vol. 25,
pp. 1097-1105, 2012.

C. Szegedy, W. Liu, Y. Jia et al., “Going deeper with con-
volutions,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 1-9, Boston, MA, June
2015.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 770-778,
June 2016.

Z. Chang, X. Ban, Q. Shen, and J. Guo, “Research on three-
dimensional motion history image model and extreme
learning machine for human body movement trajectory
recognition,” Mathematical Problems in Engineering,
vol. 2015, pp. 1-15, 2015.

X.F.Ji, Q. Q. Wu, Z.J. Ju, and Y. Y. Wang, “Study of human
action recognition based on improved spatio-temporal fea-
tures,” International Journal of Automation and Computing,
vol. 11, no. 5, pp- 500-509, 2015.

Y. Zhong, B. Xu, G. T. Zhou, L. Bornn, and G. Mori, “Time
Perception Machine: Temporal point Processes for the when,
where and what of Activity Prediction,” 2018, https://arxiv.
org/abs/1808.04063.

https://arxiv.org/abs/1808.04063
https://arxiv.org/abs/1808.04063

12

[34] T. Saba, “Intrusion detection in smart city hospitals using

ensemble classifiers,” in Proceedings of the 2020 13th Inter-

national Conference on Developments in eSystems Engineering

(DeSE), pp. 418-422, IEEE, Liverpool, United Kingdom, June

2020.

]. Patalas-Maliszewska, D. Halikowski, and R. Damasevitius,

“An automated recognition of work activity in industrial

manufacturing using convolutional neural networks,” Elec-

tronics, vol. 10, no. 23, p- 2946, 2021.

[36] D. A. John, “IEEE 802 LMSC,” 2022, https://standards.ieee.
org/standard/802_3-2018 html.

[37] A. Bochkovskiy, “Darknet: Open-Source Neural Networks in
Python,” 2021, https://github.com/AlexeyAB/darknet.

[38] A. Bochkovskiy, C. Y. Wang, and H. Y. Liao, “Yolov4: Op-
timal Speed and Accuracy of Object Detection,” 2020, https://
arxiv.org/abs/2004.10934.

[39] J. Arunnehru, G. Chamundeeswari, and S. P. Bharathi,
“Human action recognition using 3D convolutional neural
networks with 3D motion cuboids in surveillance videos,”
Procedia Computer Science, vol. 133, pp. 471-477, 2018.

[40] W. Sultani, C. Chen, and M. Shah, “Real-world anomaly
detection in surveillance videos,” 2018, https://arxiv.org/abs/
1801.04264.

[41] T.Y Lin, M. Michael, B. Serge et al., “Microsoft coco: common
objects in context,” 2014, https://arxiv.org/abs/1405.0312.

[35

Security and Communication Networks

https://standards.ieee.org/standard/802_3-2018.html
https://standards.ieee.org/standard/802_3-2018.html
https://github.com/AlexeyAB/darknet
https://arxiv.org/abs/2004.10934
https://arxiv.org/abs/2004.10934
https://arxiv.org/abs/1801.04264
https://arxiv.org/abs/1801.04264
https://arxiv.org/abs/1405.0312

Hindawi

Security and Communication Networks
Volume 2022, Article ID 5363764, 12 pages
https://doi.org/10.1155/2022/5363764

Research Article

WILEY | Q@) Hindawi

E-minBatch GraphSAGE: An Industrial Internet Attack

Detection Model

Jin Lan®, Jia Z. Lu
Yu Y. Huang, and Jin N. Ma

» Guo G. Wan, Yuan Y. Wang, Chen Y. Huang, Shi B. Zhang,

School of Cybersecurity, Chengdu University of Information Technology, Chengdu 610225, China

Correspondence should be addressed to Jia Z. Lu; ljz@cuit.edu.cn

Received 3 March 2022; Revised 30 May 2022; Accepted 16 June 2022; Published 14 July 2022

Academic Editor: Robertas Damasevicius

Copyright © 2022 Jin Lan et al. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The Industrial Internet has grown rapidly in recent years, and attacks against the Industrial Internet have also increased. When
compared with the traditional Internet, the industrial Internet has a more complex network structure, and the traditional graph
neural network attack behavior detection model cannot well adapt to the complex network environment. To make the model
better adapt to the complex network environment, this paper proposes the E-minBatch GraphSAG model. First, the application
layer source port and source IP address is used as source nodes, the application layer target port and target IP address are used as
target nodes, and the remaining traffic information is used as edge information to complete the construction of the graph structure
data, and then the constructed graph structure data is presampled to select the edge information that needs to be aggregated next,
followed by using the AGG aggregation function to aggregate the information in the domain generated by the presampling
process. Finally, the information of two adjacent nodes is aggregated as edge information to classify the edges. Increase the number of
IP addresses in the UNSW-NB15 dataset, and then use it for model training and testing. The experimental results show that the
accuracy of the model reaches 99.49% in a relatively complex network environment. In this paper, the E-minBatch GraphSAG model
is presented in an attempt to solve the problem of attack detection in the complex industrial Internet environment.

1. Introduction

Because the traditional industrial production network is
separated from the Internet, and the traditional industrial
control protocol does not take into account the security
events that may occur during use, most traditional industrial
control protocols have security problems [1]. With the rapid
development of Internet technology, more and more In-
ternet technologies are used in industrial production pro-
cesses to achieve the goal of automating industrial
production processes and reducing production costs [2],
resulting in a new concept-industrial Internet. There is also a
big difference between the modern industrial Internet and
the traditional Internet. The main difference between the
Industrial Internet and the traditional Internet is that the
traditional Internet has a close connection with people, while
the Industrial Internet has a close connection with things.
The architecture of the Industrial Internet is also quite

different from the traditional Internet architecture. In the
modern Industrial Internet, the enterprise management, the
supervisory layer, and the field layer are the main compo-
nents [3].

The social impact of industrial Internet security incidents
is far greater than the social impact of traditional Internet
security incidents. In recent years, attacks on the Industrial
Internet have gradually increased. Iran’s Natanz nuclear
enrichment site was attacked by the Stuxnet computer virus
in 2010, causing abnormal acceleration of uranium en-
richment centrifuges and eventually leading to their de-
struction [4]. It also opened the curtain for attacks against
the industrial Internet. In 2015, the malware BlackEnergy3
[5] hacked into the control center of the Ukrainian power
grid and tampered with the control commands of the relays
via VPN causing widespread power outages in Ukraine.
BlackEnergy3 compromised the network and software of the
grid control system, launching a DDoS attack that prevented

mailto:ljz@cuit.edu.cn
https://orcid.org/0000-0003-0548-5468
https://orcid.org/0000-0002-3760-8461
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/5363764

the control system from sensing abnormal system condi-
tions, thus preventing power from being restored to the
blackout area for a long time. During Black Hat 2017, Dr.
Staggsp [6] demonstrated how to hack into a wind farm’s
control system by physically connecting to an uncontrolled
wind turbine in the United States. In 2021, a state of
emergency was declared in the United States after the hacker
group “DarkSide” attacked the largest fuel pipeline operator
in the country [7]. Several security incidents have shown that
the industrial Internet faces huge security risks, and artificial
intelligence-based attack detection systems can help to
provide early warning of attacks and greatly improve the
security of the system.

Detecting attacks is a key step in securing the industrial
Internet, and alerting to attacks as early as possible can
reduce the impact of attacks to a manageable extent. Cur-
rently, there are different classification results for different
intrusion detection systems based on the classification
method [8]. There are two types of data source classification:
host-based and network-based. Classification based on the
detection technique can be classified as misuse-based ap-
proach and anomaly-based approach. Anomaly-based
methods, which are currently the mainstream detection
methods, can also be classified as statistical analysis-based
methods [9], cluster analysis-based methods [10], artificial
neural network-based methods [11], or deep learning-based
methods [12]. Among them, current studies generally agree
that deep learning-based methods for attack detection are
more effective than the others [13]. This is because deep
learning-based models have better self-learning, self-adap-
tive capabilities, better generalization ability, and the ability
to detect unknown attack behaviors better.

Most attack behavior detection methods focus on finding
attack behaviors from the attack traffic itself, while ignoring
the correlation between attack traffic. In this paper, we at-
tempt to introduce graph neural networks, a relatively new
subfield in the field of deep neural network research, into
attack behavior detection in the Industrial Internet.

The scale of the Industrial Internet has begun to grow
explosively, and the network structure has become increas-
ingly complex. In order to detect attacks in a complex network
environment, this paper proposes an improved method based
on E-GraphSAGE algorithm [14], E-GraphSAGE is a variant
of GraphSAGE [15], which allows to collect graph edge in-
formation and support edge features Perform edge classifi-
cation to detect malicious network flows. In this paper, the
E-minBatch GraphSAGE algorithm is proposed to be able to
better adapt to the complex network environments.

The contributions of this paper are mainly as follows.

(i) In this paper, we propose a new GNN model based
on E-GraphSAGE, which uses information such as
traffic duration and packet size as edge features of
the graph, and presamples the points in the graph
structure data so that the model can better adapt to
the complex network environment.

(ii) This paper applies the new proposed model to in-
dustrial Internet attack detection and demonstrates
the superiority of the new model by comparing it

Security and Communication Networks

with traditional machine learning algorithms and
deep learning algorithms through experiments.

(iii) The E-minBatch GraphSAGE algorithm proposed
in this paper has better results in the detection of
three kinds of attacks, namely Shellcode, Recon-
naissance, and Exploits.

The rest of this paper is organized as follows. Section 2
discusses related work on industrial Internet attack behavior
detection, Section 3 briefly introduces the basics related to
GNN and GraphSAGE, Section 4 presents our new GNN
model based on GraphSAGE, Section 5 gives experimental
results and analysis, and Section 6 summarizes the full paper.

2. Related Works

At present, traditional machine learning or deep learning is
mainly used for industrial Internet attack behavior detec-
tion. In contrast, there are relatively few researches on attack
behavior detection based on graph neural network.

2.1. Traditional Industrial Internet Attack Behavior Detection
Algorithms. The label-based attack behavior detection sys-
tem can accurately detect the known attack behavior, but it is
powerless to detect the unknown attack behavior. At the
same time, the anomaly-based attack behavior detection
system can effectively detect unknown attack behaviors, but
an unavoidable problem is: no matter whether the attack
behavior is known or not, the anomaly-based attack be-
havior detection system will have a large false negative rate
and false positive rate. In order to enable the model to detect
both unknown attack behaviors and known attack behav-
iors, researchers began to try to combine the two attack
behavior detection systems. Khraisat et al. [16] combined the
C5 classifier and a class of support vector machine classifiers
to design a hybrid intrusion detection system (HIDS) that
integrated the advantages of the label-based attack behavior
detection system and the anomaly-based attack behavior
detection system. The experimental results show that the
method has a high accuracy in detecting attack data on the
Bot-IoT dataset.

The traffic of attack behavior of the Industrial Internet
presents the characteristics of low frequency and multistage.
Li et al. [17] designed a bidirectional long-term and short-
term storage network with multiple features, and the se-
quence feature layer and stage feature layer were introduced
into the model. The model in the training phase can learn the
corresponding attack range from historical data, and ef-
fectively detect attacks in different ranges. Suzen et al. [18]
proposed a hybrid Deep Belief Network (DBN) attack be-
havior detection model. Hidden layers are updated via
Contrastive Divergence (CD). Experiments show that the
hybrid deep belief network model has achieved good ac-
curacy in the detection of industrial Internet attack behavior.
A multifeatured data clustering optimization model was
used by Liang et al. [19] as the basis of an industrial network
intrusion detection algorithm, which classifies the weighted
distance and safety factor of the data according to the
priority thresholds of the data attribute features of the nodes

Security and Communication Networks

in the data. Cluster centers are selected by choosing a node
with a high safety factor, and data from around the node is
matched into a cluster. In comparison with other algorithms,
the experimental results demonstrate that the proposed
algorithm has significant advantages in terms of detection
rate and processing time. Huang et al. [20] proposed a data-
driven intrusion detection method based on time-domain
and frequency-domain analysis. The proposed method uses
closed-loop controlled sensors, does not consume additional
system resources and relies on system models, extracts time-
domain and frequency-domain features, uses feature vectors
under normal working conditions to build a hidden Markov
model, and converts the trained hidden Markov model.

The traffic in the Industrial Internet is very complex and
includes not only production networks but also other office
networks. About solving the problem of massive data attack
behavior detection in hybrid networks, Zhang et al. [21]
proposed a data mining algorithm for massive intrusion
cluster computing in hybrid networks with feature extrac-
tion under specific constraints. Multicomponent cross-de-
tection methods are used to collect information on mixed
network massive intrusions and construct models of mixed
network massive intrusion signals. Regarding the intrusion
interference under the constraint of fixed time-frequency
window, Zhang adopts the cascade trap method to deal with
it, so as to extract the localized basic volume and main
function from a large amount of interference information,
and obtain the complete energy distribution spectrum on the
time-frequency plane. Data mining for clustering calcula-
tions with massive intrusion interference constraints is
achieved with the help of the energy distribution spectrum as
a guiding function.

The rapid development of the Industrial Internet has led
to IoT devices widely deployed, and at the same time, attacks
against IoT devices have also appeared in large numbers. [oT
devices are ideal springboards for DoS attacks—low security
and large numbers make IoT devices the target of many
botnets. The attack behavior detection system needs to
identify the nodes attacked by DoS in time, and takes
measures such as isolation of the infected nodes to ensure
the security of the entire industrial Internet environment.
Alharbi et al. [22] proposed a Local Global Optimal Bat
Algorithm (LGBA-NN) for Neural Networks to select fea-
ture subsets and hyperparameters to effectively detect botnet
attacks. Experimental results show that LGBA-NN out-
performs other variants in detection of multiple botnet
attacks. Ali et al. [23] trained on intrusion data, features, and
suspicious activity datasets. The data is trained according to
different layers of the long- and short-term network to
improve the accuracy of attack detection. With the help of
training information, the test details are classified by
extracting features and forming a sparse matrix construc-
tion. In experiments, the model’s accuracy reached 99.29%.

The computing power of industrial Internet nodes is
relatively poor, and the resources required for the training and
deployment of attack detection models are huge. About how
to reduce the resources consumed by the deployment node,
Wozniak et al. [24] used RNN-LSTM classifier and NAdam
optimization algorithm to build the model. Experimental

results indicate that the model requires very few resources on
deployment nodes.

All the above algorithms have achieved desirable per-
formance in industrial Internet attack detection, but they all
only consider the characteristics of the traffic itself or the
spatial characteristics of the traffic, and do not consider the
correlation between the traffic.

2.2. Industrial Internet Attack Behavior Detection Algorithm
Based on Graph Neural Network. Graph neural networks are
developing rapidly, and good progress has been made in
their applications in many fields. However, the application of
graph neural network to network attack behavior detection
is still a relatively new field and deserves further research.

Lo et al. [14] proposed a model named E-GraphSAGE
based on the GraphSAGE model, which supports edge
classification. Taking IP addresses and application-layer
ports as nodes, the data flows communicated between hosts
are treated as side information, thereby classifying network
flows into benign flows and attack flows. According to the
experimental comparison, the model proposed by the author
is generally better than the traditional attack behavior de-
tection model. However, experiments have shown that with
the increase of network complexity, the accuracy of
E-GraphSAGE begins to decrease. Our method proposes an
improved model based on E-GraphSAGE, which can better
adapt to complex network environments.

3. Background

3.1. Industrial Internet Infrastructure. The industrial Inter-
net attack behavior detection model is one of the methods to
protect the safety of industrial production equipment and
personnel. There are mainly three layers in modern in-
dustrial Internet architecture: the enterprise management
layer, the supervision layer and the field layer. The enterprise
management layer relies on the Internet to enable real-time
monitoring and management of industrial processes and
assist enterprises in making informed decisions. In addition
to collecting data and transmitting it between the enterprise
management layer and the field layer, the monitoring layer
controls the field devices with specific logic. In the field layer,
field information is perceived by the field devices, and data is
exchanged between field devices via the field bus. The
modern Industrial Internet architecture is shown in Figure 1.

As shown in Figure 1, industrial Internet attack behavior
detection systems are generally deployed between the
management and the management level of an enterprise, and
between the management and the field level control level [3].
There are various attack behavior detection systems, and this
paper focuses on GraphSAGE algorithm based on graph
neural network.

3.2. Graphical Neural Network. Different attack detection
algorithms require different input structures. The input data
structure of the CNN-based attack behavior detection al-
gorithm is the grayscale graph corresponding to the traffic.
The input data structure of GNN-based attack behavior

Security and Communication Networks

Enterprise
management
Internet

Database other applications

Attack Behavior Detection System

Supervisory layer

Program management

Production execution

Production
supervision
layer

Historical database

Operator station Engineer station

Real-time database

Process
supervisory
layer

SCADA Server

Attack Behavior Detection System

m
PCL

RTU

PCL

control

RTU RTU layer

FiGure 1: Industrial internet infrastructure.

detection algorithm is the IP address and application layer
port as nodes, and the data flow of communication between
hosts is treated as edge information, as shown in Figure 2.

Because graph neural networks can utilize data with
graphical structure encountered in real-world applications
(biology, telecommunications, chemistry, etc.), graph neural
networks have received widespread attention since their
introduction, and they have grown rapidly in recent years to
become one of the fastest growing subfields of artificial
intelligence.

The main reason for using GNNs for industrial Internet
attack detection is that GNNs can easily exploit important
structural information in network data streams. The in-
formation in network data streams can be directly encoded
into a graphical format. In fact, converting network data
traffic into graphical format is a method that has been used
earlier, but the process is usually tedious and heavily de-
pendent on manual labor.

3.3. GraphSAGE. GNNs can be considered as a general-
ization of convolutional neural networks to non-Euclidean
data structures [25]. Graph neural networks use the concept
of message passing to implement a generalization of the
capabilities of convolutional neural networks to the pro-
cessing of data with non-Euclidean structures. The messages

FiGure 2: Figure structure.

received by a node are the result of the properties (or at-
tributes) of the neighboring nodes of that node being ag-
gregated. Iteration of the above process is repeated to pass
the information from one node to the whole network. If in
each iteration, an attempt is made to aggregate all neigh-
boring nodes, unpredictable memory consumption and
computational resource requirements occur.

Figure 3(a) shows a simple graph structure data and
Figure 3(b) shows two GraphSAGE message passes to the
graph. In this example, we assume that the nodes sample all
neighboring nodes, i.e., information from all domain nodes

Security and Communication Networks

(a)

—
@ E
—

FIGURE 3: A given graph structure data and the corresponding two-layer fully sampled GraphSAGE algorithm model.

is considered in each iteration. In the face of more complex
graph structures, sampling all nodes makes the training time
and effectiveness of the model not optimized, so an attempt
is made to presample the nodes [26].

Some of the symbols in the graph neural network are
defined as follows: G(7,€) denotes the data of a graph
structure, v is the set of points, and ¢ is the set of edges. The
feature vector of node v is denoted as a vector X, and the full
set of node feature vectors can be denoted as {X,, Vv € v}.

In the GraphSAGE algorithm, one of the most critical
hyperparameters is the number of convolutional layers K.
The role of this hyperparameter is to specify the infor-
mation of the algorithm’s aggregated K-layer neighbor
nodes. Considering both the experimental effect and the
model complexity, we generally set the number of layers to
K =2 in the actual experimental process [26]. On the other
hand, GraphSAGE needs to choose a differentiable
aggregator function that aggregates the information from
the neighboring nodes.

The GraphSAGE algorithm has been used in many fields
with good results. However, the algorithm focuses on node
classification and does not consider the problem of edge
classification. The E-GraphSAGE algorithm proposed by Lo
successfully solves the problem of edge classification, but
cannot solve the problem of classification in complex net-
work environment architectures. Based on the E-GraphS-
AGE algorithm, a new node presampling algorithm is
proposed to enable the model to better detect attack be-
haviors in complex networks.

4. E-minBatch GraphSAGE

E-minBatch GraphSAGE is presented in this section, along
with its application to detecting industrial Internet attacks.

4.1. E-minBatch GraphSAGE

4.1.1. Forward Propagation Stage. The E-GraphSAGE al-
gorithm, compared with the traditional GraphSAGE, con-
siders not only the node features but also the edge features,
while E-GraphSAGE proposes edge embedding. The nodes
are presampled in advance so that the E-minBatch
GraphSAGE algorithm can adapt to complex network
structures, as shown in Algorithm 1.

In comparison to E-GraphSAGE, the algorithm pre-
sented in this paper has a larger number of input nodes,
which can better represent the complex network environ-
ment, and in the face of complex network structure this
paper presamples the nodes once to improve the ability of
attack behavior detection model to detect attack behavior in
complex network environment. As shown in line 1 to 5 of the
algorithm, we determine whether a node is a neighbor node
of the current node, and if it is, it is directly added to the
sampling range. graphSAGE recommends the use of two
layers of convolution for the model, and the product of the
number of neighbor nodes sampled twice is not greater than
500. The number of samples sampled twice for the model
used in this paper is S1 =20, S2 =25(Note: s1 indicates that
the first layer samples 20 neighbor nodes, and s2 indicates
that the second layer samples 25 neighbor nodes). As with
the E-GrapghSAGE algorithm, this paper still uses the x, =
(1,...., 1) initialized node features to aggregate the domain
edges at the Kth layer.

In the aggregation function in line 9, the difference
between E-minBatch GraphSAGE and GrapghSAGE algo-
rithm is that the aggregation is not the information of
surrounding adjacent nodes, but the aggregation of sur-
rounding edge information.

hlf\,(v) = AGGk{{hﬁ;l,Vu e N(v),uv € e}}, (1)

KE! denotes N (v) the edges in the sampled domain of node
u in the k-1 layer and wuv denotes the edge
{Yu € N (v),uv € &, N (v) in the sampled domain of node .

The calculation process in line 10 is the same as the
traditional GrapghSAGE algorithm, but the calculation in-
cludes the edge information of the previous layer.

Line 11 calculates the node embedding of the kth layer,
and the edge embedding Z,,, of the nodes in the last layer is
the splicing Z,, with Z, the node embedding, as shown in the
following equation:

Z,, = CONCAT(Zy, Zy),uv € &. (2)

4.1.2. Back Propagation. In the back propagation phase, the
method used in this paper is updated in the same way as the
traditional GraphSAGE algorithm.

Security and Communication Networks

Input: Graph G (v, ¢); input edge features {e

uv>

Output:Edge emdeddings Z,,,,V,,, € ¢

(1) BX<B
(2) fork=K...1do
(3) BFleBK

(4) foru e B* do

(5) B 1B 1TU N (u);

(6) end for

(7) end for

(8) W =x,Y, eV

(9) for k—1toK do

(10) foru € B* do

(11) B (V) —AGG, ({h,V* - 1,Yu € N (v),uv € ¢})
(12) hk—a (WK.CONCAT (K - 1, hyy (v)¥))

(13) end for

(14) end for

(15) Z, = hK

(16) for k—1toKdo

(17) z,,—CONCAT (2, zK)

(18) end for

(19) z,,-z,4# k represents the last layer of the model#

uv=

V,, € ¢} input node features x, = {1,.., 1}, x,, € B; depth K; weight matrices
Wk Ve {1,.., K}; non-linearity o; differentiable aggregator functions AGGg;

ALGORITHM 1: E-minBatch GraphSAGE edge embedding.

4.2. E-minBatch GraphSAGE Attack Detection Model.
As shown in Figure 4, the E-minBatch GraphSAGE attack
detection model proposed in this paper first generates a
network graph using network stream data, and then pre-
samples the nodes once. After completing the presampling,
the data is fed into the model for training. Finally, edge
embeddings are created and classification operations are
performed on the edges. The next steps are described in turn.

4.2.1. Network Diagram Construction. Network data
streams are the fundamental form of data transmission in
today’s industrial Internet. It is also the most commonly
used data format for attack detection models. The data
stream contains not only the source and target of the data
information, but also the size, duration, and other in-
formation of the data stream. In some scenarios, the flow
is presented in the form of a graph.

There are different options for using graphs to rep-
resent data flows in different usage scenarios. In this
paper, the source IP address and application layer port
are used to identify the source node, and the target IP and
target application layer port are used to identify the
target node. The rest of the information is used as in-
formation about the edges between the source and target
nodes.

Make training data and test data better represent
complex network structures, and the original source IP
addresses are mapped to random addresses in the range of
10.0.0.0-10.255.255.255 in this paper. A large number of IP
addresses can represent the complex network more accu-
rately and make the trained model better adapted to the
complex network.

4.2.2. Presampling. In order to adapt to complex network
structures, the nodes in the graph continue to be pre-
sampled after the conversion of the traffic to graph
structure type is completed. In this paper, we use a two-
layer convolution process, so each node is presampled
twice, the first layer presamples the 20 neighbor nodes of
the current node, and the second layer presamples the 25
neighbor nodes of the current node. When the number of
neighboring nodes of a node cannot meet the presam-
pling requirement, some of the neighboring nodes are
sampled again.

4.2.3. Model Training. The training of the GraphSAGE
model generally samples two layers of convolution [27],
and similarly the E-minBatch GraphSAGE proposed in this
paper uses two layers of convolution. For the aggregation
function AGG, the mean value of each edge embedding is
simply found, and the defined form is shown in the following
equation:

hk—l
INW)I, (3)

ko _
hN(V) - Z
ueN (v)
uvee

<! denotes the embedding of the model at layer k-1 and
IN (v)|, denotes the number of aggregated neighbor nodes.
In the two-layer convolution, the number of sampling
neighbor nodes is S1 =20, $2=25.

The size of the hidden layer as shown in (3) is set to 128
hidden units, and the nonlinear activation function is chosen
as the ReLu function. For improving the model’s ability to
generalize, a dropout mechanism of 0.2 is set between the

Security and Communication Networks

Initial Build the
data e graph = gpre-sampling
flow structure

number of samples
is enough

Repeat
F’ sampling [l
NO

model edge

FIGURE 4: E-minBatch graph SAGE attack behavior detection model flow.

two convolutional layers. When generating the calculation
results in the last layer, the embedding of the two nodes is
spliced together to get the corresponding edge embedding,
and the size of the edge embedding is 256-dimensional at
this time, and the edge embedding is passed through a Log
Softmax layer, which facilitates the training and optimiza-
tion of the model parameters.

4.2.4. Edge Classification. After the model training is com-
pleted, the effectiveness of the E-minBatch GraphSAGE
model is evaluated using the test set. The test set also needs to
be transformed into a graph structure as well, presampled,
passed through the trained E-minBatch GraphSAGE layer,
and finally passed through the Log Softmax layer edge cor-
responding to the probabilities of different classes, and finally
compared with the real class labels to calculate the classifi-
cation evaluation performance metrics.

5. Dataset and Experimental Results

In this section, this paper presents the datasets selected for
training and testing along with the evaluation criteria of the
experiments, and finally the experimental results of the model.

5.1. Dataset. The model was pretrained with the UNSW-
NB15 [28] dataset, which was generated by the IXIA Per-
fectStorm tool from the Australian Cyber Security Centre
(ACCS) Cyber Scope Lab. The number of various types of
traffic included in UNSW-NB15 is shown in Table 1.

5.2. Evaluation Criteria. In this paper, the parameters shown
in Table 2 are used to evaluate the selected model and the
model proposed in this paper.

In the experiments, two labels are defined for UNSW-
NB15, one indicating whether the traffic is attack traffic, and
if it is, the other label what kind of attack traffic the traffic is.
The first label is used for dichotomous classification and the
second label is used for multiclassification. In our experi-
ments, 70% of the traffic data of the UNSW-NBI15 dataset is
used as the training set, and 30% of the traffic data is used as
the test set.

5.3. Experimental Results. Firstly, we compare the accuracy
of different models under different training times, as shown
in Figure 5.

As we can see from Figure 5, the convergence speed of
the graph neural network algorithm is much slower
compared to the speed of other traditional neural net-
works. Because in graph neural networks, along with the
increase in the number of network layers, information
from more distant nodes needs to be aggregated, which is
the reason why using the GraphSAGE algorithm suggests
setting the model within two layers. The reason for the
slower convergence speed of the E-minBatch GraphS-
AGE algorithm compared to the E-GraphSAGE algo-
rithm is that the nodes are presampled and require more
training times to aggregate the information of sur-
rounding neighboring nodes.

The models E-GraphSAGE [14], CNN [29], RF [27],
ResNet50 [30], and the model proposed in this paper are
compared in terms of F1-score, ACC, Precision, and Recall.

