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Stochastic systems captured by Itô differential equations and
stochastic difference equations play a prominent role in
modern control theory, which describe the systems disturbed
by the randomness in the forms of Brownian motion and
white noise. With the development of mathematical finance,
network control, biology systems, and multiagent, many
challenging stochastic-control problems are springing up,
which need to be deeply investigated by means of more
advanced theories and tools. To reflect the most recent
advances in stochastic systems,we are determined to organize
this special issue.

This special issue is focused on the stochastic-control
systems and their applications to stability, control, filter-
ing, communication, and fault detection. Topics covered
in this issue include (i) stochastic modeling, stability, and
stabilization analysis, (ii) stochastic robust/optimal/adaptive
control, (iii) stochastic filtering and estimation, (iv) stochastic
differential game, and (v) applications of stochastic-control
theory to finance, economics, fault detection, and so forth.
This special issue has received a total of 82 submitted papers
with only 40 papers accepted.

There are 13 manuscripts on the subject “stochastic mod-
eling, stability, and stabilization analysis.” In the following, we
give a brief summary.The paper entitled “Discrete-time indef-
inite stochastic linear quadratic optimal control with second
moment constraints” byW. Zhang and G. Li studies stochastic
LQ problem with constraints on the terminal state, where

the weighting matrices in the cost functional are allowed to
be indefinite. The problem of state-feedback stabilization for
a class of stochastic nonlinear systems is investigated by H.
Wang et al. in the paper “Asymptotic stabilization by state
feedback for a class of stochastic nonlinear systems with time-
varying coefficients.” G. Li and M. Chen investigate the stabil-
ity and the stabilizability of delayed stochastic systems in “The
stability and stabilization of stochastic delay-time systems.”
In “Integer-valued moving average models with structural
changes,” K. Yu et al. present a first order integer-valued mov-
ing average model which provides a flexible framework for
modeling a wide range of dependence structures. In “Further
results on dynamic additive Hazard rate model,” Z. Zhang and
L. Zhang study the dynamic additive hazard rate model and
investigate its aging properties for different aging classes. C. Li
and J. Duan in “Impact of correlated noises on additive dynam-
ical systems” consider Fokker-Planck type equations under
the fractional white noise measure. By means of Lyapunov
functions, Doob’s martingale inequality, and Borel-Cantelli
lemma, W. Zhu et al. give some sufficient conditions for the
exponential stability in themean square of a class of stochastic
systems in “Exponential stability of stochastic systems with
delay and Poisson jumps.” In “Stochastic resonance in neuronal
networkmotifs withOrnstein-Uhlenbeck colored noise,” X. Lou
considers the effect of the Ornstein-Uhlenbeck colored noise
on the stochastic resonance of the feed-forward-loop network
motif. In “Input-to-state stability for a class of switched
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stochastic nonlinear systems by an improved average dwell time
method,” the input-to-state stability in the mean property
of switched stochastic nonlinear systems is investigated by
R. Guo et al. In “Optimal dividend and capital injection
strategies in the Cramér-Lundberg risk model,” Y. Li and G.
Liu maximize the discounted dividends payments minus the
penalized discounted capital injections. In “Boundedness of
stochastic delay differential systems with impulsive control and
impulsive disturbance,” L. Wang et al. derive several sufficient
conditions which guarantee the p-moment boundedness
of nonlinear impulsive stochastic delay differential systems
by using the Lyapunov-Razumikhin method and stochastic
analysis techniques. In the paper “Exponential stability of
neutral stochastic functional differential equations with two-
time-scale Markovian switching,” J. Hu and Z. Xu develop
exponential stability of neutral stochastic equations modeled
by a continuous-time Markov chain which has a large state
space. Y. Li and Y. Shen discuss the impact of stochastic
noise and connection weight matrices uncertainty on global
exponential stability of hybrid BAM neural networks with
reaction diffusion terms. It is found that the perturbed hybrid
BAM neural networks preserve global exponential stability
if the intensities of both stochastic noise and the connection
weight matrix uncertainty are smaller than the defined upper
threshold.

There are 8 contributions closely related to controlled
stochastic differential equations. In “Nonlinear stochastic𝐻

∞

control withMarkov jumps and (𝑥, 𝑢, V)-dependent noise: finite
and infinite horizon cases,” L. Sheng et al. investigate the𝐻

∞

control problem for nonlinear stochastic Markov jump sys-
tems with state, control, and external disturbance-dependent
noise. In “The 𝐻

∞
control for bilinear systems with Poisson

jumps,” R. Zhang et al. discuss the state feedback𝐻
∞

control
problem for bilinear stochastic systems driven by both Brow-
nian motion and Poisson jumps. S. Wang and Z. Wu focus
on optimal control derived by forward-backward regime-
switching systems with impulse controls in “Maximum
principle for optimal control problems of forward-backward
regime-switching systems involving impulse controls.” Maxi-
mum principles and verification theorems for optimality are
obtained and are used to solve an optimal investment and
consumption problem with recursive utility. In “Mean-field
backward stochastic evolution equations in Hilbert spaces and
optimal control for BSPDEs,” R. Xu and T. Wu investigate
an optimal control problem of backward stochastic partial
differential equations. Existence and uniqueness of mild
solutions to mean-field backward stochastic evolution equa-
tions in Hilbert spaces are proved. In “Terminal-dependent
statistical inference for the FBSDEs models,” Y. Song works out
a nonparameter method to estimate parameters of backward
stochastic differential equations fromnoisy data and terminal
conditions. In “Adaptive neural output feedback control of
stochastic nonlinear systems with unmodeled dynamics,” X.
Xia and T. P. Zhang propose an adaptive neural output feed-
back control scheme for stochastic systems with unmodeled
dynamics and unmeasured states. X. Dai et al. investigate
robust stochastic mean-square exponential stabilization and
robust 𝐻

∞
control for stochastic partial differential time

delay systems in “Robust 𝐻
∞

control for linear stochastic

partial differential systems with time delay.” Based on the
Lyapunov stability theory and stochastic analysis technique,
G. Chen et al. establish both delay-independent and delay-
dependent dissipativity criteria for nonlinear stochastic delay
systems in “Dissipative delay-feedback control for nonlinear
stochastic systems with time-varying delay.”

The subject on stochastic filtering and estimation has
occupied 7 contributions. In “Parallel array bistable stochastic
resonance system with independent input and its signal-to-
noise ratio improvement,” W. Li et al. discuss the design
enhancement of the bistable stochastic resonance perfor-
mance on sinusoidal signal and Gaussian white noise. A
new pruning algorithm for Gaussian mixture PHD filter is
proposed by X. Yan in the paper “Iterative mixture component
pruning algorithm for Gaussian mixture PHD filter,” where
the pruning algorithm is based on maximizing the posterior
probability density of the mixture weights. In “Covariance-
based estimation from multisensor delayed measurements
with random parameter matrices and correlated noises,” R.
Caballero-Águila et al. address the optimal least-square linear
estimation problem for a class of discrete-time multisensor
linear stochastic systems subject to randomly delayed mea-
surements with different delay rates. In “Stochastic signal pro-
cessing for sound environment system with decibel evaluation
and energy observation,” A. Ikuta and H. Orimoto propose
a stochastic signal processing method to predict the output
response probability distribution of complex sound environ-
ment systems. A fusion algorithm based on linear minimum
mean-square error estimation is provided by X. Yuan et al.
in “Performance analysis for distributed fusion with different
dimensional data.” In “Two identification methods for dual-
rate sampled-data nonlinear output-error systems,” J. Chen
and R. Ding present two methods for dual-rate sampled-
data nonlinear output-error systems, which can estimate the
unknown parameters directly. A particle filter based track-
before-detect algorithm is proposed for the monopulse high
pulse repetition frequency pulse Doppler radar by F. Cai et
al. in “Dual-channel particle filter based track-before-detect for
monopulse radar.”

There are 4 papers that are concerned with stochastic dif-
ferential games. In “Linear quadratic nonzero sum differential
games with asymmetric information,” D. Chang and H. Xiao
consider an LQ nonzero sum stochastic differential game,
where the information available to players is asymmetric.
In “Algorithms to solve stochastic 𝐻

2
/𝐻
∞

control with state-
dependent noise,” several algorithms are proposed to solve
𝐻
2
/𝐻
∞

control problems of stochastic systems by M. Gao
et al. X. Chen and Q. Zhu use a maximum principle method
to study a partial information nonzero sum differential game
of backward stochastic differential equation with jumps in
“Nonzero sum differential game of mean-field BSDEs with
jumps under partial information.” Here a feature is that both
the game system and the performance functional are of
mean-field type. Z. Wu and Q. Zhang’s paper “Backward
stochastic 𝐻

2
/𝐻
∞

control: infinite horizon case” establishes a
necessary and sufficient condition for the existence of𝐻

2
/𝐻
∞

control of infinite horizon backward stochastic differential
equations.
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There are also 8 contributions on applications of stochas-
tic control theory. X. Cao in “An upper bound of large
deviations for capacities” obtains a type of large deviation
principle under the sublinear expectation. Y.-G. Zhang et al.
in “Moving state marine SINS initial alignment based on high
degree CKF” propose a moving state marine initial alignment
method for strap-down inertial navigation system. In “The
Gerber-Shiu discounted penalty function of Sparre Andersen
risk model with a constant dividend barrier,” Y. Huang and
W. Yu construct a new Sparre Andersen risk model with a
constant dividend barrier and derive an integrodifferential
equation of the Gerber-Shiu discounted penalty function.
One paper entitled “A closed-form solution for robust portfolio
selection with worst-case CVaR risk measure” by L. Tang
and A. Ling considers a robust portfolio selection problem
with WCCVaR constraint and the corresponding closed-
form solution is obtained. In “Stochastic dominance under
the nonlinear expected utilities,” X. Xiao proposes a definition
of stochastic dominance under nonlinear expected utilities
and gives sufficient conditions on which a random choice
X stochastically dominates a random choice Y under the
nonlinear expected utilities. In “Equilibriummodel of discrete
dynamic supply chain network with random demand and
advertisement strategy,” G. Zhang et al. analyze the impact of
advertising investment on a discrete dynamic supply chain
network which consists of suppliers, manufactures, retailers,
and demand markets associated at different tiers under
random demand. In “Research on multiprincipals selecting
effective agency mode in the student loan system,” agency
modes are discussed by building different principal agent
models to solve incentive problems in student loan system.
In the paper “On𝐻

∞
fault estimator design for linear discrete

time-varying systems under unreliable communication link,” Y.
Li et al. investigate the 𝐻

∞
fixed-lag fault estimator design

for linear discrete time-varying systems with intermittent
measurements, which is described by a Bernoulli distributed
random variable.
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An adaptive neural output feedback control scheme is investigated for a class of stochastic nonlinear systems with unmodeled
dynamics and unmeasured states. The unmeasured states are estimated by K-filters, and unmodeled dynamics is dealt with by
introducing a novel description based on Lyapunov function. The neural networks weight vector used to approximate the black
box function is adjusted online. The unknown nonlinear system functions are handled together with some functions resulting
from theoretical deduction, and suchmethod effectively reduces the number of adaptive tuning parameters. Using dynamic surface
control (DSC) technique, Itô formula, and Chebyshev’s inequality, the designed controller can guarantee that all the signals in the
closed-loop system are bounded in probability, and the error signals are semiglobally uniformly ultimately bounded inmean square
or the sense of four-moment. Simulation results are provided to verify the effectiveness of the proposed approach.

1. Introduction

During the past decades, backstepping in [1] and dynamic
surface control (DSC) in [2] have become two most popu-
lar methods for adaptive controller design. Many adaptive
control schemes based on fuzzy/neural networks have been
proposed for uncertain nonlinear systems using backstepping
or dynamic surface control method in [3–13]. In the exist-
ing literature, three types of uncertainties were commonly
considered, which included unknown system functions and
parameter uncertainties and unmodeled dynamics. Unmod-
eled dynamics was dealt with by introducing an available
dynamic signal in [3]. In addition, it was handled by a
description method of Lyapunov function in [4]. In [4,
5], adaptive tracking control schemes were developed by
backstepping andDSC for a class of strict-feedback uncertain
nonlinear systems, respectively. In [7–10], adaptive control
schemes were presented for a class of pure-feedback non-
linear systems. In [11–13], the adaptive tracking approaches
for single-input single-output (SISO) nonlinear systems were
extended to uncertain large-scale nonlinear systems.

When system states are assumed to be unmeasurable,
output feedback adaptive control based on filters or observers

has attractedmuch attention. In [14], K-filterswere firstly pro-
posed, and adaptive output feedback control was developed
using K-filters. Inspired by the work in [14], robust adaptive
output feedback control schemes were studied for SISO
uncertain nonlinear systems in [15, 16]. In [17], combining
backstepping technique with small-gain approach, indirect
adaptive output feedback fuzzy control was developed. In
[18], decentralized adaptive output-feedback control was
designed based on high-gain K-filters and dynamic surface
control method for a class of uncertain interconnected
nonlinear systems.

It is well known that due to the stochastic terms and
the extra quadratic variation terms resulting from the Itô
differentiation rule, both the structures and the controller
design of stochastic systems are commonlymore complicated
than those of deterministic systems. In the past decade,
much effort has focused on the study of adaptive control
schemes for uncertain stochastic nonlinear systems and the
proof of the control system stability in probability sense. In
[19–21], Deng et al. proposed the adaptive control scheme,
based on backstepping for stochastic strict feedback or
output-feedback nonlinear systems, and introduced a con-
trol Lyapunov function formula for stochastic disturbance
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attenuation earlier. In [22], by employing the stochastic
Lyapunov-like theorem, adaptive backstepping state feedback
control was developed for a class of stochastic nonlinear
systems with unknown backlash-like hysteresis nonlineari-
ties. In [23], the problem of decentralized adaptive output-
feedback control was discussed for a class of stochastic non-
linear interconnected systems. In [24, 25], output feedback
adaptive fuzzy control approaches were considered using
backstepping method for a class of uncertain stochastic non-
linear systems. In [26], by combining stochastic small-gain
theorem with backstepping design technique, an adaptive
output feedback control scheme was presented for a class of
stochastic nonlinear systems with unmodeled dynamics and
uncertain nonlinear functions. In [27], a concept of stochastic
integral input-to-state stability (SiISS) using Lyapunov func-
tion was first introduced, and output feedback control was
developed for stochastic nonlinear systems with stochastic
inverse dynamics. In [28], two linear output feedback control
schemes were studied to make the closed-loop system noise-
to-state stable or globally asymptotically stable in probability.
In [29], by using the homogeneous domination technique and
appropriate Lyapunov functions, an output-feedback stabi-
lizing controller was designed to be globally asymptotically
stable in probability. In [30], the small-gain control method
was investigated for stochastic nonlinear systems with SiISS
inverse dynamics. In [31], based on a reduced-order observer,
small-gain type condition on SiISS and stochastic LaSalle
theorem, an output feedback controller was developed for
stochastic nonlinear systems. In [32], an adaptive output
feedback control scheme was investigated by combining K-
filters with DSC for a class of stochastic nonlinear sys-
tems with dynamic uncertainties and unmeasured states. In
[33], adaptive control was developed using the backstepping
method for a class of stochastic nonlinear systems with time-
varying state delays and unmodeled dynamics.

Motivated by the above-mentioned results [4, 14, 32], in
this paper, adaptive neural stochastic output feedback control
is developed by combining K-filters with dynamic surface
control to guarantee the stability of the closed-loop system.
The main contributions of the paper lie in the following.

(i) Adaptive neural output feedback control is developed
using K-filters and dynamic surface control for a
class of stochastic nonlinear systems with unmodeled
dynamics and unmeasured states. The advantage of
the design is that once the local system constructed
by the filter signals is stabilized, all the signals in the
closed-loop system are bounded in probability.

(ii) Unmodeled dynamics is dealt with first by introduc-
ing a novel description based on Lyapunove function
without using the dynamic signal to handle dynamic
uncertainty in [32]. The novel description, which
provides an effectivemethod for dealingwith unmod-
eled dynamics in output feedback adaptive controller
design, is the development of original idea about
handling unmodeled dynamics in [4].

(iii) Utilizing the boundedness of continuous function,
the unknown nonlinear system functions are handled
together with some functions produced in stability

analysis, rather than directly approximated before
stability analysis in [6, 8, 9, 11, 12].Therefore the design
effectively reduces the order of filters and the number
of adjustable parameters of the whole system, without
estimating Ξ in [32].

(iv) Using bounded input bounded output (BIBO) sta-
bility and the filter special structure, the stability
of the closed-loop system is proved. Therefore, the
difficulty, that the transfer function cannot be used
in a stochastic system while it was widely used to
analyze the boundedness of the K-filters signals in the
deterministic systems in [4, 14, 16–18], is solved by the
proposed stability analysis approach in this paper.

The rest of the paper is organized as follows.The problem
formulation and preliminaries are given in Section 2. The
neural filters are designed, and adaptive stochastic output
feedback control is developed based on dynamic surface
control method. The stability in the closed-loop system in
probability sense is analyzed in Section 3. Simulation results
are presented to illustrate the effectiveness of the proposed
scheme in Section 4. Section 5 contains the conclusions.

2. Problem Statement and Preliminaries

Consider the following uncertain stochastic nonlinear sys-
tems with unmodeled dynamics:

𝑑𝑧 = 𝑞 (𝑧, 𝑦) 𝑑𝑡

𝑑𝑥
1
= (𝑥
2
+ 𝑓
1
(𝑦) + Δ

1
(𝑧, 𝑦, 𝑡)) 𝑑𝑡 + 𝑔

𝑇

1
(𝑦) 𝑑𝑤

.

.

.

𝑑𝑥
𝜌−1

= (𝑥
𝜌
+ 𝑓
𝜌−1

(𝑦) + Δ
𝜌−1

(𝑧, 𝑦, 𝑡)) 𝑑𝑡

+ 𝑔
𝑇

𝜌−1
(𝑦) 𝑑𝑤

𝑑𝑥
𝜌
= (𝑥
𝜌+1

+ 𝑓
𝜌
(𝑦) + Δ

𝜌
(𝑧, 𝑦, 𝑡) + 𝑏

𝑚
𝜎 (𝑦) 𝑢) 𝑑𝑡

+ 𝑔
𝑇

𝜌
(𝑦) 𝑑𝑤

.

.

.

𝑑𝑥
𝑛−1

= (𝑥
𝑛
+ 𝑓
𝑛−1

(𝑦) + Δ
𝑛−1

(𝑧, 𝑦, 𝑡) + 𝑏
1
𝜎 (𝑦) 𝑢) 𝑑𝑡

+ 𝑔
𝑇

𝑛−1
(𝑦) 𝑑𝑤

𝑑𝑥
𝑛
= (𝑓
𝑛
(𝑦) + Δ

𝑛
(𝑧, 𝑦, 𝑡) + 𝑏

0
𝜎 (𝑦) 𝑢) 𝑑𝑡 + 𝑔

𝑇

𝑛
(𝑦) 𝑑𝑤

𝑦 = 𝑥
1
,

(1)

where 𝑥 = [𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
]
𝑇

∈ 𝑅
𝑛 is the state; 𝑢 ∈ 𝑅 is

the input, and 𝑦 ∈ 𝑅 is the output; 𝜎(𝑦) ̸= 0 is a known
positive continuous function; 𝑓

𝑖
(𝑦) is the unknown smooth

function; 𝑧 ∈ 𝑅𝑛0 is the unmodeled dynamics, and Δ
𝑖
(𝑧, 𝑦, 𝑡)

is the unknown smooth nonlinear dynamic disturbance; 𝑏 =
[𝑏
𝑚
, . . . , 𝑏

1
, 𝑏
0
]
𝑇

∈ 𝑅
𝑚+1,𝐵(𝑠) = 𝑏

𝑚
𝑠
𝑚

+⋅ ⋅ ⋅+𝑏
1
𝑠+𝑏
0
is aHurwitz

polynomial;Δ
𝑖
(𝑧, 𝑦, 𝑡) and 𝑞(𝑧, 𝑦) are the unknown Lipschitz
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functions; 𝑤 is an 𝑟-dimensional standard Brownian motion
defined on the complete probability space (Ω, 𝐹, 𝑃) with Ω

being a sample space, 𝐹 being a 𝜎 field, and 𝑃 being a
probability measure. In this paper, it is assumed that only
output 𝑦 is available for measurement.

The control objective is to design output feedback adap-
tive control 𝑢 for system (1) such that the output 𝑦 follows
the specified desired trajectory 𝑦

𝑑
, and all the signals of the

closed-loop system are bounded in probability.

Assumption 1 (see [4]). The unknown nonlinear dynamic
disturbances Δ

𝑖
(𝑧, 𝑦, 𝑡), 𝑖 = 1, 2, . . . , 𝑛, satisfy |Δ

𝑖
(𝑧, 𝑦, 𝑡)| ≤

𝜌
𝑖1
(|𝑦|) + 𝜌

𝑖2
(𝑦)‖𝑧‖, and 𝜌

𝑖1
(|𝑦|) and 𝜌

𝑖2
(𝑦) are the unknown

nonnegative smooth functions, and ‖⋅‖ denotes the Euclidian
norm of a vector.

Assumption 2. The system ̇𝑧 = 𝑞(𝑧, 0, 𝑡) − 𝑞(0, 0, 𝑡) is globally
exponentially stable when 𝑧 = 0; that is, there exists a
Lyapunov function𝑊(𝑡, 𝑧) satisfying

𝑐
1
‖𝑧‖
4

≤ 𝑊(𝑧, 𝑡) ≤ 𝑐
2
‖𝑧‖
4

,

𝜕𝑊

𝜕𝑡
(𝑧, 𝑡) +

𝜕𝑊

𝜕𝑧
(𝑧, 𝑡) (𝑞 (𝑧, 0, 𝑡) − 𝑞 (0, 0, 𝑡))

≤ −𝑐
3
‖𝑧‖
4

,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕𝑊

𝜕𝑧
(𝑧, 𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝑐
4
‖𝑧‖
3

,

(2)

where 𝑐
1
,𝑐
2
, 𝑐
3
, 𝑐
4
are positive constants, and there exists 𝑐

5
≥ 0

such that ‖𝑞(0, 0, 𝑡)‖ ≤ 𝑐
5
, ∀𝑡 ≥ 0.

Assumption 3. There exists an unknown function 𝜓
0
, and

𝜓
0
(0) = 0, such that ‖𝑞(𝑧, 𝑦, 𝑡) − 𝑞(𝑧, 0, 𝑡)‖ ≤ 𝜓

0
(|𝑦|) holds.

Assumption 4. Thedesired trajectory 𝑥
𝑑
= [𝑦
𝑑
, ̇𝑦
𝑑
, ̈𝑦
𝑑
]
𝑇

∈ Ω
𝑑

is known, where Ω
𝑑
= {𝑥
𝑑
: 𝑦
2

𝑑
+ ̇𝑦
2

𝑑
+ ̈𝑦
2

𝑑
≤ 𝐵
0
}, and 𝐵

0
is a

known constant.

Assumption 5. There exists a known constant 𝑏max such that
the following inequality 0 < |𝑏

𝑚
| ≤ 𝑏max holds.

Remark 6. Assumption 2 is the extension of the description
of unmodeled dynamics in [4], and it can effectively deal with
unmodeled dynamics in output feedback adaptive controller
design. To the best of authors’ knowledge, this assumption is
first addressed.

Consider the following stochastic nonlinear system:

𝑑𝑥 = 𝑓 (𝑡, 𝑥) 𝑑𝑡 + ℎ
𝑇

(𝑡, 𝑥) 𝑑𝑤, (3)

where 𝑥 ∈ 𝑅
𝑛 is the system state, 𝑤 is an 𝑟-dimensional

standard Brownian motion, 𝑓 : 𝑅
+

× 𝑅
𝑛

→ 𝑅
𝑛, ℎ𝑇 : 𝑅+ ×

𝑅
𝑛

→ 𝑅
𝑛×𝑟 are locally Lipschitz and 𝑓(𝑡, 0), ℎ(𝑡, 0) are uni-

formly ultimately bounded. For any given 𝑉(𝑡, 𝑥(𝑡)) ∈ 𝐶
1,2,

associated with the stochastic system (3), the infinitesimal
generator ℓ is defined as follows:

ℓ𝑉 (𝑡, 𝑥 (𝑡)) =
𝜕𝑉 (𝑡, 𝑥 (𝑡))

𝜕𝑡
+
𝜕𝑉 (𝑡, 𝑥 (𝑡))

𝜕𝑥𝑇
𝑓

+
1

2
tr{ℎ𝜕

2

𝑉 (𝑡, 𝑥 (𝑡))

𝜕𝑥𝑇𝜕𝑥
ℎ
𝑇

} ,

(4)

where tr(𝐴) is the trace of a matrix 𝐴.

Definition 7 (see [34]). The stochastic process {𝑥(𝑡)} is said to
be bounded in probability, if lim

𝑐→∞
sup
0≤𝑡<∞

𝑃(|𝑥(𝑡)| > 𝑐) =

0.

Definition 8. The solution 𝑥(𝑡) of system (3) is said to be
semiglobally uniformly ultimately bounded (SGUUB) in 𝑝th
moment (𝑝 ≥ 1), if for some compact set Ω ⊂ 𝑅

𝑛 and any
initial state 𝑥

0
= 𝑥(𝑡
0
) ∈ Ω, there exists a constant 𝜀 > 0 and

a time constant 𝑇 = 𝑇(𝜀, 𝑥
0
) such that 𝐸[‖𝑥(𝑡)‖𝑝] ≤ 𝜀 for all

𝑡 > 𝑡
0
+ 𝑇, especially, when 𝑝 = 2, it is usually called SGUUB

in mean square.

Lemma 9 (see [32]). For any stochastic process {𝜉(𝑡)}, if there
exists a positive integer 𝑝 and a positive constant 𝐶

0
such that

𝐸|𝜉(𝑡)|
𝑝

≤ 𝐶
0
, ∀𝑡 ≥ 0, then {𝜉(𝑡)} is bounded in probability.

Lemma 10 (see [21]). Consider system (3) and suppose that
there exists a 𝐶

2 function 𝑉(𝑡, 𝑥(𝑡)): 𝑅𝑛 × 𝑅 → 𝑅
+, two

constants 𝑐
1
> 0, 𝑐
2
≥ 0, class 𝜅

∞
functions 𝜇

1
, 𝜇
2
such that

𝜇
1
(‖𝑥‖) ≤ 𝑉 (𝑡, 𝑥) ≤ 𝜇

2
(‖𝑥‖) ,

ℓ𝑉 ≤ −𝑐
1
𝑉 + 𝑐
2

(5)

for all 𝑥 ∈ 𝑅
𝑛 and 𝑡 > 𝑡

0
. Then, (i) for any initial state

𝑥
0
∈ 𝑅
𝑛, there exists a unique strong solution 𝑥(𝑡) for system

(3); (ii) the solution 𝑥(𝑡) of system (3) is bounded in probability;
(iii) 𝐸[𝑉(𝑡

0
, 𝑥)] ≤ 𝑉(𝑡

0
, 𝑥
0
)𝑒
−𝑐1𝑡 + 𝑐

2
/𝑐
1
, ∀𝑡 ≥ 𝑡

0
.

In order to design filters and observer, (1) can be rewritten
as follows:

̇𝑧 = 𝑞 (𝑧, 𝑦) ,

𝑑𝑥 = (𝐴𝑥 + 𝑓 (𝑦) + 𝐹
𝑇

(𝑦, 𝑢) 𝑏 + Δ) 𝑑𝑡 + 𝑔
𝑇

(𝑦) 𝑑𝑤,

𝑦 = 𝑒
𝑇

1
𝑥,

(6)

where

𝐴 = [
0 𝐼
𝑛−1

0 0
] ,

𝑓 (𝑦) =
[
[

[

𝑓
1
(𝑦)

.

.

.

𝑓
𝑛
(𝑦)

]
]

]

,
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Δ (𝑧, 𝑦, 𝑡) =
[
[

[

Δ
1
(𝑧, 𝑦, 𝑡)

.

.

.

Δ
𝑛
(𝑧, 𝑦, 𝑡)

]
]

]

,

𝑒
1
= [1, 0, . . . , 0]

𝑇

,

𝐹
𝑇

(𝑦, 𝑢) = [
0
(𝜌−1)×(𝑚+1)

𝐼
𝑚+1

] 𝜎 (𝑦) 𝑢.

(7)

3. Adaptive Robust Controller
Design and Stability Analysis

3.1. Neural Filters and Controller Design. In order to estimate
the state 𝑥, we introduce the following filters:

̇𝜉 = 𝐴
0
𝜉 + 𝐿𝑦, 𝜉 ∈ 𝑅

𝑛

,

Ω̇
𝑇

= 𝐴
0
Ω
𝑇

+ 𝐹
𝑇

(𝑦, 𝑢) , Ω
𝑇

∈ 𝑅
𝑛×(𝑚+1)

,

(8)

where𝐴
0
= 𝐴−𝐿𝑒

𝑇

1
, 𝐿 = [𝑙

1
, . . . , 𝑙
𝑛
]
𝑇,𝐴
0
is a Hurwitz matrix;

that is

𝑃𝐴
0
+ 𝐴
𝑇

0
𝑃 = −ℎ𝐼,

𝑃 = 𝑃
𝑇

> 0,

(9)

where ℎ > 0 is a design constant.
Define the state estimate as follows:

𝑥 = 𝜉 + Ω
𝑇

𝑏 (10)

The observer error is defined as 𝜀 = 𝑥 − 𝑥. Thus

𝑥 = 𝜉 + Ω
𝑇

𝑏 + 𝜀, (11)

𝑑𝜀 = (𝐴
0
𝜀 + 𝑓 (𝑦) + Δ) 𝑑𝑡 + 𝑔

𝑇

(𝑦) 𝑑𝑤. (12)

Denote the columns ofΩ𝑇 as follows:

Ω
𝑇

= [V
𝑚
, . . . , V

1
, V
0
] , Ω

𝑇

∈ 𝑅
𝑛×(𝑚+1)

. (13)

Inspired by thework in [14], the filters are designed as follows:

̇𝜉 = 𝐴
0
𝜉 + 𝐿𝑦, 𝜉 ∈ 𝑅

𝑛

,

̇𝜆 = 𝐴
0
𝜆 + 𝑒
𝑛
𝜎 (𝑦) 𝑢, 𝜆 ∈ 𝑅

𝑛

,

̇V
𝑗
= 𝐴
0
V
𝑗
+ 𝑒
𝑛−𝑗
𝜎 (𝑦) 𝑢, V

𝑗
∈ 𝑅
𝑛

, 𝑗 = 0, 1, . . . , 𝑚.

(14)

It is easy to show that

𝐴
𝑗

0
𝑒
𝑛
= 𝑒
𝑛−𝑗
, 𝑗 = 0, 1, . . . , 𝑚, (15)

V
𝑗
= 𝐴
𝑗

0
𝜆, 𝑗 = 0, 1, . . . , 𝑚, (16)

where 𝑒
𝑖
denotes 𝑛 dimensional vector with the 𝑖th element

being one and other elements being all zeros, 𝑖 = 1, . . . , 𝑛.

Let V
𝑖,𝑗
be the 𝑗th element of the vector V

𝑖
and 𝜆

𝑙
the 𝑙th

element of the vector 𝜆, respectively. From [14], we know

V
𝑖,𝑗
= [∗ ⋅ ⋅ ⋅ ∗ 1]

[
[
[
[

[

𝜆
1

𝜆
2

.

.

.

𝜆
𝑖+𝑗

]
]
]
]

]

,

𝑗 = 1, . . . , 𝜌; 𝑖 = 0, 1, . . . , 𝑚; 𝜆
𝑙
= 0, 𝑙 > 𝑛.

(17)

According to (11), we get

𝑥
2
= 𝜉
2
+ 𝜔
𝑇

𝑏 + 𝜀
2
= 𝜉
2
+ [V
𝑚,2
, . . . , V

1,2
, V
0,2
] 𝑏 + 𝜀

2

= 𝑏
𝑚
V
𝑚,2

+ 𝜉
2
+ 𝜔
𝑇

𝑏 + 𝜀
2
,

(18)

where𝜔𝑇 denotes the second rowof thematrixΩ𝑇, 𝜉
2
denotes

the second element of the vector 𝜉, and 𝜀
2
is the second

element of 𝜀.
Substituting (18) into (1), it yields

𝑑𝑦

= (𝑏
𝑚
V
𝑚,2

+ 𝜉
2
+ 𝜔
𝑇

𝑏 + 𝜀
2
+ 𝑓
1
(𝑦) + Δ

1
(𝑧, 𝑦, 𝑡)) 𝑑𝑡

+ 𝑔
𝑇

1
(𝑦) 𝑑𝑤,

(19)

where

𝜔
𝑇

= [V
𝑚,2
, V
𝑚−1,2

, . . . , V
1,2
, V
0,2
] ,

𝜔
𝑇

= [V
𝑚−1,2

, . . . , V
1,2
, V
0,2
] ,

𝑏
𝑇

= [𝑏
𝑚−1

, . . . , 𝑏
1
, 𝑏
0
] .

(20)

In view of (19) and (14), the system used to design adaptive
output feedback DSC in next section is addressed as follows:

𝑑𝑦 = (𝑏
𝑚
V
𝑚,2

+ 𝜉
2
+ 𝜔
𝑇

𝑏 + 𝜀
2
+ 𝑓
1
(𝑦) + Δ

1
) 𝑑𝑡

+ 𝑔
𝑇

1
(𝑦) 𝑑𝑤,

̇V
𝑚,𝑖

= V
𝑚,𝑖+1

− 𝑙
𝑖
V
𝑚,1
, 𝑖 = 2, . . . , 𝜌 − 1,

̇V
𝑚,𝜌

= 𝜎 (𝑦) 𝑢 + V
𝑚,𝜌+1

− 𝑙
𝜌
V
𝑚,1
.

(21)

3.2. Stochastic Adaptive Dynamic Surface Controller Design.
In this subsection, according to (21) and by using dynamic
surface control method, we propose an output feedback
stochastic adaptive tracking control scheme. Similar to back-
stepping, the whole design needs 𝜌 steps.

For convenience, somenotations are presented below. 𝑠
𝑖
=

[𝑠
1
, . . . , 𝑠

𝑖
]
𝑇, 𝑦
𝑗
= [𝑦
2
, . . . , 𝑦

𝑗
]
𝑇, where 𝑠

𝑖
, 𝑦
𝑗
will be given

in the controller design later, 𝑖 = 1, 2, . . . , 𝜌, 𝑗 = 2, . . . , 𝜌.
𝑦
𝑗
= 𝜔
𝑗
− 𝛼
𝑗−1

, 𝑗 = 2, . . . , 𝜌, 𝜔
𝑗
is the output of a first-

order filter with 𝛼
𝑖−1

as the input, and 𝛼
𝑖−1

is an intermediate
control which will be developed for the corresponding (𝑖 −
1)th subsystem.
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Define some Lyapunov functions as follows:

𝑉
𝜀
= 𝜀
𝑇

𝑃𝜀,

𝑉
𝑊
=

1

𝜆
0

𝑊(𝑧, 𝑡) , 𝜆
0
> 0,

𝑉
𝑠𝑖
=
1

4
𝑠
4

𝑖
,

𝑉
𝑠𝑊𝜀

= 𝑉
𝑠1
+ 𝑉
𝜀
+ 𝑉
𝑊
,

(22)

where𝑊(𝑧, 𝑡) is given in Assumption 2.
Using Young’s inequality, the infinitesimal generator of𝑉

𝜀

satisfies

ℓ𝑉
𝜀
= 𝜀
𝑇

(𝑃𝐴
0
+ 𝐴
𝑇

0
𝑃) 𝜀 + 2𝜀

𝑇

𝑃𝑓 (𝑦) + 2𝜀
𝑇

𝑃Δ

+ tr (𝑔 (𝑦) 𝑃𝑔𝑇 (𝑦))

≤ 𝜀
𝑇

(𝑃𝐴
0
+ 𝐴
𝑇

0
𝑃) 𝜀 + 2𝜀

𝑇

𝜀 + ‖𝑃‖
2 󵄩󵄩󵄩󵄩𝑓 (𝑦)

󵄩󵄩󵄩󵄩

2

+ ‖𝑃‖
2

‖Δ‖
2

+ tr (𝑔 (𝑦) 𝑃𝑔𝑇 (𝑦))

(23)

According to Assumption 1 and by using Young’s inequality,
we obtain

ℓ𝑉
𝜀
≤ − (ℎ − 2) 𝜀

𝑇

𝜀 +

𝑛

∑

𝑗=1

‖𝑃‖
2

𝑓
2

𝑗
(𝑦)

+

𝑛

∑

𝑗=1

‖𝑃‖
2

(𝜌
𝑗1
(
󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨) + 𝜌𝑗2 (𝑦) ‖𝑧‖)

2

+ tr (𝑔 (𝑦) 𝑃𝑔𝑇 (𝑦))

≤ − (ℎ − 2) 𝜀
𝑇

𝜀 +

𝑛

∑

𝑗=1

‖𝑃‖
2

𝑓
2

𝑗
(𝑦)

+

𝑛

∑

𝑗=1

2 ‖𝑃‖
2

(𝜌
2

𝑗1
(
󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨) + 𝜌
2

𝑗2
(𝑦) ‖𝑧‖

2

)

+ tr (𝑔 (𝑦) 𝑃𝑔𝑇 (𝑦))

≤ − (ℎ − 2) 𝜀
𝑇

𝜀 +

𝑛

∑

𝑗=1

‖𝑃‖
2

𝑓
2

𝑗
(𝑦)

+

𝑛

∑

𝑗=1

2 ‖𝑃‖
2

𝜌
2

𝑗1
(
󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨)

+
16𝑛𝜆
0

𝑐
3

𝑛

∑

𝑗=1

‖𝑃‖
4

𝜌
4

𝑗2
(𝑦) +

𝑐
3

16𝜆
0

‖𝑧‖
4

+ tr (𝑔 (𝑦) 𝑃𝑔𝑇 (𝑦))

(24)

According to Assumptions 2 and 3, using Young’s inequality,
we get

𝑉
𝑊
=

1

𝜆
0

(
𝜕𝑊

𝜕𝑧
(𝑧, 𝑡) ̇𝑧 +

𝜕𝑊

𝜕𝑡
(𝑧, 𝑡))

≤ −
5𝑐
3

8𝜆
0

‖𝑧‖
4

+
16𝑐
4

4

𝜆
0
𝑐
3

3

𝜓
4

0
(
󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨) +

16𝑐
4

4
𝑐
4

5

𝜆
0
𝑐
3

3

.

(25)

Step 1. Let 𝜔
1
= 𝑦
𝑑
. Define the first dynamic surface as

follows:

𝑠
1
= 𝑥
1
− 𝜔
1
. (26)

Using the first equation of (21), we obtain

𝑑𝑠
1
= (𝑏
𝑚
V
𝑚,2

+ 𝜉
2
+ 𝜔
𝑇

𝑏 + 𝜀
2
+ 𝑓
1
(𝑦) + Δ

1
− ̇𝑦
𝑑
) 𝑑𝑡

+ 𝑔
𝑇

1
(𝑦) 𝑑𝑤.

(27)

Choose the virtual control law 𝛼
1
as follows:

𝛼
1
=

𝑏̂
𝑚

𝑏̂2
𝑚
+ 𝛽

(−𝑘
1
𝑠
1
− 𝜔
𝑇̂
𝑏 − 𝜉
2
− 𝑠
3

1
𝜃
𝑇

1
𝜓
1
(𝑋)) , (28)

where 𝛽 > 0, 𝑘
1
> 0 are design constants, 𝜃

1
, 𝑏̂
𝑚
, ̂𝑏 are the

estimates of 𝜃
1
, 𝑏
𝑚
, 𝑏 at time 𝑡, respectively, and 𝑏̃

𝑚
= 𝑏
𝑚
− 𝑏̂
𝑚
,

𝜃
1
= 𝜃
1
− 𝜃
1
, ̃𝑏 = 𝑏 −

̂
𝑏, 𝜃
1
and 𝜓

1
(𝑋) will be given later.

Consider

ℓ𝛼
1
=
𝜕𝛼
1

𝜕𝑦
(𝑏
𝑚
V
𝑚,2

+ 𝜉
2
+ 𝜔
𝑇

𝑏 + 𝜀
2
+ 𝑓
1
(𝑦) + Δ

1
(𝑧, 𝑦, 𝑡))

+
𝜕𝛼
1

𝜕𝑏̂
𝑚

̇
𝑏̂
𝑚
+
𝜕𝛼
1

𝜕𝜉𝑇
̇𝜉 +
𝜕𝛼
1

𝜕𝜃
𝑇

1

̇
𝜃̂
1
+
𝜕𝛼
1

𝜕𝑦
𝑑

̇𝑦
𝑑

+
𝜕𝛼
1

𝜕 ̇𝑦
𝑑

̈𝑦
𝑑
+
1

2

𝜕
2

𝛼
1

𝜕𝑦2
𝑔
𝑇

1
(𝑦) 𝑔
1
(𝑦) ,

𝑑𝛼
1
= ℓ𝛼
1
𝑑𝑡 +

𝜕𝛼
1

𝜕𝑦
𝑔
𝑇

1
(𝑦) 𝑑𝑤.

(29)

Therefore, we have

ℓ𝑉
𝑠1

= 𝑠
3

1
(𝑏
𝑚
V
𝑚,2

+ 𝜉
2
+ 𝜔
𝑇

𝑏 + 𝜀
2
+ 𝑓
1
(𝑦) + Δ

1
− ̇𝑦
𝑑
)

+
3

2
𝑠
2

1

󵄩󵄩󵄩󵄩𝑔1 (𝑦)
󵄩󵄩󵄩󵄩

2

.

(30)

A first-order filter with 𝛼
1
as the input is designed as

follows:

𝜏
2
̇𝜔
2
+ 𝜔
2
= 𝛼
1
, 𝜔
2
(0) = 𝛼

1
(0) . (31)
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Let 𝑦
2
= 𝜔
2
−𝛼
1
; thus, ̇𝜔

2
= −𝑦
2
/𝜏
2
. Since V

𝑚,2
= 𝑠
2
+𝑦
2
+𝛼
1
,

using Young’s inequality, it yields

ℓ𝑉
𝑠1
≤ − (𝑘

1
−
3

2
𝑏max) 𝑠

4

1
+ 𝑏̃
𝑚
𝑠
3

1
𝛼
1
+
𝑏max
4

𝑠
4

2

+
𝑏max
4

𝑦
4

2
+ 𝑠
3

1
𝜔
𝑇̃
𝑏 − 𝑠
3

1
𝜃
𝑇

1
𝜓
1
(𝑋)

−
𝑠
3

1
𝛽

𝑏̂2
𝑚
+ 𝛽

(−𝑘
1
𝑠
1
− 𝜔
𝑇̂
𝑏 − 𝜉
2
− 𝑠
3

1
𝜃
𝑇

1
𝜓
1
(𝑋))

+ 𝑠
3

1
𝜀
2
+ 𝑠
3

1
𝑓
1
(𝑦) + 𝑠

3

1
Δ
1
− 𝑠
3

1
̇𝑦
𝑑

+
3

2
𝑠
2

1

󵄩󵄩󵄩󵄩𝑔1 (𝑦)
󵄩󵄩󵄩󵄩

2

.

(32)

From Assumption 1, we obtain

󵄨󵄨󵄨󵄨󵄨
𝑠
3

1

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨Δ 1
󵄨󵄨󵄨󵄨 ≤

󵄨󵄨󵄨󵄨󵄨
𝑠
3

1

󵄨󵄨󵄨󵄨󵄨
𝜌
11
(
󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨) +

󵄨󵄨󵄨󵄨󵄨
𝑠
3

1

󵄨󵄨󵄨󵄨󵄨
𝜌
12
(𝑦) ‖𝑧‖

≤
3

4
𝑠
4

1
+
1

4
𝜌
4

11
(
󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨) +

3

2

3
√
𝜆
0

2𝑐
3

𝑠
4

1
𝜌
4/3

12
(𝑦)

+
𝑐
3

16𝜆
0

‖𝑧‖
4

.

(33)

In view of (24), (25), (32), and (33) and by using Young’s
inequality, we obtain

ℓ𝑉
𝑠𝑊𝜀

≤ − (ℎ − 2) 𝜀
𝑇

𝜀 − (𝑘
1
−
3

2
𝑏max −

3

4
) 𝑠
4

1

−
𝑐
3

2𝜆
0

‖𝑧‖
4

+ 𝑏̃
𝑚
𝑠
3

1
𝛼
1
+ 𝑠
3

1
𝜔
𝑇̃
𝑏 +

𝑏max
4

𝑠
4

2

+
𝑏max
4

𝑦
4

2
+
󵄨󵄨󵄨󵄨󵄨
𝑠
3

1

󵄨󵄨󵄨󵄨󵄨
𝑆 + 𝑠
3

1
𝐻
1
(𝑋) + 𝑄 (𝑦) +

1

4
𝜀
2

2

− 𝑠
3

1
𝜃
𝑇

1
𝜓
1
(𝑋) +

16𝑐
4

4
𝑐
4

5

𝜆
0
𝑐
3

3

+ 1,

(34)

where

𝑄 (𝑦) =

𝑛

∑

𝑗=1

‖𝑃‖
2

𝑓
2

𝑗
(𝑦) +

𝑛

∑

𝑗=1

2 ‖𝑃‖
2

𝜌
2

𝑗1
(
󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨)

+
16𝑛𝜆
0

𝑐
3

𝑛

∑

𝑗=1

‖𝑃‖
4

𝜌
4

𝑗2
(𝑦) +

16𝑐
4

4

𝜆
0
𝑐
3

3

𝜓
4

0
(
󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨)

+
1

4
𝜌
4

11
(
󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨) + tr (𝑔 (𝑦) 𝑃𝑔𝑇 (𝑦)) ,

𝐻
1
(𝑋) =

3

2

3
√
𝜆
0

2𝑐
3

𝑠
1
𝜌
4/3

12
(𝑦) − ̇𝑦

𝑑
+
9

16
𝑠
1

󵄩󵄩󵄩󵄩𝑔1 (𝑦)
󵄩󵄩󵄩󵄩

4

+ 𝑠
3

1
,

𝑋 = [𝑠
1
, 𝑦
𝑑
, ̇𝑦
𝑑
]
𝑇

∈ 𝑅
3

.

(35)

𝑆(𝑠
1
, 𝑏̂
𝑚
,
̂
𝑏, 𝜃
1
, 𝜉, 𝜆
𝑚+2

, 𝑦
𝑑
) is a nonnegative continuous func-

tion, and
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑓
1
(𝑦) −

𝛽

𝑏̂2
𝑚
+ 𝛽

(−𝑘
1
𝑠
1
− 𝜔
𝑇̂
𝑏 − 𝜉
2
− 𝑠
3

1
𝜃
𝑇

1
𝜓
1
(𝑥))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝑆 (𝑠
1
, 𝑏̂
𝑚
,
̂
𝑏, 𝜃
1
, 𝜉, 𝜆
𝑚+2

, 𝑦
𝑑
) ,

(36)

where 𝜆
𝑚+2

= [𝜆
1
, . . . , 𝜆

𝑚+2
]
𝑇.

Let Ω
𝑋
= {𝑋 | ‖𝑋‖ ≤ 𝑀

𝑋
} ⊂ 𝑅

3 be a given compact set
with𝑀

𝑋
> 0 being a design constant, and let 𝜃𝑇

1
𝜙
1
(𝑋) be the

approximation of the radial basis function neural networks
on the compact set Ω

𝑋
to 𝐻
1
(𝑋). Then, we have 𝐻

1
(𝑋) =

𝜃
𝑇

1
𝜓
1
(𝑋) + 𝐵

1
(𝑋), where 𝐵

1
(𝑋) denotes the approximation

error and 𝜓
1
(𝑋) = [𝜓

11
(𝑋), . . . , 𝜓

1𝑀1
(𝑋)]
𝑇

∈ 𝑅
𝑀1 denotes

the basis function vector with 𝜓
1𝑗
(𝑋) being chosen as the

commonly used Gaussian functions, which have the form

𝜓
1𝑗
(𝑋) = exp[

[

−

󵄩󵄩󵄩󵄩󵄩
𝑋 − 𝜇

1𝑗

󵄩󵄩󵄩󵄩󵄩

2

𝑏
2

1𝑗

]

]

(37)

𝑗 = 1, . . . ,𝑀
1
, and 𝜇

1𝑗
is the center of the receptive field and

𝑏
1𝑗
is the width of the Gaussian function; 𝜃

1
is an adjustable

parameter vector.
According to (34) and by using Young’s inequality, it

yields

ℓ𝑉
𝑠𝑊𝜀

≤ −(ℎ −
9

4
) 𝜀
𝑇

𝜀 − (𝑘
1
−
3

2
𝑏max −

3

2
) 𝑠
4

1
−

𝑐
3

2𝜆
0

‖𝑧‖
4

+ 𝑏̃
𝑚
𝑠
3

1
𝛼
1
+ 𝑠
3

1
𝜔
𝑇̃
𝑏 +

𝑏max
4

𝑠
4

2
+
𝑏max
4

𝑦
4

2

+
1

4
𝑆
4

+ 𝑠
3

1
(𝜃
𝑇

1
𝜓
1
(𝑋) + 𝐵

1
(𝑋)) + 𝑄 (𝑦)

− 𝑠
3

1
𝜃
𝑇

1
𝜓
1
(𝑋) +

16𝑐
4

4
𝑐
4

5

𝜆
0
𝑐
3

3

+ 1.

(38)

There exists a nonnegative continuous function 𝜅(𝑠
1
, 𝑦
𝑑
, ̇𝑦
𝑑
)

satisfying
󵄨󵄨󵄨󵄨𝐵1 (𝑋)

󵄨󵄨󵄨󵄨 ≤ 𝜅 (𝑠1, 𝑦𝑑,
̇𝑦
𝑑
) . (39)

Using Young’s inequality, we have

ℓ𝑉
𝑠𝑊𝜀

≤ − (ℎ −
9

4
) 𝜀
𝑇

𝜀 − (𝑘
1
−
3

2
𝑏max −

9

4
) 𝑠
4

1

−
𝑐
3

2𝜆
0

‖𝑧‖
4

+ 𝑏̃
𝑚
𝑠
3

1
𝛼
1
+ 𝑠
3

1
𝜔
𝑇̃
𝑏 +

𝑏max
4

𝑠
4

2

+
𝑏max
4

𝑦
4

2
+
1

4
𝑆
4

+ 𝑄 (𝑦) + 𝑠
3

1
𝜃
𝑇

1
𝜓
1
(𝑋)

+
1

4
𝜅
4

+ 𝐶
0
,

(40)

where 𝐶
0
= 16𝑐
4

4
𝑐
4

5
/𝜆
0
𝑐
3

3
+ 1.
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Step 𝑖 (2 ≤ 𝑖 ≤ 𝜌 − 1). Define the 𝑖th dynamic surface 𝑠
𝑖
=

V
𝑚,𝑖

− 𝜔
𝑖
, thus

̇𝑠
𝑖
= V
𝑚,𝑖+1

− 𝑙
𝑖
V
𝑚,1

− ̇𝜔
𝑖
. (41)

Select the virtual control law 𝛼
𝑖
as follows:

𝛼
𝑖
= −𝑘
𝑖
𝑠
𝑖
+ 𝑙
𝑖
V
𝑚,1

+ ̇𝜔
𝑖
,

ℓ𝛼
𝑖
= −𝑘
𝑖
(V
𝑚,𝑖+1

− 𝑙
𝑖
V
𝑚,1

− ̇𝑤
𝑖
) + 𝑙
𝑖
̇V
𝑚,1

−
ℓ𝑦
𝑖

𝜏
𝑖

,

𝑑𝛼
𝑖
= ℓ𝛼
𝑖
𝑑𝑡 +

𝜕𝛼
𝑖

𝜕𝑦
𝑔
𝑇

1
(𝑦) 𝑑𝑤.

(42)

A first-order filter with the input 𝛼
𝑖
is designed as follows:

𝜏
𝑖+1

̇𝜔
𝑖+1

+ 𝜔
𝑖+1

= 𝛼
𝑖
, 𝜔
𝑖+1

(0) = 𝛼
𝑖
(0) , (43)

where 𝜏
𝑖+1

> 0 is a design constant.
Let 𝑦
𝑖+1

= 𝜔
𝑖+1

− 𝛼
𝑖
. Then ̇𝜔

𝑖+1
= −𝑦

𝑖+1
/𝜏
𝑖+1

. Noting
V
𝑚,𝑖+1

= 𝑠
𝑖+1

+ 𝑦
𝑖+1

+ 𝛼
𝑖
, in view of (41) and (42), we obtain

ℓ𝑉
𝑠𝑖
= 𝑠
3

𝑖
̇𝑠
𝑖
= 𝑠
3

𝑖
(V
𝑚,𝑖+1

− 𝑙
𝑖
V
𝑚,1

− ̇𝑤
𝑖
)

= −𝑘
𝑖
𝑠
4

𝑖
+ 𝑠
3

𝑖
𝑠
𝑖+1

+ 𝑠
3

𝑖
𝑦
𝑖+1

≤ −(𝑘
𝑖
−
3

2
) 𝑠
4

𝑖
+
1

4
𝑠
4

𝑖+1
+
1

4
𝑦
4

𝑖+1
.

(44)

Step 𝜌.The control lawwill be determined in this step. Define
the 𝜌th dynamic surface as 𝑠

𝜌
= V
𝑚,𝜌

− 𝜔
𝜌
. The derivative of

𝑠
𝜌
is

̇𝑠
𝜌
= 𝜎 (𝑦) 𝑢 + V

𝑚,𝜌+1
− 𝑙
𝜌
V
𝑚,1

− ̇𝜔
𝜌
. (45)

Choose the control law as follows:

𝑢 =

(−𝑘
𝜌
𝑠
𝜌
− V
𝑚,𝜌+1

+ 𝑙
𝜌
V
𝑚,1

+ ̇𝜔
𝜌
)

𝜎 (𝑦)
. (46)

In view of (45) and (46), we have

ℓ𝑉
𝑠𝜌
= 𝑠
3

𝜌
̇𝑠
𝜌
= −𝑘
𝜌
𝑠
4

𝜌
. (47)

The parameters 𝜃
1
, 𝑏̂
𝑚
, and ̂𝑏 are updated as follows:

̇
𝜃̂
1
= 𝛾
1
(𝑠
3

1
𝜓
1
(𝑋) − 𝜎

1
𝜃
1
) , (48)

̇
𝑏̂
𝑚
= 𝛾
2
(𝑠
3

1
𝛼
1
− 𝜎
2
𝑏̂
𝑚
) ,

̇̂
𝑏 = 𝛾
3
(𝑠
3

1
𝜔 − 𝜎
3

̂
𝑏) ,

(49)

where 𝛾
1
, 𝛾
2
, 𝛾
3
, 𝜎
1
, 𝜎
2
, 𝜎
3
are the design constants.

3.3. Stability Analysis of Adaptive Control System. In this
subsection, we will discuss the stability analysis of the closed-
loop system. Firstly we define some Lyapunov functions and
compact sets as follows:

𝑉
1
=
1

2
𝑠
4

1
+ 2𝑉
𝜀
+
1

𝛾
1

𝜃
𝑇

1
𝜃
1
+
1

𝛾
2

𝑏̃
2

𝑚
+
1

𝛾
3

̃
𝑏

𝑇

̃
𝑏

+
𝑐
3

𝜆
0

‖𝑧‖
4

,

𝑉
𝑖
=

𝑖

∑

𝑗=1

1

2
𝑠
4

𝑗
+ 2𝑉
𝜀
+

𝑖

∑

𝑗=2

1

2
𝑦
4

𝑗
+
1

𝛾
1

𝜃
𝑇

1
𝜃
1
+
1

𝛾
2

𝑏̃
2

𝑚

+
1

𝛾
3

̃
𝑏

𝑇

̃
𝑏 +

𝑐
3

𝜆
0

‖𝑧‖
4

, 𝑖 = 2, . . . , 𝜌,

Ω
1
= {(𝑠

1
, 𝜀, 𝜃
1
, 𝑏̂
𝑚
,
̂
𝑏, ‖𝑧‖) : 𝑉

1
≤ 𝑝} ⊂ 𝑅

𝑝1 ,

Ω
𝑖
= {(𝑠

𝑖
, 𝑦
𝑖
, 𝜀, 𝜃
1
, 𝑏̂
𝑚
,
̂
𝑏, ‖𝑧‖) : 𝑉

𝑖
≤ 𝑝} ⊂ 𝑅

𝑝𝑖 ,

(50)

where 𝑖 = 2, . . . , 𝜌, 𝑝 > 0 is a design constant, 𝑝
𝑖
= 2𝑖 + 𝑀

1
+

𝑛 +𝑚+ 1. It is easy to know thatΩ
1
×𝑅
𝑝𝜌−𝑝1 ⊃ Ω

2
×𝑅
𝑝𝜌−𝑝2 ⊃

⋅ ⋅ ⋅ ⊃ Ω
𝜌−1

× 𝑅
𝑝𝜌−𝑝𝜌−1 ⊃ Ω

𝜌
.

According to 𝑦
2
= 𝜔
2
− 𝛼
1
, we obtain

ℓ𝑦
2
= ̇𝜔
2
− ℓ𝛼
1
= −

𝑦
2

𝜏
2

− ℓ𝛼
1
,

𝑑𝑦
2
= ℓ𝑦
2
𝑑𝑡 −

𝜕𝛼
1

𝜕𝑦
𝑔
𝑇

1
(𝑦) 𝑑𝑤.

(51)

From (4), we obtain

ℓ (
1

4
𝑦
4

2
) = 𝑦

3

2
ℓ𝑦
2
+
3

2
𝑦
2

2
(
𝜕𝛼
1

𝜕𝑦
)

2

󵄩󵄩󵄩󵄩𝑔1 (𝑦)
󵄩󵄩󵄩󵄩

2

= −
𝑦
4

2

𝜏
2

− 𝑦
3

2
ℓ𝛼
1
+
3

2
𝑦
2

2
(
𝜕𝛼
1

𝜕𝑦
)

2

󵄩󵄩󵄩󵄩𝑔1 (𝑦)
󵄩󵄩󵄩󵄩

2

.

(52)

There exist two nonnegative continuous functions 𝜂
2
(𝑠
2
, 𝑦
2
,

𝜃
1
, 𝑏̂
𝑚
, ̂𝑏, 𝜉, 𝜆

𝑚+2
, 𝜀
2
,𝑦
𝑑
, ̇𝑦
𝑑
, ̈𝑦
𝑑
) and 𝜁

2
(𝑠
2
, 𝑦
2
, 𝜃
1
, 𝑏̂
𝑚
,
̂
𝑏, 𝜉, 𝜆

𝑚+2
,

𝜀
2
,𝑦
𝑑
, ̇𝑦
𝑑
, ̈𝑦
𝑑
) such that

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

ℓ𝑦
2
+
𝑦
2

𝜏
2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝜂
2
(𝑠
2
, 𝑦
2
, 𝜃
1
, 𝑏̂
𝑚
,
̂
𝑏, 𝜉, 𝜆

𝑚+2
, 𝜀
2
, 𝑦
𝑑
, ̇𝑦
𝑑
, ̈𝑦
𝑑
) ,

(53)

3

2
𝑦
2

2
(
𝜕𝛼
1

𝜕𝑦
)

2

󵄩󵄩󵄩󵄩𝑔1 (𝑦)
󵄩󵄩󵄩󵄩

2

≤ 𝜁
2
(𝑠
2
, 𝑦
2
, 𝜃
1
, 𝑏̂
𝑚
,
̂
𝑏, 𝜉, 𝜆

𝑚+2
, 𝜀
2
, 𝑦
𝑑
, ̇𝑦
𝑑
, ̈𝑦
𝑑
) .

(54)
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From (53), we have

𝑦
3

2
ℓ𝑦
2
≤ −

𝑦
4

2

𝜏
2

+
󵄨󵄨󵄨󵄨󵄨
𝑦
3

2

󵄨󵄨󵄨󵄨󵄨
𝜂
2
(𝑠
2
, 𝑦
2
, 𝜃
1
, 𝑏̂
𝑚
,
̂
𝑏, 𝜉, 𝜆

𝑚+2
, 𝜀
2
, 𝑦
𝑑
, ̇𝑦
𝑑
, ̈𝑦
𝑑
)

≤ −
𝑦
4

2

𝜏
2

+
3

4
𝑦
4

2
+
1

4
𝜂
4

2
.

(55)

From (52), (54), and (55), we obtain

ℓ (
1

4
𝑦
4

2
) ≤ −

𝑦
4

2

𝜏
2

+
3

4
𝑦
4

2
+
1

4
𝜂
4

2
+ 𝜁
2
. (56)

The infinitesimal generator of 𝑦
𝑖+1

is

ℓ𝑦
𝑖+1

= −
𝑦
𝑖+1

𝜏
𝑖+1

− ℓ𝛼
𝑖
,

𝑦
3

𝑖+1
ℓ𝑦
𝑖+1

= −
𝑦
4

𝑖+1

𝜏
𝑖+1

− 𝑦
3

𝑖+1
ℓ𝛼
𝑖
,

(57)

ℓ(
𝑦
4

𝑖+1

4
) = −

𝑦
4

𝑖+1

𝜏
𝑖+1

− 𝑦
3

𝑖+1
ℓ𝛼
𝑖

+
3

2
𝑦
2

𝑖+1
(
𝜕𝛼
𝑖

𝜕𝑦
)

2

󵄩󵄩󵄩󵄩𝑔1 (𝑦)
󵄩󵄩󵄩󵄩

2

.

(58)

There exist two nonnegative continuous functions 𝜂
𝑖+1
(𝑠
𝑖+1
,

𝑦
𝑖+1

, 𝜃
1
, 𝑏̂
𝑚
,
̂
𝑏, 𝜉, 𝜆

𝑚+2
, 𝜀
2
,𝑦
𝑑
, ̇𝑦
𝑑
, ̈𝑦
𝑑
) and 𝜁

𝑖+1
(𝑠
𝑖+1
, 𝑦
𝑖+1

, 𝜃
1
, 𝑏̂
𝑚
,

̂
𝑏, 𝜉, 𝜆

𝑚+2
, 𝜀
2
, 𝑦
𝑑
, ̇𝑦
𝑑
, ̈𝑦
𝑑
) such that the following inequalities

hold:
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

ℓ𝑦
𝑖+1

+
𝑦
𝑖+1

𝜏
𝑖+1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝜂
𝑖+1

(𝑠
𝑖+1
, 𝑦
𝑖+1
, 𝜃
1
, 𝑏̂
𝑚
,
̂
𝑏, 𝜉, 𝜆

𝑚+2
, 𝜀
2
, 𝑦
𝑑
, ̇𝑦
𝑑
, ̈𝑦
𝑑
) ,

(59)

3

2
𝑦
2

𝑖+1
(
𝛼
𝑖

𝜕𝑦
)

2

󵄩󵄩󵄩󵄩𝑔1 (𝑦)
󵄩󵄩󵄩󵄩

2

≤ 𝜁
𝑖+1

(𝑠
𝑖+1
, 𝑦
𝑖+1
, 𝜃
1
, 𝑏̂
𝑚
,
̂
𝑏, 𝜉, 𝜆

𝑚+2
, 𝜀
2
, 𝑦
𝑑
, ̇𝑦
𝑑
, ̈𝑦
𝑑
) .

(60)

From (59), we obtain

𝑦
3

𝑖+1
ℓ𝑦
𝑖+1

≤ −
𝑦
4

𝑖+1

𝜏
𝑖+1

+
󵄨󵄨󵄨󵄨󵄨
𝑦
3

𝑖+1

󵄨󵄨󵄨󵄨󵄨
𝜂
𝑖+1

(𝑠
𝑖+1
, 𝑦
𝑖+1
, 𝜃
1
, 𝑏̂
𝑚
,
̂
𝑏, 𝜉, 𝜆

𝑚+2
, 𝜀
2
, 𝑦
𝑑
, ̇𝑦
𝑑
, ̈𝑦
𝑑
)

≤ −
𝑦
4

𝑖+1

𝜏
𝑖+1

+
3𝑦
4

𝑖+1

4
+
𝜂
4

𝑖+1

4
.

(61)

From (58), (60), and (61), we obtain

ℓ (
1

4
𝑦
4

𝑖+1
) ≤ −

𝑦
4

𝑖+1

𝜏
𝑖+1

+
3

4
𝑦
4

𝑖+1
+
1

4
𝜂
4

𝑖+1
+ 𝜁
𝑖+1
. (62)

The continuous function 𝑆(⋅) on the compact setΩ
𝑑
×Ω
1
has

a maximum 𝑀(𝑝), which depends on the constant 𝑝, and
𝜅(𝑠
1
, 𝑦
𝑑
, ̇𝑦
𝑑
) on the compact set Ω

𝑑
× Ω
1
has a maximum

𝑁
0
(𝑝), 𝜂
𝑖+1
(⋅) and 𝜁

𝑖+1
(⋅) on the compact setΩ

𝑑
×Ω
𝑖+1

have the
maximum𝑁

𝑖+1
(𝑝) and 𝐶

𝑖+1
(𝑝) when 𝜉, 𝜆

𝑚+2
are bounded.

Theorem 11. Consider the closed-loop system consisting of
the plant (1) under Assumptions 1–5, the controller (46), and
the adaptation laws (48) and (49). For any bounded initial
conditions, there exist constants 𝑘

𝑖
, 𝜏
𝑖
, ℎ, 𝛾
1
, 𝛾
2
, 𝛾
3
, 𝜎
1
, 𝜎
2
, 𝜎
3

satisfying𝑉(0) ≤ 𝑐, such that all of the signals in the closed-loop
system are bounded in probability, and 𝑠

1
, . . . , 𝑠

𝜌
,𝑦
2
, . . . , 𝑦

𝜌
are

SGUUB in four-moment, 𝜃
1
, 𝑏̃
𝑚
, ̃𝑏 are SGUUB inmean square,

and 𝑘
𝑖
, 𝜏
𝑖
, and ℎ satisfy

𝑘
𝑖
≥
3

2
𝑏max +

9

4
+
1

4
𝛼
0
, 𝑖 = 1, 2, . . . , 𝜌,

1

𝜏
𝑖

≥
1

4
𝑏max + 1 +

1

4
𝛼
0
, 𝑖 = 2, . . . , 𝜌,

ℎ ≥
9

4
+ 𝛼
0
𝜆max (𝑃) ,

𝛼
0
= min{

𝑐
3

2𝑐
2

, 𝛾
1
𝜎
1
, 𝛾
2
𝜎
2
, 𝛾
3
𝜎
3
} ,

(63)

where 𝑐 > 0 is a positive constant; 𝑉 will be given later in the
proof of Theorem 11.

Proof. Choose the following Lyapunov function candidate:

𝑉 = 𝑉
𝑠𝑊𝜀

+

𝜌

∑

𝑖=2

𝑉
𝑠𝑖
+
1

4

𝜌

∑

𝑖=2

𝑦
4

𝑖
+

1

2𝛾
1

𝜃
𝑇

1
𝜃
1
+

1

2𝛾
2

𝑏̃
2

𝑚

+
1

2𝛾
3

̃
𝑏

𝑇

̃
𝑏

(64)

For any given positive constant, if 𝐸𝑉 ≤ 𝑐, according to
Lemma 9, we obtain that 𝑠

1
, . . . , 𝑠

𝜌
, 𝑦
2
, . . . , 𝑦

𝜌
, 𝑦, 𝜃

1
, 𝑏̂
𝑚
, ̂𝑏

are bounded in probability. 𝑉
𝑊

≤ 𝑉
𝑠𝑊𝜀

= 𝑉
𝑠1
+ 𝑉
𝑊
+ 𝑉
𝜀
≤

𝑉 ≤ 𝑐, and, from Assumption 2, we obtain that (𝑐
1
/𝜆
0
)‖𝑧‖
4

≤

(1/𝜆
0
)𝑊 ≤ 𝑐; that is, ‖𝑧‖4 ≤ 𝜆

0
𝑐/𝑐
1
, so 𝑧 is bounded in

probability.
Furthermore, (64) is rewritten as 𝑉 = (1/𝜆

0
)𝑊 +

(1/2)𝑉
𝜌
− (𝑐
3
/2𝜆
0
)‖𝑧‖
4; then 𝑉

𝜌
= 2𝑉 − (2/𝜆

0
)𝑊 +

(𝑐
3
/𝜆
0
)‖𝑧
4

‖ ≤ (2 + 𝑐
3
/𝑐
1
)𝑐, and choosing 𝑝 = (2 + 𝑐

3
/𝑐
1
)𝑐,

we get 𝑉
𝜌
≤ 𝑝.

From (14) and (49), we have that 𝜉,𝜔, 𝛼
1
are also bounded

in probability. It yields that V
𝑚−1,2

, . . . , V
0,2

are all bounded
in probability. Noting V

𝑚,2
= 𝑠
2
+ 𝑦
2
+ 𝛼
1
, we obtain that

V
𝑚,2

is bounded in probability. From (14), we have that ̇V
0,1

=

−𝑙
1
V
0,1
+ V
0,2

and ̇V
𝑚,1

= −𝑙
1
V
𝑚,1

+ V
𝑚,2

. Thus we obtain that
V
0,1
, V
𝑚,1

are also bounded. Furthermore, from (42), we have
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that 𝛼
𝑖
(𝑖 = 2, . . . , 𝜌 − 1) are bounded. According to (16) and

(17), we obtain

[
[
[
[
[
[

[

V
0,1

V
0,2

V
1,2

.

.

.

V
𝑚−1,2

]
]
]
]
]
]

]

=

[
[
[
[
[
[

[

1 0 0 ⋅ ⋅ ⋅ 0

0 1 0 ⋅ ⋅ ⋅ 0

∗ ∗ 1 ⋅ ⋅ ⋅ 0

.

.

. d
.
.
.

∗ ∗ ⋅ ⋅ ⋅ ∗ 1

]
]
]
]
]
]

]

[
[
[
[
[
[

[

𝜆
1

𝜆
2

𝜆
3

.

.

.

𝜆
𝑚+1

]
]
]
]
]
]

]

. (65)

Since V
0,1
, V
0,2
, V
1,2
, . . . , V

𝑚−1,2
are bounded in probability, we

have that 𝜆
1
, . . . , 𝜆

𝑚+1
are all bounded in probability. From

(17), we get that 𝜆
𝑚+2

is also bounded. In view of (40), (44),
(47)–(49), and (62), using Young’s inequality, we obtain

ℓ𝑉 ≤ −(ℎ −
9

4
) 𝜀
𝑇

𝜀 −

𝜌

∑

𝑖=1

(𝑘
𝑖
−
3

2
𝑏max −

9

4
) 𝑠
4

𝑖

−

𝜌

∑

𝑖=2

(
1

𝜏
𝑖

−
1

4
𝑏max − 1)𝑦

4

𝑖
−

𝑐
3

2𝜆
0

‖𝑧‖
4

−

𝜎
1

󵄩󵄩󵄩󵄩󵄩
𝜃
1

󵄩󵄩󵄩󵄩󵄩

2

2
−
𝜎
2
𝑏̃
2

𝑚

2
−

𝜎
3

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

̃
𝑏

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

2
+ 𝑄 (𝑦)

+
1

4
𝑁
4

0
(𝑝) +

1

4
𝑀
4

(𝑝) +
1

4

𝜌

∑

𝑖=2

𝑁
4

𝑖
(𝑝)

+

𝜌

∑

𝑖=2

𝐶
𝑖
(𝑝) +

𝜎
1

󵄩󵄩󵄩󵄩𝜃1
󵄩󵄩󵄩󵄩

2

2
+
𝜎
2
𝑏
2

𝑚

2
+

𝜎
3

󵄩󵄩󵄩󵄩󵄩
𝑏
󵄩󵄩󵄩󵄩󵄩

2

2
+ 𝐶
0
.

(66)

Substituting (63) into (66), we obtain

ℓ𝑉 ≤ −𝛼
0
𝑉 + 𝜇

1
+ 𝜇
0
, (67)

where 𝜇
1
= (1/4)𝑁

4

0
(𝑝) + (1/4)𝑀

4

(𝑝) + (1/4)∑
𝜌

𝑖=2
𝑁
4

𝑖
(𝑝) +

∑
𝜌

𝑖=2
𝐶
𝑖
(𝑝)+ 𝜎

1
‖𝜃
1
‖
2

/2+ 𝜎
2
𝑏
2

𝑚
/2+ 𝜎

3
‖𝑏‖
2

/2+𝐶
0
. Since |𝑄(𝑦)|

is a nonnegative continuous function, let |𝑄(𝑦)| ≤ 𝜇
0
, where

𝜇
0
> 0.
If 𝛼
0
≥ (𝜇
1
+𝜇
0
)/𝑐, and𝐸𝑉 = 𝑐, thenwe have 𝑑𝐸𝑉/𝑑𝑡 ≤ 0.

Thus, if 𝐸𝑉(0) ≤ 𝑐, then 𝐸𝑉(𝑡) ≤ 𝑐, ∀𝑡 > 0; that is,

0 ≤ 𝐸𝑉 (𝑡) ≤
𝜇
1
+ 𝜇
0

𝛼
0

+ [𝑉 (0) −
𝜇
1
+ 𝜇
0

𝛼
0

] 𝑒
−𝛼0𝑡

≤ 𝑉 (0) .

(68)

Similar to the discussion of Theorem 11 in [32], it is easy to
know that the conclusion is true.

Remark 12. This paper differs from [32] in the following
several aspects. (1) Unmodeled dynamics is dealt with by
introducing a novel description based on Lyapunov function
in this paper while the dynamic signal was handled with the
help of a dynamic signal in [32]. (2) The unknown nonlinear
system functions are handled together with some functions
produced in stability analysis, but they were directly approx-
imated before constructing the observer in [32]. Therefore,
this brings out a good result that the filter order is reduced. (3)

The neural networks weight vector used to approximate the
black box function at the first design step is adjusted online
in this paper such that much more information of weight
vector can be used in adaptive law, whereas only the norm
of weight vector acts as adaptive tuning parameter in [32].
(4) Utilizing bounded input bounded output stability and
linear equations (65), the stability of the closed-loop system is
proved in this paper, which avoids using the transfer function
to make stability analysis in [32], which is questionable in
probability sense.

Remark 13. The design parameters 𝑘
𝑖
, 𝜏
𝑖
and 𝛼

0
determined

by (63) in Theorem 11 are only a sufficient condition. They
provide a guideline for the designers. From (63), some
suggestions are given for the choice of some key design
parameters for any given positive constants 𝐵

0
and 𝑐.

(i) Increasing 𝛾
1
, 𝛾
2
, 𝛾
3
helps to increase 𝛼

0
, subsequently

reduces 𝜇
1
/𝛼
0
.

(ii) Decreasing 𝜎
1
, 𝜎
2
, 𝜎
3
helps to reduce 𝜇

1
and reduces

𝜇
1
/𝛼
0
.

(iii) Increasing 𝑘
1
, . . . , 𝑘

𝜌
helps to increase 𝛼

0
and reduces

𝜇
1
/𝛼
0
.

In practical applications, to obtain good tracking perfor-
mance, some experiments need to be done before the valid
parameters are given.

4. Simulation Results

To demonstrate the effectiveness of the proposed approach,
two numerical examples are given.

Example 1. Consider the following third-order stochastic
nonlinear system with unmodeled dynamics:

̇𝑧 = 𝑞 (𝑧, 𝑦) ,

𝑑𝑥
1
= (𝑥
2
+
𝑦 − 𝑦
3

1 + 𝑦2
+ 0.5𝑧)𝑑𝑡 + 𝑦 sin (𝑦3) 𝑑𝑤,

𝑑𝑥
2
= (𝑥
3
+
𝑦 − 𝑦
3

1 + 𝑦2
+ 0.5𝑧 + 0.2 (35 + 𝑦

2

) 𝑢)𝑑𝑡

+ 𝑥
1
sin (𝑦3) 𝑑𝑤,

𝑑𝑥
3

= (𝑦
2 tanh (𝑦) − (𝑦2 + 2𝑦) sin𝑦 + 0.2 (35 + 𝑦2) 𝑢 + 𝑦𝑧) 𝑑𝑡

+ 0.5𝑦
2

𝑑𝑤,

𝑦 = 𝑥
1
,

(69)

where 𝑞(𝑧, 𝑦) = −2𝑧 + 𝑦 sin 𝑡 + 0.5, 𝑚 = 1, 𝜌 = 2. The
desired tracking trajectory is taken as 𝑦

𝑑
= 0.5 sin(0.5𝑡).

Select 𝑊(𝑧, 𝑡) = (1/4)𝑧
4, 𝑐
1
= 1/8, 𝑐

2
= 1, 𝑐

3
= 2, 𝑐

4
= 1,
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𝑐
5

= 0.5; then (𝜕𝑊/𝜕𝑡)(𝑧, 𝑡) + (𝜕𝑊/𝜕𝑧)(𝑧, 𝑡)(𝑞(𝑧, 0, 𝑡) −

𝑞(0, 0, 𝑡)) = −2𝑧
4, |(𝜕𝑊/𝜕𝑧)(𝑧, 𝑡)| = |𝑧|

3, |𝑞(0, 0, 𝑡)| = 0.5;
𝜓
0
(|𝑦|) = |𝑦|, |𝑞(𝑧, 𝑦, 𝑡) − 𝑞(𝑧, 0, 𝑡)| = |𝑦 sin 𝑡| ≤ 𝜓

0
(|𝑦|), and

it satisfies the conditions of Assumptions 2 and 3.
The filters are designed as follows:

̇𝜉
1
= −𝑙
1
𝜉
1
+ 𝜉
2
+ 𝑙
1
𝑦,

̇𝜉
2
= −𝑙
2
𝜉
1
+ 𝜉
3
+ 𝑙
2
𝑦,

̇𝜉
3
= −𝑙
3
𝜉
1
+ 𝑙
3
𝑦,

̇𝜆
1
= −𝑙
1
𝜆
1
+ 𝜆
2
,

̇𝜆
2
= −𝑙
2
𝜆
1
+ 𝜆
3
,

̇𝜆
3
= −𝑙
3
𝜆
1
+ 𝜎 (𝑦) 𝑢.

(70)

The adaptation laws are employed as follows:

̇
𝜃̂
1
= 𝛾
1
(𝑠
3

1
𝜓
1
(𝑋) − 𝜎

1
𝜃
1
) ,

̇
𝑏
1
= 𝛾
2
(𝑠
3

1
𝛼
1
− 𝜎
2
𝑏̂
1
) ,

̇
𝑏
0
= 𝛾
3
(𝑠
3

1
V
0,2
− 𝜎
3
𝑏̂
0
) ,

(71)

where𝑋 = [𝑠
1
, 𝑦
𝑑
, ̇𝑦
𝑑
]
𝑇.

The virtual control law 𝛼
1
is chosen as follows:

𝛼
1
=

𝑏̂
1

𝑏̂
2

1
+ 𝛽

(−𝑘
1
𝑠
1
− 𝜉
2
− V
0,2
𝑏̂
0
− 𝑠
3

1
𝜃
𝑇

1
𝜓
1
(𝑋)) . (72)

The control law is employed as follows:

𝑢 =
(−𝑘
2
𝑠
2
+ 𝑙
2
V
0,1
+ ̇𝜔
2
)

𝜎 (𝑦)
, (73)

where V
0,1

= 𝜆
1
, V
0,2

= 𝜆
2
, 𝜎(𝑦) = 35 + 𝑦2.

In the simulation, 𝑠
1
= 𝑦 − 𝑦

𝑑
, 𝑠
2
= V
0,2

− 𝜔
2
, 𝑙
1
= 6,

𝑙
2
= 11, 𝑙

3
= 6, 𝑘

1
= 40, 𝑘

2
= 50, 𝛽 = 0.02, 𝜔

2
(0) = 0.1,

𝜏
2
= 0.01, 𝛾

1
= 𝛾
2
= 𝛾
3
= 2, 𝜎

1
= 𝜎
2
= 𝜎
3
= 0.05, 𝑥(0) =

[0.2, 0, 0]
𝑇, 𝜉(0) = [0, 0, 0]

𝑇, 𝜆(0) = [0, 0, 0]
𝑇, 𝑏̂
0
(0) = 𝑏̂

1
(0) =

1, 𝜃
1
(0) = [0.1]

𝑇

1×10
, 𝑀
1
= 10. Simulation results are shown

in Figures 1, 2, and 3. From Figure 1, it can be seen that fairly
good tracking performance is obtained.

Remark 14. According to (69), we know that 𝑏
1
= 0.2 and

𝑏max = 1. From the above selected design parameters and
(63), it is easy to see that 𝑐

3
/(2𝑐
2
) = 1, 𝛼

0
= 0.1. The constant

ℎ is only used to analyze the stability in the closed-loop
system. Therefore, (63) is true for the above selected design
parameters 𝛾

1
, 𝛾
2
, 𝛾
3
, 𝜎
1
, 𝜎
2
, 𝜎
3
, 𝑘
1
, 𝑘
2
, 𝜏
2
.

0 10 20 30 40

0

0.5

−0.5

y
,
y
d

t (s)

Figure 1: Output 𝑦 (solid line) and desired trajectory 𝑦
𝑑
(dotted

line).

0 10 20 30 40

0

0.1

−0.1

s
1

t (s)

Figure 2: Tracking error 𝑠
1
.

Example 2. To compare the simulation results with [32],
consider the following same stochastic nonlinear systemwith
unmodeled dynamics in [32]:

̇𝑧 = 𝑞 (𝑧, 𝑦) ,

𝑑𝑥
1
= (𝑥
2
+
𝑥
1
− 𝑥
3

1

1 + 𝑥
2

1

+ 0.5𝑧)𝑑𝑡 + 𝑥
1
sin (𝑥3

1
) 𝑑𝑤,

𝑑𝑥
2
= (𝑥
2

1
tanh (𝑥

1
) − (𝑥

2

1
+ 2𝑥
1
) sin𝑥

1

+ 0.2 (0.5 + 𝑥
2

1
) 𝑢 + 𝑥

1
𝑧) 𝑑𝑡

+ 0.5𝑥
2

1
𝑑𝑤,

𝑦 = 𝑥
1
,

(74)
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20

−20

−40

−60
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Figure 3: Control signal 𝑢.

0 10 20 30 40
t (s)

0

0.5

−0.5

y
,
y
d

Figure 4: Output 𝑦 (solid line) and desired trajectory 𝑦
𝑑
(dotted

line).

where 𝑞(𝑧, 𝑦) = −2𝑧 + 𝑦
2, 𝑚 = 0, 𝜌 = 2. The desired

tracking trajectory is taken as 𝑦
𝑑
= 0.5 sin(0.5𝑡). The filters

are designed as follows:

̇𝜉
1
= −𝑙
1
𝜉
1
+ 𝜉
2
+ 𝑙
1
𝑦,

̇𝜉
2
= −𝑙
2
𝜉
1
+ 𝑙
2
𝑦,

̇𝜆
1
= −𝑙
1
𝜆
1
+ 𝜆
2
,

̇𝜆
2
= −𝑙
2
𝜆
1
+ 𝜎 (𝑦) 𝑢.

(75)

The adaptation laws are employed as follows:

̇
𝜃̂
1
= 𝛾
1
(𝑠
3

1
𝜓
1
(𝑋) − 𝜎

1
𝜃
1
) ,

̇
𝑏
0
= 𝛾
3
(𝑠
3

1
V
0,2
− 𝜎
3
𝑏̂
0
) ,

(76)

where𝑋 = [𝑠
1
, 𝑦
𝑑
, ̇𝑦
𝑑
]
𝑇.

The virtual control law 𝛼
1
is chosen as follows:

𝛼
1
=

𝑏̂
0

𝑏̂
2

0
+ 𝛽

(−𝑘
1
𝑠
1
− 𝜉
2
− 𝜆
2
𝑏̂
0
− 𝑠
3

1
𝜃
𝑇

1
𝜓
1
(𝑋)) . (77)

0

0 10 20 30 40

s
1

t (s)

−0.02

−0.04

−0.06

Figure 5: Tracking error 𝑠
1
.

0

50

100

150

0 10 20 30 40
t (s)

u

−50

−100

−150

Figure 6: Control signal 𝑢.

The control law is employed as follows:

𝑢 =
(−𝑘
2
𝑠
2
+ 𝑙
2
V
0,1
+ ̇𝜔
2
)

𝜎 (𝑦)
, (78)

where V
0,1

= 𝜆
1
, 𝜎(𝑦) = 0.5 + 𝑦2.

In the simulation, 𝑠
1
= 𝑦−𝑦

𝑑
, 𝑠
2
= V
0,2
−𝜔
2
, 𝑙
1
= 5, 𝑙
2
= 6,

𝑘
1
= 60, 𝑘

2
= 60, 𝛽 = 0.02, 𝜔

2
(0) = 0.1, 𝜏

2
= 0.01, 𝛾

1
= 𝛾
3
=

1.5, 𝜎
1
= 𝜎
3
= 0.05, 𝑥(0) = [0, 0]

𝑇, 𝑧(0) = 0, 𝜉(0) = [0, 0]
𝑇,

𝜆(0) = [0, 0]
𝑇, 𝑏̂
0
(0) = 1, 𝜃

1
(0) = [0.1, 0.1, 0.1, 0.1, 0.1]

𝑇,
𝑀
1
= 5. Simulation results are shown in Figures 4–6. If

the proposed approach in [32] is utilized, and the design
parameters of the adaptive controller are taken, the same
values as in [32], the corresponding simulation results are as
shown in Figures 7–9.

From Figures 4, 5, 7, and 8, it can be seen that better
tracking performance can be obtained than [32]. However, 42
equations need to be solved online using the method in [32]
while only 14 equations need to be solved online using the
approach in this paper. Moreover, we know that increasing
𝑘
1
, 𝑘
2
helps to improve the tracking precision.
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Figure 7: Output 𝑦 (solid line) and desired trajectory 𝑦
𝑑
(dotted

line).

0 10 20 30
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1

Figure 8: Tracking error 𝑠
1
.

5. Conclusions

Using K-filters and dynamic surface control, an adaptive
output feedback neural control scheme has been proposed
for a class of stochastic nonlinear systems with unmodeled
dynamics. Unmodeled dynamics has been dealt with by
introducing the novel description based on Lyapunov func-
tion. The unknown nonlinear system functions are handled
togetherwith some functions resulting from stability analysis,
and the filter order is reduced. The neural network weight
vector is adjusted online. Therefore, the more information
included in radial basis function can be fully made use of.
Using Chebyshev’s inequality and Itô formula, the designed
controller can guarantee that all the signals in the closed-
loop system are bounded in probability and the error signals
are semiglobally uniformly ultimately bounded in the sense
of four-moment or mean square. Simulation results illustrate
the effectiveness of the proposed approach.
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This paper considers the 𝑝-moment boundedness of nonlinear impulsive stochastic delay differential systems (ISDDSs). Using the
Lyapunov-Razumikhin method and stochastic analysis techniques, we obtain sufficient conditions which guarantee the 𝑝-moment
boundedness of ISDDSs. Two cases are considered, one is that the stochastic delay differential system (SDDS) may not be bounded,
and how an impulsive strategy should be taken to make the SDDS be bounded. The other is that the SDDS is bounded, and an
impulsive disturbance appears in this SDDS, then what restrictions on the impulsive disturbance should be adopted to maintain
the boundedness of the SDDS. Our results provide sufficient criteria for these two cases. At last, two examples are given to illustrate
the correctness of our results.

1. Introduction

Boundedness is an important property of a given system;
for example, in the population models, the boundedness
of a biological population is strongly connected with the
persistence and extinction [1]. Another important application
is on the stability; the practical stability actually is of a kind
of boundedness [2]. Impulsive phenomena widely exist in
the real world, and known, impulsive effects can change
the properties of a given system; for example, given an
unstable system, if a suitable impulsive strategy, including
the impulsive strength and impulsive moments, is adopted,
this system can be stabilized [3]. It is easy to understand
that the impulsive effects can destroy the boundedness of a
given system when the impulsive strength is large enough
and the impulsive interval is small enough. Time delay is
extensive in the engineering and applications and impulsive
delay differential systems were considered in lots of papers
[3–9]. The boundedness of impulsive delay differential sys-
tems has also been paid considerable attentions in the past
decades. In [10], the authors presented sufficient conditions
for uniform ultimate boundedness by virtue of the Lyapunov

functional method. The boundedness of variable impulsive
perturbations system was considered in [11] and the eventual
boundedness was studied in [12]. Recently, the perturbing
Lyapunov function method was also used in the study of
boundedness [13].

Stochastic noise is ubiquitous [14–16] and stochastic delay
differential systems (SDDSs) have been one of the focuses of
scientific research for many years. Many properties of SDDSs
have been studied and lots of papers were published; see
[17, 18] and the references therein. Being the wide existence
of stochastic delay and impulsive effects, it is a natural task
to consider the stochastic delay differential systems with
impulsive effects. These systems are described by impulsive
stochastic delay differential systems (ISDDSs). In the past ten
years, the stability of ISDDSs has attracted a lot of researchers,
and a great deal of results on the stability of ISDDSs have been
reported; see [19–24] and the references therein.

However, little attention has been paid to the bounded-
ness of ISDDSs. In this paper, the boundedness of ISDDSs
is considered under two cases. The first case is that the
SDDSs may be unbounded, then what kind of impulsive
strategy should be taken to make the system be bounded.
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The second case is that the SDDSs are bounded, then this
system can tolerate what kind of impulsive effect to maintain
the boundedness.

In this paper, sufficient conditions are presented to
guarantee the boundedness of ISDDSs; these conditions also
admit the global existence of solutions for ISDDSs, which
usually was a standard assumption in many papers [25–
27]. Making use of the Lyapunov-Razumikhin method, we
generalize the results of [10] to the stochastic situation. At
last, two examples are given to illustrate the correctness of our
results.

2. Preliminaries and Model Description

Let (Ω, 𝐹, {𝐹
𝑡
}
𝑡⩾0

, 𝑃) be a complete probability space with
a filtration {𝐹

𝑡
}
𝑡⩾0

satisfying the usual conditions (i.e., the
filtration contains all 𝑃-null sets and is right continuous).
Let R = (−∞, +∞), R+ = [0, +∞), and N = {1, 2, . . .}.
If 𝐴 is a vector or a matrix, its transpose is denoted by 𝐴

𝑇.
Consider 𝑃𝐶(J;R𝑛) = {𝜑 : J → R𝑛, 𝜑(𝑠) is continuous
for all but at most countable points 𝑠 ∈ J and at these
points, 𝜑(𝑠

+

) and 𝜑(𝑠
−

) exist and 𝜑(𝑠
+

) = 𝜑(𝑠)}, where
J ⊂ R is an interval and 𝜑(𝑠

+

) and 𝜑(𝑠
−

) denote the
right-hand and left-hand limits of the function 𝜑(𝑠) at time
𝑠, respectively. Consider 𝑃𝐶

1,2

= {𝜑(𝑡, 𝑥) : 𝜑(⋅, 𝑥) ∈

𝑃𝐶 and 𝜑(𝑡, 𝑥) ∈ 𝐶
1,2 if 𝑡 is not at the uncontinuous

points 𝑠}. Let 𝑃𝐶
𝑏

𝐹0

([−𝜏, 0];R𝑛)(𝑃𝐶
𝑏

𝐹𝑡

([−𝜏, 0];R𝑛)) denote the
family of all bounded 𝐹

0
(𝐹
𝑡
)-measurable, 𝑃𝐶-valued random

variables. Let | ⋅ | be the Euclidean norm in R𝑛 and ‖𝜑‖
𝜏

=

sup
−𝜏⩽𝜃⩽0

|𝜑(𝑡 + 𝜃)|.
Consider the following nonlinear impulsive stochastic

delay differential system:

𝑑𝑥 (𝑡) = 𝑓 (𝑡, 𝑥
𝑡
) 𝑑𝑡 + 𝑔 (𝑡, 𝑥

𝑡
) 𝑑𝐵 (𝑡) ,

𝑡 > 𝑡
0
, 𝑡 ̸= 𝑡

𝑘
, 𝑘 ∈ N,

𝑥 (𝑡
𝑘
) = 𝑥 (𝑡

−

𝑘
) + 𝐼 (𝑡

𝑘
, 𝑥 (𝑡
−

𝑘
)) , 𝑘 ∈ N,

𝑥 (𝑡
0
+ 𝑠) = 𝜑 (𝑠) , 𝑠 ∈ [−𝜏, 0] ,

(1)

where𝑥
𝑡
(𝑠) = 𝑥(𝑡+𝑠), 𝑠 ∈ [−𝜏, 0],𝑓 : R+× 𝑃𝐶([−𝜏, 0],R𝑛) →

R𝑛, 𝑔 : R+ × 𝑃𝐶([−𝜏, 0],R𝑛) → R𝑛×𝑚, 𝐼 : R+ × R𝑛 → R𝑛

and satisfies global Lipschitz condition, 𝜏 represents the delay
in system (1), impulsivemoment 𝑡

𝑘
satisfies 0 < 𝑡

1
< 𝑡
2
< ⋅ ⋅ ⋅ <

𝑡
𝑛
< ⋅ ⋅ ⋅ , and 𝑡

𝑘
→ ∞ as 𝑘 → ∞. 𝐵(𝑡) is an 𝑚-dimensenal

Brownian motion and 𝜑(𝑠) ∈ 𝑃𝐶
𝑏

𝐹0

([−𝜏, 0],R𝑛).
Given a function 𝑉 ∈ 𝑃𝐶

1,2

: R+ × R𝑛 → R+, the
operatorL of 𝑉(𝑡, 𝑥) with respect to system (1) is defined by

L𝑉 (𝑡, 𝑥) = 𝑉
𝑡
+ 𝑉
𝑥
𝑓 (𝑡, 𝑥

𝑡
)

+
1

2
trace [𝑔𝑇 (𝑡, 𝑥

𝑡
) 𝑉
𝑥𝑥

𝑔 (𝑡, 𝑥
𝑡
)] ,

(2)

where

𝑉
𝑡
=

𝜕𝑉 (𝑡, 𝑥)

𝜕𝑡
,

𝑉
𝑥
= (

𝜕𝑉 (𝑡, 𝑥)

𝜕𝑥
1

,
𝜕𝑉 (𝑡, 𝑥)

𝜕𝑥
2

, . . . ,
𝜕𝑉 (𝑡, 𝑥)

𝜕𝑥
𝑛

)

𝑇

,

𝑉
𝑥𝑥

= (
𝜕
2

𝑉 (𝑡, 𝑥)

𝜕𝑥
𝑖
𝜕𝑥
𝑗

)

𝑛×𝑛

.

(3)

Definition 1. System (1) is said to be
(1) 𝑝-moment bounded if, for every 𝐵

1
> 0 and 𝑡

0
∈

R
+
, there exists 𝐵

2
= 𝐵
2
(𝑡
0
, 𝐵
1
) such that if 𝜑 ∈

𝑃𝐶
𝑏

𝐹0

([−𝜏, 0],R𝑛) with 𝐸‖𝜑‖
𝑝

𝜏
⩽ 𝐵
1
and 𝑥 = 𝑥(𝑡, 𝑡

0
, 𝜑)

is a solution of (1), then 𝐸|𝑥(𝑡, 𝑡
0
, 𝜑)|
𝑝

⩽ 𝐵
2
for all

𝑡 ⩾ 𝑡
0
;

(2) 𝑝-moment uniformly bounded if the system (1) is
𝑝-moment bounded and 𝐵

2
is independent of 𝑡

0
;

(3) 𝑝-moment ultimately bounded if the system (1) is
𝑝-moment bounded and there exists a positive con-
stant 𝐵 such that for every 𝐵

3
> 0 and 𝑡

0
∈ R+ there

exists some𝑇 = 𝑇(𝑡
0
, 𝐵
3
) > 0; if𝜑 ∈ 𝑃𝐶

𝑏

𝐹0

([−𝜏, 0],R𝑛)

with𝐸‖𝜑‖
𝑝

𝜏
⩽ 𝐵
3
, then𝐸|𝑥(𝑡, 𝑡

0
, 𝜑)|
𝑝

⩽ 𝐵 for 𝑡 ⩾ 𝑡
0
+𝑇;

(4) 𝑝-moment uniformly ultimately bounded, if the sys-
tem (1) is 𝑝-moment ultimately bounded and 𝑇 is
independent of 𝑡

0
.

3. Boundedness with Impulsive Control

In this section, we consider the first case: when the given
SDDS may not be bounded, we adopt an impulsive strategy
to get the boundedness. The main result is stated as follows.

Theorem 2. Assume there exist a positive function 𝑉(𝑡, 𝑥) ∈

𝑃𝐶
1,2 and positive constants 𝜌, 𝑝, 𝑎, 𝑏, 𝛾, 𝜆, where 0 < 𝜆 < 1

and 1 − 𝜆 − 𝛾𝜏 > 0, such that
(1) 𝑎|𝑥|

𝑝

⩽ 𝑉(𝑡, 𝑥) ⩽ 𝑏|𝑥|
𝑝 for any (𝑡, 𝑥);

(2) for 𝑡 ̸= 𝑡
𝑘
, any 𝑠 ∈ [−𝜏, 0], and 𝜙(𝑡) ∈ 𝑃𝐶([−𝜏, 0],R𝑛),

L𝑉(𝑡, 𝜙(0)) ⩽ 𝛾𝑉(𝑡, 𝜙(0)) whenever 𝑉(𝑡, 𝜙(0)) ⩾

𝜆𝑉(𝑡 + 𝑠, 𝜙(𝑠)) and |𝜙(0)|
𝑝

⩾ 𝜌;
(3) 𝑉(𝑡

𝑘
, 𝜙(0)+𝐼(𝑡

𝑘
, 𝜙(0))) ⩽ 𝜆𝑉(𝑡

−

𝑘
, 𝜙(0)) for all |𝜙(0)|𝑝 ⩾

𝜌;
(4) there exists a positive constant 𝜌

1
⩾ 𝜌 such that if

|𝜙(0)|
𝑝

⩽ 𝜌, then |𝜙(0) + 𝐼(𝑡
𝑘
, 𝜙(0))|

𝑝

⩽ 𝜌
1
;

(5) 𝛼 = sup
𝑘∈Z{𝑡𝑘 − 𝑡

𝑘−1
} < ∞, 𝛼𝛾 < 1 − 𝜆.

Then the system (1) is 𝑝-moment uniformly ultimately
bounded.

Proof. We separate the proof into two parts. First, we show
the 𝑝-moment uniform boundedness and then we give the
ultimate uniform boundedness.

Step 1. Let 𝐵
1
> 0. Without loss of generality, we assume 𝐵

1
⩾

𝜌
1
⩾ 𝜌. Choose 𝐵

2
= 𝐵
2
(𝐵
1
) such that 𝑏𝐵

1
< 𝜆𝑎𝐵

2
; then we

can see 𝐵
2
> 𝐵
1
.
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Let𝐸‖𝜑‖𝑝
𝜏
< 𝐵
1
and 𝑡
0
∈ [𝑡
𝑙−1

, 𝑡
𝑙
) for some positive integer

𝑙. Suppose 𝑥(𝑡) = 𝑥(𝑡, 𝑡
0
, 𝜑) is a solution of system (1) with

initial value 𝜑 and its maximal interval of existence is [𝑡
0
−

𝜏, 𝑡
0
+ 𝛽) for some positive constant 𝛽. We will show that, for

any 𝑡 ∈ [𝑡
0
− 𝜏, 𝑡
0
+ 𝛽), 𝐸|𝑥(𝑡)|𝑝 ⩽ 𝐵

2
. By the way, if this

statement is true, we know that the solution of system (1) is
not explored in [𝑡

0
, 𝑡
0
+ 𝛽), and the global existence of the

solution follows.
For the sake of contradiction, suppose 𝐸|𝑥(𝑡)|

𝑝

⩾ 𝐵
2
for

some 𝑡 ∈ [𝑡
0
, 𝑡
0
+ 𝛽). Then there exists 𝑡̂ = inf{𝑡 ∈ [𝑡

0
− 𝜏, 𝑡
0
+

𝛽) | 𝐸|𝑥(𝑡)|
𝑝

> 𝐵
2
}. Note that 𝐸|𝑥(𝑡)|𝑝 ⩽ 𝐸‖𝜑‖

𝑝

𝜏
⩽ 𝐵
1
< 𝐵
2

for 𝑡 ∈ [𝑡
0
−𝜏, 𝑡
0
]; we see that 𝑡̂ ∈ (𝑡

0
, 𝑡
0
+𝛽) and 𝐸|𝑥(𝑡)|

𝑝

⩽ 𝐵
2

for 𝑡 ∈ [𝑡
0
− 𝜏, 𝑡̂) and 𝐸|𝑥(𝑡̂)|

𝑝

⩾ 𝐵
2
.

Write𝑉(𝑡, 𝑥(𝑡)) = 𝑉(𝑡). For 𝑡 ∈ [𝑡
0
− 𝜏, 𝑡
0
], we have 𝐸𝑉(𝑡)

⩽ 𝑏𝐸|𝑥(𝑡)|
𝑝

⩽ 𝑏𝐸‖𝜑‖
𝑝

𝜏
⩽ 𝑏𝐵
1

< 𝜆𝑎𝐵
2

< 𝑎𝐵
2
, and 𝐸𝑉(𝑡̂) ⩾

𝑎𝐸|𝑥(𝑡̂)|
𝑝

⩾ 𝑎𝐵
2
. Define 𝑡

∗

= inf{𝑡 ∈ [𝑡
0
, 𝑡̂] | 𝐸𝑉(𝑡) ⩾ 𝑎𝐵

2
}

and then 𝑡
∗

∈ (𝑡
0
, 𝑡̂] and 𝐸𝑉(𝑡) < 𝑎𝐵

2
for 𝑡 ∈ [𝑡

0
− 𝜏, 𝑡
∗

) and
𝐸𝑉(𝑡
∗

) ⩾ 𝑎𝐵
2
.

We claim that 𝑡∗ ̸= 𝑡
𝑘
for any 𝑘 ∈ N and then 𝐸𝑉(𝑡

∗

) =

𝑎𝐵
2
.
If it is not true, suppose 𝑡

∗

= 𝑡
𝑘
for some 𝑘. If 𝐸|𝑥(𝑡−

𝑘
)|
𝑝

⩾

𝜌, then 𝑎𝐵
2

⩽ 𝐸𝑉(𝑡
𝑘
) ⩽ 𝜆𝐸𝑉(𝑡

−

𝑘
) < 𝜆𝑎𝐵

2
< 𝑎𝐵
2
, which is

a contradiction. If 𝐸|𝑥(𝑡−
𝑘
)|
𝑝

< 𝜌, then 𝐸|𝑥(𝑡
𝑘
)|
𝑝

= 𝐸|𝑥(𝑡
−

𝑘
) +

𝐼(𝑡
𝑘
, 𝑥(𝑡
−

𝑘
))|
𝑝

< 𝜌
1
< 𝐵
1
. Then 𝑎𝐵

2
< 𝐸𝑉(𝑡

𝑘
) < 𝑏𝐵

1
< 𝜆𝑎𝐵

2
<

𝑎𝐵
2
, which is a contradiction.
Now we will proceed under two cases.

Case 1. Consider 𝑡
𝑙−1

⩽ 𝑡
0
< 𝑡
∗

< 𝑡
𝑙
.

Let 𝑡 = sup{𝑡 ∈ [𝑡
0
, 𝑡
∗

] | 𝐸𝑉(𝑡) ⩽ 𝜆𝑎𝐵
2
}. Since 𝐸𝑉(𝑡

0
) <

𝑏𝐵
1
< 𝜆𝑎𝐵

2
, 𝐸𝑉(𝑡

∗

) = 𝑎𝐵
2
> 𝜆𝑎𝐵

2
, and 𝐸𝑉(𝑡) is continuous

on [𝑡
0
, 𝑡
∗

], then 𝑡 ∈ (𝑡
0
, 𝑡
∗

) and 𝐸𝑉(𝑡) = 𝜆𝑎𝐵
2
and, when

𝑡 ∈ [𝑡, 𝑡
∗

],𝐸𝑉(𝑡) ⩾ 𝜆𝑎𝐵
2
. Hence, for 𝑡 ∈ [𝑡, 𝑡

∗

] and 𝑠 ∈ [−𝜏, 0],
we have

𝜆𝐸𝑉 (𝑡 + 𝑠) ⩽ 𝜆𝑎𝐵
2
⩽ 𝐸𝑉 (𝑡) ,

𝑏𝐵
1
⩽ 𝜆𝑎𝐵

2
⩽ 𝐸𝑉 (𝑡) ⩽ 𝑏𝐸|𝑥 (𝑡)|

𝑝

,

(4)

and we can get

𝐸|𝑥 (𝑡)|
𝑝

⩾ 𝐵
1
⩾ 𝜌. (5)

Then, by virtue of condition (2), for 𝑡 ∈ [𝑡, 𝑡
∗

],

𝐸L𝑉 (𝑡) ⩽ 𝛾𝐸𝑉 (𝑡) ,

𝐸𝑉 (𝑡
∗

) − 𝐸𝑉 (𝑡) = ∫

𝑡
∗

𝑡

𝐸L𝑉 (𝑠) 𝑑𝑠

⩽ ∫

𝑡
∗

𝑡

𝛾𝐸𝑉 (𝑠) 𝑑𝑠 < 𝛾𝛼𝑎𝐵
2
.

(6)

However,

𝐸𝑉 (𝑡
∗

) − 𝐸𝑉 (𝑡) = 𝑎𝐵
2
− 𝜆𝑎𝐵

2
= (1 − 𝜆) 𝑎𝐵

2
> 𝛾𝛼𝑎𝐵

2
,

(7)

which is contradiction. Then we get, in this case,

𝐸|𝑥 (𝑡)|
𝑝

⩽ 𝐵
2
. (8)

Case 2. Consider 𝑡
𝑘
< 𝑡
∗

< 𝑡
𝑘+1

for some 𝑘 ⩾ 𝑙.
Note that 𝐸𝑉(𝑡

𝑘
) ⩽ 𝜆𝑎𝐵

2
.This inequality can be obtained

by the following reason: if 𝐸|𝑥(𝑡
−

𝑘
)|
𝑝

⩾ 𝜌, then 𝐸𝑉(𝑡
𝑘
) ⩽

𝜆𝐸𝑉(𝑡
−

𝑘
) ⩽ 𝜆𝑎𝐵

2
. If𝐸|𝑥(𝑡−

𝑘
)|
𝑝

< 𝜌, we get𝐸|𝑥(𝑡
𝑘
)|
𝑝

< 𝜌
1
< 𝐵
1
,

and then

𝐸𝑉 (𝑡
𝑘
) < 𝑏𝐵

1
< 𝜆𝑎𝐵

2
. (9)

Define 𝑡 = sup{𝑡 ∈ [𝑡
𝑘
, 𝑡
∗

] | 𝐸𝑉(𝑡) ⩽ 𝜆𝑎𝐵
2
}, and then

𝑡 ∈ [𝑡
𝑘
, 𝑡
∗

), 𝐸𝑉(𝑡) = 𝜆𝑎𝐵
2
, and 𝐸𝑉(𝑡) ⩾ 𝜆𝑎𝐵

2
for 𝑡 ∈ [𝑡, 𝑡

∗

].
The same argument as the one inCase 1 yields a contradiction.
Therefore, in this case, we have, for any 𝑡 ∈ [𝑡

0
− 𝜏,∞),

𝐸|𝑥 (𝑡)|
𝑝

⩽ 𝐵
2
. (10)

Now we get that, under conditions (1) to condition (5),
the solutions of (1) are 𝑝-moment uniformly bounded. That
is, if 𝐸‖𝜑‖𝑝

𝜏
⩽ 𝜌
1
, there exists a constant 𝐵 > 0, such that

𝐸|𝑥(𝑡, 𝑡
0
, 𝜑)|
𝑝

⩽ 𝐵 for all 𝑡 ⩾ 𝑡
0
− 𝜏, and, from the proof, we

have 𝑏𝜌
1
< 𝜆𝑎𝐵.

Step 2. Now, let 𝐵
3
> 0 and assume, without loss of generality,

that 𝐵
3
> 𝐵. Then, from the proof of uniform boundedness,

there exists some 𝐵
2
= 𝐵
2
(𝐵
3
) > 𝐵
3
for which if 𝐸‖𝜑‖𝑝

𝜏
⩽ 𝐵
3
,

then 𝐸|𝑥(𝑡)|
𝑝

⩽ 𝐵
2
for 𝑡 ⩾ 𝑡

0
− 𝜏.

Take a constant𝑑 satisfying 0 < 𝑑 ⩽ (1−𝜆−𝛾𝜏)𝑎𝐵/(1−𝛾𝜏);
it is easy to verify that 0 < 𝑑 < (1 − 𝜆)𝑎𝐵. Let 𝑁 = 𝑁(𝐵

3
) be

the smallest positive integer for which 𝑏𝐵
2

< 𝑎𝐵 + 𝑁𝑑 and
𝑇 = 𝑇(𝐵

3
) = 𝛼 + (𝜏 + 𝛼)(𝑁 − 1). Given a solution 𝑥(𝑡) =

𝑥(𝑡, 𝑡
0
, 𝜑) where 𝐸‖𝜑‖

𝑝

𝜏
⩽ 𝐵
3
and 𝑡
0
∈ [𝑡
𝑙−1

, 𝑡
𝑙
), we will show

𝐸|𝑥(𝑡)|
𝑝

⩽ 𝐵 for 𝑡 ⩾ 𝑡
0
+ 𝑇.

Given a constant 𝐴 satisfying 𝑎𝐵 ⩽ 𝐴 − 𝑑 ⩽ 𝑏𝐵
2
and

𝑗 > 𝑙, we will show that if 𝐸𝑉(𝑡) ⩽ 𝐴 for 𝑡 ∈ [𝑡
𝑗
− 𝜏, 𝑡
𝑗
), then

𝐸𝑉(𝑡) ⩽ 𝐴 − 𝑑 for 𝑡 ⩾ 𝑡
𝑗
.

For the sake of contradiction, suppose that there exists
some 𝑡 ⩾ 𝑡

𝑗
for which 𝐸𝑉(𝑡) > 𝐴 − 𝑑 and define

𝑡
∗

= inf {𝑡 ⩾ 𝑡
𝑗
| 𝐸𝑉 (𝑡) > 𝐴 − 𝑑} , (11)

and we suppose 𝑡
∗

∈ [𝑡
𝑘
, 𝑡
𝑘+1

) for some 𝑘 ∈ N. We can get
𝐸𝑉(𝑡) ⩽ 𝐴 − 𝑑 for 𝑡 ∈ [𝑡

𝑗
− 𝜏, 𝑡
∗

) and 𝐸𝑉(𝑡
∗

) ⩾ 𝐴 − 𝑑.
We claim that 𝐸𝑉(𝑡

𝑘
) ⩽ 𝜆𝐴. The fact follows that if

𝐸|𝑥(𝑡
−

𝑘
)|
𝑝

⩾ 𝜌, then 𝐸𝑉(𝑡
𝑘
) ⩽ 𝜆𝐸𝑉(𝑡

−

𝑘
) ⩽ 𝜆𝐴. If 𝐸|𝑥(𝑡−

𝑘
)|
𝑝

< 𝜌

and we have 𝐸|𝑥(𝑡
𝑘
)|
𝑝

⩽ 𝜌
1
, then 𝐸𝑉(𝑡

𝑘
) ⩽ 𝑏𝜌 < 𝑏𝐵 ⩽ 𝜆𝑎𝐵 ⩽

𝜆𝐴.
Now, since 𝑎𝐵 ⩽ 𝐴, we have 𝜆𝐴 = 𝐴−(1−𝜆)𝐴 < 𝐴−(1−

𝜆)𝑎𝐵 < 𝐴 − 𝑑 and 𝐸𝑉(𝑡
𝑘
) < 𝐴 − 𝑑. This implies that 𝑡∗ ̸= 𝑡

𝑘
;

that is, 𝑡∗ ∈ (𝑡
𝑘
, 𝑡
𝑘+1

) and 𝐸𝑉(𝑡
∗

) = 𝐴 − 𝑑 since 𝐸𝑉(𝑡) is
continuous at 𝑡∗. Also, for 𝑡 ∈ [𝑡

𝑘
, 𝑡
∗

], we have 𝐸𝑉(𝑡) ⩽ 𝐴−𝑑.
Define

𝑡 = sup {𝑡 ∈ [𝑡
𝑘
, 𝑡
∗

] | 𝐸𝑉 (𝑡) ⩽ 𝜆 (𝐴 − 𝑑)} . (12)

Since 𝐸𝑉(𝑡
∗

) = 𝐴 − 𝑑 > 𝜆𝐴 > 𝜆(𝐴 − 𝑑), we have 𝑡 ∈ [𝑡
𝑘
, 𝑡
∗

)

and 𝐸𝑉(𝑡) = 𝜆(𝐴 − 𝑑) and 𝐸𝑉(𝑡) ⩾ 𝜆(𝐴 − 𝑑) for 𝑡 ∈ [𝑡, 𝑡
∗

].
Then, if 𝑡 ∈ [𝑡, 𝑡

∗

] and 𝑠 ∈ [−𝜏, 0],

𝜆𝐸𝑉 (𝑡 + 𝑠) ⩽ 𝜆 (𝐴 − 𝑑) < 𝐸𝑉 (𝑡) ,

𝑏𝐸|𝑥 (𝑡)|
𝑝

> 𝐸𝑉 (𝑡) > 𝜆 (𝐴 − 𝑑) > 𝜆𝑎𝐵 > 𝑏𝜌,

(13)
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which yields 𝐸|𝑥(𝑡)|𝑝 > 𝜌. Then, in light of condition (2),

𝐸L𝑉 (𝑡) ⩽ 𝛾𝐸𝑉 (𝑡) . (14)

In terms of Itô formula,

𝐸𝑉 (𝑡
∗

) − 𝐸𝑉 (𝑡) = ∫

𝑡
∗

𝑡

𝐸L𝑉 (𝑠) 𝑑𝑠

⩽ ∫

𝑡
∗

𝑡

𝛾𝐸𝑉 (𝑠) 𝑑𝑠 ⩽ 𝛾𝛼 (𝐴 − 𝑑) .

(15)

But

𝐸𝑉 (𝑡
∗

) − 𝐸𝑉 (𝑡) = 𝐴 − 𝑑 − 𝜆 (𝐴 − 𝑑) > 𝛾𝛼 (𝐴 − 𝑑) , (16)

and this contradiction proves that 𝐸𝑉(𝑡) < 𝐴 − 𝑑 for all 𝑡 ⩾

𝑡
𝑗
.

Now we define a sequence 𝑡
𝑘
(𝑖) ∈ {𝑡

𝑘
, 𝑘 = 𝑙, 𝑙 + 1, . . .},

satisfying 𝑡
𝑘
(1) = 𝑡

𝑙
and 𝑡
𝑘
(𝑖)
−1

− 𝜏 ⩽ 𝑡
𝑘
(𝑖−1) ⩽ 𝑡

𝑘
(𝑖) − 𝜏, and

then we have 𝑡
𝑘
(𝑖) ⩽ 𝑡
𝑘
(𝑖)
−1

+ 𝛼 ⩽ 𝑡
𝑘
(𝑖−1) + 𝜏 + 𝛼. By induction,

we get 𝑡
𝑘
(𝑁) ⩽ 𝑡

0
+ 𝛼 + (𝜏 + 𝛼)(𝑁 − 1) = 𝑡

0
+ 𝑇. We know that

when 𝑡 ∈ [𝑡
0
− 𝜏, 𝑡
𝑙
), that is, 𝑡 ∈ [𝑡

0
− 𝜏, 𝑡
𝑘
(1)), 𝐸𝑉(𝑡) ⩽ 𝑏𝐵

2
;

then by induction we get 𝐸𝑉(𝑡) ⩽ 𝑏𝐵
2
−𝑁𝑑 for 𝑡 ∈ [𝑡

𝑘
(𝑁) ,∞)

and then 𝐸𝑉(𝑡) ⩽ 𝑎𝐵 for 𝑡 ∈ [𝑡
0
+ 𝑇,∞). Using condition (1),

we get that 𝑎𝐸|𝑥(𝑡)|𝑝 ⩽ 𝐸𝑉(𝑡) ⩽ 𝑎𝐵; that is,

𝐸|𝑥 (𝑡)|
𝑝

⩽ 𝐵. (17)

Remark 3. Condition (2) means the system without impulse
may be unbounded. If the impulsive effects satisfy condition
(3) to condition (5), then this system can be bounded.

4. Boundedness with Impulsive Disturbance

In this section, we consider the case that the SDDS is
bounded, and when the impulsive disturbance appears in
the SDDS, then what restrictions should be added to the
disturbance to maintain the boundedness.The result is stated
as follows.

Theorem4. Assume that there exist a positive function𝑉(𝑡, 𝑥)

and positive constants 𝑎, 𝑏, 𝑐, 𝑝, 𝜆
1
, 𝜆
2
, 𝛾, where 1 ⩽ 𝜆

1
< 𝜆
2
,

such that

(1) 𝑎|𝑥|
𝑝

⩽ 𝑉(𝑡, 𝑥) ⩽ 𝑏|𝑥|
𝑝 for any (𝑡, 𝑥);

(2) for 𝑡 ̸= 𝑡
𝑘
, any 𝑠 ∈ [−𝜏, 0], and 𝜙(𝑠) ∈ 𝑃𝐶([−𝜏, 0],R𝑛),

L𝑉(𝑡, 𝜙(0)) ⩽ −𝛾𝑉(𝑡, 𝜙(0)) whenever 𝜆
2
𝑉(𝑡, 𝜙(0)) ⩾

𝑉(𝑡 + 𝑠, 𝜙(𝑠)) and |𝜙(0)|
𝑝

⩾ 𝜌;
(3) 𝑉(𝑡

𝑘
, 𝜙(0) + 𝐼(𝑡

𝑘
, 𝜙(0))) ⩽ 𝜆

1
𝑉(𝑡
−

𝑘
, 𝜙(0)) for all

|𝜙(0)|
𝑝

⩾ 𝜌;
(4) there exists a positive constant 𝜌

1
⩾ 𝜌 such that if

|𝜙(0)|
𝑝

⩽ 𝜌, then |𝜙(0) + 𝐼(𝜏
𝑘
, 𝜙(0))|

𝑝

⩽ 𝜌
1
;

(5) there exist positive constants 𝜇 and 𝛼, such that 𝜇 ⩽

𝑡
𝑘
− 𝑡
𝑘−1

⩽ 𝛼 and 𝜇𝛾 > 𝜆
2
− 1.

Then, the system (1) is 𝑝-moment uniformly ultimately
bounded.

Proof. Step 1. Let𝐵
1
> 0; without loss of generality, we assume

𝐵
1

⩾ 𝜌
1
. Choose 𝐵

2
= 𝐵
2
(𝐵
1
), such that 𝜆

2
𝑏𝐵
1

< 𝑎𝐵
2
,

and then we get 𝐵
2

> 𝐵
1
. Let 𝐸‖𝜑‖

𝑝

𝜏
⩽ 𝐵
1
and assume

𝑡
0

∈ [𝑡
𝑙−1

, 𝑡
𝑙
); moreover, we assume that (1) has a maximal

interval of existence, [𝑡
0
− 𝜏, 𝑡
0
+ 𝛽).

We will prove that 𝐸|𝑥(𝑡)|𝑝 ⩽ 𝐵
2
for 𝑡 ∈ [𝑡

0
, 𝑡
0
+ 𝛽). This

will show that 𝛽 = ∞ and that solutions of (1) are uniformly
bounded.

For the sake of contradiction, we suppose that 𝐸|𝑥(𝑡)|𝑝 >
𝐵
2
for some 𝑡 ∈ [𝑡

0
, 𝑡
0
+ 𝛽). Let 𝑡̂ = inf{𝑡 ∈ [𝑡

0
, 𝑡
0
+ 𝛽) |

𝐸|𝑥(𝑡)|
𝑝

> 𝐵
2
}. Note that 𝐸|𝑥(𝑡)|𝑝 ⩽ 𝐸‖𝜑‖

𝑝

𝜏
< 𝐵
1

< 𝐵
2
for

𝑡 ∈ [𝑡
0
− 𝜏, 𝑡
0
], and we get 𝑡̂ ∈ (𝑡

0
, 𝑡
0
+ 𝛽), 𝐸|𝑥(𝑡)|𝑝 ⩽ 𝐵

2
for

𝑡 ∈ [𝑡
0
− 𝜏, 𝑡̂) and 𝐸|𝑥(𝑡̂)|

𝑝

⩾ 𝐵
2
.

For 𝑡 ∈ [𝑡
0
−𝜏, 𝑡
0
], we have𝐸𝑉(𝑡) ⩽ 𝑏𝐸|𝑥(𝑡)|

𝑝

⩽ 𝑏𝐸‖𝜑‖
𝑝

𝜏
⩽

𝑏𝐵
1
and then 𝐸𝑉(𝑡) ⩽ 𝜆

2
𝐸𝑉(𝑡) ⩽ 𝜆

2
𝑏𝐵
1
< 𝑎𝐵
2
. Particularly,

𝐸𝑉(𝑡
0
) ⩽ 𝜆
2
𝐸𝑉(𝑡
0
) < 𝑎𝐵

2
and 𝐸𝑉(𝑡̂) ⩾ 𝑎𝐸|𝑥(𝑡̂)|

𝑝

⩾ 𝑎𝐵
2
.

Define 𝑡
∗

= inf{𝑡 ∈ [𝑡
0
, 𝑡̂] | 𝐸𝑉(𝑡) ⩾ 𝑎𝐵

2
} and then 𝑡

∗

∈

(𝑡
0
, 𝑡̂], 𝐸𝑉(𝑡

∗

) ⩾ 𝑎𝐵
2
, and 𝐸𝑉(𝑡) < 𝑎𝐵

2
for 𝑡 ∈ [𝑡

0
− 𝜏, 𝑡
∗

).
Now we will proceed under two cases.

Case 1. Consider 𝑡
𝑙−1

⩽ 𝑡
0
< 𝑡
∗

< 𝑡
𝑙
.

Under this case, we have 𝐸𝑉(𝑡
∗

) = 𝑎𝐵
2
because of the

continuity of𝑉(𝑡) on (𝑡
𝑘
, 𝑡
𝑘+1

) and 𝜆
2
𝐸𝑉(𝑡
∗

) = 𝜆
2
𝑎𝐵
2
> 𝑎𝐵
2
.

Define 𝑡 = sup{𝑡 ∈ [𝑡
0
, 𝑡
∗

] | 𝜆
2
𝐸𝑉(𝑡) ⩽ 𝑎𝐵

2
} and then 𝑡 ̸= 𝑡

∗,
𝜆
2
𝐸𝑉(𝑡) = 𝑎𝐵

2
, and 𝜆

2
𝐸𝑉(𝑡) ⩾ 𝑎𝐵

2
for 𝑡 ∈ [𝑡, 𝑡

∗

]. Therefor,
for any 𝑡 ∈ [𝑡, 𝑡

∗

] and 𝑠 ∈ [−𝜏, 0], we have 𝐸𝑉(𝑡 + 𝑠) ⩽ 𝑎𝐵
2
<

𝜆
2
𝐸𝑉(𝑡) and 𝜆

2
𝑏𝐵
1
< 𝑎𝐵
2
< 𝜆
2
𝐸𝑉(𝑡), which yields 𝐸𝑉(𝑡) >

𝑏𝐵
1
, and then we have 𝐸|𝑥(𝑡)|

𝑝

> 𝐵
1

⩾ 𝜌. Using condition
(2), we have, when 𝑡 ∈ [𝑡, 𝑡

∗

],

𝐸L𝑉 (𝑡) ⩽ −𝛾𝐸𝑉 (𝑡) . (18)

By virtue of Itô formula, we have

𝐸𝑉 (𝑡
∗

) − 𝐸𝑉 (𝑡) = ∫

𝑡
∗

𝑡

𝐸L𝑉 (𝑠) 𝑑𝑠 ⩽ ∫

𝑡
∗

𝑡

−𝛾𝐸𝑉 (𝑠) 𝑑𝑠 ⩽ 0.

(19)

However,

𝐸𝑉 (𝑡
∗

) = 𝑎𝐵
2
>

𝑎𝐵
2

𝜆
2

= 𝐸𝑉 (𝑡) . (20)

This contradiction gives

𝐸|𝑥 (𝑡)|
𝑝

⩽ 𝐵
2

for 𝑡 ∈ [𝑡
0
, 𝑡
0
+ 𝛽) . (21)

Case 2. Consider 𝑡
𝑘
⩽ 𝑡
∗

< 𝑡
𝑘+1

for some 𝑘 ⩾ 𝑙.
We first show 𝜆

2
𝐸𝑉(𝑡
−

𝑘
) ⩽ 𝑎𝐵

2
. We have two situations to

contemplate: 𝑘 = 𝑙 and 𝑘 > 𝑙.
If 𝑘 = 𝑙, we suppose 𝜆

2
𝐸𝑉(𝑡
−

𝑙
) > 𝑎𝐵

2
. Define 𝑡 = sup{𝑡 ∈

[𝑡
0
, 𝑡
𝑙
) | 𝜆
2
𝐸𝑉(𝑡) ⩽ 𝑎𝐵

2
} and then 𝑡 ∈ (𝑡

0
, 𝑡
𝑙
) and 𝜆

2
𝐸𝑉(𝑡) =

𝑎𝐵
2
. In light of the definition of 𝑡, we have, for 𝑡 ∈ [𝑡, 𝑡

𝑙
) and

𝑠 ∈ [−𝜏, 0],

𝜆
2
𝐸𝑉 (𝑡) ⩾ 𝑎𝐵

2
⩾ 𝐸𝑉 (𝑡 + 𝑠) , (22)

and, for 𝑡 ∈ [𝑡, 𝑡
𝑙
),

𝐸|𝑥 (𝑡)|
𝑝

⩾ 𝐵
1
⩾ 𝜌. (23)
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By virtue of condition (2), an analogous calculation of
𝐸𝑉(𝑡
−

𝑙
) − 𝐸𝑉(𝑡) yields 𝐸𝑉(𝑡

−

𝑙
) ⩽ 𝐸𝑉(𝑡); then we get

𝑎𝐵
2
< 𝜆
2
𝐸𝑉 (𝑡
−

𝑙
) ⩽ 𝜆
2
𝐸𝑉 (𝑡) = 𝑎𝐵

2
. (24)

If 𝑘 > 𝑙, we suppose 𝜆
2
𝐸𝑉(𝑡
−

𝑘
) > 𝑎𝐵

2
. We will proceed

under two subcases.

Subcase 1. Consider 𝜆
2
𝐸𝑉(𝑡) > 𝑎𝐵

2
for all 𝑡 ∈ [𝑡

𝑘−1
, 𝑡
𝑘
).

Under this situation, we have 𝜆
2
𝐸𝑉(𝑡) > 𝑎𝐵

2
⩾ 𝐸𝑉(𝑡 + 𝑠)

and 𝐸|𝑥(𝑡)|
𝑝

⩾ 𝜌 for all 𝑡 ∈ [𝑡
𝑘−1

, 𝑡
𝑘
) and 𝑠 ∈ [−𝜏, 0]. In terms

of condition (2), an analogous discussion as done in Case 1
gives

𝐸𝑉 (𝑡
−

𝑘
) − 𝐸𝑉 (𝑡

𝑘−1
) = ∫

𝑡
−

𝑘

𝑡𝑘−1

𝐸L𝑉 (𝑠) 𝑑𝑠

⩽ ∫

𝑡
−

𝑘

𝑡𝑘−1

−𝛾𝐸𝑉 (𝑠) 𝑑𝑠 ⩽ −𝛾𝜇
𝑎𝐵
2

𝜆
2

.

(25)

However, by virtue of condition (5),

𝐸𝑉 (𝑡
−

𝑘
) − 𝐸𝑉 (𝑡

𝑘−1
) ⩾

𝑎𝐵
2

𝜆
2

− 𝑎𝐵
2
= (

1

𝜆
2

− 1) 𝑎𝐵
2

> −𝛾𝜇
𝑎𝐵
2

𝜆
2

.

(26)

This contradiction implies

𝜆
2
𝐸𝑉 (𝑡
−

𝑘
) ⩽ 𝑎𝐵

2
for 𝑡
𝑘
⩽ 𝑡
∗

< 𝑡
𝑘+1

, 𝑘 ⩾ 𝑙. (27)

Subcase 2. Consider 𝜆
2
𝐸𝑉(𝑡) ⩽ 𝑎𝐵

2
for some 𝑡 ∈ [𝑡

𝑘−1
, 𝑡
𝑘
).

Define 𝑡 = sup{𝑡 ∈ [𝑡
𝑘−1

, 𝑡
𝑘
) | 𝜆
2
𝐸𝑉(𝑡) ⩽ 𝑎𝐵

2
} and then

𝑡 ∈ [𝑡
𝑘−1

, 𝑡
𝑘
) and 𝜆

2
𝐸𝑉(𝑡) = 𝑎𝐵

2
. Using the definition of 𝑡, we

get, for 𝑡 ∈ [𝑡, 𝑡
𝑘
) and 𝑠 ∈ [−𝜏, 0], 𝜆

2
𝐸𝑉(𝑡) ⩾ 𝑎𝐵

2
⩾ 𝐸𝑉(𝑡 + 𝑠).

Since 𝜆
2
𝐸𝑉(𝑡) ⩾ 𝑎𝐵

2
, using the fact 𝜌

1
⩾ 𝜌, 𝜆

2
𝑏𝐵
1

< 𝑎𝐵
2

and 𝑏|𝑥|
𝑝

⩾ 𝑉(𝑡, 𝑥), we can get 𝐸|𝑥(𝑡)|𝑝 ⩾ 𝜌. By virtue of
condition (2), we get, for 𝑡 ∈ [𝑡, 𝑡

𝑘
),

𝐸L𝑉 (𝑡) ⩽ −𝛾𝐸𝑉 (𝑡) . (28)

An analogous discussion as done in the case 𝑘 = 𝑙 gives
𝐸𝑉(𝑡) ⩾ 𝐸𝑉(𝑡

−

𝑘
). Then we have

𝑎𝐵
2
< 𝜆
2
𝐸𝑉 (𝑡
−

𝑘
) ⩽ 𝜆
2
𝐸𝑉 (𝑡) = 𝑎𝐵

2
. (29)

This contradiction gives

𝜆
2
𝐸𝑉 (𝑡
−

𝑘
) ⩽ 𝑎𝐵

2
for 𝑡
𝑘
⩽ 𝑡
∗

< 𝑡
𝑘+1

, 𝑘 ⩾ 𝑙. (30)

Now we claim 𝐸𝑉(𝑡
𝑘
) < 𝑎𝐵

2
. If 𝐸|𝑥(𝑡−

𝑘
)|
𝑝

⩾ 𝜌, we get
𝐸𝑉(𝑡
𝑘
) ⩽ 𝜆
1
𝐸𝑉(𝑡
−

𝑘
) < 𝜆
2
𝐸𝑉(𝑡
−

𝑘
) < 𝑎𝐵

2
. If 𝐸|𝑥(𝑡−

𝑘
)|
𝑝

< 𝜌, we
get 𝐸𝑉(𝑡

𝑘
) ⩽ 𝑏𝜌

1
< 𝑏𝐵
1
< 𝜆
2
𝑏𝐵
1
< 𝑎𝐵
2
.That is, the following

inequality holds:

𝐸𝑉 (𝑡
𝑘
) < 𝑎𝐵

2
. (31)

Since 𝐸𝑉(𝑡
∗

) ⩾ 𝑎𝐵
2
, we have 𝑡

∗

̸= 𝑡
𝑘
and 𝐸𝑉(𝑡

∗

) = 𝑎𝐵
2
.

If 𝜆
2
𝐸𝑉(𝑡
∗

) ⩾ 𝑎𝐵
2
for all 𝑡 ∈ [𝑡

𝑘
, 𝑡
∗

], then let 𝑡 = 𝑡
𝑘
and

we have 𝐸𝑉(𝑡) < 𝑎𝐵
2
. Otherwise, let 𝑡 = sup{𝑡 ∈ [𝑡

𝑘
, 𝑡
∗

) |

𝜆
2
𝐸𝑉(𝑡) ⩽ 𝑎𝐵

2
}, and we have 𝐸𝑉(𝑡) < 𝜆

2
𝐸𝑉(𝑡) = 𝑎𝐵

2
. Since

𝐸𝑉(𝑡
∗

) = 𝑎𝐵
2
, we get 𝑡 ∈ [𝑡

𝑘
, 𝑡
∗

). Moreover, for 𝑡 ∈ [𝑡, 𝑡
∗

], we
have 𝜆

2
𝐸𝑉(𝑡) ⩾ 𝑎𝐵

2
> 𝐸𝑉(𝑡 + 𝑠) and, by virtue of 𝜆

2
𝑏𝐵
1
<

𝑎𝐵
2
< 𝜆
2
𝐸𝑉(𝑡), we obtain 𝐸𝑉(𝑡) > 𝑏𝐵

1
and then 𝐸|𝑥(𝑡)|

𝑝

>

𝐵
1

> 𝜌. In terms of condition (2) and Itô formula, we can
obtain 𝐸𝑉(𝑡) ⩾ 𝐸𝑉(𝑡

∗

). But 𝐸𝑉(𝑡) < 𝑎𝐵
2
= 𝐸𝑉(𝑡

∗

), which is
a contradiction and yields

𝐸|𝑥 (𝑡)|
𝑝

⩽ 𝐵
2

for 𝑡 ∈ [𝑡
0
, 𝑡
0
+ 𝛽) . (32)

Now we get that, under condition (1) to condition (5), the
solutions of (1) are 𝑝-moment uniformly bounded. Then we
know that if 𝐸‖𝜑‖𝑝

𝜏
⩽ 𝜌
1
, there exists a constant 𝐵 > 0, such

that 𝐸|𝑥(𝑡, 𝑡
0
, 𝜑)|
𝑝

⩽ 𝐵 for all 𝑡 ⩾ 𝑡
0
− 𝜏, and, from the above

proof, we have 𝜆
2
𝑏𝜌
1
< 𝑎𝐵.

Step 2. Now, let 𝐵
3
> 0 and assume, without loss of generality,

that 𝐵
3
> 𝐵. Then, from the proof of uniform boundedness,

there exists a constant 𝐵
2
= 𝐵
2
(𝐵
3
) > 𝐵
3
for which if 𝐸‖𝜑‖𝑝

𝜏
⩽

𝐵
3
, then 𝐸|𝑥(𝑡)|

𝑝

⩽ 𝐵
2
for 𝑡 ⩾ 𝑡

0
− 𝜏.

Take a constant 𝑑 satisfying 0 < 𝑑 ⩽ min{𝑎𝐵 − 𝑏𝜌
1
, ((𝜆
2
−

𝜆
1
)/𝜆
2
)𝑎𝐵},𝑁 = min{𝑛 > ((𝑏𝐵

2
−𝑎𝐵)/𝑑)}, and𝑇 = 𝛼+(2𝑁−

1)(𝛼 + 𝜏).
Let 𝑥(𝑡) = 𝑥(𝑡, 𝑡

0
, 𝜑) be a solution of (1) with 𝐸‖𝜑‖

𝑝

𝜏
⩽ 𝐵
3
,

𝑡
0
∈ [𝑡
𝑙−1

, 𝑡
𝑙
). We will show 𝐸|𝑥(𝑡)|

𝑝

⩽ 𝐵 for 𝑡 ⩾ 𝑡
0
+ 𝑇.

Given a positive number 𝐴 satisfying 𝑎𝐵 ⩽ 𝐴 ⩽ 𝑏𝐵
2
and

𝑗 ⩾ 𝑙, we will show that if 𝐸𝑉(𝑡) ⩽ 𝐴 for 𝑡 ∈ [𝑡
𝑗
− 𝜏, 𝑡
𝑗
) and

𝜆
2
𝐸𝑉(𝑡
−

𝑗
) ⩽ 𝐴, then 𝐸𝑉(𝑡) ⩽ 𝐴 for 𝑡 ⩾ 𝑡

𝑗
and 𝜆

2
𝐸𝑉(𝑡
−

𝑗+1
) ⩽

𝐴.
For the sake of contradiction, suppose that there exists a

constant 𝑡 ∈ [𝑡
𝑗
, 𝑡
𝑗+1

) for which 𝐸𝑉(𝑡) > 𝐴 and define

𝑡
∗

= inf {𝑡 ∈ [𝑡
𝑗
, 𝑡
𝑗+1

) | 𝐸𝑉 (𝑡) ⩾ 𝐴} . (33)

Note that 𝐸𝑉(𝑡
𝑗
) < 𝐴, and we have that if 𝐸|𝑥(𝑡−

𝑗
)|
𝑝

⩾ 𝜌, then
𝐸𝑉(𝑡
𝑘
) ⩽ 𝜆

1
𝐸𝑉(𝑡
−

𝑗
) < 𝜆

2
𝐸𝑉(𝑡
−

𝑗
) ⩽ 𝐴. If 𝐸|𝑥(𝑡−

𝑘
)|
𝑝

< 𝜌, we
have 𝐸𝑉(𝑡

𝑗
) ⩽ 𝑏𝜌

1
< 𝜆
2
𝑏𝜌
1
< 𝑎𝐵 ⩽ 𝐴. Then we get 𝑡∗ ̸= 𝑡

𝑗
,

𝐸𝑉(𝑡
∗

) = 𝐴, and 𝐸𝑉(𝑡) ⩽ 𝐴 for 𝑡 ∈ (𝑡
𝑗
, 𝑡
𝑗+1

].
If 𝜆
2
𝐸𝑉(𝑡) > 𝐴 for all 𝑡 ∈ [𝑡

𝑗
, 𝑡
𝑗+1

), we let 𝑡 = 𝑡
𝑗
, and then

𝐸𝑉(𝑡) = 𝐸𝑉(𝑡
𝑗
) < 𝐴. Otherwise, let 𝑡 = sup{𝑡 ∈ [𝑡

𝑗
, 𝑡
∗

] |

𝜆
2
𝐸𝑉(𝑡) ⩽ 𝐴}, and we get 𝐸𝑉(𝑡) ⩽ 𝜆

2
𝐸𝑉(𝑡) = 𝐴. Since

𝜆
2
𝐸𝑉(𝑡
∗

) = 𝜆
2
𝐴 > 𝐴, 𝑡 ̸= 𝑡

∗. For 𝑡 ∈ [𝑡, 𝑡
∗

] and 𝑠 ∈ [−𝜏, 0],
we have 𝜆

2
𝐸𝑉(𝑡) ⩾ 𝐴 ⩾ 𝐸𝑉(𝑡 + 𝑠). Moreover, for 𝑡 ∈ [𝑡, 𝑡

∗

],

𝜆
2
𝐸𝑉 (𝑡) ⩾ 𝐴 ⩾ 𝑎𝐵 > 𝜆

2
𝑏𝜌
1
, (34)

and we get 𝐸|𝑥(𝑡)|𝑝 ⩾ 𝜌
1
⩾ 𝜌. By virtue of condition (2) and

Itô formula, we can get 𝐸𝑉(𝑡) ⩾ 𝐸𝑉(𝑡
∗

). However, 𝐸𝑉(𝑡
∗

) =

𝐴 > 𝐸𝑉(𝑡).
Now we have proven 𝐸𝑉(𝑡) ⩽ 𝐴 for 𝑡 ∈ [𝑡

𝑗
, 𝑡
𝑗+1

), and
we are on the position to show 𝜆

2
𝐸𝑉(𝑡
−

𝑗+1
) ⩽ 𝐴. This will

follow in the same way as the arguments used in the proof of
uniform boundedness, where we show 𝜆

2
𝐸𝑉(𝑡
−

𝑘
) ⩽ 𝑎𝐵

2
for

the case 𝑘 > 𝑙; we just need to replace 𝑘 by 𝑗 + 1 and 𝑎𝑏
2
by𝐴.

By induction, we get that if 𝐸𝑉(𝑡) ⩽ 𝐴 for 𝑡 ∈ [𝑡
𝑗
− 𝜏, 𝑡
𝑗
)

and 𝜆
2
𝐸𝑉(𝑡
−

𝑗
) ⩽ 𝐴, then 𝐸𝑉(𝑡) ⩽ 𝐴 for all 𝑡 ⩾ 𝑡

𝑗
and

𝜆
2
𝐸𝑉(𝑡
−

𝑘
) ⩽ 𝐴 for 𝑘 ⩾ 𝑗 + 1.
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Next, we will show 𝐸𝑉(𝑡) ⩽ 𝐴 − 𝑑 for 𝑡 ∈ [𝑡
𝑗+1

, 𝑡
𝑗+2

), if
𝐸𝑉(𝑡) ⩽ 𝐴 for all 𝑡 ⩾ 𝑡

𝑗
and 𝜆

2
𝐸𝑉(𝑡
−

𝑘
) ⩽ 𝐴, 𝑘 ⩾ 𝑗.

We first show 𝐸𝑉(𝑡
𝑗+1

) ⩽ 𝐴−𝑑.This can be easily verified
under two situations: iIf 𝐸|𝑥(𝑡−

𝑗+1
)|
𝑝

⩽ 𝜌, we have 𝐸𝑉(𝑡
𝑗+1

) ⩽

𝑏𝜌
1

⩽ 𝑎𝐵 − 𝑑 ⩽ 𝐴 − 𝑑; if 𝐸|𝑥(𝑡
−

𝑗+1
)|
𝑝

> 𝜌, 𝐸𝑉(𝑡
𝑗+1

) <

𝜆
1
𝐸𝑉(𝑡
𝑗+1

) = (𝜆
1
/𝜆
2
)𝜆
2
𝐸𝑉(𝑡
−

𝑗+1
) ⩽ (𝜆

1
/𝜆
2
)𝐴 < 𝐴 − 𝑑.

In order to verify 𝐸𝑉(𝑡) ⩽ 𝐴 − 𝑑 for all 𝑡 ∈ [𝑡
𝑗+1

, 𝑡
𝑗+2

),
suppose that 𝐸𝑉(𝑡) > 𝐴 − 𝑑 for some 𝑡 ∈ [𝑡

𝑗+1
, 𝑡
𝑗+2

). Let
𝑡
∗

= inf{𝑡 ∈ [𝑡
𝑗+1

, 𝑡
𝑗+2

) | 𝐸𝑉(𝑡) ⩾ 𝐴 − 𝑑}; we know 𝑡
∗

̸= 𝑡
𝑗+1

and then 𝐸𝑉(𝑡
∗

) = 𝐴 − 𝑑 and 𝜆
2
𝐸𝑉(𝑡
∗

) = 𝜆
2
(𝐴 − 𝑑) > 𝐴.

If 𝜆
2
𝐸𝑉(𝑡) > 𝐴 for all 𝑡 ∈ [𝑡

𝑗+1
, 𝑡
∗

], let 𝑡 = 𝑡
𝑗+1

, 𝐸𝑉(𝑡) =

𝐸𝑉(𝑡
𝑗+1

) < 𝐴 − 𝑑.
If 𝜆
2
𝐸𝑉(𝑡) > 𝐴 for some 𝑡 ∈ (𝑡

𝑗+1
, 𝑡
∗

], let 𝑡 = sup{𝑡 ∈

[𝑡
𝑗+1

, 𝑡
∗

] | 𝜆
2
𝐸𝑉(𝑡) ⩽ 𝐴} and we know 𝑡 ̸= 𝑡

∗, 𝐸𝑉(𝑡) = 𝐴/𝜆
2
.

For 𝑡 ∈ [𝑡, 𝑡
∗

] and 𝑠 ∈ [−𝜏, 0], 𝜆
2
𝐸𝑉(𝑡) ⩾ 𝐴 > 𝐴 − 𝑑 >

𝐸𝑉(𝑡 + 𝑠) and 𝐸𝑉(𝑡) ⩾ 𝐴/𝜆
2

> 𝑎𝐵/𝜆
2

> 𝑏𝜌
1
, and we get

𝐸|𝑥(𝑡)|
𝑝

> 𝜌
1
⩾ 𝜌. In terms of condition (2) and Itô formula,

we can get 𝐸𝑉(𝑡
∗

) < 𝐸𝑉(𝑡). However, 𝐸𝑉(𝑡
∗

) = 𝐴 − 𝑑 >

𝐸𝑉(𝑡), which yields

𝐸𝑉 (𝑡) ⩽ 𝐴 − 𝑑. (35)

Applying our results to successive intervals of the form
[𝑡
𝑘
, 𝑡
𝑘+1

) for 𝑘 ⩾ 𝑗 + 1, we can get 𝐸𝑉(𝑡) ⩽ 𝐴 − 𝑑 for 𝑡 ⩾ 𝑡
𝑗+1

.
Now we need a fact 𝜆

2
𝐸𝑉(𝑡
−

𝑗+2
) ⩽ 𝐴 − 𝑑. This can be

verified just as we did in the proof of uniform boundedness,
where we show 𝜆

2
𝐸𝑉(𝑡
−

𝑘
) ⩽ 𝑎𝐵

2
for the case 𝑘 > 𝑙.

Take 𝑡
𝑘
(𝑖) ∈ {𝑡

𝑗
, 𝑗 = 𝑙, 𝑙 + 1, . . .} satisfying 𝑡

𝑘
(𝑖−1) + 𝜏 ⩽ 𝑡

𝑘
(𝑖) ⩽

𝑡
𝑘
(𝑖−1)
+1

+ 𝜏. Take𝐴 = 𝑏𝐵
2
, when 𝑡 ⩾ 𝑡

𝑘
(2𝑁) , and we get 𝐸𝑉(𝑡) ⩽

𝑏𝐵
2
−𝑁𝑑 < 𝑎𝐵. Since 𝑡

𝑘
(2𝑁) ⩽ 𝑡

𝑘
(1) + (2𝑁−1)(𝛼+ 𝜏) ⩽ 𝑡

0
+𝛼+

(2𝑁−1)(𝛼+𝜏) = 𝑡
0
+𝑇, we have 𝐸𝑉(𝑡) ⩽ 𝑎𝐵when 𝑡 > 𝑡

0
+𝑇.

By virtue of condition (1), 𝐸|𝑥(𝑡)|𝑝 ⩽ 𝐵 for 𝑡 ⩾ 𝑡
0
+ 𝑇, which

completes the proof.

Remark 5. Theorem 4 considers that a bounded system
without impulse can tolerate what kind of impulsive effects to
hold the boundedness. It is not surprising that condition (3)
to condition (5) should be satisfied: the interval of impulsive
moments (𝜇) should be large and impulsive strength (𝜆

1
)

should be small.

5. Examples

In this section, we present two examples to illustrate our
results.

Example 1. Consider the following impulsive stochastic delay
differential system:

𝑑𝑥 (𝑡) = (
1

2
𝑥 (𝑡) +

1

2𝑥 (𝑡)
) 𝑑𝑡 + 𝑥 (𝑡 −

1

20
) 𝑑𝐵 (𝑡) ,

𝑡 > 0, 𝑡 ̸=
𝑘

10
, 𝑘 = 1, 2, . . . ,

𝑥 (
𝑘

10
) =

√2

2
𝑥((

𝑘

10
)

−

) ,

(36)

where 𝐵(𝑡) is a one-dimension Brownian motion.
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Figure 1: Mean square uniform ultimate boundedness of solution
of system (36).

Define 𝑉(𝑡, 𝑥) = 𝑥
2; the smoothness requirement is

satisfied. Let 𝑎 = 𝑏 = 1 and 𝑝 = 2; condition (1) ofTheorem 2
follows. For any solution 𝑥(𝑡) of system (36), we have

L𝑉 (𝑡, 𝑥) = 2𝑥(
1

2
𝑥 (𝑡) +

1

2𝑥 (𝑡)
) + 𝑥
2

(𝑡 −
1

20
)

= 𝑥
2

(𝑡) + 1 + 𝑥
2

(𝑡 −
1

20
) .

(37)

Take 𝜆 = 1/2; condition (3) of Theorem 2 is satisfied.
Now let 𝜌 = 1; then, when |𝑥(𝑡)|

2

⩾ 1 and 𝑉(𝑡, 𝑥) ⩾

𝜆𝑉(𝑡, 𝑥(𝑡 − 𝜏)), that is, 𝑥2(𝑡) ⩾ (1/2)𝑥
2

(𝑡 − 1/20), we have

L𝑉 (𝑡, 𝑥) ⩽ 𝑥
2

(𝑡) + 𝑥
2

(𝑡) + 2𝑥
2

(𝑡) = 4𝑥
2

(𝑡) = 4𝑉 (𝑡, 𝑥) .

(38)

Then let 𝛾 = 4; condition (2) of Theorem 2 is verified.
Condition (4) ofTheorem 2 can be verified by taking 𝜌

1
=

1.
Take 𝛼 = 1/10 and then 𝛼𝛾 = (1/10) × 4 = 2/5 < 1/2 =

1 − 𝜆; condition (5) of Theorem 2 is verified.
Therefore, according to Theorem 2, solutions of system

(36) are mean square uniformly ultimately bounded. The
boundedness can be read from Figure 1, where we take initial
condition 𝑥(𝑡) = 1, 𝑡 ∈ [−1/20, 0].

To see the contribution of impulsive effect on bounded-
ness, we consider the following system:

𝑑𝑥 (𝑡) = (
1

2
𝑥 (𝑡) +

1

2𝑥 (𝑡)
) 𝑑𝑡 + 𝑥 (𝑡 −

1

20
) 𝑑𝐵 (𝑡) ,

𝑡 > 0,

(39)

which is the situation of system (36) without impulses. It
is easy to be verified that system (39) is unbounded; see
Figure 2, where we also take initial condition 𝑥(𝑡) = 1, 𝑡 ∈

[−1/20, 0].

Nowwe give another example to illustrate the correctness
of Theorem 4.
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Figure 2: Unboundedness of solution of system (39).
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Figure 3: Mean square uniform ultimate boundedness of solution
of system (40).

Example 2. Consider

𝑑𝑥 (𝑡) = (−4𝑥 (𝑡) +
1

2𝑥 (𝑡)
) 𝑑𝑡 + 𝑥 (𝑡 −

1

2
) 𝑑𝐵 (𝑡) ,

𝑡 > 0, 𝑡 ̸= 2𝑘, 𝑘 = 1, 2, . . . ,

𝑥 (2𝑘) = √2𝑥 ((2𝑘)
−

) ,

(40)

where 𝐵(𝑡) is a one-dimension Brownian motion.
Define 𝑉(𝑡, 𝑥) = 𝑥

2; the smoothness requirement is
satisfied. Let 𝑎 = 𝑏 = 1 and 𝑝 = 2; condition (1) ofTheorem 4
follows. For any solution 𝑥(𝑡) of system (40), we have

L𝑉 (𝑡, 𝑥) = 2𝑥(−4𝑥 (𝑡) +
1

2𝑥 (𝑡)
) + 𝑥
2

(𝑡 −
1

2
)

= −8𝑥
2

(𝑡) + 1 + 𝑥
2

(𝑡 −
1

20
) .

(41)
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Figure 4: Simulation of system (43).

Take 𝜆
1
= 2, condition (3) of Theorem 4 is satisfied.

Now let 𝜌 = 1 and 𝜆
2

= 3; then, when |𝑥(𝑡)|
2

⩾ 1 and
𝑉(𝑡, 𝑥) ⩾ 𝜆

2
𝑉(𝑡, 𝑥(𝑡 − 𝜏)), that is, 3𝑥2(𝑡) ⩾ 𝑥

2

(𝑡 − 1/2), we
have

L𝑉 (𝑡, 𝑥) ⩽ −8𝑥
2

(𝑡) + 𝑥
2

(𝑡) + 3𝑥
2

(𝑡)

= −4𝑥
2

(𝑡) = −4𝑉 (𝑡, 𝑥) .

(42)

Then, let 𝛾 = 4; condition (2) of Theorem 2 is verified.
Condition (4) of Theorem 2 can be verified by taking

𝜌
1
= 2.
Take 𝜇 = 2 and then 𝜇𝛾 = 2× 8 = 16 > 3− 1 = 𝜆

2
− 1 and

condition (5) of Theorem 4 is verified.
Therefore, according to Theorem 4, solutions of system

(40) are mean square uniformly ultimately bounded. The
boundedness can be seen in Figure 3, where we take initial
condition 𝑥(𝑡) = 3, 𝑡 ∈ [−1/2, 0].

We also present the simulation of system (40) without
impulsive effects; that is,

𝑑𝑥 (𝑡) = (−4𝑥 (𝑡) +
1

2𝑥 (𝑡)
) 𝑑𝑡 + 𝑥 (𝑡 −

1

2
) 𝑑𝐵 (𝑡) , 𝑡 > 0.

(43)

The property of system (43) can be read from Figure 4, where
we take initial condition 𝑥(𝑡) = 3, 𝑡 ∈ [−1/2, 0].
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Mean for Itô Stochastic Differential Equations,” Mathematical
Problems in Engineering, vol. 2010, Article ID 380304, 12 pages,
2012.

[3] X. Liu and Q. Wang, “The method of Lyapunov functionals
and exponential stability of impulsive systems with time delay,”
Nonlinear Analysis: Theory, Methods & Applications, vol. 66, no.
7, pp. 1465–1484, 2007.

[4] M. de la Sen, “Global stability of polytopic linear time-varying
dynamic systems under time-varying point delays and impul-
sive controls,”Mathematical Problems in Engineering, vol. 2010,
Article ID 693958, 33 pages, 2010.

[5] X. Li, H. Akca, and X. Fu, “Uniform stability of impulsive
infinite delay differential equations with applications to systems
with integral impulsive conditions,” Applied Mathematics and
Computation, vol. 219, no. 14, pp. 7329–7337, 2013.

[6] Y. Zhang and J. Sun, “Boundedness of the solutions of impulsive
differential systems with time-varying delay,” Applied Mathe-
matics and Computation, vol. 154, no. 1, pp. 279–288, 2004.

[7] L. Berezansky and E. Braverman, “Exponential boundedness
of solutions for impulsive delay differential equations,” Applied
Mathematics Letters, vol. 9, no. 6, pp. 91–95, 1996.

[8] I. M. Stamova, “Lyapunov method for boundedness of solu-
tions of nonlinear impulsive functional differential equations,”
Applied Mathematics and Computation, vol. 177, no. 2, pp. 714–
719, 2006.

[9] P. Cheng, F. Deng, and L. Wang, “The method of Lyapunov
function and exponential stability of impulsive delay systems
with delayed impulses,”Mathematical Problems in Engineering,
vol. 2013, Article ID 458047, 7 pages, 2013.

[10] X. Liu and G. Ballinger, “Boundedness for impulsive delay
differential equations and applications to population growth
models,” Nonlinear Analysis: Theory, Methods & Applications,
vol. 53, no. 7-8, pp. 1041–1062, 2003.

[11] I. M. Stamova, “Boundedness of impulsive functional differen-
tial equations with variable impulsive perturbations,” Bulletin of
the Australian Mathematical Society, vol. 77, no. 2, pp. 331–345,
2008.

[12] I. Stamova, “Eventual stability and eventual boundedness for
impulsive differential equations with “supremum”,”Mathemati-
cal Modelling and Analysis, vol. 16, no. 2, pp. 304–314, 2011.

[13] A. Li and X. Song, “Stability and boundedness of nonlinear
impulsive systems in terms of two measures via perturbing
Lyapunov functions,” Journal of Mathematical Analysis and
Applications, vol. 375, no. 1, pp. 276–283, 2011.

[14] B. Chen and W. Zhang, “Stochastic 𝐻
2
/𝐻
∞

control with state-
dependent noise,” IEEE Transactions on Automatic Control, vol.
49, no. 1, pp. 45–57, 2004.

[15] W. Zhang, H. Zhang, and B. Chen, “Generalized Lyapunov
equation approach to state-dependent stochastic stabiliza-
tion/detectability criterion,” IEEE Transactions on Automatic
Control, vol. 53, no. 7, pp. 1630–1642, 2008.

[16] W. Zhang and B. Chen, “H-representation and applications to
generalized Lyapunov equations and linear stochastic systems,”
IEEE Transactions on Automatic Control, vol. 57, no. 12, pp.
3009–3022, 2012.

[17] F. Wu and P. E. Kloeden, “Mean-square random attractors
of stochastic delay differential equations with random delay,”
Discrete and Continuous Dynamical Systems B, vol. 18, no. 6, pp.
1715–1734, 2013.

[18] B. Song, J. H. Park, Z. Wu, and Y. Zhang, “New results on
delay-dependent stability analysis for neutral stochastic delay
systems,” Journal of the Franklin Institute: Engineering and
Applied Mathematics, vol. 350, no. 4, pp. 840–852, 2013.

[19] X. Li, J. Zou, and E. Zhu, “𝑝th moment exponential stability
of impulsive stochastic neural networks with mixed delays,”
Mathematical Problems in Engineering, vol. 2012, Article ID
175934, 20 pages, 2012.

[20] K. Wu and X. Ding, “Stability and stabilization of impulsive
stochastic delay differential equations,”Mathematical Problems
in Engineering, vol. 2012, Article ID 176375, 16 pages, 2012.

[21] X. Wu, W. Zhang, and Y. Tang, “𝑝th moment stability of
impulsive stochastic delay differential systems with Markovian
switching,” Communications in Nonlinear Science and Numeri-
cal Simulation, vol. 18, no. 7, pp. 1870–1879, 2013.

[22] P. Cheng, F. Deng, and F. Yao, “Exponential stability analysis
of impulsive stochastic functional differential systems with
delayed impulses,” Communications in Nonlinear Science and
Numerical Simulation, vol. 19, no. 6, pp. 2104–2114, 2014.

[23] F. Yao, F. Deng, and P. Cheng, “Exponential stability of impul-
sive stochastic functional differential systems with delayed
impulses,” Abstract and Applied Analysis, vol. 2013, Article ID
548712, 8 pages, 2013.

[24] P. Cheng, F. Deng, and Y. Peng, “Robust exponential stability
and delayed-state-feedback stabilization of uncertain impulsive
stochastic systemswith time-varying delay,”Communications in
Nonlinear Science and Numerical Simulation, vol. 17, no. 12, pp.
4740–4752, 2012.

[25] J. Yang, S. Zhong, andW. Luo, “Mean square stability analysis of
impulsive stochastic differential equations with delays,” Journal
of Computational and Applied Mathematics, vol. 216, no. 2, pp.
474–483, 2008.

[26] S. Peng and B. Jia, “Some criteria on 𝑝th moment stability of
impulsive stochastic functional differential equations,” Statistics
& Probability Letters, vol. 80, no. 13-14, pp. 1085–1092, 2010.

[27] C. Li and J. Sun, “Stability analysis of nonlinear stochastic
differential delay systems under impulsive control,” Physics
Letters A, vol. 374, no. 9, pp. 1154–1158, 2010.



Research Article
Optimal Dividend and Capital Injection Strategies in
the Cramér-Lundberg Risk Model

Yan Li1 and Guoxin Liu2

1 School of Insurance and Economics, University of International Business and Economics, Beijing 100029, China
2 Shijiazhuang Tiedao University, Shijiazhuang 050043, China

Correspondence should be addressed to Yan Li; email.liyan@163.com

Received 12 March 2014; Revised 25 August 2014; Accepted 15 September 2014

Academic Editor: Guangchen Wang

Copyright © 2015 Y. Li and G. Liu. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We discuss the optimal dividend and capital injection strategies in the Cramér-Lundberg risk model. The value function 𝑉(𝑥) is
defined by maximizing the discounted value of the dividend payment minus the penalized discounted capital injection until the
time of ruin. It is shown that 𝑉(𝑥) can be characterized by the Hamilton-Jacobi-Bellman equation. We find the optimal dividend
barrier 𝑏, the optimal upper capital injection barrier 0, and the optimal lower capital injection barrier−𝑧∗. In the case of exponential
claim size especially, we give an explicit procedure to obtain 𝑏, −𝑧∗, and the value function 𝑉(𝑥).

1. Introduction

In the modern theory of risk, people tend to study the cost of
postponing or avoiding outright ruin; that is, ruin does not
mean the end of the game but only the necessity of raising
additional money. So the risk process can continue if there is
a suitable injection of surplus.

Borch [1] pointed out that it was a good investment to
rescue an insolvent insurance company, provided that its
deficit was not too large. He studied this problem for a
random walk model and suggested that the company should
be rescued only if the deficit was smaller than the expected
profits from the rescue operation.

For a diffusion model, Sethi and Taksar [2] considered
the problem of finding an optimal financing mix of retained
earnings and external equity for maximizing the value of
a corporation. They showed that the optimal policy can be
characterized in terms of two threshold parameters. Løkka
and Zervos [3] studied the same problem with possibility
of bankruptcy in a model of Brownian motion with drift.
Depending on the relationships between the coefficients, the
optimal strategy requires the consideration of two auxiliary
suboptimal models. For more references in diffusion model
see He and Liang [4, 5], and so forth.

As pointed out by Bäuerle [6], the classical approach
is to model the liquid assets or risk reserve process of the
insurance company as a piecewise deterministic Markov
process (PDMP). However, within this setting the control
problem is very hard and many characteristics of the risk
process can not be calculated in closed form.

For the Cramér-Lundberg risk model without bankrupt-
cy (i.e., the shareholders will inject capital to cover the deficit
whatever serious it is) the optimal dividend problem was
studied. See, for example, Dickson and Waters [7], Gerber
et al. [8], Kulenko and Schmidli [9], and so forth. This
capital injection strategy makes sense for itself; at the same
time we notice that the injected capital can be viewed as an
investment. Therefore the shareholders should consider the
return of it. If the injected amount is small enough to the
shareholders to earn positive net profit, they accept to do
so and survive the company. Otherwise, they will refuse to
inject capital anymore and ruin occurs. Sowhat is the optimal
capital injection strategy is worth to be discussed.

In this paper, we will discuss the optimal dividend pay-
ment and capital injection strategies in the Cramér-Lundberg
risk model. The objective is to maximize the discounted
dividends payments minus the penalized discounted capital
injections. Through the discussion of the optimal capital
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http://dx.doi.org/10.1155/2015/439537

http://dx.doi.org/10.1155/2015/439537


2 Mathematical Problems in Engineering

injection strategy, we find the maximal deficit which the
shareholders can bear. Moreover, from the mathematical
point of view we give a rigorous proof that it is optimal
to inject capital once the reserves are below 0, that is, the
moment ruin occurs (in the previous literature about capital
injection strategy, considering discounting, it could not be
optimal to inject capital before it is really necessary.Therefore,
the shareholders postpone the injection as long as possible
and just conjecture that it is optimal to do so when the
reserves become 0).

Suppose the reserve process of an insurance company at
time 𝑡 is

𝑋
𝑡
= 𝑥 + 𝑐𝑡 −

𝑁𝑡

∑

𝑖=1

𝑌
𝑖
, (1)

where 𝑥 ∈ 𝑅 is the initial capital, 𝑐 > 0 is the premium
rate, {𝑁

𝑡
, 𝑡 ≥ 0} is a Poisson process with intensity 𝜆 >

0, and {𝑌
𝑖
, 𝑖 ≥ 1} is a sequence of strictly positive i.i.d.

random variables with the distribution function 𝐹(𝑥). In
addition, {𝑌

𝑖
, 𝑖 ≥ 1} and {𝑁

𝑡
, 𝑡 ≥ 0} are independent. We

assume that 𝐸𝑌
𝑖
= 𝜇 < ∞ and 𝐹(𝑥) is continuous. {𝑋

𝑡
}

is on a filtrated probability space (Ω,F, {F
𝑡
}
𝑡≥0
, 𝑃), where

{F
𝑡
}
𝑡≥0

is the smallest right-continuous filtration such that
{𝑋

𝑡
} is adapted. Let 𝑃

𝑥
and 𝐸

𝑥
denote the probability and the

expectation with initial capital 𝑥, respectively.
Now we enrich the model with a strategy 𝜋 = {(𝐷

𝑡
, 𝑍

𝑡
)}.

{𝐷
𝑡
} and {𝑍

𝑡
} denote the aggregate dividends and capital

injections paid up to time 𝑡, respectively. The strategy 𝜋 is
admissible if

(1) {𝐷
𝑡
} is càdlàg, increasing and adapted processes with

𝐷
0−
= 0;

(2) {𝑍
𝑡
} is càglàd, increasing and adapted processes with

𝑍
0
= 0.

The reserve turns to

𝑋
𝜋

𝑡
= 𝑋

𝑡
− 𝐷

𝑡
+ 𝑍

𝑡
. (2)

Since the strategy 𝜋 will not assure that the process {𝑋𝜋

𝑡
} is

always larger than 0, ruin is possible.The ruin time is defined
by

𝑇
𝜋

= inf {𝑡 ≥ 0, 𝑋
𝜋

𝑡+
< 0} . (3)

The value of a strategy 𝜋 is

𝑉
𝜋

(𝑥) = 𝐸
𝑥
[∫

𝑇
𝜋
−

0−

𝑒
−𝛿𝑡d𝐷

𝑡
− 𝜙∫

𝑇
𝜋

0

𝑒
−𝛿𝑡d𝑍

𝑡
] , (4)

where 𝛿 > 0 is a discounted factor and 𝜙 > 1 is a penalizing
factor.The point 0 being included in the integration area is for
the reason of taking an immediate dividend 𝐷

0
> 0 into the

value. Our purpose is to maximize 𝑉𝜋

(𝑥). The value function
is defined by

𝑉 (𝑥) = sup
𝜋∈Π

𝑉
𝜋

(𝑥) , (5)

where Π denotes the set of all admissible strategies.

