
Mathematical Problems in Engineering

Fractional Nonlinear Partial
Di�erential Equations for Physical
Models: Analytical and Numerical
Methods

Lead Guest Editor: Mustafa Inc
Guest Editors: Younes Menni and José Francisco Gómez Aguilar

 



Fractional Nonlinear Partial Differential
Equations for Physical Models: Analytical and
Numerical Methods



Mathematical Problems in Engineering

Fractional Nonlinear Partial
Differential Equations for Physical
Models: Analytical and Numerical
Methods

Lead Guest Editor: Mustafa Inc
Guest Editors: Younes Menni and José Francisco
Gómez Aguilar



Copyright © 2021 Hindawi Limited. All rights reserved.

is is a special issue published in “Mathematical Problems in Engineering.” All articles are open access articles distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.



Chief Editor
Guangming Xie  , China

Academic Editors
Kumaravel A  , India
Waqas Abbasi, Pakistan
Mohamed Abd El Aziz  , Egypt
Mahmoud Abdel-Aty  , Egypt
Mohammed S. Abdo, Yemen
Mohammad Yaghoub Abdollahzadeh
Jamalabadi  , Republic of Korea
Rahib Abiyev  , Turkey
Leonardo Acho  , Spain
Daniela Addessi  , Italy
Arooj Adeel  , Pakistan
Waleed Adel  , Egypt
Ramesh Agarwal  , USA
Francesco Aggogeri  , Italy
Ricardo Aguilar-Lopez  , Mexico
Afaq Ahmad  , Pakistan
Naveed Ahmed  , Pakistan
Elias Aifantis  , USA
Akif Akgul  , Turkey
Tareq Al-shami  , Yemen
Guido Ala, Italy
Andrea Alaimo  , Italy
Reza Alam, USA
Osamah Albahri  , Malaysia
Nicholas Alexander  , United Kingdom
Salvatore Alfonzetti, Italy
Ghous Ali  , Pakistan
Nouman Ali  , Pakistan
Mohammad D. Aliyu  , Canada
Juan A. Almendral  , Spain
A.K. Alomari, Jordan
José Domingo Álvarez  , Spain
Cláudio Alves  , Portugal
Juan P. Amezquita-Sanchez, Mexico
Mukherjee Amitava, India
Lionel Amodeo, France
Sebastian Anita, Romania
Costanza Arico  , Italy
Sabri Arik, Turkey
Fausto Arpino  , Italy
Rashad Asharabi  , Saudi Arabia
Farhad Aslani  , Australia
Mohsen Asle Zaeem  , USA

Andrea Avanzini  , Italy
Richard I. Avery  , USA
Viktor Avrutin  , Germany
Mohammed A. Awadallah  , Malaysia
Francesco Aymerich  , Italy
Sajad Azizi  , Belgium
Michele Bacciocchi  , Italy
Seungik Baek  , USA
Khaled Bahlali, France
M.V.A Raju Bahubalendruni, India
Pedro Balaguer  , Spain
P. Balasubramaniam, India
Stefan Balint  , Romania
Ines Tejado Balsera  , Spain
Alfonso Banos  , Spain
Jerzy Baranowski  , Poland
Tudor Barbu  , Romania
Andrzej Bartoszewicz  , Poland
Sergio Baselga  , Spain
S. Caglar Baslamisli  , Turkey
David Bassir  , France
Chiara Bedon  , Italy
Azeddine Beghdadi, France
Andriette Bekker  , South Africa
Francisco Beltran-Carbajal  , Mexico
Abdellatif Ben Makhlouf  , Saudi Arabia
Denis Benasciutti  , Italy
Ivano Benedetti  , Italy
Rosa M. Benito  , Spain
Elena Benvenuti  , Italy
Giovanni Berselli, Italy
Michele Betti  , Italy
Pietro Bia  , Italy
Carlo Bianca  , France
Simone Bianco  , Italy
Vincenzo Bianco, Italy
Vittorio Bianco, Italy
David Bigaud  , France
Sardar Muhammad Bilal  , Pakistan
Antonio Bilotta  , Italy
Sylvio R. Bistafa, Brazil
Chiara Boccaletti  , Italy
Rodolfo Bontempo  , Italy
Alberto Borboni  , Italy
Marco Bortolini, Italy

https://orcid.org/0000-0001-6504-0087
https://orcid.org/0000-0002-7624-9748
https://orcid.org/0000-0002-2062-4801
https://orcid.org/0000-0001-8841-3165
https://orcid.org/0000-0002-6567-8109
https://orcid.org/0000-0002-2682-7474
https://orcid.org/0000-0002-4965-1133
https://orcid.org/0000-0003-0580-3200
https://orcid.org/0000-0003-1951-2148
https://orcid.org/0000-0002-0557-8536
https://orcid.org/0000-0002-9642-1023
https://orcid.org/0000-0001-9414-3763
https://orcid.org/0000-0003-2697-3153
https://orcid.org/0000-0001-9427-4296
https://orcid.org/0000-0002-5020-199X
https://orcid.org/0000-0002-6846-5686
https://orcid.org/0000-0001-9151-3052
https://orcid.org/%200000-0002-8074-1102
https://orcid.org/0000-0002-6691-6965
https://orcid.org/0000-0002-7844-3990
https://orcid.org/0000-0002-6837-5330
https://orcid.org/0000-0001-5316-3063
https://orcid.org/0000-0002-0721-201X
https://orcid.org/0000-0002-6417-841X
https://orcid.org/0000-0003-1100-7446
https://orcid.org/0000-0003-2791-8105
https://orcid.org/0000-0002-4017-1184
https://orcid.org/0000-0001-7173-0981
https://orcid.org/0000-0002-3987-5555
https://orcid.org/0000-0002-6616-2008
https://orcid.org/0000-0002-0505-6068
https://orcid.org/0000-0002-5164-6122
https://orcid.org/0000-0002-7188-7687
https://orcid.org/0000-0002-2270-2527
https://orcid.org/0000-0001-7931-8844
https://orcid.org/0000-0002-7815-8946
https://orcid.org/0000-0003-3474-4684
https://orcid.org/0000-0001-9953-7657
https://orcid.org/0000-0002-1152-2336
https://orcid.org/0000-0003-2007-339X
https://orcid.org/0000-0002-4082-2944
https://orcid.org/0000-0003-4573-9338
https://orcid.org/0000-0001-5542-348X
https://orcid.org/0000-0003-2711-4385
https://orcid.org/0000-0003-3313-581X
https://orcid.org/0000-0001-9684-8417
https://orcid.org/0000-0002-1271-8488
https://orcid.org/0000-0002-0492-4003
https://orcid.org/0000-0002-7476-2257
https://orcid.org/0000-0002-5364-9992
https://orcid.org/0000-0003-3875-2817
https://orcid.org/0000-0003-4793-5674
https://orcid.org/0000-0001-5244-5587
https://orcid.org/0000-0001-7142-7026
https://orcid.org/0000-0001-5999-5629
https://orcid.org/0000-0003-3755-2768
https://orcid.org/0000-0003-3949-8232
https://orcid.org/0000-0002-4888-4904
https://orcid.org/0000-0002-8389-3355
https://orcid.org/0000-0003-3598-2182
https://orcid.org/0000-0003-1122-7510
https://orcid.org/0000-0002-7070-1545
https://orcid.org/0000-0001-8474-2885
https://orcid.org/0000-0002-7803-9218
https://orcid.org/0000-0003-1873-4670
https://orcid.org/0000-0003-3548-5741
https://orcid.org/0000-0001-8087-5111
https://orcid.org/0000-0001-7069-1095


Paolo Boscariol, Italy
Daniela Boso  , Italy
Guillermo Botella-Juan, Spain
Abdesselem Boulkroune  , Algeria
Boulaïd Boulkroune, Belgium
Fabio Bovenga  , Italy
Francesco Braghin  , Italy
Ricardo Branco, Portugal
Julien Bruchon  , France
Matteo Bruggi  , Italy
Michele Brun  , Italy
Maria Elena Bruni, Italy
Maria Angela Butturi  , Italy
Bartłomiej Błachowski  , Poland
Dhanamjayulu C  , India
Raquel Caballero-Águila  , Spain
Filippo Cacace  , Italy
Salvatore Caddemi  , Italy
Zuowei Cai  , China
Roberto Caldelli  , Italy
Francesco Cannizzaro  , Italy
Maosen Cao  , China
Ana Carpio, Spain
Rodrigo Carvajal  , Chile
Caterina Casavola, Italy
Sara Casciati, Italy
Federica Caselli  , Italy
Carmen Castillo  , Spain
Inmaculada T. Castro  , Spain
Miguel Castro  , Portugal
Giuseppe Catalanotti  , United Kingdom
Alberto Cavallo  , Italy
Gabriele Cazzulani  , Italy
Fatih Vehbi Celebi, Turkey
Miguel Cerrolaza  , Venezuela
Gregory Chagnon  , France
Ching-Ter Chang  , Taiwan
Kuei-Lun Chang  , Taiwan
Qing Chang  , USA
Xiaoheng Chang  , China
Prasenjit Chatterjee  , Lithuania
Kacem Chehdi, France
Peter N. Cheimets, USA
Chih-Chiang Chen  , Taiwan
He Chen  , China

Kebing Chen  , China
Mengxin Chen  , China
Shyi-Ming Chen  , Taiwan
Xizhong Chen  , Ireland
Xue-Bo Chen  , China
Zhiwen Chen  , China
Qiang Cheng, USA
Zeyang Cheng, China
Luca Chiapponi  , Italy
Francisco Chicano  , Spain
Tirivanhu Chinyoka  , South Africa
Adrian Chmielewski  , Poland
Seongim Choi  , USA
Gautam Choubey  , India
Hung-Yuan Chung  , Taiwan
Yusheng Ci, China
Simone Cinquemani  , Italy
Roberto G. Citarella  , Italy
Joaquim Ciurana  , Spain
John D. Clayton  , USA
Piero Colajanni  , Italy
Giuseppina Colicchio, Italy
Vassilios Constantoudis  , Greece
Enrico Conte, Italy
Alessandro Contento  , USA
Mario Cools  , Belgium
Gino Cortellessa, Italy
Carlo Cosentino  , Italy
Paolo Crippa  , Italy
Erik Cuevas  , Mexico
Guozeng Cui  , China
Mehmet Cunkas  , Turkey
Giuseppe D'Aniello  , Italy
Peter Dabnichki, Australia
Weizhong Dai  , USA
Zhifeng Dai  , China
Purushothaman Damodaran  , USA
Sergey Dashkovskiy, Germany
Adiel T. De Almeida-Filho  , Brazil
Fabio De Angelis  , Italy
Samuele De Bartolo  , Italy
Stefano De Miranda  , Italy
Filippo De Monte  , Italy

https://orcid.org/0000-0001-6511-4998
https://orcid.org/0000-0002-1392-6932
https://orcid.org/0000-0001-5602-9919
https://orcid.org/0000-0002-0476-4118
https://orcid.org/0000-0001-5867-5842
https://orcid.org/0000-0003-3403-6127
https://orcid.org/0000-0002-4760-9062
https://orcid.org/0000-0003-1639-6065
https://orcid.org/0000-0001-6021-0374
https://orcid.org/0000-0001-9958-754X
https://orcid.org/0000-0001-7659-7649
https://orcid.org/0000-0003-1060-744X
https://orcid.org/0000-0002-2438-2395
https://orcid.org/0000-0003-4470-7107
https://orcid.org/0000-0003-3471-1196
https://orcid.org/0000-0001-8698-1329
https://orcid.org/0000-0001-6640-1905
https://orcid.org/0000-0002-3336-8683
https://orcid.org/0000-0001-6663-8603
https://orcid.org/0000-0003-2614-9084
https://orcid.org/0000-0002-2590-8379
https://orcid.org/0000-0001-9732-9969
https://orcid.org/0000-0001-9326-9575
https://orcid.org/0000-0002-7985-7722
https://orcid.org/0000-0002-2447-7570
https://orcid.org/0000-0003-0415-0666
https://orcid.org/0000-0002-9386-7046
https://orcid.org/0000-0001-8137-8838
https://orcid.org/0000-0001-6426-7327
https://orcid.org/0000-0003-3744-1371
https://orcid.org/0000-0002-6197-1623
https://orcid.org/0000-0002-7994-4252
https://orcid.org/0000-0002-2254-723X
https://orcid.org/0000-0001-6356-1655
https://orcid.org/0000-0003-2072-7592
https://orcid.org/0000-0002-9122-4493
https://orcid.org/0000-0001-8648-631X
https://orcid.org/0000-0001-8073-5741
https://orcid.org/0000-0001-6799-7667
https://orcid.org/0000-0002-4759-0904
https://orcid.org/0000-0002-0621-788X
https://orcid.org/0000-0003-1259-2990
https://orcid.org/0000-0001-7782-2043
https://orcid.org/0000-0002-2049-578X
https://orcid.org/0000-0002-2068-170X
https://orcid.org/0000-0003-4266-6356
https://orcid.org/0000-0002-1787-173X
https://orcid.org/0000-0001-9296-0874
https://orcid.org/0000-0003-3167-019X
https://orcid.org/0000-0002-6574-5551
https://orcid.org/0000-0003-4107-6282
https://orcid.org/0000-0003-0562-8596
https://orcid.org/0000-0003-3164-977X
https://orcid.org/0000-0003-3811-8074
https://orcid.org/0000-0003-3098-2693
https://orcid.org/0000-0001-5768-1829
https://orcid.org/0000-0003-4504-7550
https://orcid.org/0000-0002-0358-6049
https://orcid.org/0000-0001-6880-4361
https://orcid.org/0000-0002-5031-7618
https://orcid.org/0000-0002-8687-9348
https://orcid.org/0000-0002-3194-7710
https://orcid.org/0000-0002-7912-1280
https://orcid.org/0000-0002-6925-8486
https://orcid.org/0000-0001-6069-3601
https://orcid.org/0000-0002-2745-6396
https://orcid.org/0000-0002-6158-6055
https://orcid.org/0000-0002-9624-651X
https://orcid.org/0000-0003-0174-6990


José António Fonseca De Oliveira
Correia  , Portugal
Jose Renato De Sousa  , Brazil
Michael Defoort, France
Alessandro Della Corte, Italy
Laurent Dewasme  , Belgium
Sanku Dey  , India
Gianpaolo Di Bona  , Italy
Roberta Di Pace  , Italy
Francesca Di Puccio  , Italy
Ramón I. Diego  , Spain
Yannis Dimakopoulos  , Greece
Hasan Dinçer  , Turkey
José M. Domínguez  , Spain
Georgios Dounias, Greece
Bo Du  , China
Emil Dumic, Croatia
Madalina Dumitriu  , United Kingdom
Premraj Durairaj  , India
Saeed Eekhar Azam, USA
Said El Kaali  , Morocco
Antonio Elipe  , Spain
R. Emre Erkmen, Canada
John Escobar  , Colombia
Leandro F. F. Miguel  , Brazil
FRANCESCO FOTI  , Italy
Andrea L. Facci  , Italy
Shahla Faisal  , Pakistan
Giovanni Falsone  , Italy
Hua Fan, China
Jianguang Fang, Australia
Nicholas Fantuzzi  , Italy
Muhammad Shahid Farid  , Pakistan
Hamed Faroqi, Iran
Yann Favennec, France
Fiorenzo A. Fazzolari  , United Kingdom
Giuseppe Fedele  , Italy
Roberto Fedele  , Italy
Baowei Feng  , China
Mohammad Ferdows  , Bangladesh
Arturo J. Fernández  , Spain
Jesus M. Fernandez Oro, Spain
Francesco Ferrise, Italy
Eric Feulvarch  , France
ierry Floquet, France

Eric Florentin  , France
Gerardo Flores, Mexico
Antonio Forcina  , Italy
Alessandro Formisano, Italy
Francesco Franco  , Italy
Elisa Francomano  , Italy
Juan Frausto-Solis, Mexico
Shujun Fu  , China
Juan C. G. Prada  , Spain
HECTOR GOMEZ  , Chile
Matteo Gaeta  , Italy
Mauro Gaggero  , Italy
Zoran Gajic  , USA
Jaime Gallardo-Alvarado  , Mexico
Mosè Gallo  , Italy
Akemi Gálvez  , Spain
Maria L. Gandarias  , Spain
Hao Gao  , Hong Kong
Xingbao Gao  , China
Yan Gao  , China
Zhiwei Gao  , United Kingdom
Giovanni Garcea  , Italy
José García  , Chile
Harish Garg  , India
Alessandro Gasparetto  , Italy
Stylianos Georgantzinos, Greece
Fotios Georgiades  , India
Parviz Ghadimi  , Iran
Ștefan Cristian Gherghina  , Romania
Georgios I. Giannopoulos  , Greece
Agathoklis Giaralis  , United Kingdom
Anna M. Gil-Lafuente  , Spain
Ivan Giorgio  , Italy
Gaetano Giunta  , Luxembourg
Jefferson L.M.A. Gomes  , United
Kingdom
Emilio Gómez-Déniz  , Spain
Antonio M. Gonçalves de Lima  , Brazil
Qunxi Gong  , China
Chris Goodrich, USA
Rama S. R. Gorla, USA
Veena Goswami  , India
Xunjie Gou  , Spain
Jakub Grabski  , Poland

https://orcid.org/0000-0002-4148-9426
https://orcid.org/0000-0001-7132-1264
https://orcid.org/0000-0002-1688-167X
https://orcid.org/0000-0001-8523-8189
https://orcid.org/0000-0001-9567-5534
https://orcid.org/0000-0001-7589-8570
https://orcid.org/0000-0003-4558-1497
https://orcid.org/0000-0002-8531-6383
https://orcid.org/0000-0002-8671-0657
https://orcid.org/0000-0002-8072-031X
https://orcid.org/0000-0002-2586-5081
https://orcid.org/0000-0002-4484-8789
https://orcid.org/0000-0002-9978-9499
https://orcid.org/0000-0002-3965-3362
https://orcid.org/0000-0001-9282-5154
https://orcid.org/0000-0001-5208-4494
https://orcid.org/0000-0001-6175-9553
https://orcid.org/0000-0002-7881-1642
https://orcid.org/0000-0002-0339-4653
https://orcid.org/0000-0002-0344-7508
https://orcid.org/0000-0002-6303-5986
https://orcid.org/0000-0003-2668-5100
https://orcid.org/0000-0002-8406-4882
https://orcid.org/0000-0002-8384-2830
https://orcid.org/0000-0002-7321-6772
https://orcid.org/0000-0003-0273-780X
https://orcid.org/0000-0003-1057-9581
https://orcid.org/0000-0003-4507-8170
https://orcid.org/0000-0002-8696-9116
https://orcid.org/0000-0003-2646-0905
https://orcid.org/0000-0003-2055-3764
https://orcid.org/0000-0003-1192-6733
https://orcid.org/0000-0002-8831-8309
https://orcid.org/0000-0002-9869-2820
https://orcid.org/0000-0003-0438-5115
https://orcid.org/0000-0002-6776-465X
https://orcid.org/0000-0002-7793-8625
https://orcid.org/0000-0003-3726-5507
https://orcid.org/0000-0001-7209-3355
https://orcid.org/0000-0002-5048-4141
https://orcid.org/0000-0002-0187-6181
https://orcid.org/0000-0002-8208-0432
https://orcid.org/0000-0002-9023-0752
https://orcid.org/0000-0002-2100-2289
https://orcid.org/0000-0001-8604-8272
https://orcid.org/0000-0003-0148-3713
https://orcid.org/0000-0002-3253-7529
https://orcid.org/0000-0002-1889-399X
https://orcid.org/0000-0001-5464-3288
https://orcid.org/0000-0002-0842-3521
https://orcid.org/0000-0003-3126-8352
https://orcid.org/0000-0001-9099-8422
https://orcid.org/0000-0001-9902-9783
https://orcid.org/0000-0002-2784-6976
https://orcid.org/0000-0002-9315-5428
https://orcid.org/0000-0003-2911-6480
https://orcid.org/0000-0002-0004-8421
https://orcid.org/0000-0002-2952-1171
https://orcid.org/0000-0003-0905-3929
https://orcid.org/0000-0002-0044-9188
https://orcid.org/0000-0003-1694-5132
https://orcid.org/0000-0003-0845-2274
https://orcid.org/0000-0002-5072-7908
https://orcid.org/0000-0003-0170-6083
https://orcid.org/0000-0001-9076-0537
https://orcid.org/0000-0002-4260-4721
https://orcid.org/0000-0003-1963-0451
https://orcid.org/0000-0002-0553-1084


Antoine Grall  , France
George A. Gravvanis  , Greece
Fabrizio Greco  , Italy
David Greiner  , Spain
Jason Gu  , Canada
Federico Guarracino  , Italy
Michele Guida  , Italy
Muhammet Gul  , Turkey
Dong-Sheng Guo  , China
Hu Guo  , China
Zhaoxia Guo, China
Yusuf Gurefe, Turkey
Salim HEDDAM  , Algeria
ABID HUSSANAN, China
Quang Phuc Ha, Australia
Li Haitao  , China
Petr Hájek  , Czech Republic
Mohamed Hamdy  , Egypt
Muhammad Hamid  , United Kingdom
Renke Han  , United Kingdom
Weimin Han  , USA
Xingsi Han, China
Zhen-Lai Han  , China
omas Hanne  , Switzerland
Xinan Hao  , China
Mohammad A. Hariri-Ardebili  , USA
Khalid Hattaf  , Morocco
Defeng He  , China
Xiao-Qiao He, China
Yanchao He, China
Yu-Ling He  , China
Ramdane Hedjar  , Saudi Arabia
Jude Hemanth  , India
Reza Hemmati, Iran
Nicolae Herisanu  , Romania
Alfredo G. Hernández-Diaz  , Spain
M.I. Herreros  , Spain
Eckhard Hitzer  , Japan
Paul Honeine  , France
Jaromir Horacek  , Czech Republic
Lei Hou  , China
Yingkun Hou  , China
Yu-Chen Hu  , Taiwan
Yunfeng Hu, China

Can Huang  , China
Gordon Huang  , Canada
Linsheng Huo  , China
Sajid Hussain, Canada
Asier Ibeas  , Spain
Orest V. Iime  , e Netherlands
Przemyslaw Ignaciuk  , Poland
Giacomo Innocenti  , Italy
Emilio Insfran Pelozo  , Spain
Azeem Irshad, Pakistan
Alessio Ishizaka, France
Benjamin Ivorra  , Spain
Breno Jacob  , Brazil
Reema Jain  , India
Tushar Jain  , India
Amin Jajarmi  , Iran
Chiranjibe Jana  , India
Łukasz Jankowski  , Poland
Samuel N. Jator  , USA
Juan Carlos Jáuregui-Correa  , Mexico
Kandasamy Jayakrishna, India
Reza Jazar, Australia
Khalide Jbilou, France
Isabel S. Jesus  , Portugal
Chao Ji  , China
Qing-Chao Jiang  , China
Peng-fei Jiao  , China
Ricardo Fabricio Escobar Jiménez  , Mexico
Emilio Jiménez Macías  , Spain
Maolin Jin, Republic of Korea
Zhuo Jin, Australia
Ramash Kumar K  , India
BHABEN KALITA  , USA
MOHAMMAD REZA KHEDMATI  , Iran
Viacheslav Kalashnikov  , Mexico
Mathiyalagan Kalidass  , India
Tamas Kalmar-Nagy  , Hungary
Rajesh Kaluri  , India
Jyotheeswara Reddy Kalvakurthi, India
Zhao Kang  , China
Ramani Kannan  , Malaysia
Tomasz Kapitaniak  , Poland
Julius Kaplunov, United Kingdom
Konstantinos Karamanos, Belgium
Michal Kawulok, Poland

https://orcid.org/0000-0002-6900-7951
https://orcid.org/0000-0003-1562-3633
https://orcid.org/0000-0001-9423-4964
https://orcid.org/0000-0002-4132-7144
https://orcid.org/0000-0002-7626-1077
https://orcid.org/0000-0001-7017-5170
https://orcid.org/0000-0002-4116-5624
https://orcid.org/0000-0002-5319-4289
https://orcid.org/0000-0002-8304-2788
https://orcid.org/0000-0002-7273-0446
https://orcid.org/0000-0002-8055-8463
https://orcid.org/0000-0001-5322-5375
https://orcid.org/0000-0001-5579-1215
https://orcid.org/0000-0002-6248-0439
https://orcid.org/0000-0002-1607-8262
https://orcid.org/0000-0002-7239-9546
https://orcid.org/0000-0002-0960-2281
https://orcid.org/0000-0002-0794-0797
https://orcid.org/0000-0002-5636-1660
https://orcid.org/0000-0002-1716-7718
https://orcid.org/0000-0001-6772-1468
https://orcid.org/0000-0002-5032-3639
https://orcid.org/0000-0002-8183-2372
https://orcid.org/0000-0003-2719-8128
https://orcid.org/0000-0002-4648-1554
https://orcid.org/0000-0002-6091-1880
https://orcid.org/0000-0003-2968-5309
https://orcid.org/0000-0002-2392-3786
https://orcid.org/0000-0001-5284-8060
https://orcid.org/0000-0002-5587-6750
https://orcid.org/0000-0002-3042-183X
https://orcid.org/0000-0001-7045-3070
https://orcid.org/0000-0003-0271-7323
https://orcid.org/0000-0003-2153-9040
https://orcid.org/0000-0002-5055-3645
https://orcid.org/0000-0001-7128-6964
https://orcid.org/0000-0002-4737-7601
https://orcid.org/0000-0002-3044-2630
https://orcid.org/0000-0001-5094-3152
https://orcid.org/0000-0002-2867-9524
https://orcid.org/0000-0003-4420-9941
https://orcid.org/0000-0002-2110-826X
https://orcid.org/0000-0003-0855-5564
https://orcid.org/0000-0002-0536-7149
https://orcid.org/0000-0001-9446-1825
https://orcid.org/0000-0001-9983-247X
https://orcid.org/0000-0003-2300-1375
https://orcid.org/0000-0003-2768-840X
https://orcid.org/0000-0002-0252-9712
https://orcid.org/0000-0002-9773-0688
https://orcid.org/0000-0001-8167-731X
https://orcid.org/0000-0002-8961-103X
https://orcid.org/0000-0002-7545-5822
https://orcid.org/0000-0002-2657-0509
https://orcid.org/0000-0002-3402-9018
https://orcid.org/0000-0003-1049-1002
https://orcid.org/0000-0003-3367-6552
https://orcid.org/0000-0001-6749-4592
https://orcid.org/0000-0003-4554-520X
https://orcid.org/0000-0001-8361-9308
https://orcid.org/0000-0001-6228-4916
https://orcid.org/0000-0001-6747-580X
https://orcid.org/0000-0003-2323-3328
https://orcid.org/0000-0003-1374-2620
https://orcid.org/0000-0003-2073-9833
https://orcid.org/0000-0003-4103-0954
https://orcid.org/0000-0001-5672-7055
https://orcid.org/0000-0001-9651-752X


Irfan Kaymaz  , Turkey
Vahid Kayvanfar  , Qatar
Krzysztof Kecik  , Poland
Mohamed Khader  , Egypt
Chaudry M. Khalique  , South Africa
Mukhtaj Khan  , Pakistan
Shahid Khan  , Pakistan
Nam-Il Kim, Republic of Korea
Philipp V. Kiryukhantsev-Korneev  ,
Russia
P.V.V Kishore  , India
Jan Koci  , Czech Republic
Ioannis Kostavelis  , Greece
Sotiris B. Kotsiantis  , Greece
Frederic Kratz  , France
Vamsi Krishna  , India
Edyta Kucharska, Poland
Krzysztof S. Kulpa  , Poland
Kamal Kumar, India
Prof. Ashwani Kumar  , India
Michal Kunicki  , Poland
Cedrick A. K. Kwuimy  , USA
Kyandoghere Kyamakya, Austria
Ivan Kyrchei  , Ukraine
Márcio J. Lacerda  , Brazil
Eduardo Lalla  , e Netherlands
Giovanni Lancioni  , Italy
Jaroslaw Latalski  , Poland
Hervé Laurent  , France
Agostino Lauria  , Italy
Aimé Lay-Ekuakille  , Italy
Nicolas J. Leconte  , France
Kun-Chou Lee  , Taiwan
Dimitri Lefebvre  , France
Eric Lefevre  , France
Marek Lefik, Poland
Yaguo Lei  , China
Kauko Leiviskä  , Finland
Ervin Lenzi  , Brazil
ChenFeng Li  , China
Jian Li  , USA
Jun Li  , China
Yueyang Li  , China
Zhao Li  , China

Zhen Li  , China
En-Qiang Lin, USA
Jian Lin  , China
Qibin Lin, China
Yao-Jin Lin, China
Zhiyun Lin  , China
Bin Liu  , China
Bo Liu  , China
Heng Liu  , China
Jianxu Liu  , ailand
Lei Liu  , China
Sixin Liu  , China
Wanquan Liu  , China
Yu Liu  , China
Yuanchang Liu  , United Kingdom
Bonifacio Llamazares  , Spain
Alessandro Lo Schiavo  , Italy
Jean Jacques Loiseau  , France
Francesco Lolli  , Italy
Paolo Lonetti  , Italy
António M. Lopes  , Portugal
Sebastian López, Spain
Luis M. López-Ochoa  , Spain
Vassilios C. Loukopoulos, Greece
Gabriele Maria Lozito  , Italy
Zhiguo Luo  , China
Gabriel Luque  , Spain
Valentin Lychagin, Norway
YUE MEI, China
Junwei Ma  , China
Xuanlong Ma  , China
Antonio Madeo  , Italy
Alessandro Magnani  , Belgium
Toqeer Mahmood  , Pakistan
Fazal M. Mahomed  , South Africa
Arunava Majumder  , India
Sarfraz Nawaz Malik, Pakistan
Paolo Manfredi  , Italy
Adnan Maqsood  , Pakistan
Muazzam Maqsood, Pakistan
Giuseppe Carlo Marano  , Italy
Damijan Markovic, France
Filipe J. Marques  , Portugal
Luca Martinelli  , Italy
Denizar Cruz Martins, Brazil

https://orcid.org/0000-0002-9391-7218
https://orcid.org/0000-0001-8268-9873
https://orcid.org/0000-0001-8293-6977
https://orcid.org/0000-0003-2436-0927
https://orcid.org/0000-0002-1986-4859
https://orcid.org/0000-0002-4933-6192
https://orcid.org/0000-0003-0361-4887
https://orcid.org/0000-0003-1635-4746
https://orcid.org/0000-0002-3247-3043
https://orcid.org/0000-0001-5425-3108
https://orcid.org/0000-0003-2882-2914
https://orcid.org/0000-0002-2247-3082
https://orcid.org/0000-0003-2620-803X
https://orcid.org/0000-0003-2192-3018
https://orcid.org/0000-0001-5357-142X
https://orcid.org/0000-0002-2100-900X
https://orcid.org/0000-0003-4281-0127
https://orcid.org/0000-0002-2949-3000
https://orcid.org/0000-0001-8426-0026
https://orcid.org/0000-0001-8487-3535
https://orcid.org/0000-0002-7286-9501
https://orcid.org/0000-0003-2189-9820
https://orcid.org/0000-0001-7745-4391
https://orcid.org/0000-0002-7275-0076
https://orcid.org/0000-0003-4608-3684
https://orcid.org/0000-0002-1762-419X
https://orcid.org/0000-0002-5607-256X
https://orcid.org/0000-0002-7867-4860
https://orcid.org/0000-0001-7060-756X
https://orcid.org/0000-0002-0038-8872
https://orcid.org/0000-0002-5167-1459
https://orcid.org/0000-0003-4447-9861
https://orcid.org/0000-0003-3853-1790
https://orcid.org/0000-0002-6461-4381
https://orcid.org/0000-0003-3439-7539
https://orcid.org/0000-0003-3465-1621
https://orcid.org/0000-0002-1614-0302
https://orcid.org/0000-0002-2502-5330
https://orcid.org/0000-0003-1166-9482
https://orcid.org/0000-0003-4959-2329
https://orcid.org/0000-0002-5523-4467
https://orcid.org/0000-0003-2291-7592
https://orcid.org/0000-0003-4082-9692
https://orcid.org/0000-0003-3923-7526
https://orcid.org/0000-0002-2128-6015
https://orcid.org/0000-0003-3724-0596
https://orcid.org/0000-0002-6660-6780
https://orcid.org/0000-0003-4910-353X
https://orcid.org/0000-0003-2211-3535
https://orcid.org/0000-0001-9306-297X
https://orcid.org/0000-0002-7538-4833
https://orcid.org/0000-0003-3335-4182
https://orcid.org/0000-0003-4853-3861
https://orcid.org/0000-0003-3967-091X
https://orcid.org/0000-0003-0678-6860
https://orcid.org/0000-0001-7359-4370
https://orcid.org/0000-0001-5883-8832
https://orcid.org/0000-0001-7987-0487
https://orcid.org/0000-0002-8669-372X
https://orcid.org/0000-0001-7909-1416
https://orcid.org/0000-0001-8408-2821
https://orcid.org/0000-0003-3263-0616
https://orcid.org/0000-0001-5693-8848
https://orcid.org/0000-0001-6719-7467
https://orcid.org/0000-0003-3125-2430
https://orcid.org/0000-0002-6995-5820
https://orcid.org/0000-0001-7315-7381
https://orcid.org/0000-0002-0574-8945
https://orcid.org/0000-0003-0406-9438
https://orcid.org/0000-0001-8472-2956
https://orcid.org/0000-0001-6453-6558
https://orcid.org/0000-0002-0491-3363


Francisco J. Martos  , Spain
Elio Masciari  , Italy
Paolo Massioni  , France
Alessandro Mauro  , Italy
Jonathan Mayo-Maldonado  , Mexico
Pier Luigi Mazzeo  , Italy
Laura Mazzola, Italy
Driss Mehdi  , France
Zahid Mehmood  , Pakistan
Roderick Melnik  , Canada
Xiangyu Meng  , USA
Jose Merodio  , Spain
Alessio Merola  , Italy
Mahmoud Mesbah  , Iran
Luciano Mescia  , Italy
Laurent Mevel  , France
Constantine Michailides  , Cyprus
Mariusz Michta  , Poland
Prankul Middha, Norway
Aki Mikkola  , Finland
Giovanni Minafò  , Italy
Edmondo Minisci  , United Kingdom
Hiroyuki Mino  , Japan
Dimitrios Mitsotakis  , New Zealand
Ardashir Mohammadzadeh  , Iran
Francisco J. Montáns  , Spain
Francesco Montefusco  , Italy
Gisele Mophou  , France
Rafael Morales  , Spain
Marco Morandini  , Italy
Javier Moreno-Valenzuela  , Mexico
Simone Morganti  , Italy
Caroline Mota  , Brazil
Aziz Moukrim  , France
Shen Mouquan  , China
Dimitris Mourtzis  , Greece
Emiliano Mucchi  , Italy
Taseer Muhammad, Saudi Arabia
Ghulam Muhiuddin, Saudi Arabia
Amitava Mukherjee  , India
Josefa Mula  , Spain
Jose J. Muñoz  , Spain
Giuseppe Muscolino, Italy
Marco Mussetta  , Italy

Hariharan Muthusamy, India
Alessandro Naddeo  , Italy
Raj Nandkeolyar, India
Keivan Navaie  , United Kingdom
Soumya Nayak, India
Adrian Neagu  , USA
Erivelton Geraldo Nepomuceno  , Brazil
AMA Neves, Portugal
Ha Quang inh Ngo  , Vietnam
Nhon Nguyen-anh, Singapore
Papakostas Nikolaos  , Ireland
Jelena Nikolic  , Serbia
Tatsushi Nishi, Japan
Shanzhou Niu  , China
Ben T. Nohara  , Japan
Mohammed Nouari  , France
Mustapha Nourelfath, Canada
Kazem Nouri  , Iran
Ciro Núñez-Gutiérrez  , Mexico
Wlodzimierz Ogryczak, Poland
Roger Ohayon, France
Krzysztof Okarma  , Poland
Mitsuhiro Okayasu, Japan
Murat Olgun  , Turkey
Diego Oliva, Mexico
Alberto Olivares  , Spain
Enrique Onieva  , Spain
Calogero Orlando  , Italy
Susana Ortega-Cisneros  , Mexico
Sergio Ortobelli, Italy
Naohisa Otsuka  , Japan
Sid Ahmed Ould Ahmed Mahmoud  ,
Saudi Arabia
Taoreed Owolabi  , Nigeria
EUGENIA PETROPOULOU  , Greece
Arturo Pagano, Italy
Madhumangal Pal, India
Pasquale Palumbo  , Italy
Dragan Pamučar, Serbia
Weifeng Pan  , China
Chandan Pandey, India
Rui Pang, United Kingdom
Jürgen Pannek  , Germany
Elena Panteley, France
Achille Paolone, Italy

https://orcid.org/0000-0002-7655-2915
https://orcid.org/0000-0002-1778-5321
https://orcid.org/0000-0001-8620-9507
https://orcid.org/0000-0001-8778-7237
https://orcid.org/0000-0003-2513-2395
https://orcid.org/0000-0002-7552-2394
https://orcid.org/0000-0002-0045-7364
https://orcid.org/0000-0003-4888-2594
https://orcid.org/0000-0002-1560-6684
https://orcid.org/0000-0003-3381-6690
https://orcid.org/0000-0001-5602-4659
https://orcid.org/0000-0002-8728-2084
https://orcid.org/0000-0002-3344-1350
https://orcid.org/0000-0002-2339-1214
https://orcid.org/0000-0001-8913-7393
https://orcid.org/0000-0002-2016-9079
https://orcid.org/0000-0003-1743-799X
https://orcid.org/0000-0003-2762-8503
https://orcid.org/0000-0003-1331-9080
https://orcid.org/0000-0001-9951-8528
https://orcid.org/0000-0002-9601-628X
https://orcid.org/0000-0003-2700-6093
https://orcid.org/0000-0001-5173-4563
https://orcid.org/0000-0002-0046-6084
https://orcid.org/0000-0002-3264-9686
https://orcid.org/0000-0001-7949-8152
https://orcid.org/0000-0002-9327-8030
https://orcid.org/0000-0002-1992-9077
https://orcid.org/0000-0003-0670-5979
https://orcid.org/0000-0003-0116-9118
https://orcid.org/0000-0001-9617-5726
https://orcid.org/0000-0003-4354-0085
https://orcid.org/0000-0003-0765-6646
https://orcid.org/0000-0002-7923-7363
https://orcid.org/0000-0002-1875-9205
https://orcid.org/0000-0001-7462-3217
https://orcid.org/0000-0002-8447-3387
https://orcid.org/0000-0002-0083-3673
https://orcid.org/0000-0002-1005-3224
https://orcid.org/0000-0001-7728-4046
https://orcid.org/0000-0002-4399-6472
https://orcid.org/0000-0003-3871-2188
https://orcid.org/0000-0002-5841-2193
https://orcid.org/0000-0002-7898-1107
https://orcid.org/0000-0002-0443-221X
https://orcid.org/0000-0002-3552-7211
https://orcid.org/0000-0002-4554-7371
https://orcid.org/0000-0003-3018-6638
https://orcid.org/0000-0001-7746-9331
https://orcid.org/0000-0002-7922-5848
https://orcid.org/0000-0003-2451-421X
https://orcid.org/0000-0002-6721-3241
https://orcid.org/0000-0002-8660-5435
https://orcid.org/0000-0002-0491-0883
https://orcid.org/0000-0001-9581-1823
https://orcid.org/0000-0002-6525-2941
https://orcid.org/0000-0001-6646-1529
https://orcid.org/0000-0003-2127-1160
https://orcid.org/0000-0002-6891-7849
https://orcid.org/0000-0002-6666-1755
https://orcid.org/0000-0003-1098-6216
https://orcid.org/0000-0002-9371-2802
https://orcid.org/0000-0001-6355-1385
https://orcid.org/0000-0001-6993-2429


George A. Papakostas  , Greece
Xosé M. Pardo  , Spain
You-Jin Park, Taiwan
Manuel Pastor, Spain
Pubudu N. Pathirana  , Australia
Surajit Kumar Paul  , India
Luis Payá  , Spain
Igor Pažanin  , Croatia
Libor Pekař  , Czech Republic
Francesco Pellicano  , Italy
Marcello Pellicciari  , Italy
Jian Peng  , China
Mingshu Peng, China
Xiang Peng  , China
Xindong Peng, China
Yuexing Peng, China
Marzio Pennisi  , Italy
Maria Patrizia Pera  , Italy
Matjaz Perc  , Slovenia
A. M. Bastos Pereira  , Portugal
Wesley Peres, Brazil
F. Javier Pérez-Pinal  , Mexico
Michele Perrella, Italy
Francesco Pesavento  , Italy
Francesco Petrini  , Italy
Hoang Vu Phan, Republic of Korea
Lukasz Pieczonka  , Poland
Dario Piga  , Switzerland
Marco Pizzarelli  , Italy
Javier Plaza  , Spain
Goutam Pohit  , India
Dragan Poljak  , Croatia
Jorge Pomares  , Spain
Hiram Ponce  , Mexico
Sébastien Poncet  , Canada
Volodymyr Ponomaryov  , Mexico
Jean-Christophe Ponsart  , France
Mauro Pontani  , Italy
Sivakumar Poruran, India
Francesc Pozo  , Spain
Aditya Rio Prabowo  , Indonesia
Anchasa Pramuanjaroenkij  , ailand
Leonardo Primavera  , Italy
B Rajanarayan Prusty, India

Krzysztof Puszynski  , Poland
Chuan Qin  , China
Dongdong Qin, China
Jianlong Qiu  , China
Giuseppe Quaranta  , Italy
DR. RITU RAJ  , India
Vitomir Racic  , Italy
Carlo Rainieri  , Italy
Kumbakonam Ramamani Rajagopal, USA
Ali Ramazani  , USA
Angel Manuel Ramos  , Spain
Higinio Ramos  , Spain
Muhammad Afzal Rana  , Pakistan
Muhammad Rashid, Saudi Arabia
Manoj Rastogi, India
Alessandro Rasulo  , Italy
S.S. Ravindran  , USA
Abdolrahman Razani  , Iran
Alessandro Reali  , Italy
Jose A. Reinoso  , Spain
Oscar Reinoso  , Spain
Haijun Ren  , China
Carlo Renno  , Italy
Fabrizio Renno  , Italy
Shahram Rezapour  , Iran
Ricardo Riaza  , Spain
Francesco Riganti-Fulginei  , Italy
Gerasimos Rigatos  , Greece
Francesco Ripamonti  , Italy
Jorge Rivera  , Mexico
Eugenio Roanes-Lozano  , Spain
Ana Maria A. C. Rocha  , Portugal
Luigi Rodino  , Italy
Francisco Rodríguez  , Spain
Rosana Rodríguez López, Spain
Francisco Rossomando  , Argentina
Jose de Jesus Rubio  , Mexico
Weiguo Rui  , China
Rubén Ruiz  , Spain
Ivan D. Rukhlenko  , Australia
Dr. Eswaramoorthi S.  , India
Weichao SHI  , United Kingdom
Chaman Lal Sabharwal  , USA
Andrés Sáez  , Spain

https://orcid.org/0000-0001-5545-1499
https://orcid.org/0000-0002-3997-5150
https://orcid.org/0000-0001-8014-7798
https://orcid.org/0000-0003-4000-7373
https://orcid.org/0000-0002-3045-4316
https://orcid.org/0000-0003-3384-5184
https://orcid.org/0000-0002-2401-5886
https://orcid.org/0000-0003-2465-6584
https://orcid.org/0000-0003-2578-4123
https://orcid.org/0000-0003-0104-522X
https://orcid.org/0000-0002-8244-2202
https://orcid.org/0000-0003-0231-7653
https://orcid.org/0000-0003-2667-8875
https://orcid.org/0000-0002-3087-541X
https://orcid.org/0000-0001-8342-5116
https://orcid.org/0000-0002-6116-6464
https://orcid.org/0000-0001-5660-9382
https://orcid.org/0000-0002-9477-110X
https://orcid.org/0000-0003-3623-3984
https://orcid.org/0000-0001-7691-4886
https://orcid.org/0000-0003-2930-8706
https://orcid.org/0000-0002-2384-9141
https://orcid.org/0000-0001-6253-7418
https://orcid.org/0000-0003-1205-4842
https://orcid.org/0000-0002-7523-9118
https://orcid.org/0000-0002-6559-7501
https://orcid.org/0000-0001-7795-6092
https://orcid.org/0000-0003-4477-4676
https://orcid.org/0000-0003-1610-2418
https://orcid.org/0000-0003-3095-7391
https://orcid.org/0000-0001-8958-6789
https://orcid.org/0000-0001-5217-5943
https://orcid.org/0000-0001-9288-7224
https://orcid.org/0000-0001-7004-789X
https://orcid.org/0000-0002-5546-4916
https://orcid.org/0000-0002-0370-4623
https://orcid.org/0000-0002-9886-3570
https://orcid.org/0000-0001-8295-0912
https://orcid.org/0000-0002-9727-5048
https://orcid.org/0000-0002-3523-411X
https://orcid.org/0000-0003-4854-0850
https://orcid.org/0000-0002-6887-1086
https://orcid.org/0000-0002-7882-0725
https://orcid.org/0000-0003-2791-6230
https://orcid.org/0000-0002-2077-4906
https://orcid.org/0000-0003-4911-1812
https://orcid.org/0000-0002-8099-8389
https://orcid.org/0000-0002-3092-3530
https://orcid.org/0000-0002-0639-7067
https://orcid.org/0000-0001-5469-3736
https://orcid.org/0000-0002-1065-8944
https://orcid.org/0000-0002-8211-3820
https://orcid.org/0000-0002-7498-0561
https://orcid.org/0000-0002-2529-4434
https://orcid.org/0000-0003-3463-2607
https://orcid.org/0000-0003-0868-4446
https://orcid.org/0000-0001-8824-3776
https://orcid.org/0000-0002-2972-7030
https://orcid.org/0000-0002-0867-5091
https://orcid.org/0000-0003-0978-2224
https://orcid.org/0000-0002-0880-6610
https://orcid.org/0000-0001-8679-2886
https://orcid.org/0000-0002-6222-964X
https://orcid.org/0000-0002-0753-7826
https://orcid.org/0000-0002-7792-8101
https://orcid.org/0000-0002-2005-5979
https://orcid.org/0000-0003-4472-0811
https://orcid.org/0000-0003-3295-3888
https://orcid.org/0000-0003-2255-1017
https://orcid.org/0000-0003-0528-3591
https://orcid.org/0000-0001-9730-7313
https://orcid.org/0000-0001-5095-8290
https://orcid.org/0000-0001-5734-6238


Bekir Sahin, Turkey
Laxminarayan Sahoo  , India
John S. Sakellariou  , Greece
Michael Sakellariou  , Greece
Salvatore Salamone, USA
Jose Vicente Salcedo  , Spain
Alejandro Salcido  , Mexico
Alejandro Salcido, Mexico
Nunzio Salerno  , Italy
Rohit Salgotra  , India
Miguel A. Salido  , Spain
Sinan Salih  , Iraq
Alessandro Salvini  , Italy
Abdus Samad  , India
Sovan Samanta, India
Nikolaos Samaras  , Greece
Ramon Sancibrian  , Spain
Giuseppe Sanfilippo  , Italy
Omar-Jacobo Santos, Mexico
J Santos-Reyes  , Mexico
José A. Sanz-Herrera  , Spain
Musavarah Sarwar, Pakistan
Shahzad Sarwar, Saudi Arabia
Marcelo A. Savi  , Brazil
Andrey V. Savkin, Australia
Tadeusz Sawik  , Poland
Roberta Sburlati, Italy
Gustavo Scaglia  , Argentina
omas Schuster  , Germany
Hamid M. Sedighi  , Iran
Mijanur Rahaman Seikh, India
Tapan Senapati  , China
Lotfi Senhadji  , France
Junwon Seo, USA
Michele Serpilli, Italy
Silvestar Šesnić  , Croatia
Gerardo Severino, Italy
Ruben Sevilla  , United Kingdom
Stefano Sfarra  , Italy
Dr. Ismail Shah  , Pakistan
Leonid Shaikhet  , Israel
Vimal Shanmuganathan  , India
Prayas Sharma, India
Bo Shen  , Germany
Hang Shen, China

Xin Pu Shen, China
Dimitri O. Shepelsky, Ukraine
Jian Shi  , China
Amin Shokrollahi, Australia
Suzanne M. Shontz  , USA
Babak Shotorban  , USA
Zhan Shu  , Canada
Angelo Sifaleras  , Greece
Nuno Simões  , Portugal
Mehakpreet Singh  , Ireland
Piyush Pratap Singh  , India
Rajiv Singh, India
Seralathan Sivamani  , India
S. Sivasankaran  , Malaysia
Christos H. Skiadas, Greece
Konstantina Skouri  , Greece
Neale R. Smith  , Mexico
Bogdan Smolka, Poland
Delfim Soares Jr.  , Brazil
Alba Sofi  , Italy
Francesco Soldovieri  , Italy
Raffaele Solimene  , Italy
Yang Song  , Norway
Jussi Sopanen  , Finland
Marco Spadini  , Italy
Paolo Spagnolo  , Italy
Ruben Specogna  , Italy
Vasilios Spitas  , Greece
Ivanka Stamova  , USA
Rafał Stanisławski  , Poland
Miladin Stefanović  , Serbia
Salvatore Strano  , Italy
Yakov Strelniker, Israel
Kangkang Sun  , China
Qiuqin Sun  , China
Shuaishuai Sun, Australia
Yanchao Sun  , China
Zong-Yao Sun  , China
Kumarasamy Suresh  , India
Sergey A. Suslov  , Australia
D.L. Suthar, Ethiopia
D.L. Suthar  , Ethiopia
Andrzej Swierniak, Poland
Andras Szekrenyes  , Hungary
Kumar K. Tamma, USA

https://orcid.org/0000-0001-7464-451X
https://orcid.org/0000-0003-3027-8284
https://orcid.org/0000-0002-7276-2368
https://orcid.org/0000-0003-1577-5039
https://orcid.org/0000-0002-7485-3802
https://orcid.org/0000-0002-7203-1725
https://orcid.org/0000-0002-3282-1810
https://orcid.org/0000-0002-4835-4057
https://orcid.org/0000-0003-0717-7506
https://orcid.org/0000-0002-5825-1019
https://orcid.org/0000-0002-0343-2234
https://orcid.org/0000-0001-8201-7081
https://orcid.org/0000-0001-7467-2801
https://orcid.org/0000-0002-0657-3833
https://orcid.org/0000-0002-3758-9862
https://orcid.org/0000-0001-8371-3820
https://orcid.org/0000-0001-5454-5995
https://orcid.org/0000-0002-6054-550X
https://orcid.org/0000-0002-0188-0017
https://orcid.org/0000-0002-2667-8691
https://orcid.org/0000-0002-3852-5473
https://orcid.org/0000-0003-0399-7486
https://orcid.org/0000-0001-9434-6341
https://orcid.org/0000-0002-0485-4893
https://orcid.org/0000-0002-0061-6214
https://orcid.org/0000-0002-9354-4650
https://orcid.org/0000-0001-5005-6991
https://orcid.org/0000-0001-7354-1383
https://orcid.org/0000-0002-1467-1206
https://orcid.org/0000-0001-9074-3411
https://orcid.org/0000-0002-3604-545X
https://orcid.org/0000-0002-4874-0812
https://orcid.org/0000-0001-6838-7297
https://orcid.org/0000-0002-5933-254X
https://orcid.org/0000-0002-5696-7021
https://orcid.org/0000-0003-3418-0030
https://orcid.org/0000-0002-6392-6068
https://orcid.org/0000-0002-4450-1208
https://orcid.org/0000-0001-6636-7794
https://orcid.org/0000-0001-9443-7091
https://orcid.org/0000-0002-2596-1188
https://orcid.org/0000-0002-1477-8388
https://orcid.org/0000-0002-5756-9359
https://orcid.org/0000-0002-3575-2451
https://orcid.org/0000-0002-0377-3127
https://orcid.org/0000-0003-1808-4671
https://orcid.org/0000-0002-7699-5855
https://orcid.org/0000-0003-4371-1606
https://orcid.org/0000-0003-1720-8134
https://orcid.org/0000-0001-9129-9375
https://orcid.org/0000-0001-9278-7178
https://orcid.org/0000-0003-3999-7752
https://orcid.org/0000-0001-6723-2699
https://orcid.org/0000-0002-6014-3682
https://orcid.org/0000-0002-2681-0875
https://orcid.org/0000-0003-2697-2273
https://orcid.org/0000-0002-2017-0029
https://orcid.org/0000-0003-0732-5126
https://orcid.org/0000-0001-7392-4472
https://orcid.org/0000-0002-2102-9588
https://orcid.org/0000-0001-5618-2278
https://orcid.org/0000-0002-0998-2712
https://orcid.org/0000-0001-9978-2177
https://orcid.org/0000-0002-2018-4471


Yong (Aaron) Tan, United Kingdom
Marco Antonio Taneco-Hernández  ,
Mexico
Lu Tang  , China
Tianyou Tao, China
Hafez Tari  , USA
Alessandro Tasora  , Italy
Sergio Teggi  , Italy
Adriana del Carmen Téllez-Anguiano  ,
Mexico
Ana C. Teodoro  , Portugal
Efstathios E. eotokoglou  , Greece
Jing-Feng Tian, China
Alexander Timokha  , Norway
Stefania Tomasiello  , Italy
Gisella Tomasini  , Italy
Isabella Torcicollo  , Italy
Francesco Tornabene  , Italy
Mariano Torrisi  , Italy
ang nguyen Trung, Vietnam
George Tsiatas  , Greece
Le Anh Tuan  , Vietnam
Nerio Tullini  , Italy
Emilio Turco  , Italy
Ilhan Tuzcu  , USA
Efstratios Tzirtzilakis  , Greece
FRANCISCO UREÑA  , Spain
Filippo Ubertini  , Italy
Mohammad Uddin  , Australia
Mohammad Safi Ullah  , Bangladesh
Serdar Ulubeyli  , Turkey
Mati Ur Rahman  , Pakistan
Panayiotis Vafeas  , Greece
Giuseppe Vairo  , Italy
Jesus Valdez-Resendiz  , Mexico
Eusebio Valero, Spain
Stefano Valvano  , Italy
Carlos-Renato Vázquez  , Mexico
Martin Velasco Villa  , Mexico
Franck J. Vernerey, USA
Georgios Veronis  , USA
Vincenzo Vespri  , Italy
Renato Vidoni  , Italy
Venkatesh Vijayaraghavan, Australia