In a complex network environment, the model
proposed in this paper, as shown in Figure 6(a), Flscore
reaches 99.88%, as shown in Figure 6(b), ACC reaches
99.49%, as shown in Figure 6(c), Precision reaches
99.67%, as shown in Figure 6(d), and Recall reaches
99.74%, which is better than E-GraphSAGE. At the same
time, the model proposed in this paper is slightly inferior
to the current state-of-the-art deep learning model in
terms of Fl-score, ACC, Precision, and Recall, but is
currently based on graph neural networks. The research
on the network attack behavior detection algorithm is
still in the initial stage, and there is room for further
research in the future. When the E-GraphSAGE algo-
rithm is used to detect attack behaviors, it not only considers
the characteristics of the traffic itself, but also considers the
correlation between the traffic. Therefore, in a complex net-
work environment, the effect of the E-GraphSAGE algorithm
will decline to a certain extent. The purpose of E-minBatch
GraphSAGE proposed in this paper is to make the attack
behavior detection method based on graph neural network still
has good performance in complex network environment. In
the following comparative experiments, the E-minBatch
GraphSAGE algorithm proposed by us and the E-GraphSAGE
algorithm proposed by Lo are compared.

Security and Communication Networks

TaBLE 1: UNSW-NBI15 flow type, quantity and profile.

Flow type Quantity Introduction
Normal 2,218,761 Normal data traffic
Fuzzers 24,246 Send randomly generated fuzzy data to the target to cause the target to error into a pause state
Analysis 2,677 Port scanning, spam, and html file infiltration
Exploits 44,525 Attacks that exploit vulnerabilities known to exist in the system or software
Worms 174 Attack initiators such as viruses replicate themselves and try to infect other hosts on the network
Shellcode 1,511 A piece of code that exploits a software vulnerability
DoS 16,353 Launch a flooding attack on the target so that it cannot accept new requests
Generic 215,481 Attack against any type of group password
Reconnaissance 13,987 Simulation of information-gathering attacks
Backdoor 2,329 Bypass system defense mechanisms to access sensitive locations and sensitive information
TaBLE 2: Model performance metrics.
Metric Definition
Recall TP/TP+FN
Precision TP/TP + FP
Fl1-score 2 x Recall x Precision/Recall + Precision
Accuracy TP+TN/TP+FP+TN +FN
0.9 L - TR
0.8 N .
0.7
B~
§ 0.6
5 0.5
3 04
2o
0.3
0.2
0.1
0
1 2 3 4 5 6 7 8 9
Epoche
—e— E-minBatch GraphSAGE CNN
—e— E-GraphSAGE RF
FIGURE 5: 10 epoche training accuracy.
1 R 1 A
0.9 - - - - 0.9 - -
0.8 . . . - 0.8 . .
0.7 . . . - 0.7 . .
» 06 ‘- : 0.6 ‘-
2 05 1 = : 3 o0s ! 3
- <
~ 0.4 . . - 0.4 : :
0.3 : : i 0.3 : :
0.2 . . - 0.2 . .
0.1 - - - 0.1 - -
0 - - o= =
= 3 =] Z, <3 =)
g 9z = 3 g 2z = 3
& %) © Z & %) S Z
& ! ¢ & e ¢
‘5 g & . g &
©) O
@) s o s

—
~

=
—~
o
=

FiGure 6: Continued.

Security and Communication Networks 9

1 e 1 e
0.9 5 B i 0.9 5 B . |
0.8 5 B . | 0.8 5 B . |
0.7 i B . 0.7 i B .
506 ' B : _ 06 5 ¥ ,
205 ! B : g 05 ! E ,
& ~
A 0.4 : : i 0.4 - - |
0.3 . . - 0.3 . . i
0.2 . . - 0.2 . .]
0.1 . . - 0.1 . .]
0 = - 0 = -
= =3 = Z, <3 =]
s 2z = 3 g 2 7 = 3
& %) o Z & %) o Z
2 < g 2 <= 2
=% & T F =
2) 2 &}
o s o s
() (d)

FIGURE 6: Compare the model proposed in this paper with E-graph SAGE, CNN, RF, ResNet50 in ACC, F1-score, precision, and recall.
(a) Fl-score comparison chart. (b) ACC comparison chart. (c) Precision comparison chart. (d) Recall comparison chart.

Positive sample 5695
o)
s
<
L
g
H
Negative sample 7258 314024
Positive sample Negative sample

Predicted label
FIGURE 7: Compare the base confusion matrix for UNSW-NB15 dataset.

1 1
g g
Kz S
g N
& L
Shellcode Reconnaissance Exploits Shellcode Reconnaissance Exploits
m E-minBactch GraphSAGE m E-minBactch GraphSAGE
m E-GraphSAGE = E-GraphSAGE

(a) (b)

FiGgure 8: Continued.

10 Security and Communication Networks

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

ACC
Recall

Shellcode Reconnaissance Exploits Shellcode Reconnaissance Exploits

m E-minBactch GraphSAGE m E-minBactch GraphSAGE
m E-GraphSAGE m E-GraphSAGE

(0) (d)
FiGure 8: Compare the ACC, Fl-score, precision, and recall of the model proposed in this paper with E-graph SAGE on three attacks:

Shellcode, reconnaissance, and exploits. (a) Precision of some aggressive behaviors-1. (b) F1-score of some aggressive behaviors-1. (¢) ACC
of some aggressive behaviors-1. (d) Recall of some aggressive behaviors-1.

1 o 1
0.9 S S 0.9
0.8 o o 0.8
0.7 o o 0.7
5 0.6 g 0.6
-§ 0.5 2 0.5
£ 04 T 04
worm Dos Fuzzers Generic Analysis Backdoor worm Dos Fuzzers Generic Analysis Backdoor
= E-minBactch GraphSAGE = E-minBactch GraphSAGE
= E-GraphSAGE = E-GraphSAGE

(a) (b)
1 o 1
0.9 S S 0.9
0.8 S S 0.8
0.7 o o 0.7
0.6 - - 06
3 05 g 05
< 04 # 04

worm Dos Fuzzers Generic Analysis Backdoor worm Dos Fuzzers Generic Analysis Backdoor
= E-minBactch GraphSAGE = E-minBactch GraphSAGE
= E-GraphSAGE = E-GraphSAGE
(© (d)

FiGure 9: Compare the ACC, F1-score, precision, and recall of the model proposed in this paper with E-graph SAGE on three attacks: worm,
dos, fuzzers, generic, analysis, backdoor. (a) Precision of some aggressive behaviors-2. (b) F1-score of some aggressive behaviors-2. (c¢) ACC
of some aggressive behaviors-2. (d) Recall of some aggressive behaviors-2.

Security and Communication Networks

Calculate the confusion matrix to show the effect of the
E-minBatch GraphSAGE model. The confusion matrix is
shown in Figure 7.

The E-minBatch GraphSAGE model proposed in this
paper achieves better results than the E-GraphSAGE model
in the detection of three attack behaviors: Shellcode, Re-
connaissance, and Exploits. As shown in Figure 8(a), the
detection rate of Shellcode attack increased by 2.65%, the
detection rate of Reconnaissance attack increased by 1.48%,
and the detection rate of Exploits attack increased by 2.83%.
At the same time, as shown in Figure 8, the model proposed
in this paper still has a certain degree of improvement
compared to the E-GraphSAGE model in other metrics
(ACC, Fl-score, and Recall).

To make the model better adapt to the complex network
environment, when training the E-minBatch GraphSAGE
model, a presampling process is performed, resulting in
when the remaining attack behaviors of the UNSW-NB15
dataset are used, and the effect obtained by the model
proposed in this paper is similar to that obtained by the
E-GraphSAGE model, as shown in Figure 9.

6. Conclusion

This paper proposes a new algorithm-E-minBatch
GraphSAGE based on E-GraphSAGE. To make the model
better adapt to the complex network environment, the
E-minBatch GraphSAGE algorithm presamples the neigh-
bor edges of each node of the model after the graph structure
data is constructed. In order to verify the effect of E-min-
Batch GraphSAGE, experiments are carried out on the
UNSW-NBI15 dataset. The results show that the algorithm
proposed in this paper is comparable to the E-GraphSAGE
algorithm in terms of attack behavior detection accuracy and
Fl-score in a complex network environment. In compari-
son, the model’s accuracy and F1-score have achieved better
results. Compared with the current state-of-the-art deep
learning algorithms, the algorithm proposed in this paper is
still insufficient in terms of accuracy. At the same time, the
algorithm proposed in this paper has great problems in small
sample detection, which are worthy of further study.

Data Availability

The data set can be accessed from the corresponding author
upon request.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

This work was supported by National Natural Science
Foundation of China (Grant no. 62102049), “Research on
Intelligent Depth Detection of APT Attacks for Cyber-
Physical Systems,” the National Natural Science Foundation
of China (no. 62076042), the Key Research and Develop-
ment Project of Sichuan Province (nos. 2021YFSY0012,

11

2020YFGO0307, and 2021YFGO0332), the Science and Tech-
nology Innovation Project of Sichuan (no. 2020017), the Key
Research and Development Project of Chengdu (no. 2019-
YF05-02028-GX), the Innovation Team of Quantum Se-
curity Communication of Sichuan Province (no.
17TD0009), and the Academic and Technical Leaders
Training Funding Support Projects of Sichuan Province
(no. 2016120080102643).

References

[1] K. W. Schmidt and Schmidt, “Distributed real-time protocols
for industrial control systems: framework and examples,”
IEEE Transactions on Parallel and Distributed Systems, vol. 23,
no. 10, pp. 1856-1866, 2012.

[2] J. E. Rubio, R. Roman, and J. Lopez, “Integration of a threat
traceability solution in the industrial Internet of things,” IEEE
Transactions on Industrial Informatics, vol. 16, no. 10,
pp. 6575-6583, 2020.

[3] Y. Hu, A. Yang, H. Li, Y. Sun, and L. Sun, “A survey of
intrusion detection on industrial control systems,” Interna-
tional Journal of Distributed Sensor Networks, vol. 14, no. 8,
p- 155014771879461, August 2018.

[4] R. Langner, “Stuxnet: dissecting a cyberwarfare weapon,”
IEEE Secur Priv2011, vol. 9, no. 3, pp. 49-51, 2021.

[5] R. M. Lee, M. J. Assante, and T. Conway, Analysis of the Cyber
Attack on the Ukrainian Power Grid, p. 2, Electricity Infor-
mation Sharing and Analysis Center(E-ISAC), Wash-
ington,DC, 2020.

[6] J. Staggs, Adventures in Attacking Wind Farm Control Net-
works, black hat, San Francisco, CA, 2017.

[7] E. Noonan, Colonial Pipeline Didn’t Have Multifactor Au-
thentication in Place—And Most Defense Contractors Don’t
EitherNextgov.com, China, 2021.

[8] R. Singh, H. Kumar, R. K. Singla, and R. R. Ketti, “Internet
attacks and intrusion detection system,” Online Information
Review, vol. 41, no. 2, pp- 171-184, 2017.

[9] W.Lee andS.]J. Stolfo, “Data mining approaches for intrusion
detection,” in Proceedings of the 7th USENIX Security Sym-
posium, pp. 120-132, San Antonio,TX, January 1998.

[10] L. Khan, M. Awad, and B. M. Thuraisingham, “A new in-
trusion detection system using support vector machines and
hierarchical clustering,” The VLDB Journal, vol. 16, no. 4,
pp. 507-521, 2007.

[11] E. Hodo, X. Bellekens, A. Hamilton et al., “Threat analysis of
iot networks using artificial neural network intrusion de-
tection system,” in Proceedings of the 2016 International
Symposium on Networks Computer and Communications,
pp. 1-6, China, May 2016.

[12] A. Diro and N. Chilamkurti, “Distributed attack detection
scheme using deep learning approach for Internet of Things,”
Future Generation Computer Systems, vol. 282, pp. 761-768,
May 2017.

[13] R. Beghdad, “Critical study of neural networks in detecting
intrusions,” Computers ¢ Security, vol. 27, mno. 5-6,
pp. 168-175, 2008.

[14] W. W. Lo, S. Layeghy, M. Sarhan, and E. GraphSAGE, “A
Graph Neural Network Based Intrusion Detection System,”
2021, https://arxiv.org/abs/2103.16329.

[15] W. L. Hamilton, R. Ying, and J. Leskovec, “Inductive rep-
resentation learning on large graphs,” Advances in Neural
Information Processing Systems, vol. 02216, 2017.

https://arxiv.org/abs/2103.16329

12

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

[26]

(27]

(28]

(29]

(30]

A. Khraisat, I. Gondal, P. Vamplew, J. Kamruzzaman, and
A. Alazab, “A novel ensemble of hybrid intrusion detection
system for detecting Internet of things attacks,” Electronics,
vol. 8, no. 11, p. 1210, 2019.

X. Li, M. Xu, P. Vijayakumar, N. Kumar, and X. Liu, “De-
tection of LowFrequency and Multi-Stage Attacks in Indus-
trial Internet of Things,” IEEE Transactions on Vehicular
Technology, vol. 69, 2020.

A. A. Siizen, “Developing a multi-level intrusion detection
system using hybrid-DBN(J],” Journal of Ambient Intelligence
and Humanized Computing, 2020.

W. Liang, K. C. Li, J. Long, X. Kui, and A. Y. Zomaya, “An
industrial network intrusion detection algorithm based on
multifeature data clustering optimization model,” IEEE
Transactions on Industrial Informatics, vol. 16, no. 3,
pp. 20632071, 2020.

D. Huang, X. Shi, and W. A. Zhang, “False data injection
attack detection for industrial control systems based on both
time and frequency-domain analysis of sensor data[J],” IEEE
Internet of Things Journal, no. 99, p. 1, 2020.

K. Zhang, C. Shen, H. Wang, Z. Li, Q. Gao, and X. Chen,
“Cluster computing data mining based on massive intrusion
interference constraints in hybrid networks[]J],” Cluster
Computing, vol. 22, no. 3, pp. 7481-7489, 2019.

A. Alharbi, W. Alosaimi, H. Alyami, H. T. Rauf, and
R. Damasevitius, “Botnet attack detection using local global
best Bat algorithm for industrial Internet of things,” Elec-
tronics, vol. 10, no. 11, p- 1341, 2021.

M. H. Ali, M. M. Jaber, S. K. Abd et al., “Threat analysis and
distributed denial of service (DDoS) attack recognition in the
Internet of things (IoT),” Electronics, vol. 11, no. 3, p. 494,
2022.

M. Wozniak, J. Silka, M. Wieczorek, and M. Alrashoud,
“Recurrent Neural Network model for IoT and networking
malware threads detection([]],” IEEE Transactions on Indus-
trial Informatics, vol. 1, no. 99, 2020.

M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and
P. Vandergheynst, “Geometric deep learning: going beyond
euclidean data,” IEEE Signal Processing Magazine, vol. 34,
no. 4, pp. 18-42, 2017.

W. L. Hamilton, R. Ying, and J. Leskovec, “Inductive Rep-
resentation Learning on Large Graphs,” Advances in Neural
Information Processing Systems 30 (NIPS 2017, China, 2017.
K. Xie, Y. Yang, Y. Xin, and G. Xia, “Cellular neural network-
based methods for distributed network intrusion detection,”
Mathematical Problems in Engineering, vol. 2015, no. 3,
pp. 1-10, Article ID 343050, 2015.

Y. Y. Huang, D. Wang, Y. Sun, and B. Hang, “A fastin tra-
coding algorithm for HEVC by join tly utilizing naive
Bayesian and SVM,” Multimedia Tools and Applications,
vol. 79, no. 45, pp. pp33957-33971, 2020.

N. Moustafa and J. Slay, “UNSW-NB15: a comprehensive data
set for network intrusion detection systems (UNSW-NB15
network data set),” Proc. Mil. Commun. Inf. Syst. Conf.
(MiICIS), Nov., vol. 12, pp. 1-6, 2015.

J. Toldinas, A. Ventkauskas, R. Damasevi¢ius, S. Grigalitinas,
and Morkevicius, “A novel approach for network intrusion
detection using multistage deep learning image recognition,”
Electronics, vol. 10, no. 15, p. 1854, 2021.

Security and Communication Networks

Hindawi

Security and Communication Networks
Volume 2022, Article ID 7585457, 10 pages
https://doi.org/10.1155/2022/7585457

Research Article

WILEY | Q@) Hindawi

Light Weighted CNN Model to Detect DDoS Attack over

Distributed Scenario

1. Introduction

Harish Kumar ©,' Yassine Aoudni 0, Geovanny Genaro Reivan Ortiz .} Latika Jindal ©,*

Shahajan Miah ©,” and Rohit Tripathi©®°

'Department of Computer Science, College of Computer Science, King Khalid University, Abha 61413, Saudi Arabia

Department of Computers and Information Technology, College of Sciences and Arts in Turaif, Northern Border University,
Arar, Saudi Arabia

3Laboratory of Basic Psychology, Behavioral Analysis and Programmatic Development PAD-LAB, Catholic University of Cuenca,
Cuenca, Ecuador

4Department Computer Science Engineering, Medi-Caps University, Indore, India

*Department of EEE, Bangladesh University of Business and Technology (BUBT), Dhaka, Bangladesh

®Electronics Engineering Department,] C Bose University of Science and Technology YMCA, Faridabad, India

Correspondence should be addressed to Shahajan Miah; miahbubt@bubt.edu.bd
Received 28 March 2022; Revised 8 May 2022; Accepted 17 May 2022; Published 13 June 2022
Academic Editor: Robertas Damasevicius

Copyright © 2022 Harish Kumar et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The minimal-degree distributed denial-of-service attack takes advantage of flaws in the adaptive mechanisms of network protocols,
which could have a big impact on network service quality. It is very hard to find, has a low attack rate, and comes at a set time.
Detection methods that have been used before have problems because they only use one type of detection and are not very good at
identifying the object. In the end, a way to detect many sorts of minimal DDoS$ assaults that use deep hybrid learning is suggested. To
construct multi-type limited DDoS threat data sets and mimic diverse sorts DDoS assaults and legitimate traffic in varying situations
in the 5G setting, collect congestion at the networking entry and extract flow feature info are considered. From a statistical threshold
and feature engineering point of view, these data sets show how many sorts of minimal DDoS assaults are there. This study aims to
develop a deep hybrid learning-based multi-type low-rate DDoS attack detection solution for 5G networks which is the novel model
that is recently deployed, and a hybrid deep learning algorithm was used to train the algorithm offline, and the algorithm’s
performance was compared to that of the LSTM-Light GBM and LSTM-RF algorithms. The CNN-RF revealing model was then used
to detect minimal DDoS assaults at the gateway, so that multiple attacks could be detected at the same time. It can identify 4 sorts of
low-rate DDoS assaults like Slow-Headers, Slow-Body, Slow-Read, and Shrew assaults, in a 120-second window. The false intercept
rate is 11.03 percent. This means that 96.22 percent of traffic could be found. Using the strategy suggested can help cut down on the
traffic concentration of minimal DDoS attacks at the net ingress. It can also be used in real-world situations.

lower rate, lowering the victim’s service quality. It has good
concealment and a low attack rate. There are low-rate/

The DDoS assault is the large-scale distributed and very
damaging network attack approach that may adversely
damage service availability. It has progressively grown
among the utmost severe security risks to the web. With the
continual innovation and updating of attack technology, a
new assault variation, called a low-rate DDoS attack, is
developed. This attack makes use of flaws in the network
protocol adaptive mechanism to deliver attack packets at a

minimal DDoS assaults of many protocols in the network
environment as well as periodic and aperiodic attack
methods [1]. As a result, effectively identifying many forms
of minimal DDoS assault traffic is an important challenge
that must be addressed.

This research primarily offers a multi-type low-rate
DDoS assault revealing approach for networks in the 5G
context based on deep hybrid learning. First, experimental

mailto:miahbubt@bubt.edu.bd
https://orcid.org/0000-0003-2302-5828
https://orcid.org/0000-0002-6851-9488
https://orcid.org/0000-0003-0643-8022
https://orcid.org/0000-0003-1773-2171
https://orcid.org/0000-0002-4928-3449
https://orcid.org/0000-0002-8877-6019
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/7585457

data sets are obtained by simulating various sorts of low-rate
assaults and normal communication behaviour; then, the
characteristic information of various types of low-rate DDoS
assaults is analyzed, and feature selection is performed based
on the usual information; finally, the detection model is
realized by combining the hybrid deep learning algorithm.
Finally, the detection model is placed at the network’s entry
to enable online detection of many sorts of low-rate DDoS
assaults.
This study’s key contributions are as follows:

(1) Various forms of low-rate DDoS assaults and normal
communication in diverse settings are simulated in
the 5G environment, network traffic characteristic
information during a specific time is gathered, and a
tagged minimal-degree DDoS assault data set is
generated.

(2) A multi-type low-rate DDoS assault feature set is
suggested. The characteristic information of several
forms of low-rate DDoS assaults and ordinary traffic
is investigated from the standpoint of statistical
thresholds and feature engineering, and 40 effective
minimal-degree DDoS assault characteristics are
derived.

(3) A multi-type low-rate DDoS assault detection ap-
proach is provided. The oftline training, deployment,
and detection of hybrid deep learning models are
implemented using the low-rate DDoS assault fea-
ture set. The detection findings demonstrate that by
choosing the ideal time frame, the approach pre-
sented in this study can efficiently identify four forms
of minimal DDoS assaults, namely, Slow-Headers
attack, Slow-Body attack, Slow-Read attack, and
Shrew attack.

2. Related Work

For a long time, the research on minimal-degree DDoS
assaults has received extensive attention from scholars at
home and abroad. At the beginning of the 21st century,
Kuzmanovic proposed the definition of Shrew attack, col-
lected relevant data of minimal-degree DDoS assaults, and
conducted appropriate analysis and research [2]. The re-
search on minimal-degree DDoS assault revealing and de-
fense mainly includes twofold methods. One is the detection
method based on statistical analysis. The authors proposed a
minimal-degree DoS assault revealing method centred on
the Pearson relationship, which uses the Pearson coefficient
of correlation based on the Hilbert spectrum net congestion,
to characterize network traffic information, and compares
this information with a threshold to detect low-rate attacks
against TCP [3]. Author analyzed the sequence similarity
between the minimal-degree DDoS assault pulses at the
victim end from the perspective of sequence matching, used
the Smith-Waterman algorithm, and designed a double-
threshold rule to detect TCP-based low-rate attacks [4]. The
authors proposed a method based on network self-similarity
to analyze the impact of low-rate attacks on traffic self-
similarity and used H-index combined with thresholds to

Security and Communication Networks

identify attacks and legitimate traffic [5]. The deep neural
model (DNN) is proposed as a deep learning technique for
malware detection on a subset of frames acquired from data
transfer [6]. The method suggested by the researchers limits
the cost of interference in IoT transmitting data, and the
network’s smart use of training sets efficiently differentiates
the conventional and threat sequences [7]. The above
methods for detecting low-rate attacks only see low-rate
attacks based on TCP and depend on the set of points, which
are easily affected by the randomness of the network en-
vironment and cannot achieve excellent detection results.

Another kind is machine learning-based detection,
which uses traffic properties and M-L procedures to identify
minimum degree DDoS attacks. The authors recommended
an approach on the fundamentals of principal factor in-
vestigation and S-V-M to sense minimal-degree TCP as-
saults. The major component analysis tactic effectively
captures network communication properties while filtering
noise from the environment [8]. The authors proposed a
minimal-degree DDoS assault detection method for TCP in
edge environments, which used local complex feature
mining and deep CNN to acquire the finest trait distribution
of raw info automatically, and deep reinforcement learning
Q networks as decision-making to improve attack detection
decision-making accuracy [9]. The authors constructed a
minimal-degree DDoS assault detection system based on
decomposition machines, offered a feature combination
mechanism, established the correlation between feature
samples, and detected HTTP-based low-rate assaults. J48,
random tree, REP tree, random forest, multilayer percep-
tron, and support vector machine are six models that detect
HTTP-based minimal-degree DDoS assaults, according to
Reference, which proposes using machine learning ap-
proaches to identify low-rate DDoS assaults in the SDN
situation [10]. DNN models can perform efficiently and
precisely although with small samples since its architecture
includes segmentation method and identification proce-
dures, and also strands that upgrade themselves as they are
programmed [6]. This method, however, has a higher false-
positive rate than DDoS assaults. Hybrid deep learning al-
gorithms may fully use the advantages of machine learning
and deep learning algorithms. This article includes multiple
machine learning models to anticipate application layer
DDoS assaults in real time [11]. The authors have proposed
CyDDoS architecture for an automated intrusion detection
system (IDS) that blends a feature map synthesis algorithm
with such a neural network [12].

A hybrid based on a long-short-term-memory network
and a CNN was suggested by researcher. Therefore, suc-
cessfully implementing security strategy to prevent a system
from this danger is a significant issue since DDoS employs a
variety of attack methods with numerous conceivable
combinations [13]. The deep learning architecture detects
Bot, Post Scan, and XSS threats in the CICIDS2017 data set.
The detection system has been proved to have better de-
tection capabilities [14]. The authors proposed a deep
learning-based hybrid anomaly detection system that uses
the limited Boltzmann machine and support vector machine
methods to reduce the data’s feature dimensions, but the

Security and Communication Networks

data set used in the investigation was KDD99, which is
incorrect. At a finer level, DoS assaults are categorized and
identified. The authors proposed a hybrid time-series
forecasting model for stock forecasting based on an extended
short-term memory network and LightGBM, which per-
formed well [15]. In terms of prediction, author proposes a
hybrid deep learning model based on an extended short-
term memory network and random forest (RF, random
forest), which outperforms a single machine learning
strategy [16]. Minimal-degree DDoS assault revealing ap-
proaches, such as the ones given above, can only identify a
single sort of minimal DDoS assaults, which has the
drawbacks of only detecting one type of attack and low
detection accuracy. Given the aforementioned limitations,
this research proposes a CNN-RF hybrid deep learning-
based minimal-degree DDoS assault revealing system that
can learn the characteristics of many kinds of attack traffic
and improve the accuracy of online detection of numerous
sorts of minimal-degree DDoS assaults.

3. Characteristic Analysis of Minimal-Degree
DDoS Assaults

In this study, minimal-degree DDoS assaults are classified
into two types: HTTP-based low-rate DDoS attacks and
TCP-based minimal-degree DDoS assaults [17].

Slow-Headers, Slow-Body, along with Slow-Read as-
saults are examples of HTTP-based minimal-degree DDoS
assaults [18]. This sort of assault exploits the weakness in the
current HTTP Keep-Alive method, maintains the connec-
tion for an extended period of time, and continually con-
sumes resources of server, ensuing in a service denial to the
Web server. Among these, the Slow-Headers attacker sends
an unfinished HTTP request ending with the character “rn,”
causing the server to believe that the request was not de-
livered and continuing to wait. Finally, the number of
connections approaches the server’s maximum capacity, and
the new request is unable to be handled, resulting in a re-
jection-service assault. The sluggish body attacker makes a
POST request to the server with a large content-length value.
Even yet, the server only delivers a tiny amount of bytes each
time, and the server’s resources are depleted when requests
exceeds an assured threshold. Finally, Slow-Read attackers
submit valid requests to the server to read huge data files
while setting the TCP sliding window to a low number. As a
consequence, establishing a communication link between
the server and the attacker takes a lengthy time. When the
number of connections exceeds a certain threshold, the
service cannot be supplied.

TCP-based low-rate DDoS assaults come in a variety of
flavors. This research focuses on the Shrew attack, which
leverages the TCP timeout retransmission mechanism to
transmit high-speed burst packets on a regular basis, low-
ering the victim’s quality of service and performance. The
suggested model overcomes it by incorporating a novel
position-oriented neural layer [19]. This article mostly
replicates four forms of minimal-degree DDoS assaults using
attack tools and Python scripts: Slow-Headers assaults, Slow-
Body assaults, Slow-Read assaults, and Shrew assaults.

A typical analysis of minimal-degree DDoS attacks is
mostly based on the original minimal-degree DDoS assaults.
The CICFlowMeter feature extraction program extracts
comprehensive bidirectional flows based on time frames,
reflecting properties such as forward and reverse data flows.
This technique is used as our research is mainly aimed on the
attack tools namely as Slow-Headers attack, Slow-Body
attack, Slow-Read attack, and Shrew attack; however, this
work mostly replicates four forms of low-rate DDoS assaults.
Aside from tag values, the device produces a total of 83 other
types of feature information, such as flow ID, quintuple
information, stream-level features, and package-level fea-
tures. The flow ID is a penta-tuple consisting of the birth-
place IP address, purpose IP address, port location, destiny
port, and procedure that is used to uniquely identify the
flow. Stream-level characteristics include statistics regarding
the stream’s time, duration, and bytes per second. The
amount of forwarding/reverse packets per second, statistical
factors of packet length, SYN/FIN/RST flag bit count, and so
on are all packet-level characteristics.