The paper is organized as follows. In Section 2, the
dividend strategy is constrained by a restricted density. Some
properties of the value function 𝑉(𝑥) are proved. We show
that 𝑉(𝑥) can be characterized by the Hamilton-Jacobi-
Bellman equation. Moreover, if 𝑉(𝑥) is concave, the optimal
dividend and capital injection strategies are both barrier
strategies. If we remove the constraint on the dividend strat-
egy, the results on 𝑉(𝑥) and optimal strategies are extended
in Section 3. In the last section, we give an explicit procedure
to obtain the optimal dividend barrier 𝑏, the optimal lower
capital injection barrier −𝑧∗, and the value function 𝑉(𝑥)

when the claim size is exponentially distributed.

2. Dividends with Restricted Densities

In this section, we study this optimization problem under
the constraint that the dividends are paid at a dividend rate,
which is bounded by a positive constant 𝑢

0
; that is, 0 ≤ 𝑈

𝑡
≤

𝑢
0
< ∞. Then𝐷

𝑡
= ∫

𝑡

0

𝑈
𝑠
d𝑠 and

𝑉
𝜋

(𝑥) = 𝐸
𝑥
[∫

𝑇
𝜋

0

𝑒
−𝛿𝑡

𝑈
𝑡
d𝑡 − 𝜙∫

𝑇
𝜋

0

𝑒
−𝛿𝑡d𝑍

𝑡
] . (6)

In this section, Π𝑟 denotes the set of all admissible restricted
strategies and 𝜋 = (𝑈

𝑡
, 𝑍

𝑡
). So the value function

𝑉 (𝑥) = sup
𝜋∈Π
𝑟

𝑉
𝜋

(𝑥) . (7)

2.1. The Value Function𝑉(𝑥). 𝑉(𝑥) has the following proper-
ties.

Lemma 1. If the capital injection strategy is defined by

𝑍
𝑡
= max {− inf

0≤𝑠<𝑡

(𝑋
𝑠
− 𝐷

𝑠
) , 0} , (8)

Then, for 𝑥 ∈ 𝑅
+
, the value under any dividend strategy {𝐷

𝑡
} is

bounded from below by −𝜙𝜆𝜇/𝛿.

Proof. Under this assumption, ruin time is∞. The maximal
amount of capital injection may be that the shareholders
cover all the claims. If we are not considering the dividends,
value under such a strategy is the worst one. Using the time
of the 𝑘th claim 𝑇

𝑘
is Gamma Γ(𝜆, 𝑘), so

𝐸[

∞

∑

𝑘=1

𝑌
𝑘
𝑒
−𝛿𝑇𝑘] = 𝜇

∞

∑

𝑘=1

(
𝜆

𝜆 + 𝛿
)

𝑘

=
𝜆𝜇

𝛿
. (9)

The value is bounded from below by −𝜙𝜆𝜇/𝛿.

Lemma 2. 𝑉(𝑥) is increasing and Lipschitz continuous on
(−∞,∞). Moreover, 0 ≤ 𝑉(𝑥) ≤ 𝑢

0
/𝛿 and lim

𝑥→∞
𝑉(𝑥) =

𝑢
0
/𝛿.

Proof. Obviously, 𝑉(𝑥) is increasing. For 𝑥 < 0, if define the
strategy 𝜋 as 𝑍

𝑡
= 𝑈

𝑡
= 0, then 𝑉(𝑥) ≥ 𝑉

𝜋

(𝑥) = 0. Because
𝑉(𝑥) is increasing, 𝑉(𝑥) ≥ 0 for 𝑥 ∈ 𝑅. If 𝑈

𝑡
= 𝑢

0
, 𝑍

𝑡
= 0,

then

𝑉 (𝑥) ≤ ∫

∞

0

𝑢
0
𝑒
−𝛿𝑡d𝑡 =

𝑢
0

𝛿
. (10)
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Consider a strategy 𝜋 = (𝑈
𝑡
, 𝑍

𝑡
), where 𝑈

𝑡
= 𝑢

0
and 𝑍

𝑡
=

max{−inf
0≤𝑠<𝑡

(𝑋
𝑠
−𝐷

𝑠
), 0}.Then𝑇𝜋

= ∞. Define 𝜏𝜋
𝑥
= inf{𝑡 :

𝑥 + (𝑐 − 𝑢
0
)𝑡 − ∑

𝑁𝑡

𝑖=1
𝑌
𝑖
< 0}. Using Lemma 1,

∫

𝑇
𝜋

0

𝑒
−𝛿𝑡d𝑍

𝑡
= ∫

∞

0

𝑒
−𝛿𝑡d𝑍

𝑡
= ∫

∞

𝜏
𝜋

𝑥

𝑒
−𝛿𝑡d𝑍

𝑡

= 𝑒
−𝛿𝜏
𝜋

𝑥 ∫

∞

0

𝑒
−𝛿𝑡d𝑍

𝑡+𝜏
𝜋

𝑥

≤ 𝑒
−𝛿𝜏
𝜋

𝑥𝜙
𝜆𝜇

𝛿
.

(11)

When 𝑥 → ∞, then 𝜏𝜋
𝑥
→ ∞ and 𝑃

𝑥
(∫

∞

0

𝑒
−𝛿𝑡d𝑍

𝑡
> 𝜀) →

0. So we have
𝑉 (𝑥) ≥ 𝑉

𝜋

(𝑥)

≥ 𝐸[∫

𝜏
𝜋

𝑥

0

𝑢
0
𝑒
−𝛿𝑡d𝑡 − 𝜙∫

∞

0

𝑒
−𝛿𝑡d𝑍

𝑡
] 󳨀→

𝑢
0

𝛿
.

(12)

Combining with (10), we have lim
𝑥→∞

𝑉(𝑥) = 𝑢
0
/𝛿.

For 𝑥 ≥ 0, let ℎ > 0 be small. Define

𝑈
𝑡
=

{{

{{

{

0, if 0 ≤ 𝑡 < ℎ ∧ 𝑇
1
,

𝑈̃
𝑡−ℎ
, if 𝑡 ∧ 𝑇

1
≥ ℎ,

0, if 𝑇
1
< ℎ,

𝑍
𝑡
=

{{

{{

{

0, if 0 ≤ 𝑡 < ℎ ∧ 𝑇
1
,

𝑍
𝑡−ℎ
, if 𝑡 ∧ 𝑇

1
≥ ℎ,

0, if 𝑇
1
< ℎ,

(13)

where 𝜋̃ = (𝑈̃, 𝑍) ∈ Π
𝑟 is for the initial capital 𝑥 + 𝑐ℎ. While

𝑃(𝑇
1
≥ ℎ) = 𝑒

−𝜆ℎ, then

𝑉 (𝑥) ≥ 𝑉
𝜋

(𝑥)

= 𝐸[𝐸[∫

𝑇
𝜋

0

𝑒
−𝛿𝑡

𝑈
𝑡
d𝑡 − 𝜙∫

𝑇
𝜋

0

𝑒
−𝛿𝑡d𝑍

𝑡
| 𝑇

1
]]

= 𝑃 (𝑇
1
≥ ℎ)

× 𝐸[∫

𝑇
𝜋

ℎ

𝑒
−𝛿𝑡

𝑈
𝑡
d𝑡 − 𝜙∫

𝑇
𝜋

ℎ

𝑒
−𝛿𝑡d𝑍

𝑡
| 𝑇

1
≥ ℎ]

= 𝑒
−𝜆ℎ

𝐸[𝐸[∫

𝑇
𝜋

ℎ

𝑒
−𝛿𝑡

𝑈
𝑡
d𝑡 − 𝜙∫

𝑇
𝜋

ℎ

𝑒
−𝛿𝑡d𝑍

𝑡
| F

ℎ
]]

= 𝑒
−𝜆ℎ

𝐸[𝑒
−𝛿ℎ

𝐸 [∫

𝑇
𝜋
−ℎ

0

𝑒
−𝛿𝑡

𝑈
𝑡+ℎ

d𝑡

−𝜙∫

𝑇
𝜋
−ℎ

0

𝑒
−𝛿𝑡d𝑍

𝑡+ℎ
| F

ℎ
]]

= 𝑒
−(𝜆+𝛿)ℎ

𝐸[∫

𝑇
𝜋
−ℎ

0

𝑒
−𝛿𝑡

𝑈̃
𝑡
d𝑡 − 𝜙∫

𝑇
𝜋
−ℎ

0

𝑒
−𝛿𝑡d𝑍

𝑡
]

= 𝑒
−(𝜆+𝛿)ℎ

𝑉
𝜋̃

(𝑥 + 𝑐ℎ)

(14)

and so

𝑉 (𝑥) ≥ sup
𝜋̃∈Π
𝑟

𝑒
−(𝜆+𝛿)ℎ

𝑉
𝜋̃

(𝑥 + 𝑐ℎ) = 𝑒
−(𝜆+𝛿)ℎ

𝑉 (𝑥 + 𝑐ℎ) . (15)

From the bounded property of 𝑉(𝑥), we have

0 ≤ 𝑉 (𝑥 + 𝑐ℎ) − 𝑉 (𝑥) ≤ 𝑉 (𝑥 + 𝑐ℎ) (1 − 𝑒
−(𝜆+𝛿)ℎ

)

≤ 𝑉 (𝑥 + 𝑐ℎ) (𝜆 + 𝛿) ℎ ≤
𝑢
0

𝛿
(𝜆 + 𝛿) ℎ.

(16)

Let the shareholder inject ℎ and follow the optimal strategy
afterwards when 𝑥 < 0. So 𝑉(𝑥) ≥ 𝑉(𝑥 + ℎ) − 𝜙ℎ; that is,

𝑉 (𝑥 + ℎ) − 𝑉 (𝑥) ≤ 𝜙ℎ. (17)

Thus 𝑉(𝑥) is Lipschitz continuous on (−∞,∞).

2.2. HJB Equation and the Optimal Strategy. In this section,
wewill derive theHJB equation satisfied by the value function
𝑉(𝑥) and discuss the optimal strategy 𝜋∗.

Similar to the discussion in Azcue and Muler [10], the
following dynamic programming principle holds:

𝑉 (𝑥) = sup
𝜋

𝐸
𝑥
[∫

𝜏∧𝑇
𝜋

0

𝑒
−𝛿𝑡

𝑈
𝑡
d𝑡

−𝜙∫

𝜏∧𝑇
𝜋

0

𝑒
−𝛿𝑡d𝑍

𝑡
+ 𝑒

−𝛿(𝜏∧𝑇
𝜋
)

𝑉 (𝑋
𝜋

𝜏∧𝑇
𝜋)]

(18)

for 𝑥 ∈ 𝑅
+
and any {F

𝑡
}-stopping time 𝜏. This principle may

serve us to derive the HJB equation.
For 𝑥 ≥ 0, 𝜀 > 0, and any admissible strategy 𝜋, define

𝜎
𝜋

= inf{𝑡 ≥ 0, 𝑋
𝜋

𝑡
∉ (𝑥 − 𝜀, 𝑥 + 𝜀)}. Choose 𝜀 small enough;

then 𝜎𝜋 < 𝑇
𝜋. Let 𝜏𝜋 = 𝜎

𝜋

∧ℎ, ℎ > 0. So 𝜏𝜋 → 0 a.s. ℎ → 0.
Applying Itô formula into 𝑒−𝛿𝜏

𝜋

𝑉(𝑋
𝜋

𝜏
𝜋), we have

𝑒
−𝛿𝜏
𝜋

𝑉 (𝑋
𝜋

𝜏
𝜋)

= 𝑉 (𝑋
𝜋

0
)

+ ∫

𝜏
𝜋

0

𝑒
−𝛿𝑠

(𝑐 − 𝑈
𝑠
) 𝑉

󸀠

(𝑋
𝜋

𝑠−
) − 𝛿𝑒

−𝛿𝑠

𝑉 (𝑋
𝜋

𝑠−
) d𝑠

+ ∑

0≤𝑠≤𝜏
𝜋

𝑋
𝜋

𝑠−
̸=𝑋
𝜋

𝑠

𝑒
−𝛿𝑠

[𝑉 (𝑋
𝜋

𝑠
) − 𝑉 (𝑋

𝜋

𝑠−
)]

+ ∑

0≤𝑠<𝜏
𝜋

𝑋
𝜋

𝑠
̸=𝑋
𝜋

𝑠+

𝑒
−𝛿𝑠

[𝑉 (𝑋
𝜋

𝑠+
) − 𝑉 (𝑋

𝜋

𝑠
)] .

(19)

If 𝑈
𝑡
> 𝑐, {𝑋𝜋

𝑡
} could become negative before the first claim

and so dividends lead to ruin. Considering the early penalty,
this dividend strategy with 𝑈

𝑡
> 𝑐 at a point where 𝑋𝜋

𝑡
= 0

will not be optimal. So we can assumewithout restriction that
{𝑍

𝑡
} only increases when the claim arrives; that is, it is a pure

jump process. Thus

∑

0≤𝑠<𝜏
𝜋

𝑋
𝜋

𝑠
̸=𝑋
𝜋

𝑠+

𝑒
−𝛿𝑠

[𝑉 (𝑋
𝜋

𝑠+
) − 𝑉 (𝑋

𝜋

𝑠
)] = 𝜙∫

𝜏
𝜋

0

𝑒
−𝛿𝑠d𝑍

𝑠
. (20)
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When claim arrives,𝑋𝜋

𝑠−
̸=𝑋

𝜋

𝑠
. Then

𝑀(𝜏
𝜋

) = 𝑀(𝜎
𝜋

∧ ℎ)

= ∑

0≤𝑠≤𝜏
𝜋

𝑋
𝜋

𝑠−
̸=𝑋
𝜋

𝑠

𝑒
−𝛿𝑠

[𝑉 (𝑋
𝜋

𝑠
) − 𝑉 (𝑋

𝜋

𝑠−
)] − 𝜆

× ∫

𝜏
𝜋

0

∫

∞

0

𝑒
−𝛿𝑠

(𝑉 (𝑋
𝜋

𝑠−
− 𝑦) − 𝑉 (𝑋

𝜋

𝑠−
)) d𝐹 (𝑦) d𝑠

(21)

is a martingale with 𝑀(0) = 0. So from the dynamic pro-
gramming principle in (18), we have

𝑉 (𝑥)

≥ 𝐸
𝑥
[∫

𝜏
𝜋

0

𝑒
−𝛿𝑠

𝑈
𝑠
d𝑠 − 𝜙∫

𝜏
𝜋

0

𝑒
−𝛿𝑠d𝑍

𝑠
+ 𝑉 (𝑥)

+ ∫

𝜏
𝜋

0

𝑒
−𝛿𝑠

[(𝑐 − 𝑈
𝑠
) 𝑉

󸀠

(𝑋
𝜋

𝑠−
) − 𝛿𝑉 (𝑋

𝜋

𝑠−
)

+ 𝜆∫

∞

0

𝑉 (𝑋
𝜋

𝑠−
− 𝑦)

−𝑉 (𝑋
𝜋

𝑠−
) d𝐹 (𝑦)] d𝑠 + 𝜙∫

𝜏
𝜋

0

𝑒
−𝛿𝑠d𝑍

𝑠
] .

(22)

Equivalently

𝐸
𝑥
[∫

𝜏
𝜋

0

𝑒
−𝛿𝑠

[(𝑐 − 𝑈
𝑠
) 𝑉

󸀠

(𝑋
𝜋

𝑠−
) + 𝑈

𝑠

+ 𝜆∫

∞

0

𝑉 (𝑋
𝜋

𝑠−
− 𝑦) d𝐹 (𝑦)

− (𝜆 + 𝛿)𝑉 (𝑋
𝜋

𝑠−
)] d𝑠] ≤ 0.

(23)

Dividing 𝐸𝜏𝜋 in (23) and letting ℎ → 0 yield

(𝑐 − 𝑢)𝑉
󸀠

(𝑥) + 𝑢

+ 𝜆∫

∞

0

𝑉 (𝑥 − 𝑦) d𝐹 (𝑦) − (𝜆 + 𝛿)𝑉 (𝑥) ≤ 0.

(24)

We have proved that 𝑉(𝑥) is increasing, continuous, and
nonnegative, so the above inequality can be rewritten as

(𝑐 − 𝑢)𝑉
󸀠

(𝑥) + 𝑢

+ 𝜆∫

𝑥+𝑧

0

𝑉 (𝑥 − 𝑦) d𝐹 (𝑦) − (𝜆 + 𝛿)𝑉 (𝑥) ≤ 0

(25)

for 𝑧 ∈ 𝑅
+
.

On the other hand, consider a strategy by receiving 𝜀 > 0

from the shareholder immediately and following the optimal
strategy for the capital 𝑥 + 𝜀 afterwards; then 𝑉(𝑥) ≥ 𝑉(𝑥 +

𝜀) − 𝜙𝜀. Letting 𝜀 → 0, we get

𝑉
󸀠

(𝑥) ≤ 𝜙. (26)

Amore sophisticated analysis shows that one of the inequali-
ties (25) and (26) is always tight (see Fleming and Soner [11]).

As a result, we get the following HJB equation satisfied by
the value function 𝑉(𝑥) on [0,∞):

max
{{

{{

{

sup
0≤𝑢≤𝑢0

𝑧∈𝑅+

{ (𝑐 − 𝑢)𝑉
󸀠

(𝑥) + 𝑢 + 𝜆

×∫

𝑥+𝑧

0

𝑉 (𝑥 − 𝑦) d𝐹 (𝑦) − (𝜆 + 𝛿)𝑉 (𝑥)} ,

𝑉
󸀠

(𝑥) − 𝜙

}}

}}

}

= 0.

(27)

The expressions to be maximized are

𝑢 (1 − 𝑉
󸀠

(𝑥)) , ∫

𝑥+𝑧

0

𝑉 (𝑥 − 𝑦) d𝐹 (𝑦) . (28)

First, because 𝑢(1 − 𝑉
󸀠

(𝑥)) is linear in 𝑢, 𝑢∗(𝑥) maximizing
𝑢(1 − 𝑉

󸀠

(𝑥)) is

𝑢
∗

(𝑥) = {
0, if 𝑉󸀠

(𝑥) > 1,

𝑢
0
, if 𝑉󸀠

(𝑥) ≤ 1.
(29)

Second, we will maximize ∫
𝑥+𝑧

0

𝑉(𝑥 − 𝑦)d𝐹(𝑦). Because
𝑉(𝑥) ≥ 0, we can define 𝑧∗ = − inf{𝑧; 𝑉(𝑧) > 0}. If 𝑥 < 0,
the shareholders either inject capital to survive the company
or default to do so. Ruin occurs in the latter case, while in
the former case 𝑉(𝑥) will be linear when 𝑥 < 0; that is,
𝑉(𝑥) = 𝑉(0) + 𝜙𝑥. Thus, from the definition of 𝑧∗, we have

𝑧
∗

=
𝑉 (0)

𝜙
. (30)

In fact, 𝑧∗ is the maximal deficit that the shareholder should
bare. We call −𝑧∗ the optimal lower capital injection barrier.

If 𝑉(𝑥) is concave on (0,∞), then there exists an optimal
dividend barrier 𝑏 := inf{𝑥 : 𝑉󸀠

(𝑥) ≤ 1} with

𝑢
∗

(𝑥) = {
0, if 𝑥 < 𝑏 ⇐⇒ 𝑉

󸀠

(𝑥) > 1,

𝑢
0
, if 𝑥 ≥ 𝑏 ⇐⇒ 𝑉

󸀠

(𝑥) ≤ 1.
(31)

And also a barrier 𝑎
0
:= sup{𝑥, 𝑉󸀠

(𝑥) ≥ 𝜙}. If the reserves
become less than 𝑎

0
, according to 𝑧∗, the shareholders may

take actions between the following two choices.

(a) If the deficit is larger than 𝑧∗, they refuse to inject any
capital and ruin occurs.

(b) Otherwise, they inject capital and the injected amount
should recover the reserves to 𝑎

0
. If 𝑎

0
< 0, the

injected amount could not survive the company.
Therefore, we define the optimal upper capital injec-
tion barrier as 𝑎 = 𝑎

0
∨ 0.
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Recall that in the literature (e.g., Kulenko and Schmidli
[9] and He and Liang [4, 5]) concerning the capital injection
strategy, considering the discounting, it can not be optimal
to inject capital before they really are necessary. Therefore,
the shareholders postpone injecting capital as long as possible
and just conjecture that it is optimal to do so only when
the reserves become 0. In the next proposition, from the
mathematical point of view, we will give a rigorous proof of
𝑎 = 0.

Proposition 3. If𝑉(𝑥) is concave on (0,∞), the optimal upper
capital injection barrier 𝑎 = 0.

Proof. Under the assumption, 𝑎 is unique. Suppose 𝑎 > 0.
So 𝑉(𝑥) = 𝑉(0) + 𝜙𝑥 when 𝑥 ∈ [−𝑧

∗

, 𝑎]. Note that 𝑉󸀠

(𝑎) =

𝑉
󸀠

(0) = 𝜙. 𝑉(𝑥) fulfils the HJB equation (27), so at 𝑥 = 0

𝑐𝜙 + 𝜆∫

𝑉(0)/𝜙

0

[𝑉 (0) − 𝜙𝑦] d𝐹 (𝑦) − (𝜆 + 𝛿)𝑉 (0) ≤ 0. (32)

If we take 𝑉(0) = 𝑉(𝑎) − 𝜙𝑎 into the left side of (32), the
expression turns into

𝑐𝜙 + 𝜆∫

𝑉(0)/𝜙

0

[𝑉 (𝑎) − 𝜙𝑎 − 𝜙𝑦] d𝐹 (𝑦)

− (𝜆 + 𝛿) [𝑉 (𝑎) − 𝜙𝑎] .

(33)

At the optimal upper capital injection barrier 𝑎,

𝑐𝑉
󸀠

(𝑎+) + 𝜆∫

𝑉(𝑎)/𝜙

0

[𝑉 (𝑎) − 𝜙𝑦] d𝐹 (𝑦) − (𝜆 + 𝛿)𝑉 (𝑎) = 0.

(34)

It implies

(𝜆 + 𝛿)𝑉 (𝑎) = 𝑐𝑉
󸀠

(𝑎+) + 𝜆∫

𝑉(𝑎)/𝜙

0

[𝑉 (𝑎) − 𝜙𝑦] d𝐹 (𝑦) .

(35)

Pulling (35) into (33), we can rewrite the expression by

𝑐𝜙 + 𝜆∫

𝑉(0)/𝜙

0

[𝑉 (𝑎) − 𝜙𝑎 − 𝜙𝑦] d𝐹 (𝑦) + (𝜆 + 𝛿) 𝜙𝑎

− 𝑐𝑉
󸀠

(𝑎+) − 𝜆∫

𝑉(𝑎)/𝜙

0

[𝑉 (𝑎) − 𝜙𝑦] d𝐹 (𝑦)

= −𝜆∫

𝑉(0)/𝜙

0

𝜙𝑎 d𝐹 (𝑦) − 𝜆∫
𝑉(𝑎)/𝜙

𝑉(0)/𝜙

[𝑉 (𝑎) − 𝜙𝑦] d𝐹 (𝑦)

+ (𝜆 + 𝛿) 𝜙𝑎 + 𝑐 (𝜙 − 𝑉
󸀠

(𝑎+))

= −𝜆𝜙𝑎𝐹(
𝑉 (0)

𝜙
) + 𝜆𝑉 (𝑎) 𝐹(

𝑉 (0)

𝜙
)

− 𝜆𝑉 (𝑎) 𝐹(
𝑉 (𝑎)

𝜙
) + 𝜙𝜆∫

𝑉(𝑎)/𝜙

e
𝑦 d𝐹 (𝑦)

+ (𝜆 + 𝛿) 𝜙𝑎 + 𝑐 (𝜙 − 𝑉
󸀠

(𝑎+))

= −𝜆𝜙𝑎𝐹(
𝑉 (0)

𝜙
) + 𝜆𝑉 (𝑎) 𝐹(

𝑉 (0)

𝜙
)

− 𝜆𝑉 (𝑎) 𝐹(
𝑉 (𝑎)

𝜙
) + 𝑐 (𝜙 − 𝑉

󸀠

(𝑎+))

− 𝜆𝑉 (0) 𝐹(
𝑉 (0)

𝜙
) + 𝜆𝑉 (𝑎) 𝐹(

𝑉 (𝑎)

𝜙
)

− 𝜆𝜙∫

𝑉(𝑎)/𝜙

𝑉(0)/𝜙

𝐹 (𝑦) d𝑦 + (𝜆 + 𝛿) 𝜙𝑎

= [−𝜆𝜙𝑎 + 𝜆𝑉 (𝑎) − 𝜆𝜙𝑉 (0)] 𝐹(
𝑉 (𝑎)

𝜙
) + (𝜆 + 𝛿) 𝜙𝑎

− 𝜆𝜙∫

𝑉(𝑎)/𝜙

𝑉(0)/𝜙

𝐹 (𝑦) d𝑦 + 𝑐 (𝜙 − 𝑉󸀠

(𝑎+))

= (𝜆 + 𝛿) 𝜙𝑎 − 𝜆𝜙∫

𝑉(𝑎)/𝜙

𝑉(0)/𝜙

𝐹 (𝑦) d𝑦 + 𝑐 (𝜙 − 𝑉󸀠

(𝑎+)) .

(36)

However

− 𝜆𝜙∫

𝑉(𝑎)/𝜙

𝑉(0)/𝜙

𝐹 (𝑦) d𝑦 + (𝜆 + 𝛿) 𝜙𝑎 + 𝑐 (𝜙 − 𝑉󸀠

(𝑎+))

≥ −𝜆𝑉 (𝑎) + 𝜆𝑉 (0) + (𝜆 + 𝛿) 𝜙𝑎

= −𝜆 (𝑉 (𝑎) − 𝑉 (0) − 𝜙𝑎) + 𝛿𝜙𝑎

= 𝛿𝜙𝑎 > 0,

(37)

which is contradictory with (32). So 𝑎 > 0 is impossible and
𝑎 = 0 is proved.

The above proposition tells us that the moment when
deficit occurs is just the time the shareholders consider to
inject capital.

Proposition 4. If𝑉(𝑥) is concave on (0,∞), it is continuously
differentiable on (0,∞).

Proof. From the concavity of 𝑉(𝑥), (31) is true. When 𝑥 ∈

(0, 𝑏), from HJB equation (27), and 𝑉(𝑥) is Lipschitz contin-
uous, so

𝑐𝑉
󸀠

(𝑥+) − (𝜆 + 𝛿)𝑉 (𝑥) + 𝜆∫

𝑉(0)/𝜙

0

𝑉 (𝑥 − 𝑦) d𝐹 (𝑦)

= 𝑐𝑉
󸀠

(𝑥−) − (𝜆 + 𝛿)𝑉 (𝑥)

+ 𝜆∫

𝑉(0)/𝜙

0

𝑉 (𝑥 − 𝑦) d𝐹 (𝑦) = 0.

(38)
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Thus 𝑉󸀠

(𝑥−) = 𝑉
󸀠

(𝑥+). Similarly, we can proof 𝑉(𝑥) is
continuously differentiable on (𝑏,∞). Now suppose 𝑏 > 0.
Note

(𝑐 − 𝑢
0
) 𝑉

󸀠

(𝑏+) + 𝑢
0
− (𝜆 + 𝛿)𝑉 (𝑏)

+ 𝜆∫

𝑉(0)/𝜙

0

𝑉 (𝑏 − 𝑦) d𝐹 (𝑦) = 0,

𝑐𝑉
󸀠

(𝑏−) − (𝜆 + 𝛿)𝑉 (𝑏) + 𝜆∫

𝑉(0)/𝜙

0

𝑉 (𝑏 − 𝑦) d𝐹 (𝑦) = 0.

(39)

So 𝑐𝑉󸀠

(𝑏−) = 𝑢
0
+ (𝑐 − 𝑢

0
)𝑉

󸀠

(𝑏+) or equivalently 𝑐(𝑉󸀠

(𝑏−) −

𝑉
󸀠

(𝑏+)) = 𝑢
0
(1 − 𝑉

󸀠

(𝑏+)).
If 𝑢

0
< 𝑐, either 𝑉󸀠

(𝑏−) = 𝑉
󸀠

(𝑏+) = 1 or 1 > 𝑉
󸀠

(𝑏−).
The latter is impossible, so𝑉(𝑥) is continuously differentiable
under this case.

If 𝑢
0
≥ 𝑐, the reserve stays at 𝑏 until the first claim occurs

because dividend is a barrier strategy. 𝑏 is independent of the
constant 𝑢

0
. In fact, because the process does not leave the

interval [0, 𝑏] and the corresponding strategy is admissible for
any 𝑢

0
≥ 𝑐, it must be optimal for any initial value in [0, 𝑏].

For 𝑥 = 𝑏, the expected discounted dividends until the first
claim are

𝜆∫

∞

0

𝑒
−𝜆𝑡

∫

𝑡

0

𝑐𝑒
−𝛿𝑠d𝑠 d𝑡 = 𝜆𝑐

𝛿
∫

∞

0

(1 − 𝑒
−𝛿𝑡

) 𝑒
−𝜆𝑡d𝑡 = 𝑐

𝜆 + 𝛿
.

(40)

The expected discounted dividends after the first claim are

𝜆∫

∞

0

𝑒
−𝜆𝑡

∫

𝑏

0

𝑒
−𝛿𝑡

𝑉 (𝑏 − 𝑦) d𝐹 (𝑦) d𝑡

+ 𝜆∫

∞

0

𝑒
−𝜆𝑡

∫

𝑏+𝑧
∗

𝑏

𝑒
−𝛿𝑡

[𝑉 (0) + 𝜙 (𝑏 − 𝑦)] d𝐹 (𝑦) d𝑡

=
𝜆

𝜆 + 𝛿
[∫

𝑏

0

𝑉 (𝑏 − 𝑦) d𝐹 (𝑦)

+∫

𝑏+𝑧
∗

𝑏

[𝑉 (0) + 𝜙 (𝑏 − 𝑦)] d𝐹 (𝑦)] .

(41)

Hence, the value at 𝑏 can be characterized as

𝑉 (𝑏) =
𝑐

𝜆 + 𝛿
+

𝜆

𝜆 + 𝛿
[∫

𝑏

0

𝑉 (𝑏 − 𝑦) d𝐹 (𝑦)

+∫

𝑏+𝑧
∗

𝑏

[𝑉 (0) + 𝜙 (𝑏 − 𝑦)] d𝐹 (𝑦)] .

(42)

Pulling𝑉(𝑏) into (39), we find𝑉󸀠

(𝑏−) = 𝑉
󸀠

(𝑏+) = 1. So 𝑉(𝑥)
is continuously differentiable in this case, too.

It holds in an interval (𝑇
𝑖−1
, 𝑇

𝑖
) between two claims that

d𝑋𝜋

𝑡
= (𝑐 − 𝑈

𝑡
)d𝑡. Δ𝑍

𝑇𝑖
= 𝑍

𝑇𝑖+
− 𝑍

𝑇𝑖
denotes the injected

capital at the 𝑖th claim arrivals.

(i) If𝑋𝜋

𝑇𝑖−
− 𝑌

𝑖
≥ 0, then Δ𝑍

𝑇𝑖
= 0;

(ii) If −𝑧∗ < 𝑋
𝜋

𝑇𝑖−
− 𝑌

𝑖
< 0, then the shareholders pay

as much that 𝑋𝜋

𝑇𝑖+
= 𝑋

𝜋

𝑇𝑖−
− 𝑌

𝑖
+ Δ𝑍

𝑇𝑖
= 0. That is,

Δ𝑍
𝑇𝑖
= 0− (𝑋

𝜋

𝑇𝑖−
−𝑌

𝑖
). In this case, the value function

fulfils

𝑉(𝑋
𝜋

𝑇𝑖+
) (= 𝑉 (0)) = 𝑉 (𝑋

𝜋

𝑇𝑖−
− 𝑌

𝑖
) + 𝜙Δ𝑍

𝑇𝑖
,

if − 𝑧
∗

< 𝑋
𝜋

𝑇𝑖−
− 𝑌

𝑖
< 0.

(43)

(iii) If 𝑋𝜋

𝑇𝑖−
− 𝑌

𝑖
≤ −𝑧

∗, then the shareholders would get
a negative net profit as long as they cover the deficit
(because𝑉(0)−𝜙Δ𝑍

𝑇𝑖
< 0). It is unreasonable.Hence,

they prefer to “no-injection-no-profit” and refuse
to inject capital anymore. In this case, bankruptcy
occurs and 𝑇𝜋

= 𝑇
𝑖
. So

𝑉(𝑋
𝜋

𝑇𝑖+
) = 𝑉 (𝑋

𝜋

𝑇𝑖

) = 𝑉 (𝑋
𝜋

𝑇𝑖−
− 𝑌

𝑖
) = 0,

if 𝑋𝜋

𝑇𝑖−
− 𝑌

𝑖
≤ −𝑧

∗

.

(44)

Based on the discussion above, when 𝑥 < 0, we can
express 𝑉(𝑥) by

𝑉 (𝑥) = {
0, if 𝑥 ≤ −𝑧

∗

,

𝑉 (0) + 𝜙𝑥, if − 𝑧
∗

< 𝑥 < 0.
(45)

Thus it suffices to consider solutions 𝑓 to the HJB
equation with the properties

𝑓 (𝑥) = 0, if 𝑥 ≤ −
𝑓 (0)

𝜙
. (46)

𝑓 (𝑥) = 𝑓 (0) + 𝜙𝑥, if −
𝑓 (0)

𝜙
< 𝑥 < 0. (47)

Lemma 5. Let 𝑓(𝑥) be an increasing, bounded, and nonnega-
tive solution to (27)with properties (46) and (47).Then for any
admissible strategy 𝜋 ∈ Π

𝑟, the process

{𝑓 (𝑋
𝜋

𝑡∧𝑇
𝜋) 𝑒

−𝛿(𝑡∧𝑇
𝜋
)

− 𝑓 (𝑥) − 𝜙∫

𝑡∧𝑇
𝜋

0

𝑒
−𝛿𝑠d𝑍

𝑠

− ∫

𝑡∧𝑇
𝜋

0

[ (𝑐 − 𝑈
𝑠
) 𝑓

󸀠

(𝑋
𝜋

𝑠
) − (𝜆 + 𝛿) 𝑓 (𝑋

𝜋

𝑠
)

+𝜆∫

𝑋
𝜋

𝑠
+(𝑓(0)/𝜙)

0

𝑓 (𝑋
𝜋

𝑠
− 𝑦) d𝐹 (𝑦)] 𝑒−𝛿𝑠d𝑠}

(48)

is a martingale.

Proof. First we decompose 𝑓(𝑋𝜋

𝑡∧𝑇
𝜋)𝑒

−𝛿(𝑡∧𝑇
𝜋
)

𝑓 (𝑋
𝜋

𝑡∧𝑇
𝜋) 𝑒

−𝛿(𝑡∧𝑇
𝜋
)

= 𝑓 (𝑋
𝜋

0+
) +

𝑁
𝑡∧𝑇
𝜋

∑

𝑖=1

[𝑓 (𝑋
𝜋

𝑇𝑖+
) 𝑒

−𝛿𝑇𝑖 − 𝑓 (𝑋
𝜋

𝑇𝑖−1+
) 𝑒

−𝛿𝑇𝑖−1]
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+ 𝑓 (𝑋
𝜋

𝑡∧𝑇
𝜋) 𝑒

−𝛿(𝑡∧𝑇
𝜋
)

− 𝑓(𝑋
𝜋

𝑇𝑁
𝑡∧𝑇
𝜋 +

) 𝑒
−𝛿𝑇𝑁
𝑡∧𝑇
𝜋

= 𝑓 (𝑋
𝜋

0+
) +

𝑁
𝑡∧𝑇
𝜋

∑

𝑖=1

[𝑓 (𝑋
𝜋

𝑇𝑖+
) − 𝑓 (𝑋

𝜋

𝑇𝑖−
)] 𝑒

−𝛿𝑇𝑖

+

𝑁
𝑡∧𝑇
𝜋

∑

𝑖=1

[𝑓 (𝑋
𝜋

𝑇𝑖−
) 𝑒

−𝛿𝑇𝑖 − 𝑓 (𝑋
𝜋

𝑇𝑖−1+
) 𝑒

−𝛿𝑇𝑖−1]

+ 𝑓 (𝑋
𝜋

𝑡∧𝑇
𝜋) 𝑒

−𝛿(𝑡∧𝑇
𝜋
)

− 𝑓(𝑋
𝜋

𝑇𝑁
𝑡∧𝑇
𝜋
+
) 𝑒

−𝛿𝑇𝑁
𝑡∧𝑇
𝜋

= 𝑓 (𝑥) + 𝜙Δ𝑍
𝑇0
+

𝑁
𝑡∧𝑇
𝜋

∑

𝑖=1

[𝑓 (𝑋
𝜋

𝑇𝑖−
− 𝑌

𝑖
) − 𝑓 (𝑋

𝜋

𝑇𝑖−
)] 𝑒

−𝛿𝑇𝑖

+ 𝜙

𝑁
𝑡∧𝑇
𝜋

∑

𝑖=1

Δ𝑍
𝑇𝑖
𝑒
−𝛿𝑇𝑖 +

𝑁
𝑡∧𝑇
𝜋

∑

𝑖=1

∫

𝑇𝑖−

𝑇𝑖−1+

d𝑒−𝛿𝑠𝑓 (𝑋𝜋

𝑠
)

+ ∫

𝑡∧𝑇
𝜋

𝑇𝑁
𝑡∧𝑇
𝜋
+

d𝑒−𝛿𝑠𝑓 (𝑋𝜋

𝑠
)

= 𝑓 (𝑥) +

𝑁
𝑡∧𝑇
𝜋

∑

𝑖=1

[𝑓 (𝑋
𝜋

𝑇𝑖−
− 𝑌

𝑖
) − 𝑓 (𝑋

𝜋

𝑇𝑖−
)] 𝑒

−𝛿𝑇𝑖

+ ∫

𝑡∧𝑇
𝜋

𝑇𝑁
𝑡∧𝑇
𝜋
+

[(𝑐 − 𝑈
𝑠
) 𝑓

󸀠

(𝑋
𝜋

𝑠
) − 𝛿𝑓 (𝑋

𝜋

𝑠
)] 𝑒

−𝛿𝑠d𝑠

+

𝑁
𝑡∧𝑇
𝜋

∑

𝑖=1

∫

𝑇𝑖−

𝑇𝑖−1+

[(𝑐 − 𝑈
𝑠
) 𝑓

󸀠

(𝑋
𝜋

𝑠
) − 𝛿𝑓 (𝑋

𝜋

𝑠
)] 𝑒

−𝛿𝑠d𝑠

+ 𝜙∫

𝑡∧𝑇
𝜋

0

𝑒
−𝛿𝑠d𝑍

𝑠

= 𝑓 (𝑥) +

𝑁
𝑡∧𝑇
𝜋

∑

𝑖=1

[𝑓 (𝑋
𝜋

𝑇𝑖−
− 𝑌

𝑖
) − 𝑓 (𝑋

𝜋

𝑇𝑖−
)] 𝑒

−𝛿𝑇𝑖

+ 𝜙∫

𝑡∧𝑇
𝜋

0

𝑒
−𝛿𝑠d𝑍

𝑠

+ ∫

𝑡∧𝑇
𝜋

0

[(𝑐 − 𝑈
𝑠
) 𝑓

󸀠

(𝑋
𝜋

𝑠
) − 𝛿𝑓 (𝑋

𝜋

𝑠
)] 𝑒

−𝛿𝑠d𝑠.

(49)

Then in order to make the process {∑𝑁
𝑡∧𝑇
𝜋

𝑖=1
[𝑓(𝑋

𝜋

𝑇𝑖−
− 𝑌

𝑖
) −

𝑓(𝑋
𝜋

𝑇𝑖−
)]𝑒

−𝛿𝑇𝑖 −∫
𝑡∧𝑇
𝜋

0

𝑔(𝑋
𝜋

𝑠
)d𝑠} become amartingale with the

expected value 0, wemust find ameasurable function𝑔. Since
the above expression can be written as

𝑁
𝑡∧𝑇
𝜋

∑

𝑖=1

{[𝑓 (𝑋
𝜋

𝑇𝑖−
− 𝑌

𝑖
) − 𝑓 (𝑋

𝜋

𝑇𝑖−
)] 𝑒

−𝛿𝑇𝑖 − ∫

𝑇𝑖

𝑇𝑖−1

𝑔 (𝑋
𝜋

𝑠
) d𝑠}

− ∫

𝑡

𝑇𝑁
𝑡∧𝑇
𝜋

𝑔 (𝑋
𝜋

𝑠
) d𝑠

(50)

it is enough to replace 𝑡 by 𝑇
1
∧ 𝑡; that is,

[𝑓 (𝑋
𝜋

𝑇1−
− 𝑌

1
) − 𝑓 (𝑋

𝜋

𝑇1−
)] 𝑒

−𝛿𝑇11
(𝑇1≤𝑡)

− ∫

𝑡∧𝑇1

0

𝑔 (𝑋
𝜋

𝑠
) d𝑠.

(51)

Because the exponential distribution is lack of memory, we
only consider the expected value. 𝑔 will satisfy

𝐸{[𝑓 (𝑋
𝜋

𝑇1−
− 𝑌

1
) − 𝑓 (𝑋

𝜋

𝑇1−
)] 𝑒

−𝛿𝑇11
(𝑇1≤𝑡)

−∫

𝑡∧𝑇1

0

𝑔 (𝑋
𝜋

𝑠
) d𝑠} = 0.

(52)

The expected values of the first and the second part are

∫

𝑡

0

𝜆𝑒
−𝜆𝑠

𝑒
−𝛿𝑠

{∫

𝑥+∫

𝑠

0
(𝑐−𝑈V)dV+𝑓(0)/𝜙

0

𝑓

× (𝑥 + ∫

𝑠

0

(𝑐 − 𝑈V) dV − 𝑦) d𝐹 (𝑦)

−𝑓(𝑥 + ∫

𝑠

0

(𝑐 − 𝑈V) dV)} d𝑠,

∫

𝑡

0

𝜆𝑒
−𝜆𝑠

∫

𝑠

0

𝑔(𝑥 + ∫

V

0

(𝑐 − 𝑈
𝑤
) d𝑤) dV d𝑠

+ 𝑒
−𝜆𝑡

∫

𝑡

0

𝑔(𝑥 + ∫

𝑠

0

(𝑐 − 𝑈V) dV) d𝑠

= ∫

𝑡

0

𝑒
−𝜆𝑠

𝑔(𝑥 + ∫

𝑠

0

(𝑐 − 𝑈V) dV) d𝑠.

(53)

Thus we can choose

𝑔 (𝑋
𝜋

𝑡
) = 𝜆𝑒

−𝛿𝑡

(∫

𝑋
𝜋

𝑡
+𝑓(0)/𝜙

0

𝑓 (𝑋
𝜋

𝑡
− 𝑦) d𝐹 (𝑦) − 𝑓 (𝑋𝜋

𝑡
))

= 𝜆𝑒
−𝛿𝑡

∫

𝑋
𝜋

𝑡
+𝑓(0)/𝜙

0

𝑓 (𝑋
𝜋

𝑡
− 𝑦) d𝐹 (𝑦) − 𝜆𝑒−𝛿𝑡𝑓 (𝑋𝜋

𝑡
) .

(54)

So

{

𝑁
𝑡∧𝑇
𝜋

∑

𝑖=1

[𝑓 (𝑋
𝜋

𝑇𝑖−
− 𝑌

𝑖
) − 𝑓 (𝑋

𝜋

𝑇𝑖−
)] 𝑒

−𝛿𝑇𝑖 − 𝜆

×∫

𝑡∧𝑇
𝜋

0

𝑒
−𝛿𝑠

[∫

𝑋
𝜋

𝑠
+𝑓(0)/𝜙

0

𝑓 (𝑋
𝜋

𝑠
− 𝑦) d𝐹 (𝑦) − 𝑓 (𝑋𝜋

𝑠
)] d𝑠}

(55)

and, also, the process

{𝑓 (𝑋
𝜋

𝑡∧𝑇
𝜋) 𝑒

−𝛿(𝑡∧𝑇
𝜋
)

− 𝑓 (𝑥) − 𝜙∫

𝑡∧𝑇
𝜋

0

𝑒
−𝛿𝑠d𝑍

𝑠

− ∫

𝑡∧𝑇
𝜋

0

[(𝑐 − 𝑈
𝑠
) 𝑓

󸀠

(𝑋
𝜋

𝑠
) − (𝜆 + 𝛿) 𝑓 (𝑋

𝜋

𝑠
)

+ 𝜆∫

𝑋
𝜋

𝑠
+𝑓(0)/𝜙

0

𝑓 (𝑋
𝜋

𝑠
− 𝑦) d𝐹 (𝑦)] 𝑒−𝛿𝑠d𝑠}

(56)

are {F
𝑡
}-martingales with expected value 0.

The following theorem serves as a verification theorem.
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Theorem 6. Let 𝑓(𝑥) be an increasing and bounded solution
to (27)with the properties (46) and (47).Then lim

𝑥→∞
𝑓(𝑥) =

𝑢
0
/𝛿 and𝑓(𝑥) = 𝑉(𝑥) on𝑅

+
.The optimal capital injection and

dividend barriers are given by (30) and (31).

Proof. Because 𝑓(𝑥) is increasing and bounded, we assume
lim

𝑥→∞
𝑓(𝑥) = 𝑓

0
. Then there exists a sequence 𝑥

𝑛
→ ∞

such that 𝑓󸀠

(𝑥
𝑛
) → 0. Let 𝑢

𝑛
= 𝑢(𝑥

𝑛
). From the definition

of the optimal dividend strategy, we can assume that 𝑢
𝑛
= 𝑢

0
.

As 𝑛 → ∞, the first term in (27) turns to

0 = (𝑐 − 𝑢
0
) 𝑓

󸀠

(𝑥
𝑛
) + 𝑢

0
− 𝛿𝑓 (𝑥

𝑛
)

+ 𝜆 [∫

𝑥𝑛+𝑓(0)/𝜙

0

𝑓 (𝑥
𝑛
− 𝑦) d𝐹 (𝑦) − 𝑓 (𝑥

𝑛
)]

󳨀→ −𝛿𝑓
0
+ 𝑢

0
.

(57)

Equivalently we have lim
𝑥→∞

𝑓(𝑥) = 𝑢
0
/𝛿.

Let 𝑇∗ be the ruin time under the strategies (30) and (31)
and 𝑉∗

(𝑥) the corresponding value. From Lemma 5 and the
HJB equation (27), we have

{𝑓(𝑋
𝜋
∗

𝑡∧𝑇
∗) 𝑒

−𝛿(𝑡∧𝑇
∗
)

− 𝑓 (𝑥)

+∫

𝑡∧𝑇
∗

0

𝑒
−𝛿𝑠

𝑈
∗

𝑠
d𝑠 − 𝜙∫

𝑡∧𝑇
∗

0

𝑒
−𝛿𝑠d𝑍∗

𝑠
}

(58)

is a martingale with expected value 0. Then

𝑓 (𝑥) = 𝐸
𝑥
[𝑓 (𝑋

𝜋
∗

𝑡∧𝑇
∗) 𝑒

−𝛿(𝑡∧𝑇
∗
)

+ ∫

𝑡∧𝑇
∗

0

𝑒
−𝛿𝑠

𝑈
∗

𝑠
d𝑠

−𝜙∫

𝑡∧𝑇
∗

0

𝑒
−𝛿𝑠d𝑍∗

𝑠
] .

(59)

Since 𝑓 is bounded and from the bounded convergence
theorem, as 𝑡 → ∞, we get that 𝐸[𝑓(𝑋𝜋

∗

𝑡∧𝑇
∗)𝑒

−𝛿(𝑡∧𝑇
∗
)

] →

0. The other terms are monotone, when 𝑡 → ∞, by
interchanging the limit and integration, so we obtain 𝑓(𝑥) =
𝑉
∗

(𝑥) ≤ 𝑉(𝑥).
On the other hand, because 𝑓(𝑥) is increasing and

satisfies (46), 𝑓(𝑥) is nonnegative on (−∞,∞). For any
admissible strategy 𝜋, HJB equation (27) gives that

𝑓 (𝑥) ≥ 𝐸
𝑥
[𝑓 (𝑋

𝜋

𝑡∧𝑇
𝜋) 𝑒

−𝛿(𝑡∧𝑇
𝜋
)

+ ∫

𝑡∧𝑇
𝜋

0

𝑒
−𝛿𝑠

𝑈
𝑠
d𝑠

−𝜙∫

𝑡∧𝑇
𝜋

0

𝑒
−𝛿𝑠d𝑍

𝑠
]

≥ 𝐸
𝑥
[∫

𝑡∧𝑇
𝜋

0

𝑒
−𝛿𝑠

𝑈
𝑠
d𝑠 − 𝜙∫

𝑡∧𝑇
𝜋

0

𝑒
−𝛿𝑠d𝑍

𝑠
] .

(60)

Let 𝑡 → ∞; then 𝑓(𝑥) ≥ 𝑉
𝜋

(𝑥), which means 𝑓(𝑥) ≥ 𝑉(𝑥).
Thus, 𝑓(𝑥) = 𝑉(𝑥).

Based on the discussion above, if 𝑉(𝑥) is concave on
(0,∞), it is optimal for the shareholders to take no action

as long as the reserve process takes value in (0, 𝑏). When the
process reaches or exceeds the barrier 𝑏, dividends have to
be paid at the maximal rate 𝑢

0
. When the reserve is less than

0, the shareholders should consider either to inject capital to
recover the reserve to 0 or default to do so. If the decifit is less
than 𝑧∗, the shareholders can earn positive net profit. So they
inject capital which covers the deficit to survive the company.
Otherwise, once the deficit is larger than 𝑧∗, the shareholders
refuse to do so and ruin occurs.

Remark 7. Diffusion models can be used to approximate the
Cramér-Lundberg risk model. During the recent decades,
they have been applied to insurance modeling setting exten-
sively. See Radner and Shepp [12], Asmussen and Taksar [13],
and Højgaard and Taksar [14, 15], Sethi and Taksar [2], and
so forth. Diffusionmodels have the advantage that some very
explicit optimal controls and a smooth value function can
be made. Hopefully, these can help to take almost optimal
strategies for the original riskmodel. However, this statement
is not trivial.

The optimal dividend and issuance equity strategies (or
combined with other strategies) in diffusion risk model had
been studied by Løkka and Zervos [3], He and Liang [4, 5],
and so forth. In their paper, depending on the relationships
between the coefficients, it is optimal for the company either
to involve no issuance equity or to involve issuance equity
without ruin. In this paper, our conclusion in the Cramér-
Lundberg risk model is that the optimal capital injection
strategy will depend on the deficit. Once the deficit is
large, ruin will still occur. Thus the optimal capital injection
strategy looks different for these twomodels and the diffusion
approximations are not effective here.

Discussion on whether the diffusion approximation is
true can be found in Maglaras [16] and Bäuerle [6], and so
forth.

3. Unrestricted Dividends

In this section, we will discuss the dividend strategy without
restriction. Here all increasing, adapted, and càdlàg processes
are allowed to be the dividend strategy. LetΠ denote the set of
all admissible strategies. The value of an admissible strategy
𝜋 is

𝑉
𝜋

(𝑥) = 𝐸[∫

𝑇
𝜋
−

0−

𝑒
−𝛿𝑡d𝐷

𝑡
− 𝜙∫

𝑇
𝜋

0

𝑒
−𝛿𝑡d𝑍

𝑡
] . (61)

The value function is 𝑉(𝑥) = sup
𝜋∈Π

𝑉
𝜋

(𝑥).

Lemma 8. On [0,∞), the function 𝑉(𝑥) is increasing and
local Lipschitz continuous; 𝑉(𝑥) − 𝑉(𝑦) ≥ 𝑥 − 𝑦 if 𝑥 ≥ 𝑦;
0 ≤ 𝑉(𝑥) ≤ 𝑥 + 𝑐/𝛿.

Proof. For any 𝜀 > 0, define a strategy 𝜋 satisfing 𝑉𝜋

(𝑦) ≥

𝑉(𝑦) − 𝜀. 𝜋󸀠 is a new strategy for 𝑥 ≥ 𝑦. {𝑍󸀠

𝑡
} in 𝜋󸀠 is the same

as {𝑍
𝑡
} in𝜋.While {𝐷󸀠

𝑡
} is defined as:𝑥−𝑦 is paid immediately

as dividend and then the strategy {𝐷
𝑡
} with initial capital 𝑦 is

followed.Therefore,𝑉(𝑥) ≥ 𝑥−𝑦+𝑉
𝜋

(𝑦) ≥ 𝑥−𝑦+𝑉(𝑦)− 𝜀.
From the arbitrary property of 𝜀, we have𝑉(𝑥)−𝑉(𝑦) ≥ 𝑥−𝑦.
In particulars, 𝑉(𝑥) is strictly increasing.
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Consider such a strategy 𝜋: the initial capital 𝑥 is paid
to the shareholders as dividends immediately and capital
injection is forbidden. Then 𝑉(𝑥) ≥ 𝑉

𝜋

(𝑥) ≥ 0.
To get the upper bound of 𝑉(𝑥), we consider a strategy

𝜋. {𝐷
𝑡
} is defined as: if the initial capital is 𝑥 (𝑥 ≥ 0), then 𝑥

is paid immediately and then the dividends are paid at rate
𝑐. If we donot take the capital injection into account, then
𝑥 + 𝐸

𝑥
[∫

∞

0

𝑒
−𝛿𝑡

𝑐 d𝑡] = 𝑥 + 𝑐/𝛿 is the upper bound of any
admissible strategy 𝜋; that is, 𝑉(𝑥) ≤ 𝑥 + 𝑐/𝛿.

The local Lipschitz continuity follows by the local bound-
edness of 𝑉(𝑥) as in the proof of Lemma 2.

3.1. HJB Equation and the Optimal Strategies. Similar to
the discussion in Section 2.2, 𝑉(𝑥) satisfies the following
dynamic programming principle:

𝑉 (𝑥) = sup
𝜋

𝐸
𝑥
[∫

𝜏∧𝑇
𝜋

0−

𝑒
−𝛿𝑡d𝐷

𝑡
− 𝜙∫

𝜏∧𝑇
𝜋

0

𝑒
−𝛿𝑡d𝑍

𝑡

+ 𝑒
−𝛿(𝜏∧𝑇

𝜋
)

𝑉 (𝑋
𝜋

𝜏∧𝑇
𝜋)]

(62)

for 𝑥 ∈ 𝑅
+
and any {F

𝑡
}-stopping time 𝜏.

For 𝑥 ≥ 0, similarly we define 𝜏𝜋 as in Section 2.2. Note
that 𝜎𝜋 = 𝑇

𝜋 is possible here. Applying Itô formula into
𝑒
−𝛿𝜏
𝜋

𝑉(𝑋
𝜋

𝜏
𝜋), we have

𝑒
−𝛿𝜏
𝜋

𝑉 (𝑋
𝜋

𝜏
𝜋) = 𝑉 (𝑋

𝜋

0−
)

+ ∫

𝜏
𝜋

0

𝑒
−𝛿𝑠

𝑐𝑉
󸀠

(𝑋
𝜋

𝑠−
) − 𝛿𝑒

−𝛿𝑠

𝑉 (𝑋
𝜋

𝑠−
) d𝑠

+ ∑

0≤𝑠≤𝜏
𝜋

𝑋
𝜋

𝑠−
̸=𝑋
𝜋

𝑠

𝑒
−𝛿𝑠

[𝑉 (𝑋
𝜋

𝑠
) − 𝑉 (𝑋

𝜋

𝑠−
)]

+ ∑

0≤𝑠<𝜏
𝜋

𝑋
𝜋

𝑠
̸=𝑋
𝜋

𝑠+

𝑒
−𝛿𝑠

[𝑉 (𝑋
𝜋

𝑠+
) − 𝑉 (𝑋

𝜋

𝑠
)] .

(63)

𝑋
𝜋

𝑠
̸=𝑋

𝜋

𝑠+
only when capital is injected, so

∑

0≤𝑠<𝜏
𝜋

𝑋
𝜋

𝑠
̸=𝑋
𝜋

𝑠+

𝑒
−𝛿𝑠

[𝑉 (𝑋
𝜋

𝑠+
) − 𝑉 (𝑋

𝜋

𝑠
)] = 𝜙∫

𝜏
𝜋

0

𝑒
−𝛿𝑠d𝑍

𝑠
. (64)

When claim arrives or dividend occurs,𝑋𝜋

𝑠−
̸=𝑋

𝜋

𝑠
.The jumps

caused by claim arrivals lead to

𝑀(𝜏
𝜋

) = 𝑀(𝜎
𝜋

∧ ℎ)

= ∑

0≤𝑠≤𝜏
𝜋

𝑋
𝜋

𝑠−
̸=𝑋
𝜋

𝑠

𝑒
−𝛿𝑠

[𝑉 (𝑋
𝜋

𝑠
) − 𝑉 (𝑋

𝜋

𝑠−
)]

− 𝜆∫

𝜏
𝜋

0

∫

∞

0

𝑒
−𝛿𝑠

(𝑉 (𝑋
𝜋

𝑠−
− 𝑦) − 𝑉 (𝑋

𝜋

𝑠−
)) d𝐹 (𝑦) d𝑠

(65)

is a martingale with 𝑀(0) = 0. And the amount of the
aggregated jumps caused by dividend are −∫𝜏

𝜋

0−

𝑒
−𝛿𝑠d𝐷

𝑠
. So

from the dynamic programming principle (62), yields

𝑉 (𝑥)

≥ 𝐸
𝑥
[∫

𝜏
𝜋

0−

𝑒
−𝛿𝑠d𝐷

𝑠
− 𝜙∫

𝜏
𝜋

0

𝑒
−𝛿𝑠d𝑍

𝑠
+ 𝑉 (𝑥)

+ ∫

𝜏
𝜋

0

𝑒
−𝛿𝑠

[𝑐𝑉
󸀠

(𝑋
𝜋

𝑠−
) − 𝛿𝑉 (𝑋

𝜋

𝑠−
) + 𝜆

×∫

∞

0

𝑉 (𝑋
𝜋

𝑠−
− 𝑦) − 𝑉 (𝑋

𝜋

𝑠−
) d𝐹 (𝑦)] d𝑠

−∫

𝜏
𝜋

0−

𝑒
−𝛿𝑠d𝐷

𝑠
+ 𝜙∫

𝜏
𝜋

0

𝑒
−𝛿𝑠d𝑍

𝑠
] .

(66)

Equivalently

𝐸
𝑥
[∫

𝜏
𝜋

0

𝑒
−𝛿𝑠

[𝑐𝑉
󸀠

(𝑋
𝜋

𝑠−
) + 𝜆∫

∞

0

𝑉 (𝑋
𝜋

𝑠−
− 𝑦) d𝐹 (𝑦)

− (𝜆 + 𝛿)𝑉 (𝑋
𝜋

𝑠−
)] d𝑠] ≤ 0.

(67)

If 𝑇𝜋

= 0, then 𝜏𝜋 = 0. Therefore (67) gives no information.
If 𝑇𝜋

> 0, we can choose 𝜀 such that 𝐸𝜏𝜋 > 0. Dividing 𝐸𝜏𝜋
in (67) and letting ℎ → 0, so

𝑐𝑉
󸀠

(𝑥) + 𝜆∫

∞

0

𝑉 (𝑥 − 𝑦) d𝐹 (𝑦) − (𝜆 + 𝛿)𝑉 (𝑥) ≤ 0. (68)

Also we can rewrite the above inequality by

𝑐𝑉
󸀠

(𝑥) + 𝜆∫

𝑥+𝑧

0

𝑉 (𝑥 − 𝑦) d𝐹 (𝑦) − (𝜆 + 𝛿)𝑉 (𝑥) ≤ 0 (69)

for 𝑧 ∈ 𝑅
+
.

Refering to the proof of (26), we have

𝑉
󸀠

(𝑥) ≤ 𝜙. (70)

If the company pays out 𝜀 as dividends, then the initial
capital reduces from 𝑥 to 𝑥 − 𝜀. Using the optimal strategy
afterwards, so𝑉(𝑥) ≥ 𝑉(𝑥− 𝜀) + 𝜀. Subtracting𝑉(𝑥− 𝜀) from
both sides, dividing by 𝜀, and letting 𝜀 → 0, we get

𝑉
󸀠

(𝑥) ≥ 1. (71)

One of the inequalities (69), (70), and (71) is always tight
(refer to Fleming and Soner [11]).

Thus we derive the HJB equation satisfied by 𝑉(𝑥) on
[0,∞)

max{sup
𝑧∈𝑅+

{𝑐𝑉
󸀠

(𝑥) + 𝜆∫

𝑥+𝑧

0

𝑉 (𝑥 − 𝑦) d𝐹 (𝑦)

− (𝜆 + 𝛿)𝑉 (𝑥)} , 1 − 𝑉
󸀠

(𝑥) , 𝑉
󸀠

(𝑥) − 𝜙} = 0.

(72)
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To maximize ∫𝑥+𝑧
0

𝑉(𝑥 − 𝑦)d𝐹(𝑦), let us recall the proof
of 𝑧∗ = 𝑉(0)/𝜙 in Section 2.2. We can find that 𝑧∗ is
independent of 𝑢

0
. So we also have the optimal lower capital

injection barrier

−𝑧
∗

= −
𝑉 (0)

𝜙
. (73)

Hence when 𝑥 < 0, 𝑉(𝑥) can be expressed by

𝑉 (𝑥) = {
0 if 𝑥 ≤ −𝑧

∗

,

𝑉 (0) + 𝜙𝑥 if − 𝑧∗ < 𝑥 < 0.
(74)

In Section 2.2, the optimal dividend strategy and the opti-
mal capital injection strategy are both barrier strategies under
the assumption that 𝑉(𝑥) is concave on (0,∞). Moreover,
the optimal dividend barrier 𝑏 and the upper optimal capital
injection barrier 𝑎 are both independent of 𝑢

0
. Here if𝑉(𝑥) is

concave on (0,∞), similar to discussion in Section 2.2, we can
define the optimal dividend barrier 𝑏 := inf{𝑥 : 𝑉

󸀠

(𝑥) ≤ 1}

and the optimal upper capital injection barrier 𝑎 := sup{𝑥 :

𝑉
󸀠

(𝑥) ≥ 𝜙} ∨ 0. And also 𝑉(𝑥) is continuously differentiable.

Proposition9. If𝑉(𝑥) is concave on (0,∞), the optimal upper
capital injection barrier 𝑎 = 0.

Proof. The proof is similar as in Proposition 3, so we omit it
here.

Now define a strategy 𝜋1 = (𝐷
1

, 𝑍
1

) as follows:

𝐷
1

0
= max (𝑥 − 𝑏, 0) ,

𝐷
1

𝑡
= 𝐷

1

0
+ ∫

𝑡

0

𝑐1
{𝑋
𝜋
1

𝑠
=𝑏}

d𝑠, for 𝑡 > 0,

𝑍
1

𝑡
= max {− inf

0≤𝑠<𝑡

(𝑋
𝑠
− 𝐷

1

𝑠
) , 0} for 𝑡 > 0.

(75)

Let 𝑇∗

= inf{𝑡 ≥ 0 : 𝑋
𝜋
1

𝑡
≤ −𝑧

∗

}. Define strategy 𝜋∗ =

(𝐷
∗

, 𝑍
∗

) by the strategy 𝜋1 stopped at 𝑇∗:

𝐷
∗

𝑡
= {

𝐷
1

𝑡
, if 𝑡 < 𝑇

∗

,

𝐷
1

𝑇
∗
−
, if 𝑡 ≥ 𝑇

∗

,
𝑍
∗

𝑡
= {

𝑍
1

𝑡
, if 𝑡 < 𝑇

∗

,

𝑍
1

𝑇
∗ , if 𝑡 ≥ 𝑇

∗

.

(76)

Under 𝜋∗, if the initial capital 𝑥 > 𝑏, 𝑥 − 𝑏 will be paid to
the shareholders as dividends immediately.When the reserve
process takes value in (0, 𝑏), insurance company dose not pay
dividend and shareholders do not inject capital. When the
process reaches the barrier 𝑏, the premium income will be
paid as dividends. If deficit occurs and it is less than 𝑧∗, the
shareholders inject capital to recover the reserve process to 0.
Otherwise, they refuse to inject any capital and ruin occurs.
𝑋

∗

𝑡
= 𝑋

𝑡
− 𝐷

∗

𝑡
+ 𝑍

∗

𝑡
is the corresponding reserve process.

Theorem 10. If 𝑉(𝑥) is concave on (0,∞), the strategy 𝜋∗
defined in (76) is optimal; that is,

𝑉
𝜋
∗

(𝑥) = 𝑉 (𝑥) . (77)

Proof. Note that𝑉󸀠

(𝑋
∗

𝑡
) = 𝑉

󸀠

(𝑏) = 1 on {𝑋∗

𝑡
= 𝑏}. According

to (76), the possible increment of {𝑍∗

𝑡
} is at the time of claim

arrivals. As in Lemma 5,

𝑉 (𝑋
∗

𝑡∧𝑇
∗) 𝑒

−𝛿(𝑡∧𝑇
∗
)

= 𝑉 (𝑥) − 𝐷
1

0
+ 𝜙∫

𝑡∧𝑇
∗

0

𝑒
−𝛿𝑠d𝑍∗

𝑠

+

𝑁
𝑡∧𝑇
∗

∑

𝑖=1

[𝑉 (𝑋
∗

𝑇𝑖−
− 𝑌

𝑖
) − 𝑉 (𝑋

∗

𝑇𝑖−
)] 𝑒

−𝛿𝑇𝑖

+

𝑁
𝑡∧𝑇
∗

∑

𝑖=1

[𝑉 (𝑋
∗

𝑇𝑖−
) 𝑒

−𝛿𝑇𝑖 − 𝑉 (𝑋
∗

𝑇𝑖−1+
) 𝑒

−𝛿𝑇𝑖−1]

+ 𝑉 (𝑋
∗

𝑡∧𝑇
∗) 𝑒

−𝛿(𝑡∧𝑇
∗
)

− 𝑉(𝑋
∗

𝑇𝑁
𝑡∧𝑇
∗ +

) 𝑒
−𝛿𝑇𝑁
𝑡∧𝑇
∗

= 𝑉 (𝑥) − 𝐷
1

0
+ 𝜙∫

𝑡∧𝑇
∗

0

𝑒
−𝛿𝑠d𝑍∗

𝑠

+

𝑁
𝑡∧𝑇
∗

∑

𝑖=1

[𝑉 (𝑋
∗

𝑇𝑖−
− 𝑌

𝑖
) − 𝑉 (𝑋

∗

𝑇𝑖−
)] 𝑒

−𝛿𝑇𝑖

+

𝑁
𝑡∧𝑇
∗

∑

𝑖=1

∫

𝑇𝑖−

𝑇𝑖−1+

[𝑐𝑉
󸀠

(𝑋
∗

𝑠
) − 𝛿𝑉 (𝑋

∗

𝑠
)] 1

{0<𝑋
∗

𝑠
<𝑏}
𝑒
−𝛿𝑠d𝑠

−

𝑁
𝑡∧𝑇
∗

∑

𝑖=1

∫

𝑇𝑖−

𝑇𝑖−1+

𝛿𝑉 (𝑋
∗

𝑠
) 1

{𝑋
∗

𝑠
=𝑏}
𝑒
−𝛿𝑠d𝑠

+ ∫

𝑡∧𝑇
∗

𝑇𝑁
𝑡∧𝑇
∗ +

[𝑐𝑉
󸀠

(𝑋
∗

𝑠
) − 𝛿𝑉 (𝑋

∗

𝑠
)] 1

{0<𝑋
∗

𝑠
<𝑏}
𝑒
−𝛿𝑠d𝑠

− ∫

𝑡∧𝑇
∗

𝑇𝑁
𝑡∧𝑇
∗ +

𝛿𝑉 (𝑋
∗

𝑠
) 1

{𝑋
∗

𝑠
=𝑏}
𝑒
−𝛿𝑠d𝑠.

(78)

The process

{

𝑁
𝑡∧𝑇
∗

∑

𝑖=1

[𝑉 (𝑋
∗

𝑇𝑖−
− 𝑌

𝑖
) − 𝑉 (𝑋

∗

𝑇𝑖−
)] 𝑒

−𝛿𝑇𝑖 − 𝜆

×∫

𝑡∧𝑇
∗

0

𝑒
−𝛿𝑠

[∫

𝑋
∗

𝑠
+𝑧
∗

0

𝑉 (𝑋
∗

𝑠−
− 𝑦) d𝐹 (𝑦) − 𝑉 (𝑋

∗

𝑠−
)] d𝑠}

(79)

is a martingale with expected value 0. Equivalently,

{𝑉 (𝑋
∗

𝑡∧𝑇
∗) 𝑒

−𝛿(𝑡∧𝑇
∗
)

− 𝑉 (𝑥) + 𝐷
1

0
− 𝜙∫

𝑡∧𝑇
∗

0

𝑒
−𝛿𝑠d𝑍∗

𝑠

− ∫

𝑡∧𝑇
∗

0

[𝑐𝑉
󸀠

(𝑋
∗

𝑠
) + 𝜆∫

𝑋
∗

𝑠
+𝑧
∗

0

𝑉 (𝑋
∗

𝑠
− 𝑦) d𝐹 (𝑦)

− (𝜆 + 𝛿)𝑉 (𝑋
∗

𝑠
)] 1

{0<𝑋
∗

𝑠
<𝑏}
𝑒
−𝛿𝑠d𝑠
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− ∫

𝑡∧𝑇
∗

0

[𝜆∫

𝑋
∗

𝑠
+𝑧
∗

0

𝑉 (𝑋
∗

𝑠
− 𝑦) d𝐹 (𝑦)

− (𝜆 + 𝛿)𝑉 (𝑋
∗

𝑠
)] 1

{𝑋
∗

𝑠
=𝑏}
𝑒
−𝛿𝑠d𝑠}

(80)

is a martingale. Because 𝑉(𝑥) is concave on (0,∞), the
derivatives of 𝑉(𝑥) from left and right exist. Moreover, 𝐹(𝑦)
is continuous, so 𝑉(𝑥) in (72) is continuously differentiable.
For 𝑉󸀠

(𝑋
∗

𝑠
) > 1 on {0 < 𝑋

∗

𝑠
< 𝑏}, the first term on the left-

hand side of (72) is 0, thus the integral over {0 < 𝑋
∗

𝑠
< 𝑏} on

the expression above is 0. Furthermore, from 𝑉
󸀠

(𝑋
∗

𝑠
) = 1 on

{𝑋
∗

𝑠
= 𝑏} and (72), it follows that

𝜆∫

𝑋
∗

𝑠
+𝑧
∗

0

𝑉 (𝑋
∗

𝑠
− 𝑦) d𝐹 (𝑦) − (𝜆 + 𝛿)𝑉 (𝑋

∗

𝑠
) = −𝑐. (81)

Taking this expression into (80), we have

{𝑉 (𝑋
∗

𝑡∧𝑇
∗) 𝑒

−𝛿(𝑡∧𝑇
∗
)

− 𝑉 (𝑥) + 𝐷
1

0

−𝜙∫

𝑡∧𝑇
∗

0

𝑒
−𝛿𝑠d𝑍∗

𝑠
+ ∫

𝑡∧𝑇
∗

0

𝑐1
{𝑋
∗

𝑠
=𝑏}
𝑒
−𝛿𝑠d𝑠}

(82)

is a martingale with expected value 0. Then

𝑉 (𝑥) = 𝐸
𝑥
[𝑉 (𝑋

∗

𝑡∧𝑇
∗) 𝑒

−𝛿(𝑡∧𝑇
∗
)

− 𝜙∫

𝑡∧𝑇
∗

0

𝑒
−𝛿𝑠d𝑍∗

𝑠

+∫

𝑡∧𝑇
∗

0

𝑐1
{𝑋
∗

𝑠
=𝑏}
𝑒
−𝛿𝑠d𝑠 + 𝐷1

0
] .

(83)

Note that

𝐸
𝑥
[𝑉 (𝑋

∗

𝑡∧𝑇
∗) 𝑒

−𝛿(𝑡∧𝑇
∗
)

] = 𝑒
−𝛿𝑡

𝐸
𝑥
[𝑉 (𝑋

∗

𝑡
) 1

(𝑡≤𝑇
∗
)
]

≤ 𝑒
−𝛿𝑡

𝑉 (𝑏) .

(84)

By the bounded convergence theorem,

lim
𝑡→∞

𝐸
𝑥
[𝑉 (𝑋

∗

𝑡∧𝑇
∗) 𝑒

−𝛿(𝑡∧𝑇
∗
)

] = 0. (85)

So

𝑉 (𝑥)

= lim
𝑡→∞

𝐸
𝑥
[∫

𝑡∧𝑇
∗

0

𝑐1
{𝑋
∗

𝑠
=𝑏}
𝑒
−𝛿𝑠d𝑠 − 𝜙∫

𝑡∧𝑇
∗

0

𝑒
−𝛿𝑠d𝑍∗

𝑠
+ 𝐷

1

0
]

= 𝐸
𝑥
[∫

𝑇
∗
−

0−

𝑒
−𝛿𝑠d𝐷∗

𝑠
− 𝜙∫

𝑇
∗

0

𝑒
−𝛿𝑠d𝑍∗

𝑠
] = 𝑉

∗

(𝑥) .

(86)

3.2. Characterization of the Solution. How to characterize the
solution 𝑉(𝑥) among other possible solutions?

Theorem 11. 𝑉(𝑥) is theminimal nonnegative solution to (72).

Proof. Let 𝑓 be a nonnegative solution to the HJB equation
(72). 𝑓 is increasing because 𝑓󸀠

(𝑥) ≥ 1. {𝑋∗

𝑡
} is the reserve

process under 𝜋∗. FromTheorem 10

{𝑓 (𝑋
∗

𝑡∧𝑇
∗) 𝑒

−𝛿(𝑡∧𝑇
∗
)

− 𝑓 (𝑥) + 𝐷
1

0
− 𝜙∫

𝑡∧𝑇
∗

0

𝑒
−𝛿𝑠d𝑍∗

𝑠

− ∫

𝑡∧𝑇
∗

0

[𝑐𝑓
󸀠

(𝑋
∗

𝑠
) + 𝜆∫

𝑋
∗

𝑠
+𝑓(0)/𝜙

0

𝑓 (𝑋
∗

𝑠
− 𝑦) d𝐹 (𝑦)

− (𝜆 + 𝛿) 𝑓 (𝑋
∗

𝑠
)] 1

{0<𝑋
∗

𝑠
<𝑏}
𝑒
−𝛿𝑠d𝑠

− ∫

𝑡∧𝑇
∗

0

[𝜆∫

𝑋
∗

𝑠
+𝑓(0)/𝜙

0

𝑓 (𝑋
∗

𝑠
− 𝑦) d𝐹 (𝑦)

− (𝜆 + 𝛿) 𝑓 (𝑋
∗

𝑠
)] 1

{𝑋
∗

𝑠
=𝑏}
𝑒
−𝛿𝑠d𝑠}

(87)

is a martingale with expected value 0. 𝑓(𝑥) satisfies (72); then

𝑐𝑓
󸀠

(𝑋
∗

𝑠
) + 𝜆∫

𝑋
∗

𝑠
+𝑓(0)/𝜙

0

𝑓 (𝑋
∗

𝑠
− 𝑦) d𝐹 (𝑦)

− (𝜆 + 𝛿) 𝑓 (𝑋
∗

𝑠
) ≤ 0.

(88)

Because 𝑓󸀠

(𝑥) ≥ 1,

𝜆∫

𝑋
∗

𝑠
+𝑓(0)/𝜙

0

𝑓 (𝑋
∗

𝑠
− 𝑦) d𝐹 (𝑦) − (𝜆 + 𝛿) 𝑓 (𝑋∗

𝑠
)

≤ −𝑐𝑓
󸀠

(𝑋
∗

𝑠
) ≤ −𝑐.

(89)

From the non-negative property of 𝑓(𝑥), we have

𝑓 (𝑥) ≥ 𝐸
𝑥
[𝑓 (𝑋

∗

𝑡∧𝑇
∗) 𝑒

−𝛿(𝑡∧𝑇
∗
)

− 𝜙∫

𝑡∧𝑇
∗

0

𝑒
−𝛿𝑠d𝑍∗

𝑠

+∫

𝑡∧𝑇
∗

0

𝑐1
{𝑋
∗

𝑠
=𝑏}
𝑒
−𝛿𝑠d𝑠 + 𝐷1

0
]

≥ 𝐸
𝑥
[∫

𝑡∧𝑇
∗
−

0−

𝑒
−𝛿𝑠d𝐷∗

𝑠
− 𝜙∫

𝑡∧𝑇
∗

0

𝑒
−𝛿𝑠d𝑍∗

𝑠
]

= 𝑉
∗

(𝑥) = 𝑉 (𝑥) .

(90)

4. Optimal Dividend and Capital Injection
Strategies for Exponential Claims

In this section we will consider the case that the claim size is
exponentially distributed and the dividend strategy without
restriction. Let 𝐹(𝑥) = 1 − 𝑒

−𝛼𝑥.
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First, we assume that 𝑓(𝑥) is an increasing, continuously
differentiable and concave solution to the HJB equation (72)
on [0,∞). Define 𝑏 = inf{𝑥 : 𝑓

󸀠

(𝑥) = 1} ∨ 0. On [0, 𝑏], 𝑓(𝑥)
satisfies

𝑐𝑓
󸀠

(𝑥) + 𝜆∫

𝑥

0

𝑓 (𝑥 − 𝑦) 𝛼𝑒
−𝛼𝑦d𝑦

+ 𝜆∫

𝑥+𝑓(0)/𝜙

𝑥

[𝑓 (0) + 𝜙 (𝑥 − 𝑦)] 𝛼𝑒
−𝛼𝑦d𝑦

− (𝜆 + 𝛿) 𝑓 (𝑥) = 0.

(91)

Let 𝑧 = 𝑥 − 𝑦 and change (91) into

𝑐𝑓
󸀠

(𝑥) + 𝜆𝑒
−𝛼𝑥

∫

𝑥

0

𝑓 (𝑧) 𝛼𝑒
𝛼𝑧d𝑧

+ 𝜆𝑒
−𝛼𝑥

∫

0

−𝑓(0)/𝜙

[𝑓 (0) + 𝜙𝑧] 𝛼𝑒
𝛼𝑧d𝑧

− (𝜆 + 𝛿) 𝑓 (𝑥) = 0.

(92)

The above expression can be derivative, so it yields

𝑐𝑓
󸀠󸀠

(𝑥) − 𝛼𝜆𝑒
−𝛼𝑥

∫

𝑥

0

𝑓 (𝑧) 𝛼𝑒
𝛼𝑧d𝑧 + 𝛼𝜆𝑓 (𝑥)

− 𝛼𝜆𝑒
−𝛼𝑥

∫

0

−𝑓(0)/𝜙

[𝑓 (0) + 𝜙𝑧] 𝛼𝑒
𝛼𝑧d𝑧

− (𝜆 + 𝛿) 𝑓
󸀠

(𝑥) = 0.

(93)

Combining (92) with (93), we get the differentiable equation
about 𝑓(𝑥)

𝑐𝑓
󸀠󸀠

(𝑥) + (𝛼𝑐 − (𝜆 + 𝛿)) 𝑓
󸀠

(𝑥) − 𝛼𝛿𝑓 (𝑥) = 0. (94)

Its solution is

𝑓 (𝑥) = 𝐶
1
𝑒
V1𝑥 + 𝐶

2
𝑒
V2𝑥, (95)

where V
1
, V

2
are the solutions of equation 𝑐V2+(𝛼𝑐−(𝜆+𝛿))V−

𝛼𝛿 = 0; that is,

V
1
=

𝜆 + 𝛿 − 𝛼𝑐 − √(𝜆 + 𝛿 − 𝛼𝑐)
2

+ 4𝛼𝑐𝛿

2𝑐
< 0,

V
2
=

𝜆 + 𝛿 − 𝛼𝑐 + √(𝜆 + 𝛿 − 𝛼𝑐)
2

+ 4𝛼𝑐𝛿

2𝑐
> 0.

(96)

When 𝑥 ≥ 𝑏, we conjecture that

𝑓 (𝑥) = 𝑥 − 𝑏 + 𝑓 (𝑏) , 𝑥 ≥ 𝑏. (97)

Therefore, from (95) and (97), the suggested solution of HJB
equation (72) has the form

𝑓 (𝑥) = {
𝐶
1
𝑒
V1𝑥 + 𝐶

2
𝑒
V2𝑥 if 0 ≤ 𝑥 ≤ 𝑏,

𝑥 − 𝑏 + 𝐶
1
𝑒
V1𝑏 + 𝐶

2
𝑒
V2𝑏 if 𝑥 ≥ 𝑏,

(98)

where 𝐶
1
, 𝐶

2
, and 𝑏 are to be determined later.

Lemma 12. At 𝑥 = 𝑏, we have

𝑓
󸀠󸀠

(𝑏) = 0, 𝑓 (𝑏) =
𝛼𝑐 − 𝜆 − 𝛿

𝛼𝛿
. (99)

Proof. As we have assumed that 𝑓(𝑥) satisfies HJB equation
(72), when 𝑥 > 𝑏, we have

𝑐 + 𝜆∫

𝑥+𝑓(0)/𝜙

0

𝑓 (𝑥 − 𝑦) 𝛼𝑒
−𝛼𝑦d𝑦 − (𝜆 + 𝛿) 𝑓 (𝑥) ≤ 0.

(100)

Note that

∫

𝑥+𝑓(0)/𝜙

0

𝑓 (𝑥 − 𝑦) 𝛼𝑒
−𝛼𝑦d𝑦

= ∫

𝑥−𝑏

0

[𝑓 (𝑏) + (𝑥 − 𝑦 − 𝑏)] 𝛼𝑒
−𝛼𝑦d𝑦

+ ∫

𝑥+𝑓(0)/𝜙

𝑥−𝑏

𝑓 (𝑥 − 𝑦) 𝛼𝑒
−𝛼𝑦d𝑦

= [𝑓 (𝑏) + (𝑥 − 𝑏)] (1 − 𝑒
−𝛼(𝑥−𝑏)

) − ∫

𝑥−𝑏

0

𝑦𝛼𝑒
−𝛼𝑦d𝑦

+ ∫

𝑏+𝑓(0)/𝜙

0

𝑓 (𝑏 − 𝑢) 𝛼𝑒
−𝛼(𝑥−𝑏+𝑢)d𝑢

= [𝑓 (𝑏) + (𝑥 − 𝑏)] (1 − 𝑒
−𝛼(𝑥−𝑏)

) + (𝑥 − 𝑏) 𝑒
−𝛼(𝑥−𝑏)

−
1

𝛼
+
1

𝛼
𝑒
−𝛼(𝑥−𝑏)

+ (∫

𝑏+𝑓(0)/𝜙

0

𝑓 (𝑏 − 𝑢) 𝛼𝑒
−𝛼𝑢d𝑢) 𝑒−𝛼(𝑥−𝑏)

(101)

and from the HJB equation (72), when 𝑥 = 𝑏,

𝑐 + 𝜆∫

𝑏+𝑓(0)/𝜙

0

𝑓 (𝑏 − 𝑦) 𝛼𝑒
−𝛼𝑦d𝑦 − (𝜆 + 𝛿)𝑉 (𝑏) = 0. (102)

Plugging (101) and (102) into the left side of (100), thenwe can
rewrite the expression by

𝑐 + 𝜆 {[𝑓 (𝑏) + (𝑥 − 𝑏)] (1 − 𝑒
−𝛼(𝑥−𝑏)

)

+ (𝑥 − 𝑏) 𝑒
−𝛼(𝑥−𝑏)

−
1

𝛼
+
1

𝛼
𝑒
−𝛼(𝑥−𝑏)

}

+ [(𝜆 + 𝛿) 𝑓 (𝑏) − 𝑐] 𝑒
−𝛼(𝑥−𝑏)

− (𝜆 + 𝛿) (𝑓 (𝑏) + (𝑥 − 𝑏))

= (𝑐 − 𝛿𝑓 (𝑏) −
𝜆

𝛼
) (1 − 𝑒

−𝛼(𝑥−𝑏)

) − 𝛿 (𝑥 − 𝑏) .

(103)

Therefore (100) is established if and only if 𝑓(𝑏) ≥ [𝛼𝑐 − 𝜆 −

𝛼𝛿(𝑥 − 𝑏)/(1 − 𝑒
−𝛼(𝑥−𝑏)

)]/(𝛼𝛿) for all 𝑥 > 𝑏. When 𝑥 → 𝑏,
𝑓(𝑏) ≥ (𝛼𝑐 − 𝜆 − 𝛿)/(𝛼𝛿).
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In (94), let 𝑥 = 𝑏. From 𝑓(𝑏) ≥ (𝛼𝑐 − 𝜆 − 𝛿)/(𝛼𝛿), we find
that

0 = 𝑐𝑓
󸀠󸀠

(𝑏) + (𝛼𝑐 − (𝜆 + 𝛿)) − 𝛼𝛿𝑓 (𝑏)

≤ 𝑐𝑓
󸀠󸀠

(𝑏) + (𝛼𝑐 − (𝜆 + 𝛿)) − 𝛼𝛿
𝛼𝑐 − 𝜆 − 𝛿

𝛼𝛿
= 𝑐𝑓

󸀠󸀠

(𝑏) ,

(104)

which implies 𝑓󸀠󸀠

(𝑏) ≥ 0.
On the other hand, because 𝑓(𝑥) is concave, we have

𝑓
󸀠󸀠

(𝑥) ≤ 0. Particularly,𝑓󸀠󸀠

(𝑏) ≤ 0. Combining the discussion
above, 𝑓󸀠󸀠

(𝑏) = 0.
Furthermore, taking 𝑓󸀠󸀠

(𝑏) = 0 and 𝑓󸀠

(𝑏) = 1 into (94)
yields

𝑓 (𝑏) =
𝛼𝑐 − 𝜆 − 𝛿

𝛼𝛿
. (105)

Next we will determine 𝐶
1
, 𝐶

2
, and 𝑏.

From the expression of 𝑓(𝑥) in (95) and 𝑓󸀠󸀠

(𝑏) = 0 (it has
been proved in Lemma 12), it holds that

𝑓
󸀠󸀠

(𝑏) = 𝐶
1
V2
1
𝑒
V1𝑏 + 𝐶

2
V2
2
𝑒
V2𝑏 = 0. (106)

The continuously differentiable property of 𝑓(𝑥) tells us that

𝑓
󸀠

(𝑏) = 𝐶
1
V
1
𝑒
V1𝑏 + 𝐶

2
V
2
𝑒
V2𝑏 = 1. (107)

Combining the two equations above, we can get the expres-
sion of 𝐶

1
and 𝐶

2
:

𝐶
1
=

V
2

(V
2
− V

1
) V

1
𝑒V1𝑏

, 𝐶
2
=

V
1

(V
1
− V

2
) V

2
𝑒V2𝑏

. (108)

When 𝑥 = 0, (95) informs us that 𝑓(0) = 𝐶
1
+ 𝐶

2
, 𝑓

󸀠

(0) =

𝐶
1
V
1
+ 𝐶

2
V
2
. Meanwhile, at 𝑥 = 0 the integral-differential

equation (91) implies

𝑐𝑓
󸀠

(0) + 𝜆∫

𝑓(0)/𝜙

0

[𝑓 (0) − 𝜙𝑦] d𝐹 (𝑦) − (𝜆 + 𝛿) 𝑓 (0) = 0.

(109)

Together with (108), (109) can be rewritten as

𝑐V
2

V
2
− V

1

𝑒
−V1𝑏 +

𝑐V
1

V
1
− V

2

𝑒
−V2𝑏

−
𝜆𝜙

𝛼
(1 − 𝑒

−(𝛼/𝜙)[(V2/(V2−V1)V1)𝑒
−V1𝑏

+(V1/(V1−V2)V2)𝑒
−V2𝑏

]

)

− 𝛿 [
V
2

(V
2
− V

1
) V

1

𝑒
−V1𝑏 +

V
1

(V
1
− V

2
) V

2

𝑒
−V2𝑏] = 0,

(110)

which can be used to calculate 𝑏.

Proposition 13. The solution of (110) is unique. 𝑏 = 0 if and
only if

𝜆 + 𝛿 ≥ 𝜆𝜙 (1 − 𝑒
−(𝛼𝑐−(𝜆+𝛿))/𝜙𝛿

) . (111)

Proof. To analyse the solution of (110), we first define a
function

𝑔 (𝑧) :=
𝑐V

2

V
2
− V

1

𝑒
−V1𝑧 +

𝑐V
1

V
1
− V

2

𝑒
−V2𝑧

−
𝜆𝜙

𝛼
(1 − 𝑒

−(𝛼/𝜙)[(V2/(V2−V1)V1)𝑒
−V1𝑧

+(V1/(V1−V2)V2)𝑒
−V2𝑧

]

)

− 𝛿 [
V
2

(V
2
− V

1
) V

1

𝑒
−V1𝑧 +

V
1

(V
1
− V

2
) V

2

𝑒
−V2𝑧] ,

(112)

where 𝑧 ≥ 0. In view of V
1
+ V

2
= [(𝜆 + 𝛿) − 𝛼𝑐]/𝑐 and V

1
V
2
=

−𝛼𝛿/𝑐, we find that

𝑔
󸀠

(𝑧) = 𝑐
V
1
V
2

V
1
− V

2

(𝑒
−V1𝑧 − 𝑒

−V2𝑧)

+ 𝛿(
V
2

V
2
− V

1

𝑒
−V1𝑧 +

V
1

V
1
− V

2

𝑒
−V2𝑧)

− 𝜆(
V
2

V
1
− V

2

𝑒
−V1𝑧 +

V
1

V
2
− V

1

𝑒
−V2𝑧)

⋅ 𝑒
−(𝛼/𝜙)[(V2/(V2−V1)V1)𝑒

−V1𝑧
+(V1/(V1−V2)V2)𝑒

−V2𝑧
]

> 0,

(113)

which implies 𝑔(𝑧) is increasing strictly. So the solution is
unique. Consider

lim
𝑧→∞

𝑔 (𝑧) = lim
𝑧→∞

[
𝑐V

2

V
2
− V

1

𝑒
−V1𝑧

−
𝜆𝜙

𝛼
(1 − 𝑒

−(𝛼/𝜙)(V2/(V2−V1)V1)𝑒
−V1𝑧

)

−𝛿
V
2

(V
2
− V

1
) V

1

𝑒
−V1𝑧] = ∞.

(114)

Hence 𝑏 = 0 if and only if 𝑔(0) ≥ 0. While

𝑔 (0) = 𝑐 −
𝜆𝜙

𝛼
(1 − 𝑒

−(𝛼/𝜙)((V1+V2)/V1V2)) − 𝛿
V
1
+ V

2

V
1
V
2

=
𝜆 + 𝛿

𝛼
−
𝜆𝜙

𝛼
(1 − 𝑒

−(𝛼𝑐−(𝜆+𝛿))/𝜙𝛿

) ,

(115)

so the necessary and sufficient condition of 𝑏 = 0 is 𝜆 + 𝛿 ≥

𝜆𝜙(1 − 𝑒
−(𝛼𝑐−(𝜆+𝛿))/𝜙𝛿

).

Based on the discussion above, we obtain the expression
of𝑓(𝑥).The following proposition will verify the concavity of
𝑓(𝑥).

Proposition 14. 𝑓(𝑥) is concave on [0,∞).

Proof. When 𝑥 ∈ [0, 𝑏), from (95) and (108), we have

𝑓
󸀠󸀠

(𝑥) =
V
2
V
1

V
2
− V

1

𝑒
V1(𝑥−𝑏) +

V
1
V
2

V
1
− V

2

𝑒
V2(𝑥−𝑏)

=
V
2
V
1

V
2
− V

1

(𝑒
V1(𝑥−𝑏) − 𝑒

V2(𝑥−𝑏)) < 0

(116)



14 Mathematical Problems in Engineering

due to the fact V
1
< 0 and V

2
> 0. What is more, 𝑓󸀠󸀠

(𝑥) = 0

for 𝑥 ≥ 𝑏. Therefore 𝑓󸀠󸀠

(𝑥) ≤ 0 on [0,∞). This establishes the
concavity of 𝑓(𝑥) on [0,∞).

Proposition 15. 𝑓(𝑥) is the solution of HJB equation (72)
when 𝑥 ∈ [0,∞).

Proof. From the construction of 𝑓(𝑥),

𝑓
󸀠

(𝑥) = 1 for 𝑥 ≥ 𝑏

𝑐 + 𝜆∫

𝑥+𝑓(0)/𝜙

0

𝑓 (𝑥 − 𝑦) 𝛼𝑒
−𝛼𝑦d𝑦 − (𝜆 + 𝛿) 𝑓 (𝑥) = 0

for 0 ≤ 𝑥 ≤ 𝑏

(117)

are established obviously. We only remain to show that 𝑓(𝑥)
satisfies

𝑓
󸀠

(𝑥) > 1 for 0 ≤ 𝑥 < 𝑏, (118)

𝑐 + 𝜆∫

𝑥+𝑓(0)/𝜙

0

𝑓 (𝑥 − 𝑦) 𝛼𝑒
−𝛼𝑦d𝑦 − (𝜆 + 𝛿) 𝑓 (𝑥) < 0

for 𝑥 > 𝑏,

(119)

𝑓
󸀠

(𝑥) < 𝜙 for 𝑥 > 0. (120)

From the concavity of 𝑓(𝑥) and 𝑓󸀠

(𝑏) = 1, (118) is true.
Similar to the proof in Lemma 12 we can show (119) is

established.
To prove (120), according to the concavity of 𝑓(𝑥), we

only need to show 𝑓
󸀠

(0) < 𝜙. Let 𝑥 = 0 in (91) and assume
that 𝑓󸀠

(0) ≥ 𝜙. We find

𝑓 (0) =
𝛼𝑐𝑓

󸀠

(0) − 𝜆𝜙 + 𝜆𝜙𝑒
−(𝛼/𝜙)𝑓(0)

𝛼𝛿

≥
𝛼𝑐𝜙 − 𝜆𝜙 + 𝜆𝜙𝑒

−(𝛼/𝜙)𝑓(0)

𝛼𝛿

= 𝜙
𝛼𝑐 − 𝜆 + 𝜆𝑒

−(𝛼/𝜙)𝑓(0)

𝛼𝛿

> 𝜙
𝛼𝑐 − 𝜆 − 𝛿

𝛼𝛿
= 𝜙𝑓 (𝑏) .

(121)

The last equality comes from 𝑓(𝑏) = (𝛼𝑐 − 𝜆 − 𝛿)/𝛼𝛿 which
is proved in Lemma 12. While 𝑓(0) > 𝜙𝑓(𝑏) is impossible
because 𝑓(𝑥) is increasing and 𝜙 > 1. This also tells us
that 𝑓󸀠

(0) < 𝜙. Therefore 𝑓
󸀠

(0) ≤ 𝜙. And the proof is
completed.

The following theorem gives the optimal value function
and optimal strategies when the claim size is exponentially
distributed.

Theorem 16. Suppose 𝐹(𝑥) = 1 − 𝑒
−𝛼𝑥. The value function

𝑉(𝑥) and the optimal strategy are as follows.

(1) If 𝜆 + 𝛿 < 𝜆𝜙(1 − 𝑒
−(𝛼𝑐−(𝜆+𝛿))/𝜙𝛿

), the value function

𝑉 (𝑥) =

{{{{

{{{{

{

0 if 𝑥 < −𝑧
∗

,

𝑉 (0) + 𝜙𝑥 if − 𝑧∗ ≤ 𝑥 < 0,

𝐶
1
𝑒
V1𝑥 + 𝐶

2
𝑒
V2𝑥 if 0 ≤ 𝑥 < 𝑏,

𝑥 − 𝑏 + 𝐶
1
𝑒
V1𝑏 + 𝐶

2
𝑒
V2𝑏 if 𝑥 ≥ 𝑏,

(122)

where 𝐶
1
, 𝐶

2
are given by (108). The optimal lower

capital injection barrier −𝑧
∗

= −𝑉(0)/𝜙 and the
optimal upper capital injection barrier 𝑎 = 0. The
optimal dividend barrier 𝑏 can be calculated from (110).

(2) If 𝜆 + 𝛿 ≥ 𝜆𝜙(1 − 𝑒
−(𝛼𝑐−(𝜆+𝛿))/𝜙𝛿

), the value function

𝑉 (𝑥)

=

{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{

{

0 if 𝑥 < −𝑧
∗

,

𝑉 (0) + 𝜙𝑥

= [𝜙𝑊(
𝜆

𝛿
𝑒
−(𝛼𝑐−𝜆𝜙)/𝜙𝛿

)

+
𝛼𝑐 − 𝜆𝜙

𝛿
] (𝛼 + 𝜙𝑥)

−1 if − 𝑧∗ ≤ 𝑥 < 0,

𝑥 + 𝑉 (0)

= 𝑥 + [𝜙𝑊(
𝜆

𝛿
𝑒
−(𝛼𝑐−𝜆𝜙)/𝜙𝛿

)

+
𝛼𝑐 − 𝜆𝜙

𝛿
] (𝛼)

−1 if 𝑥 ≥ 0,

(123)

where 𝑊(𝑥) is Lambert W function which is the
solution of 𝑊(𝑥)𝑒

𝑊(𝑥)

= 𝑥. The optimal lower capital
injection barrier −𝑧∗ = −𝑉(0)/𝜙 and the optimal
upper capital injection barrier 𝑎 = 0. The optimal
dividend barrier 𝑏 = 0.

Proof. (1) For 𝑥 ≥ 0, because 𝑓(𝑥) is the solution of HJB
equation (72) on [0,∞), from Theorem 11, we know 𝑉(𝑥)

coincides with 𝑓(𝑥) on [0,∞). Because 𝑉(𝑥) is concave on
[0,∞), Proposition 9 and the expression (73) inform us what
are the optimal upper and lower capital injection barriers.
Under the condition in (1), 𝑏 > 0 by Proposition 13. 𝑏 can
be derived by (110). When 𝑥 < 0, the expression of 𝑉(𝑥) has
been discussed in (74).Therefore, (122) is established. Figure 1
shows us the sample path of the reserve process under the
optimal strategy 𝜋∗ and Figure 2 is the figure of the value
function 𝑉(𝑥).

(2) If 𝜆 + 𝛿 ≥ 𝜆𝜙(1 − 𝑒
−(𝛼𝑐−(𝜆+𝛿))/𝜙𝛿

), then 𝑏 = 0

by Proposition 13. 𝑏 = 0 means that under the optimal
strategy, the shareholders will act as the insurer: they receive
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b

0

−z
∗

T
∗

t

X
∗

t

Figure 1: The sample path of the reserve process under the optimal
strategy 𝜋∗.

b−z
∗

t

V(x)

Figure 2: The value function 𝑉(𝑥).

the premium income andpay each claim in full when it occurs
(see Dickson and Waters [7]). 𝑉(0)must be recalculated by

𝑉 (0) = 𝐸 [∫

𝑇1

0

𝑐𝑒
−𝛿𝑡d𝑡 + 𝑒−𝛿𝑇1 (𝑉 (0) − 𝜙𝑌

1
) 1

(𝑌1≤𝑉(0)/𝜙)
]

= ∫

∞

0

𝜆𝑒
−𝜆𝑠

∫

𝑠

0

𝑐𝑒
−𝛿𝑡d𝑡 d𝑠

+ ∫

∞

0

𝜆𝑒
−𝜆𝑠

𝑒
−𝛿𝑠

∫

𝑉(0)/𝜙

0

(𝑉 (0) − 𝜙𝑦) 𝛼𝑒
𝛼𝑦d𝑦 d𝑠

=
𝛼𝑐 − 𝜆𝜙

𝛼𝛿
+
𝜆𝜙

𝛼𝛿
𝑒
−𝛼(𝑉(0)/𝜙)

.

(124)

So 𝑉(0) = [𝜙𝑊((𝜆/𝛿)𝑒
−(𝛼𝑐−𝜆𝜙)/𝜙𝛿

) + (𝛼𝑐 − 𝜆𝜙)/𝛿]/𝛼, where
𝑊(𝑥) is Lambert 𝑊 function which is the solution of
𝑊(𝑥)𝑒

𝑊(𝑥)

= 𝑥. −𝑧∗ = −𝑉(0)/𝜙 and 𝑎 = 0 are same as the
discussion in proof of (1). Therefore, 𝑉(𝑥) can be expressed
by (123). Figure 3 is the figure of the value function 𝑉(𝑥).

Note that it is the first time that Lambert 𝑊 function is
used in the risk theory. It simplifies the expression of 𝑉(𝑥)
when 𝑏 = 0.

−z
∗ t

V(x)

Figure 3: The value function 𝑉(𝑥).
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This paper is concerned with optimal control problems of forward-backward Markovian regime-switching systems involving
impulse controls. Here the Markov chains are continuous-time and finite-state. We derive the stochastic maximum principle for
this kind of systems. Besides the Markov chains, the most distinguishing features of our problem are that the control variables
consist of regular and impulsive controls, and that the domain of regular control is not necessarily convex. We obtain the necessary
and sufficient conditions for optimal controls.Thereafter, we apply the theoretical results to a financial problem and get the optimal
consumption strategies.

1. Introduction

Maximum principle was first formulated by Pontryagin et
al.’s group [1] in the 1950s and 1960s, which focused on the
deterministic control system to maximize the corresponding
Hamiltonian instead of the optimization problem. Bismut [2]
introduced the linear backward stochastic differential equa-
tions (BSDEs) as the adjoint equations, which played a role
of milestone in the development of this theory. The general
stochastic maximumprinciple was obtained by Peng in [3] by
introducing the second order adjoint equations. Pardoux and
Peng also proved the existence and uniqueness of solution for
nonlinear BSDEs in [4], which has been extensively used in
stochastic control and mathematical finance. Independently,
Duffie and Epstein introduced BSDEs under economic back-
ground, and in [5] they presented a stochastic recursive utility
which was a generalization of the standard additive utility
with the instantaneous utility depending not only on the
instantaneous consumption rate but also on the future utility.
ThenElKaroui et al. gave the formulation of recursive utilities
from the BSDE point of view. As found by [6], the recursive
utility process can be regarded as a solution of BSDE. Peng [7]
first introduced the stochastic maximum principle for opti-
mal control problems of forward-backward control system

as the control domain is convex. Since BSDEs and forward-
backward stochastic differential equations (FBSDEs) are
involved in a broad range of applications in mathematical
finance, economics, and so on, it is natural to study the con-
trol problems involving FBSDEs. To establish the necessary
optimality conditions, Pontryagin maximum principle is one
fundamental research direction for optimal control problems.
Rich literature for stochastic maximum principle has been
obtained; see [8–12] and the references therein. Recently, Wu
[13] established the general maximum principle for optimal
controls of forward-backward stochastic systems in which
the control domains were nonconvex and forward diffusion
coefficients explicitly depended on control variables.

The applications of regime-switching models in finance
and stochastic control also have been researched in recent
years. Compared to the traditional system based on the diffu-
sion processes, it is more meaningful from the empirical
point of view. Specifically, it modulates the system with a
continuous-time finite-state Markov chain with each state
representing a regime of the system or a level of economic
indicator. Based on the switching diffusion model, much
work has been done in the fields of option pricing, portfolio
management, risk management, and so on. In [14], Crépey
focused on the pricing equations in finance. Crépey and
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Mathematical Problems in Engineering
Volume 2015, Article ID 892304, 13 pages
http://dx.doi.org/10.1155/2015/892304

http://dx.doi.org/10.1155/2015/892304


2 Mathematical Problems in Engineering

Matoussi [15] investigated the reflected BSDEs with Markov
chains. For the controlled problem with regime-switching
model, Donnelly studied the sufficient maximum principle
in [16]. Using the results about BSDEs with Markov chains in
[14, 15], Tao and Wu [17] derived the maximum principle for
the forward-backward regime-switchingmodel.Moreover, in
[18] the weak convergence of BSDEs with regime switching
was studied. For more results of Markov chains, readers can
refer to the references therein.

In addition, stochastic impulse control problems have
received considerable research attention due to their wide
applications in portfolio optimization problems with trans-
action costs (see [19, 20]) and optimal strategy of exchange
rates between different currencies [21, 22]. Korn [23] also
investigated some applications of impulse control in math-
ematical finance. For a comprehensive survey of theory of
impulse controls, one is referred to [24]. Wu and Zhang [25]
first studied stochastic optimal control problems of forward-
backward systems involving impulse controls, in which they
assumed the domain of the regular controls was convex
and obtained both the maximum principle and sufficient
optimality conditions. Later on, in [26] they considered the
forward-backward system in which the domain of regular
controls was not necessarily convex and the control variable
did not enter the diffusion coefficient.

In this paper, we consider a stochastic control system, in
which the control system is described by a forward-backward
stochastic differential equation, all the coefficients contain
Markov chains, and the control variables consist of regular
and impulsive parts. This case is more complicated than
[17, 25, 26]. We obtain the stochastic maximum principle
by using spike variation on the regular control and convex
perturbation on the impulsive one. Applying the maximum
principle to a financial investment-consumption model, we
also get the optimal consumption processes and analyze the
effects on consumption by various economic factors.

The rest of this paper is organized as follows. In Section 2,
we give preliminaries and the formulation of our problems.
A necessary condition in the form of maximum principle
is established in Section 3. Section 4 aims to investigate
sufficient optimality conditions. An example in finance is
studied in Section 5 to illustrate the applications of our
theoretical results and some figures are presented to give
more explanations. In the end, Section 6 concludes the
novelty of this paper.

2. Preliminaries and Problem Formulation

Let (Ω,F, {F
𝑡
}
0≤𝑡≤𝑇

, 𝑃) be a complete filtered probability
space equipped with a natural filtration F

𝑡
generated by

{𝐵
𝑠
, 𝛼

𝑠
; 0 ≤ 𝑠 ≤ 𝑡}, 𝑡 ∈ [0, 𝑇], where {𝐵

𝑡
}
0≤𝑡≤𝑇

is a 𝑑-
dimensional standardBrownianmotion defined on the space,
{𝛼

𝑡
, 0 ≤ 𝑡 ≤ 𝑇} is a finite-state Markov chain with the state

space given by 𝐼 = {1, 2, . . . , 𝑘}, and 𝑇 ≥ 0 is a fixed time
horizon. The transition intensities are 𝜆(𝑖, 𝑗) for 𝑖 ̸= 𝑗 with
𝜆(𝑖, 𝑗) nonnegative and bounded. 𝜆(𝑖, 𝑖) = −∑

𝑗∈𝐼\{𝑖}
𝜆(𝑖, 𝑗).

For 𝑝 ≥ 1, denote by 𝑆
𝑝

(R𝑛

) the set of 𝑛-dimensional adapted
processes {𝜑

𝑡
, 0 ≤ 𝑡 ≤ 𝑇} such that E[sup

0≤𝑡≤𝑇
|𝜑
𝑡
|
𝑝

] < +∞

and denote by 𝐻
𝑝

(R𝑛

) the set of 𝑛-dimensional adapted
processes {𝜓

𝑡
, 0 ≤ 𝑡 ≤ 𝑇} such that E[(∫

𝑇

0

|𝜓
𝑡
|
2

𝑑𝑡)
𝑝/2

] < +∞.
Define V as the integer-valued random measure on

([0, 𝑇]×𝐼,B([0, 𝑇])⊗B
𝐼
)which counts the jumpsV

𝑡
(𝑗) from

𝛼 to state 𝑗 between time 0 and 𝑡. The compensator ofV
𝑡
(𝑗)

is 1
{𝛼𝑡 ̸=𝑗}

𝜆(𝛼
𝑡
, 𝑗)𝑑𝑡, which means 𝑑V

𝑡
(𝑗) − 1

{𝛼𝑡 ̸=𝑗}
𝜆(𝛼

𝑡
, 𝑗)𝑑𝑡 :=

𝑑Ṽ
𝑡
(𝑗) is a martingale (compensated measure). Then the

canonical special semimartingale representation for 𝛼 is
given by

𝑑𝛼
𝑡
= ∑

𝑗∈𝐼

𝜆 (𝛼
𝑡
, 𝑗) (𝑗 − 𝛼

𝑡
) 𝑑𝑡 + ∑

𝑗∈𝐼

(𝑗 − 𝛼
𝑡−
) 𝑑Ṽ

𝑡
(𝑗) . (1)

Define 𝑛
𝑡
(𝑗) := 1

{𝛼𝑡 ̸=𝑗}
𝜆(𝛼

𝑡
, 𝑗). Denote by M

𝜌
the set of

measurable functions from (𝐼,B
𝐼
, 𝜌) to R endowed with

the topology of convergence in measure and |V|
𝑡

:= ∑
𝑗∈𝐼

[V(𝑗)2𝑛
𝑡
(𝑗)]

1/2

∈ R
+
∪ {+∞} the norm ofM

𝜌
; denote by 𝐻

𝑝

V

the space of 𝑃̃-measurable functions 𝑉 : Ω × [0, 𝑇] × 𝐼 → R

such that ∑
𝑗∈𝐼

E[(∫
𝑇

0

𝑉
𝑡
(𝑗)

2

𝑛
𝑡
(𝑗)𝑑𝑡)

𝑝/2

] < +∞.
Let 𝑈 be a nonempty subset of R𝑘 and 𝐾 nonempty

convex subset ofR𝑛. Let {𝜏
𝑖
} be a given sequence of increasing

F
𝑡
-stopping times such that 𝜏

𝑖
↑ +∞ as 𝑖 → +∞.

Denote by I the class of right continuous processes 𝜂(⋅) =

∑
𝑖≥1

𝜂
𝑖
1
[𝜏𝑖 ,𝑇]

(⋅) such that each 𝜂
𝑖
is anF

𝜏𝑖
-measurable random

variable. It’s worth noting that, the assumption 𝜏
𝑖

↑ +∞

implies that at most finitely many impulses may occur on
[0, 𝑇]. Denote byU the class of adapted processes V : [0, 𝑇] ×

Ω → 𝑈 such that E[sup
0≤𝑡≤𝑇

|V
𝑡
|
3

] < +∞ and denote by
K the class of 𝐾-valued impulse processes 𝜂 ∈ I such that
E[(∑

𝑖≥1
|𝜂
𝑖
|)
3

] < +∞. A := U × K is called the admissible
control set. For notational simplicity, in what followswe focus
on the case where all processes are 1-dimensional.

Now we consider the forward regime-switching systems
modulated by continuous-time, finite-state Markov chains
involving impulse controls. Let 𝑏 : [0, 𝑇] × 𝐼 × R → R,
𝜎 : [0, 𝑇] × 𝐼 × R → R, and 𝐶 : [0, 𝑇] → R be measura-
ble mappings. Given 𝑥 ∈ R and 𝜂(⋅) ∈ K, the system is
formulated by

𝑑𝑥
𝑡
= 𝑏 (𝑡, 𝛼

𝑡
, 𝑥

𝑡
) 𝑑𝑡 + 𝜎 (𝑡, 𝛼

𝑡
, 𝑥

𝑡
) 𝑑𝐵

𝑡
+ 𝐶

𝑡
𝑑𝜂

𝑡
,

𝑥
0
= 𝑥.

(2)

The following result is easily obtained.

Proposition 1. Assume that 𝑏, 𝜎 are Lipschitz with respect to
𝑥, 𝑏(⋅, 𝑖, 0), 𝜎(⋅, 𝑖, 0) ∈ 𝐻

3

(R), ∀𝑖 ∈ 𝐼, and 𝐶 is a continuous
function. Then SDE (2) admits a unique solution 𝑥(⋅) ∈ 𝑆

3

(R).

Given 𝜁 ∈ 𝐿
3

(Ω,F
𝑇
, 𝑃;R) and 𝜂(⋅) ∈ K, consider the

following backward regime-switching system modulated by
Markov chains 𝛼

𝑡
involving impulse controls:

𝑑𝑦
𝑡
= − 𝑓 (𝑡, 𝛼

𝑡
, 𝑦

𝑡
, 𝑧

𝑡
,𝑊

𝑡
(1) 𝑛

𝑡
(1) , . . . ,𝑊

𝑡
(𝑘) 𝑛

𝑡
(𝑘)) 𝑑𝑡

+ 𝑧
𝑡
𝑑𝐵

𝑡
+ ∑

𝑗∈𝐼

𝑊
𝑡
(𝑗) 𝑑Ṽ

𝑡
(𝑗) − 𝐷

𝑡
𝑑𝜂

𝑡
,

𝑦
𝑇

= 𝜁,

(3)
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where 𝑓 : [0, 𝑇] × 𝐼 × R × R × R𝑘

→ R and 𝐷 :

[0, 𝑇] → R are measurable mappings and 𝑊 : Ω ×

[0, 𝑇] × 𝐼 → R is a measurable function such that ∑
𝑗∈𝐼

E

[(∫
𝑇

0

𝑊
𝑡
(𝑗)

2

𝑛
𝑡
(𝑗)𝑑𝑡)

3/2

] < +∞.

Proposition 2. Assume that 𝑓(𝑡, 𝑖, 𝑦, 𝑧, 𝑝) is Lipschitz with
respect to (𝑦, 𝑧, 𝑝), 𝑓(⋅, 𝑖, 0, 0, 0) ∈ 𝐻

3

(R), ∀𝑖 ∈ 𝐼, and 𝐷 is a
continuous function. Then BSDE (3) admits a unique solution
(𝑦(⋅), 𝑧(⋅),𝑊(⋅)) ∈ 𝑆

3

(R) × 𝐻
3

(R) × 𝐻
3

V(R).

Proof. Define 𝐴
𝑡

:= ∫
𝑡

0

𝐷
𝑠
𝑑𝜂

𝑠
= ∑

𝜏𝑖≤𝑡
𝐷
𝜏𝑖
𝜂
𝑖
and 𝐹(𝑡, 𝑖, 𝑦,

𝑧, 𝑝) := 𝑓(𝑡, 𝑖, 𝑦 − 𝐴
𝑡
, 𝑧, 𝑝), ∀𝑖 ∈ 𝐼. It is easy to check that

󵄨󵄨󵄨󵄨󵄨
𝐹 (𝑡, 𝑖, 𝑦, 𝑧, 𝑝) − 𝐹 (𝑡, 𝑖, 𝑦

󸀠

, 𝑧
󸀠

, 𝑝
󸀠

)
󵄨󵄨󵄨󵄨󵄨

≤ 𝑐
1
(
󵄨󵄨󵄨󵄨󵄨
𝑦 − 𝑦

󸀠
󵄨󵄨󵄨󵄨󵄨
+

󵄨󵄨󵄨󵄨󵄨
𝑧 − 𝑧

󸀠
󵄨󵄨󵄨󵄨󵄨
+

󵄨󵄨󵄨󵄨󵄨
𝑝 − 𝑝

󸀠
󵄨󵄨󵄨󵄨󵄨
) .

(4)

Since 𝑛
𝑡
is uniformly bounded, we have

󵄨󵄨󵄨󵄨󵄨
(𝑊

𝑡
(𝑗) − 𝑊

󸀠

𝑡
(𝑗)) 𝑛

𝑡
(𝑗)

󵄨󵄨󵄨󵄨󵄨
≤ 𝑐

2

󵄨󵄨󵄨󵄨󵄨
𝑊
𝑡
− 𝑊

󸀠

𝑡

󵄨󵄨󵄨󵄨󵄨𝑡
, ∀𝑗 ∈ 𝐼. (5)

Here 𝑐
1
, 𝑐
2
are positive constants. Then 𝐹 is Lipschitz with

respect to (𝑦, 𝑧,𝑊). We also get that 𝐹(⋅, 𝑖, 0, 0, 0) ∈ 𝐻
3

(R)

and E|𝜁 + 𝐴
𝑇
|
3

< +∞. Hence, the following BSDE

𝑑𝑌
𝑡
= − 𝐹 (𝑡, 𝛼

𝑡
, 𝑌

𝑡
, 𝑍

𝑡
,𝑀

𝑡
(1) 𝑛

𝑡
(1) , . . . ,𝑀

𝑡
(𝑘) 𝑛

𝑡
(𝑘)) 𝑑𝑡

+ 𝑍
𝑡
𝑑𝐵

𝑡
+ ∑

𝑗∈𝐼

𝑀
𝑡
(𝑗) 𝑑Ṽ

𝑡
(𝑗) ,

𝑌
𝑇

= 𝜁 + 𝐴
𝑇

(6)

admits a unique solution (𝑌, 𝑍,𝑀) ∈ 𝑆
3

(R)×𝐻
3

(R)×𝐻
3

V(R)

(see [15, 18] for details). Now define 𝑦
𝑡
:= 𝑌

𝑡
− 𝐴

𝑡
, 𝑧

𝑡
:= 𝑍

𝑡
,

and𝑊
𝑡
:= 𝑀

𝑡
.Then it is easy to check that (𝑦, 𝑧,𝑊) ∈ 𝑆

3

(R)×

𝐻
3

(R) × 𝐻
3

V(R) solves BSDE (3).
Let (𝑦1, 𝑧1,𝑊1

) and (𝑦
2

, 𝑧
2

,𝑊
2

) be two solutions of (3).
Applying Itô’s formula to (𝑦

1

𝑠
−𝑦

2

𝑠
)
2

, 𝑡 ≤ 𝑠 ≤ 𝑇 and combining
Gronwall’s inequality, we get the uniqueness of solution.

Now, we consider the following stochastic control system:

𝑑𝑥
𝑡
= 𝑏 (𝑡, 𝛼

𝑡
, 𝑥

𝑡
, V
𝑡
) 𝑑𝑡 + 𝜎 (𝑡, 𝛼

𝑡
, 𝑥

𝑡
) 𝑑𝐵

𝑡
+ 𝐶

𝑡
𝑑𝜂

𝑡
,

𝑑𝑦
𝑡

= −𝑓 (𝑡, 𝛼
𝑡
, 𝑥

𝑡
, 𝑦

𝑡
, 𝑧

𝑡
,𝑊

𝑡
(1) 𝑛

𝑡
(1) , . . . ,𝑊

𝑡
(𝑘) 𝑛

𝑡
(𝑘) , V

𝑡
) 𝑑𝑡

+ 𝑧
𝑡
𝑑𝐵

𝑡
+ ∑

𝑗∈𝐼

𝑊
𝑡
(𝑗) 𝑑Ṽ

𝑡
(𝑗) − 𝐷

𝑡
𝑑𝜂

𝑡
,

𝑥
0
= 𝑥, 𝑦

𝑇
= 𝑔 (𝑥

𝑇
) ,

(7)

where 𝑏 : [0, 𝑇] × 𝐼 × R × 𝑈 → R, 𝜎 : [0, 𝑇] × 𝐼 × R → R,
𝑓 : [0, 𝑇] × 𝐼 × R × R × R × R𝑘

× 𝑈 → R, and 𝑔 : R → R

are deterministic measurable functions and 𝐶 : [0, 𝑇] → R,
𝐷 : [0, 𝑇] → R are continuous functions. In what follows

(𝑊
𝑡
(1)𝑛

𝑡
(1), . . . ,𝑊

𝑡
(𝑘)𝑛

𝑡
(𝑘))will be written as𝑊

𝑡
𝑛
𝑡
for short.

The objective is tomaximize, over classA, the cost functional

𝐽 (V (⋅) , 𝜂 (⋅)) = E{∫

𝑇

0

ℎ (𝑡, 𝛼
𝑡
, 𝑥

𝑡
, 𝑦

𝑡
, 𝑧

𝑡
,𝑊

𝑡
𝑛
𝑡
, V
𝑡
) 𝑑𝑡 + 𝜙 (𝑥

𝑇
)

+ 𝛾 (𝑦
0
) + ∑

𝑖≥1

𝑙 (𝜏
𝑖
, 𝜂

𝑖
)} ,

(8)

where ℎ : [0, 𝑇]×𝐼×R×R×R×R𝑘

×𝑈 → R, 𝜙 : R → R, 𝛾 :

R → R, and 𝑙 : [0, 𝑇]×R → R are deterministicmeasurable
functions. A control (𝑢, 𝜉)which solves this problem is called
an optimal control.

In what follows, we make the following assumptions.

(H1) 𝑏, 𝜎,𝑓, 𝑔, ℎ, 𝜙, and 𝛾 are continuous and continuously
differentiable with respect to (𝑥, 𝑦, 𝑧, 𝑝). 𝑏, 𝑓 have
linear growth with respect to (𝑥, 𝑦, V). 𝑙 is continuous
and continuously differentiable with respect to 𝜂.

(H2) The derivatives of 𝑏, 𝜎, 𝑓, and 𝑔 are bounded.

(H3) The derivatives of ℎ, 𝜙, 𝛾, and 𝑙 are bounded by 𝐾(1 +

|𝑥| + |𝑦| + |𝑧| + |𝑝| + |V|), 𝐾(1 + |𝑥|), 𝐾(1 + |𝑦|), and
𝐾(1+|𝜂|), respectively.Moreover, |ℎ(𝑡, 𝑖, 0, 0, 0, 0, V)| ≤
𝐾(1 + |V|3) for any (𝑡, V), 𝑖 ∈ 𝐼.

From Propositions 1 and 2, it follows that, under (H1)–
(H3), FBSDE (7) admits a unique solution (𝑥(⋅), 𝑦(⋅), 𝑧(⋅),

𝑊(⋅)) ∈ 𝑆
3

(R) × 𝑆
3

(R) × 𝐻
3

(R) × 𝐻
3

V(R) for any (V, 𝜂) ∈ A.

3. Stochastic Maximum Principle

In this section, we will derive the stochastic maximum prin-
ciple for optimal control problem (7) and (8). We give the
necessary conditions for optimal controls.

Let 𝜉(⋅) = ∑
𝑖≥1

𝜉
𝑖
1
[𝜏𝑖 ,𝑇]

(⋅) and (𝑢(⋅), 𝜉(⋅)) ∈ A be an
optimal control of this stochastic control problem and let
(𝑥(⋅), 𝑦(⋅), 𝑧(⋅),𝑊(⋅)) be the corresponding trajectory. Now,
we introduce the spike variation with respect to 𝑢(⋅) as
follows:

𝑢
𝜀

(𝑡) = {
V, if 𝜏 ≤ 𝑡 ≤ 𝜏 + 𝜀,

𝑢 (𝑡) , otherwise,
(9)

where 𝜏 ∈ [0, 𝑇) is an arbitrarily fixed time, 𝜀 > 0 is a
sufficiently small constant, and V is an arbitrary 𝑈-valued
F

𝜏
-measurable random variable such that E|V|3 < +∞. Let

𝜂 ∈ I be such that 𝜉 + 𝜂 ∈ K. For the reason that domain
𝐾 is convex, we can check that 𝜉

𝜀

:= 𝜉 + 𝜀𝜂, 0 ≤ 𝜀 ≤

1, is also an element of K. Let (𝑥
𝜀

(⋅), 𝑦
𝜀

(⋅), 𝑧
𝜀

(⋅),𝑊
𝜀

(⋅)) be
the trajectory corresponding to (𝑢

𝜀

(⋅), 𝜉
𝜀

(⋅)). For convenience,
we denote 𝜓(𝑡) = 𝜓(𝑡, 𝛼

𝑡
, 𝑥

𝑡
, 𝑦

𝑡
, 𝑧

𝑡
,𝑊

𝑡
𝑛
𝑡
, 𝑢

𝑡
), 𝜓(𝑢

𝜀

𝑡
) =

𝜓(𝑡, 𝛼
𝑡
, 𝑥

𝑡
, 𝑦

𝑡
, 𝑧

𝑡
,𝑊

𝑡
𝑛
𝑡
, 𝑢

𝜀

𝑡
) for 𝜓 = 𝑏, 𝜎, 𝑓, ℎ, 𝑏

𝑥
, 𝑏V, 𝜎𝑥, 𝜎V, 𝑓𝑥,

𝑓
𝑦
, 𝑓

𝑧
, 𝑓

𝑤(𝑗)
, 𝑓V, ℎ𝑥, ℎ𝑦, ℎ𝑧, ℎ𝑤(𝑗), ℎV, where 𝑓

𝑤(𝑗)
:= 𝑓

𝑊(𝑗)𝑛(𝑗)
,

ℎ
𝑤(𝑗)

:= ℎ
𝑊(𝑗)𝑛(𝑗)

.
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Introduce the following FBSDE which is called the varia-
tional equation:

𝑑𝑥
1

𝑡
= [𝑏

𝑥
(𝑡) 𝑥

1

𝑡
+ 𝑏 (𝑢

𝜀

𝑡
) − 𝑏 (𝑡)] 𝑑𝑡 + 𝜎

𝑥
(𝑡) 𝑥

1

𝑡
𝑑𝐵

𝑡

+ 𝜀𝐶
𝑡
𝑑𝜂

𝑡
,

𝑑𝑦
1

𝑡
= − [

[

𝑓
𝑥
(𝑡) 𝑥

1

𝑡
+ 𝑓

𝑦
(𝑡) 𝑦

1

𝑡
+ 𝑓

𝑧
(𝑡) 𝑧

1

𝑡

+ ∑

𝑗∈𝐼

𝑓
𝑤(𝑗)

(𝑡) 𝑃
𝑡
(𝑗) 𝑛

𝑡
(𝑗) + 𝑓 (𝑢

𝜀

𝑡
) − 𝑓 (𝑡)]

]

𝑑𝑡

+ 𝑧
1

𝑡
𝑑𝐵

𝑡
+ ∑

𝑗∈𝐼

𝑃
𝑡
(𝑗) 𝑑Ṽ

𝑡
(𝑗) − 𝜀𝐷

𝑡
𝑑𝜂

𝑡
,

𝑥
1

0
= 0, 𝑦

1

𝑇
= 𝑔

𝑥
(𝑥

𝑇
) 𝑥

1

𝑇
.

(10)

Obviously, this FBSDE admits a unique solution (𝑥
1

, 𝑦
1

, 𝑧
1

,

𝑃) ∈ 𝑆
3

(R) × 𝑆
3

(R) × 𝐻
3

(R) × 𝐻
3

V(R).
We have the following lemma. In what follows, we denote

by 𝑐 a positive constant which can be different from line to
line.

Lemma 3. Consider

sup
0≤𝑡≤𝑇

E
󵄨󵄨󵄨󵄨󵄨
𝑥
1

𝑡

󵄨󵄨󵄨󵄨󵄨

3

≤ 𝑐𝜀
3

, (11)

sup
0≤𝑡≤𝑇

E
󵄨󵄨󵄨󵄨󵄨
𝑦
1

𝑡

󵄨󵄨󵄨󵄨󵄨

3

+ E[(∫

𝑇

0

󵄨󵄨󵄨󵄨󵄨
𝑧
1

𝑡

󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑡)

3/2

]

+ ∑

𝑗∈𝐼

E[(∫

𝑇

0

󵄨󵄨󵄨󵄨𝑃𝑡 (𝑗)
󵄨󵄨󵄨󵄨

2

𝑛
𝑡
(𝑗) 𝑑𝑡)

3/2

] ≤ 𝑐𝜀
3

.

(12)

Proof. By the boundedness of (𝑏
𝑥
, 𝜎

𝑥
) and using Hölder’s

inequality, we have

sup
0≤𝑡≤𝑟

E
󵄨󵄨󵄨󵄨󵄨
𝑥
1

𝑡

󵄨󵄨󵄨󵄨󵄨

3

≤ 𝑐∫

𝑟

0

[ sup
0≤𝑠≤𝑡

E
󵄨󵄨󵄨󵄨󵄨
𝑥
1

𝑠

󵄨󵄨󵄨󵄨󵄨

3

]𝑑𝑡

+ 𝑐E(∫

𝑇

0

󵄨󵄨󵄨󵄨𝑏 (𝑢
𝜀

𝑡
) − 𝑏 (𝑡)

󵄨󵄨󵄨󵄨 𝑑𝑡)

3

+ 𝑐𝜀
3

E(∫

𝑇

0

󵄨󵄨󵄨󵄨𝐶𝑡

󵄨󵄨󵄨󵄨 𝑑𝜂𝑡)

3

,

(13)

∀0 ≤ 𝑟 ≤ 𝑇. Noting the definition of 𝑢𝜀(⋅), we get

E(∫

𝑇

0

󵄨󵄨󵄨󵄨𝑏 (𝑢
𝜀

𝑡
) − 𝑏 (𝑡)

󵄨󵄨󵄨󵄨 𝑑𝑡)

3

= E(∫

𝜏+𝜀

𝜏

󵄨󵄨󵄨󵄨𝑏 (𝑡, 𝛼
𝑡
, 𝑥

𝑡
, V) − 𝑏 (𝑡)

󵄨󵄨󵄨󵄨 𝑑𝑡)

3

≤ 𝜀
2

E∫

𝜏+𝜀

𝜏

󵄨󵄨󵄨󵄨𝑏 (𝑡, 𝛼
𝑡
, 𝑥

𝑡
, V) − 𝑏 (𝑡)

󵄨󵄨󵄨󵄨

3

𝑑𝑡

≤ 𝑐𝜀
3

(1 + sup
0≤𝑡≤𝑇

E [
󵄨󵄨󵄨󵄨𝑥𝑡

󵄨󵄨󵄨󵄨

3

+
󵄨󵄨󵄨󵄨𝑢𝑡

󵄨󵄨󵄨󵄨

3

+ |V|3])

≤ 𝑐𝜀
3

.

(14)

Here we apply Hölder’s inequality for 𝑝 = 3, 𝑞 = 3/2, and the
growth condition of 𝑏 in (H1). Since 𝐶

𝑡
is bounded on [0, 𝑇],

then (11) is obtained by applying Gronwall’s inequality.
By the result of Section 5 in [6] and noting that the

predictable covariation of Ṽ
𝑡
(𝑗) is

𝑑⟨Ṽ
𝑡
(𝑗) , Ṽ

𝑡
(𝑗)⟩

𝑡

= 𝑛
𝑡
(𝑗) 𝑑𝑡, (15)

we obtain

sup
0≤𝑡≤𝑇

E
󵄨󵄨󵄨󵄨󵄨
𝑦
1

𝑡

󵄨󵄨󵄨󵄨󵄨

3

+ E[(∫

𝑇

0

󵄨󵄨󵄨󵄨󵄨
𝑧
1

𝑡

󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑡)

3/2

]

+ ∑

𝑗∈𝐼

E[(∫

𝑇

0

󵄨󵄨󵄨󵄨𝑃𝑡 (𝑗)
󵄨󵄨󵄨󵄨

2

𝑛
𝑡
(𝑗) 𝑑𝑡)

3/2

]

≤ 𝑐E
󵄨󵄨󵄨󵄨󵄨
𝑔
𝑥
(𝑥

𝑇
) 𝑥

1

𝑇

󵄨󵄨󵄨󵄨󵄨

3

+ 𝑐E(∫

𝑇

0

󵄨󵄨󵄨󵄨󵄨
𝑓
𝑥
(𝑡) 𝑥

1

𝑡
+ 𝑓 (𝑢

𝜀

𝑡
) − 𝑓 (𝑡)

󵄨󵄨󵄨󵄨󵄨
𝑑𝑡)

3

+ 𝑐𝜀
3

E(∫

𝑇

0

󵄨󵄨󵄨󵄨𝐷𝑡

󵄨󵄨󵄨󵄨 𝑑𝜂𝑡)

3

.

(16)

On the one hand, since 𝑔
𝑥
is bounded, by (11), we have

E
󵄨󵄨󵄨󵄨󵄨
𝑔
𝑥
(𝑥

𝑇
) 𝑥

1

𝑇

󵄨󵄨󵄨󵄨󵄨

3

≤ 𝑐𝜀
3

. (17)

On the other hand, since 𝑓
𝑥
is bounded, using the basic

inequality and (11), we have

E(∫

𝑇

0

󵄨󵄨󵄨󵄨󵄨
𝑓
𝑥
(𝑡) 𝑥

1

𝑡
+ 𝑓 (𝑢

𝜀

𝑡
) − 𝑓 (𝑡)

󵄨󵄨󵄨󵄨󵄨
𝑑𝑡)

3

≤ 𝑐𝜀
3

+ 𝑐E(∫

𝑇

0

󵄨󵄨󵄨󵄨𝑓 (𝑢
𝜀

𝑡
) − 𝑓 (𝑡)

󵄨󵄨󵄨󵄨 𝑑𝑡)

3

.

(18)

From the growth condition of 𝑓 in (H1) and the same
technique as above, it follows that

E(∫

𝑇

0

󵄨󵄨󵄨󵄨𝑓 (𝑢
𝜀

𝑡
) − 𝑓 (𝑡)

󵄨󵄨󵄨󵄨 𝑑𝑡)

3

≤ 𝑐𝜀
3

. (19)

Besides, 𝐷
𝑡
is bounded on [0, 𝑇]; then (12) is obtained. The

proof is complete.

Denote 𝑥
𝑡
= 𝑥

𝜀

𝑡
−𝑥

𝑡
−𝑥

1

𝑡
, 𝑦

𝑡
= 𝑦

𝜀

𝑡
−𝑦

𝑡
−𝑦

1

𝑡
, 𝑧̂

𝑡
= 𝑧

𝜀

𝑡
−𝑧

𝑡
−𝑧

1

𝑡
,

and 𝑊̂
𝑡
= 𝑊

𝜀

𝑡
− 𝑊

𝑡
− 𝑃

𝑡
, and then we have the following.
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Lemma 4. Consider

sup
0≤𝑡≤𝑇

E
󵄨󵄨󵄨󵄨𝑥𝑡

󵄨󵄨󵄨󵄨

2

≤ 𝐶
𝜀
𝜀
2

, (20)

sup
0≤𝑡≤𝑇

E
󵄨󵄨󵄨󵄨𝑦𝑡

󵄨󵄨󵄨󵄨

2

+ E [∫

𝑇

0

󵄨󵄨󵄨󵄨𝑧̂𝑡
󵄨󵄨󵄨󵄨

2

𝑑𝑡] + ∑

𝑗∈𝐼

E [∫

𝑇

0

󵄨󵄨󵄨󵄨󵄨
𝑊̂
𝑡
(𝑗)

󵄨󵄨󵄨󵄨󵄨

2

𝑛
𝑡
(𝑗) 𝑑𝑡]

≤ 𝐶
𝜀
𝜀
2

,

(21)

where 𝐶
𝜀

→ 0 as 𝜀 → 0.

Proof. It is easy to check that 𝑥 satisfies

𝑑𝑥
𝑡
= [Λ

1
(𝑡) + Λ

2
(𝑡)] 𝑑𝑡 + [Ξ

1
(𝑡) + Ξ

2
(𝑡)] 𝑑𝐵

𝑡
,

𝑥
0
= 0,

(22)

where

Λ
1
(𝑡) := 𝑏 (𝑡, 𝛼

𝑡
, 𝑥

𝜀

𝑡
, 𝑢

𝜀

𝑡
) − 𝑏 (𝑡, 𝛼

𝑡
, 𝑥

𝑡
+ 𝑥

1

𝑡
, 𝑢

𝜀

𝑡
) ,

Λ
2
(𝑡) := 𝑏 (𝑡, 𝛼

𝑡
, 𝑥

𝑡
+ 𝑥

1

𝑡
, 𝑢

𝜀

𝑡
) − 𝑏 (𝑢

𝜀

𝑡
) − 𝑏

𝑥
(𝑡) 𝑥

1

𝑡
,

Ξ
1
(𝑡) := 𝜎 (𝑡, 𝛼

𝑡
, 𝑥

𝜀

𝑡
) − 𝜎 (𝑡, 𝛼

𝑡
, 𝑥

𝑡
+ 𝑥

1

𝑡
) ,

Ξ
2
(𝑡) := 𝜎 (𝑡, 𝛼

𝑡
, 𝑥

𝑡
+ 𝑥

1

𝑡
) − 𝜎 (𝑡) − 𝜎

𝑥
(𝑡) 𝑥

1

𝑡
.

(23)

Then we have

sup
0≤𝑡≤𝑟

E
󵄨󵄨󵄨󵄨𝑥𝑡

󵄨󵄨󵄨󵄨

2

≤ 𝑐E(∫

𝑟

0

󵄨󵄨󵄨󵄨Λ 1
(𝑡) + Λ

2
(𝑡)

󵄨󵄨󵄨󵄨 𝑑𝑡)

2

+ 𝑐E∫

𝑟

0

󵄨󵄨󵄨󵄨Ξ1 (𝑡) + Ξ
2
(𝑡)

󵄨󵄨󵄨󵄨

2

𝑑𝑡

(24)

∀0 ≤ 𝑟 ≤ 𝑇. Since Λ
1
(𝑡) = ∫

1

0

𝑏
𝑥
(𝑡, 𝛼

𝑡
, 𝑥

𝑡
+ 𝑥

1

𝑡
+ 𝜆𝑥

𝑡
, 𝑢

𝜀

𝑡
)𝑑𝜆𝑥

𝑡
,

by the boundedness of 𝑏
𝑥
, we have |Λ

1
(𝑡)| ≤ 𝑐|𝑥

𝑡
|. Further we

get

E(∫

𝑟

0

󵄨󵄨󵄨󵄨Λ 1
(𝑡)

󵄨󵄨󵄨󵄨 𝑑𝑡)

2

≤ 𝑐E∫

𝑟

0

󵄨󵄨󵄨󵄨𝑥𝑡
󵄨󵄨󵄨󵄨

2

𝑑𝑡. (25)

On the other hand, since Λ
2
(𝑡) = ∫

1

0

[𝑏
𝑥
(𝑡, 𝛼

𝑡
, 𝑥

𝑡
+ 𝜆𝑥

1

𝑡
, 𝑢

𝜀

𝑡
) −

𝑏
𝑥
(𝑡)]𝑑𝜆𝑥

1

𝑡
, we have

∫

𝑟

0

󵄨󵄨󵄨󵄨Λ 2
(𝑡)

󵄨󵄨󵄨󵄨 𝑑𝑡 ≤ ∫

𝑇

0

󵄨󵄨󵄨󵄨Λ 2
(𝑡)

󵄨󵄨󵄨󵄨 𝑑𝑡 ≤ 𝐼
1
+ 𝐼

2
, (26)

where

𝐼
1
:= ∫

𝜏+𝜀

𝜏

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

1

0

[𝑏
𝑥
(𝑡, 𝛼

𝑡
, 𝑥

𝑡
+ 𝜆𝑥

1

𝑡
, V) − 𝑏

𝑥
(𝑡)] 𝑑𝜆𝑥

1

𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑑𝑡,

𝐼
2
:= ∫

𝑇

0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

1

0

[𝑏
𝑥
(𝑡, 𝛼

𝑡
, 𝑥

𝑡
+ 𝜆𝑥

1

𝑡
, 𝑢

𝑡
) − 𝑏

𝑥
(𝑡)] 𝑑𝜆𝑥

1

𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑑𝑡.

(27)

Since 𝑏
𝑥
is bounded, by Lemma 3 we get

E
󵄨󵄨󵄨󵄨𝐼1

󵄨󵄨󵄨󵄨

2

≤ 𝜀∫

𝜏+𝜀

𝜏

E[

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

1

0

[𝑏
𝑥
(𝑡, 𝛼

𝑡
, 𝑥

𝑡
+ 𝜆𝑥

1

𝑡
, V) − 𝑏

𝑥
(𝑡)] 𝑑𝜆𝑥

1

𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

]𝑑𝑡

≤ 𝑐𝜀
2 sup
0≤𝑡≤𝑇

E
󵄨󵄨󵄨󵄨󵄨
𝑥
1

𝑡

󵄨󵄨󵄨󵄨󵄨

2

≤ 𝑐𝜀
4

.

(28)

For 𝐼
2
, by Hölder’s inequality, Lemma 3, and the dominated

convergence theorem, it follows that

E
󵄨󵄨󵄨󵄨𝐼2

󵄨󵄨󵄨󵄨

2

≤ E{∫

𝑇

0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

1

0

[𝑏
𝑥
(𝑡, 𝛼

𝑡
, 𝑥

𝑡
+ 𝜆𝑥

1

𝑡
, 𝑢

𝑡
) − 𝑏

𝑥
(𝑡)] 𝑑𝜆

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑡

⋅ ∫

𝑇

0

󵄨󵄨󵄨󵄨󵄨
𝑥
1

𝑡

󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑡}

≤

{

{

{

E(∫

𝑇

0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

1

0

[𝑏
𝑥
(𝑡, 𝛼

𝑡
, 𝑥

𝑡
+ 𝜆𝑥

1

𝑡
, 𝑢

𝑡
) − 𝑏

𝑥
(𝑡)] 𝑑𝜆

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑡)

3

}

}

}

1/3

× {E(∫

𝑇

0

󵄨󵄨󵄨󵄨󵄨
𝑥
1

𝑡

󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑡)

3/2

}

2/3

≤ 𝐶
𝜀
𝜀
2

.

(29)

Then we get

E(∫

𝑟

0

󵄨󵄨󵄨󵄨Λ 2
(𝑡)

󵄨󵄨󵄨󵄨 𝑑𝑡)

2

≤ 2E (
󵄨󵄨󵄨󵄨𝐼1

󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨𝐼2

󵄨󵄨󵄨󵄨

2

) ≤ 𝐶
𝜀
𝜀
2 (30)

and obtain

E(∫

𝑟

0

󵄨󵄨󵄨󵄨Λ 1
(𝑡) + Λ

2
(𝑡)

󵄨󵄨󵄨󵄨 𝑑𝑡)

2

≤ 𝐶
𝜀
𝜀
2

+ 𝑐E∫

𝑟

0

󵄨󵄨󵄨󵄨𝑥𝑡
󵄨󵄨󵄨󵄨

2

𝑑𝑡. (31)

In the same way, we have

E∫

𝑟

0

󵄨󵄨󵄨󵄨Ξ1 (𝑡) + Ξ
2
(𝑡)

󵄨󵄨󵄨󵄨

2

𝑑𝑡 ≤ 𝐶
𝜀
𝜀
2

+ 𝑐E∫

𝑟

0

󵄨󵄨󵄨󵄨𝑥𝑡
󵄨󵄨󵄨󵄨

2

𝑑𝑡. (32)

From (24), (31), and (32) it follows that

sup
0≤𝑡≤𝑟

E
󵄨󵄨󵄨󵄨𝑥𝑡

󵄨󵄨󵄨󵄨

2

≤ 𝐶
𝜀
𝜀
2

+ 𝑐∫

𝑟

0

[ sup
0≤𝑠≤𝑡

E
󵄨󵄨󵄨󵄨𝑥𝑠

󵄨󵄨󵄨󵄨

2

]𝑑𝑡. (33)

Finally, applying Gronwall’s inequality implies (20).

To get estimate (21), for simplicity, we introduce

Θ
𝑡
= (𝑡, 𝛼

𝑡
, 𝑥

𝑡
+ 𝜆𝑥

1

𝑡
, 𝑦

𝑡
+ 𝜆𝑦

1

𝑡
, 𝑧

𝑡
+ 𝜆𝑧

1

𝑡
, (𝑊

𝑡
+ 𝜆𝑃

𝑡
) 𝑛

𝑡
) ,

Σ
𝑡
= (𝑡, 𝛼

𝑡
, 𝑥

𝑡
+ 𝑥

1

𝑡
+ 𝜆𝑥

𝑡
, 𝑦

𝑡
+ 𝑦

1

𝑡
+ 𝜆𝑦

𝑡
, 𝑧

𝑡
+ 𝑧

1

𝑡
+ 𝜆𝑧̂

𝑡
,

(𝑊
𝑡
+ 𝑃

𝑡
+ 𝜆𝑊̂

𝑡
) 𝑛

𝑡
) .

(34)
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It is easy to check that (𝑦, 𝑧̂, 𝑊̂) satisfies

𝑑𝑦
𝑡
= − [𝑓

1
(𝑡) + 𝑓

2
(𝑡)] 𝑑𝑡 + 𝑧̂

𝑡
𝑑𝐵

𝑡
+ ∑

𝑗∈𝐼

𝑊̂
𝑡
(𝑗) 𝑑Ṽ

𝑡
(𝑗) ,

𝑦
𝑇

= 𝐺
1
+ 𝐺

2
,

(35)

where

𝑓
1
(𝑡) := 𝑓 (𝑡, 𝛼

𝑡
, 𝑥

𝜀

𝑡
, 𝑦

𝜀

𝑡
, 𝑧

𝜀

𝑡
,𝑊

𝜀

𝑡
𝑛
𝑡
, 𝑢

𝜀

𝑡
)

− 𝑓 (𝑡, 𝛼
𝑡
, 𝑥

𝑡
+ 𝑥

1

𝑡
, 𝑦

𝑡
+ 𝑦

1

𝑡
, 𝑧

𝑡
+ 𝑧

1

𝑡
,

(𝑊
𝑡
+ 𝑃

𝑡
) 𝑛

𝑡
, 𝑢

𝜀

𝑡
) ,

𝑓
2
(𝑡) := 𝑓 (𝑡, 𝛼

𝑡
, 𝑥

𝑡
+ 𝑥

1

𝑡
, 𝑦

𝑡
+ 𝑦

1

𝑡
, 𝑧

𝑡
+ 𝑧

1

𝑡
, (𝑊

𝑡
+ 𝑃

𝑡
) 𝑛

𝑡
, 𝑢

𝜀

𝑡
)

− 𝑓 (𝑢
𝜀

𝑡
) − 𝑓

𝑥
(𝑡) 𝑥

1

𝑡
− 𝑓

𝑦
(𝑡) 𝑦

1

𝑡
− 𝑓

𝑧
(𝑡) 𝑧

1

𝑡

− ∑

𝑗∈𝐼

𝑓
𝑤(𝑗)

(𝑡) 𝑃
𝑡
(𝑗) 𝑛

𝑡
(𝑗) ,

𝐺
1
:= 𝑔 (𝑥

𝜀

𝑇
) − 𝑔 (𝑥

𝑇
+ 𝑥

1

𝑇
) ,

𝐺
2
:= 𝑔 (𝑥

𝑇
+ 𝑥

1

𝑇
) − 𝑔 (𝑥

𝑇
) − 𝑔

𝑥
(𝑥

𝑇
) 𝑥

1

𝑇
.

(36)

Similar to the proof above, we have

𝑓
1
(𝑡) = ∫

1

0

𝑓
𝑥
(Σ

𝑡
, 𝑢

𝜀

𝑡
) 𝑑𝜆𝑥

𝑡
+ ∫

1

0

𝑓
𝑦
(Σ

𝑡
, 𝑢

𝜀

𝑡
) 𝑑𝜆𝑦

𝑡

+ ∫

1

0

𝑓
𝑧
(Σ

𝑡
, 𝑢

𝜀

𝑡
) 𝑑𝜆𝑧̂

𝑡

+ ∑

𝑗∈𝐼

∫

1

0

𝑓
𝑤(𝑗)

(Σ
𝑡
, 𝑢

𝜀

𝑡
) 𝑑𝜆𝑊̂

𝑡
(𝑗) 𝑛

𝑡
(𝑗) ,

𝑓
2
(𝑡) = ∫

1

0

[𝑓
𝑥
(Θ

𝑡
, 𝑢

𝜀

𝑡
) − 𝑓

𝑥
(𝑡)] 𝑑𝜆𝑥

1

𝑡

+ ∫

1

0

[𝑓
𝑦
(Θ

𝑡
, 𝑢

𝜀

𝑡
) − 𝑓

𝑦
(𝑡)] 𝑑𝜆𝑦

1

𝑡

+ ∫

1

0

[𝑓
𝑧
(Θ

𝑡
, 𝑢

𝜀

𝑡
) − 𝑓

𝑧
(𝑡)] 𝑑𝜆𝑧

1

𝑡

+ ∑

𝑗∈𝐼

∫

1

0

[𝑓
𝑤(𝑗)

(Θ
𝑡
, 𝑢

𝜀

𝑡
) − 𝑓

𝑤(𝑗)
(𝑡)] 𝑑𝜆𝑃

𝑡
(𝑗) 𝑛

𝑡
(𝑗) ,

𝐺
1
= ∫

1

0

𝑔
𝑥
(𝑥

𝑇
+ 𝑥

1

𝑇
+ 𝜆𝑥

𝑇
) 𝑑𝜆𝑥

𝑇
,

𝐺
2
= ∫

1

0

[𝑔
𝑥
(𝑥

𝑇
+ 𝜆𝑥

1

𝑇
) − 𝑔

𝑥
(𝑥

𝑇
)] 𝑑𝜆𝑥

1

𝑇
.

(37)

Then for BSDE (35), by the estimates of BSDEs, we obtain

sup
0≤𝑡≤𝑇

E
󵄨󵄨󵄨󵄨𝑦𝑡

󵄨󵄨󵄨󵄨

2

+ E [∫

𝑇

0

󵄨󵄨󵄨󵄨𝑧̂𝑡
󵄨󵄨󵄨󵄨

2

𝑑𝑡] + ∑

𝑗∈𝐼

E [∫

𝑇

0

󵄨󵄨󵄨󵄨󵄨
𝑊̂
𝑡
(𝑗)

󵄨󵄨󵄨󵄨󵄨

2

𝑛
𝑡
(𝑗) 𝑑𝑡]

≤ 𝑐E[

[

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

1

0

𝑔
𝑥
(𝑥

𝑇
+ 𝑥

1

𝑇
+ 𝜆𝑥

𝑇
) 𝑑𝜆𝑥

𝑇

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

1

0

[𝑔
𝑥
(𝑥

𝑇
+ 𝜆𝑥

1

𝑇
) − 𝑔

𝑥
(𝑥

𝑇
)] 𝑑𝜆𝑥

1

𝑇

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

+ (∫

𝑇

0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

1

0

𝑓
𝑥
(Σ

𝑡
, 𝑢

𝜀

𝑡
) 𝑑𝜆𝑥

𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑑𝑡)

2

+ (∫

𝑇

0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

1

0

[𝑓
𝑥
(Θ

𝑡
, 𝑢

𝜀

𝑡
) − 𝑓

𝑥
(𝑡)] 𝑑𝜆𝑥

1

𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑑𝑡)

2

+ (∫

𝑇

0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

1

0

[𝑓
𝑦
(Θ

𝑡
, 𝑢

𝜀

𝑡
) − 𝑓

𝑦
(𝑡)] 𝑑𝜆𝑦

1

𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑑𝑡)

2

+ (∫

𝑇

0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

1

0

[𝑓
𝑧
(Θ

𝑡
, 𝑢

𝜀

𝑡
) − 𝑓

𝑧
(𝑡)] 𝑑𝜆𝑧

1

𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑑𝑡)

2

+ (∫

𝑇

0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∑

𝑗∈𝐼

∫

1

0

[𝑓
𝑤(𝑗)

(Θ
𝑡
, 𝑢

𝜀

𝑡
) − 𝑓

𝑤(𝑗)
(𝑡)] 𝑑𝜆𝑃

𝑡
(𝑗)

× 𝑛
𝑡
(𝑗)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑑𝑡)

2

]

]

.

(38)

Applying Hölder’s inequality, Cauchy-Schwartz inequality,
the dominated convergence theorem, Lemma 3, and (20) and
noting the boundedness of 𝑛

𝑡
, we obtain (21).

Now, we are ready to state the variational inequality.

Lemma 5. The following variational inequality holds:

E[

[

∫

𝑇

0

(ℎ
𝑥
(𝑡) 𝑥

1

𝑡
+ ℎ

𝑦
(𝑡) 𝑦

1

𝑡
+ ℎ

𝑧
(𝑡) 𝑧

1

𝑡

+ ∑

𝑗∈𝐼

ℎ
𝑤(𝑗)

(𝑡) 𝑃
𝑡
(𝑗) 𝑛

𝑡
(𝑗) + ℎ (𝑢

𝜀

𝑡
) − ℎ (𝑡))𝑑𝑡]

]

+ E[𝜙
𝑥
(𝑥

𝑇
) 𝑥

1

𝑇
+ 𝛾

𝑦
(𝑦

0
) 𝑦

1

0
+ 𝜀∑

𝑖≥1

𝑙
𝜉
(𝜏
𝑖
, 𝜉
𝑖
) 𝜂

𝑖
] ≤ 𝑜 (𝜀) .

(39)

Proof. From the optimality of (𝑢(⋅), 𝜉(⋅)), we have

𝐽 (𝑢
𝜀

(⋅) , 𝜉
𝜀

(⋅)) − 𝐽 (𝑢 (⋅) , 𝜉 (⋅)) ≤ 0. (40)
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By Lemmas 3 and 4, we have

E [𝜙 (𝑥
𝜀

𝑇
) − 𝜙 (𝑥

𝑇
)]

= E [𝜙 (𝑥
𝜀

𝑇
) − 𝜙 (𝑥

𝑇
+ 𝑥

1

𝑇
)] + E [𝜙 (𝑥

𝑇
+ 𝑥

1

𝑇
) − 𝜙 (𝑥

𝑇
)]

= E [𝜙
𝑥
(𝑥

𝑇
) 𝑥

1

𝑇
] + 𝑜 (𝜀) ,

E [𝛾 (𝑦
𝜀

0
) − 𝛾 (𝑦

0
)]

= E [𝛾 (𝑦
𝜀

0
) − 𝛾 (𝑦

0
+ 𝑦

1

0
)] + E [𝛾 (𝑦

0
+ 𝑦

1

0
) − 𝛾 (𝑦

0
)]

= E [𝛾
𝑦
(𝑦

0
) 𝑦

1

0
] + 𝑜 (𝜀) .

(41)

Similarly, we obtain

E[∑

𝑖≥1

𝑙 (𝜏
𝑖
, 𝜉
𝜀

𝑖
) − ∑

𝑖≥1

𝑙 (𝜏
𝑖
, 𝜉
𝑖
)] = 𝜀E[∑

𝑖≥1

𝑙
𝜉
(𝜏
𝑖
, 𝜉
𝑖
) 𝜂

𝑖
] + 𝑜 (𝜀) .

(42)

Next, we aim to get the first term of (39). For convenience, we
introduce two notations as follows:

𝐻
1
:= E [∫

𝑇

0

(ℎ (𝑡, 𝛼
𝑡
, 𝑥

𝜀

𝑡
, 𝑦

𝜀

𝑡
, 𝑧

𝜀

𝑡
,𝑊

𝜀

𝑡
𝑛
𝑡
, 𝑢

𝜀

𝑡
)

− ℎ (𝑡, 𝛼
𝑡
, 𝑥

𝑡
+ 𝑥

1

𝑡
, 𝑦

𝑡
+ 𝑦

1

𝑡
, 𝑧

𝑡

+ 𝑧
1

𝑡
, (𝑊

𝑡
+ 𝑃

𝑡
) 𝑛

𝑡
, 𝑢

𝜀

𝑡
)) 𝑑𝑡] ,

𝐻
2
:= E[

[

∫

𝑇

0

(ℎ(𝑡, 𝛼
𝑡
, 𝑥

𝑡
+ 𝑥

1

𝑡
, 𝑦

𝑡
+ 𝑦

1

𝑡
,

𝑧
𝑡
+ 𝑧

1

𝑡
, (𝑊

𝑡
+ 𝑃

𝑡
) 𝑛

𝑡
, 𝑢

𝜀

𝑡
)

− ℎ (𝑢
𝜀

𝑡
) − ℎ

𝑥
(𝑡) 𝑥

1

𝑡
− ℎ

𝑦
(𝑡) 𝑦

1

𝑡

− ℎ
𝑧
(𝑡) 𝑧

1

𝑡
− ∑

𝑗∈𝐼

ℎ
𝑤(𝑗)

(𝑡) 𝑃
𝑡
(𝑗) 𝑛

𝑡
(𝑗))𝑑𝑡]

]

.

(43)

Applying the same technique to the proof of Lemma 4, we
obtain

𝐻
1
∼ 𝐻

2
= 𝑜 (𝜀) . (44)

Hence

E [∫

𝑇

0

(ℎ (𝑡, 𝛼
𝑡
, 𝑥

𝜀

𝑡
, 𝑦

𝜀

𝑡
, 𝑧

𝜀

𝑡
,𝑊

𝜀

𝑡
𝑛
𝑡
, 𝑢

𝜀

𝑡
) − ℎ (𝑡)) 𝑑𝑡]

= E[

[

∫

𝑇

0

(ℎ
𝑥
(𝑡) 𝑥

1

𝑡
+ ℎ

𝑦
(𝑡) 𝑦

1

𝑡
+ ℎ

𝑧
(𝑡) 𝑧

1

𝑡

+ ∑

𝑗∈𝐼

ℎ
𝑤(𝑗)

(𝑡) 𝑃
𝑡
(𝑗) 𝑛

𝑡
(𝑗) + ℎ (𝑢

𝜀

𝑡
) − ℎ (𝑡))𝑑𝑡]

]

+ 𝑜 (𝜀) .

(45)

Thus, variational inequality (39) follows from (41)–(45).
Let us introduce the following adjoint equations:

𝑑𝑝
𝑡
= [𝑓

𝑦
(𝑡) 𝑝

𝑡
− ℎ

𝑦
(𝑡)] 𝑑𝑡 + [𝑓

𝑧
(𝑡) 𝑝

𝑡
− ℎ

𝑧
(𝑡)] 𝑑𝐵

𝑡

+ ∑

𝑗∈𝐼

[𝑓
𝑤(𝑗)

(𝑡−) 𝑝
𝑡−

− ℎ
𝑤(𝑗)

(𝑡−)] 𝑑Ṽ
𝑡
(𝑗) ,

𝑝
0
= −𝛾

𝑦
(𝑦

0
) ,

(46)

−𝑑𝑞
𝑡
= [𝑏

𝑥
(𝑡) 𝑞

𝑡
+ 𝜎

𝑥
(𝑡) 𝑘

𝑡
− 𝑓

𝑥
(𝑡) 𝑝

𝑡
+ ℎ

𝑥
(𝑡)] 𝑑𝑡

− 𝑘
𝑡
𝑑𝐵

𝑡
− ∑

𝑗∈𝐼

𝑀
𝑡
(𝑗) 𝑑Ṽ

𝑡
(𝑗) ,

𝑞
𝑇

= −𝑔
𝑥
(𝑥

𝑇
) 𝑝

𝑇
+ 𝜙

𝑥
(𝑥

𝑇
) ,

(47)

where 𝜑
𝑤(𝑗)

(𝑡−) := 𝜑
𝑤(𝑗)

(𝑡, 𝛼
𝑡−
, 𝑥

𝑡−
, 𝑦

𝑡−
, 𝑧

𝑡
,𝑊

𝑡
𝑛
𝑡−
, 𝑢

𝑡−
) for

𝜑 = 𝑓, ℎ. It is easy to check that SDE (46) admits a unique
solution 𝑝(⋅) ∈ 𝑆

3

(R). Besides, the generator of BSDE (47)
does not contain 𝑀

𝑡
(𝑗). Therefore, the Lipschitz condition

is satisfied obviously. Hence (47) admits a unique solution
(𝑞(⋅), 𝑘(⋅),𝑀(⋅)) ∈ 𝑆

3

(R)×𝐻
3

(R)×𝐻
3

V(R). Now we establish
the stochastic maximum principle.

Theorem 6. Let assumptions (H1)–(H3) hold. Suppose
(𝑢(⋅), 𝜉(⋅)) is an optimal control, (𝑥(⋅), 𝑦(⋅), 𝑧(⋅),𝑊(⋅)) is the
corresponding trajectory, and (𝑝(⋅), 𝑞(⋅), 𝑘(⋅),𝑀(⋅)) is the
solution of adjoint equations (46) and (47). Then, ∀V ∈ 𝑈, 𝜂

(⋅) ∈ K, it holds that
𝐻(𝑡, 𝛼

𝑡
, 𝑥

𝑡
, 𝑦

𝑡
, 𝑧

𝑡
,𝑊

𝑡
, V, 𝑝

𝑡
, 𝑞

𝑡
, 𝑘

𝑡
)

− 𝐻 (𝑡, 𝛼
𝑡
, 𝑥

𝑡
, 𝑦

𝑡
, 𝑧

𝑡
,𝑊

𝑡
, 𝑢

𝑡
, 𝑝

𝑡
, 𝑞

𝑡
, 𝑘

𝑡
) ≤ 0, a.e., a.s.,

(48)

E[∑

𝑖≥1

(𝑙
𝜉
(𝜏
𝑖
, 𝜉
𝑖
) + 𝑞

𝜏𝑖
𝐶
𝜏𝑖

− 𝑝
𝜏𝑖
𝐷
𝜏𝑖
) (𝜂

𝑖
− 𝜉

𝑖
)] ≤ 0, (49)

where𝐻 : [0, 𝑇] × 𝐼×R×R×R×M
𝜌
×𝑈×R×R×R → R

is the Hamiltonian defined by

𝐻(𝑡, 𝛼
𝑡
, 𝑥, 𝑦, 𝑧,𝑊, V, 𝑝, 𝑞, 𝑘)

= −𝑓 (𝑡, 𝛼
𝑡
, 𝑥, 𝑦, 𝑧,𝑊𝑛

𝑡
, V) 𝑝 + 𝑏 (𝑡, 𝛼

𝑡
, 𝑥, V) 𝑞 + 𝜎 (𝑡, 𝛼

𝑡
, 𝑥) 𝑘

+ ℎ (𝑡, 𝛼
𝑡
, 𝑥, 𝑦, 𝑧,𝑊𝑛

𝑡
, V) ,

(50)

where 𝑊𝑛
𝑡
= (𝑊(1)𝑛

𝑡
(1), . . . ,𝑊(𝑘)𝑛

𝑡
(𝑘)).
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Proof. Applying Itô’s formula to 𝑝
𝑡
𝑦
1

𝑡
+ 𝑞

𝑡
𝑥
1

𝑡
and combining

with Lemma 5, we obtain

E [∫

𝑇

0

(𝐻 (𝑡, 𝛼
𝑡
, 𝑥

𝑡
, 𝑦

𝑡
, 𝑧

𝑡
,𝑊

𝑡
, 𝑢

𝜀

𝑡
, 𝑝

𝑡
, 𝑞

𝑡
, 𝑘

𝑡
)

−𝐻 (𝑡, 𝛼
𝑡
, 𝑥

𝑡
, 𝑦

𝑡
, 𝑧

𝑡
,𝑊

𝑡
, 𝑢

𝑡
, 𝑝

𝑡
, 𝑞

𝑡
, 𝑘

𝑡
)) 𝑑𝑡]

+ 𝜀E[∑

𝑖≥1

(𝑙
𝜉
(𝜏
𝑖
, 𝜉
𝑖
) + 𝑞

𝜏𝑖
𝐶
𝜏𝑖

− 𝑝
𝜏𝑖
𝐷
𝜏𝑖
) 𝜃

𝑖
] ≤ 𝑜 (𝜀) ,

(51)

where 𝜃 ∈ I such that 𝜉 + 𝜃 = 𝜂 ∈ K. Then it follows that

𝜀
−1

E [∫

𝜏+𝜀

𝜏

(𝐻 (𝑡, 𝛼
𝑡
, 𝑥

𝑡
, 𝑦

𝑡
, 𝑧

𝑡
,𝑊

𝑡
, V, 𝑝

𝑡
, 𝑞

𝑡
, 𝑘

𝑡
)

−𝐻 (𝑡, 𝛼
𝑡
, 𝑥

𝑡
, 𝑦

𝑡
, 𝑧

𝑡
,𝑊

𝑡
, 𝑢

𝑡
, 𝑝

𝑡
, 𝑞

𝑡
, 𝑘

𝑡
)) 𝑑𝑡]

+ E[∑

𝑖≥1

(𝑙
𝜉
(𝜏
𝑖
, 𝜉
𝑖
) + 𝑞

𝜏𝑖
𝐶
𝜏𝑖

− 𝑝
𝜏𝑖
𝐷
𝜏𝑖
) 𝜃

𝑖
] ≤ 0.

(52)

Letting 𝜀 → 0, we obtain

E [𝐻 (𝜏, 𝛼
𝜏
, 𝑥

𝜏
, 𝑦

𝜏
, 𝑧

𝜏
,𝑊

𝜏
, V, 𝑝

𝜏
, 𝑞

𝜏
, 𝑘

𝜏
)

− 𝐻 (𝜏, 𝛼
𝜏
, 𝑥

𝜏
, 𝑦

𝜏
, 𝑧

𝜏
,𝑊

𝜏
, 𝑢

𝜏
, 𝑝

𝜏
, 𝑞

𝜏
, 𝑘

𝜏
)]

+ E[∑

𝑖≥1

(𝑙
𝜉
(𝜏
𝑖
, 𝜉
𝑖
) + 𝑞

𝜏𝑖
𝐶
𝜏𝑖

− 𝑝
𝜏𝑖
𝐷
𝜏𝑖
) 𝜃

𝑖
] ≤ 0,

a.e. 𝜏 ∈ [0, 𝑇] .