Anna Vila, Spain
Francisco R. Villatoro  , Spain
Francesca Vipiana  , Italy
Stanislav Vítek  , Czech Republic
Jan Vorel  , Czech Republic
Michael Vynnycky  , Sweden
Mohammad W. Alomari, Jordan
Roman Wan-Wendner  , Austria
Bingchang Wang, China
C. H. Wang  , Taiwan
Dagang Wang, China
Guoqiang Wang  , China
Huaiyu Wang, China
Hui Wang  , China
J.G. Wang, China
Ji Wang  , China
Kang-Jia Wang  , China
Lei Wang  , China
Qiang Wang, China
Qingling Wang  , China
Weiwei Wang  , China
Xinyu Wang  , China
Yong Wang  , China
Yung-Chung Wang  , Taiwan
Zhenbo Wang  , USA
Zhibo Wang, China
Waldemar T. Wójcik, Poland
Chi Wu  , Australia
Qiuhong Wu, China
Yuqiang Wu, China
Zhibin Wu  , China
Zhizheng Wu  , China
Michalis Xenos  , Greece
Hao Xiao  , China
Xiao Ping Xie  , China
Qingzheng Xu  , China
Binghan Xue  , China
Yi Xue  , China
Joseph J. Yame  , France
Chuanliang Yan  , China
Xinggang Yan  , United Kingdom
Hongtai Yang  , China
Jixiang Yang  , China
Mijia Yang, USA
Ray-Yeng Yang, Taiwan

https://orcid.org/0000-0001-6650-1105
https://orcid.org/0000-0002-5051-8364
https://orcid.org/0000-0003-4809-3843
https://orcid.org/0000-0002-2664-7895
https://orcid.org/0000-0001-7375-0599
https://orcid.org/0000-0002-0945-2076
https://orcid.org/0000-0002-8043-6431
https://orcid.org/0000-0001-5770-5878
https://orcid.org/0000-0002-6750-4727
https://orcid.org/0000-0003-2830-7525
https://orcid.org/0000-0002-7431-7073
https://orcid.org/0000-0001-6374-4371
https://orcid.org/0000-0002-5968-3382
https://orcid.org/0000-0003-0386-6216
https://orcid.org/0000-0003-4808-7881
https://orcid.org/0000-0003-0208-9478
https://orcid.org/0000-0003-2378-5691
https://orcid.org/0000-0002-8263-7034
https://orcid.org/0000-0003-1075-8192
https://orcid.org/0000-0002-5598-564X
https://orcid.org/0000-0003-0258-8525
https://orcid.org/0000-0002-5044-8482
https://orcid.org/0000-0001-9171-5594
https://orcid.org/0000-0002-8889-7865
https://orcid.org/0000-0003-0871-7391
https://orcid.org/0000-0002-4166-2006
https://orcid.org/0000-0002-0896-4168
https://orcid.org/0000-0003-2597-6985
https://orcid.org/0000-0002-1889-1353
https://orcid.org/0000-0003-4349-1092
https://orcid.org/0000-0003-4191-4143
https://orcid.org/0000-0003-2953-0964
https://orcid.org/0000-0002-3274-3947
https://orcid.org/0000-0002-2684-8646
https://orcid.org/0000-0002-7429-0974
https://orcid.org/0000-0003-4314-6213
https://orcid.org/0000-0002-0791-9269
https://orcid.org/0000-0002-3185-1495
https://orcid.org/0000-0002-0733-4420
https://orcid.org/0000-0002-8318-1251
https://orcid.org/0000-0003-3616-5694
https://orcid.org/0000-0002-4066-2602
https://orcid.org/0000-0003-2979-3510
https://orcid.org/0000-0001-8213-1626
https://orcid.org/0000-0002-0724-7538
https://orcid.org/0000-0002-3905-0844
https://orcid.org/0000-0002-7014-2149
https://orcid.org/0000-0003-2045-2920
https://orcid.org/0000-0002-6985-2784
https://orcid.org/0000-0002-3019-1181
https://orcid.org/0000-0002-3166-8025
https://orcid.org/0000-0003-1405-2496
https://orcid.org/0000-0002-8979-9765
https://orcid.org/0000-0001-6438-4902
https://orcid.org/0000-0002-9372-0992
https://orcid.org/0000-0001-5427-2528
https://orcid.org/0000-0001-8441-1306
https://orcid.org/0000-0002-9368-1495
https://orcid.org/0000-0001-5592-177X
https://orcid.org/0000-0001-8212-1073
https://orcid.org/0000-0001-7409-2233
https://orcid.org/0000-0001-7728-1531
https://orcid.org/0000-0002-4349-6240
https://orcid.org/0000-0002-5184-5391
https://orcid.org/0000-0003-2217-8398
https://orcid.org/0000-0002-3608-1936
https://orcid.org/0000-0002-9631-2046


Zaoli Yang  , China
Jun Ye  , China
Min Ye  , China
Luis J. Yebra  , Spain
Peng-Yeng Yin  , Taiwan
Muhammad Haroon Yousaf  , Pakistan
Yuan Yuan, United Kingdom
Qin Yuming, China
Elena Zaitseva  , Slovakia
Arkadiusz Zak  , Poland
Mohammad Zakwan  , India
Ernesto Zambrano-Serrano  , Mexico
Francesco Zammori  , Italy
Jessica Zangari  , Italy
Rafal Zdunek  , Poland
Ibrahim Zeid, USA
Nianyin Zeng  , China
Junyong Zhai  , China
Hao Zhang  , China
Haopeng Zhang  , USA
Jian Zhang  , China
Kai Zhang, China
Lingfan Zhang  , China
Mingjie Zhang  , Norway
Qian Zhang  , China
Tianwei Zhang  , China
Tongqian Zhang  , China
Wenyu Zhang  , China
Xianming Zhang  , Australia
Xuping Zhang  , Denmark
Yinyan Zhang, China
Yifan Zhao  , United Kingdom
Debao Zhou, USA
Heng Zhou  , China
Jian G. Zhou  , United Kingdom
Junyong Zhou  , China
Xueqian Zhou  , United Kingdom
Zhe Zhou  , China
Wu-Le Zhu, China
Gaetano Zizzo  , Italy
Mingcheng Zuo, China

https://orcid.org/0000-0002-5157-8967
https://orcid.org/0000-0003-2841-6529
https://orcid.org/0000-0002-8301-5843
https://orcid.org/0000-0003-4267-6124
https://orcid.org/0000-0002-2835-9002
https://orcid.org/0000-0001-8255-1145
https://orcid.org/0000-0002-9087-0311
https://orcid.org/0000-0003-3015-1355
https://orcid.org/0000-0003-4295-004X
https://orcid.org/0000-0002-2115-0097
https://orcid.org/0000-0003-4931-5540
https://orcid.org/0000-0002-6418-7711
https://orcid.org/0000-0003-3323-6717
https://orcid.org/0000-0002-6957-2942
https://orcid.org/0000-0001-5122-3819
https://orcid.org/0000-0002-8821-8535
https://orcid.org/0000-0002-7898-8907
https://orcid.org/0000-0002-2432-8612
https://orcid.org/0000-0002-7584-4887
https://orcid.org/0000-0001-6872-7482
https://orcid.org/0000-0001-7210-654X
https://orcid.org/0000-0001-6777-1668
https://orcid.org/0000-0001-9603-3867
https://orcid.org/0000-0001-7350-0805
https://orcid.org/0000-0003-0691-5386
https://orcid.org/0000-0002-7498-495X
https://orcid.org/0000-0003-2383-5724
https://orcid.org/0000-0002-3742-3926
https://orcid.org/0000-0002-4262-1898
https://orcid.org/0000-0001-7417-583X
https://orcid.org/0000-0003-1583-414X
https://orcid.org/0000-0002-0445-2560
https://orcid.org/0000-0003-4413-4855


Contents

Abundant Explicit Solutions to Fractional Order Nonlinear Evolution Equations
M. Ayesha Khatun, Mohammad Asif Arefin  , M. Hafiz Uddin  , and Mustafa Inc 

Research Article (16 pages), Article ID 5529443, Volume 2021 (2021)

New Explicit Solutions to the Fractional-Order Burgers’ Equation
M. Hafiz Uddin  , Mohammad Asif Arefin  , M. Ali Akbar  , and Mustafa Inc 

Research Article (11 pages), Article ID 6698028, Volume 2021 (2021)

Computational Fluid Dynamics Analysis of Flow Patterns, Pressure Drop, and Heat Transfer
Coefficient in Staggered and Inline Shell-Tube Heat Exchangers
Shubham Sharma  , Shalab Sharma, Mandeep Singh, Parampreet Singh, Rasmeet Singh, Sthitapragyan
Maharana, Nima Khalilpoor  , and Alibek Issakhov
Research Article (10 pages), Article ID 6645128, Volume 2021 (2021)

A Novel Approach for Solving Fuzzy Differential Equations Using Cubic Spline Method
S. Karpagappriya  , Nazek Alessa  , P. Jayaraman, and K. Loganathan 

Research Article (9 pages), Article ID 5553732, Volume 2021 (2021)

On Some Structural Components of Nilsolitons
Hulya Kadioglu 

Research Article (6 pages), Article ID 5540584, Volume 2021 (2021)

Computational Fluid Dynamics Analysis of Impingement Heat Transfer in an Inline Array of
Multiple Jets
Parampreet Singh, Neel Kanth Grover, Vivek Agarwal, Shubham Sharma  , Jujhar Singh, Milad
Sadeghzadeh  , and Alibek Issakhov
Research Article (10 pages), Article ID 6668942, Volume 2021 (2021)

Refinements and Generalizations of Some Fractional Integral Inequalities via Strongly Convex
Functions
Ghulam Farid  , Hafsa Yasmeen, Chahn Yong Jung  , Soo Hak Shim, and Gaofan Ha
Research Article (18 pages), Article ID 6667226, Volume 2021 (2021)

Investigation of Counterflow Microchannel Heat Exchanger with Hybrid Nanoparticles and PCM
Suspension as a Coolant
Mushtaq I. Hasan, Mohammad J. Khafeef, Omid Mohammadi  , Suvanjan Bhattacharyya, and Alibek
Issakhov
Research Article (12 pages), Article ID 6687064, Volume 2021 (2021)

On Conformable Laplace’s Equation
Francisco Martínez, Inmaculada Martínez, Mohammed K. A. Kaabar  , and Silvestre Paredes
Research Article (10 pages), Article ID 5514535, Volume 2021 (2021)

An Analytical View of Fractional-Order Fisher’s Type Equations within Caputo Operator
Nehad Ali Shah 

Research Article (10 pages), Article ID 5516392, Volume 2021 (2021)

https://orcid.org/0000-0002-2892-1683
https://orcid.org/0000-0003-3725-5472
https://orcid.org/0000-0003-4996-8373
https://orcid.org/0000-0003-3725-5472
https://orcid.org/0000-0002-2892-1683
https://orcid.org/0000-0001-5688-6259
https://orcid.org/0000-0003-4996-8373
https://orcid.org/0000-0001-9446-8074
https://orcid.org/0000-0001-9864-8152
https://orcid.org/0000-0001-8010-5256
https://orcid.org/0000-0003-3283-4870
https://orcid.org/0000-0002-6435-2916
https://orcid.org/0000-0002-9832-2758
https://orcid.org/0000-0001-9446-8074
https://orcid.org/0000-0001-8574-5463
https://orcid.org/0000-0002-4103-7745
https://orcid.org/0000-0002-4504-6200
https://orcid.org/0000-0002-1218-9950
https://orcid.org/0000-0003-2260-0341
https://orcid.org/0000-0001-8112-4993


Matrix Factorization Recommendation Algorithm Based on Multiple Social Relationships
Sheng Bin   and Gengxin Sun
Research Article (8 pages), Article ID 6610645, Volume 2021 (2021)

5e Impact of the SARS-CoV-2 Epidemic on World Indices: 5e Entropy Approach
Ayşe Metin Karakaş  , Mine Doğan  , and Sinan Çalik 

Research Article (9 pages), Article ID 6617668, Volume 2021 (2021)

https://orcid.org/0000-0002-7540-6801
https://orcid.org/0000-0003-3552-0105
https://orcid.org/0000-0002-2745-9909
https://orcid.org/0000-0002-4258-1662


Research Article
Abundant Explicit Solutions to Fractional Order Nonlinear
Evolution Equations

M. Ayesha Khatun,1 Mohammad Asif Arefin ,1 M. Hafiz Uddin ,1 andMustafa Inc 2,3,4

1Department of Mathematics, Jashore University of Science and Technology, Jashore 7408, Bangladesh
2Department of Computer Engineering, Biruni University, Istanbul, Turkey
3Department of Mathematics, Science Faculty, Firat University, Elazig 23119, Turkey
4Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan

Correspondence should be addressed to Mustafa Inc; minc@firat.edu.tr

Received 7 January 2021; Revised 9 May 2021; Accepted 23 June 2021; Published 3 July 2021

Academic Editor: Luigi Rodino

Copyright © 2021 M. Ayesha Khatun et al. *is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

We utilize the modified Riemann–Liouville derivative sense to develop careful arrangements of time-fractional simplified
modified Camassa–Holm (MCH) equations and generalized (3 + 1)-dimensional time-fractional Camas-
sa–Holm–Kadomtsev–Petviashvili (gCH-KP) through the potential double (G′/G, 1/G)-expansion method (DEM). *e men-
tioned equations describe the role of dispersion in the formation of patterns in liquid drops ensued in plasma physics, optical
fibers, fluid flow, fission and fusion phenomena, acoustics, control theory, viscoelasticity, and so on. A generalized fractional
complex transformation is appropriately used to change this equation to an ordinary differential equation; thus, many precise
logical arrangements are acquired with all the freer parameters. At the point when these free parameters are taken as specific
values, the traveling wave solutions are transformed into solitary wave solutions expressed by the hyperbolic, the trigonometric,
and the rational functions.*e physical significance of the obtained solutions for the definite values of the associated parameters is
analyzed graphically with 2D, 3D, and contour format. Scores of solitary wave solutions are obtained such as kink type, periodic
wave, singular kink, dark solitons, bright-dark solitons, and some other solitary wave solutions. It is clear to scrutinize that the
suggested scheme is a reliable, competent, and straightforwardmathematical tool to discover closed form traveling wave solutions.

1. Introduction

In recent years, fractional calculus (FC) assumed a basic part
of a capable, catalyst, and rudimentary hypothetical struc-
ture for more sufficient displaying of multifaceted powerful
cycles. FC and nonlinear fractional differential equations
(NLFDEs) have recently been used to solve problems in
plasma physics, protein chemistry, cell biology, mechanical
engineering, signal processing and systems recognition,
electrical transmission, control theory, economics, and
fractional dynamics. FDE has a wide range of applications in
fields such as magnetism, sound waves propagation in rigid
porous materials, cardiac tissue electrode interface, principle
of viscoelasticity, fluid dynamics, lateral and longitudinal
regulation of autonomous vehicles, ultrasonic wave

propagation in human cancerous bone, wave propagation in
viscoelastic horn, heat transfer, RLC electric circuit, mod-
eling of earthquake, and some other areas [1–5]. *e highly
prepared polylayer portion of the human body is a partic-
ularly capable model system for using fractional calculus. As
a result, researchers are increasingly interested in seeking
exact solutions to NLFDEs, which play a significant role in
nonlinear science. Wave shape has an effect on sediment
transport and beach morphodynamics, while wave skewness
has an impact on radar altimetry signals and asymmetry has
an impact on ship responses to wave impacts. Traveling wave
solutions is a special class of analytical solutions for non-
linear evolution equations (NLEEs). Solitary waves are
transmitted traveling waves with constant speeds and shapes
that achieve asymptotically zero at distant locations. In order
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to know the inner mechanism of the mentioned complex
tangible phenomena, investigation of exact solutions of
NLFDEs are very much important. In this way, numerous
authors have been interested in studying the FC and finding
precise and productive techniques for comprehending
nonlinear fractional partial differential equations (NFPDEs).
In the previous few decades, numerous strategies have been
produced for illuminating NFPDEs, for example, nearby
variational iteration method [6], the F-expansion method
[7], homotopy perturbation method [8], Kudryashov
method [9], improved (G′⁄G)-expansion method [10], and
the DEM [11–13].

As of late, a clear and succinct method called the DEM,
which is presented in [14], and is exhibited as a mighty
method for looking at analytical solutions of NLDEs. *e
DEM is a reliable technique, which provides different types
of solitary wave solutions (SWS), namely, the hyperbolic, the
trigonometric, and the rational functions. *e proposed
MCH equation has been researched for its precise diagnostic
arrangements through the (G′⁄G)-expansion method [15],
exp-function method [16], modified simple equation
method [17], and so on. Also, the proposed (gCH-KP)
equation has been investigated for its exact analytic solutions
through Agrawal’s method [18] and the bifurcation method
[19]. To the best of our knowledge, the recommended

condition has not been concentrated through the DEM [12].
So, the point of this investigation is to build up some fresh
and further broad precise solutions for the previously
mentioned condition utilizing the DEM.

*e rest of of the article is planned as follows. In Section
2, we have presented the definition and primers. In Section 3,
the DEM has been depicted. In Section 4, we have built up
the specific answer for the proposed equation by the pre-
viously mentioned method. In Section 5, we have uncovered
the graphical portrayal and conversation, and in Section 6,
comparison of results has been drawn. In Section 7, the
conclusion is given.

2. Definition and Primers

Jumarie offered a mRL.With such a fractional derivative and
some accommodating ways, we can change over fractional
differential equations (FDEs) into integer-order differential
equations applying variable transformation [20]. In this
section, we first provide a couple of features and definitions
of the mRL subsidiary which is used further in this study.
Acknowledge that f: R⟶ R, x⟶ f(x) implies a con-
tinuous, however, not really differentiable function. Juma-
rie’s mRL having order a is defined by the articulation

D
α
xf(x) �

1
Γ(− α)

􏽚
x

0
(x − ξ)

− α− 1
[f(ξ) − f(0)]dξ, α< 0,

1
Γ(1 − α)

d
dx

􏽚
x

0
(x − ξ)

− α
[f(ξ) − f(0)]dξ, 0< α< 1,

f
(n)

(x)􏼐 􏼑
(a− n)

, n≤ α≤ n + 1, n> 1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

Two or three features of the mRL were concise and four
acclaimed conditions of them are as follows:

D
α
t t

c
�
Γ(1 + c)

Γ(1 + c − α)
t
(c− α)

, c> 0, (2)

D
α
t (af(t) + bg(t)) � aD

α
t f(t) + bD

α
t g(t), (3)

wherever a and b stand for constants and

D
α
xf[u(x)] � f

α
u(u)D

α
xu(x), (4)

D
α
xf[u(x)] � D

α
uf(u) u′(x)( 􏼁

α
, (5)

which are the immediate results of

d
α
x(t) � Γ(1 + α)dx(t). (6)

*is holds for nondifferentiable function. Among
equations (3)–(5), u(x) is nondifferentiable in equations (3)
and (4) but differentiable in equation (5). *e function u(x)

is nondifferentiable, and f(u) is differentiable in equation

(4) and no differentiable in equation (5). So, the explanation
equations (3)–(5) should be used mindfully.

3. The Double-Expansion Method

In this part, the center aspect of the DEM to assess the
specific traveling wave solution of the NFPDEs has been
represented. Let us guess the standard differential equation
of order two:

G″(ξ) + λG(ξ) � μ. (7)

Also, the accompanying relations

ϕ �
G′
G

,

ψ �
1
G

.

(8)

Subsequently, it gives
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ϕ′ � − ϕ2 + μψ − λ,

ψ′ � − ϕψ,
(9)

*e solution for equation (7) relies upon λ as λ< 0, λ> 0,
and λ � 0.

For λ< 0, the complete solution of equation (7) will be

G(ξ) � C1sinh(
���
− λ

√
ξ) + C2cosh(

���
− λ

√
ξ) +

μ
λ

. (10)

Take into account that we obtain

ψ2
�

− λ
λ2σ + μ2

ϕ2 − 2μψ + λ􏼐 􏼑, (11)

where σ � C2
1 − C2

2.
On the off chance that λ> 0, the solution for equation (7)

is as follows:

G(ξ) � C1 sin(
�
λ

√
ξ) + C2 cos(

�
λ

√
ξ) +

μ
λ
. (12)

Considering that we acquire

ψ2
�

λ
λ2σ − μ2

ϕ2 − 2μψ + λ􏼐 􏼑, (13)

where σ � C2
1 + C2

2, when λ � 0, the overall solution for
condition (7) is as follows:

G(ξ) �
μ
2
ξ2 + C1ξ + C2. (14)

Taking into account that we acquire

ψ2
�

1
C
2
1 − 2μC2

ϕ2 − 2μψ􏼐 􏼑, (15)

where C1 and C2 stand for constants and those are
arbitrary, in this section, we talk about the principle part of
proposed methods to take exact traveling wave solutions to
the NLFDE is as the form

p u, D
α
t u, D

β
xu, D

α
t D

α
t u, D

α
t D

β
xu, D

β
xD

β
x, . . . ,􏼐 􏼑 � 0, 0< α≤ 1, 0< β≤ 1, (16)

where u speaks to an unidentified function of spatial sub-
ordinate x and transient subsidiary t and speaks to a
polynomial of u(x, t) and its derivatives wherein the most
maximal order of derivatives and nonlinear terms of the
maximal order are related.

Step 1 : take into account the traveling wave
transformation:

ξ � Lx + V
t
α

Γ(1 + α)
, (17)

where c and k are nonzero abstract constant.
Applying this wave transformation in (16), it is
reworked as

Q u, u′, u″, u″′, . . . ,( 􏼁 � 0, (18)

where the prime speaks to the ordinary deriv-
ative of u regarding ξ.

Step 2 : take the arrangement of equation (9) which
have been uncovered as polynomial in ϕ and ψ
of the endorse type:

u(ξ) � 􏽘

N

i�0
aiϕ

i
+ 􏽘

N

i�1
biϕ

i− 1ψ, (19)

where ai and bi stand for constants which will be
calculated later.

Step 3 : in equation (18), “N” will be calculated using
homogeneous balance principal which deter-
mines equation (19).

Step 4 : put (19) in (18) along with (9) and (11), and it
decreases to a polynomial in ϕ , where the degree
is one. Contrasting the polynomial of similar
terms with zero, a game plan of logarithmic
conditions that are examined by using com-
putational programming produces the estima-
tions of ai, bi, μ, C1, C2, and λ where λ< 0, which
give hyperbolic function arrangements.

Step 5 : in a similar fashion, we explore the estimations
of ai, bi, μ, C1, C2, and λ, where λ> 0 and λ � 0
which are giving trigonometric and rational
function results correspondingly.

4. Formulation of Exact Solution

4.1. 8e Exact Solutions to the Space-Time Fractional MCH
Equation. *is equation was presented by Camassa and
Holm [21] in 1993 which describes shallow water waves
with peakon solutions. *e peakon solution is a special
solitary wave solution which is peaked in the limiting case,
and the first derivatives are discontinuous in the peaks [22]
and pseudospherical surfaces, and therefore, its integrability
properties can be studied by geometrical means [23].

First, take the space-time fractional MCH equation [15]
in the form

D
α
t + 2δux − uxxt + cu

2
ux � 0, (20)

where u(x, t) is the velocity of the fluid, δ is the coefficient
related to the critical shallow water wave speed, and c is a
nonzero constant. Employing transformation (17), equation
(20) reduced an ODE as follows:
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Vu′ + 2Lδu′ − L
2
Vu″′ + cLu

2
u′ � 0, (21)

where V, L, and c are nonzero constants and δ is the co-
efficient related to the critical shallow water wave speed.

Integrating (21) once and taking the constant of the
integration as zero, it becomes

u(v + 2Lδ) − L
2
Vu″ + cL

u
3

3
� 0. (22)

Balancing the maximal order derivative term u″ with the
most order nonlinear term u3, the adjusting number is
resolved to be N � 1. At that point, expect the specific ar-
rangement of equation (22) as

u(ξ) � a0 + a1ϕ + b1ψ, (23)

wherever a0, a1, and b1 are constants to be resolved.

Case 1 : for λ< 0, setting equation (23) in (22) and by
using (9) and (11), we get the following solution:

a0 � 0,

a1 � b1

��������

−
λ

λ2σ + μ2

􏽳

,

b1 � b1,

L � b1

�����������������
2cλ

6μ2δ + cb
2
1λ

2
+ 6δλ2σ

􏽳

,

V � −
2cb1λ

3 λ2σ + μ2􏼐 􏼑

�����������������

6μ2δ + cb
2
1λ

2
+ 6δλ2σ

2cλ

􏽳

.

(24)

Substituting these values in (23), we find to the
solution for the MCH equation (20) as the
structure:

u11(x, t) � b1

��������

−
λ

λ2σ + μ2

􏽳

×
C1

���
− λ

√
cosh(

���
− λ

√
ξ) + C2

���
− λ

√
sinh(

���
− λ

√
ξ)

C1sinh(
���
− λ

√
ξ) + C2cosh(

���
− λ

√
ξ) +(μ/λ)

+
b1

C1sinh(
���
− λ

√
ξ) + C2cosh(

���
− λ

√
ξ) +(μ/λ)

,

(25)

wherever

ξ � b1

�����������������
2cλ

6μ2δ + cb
2
1λ

2
+ 6δλ2σ

􏽳

x

−
2cb1λ

3 λ2σ + μ2􏼐 􏼑

�����������������

6μ2δ + cb
2
1λ

2
+ 6δλ2σ

2cλ

􏽳

t
α

Γ(1 + α)
,

σ � C
2
1 − C

2
2.

(26)

Since C1 and C2 are arbitrary constants, it may
be self-assertively picked. In the event that we
pick C1 � μ � 0 and C2 ≠ 0 in equation (25), we
get the solitary wave solution:

u12(x, t) � b1

�����

−
λ

λ2σ

􏽳

×
���
− λ

√
tanh(

���
− λ

√
ξ) + b1sech(

���
− λ

√
ξ).

(27)

Again, if we choose C1 ≠ 0 and C2 � μ � 0 in
equation (25), we will find the solitary wave
solution:

u13(x, t) � b1

�����

−
λ
λ2σ

􏽳

×
���
− λ

√
coth(

���
− λ

√
ξ) + b1 cos ech(

���
− λ

√
ξ),

(28)

wherever

ξ � b1

�����������������
2cλ

6μ2δ + cb
2
1λ

2
+ 6δλ2σ

􏽳

x

−
2cb1λ

3 λ2σ + μ2􏼐 􏼑

�����������������

6μ2δ + cb
2
1λ

2
+ 6δλ2σ

2cλ

􏽳

t
α

Γ(1 + α)
,

(29)

Case 2 : for λ> 0, setting equation (23) in (22) by using
(9) and (13), we get the resulting result:

a0 � 0,

a1 � b1

�����������

−
λ

− λ2σ + μ2􏼐 􏼑

􏽳

,

b1 � b1,

L � b1

�����������������
2cλ

6μ2δ + cb
2
1λ

2
− 6δλ2σ

􏽳

,

V � −
2cb1λ

3 − λ2σ + μ2􏼐 􏼑

�����������������

6μ2δ + cb
2
1λ

2
− 6δλ2σ

2cλ

􏽳

.

(30)

Substituting these values in (23), we find the
solution for the MCH equation (20) as the
structure:

u14(x, t) � b1

�����������

−
λ

− λ2σ + μ2􏼐 􏼑

􏽳

×
C1

�
λ

√
cos(

���
− λ

√
ξ) − C2

�
λ

√
sin(

���
− λ

√
ξ)

C1 sin(
�
λ

√
ξ) + C2 cos(

�
λ

√
ξ) +(μ/λ)

+
b1

C1sinh(
�
λ

√
ξ) + C2cosh(

�
λ

√
ξ) +(μ/λ)

,

(31)
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wherever

ξ � b1

�����������������
2cλ

6μ2δ + cb
2
1λ

2
− 6δλ2σ

􏽳

x

−
2cb1λ

3 − λ2σ + μ2􏼐 􏼑

�����������������

6μ2δ + cb
2
1λ

2
− 6δλ2σ

2cλ

􏽳

t
α

Γ(1 + α)
,

σ � C
2
1 + C

2
2.

(32)

It can be chosen arbitrarily, since C1 and C2 are
arbitrary constants. We get the solitary wave
solution by choosing C1 � μ � 0 and C2 ≠ 0 in
equation (31):

u15(x, t) � b1

�������

−
λ

− λ2σ􏼐 􏼑

􏽳

×
�
λ

√
tan(

�
λ

√
ξ) + b1sec(

�
λ

√
ξ).

(33)

Again, if we choose C1 ≠ 0 and C2 � μ � 0 in
equation (31), we will get the solitary wave
solution:

u16(x, t) �

�������

−
λ

− λ2σ􏼐 􏼑

􏽳

×
�
λ

√
tan(

�
λ

√
ξ) + b1sec(

�
λ

√
ξ),

(34)

wherever

ξ � b1

�����������������
2cλ

6μ2δ + cb
2
1λ

2
− 6δλ2σ

􏽳

x

−
2cb1λ

3 − λ2σ + μ2􏼐 􏼑

�����������������

6μ2δ + cb
2
1λ

2
− 6δλ2σ

2cλ

􏽳

t
α

Γ(1 + α)
.

(35)

Case 3 : in a similar arrangement, when λ � 0, setting
equation (23) in (22) by using (9) and (15), we
acquire

a0 �
λC2 +

���������

λ2C2
2 + C

2
1λ

􏽱

C
2
1

b1,

a1 � 0,

b1 � b1,

L �
2cb1

48C2 λC2 +

���������

λ2C2
2 + C

2
1λ

􏽱

􏼒 􏼓 − 24C
2
1λ − 96C

2
1λδ

,

V �
2cb1

576C
2
1C2 λC2 +

���������

λ2C2
2 + C

2
1λ

􏽱

􏼒 􏼓 − 24C
2
1λ − 96C

2
1λδ

2cb
2
1λC2

λC2 +

���������

λ2C2
2 + C

2
1λ

􏽱

C
2
1

24δC
2
1 + b

2
1cλ⎛⎜⎜⎝ ⎞⎟⎟⎠.

(36)

Substituting these values in (23), we achieve to
the rational function solution for the MCH
equation (20) as the structure:

u17(x, t) �
λC2 +

���������

λ2C2
2 + C

2
1λ

􏽱

C
2
1

b1 +
b1

(μ/2)ξ2 + C1ξ + C2
,

(37)
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wherever

ξ �
2cb1

48C2 λC2 +

���������

λ2C2
1 + C

2
1λ

􏽱

􏼒 􏼓 − 24C
2
1λ − 96C

2
1λδ

x

−
2cb1

576C
2
1C2 λC2 +

���������

λ2C2
2 + C

2
1λ

􏽱

􏼒 􏼓 − 24C
2
1λ − 96C

2
1λδ

2cb
2
1λC2

λC2 +

���������

λ2C2
2 + C

2
1λ

􏽱

C
2
1

+ 24δC
2
1 + b

2
1cλ⎛⎜⎜⎝ ⎞⎟⎟⎠

t
α

Γ(1 + α)
.

(38)

It is observable to see that the traveling wave
arrangements u11–u17 of our proposed MCH
equation are broadly new and general. *ese
picked up arrangements have not been checked
in the previous investigation. *ese arrange-
ments are advantageous to assign the above
expressed wonders.

4.2. Generalized (3 + 1)-Dimensional gCH-KP Equation.

D
α
t u + aux + buux + cD

α
t uxx( 􏼁x + c1uyy + c2uzz � 0,

(39)

describes the role of dispersion in the formation of patterns
in liquid drops, where a, b, c, c1, and c2 are nonzero constants
and Dα

t is the Riemann–Liouville fractional derivative of
u(t, x, y, z), 0 < α< 1 [20].

Introduce the following fractional transformation:

ξ � kx + ly + mz −
nt

α

Γ(1 + α)
. (40)

Applying equation (40) in (39), we have

k − nu′ + aku′ + bkuu′ − cnk
2
u
‴

􏼒 􏼓
′ + c1l

2
u″ + c2m

2
u″ � 0.

(41)

Integrating equation (41) two times and taking inte-
grating constant as zero, we obtain

cnk
3

+ nku − ak
2
u −

bk
2

2
u
2

− c1l
2
u − c2m

2
u � 0. (42)

Balancing linear and nonlinear higher-order term, we get
N� 2, which implies using (19) that

u(ξ) � a0 + a1ϕ + a2ϕ
2

+ b1ψ + b2ϕψ, (43)

where a0, a1, a2, b1, and b2 are constants to be resolved.

Case 1 : for λ< 0, setting equation (43) in (42), close to
(9) and (11), generates an arrangement of
mathematical equations by utilizing computer-
based math such as maple, and we get the
subsequent result.

Set 1:

a0 �
4kλnc

b
,

a1 � 0,

a2 �
6knc

b
,

b1 � −
6kncμ

b
,

b2 �
knc

b

������������

− 36 μ2 + λ2σ􏼐 􏼑

λ

􏽳

, k � k,

l �

���������������������

− ak
2

+ nk − c2m
2

+ k
3λnc

c1

􏽳

, m � m and n � n.

(44)

Set 2:

a0 �
6kλnc

b
,

a1 � 0,

a2 �
6knc

b
,

b1 � −
6kncμ

b
,

b2 �
knc

b

������������

− 36 μ2 + λ2σ􏼐 􏼑

λ

􏽳

,

k � k,

l �

���������������������

− ak
2

+ nk − c2m
2

+ k
3λnc

c1

􏽳

, m � m and n � n.

(45)

For Set 1, substituting these values in (43), we
get the solution for the gCH–KP equation (39)
as the structure
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u21(x, t) �
4kλnc

b
+
6knc

b
×

C1
���
− λ

√
cosh(

���
− λ

√
ξ) + C2

���
− λ

√
sinh(

���
− λ

√
ξ)

C1sinh(
���
− λ

√
ξ) + C2cosh(

���
− λ

√
ξ) +(μ/λ)

􏼠 􏼡

2

−
6kncμ

b
×

1
C1sinh(

���
− λ

√
ξ) + C2cosh(

���
− λ

√
ξ) +(μ/λ)

+
knc

b
×

�������������

− 36 μ2 + λ2σ􏼐 􏼑

λ

􏽳

⎛⎜⎜⎝ ⎞⎟⎟⎠

×
C1

���
− λ

√
cosh(

���
− λ

√
ξ) + C2

���
− λ

√
sinh(

���
− λ

√
ξ)

C1sinh(
���
− λ

√
ξ) + C2cosh(

���
− λ

√
ξ) +(μ/λ)􏼐 􏼑

2,

(46)

where
ξ � kx +

���������������������������
((− ak2 + nk − c2m

2 + k3λnc)/c1)
􏽰

y +

mz − (ntα/(Γ(1 + α))) and σ � C2
1 − C2

2.

Since C1 and C2 are arbitrary constants, it may
be self-assertively picked. We get the following
solitary wave solution by choosing C1 � μ � 0
and C2 ≠ 0 in equation (46):

u22(x, t) �
4kλnc

b
+
6knc

b
(

���
− λ

√
)
2tanh2(

���
− λ

√
ξ) +

knc

b

��������

− 36 λ2σ􏼐 􏼑

λ

􏽳

⎛⎜⎜⎝ ⎞⎟⎟⎠
���
− λ

√
tanh(

���
− λ

√
ξ)sech(

���
− λ

√
ξ). (47)

Again, we get the following solitary wave so-
lution by choosing C1 ≠ 0 and C2 � μ � 0 in
equation (46):

u23(x, t) �
4kλnc

b
+
6knc

b
(

���
− λ

√
)
2coth2(

���
− λ

√
ξ) +

knc

b

×

���������

− 36 λ2σ􏼐 􏼑

λ

􏽳

⎛⎜⎜⎝ ⎞⎟⎟⎠
���
− λ

√
coth(

���
− λ

√
ξ)cos ech(

���
− λ

√
ξ),

(48)

where
ξ � kx +

���������������������������
((− ak2 + nk − c2m

2 + k3λnc)/c1)
􏽰

y +

mz − (ntα/(Γ(1 + α))) and σ � C2
1 − C2

2.

Similarly, for Set 2, substituting these values in
(43), we get the solution for the gCH–KP
equation (39) as the structure:

u24(x, t) �
6kλnc

b
+
6knc

b
×

C1
���
− λ

√
cosh(

���
− λ

√
ξ) + C2

���
− λ

√
sinh(

���
− λ

√
ξ)

C1sinh(
���
− λ

√
ξ) + C2cosh(

���
− λ

√
ξ) +(μ/λ)

􏼠 􏼡

2

−
6kncμ

b
×

1
C1sinh(

���
− λ

√
ξ) + C2cosh(

���
− λ

√
ξ) +(μ/λ)

+
knc

b

×

������������

− 36 μ2 + λ2σ􏼐 􏼑

λ

􏽳

⎛⎜⎜⎝ ⎞⎟⎟⎠ ×
C1

���
− λ

√
cosh(

���
− λ

√
ξ) + C2

���
− λ

√
sinh(

���
− λ

√
ξ)􏼐 􏼑

C1sinh(
���
− λ

√
ξ) + C2cosh(

���
− λ

√
ξ) +(μ/λ)􏼐 􏼑

2 ,

(49)

where ξ � kx +
������������������������
((− ak2 + nk − c2m

2 + k3λnc)
􏽰

/c1)y + mz − (ntα/(Γ(1 + α))) and σ � C2
1 − C2

2.
Since C1 and C2 are arbitrary constants, it may
be self-assertively picked. We get the following
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solitary wave solution by choosing C1 � μ � 0,

and C2 ≠ 0 in equation (49):

u25(x, t) �
6kλnc

b
+
6knc

b
(

���
− λ

√
)
2tanh2(

���
− λ

√
ξ) +

knc

b

��������

− 36 λ2σ􏼐 􏼑

λ

􏽳

⎛⎜⎜⎝ ⎞⎟⎟⎠
���
− λ

√
tanh(

���
− λ

√
ξ)sech(

���
− λ

√
ξ). (50)

Again, we get the following solitary wave so-
lution by choosing C1 ≠ 0 and C2 � μ � 0 in
equation (49):

u26(x, t) �
6kλnc

b
+
6knc

b
(

���
− λ

√
)
2coth2(

���
− λ

√
ξ) +

knc

b
×

��������

− 36 λ2σ􏼐 􏼑

λ

􏽳

⎛⎜⎜⎝ ⎞⎟⎟⎠
���
− λ

√
coth(

���
− λ

√
ξ)cos ech(

���
− λ

√
ξ), (51)

where
ξ � kx +

���������������������������
((− ak2 + nk − c2m

2 + k3λnc)/c1)
􏽰

y +

mz − (ntα/(Γ(1 + α))) and σ � C2
1 − C2

2.
Case 2 : with the same system, when λ> 0, putting

equation (43) in (42) close by (9) and (13)

generates an arrangement of mathematical
equations by utilizing computer-based math
such as maple, we get the result as follows.

Set 1:

a0 �
4kλnc

b
,

a1 � 0,

a2 �
6knc

b
,

b1 � −
6kncμ

b
,

b2 �
knc

b

�����������

36 λ2σ − μ2􏼐 􏼑

λ

􏽳

, k � k,

l �

���������������������

− ak
2

+ nk − c2m
2

+ k
3λnc

c1

􏽳

, m � m and n � n.

(52)

Set 2:

a0 �
6kλnc

b
,

a1 � 0,

a2 �
6knc

b
,

b1 � −
6kncμ

b
,

b2 �
knc

b

�����������

36 λ2σ − μ2􏼐 􏼑

λ

􏽳

, k � k,

l �

���������������������

− ak
2

+ nk − c2m
2

+ k
3λnc

c1

􏽳

, m � m and n � n.

(53)
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For Set 1, substituting these values in (43), we
get the solution for the gCH–KP equation (39)
as the structure:

u27 �
4kλnc

b
+
6knc

b
×

C1
�
λ

√
cos(

�
λ

√
ξ) − C2

�
λ

√
sin(

�
λ

√
ξ)

C1sinh(
���
− λ

√
ξ) + C2cosh(

���
− λ

√
ξ) +(μ/λ)

􏼠 􏼡

2

−
6kncμ

b

×
1

C1 sin(
�
λ

√
ξ) + C2 cos(

�
λ

√
ξ) +(μ/λ)

+
knc

b
×

�����������

36 λ2σ − μ2􏼐 􏼑

λ

􏽳

⎛⎜⎜⎝ ⎞⎟⎟⎠

×
C1

�
λ

√
cos(

�
λ

√
ξ) − C2

�
λ

√
sin(

�
λ

√
ξ)

C1 sin(
�
λ

√
ξ) + C2 cos(

�
λ

√
ξ) +(μ/λ)􏼐 􏼑

2,

(54)

where
ξ � kx +

���������������������������
((− ak2 + nk − c2m

2 + k3λnc)/c1)
􏽰

y +

mz − (ntα/(Γ(1 + α))) and σ � C2
1 + C2

2.

Since C1 andC2 are arbitrary constants, it might
be self-assertively picked. *e following solitary
wave solution can be found by choosing C1 �

μ � 0 and C2 ≠ 0 in equation (54):

u28(x, t) �
4kλnc

b
+
6kλnc

b
tan2(

�
λ

√
ξ) −

knc

b

�������

36 λ2σ􏼐 􏼑

λ

􏽳

⎛⎜⎜⎝ ⎞⎟⎟⎠
�
λ

√
tan(

�
λ

√
ξ)sec(

�
λ

√
ξ). (55)

Again, by choosing C1 ≠ 0 and C2 � μ � 0 in
equation (54), the following solitary wave so-
lution can be obtained:

u29(x, t) �
4kλnc

b
+
6kλnc

b
cot2(

�
λ

√
ξ) +

knc

b

�������

36 λ2σ􏼐 􏼑

λ

􏽳

⎛⎜⎜⎝ ⎞⎟⎟⎠
�
λ

√
cot(

�
λ

√
ξ)cos ec(

�
λ

√
ξ), (56)

where ξ � kx +
������������������������
((− ak2 + nk − c2m

2 + k3λnc)
􏽰

/c1)y + mz − (ntα/(Γ(1 + α))) and σ � C2
1 + C2

2.
Case 3 : at last, when λ � 0, putting equation (43) in

(42) along with equations (9) and (15), we will

reach a set of mathematical equations having
the solutions.

Set 1:

Mathematical Problems in Engineering 9



a0 � −
1

bk
2 ak

2
− nk + c2m

2
− 11cnλk

3
+

����������������������������

− c1
��
73

√
cnk

3λ + c2m
2

− nk + ak
2

􏼐 􏼑

􏽱

􏼒 􏼓,

a1 � 0,

a2 �
12knc

b
,

b1 � −
12knc

b
λC2 +

���������

λ2C2
2 − λC

2
1

􏽱

􏼒 􏼓,

b2 � 0,

k � k,

l �

��������������������������
c1

��
73

√
cnk

3λ − c2m
2∓nk − ak

2
􏼐 􏼑

􏽱

c1
, m � m and n � n.

(57)

Set 2:

a0 � a0,

a1 � a1,

a2 �
b1C2 bb1C2 + cnkC

2
1􏼐 􏼑

kC
4
1cn

,

b1 � b1,

b2 � 0.

(58)

For set 1, substituting these values into (43), we
get the solution for the gCH–KP equation (39)
as the structure:

u210 � −
1

bk
2×

ak
2

− nk + c2m
2

− 11cnλk
3

+

����������������������������

− c1
��
73

√
cnk

3λ + c2m
2

− nk + ak
2

􏼐 􏼑

􏽱

􏼒 􏼓

+
12knc

b
×

μξ + C1

(μ/2)ξ2 + C1ξ + C2
􏼠 􏼡

2

−
12knc

b
× λC2 +

���������

λ2C2
2 − λC

2
1

􏽱

􏼒 􏼓 ×
1

(μ/2)ξ2 + C1ξ + C2
􏼠 􏼡,

(59)

where
ξ � kx + ((

��������������������������

c1(
��
73

√
cnk3λ − c2m

2∓nk − ak2)

􏽱

)

/c1)y + mz − (ntα/(Γ(1 + α))).
It is essential to see that, for the aftereffect of the
constants given in set 2 for both in (case 2, and
case 3), we achieve new and simpler solitary
wave solutions whose are additionally valuable
to examine the above-stated matter. For
plainness, the solutions have been excluded
from this section.

5. Brief Discussion and Graphical
Representation Discussion

*e specific arrangements accomplished from the current
method are novel and not quite the same as the existing
procedure which is built by different authors. We utilized
proposed DEM to get general arrangements. In this study, a
group of traveling wave arrangements as obscure boundaries
are acquired. Achieved traveling wave solutions show var-
ious types of solitary waves when particular values are given

10 Mathematical Problems in Engineering
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Figure 1: 3D (left section), 2D (middle section), and contour (right section) for u12(x, t) when C1 � 0, C2 � 1, μ � 0, λ � − 1, b1 � 1, σ � 1,
L � 1, V � 1, α � (1/2), 0≤ t≤ 10, and 0≤x≤ 10. (a) *ree-dimensional plotline. (b) Two-dimensional plotline. (c) Plot of contour.
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Figure 2: 3D (left section), 2D (middle section), and contour (right section) plots represent to the kink wave solution of u13(x, t) when
C1 � 1, C2 � 0, μ � 0, λ � − 1, b1 � 1, σ � 1, L � 1, V � 1, α � (1/2), 0≤ t≤ 10, and 0≤x≤ 10. (a) *ree-dimensional plotline. (b) Two-di-
mensional plotline. (c) Plot of contour.
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Figure 3: 3D (left section), 2D (middle section), and contour (right section) plots represent to the periodic wave solution of u15(x, t) when
C1 � 0, C2 � 1, μ � 0, λ � 1, b1 � 1, σ � 1, L � 1, V � 1, α � (1/2), 0≤ t≤ 10, and 0≤ x≤ 10. (a) *ree-dimensional plotline. (b) Two-di-
mensional plotline. (c) Plot of contour.
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Figure 4: 3D (left section), 2D (middle section), and contour (right section) plots represent solitary wave solution of u16(x, t) when
C1 � 1, C2 � 0, μ � 0, λ � 1, b1 � 1, σ � 1, L � 1, V � 1, α � (1/2), 0≤ t≤ 10, and 0≤ x≤ 10. (a) *ree-dimensional plotline. (b) Two-di-
mensional plotline. (c) Plot of contour.
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Figure 5: 3D (left section), 2D (middle section), and contour (right section) plots represent bright-dark wave solution of u17(x, t) when
C1 � 1, C2 � 0, μ � 0, λ � 0, a1 � 0, a2 � 0, b2 � 0, b1 � 1, L � 1, V � 1, α � (1/2), 0≤ t≤ 10, and 0≤x≤ 10. (a) *ree-dimensional plotline.
(b) Two-dimensional plotline. (c) Plot of contour.
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Figure 6: 3D (left section), 2D (middle section), and contour (right section) plots represent dark soliton solution of u22(x, t) when
C1 � 0, C2 � 1, μ � 0, c � 1, k � 1, n � 1, λ � − 1, b � 1, σ � 1, l � 1, m � 1, α � (1/2), y � z � 0, 0≤ t≤ 10, and 0≤x≤ 10. (a) *ree-dimen-
sional plotline. (b) Two-dimensional plotline. (c) Plot of contour.
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Figure 7: 3D (left section), 2D (middle section), and contour (right section) plots represent bright soliton solution of u23(x, t) when
C1 � 1, C2 � 0, μ � 0, c � 1, k � 1, n � 1, λ � − 1, b � 1, σ � 1, l � 1, m � 1, α � (1/2), y � z � 0, 0≤ t≤ 10, and 0≤x≤ 10. (a) *ree-di-
mensional plotline. (b) Two-dimensional plotline. (c) Plot of contour.
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Figure 8: 3D (left section), 2D (middle section), and contour (right section) plots represent periodic wave solution of u25(x, t) when
C1 � 0, C2 � 1, μ � 0, c � 1, k � 1, n � 1, λ � 1, b � 1, σ � 1, l � 1, m � 1, α � (1/2), y � z � 0, 0≤ t≤ 10, and 0≤ x≤ 10. (a) *ree-dimen-
sional plotline. (b) Two-dimensional plotline. (c) Plot of contour.
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Figure 9: 3D (left section), 2D (middle section), and contour (right section) plots represent periodic solitary wave solution of u26(x, t) when
C1 � 1, C2 � 0, μ � 0, c � 1, k � 1, n � 1, λ � 1, b � 1, σ � 1, l � 1, m � 1, α � (1/2), y � z � 0, 0≤ t≤ 10 and 0≤ x≤ 10. (a) *ree-dimen-
sional plotline. (b) Two-dimensional plotline. (c) Plot of contour.
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to its unknown parameters such as Kink wave and singular
kink wave, single soliton, periodic wave, bright soliton, dark
soliton, and combined dark-bright solitary wave solutions in
Figures 1–10. From attained solutions, some solutions
cannot be created by other methods such as the exp
(− ψ(ξ))-expansion method [24] and modified simple
equation method [25]. *erefore, some solutions are novel
from earlier constructed solutions in the literature. We also
demonstrate all the figures in this study which have been
represented in three arrangements such as 3D plot, 2D plot,
and contour plot within the specified domain 0≤ t≤ 10 and
− 10≤x≤ 10 (see Figures 1–10). Mathematica, a computa-
tion package application, was used to construct all of the
figures. In order to observe the physical appearance of these
models, the structure of figures is depicted via giving suitable
values of parameters.

6. Results’ Comparison

It is amazing to observe that some of the achieved solutions
demonstrate good similarity with earlier established solu-
tions. A comparison of the solutions of Liu et al. [23] and
obtained solutions is presented in Table 1.

*e hyperbolic and rational function solutions alluded to
in the above table are comparative, and for setting the
definite values of the arbitrary constants, they are

indistinguishable. In a nutshell, it is substantial to realize that
the TWS u21(x, t), u23(x, t), u24(x, t), u26(x, t), u27(x, t),

u28(x, t), and SWS u29(x, t) of the fractional gCH-KP
equation all are recent and very much significant, which
were not originally in the previous works. *e time-frac-
tional gCH-KP equation is also solved by the bilinear and
RBF method [19]. It can be seen from here that the RBF
method gives a high-precision numerical solution of the
fractional differential equation. Applying our proposed
DEM on the mentioned equation, we acquire hyperbolic,
trigonometric, and rational function solution containing
parameters which are fresh and further general. *e ob-
tained solutions are capable to examine the role of dispersion
in the formation of patterns in liquid drops and shallow
water waves with peakon solutions ensued in plasma
physics, optical fibers, fluid flow, fission and fusion phe-
nomena, control theory, and some other areas.

7. Conclusion

In this study, we have successfully established the more and
further general stable solitary wave solitary wave solutions
with assorted physical structures which appeal wide atten-
tion to physicist, engineers, and mathematicians to the new
solutions of space-time fractional MCH and space-time
fractional gCH-KP equation in the light of
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Figure 10: 3D (left section), 2D (middle section), and contour (right section) plots represent singular kink type wave solution of u27(x, t)

when C1 � − 1, C2 � 0, μ � 0, c � 1, k � 1, n � 1, λ � 0, b � 1, σ � 1, l � 1, m � 1, a � 1, α � (1/2), y � z � 0, 0≤ t≤ 10, and 0≤x≤ 10.

(a) *ree-dimensional plotline. (b) Two-dimensional plotline. (c) Plot of contour.

Table 1: Comparison between Liu et al. [23] solutions and our solutions to the gCH-KP equation.

Liu et al. [23] Obtained solutions

If A � 3 and B � 2, then equation (16) becomes
u(t, x, y, z) � 1 − tanh2((1/

�
2

√
)|kx + ly + mz − (ntα/(Γ(1 + α)))|).

If C1 � μ � σ � 0, λ � − 1, c � 1, b � 1, andC2 � 1, then the
obtained solution u22(x, t) becomes

u22(x, t) � − 4k + 6kn tanh2(kx + ly + mz − (ntα/(Γ(1 + α))))

If A � 1 and B � − 2, then equation (23) becomes
u(t, x, y, z) � 1 − 3 tanh2((1/

�
2

√
)|kx + ly + mz − (ntα/(Γ(1 + α)))|)

If C1 � μ � σ � 0, λ � − 1, c � 1, b � 1, andC2 � 1, then the
obtained solution u25(x, t) becomes

u22(x, t) � − 6k + 6kn tanh2(kx + ly + mz − (ntα/(Γ(1 + α))))

If A � 6 and B � 0, then equation (25) becomes
u(t, x, y, z) � (1/(kx + ly + mz − (ntα/(Γ(1 + α))))2)

If b � 1, a � 0, C1 � − 1, c � 1, λ � 0, C2 � 0, and μ � 0, then the
obtained solution u27(x, t) becomes

u210(x, t) � (kn/(kx + ly + mz − (ntα/(Γ(1 + α))))2)
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Riemann–Liouville fractional derivative by implementing
the novel approach DEM. *e depiction of the solutions are
in the form of hyperbolic, trigonometric, and rational
functions including kink wave, antikink wave, dark, bright,
singular, combined, optical solitons, periodic wave, and
traveling wave, and some new types of solitary wave solu-
tions are discovered which expose the phenomena relating to
plasma physics, optical fibers, fluid flow, fission and fusion
phenomena, acoustics, control theory, viscoelasticity, geo-
physics, nonlinear mechanics, protein chemistry, and
chemical kinematics. *e physical significance of the ob-
tained solutions for the definite values of the associated
parameters is analyzed graphically with 2D, 3D, and contour
shape. *e solutions achieved in this study have been ob-
served with maple by placing them back into NLFDEs and
found precise. It is possible to conclude that the adopted
method is direct, reliable, effective, and conformable and
provides many new physical model solutions to NLPFEEs
that arise in mathematical physics, applied mathematics, and
engineering.
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-e closed-form wave solutions to the time-fractional Burgers’ equation have been investigated by the use of the two variables
((G′/G), (1/G))-expansion, the extended tanh function, and the exp-function methods translating the nonlinear fractional
differential equations (NLFDEs) into ordinary differential equations. In this article, we ascertain the solutions in terms of tanh,
sech, sinh, rational function, hyperbolic rational function, exponential function, and their integration with parameters. Advanced
and standard solutions can be found by setting definite values of the parameters in the general solutions. Mathematical analysis of
the solutions confirms the existence of different soliton forms, namely, kink, single soliton, periodic soliton, singular kink soliton,
and some other types of solitons which are shown in three-dimensional plots.-e attained solutions may be functional to examine
unidirectional propagation of weakly nonlinear acoustic waves, the memory effect of the wall friction through the boundary layer,
bubbly liquids, etc. -e methods suggested are direct, compatible, and speedy to simulate using algebraic computation schemes,
such as Maple, and can be used to verify the accuracy of results.