4. Minimal-Degree DDoS Assault
Detection Framework

This section first introduces the composition of the detection
framework, then introduces the principle and imple-
mentation of the data set generation module, and finally
presents the specific performance and critical technologies of
the offline training module and online detection module of
the hybrid deep learning model detail. The detection
framework comprises a data set generation module, feature
analysis and selection module, a detached training unit, and
a connected detection unit. The minimal-degree DDoS at-
tack detection framework is shown in Figure 1. The
framework is divided into data processing and deep hybrid
learning. Figure 2 shows the flowchart for the proposed
methodology.

The data processing part is responsible for preliminary
processing of the acquired network traffic and is divided into
a data set generation module and feature analysis and se-
lection module. The data set generation module is used to
obtain network traffic in a specified period, extract flow
feature information, and perform data cleaning to get
minimal-degree DDoS assault data set containing 4 types of
minimal-degree DDoS attacks and regular traffic. The trait
analysis and selection module analyzes the trait information
of different kinds of minimal-degree DDoS assault from
statistical thresholds and trait engineering and summarizes
the valuable features of multiple types of minimal-degree
DDoS assault.

The deep hybrid learning component detects many sorts
of minimal-degree DDoS assaults and is separated into
twofold segments: disconnected training and connected
detection. The disconnected training unit selects valuable
features from the data set for feature selection, uses a hybrid
deep learning algorithm for training and testing, performs
performance evaluation and related parameter optimization
based on classification results, and selects the best attack
detection model. By recording traffic in real time, the online

INTERNET

Normal/Good Traffic
Attack Traffic

m =

o WA

Z -.(Q?”F‘i
O —mX@
[mi
i

Attacker

Zombies

Security and Communication Networks

CNN MEMBERS

DDoS
Scrubber

FIGURE 1: Minimal-degree DDoS assault detection framework.

detection module deploys the trained hybrid deep learning
detection model to the network entry and achieves con-
nected revealing of different forms of minimal-degree DDoS
assaults. A model’s output information is employed to
recognize minimal-degree DDoS assaults on traffic to be
detected—a particular sort of attack.

4.1. Data Processing Part

4.1.1. Data set Generation Module. The data set generation
module is used to obtain the network traffic in a certain
period. Then, the flow feature information is extracted by the
flow feature extraction tool CICFlowMeter to get a minimal-
degree DDoS assault data set. This data set contains multiple
sorts of minimal-degree DDoS assaults and regular com-
munication congestion in 5G environ, reflecting the traffic
patterns in natural environments.

The generated a hefty figure of regular transmission
simulation requests according to the third-generation co-
operation project (3GPP) and IEEE for actual traffic laws of
devices in different 5G application scenarios [20, 21]. This
rule is obtained through the traffic data collected in the real
scene. The result includes the influence of various envi-
ronmental factors, which can reflect the request situation in
the exact location. In this study, the method is improved to
generate regular communication traffic. Combined with the
four minimal-degree DDoS assault traffic generated by
outbreak tools as well as scripts, a new minimal-degree
DDoS assault data set will be obtained.

As per this study, attack is realized by sending traffic
through attack tools. Considering the security of the network
environment, the capture of low-rate network traffic is
recognized based on the VMware vSphere virtualization
experimental platform. The realistic environment is close to
the natural environment, reflecting the traffic statistics in the
virtual environment. Thereafter, the traffic collection tool
Tepdump is deployed and installed to capture the data

| Start I

\4

Internet traffic

i

DDoS Scrubber (CNN Model)

}

If Attack Traffic

Block

Members

!

End

FiGure 2: Flowchart.

packets in the network. The data set collection point is at the
access gateway of the network entrance, which can com-
pletely capture the communication traffic in the network.
Finally, CICFlowMeter is used to extract characteristic in-
formation of network traffic. At the same time, according to
the attack plan in Table 1, the extracted feature information

Security and Communication Networks

TaBLE 1: Minimal-degree DDoS attack plan.

Attack time Source IP Destination IP Traffic type
23.1.0.22 231.1.22 Slow-
2021.5.25 Headers
e 23.1.0.12 23.1.1.23 Slow-Body
23.1.0.13 23.1.1.24 Slow-Read
15:35-16: 23.1.0.14 23.1.1.25 Shrew
15 23.1.0.20~23.1.0.29 23.1.1.73 Normal flow

is labeled, and the labeled data set is used for the training and
verification of the detection model. This article includes
multiple machine learning models to anticipate application
layer DDoS assaults in real time. The authors have proposed
CyDDoS, an architecture for an automated intrusion de-
tection system (IDS) that blends a feature map synthesis
algorithm with such a neural network [22]. The three types
of minimal-degree DDoS attack methods, Slow-Headers
assault, Slow-Body assault, and Slow-Read assaults studied
in this article, send the attack traffic by modifying the pa-
rameters of the slow Http test and slow HTTP attack tool,
and the Shrew attack realizes the sending attack by writing
Python scripts flow. Python scripts are used for regular
communication requests based on the statistical laws of
different scenarios in the 5G environment to simulate
sending massive connection regular request traffic. Based on
the above implementation methods, this study collects traffic
and automatically extracts flow feature information under
minimal-degree DDoS assault and normal communication
behaviour [23]. In our investigation, the capture period
starts at 08:00 on May 19, 2021 and ends at 17:00 on May 24,
2021. During this period, different attacks were launched,
including low-rate DDoS assaults, DDoS network stratum
assaults, DDoS application stratum assaults, and distributed
reflection amplification attacks. Table 1 shows the attack
plan for minimal-degree DDoS assaults.

Based on the network traffic pcap file obtained by the
above attack plan, the traffic feature extraction tool CIC-
FlowMeter is employed to excerpt the traffic trait info, and a
multi-type minimal-degree DDoS assault data set is ob-
tained. Table 2 depicts the quantity of data samples of every
single traffic type in the data set and the ratio of standard
traffic samples. It can be seen that the number of data
samples of regular traffic is plentiful superior than the count
of data samples of each minimal-degree DDoS attack,
reflecting the minimal-degree DDoS attacks.

5. Experiment and Result Analysis

This study simulates various minimal-degree DDoS attacks
and regular communication requests in the 5G environment.
It conducts performance evaluations of different hybrid deep
learning detection models and online detection performance
tests under other detection time windows. Table 2 displays
the number of data samples from each traffic category in the
data set as well as the ratio of regular traffic data.
Figure 3with Tables 3 and 4depicts the efficiency and F1
value of the three models. As shown in Figure 4, for detecting
Slow-Headers attack trafficc the CNN-RF model

TaBLE 2: Number and proportion of data samples for each traffic
type.

Number of data The proportion of attack traffic

Traffic type samples to normal traffic
Slow-

Headers 100 793 01:04.5
SIOW—BOdy 110 044 01:04.5
Slow-Read 68 074 01:04.5
Shrew 45 389 01:04.5
Normal 460 619 —

flow

outperforms the other two models in terms of effectiveness
and F1 value for identifying ordinary benign traffic.

5.1. Experimental Environment. To authenticate the re-
vealing effect of the technique in this research on multi-type
low-rate DDoS attacks, a related test platform is built on the
network platform using actual network equipment.

In this study, a virtual platform based on Vmware
vSphere is set up as the experimental environment. A total of
nine hosts were used in the experiment, including two
routers, one client host, four dummy hosts, and two web
servers. The investigation in this study builds a hybrid deep
learning model based on the TensorFlow framework. The
programming language is Python3.8, and the machine
learning library of TensorFlow2.1 and Keras2.2.4 is used to
build the model. The Ubuntu18.04 is software background in
server operating structure, and the number of virtual cores is
8, the memory is 8 GB, four hosts are used as puppet hosts,
and two virtual machines built with web servers are used as
attacked servers. This is critical to halt fraudulent activity
since they have a long-term influence on financial cir-
cumstances. Outlier detection has several essential appli-
cations for fraud prevention [24]. Detection is performed at
the network entry router, and data collection and cleaning
functions are provided.

The simulation includes public services, smart homes,
PC Internet access, and MTC communication based on this
connection.

The four transmission scenarios generated a large
number of regular communication data requests. Minimal-
degree DDoS assault attacker controls four puppet hosts to
periodically send minimal-degree DDoS attacks based on
HTTP protocol and TCP protocol to the web server. The
experimental minimal-degree DDoS assault types select
HTTP-based Slow-Headers assaults, Slow-Body assaults,
Slow-Read assaults, and TCP-based Shrew assaults [25].

5.2. Evaluation Indicators. The minimal-degree DDoS as-
sault detection framework implements oftline training and
online detection for various kinds of minimal-degree DDoS
assault data based on hybrid learning procedure [26]. Offline
activity mainly analyzes the model’s classification perfor-
mance through six evaluation indicators: accuracy, preci-
sion, recall, F1 value, detection time, and confusion matrix.
Among them, the rate of exactness symbolizes the ratio of

1.05 A

0.95 4

0.9 +

0.85

0.8 -

Normal flow Slow Headers

I LSTM-LightGBM
I LSTM-RF
pmm CNN-RF

Slow Headers

Normal flow

I LSTM-LightGBM
I LSTM-RF
pm CNN-RF

Slow Body

Slow Body

Security and Communication Networks

Slow Read Shrew

Slow Read Shrew

F1Gure 3: Comparison of precision and F1 scores of different models. (a) Comparison of the accuracy of different models. (b) Comparison

between F1 of different models.

TaBLE 3: Comparison of the accuracy of different models.

TaBLE 4: Comparison between F1 of different models.

F1 value LSTM—LightGBM LSTM-RF CNN-RF F1 value LSTM—LightGBM LSTM-RF CNN-RF
Normal flow 0.82 0.98 1 Normal flow 0.95 0.98 0.98
Slow-Headers 0.85 0.96 0.9 Slow-Headers 0.85 0.95 0.9
Slow-Body 0.95 0.97 0.93 Slow-Body 0.75 0.95 0.9
Slow-Read 0.98 0.95 0.96 Slow-Read 0.98 1 1
Shrew 0.98 0.92 0.95 Shrew 0.95 0.99 1

the amount of exact samples classified through the prototype
to the overall quantity of pieces; the exactness degree rep-
resents the proportion for an amount of samples suggested
by prototype as an attack category and the count of samples
that are assault kinds; and the recall rate represents the
prototype suggested as an attack category [27]. The share of
the sum of pieces to all the examples of this assault type are as
follows: the F1 value combines the results of precision and

recall, representing the harmonic average of the two, which
can more accurately reflect model performance; detection
time reflects the time complexity of the model. It is used to
measure the time efficiency of the model; the classification
effect of the prototype is examined by employing confusion
matrix as well as the grade to which the predicted label
matches the actual label, which corresponds to the recall rate
numerically [28].

Security and Communication Networks

095"
094"
085 4"
084
0.75
Slow Normal
Headers Slow Body Slow Read Shrew Flow
I Accuracy
B Recall

FIGURE 4: Detection performance.

In addition, to analyze the classification of online de-
tection, new evaluation indicators are defined: false inter-
vention degree and malicious congestion revealing degree
used to evaluate an online detection of normal and malicious
traffic, respectively. Among them, the false interception rate
represents the proportion of misjudging regular traffic as
diverse kinds of minimal-degree DDoS assaults, and the
calculation is shown in formula (1); the malicious traffic
detection rate represents the proportion of detected mali-
cious traffic to the overall count of negative traffic samples,
and the calculation is shown in formula (2).

4
G.
false, . =Y 4 (1)
interception,, . ; M
4T
1\/IaliCi0uStrafﬁccletectionme =1- 2471’ (2)
i 2io1 B;

where G; represents the number of data samples that mis-
judge the regular traffic in the network environment as a
further four forms of minimal-degree DDoS assault traffic
after online detection; M represents the total number of data
samples of regular traffic in the network environment; T;
represents the number of undetected data samples of
minimal-degree DDoS assault congestion within the net-
work environment after detection; B; represents the
total number of data samples of different types of minimal-
rate DDoS assault congestion within the network
environment.

5.3. Offline Training Analysis. Based on the minimal-degree
DDoS assault data set obtained by the data set generation
module in Section 3, data cleaning is performed, including
processing the feature data with null feature values and
processing feature data with infinite feature values. Feature
selection is carried out according to the 40 useful features
shown in Figure 3 and is distributed in a dual sets as training
as well as test in a ratio of 7:3. The data set is shown in
Table 5. The total number of data samples in the minimal-
degree DDoS assault data set is 794,919, including 556,444 in
the preparation set as well as 238,475 in the training set.

TABLE 5: Minimal-degree DDoS assault data set.

Number of attack
traffic samples
267800
108943

Data set type Normal flow samples

288555
129832

Training set
Test set

The CNN-RF model showed optimal performance
through hyperparameter search, given the same minimal-
degree of DDoS assault data set and eigenvalues. At the same
time, the CNN-RF prototype projected in this study is as-
sociated with the LSTM-LightGBM prototype and the
LSTM-REF prototype, and the optimum hybrid deep learning
prototype is nominated to identify the connected revealing
of multi-type minimal-rate DDoS assaults. This study uses
four evaluation indicators: detection time, precision rate, F1
value, and confusion matrix. Figure 3 shows the confusion
matrix performance of the three hybrid deep learning
models. It may be perceived that the recognition precision of
LSTM-Light-GBM model for each traffic type varies greatly,
especially the recognition accuracy of the Slow-Body attack
is only 0.5565, and the false-positive rate of the Slow-
Headers attack is 0.2695. The recognition accuracy of the
LSTM-RF model for the five types of traffic is better than that
of the LSTM-LightGBM prototype, especially the recogni-
tion accuracy of the Slow-Read attack is about 0.9992, but it
will produce a false-positive rate of 0.0788 when identifying
the Slow-Body attack. The accuracy of the CNN-RF model
overperforms the LSTM-RF, especially the recognition ac-
curacy of Slow-Read assaults and Shrew attack can reach
0.9999. The recognition accuracy of Slow-Headers attack
traffic can also get 0.9566.

Figure 3 with Tables 3 and 4 shows the evaluation of the
three prototypes in terms of exactness and F1 value. As can
be seen from Figure 3, for the identification of regular benign
traffic, the CNN-RF prototype outperforms the other two
designs in terms of accuracy and F1 value; for the detection
of Slow-Headers attack traffic, the accuracy of the CNN-RF
design is the best. Excellent: the LSTM-RF and LSTM-
LightGBM models have similar performance in F1 value; for
detecting Slow-Body and Slow-Read assault congestion in
net, the LSTM-LightGBM design has poor performance in
both accuracy and F1 score, and the CNN-RF model’s
performance is poor. Best performing: for Shrew, the de-
tection of attack traffic in the three models is in the two
evaluation indicators of good performance.

The detection time comparison of different hybrid deep
learning ideas is presented in Table 5. It may be seen from
Table 6 that the detection time of the CNN-RF model is
268.3689 s, which is about 9 s longer than that of the LSTM-
LightGBM design, and about 40 s more minor than that of
the LSTM-RF model. However, the LSTM-LightGBM design
is significantly lower than the CNN-RF design in detection
accuracy and F1 score. Therefore, while the detection time is
shorter, the CNN-RF design has better accuracy and Fl1
value for various forms of minimal-rate DDoS assaults and
regular congestion.

Combining the above evaluation indicators, it can be
concluded that the distinction of LSTM-LightGBM model

TaBLE 6: Comparison of detection time of different models.

LSTM-RF
308.5964

CNN-RF
268.3689

Model category LSTM-LightGBM

259.8986

Detection time/s

310
300
290
280
270
260
250
240
230

LSTM-LightGBM LSTM-RF CNN-RF

FiGure 5: Comparison of detection time.

along with the LSTM-RF model, the CNN-RF model pro-
posed in this article has better performance in regular traffic.
Slow-Headers assault, Slow-Body assault, Slow-Read assault
and Shrew’s assault traffic detection as well as classification
all show excellent performance and can accurately detect
different types of low-rate DDoS attacks.

5.4. Online Inspection and Verification. The offline training
experiments and analysis in Section 4 show that the CNN-RF
model has excellent detection performance. To further il-
lustrate that the model version is still the best in online
detection, this section compares the performance of LSTM-
LightGBM, LSTM-RF, and CNN-RF models in expressions
of precision, error interception degree, and malicious traffic
detection degree. The contrast of detection time is shown in
Figure 5.

Finally, the best-performing and trained model under
the optimal time window is selected, and the fine-grained
online detection of multi-type low-rate DDoS attacks is
deployed. First, multiple types of minimal-degree DDoS
assault traffic files online are replayed, Tcpdump is used to
internment network congestion inside the specified detec-
tion time window, and flow feature information is extracted
through CICFlowMeter; then, the structure and parameters
of the trained detection model are read and implemented for
online detection. The model outputs detection classification
labels, actual labels, and malicious traffic IP addresses; fi-
nally, based on statistical methods, the model’s detection
accuracy rate and negative traffic detection rate and other
indicators are viewed.

This section compares the performance of the bench-
mark detection time window of 60 s with the detection time
window of 120s and 180s and compares the LSTM-
LightGBM, LSTM-RF, and CNN-RF models, respectively,
and selects the optimal detection model. The optimal de-
tection time window below is the final online detection
parameter. Table 7 shows the performance comparison of

Security and Communication Networks

TaBLE 7: Comparison of online detection performance of different
models under different time windows.

Malicious
. False
Model name Time Accuracy interception traffic
window/s detection
rate
rate
LSTM- 70 0.85394 0.28498 0.85244
LichtGBM 110 0.89384 0.20312 0.87258
& 190 0.87698 0.21015 0.88593
70 0.90894 0.20591 0.96852
LSTM-RF 110 0.92438 0.17419 0.95478
190 0.89394 0.19875 0.92574
70 0.9569 0.17058 0.87244
CNN-RF 110 0.95347 0.11789 0.88574
190 0.98397 0.20591 0.98657

the accuracy, false interception rate, and malicious traffic
detection rate of different models under different time
windows.

It can be seen from Table 7 that under the time window of
1205, the LSTM-LightGBM, LSTM-RF, and CNN-RF models
all show relatively optimal detection performance. The ac-
curacy of the LSTM-RF model reaches 0.9243, and the
malicious traffic detection rate is 0.9193. When the detection
time window is 180s, the accuracy of the LSTM-RF model
drops to 0.897 6; simultaneously, the false interception rate
increases to 0.192 7, indicating that a huge quantity of regular,
benign transportation is misjudged as malicious traffic. Under
the time window of 120s, the LSTM-LightGBM model
performed the worst, with an accuracy of only 0.896 5 and a
false intercept rate of 0.203 1. For the CNN-RF model, when
the online detection time window is 120 s, the minimum false
intercept rate is 0.110 3. That is, the proportion of regular
traffic being misjudged as malicious traffic is the lowest; at the
same time, the negative traffic data samples detected by this
detection mechanism are highest. The ratio of the number is
0.962 2. After analysis, the detection time window of 120s
altogether includes the characteristic information of different
sorts of minimal-rate DDoS attacks, reflecting the complete
minimal-degree DDoS assault activities, thus effectively dis-
tinguishing different kinds of minimal-rate DDoS attacks
from regular traffic.

Consequently, the detection time window is set to 120,
and the CNN-RF model with the best performance is
deployed to realize online detection. The detection perfor-
mance for diverse categories of minimal-rate attacks and
regular traffic is obtained through the detection, as shown in
Table 8. From Table 8 and Figure 4, it can be seen that the
precision rate of the CNN-RF hybrid deep learning model
for Slow-Headers assaults, Shrew attack, and regular traffic is
above 0.95; and for Slow-Read attack and Slow-Body attack
traffic, the precision and recall rate are both above 0.86,
resulting in fewer misjudgments between the dual attack
categories. In summary, detection exactness of the CNN-RF
hybrid deep learning model for every kind of minimal-
degree DDoS assaults and regular congestion in traffic
reaches 0.965 2, which can accurately detect different types
of low-rate DDoS attacks online.

Security and Communication Networks

TaBLE 8: Online detection performance under 120-s time window.

Traffic type Accuracy Recall
Slow-Headers 0.9546 0.8666
Slow-Body 0.9952 0.8639
Slow-Read 0.8647 0.9948
Shrew 0.9998 0.9994
Normal flow 0.9999 0.9995

It can be seen from the above analysis that the CNN-RF
hybrid deep learning model proposed in this article has
excellent online detection performance and can realize
connected revealing of four kinds of minimal-degree DDoS
assaults. At the same time, the accuracy degree of each
minimal-degree DDoS assaults is above 0.85, which can
prevent the attack from causing more damage to the net-
work; the malicious traffic detection rate reaches 0.962 2, and
the detection accuracy rate reaches 0.965 2, which can ef-
fectively detect the web online. The malicious traffic in the
network reduces the concentration of minimal-degree DDoS
assault traffic at the ingress network.

6. Conclusion

Aiming at four types of minimal-degree DDoS assaults, this
study obtains minimal-degree DDoS assault data sets, an-
alyzes and obtains 40 effective traits of minimal-degree
DDoS assaults, and proposes a variable-kind minimal-de-
gree DDoS based on CNN-RF hybrid learning. The attack
detection method and online deployment of this model
realize connected revealing of variable types of minimal-
degree DDoS assaults. Furthermore, an online detection
time window is proposed, and the online detection per-
formance is evaluated using false intervention degree and
malicious network congestion revealing rate. Experiments
show that the prototype based on CNN-RF hybrid deep
learning algorithm can accurately detect different types of
minimal-degree DDoS assaults. At the identical interval, the
revealing method in this study is highly portable, and the
minimal-degree DDoS assault data set is used close to the
actual situation, which can be deployed and applied in
practical environments when the hybrid deep learning
model implements training and detection for multi-type
low-rate DDoS attacks. The online detection accuracy in
different scenarios decreases related to the attack traffic
sending rate and the duty cycle of regular traffic in the
detection window. In the future, we will study the optimi-
zation model and time window and analyze the relationship
between time window and data set and feature selection so
that the model can better adapt to the environment and have
higher accuracy and detection efficiency.

Data Availability

The data shall be made available on request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was supported by the King Khalid University
Researchers Supporting Project Number (GRP/326/42).

References

[1] S. Yeom and K. Kim, “Improving performance of collabo-
rative source-side DDoS attack detection,” in Proceedings of
the 2020 21st Asia-Pacific Network Operations and Manage-
ment Symposium (APNOMS), pp. 239-242, Daegu, Korea
(South), September 2020.

[2] W. Sun, Y. Li, and S. Guan, “An Improved Method of DDoS

Attack Detection for Controller of SDN,” in Proceedings of the

2019 IEEE 2nd International Conference on Computer and

Communication Engineering Technology (CCET), pp. 249-

253, Beijing, China, August 2019.

B. Jia and Y. Liang, “Anti-D chain: a lightweight DDoS attack

detection scheme based on heterogeneous ensemble learning

in blockchain,” China Communications, vol. 17, no. 9,

pp. 11-24, 2020.

[4] J. He, Y. Tan, W. Guo, and M. Xian, “A Small Sample DDoS
Attack Detection Method Based on Deep Transfer Learning,”
in Proceedings of the 2020 International Conference on
Computer Communication and Network Security (CCNS),
pp- 47-50, Xi’an, China, August 2020.

[5] Z. Liu, Y. He, W. Wang, and B. Zhang, “DDoS attack de-
tection scheme based on entropy and PSO-BP neural network
in SDN,” China Communications, vol. 16, no. 7, pp. 144-155,
2019.

[6] A.E.Cil, K. Yildiz, and A. Buldu, “Detection of DDoS attacks
with feed forward based deep neural network model,” Expert
Systems with Applications, vol. 169, Article ID 114520, 2021.

[7] M. H. Ali, M. M. Jaber, S. K. Abd et al., “Threat analysis and
distributed denial of service (DDoS) attack recognition in the
Internet of things (IoT),” Electronics, vol. 11, no. 3, p. 494,
2022.

[8] S.Dong and M. Sarem, “DDoS attack detection method based
on improved KNN with the degree of DDoS attack in soft-
ware-defined networks,” IEEE Access, vol. 8, pp. 5039-5048,
2020.

[9] Y. Chen, X. Chen, H. Tian, T. Wang, and Y. Cai, “A Blind
Detection Method for Tracing the Real Source of DDoS Attack
Packets by Cluster Matching,” in Proceedings of the 8th IEEE
International Conference on Communication Software and
Networks (ICCSN), pp. 551-555, Beijing, China, June 2016.

[10] X. Liang and T. Znati, “An empirical study of intelligent
approaches to DDoS detection in large scale networks,” in
Proceedings of the 2019 International Conference on Com-
puting, Networking and Communications (ICNC), pp. 821-
827, Honolulu, HI, USA, February 2019.

[11] J.-H. Jun, H. Oh, and S.-H. Kim, “DDoS Flooding Attack
Detection through a Step-by-step Investigation,” in Pro-
ceedings of the 2011 IEEE 2nd International Conference on
Networked Embedded Systems for Enterprise Applications,
pp. 1-5, Perth, WA, Australia, December 2011.

[12] M.J. Awan, U. Farooq, H. M. A. Babar et al., “Real-time DDoS
attack detection system using big data approach,” Sustain-
ability, vol. 13, no. 19, Article ID 10743, 2021.

[13] I Ortet Lopes, D. Zou, F. A. Ruambo, S. Akbar, and B. Yuan,
“Towards effective detection of recent DDoS attacks: a deep
learning approach,” in Security and Communication Net-
works, W. Li, Ed., vol. 2021, Article ID 5710028, 14 pages,
2021.

[3

10

(14]

(15

(16]

(17]

(18

(19]

[20

(21]

(22]

(23]

(24]

(25]

[26]

V. Popovskyy and V. Skibin, “Entropy Methods for DDoS
Attacks Detection in Telecommunication Systems,” in Pro-
ceedings of the 2014 First International Scientific-Practical
Conference Problems of Infocommunications Science and
Technology, pp. 182-185, Kharkov, Ukraine, October 2014.
D. Erhan and E. Anarim, “Istatistiksel Yontemler Ile DDoS
Saldir1 Tespiti DDoS Detection Using Statistical Methods,” in
Proceedings of the 2020 28th Signal Processing and Commu-
nications Applications Conference (SIU), pp. 1-4, Gaziantep,
Turkey, October 2020.

L.Wangand Y. Liu, “A DDoS Attack Detection Method Based
on Information Entropy and Deep Learning in SDN,” in
Proceedings of the 2020 IEEE 4th Information Technology,
Networking, Electronic and Automation Control Conference
(ITNEC), pp. 1084-1088, Chongqing, China, June 2020.

A. Sanmorino and S. Yazid, “DDoS Attack detection method
and mitigation using pattern of the flow,” in Proceedings of the
2013 International Conference of Information and Commu-
nication Technology (ICoICT), pp. 12-16, Bandung, Indonesia,
March 2013.

L. Luo, J. Wang, and L. Jia, “A CGAN-based DDoS Attack
Detection Method in SDN,” in Proceedings of the 2021 In-
ternational Wireless Communications and Mobile Computing
(IWCMC), pp. 1030-1034, Harbin City, China, June 2021.
K. Mahajan, U. Garg, and M. Shabaz, “CPIDM: a clustering-based
profound iterating deep learning model for HSI segmentation,”
Wireless Communications and Mobile Computing, vol. 2021,
Article ID 7279260, 12 pages, 2021.

R. Arthi and S. Krishnaveni, “Design and Development of
IOT Testbed with DDoS Attack for Cyber Security Research,”
in Proceedings of the 2021 3rd International Conference on
Signal Processing and Communication (ICPSC), pp. 586-590,
Coimbatore, India, May 2021.

D. Ushakov, M. Vinichenko, and E. Frolova, “Environmental
capital: a reason for interregional differentiation or a factor of
economy stimulation (the case of Russia),” IOP conference
series: earth and environmental science, vol. 272, no. 3,
p. 032111, 2019.

Y. Chen, J. Hou, Q. Li, and H. Long, “DDoS attack detection
based on random forest,” in Proceedings of the 2020 IEEE
International Conference on Progress in Informatics and
Computing (PIC), pp. 328-334, Shanghai, China, December
2020.