(53)

By choosing V = 𝑢
𝜏
we get (49). Setting 𝜂 ≡ 𝜉, then for any

V ∈ F
𝜏
we have

E [𝐻 (𝜏, 𝛼
𝜏
, 𝑥

𝜏
, 𝑦

𝜏
, 𝑧

𝜏
,𝑊

𝜏
, V, 𝑝

𝜏
, 𝑞

𝜏
, 𝑘

𝜏
)

− 𝐻 (𝜏, 𝛼
𝜏
, 𝑥

𝜏
, 𝑦

𝜏
, 𝑧

𝜏
,𝑊

𝜏
, 𝑢

𝜏
, 𝑝

𝜏
, 𝑞

𝜏
, 𝑘

𝜏
)] ≤ 0, a.e.

(54)

Let V
𝜏
= V1

𝐴
+ 𝑢

𝜏
1
𝐴
𝑐 for 𝐴 ∈ F

𝜏
and V ∈ 𝑈. Obviously V

𝜏
∈

F
𝜏
and E|V

𝜏
|
3

< +∞. Then it follows that for any 𝐴 ∈ F
𝜏

E {[𝐻 (𝜏, 𝛼
𝜏
, 𝑥

𝜏
, 𝑦

𝜏
, 𝑧

𝜏
,𝑊

𝜏
, V, 𝑝

𝜏
, 𝑞

𝜏
, 𝑘

𝜏
)

− 𝐻 (𝜏, 𝛼
𝜏
, 𝑥

𝜏
, 𝑦

𝜏
, 𝑧

𝜏
,𝑊

𝜏
, 𝑢

𝜏
, 𝑝

𝜏
, 𝑞

𝜏
, 𝑘

𝜏
)] 1

𝐴
} ≤ 0, a.e.,

(55)

which implies

E {[𝐻 (𝜏, 𝛼
𝜏
, 𝑥

𝜏
, 𝑦

𝜏
, 𝑧

𝜏
,𝑊

𝜏
, V, 𝑝

𝜏
, 𝑞

𝜏
, 𝑘

𝜏
)

− 𝐻 (𝜏, 𝛼
𝜏
, 𝑥

𝜏
, 𝑦

𝜏
, 𝑧

𝜏
,𝑊

𝜏
, 𝑢

𝜏
, 𝑝

𝜏
, 𝑞

𝜏
, 𝑘

𝜏
)] | F

𝜏
}

= 𝐻 (𝜏, 𝛼
𝜏
, 𝑥

𝜏
, 𝑦

𝜏
, 𝑧

𝜏
,𝑊

𝜏
, V, 𝑝

𝜏
, 𝑞

𝜏
, 𝑘

𝜏
)

− 𝐻 (𝜏, 𝛼
𝜏
, 𝑥

𝜏
, 𝑦

𝜏
, 𝑧

𝜏
,𝑊

𝜏
, 𝑢

𝜏
, 𝑝

𝜏
, 𝑞

𝜏
, 𝑘

𝜏
) ≤ 0, a.e., a.s.

(56)

The proof is complete.

4. Sufficient Optimality Conditions

In this section, we add additional assumptions to obtain the
sufficient conditions for optimal controls. Let us introduce
the following.

(H4) The control domain 𝑈 is a convex body in R. The
measurable functions 𝑏, 𝑓, and 𝑙 are locally Lipschitz
with respect to V, and their partial derivatives are
continuous with respect to (𝑥, 𝑦, 𝑧,𝑊, V).

Theorem 7. Let (H1)–(H4) hold. Suppose that the functions
𝜙(⋅), 𝛾(⋅), 𝜂 → 𝑙(𝑡, 𝜂), and 𝐻(𝑡, 𝛼

𝑡
, ⋅, ⋅, ⋅, ⋅, ⋅, 𝑝

𝑡
, 𝑞

𝑡
, 𝑘

𝑡
) are

concave and (𝑝(⋅), 𝑞(⋅), 𝑘(⋅),𝑀(⋅)) is the solution of adjoint
equations (46) and (47) corresponding to control (𝑢(⋅), 𝜉(⋅)) ∈

A. Moreover, assume that 𝑦
V,𝜂
𝑇

is of the special form 𝑦
V,𝜂
𝑇

=

𝐾(𝛼
𝑇
)𝑥

V,𝜂
𝑇

+ 𝜁, ∀(V, 𝜂) ∈ A, where 𝐾 is a deterministic
measurable function and 𝜁 ∈ 𝐿

3

(Ω,F
𝑇
, 𝑃;R). Then (𝑢, 𝜉) is

an optimal control if it satisfies (48) and (49).

Proof. Let (𝑥V,𝜂
𝑡

, 𝑦
V,𝜂
𝑡

, 𝑧
V,𝜂
𝑡

,𝑊
V,𝜂
𝑡

) be the trajectory correspond-
ing to (V, 𝜂) ∈ A. By the concavity of 𝜙, 𝛾 and 𝜂 → 𝑙(𝑡, 𝜂), we
derive

𝐽 (V, 𝜂) − 𝐽 (𝑢, 𝜉)

≤ E [∫

𝑇

0

(ℎ (𝑡, 𝛼
𝑡
, 𝑥

V,𝜂
𝑡

, 𝑦
V,𝜂
𝑡

, 𝑧
V,𝜂
𝑡

,𝑊
V,𝜂
𝑡

𝑛
𝑡
, V
𝑡
) − ℎ (𝑡)) 𝑑𝑡]

+ E [𝜙
𝑥
(𝑥

𝑢,𝜉

𝑇
) (𝑥

V,𝜂
𝑇

− 𝑥
𝑢,𝜉

𝑇
)]

+ E [𝛾
𝑦
(𝑦

𝑢,𝜉

0
) (𝑦

V,𝜂
0

− 𝑦
𝑢,𝜉

0
)]

+ E[∑

𝑖≥1

𝑙
𝜉
(𝜏
𝑖
, 𝜉
𝑖
) (𝜂

𝑖
− 𝜉

𝑖
)] .

(57)

Define

H
V,𝜂

(𝑡) := 𝐻 (𝑡, 𝛼
𝑡
, 𝑥

V,𝜂
𝑡

, 𝑦
V,𝜂
𝑡

, 𝑧
V,𝜂
𝑡

,𝑊
V,𝜂
𝑡

, V
𝑡
, 𝑝

𝑡
, 𝑞

𝑡
, 𝑘

𝑡
) . (58)

Applying Itô’s formula to (𝑥
V,𝜂
𝑡

− 𝑥
𝑢,𝜉

𝑡
)𝑞
𝑡
+ (𝑦

V,𝜂
𝑡

− 𝑦
𝑢,𝜉

𝑡
)𝑝

𝑡
and

noting 𝑞
𝑇

= −𝐾(𝛼
𝑇
)𝑝

𝑇
+ 𝜙

𝑥
(𝑥

𝑢,𝜉

𝑇
), we obtain

𝐽 (V, 𝜂) − 𝐽 (𝑢, 𝜉)

≤ E[

[

∫

𝑇

0

(H
V,𝜂

(𝑡) − H
𝑢,𝜉

(𝑡) − H
𝑢,𝜉

𝑥
(𝑡) (𝑥

V,𝜂
𝑡

− 𝑥
𝑢,𝜉

𝑡
)

− H
𝑢,𝜉

𝑦
(𝑡) (𝑦

V,𝜂
𝑡

− 𝑦
𝑢,𝜉

𝑡
) − H

𝑢,𝜉

𝑧
(𝑡) (𝑧

V,𝜂
𝑡

− 𝑧
𝑢,𝜉

𝑡
)

− ∑

𝑗∈𝐼

H
𝑢,𝜉

𝑤(𝑗)
(𝑡) (𝑊

V,𝜂
𝑡

(𝑗) − 𝑊
𝑢,𝜉

𝑡
(𝑗)) 𝑛

𝑡
(𝑗))𝑑𝑡]

]

+ E[∑

𝑖≥1

(𝑙
𝜉
(𝜏
𝑖
, 𝜉
𝑖
) + 𝑞

𝜏𝑖
𝐶
𝜏𝑖

− 𝑝
𝜏𝑖
𝐷
𝜏𝑖
) (𝜂

𝑖
− 𝜉

𝑖
)]

:= Γ
1
+ Γ

2
.

(59)



Mathematical Problems in Engineering 9

By (48) and Lemma 2.3 of Chapter 3 in [27], we have

0 ∈ 𝜕VH
𝑢,𝜉

(𝑡) . (60)

By Lemma 2.4 of Chapter 3 in [27], we further conclude that

(H
𝑢,𝜉

𝑥
(𝑡) ,H

𝑢,𝜉

𝑦
(𝑡) ,H

𝑢,𝜉

𝑧
(𝑡) ,H

𝑢,𝜉

𝑊
(𝑡) , 0) ∈ 𝜕

𝑥,𝑦,𝑧,𝑊,VH
𝑢,𝜉

(𝑡) .

(61)

Finally, by the concavity of𝐻(𝑡, 𝛼
𝑡
, ⋅, ⋅, ⋅, ⋅, ⋅, 𝑝

𝑡
, 𝑞

𝑡
, 𝑘

𝑡
) and (49),

we obtain Γ
1
≤ 0, Γ

2
≤ 0.Thus, it follows that 𝐽(V, 𝜂)−𝐽(𝑢, 𝜉) ≤

0. We complete the proof.

5. Application in Finance

This section is devoted to studying an investment and con-
sumption model under the stochastic recursive utility arising
from financial markets, which naturally motivates the study
of the problem (7) and (8).

5.1. An Example in Finance. In a financial market, suppose
there are two kinds of securities which can be invested: a
bond, whose price 𝑆

0
(𝑡) is given by

𝑑𝑆
0
(𝑡) = 𝑟

𝑡
𝑆
0
(𝑡) 𝑑𝑡, 𝑆

0
(0) > 0, (62)

and a stock, whose price is

𝑑𝑆
1
(𝑡) = 𝑆

1
(𝑡) (𝜇

𝑡
𝑑𝑡 + 𝜎

𝑡
𝑑𝐵

𝑡
) , 𝑆

1
(0) > 0. (63)

Here, {𝐵
𝑡
} is the standard Brownian motion and 𝑟

𝑡
, 𝜇

𝑡
, and

𝜎
𝑡
are bounded deterministic functions. For the sake of

rationality, we assume 𝜇
𝑡
> 𝑟

𝑡
, 𝜎2

𝑡
≥ 𝛿 > 0. Here, 𝛿 stands for

a positive constant, which ensures that 𝜎
𝑡
is nondegenerate.

In reality, in order to get stable profit and avoid risk of
bankruptcy, many small companies and individual investors
usually make a plan at the beginning of a year or a period, in
which theweight invested in stockwas fixed. Denote by𝜋

𝑡
the

weight invested in stock which is called the portfolio strategy.
It means no matter how much the wealth 𝑥

𝑡
is, the portfolio

strategy𝜋
𝑡
is fixed, which is a bounded deterministic function

with respect to 𝑡. Then the wealth dynamics are given as

𝑑𝑥
𝑡
= [𝑟

𝑡
𝑥
𝑡
+ (𝜇

𝑡
− 𝑟

𝑡
) 𝜋

𝑡
𝑥
𝑡
− 𝑐

𝑡
] 𝑑𝑡

+ 𝜎
𝑡
𝜋
𝑡
𝑥
𝑡
𝑑𝐵

𝑡
− 𝜃𝑑𝜂

𝑡
,

𝑥
0
= 𝑥 > 0,

(64)

where 𝜃 ≥ 0, 𝑐
𝑡

≥ 0, and 𝜂
𝑡

= ∑
𝑖≥1

𝜂
𝑖
1
[𝜏𝑖 ,𝑇]

(𝑡). Here,
𝑐
𝑡
is a continuous consumption process, 𝜂

𝑡
is a piecewise

consumption process, and 𝜃 is a weight factor. Not only in the
mode of continuous consumption, but also in reality society,
one consumes piecewise. Hence our setting of consumption
process is practical.

Besides, if the macroeconomic conditions are also taken
into account in this model, above model has obvious
imperfections because it lacks the flexibility to describe
the changing stochastically of investment environment. One
can modulate the uncertainty of the economic situation by

a continuous-time finite-stateMarkov chain.Then the wealth
is formulated by a switching process as

𝑑𝑥
𝑡
= [𝑟 (𝑡, 𝛼

𝑡
) 𝑥

𝑡
+ (𝜇 (𝑡, 𝛼

𝑡
) − 𝑟 (𝑡, 𝛼

𝑡
)) 𝜋 (𝑡, 𝛼

𝑡
) 𝑥

𝑡
− 𝑐

𝑡
] 𝑑𝑡

+ 𝜎 (𝑡, 𝛼
𝑡
) 𝜋 (𝑡, 𝛼

𝑡
) 𝑥

𝑡
𝑑𝐵

𝑡
− 𝜃𝑑𝜂

𝑡
,

𝑥
0
= 𝑥, 𝛼

0
= 𝑖.

(65)

Let 𝑈 be a nonempty subset of {R
+
∪ 0} and 𝐾 a nonempty

convex subset of {R
+

∪ 0}. Suppose {F
𝑡
} is the natural

filtration generated by the Brownian motion and the Markov
chains, 𝑐

𝑡
is an F

𝑡
-progressively measurable process satisfy-

ing

𝑐
𝑡
∈ 𝑈, a.s., a.e., E∫

𝑇

0

󵄨󵄨󵄨󵄨𝑐𝑡
󵄨󵄨󵄨󵄨

3

𝑑𝑡 < +∞, (66)

{𝜏
𝑖
} is a fixed sequence of increasingF

𝑡
-stopping times, and

each 𝜂
𝑖
is anF

𝜏𝑖
-measurable random variable satisfying

𝜂
𝑖
∈ 𝐾, a.s., E(∑

𝑖≥1

󵄨󵄨󵄨󵄨𝜂𝑖
󵄨󵄨󵄨󵄨)

2

< +∞. (67)

We consider the following stochastic recursive utility, which
is described by a BSDE with the Markov chain 𝛼

𝑡
:

−𝑑𝑦
𝑡
= [𝑏 (𝑡, 𝛼

𝑡
) 𝑥

𝑡
+ 𝑓 (𝑡, 𝛼

𝑡
) 𝑦

𝑡
+ 𝑔 (𝑡, 𝛼

𝑡
) 𝑧

𝑡
− 𝑐

𝑡
] 𝑑𝑡

− 𝑧
𝑡
𝑑𝐵

𝑡
− ∑

𝑗∈𝐼

𝑊
𝑡
(𝑗) 𝑑Ṽ

𝑡
(𝑗) − 𝜁𝑑𝜂

𝑡
,

𝑦
𝑇

= 𝑥
𝑇
,

(68)

where 𝐼 = 1, 2, . . . , 𝑘, 𝜁 ≥ 0. The recursive utility is
meaningful in economics and theory. Details can be found
in Duffie and Epstein [5] and El Karoui et al. [6].

Define the associated utility functional as

𝐽 (𝑐 (⋅) , 𝜂 (⋅)) = E[∫

𝑇

0

𝐿𝑒
−𝛽𝑡

(𝑐
𝑡
)
1−𝑅

1 − 𝑅
𝑑𝑡 +

𝑆

2
∑

𝑖≥1

𝜂
2

𝑖
+ 𝐻𝑦

0
] ,

(69)

where 𝐿, 𝑆, and 𝐻 are positive constants, 𝛽 is a discount
factor, and 𝛽 ∈ (0, 1) is also called Arrow-Pratt index of
risk aversion (see, e.g., Karatzas and Shreve [28]). To get the
explicit solution, we also assume 𝑏(𝑡, 𝛼

𝑡
) ≥ 0. The first and

second terms in (69) measure the total utility from 𝑐(⋅) and
𝜂(⋅), while the third term characterizes the initial reserve
𝑦
0
. It is natural to desire to maximize the expected utility

functional representing cumulative consumption and the
recursive utility 𝑦

0
, which means to find (𝑐(⋅), 𝜂(⋅)) satisfying

(66) and (67), respectively, to maximize 𝐽(𝑐(⋅), 𝜂(⋅)) in (69).
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We solve the problem by the maximum principle derived
in Section 3.TheHamiltonian corresponding to this model is

𝐻(𝑡, 𝛼
𝑡
, 𝑥, 𝑦, 𝑧, 𝑐, 𝑝, 𝑞, 𝑘)

= −𝑝 [𝑏 (𝑡, 𝛼
𝑡
) 𝑥 + 𝑓 (𝑡, 𝛼

𝑡
) 𝑦 + 𝑔 (𝑡, 𝛼

𝑡
) 𝑧 − 𝑐]

+ 𝑞 [𝑟 (𝑡, 𝛼
𝑡
) 𝑥 + (𝜇 (𝑡, 𝛼

𝑡
) − 𝑟 (𝑡, 𝛼

𝑡
)) 𝜋 (𝑡, 𝛼

𝑡
) 𝑥 − 𝑐]

+ 𝑘𝜎 (𝑡, 𝛼
𝑡
) 𝜋 (𝑡, 𝛼

𝑡
) 𝑥 + 𝐿𝑒

−𝛽𝑡
(𝑐
𝑡
)
1−𝑅

1 − 𝑅
,

(70)

where (𝑝, 𝑞, 𝑘,𝑀) is the solution of the following adjoint
equations:

𝑑𝑝
𝑡
= 𝑓 (𝑡, 𝛼

𝑡
) 𝑝

𝑡
𝑑𝑡 + 𝑔 (𝑡, 𝛼

𝑡
) 𝑝

𝑡
𝑑𝐵

𝑡
,

𝑝
0
= −𝐻,

(71)

−𝑑𝑞
𝑡
= [(𝑟 (𝑡, 𝛼

𝑡
) + (𝜇 (𝑡, 𝛼

𝑡
) − 𝑟 (𝑡, 𝛼

𝑡
)) 𝜋 (𝑡, 𝛼

𝑡
)) 𝑞

𝑡

+ 𝜎 (𝑡, 𝛼
𝑡
) 𝜋 (𝑡, 𝛼

𝑡
) 𝑘

𝑡
− 𝑏 (𝑡, 𝛼

𝑡
) 𝑝

𝑡
] 𝑑𝑡

− 𝑘
𝑡
𝑑𝐵

𝑡
− ∑

𝑗∈𝐼

𝑀
𝑡
(𝑗) 𝑑Ṽ

𝑡
(𝑗) ,

𝑞
𝑇

= −𝑝
𝑇
.

(72)

From (71) it is easy to obtain that

𝑝
𝑡
= −𝐻 exp{∫

𝑡

0

[𝑓 (𝑠, 𝛼
𝑠
) −

1

2
𝑔
2

(𝑠, 𝛼
𝑠
)] 𝑑𝑠

+ ∫

𝑡

0

𝑔 (𝑠, 𝛼
𝑠
) 𝑑𝐵

𝑠
} < 0.

(73)

To solve (72), we introduce the dual process

𝑑Λ
𝑠
= [𝑟 (𝑠, 𝛼

𝑠
) (1 − 𝜋 (𝑠, 𝛼

𝑠
)) + 𝜇 (𝑠, 𝛼

𝑠
) 𝜋 (𝑠, 𝛼

𝑠
)] Λ

𝑠
𝑑𝑠

+ 𝜎 (𝑠, 𝛼
𝑠
) 𝜋 (𝑠, 𝛼

𝑠
) Λ

𝑠
𝑑𝐵

𝑠
,

Λ
𝑡
= 1, (𝑠 ≥ 𝑡) .

(74)

Actually, (74) is solved by

Λ
𝑠
= exp{∫

𝑠

𝑡

[𝑟 (𝜏, 𝛼
𝜏
) (1 − 𝜋 (𝜏, 𝛼

𝜏
)) + 𝜇 (𝜏, 𝛼

𝜏
) 𝜋 (𝜏, 𝛼

𝜏
)

−
1

2
𝜎
2

(𝜏, 𝛼
𝜏
) 𝜋

2

(𝜏, 𝛼
𝜏
)] 𝑑𝜏

+ ∫

𝑠

𝑡

𝜎 (𝜏, 𝛼
𝜏
) 𝜋 (𝜏, 𝛼

𝜏
) 𝑑𝐵

𝜏
} > 0.

(75)

Applying Itô’s formula toΛ
𝑠
𝑞
𝑠
and taking conditional expec-

tation with respect toF
𝑡
, we obtain

𝑞
𝑡
= E [−𝑝

𝑇
Λ
𝑇
− ∫

𝑇

𝑡

𝑏 (𝑠, 𝛼
𝑠
) 𝑝

𝑠
Λ
𝑠
𝑑𝑠 | F

𝑡
]

= 𝐻E [exp{∫

𝑇

0

[𝑓 (𝜏, 𝛼
𝜏
) + 𝑟 (𝜏, 𝛼

𝜏
) (1 − 𝜋 (𝜏, 𝛼

𝜏
))

+ 𝜇 (𝜏, 𝛼
𝜏
) 𝜋 (𝜏, 𝛼

𝜏
) −

1

2
𝑔
2

(𝜏, 𝛼
𝜏
)

−
1

2
𝜎
2

(𝜏, 𝛼
𝜏
) 𝜋

2

(𝜏, 𝛼
𝜏
)] 𝑑𝜏

− ∫

𝑡

0

[𝑟 (𝜏, 𝛼
𝜏
) (1 − 𝜋 (𝜏, 𝛼

𝜏
))

+ 𝜇 (𝜏, 𝛼
𝜏
) 𝜋 (𝜏, 𝛼

𝜏
)

−
1

2
𝜎
2

(𝜏, 𝛼
𝜏
) 𝜋

2

(𝜏, 𝛼
𝜏
)] 𝑑𝜏

+ ∫

𝑇

0

[𝑔 (𝜏, 𝛼
𝜏
) + 𝜎 (𝜏, 𝛼

𝜏
) 𝜋 (𝜏, 𝛼

𝜏
)] 𝑑𝐵

𝜏

− ∫

𝑡

0

𝜎 (𝜏, 𝛼
𝜏
) 𝜋 (𝜏, 𝛼

𝜏
) 𝑑𝐵

𝜏
} + ∫

𝑇

𝑡

𝑏 (𝑠, 𝛼
𝑠
)

× exp{∫

𝑠

0

[𝑓 (𝜏, 𝛼
𝜏
) + 𝑟 (𝜏, 𝛼

𝜏
) (1 − 𝜋 (𝜏, 𝛼

𝜏
))

+ 𝜇 (𝜏, 𝛼
𝜏
) 𝜋 (𝜏, 𝛼

𝜏
) −

1

2
𝑔
2

(𝜏, 𝛼
𝜏
)

−
1

2
𝜎
2

(𝜏, 𝛼
𝜏
) 𝜋

2

(𝜏, 𝛼
𝜏
)] 𝑑𝜏

− ∫

𝑡

0

[𝑟 (𝜏, 𝛼
𝜏
) (1 − 𝜋 (𝜏, 𝛼

𝜏
))

+ 𝜇 (𝜏, 𝛼
𝜏
) 𝜋 (𝜏, 𝛼

𝜏
)

−
1

2
𝜎
2

(𝜏, 𝛼
𝜏
) 𝜋

2

(𝜏, 𝛼
𝜏
)] 𝑑𝜏

+ ∫

𝑠

0

[𝑔 (𝜏, 𝛼
𝜏
) + 𝜎 (𝜏, 𝛼

𝜏
) 𝜋 (𝜏, 𝛼

𝜏
)] 𝑑𝐵

𝜏

− ∫

𝑡

0

𝜎 (𝜏, 𝛼
𝜏
) 𝜋 (𝜏, 𝛼

𝜏
) 𝑑𝐵

𝜏
}𝑑𝑠 | F

𝑡
] .

(76)

Note that 𝑏(𝑡, 𝛼
𝑡
) ≥ 0; then we have 𝑞

𝑡
> 0. Thus,

by Theorem 6 we get the optimal consumption processes
(𝑐
∗

(⋅), 𝜂
∗

(⋅)) for the regime-switching investment-consump-
tion problem (65)–(69) as follows:

𝑐
∗

𝑡
= (

𝐿

𝑞
𝑡
− 𝑝

𝑡

)

1/𝑅

𝑒
−𝛽𝑡/𝑅

, a.e., a.s.,

𝜂
∗

𝑖
=

𝜃𝑞
𝜏𝑖

− 𝜁𝑝
𝜏𝑖

𝑆
, ∀𝑖 ≥ 1, a.s,

(77)

where (𝑝
𝑡
, 𝑞

𝑡
) is given by (73) and (76), respectively.
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5.2. Numerical Simulation. In this part, we calculate the
optimal consumption functions explicitly according to (71)–
(77) in the case that all coefficients are constants and discuss
the relationship between consumption and some financial
parameters, which can further illustrate our results obtained
in this paper.We only consider the optimal regular consump-
tion process 𝑐

∗

(⋅) and in this case the Markov chain 𝛼
𝑡
≡ 𝛼

has two states {1, −1}. Here 𝛼
𝑡
will not change from 0 to 𝑇.

Further we fix [𝐻, 𝛽, 𝐿, 𝑅] = [0.1, 0.5, 2, 0.2] and 𝑇 = 1 year
throughout this part.

5.2.1. The Relationship between 𝑐
∗

(𝑡) and 𝑟. As 𝛼 = 1, we set

[𝑟1, 𝑟2, 𝑟3, 𝑓 (𝛼) , 𝑔 (𝛼) , 𝜋 (𝛼) , 𝜎 (𝛼) , 𝑏 (𝛼) , 𝜇]

= [0.02, 0.03, 0.04, 0.1, 0.1, 0.5, 0.2, 0.2, 0.05] .

(78)

From Figure 1, we find that the higher the risk-free
interest rate is, the lower the optimal consumption is. It coin-
cides with the financial behaviors in reality. As the risk-free
interest rate 𝑟 grows higher, the investors can gain more
profits via deposit. Consequently, the desire of consumption
is declined.

As 𝛼 = −1, we set

[𝑟1, 𝑟2, 𝑟3, 𝑓 (𝛼) , 𝑔 (𝛼) , 𝜋 (𝛼) , 𝜎 (𝛼) , 𝑏 (𝛼) , 𝜇]

= [0.02, 0.03, 0.04, 0.05, 0.05, 0.4, 0.3, 0.15, 0.05] .

(79)

Figure 2 shows the influence of risk-free interest rate
on the optimal consumption function as 𝛼 = −1. Same
as Figure 1, when the risk-free interest rate gets higher, the
optimal consumption becomes smaller. From Figures 1 and
2, we also find that under different strategies of government’s
macrocontrol (different 𝛼), the optimal consumption has
different values and changes trends with respect to 𝑡, even for
the same risk-free interest rate 𝑟. It is natural because 𝛼 affects
some parameters in this model such as 𝑓, 𝑔, 𝜋, 𝜎, and 𝑏.

5.2.2. The Relationship between 𝑐
∗

(𝑡) and 𝜇. The following
two figures show the relationships between the optimal con-
sumption function and appreciation rate of stock. First, for
𝛼 = 1, we fix

[𝜇1, 𝜇2, 𝜇3, 𝑓 (𝛼) , 𝑔 (𝛼) , 𝜋 (𝛼) , 𝜎 (𝛼) , 𝑏 (𝛼) , 𝑟]

= [0.05, 0.06, 0.07, 0.1, 0.1, 0.5, 0.2, 0.2, 0.02] .

(80)

FromFigure 3, we can see that the higher the appreciation
rate of stock is, the lower the optimal consumption is. It is also
reasonable since a higher appreciation rate of stock 𝜇 inspires
investors to put more money into stock market and thereby
reduce the consumption. For 𝛼 = −1, we fix

[𝜇1, 𝜇2, 𝜇3, 𝑓 (𝛼) , 𝑔 (𝛼) , 𝜋 (𝛼) , 𝜎 (𝛼) , 𝑏 (𝛼) , 𝑟]

= [0.05, 0.06, 0.07, 0.05, 0.05, 0.4, 0.3, 0.15, 0.02] .

(81)

Figure 4 also presents the same influence of appreciation
rate on the optimal consumption function as 𝛼 = −1. In
addition, Figures 3 and 4 enhance us to understand that the
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optimal consumption has different values and changes trends
with respect to 𝑡 for the same appreciation rate 𝜇 by consid-
ering different strategies of government’s macrocontrol.

Based on Figures 1–4, we analyze the relationships be-
tween the optimal consumption function and the risk-free
interest rate, the appreciation rate of stock, and the gov-
ernment’s macrocontrol, which are quite important and ap-
plicable in financial problems.

6. Conclusion

In this paper, we consider the optimal control problem
of forward-backward Markovian regime-switching systems
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involving impulse controls. The control system is described
by FBSDEs involving impulse controls and modulated by
continuous-time, finite-state Markov chains. Based on both
spike and convex variation techniques, we establish the
maximum principle and sufficient optimality conditions for
optimal controls. Here, the regular control does not enter
in the diffusion term of the forward system. In the future,
we may focus on the cases that the diffusion coefficient
contains controls, fully coupled forward-backward Marko-
vian regime-switching system involving impulse controls,
and game problems in this framework. It is worth pointing
out that if the domain of regular control is not convex and
the control enters in the forward diffusion coefficient, it will

be more complicated and bring some difficulties immediately
by applying spike variation. Based on themethods and results
of [13], we hope to further research for such kind of control
problems and investigate more applications in reality.
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Different sensors or estimators may have different capability to provide data. Some sensors can provide a relatively higher
dimensional data, while other sensors can only provide part of them. Some estimators can estimate full dimensional quantity of
interest, while othersmay only estimate part of it due to some constraints. How is such kind of data with different dimensions fused?
How do the common part and the uncommon part affect each other during fusion? To answer these questions, a fusion algorithm
based on linear minimum mean-square error (LMMSE) estimation is provided in this paper. Then the fusion performance is
analyzed, which is themain contribution of this work.The conclusions are as follows. First, the fused common part is not affected by
the uncommon part. Second, the fused uncommon part will benefit from the common part through the cross-correlation. Finally,
under certain conditions, both the more accurate common part and the stronger correlation can result in more accurate fused
uncommon part. The conclusions are all supported by some tracking application examples.

1. Introduction

Estimation of the stochastic system state or parameters has
wide applications. For example, in target tracking applica-
tions, the evolution of the target state can often be represented
by a stochastic dynamic system, where the state transition
model is driven by some process noise. The observations
of the measurement model are also corrupted by some
measurement noise in general. Since the state model and
measurement model are both stochastic, the output of the
estimators, for example, a Kalman filter, is also stochastic.
When there aremultiple sensors or estimators, the data fusion
techniques are usually used for potential better estimation
purpose.

Data fusion is the problem of how to utilize useful
information contained inmultiple sets of data for the purpose
of estimation of an unknown quantity—a parameter or a
process [1]. The most common situation is that the data to be
fused are of the same dimensions. But, in some cases, the data
of different dimensions may need to be fused. The following

are some examples to show the different dimensional data
fusion in target tracking applications.

Measurement-to-Measurement Fusion. Suppose that we have
two radars, A and B. Radar A can sense target 1 and target 2
simultaneously, while radar B can only sense target 1. Then
the measurement-to-measurement fusion for such a scenario
is a fusion problem with different dimensionalities.

Track-to-Track Fusion. Constant velocity (CV) model based
estimator can only provide estimation of position and veloc-
ity, while constant acceleration (CA) model based estimator
can provide estimation of position, velocity, and acceleration.
The fusion of such two estimators is also a fusion problem
with different dimensionalities. This is very common in
maneuvering target tracking using the interacting multiple
model (IMM) algorithm.

Measurement-to-Track Fusion. A CV model based estimator
provides the target’s state estimation of position and velocity,
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while a sensor (a radar or GPS) provides the target’s position
measurement. This is a measurement-to-track fusion prob-
lem with different dimensional data.

The reason for such phenomenons is that some sensors
or estimators may be subject to some constraints compared
to the full dimensional data provider. In the above examples,
radar B may have narrower coverage than radar A; the CV
model based estimator cannot provide acceleration estima-
tion due to the model itself; the sensor cannot provide target
velocity measurement because of its sensing capability.

For such kind of fusion with different dimensional data,
how to deal with the uncommon part is a problem which
needed to be considered. A simple way is to abandon the
uncommon part when fusing. This is quite natural but some
useful information will be lost. To fully use all available
information, an LMMSE estimator is provided in this work.
In fact, if the uncommon part and the common part have
some kind of cross-correlation, the correlation will help in
fusion.

The relationship between the correlation and the estima-
tor’s performance has been discussed in some literatures. For
example, Doppler radar’s range and range rate measurement
errors are often correlated. Reference [2] concluded that
negative correlation has the best tracking performance. With
more detailed simulation and analysis, [3] concluded that,
for steady state estimation, negative correlation has the
best tracking performance, positive correlation is not always
worse than without correlation. Reference [3] also discussed
the coefficient selection strategy for one step state estima-
tion. Reference [4] proposed a fusion algorithm in which
local estimates have correlations. Reference [5] analyzed
the fusion performance with the correlation for the scalar
case. Reference [6–9] also disscussed the fusion algorithm
in the existence of correlation. Although these literatures
discussed the relationship between correlation and the fusion
performance, the fusion performance analysis of the different
dimensional data fusion is very rare. To reveal the factors
which affect the fusion performance, the performance is
analyzed in this paper.

The rest of the paper is organized as follows. Section 2 is
the problem formulation part. Fusion algorithm is proposed
in Section 3. Performance analysis is given in Section 4, which
is the main contribution of this work. Some examples are
given in Section 5 and Section 6 is the conclusion.

2. Problem Formulation

In general, filter ormodel’s output can be seen as an estimator.
In this work, for the unification of the problem formulation,
sensor’s measurement is also treated as an “estimator” in
which the filter’s output is the same as the input, the original
measurement.

The following problem is considered. There are two
estimators. One can provide the full dimensional estimate of
an estimand (the quantity to be estimated), and the other
can only provide partial estimate of the estimand. In this
paper, the estimators are stochastic, which means estimators
are affected by some noises.

Assume 𝑋 is the estimand, which can be written as 𝑋 =

[𝑥
𝑇

𝑦
𝑇

]
𝑇.

Estimator 1 is as follows:

𝑋
1
= [
𝑥
1

𝑦
1

] = [
𝑥

𝑦
] + [

V𝑥
1

V𝑦
1

] . (1)

Estimator 2 is as follows:

𝑋
2
= 𝑥
2
= 𝑥 + V𝑥

2
. (2)

It can be seen that 𝑥 is the common part and 𝑦 is the
uncommon part. The dimensions of those vectors are

𝑥
1
, 𝑥
2
, 𝑥, V𝑥
1
, V𝑥
2
, 𝑋
2
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,
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1
, 𝑦, V𝑦
1
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,

𝑋,𝑋
1
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(𝑛+𝑚)×1

.

(3)

The mean, covariance, and cross covariance of the noises are
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cov (V𝑥
2
) = 𝑃
2
= 𝑃
𝑥𝑥

22
> 0,

cov([
V𝑥
1

V𝑦
1

] , V𝑥
2
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= [
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(4)

where 𝑃
1
, 𝑃
2
> 0means 𝑃

1
, 𝑃
2
are positive definite matrices.

3. Fusion Algorithm with Different
Dimensional Data

3.1. Introduction to the LMMSE Estimator. The minimum
mean-square error (MMSE) estimation is Bayesian estima-
tion where the expected value of a positive definite cost
function is to be minimized. It is a tool which estimates a
random variable 𝑋 in terms of another random variable 𝑍.
The solution is the conditional mean 𝐸[𝑋 | 𝑍].

Since the distributional information needed for the eval-
uation of the conditional mean is not always available, the
linear minimum mean-square error (LMMSE) estimator is
often used in practice. LMMSE estimator yields the estimate
as a linear function of the observation and requires only the
first two moments. It is a widely used estimation method.

Consider the vector-valued random variables 𝑋 and 𝑍,
where 𝑍 is a measurement of 𝑋. The best estimate of 𝑋 in
terms of 𝑍 in LMMSE sense [10] is

𝑋 = 𝑋 + 𝑃
𝑋𝑍
𝑃
−1

𝑍𝑍
(𝑍 − 𝑍) ,

𝑃
𝑋𝑋|𝑍

= MSE (𝑋) = 𝑃
𝑋𝑋
− 𝑃
𝑋𝑍
𝑃
−1

𝑍𝑍
𝑃
𝑍𝑋
,

(5)

where 𝑋 is the prior mean of 𝑋, 𝑃
𝑋𝑋

is the prior covariance
matrix of 𝑋, 𝑍 is the prior mean of 𝑍, and 𝑃

𝑍𝑍
is the prior



Mathematical Problems in Engineering 3

covariance matrix of 𝑍. 𝑃
𝑋𝑍

is the cross covariance matrix
between𝑋 and 𝑍.

The LMMSE estimator of one random vector in terms of
another random vector (the measurement) is such that the
estimation error is

(1) zero-mean,
(2) uncorrelated from the measurements.

LMMSE estimator has the following properties.

(1) It is the best estimator (in the MMSE sense) for
Gaussian random variables.

(2) It is the best estimator within the class of linear
estimators.

LMMSE estimation is essentially known as best linear unbi-
ased estimation (BLUE) [1], which is proved to be identical to
the linear weighted least squares (WLS) estimation [11].

3.2. FusionAlgorithmUsing the LMMSEEstimation. Since𝑋
1

can provide the full estimate of 𝑋, 𝑋
1
can be regarded as the

prior information.
The prior information is as follows:
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The cross covariance between the prior information and the
measurement is then
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Here it is assumed that 𝑃
𝑍𝑍

> 0, which means 𝑍 or 𝑥
2
can

also provide some new information.
The LMMSE fuser for this problem is the following:

𝑋 = 𝑋 + 𝑃
𝑋𝑍
𝑃
−1

𝑍𝑍
(𝑍 − 𝑍)

= 𝑋
1
+ 𝑃
𝑋𝑍
𝑃
−1

𝑍𝑍
(𝑥
2
− 𝑥
1
)

= [
𝑥
1

𝑦
1

] + [

𝑃
𝑥𝑥

11
− 𝑃
𝑥𝑥

12

𝑃
𝑦𝑥

11
− 𝑃
𝑦𝑥

12

] (𝑃
𝑥𝑥

11
+ 𝑃
𝑥𝑥

22
− 𝑃
𝑥𝑥

12
− (𝑃
𝑥𝑥

12
)
𝑇

)
−1

× (𝑥
2
− 𝑥
1
) ,

(9)

𝑃
𝑋𝑋|𝑍

= 𝑃
𝑋𝑋
− 𝑃
𝑋𝑍
𝑃
−1

𝑍𝑍
𝑃
𝑍𝑋

= [

[

𝑃
𝑥𝑥

11
𝑃
𝑥𝑦

11

𝑃
𝑦𝑥

11
𝑃
𝑦𝑦

11

]

]

− [

𝑃
𝑥𝑥

11
− 𝑃
𝑥𝑥

12

𝑃
𝑦𝑥

11
− 𝑃
𝑦𝑥

12

]

× (𝑃
𝑥𝑥

11
+ 𝑃
𝑥𝑥

22
− 𝑃
𝑥𝑥

12
− (𝑃
𝑥𝑥

12
)
𝑇

)
−1

× [

𝑃
𝑥𝑥

11
− 𝑃
𝑥𝑥

12

𝑃
𝑦𝑥

11
− 𝑃
𝑦𝑥

12

]

𝑇

.

(10)

It is the updated covariance 𝑃
𝑋𝑋|𝑍

which is used for perfor-
mance analysis. 𝑃

𝑋𝑋|𝑍
can be rearranged as
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where 𝑃𝑥𝑥 stands for the updated 𝑥 part’s (common data)
covariance matrix:
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It is the same as the fusion algorithm in [4].
𝑃
𝑦𝑦 stands for the updated 𝑦 part’s (uncommon data)

covariance matrix:
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It is affected by the𝑥 part.The following performance analysis
is on the updated uncommon part (𝑦 part).

4. Performance Analysis of
the Uncommon Part

4.1. The Uncommon Part’s Impact on the Fused Common Part.
From (12), it is very clear that the fused common part will not
be affected by the uncommon part.
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4.2. The Cross-Correlation’s Impact on the Fused Uncommon
Part. From (13), it can be easily seen that the fused uncom-
mon part is affected by the common part.

First, some properties of the positive matrix are intro-
duced. If 𝐴, 𝐵 ∈ 𝑅𝑛×𝑛 are positive definite matrices, then they
have the following properties [12].

(I) For 𝑇 ∈ 𝑅
𝑚×𝑛, if rank(𝑇) = 𝑚, then 𝑇𝐴𝑇𝑇 > 0;

otherwise 𝑇𝐴𝑇𝑇 ≥ 0.
(II) 𝐴 > 0 ⇔ 𝐴

−1

> 0.
(III) 𝐴 − 𝐵 > 0 ⇔ 𝐵

−1

− 𝐴
−1

> 0.

Before fusion, the covariance matrix of 𝑦 part is 𝑃𝑦𝑦
11
. After

fusion, it becomes 𝑃𝑦𝑦. From (13), it can be seen that

𝑃
𝑦𝑦

11
− 𝑃
𝑦𝑦

= (𝑃
𝑦𝑥

11
− 𝑃
𝑦𝑥

12
) (𝑃
𝑥𝑥

11
+ 𝑃
𝑥𝑥

22
− 𝑃
𝑥𝑥

12
− (𝑃
𝑥𝑥

12
)
𝑇

)
−1

× (𝑃
𝑦𝑥

11
− 𝑃
𝑦𝑥

12
)
𝑇

= 𝑃
𝑦𝑥

𝑃
−1

𝑍𝑍
(𝑃
𝑦𝑥

)
𝑇

,

(14)

where 𝑃𝑦𝑥 = 𝑃𝑦𝑥
11
−𝑃
𝑦𝑥

12
and 𝑃𝑦𝑥 can be regarded as the cross-

correlation matrix.

Theorem 1. If rank(𝑃𝑦𝑥) = 𝑚, then 𝑃𝑦𝑦
11
− 𝑃
𝑦𝑦

> 0; otherwise
𝑃
𝑦𝑦

11
− 𝑃
𝑦𝑦

≥ 0.

Proof. Because 𝑃
𝑍𝑍

> 0, from Property (II), it follows that
𝑃
−1

𝑍𝑍
> 0.
The conclusion can then be directly obtained from (14)

and Property (I).

It can be seen from (14) that if 𝑃𝑦𝑥 = 0, 𝑃𝑦𝑦
11
− 𝑃
𝑦𝑦

= 0
The following are the conclusions from the above.

(1) If 𝑃𝑦𝑥 = 0, which means there is no cross-correlation
between 𝑥 and 𝑦, the fused uncommon part will be
the same as the unfused one.

(2) If rank(𝑃𝑦𝑥) = 𝑚, which means the cross-correlation
is full row rank, the fused uncommonpart is definitely
better than the unfused one.

If 𝑃𝑦𝑥 ̸= 0 and rank(𝑃𝑦𝑥) < 𝑚, the following shows which
component of 𝑦 will benefit from the fusion. Assume that

𝑃
𝑦𝑥

= [(𝑝
𝑦𝑥

1
)
𝑇

(𝑝
𝑦𝑥

2
)
𝑇

⋅ ⋅ ⋅ (𝑝
𝑦𝑥

𝑚
)
𝑇

]
𝑇

, (15)

where 𝑝𝑦𝑥
𝑖
, 𝑖 = 1, . . . , 𝑚, are row vectors. If only the 𝑖th

component of 𝑦 is considered, the following corollaries can
be obtained.

Corollary 2. If 𝑝𝑦𝑥
𝑖

̸= 0, then 𝑃𝑦𝑦
11
(𝑖, 𝑖) − 𝑃

𝑦𝑦

(𝑖, 𝑖) > 0.

Proof. It can be seen from (14) that 𝑃𝑦𝑦
11
(𝑖, 𝑖) − 𝑃

𝑦𝑦

(𝑖, 𝑖) =

𝑝
𝑦𝑥

𝑖
𝑃
−1

𝑍𝑍
(𝑝
𝑦𝑥

𝑖
)
𝑇.

Thus if 𝑝𝑦𝑥
𝑖

̸= 0, then rank(𝑝𝑦𝑥
𝑖
) = 1.

Furthermore, since 𝑃−1
𝑍𝑍
> 0, from Property (I), it can be

seen that 𝑃𝑦𝑦
11
(𝑖, 𝑖) − 𝑃

𝑦𝑦

(𝑖, 𝑖) > 0.

It can be seen from Corollary 2 that if one certain com-
ponent of the uncommon part 𝑦 is cross-correlated with
the common part 𝑥, then its fused result is better than the
unfused one.

Corollary 3. If𝑚 = 1 and 𝑃𝑦𝑥 ̸= 0, 𝑃𝑦𝑦
11
− 𝑃
𝑦𝑦

> 0.

Proof. If𝑚 = 1, then 𝑃𝑦𝑥 is a row vector.
If 𝑃𝑦𝑥 ̸= 0, then rank(𝑃𝑦𝑥) = 𝑚 = 1.
From Corollary 2, Corollary 3 can be directly achieved.

It can be seen fromCorollary 3 that if the uncommon part
𝑦 is a scalar and the cross-correlation exists, the fused result
is better than the unfused one.

4.3. The Accuracy of the Independent Common Part’s Impact
on the Fused Uncommon Part. Assume that estimator𝑋

2
can

be obtainedwith different precision.The covariancematrix of
higher precision is 𝑃𝑥𝑥

22,𝐻
and the covariance matrix of lower

precision is 𝑃𝑥𝑥
22,𝐿

.The corresponding fused covariance matrix
of 𝑦 is 𝑃𝑦𝑦

𝐻
and 𝑃𝑦𝑦

𝐿
. Assume that 𝑃𝑥𝑥

22,𝐿
− 𝑃
𝑥𝑥

22,𝐻
> 0. If the two

estimators𝑋
1
and𝑋

2
are independent, whichmeans 𝑃𝑦𝑥

12
= 0

and 𝑃𝑥𝑥
12
= 0, the following theorem can be obtained.

Theorem 4. Under the condition that 𝑋
1
and 𝑋

2
are inde-

pendent, if rank(𝑃𝑦𝑥
11
) = 𝑚, then 𝑃𝑦𝑦

𝐿
− 𝑃
𝑦𝑦

𝐻
> 0; otherwise

𝑃
𝑦𝑦

𝐿
− 𝑃
𝑦𝑦

𝐻
≥ 0.

Proof. When 𝑋
1
and 𝑋

2
are independent, 𝑃𝑦𝑥 = 𝑃𝑦𝑥

11
. From

(14), the fusion covariance for 𝑦 is the following:

𝑃
𝑦𝑦

𝐻
= 𝑃
𝑦𝑦

11
− 𝑃
𝑦𝑥

11
(𝑃
𝑥𝑥

11
+ 𝑃
𝑥𝑥

22,𝐻
)
−1

(𝑃
𝑦𝑥

11
)
𝑇

,

𝑃
𝑦𝑦

𝐿
= 𝑃
𝑦𝑦

11
− 𝑃
𝑦𝑥

11
(𝑃
𝑥𝑥

11
+ 𝑃
𝑥𝑥

22,𝐿
)
−1

(𝑃
𝑦𝑥

11
)
𝑇

.

(16)

The difference between the two covariance matrices is

𝑃
𝑦𝑦

𝐿
−𝑃
𝑦𝑦

𝐻
=𝑃
𝑦𝑥

11
((𝑃
𝑥𝑥

11
+ 𝑃
𝑥𝑥

22,𝐻
)
−1

− (𝑃
𝑥𝑥

11
+ 𝑃
𝑥𝑥

22,𝐿
)
−1

) (𝑃
𝑦𝑥

11
)
𝑇

.

(17)

Since 𝑃𝑥𝑥
22,𝐿

−𝑃
𝑥𝑥

22,𝐻
> 0, it thus follows that 𝑃𝑥𝑥

11
+𝑃
𝑥𝑥

22,𝐿
− (𝑃
𝑥𝑥

11
+

𝑃
𝑥𝑥

22,𝐻
) > 0.

From Property (III),

(𝑃
𝑥𝑥

11
+ 𝑃
𝑥𝑥

22,𝐻
)
−1

− (𝑃
𝑥𝑥

11
+ 𝑃
𝑥𝑥

22,𝐿
)
−1

> 0. (18)

According to (17) and Property (I), if rank(𝑃𝑦𝑥
11
) = 𝑚, then

𝑃
𝑦𝑦

𝐿
− 𝑃
𝑦𝑦

𝐻
> 0; otherwise 𝑃𝑦𝑦

𝐿
− 𝑃
𝑦𝑦

𝐻
≥ 0.

It can be seen from Theorem 4 that increasing the
independent common part’s accuracy can improve the fused
performance of uncommon part.

The following two corollaries can be easily obtained.

Corollary 5. Under the condition that 𝑋
1
and 𝑋

2
are inde-

pendent, if 𝑝𝑦𝑥
𝑖

̸= 0, then 𝑃𝑦𝑦
𝐿
(𝑖, 𝑖) − 𝑃

𝑦𝑦

𝐻
(𝑖, 𝑖) > 0.
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Corollary 6. Under the condition that 𝑋
1
and 𝑋

2
are inde-

pendent, if 𝑃𝑦𝑥
11

̸= 0 and𝑚 = 1, then 𝑃𝑦𝑦
𝐿
− 𝑃
𝑦𝑦

𝐻
> 0.

The proof is similar to that of Corollaries 2 and 3 and will
be omitted here.

Corollaries 5 and 6 are the supplement of Theorem 4 for
the single component case and scalar case, which also mean
that increasing the independent common part accuracy can
improve the fused result of the uncommon part.

4.4. The Level of Correlation’s Impact on the Fused Uncommon
Part. Assume that 𝑝𝑦𝑥

𝑖
(𝑗) is the 𝑗th component of vector 𝑝𝑦𝑥

𝑖

and it is the only nonzero component of 𝑝𝑦𝑥
𝑖
:

𝑝
𝑦𝑥

𝑖
= [0 ⋅ ⋅ ⋅ 𝜌

𝑖,𝑗
𝜎
𝑥,𝑗
𝜎
𝑦,𝑖

⋅ ⋅ ⋅ 0]
𝑇

,

𝑝
𝑦𝑥

𝑖
(𝑗) = 𝜌

𝑖,𝑗
𝜎
𝑥,𝑗
𝜎
𝑦,𝑖
,

(19)

where 𝜌
𝑖,𝑗
is the correlation coefficient.

Theorem7. Under the condition that there is only one nonzero
component in 𝑝𝑦𝑥

𝑖
, if the absolute value of the correlation

coefficient |𝜌
𝑖,𝑗
| increases, the fused covariance 𝑃𝑦𝑦(𝑖, 𝑖) will

decrease.

Proof. If there is only one nonzero component in 𝑝𝑦𝑥
𝑖
,

𝑃
𝑦𝑦

(𝑖, 𝑖) = 𝑃
𝑦𝑦

11
(𝑖, 𝑖) − 𝑃

−1

𝑍𝑍
(𝑗, 𝑗) (𝑝

𝑦𝑥

𝑖
(𝑗))
2

= 𝑃
𝑦𝑦

11
(𝑖, 𝑖) − 𝜌

2

𝑖,𝑗
𝑃
−1

𝑍𝑍
(𝑗, 𝑗) 𝜎

2

𝑥,𝑗
𝜎
2

𝑦,𝑖
.

(20)

Thus when |𝜌
𝑖,𝑗
| increases, 𝑃𝑦𝑦(𝑖, 𝑖) will decrease.

It can be seen fromTheorem 7 that under some condition,
stronger cross-correlation can result in better fused result.

When 𝑛 = 1, 𝑝𝑦𝑥
𝑖

is a scalar, and the corresponding
correlation coefficient is 𝜌

𝑖
. The following corollary can be

obtained.

Corollary 8. If 𝑛 = 1, when |𝜌
𝑖
| increases, the fused results

𝑃
𝑦𝑦

(𝑖, 𝑖) will decrease.

The proof is the same as that of Theorem 7.
It can be seen from Corollary 8 that if the common part

is a scalar, stronger cross-correlation can lead to better fused
result.

5. Illustrative Examples

5.1. The Example for Improving the Fusion Result by
the Existence of Cross-Correlation

Example 1. In target tracking applications, constant accel-
eration (CA) model based estimator can provide position,
velocity, and acceleration estimation while constant velocity
(CV) model based estimator can only provide position and
velocity. The state vector of CA is [𝑥 ̇𝑥 ̈𝑥]

󸀠 and the state
vector of CV is [𝑥 ̇𝑥]

󸀠. When fusing the estimates from
two models, position and velocity estimates are considered

2 4 6 8 10

0

50

100

t

P
(3
,
3

)

Acceleration variance without fusion
Acceleration variance with fusion

Figure 1: Acceleration fusion performance enhancement.

to be the common part and acceleration is considered to
be the uncommon part. Assume the two estimators are
independent.

Assume there is a target moving with constant velocity
motion. Two estimators are used to estimate the target’s state.
One estimator uses the CA model and the other one uses the
CVmodel.The two estimators’ initial covariancematrices are

𝑃CA =
[

[

100 0 0

0 100 0

0 0 100

]

]

, 𝑃CV = [
100 0

0 100
] . (21)

Assume only the position can be observed by the sensors
and the measurement noise variances are both 𝑅 = 100.
The sampling interval is 𝑇 = 1. Both estimators’ updated
state covariance matrices are achieved by the Kalman fil-
ter. Because the CV model cannot provide estimation of
the acceleration part, there are two ways to achieve the
acceleration’s estimation. One way is to use the CA model’s
acceleration estimation directly and the otherway is to use the
fusion result. Figure 1 shows the acceleration variance of the
two ways. Acceleration estimate from the CAmodel is always
correlated with the velocity and position estimates because of
the state equation. The fusion results should benefit from the
correlation and Figure 1 supports this analysis.

The following are some analyses for one step fusion.
Assume the covariance matrices of the two models are

𝑃CA =
[

[

10 4 6

4 10 8

6 8 10

]

]

, 𝑃CV = [
10 4

4 10
] . (22)

The cross covariance vector between the common part and
uncommon part is 𝑃𝑦𝑥 = [6 8].

Using (10), the fusion result is

𝑃 = [

[

5 2 3

2 5 4

3 4 6.33

]

]

. (23)



6 Mathematical Problems in Engineering

2 4 6 8 10
0

20

40

60

80

t

P
(3
,
3

)

Acceleration variance fusion with R = 100

Acceleration variance fusion with R = 1

Figure 2: Acceleration fusion performance enhancementwithmore
accurate estimator.

If there is no cross-correlation between acceleration and
the other part,

𝑃CA =
[

[

10 4 0

4 10 0

0 0 10

]

]

, 𝑃CV = [
10 4

4 10
] , (24)

the fusion result

𝑃 = [

[

5 2 0

2 5 0

0 0 10

]

]

. (25)

It can be seen that without cross-correlation, the perfor-
mance of the uncommon part cannot be improved.

However, with correlation, we have 6.33 < 10, which
means that the existence of cross-correlation can help
improve the fusion result.

5.2. The Examples for Increasing the Accuracy of the Indepen-
dent Common Part to Improve the Fusion Result

Example 2. The simulation setting is the same as in Exam-
ple 1, which is a CA-CV fusion problem. In Example 2, CA
model is the same as in Example 1, CV model’s measurement
is more accurate than in Example 1, and the measurement
noise variance is 𝑅 = 1.

Figure 2 shows the fusion results using two different
CV estimators. It is known that more accurate measurement
can lead to more accurate estimation. So the CV estimator
in Example 2 is more accurate than the CV estimator in
Example 1. Figure 2 supports the conclusion that more
accurate independent common part estimator can lead to
more accurate uncommon part’s fusion result.

The following are some more analyses compared with
Example 1. Here the covariance matrices of the two models
are assumed to be

𝑃CA =
[

[

10 4 6

4 10 8

6 8 10

]

]

, 𝑃CV = [
1 0.4

0.4 1
] , (26)

and the fusion result is

𝑃 = [

[

0.91 0.36 0.55

0.36 0.91 0.73

0.55 0.73 3.33

]

]

. (27)

In Example 1, 𝑃(3, 3) = 6.33. Here 𝑃(3, 3) = 3.33.
Since 3.33 < 6.33, it can be easily seen that more accurate

common part estimation can lead to better fusion result.

Example 3. There are two radars which observe the same
target. One is a Doppler radar, which can provide range and
range rate measurements. The other is a regular radar, which
can only provide range measurement. Doppler radar’s range
and range rate measurement errors are sometimes correlated.
The two radars’ measurement errors are independent of each
other. The state vectors are [𝑟 ̇𝑟]

󸀠 and 𝑟, respectively. The
corresponding covariance matrices are

𝑃
1
= [

𝜎
2

𝑟1
𝜌𝜎
𝑟1
𝜎
̇𝑟

𝜌𝜎
𝑟1
𝜎
̇𝑟

𝜎
2

̇𝑟

] , 𝑃
2
= 𝜎
2

𝑟2
. (28)

After fusion,

𝑃
̇𝑟
= 𝜎
2

̇𝑟
(1 −

𝜌
2

𝜎
2

𝑟1

𝜎
2

𝑟1
+ 𝜎
2

𝑟2

) . (29)

When 𝜎2
𝑟2
decreases, 𝑃

̇𝑟
will also decrease.

When 𝜎2
𝑟2
→ 0, 𝑃

̇𝑟
→ 𝜎
2

̇𝑟
(1 − 𝜌

2

).
Let

𝑃
1
= [
10 5

5 10
] . (30)

When 𝑃
2
= 10, the covariance after fusion is

𝑃 = [
5 2.5

2.5 8.75
] . (31)

When 𝑃
2
= 1, the covariance after fusion is

𝑃 = [
0.91 0.45

0.45 7.73
] . (32)

Since 7.73 < 8.75, it can be easily seen that more accurate
common part estimation can lead to more accurate fusion
result.

Figure 3 shows 𝑃
̇𝑟
as a function of 𝜎2

𝑟2
, which changes

from 0 to 10. From the figure, it can be clearly seen that when
improving the regular radar’s range accuracy, the range rate
accuracy will be improved.

5.3. The Example for the Stronger Correlation to Improve
the Fusion Result

Example 4. The simulation setting is the same as in Exam-
ple 3. The correlation coefficient is a variable. From (29), it
can be seen that the bigger the |𝜌|, the smaller the 𝑃

̇𝑟
, which

means stronger correlation can lead to better fusion result.
When |𝜌| → 1, 𝑃

̇𝑟
→ 𝜎
2

̇𝑟
𝜎
2

𝑟1
/(𝜎
2

𝑟1
+ 𝜎
2

𝑟2
).
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Figure 3: The relationship between regular radar’s range accuracy
and fused range rate accuracy.
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Figure 4: 𝑃
̇𝑟
as a function of |𝜌|.

Let

𝑃
1
= [
10 5

5 10
] , 𝑃

2
= 10; (33)

then

𝑃 = [
5 2.5

2.5 8.75
] . (34)

Let

𝑃
1
= [
10 9

9 10
] , 𝑃

2
= 10; (35)

then

𝑃 = [
5 4.5

4.5 5.95
] . (36)

Since 5.95 < 8.75, it can be easily seen that stronger
correlation can lead to better fusion result.

Figure 4 shows𝑃
̇𝑟
as a function of |𝜌|, which changes from

0 to 1.
It can be seen that the stronger the correlation, the better

the fused result.

𝜎
2
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P
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Figure 5: 𝑃
̇𝑟
as a function of 𝜎2

𝑟2
and |𝜌|.

Example 5. Examples 3 and 4 are combined together. The
range accuracy and correlation coefficient are changing
simultaneously. From (29), when |𝜌| increases and 𝜎

2

𝑟2

decreases, 𝑃
̇𝑟
will decrease.

And if |𝜌| → 1 and 𝜎2
𝑟2
→ 0, 𝑃

̇𝑟
→ 0.

Figure 5 shows 𝑃
̇𝑟
as a function of 𝜎2

𝑟2
and |𝜌|.

Figure 5 supports the conclusion that fusion result ben-
efits from stronger correlation and more accurate common
part.

6. Conclusion

Some sensors or estimators can provide higher dimensional
measurement or estimation. But due to some constraints,
other sensors or estimators can only provide partial mea-
surement or estimation. To fuse such kind of data with
different dimensions, a fusion algorithm based on LMMSE
estimation is provided. To reveal the relationship between
the common part and the uncommon part, the fusion
performance is analyzed and the following four conclusions
are obtained. (1) The fused common part is not affected by
the uncommon part. (2)The fused uncommon part benefits
from the common part through the cross-correlation. (3)The
more accurate independent common part will result in better
performance of the fused uncommon part. (4) In some cases,
stronger cross-correlation will result in better performance
of the fused uncommon part. The above conclusions are all
supported by some target tracking examples.
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Impact of correlated noises on dynamical systems is investigated by considering Fokker-Planck type equations under the fractional
white noise measure, which correspond to stochastic differential equations driven by fractional Brownian motions with the Hurst
parameter𝐻 > 1/2. Firstly, by constructing the fractional white noise framework, one small noise limit theorem is proved, which
provides an estimate for the deviation of random solution orbits from the corresponding deterministic orbits. Secondly, numerical
experiments are conducted to examine the probability density evolutions of two special dynamical systems, as the Hurst parameter
𝐻 varies. Certain behaviors of the probability density functions are observed.

1. Introduction

Dynamical systems arising from financial, biological, phys-
ical, or geophysical sciences are often subject to random
influences. These random influences may be modeled by
various stochastic processes, such as Brownian motions,
Lévy motions, or fractional Brownian motions. A fractional
Brownian motion 𝐵

𝐻

𝑡
, 𝑡 ≥ 0, in a probability space (Ω,F, 𝑃),

with Hurst parameter 𝐻 ∈ (0, 1), is a continuous-time
Gaussian process with mean zero, starting at zero and having
the following correlation function:

E [𝐵
𝐻

𝑠
𝐵
𝐻

𝑡
] =

1

2
(|𝑡|
2𝐻

+ |𝑠|
2𝐻

− |𝑡 − 𝑠|
2𝐻

) . (1)

In particular, when𝐻 = 1/2 it is just the standard Brownian
motion.The time derivative of a fractional Brownianmotion,
𝑑𝐵
𝐻

𝑡
/𝑑𝑡, as a generalized stochastic process, has nonvanish-

ing correlation [1, 2] and it is thus called a correlated noise
or colored noise. In the special case of 𝐻 = 1/2, this noise
is uncorrelated and thus is called white noise [3]. Correlated
noises appear in the modeling of some geophysical systems
[4–6].

For systematic discussions about fractional Brownian
motions and their stochastic calculus, we refer to [7–12] and
the references therein. Fractional Brownianmotions have sta-
tionary increments and areHölder continuouswith exponent

less than 𝐻, but they are no longer semimartingales, even
no longer Markovian. They possess some other significant
properties such as long range dependence and self-similarity
which result in wide applications in fields such as hydrology,
telecommunications, and mathematical finance. During the
last decade or so, several reasonable stochastic integrations
with respect to fractional Brownian motions were developed.
See, for example, Lin [13], Duncan et al. [14], Decreusefond
and Üstunel [15], and the references mentioned therein.
Stochastic differential equations (SDEs) driven by fractional
Brownian motions also have been attracting more attention
recently [1, 10, 16–18].

In this paper, we consider the following scalar stochastic
differential equation (SDE):

𝑑𝑋
𝑡
= 𝑏 (𝑋

𝑡
) 𝑑𝑡 + 𝜀𝑑𝐵

𝐻

𝑡
, 𝑋

0
= 𝑥, (2)

where the drift 𝑏(⋅) is a Lipschitz continuous function on 𝑅,
𝜀 > 0 is the noise intensity, 𝐵𝐻

𝑡
is a fractional Brownian

motion with𝐻 > 1/2, and the initial state value 𝜉 is assumed
to be independent of the natural filtration of 𝐵𝐻

𝑡
. Since this

system has a unique solution [17, 19], here we intend to
understand some impact of correlated noises on this additive
dynamical system as the Hurst parameter𝐻 varies.

This paper is organized as follows. In Section 2, we set
up a fractional white noise analysis framework which makes
correlated noises as functionals of standard white noises and
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prove a small noise limit theoremwhich implies the stochastic
continuity of the system with respect to noise intensity. In
Section 3, we show that the probability density function of
𝑋
𝑡
satisfies a Fokker-Planck type partial differential equation

with respect to the fractional white noise measure. Then, we
implement numerical experiments to examine the probability
density evolutions as the Hurst parameter𝐻 varies. As to one
linear system and one double-well system, certain behaviors
of the probability density functions are observed.

2. Analysis Framework and Small Noise Limit

2.1. Analysis Framework. White noise framework is one natu-
ral and flexible stochastic analysis thoughtway, and fractional
white noise analysis takes correlated noise as functionals of
standard white noise. This approach has shown to be very
effective in investigating distributions and path properties
of stochastic processes. In the following, we describe the
fractional white noise analysis framework.

Let S(𝑅) be the Schwartz space of rapidly decreasing
smooth functions on 𝑅 and S󸀠(𝑅) the space of tempered
distributions. And denote by ⟨⋅, ⋅⟩ the dual pairing onS󸀠(𝑅)×
S(𝑅). For 1/2 < 𝐻 < 1, define

𝜑 (𝑠, 𝑡) = 𝐻 (2𝐻 − 1) |𝑠 − 𝑡|
2𝐻−2

, 𝑠, 𝑡 ∈ 𝑅;

𝑐
2

𝐻
=

𝐻 (2𝐻 − 1)

𝐵 (𝐻 − 1/2, 2 − 2𝐻)
,

(3)

where 𝐵(⋅, ⋅) is beta function; 𝐾
±
(𝑡) = 𝑐

𝐻
𝑡
𝐻−3/2

±
, 𝑡
+
= 𝑡 ∨ 0,

𝑡
−
= −(𝑡 ∧ 0).

Lemma 1. For 𝑓 ∈ S(𝑅), let

Γ
𝜑
𝑓 (𝑢) = (𝐾

−
∗ 𝑓) (𝑢) = 𝑐

𝐻
∫

∞

𝑢

(𝑠 − 𝑢)
𝐻−3/2

𝑓 (𝑠) 𝑑𝑠,

Γ
∗

𝜑
𝑓 (𝑡) = (𝐾

+
∗ 𝑓) (𝑡) = 𝑐

𝐻
∫

𝑡

−∞

(𝑡 − 𝑢)
𝐻−3/2

𝑓 (𝑢) 𝑑𝑢.

(4)

Then, for 𝑓, 𝑔 ∈ S(𝑅),

(Γ
𝜑
𝑓, 𝑔)
𝐿
2
(𝑅)

= (𝑓, Γ
∗

𝜑
𝑔)
𝐿
2
(𝑅)

; (5)

that is, Γ∗
𝜑
is the dual map of Γ

𝜑
.

Now we can only prove the linear map Γ
𝜑
is continuous

from S(𝑅) to 𝐿
2

(𝑅). Since Γ
𝜑
is not continuous from S(𝑅)

to S(𝑅) (even not a proper operator in S(𝑅)), we could not
obtain a dual map from S󸀠(𝑅) to S󸀠(𝑅) by duality. By using
Itô’s regularization theorem, we construct a unique S󸀠(𝑅)-
valued random variable 𝑇 : S󸀠(𝑅) → S󸀠(𝑅) such that

⟨𝑇𝜔, 𝜉⟩ = ⟨𝜔, Γ
𝜑
𝜉⟩ 𝜇 − a.e. 𝜔, (6)

which extends the map Γ∗
𝜑
in view of (5).

Theorem 2. Let 𝜇
𝜑

= 𝜇 ∘ 𝑇
−1 be the image measure of 𝜇

induced by the map T.Then, for any 𝜉 ∈ S(𝑅), the distribution
of ⟨⋅, 𝜉⟩ under 𝜇

𝜑
is the same as ⟨⋅, Γ

𝜑
𝜉⟩ under 𝜇. In particular,

𝐵
𝐻

𝑡
≡ ⟨𝜔, Γ

𝜑
1
[0,𝑡]

⟩ , 𝑡 ≥ 0 (7)

is a fractional Brownian motion with Hurst constant 𝐻.
Moreover,

𝐵
𝐻

𝑡
= 𝑐
𝐻
(𝐻 −

1

2
)

−1

∫

𝑡

−∞

[(𝑡 − 𝑢)
𝐻−1/2

− 𝑢
𝐻−1/2

−
] 𝑑𝐵
𝑢
,

(8)

where 𝐵
𝑡
(𝜔) ≡ ⟨𝜔, 1

[0,𝑡]
⟩ is the standard Brownian motion.

(See proof in [20].)

Let {F
𝑡
, 𝑡 ∈ 𝑅

+
} and {F𝐻

𝑡
, 𝑡 ∈ 𝑅

+
} be the filtrations

generated by {𝐵
𝑡
} and {𝐵𝐻

𝑡
}, respectively.Then, in view of (8),

we have

(1) F
𝑡
⊃ 𝑇
−1

(F𝐻
𝑡
), for all 𝑡 ∈ 𝑅

+
;

(2) for any 𝑓 ∈ 𝐿
∞

(𝜇
𝜑
), E
𝜇
[𝑇
∗
𝑓 | F

𝑡
] = 𝑇

∗
E
𝜇𝜑
[𝑓 |

F𝐻
𝑡
] a.s. [𝜇], where (𝑇

∗
𝑓)(𝜔) := 𝑓(𝑇𝜔). So, the

filtrated probability space (S󸀠(𝑅),F
𝑡
, 𝜇) is the exten-

sion of (S󸀠(𝑅),F𝐻
𝑡
, 𝜇
𝜑
). Thus the stochastic analysis

with respect to measure 𝜇
𝜑
could be reduced to the

standard white noise framework naturally. Therefore,
we choose the standard white noise measure 𝜇 as the
reference measure rather than 𝜇

𝜑
, and this treatment

is more useful and more convenient for applications.
For more details, we refer to [20] and the reference
therein.

2.2. Small Noise Limit. Now, we consider the SDE (2) in
fractional white noise framework

𝑑𝑋
𝑡
= 𝑏 (𝑋

𝑡
) 𝑑𝑡 + 𝜀𝑑𝐵

𝐻

𝑡
, 𝑋

0
= 𝑥. (9)

And to investigate the impact of noise on deterministic
dynamical system

𝑑

𝑑𝑡
𝑥 (𝑡) = 𝑏 (𝑥 (𝑡)) , 𝑥 (0) = 𝑥, (10)

which is solvable on any finite time interval [0, 𝑇]. We have
the following result.

Theorem 3. The solution 𝑋
𝑡
of (2) converges in probability to

the solution 𝑥(𝑡) of (10) uniformly on any finite time interval
[0, 𝑇].

Proof. Firstly, we rewrite the equation as

𝑋
𝑡
− 𝑥 (𝑡) = ∫

𝑡

0

[𝑏 (𝑋
𝑠
) − 𝑏 (𝑥 (𝑠))] 𝑑𝑠 + 𝜀𝐵

𝐻

𝑡
. (11)

Then, by assuming the Lipschitz condition on 𝑏(𝑥) with
Lipschitz constant 𝐾 > 0, it follows from the Gronwall
inequality that

sup
0≤𝑡≤𝑇

󵄨󵄨󵄨󵄨𝑋𝑡 − 𝑥 (𝑡)
󵄨󵄨󵄨󵄨 ≤ 𝜀𝑒
𝐾𝑇 sup
0≤𝑡≤𝑇

󵄨󵄨󵄨󵄨󵄨
𝐵
𝐻

𝑡

󵄨󵄨󵄨󵄨󵄨
. (12)
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Figure 1: Plot of 𝑝(𝑥, 𝑡) with 𝑏(𝑥) = 𝑥 − 𝑥
3, at 𝑡 = 0.1, 0.2, 0.5, 1.25.

Hence, for any small enough 𝛿 > 0, we have

𝑃{ sup
0≤𝑡≤𝑇

󵄨󵄨󵄨󵄨𝑋𝑡 − 𝑥 (𝑡)
󵄨󵄨󵄨󵄨 > 𝛿} ≤ 𝑃{ sup

0≤𝑡≤𝑇

󵄨󵄨󵄨󵄨󵄨
𝐵
𝐻

𝑡

󵄨󵄨󵄨󵄨󵄨
>
𝛿

𝜀
𝑒
−𝐾𝑇

}

≤
𝜀𝑒
𝐾𝑇

𝛿
E sup
0≤𝑡≤𝑇

󵄨󵄨󵄨󵄨󵄨
𝐵
𝐻

𝑡

󵄨󵄨󵄨󵄨󵄨

≤
𝜀𝑒
𝐾𝑇

𝑇
𝐻

𝛿
E
󵄨󵄨󵄨󵄨󵄨
𝐵
𝐻

1

󵄨󵄨󵄨󵄨󵄨
,

(13)

which completes the proof when 𝜀 → 0. In the final step,
we have used the self-similarity of the fractional Brownian
motion

E sup
0≤𝑡≤𝑇

󵄨󵄨󵄨󵄨󵄨
𝐵
𝐻

𝑡

󵄨󵄨󵄨󵄨󵄨
≤ 𝑇
𝐻

E
󵄨󵄨󵄨󵄨󵄨
𝐵
𝐻

1

󵄨󵄨󵄨󵄨󵄨
. (14)

This theorem provides an estimate for the deviation of
random solution orbits from the corresponding deterministic
orbits. Note that the expectation E in the above theorem
corresponds to the fractional white noise measure. And,
henceforth, we take all expectations E with respect to the
fractional white noise measure (i.e., for simplicity, we omit
the subscript 𝜇mentioned above).

3. Probability Density Evolution

For SDE, such as (2), the probability density function of the
solution 𝑋

𝑡
carries significant dynamical information. This

is considered here by examining a fractional Fokker-Planck
type equation. The key step in the derivation of this Fokker-
Planck type equation is the application of Ito’s formula for
SDEs driven by fractional Brownianmotion, under fractional
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Figure 2: Plot of 𝑝(𝑥, 𝑡) with 𝑏(𝑥) = 𝑥: 𝑡 = 0.2, 𝑡 = 0.5, 𝑡 = 0.95, and 𝑡 = 1.25.

white noise analysis framework [1, 10, 16, 20, 21]. We sketch
the derivation here.

By Ito’s formula [10], Theorem 6.3.6, for a second order
differentiable function ℎ(⋅) with compact support, we have

𝑑ℎ (𝑋
𝑡
) = [𝑏 (𝑋

𝑡
)
𝜕ℎ

𝜕𝑥
(𝑋
𝑡
) + 𝐻𝑡

2𝐻−1

𝜀
2
𝜕
2

ℎ

𝜕𝑥2
(𝑋
𝑡
)] 𝑑𝑡

+ 𝜀
𝜕ℎ

𝜕𝑥
(𝑋
𝑡
) 𝑑𝐵
𝐻

𝑡
.

(15)

Taking expectations on both sides yields

E[
𝑑ℎ (𝑋

𝑡
)

𝑑𝑡
] = E [𝑏 (𝑋

𝑡
)
𝜕ℎ

𝜕𝑥
(𝑋
𝑡
)]

+ 𝐻𝑡
2𝐻−1

𝜀
2

E[
𝜕
2

ℎ

𝜕𝑥2
(𝑋
𝑡
)] .

(16)

Let 𝑝 = 𝑝(𝑥, 𝑡) be the probability density function of
the solution 𝑋

𝑡
of the system (2). Recall that E[ℎ(𝑋

𝑡
)] =

∫
R
ℎ(𝑥)𝑝(𝑥, 𝑡)𝑑𝑥; by integration by parts and 𝑝 = 0 at 𝑥 =

±∞, we obtain

∫
R

ℎ (𝑥) [
𝜕𝑝

𝜕𝑡
+
𝑏 (𝑥) 𝑝

𝜕𝑥
− 𝜀
2

𝐻𝑡
2𝐻−1

𝜕
2

𝑝

𝜕𝑥2
]𝑑𝑥 = 0; (17)

that is,

𝜕𝑝 (𝑥, 𝑡)

𝜕𝑡
= −

𝜕 [𝑏 (𝑥) 𝑝 (𝑥, 𝑡)]

𝜕𝑥
+ 𝜀
2

𝐻𝑡
2𝐻−1

𝜕
2

𝑝 (𝑥, 𝑡)

𝜕𝑥2
.

(18)

In the following, we numerically simulate this partial differ-
ential equation for two special cases: 𝑏(𝑥) = 𝑥 − 𝑥

3 and
𝑏(𝑥) = 𝑥, with finite noise intensity (for simplicity we take
𝜀 = 1).Through these two special cases, we expect to illustrate
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the impact of correlated noises on additive dynamical systems
as the Hurst parameter𝐻 varies.

Here, we perform the popular Crank-Nicolson scheme in
Matlab for (17) with zero boundary values;, the grid size is
0.05, total grid points are 801, and the time step size is 0.01.
And the initial probability density function is taken to be
standard normal; that is, 𝑝(𝑥, 0) = (1/√2𝜋)𝑒

−𝑥
2
/2.

Since the system is tridiagonal, we could solve it using
Thomas Algorithm efficiently. Moreover, for other initial
conditions and other drift coefficients, for instance, the initial
uniform distribution or 𝑏(𝑥) = 𝑥 − 𝑥

2, this method also
applies smoothly.

3.1. Numerical Simulation: 𝑏(𝑥) = 𝑥 − 𝑥
3. We first simulate

the dynamical evolutions of the probability density function
𝑝(𝑥, 𝑡) for the corresponding stochastic differential equation
(2) with the double-well drift 𝑏(𝑥) = 𝑥 − 𝑥

3, for various
values of 𝐻 > 1/2. The double-well dynamics is a rich
and typical model for understanding numerous physical
or geophysical systems [22, 23], focusing on the maxima
(minima), symmetry, kurtosis, and so forth.

As observed in Figure 1, the probability density function
𝑝(𝑥, 𝑡) evolves from the unimodal (one peak) to the flat top
and then to the bimodal (two peaks) shape for various Hurst
parameter values 𝐻, as time 𝑡 increases. Simultaneously, the
effect of Hurst parameter 𝐻 on the dynamics is significant.
As 𝐻 value increases, the plateau for 𝑝(𝑥, 𝑡) becomes lower
when time exceeds 𝑡 = 0.5.

3.2. Numerical Simulation: 𝑏(𝑥) = 𝑥. Now, for comparison
we investigate the dynamical evolutions of the probability
density function 𝑝(𝑥, 𝑡) of the corresponding stochastic
differential equation (2) with the linear drift 𝑏(𝑥) = 𝑥, which
is a rich toy example for understanding dynamical systems.

Also as observed in Figure 2, at given time instants,
𝑝(𝑥, 𝑡)’s peak becomes higher as𝐻 increases. This illustrates
the significant and distinguishing influence of Hurst param-
eter 𝐻 on the dynamics when time 𝑡 evolves. The bigger 𝐻
makes the solution 𝑋

𝑡
of (2) has more centralized value, but

the long time effect shows that the values of the solution 𝑋
𝑡

distribute more scatteredly.
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In 1947, von Neumann and Morgenstern introduced the well-known expected utility and the related axiomatic system (see von
Neumann and Morgenstern (1953)). It is widely used in economics, for example, financial economics. But the well-known Allais
paradox (see Allais (1979)) shows that the linear expected utility has some limitations sometimes. Because of this, Peng proposed
a concept of nonlinear expected utility (see Peng (2005)). In this paper we propose a concept of stochastic dominance under the
nonlinear expected utilities. We give sufficient conditions on which a random choice 𝑋 stochastically dominates a random choice
𝑌 under the nonlinear expected utilities. We also provide sufficient conditions on which a random choice 𝑋 strictly stochastically
dominates a random choice 𝑌 under the sublinear expected utilities.

1. Introduction

In [1], von Neumann and Morgenstern introduced the well-
known expected utility and the related axiomatic system.
It is widely used in economics, for example, financial eco-
nomics. They exhibited four relatively modest axioms of
“rationality” such that any agent satisfying the axioms has a
utility function. They claimed that 𝑈(⋅) can be characterized
by 𝑈(𝑋) = 𝐸[𝑢(𝑋)]. That is to say they proved that
an agent is (VNM-) rational if and only if there exists
a real-valued function 𝑢(⋅) defined on possible outcomes
such that every preference of the agent is characterized by
maximizing the expected value of 𝑢(⋅), which can then be
defined as the agent’s VNM-utility. Here 𝑢(⋅) : 𝑅 →

𝑅 is a continuous and strictly increasing function, and
𝐸[⋅] is the linear expectation in some probability space
(Ω,F,P).

However, some real world utilities cannot be represented
by this expected utility. A famous counterexample is the well-
known Allais paradox (see [2]). Allais paradox shows that
linear expected utility has some limitations sometimes.

In [3], Peng developed nonlinear expectation and sub-
linear expectation theory. G-expectation is a kind of special

sublinear expectation. More details can be found in [4–7]. In
[8–11], G-expectation is used in financial economics.

In [12], Peng developed a nonlinear type of von Neu-
mann-Morgenstern representation theorem to utilities. He
proved that there exists a nonlinear expected utility𝑈(⋅), such
that an agent Â prefers a random choice 𝑋 than 𝑌 which is
formulated by 𝑈(𝑋) > 𝑈(𝑌).

But nonlinear expected utility can only describe an agent’s
preference; how to describe a group of agents’ preference? In
this paper we consider the question raised upward; to this end
we define a corresponding concept of stochastic dominance
under the nonlinear expected utilities.

The rest of this paper is organized as follows. In Section 2,
we give some basic notions and results of nonlinear expecta-
tions and nonlinear expected utilities. In Section 3, we give
the main results and the proofs.

2. Nonlinear Expectations and Nonlinear
Expected Utilities

In this section we shall give some results of nonlinear
expectations and nonlinear expected utilities.

Hindawi Publishing Corporation
Mathematical Problems in Engineering
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2.1. Nonlinear Expectations. We present some preliminaries
in the theory of nonlinear expectations and sublinear expec-
tations.The following definitions and properties can be found
in [3].

Let Ω be a given set and let H be a linear space of real
valued functions defined on Ω satisfying the following: if
𝑋
𝑖
∈ H, 𝑖 = 1, 2, . . . , 𝑛, then 𝜑(𝑋

1
, 𝑋
2
, . . . , 𝑋

𝑛
) ∈ H, for all

𝜑 ∈ C
𝑙,lip(𝑅), whereC

𝑙,lip(𝑅) is the space of all real continuous
functions defined on 𝑅 such that

󵄨󵄨󵄨󵄨𝜑 (x) − 𝜑 (y)󵄨󵄨󵄨󵄨 ≤ C (1 + x𝑘 + y𝑘) 󵄨󵄨󵄨󵄨x − y󵄨󵄨󵄨󵄨 ,

∀x, y ∈ 𝑅, 𝑘 depends on 𝜑.

(1)

Definition 1. E : H → 𝑅 is said to be a nonlinear expectation
defined onH if it satisfies the following.

(i)Monotonicity:

E (𝑋) ≥ E (𝑌) , if 𝑋 ≥ 𝑌. (2)

(ii) Constant Preserving:

E (𝑐) = 𝑐, for 𝑐 ∈ 𝑅. (3)

A nonlinear expectation is called sublinear expectation if
it also satisfies the following.

(iii) Subadditivity: for each𝑋,𝑌 ∈ H,

E (𝑋 + 𝑌) ≤ E (𝑋) + E (𝑌) . (4)

(iv) Positive homogeneity:

E (𝜆𝑋) = 𝜆E (𝑋) , for 𝜆 ≥ 0. (5)

The triple (Ω,H,E) is called nonlinear expectation space
and sublinear expectation space correspondingly.

Definition 2. Let E
1
and E

2
be two nonlinear expectations

defined on (Ω,H); E
1
is said to be dominated by E

2
if

E
1
(𝑋) − E

1
(𝑌) ≤ E

2
(𝑋 − 𝑌) , for 𝑋,𝑌 ∈ H. (6)

Remark 3. From (iii), a sublinear expectation is dominated
by itself. In many situations, (iii) is also called the property
of self-domination. It is easy to conclude that in a sublinear
expectation space (Ω,H,E), −E(−𝑋) ≤ E(𝑋), for 𝑋 ∈ H. If
−E(−𝑋) = E(𝑋), we say𝑋 has no mean uncertainty.

Theorem 4 (Represent theorem). Let E be a functional
defined on a linear space H satisfying subadditivity and
positive homogeneity. Then there exists a family of linear
functionals defined onH such that

E (𝑋) = sup
P∈P

EP (𝑋) , for 𝑋 ∈ H (7)

and, for each 𝑋 ∈ H, there exists P
𝑋

∈ P such that E(𝑋) =

EP𝑋
(𝑋).

Furthermore, if E is a sublinear expectation, then the
corresponding EP𝑋

is a linear expectation.

According to the represent theorem, if E is a sublinear
expectation, we have

E (𝑋) = sup
P∈P

EP (𝑋) , for 𝑋 ∈ H. (8)

Suppose (Ω,F) is a measurable space, for such P, we can
define an upper probability

V (𝐴) = sup
P∈P

P (𝐴) , 𝐴 ∈ F (9)

and a lower probability

V (𝐴) = inf
P∈P

P (𝐴) , 𝐴 ∈ F. (10)

Obviously V and V are conjugated to each other; that is,

V (𝐴) + V (𝐴𝑐) = 1, (11)

where 𝐴
𝑐 is the complementary set of 𝐴.

Definition 5. A set 𝐴 is polar if V(𝐴) = 0. A property holds
quasisurely (𝑞.𝑠). if it holds outside a polar set.

Definition 6. Let𝑋 be a given randomvariable on a nonlinear
expectation space (Ω,H,E). One defines a functional on
C
𝑙,lip(𝑅) by

F
𝑋
[𝜑] := E [𝜑 (𝑋)] : 𝜑 ∈ C

𝑙,lip (𝑅) 󳨀→ 𝑅. (12)

F
𝑋
is called the distribution of𝑋 under E.

Definition 7. Let 𝑋
1
and 𝑋

2
be two random variables

defined on nonlinear expectation spaces (Ω
1
,H
1
,E
1
) and

(Ω
2
,H
2
,E
2
), respectively. They are called identically dis-

tributed, denoted by 𝑋
1

𝑑

= 𝑋
2
, if

E
1
[𝜑 (𝑋

1
)] = E

2
[𝜑 (𝑋

2
)] , for 𝜑 ∈ C

𝑙,lip (𝑅) . (13)

It is clear that 𝑋
1

𝑑

= 𝑋
2
if and only if their distributions

coincide. One says that the distribution of𝑋
1
is stronger than

that of𝑋
2
if

E
1
[𝜑 (𝑋

1
)] ≥ E

2
[𝜑 (𝑋

2
)] , for each 𝜑 ∈ C

𝑙,lip (𝑅) . (14)

2.2. Nonlinear Expected Utilities. The following definitions
and properties can be found in [12]. LetE be a self-dominated
nonlinear expectation defined on H. Define a quasinorm
‖𝑋‖
∗∞

:= inf
𝜔∈Ω

{𝑐 ∈ 𝑅; 𝑐 ≥ |𝑋| inH}. A utility functional
of an agent Â is a real functional𝑈 : H → 𝑅.This functional
satisfies the following obvious axioms:

(u1) monotonicity: if𝑋 ≥ 𝑌 inH, thenU(𝑋) ≥ U(𝑌), and
if𝑋 ≥ 𝑌 and ‖𝑋 − 𝑌‖

∗
> 0, then U(𝑋) > U(𝑌);

(u2) continuity: if ‖𝑋
𝑖
− 𝑋‖
∗∞

→ 0, then U(𝑋
𝑖
) →

U(𝑋).

Then we have the following nonlinear expected utility
theorem which generalized the well-known von Neuman-
Morgenstern’s axiom on expected utility.
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Proposition 8. Let E[⋅] be a strictly monotonic expectation
satisfying (i) and (ii) in Definition 1. One assumes that E[⋅]
is continuous in H and let 𝑢(⋅) be a continuous and strictly
increasing function 𝑢(⋅) : 𝑅 → 𝑅. Then the functional 𝑈(⋅)

defined by

𝑈 (𝑋) := E [𝑢 (𝑋)] (15)

is a utility functional satisfying (u1) and (u2).

Conversely, for each given utility 𝑈(⋅) satisfying (u1) and
(u2), there exist a strictmonotonic nonlinear expectationE[⋅]
and a continuous and strictly increasing function 𝑢(⋅) : 𝑅 →

𝑅 such that (15) holds.

3. Stochastic Dominance under the Nonlinear
Expected Utilities

Using nonlinear expected utility to determine the advantages
between two random choices is only for a single economic
actor. Here comes a problem: can we raise the same question
to a group of economic actors? If we still discuss it by
using nonlinear expected utility, this means asking the same
question to a class of expected utility functions.

In mathematics, it can form such a problem: suppose H
is a collection of random variables. U is a class of strictly
increasing and continuously differentiable functions, which
represents the collection of all the utility functions of an
investor group. Define a partial ordering ⪰ in H: for any
𝑋,𝑌 ∈ H,

𝑋 ⪰ 𝑌 ⇐⇒ ∀𝑢 ∈ U, E [𝑢 (𝑋)] ≥ E [𝑢 (𝑌)] . (16)

Here E[⋅] is nonlinear expectation, 𝑋,𝑌 can be regarded
as two risky securities, and 𝑢 ∈ U can be an investor’s
expected utility function. Thus, this definition of the partial
ordering means that all members of the investor group think
the former is better than the latter. Here it is important to
note that, in general, this is a partially ordering rather than
a complete ordering. That is to say, for some pairs of risky
securities, neither one stochastically dominates the other, and
yet they cannot be said to be equal. At the same time, it is just
investor group’s preferences characterized by the expected
utilities functions theory.

Definition 9. The above-mentioned partial ordering is called
stochastic dominance under the nonlinear expected utility.

Remark 10. Stochastic dominance is a form of stochastic
ordering. The term is used in decision theory and decision
analysis to refer to situations where one random choice can
be ranked as superior to another. It is based on preferences
regarding outcomes. In linear expected utility, there are
first-order stochastic dominance and second-order stochastic
dominance and so on. For more results, see [13–16].

Definition 11. In Definition 9, if for any𝑋,𝑌 ∈ H,

𝑋 ≻ 𝑌 ⇐⇒ ∀𝑢 ∈ U, E [𝑢 (𝑋)] > E [𝑢 (𝑌)] , (17)

then the partial ordering is called strictly stochastic domi-
nance under the nonlinear expected utility.

Next, we give the main results of this paper.

Theorem 12. Let (Ω,H,E) be a nonlinear expectation space,
𝑋,𝑌 ∈ H, andU a class of strictly increasing and continuously
differentiable functions. If any of the following conditions is
satisfied:

(1)𝑋 ≥ 𝑌,
(2) the distribution of𝑋 is stronger than 𝑌, namely,

E [𝜑 (𝑋)] ≥ E [𝜑 (𝑌)] , for each 𝜑 ∈ C
𝑙,lip (𝑅) , (18)

then𝑋 stochastically dominates 𝑌, that is,

E [𝑢 (𝑋)] ≥ E [𝑢 (𝑌)] , ∀𝑢 ∈ U. (19)

Proof. (1) If𝑋 ≥ 𝑌, then

∀𝑢 ∈ U, E [𝑢 (𝑋)] ≥ E [𝑢 (𝑌)] (20)

is easily concluded by the fact that 𝑢 ∈ U is strictly increasing
and the monotonicity of E[⋅].

(2) First, notice that an everywhere differentiable func-
tion𝑔(⋅)which is a lipschitz continuouswith 𝑘 = sup |𝑔

󸀠

(𝑥)| is
equivalent to the fact that 𝑔(⋅) has bounded first derivative. In
particular, any continuously differentiable function is locally
lipschitz, as continuous functions are locally bounded so its
gradient is locally bounded as well. It means that for all 𝑢 ∈

U, 𝑢 ∈ C
𝑙,lip(𝑅). So if the distribution of 𝑋 is stronger than

that of 𝑌, we have

E [𝜑 (𝑋)] ≥ E [𝜑 (𝑌)] , for each 𝜑 ∈ C
𝑙,lip (𝑅) . (21)

Because for all 𝑢 ∈ U, 𝑢 ∈ C
𝑙,lip(𝑅); then we can have

∀𝑢 ∈ U, E [𝑢 (𝑋)] ≥ E [𝑢 (𝑌)] . (22)

So the result holds by Definition 9.

Remark 13. (𝛼)The above conclusion (2) gives sufficient con-
dition on which a random choice𝑋 stochastically dominates
a random choice 𝑌 under the nonlinear expected utilities. It
is a general extension of the first-order stochastic dominance
under the linear expectation utility.

(𝛽) The above conclusion (1) is very intuitive. Next, we
give an example which is not intuitive.

Example 14. Suppose

Ω = {𝜔
1
, 𝜔
2
} , (23)

and we have two probabilities {2/3, 1/3} and {2/5, 3/5}

denoted by P andQ, respectively, where

P ({𝜔
1
}) =

2

3
,

P ({𝜔
2
}) =

1

3
,

Q ({𝜔
1
}) =

2

5
,

Q ({𝜔
2
}) =

3

5
.

(24)
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We assume H is a collection of random variables, and U is
a class of strictly increasing and continuously differentiable
functions. Take the nonlinear expectation utility like the
following:

E [𝑢 (𝜉)] =
3

4
max {𝐸P [𝑢 (𝜉)] , 𝐸Q [𝑢 (𝜉)]}

+
1

4
min {𝐸P [𝑢 (𝜉)] , 𝐸Q [𝑢 (𝜉)]} ,

𝑢 ∈ U, 𝜉 ∈ H.

(25)

We set

𝑋(𝜔
1
) = 1,

𝑋 (𝜔
2
) = 0,

𝑌 (𝜔
1
) = 0,

𝑌 (𝜔
2
) = 1.

(26)

For all 𝑢 ∈ U, we can calculate the following results:

𝐸P [𝑢 (𝑋)] =
2

3
𝑢 (1) +

1

3
𝑢 (0) ,

𝐸Q [𝑢 (𝑋)] =
2

5
𝑢 (1) +

3

5
𝑢 (0) ,

E [𝑢 (𝑋)] =
6

15
𝑢 (0) +

9

15
𝑢 (1) ,

𝐸P [𝑢 (𝑌)] =
2

3
𝑢 (0) +

1

3
𝑢 (1) ,

𝐸Q [𝑢 (𝑋)] =
2

5
𝑢 (0) +

3

5
𝑢 (1) ,

E [𝑢 (𝑌)] =
7

15
𝑢 (0) +

8

15
𝑢 (1) .

(27)

Since 𝑢 ∈ U is strictly increasing, then 𝑢(1) > 𝑢(0); so

E [𝑢 (𝑋)] − E [𝑢 (𝑌)] =
1

15
𝑢 (1) −

1

15
𝑢 (0) > 0,

𝑢 ∈ U.

E [𝑢 (𝑋)] > E [𝑢 (𝑌)] , 𝑢 ∈ U.

(28)

Hence we can say that𝑋 strictly stochastic dominates 𝑌.
It is easy to see that neither 𝑋 ≥ 𝑌 nor 𝑌 ≥ 𝑋 in a whole.

We can check that 𝑋 strictly stochastic dominates 𝑌. This is
not the intuitive way; this implies that stochastic dominance
by the nonlinear expected utilities is meaningful.

When E[⋅] is a sublinear expectation, Theorem 12 is still
valid. Furthermore, we can also have the following theorem.

Theorem 15. Let (Ω,H,E) be a sublinear expectation space,
𝑋,𝑌 ∈ H, andU a class of strictly increasing and continuously
differentiable functions. If 𝑋 ≥ 𝑌 𝑞.𝑠., then 𝑋 stochastically
dominates 𝑌, that is,

E [𝑢 (𝑋)] ≥ E [𝑢 (𝑌)] , ∀𝑢 ∈ U. (29)

Proof. We claim that if𝑋 ≥ 𝑌 𝑞.𝑠., then E[𝑋] ≥ E[𝑌].
This is because we can get V(𝑋 < 𝑌) = 0 by 𝑋 ≥ 𝑌 𝑞.𝑠.,

which means V(𝑋 < 𝑌) = 0, V(𝑋 ≥ 𝑌) = 1; namely,

V (𝑋 ≥ 𝑌) = inf
P∈P

P (𝑋 ≥ 𝑌) = 1. (30)

Then we can get

∀P ∈ P, 𝐸P [𝑋] ≥ 𝐸P [𝑌] , (31)

so

sup
P∈P

EP (𝑋) ≥ sup
P∈P

EP (𝑌) . (32)

According to the represent theorem, we have E[𝑋] ≥ E[𝑌].
Since 𝑋 ≥ 𝑌 𝑞.𝑠. and 𝑢 ∈ U is strictly increasing, 𝑢(𝑋) ≥

𝑢(𝑌) 𝑞.𝑠. is available by the same procedure as above. So we
can obtain

E [𝑢 (𝑋)] ≥ E [𝑢 (𝑌)] , ∀𝑢 ∈ U (33)

by the above conclusion.

Next, we shall give a lemma first, then present a strictly
stochastic dominance result under sublinear expectations.

Lemma 16. Let (Ω,H,E) be a sublinear expectation space,
𝑌 ∈ H, and U a class of strictly increasing and continuously
differentiable functions. If 𝑢(𝑌) has no mean uncertainty, that
is,

E [𝑢 (𝑌)] = −E [−𝑢 (𝑌)] , (34)

then

E [𝑢 (𝑌)] = 𝐸P [𝑢 (𝑌)] , ∀P ∈ P. (35)

Proof. Since

E [𝑢 (𝑌)] = sup
P∈P

EP [𝑢 (𝑌)] ,

−E [−𝑢 (𝑌)] = −sup
P∈P

EP [−𝑢 (𝑌)] = −sup
P∈P

(−EP [𝑢 (𝑌)])

= − (− inf
P∈P

(EP [𝑢 (𝑌)])) = inf
P∈P

(EP [𝑢 (𝑌)]) ,

(36)

we can get

sup
P∈P

EP [𝑢 (𝑌)] = inf
P∈P

(EP [𝑢 (𝑌)]) . (37)

Then

E [𝑢 (𝑌)] = sup
P∈P

EP [𝑢 (𝑌)] = inf
P∈P

(EP [𝑢 (𝑌)])

= 𝐸P [𝑢 (𝑌)] , ∀P ∈ P.

(38)
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Theorem 17. Let (Ω,H,E) be a sublinear expectation space,
𝑋,𝑌 ∈ H, andU a class of strictly increasing and continuously
differentiable functions. If 𝑋 ≥ 𝑌 𝑞.𝑠., V(𝑋 > 𝑌) > 0, and
E[𝑢(𝑌)] = −E[−𝑢(𝑌)], for all 𝑢 ∈ U, that is, 𝑢(𝑌) has no
mean uncertainty, then 𝑋 strictly stochastically dominates 𝑌,
that is,

E [𝑢 (𝑋)] > E [𝑢 (𝑌)] , ∀𝑢 ∈ U. (39)

Proof. Since 𝑋 ≥ 𝑌 𝑞.𝑠. and V(𝑋 > 𝑌) > 0, there exists P ∈

P, such that

P (𝑋 ≥ 𝑌) = 1,

P (𝑋 > 𝑌) > 0.

(40)

Therefore

𝐸P [𝑋] > 𝐸P [𝑌] . (41)

Since

E [𝑢 (𝑌)] = −E [−𝑢 (𝑌)] , ∀𝑢 ∈ U, (42)

according to Lemma 16, we have

E [𝑢 (𝑋)] ≥ 𝐸P [𝑢 (𝑋)] > 𝐸P [𝑢 (𝑌)] = E [𝑢 (𝑌)] , ∀𝑢 ∈ U.

(43)

Corollary 18. Let (Ω,H,E) be a sublinear expectation space,
𝑋,𝑌 ∈ H, and 𝑋 ≥ 𝑌 𝑞.𝑠. Assume 𝑢(𝑥) = 𝑘𝑥, 𝑘 > 0. If
V(𝑋 > 𝑌) > 0 and 𝑌 has no mean uncertainty, that is, E[𝑌] =

−E[−𝑌], then

E [𝑢 (𝑋)] > E [𝑢 (𝑌)] . (44)

Proof. If 𝑢(𝑥) = 𝑘𝑥, 𝑘 > 0, and 𝑌 has mean certainty, it is
easy to verify that 𝑢(𝑌) has mean certainty; that is, E[𝑢(𝑌)] =

−E[−𝑢(𝑌)]. Then the consequence attains immediately by
Theorem 17.

Remark 19. This corollary gives sufficient condition for the
result that 𝑋 strictly stochastically dominates 𝑌 to the risk-
neutral group.

Corollary 20. Let (Ω,H,E) be a sublinear expectation space,
𝑋,𝑌 ∈ H, andU a class of strictly increasing and continuously
differentiable functions. If 𝑋 ≥ 𝑌 𝑞.𝑠., V(𝑋 ≤ 𝑌) < 1, and
E[𝑢(𝑌)] = −E[−𝑢(𝑌)], for all 𝑢 ∈ U, that is, 𝑢(𝑌) has no
mean uncertainty, then 𝑋 strictly stochastically dominates 𝑌,
that is,

E [𝑢 (𝑋)] > E [𝑢 (𝑌)] , ∀𝑢 ∈ U. (45)

Proof. By using the relationship between V and V, the conse-
quence attains immediately byTheorem 17.

Next, we give an example to apply Theorem 17.

Example 21. Suppose there is an outcome Ω = [0, 1], which
indicates the market conditions. F is the 𝜎-algebra of Borel
sets onΩ and | ⋅ | is the Lebesgue measure on [0, 1].

We have two prior probabilities denoted by P and Q,
respectively, where

P (𝐴) =
1

2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝐴 ∩ [0,

1

3
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝐴 ∩ [

1

3
,
2

3
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
+

3

2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝐴 ∩ [

2

3
, 1]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
,

𝐴 ∈ F,

Q (𝐴) =
1

4

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝐴 ∩ [0,

1

3
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
+

5

4

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝐴 ∩ [

1

3
,
2

3
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
+

3

2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝐴 ∩ [

2

3
, 1]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
,

𝐴 ∈ F.

(46)

We assumeH is a collection of random variables, which rep-
resents risky securities and U is a class of strictly increasing
and continuously differentiable functions, which represents
the collection of all the utility functions of an investor group.
Take the sublinear expectation utility as follows:

E [𝑢 (𝜉)] = max {𝐸P [𝑢 (𝜉)] , 𝐸Q [𝑢 (𝜉)]} ,

𝑢 ∈ U, 𝜉 ∈ H.

(47)

There are two risky securities

𝑋 (𝜔) =

{{{{{{{{{{{{

{{{{{{{{{{{{

{

−10, 𝜔 = 0,

0, 𝜔 ∈ (0,
1

3
) ,

1, 𝜔 ∈ [
1

3
,
2

3
) ,

10, 𝜔 ∈ [
2

3
, 1] ,

𝑌 (𝜔) =

{{{

{{{

{

0, 𝜔 ∈ [0,
2

3
) ,

10, 𝜔 ∈ [
2

3
, 1] .

(48)

It is clear that above conditions guaranteeTheorem 17; there-
fore we have that 𝑋 strictly stochastically dominates 𝑌, that
is,

E [𝑢 (𝑋)] > E [𝑢 (𝑌)] , 𝑢 ∈ U. (49)

This means that all members of the investor group think the
former is better than the latter.

In fact, for all 𝑢 ∈ U, we can calculate the following
results:

𝐸P [𝑢 (𝑋)] =
1

6
𝑢 (0) +

1

3
𝑢 (1) +

1

2
𝑢 (10) ,

𝐸Q [𝑢 (𝑋)] =
1

12
𝑢 (0) +

5

12
𝑢 (1) +

1

2
𝑢 (10) ;

(50)
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then

E [𝑢 (𝑋)] =
1

12
𝑢 (0) +

5

12
𝑢 (1) +

1

2
𝑢 (10) ;

𝐸P [𝑢 (𝑌)] =
1

2
𝑢 (0) +

1

2
𝑢 (10) ,

𝐸Q [𝑢 (𝑌)] =
1

2
𝑢 (0) +

1

2
𝑢 (10) ;

(51)

then

E [𝑢 (𝑌)] =
1

2
𝑢 (0) +

1

2
𝑢 (10) . (52)

Since 𝑢 ∈ U is strictly increasing, then 𝑢(1) > 𝑢(0); so

E [𝑢 (𝑋)] − E [𝑢 (𝑌)] =
5

12
(𝑢 (1) − 𝑢 (0)) > 0,

𝑢 ∈ U.

(53)

Then

E [𝑢 (𝑋)] > E [𝑢 (𝑌)] , 𝑢 ∈ U; (54)

that is,𝑋 strictly stochastically dominates 𝑌.

4. Conclusion

In this paper, we study stochastic dominance under the non-
linear expected utilities. First we attain sufficient conditions
on which a random choice 𝑋 stochastically dominates a
random choice 𝑌 under the nonlinear expected utilities; then
we attain sufficient conditions on which strictly stochastic
dominance of a random choice 𝑋 over a random choice
𝑌 under the sublinear expected utilities; finally we give
sufficient condition for strictly stochastic dominance of 𝑋

over 𝑌 under the sublinear expected utilities to the risk-
neutral group.
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We study the design enhancement of the bistable stochastic resonance (SR) performance on sinusoidal signal and Gaussian white
noise. The bistable system is known to show an SR property; however the performance improvement is limited. Our work presents
two main contributions: first, we proposed a parallel array bistable system with independent components and averaged output;
second, we give a deduction of the output signal-to-noise ratio (SNR) for this system to show the performance. Our examples show
the enhancement of the system and how different parameters influence the performance of the proposed parallel array.

1. Introduction

Stochastic resonance has attracted considerable attention
over the past decades. SR is defined as a phenomenon that is
manifest in nonlinear systems whereby generally feeble input
information (such as a weak signal) can be amplified and
optimized by the assistance of noise.

The physical mechanism of SR has been known since
the initial work by Benzi et al. at the beginning of the
1980s [1–3] and received much attention by the physical
community in the following years. SR has been observed
in a large variety of systems, including bistable ring lasers
and semiconductor devices. The first discussed and most
developed SR mechanism was the bistable system. Since it
has a precise mathematical expression and can be interpreted
visually, the bistable system draws much attention of the
researchers.

SR can be envisioned as a particular problem of signal
extraction from background noise. It is quite natural that
a number of authors tried to characterize SR within the
formalism of data analysis, most notably by introducing
the notion of SNR [4–6]. The focus of our present work
is on bistable system and its SNR improvement. SNR is
a very important quantity, since it influences information,
detection, estimation, and many other measures [7].

The early study of SR system focused on nature nonlinear
system to analyse its properties [1–3]. Later, the benefit of
the system was known, and researchers started to design
new systems to meet the need in engineering to enhance
the performance of the system. Many works dealt with SR
in engineering such as signal estimation and detection [8–
10]. A good way of designing the SR system is using array
since array can enhance system performance which is widely
studied [11–14]. The array for SR systems can be designed
either in coupled way [12, 15–18] or in uncoupled way [13, 14].
For the coupled array, the processing in each component is
complicated due to coupling with other components. Uncou-
pled parallel array has been widely studied in SR system due
to its simplicity, such as superthreshold system. For bistable
system, the work in [19] gives a brief introduction of a type of
array enhancement for the sinusoidal signal in bistable array
with a similar structure as superthreshold system. In [20]
the theory for this type of array is demonstrated. However,
evenwith the uncoupled components, the performance of the
system still has room to be improved. Since, in these types of
array, the components are not independent of each other, the
independence in statistics is an importance feature to the best
performance.

This paper is in fact inspired by traditional parallel
system, proposes a new parallel array with independent
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sensors, and focuses on the output SNR performance. This is
different from traditional parallel SR system since traditional
systemuses one receiving sensor andparallel array processing
components so that input for each component is not inde-
pendent in statistics. And it is also different from traditional
array signal processing [7] since we do not need to consider
the shape of the array. To simplify the analysis, we limit
our study to two-state bistable system driven by sinusoidal
signal and Gaussian white noise and assume some identical
independent settings in every bistable component. To analyse
the performance of this array theoretically, we give a complete
proof on output SNR and experiments to demonstrate the
parameter influences.

This paper is organized as follows. The framework of
two-state model of bistable system is described in Section 2.
Section 3 deals with the case that a new structure of the
parallel array is assigned to bistable system and the output
SNR of this system is deduced. Section 4 is devoted to
instances of the proposed system whose performance is
indeed enhanced by adding noise. And the influence of the
parameter on the system is also analysed in this section.
Finally, in Section 5, we summarize the following.

Notation. 𝐸(⋅) stands for ensemble average, upper dot ̇𝑎

denotes a time derivative of 𝑎,𝐴󸀠(𝑏) represents the derivative
of 𝐴 with respect to 𝑏, 𝛿(⋅) is Dirac delta function, and 𝑓 ∗ 𝑔

represents the convolution of 𝑓 and 𝑔.

2. Two-State Model of Bistable Systems

We consider the overdamped motion of a Brownian particle
in a bistable potential in the presence of noise and periodic
forcing [21, 22]. The system can be presented by Fokker-
Planck equation. Consider

̇𝑥 (𝑡) = −𝑈
󸀠

(𝑥) + 𝐴
0
cos (Ω𝑡) + 𝜉 (𝑡) , (1)

where𝑥 is the position of Brownian particle,𝑈(𝑥) denotes the
reflection-symmetric quartic potential,

𝑈 (𝑥) = −
𝑎

2
𝑥
2

+
𝑏

4
𝑥
4

, (2)

𝜉(𝑡) denotes a zero-mean, Gaussian white noise with variance
2𝐷, and 𝐴

0
cos(Ω𝑡) is periodic forcing. The potential𝑈(𝑥) is

bistable with minima located at ±𝑥
𝑚
, with 𝑥

𝑚
= (𝑎/𝑏)

1/2. The
height of the potential barrier between the minima is given
by Δ𝑈 = 𝑎

2

/4𝑏.
To simplify the problem in this paper we discuss two-

state model [23, 24] that epitomizes the class of symmetric
bistable systems introduced. Such a discretemodel under cer-
tain restrictions renders an accurate representation of most
continuous bistable systems. Let us consider a symmetric
unperturbed system that switches between two discrete states
±𝑚
𝑥
. We define 𝑛

±
(𝑡) to be the probabilities that the system

occupies either state ± at time 𝑡; that is, 𝑥(𝑡) = ±𝑥
𝑚
. Then

Periodic
forcing

Noise

Noise

Bistable
component 1

Bistable
component M

Bistable
component 2

Noise
Output

A0cos (Ωt)
z(t)

𝜉1(t)

𝜉2(t)

𝜉M(t)

x1(t)

x2(t)

xM(t)

...

∑

M

Figure 1: The parallel bistable array with 𝑀 independent compo-
nents.

the power spectral density of this symmetric bistable system
commonly reported in the literature [21] is

𝑆 (𝜔) = [1 −
1

2
(
𝐴
0
𝑥
𝑚

𝐷
)

2
4𝑟
2

𝑘

4𝑟
2

𝑘
+ Ω2

] ×
4𝑟
𝑘
𝑥
2

𝑚

4𝑟
2

𝑘
+ 𝜔2

+
𝜋

2
(
𝐴
0
𝑥
𝑚

𝐷
)

2

×
4𝑟
𝑘
𝑥
2

𝑚

4𝑟
2

𝑘
+ Ω2

[𝛿 (𝜔 − Ω) + 𝛿 (𝜔 + Ω)] ,

(3)

in which Kramers rate

𝑟
𝑘
=

1

√2𝜋

exp(−Δ𝑈
𝐷

) . (4)

It is rate of transitions between the neighboring potential
wells caused by the fluctuational forces.

Since the noise in the output of the system is no longer
Gaussian, the definition mean2/variance for SNR is not
suitable in this system. Here we adopt the definition for input
and output SNR according to [21] as follow:

SNR =

2 [lim
Δ𝜔→0

∫
Ω+Δ𝜔

Ω−Δ𝜔

𝑆 (𝜔) 𝑑𝜔]

𝑆
𝑁
(Ω)

.
(5)

For the weak signal (𝐴
0
𝑥
𝑚

≪ Δ𝑈), we can omit high
order items; then the output SNR for this symmetric bistable
system is approximately

SNR = 𝜋(
𝐴
0
𝑥
𝑚

𝐷
)

2

𝑟
𝑘
. (6)

3. Parallel Bistable Array with Independent
Components

3.1. Proposed Array and Its Output SNR. In this section,
we discuss the parallel array bistable system and its SR
performance.

We consider the parallel array with 𝑀 components in
Figure 1. Each component has a receiving sensor and a
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processing property as described in the last section. We
suppose that the receiving time difference Δ𝑡 ≪ 𝑇

Ω
= 2𝜋/Ω

but there still is a considerable distance between every two
different components. This can be set by a suitable Ω. Then
the input periodic signal can be taken as 𝐴

0
cos(Ω𝑡) for

all the components. And the noise 𝜉
𝑖
(𝑡) is independent and

identically distributed (IID) for each input, and the output is
𝑥
𝑖
(𝑡) for the 𝑖th component; then all the outputs are averaged

and the response of the array is given as

𝑧 (𝑡) =
∑
𝑀

𝑖=1
𝑥
𝑖
(𝑡)

𝑀
. (7)

In the following of this section, we present the main
results with respect to the parallel array bistable system. Two
theorems form the SR performance analysis on output SNR.
We utilize four lemmas for proving the theorems. The proofs
of all the theorems and lemmas of this section are relegated
to appendices.

Theorem 1. For the parallel bistable system with 𝑀 compo-
nents, the output SNR is

SNR(𝑀)

=
𝜋(𝐴
0
𝑥
𝑚
/𝐷)
2

𝑟
𝑘

− (1/2) (𝐴
0
𝑥
𝑚
/𝐷)
2

(4𝑟
2

𝑘
/ (4𝑟
2

𝑘
+ Ω2)) − 𝐻 (𝑀)

,

(8)

where

𝐻(𝑀) = {
𝐹 (𝑀) , if 𝑀 is even
𝐺 (𝑀) , if 𝑀 is odd,

(9)

in which

𝐹 (𝑀) = (
1

2
)

𝑀𝑀/2−1

∑

𝑘=0

2𝑘 −𝑀

𝑀
(
𝑀

𝑘
)

×

{

{

{

𝑘

∑

𝑖=0

𝑀−𝑘

∑

𝑗=0

(
𝑘

𝑖
)(

𝑀 − 𝑘

𝑗
)𝐵
𝑀−𝑖−𝑗

𝑓 (𝑀 − 𝑖 − 𝑗)

× [(−1)
𝑀−𝑘−𝑗

+ (−1)
𝑘−𝑖

]

}

}

}

,

𝐺 (𝑀) = (
1

2
)

𝑀 (𝑀−1)/2

∑

𝑘=0

2𝑘 −𝑀

𝑀
(
𝑀

𝑘
)

×

{

{

{

𝑘

∑

𝑖=0

𝑀−𝑘

∑

𝑗=0

(
𝑘

𝑖
)(

𝑀 − 𝑘

𝑗
)𝐵
𝑀−𝑖−𝑗

𝑓 (𝑀 − 𝑖 − 𝑗)

× [(−1)
𝑀−𝑖−𝑗

+ (−1)
𝑘−𝑖

]

}

}

}

.

(10)

In the above equations,

𝐵 =
2𝑟
𝑘
(𝐴
0
𝑥
𝑚
/𝐷)

√(4𝑟
2

𝑘
+ Ω2)

,

𝑓 (𝑥) =
Γ ((𝑥 + 1) /2)

√𝜋Γ (𝑥/2 + 1)
,

(11)

and Γ is gamma function and defined as

Γ (𝑥) = ∫

∞

0

𝑡
𝑥−1

𝑒
−𝑡

𝑑𝑡. (12)

The theory is based on the following lemmas.

Lemma 2. The pdf of 𝑧(𝑡) is

𝑝
𝑧
(𝑧, 𝑡 | 𝑧

0
, 𝑡
0
)

=

𝑀

∑

𝑚=0

(
𝑀

𝑚
)𝑛
𝑚

+
(𝑡) 𝑛
𝑀−𝑚

−
(𝑡) 𝛿 (𝑧 −

2𝑚 −𝑀

𝑀
𝑥
𝑚
) .

(13)

Lemma 3. If𝑀 is even, the autocorrelation function of 𝑧(𝑡) is

𝑅
𝑧
(𝑡 + 𝜏, 𝑡)

= 𝑥
2

𝑚
{[− exp (−2𝑟

𝑘
|𝜏|) 𝜅
2

(𝑡) + 𝜅 (𝑡 + 𝜏)] 𝜅 (𝑡)

− (
1

2
)

𝑀

exp (−2𝑟
𝑘
|𝜏|)

×

𝑀/2−1

∑

𝑘=0

2𝑘 −𝑀

𝑀
(
𝑀

𝑘
)

×

𝑘

∑

𝑖=0

𝑀−𝑘

∑

𝑗=0

(
𝑘

𝑖
)(

𝑀 − 𝑘

𝑗
) × 𝐵

𝑀−𝑖−𝑗

× cos (Ω𝑡 − 𝜑)𝑀−𝑖−𝑗

× [(−1)
𝑀−𝑘−𝑗

+ (−1)
𝑘−𝑖

]} ,

(14)

where

𝜅 (𝑡) = 𝐵 cos (Ω𝑡 − 𝜑) . (15)
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Lemma 4. If𝑀 is odd, the autocorrelation function of 𝑧(𝑡) is

𝑅
𝑧
(𝑡 + 𝜏, 𝑡)

= 𝑥
2

𝑚
{[− exp (−2𝑟

𝑘
|𝜏|) 𝜅
2

(𝑡) + 𝜅 (𝑡 + 𝜏)] 𝜅 (𝑡)

− (
1

2
)

𝑀

exp (−2𝑟
𝑘
|𝜏|)

×

(𝑀−1)/2

∑

𝑘=0

2𝑘 −𝑀

𝑀
(
𝑀

𝑘
)

×

𝑘

∑

𝑖=0

𝑀−𝑘

∑

𝑗=0

(
𝑘

𝑖
)(

𝑀 − 𝑘

𝑗
) × 𝐵

𝑀−𝑖−𝑗

× cos (Ω𝑡 − 𝜑)𝑀−𝑖−𝑗

× [(−1)
𝑀−𝑖−𝑗

+ (−1)
𝑘−𝑖

]} .

(16)

Lemma 5. The power spectral density of the output of the
parallel array bistable system with𝑀 components is

𝑆 (𝜔) = −[
1

2
(
𝐴
0
𝑥
𝑚

𝐷
)

2
4𝑟
2

𝑘

4𝑟
2

𝑘
+ Ω2

+ 𝐻 (𝑀)]
4𝑟
𝑘
𝑥
2

𝑚

4𝑟
2

𝑘
+ 𝜔2

+
𝜋

2
(
𝐴
0
𝑥
𝑚

𝐷
)

2
4𝑟
2

𝑘
𝑥
2

𝑚

4𝑟
2

𝑘
+ 𝜔2

× [𝛿 (𝜔 − Ω) + 𝛿 (𝜔 + Ω)] .

(17)

Theorem 6. For the weak signal (𝐴
0
𝑥
𝑚
≪ Δ𝑈), the output

SNR for this parallel bistable system with two components is
approximately

SNR = 2𝜋(
𝐴
0
𝑥
𝑚

𝐷
)

2

𝑟
𝑘
. (18)

3.2. Remark. We conclude this section with three remarks.
Our first remark is about the simplified noise. The noise
𝜉
𝑖
(𝑡) in practical problems is the sum of two parts in each

component. The first part is the receiving noise buried in the
receiving signal, and the second part is the tuning noise. Here
we suppose that the receiving noise and the tuning noise are
independent Gaussian white noise. And the variance of the
tuning noise can be set by us. Then we can simplify the noise
in each component as Gaussianwhite noise with 2𝐷 variance.

Our second remark is to point out that the proposed
array is different from the traditional SR array [20] due to its
independent sensors, and it is also different from traditional
array signal processing [7] since the shape of the array does
not affect the performance.Wenot only proposed an𝑀-array
system for bistable SR, but also provided a rigorous proof for
the output SNR which is nontrivial as evidenced. And the
results also divide𝑀 into odd and even situations.

Our third remark is that Theorem 1 can arrive to (6)
by setting 𝑀 = 1 and Theorem 6 by setting 𝑀 = 2. In
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Figure 2: Output SNR as a function of noise variance with𝐴
0
= 0.1,

𝑎 = 1, 𝑏 = 1, and 𝑓 = 100.

fact, Figure 1 shows that if 𝑀 = 1, the system without
array becomes the conventional single bistable SR system.
The equivalence is also shown in Figure 2 on the same other
parameters.

4. Simulation Results

We now provide examples to illustrate the properties of our
proposed bistable parallel array system.

4.1. SR Effect and the Influence of 𝑀. For illustration of the
possibility of an SR in the output SNR, we consider two
different systems based on the theory of (8) for the proposed
array: case A: 𝑎 = 1, 𝑏 = 1, 𝐴 = 0.1, and 𝑓 = 100 in
Figure 3(a); case B: 𝑎 = 1.5, 𝑏 = 1, 𝐴 = 1, and 𝑓 = 10

in Figure 3(b). Though the two systems are set by different
parameters, they both display evolutions of the resulting
output SNR of (8), as a function of the noise variance, in
some typical conditions. Since𝐷 cannot be zero in (8), all the
curves start from a small amount 𝐷 close to zero. As noise
power increases, the SR peak rises, shifts to higher noises,
and then subsides. This result shows us that if the input noise
variance is smaller than the peak point, the tuning noise
can be added to improve the output SNR performance. For
increasing 𝑀, the efficiency of the array and the maximum
output SNR increase. This demonstrates that the array of
nonlinear devices can play the role of an SNR amplifier, in
definite conditions.

At 𝑀 = 2, SR effect gets more pronounced than at
𝑀 = 1which is the traditional SR bistable system.The output
SNR is twice the output of the traditional bistable system
according toTheorem 6. As𝑀 increases, SR effect gets more
pronounced. However if 𝑀 is even (𝑀 ≥ 2), the output
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Figure 3: SNR curve changes as noise power. (a) 𝑎 = 1, 𝑏 = 1, 𝐴 = 0.1, and 𝑓 = 100. (b) 𝑎 = 1.5, 𝑏 = 1, 𝐴 = 1, and 𝑓 = 10.
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Figure 4: Output SNR with 𝑎 = 1, 𝑏 = 1, 𝐴 = 0.02, and 𝑓 = 0.01.
The solid lines are from the theory of (8). The sets of discrete points
(∘) are fromMonte Carlo simulations.

SNR between𝑀 and𝑀+1 array is very approximate leaving
very small difference.This is because, for an even𝑀, we have
(𝐺(𝑀 + 1) − 𝐹(𝑀))/(𝐹(𝑀 + 2) − 𝐺(𝑀 + 1)) ≈ 0. Then
SNR(𝑀+1)/SNR(𝑀) ≈ 1. And the increment grows smaller
even if𝑀 is only odd or even with increasing𝑀.

The results of Figure 3 reveal that the characteristic
behaviors that identify the array bistable SR are precisely
exhibited by the evolutions of the SNR. However for equal
𝑀, SNR displays different evolutions in the two figures

in Figure 3. This is caused by the other parameters of the
system.We will show the influence of these parameters in the
following examples.

We also offered a validation by a Monte Carlo simulation
of the proposed system in Figure 4 by setting 𝑎 = 1, 𝑏 = 1,
𝐴 = 0.02, and 𝑓 = 0.01. The results coincided with (8).

4.2. SR Effect and the Influence of Signal Amplitude. We
consider, in Figure 5, the transmission by the array of a
sinusoidal wave 𝑠(𝑡) = 𝐴

0
cos(2𝜋𝑡/𝑇𝑠) buried in noise

based on the theory of (8). The values of the amplitude 𝐴
0

determine how the input 𝑠(𝑡) is seen by the array. We choose
a parallel array with 𝑎 = 1, 𝑏 = 1, 𝑀 = 38, and 𝑓 = 100.
Figure 5 shows various evolutions of the SNR at the output of
the array, for different values of the constant𝐴

0
. For the value

of 𝐴
0
tested in Figure 5, the performance for the periodic

input 𝑠(𝑡) is always SR. With increasing 𝐴
0
, as the level

of noise variance is increased, the output SNR experiences
nonmonotonic evolutions. In this experiment, we also set
𝐴
0
to be very large numbers and very small numbers under

𝐴
0
> 0. The outputs of the system all perform the SR effect.

And as 𝐴
0
grows, the effect gets more enhanced. We relate

these results to the phenomenon of the proposed parallel
array SR, by which nonlinear transmission or processing of
signals with arbitrary amplitude can be improved by adding
noises in arrays.

4.3. SR Effect and the Influence of Signal Frequency. In this
example, we consider 𝐴

0
= 0.1, 𝑎 = 1.5, 𝑏 = 1, and𝑀 = 33

array system based on the theory of (8). Let 𝑓 = Ω/2𝜋. We
choose different𝑓 to see the influence of the signal frequency.
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𝑏 = 1,𝑀 = 38, and 𝑓 = 100.
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𝑎 = 1.5, 𝑏 = 1, and𝑀 = 33.

The output SNR versus noise variance of the two systems is
given in Figure 6.Weobserve that the output SNRgrows from
near zero point to the maximum point and then goes down
with different frequency tested in this example. The noise
variances of maximum output SNR points in this case are
slightly different.With the growing of frequency the SR effect
becomes more enhanced. However, when 𝑓 is big enough,
the growth of 𝑓 does not affect the output SNR. No matter
how we increase the frequency, the system stays the same at
the extremal SNR. This property also helps us to choose a

suitable signal frequency under our hypothesis Δ𝑡 ≪ 1/𝑓. In
our experiment when 𝑓 < 0.2 the system loses the SR effect.
This phenomenon also shows that the system does not have
the SR effect when the signal is DC signal, since we can take
the periodic signal as DC signal, if the frequency of the signal
is extremely low.

4.4. SR Effect and the Influence of SystemParameters. Figure 7
shows various evolutions of the SNR at the output of the array,
for different values of system parameters 𝑎 and 𝑏 based on the
theory of (8). In Figure 7(a) to observe the influence of 𝑎, we
set 𝐴 = 0.1, 𝑏 = 1.5, 𝑓 = 10, and𝑀 = 33. As we can see from
the figure, the smaller the parameter 𝑎 is, the stronger the SR
effect is. When 𝑎 becomes big enough, the system loses the
SR effect. In fact, in this condition the output SNR is nearly
zero.

In Figure 7(b) to observe the influence of 𝑏, we set 𝐴 =

0.1, 𝑎 = 1.5, 𝑓 = 10, and 𝑀 = 33, the same as Figure 7(a)
except parameters 𝑎 and 𝑏. The result of the output SNR
versus noise variance indicates that the bigger the parameter
𝑏, the stronger the SR effect. This is the opposite to the
influence of 𝑎, because 𝑏 has a positive effect on reflection-
symmetric quartic potential, while 𝑎 has a negative one. And
comparing the two figures, the influence of 𝑎 outweighs that
of 𝑏, and this is obvious due to Kramers rate.

4.5. Input-Output SNR Gain. We still adopt the definition
for input and output SNR in (5). Then input SNR for the
sinusoidal signal and a zero-mean, Gaussian white noise
SNRin = 𝜋𝐴

2

/𝐷.The input-output SNR gain is defined below.
Consider

𝐺SNR =
SNRout
SNRin

. (19)

In this experiment, we let 𝐴
0
= 0.1, 𝑎 = 1, 𝑏 = 1, and 𝑓 = 1.

In Figure 8, the 𝐺SNR grows first and then decreases with
increased noise variance. And the result in Figure 8 shows the
array system outweighs the signal bistable system on SR effect
and the 𝐺SNR can exceed unity for𝑀 > 3 in this experiment.
It means that the array can improve the signal-to-noise ratio
(SNR) by noise incoherently. The improvement is measured
by the array gain. For 𝑀 = 50, the maximum of 𝐺SNR is
2.95. Thus, this SR array with independent sensors provides a
preferable strategy for processing periodic signals to the array
without independent sensors which exceeds unity much less
[19].

5. Conclusion

In this work, we study the design of structure of bistable
system aimed at enhancing the SR effect to improve the
performance, driven by sinusoidal signal and Gaussian white
noise. We first proposed a parallel array bistable system
with 𝑀 independent components and averaged output. We
further deduced the output signal-to-noise ratio (SNR) for
this parallel array system to analyse the performance of this
SR system. Our examples not only show the proposed system
reserves the SR property, but also give an analysis of different
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Figure 7: Output SNR as a function of noise variance. (a) 𝐴 = 0.1, 𝑏 = 1.5, 𝑓 = 10, and𝑀 = 33. (b) 𝐴 = 0.1, 𝑎 = 1.5, 𝑓 = 10, and𝑀 = 33.
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Figure 8: Output SNR gain as a function of noise variance, with
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= 0.1, 𝑎 = 1, 𝑏 = 1, and 𝑓 = 1.

parameter influences on the performance of the proposed
parallel array, indicating a promising application in array
signal processing.

Appendices

A. Proofs of Lemmas 2–5 and Theorem 1
Proof of Lemma 2. From the structure of the parallel array
bistable system, the output of the system is

𝑧 (𝑡) =
∑
𝑀

𝑖=1
𝑥
𝑖
(𝑡)

𝑀
. (A.1)

For the 𝑖th bistable component, the pdf of 𝑥
𝑖
(𝑡) is

𝑝
𝑥
(𝑥
𝑖
, 𝑡 | 𝑥
0
, 𝑡
0
) = 𝑛
+
(𝑡) 𝛿 (𝑥

𝑖
− 𝑥
𝑚
) + 𝑛
−
(𝑡) 𝛿 (𝑥

𝑖
+ 𝑥
𝑚
) .

(A.2)

Since 𝑥
𝑖
(𝑡) is independent in statistics for 𝑖 = 1, 2, . . . ,𝑀,

the pdf of the sum of the outputs of 𝑀 components is the
convolution of each component.Thendue to property of delta
function, we simplify the result of the convolution and obtain
the following pdf of 𝑧(𝑡). Consider

𝑝
𝑧
(𝑧, 𝑡 | 𝑧

0
, 𝑡
0
)

=

𝑀

∑

𝑚=0

(
𝑀

𝑚
)𝑛
𝑚

+
(𝑡) 𝑛
𝑀−𝑚

−
(𝑡) 𝛿 (𝑧 −

2𝑚 −𝑀

𝑀
𝑥
𝑚
) .

(A.3)

Proof of Lemma 3. Based on Lemma 2 and the general defini-
tion of autocorrelation function, we can deduce the autocor-
relation function of 𝑧(𝑡),

𝑅
𝑧
(𝑡 + 𝜏, 𝑡)

= ∬

+∞

−∞

𝑧
1
𝑧
2
𝑝
𝑧
(𝑧
1
, 𝑡 + 𝜏 | 𝑧

2
, 𝑡)

× 𝑝
𝑧
(𝑧
2
, 𝑡 | 𝑧
0
, 𝑡
0
) 𝑑𝑧
1
𝑑𝑧
2

= ∬

+∞

−∞

𝑧
1
𝑧
2
×

𝑀

∑

𝑚=0

(
𝑀

𝑚
)𝑛
𝑚

+
(𝑡 + 𝜏 | 𝑧

2
, 𝑡)
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× 𝑛
𝑀−𝑚

−
(𝑡 + 𝜏 | 𝑧

2
, 𝑡)

× 𝛿 (𝑧
1
−
2𝑚 −𝑀

𝑀
𝑥
𝑚
)

×

𝑀

∑

𝑘=0

(
𝑀

𝑘
)𝑛
𝑘

+
(𝑡 | 𝑧
0
, 𝑡
0
)

× 𝑛
𝑀−𝑘

−
(𝑡 | 𝑧
0
, 𝑡
0
)

× 𝛿(𝑧
2
−
2𝑘 −𝑀

𝑀
𝑥
𝑚
)𝑑𝑧
1
𝑑𝑧
2

= 𝑥
2

𝑚

𝑀

∑

𝑚=0

2𝑚 −𝑀

𝑀
(
𝑀

𝑚
)

× 𝑛
𝑚

+
(𝑡 + 𝜏 |

2𝑘 −𝑀

𝑀
𝑥
𝑚
, 𝑡)

× 𝑛
𝑀−𝑚

−
(𝑡 + 𝜏 |

2𝑘 −𝑀

𝑀
𝑥
𝑚
, 𝑡)

×

𝑀

∑

𝑘=0

2𝑘 −𝑀

𝑀
(
𝑀

𝑘
)𝑛
𝑘

+
(𝑡 | 𝑧
0
, 𝑡
0
)

× 𝑛
𝑀−𝑘

−
(𝑡 | 𝑧
0
, 𝑡
0
) .

(A.4)

The last step follows from the property of delta function.
Since

𝑁

∑

𝑖=0

(
𝑁

𝑖
)
2𝑖 − 𝑁

𝑁
𝑥
𝑖

𝑦
𝑁−𝑖

= (𝑥 + 𝑦)
𝑁−1

(𝑥 − 𝑦) , (A.5)

andmaking use of the normalization condition 𝑛
+
(𝑡)+𝑛
−
(𝑡) =

1, (A.4) becomes

𝑅
𝑧
(𝑡 + 𝜏, 𝑡)

= 𝑥
2

𝑚
[𝑛
+
(𝑡 + 𝜏 |

2𝑘 −𝑀

𝑀
𝑥
𝑚
, 𝑡)

−𝑛
−
(𝑡 + 𝜏 |

2𝑘 −𝑀

𝑀
𝑥
𝑚
, 𝑡)]

×

𝑀

∑

𝑘=0

2𝑘 −𝑀

𝑀
(
𝑀

𝑘
)𝑛
𝑘

+
(𝑡 | 𝑧
0
, 𝑡
0
) 𝑛
𝑀−𝑘

−
(𝑡 | 𝑧
0
, 𝑡
0
)

= 𝑥
2

𝑚
[2𝑛
+
(𝑡 + 𝜏 |

2𝑘 −𝑀

𝑀
𝑥
𝑚
, 𝑡) − 1]

×

𝑀

∑

𝑘=0

2𝑘 −𝑀

𝑀
(
𝑀

𝑘
)𝑛
𝑘

+
(𝑡 | 𝑧
0
, 𝑡
0
) 𝑛
𝑀−𝑘

−
(𝑡 | 𝑧
0
, 𝑡
0
) .

(A.6)

If 𝑀 is even, the range (0,𝑀) of 𝑘 can be divided into
(0,𝑀/2 − 1) and (𝑀/2,𝑀). If 𝑘 = 𝑀/2, it is obvious that
𝑅
𝑧
(𝑡 + 𝜏, 𝑡) = 0. Then

𝑅
𝑧
(𝑡 + 𝜏, 𝑡)

= 𝑥
2

𝑚
{[2𝑛
+
(𝑡 + 𝜏 | −, 𝑡) − 1]

×

𝑀/2−1

∑

𝑘=0

2𝑘 −𝑀

𝑀
(
𝑀

𝑘
)𝑛
𝑘

+
(𝑡 | 𝑧
0
, 𝑡
0
)

× 𝑛
𝑀−𝑘

−
(𝑡 | 𝑧
0
, 𝑡
0
)

+ [2𝑛
+
(𝑡 + 𝜏 | +, 𝑡) − 1]

×

𝑀

∑

𝑘=𝑀/2+1

2𝑘 −𝑀

𝑀
(
𝑀

𝑘
)𝑛
𝑘

+
(𝑡 | 𝑧
0
, 𝑡
0
)

× 𝑛
𝑀−𝑘

−
(𝑡 | 𝑧
0
, 𝑡
0
)} .

(A.7)

From [21], we have

𝑛
+
(𝑡 + 𝜏 | −, 𝑡)

=
1

2
{exp (−2𝑟

𝑘
|𝜏|) [−1 − 𝜅 (𝑡)] + 1 + 𝜅 (𝑡 + 𝜏)} ,

𝑛
+
(𝑡 + 𝜏 | +, 𝑡)

=
1

2
{exp (−2𝑟

𝑘
|𝜏|) [1 − 𝜅 (𝑡)] + 1 + 𝜅 (𝑡 + 𝜏)} ,

(A.8)

where
𝜅 (𝑡) = 𝐵 cos (Ω𝑡 − 𝜑) ,

𝐵 =
2𝑟
𝑘
(𝐴
0
𝑥
𝑚
/𝐷)

√(4𝑟
2

𝑘
+ Ω2)

.
(A.9)

𝑛
+
(𝑡 + 𝜏 | −, 𝑡) and 𝑛

+
(𝑡 + 𝜏 | +, 𝑡) are 𝛼 < 0 and 𝛼 > 0 in

𝑛
+
(𝑡 + 𝜏 | 𝛼, 𝑡), respectively [21].
It greatly simplifies in the stationary limit 𝑡

0
→ −∞,

lim
𝑡0→−∞

𝑅
𝑧
(𝑡 + 𝜏, 𝑡)

= 𝑥
2

𝑚
{{exp (−2𝑟

𝑘
|𝜏|) [−1 − 𝜅 (𝑡)] + 𝜅 (𝑡 + 𝜏)}

×

𝑀/2−1

∑

𝑘=0

2𝑘 −𝑀

𝑀
(
𝑀

𝑘
)𝑛
𝑘

+
(𝑡 | 𝑧
0
, 𝑡
0
)

× 𝑛
𝑀−𝑘

−
(𝑡 | 𝑧
0
, 𝑡
0
)

+ {exp (−2𝑟
𝑘
|𝜏|) [1 − 𝜅 (𝑡)] + 𝜅 (𝑡 + 𝜏)}

×

𝑀

∑

𝑘=𝑀/2+1

2𝑘 −𝑀

𝑀
(
𝑀

𝑘
)𝑛
𝑘

+
(𝑡 | 𝑧
0
, 𝑡
0
)
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×𝑛
𝑀−𝑘

−
(𝑡 | 𝑧
0
, 𝑡
0
)}

= 𝑥
2

𝑚
{[− exp (−2𝑟

𝑘
|𝜏|) 𝜅
2

(𝑡) + 𝜅 (𝑡 + 𝜏)] 𝜅 (𝑡)

− exp (−2𝑟
𝑘
|𝜏|)

×

𝑀/2−1

∑

𝑘=0

2𝑘 −𝑀

𝑀
(
𝑀

𝑘
)𝑛
𝑘

+
(𝑡 | 𝑧
0
, 𝑡
0
)

× 𝑛
𝑀−𝑘

−
(𝑡 | 𝑧
0
, 𝑡
0
)

+ exp (−2𝑟
𝑘
|𝜏|)

×

𝑀

∑

𝑘=𝑀/2+1

2𝑘 −𝑀

𝑀
(
𝑀

𝑘
)𝑛
𝑘

+
(𝑡 | 𝑧
0
, 𝑡
0
)

×𝑛
𝑀−𝑘

−
(𝑡 | 𝑧
0
, 𝑡
0
)} .

(A.10)

Take

lim
𝑡0→−∞

𝑛
+
(𝑡 | 𝑧
0
, 𝑡
0
) =

1

2
[1 + 𝜅 (𝑡)] ,

lim
𝑡0→−∞

𝑛
−
(𝑡 | 𝑧
0
, 𝑡
0
) =

1

2
[1 − 𝜅 (𝑡)]

(A.11)

into (A.10) to obtain

lim
𝑡0→−∞

𝑅
𝑧
(𝑡 + 𝜏, 𝑡)

= 𝑥
2

𝑚
{[− exp (−2𝑟

𝑘
|𝜏|) 𝜅
2

(𝑡) + 𝜅 (𝑡 + 𝜏)] 𝜅 (𝑡)

− exp (−2𝑟
𝑘
|𝜏|)

×

𝑀/2−1

∑

𝑘=0

2𝑘 −𝑀

𝑀
(
𝑀

𝑘
){

1

2
[1 + 𝜅 (𝑡)]}

𝑘

× {
1

2
[1 − 𝜅 (𝑡)]}

𝑀−𝑘

+ exp (−2𝑟
𝑘
|𝜏|)

×

𝑀

∑

𝑘=𝑀/2+1

2𝑘 −𝑀

𝑀
(
𝑀

𝑘
)

× {
1

2
[1 + 𝜅 (𝑡)]}

𝑘

×{
1

2
[1 − 𝜅 (𝑡)]}

𝑀−𝑘

}

= 𝑥
2

𝑚
{[− exp (−2𝑟

𝑘
|𝜏|) 𝜅
2

(𝑡) + 𝜅 (𝑡 + 𝜏)] 𝜅 (𝑡)

− (
1

2
)

𝑀

exp (−2𝑟
𝑘
|𝜏|)

× {

𝑀/2−1

∑

𝑘=0

2𝑘 −𝑀

𝑀
(
𝑀

𝑘
) [1 + 𝜅 (𝑡)]

𝑘

× [1 − 𝜅 (𝑡)]
𝑀−𝑘

−

𝑀

∑

𝑘=𝑀/2+1

2𝑘 −𝑀

𝑀
(
𝑀

𝑘
)

× [1 + 𝜅 (𝑡)]
𝑘

× [1 − 𝜅 (𝑡)]
𝑀−𝑘

}} .

(A.12)

The last part can be reexpressed as

𝑀/2−1

∑

𝑘=0

2𝑘 −𝑀

𝑀
(
𝑀

𝑘
) [1 + 𝜅 (𝑡)]

𝑘

[1 − 𝜅 (𝑡)]
𝑀−𝑘

−

𝑀/2−1

∑

𝑘=0

𝑀− 2𝑘

𝑀
(

𝑀

𝑀− 𝑘
) [1 + 𝜅 (𝑡)]

𝑀−𝑘

[1 − 𝜅 (𝑡)]
𝑘

=

𝑀/2−1

∑

𝑘=0

2𝑘 −𝑀

𝑀
(
𝑀

𝑘
)

×

𝑘

∑

𝑖=0

𝑀−𝑘

∑

𝑗=0

(
𝑘

𝑖
)(

𝑀 − 𝑘

𝑗
) 𝜅(𝑡)

𝑀−𝑖−𝑗

× [(−1)
𝑀−𝑘−𝑗

+ (−1)
𝑘−𝑖

]

=

𝑀/2−1

∑

𝑘=0

2𝑘 −𝑀

𝑀
(
𝑀

𝑘
)

×

𝑘

∑

𝑖=0

𝑀−𝑘

∑

𝑗=0

(
𝑘

𝑖
)(

𝑀 − 𝑘

𝑗
)𝐵
𝑀−𝑖−𝑗

× cos (Ω𝑡 − 𝜑)𝑀−𝑖−𝑗

× [(−1)
𝑀−𝑘−𝑗

+ (−1)
𝑘−𝑖

] .

(A.13)
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Then we have

𝑅
𝑧
(𝑡 + 𝜏, 𝑡)

= 𝑥
2

𝑚
{[− exp (−2𝑟

𝑘
|𝜏|) 𝜅
2

(𝑡) + 𝜅 (𝑡 + 𝜏)] 𝜅 (𝑡)

− (
1

2
)

𝑀

exp (−2𝑟
𝑘
|𝜏|)

×

𝑀/2−1

∑

𝑘=0

2𝑘 −𝑀

𝑀
(
𝑀

𝑘
)

×

𝑘

∑

𝑖=0

𝑀−𝑘

∑

𝑗=0

(
𝑘

𝑖
)(

𝑀 − 𝑘

𝑗
)𝐵
𝑀−𝑖−𝑗

× cos (Ω𝑡 − 𝜑)𝑀−𝑖−𝑗

× [(−1)
𝑀−𝑘−𝑗

+ (−1)
𝑘−𝑖

]} .

(A.14)

Proof of Lemma 4. If 𝑀 is odd, we can prove Lemma 4 in
a similar manner as Lemma 3. After some mathematical
manipulations, we obtain the following:

𝑅
𝑧
(𝑡 + 𝜏, 𝑡)

= 𝑥
2

𝑚
{[− exp (−2𝑟

𝑘
|𝜏|) 𝜅
2

(𝑡) + 𝜅 (𝑡 + 𝜏)] 𝜅 (𝑡)

− (
1

2
)

𝑀

exp (−2𝑟
𝑘
|𝜏|)

×

𝑀−1/2

∑

𝑘=0

2𝑘 −𝑀

𝑀
(
𝑀

𝑘
)

×

𝑘

∑

𝑖=0

𝑀−𝑘

∑

𝑗=0

(
𝑘

𝑖
)(

𝑀 − 𝑘

𝑗
)𝐵
𝑀−𝑖−𝑗

× cos (Ω𝑡 − 𝜑)𝑀−𝑖−𝑗

× [(−1)
𝑀−𝑖−𝑗

+ (−1)
𝑘−𝑖

]} .

(A.15)

Proof of Lemma 5. It is obvious that the autocorrelation func-
tion depends on both times 𝑡 + 𝜏 and 𝑡. However, in real
experiments 𝑡 represents the time set for the trigger in the
data acquisition procedure. Typically, the averages implied by
the definition of the autocorrelation function are taken over
many sampling records of the signal 𝑥(𝑡), triggered at a large
number of times 𝑡within one period of the forcing𝑇

Ω
. Hence,

the corresponding phases of the input signal, 𝜃 = Ω𝑡 + 𝜓, are

uniformly distributed between 0 and 2𝜋. This corresponds
to averaging autocorrelation function as with respect to 𝑡

uniformly over an entire forcing period, whence if𝑀 is even,

𝑅
𝑧
(𝜏)

=
1

𝑇
Ω

∫

𝑇Ω

0

𝑅
𝑧
(𝑡 + 𝜏, 𝑡) 𝑑𝑡

=
1

𝑇
Ω

∫

𝑇Ω

0

𝑥
2

𝑚

× {[− exp (−2𝑟
𝑘
|𝜏|) 𝜅
2

(𝑡) + 𝜅 (𝑡 + 𝜏)] 𝜅 (𝑡)

− (
1

2
)

𝑀

exp (−2𝑟
𝑘
|𝜏|)

×

𝑀/2−1

∑

𝑘=0

2𝑘 −𝑀

𝑀
(
𝑀

𝑘
)

×

𝑘

∑

𝑖=0

𝑀−𝑘

∑

𝑗=0

(
𝑘

𝑖
)(

𝑀 − 𝑘

𝑗
)𝐵
𝑀−𝑖−𝑗

× cos (Ω𝑡 − 𝜑)𝑀−𝑖−𝑗

× [(−1)
𝑀−𝑘−𝑗

+ (−1)
𝑘−𝑖

]}𝑑𝑡

= 𝑥
2

𝑚
{−

1

2
exp (−2𝑟

𝑘
|𝜏|) 𝐵
2

+
1

2
𝐵
2 cos (Ω𝜏) − (1

2
)

𝑀

exp (−2𝑟
𝑘
|𝜏|)

×

𝑀/2−1

∑

𝑘=0

2𝑘 −𝑀

𝑀

× (
𝑀

𝑘
)

𝑘

∑

𝑖=0

𝑀−𝑘

∑

𝑗=0

(
𝑘

𝑖
)(

𝑀 − 𝑘

𝑗
)

× 𝐵
𝑀−𝑖−𝑗

𝑓 (𝑀 − 𝑖 − 𝑗)

× [(−1)
𝑀−𝑘−𝑗

+ (−1)
𝑘−𝑖

]}

(A.16)

in which

𝑓 (𝑥) =
Γ ((𝑥 + 1) /2)

√𝜋Γ (𝑥/2 + 1)
,

Γ (𝑥) = ∫

∞

0

𝑡
𝑥−1

𝑒
−𝑡

𝑑𝑡.

(A.17)
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Then

𝑅
𝑧
(𝜏)

= 𝑥
2

𝑚
{− exp (−2𝑟

𝑘
|𝜏|)

1

2
𝐵
2

+
1

2
𝐵
2 cos (Ω𝜏) − exp (−2𝑟

𝑘
|𝜏|) 𝐹 (𝑀)} ,

(A.18)

where

𝐹 (𝑀)

= (
1

2
)

𝑀𝑀/2−1

∑

𝑘=0

2𝑘 −𝑀

𝑀
(
𝑀

𝑘
)

×

𝑘

∑

𝑖=0

𝑀−𝑘

∑

𝑗=0

(
𝑘

𝑖
)(

𝑀 − 𝑘

𝑗
)

× 𝐵
𝑀−𝑖−𝑗

𝑓 (𝑀 − 𝑖 − 𝑗)

× [(−1)
𝑀−𝑘−𝑗

+ (−1)
𝑘−𝑖

] .

(A.19)

Using Fourier transform of (A.18), we obtain the power
spectrum density under the condition that 𝑀 is even.
Consider

𝑆 (𝜔) =
4𝑟
𝑘
𝑥
2

𝑚

4𝑟
2

𝑘
+ 𝜔2

(−
1

2
𝐵
2

)

+
𝜋

2
𝑥
2

𝑚
𝐵
2

[𝛿 (𝜔 − Ω) + 𝛿 (𝜔 + Ω)]

−
4𝑟
𝑘
𝑥
2

𝑚

4𝑟
2

𝑘
+ 𝜔2

𝐹 (𝑀)

= −[
1

2
(
𝐴
0
𝑥
𝑚

𝐷
)

2
4𝑟
2

𝑘

4𝑟
2

𝑘
+ Ω2

+ 𝐹 (𝑀)]
4𝑟
𝑘
𝑥
2

𝑚

4𝑟
2

𝑘
+ 𝜔2

+
𝜋

2
(
𝐴
0
𝑥
𝑚

𝐷
)

2
4𝑟
2

𝑘
𝑥
2

𝑚

4𝑟
2

𝑘
+ Ω2

[𝛿 (𝜔 − Ω) + 𝛿 (𝜔 + Ω)] .

(A.20)

If𝑀 is odd, the method is similar. Consider

𝑅
𝑧
(𝜏)

=
1

𝑇
Ω

∫

𝑇Ω

0

𝑅
𝑧
(𝑡 + 𝜏, 𝑡) 𝑑𝑡

=
1

𝑇
Ω

× ∫

𝑇Ω

0

𝑥
2

𝑚

× {[− exp (−2𝑟
𝑘
|𝜏|) 𝜅
2

(𝑡)

+ 𝜅 (𝑡 + 𝜏)] 𝜅 (𝑡)

− (
1

2
)

𝑀

exp (−2𝑟
𝑘
|𝜏|)

×

(𝑀−1)/2

∑

𝑘=0

2𝑘 −𝑀

𝑀
(
𝑀

𝑘
)

×

𝑘

∑

𝑖=0

𝑀−𝑘

∑

𝑗=0

(
𝑘

𝑖
)(

𝑀 − 𝑘

𝑗
)

×𝐵
𝑀−𝑖−𝑗 cos (Ω𝑡 − 𝜑)𝑀−𝑖−𝑗

× [(−1)
𝑀−𝑖−𝑗

+ (−1)
𝑘−𝑖

]}𝑑𝑡

= 𝑥
2

𝑚
{−

1

2
exp (−2𝑟

𝑘
|𝜏|)

1

2
𝐵
2

+
1

2
𝐵
2 cos (Ω𝜏) − (1

2
)

𝑀

exp (−2𝑟
𝑘
|𝜏|)

×

(𝑀−1)/2

∑

𝑘=0

2𝑘 −𝑀

𝑀

× (
𝑀

𝑘
)

𝑘

∑

𝑖=0

𝑀−k
∑

𝑗=0

(
𝑘

𝑖
)(

𝑀 − 𝑘

𝑗
)

× 𝐵
𝑀−𝑖−𝑗

𝑓 (𝑀 − 𝑖 − 𝑗)

× [(−1)
𝑀−𝑖−𝑗

+ (−1)
𝑘−𝑖

]} ,

(A.21)

in which 𝑓(𝑥) and Γ(𝑥) have the same definition in (A.17).
Then

𝑅
𝑧
(𝜏) = 𝑥

2

𝑚
{−

1

2
exp (−2𝑟

𝑘
|𝜏|) 𝐵
2

+
1

2
𝐵
2 cos (Ω𝜏) − exp (−2𝑟

𝑘
|𝜏|) 𝐺 (𝑀)} ,

(A.22)

in which

𝐺 (𝑀)

= (
1

2
)

𝑀 (𝑀−1)/2

∑

𝑘=0

2𝑘 −𝑀

𝑀
(
𝑀

𝑘
)

×

𝑘

∑

𝑖=0

𝑀−𝑘

∑

𝑗=0

(
𝑘

𝑖
)(

𝑀 − 𝑘

𝑗
)

× 𝐵
𝑀−𝑖−𝑗

𝑓 (𝑀 − 𝑖 − 𝑗)

× [(−1)
𝑀−𝑖−𝑗

+ (−1)
𝑘−𝑖

] .

(A.23)
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The Fourier transform of power spectrum density is

𝑆 (𝜔) =
4𝑟
𝑘
𝑥
2

𝑚

4𝑟
2

𝑘
+ 𝜔2

(−
1

2
𝐵
2

)

+
𝜋

2
𝑥
2

𝑚
𝐵
2

[𝛿 (𝜔 − Ω) + 𝛿 (𝜔 + Ω)]

−
4𝑟
𝑘
𝑥
2

𝑚

4𝑟
2

𝑘
+ 𝜔2

𝐺 (𝑀)
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In conclusion, the power spectrum density of the output
of the system is

𝑆 (𝜔)

= −[
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(A.25)

in which

𝐻(𝑀) = {
𝐹 (𝑀) , 𝑀 is even number
𝐺 (𝑀) , 𝑀 is odd number.

(A.26)

Proof of Theorem 1. In (A.25), we can easily separate an
exponentially decaying branch due to randomness and a
periodically oscillating tail driven by the periodic input
signal. And as a matter of fact, power spectrum density of
noise 𝑆

𝑁
(𝜔) is the product of the Lorentzian curve obtained

with no input signal 𝐴
0
= 0 and a factor that depends on

the forcing amplitude 𝐴
0
, but it is smaller than unity. Then

the first part of power spectrum density is caused by noise.
Consider

𝑆
𝑁
(𝜔) = −[

1

2
(
𝐴
0
𝑥
𝑚

𝐷
)

2
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+ 𝐻 (𝑀)]
4𝑟
𝑘
𝑥
2

𝑚

4𝑟
2

𝑘
+ 𝜔2

,

(A.27)

based on the definition of output SNR in (5).
Then for the parallel bistable systemwith𝑀 components,

the output SNR following the definition in (5) is

SNR =
𝜋(𝐴
0
𝑥
𝑚
/𝐷)
2

𝑟
𝑘

− (1/2) (𝐴
0
𝑥
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(4𝑟
2

𝑘
/ (4𝑟
2

𝑘
+ Ω2)) − 𝐻 (𝑀)

.

(A.28)

B. Proof of Theorem 6

Proof of Theorem 6. The proof ofTheorem 6 is similar to that
ofTheorem 1; an outline is provided as follows.The output in
this system is

𝑧 (𝑡) =
𝑥
1
(𝑡) + 𝑥

2
(𝑡)

2
. (B.1)

The pdfs of 𝑥
𝑖
for 𝑖 = 1, 2 are

𝑝
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(B.2)

Then the pdf of 𝑧(𝑡) is

𝑝
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(B.3)

Then
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(B.4)

According to the general definition of autocorrelation func-
tion, the autocorrelation function of 𝑧(𝑡) is
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Due to the property of delta function, we obtain
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Simplify it in the stationary limit 𝑡
0
→ −∞,
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And to obtain the average autocorrelation function
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The output power spectrum density is as follows:
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The first part is due to the noise, and then the power spectrum
density of noise is
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The system output SNR is

SNR = 2𝜋(
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Omitting the high order items due to theweak signal, the SNR
following the definition in (5) becomes

SNR = 2𝜋(
𝐴
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𝑥
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. (B.12)
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The advertisement can increase the consumers demand; therefore it is one of the most important marketing strategies in the
operationsmanagement of enterprises.This paper aims to analyze the impact of advertising investment on a discrete dynamic supply
chain network which consists of suppliers, manufactures, retailers, and demand markets associated at different tiers under random
demand. The impact of advertising investment will last several planning periods besides the current period due to delay effect.
Based on noncooperative game theory, variational inequality, and Lagrange dual theory, the optimal economic behaviors of the
suppliers, themanufactures, the retailers, and the consumers in the demandmarkets aremodeled. In turn, the supply chain network
equilibrium model is proposed and computed by modified project contraction algorithm with fixed step. The effectiveness of the
model is illustrated by numerical examples, and managerial insights are obtained through the analysis of advertising investment in
multiple periods and advertising delay effect among different periods.

1. Introduction

In the 1980s, the interest in supply chain and supply chain
management increased tremendously. Supply chain man-
agement, which incorporates the raw materials supplying,
production and distribution in the demand markets in the
end [1], is a hot topic in the academic world as well as the
business community.There is abundance of research available
on the supply chain management. We refer the readers to the
work of [2] to achieve a comprehensive review on the supply
chain topic.

These researches mainly focus on the stringy supply
chain or a single manufacturer. In fact, the supply chain is a
network which consists of suppliers, manufacturers, retailers,
and demand markets [3]. Thus, there is limited contribution
in the previous literature that addresses the competition
between the players with the same function, such as various
manufacturers making the homogenous products, and the
complexity resulting from so many actors in the supply chain
network system. By the concept of equilibrium, Nagurney et
al. [4] explore in the general supply chain network setting.

Other researchers expand the work of Nagurney et al. [4].
In particular, Dong et al. [5] study the supply chain network
equilibrium with stochastic market demand which need get
the density function or distribution function of random
demand from history data.

In practice, demand uncertainties arise from the com-
plexity and the evolvement over time of supply chain network
which is actually a dynamic system [6]. The dynamics of
our world results in the changing of network construct;
thus we can discrete the fixed time into several planning
periods, and in one planning period, the parameters in the
network are stable, whereas in different periods, there are
some changes such as the raw materials price fluctuation or
the demand parameter transformation in the markets. In this
paper, we model the discrete dynamic supply chain network
equilibrium.

Moreover, in order to promote the product, firms usually
use some marketing strategies such as advertising. Adver-
tising is a common marketing activity and is widely used
by enterprises. Local advertising, which focuses on the local
market, is mainly accomplished by the cooperation between
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manufacturer and retailer [7]. Since the retailer is closer and
familiar with the consumers, she may have an efficient local
advertising channel, and the manufacturer may provide the
retailer a part of money for local advertising purpose.Warner
Brothers, a maker of corsets, issued the first co-op agreement
in 1903 [7]. From then on, the use of co-op advertising spreads
to other industrials such as grocery stores and fashion, and
the automobile is the most common user of cooperative
advertising today.

The advocating of advertisement could make consumers
learn about the characters and related knowledge of the
products provided by manufacturers and retailers, so more
consumers will purchase this product, which result in the
total market share increasing. If we consider the adver-
tisement strategy in a dynamic decision context, then the
relationship among different periods must be taken into
consideration. For example, the advertising investment in the
current period also has some effects in the next periods, and
this effect will reduce over time. This paper incorporates the
co-op advertising investment strategy in discrete dynamic
decision-making environment, and the investment will be
shared by manufacturers and retailers; the sharing ratio is
determined by negotiation between the two tire players. As
we see in the numerical examples, it is interesting to note
that the value of ratio does not impact the equilibrium
results. Since the advertising strategy is an option that is
underutilized, enterprises are unsure about the economic
performance of advertising investment.

To mitigate the ambiguity about advertising investment
for decision makers, in the paper, we model the role of
advertising investment in a supply chain network over time.
Similar to literatures of supply chain network, we assume the
players in the same tier such as all manufacturers compete
in a noncooperative fashion and the players in different tiers
such as manufacturers and retailers must cooperate in order
to agree with each other in transaction price and amount.
In the network, decision makers including manufacturers
and retailers need to decide on the appreciation level of
advertisement investment so that they sell more products to
demandmarkets to maximize the profit. To simplify problem
studied, we will illustrate this point through numerical
examples and consider the investment levels as a constant
instead of a decision variable.

This paper is organized as follows. Section 2 gives
assumptions and notations. In Section 3, we model the
optimal behaviors of various players in supply chain net-
work. In turn, we establish the equilibrium model of the
whole network. Section 4 provides solution algorithm for the
model established, and in Section 5, we illustrate the effective
and managerial insights by numerical examples. Finally, in
Section 6, we conclude the paper.

2. Literature Review

Over the past decades, in the context of supply chain,
advertising strategy has grown up and becomes an important
research topic in operations research and management area.
Cooperative advertising generally has five different mean-
ings [23]. In our research, we employ the first one that

is vertical cooperative advertising which is also the most
common comprehension. The manufacturers offer to share
a certain percentage of the downstream retailers’ advertising
expenditures [24]. We also refer the readers to the work of
[23] and the literature therein to get a general review about
advertising. Based on the time dependence of parameters
and decision variables, Lei et al. [25] and Xiao et al. [26]
propose various multiperiod models to illustrate the impact
of advertising investment on supply chain, whereas Chen
[27], He et al. [28], Tsao and Sheen [29], and Xiao et al. [26]
pick up the topic of stochastic environment associated with
advertisement. Using game theoretic methods and from two
main parts, simple marketing channels and a more complex
structure, Jogensen and Zaccour [30] survey the literature
on cooperative advertising in marketing channels (supply
chains). Considering corporate social responsibility, Zhang et
al. [31] examine the effectiveness of an advertising initiative
in a leader-follower supply chain with one manufacturer and
one retailer. Lambertini [32] characterizes an optimal two-
part tariff specified as a linear function of the upstream firm’s
advertising effort, performing this task both in the static and
in the dynamic games. It is necessary to point out that these
researches mainly pay attention to the simple supply chain
or a single firm but do not consider the complexity and the
mutual impacts among firms in the supply chain network.

Besides the research of Dong et al. [5], Nagurney et al.
[8], Nagurney and Toyasaki [9], Wu et al. [10], Hammond
and Beullens [11], Yang et al. [12], Masoumi et al. [13], and Yu
and Nagurney [15], Toyasaki et al. [16] study the supply chain
network equilibriumproblems from various perspectives and
different supply chain networks. Qiang et al. [14] establish
a closed-loop supply chain network model considering the
competition, distribution channel investment, and demand
uncertainties. The literatures mentioned above deal with
static supply chain or static supply chain network equilibrium
problems.

Recently, a few authors explore supply chain network
equilibrium problems in dynamic setting. For example, Cruz
and Wakolbinger [17] develop a framework for the analysis
of the optimal levels of corporate social responsibility (CSR)
activities in a multiperiod supply chain network consisting
of manufacturers, retailers, and consumers and describe the
problem of carbon emissions. Daniele [18] considers a supply
chain network model with three tiers of decision makers
(manufacturers, retailers, and consumers) in the case when
prices and shipments are evolving on time. Cruz and Liu [19]
analyze the effects of levels of social relationship on a multi-
period supply chain network with multiple decision makers
associated at different tiers. Hamdouch [20] establishes a
three-tier equilibrium model with capacity constraints and
retailers’ purchase strategy from a multiperiod perspective.
Liu and Cruz [21] provide an analytical framework to inves-
tigate how financial risks affect the values of interconnected
supply chain firms from a network perspective and how
financial risks affect the supply chain firms’ profitability and
the cash and credit transactions. Feng et al. [22] develop
a closed-loop supply chain super network model in which
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Table 1: Literature sources for network equilibrium.

No. Authors Static/dynamic Demand characteristic Considering factor
1 Nagurney et al. (2002) [4] Static Deterministic No
2 Dong et al. (2004) [5] Static Random uncertainty No
3 Nagurney et al. (2005) [8] Static Random uncertainty B2B transaction, risk
4 Nagurney and Toyasaki (2005) [9] Static Deterministic No
5 Wu et al. (2006) [10] Static Deterministic Pollution tax
6 Hammond and Beullens (2007) [11] Static Deterministic Collection
7 Yang et al. (2009) [12] Static Deterministic Collection
8 Masoumi et al. (2012) [13] Static Deterministic No
9 Qiang et al. (2013) [14] Static Random uncertainty Channel investment
10 Yu and Nagurney (2013) [15] Static Deterministic No
11 Toyasaki et al. (2014) [16] Static Deterministic No
12 Cruz and Wakolbinger (2008) [17] Discrete dynamic Deterministic Corporate social responsibility
13 Daniele (2010) [18] Continuous dynamic Deterministic No
14 Cruz and Liu (2011) [19] Discrete dynamic Deterministic Social relationship
15 Hamdouch (2011) [20] Discrete dynamic Deterministic Purchase strategy
16 Liu and Cruz (2012) [21] Discrete dynamic Deterministic Corporate financial risks, trade credits
17 Feng et al. (2014) [22] Continuous dynamic Deterministic Channel investment

the demand is seasonal and the manufacturers invest the
reverse distribution channel for advocating consumers to
return more end-of-life products.

Themetamorphosis of supply chain network equilibrium
literature of recent years is reviewed in Table 1. From Table 1
and literature survey, it is clearly evident that there is no
research on discrete dynamic supply chain network equilib-
rium with advertising strategy and demand uncertainties.

In this paper, our model captures the planning process
and the change of costs and demands and highlights the
performance of advertising with delay effect, and moreover,
this model expresses the uncertainties popularly existing in
practice.