1. Introduction

-e nonlinear fractional evolution equations (NLFEEs)
emerge frequently in diverse research field of science and
applications of engineering. -e fractional derivative has
been happening in numerous physical problems, for ex-
ample, recurrence subordinate damping conduct of mate-
rials, motion of an enormous meager plate in a Newtonian
fluid, creep and relaxation functions for viscoelastic mate-
rials, and PIλDμ controller for the control of the dynamical
system. Fractional-order differential equations describe the
phenomena. -e fractional-order differential equations are
broadly used as generalizations of conventional differential
equations with the integral order to explain different in-
tricate phenomena in numerous fields including the diffu-
sion of biological populations, electric circuit, fluid flow,
chemical kinematics, control theory, signal processing,
optical fiber, plasma physics, solid-state physics, and other

areas [1–5]. -e concepts of dissipation, dispersion, diffu-
sion, convection, and reaction are closely related to the
abovestated phenomena, and nonlinear fractional partial
differential equations (NLFPDEs) can be used to evaluate
them exactly. Wave shape has an effect on sediment
transport and beachmorpho dynamics, while wave skewness
has an impact on radar altimetry signals, and asymmetry has
an impact on ship responses to wave impacts. Traveling wave
solutions are a special class of analytical solutions for
NLFEEs. Solitary waves are transmitted traveling waves with
constant speeds and shapes that achieve asymptotically zero
at distant locations. -e appearance of solitary waves in
nature is rather frequent in plasmas, fluids dynamics, solid-
state physics, condensed matter physics, chemical kine-
matics, optical fibers, electrical circuits, bio-genetics, elastic
media, etc. Consequently, it is important to search for the
exact traveling wave solutions of NLFPDEs to understand
the facts. -erefore, many researchers have been motivated
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on finding the exact solutions to nonlinear fractional-order
differential equations, and significant progress has been
made in analyzing the exact solutions of these types of
equations. -e major challenges, however, are that there is
no unified numerical or analytical approach that can in-
vestigate all sorts of nonlinear fractional-order differential
equations. -us, several numerical and theoretical methods
for finding solutions for NLFDEs have been established, for
example, the differential transformation method [6, 7], the
variational iteration method [8–10], the fractional sub-
equation method [11], the Kudryashov [12] method, the
homotopy perturbation method [13, 14], the homotopy
analysis method [15], the exp-function method [16, 17], the
(G′/G)-expansion method and its various modification
[18–22], the Chelyshkov polynomial method [23, 24], the
multiple exp-function method [25], the finite difference
method [26], the finite element method [27], the first in-
tegral method [28, 29], the modified simple equation
method [30], the reproducing kernel method [31], the two
variables ((G′/G), (1/G))-expansion method [32, 33], and
the Picard technique [34].

-e time-fractional Burgers’ equation is crucial for
modeling shallow water waves, weakly nonlinear acoustic
waves propagating unidirectionally in gas-filled tubes, and
bubbly liquids. Inc [9] studied the approximate and exact
solutions to the time-fractional Burgers’ equation by the
variational iteration method. Bekir and Guner [35] estab-
lished the exact solution to the mentioned equation by using
the (G′/G)-expansion method. Bulut et al. [36] examined
the analytical approximate solution to the suggested equa-
tion through the modified trial equation method. Recently,
Saad and Al-Sharif [37] studied the exact and analytical
solutions to this equation. As far as is known, the stated
equation has not been investigated through the two variables
(((G′/G), (1/G)))-expansion technique, exp-function strat-
egy, and expanded tanh function method.-erefore, the aim
of this study is to establish further general and some fresh
solutions of the abovementioned equation using the sug-
gested methods.

-e residual segments of the article is schematized as
follows: in Section 2, definition and preliminaries have been
introduced; in Section 3, the two variables
((G′/G), (1/G))-expansion method, the exp-function
method, and the extended tanh function method have been
described. In Section 4, the exact solutions to the suggested
equation have established. In Section 5, physical interpre-
tation and explanation of the extracted solutions are pro-
vided. In the lattermost part, the conclusions are given.

2. Definition and Preliminaries

Supposef: [0,∞)⟶ R be a function. -e α-order con-
formable derivative of f is interpreted as [38]

Tα(f)(t) � lim
ε⟶0

f t + εt1− α
􏼐 􏼑 − f(t)

ε
, (1)

for every t> 0 and α ∈ (0, 1). If f is α-differentiable in some
(0, a), a> 0, and lim

t⟶0+
f(α)(t) exists; then,

f(α)(0) � lim
t⟶0+

f(α)(t). -e following theorems point out
few axioms that are satisfied conformable derivatives.

Theorem 1. Consider α ∈ (0, 1] and let us suppose f and g

be α-differentiable at a point t> 0. 8erefore,

(i) Tα(cf + dg) � cTα(f) + dTα(g), for all
c and d ∈ R

(ii) Tα(tp) � ptp− α, for all p ∈ R
(iii) Tα(c) � 0, for all constant function f(t) � c

(iv) Tα(fg) � fTα(g) + gTα(f)

(v) Tα(f/g) � ((gTα(f) − fTα(g))/g2)

(vi) In addition, if f is differentiable, then
Tα(f)(t) � t1− α(df/dt)

Some more properties including the chain rule, Gronwall’s
inequality, some integration techniques, Laplace transform,
Tailor series expansion, and exponential function with respect
to the conformable fractional derivative are explained in [38].

Theorem 2. Let f be an α-differentiable function in con-
formable differentiable, and suppose that g is also differen-
tiable and defined in the range of f. 8en,

Tα(f ∘g)(t) � t
1− α

g′(t)fg(t). (2)

-e Caputo derivative is another important fractional
derivative concept developed by Michele Caputo [39]. -is
definition is particularly useful for finding numerical so-
lutions. -e definition of Riesz [40, 41] in relation to the
fractional derivative, on the contrary, is also important for
extracting numerical solutions. -e two concepts are not
discussed in depth here since the aim of this article is to
establish exact solutions.

3. Outline of the Methods

In this part, we summarize the principal parts of the sug-
gested methods to analyze exact traveling wave solutions to
the NLFEEs. Assume the general NLFEE is of the form

P u, D
α
t u, D

β
xu, D

α
t D

α
t u, D

α
t D

β
xu, D

β
xD

β
x, . . .􏼐 􏼑 � 0,

0< α≤ 1 and 0< β≤ 1,
(3)

where u represents an unknown function, consisting the spatial
derivative x and temporal derivative t, and P represents a
polynomial of u(x, t) and its derivatives where the highest
order of derivatives and nonlinear terms of the highest order
are associated. Take into account the wave transformation

ξ � k
x
β

β
+ c

t
α

α
,

u(x, t) � u(ξ),

(4)

where c and k are nonzero arbitrary constants.
By means of wave transformation (4), equation (3) can

be rewritten as
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R u, u′, u″, u″′, . . .( 􏼁 � 0, (5)

where the superscripts specify the ordinary derivative of u

relating to ξ.

3.1. 8e Two Variables ((G′/G), (1/G))-Expansion Method.

Step 1: In this subsection, we apply the two variables
((G′/G), (1/G))-expansion method to acquire the wave
solutions of the NLFEEs. Take into account the second
order ODEs

G″(ξ) + λG(ξ) � μ, (6)

along with the following relations

ϕ �
G′
G

,

ψ �
1
G

.

(7)

In this manner, it gives

ϕ′ � − ϕ2 + μψ − λ,

ψ′ � − ϕψ.
(8)

-e solutions to equation (6) depend on λ as
λ< 0, λ> 0, and λ � 0.
Case 1: when λ< 0, the general solution to equation (6)
is

G(ξ) � A1sinh(
���
− λ

√
ξ) + A2cosh(

���
− λ

√
ξ) +

μ
λ

. (9)

In view of that, we obtain

ψ2
�

− λ
λ2σ + μ2

ϕ2 − 2μψ + λ􏼐 􏼑, (10)

where σ � A2
1 − A2

2.
Case 2: if λ> 0, the solution to (6) is given as follows:

G(ξ) � A1 sin(
�
λ

√
ξ) + A2 cos(

�
λ

√
ξ) +

μ
λ

. (11)

-erefore, we obtain

ψ2
�

λ
λ2σ − μ2

ϕ2 − 2μψ + λ􏼐 􏼑, (12)

where σ � A2
1 + A2

2.
Case 3: when λ � 0, the solution of equation (6) is

G(ξ) �
μ
2
ξ2 + A1ξ + A2. (13)

-erefore, we find

ψ2
�

1
A
2
1 − 2μA2

ϕ2 − 2μψ􏼐 􏼑. (14)

where A1 and A2 are arbitrary constants.
Step 2: in agreement with two variables
((G′/G), (1/G))-expansion scheme, the solution of (5)
is presented as a polynomial of ϕ and ψ of the form

u(ξ) � 􏽘
N

i�0
aiϕ

i
+ 􏽘

N

i�1
biϕ

i− 1ψ, (15)

where ai and bi are arbitrary constants to be deter-
mined later.
Step 3: after balancing the maximum order of deriv-
atives and nonlinear terms, which appear in equation
(5), it can be fixed the positive integer N.
Step 4: setting (15) into (5) along with (8) and (10), this
modifies to a polynomial in ϕ and ψ having the degree
of ψ as one or less than one. If we compare the
polynomial of similar terms to zero, then it will give a
set of mathematical equations which can be unraveled
by computational software and finally yield the values
of ai, bi, μ, A1, A2, and λ, where λ< 0; this condition
provides solutions of the hyperbolic function.
Step 5: in a similar manner, we can examine the values
of ai, bi, μ, A1, A2, and λ, and trigonometric and ra-
tional solutions can be established separately for the
case of λ> 0 and λ � 0.

3.2. 8e Exp-Function Method. Within this section, the key
components of the exp-function method are described for
searching the traveling wave solution to the NLFDEs.

Step 1: the arrangement is to be communicated in the
shape as indicated by the exp-function method:

u(ξ) �
􏽐

d
n�− c pnexp(nξ)

􏽐
q
m�− p qmexp(mξ)

, (16)

where c, d, p, and q are unknown positive integers,
which can be evaluated later, and pn and qm are un-
identified constants.
Step 2: the balancing principle between the highest-
order linear and nonlinear terms presented in (5) and
substituting (16) into (5) yield c and p, and the balance
of lowest-order linear and nonlinear terms yields the
values of d and q.
Step 3: introducing (16) into (5) and setting the co-
efficient of exp(nξ) to zero provides an arrangement of
set of mathematical equations for pn, qm, c, and k.-en,
unraveling the set with the aid of computer software,
such as Maple, we attain the constants.
Step 4: substituting the values that showed up in step 3
into (16), we ascertain exact solutions to the NLFEEs in
(3).

3.3.8eExtendedTanh FunctionMethod. In this section, the
suggested extended tanh function method has been inter-
preted to obtain ample exact solutions to NLFEEs which was
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summarized by Wazwaz [42]. -e basic concept of this
method is to present the solution as a polynomial of hy-
perbolic functions, and then, solving the coefficient of
tanh(μξ) implies solving a system of algebraic equations.-e
core steps of the extended tanh function method for finding
exact analytic solutions of nonlinear PDEs of the fractional
order are as follows:

Step 1: we consider the wave solution as follows:

u(ξ) � 􏽘
N

i�0
aiY

i
+ 􏽘

n

i�1
biY

− i
, (17)

wherein

Y � tanh(μξ), (18)

where μ is any arbitrary constant.
Step 2: taking uniform balance between the maximum
order nonlinear term and the derivative of the maxi-
mum order appearing in equation (5) to determine the
positive constant N.
Step 3: substitute solution (17) together with (18) into
equation (5) with the value of n acquired in step 2,
which yields the polynomials in Y. A set of algebraic
equations for ai’s and bi’s are found by setting each the
coefficient of the resulted polynomials to zero. With the
help of symbolic computational software, namely,
Maple, this set of equations for ai and bi can be solved.
Step 4: inserting the values that appeared in step 3 into
equation (17) along with equation (18), we construct
closed-form traveling wave solutions of nonlinear
evolution equation (3).

4. Analysis of the Solutions

Here, we search further comprehensive exact analytic wave
solutions for the stated time-fractional Burgers’ equation by
means of the suggested methods. Let us consider the time-
fractional Burgers’ equation as follows:

D
α
t + puux − vuxx � 0; t> 0 and 0< α≤ 1, (19)

where p and v are arbitrary constants.-e physical processes
of unidirectional propagation of weakly nonlinear acoustic
waves through a gas-filled pipe are described by the time-
fractional Burgers’ equation.-e fractional derivative results
are obtained from the memory effect of the wall friction
through the boundary layer. -e similar formation can be
found in several systems, namely, waves in bubbly liquids

and shallow water waves. For equation (19), we recommend
the subsequent wave transformation:

ξ � k
x
α

α
− c

t
α

α
,

u(x, t) � u(ξ),

(20)

where c be the velocity of the traveling wave. For wave
transformation (20), time-fractional Burgers’ equation (19)
reduced to the ensuing integral order differential equation:

− cu′ + kpuu′ − k
2
vu″ � 0. (21)

Integrating equation (21) with zero constant, we obtain

− cu +
kpu

2

2
− k

2
vu′ � 0. (22)

4.1. Solutions through Two Variables ((G′/G), (1/G))-Ex-
pansion Method. Considering the homogeneous balance of
the highest-order nonlinear term and highest-order deriv-
ative showing up in equation (22), the arrangements of
equation (15) accept the shape

u(ξ) � a0 + a1ϕ(ξ) + b1ψ(ξ), (23)

where a0, a1, and b1 are constants to be determined.

Case 1: for λ< 0, embedding solution (23) into (22)
along with equations (8) and (10) yields a set of al-
gebraic equations, and by explaining these equations by
computer algebra such as Maple, we achieve the fol-
lowing results:

a0 � ± λb1

�������
1

λ2σ + μ2

􏽳

,

a1 � ± b1

��������
λ

− λ2σ − μ2

􏽳

,

c � ±
p
2λb

2
1

���
− λ

√

v λ2σ + μ2􏼐 􏼑
,

k � ±
b1p

���
− λ

√

v
���������
λ2σ + μ2􏼐 􏼑

􏽱 .

(24)

Inserting the top values into solution (23), we find the
solution to equation (19) in the form

u11(x, t) � ± λb1

�������
1

λ2σ + μ2

􏽳

± b1

��������
λ

− λ2σ − μ2

􏽳

×

���
− λ

√
A1cosh(

���
− λ

√
ξ) + A2sinh(

���
− λ

√
ξ)􏼐 􏼑

A1sinh(
���
− λ

√
ξ) + A2cosh(

���
− λ

√
ξ) +(μ/λ)

± b1 ×
1

A1sinh(
���
− λ

√
ξ) + A2cosh(

���
− λ

√
ξ) +(μ/λ)

,

(25)
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where σ � A2
1 − A2

2 and ξ � ± ((b1p
���
− λ

√
)/(v���������

(λ2σ + μ2)
􏽱

)) (xα/α)∓ ((p2λb21

���
− λ

√
)/(v(λ2σ + μ2)))

(tα/α).
Since A1 and A2 are basic constants, one might have
picked self-assertively their values. If we take μ � 0 and
(A1 � 0, A2 ≠ 0) or (A1 ≠ 0, A2 � 0) in (25), we have

u12(x, t) � ±
b1��
σ

√ ±
b1����
− λσ

√ tanh(
���
− λ

√
ξ) + b1 sech(

���
− λ

√
ξ),

(26)

u13(x, t) � ±
b1��
σ

√ ±
b1����
− λσ

√ coth(
���
− λ

√
ξ) + b1 cosech(

���
− λ

√
ξ),

(27)

where ξ � ± ((b1p
���
− λ

√
)/(v

���������

(λ2σ + μ2)
􏽱

)) (xα/α)∓
((p2λb21

���
− λ

√
)/(v(λ2σ + μ2)))(tα/α).

Case 2: in a comparative way, when λ> 0, substituting
(23) into (22) together with (8) and (12) yields an
arrangement of algebraic equations for a0, a1, b1, and ω,

and we acquire the following results by working out
these equations:

a0 � ± λb1

��������
1

− λ2σ + μ2

􏽳

,

a1 � ± b1

�������
λ

λ2σ − μ2

􏽳

,

c � ±
p
2λb

2
1

���
− λ

√

v − λ2σ + μ2􏼐 􏼑
,

k � ±
b1p

���
− λ

√

v
����������
− λ2σ + μ2􏼐 􏼑

􏽱 .

(28)

-e substitution of these results into solution (23)
possesses the following expression for the general so-
lution of equation (19):

u14(x, t) � ± λb1

��������
1

− λ2σ + μ2

􏽳

± b1

�������
λ

λ2σ − μ2

􏽳

×

�
λ

√
A1 cos(

�
λ

√
ξ) + A2 sin(

�
λ

√
ξ)􏼐 􏼑

A1 sin(
�
λ

√
ξ) + A2 cos(

�
λ

√
ξ) +(μ/λ)

± b1

×
1

A1 sin(
�
λ

√
ξ) + A2 cos(

�
λ

√
ξ) +(μ/λ)

,

(29)

where σ � A2
1 + A2

2 and ξ � ± ((b1p
���
− λ

√
)/(v����������

(− λ2σ +μ2)
􏽱

)) (xα/α)∓((p2λb21

���
− λ

√
)/(v(− λ2σ +μ2)))

(tα/α).
If the unknown parameters are assigned as μ � 0 and
A1 � 0 and A2 ≠ 0 or A1 ≠ 0 and A2 � 0 in solution (29),
it provides the next solitary wave solution:

u15(x, t) � ±
b1���
− σ

√ ±
b1���
λσ

√ × tan(
�
λ

√
ξ) + b1 × sec(

�
λ

√
ξ),

(30)

u16(x, t) � ±
b1���
− σ

√ ±
b1���
λσ

√ × cot(
�
λ

√
ξ) + b1 × cosec(

�
λ

√
ξ),

(31)

where ξ � ± ((b1p
���
− λ

√
)/(v

���
(−

􏽰
λ2σ + μ2) ))(xα/α)∓

((p2λb21

���
− λ

√
)/(v(− λ2σ + μ2)))(tα/α).

Case 3: in the parallel algorithm when λ � 0, using
equations (22) and (21) along with (8) and (14), we

achieve a set of mathematical equations whose solu-
tions are

a0 � 0,

a1 � ±
b1���������

A
2
1 − 2μA2

􏽱 ,

b1 � b1,

c � c,

k � ±
pb1

v

���������
1

A
2
1 − 2μA2

􏽳

.

(32)

Making use of these values into solution (23) produces
the solution to equation (19) as

u17(x, t) � ±
b1���������

A
2
1 − 2μA2

􏽱 ×
μξ + A1

(μ/2)ξ2 + A1ξ + A2
+

b1

(μ/2)ξ2 + A1ξ + A2
, (33)

where ξ � ± (pb1/v)

��������������

(1/(A2
1 − 2μA2))

􏽱

(xα/α) − c(tα/α).
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It is substantial to observe that the traveling wave so-
lutions u11–u17 of the studied equation are inclusive and
standard. -e attained solutions have not been noted in the
earlier study.-ese solutions are convenient to designate the
physical processes of unidirectional propagation of weakly
nonlinear acoustic waves via a gas-filled tube, shallow-water
waves, and waves in bubbly liquids.

4.2. Solution by the Exp-Function Method. Considering the
homogeneous balance, the solution of equation (16) takes
the form

u(ξ) �
p1 exp(ξ) + p0 + p− 1exp(− ξ)

q1 exp(ξ) + q0 + q− 1exp(− ξ)
. (34)

Substituting equation (34) into (22) leads a equation in
exp(nξ); here, n represents any whole number. Inserting
each coefficient of this equation to zero yields a cluster of
mathematical equations (for straightforwardness, here, we
have discarded) for pi

′s, qi
′s, and ω. -ese mathematical

equations are solved by computer algebra, namely, Maple,
which gives the following outcomes:

Set 1: c � −
1
4

p
2
p
2
1

q
2
1v

, k � −
1
2

pp1

q1v
, p− 1 � 0, p0 � 0, p1 � p1, q− 1 � 0, q0 � q0, and q1 � q1,

Set 2: c �
1
4

p
2
p
2
0

q
2
0v

, k �
1
2

pp0

q0v
, p− 1 � 0, p0 � p0, p1 � 0, q− 1 � 0, q0 � q0, and q1 � q1,

Set 3: c � c, k �
2cq1

pp1
, p− 1 � 0, p0 � p0, p1 � p1, q− 1 � 0, q0 �

p0q1

p1
, and q1 � q1,

Set 4: c � −
1
4

p
2
p
2
1

q
2
1v

, k � −
1
2

pp1

q1v
, p− 1 � 0, p0 � p0, p1 � p1, q− 1 � q− 1, q0 �

p
2
1q− 1 + q1p

2
0

p0p1
, and q1 � q1,

Set 5: c �
1
8

p
2
p
2
− 1

q
2
− 1v

, k �
1
4

pp− 1

q− 1v
, p− 1 � p− 1, p0 � 0, p1 � 0, q− 1 � q− 1, q0 � 0, and q1 � q1,

Set 6: c � c, k �
2cq− 1

pp− 1
, p− 1 � p− 1, p0 � p0, p1 � 0, q− 1 � q− 1, q0 �

p0q− 1

p− 1
, and q1 � 0,

Set 7: c � −
1
4

p
2
p
2
− 1

q
2
− 1v

, k �
1
2

pp− 1

q− 1v
, p− 1 � p− 1, p0 � p0, p1 � 0, q− 1 � q− 1, q0 �

p
2
− 1q1 + q− 1p

2
0

p0p− 1
, and q1 � q1,

Set 8: c � c, k �
2cq0

pp0
, p− 1 � p− 1, p0 � p0, p1 � p1, q− 1 �

p− 1q0

p0
, q0 � q0, and q1 �

p1q0

p0
,

Set 9: c � c, k �
2cq1

pp− 1
, p− 1 � p− 1, p0 � 0, p1 � p1, q− 1 � q− 1, q0 � 0, and q1 �

p1q− 1

p− 1
.

(35)

From the point of view of the above results, we achieve
the following generalized solitary wave solutions:

u21(x, t) �
p1 exp − (1/2) pp1( 􏼁/ q1v( 􏼁(( 􏼁 x

α/α( 􏼁 +(1/4) p
2
p
2
1􏼐 􏼑/ q

2
1v􏼐 􏼑􏼐 􏼑 t

α/α( 􏼁􏼑􏽨 􏽩

q0 + q1 exp − (1/2) pp1( 􏼁/ q1v( 􏼁( 􏼁( x
α/α( 􏼁 +(1/4) p

2
p
2
1􏼐 􏼑/ q

2
1v􏼐 􏼑􏼐 􏼑 t

α/α( 􏼁􏼑􏽨 􏽩
, (36)

u22(x.t) �
p0

q0 + q1 exp (1/2) pp0( 􏼁/ q0v( 􏼁( 􏼁( x
α/α( 􏼁 +(1/4) p

2
p
2
0􏼐 􏼑/ q

2
0v􏼐 􏼑􏼐 􏼑 t

α/α( 􏼁􏼑􏽨 􏽩
, (37)

u23(x, t) �
p0 + p1 exp 2cq1/pp1( 􏼁 x

α/α( 􏼁 − c t
α/α( 􏼁( 􏼁􏼂 􏼃

p0q1( 􏼁/p1( 􏼁 + q1 exp 2cq1/pp1( 􏼁 x
α/α( 􏼁 − c t

α/α( 􏼁( 􏼁􏼂 􏼃
, (38)
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u24(x, t) �
p0 + p1 exp − (1/2) pp1( 􏼁/ q1v( 􏼁( 􏼁( x

α/α( 􏼁 +(1/4) p
2
p
2
1􏼐 􏼑/ q

2
1v􏼐 􏼑􏼐 􏼑 t

α/α( 􏼁􏼑􏽨 􏽩

q1 exp − (1/2) pp1( 􏼁/ q1v( 􏼁( 􏼁( x
α/α( 􏼁 +(1/4) p

2
p
2
1􏼐 􏼑/ q

2
1v􏼐 􏼑􏼐 􏼑 t

α/α( 􏼁􏼑􏽨 􏽩 + p
2
1q− 1 + q1p

2
0􏼐 􏼑/ p0p1( 􏼁􏼐 􏼑 + q− 1 exp − − (1/2) pp1( 􏼁/ q1v( 􏼁( 􏼁( x

α/α( 􏼁 +(1/4) p
2
p
2
1􏼐 􏼑/ q

2
1v􏼐 􏼑􏼐 􏼑 t

α/α( 􏼁􏼑􏽨 􏽩
,

(39)

u25(x, t) �
p− 1 exp − (1/4) pp− 1( 􏼁/ q− 1v( 􏼁( 􏼁( x

α/α( 􏼁 − (1/8) p
2
p
2
− 1􏼐 􏼑/ q

2
− 1v􏼐 􏼑􏼐 􏼑 t

α/α( 􏼁􏼑􏽨 􏽩

q1 exp (1/4) pp− 1( 􏼁/ q− 1v( 􏼁( 􏼁( x
α/α( 􏼁 − (1/8) p

2
p
2
− 1􏼐 􏼑/ q

2
− 1v􏼐 􏼑􏼐 􏼑 t

α/α( 􏼁􏼑􏽨 􏽩 + q− 1 exp − (1/4) pp− 1( 􏼁/ q− 1v( 􏼁( 􏼁( x
α/α( 􏼁 − (1/8) p

2
p
2
− 1􏼐 􏼑/ q

2
− 1v􏼐 􏼑􏼐 􏼑 t

α/α( 􏼁􏼑􏽨 􏽩
,

(40)

u26(x, t) �
p0 + p− 1 exp − 2cq− 1( 􏼁/pp− 1( 􏼁( x

α/α( 􏼁 − c t
α/α( 􏼁􏼁􏼂 􏼃

p0q− 1( 􏼁/p− 1( 􏼁 + q− 1 exp − 2cq− 1( 􏼁/pp− 1( 􏼁( x
α/α( 􏼁 − c t

α/α( 􏼁􏼁􏼂 􏼃
, (41)

u27(x, t) �
p0 + p− 1 exp − (1/2) pp− 1( 􏼁/ q− 1v( 􏼁( 􏼁( x

α/α( 􏼁 +(1/4) p
2
p
2
− 1􏼐 􏼑/ q

2
− 1v􏼐 􏼑􏼐 􏼑 t

α/α( 􏼁􏼑􏽨 􏽩

q1 exp − (1/2) pp− 1( 􏼁/ q− 1v( 􏼁( 􏼁( x
α/α( 􏼁 +(1/4) p

2
p
2
− 1􏼐 􏼑/ q

2
− 1v􏼐 􏼑􏼐 􏼑 t

α/α( 􏼁􏼑􏽨 􏽩 + p
2
− 1q1 + q− 1p

2
0􏼐 􏼑/ p0p1( 􏼁􏼐 􏼑 + q− 1 exp − − (1/2) pp− 1( 􏼁/ q− 1v( 􏼁( 􏼁( x

α/α( 􏼁 +(1/4) p
2
p
2
− 1􏼐 􏼑/ q

2
− 1v􏼐 􏼑􏼐 􏼑 t

α/α( 􏼁􏼑􏽨 􏽩
,

(42)

u28(x, t) �
p1 exp 2cq0( 􏼁/pp0( 􏼁( x

α/α( 􏼁 − c t
α/α( 􏼁􏼁􏼂 􏼃 + p0 + p− 1 exp − 2cq0( 􏼁/pp0( 􏼁( x

α/α( 􏼁 − c t
α/α( 􏼁􏼁􏼂 􏼃

p0q0( 􏼁/p0( 􏼁exp 2cq0( 􏼁/pp0( 􏼁( x
α/α( 􏼁 − c t

α/α( 􏼁􏼁􏼂 􏼃 + q0 + q− 1 exp − 2cq0( 􏼁/pp0( 􏼁( x
α/α( 􏼁 − c t

α/α( 􏼁􏼁􏼂 􏼃
, (43)

u29(x, t) �
p1 exp 2cq1( 􏼁/pp− 1( 􏼁( x

α/α( 􏼁 − c t
α/α( 􏼁􏼁􏼂 􏼃 + p− 1 exp − 2cq1( 􏼁/pp− 1( 􏼁( x

α/α( 􏼁 − c t
α/α( 􏼁􏼁􏼂 􏼃

p1q− 1( 􏼁/p− 1( 􏼁exp 2cq1( 􏼁/pp− 1( 􏼁( x
α/α( 􏼁 − c t

α/α( 􏼁􏼁􏼂 􏼃 + p− 1q0( 􏼁/p0( 􏼁exp − 2cq1( 􏼁/pp− 1( 􏼁( x
α/α( 􏼁 − c t

α/α( 􏼁􏼁􏼂 􏼃
.

(44)

In particular, if p1 � q− 1 � p− 1 and p0 � q0 � 1, solution
(44) is simplified and offers the kink type solution of the
form

u210(x, t) � tanh
2cq1
pp− 1

x
α

α
− c

t
α

α
􏼠 􏼡. (45)

-e choice of p1 � − q− 1 � − p− 1 and p0 � q0 � 1 in (44)
gives the singular kink solution:

u211(x, t) � coth
2cq1

pp− 1

x
α

α
− c

t
α

α
􏼠 􏼡. (46)

It is significant to refer that the traveling wave solutions
u21 − u211 of the considered Burgers’ equation are fresh and
standard and were not established in the earlier investiga-
tions. It is deduced that physical systems should be assigned

of unidirectional propagation of weakly nonlinear acoustic
waves through a gas-filled tunnel and waves in bubbly fluids.

4.3. Solution Using the Extended Tanh Function Method.
-e homogeneous symmetry allows solution equation (17)
as

u(ε) � a0 + a1Y + b1Y
− 1

. (47)

Substituting (47) into (22) along with (18) makes the left
hand side as a polynomial in Y. Setting each coefficient of
this polynomial to zero, resulting a set of algebraic equations
(for simplicity, we have omitted them to exhibition) for a0,
a1, b1, k, and c. Computing the determined set of equations
with the assistance of computer algebra, such as Maple,
yields the succeeding results:

Set 1: c � − 2k
2
vμ, k � k, a0 � −

2kvμ
p

, a1 � 0, and b1 � −
2kvμ

p
,

Set 2: c � 2k
2
vμ, k � k, a0 �

2kvμ
p

, a1 � 0, and b1 � −
2kvμ

p
,

Set 3: c � − 2k
2
vμ, k � k, a0 � −

2kvμ
p

, a1 � −
2kvμ

p
, and b1 � 0,

Set 4: c � − 4k
2
vμ, k � k, a0 � −

4kvμ
p

, a1 � −
2kvμ

p
, and b1 � −

2kvμ
p

,

Set 5: c � 2k
2
vμ, k � k, a0 �

2kvμ
p

, a1 � −
2kvμ

p
, and b1 � 0,

Set 6: c � 4k
2
vμ, k � k, a0 �

4kvμ
p

, a1 � −
2kvμ

p
, and b1 � −

2kvμ
p

.

(48)
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Using the values of the parameters assembled above into
solution (47) together with (18), we achieve the following
solitary wave solutions:

u31(x, t) � −
2kvμ

p
−
2kvμ

p
coth μ k

x
α

α
+ 2k

2
vμ

t
α

α
􏼠 􏼡􏼠 􏼡, (49)

u32(x, t) �
2kvμ

p
−
2kvμ

p
coth μ k

x
α

α
− 2k

2
vμ

t
α

α
􏼠 􏼡􏼠 􏼡, (50)

u33(x, t) � −
2kvμ

p
−
2kvμ

p
tanh μ k

x
α

α
+ 2k

2
vμ

t
α

α
􏼠 􏼡􏼠 􏼡, (51)

u34(x, t) � −
4kvμ

p
−
2kvμ

p
tanh μ k

x
α

α
+ 4k

2
vμ

t
α

α
􏼠 􏼡􏼠 􏼡 −

2kvμ
p

coth μ k
x
α

α
+ 4k

2
vμ

t
α

α
􏼠 􏼡􏼠 􏼡, (52)

u35(x, t) �
2kvμ

p
−
2kvμ

p
tanh μ k

x
α

α
− 2k

2
vμ

t
α

α
􏼠 􏼡􏼠 􏼡, (53)

u36(x, t) �
4kvμ

p
−
2kvμ

p
tanh μ k

x
α

α
4k

2
vμ

t
α

α
􏼠 􏼡􏼠 􏼡 −

2kvμ
p

coth μ k
x
α

α
− 4k

2
vμ

t
α

α
􏼠 􏼡􏼠 􏼡. (54)

-e solutions established above by the extended tanh
approach are advanced and progressive. -ese might be
convenient to describe the relativistic electron and the
physical processes of unidirectional propagation of weakly
nonlinear acoustic waves via a gas-filled tube.

5. Physical Interpretation and Explanation

In this section, we mainly discuss about the physical in-
terpretation of the determined solitary wave solutions, in-
cluding kink, singular solitons, singular kink, and periodic
wave of the NLFEEs. A graph is an effective approach for
explaining mathematical concepts. It is capable of describing
any circumstances in a straightforward and understandable
manner. -is segment explains the incidents by portraying
3D plots of some of the solutions that are found. -e
portraits are precedents of the solutions shown in
Figures 1–6 using the computational software, namely,
Mathematica.

-e results of the time-fractional Burgers’ equation in-
clude the kink soliton, singular soliton, periodic soliton, and
some general solitons which are displayed in Figures 1–6.
Figure 1 is the kink shape soliton of solution (26) with the
values of the parameters λ � − 1, v � 1, p � 1, b1 � 1, σ � 2,
and α � 1/2 within the interval 0≤ x≤ 50 and 0≤ t≤ 50. -e
kink soliton is a soliton which rises or descends from one
asymptotic state to another as ξ⟶∞. Solution (51)
represents the shape of the plane soliton characterized in
Figure 2 for the values of parameters k � 1, p � 1, v � 1,
μ � 1, and α � (1/2) within the interval − 10≤ x≤ 10 and
0≤ t≤ 700. Solution (31) represents the periodic wave so-
lutions, plotted for λ � 1, v � 1, p � 1, b1 � 1, σ � 2, and α �

1/2 within the interval 0≤x and t≤ 100 and labeled in
Figure 3. When c � 1, p � 1, p− 1 � 2, q1 � 1, and α � (1/2),
solution (46) represents the singular kink type soliton
characterized in Figure 4 within 0≤ x and t≤ 10. On the
contrary, for the values of k � 1, p � 1, v � 1, μ � 1, and
α � (1/2), solution (53) also represents the kink soliton il-
lustrated in Figure 5 within the interval 0≤x and t≤ 10.
Finally, outcome (54) also represents the singular kink
soliton for the values of parameters k � 1, p � 1, v � 1, μ � 1,
and α � (1/2) within the range 0≤ x and t≤ 1000, which is
labeled as Figure 6. -e other figure of the solutions is
analogous to the displayed figure; thus, for convenience,
these are omitted here.

6. Conclusion

In this article, using three reliable approaches referring
conformable the fractional derivative, we have established
scores of advanced, further general, and wide-ranging sol-
itary wave solutions to the time-fractional Burgers’ equation.
-e ascertained closed-form solutions of the considered
equation include kink, single solitons, periodic solitons,
singular kink, and some other kinds of solutions, including
some free parameters. -e obtained solutions are capable to
analyze the phenomena of weakly nonlinear acoustic waves
propagating unidirectionally in gas-filled tubes, shallow
water waves, and bubbly liquids. -e dynamics of solitary
waves have been graphically depicted in terms of space and
time coordinates which reveal the consistency of the tech-
niques used. -e accuracy of the results obtained in this
study has been verified using the computational software
Maple by placing them back into NLFPDEs and found
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correct. -is study shows that all the methods implemented
are reliable, effective, functional, and capable of uncovering
nonlinear fractional differential equations arising in the field
of nonlinear science and engineering. -erefore, we can
firmly claim that the implemented methods can be used to
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Figure 1: 3D plot of the kink type soliton of (26) sketched within
the interval 0≤x≤ 50 and 0≤ t≤ 50.
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Figure 2: 3D plot of the single soliton solution of (51) sketched
within the interval − 10≤ x≤ 10 and 0≤ t≤ 700.
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Figure 3: 3D plot of the periodic wave solution of (31) sketched
within the interval 0≤x≤ 100 and 0≤ t≤ 100.
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Figure 4: 3D plot of the singular kink type soliton of (46) sketched
within the interval 0≤x and t≤ 10.
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Figure 5: 3D plot of the kink type soliton of (53) sketched within
the interval 0≤x≤ 10 and 0≤ t≤ 10.
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Figure 6: 3D plot of the singular kink type soliton of 0≤ t≤ 10. (54)
sketched within the interval 0≤x≤ 1000 and 0≤ t≤ 1000.
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compute exact wave solutions of other nonlinear fractional
equations associated with real-world problems, and this is
our next contrivance.

Data Availability

No data were used to support this study.

Conflicts of Interest

-e authors declare that there are no conflicts of interest
regarding the publication of this paper.

References

[1] K. S. Miller and B. Ross, An Introduction to the Fractional
Calculus and Fractional Differential Equations, Wiley, New
York, NY, USA, 1993.

[2] K. B. Oldham and J. Spanier, 8e Fractional Calculus, Aca-
demic Press, New York, NY, USA, 1974.

[3] I. Podlubny, Fractional Differential Equations, Academic, San
Diego, CA, USA, 1999.

[4] R. Hilfer,Applications of Fractional Calculus in Physics, World
Scientific Publishing, River Edge, NJ, USA, 2000.

[5] K. Diethelm,8e Analysis of Fractional Differential Equations,
Springer-Verlag, Berlin, Germany, 2010.

[6] V. S. Erturk, S. Momani, and Z. Odibat, “Application of
generalized differential transform method to multi-order
fractional differential equations,” Communications in Non-
linear Science and Numerical Simulation, vol. 13, no. 8,
pp. 1642–1654, 2008.

[7] K.-L. Wang and K.-J. Wang, “A modification of the reduced
differential transform method for fractional calculus,” 8er-
mal Science, vol. 22, no. 4, pp. 1871–1875, 2018.

[8] J. Ji, J. Zhang, and Y. Dong, “-e fractional variational it-
eration method improved with the Adomian series,” Applied
Mathematics Letters, vol. 25, no. 12, pp. 2223–2226, 2012.

[9] M. Inc, “-e approximate and exact solutions of the space-
and time-fractional Burgers equations with initial conditions
by variational iteration method,” Journal of Mathematical
Analysis and Applications, vol. 345, no. 1, pp. 476–484, 2008.

[10] S. Guo and L. Mei, “-e fractional variational iteration
method using He’s polynomials,” Physics Letters A, vol. 375,
no. 3, pp. 309–313, 2011.

[11] S. Guo, L. Mei, Y. Li, and Y. Sun, “-e improved fractional
sub-equation method and its applications to the space-time
fractional differential equations in fluid mechanics,” Physics
Letters A, vol. 376, no. 4, pp. 407–411, 2012.

[12] M. A. Akbar, L. Akinyemi, S. W. Yao et al., “Soliton solutions
to the Boussinesq equation through sine-Gordon method and
Kudryashov method,” Results Physics, vol. 25, pp. 1–10, 2021.

[13] K. A. Gepreel, “-e homotopy perturbation method applied
to the nonlinear fractional Kolmogorov-Petrovskii-Piskunov
equations,” Applied Mathematics Letters, vol. 24, no. 8,
pp. 1428–1434, 2011.

[14] P. K. Gupta and M. Singh, “Homotopy perturbation method
for fractional Fornberg-Whitham equation,” Computers &
Mathematics with Applications, vol. 61, no. 2, pp. 250–254,
2011.

[15] A. A. M. Arafa, S. Z. Rida, and H. Mohamed, “Homotopy
analysis method for solving biological population model,”
Communications in 8eoretical Physics, vol. 56, no. 5,
pp. 797–800, 2011.
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In this numerical study, the heat transfer performance of shell-and-tube heat exchangers (STHXs) has been compared for two
different tube arrangements. STHX having 21 and 24 tubes arranged in the inline and staggered grid has been considered for heat
transfer analysis. Shell-and-tube heat exchanger with staggered grid arrangement has been observed to provide lesser thermal
stratification as compared to the inline arrangement. Further, the study of variation in the mass flow rate of shell-side fluid having
constant tube-side flow rate has been conducted for staggered grid structure STHX.+e mass flow rate for the shell side has been
varied from 0.1 kg/s to 0.5 kg/s, respectively, keeping the tube-side mass flow rate as constant at 0.25 kg/s. +e influence of bulk
mass-influx transfer rate on heat transfer efficiency, effectiveness, and pressure drop of shell-tube heat exchangers has been
analyzed. CFD results were compared with analytical solutions, and it shows a good agreement between them. It has been
observed that pressure drop is minimum for the flow rate of 0.1 kg/s, and outlet temperatures at the shell side and tube side have
been predicted to be 40.94°C and 63.63°C, respectively.

1. Introduction

Heat transfer analysis of shell-tube heat exchangers is critical
owing to their applications in many of the engineering
domains like energy production, industrial chemistry, bi-
onics, nanotechnology applications, air conditioning, re-
frigeration, and food industries [1–3]. It has been reported

that around 35% of the total heat exchangers are STHXs [4].
STHX of various sizes is used widely in many industrial
applications [3, 5, 6]. +e layout model of draft-structure
configurations of the shell-and-tube heat exchanger may
vary according to the need. Tubular Exchanger Manufac-
turers Association (TEMA) publishes the standardizing
norms or regulations and design configurations regularly.
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+e Bureau of Indian Standards also suggested a design
configuration and standards for shell-and-tube heat ex-
changers [7]. +e shell-side flow inside the STHX is very
complicated due to bypass between different flow zones and
leakages. +e effect of leakages and bypass on the perfor-
mance of STHXmay vary for different shell designs and sizes
[8, 9]. Several studies put shell-and-tube heat exchangers in
the area of focus due to their vast utilization in the industry,
especially in the oil and gas industry [10–12]. Bhuyian et al.
[13] reviewed the performance of plate-fin and tubular heat
exchangers. Costa and Queiroz [14] investigated the design
optimization procedure of the STHX to minimize the
thermal surface area. Jozaie et al. [15] investigated the effect
of baffle spacing on the heat transfer rate, pressure drop, and
cost of the STHX and concluded that the optimal baffle
spacing to achieve a higher heat transfer rate, lower pressure
drops, and cost would be around 8–12 inches. Li and Kottke
[16] studied the variation of baffle spacing on pressure drop
and heat transfer coefficient of STHX with staggered tube
layout. Rai et al. [17] performed a parametric study on the
STHX and monitored that the tube pitch ratio is the main
factor for the thermal performance of STHXs. Patel et al. [18]
reviewed all the CFD-based studies investigating the heat
transfer in the STHXs. Lebele-Alawa and Egwanwo [19]
numerically investigated the heat transfer in the heat ex-
changers and reported high efficiency and accuracy for the
presented numerical model. Chalwa and Kadli [20] inves-
tigated the effect of vertical baffles on the heat transfer
performance and pressure drop of the STHXs. Anand et al.
[21] used the Bell-Delaware method to perform an exper-
imental investigation on the performance of STHXs. Yang
et al. [22] compared four modeling methods and validated
the compared models with experimental results for the rod
baffle heat exchangers. Wang et al. [23] studied the effect of
installing sealers on the shell side of the STHX. +ey re-
ported a considerable enhancement in the heat transfer
coefficient and energy efficiency of the STHX. Ramezanpour
et al. [24] investigated the effect of the staggered tube bundle
in a turbulent cross-flow regime to find the optimal layout.
Kwak et al. [25] varied the number of tube rows of staggered
finned tube bundles and studied their effect on the heat
transfer rate and pressure drop. It has been inferred that three
rows of tube bundles obtained the least pressure drop among
other tested schemes. Beale and Spalding [26] compared the
performance of STHX for inline and staggered tube banks
under transient flow conditions. Jayawel and Tiwari [27]
performed a similar study and compared the performance of
inline and staggered tube banks in a 3D model and validated
the obtained results with the data available in the literature
and reported high accuracy for the presented code.

In the present study, two different types of shell-and-
tube heat exchangers, one with an inline tube structure and
the other with staggered tube structure, have been studied
numerically for heat transfer performance. CFD simulations
were performed to analyze the heat transfer efficacy of both
heat exchangers. A shell-tube heat exchanger with a stag-
gered grid structure resulted in improvements in heat
transfer performance, so it has been considered for further
analysis. In the second phase of the study, variation in the

bulk mass-transfer flow rate of lateral shell-face fluid has
been analyzed, keeping the tube-side flow rate as fixed at
0.25 kg/s. +e results and conclusions have been drawn
based on the observed outcomes of heat transfer under
different bulk mass flow rates varying from 0.1 kg/s to 0.5 kg/
s. With the advancement of computer programming and
technology, numerical simulation has replaced prototype
testing. Nowadays, numerical simulations are being con-
ducted to optimize the efficiency of various devices, tools,
and equipment [28–33]. To perform the study, numerical
simulation has been done on 3D geometry of STHX using
ANSYS FLUENT 15 to know the effect of variation in mass
flow rate of shell-tube sided and arrangements of conduit-
tube wads or bales in the heat exchangers. CFD results have
also been compared with the analytical solutions, and the
differences observed have been examined.

2. Modeling Details

In this study, the tubes of shell-tube heat exchangers have
been arranged in two different configurations, inline
structure and staggered structure having 21 and 24 numbers
of tubes, respectively. +e shell has dimensions of 94.7mm
in diameter and 810.1mm in length. Likewise, the outer and
inner diameters of the tubes are 12.5mm and 11mm, re-
spectively. Water has been considered as drive operating
medium fluid for both shell and tube sides. +e physical
properties of water have been considered as those given in
the Fluent database.

2.1. Governing Equations. Steady and incompressible flow
conditions have been assumed for the sake of simplifying the
numerical analysis. +e mass flow rates used in the present
study correspond to turbulent flow conditions, and thus
turbulence modeling has been done using the two-equation
“k-ε” turbulence model. +e “k-ε” turbulence model has
been used due to its versatility and robustness in handling a
wide range of turbulent flows. At the same time, the model is
stable and poses lesser convergence difficulties. +e gov-
erning equations for the flow are given as follows
[23–28, 34].

Conservation of mass : ∇.(ρV
→

) � 0. (1)

Momentum equation:
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Energy equation:
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where “Ø” is the dissipation function and can be calculated
from [23–28, 34]
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2.2. Geometry. +e geometry of STHX has been modeled in
SolidWorks, and Table 1 describes the dimensions of the
heat exchanger. +e schematic of STHX with a staggered
grid structure and inline grid structure is presented in
Figures 1(a) and 1(b). In the present work, the cold fluid has
been made to flow in the tubes and hot fluid through the
shell. It can also be seen that there are two baffles provided in
the shell of the STHX heat exchanger.

2.3. Mesh Generation. +e tetrahedral mesh has been gen-
erated using Fluent Meshing. +e grid generated has been
analyzed for aspect ratio and orthogonal quality. +e
computational grid for STHX has approximately 17,622,730
and 18,233,589 grid elements for the inline and staggered
grid. +e aforementioned grid density has been obtained
after carrying out the necessary grid convergence test.

2.4. Boundary Conditions. +e inlet mass flow rate and inlet
temperature values have been assigned to the STHX. +e
shell fluid inlet temperature has been considered as 20°C,
and the tube-side fluid inlet temperature is 80°C.

Gauge pressure has been considered to be zero at the
outlet. +e velocity profile has been assumed to be uniform
for simplifying the calculations. +e no-slip condition has
been considered for all the wall surfaces, and the heat flux
value has been assigned as zero for the outer surface of the
shell, i.e., the shell-side outer surface has been considered as
adiabatic (Table 2).

2.5. Turbulence Model. +e mass flow rate used for the
flowing stream corresponds to turbulent flow conditions,
and hence turbulent effects cannot be ignored. +e standard
“k-ε” model has been employed for the turbulent transport
analysis. +e two-equation “k-ε” turbulence model has been
used due to its simplicity and faster convergence as com-
pared to other models. In the past literature available on In

previous research on CFD studies, the “k-ε” model has been
used for almost every flow situation. +us, the same model
has been considered as well. For steady-state conditions, the
model equations are [23–29, 34]
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Equations (7) and (8) are the transport equations for k
and ε, and equation (9) is the equation for turbulent eddy
viscosity. In equation (7), i� 1, j� 1, 2, and 3 represents the
space variables in “x,” “y,” and “z” directions, and the model
constants values used in the turbulence model are
C1&ε� 1.44, C2&ε � 1.92, Cµ � 0.09, σk � 1.0, and σ&ε� 1.3.

3. Results and Discussion

+e numerical analysis has been carried out on STHX with
inline and staggered tube structure, and a comparison of
results shows that the performance of STHX is better with
staggered tube structure than that with the inline tube
structure. Outlet temperature for shell and tube side is given
in Table 3.+e effectiveness for the staggered and inline tube
heat exchangers is 64.10% and 53.15%, respectively. Based on
effectiveness, it is evident that staggered tube heat exchanger
is more efficient as compared with aligned tube-conduit heat
exchanger, so further calculations have been performed on
staggered grid shell-tube type heat exchanger only.

From the results, it can be clearly identified that the heat
transfer performance of shell-tube type heat exchanger with
staggered grid structure is better than the heat exchanger
with inline grid structure (Figures 2(a)–2(c) and
Figures 2(d)–2(f )). So, for further analysis of variation in
bulk mass-influx flow rate for shell fluid, shell-and-tube heat
exchanger with staggered grid structure has been consid-
ered. Mass flow rate of shell-side fluid has been varied from

Table 1: Design parameters for shell-tube heat exchangers.

Parameters Design values
Shell diameter, Ds 94.7mm
Outer-tube diameter, do 12.5mm
Bunch-tube bale structure Inline and staggered
Pitch 1.5625 cm
Number of tubes, Nt 21 and 24
Heat exchanger length, L 810mm
Number of baffles, Nb 2
Shell fluid inlet temp., Tcin 20°C
Tube fluid inlet temp., Thin 85°C
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Table 2: Boundary conditions applied at various faces.

Sr.
No.

Physical
location Boundary condition

1 Shell wall Adiabatic wall boundary condition (no slip) (q}� 0; u� v � w � 0)
2 Baffle walls Wall boundary condition (no slip) (Tb � Tatm � 27°C; u� v � w � 0)
3 Shell outlet Pressure outlet (P � Patm; T�Tatm)
4 Tube outlet Pressure outlet (P � Patm; T�Tatm)
5 Pipe walls Conjugate heat transfer

6 Inlets Mass flow inlets (corresponding to 0.1 kg/s−0.5 kg/s for shell side having fixed inlet temperature Tcin � 20°C and
0.25 kg/s for tube side with fixed Thin � 85°C)

Table 3: Outlet temperatures of shell-tube heat exchanger.

Zone STHX with inline tube structure (°C) STHX with staggered tube structure (°C)
Shell inlet 20.00 20.00
Shell outlet 35.33 42.93
Tube inlet 85.00 85.00
Tube outlet 50.45 43.33

(a)

(b)

Figure 1: (a) STHX with staggered grid structure. (b) STHX with inline grid structure.

(a)

Figure 2: Continued.
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(b)

(c)

(d)

Figure 2: Continued.
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0.1 kg/s to 0.5 kg/s, and tube-side flow has been taken as
constant at 0.25 kg/s.

Table 4 describes the outlet temperatures of the shell-
tube heat exchanger for changing mass flow rates. Shell fluid
inlet and tube fluid inlet temperatures are kept identical for
all cases, which correspond to 20°C and 85°C, respectively.
Table 5 describes the effect of variation in mass flow rate on
flow parameters such as pressure drop and heat transfer
characteristics using respective analytical formulas.

Table 6 presents the percentage discrepancy among the
CFD predictions and analytical outcomes by taking the

(e)

(f )

Figure 2: Static temperature variation in STHX with (a–c) inline grid and (d–f) staggered grid.

Table 4: CFD results for variation in mass flow rate.

Mass flow rate (kg/s)

Outlet
temperatures

(°C) Heat transfer coefficient (W/m2K) Shell-side pressure drop (Pa) Rate of heat transfer (W)

Tc Th

0.1 40.94 63.63 714.33 450.9 8750
0.2 32.63 70.90 1045.84 530.4 10557
0.3 29.12 74.05 1307.12 648.6 11443
0.4 27.17 75.53 1531.20 710.1 11989
0.5 25.92 77.17 1731.15 862.2 12365

Table 5: Analytical calculations for variation in mass flow rate on
flow and heat transfer.

Mass flow
rate (kg/s)

Heat transfer
coefficient
(W/m2K)

Shell-side
pressure drop

(Pa)

Rate of heat
transfer (W)

0.1 607.11 414.83 7262.5
0.2 941.04 498.57 9739.6
0.3 1202.55 616.17 10921.8
0.4 1453.11 674.95 11624.4
0.5 1678.69 810.46 11991.6
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standard analytical results for pressure drop and heat
transfer coefficient occurring in internal flows as reference.
With the increase in the mass flow rate of shell fluid, both the
heat transfer coefficient and pressure drop increase, but the
outlet temperature of hot and cold fluid decreases, which
ultimately reduces the potential efficiency of a shell-tube
heat exchanger. +e above results show good agreement
between CFD and analytical solutions, and a maximum
difference of 15.01% has been noticed in the heat transfer
coefficient at the lowest flow rate.

+e graphical representation, as illustrated in
Figures 3–6, exhibits the influence of mass flow rate vari-
ations on outlet temperatures of STHX, pressure drop, heat
transfer coefficient, and rate of heat transfer. It has been
observed that an increase inmass flow rate of shell fluid leads
to a decrease in outlet temperatures of a shell-tube heat
exchanger and enhancement of both pressure drop as well as

Table 6: Percent difference between CFD analysis and analytical calculations.

Mass flow rate (kg/s) Heat transfer coefficient (W/m2K) Shell-side pressure drop (Pa) Rate of heat transfer (W)
0.1 15.01 8.01 4.88
0.2 10.02 6.20 8.39
0.3 8.00 5.00 4.77
0.4 5.10 4.95 3.13
0.5 3.03 6.00 3.11

y = –35.5x + 41.806 
R2 = 0.8671

y = 31.71x + 62.743
R2 = 0.8795
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Figure 3: Effect of outlet temperature (°C) against the mass flow
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heat transfer coefficient. +e enhancement of pressure drop
is expected because of the turbulence in a flow field. +e
related investigation was reported by Singh et al., which
analyzed that the Reynolds averaged N-S eqns.-predicated
turbulent simulation in commercial C. F. D. Fluent was
being employed for numerical analysis. +e three-distinct
“k-ε,” as well as the shearing-stress-transport (S.S.T.) “k-ω”
models, are being used in the analysis. In order to determine
the best-efficient and reliable turbulence model, the nu-
merical simulation efficiency analysis was compared with
empirical outcomes. For the design topography and con-
figuration in consideration, the influence of alteration of
Reynolds number (Rep), interjet, and separation distance
was being contemplated. Such factors influenced the heat
transfer coefficient, temp., and turbulence intensity in a
stream. Results revealed that the localized “h” levels were
being considerably decreased as the separation distance
“non-dimensional-impingement separation H/D ” escalates.
+e S.S.T. “k-ω” design model had been reported to be the
least important determinant and reliable assessment of
empirical outcomes. With an improvement in “H/D“ from
six-to-ten at “Rep”� 9×103 and “interjet-spacing, S/D “ of
three, the mean of heat transfer performance “h” signifi-
cantly decreases from 0.021 to 0.0193W/cm2K. +e interjet
spacing “S/D “ of three was being computed to be the more
optimal value predicated upon analytical findings as un-
veiled by the Singh et al. [34].

4. Conclusions

+e STHX has been modeled with staggered and inline tube
structures to analyze the heat transfer performance. From
the CFD simulations for the shell-tube heat exchanger, outlet
temperatures of shell-tube fluids and their effectiveness have
been obtained. From the obtained results, the following
conclusions can be drawn:

(a) STHX with staggered tube structure is better than
the STHX with inline tube structure.