S. Nguyen, J. Choi, and K. Kim, “Suspicious Traffic Detection
Based on Edge Gateway Sampling Method,” in Proceedings of
the 2017 19th Asia-Pacific Network Operations and Manage-
ment Symposium (APNOMS), pp. 243-246, Seoul, Korea
(South), September 2017.

S. Sanober, I. Alam, S. Pande et al., “An enhanced secure deep
learning algorithm for fraud detection in wireless commu-
nication,” Wireless Communications and Mobile Computing,
vol. 2021, Article ID 6079582, 14 pages, 2021.

D. Erhan, E. Anarim, and G. K. Kurt, “DDoS attack detection
using matching pursuit algorithm,” in Proceedings of the 2016
24th Signal Processing and Communication Application
Conference (SIU), pp. 1081-1084, Zonguldak, Turkey, May
2016.

N. Hoque, D. K. Bhattacharyya, and J. K. Kalita, “A novel
measure for low-rate and high-rate DDoS attack detection
using multivariate data analysis,” in Proceedings of the 2016
8th International Conference on Communication Systems and
Networks (COMSNETS), pp. 1-2, Bangalore, India, January
2016.

Security and Communication Networks

[27] N. R. Nayak, S. Kumar, D. Gupta, A. Suri, M. Naved, and

M. Soni, “Network mining techniques to analyze the risk of
the occupational accident via Bayesian network,” Interna-
tional Journal of System Assurance Engineering and Man-
agement, vol. 13, pp. 1-9, 2022.

[28] K. Hong, Y. Kim, H. Choi, and J. Park, “SDN-assisted slow

HTTP DDoS attack defense method,” IEEE Communications
Letters, vol. 22, no. 4, pp. 688-691, 2018.

Hindawi

Security and Communication Networks
Volume 2022, Article ID 6418420, 19 pages
https://doi.org/10.1155/2022/6418420

Research Article

WILEY | Q@) Hindawi

Memory-Augmented Insider Threat Detection with

Temporal-Spatial Fusion

Dongyang Li(®,"? Lin Yang (®,> Hongguang Zhang ®,” Xiaolei Wang (®,” and Linru Ma

'Command and Control Engineering College, Army Engineering University of PLA, Nanjing 211101, China
°National Key Laboratory of Science and Technology on Information System Security, Institute of System Engineering,

Academy of Military Science PLA, Beijing 100039, China

Correspondence should be addressed to Dongyang Li; dongyangli_nj@126.com

Received 14 February 2022; Accepted 22 March 2022; Published 26 April 2022

Academic Editor: Robertas Damasevicius

Copyright © 2022 Dongyang Li et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Insider threat detection is important for the smooth operation and security protection of an organizational system. Most existing
detection models establish historical baseline by reconstructing single-day and individual user behaviors, and then treat any
outlier of the baseline as a threat. However, such methods ignore the temporal and spatial correlations between different activities,
which result in an unsatisfying performance. To address such an issue, we propose a novel insider threat detection method,
namely, Memory-Augmented Insider Threat Detection (MAITD), in this paper. Such an idea is motivated by the observation that
the combination of individual model that focuses on historical baseline and group model that represents peer baseline can
effectively identify the low-signal yet long-lasting insider threats, and reduce the possibility of false positives. To illustrate, our
MAITD captures the temporal and spatial correlation of user behaviors by constructing compound behavioral matrix and
common group model, and combines specific application scenarios to integrate the detection results. Moreover, it introduces the
memory-augmented network into autoencoder to enlarge the reconstruction error of abnormal samples, thereby reducing the
false negative rate. The experimental results on CERT dataset show that the instance-based and user-based AUCs of MAITD reach

up to 87.54% and 94.56%, respectively, which significantly outperform previous works.

1. Introduction

With the frequent occurrence of data breaches and espio-
nage incidents, insider threat has become one of the major
challenges for system security. According to a recent survey,
the number of security incidents caused by insiders has
increased by 47% since 2018, and keeps increasing with
increased economic uncertainty [1]. However, with so much
at stake, only 33% organizations believe they are capable of
detecting abnormal behaviors within the system [2].
Meanwhile, since the initiators of insider threats are typically
authorized employees who clearly know the system
framework and security measures, such insider damages are
more harmful than external attacks. The Cybersecurity In-
sider organization even declared that “today’s most dam-
aging security threats do not originate from malicious

outsiders or malware but from trusted insiders with access to
sensitive data and systems—both malicious insiders and
negligent insiders” [3]. Therefore, in the face of severe
practical challenges, it is urgent to propose effective insider
threat detection models to prevent such threats.
According to the latest definition given by the CERT
Coordination Center, insider threats refer to threats that are
carried out by malicious or unintentional insiders, whose
authorized access to the organization’s network, system, and
data is exploited to negatively affect the confidentiality,
integrity, availability, and physical well-being of the orga-
nization’s information, information systems, and workforce
[4]. The insiders generally consist of malicious traitors,
hypocritical masqueraders, and unintentional perpetrators.
Their attack methods include system damage, data breaches,
intellectual property theft, etc. Although the topic of insider

mailto:dongyangli_nj@126.com
https://orcid.org/0000-0003-0818-2526
https://orcid.org/0000-0002-6956-8177
https://orcid.org/0000-0003-0734-0078
https://orcid.org/0000-0002-5342-4275
https://orcid.org/0000-0002-4530-5401
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/6418420

threat detection has been studied for long, locating malicious
behaviors precisely is still nontrivial and remains an open
challenge.

Since threat scenarios are widely varying, it is impractical
to explicitly model malicious threats. Consequently, most
existing methods tend to convert the insider threat detection
into user behavior anomaly detection problem [5]. To il-
lustrate, security analysts build normal user behavior model
by analyzing historical data, and regard the outliers (data out
of distribution) as threats. Such methods are based on the
assumption that adversarial activities do not follow past
habitual patterns, which is followed by us in this paper.
Many classical unsupervised learning algorithms have been
used to model normal user behavior. Among them,
autoencoder quickly became the mainstream insider threat
detection algorithm because of their robustness on domain
knowledge and strong anti-interference ability [6].

In fact, the performance of insider threat detection
depends on not only the anomaly detection algorithm but
also the representation quality of user behavior. In our
previous work [7], we performed related studies on the
feature extractions of user behavior, and categorized them
into two types: (i) statistical features based on artificial
definition; (ii) hidden features based on representation
learning. Although previous methods [8-13] have their own
unique insights, they are still faced with the following
limitations:

Existing methods ignore the temporal statistics when
representing user behavior, thereby limiting the per-
formance. Although some works [8-10] attempted to
address this issue, they only capture the temporal
characteristics from a single perspective, i.e., the po-
tential sequence relationship and the variation ten-
dency of activity frequency.

Most baseline models do not consider the spatial
correlation from their peers’ data, which leads to the
collective behavior changes caused by occasional fac-
tors such as service outages or environmental changes
being misidentified as anomalies, thus increasing un-
necessary manual investigation costs.

Previous detection models focus on how to reasonably
represent user behaviors, while ignoring the impact of
optimizations on anomaly detection algorithms. Such a
one-sided preference leaves much room for
improvement.

To address the above limitations, we propose a novel
insider threat detection model named Memory-Augmented
Insider Threat Detection (MAITD). Our model first adopts
the frequencies of daily activities as basic features, then
employs the temporal-spatial fusion and an unsupervised
learning algorithm to improve the overall performance. The
so-called temporal-spatial fusion aims at capturing the
temporal and spatial statistics of user behaviors by con-
structing compound matrix and common group model, and
integrating the detection results w. r. t. different scenarios,
thus allowing historical and peer baselines to work together.

Security and Communication Networks

As for the unsupervised learning algorithm, we choose
autoencoder as the baseline model, then additionally in-
troduce a memory module based on attention weights to
enlarge the reconstruction errors of anomalies. Note that the
temporal and spatial statistics mentioned here are not ac-
tually related to time and space but an extension in a broad
sense. Specifically, the temporal statistics not only denote the
specific temporal information when user behavior occurs
but also include the potential sequence relationships and
variation tendency of activity frequencies. As for the spatial
statistics, it refers to the correlations between peers’
behaviors.

The main contributions of this paper are summarized as
follows:

(i) We propose a novel user behavior temporal-spatial
statistics fusion method to achieve the parallel
historical and peer baselines. We perform com-
prehensive evaluations under different scenarios to
obtain the final results. Our evaluation results
clearly show the usefulness of MAITD.

(ii) We introduce a memory-augmented network into
autoencoder to optimize the unsupervised learning
algorithm. By enlarging the reconstruction errors of
anomalies, it helps to reduce the false negative rate
of detection. To the best of our knowledge, this is the
first work to apply memory-augmented network on
insider threat detection.

(iii) We perform extensive evaluations on CERT dataset
[14] to demonstrate the superiority of our MAITD.
The experimental results show that MAITD ach-
ieves the state-of-the-art performance on both in-
stance-based and user-based settings.

The rest part of this paper is organized as follows: Section
2 summarizes the related work on insider threat detection,
and outlines the differences between our approach and other
similar works. Section 3 introduces the research motivation
and basic idea. Section 4 presents the overall framework of
MAITD and implementation details. Section 5 provides the
detailed evaluation and analysis results. Section 6 discusses
the limitations of MAITD and future work. Finally, Section 7
concludes this work.

2. Related Work

As an important component of system security protection,
insider threat detection has attracted extensive attention
from the research community. On the one hand, multiple
insider-related projects like ADAMS, CINDER, and SCITE
have been released successively by DARPA to prevent
confidential data being stolen by insiders [15]. Among them,
the latest work of SCITE project suggests that it is a feasible
solution to detect insider threat by observing employee’s
reaction to tentative signals, which provides a new research
strategy for reducing manual investigation burden [16]. The
technical report released by CERT Insider Threat Center
records various practical cases and corresponding mitigation

Security and Communication Networks

and preventive measures [17]. On the other hand, there are
also many excellent surveys and solutions in the academia.
Liu et al. [5] and Homoliak et al. [18] focus on the definition,
taxonomy, and categorization of insider threats, and give a
detail review of current research situation. Yuan et al. [19]
discussed the opportunities and challenges of insider threat
detection in the era of deep learning. The threat description
models proposed by Pfleeger et al. [20] and Nurse et al. [21]
believe that insider threat is the result of interaction of
system environment, personal character, and historical
behavior. However, it should be noted that the discussion of
behavioral models that attempt to correlate insider threats
with psychological profiles of users are outside the scope of
this paper. Here, the insider threat detection is defined as:
“Atany given time instance, given their past online activities,
how to predict if an employee is behaving abnormally either
with respect to his past activity, or with respect to the be-
havior of his peers” [8]. That is, we simplify insider threat
detection as anomaly behavior detection, and focus on how
to effectively exploit the temporal and spatial characteristic
of user behavior to improve detection performance. In view
of the important impact of behavior representation and
detection algorithm on solution performance, we will in-
troduce the related studies from the perspective of temporal-
spatial characteristic utilization and unsupervised detection
algorithm optimization.

2.1. Temporal-Spatial Characteristic Utilization. Most in-
sider threat detection schemes are based on historical
baseline or peer baseline, in which the former represents the
past habitual pattern of individual user while the latter
focuses more on behavioral correlation between members in
the same group. Normally, they were not in conflict but
complementary, each with its own sphere of competence.
However, most solutions only focus on one side (especially
historical baseline), leading to the limited detection per-
formance [8]. In order to more clearly elaborate the current
research, we made a more fine-grained partition on the basis
of previous works. Firstly, in the context of historical
baseline schemes, some works tend to capture the temporal
characteristics directly by means of the models with tem-
poral learning capabilities. Examples of such models are
statistical models [6, 8, 9, 22-24], Hidden Markov Model
[11], Graph Embedding Model [25], Recurrent Neural
Network [10, 12, 26], and Self-Attention Mechanism [27].
Gavai et al. [8] propose to capture time-varying charac-
teristics by taking a weighted average of activity frequency
feature to improve detection performance. Similarly,
Chattopadhyay et al. [9] used the temporal indicators such as
“Katz fractal dimension” and “total power corresponding to
the top five frequencies in the power spectrum of the time-
series signal” to generate time-series vectors, and combined
with cost-sensitive undersampling technique to detect in-
sider threats. In order to detect the low-signal yet long-
lasting threats, Yuan et al. [6] constructed the compound
behavioral deviation matrix to represent user behaviors.
Different from the above schemes, Duc et al. [22-24] pay
more attention on the impact of using the recent time

window as a baseline comparison for each data instance,
instead of designing new behavior representation. Excluding
statistical methods, machine learning techniques have also
been applied to building historical baseline models. Rashid
et al. [11] used activity sequences as input, the hidden
Markov model as modeling approach, and the deviation
between predicted results and actual activities as judging
criteria to detect anomalies. Liu et al. [25] developed an
efficient anomaly detection system based on the graph
embedding technique. Considering the powerful represen-
tation ability of deep learning models, Tuor et al. [12] and
Sun et al. [26] used deep recurrent networks to detect insider
threats. To further improve the accuracy of behavior model,
Yuan et al. [10] combined the temporal point process with
Long Short Term Memory (LSTM) to learn user’s normal
behavior pattern from four aspects: activity duration, activity
type, session duration, and session interval. Inspired by
position encoding [28], Yuan et al. [27] retained the absolute
time information of user activities by calculating the minute
offset, and used self-attention mechanism to construct the
final behavior representation. Secondly, there are some other
historical baseline schemes [13, 29, 30] that prefer to capture
temporal characteristics in a round-about way. In these
schemes, the model itself is only a modeling method, and
training data and training mode are key. In other words, they
simply take the individual historical behaviors as the model
input. For example, Liu et al. [13] used the “4W” template to
reorganize audit logs, and arranged them based on user id in
chronological order to form training corpus. This indirect
extraction method has the advantage of simplicity, but also
confronts the challenge of limited performance.

Compared with plentiful historical baseline schemes,
there are a few researches on peer baseline. One possible
reason is that it is not easy to define the boundary of peers.
Generally speaking, by comparing the difference between
individual behavior and his peers’ behavior, insider threat
detection schemes can reduce the false positive rate in oc-
casions (e.g. service outage and environmental change)
where many users have common burst of events. The peers
here do not simply refer to those users in the same de-
partment, but groups with similar behavioral trends. There
are two broad approaches to divide the peers: role-based
division [6, 31-33] and cluster-based division [34, 35]. The
former arranges users into groups according to their roles,
while the latter classifies users by clustering their behavior
features. For example, Eldardiry et al. [34] divided users into
different peer groups by calculating the similarity between
behavioral data. Another issue closely related to peer
baseline is how to represent the group’s behavior pattern. A
common solution is to extract behavior features automati-
cally with the help of neural network model, and the key is
that the training samples for network model should be the
behavioral data of peer group rather than individual data
[32, 36]. In addition, Yuan et al. [6] and Gavai et al. [8] used
the statistical average to build peer baseline, but their
implementation details are different. To sum up, the be-
havioral baseline model is closely related to the training
mode, and how to effectively represent user behavior is still a
problem worth exploring.

2.2. Unsupervised Detection Algorithm Optimization.
Since the practical behavioral logs do not contain label
information, unsupervised detection methods are the cur-
rent mainstream study direction. Many classical unsuper-
vised learning algorithms such as K-means Clustering [34],
Isolated Forest (IF) [8] and One-class Support Vector
machines (OCSVM) [37] have been applied in the field of
insider threat detection. However, due to user activity
spreading across multiple behavior domains (i.e. complex-
ity), the above methods always achieved suboptimal per-
formance. As a typical representative of reconstruction-
based methods, autoencoder is favored by security practi-
tioners because of its robustness on domain knowledge and
stronger anti-interference ability. Briefly speaking, an
autoencoder-based anomaly detection model only learns
how to reconstruct normal samples, so the reconstruction
error becomes higher for the abnormal samples. For ex-
ample, Yuan et al. [6] and Liu et al. [38, 39] used fully
connected autoencoders to learn normal behavior pattern,
and regarded those whose reconstruction errors exceed
predefined threshold as anomalies. However, although these
reconstruction-based approaches have achieved fruitful
results, there is still much room for improvement.

In order to improve the detection performance of re-
construction-based schemes, researchers have successively
proposed various optimization methods. Zhou et al. [40]
proposed a robust autoencoder model based on alternative
optimization to strengthen the anti-noise capacity. Zong
etal. [41] used a deep autoencoding Gaussian mixture model
to detect anomalies, and optimized model parameters in an
end-to-end way. Nguyen et al. [42] applied the variational
autoencoder to anomaly detection, and attempted to explain
anomaly from the aspect of gradient descent. Gong et al. [43]
used memory-augmented network to optimize anomaly
detection scheme, and achieved good results in multiple
datasets. On this basis, Park et al. [44] further improved
performance by introducing extra loss functions such as
intra-class distance and inter-class distance, but its appli-
cation scope was limited to the computer vision field. Rather
than attempting to optimize model architecture, Mirsky
et al. [45] chose to use multidetector integration to improve
detectability. Besides, Yuan et al. [46] discussed the impact of
different reconstruction methods (i.e. single-event predic-
tion or sequence recomposition) on anomaly detection
performance. Note that, although these works provide
fruitful insights on optimizing unsupervised detection al-
gorithm, it is difficult to apply their model directly on insider
threat detection due to the requirement difference for the
input data. Hence, how to choose the optimal unsupervised
detection algorithm according to application scenarios is an
open problem.

Compared with the existing works, our MAITD mainly
focuses on the problem of temporal-spatial characteristics
fusion, and at the same time chooses the memory-aug-
mented autoencoder as an unsupervised detection algorithm
to improve performance. In this regard, Acobe proposed in
work [6] is similar to our MAITD, but its compound be-
havioral deviation matrix loses some critical behavior
change information. Specifically, the main differences

Security and Communication Networks

between MAITD and Acobe are as follows: (i) In terms of
temporal characteristic analysis, Acobe generates the com-
pound behavioral deviation matrix by concatenating mul-
tiple consecutive single-day feature vectors, while MAITD
adds temporal indicators behind basic features to generate
specific input for the temporal representation model. In
other words, the compound matrix of MAITD contains the
initial frequency information in addition to behavior vari-
ation information, so it has stronger representational ca-
pacity. (ii) In the aspect of spatial characteristic analysis,
Acobe uses the same extraction method as temporal char-
acteristics (that is, adding group feature to the compound
deviation matrix), while MAITD builds an extra common
group model to capture spatial characteristics. (iii) In terms
of temporal-spatial fusion, the weighted summation
mechanism gives MAITD more flexibility because it can
adjust the weight factor according to application scenario,
but Acobe is relatively rigid because it uses a single behavior
model to simultaneously capture temporal and spatial
characteristics. (iv) Unlike Acobe with full-connected
autoencoder, MAITD chooses the memory-augmented
autoencoder as unsupervised detection algorithm to im-
prove performance.

3. Motivation

Although anomaly detection system is typically not used as a
standalone solution, it plays an important role in assisting
security analysts in selecting suspicious activities to be
further scrutinized. However, the existing solutions are
unable to satisfy growing practical demand, and how to
improve insider threat detection performance has become a
common goal in the research community. Driven by this
goal, we first summarize the factors that affect detection
performance in combination with application scenarios, and
then propose the corresponding improvement measures for
the existing problems.

Considering that false negatives and false positives are
two critical evaluation metrics of anomaly detection system,
we intend to elaborate the existing drawbacks from two
aspects: malicious activities that are difficult to identify and
normal activities that are easy to misidentify. First of all,
some malicious activities will not be completed quickly in a
short term, but there will be a long process of “commission.”
For example, in order to avoid exposure while stealing
confidential data, the long-dormant spy usually does not
steal numerous confidential documents at once but leaks
sensitive data piece-by-piece in a long run. This means that
the above threat scenario does not cause immediate be-
havioral deviation, and only long-term monitoring and
analysis of user behavior can detect them. Many solutions
[29, 30, 38, 39] only focus on the single-day and individual
user behavior features, without considering the changes over
multiple consecutive days, making it difficult to detect low-
signal but long-term threats. Even though there are some
works [6, 8,9, 22, 24] in exploring the variation tendency of
user behavior, they have different limitations, respectively.
These schemes either design ideal—overly optimistic—time-
varying indicators [9] or have trouble in keeping balance

Security and Communication Networks

between precision and overload [6]. Moreover, for autoen-
coder-based detection schemes, the assumption that anomaly
incurs higher reconstruction error does not always hold in
practice since those anomalies similar to normal activities can
also be reconstructed well [43]. For example, when activity
frequency is used as baseline model input, the number of
connections to removable devices in malicious scenario (such
as data breach) is similar to the frequency in normal scenarios
(such as data migration result from device updates), which
will make it difficult to distinguish whether the higher re-
construction error is from normal sample or anomaly.

To mitigate the above drawbacks, we plan to reduce the
false negative rate of detection scheme from two perspec-
tives. On the one hand, we hope to design more reasonable
behavior representation to capture multidimensional tem-
poral characteristics, and at the same time take the difference
between different types of behaviors into account. This re-
quirement inspires us to design new temporal indicators
while retaining original activity frequency information. On
the other hand, we intend to optimize the unsupervised
detection algorithm to improve performance. It has been
suggested that the memory-augmented network is beneficial
to enlarge the reconstruction error of abnormal sample, so
we plan to apply it in the field of insider threat detection.

Secondly, some normal behavior deviations can also be
misidentified as anomalies. For example, due to the sudden
service outage or environmental change, the employee’s
work pattern will inevitably change (such as longer work
hours and more interaction, etc.), but these normal be-
havioral deviations cannot be correctly identified by the
historical baseline model. This phenomenon fully indicates
the importance of building a peer baseline. Generally
speaking, there often exists certain behavioral correlation
between an individual user and his peers, which provides a
theoretical basis for the establishment of peer baseline [6, 8].
Given the probability that the whole group members are
malicious is extremely small, we can make the following
hypothesis: the greater behavioral correlation a user has with
the group, the less likely the user is malicious. Based on this
assumption, we plan to build an additional common group
model to mitigate the above misreporting problem.

4. Methodology

The goal of this paper was to improve insider threat de-
tection precision by analyzing the temporal and spatial
characteristics of user behaviors. To this end, we propose a
memory-augmented insider threat detection approach
named MAITD. We first demonstrate the overall framework
of MAITD, and summarize its basic idea and workflow.
Then, we elaborate the temporal and spatial representation
models and the improved unsupervised detection algorithm,
respectively. Finally, we give the temporal-spatial fusion
mechanism and corresponding implementation algorithm.

4.1. System Overview. Figure 1 shows the overview of
MAITD, which mainly includes four modules: basic
feature extraction, temporal characteristic analysis, spatial

characteristic analysis, and comprehensive evaluation.
The basic feature extraction module is responsible for
multisource data collection and feature coding. Specifi-
cally, it extracts the behavior frequency features from
multisource audit logs according to potential threat
scenarios, and feeds them to the temporal and spatial
characteristic analysis modules for further processing. In
this process, the user’s activities over a day are aggregated
into a data instance to obtain better tradeoff between
detection precision and response time. Based on these
basic features, the temporal characteristic analysis module
can calculate the temporal indicators according to the
sliding window and predefined formulas, and then add
them behind basic features to generate the compound
behavioral matrix. With the help of historical compound
behavioral matrixes and unsupervised detection algo-
rithm, we can build an independent temporal represen-
tation model for each individual user. Similarly, the
spatial characteristic analysis module will also build an
additional spatial representation model for each group,
but this model is shared with all the members within the
same group. That is, the training space of spatial repre-
sentation model is expanded from individual historical
data to group’s historical data, and at the same time the
model input is changed from compound behavioral
matrix to basic feature vector. After the temporal and
spatial representation models are trained, we can obtain
the anomaly scores of testing sample in historical and peer
baseline, respectively. Finally, the comprehensive evalu-
ation module integrates the above scores in combination
with specific application scenarios to generate the final
lists of anomaly instances and suspicious users.

Before getting into the details of this scheme, we will
state the problem studied in this paper clearly and give the
corresponding mathematical formulation. As mentioned
above, the insider threat detection problem can be simplified
as: “Given employee’s past online activities, how to predict if
an employee is behaving abnormally either with respect to
his past activity, or with respect to the behavior of his peers.”
Let X be the space of all activities, and let XX be the set of
normal activities. Given a sample SCX , group affiliation P
and employee’s past normal activities, how to construct an
unsupervised classifier h,(x): X — {0, 1} so that the for-
mula /i, (x) = 0&x € X is as valid as possible is the real crux
of the matter.

Considering that the classifier is trained in an unsu-
pervised manner and the method of providing only anomaly
label is inconvenient to the subsequent investigation by
security analysts, it is more preferable to generate an ordered
list of suspicious users. Note that, the calculation of partial
evaluation metrics such as detection rate and precision is
closely associated with the organization’s investigation
budget. In practice, investigation budget represents the
available human resources for analyzing the anomaly be-
havior instances, post-training of the detection system, and
performing the necessary actions in response [22]. The more
the investigation budget, the larger the range of the threshold
that can be set. In addition, our analysis report will dis-
tinguish between anomaly instances and suspicious users to

Security and Communication Networks

Log Data Spatial Representation Model Anomaly
o M analysis
= (mm) Instance-based Result
o ﬁl g . Threshold
<t Basic Feature &
Feature I I ol | £ User_1 Anomaly
Extraction . ()] 2 Score 1 Time |Score | Rank|Label Report
<] : (] Dz 1N
¢
= 2 N N
” = D_z2
o = gL = List of
Peer data of the same group ~ Common Group Model % o : P x Anomal
5 nom
2 P] ! sersand
B & sers an
Temporal Representation Modeél 3 ;
T User-based Result ISHRES
a ﬁ Memory
£ | | Basic Feat
Score2
Feature Trans . Compound ol ¥ core User_1 10 v
- ransformation Wit =l &
Extraction x 0| | & User_2 0 x
] = : 7
Iz, Feature G 1 N
History data of the same user Individual User Model

Collect audit logs from

various behavior aspects

Create compound behavior matrix;

Build individual user model and common group model

Analyze and report the anomaly

instances and suspicious users

Ficure 1: MAITD overview.

provide more comprehensive evaluation results. This is
because high malicious instance detection rate is not syn-
onymous with all malicious users being detected, and the
latter is the ultimate goal of insider threat detection system.
In this paper, suspicious users are defined as the users who
have at least one anomaly behavior instances.

4.2. Temporal-Spatial Characteristics. The establishment of
historical baseline and peer baseline is the key of insider
threat detection scheme, directly influencing the quality of
detection performance. In other words, how to make the best
of the temporal and spatial characteristics of user behavior is
a major challenge. To this end, our MAITD adopts two
different methods to capture the temporal and spatial
characteristics, respectively.

4.2.1. Temporal Characteristic Analysis. Inspired by Acobe
[6], we find that the compound matrix is an effective way to
capture the temporal characteristic. Because it can give the
behavior model the ability to analyze temporal charac-
teristics by adding time-varying elements to input. Moti-
vated by this, MAITD also chooses the compound
behavioral matrix as the input of the temporal represen-
tation model, but makes major changes in the element
composition. As stated previously, the requirement that
behavior representation not only contains multidimen-
sional temporal information but also considers the dif-
ference between different types of behaviors gives us the
inspiration to design new temporal indicators while
retaining original activity frequency information. There-
fore, we design a compound behavioral matrix with the
structure shown in Figure 2(a) as the temporal represen-
tation model input. The compound behavioral matrix
mainly consists of basic frequency features and time-
varying features, and every feature can be further divided
into two subparts (i.e. working hours 8 am to 6 pm and off

hours 6 pm to 8am) according to the occurrence time of
user activity. In Figure 2(a), the basic feature set extracted
in different behavior domains are arranged in the vertical
direction. Given that the basic feature extraction is usually
closely related to domain knowledge, here we take the
CERT dataset as an example to design a series of basic
features such as the number of copying file from other’s PC
during off hours and the number of visiting recruiting
website on office computers during working hours. Here,
note that the basic feature extraction is not the focus of this
paper, and MAITD adopts the basic features proposed in
our previous work, see literature [7] for details.