3. Model Assumptions and Notations

3.1. Model Assumptions. We consider a supply chain network
consisting of 𝑆 suppliers, 𝑀 manufacturers, 𝑁 retailers, and
𝐾 demand markets and let 𝑠 denote a typical supplier, 𝑚
a typical manufacturer, 𝑛 a typical retailer, and 𝑘 a typical
demandmarket; a retailer is matching a demandmarket; that
is, one retailer only deals with the demand of one demand
market. All actors in the same tire compete in a noncoop-
erative fashion. Figure 1 illustrates the simple supply chain
network with 2 suppliers, 2 manufacturers, 2 retailers, and 2
demand markets in 2 periods. 𝑠

1
(1) denotes the first supplier

in the first period, and 𝑠
2
(1) denotes the second supplier in

the first period; the other notations can be explained in the
same way. The real lines between two adjacent tiers denote
the related transaction activities, and the dash lines between 2
periods denote inventory transferring from the former period
to the latter period.

Suppliers

Manufacturers

Retailers

Demand 
markets

t = 1 t = 2

s1(1)
s2(1) s1(2) s2(2)

m1(1) m2(1)
m1(2) m2(2)

n1(1) n2(1)
n1(2) n2(2)

k1(1) k2(1)
k1(2) k2(2)

Figure 1: An illustration of 2-period supply chain network.

In order to explicate the problem studied, we give the
following assumptions:

(1) All vectors are column vectors;

(2) The equilibrium solution or the optimal value of a
decision variable is denoted by “∗”;

(3) The advertising investment is a constant and shared
between the pairs of manufacturer and retailer;

(4) All cost functions and transaction functions are con-
tinuous convex and differentiable;

(5) All players in the network are risk neutral.
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Table 2: Basic parameters in the closed-loop supply chain network figure.

Notation Definition
𝛽
𝑟 Raw material conversion rate
𝑡 A typical period, 𝑡 = 1, 2, . . . , 𝑇
𝑠 A typical supplier, 𝑠 = 1, 2, . . . , 𝑆
𝑚 A typical manufacturer,𝑚 = 1, 2, . . . ,𝑀

𝑛 A typical retailer, 𝑛 = 1, 2, . . . , 𝑁
𝑘 A typical demand market, 𝑘 = 1, 2, . . . , 𝐾
𝜆
−

𝑛
(>0) The unit cost of product shortage of retailer 𝑛

𝜆
+

𝑛
(>0) The unit cost of product excess of retailer 𝑛

𝜙
𝑚𝑛

Advertising investment ratio shared by manufacturer𝑚

Table 3: Transactions and production variables associated with various players in the network.

Notation Definition

𝑞
𝑟

𝑠𝑚
(𝑡)

The raw material transaction volume from supplier 𝑠 to manufacturer𝑚 at period 𝑡; group all of
these variables into a column vector 𝑄1 ∈ 𝑅𝑆𝑀𝑇

+

𝑞
𝑟

𝑠
(𝑡)

The total raw material volume provided by supplier 𝑠 to all manufacturers at period 𝑡; group all of
these variables into a column vector 𝑞𝑟

1
∈ 𝑅
𝑆𝑇

+

𝑞
𝑟

𝑚
(𝑡)

The total raw material volume of manufacturer𝑚 used to produce at period 𝑡; group all of these
variables into a column vector 𝑞𝑟 ∈ 𝑅𝑀𝑇

+

𝑞
𝑚𝑛
(𝑡)

The product transaction volume from manufacturer𝑚 to retailer 𝑛 at period 𝑡; group all of these
variables into a column vector 𝑄2 ∈ 𝑅𝑀𝑁𝑇

+

𝜌
𝑚𝑛
(𝑡) The transaction price charged by manufacturer𝑚 for retailer 𝑛 at period 𝑡

𝜌
𝑛
(𝑡) Price charged by retailer 𝑛 to the product in his outlet for corresponding demand market 𝑘 at period 𝑡

𝜙
𝑛
(𝑥; 𝜌
𝑛
(𝑡)) The density function of random variable 𝑥

Φ
𝑛
(𝑥; 𝜌
𝑛
(𝑡)) The distribution function of random variable 𝑥

𝐼
𝑚
(𝑡) The inventory of manufacturer𝑚 at period 𝑡; group all of 𝐼

𝑚
(𝑡) into a column vector 𝐼 ∈ 𝑅𝑀𝑇

+

3.2. Variables and Notations. The variables and notations are
defined as in Tables 2 and 3, and the production functions and
transaction functions are defined as in Table 4.

4. Discrete Dynamic Supply Chain Network
Equilibrium Model

4.1. The Optimal Behavior and Equilibrium Condition of
Suppliers. In each period, supplier 𝑠 provides raw material to
various manufacturers at the beginning of every period and
makes decision associated with trade and production volume
of raw material to maximize the profit in the entire planning
horizon. Using the notations defined previously, the profit
maximum criterion for supplier 𝑠 can be described as

𝜋
𝑠
= max{

𝑇

∑

𝑡=1

𝑀

∑

𝑚=1

𝜌
𝑟

𝑠𝑚
(𝑡) 𝑞
𝑟

𝑠𝑚
(𝑡)

−

𝑇

∑

𝑡=1

𝑀

∑

𝑚=1

𝑐
𝑟

𝑠𝑚
(𝑡) −

𝑇

∑

𝑡=1

𝑓
𝑟

𝑠
(𝑞
𝑟

1
(𝑡))} ,

(1)

s.t.
𝑀

∑

𝑚=1

𝑞
𝑟

𝑠𝑚
(𝑡) ≤ 𝑞

𝑟

𝑠
(𝑡) , (2)

(𝑞
𝑟

𝑠𝑚
(𝑡) , 𝑞
𝑟

𝑠
(𝑡)) ∈ 𝑅

(𝑀+1)𝑇

+
, ∀𝑠. (3)

Equation (2) expresses that production output of raw
material cannot be lower than total volume of the raw
material transaction between the supplier 𝑠 and the various
manufacturers.

In this paper, we assume that all the suppliers compete in
a noncooperative fashion. Therefore, we can simultaneously
express the equilibrium condition of the suppliers as the
variational inequality, determining (𝑞𝑟∗

1
, 𝑄
1∗

, 𝜂
∗

𝑠
) ∈ Ω

𝑆, such
that

𝑇

∑

𝑡=1

𝑆

∑

𝑠=1

[
𝜕𝑓
𝑟

𝑠
(𝑞
𝑟∗

𝑠
(𝑡))

𝜕𝑞𝑟
𝑠
(𝑡)

− 𝜂
∗

𝑠
(𝑡)] × [𝑞

𝑟

𝑠
(𝑡) − 𝑞

𝑟∗

𝑠
(𝑡)]

+

𝑇

∑

𝑡=1

𝑆

∑

𝑠=1

𝑀

∑

𝑚=1

[
𝜕𝑐
𝑟∗

𝑠𝑚
(𝑡)

𝜕𝑞𝑟
𝑠𝑚
(𝑡)

− 𝜌
𝑟∗

𝑠𝑚
(𝑡) + 𝜂

∗

𝑠
(𝑡)]

× [𝑞
𝑟

𝑠𝑚
(𝑡) − 𝑞

𝑟∗

𝑠𝑚
(𝑡)]

+

𝑇

∑

𝑡=1

𝑆

∑

𝑠=1

[𝑞
𝑟∗

𝑠
(𝑡) −

𝑀

∑

𝑚=1

𝑞
𝑟∗

𝑠𝑚
(𝑡)]

× [𝜂
𝑠
(𝑡) − 𝜂

∗

𝑠
(𝑡)] ≥ 0

∀ (𝑞
𝑟

1
, 𝑄
1

, 𝜂
𝑠
) ∈ Ω

𝑆

,

(4)

whereΩ𝑆 = 𝑅𝑆𝑇+𝑆𝑀𝑇+𝑆𝑇
+

.
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Table 4: Functions associated with various players in the network.

Notations Definition
𝑓
𝑟

𝑠
(𝑡) = 𝑓

𝑟

𝑠
(𝑞
𝑟

1
(𝑡)) The raw material production cost function of supplier 𝑠 at period 𝑡

𝑐
𝑟

𝑠𝑚
(𝑡) = 𝑐

𝑟

𝑠𝑚
(𝑞
𝑟

𝑠𝑚
(𝑡)) The transaction cost function between supplier 𝑠 and manufacturer𝑚 at period 𝑡

𝑓
𝑀

𝑚
(𝑡) = 𝑓

𝑀

𝑚
(𝛽
𝑟
, 𝑞
𝑟

(𝑡)) The production cost function using raw materials of manufacturer𝑚 at period 𝑡
𝑐
𝑛
(𝑡) The exhibition and disposal cost at retailer 𝑛 at period 𝑡

𝑐
𝑚𝑛
(𝑡) = 𝑐

𝑚𝑛
(𝑞
𝑚𝑛
(𝑡)) The transaction cost function between manufacturer𝑚 and retailer 𝑛 at period 𝑡

𝐻
𝑚
(𝑡) = 𝐻

𝑚
(𝐼
𝑚
(𝑡)) The inventory cost function at manufacturer𝑚

𝑓
𝑡+𝑖

𝑡
The delay effect factor of advertising investment at period 𝑡 on the period 𝑡 + 𝑖

𝑑
𝑘
(𝜌
𝑘
(𝑡) , 𝐼
𝑚𝑛

𝐴
(𝑡)) The demand function associated with demand market 𝑘

In (4), 𝜂
𝑠
(𝑡) is the Lagrange multiplier corresponding to

constraint (2) and 𝜂
𝑠
∈ 𝑅
𝑆𝑇

+
is the column vector with the

elements of 𝜂
𝑠
(𝑡).

Based on the equivalence of variational inequality and
complement problem, from the second term of (4), we get

𝜌
𝑟∗

𝑠𝑚
(𝑡) =

𝜕𝑐
𝑟∗

𝑠𝑚
(𝑡)

𝜕𝑞𝑟
𝑠𝑚
(𝑡)

+ 𝜂
∗

𝑠
(𝑡) . (5)

From the 1st term of (4), in the equilibrium state, 𝜂∗
𝑠
(𝑡) =

𝜕𝑓
𝑟

𝑠
(𝑞
𝑟∗

𝑠
(𝑡))/𝜕𝑞

𝑟

𝑠
(𝑡); that is, 𝜂∗

𝑠
(𝑡) is equal to the marginal

production cost. Therefore, (5) shows that the transaction
price between suppliers and manufacturers is equal to the
sum of marginal transaction cost and marginal production
cost.

4.2.TheOptimal Behavior and EquilibriumCondition ofMan-
ufacturers. The manufacturers purchase the raw materials
from various suppliers to make products and sell the new
products to retailers at every period and in the same time
manage inventory between periods according to the market
conditions.Themanufacturer𝑚 seeks to maximize her profit
that can be described as follows:

𝜋
𝑚
= max{

𝑇

∑

𝑡=1

𝑁

∑

𝑛=1

𝜌
𝑚𝑛
(𝑡) 𝑞
𝑚𝑛
(𝑡) −

𝑇

∑

𝑡=1

𝑆

∑

𝑠=1

𝜌
𝑠𝑚
(𝑡) 𝑞
𝑠𝑚
(𝑡)

−

𝑇

∑

𝑡=1

𝑓
𝑀

𝑚
(𝑡) −

𝑇

∑

𝑡=1

𝑁

∑

𝑛=1

𝑐
𝑚𝑛
(𝑡) −

𝑇

∑

𝑡=1

𝐻
𝑚
(𝑡)

−

𝑇

∑

𝑡=1

𝑁

∑

𝑛=1

𝜙
𝑚𝑛
𝐼
𝑚𝑛

𝐴
(𝑡) 𝑞
𝑚𝑛
(𝑡)} ,

(6)

s.t. 𝐼
𝑚
(𝑡 − 1) + 𝛽

𝑟
𝑞
𝑟

𝑚
(𝑡) = 𝐼

𝑚
(𝑡) +

𝑁

∑

𝑛=1

𝑞
𝑚𝑛
(𝑡) , (7)

𝑞
𝑟

𝑚
(𝑡) ≤

𝑆

∑

𝑠=1

𝑞
𝑟

𝑠𝑚
(𝑡) . (8)

Equation (7) expresses the flow conservation; the sum of
production volume from raw materials in 𝑡 period and the
transferring inventory from 𝑡−1 period is equal to the sum of
the transaction volume with all retailers and the transferring
inventory to next period, and assume the corresponding
Lagrange multiplier is 𝜆

𝑚
(𝑡); 𝜆 ∈ 𝑅

𝑀𝑇 is the column vector

with the elements of 𝜆
𝑚
(𝑡). Equation (8) shows that the raw

materials amount obtained in manufacturer 𝑚 is not higher
than that various suppliers sent to her; similarly, assume the
corresponding Lagrange multiplier is 𝛾

𝑚
(𝑡)and 𝛾 ∈ 𝑅

𝑀𝑇

+
is

the column vector with the elements of 𝛾
𝑚
(𝑡).

The profit maximum object of all manufacturers can
be described as a variational inequality, determining
(𝑞
𝑟∗

, 𝑄
1∗

, 𝑄
2∗

, 𝐼
∗

, 𝛾
∗

, 𝜆
∗

) ∈ Ω
𝑀, such that

𝑇

∑

𝑡=1

𝑀

∑

𝑚=1

[
𝜕𝑓
𝑀∗

𝑚
(𝑡)

𝜕𝑞𝑟
𝑚
(𝑡)

− 𝛽
𝑟
𝜆
∗

𝑚
(𝑡) + 𝛾

∗

𝑚
(𝑡)] × [𝑞

𝑟

𝑚
(𝑡) − 𝑞

𝑟∗

𝑚
(𝑡)]

+

𝑇

∑

𝑡=1

𝑀

∑

𝑚=1

𝑆

∑

𝑠=1

[𝜌
∗

𝑠𝑚
(𝑡) − 𝛾

∗

𝑚
(𝑡)] × [𝑞

𝑠𝑚
(𝑡) − 𝑞

∗

𝑠𝑚
(𝑡)]

+

𝑇

∑

𝑡=1

𝑀

∑

𝑚=1

𝑁

∑

𝑛=1

[
𝜕𝑐
∗

𝑚𝑛
(𝑡)

𝜕𝑞
𝑚𝑛
(𝑡)

+ 𝜆
∗

𝑚
(𝑡) − 𝜌

∗

𝑚𝑛
(𝑡) + 𝜙

𝑚𝑛
𝐼
𝑚𝑛

𝐴
(𝑡)]

× [𝑞
𝑚𝑛
(𝑡) − 𝑞

∗

𝑚𝑛
(𝑡)]

+

𝑇

∑

𝑡=1

𝑀

∑

𝑚=1

[
𝜕𝐻
∗

𝑚
(𝑡)

𝜕𝐼
𝑚
(𝑡)

+ 𝜆
∗

𝑚
(𝑡) − 𝜆

∗

𝑚
(𝑡 + 1)]

× [𝐼
𝑚
(𝑡) − 𝐼

∗

𝑚
(𝑡)]

+

𝑇

∑

𝑡=1

𝑀

∑

𝑚=1

[

𝑆

∑

𝑠=1

𝑞
𝑟∗

𝑠𝑚
(𝑡) − 𝑞

𝑟∗

𝑚
(𝑡)] × [𝛾

𝑚
(𝑡) − 𝛾

∗

𝑚
(𝑡)]

+

𝑇

∑

𝑡=1

𝑀

∑

𝑚=1

[𝐼
∗

𝑚
(𝑡 − 1) + 𝛽

𝑟
𝑞
𝑟∗

𝑚
(𝑡) − 𝐼

∗

𝑚
(𝑡) −

𝑁

∑

𝑛=1

𝑞
∗

𝑚𝑛
(𝑡)]

× [𝜆
𝑚
(𝑡) − 𝜆

∗

𝑚
(𝑡)] ≥ 0

∀ (𝑞
𝑟

, 𝑄
1

, 𝑄
2

, 𝐼, 𝛾, 𝜆) ∈ Ω
𝑀

,

(9)

whereΩ𝑀 = 𝑅
𝑀𝑇+𝑆𝑀𝑇+𝑀𝑁𝑇+2𝑀𝑇

+
× 𝑅
𝑀𝑇.

From the third term of (9), the transaction price can be
written as when the network is in equilibrium:

𝜌
∗

𝑚𝑛
(𝑡) =

𝜕𝑐
∗

𝑚𝑛
(𝑡)

𝜕𝑞
𝑚𝑛
(𝑡)

+ 𝜆
∗

𝑚
(𝑡) + 𝜙

𝑚𝑛
𝐼
𝑚𝑛

𝐴
(𝑡) . (10)

From the 2nd term of (9), in the equilibrium state, we
get 𝜌∗
𝑠𝑚
(𝑡) = 𝛾

∗

𝑚
(𝑡); then from the 1st term, we get 𝜆∗

𝑚
(𝑡) =
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(1/𝛽
𝑟
)[𝜕𝑓
𝑀∗

𝑚
(𝑡)/𝜕𝑞

𝑟

𝑚
(𝑡) + 𝛾

∗

𝑚
(𝑡)] = (1/𝛽

𝑟
)[𝜕𝑓
𝑀∗

𝑚
(𝑡)/𝜕𝑞

𝑟

𝑚
(𝑡) +

𝜌
∗

𝑠𝑚
(𝑡)]. Equation (10) shows that in the equilibrium state,

the transaction price between manufacturers and retailers is
equal to the sum ofmarginal transaction cost betweenmanu-
facturers and retailers, the Lagrangemultiplier corresponding
to constraint (7), and the advertisement investment amount
shared by manufacturer𝑚.

4.3. The Optimal Behavior and Equilibrium Condition of
Retailers. The retailers need to decide to purchase how
many products from manufacturers and sell to consumers in
corresponding demand markets in a certain price.

Due to 𝑑
𝑛
(𝐼
𝑚𝑛

𝐴
(𝑡), 𝜌
𝑛
(𝑡)) denoting the random demand

of retailer outlet 𝑛, the demand depends on the advertising
investment and the trade price; it is obvious that the more
advertising investment paid by manufacturers and retailers
is, the larger consumer demand is, whereas the increase of
price charged by retailers will lower the product demand. For
a given product transaction price 𝜌

𝑛
(𝑡) at period 𝑡, accord-

ing to the notations illustrated in Table 3, Φ
𝑛
(𝑥; 𝜌
𝑛
(𝑡)) =

∫
𝑥

0

𝜙
𝑛
(𝑥; 𝜌
𝑛
(𝑡))𝑑𝑥. Let 𝑠

𝑛
(𝑡) denote the wholesale amount

from manufacturers and 𝑠
𝑛
(𝑡) = ∑

𝑀

𝑚=1
𝑞
𝑚𝑛
(𝑡); group all 𝑠

𝑛
(𝑡)

in period 𝑡 into a column vector 𝑠(𝑡) ∈ 𝑅
𝑁

+
, and group all

𝑠
𝑛
(𝑡) into a column vector 𝑠

𝑛
∈ 𝑅
𝑁𝑇

+
. In order to express the

competition among retailers, we assume that the exhibition
function and disposal cost function at retailer 𝑛 𝑐

𝑛
(𝑡) =

𝑐
𝑛
(𝑠(𝑡)) are related with all retailers.
For retailer 𝑛, if given 𝑠

𝑛
(𝑡), it is similar as in Dong et

al. [5] and Nagurney et al. [4], the expected sales quantity,
expected shortage quantity, and expected exceed quantity can
be expressed as

𝑆
𝑛
(𝑠
𝑛
(𝑡) , 𝐼
𝑚𝑛

𝐴
(𝑡) , 𝜌
𝑛
(𝑡))

= 𝐸 [min {𝑑
𝑛
(𝐼
𝑚𝑛

𝐴
(𝑡) , 𝜌
𝑛
(𝑡)) , 𝑠

𝑛
(𝑡)}]

= 𝑠
𝑛
(𝑡) − ∫

𝑠𝑛(𝑡)

0

(𝑠
𝑛
(𝑡) − 𝑥) dΦ

𝑛

× (𝑥, 𝐼
𝑚𝑛

𝐴
(𝑡) , 𝜌
𝑛
(𝑡)) ,

𝐻
𝑛
(𝑠
𝑛
(𝑡) , 𝐼
𝑚𝑛

𝐴
(𝑡) , 𝜌
𝑛
(𝑡))

= 𝐸 [max {0, 𝑠
𝑛
(𝑡) − 𝑑

𝑛
(𝐼
𝑚𝑛

𝐴
(𝑡) , 𝜌
𝑛
(𝑡))}]

= ∫

𝑠𝑛

0

(𝑠
𝑛
− 𝑥) dΦ

𝑛
(𝑥, 𝐼
𝑚𝑛

𝐴
(𝑡) , 𝜌
𝑛
(𝑡)) ,

𝑄
𝑛
(𝑠
𝑛
(𝑡) , 𝐼
𝑚𝑛

𝐴
(𝑡) , 𝜌
𝑛
(𝑡))

= 𝐸 [max {0, 𝑑
𝑛
(𝐼
𝑚𝑛

𝐴
(𝑡) , 𝜌
𝑛
(𝑡)) − 𝑠

𝑛
(𝑡)}]

= ∫

+∞

𝑠𝑛(𝑡)

(𝑥 − 𝑠
𝑛
(𝑡)) dΦ

𝑗
(𝑥, 𝐼
𝑚𝑛

𝐴
(𝑡) , 𝜌
𝑛
(𝑡)) .

(11)

From (10), we can easily obtain

𝜕𝑆
𝑛
(𝑠
𝑛
(𝑡) , 𝐼
𝑚𝑛

𝐴
(𝑡) , 𝜌
𝑛
(𝑡))

𝜕𝑠
𝑛
(𝑡)

= 1 − Φ
𝑛
(𝑠
𝑛
(𝑡) , 𝐼
𝑚𝑛

𝐴
(𝑡) , 𝜌
𝑛
(𝑡)) ,

𝜕𝐻
𝑛
(𝑠
𝑛
(𝑡) , 𝐼
𝑚𝑛

𝐴
(𝑡) , 𝜌
𝑛
(𝑡))

𝜕𝑠
𝑛
(𝑡)

= Φ
𝑛
(𝑠
𝑛
(𝑡) , 𝐼
𝑚𝑛

𝐴
(𝑡) , 𝜌
𝑛
(𝑡)) ,

𝜕𝑄
𝑛
(𝑠
𝑛
(𝑡) , 𝐼
𝑚𝑛

𝐴
(𝑡) , 𝜌
𝑛
(𝑡))

𝜕𝑠
𝑛
(𝑡)

= Φ
𝑛
(𝑠
𝑛
(𝑡) , 𝐼
𝑚𝑛

𝐴
(𝑡) , 𝜌
𝑛
(𝑡)) − 1.

(12)

For retailer 𝑛, themaximum expected profitmodel can be
expressed as

𝜋
𝑛
= max{

𝑇

∑

𝑡=1

𝜌
𝑛
(𝑡) 𝑆
𝑛
(𝑠
𝑛
(𝑡) , 𝐼
𝑚𝑛

𝐴
(𝑡) , 𝜌
𝑛
(𝑡))

− 𝜆
+

𝑛

𝑇

∑

𝑡=1

𝐻
𝑛
(𝑠
𝑛
(𝑡) , 𝐼
𝑚𝑛

𝐴
(𝑡) , 𝜌
𝑛
(𝑡))

− 𝜆
−

𝑛

𝑇

∑

𝑡=1

𝑄
𝑛
(𝑠
𝑛
(𝑡) , 𝐼
𝑚𝑛

𝐴
(𝑡) , 𝜌
𝑛
(𝑡))

−

𝑇

∑

𝑡=1

𝑐
𝑛
(𝑠 (𝑡)) −

𝑇

∑

𝑡=1

𝑀

∑

𝑚=1

𝜌
𝑚𝑛
(𝑡) 𝑞
𝑚𝑛
(𝑡) − (1 − 𝜙

𝑚𝑛
)

×

𝑇

∑

𝑡=1

𝑀

∑

𝑚=1=1

𝐼
𝑚𝑛

𝐴
(𝑡) 𝑞
𝑚𝑛
(𝑡)} ,

(13)

s.t. 𝑠
𝑛
(𝑡) =

𝑀

∑

𝑚=1

𝑞
𝑚𝑛
(𝑡) . (14)

Using (11) and (13) can be rewritten as

𝜋
𝑛
= max{

𝑇

∑

𝑡=1

𝜌
𝑛
(𝑡) 𝑠
𝑛
(𝑡) −

𝑇

∑

𝑡=1

(𝜌
𝑛
(𝑡) + 𝜆

+

𝑛
)

× ∫

𝑠𝑛(𝑡)

0

(𝑠
𝑛
(𝑡) − 𝑥) dΦ

𝑛
(𝑥, 𝜌
𝑛
(𝑡)) − 𝜆

−

𝑛

×

𝑇

∑

𝑡=1

∫

+∞

𝑠𝑛

(𝑥 − 𝑠
𝑛
(𝑡)) dΦ

𝑛
(𝑥, 𝜌
𝑛
(𝑡))

−

𝑇

∑

𝑡=1

𝑐
𝑛
(𝑠 (𝑡)) −

𝑇

∑

𝑡=1

𝑀

∑

𝑚=1

𝜌
𝑚𝑛
(𝑡) 𝑞
𝑚𝑛
(𝑡) − (1 − 𝜙

𝑚𝑛
)

×

𝑇

∑

𝑡=1

𝑀

∑

𝑚=1

𝐼
𝑚𝑛

𝐴
(𝑡) 𝑞
𝑚𝑛
(𝑡)} .

(15)

All retailers compete in a noncooperation fashion; using
(12), their equilibrium conditions can be described as a
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variational inequality, determining (𝑠∗
𝑛
, 𝑄
2∗

, 𝜃
∗

) ∈ Ω
𝑁, such

that
𝑇

∑

𝑡=1

𝑁

∑

𝑛=1

[(𝜌
∗

𝑛
(𝑡) + 𝜆

+

𝑛
+ 𝜆
−

𝑛
)Φ
𝑛
(𝑠
∗

𝑛
(𝑡) , 𝜌
∗

𝑛
(𝑡))

− 𝜌
∗

𝑛
(𝑡) − 𝜆

−

𝑛
+
𝜕𝑐
𝑛
(𝑠
∗

(𝑡))

𝜕𝑠
𝑛
(𝑡)

] × [𝑠
𝑛
(𝑡) − 𝑠

∗

𝑛
(𝑡)]

+

𝑇

∑

𝑡=1

𝑀

∑

𝑚=1

𝑁

∑

𝑛=1

[(1 − 𝜙
𝑚𝑛
) 𝐼
𝑚𝑛

𝐴
(𝑡) + 𝜌

∗

𝑚𝑛
(𝑡)]

× [𝑞
𝑚𝑛
(𝑡) − 𝑞

∗

𝑚𝑛
(𝑡)]

+

𝑇

∑

𝑡=1

𝑁

∑

𝑛=1

[

𝑀

∑

𝑚=1

𝑞
∗

𝑚𝑛
(𝑡) − 𝑠

∗

𝑛
(𝑡)] × [𝜃

𝑛
(𝑡) − 𝜃

∗

𝑛
(𝑡)] ≥ 0

∀ (𝑠
𝑛
, 𝑄
2

, 𝜃) ∈ Ω
𝑁

,

(16)

whereΩ𝑁 = 𝑅𝑁𝑇+𝑀𝑁𝑇
+

× 𝑅
𝑁𝑇.

In (16), 𝜃
𝑛
(𝑡) is the Lagrange multiplier corresponding to

constraint (14) and 𝜃
𝑛
(𝑡) ∈ 𝑅

𝑁𝑇 is the column vector with
the elements of 𝜃

𝑛
(𝑡).The transaction price 𝜌∗

𝑛
(𝑡) is a decision

variable which can be obtained from the computing results.

4.4. The Optimal Behavior and Equilibrium Condition of
DemandMarkets. For the supply chain network, given a fixed
advertising investment, the consumers of demand markets
buy the products under a price charged by the retailers and
it is similar as in Dong et al. [5] and Nagurney et al. [4]

𝑑
𝑛
(𝐼
𝑚𝑛

𝐴
(𝑡) , 𝜌
∗

𝑛
(𝑡)) {

= 𝑠
∗

𝑛
(𝑡) , 𝜌

∗

𝑛
(𝑡) > 0

< 𝑠
∗

𝑛
(𝑡) , 𝜌

∗

𝑛
(𝑡) = 0.

(17)

The consumers’ optimal behaviors and equilibrium con-
ditions can be described as a variational inequality, determin-
ing 𝜌∗
𝑛
(𝑡) ∈ Ω

𝐾, such that

[𝑠
∗

𝑛
(𝑡) − 𝑑

𝑛
(𝐼
𝑚𝑛

𝐴
(𝑡) , 𝜌
∗

𝑛
(𝑡))] × [𝜌

𝑛
(𝑡) − 𝜌

∗

𝑛
(𝑡)] ≥ 0

∀𝜌
𝑛
(𝑡) ∈ Ω

𝐾

,

(18)

whereΩ𝐾 = 𝑅𝐾𝑇
+

.

4.5. The Equilibrium Condition of the Supply Chain Network.
Each player in the supply chain network selects the optimal
strategy in every period and seeks to maximize the profit in
the entire planning horizon on the basis of the other players
making optimal decisions. Thus, the network will experience
a strategy selecting process and carry out Nash equilibrium
in the end. In particular, the product transaction amount and
price between the adjacent tires must be equal to that the
players want to purchase or sell at every period, and the man-
ufacturers and retailers also need to make decisions about
the advertising investment to enhance the expected sales to
maximize their profits. So, the whole network equilibrium
condition is the sum of (4), (9), (15), and (18). We sum up
these equations and obtain the following theorem.

Theorem 1. A strategy pattern (𝑞
𝑟∗

1
, 𝑞
𝑟∗

, 𝑄
1∗

, 𝑄
2∗

, 𝐼
∗

, 𝑠
∗

, 𝜌
∗,

𝜂
∗

𝑠
, 𝛾
∗

, 𝜆
∗

) ∈ Ω of the discrete dynamic supply chain net-
work can be called an equilibrium pattern if and only if
it satisfies the following inequality, determining (𝑞

𝑟∗

1
, 𝑞
𝑟∗,

𝑄
1∗

, 𝑄
2∗

, 𝐼
∗

, 𝑠
∗

𝑛
, 𝜌
∗

, 𝜂
∗

𝑠
, 𝛾
∗

, 𝜆
∗

, 𝜃
∗

) ∈ Ω, such that

𝑇

∑

𝑡=1

𝑆

∑

𝑠=1

[
𝜕𝑓
𝑟

𝑠
(𝑞
𝑟∗

𝑠
(𝑡))

𝜕𝑞𝑟
𝑠
(𝑡)

− 𝜂
∗

𝑠
(𝑡)] × [𝑞

𝑟

𝑠
(𝑡) − 𝑞

𝑟∗

𝑠
(𝑡)]

+

𝑇

∑

𝑡=1

𝑀

∑

𝑚=1

[
𝜕𝑓
𝑀∗

𝑚
(𝑡)

𝜕𝑞𝑟
𝑚
(𝑡)

− 𝛽
𝑟
𝜆
∗

𝑚
(𝑡) + 𝛾

∗

𝑚
(𝑡)]

× [𝑞
𝑟

𝑚
(𝑡) − 𝑞

𝑟∗

𝑚
(𝑡)]

+

𝑇

∑

𝑡=1

𝑆

∑

𝑠=1

𝑀

∑

𝑚=1

[
𝜕𝑐
𝑟∗

𝑠𝑚
(𝑡)

𝜕𝑞𝑟
𝑠𝑚
(𝑡)

+ 𝜂
∗

𝑠
(𝑡) − 𝛾

∗

𝑚
(𝑡)]

× [𝑞
𝑟

𝑠𝑚
(𝑡) − 𝑞

𝑟∗

𝑠𝑚
(𝑡)]

+

𝑇

∑

𝑡=1

𝑀

∑

𝑚=1

𝑁

∑

𝑛=1

[
𝜕𝑐
∗

𝑚𝑛
(𝑡)

𝜕𝑞
𝑚𝑛
(𝑡)

+ 𝜆
∗

𝑚
(𝑡)

− 𝜃
∗

𝑛
(𝑡) + 𝐼

𝑚𝑛∗

𝐴
(𝑡)]

× [𝑞
𝑚𝑛
(𝑡) − 𝑞

∗

𝑚𝑛
(𝑡)]

+

𝑇

∑

𝑡=1

𝑀

∑

𝑚=1

[
𝜕𝐻
∗

𝑚
(𝑡)

𝜕𝐼
𝑚
(𝑡)

+ 𝜆
∗

𝑚
(𝑡) − 𝜆

∗

𝑚
(𝑡 + 1)]

× [𝐼
𝑚
(𝑡) − 𝐼

∗

𝑚
(𝑡)]

+

𝑇

∑

𝑡=1

𝑁

∑

𝑛=1

[(𝜌
∗

𝑛
(𝑡) + 𝜆

+

𝑛
+ 𝜆
−

𝑛
)Φ
𝑛
(𝑠
∗

𝑛
(𝑡) , 𝜌
∗

𝑛
(𝑡))

− 𝜌
∗

𝑛
(𝑡) − 𝜆

−

𝑛
+ 𝜃
∗

𝑛
(𝑡) +

𝜕𝑐
𝑛
(𝑠
∗

(𝑡))

𝜕𝑠
𝑛
(𝑡)

]

× [𝑠
𝑛
(𝑡) − 𝑠

∗

𝑛
(𝑡)]

+ [𝑠
∗

𝑛
(𝑡) − 𝑑

𝑛
(𝐼
𝑚𝑛∗

𝐴
(𝑡) , 𝜌
∗

𝑛
(𝑡))]

× [𝜌
𝑛
(𝑡) − 𝜌

∗

𝑛
(𝑡)]

+

𝑇

∑

𝑡=1

𝑆

∑

𝑠=1

[𝑞
𝑟∗

𝑠
(𝑡) −

𝑀

∑

𝑚=1

𝑞
𝑟∗

𝑠𝑚
(𝑡)]

× [𝜂
𝑠
(𝑡) − 𝜂

∗

𝑠
(𝑡)]

+

𝑇

∑

𝑡=1

𝑀

∑

𝑚=1

[

𝑆

∑

𝑠=1

𝑞
𝑟∗

𝑠𝑚
(𝑡) − 𝑞

𝑟∗

𝑚
(𝑡)] × [𝛾

𝑚
(𝑡) − 𝛾

∗

𝑚
(𝑡)]

+

𝑇

∑

𝑡=1

𝑀

∑

𝑚=1

[𝐼
∗

𝑚
(𝑡 − 1) + 𝛽

𝑟
𝑞
𝑟∗

𝑚
(𝑡)

− 𝐼
∗

𝑚
(𝑡) −

𝑁

∑

𝑛=1

𝑞
∗

𝑚𝑛
(𝑡)]
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× [𝜆
𝑚
(𝑡) − 𝜆

∗

𝑚
(𝑡)]

+

𝑇

∑

𝑡=1

𝑁

∑

𝑛=1

[

𝑀

∑

𝑚=1

𝑞
∗

𝑚𝑛
(𝑡) − 𝑠

∗

𝑛
(𝑡)] × [𝜃

𝑛
(𝑡) − 𝜃

∗

𝑛
(𝑡)] ≥ 0

∀ (𝑞
𝑟

1
, 𝑞
𝑟

, 𝑄
1

, 𝑄
2

, 𝐼, 𝑠, 𝜌, 𝜂
𝑠
, 𝛾, 𝜆, 𝜃) ∈ Ω

+

𝑇

∑

𝑡=1

𝑁

∑

𝑛=1

[

𝑀

∑

𝑚=1

𝑞
∗

𝑚𝑛
(𝑡) − 𝑠

∗

𝑛
(𝑡)] × [𝜃

𝑛
(𝑡) − 𝜃

∗

𝑛
(𝑡)] ≥ 0

∀ (𝑞
𝑟

1
, 𝑞
𝑟

, 𝑄
1

, 𝑄
2

, 𝐼, 𝑠
𝑛
, 𝜌, 𝜂
𝑠
, 𝛾, 𝜆, 𝜃) ∈ Ω,

(19)

whereΩ = Ω
𝑆

× Ω
𝑀

× Ω
𝑁

× Ω
𝐾.

Proof. Let us sum up (4), (9), (15), and (18); we get
the total inequality, determining (𝑞

𝑟∗

1
, 𝑞
𝑟∗

, 𝑄
1∗

, 𝑄
2∗

, 𝐼
∗

, 𝑠
∗

𝑛
,

𝜌
∗

, 𝜂
∗

𝑠
, 𝛾
∗

, 𝜆
∗

, 𝜃
∗

) ∈ Ω, such that

𝑇

∑

𝑡=1

𝑆

∑

𝑠=1

[
𝜕𝑓
𝑟

𝑠
(𝑞
𝑟∗

𝑠
(𝑡))

𝜕𝑞𝑟
𝑠
(𝑡)

− 𝜂
∗

𝑠
(𝑡)]

× [𝑞
𝑟

𝑠
(𝑡) − 𝑞

𝑟∗

𝑠
(𝑡)]

+

𝑇

∑

𝑡=1

𝑀

∑

𝑚=1

[
𝜕𝑓
𝑀∗

𝑚
(𝑡)

𝜕𝑞𝑟
𝑚
(𝑡)

− 𝛽
𝑟
𝜆
∗

𝑚
(𝑡) + 𝛾

∗

𝑚
(𝑡)]

× [𝑞
𝑟

𝑚
(𝑡) − 𝑞

𝑟∗

𝑚
(𝑡)]

+

𝑇

∑

𝑡=1

𝑆

∑

𝑠=1

𝑀

∑

𝑚=1

[
𝜕𝑐
𝑟∗

𝑠𝑚
(𝑡)

𝜕𝑞𝑟
𝑠𝑚
(𝑡)

+ 𝜂
∗

𝑠
(𝑡) − 𝛾

∗

𝑚
(𝑡)

+ 𝜌
∗

𝑠𝑚
(𝑡) − 𝜌

∗

𝑠𝑚
(𝑡)]

× [𝑞
𝑟

𝑠𝑚
(𝑡) − 𝑞

𝑟∗

𝑠𝑚
(𝑡)]

+

𝑇

∑

𝑡=1

𝑀

∑

𝑚=1

𝑁

∑

𝑛=1

[
𝜕𝑐
∗

𝑚𝑛
(𝑡)

𝜕𝑞
𝑚𝑛
(𝑡)

+ 𝜆
∗

𝑚
(𝑡) − 𝜃

∗

𝑛
(𝑡)

+ (1 − 𝜙
𝑚𝑛
) 𝐼
𝑚𝑛∗

𝐴
(𝑡) + 𝜙

𝑚𝑛
𝐼
𝑚𝑛∗

𝐴
(𝑡)

− 𝜌
∗

𝑚𝑛
(𝑡) + 𝜌

∗

𝑚𝑛
(𝑡)]

× [𝑞
𝑚𝑛
(𝑡) − 𝑞

∗

𝑚𝑛
(𝑡)]

+

𝑇

∑

𝑡=1

𝑀

∑

𝑚=1

[
𝜕𝐻
∗

𝑚
(𝑡)

𝜕𝐼
𝑚
(𝑡)

+ 𝜆
∗

𝑚
(𝑡) − 𝜆

∗

𝑚
(𝑡 + 1)]

× [𝐼
𝑚
(𝑡) − 𝐼

∗

𝑚
(𝑡)]

+

𝑇

∑

𝑡=1

𝑁

∑

𝑛=1

[(𝜌
∗

𝑛
(𝑡) + 𝜆

+

𝑛
+ 𝜆
−

𝑛
)Φ
𝑛
(𝑠
∗

𝑛
(𝑡) , 𝜌
∗

𝑛
(𝑡))

− 𝜌
∗

𝑛
(𝑡) − 𝜆

−

𝑛
+ 𝜃
∗

𝑛
(𝑡) +

𝜕𝑐
𝑛
(𝑠
∗

(𝑡))

𝜕𝑠
𝑛
(𝑡)

]

× [𝑠
𝑛
(𝑡) − 𝑠

∗

𝑛
(𝑡)]

+ [𝑠
∗

𝑛
(𝑡) − 𝑑

𝑛
(𝐼
𝑚𝑛∗

𝐴
(𝑡) , 𝜌
∗

𝑛
(𝑡))]

× [𝜌
𝑛
(𝑡) − 𝜌

∗

𝑛
(𝑡)]

+

𝑇

∑

𝑡=1

𝑆

∑

𝑠=1

[𝑞
𝑟∗

𝑠
(𝑡) −

𝑀

∑

𝑚=1

𝑞
𝑟∗

𝑠𝑚
(𝑡)]

× [𝜂
𝑠
(𝑡) − 𝜂

∗

𝑠
(𝑡)]

+

𝑇

∑

𝑡=1

𝑀

∑

𝑚=1

[

𝑆

∑

𝑠=1

𝑞
𝑟∗

𝑠𝑚
(𝑡) − 𝑞

𝑟∗

𝑚
(𝑡)]

× [𝛾
𝑚
(𝑡) − 𝛾

∗

𝑚
(𝑡)]

+

𝑇

∑

𝑡=1

𝑀

∑

𝑚=1

[𝐼
∗

𝑚
(𝑡 − 1) + 𝛽

𝑟
𝑞
𝑟∗

𝑚
(𝑡)

− 𝐼
∗

𝑚
(𝑡) −

𝑁

∑

𝑛=1

𝑞
∗

𝑚𝑛
(𝑡)]

× [𝜆
𝑚
(𝑡) − 𝜆

∗

𝑚
(𝑡)]

+

𝑇

∑

𝑡=1

𝑁

∑

𝑛=1

[

𝑀

∑

𝑚=1

𝑞
∗

𝑚𝑛
(𝑡) − 𝑠

∗

𝑛
(𝑡)] × [𝜃

𝑛
(𝑡) − 𝜃

∗

𝑛
(𝑡)] ≥ 0

∀ (𝑞
𝑟

1
, 𝑞
𝑟

, 𝑄
1

, 𝑄
2

, 𝐼, 𝑠
𝑛
, 𝜌, 𝜂
𝑠
, 𝛾, 𝜆, 𝜃) ∈ Ω.

(20)

We simplify the 3rd and 4th terms in (20) and obtain (19).
From (19), we note that the share ratio of advertising invest-
ment between manufacturers and retailers does not impact
the network equilibrium results; therefore, determining the
share ratio will be up to the power of two kinds of players in
their bargain.

5. Numerical Examples

In this section, we will provide some numerical examples
to illustrate the efficiency of the previous equilibrium model
and analyze the relevant parameters. To solve the model,
there are several algorithms to choose, such as logarithmic-
quadratic proximal prediction-correctionmethod [33], mod-
ified contraction project method [34], smoothing Newton
algorithm [35], and others, to name a few. In this paper, we
employ the modified contraction project method to solve the
variational inequality (19) for its simple steps and obtain the
decision variables and Lagrange multiplexer simultaneously.
Set the related parameters as follows: the initial value of
decision variables and Lagrange multipliers is set to 1 and
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Table 5: Cost functions for computational study.

Notation Definition
𝑓
𝑠
(𝑞
𝑟

1
(𝑡)) = 𝑡𝑞

𝑟

𝑠
(𝑡)
2

+ 𝑞
𝑟

𝑠
(𝑡) + 1 Cost function of producing raw materials for supplier 𝑠 at period 𝑡

𝑐
𝑠𝑚
(𝑡) = 𝑞

𝑠𝑚
(𝑡)
2

+ 1.5𝑞
𝑠𝑚
(𝑡) + 1 Transaction cost function undertaken by supplier 𝑠 related to supply chain 𝑠𝑚 at period 𝑡

𝑓
𝑀

𝑚
(𝑡) = 𝑡(𝛽

𝑟
𝑞
𝑟

𝑚
(𝑡))
2

+ 3𝛽
𝑟
𝑞
𝑟

𝑚
(𝑡) + 2 Production cost function for manufacturer𝑚 at period 𝑡

𝐻
𝑚
(𝑡) = 𝑡𝐼

𝑚
(𝑡) Inventory cost for manufacturer𝑚 at period 𝑡

𝑐
𝑚𝑛
(𝑡) = 5.5𝑞

𝑚𝑛
(𝑡)
2

+ 3𝑞
𝑚𝑛
(𝑡) + 2 Transaction cost function undertaken by manufacturer𝑚 related to supply chain𝑚𝑛 at period 𝑡

𝑐
𝑛
(𝑡) = 0.25(

2

∑

𝑚=1

𝑞
𝑚𝑛
(𝑡))

2

Disposal costs at retailer 𝑛 at period 𝑡

Table 6: Equilibrium results with delay effect of advertising investment.

Variables
𝑡 = 1, 2, 3

𝐼
𝑚𝑛

𝐴
(1) = 0.15 𝐼

𝑚𝑛

𝐴
(1) = 0 𝐼

𝑚𝑛

𝐴
(1) = 0 𝐼

𝑚𝑛

𝐴
(1) = 0.15 𝐼

𝑚𝑛

𝐴
(1) = 0 𝐼

𝑚𝑛

𝐴
(1) = 0.15

𝐼
𝑚𝑛

𝐴
(2) = 0 𝐼

𝑚𝑛

𝐴
(2) = 0.15 𝐼

𝑚𝑛

𝐴
(2) = 0 𝐼

𝑚𝑛

𝐴
(2) = 0.15 𝐼

𝑚𝑛

𝐴
(2) = 0.15 𝐼

𝑚𝑛

𝐴
(2) = 0.15

𝐼
𝑚𝑛

𝐴
(3) = 0 𝐼

𝑚𝑛

𝐴
(3) = 0 𝐼

𝑚𝑛

𝐴
(3) = 0.15 𝐼

𝑚𝑛

𝐴
(3) = 0 𝐼

𝑚𝑛

𝐴
(3) = 0.15 𝐼

𝑚𝑛

𝐴
(3) = 0.15

𝑞
𝑟

𝑠𝑚
(𝑡)

𝑠 = 1, 2

𝑚 = 1, 2

0.7282 0.7259 0.7214 0.7407 0.7340 0.7488
0.4443 0.4431 0.4408 0.451 0.4474 0.4552
0.3821 0.3813 0.3797 0.3867 0.3842 0.3896

𝑞
𝑟

𝑠
(𝑡), 𝑞𝑟
𝑚
(𝑡)

𝑠 = 1, 2

𝑚 = 1, 2

1.4563 1.4519 1.4429 1.4814 1.4679 1.4976
0.8886 0.8863 0.8815 0.9019 0.8948 0.9105
0.7643 0.7627 0.7594 0.7733 0.7685 0.7791

𝑞
𝑚𝑛
(𝑡)

𝑚 = 1, 2

𝑛 = 1, 2

0.5357 0.5174 0.5182 0.5336 0.5161 0.5322
0.5228 0.5313 0.5132 0.5399 0.5300 0.5386
0.4961 0.5017 0.5106 0.5048 0.5195 0.5228

𝐼
𝑚
(𝑡)

𝑚 = 1, 2

0.3849 0.4170 0.4066 0.4142 0.4358 0.4331
0.2280 0.2407 0.2617 0.2364 0.2706 0.2664

0 0 0 0 0 0
𝜋
𝑠

3.3263 3.2928 3.2254 3.5170 3.4143 3.6415
𝜋
𝑚

14.3234 14.2429 14.0845 14.7572 14.5163 15.0348
𝜋
𝑛

27.2004 27.0716 26.7721 28.1674 27.7355 28.8402

the convergence criterion, for example, the absolute value
of difference of decision variables and Lagrange multipliers
between two steps is lower than or equal to 10−8. We assume
𝜙
𝑚𝑛

= 0.4, 𝛽
𝑟
= 1, 𝜆−

𝑛
= 1, 𝜆+

𝑛
= 1, 𝐼𝑚𝑛

𝐴
(𝑡) = 0.15, 𝑓𝑡

𝑡
= 0.2,

𝑓
𝑡+1

𝑡
= 0.1, and 𝑓

𝑡+2

𝑡
= 0.05. The related cost functions

and parameters are set as listed in Table 5. It is assumed
that the random demands follow uniform distribution in,
𝑑
𝑘
(𝜌
𝑘
(𝑡), 𝐼
𝑚𝑛

𝐴
(𝑡)) ∼ [0, 𝑏

𝑘
(𝑡)/𝜌
𝑘
(𝑡)], 𝑏

𝑘
(1) = 90(1 + 𝐼

𝑚𝑛

𝐴
(1))
𝑓
1

1 ,
𝑏
𝑘
(2) = 93∏

1

𝑖=0
(1 + 𝐼

𝑚𝑛

𝐴
(2 − 𝑖))

𝑓
2

2−𝑖 , and 𝑏
𝑘
(3) = 96∏

2

𝑖=0
(1 +

𝐼
𝑚𝑛

𝐴
(3 − 𝑖))

𝑓
3

3−𝑖 , for 𝑘 = 1, 2,𝑚 = 1, 2, 𝑛 = 1, 2, and 𝑡 = 1, 2, 3.
This paper focuses on the analysis of the following four

aspects: (1) the equilibrium results of advertising investment
with delay effect and the results listed as in Table 6; (2) the
equilibrium results of advertising investment with no delay
effect, that is, 𝑓𝑡

𝑡
= 𝑓
𝑡+1

𝑡
= 𝑓
𝑡+2

𝑡
= 0, and the results listed as

in Table 7; (3) the equilibrium results with one manufacturer
advertising investment and the results listed as in Table 8;
and (4) the profits of various players with the 1st period
advertising investment increasing with/without delay effect,
which is illustrated as in Figure 2.

From the first three columns in Table 6, we can find that
in the case the advertising delay effect exists, the production
volumes, the transaction volumes, and all the players’ profits
are the highest when the manufacturers and the retailers
make advertisements in the 1st period, and then is the 2nd
period, the lowest is the 3rd period.

From the latter three columns in Table 6, it can be seen
that when advertising is in the 1st and 2nd periods, all the
players’ profits are higher than that in the 2nd and 3rd periods
and lower than that in all the three periods, which implies that
the earlier the advertisement is made, the higher profits the
players can obtain.

We now turn to analyze the inventory between adja-
cent periods which describes the characteristic of discrete
dynamic supply chain network.Themanufacturers can adjust
the inventory to maximize the profits in the whole planning
horizon. Compare the 1st three columns of Table 6, because
of the demand increasing in the 2nd period as a result of
advertising, the inventory transfer from the 1st period to 2nd
period increases; on the other hand, due to the delay effect,
the advertising in the 2nd period also has much influence in
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Figure 2: Players’ profits in the discrete dynamic supply chain network with delay effect.

the 3rd period; thus the inventory from the 2nd period to
the 3rd period also increases. Due to the increasing of the
demand in the 3rd period, the inventory from the 2nd period
to the 3rd period increases obviously.The latter 3 columns can
be analyzed in the same way.

From the latter three columns in Table 7, we can find
that, in the absence of delay effect, the manufacturers’ profits
when making advertisement in all the three periods are
lower than that only in the 1st and 2nd periods instead. It
illustrates that, in some cases, the increased profit through

advertisement is less than its investment volume, so at this
time, it is meaningless and should not be the manufacturer’s
optimal strategy. On the other hand, the retailers’ profits
remain unchanged.

In Table 7, it is interesting that the volume of 𝑞𝑟
𝑠𝑚
(𝑡) 𝑞
𝑟

𝑠
(𝑡)

and 𝑞𝑟
𝑚
(𝑡) is almost identical and the profits of all players in

these cases are similar too in the first three columns and the
4th and 5th, respectively.

Comparing Table 6 with Table 7, we can see that because
we only consider three periods, the 3rd period is the last one;



Mathematical Problems in Engineering 11

Table 7: Equilibrium results without delay effect of advertising investment.

Variables
𝑡 = 1, 2, 3

𝐼
𝑚𝑛

𝐴
(1) = 0.15 𝐼

𝑚𝑛

𝐴
(1) = 0 𝐼

𝑚𝑛

𝐴
(1) = 0 𝐼

𝑚𝑛

𝐴
(1) = 0.15 𝐼

𝑚𝑛

𝐴
(1) = 0 𝐼

𝑚𝑛

𝐴
(1) = 0.15

𝐼
𝑚𝑛

𝐴
(2) = 0 𝐼

𝑚𝑛

𝐴
(2) = 0.15 𝐼

𝑚𝑛

𝐴
(2) = 0 𝐼

𝑚𝑛

𝐴
(2) = 0.15 𝐼

𝑚𝑛

𝐴
(2) = 0.15 𝐼

𝑚𝑛

𝐴
(2) = 0.15

𝐼
𝑚𝑛

𝐴
(3) = 0 𝐼

𝑚𝑛

𝐴
(3) = 0 𝐼

𝑚𝑛

𝐴
(3) = 0.15 𝐼

𝑚𝑛

𝐴
(3) = 0 𝐼

𝑚𝑛

𝐴
(3) = 0.15 𝐼

𝑚𝑛

𝐴
(3) = 0.15

𝑞
𝑟

𝑠𝑚
(𝑡)

𝑠 = 1, 2

𝑚 = 1, 2

0.7214 0.7215 0.7214 0.7294 0.7294 0.7373
0.4408 0.4408 0.4408 0.4450 0.4450 0.4491
0.3797 0.3797 0.3797 0.3826 0.3826 0.3854

𝑞
𝑟

𝑠
(𝑡), 𝑞𝑟
𝑚
(𝑡)

𝑠 = 1, 2

𝑚 = 1, 2

1.4429 1.4430 1.4429 1.4588 1.4588 1.4746
0.8815 0.8816 0.8815 0.8900 0.8900 0.8983
0.7594 0.7595 0.7594 0.7652 0.7652 0.7708

𝑞
𝑚𝑛
(𝑡)

𝑚 = 1, 2

𝑛 = 1, 2

0.5368 0.5182 0.5182 0.5355 0.5168 0.5342
0.5132 0.5320 0.5132 0.5307 0.5307 0.5295
0.4919 0.4919 0.5106 0.4907 0.5094 0.5082

𝐼
𝑚
(𝑡)

𝑚 = 1, 2

0.3692 0.4067 0.4066 0.3878 0.4251 0.4062
0.2243 0.2243 0.2617 0.2163 0.2536 0.2456

0 0 0 0 0 0
𝜋
𝑠

3.2254 3.2263 3.2254 3.3450 3.3450 3.4646
𝜋
𝑚

14.0953 14.0955 14.0845 14.3703 14.3597 14.6342
𝜋
𝑛

26.7327 26.7527 26.7721 27.3596 27.3991 28.0059

Table 8: Equilibrium results with only advertising investment of manufacturer 1.

Variables
𝑡 = 1, 2, 3

𝐼
1𝑛

𝐴
(1) = 0.15 𝐼

1𝑛

𝐴
(1) = 0 𝐼

1𝑛

𝐴
(1) = 0 𝐼

1𝑛

𝐴
(1) = 0.15 𝐼

1𝑛

𝐴
(1) = 0 𝐼

1𝑛

𝐴
(1) = 0.15

𝐼
1𝑛

𝐴
(2) = 0 𝐼

1𝑛

𝐴
(2) = 0.15 𝐼

1𝑛

𝐴
(2) = 0 𝐼

1𝑛

𝐴
(2) = 0.15 𝐼

1𝑛

𝐴
(2) = 0.15 𝐼

1𝑛

𝐴
(2) = 0.15

𝐼
1𝑛

𝐴
(3) = 0 𝐼

1𝑛

𝐴
(3) = 0 𝐼

1𝑛

𝐴
(3) = 0.15 𝐼

1𝑛

𝐴
(3) = 0 𝐼

1𝑛

𝐴
(3) = 0.15 𝐼

1𝑛

𝐴
(3) = 0.15

𝑞
1𝑛
(𝑡)

𝑛 = 1, 2

0.5236 0.5207 0.5211 0.5248 0.5222 0.5263
0.5212 0.5189 0.5161 0.5257 0.5205 0.5273
0.4970 0.4999 0.4978 0.5038 0.5048 0.5087

𝐼
1
(𝑡)

0.3955 0.4954 0.3934 0.4064 0.4043 0.4118
0.2345 0.2413 0.2389 0.2435 0.2480 0.2503

0 0 0 0 0 0
𝜋
1

14.0075 13.9653 13.8845 14.1539 14.0303 14.2186

𝑞
2𝑛
(𝑡)

𝑛 = 1, 2

0.5327 0.5161 0.5165 0.5293 0.5131 0.5263
0.5166 0.5280 0.5115 0.5302 0.5250 0.5273
0.4924 0.4954 0.5069 0.4947 0.5093 0.5087

𝐼
2
(𝑡)

0.3773 0.4081 0.4025 0.3973 0.4225 0.4118
0.2255 0.2322 0.2571 0.2253 0.2571 0.2503

0 0 0 0 0 0
𝜋
2

14.1659 14.1223 14.0353 14.4704 14.3393 14.6873

therefore, the 3rd column in the two Tables has no difference
with or without delay effect. When considering delay effect,
the transaction volume in the 1st period is lower than that
without delay effect except the 3rd column, whereas in the
next 2 periods, the former is higher than the latter.

From Table 8, it can be obviously seen that when only
manufacturer 1 makes advisements, the quantity of selling
products to retailers is higher than that of manufacturer 2,
but his profit is lower; in the same time, the higher the
advertising investment of manufacturer 1 is, the bigger the

profits of the two manufacturers are, and the bigger the
profit difference between the twomanufacturers is.Therefore,
we can draw a conclusion when multiple firms engage in
homogeneous products; one firm’s advertising activity also
has a positive effect on the other firms, which makes the
so-called “Free-Rider Phenomenon” emerge and when the
advertising investment is bigger, this phenomenon is more
obvious.

Figures 2 and 3 illustrate the impacts of the advertising
investment in the first periodwhen the advertising in the next
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Figure 3: Players’ profits in the discrete dynamic supply chain network without delay effect.

2 periods is fixed.The profits of all players in the supply chain
network are higher with advertising than that without adver-
tising and increase depending on the advertising investment
volume,whereas the increasingmargin is smaller and smaller.

From Figures 2 and 3, we also note that the profit differ-
ences of all actors are becoming bigger and bigger when the
advertising investment in the 1st period increases. For exam-
ple, when 𝐼𝑚𝑛

𝐴
(1) = 0, the profit difference of manufacturers

is 14.5163 − 14.360 = 0.1563; when 𝐼𝑚𝑛
𝐴
(1) = 0.2, the profit

difference is 14.5163 − 14.360 = 0.1563; 15.1832 − 14.7126 =
0.4706. The profits of suppliers and retailers can be computed
in the same way and have similar trends.

6. Conclusions

In the discrete dynamic decision making environment,
this paper proposes a supply chain network model with
demand uncertainties. The manufacturers purchase the raw
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materials from suppliers and sell products to consumers
in demand markets by way of retailers; in the same time,
the manufacturers and retailers use the advertising strategy
to increase the demand of products, and the advertising
investment has delay effect in the next periods. Using vari-
ational inequality theory, complement theory, and Lagrange
duality theory, we formulate the profit functions and optimal
behaviors of various players in the network and in turn
compute the equilibrium results by modified projection
and contraction algorithm. In the numerical examples, we
illustrate the effectiveness of our model and analyze the
impact of different advertising strategies on the equilibrium
results.

From the numerical examples, we obtain the following
conclusions: (1) when considering the delay effects, the earlier
the advertising investment is made, the more profits the
enterprises can obtain, and the whole supply chain network
will benefit from the advertising strategy; (2) when not
considering the delay effect, the advertising strategy is not
always beneficial for the enterprises; if the investment is
higher than the profit resulting from the strategy, the extra
investment is harmful to enterprise; (3) if there are only part
of the enterprises that make advertising activities, it is likely
that the so-called “Free-Rider Phenomenon” emerges; (4)
when advertising investment increases, the profit difference
will magnify with delay effect than that without the effect.The
managerial insights obtained in this paper may give insights
to the decision makers in the enterprises and theorists in the
supply chain management.

Future research may be in the following directions: as a
common policy for promoting products, advertising strategy
investment must have the cap constraints because of the
limitation of funds.
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A particle filter based track-before-detect (PF-TBD) algorithm is proposed for the monopulse high pulse repetition frequency
(PRF) pulse Doppler radar. The actual measurement model is adopted, in which the range is highly ambiguous and the sum
and difference channels exist in parallel. A quantization method is used to approximate the point spread function to reduce
the computation load. The detection decisions of the PF-TBD are fed to a binary integrator to further improve the detection
performance. Simulation results show that the proposed algorithm can detect and track the low SNR target efficiently.The detection
performance is improved significantly for both the single frame and the multiframe detection compared with the classical detector.
A performance comparison with the PF-TBD using sum channel only is also supplied.

1. Introduction

The developments of stealthy military aircraft and cruise
missiles recently have emphasized the need for detection and
tracking of low signal-to-noise ratio (SNR) targets. This need
is especially urgent for a radar seeker because of its limited
battery capacity and antenna size. High pulse repetition
frequency (PRF) pulse Doppler is generally used in a radar
seeker at early detection stage, which allows thermal noise-
limited detection of targets with high radial velocities [1].
Noncoherent or binary integration is often used after the
coherent processing to improve the detection performance.
But the radar data rate and the unknown target motion have
limited the coherent processing interval (CPI) and noncoher-
ent/binary times. The azimuth and elevation are measured
by monopulse generally, which is a widely used technique to
provide accurate anglemeasurements in the tracking radar. A
monopulse system for estimating one angle typically consists
of two identical antennas, either separated by some distance
(phase monopulse) or at the same phase center but with
a squint angle (amplitude monopulse), whose outputs are
summed up to produce a sum channel Σ and are subtracted
to yield the difference channel Δ as shown in Figure 1. The
angular information 𝜃 is contained in the monopulse ratio

𝛾(𝜃) = Δ(𝜃)/Σ(𝜃) providing the function 𝜃 → 𝛾(𝜃) is revers-
ible. Poor monopulse estimation performance under low
SNR has also deteriorated the guidance performance.

Track-before-detect (TBD) is a simultaneous detection
and tracking paradigm that uses unthresholded data or
thresholded data with significantly lower thresholds than
those used in conventional detectors and integrates themover
time according to the target dynamic model to improve the
sensitivity to low SNR targets. Typical TBD is implemented as
a batch algorithm using the Hough transform [2] or dynamic
programming [3].TheHough transform TBD is suitable only
for linear trajectories. The dynamic programming TBD is
studied more for the radar application and is applied in pulse
Doppler radars in [4–6]. Particle filter based TBD (PF-TBD)
was introduced by [7] and extended by [8–10]. Compared
to the typical methods, it is recursive and does not require
discretization of the state space.

For simplicity, most researches on PF-TBD are based
on grayscale-image-like measurements (e.g., [8, 10]). Boers
and Driessen [9, 11] have studied PF-TBD on search radar
measurements. A Rao-Blackwellised PF-TBD is proposed
for over-the-horizon radar in [12]. Multisensor PF-TBD is
studied for MIMO radar [13]. There is no open literature
addressing PF-TBD on monopulse radar to the best of
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Figure 1: Amplitude of the sum and difference channels at different
deviation angles.

our knowledge. In monopulse radar systems, the sum and
difference channels exist in parallel as Figure 1 has shown.
A PF-TBD algorithm similar to [12] can be applied by using
only the output of the sum channel as the measurements.The
target Doppler and intensity are estimated by it and then the
bearing and azimuth are estimated by classical monopulse
methods (e.g., ML method proposed by [14]). But from
Figure 1 we can see that amplitude of the difference channel
is comparable to that of the sum channel when the target is
not at the beam center, which often occurred in the target
searching stage. So fusion of the sum and difference channels
using Bayesian theory in the PF-TBD algorithm is possible to
improve the detection performance as well as the monopulse
estimation performance.

In this work, the target and measurement models of the
monopulse high PRF pulse Doppler radar are constructed.
Based on them, we derive a PF-TBD algorithm which can
effectively detect and track the low SNR target. Its detection
performance is compared with the classical detector, which
shows that more than 7 dB gain in SNR can be attained.
A quantization method of approximating the point spread
function is proposed to reduce the computation load of the
PF-TBD. Binary integration of the PF-TBD’s detection result
is proposed to further improve the detection performance,
which is shown to be very effective and not limited by the
target maneuver.

The rest of the work is organized as follows. In Section 2
the target and sensor models are formulated. The recursive
Bayesian TBD filter for this application is described in
Section 3 and its PF implementation procedure is derived in
Section 4. Two simulated examples are presented in Section 5,
in which the detection and estimation performances of the
proposed algorithm are evaluated in comparison with the
classical method and the sum-only PF-TBD. Conclusions and
future work are drawn in the last section.

2. Target and Measurement Models

2.1. Target Model. The high PRF can measure Doppler
unambiguously, but it is highly ambiguous in range, which
precludes the pulse delay ranging. The range information is
not a must for a radar seeker, however, since the proportional
navigation is commonly adopted. As a result, only the target
Doppler is involved in the target state vector in this paper.The
target azimuth and elevation are measured by monopulse.
For the sake of brevity, only one difference channel (azimuth
difference or elevation difference) is considered. Moreover,
the unknown target echo amplitude is also incorporated to
implement the PF-TBD algorithm. The target state vector is
then defined as

x
𝑘
= [𝑓
𝑘

𝑑
, 𝐴
𝑘

Σ
, 𝛾
𝑘
]
𝑇

, (1)

where 𝑓
𝑘

𝑑
, 𝐴𝑘
Σ
, and 𝛾

𝑘
denote the Doppler frequency, echo

amplitude of the sum channel, and monopulse ratio of the
target in frame 𝑘, respectively. The Doppler frequency 𝑓

𝑑
=

2V
𝑟
/𝜆, where 𝜆 is the wavelength and V

𝑟
is the radial velocity.

Although the dynamic model can be as general as x
𝑘
=

𝑓
𝑘−1

(x
𝑘−1

, k
𝑘−1

) for a particle implementation, where k
𝑘−1

is
the process noise sequence, for simplicity wemodel the target
motion relative to the radar as the nearly constant velocity
model with a white acceleration noise V(1)

𝑘
. The target echo

amplitude and monopulse ratio are modeled as random walk
processes with process noises V(2)

𝑘
and V(3)

𝑘
, respectively. The

process noises V(1)
𝑘
, V(2)
𝑘
, and V(3)

𝑘
are mutually independent,

zero mean white noise with variances 𝜎
2

(1)
, 𝜎2
(2)
, and 𝜎

2

(3)
,

respectively. Thus, the system dynamic equation is

x
𝑘
= x
𝑘−1

+ 𝑇 ⋅ k
𝑘−1

, (2)

where 𝑇 is the CPI and k
𝑘−1

= [V(1)
𝑘−1

, V(2)
𝑘−1

, V(3)
𝑘−1

]
𝑇. This target

model accommodates not only target maneuver but also
fluctuations of the target intensity and the monopulse ratio.

Target existence variable 𝐸
𝑘
is modeled as a two-state

Markov chain and 𝐸
𝑘

∈ {0, 1}. Here 0 denotes the event
that the target is absent, while 1 denotes the opposite [15].
Furthermore, we define the transitional probabilities of target
“birth” (𝑃

𝑏
) and “death” (𝑃

𝑑
) as

𝑃
𝑏
≜ 𝑃 {𝐸

𝑘
= 1 | 𝐸

𝑘−1
= 0}

𝑃
𝑑
≜ 𝑃 {𝐸

𝑘
= 0𝐸
𝑘−1

= 1} .

(3)

Thus the transitional probability matrix Π is given by

Π = [
1 − 𝑃
𝑑

𝑃
𝑏

𝑃
𝑑

1 − 𝑃
𝑏

] . (4)

2.2.MeasurementModel. Weassume that the target is located
in the clutter-free region; thus the clutter is not considered
in the signal model. When the target is present, the received
signal sequences at the video stage of the sum and difference
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channels in frame 𝑘 are denoted as 𝑠𝑘
Σ
(𝑛) and 𝑠

𝑘

Δ
(𝑛) and given

by

𝑠
𝑘

Σ
(𝑛) = 𝐴

𝑘

Σ
exp {𝑗2𝜋 (𝑓

𝑘

𝑑
𝑛𝑇
𝑟
+ 𝜙
𝑘
)} + 𝑛

𝑘

Σ
(𝑛) (5)

𝑠
𝑘

Δ
(𝑛) = 𝛾

𝑘
𝐴
𝑘

Σ
exp {𝑗2𝜋 (𝑓

𝑘

𝑑
𝑛𝑇
𝑟
+ 𝜙
𝑘
)} + 𝑛

𝑘

Δ
(𝑛) (6)

≜ 𝐴
𝑘

Δ
exp {𝑗2𝜋 (𝑓

𝑘

𝑑
𝑛𝑇
𝑟
+ 𝜙
𝑘
)} + 𝑛

𝑘

Δ
(𝑛) , (7)

respectively, where 𝐴
𝑘

Δ
is the amplitude of the difference

channel, 𝜙
𝑘
is some arbitrary phase, 𝑇

𝑟
is the pulse repetition

interval (PRI), and 𝑛 = 0, 1, . . . , 𝑁 − 1 is index of the sample
in an CPI. The background thermal noises 𝑛𝑘

Σ
(𝑛) and 𝑛

𝑘

Δ
(𝑛)

are mutually independent, zero mean, and temporally white
complex Gaussian processes with the same variance. The
Doppler frequency 𝑓

𝑘

𝑑
is assumed to be constant within an

CPI.
The coherent integrations of the sum and difference

echoes are done via fast Fourier transform (FFT) indepen-
dently. To reduce peak side-lobe levels, the signal sequences
are windowed before the FFT. The result of the coherent
integration is given by

𝑦
𝑘

Σ/Δ
(𝑙) =

𝑁𝑓−1

∑

𝑛=0

𝑠
𝑘

Σ/Δ
(𝑛) 𝑤
𝑛
exp{−𝑗2𝜋(

𝑛𝑙

𝑁
𝑓

)} , (8)

where the subscript Σ/Δ denotes sum channel Σ or difference
channel Δ for simplification,𝑁

𝑓
is the next power of two that

is greater than or equal to 𝑁, 𝑠
Σ/Δ

(𝑛) = 0 for 𝑛 > 𝑁 − 1

(also known as zero padding),𝑤
𝑛
is the windowing function,

and 𝑙 = 0, 1, . . . , 𝑁
𝑓
− 1 is the index of the frequency bin.

The signal’s unknown phase component is useless, so the
magnitude of the spectrum in each frequency bin forms the
set of measurements in frame 𝑘. Then the measurement can
be modeled as

𝑧
𝑘

Σ/Δ
(𝑙) =

{

{

{

󵄨󵄨󵄨󵄨󵄨
𝐴
𝑘

Σ/Δ
𝐵
𝑘
(𝑓
𝑘

𝑑
, 𝑙) + 𝑢

𝑘

Σ/Δ
(𝑙)

󵄨󵄨󵄨󵄨󵄨
𝐸
𝑘
= 1

󵄨󵄨󵄨󵄨󵄨
𝑢
𝑘

Σ/Δ
(𝑙)

󵄨󵄨󵄨󵄨󵄨
𝐸
𝑘
= 0,

(9)

where | ⋅ | is the complex modulus, 𝐵
𝑘
(𝑓
𝑘

𝑑
, 𝑙) = exp{𝑗2𝜋𝜙

𝑘
}

∑
𝑁−1

𝑛=0
𝑤
𝑛
exp{𝑗2𝜋𝑓𝑘

𝑑
𝑛𝑇
𝑟
} exp{−𝑗2𝜋(𝑛𝑙/𝑁

𝑓
)}, and 𝑢

𝑘

Σ
(𝑙) and

𝑢
𝑘

Δ
(𝑙) are the background noises of the sum and difference

channels, respectively, after the coherent integration. Because
of linearity of the FFT, 𝑢𝑘

Σ
(𝑙) and 𝑢

𝑘

Δ
(𝑙) are also zeromean i.i.d.

complex Gaussian noise processes. We assume that they both
have a variance 2𝜎2

𝑢
.

As has been stated that not all the frequency bins of the
FFT result are of interest, only bins in clutter-free region
constitute the set of measurements at frame 𝑘; that is, z𝑘

Σ/Δ
=

{𝑧
𝑘

Σ/Δ
(𝑙
𝑐
: (𝑁
𝑓
− 𝑙
𝑐
− 1))}, where 𝑙

𝑐
= ceil(2V

𝑀
/(𝜆𝛿
𝑓
)), V
𝑀

is
the horizontal velocity of the missile, and 𝛿

𝑓
= 1/(𝑇

𝑟
𝑁
𝑓
) is

the Doppler bin size.

Following the model described above, the likelihood in
each frequency bin when the target is present has a Ricean
distribution

𝑝 (𝑧
𝑘

Σ/Δ
(𝑙) | x

𝑘
, 𝐸
𝑘
= 1)

=

𝑧
𝑘

Σ/Δ
(𝑙)

𝜎2
𝑢

𝐼
0
(

𝐴
𝑘

Σ/Δ
| 𝐵
𝑘
(𝑓
𝑘

𝑑
, 𝑙) | 𝑧

𝑘

Σ/Δ
(𝑙)

𝜎2
𝑢

)

× exp
{

{

{

−

𝑧
𝑘

Σ/Δ
(𝑙)
2

+ (𝐴
𝑘

Σ/Δ
)
2󵄨󵄨󵄨󵄨󵄨
𝐵
𝑘
(𝑓
𝑘

𝑑
, 𝑙)

󵄨󵄨󵄨󵄨󵄨

2

2𝜎2
𝑢

}

}

}

,

(10)

where 𝐼
0
(⋅) is the modified Bessel function of order zero.

The likelihood when the target is absent has a Rayleigh
distribution

𝑝 (𝑧
𝑘

Σ/Δ
(𝑙) | 𝐸

𝑘
= 0) =

𝑧
𝑘

Σ/Δ
(𝑙)

𝜎2
𝑢

exp{−

𝑧
𝑘

Σ/Δ
(𝑙)
2

2𝜎2
𝑢

} . (11)

Because of the windowing before the FFT, the target (if
present) power will spread into the bins in the vicinity of its
location. Let 𝐶(x

𝑘
) denote the bins affected by the target (i.e.,

the target’s effect on the other bins is negligible); then the
likelihood function of the whole measurement set when the
target is present can be approximated as follows:

𝑝 (z𝑘
Σ/Δ

| x
𝑘
, 𝐸
𝑘
= 1) ≈ ∏

𝑙∈𝐶(x𝑘)

𝑝 (𝑧
𝑘

Σ/Δ
(𝑙) | x

𝑘
, 𝐸
𝑘
= 1)

× ∏

𝑙∉𝐶(x𝑘)

𝑝 (𝑧
𝑘

Σ/Δ
(𝑙) | 𝐸

𝑘
= 0)

(12)

and the likelihood function when the target is absent is

𝑝 (z𝑘
Σ/Δ

| 𝐸
𝑘
= 0) =

𝑁𝑓−𝑙𝑐−1

∏

𝑙=𝑙𝑐

𝑝 (𝑧
𝑘

Σ/Δ
(𝑙) | 𝐸

𝑘
= 0) . (13)

We denote the set of complete measurements up to frame
𝑘 as Z

𝑘
= {z𝑖
Σ
, z𝑖
Δ
, 𝑖 = 1, . . . , 𝑘}.

It is computational complex to calculate the |𝐵
𝑘
(𝑓
𝑘

𝑑
, 𝑙)| for

bins in 𝐶(x
𝑘
) in real time applications. The contribution of

x
𝑘
to bin 𝑙 in 𝐶(x

𝑘
) (i.e., point spread function) is generally

approximated by a Gaussian-like function (e.g., [7, 8] for
optical sensor). Using the Gaussian approximation method,
the point spread function ℎ(x

𝑘
, 𝑙) is

ℎ (x
𝑘
, 𝑙) = 𝐴

𝑘

Σ/Δ

󵄨󵄨󵄨󵄨󵄨
𝐵
𝑘
(𝑓
𝑘

𝑑
, 𝑙)

󵄨󵄨󵄨󵄨󵄨

≈ 𝐴
𝑘

Σ/Δ
𝐺 exp

{

{

{

−

(𝑙𝛿
𝑓
− 𝑓
𝑘

𝑑
)
2

2𝛽2

}

}

}

,

(14)

where 𝐺 = ∑
𝑁−1

𝑛=0
𝑤
𝑛
is the coherent integration gain

and 𝛽 is a parameter to be designed to better approxi-
mate the amount of blurring introduced by the FFT win-
dowing functions. But this approximation is valid only
within a limited range as Figure 2 has shown. To solve this
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Figure 2: Comparison of different point spread function approxi-
mation methods. Hamming window is used,𝑁 = 1024,𝑁app = 64.

problem, we present an approximation approach which is
calculation-free and more precise. Note that |𝐵

𝑘
(𝑓
𝑘

𝑑
, 𝑙)| =

| ∑
𝑁−1

𝑛=0
𝑤
𝑛
exp{𝑗2𝜋𝑛𝑇

𝑟
(𝑓
𝑘

𝑑
− 𝑙𝛿
𝑓
)}| can be expressed as a

function 𝑔w(𝑥) with a parameter w = {𝑤
𝑛
} and a variable

𝑥 = |𝑓
𝑘

𝑑
− 𝑙𝛿
𝑓
|. Because the windowing function w can

be taken as known a priori, we can quantize 𝑔w(𝑥) into a
number of points (e.g., 𝑔w(𝑘𝛿𝑓/𝑁app), 𝑘 = 0, 1, . . . , 𝑁app − 1

for 𝑥 ∈ [0, 𝛿
𝑓
), where 𝑁app is the number of points each bin

is quantized into, and we can store them as a look-up table in
the read-only memory (ROM). In real time operations, the
value of the quantized point nearest to the true point is read
from the ROM and used; that is,

ℎ (x
𝑘
, 𝑙) ≈ 𝐴

𝑘

Σ/Δ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐵
𝑘
(⌊

󵄨󵄨󵄨󵄨󵄨
𝑙𝛿
𝑓
− 𝑓
𝑘

𝑑

󵄨󵄨󵄨󵄨󵄨

𝑁app

𝛿
𝑓

+ 0.5⌋

𝛿
𝑓

𝑁app
, 𝑙)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

,

(15)

where ⌊⋅⌋ is the floor function and ⌊𝑥 + 0.5⌋ rounds 𝑥 to
the nearest integer. The result of this approximation is also
presented in Figure 2.

3. Recursive Bayesian Filtering Procedure

The posterior probability of target existence 𝑃𝑘
𝐸
≜ 𝑃{𝐸

𝑘
= 1 |

Z
𝑘
} and x

𝑘
are estimated recursively by a Bayesian method

as follows. Given the joint posterior PDF at frame 𝑘 − 1,
𝑝(x
𝑘−1

, 𝐸
𝑘−1

| Z
𝑘−1

) and the latestmeasurementZ
𝑘
, the goal is

to construct the joint posterior PDF at frame 𝑘,𝑝(x
𝑘
, 𝐸
𝑘
| Z
𝑘
).

𝑃
𝑘

𝐸
and x
𝑘
are then estimated using 𝑝(x

𝑘
, 𝐸
𝑘
= 1 | Z

𝑘
).

Prediction. Prediction of 𝐸
𝑘
is given by

[

[

𝑃 {𝐸
𝑘
= 1 | Z

𝑘−1
}

𝑃 {𝐸
𝑘
= 0 | Z

𝑘−1
}

]

]

= Π[

[

𝑃 {𝐸
𝑘−1

= 1 | Z
𝑘−1

}

𝑃 {𝐸
𝑘−1

= 0 | Z
𝑘−1

}

]

]

. (16)

If 𝐸
𝑘
= 0, x

𝑘
is undefined and no prediction of it is needed. If

𝐸
𝑘
= 1, the prediction step of x

𝑘
can be expressed as

𝑝 (x
𝑘
, 𝐸
𝑘
= 1 | Z

𝑘−1
)

= ∫𝑝 (x
𝑘
, 𝐸
𝑘
= 1 | x

𝑘−1
, 𝐸
𝑘−1

= 1,Z
𝑘−1

)

⋅ 𝑝 (x
𝑘−1

, 𝐸
𝑘−1

= 1 | Z
𝑘−1

) 𝑑x
𝑘−1

+ ∫𝑝 (x
𝑘
, 𝐸
𝑘
= 1 | x

𝑘−1
, 𝐸
𝑘−1

= 0,Z
𝑘−1

)

⋅ 𝑝 (x
𝑘−1

, 𝐸
𝑘−1

= 0 | Z
𝑘−1

) 𝑑x
𝑘−1

,

(17)

where
𝑝 (x
𝑘
, 𝐸
𝑘
= 1 | x

𝑘−1
, 𝐸
𝑘−1

= 1,Z
𝑘−1

)

= 𝑝 (x
𝑘
| x
𝑘−1

, 𝐸
𝑘
= 1, 𝐸

𝑘−1
= 1) 𝑃 {𝐸

𝑘
= 1 | 𝐸

𝑘−1
= 1}

= 𝑝 (x
𝑘
| x
𝑘−1

, 𝐸
𝑘
= 1, 𝐸

𝑘−1
= 1) (1 − 𝑃

𝑑
) ,

𝑝 (x
𝑘
, 𝐸
𝑘
= 1 | x

𝑘−1
, 𝐸
𝑘−1

= 0,Z
𝑘−1

)

= 𝑝 (x
𝑘
| x
𝑘−1

, 𝐸
𝑘
= 1, 𝐸

𝑘−1
= 0) 𝑃 {𝐸

𝑘
= 1 | 𝐸

𝑘−1
= 0}

= 𝑝
𝑏
(x
𝑘
) 𝑃
𝑏
.

(18)

The transitional density 𝑝(x
𝑘

| x
𝑘−1

, 𝐸
𝑘

= 1, 𝐸
𝑘−1

= 1) is
defined by the target dynamic model (2). The PDF 𝑝

𝑏
(x
𝑘
)

denotes the initial target density on its appearance.

Update. The update equation using Bayes’ rule is given by

𝑝 (x
𝑘
, 𝐸
𝑘
= 1 | Z

𝑘
)

=

𝑝 (z𝑘
Σ
, z𝑘
Δ
| x
𝑘
, 𝐸
𝑘
= 1) 𝑝 (x

𝑘
, 𝐸
𝑘
= 1 | Z

𝑘−1
)

𝑝 (z𝑘
Σ
, z𝑘
Δ
| Z
𝑘−1

)
,

(19)

where the prediction density 𝑝(x
𝑘
, 𝐸
𝑘

= 1 | Z
𝑘−1

) is given
by (17), the normalizing constant in the denominator is 𝑝(z𝑘

Σ
,

z𝑘
Δ
| Z
𝑘−1

) = ∫𝑝(z𝑘
Σ
, z𝑘
Δ
| x, 𝐸
𝑘
= 1)𝑝(x, 𝐸

𝑘
= 1 | Z

𝑘−1
)𝑑x, and

the likelihood function 𝑝(z𝑘
Σ
, z𝑘
Δ
| x
𝑘
, 𝐸
𝑘
= 1) is

𝑝 (z𝑘
Σ
, z𝑘
Δ
| x
𝑘
, 𝐸
𝑘
= 1)

= 𝑝 (z𝑘
Σ
| x
𝑘
, 𝐸
𝑘
= 1) 𝑝 (z𝑘

Δ
| x
𝑘
, 𝐸
𝑘
= 1) ,

(20)

where the likelihood function 𝑝(z𝑘
Σ/Δ

| x
𝑘
, 𝐸
𝑘
= 1) is given by

(12).

Estimate. 𝑃𝑘
𝐸
is estimated by taking marginal of 𝑝(x

𝑘
, 𝐸
𝑘
= 1 |

Z
𝑘
) as follows:

𝑃̂
𝑘

𝐸
= ∫𝑝 (x

𝑘
, 𝐸
𝑘
= 1 | Z

𝑘
) 𝑑x
𝑘
. (21)

Using expected a posterior (EAP) estimator, x
𝑘
is estimated

by

x̂
𝑘
=

∫ x
𝑘
𝑝 (x
𝑘
, 𝐸
𝑘
= 1 | Z

𝑘
) 𝑑x
𝑘

𝑃̂
𝑘

𝐸

. (22)
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4. Particle Filter Implementation

To implement the recursive Bayesian filtering procedure,
a SIR particle filter based TBD algorithm described in
[8] is adopted with some modifications. As the particle
filter tends to suffer from a progressive degeneration as the
sequence evolves, an MCMC step referred to as resample-
move in [16] is employed after importance resampling, which
adds diversity to the particles without altering the underly-
ing distribution [10]. A Metropolis-Hasting resample-move
method is used as described in [10, 17]. Taking move of
the 𝛾, for example, a proposal distribution 𝑞

𝑚
(𝛾
󸀠

𝑘
| 𝛾
𝑘
) is

defined, from which a sample is drawn for each particle after
resampling. A monopulse ratio 𝛾

󸀠

𝑘
is obtained conditioned

on the old monopulse ratio 𝛾
𝑘
while keeping the other two

states unchanged. Under the assumption that the proposal is
symmetric, 𝑞

𝑚
(𝛾
󸀠

𝑘
| 𝛾
𝑘
) = 𝑞

𝑚
(𝛾
𝑘

| 𝛾
󸀠

𝑘
), the new particle is

accepted or rejected on a test, formed by a ratio of likelihoods

𝑇
𝛾
󸀠
,𝛾
=

𝐿 (z
𝑘
| 𝑓
𝑘

𝑑
, 𝐴
𝑘

Σ
, 𝛾
󸀠

𝑘
)

𝐿 (z
𝑘
| 𝑓
𝑘

𝑑
, 𝐴
𝑘

Σ
, 𝛾
𝑘
)
. (23)

If 𝑇
𝛾
󸀠
,𝛾
> 1, then the new particle, with monopulse ratio 𝛾

󸀠, is
kept. Otherwise the new particle is kept in preference to the
old particle only if 𝑈 < 𝑇

𝛾
󸀠
,𝛾
, where 𝑈 is a uniform random

number between 0 and 1. The move operation is used twice
in this application, firstly to the amplitude𝐴𝑘

Σ
and then to the

monopulse ratio 𝛾
𝑘
. Truncated Gaussian distributions with

different variances and means at 𝐴𝑘
Σ
and 𝛾
𝑘
, respectively, are

used as the proposal distributions.
A detailed description of the TBD algorithm is given as

follows.

Initialization. Set 𝑘 = 0 and generate𝑁
𝑠
samples {𝐸𝑖

0
}
𝑁𝑠

𝑖=1
from

𝑃
0

𝐸
= 𝑃(𝐸

0
= 1). If 𝐸𝑖

0
= 1, generate x𝑖

0
from the birth density

𝑞
𝑏
(x
0
| z
0
), or else, x𝑖

0
is undefined.

Then, given [{x𝑖
𝑘−1

}
𝑁𝑠

𝑖=1
, z
𝑘
] at each frame 𝑘, go from Steps

1 to 5.

Step 1 (prediction). Generate {𝐸𝑖
𝑘
}
𝑁𝑠

𝑖=1
on the basis of {𝐸𝑖

𝑘−1
}
𝑁𝑠

𝑖=1

and Π. If 𝐸𝑖
𝑘
= 0, x𝑖

𝑘
is undefined. If 𝐸𝑖

𝑘−1
= 1 and 𝐸

𝑖

𝑘
= 1,

predict x𝑖
𝑘
according to (2). For the new born particles, that

is, those with 𝐸
𝑖

𝑘−1
= 0 and 𝐸

𝑖

𝑘
= 1, generate x𝑖

𝑘
from the birth

density 𝑞
𝑏
(x
𝑘
| z
𝑘
).

Step 2 (update). In the SIR filter, the prior PDF 𝑝(𝑧
𝑘
| 𝑥
𝑖

𝑘−1
) is

chosen to be the important density and, thus, unnormalized
weights are proportional to the likelihood functions. Conse-
quently, using the likelihood ratios as unnormalized weights
will have no effect on the performance of the SIR filter. Thus
the importance weights are calculated by the following [7]:

𝑤
𝑖

𝑘
=

{{

{{

{

∏

𝑙∈𝐶𝑖(x𝑘)

𝐿 (𝑧
𝑘

Σ
(𝑙) , 𝑧
𝑘

Δ
(𝑙) | x𝑖

𝑘
) if 𝐸𝑖

𝑘
= 1

1 if 𝐸𝑖
𝑘
= 0.

(24)

We simplify the likelihood 𝐿(𝑧
𝑘

Σ
(𝑙), 𝑧
𝑘

Δ
(𝑙) | x𝑖

𝑘
) as follows:

𝐿 (𝑧
𝑘

Σ
(𝑙) , 𝑧
𝑘

Δ
(𝑙) | x𝑖

𝑘
)

≜

𝑝 (𝑧
𝑘

Σ
(𝑙) , 𝑧
𝑘

Δ
(𝑙) | x𝑖

𝑘
, 𝐸
𝑘
= 1)

𝑝 (𝑧
𝑘

Σ
(𝑙) , 𝑧
𝑘

Δ
(𝑙) | 𝐸

𝑘
= 0)

=

𝑝 (𝑧
𝑘

Σ
(𝑙) | x𝑖

𝑘
, 𝐸
𝑘
= 1) 𝑝 (𝑧

𝑘

Δ
(𝑙) | x𝑖

𝑘
, 𝐸
𝑘
= 1)

𝑝 (𝑧
𝑘

Σ
(𝑙) | 𝐸

𝑘
= 0) 𝑝 (𝑧

𝑘

Δ
(𝑙) | 𝐸

𝑘
= 0)

= 𝐿 (𝑧
𝑘

Σ
(𝑙) | x𝑖

𝑘
) 𝐿 (𝑧

𝑘

Δ
(𝑙) | x𝑖

𝑘
) .

(25)

From (10) and (11), 𝐿(𝑧𝑘
Σ/Δ

(𝑙) | x𝑖
𝑘
) can be simplified as

𝐿 (𝑧
𝑘

Σ/Δ
(𝑙) | x𝑖

𝑘
)

=

𝑝 (𝑧
𝑘

Σ/Δ
(𝑙) | x𝑖

𝑘
, 𝐸
𝑘
= 1)

𝑝 (𝑧
𝑘

Σ/Δ
(𝑙) | 𝐸

𝑘
= 0)

= 𝐼
0
(

󵄨󵄨󵄨󵄨󵄨
𝐴
(𝑘,𝑖)

Σ/Δ
𝐵
𝑘
(𝑓
(𝑘,𝑖)

𝑑
, 𝑙)

󵄨󵄨󵄨󵄨󵄨
𝑧
𝑘

Σ/Δ
(𝑙)

𝜎2
𝑢

)

× exp
{

{

{

−

󵄨󵄨󵄨󵄨󵄨
𝐴
(𝑘,𝑖)

Σ/Δ
𝐵
𝑘
(𝑓
(𝑘,𝑖)

𝑑
, 𝑙)

󵄨󵄨󵄨󵄨󵄨

2

2𝜎2
𝑢

}

}

}

,

(26)

where 𝐴
(𝑘,𝑖)

Δ
is calculated by 𝐴

(𝑘,𝑖)

Δ
= 𝛾
𝑖

𝑘
𝐴
(𝑘,𝑖)

Σ
. Then get the

normalized weights {𝑤𝑖
𝑘
}
𝑁𝑠

𝑖=1
by 𝑤
𝑖

𝑘
= 𝑤
𝑖

𝑘
/∑
𝑁𝑠

𝑖=1
𝑤
𝑖

𝑘
.

Step 3 (resample). Generate a new set of samples [{𝐸𝑖
𝑘
, 𝑥
𝑖

𝑘
}
𝑁𝑠

𝑖=1
]

from [{𝐸
𝑖

𝑘
, 𝑥
𝑖

𝑘
, 𝑤
𝑖

𝑘
}
𝑁𝑠

𝑖=1
] and replace them using systematic

resampling algorithm [18]. The weights of the new samples
are not required since they are all equal to 1/𝑁

𝑠
.

Step 4 (MCMC move). Generate a new set of samples
from [{𝑥

𝑖

𝑘
}
𝑁𝑠

𝑖=1
] and replace them by move of 𝐴𝑘

Σ
using the

Metropolis-Hastingmethoddescribed above; do this again by
move of 𝛾

𝑘
. Note that this operation only changes the particles

with 𝐸
𝑖

𝑘
= 1.

Step 5 (state estimation). Estimate the posterior probability
of target existence 𝑃𝑘

𝐸
by

𝑃̂
𝑘

𝐸
=

∑
𝑁𝑠

𝑖=1
𝐸
𝑖

𝑘

𝑁
𝑠

. (27)

If 𝑃̂𝑘
𝐸
exceeds a certain threshold Th ∈ (0, 1), target presence

is declared, and then the target state is estimated by

x̂
𝑘|𝑘

=
∑
𝑁𝑠

𝑖=1
x𝑖
𝑘
𝐸
𝑖

𝑘

∑
𝑁𝑠

𝑖=1
𝐸
𝑖

𝑘

. (28)

To bemore specific, some application issues are discussed
as follows.

If there is no additional information, the birth density
should be a uniform density over the surveillance region. For
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(b) Single run

Figure 3: Probability of target existence under different SNRs, asterisk signs (∗) at the bottom indicate the presence of the target.

example, for Doppler component, 𝑓𝑘
𝑑
, uniform samples are

drawn frombins in themeasurements which have amplitudes
that exceed a predefined threshold. For echo amplitude 𝐴

𝑘
,

the birth density is uniform over [𝐴min, 𝐴max], where 𝐴min
and 𝐴max are expected minimum and maximum intensity
levels, respectively. For monopulse ratio, 𝛾

𝑘
, we assume that

the target only exists within the half-power beamwidth, and
from Figure 1 we can get that 𝛾 takes value within [0, 0.8];
thus, we choose its birth density to be uniformwithin [0, 0.8].
If other information is available (e.g., angle, range, orDoppler
information supplied by the carrier aircraft, which usually has
a normal law of error distribution and can be easily sampled
as 𝑞
𝑏
(x
𝑘
| z
𝑘
)), the information should be used rather than

the uniform one to improve the performance.
The bins in 𝐶(x

𝑘
) should be selected carefully, one

practical choice is 𝐶(x
𝑘
) = {𝑖
0
−𝑝, . . . , 𝑖

0
− 1, 𝑖
0
, 𝑖
0
+ 1, . . . , 𝑖

0
+

𝑝}, where 𝑖
0
is the bin nearest to the predicted x𝑖

𝑘
and 𝑝

is a design parameter. Bins near the true Doppler position
have comparatively higher amplitudes and can be beneficial
to the performance, while the others will, on the contrary,
deteriorate the performance because the signal amplitudes
there are too low. As can be seen from Figure 2, the spread
function for the points that are one bin away from the true
position is below −20 dB; thus we choose 𝑝 = 1 in this
application.

5. Experiments

5.1. Experiment 1: Stationary Scenario. The radar parameters
are set as follows: the wavelength is 𝜆 = 3 cm, the PRI is
𝑇
𝑟
= 4 𝜇s, and the number of pulses per CPI is 𝑁 = 1000.

Hamming FFT windowing function is used. The target SNR
represents the envelope of the target return compared to that

of just noise. The SNR is measured after the entire coherent
process (losses caused by windowing and straddle effect are
considered). The initial relative velocity between target and
radar is 1900m/s. The initial monopulse ratio is 0.2. There
are 368 bins in the clutter-free region. The initial amplitudes
for 3, 6, and 10 dB are 0.87, 1.23, and 1.95, respectively. The
levels of process noise used in the target model are 𝜎

2

(1)
=

0.01 ⋅ 𝛿
𝑓
, 𝜎2
(2)

= 0.001, and 𝜎
2

(3)
= 0.01 (the SNR varies only

marginally). The target is born at frame 11 and disappeared at
frame 51.

The particle filter parameters are set as follows: the level of
the process noise is perfectly matched to the simulated data,
the probabilities of target “birth”𝑃

𝑏
and “death”𝑃

𝑑
are both set

as 0.05, the initial target existence probability is 𝑃0
𝐸
= 0.1, the

threshold𝑇
1
= 0.32, and each bin of the point spread function

is quantized into 𝑁app = 64 points. The birth density 𝑞
𝑏
(x
0
|

z
0
) is selected as follows: 𝐴0

Σ
∼ 𝑈(0.5, 3), 𝛾

0
∼ 𝑈(0, 0.8),

and 𝑓
0

𝑑
uniformly distributed in the clutter-free region. The

variances of the proposal distributions in the MCMC move
for 𝐴
Σ
and 𝛾 are 0.04 and 0.01, respectively. 𝑝 = 1 and 4000

particles are used.
Figure 3 shows the estimation result of the existence

probability 𝑃̂
𝑘

𝐸
; asterisk signs (∗) at the bottom of the figure

indicate the presence of the target. It can be seen that it is
possible to detect target under an SNR as low as 3 dB. Setting
the threshold Th = 0.6, for example, we can see that the
target can be detected after several frames’ accumulations.
From Figure 3(b) we can see that the false alarms are isolated.
Thus a binary integrator can be used to mitigate them and
at the same time keep the successful detections, which are
continuous after 𝑃̂𝑘

𝐸
becomes stable.

Now we evaluate the detection performance of the PF-
TBD algorithm in the detection terminologies. We estimate
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Figure 4: Probability of detection. For single frame detection, 𝑃FA = 0.1. For binary integration (3-out-of-5), the 𝑃FA of classical detector is
0.02, while that of PF-TBD is 0 (no false alarm occurs in the 200 runs).

the probability of false alarm 𝑃FA using frames 1 to 10 of
the 200 Monte Carlo runs, where no target is present. More
explicitly,

𝑃FA =
1

200 × 10

200

∑

𝑚=1

10

∑

𝑘=1

(𝑃̂
𝑘,𝑚

𝐸

1

≷

0

Th) , (29)

where 𝑚 is the index of each Monte Carlo run. Similarly, 𝑃
𝐷

is computed when the target is present. To see performance
in the stable region as well as in the whole region, we estimate
𝑃
𝐷
using frames 41 to 50 and frames 11 to 50, respectively. For

example, 𝑃
𝐷
using frames 41 to 50 is

𝑃
𝐷
=

1

200 × 10

200

∑

𝑚=1

50

∑

𝑘=41

(𝑃̂
𝑘,𝑚

𝐸

1

≷

0

Th) . (30)

For comparison, the classical detector is applied to the same
data. Because the PF-TBD algorithm makes one decision in
each frame, for a fairly comparison, the classical detector
declares a detection once any bin in the clutter-free region
exceeds the threshold Th󸀠. Setting 𝑃FA = 0.1 for both the PF-
TBD and the classical detector (correspondingly, probability
of false alarm for the classical detector in each single bin is
2.86 × 10

−4 and the threshold for the PF-TBD is Th = 0.45),
the 𝑃
𝐷
performances of them are shown in Figure 4(a). It can

be observed that the𝑃
𝐷
of PF-TBD in the stable region at 3 dB

is better than that of the classical detector at 10 dB. Thus an
SNR gain of up to 7 dB is obtained.

Taking results of Figure 4(a) as the primary detection
results, we apply the 3-out-of-5 binary integration strategy
to both the PF-TBD and the classical detector. Once 3
or more frames of consecutive 5 frames pass the primary
detection, a secondary detection is declared. The resulting

𝑃FA of the classical detector is 0.02, while that of the PF-
TBD is 0 (no false alarm occurs in the 200 runs), which has
proved that the binary integration after the PF-TBD performs
well at false alarm mitigation. The 𝑃

𝐷
in binary integration is

defined as the quotient of the number of secondary detections
that have past the 3-out-of-5 logic divided by the total
number of secondary detections. The 𝑃

𝐷
results are shown

in Figure 4(b). We can see that the 𝑃
𝐷
improvement over

the classical detector is more compared with the single frame
detection even under lower 𝑃FA.

Remark 1. As the number of Monte Carlo runs is compar-
atively small, these results are not intended to provide a
performance assessment.More precise results can be attained
by performing a large number of Monte Carlo simulations.
Compared with the classical target detection problem, it
seems more reasonable to define an index to describe the
delay before the 𝑃̂

𝑘

𝐸
becomes stable and then evaluate the

detection and estimation performances in the stable region.

5.2. Experiment 2: Maneuvering Target. Now we consider
a real scenario on a 2D plane. As Figure 5 has shown, the
missile performs a straight motion with its antenna direction
1 degree deviated off the south to the east side. After 10 noise
only frames, the target enters the main beam of the seeker
radar and performs a 2 s evasive maneuver. The trajectory
of the target is generated by the simulation software JSBSim
(http://jsbsim.sourceforge.net/). The target’s velocity is about
280m/s and its normal acceleration during the maneuver is
6 g. The missile’s velocity is 1200m/s and its monopulse sum
and difference beam patterns are the same as those shown in
Figure 1. The echo amplitude is inversely proportional to the
square of the range between missile and target (the eclipsing
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Figure 5: Missile and target trajectories. The “◻” and “△” denote
start and end of the trajectory, respectively.

effect and the target fluctuation are not considered).The radar
parameters are the same as those in Experiment 1 except that
𝑁 = 5000; thus, the CPI is 20ms and there are 100 target
presented frames. Because the number of bins in the clutter-
free region is too large, only 200 bins (bins from 3100 to
3300) containing the target are used. The initial SNR is 6 dB.
The levels of process noise used in the particle filter are set
as 𝜎
2

(1)
= 5 ⋅ 𝛿

𝑓
, 𝜎2
(2)

= 0.05, and 𝜎
2

(3)
= 0.05. The birth

density 𝑞
𝑏
(x
0

| z
0
) is 𝐴

0

Σ
∼ 𝑈(1, 4), 𝛾

0
∼ 𝑈(0.79, 0.8),

and 𝑓
0

𝑑
uniformly distributed in the 200 bins. The other

parameters of the particle filter are the same as Experiment
1. For comparison, the PF-TBD algorithm using sum channel
only is also developed and tested using the same data. The
sum-only PF-TBD is obtained through omitting the 𝛾

𝑘
in the

state vector and the filtering process. To distinguish them, the
filter proposed in this paper is referred to as the dual-channel
PF-TBD.

In Figure 6, the estimated probabilities of existence prove
the effectiveness of the two filters in target detection. Note
that the sum-only filter results in worse 𝑃̂

𝑘

𝐸
when the target

is both absent and present, which means that its detection
performance is worse than that of the dual-channel one.
This is because the dual-channel PF-TBD benefits from the
difference channel whose amplitude is high near the half-
power point.

Figures 7(a)–7(c) present the state estimation results of
the two filters. We can see that both of the two filters can
successfully track in target maneuvering. The dual-channel
filter has better Doppler estimation performance. Note that
the target Doppler can travel across half the bin size per
frame; the binary integration of the classical detector will
fail while that of the PF-TBD is unaffected. As the sum-only
filter does not output the monopulse estimation result, the
monopulse estimation performance of the dual-channel PF-
TBD is compared with the classical single frame monopulse
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Figure 6: Probability of target existence (averaged by 100 runs),
asterisk signs (∗) at the bottom indicate the presence of the target.

estimation method as shown in Figure 7(d). To use the
same a priori knowledge, the result of the classical method
is constrained to be within (0, 0.8) and that is why its
estimation result is biased. The classical method assumes
index of the bin which contains the target is known while the
PF-TBD does not use this information. In spite of this, the
monopulse estimation performance of the dual-channel PF-
TBD is better.

Remark 2. This example shows that the detection perfor-
mance can be improved by using the difference channel when
the target is near beam edge. When the target is at the beam
center, however, the difference channel amplitude is approxi-
mately zero as can be seen from Figure 1. Then the detection
performance may be deteriorated instead compared with
the sum-only PF-TBD. In fact, through simulation we have
found that when 𝛾 > 0.1, detection performance of the
dual-channel PF-TBD is better. In practical application, the
two methods should be selected according to the scenario
(e.g., whether there is precise angular targeting information),
and the estimation performance should also be taken into
account.

6. Conclusions and Future Work

Using PF-TBD in monopulse high PRF pulse Doppler radar
to improve detection and estimation performances under low
SNR is addressed in this paper. The target and measurement
models are analyzed and defined for this application. Based
on them, a PF-TBD algorithm with resample-move opera-
tions is developed. Extensive simulations have shown that the
proposed algorithm can improve both the detection and esti-
mation performances compared with the classical and sum-
onlymethods. To further improve the detection performance,
binary integration after the PF-TBD is proposed. Simulation
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Figure 7: Estimation results of 𝐴
Σ
, 𝑓
𝑑
, and 𝛾. The thick dashed lines show the mean value over 100 Monte Carlo runs. The thin dashed lines

are mean ± one standard deviation.

result shows that it can effectively mitigate the false alarms in
the PF-TBD detection result.

As a byproduct of the PF-TBD algorithm, the estimated
amplitude can be used to predict range eclipsing and to
estimate the SNR. Application of the PF-TBD requires exact
knowledge of the thermal noise power, which can be esti-
mated on-the-fly before the PF-TBD is enabled. For seekers
incorporating multispectral sensors, targeting information
(e.g., angular information of the target, probability of exis-
tence of target in the main beam) from other sensors like
the infrared sensor or the passive radar can be fused easily
as Section 4 has stated.
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This paper is concerned with the algorithms which solve 𝐻
2
/𝐻
∞

control problems of stochastic systems with state-dependent
noise. Firstly, the algorithms for the finite and infinite horizon𝐻

2
/𝐻
∞
control of discrete-time stochastic systems are reviewed and

studied. Secondly, two algorithms are proposed for the finite and infinite horizon 𝐻
2
/𝐻
∞

control of continuous-time stochastic
systems, respectively. Finally, several numerical examples are presented to show the effectiveness of the algorithms.

1. Introduction

Mixed𝐻
2
/𝐻
∞
control is an important robust controlmethod

and has been extensively investigated by many researchers
[1–4]. Compared with the sole 𝐻

∞
control, the mixed

𝐻
2
/𝐻
∞

control is more attractive in engineering practice
[4], since the former is a worst-case design which tends
to be conservative while the latter minimizes the average
performance with a guaranteed worst-case performance.
Recently, stochastic 𝐻

2
/𝐻
∞

control for continuous- and
discrete-time systems with multiplicative noise has become
a popular topic and has attracted a lot of attention [5–7]. In
[5], the finite and infinite horizon 𝐻

2
/𝐻
∞

control problems
were discussed for continuous-time stochastic systems with
state-dependent noise.The finite and infinite horizon𝐻

2
/𝐻
∞

control problems were solved for discrete-time stochastic
systems with state and disturbance dependent noise by [6]
and [7], respectively. Moreover, mixed 𝐻

2
/𝐻
∞

control was
widely studied for stochastic systems withMarkov jumps and
multiplicative noise [8–11] due to their powerful modeling
ability in many fields [12, 13].

Generally, the existence of a𝐻
2
/𝐻
∞
controller is equiva-

lent to the solvability of several coupled matrix-valued equa-
tions. However, it is difficult to solve these coupled matrix-
valued equations analytically. Several numerical algorithms

have appeared in dealing with deterministic and stochastic
𝐻
2
/𝐻
∞

control. In [1], the finite horizon 𝐻
2
/𝐻
∞

controller
for continuous-time deterministic systems was obtained
by using the Runge-Kutta integration procedure. In [14],
an exact solution to the suboptimal deterministic 𝐻

2
/𝐻
∞

control problem was studied via convex optimization. Two
iterative algorithms were proposed for finite and infinite
horizon 𝐻

2
/𝐻
∞

control of discrete-time stochastic systems
in [6] and [7], respectively. In [15], an iterative algorithm
was proposed to solve a kind of stochastic algebraic Riccati
equation in LQ zero-sum game problems.

However, most of these algorithms were concerned with
the𝐻

2
/𝐻
∞
control for discrete-time systems. Up to now, the

algorithm for stochastic 𝐻
2
/𝐻
∞

control of continuous-time
systems has received little research attention. This is because
the coupled matrix-valued equations for the continuous-
time 𝐻

2
/𝐻
∞

control cannot be solved by recursive algo-
rithms as in the discrete-time case. In this paper, we will
study the algorithms to solve 𝐻

2
/𝐻
∞

control problems for
stochastic systems with state-dependent noise. Firstly, the
algorithms for finite and infinite horizon 𝐻

2
/𝐻
∞

control of
discrete-time stochastic systems are reviewed. An iterative
algorithm is presented to solve the infinite horizon 𝐻

2
/𝐻
∞

control of discrete-time time-varying stochastic systems.
For continuous-time stochastic systems, two algorithms are
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proposed for the finite and infinite horizon 𝐻
2
/𝐻
∞

control,
respectively. Some numerical examples are presented to
illustrate the developed algorithms.

For conveniences, wemake use of the following notations
throughout this paper: R𝑛: 𝑛-dimensional Euclidean space;
S𝑛: the set of all 𝑛×𝑛 symmetricmatrices;𝐴 > 0 (𝐴 ≥ 0):𝐴 is
a positive definite (positive semidefinite) symmetric matrix;
𝐴
󸀠: the transpose of a matrix 𝐴; 𝐼: the identity matrix; Tr[𝐴]:

the trace of matrix 𝐴; 𝐸(𝑥): the mathematical expectation of
𝑥.

2. Preliminaries

In this section, we will present some preliminary results
for stochastic 𝐻

2
/𝐻
∞

control, including the finite horizon
case for discrete-time time-varying systems, the infinite hori-
zon case for discrete-time time-invariant systems, the finite
horizon case for continuous-time time-varying systems, and
the infinite horizon case for continuous-time time-invariant
systems.

Consider the following discrete-time time-varying
stochastic system with state-dependent noise:

𝑥
𝑘+1

= 𝐴
𝑘
𝑥
𝑘
+ 𝐵
𝑘
𝑢
𝑘
+ 𝐶
𝑘
V
𝑘
+ 𝐷
𝑘
𝑥
𝑘
𝑤
𝑘
,

𝑧
𝑘
= [

𝐹
𝑘
𝑥
𝑘

𝑢
𝑘

] , 𝑥
0
∈ R
𝑛

, 𝑘 = 0, 1, . . . , 𝑇,

(1)

where 𝑥
𝑘

∈ R𝑛, 𝑢
𝑘

∈ R𝑛𝑢 , V
𝑘

∈ R𝑛V , and 𝑦
𝑘

∈ R𝑛𝑦 are,
respectively, the system state, control, disturbance signal, and
output; {𝑤

𝑘
}
𝑘≥0

∈ R is a sequence of independent white noise
defined on the filtered probability space (Ω,F,F

𝑘
,P) with

𝐸(𝑤
𝑘
) = 0 and 𝐸(𝑤

𝑘
𝑤
𝑠
) = 𝛿

𝑘𝑠
, where 𝛿

𝑘𝑠
is a Kronecker

function defined by 𝛿
𝑘𝑠

= 0 for 𝑘 ̸= 𝑠 while 𝛿
𝑘𝑠

= 1 for 𝑘 = 𝑠.
𝑥
0
is assumed to be deterministic for simplicity purposes.𝐴

𝑘
,

𝐵
𝑘
, 𝐶
𝑘
,𝐷
𝑘
, and 𝐹

𝑘
are matrix-valued continuous functions of

appropriate dimensions.

Lemma 1 (see [6]). For given 𝛾 > 0, the finite horizon𝐻
2
/𝐻
∞

control for system (1) has solutions (𝑢
∗

, V∗) as 𝑢
∗

(𝑘, 𝑥
𝑘
) =

𝐾
2𝑘
𝑥
𝑘
, and V∗(𝑘, 𝑥

𝑘
) = 𝐾

1𝑘
𝑥
𝑘
, with 𝐾

1𝑘
and 𝐾

2𝑘
being

continuousmatrix-valued functions, if and only if the following
coupled difference matrix-valued equations

− 𝑃
1𝑘

+ (𝐴
𝑘
+ 𝐵
𝑘
𝐾
2𝑘
)
󸀠

𝑃
1,𝑘+1

(𝐴
𝑘
+ 𝐵
𝑘
𝐾
2𝑘
) + 𝐷
𝑘
𝑃
1,𝑘+1

𝐷
𝑘

− 𝐹
󸀠

𝑘
𝐹
𝑘
− 𝐾
󸀠

2𝑘
𝐾
2𝑘

− [(𝐴
𝑘
+ 𝐵
𝑘
𝐾
2𝑘
)
󸀠

𝑃
1,𝑘+1

𝐶
𝑘
] Γ
1
(𝑃
1,𝑘+1

)
−1

× [(𝐴
𝑘
+ 𝐵
𝑘
𝐾
2𝑘
)
󸀠

𝑃
1,𝑘+1

𝐶
𝑘
]
󸀠

= 0,

𝑃
1,𝑇+1

= 0,

Γ
1
(𝑃
1,𝑘+1

) = 𝛾
2

𝐼 + 𝐶
󸀠

𝑘
𝑃
1,𝑘+1

𝐶
𝑘
> 0,

(2)

𝐾
1𝑘

= −Γ
1
(𝑃
1,𝑘+1

)
−1

[(𝐴
𝑘
+ 𝐵
𝑘
𝐾
2𝑘
)
󸀠

𝑃
1,𝑘+1

𝐶
𝑘
]
󸀠

, (3)

− 𝑃
2𝑘

+ (𝐴
𝑘
+ 𝐶
𝑘
𝐾
1𝑘
)
󸀠

𝑃
2,𝑘+1

(𝐴
𝑘
+ 𝐶
𝑘
𝐾
1𝑘
) + 𝐷
𝑘
𝑃
2,𝑘+1

𝐷
𝑘

+ 𝐹
󸀠

𝑘
𝐹
𝑘
− [(𝐴

𝑘
+ 𝐶
𝑘
𝐾
1𝑘
)
󸀠

𝑃
2,𝑘+1

𝐵
𝑘
] Γ
2
(𝑃
2,𝑘+1

)
−1

× [(𝐴
𝑘
+ 𝐶
𝑘
𝐾
1𝑘
)
󸀠

𝑃
2,𝑘+1

𝐵
𝑘
]
󸀠

= 0,

𝑃
2,𝑇+1

= 0,

(4)

𝐾
2𝑘

= −Γ
2
(𝑃
2,𝑘+1

)
−1

[(𝐴
𝑘
+ 𝐶
𝑘
𝐾
1𝑘
)
󸀠

𝑃
2,𝑘+1

𝐵
𝑘
]
󸀠 (5)

with Γ
2
(𝑃
2,𝑘+1

) = 𝐼 + 𝐵
󸀠

𝑘
𝑃
2,𝑘+1

𝐵
𝑘
, admit a bounded solution

(𝑃
1𝑘

≤ 0,𝐾
1𝑘
; 𝑃
2𝑘

≥ 0,𝐾
2𝑘
), 𝑘 = 0, 1, . . . , 𝑇.

Consider the following discrete-time time-invariant sto-
chastic systems with state-dependent noise:

𝑥
𝑘+1

= 𝐴𝑥
𝑘
+ 𝐵𝑢
𝑘
+ 𝐶V
𝑘
+ 𝐷𝑥
𝑘
𝑤
𝑘
,

𝑧
𝑘
= [

𝐹𝑥
𝑘

𝑢
𝑘

] , 𝑥
0
∈ R
𝑛

, 𝑘 = 0, 1, 2, . . . .

(6)

Briefly, system (6) can be denoted by (𝐴, 𝐵, 𝐶;𝐷 | 𝐹), and
similar notations will be used in the following section.

Lemma 2 (see [7]). Suppose that (𝐴;𝐷 | 𝐹) and (𝐴+𝐵𝐾
1
; 𝐷 |

𝐹) are exactly observable. For given 𝛾 > 0, the infinite horizon
𝐻
2
/𝐻
∞

control for system (6) has solutions (𝑢∗, V∗) as 𝑢
∗

𝑘
=

𝐾
2
𝑥
𝑘
, and V∗

𝑘
= 𝐾
1
𝑥
𝑘
, if and only if the following coupled

algebraic matrix-valued equations

− 𝑃
1
+ (𝐴 + 𝐵𝐾

2
)
󸀠

𝑃
1
(𝐴 + 𝐵𝐾

2
) + 𝐷𝑃

1
𝐷 − 𝐹

󸀠

𝐹 − 𝐾
󸀠

2
𝐾
2

− [(𝐴 + 𝐵𝐾
2
)
󸀠

𝑃
1
𝐶] Γ
1
(𝑃
1
)
−1

[(𝐴 + 𝐵𝐾
2
)
󸀠

𝑃
1
𝐶]
󸀠

= 0,

Γ
1
(𝑃
1
) = 𝛾
2

𝐼 + 𝐶
󸀠

𝑃
1
𝐶 > 0,

(7)

𝐾
1
= −Γ
1
(𝑃
1
)
−1

[(𝐴 + 𝐵𝐾
2
)
󸀠

𝑃
1
𝐶]
󸀠

, (8)

− 𝑃
2
+ (𝐴 + 𝐶𝐾

1
)
󸀠

𝑃
2
(𝐴 + 𝐶𝐾

1
) + 𝐷𝑃

2
𝐷 + 𝐹

󸀠

𝐹

− [(𝐴 + 𝐶𝐾
1
)
󸀠

𝑃
2
𝐵] Γ
2
(𝑃
2
)
−1

[(𝐴 + 𝐶𝐾
1
)
󸀠

𝑃
2
𝐵]
󸀠

= 0,

(9)

𝐾
2
= −Γ
2
(𝑃
2
)
−1

[(𝐴 + 𝐶𝐾
1
)
󸀠

𝑃
2
𝐵]
󸀠 (10)

with Γ
2
(𝑃
2
) = 𝐼 + 𝐵

󸀠

𝑃
2
𝐵, have a solution (𝑃

1
< 0,𝐾

1
; 𝑃
2

>

0,𝐾
2
).

Consider the following continuous-time time-varying
stochastic system with state-dependent noise:

𝑑𝑥 (𝑡) = [𝐴 (𝑡) 𝑥 (𝑡) + 𝐵 (𝑡) 𝑢 (𝑡) + 𝐶 (𝑡) V (𝑡)] 𝑑𝑡

+ 𝐷 (𝑡) 𝑥 (𝑡) 𝑑𝑤 (𝑡) ,

𝑧 (𝑡) = [
𝐹 (𝑡) 𝑥 (𝑡)

𝑢 (𝑡)
] , 𝑥 (0) = 𝑥

0
∈ R
𝑛

, 𝑡 ∈ [0, 𝑇] ,

(11)

where 𝑥(𝑡) ∈ R𝑛, 𝑢(𝑡) ∈ R𝑛𝑢 , V(𝑡) ∈ R𝑛V , and 𝑦(𝑡) ∈ R𝑛𝑦 are,
respectively, the system state, control, disturbance signal, and
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output. 𝑤(𝑡) is a standard one-dimensional Wiener process
defined on the filtered probability space (Ω,F,F

𝑡
,P) with

F
𝑡
= 𝜎{𝑤(𝑠) : 0 ≤ 𝑠 ≤ 𝑡}. 𝑥

0
is assumed to be deterministic

for simplicity purposes. 𝐴(𝑡), 𝐵(𝑡), 𝐶(𝑡), 𝐷(𝑡), and 𝐹(𝑡) are
matrix-valued continuous functions of suitable dimensions.

Lemma 3 (see [5]). For given 𝛾 > 0, the finite horizon𝐻
2
/𝐻
∞

control for system (11) has solutions (𝑢
∗

, V∗) as 𝑢
∗

(𝑡, 𝑥
𝑡
) =

𝐾
2
(𝑡)𝑥(𝑡), and V∗(𝑡, 𝑥

𝑡
) = 𝐾

1
(𝑡)𝑥(𝑡), with 𝐾

1
(𝑡) and 𝐾

2
(𝑡)

being continuous matrix-valued functions, if and only if the
following coupled differential matrix-valued equations

− ̇𝑃
1
(𝑡) = 𝑃

1
(𝑡) 𝐴 (𝑡) + 𝐴

󸀠

(𝑡) 𝑃
1
(𝑡) + 𝐷

󸀠

(𝑡) 𝑃
1
(𝑡) 𝐷 (𝑡)

− 𝐹
󸀠

(𝑡) 𝐹 (𝑡) − [𝑃
1
(𝑡) 𝑃
2
(𝑡)]

× [
𝛾
−2

𝐶 (𝑡) 𝐶
󸀠

(𝑡) 𝐵 (𝑡) 𝐵
󸀠

(𝑡)

𝐵 (𝑡) 𝐵
󸀠

(𝑡) 𝐵 (𝑡) 𝐵
󸀠

(𝑡)
] [

𝑃
1
(𝑡)

𝑃
2
(𝑡)

] ,

𝑃
1
(𝑇) = 0,

(12)

− ̇𝑃
2
(𝑡) = 𝑃

2
(𝑡) 𝐴 (𝑡) + 𝐴

󸀠

(𝑡) 𝑃
2
(𝑡) + 𝐷

󸀠

(𝑡) 𝑃
2
(𝑡) 𝐷 (𝑡)

+ 𝐹
󸀠

(𝑡) 𝐹 (𝑡) − [𝑃
1
(𝑡) 𝑃
2
(𝑡)]

× [
0 𝛾

−2

𝐶 (𝑡) 𝐶
󸀠

(𝑡)

𝛾
−2

𝐶 (𝑡) 𝐶
󸀠

(𝑡) 𝐵 (𝑡) 𝐵
󸀠

(𝑡)
] [

𝑃
1
(𝑡)

𝑃
2
(𝑡)

]

𝑃
2
(𝑇) = 0

(13)

have a bounded solution (𝑃
1
(𝑡) ≤ 0, 𝐾

1
(𝑡); 𝑃
2
(𝑡) ≥ 0, 𝐾

2
(𝑡)),

with 𝐾
1
(𝑡) = −𝛾

−2

𝐶(𝑡)𝑃
1
(𝑡) and 𝐾

2
(𝑡) = −𝐵(𝑡)𝑃

2
(𝑡), 𝑡 ∈

[0, 𝑇].

Consider the following continuous-time time-invariant
stochastic system with state-dependent noise:

𝑑𝑥 (𝑡) = [𝐴𝑥 (𝑡) + 𝐵𝑢 (𝑡) + 𝐶V (𝑡)] 𝑑𝑡 + 𝐷𝑥 (𝑡) 𝑑𝑤 (𝑡) ,

𝑧 (𝑡) = [
𝐹𝑥 (𝑡)

𝑢 (𝑡)
] , 𝑥 (0) = 𝑥

0
∈ R
𝑛

, 𝑡 ∈ [0,∞) .

(14)

Lemma 4 (see [5]). Suppose that (𝐴;𝐷 | 𝐹) and (𝐴+𝐵𝐾
1
; 𝐷 |

𝐹) are exactly observable. For given 𝛾 > 0, the infinite horizon
𝐻
2
/𝐻
∞
control for system (14) has solutions (𝑢∗, V∗) as 𝑢∗(𝑡) =

𝐾
2
𝑥(𝑡) and V∗(𝑡) = 𝐾

1
𝑥(𝑡), if and only if the following coupled

algebraic matrix-valued equations

𝑃
1
𝐴 + 𝐴

󸀠

𝑃
1
+ 𝐷
󸀠

𝑃
1
𝐷 − 𝐹

󸀠

𝐹

− [𝑃
1

𝑃
2
] [

𝛾
−2

𝐶𝐶
󸀠

𝐵𝐵
󸀠

𝐵𝐵
󸀠

𝐵𝐵
󸀠
] [

𝑃
1

𝑃
2

] = 0,

(15)

𝑃
2
𝐴 + 𝐴

󸀠

𝑃
2
+ 𝐷
󸀠

𝑃
2
𝐷 + 𝐹

󸀠

𝐹

− [𝑃
1

𝑃
2
] [

0 𝛾
−2

𝐶𝐶
󸀠

𝛾
−2

𝐶𝐶
󸀠

𝐵𝐵
󸀠

] [
𝑃
1

𝑃
2

] = 0

(16)

have a solution (𝑃
1
≤ 0,𝐾

1
; 𝑃
2
≥ 0,𝐾

2
), with 𝐾

1
= −𝛾
−2

𝐶𝑃
1
,

𝐾
2
= −𝐵𝑃

2
.

3. Discrete-Time Case

In [6, 7], Zhang et al. provided the recursive algorithms to
solve the coupled matrix-valued equations in Lemmas 1 and
2, respectively. Based on those results, this paper will present
an algorithm to solve the infinite horizon 𝐻

2
/𝐻
∞

control of
discrete-time time-varying stochastic systems.

The following algorithm can be used to solve the coupled
difference matrix-valued equations (2)–(5) in Lemma 1 [6].

Algorithm 5. Consider the following.

(i) Set 𝑘 = 𝑇, then Γ
1
(𝑃
1,𝑇+1

) and Γ
2
(𝑃
2,𝑇+1

) can be
computed according to the final conditions 𝑃

1,𝑇+1
= 0

and 𝑃
2,𝑇+1

= 0.

(ii) Solve the matrix recursions (3) and (5), then𝐾
1𝑇

and
𝐾
2𝑇

are derived.

(iii) Substituting the obtained𝐾
2𝑇

and𝐾
1𝑇

into thematrix
recursions (2) and (4), respectively, then 𝑃

1𝑇
≤ 0 and

𝑃
2𝑇

≥ 0 are available.

(iv) Repeat the above procedures; (𝑃
1𝑘
, 𝐾
1𝑘
; 𝑃
2𝑘
, 𝐾
2𝑘
) can

be computed for 𝑘 = 𝑇 − 1, 𝑇 − 2, . . . , 0, recursively.

InAlgorithm 5, the priori condition Γ
1
(𝑃
1𝑘
) > 0 should be

checked to guarantee it to proceed backward. Otherwise, the
algorithm has to stop. It is noted that Γ

1
(𝑃
1,𝑇+1

) and Γ
2
(𝑃
2,𝑇+1

)

can be computed first, provided that the final conditions
𝑃
1,𝑇+1

= 0 and 𝑃
2,𝑇+1

= 0 are known.
The following algorithm can be used to solve the coupled

algebraic matrix-valued equations (7)–(10) in Lemma 2 [7].

Algorithm 6. Consider the following.

(i) Establish difference equations (2)–(5) corresponding
to algebraic equations (7)–(10).

(ii) Give a large 𝑇. By means of Algorithm 5, the differ-
ence equations (2)–(5) can be solved and (𝑃

1𝑘
, 𝐾
1𝑘
;

𝑃
2𝑘
, 𝐾
2𝑘
) 𝑘 = 𝑇, 𝑇 − 1, 𝑇 − 2, . . . , 0 can be derived.

(iii) If the sequences (𝑃
1𝑘
, 𝐾
1𝑘
; 𝑃
2𝑘
, 𝐾
2𝑘
)𝑘 = 𝑇, 𝑇 − 1, 𝑇 −

2, . . . , 0 are convergent, then (7)–(10) have solutions
(𝑃
1
, 𝐾
1
; 𝑃
2
, 𝐾
2
) = (𝑃

10
, 𝐾
10
; 𝑃
20
, 𝐾
20
). Otherwise, the

problem is unsolvable.

In [10], a necessary and sufficient condition for the infinite
horizon 𝐻

2
/𝐻
∞

control problem of discrete-time time-
varying stochastic systems with Markov jumps was derived
in terms of four coupled discrete-time Riccati equations.
However, the Riccati equations in [10]were solved by trial and
error and cannot be extended to the complicated case. The
condition for the infinite horizon 𝐻

2
/𝐻
∞

control of time-
varying stochastic system (𝐴

𝑘
, 𝐵
𝑘
, 𝐶
𝑘
; 𝐷
𝑘
| 𝐹
𝑘
) (or system (1))

is as follows.

Lemma 7. For systems (𝐴
𝑘
, 𝐵
𝑘
, 𝐶
𝑘
; 𝐷
𝑘

| 𝐹
𝑘
), assume that

(𝐴
𝑘
; 𝐷
𝑘

| 𝐹
𝑘
) and (𝐴

𝑘
+ 𝐵
𝑘
𝐾
1𝑘
; 𝐷
𝑘

| 𝐹
𝑘
) are stochastically

detectable. The infinite horizon 𝐻
2
/𝐻
∞

control problem has
solutions 𝑢∗(𝑘, 𝑥

𝑘
) = 𝐾

2𝑘
𝑥
𝑘
, and V∗(𝑘, 𝑥

𝑘
) = 𝐾

1𝑘
𝑥
𝑘
, with 𝐾

1𝑘
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and𝐾
2𝑘
being continuous matrix-valued functions, if and only

if the following coupled difference matrix-valued equations

− 𝑃
1𝑘

+ (𝐴
𝑘
+ 𝐵
𝑘
𝐾
2𝑘
)
󸀠

𝑃
1,𝑘+1

(𝐴
𝑘
+ 𝐵
𝑘
𝐾
2𝑘
)

+ 𝐷
𝑘
𝑃
1,𝑘+1

𝐷
𝑘
− 𝐹
󸀠

𝑘
𝐹
𝑘
− 𝐾
󸀠

2𝑘
𝐾
2𝑘

− [(𝐴
𝑘
+ 𝐵
𝑘
𝐾
2𝑘
)
󸀠

𝑃
1,𝑘+1

𝐶
𝑘
] Γ
1
(𝑃
1,𝑘+1

)
−1

× [(𝐴
𝑘
+ 𝐵
𝑘
𝐾
2𝑘
)
󸀠

𝑃
1,𝑘+1

𝐶
𝑘
]
󸀠

= 0,

Γ
1
(𝑃
1,𝑘+1

) = 𝛾
2

𝐼 + 𝐶
󸀠

𝑘
𝑃
1,𝑘+1

𝐶
𝑘
> 0,

(17)

𝐾
1𝑘

= −Γ
1
(𝑃
1,𝑘+1

)
−1

[(𝐴
𝑘
+ 𝐵
𝑘
𝐾
2𝑘
)
󸀠

𝑃
1,𝑘+1

𝐶
𝑘
]
󸀠

, (18)

− 𝑃
2𝑘

+ (𝐴
𝑘
+ 𝐶
𝑘
𝐾
1𝑘
)
󸀠

𝑃
2,𝑘+1

(𝐴
𝑘
+ 𝐶
𝑘
𝐾
1𝑘
) + 𝐷
𝑘
𝑃
2,𝑘+1

𝐷
𝑘

+ 𝐹
󸀠

𝑘
𝐹
𝑘
− [(𝐴

𝑘
+ 𝐶
𝑘
𝐾
1𝑘
)
󸀠

𝑃
2,𝑘+1

𝐵
𝑘
] Γ
2
(𝑃
2,𝑘+1

)
−1

× [(𝐴
𝑘
+ 𝐶
𝑘
𝐾
1𝑘
)
󸀠

𝑃
2,𝑘+1

𝐵
𝑘
]
󸀠

= 0,

(19)

𝐾
2𝑘

= −Γ
2
(𝑃
2,𝑘+1

)
−1

[(𝐴
𝑘
+ 𝐶
𝑘
𝐾
1𝑘
)
󸀠

𝑃
2,𝑘+1

𝐵
𝑘
]
󸀠 (20)

with Γ
2
(𝑃
2,𝑘+1

) = 𝐼 + 𝐵
󸀠

𝑘
𝑃
2,𝑘+1

𝐵
𝑘
, admit a bounded solution

(𝑃
1𝑘

≤ 0,𝐾
1𝑘
; 𝑃
2𝑘

≥ 0,𝐾
2𝑘
), 𝑘 = 0, 1, 2, . . ..

Proof. This is a direct corollary of Theorem 2 in [10] and the
proof is omitted.

In this paper, the essential difference between Lemmas 1
and 7 is that 𝑘 is finite in the former while it is infinite in
the later. Based on Algorithm 6, the coupled matrix-valued
equations (17)–(20) can be solved by the following recursive
algorithm.

Algorithm 8. Consider the following.

(i) Given 𝑘 = 𝑘
1
, (17)–(20) reduce to time-invariant

matrix-valued equations.
(ii) Compute the solution of these time-invariant matrix-

valued equations by using Algorithm 6.
(iii) Set 𝑘

1
= 𝑘
1
+ 1 and go to step 1.

It is difficult for Algorithm 8 to compute all the solutions
as 𝑘 → ∞ for general time-varying system. However, it is
easy to verify that the solutions of (17)–(20) are also periodic
for periodic systems. Hence, Algorithm 8 is suitable for the
periodic case, which will be shown by Example 1.

4. Continuous-Time Case

In contrast to the discrete-time case, it is more difficult to
deal with the continuous-time stochastic 𝐻

2
/𝐻
∞

control in
Lemmas 3 and 4. In this study, the Runge-Kutta integration
procedure and the convex optimization approach are applied
to solve the coupled matrix-valued equations in Lemmas 3
and 4, respectively.

In Lemma 3, the coupled differential matrix-valued equa-
tions (12) and (13) can be viewed as a set of backward
differential equationswith known terminal conditions, which
can be solved by the Runge-Kutta integration procedure [1].
The following algorithm can be used to solve (12) and (13) in
Lemma 3.

Algorithm 9. Consider the following.

(i) Rewrite (12) and (13) as a set of equations with (𝑛(𝑛 +

1)/2)×2 time-varying backward differential equations
with known terminal conditions.

(ii) Solve this set of equations by using the Runge-Kutta
integration procedure.

(iii) If the solutions of the set of equations are convergent,
then the finite horizon 𝐻

2
/𝐻
∞

control problem is
solvable. Otherwise, the problem is unsolvable.

Next, we will study the algorithm for the solution of
coupled algebraic matrix-valued equations (15) and (16) in
Lemma 4. In the scalar case, the curves represented by
(15) and (16) can be plotted in a (𝑃

1
, 𝑃
2
)-plane, and the

intersections of these curves, if they exist, are the solutions
of (15) and (16). Moreover, the intersection in the second
quadrant is the solution that we need, which will be shown
in Example 2.

In the high-dimensional case, a suboptimal 𝐻
2
/𝐻
∞

controller design algorithm for Lemma 4 was obtained in
[8] by solving a convex optimization problem. However, this
algorithm was developed under the assumption 𝑃

1
= −𝑃

2

which was very conservative. Rewrite (15) and (16) as

Θ
1
= 𝑃
1
𝐴 + 𝐴

󸀠

𝑃
1
+ 𝐷
󸀠

𝑃
1
𝐷 − 𝐹

󸀠

𝐹 − 𝑃
2
𝐵𝐵
󸀠

𝑃
2

− 𝛾
−2

𝑃
1
𝐶𝐶
󸀠

𝑃
1
− 𝑃
1
𝐵𝐵
󸀠

𝑃
2
− 𝑃
2
𝐵𝐵
󸀠

𝑃
1
= 0,

Θ
2
= 𝑃
2
𝐴 + 𝐴

󸀠

𝑃
2
+ 𝐷
󸀠

𝑃
2
𝐷 + 𝐹

󸀠

𝐹 − 𝑃
2
𝐵𝐵
󸀠

𝑃
2

− 𝛾
−2

𝑃
1
𝐶𝐶
󸀠

𝑃
2
− 𝛾
−2

𝑃
2
𝐶𝐶
󸀠

𝑃
1
= 0.

(21)

Substituting 𝑃
1
= −𝑃
2
into (21) yields

𝑃
2
𝐴 + 𝐴

󸀠

𝑃
2
+ 𝐷
󸀠

𝑃
2
𝐷 + 𝐹

󸀠

𝐹 − 𝑃
2
𝐵𝐵
󸀠

𝑃
2
+ 𝛾
−2

𝑃
2
𝐶𝐶
󸀠

𝑃
2
= 0,

𝑃
2
𝐴 + 𝐴

󸀠

𝑃
2
+ 𝐷
󸀠

𝑃
2
𝐷 + 𝐹

󸀠

𝐹 − 𝑃
2
𝐵𝐵
󸀠

𝑃
2
+ 2𝛾
−2

𝑃
2
𝐶𝐶
󸀠

𝑃
2
= 0.

(22)

From the above, it can be seen that one matrix 𝑃
2
cannot

satisfy two different equations simultaneously expect in some
very special cases.

In this paper, we try to present another convex optimiza-
tion algorithm to solve (15) and (16). By Theorem 10 of [16],
(𝑃
1
, 𝑃
2
) ∈ S𝑛 ×S𝑛 is the optimal solution to

max
s.t. Θ1≥0,Θ2≥0, 𝑃1≤0, 𝑃2≥0

𝑁

∑

𝑖=1

Tr [𝑃
1
+ 𝑃
2
] . (23)
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Since

−𝑃
1
𝐵𝐵
󸀠

𝑃
2
− 𝑃
2
𝐵𝐵
󸀠

𝑃
1
≥ −𝑃
1
𝐵𝐵
󸀠

𝑃
1
− 𝑃
2
𝐵𝐵
󸀠

𝑃
2
,

−𝛾
−2

𝑃
1
𝐶𝐶
󸀠

𝑃
2
− 𝛾
−2

𝑃
2
𝐶𝐶
󸀠

𝑃
1
≥ −𝛾
−2

𝑃
1
𝐶𝐶
󸀠

𝑃
1
− 𝛾
−2

𝑃
2
𝐶𝐶
󸀠

𝑃
2
,

(24)

we have Θ
1
≥ 0 and Θ

2
≥ 0 if

Θ
1
= 𝑃
1
𝐴 + 𝐴

󸀠

𝑃
1
+ 𝐷
󸀠

𝑃
1
𝐷 − 𝐹

󸀠

𝐹 − 2𝑃
2
𝐵𝐵
󸀠

𝑃
2

− 𝑃
1
(𝐵𝐵
󸀠

+ 𝛾
−2

𝐶𝐶
󸀠

) 𝑃
1

≥ 0,

Θ
2
= 𝑃
2
𝐴 + 𝐴

󸀠

𝑃
2
+ 𝐷
󸀠

𝑃
2
𝐷 + 𝐹

󸀠

𝐹 − 𝛾
−2

𝑃
1
𝐶𝐶
󸀠

𝑃
1

− 𝑃
2
(𝐵𝐵
󸀠

+ 𝛾
−2

𝐶𝐶
󸀠

) 𝑃
2

≥ 0,

(25)

respectively. According to Schur’s complement lemma, Θ
1
≥

0 and Θ
2
≥ 0 are, respectively, equivalent to

Σ =

[
[
[
[
[
[

[

Σ
11

Σ
12

𝑃
2
𝐵

Σ
󸀠

12
𝐼 0

𝐵
󸀠

𝑃
2

0
1

2
𝐼

]
]
]
]
]
]

]

≥ 0,

Ω =

[
[
[
[

[

Ω
11

Ω
12

𝑃
1
𝐶

Ω
󸀠

12
𝐼 0

𝐶
󸀠

𝑃
1

0 𝛾
2

𝐼

]
]
]
]

]

≥ 0,

(26)

with

Σ
11

= 𝑃
1
𝐴 + 𝐴

󸀠

𝑃
1
+ 𝐷
󸀠

𝑃
1
𝐷 − 𝐹

󸀠

𝐹,

Σ
12

= 𝑃
1
(𝐵𝐵
󸀠

+ 𝛾
−2

𝐶𝐶
󸀠

)
1/2

,

Ω
11

= 𝑃
2
𝐴 + 𝐴

󸀠

𝑃
2
+ 𝐷
󸀠

𝑃
2
𝐷 + 𝐹

󸀠

𝐹,

Ω
12

= 𝑃
2
(𝐵𝐵
󸀠

+ 𝛾
−2

𝐶𝐶
󸀠

)
1/2

.

(27)

Since (26) are linear matrix inequalities (LMIs), a suboptimal
solution to coupled matrix-valued equations (21) may be
derived by solving the following convex optimization prob-
lem:

max
s.t. Σ≥0, Ω≥0, 𝑃1≤0, 𝑃2≥0

𝑁

∑

𝑖=1

Tr [𝑃
1
+ 𝑃
2
] . (28)

Moreover, the infinite horizon 𝐻
2
/𝐻
∞

control problem of
system (14) has a pair of solutions:

𝑢
∗

(𝑡) = 𝐾
2
𝑥 (𝑡) = −𝐵

󸀠

𝑃
2
𝑥 (𝑡) ,

V∗ (𝑡) = 𝐾
1
𝑥 (𝑡) = −𝛾

−2

𝐶
󸀠

𝑃
1
𝑥 (𝑡) .

(29)

Summarizing the above, the following algorithm can be
used to solve (15) and (16) in Lemma 4.

Algorithm 10. Consider the following.

(i) Establish LMIs (26) corresponding to algebraic equa-
tions (15) and (16) in Lemma 4.

(ii) If the convex optimization problem (28) is solvable,
then 𝑃

1
and 𝑃

2
can be derived. Moreover, 𝐾

1
=

−𝛾
−2

𝐶
󸀠

𝑃
1
and 𝐾

2
= −𝐵

󸀠

𝑃
2
can be computed.

Otherwise, (15) and (16) in Lemma 4 are unsolvable.

Remark 11. Note that, in Algorithm 10, conditions (26) are
given in terms of linear matrix inequalities; therefore, by
using the Matlab LMI-Toolbox, it is straightforward to check
the feasibility of the convex optimization problem (28)
without tuning any parameters. In fact, Algorithm 10 is also a
suboptimal algorithm, and the conservatism comes from the
inequality transforms (24).

Remark 12. In this paper, we consider the 𝐻
2
/𝐻
∞

control
for stochastic systems with only state-dependent noise. As
discussed in [17, 18], for most natural phenomena described
by Itô stochastic systems, not only state but also control input
or external disturbance maybe corrupted by noise.Therefore,
it is necessary to study stochastic systems with state, control,
and disturbance-dependent noise which makes the condi-
tions for 𝐻

2
/𝐻
∞

control more complicated. Searching for
the numerical solutions for these conditions deserves further
study.

5. Numerical Examples

In this section, several numerical examples will be provided
to illustrate the effectiveness of Algorithms 8–10.

Example 1. Consider the infinite horizon 𝐻
2
/𝐻
∞

control
for two-dimensional periodic stochastic systems (1) with the
following parameters:

𝐴
𝑘
= [

0.2 0

−1 0.2 ∗ (−1)
𝑘
] , 𝐵

𝑘
= [

0.5

(−1)
𝑘
] ,

𝐶
𝑘
= [

0

−1
] , 𝐷

𝑘
= [

0.5 ∗ (−1)
𝑘

0

0 −0.2
] ,

(30)

𝐹
𝑘
= [ 0 1 ]. Apparently, the period of this system is 𝜏 = 2.

By setting 𝛾 = 1.8 and applying Algorithm 8, the evolutions
of 𝑃
1𝑘
, 𝑃
2𝑘
, 𝐾
1𝑘
, 𝐾
2𝑘
, 𝑘 = 1, 2 are illustrated in Figures 1

and 2, respectively, which clearly show the convergence of the
algorithm.

Example 2. Consider the finite horizon 𝐻
2
/𝐻
∞

control for
the following one-dimensional stochastic system:

𝑑𝑥 (𝑡) = [2𝑥 (𝑡) + 3𝑢 (𝑡) + V (𝑡)] 𝑑𝑡 + 𝑥 (𝑡) 𝑑𝑤 (𝑡) ,

𝑧 (𝑡) = [
3𝑥 (𝑡)

𝑢 (𝑡)
] , 𝑡 ∈ [0, 2] .

(31)



6 Mathematical Problems in Engineering

0 5 10 15 20 25 30

−1.5

−1

−0.5

0

0.5

1

1.5

2

t

0 5 10 15 20 25 30

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

t

Ev
ol

ut
io

ns
 o

fP
1
k
(t

) a
nd

P
2
k
(
t
)
,k

=
1

Ev
ol

ut
io

ns
 o

fK
1
k
(t

) a
nd

 K
2
k
(
t
)
,k

=
1

P1k(1,1)
P1k(1,2)
P1k(2,2)

P2k(1,1)
P2k(1,2)

K1k(1,1)
K1k(1,2)

K2k(1,1)
K2k(1,2)

P2k(2,2)

Figure 1: Convergence of 𝑃
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, 𝐾
1𝑘
, and 𝐾
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in Example 1, 𝑘 = 1.
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Figure 2: Convergence of 𝑃
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, 𝑃
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, 𝐾
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, and 𝐾

2𝑘
in Example 1, 𝑘 = 2.

According to Algorithm 9, coupled differential equations
(12) and (13) can be viewed as the following set of equations
with known terminal conditions:

− ̇𝑃
1
(𝑡) = 5𝑃

1
(𝑡) − 9 − 𝛾

−2

𝑃
2

1
(𝑡) − 9𝑃

2

2
(𝑡) − 18𝑃

1
(𝑡) 𝑃
2
(𝑡) ,

𝑃
1
(2) = 0,

− ̇𝑃
2
(𝑡) = 5𝑃

2
(𝑡) + 9 − 9𝑃

2

2
(𝑡) − 2𝛾

−2

𝑃
1
(𝑡) 𝑃
2
(𝑡) ,

𝑃
2
(2) = 0.

(32)

Setting 𝛾 = 0.4 and using the Runge-Kutta integration proce-
dure, the evolutions of 𝑃

1
(𝑡), 𝑃
2
(𝑡), 𝐾

1
(𝑡), 𝐾

2
(𝑡) are given in

Figure 3, which clearly show the convergence of the solutions
of (12) and (13).

On the other hand, for one-dimensional time-invariant
system (31), the infinite horizon𝐻

2
/𝐻
∞
control can be solved

by searching for the intersection in the second quadrant of
the curves represented by (15) and (16). From Figure 4, it can
be found that the solution of (15) and (16) is 𝑃

1
= −7.9777,

𝑃
2

= 11.7207, which coincides with the 𝑃
1
(0) and 𝑃

2
(0) in

Figure 3. Therefore, algebraic matrix-valued equations (15)
and (16) can be solved by computing the initial conditions of
the corresponding differential matrix-valued equations (12)
and (13), which will be called “initial condition method” in
the following analysis.



Mathematical Problems in Engineering 7

0 0.5 1 1.5 2

−10

−8

−6

−4

−2

0

2

4

6

8

10

12

t

0 0.5 1 1.5 2

−40

−35

−30

−25

−20

−15

−10

−5

0

5

10

t

Ev
ol

ut
io

ns
 o

fP
1
(t

) a
nd

P
2
(
t
)

Ev
ol

ut
io

ns
 o

fK
1
(t

) a
nd

K
2
(
t
)

P1(t)

P2(t)

P1(t)

P2(t)

Figure 3: Convergence of 𝑃
1
(𝑡), 𝑃
2
(𝑡),𝐾

1
(𝑡), and 𝐾

2
(𝑡) in Example 2.

−20 −15 −10 −5 0 5 10 15 20

−20

−15

−10

−5

0

5

10

15

20

e first curve represented by (15)
e second curve represented by (15)
e first curve represented by (16)
e second curve represented by (16)

P1

P
2

P1 = − 7.9777

P2 = 11.7207

Figure 4: The intersection in the second quadrant of curves
represented by (15) and (16) in Example 2.

Example 3. Consider the finite horizon 𝐻
2
/𝐻
∞

control for
two-dimensional time-varying stochastic systems (11) with
the following parameters:

𝐴 (𝑡) = [
−1 0.5 cos (𝑡)
0 −1

] , 𝐵 (𝑡) = [
0.2

0.4
] ,

𝐶 (𝑡) = [
1

0.2
] , 𝐷 (𝑡) = [

1 0.5

0 1
] , 𝐹 (𝑡) = [

0.2

0.4
]

󸀠

.

(33)

In this case, let 𝑃
1
(𝑡) = [

𝑃1(11)(𝑡) 𝑃1(12)(𝑡)

𝑃1(12)(𝑡) 𝑃1(22)(𝑡)
], 𝑃
2
(𝑡) =

[
𝑃2(11)(𝑡) 𝑃2(12)(𝑡)

𝑃2(12)(𝑡) 𝑃2(22)(𝑡)
], and (12) and (13) correspond to a set of

equations with 6 differential equations.
Set 𝛾 = 1, 𝑇 = 12. By applying Algorithm 9, the

evolutions of 𝑃
1
(𝑡), 𝑃
2
(𝑡), 𝐾
1
(𝑡), 𝐾
2
(𝑡) are shown in Figure 5.

Example 4. Consider the infinite horizon𝐻
2
/𝐻
∞
control for

three-dimensional stochastic systems (14) with the following
parameters:

𝐴 = [

[

−2 0 −0.2

0.3 −2 0.5

0.5 0.1 −1.5

]

]

, 𝐵 = [

[

1.2

0.4

0.8

]

]

, 𝐶 = [

[

0.6

0.5

1.3

]

]

,

𝐷 = [

[

1 0.2 0.3

0 −0.3 0.2

0.5 0.6 0.8

]

]

, 𝐹 = [

[

0.1

0.3

0.2

]

]

󸀠

.

(34)

According to Algorithm 10, by solving the convex optimiza-
tion problem (28), we have the following solutions to (15) and
(16):

𝑃
1
= [

[

−0.0567 −0.0320 −0.0525

−0.0320 −0.0320 −0.0370

−0.0525 −0.0370 −0.0535

]

]

,

𝑃
2
= [

[

0.0196 0.0142 0.0204

0.0142 0.0123 0.0164

0.0204 0.0164 0.0225

]

]

,

𝐾
1
= [0.0296 0.0208 0.0299] ,

𝐾
2
= [−0.0455 −0.0351 −0.0490] .

(35)
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Figure 5: Convergence of 𝑃
1
(𝑡), 𝑃
2
(𝑡),𝐾

1
(𝑡), and 𝐾

2
(𝑡) in Example 3.

Example 5. Consider the infinite horizon𝐻
2
/𝐻
∞
control for

two-dimensional stochastic systems (14) with the following
parameters:

𝐴 = [
−1 1

0 −1
] , 𝐵 = [

0.2

0.4
] , 𝐶 = [

1

0.2
] ,

𝐷 = [
1 0.5

0 1
] , 𝐹 = [

0.2

0.4
]

󸀠

.

(36)

In this example, (15) and (16) will be solved by two dif-
ferent methods, that is, the initial condition method and
Algorithm 10. Set 𝛾 = 2 and 𝑇 = 20. By using Algorithm 9,
the convergence of the solutions to (12) and (13) is shown in
Figure 6, and the initial conditions of 𝑃

1
(𝑡) and 𝑃

2
(𝑡) are as

follows:

𝑃
1
(0) = [

−0.0376 −0.1267

−0.1267 −0.5100
] ,

𝑃
2
(0) = [

0.0384 0.1307

0.1307 0.5319
] .

(37)

On the other hand, according to Algorithm 10, we have
the following solutions to (15) and (16):

𝑃
1
= [

−0.0524 −0.2200

−0.2200 −1.1381
] ,

𝑃
2
= [

0.0081 0.0307

0.0307 0.1159
] .

(38)

Remark 13. Substituting the solutions from initial condition
method and those fromAlgorithm 10 into (15) and (16), it can
be found that the former has a higher accuracy than the later.
Moreover, the initial condition method is less conservative
than Algorithm 10 in some cases. For instance, the infinite
horizon 𝐻

2
/𝐻
∞

control of system (31) can be solved by
initial condition method (see Example 2), while there is
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Figure 6: Convergence of 𝑃
1
(𝑡) and 𝑃

2
(𝑡) in Example 5.

no optimization solution by using Algorithm 10. However,
Algorithm 10 has more advantages in the high-dimensional
case than initial condition method. For example, it is difficult
to deal with the problem in Example 4 for initial condition
method, since it needs to solve a set of equations with 12

differential equations. Therefore, each method has its own
advantage and proper scope.

6. Conclusions

In this paper, we have studied the algorithms for 𝐻
2
/𝐻
∞

control problems of stochastic systems with state-dependent
noise. For the finite and infinite horizon stochastic 𝐻

2
/𝐻
∞

control problems, algorithms in the discrete-time case
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have been reviewed and studied, and algorithms in the
continuous-time case have been developed. The validity of
the obtained algorithmshas been verified bynumerical exam-
ples. This subject yields many interesting and challenging
topics. For example, how canwe design numerical algorithms
to solve the 𝐻

2
/𝐻
∞

control problems of stochastic systems
with state, control, and disturbance-dependent noise? This
issue deserves further research.
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This paper focuses on the model of a class of nonlinear stochastic delay systems with Poisson jumps based on Lyapunov stability
theory, stochastic analysis, and inequality technique. The existence and uniqueness of the adapted solution to such systems are
proved by applying the fixed point theorem. By constructing a Lyapunov function and using Doob’s martingale inequality and
Borel-Cantelli lemma, sufficient conditions are given to establish the exponential stability in the mean square of such systems,
and we prove that the exponentially stable in the mean square of such systems implies the almost surely exponentially stable. The
obtained results show that if stochastic systems is exponentially stable and the time delay is sufficiently small, then the corresponding
stochastic delay systems with Poisson jumps will remain exponentially stable, and time delay upper limit is solved by using the
obtained results when the system is exponentially stable, and they are more easily verified and applied in practice.

1. Introduction

In nature, physics, society, engineering, and so on we always
meet two kinds of functions with respect to time: one is
deterministic and another is random. Stochastic differential
equations (SDEs for short) were first initiated and developed
by K. Itô [1]. Today they have become a very powerful tool
applied to mathematics, physics, biology, finance, and so
forth.

Currently, the study of analysis and synthesis of stochastic
time delay systems, described by stochastic delayed differen-
tial equations (SDDE for short), is a popular topic in the field
of control theory [2–8]. Delays in the dynamics can represent
memory or inertia in the financial system [9]. Because the
existence of time delay is the main reason about bringing
instability and deteriorating the control performance, the
study on time delay systems stability and control has impor-
tant theoretical and practical values. Furthermore, it often
happens in real lives that a stochastic system jumps from a
“normal state” or “good state” to a “bad state,” and the strength
of system is random. For this class of systems, it is natural
and necessary to include a jump term in them. The effect of
Poisson jumps should be taken into account when studying
the stability of SDEs [10–16].Therefore, except stochastic and

delay effects, Poisson jumps’ effects is likely to exist widely
in variety of evolution processes in which states are changed
abruptly at some moments of time, including such fields as
finance, economy, medicine, electronics, and so forth. Then,
it is natural to consider the effect of Poisson jumps when
studying the stability of SDDEs.

So far, these topics have received a lot of attention and
there are so many references about them. For instance,
[2–8] established some stability criteria of the stochastic
systems with delay by using Lyapunov function method or
Razumikhin technique or inequality technique and so on.
By using the fixed point theory and Borel-Cantelli lemma,
Guo and Zhu [13] studied that the solution to a class of
stochasticVolterra-Levin equationswith Poisson jumps is not
only existent and unique but also 𝑝th moment exponentially
stable. By constructing a novel Lyapunov-Krasovskii func-
tional and using some new approaches and techniques, Zhu
and Cao [14] focused on the exponential stability for a class
of Markovian jump impulsive stochastic Cohen-Grossberg
neural networks withmixed time delays and got several novel
sufficient conditions. By applying a Lyapunov-Krasovskii
functional, the stochastic analysis theory, and LMI approach,
Zhu and Cao [15] investigated a class of stochastic neural
networks with both Markovian jump parameters and mixed
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time delays and derived some novel sufficient conditions. In
[16], Zhu proposed several good sufficient conditions under
which he proved the asymptotic stability in the 𝑝th moment
and almost sure stability of the SDEs with Lévy noise. Based
on fixed point theory, Chen et al. [17] proved that the mild
solution to a class of impulsive SPDEswith delays andPoisson
jumps is not only existent and unique but also 𝑝th moment
exponentially stable.

Delay and Poisson jumps always coexist in real dynamic
systems. Thus, it is reasonable to consider them together,
leading us to investigate SDDEs with Poisson jumps. How-
ever, the delayed response gives us more difficulties to deal
with the delayed stochastic control problems, not only for
the infinite-dimensional problem, but also for the absence
of Itô’s formula to deal with the delayed part of the tra-
jectory. So the stochastic controlled delay systems are more
complicated. Because Lévy processes are not continuous,
but their sample paths are right-continuous and have a
number of random jumpdiscontinuities occurring at random
times, on each finite time interval. Since Lévy noise has
more advantages than the standard Gausian noise despite its
increased mathematical complexity, it is very interesting and
challenging to study SDDEs with Lévy noise. There is little
literature focusing on a certain class of this system, [14–17],
that discussed the exponential stability of the trivial solution
for this system, but these stable conditions only ensure the
exponential stability of the respective solution and do not give
a bound for the time delay 𝛿, and Chen et al. pointed out that
it is impossible to analyze the stability of mild solutions to
SDDEs by Lyapunov method.

The main objective of this paper is to fill this gap. We
investigate not only the exponential stability in the mean
square but also the almost surely exponential stability for a
class of SDDE with Poisson jumps based on Lyapunov sta-
bility theory, Itô formula, stochastic analysis, and inequality
technique. We first consider the existence and uniqueness
of the adapted solution by employing fixed point theorem.
Next, some sufficient conditions of exponential stability and
corollaries for SDDE with Poisson jumps are obtained by
using Lyapunov function. By utilizing Doob’s martingale
inequality and Borel-Cantelli lemma, it is shown that the
exponentially stable in the mean square of SDDE with
Poisson jumps implies the almost surely exponentially stable.
Our results generalize and improve some recent results (for
instance [5–8, 14–17]). In particular, our results show that if
SDE is exponentially stable and the time delay is sufficiently
small, then the corresponding SDDEwith Poisson jumps will
remain exponentially stable. Moreover, when the system is
exponentially stable, the time delay upper limit is solved by
using our results which are more easily verified and applied
in practice. Our approach in the current paper is different
from the above [14–17]. Finally, we present a simple example
to illustrate the effectiveness of our stable results.

The rest of this paper is organized as follows. In Section 2,
we give the preliminary results about SDDE with Poisson
jumps.Main results and proofs for SDDEwith Poisson jumps
are provided in Section 3. Section 4 presents a simple example
to illustrate our stable results. Section 5 lists some concluding
remarks.

2. Preliminaries

Throughout this paper and unless specified, we let 𝐵(𝑡) =
𝐵(𝑡, 𝜔) be an 𝑚-dimensional motion and 𝑁̃(𝑑𝑡, 𝑑𝑧) =

𝑁(𝑑𝑡, 𝑑𝑧) − ](𝑑𝑧)𝑑𝑡 which is the 𝑙-dimensional compen-
sated jump measure of 𝜂(⋅)an independent compensated
Poisson random measure on a filtered probability space
(Ω,F, {F

𝑡
}
0≤𝑡≤𝑇

, 𝑃). 𝑁(𝑑𝑡, 𝑑𝑧) is the 𝑙-dimensional jump
measure and ](𝑑𝑧) is the Lévymeasure of 𝑙-dimensional Lévy
process 𝜂(⋅) and 𝑇 > 0.

We denote the notation | ⋅ | for the Euclidean norm. If
𝐴 is a vector or matrix, its transpose is denoted by 𝐴𝑇. If
𝐴 is a square matrix, the trace of 𝐴 is denoted by tr(𝐴)
and then the operator norm of 𝐴 is denoted by ‖𝐴‖; that is,
‖𝐴‖ = √tr(𝐴𝑇𝐴). We also use the notation: 𝐿2F([𝑠, 𝑟];R

𝑛

) =

{𝜙(𝑡) : {𝜙(𝑡), 𝑠 ≤ 𝑡 ≤ 𝑟} which is R𝑛-valued adapted stochastic
processes s.t.∫𝑟

𝑠

𝐸|𝜙(𝑡)|
2

𝑑𝑡 < ∞}.
Suppose𝑋(𝑡) ∈ R𝑛 is an Itô-Lévy process of the form

𝑑𝑋 (𝑡) = 𝑏 (𝑡, 𝑋 (𝑡) , 𝑌 (𝑡) , 𝜔) 𝑑𝑡

+ 𝜎 (𝑡, 𝑋 (𝑡) , 𝑌 (𝑡) , 𝜔) 𝑑𝐵 (𝑡)

+ ∫
R𝑛
0

𝛾 (𝑡, 𝑋 (𝑡
−

) , 𝑌 (𝑡
−

) , 𝑧, 𝜔) 𝑁̃ (𝑑𝑡, 𝑑𝑧) ;

𝑡 ∈ [0, 𝑇] ,

(1)

𝑋 (𝑡) = 𝜉 (𝑡) ; 𝑡 ∈ [−𝛿, 0] , (2)

where 𝑌(𝑡) = 𝑋(𝑡 − 𝛿), R𝑛
0
:= R𝑛/{0}, and 𝛿 > 0. Here 𝑏 :

[0, 𝑇]×R𝑛 ×R𝑛 ×Ω → R𝑛, 𝜎 : [0, 𝑇]×R𝑛 ×R𝑛 ×Ω → R𝑛×𝑚,
and 𝛾 : [0, 𝑇]×R𝑛 ×R𝑛 ×R𝑛

0
×Ω → R𝑛×𝑙, are given functions

such that for all 𝑡, 𝑏(𝑡, 𝑥, 𝑦, ⋅), 𝜎(𝑡, 𝑥, 𝑦, ⋅), and 𝛾(𝑡, 𝑥, 𝑦, 𝑧, ⋅) are
F
𝑡
-measurable for all 𝑥 ∈ R𝑛, 𝑦 ∈ R𝑛 and 𝑧 ∈ R𝑛

0
. In the

following, we suppress the 𝜔, for notational simplicity. The
initial date 𝑋(𝑡) = 𝜉(𝑡) is satisfied with 𝜉 := {𝜉(𝑠) : −𝛿 ≤ 𝑠 ≤
0} ∈ 𝐿

𝑝

F0
([−𝛿, 0];R𝑛).

Now let us present an existence and uniqueness result
for (1)-(2). First we let the maps 𝑏(𝑡, 𝑥, 𝑦, ⋅), 𝜎(𝑡, 𝑥, 𝑦, ⋅), and
𝛾(𝑡, 𝑥, 𝑦, 𝑧, ⋅) satisfy the following conditions.

(H2.1) At most linear growth: there exists a constant 𝐶
1
> 0

such that

󵄨󵄨󵄨󵄨𝑏(𝑡, 𝑥, 𝑦)
󵄨󵄨󵄨󵄨

2

+
󵄩󵄩󵄩󵄩𝜎(𝑡, 𝑥, 𝑦)

󵄩󵄩󵄩󵄩

2

+ ∫
R0

𝑙

∑

𝑘=1

󵄨󵄨󵄨󵄨󵄨
𝛾
(𝑘)

(𝑡, 𝑥, 𝑦, 𝑧
𝑘
)
󵄨󵄨󵄨󵄨󵄨

2

]
𝑘
(𝑑𝑧
𝑘
)

≤ 𝐶
1
(1 + |𝑥|

2

+
󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨

2

)

(3)

for all 𝑥 ∈ R𝑛, 𝑦 ∈ R𝑛, where 𝛾(𝑘) ∈ R𝑛 is column
number 𝑘 of the 𝑛 × 𝑙matrix 𝛾 = [𝛾

𝑖𝑘
] and 𝛾(𝑘)

𝑖
= 𝛾
𝑖𝑘
is

the coordinate number 𝑖 of 𝛾(𝑘), and 𝛾(𝑘)(𝑡, 𝑥, 𝑦, 𝑧) =
𝛾
(𝑘)

(𝑡, 𝑥, 𝑦, 𝑧
𝑘
); 𝑧 = (𝑧

1
, . . . , 𝑧

𝑙
) ∈ R𝑙.
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(H2.2) Lipschitz continuity: there exists a constant 𝐶
2
> 0

such that
󵄨󵄨󵄨󵄨󵄨
𝑏(𝑡, 𝑥, 𝑦) − 𝑏(𝑡, 𝑥

󸀠

, 𝑦
󸀠

)
󵄨󵄨󵄨󵄨󵄨

2

+
󵄩󵄩󵄩󵄩󵄩
𝜎(𝑡, 𝑥, 𝑦) − 𝜎(𝑡, 𝑥

󸀠

, 𝑦
󸀠

)
󵄩󵄩󵄩󵄩󵄩

2

+ ∫
R0

𝑙

∑

𝑘=1

󵄨󵄨󵄨󵄨󵄨
𝛾
(𝑘)

(𝑡, 𝑥, 𝑦, 𝑧
𝑘
) − 𝛾
(𝑘)

(𝑡, 𝑥
󸀠

, 𝑦
󸀠

, 𝑧
𝑘
)
󵄨󵄨󵄨󵄨󵄨

2

]
𝑘
(𝑑𝑧
𝑘
)

≤ 𝐶
2
(
󵄨󵄨󵄨󵄨󵄨
𝑥 − 𝑥
󸀠
󵄨󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨󵄨
𝑦 − 𝑦
󸀠
󵄨󵄨󵄨󵄨󵄨

2

)

(4)

for all 𝑥 ∈ R𝑛, 𝑦 ∈ R𝑛.

Lemma 1 (see [18]). For any real matrices 𝜁
1
, 𝜁
2
∈ 𝑅
𝑛 and a

constant 𝜃 > 0, the following matrix inequality holds:

2𝜁
𝑇

1
𝜁
2
≤ 𝜃𝜁
𝑇

1
𝜁
1
+
1

𝜃
𝜁
𝑇

2
𝜁
2
. (5)

Theorem 2. Let (H2.1) and (H2.2) hold. Then for any 𝜉(𝑡) ∈
𝐿
2

F0
([−𝛿, 0];R𝑛), (1)-(2) have a unique adapted solution

𝑋(𝑡; 𝜉) such that

𝐸 [
󵄨󵄨󵄨󵄨𝑋 (𝑡; 𝜉)

󵄨󵄨󵄨󵄨

2

] < ∞ (6)

for all 𝑡. When 𝑏(𝑡, 0, 0, 0) = 𝜎(𝑡, 0, 0, 0) ≡ 0, it is easy to see
that (1)-(2) have a trivial solution 𝑋(𝑡; 0) = 0.