(b) Effect of variation in shell fluid mass flow rate has
been analyzed on heat transfer rate, pressure drop,
heat transfer coefficient, and outlet temperatures of
shell-tube heat structure by varying the shell-side
mass flow rate from 0.1 kg/s to 0.5 kg/s and keeping
tube-side flow rate as constant at 0.25 kg/s. +e re-
sults show that with the rise in shell-side mass flow
rate, both the pressure drop and heat transfer co-
efficient enhance and decrease the outlet
temperatures.

(c) It has been observed that pressure drop is minimum
for a mass flow rate of 0.1 kg/s, and outlet temper-
atures at the shell side and tube side are 40.94°C and
63.63°C, respectively. +e increase in pressure drop
for increasing mass flow rate has been attributed to
the turbulence, and thus higher shear stresses exist at
the surfaces.

(d) It has been observed that there is an excellent accord
among CFD and analytical findings. +e percentage
difference between analytical solution and CFD
simulation results shows the highest difference of
15.01% for heat transfer coefficient, 8.01% for shell-
side pressure drop, and 8.39% for heat transfer rate.

Abbreviations

x, y, z: Coordinate axis
Ds: Shell diameter (mm)
di: Inner diameter of tube (mm)
do: Outer diameter of tube (mm)
e: Energy (kJ)
g: Acceleration due to gravity (m/s2)
Gk: Production term for k (m2/s2)
Gb: Buoyancy term for TKE (m2/s2)
Gε: Production term for ε (m2/s3)
h: Convective heat transfer coefficient (W/m2)
i, j: Loop indices
k: Turbulent kinetic energy (m2/s2)
L: Length of heat exchanger (mm)
Nb: Number of baffles
Nt: Number of tubes
T: Temperature (°C)
Tcin: Temperature of cold fluid (°C)
Thin: Temperature of hot fluid (°C)
P: Pressure (Pa)
q: Heat flux (kW/m2)
u, v, w: Velocity components (m/s)
CFD: Computational fluid dynamics
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STHX: Shell-and-tube heat exchanger
atm: Atmosphere
: Greek Symbols
ϕ: Viscous dissipation function
τxy: Viscous shear stress (Pa)
λ: Second coeff. of viscosity (kg/m-s)
μt: Turbulent viscosity (kg/m-s)
μ: Dynamic viscosity (kg/m-s)
ε: Dissipation rate (m2/s3)
ρ: Density (kg/m3)
σk: Turbulent Prandtl number for k
σε: Turbulent Prandtl number for ε
∇: Del operator.
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Ambiguity in real-world problems can bemodeled into fuzzy differential equations.-emain objective of this work is to introduce
a new class of cubic spline function approach to solve fuzzy initial value problems efficiently. Further, the convergence of this
method is shown. As it is a single-step method that converges faster, the complexity of the proposed method is too low. Finally, a
numerical example is illustrated in order to validate the effectiveness and feasibility of the proposed method, and the results are
compared with the exact as well as Taylor’s method of order two.

1. Introduction

-e entire real world is complex; it is found that the
complexity arises from uncertainty in the form of ambi-
guity. Uncertainties in the real-world problem can be
modeled easily with the help of fuzzy set theory when one
lacks complete information about the variables and pa-
rameters [1]. -is concept of fuzzy set theory was first
introduced by Zadeh [2] in 1965. Chang and Zadeh ex-
plicated the concept of fuzzy derivatives [3]. -e term
fuzzy differential equation was formulated by Kandal and
Byatt [4] in 1978. -ese equations help in modeling the
propagation of epistemic uncertainty in a dynamical en-
vironment [5]. Kaleva [6], Seikkala [7], and Song and Wu
[8] have extensively studied the existence and uniqueness
of solutions of these equations. A general formulation of
the first-order fuzzy initial value problem was given by
Buckley and Feuring [9]. Later, the fuzzy initial and
boundary value differential equation was given by O’Re-
gan et al. [10].

First-order linear fuzzy differential equations have in-
spired several authors to focus on solving them numerically
since they appear in many real-world applications. -ese

applications include different fields of science such as
medical diagnosis, biology, and civil engineering and also
in the field of economics [11] where the information are
not given in the crisp set [12]. Based on Zadeh’s extension
principle, a new fuzzy version of Euler’s method was
developed by Ahamed and Hasan [13]. Solving of these
equations by the Taylor method of order p has been
studied by Abbasbandy and Viranloo [14], and the same
was discussed by Allahviranloo et al. [15] by using the
predictor-corrector algorithm. Finally, the authors con-
cluded that a fuzzy differential equation can be modified
into a system of ordinary differential equations (ODEs).
Also, they found out that there are two solutions for a
fuzzy differential equation by solving the associated
ODEs. -e convergence, consistency, and stability for
approximating the solution of fuzzy differential equations
with initial value conditions have been studied by Ezzati
et al. [16]. All the numerical results of these equations and
their applications were summarized by Chakraverty et al.
[12].

In this paper, the fuzzy initial value problem is solved
numerically by using a new class of function approximation
called cubic spline, for better accuracy of the solution.
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2. Preliminaries

Let X′ � x{ } where X′ is the space of points and x is the
generic element of X′.

Definition 1 (see [2]). A fuzzy subset μA′ of the set A′ inX′ is
a function μA′ : A′ ⟶ [0, 1].

Definition 2 (see [17]). -e α-level set of the fuzzy set A′ of
X′ is a crisp set [A′]α � x ∈ X′|μA′(x)≥ α􏼈 􏼉 if α ∈ (0, 1].

Definition 3 (see [17]). Let A′ be a triangular fuzzy number
(TFN) which is defined as 〈l, m, n〉 where [l, n] is the
support, m{ } is the core, and the membership function is

μA′(x) �

x − l

m − l
, if x ∈ [l, m],

n − x

n − m
, if x ∈ (m, n],

0, if x ∉ [l, n],

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

where l<m< n.

Let us denote the set of all fuzzy numbers on R as F

which is a fuzzy number such that μ: R⟶ [0, 1].

Definition 4 (see [18]). Let l andm ∈ F . If there exists n ∈ F
such that l � m + n, then n is the Hukuhara difference of l

and m. -is can be denoted as n � l⊖m. To define the dif-
ferentiability of a fuzzy function, we can make use of this
difference as follows.

Let H: [u, v]⟶ F be differentiable at t0 ∈ (u, v). If
there exists some element H′(t0) ∈ F such that

lim
h⟶0+

H t0 + h( 􏼁 ⊖ H t0( 􏼁

h
� lim

h⟶0+

H t0( 􏼁 ⊖ H t0 − h( 􏼁

h

� H′ t0( 􏼁,

(2)

then H is said to be Hukuhara differentiable at t0.
Suppose H is differential at the point t0 ∈ (u, v), then all

its α-level sets, Hα(t) � [H(t)]α, are Hukuhara differen-
tiable at t0 and [H′(t0)]

α � DHα(t0), where DHα denotes
the Hukuhara derivatives of Hα and Hα as the multivalued
mapping.

Theorem 1 (see [19]). Let q(x) ∈ C3[u, v] and (Δk) be a
sequence of partitions on [u, v], with limk⟶∞‖Δk‖ � 0; then,
for the interpolate cubic spline SΔk

(x), uniformly for u≤x≤ v,

q
(p)

(x) − S
(p)

Δk
(x)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � O Δk

����
����􏼐 􏼑

3− p
, forp � 0, 1, 2, and 3.

(3)

If q‴(x) satisfies the Holder condition on [u, v] with
0< α< 1, then

y
(p)

(x) − S
(p)

Δk
(x)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � O Δk

����
����􏼐 􏼑

3+α− p
. (4)

Proof. -is theorem has been proved in the work by Ahlberg
et al. [19] (p. 29). □

2.1. Cubic Spline Function Approximation for Initial Value
Problems. Let the given (n + 1) data points be (ui, vi),
i � 0, 1, 2, . . . , n, where u0 < u1 < u2 < . . . < un. Let us define
the cubic spline Pi(u), which is defined in the interval
[ui− 1, ui] as follows.

(i) For u< u0 and u> un, Pi(u) is a polynomial whose
degree is one

(ii) Pi(u) is at most a cubic polynomial in each sub-
interval [ui− 1, ui], where i � 1, 2, . . . , n

(iii) Pi(u), Pi
′(x), and Pi

″(x) are continuous at each
point (ui, vi), where i � 0, 1, 2, . . . , n

(iv) Pi(ui) � vi, where i � 0, 1, 2, . . . , n

If Pi
″(u0) � Pi

″(un) � 0 and Pi(u), Pi
′(u), and Pi

″(u) are
all continuous in (u0, un), then this cubic spline is called as
natural spline [20].

Many applications make use of slopes. So let us denote
the cubic spline function that is obtained in terms of first
derivatives to be mi. -e cubic spline P(u) formula for an
initial value problem in ui− 1 ≤ u≤ ui in terms of its first
derivatives P′(ui) � mi can be obtained by using Hermite’s
interpolation formula as follows [21, 22]:

P(u) � mi− 1
ui − u( 􏼁

2
u − ui− 1( 􏼁

h
2 − mi

u − ui− 1( 􏼁
2

ui − u( 􏼁

h
2

+ vi− 1
ui − u( 􏼁

2 2 u − ui− 1( 􏼁 + h􏼂 􏼃

h
3

+ vi

u − ui− 1( 􏼁
2 2 ui − u( 􏼁 + h􏼂 􏼃

h
3 ,

(5)

where h � ui − ui− 1 for all i:

P′(u) �
mi− 1

h
2 ui − u( 􏼁 2ui− 1 + ui − 3u( 􏼁

−
mi

h
2 u − ui− 1( 􏼁 ui− 1 + 2ui − 3u( 􏼁

+
6
h
3 vi − vi− 1( 􏼁 ui − u( 􏼁 u − ui− 1( 􏼁,

(6)

P″(u) � − 2
mi− 1

h
2 ui− 1 + 2ui − 3u􏼂 􏼃

− 2
mi

h
2 2ui− 1 + ui − 3u􏼂 􏼃

+
6
h
3 vi − vi− 1( 􏼁 ui− 1 + ui − 2u􏼂 􏼃.

(7)
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Setting u � ui and P(ui) � vi for all i in (7), we have

P″ ui( 􏼁 �
2mi− 1

h
+
4mi

h
−

6
h
2 Pi − Pi− 1( 􏼁. (8)

Now consider a differential equation of first order with
the initial condition as follows:

dv

du
� f(u, v) and v u0( 􏼁 � v0. (9)

On differentiating (9) twice with respect to u,

v″(u) � fu(u, v) + fv(u, v)f(u, v). (10)

Taking u � ui and P(ui) � vi, the above equation
becomes

P″ ui( 􏼁 � fu ui, Pi( 􏼁 + fv ui, Pi( 􏼁f ui, Pi( 􏼁. (11)

On equating (8) and (11), we obtain

2mi− 1

h
+
4mi

h
−

6
h
2 Pi − Pi− 1( 􏼁 � fu ui, Pi( 􏼁 + fv ui, Pi( 􏼁f ui, Pi( 􏼁. (12)

From this, we can compute Pi’s. Substituting these Pi’s in
(5) gives the required solution. -e convergence of this
method has been proved by Patricio [21].

3. Fuzzy Initial Value Problem

Consider the first-order fuzzy differential equation as

u′(ξ) � f(ξ, u(ξ)), ξ ∈ ξ0, T􏼂 􏼃, T≥ 0, (13)

with the initial condition u(ξ0) � u0 ∈ F , where u is a fuzzy
function of the crisp variable ξ; that is, u ∈ F , which is
unknown. f: [ξ0, T] × F⟶ F , which is a fuzzy function. u′
is the fuzzy derivative of u, and u(ξ0) is a fuzzy number.
Here, let us assume the fuzzy number to be a triangular fuzzy
number.

For α ∈ [0, 1], let us denote the α-level sets:

[u(ξ)]α � [u(ξ)]l(α), [u(ξ)]r(α)􏼂 􏼃, and u ξ0( 􏼁􏼂 􏼃α � u ξ0( 􏼁􏼂 􏼃l(α), u ξ0( 􏼁􏼂 􏼃r(α)􏼂 􏼃. (14)

Also,
[f(ξ, u(ξ))]α � [f1(ξ, u(ξ); α), f2(ξ, u(ξ); α)], where

f1(ξ, u(ξ); α) � min f(ξ, s) | s ∈ [u(ξ)]l(α), [u(ξ)]r(α)􏼂 􏼃􏼈 􏼉 � G ξ, [u(ξ)]l(α), [u(ξ)]r(α)( 􏼁, (15)

f2(ξ, u(ξ); α) � max f(ξ, s) | s ∈ [u(ξ)]l(α), [u(ξ)]r(α)􏼂 􏼃􏼈 􏼉 � H ξ, [u(ξ)]l(α), [u(ξ)]r(α)( 􏼁. (16)

-emapping f: [ξ0, T] × F⟶ F is a fuzzy process, and
the derivatives f(i) ∈ F , for i � 1, 2, . . . , p, are defined as

f
(i)

(ξ, u(ξ))􏽨 􏽩α � f
(i)
1 (ξ, u(ξ); α), f

(i)
2 (ξ, u(ξ); α)􏽨 􏽩,

(17)

where

f
(i)
1 (ξ, u(ξ); α) � min f

(i)
(ξ, s) | s ∈ [u(ξ)]l(α), [u(ξ)]r(α)􏼂 􏼃􏽮 􏽯,

f
(i)
2 (ξ, u(ξ); α) � max f

(i)
(ξ, s) | s ∈ [u(ξ)]l(α), [u(ξ)]r(α)􏼂 􏼃􏽮 􏽯.

(18)

Equation (13) can be replaced by an equivalent system of
equations, and hence,

u′(ξ)􏼂 􏼃(α) � u′(ξ)􏼂 􏼃l(α), u′(ξ)􏼂 􏼃r(α)􏼈 􏼉, (19)

Mathematical Problems in Engineering 3



where

u′(ξ)􏼂 􏼃l(α) � f1(ξ, u(ξ); α) � G ξ, [u(ξ)]l(α), [u(ξ)]r(α)( 􏼁, (by (15)), (20)

u′(ξ)􏼂 􏼃r(α) � f2(ξ, u(ξ); α) � H ξ, [u(ξ)]l(α), [u(ξ)]r(α)( 􏼁, (by (16)). (21)

-e system of equations (20) and (21) will have a unique
solution, [[u(ξ)]l(α), [u(ξ)]r(α)] ∈ J � C([ξ0, F]) × C([ξ0,
F]). -us, given fuzzy differential equation (13) possesses a
unique solution on J.

Usually, equations (20) and (21) can be solved analyti-
cally. Yet, in most of the cases, this becomes tedious, and
hence, a numerical approach to these systems of equations
has to be considered.

4. Cubic SplineMethod for Solving Fuzzy Initial
Value Problem

Assume that

U ξn( 􏼁􏼂 􏼃α � U ξn( 􏼁􏼂 􏼃l(α), U ξn( 􏼁􏼂 􏼃r(α)􏼂 􏼃, (22)

as the exact solution of (13):

P ξn( 􏼁􏼂 􏼃α � P ξn( 􏼁􏼂 􏼃l(α), P ξn( 􏼁􏼂 􏼃r(α)􏼂 􏼃, (23)

as the approximated solution of (13) at ξn where 0≤ n≤N.
Now let us calculate the solutions by mesh points at

ξ0 < ξ1 < . . . < ξN � T, h � (T − ξ0)/N, and ξn � ξ0 + nh,
where n � 0, 1, 2, . . . , N.

-e cubic spline function P(ξ; α) for a fuzzy initial value
problem in ξi− 1 ≤ ξ ≤ ξi in terms of its first derivatives
P′(ξi; α) � mi is given as

P(ξ; α) � [P(ξ)]α � mi− 1
ξi − ξ( 􏼁

2 ξ − ξi− 1( 􏼁

h
2 − mi

ξ − ξi− 1( 􏼁
2 ξi − ξ( 􏼁

h
2

+ [u(ξ)]i− 1(α)( 􏼁
ξi − ξ( 􏼁

2 2 ξ − ξi− 1( 􏼁 + h􏼂 􏼃

h
3

+ [u(ξ)]i(α)( 􏼁
ξ − ξi− 1( 􏼁

2 2 ξi − ξ( 􏼁 + h􏼂 􏼃

h
3 ,

(24)

where h � ξi − ξi− 1. But, we know that

[P(ξ)]α � [P(ξ)]l(α), [P(ξ)]r(α)􏼂 􏼃, (25)

where

[P(ξ)]l(α) � mi− 1
ξi − ξ( 􏼁

2 ξ − ξi− 1( 􏼁

h
2 − mi

ξ − ξi− 1( 􏼁
2 ξi − ξ( 􏼁

h
2

+ [u(ξ)]l􏼂 􏼃i− 1(α)( 􏼁
ξi − ξ( 􏼁

2 2 ξ − ξi− 1( 􏼁 + h􏼂 􏼃

h
3

+ [u(ξ)]l􏼂 􏼃i(α)( 􏼁
ξ − ξi− 1( 􏼁

2 2 ξi − ξ( 􏼁 + h􏼂 􏼃

h
3 ,

(26)

[P(ξ)]r(α) � mi− 1
ξi − ξ( 􏼁

2 ξ − ξi− 1( 􏼁

h
2 − mi

ξ − ξi− 1( 􏼁
2 ξi − ξ( 􏼁

h
2

+ [u(ξ)]r􏼂 􏼃i− 1(α)( 􏼁
ξi − ξ( 􏼁

2 2 ξ − ξi− 1( 􏼁 + h􏼂 􏼃

h
3

+ [u(ξ)]r􏼂 􏼃i(α)( 􏼁
ξ − ξi− 1( 􏼁

2 2 ξi − ξ( 􏼁 + h􏼂 􏼃

h
3 .

(27)
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By carrying out simple and similar calculations for (26)
and (27) as given in “cubic spline function approximation
for initial value problems” (especially equations from
(6)–(12)), we obtain the following set of equations:

2mi− 1

h
+
4mi

h
−

6
h
2 Pl􏼂 􏼃i − Pl􏼂 􏼃i− 1( 􏼁 � Gξ ξi, Pl􏼂 􏼃i; α( 􏼁 + Gu(ξ) ξi, Pl􏼂 􏼃i; α( 􏼁G ξi, Pl􏼂 􏼃i; α( 􏼁, (28)

2mi− 1

h
+
4mi

h
−

6
h
2 Pr􏼂 􏼃i − Pr􏼂 􏼃i− 1( 􏼁 � Hξ ξi, Pr􏼂 􏼃i; α( 􏼁 + Hu(ξ) ξi, Pr􏼂 􏼃i; α( 􏼁H ξi, Pr􏼂 􏼃i; α( 􏼁, (29)

where i � 1, 2, . . . , n and h � ξi − ξi− 1. From (28), [Pl]i’s can
be computed, and they are substituted in (26) to obtain the
solution, [P(ξ)]l(α). Similarly, [Pr]i’s can be evaluated from
(29) and are substituted in (27) to yield [P(ξ)]r(α). Each Pi

value depends on P(i− 1)th value, for i � 1, 2, . . . , n.
Both these solutions collectively yield the desired solu-

tion [P(ξ)]α of (13) at a fixed ξ ∈ [ξi− 1, ξi], i � 1, 2, . . . , n.

4.1. Convergence of Fuzzy Cubic Spline Method. Let us
consider the equations:

P″ ξi( 􏼁􏼂 􏼃l(α) �
2mi− 1

h
+
4mi

h
−

6
h
2 Pl􏼂 􏼃i − Pl􏼂 􏼃i− 1( 􏼁, (30)

u″ ξi( 􏼁􏼂 􏼃l(α) � Gξ ξi, Pl􏼂 􏼃i; α( 􏼁

+ Gu(ξ) ξi, Pl􏼂 􏼃i; α( 􏼁G ξi, Pl􏼂 􏼃i; α( 􏼁.
(31)

According to the results given in the work by Ahlberg
et al. [19] (p. 34) and-eorem 1, if G(ξ, u(ξ); α) ∈ C3[ξ0, T],
we have

u
(p)

(ξ) − P
(p)

(ξ)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � O(h)
4− p

, p � 0, 1, 2, and 3. (32)

If p � 2, then the above equation can be written as

u″(ξ) − P″(ξ)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � O(h)
2
. (33)

At ξ � ξi, for i � 1, 2, . . . , n, we have

u″ ξi( 􏼁 − P″ ξi( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � O(h)
2
,where h � max

i
hi

(or) u″ ξi( 􏼁􏼂 􏼃l(α) � O h
2

􏼐 􏼑 + P″ ξi( 􏼁􏼂 􏼃l(α),

⇒h
2

u″ ξi( 􏼁􏼂 􏼃l(α) � 2hmi− 1 + 4hmi − 6 Pl􏼂 􏼃i − Pl􏼂 􏼃i− 1( 􏼁 + O h
4

􏼐 􏼑.

(34)

Again, with (31), we obtain [Pl]i explicitly or not
according to the linearity or nonlinearity of G(ξ, u(ξ); α) in
u(ξ). -en, we can write

Pl􏼂 􏼃i � c1 + c2α + O h
4

􏼐 􏼑, (35)

where c1 and c2 are constants and α ∈ [0, 1] or

r Pl􏼂 􏼃i( 􏼁 � O h
4

􏼐 􏼑. (36)

Hence, the order of the method is sustained, and it is true
for ξ ∈ [ξ0, T].

From (26), we have

[P(ξ)]l(α)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌< mj− 1h − mjh + [u(ξ)]l􏼂 􏼃j− 1(α)􏼐 􏼑 + [u(ξ)]l􏼂 􏼃j(α)􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, (37)

where ξj− 1 ≤ ξ ≤ ξj, ∀j � 0, 1, . . . , n. Similarly, by considering the equations,

P″ ξi( 􏼁􏼂 􏼃r(α) �
2mi− 1

h
+
4mi

h
−

6
h
2 Pr􏼂 􏼃i − Pr􏼂 􏼃i− 1( 􏼁,

u″ ξi( 􏼁􏼂 􏼃r(α) � Hξ ξi, Pr􏼂 􏼃i; α( 􏼁 + Hu(ξ) ξi, Pr􏼂 􏼃i; α( 􏼁H ξi, Pr􏼂 􏼃i; α( 􏼁,

(38)
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we get

[P(ξ)]r(α)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌< mj− 1h − mjh + [u(ξ)]r􏼂 􏼃j− 1(α)􏼐 􏼑 + [u(ξ)]r􏼂 􏼃j(α)􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌. (39)

-us, from (24), we obtain

[P(ξ)]α
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌< mj− 1h − mjh +[u(ξ)]j− 1(α) +[u(ξ)]j(α)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, ξ ∈ ξj− 1, ξj􏽨 􏽩, ∀j � 0, 1, . . . , n. (40)

5. Numerical Illustration (Exponential Decay
Problem with Decay Constant as 1)

Consider the fuzzy differential equation

y′(ξ) � − y(ξ), (41)

with y(0) � (0.5, 1, 1.5) as its fuzzy initial condition. Let us
find the solution of (41) at ξ � 0.2 and 0.3.

Equation (41) can be modified into a system of ordinary
differential equations as follows:

y′(ξ)􏼂 􏼃l(α) � − [y(ξ)]l(α), [y(0)]l(α) � 0.5α + 0.5, (42)

y′(ξ)􏼂 􏼃r(α) � − [y(ξ)]r(α), [y(0)]r(α) � 1.5 − 0.5α. (43)

-e solution of these two equations collectively gives the
solution of (41). -erefore, the exact solution of (41) is

[Y(ξ)](α) � [[Yl(ξ)](α), [Yr(ξ)](α)]

� [(0.5α + 0.5)exp(− ξ), (1.5 − 0.5α)exp(− ξ)].

(44)

Now let us compute the numerical solution of (41) by
using the cubic spline method.

For simplicity, assume h� 0.1.
Consider equation (42), here G(ξ, y; α) � − y and so

Gξ(ξ, y; α) � 0 and Gy(ξ, y; α) � − 1.
Also, G(ξi, [Pl]i; α) � − [Pl]i.
Using (28) at i� 1 and ξ � 0.1, we get

20m0 + 40m1 − 600 Pl􏼂 􏼃1 − Pl􏼂 􏼃0( 􏼁 � Pl􏼂 􏼃1. (45)

Since mi � [Pl]′(ξi), m0 � − 0.5α − 0.5 andm1 � − [Pl]1,
the above equation on simplification gives

Pl􏼂 􏼃1 �
290α + 290

641
. (46)

Similarly, at i� 2 and ξ � 0.2, (28) becomes

Pl􏼂 􏼃2 �
1

6412
(168200α + 168200). (47)

-is is the approximate solution of (42) at ξ � 0.2.
By using (42) at i� 3, we obtain

20m2 + 40m3 − 600 Pl􏼂 􏼃3 − Pl􏼂 􏼃2( 􏼁 � Pl􏼂 􏼃3, (48)

where m2 � − [Pl]2 and m3 � − [Pl]3. -is equation gives the
approximate solution of (42) at ξ � 0.3.

Now consider equation (43), here H(ξ, y; α) � − y, and
hence, Hξ(ξ, y; α) � 0, Hy(ξ, y; α) � − 1, and
H(ξi, [Pr]i; α) � − Pi.

By using (29) at i� 1 and ξ � 0.1, we obtain

Pr􏼂 􏼃1 �
− 290α + 870

641
, (49)

where mi � [Pr]′(ξi), for all i.
From (29), taking i� 2 and ξ � 0.2, we have

20m1 + 40m2 − 600 Pr􏼂 􏼃2 − Pr􏼂 􏼃1( 􏼁 � Pr􏼂 􏼃2,

∴ Pr􏼂 􏼃2 �
1

6412
(− 168200α + 504600)(on simplification).

(50)

Similarly, for i� 3 and ξ � 0.3 in (29), we get

20m2 + 40m3 − 600 Pr􏼂 􏼃3 − Pr􏼂 􏼃2( 􏼁 � Pr􏼂 􏼃3, (51)

where m2 � − [Pr]2 which is given by (50) and m3 � − [Pr]3.
-is equation on further simplification gives the approxi-
mate solution of (43) at ξ � 0.3.

Tables 1 and 2 represent the comparison of the solutions
for equation (41) that are obtained by exact, cubic spline
method and Taylor’s method of order, p � 2 at ξ � 0.2 with
h � 0.1. Comparison of exact and cubic spline solutions at
ξ � 0.2 is graphically given in Figure 1. Similarly, Figure 2
interprets the compared results of exact and cubic spline at
ξ � 0.3 of step length h � 0.1.

In general, the numerical solution of the fuzzy differ-
ential equation by using the cubic spline method can be
given as

Pi􏼂 􏼃α � Pl􏼂 􏼃i(α), Pr􏼂 􏼃i(α)􏼂 􏼃, (52)

where i � 1, 2, . . . , n, i.e., [P(ξ)](α) � [[Pl(ξ)](α), [Pr(ξ)]

(α)], for a fixed ξ.

6 Mathematical Problems in Engineering



Table 1: Comparison of the results (approximated to 9 decimals) obtained by exact, cubic spline method and Taylor’s method of order,
p � 2 at ξ � 0.2 with h� 0.1 for equation (42).

α-cut Exact solution
Yl

Cubic
spline Pl

Taylor solution
Tl for p � 2

0.0 0.409365377 0.409364268 0.409512500
0.1 0.450301914 0.450300695 0.450463750
0.2 0.491238452 0.491237122 0.491415000
0.3 0.532174990 0.532173549 0.532366250
0.4 0.573111527 0.573109976 0.573317500
0.5 0.614048065 0.614046403 0.614268750
0.6 0.654984602 0.654982830 0.655220000
0.7 0.695921140 0.695919256 0.696171250
0.8 0.736857678 0.736855683 0.737122500
0.9 0.777794215 0.777792110 0.778073750
1.0 0.818730753 0.818728537 0.819025000

Table 2: Comparison of the results (approximated to 9 decimals) obtained by exact, cubic spline method and Taylor’s method of order,
p � 2 at ξ � 0.2 with h� 0.1 for equation (43).

α-cut Exact solution Yr Cubic spline Pr Taylor solution Tr for p � 2
0.0 1.228096130 1.228092805 1.228537500
0.1 1.187159592 1.187156379 1.187586250
0.2 1.146223054 1.146219952 1.146635000
0.3 1.105286517 1.105283525 1.105683750
0.4 1.064349979 1.064347098 1.064732500
0.5 1.023413441 1.023410671 1.023781250
0.6 0.982476904 0.982474244 0.982830000
0.7 0.941540366 0.941537818 0.941878750
0.8 0.900603828 0.900601391 0.900927500
0.9 0.859667291 0.859664964 0.859976250
1.0 0.818730753 0.818728537 0.819025000
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Figure 1: Comparison of exact and cubic spline solutions at ξ � 0.2.
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6. Conclusion

In this article, a new class of cubic spline function method is
introduced for solving fuzzy differential equations subject to
fuzzy initial conditions. -e desired solution which is ob-
tained is of O(h4) convergence based on certain conditions
on the derivatives. -is numerical method is verified with an
example, and the results are compared with the exact as well
as with the solution obtained by Taylor’s method of order,
p � 2. From the comparison of results, one can conclude
that the proposed method is a single-step method that
converges faster and has greater accuracy than the Taylor
method of order two. In future, one can extend this method
to solve higher-order linear and nonlinear fuzzy initial value
problems.
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In this paper, we study nilpotent Lie algebras that admit nilsoliton metric with simple pre-Einstein derivation. Given a Lie algebra
η, we would like to compute as much of its structure as possible. (e structural components we consider in this study are the
structure constants, the index, and the rank of the nilsoliton derivations. For this purpose, we prove necessary or sufficient
conditions for an algebra to admit such metrics. Particularly, we prove theorems for the computation of the Jacobi identity for a
given algebra so that we can solve the system of the equation(s) and find the structure constants of the nilsoliton.

1. Introduction

On any Lie group, it is possible to define several different
Riemannian metrics. Considering any Riemannian metrics,
Einstein metrics are the most preferable metrics, as the Ricci
tensor complies the Einstein metric: Ric � cg, for some
constant c ∈ R. But, it is not possible to define Einstein
metrics on nonabelian nilpotent Lie algebras; therefore, we
consider the following weaker condition on a left invariant
metric g on a nilpotent Lie group G:

Ricg � βI + D, (1)

for some β ∈ R and D ∈ Der(η), where Ricg denotes the
Ricci operator of (η, g), η is the Lie algebra of G, and Der(η)

denotes the Lie algebra of derivations of η. Equation (1) is
called the nilsoliton condition, D is called the nilsoliton
derivation, and β is called the nilsoliton constant.

Nilsoliton metric Lie algebras are unique up to isometry
and scaling. (is is one of the reasons that makes nilsolitons
an important topic. On the other hand, there is a one to one
correspondence between Einstein nilradicals with nilsoli-
tons. In [1],(eorem 2.11 states that a nilpotent Lie algebra η
is an Einstein nilradical if and only if η admits a nilsoliton
metric. (erefore, it indicates that classification of nilsoliton
metrics on a nilpotent Lie algebra is equivalent to the same of
Einstein nilradicals. Additionally, if δ is Einstein sol-
vmanifold, then the metric restricted to the submanifold can

completely be determined by the nilsoliton metric Lie al-
gebra η � [δ, δ]. On the contrary, any nilsoliton can
uniquely extend to an Einstein solvmanifold. (erefore, the
study of solvmanifolds is actually the study of nilsolitons. See
[1, 2], for a survey on nilsoliton metric Lie algebras.

(ere are three methods to represent a Lie algebra and its
related structures: representing a Lie algebra as a linear Lie
algebra, i.e., subalgebra of gl(n), using table of its structure
constants or using generators and relations [3]. In this paper,
we use the table of structure constants related to a Lie al-
gebra. (e main reason is that this representation helps one
to create and classify Lie algebras by the computer software
programs as in [4–6]. We vary the Lie algebra structure by
finding structure constants. Namely, we determine a Lie
algebra η with a fixed basis Xi: 1≤ i≤ n􏼈 􏼉 explicitly by given
multiplication table, consisting of structure constants αk

ij

which are defined by the relations

Xi, Xj􏽨 􏽩 � 􏽘 αk
ijXk. (2)

In this work, the nonzero structure constants are
encoded by using the index setΛ � (i, j, k)|αk

ij ≠ 0, i< j< k􏽮 􏽯,
ignoring repetitions due to skew-symmetry. While indexing
the structure constants, we use triples (i, j, k) ∈ Λ such that
i< j< k, and if (i, j, k), (i, j, m) ∈ Λ, then k � m and
(i, j1, k), (i, j2, k) ∈ Λ, then j1 � j2. For this purpose, we fix a
basis X1, . . . , Xn􏼈 􏼉 for a nilpotent Lie algebra η with
[Xi, Xj] � 􏽐 αk

ijXk ≠ 0 such that for every
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i, j, # k: αk
ij ≠ 0􏽮 􏽯≤ 1, and for every i, k, # j: αk

ij ≠ 0􏽮 􏽯≤ 1. Such
basis Xj􏽮 􏽯 is called nice and defined by Nikolayevsky in [7].
In our paper, we call this basis as “Nikolayevsky basis.” Using
this special basis, we do not need to use sum symbol in
equation (2).

In this paper, we prove theorems regarding to some
structural components of nilsolitons for possible algorithmic
approach in classifications. In particular, we present some
new concepts and theorems regarding to create Jacobi
identity equations for a given nilsoliton metric Lie algebra.
We also present methods for the computations of the index
and the rank of a nilsoliton. We provide several examples to
illustrate the newly proposed concepts and methods.

(is paper consists of four sections. In the second
section, we present preliminary background. In the third
section, we prove necessary theorems that help us to cal-
culate structural elements of nilsolitons. In the last section,
we present concluding statements.

2. Preliminaries

Let (ημ, < , > ) be a metric algebra, where μ ∈ Λ2η⊗ η∗. Let
B � Xi􏼈 􏼉

n

i�1 be a 〈, 〉-orthonormal basis of ημ (we always
assume that basis is ordered). (e nil-Ricci endomorphism
Ricμ is defined as 〈RicμX, Y〉> � ricμ(X, Y), where

ricμ(X, Y) � −
1
2

􏽘

n

i�1
〈 X, Xi􏼂 􏼃, Y, Xi􏼂 􏼃〉

+
1
4

􏽘

n

i�1
〈 Xi, Xj􏽨 􏽩, X〉〈 Xi, Xj􏽨 􏽩, Y〉,

(3)

for X, Y ∈ η. When η is a nilpotent Lie algebra, the nil-Ricci
endomorphism is the Ricci endomorphism. If all elements of
the basis are eigenvectors for the nil-Ricci endomorphism
Ricμ, we call the orthonormal basis a Ricci eigenvector basis.

Let Der(η) denote the derivation algebra of η. Amaximal
abelian subalgebra of Der(η) comprised of semisimple el-
ements which is called a maximal torus. (e dimension of a
maximal torus is called the rank of η.

In the following, we define root vectors and root matrix,
Gram matrix, Nikolayevsky basis.

Definition 1. Suppose that Λ � (i, j, k)|αk
ij ≠ 0, i< j< k􏽮 􏽯 is a

finite set which indexes the set of nonzero structure con-
stants corresponding to a Lie algebra η, ignoring repetitions
due to skew-symmetry. For 1≤ i, j, k≤ n, we define 1 × n row
vector yk

ij to be ϵTi + ϵTj − ϵtk, where ϵ{ }n
i�1 is the standard

orthonormal basis for Rn. We call the vectors in
yk

ij|(i, j, k) ∈ Λ􏽮 􏽯 root vectors for Λ. Let y1, y2, . . . , ym

(where m � |Λ|) be an enumeration of the root vectors in
dictionary order. We define root matrix YΛ for Λ to be the
m × n matrix whose rows are the root vectors y1, y2, . . . , ym.

(e Gram matrix UΛ for Λ is the m × m matrix defined
by UΛ � YΛY

T
Λ; the (i, j) entry of UΛ is the inner product of

the i th and j th root vectors (unless otherwise stated, the
matrix U means the Gram matrix corresponding to the
index set Λ. (erefore, from now on, we do not use UΛ).
From (eorem 5, in [8], we know that U is a symmetric

matrix where its all diagonal entries are 3 and its off-diagonal
entries are in the set − 2, − 1, 0, 1, 2{ }.

Nikolayevsky showed that every Lie algebra admitting a
derivation with all the eigenvalues of multiplicity one has a
nice basis [7]. We use this type of basis in our study.(is way
our Gram matrices corresponding to metric nilpotent Lie
algebras does not have a 2 and − 2 as an entree (Lemma 2 in
[4]).

Now, suppose that |Λ| � m and [1]m represents a col-
umn vector 1 1 1 . . . 1􏼂 􏼃

T in Rm.

Theorem 1 (Theorem 1 in [8]). Let η be a nonabelian metric
algebra with Ricci eigenvector basis B. Let U and [α2] be the
Grammatrix and the structure vector for ηwith respect to B.
(en, η satisfies the nilsoliton condition with nilsoliton
constant β if and only if U[α2] � 2β[1]m.

The above theorem indicates a Lie algebra η which
admits a nilsoliton metric iff there exists a solution v ∈ Rm of
the linear systemUv � [1]m where all entries are positive real
numbers.

3. The Structural Elements

In this section, we introduce notions and prove theorems for
the computation structural elements of the nilsoliton metric
Lie algebras.

3.1. .e Jacobi Identity(s). Now, we present the theorems
which help to create possible Jacobi identity equations.

Theorem 2 (see [8]). Let η be an n-dimensional vector
space; B � Xi􏼈 􏼉

n

i�1 be a basis for η. Suppose that a set of
nonzero structure constants αk

i,j relative to B, indexed by Λ,
defines a skew symmetric product on η. Assume that if
(i, j, k) ∈ Λ, then i< j< k. (en, η is a Lie algebra if and only
if whenever there exists m so that the inner product of root
vectors 〈yl

ij, ym
lk〉 � − 1 for triples (i, j, l) and (l, k, m) or

(k, l, m) in Λ, the equation

􏽘
s<m

αs
i,jα

m
s,k + αs

j,kα
m
s,i + αs

k,iα
m
s,j � 0, (4)

holds. Furthermore, a term of form αl
i,jα

m
l,k is nonzero if and

only if 〈yl
i,j, ym

l,k〉 � − 1.

Lemma 1 (Lemma 2.8 in [4]). Let η be an n-dimensional
nonabelian nilpotent Lie algebra. Suppose that η admits a
derivation D having distinct real positive eigenvalues. Let B

be a basis consisting of eigenvectors for the derivation D,
and let Λ index the nonzero structure constants with respect
to B. Let Y be the m × n root matrix for Λ. If rank(Y) � m,
then the following hold:

(1) |Λ|≤ n − 1.
(2) If (i1, j1, k1) ∈ Λ and (i2, j2, k2) ∈ Λ, then

〈y
k1
i1j1

, y
k2
i2j2

〉≠ − 1.

Remark 1. (e reverse of Lemma 1 is not true.
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Proof. Suppose that η is an algebra which is indexed by the
following index set:

Λ � (1, 2, 5), (1, 3, 6), (1, 5, 7), (1, 6, 8), (2, 4, 7), (2, 5, 8), (3, 4, 8){ }.

(5)

Its corresponding Gram matrix is as follows:

3 1 0 1 1 0 0

1 3 1 0 0 0 1

0 1 3 1 1 1 0

1 0 1 3 0 1 1

1 0 1 0 3 1 1

0 0 1 1 1 3 1

0 1 0 1 1 1 3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (6)

It is a singular matrix with nullity � 1. Also, it does not
have − 1 entry. From (eorem 2, it is a Lie algebra. Also,
since the solution space of U.v � [1] is

v � t +
1
19

,
6
19

− t, t,
5
19

− t,
5
19

− t,
3
19

, t􏼒 􏼓 | 0< t<
5
19

􏼚 􏼛,

(7)

from [8] that it is a nilsoliton metric Lie algebra with the
magnitudes of the structure constants

α51,2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � t +
1
19

,

α61,3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 �
6
19

− t,

α71,5
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � t,

α81,6
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 �
5
19

− t,

α72,4
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 �
5
19

− t,

α82,5
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 �
3
19

α83,4
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � t,

(8)

with simple derivation of type 7< 10< 13<
14< 17< 20< 24< 27 with singular Gram matrix U and
|Λ| � n − 1. □

(e counter example provided in Remark 1 illustrates
none of the inner products of root vectors being − 1 does not
imply that the Gram matrix of the nilsoliton is nonsingular.
Additionally, if the cardinality of the index set |Λ|≤ n, − 1
does not imply that the Gram matrix is nonsingular.

3.1.1. Constructing the System of Jacobi Identities. In order
an algebra to be a Lie algebra, one needs to satisfy the Jacobi
identity. Using our index set Λ, the corresponding Jacobi
identity turns into equation (4). Also, there has to be at least
two product couples in the Jacobi identity. Otherwise, if

there is one product couple in Jacobi identity, it leads to
αs

i,jα
m
s,k � 0; therefore, it contradicts to the fact that

(i, j, s), (s, k, m) ∈ Λ. On the other hand, the Jacobi identity
is created by each vector triples from the given fixed
Nikolayevsky basis. For example, the Jacobi identity for
Xi, Xj, Xk is

αs
ijα

m
sk + αs

jkα
m
si + αs

kiα
m
sj � 0. (9)

Since we use the Nikolayevsky basis, there is a unique k

which appears in equation (9). (erefore, each Jacobi
identity is created with fixed Xi, Xj, Xk, and m ∈ AoM. Also,
because there has to be at least one product couple in the
Jacobi identity, then there exist 2 or three product couples in
the Jacobi identity. In equation (9), the product couple αs

ijα
m
sk

corresponds to the index triples in Λ such that
(i, j, s), (s, k, m) ∈ Λ, or (i, j, s), (k, s, m) ∈ Λ. In the fol-
lowing definition, we define the set of all product couples Pm

related to the Jacobi identity for a given subset Xi, Xj, Xk of
the fixed basis. As one can see, there exist at most 3 product
couples in the same Jacobi identity.

Definition 2. If there are t product couples in the Jacobi
identity for the same m such that (i, j, s), (s, k, m) ∈ Λ, or
(i, j, s), (k, s, m) ∈ Λ, then the Jacobi identity which was
created by the basis vectors Xi, Xj, Xk􏽮 􏽯. Now, we define the
set of all nonzero product couples for a given index triple
basis vectors Xi, Xj, Xk as follows:

Pm � ps � αs
ijα

m
s,k

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, 1≤ s≤ n, ps ≠ 0􏼚 􏼛. (10)

It is called set of product couples for #m and for in
equation (4):

AoM � m ∈ N: (i, j, s), (s, k, m) ∈ Λ or (i, j, s), (k, s, m) ∈ Λ􏼈 􏼉.

(11)

Here, AoM is the matrix of #m that appears in equation
(4).

Remark 2. Let η be an algebra that is indexed by Λ, then the
Jacobi identity for a given Xi, Xj, Xk with each m ∈ AoM is
given by

p1 ∓p2 ∓p3 � 0. (12)

(e proof of Remark 2 follows from the definition of
Jacobi identity for a given algebra.

Theorem 3. Let η be an algebra that is indexed by Λ, and U

be the Gram matrix related to Λ. Let vp belong to the solution
space to the linear system Uv � [1], then the Jacobi identity
for each m ∈ AoM is given by

����
vi1

vj1

􏽰 ∓ ����
vi2

vj2

􏽰 ∓ ����
vi3

vj3

􏽰
� 0, (13)

where 1≤ i1, i2, i3, j1, j3 ≤ |Λ|.

Proof. Let η be an algebra that is indexed byΛ. By Remark 3,
the Jacobi identity for each m ∈ AoM and each basis vector
triple Xi, Xj, Xk is given by
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p1∓p2∓p3 � 0. (14)

Here, ps � αs
ijα

m
s,k. By (eorem 1, the solution vectors of

the linear system Uv � [1] are the squares of the structure
vectors αs

ij for all (i, j, s) ∈ Λ. (erefore, for any v that
satisfies Uv � [1] is of form v � (αs

i,j)
2. (us, for each

ps ∈ Pm,

ps �
����
vavb

√
, (15)

where a, b ∈ i1, i2, i3, j1, j3􏼈 􏼉, and va � (αs
ij)

2 and vb � (αm
sk)2.

Solving the equations for the structure constants, we have

αs
ij � ∓ ��

va

√
, (16)

for all (i, j, s) ∈ Λ. (erefore, equation (12) turns into
����
vi1

vj1

􏽰 ∓ ����
vi2

vj2

􏽰 ∓ ����
vi3

vj3

􏽰
� 0, (17)

which finishes the proof. □

In some cases, there can be more than two square root
product couples in equation (13), i.e., there is more than one
m ∈ AoM. In that case, we need to consider all the cases of
the signs between the product couples αs

i,jα
m
s,k, α

s
j,kα

m
s,i, and

αs
k,iα

m
s,j. (e following lemma deals with this matter.

Lemma 2. If there are k product couples in the Jacobi
identity, then there are 2k− 1 − 1 possible sign choices.

Proof. Suppose that pi ∈ Pm for m in equation (4) where Pm

is the set of all product couples, as in Definition 2. (erefore,
the Jacobi identity turns into p1∓p2∓p3 � 0. Without loss of
generality, we assume that p1 > 0. For each ps ∈ Pm, where
2≤ s≤ n, there are two possible sign choices +, −{ }. (ere-
fore, we have 2t− 1 possible sign choices. Since all the product
couples are nonzero, then they can not all be +.(erefore, we
drop the case (+, +, . . . , +). (us, there are 2t− 1 − 1 possible
sign choices for the set Pm.

As we know that there is at most three, at least two
product couples in the Jacobi identity, the there is at most
three different sign choices for a Jacobi identity. □

Definition 3. We define the matrix of all sign choices SC �

[sjs] ∈M(2t− 1− 1)×(t− 1) matrix where the entries are of the
form

sjs �
1, ps > 0,

0, ps < 0,
􏼨 (18)

for 1≤ j≤ 2t− 1 − 1. For example, if Pm � p1, p2, p3􏼈 􏼉, then
SC is a 3 × 2 matrix

SC �

1 0

0 1

0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (19)

(e equations are created by

p1 +(− 1)
SC(1,1)

.p2 +(− 1)
SC(1,2)

.p3 � 0,

p1 +(− 1)
SC(2,1)

.p2 +(− 1)
SC(2,2)

.p3 � 0,

p1 +(− 1)
SC(3,1)

.p2 +(− 1)
SC(3,2)

.p3 � 0.

(20)

(erefore, we have p1 + p2 − p3 � 0, p1 − p2 + p3 � 0,
and p1 − p2 − p3 � 0. If there is more than one array of
number m’s in equation (4) in(eorem 2, then one needs to
find common solutions of at least one Jacobi identity that
was created by SC matrix for each m. To illustrate the above
procedure, we have the following example.

Example 1. Suppose that

Λ � (1, 3, 4), (1, 4, 5), (1, 5, 6), (2, 3, 6), (1, 6, 7),{

(2, 4, 7), (1, 7, 8), (2, 5, 8)}.
(21)

(e solution of the equation Uv � [1] is of the form

v � x + y − 1/5 1/55 + x 1/11 31/55 − x − y 32/55 − x − y y 4/11 − x x( 􏼁
T
,

� α412( 􏼁
2 α513( 􏼁

2 α716( 􏼁
2 α817( 􏼁

2 α625( 􏼁
2 α826( 􏼁

2 α634( 􏼁
2 α845( 􏼁

2
􏼐 􏼑

T
,

(22)

where x, y are parameters of the solution system.(en, there
are two m’s in equation (4). Now, let us denote the set of m as
AoM. (erefore, AoM � 7, 8{ }. Each m ∈ AoM corresponds
to a Jacobi identity. For m � 7, we have two product couples
of the triples (i, j, l) and (l, k, m) or (k, l, m) in Λ. (ey are
(2, 3, 6)(1, 6, 7) and (1, 3, 4)(2, 4, 7). (erefore, the first
Jacobi identity is

α623􏼐 􏼑 α716􏼐 􏼑 ± α413􏼐 􏼑 α724􏼐 􏼑 � 0. (23)

For m � 8, we have two product couples of the triples
(i, j, l) and (l, k, m) or (k, l, m) in Λ. (ey are
(2, 4, 7)(1, 7, 8) and (1, 4, 5)(2, 5, 8). So, the corresponding
Jacobi identity is

α724􏼐 􏼑 α817􏼐 􏼑 ± α514􏼐 􏼑 α825􏼐 􏼑 � 0. (24)

It can easily be seen that there is a unique sign choice for
the above equations. (e common solution is as follows:
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α413 �
����
2/11

√
,

α514 �
���
1/5

√
,

α615 �
����
1/11

√
,

α623 �
���
2/5

√
,

α716 �
���
1/5

√
,

α724 �
���
1/5

√
,

α817 �
����
2/11

√
,

α825 �
����
2/11

√
.

(25)

3.2. .e Rank and the Index of a Nilsoliton. (e following
proposition and its following corollary help us to compute
rank of a nilsoliton metric Lie algebra.

Proposition 1 (see Proposition 4.7 in [9]). Let η be a
nonabelian Lie algebra that admits a simple derivation D. Let
B � Xi{ }n

i�1 be an eigenvector basis with index set Λ, and let
Y be the root matrix associated to Λ. (en, the rank of the
nilsolitonmetric Lie algebra η equals to the nullity of the root
matrix Y.

Corollary 1. Let η be a nonabelian n− dimensional Lie al-
gebra that admits a simple derivation. Let B be an eigenvector
basis with index set Λ, and let Y be the root matrix associated
to Λ. .en,

rank(η) � n + nullity YY
t

􏼐 􏼑 − |Λ|. (26)

Proof. Suppose that η is an n− dimensional nonabelian Lie
algebra, admitting a simple derivation. Let B be an eigen-
vector basis with index set Λ where |Λ| � m, and let Y be the
root matrix associated to Λ. By Proposition 1, the root
matrix Y is an m × n matrix, whose nullity is rank(η).
(erefore, from rank-nullity theorem, rank(η) �

n − Rank(Y). We also know that rank(Y) � rank(YYT);
therefore, we have

rank(η) � n − Rank YY
T

􏼐 􏼑. (27)

On the other hand, YYT is an m × m matrix. (erefore,
Rank(YYT) � m − Nullity(YYT). (en, we have

rank(η) � n − m − Nullity YY
T

􏼐 􏼑􏼐 􏼑

� n + Nullity YY
T

􏼐 􏼑 − |Λ|.
(28)

□

Definition 4. Let X ∈ η, adX, denote the adjoint represen-
tation and η∗ denote the dual of the Lie algebra η. (en, the
skew symmetric bilinear form Ψf, where f ∈ η∗, is defined
by

Ψf: η × η⟶ R

(X, Y)⟶Ψf(X, Y)

� f([X, Y]).

(29)

(e index of a Lie algebra η is the integer
inf dimηf: f ∈ η∗􏽮 􏽯 where ηf � ker(Ψf) defined by
ηf � X ∈ η: f([X, Y]) � 0,∀y ∈ η􏼈 􏼉.

Proposition 2 (see Proposition 4 in [10]). (e index of an
n-dimensional Lie algebra η is the integer,

indexη � n − RankR(η) Xi, Xj􏽨 􏽩􏼐 􏼑1≤ i,j≤ n
, (30)

where R(η) is the quotient field of symmetric algebra S(η).

Remark 3. above proposition tells us that the index of a Lie
algebra is the nullity of the matrix Eη � ([Xi, Xj]).

Now, we present an example regarding to this notion
with the use of the index set Λ.

Example 2. Suppose that Λ � (1, 2, 3), (1, 3, 4), (2, 3, 5){ } is
the index set of an algebra η of dimension 6. Its corre-
sponding Gram matrix is

3 0 0

0 3 1

0 1 3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (31)

Since there is no − 1 entry, η is a Lie algebra. (e matrix
Eη is as follows:

0 X3 X4 0 0 0

− X3 0 X5 0 0 0

− X4 − X5 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (32)

Its rank is 2; therefore, indexη � 4.

Proposition 3. For an n− dimensional nilsoliton represented
by an index setΛwith a Nikolayevsky basis, the matrix Eη has
the following properties:

(1) .e matrix is an n × n matrix with zero diagonal
entries

(2) .e rank of Eη is even
(3) .e nth row and column of Eη are zero matrices
(4) If |Λ| � K, then Eη has 2K nonzero entries

Proof. Suppose that the Nikolayevsky basis is represented by
B � Xα􏼈 􏼉1≤ α≤ n. By the definition of Eη, Eη(i, j) � [Xi, Xj],
then

Eη􏼐 􏼑
ij

� Xi, Xj􏽨 􏽩 � − Xj, Xi􏽨 􏽩 � − Eη􏼐 􏼑
ji
. (33)

(erefore, Eη is a skew symmetric matrix, which implies
the first and second properties. On the other hand, since η is
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nilpotent Lie algebra with Nikolayevsky basis, then Λ
consists of the elements of form (i, j, k) such that i< j< k.
(erefore, n cannot appear in the first or the second
component of the triples in Λ. (us, [Xi, Xn] � [Xn, Xi] � 0
for all i ∈ 1, 2, . . . , n{ }, which implies that
(Eη)in � (Eη)ni � 0, i.e., the last row and the last column are
zero matrices.

(e entries of Eη are defined by the index set Λ. If
|Λ| � K, then there exists K non-zero entries on the upper
triangular part of Eη. Since the matrix is skew symmetric,
then there exists other K nonzero entries in the lower tri-
angular part of the matrix. So, in total, there exists 2K

nonzero entries in Eη. □

Corollary 2. Suppose that η is an n− dimensional nilsoliton.
.en, index(η) is even, if n is even, and index is odd if n is odd.

Proof. (e index of the nilsoliton is
index(η) � Nullity(Eη) � n − rank(Eη). Since Eη is a skew
symmetric matrix, its rank is always even, which finishes the
proof. □

4. Conclusion

In this paper, we prove theorems for the computations of
structural elements of an n-dimensional nilsoliton η. We
prove theorems regarding to the Jacobi identity or identities
that have to be satisfied, rank, and index of the nilsoliton. In
the future, we plan to use these theorems to create a
computer algorithm for the classifications of nilsolitons for a
given dimension. (e theorems appearing in this study will
allow us to pare down the number of cases to consider in our
procedure.
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Amid all convective heat transfer augmentation methods employing single phase, jet impingement heat transfer delivers sig-
nificantly higher coefficient of local heat transfer.(e arrangement leading to nine jets in square array has been used to cool a plate
maintained at constant heat flux. Numerical study has been carried out using RANS-based turbulence modeling in commercial
CFD Fluent software.(e turbulent models used for the study are three different “k-ε” models (STD, RNG, and realizable) and SST
“k-ω” model. (e numerical simulation output is equated with the experimental results to find out the most accurate turbulence
model. (e impact of variation of Reynolds number, inter-jet spacing, and separation distance has been considered for the
geometry considered. (ese parameters affect the coefficient of heat transfer, temperature, and turbulent kinetic energy related to
flow. (e local “h” values have been noticed to decline with the rise in separation distance “H/D.” (e SST “k-ω” model has been
noticed to be inmaximum agreement with the experimental results.(e average value of heat transfer coefficient “h” reduces from
210 to 193W/m2K with increase in “H/D” from 6 to 10 at “Re”� 9000 and S/D of 3. As per numerical results, inter-jet spacing “S/
D” of 3 has been determined to be the most optimum value.