The horizontal direction in Figure 2(a) represents the
different variants of basic behavioral features. The white
area represents the normalized frequency information
during working hours and off hours, while the blue area is
filled with the feature variants (i.e. temporal indicators). As
shown in Figure 2(b), the temporal indicators at the
monitoring slot are calculated based on the historical values
within the sliding window, and the reason behind it is that
the sliding window mechanism ensures a smooth transition
between the samples. Besides, we can also highlight that the
decision of using all features from current and past ob-
servations is highly desirable since it may allow a near to
optimal automatic weight assignment for past and current
versions of each feature and provide a highly interpretable
result [24]. In general, the compound matrix proposed in
this paper does not simply concatenate multiple consec-
utive single-day features when capturing the temporal
characteristics but relies on the property of temporal in-
dicators. This is because simple data mergence cannot
effectively reflect the variation tendency of user behavior
but increase the unnecessary computational overhead [22].
Besides, a compound behavioral matrix represents the
activity overview of a certain day, and “a certain day” here
(e.g. the 5th day in Figure 2(a)) can be regarded as an index
used to mark data instances.

Security and Communication Networks

Compound Behavioral Matrix (Day 5)

Monitoring slot

vy

= Ve

Timeframel (8 am:6 pm) Timeframe2 (6 pm:8 am) 0 1 2
=
=]
o0
2
2 =
© . »
3 User Behavior User Behavior | User Behavior User Behavior §
g -g Raw Data Temporal Data Raw Data Temporal Data 3
s 3 during during Woring during Off during Off ;
o “Working Hours & & =
B g Hours Hours Hours S
s | =
=
o
£
@ [} [}
raw temporal raw temporal e T

(a)

(b)

FiGure 2: Compound behavioral matrix and sliding window mechanism. (a) The compound matrix can be divided into four main
components according to activity timeframe and feature type. (b) The temporal indicators at the monitoring slot are calculated based on the

historical values within the sliding window.

In fact, MAITD designs two different temporal indica-
tors called standard factor and variation factor to capture the
temporal characteristics of user behavior. The former mainly
measures the relative size of user’s basic features in the
current time window, while the latter reflects the cumulative
variation of the basic features within the current window. Let
9.4 denote the numeric measurement of basic feature f in
timeframe [on day d. p;; and gy, ; denote the standard
factor and variation factor of basic feature f, respectively.
g 1.4 denotes the vector of history numeric measurements,
and the detail can be expressed by (1), where [is the oc-
currence time of user behavior (0 or 1), T is the window size
in days.

?)f,l,dz[gf)lﬂii d—T+1si<d]. (1)

Then, the standard factor p,; and the variation factor
14 can be calculated by the following transformation of

9rid
9rid ~ mean(_g’ f,l,d)
stdt(g f,l)d)

Prla=

(2)

T-1 '
qfia=1=p)- Z (ﬂT_J_l : (gf,l,d—T+j+1 - gf,l,d—T+j))’
j=1

where mean (g f14) and std(g f#14) denote the mean and
standard deviation of history measurements, respectively. f3
is the attenuation coefficient of feature variation, which is
usually set as the reciprocal of window size. Actually, the
standard factor can be regarded as the standardized trans-
formation of basic feature within the current time window,
and the variation factor is the exponentially weighted
moving average of basic feature variation. Since the calcu-
lations of both indicators are closely relevant to the history
measurements within the current window, they can repre-
sent the temporal correlation between user activities to some
extent. Moreover, we set a lower bound for the standard
deviationstd (h ¢; ;) to avoid worst cases where the standard
factor is too large, and the related calculation equation is as
follows:

. std(?fzd) <&
d(G 1a) = . 3
std(q f14) (G f1a) 5149 10a) > :

In addition to designing new temporal indicators,
MAITD also takes the difference between different types of
behaviors into account. In other words, we assign different
weights for basic features and their variants to make the
behavior model pay more attention on those features that are
most helpful to improve the detection performance. In this
regard, we use the same weight setting as Acobe scheme, that
is, the weights are lower for chaotic features but higher for
consistent features. The specific calculation method is shown
in:

1
g (man((7.)

After obtaining the weighted feature values, we should
normalize the compound matrix to eliminate the adverse
effects caused by different orders of magnitude. Finally, the
temporal characteristic analysis module takes the compound
behavioral matrix as input, the improved autoencoder as
detection algorithm to build an independent temporal
representation model for each user, thereby obtaining the
anomaly score of behavior instance in historical baseline.

(4)

Wyrrd =

4.2.2. Spatial Characteristic Analysis. Different from tem-
poral characteristic analysis, MAITD does not use the same
way to capture spatial correlation between user behaviors,
and instead achieves this goal by building an additional
common group model. In short, the spatial characteristic
analysis module first divides users into groups according to
their roles, and then takes the basic feature vectors as input,
the improved autoencoder as detection algorithm to build
spatial representation model. It should be noted that this
model is shared with all the members within same group.
Since the group model captures the spatial characteristics
based on neural network itself, it can be regarded as an end-
to-end and data-driven method, which is similar to work
[32, 36].

4.3. Detection Algorithm Optimization. As stated earlier, the
autoencoder has become the mainstream insider threat
detection algorithm because of its robustness on domain
knowledge and stronger anti-interference ability. Therefore,
this paper also chooses the deep autoencoder as the basic
detector, and adds a memory module to improve detection
performance. In general, the autoencoder consists of an
encoder to obtain the compressed representation from the
input and a decoder that can reconstruct the input purely
based on the compressed representation. In the context of
anomaly detection, the autoencoder is usually trained by
minimizing the reconstruction error on the normal samples,
and then uses the reconstruction error as an indicator of
anomalies. Since the autoencoder only learns how to re-
construct the seen normal behaviors, those poor recon-
structions result from behaviors that have not yet been seen.
However, this does not mean that all anomalies can be
detected effectively, because those abnormal samples that
have many similarities with normal behaviors can also be
reconstructed well. Inspired by work [43], we augment the
deep autoencoder with a memory module based on attention
weight to enlarge the reconstruction error of abnormal
samples, thus achieving the goal of reducing the false
negative rate. The intuition behind introducing a memory
module is that there is a larger differential between the
abnormal sample and the sample reconstructed from the
normal behavior representations. With that in mind, we
apply memory-augmented network to insider threat de-
tection problem, and propose the improved unsupervised
detection architecture shown in Figure 3.

Compared with the traditional autoencoder, the im-
proved autoencoder (i.e. Autoencoder-Mem) adds a
memory module between the encoder and the decoder to
reprocess the compressed representation. In a way, the
memory module can be regarded as a storage component
used to record prototypical normal behavior patterns. It is
through this component that MAITD can map the abnormal
samples to the most relevant normal behavior patterns for
reconstruction, resulting in an output significantly different
to the anomaly input. Based on this mechanism, the re-
construction errors of abnormal samples can be further
enlarged. Specifically, given an input x, the encoder @ first
obtains the initial compressed representation @ (x). By using
the compressed representation ® (x) as a query, the memory
module retrieves the most relevant items ; in the memory
M via the attention-based addressing operator [43] to
generate the reprocessed representation @ (x)’, which is
then delivered to the decoder for reconstruction. After
decoding the reprocessed representation @ (x)’, the decoder
Y can obtain the reconstructed sample X, and calculate the
mean square error between X and x as the model output. In
this process, the essence of mapping is to reconstruct the
compressed representation based on the prototypical nor-
mal behavior patterns recorded in memory, and it is actually
realized by using attention-based memory addressing. Let
query z denote initial compressed representation @ (x), M
denote the memory network with prototypical normal be-
havior patterns, and w denote the attention weight row
vector of each item in M for the query z. Then, the weight

Security and Communication Networks

entry w; of w and reprocessed query z can be obtained by the
following equations:
T
exp (zm; /| zll||m;
= G "T) -y e L2...N}. (5
X1 €xp (ij /Nl ""’J“)

N
2=w-M=Zw--

N
s.t. Zwi =1,
i=1

where row vector m; is any item of memory network M,
representing a prototypical normal behavior pattern. The
dimension of item m; is same to query z, and N is the
capacity of the memory network M.

In addition, we also applied the sparse addressing
method proposed in Ref. [47] when reconstructing the query
z to make the memory network learn more accurate normal
behavior patterns:

(6)

w;, — max(w;,-A,0)-w

w= w

, (7)

; =

[wll, lw; = A +e
where A is the lower bound of the weight m; in the sparse
addressing process, and € is a very small positive scalar to
avoid divide-by-zero exception. After finishing the above
sparse addressing operation, we can obtain the reprocessed
query z based on (6). Simply speaking, the sparse addressing
encourages the model to represent an example using fewer
but more relevant memory items, leading to learning more
informative representations in memory.

Due to the introduction of the memory module, we
adjust the objective function used in the training process. In
addition to minimizing the reconstruction error on each
sample, we take the sparsity characteristic of memory-
augmented network into account, and add the sparsity
regularizer on attention weight @. The final objective
function is shown in (8), where K is the size of the training
set, and « is a hyper-parameter in training. Note that, despite
using a new objective function in the training stage, we still
use the [,-norm based mean square error, i.e.,
score = ||x — fcllé, to measure the anomaly score of test
sample.

Loss—i§<"x —2"2—“- (w; - log(w))) (8)
K i ™ Xill, i g\w;)))

i=

The basic explanation of this optimization mechanism
can be summarized as follows: during training, the encoder
and decoder are dedicated to minimizing the reconstruction
error, and the memory module is simultaneously updated to
record the prototypical normal behavior patterns. At the test
stage, the learned parameters of encoder, decoder, and
memory module are fixed, and the reconstruction is ob-
tained from a few selected memory items of normal be-
haviors. Thus, the reconstruction tends to be close to the
normal sample, resulting in larger errors in abnormal be-
havior instances.

Security and Communication Networks

Memory Module

’\\&\ : weighted sum

Query'

Y

Recovery

(C): cosine similarity
w
(5): Softmax
sparse
process
A Query
: f
= S
(s
© 1 > S
3 g I
- \
5 B>C«M
a2
% Deep Encoder ¢

Code z= ¢ (x) Attention weight based addressing Memory Module Code 2=9¢'(x) Deep Decode y

=>

FIGURe 3: The improved anomaly detection model architecture.

4.4. Fusion Analysis. After building the temporal and spatial
representation models, we can obtain the anomaly scores of
test sample in historical and peer baseline, which are
denoted by sco, and sco,, respectively. Subsequently, the
comprehensive evaluation module calculates the final
anomaly score of test sample by integrating the above
detection results, and generates the final lists of anomaly
instances and suspicious users according to whether it
exceeds the predefined threshold. As for the specific fusion
method, MAITD chooses the classical weighted summation
way:

sco =& sco, + (1 —&) - sco,, 9)

where £ is a hyper-parameter, representing the proportion of
the spatial characteristic analysis module in the whole de-
tection model. As mentioned previously, the setting of
threshold is closely associated with the organization’s in-
vestigation budget. In this paper, we adopt the following
decision strategy:

thre = mean,,;,, + 0 - std 4> (10)

where mean,,;, and std,,,;, denote the mean and standard
deviation of anomaly scores of training samples, respec-
tively. o is the system input (i.e. investigation budget),
which is set to 3 in this paper. Based on the above
mechanism, MAITD can obtain the list of anomaly in-
stances for each user, and label the users who have at least
one anomaly behavior instance as suspicious users. Al-
gorithm 1 shows the details of the whole insider threat
detection scheme. Specifically, after the initialization work
is completed, we can build the temporal representation
model by constructing compound matrix and training the
memory-augmented autoencoder (lines 2-10). Then in
line 11, we split users into different groups according to
group affiliation P. Next, the spatial representation model
is built based on the basic features of group members
(lines 12-22). Finally, our comprehensive evaluation
module can generate the final anomaly scores of test
samples according to the fusion mechanism and report the
suspicious behavior set A and suspicious user set U, (lines
23-33).

5. Evaluations

To verify the effectiveness and feasibility of MAITD, we
performed extensive experiments on the CERT insider threat
dataset [14]. We first introduce the dataset, evaluation
metrics, and the experimental setting used in this paper and
then compare MAITD with other representative schemes in
detail. Next, we analyze the effectiveness of spatial-temporal
fusion mechanism and the improved anomaly detection
algorithm. Finally, we discuss the impact of the parameters
on the detection performance.

5.1. Dataset. The CERT dataset released by Carnegie Mellon
University is the most widely used public dataset in the field
of insider threat detection. It contains multiple versions that
simulate the daily behaviors of internal employees in dif-
ferent organizations. In this paper, we choose the latest r6.2
release as the primary dataset to evaluate the detection
performance of MAITD, and at the same time use the
classical r4.2 release as the secondary dataset to verify its
generalization performance. These two datasets record the
daily behaviors of 4000 and 1000 employees of different
organizations within 516 days, and provide 5 predefined
insider threat scenarios as detection objects. Specifically,
these activities cover five behavior domains: logon, device,
file, http, and e-mail, and the threat scenario can be regarded
as a specific combination of the above activities. Since the
malicious activities are usually rare in the real world, the
class-imbalance problem is also embodied fully in these
datasets. Such a phenomenon explains why supervised
classification methods are not suitable for insider threat
detection to a certain degree. Besides, due to the excessive
overhead of processing the entire dataset (200G), we select
several user groups to form a subset to conduct performance
evaluation. During this process, in addition to the necessary
groups of anomaly users, we also randomly select multiple
groups without anomaly users to simulate the class-im-
balance situation. Table 1 lists the main information of the
dataset used in this paper.

Like most insider threat detection schemes [6, 9, 22, 39],
we chose the following evaluation metrics, namely, detection

10

Security and Communication Networks

(1) A T—U, Q8P
(2) for u € U do

3) %= Qt”rﬂu’il + Qt‘est
(4) for x € O, do

(6) end for

(7) while not converged do

(9) end while
(10) end for

(12) for group € G do
13) for u € group do
TOU] TOU]
(14) Q;grainp = Q?rainp U Qz'ain

(15) end for
(16) for x € Q¥°% do

train

(21) end while

(22) end for

(23) for u € U do

(24) thr « (8CO44in> 0)
(25) for x € Q" do

test

(31) end for
(32) end for

(i) Input: user set U, behavior instance set), group affiliation P, threshold o
(if) Output: suspicious behavior set A , suspicious user set U,

(5) x} « x} < x //calculate the basic feature x} and compound matrix xﬁ‘t‘
(8 train the memory-augmented temporal model Model, on 99;

(11) G« U, P //split users into different groups according to group affiliation P

(17) x$"P — x //calculate the basic feature vector x¥ "

(18) end for

19) while not converged do

(20) train the memory-augmented spatial model Model; on x¥"""

(26) sco, — (Model,, x8°"P), sco, < (Model,, x*), sco « (sco;, sco,)
(27) if sco > thr then

(28) A, = A, U{x}

(29) U, =U,U{u}

(30) end if

(33) return suspicious behavior set A and suspicious user set U,

ALGORITHM 1: Memory-augmented insider threat detection approach with temporal-spatial fusion

rate (DR), precision (PR), Fl-score, and the area under the
receiver operating characteristic curve (AUC). Their cal-
culation methods are as follows:

TP
DR =—+—7——,
TP+ FN
PR — TP
- TP +FP
(11)
FP
FPR=———,
TN + FP
2
Flzﬁ,
PR "+ DR

where true (false) positive (TP/FP) represents the number of
malicious (normal) samples that are correctly recognized as
“malicious,” and false (true) negative (FN/TN) denotes the
number of malicious (normal) samples that are incorrectly
recognized as “normal.” Among these metrics, AUC plays a
more important role in evaluating solution performance
because it is independent of the predefined threshold. In
general, the larger the area under the curve, the better the

performance of detection scheme. For the sake of brevity, all
the performance metrics except AUC are reported in percent
(%). Moreover, since the performance evaluation is reported
in terms of both anomaly instance detection and suspicious
user identification, there are two kinds of performance
metrics: Instance-based (IDR, IPR, IF1, TAUC) and User-
based (UDR, UPR, UF1, UAUC).

We implement the MAITD with Pytorch, in which both
the temporal and spatial representation models adopt the
architecture of 6-layer fully connected autoencoder plus a
memory module. The related parameters are set as follows:
the number of hidden units at each layer in the encoder and
decoder are 256, 128, 64 and 64, 128, 256, respectively. The
hyper-parameters N, A, a, € in the memory module and ¢ in
the compound matrix are, respectively, set as 100, 0.02,
0.002, 107%, and 0.01 according to the reference works
[6, 43]. In addition, for each anomaly group, the training set
includes the data from the first collection day until roughly
one month before the date of the labeled anomalies, and the
testing set includes the dates from then until roughly one
month after the labeled anomalies. For normal groups, the
user’s behavior dataset is split into a training set and a testing

Security and Communication Networks

11

TaBLE 1: Summary of dataset.

Dataset Feature count

Mal_user: Nor_user

Mal_instances: Nor_instances

R6.2 112
R4.2 112

5:812
70: 866

45:51720
966 : 55194

set in chronological order, and the splitting ratio is set to
30%. During training, we set the batch size and epochs as 32
and 40, and use Adam under the default parameters to
optimize the detection model. All experiments are per-
formed on compute nodes with Gold 5118 CPU, GTX
2060GPU, and 128 GB RAM, and the averaged results are
reported after repeating 10 times.

5.2. Comparison with Other Works. In order to verify the
superiority of MAITD, we compare it with other repre-
sentative insider threat detection schemes. In this section, we
select four similar works [6, 8, 9, 38] as comparison objects,
and discuss their detection performance on the following
three aspects: temporal representation model, spatial rep-
resentation model, and the whole detection scheme. Among
them, Acobe [6] is also designed to build the historical
baseline and peer baseline simultaneously, but it adopts
different spatial and temporal feature extraction methods
(see related work for details). Gavai [8] and Pratik [9] design
their own indicators to capture the temporal characteristics,
respectively, and Liu [38] propose a simple autoencoder-
based insider threat detection scheme. Prior to analysis, we
first introduce the naming rules of experimental schemes to
facilitate understanding. The name of experimental scheme
consists of two parts: the former part “**” means the initial
feature extraction method (i.e. basic features), and the latter
part “##” represents the temporal or spatial representation
model. For example, MAITD_Acobe_S denotes the detec-
tion scheme which adopts the MAITD’s basic features and
Acobe’s spatial representation method.For the purpose of
comparing temporal and spatial representation models, we
design the following experiment scenarios. Under the
conditions of same dataset, unsupervised detection algo-
rithm, and parameter settings, we generate the comparative
schemes by combining different basic features, temporal and
spatial representation models, and then compare their
performance to verify the superiority. Figure 4 shows the
performance comparison results of different temporal and
spatial representation methods on the r6.2 dataset. It can be
seen from the left subgraph that the temporal representation
method of MAITD has the best performance among all the
temporal representation methods, and Acobe is better than
Pratik and Gavai. This result further verifies the previous
conclusion that simple data mergence cannot effectively
reflect the variation tendency of user behavior. As for the
poor performance of Partik and Gavai schemes, we think
that the method of applying temporal indicators in other
fields on insider threat detection directly is too ideal to get
remarkable results. Likely, the experimental results in the
right subgraph show that even if the basic features are
changed, the common group model of TSDIM also performs
better than the compound behavioral deviation matrix of

Spatial Algorithm Comparison

w0 g s e —

L]
w ALY

80 — - 4

60 — e

40 —f- - W

True Positive Rate %

20 -

—
20 40 60 80 100
False Positive Rate %
~ v Acobe_S (AUC = 0.8213) - A MAITD_S (AUC = 0.8538)
Acobe_MAITD_s (AUC = 0.8345) - ® MAITD (AUC = 0.8742)
- o MAITD_Acobe_S (AUC = 0.8454)

Temporal Algorithm Comparison

100 - - P EE——
Y s
NS
o
TN
80 — . o, //Q /.
., 4
/
Sy
.,
60 | e
< 1y
8 .
Ez '/Il’
o /
>
R I
£ \
] ¢
; 1y
w,
20 9 g
b
1]
d
0 T T T T T T T T
0 20 40 60 80 100

False Positive Rate %
~ o MAITD_Gavai (AUC=0.8238) - ¢ MAITD_T (AUC = 0.8593
MAITD_Pratik (AUC = 0.8450) - = MAITD (AUC = 0.8742)
~ v MAITD_Acobe_T (AUC = 0.8453)
Ficure 4: ROCs on 16.2 with different temporal and spatial rep-
resentation methods.

Acobe in capturing the spatial characteristics. This is because
Acobe only relies on the average of users’ basic features in
the same group when capturing the spatial characteristic,
which loses much correlation information between peer’s
behaviors.Subsequently, we compare the whole detection
scheme with other solutions. In addition to the recom-
mended parameter setting, we also use some parameter
tuning tools such as hyperopt [48] to optimize detection
model when reimplementing comparative schemes. Figure 5
presents the experiment results based on the r6.2 dataset. As
can be seen from this figure, MAITD outperforms other

12

Instance-based Algorithm Comparison

100 - - - g ALt ————3F
” - N -
-f’»' A v~
] . L -
g S0 ~
80 — . R A
/'x A/
] A v
X .I ®a v,
g 60 0 Sp
Q? LN v
5 i / A v
> /oy v
= "Pa v
3 4. P
QO_‘ 40 ./A’ Vv
= 84,
ds..
20 ay
¥~
.
0 -_———
0 20 40 60 80 100

False Positive Rate %
- v Gavai (AUC =0.6910) - & Acobe (AUC = 0.8318)
- 4 Liu(AUC=0.7628) - = MAITD (AUC = 0.8742)
User-based Algorithm Comparison

100 ,—._7__;__;_7-__7_7-__-,-__-___—__,—__--__——_:’41
/. ’/A__.——_ -7
.. . 2
pote
804k
, S 4
‘r
5 60— [
(] 7/
= A
E tiy
'3 Y.
£ 407,
g Jur
;]
A
207,y
.
a
0 T
0 20 40 60 80 100

False Positive Rate %
- v Gavai (AUC =0.8164) - e Acobe (AUC = 0.9253)
- & Liu (AUC=0.8617) - = MAITD (AUC = 0.9456)

FicUure 5: ROCs on r6.2 with different insider threat detection
schemes.

three detection schemes in either case, and the instance-
based and user-based AUC are, respectively, improved by
3.94% and 2.03% than the suboptimal scheme, which di-
rectly demonstrates the superiority of our scheme. Acobe
gets suboptimal performance despite some defects in the
aspect of temporal and spatial characteristic analysis. Sur-
prisingly, the Gavai scheme with the ability of temporal
characteristic analysis is weaker than the simple autoen-
coder-based scheme Liu. We think one possible reason is
that the isolation forest used in Gavai is not suitable for
insider threat detection. Because the success or failure of IF-
based detection scheme is heavily dependent on the choice of
good features and proper predefined contamination pa-
rameters, this prior knowledge usually is not known for
security practitioners.

Moreover, we also make a comparison of model training
time and prediction time per instance. As shown in Figure 6,
the prediction time per instance of MAITD is shorter than
Acobe despite opposite result in terms of training time. It

Security and Communication Networks

6 600
4.284

4l 400 |
_ 3.688 400_
= 3.326 &
(o)
£ £
= =

5 1.987 | 200

83 91 74
Lo

Prediction time
per instance

Training time

SN MAITD Liu
1 Acobe B Gavai

FIGURE 6: Average training time and prediction time per instance of
different detection algorithms on r6.2.

can be explained through different baseline model con-
struction methods, where MAITD adopts two independent
representation models but others only build one individual
model. But it should be noted that MAITD is not penalized
in prediction time per instance as the individual and group
models can be run in parallel. Besides, the size of the
compound matrix of Acobe is significantly larger than
MAITD, which invisibly introduces a large amount of
computational overheads, thereby leading to longer pre-
diction time. Although other schemes perform better than
our TSDIM in training and prediction time, their poor
detection performance also mean much human resources
and additional investigation overheads. In general, our
MAITD not only improves the insider threat detection
performance but also takes into account the real-time re-
quirement as much as possible.

Finally, to eliminate the adverse effects of accidental
factors (such as the dataset is atypical or too small) on
performance evaluation, we use r4.2 dataset to conduct the
same comparative experiments. Compared with r6.2 release,
r4.2 release has more positive samples and different orga-
nization background, so we think it is reasonable to verify
the generality based on r4.2 release. More specifically, we
record and compare multiple performance metrics to make a
fair assessment, and the detailed information can be seen in
Table 2 and Figure 7. It can be seen that the TSDIM scheme
outperforms other methods even if the dataset used is
changed. In addition, although the overall performance of
MAITD on r4.2 is better than that on r6.2, the performance
gap with other detection schemes is reduced. That is, we
think that MAITD has more advantages in dealing with
complex threat scenarios.

5.3. Ablation Study. In the previous section, we made a
comprehensive comparison with other representative de-
tection schemes. In the following, we will conduct several
further ablation studies to verify the effectiveness of two

Security and Communication Networks 13
TaBLE 2: The summary of insider threat detection results.
DR (0 =3) PR (0=13) AUC
Data Type)
MAITD Acobe Liu Gavai MAITD Acobe Liu Gavai MAITD Acobe Liu Gavai
6.2 Instance 69.06 68.79 6526 64.18 50.34 4426 40.64 38.16 0.8742 0.8318 0.7628 0.6910
' User 100 100 80 80 67.56 63.15 5991 4743 0.9456 0.9253 0.8617 0.8164
42 Instance 75.48 75.61 6813 67.74 53.72 49.23 42,67 3548 0.8936 0.8646 0.8127 0.7267
) User 86.42 8336 80.62 72.64 62.13 59.86 5537 49.35 0.9551 09434 09042 0.8673

The threshold used to calculate DR and PR is set as mean + 3*std, and the unit of DR/PR is percent. The bold values represent the maximum value i.e., the best

performance among these methods.

Instance-based Result for R4.2 dataset

1.0 -
0.8 —
g 0.6 —
G
= 4
0.4 —
0.2
0.0 —
TAUC IDR IPR
XY MAITD Liu
[Acobe B Gavai
User-based Result for R4.2 dataset
1.0 —
0.8 —
.15 0.6 —
<
= 4
0.4 —
0.2 —
0.0 - T T
UAUC UDR UPR
Y MAITD Liu
] Acobe B Gavai

FiGure 7: Performance comparison results of different insider
threat detection schemes on r4.2.

optimization components. The naming rules of detection
scheme are similar to the previous ones, but the latter part
“##” can also represent the different unsupervised detection
algorithms. For example, “MAITD-S" refers to the detection

scheme with the basic features and spatial representation
model used in the MAITD method, and “MAITD-Vae”
refers to the detection scheme which adopts the MAITD’s
temporal-spatial representation model and variational
autoencoder-based detection algorithm.

The first experiment is used to evaluate the effectiveness of
temporal and spatial characteristic analysis components. In this
experiment, we choose the memory-augmented autoencoder
as the unsupervised detection algorithm, and achieve the ex-
perimental goal by removing temporal or spatial representation
models. Figure 8 records the instance-based and user-based
ROCs on 16.2 dataset with different behavior representation
models. It can be seen that removing either the temporal
representation model or spatial representation model will
degenerate the performance. Without the temporal (spatial)
representation model, the insider threat detection scheme
cannot capture the temporal (spatial) correlation between user
activities, which may lead to the missing (false) alarms of the
low-signal yet long-lasting threats (the collective behavior
changes caused by occasional factors). Moreover, we also
notice that the temporal representation model and the spatial
representation model have the similar detection performance
(the gap in IAUC is only 0.0055) when deployed separately, but
there is still a certain gap (the gap in TAUC is 0.02) between
them and the fusion scheme. This phenomenon indicates the
necessity of temporal-spatial characteristic fusion in the field of
insider threat detection. However, although the detection
scheme with single representation model is worse than the
tusion scheme, it performs better than the scheme without any
representation model, thereby verifying the effectiveness of
temporal and spatial characteristic analysis modules.