We present the proof of Theorem 2 which is left in
Appendix.

To develop our theories and results, we need to introduce
the following concepts. For stochastic system, exponential
stability in mean square and almost surely exponential
stability are generally used [7].

Definition 3. The trivial solution of (1)-(2) is said to be
𝑝th moment exponentially stable. If there exists a positive
constant 𝜀 such that

lim sup
𝑡→∞

1

𝑡
ln (𝐸󵄨󵄨󵄨󵄨𝑋(𝑡; 𝜉)

󵄨󵄨󵄨󵄨

𝑝

) ≤ −𝜀 (7)

for any 𝜉 ∈ 𝐿𝑝
F0
([−𝛿, 0];R𝑛).

Particularly, 𝑝 = 2; it is called mean square exponentially
stable.

Definition 4. The trivial solution of (1)-(2) is said to be almost
surely exponentially stable. If there exists a positive constant
𝜂 such that

lim sup
𝑡→∞

1

𝑡
ln 󵄨󵄨󵄨󵄨𝑋 (𝑡; 𝜉)

󵄨󵄨󵄨󵄨 ≤ −𝜂 a.s. (8)

for any 𝜉 ∈ 𝐿𝑝
F0
([−𝛿, 0];R𝑛).

3. Main Results

For simplicity, in what follows we write𝑋(𝑡; 𝜉) = 𝑋(𝑡).
Wemake the following assumptions for the coefficients of

(1)-(2).

In the study of mean square exponential stability, it is
often to use a quadratic function as the Lyapunov function;
that is, 𝑉(𝑡, 𝑥) = 𝑥

𝑇

𝐺𝑥, where 𝐺 is a symmetric positive
definite 𝑛 × 𝑛matrix.

Theorem 5. Let (H2.1)-(H2.2) hold; then the trivial solution of
(1)-(2) is exponentially stable in the mean square. Assume that
there exists a symmetric positive definite 𝑛 × 𝑛 matrices 𝐺 and
a constant 𝜆 > 0 such that

2𝑋
𝑇

𝐺𝑏 (𝑡, 𝑋,𝑋) ≤ −𝜆|𝑋|
2

, ∀ (𝑡, 𝑥, 𝑦) ∈ [0, 𝑇] × 𝑅
𝑛

× 𝑅
𝑛

,

(9)

𝜆 > 4 ‖𝐺‖𝐶
1
+ 2 ‖𝐺‖√6𝐶

1
𝐶
2
𝛿 (𝛿 + 2). (10)

In order to proveTheorem 5, we need two lemmas, proofs
of which are left in Appendix.

Lemma 6. Fix the initial data 𝜉(𝑡) arbitrarily. Then,

∫

𝑡

𝛿

𝑒
𝜀𝑠

∫

𝑠

𝑠−𝛿

𝐸|𝑋(𝜏)|
2

𝑑𝜏 𝑑𝑠 ≤ 𝛿𝑒
𝜀𝛿

∫

𝑡

0

𝑒
𝜀𝜏

𝐸|𝑋 (𝜏)|
2

𝑑𝜏, (11)

∫

𝑡

0

𝑒
𝜀𝑠

𝐸|𝑋(𝑠 − 𝛿)|
2

𝑑𝑠 ≤ 𝑐
11
e𝜀𝛿 + 𝑒𝜀𝛿 ∫

𝑡

0

𝑒
𝜀𝑠

𝐸|𝑋(𝑠)|
2

𝑑𝑠 (12)

for any 𝑡 ≥ 𝛿, where 𝑐
11
is a constant larger than ∫0

−𝛿

𝐸|𝜉(𝑠)|
2

𝑑𝑠.

Lemma 7. Let (H2.1) and (H2.2) hold. Fix the initial data 𝜉(𝑡)
arbitrarily; then,

∫

𝑡

𝛿

𝑒
𝜀𝑠

∫

𝑠

𝑠−𝛿

𝐸|𝑋(𝜏 − 𝛿)|
2

𝑑𝜏 𝑑𝑠

≤ 𝛿𝑐
11
𝑒
2𝜀𝛿

+ 𝛿𝑒
2𝜀𝛿

∫

𝑡

0

e𝜀𝑠𝐸|𝑋 (𝑠)|2𝑑𝑠,
(13)

∫

𝑡

0

𝑒
𝜀𝑠

𝐸|𝑋(𝑠) − 𝑋(𝑠 − 𝛿)|
2

𝑑𝑠 ≤ 𝑐
22

+ 3𝐶
1
(𝛿 + 2) 𝛿𝑒

𝜀𝛿

∫

𝑡

0

𝑒
𝜀𝑠

𝐸|𝑋(𝑠)|
2

𝑑𝑠

+ 3𝐶
1
(𝛿 + 2) (𝑐

11
𝛿𝑒
2𝜀𝛿

+ 𝛿𝑒
2𝜀𝛿

∫

𝑡

0

𝑒
𝜀𝑠

𝐸|𝑋(𝑠)|
2

𝑑𝑠)

(14)

for any 𝑡 ≥ 𝛿, where

𝑐
22
≥ ∫

𝛿

0

e𝜀𝑠𝐸|𝑋 (𝑠) − 𝑋 (𝑠 − 𝛿)|2𝑑𝑠

+
3𝛿𝐶
1
(𝛿 + 2)

𝜀
(e𝜀𝑇 − e𝜀𝛿) .

(15)

Based on Lemmas 6 and 7 above, we now carry out a proof
for Theorem 5.
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Proof of Theorem 5. Fix the initial data 𝜉(𝑡) arbitrarily. Apply-
ing Itô’s formula to𝑋𝑇𝐺𝑋, we have

𝑑 (𝑋
𝑇

𝐺𝑋) = 2𝑋
𝑇

𝐺𝑏 (𝑡, 𝑋, 𝑌) 𝑑𝑡

+ 2𝑋
𝑇

𝐺𝜎 (𝑡, 𝑋, 𝑌) 𝑑𝐵 (𝑡)

+ tr [𝜎𝑇 (𝑡, 𝑋, 𝑌)𝐺𝜎 (𝑡, 𝑋, 𝑌)] 𝑑𝑡

+

𝑙

∑

𝑘=1

∫
|𝑧𝑘|<𝑅

𝛾
(𝑘)

(𝑡, 𝑋, 𝑌, 𝑧
𝑘
)

× 𝐺𝛾
(𝑘)

(𝑡, 𝑋, 𝑌, 𝑧
𝑘
) ]
𝑘
(𝑑𝑧
𝑘
) 𝑑𝑡

+

𝑙

∑

𝑘=1

∫
R0
{𝛾
(𝑘)

(𝑡, 𝑋, 𝑌, 𝑧
𝑘
) 𝐺𝛾
(𝑘)

(𝑡, 𝑋, 𝑌, 𝑧
𝑘
)

+ 𝑋
𝑇

(𝑡
−

) 𝐺𝛾
(𝑘)

(𝑡, 𝑋, 𝑌, 𝑧
𝑘
)

+ 𝛾
(𝑘)

(𝑡, 𝑋, 𝑌, 𝑧
𝑘
) 𝐺𝑋 (𝑡

−

)}

× 𝑁̃
𝑘
(𝑑𝑡, 𝑑𝑧

𝑘
) .

(16)

Applying Itô’s formula to 𝑒𝜀𝑡𝑋𝑇𝐺𝑋 and taking the expecta-
tion, we have

𝐸 (𝑒
𝜀𝑡

𝑋
𝑇

𝐺𝑋) ≤ 𝐸 (𝜉
𝑇

(0) 𝐺𝜉 (0))

+ 𝜀𝐸∫

𝑡

0

𝑒
𝜀𝑠

𝑋
𝑇

𝐺𝑋𝑑𝑠

+ 𝐸∫

𝑡

0

𝑒
𝜀𝑠

2𝑋
𝑇

𝐺𝑏 (𝑠, 𝑋, 𝑌) 𝑑𝑠

+ 𝐸∫

𝑡

0

𝑒
𝜀𝑠 tr [𝜎𝑇 (𝑠, 𝑋, 𝑌)𝐺𝜎 (𝑠, 𝑋, 𝑌)] 𝑑𝑠

+ 𝐸∫

𝑡

0

𝑒
𝜀𝑠

[

𝑙

∑

𝑘=1

∫

|𝑧𝑘|<𝑅

𝛾
(𝑘)

(𝑠, 𝑋, 𝑌, 𝑧
𝑘
)

× 𝐺𝛾
(𝑘)

(𝑠, 𝑋, 𝑌, 𝑧
𝑘
)

× ]
𝑘
(𝑑𝑧
𝑘
) ] 𝑑𝑠

:= 𝐸 (𝜉
𝑇

(0) 𝐺𝜉 (0))

+ 𝜀𝐸∫

𝑡

0

𝑒
𝜀𝑠

𝑋
𝑇

𝐺𝑋𝑑𝑠 + 𝐼
1
+ 𝐼
2
+ 𝐼
3
,

(17)

where

𝐼
1
= 𝐸∫

𝑡

0

𝑒
𝜀𝑠

2𝑋
𝑇

𝐺𝑏 (𝑠, 𝑋, 𝑌) 𝑑𝑠,

𝐼
2
= 𝐸∫

𝑡

0

𝑒
𝜀𝑠 tr [𝜎𝑇 (𝑠, 𝑋, 𝑌)𝐺𝜎 (𝑠, 𝑋, 𝑌)] 𝑑𝑠,

𝐼
3
= 𝐸∫

𝑡

0

𝑒
𝜀𝑠

[

𝑙

∑

𝑘=1

∫

|𝑧𝑘|<𝑅

𝛾
(𝑘)

(𝑡, 𝑋, 𝑌, 𝑧
𝑘
)

× 𝐺𝛾
(𝑘)

(𝑡, 𝑋, 𝑌, 𝑧
𝑘
) ]
𝑘
(𝑑𝑧
𝑘
) ] 𝑑𝑠.

(18)

Combining Lemma 1 and (9) as well as (H2.2), we can esti-
mate 𝐼

1
as follows:

𝐼
1
= 𝐸∫

𝑡

0

𝑒
𝜀𝑠

{2𝑋
𝑇

𝐺𝑏 (𝑠, 𝑋,𝑋)

+2𝑋
𝑇

𝐺 [𝑏 (𝑠, 𝑋, 𝑌) − 𝑏 (𝑠, 𝑋,𝑋)]} 𝑑𝑠

≤ 𝐸∫

𝑡

0

𝑒
𝜀𝑠

{−𝜆|𝑋|
2

+ 𝜃|𝑋|
2

+ (
‖𝐺‖
2

𝜃
) ⋅ 𝐶
2
|𝑋 − 𝑌|

2

}𝑑𝑠.

(19)

where 𝜃 > 0 is a constant.
By (H2.1), 𝐼

2
+ 𝐼
3
of (17) yields

𝐼
2
+ 𝐼
3
≤ 2𝐶
1
‖𝐺‖ (𝑒

𝜀𝑇

− 1)

+ 2𝐶
1
‖𝐺‖∫

𝑡

0

𝑒
𝜀𝑠

(𝐸|𝑋|
2

+ 𝐸|𝑌|
2

) 𝑑𝑠.

(20)

Substituting the above two into (17) and using Lemmas 6 and
7, we get an estimate of 𝐸(𝑒𝜀𝑡𝑋𝑇𝐺𝑋) as follows:

𝐸 (𝑒
𝜀𝑡

𝑋
𝑇

𝐺𝑋)

≤ 𝐸 (𝜉
𝑇

(0) 𝐺𝜉 (0)) + 2𝐶
1
‖𝐺‖ 𝑒
𝜀𝑇

− [𝜆 − 𝜃 − ‖𝐺‖ (2𝐶
1
+ 𝜀)] ∫

𝑡

0

𝑒
𝜀𝑠

𝐸|𝑋|
2

𝑑𝑠

+ 2𝐶
1
‖𝐺‖ (𝑐

11
𝑒
𝜀𝛿

+ 𝑒
𝜀𝛿

∫

𝑡

0

𝑒
𝜀𝑠

𝐸|𝑋|
2

𝑑𝑠)

+ (
‖𝐺‖
2

𝜃
) ⋅ 𝐶
2
[𝑐
22
+ 3𝐶
1
(𝛿 + 2) 𝛿𝑒

𝜀𝛿

× ∫

𝑡

0

𝑒
𝜀𝑠

𝐸|𝑋|
2

𝑑𝑠 + 3𝐶
1
(𝛿 + 2)

× (𝑐
11
𝛿𝑒
2𝜀𝛿

+ 𝛿𝑒
2𝜀𝛿

∫

𝑡

0

𝑒
𝜀𝑠

𝐸|𝑋|
2

𝑑𝑠)]

= 𝑐
33
.

(21)

for 𝑡 ≥ 𝛿, where

𝑐
33
= 𝐸 (𝜉

𝑇

(0) 𝐺𝜉 (0)) + 2𝐶
1
‖𝐺‖ 𝑒
𝜀𝑇

+ 2𝐶
1
𝑐
11
‖𝐺‖ 𝑒
𝜀𝛿

+
(‖𝐺‖√𝐶

2
)
2

𝜃
⋅ [𝑐
22
+ 3𝐶
1
𝑐
11
𝛿 (𝛿 + 2) 𝑒

2𝜀𝛿

) .

(22)
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For small enough 𝜀 > 0, we derive

‖𝐺‖ (2𝐶
1
+ 𝜀) + 𝜃 + 2𝐶

1
‖𝐺‖ 𝑒
𝜀𝛿

+ 3

(‖𝐺‖√𝐶
1
𝐶
2
(𝛿 + 2)𝛿)

2

𝜃
⋅ (𝑒
𝜀𝛿

+ 𝑒
2𝜀𝛿

)

≥ 4 ‖𝐺‖𝐶
1
+ 𝜃

+

(‖𝐺‖√6𝐶
1
𝐶
2
𝛿(𝛿 + 2))

2

𝜃
.

(23)

If (10) holds, then we can choose 𝜀 > 0 small enough such
that

𝜆 = ‖𝐺‖ (2𝐶
1
+ 𝜀) + 𝜃 + 2𝐶

1
‖𝐺‖ 𝑒
𝜀𝛿

+ 3

(‖𝐺‖√𝐶
1
𝐶
2
(𝛿 + 2)𝛿)

2

𝜃
⋅ (𝑒
𝜀𝛿

+ 𝑒
2𝜀𝛿

) .

(24)

Since 𝐺 is positive definite,

𝑋
𝑇

𝐺𝑋 ≥ 𝜆min (𝐺) |𝑋|
2

, (25)

where 𝜆min(𝐺) > 0 is the smallest eigenvalue of 𝐺.
Then,

𝐸 (𝑒
𝜀𝑡

𝑋
𝑇

𝐺𝑋) ≥ 𝐸 (𝑒
𝜀𝑡

𝜆min (𝐺) |𝑋|
2

) . (26)

It then follows from (21) that

1

𝑡
ln (𝐸|𝑋 (𝑡)|2) ≤ 1

𝑡
ln([ 𝑐

44

𝜆min (𝐺)
] 𝑒
−𝜀𝑡

)

= −𝜀 +
1

𝑡
ln [ 𝑐

44

𝜆min (𝐺)
] .

(27)

This easily yields

lim sup
𝑡→∞

1

𝑡
ln (𝐸|𝑋 (𝑡)|2) ≤ −𝜀. (28)

Then (1)-(2) is exponentially stable in the mean square.

Theorem 8. Let 𝜀 > 0, under the same assumption as
Theorem 5. If inequality (28) holds, then,

lim sup
𝑡→∞

1

𝑡
ln (|𝑋 (𝑡)|) ≤ − 𝜀

2
𝑎.𝑠. (29)

Proof. Let 𝜀 > 0, under the same assumption asTheorem 5. It
follows from (27) that

1

𝑡
ln (𝐸|𝑋 (𝑡)|2) ≤ −𝜀 + 1

𝑡
⋅ ln𝑀 (30)

for all 𝑡 ≥ 𝛿. Here𝑀 = 𝑐
44
/𝜆min(𝐺). Then, for 𝑡 ∈ [𝑘𝛿, (𝑘 +

1)𝛿], 𝑘 = 2, 3, . . ., we have

𝐸( sup
𝑘𝛿≤𝑡≤(𝑘+1)𝛿

𝐸|𝑋 (𝑡)|
2

) ≤ 𝑀𝑒
−𝜀𝑘𝛿

. (31)

Let 𝜀
0
∈ (0, 𝜀) be arbitrary. By Doob’s martingale inequal-

ity. It follows from (31) that

𝑃(𝜔 : sup
𝑘𝛿≤𝑡≤(𝑘+1)𝛿

|𝑋 (𝑡)| > 𝑒
−(𝜀−𝜀0)𝑘𝛿/2) ≤ 𝑐

33
𝑒
−𝜀0𝑘𝛿. (32)

Thus, it follows from the Borel-Cantelli lemma that, for
almost all 𝜔 ∈ Ω, there exists 𝑘

0
(𝜔), and 𝑘 ≥ 𝑘

0
(𝜔),

𝑃(𝜔 : sup
𝑘𝛿≤𝑡≤(𝑘+1)𝛿

|𝑋 (𝑡)| ≤ 𝑒
−(𝜀−𝜀0)𝑘𝛿/2) = 1. (33)

Since 𝜀
0
is arbitrary, we must have

lim sup
𝑡→∞

1

𝑡
ln |𝑋 (𝑡)| ≤ − 𝜀

2
a.s. (34)

Remark 9. Theexponentially stable in themean square of (1)-
(2) implies the almost surely exponentially stable. In general,
Theorem 8 is still true for 𝑝th moment exponential stable.

Let us single out three important special cases.

Case 1. If 𝜎 = 0 and 𝑁 = 0 (no jumps), then (1)-(2) reduces
to ODE with delay

𝑑𝑋 (𝑡) = 𝑏 (𝑡, 𝑋, 𝑌) 𝑑𝑡, 𝑡 ∈ [0, 𝑇] ,

𝑋 (𝑡) = 𝜉 (𝑡) , 𝑡 ∈ [−𝛿, 0] .

(35)

Applying Theorem 5 to (35), we obtain the following useful
result.

Corollary 10. Let (H2.1)-(H2.2) hold; then the trivial solution
of (35) is exponentially stable in the mean square. Assume that
there exists a symmetric positive definite 𝑛 × 𝑛 matrices 𝐺 and
a constant 𝜆 > 0 such that

2𝑋
𝑇

𝐺𝑏 (𝑡, 𝑋,𝑋) ≤ −𝜆|𝑋|
2

, ∀ (𝑡, 𝑥, 𝑥) ∈ [0, 𝑇] × 𝑅
𝑛

× 𝑅
𝑛

,

(36)

𝜆 > 2 ‖𝐺‖ 𝛿√2𝐶
1
𝐶
2
. (37)

Case 2. If𝑁 = 0 (no jumps), then (1)-(2) reduces to SDEwith
delay

𝑑𝑋 (𝑡) = 𝑏 (𝑡, 𝑋, 𝑌) 𝑑𝑡 + 𝜎 (𝑡, 𝑋, 𝑌) 𝑑𝐵 (𝑡) , 𝑡 ∈ [0, 𝑇] ,

𝑋 (𝑡) = 𝜉 (𝑡) , 𝑡 ∈ [−𝛿, 0] .

(38)

Applying Theorem 5 to (38), we obtain the following useful
result.

Corollary 11. Let (H2.1)-(H2.2) hold; then the trivial solution
of (38) is exponentially stable in the mean square. Assume that
there exists symmetric positive definite 𝑛 × 𝑛matrices 𝐺 and a
constant 𝜆 > 0 such that

2𝑋
𝑇

𝐺𝑏 (𝑡, 𝑋,𝑋) ≤ −𝜆|𝑋|
2

, ∀ (𝑡, 𝑥, 𝑥) ∈ [0, 𝑇] × 𝑅
𝑛

× 𝑅
𝑛

,

(39)

𝜆 > 2 ‖𝐺‖𝐶
1
+ 4 ‖𝐺‖√𝐶

1
𝐶
2
𝛿 (𝛿 + 1). (40)
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Remark 12. The bound for the time delay 𝛿 when (1)-(2) is
exponentially stable which follows from (10), the bound for
the corresponding deterministic case follows from (37), and
the bound for the corresponding stochastic case follows from
(40).

Case 3. If the time delay 𝛿 = 0, then (1)-(2) reduces to the
nondelay SDE with jumps

𝑑𝑋 (𝑡) = 𝑏 (𝑡, 𝑋,𝑋) 𝑑𝑡 + 𝜎 (𝑡, 𝑋,𝑋) 𝑑𝐵 (𝑡)

+ ∫
R𝑛
0

𝛾 (𝑡, 𝑋,𝑋, 𝑧, 𝜔) 𝑁̃ (𝑑𝑡, 𝑑𝑧) ; 𝑡 ∈ [0, 𝑇] .

(41)

One of the powerful techniques employed in the study of
the stability problem is themethod of the Lyapunov functions
or functional [19]. However, it is generally much more
difficult to construct the Lyapunov functionals in the case of
delay than the Lyapunov functions in the case of nondelay.
Therefore another useful technique has been developed, that
is, to compare the stochastic differential delay equations with
the corresponding nondelay equations. To explain, let us look
at a SDE (1) with delay and jumps?

𝑑𝑋 (𝑡) = 𝑏 (𝑡, 𝑋, 𝑌) 𝑑𝑡 + 𝜎 (𝑡, 𝑋, 𝑌) 𝑑𝐵 (𝑡)

+ ∫
R𝑛
0

𝛾 (𝑡, 𝑋 (𝑡
−

) , 𝑌 (𝑡
−

) , 𝑧) 𝑁̃ (𝑑𝑡, 𝑑𝑧) ;

𝑡 ∈ [0, 𝑇] .

(42)

Equation (1) can be rewritten as

𝑑𝑋 (𝑡) = 𝑏 (𝑡, 𝑋,𝑋) 𝑑𝑡 + 𝜎 (𝑡, 𝑋,𝑋) 𝑑𝐵 (𝑡)

+ ∫
R𝑛
0

𝛾 (𝑡, 𝑋 (𝑡
−

) , 𝑋 (𝑡
−

) , 𝑧) 𝑁̃ (𝑑𝑡, 𝑑𝑧)

− [𝑏 (𝑡, 𝑋,𝑋) − 𝑏 (𝑡, 𝑋, 𝑌)] 𝑑𝑡

− [𝜎 (𝑡, 𝑋,𝑋) − 𝜎 (𝑡, 𝑋, 𝑌)] 𝑑𝐵 (𝑡)

− ∫
R𝑛
0

[𝛾 (𝑡, 𝑋 (𝑡
−

) , 𝑋 (𝑡
−

) , 𝑧)

− 𝛾 (𝑡, 𝑋 (𝑡
−

) , 𝑌 (𝑡
−

) , 𝑧)] 𝑁̃ (𝑑𝑡, 𝑑𝑧) ,

(43)

and regard it as the perturbed system of the corresponding
nondelay SDE (41). Obviously, if the time delay 𝛿 is suffi-
ciently small then the perturbation term,

[𝑏 (𝑡, 𝑋,𝑋) − 𝑏 (𝑡, 𝑋, 𝑌)] 𝑑𝑡

+ [𝜎 (𝑡, 𝑋,𝑋) − 𝜎 (𝑡, 𝑋, 𝑌)] 𝑑𝐵 (𝑡)

+ ∫
R𝑛
0

[𝛾 (𝑡, 𝑋 (𝑡
−

) , 𝑋 (𝑡
−

) , 𝑧)

− 𝛾 (𝑡, 𝑋 (𝑡
−

) , 𝑌 (𝑡
−

) , 𝑧)] 𝑁̃ (𝑑𝑡, 𝑑𝑧) ,

(44)

could be so small that the perturbed equation (1) would
behave in a similar way as (41) asymptotically. Applying

Theorem 5 and Remark 12 in [20], we derive (1) which will
remain exponentially stable.

Corollary 13. If the nondelay equation (41) is exponentially
stable and the time delay 𝛿 is sufficiently small, then the
corresponding delay equation (1) will remain exponentially
stable.

4. Example

Let us now present a simple example to illustrate our results,
which can help us find the time delay upper limit.

Example 1. For simplicity of presentation, let us consider a
simple one-dimensional (i.e., 𝑛 = 𝑚 = 𝑙 = 1, thus, the indices
𝑖 and 𝑗 in Theorem 5 will be omitted below) delay equation
with jumps

𝑑𝑋 (𝑡) = 𝑏 (𝑡, 𝑋, 𝑌) 𝑑𝑡 + 𝜎 (𝑡, 𝑋, 𝑌) 𝑑𝐵 (𝑡)

+ ∫
R0
𝛾 (𝑡, 𝑋 (𝑡

−

) , 𝑌 (𝑡
−

) , 𝑧) 𝑁̃ (𝑑𝑡, 𝑑𝑧) ;

𝑡 ∈ [0, 𝑇] ,

(45)

where 𝐵(𝑡) is one-dimensional Brownian motion. Constants
𝑇 > 0 and 𝛿 > 0 is a given finite time delay. For convenience,
let us choose 𝐺 = 1 in this one-dimensional case. Hence (9)
is satisfied with 𝜆 ≥ 2.

Moreover, we let 𝑏(𝑡, 𝑥, 𝑦) = −𝑦, 𝜎(𝑡, 𝑥, 𝑦) = 0.5𝑥 − 0.5𝑦
and 𝛾(𝑡, 𝑥, 𝑦, 𝑧) = 𝑧, 𝑁(𝑑𝑡, 𝑑𝑧) = 𝑑𝑁(𝑡), ](𝑑𝑧) = 𝜅𝑓(𝑧)𝑑𝑧,
where 𝑑𝑁(𝑡) is a Poisson process with jump intensity 𝜅, 𝑓(𝑧)
is log-normal density: 𝑓(𝑧) = (1/√2𝜋𝜔𝑧)𝑒

−(ln 𝑧−𝜇)2/2𝜔2 with
𝐸[𝑧] = 𝑒

𝜇+𝜔
2
/2 and𝐷[𝑧] = (𝑒𝜔

2

− 1)𝑒
2𝜇+𝜔

2

, 𝜇, is mean of jump
𝑧 and 𝜔 is the variance of jump 𝑧 and 𝑥 ∈ 𝑅, 𝑦 ∈ 𝑅. Then
𝑁̃(𝑑𝑡, 𝑑𝑧) = 𝑑𝑁(𝑡) − 𝜅𝑓(𝑧)𝑑𝑧 𝑑𝑡. Here we let 𝜇 = −0.9, 𝜔 =

0.45, and 𝜅 = 0.1. Then

∫
R
|𝑧|
2] (𝑑𝑧) = 𝜅𝐸 [𝑧2] = 𝜅𝑒2𝜇+2𝜔

2

= 0.025. (46)

One can write (45) as the following stochastic differential
delay equation with jumps:

𝑑𝑋 (𝑡) = −𝑋 (𝑡 − 𝛿) 𝑑𝑡

+ [0.5𝑋 (𝑡) − 0.5𝑋 (𝑡 − 𝛿)] 𝑑𝐵 (𝑡)

+ ∫
R0
𝑧𝑁̃ (𝑑𝑡, 𝑑𝑧) .

(47)

It is easy to see that hypotheses (H2.1)-(H2.1) are satisfiedwith
𝐶
1
= 1.5, 𝐶

2
= 1.5. On the other hand, it is easy to see that

condition (9) is satisfied with 𝜆 = 8 and (10) becomes 𝛿 <

0.037.
Therefore, byTheorems 5 and 8, we can conclude that (47)

is both mean square and almost surely exponentially stable
provided 𝛿 < 0.037.

Particularly, 𝜅 = 0; then (45) reduces to SDE with delay

𝑑𝑋 (𝑡) = −𝑋 (𝑡 − 𝛿) 𝑑𝑡 + [0.5𝑋 (𝑡) − 0.5𝑋 (𝑡 − 𝛿)] 𝑑𝐵 (𝑡) .

(48)
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It is easy to see that hypotheses (H2.1)-(H2.2) are satisfied
with 𝐶

1
= 1.5 and 𝐶

2
= 1.5. On the other hand, it is easy to

see that condition (9) is satisfied with 𝜆 = 8 and (40) becomes
𝛿 < 0.395.

Therefore, by Corollary 11 and Theorem 8, we can con-
clude that (48) is both mean square and almost surely
exponentially stable provided 𝛿 < 0.395.

Moreover, setting 𝑏(𝑡, 𝑥, 𝑦) = −𝑦, 𝜎(𝑡, 𝑥, 𝑦) = 0, and 𝜅 =
0, then (45) becomes

𝑑𝑋 (𝑡) = −𝑋 (𝑡 − 𝛿) 𝑑𝑡. (49)

It is easy to see that hypotheses (H2.1)-(H2.2) are satisfied
with 𝐶

1
= 1 and 𝐶

2
= 1. On the other hand, it is easy to see

that condition (9) is satisfied with 𝜆 = 8 and (37) becomes
𝛿 < 2√2.

Therefore, by Corollary 10 and Theorem 8, we can con-
clude that (49) is both mean square and almost surely
exponentially stable provided 𝛿 < 2√2.

Remark 14. Figure 1 gives the simulation results of Example 1
when 𝜎 ̸= 0, 𝜅 ̸= 0, and 𝛿 < 0.037. The parameter values used
in the calculations are ‖𝐺‖ = 1, 𝜆 = 8,𝐶

1
= 1.5,𝐶

2
= 1.5, and

𝛿 = 0.03. Figure 2 gives the simulation results of Example 1
when 𝜎 ̸= 0, 𝜅 = 0, and 𝛿 < 0.395. The parameter values used
in the calculations are ‖𝐺‖ = 1, 𝜆 = 8, 𝐶

1
= 1.5, 𝐶

2
= 1.5,

and 𝛿 = 0.3. Figure 3 gives the simulation results of Example 1
when 𝜎 = 0, 𝜅 = 0, and 𝛿 < 2√2. The parameter values used
in the calculations are ‖𝐺‖ = 1, 𝜆 = 8, 𝐶

1
= 1, 𝐶

2
= 1, and

𝛿 = 1.

5. Concluding Remarks

In this paper, we investigate not only the exponential stability
in the mean square but also the almost surely exponential
stability for a class of SDDE with Poisson jumps based on
Lyapunov stability theory, Itô formula, stochastic analysis,
and inequality technique. We first consider the existence and
uniqueness of the adapted solution by employing fixed point
theorem. Next, some sufficient conditions of exponential
stability and corollaries for SDDE with Poisson jumps are
obtained by using Lyapunov function. By utilizing Doob’s
martingale inequality and Borel-Cantelli lemma, we find
that the exponentially stable in the mean square of SDDE
with Poisson jumps implies the almost surely exponentially
stable. Our results generalize and improve some recent results
([5–8, 14–17]). In particular, our results show that if SDE
is exponentially stable and the time delay is sufficiently
small, then the corresponding SDDEwith Poisson jumps will
remain exponentially stable. Moreover, when the system is
exponentially stable, the time delay upper limit is solved by
using our results which are more easily verified and applied
in practice. Our approach in the current paper is different
from the above [14–17]. Finally, we present a simple example
to illustrate the effectiveness of our stable results. Another
challenging problem is to study a class of SDEs with variable
delays and Poisson jumps. We hope to study these problems
in forthcoming papers.

−40

−50

−30

−20

−10

0

10

20

30

40

20 4 6 8 10 12 14 16 18 20

Time (t)

St
at

e r
es

po
ns

e

x(t)

Figure 1: The simulation results of Example 1 when 𝜎 ̸= 0, 𝜅 ̸= 0,
and 𝛿 = 0.03.
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Figure 2: The simulation results of Example 1 when 𝜎 ̸= 0, 𝜅 = 0,
and 𝛿 = 0.3.
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Figure 3: The simulation results of Example 1 when 𝜎 = 0, 𝑁 = 0,
𝛿 = 1.

Appendix

We now present proof of Theorem 2.

Proof of Theorem 2. Let us define a norm in Banach space
𝐿
2

F([−𝛿, 𝑇];R
𝑛

) as follows:

󵄨󵄨󵄨󵄨𝜒(⋅)
󵄨󵄨󵄨󵄨𝜗
= (𝐸[∫

𝑇

−𝛿

𝑒
−𝜗𝑠󵄨󵄨󵄨󵄨𝜒 (𝑠)

󵄨󵄨󵄨󵄨

2

𝑑𝑠])

1/2

, 𝜗 > 0. (A.1)
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Clearly it is equivalent to the original norm of
𝐿
2

F([−𝛿, 𝑇];R
𝑛

). We consider

𝑋(𝑡) = 𝜉 (0) + ∫

𝑡

0

𝑏 (𝑠, 𝜒, 𝑦
𝜒
) 𝑑𝑠

+ ∫

𝑡

0

𝜎 (𝑠, 𝜒, 𝑦
𝜒
) 𝑑𝐵 (𝑠)

+ ∫
R𝑛
0

𝛾 (𝑠, 𝑋 (𝑠
−

) , 𝑌 (𝑠
−

) , 𝑧) 𝑁̃ (𝑑𝑠, 𝑑𝑧) ;

𝑡 ∈ [0, 𝑇]

𝑋 (𝑡) = 𝜉 (𝑡) , 𝑡 ∈ [−𝛿, 0] ,

(A.2)

where𝑦
𝜒
= 𝜒(𝑡−𝛿). Define amappingT : 𝐿2F([−𝛿, 𝑇];R

𝑛

) →

𝐿
2

F([−𝛿, 𝑇];R
𝑛

) such that T(𝜒(⋅)) = 𝑋(⋅). We desire to prove
that T is a contraction mapping under the norm |𝜒(⋅)|

𝜗
.

For arbitrary 𝜒(⋅), 𝜒󸀠(⋅) ∈ 𝐿
2

F([−𝛿, 𝑇];R
𝑛

), set T(𝜒(⋅)) =

𝑋(⋅), T(𝜒󸀠(⋅)) = 𝜒
󸀠

(⋅), and 𝜒(⋅) = 𝜒(⋅) − 𝜒
󸀠

(⋅), 𝑋(⋅) = 𝑋(⋅) −

𝑋
󸀠

(⋅). Then,𝑋(⋅) satisfies

𝑋(⋅) = ∫

𝑡

0

[𝑏 (𝑠, 𝜒, 𝑦
𝜒
) − 𝑏 (𝑠, 𝜒

󸀠

, 𝑦
󸀠

𝜒
)] 𝑑𝑠

+ ∫

𝑡

0

[𝜎 (𝑠, 𝜒, 𝑦
𝜒
) − 𝜎 (𝑠, 𝜒

󸀠

, 𝑦
󸀠

𝜒
)] 𝑑𝐵 (𝑠)

+ ∫
R𝑛
0

[𝛾 (𝑠, 𝜒 (𝑠
−

) , 𝑦
𝜒
(𝑠
−

) , 𝑧)

− 𝛾 (𝑠, 𝜒
󸀠

(𝑠
−

) , 𝑦
󸀠

𝜒
(𝑠
−

) , 𝑧)] 𝑁̃ (𝑑𝑠, 𝑑𝑧) ;

𝑡 ≥ 0,

𝑋 (⋅) = 0, 𝑡 ∈ [−𝛿, 0] .

(A.3)

Applying Itô’s formula to 𝑒−𝜗𝑡|𝑋(𝑡)|2 and taking the expecta-
tion, we have

𝜗𝐸∫

𝑇

0

𝑒
−𝜗𝑡
󵄨󵄨󵄨󵄨󵄨
𝑋(𝑡)

󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑡

= 2𝐸∫

𝑇

0

𝑒
−𝜗𝑡

𝑋 (𝑡)
󵄨󵄨󵄨󵄨󵄨
𝑏 (𝑡, 𝜒, 𝑦

𝜒
) − 𝑏 (𝑡, 𝜒

󸀠

, 𝑦
󸀠

𝜒
)
󵄨󵄨󵄨󵄨󵄨
𝑑𝑡

+ 𝐸∫

𝑇

0

𝑒
−𝜗𝑡
󵄨󵄨󵄨󵄨󵄨
𝜎(𝑠, 𝜒, 𝑦

𝜒
) − 𝜎(𝑠, 𝜒

󸀠

, 𝑦
󸀠

𝜒
)
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑡

+ 𝐸∫

𝑇

0

𝑙

∑

𝑘=1

∫
|𝑧𝑘|<𝑅

𝑒
−𝜗𝑡
󵄨󵄨󵄨󵄨󵄨
𝛾
(𝑘)

(𝑡, 𝜒 (𝑡
−

) , 𝑦
𝜒
(𝑡
−

) , 𝑧
𝑘
)

− 𝛾
(𝑘)

(𝑡, 𝜒
󸀠

(𝑡
−

), 𝑦
󸀠

𝜒
(𝑡
−

), 𝑧
𝑘
)
󵄨󵄨󵄨󵄨󵄨

2

× ]
𝑘
(𝑑𝑧
𝑘
) 𝑑𝑡.

(A.4)

Lemma 1 yields

𝜗𝐸∫

𝑇

0

𝑒
−𝜗𝑡
󵄨󵄨󵄨󵄨󵄨
𝑋(𝑡)

󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑡

≤ 𝐸∫

𝑇

0

𝑒
−𝜗𝑡

(
󵄨󵄨󵄨󵄨󵄨
𝑋(𝑡)

󵄨󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨󵄨
𝑏(𝑡, 𝜒, 𝑦

𝜒
) − 𝑏(𝑡, 𝜒

󸀠

, 𝑦
󸀠

𝜒
)
󵄨󵄨󵄨󵄨󵄨

2

) 𝑑𝑡

+ 𝐸∫

𝑇

0

𝑒
−𝜗𝑡
󵄨󵄨󵄨󵄨󵄨
𝜎(𝑠, 𝜒, 𝑦

𝜒
) − 𝜎(𝑠, 𝜒

󸀠

, 𝑦
󸀠

𝜒
)
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑡

+ 𝐸∫

𝑇

0

𝑙

∑

𝑘=1

∫

|𝑧𝑘|<𝑅

𝑒
−𝜗𝑡
󵄨󵄨󵄨󵄨󵄨
𝛾
(𝑘)

(𝑡, 𝜒 (𝑡
−

) , 𝑦
𝜒
(𝑡
−

) , 𝑧
𝑘
)

− 𝛾
(𝑘)

(𝑡, 𝜒
󸀠

(𝑡
−

) , 𝑦
󸀠

𝜒
(𝑡
−

) , 𝑧
𝑘
)
󵄨󵄨󵄨󵄨󵄨

2

× ]
𝑘
(𝑑𝑧
𝑘
) 𝑑𝑡.

(A.5)

Then by (H2.2), we obtain

(𝜗 − 1) 𝐸∫

𝑇

0

𝑒
−𝜗𝑡
󵄨󵄨󵄨󵄨󵄨
𝑋 (𝑡)

󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑡

≤ 3𝐶
2
⋅ 𝐸 [∫

𝑇

0

𝑒
−𝜗𝑡󵄨󵄨󵄨󵄨𝜒(𝑡)

󵄨󵄨󵄨󵄨

2

𝑑𝑡

+ ∫

𝑇

0

𝑒
−𝜗𝑡
󵄨󵄨󵄨󵄨󵄨
𝑦
𝜒
(𝑡)
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑡] ,

(A.6)

where

∫

𝑇

0

𝑒
−𝜗𝑡
󵄨󵄨󵄨󵄨󵄨
𝑦
𝜒
(𝑡)
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑡𝜏 = 𝑡 − 𝛿

= 𝑒
−𝜃𝛿

∫

𝑇−𝛿

−𝛿

𝑒
−𝜃𝜏󵄨󵄨󵄨󵄨𝜒(𝜏)

󵄨󵄨󵄨󵄨

2

𝑑𝜏 ≤ ∫

𝑇−𝛿

−𝛿

𝑒
−𝜗𝜏󵄨󵄨󵄨󵄨𝜒(𝜏)

󵄨󵄨󵄨󵄨

2

𝑑𝜏

≤ ∫

𝑇

−𝛿

𝑒
−𝜗𝜏󵄨󵄨󵄨󵄨𝜒(𝜏)

󵄨󵄨󵄨󵄨

2

𝑑𝜏.

(A.7)

Then,

(𝜗 − 1) 𝐸∫

𝑇

0

𝑒
−𝜗𝑡
󵄨󵄨󵄨󵄨󵄨
𝑋(𝑡)

󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑡 ≤ 6𝐶
2
⋅ 𝐸 ∫

𝑇

−𝛿

𝑒
−𝜗𝑡󵄨󵄨󵄨󵄨𝜒(𝑡)

󵄨󵄨󵄨󵄨

2

𝑑𝑡.

(A.8)

Let 𝜗 = 12𝐶
2
+ 1, then the above yields

𝐸∫

𝑇

−𝛿

𝑒
−𝜗𝑡
󵄨󵄨󵄨󵄨󵄨
𝑋(𝑡)

󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑡 ≤
1

2
𝐸∫

𝑇

−𝛿

𝑒
−𝜗𝑡󵄨󵄨󵄨󵄨𝜒 (𝑡)

󵄨󵄨󵄨󵄨

2

𝑑𝑡. (A.9)

That is,
󵄨󵄨󵄨󵄨󵄨
𝑋(⋅)

󵄨󵄨󵄨󵄨󵄨𝜗
=

1

√2

󵄨󵄨󵄨󵄨𝜒(⋅)
󵄨󵄨󵄨󵄨𝜗
. (A.10)

This implies that T is a strict contraction mapping. Then it
follows from the fixed point theorem that (1)-(2) has a unique
solution in 𝐿2F([−𝛿, 𝑇];R

𝑛

). Since 𝑏 and 𝜎 satisfy (H2.1) and
(H2.2), we can easily derive that𝐸[|𝑋(𝑡; 𝜉)|2] < ∞, and𝑥(𝑡; 𝜉)
is continuous with respect to 𝑡 ∈ [0, 𝑇]. Furthermore, by
𝑏(𝑡, 0, 0, 0) = 𝜎(𝑡, 0, 0, 0) ≡ 0, (1)-(2) have a trivial solution
𝑋(𝑡; 0) = 0.
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Proof of Lemma 6. For any 𝑡 ≥ 𝛿, we easily get

∫

𝑡

𝛿

𝑒
𝜀𝑠

∫

𝑠

𝑠−𝛿

𝐸|𝑋(𝜏)|
2

𝑑𝜏 𝑑𝑠

= ∫

𝑡

0

𝐸|𝑋(𝜏)|
2

(∫

(𝜏+𝛿)∧𝑡

𝜏∨𝛿

𝑒
𝜀𝑠

𝑑𝑠)𝑑𝜏

≤ 𝛿𝑒
𝜀𝛿

∫

𝑡

0

𝑒
𝜀𝜏

⋅ 𝐸|𝑋 (𝜏)|
2

𝑑𝜏.

∫

𝑡

0

𝑒
𝜀𝑠

𝐸|𝑋 (𝑠 − 𝛿)|
2

𝑑𝑠

≤ 𝑒
𝜀𝛿

∫

𝛿

0

𝐸|𝑋(𝑠 − 𝛿)|
2

𝑑𝑠

+ 𝑒
𝜀𝛿

∫

𝑡

𝛿

𝑒
𝜀(𝑠−𝛿)

𝐸|𝑋 (𝑠 − 𝛿)|
2

𝑑𝑠𝜏 = 𝑠 − 𝛿𝑒
𝜀𝛿

× ∫

0

−𝛿

𝐸
󵄨󵄨󵄨󵄨𝜉(𝜏)

󵄨󵄨󵄨󵄨

2

𝑑𝜏

+ 𝑒
𝜀𝛿

∫

𝑡−𝛿

0

𝑒
𝜀𝜏

𝐸|𝑋(𝜏)|
2

𝑑𝜏

≤ 𝑐
11
𝑒
𝜀𝛿

+ 𝑒
𝜀𝛿

∫

𝑡

0

𝑒
𝜀𝜏

𝐸|𝑋(𝜏)|
2

𝑑𝜏

(A.11)

for any 𝑡 ≥ 𝛿, where 𝑐
11
≥ ∫
0

−𝛿

𝐸|𝜉(𝜏)|
2

𝑑𝜏.

Proof of Lemma 7. Similar to (11), for any 𝑡 ≥ 𝛿, we have

∫

𝑡

𝛿

𝑒
𝜀𝑠

∫

𝑠

𝑠−𝛿

𝐸|𝑋(𝜏 − 𝛿)|
2

𝑑𝜏 𝑑𝑠

≤ 𝛿𝑒
𝜀𝛿

∫

𝑡

0

𝑒
𝜀𝜏

𝐸|𝑋(𝜏 − 𝛿)|
2

𝑑𝜏.

(A.12)

Substituting (12) into the above inequality yields

∫

𝑡

𝛿

𝑒
𝜀𝑠

∫

𝑠

𝑠−𝛿

𝐸|𝑋(𝜏 − 𝛿)|
2

𝑑𝜏 𝑑𝑠

< 𝛿𝑐
11
𝑒
2𝜀𝛿

+ 𝛿𝑒
2𝜀𝛿

∫

𝑡

0

𝑒
𝜀𝑠

𝐸|𝑋(𝑠)|
2

𝑑𝑠.

(A.13)

The relation (13) in Lemma 7 is then proved.
On the other hand, for 𝑠 ≥ 𝛿, we have

𝑋 (𝑠) − 𝑋 (𝑠 − 𝛿) = ∫

𝑠

𝑠−𝛿

𝑏 (𝑡, 𝑋, 𝑌) 𝑑𝑡

+ ∫

𝑠

𝑠−𝛿

𝜎 (𝑡, 𝑋, 𝑌) 𝑑𝐵 (𝑡)

+ ∫

𝑠

𝑠−𝛿

∫
R𝑛
𝛾 (𝑡, 𝑋, 𝑌, 𝑧) 𝑁̃ (𝑑𝑡, 𝑑𝑧) .

(A.14)

By (H2.1), we get

𝐸|𝑋 − 𝑌|
2

≤ 3𝛿𝐸∫

𝑠

𝑠−𝛿

|𝑏 (𝑡, 𝑋, 𝑌)|
2

𝑑𝑡

+ 3𝐸∫

𝑠

𝑠−𝛿

tr [𝜎𝑇 (𝑡, 𝑋, 𝑌) 𝜎 (𝑡, 𝑋, 𝑌)] 𝑑𝑡

+ 3𝐸∫

𝑠

𝑠−𝛿

∫
R0

𝑙

∑

𝑘=1

󵄨󵄨󵄨󵄨󵄨
𝛾
(𝑘)

(𝑡, 𝑋, 𝑌, 𝑧
𝑘
)
󵄨󵄨󵄨󵄨󵄨

2

]
𝑘
(𝑑𝑧
𝑘
) 𝑑𝑡

= 3𝛿𝐶
1
(𝛿 + 2) + 3𝐶

1
(𝛿 + 2)

× ∫

𝑠

𝑠−𝛿

(𝐸|𝑋|
2

+ 𝐸|𝑌|
2

) 𝑑𝑡.

(A.15)

Similar to (12), for 𝑡 ≥ 𝛿, we have

∫

𝑡

0

𝑒
𝜀𝑠

𝐸|𝑋 − 𝑌|
2

𝑑𝑠

= ∫

𝛿

0

𝑒
𝜀𝑠

𝐸|𝑋(𝑠) − 𝑋(𝑠 − 𝛿)|
2

𝑑𝑠

+ ∫

𝑡

𝛿

𝑒
𝜀𝑠

𝐸|𝑋 (𝑠) − 𝑋 (𝑠 − 𝛿)|
2

𝑑𝑠

≤ 𝑐
22
+ 3𝐶
1
(𝛿 + 2) ∫

𝑡

𝛿

𝑒
𝜀𝑠

∫

𝑠

𝑠−𝛿

(𝐸|𝑋|
2

+ 𝐸|𝑌|
2

) 𝑑𝑡 𝑑𝑠,

(A.16)

where

𝑐
22
≥ ∫

𝛿

0

𝑒
𝜀𝑠

𝐸|𝑋 (𝑠) − 𝑋 (𝑠 − 𝛿)|
2

𝑑𝑠

+
3𝛿𝐶
1
(𝛿 + 2)

𝜀
(𝑒
𝜀𝑇

− 𝑒
𝜀𝛿

) .

(A.17)

Substituting (11) and (13) into (A.16), for 𝑡 ≥ 𝛿, we get

∫

𝑡

0

𝑒
𝜀𝑠

𝐸|𝑋(𝑠) − 𝑋(𝑠 − 𝛿)|
2

𝑑𝑠

≤ 𝑐
22
+ 3𝐶
1
(𝛿 + 2) 𝛿𝑒

𝜀𝛿

∫

𝑡

0

𝑒
𝜀𝑠

𝐸|𝑋 (𝑠)|
2

𝑑𝑠

+ 3𝐶
1
(𝛿 + 2) (𝑐

11
𝛿𝑒
2𝜀𝛿

+ 𝛿𝑒
2𝜀𝛿

∫

𝑡

0

𝑒
𝜀𝑠

𝐸|𝑋(𝑠)|
2

𝑑𝑠) .

(A.18)
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This paper studies a linear quadratic nonzero sum differential game problem with asymmetric information. Compared with the
existing literature, a distinct feature is that the information available to players is asymmetric. Nash equilibrium points are obtained
for several classes of asymmetric information by stochastic maximum principle and technique of completion square. The systems
of some Riccati equations and forward-backward stochastic filtering equations are introduced and the existence and uniqueness of
the solutions are proved. Finally, the unique Nash equilibrium point for each class of asymmetric information is represented in a
feedback form of the optimal filtering of the state, through the solutions of the Riccati equations.

1. Introduction

Throughout this article, we denote by 𝑅
𝑘 the 𝑘-dimensional

Euclidean space, 𝑅𝑘×𝑙 the collection of 𝑘 × 𝑙 matrices. The
superscript ∗ denotes the transpose of vectors or matri-
ces. Let (Ω,F, (F

𝑡
), 𝑃) be a complete filtered probabil-

ity space in which F
𝑡
denotes a natural filtration gen-

erated by a three dimensional standard Brownian motion
(𝑊
1
(𝑡),𝑊

2
(𝑡),𝑊

3
(𝑡)), F = F

𝑇
, and 𝑇 > 0 be a fixed

time horizon. For a given Euclidean space, we denote by
⟨⋅, ⋅⟩ (resp., | ⋅ |) the scalar product (resp., norm). We also
denote byL2F𝑡(0, 𝑇; 𝑆) the space of all 𝑆-valued,F𝑡-adapted
and square integrable processes, by L2F𝑇(Ω; 𝑆) the space of
all 𝑆-valued, F

𝑇
-measurable and square integrable random

variables, by L2(0, 𝑇; 𝑆) the space of all 𝑆-valued functions
satisfying ∫

𝑇

0

|𝑓(𝑡)|
2

𝑑𝑡 < ∞, and by 𝑓(𝑡)
2 the square of 𝑓(𝑡).

For the sake of simplicity, we set

F
𝑗

𝑡
= 𝜎 {𝑊

𝑗
(𝑠) , 0 ≤ 𝑠 ≤ 𝑡} (𝑗 = 1, 2, 3) ,

F
1,2

𝑡
= 𝜎 {𝑊

1
(𝑠) ,𝑊

2
(𝑠) , 0 ≤ 𝑠 ≤ 𝑡} ,

F
2,3

𝑡
= 𝜎 {𝑊

2
(𝑠) ,𝑊

3
(𝑠) , 0 ≤ 𝑠 ≤ 𝑡} ,

ℎ̂ (𝑡) = E (ℎ (𝑡) | F
1,2

𝑡
) ,

ℎ̃ (𝑡) = E (ℎ (𝑡) | F
2

𝑡
) , ℎ̌ (𝑡) = E (ℎ (𝑡) | F

3

𝑡
) ,

ℎ (𝑡) = E (ℎ (𝑡) | F
2,3

𝑡
) , ℎ̇ (𝑡) =

𝑑ℎ (𝑡)

𝑑𝑡
.

(1)
This work is interested in linear quadratic (LQ, for short)

non-zero sum differential game with asymmetric informa-
tion. For simplicity, we only study the case of two players. Let
us now begin to specify the problem. Consider the following
one-dimensional stochastic differential equation (SDE, for
short)

𝑑𝑥
V1 ,V2

(𝑡) = [𝑎 (𝑡) 𝑥
V1 ,V2

(𝑡) + 𝑏
1
(𝑡) V
1
(𝑡)

+𝑏
2
(𝑡) V
2
(𝑡) + 𝑐 (𝑡)] 𝑑𝑡 + 𝑔

1
(𝑡) 𝑑𝑊

1
(𝑡)
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+ [𝑒 (𝑡) 𝑥
V1 ,V2

(𝑡) +𝑔
2
(𝑡)] 𝑑𝑊

2
(𝑡)

+ 𝑔
3
(𝑡) 𝑑𝑊

3
(𝑡) ,

𝑥
V1 ,V2

(0) = 𝑥
0
,

(2)

and cost functionals of the form

𝐽
𝑖
(V
1
(⋅) , V
2
(⋅))=

1

2
E [∫

𝑇

0

(𝑙
𝑖
(𝑡) 𝑥

V1,V2
(𝑡)
2

+ 𝑚
𝑖
(𝑡) V
𝑖
(𝑡)
2

) 𝑑𝑡

+𝑟
𝑖
𝑥
V1 ,V2

(𝑇)
2

] (𝑖 = 1, 2) .

(3)

Here 𝑎, 𝑏
1
, 𝑏
2
, 𝑐, 𝑒,𝑔

1
,𝑔
2
and𝑔
3
are bounded anddeterministic

functions in 𝑡, 𝑙
1
and 𝑙

2
are bounded, nonnegative and

deterministic functions in 𝑡,𝑚
1
and𝑚

2
are bounded, positive

and deterministic functions in 𝑡, and 𝑟
1
and 𝑟

2
are two

nonnegative constants. Hereinafter, we omit all dependence
on time variable 𝑡 of all processes or deterministic functions
if there is no risk of ambiguity from the context for the
notational simplicity; V

1
(⋅) and V

2
(⋅) are the control processes

of Player 1 and Player 2, respectively. We always use the
subscript 1 (resp., the subscript 2) to characterize the control
variable corresponding to Player 1 (resp., Player 2) and use
the notation 𝑥

V1 ,V2 to denote the dependence of the state on
the control variable (V

1
, V
2
).

LetF
𝑡
denote the full information up to time 𝑡 andG𝑖

𝑡
⊆

F
𝑡
be a given sub-filtration which represents the information

available to Player 𝑖 (𝑖 = 1, 2) at time 𝑡 ∈ [0, 𝑇]. If G𝑖
𝑡
⊆ F
𝑡

and G𝑖
𝑡

̸= F
𝑡
, we call the available information partial or

incomplete for Player 𝑖. If G1
𝑡

̸= G2
𝑡
, we call the available

information asymmetric for Player 1 and Player 2. Now we
introduce the admissible control set

U
𝑖
= {V
𝑖
(⋅) ∈ L

2

G𝑖
𝑡

(0, 𝑇; 𝑅) | V
𝑖
(𝑡) ∈ 𝑈

𝑖
, 𝑡 ∈ [0, 𝑇]} , (4)

whereG𝑖 = G𝑖
𝑇
and𝑈

𝑖
are nonempty convex subsets of𝑅 (𝑖 =

1, 2). Each element of U
𝑖
is called an open-loop admissible

control for Player 𝑖 (𝑖 = 1, 2). And U
1
× U
2
is said to be the

set of open-loop admissible controls for the players.
Suppose each player hopes to minimize her/his cost

functional 𝐽
𝑖
(V
1
(⋅), V
2
(⋅)) by selecting a suitable admissible

control V
𝑖
(⋅) (𝑖 = 1, 2). In this study, the problem is, under the

setting of asymmetric information, to look for (𝑢
1
(⋅), 𝑢
2
(⋅)) ∈

U
1
× U
2
which is called the Nash equilibrium point of the

game, such that

𝐽
1
(𝑢
1
(⋅) , 𝑢
2
(⋅)) = min

V1(⋅)∈U1
𝐽
1
(V
1
(⋅) , 𝑢
2
(⋅)) ,

𝐽
2
(𝑢
1
(⋅) , 𝑢
2
(⋅)) = min

V2(⋅)∈U2
𝐽
1
(𝑢
1
(⋅) , V
2
(⋅)) .

(5)

We call the problem above an LQ non-zero sum differential
gamewith asymmetric information. For simplicity, we denote
it by Problem (LQ NZSDG).

The LQ problems constitute an extremely important
class of optimal control or differential game problems, since

they can model many problems in applications, and also
reasonably approximate nonlinear control or game problems.
On the other hand, there also exist so called partial and
asymmetric information problems in realworld. For example,
investors only partially know the information from security
market (see [1, 2]); in many situations, “insider trading”
maybe exist, which means that the insider has access to
material and non-public information about the security and
the available information is asymmetric between the insider
and the common trader (see, e.g., [3, 4]); the principal faces
information asymmetric and risk with regards to whether the
agent has effectively completed a contract, when a principal
hires an agent to perform specific duties (see, e.g., [5, 6]). For
more information about LQ control or game problems, the
interested readers may refer the following partial list of the
works including [7–13] with complete information, and [14]
with partial information, and the references therein.

It is very important and meaningful to find explicit Nash
equilibrium points for differential game problems. When
the available information is partial or asymmetric, we need
to derive the corresponding optimal filtering of the states
and adjoint variables which will be used to represent the
Nash equilibrium points. It is very difficult to obtain the
equations satisfied by the optimal filtering when the available
information is asymmetric for Player 1 and Player 2. Up till
now, it seems that there has been no literature about LQ
differential games with asymmetric information G1

𝑡
and G2

𝑡
.

However, in case where G𝑖
𝑡
(𝑖 = 1, 2) are chosen as certain

special forms, we can still derive the filtering equations and
then obtain the explicit form of the Nash equilibrium point.
In the sequel, we will study Problem (LQ NZSDG) under the
following four classes of asymmetric information:

(i) G1
𝑡

= F1,2
𝑡

and G2
𝑡

= F2,3
𝑡
; that is, the two players

possess the common partial informationF2
𝑡
;

(ii) G1
𝑡
= F1,2
𝑡

and G2
𝑡
= F2
𝑡
; that is, Player 1 possesses

more information than Player 2;

(iii) G1
𝑡

= F
𝑡
and G2

𝑡
= F2
𝑡
; that is, Player 1 possesses

the full information and Player 2 possesses the partial
informaion;

(iv) G1
𝑡

= F1,2
𝑡

and G2
𝑡

= F3
𝑡
; that is, the two players

possess the mutually independent information.

In Section 3, we will point out that some other cases similar
to (i)–(iv) can be also solved by the same idea andmethod. To
our knowledge, this paper is the first try to study LQ nonzero
sum differential games in the setting of the asymmetric
information.

The rest of this paper is organized as follows. In Section 2,
we introduce some preliminaries which will be used to
derive the forward-backward filtering equations and prove
the corresponding existence and uniqueness of the solutions.
In Section 3, we obtain the unique explicit Nash equilibrium
point for each class of asymmetric information above. We
also introduce some Riccati equations and represent the
unique Nash equilibrium point in a feedback form of the
optimal filtering of the statewith respect to the corresponding
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asymmetric information, through the solutions of the Riccati
equations. Some conclusions are given in Section 4.

2. Preliminary Results

In this section, we are going to introduce two lemmas,
which will be often used later. First, we present existence
and uniqueness for the solutions of the forward-backward
stochastic differential equation (FBSDE, for short), whose
dynamics is described by

𝑑𝑥 = 𝑏 (𝑡, 𝑥, 𝑦) 𝑑𝑡 + 𝜎 (𝑡, 𝑥, 𝑦) 𝑑𝑊,

−𝑑𝑦 = 𝑓 (𝑡, 𝑥, 𝑦, 𝑧) 𝑑𝑡 − 𝑧 𝑑𝑊,

𝑥 (0) = 𝑥
0
, 𝑦 (𝑇) = 𝜑 (𝑥 (𝑇)) .

(6)

Here 𝑥(⋅) satisfies an (forward) SDE, (𝑦(⋅), 𝑧(⋅)) satisfies
a backward stochastic differential equation, 𝑊(⋅) is a 𝑑-
dimensional standard Brownian motion, (𝑥, 𝑦, 𝑧) takes value
in 𝑅
𝑛

× 𝑅
𝑛

× 𝑅
𝑛×𝑑, and 𝑏, 𝜎, 𝑓, and 𝜑 are the mappings with

suitable sizes.
We introduce the notations

𝑢 = (𝑥, 𝑦, 𝑧)
∗

, 𝐴 (𝑡, 𝑢) = (−𝑓, 𝑏, 𝜎)
∗

(𝑡, 𝑢) , (7)

and make the following assumption.

(H
1
) 𝐴(𝑡, 𝑢) and 𝜑 are uniformly Lipschitz continuous
with respect to their variables; for each 𝑥, 𝜑(𝑥)
is in L2F𝑇(Ω; 𝑅

𝑛

); for every (𝜔, 𝑡) ∈ Ω ×

[0, 𝑇], 𝑏(𝜔, 𝑡, 0, 0) ∈ L2F(0, 𝑇; 𝑅
𝑛

), 𝜎(𝜔, 𝑡, 0, 0) ∈

L2F(0, 𝑇; 𝑅
𝑛×𝑑

), and 𝑓(𝜔, 𝑡, 0, 0, 0) ∈ L2F(0, 𝑇; 𝑅
𝑛

).

We also make the following assumption.

(H
2
) The functions 𝐴(𝑡, 𝑢) and 𝜑 satisfy the monotonic
conditions:

⟨𝐴 (𝑡, 𝑢
1
) − 𝐴 (𝑡, 𝑢

2
) , 𝑢
1
− 𝑢
2
⟩

≤ −𝜅
1

󵄨󵄨󵄨󵄨𝑥1 − 𝑥
2

󵄨󵄨󵄨󵄨

2

− 𝜅
2

󵄨󵄨󵄨󵄨𝑦1 − 𝑦
2

󵄨󵄨󵄨󵄨

2

,

⟨𝜑 (𝑥
1
) − 𝜑 (𝑥

2
) , 𝑥
1
− 𝑥
2
⟩ ≥ 𝜅
3

󵄨󵄨󵄨󵄨𝑥1 − 𝑥
2

󵄨󵄨󵄨󵄨

2

,

∀𝑢
1
− 𝑢
2
= (𝑥
1
− 𝑥
2
, 𝑦
1
− 𝑦
2
, 𝑧
1
− 𝑧
2
) ,

(8)

where 𝜅
1
, 𝜅
1
, and 𝜅

3
are given nonnegative constants satisfy-

ing 𝜅
1
+ 𝜅
2
> 0, 𝜅

2
+ 𝜅
3
> 0.

Then we have the following lemma, which is a direct
deduction of Theorem 1 in Wu and Yu [11] with no random
jumps.

Lemma 1. If the assumptions (𝐻
1
) and (𝐻

2
) hold, then (6) has

a unique triple (𝑥(⋅), 𝑦(⋅),𝑧(⋅)) ∈ L2F𝑡(0, 𝑇; 𝑅
𝑛+𝑛+𝑛×𝑑

).

Remark 2. If we assume 𝜎 ≡ 0 and all functions are
deterministic, then (6) is reduced to a forward-backward
ordinary differential equation (ODE, for short):

𝑑𝑥 = 𝑏 (𝑡, 𝑥, 𝑦) 𝑑𝑡,

−𝑑𝑦 = 𝑓 (𝑡, 𝑥, 𝑦) 𝑑𝑡,

𝑥 (0) = 𝑥
0
, 𝑦 (𝑇) = 𝜑 (𝑥 (𝑇)) .

(9)

We define the notation 𝑢 = (𝑥, 𝑦)
∗, 𝐺(𝑡, 𝑢) = (−𝑓, 𝑏)

∗

(𝑡, 𝑢).
If 𝑏, 𝑓, 𝜑, and 𝐺 satisfy the assumptions (H

1
) and (H

2
)

with L2F𝑡(0, 𝑇; 𝑆) replaced by L2(0, 𝑇; 𝑆) and 𝜑 is uni-
formly bounded, then (9) has a unique solution (𝑥, 𝑦) ∈

L2(0, 𝑇;R𝑛+𝑛).

The following lemma is from the monograph by Chung
[15] (see the example, Section 9.2).

Lemma 3. IfF
1
,F
2
, andF

3
are three 𝜎-algebras, andF

1
∨

F
2
is independent of F

3
, then, for any integrable random

variable𝑋 ∈ F
1
, we have E[𝑋 | F

2
∨F
3
] = E[𝑋 | F

2
].

3. Nash Equilibrium Point

In this section, we will derive the explicit form of the
Nash equilibrium point for Problem (LQ NZSDG), applying
stochastic maximum principle for partial information opti-
mal control problem and the technique of complete square.
Further, we also introduce theRiccati equations and represent
theNash equilibriumpoint as a feedback of the optimal filters
𝑥, 𝑥, and 𝑥, through the solutions to the Riccati equations.

We first introduce two LQ stochastic control problems
with two pieces of general asymmetric information G1

𝑡
and

G2
𝑡
which is closely related to problem (LQ NZSDG).

Problem (LQSC1):

min {𝐽
𝑢2

1
(V
1
(⋅)) | V

1
(⋅) ∈ U

1
} ,

𝐽
𝑢2

1
(V
1
(⋅)) =

1

2
E [∫

𝑇

0

(𝑙
1
(𝑥

V1)
2

+ 𝑚
1
(V
1
)
2

) 𝑑𝑡 + 𝑟
1
𝑥
V1
(𝑇)
2

] ,

(10)

subject to

𝑑𝑥
V1 = [𝑎𝑥

V1 + 𝑏
1
V
1
(𝑡) + 𝑏

2
𝑢
2
+ 𝑐] 𝑑𝑡

+ 𝑔
1
𝑑𝑊
1
+ [𝑒𝑥

V1 + 𝑔
2
] 𝑑𝑊
2
+ 𝑔
3
𝑑𝑊
3
,

𝑥
V1
(0) = 𝑥

0
.

(11)

Problem (LQSC2):

min {𝐽
𝑢1

2
(V
2
(⋅)) | V

2
(⋅) ∈ U

2
} ,

𝐽
𝑢1

2
(V
2
(⋅))=

1

2
E [∫

𝑇

0

(𝑙
2
(𝑥

V2)
2

+ 𝑚
2
(V
2
)
2

) 𝑑𝑡 + 𝑟
2
𝑥
V2
(𝑇)
2

] ,

(12)
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subject to

𝑑𝑥
V2 = [𝑎𝑥

V2 + 𝑏
1
𝑢
1
(𝑡) + 𝑏

2
V
2
+ 𝑐] 𝑑𝑡

+ 𝑔
1
𝑑𝑊
1
+ [𝑒𝑥

V2 + 𝑔
2
] 𝑑𝑊
2
+ 𝑔
3
𝑑𝑊
3
,

𝑥
V2
(0) = 𝑥

0
.

(13)

We can check that 𝑥𝑢1 = 𝑥
𝑢2 = 𝑥

𝑢1,𝑢2 ≡ 𝑥, 𝐽𝑢2
1
(𝑢
1
(⋅)) =

𝐽
1
(𝑢
1
(⋅), 𝑢
2
(⋅)), and 𝐽

𝑢1

2
(𝑢
2
(⋅)) = 𝐽

2
(𝑢
1
(⋅), 𝑢
2
(⋅)) hold. If (𝑢

1
, 𝑢
2
)

is a Nash equilibrium point, then, from the definition of
Nash equilibrium point (see (5)), we can conclude that 𝑢

1

(resp., 𝑢
2
) is an optimal control for Problem (LQSC1) (resp.,

Problem (LQSC2)). Appealing to the stochastic maximum
principle under partial information (see [16], Remark 2.1
with the drift coefficient of the observation equation being
zero and convex control domain, or [17], Theorem 3.1 with
nonrandom jumps), we can derive the following necessary
conditions of the optimal controls for Problem (LQSC1) and
Problem (LQSC2).

Lemma 4. If 𝑢
1
(resp., 𝑢

2
) is an optimal control for Problem

(LQSC1) (resp., Problem (LQSC2)), then we have

𝑢
1
(𝑡) = −𝑚

−1

1
(𝑡) 𝑏
1
(𝑡)E (𝑦

1
(𝑡) | G

1

𝑡
) ,

𝑢
2
(𝑡) = −𝑚

−1

2
(𝑡) 𝑏
2
(𝑡)E (𝑦

2
(𝑡) | G

2

𝑡
) ,

(14)

where (𝑥, (𝑦
1
, 𝑧
11
, 𝑧
12
, 𝑧
13
), (𝑦
2
, 𝑧
21
, 𝑧
22
, 𝑧
23
)) is a solution to

the following FBSDE:

𝑑𝑥 = [𝑎𝑥 − 𝑏
2

1
𝑚
−1

1
E (𝑦
1
(𝑡) | G

1

𝑡
) − 𝑏
2

2
𝑚
−1

2
E (𝑦
2
(𝑡) | G

2

𝑡
)

+𝑐] 𝑑𝑡 + 𝑔
1
𝑑𝑊
1
+ [𝑒𝑥 + 𝑔

2
] 𝑑𝑊
2
+ 𝑔
3
𝑑𝑊
3
,

(15a)

−𝑑𝑦
1
=[𝑎𝑦
1
+ 𝑒𝑧
12

+ 𝑙
1
𝑥] 𝑑𝑡 − 𝑧

11
𝑑𝑊
1
− 𝑧
12
𝑑𝑊
2
− 𝑧
13
𝑑𝑊
3
,

(15b)

−𝑑𝑦
2
= [𝑎𝑦
2
+ 𝑒𝑧
22

+ 𝑙
2
𝑥] 𝑑𝑡 − 𝑧

21
𝑑𝑊
1
− 𝑧
22
𝑑𝑊
2
− 𝑧
23
𝑑𝑊
3
,

(15c)

𝑥 (0) = 𝑥
0
, 𝑦

1
(𝑇) = 𝑟

1
𝑥 (𝑇) , 𝑦

2
(𝑇) = 𝑟

2
𝑥 (𝑇) .

(15d)

It is obvious that (𝑢
1
, 𝑢
2
) ∈ U

1
× U
2
is a candidate Nash

equilibrium point for Problem (LQ NZSDG). We will prove
(𝑢
1
, 𝑢
2
) is exactly a Nash equilibrium point in the sequel.

Lemma 5. (𝑢
1
, 𝑢
2
) in (21) is indeed a Nash equilibrium point

for Problem (LQ NZSDG).

Proof. For any V
1
(⋅) ∈ U

1
, we have

𝐽
1
(V
1
(⋅) , 𝑢
2
(⋅)) − 𝐽

1
(𝑢
1
(⋅) , 𝑢
2
(⋅))

=
1

2
E∫

𝑇

0

[𝑙
1
(𝑥

V1 ,𝑢2 − 𝑥)
2

+ 𝑚
1
(V
1
− 𝑢
1
)
2

] 𝑑𝑡

+
1

2
E [𝑟
1
(𝑥

V1 ,𝑢2
(𝑇) − 𝑥 (𝑇))

2

] + Θ,

(16)

where

Θ = E∫

𝑇

0

[𝑙
1
𝑥 (𝑥

V1 ,𝑢2 − 𝑥) + 𝑚
1
𝑢
1
(V
1
− 𝑢
1
)] 𝑑𝑡

+ E [𝑟
1
𝑥 (𝑇) (𝑥

V1 ,𝑢2
(𝑇) − 𝑥 (𝑇))] .

(17)

We apply Itô’s formula to 𝑦
1
(𝑥

V1 ,𝑢2 − 𝑥) and get

Θ = E∫

𝑇

0

(𝑚
1
(𝑡) 𝑢
1
(𝑡) + 𝑏

1
(𝑡) 𝑦
1
(𝑡)) (V

1
(𝑡) − 𝑢

1
(𝑡)) 𝑑𝑡

= E∫

𝑇

0

E [ (𝑚
1
(𝑡) 𝑢
1
(𝑡) + 𝑏

1
(𝑡) 𝑦
1
(𝑡))

× (V
1
(𝑡) − 𝑢

1
(𝑡)) | G

1

𝑡
] 𝑑𝑡

= E∫

𝑇

0

(𝑚
1
(𝑡) 𝑢
1
(𝑡) + 𝑏

1
(𝑡)E (𝑦

1
(𝑡) | G

1

𝑡
))

× (V
1
(𝑡) − 𝑢

1
(𝑡)) 𝑑𝑡 = 0.

(18)

Then, because 𝑙
1
and 𝑟
1
are nonnegative, and 𝑚

1
is positive,

we have

𝐽
1
(V
1
(⋅) , 𝑢
2
(⋅)) − 𝐽

1
(𝑢
1
(⋅) , 𝑢
2
(⋅)) ≥ 0. (19)

Similarly, for any V
2
(⋅) ∈ U

2
, we also have

𝐽
2
(𝑢
1
(⋅) , V
2
(⋅)) − 𝐽

2
(𝑢
1
(⋅) , 𝑢
2
(⋅)) ≥ 0. (20)

Therefore, we can conclude that (𝑢
1
, 𝑢
2
) in (14) is a Nash

equilibrium point for Problem (LQ NZSDG) indeed.

Combining Lemmas 4 and 5, we obtain the following
theorem.

Theorem 6. (𝑢
1
, 𝑢
2
) is a Nash equilibrium point for Problem

(LQ NZSDG) if and only if (𝑢
1
, 𝑢
2
) has the form denoted

by (14) and (𝑥, (𝑦
1
, 𝑧
11
, 𝑧
12
, 𝑧
13
), (𝑦
2
, 𝑧
21
, 𝑧
22
, 𝑧
23
)) satisfies

FBSDE (15a)–(15d).

Remark 7. If (15a)–(15d) has a unique solution, then Problem
(LQ NZSDG) has a unique Nash equilibrium point. If (15a)–
(15d) have many solutions, then Problem (LQ NZSDG) may
have many Nash equilibrium points. If (22a)–(22d) have no
solution, Problem (LQ NZSDG) has no Nash equilibrium
point. The existence and uniqueness of the Nash equilibrium
point forProblem (LQNZSDG) are equivalent to the existence
and uniqueness of (15a)–(15d).

Note that, under the two pieces of general asymmetric
information G1

𝑡
and G2

𝑡
, the optimal filtering E(𝑦

𝑖
(𝑡) |

G𝑖
𝑡
) (𝑖 = 1, 2) is very abstract which leads to the difficulty

in finding the filtering equations satisfied by E(𝑦
𝑖
(𝑡) |

G𝑖
𝑡
) (𝑖 = 1, 2). In the following, we begin to study Problem

(LQ NZSDG) under several classes of particular asymmetric
information. Though the chosen observable information is
a bit special, the mathematical deductions are still highly
complicated, and the derived results are interesting and
meaningful.
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3.1. Case 1:G1
𝑡
= F1,2
𝑡

and G2
𝑡
= F2,3
𝑡
. In this case, from the

notations defined by (1), we have E(𝑦
1
(𝑡) | G1

𝑡
) = 𝑦

1
(𝑡) and

E(𝑦
2
(𝑡) | G2

𝑡
) = 𝑦

2
(𝑡). Hereinafter, we simply call 𝑦

1
and

𝑦
2
the optimal filters of 𝑦

1
and 𝑦

2
, respectively, if there is no

ambiguity from the notations and context. Then Theorem 6
can be rewritten as follows.

Theorem 8. (𝑢
1
, 𝑢
2
) is a Nash equilibrium point for Problem

(LQ NZSDG) if and only if (𝑢
1
, 𝑢
2
) has the following form:

𝑢
1
(𝑡) = −𝑚

−1

1
(𝑡) 𝑏
1
(𝑡) 𝑦
1
(𝑡) ,

𝑢
2
(𝑡) = −𝑚

−1

2
(𝑡) 𝑏
2
(𝑡) 𝑦
2
(𝑡) ,

(21)

where (𝑥, (𝑦
1
, 𝑧
11
, 𝑧
12
, 𝑧
13
), (𝑦
2
, 𝑧
21
, 𝑧
22
, 𝑧
23
)) is a solution to

the following FBSDE:

𝑑𝑥 = [𝑎𝑥 − 𝑏
2

1
𝑚
−1

1
𝑦
1
− 𝑏
2

2
𝑚
−1

2
𝑦
2
+ 𝑐] 𝑑𝑡

+ 𝑔
1
𝑑𝑊
1
+ [𝑒𝑥 + 𝑔

2
] 𝑑𝑊
2
+ 𝑔
3
𝑑𝑊
3
,

(22a)

−𝑑𝑦
1
= [𝑎𝑦
1
+ 𝑒𝑧
12

+ 𝑙
1
𝑥] 𝑑𝑡 − 𝑧

11
𝑑𝑊
1
− 𝑧
12
𝑑𝑊
2
− 𝑧
13
𝑑𝑊
3
,

(22b)

−𝑑𝑦
2
= [𝑎𝑦
2
+ 𝑒𝑧
22

+ 𝑙
2
𝑥] 𝑑𝑡 − 𝑧

21
𝑑𝑊
1
− 𝑧
22
𝑑𝑊
2
− 𝑧
23
𝑑𝑊
3
,

(22c)

𝑥 (0) = 𝑥
0
, 𝑦

1
(𝑇) = 𝑟

1
𝑥 (𝑇) , 𝑦

2
(𝑇) = 𝑟

2
𝑥 (𝑇) .

(22d)

We can see that (22a)–(22d) is a very complicated FBSDE.
First, (forward) SDE (22a) is one dimensional and the
combination of BSDEs (22b) and (22c) is two dimensional,
which is more intricate than the case of forward SDE and
BSDE with the same dimension. Second, the drift terms and
terminal conditions in (22b) and (22c) contain 𝑥. Finally, the
drift term in (22a) contains the optimal filter 𝑦

1
(resp., 𝑦

2
)

of 𝑦
1
(resp., 𝑦

2
) with respect to F1,2

𝑡
(resp., F2,3

𝑡
), whose

dynamics has not been known.
Now it is the position to seek the dynamics of 𝑦

1
(𝑡) and

𝑦
2
(𝑡) which will be used to construct the analytical represen-

tation of the Nash equilibrium point. Applying Lemma 5.4
in Xiong [18] and Lemma 3, we obtain the optimal filters of
𝑥 and 𝑦

1
in (22a) and (22b) with respect to F1,2

𝑡
for Player 1

which satisfies

𝑑𝑥 = [𝑎𝑥 − 𝑏
2

1
𝑚
−1

1
𝑦
1
− 𝑏
2

2
𝑚
−1

2
𝑦
2
+ 𝑐] 𝑑𝑡

+ 𝑔
1
𝑑𝑊
1
+ [𝑒𝑥 + 𝑔

2
] 𝑑𝑊
2
,

(23a)

−𝑑𝑦
1
= [𝑎𝑦

1
+ 𝑒𝑧̂
12

+ 𝑙
1
𝑥] 𝑑𝑡 − 𝑧̂

11
𝑑𝑊
1
− 𝑧̂
12
𝑑𝑊
2
, (23b)

𝑥 (0) = 𝑥
0
, 𝑦

1
(𝑇) = 𝑟

1
𝑥 (𝑇) . (23c)

Similarly, we can obtain the optimal filters of𝑥 and𝑦
2
in (22a)

and (22c) with respect toF2,3
𝑡

for Player 2 which satisfies

𝑑𝑥 = [𝑎𝑥 − 𝑏
2

1
𝑚
−1

1
𝑦
1
− 𝑏
2

2
𝑚
−1

2
𝑦
2
+ 𝑐] 𝑑𝑡

+ [𝑒𝑥 + 𝑔
2
] 𝑑𝑊
2
+ 𝑔
3
𝑑𝑊
3
,

(24a)

−𝑑𝑦
2
= [𝑎𝑦

2
+ 𝑒𝑧
22

+ 𝑙
2
𝑥] 𝑑𝑡 − 𝑧

22
𝑑𝑊
2
− 𝑧
23
𝑑𝑊
3
, (24b)

𝑥 (0) = 𝑥
0
, 𝑦

2
(𝑇) = 𝑟

2
𝑥 (𝑇) . (24c)

Note that (23a) and (24a) involve the optimal filter 𝑦
𝑖
of 𝑦
𝑖

with respect to F2
𝑡
; that is, 𝑦

𝑖
(𝑡) = E(𝑦

𝑖
(𝑡) | F2

𝑡
) (𝑖 = 1, 2).

We can derive that 𝑦
2
and 𝑦

1
together with the optimal filter

𝑥 of 𝑥 satisfy

𝑑𝑥 = [𝑎𝑥 − 𝑏
2

1
𝑚
−1

1
𝑦
1
− 𝑏
2

2
𝑚
−1

2
𝑦
2
+ 𝑐] 𝑑𝑡 + [𝑒𝑥 + 𝑔

2
] 𝑑𝑊
2
,

(25a)

−𝑑𝑦
1
= [𝑎𝑦

1
+ 𝑒𝑧̃
12

+ 𝑙
1
𝑥] 𝑑𝑡 − 𝑧̃

12
𝑑𝑊
2
, (25b)

−𝑑𝑦
2
= [𝑎𝑦

2
+ 𝑒𝑧̃
22

+ 𝑙
2
𝑥] 𝑑𝑡 − 𝑧̃

22
𝑑𝑊
2
, (25c)

𝑥 (0) = 𝑥
0
, 𝑦

1
(𝑇) = 𝑟

1
𝑥 (𝑇) , 𝑦

2
(𝑇) = 𝑟

2
𝑥 (𝑇) .

(25d)

Note that (23a)–(25d) are coupled forward-backward
stochastic filtering equations. It is remarkable that the
filtering equations are essentially different from the classical
ones of SDEs, and themain reason is that BSDEs are included
in the equations. To our best knowledge, this class of filtering
equations is originally found by Huang et al. [19] when
they studied the partial information control problems of
backward stochastic systems. This class of filtering equations
is later also discussed when some authors investigated the
optimal control or differential games of partial informatio in
BSDEs or FBSDEs (see [20–26]).

We introduce an assumption:

(H
3
) 𝑏2
1
(𝑡)𝑚
−1

1
(𝑡) = 𝑏

2

2
(𝑡)𝑚
−1

2
(𝑡), 𝑡 ∈ [0, 𝑇],

which is needed in the following lemmas and theorems.

Lemma 9. Under the assumption (𝐻
3
), (25a)–(25d) have a

unique solution (𝑥, (𝑦
1
, 𝑧̃
12
),(𝑦
2
, 𝑧̃
22
)) ∈ L2

F2
𝑡

(0, 𝑇; 𝑅
5

).

Proof. We first introduce another FBSDE:

𝑑𝑛 = (𝑎𝑛 − 𝑏
2

1
𝑚
−1

1
𝑝 + 𝑐) 𝑑𝑡 + (𝑒𝑛 + 𝑔

2
) 𝑑𝑊
2
,

−𝑑𝑝 = (𝑎𝑝 + 𝑒𝑞 + (𝑙
1
+ 𝑙
2
) 𝑛) 𝑑𝑡 − 𝑞𝑑𝑊

2
,

𝑛 (0) = 𝑥
0
, 𝑝 (𝑇) = (𝑟

1
+ 𝑟
2
) 𝑛 (𝑇) .

(26)

If (𝑥, (𝑦
1
, 𝑧̃
12
), (𝑦
2
, 𝑧̃
22
)) is a solution to (25a)–(25d), then

(𝑛, 𝑝, 𝑞) is a solution to (26), where

𝑛 = 𝑥, 𝑝 = 𝑦
1
+ 𝑦
2
, 𝑞 = 𝑧̃

12
+ 𝑧̃
22
. (27)
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On the other hand, if (𝑛, 𝑝, 𝑞) is a solution to (26), we
introduce the following BSDE:

−𝑑𝑝
1
= [𝑎𝑝

1
+ 𝑒𝑞
12

+ 𝑙
1
𝑛] 𝑑𝑡 − 𝑞

12
𝑑𝑊
2
,

−𝑑𝑝
2
= [𝑎𝑝

2
+ 𝑒𝑞
22

+ 𝑙
2
𝑛] 𝑑𝑡 − 𝑞

22
𝑑𝑊
2
,

𝑝
1
(𝑇) = 𝑟

1
𝑛 (𝑇) , 𝑝

2
(𝑇) = 𝑟

2
𝑛 (𝑇) .

(28)

From the existence and uniqueness of BSDE (see [27]), (28)
has a unique solution (𝑝

1
, 𝑞
12
, 𝑝
2
, 𝑞
22
)with 𝑝

1
+𝑝
2
= 𝑝, 𝑞

12
+

𝑞
22

= 𝑞. Further, we can check that (𝑛, (𝑝
1
, 𝑞
12
), (𝑝
2
, 𝑞
22
)) is

a solution to (25a)–(25d). In other words, the existence and
uniqueness of (25a)–(25d) are equivalent to those of (26). It
is easy to check that (26) satisfies the assumptions (H

1
) and

(H
2
). From Lemma 1, it has a unique solution (𝑛, 𝑝, 𝑞). So do

(25a)–(25d).

We observe that (25a)–(25d) are independent of (23a)–
(23c) and (24a)–(24c). We can first solve (25a)–(25d) and
derive the unique solution (𝑥, (𝑦

1
, 𝑧̃
12
),(𝑦
2
, 𝑧̃
22
)). Then we

plug 𝑦
2
(resp., 𝑦

1
) into (23a)–(23c) (resp., (24a)–(24c)). From

Lemma 1, we have the following lemma.

Lemma 10. If the assumption (𝐻
3
) holds, there exists a

unique solution (𝑥, 𝑦
1
, 𝑧̂
11
, 𝑧̂
12
) ∈ L2

F1,2
𝑡

(0, 𝑇; 𝑅
4

) (resp.,
(𝑥, 𝑦
2
, 𝑧
22
, 𝑧
23
) ∈ L2

F2,3
𝑡

(0, 𝑇; 𝑅
4

)) to (23a)–(23c) (resp., (24a)–
(24c)).

After we obtain the unique solutions 𝑦
1
and 𝑦

2
by solving

(23a)–(23c) and (24a)–(24c), respectively, from the existence
and uniqueness of solutions of SDEs, we conclude that
(22a) has a unique solution 𝑥. Further, (22b) and (22c) also
have unique solutions (𝑦

1
, 𝑧
11
, 𝑧
12
, 𝑧
13
) and (𝑦

2
, 𝑧
21
, 𝑧
22
, 𝑧
23
),

respectively. Then we can say that (22a)–(22d) have a unique
solution, which implies the following theorem.

Theorem 11. Under the assumption (𝐻
3
), Problem (LQ

NZSDG) has a unique Nash equilibrium point denoted by

𝑢
1
(𝑡) = −𝑚

−1

1
(𝑡) 𝑏
1
(𝑡) 𝑦
1
(𝑡) ,

𝑢
2
(𝑡) = −𝑚

−1

2
(𝑡) 𝑏
2
(𝑡) 𝑦
2
(𝑡) ,

(29)

where 𝑦
1
and 𝑦

2
are uniquely determined by the systems of

(23a)–(25d).

In the following, theRiccati equations are introduced, and
the Nash equilibrium point is represented in a feedback of
the optimal filters 𝑥, 𝑥, and 𝑥. Hereinafter, we suppose the
assumption (H

3
) always holds.

Set

𝑦
𝑖
= 𝛼
𝑖
𝑥 + 𝛽
𝑖

(𝑖 = 1, 2) , (30)

where 𝛼
𝑖
and 𝛽

𝑖
are undetermined deterministic functions on

[0, 𝑇] satisfying 𝛼
𝑖
(𝑇) = 𝑟

𝑖
and 𝛽

𝑖
(𝑇) = 0.

Applying Itô’s formula to 𝑦
1
in (30), it yields

𝑑𝑦
1
= [( ̇𝛼

1
− 𝑏
2

1
𝑚
−1

1
𝛼
2

1
− 𝑏
2

2
𝑚
−1

2
𝛼
1
𝛼
2
+ 𝑎𝛼
1
) 𝑥

+ ( ̇𝛽
1
− 𝑏
2

1
𝑚
−1

1
𝛼
1
𝛽
1
− 𝑏
2

2
𝑚
−1

2
𝛼
1
𝛽
2
+ 𝛼
1
𝑐)] 𝑑𝑡

+ 𝛼
1
(𝑒𝑥 + 𝑔

2
) 𝑑𝑊
2
,

(31)

which implies

𝑧̃
12

= 𝛼
1
(𝑒𝑥 + 𝑔

2
) . (32)

Substituting (30) and (32) into (25b) and comparing the
coefficients between (25b) and (31), we have

̇𝛼
1
− 𝑏
2

1
𝑚
−1

1
𝛼
2

1
+ (2𝑎 + 𝑒

2

) 𝛼
1
− 𝑏
2

2
𝑚
−1

2
𝛼
1
𝛼
2
+ 𝑙
1
= 0, (33a)

̇𝛽
1
+ (𝑎 − 𝑏

2

1
𝑚
−1

1
𝛼
1
) 𝛽
1
− 𝑏
2

2
𝑚
−1

2
𝛼
1
𝛽
2
+ (𝑐 + 𝑒𝑔

2
) 𝛼
1
= 0.

(33b)

Applying Itô’s formula to 𝑦
2
in (30), it yields

𝑑𝑦
2
= [( ̇𝛼

2
− 𝑏
2

2
𝑚
−1

2
𝛼
2

2
− 𝑏
2

1
𝑚
−1

1
𝛼
1
𝛼
2
+ 𝑎𝛼
2
) 𝑥

+ ( ̇𝛽
2
− 𝑏
2

2
𝑚
−1

2
𝛼
2
𝛽
2
− 𝑏
2

1
𝑚
−1

1
𝛼
2
𝛽
1
+ 𝛼
2
𝑐)] 𝑑𝑡

+ 𝛼
2
(𝑒𝑥 + 𝑔

2
) 𝑑𝑊
2
,

(34)

which implies

𝑧̃
22

= 𝛼
2
(𝑒𝑥 + 𝑔

2
) . (35)

Substituting (30) and (35) into (25c) and comparing the
coefficients between (25c) and (34), we have

̇𝛼
2
− 𝑏
2

2
𝑚
−1

2
𝛼
2

2
+ (2𝑎 + 𝑒

2

) 𝛼
2
− 𝑏
2

1
𝑚
−1

1
𝛼
1
𝛼
2
+ 𝑙
2
= 0, (36a)

̇𝛽
2
+ (𝑎 − 𝑏

2

2
𝑚
−1

2
𝛼
2
) 𝛽
2
− 𝑏
2

1
𝑚
−1

1
𝛼
2
𝛽
1
+ (𝑐 + 𝑒𝑔

2
) 𝛼
2
= 0.

(36b)

Let 𝛼 = 𝛼
1
+ 𝛼
2
. From (H

3
), we have

̇𝛼 − 𝑏
2

1
𝑚
−1

1
𝛼
2

+ (2𝑎 + 𝑒
2

) 𝛼 + 𝑙
1
+ 𝑙
2
= 0

on [0, 𝑇) , 𝛼 (𝑇) = 𝑟
1
+ 𝑟
2
.

(37)

Since (37) is a standard Riccati equation, it has a unique
solution 𝛼(⋅). Introduce two auxiliary equations:

̇𝛼
1
+ [(2𝑎 + 𝑒

2

) − 𝑏
2

1
𝑚
−1

1
𝛼] 𝛼
1
+ 𝑙
1
= 0

on [0, 𝑇) , ̇𝛼
1
(𝑇) = 𝑟

1
,

(38)

̇𝛼
2
+ [(2𝑎 + 𝑒

2

) − 𝑏
2

2
𝑚
−1

2
𝛼] 𝛼
2
+ 𝑙
2
= 0

on [0, 𝑇) , ̇𝛼
2
(𝑇) = 𝑟

2
,

(39)

where 𝛼 is the solution to (37). Obviously, ODEs (38) and (39)
have unique solutions 𝛼

1
and 𝛼

2
, respectively. In addition,

we can check that 𝛼
1
and 𝛼

2
in (33a) and (36a) are also
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the solutions to (38) and (39), respectively. From the unique-
ness of solutions to (38) and (39), it follows that

𝛼
1
= 𝛼
1
, 𝛼

2
= 𝛼
2
, (40)

which implies in turn that (33a) and (36a) have the unique
solutions to 𝛼

1
and 𝛼

2
.

Let 𝛽 = 𝛽
1
+ 𝛽
2
, and then we have

̇𝛽 + (𝑎 − 𝑏
2

1
𝑚
−1

1
𝛼) 𝛽 + (𝑐 + 𝑒𝑔

2
) 𝛼 = 0

on [0, 𝑇) , 𝛽 (𝑇) = 0,

(41)

where 𝛼 is the solution to (37). Note that ODE (41) has a
unique solution𝛽. Introduce two another auxiliary equations:

̇
𝛽
1
+ 𝑎𝛽
1
− 𝑏
2

2
𝑚
−1

2
𝛼
1
𝛽 + (𝑐 + 𝑒𝑔

2
) 𝛼
1
= 0

on [0, 𝑇) , 𝛽
1
(𝑇) = 0,

̇
𝛽
2
+ 𝑎𝛽
2
− 𝑏
2

1
𝑚
−1

1
𝛼
2
𝛽 + (𝑐 + 𝑒𝑔

2
) 𝛼
2
= 0

on [0, 𝑇) , 𝛽
2
(𝑇) = 0,

(42)

where 𝛼
1
, 𝛼
2
, and 𝛽 are the solutions to (38), (39), and (41),

respectively. Similarly, we can prove that (33b) and (36b) also
have unique solutions 𝛽

1
and 𝛽

2
satisfying

𝛽
1
= 𝛽
1
, 𝛽

2
= 𝛽
2
. (43)

Based on the arguments above, we can derive the analyt-
ical expressions for 𝛼

1
, 𝛼
2
, 𝛽
1
, 𝛽
2
, 𝛼, and 𝛽. Then (25a) can be

rewritten as

𝑑𝑥 = [(𝑎 − 𝑏
2

1
𝑚
−1

1
𝛼) 𝑥 − 𝑏

2

1
𝑚
−1

1
𝛽 + 𝑐] 𝑑𝑡 + [𝑒𝑥 + 𝑔

2
] 𝑑𝑊
2
,

𝑥 (0) = 𝑥
0
,

(44)

which has a unique solution

𝑥 (𝑡) = Γ
𝑡

0
𝑥
0
+ ∫

𝑡

0

Γ
𝑡

𝑠
[(𝑐 (𝑠) − 𝑏

2

1
(𝑠)𝑚
−1

1
(𝑠) 𝛽 (𝑠)

−𝑒 (𝑠) 𝑔
2
(𝑠) ) 𝑑𝑠 + 𝑔

2
(𝑠) 𝑑𝑊

2
(𝑠) ] ,

(45)

with Γ
𝑡

𝑠
= exp{∫𝑡

𝑠

[𝑎(𝑟) - 𝑏
2

1
(𝑟)𝑚
−1

1
(𝑟)𝛼(𝑟) - (1/2)𝑒

2

(𝑟)]𝑑𝑟 +
∫
𝑡

𝑠

𝑒(𝑟)𝑑𝑊
2
(𝑟)}.

From the uniqueness of 𝛼
1
, 𝛼
2
, 𝛽
1
, 𝛽
2
, and 𝑥, it follows

that 𝑦
𝑖
in (30) has a unique analytical expression.

Substituting 𝑦
2
in (30) into (23a)–(23c), we have

𝑑𝑥 = [𝑎𝑥 − 𝑏
2

1
𝑚
−1

1
𝑦
1
− 𝑏
2

2
𝑚
−1

2
𝛼
2
𝑥 − 𝑏
2

2
𝑚
−1

2
𝛽
2
+ 𝑐] 𝑑𝑡

+ 𝑔
1
𝑑𝑊
1
+ [𝑒𝑥 + 𝑔

2
] 𝑑𝑊
2
,

(46a)

−𝑑𝑦
1
= [𝑎𝑦

1
+ 𝑒𝑧̂
12

+ 𝑙
1
𝑥] 𝑑𝑡 − 𝑧̂

11
𝑑𝑊
1
− 𝑧̂
12
𝑑𝑊
2
, (46b)

𝑥 (0) = 𝑥
0
, 𝑦
1
(𝑇) = 𝑟

1
𝑥 (𝑇) . (46c)

Set

𝑦
1
= 𝛾
1
𝑥 + 𝛾
2
𝑥 + 𝛾
3

(47)

with 𝛾
1
(𝑇) = 𝑟

1
, 𝛾
2
(𝑇) = 𝛾

3
(𝑇) = 0. Applying Itô’s formula to

𝑦
1
in (47), we have

𝑑𝑦
1
= [( ̇𝛾
1
− 𝑏
2

1
𝑚
−1

1
𝛾
2

1
+ 𝑎𝛾
1
) 𝑥

+ ( ̇𝛾
2
+ (𝑎 − 𝑏

2

1
𝑚
−1

1
𝛼 −𝑏
2

1
𝑚
−1

1
𝛾
1
) 𝛾
2

− 𝑏
2

2
𝑚
−1

2
𝛼
2
𝛾
1
) 𝑥

+ ̇𝛾
3
− 𝑏
2

1
𝑚
−1

1
𝛾
1
𝛾
3
+ (𝑐 − 𝑏

2

2
𝑚
−1

2
𝛽
2
) 𝛾
1

+ (𝑐 − 𝑏
2

1
𝑚
−1

1
𝛽) 𝛾
2
] 𝑑𝑡

+ 𝛾
1
𝑔
1
𝑑𝑊
1
+ [𝛾
1
(𝑒𝑥 + 𝑔

2
) + 𝛾
2
(𝑒𝑥 + 𝑔

2
)] 𝑑𝑊

2
,

(48)

which implies

𝑧̂
11

= 𝛾
1
𝑔
1
, 𝑧̂

12
= 𝛾
1
(𝑒𝑥 + 𝑔

2
) + 𝛾
2
(𝑒𝑥 + 𝑔

2
) . (49)

Substituting (47) and (49) into (46b) and comparing the drift
and diffusion coefficients with (48), we conclude that

̇𝛾
1
− 𝑏
2

1
𝑚
−1

1
𝛾
2

1
+ (2𝑎 + 𝑒

2

) 𝛾
1
+ 𝑙
1
= 0, (50a)

̇𝛾
2
+ (2𝑎 + 𝑒

2

− 𝑏
2

1
𝑚
−1

1
𝛼 − 𝑏
2

1
𝑚
−1

1
𝛾
1
) 𝛾
2
− 𝑏
2

2
𝑚
−1

2
𝛼
2
𝛾
1
= 0,

(50b)

̇𝛾
3
+ (𝑎 − 𝑏

2

1
𝑚
−1

1
𝛾
1
) 𝛾
3
+ (𝑐 − 𝑏

2

2
𝑚
−1

2
𝛽
2
+ 𝑒𝑔
2
) 𝛾
1

+ (𝑐 − 𝑏
2

1
𝑚
−1

1
𝛽 + 𝑒𝑔

2
) 𝛾
2
= 0.

(50c)

It is clear that there exists a unique solution (𝛾
1
, 𝛾
2
, 𝛾
3
) to

(50a)–(50c). We denote

𝑓
1
≜ − (𝑏

2

2
𝑚
−1

2
𝛼
2
+ 𝑏
2

1
𝑚
−1

1
𝛾
2
) 𝑥 − 𝑏

2

1
𝑚
−1

1
𝛾
3
− 𝑏
2

2
𝑚
−1

2
𝛽
2
+ 𝑐,

(51)

and then, in terms of (47), (46a) can be rewritten as

𝑑𝑥 = [(𝑎 − 𝑏
2

1
𝑚
−1

1
𝛾
1
) 𝑥 + 𝑓

1
] 𝑑𝑡 + 𝑔

1
𝑑𝑊
1
+ [𝑒𝑥 + 𝑔

2
] 𝑑𝑊
2
,

𝑥 (0) = 𝑥
0
,

(52)

which has a unique solution:

𝑥 (𝑡) = Υ
𝑡

0
𝑥
0
+ ∫

𝑡

0

Υ
𝑡

𝑠
[(𝑓
1
(𝑠) − 𝑒 (𝑠) 𝑔

2
(𝑠)) 𝑑𝑠

+𝑔
1
(𝑠) 𝑑𝑊

1
(𝑠) + 𝑔

2
(𝑠) 𝑑𝑊

2
(𝑠)] ,

(53)

with Υ
𝑡

𝑠
= exp{∫𝑡

𝑠

[𝑎(𝑟) − 𝑏
2

1
(𝑟)𝑚
−1

1
(𝑟)𝛾
1
(𝑟) − (1/2)𝑒

2

(𝑟)]𝑑𝑟 +

∫
𝑡

𝑠

𝑒(𝑟)𝑑𝑊
2
(𝑟)}.
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Substituting 𝑦
1
in (30) into (24a)–(24c), we have

𝑑𝑥 = [𝑎𝑥 − 𝑏
2

1
𝑚
−1

1
𝛼
1
𝑥 − 𝑏
2

2
𝑚
−1

2
𝑦
2
− 𝑏
2

1
𝑚
−1

1
𝛽
1
+ 𝑐] 𝑑𝑡

+ [𝑒𝑥 + 𝑔
2
] 𝑑𝑊
2
+ 𝑔
3
𝑑𝑊
3
,

(54a)

−𝑑𝑦
2
= [𝑎𝑦

2
+ 𝑒𝑧
22

+ 𝑙
2
𝑥] 𝑑𝑡 − 𝑧

22
𝑑𝑊
2
− 𝑧
23
𝑑𝑊
3
, (54b)

𝑥 (0) = 𝑥
0
, 𝑦

2
(𝑇) = 𝑟

2
𝑥 (𝑇) . (54c)

Set

𝑦
2
= 𝜏
1
𝑥 + 𝜏
2
𝑥 + 𝜏
3
, (55)

with 𝜏
1
(𝑇) = 𝑟

2
, 𝜏
2
(𝑇) = 𝜏

3
(𝑇) = 0. In the similar manner, we

can deduce that (𝜏
1
, 𝜏
2
, 𝜏
3
) satisfies

̇𝜏
1
− 𝑏
2

2
𝑚
−1

2
𝜏
2

1
+ (2𝑎 + 𝑒

2

) 𝜏
1
+ 𝑙
2
= 0, (56a)

̇𝜏
2
+ (2𝑎 + 𝑒

2

− 𝑏
2

1
𝑚
−1

1
𝛼 − 𝑏
2

2
𝑚
−1

2
𝜏
1
) 𝜏
2
− 𝑏
2

1
𝑚
−1

1
𝛼
1
𝜏
1
= 0,

(56b)

̇𝜏
3
+ (𝑎 − 𝑏

2

2
𝑚
−1

2
𝜏
1
) 𝜏
3
+ (𝑐 − 𝑏

2

1
𝑚
−1

1
𝛽
1
+ 𝑒𝑔
2
) 𝜏
1

+ (𝑐 − 𝑏
2

1
𝑚
−1

1
𝛽 + 𝑒𝑔

2
) 𝜏
2
= 0,

(56c)

which has a unique solution (𝜏
1
, 𝜏
2
, 𝜏
3
). We denote

𝑓
2
≜ − (𝑏

2

2
𝑚
−1

2
𝜏
2
+ 𝑏
2

1
𝑚
−1

1
𝛼
1
) 𝑥 − 𝑏

2

1
𝑚
−1

1
𝛽
1
− 𝑏
2

2
𝑚
−1

2
𝜏
3
+ 𝑐,

(57)

and then, in terms of (55), (54a) can be rewritten as

𝑑𝑥 = [(𝑎 − 𝑏
2

2
𝑚
−1

2
𝜏
1
) 𝑥 + 𝑓

2
] 𝑑𝑡 + [𝑒𝑥 + 𝑔

2
] 𝑑𝑊
2
+ 𝑔
3
𝑑𝑊
3
,

𝑥 (0) = 𝑥
0
,

(58)

which has a unique solution

𝑥 (𝑡) = Ψ
𝑡

0
𝑥
0
+ ∫

𝑡

0

Ψ
𝑡

𝑠
[(𝑓
2
(𝑠) − 𝑒 (𝑠) 𝑔

2
(𝑠)) 𝑑𝑠

+ 𝑔
2
(𝑠) 𝑑𝑊

2
(𝑠) + 𝑔

3
(𝑠) 𝑑𝑊

3
(𝑠)] ,

(59)

with Ψ
𝑡

𝑠
= exp{∫𝑡

𝑠

[𝑎(𝑟) − 𝑏
2

2
(𝑟)𝑚
−1

2
(𝑟)𝜏
1
(𝑟) − (1/2)𝑒

2

(𝑟)]𝑑𝑟 +

∫
𝑡

𝑠

𝑒(𝑟)𝑑𝑊
2
(𝑟)}.

Based on the arguments above, we derive the Nash
equilibrium point which is represented in the feedback of the
optimal filters 𝑥, 𝑥, and 𝑥 of the state 𝑥. ThenTheorem 11 can
be rewritten as follows.

Theorem 12. Under the assumption (𝐻
3
), Problem (LQ

NZSDG) has a unique Nash equilibrium point denoted by

𝑢
1
(𝑡) = −𝑚

−1

1
(𝑡) 𝑏
1
(𝑡) (𝛾
1
(𝑡) 𝑥 (𝑡) + 𝛾

2
(𝑡) 𝑥 (𝑡) + 𝛾

3
(𝑡)) ,

𝑢
2
(𝑡) = −𝑚

−1

2
(𝑡) 𝑏
2
(𝑡) (𝜏
1
(𝑡) 𝑥 (𝑡) + 𝜏

2
(𝑡) 𝑥 (𝑡) + 𝜏

3
(𝑡)) ,

(60)

where 𝑥, 𝑥, and 𝑥 are as shown in (45), (53), and (59),
respectively, and 𝛾

𝑖
and 𝜏
𝑖
(𝑖 = 1, 2, 3) are uniquely determined

by the systems of (50a)–(50c) and (56a)–(56c), respectively.

Remark 13. We introduce another assumption:

(H
3
)
󸀠

𝑏
2

𝑖
𝑚
−1

𝑖
(𝑖 = 1, 2) are independent of 𝑡.

We can check that when the assumption (H
3
) is replaced

by (H
3
)
󸀠, the foregoing lemmas and theorems still hold.

3.2. Case 2: G1
𝑡
= F1,2
𝑡
and G2

𝑡
= F2
𝑡
. In this case, we have

E(𝑦
1
(𝑡) | G1

𝑡
) = 𝑦

1
(𝑡) and E(𝑦

2
(𝑡) | G2

𝑡
) = 𝑦

2
(𝑡). Applying

the similar methods shown in Section 3.1, we can obtain the
following theorem.

Theorem 14. (𝑢
1
, 𝑢
2
) is a Nash equilibrium point for Problem

(LQ NZSDG) if and only if

𝑢
1
(𝑡) = −𝑚

−1

1
(𝑡) 𝑏
1
(𝑡) 𝑦
1
(𝑡) ,

𝑢
2
(𝑡) = −𝑚

−1

2
(𝑡) 𝑏
2
(𝑡) 𝑦
2
(𝑡) ,

(61)

where (𝑥, (𝑦
1
, 𝑧
11
, 𝑧
12
, 𝑧
13
), (𝑦
2
, 𝑧
21
, 𝑧
22
, 𝑧
23
)) is a solution of

the following FBSDE:

𝑑𝑥 = [𝑎𝑥 − 𝑏
2

1
𝑚
−1

1
𝑦
1
− 𝑏
2

2
𝑚
−1

2
𝑦
2
+ 𝑐] 𝑑𝑡

+ 𝑔
1
𝑑𝑊
1
+ [𝑒𝑥 + 𝑔

2
] 𝑑𝑊
2
+ 𝑔
3
𝑑𝑊
3
,

−𝑑𝑦
1
= [𝑎𝑦
1
+ 𝑒𝑧
12

+ 𝑙
1
𝑥] 𝑑𝑡

− 𝑧
11
𝑑𝑊
1
− 𝑧
12
𝑑𝑊
2
− 𝑧
13
𝑑𝑊
3
,

−𝑑𝑦
2
= [𝑎𝑦
2
+ 𝑒𝑧
22

+ 𝑙
2
𝑥] 𝑑𝑡

− 𝑧
21
𝑑𝑊
1
− 𝑧
22
𝑑𝑊
2
− 𝑧
23
𝑑𝑊
3
,

𝑥 (0) = 𝑥
0
, 𝑦

1
(𝑇) = 𝑟

1
𝑥 (𝑇) , 𝑦

2
(𝑇) = 𝑟

2
𝑥 (𝑇) .

(62)

Under the assumption (𝐻
3
), we can check that the filtering

equations (23a)–(23c), (25a)–(25d), and the linear relations
(30) and (47) still hold, and the systems of equations (33a),
(33b), (36a), (36b), and (50a)–(50c) are still uniquely solvable.
Then we have the following theorem.

Theorem 15. If (𝐻
3
) holds, then Problem (LQ NZSDG) has a

unique Nash equilibrium point denoted by

𝑢
1
(𝑡) = − 𝑚

−1

1
(𝑡) 𝑏
1
(𝑡) (𝛾
1
(𝑡) 𝑥 (𝑡) + 𝛾

2
(𝑡) 𝑥 (𝑡) + 𝛾

3
(𝑡)) ,

𝑢
2
(𝑡) = − 𝑚

−1

2
(𝑡) 𝑏
2
(𝑡) (𝛼
2
(𝑡) 𝑥 (𝑡) + 𝛽

2
(𝑡)) ,

(63)

where 𝑥 and 𝑥 are shown in (45) and (53), respectively.
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Remark 16. In the cases similar to Case 2, such as G1
𝑡
= F2,3
𝑡

and G2
𝑡
= F2
𝑡
, G1
𝑡
= F1,3
𝑡
, and G2

𝑡
= F1
𝑡
, the corresponding

results can be easily derived.

3.3. Case 3: G1
𝑡
=F
𝑡
and G2

𝑡
=F2
𝑡
. In this case, we have

E(𝑦
1
(𝑡) | G1

𝑡
) = 𝑦

1
(𝑡) and E(𝑦

2
(𝑡) | G2

𝑡
) = 𝑦

2
(𝑡). Then we

have the following theorem.

Theorem 17. (𝑢
1
, 𝑢
2
) is a Nash equilibrium point for Problem

(LQ NZSDG) if and only if

𝑢
1
(𝑡) = −𝑚

−1

1
(𝑡) 𝑏
1
(𝑡) 𝑦
1
(𝑡) ,

𝑢
2
(𝑡) = −𝑚

−1

2
(𝑡) 𝑏
2
(𝑡) 𝑦
2
(𝑡) ,

(64)

where (𝑥, (𝑦
1
, 𝑧
11
, 𝑧
12
, 𝑧
13
), (𝑦
2
, 𝑧
21
, 𝑧
22
, 𝑧
23
)) is a solution to

the following FBSDE:

𝑑𝑥 = [𝑎𝑥 − 𝑏
2

1
𝑚
−1

1
𝑦
1
− 𝑏
2

2
𝑚
−1

2
𝑦
2
+ 𝑐] 𝑑𝑡 + 𝑔

1
𝑑𝑊
1

+ [𝑒𝑥 + 𝑔
2
] 𝑑𝑊
2
+ 𝑔
3
𝑑𝑊
3
,

(65a)

−𝑑𝑦
1
= [𝑎𝑦
1
+ 𝑒𝑧
12

+ l
1
𝑥] 𝑑𝑡 − 𝑧

11
𝑑𝑊
1
− 𝑧
12
𝑑𝑊
2
− 𝑧
13
𝑑𝑊
3
,

(65b)

−𝑑𝑦
2
= [𝑎𝑦
2
+ 𝑒𝑧
22

+ 𝑙
2
𝑥] 𝑑𝑡 − 𝑧

21
𝑑𝑊
1
− 𝑧
22
𝑑𝑊
2
− 𝑧
23
𝑑𝑊
3
,

(65c)

𝑥 (0) = 𝑥
0
, 𝑦

1
(𝑇) = 𝑟

1
𝑥 (𝑇) , 𝑦

2
(𝑇) = 𝑟

2
𝑥 (𝑇) .

(65d)

Under the assumption (𝐻
3
), we can check that

(𝑥, (𝑦
1
, 𝑧̃
12
), (𝑦
2
, 𝑧̃
22
)) still satisfies the filtering equations

(25a)–(25d). From Section 3.1, we know that 𝑥 is shown as
(45) and 𝑦

𝑖
is uniquely represented by (30). Then (65a) can be

rewritten as

𝑑𝑥 = [𝑎𝑥 − 𝑏
2

1
𝑚
−1

1
𝑦
1
− 𝑏
2

2
𝑚
−1

2
𝛼
2
𝑥 − 𝑏
2

2
𝑚
−1

2
𝛽
2
+ 𝑐] 𝑑𝑡

+ 𝑔
1
𝑑𝑊
1
+ [𝑒𝑥 + 𝑔

2
] 𝑑𝑊
2
+ 𝑔
3
𝑑𝑊
3
,

(66a)

−𝑑𝑦
1
= [𝑎𝑦
1
+ 𝑒𝑧
12

+ 𝑙
1
𝑥] 𝑑𝑡 − 𝑧

11
𝑑𝑊
1
− 𝑧
12
𝑑𝑊
2
− 𝑧
13
𝑑𝑊
3
,

(66b)

𝑥 (0) = 𝑥
0
, 𝑦

1
(𝑇) = 𝑟

1
𝑥 (𝑇) . (66c)

From Lemma 1, we can say that (66a)–(66c) has a unique
solution (𝑥, 𝑦

1
, 𝑧
11
, 𝑧
12
, 𝑧
13
). Further, the relation between 𝑦

1

and (𝑥, 𝑥) is as follows:

𝑦
1
= 𝛾
1
𝑥 + 𝛾
2
𝑥 + 𝛾
3
, (67)

where 𝛾
𝑖
(𝑖 = 1, 2, 3) is the solution to (50a)–(50c), and

𝑥 (𝑡) = Υ
𝑡

0
𝑥
0
+ ∫

𝑡

0

Υ
𝑡

𝑠
[ (𝑓
1
(𝑠) − 𝑒 (𝑠) 𝑔

2
(𝑠)) 𝑑𝑠

+

3

∑

𝑖=1

𝑔
𝑖
(𝑠) 𝑑𝑊

𝑖
(𝑠)] ,

(68)

with Υ
𝑡

𝑠
= exp{∫𝑡

𝑠

[𝑎(𝑟) − 𝑏
2

1
(𝑟)𝑚
−1

1
(𝑟)𝛾
1
(𝑟) − (1/2)𝑒

2

(𝑟)]𝑑𝑟 +

∫
𝑡

𝑠

𝑒(𝑟)𝑑𝑊
2
(𝑟)} and 𝑓

1
defined by (51). Then we have the

following theorem.

Theorem 18. Under the assumptions (𝐻
3
), Problem (LQ

NZSDG) has a unique Nash equilibrium point denoted by

𝑢
1
(𝑡) = − 𝑚

−1

1
(𝑡) 𝑏
1
(𝑡) (𝛾
1
(𝑡) 𝑥 (𝑡) + 𝛾

2
(𝑡) 𝑥 (𝑡) + 𝛾

3
(𝑡)) ,

𝑢
2
(𝑡) = − 𝑚

−1

2
(𝑡) 𝑏
2
(𝑡) (𝛼
2
(𝑡) 𝑥 (𝑡) + 𝛽

2
(𝑡)) ,

(69)

where 𝑥 and 𝑥 are shown as (45) and (68), respectively.

Remark 19. In the cases similar to Case 3, such as G1
𝑡
= F
𝑡

and G2
𝑡
= F1
𝑡
, G1
𝑡
= F
𝑡
and G2

𝑡
= F3
𝑡
, the corresponding

results can be easily derived.

3.4. Case 4: G1
𝑡
= F1,2
𝑡

and G2
𝑡
= F3
𝑡
. In this case, we have

E(𝑦
1
(𝑡) | G1

𝑡
) = 𝑦
1
(𝑡) and E(𝑦

2
(𝑡) | G2

𝑡
) = ̌𝑦
2
(𝑡). Throughout

this subsection, we make an additional assumption on (2):

(H
4
) 𝑒(𝑡) = 0, 𝑡 ∈ [0, 𝑇].

Similar to Sections 3.2 and 3.3, we directly present the
following theorem.

Theorem 20. (𝑢
1
, 𝑢
2
) is a Nash equilibrium point for Problem

(LQ NZSDG) if and only if

𝑢
1
(𝑡) = −𝑚

−1

1
(𝑡) 𝑏
1
(𝑡) 𝑦
1
(𝑡) ,

𝑢
2
(𝑡) = −𝑚

−1

2
(𝑡) 𝑏
2
(𝑡) ̌𝑦
2
(𝑡) ,

(70)

where (𝑥, (𝑦
1
, 𝑧
11
, 𝑧
12
, 𝑧
13
), (𝑦
2
, 𝑧
21
, 𝑧
22
, 𝑧
23
)) is a solution to

the following FBSDE:

𝑑𝑥 = [𝑎𝑥 − 𝑏
2

1
𝑚
−1

1
𝑦
1
− 𝑏
2

2
𝑚
−1

2
̌𝑦
2
+ 𝑐] 𝑑𝑡

+ 𝑔
1
𝑑𝑊
1
+ 𝑔
2
𝑑𝑊
2
+ 𝑔
3
𝑑𝑊
3
,

(71a)

−𝑑𝑦
1
= [𝑎𝑦
1
+ 𝑙
1
𝑥] 𝑑𝑡 − 𝑧

11
𝑑𝑊
1
− 𝑧
12
𝑑𝑊
2
− 𝑧
13
𝑑𝑊
3
, (71b)

−𝑑𝑦
2
= [𝑎𝑦
2
+ 𝑙
2
𝑥] 𝑑𝑡 − 𝑧

21
𝑑𝑊
1
− 𝑧
22
𝑑𝑊
2
− 𝑧
23
𝑑𝑊
3
, (71c)

𝑥 (0) = 𝑥
0
, 𝑦

1
(𝑇) = 𝑟

1
𝑥 (𝑇) , 𝑦

2
(𝑇) = 𝑟

2
𝑥 (𝑇) .

(71d)

Using the similar method shown in Section 3.1, we obtain
the optimal filters of 𝑥 and 𝑦

1
in (71a) and (71b)with respect to

F1,2
𝑡

which satisfies

𝑑𝑥 = [𝑎𝑥 − 𝑏
2

1
𝑚
−1

1
𝑦
1
− 𝑏
2

2
𝑚
−1

2
E𝑦
2
+ 𝑐] 𝑑𝑡 + 𝑔

1
𝑑𝑊
1
+ 𝑔
2
𝑑𝑊
2
,

(72a)

−𝑑𝑦
1
= [𝑎𝑦

1
+ 𝑙
1
𝑥] 𝑑𝑡 − 𝑧̂

11
𝑑𝑊
1
− 𝑧̂
12
𝑑𝑊
2
, (72b)

𝑥 (0) = 𝑥
0
, 𝑦

1
(𝑇) = 𝑟

1
𝑥 (𝑇) . (72c)

Here we denote by E𝜂 the mathematical expectation E(𝜂(𝑡))

of the variable 𝜂(𝑡) and omit 𝑡 for simplicity. Similarly, we can
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obtain the optimal filters of 𝑥 and 𝑦
2
in (71a) and (71c) with

respect toF3
𝑡
which satisfy

𝑑 ̌𝑥 = [𝑎 ̌𝑥 − 𝑏
2

1
𝑚
−1

1
E𝑦
1
− 𝑏
2

2
𝑚
−1

2
̌𝑦
2
+ 𝑐] 𝑑𝑡 + 𝑔

3
𝑑𝑊
3
, (73a)

−𝑑 ̌𝑦
2
= [𝑎 ̌𝑦

2
+ 𝑙
2

̌𝑥]𝑑𝑡 − ̌𝑧
23
𝑑𝑊
3
, (73b)

̌𝑥 (0) = 𝑥
0
, ̌𝑦

2
(𝑇) = 𝑟

2
̌𝑥 (𝑇) . (73c)

In addition, E𝑦
1
and E𝑦

2
together with E𝑥 satisfy

Ė𝑥 = 𝑎E𝑥 − 𝑏
2

1
𝑚
−1

1
E𝑦
1
− 𝑏
2

2
𝑚
−1

2
E𝑦
2
+ 𝑐, (74a)

−Ė𝑦
1
= 𝑎E𝑦

1
+ 𝑙
1
E𝑥, (74b)

−Ė𝑦
2
= 𝑎E𝑦

2
+ 𝑙
2
E𝑥, (74c)

E𝑥 (0) = 𝑥
0
, E𝑦

1
(𝑇) = 𝑟

1
E𝑥 (𝑇) ,

E𝑦
2
(𝑇) = 𝑟

2
E𝑥 (𝑇) ,

(74d)

where Ė𝜂 denotes 𝑑E(𝜂(𝑡))/𝑑𝑡 for 𝜂 = 𝑥, 𝑦
1
, 𝑦
2
.

It is clear that (74a)–(74d) are a forward-backward ODE
independent of (72a)–(73c). Using the similarmethod shown
in Lemma 9 and Remark 2, we conclude that (74a)– (74d)
have a unique solution (E𝑥,E𝑦

1
, andE𝑦

2
). Plugging the solu-

tions E𝑦
2
and E𝑦

1
into (72a)–(72c) and (73a)–(73c), respec-

tively, and applying Lemma 1, we conclude that (72a)–(73c)
have the unique solutions (𝑥, 𝑦

1
, 𝑧̂
11
, 𝑧̂
12
) and ( ̌𝑥, ̌𝑦

2
, ̌𝑧
23
),

respectively. Then we derive the more explicit representation
of the Nash equilibrium point in (70) as follows.

Theorem 21. Under the assumptions (𝐻
3
) and (𝐻

4
), Problem

(LQ NZSDG) has a unique Nash equilibrium point denoted by

𝑢
1
(𝑡) = −𝑚

−1

1
(𝑡) 𝑏
1
(𝑡) 𝑦
1
(𝑡) ,

𝑢
2
(𝑡) = −𝑚

−1

2
(𝑡) 𝑏
2
(𝑡) ̌𝑦
2
(𝑡) ,

(75)

where 𝑦
1
and ̌𝑦

2
are uniquely determined by the systems of

(72a)–(74d).

In the sequel, we only present the results and omit the
deduction procedures, because themethod and technique are
parallel to those in Section 3.1.

The relation between E𝑦
𝑖
and E𝑥 is as follows:

E𝑦
𝑖
= 𝛼
𝑖
E𝑥 + 𝛽

𝑖
(𝑖 = 1, 2) , (76)

where 𝛼
𝑖
, 𝛽
𝑖
, 𝛼, and 𝛽 are the unique solutions to the systems

of (33a), (33b), (36a), (36b), (37), and (41) with 𝑒(⋅) replaced
by 0, respectively, and

E𝑥 (𝑡) = Γ
𝑡

0
𝑥
0
+ ∫

𝑡

0

Γ
𝑡

𝑠
[(𝑐 (𝑠) − 𝑏

2

1
(𝑠)𝑚
−1

1
(𝑠) 𝛽 (𝑠))] 𝑑𝑠 (77)

with Γ
𝑡

𝑠
= exp{∫𝑡

𝑠

[𝑎(𝑟) − 𝑏
2

1
(𝑟)𝑚
−1

1
(𝑟)𝛼(𝑟)]𝑑𝑟}.

The relation between 𝑦
1
and (𝑥,E𝑥) is as follows:

𝑦
1
= 𝛾
1
𝑥 + 𝛾
2
E𝑥 + 𝛾

3
, (78)

where 𝛾
𝑖
(𝑖 = 1, 2, 3) is the solution to (50a)–(50c) with 𝑒(⋅)

replaced by 0, and

𝑥 (𝑡) = Υ
𝑡

0
𝑥
0
+ ∫

𝑡

0

Υ
𝑡

𝑠
[𝑓
1
(𝑠) 𝑑𝑠 + 𝑔

1
(𝑠) 𝑑𝑊

1
(𝑠)

+𝑔
2
(𝑠) 𝑑𝑊

2
(𝑠)] ,

(79)

with

Υ
𝑡

𝑠
= exp{∫

𝑡

𝑠

[𝑎 (𝑟) − 𝑏
2

1
(𝑟)𝑚
−1

1
(𝑟) 𝛾
1
(𝑟)] 𝑑𝑟} ,

𝑓
1
= − (𝑏

2

2
𝑚
−1

2
𝛼
2
+ 𝑏
2

1
𝑚
−1

1
𝛾
2
)E𝑥 − 𝑏

2

1
𝑚
−1

1
𝛾
3
− 𝑏
2

2
𝑚
−1

2
𝛽
2
+ 𝑐.

(80)

The relation between ̌𝑦
2
and ( ̌𝑥,E𝑥) is as follows:

𝑦
2
= 𝜏
1

̌𝑥 + 𝜏
2
E𝑥 + 𝜏

3
, (81)

where 𝜏
𝑖
(𝑖 = 1, 2, 3) is the unique solution to (56a)–(56c)

with 𝑒(⋅) replaced by 0, and

̌𝑥(𝑡) = Ψ
𝑡

0
𝑥
0
+ ∫

𝑡

0

Ψ
𝑡

𝑠
[𝑓
2
(𝑠) 𝑑𝑠 + 𝑔

3
(𝑠) 𝑑𝑊

3
(𝑠)] , (82)

with

Ψ
𝑡

𝑠
= exp{∫

𝑡

𝑠

[𝑎 (𝑟) − 𝑏
2

2
(𝑟)𝑚
−1

2
(𝑟) 𝜏
1
(𝑟)] 𝑑𝑟} ,

𝑓
2
= − (𝑏

2

2
𝑚
−1

2
𝜏
2
+ 𝑏
2

1
𝑚
−1

1
𝛼
1
)E𝑥 − 𝑏

2

1
𝑚
−1

1
𝛽
1
− 𝑏
2

2
𝑚
−1

2
𝜏
3
+ 𝑐.

(83)

ThenTheorem 21 can be rewritten as follows.

Theorem 22. Under the assumption (𝐻
3
) and (𝐻

4
), Problem

(LQ NZSDG) has a unique Nash equilibrium point denoted by

𝑢
1
(𝑡) = −𝑚

−1

1
(𝑡) 𝑏
1
(𝑡) (𝛾
1
(𝑡) 𝑥 (𝑡) + 𝛾

2
(𝑡)E𝑥 (𝑡) + 𝛾

3
(𝑡)) ,

𝑢
2
(𝑡) = −𝑚

−1

2
(𝑡) 𝑏
2
(𝑡) (𝜏
1
(𝑡) ̌𝑥 (𝑡) + 𝜏

2
(𝑡)E𝑥 (𝑡) + 𝜏

3
(𝑡)) ,

(84)

where E𝑥, 𝑥, and ̌𝑥 are shown in (77), (79), and (82), respec-
tively, and 𝛾

𝑖
and 𝜏
𝑖
(𝑖 = 1, 2, 3) are uniquely determined by the

systems of (50a)–(50c) and (56a)–(56c) with 𝑒(⋅) replaced by
0, respectively.

Remark 23. In the cases similar to Case 4, such asG1
𝑡
= F1,3
𝑡

and G2
𝑡
= F2
𝑡
, G1
𝑡
= F2,3
𝑡

and G2
𝑡
= F1
𝑡
, the corresponding

results can be easily derived.

4. Conclusion Remark

In this paper, we investigate LQ nonzero sum differential
game problem where the information available to players is
asymmetric. We discuss the game problem under the four
classes of cases: (i) G1

𝑡
= F1,2
𝑡

and G2
𝑡
= F2,3
𝑡
; (ii) G1

𝑡
= F1,2
𝑡

and G2
𝑡
= F2
𝑡
; (iii) G1

𝑡
= F
𝑡
and G2

𝑡
= F2
𝑡
; (iv) G1

𝑡
= F1,2
𝑡

and G2
𝑡

= F3
𝑡
. Some forward-backward stochastic filtering



Mathematical Problems in Engineering 11

equationswith respect to the asymmetric informationG1
𝑡
and

G2
𝑡
are introduced and the existence and uniqueness of the

solutions are proved. Finally, the corresponding unique Nash
equilibrium point is represented in a feedback form of the
optimal filtering of the state, through the solutions of some
Riccati equations.
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In real sound environment system, a specific signal shows various types of probability distribution, and the observation data are
usually contaminated by external noise (e.g., background noise) of non-Gaussian distribution type. Furthermore, there potentially
exist various nonlinear correlations in addition to the linear correlation between input and output time series. Consequently, often
the system input and output relationship in the real phenomenon cannot be represented by a simple model using only the linear
correlation and lower order statistics. In this study, complex sound environment systems difficult to analyze by using usual structural
method are considered. By introducing an estimation method of the system parameters reflecting correlation information for
conditional probability distribution under existence of the external noise, a prediction method of output response probability
for sound environment systems is theoretically proposed in a suitable form for the additive property of energy variable and the
evaluation in decibel scale. The effectiveness of the proposed stochastic signal processing method is experimentally confirmed by
applying it to the observed data in sound environment systems.

1. Introduction

A specific signal in real sound environment system usually
exhibits multifarious and complex characteristics such as
non-Gaussian distribution and nonlinear property relating
to natural, social, or human factors. Furthermore, the obser-
vation data usually are contaminated by external noise (e.g.,
background noise) with complex statistical properties. In this
situation, in order to evaluate the sound environment system,
precise estimation of the system characteristics of the sound
environment is required by considering the contaminated
observation data.

Furthermore, the internal physical mechanism of the real
sound environment system is often difficult to recognize ana-
lytically, and it contains unknown structural characteristics.
In our previous study, it was found that complex sound
environment systems are difficult to analyze by using usual
structural methods based on the physical mechanism [1].
Therefore, a nonlinear system model was derived in the
expansion series form reflecting various types of correlation
information from the lower order to the higher order between

input and output variables [2]. The conditional probability
density function contains the linear and nonlinear correla-
tions in the expansion coefficients and these correlations play
an important role as the statistical information for the input
and output relationship of sound environment system.

On the other hand, in considering the relationship
between the evaluation from top-down viewpoint and the
countermeasure from bottom-up viewpoint in the sound
environment system, noise evaluation quantities in decibel
scale like 𝐿

𝑥
((100 − 𝑥) percentile level) and 𝐿Aeq (averaged

energy on decibel scale) and some countermeasure methods
in energy scale are widely used. Since there is a certain
scale transform between decibel and energy variables, a
unified general consideration without losing their mutual
relationship has to be derived.

In this study, a general type of complex sound envi-
ronment systems is considered. A stochastic signal process-
ing method for predicting the output response probability
distribution in decibel scale based on the input observa-
tions is proposed for complex sound environment systems.
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More specifically, an expansion expression of the condi-
tional probability distribution in decibel scale is adopted as
the system characteristics. Next, a method to estimate the
system parameters reflecting several orders of correlation
information between the input and output variables is derived
by considering the additive property of energy variables
under existence of external noise. Furthermore, a prediction
method for the output probability distribution in decibel scale
is also considered.

The effectiveness of the proposed theory is confirmed
experimentally by applying it to real data of a sound insula-
tion system and the road traffic noise environment measured
around a national road in Hiroshima city.

2. Evaluation of Sound Environment System
under Existence of External Noise

2.1. Statistical Model for Sound Environment System. Let 𝑋
and𝑌 be the sound pressure levels of input and output signals
for a complex sound environment system. The probability
distribution of output 𝑌 has to be predicted on the basis of
the observed data of the input level 𝑋, because noise evalu-
ation quantities connected with probability distribution are
widely used. All the information on linear and/or nonlinear
correlations between 𝑋 and 𝑌 is included in the conditional
probability density function 𝑃(𝑌 | 𝑋) [2].

In order to find explicitly the various correlation prop-
erties between 𝑋 and 𝑌, let us expand the joint probability
density function 𝑃(𝑋, 𝑌) into an orthogonal polynomial
series [3], as follows:

𝑃 (𝑋, 𝑌) = 𝑃
0
(𝑋) 𝑃
0
(𝑌)

∞

∑

𝑟=0

∞

∑

𝑠=0

𝐴
𝑟𝑠
𝜑
(1)

𝑟
(𝑋) 𝜑
(2)

𝑠
(𝑌) ,

𝐴
𝑟𝑠
≡ ⟨𝜑
(1)

𝑟
(𝑋) 𝜑
(2)

𝑠
(𝑌)⟩ ,

(1)

where ⟨⟩ denotes the averaging operation. 𝑃
0
(𝑋) and 𝑃

0
(𝑌)

can be chosen arbitrarily as the probability density functions
describing the dominant parts of the actual fluctuation
pattern. Two functions 𝜑(1)

𝑟
(𝑋) and 𝜑

(2)

𝑠
(𝑌) are orthogonal

polynomials with the weighting functions 𝑃
0
(𝑋) and 𝑃

0
(𝑌).

The information on the various types of linear and/or nonlin-
ear correlations between𝑋 and𝑌 is reflected hierarchically in
each expansion coefficient 𝐴

𝑟𝑠
. In this section, the Gaussian

distribution suitable for the random variables in decibel scale
is adopted as 𝑃

0
(𝑋) and 𝑃

0
(𝑌)

𝑃
0
(𝑋) = 𝑁(𝑋; 𝜇

𝑋
, 𝜎
2

𝑋
) ,

𝑃
0
(𝑌) = 𝑁 (𝑌; 𝜇

𝑌
, 𝜎
2

𝑌
)

(2)

with

𝑁(𝑥; 𝜇, 𝜎) ≡
1

√2𝜋𝜎2
𝑒
−(𝑥−𝜇)

2
/2𝜎
2

,

𝜇
𝑋
≡ ⟨𝑋⟩ , 𝜎

2

𝑋
≡ ⟨(𝑋 − 𝜇

𝑋
)
2

⟩ ,

𝜇
𝑌
≡ ⟨𝑌⟩ , 𝜎

2

𝑌
≡ ⟨(𝑌 − 𝜇

𝑌
)
2

⟩ .

(3)

Thus, orthogonal polynomials 𝜑(1)
𝑟
(𝑋) and 𝜑

(2)

𝑠
(𝑌) are given

by the Hermite polynomial [3]:

𝜑
(1)

𝑟
(𝑋) =

1

√𝑟!

𝐻
𝑟
(
𝑋 − 𝜇

𝑋

𝜎
𝑋

) ,

𝜑
(2)

𝑠
(𝑌) =

1

√𝑠!

𝐻
𝑠
(
𝑌 − 𝜇
𝑌

𝜎
𝑌

) .

(4)

Substituting (1) into the definition of the conditional proba-
bility, 𝑃(𝑌 | 𝑋) can be expressed in an expansion series form
as follows:

𝑃 (𝑌 | 𝑋) =
𝑃 (𝑋, 𝑌)

𝑃 (𝑋)

=
𝑃
0
(𝑌)∑

∞

𝑟=0
∑
∞

𝑠=0
𝐴
𝑟𝑠
𝜑
(1)

𝑟
(𝑋) 𝜑
(2)

𝑠
(𝑌)

∑
∞

𝑟=0
𝐴
𝑟0
𝜑
(1)

𝑟 (𝑋)

.

(5)

2.2. Estimation of Correlation Information Based on Energy
Observation. In themeasurement of the sound environment,
the effects by external noise (e.g., background noise) are
inevitable. Then, based on the additive property of energy
variable, the observed sound intensity 𝑧

𝑘
at a discrete time

𝑘 is expressed as

𝑧
𝑘
= 𝑦
𝑘
+ V
𝑘
, (6)

where 𝑦
𝑘
and V

𝑘
are sound intensities of the output signal

for the sound environment system and external noise. We
assume that the statistics of the external noise are known.
In this section, an estimation method for the expansion
coefficients 𝐴

𝑟𝑠
in (1), reflecting the correlation information

between𝑋 and𝑌, is derived on the basis of the observed data
𝑧
𝑘
. There are relationships between energy variables 𝑥

𝑘
, 𝑦
𝑘

and decibel variables 𝑋
𝑘
, 𝑌
𝑘
for the input and output signals,

as

𝑋
𝑘
= 10log

10

𝑥
𝑘

𝐸
0

[dB] , 𝑌
𝑘
= 10log

10

𝑦
𝑘

𝐸
0

[dB] ,

𝐸
0
= 10
−12

[W/m2] .
(7)

Therefore, from (7), the following relationships can be
obtained

𝑥
𝑘
= 𝑒
(𝑋𝑘−𝐾)/𝐶, 𝑦

𝑘
= 𝑒
(𝑌𝑘−𝐾)/𝐶 (8)

with

𝐶 ≡
10

ln10
, 𝐾 ≡ −𝐶 ln𝐸

0
. (9)

Next, considering the expansion coefficients 𝐴
𝑟𝑠

as
unknown parameter vector a,

a ≡ (𝑎
1
, 𝑎
2
, 𝑎
3
, . . .) ≡ (a

(1)
, a
(2)
, . . .) ,

a
(𝑠)

≡ (𝐴
0𝑠
, 𝐴
1𝑠
, 𝐴
2𝑠
. . .) , (𝑠 = 1, 2, . . .) ,

(10)

the simple dynamical model,

a
𝑘+1

= a
𝑘
,

(a
𝑘
≡ (𝑎
1,𝑘
, 𝑎
2,𝑘
, 𝑎
3,𝑘
, . . .) ≡ (a

(1),𝑘
, a
(2),𝑘

, . . .)) ,

(11)
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is naturally introduced for the successive estimation of the
parameter.

In order to derive the estimation algorithmof the parame-
ter, attention is focused on Bayes’ theorem for the conditional
probability distribution:

𝑃 (a
𝑘
| 𝑍
𝑘
) =

𝑃 (a
𝑘
, 𝑧
𝑘
| 𝑍
𝑘−1

)

𝑃 (𝑧
𝑘
| 𝑍
𝑘−1

)
, (12)

where 𝑍
𝑘
≡ {𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑘
} is a set of observation data up to

time 𝑘. Based on (12), using the similar calculation process
to the previously reported paper [4], the estimate for an
arbitrary polynomial function 𝑓M(a𝑘) of a𝑘 with Mth order
can be derived as follows (cf. Appendix):

𝑓M (a
𝑘
) ≡ ⟨𝑓M (a

𝑘
) | 𝑍
𝑘
⟩ =

∑
M
m=0 ∑

∞

𝑛=0
𝐵m𝑛𝐶Mm𝜃

(2)

𝑛
(𝑧
𝑘
)

∑
∞

𝑛=0
𝐵0𝑛𝜃
(2)

𝑛
(𝑧
𝑘
)

,

(13)

with

𝐵m𝑛 ≡ ⟨𝜃
(1)

m (a
𝑘
) 𝜃
(2)

𝑛
(𝑧
𝑘
) | 𝑍
𝑘−1

⟩ , (m ≡ (𝑚
1
, 𝑚
2
, . . .)) .

(14)

Two functions 𝜃(1)m (a
𝑘
) and 𝜃

(2)

𝑛
(𝑧
𝑘
) are orthonormal polyno-

mials with the weighting functions 𝑃
0
(a
𝑘
| 𝑍
𝑘−1

) and 𝑃
0
(𝑧
𝑘
|

𝑍
𝑘−1

). Furthermore,𝐶Mm is the coefficient when the function
𝑓M(a𝑘) is expanded as

𝑓M (a
𝑘
) =

M
∑

m=0
𝐶Mm𝜃

(1)

m (a
𝑘
) . (15)

As the concrete expression on the fundamental prob-
ability function for the parameter a

𝑘
fluctuating in both

positive and negative range, a standard Gaussian distribution
is adopted. Furthermore, a gamma distribution is adopted as
the probability function for the sound intensity 𝑧

𝑘
:

𝑃
0
(a
𝑘
| 𝑍
𝑘−1

) = ∏

𝑖

𝑁(𝑎
𝑖,𝑘
; 𝑎
∗

𝑖,𝑘
, Γ
𝑖,𝑘
) ,

𝑃
0
(𝑧
𝑘
| 𝑍
𝑘−1

) = 𝑃
Γ
(𝑧
𝑘
; 𝑚
∗

𝑘
, 𝑠
∗

𝑘
) ,

(16)

with

𝑃
Γ
(𝑥;𝑚, 𝑠) ≡

𝑥
𝑚−1

Γ (𝑚) 𝑠
𝑚
𝑒
−𝑥/𝑠

,

𝑎
∗

𝑖,𝑘
≡ ⟨𝑎
𝑖,𝑘

| 𝑍
𝑘−1

⟩ , Γ
𝑖,𝑘

≡ ⟨(𝑎
𝑖,𝑘
− 𝑎
∗

𝑖,𝑘
)
2

| 𝑍
𝑘−1

⟩ ,

𝑚
∗

𝑘
≡
𝑧
∗

𝑘

2

Ω
𝑘

, 𝑠
∗

𝑘
≡
Ω
𝑘

𝑧
∗

𝑘

,

𝑧
∗

𝑘
≡ ⟨𝑧
𝑘
| 𝑍
𝑘−1

⟩ , Ω
𝑘
≡ ⟨(𝑧

𝑘
− 𝑧
∗

𝑘
)
2

| 𝑍
𝑘−1

⟩ .

(17)

Therefore, the orthogonal polynomials with the weighting
functions of (16) are given by Hermite polynomial and
Laguerre polynomial [3]:

𝜃
(1)

m (a
𝑘
) = ∏

𝑖

1

√𝑚
𝑖
!
𝐻
𝑚𝑖
(
𝑎
𝑖,𝑘
− 𝑎
∗

𝑖,𝑘

√Γ
𝑖,𝑘

) ,

𝜃
(2)

𝑛
(𝑧
𝑘
) = √

Γ (𝑚
∗

𝑘
) 𝑛!

Γ (𝑚
∗

𝑘
+ 𝑛)

𝐿
(𝑚
∗

𝑘
−1)

𝑛
(
𝑧
𝑘

𝑠
∗

𝑘

) .

(18)

By considering (6) and independence of 𝑦
𝑘
and V

𝑘
, two

parameters 𝑧∗
𝑘
andΩ

𝑘
in (17) can be given by

𝑧
∗

𝑘
= 𝑦
∗

𝑘
+ ⟨V
𝑘
⟩ , (𝑦

∗

𝑘
≡ ⟨𝑦
𝑘
| 𝑍
𝑘−1

⟩) ,

Ω
𝑘
= ⟨(𝑦

𝑘
− 𝑦
∗

𝑘
)
2

| 𝑍
𝑘−1

⟩ + ⟨(V
𝑘
− ⟨V
𝑘
⟩)
2

⟩ .

(19)

Considering (5) and the property of conditional expectation,
the first terms of the right sides in the above equations are
expressed as follows:

⟨𝑦
𝑘
| 𝑍
𝑘−1

⟩ = ⟨⟨𝑦
𝑘
| 𝑥
𝑘
, 𝑍
𝑘−1

⟩ | 𝑍
𝑘−1

⟩

= ⟨∫

∞

0

𝑦
𝑘
𝑃 (𝑦
𝑘
| 𝑥
𝑘
) 𝑑𝑦
𝑘
| 𝑍
𝑘−1

⟩ ,

⟨(𝑦
𝑘
− 𝑦
∗

𝑘
)
2

| 𝑍
𝑘−1

⟩

= ⟨∫

∞

0

𝑦
2

𝑘
𝑃 (𝑦
𝑘
| 𝑥
𝑘
) 𝑑𝑦
𝑘
| 𝑍
𝑘−1

⟩ − 𝑦
∗

𝑘

2

.

(20)

The integrals in (20) can be calculated by using the rela-
tionship between energy and decibel variables in (8) and
expansion expression in (1), as follows:

𝐼
𝑙
≡ ∫

∞

0

𝑦
𝑙

𝑘
𝑃 (𝑦
𝑘
| 𝑥
𝑘
) 𝑑𝑦
𝑘

= ∫

∞

−∞

𝑒
𝑙(𝑌𝑘−𝐾)/𝐶𝑃 (𝑌

𝑘
| 𝑋
𝑘
) 𝑑𝑌
𝑘

= (∫

∞

−∞

𝑒
𝑙(𝑌𝑘−𝐾)/𝐶𝑃

0
(𝑌
𝑘
)

×

∞

∑

𝑟=0

∞

∑

𝑠=0

𝐴
𝑟𝑠
𝜑
(1)

𝑟
(𝑋
𝑘
)

1

√𝑠!

𝐻
𝑠
(
𝑌
𝑘
− 𝜇
𝑌

𝜎
𝑌

)𝑑𝑌
𝑘
)

× (

∞

∑

𝑟=0

𝐴
𝑟0
𝜑
(1)

𝑟
(𝑋
𝑘
))

−1
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= exp
{

{

{

(𝐶𝜇
𝑌
+ 𝑙𝜎
2

𝑌
)
2

2𝜎
2

𝑌
𝐶2

−

(𝐶𝜇
2

𝑌
+ 2𝑙𝜎
2

𝑌
𝐾)

2𝜎
2

𝑌
𝐶

}

}

}

× (∫

∞

−∞

𝑁(𝑌
𝑘
; 𝜉
𝑘
, 𝜎
2

𝑌
)

×

∞

∑

𝑟=0

∞

∑

𝑠=0

𝐴
𝑟𝑠
𝜑
(1)

𝑟
(𝑋
𝑘
)

1

√𝑠!

𝐻
𝑠
(
𝑌
𝑘
− 𝜇
𝑌

𝜎
𝑌

)𝑑𝑌
𝑘
)

× (

∞

∑

𝑟=0

𝐴
𝑟0
𝜑
(1)

𝑟
(𝑋
𝑘
))

−1

,

(21)

where

𝜉
𝑘
≡

1

𝐶
(𝐶𝜇
𝑌
+ 𝑙𝜎
2

𝑌
) , (22)

and 𝑑
(𝑙)

𝑠0
are coefficients satisfying the following relationship:

𝐻
𝑠
(
𝑌
𝑘
− 𝜇
𝑌

𝜎
𝑌

) =

𝑠

∑

𝑗=0

𝑑
(𝑙)

𝑠𝑗
𝐻
𝑗
(
𝑌
𝑘
− 𝜉
𝑘

𝜎
𝑌

) . (23)

By using the orthonormal condition of Hermite polynomial,

∫

∞

−∞

𝑁(𝑌
𝑘
; 𝜉
𝑘
, 𝜎
2

𝑌
)

1

√𝑖!

𝐻
𝑖
(
𝑌
𝑘
− 𝜉
𝑘

𝜎
𝑌

)
1

√𝑗!
𝐻
𝑗
(
𝑌
𝑘
− 𝜉
𝑘

𝜎
𝑌

)𝑑𝑌
𝑘

= 𝛿
𝑖𝑗
,

(24)

the function 𝐼
𝑙
in (21) can be calculated as

𝐼
𝑙
= exp

{

{

{

(𝐶𝜇
𝑌
+ 𝑙𝜎
2

𝑌
)
2

2𝜎
2

𝑌
𝐶2

−
𝐶𝜇
2

𝑌
+ 2𝑙𝜎
2

𝑌
𝐾

2𝜎
2

𝑌
𝐶

}

}

}

×

∑
∞

𝑟=0
∑
∞

𝑠=0
𝐴
𝑟𝑠
𝜑
(1)

𝑟
(𝑋
𝑘
) (𝑑
(𝑙)

𝑠0
/√𝑠!)

∑
∞

𝑟=0
𝐴
𝑟0
𝜑
(1)

𝑟
(𝑋
𝑘
)

.

(25)

Therefore, (20) can be expressed as follows:

⟨𝑦
𝑘
| 𝑍
𝑘−1

⟩ = exp
{

{

{

(𝐶𝜇
𝑌
+ 𝜎
2

𝑌
)
2

2𝜎
2

𝑌
𝐶2

−
𝐶𝜇
2

𝑌
+ 2𝜎
2

𝑌
𝐾

2𝜎
2

𝑌
𝐶

}

}

}

×

∑
∞

𝑠=0
A
(𝑠),𝑘

Φ(𝑋
𝑘
) (𝑑
(1)

𝑠0
/√𝑠!)

∑
∞

𝑟=0
𝐴
𝑟0
𝜑
(1)

𝑟
(𝑋
𝑘
)

,

⟨(𝑦
𝑘
− 𝑦
∗

𝑘
)
2

| 𝑍
𝑘−1

⟩

= exp
{

{

{

(𝐶𝜇
𝑌
+ 2𝜎
2

𝑌
)
2

2𝜎
2

𝑌
𝐶2

−
𝐶𝜇
2

𝑌
+ 4𝜎
2

𝑌
𝐾

2𝜎
2

𝑌
𝐶

}

}

}

×

∑
∞

𝑠=0
A
(𝑠),𝑘

Φ(𝑋
𝑘
) (𝑑
(2)

𝑠0
/√𝑠!)

∑
∞

𝑟=0
𝐴
𝑟0
𝜑
(1)

𝑟
(𝑋
𝑘
)

− 𝑦
∗

𝑘
,

(26)

with

Φ(𝑋
𝑘
) ≡ (𝜑

(1)

0
(𝑋
𝑘
) , 𝜑
(1)

1
(𝑋
𝑘
) , . . .)

𝑡

,

A
(𝑠),𝑘

≡ a∗
(𝑠),𝑘

, (𝑠 = 1, 2, . . .) ,

A
(0),𝑘

≡ (𝐴
00
, 𝐴
10
, 𝐴
20
, . . .) ,

a∗
(𝑠),𝑘

≡ ⟨a
(𝑠),𝑘

| 𝑍
𝑘−1

⟩ ,

(27)

where 𝑡 denotes the transpose of amatrix. Furthermore, using
the definition of Laguerre polynomial and (1), the expansion
coefficient 𝐵m𝑛 can be calculated as follows:

𝐵m𝑛 = √
Γ (𝑚
∗

𝑘
) 𝑛!

Γ (𝑚
∗

𝑘
+ 𝑛)

𝑛

∑

𝑠1=0

(−1)
𝑠1 (

𝑛

𝑠
1

)
1

𝑛!

Γ (𝑚
∗

𝑘
+ 𝑛)

Γ (𝑚
∗

𝑘
+ 𝑠
1
)
(
1

𝑠
∗

𝑘

)

𝑠1

×

𝑠1

∑

𝑠2=0

(
𝑠
1

𝑠
2

) exp
{

{

{

(𝐶𝜇
𝑌
+ 𝑠
2
𝜎
2

𝑌
)
2

2𝜎
2

𝑌
𝐶2

−
𝐶𝜇
2

𝑌
+ 2𝑠
2
𝜎
2

𝑌
𝐾

2𝜎
2

𝑌
𝐶

}

}

}

× ⟨V𝑠1−𝑠2
𝑘

⟩

×

∑
∞

𝑠=0
⟨𝜃
(1)

m (a
𝑘
) a
(𝑠),𝑘

| 𝑍
𝑘−1

⟩Φ (𝑋
𝑘
) (1/√𝑠!) 𝑑

(𝑠2)

𝑠0

∑
∞

𝑟=0
𝐴
𝑟0
𝜑
(1)

𝑟
(𝑋
𝑘
)

.

(28)

From (19) and (26)–(28), it can be found that the parameters
𝑧
∗

𝑘
, Ω
𝑘
and the expansion coefficient 𝐵m𝑛 are given by the

predictions of unknown parameter a
𝑘
, the statistics of the

external noise V
𝑘
, and the input observations𝑋

𝑘
.

By considering (11), the prediction to perform the recur-
rence estimation can be given for an arbitrary polynomial
function 𝑔N(a𝑘+1) with Nth order of a

𝑘+1
can be expressed

as

𝑔
∗

N (a
𝑘+1

) ≡ ⟨𝑔N (a
𝑘+1

) | 𝑍
𝑘
⟩ = ⟨𝑔N (a

𝑘
) | 𝑍
𝑘
⟩ = 𝑔N (a

𝑘
) .

(29)

2.3. Prediction of Output Probability Distribution for Sound
Environment System. Because the conditional probability
density function 𝑃(𝑌 | 𝑋) can be considered as an invariant
system characteristic, reflectingmainly the proper correlation
relationship between the two sound pressure levels 𝑋 and
𝑌 in the sound environment system, the output probability
distribution𝑃

𝑠
(𝑌) in decibel scale can be predicted, as𝑃

𝑠
(𝑌) =

⟨𝑃(𝑌 | 𝑋)⟩
𝑋
. Thus, based on (1) and using the estimated

parameter â
𝑘
≡ (𝐴
11
, 𝐴
12
, . . .), the output probability density

function𝑃
𝑠
(𝑌) can be predicted from the observed input data

𝑋, as follows:

𝑃
𝑠
(𝑌) = 𝑃

0
(𝑌)

∞

∑

𝑠=0

⟨
∑
∞

𝑟=0
𝐴
𝑟𝑠
𝜑
(1)

𝑟
(𝑋)

∑
∞

𝑟=0
𝐴
𝑟0
𝜑
(1)

𝑟 (𝑋)

⟩

𝑋

𝜑
(2)

𝑠
(𝑌) . (30)

3. Application to Real Sound
Environment System

3.1. Application to Sound Insulation System. In order to
confirm the effectiveness of the proposed method, it was
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Table 1: Statistics of the input, output signals and the background
noise in sound insulation system.

Mean [W/m2] Standard deviation [W/m2]
Input signal 1.3981 × 10

−4

8.2881 × 10
−5

Output signal 1.0633 × 10
−6

5.0934 × 10
−6

Background noise 1.0633 × 10
−6

4.4550 × 10
−6

Microphone 1Microphone 2 Loud
speaker

Sound level
meter 1

Amplifier

Data recorder 1

(Sound source)

Sound level
meter 2

Data recorder 2

Figure 1: A schematic drawing of the experimental setup in sound
insulation system.

applied to real data observed in a sound environment system.
Acoustic signals observed by two microphones in indoors
and outdoors for a house were adopted as input and output
data for the sound insulation system. The schematic drawing
of the sound environment system is shown in Figure 1. The
rock music was selected as an input signal by considering the
aggravation of “Karaoke” noise pollution problem, and white
noise was adopted as a background noise.The statistics of the
input, output signals and the background noise are shown in
Table 1.The input and output fluctuation data simultaneously
measured with every sampling interval 1 s. Based on the 500
data, the expansion coefficients 𝐴

𝑟𝑠
in (1) were estimated on

the basis of the input signal 𝑋
𝑘
and observation 𝑧

𝑘
under

existence of the background noise.
Based on the estimated expansion coefficients, the output

response probability distribution excited by an arbitrary
input signal was predicted. The 200 sampled data following
the data used for the evaluation of expansion coefficients
were adopted for predicting the output response probabil-
ity distribution. Figure 2 shows the comparison between
theoretically predicted curves and experimentally sampled
points on the output probability distribution.The cumulative
distributions of sound level are shown in this figure. The
“theoretical curves” in this figure were obtained by predicting
the probability density function of the output level 𝑌 based
on the observed data of the input level 𝑋 by use of the the-
oretical expression. In this figure, “1st–3rd approximations”
considered the expansion coefficients 𝐴

11
, 𝐴
12
, 𝐴
21
, and 𝐴

22

successively in (30). The “experimental values” represent the
frequency distributions obtained directly from the observed
data of the output level 𝑌.

For comparison, the prediction results of the output prob-
ability distribution by introducing the standard regression
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Figure 2: Comparison between experimentally sampled values and
theoretically predicted curves by the proposedmethodon the output
probability distribution for the sound insulation system.
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Figure 3: Comparison between experimentally sampled values and
theoretically predicted curves by the standard regression models on
the output probability distribution for the sound insulation system.

models described by the following equations are shown in
Figure 3:

𝑌̂ = 𝑎
1
+ 𝑏
1
𝑋 (1st order model) ,

𝑌̂ = 𝑎
2
+ 𝑏
2
𝑋 + 𝑐
2
𝑋
2

(2nd order model) ,

𝑌̂ = 𝑎
3
+ 𝑏
3
𝑋 + 𝑐
3
𝑋
2

+ 𝑑
3
𝑋
3

(3rd order model) .

(31)
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Table 2: Comparison between the experimental values and theoret-
ically predicted values for several noise evaluation quantities in dB
evaluated from Figures 2 and 3.

Noise evaluation
quantities 𝐿

5
𝐿
10

𝐿
50

𝐿
90

𝐿
95

Experimental
values 63.6 63.1 60.5 58.2 57.6

Theoretical curve
(1st
approximation)

63.7 63.0 60.4 57.7 57.1

Theoretical curve
(2nd
approximation)

63.7 63.0 60.5 57.7 57.1

Theoretical curve
(3rd
approximation)

63.2 62.5 60.5 58.2 57.7

Regression model
(1st order model) 61.9 61.5 59.6 58.4 57.9

Regression model
(2nd order model) 61.2 60.7 58.7 57.7 57.5

Regression model
(3rd order model) 62.1 61.6 59.4 58.4 58.1

National road

Reference point

Evaluation point

24m

1m
(input data point)

(output data point)

Figure 4: A schematic drawing of the experiment in road traffic
noise environment near a national road.

The regression coefficients 𝑎
𝑖
, 𝑏
𝑖
, 𝑐
𝑖
, and 𝑑

𝑖
in (31) were

determined by applying the extended Kalman filter [5] after
introducing the following observation equation:

𝑧
𝑘
= 10
𝑌𝑘/10−12 + V

𝑘
. (32)

The theoretically predicted curves based on the proposed
method show better agreement with the experimentally
sampled values than the results by applying the extended
Kalman filter based on the standard regression models.

From the cumulative distributions in Figures 2 and 3,
noise evaluation quantities 𝐿

𝑥
((100 − 𝑥) percentile level)

can be evaluated. Several noise evaluation quantities obtained
from these figures are shown in Table 2. It is obvious that the
proposed method provides a more accurate prediction than
the results based on the standard regression models.

3.2. Application to Road Traffic Noise Environment. The
effectiveness of the proposed method was confirmed experi-
mentally by applying it to real road traffic noise data observed
in the complicated sound environment near a national road.

Table 3: Statistics of the input, output signals and the background
noise in road traffic noise environment.

Mean [W/m2] Standard deviation [W/m2]
Input signal 2.7352 × 10

−5

3.3987 × 10
−5

Output signal 1.7185 × 10
−6

2.0577 × 10
−6

Background noise 1.7185 × 10
−6

2.1789 × 10
−6
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Figure 5: Comparison between experimentally sampled values
and theoretically predicted curves by the proposed method on the
probability distribution at the evaluation point for the road traffic
noise environment near a national road.

In order to evaluate the sound environment around the
main line, the sound level at an evaluation point has to
be predicted on the basis of the observation at a reference
point. After regarding the sound levels at a reference point
and an evaluation point as system input 𝑋 and output 𝑌,
respectively, the probability distribution in decibel scale at the
evaluation point connected with several evaluation quantities
of the sound environment was predicted on the basis of the
observation at the reference point. The reference point and
the evaluation point were chosen at the positions being 1m
and 25mapart fromone side of the road as shown in Figure 4.
The statistics of the input, output signals and the background
noise are shown inTable 3. By applying the proposedmethod,
the probability density function of the sound level at the
evaluation point was predicted on the basis of the observation
at the reference point. Road traffic noise was measured by the
use of the sound level meter at every 0.2 s. Through the same
procedure in Section 3.1, the expansion coefficients 𝐴

𝑟𝑠
in (1)

were first estimated.
Based on the estimates of the expansion coefficients,

the probability density function of road traffic noise at the
evaluation point was predicted by measuring the road traffic
noise data at the reference point. The predicted results are
shown in Figures 5 and 6. Several noise evaluation quantities
evaluated from Figures 5 and 6 are shown in Table 4. From
these results, it can be seen that the theoretically predicted
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Figure 6: Comparison between experimentally sampled values and
theoretically predicted curves by the standard regression models on
the probability distribution at the evaluation point for the road traffic
noise environment near a national road.

Table 4: Comparison between the experimental values and theoret-
ically predicted values for several noise evaluation quantities in dB
evaluated from Figures 5 and 6.

Noise evaluation
quantities 𝐿

5
𝐿
10

𝐿
50

𝐿
90

𝐿
95

Experimental
values 68.0 66.3 61.3 56.6 54.5

Theoretical curve
(1st
approximation)

68.1 66.7 61.3 55.8 54.5

Theoretical curve
(2nd
approximation)

68.9 67.4 62.2 56.9 55.4

Theoretical curve
(3rd
approximation)

69.3 67.7 62.2 56.5 55.0

Regression model
(1st order model) 65.6 64.4 60.4 55.2 52.8

Regression model
(2nd order model) 68.4 67.5 64.1 58.4 55.0

Regression model
(3rd order model) 66.0 65.4 62.2 56.7 53.7

values by use of the proposed method show good agreement
with the experimental values, as compared with the results
applying the extended Kalman filter for the standard regres-
sion models.

4. Conclusions

In this paper, an evaluation method of complex sound
environment systems under existence of an external noise
has been proposed. More specifically, by paying attention

to the energy variables satisfying the additive property of
the specific signal and the external noise, a method for
estimating the correlation information between the input
and output variables has been theoretically derived on the
basis of the observations contaminated by the external
noise. Furthermore, a prediction method of the output
probability distribution in decibel scale has been derived
based on the observations of the input level. The proposed
prediction method has been realized by introducing a sound
environment model of the conditional probability type in
decibel scale. The proposed method has then been applied
to the estimation and prediction of a real sound insulation
system and road traffic noise environment, and it has been
experimentally verified that good results have been achieved
with this method.

Theproposed stochastic signal processingmethod is quite
different from the traditional standard approach. However,
it is still at its early stage of study, and there are a number
of practical problems to be explored in the future, starting
from the result of the basic study in this paper. Some of the
problems are the following.

(i) The proposed method should be applied to real pre-
diction problems of output probability distribution
for many other sound environment systems, and its
practical usefulness should be verified in each real
situation.

(ii) The theory should be extended to further practical
cases with multi-input and multioutput systems.

(iii) An optimal number of expansion terms in the pro-
posed stochastic signal processing method of expan-
sion expression type should be found.

Appendix

Derivation of the Estimate

The conditional joint probability density function of the
parameter a

𝑘
and the observation 𝑧

𝑘
can be generally

expanded in a statistical orthogonal expansion series:

𝑃 (a
𝑘
, 𝑧
𝑘
| 𝑍
𝑘−1

) = 𝑃
0
(a
𝑘
| 𝑍
𝑘−1

) 𝑃
0
(𝑧
𝑘
| 𝑍
𝑘−1

)

×

∞

∑

m=0

∞

∑

𝑛=0

𝐵m𝑛𝜃
(1)

m (a
𝑘
) 𝜃
(2)

𝑛
(𝑧
𝑘
) .

(A.1)

After substituting (A.1) into (12), taking the conditional
expectation of the function 𝑓M(a𝑘), and using the orthonor-
mal condition for the function 𝜃

(1)

m (a
𝑘
), (13) can be derived.
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In the past, the proportional and additive hazard rate models have been investigated in the works. Nanda andDas (2011) introduced
and studied the dynamic proportional (reversed) hazard ratemodel. In this paper we study the dynamic additive hazard ratemodel,
and investigate its aging properties for different aging classes. The closure of the model under some stochastic orders has also been
investigated. Some examples are also given to illustrate different aging properties and stochastic comparisons of the model.

1. Introduction

It is common practice in statistical analysis that covariates
are often introduced to account for factors that increase
the heterogeneity of a population. When the effect of a
factor under study has a multiplicative (or additive) effect
on the baseline hazard function, we have a proportional (or
an additive) hazard model. The latter category of model is
preferred in any situation. For example, in tumorigenicity
cases, where the dose effect on tumor risk is of interest, the
excess risk becomes an important factor. Clinical trials that
seek the effectiveness of treatments often experience lag times
of treatment effectiveness after which treatment procedures
will be in full effect.

In reliability and survival analysis, devices or systems
always operate in a changing environment. The conditions
under which systems operate can be harsher or gentler in
modeling lifetime of the devices or systems.Themost known
Cox [1] model is that the changing conditions are assumed to
act multiplicatively on the baseline hazard rate. This model
has been widely used in many experiments where the time to
systems’ failure depends on a group of covariates, which may
be regarded as different treatments, operating conditions,
heterogeneous environments, and so forth. P. L. Gupta and R.
C. Gupta [2] studied the relation between the conditional and
unconditional failure rates inmixtureswhen the distributions

in the mixture follow the proportional hazard rate. For
further research, one may see Cox and Oakes [3], Kumar and
Westberg [4], Dupuy [5], Lau [6], Zhao and Zhou [7], X. Li
and Z. Li [8], and Yu [9].

R. C. Gupta and R. D. Gupta [10] proposed and studied
the proportional reversed hazard model to analyze failure
time data. For more details on this model, see Gupta andWu
[11], X. Li and Z. Li [12], and so forth.

Recently, Nanda and Das [13] introduced the dynamic
proportional hazard rate (DPHR) model and the dynamic
proportional reversed hazard rate (DPRHR) model and
studied their properties for different aging classes.The closure
of the models under different stochastic orders has also been
studied.