1. Introduction

(e application of jet impingement because of its higher
convection heat transfer rates in processes, namely, me-
chanical as well as chemical, has steered numerous industry
applications, for instance, metal plates cooling/heating,
cooling of turbine blades, industrial equipment cleaning,
and cooling of Micro Electro Mechanical Systems (MEMS).
Jet impingement is normally utilized in numerous industrial
applications which include automobile windshield de-icing,
electronic component cooling, and glassware. High con-
vective transfer rates associated with the jet impingement
has ensured the use of this technology in the fields where the
heat fluxes associated are very high and the space is

restricted. Heat, Ventilation, and Air-Conditioning (HVAC)
is significant for building indoors, not only for adequate
comfort levels and quality of air for occupants, but also in
terms of the energy consumption [1–3]. Impinging Jet
Ventilation (IJV) is the new technique emerging in this field
which uses the idea of an impinging jet employed for cooling
a heated target surface. Good number of experimental,
numerical, and analytical studies have been performed.
Outstanding review papers (Viskanta [4] and Zuckerman
and Lior [5]) have been published with an emphasis on
different issues. (e transfer of heat from a single striking jet
is bell shaped Gaussian distribution and thus can lead to the
formation of hot spots on target surface [4, 5]. (us, it has
been established that multiple impinging jets can give rise to
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better heat transfer consistency at the impingement surface.
Interactions and thermal characteristics developed in mul-
tiple conventional striking jets (MCIJs) have been exten-
sively explored. In multiple jet impingement, each
impinging jet may be influenced essentially by two different
kinds of interactions. First are inter-jet interactions pre-
ceding their impingement on the surface. (is type of in-
teraction is important in geometries having small inter-jet
spacing and large separation distances. Second type is in-
teraction among the wall jets of impinging jets after their
impingement on surface. (ese primarily occur for array
configurations with smaller inter-jet spacing with high
velocities.

Metzger and Korstad [6] experimentally determined the
effect of cross flow in multiple impinging jets on a horizontal
plate. Inline circular jets with varying inter-nozzle distance
and separation distance among jets and impingement plate
were studied. Heat transfer coefficient is controlled with jet-
diameter Reynolds number and inter-jet spacing. Li et al. [7]
explored heat transfer from triangular array of jets with
varying diameters on a roughened target surface. Goldstein
and Timmers [8] studied a geometry of single jet bounded by
a hexagonal array of six circular jets with radius of 5mm.
Behbahani and Goldstein [9] stated that at a fixed mass flow
rate per jet, decreasing inter-jet spacing resulted in increased
area averaged Nusselt number. Experiments carried out by
Florschuetz et al. [10] indicated the direct advantages of
reducing jet diameter as well as letting free space among jets
for directing the spent gas flow. Obot and Trabold [11]
examined effects of cross flow employing geometries with
minimum, intermediate, and maximum crossflow. Gold-
stein and Seol [12] stated that local Nusselt number should
be higher at smaller separation distance (H/D� 2) than at
larger distance of H/D� 6. Slayzak et al. [13] investigated the
interactions between adjacent jets using a twin jet im-
pingement system. By varying the momentum of twin jets,
oscillations were observed in the interaction zone. For a
round jet at “H/D”� 2, Huber and Viskanta [14] noticed a
peak in local “Nu” for a ring formed region around “r/
D”� 0.5 and a second smaller peak at “r/D”� 1.6. San and
Lai [15] showed that interaction between the jets produced
smaller peaks in heat transfer distribution among the
stagnation regions because of interactions among neigh-
bouring jets. Geers et al. [16, 17] studied velocity flow field
for the multiple array of circular jets striking on a flat
horizontal plate. Results revealed interactions taking place
among cross flow as well as the wall jets that led to the
development of horseshoe vortices. Spring et al. [18] stated
that inline arrangement is superior to staggered arrangement
of jets mainly attributed to the nature of crossflow existing in
the array. San and Chen [19] reported that for the rise of
separation distance from 0.5 to 2, the Nusselt number
maxima between central and neighbouring jets disappeared
attributed mainly to the decreased interactions between
adjacent jets. Florschuetz et al. [20] studied the crossflow
effects with temperature difference between crossflow and
impinging jets. Gardon and Akfirat [21] conducted exper-
iments on slot jet array and presented that the definition of
each jet is maintained and the peak values in heat transfer

distribution differed slightly from those pertaining to single
impinging jets. Lee and Lee [22] established that orifice
nozzles lead to high rates of heat transfer rates in comparison
to fully developed pipe flow. Weigand et al. [23] conducted
experiments on multiple jet impingement instead of a single
jet and determined the presence of secondary stagnation
zones and vortices that result in the reduction of heat
transfer rates. (is flow of gas is called spent gas and these
wall jets are predominant in the geometries where the small
inter-jet spacing, small gap distances among nozzle plate and
target plate, and large velocities are used. Chougule et al. [24]
determined experimentally that the rise in “H/D” resulted in
decreased heat transfer rates. Higher heat transfer rates are
visible in lower “H/D” ratios because of the decrease in the
impact area as the jet does not mix well with the ambient
fluid. Yong et al. [25] experimentally studied the crossflow
effects of spent gases in staggered and inline array schemes
and demonstrated that the effects of crossflow from up-
stream rows of jets to downstream rows are more pro-
nounced for a staggered array in contrast to an inline array.
Computational fluid dynamics has now emerged as a
powerful tool for predicting the flow situations and heat
transfer characteristics. Likewise, heat transfer enhancement
is also gaining popularity so as to increase the thermal
performance of the systems. (ere are many studies con-
ducted where heat transfer enhancement has been studied by
utilizing nano-sized particles and V-ribs for solar panels
[26–33]. Jet impingement also focusses on the enhancement
of heat transfer using turbulence induced mixing as a means
for increased heat transfer coefficient.

(e literature review suggests that there are few studies
available in which the effects of interactions in larger arrays
of impinging jets have been investigated numerically for heat
transfer characteristics. Based on this finding, the present
work has been performed where an inline array of nine
impinging jets has been investigated for studying the impact
of interactions upon heat transfer characteristics at different
inter-jet spacings (“S/D”� 2, 3, 5, and 7), separation dis-
tances (“H/D”� 6, 8, and 10), and Reynolds numbers
(“Re”� 7000, 9000, and 11000).

2. Numerical Modeling

(e three-dimensional flow situation has been solved using
the Navier–Stokes and energy equations along with tur-
bulence models by means of CFD software (FLUENT 6.3.26)
to predict the thermal and turbulent flow fields for the flow
physics. Equations (1)–(5) have been solved in the com-
mercial Fluent CFD code [34]. (e “k-ω” turbulence model
has been used with shear stress transport (SST) option, and it
has been found to work best for wall bounded flows than
other turbulence models available. (e “k-ω” turbulence
model is selected because of its lesser computation re-
quirements, simplicity, and worldwide acceptability. (e
flow has been considered as incompressible for the sake of
simplicity, and steady-state conditions have been assumed.
(e gravity and radiation heating are neglected, and tem-
perature dependence for standard thermophysical proper-
ties such as specific heat, density, and heat conductivity has
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also not been considered. Figure 1(a) illustrates the detail
description of the problem with the application of boundary
conditions. (e bottom wall of computational domain has
been given a constant heat flux condition. Nine nozzles,
having diameter “D”� 5mm and length “L”� 25mm, have
been used to supply air in the form of round air jets. (e
velocity of the air jets has been varied with the use of dif-
ferent Reynolds number. (ese air jets exit the domain after
impingement from the pressure outlets given at the sides of
the domain. Likewise, the nozzle plate at the top has been
assigned the constant temperature boundary condition. (is
plate also acts as a semiconfinement for the impinging jets.
(e schematic details of nozzle plate are given in Figure 1(b)
for jet spacing of 15mm corresponding to nondimensional
distance of S/D� 3.(e target plate has been maintained at a
static heat input rate of 30W, and all other surfaces except
for the top surface are considered to be adiabatic. (e
governing equations for momentum, pressure, turbulent
kinetic energy, specific rate of dissipation, and energy have
been discretized using second-order techniques. A tetra-
hedral meshing scheme having y+ values less than five and
adequate near wall treatment has been employed around
wall region so as to precisely resolve viscous sublayer region.

(e velocity inlet boundary condition has been specified
with the value of measured velocity from the Reynolds
number, and static temperature of 300K has also been
assigned at the velocity inlet. No-slip criteria have been
implemented at the wall surface for viscous effects. (e
pressure outlet boundary condition signifies the outflow of
the spent flow, and it corresponds to the far field flow
conditions with temperature (300K), gauge pressure of “0”
Pa relating to atmospheric conditions, and turbulence in-
tensity of 5%. For the impingement wall, a uniform heat flux
of 8333W/m2 (30W for 60× 60mm plate) has been spec-
ified along with temperature value of 40°C at bottom surface
of heat sink. (e other heat sink sides are taken to be
adiabatic. (e temperature values thus obtained at the top
surface of base plate have been appended to the computa-
tional flow domain, and simulations have been carried out
with different conditions of varying inter-jet spacings, H/D,
and Reynolds number.

To minimize the computational time and efforts, only
quarter of the complete domain is modeled, and by using
symmetry boundary conditions, the heat transfer and fluid
flow characteristics can be accurately predicted. Figure 2
portrays the computational grid generated for numerical
study, and Table 1 highlights different boundary conditions
given at various sides of the flow domain. Numbers of cells
used for the quarter domain are around 4,34,000, thus
resulting in 1.7 million cells for the complete domain which
are adequate to model the fluid flow. To minimize the
computational efforts, thermophysical properties for air
have been approximated to be constant. (e SIMPLE al-
gorithm aimed at pressure velocity coupling has been taken
for solving the pressure field [34]. (e convergence criterion
used for residuals in momentum, energy, and turbulence
parameters has been specified as 10−6. (e numerical

calculations have been performed on a computer system
having the following configuration: Intel i3 (4 core) pro-
cessor, 4GB RAM, 512GB HDD, and 2GB graphics. (e
computation time that has been taken by the computer in
solving different mesh sizes is given in Table 2.

2.1. Numerical Procedure. CFD study of the multi nozzle
impingement has been conducted by solving the discretized
equations of mass, momentum, and energy conservation
(equations (1)–(3)). RANS-based momentum equations
have been solved for obtaining the flow velocities under
steady-state conditions.

2.1.1. Continuity Equation.

∇.(ρV
→

) � 0. (1)

2.1.2. Momentum Equation.

∇.(ρV
→

V
→

) � −∇p + ∇. μeff∇V
→

􏼒 􏼓. (2)

2.1.3. Energy Equation. (e energy equation is solved to
obtain the temperature data in the flow field.

∇.(V
→

(ρE + p)) � ∇. keff∇T − 􏽘
N

j�1
hj J

→
j

⎛⎝ ⎞⎠. (3)

2.1.4. Turbulence Parameters. (e turbulence in the flow has
been numerically solved using two turbulence models, and
the equations used for solving the turbulence parameters are
given in equations (4)–(7). (e turbulence parameters are
calculated or predicted as per the model being used so as to
calculate the value of turbulent viscosity which is then used
to estimate the value of effective viscosity in equation (2).
With the inclusion of this term, the velocity field can be
calculated numerically as the equations are now mathe-
matically closed. Equations (4) and (5) represent the
transport equations for turbulent kinetic energy (k) and
dissipation rate (ε) as used in k-ε models. Likewise, the
turbulent parameters (k) and specific dissipation rate (ω)
have been estimated for k-ω model as per equations (6) and
(7).

∇(ρkV
→

) � ∇ αkμeff∇k􏼂 􏼃 + Gk − ρε, (4)

∇(ρεV
→

) � ∇ αεμeff∇ε􏼂 􏼃 + C1ε
ε
k

Gk − C2ερ
ε2

k
− Rε, (5)

∇(ρkV
→

) � ∇ αεμeff∇k􏼂 􏼃 + Gk − Yk + Sk, (6)

∇(ρωV
→

) � ∇ αεμeff∇ω􏼂 􏼃 + Gω − Yω + Sω. (7)
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3. Numerical Results

Numerical study has been executed to explore the impact of
variation in “S/D,” “H/D,” and “Re” upon heat transfer
characteristics. For the validation of numerical results, Ta-
ble 3 highlights the average heat transfer coefficient values
compared to the experimental output of Chougule et al. [24]
along with the errors at fixed conditions corresponding to
“H/D” of 8, S/D of 3, and Re of 9000. On the basis of these
results, k-ω “SST” model has been implemented for nu-
merical simulations. Likewise, local coefficient of heat
transfer has also been plotted against nondimensional dis-
tance along x-axis (Figure 3) for “H/D”� 6 and Re� 9000.

3.1. Impact of Separation Distance (H/D). (e impact of
separation distance (H/D) among the nozzle and the target
plate has been explored by varying “H/D” at the same “S/D”
and Reynolds number. (e rise in separation distance
resulted in decreased rate of heat transfer as the increase in
the separation improves the interaction among the jets and
the surroundings, and thus velocity of the jet decreases
owing to increased momentum exchange. (e values of

coefficient of heat transfer as well as Nusselt number should
thus decline at stagnation regions. Figure 4 shows the dis-
tribution of heat transfer coefficient and turbulent kinetic
energy (TKE) at Reynolds number “Re”� 7000 for nu-
merous values of separation distances (“H/D”� 6, 8, and 10)
for “D”� 5mm.

(e values of local “h” decrease with increasing “H/D” at
the stagnation region pertaining to the jet at “X/D”� 0. (e
variation shows value of “h” to decrease from 390W/m2-K
to 270W/m2-K as “H/D” is increased from 6 to 10.

(e value of peak in “TKE” distribution reduces from
15m2/s2 to 2m2/s2 for the separation distance “H/D”
changing from 6 to 10. Likewise, Figures 5 and 6 portray
local “h” and “TKE” distribution intended for different “H/
D” at fixed “S/D” of 3 and Re of 9000 and 11000.

(e values of local heat transfer coefficient and turbulent
kinetic energy can be seen to be increasing with increasing
Reynolds number since the increase in flow velocities tends to
increase the turbulent interactions with the atmosphere. (e
increase in axial flow velocities also results in lesser jet spread
and thus lesser thermal dilution leading to higher heat
transfer. At the interaction region formed in-between adja-
cent jets (i.e., “X/D”∼ 1.5), the higher flow velocities of wall

Round jets Nozzle plate 
(constant temperature) Side exit 

(pressure outlet)

Top surface
of target plate
maintained at

constant
heat flux

Figure 1: Physical description and boundary conditions at various surfaces.

(a)

15 15

15
15

60

60

ϕ5

(b)

Figure 2: (a) Computational mesh generated for the numerical computation and (b) schematic view of nozzle plate being used.
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jets result in flow separation in form of fountain upwash flow.
Due to this flow separation, the value of “h” at this region is
very less. One more observation can be made for “H/D”� 10
case that the stagnation region formed here (“X/D”� 0) shows
a plateau of high local “h” values instead of depicting a sharp
peak as seen for “H/D”� 6 and 8. (is happens due to in-
creased jet spread taking place due to the increased space
available between nozzle exit and impingement plate for
higher separations.

3.2. Impact of Inter-Jet Spacing (S/D). (e values of “S/D”
considered for the present analysis are “S/D”� 2, 3, 5, and 7.
(ese “S/D” values are sufficient to analyze how the jets will

behave for very close, medium, and far inter-jet spacings. (e
increase in “S/D” will result in decreased interactions among
the jets, and therefore the total heat transfer will decrease and
the decrease in “S/D” will lead to increased interaction and thus
increase in heat transfer. (e too small value of “S/D” resulted
in array of jets to behave like a large single jet, and thus the heat
transfer coefficient value is also high, but study of interaction
effects cannot be made properly. (e impact of variation in
inter-jet spacing is depicted graphically in Figure 7.(e graphs
show the variation in heat transfer coefficient and temperature
at central horizontal axis of the target plate for the nine jets at
“S/D”� 2, 3, 5, and 7 for fixed value of Reynolds number,
“Re”� 9000, “H/D”� 8, and “D”� 5mm.

Table 1: Boundary conditions used for computation.

Physical location/identity Boundary type Mathematical representation
Top plate/nozzle plate Wall u� v � w � 0; Ts � 300K
Bottom surface/impingement plate Wall u� v � w � 0; q″� 8333W/m2

Side/opening/outlet Pressure outlet P� Patm
Rear/side surface Symmetry z(.)/zxj � 0
Inlet/velocity inlet Velocity inlet As per value of Re at the nozzle
Nozzle walls Wall u� v � w � 0; T� 300K

Table 2: Computational grids and time taken for convergence.

S. No. Mesh density/size Computational time
1 301,720 cells 6 hours (approx.)
2 4,34,000 cells 9 hours (approx.)
3 6,55,600 cells 11 hours 30 minutes (approx.)

Table 3: Comparison of different turbulence models.

Sr. No. Turbulence models Average heat transfer coefficient (h) Error (% age)
1 Experimental value 210W/m2-K —
2 k-ε STD 181W/m2-K 13.8
3 k-ε RNG 192W/m2-K 8.57
4 k-ε realizable 191W/m2-K 9.04
5 k-ω SST 204W/m2-K 2.85
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Figure 3: Local heat transfer coefficient (W/m2-K) distribution with respect to “X/D” for various turbulence models.
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Figure 7 shows declining tendencies for the change in heat
transfer coefficient by increasing “S/D.” (is reduction in the
values of heat transfer coefficient “h” can be anticipated due to
decrease in the interaction among the neighbouring jets. At
lower values of “S/D,” the interaction between the jets and
lesser spacing results in turbulence and thus increase in heat
transfer rates. As the value of “S/D” increases, the distance
among the jets increases, and thus the rate of heat transfer per
unit area decreases. Figure 7 also shows the variation in
temperature with respect to “X/D.” (e values of temperature
are found to rise with the rise in “S/D” at “X/D”� 0. Also, the
local maxima developed at the interaction region in-between

adjacent jets can be seen to show an increase in temperature
values with the rise in the value of inter-jet spacing “S/D.” (is
is due to the decreased interactions and lesser heat transfer
taking place in the interaction region for different “S/D” cases
here. (e decrease in heat transfer leads the surface plate
temperature to rise, and thus the cooling of plate is not effective
at these interaction regions.

3.3. Impact of Reynolds Number (Re). Impact of Reynolds
number on the heat transfer rate has been studied at fixed
“H/D” of 6 and “S/D” of 3, and Reynolds number has been
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Figure 4: (a) Local heat transfer coefficient (W/m2-K) and (b) turbulent kinetic energy (m2/s2) distribution at fixed “S/D” of 3 and “Re” of
7000 for varying separation distances, “H/D” of 6, 8, and 10.
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Figure 5: (a) Local heat transfer coefficient (W/m2-K) and (b) turbulent kinetic energy (m2/s2) distribution at fixed “S/D” of 3 and “Re” of
9000 for varying separation distances, “H/D” of 6, 8, and 10.
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varied as “Re”� 7000, 9000, and 11000. Experimental data
analysis suggests a rise in the value of heat transfer rate and
thus Nusselt number by increasing Reynolds number at
same separation distance.

(e impact of Reynolds number on coefficient of heat
transfer and turbulent kinetic energy (TKE) is shown in
Figure 8. For a fully developed pipe flow, Popiel and
Boguslawski [35] revealed that the turbulent intensity as well
as kinetic energy rises and achieves their maximum value at
“H/D”� 6 for a single jet.(is results from high turbulent jet
intensity. Even though the jet centerline velocity starts
decaying due to its interaction with the ambient, the tur-
bulent intensity continues to increase.(e outer peak in heat

transfer distribution begins to become less distinctive be-
cause the rate of heat transfer at the impact region has
developed to so high values that the chances of their further
increase as an outcome of transition from laminar to tur-
bulent flow are attenuated.(e heat transfer coefficient value
“h” at the stagnation region corresponding to central jet
increases from 370W/m2-K to 495W/m2-K with the rise in
Reynolds number. Rise in “Re” leads to increased length of
potential core region, and thus the axial velocity at the jet
centerline is preserved for much greater downstream dis-
tances. (is marks the increase of heat transfer at the cor-
responding locations on the target plate. Variation of
turbulent kinetic energy shows maximum turbulence at
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Figure 6: (a) Local heat transfer coefficient (W/m2-K) and (b) turbulent kinetic energy (m2/s2) distribution at fixed “S/D” of 3 and “Re” of
11000 for varying separation distances, “H/D” of 6, 8, and 10.
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regions confirming to the location of the jets. Turbulent
kinetic energy has been found to be high at the stagnation
regions corresponding to the jets, and the values of “TKE”
increase from 15.2m2/s2 to 31.8m2/s2 at “X/D”� 0 with the
rise in Reynolds number, “Re” from 7000 to 11000.

Figure 9 highlights the temperatures attained by the
target plate at different values of Reynolds number for fixed
“S/D” of 3 and “H/D” of 6. It can be seen that the plate
becomes cooler particularly at the places related to stag-
nation regions of different impinging jets.
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Figure 8: (a) Local heat transfer coefficient (W/m2-K) and (b) turbulent kinetic energy (m2/s2) distribution at fixed “H/D” of 6 and “S/D” of
3 for varying “Re” of 7000, 9000, and 11000.
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Figure 9: Local contours of temperature (K) developed at the target surface at separation distance “H/D” of 6 and inter-jet spacing “S/D” of 3
for different Reynolds number corresponding to (a) 7000, (b) 9000, and (c) 11000.

Table 4: Averaged heat transfer coefficients for various cases.

Cases Re� 7000 Re� 9000 Re� 11000
H/D� 6 178 (W/m2-K) 210 (W/m2-K) 241 (W/m2-K)
H/D� 8 174 (W/m2-K) 204 (W/m2-K) 219 (W/m2-K)
H/D� 10 170 (W/m2-K) 193 (W/m2-K) 213 (W/m2-K)

Inter-jet spacing (S/D)
Re� 9000 and H/D� 8 2 3 5 7

205 204 200 182
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(e plate, however, remains relatively hotter at the in-
tersection regions developed in-between four jets and in-
teraction areas in-between each pair of jets. (e temperature
values decrease from 324K to 315K at the regions corre-
sponding to intersection of four jets with increasing values of
Reynolds number.

3.4. Averaged Heat Transfer Coefficients “Havg”. Averaged
heat transfer coefficients at the target surface are given in
Table 4.

4. Concluding Remarks

Numerical modeling can be used as an alternative and
powerful tool to predict the trend in variation of heat
transfer rates as well as fluid flow features in various fluid
flow applications. (e trends obtained in the current nu-
merical study show the effects of separation distance, inter-
jet spacing, and Reynolds number on coefficient of heat
transfer and turbulent kinetic energy. Following are the
major concluding remarks:

(1) (e “k-ω” SSTmodel is observed to match best with
the experimental data among different models se-
lected for the study.

(2) (e local “h” values have been noticed to decline
with the rise in separation distance “H/D.” (e av-
erage value of heat transfer coefficient “h” reduces
from 210 to 193W/m2-K with increase in “H/D”
from 6 to 10 at “Re”� 9000 and S/D of 3.

(3) (e values of coefficient of heat transfer “h” and thus
Nusselt number rise due to the rise in Reynolds
number “Re.”

(4) (e average value of coefficient of heat transfer “h” is
205, 204, 200, and 182W/m2-K at inter-jet spacing
“S/D” of 2, 3, 5, and 7, respectively, at “H/D”� 8 and
“Re”� 9000. At “S/D”� 2, the multiple jets start
behaving as a large single jet.

(5) On the basis of heat transfer features, inter-jet
spacing “S/D”� 3 has been determined to be the
optimum value for increasing heat transfer.

Nomenclature

X, Y: Coordinate axis on impingement plate
X/D: Nondimensional x-distance
Y/D: Nondimensional y-distance
D: Diameter of nozzle (mm)
H: Impingement separation (mm)
H/Dh: Nondimensional impingement separation
S/Dh: Inter-jet spacing (dimensionless)
T: Temperature (K)
Ts: Surface temperature (K)
T∞: Ambient temperature (K)
p: Pressure (Pa)
q″L: Heat flux (kW/m2)
havg: Averaged heat transfer coefficient (W/m2-K)
h: Convective heat transfer coefficient

Re: Reynolds number
u, v, w: Velocity components in x, y, and z directions (m/s)
k: Turbulent kinetic energy, TKE (m2/s2)
Sk: Source term for TKE
Sω: Source term for “ω”
Yk: Dissipation term for k in k-ω model
Yω: Dissipation term for ω in k-ω model
keff: Effective thermal conductivity (W/m-K)
Abbreviations
Nu: Nusselt number
RANS: Reynolds averaged NS equations
Re: Reynolds number
RNG: Renormalization group theory
STD: Standard
SST: Shear stress transport
TKE: Turbulent kinetic energy (W/m2-K)
Greek Symbols
μ: Dynamic viscosity (kg/m-s)
ε: Dissipation rate (m2/s3)
ρ: Density (kg/m3)
ω: Specific dissipation rate (m2/s4).
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In this article, we have established the Hadamard inequalities for strongly convex functions using generalized Riemann–Liouville
fractional integrals. -e findings of this paper provide refinements of some fractional integral inequalities. Furthermore, the error
bounds of these inequalities are given by using two generalized integral identities.

1. Introduction

Let f: I⟶ R be a convex function defined on an interval
I ⊂ R and x, y ∈ I, where x<y. -en, the following in-
equality holds:

f
x + y

2
􏼒 􏼓≤

1
y − x

􏽚
y

x
f(v)dv≤

f(x) + f(y)

2
. (1)

-e above inequality is well-known as the Hadamard
inequality. -is inequality provides lower and upper esti-
mates for integral average of a convex function. Since the
appearance of this result in literature, it has drawn attention
of many mathematicians of recent age and it is one of the
most extensively studied results for convex functions. In
[1, 2], Sarikaya et al. have studied it via Riemann–Liouville
fractional integrals of convex functions. After these versions
of Hadamard inequality, many researchers were motivated
and elegantly produced fractional inequalities using different
types of fractional integrals. Also, many new classes of
functions have been introduced in the establishment of
fractional Hadamard inequalities; for details, we refer the
readers to [3–11].

Fractional calculus studies the integrals and derivatives
of any arbitrary order, real or complex. Its history begins at
the end of seventeenth century, when G. W. Leibniz and
Marquis de l’Hospital in 1695 introduced it for first time by
discussing the differentiation of functions of order 1/2.
However, it experienced a rapid growth over the short span
of time. For example, Lagrange, Laplace, Lacroix, Fourier,
Abel, Liouville, Riemann, Green, Holmgren, Grunwald,
Letnikov, Sonin, Laurent, Nekrassov, Krug, and Weyl made
their major contributions to establish a solid foundation of
fractional calculus (see [12–14] and references there in).
Fractional integral and derivative operators are the key
factors in the development of fractional calculus. Recently,
the generalizations [15–17], extensions [18–20], and appli-
cations [21–23] for fractional operators have been made by
many researchers in mathematics, fluid mechanics [24–26],
biological population models [27], and numerical methods
[28].

Our aim in this paper is to utilize generalized Rie-
mann–Liouville fractional integrals with monotonically
increasing function. -e Hadamard inequality is studied for
these integral operators of strongly convex functions, and
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also, by using some integral identities, error bounds are
established. Next, we give the definition of strongly convex
function introduced by Polyak [29] (see also [30]).

Definition 1. Let D be a convex subset of X, (X, ‖.‖) be a
normed space. A function f: D ⊂ X⟶ R will be called
strongly convex function with modulus C≥ 0 if

f(xt +(1 − t)y)≤ tf(x) +(1 − t)f(y) − Ct(1 − t)‖y − x‖
2
,

(2)

holds ∀x, y ∈ D⊆X, t ∈ [0, 1]. For C � 0, (2) gives the
definition of convex function.

In the following, we give the definition of Rie-
mann–Liouville fractional integrals.

Definition 2. Let f ∈ L1[a, b]. -en, left-sided and right-
sided Riemann–Liouville fractional integrals of a function f

of order μ where R(μ)> 0 are defined as follows:

I
μ
a+ f(x) �

1
Γ(μ)

􏽚
x

a
(x − t)

μ− 1
f(t)dt, x> a, (3)

I
μ
b− f(x) �

1
Γ(μ)

􏽚
b

x
(t − x)

μ− 1
f(t)dt, x< b. (4)

-e fractional versions of Hadamard inequality by
Riemann–Liouville fractional integrals are given in the
following theorems.

Theorem 1 (see [1]). Let f: [a, b]⟶ R be a positive
function with 0≤ a< b and f ∈ L1[a, b]. If f is a convex
function on [a, b], then the following fractional integral in-
equalities hold:

f
a + b

2
􏼠 􏼡≤

Γ(α + 1)

2(b − a)
α I

α
a+ f(b) + I

α
b− f(a)􏼂 􏼃≤

f(a) + f(b)

2
,

(5)

with α> 0.

Theorem 2 (see [2]). Let f: [a, b]⟶ R be a positive
function with 0≤ a< b and f ∈ L1[a, b]. If f is a convex
function on [a, b], then the following fractional integral in-
equalities hold:

f
a + b

2
􏼠 􏼡≤

2α− 1Γ(α + 1)

(b − a)
α I

α
(a+b/2)+ f(b) + I

α
(a+b/2)− f(a)􏽨 􏽩

≤
f(a) + f(b)

2
,

(6)

with α> 0.

Theorem 3 (see [1]). Let f: [a, b]⟶ R be a differentiable
mapping on (a, b) with a< b. If |f′| is convex on [a, b], then
the following fractional integral inequality holds:

f(a) + f(b)

2
−
Γ(α + 1)

2(b − a)
α I

α
a+ f(b) + I

α
b− f(a)􏼂 􏼃

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤
b − a

2(α + 1)
1 −

1
2α

􏼒 􏼓 f′(a)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + f′(b)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏽨 􏽩.

(7)

In the following, refinements of -eorem 1–3 are given.

Theorem 4 (see [31]). Let f: [a, b]⟶ R be a positive
function with 0≤ a< b and f ∈ L1[a, b]. If f is strongly
convex function on [a, b] with modulus C≥ 0, then the fol-
lowing fractional integral inequalities hold:

f
a + b

2
􏼠 􏼡 +

C(b − a)
2 α2 − α + 2􏼐 􏼑

4(α + 1)(α + 2)

≤
Γ(α + 1)

2(b − a)
α I

α
a+ f(b) + I

α
b− f(a)􏼂 􏼃

≤
f(a) + f(b)

2
−

Cα(b − a)
2

(α + 1)(α + 2)
,

(8)

with α.

Theorem 5 (see [32]). Let f: [a, b]⟶ R be a positive
function with 0≤ a< b and f ∈ L1[a, b]. If f is strongly
convex function on [a, b] with modulus C≥ 0, then the fol-
lowing fractional integral inequalities hold:

f
a + b

2
􏼠 􏼡 +

C(b − a)
2

2(α + 1)(α + 2)

≤
2α− 1Γ(α + 1)

(b − a)
α I

α
(a+b/2)+ f(b) + I

α
(a+b/2)− f(a)􏽨 􏽩

≤
f(a) + f(b)

2
−

Cα(b − a)
2
(α + 3)

4(α + 1)(α + 2)
,

(9)

with α.

Theorem 6 (see [32]). Let f: [a, b]⟶ R be a differentiable
mapping on (a, b) with a< b and f ∈ L1[a, b]. If f is strongly
convex function on [a, b] with modulus C≥ 0, then the fol-
lowing fractional integral inequalities hold:

f(a) + f(b)

2
−
Γ(α + 1)

2(b − a)
α I

α
a+ f(b) + I

α
b− f(a)􏼂 􏼃

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤
b − a

2(α + 1)
1 −

1
2α

􏼒 􏼓 f′(a)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + f′(b)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏽨 􏽩

−
C(b − a)

3

(α + 2)(α + 3)
1 −

α + 4
2α+2􏼠 􏼡,

(10)

with α.

In [33], k-fractional Riemann–Liouville integrals are
defined as follows.
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Definition 3. Let f ∈ L1[a, b]. -en, k-fractional Rie-
mann–Liouville integrals of order μ, where R(μ)> 0, k> 0,
are defined by

kI
μ
a+ f(x) �

1
kΓk(μ)

􏽚
x

a
(x − t)

(μ/k)− 1
f(t)dt, x> a,

(11)

kI
μ
b− f(x) �

1
kΓk(μ)

􏽚
b

x
(t − x)

(μ/k)− 1
f(t)dt, x< b, (12)

where Γk(.) is defined as follows [34]:

Γk(μ) � 􏽚
∞

0
t
α− 1

e
− tk/k( )dt, R(μ)> 0. (13)

If k � 1, (11) and (12) coincide with (3) and (4).
Farid et al. [35, 36] proved the following k-fractional

Hadamard inequalities.

Theorem 7 (see [35]). Let f: [a, b]⟶ R be a positive
function with 0≤ a< b. Iff is a convex function on [a, b], then
the following inequalities for k-fractional integrals hold:

f
a + b

2
􏼠 􏼡≤

Γk(α + k)

2(b − a)
α/k kI

α
a+ f(b) + kI

α
b− f(a)􏼂 􏼃≤

f(a) + f(b)

2
.

(14)

Theorem 8 (see [36]). Let f: [a, b]⟶ R be a positive
function with 0≤ a< b. Iff is a convex function on [a, b], then
the following inequalities for k-fractional integrals hold:

f
a + b

2
􏼠 􏼡≤

2(α/k)− 1Γk(α + k)

(b − a)
(α/k) kI

α
(a+b/2)+ f(b) + kI

α
(a+b/2)− f(a)􏽨 􏽩

≤
f(a) + f(b)

2
.

(15)

Theorem 9 (see [35]). Let f: [a, b]⟶ R be a differentiable
mapping on (a, b) with 0≤ a< b. If |f′| is convex on [a, b],
then the following inequality for k-fractional integrals hold:

f(a) + f(b)

2
−
Γk(α + k)

2(b − a)
α/k kI

α
a+ f(b) + kI

α
b− f(a)􏼂 􏼃

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤
b − a

2((α/k) + 1)
1 −

1
2(α/k)

􏼠 􏼡 f′(a)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + f′(b)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏽨 􏽩.

(16)

In the following, we give the definition of generalized
Riemann–Liouville fractional integrals by a monotonically
increasing function:

Definition 4 (see [37]). Let f: [a, b]⟶ R be an integrable
function. Also, let ψ be an increasing and positive function
on (a, b], having a continuous derivative ψ′ on (a, b). -e
left-sided and right-sided fractional integrals of a function f

with respect to another function ψ on [a, b] of order μ where
R(μ)> 0 are defined by

I
μ,ψ
a+ f(x) �

1
Γ(μ)

􏽚
x

a
ψ′(t)(ψ(x) − ψ(t))

μ− 1
f(t)dt, x> a,

(17)

I
μ,ψ
b− f(x) �

1
Γ(μ)

􏽚
b

x
ψ′(t)(ψ(t) − ψ(x))

μ− 1
f(t)dt, x< b.

(18)

If ψ is identity function, then (17) and (18) coincide with
(3) and (4).

-e k-analogue of generalized Riemann–Liouville frac-
tional integrals are defined as follows:

Definition 5 (see [38]). Let f: [a, b]⟶ R be an integrable
function. Also, let ψ be an increasing and positive function on
(a, b], having a continuous derivative ψ′ on (a, b). ?e left-
sided and right-sided fractional integrals of a function f with
respect to another function ψ on [a, b] of order μ where
R(μ)> 0, k> 0, are defined by

kI
μ,ψ
a+ f(x) �

1
kΓk(μ)

􏽚
x

a
ψ′(t)(ψ(x) − ψ(t))

(μ/k)− 1
f(t)dt, x> a,

(19)

kI
μ,ψ
b− f(x) �

1
kΓk(μ)

􏽚
b

x
ψ′(t)(ψ(t) − ψ(x))

(μ/k)− 1
f(t)dt, x< b.

(20)

If k � 1, (19) and (20) coincide with (17) and (18). If ψ is
taken as identity function, (19) and (20) coincide with (11)
and (12). If ψ is taken as identity function along with k � 1,
(19) and (20) coincide with (3) and (4). For more details of
above defined fractional integrals, one can see [13, 39].

In Section 2, we establish Hadamard inequalities for
generalized Riemann–Liouville fractional integrals of
strongly convex functions. -e particular cases are given as
consequences of these inequalities which are connected with
already published results. In Section 3, by using two integral
identities for generalized fractional integrals, the error
bounds of fractional Hadamard inequalities are established.
-e findings of this paper are connected with results that are
explicitly proved in [1, 2, 31, 35, 36, 40–44].

2. Main Results

Theorem 10. Let f: [a, b]⟶ R be a positive function with
0≤ a< b and f ∈ L1[a, b]. Also, suppose that f is strongly
convex function on [a, b] with modulus C≥ 0, ψ is an in-
creasing and positive monotone function on (a, b], having a
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continuous derivative ψ′(x) on (a, b). ?en, for k> 0, the
following k-fractional integral inequalities hold:

f
a + b

2
􏼠 􏼡 +

C(b − a)
2 α2 − kα + 2k

2
􏼐 􏼑

4(α + k)(α + 2k)

≤
Γk(α + k)

2(b − a)
α/k kI

α,ψ
ψ− 1(a)+ (f ∘ψ) ψ− 1

(b)􏼐 􏼑 + kI
α,ψ
ψ− 1(b)− (f ∘ψ) ψ− 1

(a)􏼐 􏼑􏼔 􏼕

≤
f(a) + f(b)

2
−

Ckα(b − a)
2

(α + k)(α + 2k)
,

(21)

with α> 0.

Proof. Since the function f is strongly convex function, so
for x, y ∈ [a, b], we have

f
x + y

2
􏼒 􏼓≤

f(x) + f(y)

2
−

C

4
|x − y|

2
. (22)

Let x � at + (1 − t)b, y � (1 − t)a + tb for t ∈ [0, 1] in
(22) and multiplying the resulting inequality with t(α/k)− 1 on
both sides, we get

2f
a + b

2
􏼠 􏼡t

(α/k)− 1 ≤f(at +(1 − t)b)t
(α/k)− 1

+ f((1 − t)a + bt)t
(α/k)− 1

−
C

2
(b − a)

2
(1 − 2t)

2
t
(α/k)− 1

.

(23)

Integrating (23) over the interval [0, 1], we get

2f
a + b

2
􏼠 􏼡 􏽚

1

0
t
(α/k)− 1dt≤ 􏽚

1

0
f(at +(1 − t)b)t

(α/k)− 1dt

+ 􏽚
1

0
f((1 − t)a + bt)t

(α/k)− 1dt

−
C

2
(b − a)

2
􏽚
1

0
(1 − 2t)

2
t
(α/k)− 1dt,

2k

α
f

a + b

2
􏼠 􏼡≤ 􏽚

1

0
f(at +(1 − t)b)t

(α/k)− 1dt

+ 􏽚
1

0
f((1 − t)a + bt)t

(α/k)− 1dt

−
Ck(b − a)

2 α2 − kα + 2k
2

􏼐 􏼑

2α(α + k)(α + 2k)
.

(24)

Multiplying (24) by α/2k, we get

f
a + b

2
􏼠 􏼡≤

α
2k

􏽚
1

0
f(at +(1 − t)b)t

(α/k)− 1dt􏼠

+ 􏽚
1

0
f((1 − t)a + bt)t

(α/k)− 1dt􏼡 −
C(b − a)

2 α2 − kα + 2k
2

􏼐 􏼑

4(α + k)(α + 2k)
.

(25)

Taking u ∈ [a, b] so that ψ(u) � at + b(1 − t), that is,
t � (b − ψ(u))/(b − a), and v ∈ [a, b] so that
ψ(v) � a(1 − t) + bt, that is, t � (ψ(v) − a)/(b − a), in (25),
then by applying Definition 5, we get the following
inequality:

f
a + b

2
􏼠 􏼡 +

C(b − a)
2 α2 − kα + 2k

2
􏼐 􏼑

4(α + k)(α + 2k)

≤
Γk(α + k)

2(b − a)
α/k kI

α,ψ
ψ− 1(a)+ (f ∘ψ) ψ− 1

(b)􏼐 􏼑+kI
α,ψ
ψ− 1(b)− (f ∘ψ) ψ− 1

(a)􏼐 􏼑􏼔 􏼕.

(26)

Since f is strongly convex function, for t ∈ [0, 1], we also
have following inequality:

f(ta +(1 − t)b) + f((1 − t)a + tb)≤f(a) + f(b)

− 2Ct(1 − t)(b − a)
2
.

(27)

Multiplying (27) with t(α/k)− 1 and then integrating over
the interval [0, 1], we get

􏽚
1

0
t
(α/k)− 1

f(ta +(1 − t)b)dt + 􏽚
1

0
t
(α/k)− 1

f((1 − t)a + tb)dt

≤ (f(a) + f(b)) 􏽚
1

0
t
(α/k)− 1dt − 2C(b − a)

2
􏽚
1

0
t
(α/k)

(1 − t)dt,

􏽚
1

0
t
(α/k)− 1

f(ta +(1 − t)b)dt + 􏽚
1

0
t
(α/k)− 1

f((1 − t)a + tb)dt

≤
k(f(a) + f(b))

α
−

2Ck
2
(b − a)

2

(α + k)(α + 2k)
.

(28)

Multiplying (28) by α/2k, we get

α
2k

􏽚
1

0
t
(α/k)− 1

f(ta +(1 − t)b)dt + 􏽚
1

0
t
(α/k)− 1

f((1 − t)a + tb)dt􏼠 􏼡

≤
f(a) + f(b)

2
−

Ckα(b − a)
2

(α + k)(α + 2k)
.

(29)

Again taking ψ(u) � at + b(1 − t), that is,
t � (b − ψ(u)/b − a), and ψ(v) � a(1 − t) + bt, that is,
t � (ψ(v) − a/(b − a)), in (29), then by applying Definition
5, we get the following inequality:
Γk(α + k)

2(b − a)
α/k kI

α,ψ
ψ− 1(a)+ (f ∘ψ) ψ− 1

(b)􏼐 􏼑 + kI
α,ψ
ψ− 1(b)− (f ∘ψ) ψ− 1

(a)􏼐 􏼑􏼔 􏼕

≤
f(a) + f(b)

2
−

Ckα(b − a)
2

(α + k)(α + 2k)
.

(30)

Combining (26) and (30), we get (21). □

Remark 1. Under the assumption of -eorem 10, one can
get the following results:
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(i) If C � 0, k � 1, and ψ is identity function in (21),
then -eorem 1 is obtained.

(ii) If C � 0 and ψ is identity function in (21), then
-eorem 7 is obtained.

(iii) If k � 1 and ψ is identity function in (21), then
-eorem 4 is obtained.

(iv) If α � 1, k � 1, C � 0, and ψ is identity function in
(21), then Hadamard inequality is obtained.

(v) If C � 0 in (21), then the inequality (-eorem 1)
stated in [41] is obtained.

(vi) If C � 0 and k � 1 in (21), then the inequality
(-eorem 2.1) stated in [40] is obtained.

(vii) If k � 1, α � 1, and ψ is identity function in (21),
then the inequality (-eorem 6) stated in [44] is
obtained.

Corollary 1. Under the assumption of?eorem 10 with k � 1
in (21), the following inequality holds:

f
a + b

2
􏼠 􏼡 +

C(b − a)
2 α2 − α + 2􏼐 􏼑

4(α + 1)(α + 2)

≤
Γ(α + 1)

2(b − a)
α I

α,ψ
ψ− 1(a)+ (f ∘ψ) ψ− 1

(b)􏼐 􏼑 + I
α,ψ
ψ− 1(b)− (f ∘ψ) ψ− 1

(a)􏼐 􏼑􏼔 􏼕

≤
f(a) + f(b)

2
−

Cα(b − a)
2

(α + 1)(α + 2)
.

(31)

Corollary 2. Under the assumption of ?eorem 10 with ψ as
identity function in (21), the following inequality holds:

f
a + b

2
􏼠 􏼡 +

C(b − a)
2 α2 − kα + 2k

2
􏼐 􏼑

4(α + k)(α + 2k)

≤
Γk(α + k)

2(b − a)
α/k kI

α
a+ f(b) + kI

α
b− f(a)􏼂 􏼃

≤
f(a) + f(b)

2
−

Ckα(b − a)
2

(α + k)(α + 2k)
.

(32)

Theorem 11. Let f: [a, b]⟶ R be a positive function with
0≤ a< b and f ∈ L1[a, b]. Also, suppose that f is strongly
convex function on [a, b] with modulus C≥ 0 and ψ is an
increasing and positive monotone function on (a, b], having a
continuous derivative ψ′(x) on (a, b). ?en, for k> 0, the
following k-fractional integral inequalities hold:

f
a + b

2
􏼠 􏼡 +

k
2
C(b − a)

2

2(α + k)(α + 2k)

≤
2(α/k)− 1Γk(α + k)

(b − a)
(α/k) kI

α,ψ
ψ− 1(a+b/2)+ (f ∘ψ) ψ− 1

(b)􏼐 􏼑 + kI
α,ψ
ψ− 1(a+b/2)− (f ∘ψ) ψ− 1

(a)􏼐 􏼑􏼔 􏼕

≤
f(a) + f(b)

2
−

Cα(b − a)
2
(α + 3k)

4(α + k)(α + 2k)
,

(33)

with α> 0. Proof. Let x � (at/2) + (2 − t/2)b and y � (2 − t/2)a+

(bt/2) in (22), and multiplying the resulting inequality with
t(α/k)− 1, we get

f
a + b

2
􏼠 􏼡t

(α/k)− 1 ≤
1
2

f
at

2
+

2 − t

2
􏼒 􏼓b􏼒 􏼓t

(α/k)− 1
+ f

2 − t

2
􏼒 􏼓a +

bt

2
􏼠 􏼡t

(α/k)− 1
􏼢 􏼣

−
C

4
(b − a)

2
(1 − t)

2
t
(α/k)− 1

.

(34)
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Integrating (34) over [0, 1], we get

2k

α
f

a + b

2
􏼠 􏼡≤ 􏽚

1

0
f

at

2
+

2 − t

2
􏼒 􏼓b􏼒 􏼓t

(α/k)− 1dt + 􏽚
1

0
f a

2 − t

2
􏼒 􏼓 +

bt

2
􏼠 􏼡t

(α/k)− 1dt −
k
3
C(b − a)

2

α(α + k)(α + 2k)
. (35)

Multiplying above inequality with α/2k, we get

f
a + b

2
􏼠 􏼡 +

Ck
2
(b − a)

2

2(α + k)(α + 2k)
≤
α
2k

􏽚
1

0
f

at

2
+

2 − t

2
􏼒 􏼓b􏼒 􏼓t

(α/k)− 1dt + 􏽚
1

0
f a

2 − t

2
􏼒 􏼓 +

bt

2
􏼠 􏼡t

(α/k)− 1dt􏼠 􏼡. (36)

Taking u ∈ [a, b] so that ψ(u) � (at/2) + b(2 − t/2), that
is, t � (2(b − ψ(u))/b − a), and v ∈ [a, b] so that
ψ(v) � a(2 − t/2) + (bt/2), that is, t � (2(ψ(v) − a)/b − a),

in (36), then by applying Definition 5, we get following
inequality:

f
a + b

2
􏼠 􏼡 +

Ck
2
(b − a)

2

2(α + k)(α + 2k)
≤
2(α/k)− 1Γk(α + k)

(b − a)
(α/k) kI

α,ψ
ψ− 1(a+b/2)+ (f ∘ψ) ψ− 1

(b)􏼐 􏼑 + kI
α,ψ
ψ− 1(a+b/2)− (f ∘ψ) ψ− 1

(a)􏼐 􏼑􏼔 􏼕. (37)

Since f is strongly convex function on [a, b], for
t ∈ [0, 1], we have the following inequality:

f
at

2
+

2 − t

2
􏼒 􏼓b􏼒 􏼓 + f a

2 − t

2
􏼒 􏼓 +

bt

2
􏼠 􏼡≤f(a) + f(b) −

Ct(2 − t)(b − a)
2

2
. (38)

Multiplying (38) with t(α/k)− 1 on both sides and inte-
grating over [0, 1], we get

􏽚
1

0
f

at

2
+

2 − t

2
􏼒 􏼓b􏼒 􏼓t

(α/k)− 1dt + 􏽚
1

0
f a

2 − t

2
􏼒 􏼓 +

bt

2
􏼠 􏼡t

(α/k)− 1dt

≤ (f(a) + f(b)) 􏽚
1

0
t
(α/k)− 1dt −

C(b − a)
2

2
􏽚
1

0
(2 − t)t

(α/k)dt.

(39)

Multiplying (39) with α/2k on both sides, we get

α
2k

􏽚
1

0
f

at

2
+

2 − t

2
􏼒 􏼓b􏼒 􏼓t

(α/k)− 1dt + 􏽚
1

0
f

2 − t

2
􏼒 􏼓a +

bt

2
􏼠 􏼡t

(α/k)− 1dt􏼠 􏼡

≤
f(a) + f(b)

2
−

Cα(b − a)
2
(α+3k)

4(α+ k)(α+2k)
.

(40)

Again taking ψ(u) � (at/2) + b(2 − t/2), that is,
t � (2(b − ψ(v))/b − a), and ψ(v) � a(2 − t/2) + (bt/2), that
is, t � (2(ψ(v) − a)/b − a), in (40), then by applying Defi-
nition 5, we get the following inequality:

2α/kΓk(α + k)

2(b − a)
α/k kI

α,ψ
ψ− 1(a+b/2)+ (f ∘ψ) ψ− 1

(b)􏼐 􏼑 + kI
α,ψ
ψ− 1(a+b/2)− (f ∘ψ) ψ− 1

(a)􏼐 􏼑􏼔 􏼕

≤
f(a) + f(b)

2
−

Cα(b − a)
2
(α + 3k)

4(α + k)(α + 2k)
.

(41)
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Combining (37) and (41), (33) is obtained. □

Remark 2. Under the assumption of -eorem 11, one can
get the following results:

(i) If k � 1, C � 0, and ψ is identity function in (33),
then -eorem 2 is obtained.

(ii) If k � 1 and ψ is identity function in (33), then
-eorem 5 is obtained.

(iii) If C � 0 and ψ is identity function in (33), then
inequality (-eorem 2.1) stated in [36] is obtained.

(iv) If k � 1, C � 0, α � 1, and ψ is identity function in
(33), then Hadamard inequality is obtained.

(v) If k � 1, α � 1, and ψ is identity function in (33),
then the inequality (-eorem 6) stated in [44] is
obtained.

Corollary 3. Under the assumption of ?eorem 11 with C �

0 in (33), the following inequality holds:

f
a + b

2
􏼠 􏼡≤

2(α/k)− 1Γk(α + k)

(b − a)
(α/k) kI

α,ψ
ψ− 1(a+b/2)+ (f ∘ψ) ψ− 1

(b)􏼐 􏼑 + kI
α,ψ
ψ− 1(a+b/2)− (f ∘ψ) ψ− 1

(a)􏼐 􏼑􏼔 􏼕

≤
f(a) + f(b)

2
.

(42)

Corollary 4. Under the assumption of?eorem 11 with k � 1
in (33), the following inequality holds:

f
a + b

2
􏼠 􏼡 +

C(b − a)
2

2(α + 1)(α + 2)
≤
2α− 1Γ(α + 1)

(b − a)
α I

α,ψ
ψ− 1(a+b/2)+ (f ∘ψ) ψ− 1

(b)􏼐 􏼑 + I
α,ψ
ψ− 1(a+b/2)− (f ∘ψ) ψ− 1

(a)􏼐 􏼑􏼔 􏼕

≤
f(a) + f(b)

2
−

Cα(b − a)
2
(α + 3)

4(α + 1)(α + 2)
.

(43)

Corollary 5. Under the assumption of ?eorem 11 with ψ as
identity function in (33), the following inequality holds:

f
a + b

2
􏼠 􏼡 +

Ck
2
(b − a)

2

2(α + k)(α + 2k)

≤
2(α/k)− 1Γk(α + k)

(b − a)
(α/k) kI

α
(a+b/2)+ f(b) + kI

α
(a+b/2)− f(a)􏽨 􏽩

≤
f(a) + f(b)

2
−

Cα(b − a)
2
(α + 3k)

4(α + k)(α + 2k)
.

(44)

3. Error Bounds of Hadamard Inequalities for
Strongly Convex Functions

In this section, we provide the error bounds of fractional
Hadamard inequalities using generalized Riemann–Liou-
ville fractional integrals via strongly convex functions. Es-
timations here are further refined as compared to those
already established for convex functions. -e following
lemma is useful to prove the next result.

Lemma 1 (see [41]). Let a< b and f: [a, b]⟶ R be a
differentiable mapping on (a, b). Also, suppose that
f′ ∈ L[a, b], ψ is an increasing and positive monotone function
on (a, b], having a continuous derivative ψ′(x) on (a, b), and
α ∈ (0, 1). ?en, for k> 0, the following identity holds:

f(a) + f(b)

2
−
Γk(α + k)

2(b − a)
α/k kI

α,ψ
ψ− 1(a)+ (f ∘ψ) ψ− 1

(b)􏼐 􏼑 + kI
α,ψ
ψ− 1(b)− (f ∘ψ) ψ− 1

(a)􏼐 􏼑􏼔 􏼕

�
b − a

2
􏽚
1

0
(1 − t)

α/k
− t

α/k
􏽨 􏽩f′(ta +(1 − t)b)dt.

(45)
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Theorem 12. Let f: [a, b]⟶ R be a differentiable map-
ping on (a, b) with a< b. Also, suppose that |f′| is strongly
convex function on [a, b] with modulus C≥ 0 and ψ(x) is an

increasing and positive monotone function on (a, b], having a
continuous derivative ψ′(x) on (a, b). ?en, for k> 0, the
following k-fractional integral inequalities hold:

f(a) + f(b)

2
−
Γk(α + k)

2(b − a)
α/k kI

α,ψ
ψ− 1(a)+ (f ∘ψ) ψ− 1

(b)􏼐 􏼑 + kI
α,ψ
ψ− 1(b)− (f ∘ψ) ψ− 1

(a)􏼐 􏼑􏼔 􏼕

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤
b − a

2((α/k) + 1)
1 −

1
2(α/k)

􏼠 􏼡 f′(a)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + f′(b)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏽨 􏽩 −
C(b − a)

3

((α/k) + 2)((α/k) + 3)
1 −

(α/k) + 4
2(α/k)+2􏼠 􏼡,

(46)

with α> 0. Proof. From Lemma 1 and strongly convexity of |f′|, we
have

f(a) + f(b)

2
−
Γk(α + k)

2(b − a)
(α/k) kI

α,ψ
ψ− 1(a)+ (f ∘ψ) ψ− 1

(b)􏼐 􏼑 + kI
α
ψ− 1(b)− (f ∘ψ) ψ− 1

(b)􏼐 􏼑􏼔 􏼕

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤
b − a

2
􏽚
1

0
(1 − t)

(α/k)
− t

(α/k)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 f′(ta +(1 − t))
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌dt

≤
b − a

2
􏽚
1

0
(1 − t)

(α/k)
− t

(α/k)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 t f′(a)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 +(1 − t) f′(b)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 − Ct(1 − t)|b − a|
2

􏼐 􏼑dt

�
b − a

2
􏽚
1/2

0
(1 − t)

(α/k)
− t

(α/k)
􏼐 􏼑 t f′(a)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 +(1 − t) f′(b)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 − Ct(1 − t)|b − a|

2
􏼐 􏼑dt

+ 􏽚
1

1/2
t
(α/k)

− (1 − t)
(α/k)

􏼐 􏼑 t f′(a)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 +(1 − t) f′(b)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 − Ct(1 − t)|b − a|
2

􏼐 􏼑dt.