The second experiment is used to evaluate the effec-
tiveness of the improved unsupervised detection algorithm.
To have a fair comparison, all detection schemes leverage the
temporal-spatial fusion component to capture potential
correlation between user behaviors, and we choose two other
detection algorithms as comparison objects. Here, we refer
to the detection scheme with a fully connected autoencoder
as Baseline, and generate new schemes by adding a varia-
tional mechanism (denoted as MAITD-Vae) and memory
module (denoted as MAITD-Mem). Figure 9 shows the
ROCs on r6.2 with different unsupervised detection algo-
rithms. Experimental data show that the variational
autoencoder provides limited performance improvement
(0.0079), but the improvement brought from memory
module (0.0236) is 3 times the former. This is because the
variational autoencoder is designed to strengthen the ability
to resist noise data, and it plays an important role in

14
Instance-based ROC Curve
100 g ¥ =
¥
JiF
i e
v is
80 o Tog®
v
X - :IA.
e v.
€ 60 - l}
o v, 8
£ |
3 3
A o404y
)
g/
4
20 - ¢
*
0 ——————1—
0 20 40 60 80 100
False Positive Rate %
- - - MAITD_B (AUC=0.8434) - A- - MAITD_T (AUC = 0.8593)
- #- - MAITD_S (AUC=0.8538) - ¥- - MAITD (AUC = 0.8742)
User-based ROC Curve
100 - N ’f:.;.:,’:,:,_;:;_aj’}':-_”:)??}:4?9:-:- rrrrr e
80 o -
© 1
Y ™
p‘é 60 Ir;l.! .
Z "
= 1.
o o
A 40 — oy
) "
2 i
= i
20
0 : T : T : T : T T
0 20 40 60 80 100

False Positive Rate %
- - MAITD_B (AUC=0.9224) - -~ - MAITD_T (AUC = 09367)
- - MAITD_S (AUC = 09306) - “v- - MAITD (AUC = 0.9456)
FIGUre 8: Rocs on r6.2 with different behavior representation
models.

decreasing reconstruction errors of normal samples. Al-
though this method is beneficial to distinguish anomalies in
a way, it still faces the problem that some anomalies can also
be reconstructed well. Instead, the memory-augmented
autoencoder alleviates this problem by enlarging the con-
struction errors of anomalies, which is more in line with the
realistic demand of insider threat detection.

To explore the possible explanation for the optimization
components, we analyze the trends of anomaly scores of two
different users, and give the related case study. The detailed
information can be seen in Figure 10, in which CMP2946 is a
malicious user and LYB3419 is a normal user. The black curve
denotes the anomaly scores of MAITD, and the gray curve
denotes the anomaly scores of the MAITD-B scheme. The star
markers at the bottom indicate the actual anomaly days. The
false negative, false positive, and true positive are depicted by
red, purple, and blue points, respectively. By comparing the

Security and Communication Networks

Instance-based ROC Curve

100 ST T |
’ b i
4 F,/:/
'
80 — . *l ;0
%
2 "%
: X
e 60— e
(9] 11 .
-E J 1y
40w
2]
I
= 1
1
20 *
1
11
|
0 — 7
0 20 40 60 80 100
False Positive Rate %
- A MAITD-AE (AUC = 0.8506)
- & MAITD-Vae (AUC = 0.8587)
— ® MAITD-Mem (AUC = 0.8742)
User-based ROC Curve
100 - A L L et i i e et e — &
s
ek’
11
11y
80 1 / IVI
11y
f T T I
b= ®
& 60+ 4
(5]
= 1w
'a 11
I~ "
L 40!
=
= irs
L]
20"
1
il
0 — 71—
0 20 40 60 80 100

False Positive Rate %
- A& MAITD-AE (AUC = 0.9325)
- & MAITD-Vae (AUC = 0.9374)
— m MAITD-Mem (AUC = 0.9456)

FIGURE 9: ROCs on r6.2 with different detection algorithms.

number of red points in Figure 10(a), we can conclude that
our two optimization components effectively reduce the false
negatives in the detection results. Here, we take the behaviors
of user CMP2946 on February 24, 2011 as a case, and briefly
analyze the reasons for different results in two detection
schemes. By studying the action sequence of the user on the
day, we find that the number of visitors to the recruiting
website is much less than the previous few days, and the
number is even similar to the frequence during the normal
period. This makes it difficult for detection scheme based on
basic features to identify such anomalies. However, in ad-
dition to the initial frequence information, the temporal
representation model of the MAITD scheme can capture the
time-varying information hidden in user behaviors, so as to
detect the above anomalies accurately. Furthermore, we can
observe that the anomaly scores of anomaly user (CMP2946)

Security and Communication Networks

0.07 1 ——MAITD « TP

* FP e FN

0.06

0.05

0.04
0.03165

0.03

0.02

0.01

0.00
0.07 A

Apd- Lo T T

i

!

!

!

!

!

!

!

!
ke
<
Q
o

01/26 [+

——MAITD-B ¢ TP
* FP ¢« FN

Anomaly Score

0.06 -

0.05 -

0.04

0.02836

003 -1 U e e e 0.02

0.02 A

0.01 A

0.00 : 004040 A AMMA AMAMA 44

01/20
01/26
02/24
0321 %
04/10
04/30

—~
o
=

15

——MAITD « TP
* FP

0.05

e FN

0.04

0.03
0.02631

0.02

0.01

0.00 ; ,

0.05

0.04

01/20

——MAITD-B ¢ TP
* FP * FN

Anomaly Score

0.03
0.02

0.01

0.00

01/20 1
02/09
03/01 -
03/21 A
04/10
04/30 -

()

FIGURE 10: Trends of anomaly scores of different users on r6.2. (a) Malicious user CMP2946. (b) Normal user LYB3419.

in MAITD is obviously higher than that in MAITD-B scheme,
while the normal user (LBY3419) has nearly the same
anomaly scores. This phenomenon is consistent with the
desired purpose of optimization components, thus verifying
the feasibility of applying the memory-augmented network
on insider threat detection.

Combined with the variation of purple points in
Figure 10(b), we believe that two optimization components
also play an important role in reducing the false positives.
For example, two normal instances (the behaviors of user
CMP2946 on January 26, 2010 and the behaviors of user
LBY3419 on January 20, 2010) are successfully transformed
from false positive samples to true negative samples.
However, since there are no specific descriptions about
occasional factors in the CERT dataset, we cannot conduct
in-depth analysis to explain these phenomena. We think the
application of spatial representation model is the main
reason, and work [6] makes the same guess. In summary, the
temporal-spatial fusion mechanism and the improved un-
supervised detection algorithm are practical and feasible
optimization measures.

5.4. Parameter Analysis. When describing the MAITD, we
emphatically introduce two parameters, the size of sliding
time window T and the model weight coeflicient &, to help
optimize the detection performance. The size of sliding
window T is related to the scale of historical data used by the
temporal representation model, and the weight coeflicient &
is responsible for adjusting the balance between historical
baseline and peer baseline. Generally speaking, the larger the
window size, the more historical information the temporal
representation model can leverage, and the more

advantageous for the detection of low-signal yet long-term
anomalies. However, an overlarge window size will also
weaken the short-term variation of user behavior, thereby
lowering the ability to detect the sudden appearing threats.
Meanwhile, there is no one-fit-all weight coefficient for every
threat, and its value usually depends on the specific threat
scenario. For example, in organizations with relatively ob-
scure roles and functions, the behavioral patterns of
members in the same group are not similar, so the im-
portance of peer baseline in the whole detection system
should be weakened. For these reasons, we prefer to obtain
the best values of these parameters in the CERT dataset
through numerical experiments.

Firstly, we evaluate the impact of window size T' on the
detection performance. Figure 11(a) shows that when other
parameters are fixed, multiple evaluation metrics vary with
different window size T. Note that the y-axis of Figure 11
represents the value of multiple evaluation metrics. It can be
seen from the figure that the detection precision of anomaly
instances and suspicious users shows an upward trend with
the increase of window size, but this trend goes into reverse
when the window size reaches a relatively large value. This
phenomenon is line with our expectation, that is, the in-
crease of window size expands the scale of historical data
that the temporal representation model can leverage, but
overlarge window size also hinders the acquisition of weak
variation feature. Moreover, we also observed that other
metrics such as detection rate show similar trend despite
weak amplitude of variation, and it can be explained through
the following two reasons. First, there are only a few anomaly
instances and fewer malicious users in the dataset, which
limits the variable range of evaluation metrics. Second, some
rare anomalies are inherently difficult to detect based on

16
1.1 4
1.0 4
) >~ — — — ® — = — @ ——.— g
0.9
| - vV————vV———
y 0.8 e
0.7 >
0.6 ‘/j//,\
0.5 4 ./r/‘_,
0.4
T T T T
1 2 4 6
Time Window Length (week)
—=—IDR —e—IPR —A—TF1 —v—IAUC
UDR —<—UPR —»—UF1 —e—UAUC

()

Security and Communication Networks

1.1
1.0 H
g >~ — — @ — — —@— . —. _ . g. —.—.—@
0.9 —
| v Vv ¥
i:? 0.8
S -
o T T,
0.7 .—/—l/.\k\.
0.6 | —mmt— -
057 k/‘\o\.\.
0.4 T T T T T T T T T
0.2 0.3 0.4 0.5 0.6
Parameter &
—=—IDR —eo—[PR —4—JF1 —»—IAUC
UDR —<—UPR —»—UF1 —e—UAUC

(b)

FIGURE 11: Parameter comparison results on r6.2. (a) The relationship between window size T and performance. (b) The relationship

between parameter £ and performance.

TaBLE 3: The detection results of different weight coefficients.

Instance-based results

User-based results

Para ¢

IDR IPR IF1 TAUC UDR UPR UF1 UAUC
0.1 69.04 48.61 57.05 0.8701 100 57.15 72.73 0.9382
0.2 69.46 50.34 58.37 0.8742 100 58.56 73.86 0.9456
0.3 71.86 49.01 58.28 0.8693 100 59.45 74.57 0.9461
0.4 69.34 48.31 56.95 0.8657 100 57.91 73.34 0.9406
0.5 68.74 45.98 55.10 0.8608 100 56.05 71.83 0.9438

The bold values represent the maximum value i.e., the best performance among these methods.

historical baselines. Therefore, we believe that the whole
performance of insider threat detection scheme is at a rel-
atively high level when the size of sliding time window is set
to be 4 weeks (i.e. one month).

Secondly, we also design a numerical experiment to
evaluate the impact of model weight coefficient on detection
performance. Figure 11(b) and Table 3 show that when time
size is set to be 4 weeks, the evaluation metrics vary with
different weight coefficient &. It is observed that compared to
the window size T, the impact of parameter ¢ on detection
performance is not so significant, but the variation trend of
evaluation metrics is similar. Specifically, when the weight of
the spatial representation model is at a relatively small level,
increasing the value of parameter ¢ is beneficial to improve
the detection performance. But, it is undeniable that the
temporal representation model plays a more important role
in the whole detection process. From the data in Table 2, it
can be concluded that when the weight coefficient ¢ is set to
be 0.3, multiple evaluation metrics are generally high.

6. Discussion and Future Work

Below we discuss limitations and future works. First of all,
MAITD is still an insider threat detection scheme based on
feature engineering in the traditional sense, and its many

improvement measures are based on the premise of good
basic features design. In other words, it is necessary for
MAITD to enhance the detection ability of completely
unknown threats, and this is also a common drawback of the
traditional insider threat detection schemes based on feature
engineering. To solve this, one option is to obtain the ab-
stract representation of user behaviors by means of natural
language processing technology. That is, we need to design a
feature extraction scheme which can capture the potential
semantic properties in the original audit logs without relying
on any domain knowledge. Another possible solution is to
encode discrete event logs into activity sequences, and build
user’s behavior profile to detect insider threat by utilizing the
process mining method. Secondly, given that the MAITD
detection model is trained on a fixed set of historical data,
the online and system evolution in reality may cause sig-
nificant performance degradation. Therefore, how to update
detection model incrementally on newly arriving data to
achieve consistently good performance with negligible cost
is another important research direction. In this regard,
Parveen [49] and Sun [26] provide an important reference to
achieve this goal. Moreover, like most insider threat de-
tection schemes, the results of MAITD lack intuitive in-
terpretability and require further artificial investigation. In
response to this problem, we believe that improving the

Security and Communication Networks

detection granularity of anomaly instances may be another
feasible solution except for model interpretability study. In a
way, the result itself has a certain interpretability when the
detection granularity reaches the event level. We must admit
that there is no one insider threat detection scheme which
can detect all anomalies accurately without artificial inves-
tigation, and all that we can do is to reduce the investigation
overhead as much as possible. In summary, although our
MAITD suffers from some weaknesses, it provides an ef-
fective reference for other anomaly detection problems in
the security field. Meanwhile, we will implement and verify
the above possible solutions in future work, and positively
contribute to a successful application of the proposed system
in real-world scenarios.

7. Conclusion

Most existing insider threat detection schemes only focus on
the historical behavior baseline while ignoring the peer
baseline, resulting in poor detection performance. To solve
this problem, we propose a novel insider threat detection
scheme named MAITD, which adopts two different opti-
mization measures to improve detection performance. First,
it captures the temporal and spatial characteristics of user
behaviors by constructing a compound behavioral matrix
and common group model, and combines specific appli-
cation scenarios to integrate the detection results, so as to
enable both historical and peer baselines to work together.
Second, it adds a memory module based on attention weight
to autoencoder to enlarge the reconstruction error of the
anomalies, and alleviate the false negatives. The experi-
mental results on CERT datasets show that MAITD out-
performs the latest insider threat detection scheme, and
improves the instance-based and user-based AUC by 3.94%
and 2.04%, respectively.

Data Availability

All the data used during the study were provided by Car-
negie Mellon University CERT Insider Threat dataset. The
dataset can be downloaded at https://kilthub.cmu.edu/
articles/dataset/Insider_Treat_Test_Dataset/12841247/1.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This research was supported by a research grant from the
National Science Foundation of China under Grant nos.
61772271 and 62106282.

References

[1] P. Institute, “2020 cost of insider threats global report,”
https://www.proofpoint.com/us/resources/threat-reports/
2020-cost-of-insider-threats.

[2] Gurucul, “2020 insider threat survey report,” https://gurucul.
com/2020-insider-threat-survey-report.

17

[3] C. Insiders, “2020-cyber-threat-intelligence-report,” https://
www.cybersecurity-insiders.com/portfolio/2020-insider-
threat-report-darktrace/.

[4] D.L. Costa, M.]. Albrethsen, and M. L. Collins, Insider Threat
Indicator Ontology, Carnegie-Mellon Univ Pittsburgh Pa
Pittsburgh United States, Pittsburgh, PA, USA, Tech. Rep,
2016.

[5] L. Liu, O. De Vel, Q.-L. Han, J. Zhang, and Y. Xiang,
“Detecting and preventing cyber insider threats: a survey,”
IEEE Communications Surveys & Tutorials, vol. 20, no. 2,
pp. 1397-1417, 2018.

[6] L.-P. Yuan, E. Choo, T. Yu, I. Khalil, and S. Zhu, “Time-
window based group-behavior supported method for accurate
detection of anomalous users,” in Proceedings of the 2021 51st
Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), pp. 250-262, IEEE, Taipei,
Taiwan, JJune 2021.

[7] D.Li, L. Yang, H. Zhang, X. Wang, L. Ma, and J. Xiao, “Image-
based insider threat detection via geometric transformation,”
Security and Communication Networks, vol. 2021, Article ID
1777536, 2021.

[8] G. Gavai, K. Sricharan, D. Gunning, R. Rolleston, J. Hanley,

and M. Singhal, “Detecting insider threat from enterprise

social and online activity data,” in Proceedings of the 7th ACM

CCS International Workshop on Managing Insider Security

Threats, pp. 13-20, Colorado, DN, USA, Octomber 2015.

P. Chattopadhyay, L. Wang, and Y.-P. Tan, “Scenario-based

insider threat detection from cyber activities,” IEEE Trans-

actions on Computational Social Systems, vol. 5, no. 3,

pp. 660-675, 2018.

[10] S.Yuan, P. Zheng, X. Wu, and Q. Li, “Insider threat detection
via hierarchical neural temporal point processes,” in Pro-
ceedings of the 2019 IEEE International Conference on Big Data

(Big Data), pp. 1343-1350, IEEE, Los Angeles, CA, USA,
December 2019.

[11] T. Rashid, I. Agrafiotis, and J. R. Nurse, “A new take on
detecting insider threats: exploring the use of hidden Markov
models,” in Proceedings of the 8th ACM CCS International
Workshop on Managing Insider Security Threats, pp. 47-56,
Vienna, Austria, Octomber 2016.

[12] A. Tuor, S. Kaplan, B. Hutchinson, N. Nichols, and
S. Robinson, “Deep learning for unsupervised insider threat
detection in structured cybersecurity data streams,” in Pro-
ceedings of the Workshops at the Thirty-First AAAI Conference
on Artificial Intelligence, San Francisco, March 2017.

[13] L. Liu, C. Chen, J. Zhang, O. De Vel, and Y. Xiang, “Insider
threat identification using the simultaneous neural learning of
multi-source logs,” IEEE Access, vol. 7, pp. 183 162-183 176,
2019.

[14] J. Glasser and B. Lindauer, “Bridging the gap: a pragmatic
approach to generating insider threat data,” in Proceedings of
the 2013 IEEE Security and Privacy Workshops, pp. 98-104,
IEEE, San Francisco, CA, USA, May 2013.

[15] A. P. Moore, D. A. Mundie, and M. L. Collins, “A system
dynamics model for investigating early detection of insider
threat risk,” in Proceedings of the 31st International Conference
of the System Dynamics Society, Pittsburgh, PA, USA, July
2013.

[16] S. Wasko, R. E. Rhodes, M. Goforth et al., “Using alternate
reality games to find a needle in a haystack: an approach for
testing insider threat detection methods,” Computers ¢ Se-
curity, vol. 107, Article ID 102314, 2021.

[9

https://kilthub.cmu.edu/articles/dataset/Insider_Treat_Test_Dataset/12841247/1
https://kilthub.cmu.edu/articles/dataset/Insider_Treat_Test_Dataset/12841247/1
https://www.proofpoint.com/us/resources/threat-reports/2020-cost-of-insider-threats
https://www.proofpoint.com/us/resources/threat-reports/2020-cost-of-insider-threats
https://gurucul.com/2020-insider-threat-survey-report
https://gurucul.com/2020-insider-threat-survey-report
https://www.cybersecurity-insiders.com/portfolio/2020-insider-threat-report-darktrace/
https://www.cybersecurity-insiders.com/portfolio/2020-insider-threat-report-darktrace/
https://www.cybersecurity-insiders.com/portfolio/2020-insider-threat-report-darktrace/

18

(17]

(18]

(19]

[20

(21]

(22]

(23]

[24]

(25]

(26]

(27]

(28]

[29]

(30]

(31]

M. Collins, Common Sense Guide to Mitigating Insider
Threats, Carnegie-Mellon Univ Pittsburgh Pa Pittsburgh
United States, Pittsburgh, PA, USA, Tech. Rep, 2016.

1. Homoliak, F. Toffalini, J. Guarnizo, Y. Elovici, and
M. Ochoa, “Insight into insiders and it: a survey of insider
threat taxonomies, analysis, modeling, and countermeasures,”
ACM Computing Surveys, vol. 52, no. 2, pp. 1-40, 2019.

S. Yuan and X. Wu, “Deep Learning for Insider Threat De-
tection: Review, Challenges and Opportunities,” Computers &
Security, vol. 104, Article ID 102221, 2021.

S. L. Pfleeger, J. B. Predd, J. Hunker, and C. Bulford, “Insiders
behaving badly: addressing bad actors and their actions,” IEEE
Transactions on Information Forensics and Security, vol. 5,
no. 1, pp. 169-179, 2009.

J. R. Nurse, O. Buckley, P. A. Legg et al., “Understanding
insider threat: a framework for characterising attacks,” in
Proceedings of the 2014 IEEE Security and Privacy Workshops,
pp. 214-228, IEEE, San Jose, CA, USA, May 2014.

D. C. Le and N. Zincir-Heywood, “Anomaly detection for
insider threats using unsupervised ensembles,” IEEE Trans-
actions on Network and Service Management, vol. 18, no. 2,
pp. 1152-1164, 2021.

P. Ferreira, D. C. Le, and N. Zincir-Heywood, “Exploring
feature normalization and temporal information for machine
learning based insider threat detection,” in Proceedings of the
2019 15th International Conference on Network and Service
Management (CNSM), pp. 1-7, IEEE, Halifax, Canada,
Octomber 2019.

D. C. Le and N. Zincir-Heywood, “Exploring adversarial
properties of insider threat detection,” in Proceedings of the
2020 IEEE Conference on Communications and Network Se-
curity (CNS), pp. 1-9, IEEE, Avignon, France, August 2020.
F. Liu, Y. Wen, D. Zhang, X. Jiang, X. Xing, and D. Meng,
“Log2vec: a heterogeneous graph embedding based ap-
proach for detecting cyber threats within enterprise,” in
Proceedings of the 2019 ACM SIGSAC Conference on Com-
puter and Communications Security, pp.1777-1794, London,
UK, November 2019.

D. Sun, M. Liu, M. Li, Z. Shi, P. Liu, and X. Wang, “Deepmit: a
novel malicious insider threat detection framework based on
recurrent neural network,” in Proceedings of the 2021 IEEE
24th International Conference on Computer Supported Co-
operative Work in Design (CSCWD), pp. 335-341, IEEE,
Dalian, China, May 2021.

S. Yuan, P. Zheng, X. Wu, and H. Tong, “Few-shot insider
threat detection,” in Proceedings of the 29th ACM Interna-
tional Conference on Information & Knowledge Management,
pp- 2289-2292, Virtual Event, Ireland, 2020.

A. Vaswani, N. Shazeer, N. Parmar et al., “Attention is all you
need,” in Proceedings of the Advances in Neural Information
Processing Systems, pp. 5998-6008, Vancouver, Canada, 2017.
D. C.Le, N. Zincir-Heywood, and M. I. Heywood, “Analyzing
data granularity levels for insider threat detection using
machine learning,” IEEE Transactions on Network and Service
Management, vol. 17, no. 1, pp. 30-44, 2020.

T. E. Senator, H. G. Goldberg, A. Memory et al., “Detecting
insider threats in a real corporate database of computer usage
activity,” in Proceedings of the 19th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining,
pp- 1393-1401, Chicago,USA, August 2013.

K. Nance and R. Marty, “Identifying and visualizing the
malicious insider threat using bipartite graphs,” in Proceed-
ings of the 2011 44th Hawaii International Conference on
System Sciences, pp. 1-9, IEEE, Kauai, HI, USA, January 2011.

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

(40]

[41]

(42]

[43]

(44]

(45]

Security and Communication Networks

L. Liu, C. Chen, J. Zhang, O. De Vel, and Y. Xiang, “Doc2vec-
based insider threat detection through behaviour analysis of
multi-source security logs,” in Proceedings of the 2020 IEEE
19th International Conference on Trust, Security and Privacy in
Computing and Communications (TrustCom), pp. 301-309,
IEEE, Guangzhou, China, January 2020.

D. Zhang, Y. Zheng, Y. Wen et al.,, “Role-based log analysis
applying deep learning for insider threat detection,” in Pro-
ceedings of the 1st Workshop on Security-Oriented Designs of
Computer Architectures and Processors, pp. 18-20, Toronto,
Canada, Octomber 2018.

H. Eldardiry, E. Bart, J. Liu, J. Hanley, B. Price, and
O. Brdiczka, “Multi-domain information fusion for insider
threat detection,” in Proceedings of the 2013 IEEE Security and
Privacy Workshops, pp. 45-51, IEEE, San Francisco, CA, USA,
May 2013.

A. Coden, W. Lin, K. Houck et al., “Uncovering insider threats
from the digital footprints of individuals,” IBM Journal of
Research and Development, vol. 60, no. 4, pp. 8-1, 2016.

P. A. Legg, O. Buckley, M. Goldsmith, and S. Creese, “Au-
tomated insider threat detection system using user and role-
based profile assessment,” IEEE Systems Journal, vol. 11, no. 2,
pp. 503-512, 2015.

L. Lin, S. Zhong, C. Jia, and K. Chen, “Insider threat detection
based on deep belief network feature representation,” in
Proceedings of the 2017 International Conference on Green
Informatics (ICGI), pp. 54-59, IEEE, Fuzhou, China, August
2017.

L. Liu, O. De Vel, C. Chen, J. Zhang, and Y. Xiang, “Anomaly-
based insider threat detection using deep autoencoders,” in
Proceedings of the 2018 IEEE International Conference on Data
Mining Workshops (ICDMW), pp. 39-48, IEEE, Singapore,
November 2018.

L. Liu, C. Chen, J. Zhang, O. De Vel, and Y. Xiang, “Unsu-
pervised insider detection through neural feature learning and
model optimisation,” in Proceedings of the 13th International
Conference on Network and System Security, pp. 18-36,
Sapporo, Japan, December 2019.

C. Zhou and R. C. Paffenroth, “Anomaly detection with
robust deep autoencoders,” in Proceedings of the 23rd ACM
SIGKDD International Conference on Knowledge Discovery
and Data Mining, pp. 665-674, Halifax, Canada, August 2017.
B. Zong, Q. Song, M. R. Min et al,, “Deep autoencoding
Gaussian mixture model for unsupervised anomaly detec-
tion,” in Proceedings of the International Conference on
Learning Representations, Vancouver, Canada, February 2018.
Q. P. Nguyen, K. W. Lim, D. M. Divakaran, K. H. Low, and
M. C. Chan, “Gee: a gradient-based explainable variational
autoencoder for network anomaly detection,” in Proceedings
of the 2019 IEEE Conference on Communications and Network
Security (CNS), pp. 91-99, Washington, DC, USA, August
2019.

D. Gong, L. Liu, V. Le et al., “Memorizing normality to detect
anomaly: memory-augmented deep autoencoder for unsu-
pervised anomaly detection,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 1705-1714,
Montreal, Canada, 2019.

H. Park, J. Noh, and B. Ham, “Learning memory-guided
normality for anomaly detection,” in Proceedings of the IEEE/
CVF Conference on Computer Vision and Pattern Recognition,
pp- 14360-14369, Seattle, WA, USA, March 2020.

Y. Mirsky, T. Doitshman, Y. Elovici, and A. Shabtai, “Kitsune:
an ensemble of autoencoders for online network intrusion
detection,” 2018, https://arxiv.org/abs/1802.09089.

https://arxiv.org/abs/1802.09089

Security and Communication Networks

(46]

(47]

(48]

(49]

L.-P. Yuan, P. Liu, and S. Zhu, “Recompose event sequences
vs. predict next events: a novel anomaly detection approach
for discrete event logs,” in Proceedings of the 2021 ACM Asia
Conference on Computer and Communications Security,
pp- 336-348, Virtual Event, Hong Kong, May 2021.

B. Zhao, L. Fei-Fei, and E. P. Xing, “Online detection of
unusual events in videos via dynamic sparse coding,” in
Proceedings of the CVPR 2011, pp. 3313-3320, IEEE, Colorado
Springs, CO, USA, June 2011.

J. Bergstra, D. Yamins, and D. Cox, “Making a science of
model search: hyperparameter optimization in hundreds of
dimensions for vision architectures,” in Proceedings of the
International Conference on Machine Learning. PMLR,
pp- 115-123, Edinburgh, Scotland, July 2013.

P. Parveen and B. Thuraisingham, “Unsupervised incremental
sequence learning for insider threat detection,” in Proceedings
of the 2012 IEEE International Conference on Intelligence and
Security Informatics, pp. 141-143, IEEE, Washington, DC,
USA, June 2012.

19

Hindawi

Security and Communication Networks
Volume 2022, Article ID 1289175, 16 pages
https://doi.org/10.1155/2022/1289175

Research Article

WILEY | Q@) Hindawi

A Deep Learning Method for Android Application Classification

Using Semantic Features

Zhigiang Wang , 123 Gefei Li(®,2 Zihan Zhuo ®,* Xiaorui Ren ®,’ Yuheng Lin !

and Jieming Gu

'Department of Cyberspace Security, Beijing Electronic Science & Technology Institute, Beijing 100070, China

2State Information Center, Beijing 100045, China

*Guangdong Provincial Key Laboratory of Information Security Technology, Shenzhen, Guangdong 510006, China

*National Internet Emergency Center, Beijing, 100029, China

Correspondence should be addressed to Zihan Zhuo; zzh@cert.org.cn

Received 8 December 2021; Accepted 1 February 2022; Published 24 February 2022

Academic Editor: Robertas Damasevicius

Copyright © 2022 Zhiqiang Wang et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Android has become the most popular mobile intelligent operating system with its open platform, diverse applications, and
excellent user experience. However, at the same time, more and more attackers take Android as the primary target. The application
store, which is the main download source for users, still does not have a complete security authentication mechanism. Given the
above problems, we designed an Android application classification model based on multiple semantic features. Firstly, we use
analysis tools to automatically extract the application’s dynamic and static features into the text document and use variance and
chi-square tests to optimize the features. Combined with natural language processing (NLP), we transform the feature file into a
two-dimensional matrix and use the convolution neural network (CNN) to learn features efficiently. Also, to make the model
satisfy more application scenarios, we design a dynamic adjustment method according to user requirements, the number of
features, and other indicators. The experimental results demonstrate that the detection accuracy of malware is 99.3921%. We also
measure this model’s performance in detecting a malware family and benign application, with the classification accuracy of

99.5614% and 99.9046%, respectively.