Aranda-Ordaz [14] first dealt with an additive hazard
model

ℎ (𝑡 | 𝑍 (𝑠) , 𝑠 ≤ 𝑡) = 𝛽
󸀠

𝑧 (𝑡) + ℎ
0
(𝑡) , for 𝑡 ≥ 0, (1)

where ℎ
0
(𝑡) is a baseline hazard rate and a time-dependent

covariate vector 𝑍, representing the changes in the operating
conditions, and 𝛽 is a vector of parameters. For more details,
one may see Cox and Oakes [3], Thomas [15], Breslow and
Day [16], Finkelstein and Esaulova [17], Lim and Zhang [18],
and so forth.
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Assume that𝑋 and𝑌 are the lifetimes of two systemswith
corresponding hazard rate functionsℎ

𝑋
(𝑡) andℎ

𝑌
(𝑡) for 𝑡 ≥ 0.

Let 𝑐(𝑡) = 𝛽󸀠𝑧(𝑡); themodel (with time-dependent covariates)
in (1) would reduce to the form

ℎ
𝑌
(𝑡) = 𝑐 (𝑡) + ℎ

𝑋
(𝑡) , ∀𝑡 ≥ 0, (2)

which is named as dynamic additive hazard rate (DAHR)
model.

Sometimes the hazard rate functions of𝑋 and 𝑌may not
be additive over the whole interval [0,∞), but they may be
additive differently from different intervals. Specifically, they
may be related as

ℎ
𝑌
(𝑡) = 𝑐

𝑖
+ ℎ
𝑋
(𝑡) , 𝑡

𝑖−1
≤ 𝑡 ≤ 𝑡

𝑖
(3)

for 𝑖 = 1, 2, . . ., and 𝑡
0
= 0, where 𝑐

𝑖
(𝑖 = 1, 2, . . .) are

some constants. When the intervals [𝑡
𝑖−1
, 𝑡
𝑖
)(𝑖 = 1, 2, . . .)

become smaller and smaller, amodel as in (2)will be naturally
obtained.

In order to guarantee that ℎ
𝑌
(𝑡) is a hazard rate function

of a nonnegative random variable 𝑌, the following lemma is
given.

Lemma 1. Assume that 𝑐(𝑡) and ℎ
𝑋
(𝑡) are defined before.

Then, for 𝑡 ≥ 0, ℎ
𝑌
(𝑡) = 𝑐(𝑡) + ℎ

𝑋
(𝑡) is a hazard rate function

if and only if the following conditions hold:

(i) 𝑐(𝑡) + ℎ
𝑋
(𝑡) ≥ 0, for all 𝑡 ≥ 0;

(ii) ∫∞
0

(𝑐(𝑡) + ℎ
𝑋
(𝑡))𝑑𝑡 = ∞;

(iii) if ∫𝑡0
0

ℎ
𝑋
(𝑡)𝑑𝑡 = ∞, then

∫

𝑡0

0

(𝑐 (𝑡) + ℎ
𝑋
(𝑡)) 𝑑𝑡 = ∞, (4)

for some 𝑡
0
< ∞.

In Section 2 of the paper, we discuss some aging proper-
ties of the DAHR model. In Section 3, the closure of DAHR
model under different stochastic orderings is studied. Some
examples are given to illustrate the results concerned in
Sections 2 and 3.

Throughout the paper, assume that all random variables
under consideration have 0 as the common left end point of
their supports, and the terms increasing and decreasing stand
for monotone nondecreasing and monotone nonincreasing,
respectively.

2. Aging Properties of DAHR Model

At first we introduce some concepts of aging notions that will
be useful in the section. Recall that a random variable 𝑋 is
said to be (a) increasing in failure rate (IFR) [decreasing in
failure rate (DFR)] if ℎ

𝑋
(𝑡) is increasing [decreasing] in 𝑡 ≥ 0;

(b) increasing in failure rate in average (IFRA) [decreasing in
failure rate in average (DFRA)] if ∫𝑡

0

ℎ
𝑋
(𝑢)𝑑𝑢/𝑡 is increasing

[decreasing] in 𝑡 ≥ 0; (c) new better than used (NBU) [new
worse than used (NWU)] if 𝐹(𝑥 + 𝑡) ≤ [≥]𝐹(𝑡)𝐹(𝑥), for all

𝑡, 𝑥 ≥ 0; (d) new better than used in failure rate (NBUFR)
[new worse than used in failure rate (NWUFR)] if ℎ

𝑋
(𝑡) ≥ (≤

)ℎ
𝑋
(0), for all 𝑡 ≥ 0; (e) new better than used in failure rate

average (NBAFR) [newworse thanused in failure rate average
(NWAFR)] if∫𝑡

0

ℎ
𝑋
(𝑢)𝑑𝑢/𝑡 ≥ [≤]ℎ

𝑋
(0), for all 𝑡 ≥ 0. Formore

discussions on properties of aging notions, readers may refer
to Barlow and Proschan [19], Müller and Styan [20], and so
forth.

In the following we give some aging closure properties
between the random variables 𝑋 and 𝑌 under some condi-
tions of 𝑐(𝑡). Some results are obvious and hence their proofs
are omitted.

Proposition 2. If the random variable𝑋 is IFR (DFR) and, for
𝑡 ≥ 0, 𝑐(𝑡) is increasing (decreasing), then the random variable
𝑌 is IFR (DFR).

In the following, we give two examples related to this
proposition. Example 3 is an application of the proposition.
Example 4 indicates that the condition of 𝑐(𝑡) is sufficient but
not a necessary one.

Example 3. Let 𝑋 be a random variable having Weibull
distribution with hazard rate function ℎ

𝑋
(𝑡) = 2𝑡, 𝑡 ≥ 0.

Take 𝑐(𝑡) = 𝑡 for 𝑡 ≥ 0. It is obvious that 𝑐(𝑡) satisfies all
the conditions of Lemma 1. Obviously, if 𝑋 is IFR and 𝑐(𝑡)

is increasing in 𝑡, hence 𝑌 is IFR.

Example 4. Let 𝑋 be a random variable having Weibull
distribution with hazard rate function ℎ

𝑋
(𝑡) = 2𝑡, 𝑡 ≥ 0.

Let 𝑐(𝑡) = (2 + 𝑡
2

)/(1 + 𝑡) for 𝑡 ≥ 0. It can be verified
that ℎ

𝑋
(𝑡) + 𝑐(𝑡) is increasing in 𝑡 ≥ 0, and hence 𝑌 is IFR.

However, 𝑐(𝑡) is decreasing in 𝑡 ∈ [0, √3 − 1) but increasing
in 𝑡 ∈ [√3 − 1, +∞).

Proposition 5. If the random variable 𝑋 is IFRA (DFRA)
and 𝑐(𝑡) is increasing (decreasing) in 𝑡 ≥ 0, then the random
variable 𝑌 is IFRA (DFRA).

Proof. For 𝑡 ≥ 0, let

𝑞 (𝑡) =

∫
𝑡

0

ℎ
𝑌
(𝑥) 𝑑𝑥

𝑡
=

∫
𝑡

0

(𝑐 (𝑥) + ℎ
𝑋
(𝑥)) 𝑑𝑥

𝑡
.

(5)

Note that 𝑋 is IFRA (DFRA) and 𝑐(𝑡) is increasing (decreas-
ing) implying that

𝑞
󸀠

(𝑡) =
𝑐 (𝑡) + ℎ

𝑋
(𝑡)

𝑡
−

∫
𝑡

0

(𝑐 (𝑥) + ℎ
𝑋
(𝑥)) 𝑑𝑥

𝑡2

=

∫
𝑡

0

(𝑐 (𝑡) − 𝑐 (𝑥)) 𝑑𝑥

𝑡2
+

𝑡ℎ
𝑋
(𝑡) − ∫

𝑡

0

ℎ
𝑋
(𝑥) 𝑑𝑥

𝑡2

≥ 0 (≤ 0) .

(6)

Hence the desired result follows directly.

Example 3 can be regarded as an application of the above
proposition. Example 6 below indicates that the condition of
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𝑐(𝑡) is sufficient but not a necessary one for the monotone
property of 𝑌.

Example 6. Let 𝑋 be a random variable having Weibull
distribution with hazard rate function ℎ

𝑋
(𝑡) = 2𝑡, 𝑡 ≥ 0.

Take 𝑐(𝑡) = −𝑡 for 𝑡 ≥ 0. It is obvious that 𝑐(𝑡) satisfies all the
conditions of Lemma 1. Obviously,𝑋 is IFRA and 𝑌 is IFRA.
However, 𝑐(𝑡) is decreasing in 𝑡 ≥ 0.

Proposition 7. If the random variable𝑋 is NBU (NWU) and
𝑐(𝑡) is increasing (decreasing) in 𝑡 ≥ 0, then the random
variable 𝑌 is NBU (NWU).

Proof. We only give the proof for the case of NBU. In order to
prove that 𝑌 is NBU, it is sufficient to prove that, for all 𝑡 ≥ 0

and 𝑥 ≥ 0,

𝑒
−∫

𝑥+𝑡

0
(𝑐(𝑢)+ℎ𝑋(𝑢))𝑑𝑢 ≤ 𝑒

−∫

𝑥

0
(𝑐(𝑢)+ℎ𝑋(𝑢))𝑑𝑢

× 𝑒
−∫

𝑡

0
(𝑐(𝑢)+ℎ𝑋(𝑢))𝑑𝑢.

(7)

It is equivalent to

𝑒
−∫

𝑥+𝑡

𝑡
(𝑐(𝑢)+ℎ𝑋(𝑢))𝑑𝑢 ≤ 𝑒

−∫

𝑥

0
(𝑐(𝑢)+ℎ𝑋(𝑢))𝑑𝑢. (8)

That is,

𝑒
−∫

𝑥

0
(𝑐(𝑢+𝑡)+ℎ𝑋(𝑢+𝑡))𝑑𝑢 ≤ 𝑒

−∫

𝑥

0
(𝑐(𝑢)+ℎ𝑋(𝑢))𝑑𝑢. (9)

Note that𝑋 is NBU which implies that

𝑒
−∫

𝑥+𝑡

0
ℎ𝑋(𝑢)𝑑𝑢 ≤ 𝑒

−∫

𝑥

0
ℎ𝑋(𝑢)𝑑𝑢 ⋅ 𝑒

−∫

𝑡

0
ℎ𝑋(𝑢)𝑑𝑢. (10)

That is,

𝑒
−∫

𝑥

0
ℎ𝑋(𝑢+𝑡)𝑑𝑢 ≤ 𝑒

−∫

𝑥

0
ℎ𝑋(𝑢)𝑑𝑢. (11)

From the fact that 𝑐(𝑡) is increasing and (11), (9) holds,
and hence the desired result follows.

Example 3 is an application of the above proposition.
The following example indicates that the condition of 𝑐(𝑡) is
sufficient but not a necessary one for the NBU property of 𝑌.

Example 8. Assume that 𝑋 is a random variable having
exponential distribution with mean 1/2. It is clear that 𝑋
is NBU. Let 𝑐(𝑡) = (1 + 𝑡)/(1 + 𝑡

2

) for 𝑡 ≥ 0. By some
computations, we have

𝑎 (𝑡, 𝑥) = ∫

𝑥

0

(𝑐 (𝑡 + 𝑢) − 𝑐 (𝑢) + ℎ
𝑋
(𝑡 + 𝑢) − ℎ

𝑋
(𝑢)) 𝑑𝑢

= arctan (𝑡 + 𝑥) + 1

2
ln (1 + (𝑡 + 𝑥)2) − arctan𝑥

+
1

2
ln (1 + 𝑥2) + 2𝑥𝑡.

(12)

It can be verified that 𝑎(𝑡, 𝑥) is nonnegative for 𝑡, 𝑥 ≥ 0 (see
also Figure 1). From (9), we conclude that𝑌 is NBU.However,
it is easily obtained that 𝑐(𝑡) is increasing in [0, √2 − 1) but
decreasing in (√2 − 1, +∞).
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Figure 1: Plot of the 𝑎(𝑡, 𝑥) for (𝑥, 𝑡) ∈ [0, 100] × [0, 80].

Proposition9. If the randomvariable𝑋 is NBUFR (NWUFR)
and 𝑐(𝑡) ≥ 0 (≤ 0) for 𝑡 ≥ 0, then the random variable 𝑌 is
NBUFR (NWUFR).

Proposition 10. If the random variable 𝑋 is NBAFR
(NWAFR) and ∫

𝑡

0

𝑐(𝑢)𝑑𝑢 ≥ (≤)𝑡𝑐(0) for 𝑡 ≥ 0, then the
random variable 𝑌 is NBAFR (NWAFR).

Proof. We only give the proof for the case of NBAFR. It is
noted that 𝑌 is NBAFR which is equivalent to that, for all 𝑡 ≥
0, (∫𝑡
0

(𝑐(𝑢) + ℎ
𝑋
(𝑢))𝑑𝑢)/𝑡 = (∫

𝑡

0

ℎ
𝑌
(𝑢)𝑑𝑢)/𝑡 ≥ ℎ

𝑌
(0) = 𝑐(0) +

ℎ
𝑋
(0). Note that 𝑋 is NBAFR if and only if ∫𝑡

0

ℎ
𝑋
(𝑢)𝑑𝑢/𝑡 ≥

ℎ
𝑋
(0). Hence the desired result follows from the condition

∫
𝑡

0

𝑐(𝑢)𝑑𝑢 ≥ 𝑡𝑐(0).

Remark 11. Example 3 is an application of Propositions 9 and
10. Example 6 can be regarded as a counterexample, which
shows that the condition 𝑐(𝑡) ≥ 0 is a sufficient but not a
necessary one in Propositions 9 and 10.

3. Stochastic Comparisons of DAHR Model

Firstly let us recall the concepts of some stochastic orders
that are closely related to the main results in this section. A
random variable 𝑋 is said to be larger than another random
variable𝑌 in (a) aging intensity ordering (denoted by𝑋≥

𝑎𝑖
𝑌),

if

ℎ
𝑋
(𝑡)

∫
𝑡

0

ℎ
𝑋
(𝑢) 𝑑𝑢

≤
ℎ
𝑌
(𝑡)

∫
𝑡

0

ℎ
𝑌
(𝑢) 𝑑𝑢

, (13)

for all 𝑡 ≥ 0; (b) usual stochastic order (denoted by 𝑋≤
𝑠𝑡
𝑌) if

𝐹
𝑋
(𝑡) ≤ 𝐹

𝑌
(𝑡), for all 𝑡 ≥ 0; (c) hazard rate order (denoted by

𝑋≤
ℎ𝑟
𝑌) if ℎ

𝑋
(𝑡) ≥ ℎ

𝑌
(𝑡), for all 𝑡 ≥ 0; (d) up hazard rate order

(denoted by 𝑋≤
ℎ𝑟↑
𝑌 ) if 𝑋 − 𝑡≤

ℎ𝑟
𝑌, for all 𝑡 ≥ 0; (e) down

hazard rate order (denoted by𝑋≤
ℎ𝑟↓
𝑌) if𝑋≤

ℎ𝑟
[𝑌−𝑡 | 𝑌 > 𝑡],

for all 𝑡 ≥ 0. For more details about stochastic orders, please
refer to Shaked and Shanthikumar [21].
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Figure 2: Plot of the 𝑎(𝑡) for 𝑡 ∈ [0, 2].

In the following we give some sufficient (and necessary)
conditions of stochastic ordering between random variables
𝑋 and 𝑌. Some results are obvious and hence their proofs are
omitted.

Proposition 12. Suppose 𝑋 and 𝑌 are two nonnegative ran-
dom variables satisfying (2). Then, 𝑋≥

𝑎𝑖
(≤
𝑎𝑖
)𝑌 if 𝑐(𝑡)/ℎ

𝑋
(𝑡) is

increasing (decreasing ) in 𝑡 ≥ 0.

Proof. Note that𝑋≥
𝑎𝑖
𝑌 if and only if, for all 𝑡 ≥ 0,

ℎ
𝑋
(𝑡)

∫
𝑡

0

ℎ
𝑋
(𝑢) 𝑑𝑢

≤
𝑐 (𝑡) + ℎ

𝑋
(𝑡)

∫
𝑡

0

(𝑐 (𝑢) + ℎ
𝑋
(𝑢)) 𝑑𝑢

. (14)

It is equivalent to that ∫𝑡
0

(𝑐(𝑡)ℎ
𝑋
(𝑢) − 𝑐(𝑢)ℎ

𝑋
(𝑡))𝑑𝑢 ≥ 0. It

holds if 𝑐(𝑡)/ℎ
𝑋
(𝑡) is increasing in 𝑡 ≥ 0. The proof of the

parenthetical statement is similar.

The following example indicates that the condition of the
monotone property of the 𝑐(𝑡)/ℎ

𝑋
(𝑡) is sufficient but not a

necessary one for the aging intensity ordering between𝑋 and
𝑌.

Example 13. Assume that 𝑋 is a random variable having
exponential distributionwithmean 1/2. Let 𝑐(𝑡) = (1+𝑡2)/(1+
𝑡) for 𝑡 ≥ 0. By some computations, we have

𝑎 (𝑡) = ∫

𝑡

0

(𝑐 (𝑡) ℎ
𝑋
(𝑢) − 𝑐 (𝑢) ℎ

𝑋
(𝑡)) 𝑑𝑢

=

2𝑡 (1 + 𝑡
2

)

1 + 𝑡
− 𝑡
2

+ 2𝑡 + 4 ln (1 + 𝑡) .

(15)

It can be verified that 𝑎󸀠(𝑡) ≥ 0 for 𝑡 ≥ 0, and hence 𝑎(𝑡) is
increasing in 𝑡 ≥ 0 (see also Figure 2). Note that 𝑎(0) = 0.
Thus 𝑎(𝑡) ≥ 0, for all 𝑡 ≥ 0, and hence 𝑋≥

𝑎𝑖
𝑌. However, it is

easily obtained that 𝑐(𝑡)/ℎ
𝑋
(𝑡) is decreasing in [0, √2−1) but

increasing in (√2 − 1, +∞).

Proposition 14. Suppose 𝑋 and 𝑌 are two nonnegative ran-
dom variables satisfying (2). Then, 𝑋≥

𝑠𝑡
(≤
𝑠𝑡
)𝑌 if and only if

∫
𝑡

0

𝑐(𝑢)𝑑𝑢 ≥ (≤)0, for all 𝑡 ≥ 0.

The following corollary follows immediately from the
proposition above.

Corollary 15. If 𝑐(𝑡) ≥ (≤)0, for all 𝑡 ≥ 0, then𝑋≥
𝑠𝑡
(≤
𝑠𝑡
)𝑌.

Proposition 16. Suppose 𝑋 and 𝑌 are two nonnegative ran-
dom variables satisfying (2). Then, 𝑋≥

ℎ𝑟
(≤
ℎ𝑟
)𝑌 if and only if

𝑐(𝑡) ≥ (≤)0, for all 𝑡 ≥ 0.

Proposition 17. Suppose that 𝑋 and 𝑌 are two nonnegative
random variables satisfying (2). Then, 𝑋≤

ℎ𝑟↑
(≥
ℎ𝑟↑
)𝑌 if and

only if ℎ
𝑋
(𝑦 + 𝑡) − ℎ

𝑋
(𝑡) − 𝑐(𝑡) ≥ (≤)0, for all 𝑦 ≥ 0 and

𝑡 ≥ 0.

Proof. Note that𝑋≤
ℎ𝑟↑
𝑌 if and only if

exp [− ∫𝑥
0

ℎ
𝑌
(𝑢) 𝑑𝑢]

exp [− ∫𝑥+𝑡
0

ℎ
𝑋
(𝑢) 𝑑𝑢]

(16)

is increasing in 𝑥, for all 𝑡 ≥ 0. It is equivalent to the fact that

exp [∫
𝑥+𝑡

0

ℎ
𝑋
(𝑢) − ∫

𝑥

0

ℎ
𝑌
(𝑢) 𝑑𝑢] (17)

is increasing in 𝑥, which is equivalent to the fact that its
derivative is nonnegative; that is, ℎ

𝑋
(𝑦 + 𝑡) − ℎ

𝑋
(𝑡) − 𝑐(𝑡) ≥ 0,

for all 𝑦 ≥ 0 and 𝑡 ≥ 0. It follows from the condition. The
proof of the parenthetical statement is similar.

Proposition 18. Suppose that 𝑋 and 𝑌 are two non-
negative continuous random variables satisfying (2). Then,
𝑋≤
ℎ𝑟↓
(≥
ℎ𝑟↓
)𝑌 if and only if ℎ

𝑋
(𝑦)−ℎ

𝑋
(𝑡+𝑦)−𝑐(𝑡+𝑦) ≥ (≤)0,

for all 𝑦 ≥ 0 and 𝑡 ≥ 0.

Its proof is similar to that of Proposition 17 and hence is
omitted.
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It is frequent to encounter integer-valued time series which are small in value and show a trend having relatively large fluctuation. To
handle such amatter, we present a newfirst order integer-valuedmoving averagemodel process with structural changes.Themodels
provide a flexible framework for modelling a wide range of dependence structures. Some statistical properties of the process are
discussed andmoment estimation is also given. Simulations are provided to give additional insight into the finite sample behaviour
of the estimators.

1. Introduction

Integer-valued time series occur in many situations, often as
counts of events in consecutive points of time, for example,
the number of births at a hospital in successive months, the
number of road accidents in a city in successive months, and
big numbers even for frequently traded stocks. Integer-valued
time series represent an important class of discrete-valued
time series models. Because of the broad field of potential
applications, a number of time series models for counts have
been proposed in literature. McKenzie [1] introduced the
first order integer-valued autoregressive, INAR(1), model.
The statistical properties of the INAR(1) are discussed in
McKenzie [2], Al-Osh and Alzaid [3]. The model is fur-
ther generalized to a 𝑝th-order autoregression, INAR(𝑝),
by Alzaid and Al-Osh [4] and Du and Li [5]. The 𝑞th-
order integer-valued moving average model, INMA(𝑞), was
introduced by Al-Osh and Alzaid [6] and in a slightly
different form by McKenzie [7]. Ferland et al. [8] proposed
an integer-valued GARCH model to study overdispersed
counts, and Fokianos and Fried [9], Weiß [10], and Zhu and
Wang [11–13]made further studies. Györfi et al. [14] proposed
a nonstationary inhomogeneous INAR(1) process, where
the autoregressive type coefficient slowly converges to one.
Bakouch and Ristić [15] introduced a new stationary integer-
valued autoregressive process of the first orderwith zero trun-
cated Poisson marginal distribution. Kachour and Yao [16]

introduced a class of autoregressivemodels for integer-valued
time series using the rounding operator. Kim and Park
[17] proposed an extension of integer-valued autoregressive
INAR models by using a signed version of the thinning
operator. Zheng et al. [18] proposed a first order random
coefficient integer-valued autoregressive model and got its
ergodicity, moments, and autocovariance functions of the
process. Gomes and Canto e Castro [19] presented a random
coefficient autoregressive process for count data based on a
generalized thinning operator. Existence and weak station-
arity conditions for these models were established. A simple
bivariate integer-valued time seriesmodelwith positively cor-
related geometric marginals based on the negative binomial
thinning mechanism was presented by Ristić et al. [20], and
some properties of the model are also considered. Pedeli
and Karlis [21] considered a bivariate INAR(1) (BINAR(1))
process where cross correlation is introduced through the use
of copulas for the specification of the joint distribution of the
innovations.

Structural changes in economic data frequently corre-
spond to instabilities in the real world.However,mostwork in
this area has been concentrated onmodels without structural
changes. It seems that the integer-valued autoregressive
moving average (INARMA) model with break point has not
attracted too much attention. For instance, a new method
for modelling the dynamics of rain sampled by a tipping
bucket rain gauge was proposed by Thyregod et al. [22].
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The models take the autocorrelation and discrete nature of
the data into account. First order, second order, and threshold
models are presented together with methods to estimate the
parameters of each model. Monteiro et al. [23] introduced a
class of self-exciting threshold integer-valued autoregressive
models driven by independent Poisson-distributed random
variables. Basic probabilistic and statistical properties of
this class of models were discussed. Moreover, parameter
estimation was also addressed. Hudecová [24] suggested a
procedure for testing a change in the autoregressive models
for binary time series. The test statistic is a maximum of
normalized sums of estimated residuals from the model,
and thus it is sensitive to any change which leads to a
change in the unconditional success probability. Structural
change is a statement about parameters, which only have
meaning in the context of a model. In our discussion, we will
focus on structural change in the simple count data model,
the first order integer-valued moving average model, whose
coefficient varies with the value of innovation. One of the
leading reasons is that piecewise linear functions can offer
a relatively simple approximation to the complex nonlinear
dynamics.

The rest of this paper is divided into four sections. In
Section 2, we give the definition and basic properties of
the new INMA(1) model with structural changes. Section 3
discusses the estimation of the unknown parameters. We test
the accuracy of the estimation via simulations in Section 4.
Section 5 includes some concluding remarks.

2. Definition and Basic Properties

Definition 1. Let {𝑋
𝑡
} be a process with state space N

0
; let

0 < 𝛼
𝑖
< 1, 𝑖 = 1, . . . , 𝑚, and 𝜏

𝑖
, 𝑖 = 1, . . . , 𝑚 − 1, be

positive integers. The process {𝑋
𝑡
} is said to be first order

integer-valued moving average model with structural change
(INMASC(1)) if𝑋

𝑡
satisfies the following equation:

𝑋
𝑡
=

{{{{{{{

{{{{{{{

{

𝛼
1
∘ 𝜀
𝑡−1
+ 𝜀
𝑡
, for 𝜏

0
≤ 𝜀
𝑡−1
≤ 𝜏
1

𝛼
2
∘ 𝜀
𝑡−1
+ 𝜀
𝑡
, for 𝜏

1
< 𝜀
𝑡−1
≤ 𝜏
2

...
𝛼
𝑚−1

∘ 𝜀
𝑡−1
+ 𝜀
𝑡
, for 𝜏

𝑚−2
< 𝜀
𝑡−1
≤ 𝜏
𝑚−1

𝛼
𝑚
∘ 𝜀
𝑡−1
+ 𝜀
𝑡
, for 𝜏

𝑚−1
< 𝜀
𝑡−1
< 𝜏
𝑚
,

(1)

where {𝜀
𝑡
} is a sequence of independent and identically

distributed Poisson random variables with mean 𝜆 and 𝜏
0
:=

0, 𝜏
𝑚
:= ∞.

The aim of this section is to provide expressions for
the moments and stationary of INMASC(1) model. For this
purpose, we introduce the following notations:

𝑝
𝑖
:= 𝑃 (𝜏

𝑖−1
< 𝜀
𝑡
≤ 𝜏
𝑖
) , 𝑢

𝑖
:= 𝐸 (𝜏

𝑖−1
< 𝜀
𝑡−1
≤ 𝜏
𝑖
) ,

𝜎
2

𝑖
:= Var (𝜏

𝑖−1
< 𝜀
𝑡−1
≤ 𝜏
𝑖
) , 𝑞

𝑖
:= 1 − 𝑝

𝑖
,

𝐼
𝑡−1,𝑖

:= {
1, if 𝜏

𝑖−1
< 𝜀
𝑡−1
≤ 𝜏
𝑖

0, otherwise,
𝑖 = 1, . . . , 𝑚.

(2)

Theorem 2. The numerical characteristics of {𝑋
𝑡
} are as

follows:

(𝑖) 𝜇
𝑋
:= 𝐸 (𝑋

𝑡
) =

𝑚

∑

𝑖=1

𝑝
𝑖
𝛼
𝑖
𝑢
𝑖
+ 𝜆,

(𝑖𝑖) 𝜎
2

𝑋
:= Var (𝑋

𝑡
)

=

𝑚

∑

𝑖=1

𝑝
𝑖
𝛼
𝑖
[𝛼
𝑖
(𝑢
2

𝑖
+ 𝜎
2

𝑖
) + (1 − 𝛼

𝑖
) 𝑢
𝑖
]

− (

𝑚

∑

𝑖=1

𝑝
𝑖
𝛼
𝑖
𝑢
𝑖
)

2

+ 𝜆,

(𝑖𝑖𝑖) 𝛾
𝑋
(𝑘) := cov (𝑋

𝑡
, 𝑋
𝑡−𝑘
)

=

{{

{{

{

𝑚

∑

𝑖=1

𝑝
𝑖
𝛼
𝑖
(𝑢
2

𝑖
+ 𝜎
2

𝑖
− 𝜆𝑢
𝑖
) , 𝑘 = 1

0, 𝑘 ≥ 2.

(3)

Proof. (i) It is easy to get themean and variance of𝑋
𝑡
by using

the law of iterated expectations:

𝐸 (𝑋
𝑡
) = 𝐸 [𝐼

𝑡−1,1
(𝛼
1
∘ 𝜀
𝑡−1
) + ⋅ ⋅ ⋅ + 𝐼

𝑡−1,𝑚
(𝛼
𝑚
∘ 𝜀
𝑡−1
) + 𝜀
𝑡
]

= 𝐸 {𝐸 [𝐼
𝑡−1,1

(𝛼
1
∘ 𝜀
𝑡−1
)

+ ⋅ ⋅ ⋅ + 𝐼
𝑡−1,𝑚

(𝛼
𝑚
∘ 𝜀
𝑡−1
) | 𝜀
𝑡−1
]} + 𝐸 (𝜀

𝑡
)

= 𝛼
1
𝐸 (𝐼
𝑡−1,1

𝜀
𝑡−1
) + ⋅ ⋅ ⋅ + 𝛼

𝑚
𝐸 (𝐼
𝑡−1,𝑚

𝜀
𝑡−1
) + 𝐸 (𝜀

𝑡
)

=

𝑚

∑

𝑖=1

𝑝
𝑖
𝛼
𝑖
𝑢
𝑖
+ 𝜆.

(4)

(ii) Moreover,

Var (𝑋
𝑡
)

= Var (𝐼
𝑡−1,1

(𝛼
1
∘ 𝜀
𝑡−1
) + ⋅ ⋅ ⋅ + 𝐼

𝑡−1,𝑚
(𝛼
𝑚
∘ 𝜀
𝑡−1
) + 𝜀
𝑡
)

=

𝑚

∑

𝑖=1

Var (𝐼
𝑡−1,𝑖

(𝛼
𝑖
∘ 𝜀
𝑡−1
)) + Var (𝜀

𝑡
)

+ 2∑

𝑖<𝑗

cov (𝐼
𝑡−1,𝑖

(𝛼
𝑖
∘ 𝜀
𝑡−1
) , 𝐼
𝑡−1,𝑗

(𝛼
𝑗
∘ 𝜀
𝑡−1
))

=

𝑚

∑

𝑖=1

{Var (𝐸 [𝐼
𝑡−1,𝑖

(𝛼
𝑖
∘ 𝜀
𝑡−1
) | 𝜀
𝑡−1
])

+ 𝐸 (Var [𝐼
𝑡−1,𝑖

(𝛼
𝑖
∘ 𝜀
𝑡−1
) | 𝜀
𝑡−1
])} + 𝜆

+ 2∑

𝑖<𝑗

{𝐸 [𝐼
𝑡−1,𝑖

(𝛼
𝑖
∘ 𝜀
𝑡−1
) 𝐼
𝑡−1,𝑗

(𝛼
𝑗
∘ 𝜀
𝑡−1
)]

− 2𝐸 [𝐼
𝑡−1,𝑖

(𝛼
𝑖
∘ 𝜀
𝑡−1
)] 𝐸 [𝐼

𝑡−1,𝑗
(𝛼
𝑗
∘ 𝜀
𝑡−1
)]}

=

𝑚

∑

𝑖=1

[𝛼
2

𝑖
Var (𝐼

𝑡−1,𝑖
𝜀
𝑡−1
)+𝛼
𝑖
(1−𝛼
𝑖
) 𝐸 (𝐼
𝑡−1,𝑖
𝜀
𝑡−1
)]+𝜆

− 2∑

𝑖<𝑗

𝐸 {𝐸 [𝐼
𝑡−1,𝑖

(𝛼
𝑖
∘ 𝜀
𝑡−1
) | 𝜀
𝑡−1
]}

× 𝐸 {𝐸 [𝐼
𝑡−1,𝑗

(𝛼
𝑗
∘ 𝜀
𝑡−1
) | 𝜀
𝑡−1
]}



Mathematical Problems in Engineering 3

=

𝑚

∑

𝑖=1

{[𝛼
2

𝑖
𝐸 (𝐼
2

𝑡−1
𝜀
2

𝑡−1
) −𝐸
2

(𝐼
𝑡−1,𝑖
𝜀
𝑡−1
)]

+ 𝑝
𝑖
𝛼
𝑖
(1 − 𝛼

𝑖
) 𝑢
𝑖
} + 𝜆

− 2∑

𝑖<𝑗

𝛼
𝑖
𝛼
𝑗
𝐸 (𝐼
𝑡−1,𝑖
𝜀
𝑡−1
) 𝐸 (𝐼
𝑡−1,𝑗

𝜀
𝑡−1
)

=

𝑚

∑

𝑖=1

{[𝑝
𝑖
𝛼
2

𝑖
(𝑢
2

𝑖
+ 𝜎
2

𝑖
) − 𝑝
2

𝑖
𝛼
2

𝑖
𝑢
2

𝑖
] + 𝑝
𝑖
𝛼
𝑖
(1 − 𝛼

𝑖
) 𝑢
𝑖
} + 𝜆

− 2∑

𝑖<𝑗

𝑝
𝑖
𝛼
𝑖
𝑢
𝑖
𝑝
𝑗
𝛼
𝑗
𝑢
𝑗

=

𝑚

∑

𝑖=1

𝑝
𝑖
𝛼
𝑖
[𝛼
𝑖
(𝑢
2

𝑖
+ 𝜎
2

𝑖
) + (1 − 𝛼

𝑖
) 𝑢
𝑖
] − (

𝑚

∑

𝑖=1

𝑝
𝑖
𝛼
𝑖
𝑢
𝑖
)

2

+ 𝜆.

(5)

(iii) Note the correlation between 𝛼
𝑖
∘ 𝜀
𝑡−1

and 𝜀
𝑡−1

; we
have

cov (𝑋
𝑡
, 𝑋
𝑡−1
)

=cov(
𝑚

∑

𝑖=1

𝐼
𝑡−1,𝑖

(𝛼
𝑖
∘ 𝜀
𝑡−1
)+𝜀
𝑡
,

𝑚

∑

𝑗=1

𝐼
𝑡−2,𝑗

(𝛼
𝑗
∘ 𝜀
𝑡−2
)+𝜀
𝑡−1
)

=

𝑚

∑

𝑖=1

cov (𝐼
𝑡−1,𝑖

(𝛼
𝑖
∘ 𝜀
𝑡−1
) + 𝜀
𝑡
, 𝜀
𝑡−1
)

=

𝑚

∑

𝑖=1

{𝐸 [𝐼
𝑡−1,𝑖

(𝛼
𝑖
∘ 𝜀
𝑡−1
) 𝜀
𝑡−1
] − 𝐸 [𝐼

𝑡−1,𝑖
(𝛼
𝑖
∘ 𝜀
𝑡−1
)] 𝐸 (𝜀

𝑡−1
)}

=

𝑚

∑

𝑖=1

{𝐸 [𝐸 (𝐼
𝑡−1,𝑖

(𝛼
𝑖
∘ 𝜀
𝑡−1
) 𝜀
𝑡−1
| 𝜀
𝑡−1
)]

− 𝐸 [𝐸 (𝐼
𝑡−1,𝑖

(𝛼
𝑖
∘ 𝜀
𝑡−1
) | 𝜀
𝑡−1
)] 𝐸 (𝜀

𝑡−1
)}

=

𝑚

∑

𝑖=1

𝛼
𝑖
[𝐸 (𝐼
𝑡−1,𝑖
𝜀
2

𝑡−1
) − 𝜆𝛼

𝑖
𝐸 (𝐼
𝑡−1,𝑖
𝜀
𝑡−1
)]

=

𝑚

∑

𝑖=1

𝑝
𝑖
𝛼
𝑖
(𝑢
2

𝑖
+ 𝜎
2

𝑖
− 𝜆𝑢
𝑖
) .

(6)

Theorem 3. Let 𝑋
𝑡
be the process defined by the equation in

(1); then the {𝑋
𝑡
} is a covariance stationary process.

Proof. Both the unconditional mean and the unconditional
variance of the {𝑋

𝑡
} are finite constant. And the autocovari-

ance function does not change with time. Thus {𝑋
𝑡
} is a

stationary process.

Theorem 4. Suppose {𝑋
𝑡
} is INMASC(1) process. Then

(i) √𝑇(𝑋 − 𝜇
𝑋
)
𝐿

󳨀→ 𝑁(0, 𝜎
2

𝑋
+ 2𝛾
𝑋
(1));

(ii) 𝐸(𝑋𝑘
𝑡
| 𝐼
𝑡−1,𝑖

= 1) < ∞, 𝑘 = 1, 2, 3, 𝑖 = 1, . . . , 𝑚.

Proof. (i) From definition and Theorem 2, we have that
(𝑋
1
, . . . , 𝑋

𝑖
) and (𝑋

𝑗
, 𝑋
𝑗+1
, . . .) are independent whenever

𝑗 − 𝑖 > 1. According to Theorem 9.1 of DasGupta [25], the
process {𝑋

𝑡
} is a stationary 1-dependent sequence. Therefore

we can complete the proof.
(ii) For 𝑘 = 1, it follows that

𝐸 (𝑋
𝑡
) ≤ max {𝐸 [𝐼

𝑡−1,𝑖
(𝛼
𝑖
∘ 𝜀
𝑡−1
) + 𝜀
𝑡
] , 𝑖 = 1, . . . , 𝑚}

≤ max {𝐸 (𝛼
𝑖
∘ 𝜀
𝑡−1
) + 𝐸 (𝜀

𝑡
) , 𝑖 = 1, . . . , 𝑚}

≤ 𝜆 (𝛼max + 1) < ∞, 𝛼max = max (𝛼
1
, . . . , 𝛼

𝑚
) .

(7)

For 𝑘 = 2,

𝐸 (𝑋
2

𝑡
) ≤ max {𝐸[𝐼

𝑡−1,𝑖
(𝛼
𝑖
∘ 𝜀
𝑡−1
) + 𝜀
𝑡
]
2

, 𝑖 = 1, . . . , 𝑚}

= max {𝐸[𝐼
𝑡−𝑖,1

(𝛼
𝑖
∘ 𝜀
𝑡−1
)]
2

+ 𝐸 (𝜀
2

𝑡
)

+2𝐸 [𝐼
𝑡−𝑖,1

(𝛼
𝑖
∘ 𝜀
𝑡−1
) 𝜀
𝑡
] , 𝑖 = 1, . . . , 𝑚}

≤ max {𝐸[(𝛼
𝑖
∘ 𝜀
𝑡−1
)]
2

+ 𝐸 (𝜀
2

𝑡
)

+2𝐸 [(𝛼
𝑖
∘ 𝜀
𝑡−1
) 𝜀
𝑡
] , 𝑖 = 1, . . . , 𝑚}

= max {[(𝜆 + 𝜆2) 𝛼2
𝑖
+ 𝜆𝛼
𝑖
(1 − 𝛼

𝑖
)]

+ (𝜆 + 𝜆
2

) + 𝜆
2

𝛼
𝑖
, 𝑖 = 1, . . . , 𝑚}

≤ 2 (𝜆 + 𝜆
2

) 𝛼max + 0.25𝜆 + 𝜆
2

𝛼max < ∞.

(8)

For 𝑘 = 3,

𝐸 (𝑋
3

𝑡
) ≤ max {𝐸[𝐼

𝑡−1,𝑖
(𝛼
𝑖
∘ 𝜀
𝑡−1
) + 𝜀
𝑡
]
3

, 𝑖 = 1, . . . , 𝑚}

= max {𝐸[𝐼
𝑡−1,𝑖

(𝛼
𝑖
∘ 𝜀
𝑡−1
)]
3

+ 𝐸 (𝜀
3

𝑡
)

+ 3𝐸 [𝐼
2

𝑡−1,𝑖
(𝛼
𝑖
∘ 𝜀
𝑡−1
)
2

𝜀
𝑡
]

+ 3𝐸 [𝐼
𝑡−1,𝑖

(𝛼
𝑖
∘ 𝜀
𝑡−1
) 𝜀
2

𝑡
] , 𝑖 = 1, . . . , 𝑚}

≤ max {𝐸(𝛼
𝑖
∘ 𝜀
𝑡−1
)
3

+ 𝐸 (𝜀
3

𝑡
) + 3𝐸 [(𝛼

𝑖
∘ 𝜀
𝑡−1
)
2

𝜀
𝑡
]

+3𝐸 [(𝛼
𝑖
∘ 𝜀
𝑡−1
) 𝜀
2

𝑡
] , 𝑖 = 1, . . . , 𝑚}

≤ max {[𝛼3
𝑖
𝜏
1
+ 3𝛼
2

𝑖
(1 − 𝛼

𝑖
) 𝜏
2

+ (𝛼
𝑖
− 3𝛼
2

𝑖
(1 − 𝛼

𝑖
) − 𝛼
3

𝑖
) 𝜆]

+ 𝜏
1
+ 3 {[𝛼

2

𝑖
𝜏
2
+ 𝛼
𝑖
(1 − 𝛼

𝑖
) 𝜆] 𝜆}

+3𝜆𝛼
𝑖
𝜏
2
, 𝑖 = 1, . . . , 𝑚}

≤ 𝜆𝛼max [𝛼
2

max (𝜏1 − 1 − 3𝜆)

+3𝜏
2
(𝛼max + 1) + 3𝜆 + 1] + 𝜏1 < ∞,

(9)

where 𝜏
1
:= 𝜆
3

+ 3𝜆
2

+ 𝜆, 𝜏
2
:= 𝜆
2

+ 𝜆, and 𝛼max =

max(𝛼
1
, . . . , 𝛼

𝑚
). Then note that 𝐸(𝑋𝑘

𝑡
) < ∞ implies 𝐸(𝑋𝑘

𝑡
|

𝐼
𝑡−1,𝑖

= 1) < ∞ for 𝑘 = 1, 2, 3, 𝑖 = 1, 2, . . . , 𝑚.
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Theorem 5. Let {𝑋
𝑡
} be a INMASC(1) process according to

Definition 1. Let 𝑋 be the sample mean of {𝑋
𝑡
}; then the

stochastic process {𝑋
𝑡
} is ergodic in the mean.

Proof. Since 𝛾
𝑋
(𝑘) → 0, 𝑘 → ∞.

FromTheorem 7.1.1 in Brockwell and Davis [26], we get

Var (𝑋
𝑇
) = 𝐸(𝑋

𝑇
− 𝜇
𝑋
)
2

󳨀→ 0. (10)

Then 𝑋
𝑇

converges in probability to 𝜇
𝑋
. Therefore, the

process {𝑋
𝑡
} is ergodic in the mean.

Theorem 6. Suppose {𝑋
𝑡
} is a INMASC(1) process; then

𝑃 (
󵄨󵄨󵄨󵄨𝛾𝑋 (𝑘) − 𝛾𝑋 (𝑘)

󵄨󵄨󵄨󵄨 ≥ 𝜀)
𝑃

󳨀→ 0, (11)

where 𝛾
𝑋
(𝑘) := (1/𝑇)∑

𝑇−𝑘

𝑡=1
(𝑋
𝑡+𝑘
− 𝑋
𝑇
)(𝑋
𝑡
− 𝑋
𝑇
).

The proof of Theorem 6 is similar to Theorem 4 given in
Yu et al. [27]. It is easy to verify; we skip the details.

3. Estimation of Parameters

In this paper, we consider one method, namely, moment
estimation. An advantage of the method is that it is simple
and often produces good results. The estimation problem
of INMASC(1) parameters is complex. In fact, for the
INMASC(1) processes, the conditional distribution of the𝑋

𝑡

given 𝜀
𝑡−1

is the convolution of the distribution of the arrival
process 𝜀

𝑡
and one thinning operation 𝛼

𝑖
∘ 𝜀
𝑡−1

. On the other
hand, there are too many unknown parameters of the model,
such as 𝜆, 𝛼

𝑖
, 𝑝
𝑖
, 𝑢
𝑖
, and 𝜎2

𝑖
, 𝑖 = 1, . . . , 𝑚, whereas the number

of moment conditions is small.
Therefore we cannot estimate all the parameters unless

additional assumptions are made. Then, we assume that the
number of break point𝑚 is two and assume that the value of
break point 𝜏

𝑖
, 𝑖 = 1, . . . , 𝑚, and the mean of innovation 𝜆

are also known. Thus, here we estimate INMASC(1) model
with two break points. Under these assumptions, all the
parameters 𝜆, 𝑝

𝑖
, 𝑢
𝑖
, and 𝜎2

𝑖
, 𝑖 = 1, 2, 3, are known. We only

need to estimate the autoregressive coefficients 𝛼
1
, 𝛼
2
, and

𝛼
3
. Using the sample mean and sample covariance function,

we can get the moment estimators via solving the following
equations:

𝛾 (0) =

3

∑

𝑖=1

𝑝
𝑖
𝛼
𝑖
[𝛼
𝑖
(𝑢
2

𝑖
+ 𝜎
2

𝑖
) + (1 − 𝛼

𝑖
) 𝑢
𝑖
]

− (

3

∑

𝑖=1

𝑝
𝑖
𝛼
𝑖
𝑢
𝑖
)

2

+ 𝜆

𝛾 (1) =

3

∑

𝑖=1

𝑝
𝑖
𝛼
𝑖
(𝑢
2

𝑖
+ 𝜎
2

𝑖
− 𝜆𝑢
𝑖
)

𝑋 =

3

∑

𝑖=1

𝑝
𝑖
𝛼
𝑖
𝑢
𝑖
+ 𝜆.

(12)

Table 1: Bias and mean square error for models A, B, and C.

Model Parameter Sample size
50 200 500

A

𝛼
1

0.0267
(0.3948)

0.0097
(0.0753)

0.0034
(0.0453)

Bias
MSE

𝛼
2

0.0645
(0.4731)

0.0115
(0.1314)

0.0025
(0.0376)

Bias
MSE

𝛼
3

0.0417
(0.2908)

0.0083
(0.0811)

0.0046
(0.0342)

Bias
MSE

B

𝛼
1

0.0335
(0.4623)

0.0127
(0.1803)

0.0036
(0.0745)

Bias
MSE

𝛼
2

0.0297
(0.2806)

0.0103
(0.3449)

0.0054
(0.0847)

Bias
MSE

𝛼
3

0.0251
(0.3408)

0.0081
(0.0372)

0.0024
(0.0165)

Bias
MSE

C

𝛼
1

0.0736
(1.0435)

0.0178
(0.3562)

0.0068
(0.0357)

Bias
MSE

𝛼
2

0.0582
(0.4127)

0.0215
(0.0433)

0.0049
(0.0212)

Bias
MSE

𝛼
2

0.0237
(0.3205)

0.0081
(0.0547)

0.0031
(0.0274)

Bias
MSE

If you want to estimate all parameters, you can use GMM
method based on probability generating functions intro-
duced by BräKnnäK andHall [28]. But they found covariance
matrix of estimators depends on 𝑧 and the orders besides
the model parameters in a highly complex way. Thus we do
not use this method here. In next section, simulations are
provided to give insight into the finite sample behaviour of
these estimators.

4. Simulation Study

Consider the following INMASC(1)model:

𝑋
𝑡
=

{{

{{

{

𝛼
1
∘ 𝜀
𝑡−1
+ 𝜀
𝑡
, for 𝜀

𝑡−1
≤ 𝜏
1

𝛼
2
∘ 𝜀
𝑡−1
+ 𝜀
𝑡
, for 𝜏

1
< 𝜀
𝑡−1
≤ 𝜏
2

𝛼
3
∘ 𝜀
𝑡−1
+ 𝜀
𝑡
, for 𝜏

2
< 𝜀
𝑡−1
,

(13)

where {𝜀
𝑡
} is a sequence of i.i.d. For fixed 𝑡, 𝜀

𝑡
follows a Poisson

distribution with mean 𝜆.
The parameters values considered in this model are listed

as follows:

(model A) (𝛼
1
, 𝛼
2
, 𝛼
3
) = (0.1, 0.1, 0.1), with 𝜏

1
= 3,

𝜏
2
= 10, 𝜆 = 1;

(model B) (𝛼
1
, 𝛼
2
, 𝛼
3
) = (0.2, 0.3, 0.1), with 𝜏

1
= 8,

𝜏
2
= 17, 𝜆 = 10;

(model C) (𝛼
1
, 𝛼
2
, 𝛼
3
) = (0.4, 0.3, 0.1), with 𝜏

1
= 21,

𝜏
2
= 43, 𝜆 = 50.

We use the above models to generate data and then use
moment methods to estimate the parameters. We computed
the empirical bias and the mean square error (MSE) based
on 300 replications for each parameter combination. These
values are reported within parenthesis in Table 1.

From the results in Table 1, we can seemoment estimation
is good estimationmethods producing estimators whose bias



Mathematical Problems in Engineering 5

and MSEs are small when the sample sizes are larger. In
addition, this method is fast and easy to implement. It is
perhaps not surprising that the MSEs are larger when these
sample sizes are smaller. As to be expected, both the bias and
the MSEs converge to zero with increasing sample size 𝑇.

5. Conclusion

Based on some limitations of the present count data models,
a new INMA model is introduced to model structural
changes. Expressions for mean, variance, and autocorrelation
functions are given. Stationary and other basic statistical
properties are also obtained. We derived moment estimators
of the unknown parameters. Furthermore, we constructed
several simulations to evaluate the performance of the esti-
mators of model parameters.
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This paper investigates the𝐻
∞
fixed-lag fault estimator design for linear discrete time-varying (LDTV) systems with intermittent

measurements, which is described by a Bernoulli distributed random variable. Through constructing a novel partially equivalent
dynamic system, the fault estimator design is converted into a deterministic quadratic minimization problem. By applying the
innovation reorganization technique and the projection formula in Krein space, a necessary and sufficient condition is obtained
for the existence of the estimator. The parameter matrices of the estimator are derived by recursively solving two standard Riccati
equations. An illustrative example is provided to show the effectiveness and applicability of the proposed algorithm.

1. Introduction

To satisfy the growing demands for reliability and safety in
control systems, more andmore research efforts are made for
model-based fault detection (FD) during the past decades; see
[1–6] and references therein. Basically, the FD issue concerns
designing a fault detection filter (FDF) for generating a
residual signal such that the sensitivity of residual to fault is
intensified by enhancing the robustness to the disturbance.
In reviewing of the development of FD, with the aid of linear
matrix inequality (LMI) techniques, much attention has been
paid to linear time-invariant (LTI) systems with various
characteristics such as time-delay, model inaccuracy, time-
dependent switching mode, and uncertain observations; see
[7–10] and related works. Recently, some contributions are
devoted to linear time-varying (LTV) systems since most
practical industrial processes can be represented or well
approximated by time-varying dynamics [11]. For example,
in [11, 12], unified optimal solutions are derived in the frame-
work of maximizing 𝐻

−
/𝐻
∞

and 𝐻
∞
/𝐻
∞

FD performance
indices for linear continuous time-varying (LCTV) and linear
discrete time-varying (LDTV) systems, respectively. In [13–
15], the 𝐻

∞
filtering based fault estimation methods are

proposed for LDTVsystems in virtue of theKrein space based

reorganized innovation analysis and projection theory in the
background of [16–21].

On another front line, with the rapid progress of net-
worked control systems and distributed sensor/actuator sys-
tems, the packet dropout caused by sensor gain reductions
may happenwhen transmitting information under unreliable
links.The randomuncertainty introduced by packet dropouts
evidently deteriorates the performance of the FDF. Many
contributions are dedicated to FD issue for systems with
incomplete measurements by employing the LMI formulated
𝐻
∞

fault estimation approach over infinite horizon; we refer
to [22–26] and references therein. For finite-horizon case, an
𝐻
∞

fault estimator for LDTV systems with multiple packet
dropouts is designed in [27] based on the stochastic bounded
real lemma (BRL), while a two-objective optimization FD
method for LDTV systems with intermittent observations is
addressed in [28]. Unfortunately, if there is no sensor fault
in the measurement channel or the data packet is not time-
stamped, the algorithms proposed in [27, 28] will fail. This
indicates that research on FD problem for LDTV systems
subject to intermittent measurements has not been fully
investigated yet, which is the main motivation of the present
study.
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To overcome the drawbacks in the existing results, a
novel fault estimator design method for LDTV systems with
intermittent observations is proposed. The contribution of
this paper consists in three aspects as follows:

(1) an 𝐻
∞

fixed-lag fault estimator design problem is
formulated by establishing an equivalent system and
its corresponding deterministic performance index;

(2) by employing the reorganized innovation analysis
approach and the projection theory in Krein space, a
necessary and sufficient condition of the existence of
the estimator is derived;

(3) a recursive fault estimation algorithm is proposed,
which is apt to be online applied for finite-horizon.

The rest of the content is organized as follows. Section 2
provides the formulation of the concerned problem. Section 3
presents our main results of designing the fault estimator.
The proposed approach is applied to a time-varying model
to illustrate its applicability in Section 4. Finally, the paper is
ending with some conclusions.

Notations. Throughout this paper, vectors in the Krein space
are represented by boldface letters, and vectors in the
Euclidean space are denoted by normal letters. For a matrix
𝑋, 𝑋T and 𝑋−1 stand for the transpose and inverse of 𝑋,
respectively. 𝑋 > 0 (𝑋 < 0) denotes 𝑋 is positive (negative)
definite.𝑅𝑛means the set of 𝑛-dimensional real vectors. 𝐼 and
0 denote identity matrix and zero matrix with appropriate
dimensions, respectively. E{𝜗(𝑘)} means the mathematical
expectation of 𝜗(𝑘). 𝜗(𝑘) ∈ 𝑙

2
[0,𝑁] means ∑𝑁

𝑘=0
𝜗
T
(𝑘)𝜗(𝑘) <

∞, where 𝑁 is a positive integer. The symbol L{{𝜗(𝑖)}𝑘
𝑖=𝑗
}

represents the linear space spanned by the sequence 𝜗(𝑘)
taking values in the time interval [𝑗, 𝑘]. Prob{Υ} denotes the
occurrence probability of the event “Υ”. 𝛿

𝑖𝑗
represents the

Kronecker delta function, which is equal to unity for 𝑖 = 𝑗
and zero for 𝑖 ̸= 𝑗. diag{𝑆

1
, 𝑆
2
, . . . , 𝑆

𝑛
}means a block diagonal

matrix with diagonal blocks 𝑆
1
, 𝑆
2
, . . . , 𝑆

𝑛
.

2. Problem Formulation and Preliminaries

Consider the following LDTV system:

𝑥 (𝑘 + 1) = 𝐴 (𝑘) 𝑥 (𝑘) + 𝐵
𝑓
(𝑘) 𝑓 (𝑘) + 𝐷 (𝑘) 𝑑 (𝑘) ,

𝑦 (𝑘) = 𝜃 (𝑘) 𝐶 (𝑘) 𝑥 (𝑘) + V (𝑘) ,

𝑥 (0) = 𝑥
0
,

(1)

where 𝑥(𝑘) ∈ 𝑅𝑛, 𝑦(𝑘) ∈ 𝑅𝑞, 𝑑(𝑘) ∈ 𝑅𝑛𝑑 , V(𝑘) ∈ 𝑅𝑛V , and
𝑓(𝑘) ∈ 𝑅

𝑛𝑓 denote the state, sensor measurement, process
noise, observation noise, and fault, respectively. 𝑓(𝑘), 𝑑(𝑘),
and V(𝑘) belong to 𝑙

2
[0,𝑁]. 𝐴(𝑘), 𝐵

𝑓
(𝑘), 𝐶(𝑘), and𝐷(𝑘) are

known time-varying matrices with appropriate dimensions.
𝜃(𝑘) is a Bernoulli distributed binary stochastic variable to
describe the measurement packet dropouts, which satisfies

Prob {𝜃 (𝑘) = 1} = E {𝜃 (𝑘)} = 𝜌,

Prob {𝜃 (𝑘) = 0} = 1 − E {𝜃 (𝑘)} = 1 − 𝜌,
(2)

with𝜌 being a known constant.The value of𝜌 can be obtained
by empirical observations, experimentations, and statistical
analysis [29].

The main purpose of this paper is as follows: given a
prescribed disturbance attenuation level 𝛾, by collecting the
observations 𝑦(0), . . . , 𝑦(𝑘), find ̌𝑓(𝑘 − 𝑙 | 𝑘) as a suitable
estimation of the fault signal 𝑓(𝑘) such that the following 𝑙-
step delayed𝐻

∞
performance index is fulfilled with 𝑙 being a

positive integer:

sup
(𝑥0 ,𝑓𝑘,𝑑𝑘 ,V𝑘) ̸=0

E{
𝑁

∑

𝑘=𝑙

( ̌𝑓 (𝑘 − 𝑙 | 𝑘) − 𝑓 (𝑘 − 𝑙))
T

× ( ̌𝑓 (𝑘 − 𝑙 | 𝑘) − 𝑓 (𝑘 − 𝑙))}

× (𝑥
T
0
𝑃
−1

0
𝑥
0
+

𝑁

∑

𝑘=0

𝑓
T
(𝑘) 𝑓 (𝑘)

+

𝑁−1

∑

𝑘=0

𝑑
T
(𝑘) 𝑑 (𝑘) +

𝑁

∑

𝑘=0

VT (𝑘) V (𝑘))
−1

< 𝛾
2

,

(3)

where 𝑓
𝑘
= [𝑓

T
(0) ⋅ ⋅ ⋅ 𝑓

T
(𝑘)]

T
, 𝑑
𝑘
= [𝑑

T
(0) ⋅ ⋅ ⋅ 𝑑

T
(𝑘)]

T, V
𝑘
=

[VT(0) ⋅ ⋅ ⋅ VT(𝑘)]T.
Due to the fact that the denominator of the left side of (3)

is positive, (3) can be rewritten as

𝐽
0
= 𝑥

T
0
𝑃
−1

0
𝑥
0
+

𝑁

∑

𝑘=0

𝑓
T
(𝑘) 𝑓 (𝑘)

+

𝑁−1

∑

𝑘=0

𝑑
T
(𝑘) 𝑑 (𝑘) +

𝑁

∑

𝑘=0

VT (𝑘) V (𝑘)

− E{𝛾−2
𝑁

∑

𝑘=𝑙

VT
𝑠
(𝑘) V
𝑠
(𝑘)} > 0,

(4)

where V
𝑠
(𝑘) = ̌𝑓(𝑘− 𝑙 | 𝑘)−𝑓(𝑘− 𝑙). Consequently, according

to [30], the 𝐻
∞

fixed-lag fault estimation problem can be
restated as follows: given a constant 𝛾 > 0, design an estimator
in the following way:

̌𝑓 = Ψ (𝑦) = Ψ (𝑓, 𝑑, V) , (5)

whereΨ denotes a stable operator which generates a bounded
operator Ψ mapping from 𝑓, 𝑑, V to ̌𝑓, such that the indefi-
nite cost function (4) has a positive minimumwith respect to
𝑓, 𝑑, and V.

Remark 1. In the existing results, for example, [22–28], the
Bernoulli distributed random variables are introduced to
describe the packet dropping or finite step measurement
time-delay phenomenon. It is noteworthy that the designed
estimators only depend on the probability, that is, 𝜌, rather
than 𝜃(𝑘). This indicates that the desired fault estimator does
not require the time stamp of the data packet.
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Remark 2. Notice that when 𝑦(𝑘) is affected by the so-called
sensor fault with the following form:

𝑦 (𝑘) = 𝜃 (𝑘) 𝐶 (𝑘) 𝑥 (𝑘) + 𝐷
𝑓
(𝑘) 𝑓 (𝑘) + V (𝑘) , (6)

the existing BRL based𝐻
∞
fault estimation algorithm in [27]

is applicable in a “filter” manner. In the case that 𝐷
𝑓
(𝑘) = 0,

the estimator is supposed to be designed as a “smoother” with
the proposed performance index (4). In this scenario, the
methodology in [27] may induce computational burden via
state augmentation approach and the gain matrices of the
estimator are arduous to be derived due to some coupled
product terms. In what follows, a Krein space based fault
estimator design scheme will be addressed to overcome the
aforementioned defects.

3. Main Results

In this section, inspired by [31, 32], an equivalent Krein space
stochastic system and a corresponding 𝐻

∞
performance

index are first introduced.Then, by exploiting the reorganized
innovation analysis and the projection theory in Krein space,
the𝐻

∞
fault estimator is derived.

3.1. Krein Space Model Design. Before we proceed, we would
like to propose the following lemma to construct an auxiliary
stochastic system in Krein space.

Lemma 3. Given a scalar 𝛾 > 0 and an integer 𝑙 > 0, then the
𝐻
∞
performance (4) is fulfilled if and only if there exists a fault

estimator ̌𝑓(𝑘 − 𝑙 | 𝑘) such that the following inequality holds:

𝐽 = 𝑥
T
0
𝑃
−1

0
𝑥
0
+

𝑁

∑

𝑘=0

𝑓
T
(𝑘) 𝑓 (𝑘) +

𝑁

∑

𝑘=0

VT
0
(𝑘) V
0
(𝑘)

+

𝑁−1

∑

𝑘=0

𝑑
T
(𝑘) 𝑑 (𝑘) +

𝑁

∑

𝑘=0

VT
𝑧
(𝑘) V
𝑧
(𝑘)

− 𝛾
−2

𝑁

∑

𝑘=𝑙

VT
𝑠
(𝑘) V
𝑠
(𝑘) > 0,

(7)

subject to the following dynamic constraints:

𝑥 (𝑘 + 1) = 𝐴 (𝑘) 𝑥 (𝑘) + 𝐵
𝑓
(𝑘) 𝑓 (𝑘) + 𝐷 (𝑘) 𝑑 (𝑘) ,

𝑦
0
(𝑘) = 𝜌𝐶 (𝑘) 𝑥 (𝑘) + V

0
(𝑘) ,

𝑦
𝑧
(𝑘) = √𝜌 (1 − 𝜌)𝐶 (𝑘) 𝑥 (𝑘) + V

𝑧
(𝑘) ,

̌𝑓 (𝑘 − 𝑙 | 𝑘) = 𝑓 (𝑘 − 𝑙) + V
𝑠
(𝑘) ,

𝑥 (0) = 𝑥
0
,

(8)

where 𝑦
0
(𝑘) and 𝑦

𝑧
(𝑘) are the fictitious observations with their

corresponding observation noises V
0
(𝑘) and V

𝑧
(𝑘), respectively.

The instantaneous value of 𝑦
0
at each time instant 𝑘 is equal to

𝑦(𝑘) along with 𝑦
𝑧
(𝑘) ≡ 0.

Proof. Consider the following.

Necessity. From (1), the state transition matrixΦ is defined as

Φ(𝑘, 𝑗) = {
𝐴 (𝑘 − 1) ⋅ ⋅ ⋅ 𝐴 (𝑗) , 0 < 𝑘 < 𝑗,

𝐼, 𝑘 = 𝑗;
(9)

hence, we have

𝑥 (𝑘) = Φ (𝑘, 0) 𝑥
0
+

𝑘−1

∑

𝑖=0

Φ (𝑘, 𝑖 + 1) 𝐵
𝑓
(𝑖) 𝑓 (𝑖)

+

𝑘−1

∑

𝑖=0

Φ (𝑘, 𝑖 + 1)𝐷 (𝑖) 𝑑 (𝑖) .

(10)

Define

𝑦
𝑘
= [𝑦

T
(0) ⋅ ⋅ ⋅ 𝑦

T
(𝑘)]

T
,

V
𝑠,𝑘
= [VT
𝑠
(0) ⋅ ⋅ ⋅ VT

𝑠
(𝑘)]

T
,

̌𝑓
𝑘
= [ ̌𝑓

T
(0 | 𝑙) ⋅ ⋅ ⋅ ̌𝑓

T
(𝑘 − 𝑙 | 𝑘)]

T
.

(11)

Then, in view of (10), we have

𝑦
𝑁
= Ξ (𝑘) 𝐺

𝑥
𝑥
0
+ Ξ (𝑘) 𝐺

𝑓
𝑓
𝑁
+ Ξ (𝑘) 𝐺

𝑑
𝑑
𝑁
+ V
𝑁
,

̌𝑓
𝑁
= 𝑓
𝑁−𝑙

+ V
𝑠,𝑁
,

(12)

where

Ξ (𝑘) = diag {𝜃 (1) , . . . , 𝜃 (𝑘)} ,

𝐺
𝑓
(𝑘, 𝑖) = 𝐶 (𝑘)Φ (𝑘, 𝑖 + 1) 𝐵

𝑓
(𝑖) ,

𝐺
𝑑
(𝑘, 𝑖) = 𝐶 (𝑘)Φ (𝑘, 𝑖 + 1)𝐷 (𝑖) ,

𝐺
𝑥
=

[
[
[
[

[

𝐶 (0)Φ (0, 0)

𝐶 (1)Φ (1, 0)

...
𝐶 (𝑁)Φ (𝑁, 0)

]
]
]
]

]

,

𝐺
𝑓
=

[
[
[
[

[

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

𝐺
𝑓
(1, 0) 0 ⋅ ⋅ ⋅ 0

... d d
𝐺
𝑓
(𝑁, 0) 𝐺

𝑓
(𝑁, 1) ⋅ ⋅ ⋅ 0

]
]
]
]

]

,

𝐺
𝑑
=

[
[
[
[

[

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

𝐺
𝑑
(1, 0) 0 ⋅ ⋅ ⋅ 0

... d d
𝐺
𝑑
(𝑁, 0) 𝐺

𝑑
(𝑁, 1) ⋅ ⋅ ⋅ 0

]
]
]
]

]

.

(13)
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Thus, by substituting (12) into (4) and taking (2) into consid-
eration, we have

𝐽
0
= E{𝑥T

0
𝑃
−1

0
𝑥
0
+

𝑁

∑

𝑘=0

𝑓
T
(𝑘) 𝑓 (𝑘) +

𝑁−1

∑

𝑘=0

𝑑
T
(𝑘) 𝑑 (𝑘)

− (𝑦
𝑁
− Ξ (𝑘) 𝐺

𝑥
𝑥
0
− Ξ (𝑘) 𝐺

𝑓
𝑓
𝑁
− Ξ (𝑘) 𝐺

𝑑
𝑑
𝑁
)
T

× (𝑦
𝑁
− Ξ (𝑘) 𝐺

𝑥
𝑥
0
− Ξ (𝑘) 𝐺

𝑓
𝑓
𝑁
− Ξ (𝑘) 𝐺

𝑑
𝑑
𝑁
)

− 𝛾
−2

𝑁

∑

𝑘=𝑙

( ̌𝑓 (𝑘 − 𝑙 | 𝑘) − 𝑓 (𝑘 − 𝑙))
T

× ( ̌𝑓 (𝑘 − 𝑙 | 𝑘) − 𝑓 (𝑘 − 𝑙))}

= 𝑥
T
0
𝑃
−1

0
𝑥
0
+

𝑁

∑

𝑘=0

𝑓
T
(𝑘) 𝑓 (𝑘) +

𝑁−1

∑

𝑘=0

𝑑
T
(𝑘) 𝑑 (𝑘)

+ (𝑦
0,𝑁
− Ξ𝐺
𝑥
𝑥
0
− Ξ𝐺
𝑓
𝑓
𝑁
− Ξ𝐺
𝑑
𝑑
𝑁
)
T

× (𝑦
0,𝑁
− Ξ𝐺
𝑥
𝑥
0
− Ξ𝐺
𝑓
𝑓
𝑁
− Ξ𝐺
𝑑
𝑑
𝑁
)

+ (𝑦
𝑧,𝑁
− Ξ̃𝐺
𝑥
𝑥
0
− Ξ̃𝐺
𝑓
𝑓
𝑁
− Ξ̃𝐺
𝑑
𝑑
𝑁
)
T

× (𝑦
𝑧,𝑁
− Ξ̃𝐺
𝑥
𝑥
0
− Ξ̃𝐺
𝑓
𝑓
𝑁
− Ξ̃𝐺
𝑑
𝑑
𝑁
)

− 𝛾
−2

𝑁

∑

𝑘=𝑙

( ̌𝑓 (𝑘 − 𝑙 | 𝑘) − 𝑓 (𝑘 − 𝑙))
T

× ( ̌𝑓 (𝑘 − 𝑙 | 𝑘) − 𝑓 (𝑘 − 𝑙)) ,

(14)

where

𝑦
0,𝑘
= [𝑦

T
0
(0) ⋅ ⋅ ⋅ 𝑦

T
0
(𝑘)]

T
, 𝑦

𝑧,𝑘
= [𝑦

T
𝑧
(0) ⋅ ⋅ ⋅ 𝑦

T
𝑧
(𝑘)]

T
,

𝑦
0
(𝑖) = 𝑦 (𝑖) , 𝑦

𝑧
(𝑖) = 0, (𝑖 = 0, . . . , 𝑘) ,

Ξ = 𝜌𝐼, Ξ̃ = √𝜌 (1 − 𝜌) 𝐼.

(15)

Therefore, if the𝐻
∞
performance index (4) is satisfied, then,

following the same line with the correlation between (1) and
(4), we have 𝐽 > 0 subject to the dynamics (8) over 𝑥

0
,𝑓
𝑘
, and

𝑑
𝑘
.

Sufficiency. For (8), since the value of 𝑦
0
(𝑘) is equivalent to

𝑦(𝑘) and 𝑦
𝑧
(𝑘) ≡ 0, in light of (14), it is easy to find out that

for a given constant 𝛾 > 0 and an integer 𝑙 > 0, 𝐽
0
= 𝐽, which

indicates that if 𝐽 > 0 holds, then the 𝐻
∞

performance (4)
is satisfied. Combing the sufficiency and necessity part, the
proof is complete.

In virtue of Lemma 3, the auxiliary performance index 𝐽
in (7) can be converted into the following compact form:

𝐽 =

[
[
[

[

𝑥
0

𝑑
𝑁

𝑓
𝑁

V
𝑎,𝑁

]
]
]

]

T

[
[
[

[

𝐼 0 0 0

0 𝐼 0 0

0 0 𝐼 0

0 0 0 𝑄
𝑎,𝑁

]
]
]

]

−1

[
[
[

[

𝑥
0

𝑑
𝑁

𝑓
𝑁

V
𝑎,𝑁

]
]
]

]

, (16)

where

V
𝑎
(𝑘) =

{{{{{{{

{{{{{{{

{

V
1
(𝑘) = [

V
0
(𝑘)

V
𝑧
(𝑘)
] , 0 ≤ 𝑘 < 𝑙,

V
2
(𝑘) =

[
[

[

V
0
(𝑘)

V
𝑧
(𝑘)

V
𝑠
(𝑘)

]
]

]

, 𝑘 ≥ 𝑙,

V
𝑎,𝑁

= [VT
𝑎
(0) ⋅ ⋅ ⋅ VT

𝑎
(𝑁)]

T
,

(17)

𝑄
𝑎
(𝑘) = {

𝑄V1 (𝑘) = diag {𝐼, 𝐼} , 0 ≤ 𝑘 < 𝑙,

𝑄V2 (𝑘) = diag {𝐼, 𝐼, −𝛾2𝐼} , 𝑘 ≥ 𝑙,

𝑄
𝑎,𝑁

= diag {𝑄
𝑎
(0) , . . . , 𝑄

𝑎
(𝑁)} .

(18)

From (8) and (17), we have

𝑦
𝑓
(𝑘) = [

𝑦 (𝑘)

𝑦
𝑧
(𝑘)
] = 𝐶

1
(𝑘) 𝑥 (𝑘) + V

1
(𝑘) ,

𝑦
𝑎
(𝑘) =

{{{{{{{

{{{{{{{

{

𝑦
𝑓
(𝑘) , 0 ≤ 𝑘 < 𝑙,

[
𝑦
𝑓
(𝑘)

̌𝑓 (𝑘 − 𝑙 | 𝑘)
]

= 𝐶
2
(𝑘) 𝑥 (𝑘)

+𝐻𝑓 (𝑘 − 𝑙) + V
2
(𝑘) , 𝑘 ≥ 𝑙,

(19)

where

𝐶
1
(𝑘) = [

𝜌𝐶 (𝑘)

√𝜌 (1 − 𝜌)𝐶 (𝑘)
] , 𝐶

2
(𝑘) = [

𝐶
1
(𝑘)

0
] ,

𝐻 = [0 0 𝐼]
T
.

(20)

Thus, according to [20, 21], we introduce the following Krein
space system associated with (8), (16), (18), and (19):

x (𝑘 + 1) = 𝐴 (𝑘) x (𝑘) + 𝐵
𝑓
(𝑘) f (𝑘) + 𝐷 (𝑘) d (𝑘) ,

y
𝑎
(𝑘) =

{{{{

{{{{

{

y
𝑓
(𝑘) = 𝐶

1
(𝑘) x (𝑘) + k

1
(𝑘) , 0 ≤ 𝑘 < 𝑙,

[
y
𝑓
(𝑘)

̌f (𝑘 − 𝑙 | 𝑘)
]

= 𝐶
2
(𝑘) x (𝑘) + 𝐻f (𝑘 − 𝑙) + k

2
(𝑘) , 𝑘 ≥ 𝑙,

x (0) = x
0
,

(21)
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where x
0
(𝑖), d(𝑖), f(𝑖), k

1
(𝑖), and k

2
(𝑖) are uncorrelated white

noises in Krein space satisfying

⟨

[
[
[

[

x
0

d (𝑖)
f (𝑖)
k
𝑎
(𝑖)

]
]
]

]

,

[
[
[

[

x
0

d (𝑖)
f (𝑖)
k
𝑎
(𝑖)

]
]
]

]

⟩ =

[
[
[
[

[

𝐼𝛿
𝑖𝑗

0 0 0

0 𝐼𝛿
𝑖𝑗

0 0

0 0 𝐼𝛿
𝑖𝑗

0

0 0 0 𝑄
𝑎
(𝑖) 𝛿
𝑖𝑗

]
]
]
]

]

,

(22)

k
𝑎
(𝑘) =

{{{{{{{

{{{{{{{

{

k
1
(𝑘) = [

k
0
(𝑘)

k
𝑧
(𝑘)
] , 0 ≤ 𝑘 < 𝑙,

k
2
(𝑘) =

[
[

[

k
0
(𝑘)

k
𝑧
(𝑘)

k
𝑠
(𝑘)

]
]

]

, 𝑘 ≥ 𝑙,

(23)

with k
0
(𝑘), k

𝑧
(𝑘), and k

𝑠
(𝑘) being fictitious noise in Krein

space corresponding to (17).
Consequently, on the basis of Lemma 4.2.1 in [20], we

have the following lemma.

Lemma 4. For (8), given a scalar 𝛾 > 0 and an integer 𝑙 > 0,
then the 𝐻

∞
performance (7) has a minimum over 𝑥

0
, 𝑓, 𝑑

if and only if 𝑄
𝑎
(𝑘) and 𝑄

𝑤
(𝑘) have the same inertia, where

𝑄
𝑤
(𝑘) = ⟨w(𝑘),w(𝑘)⟩ is the covariance matrix of innovation

sequence w(𝑘) given by
w (𝑘) = y

𝑎
(𝑘) − ŷ

𝑎
(𝑘) , (24)

where ŷ
𝑎
(𝑘) is the projection of y

𝑎
(𝑘) onto L{{y

𝑎
(𝑗)}
𝑘−1

𝑗=0
}.

Furthermore, the minimum value of 𝐽 is

𝐽min =
𝑙−1

∑

𝑘=0

[𝑦
𝑓
(𝑘) − 𝐶

1
(𝑘) 𝑥 (𝑘)]

T

× 𝑄
−1

𝑤
(𝑘) [𝑦

𝑓
(𝑘) − 𝐶

1
(𝑘) 𝑥 (𝑘)]

+

𝑁

∑

𝑘=𝑙

[

𝑦
𝑓
(𝑘) − 𝐶

1
(𝑘) 𝑥 (𝑘)

̌𝑓 (𝑘 − 𝑙 | 𝑘) − ̌𝑓 (𝑘 − 𝑙 | 𝑘 − 1)
]

T

× 𝑄
−1

𝑤
(𝑘) [

𝑦
𝑓
(𝑘) − 𝐶

1
(𝑘) 𝑥 (𝑘)

̌𝑓 (𝑘 − 𝑙 | 𝑘) − 𝑓 (𝑘 − 𝑙 | 𝑘 − 1)
] ,

(25)

where 𝑥(𝑘) and 𝑓(𝑘 − 𝑙 | 𝑘 − 1) are, respectively, calculated
from the Krein space projections of x(𝑘) and f(𝑘 − 𝑙) onto
L{{y
𝑎
(𝑗)}
𝑘−1

𝑗=0
}.

Remark 5. According to Lemmas 3 and 4, the purpose
of establishing the dynamic model (8) associated with (7)
is to derive a positive minimum of the cost function (4)
by applying the projection theory in Krein space. Notice
that although the measurement {𝑦(𝑘)}𝑁

𝑘=0
is a substantially

stochastic sequence, the instantaneous values of 𝑦(𝑘) and
̌𝑓(𝑘 − 𝑙 | 𝑘) at each instant are available for the estimator.

Thus, the equivalent cost function (7) and its corresponding
dynamic constraint are constructed in a “conditional expecta-
tion” sense by gathering up {𝑦(𝑘)}𝑁

𝑘=0
(cf. (14) in the proof of

Lemma 3).

3.2. Kalman Filtering inKrein Space. From the analysis above,
the key step to achieve our goal is to find a suitable 𝑥(𝑘) and
𝑓(𝑘 − 𝑙 | 𝑘 − 1). To this end, let

y
1
(𝑘) = y

𝑓
(𝑘) , y

2
(𝑘) = [

y
𝑓
(𝑘)

̌f (𝑘 | 𝑘 + 𝑙)
] ; (26)

then

y
1
(𝑘 − 𝑙 + 𝑖) = 𝐶

1
(𝑘 − 𝑙 + 𝑖) x (𝑘 − 𝑙 + 𝑖) + k̃

1
(𝑘 − 𝑙 + 𝑖) ,

𝑖 = 1, . . . , 𝑙,

y
2
(𝑖) = 𝐶

2
(𝑖) x (𝑖) + 𝐻f (𝑖) + k̃

2
(𝑖) , 𝑖 = 0, . . . , 𝑘 − 𝑙,

(27)

where k̃
1
(𝑘) = k

1
(𝑘) and k̃

2
= [kT
1
(𝑘) kT

𝑠
(𝑘 + 𝑙)]

T
are zero-

mean white noises with the following covariance matrices,
respectively:

𝑄k̃1 (𝑘) = diag {𝐼, 𝐼} , 𝑄k̃2 (𝑘) = diag {𝐼, 𝐼, −𝛾2𝐼} . (28)

It is easy to check out that {y
2
(0), . . . , y

2
(𝑘 − 𝑙); y

1
(𝑘 − 𝑙 +

1), . . . , y
1
(𝑘)} span the same linear space asL{{y

𝑎
(𝑗)}
𝑘

𝑗=0
}.

To proceed, the following definition is introduced.

Definition 6 (see [32]). For 𝑡 > 𝑘 − 𝑙, the estimator
𝜂(𝑡, 1) is the optimal estimation of 𝜂(𝑡) on the observation
L{{y
2
(𝑡)}
𝑘−𝑙−1

𝑡=0
; {y
1
(𝑡)}
𝑡=𝑘−1

𝑡=𝑘−𝑙
}. For 0 < 𝑡 ≤ 𝑘 − 𝑙, the estimator

𝜂(𝑡, 2) is the optimal estimation of 𝜂(𝑡) on the observation
L{{y
2
(𝑡)}
𝑡=𝑘−1

𝑡=0
}.

In accordance with (24), the innovation sequence is
defined as follows:

w
1
(𝑘 − 𝑙 + 𝑖) = 𝐶

1
(𝑘 − 𝑙 + 𝑖) e

1
(𝑘 − 𝑙 + 𝑖)

+ k̃
1
(𝑘 − 𝑙 + 𝑖) , 𝑖 = 0, . . . , 𝑙,

w
2
(𝑖) = 𝐶

2
(𝑖) e
2
(𝑖) + 𝐻𝑓 (𝑖) + k̃

2
(𝑖) , 𝑖 = 0, . . . , 𝑘 − 𝑙,

(29)

where

e
1
(𝑘 − 𝑙 + 𝑖) = x (𝑘 − 𝑙 + 𝑖) − x̂ (𝑘 − 𝑙 + 𝑖, 1) , 𝑖 = 0, . . . , 𝑙,

e
2
(𝑖) = x (𝑖) − x̂ (𝑖, 2) , 𝑖 = 0, . . . , 𝑘 − 𝑙,

(30)

with the corresponding covariance matrices given as

𝑃
1
(𝑘 − 𝑙 + 𝑖) = ⟨e

1
(𝑘 − 𝑙 + 𝑖) , e

1
(𝑘 − 𝑙 + 𝑖)⟩ , 𝑖 = 0, . . . , 𝑙,

𝑃
2
(𝑖) = ⟨e

2
(𝑖) , e
2
(𝑖)⟩ , 𝑖 = 0, . . . , 𝑘 − 𝑙.

(31)
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In light of Lemma 2.2.1 in [20], the innovation sequences
L{{w

2
(𝑡)}
𝑘−𝑙−1

𝑡=0
; {w
1
(𝑡)}
𝑡=𝑘−1

𝑡=𝑘−𝑙
} are uncorrelated white noises

and span the same linear space asL{{y
𝑎
(𝑗)}
𝑘

𝑗=0
}.

For deriving x̂(𝑘 − 𝑙, 2) (𝑘 = 𝑙 + 1, 𝑙 + 2, . . .), applying the
Krein space based projection formula in [21] by taking (21)
and (22) into account, we have that

x̂ (𝑘 − 𝑙, 2) = 𝐴 (𝑘 − 𝑙 − 1) x̂ (𝑘 − 𝑙 − 1, 2)

+ ⟨x (𝑘 − 𝑙) ,w
2
(𝑘 − 𝑙 − 1)⟩

× ⟨w
2
(𝑘 − 𝑙 − 1) ,w

2
(𝑘 − 𝑙 − 1)⟩

−1

× w
2
(𝑘 − 𝑙 − 1)

= 𝐴 (𝑘 − 𝑙 − 1) x̂ (𝑘 − 𝑙 − 1, 2)

+ 𝐾
2
(𝑘 − 𝑙 − 1)w

2
(𝑘 − 𝑙 − 1) ,

x̂ (0) = 0,

(32)

where

𝐾
2
(𝑘 − 𝑙 − 1) = (𝐴 (𝑘 − 𝑙 − 1) 𝑃

2
(𝑘 − 𝑙 − 1) 𝐶

T
2
(𝑘 − 𝑙 − 1)

+ 𝐵
𝑓
(𝑘 − 𝑙 − 1)𝐻)𝑄

−1

2
(𝑘 − 𝑙 − 1) ,

(33)

with 𝑄
2
(𝑘 − 𝑙 − 1) = 𝐶

2
(𝑘 − 𝑙 − 1)𝑃

2
(𝑘 − 𝑙 − 1)𝐶

T
2
(𝑘 − 𝑙 − 1) +

𝐻𝐻
T
+ 𝑄k̃2(𝑘 − 𝑙 − 1).

In addition, following the definition of 𝑃
2
(𝑖) and (32),

𝑃
2
(𝑖) (𝑖 = 0, 1, . . . , 𝑘 − 𝑙 − 1) is the solution to the following

standard Riccati equation:

𝑃
2
(𝑖 + 1) = 𝐴 (𝑖) 𝑃

2
(𝑖) 𝐴

T
(𝑖) + 𝐵

𝑓
(𝑖) 𝐵

T
𝑓
(𝑖)

+ 𝐷 (𝑖)𝐷
T
(𝑖) − 𝐾

2
(𝑖) 𝑄
−1

2
(𝑖) 𝐾

T
2
(𝑖) ,

𝑃
2
(0) = 𝑃

0
.

(34)

For calculating x̂(𝑘 − 𝑙 + 𝑖, 1) (𝑖 = 1, . . . , 𝑙) with the initial
condition x̂(𝑘 − 𝑙, 1) = x̂(𝑘 − 𝑙, 2), we apply the projection
formula once again such that

x̂ (𝑘 − 𝑙 + 𝑖 + 1, 1)

= 𝐴 (𝑘 − 𝑙 + 𝑖) x̂ (𝑘 − 𝑙 + 𝑖, 1)

+ 𝐴 (𝑘 − 𝑙 + 𝑖) ⟨x (𝑘 − 𝑙 + 𝑖) ,w
1
(𝑘 − 𝑙 + 𝑖)⟩

× ⟨w
1
(𝑘 − 𝑙 + 𝑖) ,w

1
(𝑘 − 𝑙 + 𝑖)⟩

−1w
1
(𝑘 − 𝑙 + 𝑖)

= 𝐴 (𝑘 − 𝑙 + 𝑖) x̂ (𝑘 − 𝑙 + 𝑖, 1) + 𝐾
1
(𝑘 − 𝑙 + 𝑖)w

1
(𝑘 − 𝑙 + 𝑖) ,

(35)

where
𝐾
1
(𝑘 − 𝑙 − 1) = 𝐴 (𝑘 − 𝑙 + 𝑖) 𝑃

1
(𝑘 − 𝑙 + 𝑖)

× 𝐶
T
1
(𝑘 − 𝑙 + 𝑖) 𝑄

−1

1
(𝑘 − 𝑙 + 𝑖) ,

(36)

with𝑄
1
(𝑘−𝑙+𝑖) = 𝐶

1
(𝑘−𝑙+𝑖)𝑃

1
(𝑘−𝑙+𝑖)𝐶

T
1
(𝑘−𝑙+𝑖)+𝑄k̃1(𝑘−𝑙+𝑖),

and𝑃
1
(𝑘−𝑙+𝑖) is computed recursively in the following form:

𝑃
1
(𝑘 − 𝑙 + 𝑖 + 1)

= 𝐴 (𝑘 − 𝑙 + 𝑖) 𝑃
1
(𝑘 − 𝑙 + 𝑖) 𝐴

T
(𝑘 − 𝑙 + 𝑖)

+ 𝐵
𝑓
(𝑘 − 𝑙 + 𝑖) 𝐵

T
𝑓
(𝑘 − 𝑙 + 𝑖)

+ 𝐷 (𝑘 − 𝑙 + 𝑖)𝐷
T
(𝑘 − 𝑙 + 𝑖)

− 𝐾
1
(𝑘 − 𝑙 + 𝑖) 𝑄

−1

2
(𝑘 − 𝑙 + 𝑖) 𝐾

T
1
(𝑘 − 𝑙 + 𝑖) ,

𝑃
1
(𝑘 − 𝑙) = 𝑃

2
(𝑘 − 𝑙) .

(37)

Similarly, the projection formula is reutilized to compute
f̂(𝑘 − 𝑙 | 𝑘 − 1); that is,

f̂ (𝑘 − 𝑙 | 𝑘 − 1)

=

𝑙−1

∑

𝑖=0

⟨f (𝑘 − 𝑙) ,w
1
(𝑘 − 𝑙 + 𝑖)⟩𝑄

−1

1
(𝑘 − 𝑙 + 𝑖)w

1
(𝑘 − 𝑙 + 𝑖)

=

𝑙−1

∑

𝑖=0

Ω
𝑘−𝑙

𝑘−𝑙+𝑖
𝐶
T
1
(𝑘 − 𝑙 + 𝑖) 𝑄

−1

1
(𝑘 − 𝑙 + 𝑖)w

1
(𝑘 − 𝑙 + 𝑖) ,

𝑖 = 1, . . . , 𝑙 − 1,

(38)

where Ω𝑘−𝑙
𝑘−𝑙+𝑖

, 𝑖 = 1, . . . , 𝑙 − 1 is obtained recursively in terms
of

Ω
𝑘−𝑙

𝑘−𝑙+𝑖
= Ω
𝑘−𝑙

𝑘−𝑙+𝑖−1
[𝐴 (𝑘 − 𝑙 + 𝑖 − 1) − 𝐾

1
(𝑘 − 𝑙 + 𝑖 − 1)

× 𝐶
1
(𝑘 − 𝑙 + 𝑖 − 1)]

T
,

Ω
𝑘−𝑙

𝑘−𝑙+1
= 𝐵

T
𝑓
(𝑘 − 𝑙) .

(39)

Finally, in order to calculate 𝑄
𝑤
(𝑘) which is associated

with 𝐽min and ̌𝑓(𝑘−𝑙) | 𝑘, define f̃(𝑘−𝑙) = f(𝑘−𝑙)−f̂(𝑘−𝑙 | 𝑘−1),
and then, from (38), we know that

⟨f̃ (𝑘 − 𝑙) , f̃ (𝑘 − 𝑙)⟩

= 𝐼 −

𝑙−1

∑

𝑖=0

Ω
𝑘−𝑙

𝑘−𝑙+𝑖
𝐶
T
1
(𝑘 − 𝑙 + 𝑖) 𝑄

−1

1
(𝑘 − 𝑙 + 𝑖)

× (Ω
𝑘−𝑙

𝑘−𝑙+𝑖
𝐶
T
1
(𝑘 − 𝑙 + 𝑖))

T
.

(40)
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Combining (29) and (40), we have

𝑄
𝑤
(𝑘) =

{{{{

{{{{

{

𝐶
1
(𝑘) 𝑃
1
(𝑘) 𝐶

T
1
(𝑘) + 𝐼, 0 < 𝑘 < 𝑙,

[

[

𝐶
1
(𝑘) 𝑃
1
(𝑘) 𝐶

T
1
(𝑘) + 𝐼 𝐶

1
(𝑘) (Ω

𝑘−𝑙

𝑘
)
T

Ω
𝑘−𝑙

𝑘
𝐶
T
1
(𝑘) −𝛾

2

𝐼 + 𝐼 − ⟨𝑓 (𝑘 − 𝑙) , 𝑓 (𝑘 − 𝑙)⟩

]

]

, 𝑘 ≥ 𝑙,

(41)

where 𝑃
1
(𝑘) andΩ𝑘−𝑙

𝑙−𝑙+𝑖
are the same as in (37) and (39).

3.3. 𝐻
∞

Fault Estimator Design. From analysis and lemmas
above, we are now in the position to give our main results
for designing the fault estimator, which is summarized in the
following theorem.

Theorem 7. For (8), given a scalar 𝛾 > 0 and an integer 𝑙 > 0,
then the𝐻

∞
fixed-lag fault estimator that satisfies (7) exists if

and only if

Λ
1
(𝑘) = 𝐶

1
(𝑘) 𝑃
1
(𝑘) 𝐶

T
1
(𝑘) + 𝐼 > 0,

Λ
3
(𝑘) = − 𝛾

2

𝐼 + 𝐼 −

𝑙−1

∑

𝑖=0

Ω
𝑘−𝑙

𝑘−𝑙+𝑖
𝐶
T
1
(𝑘 − 𝑙 + 𝑖) 𝑄

−1

1
(𝑘 − 𝑙 + 𝑖)

× (Ω
𝑘−𝑙

𝑘−𝑙+𝑖
𝐶
T
1
(𝑘 − 𝑙 + 𝑖))

T

− Ω
𝑘−𝑙

𝑘
𝐶
T
1
(𝑘) Λ
−1

1
(𝑘) (Ω

𝑘−𝑙

𝑘
𝐶
T
1
(𝑘))

T
< 0.

(42)

In this case, a feasible fault estimator is given by

̌𝑓 (𝑘 − 𝑙 | 𝑘) =

𝑙

∑

𝑖=0

Ω
𝑘−𝑙

𝑘−𝑙+𝑖
𝐶
T
1
(𝑘 − 𝑙 + 𝑖) 𝑄

−1

1
(𝑘 − 𝑙 + 𝑖)

× [𝑦
𝑓
(𝑘 − 𝑙 + 𝑖)

− 𝐶
1
(𝑘 − 𝑙 + 𝑖) 𝑥 (𝑘 − 𝑙 + 𝑖, 1) ] ,

(43)

where 𝑥(𝑘 − 𝑙 + 𝑖, 1),𝑄
1
(𝑘 − 𝑙 + 𝑖), andΩ𝑘−𝑙

𝑘−𝑙+𝑖
are calculated by

(32), (34), (35), (37), and (39).

Proof. For 𝑘 ≥ 𝑙, applying the block triangular factorization
technique to 𝑄

𝑤
(𝑘) in (41), we have

𝑄
𝑤
(𝑘) = [

𝐼 0

Λ
2
(𝑘)

T
Λ
1
(𝑘)
−1

𝐼
] [
Λ
1
(𝑘) 0

0 Λ
3
(𝑘)
]

× [
𝐼 0

Λ
2
(𝑘)

T
Λ
1
(𝑘)
−1

𝐼
]

T

,

(44)

where Λ
2
(𝑘) = Ω

𝑘−𝑙

𝑘
𝐶
T
1
(𝑘). Thus, from Lemma 4, we know

that 𝑄
𝑎
(𝑘) and 𝑄

𝑤
(𝑘) have the same inertia if and only if

Λ
1
(𝑘) > 0 as well as Λ

3
(𝑘) < 0. Furthermore, based on (25)

and (44), 𝐽 has a minimum 𝐽min if (42) are satisfied, where

𝐽min =
𝑙−1

∑

𝑘=0

[𝑦
𝑓
(𝑘) − 𝐶

1
(𝑘) 𝑥 (𝑘)]

T

× Λ
−1

1
(𝑘) [𝑦

𝑓
(𝑘) − 𝐶

1
(𝑘) 𝑥 (𝑘)]

+

𝑁

∑

𝑘=𝑙

([
𝐼 0

−Λ
2
(𝑘) Λ
−1

1
(𝑘) 𝐼

]

× [
𝑦
𝑓
(𝑘) − 𝐶

1
(𝑘) 𝑥 (𝑘)

̌𝑓 (𝑘 − 𝑙 | 𝑘) − 𝑓 (𝑘 − 𝑙 | 𝑘 − 1)
])

T

× [
Λ
−1

1
(𝑘) 0

0 Λ
−1

3
(𝑘)
] [

𝐼 0

−Λ
2
(𝑘) Λ
−1

1
(𝑘) 𝐼

]

× [

𝑦
𝑓
(𝑘) − 𝐶

1
(𝑘) 𝑥 (𝑘)

̌𝑓 (𝑘 − 𝑙 | 𝑘) − 𝑓 (𝑘 − 𝑙 | 𝑘 − 1)
] .

(45)
Since Λ

3
(𝑘) < 0, to guarantee 𝐽min > 0, combining (38) with

(45), we know that a possible choice of ̌𝑓(𝑘 − 𝑙 | 𝑘) is
̌𝑓 (𝑘 − 𝑙 | 𝑘) = 𝑓 (𝑘 − 𝑙 | 𝑘 − 1)

+ Λ
2
(𝑘) Λ
−1

(𝑦
𝑓
(𝑘) − 𝐶

1
𝑥 (𝑘))

=

𝑙

∑

𝑖=0

Ω
𝑘−𝑙

𝑘−𝑙+𝑖
𝐶
T
1
(𝑘 − 𝑙 + 𝑖) 𝑄

−1

1
(𝑘 − 𝑙 + 𝑖)

× [𝑦
𝑓
(𝑘 − 𝑙 + 𝑖) − 𝐶

1
(𝑘 − 𝑙 + 𝑖)

× 𝑥 (𝑘 − 𝑙 + 𝑖, 1)] ,

(46)

which indicates (43). This completes the proof.

Remark 8. It can be seen fromTheorem 7 that the superiority
of the proposed algorithm lies in three aspects:

(i) in contrast with the results in [22–26], the proposed
algorithm can be applied to systems with time-
varying 𝜌(𝑘);

(ii) comparing to the result in [27], the parameter matri-
ces of the addressed estimator are given in terms of
standard Riccati equations with the same dimension
“𝑛” of system (8), where no coupled Lyapunov equa-
tion with higher dimension is needed;

(iii) the fault can be estimated in an arbitrary fixed-lag “𝑙.”
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Figure 1: The change mode of 𝜃(𝑘).

4. An Illustrative Example

To illustrate the effectiveness and the applicability of the
proposed method, we will implement our algorithm on
a time-varying model. The following system matrices are
adopted which are borrowed from [33, 34]:

𝐴 (𝑘) = (1 + 0.2 sin (0.02𝑘𝜋)) × [0.8 0

0.9 0.2
] ,

𝐵
𝑓
(𝑘) = [0.5 0.5]

T
, 𝐶 (𝑘) = [1 1] ,

𝐷 (𝑘) = [0.3 0.25]
T
.

(47)

The process noise 𝑑(𝑘) is uniformly randomly chosen from
the interval [−0.5, 0.5] and the measurement noise V(𝑘) is
assumed as V(𝑘) = 0.5 sin(0.2𝑘). The fault signal 𝑓(𝑘) is
assumed to be time-varying in the following sinusoidal form:

𝑓 (𝑘) = {
sin (0.5𝑘) , 𝑘 ∈ [30, 80] ,

0, otherwise,
(48)

and the expectation of 𝜃(𝑘) is assumed as 𝜌 = 0.8, where
Figure 1 displays the switching mode of 𝜃(𝑘).

Set 𝑙 = 10, 𝛾 = 1.52, 𝑥
0
= [0.2 0]

T, and 𝑃
0
= 0.1𝐼; we

design the fault estimator by applying Theorem 7. Figure 2
displays the fault signal and its estimation simultaneously.
Figure 3 shows the value of 𝑓(𝑘 − 𝑙) − ̌𝑓(𝑘 − 𝑙 | 𝑘) which is
the error between the fault and its estimation. It can be seen
from the results that our algorithm can track the fault signal
no matter whether the random packet dropouts occur.

5. Conclusions

The problem of 𝐻
∞

fixed-lag fault estimator design for
LDTV systems subject to intermittent observations has been
dealt with. Special efforts have been made to handle the
multiplicative uncertainty introduced by the random mea-
surement packet dropouts. Through defining a couple of
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Figure 2: Fault and its estimation.
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Figure 3: Fault estimation error.

equivalent dynamic system and 𝐻
∞

performance index, the
fault estimator has been derived by using the projection
formula in Krein space based on the reorganized innovation
approach.The parameter matrices of the estimator have been
calculated by solving two standard Riccati equations. The
proposed algorithm has been applied to an LDTV model to
illustrate its effectiveness and applicability.
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As far as the increasing number of mixture components in the Gaussian mixture PHD filter is concerned, an iterative mixture
component pruning algorithm is proposed. The pruning algorithm is based on maximizing the posterior probability density of
the mixture weights. The entropy distribution of the mixture weights is adopted as the prior distribution of mixture component
parameters. The iterative update formulations of the mixture weights are derived by Lagrange multiplier and LambertW function.
Mixture components, whose weights become negative during iterative procedure, are pruned by setting corresponding mixture
weights to zeros. In addition, multiple mixture components with similar parameters describing the same PHD peak can be merged
into one mixture component in the algorithm. Simulation results show that the proposed iterative mixture component pruning
algorithm is superior to the typical pruning algorithm based on thresholds.

1. Introduction

The objective of multitarget tracking is to estimate target
number and target states from a sequence of noisy and
cluttered measurement sets. The tracked target is generally
simplified as a point [1–3]. Most of the existing point target
tracking algorithms are based on data association where the
correspondence of measurements to targets has to be set
up. The simplest data association algorithm is the nearest-
neighbour algorithm in which the measurement closest
in statistical distance to predicted state is used to update
target state estimate. Probabilistic data association is another
typical algorithm in which all the measurements close to
the predicted state are used to update target state estimate
[4]. Joint probabilistic data association is a generalization
of probabilistic data association for multiple target tracking
in which association probabilities of all the targets and
measurements are described by confirmed matrices [5, 6].
Multitarget tracking algorithms based on data association
are in individual view, where the problem of multitarget
tracking is converted into the multiple problems of single
target tracking. In the multitarget tracking, both the mea-
surements and the estimations are gained in the set form.
Thus, multitarget tracking is naturally a class of set-valued

estimation problems. The probability hypothesis density
(PHD) filter derived by Mahler based on random finite
sets statistics theory is an elegant and tractable approximate
solution to the multitarget tracking problem [7, 8]. Another
interpretation of the PHD in bin-occupancy view is presented
in [9]. By now, there have been two implementations of
PHD filter, Gaussian mixture implementation [10, 11] and
sequential Monte Carlo implementation [12–16], which are
suitable for linear Gaussian dynamics and nonlinear non-
Gaussian dynamics. The convergence of Gaussian mixture
implementation is discussed in [17] and the convergence
of sequential Monte Carlo implementation in [15, 18, 19].
The cardinalized PHD (CPHD) filter propagating both the
PHD and the distribution of target number is developed to
improve the performance of the PHD filter [20]. Generally,
the CPHD filter is computationally less tractable compared
to the PHD filter. There have been the Gaussian mixture
implementation of CPHD filter under multitarget linear
Gaussian assumptions [21] and the sequential Monte Carlo
implementation [22]. As promising and unified methodolo-
gies, the PHD and CPHD filters have been widely applied
in many fields, such as maneuvering target tracking [23, 24],
sonar tracking [25, 26], and visual tracking [27–29]. As the
sensor resolution is greatly improved, target tracking should
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be formulated as extended object tracking [30]. Extended
object PHD filter is also derived byMahler in [31].There have
been some implementations of extended object probability
hypothesis density filter by now [32–36]. The convergence
of the Gaussian mixture implementation of extended object
probability hypothesis density filter is discussed in [37].
When the Gaussian mixture model is applied in set-valued
multitarget tracking, the Gaussian mixture reduction is an
important topic [10, 38].The earlier work inGaussianmixture
reduction for target tracking has been done in [39, 40]. As
the Gaussian mixture reduction is implemented, there are
several criterions such asmaximum similarity [41], Euclidean
distance [42–44], and Kullback-Leibler divergence measure
[45]. The concentrations of this paper are on the Gaussian
mixture reduction of the Gaussian mixture implementation
of PHD filter.

As far as the Gaussian mixture implementation of the
PHD filter is concerned, it approximates the PHD by the
summation of weighted Gaussian components under the
multitarget linear Gaussian assumptions [10]. In theGaussian
mixture PHD filter, the PHD is presented by a large number
of weighted Gaussian components that are propagated over
time. The sum of the weights of Gaussian components is the
expected target number since the integral of the PHD over
the state space is the expected target number. The output
of Gaussian mixture PHD filter is weighted Gaussian com-
ponents. However, the Gaussian mixture PHD filter suffers
from computation problems associated with the increasing
number of Gaussian components as time progresses, since
mixture component number increases both at prediction step
and at update step. In fact, component number increases
without bound. Thus, the Gaussian mixture PHD filter is
infeasible without component pruning operation. The goal
of this paper is to prune the Gaussian components to make
theGaussianmixture PHDfilter feasible. An iterativemixture
component pruning algorithm is proposed for the Gaussian
mixture PHD filter. The pruning operation of mixture com-
ponents is done by setting mixture weights to zeros during
the iteration procedure.

The remaining parts of this paper are organized as follows.
Section 2 describes the component increasing problem in
Gaussian mixture PHD filter. The iterative mixture compo-
nent pruning algorithm is derived in Section 3. Section 4 is
devoted to the simulation study. Conclusion is provided in
Section 5.

2. Problem Description

The predictor and connector of PHD filter [7, 8] are

V
𝑘|𝑘−1

(𝑥) = ∫𝑝
𝑆,𝑘

(𝜁) 𝑓
𝑘|𝑘−1

(𝑥 | 𝜁) V
𝑘−1

(𝜁) 𝑑𝜁

+ ∫𝛽
𝑘|𝑘−1

(𝑥 | 𝜁) V
𝑘−1

(𝜁) 𝑑𝜁 + 𝛾
𝑘
(𝑥) ,

(1)

V
𝑘
(𝑥) = [1 − 𝑝

𝐷,𝑘
(𝑥)] V
𝑘|𝑘−1

(𝑥)

+ ∑

𝑧∈𝑍𝑘

𝜑
𝑧,𝑘

(𝑥) V
𝑘|𝑘−1

(𝑥)

𝜅
𝑘
(𝑧) + ∫𝜑

𝑧,𝑘
(𝜉) V
𝑘|𝑘−1

(𝜉) 𝑑𝜉

,

(2)

respectively, where V(⋅) is the PHD, 𝛾
𝑘
(𝑥) is the birth PHD

at time step 𝑘, 𝛽
𝑘|𝑘−1

(⋅ | 𝜁) is the spawned PHD from 𝜁 at
time step 𝑘−1, 𝜅

𝑘
(𝑧) is the clutter PHD, 𝑝

𝑆,𝑘
(𝜁) is the survival

probability, 𝑝
𝐷,𝑘

(𝑥) is the detection probability, 𝜑
𝑧,𝑘

(𝑥) =

𝑝
𝐷,𝑘

(𝑥)𝑔
𝑘
(𝑧 | 𝑥), 𝑔

𝑘
(𝑧 | 𝑥) is the single target likelihood, and

𝑍
𝑘
is the measurements at time step 𝑘.
Under the linear Gaussian assumptions, the Gaussian

mixture PHD filter is derived in [10]. The main steps of the
Gaussian mixture PHD filter are summarized as follows. If
the PHD at time step 𝑘− 1 is in the form of Gaussian mixture

V
𝑘−1

(𝑥) =

𝐽𝑘−1

∑

𝑖=1

𝑤
(𝑖)

𝑘−1
N (𝑥;𝑚

(𝑖)

𝑘−1
, 𝑃
(𝑖)

𝑘−1
) , (3)

where 𝑤 is the mixture weight, N(⋅) is the Gaussian dis-
tribution, 𝑚 is the mean, 𝑃 is the covariance, and 𝐽 is the
component number, then the predicted PHD for time step
𝑘 is given by

V
𝑘|𝑘−1

(𝑥) = V
𝑆,𝑘|𝑘−1

(𝑥) + V
𝛽,𝑘|𝑘−1

(𝑥) + 𝛾
𝑘
(𝑥) , (4)

where 𝛾
𝑘
is the birth PHD

𝛾
𝑘
(𝑥) =

𝐽𝛾,𝑘

∑

𝑖=1

𝑤
(𝑖)

𝛾,𝑘
N (𝑥;𝑚

(𝑖)

𝛾,𝑘
, 𝑃
(𝑖)

𝛾,𝑘
) , (5)

V
𝑆,𝑘|𝑘−1

is the survival PHD

V
𝑆,𝑘|𝑘−1

(𝑥) = 𝑝
𝑆,𝑘

𝐽𝑘−1

∑

𝑗=1

𝑤
(𝑗)

𝑘−1
N (𝑥;𝑚

(𝑗)

𝑆,𝑘|𝑘−1
, 𝑃
(𝑗)

𝑆,𝑘|𝑘−1
) , (6)

𝑚
(𝑗)

𝑆,𝑘|𝑘−1
is the predicted mean of the Gaussian component

𝑚
(𝑗)

𝑆,𝑘|𝑘−1
= 𝐹
𝑘−1

𝑚
(𝑗)

𝑘−1
, (7)

𝑃
(𝑗)

𝑆,𝑘|𝑘−1
is the predicted covariance of the Gaussian compo-

nent

𝑃
(𝑗)

𝑆,𝑘|𝑘−1
= 𝑄
𝑘−1

+ 𝐹
𝑘−1

𝑃
(𝑗)

𝑘−1
𝐹
𝑇

𝑘−1
, (8)

V
𝛽,𝑘|𝑘−1

is the spawned PHD

V
𝛽,𝑘|𝑘−1

(𝑥) =

𝐽𝑘−1

∑

𝑗=1

𝐽𝛽,𝑘

∑

𝑙=1

𝑤
(𝑗)

𝑘−1
𝑤
(𝑙)

𝛽,𝑘
N (𝑥;𝑚

(𝑗,𝑙)

𝛽
, 𝑃
(𝑗,𝑙)

𝛽
) , (9)

𝑚
(𝑗,𝑙)

𝛽
is the spawned mean of the Gaussian component

𝑚
(𝑗,𝑙)

𝛽
= 𝐹
(𝑙)

𝛽,𝑘−1
𝑚
(𝑗)

𝑘−1
+ 𝑑
(𝑙)

𝛽,𝑘−1
, (10)

and 𝑃
(𝑗,𝑙)

𝛽
is the spawned covariance of the Gaussian compo-

nent

𝑃
(𝑗,𝑙)

𝛽
= 𝑄
(𝑙)

𝛽,𝑘−1
+ 𝐹
(𝑙)

𝛽,𝑘−1
𝑃
(𝑗)

𝛽,𝑘−1
(𝐹
(𝑙)

𝛽,𝑘−1
)
𝑇

. (11)
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If formula (4) is rewritten in the simple form of the Gaussian
mixture

V
𝑘|𝑘−1

(𝑥) =

𝐽𝑘|𝑘−1

∑

𝑖=1

𝑤
(𝑖)

𝑘|𝑘−1
N (𝑥;𝑚

(𝑖)

𝑘|𝑘−1
, 𝑃
(𝑖)

𝑘|𝑘−1
) , (12)

then the posterior PHD at time step 𝑘 is

V
𝑘
(𝑥) = (1 − 𝑝

𝐷,𝑘
) V
𝑘|𝑘−1

(𝑥) + ∑

𝑧∈𝑍𝑘

V
𝐷,𝑘

(𝑥; 𝑧) , (13)

where V
𝐷,𝑘

is the detected PHD

V
𝐷,𝑘

(𝑥; 𝑧) =

𝐽𝑘|𝑘−1

∑

𝑗=1

𝑤
(𝑗)

𝑘
(𝑧)N (𝑥;𝑚

(𝑗)

𝑘|𝑘
(𝑧) , 𝑃

(𝑗)

𝑘|𝑘
) , (14)

𝑤
(𝑗)

𝑘
is the updated weight

𝑤
(𝑗)

𝑘
(𝑧) =

𝑝
𝐷,𝑘

𝑤
(𝑗)

𝑘|𝑘−1
𝑞
(𝑗)

𝑘
(𝑧)

𝜅
𝑘
(𝑧) + 𝑝

𝐷,𝑘
∑
𝐽𝑘|𝑘−1

𝑙=1
𝑤
(𝑙)

𝑘|𝑘−1
𝑞
(𝑙)

𝑘
(𝑧)

, (15)

𝑚
(𝑗)

𝑘|𝑘
(𝑧) is the updated mean

𝑚
(𝑗)

𝑘|𝑘
(𝑧) = 𝑚

(𝑗)

𝑘|𝑘−1
+ 𝐾
(𝑗)

𝑘
(𝑧 − 𝐻

𝑘
𝑚
(𝑗)

𝑘|𝑘−1
) , (16)

𝑃
(𝑗)

𝑘|𝑘
is the updated covariance

𝑃
(𝑗)

𝑘|𝑘
= [𝐼 − 𝐾

(𝑗)

𝑘
𝐻
𝑘
] 𝑃
(𝑗)

𝑘|𝑘−1
, (17)

and 𝐾
(𝑗)

𝑘
is the gain

𝐾
(𝑗)

𝑘
= 𝑃
(𝑗)

𝑘|𝑘−1
𝐻
𝑇

𝑘
(𝐻
𝑘
𝑃
(𝑗)

𝑘|𝑘−1
𝐻
𝑇

𝑘
+ 𝑅
𝑘
)
−1

. (18)

It can be seen from formula (4) that component number
increases from 𝐽

𝑘−1
to 𝐽
𝑘|𝑘−1

by 𝐽
𝑘−1

⋅𝐽
𝛽,𝑘

+𝐽
𝛾,𝑘

at the prediction
step. It is obvious in formula (13) that component number
increases from 𝐽

𝑘|𝑘−1
to 𝐽
𝑘
by 𝐽
𝑘|𝑘−1

⋅ |𝑍
𝑘
| at the update step.

Hence, the number of Gaussian components 𝐽
𝑘
representing

PHD V
𝑘
at time step 𝑘 in Gaussian mixture PHD filter is

𝐽
𝑘
= (𝐽
𝑘−1

(1 + 𝐽
𝛽,𝑘−1

) + 𝐽
𝛾,𝑘

) (1 +
󵄨󵄨󵄨󵄨𝑍𝑘

󵄨󵄨󵄨󵄨) , (19)

where 𝐽
𝑘−1

is the number of components of the PHD V
𝑘−1

at time step 𝑘 − 1. In formula (19), the component num-
ber increases in O(𝐽

𝑘−1
|𝑍
𝑘
|). In particular, the component

number mostly increases in (𝐽
𝑘−1

(1 + 𝐽
𝛽,𝑘

) + 𝐽
𝛾,𝑘

)|𝑍
𝑘
| at the

update step. Indeed, the number of Gaussian components
increases without bound so that the computation of the
Gaussian mixture PHD filter is intractable after several
time steps. Therefore, it is necessary to reduce the number
of components to make the Gaussian mixture PHD filter
feasible. The goal of this paper is to prune the Gaussian mix-
ture components to reduce component number in Gaussian
mixture PHD filter.

3. Iterative Pruning Algorithm

For simplicity, the time index 𝑘 is neglected and let 𝑀 = 𝐽
𝑘|𝑘

represent component number.𝑤
𝑆
is the sum of the weights of

the Gaussian components:

𝑤
𝑆
=

𝑀

∑

𝑗=1

𝑤
𝑗
. (20)

In the iterative pruning algorithm, the weights of Gaussian
components are normalized by {𝑤

1
/𝑤
𝑆
, . . . , 𝑤

𝑀
/𝑤
𝑆
} at first

so that
𝑀

∑

𝑗=1

𝑤
𝑗
= 1. (21)

Let 𝜃
𝑗

= {𝑚
(𝑗)

, 𝑃
(𝑗)

} represent the parameters of the 𝑗th
Gaussian component, where 𝑚

(𝑗) and 𝑃
(𝑗) are the mean and

covariance, respectively. Then, the whole parameter set of 𝑀
Gaussian components is 𝜃 = {𝑤

1
, . . . , 𝑤

𝑀
, 𝜃
1
, . . . , 𝜃

𝑀
}.

The entropy distribution of the mixture weights is
adopted as the prior of 𝜃:

𝑝 (𝜃) ∝ exp (−𝐻 (𝑤
1
, . . . , 𝑤

𝑀
)) , (22)

where 𝐻(𝑤
1
, . . . , 𝑤

𝑀
) = −∑

𝑀

𝑗=1
𝑤
𝑗
log𝑤
𝑗
is the entropy

measure [46, 47].The goal of this choice of prior distribution,
which depends only on the mixture weights, is to reduce
mixture components by the adjustment of mixture weights
during the iteration procedure. If we define the log-likelihood
of the measurements 𝑍 = {𝑧

1
, . . . , 𝑧

𝑛
} given the mixture

parameters as

log𝑝 (𝑍 | 𝜃) =

𝑛

∑

𝑖=1

log
𝑀

∑

𝑗=1

𝑤
𝑗
𝑔 (𝑧
𝑖
| 𝜃
𝑗
) , (23)

where 𝑔(𝑧 | 𝜃
𝑗
) is the single target likelihood in 𝑗th

component, then the MAP estimate of 𝜃 is

𝜃 = argmax
𝜃

{log𝑝 (𝑍 | 𝜃) + log𝑝 (𝜃)} . (24)

For the mixture weight 𝑤
𝑗
, the MAP estimate can be com-

puted by setting the derivative of the log-posterior to zero:

𝜕

𝜕𝑤
𝑗

(log𝑝 (𝑍 | 𝜃) + log𝑝 (𝜃)) = 0. (25)

TheMAPestimate of𝑤
𝑗
is computed bymaximizing log𝑝(𝑍 |

𝜃) + log𝑝(𝜃) under the constraint (21):

𝜕

𝜕𝑤
𝑗

(log𝑝 (𝑍 | 𝜃) + log𝑝 (𝜃) + 𝜆(

𝑀

∑

𝑗=1

𝑤
𝑗
− 1)) = 0,

(26)

where 𝜆 is Lagrange multiplier. Substituting formulas (22)
and (23) into formula (26) gives

∑
𝑛

𝑖=1
𝜔
𝑗
(𝑧
𝑖
)

𝑤
𝑗

+ log𝑤
𝑗
+ 𝜆 + 1 = 0, (27)
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where 𝜔
𝑗
(𝑧) represents the membership that 𝑧 is from the 𝑗th

mixture component:

𝜔
𝑗
(𝑧) =

𝑤
𝑗
𝑔 (𝑧 | 𝜃

𝑗
)

∑
𝑀

𝑙=1
𝑤
𝑙
𝑔 (𝑧 | 𝜃

𝑙
)

. (28)

Formula (27) is a simultaneous transcendental equation.
We solve it for the 𝑤

𝑗
using the Lambert 𝑊 function [48],

an inverse mapping satisfying 𝑊(𝑦)𝑒
𝑊(𝑦)

= 𝑦, and therefore
log𝑊(𝑦) + 𝑊(𝑦) = log𝑦. The Lambert 𝑊 function of
complex 𝑦 is defined as𝑊(𝑦), which is a set of functions.The
complex 𝑦 can be computed by the equation 𝑊(𝑦)𝑒

𝑊(𝑦)

= 𝑦,
where 𝑒

𝑊(𝑦) is the exponential function. Lambert𝑊 function
𝑊(𝑦) is a multivalued function defined in general for 𝑦

complex and assumed 𝑊(𝑦) complex. If 𝑦 is real and 𝑦 <

−1/𝑒, then 𝑊(𝑦) is multivalued complex. If 𝑦 is real and
−1/𝑒 ≤ 𝑦 < 0, 𝑊(𝑦) has two possible real values. If 𝑦 is real
and 𝑦 > 0,𝑊(𝑦) has one real value.Then, for the Lambert𝑊
function 𝑊(𝑦),

−𝑊(𝑦) − log𝑊(𝑦) + log𝑦 = 0. (29)

Setting 𝑦 = 𝑒
𝑥, formula (29) can be rewritten as

−𝑊(𝑒
𝑥

) − log𝑊(𝑒
𝑥

) + 𝑥 = 0. (30)

In formula (27), it is assumed that

𝜔
𝑗
=

𝑛

∑

𝑖=1

𝜔
𝑗
(𝑧
𝑖
) . (31)

Consequently, formula (30) is

𝜔
𝑗

−𝜔
𝑗
/𝑊 (𝑒

𝑥
)
+ log(

−𝜔
𝑗

𝑊(𝑒
𝑥
)
) + 𝑥 − log (−𝜔

𝑗
) = 0. (32)

Comparing the Lambert𝑊 function (32) to formula (27), (32)
can be reduced to (27) by setting 𝑥 = 1 + 𝜆 + log(−𝜔

𝑗
):

𝜔
𝑗

−𝜔
𝑗
/𝑊 (𝑒

𝑥
)
+ log(

−𝜔
𝑗

𝑊(𝑒
𝑥
)
) + 1 + 𝜆 = 0. (33)

Consequently,

𝑤
𝑗
=

−𝜔
𝑗

𝑊(𝑒
1+𝜆+log(−𝜔𝑗))

=

−𝜔
𝑗

𝑊(−𝜔
𝑗
𝑒1+𝜆)

. (34)

Formula (27) and formula (34) constitute an iterative
procedure for theMAP estimates of {𝑤

1
, . . . , 𝑤

𝑀
}: (1) given 𝜆,

{𝑤
1
, . . . , 𝑤

𝑀
} are calculated by formula (34); (2) {𝑤

1
, . . . , 𝑤

𝑀
}

are normalized; (3) given normalized {𝑤
1
, . . . , 𝑤

𝑀
}, 𝜆 is

computed by formula (27). The iteration procedure stops
when the difference rate of log-posterior is smaller than the
given threshold.

At the normalization step of the iteration procedure,
if a mixture weight becomes negative, the corresponding
component is removed from the mixture components by
setting its weight to zero. The removed mixture component
will not be considered when the log-posterior is computed

in the following iterations. The mixing weights of survival
mixture components are normalized at the end of this step.

The effect of entropy distribution of mixing weights is
taken during the iterative procedure. The mixture weights
of components negligible to the PHD become smaller and
smaller iteration by iteration, since the parameter estimates
are driven into low-entropy direction by entropy distribution.
The low-entropy tendency can also promote competition
among the mixture components with similar parameters
which can then be merged into one mixture component with
larger weight.

For the mean𝑚
(𝑗) and covariance 𝑃

(𝑗) of mixture compo-
nent with nonzero weight 𝑤

𝑗
, they are updated by

𝑚
(𝑗)

= (𝜔
𝑗
)
−1

𝑛

∑

𝑖=1

𝑧
𝑖
𝜔
𝑗
(𝑧
𝑖
) , (35)

𝑃
(𝑗)

= (𝜔
𝑗
)
−1

𝑛

∑

𝑖=1

(𝑧
𝑖
− 𝑚
(𝑗)

) (𝑧
𝑖
− 𝑚
(𝑗)

)
𝑇

𝜔
𝑗
(𝑧
𝑖
) . (36)

The main steps of iterative mixture component pruning
algorithm are summarized in Algorithm 1.

4. Simulation Study

A two-dimensional scenariowith unknown and time-varying
target number is considered to test the proposed iterative
mixture component pruning algorithm. The surveillance
region is [−1000, 1000] × [−1000, 1000] (in meter). The
target state consists of position and velocity, while target
measurement is the position. Each target moves according to
the following dynamics:

𝑥
𝑘
=

[
[
[

[

1 0 𝑇 0

0 1 0 𝑇

0 0 1 0

0 0 0 1

]
]
]

]

𝑥
𝑘−1

+

[
[
[
[
[
[

[

𝑇
2

2
0

0
𝑇
2

2
𝑇 0

0 𝑇

]
]
]
]
]
]

]

[
V
1,𝑘

V
2,𝑘

] , (37)

where 𝑥
𝑘

= [𝑥
1,𝑘

, 𝑥
2,𝑘

, 𝑥
3,𝑘

, 𝑥
4,𝑘

]
T is the target state,

[𝑥
1,𝑘

, 𝑥
2,𝑘

]
T is the target position, and [𝑥

3,𝑘
, 𝑥
4,𝑘

]
T is the target

velocity at time step 𝑘. The process noises are a zero-mean
Gaussian white noise with standard deviations 𝜎V1 = 𝜎V2 =

5 (m/s2). The survival probability is 𝑝
𝑆,𝑘

= 0.99. The number
of targets is unknown and variable over all scans. New targets
appear spontaneously according to a Poisson point process
with PHD function 𝛾

𝑘
= 0.2N(⋅; 𝑥, 𝑄), where

𝑥 =

[
[
[

[

−400

−400

0

0

]
]
]

]

, 𝑄 =

[
[
[

[

100 0 0 0

0 100 0 0

0 0 25 0

0 0 0 25

]
]
]

]

. (38)

N(⋅; 𝑥, 𝑄) is the Gaussian component with mean 𝑥 and
covariance 𝑄. The spawned PHD is 𝛽

𝑘|𝑘−1
(𝑥 | 𝜁) = 0.05N

(𝑥; 𝜁, 𝑄
𝛽
), where 𝑄

𝛽
= diag([100, 100, 400, 400]T).
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(1) normalize 𝑤
1
, . . . , 𝑤

𝑀
by formula (20).

(2) 𝑡 = 0.
(3) 𝑡 = 𝑡 + 1.
(4) for 𝑖 = 1, . . . , 𝑛 do
(5) for 𝑗 = 1, . . . ,𝑀 do
(6) compute 𝜔

𝑗
(𝑧
𝑖
) by formula (28).

(7) end for
(8) end for
(9) for 𝑗 = 1, . . . ,𝑀 do
(10) compute 𝜔

𝑗
by formula (31).

(11) end for
(12) for 𝑗 = 1, . . . ,𝑀 do
(13) compute 𝑤

𝑗
by formula (34).

(14) end for
(15) for 𝑗 = 1, . . . ,𝑀 do
(16) if 𝑤

𝑗
< 0 do

(17) for 𝑙 = 𝑗, . . . ,𝑀 − 1 do
(18) 𝑤

𝑙
= 𝑤
𝑙+1
.

(19) 𝑚
(𝑙)

= 𝑚
(𝑙+1).

(20) 𝑃
(𝑙)

= 𝑃
(𝑙+1).

(21) end for
(22) 𝑗 = 𝑗 − 1.
(23) 𝑀 = 𝑀 − 1.
(24) else do
(25) compute 𝑚

(𝑗) by formula (35).
(26) compute 𝑃

(𝑗) by formula (36).
(27) end if
(28) end for
(29) normalize 𝑤

1
, . . . , 𝑤

𝑀
;

(30) compute 𝜆 by formula (27);
(31) if log𝑝 (𝜃 (𝑡) | 𝑍) − log𝑝 (𝜃 (𝑡 − 1) | 𝑍) > 𝜀 ⋅ log𝑝 (𝜃 (𝑡 − 1) | 𝑍) do
(32) goto step 3;
(33) end if.

Algorithm 1: Iterative pruning algorithm.

Each target is detected with probability 𝑝
𝐷,𝑘

= 0.98. The
target-originated measurement model is

𝑦
𝑘
= [

1 0 0 0

0 1 0 0
] 𝑥
𝑘
+ [

𝑤
1,𝑘

𝑤
2,𝑘

] , (39)

where the measurement noise is a zero-mean Gaussian white
noise with standard deviation 𝜎

𝑤1
= 𝜎
𝑤2

= 10 (m). Clutter is
modelled as a Poisson random finite set with intensity

𝜅
𝑘
(𝑧
𝑘
) = 𝜆
𝑐
⋅ 𝑐
𝑘
(𝑧
𝑘
) , (40)

where 𝜆
𝑐
is the average number of clutter measurements per

scan and 𝑐(𝑧) is the probability distribution over surveillance
region. Here 𝑐(𝑧) is a uniform distribution and 𝜆

𝑐
is assumed

to be 50.
The means of the Gaussian mixture components with

mixing weights greater than 0.5 are chosen as the estimates
of multitarget states after the mixture reduction.

The tracking results in one Monte Carlo trial are pre-
sented in Figures 1 and 2. It can be seen from Figures 1 and
2 that the Gaussian mixture PHD filter with the proposed
iterative mixture component pruning algorithm is able to

detect the spontaneous and spawned targets and estimate the
multiple target states.

Themixture components with weights larger than 0.0005
at the 86th time step before pruning operation in the above
Monte Carlo simulation trial are presented in Figure 3. The
mixture components with weights larger than 0.01 after prun-
ing operation are presented in Figure 4. It is obvious that the
mixture components with similar parameters describing the
same PHD peak can bemerged into onemixture component.

The typical mixture component pruning algorithm based
on thresholds in [10] is adopted as the comparison algorithm.
The thresholds in typical mixture component pruning algo-
rithm areweight pruning threshold 10

−5, mixture component
merging threshold 4, and maximum allowable mixture com-
ponent number 100.We evaluate the tracking performance of
proposed algorithm against the typical algorithm by Wasser-
stein distance [49]. TheWasserstein distance is defined as

𝑑
𝑝
(𝑋,𝑋) = min

𝐶

𝑝
√

|𝑋̂|

∑

𝑖=1

|𝑋|

∑

𝑗=1

𝐶𝑖𝑗
󵄩󵄩󵄩󵄩𝑥
𝑖 − 𝑥𝑗

󵄩󵄩󵄩󵄩

𝑝

, (41)
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Figure 1: True traces and estimates of 𝑋 coordinates.
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Figure 2: True traces and estimates of 𝑌 coordinate.

where 𝑋 is the estimate of multitarget state set and 𝑋 is the
true multitarget state set. The minimum is taken over the set
of all transportation matrices 𝐶 (a transportation matrix 𝐶 is
one whose entries 𝐶

𝑖𝑗 satisfy 𝐶
𝑖𝑗

≥ 0, ∑|𝑋|
𝑗=1

𝐶
𝑖𝑗

= 1/|𝑋|, and

∑
|𝑋̂|

𝑖=1
𝐶
𝑖𝑗

= 1/|𝑋|).This distance is not defined if either𝑋 or𝑋
is not defined. Figure 5 shows themeanWasserstein distances
of two algorithms over 100 simulation trials. Process noise,
measurement noise, and clutter are independently generated
at each trial. It can be seen from Figure 5 that the proposed
iterative mixture component pruning algorithm is superior
to the typical algorithm at most time steps. The proposed
iterativemixture component pruning algorithm is worse than
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Figure 3: Components before pruning operation.
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Figure 4: Components after pruning operation.

typical algorithm when spawned target is generated and two
or more targets are close to each other. Two PHD peaks of
two close targets may be regarded as one PHD peak in the
proposed algorithm as a result of low-entropy tendency of
entropy distribution. Then, some targets are not detected.

Figure 6 shows the estimates of target numbers of two
algorithms. It is obvious that the estimates of target number
of proposed algorithm are closer to the ground truth than
typical algorithm at most time steps.

Figure 7 shows the mean component numbers of two
algorithms after component pruning operations over 100
simulation trials. The component numbers of proposed
algorithm are smaller than typical algorithm.

The case of low signal-to-noise rate (SNR) is yet con-
sidered for the further comparison of two algorithms. 𝜆

𝑐

is assumed 80 in this low SNR case. The corresponding
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Figure 5: The averaged Wasserstein distances.
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Figure 6: Estimates of target numbers.

Wasserstein distances, target number estimates, and compo-
nent numbers are presented in Figures 8, 9, and 10. It can be
seen that the proposed iterative mixture component pruning
algorithm is also superior to the typical mixture component
pruning algorithm based on thresholds in low SNR case.

5. Conclusion

An iterative mixture component pruning algorithm is pro-
posed for the Gaussian mixture PHD filter. The entropy
distribution of the mixture weights is used as the prior
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Figure 7: The averaged component numbers.
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Figure 8: The averaged Wasserstein distances under low SNR.

distribution of mixture parameters. The update formula of
the mixture weight is derived by Lagrange multiplier and
Lambert 𝑊 function. When the mixture weight becomes
negative during the iteration procedure, the corresponding
mixture component is pruned by setting the weight to zero.
Simulation results show that the proposed iterative mixture
component pruning algorithm is superior to the typical
mixture component pruning algorithm based on thresholds
at most time steps.
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Figure 9: Estimates of target numbers under low SNR.
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Figure 10: The averaged component numbers under low SNR.
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This paper constructs a Sparre Andersen risk model with a constant dividend barrier in which the claim interarrival distribution is
a mixture of an exponential distribution and an Erlang(n) distribution. We derive the integro-differential equation satisfied by the
Gerber-Shiu discounted penalty function of this risk model. Finally, we provide a numerical example.

1. The Risk Model

Consider a Sparre Andersen risk model,

𝑈 (𝑡) = 𝑢 + 𝑐𝑡 −

𝑁(𝑡)

∑

𝑖=1

𝑋
𝑖

for 𝑡 ≥ 0, (1)

where 𝑢 ≥ 0 represents the initial capital, 𝑐 is the insurer’s
rate of premium income per unit time, and {𝑁(𝑡), 𝑡 ≥ 0} is
the claim number process representing the number of claims
up to time 𝑡. {𝑋

𝑖
, 𝑖 ≥ 1} is a sequence of i.i.d. random variables

representing the individual claim amounts with distribution
function 𝐹(𝑥) and density function 𝑓(𝑥) with mean 𝜇. We
assume that {𝑁(𝑡), 𝑡 ≥ 0} and {𝑋

𝑖
, 𝑖 ≥ 1} are independent.

Let {𝑇
𝑖
, 𝑖 ≥ 1} be sequence i.i.d. random variables, which

represent the claim interarrival times, and 𝑇
𝑖
has a density

function𝐾(𝑡),

𝐾 (𝑡) = 𝛽
1
𝜆𝑒
−𝜆𝑡

+ 𝛽
2
𝑒
−𝜆𝑡

𝜆
𝑛

𝑡
𝑛−1

(𝑛 − 1)!
, 𝑡 ≥ 0, (2)

where 𝑛 ≥ 1 is a positive integer, 𝜆 ≥ 0, 𝛽
1
, 𝛽
2
≥ 0, and 𝛽

1
+

𝛽
2
= 1. We further assume that 𝑐𝐸[𝑇

𝑖
] > 𝐸[𝑋

𝑖
] for all 𝑖, which

ensure that lim
𝑡→∞

𝑈(𝑡) = ∞ almost surely. Throughout the
paper we use the convention that ∑0

𝑖=1
𝑋
𝑖
= 0.

In recent years the Sparre Andersen model has been
studied extensively. Ruin probabilities and many ruin related

quantities such as the marginal and joint defective distri-
butions of the time to ruin, the deficit at ruin, the surplus
prior to ruin, and the claim size causing ruin have received
considerable attention. Some related results can be found in
Cai and Dickson [1], Sun and Yang [2], Gerber and Shiu
[3], and Ko [4]. Li and Garrido [5] consider a compound
renewal (Sparre Andersen) risk process in the presence of a
constant dividend barrier in which the claim waiting times
are generalized Erlang(n) distributed. The Sparre Andersen
model with phase-type interclaim times has been studied by
Ren [6]. Ng and Yang [7] study the ruin probability and the
distribution of the severity of ruin in risk models with phase-
type claims. Landriault and Willmot [8] study the Gerber-
Shiu function in a Sparre Andersen model with general
interclaim times. Yang and Zhang [9] study a Sparre Ander-
sen model in which the interclaim times are generalized
Erlang(n) distributed. They assume that the premium rate is
a step function depending on the current surplus level. Lan-
driault and Sendova [10] generalize the Sparre Andersen dual
risk model with Erlang(n) interinnovation times by adding
a budget-restriction strategy. Shi and Landriault [11] utilize
the multivariate version of Lagrange expansion theorem to
obtain a series expansion for the density of the time to ruin
under a more general distribution assumption, namely, the
combination of 𝑛 exponentials. Yang and Sendova [12] study
the Sparre Andersen dual risk model in which the times
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between positive gains are independently and identically
distributed and have a generalized Erlang(n) distribution.

The barrier strategy was initially proposed by De Finetti
[13] for a binomial model. From then on, barrier strategies
have been studied in a number of papers and books, including
Lin et al. [14], Dickson andWaters [15], Li and Lu [16], Yu [17–
19], Yao et al. [20], Zhu [21], Tan et al. [22], and references
therein for details. The purpose of this paper is to extend
some results in Li and Garrido [5] and Yang and Zhang [9].
We study the Sparre Andersen risk model with a constant
dividend barrier and the claim interarrival distribution is
a mixture of an exponential distribution and an Erlang(n)
distribution.

The contents of this paper are organized as follows.
Section 2 introduces the risk model. In Section 3, we derive
the higher-order integro-differential equation for the Gerber-
Shiu discounted penalty function. Finally, in the special case
we provide the numerical example in Section 4.

2. The Risk Model

Let𝑈
𝑏
(𝑡) be the surplus process with initial surplus𝑈

𝑏
(0) = 𝑢

under the barrier strategy. Thus, it can be expressed as

𝑑𝑈
𝑏
(𝑡) = {

𝑐𝑑𝑡 − 𝑑𝑆 (𝑡) 𝑈
𝑏
(𝑡) < 𝑏

−𝑑𝑆 (𝑡) 𝑈
𝑏
(𝑡) ≥ 𝑏,

(3)

where 𝑆(𝑡) = ∑
𝑁(𝑡)

𝑖=1
𝑋
𝑖
. Define 𝑇

𝑏
= inf{𝑡 : 𝑈

𝑏
(𝑡) < 0} to be

the first time that the surplus becomes negative.The stopping
time 𝑇

𝑏
is referred to as the time of ruin. Let 𝜓

𝑏
(𝑢) = Pr(𝑇

𝑏
<

∞) be the ruin probability.
In this paper, we will study the time of ruin 𝑇

𝑏
and its

related functions such as the surplus before ruin 𝑈
𝑏
(𝑇
𝑏
−)

and the deficit at ruin |𝑈
𝑏
(𝑇
𝑏
)|. By using a renewal equation

approach, we will be able to get a number of analytic and
probabilistic properties of these quantities. Our analysis will
involve the Gerber-Shiu discounted penalty function that is
defined below.

Let 𝜔(𝑥, 𝑦), 0 ≤ 𝑥, 𝑦 < ∞, be a nonnegative function. For
𝛿 ≥ 0, define

𝑚
𝑏
(𝑢) = 𝐸 [𝑒

−𝛿𝑇𝑏𝜔 (𝑈 (𝑇
𝑏
−) ,

󵄨󵄨󵄨󵄨𝑈 (𝑇
𝑏
)
󵄨󵄨󵄨󵄨)

𝐼 (𝑇
𝑏
< ∞) | 𝑈 (0) = 𝑢] ,

(4)

where 𝐼(⋅) is the indicator function, 𝐼(𝑇
𝑏
< ∞) = 1 if 𝑇

𝑏
<

∞, and 𝐼(𝑇
𝑏
< ∞) = 0 otherwise. The function 𝑚

𝑏
(𝑢) in

(4) is useful for deriving results in connection with joint and
marginal distributions of 𝑇

𝑏
, 𝑈
𝑏
(𝑇
𝑏
−) and |𝑈

𝑏
(𝑇
𝑏
)|. While 𝛿

may be interpreted as a force of interest, function (4)may also
be viewed in terms of a Laplace transform with 𝛿 serving as
the argument. In particular, if we let 𝜔(𝑥, 𝑦) = 1, (4) is the
Laplace transform of the time of ruin 𝑇

𝑏
. If we let 𝛿 = 0 and

𝜔(𝑥, 𝑦) = 1, then𝑚
𝑏
(𝑢) becomes the ruin probability 𝜓(𝑢). If

we let 𝛿 = 0 and 𝜔(𝑥, 𝑦) = 𝐼(𝑥 ≤ 𝑧
1
)𝐼(𝑦 ≤ 𝑧

2
), (4) becomes

the joint df of the surplus before ruin and the deficit at ruin.
Furthermore, if 𝛿 = 0 and 𝜔(𝑥, 𝑦) = 𝑥

𝑛

1
, we obtain the 𝑛th

moment of the surplus before ruin. Likewise, if 𝛿 = 0 and
𝜔(𝑥, 𝑦) = 𝑥

𝑛

2
, we obtain the 𝑛th moment of the deficit at ruin.

For other functions of interest, see Gerber and Shiu [23] and
Lin and Willmot [24]. Let 𝑓∗ denote the Laplace transform
of the function 𝑓, that is, 𝑓∗(𝑠) = ∫

∞

0

𝑒
−𝑠𝑥

𝑓(𝑥)𝑑𝑥.

3. An Integro-Differential Equation

In this section, we show 𝑚
𝑏
(𝑢) satisfies a higher-order

integro-differential equation.

Lemma 1. Assume 𝑠 > 𝑢; then 𝐻(𝑢, 𝑠) = 𝐾((𝑠 −

𝑢)/𝑐)𝑒
−𝛿((𝑠−𝑢)/𝑐) satisfies the following differential equation:

𝑛−1

∑

𝑗=0

𝐶
𝑗

𝑛−1
𝑐
𝑗

(−𝜆 − 𝛿)
𝑛−1−𝑗

𝜕
𝑗

𝐻(𝑢, 𝑠)

𝜕𝑢𝑗

= (−1)
𝑛−1

𝛽
2
𝜆
𝑛

𝑒
−(𝜆+𝛿)((𝑠−𝑢)/𝑐)

,

(5)

with the boundary conditions when 𝑠 = 𝑢,

𝜕
𝑘

𝐻(𝑢, 𝑠)

𝜕𝑢𝑘
= 𝛽
1
𝜆(

𝜆 + 𝛿

𝑐
)

𝑘

, 𝑘 = 0, 1, 2, . . . , 𝑛 − 2,

𝜕
𝑛−1

𝐻(𝑢, 𝑠)

𝜕𝑢𝑛−1
= 𝛽
1
𝜆(

𝜆 + 𝛿

𝑐
)

𝑛−1

+ 𝛽
2
𝜆
𝑛

(−
1

𝑐
)

𝑛−1

.

(6)

Proof. Note that 𝐻(𝑢, 𝑠) = [𝛽
1
𝜆 + (𝜆

𝑛

𝛽
2
/(𝑛 −

1)!)((𝜆 + 𝛿)/𝑐)
𝑛−1

]𝑒
−(𝜆+𝛿)((𝑠−𝑢)/𝑐). Taking derivative with

respect to variable 𝑢 for 𝑘 times and by induction, we can
obtain

𝜕
𝑘

𝐻(𝑢, 𝑠)

𝜕𝑢𝑘

= −

𝑘−1

∑

𝑗=0

𝐶
𝑗

𝑘
(−

𝜆 + 𝛿

𝑐
)

𝑘−𝑗

𝜕
𝑗

𝐻(𝑢, 𝑠)

𝜕𝑢𝑗

+
𝛽
2
𝜆
𝑛

(𝑛 − 1 − 𝑘)!
(
𝑠 − 𝑢

𝑐
)

𝑛−1−𝑘

(−
1

𝑐
)

𝑘

𝑒
−(𝜆+𝛿)((𝑠−𝑢)/𝑐)

,

0 ≤ 𝑘 ≤ 𝑛 − 1.

(7)

When 𝑘 = 𝑛 − 1, one gets (5). On substituting 𝑠 = 𝑢 in (7), we
get the boundary conditions.

Theorem 2. The Gerber-Shiu discounted penalty function
𝑚
𝑏
(𝑢) satisfies the higher-order integro-differential equation

𝑛

∑

𝑘=0

𝐶
𝑘

𝑛
𝑐
𝑘

(−𝜆 − 𝛿)
𝑛−𝑘

𝑑
𝑘

𝑚
𝑏
(𝑢)

𝑑𝑢𝑘

= [𝛽
2
(−𝜆)
𝑛

+ 𝛽
1
(−𝜆) (−𝜆 − 𝛿)

𝑛−1

]

× ∫

∞

0

𝑚
𝑏
(𝑢 − 𝑥) 𝑑𝐹 (𝑥)

− 𝛽
1
𝜆

𝑛−1

∑

𝑘=1

𝐶
𝑘

𝑛−1
𝑐
𝑘

(−𝜆 − 𝛿)
𝑛−𝑘−1

𝑑
𝑘

𝑑𝑢𝑘

× (∫

∞

0

𝑚
𝑏
(𝑢 − 𝑥) 𝑑𝐹 (𝑥)) .

(8)
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Proof. Let 𝑡 be the time of the first claim and let 𝑥 be the
amount of the claim. There are two possibilities. First, 𝑡 <

(𝑏−𝑢)/𝑐 and the surplus has not yet reached the barrier. In this
case, the surplus immediately before time 𝑡 is 𝑢 + 𝑐𝑡. Second,
𝑡 ≥ (𝑏 − 𝑢)/𝑐 and the surplus immediately before time 𝑡 is 𝑏.
And since the “probability” that the claim occurs at time 𝑡 is
𝐾(𝑡)𝑑𝑡 and the “probability” of the claim amount being 𝑥 is
𝑑𝐹(𝑥), we have, for 0 ≤ 𝑢 ≤ 𝑏,

𝑚
𝑏
(𝑢) = ∫

(𝑏−𝑢)/𝑐

0

𝐾 (𝑡) 𝑒
−𝛿𝑡

× [∫

𝑢+𝑐𝑡

0

𝑚
𝑏
(𝑢 + 𝑐𝑡 − 𝑥) 𝑑𝐹 (𝑥)

+∫

∞

𝑢+𝑐𝑡

𝑤 (𝑢 + 𝑐𝑡, 𝑥 − 𝑢 − 𝑐𝑡) 𝑑𝐹 (𝑥)] 𝑑𝑡

+ ∫

∞

((𝑏−𝑢)/𝑐)

𝐾 (𝑡) 𝑒
−𝛿𝑡

× [∫

𝑏

0

𝑚
𝑏
(𝑏 − 𝑥) 𝑑𝐹 (𝑥)

+∫

∞

𝑏

𝑤 (𝑏, 𝑥 − 𝑏) 𝑑𝐹 (𝑥)] 𝑑𝑡.

(9)

Using the substitution 𝑠 = 𝑢 + 𝑐𝑡, we have

𝑚
𝑏
(𝑢) = ∫

𝑏

𝑢

𝐾(
𝑠 − 𝑢

𝑐
) 𝑒
−𝛿((𝑠−𝑢)/𝑐)

× [∫

𝑠

0

𝑚
𝑏
(𝑠 − 𝑥) 𝑑𝐹 (𝑥)

+∫

∞

𝑠

𝑤 (𝑠, 𝑥 − 𝑠) 𝑑𝐹 (𝑥)]
1

𝑐
𝑑𝑠

+ ∫

∞

𝑏

𝐾(
𝑠 − 𝑢

𝑐
) 𝑒
−𝛿((𝑠−𝑢)/𝑐)

× [∫

𝑏

0

𝑚
𝑏
(𝑏 − 𝑥) 𝑑𝐹 (𝑥)

+∫

∞

𝑏

𝑤 (𝑏, 𝑥 − 𝑏) 𝑑𝐹 (𝑥)]
1

𝑐
𝑑𝑠

(10)

which implies that

𝑐𝑚
𝑏
(𝑢) = ∫

𝑏

𝑢

𝐻(𝑢, 𝑠) ∫

∞

0

𝑚
𝑏
(𝑠 − 𝑥) 𝑑𝐹 (𝑥) 𝑑𝑠

+ ∫

∞

𝑏

𝐻(𝑢, 𝑠) ∫

∞

0

𝑚
𝑏
(𝑏 − 𝑥) 𝑑𝐹 (𝑥) 𝑑𝑠,

(11)

where 𝐻(𝑢, 𝑠) is defined in Lemma 1. Differentiating the
above equation 𝑘 times and using condition (6) yield

𝑐
𝑑
𝑘

𝑚
𝑏
(𝑢)

𝑑𝑢𝑘

= −𝛽
1
𝜆

𝑘−1

∑

𝑖=0

(
𝜆 + 𝛿

𝑐
)

𝑘−1−𝑖

𝑑
𝑖

𝑑𝑢𝑖
∫

∞

0

𝑚
𝑏
(𝑢 − 𝑥) 𝑑𝐹 (𝑥)

+ ∫

𝑏

𝑢

𝜕
𝑘

𝐻(𝑢, 𝑠)

𝜕𝑢𝑘
∫

∞

0

𝑚
𝑏
(𝑠 − 𝑥) 𝑑𝐹 (𝑥) 𝑑𝑠

+ ∫

∞

𝑏

𝜕
𝑘

𝐻(𝑢, 𝑠)

𝜕𝑢𝑘
∫

∞

0

𝑚
𝑏
(𝑏 − 𝑥) 𝑑𝐹 (𝑥) 𝑑𝑠.

(12)

Multiplying (12) by 𝑐𝑘(−𝜆−𝛿)𝑛−1−𝑘𝐶𝑘
𝑛−1

for 𝑘 = 0, 1, 2, . . . , 𝑛−

1, then adding up these equations, and using (5), we obtain

𝑛−1

∑

𝑘=0

𝐶
𝑘

𝑛−1
(−𝜆 − 𝛿)

𝑛−1−𝑘

𝑐
𝑘+1

𝑑
𝑘

𝑚
𝑏
(𝑢)

𝑑𝑢𝑘

= 𝛽
2
𝜆
𝑛

(−1)
𝑛−1

∫

𝑏

𝑢

𝑒
−(𝜆+𝛿)((𝑠−𝑢)/𝑐)

× ∫

∞

0

𝑚
𝑏
(𝑠 − 𝑥) 𝑑𝐹 (𝑥) 𝑑𝑠

+ 𝛽
2
𝜆
𝑛

(−1)
𝑛−1

∫

∞

𝑏

𝑒
−(𝜆+𝛿)((𝑠−𝑢)/𝑐)

× ∫

∞

0

𝑚
𝑏
(𝑏 − 𝑥) 𝑑𝐹 (𝑥) 𝑑𝑠

− 𝛽
1
𝜆

𝑛−1

∑

𝑘=1

𝐶
𝑘

𝑛−1
(−𝜆 − 𝛿)

𝑛−1−𝑘

𝑐
𝑘

× [

𝑘−1

∑

𝑖=0

(
𝜆 + 𝛿

𝑐
)

𝑘−1−𝑖

𝑑
𝑖

𝑑𝑢𝑖
(∫

∞

0

𝑚
𝑏
(𝑢 − 𝑥) 𝑑𝐹 (𝑥))] .

(13)

Differentiating (13) again, we have

𝑛−1

∑

𝑘=0

𝐶
𝑘

𝑛−1
(−𝜆 − 𝛿)

𝑛−1−𝑘

𝑐
𝑘+1

𝑑
𝑘+1

𝑚
𝑏
(𝑢)

𝑑𝑢𝑘+1

= (−1)
𝑛

𝛽
2
𝜆
𝑛

∫

∞

0

𝑚
𝑏
(𝑢 − 𝑥) 𝑑𝐹 (𝑥)

− 𝛽
1
𝜆

𝑛−1

∑

𝑘=1

𝐶
𝑘

𝑛−1
(−𝜆 − 𝛿)

𝑛−1−𝑘

𝑐
𝑘
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× [

𝑘−1

∑

𝑖=0

(
𝜆 + 𝛿

𝑐
)

𝑘−1−𝑖

𝑑
𝑖+1

𝑑𝑢𝑖+1
(∫

∞

0

𝑚
𝑏
(𝑢 − 𝑥) 𝑑𝐹 (𝑥))]

+
𝜆 + 𝛿

𝑐
𝛽
2
𝜆
𝑛

(−1)
𝑛−1

× [∫

𝑏

𝑢

𝑒
−(𝜆+𝛿)((𝑠−𝑢)/𝑐)

∫

∞

0

𝑚
𝑏
(𝑠 − 𝑥) 𝑑𝐹 (𝑥) 𝑑𝑠

+∫

∞

𝑏

𝑒
−(𝜆+𝛿)((𝑠−𝑢)/𝑐)

∫

∞

0

𝑚
𝑏
(𝑏 − 𝑥) 𝑑𝐹 (𝑥) 𝑑𝑠]

(14)

which, together with (13), implies

𝑛−1

∑

𝑘=0

𝐶
𝑘

𝑛−1
𝑐
𝑘+1

(−𝜆 − 𝛿)
𝑛−1−𝑘

𝑑
𝑘+1

𝑚
𝑏
(𝑢)

𝑑𝑢𝑘+1

+

𝑛−1

∑

𝑘=0

𝐶
𝑘

𝑛−1
𝑐
𝑘

(−𝜆 − 𝛿)
𝑛−𝑘

𝑑
𝑘

𝑚
𝑏
(𝑢)

𝑑𝑢𝑘

= −𝛽
1
𝜆

𝑛−1

∑

𝑘=1

𝐶
𝑘

𝑛−1
(−𝜆 − 𝛿)

𝑛−1−𝑘

𝑐
𝑘

× [

𝑘−1

∑

𝑖=0

(
𝜆 + 𝛿

𝑐
)

𝑘−1−𝑖

𝑑
𝑖+1

𝑑𝑢𝑖+1
(∫

∞

0

𝑚
𝑏
(𝑢 − 𝑥) 𝑑𝐹 (𝑥))]

− 𝛽
1
𝜆

𝑛−1

∑

𝑘=1

𝐶
𝑘

𝑛−1
(−𝜆 − 𝛿)

𝑛−𝑘

𝑐
𝑘−1

× [

𝑘−1

∑

𝑖=0

(
𝜆 + 𝛿

𝑐
)

𝑘−1−𝑖

𝑑
𝑖

𝑑𝑢𝑖
(∫

∞

0

𝑚
𝑏
(𝑢 − 𝑥) 𝑑𝐹 (𝑥))]

+ (−1)
𝑛

𝛽
2
𝜆
𝑛

∫

∞

0

𝑚
𝑏
(𝑢 − 𝑥) 𝑑𝐹 (𝑥) .

(15)

Moreover, note that

𝑛−1

∑

𝑘=0

𝐶
𝑘

𝑛−1
𝑐
𝑘+1

(−𝜆 − 𝛿)
𝑛−1−𝑘

𝑑
𝑘+1

𝑚
𝑏
(𝑢)

𝑑𝑢𝑘+1

= 𝑐
𝑛
𝑑
𝑛

𝑚
𝑏
(𝑢)

𝑑𝑢𝑛
+

𝑛−1

∑

𝑘=1

𝐶
𝑘−1

𝑛−1
𝑐
𝑘

(−𝜆 − 𝛿)
𝑛−𝑘

𝑑
𝑘

𝑚
𝑏
(𝑢)

𝑑𝑢𝑘
,

𝑛−1

∑

𝑘=0

𝐶
𝑘

𝑛−1
𝑐
𝑘

(−𝜆 − 𝛿)
𝑛−𝑘

𝑑
𝑘

𝑚
𝑏
(𝑢)

𝑑𝑢𝑘

= (−𝜆 − 𝛿)
𝑛

𝑚
𝑏
(𝑢) +

𝑛−1

∑

𝑘=1

𝐶
𝑘

𝑛−1
𝑐
𝑘

(−𝜆 − 𝛿)
𝑛−𝑘

𝑑
𝑘

𝑚
𝑏
(𝑢)

𝑑𝑢𝑘
.

(16)

So, it follows from (16) that
𝑛−1

∑

𝑘=0

𝐶
𝑘

𝑛−1
𝑐
𝑘+1

(−𝜆 − 𝛿)
𝑛−1−𝑘

𝑑
𝑘+1

𝑚
𝑏
(𝑢)

𝑑𝑢𝑘+1

+

𝑛−1

∑

𝑘=0

𝐶
𝑘

𝑛−1
𝑐
𝑘

(−𝜆 − 𝛿)
𝑛−𝑘

𝑑
𝑘

𝑚
𝑏
(𝑢)

𝑑𝑢𝑘

=

𝑛

∑

𝑘=0

𝐶
𝑘

𝑛
𝑐
𝑘

(−𝜆 − 𝛿)
𝑛−𝑘

𝑑
𝑘

𝑚
𝑏
(𝑢)

𝑑𝑢𝑘

(17)

and thus the result follows from (15) and (17).

Remark 3. Letting 𝛽
1
= 0, 𝛽

2
= 1, 𝑛 = 2 in (8), we get the

integro-differential equation for Erlang (2) risk model with a
constant dividend barrier of Li and Garrido [5].

Remark 4. Letting 𝛽
1
= 0, 𝛽

2
= 1, 𝑛 = 2, 𝑏 = ∞ in (8),

we obtain the integro-differential equation for Erlang (2) risk
model with no dividend barrier, which has been considered
in Dickson and Hipp [25].

Remark 5. Letting 𝑛 = 1, 𝑏 = ∞ in (8), we derive the integro-
differential equation for classical risk model. For details, see
Gerber and Shiu [23].

Remark 6. Letting 𝑛 = 1, the case has been studied in Lin
et al. [14].

Remark 7. Letting 𝑏 = ∞, the case has been studied in Zhao
and Yin [26].

Theorem 8. The Laplace transform of𝑚
𝑏
(𝑢) is

𝑚
∗

𝑏
(𝑠)

=

𝐴∫
∞

0

𝑒
−𝑠𝑢

∫
∞

𝑢

𝜔 (𝑢, 𝑥 − 𝑢) 𝑑𝐹 (𝑥) 𝑑𝑢 + 𝐺 (𝑠) + 𝐷 (𝑠)

(𝑠𝑐 − 𝜆 − 𝛿)
𝑛

− [𝛽
2
(−𝜆)
𝑛

− 𝜆𝛽
1
(𝑠𝑐 − 𝜆 − 𝛿)

𝑛−1

] 𝑓∗ (𝑠)

,

(18)

where

𝐴 = 𝛽
2
(−𝜆)
𝑛

+ 𝛽
1
(−𝜆) (−𝜆 − 𝛿)

𝑛−1

,

𝐺 (𝑠) =

𝑛−1

∑

𝑘=1

𝑘−1

∑

𝑗=0

𝐶
𝑘

𝑛
(−𝜆 − 𝛿)

𝑛−𝑘

𝑐
𝑘

𝑠
𝑘−1−𝑗

𝑚
(𝑗)

𝑏
(0) ,

𝐷 (𝑠) = 𝛽
1
𝜆

𝑛−1

∑

𝑘=2

𝐶
𝑘

𝑛−1
(−𝜆 − 𝛿)

𝑛−1−𝑘

𝑐
𝑘

×

𝑘−1

∑

𝑗=1

𝑠
𝑘−1−𝑗

𝑗−1

∑

𝑙=0

𝑚
(𝑙)

𝑏
(0) 𝑓
(𝑗−1−𝑙)

(0)

− 𝛽
1
𝜆

𝑛−1

∑

𝑘=1

𝐶
𝑘

𝑛−1
(−𝜆 − 𝛿)

𝑛−1−𝑘

𝑐
𝑘

× ∫

∞

0

𝑒
−𝑠𝑢

[
𝑑
𝑘

𝑑𝑢𝑘
∫

∞

𝑢

𝜔 (𝑢, 𝑥 − 𝑢) 𝑑𝐹 (𝑥)] 𝑑𝑢.

(19)
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Proof. It is easy to see that

∫

∞

0

𝑒
−𝑠𝑢

𝑑
𝑘

𝑚
𝑏
(𝑢)

𝑑𝑢𝑘
𝑑𝑢 = 𝑠

𝑘

𝑚
∗

𝑏
(𝑠) −

𝑘−1

∑

𝑗=0

𝑠
𝑘−1−𝑗

𝑚
(𝑗)

𝑏
(0) , (20)

∫

∞

0

𝑒
−𝑠𝑢

∫

∞

0

𝑚
𝑏
(𝑢 − 𝑥) 𝑑𝐹 (𝑥) 𝑑𝑢

= ∫

∞

0

𝑒
−𝑠𝑢

∫

𝑢

0

𝑚
𝑏
(𝑢 − 𝑥) 𝑑𝐹 (𝑥) 𝑑𝑢

+ ∫

∞

0

𝑒
−𝑠𝑢

∫

∞

𝑢

𝜔 (𝑢, 𝑥 − 𝑢) 𝑑𝐹 (𝑥) 𝑑𝑢

= 𝑠𝑚
∗

𝑏
(𝑠) 𝑓
∗

(𝑠) + ∫

∞

0

𝑒
−𝑠𝑢

∫

∞

𝑢

𝜔 (𝑢, 𝑥 − 𝑢) 𝑑𝐹 (𝑥) 𝑑𝑢,

(21)

∫

∞

0

𝑒
−𝑠𝑢

𝑑
𝑘

𝑑𝑢𝑘
(∫

∞

0

𝑚
𝑏
(𝑢 − 𝑥) 𝑑𝐹 (𝑥)) 𝑑𝑢

= ∫

∞

0

𝑒
−𝑠𝑢

𝑑
𝑘

𝑑𝑢𝑘
(∫

𝑢

0

𝑚
𝑏
(𝑢 − 𝑥) 𝑑𝐹 (𝑥)) 𝑑𝑢

+ ∫

∞

0

𝑒
−𝑠𝑢

𝑑
𝑘

𝑑𝑢𝑘
(∫

∞

𝑢

𝜔 (𝑢, 𝑥 − 𝑢) 𝑑𝐹 (𝑥)) 𝑑𝑢

= 𝑠
𝑘

𝑚
∗

𝑏
(𝑠) 𝑓
∗

(𝑠) −

𝑘−1

∑

𝑗=1

𝑠
𝑘−1−𝑗

𝑗−1

∑

𝑙=0

𝑚
(𝑙)

𝑏
(0) 𝑓
(𝑗−1−𝑙)

(0)

+ ∫

∞

0

𝑒
−𝑠𝑢

𝑑
𝑘

𝑑𝑢𝑘
(∫

∞

𝑢

𝜔 (𝑢, 𝑥 − 𝑢) 𝑑𝐹 (𝑥)) 𝑑𝑢.

(22)

Taking the Laplace transform on both sides of (8), and
together with (20), (21), and (22), we have
𝑛

∑

𝑘=0

𝐶
𝑘

𝑛
𝑐
𝑘

(−𝜆 − 𝛿)
𝑛−𝑘

(𝑠
𝑘

𝑚
∗

𝑏
(𝑠) −

𝑘−1

∑

𝑗=0

𝑠
𝑘−1−𝑗

𝑚
(𝑗)

𝑏
(0))

= [𝛽
2
(−𝜆)
𝑛

+ 𝛽
1
(−𝜆) (−𝜆 − 𝛿)

𝑛−1

]

× [𝑚
∗

𝑏
(𝑠) 𝑓
∗

(𝑠) + ∫

∞

0

𝑒
−𝑠𝑢

∫

∞

𝑢

𝜔 (𝑢, 𝑥 − 𝑢) 𝑑𝐹 (𝑥) 𝑑𝑢]

− 𝛽
1
𝜆 [(𝑠𝑐 − 𝜆 − 𝛿)

𝑛−1

− (−𝜆 − 𝛿)
𝑛−1

]𝑚
∗

𝑏
(𝑠) 𝑓
∗

(𝑠)

+ 𝛽
1
𝜆

𝑛−1

∑

𝑘=2

𝐶
𝑘

𝑛−1
𝑐
𝑘

(−𝜆 − 𝛿)
𝑛−1−𝑘

×

𝑘−1

∑

𝑗=1

𝑠
𝑘−1−𝑗

𝑗−1

∑

𝑙=0

𝑚
(𝑙)

𝑏
(0) 𝑓
(𝑗−1−𝑙)

(0)

− 𝛽
1
𝜆

𝑛−1

∑

𝑘=1

𝐶
𝑘

𝑛−1
𝑐
𝑘

(−𝜆 − 𝛿)
𝑛−1−𝑘

× ∫

∞

0

𝑒
−𝑠𝑢

[
𝑑
𝑘

𝑑𝑢𝑘
∫

∞

𝑢

𝜔 (𝑢, 𝑥 − 𝑢) 𝑑𝐹 (𝑥)] 𝑑𝑢

(23)

which implies (8).

Lemma 9. Let 𝛿 be strictly positive and 𝑛 is a positive integer;
then the equation

(𝑠𝑐 − 𝜆 − 𝛿)
𝑛

= 𝑓
∗

(𝑠) [𝛽
2
(−𝜆)
𝑛

+ 𝛽
1
(−𝜆) (−𝜆 − 𝛿)

𝑛−1

]

− 𝑓
∗

(𝑠) 𝜆𝛽
1
[(𝑠𝑐 − 𝜆 − 𝛿)

𝑛−1

− (−𝜆 − 𝛿)
𝑛−1

]

(24)

has exact 𝑛 roots 𝑠
𝑙
(𝛿) with Re(𝑠

𝑙
(𝛿)) > 0 (𝑙 = 1, 2, 3, . . . , 𝑛).

Proof. When 𝑠 = 0,we have
󵄨󵄨󵄨󵄨󵄨
[𝛽
2
(−𝜆)
𝑛

+ 𝛽
1
(−𝜆) (−𝜆 − 𝛿)

𝑛−1

] 𝑓
∗

(0)
󵄨󵄨󵄨󵄨󵄨
<
󵄨󵄨󵄨󵄨(−𝜆 − 𝛿)

𝑛󵄨󵄨󵄨󵄨 .

(25)

So for 𝜌 > 0 sufficiently big, the inequality
󵄨󵄨󵄨󵄨(𝑠𝑐 − 𝜆 − 𝛿)

𝑛󵄨󵄨󵄨󵄨

>
󵄨󵄨󵄨󵄨󵄨
[𝛽
2
(−𝜆)
𝑛

+ 𝛽
1
(−𝜆) (−𝜆 − 𝛿)

𝑛−1

−𝜆𝛽
1
(𝑠𝑐 − 𝜆 − 𝛿)

𝑛−1

+ 𝜆𝛽
1
(−𝜆 − 𝛿)

𝑛−1

] 𝑓
∗

(𝑠)
󵄨󵄨󵄨󵄨󵄨

(26)

holds on the imaginary axis and on the semicircle {𝑠 ∈

£, Re(𝑠) > 0, |𝑠| = 𝜌}. By Rouches theorem (20) has exact
𝑛 roots on the right-half plane.

4. Numerical Illustration for Ruin Probability

In this section, we give the numerical illustration for 𝑚
𝑏
(𝑢)

when the claim number process has Erlang (2) process (𝛽
1
=

0, 𝛽
2
= 1, 𝑛 = 2), 𝛿 = 0 and 𝑤(𝑥, 𝑦) = 1. At this time,𝑚

𝑏
(𝑢)

turns to ruin probability 𝜓
𝑏
(𝑢). By conditioning on the time

of the first claim we have, for 0 ≤ 𝑢 ≤ 𝑏,

𝑚
𝑏
(𝑢) = ∫

((𝑏−𝑢)/𝑐)

0

𝐾
1
(𝑡) 𝛾
𝑏
(𝑢 + 𝑐𝑡) 𝑑𝑡

+ ∫

∞

((𝑏−𝑢)/𝑐)

𝐾
1
(𝑡) 𝛾
𝑏
(𝑏) 𝑑𝑡,

(27)

where

𝛾
𝑏
(𝑡) = ∫

𝑡

0

𝑚
𝑏
(𝑡 − 𝑥) 𝑑𝐹 (𝑥) + 1 − 𝐹 (𝑡) . (28)

Substituting𝐾
1
(𝑡) = 𝜆

2

𝑡𝑒
−𝜆𝑡 into (27), we obtain

𝑚
𝑏
(𝑢) = (

𝜆

𝑐
)

2

∫

𝑏

𝑢

(𝑡 − 𝑢) 𝑒
−(𝜆/𝑐)(𝑡−𝑢)

𝛾
𝑏
(𝑡) 𝑑𝑡

+ 𝛾
𝑏
(𝑏) 𝑒
−(𝜆/𝑐)(𝑡−𝑢)

[1 +
𝜆

𝑐
(𝑏 − 𝑢)] .