(47)

It can be noted that

􏽚
1/2

0
(1 − t)

α/k
− t

α/k
􏼐 􏼑 t f′(a)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 +(1 − t) f′(b)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 − Ct(1 − t)|b − a|

2
􏼐 􏼑dt

� f′(a)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 􏽚
1/2

0
t(1 − t)

α/k
− t

(α/k)+1
􏼐 􏼑dt + f′(b)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 􏽚

1/2

0
(1 − t)

(α/k)+1
− (1 − t)t

α/k
􏼐 􏼑dt

− C(b − a)
2

􏽚
1/2

0
t(1 − t)

(α/k)+1dt − 􏽚
1/2

0
(1 − t)t

(α/k)+1dt􏼠 􏼡

� f′(a)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
1

((α/k) + 1)((α/k) + 2)
−

(1/2)
(α/k)+1

(α/k) + 1
􏼠 􏼡 + f′(b)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

1
(α/k) + 2

−
(1/2)

(α/k)+1

(α/k) + 1
􏼠 􏼡

−
C(b − a)

2

((α/k) + 2)((α/k) + 3)
1 −

(α/k) + 4
2(α/k)+2􏼠 􏼡.

(48)
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By similar evaluation, one can have

􏽚
1

1/2
t
(α/k)

− (1 − t)
(α/k)

􏼐 􏼑 t f′(a)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 +(1 − t) f′(b)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 − Ct(1 − t)|b − a|
2

􏼐 􏼑dt

� f′(a)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
1

(α/k) + 2
−

(1/2)
(α/k)+1

(α/k) + 1
􏼠 􏼡 + f′(b)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

1
((α/k) + 1)((α/k) + 2)

−
(1/2)

(α/k)+1

(α/k) + 1
􏼠 􏼡

−
C(b − a)

2

((α/k) + 2)((α/k) + 3)
1 −

(α/k) + 4
2(α/k)+2􏼠 􏼡.

(49)

-erefore, (47) implies

f(a) + f(b)

2
−
Γk(α + k)

2(b − a)
(α/k) kI

α,ψ
ψ− 1(a)+ (f ∘ψ) ψ− 1

(b)􏼐 􏼑 + kI
α
ψ− 1(b)− (f ∘ψ) ψ− 1

(b)􏼐 􏼑􏼔 􏼕

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤
b − a

2
f′(a)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

1
((α/k) + 1)((α/k) + 2)

−
(1/2)

(α/k)+1

(α/k) + 1
􏼠 􏼡 + f′(b)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

1
(α/k) + 2

−
(1/2)

(α/k)+1

(α/k) + 1
􏼠 􏼡􏼢

−
C(b − a)

2

((α/k) + 2)((α/k) + 3)
1 −

(α/k) + 4
2(α/k)+2􏼠 􏼡 + f′(a)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

1
(α/k) + 2

−
(1/2)

(α/k)+1

(α/k) + 1
􏼠 􏼡

+ f′(b)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
1

((α/k) + 1)((α/k) + 2)
−

(1/2)
(α/k)+1

(α/k) + 1
􏼠 􏼡 −

C(b − a)
2

((α/k) + 2)((α/k) + 3)
1 −

(α/k) + 4
2(α/k)+2􏼠 􏼡􏼣.

(50)

From which after a little computation, one can get
(46). □

Remark 3. Under the assumption of -eorem 12, one can
get the following results:

(i) If k � 1 and ψ is identity function in (46), then
-eorem 6 is obtained.

(ii) If C � 0 and ψ is identity function in (46), then
-eorem 9 is obtained.

(iii) If k � 1, C � 0, and ψ is identity function in (46),
then -eorem 3 is obtained.

(iv) If k � 1, C � 0, α � 1, and ψ is identity function in
(46), then -eorem 2.2 in [42] is obtained.

(v) If k � 1 and ψ is identity function in (46), then
-eorem 6 is obtained.

Corollary 6. Under the assumption of ?eorem 12 with C �

0 in (46), the following inequality holds:

f(a) + f(b)

2
−
Γk(α + k)

2(b − a)
(α/k) kI

α,ψ
ψ− 1(a)+ (f ∘ψ) ψ− 1

(b)􏼐 􏼑 + kI
α,ψ
ψ− 1(b)− (f ∘ψ) ψ− 1

(a)􏼐 􏼑􏼔 􏼕

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤
b − a

2((α/k) + 1)
1 −

1
2(α/k)

􏼠 􏼡 f′(a)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + f′(b)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏽨 􏽩.

(51)

Corollary 7. Under the assumption of?eorem 12 with k � 1
in (46), the following inequality holds:

f(a) + f(b)

2
−
Γ(α + 1)

2(b − a)
α I

α,ψ
ψ− 1(a)+ (f ∘ψ) ψ− 1

(b)􏼐 􏼑 + I
α,ψ
ψ− 1(b)− (f ∘ψ) ψ− 1

(a)􏼐 􏼑􏼔 􏼕

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤
b − a

2(α + 1)
1 −

1
2α

􏼒 􏼓 f′(a)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + f′(b)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏽨 􏽩 −
C(b − a)

3

(α + 2)(α + 3)
1 −

α + 4
2α+2􏼠 􏼡.

(52)
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Corollary 8. Under the assumption of ?eorem 12 with ψ as
identity function in (46), the following inequality holds:

f(a) + f(b)

2
−
Γk(α + k)

2(b − a)
α/k kI

α
a+ f(b) + kI

α
b− f(a)􏼂 􏼃

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤
b − a

2((α/k) + 1)
1 −

1
2α/k

􏼠 􏼡 f′(a)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + f′(b)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏽨 􏽩 −
C(b − a)

3

((α/k) + 2)((α/k) + 3)
1 −

(α/k) + 4
2(α/k)+2􏼠 􏼡.

(53)

We now derive a new fractional integral identity for
fractional integrals (19) and (20).

Lemma 2. Let a< b and f: [a, b]⟶ R be a differentiable
mapping on (a, b). Also, suppose that f′ ∈ L[a, b] and ψ is an

increasing and positive monotone function on (a, b], having a
continuous derivative ψ′(x) on (a, b). ?en, for k> 0, the
following identity holds:

2(α/k)− 1Γk(α + k)

(b − a)
(α/k) kI

α,ψ
ψ− 1(a+b/2)+ (f ∘ψ) ψ− 1

(b)􏼐 􏼑 + kI
α,ψ
ψ− 1(a+b/2)− (f ∘ψ) ψ− 1

(a)􏼐 􏼑􏼔 􏼕 − f
a + b

2
􏼠 􏼡

�
b − a

4
􏽚
1

0
t
(α/k)

f′
at

2
+

2 − t

2
􏼒 􏼓b􏼒 􏼓dt􏼢

− 􏽚
1

0
t
(α/k)

f′
2 − t

2
􏼒 􏼓a +

bt

2
􏼠 􏼡dt􏼣,

(54)

with α> 0.

Proof. Let

I1 �
2(α/k)− 1Γk(α + k)

(b − a)
(α/k) kI

α,ψ
ψ− 1(a+b/2)+ (f ∘ψ) ψ− 1

(b)􏼐 􏼑􏼔 􏼕,

I2 �
2(α/k)− 1Γk(α + k)

(b − a)
(α/k) kI

α,ψ
ψ− 1(a+b/2)− (f ∘ψ) ψ− 1

(a)􏼐 􏼑􏼔 􏼕.

(55)

-en, we have

I1 �
2(α/k)− 1α

k(b − a)
(α/k)

􏽚
ψ− 1(b)

ψ− 1(a+b/2)
ψ′(v)(b − ψ(v))

(α/k)− 1
(f ∘ψ)(v))dv􏼢 􏼣

�
− 2(α/k)− 1

(b − a)
(α/k)

􏽚
ψ− 1(b)

ψ− 1(a+b/2)
f(ψ(v))d(b − ψ(v))

(α/k)
􏼢 􏼣

�
1
2

f
a + b

2
􏼠 􏼡 +

1
2

􏽚
ψ− 1(b)

ψ− 1(a+b/2)
f′(ψ(v))

2(b − ψ(v))

b − a
􏼠 􏼡

(α/k)

ψ′(v)dv.

(56)

By substituting t � (2(b − ψ(v))/b − a), we will get
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I1 �
1
2

f
a + b

2
􏼠 􏼡 +

b − a

4
􏽚
1

0
t
α/k

f′
at

2
+

2 − t

2
􏼒 􏼓b􏼒 􏼓dt.

(57)

We also have

I2 �
2(α/k)− 1α

k(b − a)
(α/k)

􏽚
ψ− 1(a+b/2)

ψ− 1(a)
ψ′(v)(ψ(v) − a)

(α/k)− 1
f ∘ψ(v)dv􏼢 􏼣

�
2(α/k)− 1

(b − a)
(α/k)

􏽚
ψ− 1(a+b/2)

ψ− 1(a)
d(ψ(v) − a)

(α/k)
(f(ψ(v)))􏼢 􏼣

�
1
2

f
a + b

2
􏼠 􏼡 −

1
2

􏽚
ψ− 1(a+b/2)

ψ− 1(a)
f′(ψ(v))

2(ψ(v)) − a)

b − a
􏼠 􏼡

(α/k)

ψ′(v)dv.

(58)

By substituting s � (2(ψ(v) − a)/b − a), we will get

I2 �
1
2

f
a + b

2
􏼠 􏼡 −

b − a

4
􏽚
1

0
f′ a

2 − s

2
􏼒 􏼓 +

bs

2
􏼠 􏼡s

α/kds.

(59)

By summing (57) and (59), we get (54). □

Remark 4. Under the assumption of Lemma 2, one can get
the following results:

(i) If k � 1 and ψ is identity function in (54), then the
identity (Lemma 3) stated in [2] is obtained.

(ii) If k � 1, α � 1, and ψ is identity function in (54),
then the identity (Corollary 1) stated in [2] is
obtained.

(iii) If ψ is identity function in (54), then the identity
(Lemma 3.1) stated in [36] is obtained.

Corollary 9. Under the assumption of Lemma 2 with k � 1
in (54), the following identity holds:

2α− 1Γ(α + 1)

(b − a)
α I

α,ψ
ψ− 1(a+b/2)+ (f ∘ψ) ψ− 1

(b)􏼐 􏼑 − I
α,ψ
ψ− 1(a+b/2)− (f ∘ψ) ψ− 1

(a)􏼐 􏼑􏼔 􏼕 − f
a + b

2
􏼠 􏼡

�
b − a

4
􏽚
1

0
t
α
f′

at

2
+

2 − t

2
􏼒 􏼓b􏼒 􏼓dt + 􏽚

1

0
t
α
f′

2 − t

2
􏼒 􏼓a +

bt

2
􏼠 􏼡dt􏼢 􏼣.

(60)

Using above lemma, we give the following error bounds
of the k-fractional Hadamard inequality.

Theorem 13. Let f: I⟶ R be a differentiable mapping on
(a, b) with a< b. Also, suppose that |f′|q is strongly convex

function on [a, b] with modulus C≥ 0 for q≥ 1, and ψ is an
increasing and positive monotone function on (a, b], having a
continuous derivative ψ′(x) on (a, b). ?en, for k> 0, the
following k-fractional integral inequalities hold:

2(α/k)− 1Γk(α + k)

(b − a)
(α/k) kI

α,ψ
ψ− 1(a+b/2)+ (f ∘ψ) ψ− 1

(b)􏼐 􏼑 + kI
α,ψ
ψ− 1(a+b/2)− (f ∘ψ) ψ− 1

(a)􏼐 􏼑⎡⎣ ⎤⎦ − f
a + b

2
􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤
b − a

4((α/k) + 1)

1
2((α/k) + 2)

􏼠 􏼡

1/q α
k

+ 1􏼒 􏼓 f′(a)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

+
α
k

+ 3􏼒 􏼓 f′(b)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

􏼒􏼔

−
C(b − a)2((α/k) + 1)((α/k) + 4)

2((α/k) + 3)
􏼡

1/q

+
α
k

+ 3􏼒 􏼓 f′(a)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

+
α
k

+ 1􏼒 􏼓 f′(b)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

􏼒

−
C(b − a)2((α/k) + 1)((α/k) + 4)

2((α/k) + 3)
􏼡

1/q
⎤⎦,

(61)
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with α> 0. Proof. From Lemma 2 and strongly convexity of |f′|, let
q � 1, we have

2(α/k)− 1Γk(α + k)

(b − a)
(α/k) kI

α,ψ
ψ− 1(a+b/2)+ (f ∘ψ) ψ− 1

(b)􏼐 􏼑 + kI
α,ψ
ψ− 1(a+b/2)− (f ∘ψ) ψ− 1

(a)􏼐 􏼑 − f
a + b

2
􏼠 􏼡􏼢 􏼣

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤
b − a

4
􏽚
1

0
t
(α/k)

f′
at

2
+

2 − t

2
􏼒 􏼓b􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
dt + 􏽚

1

0
t
(α/k)

f′ a
2 − t

2
􏼒 􏼓 +

bt

2
􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
dt􏼢 􏼣

≤
b − a

4
|f′(a)| + f′(b)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑 􏽚

1

0
t
(α/k)dt −

C

2
(b − a)

2
􏽚
1

0
t
(α/k)+1

(2 − t)dt􏼢 􏼣

≤
b − a

4((α/k) + 1)
|f′(a)| + f′(b)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑 −

C(b − a)
2
((α/k) + 4)((α/k) + 1)

((α/k) + 2)((α/k) + k)
􏼢 􏼣.

(62)

Now, for q> 1, we proceed as follows. From Lemma 2 and using power mean inequality, we get

2(α/k)− 1Γk(α + k)

(b − a)
α/k kI

α,ψ
ψ− 1(a+b/2)+ (f ∘ψ) ψ− 1

(b)􏼐 􏼑 + kI
α,ψ
ψ− 1(a+b/2)− (f ∘ψ) ψ− 1

(a)􏼐 􏼑 − f
a + b

2
􏼠 􏼡􏼢 􏼣

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤
b − a

4
􏽚
1

0
t
(α/k)dt􏼠 􏼡

1− (1/q)

􏽚
1

0
t
(α/k)

f′
at

2
+

2 − t

2
􏼒 􏼓b􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

q

dt􏼠 􏼡

(1/q)

⎡⎣

+ 􏽚
1

0
t
(α/k)

f′
2 − t

2
􏼒 􏼓a +

bt

2
􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

q

dt􏼠 􏼡

(1/q)

⎤⎥⎦.

(63)

Strongly convexity of |f′|q gives

2(α/k)− 1Γ(α + k)

(b − a)
(α/k) kI

α,ψ
ψ− 1(a+b/2)+ (f ∘ψ) ψ− 1

(b)􏼐 􏼑 + kI
α,ψ
ψ− 1(a+b/2)− (f ∘ψ) ψ− 1

(a)􏼐 􏼑 − f
a + b

2
􏼠 􏼡􏼢 􏼣

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤
b − a

4((α/k) + 1)
1/p f′(a)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
q

􏽚
1

0

t
(α/k)+1

2
dt + f′(b)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
q

􏽚
1

0

2t
(α/k)

− t
(α/k)+1

2
􏼠 􏼡dt􏼠􏼢

−
C(b − a)2

4
􏽚
1

0
t
(α/k)+1

(2 − t)dt􏼡

1/q

+ f′(a)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

􏽚
1

0

2t
(α/k)

− t
(α/k)+1

2
􏼠 􏼡dt􏼠

+ f′(b)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

􏽚
1

0

t(α/k)+1

2
dt −

C(b − a)2

4
􏽚
1

0
t
(α/k)+1

(2 − t)dt􏼡

1/q
⎤⎦

≤
b − a

4((α/k)1)
1/p

f′(a)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

2((α/k) + 2)
+

f′(b)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q
((α/k) + 3)

2((α/k) + 1)((α/k) + 2)
−

C(b − a)2((α/k) + 4)

4((α/k) + 2)((α/k) + 3)
􏼠 􏼡

1/q
⎡⎢⎣

+
f′(a)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
q
((α/k) + 3)

2((α/k) + 1)((α/k) + 2)
+

f′(b)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

2((α/k) + 2)
−

C(b − a)2((α/k) + 4)

4((α/k) + 2)((α/k) + 3)
􏼠 􏼡

1/q
⎤⎥⎦,

(64)
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which after a little computation gives the required
result. □

Remark 5. Under the assumption of -eorem 13, one can
get the following results:

(i) If C � 0 and ψ is identity function in (61), then the
inequality (-eorem 3.1) stated in [36] is obtained.

(ii) If C � 0, k � 1, and ψ is identity function in (61),
then the inequality (-eorem 5) stated in [2] is
obtained.

(iii) If q � 1, C � 0, k � 1, α � 1, and ψ is identity
function in (61), then the inequality (-eorem 2.2)
stated in [43] is obtained.

Corollary 10. Under the assumption of?eorem 13 with C �

0 in (61), the following inequality holds:

2(α/k)− 1Γk(α + k)

(b − a)
(α/k) kI

α,ψ
ψ− 1(a+b/2)+ (f ∘ψ) ψ− 1

(b)􏼐 􏼑 + kI
α,ψ
ψ− 1(a+b/2)− (f ∘ψ) ψ− 1

(a)􏼐 􏼑􏼔 􏼕 − f
a + b

2
􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤
b − a

4((α/k) + 1)

1
2((α/k) + 2)

􏼠 􏼡

1/q α
k

+ 1􏼒 􏼓 f′(a)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

􏼒􏼔

+
α
k

+ 3􏼒 􏼓 f′(b)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q
􏼓
1/q

+
α
k

+ 3􏼒 􏼓 f′(a)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

+
α
k

+ 1􏼒 􏼓 f′(b)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

􏼒 􏼓
1/q

􏼣.

(65)

Corollary 11. Under the assumption of ?eorem 13 with k �

1 in (61), the following inequality holds:

2α− 1Γ(α + 1)

(b − a)
α I

α,ψ
ψ− 1(a+b/2)+ (f ∘ψ) ψ− 1

(b)􏼐 􏼑 + I
α,ψ
ψ− 1(a+b/2)− (f ∘ψ) ψ− 1

(a)􏼐 􏼑􏼔 􏼕 − f
a + b

2
􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤
b − a

4(α + 1)

1
2(α + 2)

􏼠 􏼡

1/q

(α + 1) f′(a)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

+(α + 3) f′(b)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

􏼐􏽨

−
C(b − a)2((α/k) + 1)(α + 4)

2(α + 3)
􏼡

1/q

+ (α + 3) f′(a)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

+(α + 1) f′(b)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

􏼐

−
C(b − a)2(α + 1)(α + 4)

2(α + 3)
􏼡

1/q
⎤⎦.

(66)

Corollary 12. Under the assumption of?eorem 13 with ψ is
identity function in (61), the following inequality holds:

2(α/k)− 1Γk(α + k)

(b − a)
(α/k) kI

α
(a+b/2)+ f(b) − kI

α
(a+b/2)− f(a)􏽨 􏽩 − f

a + b

2
􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤
b − a

4((α/k) + 1)

1
2((α/k) + 2)

􏼠 􏼡

1/q α
k

+ 1􏼒 􏼓 f′(a)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

+
α
k

+ 3􏼒 􏼓 f′(b)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

􏼒⎡⎣

−
C(b − a)2((α/k) + 1)((α/k) + 4)

2((α/k) + 3)
􏼡

1/q

+
α
k

+ 3􏼒 􏼓 f′(a)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

+
α
k

+ 1􏼒 􏼓 f′(b)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

􏼒 −
C(b − a)2((α/k) + 1)((α/k) + 4)

2((α/k) + 3)
⎞⎠

1/q
⎤⎥⎥⎥⎥⎦.

(67)
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Corollary 13. Under the assumption of ?eorem 13 with
k � 1, q � 1, α � 1, and ψ as identity function in (61), the
following inequality holds:

1
b − a

􏽚
b

a
f(v)dv − f

a + b

2
􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤

b − a

8
f′(a)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + f′(b)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 −

5C(b − a)
2

12
􏼢 􏼣. (68)

Theorem 14. Let f: I⟶ R be a differentiable mapping on
(a, b) with a< b. Also, suppose that |f′|q is strongly convex
function on [a, b] for q> 1, and ψ is an increasing and positive

monotone function on (a, b], having a continuous derivative
ψ′(x) on (a, b). ?en, for k> 0, the following k-fractional
integral inequalities hold:

2(α/k)− 1Γk(α + k)

(b − a)
(α/k) kI

α,ψ
ψ− 1(a+b/2)+ (f ∘ψ) ψ− 1

(b)􏼐 􏼑 + kI
α,ψ
ψ− 1(a+b/2)− (f ∘ψ) ψ− 1

(a)􏼐 􏼑􏼔 􏼕 − f
a + b

2
􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤
b − a

16
4

(αp/k) + 1
􏼠 􏼡

1/p

f′(a)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + 31/q f′(b)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑
q

−
2C(b − a)2

3
􏼠 􏼡

1/q
⎡⎣

+ 31/q f′(a)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + f′(b)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑
q

−
2C(b − a)2

3
􏼠 􏼡

1/q
⎤⎦,

(69)

with α> 0. Proof. From Lemma 2 and using the property of modulus,
we get

2(α/k)− 1Γk(α + k)

(b − a)
(α/k) kI

α,ψ
ψ− 1(a+b/2)+ f ψ− 1

(b)􏼐 􏼑􏼐 􏼑 + kI
α,ψ
ψ− 1(a+b/2)− (f ∘ψ) ψ− 1

(a)􏼐 􏼑 − f
a + b

2
􏼠 􏼡􏼢 􏼣

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤
b − a

4
􏽚
1

0
t
(α/k)

f′
t

2
a +

2 − t

2
􏼒 􏼓b􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
dt + 􏽚

1

0
t
(α/k)

f′
2 − t

2
􏼒 􏼓a +

t

2
b􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
dt􏼢 􏼣.

(70)

Now applying Hölder’s inequality for integrals, we get

2(α/k)− 1Γk(α + k)

(b − a)
(α/k) kI

α,ψ
ψ− 1(a+b/2)+ (f ∘ψ) ψ− 1

(b)􏼐 􏼑 + kI
α,ψ
g− 1(a+b/2)− (f ∘ψ) ψ− 1

(a)􏼐 􏼑 − f
a + b

2
􏼠 􏼡􏼢 􏼣

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤
b − a

4
􏽚
1

0
t
αp/kdt􏼠 􏼡

1/p

􏽚
1

0
f′

t

2
a +

2 − t

2
􏼒 􏼓b􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

q

dt􏼢 􏼣

1/q
⎡⎣

+ 􏽚
1

0
t
αp/kdt􏼠 􏼡

1/p

􏽚
1

0
f′

2 − t

2
􏼒 􏼓a +

t

2
b􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

q

dt􏼢 􏼣

1/q
⎤⎦.

(71)

14 Mathematical Problems in Engineering



Using strongly convexity of |f′|q, we get

2(α/k)− 1Γk(α + k)

(b − a)
(α/k) kI

α,ψ
ψ− 1(a+b/2)+ (f ∘ψ) ψ− 1

(b)􏼐 􏼑 + kI
α,a+b/2
ψ− 1(a+b/2)− (f ∘ψ) ψ− 1

(a)􏼐 􏼑 − f
a + b

2
􏼠 􏼡􏼢 􏼣

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤
b − a

4
1

(αp/k) + 1
􏼠 􏼡

1/p

f′(a)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

􏽚
1

0

t

2
dt + f′(b)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
q

􏽚
1

0

2 − t

2
dt􏼠􏼢

−
C(b − a)2

4
􏽚
1

0
t(2 − t)dt􏼡

1/q

+ f′(a)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

􏽚
1

0

2 − t

2
dt + f′(b)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
q

􏽚
1

0

t

2
dt

C(b − a)2

4
􏽚
1

0
t(2 − t)dt􏼠 􏼡

1/q
⎤⎦

�
b − a

4
1

(αp/k) + 1
􏼠 􏼡

1/p

f′(a)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

+ 3 f′(b)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

−
2C(b − a)2

3
􏼠 􏼡

1/q
⎡⎣

+ 3 f′(a)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

+ f′(b)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

−
2C(b − a)2

3
􏼠 􏼡

1/q
⎤⎦

≤
b − a

4
1

(αp/k) + 1
􏼠 􏼡

1/p

f′(a)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + 31/q f′(b)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑
q

−
2C(b − a)2

3
􏼠 􏼡

1/q
⎡⎣

+ 31/q f′(a)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + f′(b)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑
q

−
2C(b − a)2

3
􏼠 􏼡

1/q
⎤⎦.

(72)

Here, we have used the fact aq + bq ≤ (a + b)q, for q> 1,
a, b≥ 0. -is completes the proof. □

Remark 6. Under the assumption of -eorem 14, one can
get the following results:

(i) If C � 0 and ψ is identity function in (69), then the
inequality (-eorem 3.2) stated in [36] is obtained.

(ii) If k � 1, C � 0, α � 1 and ψ is identity function in
(69), then the inequality (-eorem 2.3) stated in [43]
is obtained.

Corollary 14. Under the assumption of?eorem 14 with C �

0 in (69), the following inequality holds:

2(α/k)− 1Γk(α + k)

(b − a)
(α/k) kI

α,ψ
ψ− 1(a+b/2)+ (f ∘ψ) ψ− 1

(b)􏼐 􏼑 + kI
α,ψ
ψ− 1(a+b/2)− (f ∘ψ) ψ− 1

(a)􏼐 􏼑 − f
a + b

2
􏼠 􏼡􏼢 􏼣

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤
b − a

4
4

(αp/k) + 1
􏼠 􏼡

1/p

f′(a)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + f′(b)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏽨 􏽩.

(73)

Corollary 15. Under the assumption of ?eorem 14 with k �

1 in (69), the following inequality holds:

2α− 1Γ(α + 1)

(b − a)
α I

α,ψ
ψ− 1(a+b/2)+ (f ∘ψ) ψ− 1

(b)􏼐 􏼑 + I
α,ψ
ψ− 1(a+b/2)− ψ− 1

(a)􏼐 􏼑 − f
a + b

2
􏼠 􏼡􏼢 􏼣

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤
b − a

16
4

αp + 1
􏼠 􏼡

1/p

f′(a)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + 31/q f′(b)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑
q

−
2C(b − a)2

3
􏼠 􏼡

1/q
⎡⎣

+ 31/q f′(a)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + f′(b)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑
q

−
2C(b − a)2

3
􏼠 􏼡

1/q
⎤⎦.

(74)
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Corollary 16. Under the assumption of?eorem 14 with C �

0 and k � 1 in (69), the following inequality holds:

2α− 1Γ(α + 1)

(b − a)
α I

α,ψ
ψ− 1(a+b/2)+ (f ∘ψ) ψ− 1

(b)􏼐 􏼑 + I
α,ψ
ψ− 1(a+b/2)− (f ∘ψ) ψ− 1

(a)􏼐 􏼑 − f
a + b

2
􏼠 􏼡􏼢 􏼣

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤
b − a

4
4

αp + 1
􏼠 􏼡

1/p

f′(a)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + f′(b)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏽨 􏽩.

(75)

Corollary 17. Under the assumption of?eorem 14 with ψ is
identity function in (69), the following inequality holds:

2(α/k)− 1Γk(α + k)

(b − a)
(α/k) kI

α
(a+b/2)+ f(b) + kI

α
(a+b/2)− f(a) − f

a + b

2
􏼠 􏼡􏼢 􏼣

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤
b − a

16
4

(αp/k) + 1
􏼠 􏼡

1/p

f′(a)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + 31/q f′(b)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑
q

−
2C(b − a)2

3
􏼠 􏼡

1/q
⎡⎣

+ 31/q f′(a)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + f′(b)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑
q

−
2C(b − a)2

3
􏼠 􏼡

1/q
⎤⎦.

(76)

Corollary 18. Under the assumption of ?eorem 14 with
k � 1, α � 1, and ψ is identity function in (69), the following
inequality holds:

1
b − a

􏽚
b

a
f(t)dt − f

a + b

2
􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤

b − a

16
4

p + 1
􏼠 􏼡

1/p

f′(a)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + 31/q f′(b)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑
q

−
2C(b − a)2

3
􏼠 􏼡

1/q
⎡⎣

+ 31/q f′(a)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + f′(b)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑
q

−
2C(b − a)2

3
􏼠 􏼡

1/q
⎤⎦.

(77)

4. Conclusion

In this paper, we have studied Hadamard inequalities and
their error estimations using generalized Riemann–Liouville
fractional integrals of strongly convex functions. -e
Hadamard inequalities obtained in this work are refine-
ments as well as generalizations of many well-known in-
equalities. -e error estimations of the Hadamard
inequalities for differentiable strongly convex functions are
better as compared to those which are obtained for convex
functions. -e authors are analyzing other well-known
fractional integral operators for several kinds of functions in
their future work.
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+e effect of the hybrid suspension on the intrinsic characteristics of microencapsulated phase change material (MEPCM) slurry
used as a coolant in counterflow microchannel heat exchanger (CFMCHE) with different velocities is investigated numerically.
+e working fluid used in this paper is a hybrid suspension consisting of nanoparticles and MEPCM particles, in which the
particles are suspended in pure water as a base fluid. Two types of hybrid suspension are used (Al2O3 +MEPCM and
Cu+MEPCM), and the hydrodynamic and thermal characteristics of these suspensions flowing in a CFMCHE are numerically
investigated. +e results indicated that using hybrid suspension with high flow velocities improves the performance of the
microchannel heat exchanger while resulting in a noticeable increase in pressure drop. +ereupon, it causes a decrease in the
performance index. Moreover, it was found that the increment of the nanoparticles’ concentration can rise the low thermal
conductivity of theMEPCM slurry, but it also leads to a noticeable increase in pressure drop. Furthermore, it was found that as the
thermal conductivity of Cu is higher than that for Al2O3, the enhancement in heat transfer is higher in case of adding Cu particles
compared with Al2O3 particles. +erefore, the effectiveness of these materials depends strongly on the application at which
CFMCHE is employed.

1. Introduction

+e need for cooling devices in various industries such as
building [1], electronic devices [2], and solar applications
[3–6] has increased so that various researches have been
conducted on this field. +us, enhancing the performance of
heat transfer and thermal storage systems is very important
and has gained lots of interest [7]. +e geometry and
working flow are the most noteworthy methods for im-
provement. Using metal and carbon nanofluids, due to the
high thermal conductivity of these materials, has intensified
their application in modern heat transfer systems. Phase

change materials (PCMs) could improve the heat storage
capacity of the fluid and can enhance the heat storage and
heat transfer potential of the working fluid by absorbing and
releasing heat at a constant temperature. A point to be noted
is that the weak thermal conductivity of PCM has limited
severely the heat transfer of these materials during both
discharging and charging processes in thermal storage
systems. A wide range of investigations was conducted to
enhance the thermal conductivity of PCMs. From these
methods, the use of nanoparticles to increase the heat
transfer rates is of high significance [8]. Kashani et al. [9]
carried out a numerical investigation into the discharging of
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Nanoenhanced Phase Change Material (NEPCM) inside an
enclosure. +ey used different types of nanofluids at con-
centrations of ϕ� 0%, 2.5%, and 5% in a cavity in which the
left wall is under constant heat flux, and the other sides were
thermally insulated. It was illustrated that the heat transfer
rate of the enclosure improves, as the nanoparticles are
added to the system. Gujarathi [10] studied the character-
istics of PCM enriched by nanoparticles to be used in a data
center cooling system.+us, wide ranges of concentration of
copper were added to the paraffin as the PCM. +e dis-
persion of nanoparticles into the paraffin increased its
thermal conductivity when compared with conventional
PCM. As a result, the heat transfer and melting rate were
improved in the presence of nanoparticles. A point to be
mentioned is that since concentration is associated with
viscosity increment, the lower concentrations of nano-
particles showed better heat transfer properties in com-
parison with higher concentrations. Using high latent heat
capacity of PCM along with high thermal conductivity of
nanoparticles was stated as a promising potential in data
center cooling applications. Farsani et al. [11] compared the
impacts using nanoalumina at the concentration of 0.01,
0.02, and 0.03 by volume on the melting and solidification of
PCM. +ey employed the enthalpy-porosity method to
predict the PCM behavior. It was found that the overall
performance of the phase change exceeds at the concen-
tration of 0.02, which is due to the dominance of conduction
improvement over the convection weakening.

In fact, dispersing carbon and metal nanoparticles into
the base fluid could improve the thermal conductivity, and
dispersing microencapsulated PCM (MEPCM) could en-
hance the heat storage capacity of the base fluid.

+ere are numerous studies regarding the performance
of microchannel heat exchangers by using MEPCM sus-
pension, nanofluids, and hybrid suspensions. Hasan et al.
[12] numerically studied the performance of a counterflow
microchannel heat exchanger (CFMCHE) charged with
nanofluid as a coolant fluid. Two types of nanofluids in-
cluding Al2O3-water and Cu-water were studied at con-
centrations of 1% to 5% by volume. It was inferred that using
the nanofluids as a coolant medium results in the en-
hancement of the thermal performance of CFMCHE, with
no rise in pressure drop because of low concentrations and
also the ultrafine solid particles. +e effectiveness of
nanoparticles was higher in lower concentrations than in
high concentrations. In other words, the effectiveness de-
creased with increasing the concentration. +ey also con-
cluded that the best nanoparticle to be used is the one with
higher thermal conductivity. Hasan [13] numerically in-
vestigated a CFMCHE with MEPCM suspension as the
working fluid. +e MEPCM suspension used in his research
was made of microcapsules constructed from n-octadecane
and polymethylmethacrylate as the core and shell materials,
respectively.+ese capsules were dispersed in pure water at a
concentration range of 0 to 20%. From their results, it was
found that using MEPCM suspension as a cooling medium
results in improvement of thermal performance of the
CFMCHE but increasing the pressure drop significantly. As
well, in order to obtain the benefits of melting of phase

change material (PCM) and releasing the latent heat, it is
favorable to use the MEPCM suspension with low con-
centration. Ho et al. [14] employed a hybrid suspension as a
working fluid, consisting of Al2O3 nanoparticles and
MEPCM particles and water as the base fluid. +e thermal
properties of hybrid suspension, including the thermal
conductivity, specific heat, dynamic viscosity, latent heat of
fusion, and density, were experimentally examined. It was
concluded that increasing the concentration of Al2O3
nanoparticles increases the thermal conductivity of the PCM
suspension. Ho et al. [15] experimentally investigated the
effect of using a hybrid nanofluid on the natural convection
in a circular tube. +ey employed pure water, PCM sus-
pension (wPCM� 2, 5, and 10wt.%), and nanofluids
(wnp� 2, 6, and 10wt.%) as cooling fluids and investigated
the convection in the tube. +e nanofluid decreased the
specific heat and increased the thermal conductivity while
PCM suspension weakened the thermal conductivity and
increased the specific heat. +e dominance of the thermal
conductivity over specific heat in nanofluid and also specific
heat over thermal conductivity in PCM suspension led to the
improvement of the heat transfer of the working fluid. Ho
et al. [16] experimentally used a hybrid nanofluid containing
Al2O3 nanoparticles along with MEPCM particles to in-
vestigate their effects on the laminar convective cooling
performance in a circular tube. A significant enhancement in
cooling was obtained by using the hybrid nanofluid com-
pared with the pure PCM suspension, Al2O3 nanofluid, and
water. However, as the concentration rose, because of vis-
cosity increment, the pressure drop increased, and thus, the
effect of utilizing hybrid suspension decreased. Meanwhile,
the dependency of pressure drop on concentration was
higher in case of hybrid suspension than the nanofluid or
pure PCM suspension. Elbahjaoui and El Qarnia [17]
studied a shell and tube thermal storage system. +ey used
water as the heat transfer fluid and n-octadecane embedded
in shell space as the PCM. +ey investigated two cases of
stationary and pulsating heat transfer fluid (HTF) on the
storage characteristics and, thus, used nanoparticles with
concentrations ranging from 0 to 7% by volume and HTF
with dimensionless frequency from 0.01 to 3. +e best
performance was obtained in a volume fraction of 7% and
pulsating frequency of 1. In the optimum case, the melting
time was reduced up to 14.4%.

Augmenting convective heat transfer by using a swirl
generator is one of the most popular techniques in the
HVAC&R industry [18–23]. Hao and Tao [24] numerically
investigated the mixed convective heat transfer. A square
cavity with partial slip-filled kerosene–cobalt nanofluid is
used for the study.+e horizontal walls of the cavity are kept
insulated while the vertical wall is partially heated. It was
reported that heat flow was affected by the change in volume
concentration of ferrofluid.

Goel et al. [25] numerically investigated the free con-
vective heat transfer and flow of MHD Alumina-Cu/water
nanofluid filled in a square cavity. +e cavity contains a
corrugated conductive cylinder. +e left wall of the cavity is
given constant heat. Corcione correlation is used for de-
termining the thermal conductivity and viscosity of the
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hybrid nanofluid. It was reported from the results that the
presence of a wavy block in the cavity influences the flow and
thermal characteristics. Local +ermal Nonequilibrium
model has been utilized by Tsai and Chein [26] to investigate
the heat transport through convection in a porous medium
filled with Ag–MgO/H2O nanofluid. +e influencing pa-
rameters investigated in the study are Rayleigh number,
porosity, the volume fraction of nanoparticles, interface
convective heat transfer coefficient, and thermal conduc-
tivity ratio. +e study concluded that vortex strength is
increased with an increase in Ra while the dispersion of
combined Ag–MgO nanoparticles in the fluid reduces the
flow and thermal transport in the cavity as compared with
Ag and MgO nanoparticles individually. Lee and Mudawar
[27] numerically inspected the effect of MHD flow of sec-
ond-grade fluid on the convective heat transfer in a vertical
channel filled with porous medium. +e results are analyzed
with respect to velocity, temperature, volume concentration,
skin friction, and heat and mass flow rate. It was revealed
that increasing the permeability results in an increase in skin
friction.

Manikandan and Rajan [28] experimentally investigated
the double pipe HE, shell and tube HE, and plate HE for the
same surface area under the same condition with the same
nanofluids for thermal and flow characteristics. +e results
obtained from the experiments showed that minimum
pressure drop was obtained with plate-type HE at 27%
enhancement while maximum pressure drop was observed
with double pipe HE with 85% enhancement in thermal
transport. Sadeghi et al. [29] numerically revealed the
benefits of using multilayer PCMs. 15 sets of experiments
have been conducted to investigate the effect of various
arrangements and thickness of the layer of phase change
materials. It was revealed that the single layer saves 23% of
inlet energy while three layers of PCM save 41% of inlet
energy. Dogonchi et al. [30] utilize controlled volume-based
FEM for investigating the presence of nanoparticles in a
square cavity fitted with an elliptical cylinder for free con-
vective heat transfer. +e results obtained from the simu-
lation show that, at a specific aspect ratio, enhancement in
heat transfer and Nu was observed.

Ghalambaz et al. [31] numerically investigated the im-
pact of Ag–MgO/water hybrid nanofluid filled in a square
cavity fitted with a solid conductive layer at a hot wall for free
convection. +e parameters used for the study are volume
concentration of nanoparticles, Rayleigh number, and
thermal conductivity ratio. +e study concluded that adding
the hybrid nanoparticles in the base fluid and increasing the
Ra and thermal conductivity ratio lead to the enhancement
of heat transport. Ishak et al. [32] investigated the effect of
wall thickness on heat transfer and entropy production in a
square cavity filled with Al2O3 nanofluid. A moving heat
source is present at the lower wall, which allows partial
isothermal heating while other walls remain insulated. It was
revealed from the obtained results that thermal conductivity
and thickness of the wall are key parameters to control the
optimal heat transfer and pressure drop.

Rejvani et al. [33] experimentally reveal the effect of the
addition of SiO2, and MWCNT in 10W 40 engine oil. +e

viscosity of the resulting hybrid nanofluid was tested for
various concentrations at different temperature ranges. +e
results show a 35% increase in the viscosity of the hybrid
nanofluid comparative to base fluid.

Alsabery et al. [34] computationally studied the con-
vective heat transfer and entropy production in a trapezoidal
cavity filled with nanohomogenous Al2O3-water nanofluid
under the influence of a magnetic field. +e governing PDEs
are solved using Galerkin weighted residual FEM. +e pa-
rameters studied are Rayleigh No., the concentration of
nanoparticles, Hartmann No., thermal conductivity, and
height of the trapezoidal body. It was revealed that
streamlines show more sensitive behavior for Hartmann as
compared with the change in volume fraction.

Mehryan et al. [35] revealed the impact of MWCNT-
Fe2O3/H2O nanofluid on the convective heat transfer under
the influence of an inclined magnetic field. +e parameters
that influence the thermal and flow characteristics are
studied. An increase in average Nusselt’s number was up to
Ra� 104 while an increase in viscosity due to the addition of
nanoparticles decreases the average Nu. Hoseinzadeh et al.
[36] numerically investigated porous rectangular fin and run
the simulation for analyzing the thermal transport. +e
results obtained from Runge-Kutta numerical analysis are
compared with results obtained through collocation method
(CM), homotopy perturbation method (HPM), and
homotopy analysis method (HAM). It was revealed from the
study that on increasing the porosity, convection, and ra-
diation; temperature gradient and heat flow increase along
the fin length. Taamneh et al. [37] computationally inves-
tigated the thermal and flow behavior of Al2O3-H2O
nanofluid in a triangular duct. +e Reynolds number varied
between 4000 and 10000. 20% increase in friction factor was
observed with the addition of nanoparticles in comparison
to base fluid while pressure drop was increased by 85% for
Re� 10000. Besides this, a 40% increase in the production of
entropy was also observed when varying the concentration
of nanoparticles from 0.05 to 0.1%. Raza et al. [38] inves-
tigated the effect of MoS2–H2O nanofluid in a channel with
different shapes of nanoparticles. A magnetic field influ-
enced the flow. +e results obtained from the analysis show
that increasing the concentration of nanoparticles in the base
fluid increases the Nu while increasing the value of wall
expansion ratio results in augmentation of velocity profile
between bottom wall and center.

Giwa et al. [39] investigated the impact of ferrous hybrid
nanofluid on the convective thermal and flow performance in
the rectangular cavity under the influence of a magnetic field.
+e thermal properties of hybrid nanofluid are also analyzed
for different particle concentrations. +e magnetic field en-
hances the average Nu by 4.9% while increasing the strength
of the magnetic field further enhances the thermal transport.
+e authors also noticed that the use of hybrid nanofluid
shows better results in comparison to mono nanofluid. Giwa
et al. [40] in another work investigated the thermal perfor-
mance of Alumina-MWCNT/water nanofluid filled in a
square enclosure. +e nanofluid has been investigated for the
different weight ratios of nanoparticles. It was revealed that
nanofluid with a 60–40 weight ratio of Al2O3-MWCNT
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nanoparticles gives the best results. +e hybrid nanofluid also
promotes convective heat transfer with the cavity. Osman
et al. [41] experimentally investigated a uniformly heated
rectangular channel for convective heat transfer in a turbulent
flow regime. Alumina-water nanofluid is used as a working
fluid for the investigation. +e Re varied from 200 to 7000. It
was revealed from the results that a maximum heat transfer of
54% was observed in transition flow for nanofluids having 1%
of nanoparticles. Mahadevi et al. [42] numerically investigated
the effect of different inclination angles of the circular tube on
the mixed convection heat transfer of Al2O3-water nanofluid.
It was observed that maximum deposition of nanoparticles
takes place at a 30o inclination angle for all concentrations. It
was revealed that inclination angles have a little effect on HTC
up to 35o. Further increase in the inclination angle decreases
the HTC.

Sharifpur et al. [43] optimized the concentration of
TiO2-water nanofluid for maximum convective heat transfer
in a square cavity.+e upper and lower walls of the cavity are
insulated while a temperature gradient exists between the left
wall and right wall. It was found that the addition of TiO2
nanoparticles enhances the heat transport for all concen-
trations while the maximum heat transfer of 8.2% was
observed at 0.05% concentration. Sharifpur et al. [44] ex-
perimentally investigate the impact of the size of Al2O3
nanoparticles on the thermal conductivity of Al2O3-glycerol
nanofluid. +e nanofluid prepared with 3 different sizes of
nanoparticles for concentration varied between 0.5 and 4%.
It was revealed from the experiments that maximum aug-
mentation of thermal conductivity was observed at 4%
concentration for 31 nm nanoparticles. It was also found that
thermal conductivity is influenced by volume concentration
and size of nanoparticles, while temperature variation shows
negligible impact.

After a wide review of previous research, the researcher
did not find a previous study regarding the usage of hybrid
suspension in the heat exchanger of microchannels. +us, it
is a source of modernity for this paper. In fact, by using the
hybrid suspension, both advantages of nanoparticles and

microcapsules are obtained. MEPCM can improve the heat
capacity of the cooling fluids, and on the other hand,
nanofluid can improve the thermal conductivity; thereupon,
using a mixture of these materials may lead to a significant
increase in heat transfer of microchannel heat exchanger.

2. Mathematical Model

Figure 1 represents the schematic structure of CFMCHE
used in this study with square channels carrying cold and hot
fluids. To study the fully CFMCHE, numerically, a huge
amount of time is required due to its complication. As
shown in Figure 2, given that there is a symmetry between
the cold and hot channel rows, geometrically and thermally,
assuming a part of the geometry as the model studied is
acceptable, since it gives an adequate indication for the
whole heat exchanger performance. Hence, two channels in
the cold and hot fluids flow, and the separating wall between
them is considered as the studied cases and modeled nu-
merically [18, 19].

+e assumptions used to solve this model are 3D,
laminar, steady-state, incompressible fluid, continuum flow,
constant properties, and thermally isolated from the
ambient.

3. Governing Equations

+e governing equations are continuity, momentum, and
energy used for the flow of pure fluids, nanofluid, MEPCM
suspension, and hybrid suspension as follows [13, 20, 21].

3.1. Governing Equations for Pure Water and Nanofluids
+e continuity equation is
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where j stands for h for the hot and c for the cold fluids,
respectively.
+e energy equation for fluids in heat exchanger is
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zT

zx
+ v

zT

zy
+ w

zT

zz
􏼠 􏼡 � Φ + k

z
2
T

zx
2 +

z
2
T

zy
2 +

z
2
T

zz
2􏼠 􏼡. (5)

+e energy equation for solid walls in heat exchanger is
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ks∇
2
Ts � 0. (6)

3.2. Governing Equations for MEPCM and Hybrid
Suspensions. +e governing equations used for pure fluid
(equations 1 to 4 and 6) are also used MEPCM and hybrid
suspension.

+e enthalpy-based energy equation is written as follows:

∇ · v
→ ρfHe􏼐 􏼑􏽨 􏽩 � ∇ · kf∇Tf􏼐 􏼑. (7)

It also can be defined as
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(8)

+e enthalpy of the slurry (He) is shown by equation (9)
and computed as follows:

He � he + ΔH. (9)

+e sensible heat is calculated by equation (10), in which
href is the reference enthalpy at Tref [21].

he � href + 􏽚
t

Tref

CpfdT. (10)

+e slurry’s latent heat (ΔH) is calculated by equation
(11), where (β) is the mass ratio of molten to the total PCM
in the slurry, (Φ) is the MEPCMmass fraction, and (L) is the
fusion latent heat. +e PCM begins to melt at Tsolidus where
the liquid fraction is zero andmelting ends at Tlquidus. At this
point, the liquid fraction reaches one.

ΔH � βϕL, (11)

where β� 0 if Tf<Tsolidus, and β� 1 if Tf>Tlquidus.

β �
Tf − Tsolidus

Tliquidus − Tsolidus
, if Tsolidus <Tf <Tliquidus. (12)

3.3. Model Boundary Conditions. +e working fluids enter
the channels at a defined velocity and temperature. Pure
water is the hot fluid used in hot channels while the cold fluid
in the cold channels is tested (pure water, Nanofluid,
MEPCM suspension, and hybrid suspension).+e boundary
conditions of the model are given in Tables 1–3.

In the present study, to solve the boundary conditions
and also governing equations, the finite volume method
(FVM) is employed. Computational fluid dynamics (CFD) is
employed to solve the model and also determine the profile
of the fluid flow, temperature, and pressure fields in the
CFMCHE.Meanwhile, the dimensions of the square channel
used in this model are W� 100 μm, H� 100 μm, L� 10mm,
and t� 50 μm. W, H, L, and t are width, channel height,
length, and wall thickness, respectively.

Performance parameters have been calculated as follows.
+e ratio of the experimental heat transfer to the

maximum heat that is possible to be transferred is defined as
heat exchanger effectiveness (Ɛ).

ε �
ch Thi − Tho( 􏼁

cmin Thi − Tci( 􏼁
−

cc Tco − Tci( 􏼁

cmin Thi − Tci( 􏼁
, (13)

where Cc �mCpc and Ch �mCph.
In the heat exchange cell, the total pressure drop is

ΔPt � ΔPh + ΔPc � Phi − Pho( 􏼁 − Pci − Pco( 􏼁. (14)

In order to investigate the overall performance of the
CFMCHE, both hydrodynamic and thermal performances
must be taken into account. +us, performance index is
defined as the effectiveness of CFMCHE to the total pressure
drop of heat exchanger [19]:

η �
ε
Δpt

. (15)

+e input power required for the pump to circulate fluids
in the microchannel heat exchanger is

PP � VΔPt. (16)

Flow rate (m3/s) is defined as follows:
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Figure 1: A schematic model of the counterflow MCHE.
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Figure 2: A schematic of the heat exchange unit.
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V � vinA. (17)

+ere is another factor called performance factor defined
as the heat transfer rate to the pumping power ratio and used
to investigate the overall performance of the CFMCHE and
also verify the obtained results of the performance index
[19]:

η∗ �
q(W)

P· P(W)
. (18)

4. Properties of Fluids

4.1. Properties of MEPCM Suspension. MEPCM particles are
made of a polymer shell surrounding a core of PCM, pre-
venting PCM from leakage, and keeping the form during
phase change. Figure 3 represents a schematic of a micro-
capsule during the phase change process [13]. Herein, the
average diameter of MEPCM particles is 5 μm.+e selection
of core and shell materials of the microcapsule corresponds
to the transporter fluid. N-octadecane with a melting
temperature of about 301K is used as PCM in the core of the
capsule, and the shell is made up of polymethylmethacrylate
(PMMA) [22–24]. Given that the physical properties of the
wall material and PCM affect the properties of the MEPCM
particle, different components must be taken into account
while calculating the properties of MPCM.

+e densities of solid and liquid PCM were assumed to
be the same as the density of n-octadecane. Moreover,
energy and mass balances were utilized to calculate the

density and specific heat of the microcapsules, respectively
[25].

CpPCM �
7Cpc + 3Cpwall( 􏼁pcpwall

3pc + 7pwall( 􏼁ρPCM
, (19)

ρPCM �
10
7

dc

dPCM
􏼠 􏼡

3

pc. (20)

+e thermal conductivity of microcapsules is also rep-
resented as follows:

1
kPCMdPCM

�
1

kcdc

+
dPCM − dc

kwalldPCMdc

. (21)

PCM stands for the whole (capsule�wall + core) and the
wall is the wall of the capsule (polymer). C is the core
material (PCM) and d is the diameter.

+e suspension properties are a function of the prop-
erties of water (base fluid) and properties of the micro-
capsules. Hence, the specific heat and density are determined
using a mass and energy balance [22–25].

ρf � cρPCM +(1 − c)ρw, (22)

Cρf � ϕcρPCM +(1 − ϕ)Cρw. (23)

+e viscosity of the suspension is also determined using

μf � μw 1 − c − 1.16c
2

􏼐 􏼑
− 2.5

. (24)

+e thermal conductivity of the suspension is calculated as

Table 1: Bottom channel (hot fluid) (0≤ y≤Hh).

Location Boundary condition Comments
At x� 0 uh � uhi, vh � wh � 0, Th �Thi Hot fluid inflow
At x� L (zuh/zx) � vh � wh � 0, (zTh/zx) � 0 Hot fluid outflow (fully developed flow, end of the channel)
At y� 0 uh � vh � wh � 0, (zTh/zy) � 0 No-slip, adiabatic wall
At y�Hh uh � vh � wh � 0, −kh(zTh/zy) � −ks(zTs/zy), Th �Ts Fluid-solid interface (no-slip, conjugate heat transfer)
At z� 0 uh � vh � wh � 0, (zTh/zz) � 0 No-slip, adiabatic wall
At z�Wch uh � vh � wh � 0, (zTh/zz) � 0 No-slip, adiabatic wall

Table 2: Top channel (cold fluid) (Hh+ t≤ y≤Hh+ t+Hc).

Location Boundary condition Comments
At x� 0 (zuc/zx) � vc � wc � 0, (zTc/zx) � 0 Cold fluid outflow (fully developed flow, end of the channel
At x� L uc � uci, vc � wc � 0, Tc �Tci Cold fluid inflow
At y�Hh+ t uc � vc � wc � 0, −kc(zTc/zy) � −ks(zTs/zy),Tc �Ts Fluid-solid interface (no-slip, conjugate heat transfer)
At y�Hh+ t+Hc uc � vc � wc � 0, (zTc/zy) � 0 No-slip, adiabatic wall
At z� 0 uc � vc � wc � 0, (zTc/zz) � 0 No-slip, adiabatic wall
At z�Wch uc � vc � wc � 0, (zTc/zz) � 0 No-slip, adiabatic wall

Table 3: Solid wall separating two channels (Hh≤ y≤Hh+ t).