1. Introduction

Android has many devices and users and rich applications as
the most popular mobile intelligent operating system,
bringing great convenience to people’s lives. The open-
source Android platform has made more and more mobile
terminal manufacturers and developers join the Android
alliance. According to the International Data Corporation’s
global smartphone market data report [1], with the popu-
larization of 5G and the accelerated research and develop-
ment of 5G smart terminals by notable brands, global
smartphone shipments are expected to increase slightly by
1.6% next year. However, at the same time, the security
problem of the Android system is also increasingly prom-
inent, which contains more and more sensitive information

such as user identity information, location information, and
privacy data. At present, the security authentication
mechanism for Android application stores is still not
complete, and more and more attackers take the Android
system as the primary attack target.

The Android platform provides some security mecha-
nisms to limit malware functions, especially Android’s
permission control mechanism. Android system defines
various permissions for developers to protect system re-
sources and provides the corresponding APIs for accessing
the above system resources. If an application wants to use
these APIs to access user data, system configuration, and
other resources, it must apply for the corresponding per-
missions and obtain the user’s consent. However, most users
usually blindly grant all permissions, thus destroying the

mailto:zzh@cert.org.cn
https://orcid.org/0000-0002-1789-8414
https://orcid.org/0000-0002-6851-437X
https://orcid.org/0000-0002-1426-4803
https://orcid.org/0000-0001-7655-0525
https://orcid.org/0000-0002-6953-2385
https://orcid.org/0000-0002-2466-988X
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/1289175

permission mechanism’s effectiveness and failing to limit
malware functions. As the primary source for users to
download applications, various third-party application
stores need to keep malware out and quickly and accurately
classify benign applications automatically. Currently, ap-
plication stores generally classify applications according to
categories specified by developers or by analyzing descrip-
tions provided by developers. However, malware developers
can easily manipulate this process to evade detection, such as
adding unqualified financial applications to the information
application interface that is more easily approved. Addi-
tionally, as the number of applications explodes, it is be-
coming critical to classify applications quickly and
accurately to improve management efficiency.

At present, most malicious application detection
schemes use static or dynamic analysis methods to extract
features and then combine machine learning algorithms to
identify malicious applications. Some schemes directly vi-
sualize the application source code as a gray image or RGB
image and use deep learning technology to analyze image
features. Although the feature extraction step is omitted, it
still belongs to static analysis. MalNet [2] uses CNN and
LSTM networks to learn from the grayscale image and
opcode sequence and takes a stacking ensemble for malware
classification. Ganesh et al. [3] extracted 138 permission
features and converted them into 12 x12 PNG images and
then used CNN to detect malicious applications. Xu et al. [4]
used the control flow graph, data flow graph, and their
possible combination as the Android application features,
then encoded the graph into a matrix, and used them to train
the classification model through CNN. Zegzhda et al. [5]
proposed an approach for representing an Android appli-
cation for a CNN, which consists of constructing an RGB
image, the pixels of which are formed from a sequence of
pairs of API calls and protection levels.

In the above detection method, CNN has two key
benefits: local invariance and compositionality. Local in-
variance allows us to classify an image as a process con-
taining a specific target, no matter where the target appears
in the image. Compositionality means that each filter
combines features to form a high-level representation, en-
abling the network to learn more precious features at a
deeper level. However, the above methods are static analysis,
which cannot wholly characterize the behavior of malicious
applications, and need to extract dynamic features. Yuan
et al. [6] proposed an online Android malware detection
engine that extracted 192 features using static and dynamic
analysis techniques and combined with Deep Belief Net-
works to detect malware, achieving high accuracy. However,
there are still some problems, such as low accuracy and long
training time for high dimensional feature detection. In
NLP, Kim [7] proposed applying CNNs to sentence-level
classification problems and achieved excellent results with
an uncomplicated model.

This paper combines NLP and CNN to extract static and
dynamic features and adds their frequency to describe
features more accurately. Then, all the features contained in
each application are transformed into a two-dimensional
matrix. Finally, we use CNN to learn features efficiently to

Security and Communication Networks

classify applications quickly. The main contributions of this
paper are as follows:

(1) Automated feature extraction: We use four dynamic
and static analysis tools to extract features and ex-
press the features in the form of “feature name-
+frequency” to describe the features more
accurately and comprehensively. Each type of feature
set is independent, and users can flexibly choose
analysis tools according to their needs. This paper
conveniently adds new feature set types to ensure the
long-term validity of the model.

(2) Feature vector generation: We transform the feature
file into a two-dimensional matrix using NLP and
combine it with CNN, which is excellent in image
recognition, to learn features efficiently.

(3) Dynamic adjustment of the model: We design a
dynamic adjustment method of parameters
according to the user’s requirements (binary clas-
sification/multiclassification), the number of appli-
cations, and the average number of features
contained in the feature files, to ensure that the
model can always maintain the best detection effect
as the applications and features change.

(4) Aiming at the problem of multiclassification of
malware families and benign applications, we design
a multiclassification method for Android applica-
tions based on CNN, which has higher detection
accuracy than other methods.

2. Related Work

There are numerous Android malware detection schemes,
mainly divided into static analysis methods and dynamic
analysis methods. The static analysis method analyzes source
code files or executable files without running applications.

EveDroid [8] is an event-aware Android malware de-
tection system that exploits the behavioral patterns in dif-
ferent events to detect new malware based on the insight that
events can reflect applications’ possible running activities.
Kumar et al. [9] proposed an Android malware detection
framework based on machine learning and blockchain.
Machine learning automatically extracts the malware infor-
mation using clustering and classification techniques and
storing it into the blockchain. Hasegawa and Iyatomi [10]
proposed a light-weight Android malware detection method.
It treats a minimal part of the target’s raw APK file as a short
string and analyzes it with one-dimensional CNN. Zhang
et al. [11] proposed an Android malware detection method
based on the method-level correlation relationship of the
application’s abstracted API calls. It calculates the confidence
of association rules between the abstract API calls to form the
behavioral semantics that describes applications and then
build the detection system in combination with machine
learning. Fang et al. [12] proposed an Android malware fa-
milial classification method based on DEX file section fea-
tures. It first converts the DEX file into RGB image and plain
text, respectively, and then extracts the image’s and text’s

Security and Communication Networks

color and texture as features. Finally, a feature fusion algo-
rithm based on multiple kernel learning is used for classifi-
cation. Apposcopy [13] is a new semantics-based approach for
detecting Android malware. It incorporates a high-level
language for specifying malware signatures and a static
analysis for deciding if a given application matches a given
signature. TaeGuen et al. [14] proposed using the method
based on presence and similarity to extract features and using
a multimodal deep learning method to detect malware.
MADAM [15] is a host-based malware detection system for
Android devices. It simultaneously analyzes and correlates
teatures at four levels, kernel, application, user, and package,
to detect and stop malicious behaviors. Narayanan et al. [16]
proposed a method that uses control flow graphs as features
and uses online support vector machine algorithms to detect
malicious applications. Azad et al. [17] used particle swarm
optimization to perform feature selection, a set of features to
characterize the behavior of android applications and classify
them as legitimate and malicious. Nisa et al. [18] proposed a
feature fusion method that combines features extracted from
pretrained AlexNet and Inception-v3 deep neural networks
with features obtained from images representing malware
code using segmentation-based fractal texture analysis
(SFTA) and built a multimodal representation of malicious
code for classifying grayscale images. Hemalatha et al. [19]
describe malware binaries as 2D images and classify them
with a deep learning model. Feng et al. [20] analyze and
extract two types of features (i.e., manifest attributes and API
calls) directly from the Dalvik binary and further update the
feature input with matching results between text-based be-
havioral descriptions and code-level features.

The above static analysis methods have the advantages
of fast detection speed and high efficiency and can detect
malware in large quantities. The disadvantage is that they
cannot fight against code transformation technology and
dynamic malicious payload technology. The dynamic
analysis method can overcome the above weakness [21]. It
can capture sensitive behaviors in real time dynamically.
Feng et al. [22] proposed EnDroid, which uses DroidBox
to extract behavioral features through a runtime monitor
and uses chi-square feature selection algorithms and
ensemble learning to detect malware. Enck et al. [23]
designed a Taint Droid detection tool, which marks a
variety of sensitive data with taints. It determines whether
the application has a privacy data leakage behavior by
monitoring the flow path of these contaminated sensitive
data in real time in a sandbox environment. Tam et al. [24]
proposed a dynamic system based on a virtual machine
called CopperDroid, directly detecting system calls to
determine the operating system’s actions, generating
detailed and semantic behavior information to identify
malicious applications. However, it can only identify the
interaction between the system and the application, not
the interaction between the applications. The above
methods are not affected by the code transformation
technology and can analyze the application’s behavior in-
depth, but the time is expensive. To analyze Android
applications more comprehensively, we use dynamic and
static analysis methods to extract features.

3. Architecture

The Android application classification model’s overall
architecture is shown in Figure 1. It is mainly divided into
five modules: feature extraction module, feature pre-
processing module, feature vector generation module,
deep learning module, and detection module. First, we
rename the collected applications with the file hash,
remove the duplicate applications, and then store the
applications’ file hashes with the label “benign” or
“malicious” in the database.

In the feature extraction module, we use static and
dynamic analysis to batch extract features of applications
into text documents. Each line represents a feature, and each
application corresponds to a feature file.

In the feature preprocessing module, we use feature se-
lection algorithms to optimize features further. Next, in the
feature vector generation module, we convert each feature file
into a two-dimensional matrix.

In the deep learning module, the model can flexibly
adjust the parameters of the CNN according to the user’s
need and detection conditions (high precision/high effi-
ciency), detection types (binary classification/multi-classi-
fication), the average number of features, and other
indicators and select the most appropriate model as the final
detection model through training.

Finally, the user submits the application to be tested
through the client. The malware detection module firstly
checks whether the application already exists in the database
through file hash and, if so, directly returns the detection
result. If it does not exist, the optimal detection model
obtained by the deep learning module is used. Details of each
module are shown in Figure 1.

3.1. Feature Extraction Module. In the feature extraction
module, for each application to be tested, we use APKTool [25],
androguard [26] Drozer, and DroidBox [21] to analyze the
applications, obtain the corresponding files, and then extract
features from them. The feature consists of two parts separated
by spaces, the feature’s name, and the frequency of the feature
occurrence. It will be omitted if the frequency is 1. If the fre-
quency is 0, this feature is not selected. For each tool, we
separately write Python scripts to extract features into text
documents automatically and then merge them into the final
feature files for each application. The following introduces the
four tools and the extracted content.

3.1.1. APKTool. We use APKTool to decompile the ap-
plication to get AndroidManifest.xml. by parsing XML
tree nodes <uses-permission>, <intent-filter>, <uses-
feature> to extract permission features, component fea-
tures, and environmental features.

(1) Permission Features. When an application performs
specific operations or accesses certain data, it must apply for
corresponding permissions, which means that the permis-
sions defined in the manifest file can indicate the applica-
tion’s behavior. In the feature extraction process, we only
extract the permission name. We collect the system

Security and Communication Networks

_ Feature Extraction Feature Preprocessing L Feature V_ector L Detection
I Generation "
| :
I
1 ! -
1 . - GET TASKS I Classification !
| . Extracting Permission / Removing features with o Ll Results Upload
| Decompiling Component / low variance & low ACCESS_WIFL_STATE 3 | | Applications
! Manifest files Environmental . RESTART_PACKAGES 5 :
| chi-square value
| Features MONEY 7 : < []
|
| | i [FEES\
1 | J Sample X : Server
: Extracting APK Risk v e —————— o
. xtracting is| |
: Androrisk.py Fea%ures : L3 5 7 : i —3
I Feature File | | : A =c
: Unknowm : [—
! GET_TASKS i Obtaining . A 4
: ACCESS_WIFI_STATE ! Vocabulary by 1y CNN | -
: Drozer Extracting Attack RESTART_PACKAGES | traversing Feature [! !
| Surface Features = ! . [T |
H MONEY 1 Files [|
| SMs 3 i b ‘ FC ‘ !
: PRIVACY 4 [, N |
1 Running in E ing D . algorithm_AES ; ! : | Pool 1 || Pool 2 || Pool 3 | :
: DroidBox for || Xtrac;‘"% ynamic dataleaks_sink_File 7 Twodi ional matri : | |
i 30s eatures wo-dimensional matrix _|>I |
\ Il | Cov 1 Cov2 Cov 3 |
\ / | |
~ 4 \ I

FiGUure 1: The overall architecture of the model.

permissions of the application by parsing the <uses-per-
mission> tags.

(2) Component Features. Application components are
the basic building blocks of Android applications, including
Activity, Service, Broadcast Receiver, and Content Provider.
Components are called Intents, which can register and re-
ceive messages. We can use them to start components or
pass some important data to components. We collect
component features by parsing the <action> and <category>
tags in the <intent-filter> tags.

(3) Environmental Features. It includes hardware or soft-
ware functions that applications depend on, such as GPS and
NEC. Devices lacking specific hardware or software functions
will not execute applications that require such special functions.
For example, Android devices that do not support wireless
charging cannot charge wirelessly. We collect environmental
features by parsing <uses-feature> tags.

3.1.2. Androguard. We use the androrisk.py file in andro-
guard to analyze the applications’ risk level, and the analysis
results and extracted contents are shown in Figure 2.

The analysis results are mainly composed of three parts:
DEX, APK, and PERM. The analysis contents of DEX and
APK are given in Table 1. PERM is the number of different
functional permissions.

3.1.3. Drozer. Drozer is an Android security testing
framework. We use “app. package. attacksurface” com-
mand to test the attackable points of the applications and
extract the attack surface features. The results are shown
in Figure 3.

3.1.4. DroidBox. TaintDroid is a dynamic stain detection
technology, whose core idea is to mark sensitive data and
turn them into pollution sources. In the process of

program operation, when these pollution sources spread
through interprocess communication, file transfer, etc.,
TaintDroid will conduct tracking reviews and record in
the log to realize the tracking of sensitive data. DroidBox
builds on this by performing dynamic stain analysis at the
application framework level and redefines the types of
stain tags, adding functions such as file manipulation
monitoring, network sending and receiving data moni-
toring, encryption and decryption logging, and log
analysis. DroidBox provides two scripts, startemu.sh for
launching an emulator dedicated to dynamic analysis of
Android apps and droidbox.sh for performing specific
dynamic analysis tasks. This paper extracts dynamic
behavior features from the operation logs of each ap-
plication by running the DroidBox for 30 seconds. The
specific features are as follows:

(1) Cryptographic Operation. Malicious applications
usually use encryption to encrypt root vulnerabilities,
malicious payloads, key method identifiers, value-added
service SMS, and URLs to remote malicious servers to avoid
static detection. So, we count the frequency of encryption,
decryption, and key generation and record all encryption
algorithms used by the applications.

(2) Network Operation. Malicious applications may re-
ceive messages from malicious command and control (C &
C) servers through the network and obtain malicious pay-
loads from malicious websites, so that attackers can ma-
nipulate the applications to obtain users’ private
information. We count the frequency of sending and re-
ceiving network communication data.

(3) Information Leaks. Information leaks are mainly
through the network and files, so we count the number of
times dataleaks_operation_write, dataleaks_sink_File,
dataleaks_operation_read, dataleaks_-sink_ Network oc-
curred. Simultaneously, the leakage of LOCATION, IMSI,
ICCID, IMEI, PHONE_NUMBER, LOCATION_GPS is
also calculated.

Security and Communication Networks

The Analysis Results of Androrisk.py

/mnt/hgfs/share/apk/1.apk
RedFlags

DEX { ‘NATIVE’ :0, ' DYNAMIC:1, ‘CRYPTO’ :1, REFLECTION’ :1}
APK { ‘DEX’ :0, EXECTABLE:0, ‘ZIP’ :0, ‘SHELL_SCRIPT" :0, ‘APK’ :0,

‘SHARED LIBRARIES’ :3}

PERM { ‘PRIVACY :0, NORMAL’ :1, ‘MONEY’ :0, INTERNET’ :1, ‘SMS’ :0, ‘DA
NGEROUS’ :1, ‘SIGNATUREORSYSTEM’ :0, ‘CALL’ :0, ‘SIGNATURE’ :0, ‘GPS’ :0}

FuzzyRisk
VALUE 92.0

Feature File

DYNAMIC

CRYPTO
REFLECTION
SHARED LIBRARIES 3
NORMAL

INTERNET
DANGEROUS

FIGURE 2: The analysis result and extracted contents of androrisk.py.

TaBLE 1: The analysis content of androrisk.py.

DEX Description

NATIVE Number of calls to non-java code
DYNAMIC Times of dynamic loading of dex from sd
CRYPTO Number of hidden dexes
REFLECTION Number of reflections

APK Description

DEX Times of dex use
EXECUTABLE Number of executions

ZIP Compressed package
SHELL_SCRIPT Number of times the script is used
APK Number of other apks
SHARED LIBRARIES Number of shared databases

dz> run app. package. attacksurface com. glu. android. dinercn

0 content prov
0 services exported
dz>

Ficure 3: The results of attack surface test.

(4) Sent SMS. Malicious applications usually cause fi-
nancial charges to infected users. They can secretly subscribe
to value-added services by sending several SMS messages
without the user’s consent. So, we count the frequency of
sending text messages.

(5) Service Start. Malicious applications usually perform
malicious behavior in background processing contained in
in-service components. So, we count the number of times
the service has started.

(6) Receiver Action. Malicious applications usually le-
verage system events to trigger malicious behaviors. Reg-
istered Broadcast Receivers can be a fair reflection of the
monitored system events. For example, registering the re-
ception of BOOT_COMPLETED intent in malware indi-
cates triggering malicious activity directly after the mobile
device’s startup.

3.2. Feature Preprocessing Module. To further reduce
overfitting and improve the model’s training speed and
generalization ability, we design a feature preprocessing
module. The first step is to remove low-variance features.
Through experimental tests, setting the removal rate to
99.95% and above can achieve better detection results.

The second step is the chi-square test, which can express
the correlation between feature items and categories. The
higher the CHI value, the more significant the correla-
tion. So, we remove the features with lower chi-square
values in the experiment.

3.3. Feature Vector Generation Module. According to ref-
erence [27], after the feature preprocessing module, we
traverse all the feature files and obtain all the features that
have appeared as the vocabulary. Each feature in the vo-
cabulary is labeled with consecutive numbers to obtain a
mapping from feature to label ID. Also, we add an “Un-
known” feature to match unknown features that are not in
the vocabulary during the detection phase.

Since CNN’s input is a vector in continuous space,
while NLP uses discrete characters, we need to use word
embedding technology to convert each feature file into a
two-dimensional matrix when classifying Android ap-
plications using CNN. First, we represent each feature in
the vocabulary with a vector and randomly initialize the
vectors. Then, we update the word vector continuously
with training. The length of the word vector depends on
the specific situation of the feature set. 50-300 is a
common choice, and we set it to 200. We convert the
features contained in each feature file into corresponding
ID sequences according to the vocabulary, respectively.
Then, the feature file is transformed into a two-dimen-
sional matrix according to the ID sequences and the
vocabulary. The specific process is shown in Figure 4.

3.4. Deep Learning Module. Deep learning algorithms in-
clude CNN, RNN, and LSTM. LSTM and RNN are suitable
for learning long time series, and CNN has a better learning
ability for local features. In this paper, the features contained
in each application are composed of four parts, which have
no time sequence and short average length. According to
reference [6], the parts associated with permission features
can more effectively characterize applications’ malice. That
is, capturing the relationship between local features can train
the model more effectively. So, we finally adopted CNN.

The structure of CNN in the deep learning module is
shown in Figure 5.

The first layer is the embedding layer, which is mainly
responsible for embedding features into low-dimensional
vectors. Then, we perform multiple parallel convolution

Sample X

READ_PHONE_STATE 1
SEND_SMS
GET_TASKS
CRYPTO 3

QN N

0 [word vector 0]
1 [word vector 1] —| —
2 [word vector 2] —
3 [word vector 3]

4 [word vector 4] ————T> 4
5 [word vector 5]

6 [word vector 6] —]

word vector 4

word vector 1 ‘
word vector 6

T2 [word vector 2

Two-dimensional
matrix of Sample X

Vocabulary

F1GURE 4: Feature vector generation.

Fully Connected + Softmax

Filter Concatenation

Pooling 0 Pooling 1 Pooling 2
Kernel 3x1 Kernel 4x1 Kernel 5x1
Stride 1 Stride 1 Stride 1

1-max pooling 1-max pooling 1-max pooling

BatchNorm 0 BatchNorm 1 BatchNorm 2

Convolutional 2
Kernel 5x200
Stride 1
Out channels 64

Convolutional 1
Kernel 4x200
Stride 1
Out channels 64

Convolutional 0
Kernel 3x200
Stride 1
Out channels 64

Embedding |

FiGure 5: The structure of CNN.

operations, batch normalization, and 1-max pooling on the
input matrix and concatenate all the outputs into a fixed-length
feature vector. Finally, we classify the results using the full
connection layer. The specific description of each layer is as
follows:

3.4.1. Convolutional Layer. The convolutional layer is the
core of the network. We use multiple filters of different sizes
to learn the same area’s complementary features, and we can
obtain different feature maps. There are three parallel
convolutional layers in Figure 5, where the width of the filter
is the same as the width of the two-dimensional matrix (i.e.,
the length of the word vector), and we set it to 200. In this
way, after a convolution operation, the two-dimensional
matrix becomes a column vector. (3,4,5) is the height of the
filter, that is, the relationship between 3, 4, and 5 features.
There are 64 filters of each type.

3.4.2. Pooling Layer. The dimension of the feature map
generated by each filter varies depending on the number
of features and the size of the filter region. Therefore, 1-

Security and Communication Networks

max pooling is applied to each feature map to induce a
fixed-length vector.

3.4.3. Fully Connected Layer. We send the concatenate
vectors to the softmax classifier through the full connection
layer for classification and use the regularization technology
Dropout to prevent overfitting.

3.5. Detection Module. The user submits the application to
be tested through the client. The malware detection module
firstly checks whether the application already exists in the
database through file hash and, if so, directly returns the
detection result. If it does not exist, the optimal detection
model obtained by the deep learning module is used. The
detection result is an excel file, including the file hash and
classification results of the application (0 for malicious
application and 1 for benign application).

4. Experiments and Evaluation

4.1. Dataset. The dataset includes 18549 malware and 18453
benign applications, of which the malware comes from
VirusShare [28] and Drebin [29], and the benign applica-
tions come from Google Play Store [30]. They are scanned
and detected by VirusTotal [31]. When all virus scanners in
VirusTotal treat the application as benign, the application
will be included in the benign application dataset.

In practice, we analyzed all applications, but tools do not
correctly analyze some applications. So, the features are
contained in 100% of the manifest files, 99.6757% of the APK
risk files, 99.5081% of the attack surface files, and 72.6420%
of the dynamic behavior files. Detailed statistical results are
shown in Table 2.

4.2. Experimental Settings. The experimental environment is
as follows.

(i) Hardware Dependencies: on the hardware, NVIDIA
GPU GeForce RTX 2070, and 8 GB memory are
used.

(ii) Software Dependencies: in terms of software,
Ubuntu 16.04 LTS, Python 3.6, TensorFlow 1.13.1,
Scikitlearn 0.20.3, Numpy 1.16.2, Pandas 0.24.2, and
Matplotlib 3.0.3 are used.

(iii) GPU Components: GPU components include
NVIDIA GPU driver, CUDA 10.1 and cuDNN
v7.5.1.

GPU is used to accelerate the CNN. Tensorflow is used to
implement CNN, and Scikitlearn is used to implement
various machine learning algorithms.

Android malware detection is a binary classification
problem. There are four possible prediction results. The con-
fusion matrix is shown in Table 3. Among them, True Negative
(TN) indicates that benign samples are predicted as benign,
False Negative (FN) indicates that malicious samples are
predicted as benign, False Position (FP) indicates that benign
samples are predicted as malicious, and True Position (TP)

Security and Communication Networks

TABLE 2: Detailed statistics of dataset.

Manifest file APK risk file

Attack surface file Dynamic behavior file

Malicious 18549 (100%) 18506 (99.7682%)
Benign 18453 (100%) 18316 (99.2576%)
Total 37002 (100%) 36882 (99.6757%)

18498 (99.7251%)
18322 (99.2901%)
36820 (99.5081%)

16769 (90.4038%)
10110 (54.7878%)
26879 (72.6420%)

TaBLE 3: Confusion matrix.

Type of prediction Benign Malicious
Benign TN FP
Malicious EN TP

indicates that malicious samples are predicted as malicious. The
evaluation indicators are as follows: Accuracy (ACC), Precision
(PRE), Recall (REC), and F1 score (F1).
Accuracy is defined as the percentage of the total sample
that is predicted correctly.
(TP + TN)

ACC = : 1
(TP + EN + FP + TN) M

Precision means the probability of a positive sample
among all the samples that are predicted to be positive.

TP

PRE = ———F——.
(FP +TP)

(2)
Recall is the probability of being predicted as a positive
sample in a sample that is positive.

TP

REC=——
(EN + TP)

(3)
F1 score is the harmonized average of precision and
recall.

F1 = 2PRE - REC(PRE + REC). (4)

4.3. Feature Selection and Analysis. After the feature ex-
traction module, the number of features included in
different feature sets is shown in Table 4 (the statistical
results in this table only include the feature names and do
not include the following parameters, such that “NA-
TIVE 2”7 and “NATIVE 3” are counted only once in this
table).

To have a more detailed understanding of the features
and lay the foundation for subsequent experiments, after
the feature preprocessing module, we count the types of
features contained in each feature set (Type), and the
maximum (Max), minimum (Min), and average (Ave)
number of features included in all feature files of each
feature set. The statistical information is shown in
Table 5.

Taking feature set I as an example, we compare the
statistical information before and after feature pre-
processing and find that the number of feature types and
the maximum number of features are significantly re-
duced. Personality features are greatly reduced, but the
reduction of the average number of features is minimal.

4.4. Contrast Experiment with Machine Learning Algorithms.
To analyze the effect of the Android malware detection
model based on CNN, we select seven machine learning
algorithms, namely, k-NearestNeighbor (kNN), Decision
Tree (DT), Support Vector Machine (SVM), Logistics Re-
gression (LR), XGBoost, Random Forest (RF), and Multi-
Layer Perceptron (MLP) to test the detection effect on three
feature sets.

The hyperparameters of seven machine learning algo-
rithms are set by default. The hyperparameters of CNN
mainly refer to the experimental results and parameter
adjustment suggestions in reference [32]. Through a series of
experimental verification, we have obtained the baseline
configuration parameters.

The filter region size is (3,4,5), the feature map is 64, and
the activation function is RELU. The embedding size and
batch size are 200 and 128, respectively. The epoch is set to
10, 1-max pooling is used, and the dropout rate and train set
radio are 0.5 and 50%, respectively.

We randomly selected 50% in all applications as the
training set, of which 10% as the verification set and the
remaining 50% as the test set. The experimental results are
shown in Figure 6. The detection effect of CNN is better than
that of machine learning algorithms. With the increase of
features, the detection effect is getting better and better,
proving the effectiveness of the feature set.

4.5. Contrast Experiment between Different Hyperparameters
of CNN. This section further analyzes the influence of dif-
ferent hyperparameters on the experimental results. For this
reason, keep all other settings unchanged and only change
the parameters to be analyzed.

4.5.1. Effect of Filter Region Size. We first perform a coarse
linesearch over a single filter region size to find the “best”
size for the feature set under consideration. The experi-
mental results are shown in Figure 7. When the filter region
size is 1, the performance of the model is weak. When the
filter region sizes are 3 and 5, the classification accuracy is the
highest. According to the statistical information, the average
number of features in each feature file ranges from 13 to 24.
For feature files containing more features, the optimal filter
region size can be more extensive. When the training set
accounts for 50%, the size of the vocabulary corresponding
to feature set I is 1233, feature set I +II is 1438, and feature
set I+1II+1II is 1817.

Besides, we combine different region sizes and copies to
obtain the best effect. The experimental results can be seen in
Table 6. Using different feature sets, the combination of
several region sizes near the optimal size can improve the
classification performance. However, when we use other

TaBLE 4: The information of feature sets.