(29)

Differentiating (29) with respect to 𝑢, we have, for 0 ≤ 𝑢 ≤ 𝑏,

𝑚
󸀠

𝑏
(𝑢) =

𝜆

𝑐
𝑚
𝑏
(𝑢) − (

𝜆

𝑐
)

2

∫

𝑏

𝑢

𝑒
−(𝜆/𝑐)(𝑡−𝑢)

𝛾
𝑏
(𝑡) 𝑑𝑡

−
𝜆𝛾
𝑏
(𝑏)

𝑐
𝑒
−(𝜆/𝑐)(𝑏−𝑢)

.

(30)



6 Mathematical Problems in Engineering

Differentiating (30) again with respect to 𝑢, we have

𝑚
󸀠󸀠

𝑏
(𝑢) =

𝜆

𝑐
𝑚
󸀠

𝑏
(𝑢)

−
𝜆

𝑐
[(

𝜆

𝑐
)

2

∫

𝑏

𝑢

𝑒
−(𝜆/𝑐)(𝑡−𝑢)

𝛾
𝑏
(𝑡) 𝑑𝑡

+
𝜆

𝑐
𝛾
𝑏
(𝑏) 𝑒
−(𝜆/𝑐)(𝑏−𝑢)

]

+ (
𝜆

𝑐
)

2

𝛾
𝑏
(𝑢) .

(31)

Suppose the claim size distribution is exponential. Let 𝐹(𝑥) =
1 − 𝑒
−𝛼𝑥, 𝛼 > 0; then substituting (30) into (31), we have

𝑚
󸀠󸀠

𝑏
(𝑢) =

2𝜆

𝑐
𝑚
󸀠

𝑏
(𝑢) − (

𝜆

𝑐
)

2

𝑚
𝑏
(𝑢)

+ (
𝜆

𝑐
)

2

𝛼𝑒
−𝛼𝑢

∫

𝑢

0

𝑚
𝑏
(𝑡) 𝑒
−𝛼𝑡

𝑑𝑡 + (
𝜆

𝑐
)

2

𝑒
−𝛼𝑢

.

(32)

Differentiating (32) with respect to 𝑢, we have

𝑚
󸀠󸀠󸀠

𝑏
(𝑢) =

2𝜆

𝑐
𝑚
󸀠󸀠

𝑏
(𝑢) − (

𝜆

𝑐
)

2

𝑚
󸀠

𝑏
(𝑢)

− (
𝜆

𝑐
)

2

𝛼
2

𝑒
−𝛼𝑢

∫

𝑢

0

𝑚
𝑏
(𝑡) 𝑒
−𝛼𝑡

𝑑𝑡

+ (
𝜆

𝑐
)

2

𝛼𝑚
𝑏
(𝑢) − (

𝜆

𝑐
)

2

𝛼𝑒
−𝛼𝑢

.

(33)

(32) × 𝛼+ (33) implies

𝑚
󸀠󸀠󸀠

𝑏
(𝑢) + (𝛼 −

2𝜆

𝑐
)𝑚
󸀠󸀠

𝑏
(𝑢) +

𝜆
2

− 2𝛼𝑐𝜆

𝑐2
𝑚
󸀠

𝑏
(𝑢) = 0. (34)

This is a three-order differential equation with constant
coefficients, so we can carry on the numerical solution.
Suppose 𝛼 = 10000, 𝑐 = 200, 𝜆 = 0.0001, 𝑏 = 20;
then by the Matlab, we obtain the curve of ruin probability
(see Figure 1). As is known to all ruin must occur under
the constant dividend barrier. From Figure 1, we know that
ruin probability 𝜓

𝑏
(𝑢) is an increasing function of the initial

surplus 𝑢 (convex function) and the function value of 1 is its
asymptote.
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We obtain the existence and uniqueness result of the mild solutions to mean-field backward stochastic evolution equations (BSEEs)
in Hilbert spaces under a weaker condition than the Lipschitz one. As an intermediate step, the existence and uniqueness result for
the mild solutions of mean-field BSEEs under Lipschitz condition is also established. And then a maximum principle for optimal
control problems governed by backward stochastic partial differential equations (BSPDEs) of mean-field type is presented. In this
control system, the control domain need not to be convex and the coefficients, both in the state equation and in the cost functional,
depend on the law of the BSPDE as well as the state and the control. Finally, a linear-quadratic optimal control problem is given to
explain our theoretical results.

1. Introduction

Backward stochastic evolution equations (BSEEs) in their
general nonlinear form were introduced by Hu and Peng [1]
in 1991. By the stochastic Fubini theorem and an extended
martingale representation theorem,Hu andPeng [1] obtained
the existence and uniqueness result of a so-called “mild
solution” under Lipschitz coefficients for semilinear BSEEs.
Since then, BSEEs have been studied by a lot of authors and
have found various applications, namely, in the theory of
infinite dimensional optimal control and the controllability
for stochastic partial differential equations (see e.g., [1–4] and
the papers cited therein). To relax the Lipschitz condition of
the coefficients, Mahmudov andMckibben [2] studied BSEEs
under a weaker condition than the Lipschitz one in Hilbert
spaces. Their approach extended the method proposed by
Mao [5], in which the author investigated BSDEs under a
weaker condition which contains Lipschitz condition as a
special case. Our present work also investigates backward
stochastic evolution equations, but with one main differ-
ence to the setting chosen by the papers mentioned above:

the coefficients of the BSEEs are allowed to depend on the
law of the BSEEs.

Recently, mean-field approaches, which can be used
to describe particle systems at the mesoscopic level, have
attracted more and more researchers’ attention because of
their great importance in applications. For example, mean-
field approach can be used in statistical mechanics and
physics, quantum mechanics and quantum chemistry, eco-
nomics, finance, game theory, and optimal control theory
(refer to [6–8] and the references therein). Mean-field BSDEs
were deduced by Buckdahn et al. [9] when they investi-
gated a special mean-field problem in a purely stochastic
approach. Buckdahn et al. [7] studied the well posedness of
mean-field BSDEs and gave a probabilistic interpretation to
semilinear McKean-Vlasov partial differential equations. To
give a probabilistic representation of the solutions for a class
ofMckean-Vlasov stochastic partial differential equations, Xu
[10] investigated the well-posedness of mean-field backward
doubly stochastic differential equations with locally mono-
tone coefficients.
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In this paper, we investigate a new type of backward
stochastic evolution equations inHilbert spaces whichwe call
mean-field BSEEs. Mean-field implies that the coefficient of
the BSEE depends on the law of the BSEE. Specifically, the
BSEE we consider is defined as

𝑑𝑌 (𝑠) = − 𝐴𝑌 (𝑠) 𝑑𝑠

− E
󸀠

[𝑓 (𝑠, 𝑌
󸀠

(𝑠) , 𝑍
󸀠

(𝑠) , 𝑌 (𝑠) , 𝑍 (𝑠))] 𝑑𝑠

+ 𝑍 (𝑠) 𝑑𝑊 (𝑠) ,

𝑌 (𝑇) = 𝜉, 𝑠 ∈ [0, 𝑇] ,

(1)

in a Hilbert space 𝐻, where 𝑓 denotes a given measurable
mapping, 𝑇 is a fixed positive real number, 𝑊(𝑠) is a
cylindrical Wiener process, and 𝐴 represents the generator
of a strongly continuous semigroup 𝑒

𝑡𝐴 in 𝐻 with 𝑡 ≥ 0.
Precise interpretation of E󸀠[𝑓(𝑠, 𝑌󸀠

(𝑠), 𝑍
󸀠

(𝑠), 𝑌(𝑠), 𝑍(𝑠))] is
given in the following sections. Based on the contraction
mapping, we firstly prove that (1) admits a unique mild
solution if the function 𝑓 is Lipschitz continuous. Secondly,
under non-Lipschitz assumptions, we obtain the existence
and uniqueness of the mild solution for mean-field BSEE
by constructing a special Cauchy sequence. The Lipschitz
condition is a special case of this non-Lipschitz condition (see
Mao [5]). In addition, we investigate the well-posedness of
mean-field stochastic evolution equations.

We also study optimal control problems of stochastic
systems governed by mean-field BSPDEs in Hilbert spaces.
Our objective is to formulate a stochastic maximumprinciple
(SMP) for the optimal control problem with an initial state
constraint. There is a vast literature on the theory of SMP.
Among these papers, Andersson and Djehiche [8] studied
the optimal control problem for mean-field stochastic system
when the control domain is convex. They obtained the
maximum principle by a convex variational method. By a
spike variational technique, Buckdahn et al. [11] obtained a
general maximum principle for a special mean-field stochas-
tic differential equation (SDE) where the action space is not
convex. Later, Li [12] investigated the maximum principle
for more general SDEs of mean-field type with a convex
control domain. Wang et al. [13] were concerned with a
partially observed optimal control problem of mean-field
type. By using Girsanov’s theorem and convex variation,
they derived the correspondingmaximum principle and gave
an illustrative example to demonstrate the application of
the obtained SMP. Hafayed studied the mean-field SMP for
singular stochastic control in [14] and mean-field SMP for
FBSDEs with Poisson jump processes in [15].

For the case of stochastic control systems in infinite
dimensions, on the assumption that the control domain is
not necessarily convex while the diffusion coefficient does
not contain the control variable, Hu and Peng [16] used
spike variation approach and Ekeland’s variational principle
to establish the maximum principle for semilinear stochas-
tic evolution control systems with a final state constraint.
Mahmudov and Mckibben [2] obtained an SMP for stochas-
tic control systems governed by BSEEs in Hilbert spaces.
Recently, Fuhrman et al. [17] deduced themaximumprinciple

for optimal control of stochastic PDEs when the control
domain is not necessarily convex.

We establish necessary optimality conditions for the
control problem in the form of a maximum principle on the
assumption that the control domain is not necessarily convex.
Due to the initial state constraint, we first need to apply
Ekeland’s variational principle to convert the given control
problem into a free initial state optimal control problem.Then
spike variation approach is used to deduce the SMP in the
mean-field framework. In our control system, not only the
state processes which are the unique mild solution of the
given BSPDE, but also the cost functional are of mean-field
type. In other words, they depend on the law of the BSPDE
as well as the state and the control. For this new controlled
system, the adjoint equation will turn out to be a mean-field
stochastic evolution equation.

Theplan of this paper is organized as follows. In Section 2,
we introduce some notations which are needed in what
follows. In Section 3, the well-posedness of mean-field BSEE
(1) is studied; we first prove the existence and uniqueness of a
mild solution under the Lipschitz condition and investigate
the regular dependence of the solution (𝑌, 𝑍) on (𝜉, 𝑓).
And then, under the assumption that the coefficient is non-
Lipschitz continuous, a new result on the existence and
uniqueness of the mild solution to (1) in Hilbert space is
established, which generalizes the result for the Lipschitz
case. Section 4 is devoted to the regularity of mean-field
stochastic evolution equations. In Section 5, we derive the
stochastic maximum principle for the BSPDE systems of
mean-field type with an initial state constraint, and at the
last part of Section 5, an LQ example is given to show the
application of our maximum principle. An explicit optimal
control is obtained in this example.

2. Preliminaries

The norm of an element 𝑥 in a Banach space 𝐹 is denoted
by |𝑥|

𝐹
or simply |𝑥|, if no confusion is possible. Γ, 𝐻, and

𝐾 are three real and separable Hilbert spaces. Scalar product
is denoted by ⟨⋅, ⋅⟩, with a subscript to specify the space, if
necessary.L(Γ, 𝐾) is the space of Hilbert-Schmidt operators
from Γ to 𝐾, endowed with the Hilbert-Schmidt norm.

Let (Ω,F,P) be a complete probability space. A cylin-
drical Wiener process {𝑊(𝑡), 𝑡 ≥ 0} in a Hilbert space Γ is a
family of linear mappings Γ → 𝐿

2

(Ω,F,P) such that

(i) for every 𝑢 ∈ Γ, {𝑊(𝑡)𝑢, 𝑡 ≥ 0} is a real (continuous)
Wiener process;

(ii) for every 𝑢, V ∈ Γ and 𝑡, 𝑠 ≥ 0, E(𝑊(𝑡)𝑢 ⋅ 𝑊(𝑠)V) =
(𝑡 ∧ 𝑠)⟨𝑢, V⟩

Γ
.

By F
𝑡
, 𝑡 ∈ [0, 𝑇], we denote the natural filtration of 𝑊,

augmented with the familyN of P-null sets ofF
𝑇
:

F
𝑡
= 𝜎 (𝑊 (𝑠) : 𝑠 ∈ [0, 𝑡]) ∨N. (2)

The filtration (F
𝑡
)
𝑡≥0

satisfies the usual conditions. All
the concepts of measurability for stochastic processes (e.g.,
adapted, etc.) refer to this filtration.
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Next we define several classes of stochastic processes with
values in a Hilbert space𝐻.

(I) H2

F ([0, 𝑇];𝐻) denotes the set of (classes of 𝑑P ×

𝑑𝑡 a.e. equal) measurable random processes {𝜓
𝑡
; 𝑡 ∈

[0, 𝑇]} which satisfy

(i) E∫𝑇
0

|𝜓
𝑡
|
2

𝑑𝑡 < +∞,
(ii) 𝜓

𝑡
isF

𝑡
measurable, for a.e. 0 ≤ 𝑡 ≤ 𝑇.

Evidently, H2

F (0, 𝑇;𝐻) is a Banach space en-
dowed with the canonical norm

󵄩󵄩󵄩󵄩𝜓
󵄩󵄩󵄩󵄩 = {E∫

𝑇

0

󵄨󵄨󵄨󵄨𝜓𝑠
󵄨󵄨󵄨󵄨

2

𝑑𝑠}

1/2

. (3)

(II) S2

F ([0, 𝑇];𝐻) denotes the set of continuous random
processes {𝜓

𝑡
; 𝑡 ∈ [0, 𝑇]} which satisfy

(i) E(sup
0≤𝑡≤𝑇

|𝜓
𝑡
|
2

) < +∞,
(ii) 𝜓

𝑡
isF

𝑡
measurable, for a.e. 0 ≤ 𝑡 ≤ 𝑇.

(III) 𝐿0(Ω,F,P; 𝐻) denotes the space of all 𝐻 valued F-
measurable random variables.

(IV) For 1 ≤ 𝑝 < ∞, 𝐿𝑝(Ω,F,P; 𝐻) is the space of allF-
measurable random variables such that E[|𝜉|𝑝] < ∞.

(V) For any 𝛽 ∈ R, introduce the norm

󵄩󵄩󵄩󵄩(𝑦, 𝑧)
󵄩󵄩󵄩󵄩

2

𝛽,𝑡
= E∫

𝑇

𝑡

𝑒
2𝛽𝑠

(
󵄨󵄨󵄨󵄨𝑦 (𝑠)

󵄨󵄨󵄨󵄨

2

+ |𝑧 (𝑠)|
2

) 𝑑𝑠 (4)

on the Banach space

K
𝛽
[𝑡, 𝑇] = S

2

F ([𝑡, 𝑇] ;𝐻) ×H
2

F ([𝑡, 𝑇] ;L (Γ,𝐻)) . (5)

For 0 < 𝑇 < ∞, all the norms ‖ ⋅ ‖
𝛽,𝑡

with different 𝛽 ∈ R are
equivalent.K[0, 𝑇] = K

0
[0, 𝑇] is the Banach space endowed

with the norm

󵄩󵄩󵄩󵄩(𝑦, 𝑧)
󵄩󵄩󵄩󵄩

2

= E∫
𝑇

0

(
󵄨󵄨󵄨󵄨𝑦 (𝑠)

󵄨󵄨󵄨󵄨

2

+ |𝑧 (𝑠)|
2

) 𝑑𝑠. (6)

The following result on BSEEs (see Lemma 2 in Mahmu-
dov and McKibben [2]) will play a key role in proving the
well-posedness of mean-field BSEEs.

Lemma 1. Let 𝐻 be a Hilbert space, and let 𝐴 : 𝐷(𝐴) ⊂

𝐻 → 𝐻 be a linear operator which generates a 𝐶
0
-semigroup

{𝑆(𝑡), 0 ≤ 𝑡 ≤ 𝑇} on 𝐻. For any (𝜉, 𝑓) ∈ 𝐿
2

(Ω,F
𝑇
,P; 𝐻) ×

H2

F ([0, 𝑇],𝐻) the following equation

𝑌 (𝑡) = 𝑆 (𝑇 − 𝑡) 𝜉 + ∫

𝑇

𝑡

𝑆 (𝑠 − 𝑡) 𝑓 (𝑠) 𝑑𝑠

+ ∫

𝑇

𝑡

𝑆 (𝑠 − 𝑡) 𝑍 (𝑠) 𝑑𝑊 (𝑠) , 𝑃-𝑎.𝑠.
(7)

has a unique solution inK
𝛽
[0, 𝑇]; moreover,

E sup
𝑡≤𝑠≤𝑇

𝑒
2𝛽𝑠

|𝑌 (𝑠)|
2

+ E∫
𝑇

𝑡

𝑒
2𝛽𝑠

|𝑍 (𝑠)|
2

𝑑𝑠

≤ 24𝑀
2

𝑆
(𝑒

2𝛽𝑇

E
󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨

2

+
1

2𝛽
∫

𝑇

𝑡

𝑒
2𝛽𝑟

E
󵄨󵄨󵄨󵄨𝑓 (𝑟)

󵄨󵄨󵄨󵄨

2

𝑑𝑟) ,

(8)

where𝑀
𝑆
= sup{‖𝑆(𝑡)‖B(𝐻), 0 ≤ 𝑡 ≤ 𝑇} andB(𝐻) is the space

of bounded, linear operators on𝐻.

3. Mean-Field Backward Stochastic
Evolution Equations

In this section, we study the existence and uniqueness result
of mild solutions to mean-field BSEEs in a Hilbert space 𝐻.
To this end, we firstly recall some notations introduced by
Buckdahn et al. [7].

Let (Ω,F,P) = (Ω × Ω,F ⊗ F,P ⊗ P) be the
(noncompleted) product of (Ω,F,P) with itself and we
define F = {F

𝑡
= F ⊗ F

𝑡
, 0 ≤ 𝑡 ≤ 𝑇} on this product

space. A random variable 𝜉 ∈ 𝐿
0

(Ω,F,P; 𝐻) originally
defined on Ω is extended canonically to Ω : 𝜉

󸀠

(𝜔
󸀠

, 𝜔) =

𝜉(𝜔
󸀠

), (𝜔
󸀠

, 𝜔) ∈ Ω = Ω × Ω. For any 𝜂 ∈ 𝐿
1

(Ω,F,P), the
variable 𝜂(⋅, 𝜔) : Ω → 𝐾 belongs to 𝐿1(Ω,F,P),P(𝑑𝜔) a.s.,
whose expectation is denoted by

E
󸀠

[𝜂 (⋅, 𝜔)] = ∫
Ω

𝜂 (𝜔
󸀠

, 𝜔)P (𝑑𝜔
󸀠

) . (9)

Note that E󸀠[𝜂] = E󸀠[𝜂(⋅, 𝜔)] ∈ 𝐿1(Ω,F,P) and

E [𝜂] (= ∫
Ω

𝜂𝑑P = ∫
Ω

E
󸀠

[𝜂 (⋅, 𝜔)]P (𝑑𝜔)) = E [E
󸀠

[𝜂]] .

(10)

Themean-field BSEE we consider has the following form:
for any given measurable mapping 𝑓 : [0, 𝑇] ×𝐻×L(Γ,𝐻)×

𝐻 ×L(Γ,𝐻) → 𝐻 and 𝜉 ∈ 𝐿2(Ω,F
𝑇
,P; 𝐻),

𝑑𝑌 (𝑠) = − 𝐴𝑌 (𝑠) 𝑑𝑠

− E
󸀠

[𝑓 (𝑠, 𝑌
󸀠

(𝑠) , 𝑍
󸀠

(𝑠) , 𝑌 (𝑠) , 𝑍 (𝑠))] 𝑑𝑠

+ 𝑍 (𝑠) 𝑑𝑊 (𝑠) ,

𝑌 (𝑇) = 𝜉, 𝑠 ∈ [0, 𝑇] ,

(11)

where 𝐴 : 𝐷(𝐴) ⊂ 𝐻 → 𝐻 is the generator of a strongly
continuous semigroup 𝑒𝑡𝐴, 𝑡 ≥ 0, in the Hilbert space𝐻, with
the notation𝑀

𝐴
≜ sup

𝑡∈[0,𝑇]
|𝑒
𝑡𝐴

|.
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Definition 2. We say that a pair of adapted processes (𝑌, 𝑍)
is a mild solution of mean-field BSEE (11) if (𝑌, 𝑍) ∈

S2

F ([0, 𝑇];𝐻) ×H2

F ([0, 𝑇];L(Γ,𝐻)) and for all 𝑡 ∈ [0, 𝑇]

𝑌 (𝑡) = 𝑒
𝐴(𝑇−𝑡)

𝜉

+ ∫

𝑇

𝑡

𝑒
𝐴(𝑠−𝑡)

E
󸀠

[𝑓 (𝑠, 𝑌
󸀠

(𝑠) , 𝑍
󸀠

(𝑠) , 𝑌 (𝑠) , 𝑍 (𝑠))] 𝑑𝑠

− ∫

𝑇

𝑡

𝑒
𝐴(𝑠−𝑡)

𝑍 (𝑠) 𝑑𝑊 (𝑠) .

(12)

Remark 3. We emphasize that the coefficient of (11) can be
interpreted as

E
󸀠

[𝑓 (𝑠, 𝑌
󸀠

(𝑠) , 𝑍
󸀠

(𝑠) , 𝑌 (𝑠) , 𝑍 (𝑠))] (𝜔)

= E
󸀠

[𝑓 (𝑠, 𝑌
󸀠

(𝑠) , 𝑍
󸀠

(𝑠) , 𝑌 (𝜔, 𝑠) , 𝑍 (𝜔, 𝑠))]

= ∫
Ω

𝑓 (𝜔
󸀠

, 𝜔, 𝑠, 𝑌 (𝜔
󸀠

, 𝑠) , 𝑍 (𝜔
󸀠

, 𝑠) , 𝑌 (𝜔, 𝑠) , 𝑍 (𝜔, 𝑠))

× P (𝑑𝜔
󸀠

) .

(13)

3.1. Lipschitz Case. Now we study the existence and unique-
ness ofmild solutions tomean-field BSEE (11) under Lipschitz
conditions. For𝑓 : [0, 𝑇] × 𝐻 × L(Γ,𝐻) × 𝐻 × L(Γ,𝐻) →

𝐻, assume the following.
(A1) There exists an 𝐿 > 0 such that

󵄨󵄨󵄨󵄨󵄨
𝑓 (𝑡, 𝑦

󸀠

1
, 𝑧

󸀠

1
, 𝑦

1
, 𝑧

1
) − 𝑓 (𝑡, 𝑦

󸀠

2
, 𝑧

󸀠

2
, 𝑦

2
, 𝑧

2
)
󵄨󵄨󵄨󵄨󵄨

2

≤ 𝐿 (
󵄨󵄨󵄨󵄨󵄨
𝑦
󸀠

1
− 𝑦

󸀠

2

󵄨󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨󵄨
𝑧
󸀠

1
− 𝑧

󸀠

2

󵄨󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨𝑦1 − 𝑦2

󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨𝑧1 − 𝑧2

󵄨󵄨󵄨󵄨

2

) ,

(14)

for all 𝑡 ∈ [0, 𝑇], 𝑦󸀠
𝑖
, 𝑦

𝑖
∈ 𝐻, 𝑧

󸀠

𝑖
, 𝑧

𝑖
∈ L(Γ,𝐻), (𝑖 =

1, 2).
(A2) 𝑓(⋅, 0, 0, 0, 0) ∈ H2

F ([0, 𝑇];𝐻).
We have the following theorem.

Theorem 4. For any random variable 𝜉 ∈ 𝐿
2

(Ω,F
𝑇
,P; 𝐻),

under (A1) and (A2), mean-field BSEE (11) admits a unique
mild solution (𝑌, 𝑍) ∈ S2

F ([0, 𝑇];𝐻) ×H2

F ([0, 𝑇];L(Γ,𝐻)).

Proof. Consider the following.

Step 1. For any (𝑦, 𝑧) ∈ S2

F ([0, 𝑇];𝐻) ×H2

F ([0, 𝑇];L(Γ,𝐻)),
BSEE
𝑌 (𝑡) = 𝑒

𝐴(𝑇−𝑡)

𝜉

+ ∫

𝑇

𝑡

E
󸀠

[𝑒
𝐴(𝑠−𝑡)

𝑓 (𝑠, 𝑦
󸀠

(𝑠) , 𝑧
󸀠

(𝑠) , 𝑌 (𝑠) , 𝑍 (𝑠))] 𝑑𝑠

− ∫

𝑇

𝑡

𝑒
𝐴(𝑠−𝑡)

𝑍 (𝑠) 𝑑𝑊 (𝑠) , 0 ≤ 𝑡 ≤ 𝑇

(15)

has a unique solution. In order to get this conclusion, we
define

𝑓
(𝑦,𝑧)

(𝑠, 𝜇, ]) := E
󸀠

[𝑓 (𝑠, 𝑦
󸀠

(𝑠) , 𝑧
󸀠

(𝑠) , 𝜇, ])] . (16)

Then (15) can be rewritten as

𝑌 (𝑡) = 𝑒
𝐴(𝑇−𝑡)

𝜉

+ ∫

𝑇

𝑡

𝑒
𝐴(𝑠−𝑡)

𝑓
(𝑦,𝑧)

(𝑌 (𝑠) , 𝑍 (𝑠)) 𝑑𝑠

− ∫

𝑇

𝑡

𝑒
𝐴(𝑠−𝑡)

𝑍 (𝑠) 𝑑𝑊 (𝑠) .

(17)

Due to (A1), for all (𝜇
1
, ]

1
), (𝜇

2
, ]

2
) ∈ 𝐻×L(Γ,𝐻),𝑓 satisfies

󵄨󵄨󵄨󵄨󵄨
𝑓
(𝑦,𝑧)

(𝜇
1
, ]

1
) − 𝑓

(𝑦,𝑧)

(𝜇
2
, ]

2
)
󵄨󵄨󵄨󵄨󵄨

2

≤ 𝐿 (
󵄨󵄨󵄨󵄨𝜇1 − 𝜇2

󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨]1 − ]

2

󵄨󵄨󵄨󵄨

2

) .

(18)

According to Theorem 3.1 in [1], BSEE (15) has a unique
solution.

Step 2. FromStep 1, we can define amappingΦ : (𝑌(⋅), 𝑍(⋅)) =

Φ[(𝑦
󸀠

(⋅), 𝑧
󸀠

(⋅))] : K[0, 𝑇] → K[0, 𝑇] through

𝑌 (𝑡) = 𝑒
𝐴(𝑇−𝑡)

𝜉

+ ∫

𝑇

𝑡

E
󸀠

[𝑒
𝐴(𝑠−𝑡)

𝑓 (𝑠, 𝑦
󸀠

(𝑠) , 𝑧
󸀠

(𝑠) , 𝑌 (𝑠) , 𝑍 (𝑠))] 𝑑𝑠

− ∫

𝑇

𝑡

𝑒
𝐴(𝑠−𝑡)

𝑍 (𝑠) 𝑑𝑊 (𝑠) , 0 ≤ 𝑡 ≤ 𝑇.

(19)

For any (𝑦𝑖, 𝑧𝑖) ∈ K[0, 𝑇], we set (𝑌𝑖

, 𝑍
𝑖

) = Φ[(𝑦
𝑖

, 𝑧
𝑖

)], 𝑖 =
1, 2, (𝑦, 𝑧) = (𝑦

1

−𝑦
2

, 𝑧
1

−𝑧
2

), and (𝑌, 𝑍) = (𝑌
1

−𝑌
2

, 𝑍
1

−𝑍
2

).
Then, from Lemma 1, we have

E sup
0≤𝑠≤𝑇

𝑒
2𝛽𝑠
󵄨󵄨󵄨󵄨󵄨
𝑌 (𝑠)

󵄨󵄨󵄨󵄨󵄨

2

+ E∫
𝑇

0

𝑒
2𝛽𝑠
󵄨󵄨󵄨󵄨󵄨
𝑍 (𝑠)

󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑠

≤
12𝑀

2

𝐴

𝛽
E
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× [∫

𝑇

0

𝑒
2𝛽𝑠

󵄨󵄨󵄨󵄨󵄨󵄨
E
󸀠

[𝑓 (𝑠, (𝑦
1

(𝑠))
󸀠

, (𝑧
1

(𝑠))
󸀠

, 𝑌
1

(𝑠) , 𝑍
1

(𝑠))

− 𝑓 (𝑠, (𝑦
2

(𝑠))
󸀠

,

(𝑧
2

(𝑠))
󸀠

, 𝑌
2

(𝑠) , 𝑍
2

(𝑠))]
󵄨󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑠]

≤
12𝑀

2

𝐴
𝐿
2

𝛽
E

× [∫

𝑇

0

𝑒
2𝛽𝑠

(E [
󵄨󵄨󵄨󵄨𝑦 (𝑠)

󵄨󵄨󵄨󵄨

2

+ |𝑧 (𝑠)|
2

]

+
󵄨󵄨󵄨󵄨󵄨
𝑌 (𝑠)

󵄨󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨󵄨
𝑍 (𝑠)

󵄨󵄨󵄨󵄨󵄨

2

) 𝑑𝑠]

=
12𝑀

2

𝐴
𝐿
2

𝛽
E

× [∫

𝑇

0

𝑒
2𝛽𝑠

(
󵄨󵄨󵄨󵄨𝑦 (𝑠)

󵄨󵄨󵄨󵄨

2

+ |𝑧 (𝑠)|
2

+
󵄨󵄨󵄨󵄨󵄨
𝑌 (𝑠)

󵄨󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨󵄨
𝑍 (𝑠)

󵄨󵄨󵄨󵄨󵄨

2

) 𝑑𝑠] .

(20)

If we set 𝛽 = 36𝑀
2

𝐴
𝐿
2max{𝑇, 1}, then

E∫
𝑇

0

𝑒
2𝛽𝑠

(
󵄨󵄨󵄨󵄨󵄨
𝑌 (𝑠)

󵄨󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨󵄨
𝑍 (𝑠)

󵄨󵄨󵄨󵄨󵄨

2

) 𝑑𝑠

≤ 𝑇 ⋅ E sup
0≤𝑠≤𝑇

𝑒
2𝛽𝑠
󵄨󵄨󵄨󵄨󵄨
𝑌 (𝑠)

󵄨󵄨󵄨󵄨󵄨

2

+ E∫
𝑇

0

𝑒
2𝛽𝑠
󵄨󵄨󵄨󵄨󵄨
𝑍 (𝑠)

󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑠

≤
12𝑀

2

𝐴
𝐿
2max {𝑇, 1}
𝛽

E

× [∫

𝑇

0

𝑒
2𝛽𝑠

(
󵄨󵄨󵄨󵄨𝑦 (𝑠)

󵄨󵄨󵄨󵄨

2

+ |𝑧 (𝑠)|
2

+
󵄨󵄨󵄨󵄨󵄨
𝑌 (𝑠)

󵄨󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨󵄨
𝑍 (𝑠)

󵄨󵄨󵄨󵄨󵄨

2

) 𝑑𝑠]

=
1

3
E [∫

𝑇

0

𝑒
2𝛽𝑠

(
󵄨󵄨󵄨󵄨𝑦 (𝑠)

󵄨󵄨󵄨󵄨

2

+ |𝑧 (𝑠)|
2

+
󵄨󵄨󵄨󵄨󵄨
𝑌 (𝑠)

󵄨󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨󵄨
𝑍 (𝑠)

󵄨󵄨󵄨󵄨󵄨

2

) 𝑑𝑠] .

(21)

That is,

E∫
𝑇

0

𝑒
2𝛽𝑠

(
󵄨󵄨󵄨󵄨󵄨
𝑌 (𝑠)

󵄨󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨󵄨
𝑍 (𝑠)

󵄨󵄨󵄨󵄨󵄨

2

) 𝑑𝑠

≤
1

2
E∫

𝑇

0

𝑒
2𝛽𝑠

(
󵄨󵄨󵄨󵄨𝑦 (𝑠)

󵄨󵄨󵄨󵄨

2

+ |𝑧 (𝑠)|
2

) 𝑑𝑠.

(22)

The estimate (22) shows that Φ is a contraction on the
spaceK

𝛽
[0, 𝑇] with the norm

‖(𝑌, 𝑍)‖
2

𝛽
= E∫

𝑇

0

𝑒
2𝛽𝑠

(|𝑌 (𝑠)|
2

+ |𝑍 (𝑠)|
2

) 𝑑𝑠. (23)

With the contraction mapping theorem, there admits a
unique fixed point (𝑌, 𝑍) ∈ K

𝛽
[0, 𝑇] such that Φ(𝑌, 𝑍) =

(𝑌, 𝑍). On the other hand, from Step 1, we know that
if Φ(𝑌, 𝑍) = (𝑌, 𝑍), then (𝑌, 𝑍) ∈ S2

F ([0, 𝑇];𝐻) ×

H2

F ([0, 𝑇];L(Γ,𝐻)), which is the unique mild solution of
(11).

Arguing as the previous proof, we arrive at the following
assertion in a straightforward way.

Corollary 5. Suppose that, for all 𝛼 in a metric space 𝐹, 𝑓
𝛼
is

a given function satisfying (A1) and (A2) with 𝐿 independent
on 𝛼. Also suppose that

E
󸀠

[𝑓
𝛼
(𝑠, 𝑌

󸀠

(𝑠) , 𝑍
󸀠

(𝑠) , 𝑌 (𝑠) , 𝑍 (𝑠))]

󳨀→ E
󸀠

[𝑓
𝛼0
(𝑠, 𝑌

󸀠

(𝑠) , 𝑍
󸀠

(𝑠) , 𝑌 (𝑠) , 𝑍 (𝑠))]

(24)

in 𝐿2([0, 𝑇];𝐻) as 𝛼 → 𝛼
0
for all (𝑌, 𝑍) ∈ S2

F ([0, 𝑇];𝐻) ×

H2

F ([0, 𝑇];L(Γ,𝐻)).
If we denote by (𝑌(𝜉, 𝛼), 𝑍(𝜉, 𝛼)) the mild solution of (11)

corresponding to the functions 𝑓
𝛼
and to the final data 𝜉 ∈

𝐿
2

(Ω,F
𝑇
,P; 𝐻), then the map (𝛼, 𝜉) → (𝑌(𝜉, 𝛼), 𝑍(𝜉, 𝛼))

is continuous from 𝐹 × 𝐿
2

(Ω,F
𝑇
,P; 𝐻) to S2

F ([0, 𝑇];𝐻) ×

H2

F ([0, 𝑇];L(Γ,𝐻)).

3.2. Non-Lipschitz Case. This subsection is devoted to finding
some weaker conditions than the Lipschitz one under which
the mean-field BSEE has a unique solution. To state our main
result in this section, we suppose the following.

(A3) For all 𝑡 ∈ [0, 𝑇], 𝑦󸀠
𝑖
, 𝑦

𝑖
∈ 𝐻, 𝑧󸀠

𝑖
, 𝑧

𝑖
∈ L(Γ,𝐻), (𝑖 =

1, 2), there exists an 𝑙 > 0, such that

󵄨󵄨󵄨󵄨󵄨
𝑓 (𝑡, 𝑦

󸀠

1
, 𝑧

󸀠

1
, 𝑦

1
, 𝑧

1
) − 𝑓 (𝑡, 𝑦

󸀠

2
, 𝑧

󸀠

2
, 𝑦

2
, 𝑧

2
)
󵄨󵄨󵄨󵄨󵄨

2

≤ 𝜃 (
󵄨󵄨󵄨󵄨󵄨
𝑦
󸀠

1
− 𝑦

󸀠

2

󵄨󵄨󵄨󵄨󵄨

2

) + 𝜃 (
󵄨󵄨󵄨󵄨𝑦1 − 𝑦2

󵄨󵄨󵄨󵄨

2

)

+ 𝑙 (
󵄨󵄨󵄨󵄨󵄨
𝑧
󸀠

1
− 𝑧

󸀠

2

󵄨󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨𝑧1 − 𝑧2

󵄨󵄨󵄨󵄨

2

) ,

(25)

where 𝜃 : R+

→ R+ is a concave increasing function such
that 𝜃(0) = 0, 𝜃(𝑢) > 0 for 𝑢 > 0 and ∫

0
+
(𝑑𝑢/𝜃(𝑢)) = ∞.

InMao [5], the author gave three examples of the function
𝜃(⋅) to show the generality of condition (A3). From these
examples, we can see that Lipschitz condition (A1) is a special
case of the given condition (A3).

Since 𝜃 is concave and 𝜃(0) = 0, there exists a pair of
positive constants 𝑎 and 𝑏 such that

𝜃 (𝑢) ≤ 𝑎 + 𝑏𝑢 (26)

for all 𝑢 ≥ 0. Therefore, under assumptions (A2) and
(A3), 𝑓(⋅, 𝑦󸀠(⋅), 𝑧󸀠(⋅), 𝑦(⋅), 𝑧(⋅)) ∈ H2

F ([0, 𝑇];𝐻) whenever
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𝑦
󸀠

(⋅), 𝑦(⋅) ∈ S2

F ([0, 𝑇];𝐻) and 𝑧
󸀠

(⋅), 𝑧(⋅) ∈ H2

F ([0, 𝑇];L(Γ,
𝐻)).

By Picard-type iteration, we now construct an approxi-
mate sequence, using which we obtain the desired result. Let
𝑌
0
(𝑡) ≡ 0, and, for 𝑛 ∈ N, let {𝑌

𝑛
, 𝑍

𝑛
} be a sequence in

S2

F ([0, 𝑇];𝐻) ×H2

F ([0, 𝑇];L(Γ,𝐻)) defined recursively by

𝑌
𝑛
(𝑡) = 𝑒

𝐴(𝑇−𝑡)

𝜉

+ ∫

𝑇

𝑡

E
󸀠

[𝑒
𝐴(𝑠−𝑡)

×𝑓 (𝑠, 𝑌
󸀠

𝑛−1
(𝑠) , 𝑍

󸀠

𝑛
(𝑠) , 𝑌

𝑛−1
(𝑠) , 𝑍

𝑛
(𝑠))] 𝑑𝑠

− ∫

𝑇

𝑡

𝑒
𝐴(𝑠−𝑡)

𝑍
𝑛
(𝑠) 𝑑𝑊 (𝑠) ,

(27)

on 0 ≤ 𝑡 ≤ 𝑇. From Theorem 4, (27) has a unique mild
solution (𝑌

𝑛
(𝑡), 𝑍

𝑛
(𝑡)).

In order to give the main result, we need to prepare the
following lemmas about the properties of (𝑌

𝑛
(𝑡), 𝑍

𝑛
(𝑡)), 𝑡 ∈

[0, 𝑇].

Lemma 6. Under hypotheses (A2) and (A3), there exist
positive constants 𝐶

1
and 𝐶

2
such that

(i)E( sup
𝑡≤𝑠≤𝑇

𝑒
2𝛽𝑠󵄨󵄨󵄨󵄨𝑌𝑛 (𝑠)

󵄨󵄨󵄨󵄨

2

) ≤ 2𝐶
1
exp (𝑇 − 𝑡) ,

(ii)E∫
𝑇

𝑡

𝑒
2𝛽𝑠󵄨󵄨󵄨󵄨𝑍𝑛

(𝑠)
󵄨󵄨󵄨󵄨

2

𝑑𝑠 ≤ 2𝐶
1
exp (𝑇 − 𝑡) ,

(iii)E( sup
𝑡≤𝑠≤𝑇

𝑒
2𝛽𝑠󵄨󵄨󵄨󵄨𝑌𝑛+1 (𝑠) − 𝑌𝑛 (𝑠)

󵄨󵄨󵄨󵄨

2

)

≤ 𝐶
2
∫

𝑇

𝑡

𝜃(E sup
𝑠≤𝑟≤𝑇

𝑒
2𝛽𝑟󵄨󵄨󵄨󵄨𝑌𝑛 (𝑟) − 𝑌𝑛−1 (𝑟)

󵄨󵄨󵄨󵄨

2

)𝑑𝑠,

(28)

for all 𝑡 ∈ [0, 𝑇] and 𝑛 ≥ 1.

Proof. Using the hypotheses (A2) and (A3)with 𝜃(𝑢) ≤ 𝑎 + 𝑏𝑢

yields

󵄨󵄨󵄨󵄨󵄨
𝑓 (𝑠, 𝑌

󸀠

𝑛−1
(𝑠) , 𝑍

󸀠

𝑛
(𝑠) , 𝑌

𝑛−1
(𝑠) , 𝑍

𝑛
(𝑠))

󵄨󵄨󵄨󵄨󵄨

2

≤ 2𝜃 (
󵄨󵄨󵄨󵄨󵄨
𝑌
󸀠

𝑛−1
(𝑠)
󵄨󵄨󵄨󵄨󵄨

2

) + 2𝜃 (
󵄨󵄨󵄨󵄨𝑌𝑛−1 (𝑠)

󵄨󵄨󵄨󵄨

2

)

+ 2𝑙 (
󵄨󵄨󵄨󵄨󵄨
𝑍
󸀠

𝑛
(𝑠)
󵄨󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨𝑍𝑛

(𝑠)
󵄨󵄨󵄨󵄨

2

) + 2
󵄨󵄨󵄨󵄨𝑓 (𝑠, 0, 0, 0, 0)

󵄨󵄨󵄨󵄨

2

≤ 4𝑎 + 2𝑏
󵄨󵄨󵄨󵄨󵄨
𝑌
󸀠

𝑛−1
(𝑠)
󵄨󵄨󵄨󵄨󵄨

2

+ 2𝑏
󵄨󵄨󵄨󵄨𝑌𝑛−1 (𝑠)

󵄨󵄨󵄨󵄨

2

+ 2𝑙 (
󵄨󵄨󵄨󵄨󵄨
𝑍
󸀠

𝑛
(𝑠)
󵄨󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨𝑍𝑛

(𝑠)
󵄨󵄨󵄨󵄨

2

) + 2
󵄨󵄨󵄨󵄨𝑓 (𝑠, 0, 0, 0, 0)

󵄨󵄨󵄨󵄨

2

.

(29)

Then, it follows from Lemma 1 that

E( sup
𝑡≤𝑠≤𝑇

𝑒
2𝛽𝑠󵄨󵄨󵄨󵄨𝑌𝑛 (𝑠)

󵄨󵄨󵄨󵄨

2

) + E∫
𝑇

𝑡

𝑒
2𝛽𝑠󵄨󵄨󵄨󵄨𝑍𝑛

(𝑠)
󵄨󵄨󵄨󵄨

2

𝑑𝑠

≤ 24𝑀
2

𝐴
𝑒
2𝛽𝑇

E
󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨

2

+
12𝑀

2

𝐴

𝛽
E

× ∫

𝑇

𝑡

𝑒
2𝛽𝑠

󵄨󵄨󵄨󵄨󵄨
E
󸀠

[𝑓 (𝑠, 𝑌
󸀠

𝑛−1
(𝑠) ,

𝑍
󸀠

𝑛
(𝑠) , 𝑌

𝑛−1
(𝑠) , 𝑍

𝑛
(𝑠))]

󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑠

≤ 24𝑀
2

𝐴
𝑒
2𝛽𝑇

E
󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨

2

+
12𝑀

2

𝐴

𝛽
E

× ∫

𝑇

𝑡

E
󸀠

[𝑒
2𝛽𝑠

󵄨󵄨󵄨󵄨󵄨
𝑓 (𝑠, 𝑌

󸀠

𝑛−1
(𝑠) ,

𝑍
󸀠

𝑛
(𝑠) , 𝑌

𝑛−1
(𝑠) , 𝑍

𝑛
(𝑠))

󵄨󵄨󵄨󵄨󵄨

2

] 𝑑𝑠

≤ 𝐶
1
+
24𝑀

2

𝐴

𝛽
E

× ∫

𝑇

𝑡

E
󸀠

[𝑒
2𝛽𝑠

[𝑏
󵄨󵄨󵄨󵄨󵄨
𝑌
󸀠

𝑛−1
(𝑠)
󵄨󵄨󵄨󵄨󵄨

2

+ 𝑏
󵄨󵄨󵄨󵄨𝑌𝑛−1 (𝑠)

󵄨󵄨󵄨󵄨

2

+ 𝑙
󵄨󵄨󵄨󵄨󵄨
𝑍
󸀠

𝑛
(𝑠)
󵄨󵄨󵄨󵄨󵄨

2

+ 𝑙
󵄨󵄨󵄨󵄨𝑍𝑛

(𝑠)
󵄨󵄨󵄨󵄨

2

]] 𝑑𝑠

= 𝐶
1
+
48𝑀

2

𝐴

𝛽
E

× ∫

𝑇

𝑡

𝑒
2𝛽𝑠

[𝑏
󵄨󵄨󵄨󵄨𝑌𝑛−1 (𝑠)

󵄨󵄨󵄨󵄨

2

+ 𝑙
󵄨󵄨󵄨󵄨𝑍𝑛

(𝑠)
󵄨󵄨󵄨󵄨

2

] 𝑑𝑠,

(30)

where

𝐶
1
= 24𝑀

2

𝐴
𝑒
2𝛽𝑇

E
󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨

2

+
24𝑀

2

𝐴

𝛽
E∫

𝑇

𝑡

𝑒
2𝛽𝑠

[2𝑎 +
󵄨󵄨󵄨󵄨𝑓 (𝑠, 0, 0, 0, 0)

󵄨󵄨󵄨󵄨

2

] 𝑑𝑠 + 1.

(31)

If we set 𝛽 = 96𝑀
2

𝐴
max{𝑏, 𝑙}, we can obtain

sup
𝑛∈N

E( sup
𝑡≤𝑠≤𝑇

𝑒
2𝛽𝑠󵄨󵄨󵄨󵄨𝑌𝑛 (𝑠)

󵄨󵄨󵄨󵄨

2

) +
1

2
∫

𝑇

𝑡

sup
𝑛∈N

E [𝑒
2𝛽𝑠󵄨󵄨󵄨󵄨𝑍𝑛

(𝑠)
󵄨󵄨󵄨󵄨

2

] 𝑑𝑠

≤ 𝐶
1
+
1

2
∫

𝑇

𝑡

sup
𝑛∈N

E [𝑒
2𝛽𝑠󵄨󵄨󵄨󵄨𝑌𝑛−1 (𝑠)

󵄨󵄨󵄨󵄨

2

] 𝑑𝑠

≤ 𝐶
1
+
1

2
∫

𝑇

𝑡

sup
𝑛∈N

E[ sup
𝑠≤𝑟≤𝑇

𝑒
2𝛽𝑟󵄨󵄨󵄨󵄨𝑌𝑛−1 (𝑟)

󵄨󵄨󵄨󵄨

2

]𝑑𝑠.

(32)

An application of the Gronwall inequality now implies

sup
𝑛∈N

E( sup
𝑡≤𝑠≤𝑇

𝑒
2𝛽𝑠󵄨󵄨󵄨󵄨𝑌𝑛 (𝑠)

󵄨󵄨󵄨󵄨

2

) ≤ 2𝐶
1
exp (𝑇 − 𝑡

2
)

≤ 2𝐶
1
exp (𝑇 − 𝑡) .

(33)

Point (i) of Lemma 6 is now proved.
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From formula (32), we know that

∫

𝑇

𝑡

sup
𝑛∈N

E [𝑒
2𝛽𝑠󵄨󵄨󵄨󵄨𝑍𝑛

(𝑠)
󵄨󵄨󵄨󵄨

2

] 𝑑𝑠

≤ 2𝐶
1
+ ∫

𝑇

𝑡

sup
𝑛∈N

E[ sup
𝑠≤𝑟≤𝑇

𝑒
2𝛽𝑟󵄨󵄨󵄨󵄨𝑌𝑛−1 (𝑟)

󵄨󵄨󵄨󵄨

2

]𝑑𝑠

≤ 2𝐶
1
+ 2𝐶

1
∫

𝑇

𝑡

exp (𝑇 − 𝑠) 𝑑𝑠

= 2𝐶
1
exp (𝑇 − 𝑡) .

(34)

This proves point (ii) of the Lemma.
To prove point (iii), we note that

E
󸀠

[
󵄨󵄨󵄨󵄨󵄨
𝑓 (𝑠, 𝑌

󸀠

𝑛
(𝑠) , 𝑍

󸀠

𝑛+1
(𝑠) , 𝑌

𝑛
(𝑠) , 𝑍

𝑛+1
(𝑠))

− 𝑓 (𝑠, 𝑌
󸀠

𝑛−1
(𝑠) , 𝑍

󸀠

𝑛
(𝑠) , 𝑌

𝑛−1
(𝑠) , 𝑍

𝑛
(𝑠))

󵄨󵄨󵄨󵄨󵄨

2

]

≤ E
󸀠

[𝜃 (
󵄨󵄨󵄨󵄨󵄨
𝑌
󸀠

𝑛
(𝑠) − 𝑌

󸀠

𝑛−1
(𝑠)
󵄨󵄨󵄨󵄨󵄨

2

) + 𝑙
󵄨󵄨󵄨󵄨󵄨
𝑍
󸀠

𝑛+1
(𝑠) − 𝑍

󸀠

𝑛
(𝑠)
󵄨󵄨󵄨󵄨󵄨

2

]

+ 𝜃 (
󵄨󵄨󵄨󵄨𝑌𝑛 (𝑠) − 𝑌𝑛−1 (𝑠)

󵄨󵄨󵄨󵄨

2

) + 𝑙
󵄨󵄨󵄨󵄨𝑍𝑛+1

(𝑠) − 𝑍
𝑛
(𝑠)
󵄨󵄨󵄨󵄨

2

= E [𝜃 (
󵄨󵄨󵄨󵄨𝑌𝑛 (𝑠) − 𝑌𝑛−1 (𝑠)

󵄨󵄨󵄨󵄨

2

) + 𝑙
󵄨󵄨󵄨󵄨𝑍𝑛+1

(𝑠) − 𝑍
𝑛
(𝑠)
󵄨󵄨󵄨󵄨

2

]

+ 𝜃 (
󵄨󵄨󵄨󵄨𝑌𝑛 (𝑠) − 𝑌𝑛−1 (𝑠)

󵄨󵄨󵄨󵄨

2

) + 𝑙
󵄨󵄨󵄨󵄨𝑍𝑛+1

(𝑠) − 𝑍
𝑛
(𝑠)
󵄨󵄨󵄨󵄨

2

.

(35)

By Lemma 1 we have

E( sup
𝑡≤𝑠≤𝑇

𝑒
2𝛽𝑠󵄨󵄨󵄨󵄨𝑌𝑛+1 (𝑠) − 𝑌𝑛 (𝑠)

󵄨󵄨󵄨󵄨

2

)

+ E∫
𝑇

𝑡

𝑒
2𝛽𝑠󵄨󵄨󵄨󵄨𝑍𝑛+1

(𝑠) − 𝑍
𝑛
(𝑠)
󵄨󵄨󵄨󵄨

2

𝑑𝑠

≤
12𝑀

2

𝐴

𝛽
E

× ∫

𝑇

𝑡

𝑒
2𝛽𝑠

󵄨󵄨󵄨󵄨󵄨
E
󸀠

[𝑓 (𝑠, 𝑌
󸀠

𝑛
(𝑠) , 𝑍

󸀠

𝑛+1
(𝑠) , 𝑌

𝑛
(𝑠) , 𝑍

𝑛+1
(𝑠))

− 𝑓 (𝑠, 𝑌
󸀠

𝑛−1
(𝑠) , 𝑍

󸀠

𝑛
(𝑠) ,

𝑌
𝑛−1

(𝑠) , 𝑍
𝑛
(𝑠))]

󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑠

≤
12𝑀

2

𝐴

𝛽
E

× ∫

𝑇

𝑡

𝑒
2𝛽𝑠

E
󸀠

[
󵄨󵄨󵄨󵄨󵄨
𝑓 (𝑠, 𝑌

󸀠

𝑛
(𝑠) , 𝑍

󸀠

𝑛+1
(𝑠) , 𝑌

𝑛
(𝑠) , 𝑍

𝑛+1
(𝑠))

− 𝑓 (𝑠, 𝑌
󸀠

𝑛−1
(𝑠) , 𝑍

󸀠

𝑛
(𝑠) ,

𝑌
𝑛−1

(𝑠) , 𝑍
𝑛
(𝑠))

󵄨󵄨󵄨󵄨󵄨

2

] 𝑑𝑠

≤
24𝑀

2

𝐴

𝛽
E∫

𝑇

𝑡

𝑒
2𝛽𝑠

[𝜃 (
󵄨󵄨󵄨󵄨𝑌𝑛 (𝑠) − 𝑌𝑛−1 (𝑠)

󵄨󵄨󵄨󵄨

2

)

+ 𝑙
󵄨󵄨󵄨󵄨𝑍𝑛+1

(𝑠) − 𝑍
𝑛
(𝑠)
󵄨󵄨󵄨󵄨

2

] 𝑑𝑠.

(36)

We can choose 𝛽 > 0 sufficiently large such that

(1 −
24𝑀

2

𝐴
𝑙

𝛽
)E∫

𝑇

𝑡

𝑒
2𝛽𝑠󵄩󵄩󵄩󵄩𝑍𝑛+1

(𝑠) − 𝑍
𝑛
(𝑠)
󵄩󵄩󵄩󵄩

2

𝑑𝑠 ≥ 0. (37)

Then

E( sup
𝑡≤𝑠≤𝑇

𝑒
2𝛽𝑠󵄨󵄨󵄨󵄨𝑌𝑛+1 (𝑠) − 𝑌𝑛 (𝑠)

󵄨󵄨󵄨󵄨

2

)

≤
24𝑀

2

𝐴

𝛽
E∫

𝑇

𝑡

𝑒
2𝛽𝑠

𝜃 (
󵄨󵄨󵄨󵄨𝑌𝑛 (𝑠) − 𝑌𝑛−1 (𝑠)

󵄨󵄨󵄨󵄨

2

) 𝑑𝑠

≤ 𝐶
2
E∫

𝑇

𝑡

𝜃(E sup
𝑠≤𝑟≤𝑇

𝑒
2𝛽𝑟󵄨󵄨󵄨󵄨𝑌𝑛 (𝑟) − 𝑌𝑛−1 (𝑟)

󵄨󵄨󵄨󵄨

2

)𝑑𝑠,

(38)

where we set 𝐶
2
= (24𝑀

2

𝐴
/𝛽)𝑒

2𝛽𝑇.

We divide the interval [0, 𝑇] into subintervals 0 = 𝜏
0
<

𝜏
1
< ⋅ ⋅ ⋅ < 𝜏

𝑚
= 𝑇 by setting 𝜏

𝑘
= 𝑘𝛿, 𝑘 = 1, 2, 3, . . . , 𝑚 with

𝛿 = 𝑇/𝑚.

Lemma 7. For all 𝑡 ∈ [𝜏
𝑘−1

, 𝜏
𝑘
], define

𝐶
3
= 𝐶

2
𝜃 (2𝐶

1
exp (𝑇)) ,

𝜑
𝑘,1
(𝑡) = 𝐶

3
(𝜏
𝑘
− 𝑡) ,

𝜑
𝑘,𝑛+1

(𝑡) = 𝐶
2
∫

𝜏𝑘

𝑡

𝜃 (𝜑
𝑘,𝑛
(𝑠)) 𝑑𝑠, 𝑛 ≥ 1.

(39)

Then, for all 𝑛 ≥ 1, the following inequality holds for a suitable
𝛿 > 0:

0 ≤ 𝜑
𝑘,𝑛
(𝑡) ≤ 𝜑

𝑘,𝑛−1
(𝑡) ≤ ⋅ ⋅ ⋅ ≤ 𝜑

𝑘,1
(𝑡) . (40)

Proof. Firstly, it needs to be verified that for all 𝑡 ∈ [𝜏
𝑘−1

, 𝜏
𝑘
]

the following inequality

𝜑
𝑘,2
(𝑡) = 𝐶

2
∫

𝜏𝑘

𝑡

𝜃 (𝜑
𝑘,1
(𝑠)) 𝑑𝑠 = 𝐶

2
∫

𝜏𝑘

𝑡

𝜃 (𝐶
3
(𝜏
𝑘
− 𝑠)) 𝑑𝑠

≤ 𝐶
3
(𝜏
𝑘
− 𝑡) = 𝜑

𝑘,1
(𝑡)

(41)

holds provided 𝛿 > 0 is chosen sufficiently small.
Actually, this inequality holds provided that

𝐶
2
𝜃 (𝐶

3
(𝜏
𝑘
− 𝑡)) ≤ 𝐶

3
= 𝐶

2
𝜃 (2𝐶

1
exp (𝑇)) (42)
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or

𝐶
3
(𝜏
𝑘
− 𝑡) = 𝐶

2
𝜃 (2𝐶

1
exp (𝑇)) (𝜏

𝑘
− 𝑡) ≤ 2𝐶

1
exp (𝑇) .

(43)

Since 𝐶
1
> 1, from 𝜃(𝑢) ≤ 𝑎 + 𝑏𝑢, the above inequality holds

if

𝐶
2
(𝑎 + 𝑏) (𝜏

𝑘
− 𝑡) ≤ 1. (44)

Thus, (41) holds for any 𝑡 ∈ [𝜏
𝑘−1

, 𝜏
𝑘
], 𝑘 = 1, 2, . . . , 𝑚 if 𝜏

𝑘
−

𝜏
𝑘−1

≤ 1/𝐶
2
(𝑎 + 𝑏). Therefore, we can choose a sufficiently

large𝑚 ∈ N such that 𝛿 = 𝑇/𝑚 ≤ 1/𝐶
2
(𝑎 + 𝑏). Clearly, such a

𝛿 only depends on 𝑎, 𝑏, 𝑙, 𝑇, and𝑀
𝐴
.

Now, assume that (40) holds for some 𝑛 ≥ 2. Then, we
have

𝜑
𝑘,𝑛+1

(𝑡) = 𝐶
2
∫

𝜏𝑘

𝑡

𝜃 (𝜑
𝑘,𝑛
(𝑠)) 𝑑𝑠 ≤ 𝐶

2
∫

𝜏𝑘

𝑡

𝜃 (𝜑
𝑘,𝑛−1

(𝑠)) 𝑑𝑠

= 𝜑
𝑘,𝑛
(𝑡) , ∀𝑡 ∈ [𝜏

𝑘−1
, 𝜏

𝑘
] .

(45)

This completes the proof.

Now, we can give the main result of this section.

Theorem 8. Assume that (A2) and (A3) hold. Then, there
exists a unique mild solution (𝑌, 𝑍) to (11).

Proof. Consider the following.

Uniqueness. To show the uniqueness, let both (𝑌, 𝑍) and
(𝑌̃, 𝑍) be solutions of (11). For any 𝛽 > 0, similar to the proof
of (36), one can obtain

E( sup
𝑡≤𝑠≤𝑇

𝑒
2𝛽𝑠
󵄨󵄨󵄨󵄨󵄨
𝑌 (𝑠) − 𝑌̃ (𝑠)

󵄨󵄨󵄨󵄨󵄨

2

) + E∫
𝑇

𝑡

𝑒
2𝛽𝑠
󵄨󵄨󵄨󵄨󵄨
𝑍 (𝑠) − 𝑍 (𝑠)

󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑠

≤
24𝑀

2

𝐴

𝛽
E

× ∫

𝑇

𝑡

𝑒
2𝛽𝑠

[𝜃 (
󵄨󵄨󵄨󵄨󵄨
𝑌 (𝑠) − 𝑌̃ (𝑠)

󵄨󵄨󵄨󵄨󵄨

2

) + 𝑙
󵄨󵄨󵄨󵄨󵄨
𝑍 (𝑠) − 𝑍 (𝑠)

󵄨󵄨󵄨󵄨󵄨

2

] 𝑑𝑠.

(46)

That is, if 𝛽 is sufficiently large,

E( sup
𝑡≤𝑠≤𝑇

𝑒
2𝛽𝑠
󵄨󵄨󵄨󵄨󵄨
𝑌 (𝑠) − 𝑌̃ (𝑠)

󵄨󵄨󵄨󵄨󵄨

2

)

≤
24𝑀

2

𝐴

𝛽
E∫

𝑇

𝑡

𝑒
2𝛽𝑠

[𝜃 (
󵄨󵄨󵄨󵄨󵄨
𝑌 (𝑠) − 𝑌̃ (𝑠)

󵄨󵄨󵄨󵄨󵄨

2

)] 𝑑𝑠

≤ 𝐶
2
E∫

𝑇

𝑡

𝜃(E sup
𝑠≤𝑟≤𝑇

𝑒
2𝛽𝑟
󵄨󵄨󵄨󵄨󵄨
𝑌 (𝑠) − 𝑌̃ (𝑠)

󵄨󵄨󵄨󵄨󵄨

2

)𝑑𝑠.

(47)

An application of Bihari inequality yields

E( sup
𝑡≤𝑠≤𝑇

𝑒
2𝛽𝑠
󵄨󵄨󵄨󵄨󵄨
𝑌 (𝑠) − 𝑌̃ (𝑠)

󵄨󵄨󵄨󵄨󵄨

2

) = 0. (48)

So 𝑌(𝑡) = 𝑌̃(𝑡) for all 𝑡 ∈ [0, 𝑇] a.s. It then follows from (46)
that 𝑍(𝑡) = 𝑍(𝑡) for all 𝑡 ∈ [0, 𝑇] a.s. as well. This establishes
the uniqueness.

Existence.We claim that the sequence (𝑌
𝑛
, 𝑍

𝑛
) defined by (27)

satisfies

E sup
𝑡≤𝑠≤𝑇

𝑒
2𝛽𝑠󵄨󵄨󵄨󵄨𝑌𝑛+1 (𝑠) − 𝑌𝑛 (𝑠)

󵄨󵄨󵄨󵄨

2

󳨀→ 0, ∀0 ≤ 𝑡 ≤ 𝑇, (49)

as 𝑛 → ∞.
Indeed, for all 𝑡 ∈ [𝜏

𝑘−1
, 𝜏

𝑘
], we set 𝜑

𝑘,𝑛
(𝑡) =

E sup
𝑠∈[𝑡,𝜏𝑘]

𝑒
2𝛽𝑠

|𝑌
𝑛+1

(𝑠) − 𝑌
𝑛
(𝑠)|

2. By Lemmas 6 and 7,

𝜑
𝑘,1
(𝑡) = E sup

𝑠∈[𝑡,𝜏𝑘]

𝑒
2𝛽𝑠󵄨󵄨󵄨󵄨𝑌2 (𝑠) − 𝑌1 (𝑠)

󵄨󵄨󵄨󵄨

2

≤ 𝐶
2
∫

𝜏𝑘

𝑡

𝜃(E sup
𝑠≤𝑟≤𝜏𝑘

𝑒
2𝛽𝑟󵄨󵄨󵄨󵄨𝑌1 (𝑟) − 𝑌0 (𝑟)

󵄨󵄨󵄨󵄨

2

)𝑑𝑠

≤ 𝐶
2
∫

𝜏𝑘

𝑡

𝜃 (2𝐶
1
exp (𝜏

𝑘
− 𝑡)) 𝑑𝑠

≤ 𝐶
2
𝜃 (2𝐶

1
exp (𝑇)) (𝜏

𝑘
− 𝑡) = 𝐶

3
(𝜏
𝑘
− 𝑡) = 𝜑

𝑘,1
(𝑡) .

(50)

Suppose that 𝜑
𝑘,𝑛
(𝑡) ≤ 𝜑

𝑘,𝑛
(𝑡) holds for some 𝑛 ≥ 1.

According to Lemma 6(iii) and Lemma 7, for all 𝑡 ∈ [𝜏
𝑘−1

, 𝜏
𝑘
],

we obtain

𝜑
𝑘,𝑛+1

(𝑡) = E sup
𝑠∈[𝑡,𝜏𝑘]

𝑒
2𝛽𝑠󵄨󵄨󵄨󵄨𝑌𝑛+2 (𝑠) − 𝑌𝑛+1 (𝑠)

󵄨󵄨󵄨󵄨

2

≤ 𝐶
2
∫

𝜏𝑘

𝑡

𝜃(E sup
𝑟∈[𝑠,𝜏𝑘]

𝑒
2𝛽𝑟󵄨󵄨󵄨󵄨𝑌𝑛+1 (𝑟) − 𝑌𝑛 (𝑟)

󵄨󵄨󵄨󵄨

2

)𝑑𝑠

= 𝐶
2
∫

𝜏𝑘

𝑡

𝜃 (𝜑
𝑘,𝑛
(𝑠)) 𝑑𝑠

≤ 𝐶
2
∫

𝜏𝑘

𝑡

𝜃 (𝜑
𝑘,𝑛
(𝑠)) 𝑑𝑠 = 𝜑

𝑘,𝑛+1
(𝑡) .

(51)

This implies that, for all 𝑛 ∈ N,

𝜑
𝑘,𝑛
(𝑡) ≤ 𝜑

𝑘,𝑛
(𝑡) . (52)

By definition, 𝜑
𝑘,𝑛
(⋅) is continuous on [𝜏

𝑘−1
, 𝜏

𝑘
]. Note that

for each 𝑛 ≥ 1, 𝜑
𝑘,𝑛
(⋅) is decreasing on [𝜏

𝑘−1
, 𝜏

𝑘
], and for each

𝑡, 𝑘, 𝜑
𝑘,𝑛
(𝑡) is a nonincreasing sequence. Therefore, we define

the function 𝜑
𝑘
(𝑡) by 𝜑

𝑘,𝑛
(𝑡) ↓ 𝜑

𝑘
(𝑡). It is easy to verify that

𝜑
𝑘
(𝑡) is continuous and nonincreasing on [𝜏

𝑘−1
, 𝜏

𝑘
]. By the

definitions of 𝜑
𝑘,𝑛
(𝑡) and 𝜑

𝑘
(𝑡) we get

𝜑
𝑘
(𝑡) = lim

𝑛→∞

𝐶
2
∫

𝜏𝑘

𝑡

𝜃 (𝜑
𝑘,𝑛
(𝑠)) 𝑑𝑠 = 𝐶

2
∫

𝜏𝑘

𝑡

𝜃 (𝜑
𝑘
(𝑠)) 𝑑𝑠

(53)

for all 𝜏
𝑘−1

≤ 𝑡 ≤ 𝜏
𝑘
. Since ∫

0
+
(𝑑𝑢/𝜃(𝑢)) = ∞, the Bihari

inequality implies

𝜑
𝑘
(𝑡) = 0, for each 𝑡 ∈ [𝜏

𝑘−1
, 𝜏

𝑘
] . (54)

For each 𝑘 ∈ {1, 2, . . . , 𝑚}, (52) and (54) yield

lim
𝑛→∞

𝜑
𝑘,𝑛
(𝑡) = 0. (55)
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Then,

E sup
𝑡≤𝑠≤𝑇

𝑒
2𝛽𝑠󵄨󵄨󵄨󵄨𝑌𝑛+1 (𝑠) − 𝑌𝑛 (𝑠)

󵄨󵄨󵄨󵄨

2

≤ max
1≤𝑘≤𝑚

E sup
𝑠∈[𝜏𝑘−1,𝜏𝑘]

𝑒
2𝛽𝑠󵄨󵄨󵄨󵄨𝑌𝑛+1 (𝑠) − 𝑌𝑛 (𝑠)

󵄨󵄨󵄨󵄨

2

= max
1≤𝑘≤𝑚

𝜑
𝑘,𝑛
(𝑡) 󳨀→ 0,

(56)

as 𝑛 → ∞, and this proves the assertion (49).
By (36), we obtain

E( sup
𝑡≤𝑠≤𝑇

𝑒
2𝛽𝑠󵄨󵄨󵄨󵄨𝑌𝑛+1 (𝑠) − 𝑌𝑛 (𝑠)

󵄨󵄨󵄨󵄨

2

) + (1 −
24𝑀

2

𝐴
𝑙

𝛽
)E

× ∫

𝑇

𝑡

𝑒
2𝛽𝑠󵄨󵄨󵄨󵄨𝑍𝑛+1

(𝑠) − 𝑍
𝑛
(𝑠)
󵄨󵄨󵄨󵄨

2

𝑑𝑠

≤
24𝑀

2

𝐴

𝛽
E∫

𝑇

𝑡

𝑒
2𝛽𝑠

[𝜃 (
󵄨󵄨󵄨󵄨𝑌𝑛 (𝑠) − 𝑌𝑛−1 (𝑠)

󵄨󵄨󵄨󵄨

2

)] 𝑑𝑠.

(57)

Applying (49) to the above formula, we see that (𝑌
𝑛
, 𝑍

𝑛
) is

a Cauchy (hence convergent) sequence in S2

F ([0, 𝑇];𝐻) ×

H2

F ([0, 𝑇];L(Γ,𝐻)); denote the limit by (𝑌, 𝑍). Now letting
𝑛 → ∞ in (27), we obtain that

𝑌 (𝑡) = 𝑒
𝐴(𝑇−𝑡)

𝜉

+ ∫

𝑇

𝑡

E
󸀠

[𝑒
𝐴(𝑠−𝑡)

𝑓 (𝑠, 𝑌
󸀠

(𝑠) , 𝑍
󸀠

(𝑠) , 𝑌 (𝑠) , 𝑍 (𝑠))] 𝑑𝑠

− ∫

𝑇

𝑡

𝑒
𝐴(𝑠−𝑡)

𝑍 (𝑠) 𝑑𝑊 (𝑠)

(58)

holds on the entire interval [0, 𝑇].The theorem is nowproved.

To illustrate the application of the obtained existence
and uniqueness result, we consider the example of backward
stochastic partial differential equations (BSPDEs) of mean-
field type.

Example 9. Let O be an open bounded domain in R𝑛

with uniformly 𝐶2 boundary 𝜕O, let 𝐵(𝑡) be a standard 𝑛-
dimensional Brownian motion (equipped with the normal
filtration), and let 𝜉 : O → R be an F

𝑇
-measurable

random variable. We also let 𝐿 denote the semielliptic partial
differential operator on 𝐶2

(R) of the form

𝐿 =

𝑛

∑

𝑖,𝑗=1

𝑎
𝑖𝑗
(𝑥)

𝜕
2

𝜕𝑥
𝑖
𝜕𝑥

𝑗

+

𝑛

∑

𝑖=1

𝑏
𝑖
(𝑥)

𝜕

𝜕𝑥
𝑖

. (59)

The aim is to study the solvability of the following initial
boundary value problem:

𝑑𝑌 (𝑡, 𝑥)

= (𝐿𝑌 (𝑡, 𝑥) + E
󸀠

× [𝑔 (𝑡, 𝑥, 𝑌
󸀠

(𝑡, 𝑥) , 𝑍
󸀠

(𝑡, 𝑥) , 𝑌 (𝑡, 𝑥) , 𝑍 (𝑡, 𝑥))]) 𝑑𝑡

+ 𝑍 (𝑡, 𝑥) 𝑑𝐵 (𝑡) , a.e. on (0, 𝑇) × O

𝑌 (𝑡, 𝑥) = 0, a.e. on (0, 𝑇) × 𝜕O,

𝑌 (𝑇, 𝑥) = 𝜉 (𝑇, 𝑥) , a.e. onO,
(60)

where

𝑌 : [0, 𝑇] × O 󳨀→ R,

𝑍 : [0, 𝑇] × O 󳨀→ L (R
𝑛

; 𝐿
2

(O)) ,

𝑔 : [0, 𝑇] × O ×R ×L (R
𝑛

; 𝐿
2

(O))

×R ×L (R
𝑛

; 𝐿
2

(O)) 󳨀→ R.

(61)

The following assumptions will have to be in force.

(H1) 𝑎
𝑖𝑗
, 𝑏

𝑖
: R𝑛

→ R are uniformly continuous and
bounded and satisfy the usual uniform ellipticity
condition: ∑𝑛

𝑖,𝑗=1
𝑎
𝑖𝑗
(𝑥)𝑤

𝑖
𝑤
𝑗
≥ 𝜆|𝑤|

2, for some 𝜆 > 0

and all 𝑥 ∈ O, 𝑤 ∈ R𝑛.
(H2) 𝑔 is measurable in (𝑡, 𝑥, 𝑦, 𝑧̃, 𝑦, 𝑧) and continuous in

(𝑧̃, 𝑧), and there exists 𝐶 > 0 such that
󵄨󵄨󵄨󵄨𝑔 (𝑡, 𝑥, 𝑦1, 𝑧̃1, 𝑦1, 𝑧1) − 𝑔 (𝑡, 𝑥, 𝑦2, 𝑧̃2, 𝑦2, 𝑧2)

󵄨󵄨󵄨󵄨

≤ 𝐶 [
󵄨󵄨󵄨󵄨𝑦1 − 𝑦2

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑧̃1 − 𝑧̃2

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑦1 − 𝑦2

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑧1 − 𝑧2

󵄨󵄨󵄨󵄨] ,

(62)

for all 0 ≤ 𝑡 ≤ 𝑇, 𝑥 ∈ O, 𝑦
1
, 𝑦

2
, 𝑦

1
, 𝑦

2
∈ R, 𝑧̃

1
, 𝑧̃

2
, 𝑧

1
, 𝑧

2
∈

L(R𝑛

; 𝐿
2

(O)).
Then, we are now in a position of showing existence and

uniqueness of the solution of BSPDEs (60).

Theorem 10. If (H1) and (H2) are satisfied, then the mean-
field BSPDE (60) has a unique mild solution (𝑌, 𝑍) ∈

𝐿
2

(0, 𝑇; 𝐿
2

(Ω, 𝐿
2

(O))) × 𝐿2F (0, 𝑇; 𝐿
2

(R𝑛

, 𝐿
2

(Ω, 𝐿
2

(O)))).

Proof. Let𝐻 = 𝐿
2

(O) and𝐾 = R𝑛. Define the operator 𝐴 by

𝐴𝑌 (𝑡, ⋅) = 𝐿𝑌 (𝑡, ⋅) . (63)

It is shown in [17] (see Example 2.1 in [17]) that 𝐴 generates
a strongly continuous semigroup on 𝐻. Define the maps 𝑓 :

[0, 𝑇] × 𝐻 ×L(𝐾,𝐻) × 𝐻 ×L(𝐾,𝐻) → 𝐻 by

𝑓 (𝑡, 𝑌
󸀠

(𝑡) , 𝑍
󸀠

(𝑡) , 𝑌 (𝑡) , 𝑍 (𝑡)) (𝑥)

= 𝑔 (𝑡, 𝑥, 𝑌
󸀠

(𝑡, 𝑥) , 𝑍
󸀠

(𝑡, 𝑥) , 𝑌 (𝑡, 𝑥) , 𝑍 (𝑡, 𝑥))

(64)
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for all 0 ≤ 𝑡 ≤ 𝑇, 𝑥 ∈ O. With these identifications,
(60) can be written in the form of (11). By (H2), we know
𝑓 satisfy condition (A1). Hence, an application of Theorem 4
concludes that (60) has a unique mild solution (𝑌, 𝑍) ∈

𝐿
2

(0, 𝑇; 𝐿
2

(Ω, 𝐿
2

(O))) × 𝐿2F (0, 𝑇; 𝐿
2

(R𝑛

, 𝐿
2

(Ω, 𝐿
2

(O)))).

4. Mean-Field Stochastic Evolution Equations

Let 𝑊(𝑡), 𝑡 ∈ [0, 𝑇], be a cylindrical Wiener process with
values in a Hilbert space Γ, defined on a probability space
(Ω,F,P). We fix an interval [𝑡, 𝑇] ⊂ [0, 𝑇] and consider
the stochastic evolution equations of mean-field type for an
unknown process 𝑋(𝑠), 𝑠 ∈ [𝑡, 𝑇] with values in a Hilbert
space 𝐾:

𝑑𝑋 (𝑠) = 𝐵𝑋 (𝑠) 𝑑𝑠 + E
󸀠

[𝑏 (𝑠, 𝑋
󸀠

(𝑠) , 𝑋 (𝑠))] 𝑑𝑠

+ E
󸀠

[𝜎 (𝑠, 𝑋
󸀠

(𝑠) , 𝑋 (𝑠))] 𝑑𝑊 (𝑠) ,

𝑋 (𝑡) = 𝑥 ∈ 𝐾,

(65)

where operator 𝐵 is the generator of a strongly continuous
semigroup 𝑒

𝑡𝐵, 𝑡 ≥ 0, in the Hilbert space 𝐾, with 𝑀
𝐵
≜

sup
𝑡∈[0,𝑇]

|𝑒
𝑡𝐵

|.
By a mild solution of (65) we mean an F

𝑠
-measurable

process 𝑋(𝑠), 𝑠 ∈ [𝑡, 𝑇], with continuous paths in 𝐾, such
that, P-a.s.,

𝑋 (𝑠) = 𝑒
𝐵(𝑠−𝑡)

𝑥

+ ∫

𝑠

𝑡

𝑒
𝐵(𝑠−𝜏)

E
󸀠

[𝑏 (𝜏, 𝑋
󸀠

(𝜏) , 𝑋 (𝜏))] 𝑑𝜏

+ ∫

𝑠

𝑡

𝑒
𝐵(𝑠−𝜏)

E
󸀠

[𝜎 (𝜏,𝑋
󸀠

(𝜏) , 𝑋 (𝜏))] 𝑑𝑊 (𝜏) ,

𝑠 ∈ [𝑡, 𝑇] .

(66)

We suppose the following.
(A4) 𝑏 : [0, 𝑇] × 𝐾 × 𝐾 → 𝐾 is a measurable mapping

which satisfies
󵄨󵄨󵄨󵄨󵄨
𝑏 (𝑡, 𝑥

󸀠

, 𝑥) − 𝑏 (𝑡, 𝑦
󸀠

, 𝑦)
󵄨󵄨󵄨󵄨󵄨

2

≤ 𝐿
1
(
󵄨󵄨󵄨󵄨󵄨
𝑥
󸀠

− 𝑦
󸀠
󵄨󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨

2

) ,

𝑡 ∈ [0, 𝑇] , 𝑥
󸀠

, 𝑥, 𝑦
󸀠

, 𝑦 ∈ 𝐾,

(67)

for some constant 𝐿
1
> 0.

(A5) The mapping 𝜎 : [0, 𝑇] × 𝐾 × 𝐾 → L(Γ, 𝐾) fulfills
that for every V ∈ Γ the map 𝜎V : [0, 𝑇] × 𝐾 × 𝐾 → 𝐾

is measurable, for every 𝑠 > 0, 𝑡 ∈ [0, 𝑇], 𝑥󸀠, 𝑦󸀠, 𝑥, 𝑦 ∈ 𝐾,
𝑒
𝑠𝐵

𝜎(𝑡, 𝑥
󸀠

, 𝑥) ∈ L(Γ, 𝐾), and
󵄨󵄨󵄨󵄨󵄨
𝑒
𝑠𝐵

𝜎 (𝑡, 𝑥
󸀠

, 𝑥)
󵄨󵄨󵄨󵄨󵄨L(Γ,𝐾)

≤ 𝐿
2
𝑠
−𝛾

(1 +
󵄨󵄨󵄨󵄨󵄨
𝑥
󸀠
󵄨󵄨󵄨󵄨󵄨
+ |𝑥|) ,

󵄨󵄨󵄨󵄨󵄨
𝑒
𝑠𝐵

𝜎 (𝑡, 𝑥
󸀠

, 𝑥) − 𝑒
𝑠𝐵

𝜎 (𝑡, 𝑦
󸀠

, 𝑦)
󵄨󵄨󵄨󵄨󵄨L(Γ,𝐾)

≤ 𝐿
2
𝑠
−𝛾

(
󵄨󵄨󵄨󵄨󵄨
𝑥
󸀠

− 𝑦
󸀠
󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨) ,

󵄨󵄨󵄨󵄨󵄨
𝜎 (𝑡, 𝑥

󸀠

, 𝑥)
󵄨󵄨󵄨󵄨󵄨L(Γ,𝐾)

≤ 𝐿
2
(1 +

󵄨󵄨󵄨󵄨󵄨
𝑥
󸀠
󵄨󵄨󵄨󵄨󵄨
+ |𝑥|) ,

(68)

for some constants 𝐿
2
> 0 and 𝛾 ∈ [0, 1/2).

Theorem 11. Under assumptions (A3) and (A4), (65) has a
unique mild solution𝑋(⋅) ∈ S2

F ([𝑡, 𝑇]; 𝐾).

The proof is constructed in two steps like that of
Theorem 4 and it uses standard arguments for stochastic evo-
lution equations introduced in the proof of Proposition 3.2 in
[3]. Since the proof is straightforward, we prefer to omit it.

Remark 12. In our paper, Lipchitz condtion (A4) is given
to get the well-posedness of mean-field stochastic evolution
equations. In fact, (A4) can be replaced by a weaker condition
such as (A3). We just give the condition (A4) for simplicity.

From standard arguments, we can also get the following
continuous dependence theorem.

Corollary 13. Assume that for all 𝛼 in a metric space 𝐹,
(𝑏
𝛼
, 𝜎

𝛼
) satisfy (A4) and (A5)with𝐿

1
and𝐿

2
independent of 𝛼.

Also assume that

E∫
𝑇

0

󵄨󵄨󵄨󵄨󵄨
E
󸀠

[𝑏
𝛼
(𝑠, 𝑋

󸀠

(𝑠) , 𝑋 (𝑠))]

− E
󸀠

[𝑏
𝛼0
(𝑠, 𝑋

󸀠

(𝑠) , 𝑋 (𝑠))]
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑠 󳨀→ 0,

E∫
𝑇

0

󵄨󵄨󵄨󵄨󵄨
E
󸀠

[𝜎
𝛼
(𝑠, 𝑋

󸀠

(𝑠) , 𝑋 (𝑠))]

−E
󸀠

[𝜎
𝛼0
(𝑠, 𝑋

󸀠

(𝑠) , 𝑋 (𝑠))]
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑠 󳨀→ 0,

(69)

as 𝛼 → 𝛼
0
for all𝑋 ∈ S2

F ([0, 𝑇]; 𝐾).
If we denote by 𝑋𝛼

(⋅) the mild solution of mean-field SEE
(65) corresponding to the functions (𝑏

𝛼
, 𝜎

𝛼
) and to the initial

data 𝑥, then we have

sup
𝑠∈[0,𝑇]

E
󵄨󵄨󵄨󵄨𝑋

𝛼

(𝑠) − 𝑋
𝛼0
(𝑠)
󵄨󵄨󵄨󵄨

2

󳨀→ 0, 𝑎𝑠 𝛼 󳨀→ 𝛼
0
. (70)

5. Maximum Principle for BSPDEs of
Mean-Field Type

5.1. Formulation of the Problem. Let O ∈ R𝑛 be a bounded
open set with smooth boundary 𝜕O and let 𝑈, the space of
controls, be a separable real Hilbert space. We denote

U = {V (⋅) ∈ 𝐿2
F
(0, 𝑇; 𝑈)

| V
𝑡
(𝜔

󸀠

, 𝜔) : [0, 𝑇] × Ω × Ω

󳨀→ 𝑈 is F ⊗F
𝑡
-progressively measurable} .

(71)
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An element ofU is called an admissible control.
For any V ∈ U, we consider the following controlled

BSPDE system in the state space𝐻 = 𝐿
2

(O) (norm | ⋅ |, scalar
product ⟨⋅, ⋅⟩):

𝑑𝑌
𝑡
(𝑥) = −𝐴𝑌

𝑡
(𝑥) 𝑑𝑡

− E
󸀠

[𝑓 (𝑡, 𝑥, (𝑌
𝑡
(𝑥))

󸀠

, (𝑍
𝑡
(𝑥))

󸀠

,

𝑌
𝑡
(𝑥) , 𝑍

𝑡
(𝑥) , V

𝑡
)] 𝑑𝑡

+ 𝑍
𝑡
(𝑥) 𝑑𝑊 (𝑡) , 𝑡 ∈ [0, 𝑇] ,

𝑌
𝑇
(𝑥) = 𝜉 (𝑥) , 𝑥 ∈ O,

(72)

where 𝐴 is a partial differential operator, 𝑓 : [0, 𝑇] ×O ×𝐻 ×

L(Γ,𝐻)×𝐻×L(Γ,𝐻)×𝑈 → 𝐻, and 𝜉 ∈ 𝐿2(Ω,F
𝑇
,P; 𝐻).

The cost functional is given by

𝐽 (V) = E{∫
𝑇

0

∫
O

E
󸀠

[ℎ (𝑠, 𝑥, (𝑌
𝑠
(𝑥))

󸀠

, (𝑍
𝑠
(𝑥))

󸀠

,

𝑌
𝑠
(𝑥) , 𝑍

𝑠
(𝑥) , V

𝑠
)] 𝑑𝑥 𝑑𝑠

+E
󸀠

∫
O

𝑔 (𝑥, (𝑌
0
(𝑥))

󸀠

, 𝑌
0
(𝑥)) 𝑑𝑥} ,

(73)

where

ℎ : [0, 𝑇] × O × 𝐻 ×L (Γ,𝐻) × 𝐻 ×L (Γ,𝐻) × 𝑈 󳨀→ R,

𝑔 : O × 𝐻 ×𝐻 󳨀→ R.

(74)

Our purpose is to minimize the functional 𝐽(⋅) over Uad,
subject to the following state constraint:

E∫
O

Φ(𝑥, (𝑌
0
(𝑥))

󸀠

, 𝑌
0
(𝑥)) 𝑑𝑥 = 0, (75)

where

Φ : O × 𝐻 ×𝐻 󳨀→ R. (76)

An admissible control 𝑢 ∈ Uad that satisfies

𝐽 (𝑢) = min
V∈Uad

𝐽 (V) (77)

is called optimal.
Through what follows, the following assumptions will be

in force.

(L1) 𝐴 is a partial differential operator with appropri-
ate boundary conditions. We assume that 𝐴 is the
infinitesimal generator of a strongly continuous semi-
group 𝑒𝑡𝐴, 𝑡 ≥ 0 in𝐻. Moreover, for every 𝑡 ∈ [0, 𝑇],
‖𝑒

𝑡𝐴

𝑓‖
𝐿
2
(O) ≤ 𝑀

𝐴
‖𝑓‖

𝐿
2
(O) for some constant 𝑀

𝐴

independent of 𝑡 and 𝑓.
(L2) 𝑓, ℎ, 𝑔, and Φ are continuously Gâteaux differen-

tiable with respect to (𝑦󸀠, 𝑧󸀠, 𝑦, 𝑧). 𝑓 is continuously
Gâteaux differentiable with respect to V and ℎ is
continuous with respect to V.

(L3) The derivatives of 𝑓, ℎ, 𝑔, and Φ are Lipschitz
continuous and bounded by

󵄨󵄨󵄨󵄨󵄨
𝑓
𝑦
󸀠

󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨𝑓𝑧󸀠

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨󵄨
𝑓
𝑦

󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨𝑓𝑧

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑓V

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨󵄨
Φ
𝑦
󸀠

󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
Φ
𝑦

󵄨󵄨󵄨󵄨󵄨
≤ 𝐶,

󵄨󵄨󵄨󵄨󵄨
ℎ
𝑦
󸀠

󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨ℎ𝑧󸀠

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨󵄨
ℎ
𝑦

󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨ℎ𝑧

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨󵄨
𝑔
𝑦
󸀠

󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
𝑔
𝑦

󵄨󵄨󵄨󵄨󵄨

≤ 𝐶 (1 +
󵄨󵄨󵄨󵄨󵄨
𝑦
󸀠
󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
𝑧
󸀠
󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨 + |𝑧| + |V|) ,

(78)

where 𝐶 is a positive constant.

Obviously, according to Theorem 4, state equation (72)
has a unique mild solution under the above assumptions.

Remark 14. We can define the second order differential
operator:

(𝐴𝑓) (𝑥) =

𝑛

∑

𝑖,𝑗=1

𝑎
𝑖𝑗
(𝑥)

𝜕
2

𝑓

𝜕𝑥
𝑖
𝜕𝑥

𝑗

(𝑥) +

𝑛

∑

𝑖=1

𝑏
𝑖
(𝑥)

𝜕𝑓

𝜕𝑥
𝑖

(𝑥) . (79)

By Example 9, 𝐴 fulfills assumption (L1) if 𝑎
𝑖𝑗
, 𝑏

𝑖
satisfy

condition (H1).

5.2. Variation of the Trajectory. Let 𝑢 be an optimal control
with (𝑌(⋅), 𝑍(⋅)) being the corresponding optimal state. Let
𝜀 > 0 and [𝑟, 𝑟 + 𝜀] ⊆ [0, 𝑇]. For any given V ∈ Uad, we
introduce the spike variation of the control 𝑢(⋅):

𝑢
𝜀

𝑡
= {

V
𝑡
, 𝑡 ∈ [𝑟, 𝑟 + 𝜀] ,

𝑢
𝑡
, 𝑡 ∈ [0, 𝑇] \ [𝑠, 𝑠 + 𝜀] .

(80)

It is clear that 𝑢𝜀(⋅) ∈ Uad.
Let (𝑌𝜀

(⋅), 𝑍
𝜀

(⋅)) be the trajectory corresponding to 𝑢𝜀(⋅).
We use the following short notation for brevity:

𝑓 (𝑡) = 𝑓 (𝑡, 𝑥, (𝑌
𝑡
(𝑥))

󸀠

, (𝑍
𝑡
(𝑥))

󸀠

, 𝑌
𝑡
(𝑥) , 𝑍

𝑡
(𝑥) , 𝑢

𝑡
) ,

𝑓 (𝑢
𝜀

𝑡
) = 𝑓 (𝑡, 𝑥, (𝑌

𝑡
(𝑥))

󸀠

, (𝑍
𝑡
(𝑥))

󸀠

, 𝑌
𝑡
(𝑥) , 𝑍

𝑡
(𝑥) , 𝑢

𝜀

𝑡
) .

(81)

Consider the following equation:

𝑑𝐾
𝜀

𝑡
(𝑥) = −𝐴𝐾

𝜀

𝑡
(𝑥) 𝑑𝑡

− E
󸀠

[𝑓
𝑦
󸀠 (𝑡) (𝐾

𝜀

𝑡
(𝑥))

󸀠

+ 𝑓
𝑦
(𝑡) 𝐾

𝜀

𝑡
(𝑥)

+ 𝑓
𝑧
󸀠 (𝑡) (𝑄

𝜀

𝑡
(𝑥))

󸀠

+ 𝑓
𝑧
(𝑡) 𝑄

𝜀

𝑡
(𝑥)

+
1

𝜀
(𝑓 (𝑢

𝜀

𝑡
) − 𝑓 (𝑡))] 𝑑𝑡 + 𝑄

𝜀

𝑡
(𝑥) 𝑑𝑊 (𝑡) ,

𝐾
𝜀

𝑇
(𝑥) = 0.

(82)

Since the coefficients in (82) are bounded, it is easy to check
that there exists a unique mild solution such that

E[ sup
𝑡∈[0,𝑇]

󵄨󵄨󵄨󵄨𝐾
𝜀

𝑡

󵄨󵄨󵄨󵄨

2

+ ∫

𝑇

0

󵄨󵄨󵄨󵄨𝑄
𝜀

𝑡

󵄨󵄨󵄨󵄨

2

𝑑𝑡] < ∞. (83)

We have the following estimate.
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Theorem 15. There holds

lim
𝜀→0

E[ sup
𝑠∈[𝑡,𝑇]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑌
𝜀

𝑠
− 𝑌

𝑠

𝜀
− 𝐾

𝜀

𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

] = 0, ∀𝑡 ∈ [0, 𝑇] ,

lim
𝜀→0

E∫
𝑇

0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑍
𝜀

𝑠
− 𝑍

𝑠

𝜀
− 𝑄

𝜀

𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑠 = 0.

(84)

Proof. We define

𝜂
𝜀

𝑠
=
𝑌
𝜀

𝑠
− 𝑌

𝑠

𝜀
− 𝐾

𝜀

𝑠
, 𝜁

𝜀

𝑠
=
𝑍
𝜀

𝑠
− 𝑍

𝑠

𝜀
− 𝑄

𝜀

𝑠
, 𝑠 ∈ [0, 𝑇] .

(85)

For simplicity, let us define

Λ
𝜀

𝑠
= ((𝑌

𝜀

𝑠
)
󸀠

, (𝑍
𝜀

𝑠
)
󸀠

, 𝑌
𝜀

𝑠
, 𝑍

𝜀

𝑠
) ,

𝑓 (𝑠, 𝜆) = 𝑓 (𝑠, 𝑌
󸀠

𝑠
+ 𝜆(𝑌

𝜀

𝑠
− 𝑌

𝑠
)
󸀠

,

𝑍
󸀠

𝑠
+ 𝜆(𝑍

𝜀

𝑠
− 𝑍

𝑠
)
󸀠

, 𝑌
𝑠
+ 𝜆 (𝑌

𝜀

𝑠
− 𝑌

𝑠
) ,

𝑍
𝑠
+ 𝜆 (𝑍

𝜀

𝑠
− 𝑍

𝑠
) , 𝑢

𝜀

𝑠
) .

(86)

By the definition of (𝑌𝜀

𝑠
, 𝑍

𝜀

𝑠
), (𝑌

𝑠
, 𝑍

𝑠
), and (𝐾𝜀

𝑠
, 𝑄

𝜀

𝑠
), (𝜂𝜀

𝑠
, 𝜁

𝜀

𝑠
)

is the mild solution of

𝑑𝜂
𝜀

𝑠
= −𝐴𝜂

𝜀

𝑠
𝑑𝑠 − E

󸀠

[𝐿 (𝑠, 𝜀)] 𝑑𝑠 + 𝜁
𝜀

𝑠
𝑑𝑊 (𝑠) ,

𝜂
𝜀

𝑇
= 0

(87)

with

𝐿 (𝑠, 𝜀) =
1

𝜀
(𝑓 (𝑠, Λ

𝜀

𝑠
, 𝑢

𝜀

𝑠
) − 𝑓 (𝑢

𝜀

𝑠
))

− 𝑓
𝑦
󸀠 (𝑠) (𝐾

𝜀

𝑠
)
󸀠

− 𝑓
𝑦
(𝑠) 𝐾

𝜀

𝑠
− 𝑓

𝑧
󸀠 (𝑠) (𝑄

𝜀

𝑠
)
󸀠

− 𝑓
𝑧
(𝑠) 𝑄

𝜀

𝑠

= ((𝜂
𝜀

𝑠
)
󸀠

+ (𝐾
𝜀

𝑠
)
󸀠

) ∫

1

0

𝑓
𝑦
󸀠 (𝑠, 𝜆) 𝑑𝜆 + (𝜂

𝜀

𝑠
+ 𝐾

𝜀

𝑠
)

× ∫

1

0

𝑓
𝑦
(𝑠, 𝜆) 𝑑𝜆 − 𝑓

𝑦
󸀠 (𝑠) (𝐾

𝜀

𝑠
)
󸀠

− 𝑓
𝑦
(𝑠) 𝐾

𝜀

𝑠

+ ((𝜁
𝜀

𝑠
)
󸀠

+ (𝑄
𝜀

𝑠
)
󸀠

)∫

1

0

𝑓
𝑧
󸀠 (𝑠, 𝜆) 𝑑𝜆 + (𝜁

𝜀

𝑠
+ 𝑄

𝜀

𝑠
)

× ∫

1

0

𝑓
𝑧
(𝑠, 𝜆) 𝑑𝜆 − 𝑓

𝑧
󸀠 (𝑠) (𝑄

𝜀

𝑠
)
󸀠

− 𝑓
𝑧
(𝑠) 𝑄

𝜀

𝑠

= (𝜂
𝜀

𝑠
)
󸀠

∫

1

0

𝑓
𝑦
󸀠 (𝑠, 𝜆) 𝑑𝜆 + 𝜂

𝜀

𝑠
∫

1

0

𝑓
𝑦
(𝑠, 𝜆) 𝑑𝜆

+ (𝜁
𝜀

𝑠
)
󸀠

∫

1

0

𝑓
𝑧
󸀠 (𝑠, 𝜆) 𝑑𝜆 + 𝜁

𝜀

𝑠
∫

1

0

𝑓
𝑧
(𝑠, 𝜆) 𝑑𝜆 + 𝛾

𝜀

𝑠
,

(88)

where we denote

𝛾
𝜀

𝑠
= (𝐾

𝜀

𝑠
)
󸀠

∫

1

0

(𝑓
𝑦
󸀠 (𝑠, 𝜆) − 𝑓

𝑦
󸀠 (𝑠)) 𝑑𝜆

+ 𝐾
𝜀

𝑠
∫

1

0

(𝑓
𝑦
(𝑠, 𝜆) − 𝑓

𝑦
(𝑠)) 𝑑𝜆

+ (𝑄
𝜀

𝑠
)
󸀠

∫

1

0

(𝑓
𝑧
󸀠 (𝑠, 𝜆) − 𝑓

𝑧
󸀠 (𝑠)) 𝑑𝜆

+ 𝑄
𝜀

𝑠
∫

1

0

(𝑓
𝑧
(𝑠, 𝜆) − 𝑓

𝑧
(𝑠)) 𝑑𝜆.

(89)

For any 𝛽 > 0, according to Lemma 1, we obtain

E sup
𝑡≤𝑠≤𝑇

𝑒
2𝛽𝑠󵄨󵄨󵄨󵄨𝜂

𝜀

𝑠

󵄨󵄨󵄨󵄨

2

+ E∫
𝑇

𝑡

𝑒
2𝛽𝑠󵄨󵄨󵄨󵄨𝜁

𝜀

𝑠

󵄨󵄨󵄨󵄨

2

𝑑𝑠

≤
12𝑀

2

𝐴

𝛽
∫

𝑇

𝑡

𝑒
2𝛽𝑠

E [
󵄨󵄨󵄨󵄨󵄨
E
󸀠

[𝐿 (𝑠, 𝜀)]
󵄨󵄨󵄨󵄨󵄨

2

] 𝑑𝑠

≤
12𝑀

2

𝐴

𝛽
E∫

𝑇

𝑡

𝑒
2𝛽𝑠

E
󸀠

[|𝐿 (𝑠, 𝜀)|
2

] 𝑑𝑠.

(90)

By condition (L3), we have

E [E
󸀠

[|𝐿 (𝑠, 𝜀)|
2

]]

= E [E
󸀠

[
󵄨󵄨󵄨󵄨𝐿 (𝑠, 𝜀) − 𝛾

𝜀

𝑠
+ 𝛾

𝜀

𝑠

󵄨󵄨󵄨󵄨

2

]]

≤ 8𝐶
2

E [E
󸀠

[
󵄨󵄨󵄨󵄨󵄨
(𝜂

𝜀

𝑠
)
󸀠󵄨󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨𝜂
𝜀

𝑠

󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨󵄨
(𝜁

𝜀

𝑠
)
󸀠󵄨󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨𝜁
𝜀

𝑠

󵄨󵄨󵄨󵄨

2

]]

+ 2E [E
󸀠

[
󵄨󵄨󵄨󵄨𝛾
𝜀

𝑠

󵄨󵄨󵄨󵄨

2

]]

≤ 16𝐶
2

E [
󵄨󵄨󵄨󵄨𝜂
𝜀

𝑠

󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨𝜁
𝜀

𝑠

󵄨󵄨󵄨󵄨

2

] + 2E [E
󸀠

[
󵄨󵄨󵄨󵄨𝛾
𝜀

𝑠

󵄨󵄨󵄨󵄨

2

]] .

(91)

Combined with (91), (90) yields

E sup
𝑡≤𝑠≤𝑇

𝑒
2𝛽𝑠󵄨󵄨󵄨󵄨𝜂

𝜀

𝑠

󵄨󵄨󵄨󵄨

2

+ (1 −
192𝑀

2

𝐴
𝐶
2

𝛽
)E∫

𝑇

𝑡

𝑒
2𝛽𝑠󵄨󵄨󵄨󵄨𝜁

𝜀

𝑠

󵄨󵄨󵄨󵄨

2

𝑑𝑠

≤
192𝑀

2

𝐴
𝐶
2

𝛽
E∫

𝑇

𝑡

𝑒
2𝛽𝑠󵄨󵄨󵄨󵄨𝜂

𝜀

𝑠

󵄨󵄨󵄨󵄨

2

𝑑𝑠

+
24𝑀

2

𝐴

𝛽
E∫

𝑇

𝑡

𝑒
2𝛽𝑠

[E
󸀠

[
󵄨󵄨󵄨󵄨𝛾
𝜀

𝑠

󵄨󵄨󵄨󵄨

2

]] 𝑑𝑠.

(92)

We claim that

E∫
𝑇

𝑡

E
󸀠

[
󵄨󵄨󵄨󵄨𝛾
𝜀

𝑠

󵄨󵄨󵄨󵄨

2

] 𝑑𝑠 󳨀→ 0, as 𝜀 󳨀→ 0. (93)

From (89)

𝛾
𝜀

𝑠
= 𝐼

1

𝑠
+ 𝐼

2

𝑠
+ 𝐼

3

𝑠
+ 𝐼

4

𝑠
, (94)
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where

𝐼
1

𝑠
= (𝐾

𝜀

𝑠
)
󸀠

∫

1

0

(𝑓
𝑦
󸀠 (𝑠, 𝜆) − 𝑓

𝑦
󸀠 (𝑠)) 𝑑𝜆,

𝐼
2

𝑠
= 𝐾

𝜀

𝑠
∫

1

0

(𝑓
𝑦
(𝑠, 𝜆) − 𝑓

𝑦
(𝑠)) 𝑑𝜆,

𝐼
3

𝑠
= (𝑄

𝜀

𝑠
)
󸀠

∫

1

0

(𝑓
𝑧
󸀠 (𝑠, 𝜆) − 𝑓

𝑧
󸀠 (𝑠)) 𝑑𝜆,

𝐼
4

𝑠
= 𝑄

𝜀

𝑠
∫

1

0

(𝑓
𝑧
(𝑠, 𝜆) − 𝑓

𝑧
(𝑠)) 𝑑𝜆.

(95)

Then,

E∫
𝑇

𝑡

E
󸀠

[
󵄨󵄨󵄨󵄨𝛾
𝜀

𝑠

󵄨󵄨󵄨󵄨

2

] 𝑑𝑠

≤ 4E∫
𝑇

𝑡

E
󸀠

[
󵄨󵄨󵄨󵄨󵄨
𝐼
1

𝑠

󵄨󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨󵄨
𝐼
2

𝑠

󵄨󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨󵄨
𝐼
3

𝑠

󵄨󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨󵄨
𝐼
4

𝑠

󵄨󵄨󵄨󵄨󵄨

2

] 𝑑𝑠.

(96)

Take E∫𝑇
𝑡

E󸀠[|𝐼2
𝑠
|
2

]𝑑𝑠; for example,

E∫
𝑇

𝑡

E
󸀠

[
󵄨󵄨󵄨󵄨󵄨
𝐼
2

𝑠

󵄨󵄨󵄨󵄨󵄨

2

] 𝑑𝑠

= E∫
𝑇

𝑡

E
󸀠

[(𝐾
𝜀

𝑠
∫

1

0

(𝑓
𝑦
(𝑠, 𝜆) − 𝑓

𝑦
(𝑠)) 𝑑𝜆)

2

]𝑑𝑠

≤ E∫
𝑇

𝑡

E
󸀠

[
󵄨󵄨󵄨󵄨𝐾

𝜀

𝑠

󵄨󵄨󵄨󵄨

2

∫

1

0

󵄨󵄨󵄨󵄨󵄨
𝑓
𝑦
(𝑠, 𝜆) − 𝑓

𝑦
(𝑠)
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝜆] 𝑑𝑠

≤ 2E∫
𝑇

𝑡

E
󸀠

[
󵄨󵄨󵄨󵄨𝐾

𝜀

𝑠

󵄨󵄨󵄨󵄨

2

∫

1

0

󵄨󵄨󵄨󵄨󵄨
𝑓
𝑦
(𝑠, 𝜆) − 𝑓

𝑦
(𝑢

𝜀

𝑡
)
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝜆] 𝑑𝑠

+ 2E∫
𝑇

𝑡

E
󸀠

[
󵄨󵄨󵄨󵄨𝐾

𝜀

𝑠

󵄨󵄨󵄨󵄨

2

∫

1

0

󵄨󵄨󵄨󵄨󵄨
𝑓
𝑦
(𝑢

𝜀

𝑡
) − 𝑓

𝑦
(𝑠)
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝜆] 𝑑𝑠.

(97)

Note that

E∫
𝑇

𝑡

E
󸀠

[
󵄨󵄨󵄨󵄨𝐾

𝜀

𝑠

󵄨󵄨󵄨󵄨

2

∫

1

0

󵄨󵄨󵄨󵄨󵄨
𝑓
𝑦
(𝑢

𝜀

𝑡
) − 𝑓

𝑦
(𝑠)
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝜆] 𝑑𝑠

= E∫
𝑟+𝜀

𝑟

E
󸀠

[
󵄨󵄨󵄨󵄨𝐾

𝜀

𝑠

󵄨󵄨󵄨󵄨

2

∫

1

0

󵄨󵄨󵄨󵄨󵄨
𝑓
𝑦
(𝑢

𝜀

𝑡
) − 𝑓

𝑦
(𝑠)
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝜆] 𝑑𝑠

≤ sup
𝑠∈[𝑡,𝑇]

E [E
󸀠

[
󵄨󵄨󵄨󵄨𝐾

𝜀

𝑠

󵄨󵄨󵄨󵄨

2

∫

1

0

󵄨󵄨󵄨󵄨󵄨
𝑓
𝑦
(𝑢

𝜀

𝑡
) − 𝑓

𝑦
(𝑠)
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝜆]] 𝜀

󳨀→ 0, as 𝜀 󳨀→ 0.

(98)

The inequality above holds due to the boundedness of
|𝐾

𝜀

𝑠
|
2

∫
1

0

|𝑓
𝑦
(𝑢

𝜀

𝑡
) − 𝑓

𝑦
(𝑠)|

2

𝑑𝜆. Indeed, Assumption (L3) im-
plies the boundedness of 𝑓

𝑦
(𝑢

𝜀

𝑡
) − 𝑓

𝑦
(𝑠). Meanwhile 𝐾𝜀

𝑠
is

the solution of mean-field BSEE (82). It can be easy to check
𝐾
𝜀

𝑠
is bounded since the coefficients in (82) are bounded.
On the other hand,

E∫
𝑇

𝑡

E
󸀠

[
󵄨󵄨󵄨󵄨𝐾

𝜀

𝑠

󵄨󵄨󵄨󵄨

2

∫

1

0

󵄨󵄨󵄨󵄨󵄨
𝑓
𝑦
(𝑠, 𝜆) − 𝑓

𝑦
(𝑢

𝜀

𝑡
)
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝜆] 𝑑𝑠

≤ 𝐶
2

𝜆
2

E∫
𝑇

𝑡

󵄨󵄨󵄨󵄨𝐾
𝜀

𝑠

󵄨󵄨󵄨󵄨

2

× ∫

1

0

𝐸
󸀠

[
󵄨󵄨󵄨󵄨󵄨󵄨
(𝑌

𝜀

𝑠
− 𝑌

𝑠
)
󸀠󵄨󵄨󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨󵄨󵄨
(𝑍

𝜀

𝑠
− 𝑍

𝑠
)
󸀠󵄨󵄨󵄨󵄨󵄨󵄨

2

×
󵄨󵄨󵄨󵄨󵄨
𝑌
𝜀

𝑠
− 𝑌

𝑠

󵄨󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨󵄨
𝑍
𝜀

𝑠
− 𝑍

𝑠

󵄨󵄨󵄨󵄨󵄨

2

] 𝑑𝜆 𝑑𝑠,

(99)

where (𝑌𝜀

𝑠
, 𝑍

𝜀

𝑠
) is the mild solution of the following equation:

𝑑𝑌
𝜀

𝑡
= − 𝐴𝑌

𝜀

𝑡
𝑑𝑡

− E
󸀠

[𝑓 (𝑡, (𝑌
𝜀

𝑡
)
󸀠

, (𝑍
𝜀

𝑡
)
󸀠

, 𝑌
𝜀

𝑡
, 𝑍

𝜀

𝑡
, 𝑢

𝜀

𝑡
)] 𝑑𝑡

+ 𝑍
𝜀

𝑡
𝑑𝑊 (𝑡) , 𝑡 ∈ [0, 𝑇] ,

𝑌
𝜀

𝑇
= 𝜉

(100)

and (𝑌
𝑠
, 𝑍

𝑠
) is the mild solution of

𝑑𝑌
𝑡
= − 𝐴𝑌

𝑡
𝑑𝑡

− E
󸀠

[𝑓 (𝑡, (𝑌
𝑡
)
󸀠

, (𝑍
𝑡
)
󸀠

, 𝑌
𝑡
, 𝑍

𝑡
, 𝑢

𝑡
)] 𝑑𝑡

+ 𝑍
𝑡
𝑑𝑊 (𝑡) , 𝑡 ∈ [0, 𝑇] ,

𝑌
𝑇
= 𝜉.

(101)

By the definition of 𝑢𝜀
𝑡
, according to (L2), we have

E
󸀠

[𝑓 (𝑠, 𝑌
󸀠

(𝑠) , 𝑍
󸀠

(𝑠) , 𝑌 (𝑠) , 𝑍 (𝑠) , 𝑢
𝜀

𝑡
)]

󳨀→ E
󸀠

[𝑓 (𝑠, 𝑌
󸀠

(𝑠) , 𝑍
󸀠

(𝑠) , 𝑌 (𝑠) , 𝑍 (𝑠) , 𝑢
𝑡
)]

(102)

in 𝐿2([0, 𝑇];𝐻) as 𝜀 → 0. Using the continuous dependence
theorem Corollary 5, we obtain

(𝑌
𝜀

𝑠
, 𝑍

𝜀

𝑠
) 󳨀→ (𝑌

𝑠
, 𝑍

𝑠
) as 𝜀 󳨀→ 0. (103)

Then,

E∫
𝑇

𝑡

E
󸀠

[
󵄨󵄨󵄨󵄨𝐾

𝜀

𝑠

󵄨󵄨󵄨󵄨

2

∫

1

0

󵄨󵄨󵄨󵄨󵄨
𝑓
𝑦
(𝑠, 𝜆) − 𝑓

𝑦
(𝑢

𝜀

𝑡
)
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝜆] 𝑑𝑠

≤ 𝐶
2

𝜆
2

E∫
𝑇

𝑡

󵄨󵄨󵄨󵄨𝐾
𝜀

𝑠

󵄨󵄨󵄨󵄨

2

× ∫

1

0

E
󸀠

[
󵄨󵄨󵄨󵄨󵄨󵄨
(𝑌

𝜀

𝑠
− 𝑌

𝑠
)
󸀠󵄨󵄨󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨󵄨󵄨
(𝑍

𝜀

𝑠
− 𝑍

𝑠
)
󸀠󵄨󵄨󵄨󵄨󵄨󵄨

2

×
󵄨󵄨󵄨󵄨󵄨
𝑌
𝜀

𝑠
− 𝑌

𝑠

󵄨󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨󵄨
𝑍
𝜀

𝑠
− 𝑍

𝑠

󵄨󵄨󵄨󵄨󵄨

2

] 𝑑𝜆 𝑑𝑠

󳨀→ 0, as 𝜀 󳨀→ 0.

(104)
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Combining (98) with (104), we finally have
E∫

𝑇

𝑡

E󸀠[|𝐼2
𝑠
|
2

]𝑑𝑠 → 0, as 𝜀 → 0.
The required result (93) follows by using the similar

estimations for 𝐼1
𝑠
, 𝐼3

𝑠
, and 𝐼4

𝑠
.

Note that 1 − 192𝑀
2

𝐴
𝐶
2

/𝛽 > 0 if 𝛽 is sufficiently large.
Now to prove the desired result (84) it suffices to apply
Gronwall’s lemma and estimate (93) to inequality (92).

To deal with the state constraint (75), we need to recall the
Ekeland variational principle.

Lemma 16 (Ekeland’s variational principle, see [16, Lemma
4.1]). Let (𝑆, 𝑑) be a complete metric space and let 𝐹(⋅) : 𝑆 →

R be lower semicontinuous and bounded from below. If, for 𝜌 >
0, there exists 𝑢 ∈ 𝑆, such that

𝐹 (𝑢) ≤ inf
V∈𝑆

𝐹 (V) + 𝜌, (105)

then there exists 𝑢𝜌 ∈ 𝑆, satisfying

(i) 𝐹 (𝑢𝜌) ≤ 𝐹 (𝑢) ,

(ii) 𝑑 (𝑢𝜌, 𝑢) ≤ 𝜌,

(iii) 𝐹 (𝑢𝜌) ≤ 𝐹 (V) + 𝜌 ⋅ 𝑑 (𝑢𝜌, 𝑢) , ∀V ̸=𝑢
𝜌

.

(106)

Now fix V ∈ Uad, and set

𝑆 = {V (⋅) ∈ Uad | sup
0≤𝑡≤𝑇

E
󵄨󵄨󵄨󵄨V𝑡
󵄨󵄨󵄨󵄨

2

≤ E
󵄨󵄨󵄨󵄨𝑢𝑡
󵄨󵄨󵄨󵄨

2

+ |V|2} ,

𝑑 (V (⋅) , V (⋅)) = 𝑚 {𝑡 ∈ [0, 𝑇] | E
󵄨󵄨󵄨󵄨V𝑡 − V

𝑡

󵄨󵄨󵄨󵄨

2

> 0} ,

∀V (⋅) , V (⋅) ∈ 𝑆,

(107)

where𝑚 denotes the Lebesgue measure on R.
The following result is proved as Proposition 4.1 in [16].

Lemma 17. (𝑆, 𝑑(⋅, ⋅)) is a complete metric space and 𝐽
𝜌 is

continuous and bounded on 𝑆, where

𝐽
𝜌

(V (⋅)) = {(𝐽 (V (⋅)) − 𝐽 (𝑢 (⋅)) + 𝜌)2

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

E∫
O

Φ(𝑥, (𝑌
0
(𝑥))

󸀠

, 𝑌
0
(𝑥)) 𝑑𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

}

1/2

,

∀V (⋅) ∈ 𝑆
(108)

and (𝑌, 𝑍) is the mild solution of (72) corresponding to the
control V.

Now we consider the following free initial state optimal
control problem:

inf
V(⋅)∈𝑆

𝐽
𝜌

(V (⋅)) . (109)

It is easy to check that

0 ≤ inf
V(⋅)∈𝑆

𝐽
𝜌

(V (⋅)) ≤ 𝐽
𝜌

(𝑢 (⋅)) = 𝜌. (110)

According to Ekeland’s variational principle, there exists a
𝑢
𝜌

(⋅) ∈ 𝑉 such that

(i) 𝐽𝜌 (𝑢𝜌 (⋅)) ≤ 𝜌,

(ii) 𝑑 (𝑢𝜌 (⋅) , 𝑢 (⋅)) ≤ 𝜌,

(iii) 𝐽𝜌 (𝑢𝜌 (⋅)) ≤ 𝐽
𝜌

(V (⋅)) + 𝜌𝑑 (𝑢𝜌 (⋅) , 𝑢 (⋅)) , ∀V (⋅) ∈ 𝑆.
(111)

Using the spike variationmethod, we can construct 𝑢𝜀𝜌(⋅) ∈ 𝑆
as follows:

𝑢
𝜀𝜌

𝑡
= {

V
𝑡
, 𝑡 ∈ [𝑠, 𝑠 + 𝜀] ,

𝑢
𝜌

𝑡
, 𝑡 ∈ [0, 𝑇] \ [𝑠, 𝑠 + 𝜀] .

(112)

It is clear that 𝑑(𝑢𝜀𝜌(⋅), 𝑢𝜌(⋅)) ≤ 𝜀. Let (𝑌𝜀𝜌

(⋅), 𝑍
𝜀𝜌

(⋅)) (resp.,
(𝑌

𝜌

(⋅), 𝑍
𝜌

(⋅))) be the solution of (72) with respect to the
control 𝑢𝜀𝜌(⋅) (resp., 𝑢𝜌(⋅)). Following (82), (𝐾𝜀𝜌

𝑡
, 𝑄

𝜀𝜌

𝑡
) is the

mild solution of

𝐾
𝜀𝜌

𝑡
= ∫

𝑇

𝑡

𝑒
𝐴(𝑠−𝑡)

E
󸀠

× [𝑓
𝑦
󸀠 (𝑠, Λ

𝜌

𝑠
, 𝑢

𝜌

𝑠
) (𝐾

𝜀𝜌

𝑠
)
󸀠

+ 𝑓
𝑦
(𝑠, Λ

𝜌

𝑠
, 𝑢

𝜌

𝑠
)𝐾

𝜀𝜌

𝑠

+ 𝑓
𝑧
󸀠 (𝑠, Λ

𝜌

𝑠
, 𝑢

𝜌

𝑠
) (𝑄

𝜀𝜌

𝑠
)
󸀠

+ 𝑓
𝑧
(𝑠, Λ

𝜌

𝑠
, 𝑢

𝜌

𝑠
) 𝑄

𝜀𝜌

𝑠

+
1

𝜀
(𝑓 (𝑠, Λ

𝜌

𝑠
, 𝑢

𝜀𝜌

𝑠
) − 𝑓 (𝑠, Λ

𝜌

𝑠
, 𝑢

𝜌

𝑠
))] 𝑑𝑠

− ∫

𝑇

𝑡

𝑒
𝐴(𝑠−𝑡)

𝑄
𝜀𝜌

𝑠
𝑑𝑊 (𝑠) .

(113)

ByTheorem 15, we know that

lim
𝜀→0

E[ sup
𝑠∈[𝑡,𝑇]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑌
𝜀𝜌

𝑠
− 𝑌

𝜌

𝑠

𝜀
− 𝐾

𝜀𝜌

𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

] = 0, ∀𝑡 ∈ [0, 𝑇] ,

lim
𝜀→0

E∫
𝑇

0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑍
𝜀𝜌

𝑠
− 𝑍

𝜌

𝑠

𝜀
− 𝑄

𝜀𝜌

𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑠 = 0.

(114)

The proof of the following proposition is technical but
based on the arguments above and we omit it.

Proposition 18. One has

1

𝜀
E [Φ ((𝑌

𝜀𝜌

0
)
󸀠

, 𝑌
𝜀𝜌

0
) − Φ((𝑌

𝜌

0
)
󸀠

, 𝑌
𝜌

0
)]

= E [Φ
𝑦
󸀠 ((𝑌

𝜌

0
)
󸀠

, 𝑌
𝜌

0
) (𝐾

𝜀𝜌

0
)
󸀠

+ Φ
𝑦
((𝑌

𝜌

0
)
󸀠

, 𝑌
𝜌

0
)𝐾

𝜀𝜌

0
]

+ 𝑜 (𝜀) ,
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1

𝜀
(𝐽 (𝑢

𝜀𝜌

) − 𝐽 (𝑢
𝜌

))

= E [𝑔
𝑦
󸀠 ((𝑌

𝜌

0
)
󸀠

, 𝑌
𝜌

0
) (𝐾

𝜀𝜌

0
)
󸀠

+ 𝑔
𝑦
((𝑌

𝜌

0
)
󸀠

, 𝑌
𝜌

0
)𝐾

𝜀𝜌

0
]

+ Δ
𝜀

+
1

𝜀
E∫

𝑇

0

E
󸀠

[ℎ (𝑠, Λ
𝜌

𝑠
, 𝑢

𝜀𝜌

𝑠
)

− ℎ (𝑠, Λ
𝜌

𝑠
, 𝑢

𝜌

𝑠
)] 𝑑𝑠 + 𝑜 (𝜀) ,

(115)

where

Δ
𝜀

= E∫
𝑇

0

E
󸀠

[ℎ
𝑦
󸀠 (𝑠, Λ

𝜌

𝑠
, 𝑢

𝜀𝜌

𝑠
) (𝐾

𝜀𝜌

𝑠
)
󸀠

+ ℎ
𝑧
󸀠 (𝑠, Λ

𝜌

𝑠
, 𝑢

𝜀𝜌

𝑠
) (𝑄

𝜀𝜌

𝑠
)
󸀠

+ ℎ
𝑦
(𝑠, Λ

𝜌

𝑠
, 𝑢

𝜀𝜌

𝑠
)𝐾

𝜀𝜌

𝑠

+ ℎ
𝑧
(𝑠, Λ

𝜌

𝑠
, 𝑢

𝜀𝜌

𝑠
) 𝑄

𝜀𝜌

𝑠
] 𝑑𝑠.

(116)

5.3. Variational Inequality and Adjoint Equation. In this
subsection, the adjoint process is introduced to deduce the
variational inequality.

If we set V(⋅) = 𝑢
𝜀𝜌

(⋅) in (111) and notice that
𝑑(𝑢

𝜀𝜌

(⋅), 𝑢
𝜌

(⋅)) ≤ 𝜀, we get

−𝜌 ≤
1

𝜀
(𝐽

𝜌

(𝑢
𝜀𝜌

(⋅)) − 𝐽
𝜌

(𝑢
𝜌

(⋅))) . (117)

By Lemma 17,

1

𝜀
(𝐽

𝜌

(𝑢
𝜀𝜌

(⋅)) − 𝐽
𝜌

(𝑢
𝜌

(⋅)))

=
(𝐽

𝜌

(𝑢
𝜀𝜌

(⋅)))
2

− (𝐽
𝜌

(𝑢
𝜌

(⋅)))
2

𝜀 (𝐽
𝜌
(𝑢

𝜀𝜌
(⋅)) + 𝐽

𝜌
(𝑢

𝜌
(⋅)))

=
𝐽 (𝑢

𝜀𝜌

(⋅)) + 𝐽 (𝑢
𝜌

(⋅)) − 2𝐽 (𝑢 (⋅)) + 2𝜌

𝐽𝜌 (𝑢
𝜀𝜌
(⋅)) + 𝐽

𝜌
(𝑢

𝜌
(⋅))

×
𝐽 (𝑢

𝜀𝜌

(⋅)) − 𝐽 (𝑢
𝜌

(⋅))

𝜀

+

E [Φ ((𝑌
𝜀𝜌

0
)
󸀠

, 𝑌
𝜀𝜌

0
)] + E [Φ ((𝑌

𝜌

0
)
󸀠

, 𝑌
𝜌

0
)]

𝐽𝜌 (𝑢
𝜀𝜌
(⋅)) + 𝐽

𝜌
(𝑢

𝜌
(⋅))

×

E [Φ ((𝑌
𝜀𝜌

0
)
󸀠

, 𝑌
𝜀𝜌

0
)] − E [Φ ((𝑌

𝜌

0
)
󸀠

, 𝑌
𝜌

0
)]

𝜀

󳨀→ 𝑙
𝜌

1

𝐽 (𝑢
𝜀𝜌

(⋅)) − 𝐽 (𝑢
𝜌

(⋅))

𝜀

+ 𝑙
𝜌

2

E [Φ ((𝑌
𝜀𝜌

0
)
󸀠

, 𝑌
𝜀𝜌

0
)] − E [Φ ((𝑌

𝜌

0
)
󸀠

, 𝑌
𝜌

0
)]

𝜀
,

(118)

where we set

𝑙
𝜌

1
=
𝐽 (𝑢

𝜌

(⋅)) − 𝐽 (𝑢 (⋅)) + 𝜌

𝐽𝜌 (𝑢
𝜌
(⋅))

,

𝑙
𝜌

2
=

E [Φ ((𝑌
𝜌

0
)
󸀠

, 𝑌
𝜌

0
)]

𝐽𝜌 (𝑢
𝜌
(⋅))

(119)

and use the limit

𝐽 (𝑢
𝜀𝜌

(⋅)) 󳨀→ 𝐽 (𝑢
𝜌

(⋅)) ,

E [Φ ((𝑌
𝜀𝜌

0
)
󸀠

, 𝑌
𝜀𝜌

0
)] 󳨀→ E [Φ ((𝑌

𝜌

0
)
󸀠

, 𝑌
𝜌

0
)] ,

(120)

as 𝜀 → 0 according to (115).
As |𝑙𝜌

1
|
2

+ |𝑙
𝜌

2
|
2

= 1 for all 𝜌 > 0, we know that there exists
a subsequence of {𝑙𝜌

1
, 𝑙
𝜌

2
} (still denoted by {𝑙𝜌

1
, 𝑙
𝜌

2
}) such that

lim
𝜌→0

{𝑙
𝜌

1
, 𝑙
𝜌

2
} = {𝑙

1
, 𝑙
2
} ,

󵄨󵄨󵄨󵄨𝑙1
󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨𝑙2
󵄨󵄨󵄨󵄨

2

= 1.

(121)

Combining (115), (117) with (118), we get

−𝜌 ≤ 𝑙
𝜌

1

𝐽 (𝑢
𝜀𝜌

(⋅)) − 𝐽 (𝑢
𝜌

(⋅))

𝜀

+ 𝑙
𝜌

2

E [Φ ((𝑌
𝜀𝜌

0
)
󸀠

, 𝑌
𝜀𝜌

0
)] − E [Φ ((𝑌

𝜌

0
)
󸀠

, 𝑌
𝜌

0
)]

𝜀

= 𝑙
𝜌

1
Δ
𝜀

+ 𝑙
𝜌

1
E [𝑔

𝑦
󸀠 ((𝑌

𝜌

0
)
󸀠

, 𝑌
𝜌

0
) (𝐾

𝜀𝜌

0
)
󸀠

+𝑔
𝑦
((𝑌

𝜌

0
)
󸀠

, 𝑌
𝜌

0
)𝐾

𝜀𝜌

0
]

+
𝑙
𝜌

1

𝜀
E∫

𝑇

0

E
󸀠

[ℎ (𝑠, Λ
𝜌

𝑠
, 𝑢

𝜀𝜌

𝑠
) − ℎ (𝑠, Λ

𝜌

𝑠
, 𝑢

𝜌

𝑠
)] 𝑑𝑠

+ 𝑙
𝜌

2
E [Φ

𝑦
󸀠 ((𝑌

𝜌

0
)
󸀠

, 𝑌
𝜌

0
) (𝐾

𝜀𝜌

0
)
󸀠

+Φ
𝑦
((𝑌

𝜌

0
)
󸀠

, 𝑌
𝜌

0
)𝐾

𝜀𝜌

0
] + (𝑙

𝜌

1
+ 𝑙

𝜌

2
) 𝑜 (𝜀) .

(122)

Next, we introduce the adjoint equation corresponding to
variational equation (113), whose solution is denoted by𝑃𝜌(𝑡):

𝑑𝑃
𝜌

(𝑡)

= 𝐴
∗

𝑃
𝜌

(𝑡) 𝑑𝑡

+ E
󸀠

[𝑓
𝑦
󸀠 (𝑡, Λ

𝜌

𝑡
, 𝑢

𝜌

𝑡
) (𝑃

𝜌

(𝑡))
󸀠

+ 𝑓
𝑦
(𝑡, Λ

𝜌

𝑡
, 𝑢

𝜌

𝑡
) 𝑃

𝜌

(𝑡) + 𝑙
𝜌

1
ℎ
𝑦
󸀠 (𝑡, Λ

𝜌

𝑡
, 𝑢

𝜌

𝑡
)

+ 𝑙
𝜌

1
ℎ
𝑦
(𝑡, Λ

𝜌

𝑡
, 𝑢

𝜌

𝑡
)] 𝑑𝑡
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+ E
󸀠

[𝑓
𝑧
󸀠 (𝑡, Λ

𝜌

𝑡
, 𝑢

𝜌

𝑡
) (𝑃

𝜌

(𝑡))
󸀠

+ 𝑓
𝑧
(𝑡, Λ

𝜌

𝑡
, 𝑢

𝜌

𝑡
) 𝑃

𝜌

(𝑡)

+ 𝑙
𝜌

1
ℎ
𝑧
󸀠 (𝑡, Λ

𝜌

𝑡
, 𝑢

𝜌

𝑡
) + 𝑙

𝜌

1
ℎ
𝑧
(𝑡, Λ

𝜌

𝑡
, 𝑢

𝜌

𝑡
)] 𝑑𝑊 (𝑡) ,

𝑃
𝜌

(0) = 𝑙
𝜌

1
E [𝑔

𝑦
󸀠 ((𝑌

𝜌

0
(𝑥))

󸀠

, 𝑌
𝜌

0
(𝑥))

+ 𝑔
𝑦
((𝑌

𝜌

0
(𝑥))

󸀠

, 𝑌
𝜌

0
(𝑥))]

+ 𝑙
𝜌

2
E [Φ

𝑦
󸀠 ((𝑌

𝜌

0
(𝑥))

󸀠

, 𝑌
𝜌

0
(𝑥))

+ Φ
𝑦
((𝑌

𝜌

0
(𝑥))

󸀠

, 𝑌
𝜌

0
(𝑥))] ,

(123)

where 𝐴∗ is the 𝐿2(O)-adjoint operator of 𝐴. Under assump-
tions (L1)–(L3), this is a linear mean-field SEE with bounded
coefficients. An application ofTheorem 11 implies that it has a
unique adaptedmild solution such that𝑃𝜌(𝑡) ∈ S2

F ([0, 𝑇]; 𝐾).
When 𝜌 → 0, according to Corollaries 5 and 13, 𝑃𝜌(𝑡)

converges to 𝑃(𝑡), where

𝑃 (𝑡) ∈ S
2

F ([0, 𝑇] ; 𝐾)
(124)

is the solution of the following equation:

𝑃 (𝑡) = 𝑙
1
E [𝑔

𝑦
󸀠 (𝑌

󸀠

0
, 𝑌

0
) + 𝑔

𝑦
(𝑌

󸀠

0
, 𝑌

0
)]

+ 𝑙
2
E [Φ

𝑦
󸀠 (𝑌

󸀠

0
, 𝑌

0
) + Φ

𝑦
(𝑌

󸀠

0
, 𝑌

0
)]

+ ∫

𝑡

0

𝑒
𝐴
∗
(𝑡−𝑠)

E
󸀠

[𝑓
𝑦
󸀠 (𝑠) 𝑃

󸀠

(𝑠) + 𝑓
𝑦
(𝑠) 𝑃 (𝑠)

+ 𝑙
1
ℎ
𝑦
󸀠 (𝑠) + 𝑙

1
ℎ
𝑦
(𝑠)] 𝑑𝑠

+ ∫

𝑡

0

𝑒
𝐴
∗
(𝑡−𝑠)

E
󸀠

[𝑓
𝑧
󸀠 (𝑠) 𝑃

󸀠

(𝑠) + 𝑓
𝑧
(𝑠) 𝑃 (𝑠)

+ 𝑙
1
ℎ
𝑧
󸀠 (𝑠) + 𝑙

1
ℎ
𝑧
(𝑠)] 𝑑𝑊 (𝑠) .

(125)

The following proposition, which formally follows from
Proposition 18, gives the relation between 𝑃𝜌(𝑡) and𝐾𝜀𝜌

𝑡
.

Proposition 19. Consider the following:

E [𝑃
𝜌

(0)𝐾
𝜀𝜌

0
]

= E∫
𝑇

0

{
1

𝜀
𝑃
𝜌

(𝑠)E
󸀠

[𝑓 (𝑠, Λ
𝜌

𝑠
, 𝑢

𝜀𝜌

𝑠
) − 𝑓 (𝑠, Λ

𝜌

𝑠
, 𝑢

𝜌

𝑠
)]

− 𝑙
𝜌

1
𝐾
𝜀𝜌

𝑠
E
󸀠

[ℎ
𝑦
󸀠 (𝑠, Λ

𝜌

𝑠
, 𝑢

𝜌

𝑠
) + ℎ

𝑦
(𝑠, Λ

𝜌

𝑠
, 𝑢

𝜌

𝑠
)]

− 𝑙
𝜌

1
𝑄
𝜀𝜌

𝑠
E
󸀠

[ℎ
𝑧
󸀠 (𝑠, Λ

𝜌

𝑠
, 𝑢

𝜌

𝑠
) + ℎ

𝑧
(𝑠, Λ

𝜌

𝑠
, 𝑢

𝜌

𝑠
)] } 𝑑𝑠.

(126)

The following theorem constitutes the main contribution
of this section, themaximumprinciple for the BSPDE control
system.

Theorem 20. Let assumptions (L1)–(L3) hold. Suppose 𝑢(⋅) is
an optimal control and (𝑌(⋅), 𝑍(⋅)) is the corresponding optimal
state trajectory for the BSPDE control systems (72) and (73)
with the initial state constraint (75). Then there exists 𝑃(𝑡) ∈
S2

F ([0, 𝑇]; 𝐾) which satisfies (125), such that

H (𝑡, 𝑌
󸀠

𝑡
, 𝑍

󸀠

𝑡
, 𝑌

𝑡
, 𝑍

𝑡
, V

𝑡
, 𝑃 (𝑡))

≥ H (𝑡, 𝑌
󸀠

𝑡
, 𝑍

󸀠

𝑡
, 𝑌

𝑡
, 𝑍

𝑡
, 𝑢

𝑡
, 𝑃 (𝑡)) ,

𝑎.𝑒., 𝑎.𝑠. ∀V ∈ U
𝑎𝑑
,

(127)

whereH : [0, 𝑇]×𝐻×L(Γ,𝐻)×𝐻×L(Γ,𝐻)×𝑈×𝐾 → R

is the Hamiltonian function defined by

H (𝑡, 𝑦, 𝑧̃, 𝑦, 𝑧, V, 𝑝) = 𝑙
1
ℎ (𝑡, 𝑦, 𝑧̃, 𝑦, 𝑧, V)

+ 𝑝𝑓 (𝑡, 𝑦, 𝑧̃, 𝑦, 𝑧, V) .
(128)

Proof. By (122) and Proposition 19, we obtain

−𝜌 ≤
1

𝜀
E∫

𝑇

0

𝑃
𝜌

(𝑠)E
󸀠

[𝑓 (𝑠, Λ
𝜌

𝑠
, 𝑢

𝜀𝜌

𝑠
)

− 𝑓 (𝑠, Λ
𝜌

𝑠
, 𝑢

𝜌

𝑠
)] 𝑑𝑠

+
𝑙
𝜌

1

𝜀
E∫

𝑇

0

E
󸀠

[ℎ (𝑠, Λ
𝜌

𝑠
, 𝑢

𝜀𝜌

𝑠
)

− ℎ (𝑠, Λ
𝜌

𝑠
, 𝑢

𝜌

𝑠
)] 𝑑𝑠 + (𝑙

𝜌

1
+ 𝑙

𝜌

2
) 𝑜 (𝜀) .

(129)

Letting 𝜀 → 0
+ in (129), we derive, for a.e. 𝜏 ∈ [0, 𝑇],

−𝜌 ≤ 𝑙
𝜌

1
E
󸀠

[ℎ (𝜏, Λ
𝜌

𝜏
, V

𝜏
) − ℎ (𝜏, Λ

𝜌

𝜏
, 𝑢

𝜌

𝜏
)]

+ 𝑃
𝜌

(𝑠)E
󸀠

[𝑓 (𝜏, Λ
𝜌

𝜏
, V

𝜏
) − 𝑓 (𝜏, Λ

𝜌

𝜏
, 𝑢

𝜌

𝜏
)] ,

(130)

for all V ∈ Uad.
Finally, taking 𝜌 → 0 in (130), we derive the desired

result.

Remark 21. We note that if the coefficients do not depend
explicitly on the marginal law of the underlying diffusion,
the result reduces to the classical case, that is, the SMP for
BSPDEs without mean-field term.

Remark 22. When we remove the initial state constraint (75),
we obtain the general maximum principle for the mean-field
BSPDEs system (i.e., without the constraint) with 𝑙

1
= 1.

5.4. Application: A Backward Linear Quadratic Control Prob-
lem. Now, we apply our maximum principle to solve an LQ
problem. For notational simplicity, we restrict ourselves to
the free case (i.e., without the initial state constraint (75)), the
general case being handled in a similar way.
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Consider the following problem:

𝐽 (𝑢) =
1

2
E [(𝑌 (0))

2

] +
1

2
E∫

𝑇

0

{𝑁V2 (𝑡)} 𝑑𝑡 󳨀→ min

(131)

subject to

𝑑𝑌 (𝑡) = −𝐴𝑌 (𝑡) 𝑑𝑡

− {𝐵𝑌 (𝑡) + 𝐵E [𝑌 (𝑡)]

+𝐶V (𝑡) + 𝐷𝑍 (𝑡) + 𝐷E [𝑍 (𝑡)]} 𝑑𝑡

+ 𝑍 (𝑡) 𝑑𝑊 (𝑡) ,

𝑌 (𝑇) = 𝜉, 𝑡 ∈ [0, 𝑇] ,

(132)

where 𝐴 is a partial differential operator satisfying condition
(L1) and 𝐵, 𝐵, 𝐶,𝐷,𝐷, and𝑁 are bounded and deterministic
constants.We also assume that𝑁 > 0 and V ∈ 𝐿2F (0, 𝑇; 𝑈). It is
easy to verify that BSPDE (132) admits a uniquemild solution
(𝑌(𝑡), 𝑍(𝑡)).

𝑃(𝑡), the adjoint process of state equation (132), is the
solution of

𝑑𝑃 (𝑡) = 𝐴
∗

𝑃 (𝑡) 𝑑𝑡 + {𝐵𝑃 (𝑡) + 𝐵E [𝑃 (𝑡)]} 𝑑𝑡

+ {𝐷𝑃 (𝑡) + 𝐷E [𝑃 (𝑡)]} 𝑑𝑊 (𝑡) ,

𝑃 (0) = 𝑌 (0) .

(133)

Let 𝑢(⋅) be an optimal control, and let (𝑌(⋅), 𝑍(⋅)) be
the corresponding state process. By maximum principle of
Theorem 20 (note that 𝑙

1
= 1 in this problem),

1

2
𝑁V2 (𝑡) + 𝑃 (𝑡) 𝐶V (𝑡) ≥

1

2
𝑁𝑢

2

(𝑡) + 𝑃 (𝑡) 𝐶𝑢 (𝑡) (134)

for all V ∈ 𝑈ad since the state equation has the form (132).This
in turn implies

𝑢 (𝑡) = −
𝐶

𝑁
𝑃 (𝑡) . (135)

It is clear that (131) is a positive quadratic functional of control
because of 𝑁 > 0. Hence, an optimal control exists. The
candidate optimal control (135) is indeed an optimal control
of this LQ problem for it is the only control which satisfies the
maximum principle.

Next, we want to obtain a more explicit representation
of the optimal control (135) from the state equation (132).
Substituting (135) into state equation (132) yields

𝑑𝑌 (𝑡) = −𝐴𝑌 (𝑡) 𝑑𝑡

− {𝐵𝑌 (𝑡) + 𝐵E [𝑌 (𝑡)] −
𝐶
2

𝑁
𝑃 (𝑡)

+𝐷𝑍 (𝑡) + 𝐷E [𝑍 (𝑡)] } 𝑑𝑡 + 𝑍 (𝑡) 𝑑𝑊 (𝑡) ,

𝑌 (𝑇) = 𝜉, 𝑡 ∈ [0, 𝑇] .

(136)

Combining the above equation with (133), we obtain the
following related feedback control system:

𝑑𝑌 (𝑡) = −𝐴𝑌 (𝑡) 𝑑𝑡

− {𝐵𝑌 (𝑡) + 𝐵E [𝑌 (𝑡)] −
𝐶
2

𝑁
𝑃 (𝑡)

+ 𝐷𝑍 (𝑡) + 𝐷E [𝑍 (𝑡)] } 𝑑𝑡 + 𝑍 (𝑡) 𝑑𝑊 (𝑡) ,

𝑌 (𝑇) = 𝜉,

𝑑𝑃 (𝑡) = 𝐴
∗

𝑃 (𝑡) 𝑑𝑡 + {𝐵𝑃 (𝑡) + 𝐵E [𝑃 (𝑡)]} 𝑑𝑡

+ {𝐷𝑃 (𝑡) + 𝐷E [𝑃 (𝑡)]} 𝑑𝑊 (𝑡) ,

𝑃 (0) = 𝑌 (0) .

(137)

Looking at the terminal condition of 𝑃(𝑡) in (133) and
considering the mean-field type of (132), it is reasonable to
conjecture that 𝑃(𝑡) has the following form:

𝑃 (𝑡) = 𝜑 (𝑡) 𝑌 (𝑡) + 𝜙 (𝑡)E [𝑌 (𝑡)] , (138)

where𝜑(𝑡),𝜙(𝑡) are deterministic differential functionswhich
will be specified below. Moreover, 𝜑(0) = 1, 𝜙(0) = 0.

Inserting this form into adjoint equation (133) and notic-
ing that 𝑌(𝑡) satisfies (136), we can compare the coefficients
of 𝑑𝑡 and 𝑑𝑊(𝑡) to obtain the following equation:

2𝜑 (𝑡) 𝐴𝑌 (𝑡) + 2𝜙 (𝑡) 𝐴E [𝑌 (𝑡)] + 𝐵𝜑 (𝑡) 𝑌 (𝑡)

+ 2 (𝐵𝜙 (𝑡) + 𝐵𝜑 (𝑡) + 𝐵𝜙 (𝑡))E [𝑌 (𝑡)]

= −𝜑 (𝑡) {𝐵𝑌 (𝑡) −
𝐶
2

𝑁
𝜑 (𝑡) 𝑌 (𝑡) + 𝐷𝑍 (𝑡)}

+ 𝑌 (𝑡)
𝑑𝜑 (𝑡)

𝑑𝑡
+ E [𝑌 (𝑡)]

𝑑𝜙 (𝑡)

𝑑𝑡

+ (𝜙
2

(𝑡)
𝐶
2

𝑁
+ 2

𝐶
2

𝑁
𝜑 (𝑡) 𝜙 (𝑡))E [𝑌 (𝑡)]

− (𝐷𝜙 (𝑡) + 𝐷𝜙 (𝑡) + 𝐷𝜑 (𝑡))E [𝑍 (𝑡)] ,

𝜑 (𝑡) 𝑍 (𝑡) = 𝐷𝜑 (𝑡) 𝑌 (𝑡)

+ (𝐷𝜙 (𝑡) + 𝐷𝜑 (𝑡) + 𝐷𝜙 (𝑡))E [𝑌 (𝑡)] .

(139)

Then, subtracting 𝑍(𝑡) we have

2𝜑 (𝑡) 𝐴𝑌 (𝑡) + 2𝜙 (𝑡) 𝐴E [𝑌 (𝑡)] + 𝐵𝜑 (𝑡) 𝑌 (𝑡)

+ 2 (𝐵𝜙 (𝑡) + 𝐵𝜑 (𝑡) + 𝐵𝜙 (𝑡))E [𝑌 (𝑡)]
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= 𝜑 (𝑡) {−𝐵 +
𝐶
2

𝑁
𝜑 (𝑡) − 𝐷

2

}𝑌 (𝑡)

+ 𝑌 (𝑡)
𝑑𝜑 (𝑡)

𝑑𝑡
+ E [𝑌 (𝑡)]

𝑑𝜙 (𝑡)

𝑑𝑡

+ (𝜙
2

(𝑡)
𝐶
2

𝑁
+ 2

𝐶
2

𝑁
𝜑 (𝑡) 𝜙 (𝑡))E [𝑌 (𝑡)]

−
1

𝜑 (𝑡)
(𝐷𝜙 (𝑡) + 𝐷𝜑 (𝑡) + 𝐷𝜙 (𝑡))

2

E [𝑌 (𝑡)]

− 2𝐷 (𝐷𝜙 (𝑡) + 𝐷𝜑 (𝑡) + 𝐷𝜙 (𝑡))E [𝑌 (𝑡)] .

(140)

Comparing the coefficients of 𝑌(𝑡) and E[𝑌(𝑡)], respec-
tively, we get

𝑑

𝑑𝑡
𝜑 (𝑡) = 2𝐴

∗

𝜑 (𝑡) + 2𝐵𝜑 (𝑡) + 𝐷
2

𝜑 (𝑡) −
𝐶
2

𝑁
𝜑
2

(𝑡) ,

𝜑 (0) = 1,

(141)

𝑑

𝑑𝑡
𝜙 (𝑡) = 2𝐴

∗

𝜙 (𝑡) + (

(𝐷 + 𝐷)
2

𝜑 (𝑡)
−
𝐶
2

𝑁
)𝜙

2

(𝑡)

+ 2𝑅 (𝑡) 𝜙 (𝑡) + (𝐷
2

+ 2𝐵 + 2𝐷𝐷)𝜑 (𝑡) ,

𝜙 (0) = 0,

(142)

where 𝑅(𝑡) = 𝐵 + 𝐵 + (𝐷 + 𝐷)
2

− (𝐶
2

/𝑁)𝜑(𝑡).
We solve (141) to get

𝜑 (𝑡) = (𝑒
−(2𝐴
∗
+2𝐵+𝐷

2
)𝑡

(1 −
𝐶
2

𝑁(2𝐴∗ + 2𝐵 + 𝐷2)
)

+
𝐶
2

𝑁(2𝐴∗ + 2𝐵 + 𝐷2)
)

−1

.

(143)

Then (142) exists, a unique solution from the classical Riccati
equation theory.

We now conclude the above discussions in the following
result.

Theorem 23. For one’s linear quadratic stochastic partial
differential control problem (131)-(132), the unique optimal
control 𝑢(⋅) ∈ 𝑈ad is given by

𝑢 (𝑡) = −
𝐶

𝑁
(𝜑 (𝑡) 𝑌 (𝑡) + 𝜙 (𝑡)E [𝑌 (𝑡)]) , (144)

with 𝜑(𝑡) satisfying (143) and 𝜙(𝑡) solving (142).
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We consider here the effect of the Ornstein-Uhlenbeck colored noise on the stochastic resonance of the feed-forward-loop (FFL)
network motif. The FFL motif is modeled through the FitzHugh-Nagumo neuron model as well as the chemical coupling. Our
results show that the noise intensity and the correlation time of the noise process serve as the control parameters, which have great
impacts on the stochastic dynamics of the FFLmotif. We find that, with a proper choice of noise intensities and the correlation time
of the noise process, the signal-to-noise ratio (SNR) can display more than one peak.

1. Introduction

Recently, the dynamics of networks of bioinspired neurons
has received wide attentions in all branches of science. Sto-
chastic resonance, as a nonlinear effect in which noise can
enhance the detection of weak signals [1], is one of the central
topics in theoretical and computational neuroscience. Kwon
and Moon [2] investigated the role of different connectivity
regimes on the coherence resonance of Hodgkin-Huxley
neurons and found that spatial synchronization increases
as characteristic path length shortens and firing frequency
increases as clustering coefficient decreases. Ozer et al. [3]
introduced a subthreshold periodic driving to a single neuron
of the Newman-Watts small-world network consisting of bio-
physically realistic Hodgkin-Huxley neurons and found that
the stochastic resonance phenomenon depends significantly
also on the coupling strength among neurons and the driving
frequency.

Noise can provide improvements in the representation of
weak signals through stochastic resonance [4]. Gong et al.
[5] analyzed the temporal coherence and the spatial synchro-
nization of the stochastic Hodgkin-Huxley networks with
channel noise and found that the random shortcuts can
enhance the coherence and synchronization, which are
absent in the regular network. It has been found that many

studies have been carried out in an attempt to the role of noise
in stochastic resonance of neural systems ranging from the
microscale to the macroscale [6–9].

However, few reports are available on the stochastic
resonance of the small-scale neural motifs [10] which are
subnetworks occurring frequently in complex networks and
believed to be basic building blocks of many networks. It is
demonstrated that networkmotifs can perform specific func-
tional roles and do exist in real biological networks, such as
protein-protein interaction networks [11], brain functional
networks [12], neuronal networks [13], and transcription
regulatory networks [14]. Among the neural motifs, the
feed-forward-loop (FFL)motif commonly occurs in dendrite
and feed-forward structure, in which two neurons are unidi-
rectionally coupled to the third one. Therefore, it is of practi-
cal importance to understand how the noise, especially the
Ornstein-Uhlenbeck colored noise, contributes to the neu-
ronal information processing in FFL motif.

The structure of the paper is as follows. First, we introduce
the basic FitzHugh-Nagumo equation formulation of neu-
ronal population dynamics in Section 2. The dynamical
model is equipped with a noise current modeled by an
Ornstein-Uhlenbeck (OU) process. In Section 3, the effects of
noise on the signal-to-noise ratio (SNR) are analyzed in the
single neuronal population.We extend themodel and explore
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Figure 1: Phase plots of the FHmodel with initial values V(0) = 0.8 and 𝑤(0) = 0.1 and different current values: (a) 𝐼 = 0.0, (b) 𝐼 = −0.5, and
(c) 𝐼 = −2.0.

the effects of colored noise on the SNR in the FFL neuronal
motif in Section 4. Finally, a brief conclusion and discussion
of our work are given.

2. The Model

The Hodgkin-Huxley model is of importance in describing
the transmission of an action potential through a cell mem-
brane [15]. However, due to the large number of variables, the
phase space dynamics of the equation is hard to visualize.The
FitzHugh-Nagumo (FH) neuronmodel has been proposed as
a simplified model of the cell membrane [16], experimentally
demonstrated by Nagumo et al. [17] using electrical circuits.

The FHmodel considered here is defined in a dimension-
less form taken from [18]:

𝜖 ̇V = V (V + 𝑎) (1 − V) − 𝑤 + 𝐼,

̇𝑤 = V − 0.5𝑤,

(1)

where V is the voltage potential of the neuronmembrane,𝑤 is
the inactivation of the sodium channels, and 𝐼 represents the
input current. 𝜖 acts as the singular perturbation parameter
and 𝑤 evolves on a much slower time scale than the voltage
potential V. Here, we take the time scale separation variable
𝜖 = 0.01 and set the parameter 𝑎 = 0.6. For different current
values, the neural systemmay exhibit complex dynamics (see
Figure 1).

The total current input consists of the external applied
current 𝐼

ext, the total synaptic current 𝐼
syn, and the noise

current 𝜂; that is, 𝐼 = 𝐼
ext

+ 𝐼
syn

+ 𝜂. In the single neuron level,
the total synaptic current 𝐼

syn will be taken as zero. For the
noise current, the independent noise processes are governed
by [19]

̇𝜂 = −
1

𝜏

d
d𝜂

𝑈
𝑝

(𝜂
𝑖
) +

√𝐷

𝜏
𝜉 (𝑡) , (2)
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Figure 2: The time series of V of the FH model with 𝐷 = 6 and
𝜏 = 0.5.

where the potential function is

𝑈
𝑝

(𝜂) = (
𝐷

𝜏
(𝑝 − 1)) ln[1 +

𝛼 (𝑝 − 1) 𝜂
2

2
] (3)

with𝛼 = 𝜏/𝐷. 𝜉(𝑡) is theGaussianwhite noise process defined
via ⟨𝜉(𝑡)𝜉(𝑡

󸀠

)⟩ = 2𝛿(𝑡 − 𝑡
󸀠

) and ⟨𝜉(𝑡)⟩ = 0. 𝐷 and 𝜏 define the
intensity and the correlation time of the noise process. The
form of the noise 𝜂 allows us to control the deviation from
the Gaussian behavior by changing a single parameter 𝑝. For
𝑝 = 1, (2) becomes

̇𝜂 = −
𝜂

𝜏
+

√𝐷

𝜏
𝜉 (𝑡) , (4)

which is a well-known time evolution equation for the OU
noise process [20].

3. Single Neuron Level

Before analyzing the effects of OU noise on the FFL neuron
motif, let us now discuss the stochastic resonance in single
neuron level. To do this, a localized weak rhythmic activity is
introduced in the form of 𝐼

ext
= 𝐼
0

+ 𝐴 sin(𝜔𝑡), which is
added additively to the neuron. Here, 𝐼

0
= −2 is the bias

current and 𝐴 = 0.01 denotes the amplitude of the sinusoidal
forcing current, whereas𝜔 = 0.5 is the corresponding angular
frequency. In this scenario, the external current is not large
enough to excite the neuron without the induction of noise.
We investigated the effects of noise as perturbation on the FH
neuron in order to examine the stochastic oscillation phe-
nomena. We set the noise intensity 𝐷 = 6 and the correlation
time of the noise process 𝜏 = 0.5. As we see in Figure 2,
regular spiking oscillations are induced due to the presence
of the noise.

Next, we solved (1) and (4) numerically using a stochastic
version of the Euler discretization scheme with a time step of
1ms much smaller than the time constants of the problem.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

14

×10
7

Frequency (Hz)

PS
D

Figure 3: The power spectrum density graph of the time series of V
in Figure 2.

To quantitatively evaluate the performances of stochastic res-
onance, all data shown in our work refer to averages over 50
different realizations. Here, similar to [10], we use the SNR to
measure the relative performance of stochastic resonance
quantitatively. The SNR is one of the important measures for
reducing the noise.There are different definitions for SNR. To
calculate the SNR, the power spectral density (PSD) is first
obtained from the time series of the membrane potential. An
example of the PSD for the time series of V in Figure 2 is
depicted in Figure 3. It is seen that the PSD contains a main
peak located at the forcing frequency 𝑓 = 0.5Hz and a back-
ground noise.This indicates that the frequency characteristic
of the output spike train is induced by the local weak periodic
forcing [10]. Define the SNR as 𝑅 = 10 log

10
(𝑆(𝑓)/𝑁(𝑓)),

where 𝑓 is the input signal frequency, 𝑆(𝑓) denotes the value
of the peak power at the frequency𝑓 in the power spectrumof
the time series of the output spike train, and𝑁(𝑓) is the aver-
aged power at nearby frequencies. A large SNR means that
there is a larger variation of the signal amplitude than of the
noise.

Now, we are ready to study the effects of different𝐷 values
on the relative performance of stochastic resonance. Figure 4
shows the SNR diagram with respect to the noise intensity as
the control parameter.When𝐷 is too small, there is almost no
effect of noise on the spiking activities of the neuron. For an
appropriate noise intensity, due to the excitatory effect of
noise, the neuron starts to fire spikes. As a result of the incre-
asing noise intensity, the SNR curves all first rise, then drop,
and finally are maintained at a certain level, indicating that
there exists an optimal noise intensity for the best perfor-
mance.

4. Motif Neuron Level

Consider the FFL neuronal network motif based on coupled
FH neurons given by

𝜖 ̇V
𝑖
= V
𝑖
(V
𝑖
+ 𝑎) (1 − V

𝑖
) − 𝑤
𝑖
+ 𝐼
𝑖
,

̇𝑤
𝑖
= V
𝑖
− 0.5𝑤

𝑖
,

(5)
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Figure 4: The SNR versus the noise intensity when 𝜏 = 0.5.
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Figure 7: The SNR versus the noise intensity for different coupling strengths. (a) 𝜏 = 0.2, (b) 𝜏 = 0.5, (c) 𝜏 = 0.8, and (d) 𝜏 = 1.1.

where 𝑖 = 1, 2, 3 index the neurons, V
𝑖
is themembrane poten-

tial of the 𝑖th neuron, and 𝑤
𝑖
is the inactivation of the sodium

channels. The total current input 𝐼
𝑖
consists of the external

applied current 𝐼
ext
𝑖
, the total synaptic current 𝐼

syn
𝑖

, and
the noise current 𝜂

𝑖
; that is, 𝐼

𝑖
= 𝐼

ext
𝑖

+ 𝐼
syn
𝑖

+ 𝜂
𝑖
. The external

applied current 𝐼
ext
𝑖

and the noise current 𝜂
𝑖
are defined the

same as in single neuron level. In this work, the synaptic
current onto neuron 𝑖will be the linear sum of the currents of
all incoming synapses, 𝐼

syn
𝑖

= −𝑔 ∑
3

𝑗=1
𝑤
𝑖𝑗
𝑥
𝑗
(𝑡), where 𝑔 des-

cribes the coupling strength of the synapse between neurons.
𝑊 = (𝑤

𝑖𝑗
)
3×3

is the Laplacian matrix of the network motif,
where 𝑤

𝑖𝑗
̸= 0 (𝑖 ̸= 𝑗) implies that there is a connection from

neuron 𝑗 to neuron 𝑖. 𝑥
𝑖
represents membrane potential of

neuron 𝑖. For simplicity, assume that the coupling strength is

identical for all connections; that is, 𝑔
𝑖𝑗

= 𝑔. For the noise
current, the OU noise 𝜂

𝑖
is given by

̇𝜂
𝑖
= −

𝜂
𝑖

𝜏
+

√𝐷

𝜏
𝜉
𝑖
(𝑡) . (6)

In this section, we focus on the stochastic resonance of
the coupled neurons in FFL motif structure. There are dif-
ferent configurations for FFL depending on the excitatory or
inhibitory of the neurons in the motif. Here, we consider the
FFL motif shown in Figure 5(a), that is, the T1-FFL type in
[10], in which the first neuron and the second neuron are
unidirectionally coupled to the third neuron.

In the following simulations, we use the same discretiza-
tion scheme to solve (5) and (6) numerically. And the data



6 Mathematical Problems in Engineering

20

18

16

14

12

10

8

6

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

25

20

15

10

𝜏

D

(a)

24

22

20

18

16

14

12

10

20

18

16

14

12

10

8

6
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

𝜏

D

(b)

Figure 8: Color-featured SNR in dependence on 𝐷 and 𝜏 for different 𝑔. (a) 𝑔 = 0.1 and (b) 𝑔 = 3.0.

are averaged results of 50 independent runs in order to
quantitatively evaluate the performances. As stated in [10], we
only examine the response of neuron 3 to the external applied
current of neuron 1 as neurons 1 and 3 are repetitively
regarded as the input and output neurons of the FFL neuronal
networkmotif.The input-output structure of the FFLmotif is
shown in Figure 5(b).

To examine whether the FFL neuronal network motif
exhibits the stochastic resonance, we set 𝐼

ext
2

= 𝐼
ext
3

= −2,
and a localized weak rhythmic activity is introduced in the
form of 𝐼

ext
1

= 𝐼
0

+ 𝐴 sin(𝜔𝑡), which is added additively to the
first neuron in (5). Here, 𝐼

0
= −2 is the bias current and 𝐴 =

0.01 denotes the amplitude of the sinusoidal forcing current,
whereas 𝜔 = 0.5 is the corresponding angular frequency.
Different from the simulations in single neuron level, we will
investigate the effects of the SNR not only on the strength of
noise 𝐷 but also on the coupling strength 𝑔 and correlation
time 𝜏 has been thoroughly studied. To examine the stochas-
tic oscillation phenomena in the FFL motif level, we set the
coupling strength 𝑔 = 0.113, the noise intensity 𝐷 = 6, and
the correlation time of the noise process 𝜏 = 0.5. As we see in
Figure 6, the output V

3
of the FFL motif exhibits spiking

oscillations induced by the noise in the first neuron.
In what follows, we will systemically analyze effects of

different𝐷, 𝜏, and 𝑔 on the relative performance of stochastic
resonance via SNR. First, we examine the dependence of SNR
on 𝐷 and 𝑔 with fixed values 𝜏. Figure 7 shows the SNR
diagram with respect to the noise intensity as the control
parameter. Similar phenomenon in Figure 4 can be observed
from the curves.Due to the low input stimulus, there is almost
no effect of noise on the spiking activities of the coupled neu-
rons. However, along with the increasing noise intensity, the
SNR starts to enhance and reaches a peak corresponding to
an “optimal” noise intensity. In this case, the first neuron
repeatedly fires spikes and then excitedly stimulates the other
two neurons. Thus, the firing behaviors of these neurons

almost display tonic firing activities and no quiescent state
emerges. While further increasing the noise intensity larger
than the “optimal” noise intensity, the SNR decreases quickly,
indicating that the performance becomes worse. When the
noise intensity 𝐷 is around 10, the SNR reaches a valley point
and then raises gradually again by further increasing the noise
intensity 𝐷. Intuitively, the maximal SNR should turn larger
while increasing values of the coupling strength 𝑔. However,
this is not the case for the FFL motif with Ornstein-
Uhlenbeck colored noise here. As we see, as 𝑔 increases from
0.1 up to 0.4, no explicit differences happen for the maximal
SNR and the SNR curves. We further observe that how the
scope of noise intensity for the maximal SNR changes with 𝜏.
Evidently, the scope of noise intensity for the maximal SNR
enlarges with increasing the correlation time of the noise
process 𝜏 (see Figures 7(a)–7(d)).

Second, to gain more insights into the dependence of the
SNR on 𝐷 and 𝜏, we calculate the 𝑅 on 𝐷 and 𝜏 by two
different coupling strengths 𝑔. Figure 8 features the resulting
color-contour plots for increasing values of 𝑔 from top to
bottom. It is evident that there exists an optimal area for 9.0 <

𝐷 < 9.6 and 1.0 < 𝜏 = 1.2 where the SNR is maximal,
indicating the existence of noise-induced stochastic reso-
nance and the optimal outreach of the localized activity of
the output of neuron 3.

5. Conclusions

In summary, we have considered the stochastic resonance
of the FFL neuronal network motif subject to non-Gaussian
noise. The FFL neuron motif has been built through the
FitzHugh-Nagumo neuron model and the directed synapse
couplings. We have mainly focused on the influence of noise
on the stochastic resonance. The dependence of the SNR on
the strength of noise 𝐷, coupling strength 𝑔, and correlation
time 𝜏 has been thoroughly studied. It has been observed that



Mathematical Problems in Engineering 7

the FFL motif can obtain high values of SNR at optimal noise
intensities and proper coupling strengths.
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This paper is concerned with a kind of nonzero sum differential game of mean-field backward stochastic differential equations with
jump (MF-BSDEJ), in which the coefficient contains not only the state process but also its marginal distribution. Moreover, the cost
functional is also of mean-field type. It is required that the control is adapted to a subfiltration of the filtration generated by the
underlying Brownian motion and Poisson randommeasure. We establish a necessary condition in the form of maximum principle
with Pontryagin’s type for open-loop Nash equilibrium point of this type of partial information game and then give a verification
theoremwhich is a sufficient condition for Nash equilibrium point.The theoretical results are applied to study a partial information
linear-quadratic (LQ) game.

1. Introduction

Game theory had been an active area of research and a use-
ful tool in many applications, particularly in biology and
economics. The study of differential games was originally
stated by Isaacs [1] and then summed up and developed
by Basar and Olsder [2], Yeung and Petrosyan [3], and so
forth. Berkovitz [4], Fleming [5], Elliott and Kalton [6],
and Friedman [7] established the foundations for zero sum
differential games andVaraiya [8] andElliott andDavis [9] for
stochastic differential games. Next, the advances in stochastic
differential games continue to appear over a large number of
fields. Please refer to Hamadène [10], Hamadène et al. [11],
Altman [12], Wu and Yu [13], Yu and Ji [14], and Wang and
Yu [15] for more information.

For the partial information two-person zero sum (or
nonzero sum) stochastic differential games, the objective is
to find a saddle point (or equilibrium point) for which the
controller has less information than the complete informa-
tion filtration {F

𝑡
}
𝑡≥0

. Recently, An andØksendal [16, 17] and
An et al. [18] established a maximum principle for partial
information differential games of stochastic differential equa-
tions with jump (SDEJ). Wang and Yu [19] developed some

results for optimal control of BSDEs and established a max-
imum principle for partial information differential games
of backward stochastic differential equations (BSDEs). They
established a necessary condition in the form of maximum
principle with Pontryagin’s type for open-loop Nash equilib-
riumpoint of this type of partial information game and gave a
verification theorem which is a sufficient condition for Nash
equilibrium point. Meng and Tang [20] and Hui and Xiao
[21] established amaximumprinciple for differential games of
forward-backward SDE under partial information. Øksendal
and Sulem [22] established a general maximum principle for
forward-backward stochastic differential games for Itô-Lévy
processes with partial information and applied the theory to
optimal portfolio and consumption problems under model
uncertainty, in markets modeled by Itô-Lévy processes.

To the best of our knowledge, there are few results about
the partial information differential games of the discontin-
uous mean-field backward stochastic system. In the present
paper we will research this topic. This paper is concerned
with a new kind of nonzero sum differential game of mean-
field backward stochastic differential equations with jump
(MF-BSDEJ) under partial information. It is required that the
control is adapted to a subfiltration of the filtration generated
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by the underlying Brownian motion and Poisson random
measure. We establish a necessary condition in the form
of maximum principle with Pontryagin’s type for open-loop
Nash equilibrium point of this type of partial information
game and then give a verification theoremwhich is a sufficient
condition for Nash equilibrium point. We note that the state
system and the cost function in [22] are not mean-field, and
the game systems in [15, 19] are BSDEs.The theoretical results
are applied to study a partial information linear-quadratic
(LQ) game.

The rest of this paper is organized as follows. In Section 2,
we state our partial information differential game of MF-
BSDEJ and the main assumptions. Section 3 is devoted to
the necessary optimality conditions. In Section 4, we obtain
the sufficient maximum principle of differential game of MF-
BSDEJ under partial information. In Section 5, we give a
partial information linear-quadratic (LQ) game as example
to show the applications of our theoretical results.