Location Boundary condition Comments
At x� 0 (zTs/zx) � 0 Adiabatic wall
At x� L (zTs/zx) � 0 Adiabatic wall
At y�Hh −kh(zTh/zy) � −ks(zTs/zy),Th �Ts Fluid-solid interface
At y�Hh+ t −kc(zTc/zy) � −ks(zTs/zy),Tc �Ts Fluid-solid interface
At z� 0 (zTs/zz) � 0 Adiabatic wall
At z�Wch (zTs/zz) � 0 Adiabatic wall
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kf �
2kw + kPCM + 2c kPCM − kw( 􏼁

2 + kPCM/kw( 􏼁 − c kPCM/kw( 􏼁 − 1( 􏼁
. (25)

+e mass fraction can be calculated from

ϕ �
cρPCM

ρw + c ρPCM − ρw( 􏼁( 􏼁
. (26)

4.2. Properties of Nanofluids. According to the previous
studies [26, 27], the thermophysical properties of the
nanofluids are a function of the properties of solid particles,
the base fluid, particles shape, and volume fraction of the
solid particles in the suspension. +e properties of nano-
fluids are determined using the following relations:

+ermal conductivity:

knf � kf

kp +(SH − 1)kf(SH − 1)c kf − kp􏼐 􏼑

kp +(SH − 1)kf + c kf − kp􏼐 􏼑
⎛⎝ ⎞⎠.

(27)

Viscosity:

μnf � μf(1 + 2.5c). (28)

Density:

ρnf � cρp +(1 − c)ρf. (29)

Specific heat:

Cρnf � cCρp +(1 − c)Cρf. (30)

In equation (27), SH indicates the solid particle shape
factor.

SH �
3
ψ

. (31)

ψ represents the ratio of the surface area of a sphere (with
the same volume of the particle) to the surface area of the
particle. +us, for the spherical particles, SH is 3.

kp, kf, and knf are thermal conductivities of the solid
particles, base fluid, and nanofluid, respectively.

4.3. Properties of Hybrid Suspensions. To determine the
viscosity and thermal conductivity properties of hybrid
suspension, the following relations are used [28]:

+ermal conductivity:

khs �
knf(1 − 3c)

2
. (32)

Viscosity:

μhs � μnf(1 + 7.85ϕ). (33)

To calculate the specific heat and density of the sus-
pension, we use the following relations [14].

Specific heat:

Cphs �
cnpρnpcpnp + cMEPCMρMEPCMcpMEPCM + 1 − cnp − cMEPCM􏼐 􏼑cρbfpbf

phs

⎡⎣ ⎤⎦. (34)

Liquid PCM

Solid PCM

Polymer shell

Moving interface

Figure 3: Schematic diagram of single MEPCM particles during melting.
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Density:

phs � cnpρnp + cMEPCMρMEPCM + 1 − cnp − cMEPCM􏼐 􏼑pbf, (35)

where hs, np, MEPCM, and bf refer to hybrid suspension,
nanoparticle, microencapsulated phase change material, and
base fluid, respectively. In Table 4, the rheological and
thermal properties of the materials employed are listed.

5. Numerical Model

Governing equations were transformed into algebraic
equations using the finite volume method. +e SIMPLE
algorithm was employed to handle the mass conservation
equation and get the pressure field. Computational fluid
dynamic software (FLUENT19.1) was used to determine the
fields of velocity, pressure, and temperature distribution
along the CFMCHE. Afterward, all the computational do-
main (two channels and the separating wall) was meshed
with suitable size, and then using a mesh refinement process,
the generated mesh was refined.

6. Results and Discussion

In order to investigate the effectiveness of the nanofluids, the
model was firstly operated with pure water. +e inlet tem-
peratures of cold and hot fluids flowing in the channels were set
as the boundary conditions with values of Tci� 293K and
Thi� 373K. +en, we repeated operating the model by using
nanofluid and MEPCM suspensions with volume fractions of
(2%, 4%, 6%, and 8%). Noting that a core material of PCM is
n-octadecane which has Tsolidus� 297K and Tliquidus� 302K;
also, latent heat ΔH� 245,000 (J/kg). And then, we repeated
again operating the model by adding nanoparticles of (Cu and
Al2O3) with volume fractions of (2% and 4%) to the MEPCM
suspension to form the hybrid suspension.

To examine the validity of the present model, the model
presented by Kashani et al. [9] was solved, and a comparison
was made between the obtained results and those presented by
them. +e numerical model that used them is a microchannel
heat exchanger composed of rectangular microchannels with
hydraulic diameter Dh� 100μm, channel height H� 100μm,
channel width W� 100μm, and length L� 10mm. A silicon
wall with a thickness of 50μm separates the channels, and the
inlet velocity of the fluid was chosen to be Vi� 1m/s.

Figure 4 illustrates the heat transfer rate distribution in
terms of volume concentration for two cases of the present
study and the numerical model of [9]. According to the
figure, it is evident that the two models are in good
agreement with each other, and the average error is 1.16%
which is attributed to the end effect. +ereupon, the present
model has acceptable accuracy and could be used as a re-
liable model to examine the impact of different nanofluids,
including MEPCM and hybrid suspension on the perfor-
mance of CFMCHE.

+e heat transfer rate versus inlet velocity for pure
MEPCM suspension at a concentration of 4% and enhanced
(hybrid) suspension with the addition of 2% and 4% of Cu
and Al2O3 nanoparticles is shown in Figure 5.

It is inferred that, for all cases, the heat transfer rate rises
with increasing the velocity, which is because of the increase
in flow rate. Also, results reveal that the heat transfer rises
with adding nanoparticles, due to enhancing the thermal
properties of suspension, especially thermal conductivity
which increases with the increment of the amount of
nanoparticles volume concentration. Furthermore, it could
be noted that the enhancement in heat transfer is higher in
case of adding Cu particles compared with Al2O3 particles
because of the higher value of thermal conductivity of Cu
compared with that of Al2O3.

+e variation of pressure drop with inlet velocity for pure
MEPCM suspension at a concentration of 4% and enhanced
(hybrid) suspension with adding 2% and 4% of Cu and
Al2O3 nanoparticles is portrayed in Figure 6.

From Figure 6, it is found that the pressure drop increases
with the increment of inlet velocity for all cases, which is at-
tributed to the increase in the frictional and dynamic losses.
Also, it is shown that adding nanoparticles to the fluid leads to a
higher pressure drop due to an increase in the dynamic

Table 4: Properties of materials.

Material p (kg/m3) Cp (J/
kg.K)

K (W/
m.K)

Μμ (kg/
m.s)

Pure water 981.3 4189 0.643 0.00059
n-octadecane
(MEPCM core)

solid� 850 2000 0.18 —liquid� 780
PMMA (MEPCM
wall) 1190 1470 0.21 —

MEPCM particles 867.2 1899 0.1643 —
Cupper (cu) 8930 383.1 386 —
Al2O3 3600 765 36 —
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Figure 4: Variation of heat transfer rate distribution with con-
centration as a comparison between the present model and [5].
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viscosity. +is trend increased with the increment of concen-
tration. A slight difference was discovered between pressure
drop in case of adding Cu particles compared with Al2O3
particles resulting from the difference between the densities.

Figure 7 shows the effectiveness versus inlet velocity for
pure MEPCM suspension (at a concentration of 4%) and
enhanced (hybrid) suspension by adding 2% and 4% of Cu
and Al2O3 nanoparticles, respectively.

As depicted in Figure 7, for all cases, as the inlet velocity
increased, the effectiveness decreased. In fact, in high velocities,
there is not enough time for all the particles to melt completely.
As a result, the thermal energy was absorbed during melting,
and also the effectiveness ofMEPCMdecreases. It is also evident
that the effectiveness rises slightly with adding nanoparticles due
to the enhancement of the thermal properties of suspension,

especially thermal conductivity. A point to bementioned is that,
in high flow rates, the impact of nanoparticles on the devel-
opment of the boundary layer decreases, resulting in better heat
transfer of the suspension in higher velocities. In fact, in high
velocities, the volume flow rate is dominated, and the effect of
nanoparticles is weakened.

Figure 8 represents the performance index in terms of
inlet velocity for pure MEPCM suspension (at a concen-
tration of 4%) and enhanced (hybrid) suspension by adding
2% and 4% of Cu and Al2O3 nanoparticles, respectively.

As shown in Figure 8, the performance index (η) for all
cases decreases with an increment of inlet velocity. It is due
to the higher increment of pressure drop than effectiveness.
Also, the increase in pressure drop for hybrid suspensions is
higher in comparison with that of MEPCM suspension
resulting in a higher performance index of MEPCM sus-
pension than that of hybrid suspensions.

Figure 9 indicates the variation of pumping power with
inlet velocity for pure MEPCM suspension at a concen-
tration of 4% and enhanced (hybrid) suspension by adding
2% and 4% of Cu and Al2O3 nanoparticles, respectively.

FromFigure 9, it is found that as the inlet velocity increases,
pressure drop increases and thus pumping power rises. Also,
the pumping power increases with adding nanoparticles be-
cause of the increase in dynamic viscosity that results in an
increment of pressure drop.Moreover, themore the number of
nanoparticles, the more pumping power. Since there is no
noticeable difference between the density values of Cu and
Al2O3, a slight difference was seen between pumping power in
case of adding Cu particles compared with Al2O3 particles.

+e variation of performance factor in terms of inlet
velocity for pure MEPCM suspension (at a concentration of
4%) and enhanced (hybrid) suspension with adding 2% and
4% of Cu and Al2O3 nanoparticles is depicted in Figure 10,
respectively.

It is inferred that the performance factor (Ƞ) for all cases
decreases with the increment of inlet velocity since the effect
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of inlet velocity on the increment of pumping power is
higher in comparison with that on heat transfer rate. Also,
the performance factor of MEPCM suspension is higher
than that of the hybrid suspensions. It is due to the higher
increment of pumping power for hybrid suspensions than
MEPCM suspensions.

7. Conclusions

+e following conclusions are drawn:

(1) +e MEPCM suspension can be enhanced by adding
nanoparticles to obtain a hybrid suspension.

(2) Using higher thermal conductivity nanoparticles
leads to obtaining extra enhancement in heat transfer
rates for MEPCM suspension.

(3) Using hybrid suspension leads to the enhancement
of heat transfer rates in CFMCHE.

(4) Also, the hybrid suspension causes an extra rise in
pressure drop, which dominates the thermal
performance.

(5) Using hybrid suspension with high velocities leads to
an increase in heat transfer rates of the microchannel
heat exchanger. On the other hand, it significantly
raises the pressure drop and, hence, causes a decrease
in the performance index.

Nomenclature

A: Cross-sectional area (m2)
C: Volume fraction%
Cp: Specific heat capacity (J/kg·K)
Dh: Hydraulic diameter (m)
H: Channel height (m)
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He: Enthalpy of suspension (W)
he: Sensible heat (W)
K: +ermal conductivity (W/m K)
L: Heat exchanger length (m)
M: Mass flow rate (kg/s)
P: Total pressure (Pa)
Q: Heat transfer rate (W)
t: Separating wall thickness (m)
T: Temperature (K)
u: Fluid x-component velocity (m/s)
v: Fluid y-component velocity (m/s)
w: Fluid z-component velocity (m/s)
x: Axial coordinate (m)
y: Vertical coordinate (m)
z: Horizontal coordinate (m)
Wch: Channel width (m)
ΔP: Pressure drop (Pa)
ΔH: Latent heat (W)
Greek letters
ρ: Density (kg/m3)
Φ: Mass fraction
m: Flow rate
η: Performance index (1/Pa)
ß: Melted fraction
μ: Dynamic viscosity (m2/s)
Subscripts
c: Cold
f: Suspension
h: Hot
i: Inlet
ch: Channel
Max: Maximum
o: Outlet
p: Particle
t: Total.
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,emost important properties of the conformable derivative and integral have been recently introduced. In this paper, we propose
and prove some new results on conformable Laplace’s equation. We discuss the solution of this mathematical problem with
Dirichlet-type and Neumann-type conditions. All our obtained results will be applied to some interesting examples.

1. Introduction

,e idea of fractional derivative was first raised by L’Hospital
in 1695. After introducing this idea, many new definitions
have been formulated. ,e most well-known ones are
Riemann–Liouville and Caputo fractional definitions. For
more background information about these definitions, we
refer the reader to [1, 2]. A new definition of derivative and
integral has been recently formulated by Khalil et al. in [3].
,is new definition is a type of local fractional derivative [4].
,is definition was proposed to overcome some of diffi-
culties associated with solving the equations formulated in
the sense of classical nonlocal fractional definitions where
the solutions can be difficult to obtain or even impossible to
obtain. As a result, various research studies have been
conducted on the mathematical analysis of functions of a
real variable formulated in the sense of conformable defi-
nition such as Rolle’s theorem, mean value theorem, chain
rule, power series expansion, and integration by parts for-
mulas [3, 5, 6]. In [7], the conformable partial derivative of
the order α∈(0, 1] of the real-valued functions of several
variables and the conformable gradient vector has been
proposed, and conformable Clairaut’s theorem for partial
derivative has also been investigated. In [8], the Jacobian
matrix has been defined in the context of conformable
definition, and the chain rule for multivariable conformable

derivative has been also proposed. In [9], conformable
Euler’s theorem on homogeneous has been successfully
introduced.

Furthermore, many research studies have been con-
ducted on the theoretical and practical elements of con-
formable differential equations shortly after the proposition
of this new definition [4, 10–26]. Conformable derivative has
also been applied in modeling and investigating phenomena
in applied sciences and engineering such as the deterministic
and stochastic forms of coupled nonlinear Schrödinger
equations [27] and regularized long wave Burgers equation
[28] and the analytical and numerical solutions for (1 + 3)-
Zakharov–Kuznetsov equation with power-law nonlinearity
[29].

Laplace’s equation is used as indicator of the equilibrium
in applications such as heat conduction and heat transfer
[30]. Generally, to solve the Laplace equation, Legendre’s
differential equation, particularly the Legendre function or
as commonly known as Legendre polynomials, is used to
find a solution to the Laplace equation that indicates
spherical symmetry in the physical systems [31]. Laplace
equation can be widely seen in the field of heat transfer
where the temperature is at different locations when the
body's heat transfer is at the equilibrium point [30].
According to our knowledge, there are not many research
studies that have been done on investigating Laplace’s
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equation in the sense of conformable derivative; therefore,
all our results are considered new and worthy.

,is paper is organized as follows. In the next section, the
main concepts of conformable fractional calculus are pre-
sented. Next, we successively discuss the solution of con-
formable Laplace’s partial differential equation with
Dirichlet and Neumann conditions. Finally, the above re-
sults will be applied in some interesting examples to validate
their applicability.

2. Basic Definitions and Tools

Definition 1. Given a function f:[0,∞)⟶R. ,en, the
conformable derivative of order α [3] is defined by

Tαf( 􏼁(t) � limε⟶0
f t + εt1− α

􏼐 􏼑 − f(t)

ε
, (1)

for all t> 0, 0< α≤ 1. If f is α− differentiable in some (0, a),
a> 0, and limt⟶0h+(Taf)(t) exists, then it is defined as

Tαf( 􏼁(0) � limt⟶0 + Tαf( 􏼁(t). (2)

Theorem 1 (see [3]). If a function f:[0, ∞)⟶R is α-dif-
ferentiable at t0> 0, 0α≤1, then f is continuous at t0.

Theorem 2 (see [3]). Let 0α≤1 and let f, g be
α− differentiable at a point t> 0. 3en, we have

(i) Tα(af + bg) � a(Tαf) + b(Tαg), ∀a, b ∈ R.
(ii) Tα(tp) � ptp− α, ∀p ∈ R.
(iii) Tα(λ) � 0, for all constant functionsf(t) � λ.
(iv) Tα(fg) � f(Tαg) + g(Tαf).
(v) Tα(f/g) � g(Tαf) − f(Tαg)/g2.
(vi) If, in addition, f is differentiable, then

(Tαf)(t) � t1− α(df/dt)(t).

3e conformable derivative of certain functions using the
above definition is given as follows:

(i) Tα(1) � 0.
(ii) Tα(sin(at)) � at1− α cos(at).
(iii) Tα(cos(at)) � − at1− α sin(at).
(iv) Tα(eat) � aeat, a ∈ R.

Definition 2. ,e (left) conformable derivative starting from
a of a given function f:[a,∞)⟶R of order 0< α≤ 1 [5] is
defined by

T
a
αf( 􏼁(t) � lim∈⟶0

f t + ε(t − a)
1− α

􏼐 􏼑 − f(t)

ε
. (3)

When a� 0, it is expressed as (Tαf ) (t). If f is
α− differentiable in some a, b, then the following can be
defined:

T
a
αf( 􏼁(a) � limt⟶a + T

a
αf( 􏼁(t). (4)

Theorem 3 (chain rule) (see [5]). Let f, g:(a,∞)⟶R be
(left) α-differentiable functions, where 0< α≤ 1. By letting h
(t)� f (g(t)), h (t) is α-differentiable for all t≠ a and g (t)≠ 0;
therefore, we have the following:

T
a
αh( 􏼁(t) � T

a
αf( 􏼁(g(t)) · T

a
αg( 􏼁(t) · (g(t))

α− 1
. (5)

If t� a, then we obtain

T
a
αh( 􏼁(a) � lim

t⟶a+
T

a
αf( 􏼁(g(t)) · T

a
αg( 􏼁(t) · (g(t))

α− 1
.

(6)

Theorem 4 (see [5]). Assume f is infinitely α-differentiable
function, for some 0< α≤ 1 at the neighborhood of a point t0.
3en, f has the following fractional power series expansion:

f(t) � 􏽘
∞

k�0

k
T

t0
α􏼐 􏼑 t0( 􏼁

a
k
k!

t − t0( 􏼁
kα

, t0 < t< t0 +
1

R
α, (7)

Here, ((k)T
t0
α )(t0) means the application of the con-

formable derivative k times.

,e following definition is the conformable α-integral of
a function f starting from a≥ 0.

Definition 3. Ia
α(f)(t) � 􏽒

t

k�0(f(x)/x1− α) · dx, where the
integral is the usual Riemann improper integral, and α ∈ 0, 1
[2].

According to the above definition, the following can be
shown.

Theorem 5. Ta
αIa

α(f)(t) � f(t), for t≥ a, where f is any
continuous function in the domain of Iα [3].

Lemma 6. Let f: (a, b)⟶R be differentiable, and α ∈ 0, 1.
3en, for all a> 0, we have [5]

I
a
αT

a
α(f)(t) � f(t) − f(a). (8)

From [7, 8], the conformable partial derivative of a real-
valued function with several variables is defined as follows.

Definition 4. Let f be a real-valued function with n variables
and a � (a1, . . . , an) ∈ Rn be a point whose ith component is
positive. ,en, the limit can be expressed as follows:

lim∈⟶0
f a1, . . . , ai + εa1− α

i , . . . an􏼐 􏼑 − f a1, . . . , an( 􏼁

ε
. (9)

If the above limit exists, then we have the ith con-
formable partial derivative of f of the order α∈(0, 1] at a,
denoted by (zα/zxα

i )f(a).
Finally, some results on conformable Fourier series will

be recalled [22] as follows.
Let α∈(0, 1, and φ:0,∞)⟶R be defined by

φ(t) �
t
α

α
, (10)

and g:[0, ∞)⟶ R be any function. Let f: [0,∞)⟶R be
defined by f(t) � g(φ(t)).
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Definition 5. A function ft is called α-periodical with period
p if we have

f(t) � g(φ(t)) � g φ(t) +
p
α

α
􏼠 􏼡. (11)

Definition 6. Two functions f, h are called α-orthogonal on
[0, b] if 􏽒

b

0(f(t)h(t)/t1− α)dt � 0.

Definition 7. Let f: [0, ∞)⟶R be a given piecewise con-
tinuous α-periodical with a period p. ,en, we define the
following:

(i) ,e cosine α-Fourier coefficients of f are expressed as
an � 2α/ pα 􏽒

p

0 f(t)cos(ntα/α)(dt/t1− α), n �

1, 2, 3, . . ..
(ii) ,e sine α-Fourier coefficients of f are expressed as

bn � 2α/ pα 􏽒
p

0 f(t)sin(n(tα/α))dt/t1− α, n �

1, 2, 3, . . ..

Remark 1. ,e following can be proven easily:

(i) cos(n(tα/α)) and cos(m(tα/α)) are orthogonal on
[0, (α2π)(1/α)], for all n≠m.

(ii) sin(n(tα/α)) and sin(m(tα/α)) are orthogonal on
[0, (α2π)(1/α)], for all n≠m.

(iii) sin(n(tα/α)) and cos(m(tα/α)) are orthogonal on
[0, (α2π)(1/α)], for all n, m.

Definition 8. Let f: [0, ∞)⟶R be a given piecewise con-
tinuous function which is α-periodical with period p. ,en,
the conformable α− Fourier series of f associated with the
interval [0, p] is expressed as

S(f)(t) �
a0

2
+ 􏽘
∞

n�1
an cos n

t
α

α
􏼠 􏼡 + bn sin n

t
α

α
􏼠 􏼡􏼠 􏼡, (12)

where an and bn, are as stated in Definition 7.

Theorem 6. 3e conformable Fourier series of a piecewise
continuous α-periodical function converges pointwise to the
average limit of the function at each point of discontinuity and
to the function at each point of continuity.

3. Conformable Laplace’s Partial
Differential Equation

In this section, we solve the two-dimensional conformable
Laplace’s partial differential equation which is expressed in
the following form:

z
α

zx
α

z
α
u(x, y)

zx
α􏼠 􏼡 +

z
α

zy
α

z
α
u(x, y)

zy
α􏼠 􏼡 � 0. (13)

As in the classical case, we propose this equation only
with boundary conditions at the limit of the enclosure where
the equation is fulfilled, whichmust have a certain regularity.
,ese boundary conditions can be of two types:

(i) Dirichlet conditions: these are conditions in the
function u (x, y).

(ii) Neumann conditions: these are conditions imposed
on the conformable partial derivatives of u (x, y) of
the order zαu(x, y)/zxαor zαu(x, y)/zyα.

,e geometry of the region R where equation (13) is
satisfied is very important, and we can only calculate so-
lutions if they have certain regularity conditions.

3.1. Dirichlet Conditions. Let us discuss the solution of the
following conformable Laplace’s partial differential
equation:

z
α

zx
α

z
α
u(x, y)

zx
α􏼠 􏼡 +

z
α

zy
α

z
α
u(x, y)

zy
α􏼠 􏼡 � 0, 0≤ x≤ a, 0≤y≤ b,

u(x, 0) � u(x, b) � 0, 0≤x≤ a,

u(0, y) � 0, 0≤y≤ b,

u(a, y) � f(y), 0≤y≤ b.

(14)

We will use the separation of variables technique [22].
So, let u(x, y) � P(x)Q(y). By substituting it in equa-

tion (13), we obtain the following:

dα

dx
α

dαp(x)

dx
α􏼠 􏼡Q(y) + P(x)

dα

dy
α

dαQ(y)

dy
α􏼠 􏼡 � 0. (15)

By ignoring the trivial solution u ≡ 0 and assuming that
P(x)≠ 0 and Q(x)≠ 0, we have

1
P(x)

dα

dx
α

dαP(x)

dx
α􏼠 􏼡 � −

1
Q(y)

dα

dy
α

dαQ(y)

dy
α􏼠 􏼡. (16)

Hence, for some constant λ,

1
P(x)

dα

dx
α

dαP(x)

dx
α􏼠 􏼡 � −

1
Q(y)

dα

dy
α

dαQ(y)

dy
α􏼠 􏼡 � λ. (17)

Consequently, we have
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dα

dx
α

dαP(x)

dx
α􏼠 􏼡 − λP(x) � 0,

dα

dy
α

d
α
Q(y)

dy
α􏼠 􏼡 + λQ(y) � 0.

(18)

,e boundary conditions can be written as follows:

u(x, 0) � P(x)Q(0) � 0,

u(x, b) � P(x)Q(b) � 0.
(19)

Since x is arbitrary, it follows that

Q(0) � Q(b) � 0. (20)

,us, we have the following contour problem:

dα

dy
α

dαQ(y)

dy
α􏼠 􏼡 + λQ(y) � 0,

Q(0) � 0,

Q(b) � 0,

(21)

whose solution depends on the separation parameter, λ.
Now, we have the following:

(1) λ� 0. ,en, equation (18) becomes
(dα/dyα)(dαQ(y)/dyα) � 0, whose general solution
is obtained by integrating twice with respect to x.

Q(y) � A
y
α

α
+ B. (22)

By using the following boundary conditions, we have:

Q(0) � 0⟹B � 0,

Q(b) � 0⟹Ab + B � 0.
(23)

Since b≠ 0λ � − μ2, the solution of the previous system is
A�B� 0, and we obtain Q (y)� 0. Hence, there is no
nontrivial solution when λ� 0.

(2) λ< 0, say λ � − μ2. ,en, equation (18) becomes
(dα/dyα)(dαQ(y)/dyα) − μ2Q(y) � 0, which has a
general solution as follows:

Q(y) � Ae
μ yα/α( ) + Be

− μ yα/α( ). (24)

By using the following boundary conditions, we have:

Q(0) � 0⟹A + B � 0,

Q(b) � 0⟹Ae
μ bα/α( )

+ Be
− μ bα/α( )

� 0.
(25)

,e previous equations form a homogeneous linear
system in the unknowns A and B. ,e determinant of the
matrix of the coefficients is expressed as

1 1

e
μ bα/α( )

e
− μ bα/α( )

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
� e

μ bα/α( )
− e

− μ bα/α( )
� 2 sinh μ

b
α

α
􏼠 􏼡􏼠 􏼡,

(26)

and since μ≠ 0, the only solution of the system is the trivial
A�B� 0, and we obtain Q (y)� 0. Hence, there is no
nontrivial solution when λ< 0.

(3) λ> 0, say λ � μ2 ,en, equation (18) becomes
(dα/dyα)(dαQ(y)/dyα) + μ2Q(y) � 0, which has a
general solution as follows:

Q(y) � A cos μ
y
α

α
􏼠 􏼡 + B sin μ

y
α

α
􏼠 􏼡. (27)

By using the following boundary conditions, we have:

Q(0) � 0⟹A � 0,

Q(b) � 0⟹A cos μ
b
α

α
􏼠 􏼡 + B sin μ

b
α

α
􏼠 􏼡 � 0,

(28)

where

B sin μ
b
α

α
􏼠 􏼡 � 0. (29)

Since we do not want the trivial solution, B� 0 and

sin μ
b
α

α
􏼠 􏼡 � 0⟺ μ

b
α

α
􏼠 􏼡 � nπ, n ∈ N, (30)

and then we obtain

μ � nπ
α
b
α, (31)

and the value of λ � μ2 is written as

λ � n
2π2 α

2

b
2α, n ∈ N. (32)

Since λwas an arbitrary constant, then for each n ∈N, we
would have a possible solution of the conformable ordinary
differential equation as follows:

λn � n
2π2

α2

b
2α⟹Qn(y) � Bn sin nπ

y

b
􏼒 􏼓

α
􏼒 􏼓. (33)

Substituting these values for λn in the other conformal
differential equation, we have

dα

dx
α

dαP(x)

dx
α􏼠 􏼡 − n

2π2 α
2

b
2α p(x) � 0, (34)

whose solution for each n ∈N is of the following form:

Pn(x) � Cne
nπ(x/b)α

+ Dne
− nπ(x/b)α

, Cn, Dn ∈ R. (35)
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By using the initial condition u (0, y)� 0, we have

u(0, y) � P(0)Q(y) � 0, (36)

which by arbitrary y leads to P (0)� 0, and therefore, we
obtain

Pn(0) � Cn + Dn � 0⟹Dn � − Cn, (37)

and the function Pn (x) is given by

Pn(x) � Cn e
nπ(x/b)α

− e
− nπ(x/b)α

􏼐 􏼑 � 2Cnsinh nπ
x

b
􏼒 􏼓

α
􏼒 􏼓.

(38)

,e solution of the partial derivative equation will be, for
each n, of the following form:

un(x, y) � Pn(x)Qn(y)

� 2Cnsinh nπ
x

b
􏼒 􏼓

α
􏼒 􏼓Bn sin nπ

y

b
􏼒 􏼓

α
􏼒 􏼓

� cnsinh nπ
x

b
􏼒 􏼓

α
􏼒 􏼓sin nπ

y

b
􏼒 􏼓

α
􏼒 􏼓,

(39)

with cn � 2CnBn.
Since the equation is linear, any linear combination of

solutions is another solution; therefore, we can consider it as
a formal general solution:

u(x, y) � 􏽘
∞

n�1
Cnsinh nπ

x

b
􏼒 􏼓

α
􏼒 􏼓sin nπ

y

b
􏼒 􏼓

α
􏼒 􏼓, (40)

and using the last boundary condition u(a, y) � f(y), we
have

u(a, y) � 􏽘

∞

n�1
cnsinh nπ

a

b
􏼒 􏼓

α
􏼒 􏼓sin nπ

y

b
􏼒 􏼓

α
􏼒 􏼓

� 􏽘
∞

n�1
dn sin nπ

y

b
􏼒 􏼓

α
􏼒 􏼓 � f(y).

(41)

Finally, we can calculate the value of the coefficients dn, if
we observe the expression as the conformable α− Fourier
series of the odd extension of f (y); therefore, we obtain

dn � cnsinh nπ
a

b
􏼒 􏼓

α
􏼒 􏼓 �

2α
b
α 􏽚

b

0

f(y)sin nπ
y

b
􏼒 􏼓

α
􏼒 􏼓

dy

y
1− α,

(42)

where

dn �
2α

b
αsinh nπ(a/b)

α
( 􏼁

􏽚

b

0

f(y)sin nπ
y

b
􏼒 􏼓

α
􏼒 􏼓

dy

y
1− α. (43)

3.2. Neumann Conditions. Let us discuss the solution of the
following problem with Neumann-type conditions:

z
α

zx
α

z
α
u(x, y)

zx
α􏼠 􏼡 +

z
α

zy
α

z
α
u(x, y)

zy
α􏼠 􏼡 � 0, 0≤x≤ a, 0≤y≤ b,

(44)

z
α
u(x, 0)

zy
α􏼠 􏼡 � 0, 0≤ x≤ a,

z
α
u(x, b)

zy
α􏼠 􏼡 � 0, 0≤ x≤ a,

z
α
u(0, y)

zx
α􏼠 􏼡 � f(y), 0≤y≤ b,

z
α
u(a, y)

zx
α􏼠 􏼡 � 0, 0≤y≤ b.

(45)

We can see in this case that the boundary conditions
involve the conformable partial derivatives of u.

All conditions are boundary. As we did previously, we
use the method of separation of variables [22]:

u(x, y) � P(x)Q(y), (46)

which will lead us to the following two conformable ordinary
differential equations:

dα

dx
α

dαP(x)

dx
α􏼠 􏼡 − λP(x) � 0, (47)

dα

dy
α

dαQ(y)

dy
α􏼠 􏼡 + λQ(y) � 0. (48)

,e differences with the Dirichlet-type conditions ap-
pear when establishing the boundary conditions of these
problems. Observe that in this case, (zαu(x, 0)/zyα) � 0 and
(zαu(x, b)/zyα) � 0; therefore, the boundary conditions for
the conformable differential equations are obtained as
follows:

z
α
u(x, y)

zy
α � P(x)

dα

dy
α

dαQ(y)

dy
α􏼠 􏼡⟹

z
α
u(x, 0)

zy
α � P(x)

dα

dy
α

dαQ(0)

dy
α􏼠 􏼡⟹

dα

dy
α

dαQ(0)

dy
α􏼠 􏼡 � 0,

z
α
u(x, b)

zy
α � P(x)

dα

dy
α

dαQ(b)

dy
α􏼠 􏼡⟹

dα

dy
α

d
α
Q(b)

dy
α􏼠 􏼡 � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(49)
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We verify the following:

z
α
u(a, y)

zx
α �

dα

dx
α

dαP(a)

dx
α􏼠 􏼡Q(y) � 0⟹

dα

dx
α

dαP(a)

dx
α􏼠 􏼡 � 0.

(50)

Using equation (48) and the conditions found for
(dα/dyα)(dαQ(y)/dyα), we have the following boundary
problem:

dα

dy
α

dαQ(y)

dy
α􏼠 􏼡 + λQ(y) � 0,

dαQ(0)

dy
α􏼠 􏼡 � 0,

dαQ(b)

dy
α􏼠 􏼡 � 0.

(51)

We distinguish according to the value of λ. Now, we
obtain the following:

(1) λ� 0. ,en, equation (48) becomes
(dα/dyα)(dαQ(y)/dyα) � 0, whose general solution
is obtained by integrating twice with respect to y:

Q(y) � A
y
α

α
+ B, (52)

with A, B ∈R arbitrary constants. By using the following
boundary conditions, we have:

dαQ(0)

dy
α􏼠 􏼡 � 0,

dαQ(b)

dy
α􏼠 􏼡 � 0,

⎫⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

⇔A � 0. (53)

,erefore, Q (y)�B, and then u (x, y)� P (x) B.
Using equation (44), we obtain

z
α
u(x, y)

zx
α �

dαP(x)

dx
α􏼠 􏼡B⟹

z
α

zx
α

z
α
u(x, y)

zx
α􏼠 􏼡 �

dα

dx
α

dαP(x)

dx
α􏼠 􏼡B

z
α
u(x, y)

zy
α􏼠 􏼡 � 0⟹

z
α

zy
α

z
α
u(x, y)

zy
α􏼠 􏼡 � 0􏼩,

z
α

zx
α

z
α
u(x, y)

zx
α􏼠 􏼡 +

z
α

zy
α

z
α
u(x, y)

zy
α􏼠 􏼡 �

dα

dx
α

dαP(x)

dx
α􏼠 􏼡B + 0 � 0,

(54)

where either B� 0, but then we should have the null solution,
or (dα/dxα)(dαP(x)/dxα) � 0, and therefore, we have

P(x) � Cx + D. (55)

We have as a possible solution:

u(x, y) � P(x)Q(y) � ACx + A D � ρx + σ, (56)

with ρ�AC and σ �AD. If we now use the boundary
condition (zαu(a, y)/zxα) � 0, we have

z
α
u(x, y)

zx
α � ρ⟹

z
α
u(a, y)

zx
α � 0⟹ρ � 0. (57)

In this case, equation (44) has the following solution:

u(x, y) � σ. (58)

(2) λ< 0, say λ � − μ2. ,en, the equations are written as
follows:

dα

dy
α

dαQ(y)

dy
α􏼠 􏼡 − μ2Q(y) � 0,

dαQ(0)

dy
α􏼠 􏼡 � 0,

dαQ(b)

dy
α􏼠 􏼡 � 0,

(59)

which has the following general solution:

Q(y) � Ae
μ yα/α( ) + Be

− μ yα/α( ), (60)

By using the following boundary conditions, we obtain:

dαQ(y)

dy
α � Aμe

μ yα/α( ) − Bμe
− μ yα/α( ). (61)
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So,

dαQ(0)

dy
α � Aμ − Bμ � 0⟹μ(A − B) � 0⟹A − B � 0

dαQ(b)

dy
α � Aμe

μ bα/α( )
− Bμe

− μ bα/α( )
� 0⟹μ Ae

μ bα/α( )
− Be

− μ bα/α( )
􏼐 􏼑 � 0⟹Ae

μ bα/α( )
− Be

− μ bα/α( )
� 0

⎫⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

. (62)

From the first equation above, A�B, and by substituting
it in the second equation, we have

Ae
μ bα/α( )

− Be
− μ bα/α( )

� 0⟹A e
− μ bα/α( )

− e
− μ bα/α( )

􏼐 􏼑 � 0.

(63)

In this case, we will have two options:

A � 0⟹trivial solution,

e
μ bα/α( )

− e
− μ bα/α( )

� 0⟹e
μ bα/α( )

� e
− μ bα/α( )⟹b � 0⟹trivial solution.

(64)

(3) λ> 0, say λ� µ2.

,en, the equations are expressed as follows:

dα

dy
α

dαQ(y)

dy
α􏼠 􏼡 − μ2Q(y) � 0,

dαQ(0)

dy
α􏼠 􏼡 � 0,

dαQ(b)

dy
α􏼠 􏼡 � 0,

(65)

which has the following general solution:

Q(y) � A cos μ
y
α

α
􏼠 􏼡 + B sin μ

y
α

α
􏼠 􏼡. (66)

We need the following equation:

dαQ(y)

dy
α � − μA sin μ

y
α

α
􏼠 􏼡 + Bμ cos μ

y
α

α
􏼠 􏼡, (67)

to be able to use the boundary conditions as follows:

dαQ(y)

dy
α � μB � 0

dαQ(b)

dy
α � − μA sin μ

b
α

α
􏼠 􏼡 + Bμ cos μ

b
α

α
􏼠 􏼡

⎫⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

⟹

B � 0

− μA sin μ
b
α

α
􏼠 􏼡 � 0

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

⟹μ
b
α

α
� nπ, (68)

and therefore, we have

μ � nπ
α
b
α, n ∈ N, (69)

and for each value of n, we will have the following
function:

Qn(y) � An cos nπ
y

b
􏼒 􏼓

α
􏼒 􏼓. (70)

With these values and equation (47), we obtain

dα

dx
α

dαP(x)

dx
α􏼠 􏼡 − μ2P(x) � 0⟹

dα

dx
α

dαP(x)

dx
α􏼠 􏼡 − n

2π2
α

b
2α P(x) � 0,

(71)

which has as a general solution as follows:

P(x) � Ce
μ xα/α( )

+ De
− μ xα/α( )

. (72)
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As we have seen before: (dαP(a)/dxα) � 0.

dαP(x)

dx
α � Cμe

μ xα/α( )
− Dμ e

− μ xα/α( )⟹
dαP(a)

dx
α

� Cμe
μ aα/α( )

− Dμ e
− μ aα/α( )

� 0⟹Ce
μ aα/α( )

� De
− μ aα/α( )

.

(73)

,en for each n, we have

Pn(x) � Cn e
nπ(x/b)α

+ e
− nπ(x/b)α

e
2nπ(a/b)α

􏼐 􏼑. (74)

,e formal solution is the linear combination of all
solutions that we have obtained in the case λ� 0.

u(x, y) � σ + 􏽘
∞

n�1
An cos nπ

y

b
􏼒 􏼓

α
􏼒 􏼓Cn e

nπ(x/b)α
+ e

− nπ(x/b)α

􏼐 􏼑,

� σ + 􏽘
∞

n�1
Cn cos nπ

y

b
􏼒 􏼓

α
􏼒 􏼓 e

nπ(x/b)α
+ e

− nπ(x/b)α
e
2nπ(a/b)α

􏼐 􏼑,

(75)

where cn �AnCn has been taken. ,e values of cn are obtained using the boundary con-
dition: (zαu(0, y)/zxα) � f(y)

z
α
u(x, y)

zx
α � 􏽘

∞

n�1
cnnπ

α
b
α cos nπ

y

b
􏼒 􏼓

α
􏼒 􏼓 e

nπ(x/b)α
− e

− nπ(x/b)α
e
2nπ(a/b)α

􏼐 􏼑,

z
α
u(0, y)

zx
α � 􏽘

∞

n�1
Cnnπ

α
b
α 1 − e

2nπ(a/b)α

􏼐 􏼑 cos nπ
y

b
􏼒 􏼓

α
􏼒 􏼓

� 􏽘
∞

n�1
dn cos nπ

y

b
􏼒 􏼓

α
􏼒 􏼓 � f(y),

dn � Cnnπ
α
b
α 1 − e

2nπ(a/b)α

􏼐 􏼑,

(76)

All values of cn are obtained from the boundary con-
dition: ..., which are known as the coefficients of the con-
formable α-Fourier series of the even extension of the even
extension of f (y); therefore, we obtain

dn � Cnnπ
α
b
α 1 − e

2nπ(a/b)α

􏼐 􏼑 �
2α
b
α 􏽚

a

0

f(y)cos nπ
y

b
􏼒 􏼓

α
􏼒 􏼓

dy

y
1− α,

(77)

where

cn �
2

nπ 1 − e
2nπ(a/b)α

􏼐 􏼑
􏽚

a

0

f(y)cos nπ
y

b
􏼒 􏼓

α
􏼒 􏼓

dy

y
1− α. (78)

Note that in this case, it must be satisfied that the in-
dependent term of the conformable α− Fourier series d0/2

must be 0; therefore, for the solution of the problem with the
Neumann conditions to be u (x, y), the following compat-
ibility condition must be verified as follows:

d0 �
2α
b
α 􏽚

a

0

f(y)
dy

y
1− α � 0⟹􏽚

a

0

f(y)
dy

y
1− α � 0. (79)

4. Examples

In this section, we will use the above results to solve some
conformable Laplace partial differential equations.

Example 1. Let us solve the solution of the following
problem with Dirichlet-type conditions:

z
α

zx
α

z
α
u(x, y)

zx
α􏼠 􏼡 +

z
α

zy
α

z
α
u(x, y)

zy
α􏼠 􏼡 � 0, 0≤x≤ 1, 0≤y≤ 1,

u(x, 0) � u(x, 1) � 0, 0≤x≤ 1,

u(0, y) � 0 0≤y≤ 1,

u(1, y) � 100, 0≤y≤ 1,

(80)
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where α ∈ (0, 1].

Solution. Using equations (40) and (43), we get

u(x, y) � 􏽘
∞

n�1
cnsinh nπ

x

b
􏼒 􏼓

α
􏼒 􏼓 sin nπ

y

b
􏼒 􏼓

α
􏼒 􏼓, (81)

where

cn �
200α

sinh(nπ)
􏽚

1

0

sin nπy
α

( 􏼁
dy

y
1− α �

200 1 − (− 1)
n

( 􏼁

nπ sinh(nπ)
, n ∈ N.

(82)

Example 2. Let us solve the solution of the following
problem with Neumann-type conditions:

z
α

zx
α

z
α
u(x, y)

zx
α􏼠 􏼡 +

z
α

zy
α

z
α
u(x, y)

zy
α􏼠 􏼡 � 0, 0≤x≤ a, 0≤y≤ b,

z
α
u(x, 0)

zy
α􏼠 􏼡 � 0, 0≤x≤ a,

z
α
u(x, b)

zy
α􏼠 􏼡 � 0 0≤ x≤ a,

z
α
u(0, y)

zx
α􏼠 􏼡 �

b
α

2
− y

α
, 0≤y≤ b,

z
α
u(a, y)

zx
α􏼠 􏼡 � 0, 0≤y≤ b,

(83)

where α ∈ (0, 1].
Solution. First, note that the function f(y) � (bα/2) −

yα satisfies the compatibility condition given by equation
(30).

􏽚

b

0

b
α

2
− y

α
􏼠 􏼡

dy

y
1− α � 0. (84)

,e formal solution of this problem is given by

u(x, y) � σ + 􏽘

∞

n�1
cncos nπ

y

b
􏼒 􏼓

α
􏼒 􏼓 e

nπ(x/b)α
+ e

− nπ(x/b)α
e
2nπ(a/b)α

􏼐 􏼑,

(85)

where

cn �
2

nπ 1 − e
2nπ(a/b)α

􏼐 􏼑
􏽚

b

0

b
α

2
− y

α
􏼠 􏼡cos nπ

y

b
􏼒 􏼓

α
􏼒 􏼓

dy

y
1− α �

2b
2α

(− 1)
n

− 1( 􏼁

αn
3π3 1 − e

2nπ(a/b)α

􏼐 􏼑
. (86)

5. Conclusion

In this research paper, we have proposed some results re-
ferring to the conformable Laplace’s partial differential
equation. ,e definitions of conformable derivative and
integral have been applied to construct some of the results
and relationships in our study. ,e solution of conformable
Laplace’s partial differential equation with Dirichlet-type
and Neumann-type conditions has been successfully
established. ,e findings of this research study indicate that
the results obtained in the sense of conformable derivative
coincide with the results obtained in classical integer-order

case. Finally, some interesting examples are presented to
show the validity and potentiality of our obtained results to
be applied in future research works in various applications in
the field of natural sciences or engineering.
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*e present research article is related to the analytical investigation of some nonlinear fractional-order Fisher’s equations. *e
homotopy perturbation technique and Shehu transformation are implemented to discuss the fractional view analysis of Fisher’s
equations. For a better understanding of the proposed procedure, some examples related to Fisher’s equations are presented. *e
identical behavior of the derived and actual solutions is observed. *e solutions at different fractional are calculated, which
describe some useful dynamics of the given problems. *e proposed technique can be modified to study the fractional view
analysis of other problems in various areas of applied sciences.

1. Introduction

In mathematical science, the construction of exact and
explicit solutions to nonlinear fractional-order partial dif-
ferential equations (PDEs) is very significant and is one of
the most exciting and especially active fields of study. It is
well recognized that it is possible to divide all nonlinear
PDEs into two parts: the nonintegrable ones and the inte-
grable partial differential equations. *ere is an infinite
number of exact solutions to the first form, i.e., the integrable
equations. *e most well-known problems among them are
the sine-Gordon equation, Korteweg-de Vries equation,
Boussinesq equations, Kawahara type equations, and non-
linear Schrodinger equation and the list can be expanded
with other fundamental integrable problems, but it is not our
purpose to give all the lists [1–5]. Nonlinear PDEs are
considered to be in the class of nonintegrable partial dif-
ferential equations with certain precise solutions or without
precise solutions and will need special care to achieve their
solutions because of the shape of the nonlinear differential
equation and the pole of its solution. *e Fitzhugh-Nagumo
equation, Fisher equation, Burger-Huxley equation, and
Ginzburg-Landau equation can be mentioned as the well-
known nonintegrable PDEs among them all [6–13].

Over the last few decades, considerable progress has been
made in developing methods for obtaining precise solutions
to nonlinear equations, but the progress accomplished is
insufficient. Since, from our point of view, there is no single
optimal way to achieve correct solutions to nonlinear dif-
ferential equations of all forms. Based on the researchers’
expertise and the sympathy for the method used, each
method has its benefits and shortcomings. Also, all these
techniques can be seen to be problem-dependent, namely,
that certain techniques perform well on some concerns, but
others do not.*erefore, it is very important to apply certain
well-known methods to nonlinear partial differential
equations in the literature that are not solved with that
method to look for potential new exact solutions or to check
current solutions with different approaches [14–17].

Fisher-Kolmogorov-Petrovsky-Piscounov (Fisher-KPP)
equation was first introduced by Fisher [18] and was later
renamed Fisher equation. FEs have numerous applications
in the fields of engineering and science [19–22]. *e re-
searchers investigated some important generalizations of
this equation [23–25]. Numerous reaction-diffusion equa-
tions have wavefronts that show a vital part in explaining
chemical, physical, and biological phenomena [26, 27]. *e
reaction-diffusion systems can explain how changes in the
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concentration of one or more chemicals occur. One is the
local chemical reactions that transform the substances into
each other and the other is the diffusion, which allows the
substances to spread through the air.

*e simplest equation for reaction-diffusion in one
spatial dimension,

ψI � Pψμμ + Q(ψ), (1)

where ψ(μ,I) shows single material concentration, P

represents diffusion coefficients, and Q represents all local
reactions. If R(ψ) � ψ(1 − ψ), we get FE which is used to
define the biological populations dispersion.*e Fisher-KPP
advection equation is used to define population dynamics in
advective environments [28]. *e partial differential equa-
tion proposed by Fisher is nonlinear as

ψI � Dψμμ + ψ(1 − ψ). (2)

Fisher proposed equation (2) as a model for gene se-
lection, with ψ denoting the population density. *e same
equation also arises in the autocatalytic chemical reactions,
nuclear reactor theory, flame propagation, neurophysiology,
and Brownian motion process. *e Fisher equation is
considered to be an important equation because of its vast
number of applications in the field of engineering.

*e homotopy perturbation technique was developed by
He [29, 30] in 1998. HPM provides the solution as a sum of
the sequence having an infinite sum that converges rapidly
to the exact results. HPM can be used to solve PDEs of higher
dimensions and nonlinearity effectively.

In the present research article, effective utilization of the
new developed technique, the homotopy perturbation
method and Shehu transform, has been implemented to
solve fractional FEs.*e suggested technique is very effective
for the solutions of other fractional PDEs because its re-
quired small computational work and higher degree accu-
racy. Moreover, the obtained results are in close resemblance
with the actual solution of all fractional FEs.

2. Preliminaries

2.1. Definition. *e fractional-order Riemann–Liouville
integral is define by [31, 32]

I
δ
0h(τ) �

1
Γ(α)

􏽚
η

0
(η − s)

α− 1
h(s)ds. (3)

2.2. Definition. *e fractional-order Caputo’s derivative of
h(η) is given as [31, 32]

D
α
ηh(η) � I

n− α
f

n
, n − 1< α< n, n ∈ N,

d
n

dηn h(η), α � n, n ∈ N.

(4)

2.3. Definition. *e integral of Shehu transformation is new
and similar to other integral transformation which is

described for exponential order functions. In set A, we take a
function which is described by [33–35]

A � ](η): ∃, ρ1, ρ2 > 0, |](η)|<Me
|η|/ρi( ), if η ∈ [0,∞).􏼚 (5)

*e Shehu transformation which is defined by S(·) for a
function ](η) is given as

S ](η)􏼈 􏼉 � V(s, μ) � 􏽚
∞

0
e

(− sη/μ)](η)dη, η> 0, s> 0.

(6)

*e Shehu transformation of a function ](η) is V(s, μ),
and then ](η) is known as the inverse of V(s, μ) which is
define as

S
− 1

V(s, μ)􏼈 􏼉 � ](η), for η≥ 0, S
− 1 is inverse Shehu transformation.

(7)

2.4. Definition. *e Shehu transformation for nth deriva-
tives is defined as [33–35]

S ](n)
(η)􏽮 􏽯 �

s
n

u
n V(s, u) − 􏽘

n−1

k�0

s

u
􏼒 􏼓

n− k− 1
](k)

(0). (8)

2.5. Definition. *e fractional-order derivatives of Shehu
transformation are given as [33–35]

S ](α)
(η)􏽮 􏽯 �

s
α

u
α V(s, u) − 􏽘

n−1

k�0

s

u
􏼒 􏼓

α− k− 1
](k)

(0), 0< β≤ n.

(9)

2.6. Definition. *e Mittag-Leffler function of Eα(z) for
α> 0 is given as

Eα(z) � 􏽘
∞

m�0

z
m

Γ(αm + 1)
, α> 0, z ∈ C. (10)

3. Homotopy Perturbation Transform Method

To explain the fundamental ideas of this method, we get the
following equation:

D
α
Iψ(μ,I) + Mψ(μ,I) + Nψ(μ,I) � h(μ,I), I> 0, 0< α≤ 1,

ψ(μ, 0) � g(μ), μ ∈ R,

(11)

where Dα
I � (zα/zIα) is Caputo‘s derivative, M, N is the

linear and nonlinear operator in μ, and h(μ,I) is the source
function.

By taking Shehu transformation, we can write (11) as
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S D
α
Iψ(μ,I) + Mψ(μ,I) + Nψ(μ,I)􏽨 􏽩 � S[h(μ,I)],

R(μ, s, u) �
g(μ)

s
+

u
α

s
α S[h(μ,I)] −

u
α

s
α S[Mψ(μ,I) + Nψ(μ,I)].

(12)

Now, using inverse Shehu transformation, we get

ψ(μ,I) � F(μ,I) − S
− 1 u

α

s
α S Mψ(μ,I) + Nψ(μ,I)􏼈 􏼉􏼢 􏼣,

(13)

where

F(μ,I) � S
− 1 g(μ)

s
+

u
α

s
α S[h(μ,I)]􏼢 􏼣

� g(μ) + S
− 1 u

α

s
α S[h(μ,I)]􏼢 􏼣.

(14)

Now, if ρ is the parameter perturbation, we can write as

ψ(μ,I) � 􏽘
∞

k�0
ρkψk(μ,I), (15)

where ρ is the perturbation parameter and ρ ∈ [0, 1].
*e nonlinear term can be decomposed as

Nψ(μ,I) � 􏽘
∞

k�0
ρk

Hn(ψ), (16)

where Hn are He’s polynomials of the form
ψ0,ψ1,ψ2, . . . ,ψn, and can be determined as

Hn ψ0,ψ1, . . . ,ψn( 􏼁 �
1
n!

z
n

zp
n N 􏽘

∞

k�0
ρkψk

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

ρ�0

. (17)

Using relations (15) and (16) in (2) and constructing the
homotopy, we get

􏽘

∞

k�0
ρkψk(μ,I) � F(μ,I) − ρ × S

− 1 u
α

s
α S M 􏽘

∞

k�0
ρkψk(μ,I) + 􏽘

∞

k�0
ρk

Hk(ψ)
⎧⎨

⎩

⎫⎬

⎭

⎧⎨

⎩

⎫⎬

⎭
⎡⎣ ⎤⎦. (18)

On comparing coefficient of ρ on both sides, we obtain

ρ0: ψ0(μ,I) � F(μ,I),

ρ1: ψ1(μ,I) � S
− 1 u

α

s
α S Mψ0(μ,I) + H0(ψ)􏼈 􏼉􏼢 􏼣,

ρ2: ψ2(μ,I) � S
− 1 u

α

s
α S Mψ1(μ,I) + H1(ψ)􏼈 􏼉􏼢 􏼣,

⋮

ρk
: ψn(μ,I) � S

− 1 u
α

s
α S Mψk−1(μ,I) + Hk−1(ψ)􏼈 􏼉􏼢 􏼣,

k> 0, k ∈ N.

(19)

*e component ψk(μ,I) can be calculated easily, which
leads us to the convergent series rapidly. By taking ρ⟶ 1,
we obtain

ψ(μ,I) � lim
M⟶∞

􏽘

M

k�1
ψk(μ,I). (20)

*e obtained result is in the form of series and easily
converges to exact solution of the problem.

4. Test Problems

To show the validity of the suggested technique, the fol-
lowing test problems are solved.

4.1. Example. Consider the fractional-order Fisher equation
is given by

D
α
Iψ � ψμμ + ψ(1 − ψ), 0< α≤ 1, (21)

with initial condition
ψ(μ, 0) � β. (22)

Applying Shehu transform to (21), we have
s
α

u
α S[ψ(μ,I)] −

s
α− 1

u
α ψ(μ, 0) � S ψμμ + ψ(1 − ψ)􏼐 􏼑.

S[ψ(μ,I)] �
β
s

+
u
α

s
α S ψμμ + ψ(1 − ψ)􏼐 􏼑􏽨 􏽩.

(23)

Using inverse Shehu transformation, we get

ψ(μ,I) � β + S
− 1 u

α

s
α S ψμμ + ψ(1 − ψ)􏼐 􏼑􏽮 􏽯􏼢 􏼣. (24)

Applying the abovementioned homotopy perturbation
technique as in (18), we get

􏽘

∞

k�0
ρkψk(μ,I) � β + ρ S

− 1 u
α

s
α S 􏽘

∞

k�0
ρkψk(μ,I)⎛⎝ ⎞⎠

μμ

+ 􏽘
∞

k�0
ρkψk(μ,I) 1 − 􏽘

∞

k�0
ρkψk(μ,I)⎛⎝ ⎞⎠⎛⎜⎝ ⎞⎟⎠

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
⎡⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎦. (25)
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Comparing the coefficient of power ρ, we get

ρ0: ψ0(μ,I) � β,

ρ1: ψ1(μ,I) � S
− 1 u

α

s
α S ψ0μμ + ψ0 − ψ2

0􏽮 􏽯􏼢 􏼣 � β(1 − β)
I

α

Γ(α + 1)
,

ρ2: ψ2(μ,I) � S
− 1 u

α

s
α S ψ1μμ + ψ1 − 2ψ0ψ1􏽮 􏽯􏼢 􏼣 � β(1 − β)(1 − 2β)

I
2α

Γ(2α + 1)
,

ρ3: ψ3(μ,I) � S
− 1 u

α

s
α S ψ2μμ + ψ2 − ψ2

1 − 2ψ0ψ2􏽮 􏽯􏼢 􏼣 � β − 5β2 + 8β3 − 4β4􏼐 􏼑
I

3α

Γ(3α + 1)

− β2 − 2β3 + β4􏼐 􏼑
Γ(2α + 1)

Γ(α + 1)
2

I
3α

Γ(3α + 1)
.