Security and Communication Networks

Benign Malicious
Permission feature 571 276
Feature set I Component feature 848 420
Environmental feature 151 38
Total 1570 734
Feature set 11 APK risk feature 20 20
Dynamic feature 45 45
Feature set Il Attack surface feature 4 4
TaBLE 5: The statistical information of feature files.
Type Ave Max Min
I (before) Malicious 734 16.4317 126 1
Benign 1570 13.1863 193 1
I (after) Malicious 286 16.3737 111 1
Benign 352 13.0542 149 1
Malicious 306 23.4436 121 1
[+11 (after) Benign 372 20.0836 164 1
Malicious 355 24.3196 121 1
T+ I+ I (after) Benign 421 20.4258 164 1
1000 Bl m I+ I
995
99.0
98.5
98.0
975
£ 970
>~
g 965
g 9.0
< 955
95.0
94.5
94.0
93.5
93.0
KNN DT SVM LR XGBoost RE MLP CNN
mI 948111 93.8544 94,5649 94.6009 94.1300 95.4327 95.7720 99.1190
m I+I1 95.7894 95.1192 95.7420 95.8164 95.4992 96.6428 97.1354 99.2213
B I+I1+11 95.7660 955516 96.0759 96.4574 96.6412 96.9191 97.5437 99.3538

FIGURE 6: Detection accuracy of different algorithms under different feature sets.

accuracy (%)
o
o
G

3,99.3100%

1
—— I+
—h— THII+IIT

filter region size

20

25

FIGURE 7: Accuracy of models with different filter region size.

Security and Communication Networks 9
TABLE 6: Results obtained using different feature sets.
Region size Train time (s) ACC (%) PRE (%) REC (%) F1 (%)
Feature set I
(3) 37 99.0905 98.9735 99.1794 99.0763
(5) 39 99.0508 98.3917 99.6995 99.0413
(3,4,5) 63 99.1190 99.0872 99.1216 99.1044
(2,3,4,5) 80 99.0962 98.7040 99.4683 99.0847
(3,3,3) 62 99.0280 99.2337 98.7864 99.0096
(3,3,3,3) 74 99.1303 98.7719 99.4683 99.1189
(7,7,7) 81 99.0621 98.9616 99.1331 99.0473
Feature set I+1I
3) 36 99.1995 99.0590 99.3307 99.1947
(5) 38 99.1886 98.7705 99.6050 99.1860
(3,4,5) 63 99.2213 99.2966 99.1332 99.2148
(2,3,4,5) 76 99.2430 99.1781 99.2978 99.2379
(3,3,3) 58 99.1886 99.2096 99.1551 99.1824
(3,3,3,3) 71 99.2267 98.9524 99.4953 99.2231
Feature set I+1I+1II

3) 43 99.3100 98.8877 99.7360 99.3100
(5) 44 99.2771 99.0153 99.5381 99.2760
(3,4,5) 70 99.3538 99.0061 99.7030 99.3534
(2,3,4,5) 85 99.2552 99.0794 99.4281 99.2534
(3,3,3) 69 99.2662 99.0044 99.5271 99.2650
(3,3,3,3) 79 99.3045 98.9089 99.7030 99.3044

filter combinations far from the optimal region size, we
cannot achieve a better detection effect than a single filter.
For example, when using Feature Set I, the detection effect of
a single filter (3) is better than that of filter combinations
(7,7,7).

When all the features are applied, the model performs
best when the filter region size is (3,4,5). The classification
accuracy is 99.3538%, and the training time is 70 seconds.
The change of accuracy and loss on the training set and
verification set is shown in Figures 8 and 9. The orange line
results from the training set, and the blue line is the result of
the verification set. The model tends to be stable after 1,250
batch iterations, with the verification set’s accuracy floating
around 99.4% and the loss value floating around 0.02.

4.5.2. Effect of Number of Feature Maps. We again hold
other configurations constant and test the influence of the
number of feature maps. The experimental results are shown
in Figure 10. The “best” number of feature maps depends on
the feature sets. As the number of feature maps increases, the
classification effect is getting better and better. However,
when it exceeds the critical value marked in Figure 10, the
model may reduce the classification accuracy due to over-
fitting. On the other hand, as the number of feature maps
increases, the model’s training time is longer.

4.5.3. Effect of Regularization. Dropout is a common reg-
ularization strategy. During the learning process of a neural
network, it temporarily discards some units with a certain
probability and discards the weights of all nodes connected
to them. Keeping the other settings unchanged, we use the
feature set I+1II+1II to test the effect of Dropout. The ex-
perimental result is shown in Figure 11. When the number of

feature maps is 64, the model performs best when the
dropout rate is 0.5. The classification accuracy is 99.3538%,
and the training time is 70 seconds. At this time, the number
of randomly generated network structures is also the largest.
When the number of feature maps is 500, the model per-
forms best when the dropout rate is 0.6. The classification
accuracy is 99.3921%, and the training time is 200s. By
comparing the two sets of data, we can find that Dropout’s
effect is more noticeable when the amount of data is large.
When the network has the risk of overfitting, we can try the
following methods to prevent overfitting: 1. Applying batch
standardization between convolution layers can regularize
and avoid the gradient disappearance and reduce training
time. 2. When Dropout is applied to the full connection
layer, the dropout rate can be set to about 0.5.3, combining
learning rate decay and Adam optimization algorithm to
improve the model’s detection effect further.

4.6. Contrast Experiment with Deep Learning Algorithms.
To show the performance of our model, we investigated
similar approaches that have been previously proposed.
Table 7 shows the results of the investigations. Many existing
methods utilize the malware samples from the VirusShare.
Therefore, we include the performance in the table when
using the samples from the VirusShare in the detection test.
As shown in Table 7, our model’s detection accuracy and the
Fl-score values are higher than the other methods. [14, 33]
adopt the method of generating feature vectors based on ex-
istence. If there is a corresponding feature in the application, it is
expressed as 1; if it does not exist, it is expressed as 0. The vectors
generated by this method are too sparse, and the dimension of
feature vectors is high. Our method can overcome these
shortcomings and achieve better detection results.

10

accuracy_1

0.995
0.99
0.985

0.98

0975

0.97

0.965

loss

0.14

Security and Communication Networks

I | | I
200 400 600 800 1k

accuracy (%)

FIGURE 9: The change of loss.

99.4
99.35
99.3
99.25
99.2
99.15
99.1
99.05
99
98.95
10 50 100 200 400 600 800 1000
number of feature maps
—— 1
—m— I+
—A— T+II+IID

FiGure 10: Effect of number of feature maps for different feature sets.

1.2k
F1GURE 8: The change of accuracy.
W\
|
|
] | R N
|
‘ |
AT [I (W — i
W, IW THTA Ty v o
[1 [[
200 400 600 860 1k 1.2k

Security and Communication Networks 11
99.5
= 99.3
g 902
§ 99.1
99
98.9
01 02 03 04 05 06 07 08 09
dropout_rate
—— 64
—m— 500
FiGURe 11: Effect of regularization.
TaBLE 7: The results of the investigations.
Dataset .
System . o Algorithm ACC/F1
Benign applications Malware
Ours Google play store: 18453 VirusShare + drebin: 18549 CNN 99.3538%/99.3534%
[33] Google play store: 3000 Android malware genome project + Virusshare: 8000 DBN NA/95.05%
[14] Google play store: 19747 VirusShare: 13075 malgenome project: 1209 DNN 98%/NA
[34] 360 security company and Drebin + VirusShare: 8652 CNN 96.54%/95.89%
wandoujia app store:10948
[35] AndroZoo: 5215 VirusShare + android malware genome project: 5442 DBN 98.71%/NA
[36] Google play store: 8000 VirusShare: 8000 CNN 95.8%/NA

We measured the method proposed in [36], and the result
is shown in Table 8. The feature vectorization method of [5]
first reads the classes.dex file as an unsigned vector and then
converts the vector into a fixed size by resampling. Resampling
algorithms commonly used in image processing include
Nearest Neighbor Interpolation, Bilinear Interpolation, and
Bicubic Interpolation. Unlike two-dimensional images, [5] uses
a similar method to resample one-dimensional sequences and
convert the original bytecode of classes.dex into a fixed-size
sequence. Besides, our model uses various kinds of features to
reflect the various aspects of applications.

4.7. Dynamic Adjustment Method. To make the model meet
more application scenarios, we design a dynamic adjustment
method of the model according to the user requirements, the
number of applications, and the average number of features.
The detailed description is shown in Figure 12.

4.7.1. Mode Selection. The model includes three detection
modes, namely, Android malware detection, Android
malware familial classification, and benign application
classification. Users can select the corresponding mode
according to their own needs.

4.7.2. Training Set. We will regularly update and add the
training set to ensure the model’s adaptability and long-term
effectiveness for Android malware detection mode. For
Android malware familial classification mode, users need to

upload the applications according to the familial classifi-
cation or add/delete the familial applications based on
Drebin. For benign application classification mode, users
need to upload applications according to the application
store’s classification.

4.7.3. Tool Selection. Users can choose the detection tool
according to their own needs (high efficiency/high accu-
racy), but to ensure the detection effect, APKTool is a re-
quired tool. Throughout the previous experiment, we
observed that even if only feature set I is used, the model can
still maintain a high accuracy of 99.1303% while detecting
rapidly.

4.7.4. Obtaining Indicators. According to the tools that are
selected by the user, feature extraction and preprocessing
operations are performed to obtain indicators: the total
number of feature files and the average number of features.

4.7.5. Dynamic Generation of Optimal Model. For multi-
classification mode, users need to select detection tools and
upload training sets. According to the indicators and con-
version table shown in Table 9, CNN, with different pa-
rameters, is automatically generated to train the data. The
model with the highest detection accuracy is stored as the
final detection model.

12 Security and Communication Networks
TaBLE 8: Comparison of experimental results.
PRE (%) REC (%) ACC (%) F1 (%)
Ours 99.0061 99.7030 99.3538 99.3534
[36] 954 96.2 95.8 95.8
Mode Android Malware Android Malware Be?ugr'l
Selecti Detecti Familial Application
clection clection Classification Classification
Training Regularly Update Add/ De!e}e the Upload
Set and Add Familial Applications
Applications Applications PP
Tool .
. W APKTool o Androguard o Drozer o DroidBox
Selection
Obtaining The Total Number of Feature Files
Indicators The Average Number of Features
. Generate different models based on indicators and
Dynamic conversion tables
Generation
of Optimal
Model Store the model with the highest accuracy as the detection
model
Return Users upload the applications to be tested
Result P pplicatt

FIGURE 12: Dynamic adjustment method.

4.7.6. Return Result. The user uploads the applications to the
server, and the server uses the detection tools selected by the
user to perform feature extraction and preprocessing op-
erations. Then, use the optimal mode generated in the
previous step for detection, get the detection result, and
return it to the user.

5. Detection of Malware Families

This section uses the Drebin dataset to evaluate the model’s
performance on the classification of malware families. The
structure of CNN is shown in Figure 13, and the configu-
ration parameters are as follows. The filter area size is set to
(2, 3,4, 5), the feature map is 16, and the activation function
is RELU. The embedding size and batch size are 200 and 32,
respectively, the epoch is set to 10, and 1-max pooling is
selected for pooling. The dropout rate is 0.5, and the train set
radio is 90%.

All malware belongs to known malware families. The
basic information is shown in Table 10, including the
number of applications of each malware family, the number
of feature types included in feature set I, and feature set I + II.

In all applications, 90% are randomly selected as the
training set, of which 10% are used as the verification set, and
the remaining 10% are used as the test set. When the filter
region size is (2,3,4,5), the model performs optimally, and
the classification accuracy is 99.5614%. Two applications are
classified incorrectly, which is higher than the 94.5% clas-
sification accuracy of EnDroid [22]. With the addition of
feature set II, the classification accuracy and stability of the
model have improved. The change of accuracy and loss on
the training set and verification set are shown in Figures 14

and 15. The orange line is the result of the training set, and
the blue line is the result of the verification set. The model
tends to be stable after 1040 batch iterations, with the
verification set’s accuracy floating around 99% and the loss
value floating around 0.04.

6. Detection of Benign Applications

This section evaluates the performance of the model on
multiple classifications of benign applications. We collect
nine types of applications from the Xiaomi App Store. The
basic information is shown in Table 11, including the
number of applications of each type (Apps), the types of
features they contain (Features), and the maximum (Max),
minimum (Min), and average (Ave) number of features
contained in the feature files. From Table 11 [27], we can
infer that the game applications do not have a specific
function because the game applications contain only 191
types of features, and the average number of game appli-
cations’ features is the smallest. While the sports applications
features’” minimum number is 11, which means they have
specific functions. For example, accurately tracking sports
routes, distances, speeds, and altitudes through GPS and
measuring heartbeat frequencies and pulses related to
medical sports are the typical functions in most sports
applications. These applications need to get relevant per-
missions, namely, positioning permissions (ACCESS_FI-
NE_LOCATION and ACCESS_COARSE_ LOCATION)
and sensor permissions (BODY_SENSORS). It is feasible to
implement classification according to the applications’
features. Besides, to ensure the efficiency of classification
management, we only use feature set I.

Security and Communication Networks

13

TaBLE 9: Conversion table.

Number of features files Number of filters

The average number of features

Filter region size

0-5000 16
5001-10000 32
10001-20000 64
20001-30000 128

10-50 (3.4,5) (3,3,3,3) (2,3,4,5)
51-100 (5,6,7) (5,5,5,5) (4,5,6,7)
100+ Stepl: Search for a single filter region

Step2: Search for the combination of filters

| Fully Connected + Softmax ‘

| Filter Concatenation ‘

Pooling 0 Pooling 1
Kernel 2x1 Kernel 3x1
Stride 1 Stride 1

1-max pooling 1-max pooling

Pooling 2
Kernel 4x1
Stride 1
1-max pooling

Pooling 3
Kernel 5x1
Stride 1
1-max pooling

| BatchNorm 0 | | BatchNorm 1

BatchNorm 2 | | BatchNorm 3 ‘

Convolutional 1
Kernel 3x200
Stride 1
Out channels 16

Convolutional 0
Kernel 2x200
Stride 1
Out channels 16

Convolutional 3
Kernel 5x200
Stride 1
Out channels 16

Convolutional 2
Kernel 4x200
Stride 1
Out channels 16

| Embedding ‘

FiGure 13: The structure of the CNN.

TaBLE 10: The basic information of malware families.

Malware families Samples Feature set I Feature set I+1I
Fakelnstaller 925 57 76
DroidKungFu 666 116 135
Plankon 625 133 152
Opfake 613 45 64
GinMaster 339 114 133
BaseBridge 328 66 85
Iconosys 152 33 52
Koin 147 30 49
FakeDoc 132 49 68
Geinimi 91 43 62
Adrd 91 105 124
DroidDream 81 77 96
ExploitLinuxLotoor 69 67 86
MobileTx 69 10 29
Glodream 69 41 60
FakeRun 61 24 43
SendPay 59 18 37
Gappusin 58 46 65
Imlog 43 11 30
SMSreg 40 34 53
TOTAL 4658

In the most relevant work, Shabtai et al. [37] use
machine learning algorithms to classify tool and game
applications by extracting static features from dex files
and manifest files. Wang et al. [38] achieve an accuracy of
82.93% in benign application classification by extracting
11 static features and using a collection of multiple ma-
chine learning classifiers. Based on API relationships
analysis and CNN, an automatic classification method for
Android applications is proposed by Fan et al. [39]. It
classifies applications into 24 categories with an average
accuracy of 88.9%.

The configuration parameters of CNN are as follows, and
its structure is the same as the malicious Android application
familial classification model. The pooling and activation
function select 1-max pooling and ReLU, respectively, the
filter area size is (2,3,4,5), and the feature map is 32. The
embedding size and batch size are 200 and 32, respectively,
the epoch is set to 10, the dropout rate is set to 0.5, the train
set radio is 80%, and the vocabulary is 1288. In all appli-
cations, 80% are randomly selected as the training set, of
which 10% are used as the validation set, and the remaining
20% are used as the test set.

14 Security and Communication Networks
accuracy_1
1.05
1
0.95
0.9
0.85
0.8
0.75
0.7
0.65
0.6
0.55
05
0 100 200 300 400 500 600 700 800 900 1k
FIGURE 14: The change of accuracy.
loss
2
18
16
14
12
1
0.8
0.6
0.4
02
0
0 100 200 300 400 500 600 700 800 900 1k
FIGUre 15: The change of loss.
TasLE 11: The basic information of feature files.
Type Apps Features Max Min Ave
Game 697 191 59 1 13.4562
Book reading 597 450 121 4 33.5343
Audiovisual 659 520 98 3 34.8574
Chat social 741 484 161 1 39.4507
Sports 212 299 111 11 37.9057
News 552 381 122 2 37.5163
Shopping 803 567 132 1 39.7298
Financial 763 405 89 2 40.1782
Camera 323 289 107 1 23.2601

The experimental results are shown in Table 12. After
193s, the accuracy rate reaches 99.9046%. Only one ap-
plication is misclassified. Suda, which is originally a chat
social application, is misclassified as a camera

application. After analysis, we found that Suda is a
comprehensive application. It includes functions of chat
social, taking pictures, and editing pictures
simultaneously.

Security and Communication Networks

TasLE 12: Classification accuracy of benign application.

Region size Train time (s) ACC (%)
(3) 101 99.4275
(5) 103 99.5229
(3,4,5) 164 99.6183
(2,3,4,5) 193 99.9046
(3,3,3) 163 99.4275
(3,3,3,3) 188 99.6183

7. Conclusion and Future Work

In this paper, we design an Android application classi-
fication model based on multiple semantic features. It can
extract multiple types of static and dynamic features
automatically. We use feature selection algorithms to
remove irrelevant or noisy features and extract critical
teatures. These key features help identify dangerous be-
haviors in unknown applications more effectively. Then,
we use CNN to implement classification. We verify the
model’s effectiveness, the usefulness of the feature sets,
and the feature vector generation method’s effect through
a series of experiments. The model also performs well on
malware familial classification and benign application
classification and has a short training time.

Despite the effectiveness of our model, several issues
remain to be resolved. Our future work will focus on
addressing the following problems. During the dynamic
analysis process, only 72.6420% of the applications can be
correctly analyzed by DroidBox, and 45 useful features are
extracted. We would investigate to combine input generator
tools IntelliDroid [40] to improve dynamic analysis coverage
and extract dynamic features in more detail. Finally, we will
further refine our classification model to enable more ac-
curate malware detection.

Data Availability

The data used to support the findings of this study have been
deposited at https://github.com/blackwall0321/malicious_a
pplications_detection.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This research was financially supported by China Post-
doctoral ~ Science = Foundation funded project
(2019M650606), the Opening Project of Guangdong Pro-
vincial Key Laboratory of Information Security Technology
(202B1212060078-12), First-class Discipline Construction
Project of Beijing Electronic Science and Technology
Institute (3201012), and the National Key Research and
Development Program of China under Grant
(2018YFB0803401).

15

References

[1] International Data Corporation, “Global smartphone market
data report [EB/OL],” 2020, https://www.idc.com/getdoc.jsp?
containerld=prCHC45975020.

[2] J. Yan, Y. Qi, and Q. Rao, “Detecting malware with an en-

semble method based on deep neural network,” Security and

Communication Networks, vol. 2018, no. 1, pp. 1-16, 2018.

M. Ganesh, P. Pednekar, P. Prabhuswamy, D. S. Nair, Y. Park,

and H. Jeon, “CNN-based Android malware detection,” in

Proceedings of the 2017 International Conference on Software

Security and Assurance (ICSSA), pp. 60-65, IEEE, Altoona,

PA, USA, July 2017.

[4] Z. Xu, K. Ren, S. Qin, and F. Craciun, “CDGDroid: android

malware detection based on deep learning using CFG and DFG,”

in Proceedings of the International Conference on Formal Engi-

neering Methods, Springer, Cham, pp. 177-193, 2018.

P. Zegzhda, D. Zegzhda, E. Pavlenko, and G. Ignatev, “Applying

deep learning techniques for Android malware detection,” in

Proceedings of the 11th International Conference on Security of

Information and Networks, vol. 7, September 2018.

[6] Z.Yuan, Y. Lu, and Y. Xue, “Droiddetector: android malware
characterization and detection using deep learning,” Tsinghua
Science and Technology, vol. 21, no. 1, pp. 114-123, 2016.

[7]1 Y. Kim, “Convolutional neural networks for sentence clas-
sification,” arXiv:1408.5882, 2014.

[8] T. Lei, Z. Qin, Z. Wang, Q. Li, and D. Ye, “EveDroid: event-
aware android malware detection against model degrading for
IoT devices,” IEEE Internet of Things Journal, vol. 6, no. 4,
pp. 66686680, 2019.

[9] R. Kumar, X. Zhang, W. Wang, R. U. Khan, J. Kumar, and
A. Sharif, “A multimodal malware detection technique for
android IoT devices using various features,” IEEE Access,
vol. 7, pp. 64411-64430, 2019.

[10] C. Hasegawa and H. Iyatomi, “One-dimensional convolu-
tional neural networks for Android malware detection,” in
Proceedings of the 2018 IEEE 14th International Colloquium
on Signal Processing & Its Applications (CSPA), March 2018.

[11] H. Zhang, S. Luo, Y. Zhang, and L. Pan, “An efficient android
malware detection system based on method-level behavioral
semantic analysis,” IEEE Access, vol. 7, mno. 7,
pp. 69246-69256, 2019.

[12] Y. Fang, Y. Gao, F. Jing, and L. Zhang, “Android malware
familial classification based on DEX file section features,”
IEEE Access, vol. 8, no. 8, pp. 10614-10627, 2020.

[13] Y. Feng, 1. Dillig, S. Anand, and A. Aiken, “Apposcopy:
automated detection of Android malware (invited talk),” in
Proceedings of the 2nd International Workshop on Software
Development Lifecycle for Mobile, pp. 13-14, Hong Kong,
China, November 2014.

[14] K. TaeGuen, K. BooJoong, R. Mina, S. Sezer, and E. G. Im, “A
multimodal deep learning method for android malware de-
tection using various features,” IEEE Transactions on Infor-
mation Forensics and Security, vol. 14, pp. 773-788, 2019.

[15] A. Saracino, D. Sgandurra, G. Dini, and F. Martinelli, “MADAM:
effective and efficient behavior-based android malware detection
and prevention,” IEEE Transactions on Dependable and Secure
Computing, vol. 15, no. 1, pp. 83-97, 2016.

[16] A. Narayanan, L. Yang, L. Chen, and L. Jinliang, “Adaptive
and scalable android malware detection through online
learning,” in Proceedings of the International Joint Conference

[3

[5

https://github.com/blackwall0321/malicious_applications_detection
https://github.com/blackwall0321/malicious_applications_detection
https://www.idc.com/getdoc.jsp?containerId=prCHC45975020
https://www.idc.com/getdoc.jsp?containerId=prCHC45975020

16

(17]

(18]

(19]

[20]

(21]

(22]

(23]

(24]

(25
(26]

(27]

(28]
(29]

(30
(31
[32]

(33]

(34]

(35]

on Neural Networks, pp. 2484-2491, Vancouver, BC, Canada,
July 2016.

M. A. Azad, F. Riaz, A. Aftab, S. K. J. Rizvi, J. Arshad, and
H. F. Atlam, “DEEPSEL: a novel feature selection for early
identification of malware in mobile applications,” Future
Generation Computer Systems, vol. 129, pp. 54-63, 2022.

M. Nisa, J. H. Shah, S. Kanwal et al, “Hybrid malware
classification method using segmentation-based fractal tex-
ture analysis and deep convolution neural network features,”
Applied Sciences, vol. 10, no. 14, p. 4966, 2020.

J. Hemalatha, S. A. Roseline, S. Geetha, S. Kadry, and
R. Damasevi¢ius, “An efficient DenseNet-based deep learning
model for malware detection,” Entropy, vol. 23, no. 3, p. 344, 2021.
R. Feng, S. Chen, X. Xie, G. Meng, S.-W. Lin, and Y. Liu, “A
performance-sensitive malware detection system using deep
learning on mobile devices,” IEEE Transactions on Informa-
tion Forensics and Security, vol. 16, pp. 1563-1578, 2021.

P. Chaurasia, “Dynamic analysis of Android malware using
droidbox,” Dissertations & Theses, Gradworks, 2015.

P. Feng, J. Ma, C. Sun, X. Xu, and Y. Ma, “A novel dynamic
android malware detection system with ensemble learning,”
IEEE Access, vol. 6, no. 6, pp. 30996-31011, 2018.

W. Enck, P. Gilbert, S. Han et al., “TaintDroid,” ACM Trans-
actions on Computer Systems, vol. 32, no. 2, pp. 1-29, 2014.

K. Tam, S. J. Khan, A. Fattori, and L. Cavallaro, “Copper-
Droid: automatic reconstruction of android malware be-
haviors,” in Proceedings of the Internet Society Network and
Distributed System Security Symposium, pp. 15-26, San Diego,
California, February 2015.

“APKtool,” 2019, https://ibotpeaches.github.io/Apktool.

A. Desnos, G. Gueguen, and S. Bachmann, “Androguard
package [EB/OL],” https://androguard.readthedocs.io/en/
latest/api/androguard.html.

Z. Wang, G. Li, and Y. Chi, “Multi-classification of android
applications based on convolutional neural networks,” in
Proceedings of the CSAE 2020: The 4th International Con-
ference on Computer Science and Application Engineering,
Sanya, China, October 2020.

“VirusShare,” 2019, https://virusshare.com.

D. Arp, M. Spreitzenbarth, M. Hiibner, H. Gascon, and
K. Rieck, “DREBIN: effective and explainable detection of
android malware in your pocket,” in Proceedings of the 2014
Network and Distributed System Security Symposium, San
Diego, California, February 2014.

Google Play Store, https://play.google.com/store, 2019.
VirusTotal, https://www.virustotal.com/ko[Online], 2019.

Y. Zhang and B. Wallace, “A sensitivity analysis of (and
practitioners’ guide to) convolutional neural networks for
sentence classification,” 2015, https://arxiv.org/abs/1510.
03820.

D. Zhu, H. Jin, Y. Yang, D. Wu, and W. Chen, “DeepFlow: deep
learning-based malware detection by mining Android application
for abnormal usage of sensitive data,” in Proceedings of the 2017
IEEE symposium on computers and communications (ISCC),
pp. 438-443, IEEE, Heraklion, July 2017.

D. Zhu, T. Xi, P. Jing, D. Wu, Q. Xia, and Y. Zhang, “A
transparent and multimodal malware detection method for
android apps,” in Proceedings of the 22nd International ACM
Conference on Modeling, Analysis and Simulation of Wireless
and Mobile Systems, pp. 51-60, FL, Miami Beach, USA,
November 2019.

X. Qin, F. Zeng, and Y. Zhang, “MSNdroid: the Android
malware detector based on multi-class features and deep belief

(36]

(37]

(38]

(39]

(40]

Security and Communication Networks

network,” in Proceedings of the ACM Turing Celebration
Conference-China, pp. 1-5, Chengdu, China, May 2019.
Z.Ren, H. Wu, Q. Ning, I. Hussain, and B. Chen, “End-to-end
malware detection for android IoT devices using deep
learning,” Ad Hoc Networks, vol. 101, p. 102098, 2020.

A. Shabtai, Y. Fledel, and Y. Elovici, “Automated static code
analysis for classifying android applications using machine
learning,” in Proceedings of the International Conference on
Computational Intelligence and Security, pp. 329-333, Nan-
ning, China, December 2010.

W. Wang, Y. Li, X. Wang, J. Liu, and X. Zhang, “Detecting
Android malicious apps and categorizing benign apps with
ensemble of classifiers,” Future Generation Computer Systems,
vol. 78, pp. 987-994, 2018.

W. Fan, Y. Chen, Y. A. Liu, and F. Wu, “DroidARA: android
application automatic categorization based on API relation-
ship analysis,” IEEE Access, vol. 7, pp. 157987-157996, 2019.
M. Y. Wong and D. Lie, “IntelliDroid: a targeted input
generator for the dynamic analysis of android malware,” in
Proceedings of the Network ¢ Distributed System Security
Symposium, Ontario, Canada, January 2016.

https://ibotpeaches.github.io/Apktool
https://androguard.readthedocs.io/en/latest/api/androguard.html
https://androguard.readthedocs.io/en/latest/api/androguard.html
https://virusshare.com
https://play.google.com/store
https://www.virustotal.com/ko
https://arxiv.org/abs/1510.03820
https://arxiv.org/abs/1510.03820