⋮

(26)

Now, by taking ρ⟶ 1, we obtain convergent series
form solution as

ψ(μ,I) � ψ0 + ψ1 + ψ2 + ψ3 + · · · ,

ψ(μ,I) � β + β(1 − β)
I

α

Γ(α + 1)
+ β(1 − β)(1 − 2β)

I
2α

Γ(2α + 1)
+ β − 5β2 + 8β3 − 4β4􏼐 􏼑

I
3α

Γ(3α + 1)

− β2 − 2β3 + β4􏼐 􏼑
Γ(2α + 1)

Γ(α + 1)
2􏼠 􏼡

I
3α

Γ(3α + 1)
+ · · · .

(27)

Putting α � 1, we get the same solution,

ψ(μ,I) �
β expμ

1 − β + β expI
. (28)

Figure 1 compares the exact solution and approximate
solution for the nonlinear fractional-order Fisher equation
at α � 1. Figure 2 represents the graph of 2D of exact and
analytical solutions and the second graph in Figure 2 shows
the different fractional-order graphs of α.

4.2. Example. Consider the fractional-order Fisher equation
is given by

D
α
Iψ � ψμμ + 6ψ(1 − ψ), 0< α≤ 1, (29)

with initial conditions

ψ(μ, 0) �
1

1 + expμ( 􏼁
2. (30)

Applying Shehu transform of (29), we have

s
α

u
α S[ψ(μ,I)] −

s
α− 1

u
α ψ(μ, 0) � S ψμμ + 6ψ(1 − ψ)􏼐 􏼑.

S[ψ(μ,I)] �
1
s

1
1 + expμ( 􏼁

2 +
u
α

s
α

· S ψμμ + 6ψ(1 − ψ)􏼐 􏼑􏽨 􏽩.

(31)

Using inverse Shehu transformation, we get

ψ(μ,I) �
1

1 + expμ( 􏼁
2 + S

− 1 u
α

s
α S ψμμ + 6ψ(1 − ψ)􏼐 􏼑􏽮 􏽯􏼢 􏼣.

(32)

Applying the abovementioned homotopy perturbation
technique as in (18), we get

􏽘

∞

k�0
ρkψk(μ,I) �

1
1 + expμ( 􏼁

2 + ρ S
− 1 u

α

s
α S 􏽘

∞

k�0
ρkψk(μ,I)⎛⎝ ⎞⎠

μμ

+ 6 􏽘
∞

k�0
ρkψk(μ,I) 1 − 􏽘

∞

k�0
ρkψk(μ,I)⎛⎝ ⎞⎠⎛⎜⎝ ⎞⎟⎠

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
⎡⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎦. (33)
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Figure 1: *e graphs of exact and HPTM solutions for equation (21) at α � 1.
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Figure 2: *e graphs of exact and HPTM solutions and different fractional-order α of example 1.
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Comparing the coefficient of power ρ, we get

ρ0: ψ0(μ,I) �
1

1 + expμ( 􏼁
2,

ρ1: ψ1(μ,I) � S
− 1 u

α

s
α S ψ0μμ + 6ψ0 − 6ψ2

0􏽮 􏽯􏼢 􏼣 � 10
expμ

1 + expμ( 􏼁
3

I
α

Γ(α + 1)
,

ρ2: ψ2(μ,I) � S
− 1 u

α

s
α S ψ1μμ + 6ψ1 − 12ψ0ψ1􏽮 􏽯􏼢 􏼣 � 50

expμ −1 + 2 expμ( 􏼁

1 + expμ( 􏼁
4

I
2α

Γ(2α + 1)
,

ρ3: ψ3(μ,I) � S
− 1 u

α

s
α S ψ2μμ + 6ψ2 − 6ψ2

1 − 12ψ0ψ2􏽮 􏽯􏼢 􏼣 � 50expμ 5 − 6 expμ(

−15 exp2μ, n + 20 exp3μ − 12 expμ
Γ(2α + 1)

(Γ(α + 1))
2􏼡

I
3α

1 + expμ( 􏼁
6 Γ(3α + 1)

.

⋮

(34)

Now, by taking ρ⟶ 1, we obtain convergent series
form solution as

ψ(μ,I) � ψ0 + ψ1 + ψ2 + ψ3 + · · ·

�
1

1 + expμ( 􏼁
2 + 10

expμ

1 + expμ( 􏼁
3

I
α

Γ(α + 1)
+ 50

expμ −1 + 2 expμ( 􏼁

1 + expμ( 􏼁
4

I
2α

Γ(2α + 1)

+ 50expμ 5 − 6 expμ − 15 exp2μ + 20 exp3μ − 12 expμ
Γ(2α + 1)

(Γ(α + 1))
2􏼠 􏼡

I
3α

1 + expμ( 􏼁
6 Γ(3α + 1)

+ · · · .

(35)

Putting α � 1, we get the same solution

ψ(μ,I) �
1

1 − expμ− 5I
􏼐 􏼑

2. (36)

Figure 3 compares the exact solution and approximate
solution for the nonlinear fractional-order Fisher equation
at α � 1. Figure 3 represents the graph of 2D of exact and
analytical solutions and the second graph in Figure 3 shows
the different fractional-order graphs of α of example 2.

4.3. Example. Consider the fractional-order Fisher equation
is given by

D
α
Iψ � ψμμ + ψ 1 − ψ6

􏼐 􏼑, 0< α≤ 1, (37)

with initial conditions

ψ(μ, 0) �
1

1 + exp(3/2)μ
􏼐 􏼑

(1/3)
. (38)

Applying Shehu transform of (37), we have

s
α

u
α S[ψ(μ,I)] −

s
α− 1

u
α ψ(μ, 0) � S ψμμ + ψ 1 − ψ6

􏼐 􏼑􏼐 􏼑,

S[ψ(μ,I)] �
1
s

1

1 + exp(3/2)μ
􏼐 􏼑

(1/3)
+

u
α

s
α

· S ψμμ + ψ 1 − ψ6
􏼐 􏼑􏼐 􏼑􏽨 􏽩.

(39)

Using inverse Shehu transformation, we get

ψ(μ,I) �
1

1 + exp(3/2)μ
􏼐 􏼑

(1/3)
+ S

− 1

·
u
α

s
α S ψμμ + ψ 1 − ψ6

􏼐 􏼑􏼐 􏼑􏽮 􏽯􏼢 􏼣.

(40)

Applying the abovementioned homotopy perturbation
technique as in (18), we get
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􏽘

∞

k�0
ρkψk(μ,I) �

1

1 + exp(3/2)μ
􏼐 􏼑

(1/3)
+ ρ S

− 1 u
α

s
α S 􏽘

∞

k�0
ρkψk(μ,I)⎛⎝ ⎞⎠

μμ

⎛⎜⎝
⎧⎪⎨

⎪⎩
⎡⎢⎢⎢⎢⎢⎣

+ 􏽘
∞

k�0
ρkψk(μ,I) 1 − 􏽘

∞

k�0
ρkψk(μ,I)⎛⎝ ⎞⎠

6

⎛⎝ ⎞⎠⎞⎠
⎫⎪⎬

⎪⎭
⎤⎥⎥⎥⎥⎥⎦.

(41)

Comparing the coefficient of the same power of ρ, we get

ρ0: ψ0(μ,I) �
1

1 + exp(3/2)μ
􏼐 􏼑

(1/3)
,

ρ1: ψ1(μ,I) � S
− 1 u

α

s
α S ψ0μμ + ψ0 − ψ7

0􏽮 􏽯􏼢 􏼣 �
5 exp(3/2)μ

4 1 + exp(3/2)μ
􏼐 􏼑

(4/3)

I
α

Γ(α + 1)
,

ρ2: ψ2(μ,I) � S
− 1 u

α

s
α S ψ1μμ + ψ1 − 7ψ6

0ψ1􏽮 􏽯􏼢 􏼣 �
25 exp(3/2)μ exp(3/2)μ

− 3􏼐 􏼑

16 1 + exp(3/2)μ
􏼐 􏼑

(7/3)

I
2α

Γ(2α + 1)
,

⋮

(42)
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Figure 3: *e graphs of exact and HPTM solutions and different fractional-order α for equation (29).
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Now, by taking ρ⟶ 1, we obtain convergent series
form solution as

ψ(μ,I) � ψ0 + ψ1 + ψ2 + ψ3 + · · · .

ψ(μ,I) �
1

1 + exp(3/2)μ
􏼐 􏼑

1/3 +
5 exp(3/2)μ

4 1 + exp(3/2)μ
􏼐 􏼑

4/3
I

α

Γ(α + 1)
+
25 exp(3/2)μ exp(3/2)μ

− 3􏼐 􏼑

16 1 + exp(3/2)μ
􏼐 􏼑

(7/3)

I
2α

Γ(2α + 1)
+ · · · .

(43)

Putting α � 1, we get the same solution

ψ(μ,I) �
1
2
tanh

15
8
I −

3
4
μ􏼒 􏼓 +

1
2

􏼚 􏼛
(1/3)

. (44)

Figure 4 compares the exact solution and approximate
solution for the nonlinear fractional-order Fisher equation
at α � 1. Figure 4 represents the graph of 2D of exact and
analytical solutions and the second graph in Figure 4 shows
the different fractional-order graphs of α.

5. Conclusion

In this paper, some computational works have been done
to analyze Fisher’s equations’ fractional view analysis. For
this purpose, the Shehu transformation is mixed with the
homotopy perturbation method and derived a useful
hybrid technique to handle the solution. *e graphical

representation of the solution of some illustrative ex-
amples is shown to be in closed contact. *e fractional
problem solution is convergent toward the integer-order
solutions. Moreover, the accuracy of the proposed method
is high and required less number of calculations. *e
suggested method can solve other fractional-order
problems because of its simple and straight forward
implementation.
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Figure 4: *e graphs of exact and HPTM solutions and different fractional-order α for equation (37).
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With the widespread use of social networks, social recommendation algorithms that add social relationships between users to
recommender systems have been widely applied. Existing social recommendation algorithms only introduced one type of social
relationship to the recommendation system, but in reality, there are often multiple social relationships among users. In this paper,
a new matrix factorization recommendation algorithm combined with multiple social relationships is proposed. .rough ex-
periment results analysis on the Epinions dataset, the proposed matrix factorization recommendation algorithm has a significant
improvement over the traditional and matrix factorization recommendation algorithms that integrate a single social relationship.

1. Introduction

With the development of big data technology, data re-
dundancy has seriously interfered with obtaining effective
information. .e recommendation system solves the
problem well and becomes a research hotspot in related
fields. .e recommendation system recommends items or
information that may be of interest to users based on their
hobbies, demand information, and consumer behavior
[1, 2]. At present, the recommender system had been widely
used in different industries, such as Amazon product rec-
ommendation, iTunes music recommendation, and Netflix
movie recommendation because the recommendation al-
gorithm can filter according to the mass of user history
information, mine the deep relationship between users and
users or items, and produce more accurate personalized
recommendation with preference characteristics, which can
better meet the needs of users. .e algorithms used by the
recommendation system consist of three types: collaborative
filtering recommendation algorithms [3, 4], content-based
recommendation algorithms [5], and hybrid recommen-
dation algorithms [6]. Among them, collaborative filtering
recommendation algorithm is currently the most popular,
and it consists of three types: item-based collaborative

filtering [7], user-based collaborative filtering [8], andmatrix
factorization collaborative filtering [9]. .e matrix factor-
ization collaborative filtering recommendation algorithm
has attracted more and more researchers’ attention because
of its outstanding performance in the Netflix Prize com-
petition. However, in practical applications, only a small
number of users will rate or comment on a small number of
items. .erefore, the matrix factorization recommendation
algorithm has obvious data sparsity problem and item cold-
start problem..e algorithm expresses the user’s scorings of
items in matrix form and factorizes the matrix to mine low-
dimensional hidden feature space and then get user feature
matrix and item feature matrix, finally through inner
product operation of the two low-dimensional feature
matrixes to describe the relation between users and items.
Although the existing recommendation algorithms had
obtained a good recommendation result, these traditional
recommendation algorithms ignored the influence of social
relationships among users on recommendation results. Since
social relationships can reflect the similarity between users’
preferences, simply considering the user’s scoring of the
items can no longer meet the recommendation needs, so the
social recommendation algorithm that introduces social
relationship into recommendation algorithm became
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current research hotspots in recommendation systems [10].
Hao et al. [11] proposed a weighted bipartite graph rec-
ommendation algorithm that used the monotonic saturation
function as the weight and used the true value of the number
of target users and other items to score relative to the total
number of users as the traditional similarity coefficient.
Chen et al. [12] calculated the similarity between users and
items through similar tags and proposed a joint probability
matrix factorization recommendation algorithm that
merged the neighbor perception of social tags, effectively
using the semantics of the tag improved the recommen-
dation quality. Lin et al. [13] used the principle of trust
generation in social psychology, based on the trust extension
method of user credibility, to alleviate the sparseness of data,
and proposed a matrix recommendation algorithm with
enhanced trust. Korpinar et al. [14] based on the shared
representation method of user feature matrix, proposed a
novel social recommendation model based on shared rep-
resentation of user feature matrix, which effectively im-
proved the accuracy of recommendation.

Most existing social recommendation algorithms only
introduce a social relationship, but each added social rela-
tionship affects the recommendation result differently, so
introduction of multiple social relationships would definitely
improve recommendation accuracy. In this paper, a multiple
relationships social network is constructed through a multi-
subnet composite complex network model [15], a shared
user feature matrix is used to introduce multiple social
relationships into the recommendation algorithm, and a
matrix factorization recommendation algorithm that inte-
grates multiple social relationships is proposed.

2. Methodology

2.1. Traditional Matrix Factorization Model. Assuming that
the recommendation system includes m customers and n

commodities, Rm×n � [Rij]m×n represents the customer-
commodity scoring matrix, which is shown as Figure 1. Rij

represents the rating of customer i to item j, where
Rij ∈ [1, 5]. Usually, there many empty elements in Rm×n,
and it will cause a sparse matrix of customer-commodity
scoring.

In social networks, as shown in Figure 2, the social
relationship between customers can be represented by a
matrix C: C � [Cik]m×m, the value of Cik is 0 or 1, and if
Cik � 0, it means that there is no social relationship between
customers.

.e flowchart of traditional matrix factorization algo-
rithm [8] is shown in Figure 3.

Matrix Rm×n can be factorized into user feature matrix
Um×k and item feature Vk×n, respectively. k represents di-
mension of vector, in general, it is much smaller than m and
n, and then dimensionality reduction can be realized. Ui and
Vj represent the potential feature spaces of corresponding
users ui and items vj, respectively. .e null value in scoring
matrix can be forecast through UT

i Vj, and then the pre-
diction scoring matrix could be obtained.

For the convenience of research, the function f(a) �

1/Rmax is used to map the customer’s scoring of the

commodity to [0,1] interval, where Rmax represents the
customer’s maximum scoring of commodity..e traditional
matrix factorization only uses a simple linear model
R � UTV, and the obtained results will be too fitted to the
scoring matrix, resulting in the prediction scores deviating
too much from the real data, and the final prediction results
are distorted. .erefore, the logistic function g(a) � 1/(1 +

e− a) is used in this paper, so that the customer’s scoring of
commodity is defined in the range of [0, 1]. .e observed
conditional probability distribution can be defined ast

p R|U, V, σ2R􏼐 􏼑 � 􏽙
m

i�1
􏽙

n

j�1
N rij|g U

T
i Vj􏼐 􏼑, σ2R􏼐 􏼑􏽨 􏽩

IR
ij , (1)

where N(x|μ, σ2) indicates that x follows a Gaussian dis-
tribution whose mean is μ and variance is σ2. IR

ij represents
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Figure 1: Customer-commodity scoring matrix.

1

1 1
1 1

1
1

1
11u1

u1

u2

u2

u3

u3

u4

u4

u5

u5

Figure 2: Customer social relationship matrix.

Vj

Ui

Rij

σV

σU

σR

Figure 3: Flowchart of probabilistic matrix factorization.

2 Mathematical Problems in Engineering



an index function, and if user i has a score of item j, its value
is 1; otherwise, it is 0. Suppose U and V obey the spherical
Gaussian distribution prior to mean 0:

p U|σ2U􏼐 􏼑 � 􏽙
m

i�1
N Ui|0, σ2UI􏼐 􏼑,

p V|σ2V􏼐 􏼑 � 􏽙
n

j�1
N Vj|0, σ2VI􏼐 􏼑.

(2)

.en, through Bayesian inference, the posterior prob-
ability distribution of U and V could be obtained as follows:

p U, V|R, σ2R, σ2U, σ2V􏼐 􏼑∝p R|U, V, σ2R􏼐 􏼑p U|σ2U􏼐 􏼑p V|σ2V􏼐 􏼑

� σ􏽙
m

i�1
􏽙

n

j�1
N rij|g U

T
i Vj􏼐 􏼑, σ2R􏼐 􏼑􏽨 􏽩

IR
ij × 􏽙

m

i�1
N Ui|0, σ2UI􏼐 􏼑 × 􏽙

n

j�1
N Vj|0, σ2VI􏼐 􏼑.

(3)

2.2. Matrix Factorization Recommendation Algorithm Inte-
grating a Social Relationship. In the traditional recom-
mendation algorithm, users are independent of each other,
which ignores the users’ social relationship. If there is a
social relationship between two users, the preferences of
users or the choice of items will affect each other. .erefore,
it is necessary to integrate social relationships into the
recommendation algorithm; thus, recommendation accu-
racy will be improved greatly.

Suppose that there is only one kind of social relationship
between users, and the social relationship can be incorpo-
rated into the matrix factorization recommendation algo-
rithm through sharing the user’s potential eigenspace, which
is the same as that in user scoring matrix..en, it is analyzed
by probability matrix factorization. C � Cik represents an
m × m matrix, which factorizes the social network into user
feature matrix U ∈ Rl×m and social feature matrix Z ∈ Rl×m.

.e conditional distribution of observed social relationship
can be defined:

p C|U, Z, σ2C􏼐 􏼑 � 􏽙
m

i�1
􏽙

m

k�1
N cik|g U

T
i Zk􏼐 􏼑, σ2C􏼐 􏼑􏽨 􏽩

IC
ik . (4)

Suppose that U and Z follow the spherical Gaussian
prior distribution with mean 0:

p U|σ2U􏼐 􏼑 � 􏽙
m

i�1
N Ui|0, σ2UI􏼐 􏼑,

p Z|σ2V􏼐 􏼑 � 􏽙
n

j�1
N Zk|0, σ2ZI􏼐 􏼑.

(5)

.en, through simple Bayesian inference, the following
results can be obtained:

p U, Z|C, σ2C, σ2U, σ2Z􏼐 􏼑∝p C|U, Z, σ2C􏼐 􏼑p U|σ2U􏼐 􏼑p Z|σ2Z􏼐 􏼑

� σ􏽙
m

i�1
􏽙

m

k�1
N cik|g U

T
i Zk􏼐 􏼑, σ2C􏼐 􏼑􏽨 􏽩

IC
ik × 􏽙

m

i�1
N Ui|0, σ2UI􏼐 􏼑 × 􏽙

m

k�1
N Zk|0, σ2CI􏼐 􏼑,

(6)

where IC
ik is an indicator function, and if user i has a social

relationship with user k, its value is 1; otherwise, it is 0.
.e flowchart of matrix factorization recommendation

algorithm integrating a social relationship (MFRS1) is
shown in Figure 4.

According to the shared user eigenspace, the user’s item
scoring matrix is closely related to the social relationship
matrix, and the posterior distribution of social recom-
mendations can be obtained by logarithm:
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lnp U, V, Z|C, R, σ2C, σ2R, σ2U, σ2V, σ2Z􏼐 􏼑 � −
1

2σ2R
􏽘

m

i�1
􏽘

n

j�1
I

R
ij rij − g U

T
i Vj􏼐 􏼑􏼐 􏼑

2
−

1
2σ2C

􏽘

m

i�1
􏽘

m

k�1
I

C
ik c
∗
ik − g U

T
i Zk􏼐 􏼑􏼐 􏼑

2

−
1

2σ2U
􏽘

m

i�1
U

T
i Ui −

1
2σ2V

􏽘

n

j�1
V

T
j Vj

−
1

2σ2Z
􏽘

m

k�1
Z

T
k Zk −

1
2

􏽘

m

i�1
􏽘

n

j�1
I

R
ij

⎛⎝ ⎞⎠ln σ2R + 􏽘
m

i�1
􏽘

n

j�1
I

R
ij

⎛⎝ ⎞⎠ln σ2C⎛⎝ ⎞⎠

−
1
2

ml ln σ2U + nl ln σ2V + ml ln σ2Z􏼐 􏼑 + C,

(7)

where C is a constant which does not rely on any parameter,
and the maximum posterior distribution function should be

equal to the minimum objective function, which is as
follows:

L R, C1, C2, U, V, Z1, Z2( 􏼁 �
λC

2
􏽘

m

i�1
􏽘

n

j�1
I

R
ij rij − g U

T
i Vj􏼐 􏼑􏼐 􏼑

2
+
1 − λC

2
􏽘

m

i�1
􏽘

m

k�1
I

C
ik C
∗
ik − g U

T
i Zk􏼐 􏼑􏼐 􏼑

2

+
λU

2
‖U‖

2
F +

λV

2
‖V‖

2
F +

λZ

2
‖Z‖

2
F,

(8)

where λC ∈ [0, 1] is used to adjust the influence proportion
of user scoring matrix and social relationship matrix on
recommendation result. When λC � 1, it means that the
social relationship between users is not considered, when
λC � 0, it means that the user scoring matrix has a pro-
portion of 0, and the rest means that a social relationship is
integrated. λC � σ2R/σ

2
C, λU � σ2R/σ

2
U, λV � σ2R/σ

2
V, λZ � σ2R/

σ2Z, ‖·‖2F represents regularization.

2.3. Matrix Factorization Recommendation Algorithm Inte-
grating Multiple Social Relationships. In actual social net-
works, there are often more than one kind of social
relationship between users, and each social relationship has a

different impact on the recommendation, so introduction of
a kind of social relationship would definitely affect rec-
ommendation accuracy. Suppose that there are two kinds of
social relationships c1 and c2 between users, and the flow-
chart of matrix factorization recommendation algorithm
integrating multiple social relationships (MFRS2) is shown
in Figure 5.

According to the algorithm, c1 relationship between
users is represented by matrix C1 � [C1

ik]m×m, and c2 rela-
tionship between users is represented by matrix
C2 � [C2

ik]m×m. If relationship strength of c1 is β, then re-
lationship strength of c2 is 1 − β, where β ∈ [0, 1]. .erefore,
the objective function for minimizing the introduction of
two kinds of social relationships is

i = 1, ..., m
Rij

Z Vj

Ui

Ci 

σV
σU

σZ1

σR σc

j = 1, 2, 3, …, n
  = 1, …, m

Figure 4: Flowchart of matrix factorization recommendation algorithm integrating a social relationship.

4 Mathematical Problems in Engineering



L R, C1, C2, U, V, Z1, Z2( 􏼁 �
λC
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􏽘

n
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I

R
ij rij − g U

T
i Vj􏼐 􏼑􏼐 􏼑

2

+
β 1 − λC( 􏼁
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􏽘
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1∗
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T
i Z

1
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+
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2
􏽘
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λU

2
‖U‖

2
F +

λV

2
‖V‖

2
F +

λZ

2
‖Z‖

2
F.

(9)

.e gradient descent algorithm can be used to solve the
objective function as follows:

zL

zUi

� λC 􏽘

n
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I
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ijg′ U

T
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(10)
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Figure 5: Flowchart of matrix factorization recommendation algorithm integrating multiple social relationships.
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where g′(x) � ex/(1 + ex)2 represents derivative of logistic
function g(x). For reducing model complexity, the corre-
sponding parameter setting is λU � λV � λ1Z � λ2Z.

3. Results and Analysis

3.1. ExperimentalData. In this paper, Epinions is used as the
experimental dataset, and it is a knowledge-sharing website
where customers could review commodities or give integer
scorings between one and five. New customers can use these
comments or ratings to determine whether the commodity is
worth buying. .e Epinions dataset includes the customer’s
trust relationship, customer’s scoring for commodities, and
comment information of commodities. It includes 49,290
customers, 139,738 commodities, 664,824 comment mes-
sages, and 487,181 trust relationships.

In the course of experiment, a five-fold cross-validation
method was used to train and verify the proposed recom-
mended algorithm. .e Epinions dataset was separated into
five equal groups, one group was randomly selected as test
set, and the other four groups were acted as training set. Five
experiments were conducted to ensure that each test set is
tested. .e ultimate experimental result was the average of
five experiments.

3.2. Evaluation Indicators. In this paper, two identical
evaluation indicators are used to measure the accuracy of
recommendations, namely, mean absolute error (MAE) and
root mean squared error (RMSE) [16]. .ese two indicators
measure accuracy of recommendation algorithm through
calculating the error between the prediction score and the
actual score. .e smaller their value, the higher the rec-
ommendation accuracy. .e definitions of MAE and RMSE
are as follows:

MAE �
1

E
P

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
􏽘

(i,j)∈EP

rij − rij
′

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌,

RMSE �

������������������

1
E

P
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
􏽘

(i,j)∈EP

rij − rij
′􏼐 􏼑

2

􏽶
􏽴

,

(11)

where rij represents the real scoring of customer i for
commodity j, rij

′ represents the prediction scoring of cus-
tomer ui for commodity j, and EP represents the test set.

3.3. Experimental Results Analysis. During the experiment,
the number of algorithm user features is K � 5, the number
of iterations is 1000, and λU � λV � 0.001. .e proportion
between social relationship matrix and customer scoring
matrix can be adjusted by parameter α, and the proportion
between the two social relationships can be adjusted by
parameter β. .e different values of α and β will directly
affect the recommendation result. .e value of α and β is
determined by the method of simulation experiment. β � 1
means that only one kind of social relationship is introduced,
when α takes different values, and the change of MAE value
and RMSE value in the dataset is shown in Figures 6 and 7.

As shown in Figures 6 and 7, in the Epinions dataset,
when α � 0.8, the values of MAE and RMSE are all the
smallest; that is, for one social relationship, when α � 0.8, the
recommendation accuracy rate is the highest.

Ou and Ov are used to denote the item sets that cus-
tomers u and v had scored, respectively, the more com-
modities which customers u and v jointly scored, the more
likely they are to have the same interest and influence each
other, and the specific definitions are as follows:

fuv �
Ou ∩Ov

Ou ∪Ov

. (12)

When fuv > 0.2, it means that customers u and v have
similar interests. Suppose that the relationship between users
satisfying this condition is the c2 relationship. When α and β
take different values, the changes in MAE and RMSE on the
Epinions dataset are shown in Figures 8 and 9.

As shown in Figures 8 and 9, in the Epinions dataset,
when the parameters α � 0.3 and β � 0.4, the value of MAE
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Figure 6: Influence of parameter α for MAE.
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is the smallest, that is, the recommended accuracy rate in the
proposed algorithm is the highest. Similarly, when α � 0.7
and β � 0.5, the value of RMSE is the smallest, which means
that the recommendation accuracy in the proposed algo-
rithm is the highest.

For verifying the performance of MDRS2 algorithm and
the impact of various social relationships on the recom-
mendation, we compared MDRS2 algorithm with SocRec
algorithm [14], TDSRec algorithm [17], and MDRS1 algo-
rithm on the Epinions dataset. .e SocRec algorithm con-
siders the attributes of social relationships between users on
the basis of matrix factorization and incorporates a social
relationship; the TDSRec algorithm combines the similarity
based on user ratings preferences while considering social
networks and predicts the values of customer scoring matrix
together. .e MDRS1 algorithm only considers one kind of
social relationship. .e MDRS2 algorithm tightly links the
user-item scoring matrix and the social relationship matrix
through sharing the user’s feature space and integrates

multiple social relationships into matrix factorization. .e
experimental statistical result is shown in Table 1.

As shown in Table 1, in the Epinions dataset, the MAE
and RMSE values of the MDRS2 algorithm are smaller than
those of other algorithms; that is, the prediction accuracy is
higher. It can be seen that the recommendation algorithm
that introduces two kinds of social relationships has a higher
accuracy rate than other three recommendation algorithms,
which indicates that introducing multiple relationships
between users would improve recommendation accuracy,
and the more relationships between users, the higher the
recommendation accuracy.

4. Conclusions

In this paper, through factorizing the user-item scoring
matrix, according to multi-subnet composite complex
network, a variety of social relationships are integrated into
the matrix factorization recommendation algorithm by
using the shared user’s potential feature space. Using the
matrix factorization recommendation algorithm to the user-
item dataset after introducing the social relationship, users’
preferences for items will be accurately obtained. .rough
experiments on real datasets, it is proved that the proposed
matrix factorization recommendation algorithm, which
combines multiple relationships, improves the recommen-
dation accuracy. It means that introducing multiple social
relationships can better personalize recommendations for
users, and the more relationships introduced, the better the
recommendation effect. In future research, the user’s indi-
rect relationship and direct relationship can be combined to
further study the impact of social relationships on
recommendations.
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Table 1: Experiment result comparison of various algorithms.

Evaluation index SocRec TDSRec MDRS1 MDRS2
MAE 0.8932 0.7864 0.4451 0.4394
RMSE 0.9240 0.8679 0.6143 0.5973

Mathematical Problems in Engineering 7

http://www.trustlet.org/epinions.html
http://www.trustlet.org/epinions.html


References

[1] T. Krpinar, “Optical directional binormal magnetic flows with
geometric phase: Heisenberg ferromagnetic model,” Inter-
national Journal for Light and Electron Optics, vol. 219,
pp. 1–15, 2019.

[2] X. Zhao, Z. Niu, W. Chen, C. Shi, K. Niu, and D. Liu, “A
hybrid approach of topic model and matrix factorization
based on two-step recommendation framework,” Journal of
Intelligent Information Systems, vol. 44, no. 3, pp. 335–353,
2015.

[3] T. Krpinar, “A new optical Heisenberg ferromagnetic model
for optical directional velocity magnetic flows with geometric
phase,” Indian Journal of Physics, vol. 94, pp. 1409–1421, 2019.

[4] F. Xue, X. He, X. Wang, J. Xu, K. Liu, and R. Hong, “Deep
item-based collaborative filtering for top-N recommenda-
tion,” ACM Transactions on Information Systems, vol. 37,
no. 3, pp. 1–25, 2019.

[5] S. M. Daneshmand, A. Javari, S. E. Abtahi, and M. Jalili, “A
time-aware recommender system based on dependency
network of items,” 5e Computer Journal, vol. 58, no. 9,
pp. 1955–1966, 2015.

[6] M. Nilashi, O. B. Ibrahim, and N. Ithnin, “Hybrid recom-
mendation approaches for multi-criteria collaborative filter-
ing,” Expert Systems with Applications, vol. 41, no. 8,
pp. 3879–3900, 2014.

[7] T. Ha and S. Lee, “Item-network-based collaborative filtering:
a personalized recommendation method based on a user’s
item network,” Information Processing & Management,
vol. 53, no. 5, pp. 1171–1184, 2017.

[8] S. Bin, G. Sun, N. Cao et al., “Collaborative filtering rec-
ommendation algorithm based on multi-relationship social
network,” Computers, Materials & Continua, vol. 60, no. 2,
pp. 659–674, 2019.

[9] J. Z. Sun, D. Parthasarathy, and K. R. Varshney, “Collaborative
kalman filtering for dynamic matrix factorization,” IEEE
Transactions on Signal Processing, vol. 62, no. 14, pp. 3499–
3509, 2014.

[10] W. Li, J. Qi, Z. Yu, and D. Li, “A social recommendation
method based on trust propagation and singular value de-
composition,” Journal of Intelligent & Fuzzy Systems, vol. 32,
no. 1, pp. 807–816, 2017.

[11] F. Hao, S. Li, G. Min, H.-C. Kim, S. S. Yau, and L. T. Yang, “An
efficient approach to generating location-sensitive recom-
mendations in ad-hoc social network environments,” IEEE
Transactions on Services Computing, vol. 8, no. 3, pp. 520–533,
2015.

[12] J. Chen, S. Feng, and J. Liu, “Topic sense induction from social
tags based on non-negative matrix factorization,” Information
Sciences, vol. 280, pp. 16–25, 2014.

[13] L. Lin, H. R. Xie, Y. H. Rao, and F. L. Wang, “Personalized
recommendation by matrix co-factorization with tags and
time information,” Expert Systems with Applications, vol. 119,
pp. 311–321, 2019.

[14] T. Korpinar, Z. Korpinar, M. Inc, and D. Baleanu, “Geometric
phase for timelike spherical normal magnetic charged par-
ticles optical ferromagnetic model,” Journal of Taibah Uni-
versity for Science, vol. 14, no. 1, pp. 742–749, 2020.

[15] G. Sun and S. Bin, “Router-level internet topology evolution
model based on multi-subnet composited complex network
model,” Journal of Internet Technology, vol. 18, pp. 1275–1283,
2017.

[16] T. Korpinar, R. C. Demirkol, and Z. Korpinar, “Soliton
propagation of electromagnetic field vectors of polarized light

ray traveling in a coiled optical fiber in the ordinary space,”
International Journal of Geometric Methods in Modern
Physics, vol. 16, pp. 67–81, 2019.

[17] G. Sun and S. Bin, “Construction of learning behavioral
engagement model for MOOCs platform based on data
analysis,” Educational Sciences-5eory & Practice, vol. 18,
pp. 2206–2216, 2018.

8 Mathematical Problems in Engineering



Research Article
The Impact of the SARS-CoV-2 Epidemic on World Indices: The
Entropy Approach
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Received 10 December 2020; Revised 16 January 2021; Accepted 11 February 2021; Published 26 February 2021

Academic Editor: Mustafa Inc
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,e coronavirus disease (COVID-19) outbreak started in December 2019 inWuhan.,e virus has spread around the whole world,
and it has caused a strong and serious pandemic. Symptoms such as cough, respiratory distress, diarrhea, and fatigue associated
with COVID-19 are typical clinical findings. Coronavirus infection has become an important public health concern because of its
increasing prevalence, serious complications, and mortality. In light of this information, we examine different entropy methods
for world indices (ISE 30, FTSE 100, NIKKEI 225, SP 500, and DAX 30) in the pre-COVID-19 period (02.01.2019–17.11.2019) and
the post-COVID-19 period (18.11.2019–23.11.2020) in this article. Besides, we discuss the performances of entropies such as
Shannon, Renyi, Tsallis, and approximate entropy (ApEn) in detail and perform the notion of entropy for volatility measure. As a
result, we present the numerical results for the data set.

1. Introduction

Entropy is a word that goes back to 1865 when Rudolf
Clausius, a German physicist, granted an original noun to
irreparable warmth damage termed as equivalent value. ,e
word entropy was chosen for the fact that entropies refer to
average component transformative or transformation
component in Greek [1]. Tsallis [2] suggests that the concept
of entropy should be widened into a notion bearing the
statistical status of complicated systems. ,en, Rao et al. [3]
put forward the cumulative residual entropy, generalized
measure of ambiguity, and applied it in reliability and
picture arrangement as well as nonadditive measures of
entropy. In 2008, Pincus [4] pointed out the use of ap-
proximate entropy (ApEn), a model-independent measure
of consecutive disorder. ,us, through utilizing a number of
varied practices for both empirical data and model-based
data, he conceived cross-ApEn, concerning two-variable
asynchrony measure that provides a stronger and more
omnipresent measure of bivariate correspondence than
correlation. In addition, he presented the following

containments to various strategies, ensured analytic state-
ments for statistical properties of ApEn, and cross-checked
ApEn with nonlinear measures, correlation, and spectral
analyses as well as other entropy measures. Later, Ubriaco
[5] applied the derivative to a special probability function
and obtained the Shannon entropy definition which is based
on probability and derivative. ,e information and its
management can be illustrated by entropy. Most informa-
tion management techniques are based on entropy. ,e
fractional-order derivative and entropy-based binomial
distribution yield a series of symmetric functions. Rompolis
[6] put forward a varied method to apply the maximum
entropy basis for recovering the risk neutral density of
forthcoming stock, or any other entity which returns from
put prices. In 2015, Sati and Gupta [7] defined a generalized
cumulative remaining entropy on the basis of the nonad-
ditive Tsallis entropy. In the same year, Sheraz et al. [8]
employed an entropy for volatility markets. ,en, Stosic
et al. [9] investigated the effect of financial attacks on foreign
exchange (FX) markets using the time-dependent block
entropy technique and revealed experimental conclusions
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which explain that the financial attacks are corporate with an
important rise in exchange rate entropy, echoing uncertainty
in FX market dynamics. ,e study in [10] shows every
minute of the six years of entropy-dependent usage data
between 1999 and 2004 based on time series and volatility,
and that the entropy of the fluctuation series is based on the
stock market. Khammar and Jahanshahi [11] submitted the
weighted condition of this measure and named it “Weighted
Cumulative Residual Tsallis Entropy (WCRTE)” and showed
that it can specify the value of the survival function and
Rayleigh distribution in a unique way. In 2019, Karakas [12]
has attained volatility of ethereum and bitcoin, and then, the
same author [13] used the world indices such as Istanbul
Stock Indices (BIST 30), Brazil Index (Bovespa), Germany
Index (DAX 30), Britain Index (FTSE100), South Korea
(KOSPİ), Japan Index (NIKKEI 225), United States Index
(S&P 500), and China Index (SHANGAI) that have been
examined over 8 years between 2010 and 2018, and, as a
result, found the entropy notion for volatility measure to
draw a comparison. Inc et al. [14] obtained approximate
solutions of the nonlinear time-dependent generalized
Fitzhugh–Nagumo equation with time-dependent coeffi-
cients and Sharma–Tasso–Olver equation subjected to
certain initial conditions and showed that this method is
efficient and convenient and, thus, it can be applied to a
variety of problems. ,e approximate solutions are com-
pared with the exact solutions. ,en, Acay and Inc [15]
proposed the temperature dynamics of a building and ex-
amined this model which has a crucial place in daily life. In
2020, Houwe et al. [16] investigated analytical solutions for
the nonlinear differential-difference equations (DDEs)
having fractional-order derivatives and employed the dis-
crete tanh method in computations. As well, Akinlar et al.
[17] considered an epidemic disease system by an additive
fractional white noise to show that epidemic diseases may be
more competently modeled in the fractional-stochastic
settings than the ones modeled by deterministic differential
equations, generated a new SIRS model and perturbed it to
the fractional-stochastic systems, and studied chaotic be-
havior at disease-free and endemic steady-state points on
these systems. After that, Akinlar et al. [18] considered a
novel contribution because optimal control formulations,
numerical solutions, and stability analysis for the fractional-
order Malkus model are studied for the first time in this
paper. Later, in the same year, Korpinar et al. [19] analyzed
the fractional-stochastic quadratic-cubic nonlinear
Schrödinger equation (QC-NLSE) describing the propaga-
tion of solitons through optical fibers and employed it to
obtain stochastic solutions in the white noise space with
Hermite transformation. Besides, Hashemi et al. [20] used
the Adams–Bashforth–Moulton scheme (ABMS) to deter-
mine the approximate solution of a variable-order fractional
three-dimensional chaotic process, demonstrating simula-
tion results. However, Qureshi [21] examined a new time-
invariant nonlinear mathematical model in fractional-
(noninteger-) order settings that has been proposed under
the three most frequently employed strategies of the classical
Caputo. Currently, all world stock markets have been af-
fected by the virus. ,e COVID-19 virus first emerged in

China (Wuhan city) spreading around the world. ,is virus
is amongst the deadliest virus known to humans all over,
having deadly effect on the health care system of most of the
countries. In this study, five world indices (ISE 30, FTSE 100,
SP 500, NIKKEI 225, and DAX 30) were used to investigate
based on the entropy approach in the pre-COVID-19 period
(02.01.2019–17.11.2019) and post-COVID-19 period
(18.11.2019–23.11.2020).

2. Materials and Methods

2.1. Shannon Entropy and Renyi Entropy. Shannon entropy
states that a measure of the amount of information S(p)

containing a series of events of p1, p2, . . . , pN should satisfy
three requirements:

S should be continuous in pi

If all pi are equal probably, then S should be a
monotonic increasing function of N
S should be additive

,en, it proves that only S satisfying these three re-
quirements shows

S(P) � −κ􏽘
N

i�1
pi ln pi, (1)

where κ is a positive constant. ,is quantity has since be-
come known as the Shannon entropy. In the information
theory applications, the asymptotic equipartition property of
Shannon is given for T⊆Sn T⊆Sn with

|T|≤ e
n(S(ρ)+ε)

, (2)

such that illustration n times from P yields a factor of Twith
probability ≻1 − ε and ε⟶ 0 as n⟶∞. Extensions of
Shannon’s original work have resulted in many alternative
measures of information or entropy. For instance, by
relaxing the third point of Shannon’s requirements, that of
additivity, Renyi was able to extend Shannon entropy to a
continuous family of entropy measures:

Sq(P) � −
1

1 − q
ln􏽘

N

i�1
p

q
i . (3)

,e Renyi entropy tends to Shannon entropy as q⟶ 1.
,e Renyi entropy is as follows:

,e scaling factor is conventional, i.e., it makes Sq

nonnegative for all q and ensures Sq(un) � log n, where
un is the uniform distribution on an n-element set.
,e main property which the Renyi entropy has in
common with Shannon entropy is additivity:

Sq(ρ × r) � Sq(ρ) + Sq(r). (4)

For β � 0, acquire the min-entropy, which is the car-
dinality of the support of ρ: S0(ρ) � log| i ∈ S|ρ(i)≻0􏼈 􏼉|.

For q � 1, acquire Shannon entropy:
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Table 2: Statistics of world indices in the post-COVID-19 period (18.11.2019–23.11.2020).

ISE 30 FTSE 100 NIKKEI 225 SP 500 DAX 30
Mean 1287,1338 6379,9955 22412,79 3165,256 12329,73
Median 1297,285 6123,820 23112,88 3232,250 12822,26
Maximum 1496,790 7674,560 26014,62 3623,000 13789,00
Minimum 1014,100 4993,890 16552,83 2220,500 8441,710
Std. dev. 106,5718 699,3948 1827,824 279,4826 1209,913
Skewness −0.250346 0.617331 −1.175042 −0.974508 −1.297747
Kurtosis 2.706596 2.110804 3,951717 3,539609 3.795668
Jarque–Bera 3.592315 24.79044 68.84024 43.79541 78.91692
Probability 0.016593 0.000004 0.000000 0.000000 0.000000

Table 1: Statistics of world indices in the pre-COVID-19 period (02.01.2019–17.11.2019).

ISE 30 FTSE 100 NIKKEI 225 SP 500 DAX 30
Mean 1226,0519 7262,6528 21358,17 2896,640 11998,00
Median 1237,215 7274,450 21360,09 2909,190 12034,17
Maximum 1327,420 7686,610 23520,01 3121,750 13289,46
Minimum 1045,03 6692,660 19561,96 2605,500 10416,66
Std. dev. 65,32040 186,4341 873,4083 113,5172 604,7448
Skewness −0.674607 −0.599872 0.217312 −0.379169 −0.031424
Kurtosis 2.731324 3.472528 3,208747 2.768171 2.689980
Jarque–Bera 17.50623 15.79535 2.208500 5.973792 0.950594
Probability 0.000158 0.000372 0.033145 0.005044 0.006217

Table 3: Different entropy measures of ISE 30, FTSE 100, NIKKEI 225, SP 500, and DAX 30 in the pre-COVID-19 period
(02.01.2019–17.11.2019).

Shannon Tsallis Renyi Approximate entropy
Method Value q Value r Value Value
ISE 30
ML 5.396743 0 220.0000000 0 5.398163
MM 5.397149 0.2 92.5761790 0.25 5.397804 0.7846485
Jefferys 5.396744 0.4 40.8280410 0.5 5.397448
Laplace 5.396745 0.6 19.1544962 1 5.396743
SG 5.396743 0.8 9.7146361 2 5.395365
Minimax 5.396749 1 5.3967431 4 5.392732
CS 5.396743 1.2 3.3008212 8 5.387939
Shrink 5.39745 1.4 2.2112471 16 5.380020

1.6 1.6012332 32 5.368983
1.8 1.2333170 64 5.356709
2 0.9954624 Infinite 5.319076

FTSE 100
ML 5.424631 0 226.0000000 0 5.424950
MM 5.424699 0.2 94.6256717 0.25 5.424870 0.7947985
Jefferys 5.424631 0.4 41.5280750 0.5 5.424790
Laplace 5.424631 0.6 19.3935912 1 5.424631
SG 5.424631 0.8 9.7962946 2 5.424315
Minimax 5.424631 1 5.4246308 4 5.423694
CS 5.424631 1.2 3.3103449 8 5.422489
Shrink 5.424754 1.4 2.2144993 16 5.420221

1.6 1.6023437 32 5.416139
1.8 1.2336962 64 5.409257
2 0.9955919 Infinite 5.368548

NIKKEI 225
ML 5.424339 0 226.0000000 0 5.424950
MM 5.424363 0.2 94.6212737 0.25 5.424798 0.689666
Jefferys 5.424339 0.4 41.5250909 0.5 5.424646
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Table 3: Continued.

Shannon Tsallis Renyi Approximate entropy
Method Value q Value r Value Value
Laplace 5.424339 0.6 19.3920726 1 5.424339

SG 5.424339 0.8 9.7956076 2 5.423721
Minimax 5.42434 1 5.4243394 4 5.422458
CS 5.424339 1.2 3.3102262 8 5.419834
Shrink 5.424384 1.4 2.2144524 16 5.414208

1.6 1.6023255 32 5.402104
1.8 1.2336893 64 5.381751

2 0.9955893 Infinite 5.333581
SP 500
ML 5.424201 0 226.0000000 0 5.424950
MM 5.424373 0.2 94.6190516 0.25 5.424762 0.6455126
Jefferys 5.424202 0.4 41.5236068 0.5 5.424575
Laplace 5.424202 0.6 19.3913293 1 5.424201

SG 5.424201 0.8 9.7952767 2 5.423462
Minimax 5.424203 1 5.4242014 4 5.422009
CS 5.424201 1.2 3.3101709 8 5.419211
Shrink 5.424507 1.4 2.2144308 16 5.414035

1.6 1.6023173 32 5.405173
1.8 1.2336862 64 5.391980
2 0.9955882 Infinite 5.350668

DAX 30
ML 5.42371 0 226.0000000 0 5.424950
MM 5.423752 0.2 94.6115378 0.25 5.424640 0.5535031
Jefferys 5.42371 0.4 41.5185260 0.5 5.424329
Laplace 5.42371 0.6 19.3887524 1 5.423710
SG 5.42371 0.8 9.7941149 2 5.422476
Minimax 5.423712 1 5.4237103 4 5.420029
CS 5.42371 1.2 3.3099716 8 5.415223
Shrink 5.423792 1.4 2.2143522 16 5.406039

1.6 1.6022869 32 5.389845
1.8 1.2336746 64 5.367814
2 0.9955838 Infinite 5.323234

Table 4: Different entropy measures of ISE 30, FTSE 100, NIKKEI 225, SP 500, and DAX 30 in the post-COVID-19 period
(18.11.2019–23.11.2020).

Shannon Tsallis Renyi Approximate entropy
Method Value q Value r Value Value
ISE 30
ML 5.557801 0 254.0000000 0 5.541264
MM 5.558188 0.2 103.9217249 0.25 5.540389 0.605173
Jefferys 5.557804 0.4 44.6150090 0.5 5.539521
Laplace 5.557806 0.6 20.4188729 1 5.537801

SG 5.557801 0.8 10.1368950 2 5.534431
Minimax 5.557813 1 5.5378010 4 5.527964
CS 5.557801 1.2 3.3479548 8 5.516089
Shrink 5.558543 1.4 2.2270007 16 5.496175

1.6 1.6064999 32 5.468754
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Table 4: Continued.

Shannon Tsallis Renyi Approximate entropy
Method Value q Value r Value Value

1.8 1.2350782 64 5.442340
2 0.9960515 Infinite 5.390417

FTSE 100
ML 5.539317 0 255.0000000 0 5.545177
MM 5.539395 0.2 104.2128898 0.25 5.543729 0.4216846
Jefferys 5.539318 0.4 44.6980209 0.5 5.542269
Laplace 5.539319 0.6 20.4418658 1 5.539317

SG 5.539317 0.8 10.1430007 2 5.533302
Minimax 5.539326 1 5.5393168 4 5.520987
CS 5.539317 1.2 3.3482870 8 5.496723
Shrink 5.539468 1.4 2.2270537 16 5.458418

1.6 1.6064983 32 5.421958
1.8 1.2350713 64 5.398850

NIKKEI 225
ML 5.541764 0 255.000000 0 5.545177
MM 5.541786 0.2 104.251176 0.25 5.544299 0.4849035
Jefferys 5.541764 0.4 44.723779 0.5 5.543437
Laplace 5.541764 0.6 20.454859 1 5.541764
SG 5.541764 0.8 10.148825 2 5.538606
Minimax 5.541767 1 5.541764 4 5.532970

CS 5.541764 1.2 3.349274 8 5.523834
Shrink 5.541811 1.4 2.227440 16 5.510553

1.6 1.606647 32 5.490232
1.8 1.235127 64 5.457949

2 0.996068 Infinite 5.394338
SP 500
ML 0 255.0000000 0 5.545177
MM 5.541305 0.2 104.240513 0.25 5.544141 0.484537
Jefferys 5.541149 0.4 44.7167917 0.5 5.543124
Laplace 5.54115 0.6 20.4514234 1 5.541148
SG 5.541148 0.8 10.1473229 2 5.537413
Minimax 5.541157 1 5.5411479 4 5.530728
CS 5.541148 1.2 3.3490311 8 5.519871
Shrink 5.541472 1.4 2.2273475 16 5.504498

1.6 1.6066119 32 5.485190
1.8 1.2351145 64 5.463312
2 0.9960633 Infinite 5.410064

DAX 30
ML 5.42371 0 226.0000000 0 5.424950
MM 5.540173 0.2 104.2217368 0.25 5.543865 0.5196777
Jefferys 5.540133 0.4 44.7046841 0.5 5.542587
Laplace 5.540133 0.6 20.4455670 1 5.540132

SG 5.540132 0.8 10.1448044 2 5.535607
Minimax 5.540138 1 5.5401324 4 5.527909
CS 5.540132 1.2 3.3486380 8 5.516591
Shrink 5.540219 1.4 2.2271995 16 5.503120

1.6 1.6065573 32 5.489558
1.8 1.2350947 64 5.475649
2 0.9960562 Infinite 5.432999
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Figure 1: Data of world indices graphs and quantile graphs in the pre-COVID-19 period (02.01.2019–17.11.2019).
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Figure 2: Data of world indices graphs and quantile graphs in the post-COVID-19 period (18.11.2019–23.11.2020).
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S1(ρ) � lim
q⟶1

Sq(ρ),

d

dq

1
1 − q

log 􏽘
i

ρ(i)
q⎛⎝ ⎞⎠⎛⎝ ⎞⎠

q�1

� − 􏽘
i

ρ(i)log ρ(i).

(5)

For q �∞, acquire the min-entropy:

S∞(ρ) � −logmax
i

ρ(i) � logmin
i

1
ρ(i)

. (6)

2.2. Tsallis Entropy. For any positive real number α, the
entropy of order α of probability measure p on finite set X is
defined as

Sα(p) �

1
α − 1

1 − 􏽘
i∈X

p
α
i

⎛⎝ ⎞⎠, ifα≠ 1,

− 􏽘
i∈X

pi ln pi, ifα � 1.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(7)

,e characterization of the Tsallis entropy is the same as
that of the Shannon entropy except that for the Tsallis
entropy, the degree of homogeneity under convex linearity
condition is α instead of 1.

3. Results

3.1. Data Set. We utilize the world indices of ISE 30, FTSE
100, SP 500, NIKKEI 225, and DAX 30 in the pre-COVID-19
period (02.01.2019–17.11.2019) and post-COVID-19 period
(18.11.2019–23.11.2020). Tables 1 and 2 summarize the
statistics data of world indices of ISE 30, FTSE 100, SP 500,
NIKKEI 225, and DAX 30 before and after the coronavirus
pandemic. Tables 1 and 2 indicate varied average values for
the data set, and the suitable standard deviations are varied.
In Table 2, skewness for data set is negative; in Table 1, except
for NIKKEI 225, others are negative.,e kurtosis of two data
sets is higher than l. ,e Jarque–Bera (JB) test indicates that
the normality of distribution for every series is strongly
refused at 0.05 level, which means the overall energy terms’
index distributions are nonnormal.

3.2. Conclusion: Entropy Approach. We apply the entropy
technique for the volatility of world indices such as ISE 30,
FTSE 100, SP 500, NIKKEI 225, and DAX 30 before and after
the COVID-19 pandemic. For this, we compute Shannon,
Tsallis, Renyi, and approximate entropies. In Tables 3 and 4, we
initially provide varied forecasters for the Shannon entropy
measure in the pre-COVID-19 period (02.01.2019–17.11.2019)
and post-COVID-19 period (18.11.2019–23.11.2020). Later, we
provide the Tsallis entropy for various values of the parameter
and Renyi entropymeasures for varied values of the parameter.
Finally, we have obtained approximate entropy. When overall
potential incidents have a similar probability, the entropy
provides maximum value. In our experimental outcomes,

volatility indicates variation; this model shows linear and
nonlinear dynamics. We obtain from the numerical outcomes
that overall entropies are positive, so features of our data series
are nonlinear. We find that the world indices of ISE 30, FTSE
100, SP 500, NIKKEI 225, and DAX 30 series have a great value
of approximate entropy before and after the coronavirus
pandemic. In the data series, when looking at world indices
volatility before the coronavirus pandemic in Table 3 and
Figure 1, volatility is mostly seen in FTSE 100, followed by ISE
30, NIKKEI 225, SP 500, and DAX 30. Similarly, in Table 4 and
Figure 2, when we look at world indices after the coronavirus
pandemic, volatility is mostly seen in ISE 30, followed by DAX
30, NIKKEI 225, SP 500, and FTSE 100. It is concluded that
before the coronavirus pandemic, FTSE 100 data series is of
higher volatility than other data series. Similarly, after the
coronavirus pandemic, ISE 30 data series is of higher volatility
than other data series. For the Shannon entropy estimators,
before the coronavirus pandemic, it is clear that FTSE 100
series have larger values. In a similar way, for the measures of
Tsallis and Rényi entropies, if we take attention that q and r are
close to 1, then we obtain the Shannon entropy. After the
coronavirus pandemic, it is clear that ISE 30 series have larger
values.
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