2. Statement of the Problems

Let (Ω,F, 𝑃) be a completed probability space. We suppose
that the filtration {F

𝑡
}
𝑡≥0

is generated by the following two
mutually independent processes: a 𝑑-dimensional standard
Brownian motion {𝐵(𝑡)}

𝑡≥0
and a Poisson random measure

𝑁 onR
+
×𝐸, where 𝐸 ⊂ R𝑙 is a nonempty open set equipped

with its Borel field B(𝐸), with compensator 𝑁̂(𝑑𝑒 𝑑𝑡) =

𝜋(𝑑𝑒)𝑑𝑡, such that 𝑁̃(𝐴 × [0, 𝑡]) = (𝑁 − 𝑁̂)(𝐴 × [0, 𝑡])
𝑡≥0

is a martingale for ∀𝐴 ∈ B(𝐸) satisfying 𝜋(𝐴) < ∞. 𝜋 is
assumed to be a 𝜎-finite measure on (𝐸,B(𝐸)) and called
the characteristic measure. Let N denote the class of 𝑃-null
elements ofF. For each 𝑡 ∈ [0, 𝑇], we defineF

𝑡
= F𝑊
𝑡
∨F𝑁
𝑡
,

where for any process {𝜂(𝑡)}, F𝜂
𝑠,𝑡

= 𝜎{𝜂(𝑟) − 𝜂(𝑠); 𝑠 ≤ 𝑟 ≤

𝑡} ∨N,F𝜂
𝑡
= F
𝜂

0,𝑡
.

Let (Ω2,F2, 𝑃2) = (Ω×Ω,F⊗F, 𝑃⊗𝑃) be the completion
of the product probability space of the above (Ω,F, 𝑃) with
itself, where we define F2

𝑡
= F
𝑡
⊗ F
𝑡
with 𝑡 ∈ [0, 𝑇] and

F
𝑡
⊗ F
𝑡
being the completion of F

𝑡
× F
𝑡
. It is worthy of

noting that any random variable 𝜉 = 𝜉(𝜔) defined on Ω can
be extended naturally toΩ2 as 𝜉󸀠(𝜔, 𝜔󸀠) = 𝜉(𝜔)with (𝜔, 𝜔󸀠) ∈
Ω
2. For 𝐻 = R𝑛 and so on, let 𝐿1(Ω2,F2, 𝑃2; 𝐻) be the set

of random variable 𝜉 : Ω
2

→ 𝐻 which is F2-measurable
such that E2|𝜉| ≡ ∫

Ω
2
|𝜉(𝜔
󸀠

, 𝜔)|𝑃(𝑑𝜔
󸀠

)𝑃(𝑑𝜔) < ∞. For any
𝜂 ∈ 𝐿
1

(Ω
2

,F2, 𝑃2; 𝐻), we denote

E
󸀠

𝜂 (𝜔, ⋅) ≐ ∫
Ω

𝜂 (𝜔, 𝜔
󸀠

) 𝑃 (𝑑𝜔
󸀠

) . (1)

Particularly, for example, if 𝜂
1
(𝜔, 𝜔
󸀠

) = 𝜂
1
(𝜔
󸀠

), then

E
󸀠

𝜂
1
= ∫
Ω

𝜂
1
(𝜔
󸀠

) 𝑃 (𝑑𝜔
󸀠

) = E𝜂
1
. (2)

We introduce the following notations:

𝑀
2

(0, 𝑇;R
𝑛

)

= {V (𝑡, 𝜔) : V (𝑡, 𝜔) is an R
𝑛-valued,

F
𝑡
-measurable process

such that E∫
𝑇

0

|V (𝑡, 𝜔)|2𝑑𝑡 < ∞} ,

𝐹
2

𝑁
(0, 𝑇;R

𝑛

)

= {𝑟 (𝑡, 𝑒, 𝜔) : 𝑟 (𝑡, 𝑒, 𝜔) is an R
𝑛-valued,

F
𝑡
-measurable process

such thatE∫
𝑇

0

∫
E
|𝑟 (𝑡, 𝑒, 𝜔)|

2

𝜋 (𝑑𝑒) 𝑑𝑡<∞} ,

𝐿
2

𝜋(⋅)
(R
𝑛

)

= {𝑟 (𝑒) : 𝑟 (𝑒) is an R
𝑛-valued,

B (E) -measurable function

such that ‖𝑟‖ = (∫
E
|𝑟 (𝑒)|
2

𝜋 (𝑑𝑒))

1/2

<∞} ,

𝐿
2

(Ω,F
𝑇
, 𝑃;R
𝑛

)

= {𝜉 : 𝜉 is an R
𝑛-valued,

F
𝑇
-measurable random variable

such that E󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨

2

< ∞} .

(3)

We use the usual inner product ⟨⋅, ⋅⟩ and Euclidean norm
| ⋅ | in R𝑛, R𝑛×𝑑, and R𝑛×𝑙. The notation “𝑇” appearing in
the superscripts denotes the transpose of a matrix. All the
equalities and inequalities mentioned in this paper are in the
sense of 𝑑𝑡 × 𝑑𝑃 almost surely on [0, 𝑇] × Ω.

This work is interested in a class of partial information
nonzero sum differential games of MF-BSDEJ, which is
inspirited by some interesting financial phenomena. For
simplicity, we only consider the case of two players, which is
similar for 𝑛 players. Let us now give a detailed formulation
of the problem. Consider the following MF-BSDEJ:

− 𝑑𝑦
V
(𝑡) = E

󸀠

𝑓 (𝑡, 𝑦
V
(𝑡) , 𝑧

V
(𝑡) , 𝑟

V
(𝑡, ⋅) , (𝑦

V
(𝑡))
󸀠

,

(𝑧
V
(𝑡))
󸀠

, (𝑟
V
(𝑡, ⋅))
󸀠

, V (𝑡)) 𝑑𝑡

− 𝑧
V
(𝑡) 𝑑𝑊 (𝑡) − ∫

E
𝑟
V
(𝑡, 𝑒) 𝑁̃ (𝑑𝑒 𝑑𝑡) ,

𝑦
V
(𝑇) = 𝜉,

(4)

where 𝜉 ∈ 𝐿
2

(Ω,F
𝑇
, 𝑃;R𝑛), 𝑓 : [0, 𝑇] × R𝑛 × R𝑛×𝑑 ×

𝐿
2

𝜋(⋅)
(R𝑛) × R𝑛 × R𝑛×𝑑 × 𝐿2

𝜋(⋅)
(R𝑛) × R𝑘1 × R𝑘2 → R𝑛, V

1
(⋅)

and V
2
(⋅) are the control processes of Player 1 and Player 2,

and V(⋅) = (V
1
(⋅), V
2
(⋅)). We always use the subscript 1 (resp.,

the subscript 2) to characterize the variables corresponding
to Player 1 (resp., Player 2). The mean-field backward game
system (4) has themeaning that the two playerswork together
to achieve a goal 𝜉 at the terminal time 𝑇.
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To study our problem, we give some assumptions on V
1
(⋅),

V
2
(⋅), and 𝑓. Let 𝑈

𝑖
be a nonempty convex subset of R𝑘𝑖 (𝑖 =

1, 2) and E𝑖
𝑡
⊆ F
𝑡
(𝑖 = 1, 2) a given subfiltration which

represents the information available to Player 𝑖 at time 𝑡 ∈

[0, 𝑇], respectively. Now we introduce the admissible control
set

U
𝑖
= {V
𝑖
: [0, 𝑇] × Ω 󳨀→ 𝑈

𝑖
| V
𝑖
is E𝑖
𝑡
-adapted,

E∫
𝑇

0

󵄨󵄨󵄨󵄨V𝑖 (𝑡)
󵄨󵄨󵄨󵄨

2

𝑑𝑡 < ∞} , 𝑖 = 1, 2.

(5)

Each element ofU
𝑖
is called an open-loop admissible control

for Player 𝑖 (𝑖 = 1, 2). AndU
1
×U
2
is called the set of open-

loop admissible controls for the players.
We assume that

(H1) 𝑓 is continuously differentiable with respect to
(𝑦, 𝑧, 𝑟, 𝑦

󸀠

, 𝑧
󸀠

, 𝑟
󸀠

, V
1
, V
2
). Moreover, the norm of𝑓

𝑦
,𝑓
𝑧
,

𝑓
𝑟
, 𝑓
𝑦
󸀠 , 𝑓
𝑧
󸀠 , 𝑓
𝑟
󸀠 , 𝑓V1 , 𝑓V2 is bounded by 𝑐 > 0.

Now, if both V
1
(⋅) and V

2
(⋅) are admissible controls

and assumption (H1) holds, then MF-BSDEJ (4) admits a
unique solution (𝑦V1 ,V2(⋅), 𝑧V1 ,V2(⋅), 𝑟V1 ,V2(⋅, ⋅)) ∈ 𝑀2(0, 𝑇;R𝑛) ×
𝑀
2

(0, 𝑇;R𝑛×𝑑) ×𝐹2
𝑁
(0, 𝑇;R𝑛) (see Shen and Siu [23]). Ensur-

ing to achieve the goal 𝜉, the players have their own benefits,
which are described by the following cost functionals:

𝐽
𝑖
(V (⋅))

= E [∫
𝑇

0

E
󸀠

𝑙
𝑖
(𝑡, 𝑦

V
(𝑡) , 𝑧

V
(𝑡) , 𝑟

V
(𝑡, ⋅) , (𝑦

V
(𝑡))
󸀠

, (𝑧
V
(𝑡))
󸀠

,

(𝑟
V
(𝑡, ⋅))
󸀠

, V (𝑡)) 𝑑𝑡 + Φ
𝑖
(𝑦

V
(0)) ] ,

(6)

where V(⋅) = (V
1
(⋅), V
2
(⋅)), 𝑙
𝑖
: [0, 𝑇] ×R𝑛 ×R𝑛×𝑑 × 𝐿2

𝜋(⋅)
(R𝑛) ×

R𝑛×R𝑛×𝑑×𝐿2
𝜋(⋅)
(R𝑛)×R𝑘1×R𝑘2 → R, Φ

𝑖
:R𝑛 → R, 𝑖 = 1, 2,

satisfying the condition

E [∫
𝑇

0

󵄨󵄨󵄨󵄨󵄨
E
󸀠

𝑙
𝑖
(𝑡, 𝑦

V
(𝑡) , 𝑧

V
(𝑡) , 𝑟

V
(𝑡, ⋅) , (𝑦

V
(𝑡))
󸀠

,

(𝑧
V
(𝑡))
󸀠

, (𝑟
V
(𝑡, ⋅))
󸀠

, V (𝑡))
󵄨󵄨󵄨󵄨󵄨
𝑑𝑡

+
󵄨󵄨󵄨󵄨Φ𝑖 (𝑦

V
(0))

󵄨󵄨󵄨󵄨 ] < ∞, 𝑖 = 1, 2.

(7)

We also assume that

(H2) 𝑙
𝑖
is continuously differentiable in (𝑦, 𝑧, 𝑟, 𝑦

󸀠

, 𝑧
󸀠

, 𝑟
󸀠

,

V
1
, V
2
) and its partial derivatives are continuous in

(𝑦, 𝑧, 𝑟, 𝑦
󸀠

, 𝑧
󸀠

, 𝑟
󸀠

, V
1
, V
2
) and bounded by 𝑐(1 + |𝑦| +

|𝑧| + ‖𝑟‖ + |𝑦
󸀠

| + |𝑧
󸀠

| + ‖𝑟
󸀠

‖ + |V
1
| + |V
2
|). Moreover,

Φ
𝑖
is continuously differentiable and Φ

𝑖𝑦
is bounded

by 𝑐(1 + |𝑦|).

Suppose each player hopes tominimize her/his cost func-
tional 𝐽

𝑖
(V
1
(⋅), V
2
(⋅)) by selecting an appropriate admissible

control V
𝑖
(⋅) (𝑖 = 1, 2). Then the problem is to find a pair of

admissible controls (𝑢
1
(⋅), 𝑢
2
(⋅)) ∈ U

1
×U
2
such that

𝐽
1
(𝑢
1
(⋅) , 𝑢
2
(⋅)) = min

V1(⋅)∈U1
𝐽
1
(V
1
(⋅) , 𝑢
2
(⋅)) ,

𝐽
2
(𝑢
1
(⋅) , 𝑢
2
(⋅)) = min

V2(⋅)∈U2
𝐽
2
(𝑢
1
(⋅) , V
2
(⋅)) .

(8)

We call the problem above a backward nonzero sum stochas-
tic differential game, where the word backward means that
the game system is described by a MF-BSDEJ. For sim-
plicity, we denote it by Problem BNZ. If we can find an
admissible control 𝑢(⋅) = (𝑢

1
(⋅), 𝑢
2
(⋅)) satisfying (8), then

we call it an equilibrium point of Problem BNZ and denote
the corresponding state trajectory by (𝑦(⋅), 𝑧(⋅), 𝑟(⋅, ⋅)) =

(𝑦
𝑢

(⋅), 𝑧
𝑢

(⋅), 𝑟
𝑢

(⋅, ⋅)).

3. A Partial Information Necessary
Maximum Principle

For the convex admissible control set, the classical way to
derive necessary optimality conditions is to use the con-
vex perturbation method. Let 𝑢(⋅) = (𝑢

1
(⋅), 𝑢
2
(⋅)) be an

equilibrium point of Problem BNZ and let (𝑦(⋅), 𝑧(⋅), 𝑟(⋅, ⋅))
be the corresponding optimal trajectory. Let (V

1
(⋅), V
2
(⋅)) be

such that (𝑢
1
(⋅) + V

1
(⋅), 𝑢
2
(⋅) + V

2
(⋅)) ∈ U

1
× U
2
. Since U

1

and U
2
are convex, for any 0 ≤ 𝜌 ≤ 1, (𝑢𝜌

1
(⋅), 𝑢
𝜌

2
(⋅)) =

(𝑢
1
(⋅) + 𝜌V

1
(⋅), 𝑢
1
(⋅) + 𝜌V

1
(⋅)) is also in U

1
× U
2
. As

illustrated before, we denote by (𝑦
𝑢
𝜌

1 (⋅), 𝑧
𝑢
𝜌

1 (⋅), 𝑟
𝑢
𝜌

1 (⋅, ⋅)) and
(𝑦
𝑢
𝜌

2 (⋅), 𝑧
𝑢
𝜌

2 (⋅), 𝑟
𝑢
𝜌

2 (⋅, ⋅)) the corresponding state trajectories of
game system (4) along with the controls (𝑢𝜌

1
(⋅), 𝑢
2
(⋅)) and

(𝑢
1
(⋅), 𝑢
𝜌

2
(⋅)).

For convenience, we introduce the notations

𝜑 (𝑡, ⋅) = 𝜑 (𝑡, 𝑦 (𝑡) , 𝑧 (𝑡) , 𝑟 (𝑡, ⋅) , 𝑦
󸀠

(𝑡) , 𝑧
󸀠

(𝑡) ,

𝑟
󸀠

(𝑡, ⋅) , 𝑢
1
(𝑡) , 𝑢
2
(𝑡)) ,

𝜑
V
(𝑡, ⋅) = 𝜑 (𝑡, 𝑦 (𝑡) , 𝑧 (𝑡) , 𝑟 (𝑡, ⋅) , 𝑦

󸀠

(𝑡) , 𝑧
󸀠

(𝑡) ,

𝑟
󸀠

(𝑡, ⋅) , V
1
(𝑡) , V
2
(𝑡)) ,

𝜑
𝑢
𝜌

1 (𝑡, ⋅) = 𝜑 (𝑡, 𝑦 (𝑡) , 𝑧 (𝑡) , 𝑟 (𝑡, ⋅) , 𝑦
󸀠

(𝑡) , 𝑧
󸀠

(𝑡) ,

𝑟
󸀠

(𝑡, ⋅) , 𝑢
𝜌

1
(𝑡) , 𝑢
2
(𝑡)) ,

𝜑
𝑢
𝜌

2 (𝑡, ⋅) = 𝜑 (𝑡, 𝑦 (𝑡) , 𝑧 (𝑡) , 𝑟 (𝑡, ⋅) , 𝑦
󸀠

(𝑡) , 𝑧
󸀠

(𝑡) ,

𝑟
󸀠

(𝑡, ⋅) , 𝑢
1
(𝑡) , 𝑢
𝜌

2
(𝑡)) ,

(9)

where 𝜑 denotes one of 𝑓 and 𝑙.
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We introduce the variational equations as follows:

− 𝑑𝑦
1

𝑖
(𝑡)

= E
󸀠

[𝑓
𝑦
(𝑡, ⋅) 𝑦

1

𝑖
(𝑡) + 𝑓

𝑧
(𝑡, ⋅) 𝑧

1

𝑖
(𝑡)

+ ∫
E
𝑓
𝑟
(𝑡, 𝑒) 𝑟

1

𝑖
(𝑡, 𝑒) 𝜋 (𝑑𝑒)

+ 𝑓
𝑦
󸀠 (𝑡, ⋅) (𝑦

1

𝑖
(𝑡))
󸀠

+ 𝑓
𝑧
󸀠 (𝑡, ⋅) (𝑧

1

𝑖
(𝑡))
󸀠

+ ∫
E
𝑓
𝑟
󸀠 (𝑡, 𝑒) (𝑟

1

𝑖
(𝑡, 𝑒))

󸀠

𝜋 (𝑑𝑒) + 𝑓V𝑖 (𝑡, ⋅) V𝑖 (𝑡) ] 𝑑𝑡

− 𝑧
1

𝑖
(𝑡) 𝑑𝑊 (𝑡) − ∫

E
𝑟
1

𝑖
(𝑡, 𝑒) 𝑁̃ (𝑑𝑒 𝑑𝑡) ,

𝑦
1

𝑖
(𝑇) = 0, (𝑖 = 1, 2) .

(10)

By (H1), it is easy to know that (10) admits unique
adapted solution (𝑦

1

𝑖
(𝑡), 𝑧
1

𝑖
(𝑡), 𝑟
1

𝑖
(𝑡, ⋅)) ∈ 𝑀

2

(0, 𝑇;R𝑛) ×

𝑀
2

(0, 𝑇;R𝑛×𝑑) × 𝐹2
𝑁
(0, 𝑇;R𝑛), 𝑖 = 1, 2.

For 𝑡 ∈ [0, 𝑇], 𝜌 > 0, we set

𝑦
𝜌

𝑖
(𝑡) =

𝑦
𝑢
𝜌

𝑖 (𝑡) − 𝑦 (𝑡)

𝜌
− 𝑦
1

𝑖
(𝑡) ,

𝑧̃
𝜌

𝑖
(𝑡) =

𝑧
𝑢
𝜌

𝑖 (𝑡) − 𝑧 (𝑡)

𝜌
− 𝑧
1

𝑖
(𝑡) ,

𝑟
𝜌

𝑖
(𝑡, ⋅) =

𝑟
𝑢
𝜌

𝑖 (𝑡, ⋅) − 𝑟 (𝑡, ⋅)

𝜌
− 𝑟
1

𝑖
(𝑡, ⋅) , (𝑖 = 1, 2) .

(11)

We have the following.

Lemma 1. Let assumptions (H1) and (H2) hold. Then, for 𝑖 =
1, 2,

lim
𝜌→0

sup
0≤𝑡≤𝑇

E
󵄨󵄨󵄨󵄨𝑦
𝜌

𝑖
(𝑡)
󵄨󵄨󵄨󵄨

2

= 0, (12)

lim
𝜌→0

E∫
𝑇

0

󵄨󵄨󵄨󵄨𝑧̃
𝜌

𝑖
(𝑡)
󵄨󵄨󵄨󵄨

2

𝑑𝑡 = 0,

lim
𝜌→0

E∫
𝑇

0

󵄩󵄩󵄩󵄩𝑟
𝜌

𝑖
(𝑡)
󵄩󵄩󵄩󵄩

2

𝑑𝑡 = 0.

(13)

Proof. For 𝑖 = 1, we have

− 𝑑𝑦
𝜌

1
(𝑡)

= [
1

𝜌
E
󸀠

(𝑓
𝑢
𝜌

1 (𝑡, ⋅) − 𝑓 (𝑡, ⋅))

− E
󸀠

(𝑓
𝑦
(𝑡, ⋅) 𝑦

1

1
(𝑡) + 𝑓

𝑧
(𝑡, ⋅) 𝑧

1

1
(𝑡)

+ ∫
E
𝑓
𝑟
(𝑡, 𝑒) 𝑟

1

1
(𝑡, 𝑒) 𝜋 (𝑑𝑒) + 𝑓

𝑦
󸀠 (𝑡, ⋅) (𝑦

1

1
(𝑡))
󸀠

+ 𝑓
𝑧
󸀠 (𝑡, ⋅) (𝑧

1

1
(𝑡))
󸀠

+ ∫
E
𝑓
𝑟
󸀠 (𝑡, 𝑒) (𝑟

1

1
(𝑡, 𝑒))

󸀠

𝜋 (𝑑𝑒)

+𝑓V1 (𝑡, ⋅) V1 (𝑡)) ] 𝑑𝑡

− 𝑧̃
𝜌

1
(𝑡) 𝑑𝑊 (𝑡) − ∫

E
𝑟
𝜌

1
(𝑡, 𝑒) 𝑁̃ (𝑑𝑒 𝑑𝑡) ,

𝑦
𝜌

1
(𝑇) = 0,

(14)

or

− 𝑑𝑦
𝜌

1
(𝑡)

= E
󸀠

[𝐴
𝜌

1
(𝑡, ⋅) 𝑦

𝜌

1
(𝑡) + 𝐵

𝜌

1
(𝑡, ⋅) 𝑧̃

𝜌

1
(𝑡)

+ ∫
E
𝐶
𝜌

1
(𝑡, 𝑒) 𝑟

𝜌

1
(𝑡, 𝑒) 𝜋 (𝑑𝑒)

+ 𝐷
𝜌

1
(𝑡, ⋅) (𝑦

𝜌

1
(𝑡))
󸀠

+ 𝐸
𝜌

1
(𝑡, ⋅) (𝑧̃

𝜌

1
(𝑡))
󸀠

+∫
E
𝐹
𝜌

1
(𝑡, 𝑒) (𝑟

𝜌

1
(𝑡, 𝑒))
󸀠

𝜋 (𝑑𝑒) + 𝐺
𝜌

1
(𝑡, ⋅) ] 𝑑𝑡

− 𝑧̃
𝜌

1
(𝑡) 𝑑𝑊 (𝑡) − ∫

E
𝑟
𝜌

1
(𝑡, 𝑒) 𝑁̃ (𝑑𝑒 𝑑𝑡) ,

𝑦
𝜌

1
(𝑇) = 0,

(15)

where we denote

(Θ)

= (𝑡, 𝑦 (𝑡) + 𝜆𝜌 (𝑦
1

1
(𝑡) + 𝑦

𝜌

1
(𝑡)) , 𝑧 (𝑡)

+ 𝜆𝜌 (𝑧
1

1
(𝑡) + 𝑧̃

𝜌

1
(𝑡)) , 𝑟 (𝑡, ⋅)

+ 𝜆𝜌 (𝑟
1

1
(𝑡, ⋅) + 𝑟

𝜌

1
(𝑡, ⋅)) , (𝑦 (𝑡))

󸀠

+ 𝜆𝜌 ((𝑦
1

1
(𝑡))
󸀠

+ (𝑦
𝜌

1
(𝑡))
󸀠

) , (𝑧 (𝑡))
󸀠

+ 𝜆𝜌 ((𝑧
1

1
(𝑡))
󸀠

+ (𝑧̃
𝜌

1
(𝑡))
󸀠

) , (𝑟 (𝑡, ⋅))
󸀠

+ 𝜆𝜌 ((𝑟
1

1
(𝑡, ⋅))
󸀠

+ (𝑟
𝜌

1
(𝑡, ⋅))
󸀠

) , 𝑢
1
(𝑡)

+ 𝜆𝜌V
1
(𝑡) , 𝑢
2
(𝑡) ) ,

𝐴
𝜌

1
(𝑡, ⋅) = ∫

1

0

𝑓
𝑦
(Θ) 𝑑𝜆, 𝐵

𝜌

1
(𝑡, ⋅) = ∫

1

0

𝑓
𝑧
(Θ) 𝑑𝜆,

𝐶
𝜌

1
(𝑡, ⋅) = ∫

1

0

𝑓
𝑟
(Θ) 𝑑𝜆, 𝐷

𝜌

1
(𝑡, ⋅) = ∫

1

0

𝑓
𝑦
󸀠 (Θ) 𝑑𝜆,

𝐸
𝜌

1
(𝑡, ⋅) = ∫

1

0

𝑓
𝑧
󸀠 (Θ) 𝑑𝜆, 𝐹

𝜌

1
(𝑡, ⋅) = ∫

1

0

𝑓
𝑟
󸀠 (Θ) 𝑑𝜆,

𝐺
𝜌

1
(𝑡, ⋅)

= ∫

1

0

(𝑓V1 (Θ) − 𝑓V1 (𝑡, ⋅)) V1 (𝑡) 𝑑𝜆
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+ [𝐴
𝜌

1
(𝑡, ⋅) − 𝑓

𝑦
(𝑡, ⋅)] 𝑦

1

1
(𝑡) + [𝐵

𝜌

1
(𝑡, ⋅) − 𝑓

𝑧
(𝑡, ⋅)] 𝑧

1

1
(𝑡)

+ [𝐶
𝜌

1
(𝑡, ⋅) − 𝑓

𝑟
(𝑡, ⋅)] 𝑟

1

1
(𝑡, ⋅)

+ [𝐷
𝜌

1
(𝑡, ⋅) − 𝑓

𝑦
󸀠 (𝑡, ⋅)] (𝑦

1

1
(𝑡))
󸀠

+ [𝐸
𝜌

1
(𝑡, ⋅) − 𝑓

𝑧
󸀠 (𝑡, ⋅)] (𝑧

1

1
(𝑡))
󸀠

+ [𝐹
𝜌

1
(𝑡, ⋅) − 𝑓

𝑟
󸀠 (𝑡, ⋅)] (𝑟

1

1
(𝑡, ⋅))
󸀠

.

(16)

Applying Itô’s formula to |𝑦𝜌
1
(𝑡)|
2 on [𝑡, 𝑇], by virtue of (H1),

we get

E
󵄨󵄨󵄨󵄨𝑦
𝜌

1
(𝑡)
󵄨󵄨󵄨󵄨

2

+ E∫
𝑇

𝑡

(
󵄨󵄨󵄨󵄨𝑧̃
𝜌

1
(𝑠)
󵄨󵄨󵄨󵄨

2

+
󵄩󵄩󵄩󵄩𝑟
𝜌

1
(𝑠)
󵄩󵄩󵄩󵄩

2

) 𝑑𝑠

= 2EE
󸀠

∫

𝑇

𝑡

∫
E

󵄨󵄨󵄨󵄨⟨𝑦
𝜌

1
(𝑠) , 𝐴

𝜌

1
(𝑠, ⋅) 𝑦

𝜌

1
(𝑠) + 𝐵

𝜌

1
(𝑠, ⋅) 𝑧̃

𝜌

1
(𝑠)

+ ∫
E
𝐶
𝜌

1
(𝑠, 𝑒) 𝑟

𝜌

1
(𝑠, 𝑒) 𝜋 (𝑑𝑒)

+ 𝐷
𝜌

1
(𝑠, ⋅) (𝑦

𝜌

1
(𝑠))
󸀠

+ 𝐸
𝜌

1
(𝑠, ⋅) (𝑧̃

𝜌

1
(𝑠))
󸀠

+ ∫
E
𝐹
𝜌

1
(𝑠, 𝑒) (𝑟

𝜌

1
(𝑠, 𝑒))

󸀠

𝜋 (𝑑𝑒)

+ 𝐺
𝜌

1
(𝑠, ⋅)⟩

󵄨󵄨󵄨󵄨 𝜋 (𝑑𝑒) 𝑑𝑠

≤ 𝐶
0
E∫
𝑇

𝑡

󵄨󵄨󵄨󵄨𝑦
𝜌

1
(𝑠)
󵄨󵄨󵄨󵄨

2

𝑑𝑠

+
1

2
E∫
𝑇

𝑡

(
󵄨󵄨󵄨󵄨𝑧̃
𝜌

1
(𝑠)
󵄨󵄨󵄨󵄨

2

+
󵄩󵄩󵄩󵄩𝑟
𝜌

1
(𝑠)
󵄩󵄩󵄩󵄩

2

) 𝑑𝑠

+ 𝐶
1
𝛼(E∫

𝑇

𝑡

󵄨󵄨󵄨󵄨𝐺
𝜌

1
(𝑠)
󵄨󵄨󵄨󵄨

2

)𝑑𝑠.

(17)

By Gronwall’s inequality, we easily obtain the desired result.
Similarly, we can show that the conclusion holds for 𝑖 = 2.

Since (𝑢
1
(⋅), 𝑢
2
(⋅)) is an equilibrium point of Problem

BNZ, then

𝜌
−1

[𝐽
1
(𝑢
𝜌

1
(⋅) , 𝑢
2
(⋅)) − 𝐽

1
(𝑢
1
(⋅) , 𝑢
2
(⋅))] ≥ 0, (18)

𝜌
−1

[𝐽
2
(𝑢
1
(⋅) , 𝑢
𝜌

2
(⋅)) − 𝐽

2
(𝑢
1
(⋅) , 𝑢
2
(⋅))] ≥ 0. (19)

From this and Lemma 1, we have the following variational
inequality.

Lemma 2. Let assumption (H1) hold. Then,

E∫
𝑇

0

E
󸀠

[𝑙
𝑖𝑦
(𝑡, ⋅) 𝑦

1

𝑖
(𝑡) + 𝑙

𝑖𝑧
(𝑡, ⋅) 𝑧

1

𝑖
(𝑡)

+ ∫
E
𝑙
𝑖𝑟
(𝑡) 𝑟
1

𝑖
(𝑡, 𝑒) 𝜋 (𝑑𝑒) + 𝑙

𝑖𝑦
󸀠 (𝑡, ⋅) (𝑦

1

𝑖
(𝑡))
󸀠

+ 𝑙
𝑖𝑧
󸀠 (𝑡, ⋅) (𝑧

1

𝑖
(𝑡))
󸀠

+ ∫
E
𝑙
𝑖𝑟
󸀠 (𝑡) (𝑟

1

𝑖
(𝑡, 𝑒))

󸀠

𝜋 (𝑑𝑒)

+ 𝑙
𝑖V𝑖 (𝑡, ⋅) V𝑖 (𝑡)] 𝑑𝑡

+ E [Φ
𝑖𝑦
(𝑦 (0)) 𝑦

1

𝑖
(0)] ≥ 0, (𝑖 = 1, 2) .

(20)

Proof. For 𝑖 = 1, from (12), we derive

𝜌
−1

[Φ
1
(𝑦
𝑢
𝜌

1 (0)) − Φ
1
(𝑦 (0))]

= 𝜌
−1

E∫
1

0

Φ
1𝑦
(𝑦 (0) + 𝜆 (𝑦

𝑢
𝜌

1 (0) − 𝑦 (0)))

× (𝑦
𝑢
𝜌

1 (0) − 𝑦 (0)) 𝑑𝜆

󳨀→ E [Φ
1𝑦
(𝑦 (0)) 𝑦

1

1
(0)] , 𝜌 󳨀→ 0.

(21)

Similarly, we have

𝜌
−1

{E∫
𝑇

0

E
󸀠

[𝑙
𝑢
𝜌

1

1
(𝑡, ⋅) − 𝑙

1
(𝑡, ⋅)] 𝑑𝑡}

󳨀→ E∫
𝑇

0

E
󸀠

[𝑙
1𝑦
(𝑡, ⋅) 𝑦

1

1
(𝑡) + 𝑙

1𝑧
(𝑡, ⋅) 𝑧

1

1
(𝑡)

+ ∫
E
𝑙
1𝑟
(𝑡) 𝑟
1

1
(𝑡, 𝑒) 𝜋 (𝑑𝑒) + 𝑙

1𝑦
󸀠 (𝑡, ⋅) (𝑦

1

1
(𝑡))
󸀠

+ 𝑙
1𝑧
󸀠 (𝑡, ⋅) (𝑧

1

1
(𝑡))
󸀠

+ ∫
E
𝑙
1𝑟
󸀠 (𝑡) (𝑟

1

1
(𝑡, 𝑒))

󸀠

𝜋 (𝑑𝑒)

+𝑙
1V1 (𝑡, ⋅) V1 (𝑡)] 𝑑𝑡,

𝜌 󳨀→ 0.

(22)

Let 𝜌 → 0 in (18); then, it follows that, for 𝑖 = 1, (20) holds.
Similarly, we can show that the conclusion holds for 𝑖 = 2.

We define the Hamiltonian function 𝐻
𝑖
: [0, 𝑇] × R𝑛 ×

R𝑛×𝑑×𝐿2
𝜋(⋅)
(R𝑛)×R𝑛×R𝑛×𝑑×𝐿2

𝜋(⋅)
(R𝑛)×R𝑘1 ×R𝑘2×R𝑛 → R,

𝑖 = 1, 2, as follows:

𝐻
𝑖
(𝑡, 𝑦, 𝑧, 𝑟, 𝑦

󸀠

, 𝑧
󸀠

, 𝑟
󸀠

, V
1
, V
2
, 𝑝
𝑖
)

= − ⟨𝑓 (𝑡, 𝑦, 𝑧, 𝑟 (⋅) , 𝑦
󸀠

, 𝑧
󸀠

, 𝑟
󸀠

(⋅) , V
1
, V
2
) , 𝑝
𝑖
⟩

+ 𝑙
𝑖
(𝑡, 𝑦, 𝑧, 𝑟 (⋅) , 𝑦

󸀠

, 𝑧
󸀠

, 𝑟
󸀠

(⋅) , V
1
, V
2
) ,

𝑖 = 1, 2.

(23)
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Let

𝐻
𝑖
(𝑡, ⋅) = 𝐻

𝑖
(𝑡, 𝑦, 𝑧, 𝑟, 𝑦

󸀠

, 𝑧
󸀠

, 𝑟
󸀠

, 𝑢
1
, 𝑢
2
, 𝑝
𝑖
) ,

𝐻
V1 ,V2
𝑖

(𝑡, ⋅) = 𝐻
𝑖
(𝑡, 𝑦, 𝑧, 𝑟, 𝑦

󸀠

, 𝑧
󸀠

, 𝑟
󸀠

, V
1
, V
2
, 𝑝
𝑖
) , 𝑖 = 1, 2.

(24)

We introduce the following adjoint equation:

𝑑𝑝
V1 ,V2
𝑖

(𝑡)

= −E
󸀠

[𝐻
V1 ,V2
𝑖𝑦

(𝑡, ⋅) + 𝐻
V1,V2
𝑖𝑦
󸀠 (𝑡, ⋅)] 𝑑𝑡

− E
󸀠

[𝐻
V1 ,V2
𝑖𝑧

(𝑡, ⋅) + 𝐻
V1 ,V2
𝑖𝑧
󸀠 (𝑡, ⋅)] 𝑑𝑊 (𝑡)

− ∫
E
E
󸀠

[𝐻
V1 ,V2
𝑖𝑟

(𝑡, 𝑒) + 𝐻
V1 ,V2
𝑖𝑟
󸀠 (𝑡, 𝑒)] 𝑁̃ (𝑑𝑒 𝑑𝑡) ,

𝑝
V1 ,V2
𝑖

(0) = −Φ
𝑖𝑦
(𝑦 (0)) , (𝑖 = 1, 2) .

(25)

Starting from the variational inequality (20), we can now
state necessary optimality conditions.

Theorem 3 (partial information necessary maximum princi-
ple). Suppose (H1) and (H2) hold. Suppose (𝑢

1
(⋅), 𝑢
2
(⋅)) is an

equilibrium point of Problem BNZ and (𝑦(⋅), 𝑧(⋅), 𝑟(⋅, ⋅)) is the
corresponding state trajectory. Then one has that

E [⟨𝐻
1V1 (𝑡, ⋅) , V1 − 𝑢1 (𝑡)⟩ | E

1

𝑡
] ≥ 0

E [⟨𝐻
2V2 (𝑡, ⋅) , V2 − 𝑢2 (𝑡)⟩ | E

2

𝑡
] ≥ 0,

(26)

hold for any (V
1
, V
2
) ∈ 𝑈
1
×𝑈
2
, 𝑎.𝑒., 𝑎.𝑠., where 𝑝

𝑖
(⋅) (𝑖 = 1, 2)

is the solution of the adjoint equation (25).

Proof. For 𝑖 = 1, applying Itô’s formula to ⟨𝑦1
1
(𝑡), 𝑝
1
(𝑡)⟩, we

obtain

E∫
𝑇

0

E
󸀠

[𝑙
1𝑦
(𝑡, ⋅) 𝑦

1

1
(𝑡) + 𝑙

1𝑧
(𝑡, ⋅) 𝑧

1

1
(𝑡)

+ ∫
E
𝑙
1𝑟
(𝑡, 𝑒) 𝑟

1

1
(𝑡, 𝑒) 𝜋 (𝑑𝑒) + 𝑙

1𝑦
󸀠 (𝑡, ⋅) (𝑦

1

1
(𝑡))
󸀠

+ 𝑙
1𝑧
󸀠 (𝑡, ⋅) (𝑧

1

1
(𝑡))
󸀠

+ ∫
E
𝑙
1𝑟
󸀠 (𝑡, 𝑒) (𝑟

1

1
(𝑡, 𝑒))

󸀠

𝜋 (𝑑𝑒)

+ 𝑙
1V1 (𝑡) V1 (𝑡)] 𝑑𝑡 + E [Φ

1𝑦
(𝑦 (0)) 𝑦

1

1
(0)]

= E ⟨−𝑓
𝑇

V1 (𝑡) 𝑝1 (𝑡) + 𝑙1V1 (𝑡) , V1 (𝑡)⟩ 𝑑𝑡.
(27)

From Lemma 2, it follows that we have

E∫
𝑇

0

⟨𝐻
1V1 (𝑡, ⋅) , V1 (𝑡)⟩ 𝑑𝑡 ≥ 0. (28)

Because V
1
(𝑡) satisfies 𝑢

1
(𝑡) + V

1
(𝑡) ∈ U

1
, we have

E∫
𝑇

0

⟨𝐻
1V1 (𝑡, ⋅) , V1 − 𝑢1 (𝑡)⟩ 𝑑𝑡 ≥ 0, ∀V

1
∈ 𝑈
1
. (29)

This implies that

E ⟨𝐻
1V1 (𝑡, ⋅) , V1 − 𝑢1 (𝑡)⟩ ≥ 0, ∀V

1
∈ 𝑈
1
. (30)

Now, let V
1
(𝑡) ∈ 𝑈

1
be a deterministic element and let 𝐹 be an

arbitrary element of the 𝜎-algebra E1
𝑡
. And set

𝑤
1
(𝑡) = V

1
(𝑡) 1
𝐹
+ 𝑢
1
(𝑡) 1
Ω−𝐹

. (31)

It is obvious that 𝑤
1
is an admissible control.

Applying the above inequality with 𝑤
1
, we get

E [1
𝐹
⟨𝐻
1V1 (𝑡, ⋅) , V1 − 𝑢1 (𝑡)⟩] ≥ 0, ∀𝐹 ∈ E

1

𝑡
, (32)

which implies that

E [⟨𝐻
1V1 (𝑡, ⋅) , V1 − 𝑢1 (𝑡)⟩ | E

1

𝑡
] ≥ 0, ∀V

1
∈ 𝑈
1
, a.e., a.s.

(33)

Proceeding in the same way as the above proof, we can show
that the other inequality holds for any V

2
∈ 𝑈
2
.Then the proof

is completed.

4. A Partial Information Sufficient
Maximum Principle

In this section, we investigate a sufficient maximum principle
for Problem BNZ. Let (𝑦(𝑡), 𝑧(𝑡), 𝑟(𝑡, ⋅), 𝑢

1
(𝑡), 𝑢
2
(𝑡)) be a

quintuple satisfying (4) and suppose that there exists a
solution 𝑝

𝑖
(𝑡) of the corresponding adjoint forward SDE (25).

We assume that
(H3) for 𝑖 = 1, 2, for all 𝑡 ∈ [0, 𝑇], 𝐻

𝑖
(𝑡, 𝑦, 𝑧, 𝑟, 𝑦

󸀠

, 𝑧
󸀠

, 𝑟
󸀠

,

V
1
, V
2
, 𝑝
𝑖
) is convex in (𝑦, 𝑧, 𝑟, 𝑦

󸀠

, 𝑧
󸀠

, 𝑟
󸀠

, V
1
, V
2
), and

Φ
𝑖
(𝑦) is convex in 𝑦.

Let

𝐻
𝑖
(𝑡, ⋅) = 𝐻

𝑖
(𝑡, 𝑦 (𝑡) , 𝑧 (𝑡) , 𝑟 (𝑡, ⋅) , 𝑦

󸀠

(𝑡) , 𝑧
󸀠

(𝑡) ,

𝑟
󸀠

(𝑡, ⋅) , 𝑢
1
(𝑡) , 𝑢
2
(𝑡) , 𝑝
𝑖
(𝑡)) ,

𝐻
V1
𝑖
(𝑡, ⋅) = 𝐻

𝑖
(𝑡, 𝑦 (𝑡) , 𝑧 (𝑡) , 𝑟 (𝑡, ⋅) , 𝑦

󸀠

(𝑡) , 𝑧
󸀠

(𝑡) ,

𝑟
󸀠

(𝑡, ⋅) , V
1
(𝑡) , 𝑢
2
(𝑡) , 𝑝
𝑖
(𝑡)) ,

𝐻
V2
𝑖
(𝑡, ⋅) = 𝐻

𝑖
(𝑡, 𝑦 (𝑡) , 𝑧 (𝑡) , 𝑟 (𝑡, ⋅) , 𝑦

󸀠

(𝑡) , 𝑧
󸀠

(𝑡) ,

𝑟
󸀠

(𝑡, ⋅) , 𝑢
1
(𝑡) , V
2
(𝑡) , 𝑝
𝑖
(𝑡)) , 𝑖 = 1, 2,

𝜑 (𝑡, ⋅) = 𝜑 (𝑡, 𝑦 (𝑡) , 𝑧 (𝑡) , 𝑟 (𝑡, ⋅) , 𝑦
󸀠

(𝑡) , 𝑧
󸀠

(𝑡) ,

𝑟
󸀠

(𝑡, ⋅) , 𝑢
1
(𝑡) , 𝑢
2
(𝑡)) ,

𝜑
V1
(𝑡, ⋅) = 𝜑 (𝑡, 𝑦 (𝑡) , 𝑧 (𝑡) , 𝑟 (𝑡, ⋅) , 𝑦

󸀠

(𝑡) , 𝑧
󸀠

(𝑡) ,

𝑟
󸀠

(𝑡, ⋅) , V
1
(𝑡) , 𝑢
2
(𝑡)) ,

𝜑
V2
(𝑡, ⋅) = 𝜑 (𝑡, 𝑦 (𝑡) , 𝑧 (𝑡) , 𝑟 (𝑡, ⋅) , 𝑦

󸀠

(𝑡) , 𝑧
󸀠

(𝑡) ,

𝑟
󸀠

(𝑡, ⋅) , 𝑢
1
(𝑡) , V
2
(𝑡)) ,

(34)

where 𝜑 denotes one of 𝑓 and 𝑙.
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Theorem 4 (partial information sufficient maximum prin-
ciple). Assume that (H1)–(H3) are satisfied. Moreover, the
following partial information maximum conditions hold:

E [𝐻
1
(𝑡, ⋅) | E

1

𝑡
] = min

V1∈U1
E [𝐻

V1
1
(𝑡, ⋅) | E

1

𝑡
] , (35)

E [𝐻
2
(𝑡, ⋅) | E

2

𝑡
] = min

V2∈U2
E [𝐻

V2
2
(𝑡, ⋅) | E

2

𝑡
] . (36)

Then (𝑢
1
(⋅), 𝑢
2
(⋅)) is an equilibrium point of Problem BNZ.

Proof. For any V
1
(⋅) ∈ U

1
, we consider

𝐽
1
(V
1
(⋅) , 𝑢
2
(⋅)) − 𝐽

1
(𝑢
1
(⋅) , 𝑢
2
(⋅)) = I

1
+ I
2
, (37)

where

I
1
= E∫

𝑇

0

E
󸀠

[𝑙
V1
1
(𝑡, ⋅) − 𝑙

1
(𝑡, ⋅)] 𝑑𝑡,

I
2
= E [Φ

1
(𝑦

V1
(0)) − Φ

1
(𝑦 (0))] .

(38)

Now applying Itô’s formula to ⟨𝑝
1
(𝑡), 𝑦

V1(𝑡) − 𝑦(𝑡)⟩ on [0, 𝑇],
we get

E ⟨Φ
1𝑦
(𝑦 (0)) , 𝑦

V1
(0) − 𝑦 (0)⟩

= E∫
𝑇

0

E
󸀠

[ ⟨𝑦
V1
(𝑡) − 𝑦 (𝑡) , −𝐻

1𝑦
(𝑡, ⋅)⟩

+ ⟨(𝑦
V1
(𝑡))
󸀠

− 𝑦
󸀠

(𝑡) , −𝐻
1𝑦
󸀠 (𝑡, ⋅)⟩] 𝑑𝑡

+ E∫
𝑇

0

E
󸀠

[ ⟨𝑧
V1
(𝑡) − 𝑧 (𝑡) , −𝐻

1𝑧
(𝑡, ⋅)⟩

+ ⟨(𝑧
V1
(𝑡))
󸀠

− 𝑧
󸀠

(𝑡) , −𝐻
1𝑧
󸀠 (𝑡, ⋅)⟩] 𝑑𝑡

+ E∫
𝑇

0

∫
E
E
󸀠

[ ⟨𝑟
V1
(𝑡, 𝑒) − 𝑟 (𝑡, 𝑒) , −𝐻

1𝑟
(𝑡, 𝑒)⟩

+ ⟨(𝑟
V1
(𝑡, 𝑒))
󸀠

− (𝑟 (𝑡, 𝑒))
󸀠

,

−𝐻
1𝑟
󸀠 (𝑡, 𝑒) ⟩] 𝜋 (𝑑𝑒) 𝑑𝑡

− E∫
𝑇

0

E
󸀠

[⟨𝑝
1
(𝑡) , 𝑓

V1
(𝑡, ⋅) − 𝑓 (𝑡, ⋅)⟩] 𝑑𝑡.

(39)

Moreover, by virtue of (39) and convexity of Φ
1
, it instantly

follows that

I
2
≥ E ⟨Φ

1𝑦
(𝑦 (0)) , 𝑦

V1
(0) − 𝑦 (0)⟩ = −Ξ

1
+ Ξ
2
, (40)

where

Ξ
1
= E∫

𝑇

0

E
󸀠

[ ⟨𝑦
V1
(𝑡) − 𝑦 (𝑡) ,𝐻

1𝑦
(𝑡, ⋅)⟩

+ ⟨(𝑦
V1
(𝑡))
󸀠

− 𝑦
󸀠

(𝑡) ,𝐻
1𝑦
󸀠 (𝑡, ⋅)⟩] 𝑑𝑡

+ E∫
𝑇

0

E
󸀠

[ ⟨𝑧
V1
(𝑡) − 𝑧 (𝑡) ,𝐻

1𝑧
(𝑡, ⋅)⟩

+ ⟨(𝑧
V1
(𝑡))
󸀠

− 𝑧
󸀠

(𝑡) ,𝐻
1𝑧
󸀠 (𝑡, ⋅)⟩] 𝑑𝑡

+ E∫
𝑇

0

∫
E
E
󸀠

[ ⟨𝑟
V1
(𝑡, 𝑒) − 𝑟 (𝑡, 𝑒) ,𝐻

1𝑟
(𝑡, 𝑒)⟩

+ ⟨(𝑟
V1
(𝑡, 𝑒))
󸀠

− (𝑟 (𝑡, 𝑒))
󸀠

, 𝐻
1𝑟
󸀠 (𝑡, 𝑒)⟩]

× 𝜋 (𝑑𝑒) 𝑑𝑡,

Ξ
2
= −E∫

𝑇

0

E
󸀠

[⟨𝑝
1
(𝑡) , 𝑓

V1
(𝑡, ⋅) − 𝑓 (𝑡, ⋅)⟩] 𝑑𝑡.

(41)

Noting the definition of𝐻
1
and I
1
, we have

I
1
= E∫

𝑇

0

E
󸀠

[𝐻
V1
1
(𝑡, ⋅) − 𝐻

1
(𝑡, ⋅)] 𝑑𝑡

+ E∫
𝑇

0

E
󸀠

[⟨𝑝
1
(𝑡) , 𝑓

V1
(𝑡, ⋅) − 𝑓 (𝑡, ⋅)⟩] 𝑑𝑡

= Ξ
3
− Ξ
2
,

(42)

where

Ξ
3
= E∫

𝑇

0

E
󸀠

[𝐻
V1
1
(𝑡, ⋅) − 𝐻

1
(𝑡, ⋅)] 𝑑𝑡. (43)

Using convexity of 𝐻
1
(𝑡, 𝑦, 𝑧, 𝑟, 𝑦

󸀠

, 𝑧
󸀠

, 𝑟
󸀠

, V
1
, V
2
, 𝑝
1
) with re-

spect to (𝑦, 𝑧, 𝑟, 𝑦󸀠, 𝑧󸀠, 𝑟󸀠, V
1
, V
2
), we obtain

𝐻
V1
1
(𝑡, ⋅) − 𝐻

1
(𝑡, ⋅)

≥ 𝐻
1𝑦
(𝑡) (𝑦

V1
(𝑡) − 𝑦 (𝑡)) + 𝐻

1𝑧
(𝑡, ⋅) (𝑧

V1
(𝑡) − 𝑧 (𝑡))

+ ∫
E
𝐻
1𝑟
(𝑡, 𝑒) (𝑟

V1
(𝑡, 𝑒) − 𝑟 (𝑡, 𝑒)) 𝜋 (𝑑𝑒)

+ 𝐻
1𝑦
󸀠 (𝑡, ⋅) ((𝑦

V1
(𝑡))
󸀠

− 𝑦
󸀠

(𝑡))

+ 𝐻
1𝑧
󸀠 (𝑡, ⋅) ((𝑧

V1
(𝑡))
󸀠

− 𝑧
󸀠

(𝑡))

+ ∫
E
𝐻
1𝑟
󸀠 (𝑡, 𝑒) ((𝑟

V1
(𝑡, 𝑒))
󸀠

− 𝑟 (𝑡, 𝑒)) 𝜋 (𝑑𝑒)

+ 𝐻
1𝑢1

(𝑡, ⋅) (V
1
(𝑡) − 𝑢

1
(𝑡)) .

(44)

Since V
1
→ E[𝐻

V1
1
(𝑡, ⋅) | E1

𝑡
], V
1
∈ U
1
, is minimal for 𝑢

1
(𝑡)

and V
1
(𝑡) and 𝑢

1
(𝑡) are E1

𝑡
-measurable, we get

E [𝐻
1𝑢1

(𝑡, ⋅) | E
1

𝑡
] (V
1
(𝑡) − 𝑢

1
(𝑡))

= E [𝐻
1𝑢1

(𝑡, ⋅) (V
1
(𝑡) − 𝑢

1
(𝑡)) | E

1

𝑡
] ≥ 0.

(45)
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Hence combining (43), (44), and (45), we obtain

Ξ
3

≥ E∫
𝑇

0

E
󸀠

[ ⟨𝑦
V1
(𝑡, ⋅) − 𝑦 (𝑡) , −𝐻

1𝑦
(𝑡, ⋅)⟩

+ ⟨(𝑦
V1
(𝑡))
󸀠

− 𝑦
󸀠

(𝑡) , −𝐻
1𝑦
󸀠 (𝑡, ⋅)⟩] 𝑑𝑡

+ E∫
𝑇

0

E
󸀠

[ ⟨𝑧
V1
(𝑡) − 𝑧 (𝑡) , −𝐻

1𝑧
(𝑡, ⋅)⟩

+ ⟨(𝑧
V1
(𝑡))
󸀠

− 𝑧
󸀠

(𝑡) , −𝐻
1𝑧
󸀠 (𝑡, ⋅)⟩] 𝑑𝑡

+ E∫
𝑇

0

∫
E
E
󸀠

[ ⟨𝑟
V1
(𝑡, 𝑒) − 𝑟 (𝑡, 𝑒) ,𝐻

1𝑟
(𝑡, 𝑒)⟩

+ ⟨(𝑟
V1
(𝑡, 𝑒))
󸀠

− (𝑟 (𝑡, 𝑒))
󸀠

, 𝐻
1𝑟
󸀠 (𝑡, 𝑒)⟩]

× 𝜋 (𝑑𝑒) 𝑑𝑡 = Ξ
1
.

(46)

Therefore, it follows from (35), (40), and (46) that
𝐽
1
(V
1
(⋅) , 𝑢
2
(⋅)) − 𝐽

1
(𝑢
1
(⋅) , 𝑢
2
(⋅))

≥ Ξ
3
− Ξ
2
− Ξ
1
+ Ξ
2

≥ Ξ
1
− Ξ
2
− Ξ
1
+ Ξ
2
= 0.

(47)

Then it implies that

𝐽
1
(𝑢
1
(⋅) , 𝑢
2
(⋅)) = min

V1(⋅)∈U1
𝐽
1
(V
1
(⋅) , 𝑢
2
(⋅)) . (48)

In the same way

𝐽
2
(𝑢
1
(⋅) , 𝑢
2
(⋅)) = min

V2(⋅)∈U2
𝐽
2
(𝑢
1
(⋅) , V
2
(⋅)) . (49)

Hence, we draw the desired conclusion. The proof is com-
pleted.

5. Application in a Partial
Information LQ Case

In this section we work out an example of partial information
linear-quadratic differential games of MF-BSDEJ to illustrate
the application of the theoretical results. For notational
simplification, we assume 𝑛 = 𝑑 = 𝑘

1
= 𝑘
2
= 1, 𝑈

1
= 𝑈
2
= R,

and E1
𝑡
= E2
𝑡
= E
𝑡
⊆ F
𝑡
.

Consider the following:

− 𝑑𝑦
V1 ,V2

(𝑡)

= E
󸀠

[𝐴 (𝑡) 𝑦
V1 ,V2

(𝑡) + 𝐶 (𝑡) 𝑧
V1 ,V2

(𝑡) + 𝐷 (𝑡) 𝑟
V1 ,V2

(𝑡, ⋅)

+ 𝐴 (𝑡) (𝑦
V1 ,V2

(𝑡))
󸀠

+ 𝐶 (𝑡) (𝑧
V1 ,V2

(𝑡))
󸀠

+ 𝐷 (𝑡) (𝑟
V1 ,V2

(𝑡, ⋅))
󸀠

+ 𝐵
1
(𝑡) V
1
(𝑡)

+ 𝐵
2
(𝑡) V
2
(𝑡)] 𝑑𝑡

− 𝑧
V1 ,V2

(𝑡) 𝑑𝑊 (𝑡) − ∫
E
𝑟
V1 ,V2

(𝑡, 𝑒) 𝑁̃ (𝑑𝑒 𝑑𝑡) ,

𝑦
V1 ,V2

(𝑇) = 𝜉.

(50)

The cost functional is

𝐽
𝑖
(V
1
(⋅) , V
2
(⋅))

=
1

2
E [∫
𝑇

0

E
󸀠

(𝑀
𝑖
(𝑡) V2
𝑖
(𝑡) + 𝑁

𝑖
(𝑡) (𝑦

V1 ,V2
(𝑡))
2

+ 𝑁
𝑖
(𝑡) ((𝑦

V1 ,V2
(𝑡))
󸀠

)
2

) 𝑑𝑡

+ 𝐿
𝑖
(𝑦

V1 ,V2
(0))
2

] , 𝑖 = 1, 2,

(51)

where constants 𝐿
𝑖
≥ 0, 𝑖 = 1, 2. Functions 𝐴(⋅), 𝐴(⋅), 𝐵

1
(⋅),

𝐵
2
(⋅), 𝐶(⋅), 𝐶(⋅), 𝐷(⋅), 𝐷(⋅) are bounded and deterministic;

𝑁
𝑖
(⋅), 𝑁

𝑖
(⋅), 𝑖 = 1, 2, are nonnegative, bounded, and

deterministic; 𝑀
𝑖
(⋅), 𝑖 = 1, 2, are positive, bounded, and

deterministic; 𝑀−1
𝑖
(⋅), 𝑖 = 1, 2, are also bounded. Our task

is to find (𝑢
1
(⋅), 𝑢
2
(⋅)) ∈ U

1
×U
2
such that

𝐽
1
(𝑢
1
(⋅) , 𝑢
2
(⋅)) = min

V1(⋅)∈U1
𝐽
1
(V
1
(⋅) , 𝑢
2
(⋅)) ,

𝐽
2
(𝑢
1
(⋅) , 𝑢
2
(⋅)) = min

V2(⋅)∈U2
𝐽
2
(𝑢
1
(⋅) , V
2
(⋅)) .

(52)

Theorem 5. The mapping

𝑢
1
(𝑡) = 𝑀

−1

1
(𝑡) 𝐵
1
(𝑡)E [𝑝

1
(𝑡) | E

𝑡
] ,

𝑢
2
(𝑡) = 𝑀

−1

2
(𝑡) 𝐵
2
(𝑡)E [𝑝

2
(𝑡) | E

𝑡
] ,

(53)

is one Nash equilibrium point for the above game problem,
where (𝑝

1
(𝑡), 𝑝
2
(𝑡), 𝑦(𝑡), 𝑧(𝑡), 𝑟(𝑡, ⋅)) is the solution of the

following mean-field forward-backward stochastic differential
equations with jumps (MF-FBSDEJ):

𝑑𝑝
𝑖
(𝑡)

= E
󸀠

[𝐴 (𝑡) 𝑝
𝑖
(𝑡) + 𝐴 (𝑡) 𝑝

󸀠

𝑖
(𝑡) − 𝑁

𝑖
(𝑡) 𝑦 (𝑡)

− 𝑁
𝑖
(𝑡) 𝑦
󸀠

(𝑡)] 𝑑𝑡

+ E
󸀠

[𝐶 (𝑡) 𝑝
𝑖
(𝑡) + 𝐶 (𝑡) 𝑝

󸀠

𝑖
(𝑡)] 𝑑𝑊 (𝑡)

+ ∫
E
E
󸀠

[𝐷 (𝑡) 𝑝
𝑖
(𝑡) + 𝐷 (𝑡) 𝑝

󸀠

𝑖
(𝑡)] 𝑁̃ (𝑑𝑒 𝑑𝑡) ,

− 𝑑𝑦 (𝑡)

= E
󸀠

{𝐴 (𝑡) 𝑦 (𝑡) + 𝐶 (𝑡) 𝑧 (𝑡) + 𝐷 (𝑡) 𝑟 (𝑡, ⋅) + 𝐴 (𝑡) 𝑦
󸀠

(𝑡)

+ 𝐶 (𝑡) 𝑧
󸀠

(𝑡) + 𝐷 (𝑡) 𝑟
󸀠

(𝑡, ⋅) + 𝐵
2

1
(𝑡)𝑀
−1

1
(𝑡)

× E [𝑝
1
(𝑡) | E

𝑡
] + 𝐵
2

2
(𝑡)𝑀
−1

2
(𝑡)E [𝑝

2
(𝑡) | E

𝑡
]} 𝑑𝑡

− 𝑧 (𝑡) 𝑑𝑊 (𝑡) − ∫
E
𝑟 (𝑡, 𝑒) 𝑁̃ (𝑑𝑒 𝑑𝑡) ,

𝑝
𝑖
(0) = −𝐿

𝑖
𝑦 (0) , 𝑦 (𝑇) = 𝜉, 𝑖 = 1, 2.

(54)
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Proof. We first prove the existence of the solution of (54). We
set

𝜃 (𝑡) = E [𝜃 (𝑡) | E
𝑡
] , 𝜃 = 𝑦, 𝑧, 𝑟, 𝑦

󸀠

, 𝑧
󸀠

, 𝑟
󸀠

, 𝑝
1
, 𝑝
2
. (55)

Similar to Lemma 5.4 of [24], the optimal filter (𝑦(𝑡), 𝑧̂(𝑡),
𝑟(𝑡, ⋅), 𝑦

󸀠

(𝑡), 𝑧̂
󸀠

(𝑡), 𝑟
󸀠

(𝑡, ⋅), 𝑝
1
(𝑡), 𝑝
2
(𝑡)) of (𝑦(𝑡), 𝑧(𝑡), 𝑟(𝑡, ⋅),

𝑦
󸀠

(𝑡), 𝑧
󸀠

(𝑡), 𝑟
󸀠

(𝑡, ⋅), 𝑝
1
(𝑡), 𝑝
2
(𝑡)) satisfies

𝑑𝑝
𝑖
(𝑡)

= E
󸀠

[𝐴 (𝑡) 𝑝
𝑖
(𝑡) + 𝐴 (𝑡) 𝑝

󸀠

𝑖
(𝑡) − 𝑁

𝑖
(𝑡) 𝑦 (𝑡)

− 𝑁
𝑖
(𝑡) 𝑦
󸀠

(𝑡)] 𝑑𝑡

+ E
󸀠

[𝐶 (𝑡) 𝑝
𝑖
(𝑡) + 𝐶 (𝑡) 𝑝

󸀠

𝑖
(𝑡)] 𝑑𝑊 (𝑡)

+ ∫
E
E
󸀠

[𝐷 (𝑡) 𝑝
𝑖
(𝑡) + 𝐷 (𝑡) 𝑝

󸀠

𝑖
(𝑡)] 𝑁̃ (𝑑𝑒 𝑑𝑡) ,

− 𝑑𝑦 (𝑡)

= E
󸀠

[𝐴 (𝑡) 𝑦 (𝑡) + 𝐶 (𝑡) 𝑧̂ (𝑡) + 𝐷 (𝑡) 𝑟 (𝑡, ⋅)

+ 𝐴 (𝑡) 𝑦
󸀠

(𝑡) + 𝐶 (𝑡) 𝑧̂
󸀠

(𝑡) + 𝐷 (𝑡) 𝑟
󸀠

(𝑡, ⋅)

+ 𝐵
2

1
(𝑡)𝑀
−1

1
(𝑡) 𝑝
1
(𝑡) + 𝐵

2

2
(𝑡)𝑀
−1

2
(𝑡) 𝑝
2
(𝑡)] 𝑑𝑡

− 𝑧̂ (𝑡) 𝑑𝑊 (𝑡) − ∫
E
𝑟 (𝑡, 𝑒) 𝑁̃ (𝑑𝑒 𝑑𝑡) ,

𝑝
𝑖
(0) = −𝐿

𝑖
𝑦 (0) , 𝑦 (𝑇) = E [𝜉 | E

𝑇
] , 𝑖 = 1, 2.

(56)

Due to the above analysis, the candidate equilibrium point
(𝑢
1
(⋅), 𝑢
2
(⋅)) can be rewritten as

𝑢
1
(𝑡) = 𝑀

−1

1
(𝑡) 𝐵
1
(𝑡) 𝑝
1
(𝑡) ,

𝑢
2
(𝑡) = 𝑀

−1

2
(𝑡) 𝐵
2
(𝑡) 𝑝
2
(𝑡) ,

(57)

where 𝑝
𝑖
(𝑡) (𝑖 = 1, 2) admits MF-FBSDEJ (56). We introduce

a new MF-FBSDEJ:

𝑑𝑃 (𝑡)

= E
󸀠

[𝐴 (𝑡) 𝑃 (𝑡) + 𝐴 (𝑡) 𝑃
󸀠

(𝑡)

− (𝐵
2

1
(𝑡)𝑀
−1

1
(𝑡)𝑁
1
(𝑡) + 𝐵

2

2
(𝑡)𝑀
−1

2
(𝑡)𝑁
2
(𝑡))

× 𝑌 (𝑡) − (𝐵
2

1
(𝑡)𝑀
−1

1
(𝑡)𝑁
1
(𝑡) + 𝐵

2

2
(𝑡)𝑀
−1

2
(𝑡)

×𝑁
2
(𝑡)) 𝑌

󸀠

(𝑡)] 𝑑𝑡

+ E
󸀠

[𝐶 (𝑡) 𝑃 (𝑡) + 𝐶 (𝑡) 𝑃
󸀠

(𝑡)] 𝑑𝑊 (𝑡)

+ ∫
E
E
󸀠

[𝐷 (𝑡) 𝑃 (𝑡) + 𝐷 (𝑡) 𝑃
󸀠

(𝑡)] 𝑁̃ (𝑑𝑒 𝑑𝑡) ,

− 𝑑𝑌 (𝑡)

= E
󸀠

[𝐴 (𝑡) 𝑌 (𝑡) + 𝐶 (𝑡) 𝑍 (𝑡) + 𝐷 (𝑡) 𝑅 (𝑡, ⋅)

+ 𝐴 (𝑡) 𝑌
󸀠

(𝑡) + 𝐶 (𝑡) 𝑍
󸀠

(𝑡) + 𝐷 (𝑡) 𝑅
󸀠

(𝑡, ⋅)

+𝑃 (𝑡)] 𝑑𝑡 − 𝑍 (𝑡) 𝑑𝑊 (𝑡)

− ∫
E
𝑅 (𝑡, 𝑒) 𝑁̃ (𝑑𝑒 𝑑𝑡) ,

𝑃 (0) = − [𝐵
2

1
(0)𝑀

−1

1
(0) 𝐿
1
+ 𝐵
2

2
(0)𝑀

−1

2
(0) 𝐿
2
] 𝑌 (0) ,

𝑌 (𝑇) = 𝜉.

(58)

Based on the analysis above, we can say the existence and
uniqueness of MF-FBSDEJ (56) are equivalent to those of
MF-FBSDEJ (58). It is easy to check that MF-FBSDEJ (58)
satisfies assumptions (A3)–(A5) with 𝐻 = 1, 𝜇

1
= 1, and

𝜇
2
= 𝛽
2
= 0. According to Theorem 7 in Appendix, there

exists a unique solution (𝑃(𝑡), 𝑌(𝑡), 𝑍(𝑡), 𝑅(𝑡, ⋅)) of (58); here,

𝑃 (𝑡) = 𝐵
2

1
(𝑡)𝑀
−1

1
(𝑡) 𝑝
1
(𝑡) + 𝐵

2

2
(𝑡)𝑀
−1

2
(𝑡) 𝑝
2
(𝑡) ,

𝑌 (𝑡) = 𝑦 (𝑡) , 𝑍 (𝑡) = 𝑧̂ (𝑡) , 𝑅 (𝑡, ⋅) = 𝑟 (𝑡, ⋅) .

(59)

Then there exists a unique solution (𝑝
1
(𝑡), 𝑝
2
(𝑡), 𝑦(𝑡), 𝑧̂(𝑡),

𝑟(𝑡, ⋅)) of MF-FBSDEJ (56). Furthermore, there exists at most
one equilibrium point for the underlying game.

Now we try to prove that (𝑢
1
(⋅), 𝑢
2
(⋅)) is a Nash equi-

librium point for our backward LQ game problem. We only
prove

𝐽
1
(𝑢
1
(⋅) , 𝑢
2
(⋅)) = min

V1(⋅)∈U1
𝐽
1
(V
1
(⋅) , 𝑢
2
(⋅)) . (60)

It is similar to getting another inequality of (52). (𝑦V1(𝑡),
𝑧
V1(𝑡), 𝑟V1(𝑡, ⋅)) denotes the solution of the system

− 𝑑𝑦
V1
(𝑡)

= E
󸀠

[𝐴 (𝑡) 𝑦
V1
(𝑡) + 𝐶 (𝑡) 𝑧

V1
(𝑡) + 𝐷 (𝑡) 𝑟

V1
(𝑡, ⋅)

+ 𝐴 (𝑡) (𝑦
V1
(𝑡))
󸀠

+𝐶 (𝑡) (𝑧
V1
(𝑡))
󸀠

+𝐷 (𝑡) (𝑟
V1
(𝑡, ⋅))
󸀠

+ 𝐵
1
(𝑡) V
1
(𝑡) + 𝐵

2
(𝑡) 𝑢
2
(𝑡)] 𝑑𝑡

− 𝑧
V1
(𝑡) 𝑑𝑊 (𝑡) − ∫

E
𝑟
V1
(𝑡, 𝑒) 𝑁̃ (𝑑𝑒 𝑑𝑡) ,

𝑦
V1
(𝑇) = 𝜉.

(61)
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Then
𝐽
1
(V
1
(⋅) , 𝑢
2
(⋅)) − 𝐽

1
(𝑢
1
(⋅) , 𝑢
2
(⋅))

=
1

2
E [∫
𝑇

0

E
󸀠

(𝑀
1
(𝑡) (V
1
(𝑡) − 𝑢

1
(𝑡))
2

+ 2𝑀
1
(𝑡) 𝑢
1
(𝑡) (V
1
(𝑡) − 𝑢

1
(𝑡))

+ 𝑁
1
(𝑡) (𝑦

V1(𝑡) − 𝑦(𝑡))
2

+ 2𝑁
1
(𝑡) 𝑦 (𝑡) (𝑦

V1
(𝑡) − 𝑦 (𝑡))

+ 𝑁
1
(𝑡) ((𝑦

V1
(𝑡))
󸀠

− 𝑦
󸀠

(𝑡))
2

+ 2𝑁
1
(𝑡) 𝑦
󸀠

(𝑡) ((𝑦
V1
(𝑡))
󸀠

− 𝑦
󸀠

(𝑡)) 𝑑𝑡

+ 𝐿
1
(𝑦

V1(0) − 𝑦
𝑢

(0))
2

+ 2𝐿
1
𝑦
𝑢

(0) (𝑦
V
(0) − 𝑦

𝑢

(0))] .

(62)

Applying Itô’s formula to (𝑦V1(𝑡) − 𝑦(𝑡))𝑝
1
(𝑡), we have

E {𝐿
1
𝑦
V
(0) (𝑦

V
(0) − 𝑦

𝑢

(0))}

= −E∫
𝑇

0

E
󸀠

[𝐵
1
(𝑡) 𝑝
1
(𝑡) (V
1
(𝑡) − 𝑢

1
(𝑡))

+ 𝑁
1
(𝑡) 𝑦 (𝑡) (𝑦

V1
(𝑡) − 𝑦 (𝑡))

+ 𝑁
1
(𝑡) 𝑦
󸀠

(𝑡) ((𝑦
V1
(𝑡))
󸀠

− 𝑦
󸀠

(𝑡))] 𝑑𝑡.

(63)

As 𝑀
1
(𝑡) > 0, 𝑁

1
(𝑡) ≥ 0, 𝑁

1
(𝑡) ≥ 0, ∀𝑡 ∈ [0, 𝑇], 𝐿

1
≥ 0,

noting that 𝑢
1
(𝑡) = 𝑀

−1

1
(𝑡)𝐵
1
(𝑡)𝑝
1
(𝑡), we have

𝐽
1
(V
1
(⋅) , 𝑢
2
(⋅)) − 𝐽

1
(𝑢
1
(⋅) , 𝑢
2
(⋅))

≥ E∫
𝑇

0

E
󸀠

[(𝑀
1
(𝑡) 𝑢
1
(𝑡) − 𝐵

1
(𝑡) 𝑝
1
(𝑡))

× (V
1
(𝑡) − 𝑢

1
(𝑡))] 𝑑𝑡 = 0.

(64)

So (𝑢
1
(𝑡), 𝑢
2
(𝑡)) = (𝑀

−1

1
(𝑡)𝐵
1
(𝑡)𝑝
1
(𝑡),𝑀

−1

2
(𝑡)𝐵
2
(𝑡)𝑝
2
(𝑡)) is a

Nash equilibrium point for our backward LQ nonzero sum
differential game problem.

6. Appendix

For the sake of convenience and completeness, we cite the
existence and uniqueness theorem of MF-BSDEJ obtained by
Shen and Siu [23]. They studied the following MF-BSDEJ:

− 𝑑𝑦 (𝑡)

= E
󸀠

𝑓 (𝑡, 𝜉 (𝑡) , 𝜉
󸀠

(𝑡) , V (𝑡)) 𝑑𝑡

− 𝑧 (𝑡) 𝑑𝑊 (𝑡) − ∫
E
𝑟 (𝑡, 𝑒) 𝑁̃ (𝑑𝑒 𝑑𝑡) ,

𝑦 (𝑇) = 𝜉,

(65)

where (𝜉(𝑡), 𝜉
󸀠

(𝑡)) = (𝑦(⋅), 𝑧(⋅), 𝑟(⋅, ⋅), 𝑦
󸀠

(⋅), 𝑧
󸀠

(⋅), 𝑟
󸀠

(⋅, ⋅)) ∈

R𝑛 × R𝑛×𝑑 × 𝐿
2

𝜋(⋅)
(R𝑛) × R𝑛 × R𝑛×𝑑 × 𝐿

2

𝜋(⋅)
(R𝑛), 𝜉 ∈

𝐿
2

(Ω,F
𝑇
, 𝑃;R𝑛), is a random variable, and 𝑇 > 0;

𝑓 : [0, 𝑇] ×R
𝑛

×R
𝑛×𝑑

× 𝐿
2

𝜋(⋅)
(R
𝑛

)

×R
𝑛

×R
𝑛×𝑑

× 𝐿
2

𝜋(⋅)
(R
𝑛

) 󳨀→ R
𝑛

.

(66)

They assumed that

(A1) for each 𝜉, 𝜉󸀠 ∈ R𝑛 × R𝑛×𝑑 × 𝐿
2

𝜋(⋅)
(R𝑛), 𝑓(⋅, 𝜉, 𝜉󸀠)

is an F
𝑡
-measurable process defined on [0, 𝑇] with

𝑓(⋅, 0, 0) ∈ 𝑀
2

(0, 𝑇;R𝑛 ×R𝑛×𝑑) × 𝐹2
𝑁
(0, 𝑇;R𝑛);

(A2) 𝑓(𝑡, 𝜁, 𝜁󸀠) satisfies Lipschitz condition: there exists a
constant 𝑙 > 0, such that
󵄨󵄨󵄨󵄨󵄨󵄨
𝑓 (𝑡, 𝜉, 𝜉

󸀠

) − 𝑓 (𝑡, 𝜉, 𝜉
󸀠

)
󵄨󵄨󵄨󵄨󵄨󵄨
≤ 𝑙 (

󵄨󵄨󵄨󵄨󵄨
𝜉 − 𝜉

󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨󵄨
𝜉
󸀠

− 𝜉
󸀠󵄨󵄨󵄨󵄨󵄨󵄨
) ,

∀𝜉 = (𝑦, 𝑧, 𝑟)
𝑇

, 𝜉
󸀠

= (𝑦
󸀠

, 𝑧
󸀠

, 𝑟
󸀠

)
𝑇

, 𝜉 = (𝑦, 𝑧, 𝑟)
𝑇

,

𝜉
󸀠

= (𝑦
󸀠

, 𝑧
󸀠

, 𝑟
󸀠

)
𝑇

∈ R
𝑛

×R
𝑛×𝑑

× 𝐿
2

𝜋(⋅)
(R
𝑛

) , ∀𝑡 ∈ [0, 𝑇] .

(67)

Based on the fixed-point theorem, Shen and Siu [23] obtained
the following existence and uniqueness result.

Proposition 6. One assumes that (A1) and (A2) hold. Then
MF-BSDEJ (65) has a unique solution (𝑦(𝑡), 𝑧(𝑡), 𝑟(𝑡, ⋅)) ∈

𝑀
2

(0, 𝑇;R𝑛 ×R𝑛×𝑑) × 𝐹2
𝑁
(0, 𝑇;R𝑛).

In the present paper we research the game problem of
a MF-BSDEJ, so the game system and the adjoint equation
constitute exactly a kind of initial coupled MF-FBSDEJ. Due
to this, we give an existence and uniqueness theorem of MF-
FBSDEJ. Consider the following MF-FBSDEJ:

𝑑𝑥 (𝑡)

= E
󸀠

[𝑏 (𝑡, 𝑥 (𝑡) , 𝑦 (𝑡) , 𝑧 (𝑡) , 𝑟 (𝑡, ⋅) , 𝑥
󸀠

(𝑡) ,

𝑦
󸀠

(𝑡) , 𝑧
󸀠

(𝑡) , 𝑟
󸀠

(𝑡, ⋅))] 𝑑𝑡

+ E
󸀠

[𝜎 (𝑡, 𝑥 (𝑡) , 𝑦 (𝑡) , 𝑧 (𝑡) , 𝑟 (𝑡, ⋅) , 𝑥
󸀠

(𝑡) ,

𝑦
󸀠

(𝑡) , 𝑧
󸀠

(𝑡) , 𝑟
󸀠

(𝑡, ⋅))] 𝑑𝑊 (𝑡)

+ ∫
E
E
󸀠

[𝛾 (𝑡, 𝑥 (𝑡) , 𝑦 (𝑡) , 𝑧 (𝑡) , 𝑟 (𝑡, 𝑒) , 𝑥
󸀠

(𝑡) ,

𝑦
󸀠

(𝑡) , 𝑧
󸀠

(𝑡) , 𝑟
󸀠

(𝑡, 𝑒) , 𝑒)] 𝑁̃ (𝑑𝑒 𝑑𝑡) ,

− 𝑑𝑦 (𝑡)

= E
󸀠

[𝑓 (𝑡, 𝑥 (𝑡) , 𝑦 (𝑡) , 𝑟 (𝑡, ⋅) , 𝑥
󸀠

(𝑡) ,

𝑦
󸀠

(𝑡) , 𝑟
󸀠

(𝑡, ⋅))] 𝑑𝑡 − 𝑧 (𝑡) 𝑑𝑊 (𝑡)

− ∫
E
𝑟 (𝑡, 𝑒) 𝑁̃ (𝑑𝑒 𝑑𝑡) ,

𝑥 (0) = 𝜓 (𝑦 (0)) , 𝑦 (𝑇) = 𝜉,

(68)
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where (𝑥(⋅), 𝑦(⋅), 𝑧(⋅), 𝑟(⋅, ⋅), 𝑥󸀠(⋅), 𝑦󸀠(⋅), 𝑧󸀠(⋅), 𝑟󸀠(⋅, ⋅)) ∈ R𝑚 ×

R𝑛 × R𝑛×𝑑 × 𝐿
2

𝜋(⋅)
(R𝑛) × R𝑚 × R𝑛 × R𝑛×𝑑 × 𝐿

2

𝜋(⋅)
(R𝑛), 𝜉 ∈

𝐿
2

(Ω,F
𝑇
, 𝑃;R𝑛), is a random variable, and 𝑇 > 0;

𝑏 : Ω × [0, 𝑇] ×R
𝑚

×R
𝑛

×R
𝑛×𝑑

× 𝐿
2

𝜋(⋅)
(R
𝑛

)

×R
𝑚

×R
𝑛

×R
𝑛×𝑑

× 𝐿
2

𝜋(⋅)
(R
𝑛

) 󳨀→ R
𝑚

,

𝜎 : Ω × [0, 𝑇] ×R
𝑚

×R
𝑛

×R
𝑛×𝑑

× 𝐿
2

𝜋(⋅)
(R
𝑛

)

×R
𝑚

×R
𝑛

×R
𝑛×𝑑

× 𝐿
2

𝜋(⋅)
(R
𝑛

) 󳨀→ R
𝑚×𝑑

,

𝛾 : Ω × [0, 𝑇] ×R
𝑚

×R
𝑛

×R
𝑛×𝑑

× 𝐿
2

𝜋(⋅)
(R
𝑛

)

×R
𝑚

×R
𝑛

×R
𝑛×𝑑

× 𝐿
2

𝜋(⋅)
(R
𝑛

) × E 󳨀→ R
𝑚

,

𝑓 : Ω × [0, 𝑇] ×R
𝑚

×R
𝑛

×R
𝑛×𝑑

× 𝐿
2

𝜋(⋅)
(R
𝑛

)

×R
𝑚

×R
𝑛

×R
𝑛×𝑑

× 𝐿
2

𝜋(⋅)
(R
𝑛

) 󳨀→ R
𝑛

,

𝜓 : R
𝑛

󳨀→ R
𝑚

.

(69)

Given an 𝑛 × 𝑚 full-rank matrix 𝐻, let us introduce some
notations

𝜁 = (

𝑥

𝑦

𝑧

𝑟

) , 𝜁
󸀠

= (

𝑥
󸀠

𝑦
󸀠

𝑧
󸀠

𝑟
󸀠

),

𝐴(𝑡, 𝜁, 𝜁
󸀠

) = (

−𝐻
𝑇

𝑓

𝐻𝑏

𝐻𝜎

𝐻𝛾

)(𝑡, 𝜁, 𝜁
󸀠

) ,

(70)

where𝐻𝜎 = (𝐻𝜎
1
⋅ ⋅ ⋅ 𝐻𝜎

𝑑
). Assume that

(A3) for each 𝜁, 𝜁󸀠 ∈ R𝑚 ×R𝑛 ×R𝑛×𝑑 × 𝐿2
𝜋(⋅)
(R𝑛),𝐴(⋅, 𝜁, 𝜁󸀠)

is an F
𝑡
-measurable process defined on [0, 𝑇] with

𝐴(⋅, 0, 0) ∈ 𝑀
2

(0, 𝑇;R𝑚 ×R𝑛 ×R𝑛×𝑑) × 𝐹2
𝑁
(0, 𝑇;R𝑛);

(A4) 𝐴(𝑡, 𝜁, 𝜁󸀠) and 𝜓(𝑦) satisfy Lipschitz conditions: there
exists a constant 𝑘 > 0, such that

󵄨󵄨󵄨󵄨󵄨󵄨
𝐴 (𝑡, 𝜁, 𝜁

󸀠

) − 𝐴 (𝑡, 𝜁, 𝜁
󸀠

)
󵄨󵄨󵄨󵄨󵄨󵄨
≤ 𝑘 (

󵄨󵄨󵄨󵄨󵄨
𝜁 − 𝜁

󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨󵄨
𝜁
󸀠

− 𝜁
󸀠󵄨󵄨󵄨󵄨󵄨󵄨
) ,

∀𝜁 = (𝑥, 𝑦, 𝑧, 𝑟)
𝑇

, 𝜁
󸀠

= (𝑥
󸀠

, 𝑦
󸀠

, 𝑧
󸀠

, 𝑟
󸀠

)
𝑇

,

𝜁 = (𝑥, 𝑦, 𝑧, 𝑟)
𝑇

,

𝜁
󸀠

= (𝑥
󸀠

, 𝑦
󸀠

, 𝑧
󸀠

, 𝑟
󸀠

)
𝑇

∈ R
𝑚

×R
𝑛

×R
𝑛×𝑑

× 𝐿
2

𝜋(⋅)
(R
𝑛

) ,

∀𝑡 ∈ [0, 𝑇] ,

󵄨󵄨󵄨󵄨𝜓 (𝑦) − 𝜓 (𝑦)
󵄨󵄨󵄨󵄨 ≤ 𝑘

󵄨󵄨󵄨󵄨𝑦 − 𝑦
󵄨󵄨󵄨󵄨 , ∀𝑦, 𝑦 ∈ R

𝑛

;

(71)

(A5) 𝐴(𝑡, 𝜁, 𝜁󸀠) and 𝜓(𝑦) satisfy monotonic conditions:

⟨𝐴 (𝑡, 𝜁, 𝜁
󸀠

) − 𝐴 (𝑡, 𝜁, 𝜁
󸀠

) , 𝜁 − 𝜁⟩

≤ −𝜇
1
|𝐻 (𝑥 − 𝑥)|

2

− 𝜇
2
(
󵄨󵄨󵄨󵄨󵄨
𝐻
𝑇

(𝑦 − 𝑦)
󵄨󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨󵄨
𝐻
𝑇

(𝑧 − 𝑧)
󵄨󵄨󵄨󵄨󵄨

2

+
󵄩󵄩󵄩󵄩󵄩
𝐻
𝑇

(𝑟 − 𝑟)
󵄩󵄩󵄩󵄩󵄩

2

) ,

∀𝜁 = (𝑥, 𝑦, 𝑧, 𝑟)
𝑇

, 𝜁
󸀠

= (𝑥
󸀠

, 𝑦
󸀠

, 𝑧
󸀠

, 𝑟
󸀠

)
𝑇

,

𝜁 = (𝑥, 𝑦, 𝑧, 𝑟)
𝑇

,

𝜁
󸀠

= (𝑥
󸀠

, 𝑦
󸀠

, 𝑧
󸀠

, 𝑟
󸀠

)
𝑇

∈ R
𝑚

×R
𝑛

×R
𝑛×𝑑

× 𝐿
2

𝜋(⋅)
(R
𝑛

) ,

∀𝑡 ∈ [0, 𝑇] .

⟨𝜓 (𝑦) − 𝜓 (𝑦) , 𝑦 − 𝑦⟩ ≤ −𝛽
2

󵄨󵄨󵄨󵄨󵄨
𝐻
𝑇

(𝑦 − 𝑦)
󵄨󵄨󵄨󵄨󵄨

2

, ∀𝑦, 𝑦 ∈ R
𝑛

,

(72)

where 𝜇
1
, 𝜇
2
, and 𝛽

2
are given nonnegative constants

with 𝜇
1
+ 𝜇
2
> 0, 𝜇

1
+ 𝛽
2
> 0. Moreover we have

𝜇
1
> 0 (resp., 𝜇

2
> 0, 𝛽

2
> 0) when 𝑚 < 𝑛 (resp.,

𝑚 > 𝑛).

By similar arguments of Yu and Ji [14], Wang and Yu
[19], and Min et al. [25], we have the following existence and
uniqueness theorem.

Theorem 7. One assumes that (A3), (A4), and (A5) hold.
Then MF-FBSDEJ (68) has a unique solution (𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡),
𝑟(𝑡, ⋅)) ∈ 𝑀

2

(0, 𝑇;R𝑚 ×R𝑛 ×R𝑛×𝑑) × 𝐹2
𝑁
(0, 𝑇;R𝑛).

7. Conclusion

In this paper, we investigate a new differential game problem
of mean-field BSDE with jump (MF-BSDEJ). Compared with
the previous literature, our game systems are mean-field
BSDE with jump and are under the framework of partial
information. We established a maximum principle and a
verification theorem for an equilibriumpoint of nonzero sum
differential games. We also give a partial information linear-
quadratic (LQ) game as example to show the applications of
our theoretical results.

The subject issue studied in this paper possesses fine
generality. Firstly, the mean-field BSDEJ game system covers
many systems as its particular case. For example, if we drop
the terms on jump or mean-field or both of them, then the
MF-BSDEJ can be reduced to MF-BSDE or BSDEJ or BSDE.
Secondly, if we suppose that E

𝑡
= F
𝑡
, for all 𝑡 ∈ [0, 𝑇],

all the results are reduced to the case of full information.
Thirdly, if the present nonzero sum stochastic differential
game has only one player, the game problem is reduced to
some related optimal control. Particularly, our results are a
partial extension to differential games of full information
BSDEs [15] and partial information BSDEs [19]. Finally,
since many optimization and game problems in finance and
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economics can be associated with mean-field BSDE with
jump, the outcomes of this paper can be widely applied in
these areas.
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With the uncertainty probability distribution, we establish the worst-case CVaR (WCCVaR) risk measure and discuss a robust
portfolio selection problem with WCCVaR constraint. The explicit solution, instead of numerical solution, is found and two-fund
separation is proved. The comparison of efficient frontier with mean-variance model is discussed and finally we give numerical
comparison with VaR model and equally weighted strategy. The numerical findings indicate that the proposed WCCVaR model
has relatively smaller risk and greater return and relatively higher accumulative wealth than VaR model and equally weighted
strategy.

1. Introduction

VaR (value at risk) has been a popular riskmeasure in finance
industry and academic research and is written in New Basel
Accord. But two difficulties are faced by user: (1) the explicit
expression of VaR is unavailable unless the normal distribu-
tion assumption is done and (2) VaR, as a risk measure tool,
does not satisfy the coherent axiom [1]. Hence, an approxima-
tion of VaR is often considered in practice by either assuming
normal distribution or simulation method based historical
data. Rockafellar andUryasev [2] proposed an alternative risk
measure, namely, conditional VaR (CVaR), which is coherent
and provided a linear programming approximate with histor-
ical data. But the assumption that the return of risky asset
follows the normal distribution is usually done when one
computes CVaR by parameterized approaches. As we know,
normal distribution can usually underestimate the loss of the
rare event and is not clearly a very good approximation of the
return of risky asset.This is still a challenge for computing an
explicit expression of CVaR without any special distribution
information.The current paper will explore this problem and
establish themean-CVaRportfoliomodelwithout probability
distribution assumption.

Robust portfolio problems with parameters uncertainty
are recently paid close attention to. Goldfarb and Iyengar [3],

for instance, considered a class of robust portfolio problem
with risk factors in which they solve numerically robust
mean-variance portfolio problem, robust downside risk port-
folio problem with normal distribution, and robust Sharpe
ratio portfolio problem; see also, Costa and Paiva [4],
Halldórsson and Tütüncü [5], Tütüncü and Koenig [6], Lu
[7], and Ling andXu [8] for the relative researches.Theuncer-
tainty of models above is only from the parameters under
the deterministic distribution and cannot capture the uncer-
tainty in distribution. El Ghaoui et al. [9] proposed the worst-
case VaR (WCVaR) risk measure and considered a portfolio
selection problem with minimization of WCVaR. Zhu and
Fukushima [10] proposed the worst-case CVaR risk measure
and discussed a robust mean-CVaR portfolio model with
uncertainty discrete distribution. Some similar researches
can be found in Zhu et al. [11] and Huang et al. [12]. A richer
literature can be referred to in Fabozzi et al. [13].

We define the worst-case CVaR with uncertainty distri-
bution including the continuous and discrete distribution
and consider a portfolio selection problem with WCCVaR as
risk measure. Our results extend that of Zhu and Fukushima
[10] for which they considered only the discrete case to
the case including the continuous and discrete distribution.
Most of methods for robust portfolio problems are that one
converts first the problems into convex cone (e.g., linear

Hindawi Publishing Corporation
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programming, second-order cone programming, or positive
semidefinite programming) and then solves them numeri-
cally. Differently from these numerical methods, we consider
an analytic solution approach for the proposed robust mean-
WCCVaR problem. We discuss two cases of the proposed
robust problems with and without risky-free asset and prove
two-fund separable theorem. Numerical results and compar-
isons with VaR and equally weighted strategy for real market
data are reported.

The outline of this paper is arranged as follows. We
introduce the definition of worst-case CVaR, establish mean-
WCCVaR portfolio model, and give the closed-form solution
in Section 2 and Section 3 proves the two-fund separation
theorem. The extension of the model with risky-free asset
is considered in Section 4. Numerical results are reported in
Section 5.

2. Mean-WCCVaR Portfolio Model

We consider mainly an investing and holding strategy in this
paper for which the investor allocates his (her) assets at time 0
and collects his (her) returns of portfolio at time 1. Generally
speaking, two things must be done at time 0: one is that the
investor needs to estimate the returns of risky assets at time 1
using the available information at time 0 and another is that
the investor must choose an optimal decision to allocate his
(her) wealth.

Let there be 𝑛 available risky assets in the market and let
their random returns vector be denoted by r = (𝑟

1
, . . . , 𝑟

𝑛
)
𝑇

∈

R𝑛. The expected returns and covariance matrix are denoted,
respectively, by 𝜇 = E[r] = (𝜇

1
, . . . , 𝜇

𝑛
)
𝑇

∈ R𝑛 and Σ =

(𝜎
𝑖𝑗
)
𝑛×𝑛

, where 𝜎
𝑖𝑖
= 𝜎
2

𝑖
= var(𝑟

𝑖
) is variance of asset 𝑖 (𝑖 =

1, . . . , 𝑛).The rate of return of risky-free asset is denoted by 𝑟
𝑓
.

The portfolio vector is w = (𝑤
1
, . . . , 𝑤

𝑛
)
𝑇

∈ R𝑛 with 𝑤
𝑖
the

proportion of wealth invested in asset 𝑖. The weight of wealth
invested in risky-free asset is denoted by 𝑤

𝑓
. Let 𝑓(w, r) be

the loss for portfolio vector w and satisfy E[|𝑓(w, r)|] < +∞,
and let 𝐹(⋅) be the joint cumulative probability distribution of
random vector r. Then the probability that the loss 𝑓(w, r) is
not greater than a given constant 𝛼 is

Ψ (w, 𝛼) = P {𝑓 (w, r) ≤ 𝛼} = ∫
𝑓(w,r)≤𝛼

𝑑𝐹 (r) . (1)

Let 𝛽 ∈ (0, 1); then, with confidence level 𝛽, VaR
𝛽
can be

expressed as

VaR
𝛽
(w) = min {𝛼 ∈ R | Ψ (w, 𝛼) ≥ 𝛽} . (2)

Rockafellar and Uryasev [2] defined CVaR as the conditional
expectation of loss 𝑓(w, r) greater than VaR

𝛽
. With the

definition of CVaR and the given confidence level 𝛽, the
mathematic formulation of CVaR can be written as

CVaR
𝛽
(w) = E [𝑓 (w, r) | 𝑓 (w, r) ≥ VaR

𝛽
(w)]

=
1

1 − 𝛽
∫
𝑓(w,r)≥VaR𝛽(w)

𝑓 (w, r) 𝑑𝐹 (r) .
(3)

Let

𝐻
𝛽
(w, 𝛼) = 𝛼 + 1

1 − 𝛽
E [(𝑓 (w, r) − 𝛼)

+
] . (4)

Then CVaR
𝛽
(w) can be expressed further as [2]

CVaR
𝛽
(w) = min

𝛼

𝐻
𝛽
(w, 𝛼) , (5)

where

(𝑎)
+
= {

𝑎, 𝑎 > 0;

0, 𝑎 ≤ 0.
(6)

Clearly, it is not possible to get an exact result of CVaR by (4)
if we have not any information on the distribution of random
vector r. Some sampling or simulation methods are used to
computes the approximation of CVaR in the literature. We
explore a closed-form solution in this paper with only partial
distribution assumptions for random vector r, for which we
assume that random vector r follows a family of distributions
D defined by

D = {r | E [r] = 𝜇,Cov (r) = Σ ≻ 0} , (7)

whereΣ ≻ 0means thatΣ is a positive definitematrix andD is
called the uncertainty set of distribution of random vector r.
Clearly, D is a distribution family with given mean value 𝜇
and covariance matrix Cov, where 𝜇, Cov are assumed to be
known. We then can compute CVaR

𝛽
when the worst-case

probability distribution in D occurs. To this end, we define
worst-case CVaR as follows.

Definition 1. Let 𝛽 ∈ (0, 1), worst-case CVaR (WCCVaR) of
portfolio w under uncertainty setD is defined by

WCCVaR
𝛽
(w) = sup

𝐹∈D

CVaR
𝛽
(w) = sup

𝐹∈D

min
𝛼

𝐻
𝛽
(w, 𝛼) .

(8)

Noticing that 𝐻
𝛽
(w, 𝛼) is the convex function of 𝛼 [14],

then we have from max-min theorem [15]

WCCVaR
𝛽
(w) = sup

𝐹∈D

min
𝛼

𝐻
𝛽
(w, 𝛼) = min

𝛼

sup
𝐹∈D

𝐻
𝛽
(w, 𝛼) .

(9)

The following results are straightforward and a similar proof
can be found in [10].

Theorem 2. WCCVaR
𝛽
(w) is a coherent risk measure and

satisfies that

WCCVaR
𝛽
(w) ≥ CVaR

𝛽
(w) ≥ VaR

𝛽
(w) . (10)

Hence, WCCVaR
𝛽
(w) can be used as a risk measure and

if the investor measures the risk of portfolio based on WCC-
VaR, then we can establish the mean-WCCVaR portfolio
model by

max
w
𝜇
𝑇w

s.t. WCCVaR
𝛽
(w) ≤ 𝜏,

e𝑇w = 1,

(RP1)
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where 𝜏 > 0 is a preset constant. We solve mainly problem
(RP1) by exploring an explicit approach. To this end, for
convenience, we denote sometime r ∈ D by r ∼ (𝜇, Σ). The
following result is helpful for our analysis later.

Lemma 3 (see [15]). Let 𝜉 be a random variable with mean
value 𝜇 and variance 𝜎. 𝜌 is any real number. Then, for the
supper bound of E[(𝜌 − 𝜉)

+
], we have

sup
𝜉∼(𝜇,𝜎)

E [(𝜌 − 𝜉)
+
] =

𝜌 − 𝜇 + √𝜎2 + (𝜌 − 𝜇)
2

2
. (11)

Lemma 4 (see [14, 16]). Let for any vector a ∈ R𝑛,

𝑆
1
= {a𝑇r | r ∈ D} ,

𝑆
2
= {𝜂 | E (𝜂) = a𝑇𝜇,Var (𝜂) = a𝑇Σa} .

(12)

Then 𝑆
1
= 𝑆
2
.

Lemma 3 provides an upper bound of 1-order lower
partial moment for one dimensional random variable and
Lemma 4 provides a relationship of uncertainty set between
one dimensional and several dimensional random variable
with given mean value and variance. Lemma 4 indicates also
that 𝑆

1
(or 𝑆
2
) is in fact a single variable distribution family

with givenmean a𝑇𝜇 and variance a𝑇Σa, where a,𝜇, andΣ are
known. Further, we can obtain an explicit expression for sup
in (4) if the loss 𝑓(w, r) is linear.

Lemma 5. If 𝑓(w, r) = −r𝑇w, then for any r ∈ D and 𝛼 ∈ R,
we have

sup
r∈D

E [(𝑓(w, r) − 𝛼)
+
]

= sup
r∈D

E [(−𝛼 − r𝑇w)
+

]

=
1

2
(√w𝑇Σw + (𝜇𝑇w + 𝛼)

2

− (𝜇
𝑇w + 𝛼)) .

(13)

Proof. Let a = w and 𝜂 = w𝑇r.Then, it follows fromLemma 4
that

sup
r∈D

E [(𝑓 (w, r) − 𝛼)
+
]

= sup
r∈D

E [(−𝛼 − a𝑇r)
+

]

= sup
w𝑇r∈𝑆1

E [(−𝛼 − w𝑇r)
+

]

= sup
𝜂∈𝑆2

E [(−𝛼 − 𝜂)
+
]

= sup
𝜂∼(a𝑇𝜇,a𝑇Σa)

E [(−𝛼 − 𝜂)
+
]

= sup
𝜂∼(w𝑇𝜇,w𝑇Σw)

E [(−𝛼 − 𝜂)
+
]

=
1

2
(√w𝑇Σw + (𝜇𝑇w + 𝛼)

2

− (𝜇
𝑇w + 𝛼)) .

(14)

The final equality follows from Lemma 3; this is the desired
result.

Hence, from Lemma 5, WCCVaR
𝛽
(w) can be expressed

by

WCCVaR
𝛽
(w)

= min
𝛼∈R

{𝛼 +
1

2 (1 − 𝛽)
(√w𝑇Σw + (𝜇𝑇w + 𝛼)

2

− (𝜇
𝑇w + 𝛼) )} .

(15)

Clearly, the right side of the equation above is convex function
in 𝛼 and we can prove that WCCVaR

𝛽
(w) can be attained at

𝛼
∗

= −𝜇
𝑇w +

2𝛽 − 1

2√𝛽 (1 − 𝛽)

√w𝑇Σw; (16)

that is,

WCCVaR
𝛽
(w) = −𝜇𝑇w + √

𝛽

1 − 𝛽

√w𝑇Σw. (17)

Then, robustmean-WCCVaR portfolio problem (RP1) can be
expressed further as

max
w
𝜇
𝑇w

s.t. − 𝜇
𝑇w + √

𝛽

1 − 𝛽

√w𝑇Σw ≤ 𝜏,

e𝑇w = 1.

(RP2)

In the rest of this paper, we discuss mainly the solution of
(RP2). To this end, let 𝑎 = e𝑇Σ−1e, 𝑏 = 𝜇𝑇Σ−1e, 𝑐 = 𝜇𝑇Σ−1𝜇,
𝑎
0
= (𝑎𝑐 − 𝑏

2

)/𝑎, and 𝛽
0
= √(1 − 𝛽)/𝛽. Then, the following

result gives feasible conditions of problem (RP2).

Lemma 6. If 𝑎
0
𝛽
2

0
< 1 and

𝜏 ≥ max {𝜏∗, 0} , (18)

then problem (RP2) is feasible, where 𝜏∗=√1 − 𝑎
0
𝛽
2

0
/(𝛽
0
√𝑎)−

𝑏/𝑎.

Proof. For any given 𝛽 ∈ (0, 1), consider the problem

𝜏
∗

= minw {−𝜇
𝑇w + √

𝛽

1 − 𝛽

√w𝑇Σw | s.t. e𝑇w = 1} .

(19)
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Let V = √wΣw and let V be viewed as a new variable. Denote
the optimal solution of problem (19) by ŵ; then ŵ satisfies the
first order condition:

−𝜇 + 𝜆
󸀠e + 2𝜆󸀠󸀠Σ−1ŵ = 0,

2𝜆
󸀠󸀠V = √

𝛽

1 − 𝛽
,

e𝑇ŵ = 1,

ŵ𝑇Σŵ = V2,

(20)

where𝜆󸀠, 𝜆󸀠󸀠 ∈ R are the Lagrangemultipliers. It is not hard to
obtain from the first and third equations of (20)

ŵ =
1

2𝜆󸀠󸀠
(Σ
−1

𝜇 −
𝑏

𝑎
Σ
−1e) + 1

𝑎
Σ
−1e. (21)

Substituting ŵ in the fourth equation and combining the
second equation of (20), then we can get the optimal solution
of (19) when 𝑎

0
𝛽
2

0
< 1

ŵ =
𝛽
0

√𝑎 (1 − 𝑎
0
𝛽
2

0
)

(Σ
−1

𝜇 −
𝑏

𝑎
Σ
−1e) + 1

𝑎
Σ
−1e. (22)

The optimal value

𝜏
∗

=

√1 − 𝑎
0
𝛽
2

0

𝛽
0
√𝑎

−
𝑏

𝑎
.

(23)

If 𝜏 = 𝜏
∗

> 0, then ŵ is unique solution of problem. This
means that the feasible condition is 𝜏 ≥ max{𝜏∗, 0}.The proof
is finished.

Lemma 6 means that the portfolio problem (RP2) is well
defined if the investor chooses an appropriate risk tolerance
parameter 𝜏. The following theorem gives the main results of
the current paper.

Theorem 7. If 𝑎
0
𝛽
2

0
< 1 and 𝜏 > max{𝜏∗, 0}, the optimal

solution of the problem (RP2) can explicitly be expressed

w∗ = 𝑓 (𝜏) (Σ−1𝜇 − 𝑏

𝑎
Σ
−1e) + 1

𝑎
Σ
−1e, (24)

where

𝑓 (𝜏)

=

𝑎
0
𝑏𝛽
2

0
(𝜏 + 𝑏/𝑎) + 𝑏√𝑎

0
𝛽
2

0
(𝜏 + 𝑏/𝑎)

2

− (𝑎
0
/𝑎) (1 − 𝑎

0
𝛽
2

0
)

𝑎
0
(1 − 𝑎

0
𝛽
2

0
)

.

(25)

Proof. Let V = √wΣw; the optimization problem (RP2) can
be rewritten as

max
w,V>0

E [r𝑇w]

s.t. V − 𝛽
0
𝜇
𝑇w ≤ 𝛽

0
𝜏,

e𝑇w = 1,

w𝑇Σw = V2.

(26)

Let w∗ be the optimal solution of problem (26). Then from
KKT condition, w∗ satisfies that

(1 + 𝛽
0
𝜆
1
)𝜇 − 𝜆

2
e − 2𝜆

3
Σw∗ = 0,

−𝜆
1
+ 2𝜆
3
V = 0,

e𝑇w∗ = 1,

(w∗)𝑇Σw∗ = V2,

V − 𝛽
0
𝜇
𝑇w∗ − 𝛽

0
𝜏 = 0,

(27)

where 𝜆
1
≥ 0, 𝜆

2
∈ R and 𝜆

3
∈ R are Lagrange multipliers.

It follows from the first and third equations in (27) that

w∗ =
(1 + 𝛽

0
𝜆
1
)

2𝜆
3

(Σ
−1

𝜇 −
𝑏

𝑎
Σ
−1e) + 1

𝑎
Σ
−1e. (28)

Substituting w∗ in the fourth and fifth equation in (27), we
have

𝑎
0
[
(1 + 𝛽

0
𝜆
1
)

2𝜆
3

]

2

+
1

𝑎
= V2,

𝑎
0
𝛽
0

(1 + 𝛽
0
𝜆
1
)

2𝜆
3

= V − 𝛽
0
(𝜏 +

𝑏

𝑎
) .

(29)

Eliminating V from (29), it follows that the quadratic equation
with respect to (1 + 𝛽

0
𝜆
1
)/2𝜆
3
is

𝑎
0
(1 − 𝑎

0
𝛽
2

0
) (

(1 + 𝛽
0
𝜆
1
)

2𝜆
3

)

2

− 2𝑎
0
𝛽
2

0
(𝜏 +

𝑏

𝑎
)(

(1 + 𝛽
0
𝜆
1
)

2𝜆
3

) +
1

𝑎
− 𝛽
2

0
(𝜏 +

𝑏

𝑎
)

2

= 0.

(30)

Notice that V > 0 and 𝜆
1
≥ 0; then from the second equation

in (27), 𝜆
3
> 0, this means that (1 + 𝛽

0
𝜆
1
)/2𝜆
3
> 0. Solving

directly the quadratic equation above in (1 + 𝛽
0
𝜆
1
)/2𝜆
3
, we

have that
(1 + 𝛽

0
𝜆
1
)

2𝜆
3

=

𝑎
0
𝛽
2

0
(𝜏 + 𝑏/𝑎) + √𝑎

0
𝛽
2

0
(𝜏 + 𝑏/𝑎)

2

− (𝑎
0
/𝑎) (1 − 𝑎

0
𝛽
2

0
)

𝑎
0
(1 − 𝑎

0
𝛽
2

0
)

> 0.

(31)
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Then the optimal solution of problem (RP2) can be obtained
by substituting it in (27). This finishes the proof.

We need that condition 𝑎
0
𝛽
2

0
< 1 holds in Lemma 6

and Theorem 7. This condition can in fact be easily attained.
Notice that 𝛽

0
= √(1 − 𝛽)/𝛽. Thus, for any input data 𝑎

0
, in

order to have 𝑎
0
𝛽
2

0
< 1, we only require that 𝛽 satisfies

𝛽 >
𝑎
0

1 + 𝑎
0

. (32)

If 𝛽 ∈ (1/2, 1), the condition 𝑎
0
𝛽
2

0
< 1 can be satisfied while

𝛽 > max{1
2
,

𝑎
0

1 + 𝑎
0

} . (33)

3. Two-Fund Separation Theorem

In our analysis of this section, we view w∗ as a function of
input parameter 𝜏; that is, we denote it by w∗ = w(𝜏). Let

𝑆 (w) = {w (𝜏) : max {𝜏∗, 0} ≤ 𝜏 < ∞} . (34)

Then, set 𝑆(w) is the solution space of problem (RP2). Now
we are interested in the question that whether the solution of
problem (RP2) satisfies the two-fund separation theorem or
not.

Theorem 8. Let w(𝜏
1
), w(𝜏

2
)(𝜏
1
̸=𝜏
2
) be two solutions of

mean-WCCVaR model; that is, w(𝜏
1
),w(𝜏
2
) ∈ 𝑆(w). Then for

any 𝜏 ∈ [max{𝜏∗, 0},∞) and the corresponding solution w(𝜏),
there exists a real number 𝜃, such that

w (𝜏) = 𝜃w (𝜏
1
) + (1 − 𝜃)w (𝜏

2
) ; (35)

that is, the two-fund separation theorem holds.

Proof. Noting 𝑓(𝜏) in Theorem 7, the optimal solution of
mean-WCCVaR portfolio problem (RP2) can be written in
the simple form

w (𝜏) = 𝑓 (𝜏)w
𝐴
+ (1 − 𝑓 (𝜏))w

𝜎
, (36)

wherew
𝜎
= (Σ
−1e)/𝑎 is the portfolio with theminimum vari-

ance and w
𝐴
= (Σ
−1

𝜇)/𝑏. For given 𝜏
1
, 𝜏
2
∈ [max{𝜏∗, 0},∞),

notice that 𝜏
1
̸=𝜏
2
; it follows that 𝑓(𝜏

1
) ̸=𝑓(𝜏

2
). Then for any

𝜏 ∈ [max{𝜏∗, 0},∞), let

𝜃 =
𝑓 (𝜏) − 𝑓 (𝜏

2
)

𝑓 (𝜏
1
) − 𝑓 (𝜏

2
)
; (37)

we have

𝑓 (𝜏) = 𝜃𝑓 (𝜏
1
) + (1 − 𝜃) 𝑓 (𝜏

2
) . (38)

Thus
w (𝜏) = 𝑓 (𝜏)w

𝐴
+ (1 − 𝑓 (𝜏))w

𝜎

= [𝜃𝑓 (𝜏
1
) + (1 − 𝜃) 𝑓 (𝜏

2
)]w
𝐴

+ [1 − [𝜃𝑓 (𝜏
1
) + (1 − 𝜃) 𝑓 (𝜏

2
)]]w
𝜎

= 𝜃 [𝑓 (𝜏
1
)w
𝐴
+ (1 − 𝑓 (𝜏

1
))w
𝜎
]

+ (1 − 𝜃) [𝑓 (𝜏
2
)w
𝐴
+ (1 − 𝑓 (𝜏

2
))w
𝜎
]

= 𝜃w (𝜏
1
) + (1 − 𝜃)w (𝜏

2
) .

(39)

This gets the desired conclusion.

4. Efficient Frontier

We discuss the efficient frontier of optimal solution of prob-
lem (RP2) and analyze the relationship of the efficient frontier
between problem (RP2) andmean-variance (MV)model. For
any given parameter 𝜏, clearly, the optimal solution w∗ =

w(𝜏) and the expected return of portfolio are the function of
𝜏. Hence, we have
𝑅 (𝜏)

=

𝑎
0
𝛽
2

0
(𝜏 + 𝑏/𝑎) + √𝑎

0
𝛽
2

0
(𝜏 + 𝑏/𝑎)

2

− (𝑎
0
/𝑎) (1 − 𝑎

0
𝛽
2

0
)

(1 − 𝑎
0
𝛽
2

0
)

+
𝑏

𝑎
.

(40)

Rearranging this equality, we have the quadratic equation in
𝑅(𝜏) and 𝜏

(1 − 𝑎
0
𝛽
2

0
)
2

(𝑅(𝜏) −
𝑏

𝑎
)

2

− 2𝑎
0
𝛽
2

0
(1 − 𝑎

0
𝛽
2

0
) (𝑅 (𝜏) −

𝑏

𝑎
)(𝜏 +

𝑏

𝑎
)

+ 𝑎
0
𝛽
2

0
(𝑎
0
𝛽
2

0
− 1) (𝜏 +

𝑏

𝑎
)

2

+
𝑎
0

𝑎
(1 − 𝑎

0
𝛽
2

0
) = 0.

(41)

The determinant of quadratic term coefficient can be
expressed as

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(1 − 𝑎
0
𝛽
2

0
)
2

−𝑎
0
𝛽
2

0
(1 − 𝑎

0
𝛽
2

0
)

−𝑎
0
𝛽
2

0
(1 − 𝑎

0
𝛽
2

0
) 𝑎
0
𝛽
2

0
(𝑎
0
𝛽
2

0
− 1)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= −𝑎
0
𝛽
2

0
(1 − 𝑎

0
𝛽
2

0
)
2

< 0.

(42)

This means from the theory of quadratic curve that the
efficient frontier determined by (41) is a branch of the
hyperbola and the portfolio at the efficient frontier has the
maximum expected return for given 𝜏. The asymptotic line
equation of efficient frontier is

𝑅 (𝜏) =

1 + √𝑎
0
𝛽
2

0

1 − 𝑎
0
𝛽
2

0

(√𝑎
0
𝛽
2

0
𝜏 +

𝑏

𝑎
) , (43)
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𝜏

ER

WCCVaR
MV

(a) 𝛽
0
> 𝛽
1

𝜏

ER

WCCVaR
MV

(b) 𝛽
0
= 𝛽
1

Figure 1: The relationship of efficient frontiers of two models 𝛽
0
≥ 𝛽
1
.

𝜏

ER

WCCVaR
MV

(a) 𝛽
0
< 𝛽
1
, 𝜏∗ > 𝜏MV

𝜏
ER

WCCVaR
MV

(b) 𝛽
0
< 𝛽
1
, 𝜏∗ < 𝜏MV

Figure 2: The relationship of efficient frontiers of two models in the case of 𝛽
0
< 𝛽
1
.

the intercept at 𝑅(𝜏) axis is

𝑅
𝑏
=
𝑏

𝑎
⋅

1 + √𝑎
0
𝛽
2

0

1 − 𝑎
0
𝛽
2

0

, (44)

and the center is (−𝑏/𝑎, 𝑏/𝑎). Hence, the location of the
hyperbola is determined by sign of 𝑏.

Now, we will discuss a relationship of efficient frontiers
between the mean-variance (MV) model and the proposed
mean-WCCVaR model. To this end, we compare the mean-
WCCVaR model with the following MV model:

max {𝐸 [𝜇𝑇w] : w𝑇Σw ≤ 𝜏
2

, e𝑇w = 1} . (45)

It is not hard to compute that the optimal solution of MV
model is
w∗MV = wMV (𝜏)

= (1 − 𝑏√
𝜏
2

− 1/𝑎

𝑎
0

)
Σ
−1e
𝑎

+ √
𝜏
2

− 1/𝑎

𝑎
0

Σ
−1

𝜇.

(46)

The corresponding expected value at the optimal solution is

𝑅MV (𝜏) = 𝜇
𝑇w∗MV =

𝑎𝑐 − 𝑏
2

𝑎

√
𝜏
2

− 1/𝑎

𝑎
0

+
𝑏

𝑎
. (47)

In (𝜏, 𝑅MV(𝜏)) plane, function 𝑅MV(𝜏) plots the efficient
frontier of MV:

𝑎𝜏
2

MV −
𝑎

𝑎
0

(𝑅MV(𝜏) −
𝑏

𝑎
)

2

= 1, (48)

whose slope of asymptotic line is√𝑎0. Let

1 + √𝑎
0
𝛽
2

0

1 − 𝑎
0
𝛽
2

0

√𝑎
0
𝛽
2

0
= √𝑎
0
. (49)

Then,

𝛽
0
=

√1 + 4 (𝑎
0
+ √𝑎0) − 1

2 (𝑎
0
+ √𝑎0)

=: 𝛽
1
. (50)

If 𝛽
0
≥ 𝛽
1
, then for the case of 𝜏∗ < 𝜏MV, two asymptotic lines

are parallel and therefore efficient frontiers are not intersec-
tion; see Figure 1. If 𝛽

0
< 𝛽
1
, then the slope of asymptotic line

of efficient frontier formean-WCCVaRmodel is less than that
of MV model and two efficient frontiers can be intersected
when 𝜏∗ < 𝜏MV; see Figure 2(b).

Generally speaking, it is more conservative for mean-
WCCVaR model than MV model. But the conservative per-
formance can be improved by adjusted the confidence level
𝛽. For example, if 𝛽 is small, such that 𝛽

0
> 𝛽
1
, then mean-

WCCVaR has the higher expectation return at the same 𝜏;
see Figure 1. This means that ER/𝜏 is also higher; that is, the
expectation return of per unit WCCVaR risk (reflected by
parameter 𝜏) is higher. The other case is that if we choose 𝛽,
such that𝛽

0
< 𝛽
1
, thenmean-WCCVaRmodel can obtain still

the large expected return at the same 𝜏 if 𝜏 is not large; see
Figure 2.
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5. An Extension with Risky-Free Asset

We consider the portfolio with risky-free asset in this section
and therefore the optimization problem can be expressed as

max
w,𝑤𝑓

E [r𝑇w + 𝑤
𝑓
𝑟
𝑓
]

s.t. − 𝜇
𝑇w − 𝑤

𝑓
𝑟
𝑓
+ √

𝛽

1 − 𝛽

√w𝑇Σw ≤ 𝜏,

e𝑇w + 𝑤
𝑓
= 1.

(RPF)

Clearly, (w, 𝑤
𝑓
) = (0, 1) is a strictly feasible solution of

problem (RPF). Hence, for any 𝜏 > 0, problem (RPF) is always
feasible. The following theorem gives the explicit solution of
problem (RPF).

Theorem 9. If

𝛽
2

0

[

[

𝑎
0
+

(𝑏 − 𝑎𝑟
𝑓
)
2

𝑎

]

]

< 1, (51)

then problem (RPF) has the optimal solution

w∗ =
𝛽
0
(𝜏 + 𝑟

𝑓
)

√𝑎
0
+ (𝑏 − 𝑎𝑟

𝑓
)
2

/𝑎(1 − 𝛽
0
√𝑎
0
+ (𝑏 − 𝑎𝑟

𝑓
)
2

/𝑎)

× (Σ
−1

𝜇 − 𝑟
𝑓
Σ
−1e) ,

(52)

where

𝑤
𝑓

= 1 −

𝛽
0
(𝜏 + 𝑟

𝑓
) (𝑏 − 𝑎𝑟

𝑓
)

√𝑎
0
+ (𝑏 − 𝑎𝑟

𝑓
)
2

/𝑎(1 − 𝛽
0
√𝑎
0
+ (𝑏 − 𝑎𝑟

𝑓
)
2

/𝑎)

.

(53)

Proof. Let V=√wΣw; similar to (RP2), optimization problem
(RPF) can be rewritten as

max
w,V>0

E [r𝑇w + 𝑟
𝑓
𝑤
𝑓
]

s.t. V − 𝛽
0
(𝜇
𝑇w + 𝑟

𝑓
𝑤
𝑓
) ≤ 𝛽
0
𝜏,

e𝑇w + 𝑟
𝑓
𝑤
𝑓
= 1,

w𝑇Σw = V2.

(54)

Then, from KKT condition, the optimal solution (w∗, 𝑤∗
𝑓
)

must satisfy the first-order condition

(1 + 𝛽
0
𝜆
󸀠

𝑓
)𝜇 − 𝜆

󸀠󸀠

𝑓
e − 2𝜆󸀠󸀠󸀠

𝑓
Σw∗ = 0,

−𝜆
󸀠

𝑓
+ 2𝜆
󸀠󸀠󸀠

𝑓
V = 0,

e𝑇w∗ = 1 − 𝑤∗
𝑓
,

(w∗)𝑇Σw∗ = V2,

V − 𝛽
0
(𝜇
𝑇w∗ + 𝑟

𝑓
𝑤
∗

𝑓
) = 𝛽
0
𝜏,

(1 + 𝜆
󸀠

𝑓
𝛽
0
) 𝑟
𝑓
− 𝜆
󸀠󸀠

𝑓
= 0,

(55)

where 𝜆󸀠
𝑓
≥ 0, 𝜆󸀠󸀠

𝑓
∈ R and 𝜆󸀠󸀠󸀠

𝑓
∈ R are Lagrangian multipli-

ers. From the first and third equalities, we have

w∗ =
(1 + 𝛽

0
𝜆
󸀠

𝑓
)

2𝜆
󸀠󸀠󸀠

𝑓

(Σ
−1

𝜇 −
𝑏

𝑎
Σ
−1e) +

1 − 𝑤
𝑓

𝑎
Σ
−1e.

(56)

Substituting w∗ into the fourth and fifth equalities in (55),
then

𝑎
0
[

(1 + 𝛽
0
𝜆
󸀠

𝑓
)

2𝜆
󸀠󸀠󸀠

𝑓

]

2

+

1 − 𝑤
𝑓

𝑎
= V2, (57)

𝑎
0
𝛽
0

(1 + 𝛽
0
𝜆
󸀠

𝑓
)

2𝜆
󸀠󸀠󸀠

𝑓

+ 𝛽
0
(𝜏 +

𝑏

𝑎
(1 − 𝑤

𝑓
) + 𝑟
𝑓
𝑤
𝑓
) = V.

(58)

Combining (56), (57), and the third and sixth equations in
system of equations (55), we have

(1 + 𝛽
0
𝜆
󸀠

𝑓
)

2𝜆
󸀠󸀠󸀠

𝑓

=

1 − 𝑤
𝑓

𝑏 − 𝑎𝑟
𝑓

. (59)

Eliminating V and 1 −𝑤
𝑓
from (56), (57), and (58), we obtain

a quadratic equation in (1 + 𝛽
0
𝜆
󸀠

𝑓
)/2𝜆
󸀠󸀠󸀠

𝑓
:

(𝑎
0
+

(𝑏 − 𝑎𝑟
𝑓
)
2

𝑎
)[

[

1 − 𝛽
2

0
(𝑎
0
+

(𝑏 − 𝑎𝑟
𝑓
)
2

𝑎
)]

]

× (

(1 + 𝛽
0
𝜆
󸀠

𝑓
)

2𝜆
󸀠󸀠󸀠

𝑓

)

2

− 2𝛽
2

0
(𝜏 + 𝑟

𝑓
)(𝑎
0
+

(𝑏 − 𝑎𝑟
𝑓
)
2

𝑎
)(

(1 + 𝛽
0
𝜆
󸀠

𝑓
)

2𝜆
󸀠󸀠󸀠

𝑓

)

− 𝛽
2

0
(𝜏 + 𝑟

𝑓
)
2

= 0.

(60)
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Table 1: The mean and covariance matrix of returns for the chosen 9 indexes.

II CI1 PI UI CI2 HS N225 FTSE DJIA
𝜇 0.1813 0.1875 0.1924 0.2214 0.1636 0.1018 −0.0096 0.0503 0.0849

Σ

0.2676 0.2785 0.3052 0.2909 0.2416 0.0992 0.0210 0.0330 0.0363
0.2785 0.3109 0.3246 0.2859 0.2533 0.0983 0.0184 0.0330 0.0301
0.3052 0.3246 0.3924 0.3177 0.3063 0.1147 0.0309 0.0314 0.0324
0.2909 0.2859 0.3177 0.3611 0.2287 0.0964 0.0081 0.0315 0.0391
0.2416 0.2533 0.3063 0.2287 0.3115 0.0881 0.0296 0.0370 0.0382
0.0992 0.0983 0.1147 0.0964 0.0881 0.0950 0.0539 0.0332 0.0369
0.0210 0.0184 0.0309 0.0081 0.0296 0.0539 0.0526 0.0248 0.0208
0.0330 0.0330 0.0314 0.0315 0.0370 0.0332 0.0248 0.0262 0.0246
0.0363 0.0301 0.0324 0.0391 0.0382 0.0369 0.0208 0.0246 0.0290

Table 2:The out-of-sample returns statistics of portfolios obtained byWCCVaR, VaR, MV, and equally weighted strategy (1/𝑁), where 1/𝑁
is the equally weighted strategy. Std: standard deviation, tv: terminal value of wealth, and cv: coefficient of variation in this table.

Model Mean Std Max. Min. tv cv
WCCVaR 0.0377 0.0131 0.0707 −0.0002 1.0269 1.26%
VaR 0.0037 0.1169 0.2342 −0.1987 0.8141 11.65%
1/𝑁 −0.1238 0.0759 0.0127 −0.2485 0.8369 8.66%
MV 0.0046 0.0986 0.0457 −0.1254 0.8433 8.53%

Solving directly this equation, we have that

(1 + 𝛽
0
𝜆
󸀠

𝑓
)

2𝜆
󸀠󸀠󸀠

𝑓

=

𝛽
0
(𝜏 + 𝑟

𝑓
)

√𝑎
0
+ (𝑏 − 𝑎𝑟

𝑓
)
2

/𝑎(1 − 𝛽
0
√𝑎
0
+ (𝑏 − 𝑎𝑟

𝑓
)
2

/𝑎)

.

(61)

And further, we can obtain 𝑤
𝑓
from (58). Then, substituting

(1 + 𝛽
0
𝜆
󸀠

𝑓
)/2𝜆
󸀠󸀠󸀠

𝑓
and 𝑤

𝑓
in (55), we get the results of this

theorem.

It is not hard to compute the relationship between the
expectation return 𝐸

𝑓
of portfolio with risky-free asset and

the parameter 𝜏:

𝐸
𝑓
(𝜏) =

𝛽
0
(𝑐 − 𝑎𝑟

2

𝑓
− 2𝑏𝑟
𝑓
)

𝐴
𝜏

+ [

[

𝛽
0
(𝑐 − 𝑎𝑟

2

𝑓
− 2𝑏𝑟
𝑓
)

𝐴
+ 1]

]

𝑟
𝑓
,

(62)

where 𝐴 = √𝑎
0
+ (𝑏 − 𝑎𝑟

𝑓
)
2

/𝑎(1 − 𝛽
0
√𝑎
0
+ (𝑏 − 𝑎𝑟

𝑓
)
2

/𝑎) is
independent of 𝜏.

6. Numerical Results

We take five domestic risky assets, industrial index (II), com-
mercial index (CI1), properties index (PI), utilities index (UI),
and composite index (CI2), and four overseas risky assets,

Hengsheng index (HS), Tokyo Nikkei-225 Index (N225),
FTSE Index, and Dow-Jones industrial average index (DJIA).
The time interval is from January 2, 1995, to December 31,
2012.The returns and covariance matrix of all risky assets can
be found in Table 1. For simplicity, we take the risky-free
annual interest rate is 𝑟

𝑓
= 3%.

The rolling procedure is used to test the proposed model
as follows.

(i) We estimate first the parameters 𝜇 and Σ using the 15-
year data from January 2, 1995, to December 31, 2009,
and test the out-of-sample performance at the whole
2010 year.

(ii) And then we further estimate the parameters 𝜇 and
Σ using the next 15-year data from January 2, 1996,
to December 31, 2010, and test the out-of-sample
performance at the whole 2011 year.

(iii) We finally estimate the parameters 𝜇 and Σ using the
next 15-year data from January 2, 1997, to December
31, 2011, and test the out-of-sample performance at the
whole 2012 year.

In our numerical reports, we compare our WCCVaR
model with the classical VaR model under normal distri-
bution assumption, equally weighted strategy [17], and MV
model. Table 2 gives the results of three models with 𝛽 = 95%
and 𝜏 = 0.05. The following observations can be found from
Table 2.

(1) The standard deviation of portfolio obtained by
WCCVaRmodel is clearly less than that of VaRmodel
and equally weighted strategy [17]; moreover, the
expected return of portfolio obtained by WCCVaR
model is greater than that of VaR model and equally
weighted strategy [17]. This means that the proposed
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WCCVaRmodel has the better performance ( such as
Sharpe ratio).

(2) The real wealth of WCCVaR is at least 0.9998 that is
very close to the initial wealth one and the coefficient
of variation is only 1.26% which is far less than the
coefficient of variation of VaR model and equally
weighted strategy. The stable performance of WCC-
VaR is obvious.

(3) At the beginning period, within the 300 trade dates,
the accumulationwealth ofVaR andMVmodel is bet-
ter than that of WCCVaR, but, after about 300 trade
dates, the accumulation wealth of VaR and MV falls
rapidly while WCCVaR still holds the stable wealth.
We find that the 300th trade date is about correspond-
ing to the first two months of 2011; the real market at
that time is a bearmarket.This is themain reason that
the accumulation wealth of VaR, equally weighted
strategy and MV falls rapidly.

7. Conclusions

We discuss the worst-case CVaR risk measure without
the distribution assumption and consider an application in
robust portfolio selection problem. The explicit solution is
obtained and two-fund separation theorem is proved for the
solutions. The theoretical comparison with classical mean-
variance model is first discussed by the efficient frontier and
the numerical comparison with VaR, MV model and equally
weighted strategy using domestic and overseas assets. The
numerical results indicate that the proposed WCCVaR has
the better expected return and smaller standard deviation
than VaR, MV model and equally weighted strategy and
therefore can obtain the better performance, such as Sharpe
ratio.
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[6] R. H. Tütüncü andM. Koenig, “Robust asset allocation,”Annals
of Operations Research, vol. 132, no. 1–4, pp. 157–187, 2004.

[7] Z. Lu, “Robust portfolio selection based on a joint ellipsoidal
uncertainty set,” Optimization Methods and Software, vol. 26,
no. 1, pp. 89–104, 2011.

[8] A.-F. Ling and C.-X. Xu, “Robust portfolio selection involving
options under a'marginal + joint” ellipsoidal uncertainty set,”
Journal of Computational andAppliedMathematics, vol. 236, no.
14, pp. 3373–3393, 2012.

[9] L. El Ghaoui, M. Oks, and F. Oustry, “Worst-case value-at-
risk and robust portfolio optimization: a conic programming
approach,”Operations Research, vol. 51, no. 4, pp. 543–556, 2003.

[10] S. Zhu and M. Fukushima, “Worst-case conditional value-at-
risk with application to robust portfolio management,” Opera-
tions Research, vol. 57, no. 5, pp. 1155–1168, 2009.

[11] S. Zhu, D. Li, and S. Wang, “Robust portfolio selection under
downside risk measures,” Quantitative Finance, vol. 9, no. 7, pp.
869–885, 2009.

[12] D. Huang, S. Zhu, F. J. Fabozzi, and M. Fukushima, “Portfolio
selection with uncertain exit time: a robust CVaR approach,”
Journal of Economic Dynamics and Control, vol. 32, no. 2, pp.
594–623, 2008.

[13] F. J. Fabozzi, D. Huang, and G. Zhou, “Robust portfolios: con-
tributions from operations research and finance,” Annals of
Operations Research, vol. 176, no. 1, pp. 191–220, 2010.

[14] L. Chen, S. He, and S. Zhang, “Tight bounds for some risk mea-
sures, with applications to robust portfolio selection,” Opera-
tions Research, vol. 59, no. 4, pp. 847–865, 2011.

[15] M. S. Bazaraa, H. D. Sherali, and C. M. Shetty, Nonlinear Pro-
gramming: Theory and Algorithms, Second Edition, John Wiley
& Sons, New York, NY, USA, 2nd edition, 1993.

[16] I. Popescu, “Robust mean-covariance solutions for stochastic
optimization,” Operations Research, vol. 55, no. 1, pp. 98–112,
2007.

[17] V. DeMiguel, L. Garlappi, and R. Uppal, “Optimal versus naive
diversification: how inefficient is the 1/N portfolio strategy?”
The Review of Financial Studies, vol. 22, no. 5, pp. 1915–1953,
2009.



Research Article
Terminal-Dependent Statistical Inference for
the FBSDEs Models

Yunquan Song1,2

1 China University of Petroleum, Qingdao 266580, China
2 Shandong University Qilu Securities Institute for Financial Studies, Shandong University, Jinan 250100, China

Correspondence should be addressed to Yunquan Song; math1212@163.com

Received 12 March 2014; Accepted 27 May 2014; Published 25 June 2014

Academic Editor: Guangchen Wang

Copyright © 2014 Yunquan Song.This is an open access article distributed under theCreativeCommonsAttributionLicense, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The original stochastic differential equations (OSDEs) and forward-backward stochastic differential equations (FBSDEs) are often
used to model complex dynamic process that arise in financial, ecological, and many other areas. The main difference between
OSDEs and FBSDEs is that the latter is designed to depend on a terminal condition, which is a key factor in some financial and
ecological circumstances. It is interesting but challenging to estimate FBSDEparameters fromnoisy data and the terminal condition.
However, to the best of our knowledge, the terminal-dependent statistical inference for such a model has not been explored in
the existing literature. We proposed a nonparametric terminal control variables estimation method to address this problem. The
reason why we use the terminal control variables is that the newly proposed inference procedures inherit the terminal-dependent
characteristic.Through this new proposed method, the estimators of the functional coefficients of the FBSDEs model are obtained.
The asymptotic properties of the estimators are also discussed. Simulation studies show that the proposed method gives satisfying
estimates for the FBSDE parameters from noisy data and the terminal condition. A simulation is performed to test the feasibility
of our method.

1. Introduction

Since 1973, when the world’s first options exchange opened
in Chicago, a large number of new financial products have
been introduced to meet the customer’s demands from the
derivative markets. In the same year, Black and Scholes [1]
provided their celebrated formula for option pricing and
Merton [2] proposed a general equilibriummodel for security
prices. Since then, modern finance has adopted stochastic
differential equations as its basic instruments for portfolio
management, asset pricing, risk management, and so on.
Among these models, the backward stochastic differential
equations (BSDEs for short) are a desirable choice for hedging
and pricing an option. Its general form is as follows:

𝑑𝑌
𝑠
= −𝑔 (𝑠, 𝑌

𝑠
, 𝑍

𝑠
) 𝑑𝑠 + 𝑍

𝑠
𝑑𝐵

𝑠
,

𝑌
𝑇
= 𝜉, 𝑠 ∈ [𝑡, 𝑇] ,

(1)

where 𝑔 is the generator, 𝐵
𝑡
is a Brownian motion, and 𝜉 is a

R-valued Borel function as the terminal condition. Usually

the terminal condition is designed as a random variable with
given distribution. If 𝑔 meets certain conditions, the BSDE
has a unique solution.

In terms of the backward equation, within a complete
market, it serves to characterize the dynamic value of repli-
cating portfolio 𝑌

𝑠
with a final wealth 𝜉 and a special quantity

𝑍
𝑠
that depends on the hedging portfolio. In particular, while

the generator consists of diffusion process, the corresponding
equation is proved to be a forward-backward stochastic
differential equation (FBSDE), which can be expressed as

𝑑𝑌
𝑠
= −𝑔 (𝑠, 𝑋

𝑠
, 𝑌

𝑠
, 𝑍

𝑠
) 𝑑𝑠 + 𝑍

𝑠
𝑑𝐵

𝑠
, 𝑌

𝑇
= 𝜉, (2)

where 𝑋
𝑠
satisfies the following ordinary stochastic differen-

tial equation (OSDE):

𝑑𝑋
𝑠
= 𝜇 (𝑠, 𝑋

𝑠
) 𝑑𝑡 + 𝜎 (𝑠, 𝑋

𝑠
) 𝑑𝐵

𝑠
, 𝑠 ∈ [𝑡, 𝑇] . (3)

Compared to the OSDE that contains an initial condition, the
solution of the FBSDE is affected by the terminal condition
𝑌
𝑇

= 𝜉(𝑋
𝑇
). As is well known, there exist a number
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of parametric and nonparametric methods to deal with
estimation and test for the OSDE. However, these methods
cannot be directly employed to infer the BSDE and FBSDE
because the two models are related to a terminal condition.
Forward-backward stochastic differential equations are used
in biology systems, mathematical finance, insurance, real
estate, multiagent, and network control. See Antonelli [3],
Wang et al. [4], Zhang and Li [5], and so on.

For the FBSDE defined above, the statistical inference was
investigated initially by Su and Lin [6] and Chen and Lin [7].
Furthermore, by financial and ecological problems, a relevant
statistical model was proposed by Lin et al. [8]. However,
they did not take the terminal condition into account in
the inference procedure. In the framework of the FBSDE
mentioned above, the terminal condition is additional, which
is not nested into the equation. Thus, there is an essential
difficulty to use the terminal condition to refine the inference
procedure.

As a result, their methods fail to cover the full problems
given in the FBSDE. Zhang and Lin [9] proposed two
terminal-dependent estimationmethods via terminal control
variable for the integral form models of FBSDE. However,
they only considered the parametric form of the generator 𝑔
in their paper.

This paper intends to explore the method to fulfill the
terminal-dependent inference: quasi-instrumental variable
methods. It is worth mentioning that the key point of our
method is the use of the terminal condition information
rather than neglecting it. This change leads to a completely
new work among the existing researches. The key technique
in ourmethod is the use of quasi-instrumental variable which
is similar but not the same as instrumental variable (IV). It is
known that IV is widely employed in applied econometrics to
achieve identification and carry out estimation and inference
in the model containing endogenous explanatory variables
or panel data; see Hsiao [10] for an overview of the relevant
statistical inference and econometric interpretation and see
Hall and Horowitz [11] for recent work on nonparametric
instrumental variable estimation.

Through the backward equation (2) of FBSDE, we get a
regression model. To use the terminal condition informa-
tion, we put the terminal condition as a quasi-instrumental
variable and introduce it into our model. However, when a
constraint is appended artificially, the original model may
change to be biased in the sense of 𝐸(𝑍

𝑠
𝑑𝐵

𝑠
| 𝑋

𝑠
, 𝜉) ̸= 0,

because the constraint condition influences the increase trend
of wealth so that 𝑍

𝑠
𝑑𝐵

𝑠
may deviate from the original center

zero; in other words, due to the constraint, the trajectory
of 𝑌

𝑠
may departure from the original expectation so that

𝑍
𝑠
𝑑𝐵

𝑠
cannot be regarded as error.Therefore, some problems

arise naturally, including how to correct the bias of the model
and how to construct the constraint-dependent estimation.
To solve these problems, we will use remodeling method to
draw terminal condition into differential equation, similar
but not the same as IV, called quasi-instrumental variable
methods; in other words, the terminal condition 𝜉 enters into
the equation as a control variable. This remodeling method
takes advantage of the terminal information naturally, and the
estimator performs quite well.

We use the nonparametric form of the generator 𝑔 in
model (2) because the correct FBSDEs model for a specific
topic can neither be provided automatically by financial
market nor be derived from theory of mathematical finance,
and in lack of prior information about the structure of
a model, nonparametric inference can provide a flexible
as well as robust description of a data-generating process.
Even in some cases when parametric models are available,
nonparametricmethods are still employed to avoid themodel
misspecification that may lead to large errors in option
pricing and other problems from financial market. So we
adopt the nonparametric form that can endow the model (2)
with flexibility and robustness.

Note that 𝑍
𝑠
is usually unobservable and 𝑔 cannot be

completely specified in the financial market.The problems of
interest are therefore to give both proper estimations of the
generator 𝑔 and the process 𝑍

𝑠
based on the observed data

(𝑋
𝑠
, 𝑌

𝑠
) and the terminal expectation 𝜉.

The remainder of the paper is organized as follows. In
Section 2, the FBSDE is rebuilt as a nonparametricmodel that
contains the terminal condition as a quasi-instrumental vari-
able. Consequently, a terminal-dependent estimation proce-
dure is proposed. Next we discuss the asymptotic properties
of the newly proposed estimations in Section 3. Simulation
study is proposed in Section 4 to illustrate our methods. The
proofs of the theorems are presented in Appendix.

2. Model and Method

In this section, we propose a nonparametric estimator with
the help of quasi-instrumental variable.

2.1. Model and Its Statistical Version. We begin the following
original model by combining (2)-(3):

𝑑𝑌
𝑠
= −𝑔 (𝑠, 𝑋

𝑠
, 𝑌

𝑠
, 𝑍

𝑠
) 𝑑𝑠 + 𝑍

𝑠
𝑑𝐵

𝑠
, 𝑌

𝑇
= 𝜉,

𝑑𝑋
𝑠
= 𝜇 (𝑠, 𝑋

𝑠
) 𝑑𝑡 + 𝜎 (𝑠, 𝑋

𝑠
) 𝑑𝐵

𝑠
, 𝑠 ∈ [𝑡, 𝑇] ,

(4)

where 𝐵
𝑡
is the standard Brownian motion and 𝜉 is a R-

valued Borel function. Here the generator 𝑔 is a function of
𝑠, 𝑋

𝑠
, 𝑌

𝑠
, and 𝑍

𝑠
. For the FBSDEs model (4), only one of

the backward components, 𝑌
𝑠
, and the forward components,

𝑋
𝑠
, can be observed. Another backward component 𝑍

𝑠
is

totally unobservable. Furthermore, the adapted process 𝑍
𝑠

and terminal condition could be indicated as a function of
𝑋
𝑠
.
In this section, we present the statistical structure of

FBSDEs by taking advantage of quasi-instrumental variable
and obtain the consistent asymptotically normal estimators
of 𝑔 and 𝑍

𝑠
based on observed data {𝑋

𝑠
, 𝑌

𝑠
} and the terminal

condition 𝜉.

2.2. Remodeling for Model (4). To construct terminal-
dependent estimation for the generator 𝑔 and process 𝑍

𝑠
,

the key technique is how to plug the terminal condition into
the equation. When 𝜉 is plugged into the model, we call it
the quasi-IV, similar but not the same as IV. Evidently, the
property of Brownian motion shows that 𝐸(𝑍

𝑠
𝑑𝐵

𝑠
| 𝑋

𝑠
) = 0,
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but 𝐸(𝑍
𝑠
𝑑𝐵

𝑠
| 𝑋

𝑠
, 𝜉) ̸= 0, which means drawing the terminal

control directly into the equation as the condition should not
be encouraged at the cost of model bias. Rewriting the first
equation of (4) enables us to construct an unbiased model:

𝑑𝑌
𝑠
= −𝑔 (𝑠, 𝑋

𝑠
, 𝑌

𝑠
, 𝑍

𝑠
) 𝑑𝑠 + 𝑚 (𝑋

𝑠
, 𝜉) + 𝑈

𝑠
, (5)

where 𝑚(𝑋
𝑠
, 𝜉) = 𝐸(𝑍

𝑠
𝑑𝐵

𝑠
| 𝑋

𝑠
, 𝜉), 𝑈

𝑠
= 𝑍

𝑠
𝑑𝐵

𝑠
−

𝑚(𝑋
𝑠
, 𝜉), and 𝐸(𝑈

𝑠
| 𝑋

𝑠
, 𝜉) = 0. The newly defined

model (5), together with the second equation in (4), can be
thought of as a quasi-IV FBSDE. Because the equation in
(5) contains the terminal condition 𝜉, we can construct the
terminal-dependent estimation. From the above definitions,
we see that, by bias correction, the original model changes
to be an additive nonparametric model with nonparametric
components −𝑔(𝑠, 𝑋

𝑠
, 𝑌

𝑠
, 𝑍

𝑠
)𝑑𝑠 and 𝑚(𝑋

𝑠
, 𝜉). It shows that

when terminal condition is regarded as a quasi-IV and then
appended to the model, the result model is unbiased and
changes to be nonparametric additive model.

2.3. Estimation for 𝑍
𝑠
. Before estimating the model function

𝑚(𝑥
𝑠
, 𝜉) and the generator 𝑔, we need to estimate 𝑍

𝑠
firstly

because 𝑍
𝑠
is unobservable and it will be seen that the

estimators of the model function 𝑚(𝑥
𝑠
, 𝜉) and the generator

𝑔 depend on 𝑍
𝑠
. Since the distribution of 𝜉 is supposed to

be known, let {𝜉
𝑖
, 1 ≤ 𝑖 ≤ 𝑘} for 𝑘 ≥ 1/Δ be a sample of

𝜉. Suppose that, for each terminal data 𝜉
𝑗
and equally spaced

time points {𝑠
𝑖
= 𝑠

1
+(𝑖−1)Δ, 𝑖 = 1, . . . , 𝑛} ⊆ [0, 𝑇], we record

the observed time series data:
{𝑋

𝑠𝑖 ,𝑗
, 𝑌

𝑠𝑖 ,𝑗
, 𝑖 = 1, . . . , 𝑛, 𝑗 = 1, . . . , 𝑘}

= {𝑋
𝑖,𝑗
, 𝑌

𝑖,𝑗
, 𝑖 = 1, . . . , 𝑛, 𝑗 = 1, . . . , 𝑘} .

(6)

At any time point 𝑠 ∈ [𝑡, 𝑇], 𝑍𝑡,𝑥

𝑠
, denoting 𝑍

𝑠
and satisfying

the initial condition (𝑡, 𝑥), is a determined function of 𝑋𝑡,𝑥

𝑠
.

As was shown by Su and Lin [6] and Chen and Lin [7], we
can adopt a difference-based method to approximate 𝑍2 as

(𝑍
𝑡,𝑋𝑡

𝑠
)
2

=
1

Δ
𝐸(𝑌

𝑡+Δ,𝑋𝑡+Δ

𝑠+Δ
− 𝑌

𝑡,𝑋𝑡

𝑠
| 𝑋

𝑡
, 𝑡)

2

+ 𝑂 (Δ) . (7)

It shows that the numerical approximation error to 𝑍
2

𝑡

converges to zero at rate of order 𝑂
𝑝
(Δ).

For each 𝜉
𝑗
, if𝑍

𝑡
depends on 𝑡 only via variable𝑋

𝑡
, by (7)

and N-W kernel estimation method, we estimate 𝑍2

𝑡
at 𝑥

0
by

𝑍
2

𝑥0 ,𝑗
=

∑
𝑛−1

𝑖=1
Δ
−1

(𝑌
𝑖+1,𝑗

− 𝑌
𝑖,𝑗
)
2

𝐾
ℎ𝑋

(𝑋
𝑖,𝑗

− 𝑥
0
)

∑
𝑛−1

𝑖=1
𝐾
ℎ𝑋

(𝑋
𝑖,𝑗

− 𝑥
0
)

. (8)

Otherwise, we estimate 𝑍2

𝑡
at (𝑥

0
, 𝑡
0
) by

𝑍
2

𝑥0 ,𝑡0 ,𝑗

=

∑
𝑛−1

𝑖=1
Δ
−1

(𝑌
𝑖+1,𝑗

− 𝑌
𝑖,𝑗
)
2

𝐾
ℎ𝑋

(𝑋
𝑖,𝑗

− 𝑥
0
)𝐾

ℎ𝑡
(𝑡
𝑖
− 𝑡

0
)

∑
𝑛−1

𝑖=1
𝐾
ℎ𝑋

(𝑋
𝑖,𝑗

− 𝑥
0
)𝐾

ℎ𝑡
(𝑡
𝑖
− 𝑡

0
)

,

(9)

where 𝐾
ℎ𝑋

= 𝐾(⋅/ℎ
𝑋
)/ℎ

𝑋
and 𝐾

ℎ𝑡
= 𝐾(⋅/ℎ

𝑡
)/ℎ

𝑡
, 𝐾(⋅) are reg-

ular kernel functions, with ℎ
𝑋
and ℎ

𝑡
being the corresponding

bandwidths.

2.4. Estimation for 𝑚(𝑋
𝑠
,𝜉). After plugging the estimator 𝑍

𝑠

into model (5), we still need to consider inference of𝑚(𝑥
𝑠
, 𝜉).

As we all know, the nonparametric function 𝑚(𝑋
𝑠
, 𝜉) in (5)

can be acquired as 𝑚(𝑋
𝑠
, 𝜉) = 𝐸(𝑑𝑌

𝑠
+ 𝑔(𝑠, 𝑋

𝑠
, 𝑌

𝑠
, 𝑍

𝑠
)𝑑𝑠 |

𝑋
𝑠
, 𝜉). We note that 𝑔(𝑠, 𝑋

𝑠
, 𝑌

𝑠
, 𝑍

𝑠
)𝑑𝑠 is a higher order

infinitesimal of 𝑍
𝑠
𝑑𝐵

𝑠
when Δ tends to zero. Under this

situation, if 𝑔(𝑠, 𝑋
𝑠
, 𝑌

𝑠
, 𝑍

𝑠
)𝑑𝑠 is ignored, then

𝑚(𝑋
𝑠
, 𝜉) ≐ 𝐸 (𝑑𝑌

𝑠
| 𝑋

𝑠
, 𝜉) . (10)

It implies that we can use ordinary nonparametric method
to estimate function 𝑚. For example, we use the N-W
ordinary nonparametric method to estimate𝑚(𝑋

𝑠
, 𝜉) valued

at (𝑥
0
, 𝜉

0
):

𝑚̂ (𝑥
0
, 𝜉

0
)

=

∑
𝑛−1

𝑖=1
∑
𝑚

𝑗=1
(𝑌

𝑖+1,𝑗
− 𝑌

𝑖,𝑗
)𝐾

ℎ𝑋
(𝑋

𝑖,𝑗
− 𝑥

0
)𝐾

ℎ𝜉
(𝜉

𝑖,𝑗
− 𝜉

0
)

∑
𝑛−1

𝑖=1
∑
𝑚

𝑗=1
𝐾
ℎ𝑋

(𝑋
𝑖,𝑗

− 𝑥
0
)𝐾

ℎ𝜉
(𝜉

𝑖,𝑗
− 𝜉

0
)

,

(11)

where 𝐾
ℎ𝑋

= 𝐾(⋅/ℎ
𝑋
)/ℎ

𝑋
and 𝐾

ℎ𝜉
= 𝐾(⋅/ℎ

𝜉
)/ℎ

𝜉
are regular

kernel functions, with ℎ
𝑋
and ℎ

𝜉
being the corresponding

bandwidths.

2.5. Estimation for Generator 𝑔. As was shown in the non-
parametric instrumental variables estimator of Hall and
Horowitz [11] (hereinafter HH), we can adopt a nonpara-
metric quasi-instrumental variables estimation to estimate
the generator 𝑔. So in the section we summarize the HH
estimator of 𝑔 in the model:

𝐸 [−𝑑𝑌
𝑡
− 𝑚 (𝑋

𝑡
, 𝜉) | 𝑋

𝑡
, 𝜉] = 𝐸 [𝑔 (𝑡, 𝑋

𝑡
, 𝑌

𝑡
, 𝑍

𝑡
) 𝑑𝑡 | 𝑋

𝑡
, 𝜉] .

(12)

Since 𝑚̂(𝑥
0
, 𝜉

0
) and 𝑍

2

𝑥0 ,𝑗
are the consistent estimator of

𝑚(𝑥
0
, 𝜉

0
) and 𝑍

2

𝑥0 ,𝑗
, respectively, we use them instead of

𝑚(𝑋
𝑠
, 𝜉) and 𝑍

𝑠
in the above model and we get

𝐸 [−𝑑𝑌
𝑠
− 𝑚̂ (𝑋

𝑠
, 𝜉) | 𝑋

𝑠
, 𝜉]

= 𝐸 [𝑔 (𝑠, 𝑋
𝑠
, 𝑌

𝑠
, 𝑍

𝑠
) 𝑑𝑡 | 𝑋

𝑠
, 𝜉] .

(13)

Because 𝑍
𝑠
is function of 𝑋

𝑠
and 𝑌

𝑠
, for simplicity of

presentation, we denote 𝑔(𝑠, 𝑋
𝑠
, 𝑌

𝑠
, 𝑍

𝑠
) = 𝑔(𝑋

𝑠
, 𝑌

𝑠
).Thus, the

model becomes

𝐸 [−𝑑𝑌
𝑠
− 𝑚̂ (𝑋

𝑠
, 𝜉) | 𝑋

𝑠
, 𝜉] = 𝐸 [𝑔 (𝑋

𝑠
, 𝑌

𝑠
) 𝑑𝑡 | 𝑋

𝑠
, 𝜉] .

(14)

Let Y
𝑖
= ((𝑌

𝑖+Δ
− 𝑌

𝑖
) − 𝑚̂(𝑋

𝑖
, 𝜉))/Δ, X

𝑖
= 𝑋

𝑖
, Z

𝑖
= 𝑌

𝑖
,

W = 𝜉, and U
𝑖
= 𝑉

𝑖
/√Δ; the model becomes

Y
𝑖
= 𝑔 (X

𝑖
,Z

𝑖
) + U

𝑖
, 𝐸 (U

𝑖
| X

𝑖
,W

𝑖
) = 0. (15)

It is assumed that the support of (X,Z,W) is contained
in [0, 1]

3. This assumption can always be satisfied by, if
necessary, carrying outmonotone increasing transformations
ofX,Z, andW. For example, one can replaceX,Z, andW by
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Φ(X), Φ(Z), and Φ(W), where Φ is the normal distribution
function. We take (Y ,X,Z,W,U) to be a vector, where Y

and U are scalars, X and W are supported on [0, 1], and Z

is supported on [0, 1]. The model is

Y
𝑖
= 𝑔 (X

𝑖
,Z

𝑖
) + U

𝑖
, 𝐸 (U

𝑖
| Z

𝑖
,W

𝑖
) = 0, (16)

where (Y
𝑖
,X

𝑖
,Z

𝑖
,W

𝑖
,U

𝑖
), for 𝑖 ≥ 1, are independent and

identically distributed as (Y ,X,Z,W,U). Thus, X and Z are
endogenous and exogenous explanatory variables, respec-
tively. Data (Y

𝑖
,X

𝑖
,Z

𝑖
,W

𝑖
,U

𝑖
), for 1 ≤ 𝑖 ≤ 𝑛, are observed.

Let𝑓XZW denote the density of (X,Z,W), write𝑓Z for the
density of Z, and, for each 𝑥

1
, 𝑥

2
∈ [0, 1]

𝑝, and put

𝑡
𝑧
(𝑥

1
, 𝑥

2
) = ∫𝑓XZW (𝑥

1
, 𝑧, 𝑤) 𝑓XZW (𝑥

2
, 𝑧, 𝑤) 𝑑𝑤. (17)

Define the operator 𝑇
𝑧
on 𝐿

2
[0, 1]

𝑝 by

(𝑇
𝑧
𝜓) (𝑥) = ∫ 𝑡

𝑧
(𝜉, 𝑥) 𝜓 (𝜉) 𝑑𝜉. (18)

It may be proved that, for each 𝑧 for which 𝑇
−1

𝑧
exists,

𝑔 (𝑥, 𝑧)

= 𝑓Z (𝑧) 𝐸W|Z

× {𝐸 (Y | Z = 𝑧,W) (𝑇
−1

𝑧
𝑓XZW) (𝑥, 𝑧,W) | Z = 𝑧} ,

(19)

where 𝐸W|Z denotes the expectation with respect to the
distribution of W conditional on Z. In this formulation,
(𝑇

−1

𝑧
𝑓XZW)(𝑥, 𝑧,W) denoted the result of applying 𝑇−1

𝑧
to the

function 𝑓XZW(⋅, 𝑧,W) and evaluating the resulting function
at 𝑥.

To construct an estimator of 𝑔(𝑥, 𝑧), given ℎ > 0 and 𝑥 =

𝑥
(1) and 𝜉 = 𝜉

(1), let 𝐾
ℎ
(𝑥, 𝜉) = 𝐾

ℎ
(𝑥

(𝑗)

, 𝜉
(𝑗)

), put 𝐾
ℎ
(𝑧, 𝜉)

analogously for 𝑧 and 𝜉, let ℎ
𝑥
, ℎ

𝑧
> 0, and define

𝑓XZW (𝑥, 𝑧, 𝑤)

=
1

𝑛ℎ2
𝑥
ℎ
𝑧

𝑛

∑

𝑖=1

𝐾
ℎ𝑥

(𝑥 −X
𝑖
, 𝑥)𝐾

ℎ𝑧
(𝑧 − Z

𝑖
, 𝑧)𝐾

ℎ𝑥
(𝑤 −W

𝑖
, 𝑤) ,

𝑓
−𝑖

XZW (𝑥, 𝑧, 𝑤)

=
1

(𝑛 − 1) ℎ
2

𝑥
ℎ
𝑧

∑

1≤𝑗≤𝑛:𝑗 ̸= 𝑖

𝐾
ℎ𝑥

(𝑥 −X
𝑗
, 𝑥)

× 𝐾
ℎ𝑧

(𝑧 − Z
𝑗
, 𝑧)𝐾

ℎ𝑧
(𝑤 −W

𝑗
, 𝑤) ,

𝑡̂
𝑧
(𝑥

1
, 𝑥

2
) = ∫𝑓XZW (𝑥

1
, 𝑧, 𝑤) 𝑓XZW (𝑥

2
, 𝑧, 𝑤) 𝑑𝑤,

(𝑇̂
𝑧
𝜓) (𝑥, 𝑧, 𝑤) = ∫ 𝑡̂

𝑧
(𝜉, 𝑥) 𝜓 (𝜉, 𝑧, 𝑤) 𝑑𝜉,

(20)

where𝜓 is a function from𝑅
3 to a real line.Then the estimator

of 𝑔(𝑥, 𝑧) is

𝑔 (𝑥, 𝑧) =
1

𝑛

𝑛

∑

𝑖=1

(𝑇̂
+

𝑧
𝑓
−𝑖

XZW) (𝑥, 𝑧,W
𝑖
) 𝑌

𝑖
𝐾
ℎ𝑧

(𝑧 − Z
𝑖
, 𝑧) . (21)

3. Asymptotic Results

In this section, we study the asymptotic properties of our
proposed estimators. All proofs are presented in Appendix.

3.1. Asymptotic results of𝑍
𝑠
. To give the asymptotic results of

𝑍
𝑠
, we need the following conditions.

(a) 𝑋
1
, . . . , 𝑋

𝑛
are 𝜌-mixing dependent; namely, the 𝜌-

mixing coefficients 𝜌(𝑙) satisfy 𝜌(𝑙) → 0 as 𝑙 → ∞,
where

𝜌 (𝑙) = sup
𝐸(𝑋𝑖+𝑙𝑋𝑖)−𝐸(𝑋𝑖+𝑙)𝐸(𝑋𝑖) ̸=0

󵄨󵄨󵄨󵄨𝐸 (𝑋
𝑖+𝑙
𝑋
𝑖
) − 𝐸 (𝑋

𝑖+𝑙
) 𝐸 (𝑋

𝑖
)
󵄨󵄨󵄨󵄨

√Var (𝑋
𝑖+𝑙
)Var (𝑋

𝑖
)

(22)

with𝑋
𝑖
= 𝑋(𝑡

𝑖
).

(b) |𝑍
𝑖
| ≤ 𝐶 (a. s.) uniformly for 𝑖 = 1, . . . , 𝑛, where 𝐶 is a

positive constant and 𝑍
𝑖
= 𝑍(𝑡

𝑖
).

(c) The continuous kernel function 𝐾(⋅) is symmetric
about 0, with a support of interval [−1, 1], and

∫

1

−1

𝐾 (𝑢) 𝑑𝑢 = 1, 𝜎
2

𝐾
= ∫

1

−1

𝑢
2

𝐾 (𝑢) 𝑑𝑢 ̸= 0,

∫

1

−1

|𝑢|
𝑗

𝐾
𝑘

(𝑢) 𝑑𝑢 < ∞ for 𝑗 ≤ 𝑘 = 1, 2.

(23)

Condition (a) is commonly used for weakly dependent
process; see, for example, Kolmogorov and Rozanov [12],
Bradley and Bryc [13], Lu and Lin [14], and Su and Lin [6].
Condition (b) is also reasonable because, as is shown by (10),
𝑍
𝑡
can be regarded as the deviation between the adjacent two

observations. Condition (c) is standard for nonparametric
kernel function.

Theorem 1. Besides conditions (a), (b), and (c), let
{𝑋

1
, . . . , 𝑋

𝑛
} be an observation sequence on a stationary

𝜌-mixing Markov process with the 𝜌-mixing coefficients
satisfying 𝜌(𝑙) = 𝜌

𝑙 for 0 < 𝜌 < 1. Furthermore, 𝑋
1
, . . . , 𝑋

𝑛

have a common and probability density 𝑝(𝑥), and for each
interior point 𝑥

0
in the support of 𝑝(⋅), 𝑝(𝑥

0
) > 0, 𝑍2

(𝑥
0
) > 0,

the functions 𝑝(𝑥) and 𝑍(𝑥) have continuous two derivatives
in neighborhood of 𝑥

0
. As 𝑛 → ∞, such that 𝑛ℎ → ∞,

𝑛ℎ
5

→ 0, and 𝑛ℎΔ
2

→ 0, then

√𝑛ℎ (𝑍
2

(𝑥
0
) − 𝑍

2

(𝑥
0
))

𝑑

󳨀→ (0,
𝑍
4

(𝑥
0
) 𝐽

𝐾

𝑝 (𝑥
0
)

) , (24)

where 𝐽
𝐾
= ∫

1

−1

𝐾
2

(𝑢)𝑑𝑢 < ∞.

The asymptotic result in Theorem 1 is standard for
nonparametric kernel estimator and here undersmoothing is
used to eliminate asymptotic bias.

3.2. Asymptotic results of 𝑔(𝑥,𝑧). This section gives con-
ditions under which the HH estimator of the generator
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𝑔 is asymptotically distributed as 𝑁(0, 𝐼). The following
additional notations are used.

Define U
𝑖

= Y
𝑖

− 𝑔(X
𝑖
,Z

𝑖
), 𝑆

𝑛1
(𝑥, 𝑧) =

𝑛
−1

∑
𝑛

𝑖=1
U
𝑖
𝑇̂
+

𝑓
(−𝑖)

XZW(𝑥, 𝑧,W
𝑖
)𝐾

𝑞,ℎ𝑧
(𝑧 − Z

𝑖
, 𝑧), and 𝑆

𝑛2
(𝑥, 𝑧) =

𝑛
−1

∑
𝑛

𝑖=1
𝑔(X

𝑖
,Z

𝑖
)𝑇̂

+

𝑓
(−𝑖)

XZW(𝑥, 𝑧,W
𝑖
)𝐾

𝑞,ℎ𝑧
(𝑧 − Z

𝑖
, 𝑧). Then,

𝑔(𝑥, 𝑧) = 𝑆
𝑛1
(𝑥, 𝑧) + 𝑆

𝑛2
(𝑥, 𝑧). Define 𝑇+

= (𝑇+ 𝑎
𝑛
𝐼)

−1. Write

𝑆
𝑛1

(𝑥, 𝑧)

= 𝑛
−1

𝑛

∑

𝑖=1

U
𝑖
(𝑇

+

𝑓XZW) (𝑥, 𝑧,W
𝑖
)𝐾

𝑞,ℎ𝑧
(𝑧 − Z

𝑖
, 𝑧)

+ 𝑛
−1

𝑛

∑

𝑖=1

U
𝑖
(𝑇̂

+

𝑓
(−𝑖)

XZW − 𝑇
+

𝑓XZW)

× (𝑥, 𝑧,W
𝑖
)𝐾

𝑞,ℎ𝑧
(𝑧 − Z

𝑖
, 𝑧)

= 𝑆
𝑛11

(𝑥, 𝑧) + 𝑆
𝑛12

(𝑥, 𝑧) .

(25)

Define 𝑉
𝑛
(𝑥, 𝑧) = 𝑛

−1 Var[U(𝑇
+

𝑓XZW)(𝑥, 𝑧,W)]. It follows
from a triangular array version of the Lindeberg-Levy central
limit theorem that 𝑆

𝑛11
(𝑥, 𝑧)/√𝑉

𝑛
(𝑥, 𝑧)→

𝑑

𝑁(0, 1) as 𝑛 →

∞. Therefore, [𝑔(𝑥, 𝑧) − 𝑔(𝑥, 𝑧)]/√𝑉
𝑛
(𝑥, 𝑧)→

𝑑

𝑁(0, 1) if
[𝑆

𝑛12
(𝑥, 𝑧) + 𝑆

𝑛2
(𝑥, 𝑧) − 𝑔(𝑥, 𝑧)]/√𝑉

𝑛
(𝑥, 𝑧) = 𝑜

𝑝
(1).

Assumption 2. The data Y
𝑖
,X

𝑖
, Z

𝑖
,W

𝑖
are independently and

identically distributed as (Y ,X,X,W), where (X,Z,W) is
supported on [0, 1]

3 and 𝐸[Y − 𝑔(X,Z) | W,Z] = 0.

Assumption 3. The distribution of (X,Z,W) has a density
𝑓XZW with respect to Lebesgue measure. Moreover, 𝑓XZW is
𝑟 times differentiable with respect to any combination of its
arguments, where derivatives at the boundary of [0, 1]3 are
defined as one sided derivatives.The derivatives are bounded
in absolute value by 𝐶. In addition, 𝑔 is 𝑟 times differentiable
on [0, 1]

2 with derivatives at 0 and 1 defined as one sided.
The derivatives of 𝑔 are bounded in absolute value by 𝐶. In
addition, 𝐸[Y 2

| X,Z,W] ≤ 𝐶 and 𝐸[Y 2

| X,Z,W] ≤ 𝐶, and
𝐸[U2

| Z,W] ≥ 𝐶
𝑈
for some finite constant 𝐶

𝑈
.

Assumption 4. The constants 𝛼 and 𝛽 satisfy 𝛼 > 1, 𝛽 > 1/2,
and 𝛽 − 1/2 ≤ 𝛼 < 2𝛽. Moreover, 𝑏

𝑗
≤ 𝐶𝑗

−𝛽, 𝑗−𝛼 ≤ 𝐶𝜆
𝑗
, and

∑
∞

𝑘=1
|𝑑

𝑧𝑗𝑘
| ≤ 𝐶𝑗

−𝛼/2 for all 𝑗 ≥ 1. In addition, there are finite
strictly positive constants, 𝐶

𝜆1
and 𝐶

𝜆2
, such that 𝐶

𝜆1
≤ 𝜆

𝑗
≤

𝐶
𝜆2
𝑗
−𝛼 for all 𝑗 ≥ 1.

Assumption 5. The tuning parameters 𝑎
𝑛
and ℎ satisfy 𝑎

𝑛
≍

𝑛
−(𝜌𝛼)/(2𝛽+𝛼) and ℎ ≍ 𝑛

−1, where 𝑟 ∈ [𝐴
󸀠

2
, 𝐴

󸀠

3
].

Assumption 6. 𝐾
ℎ
denotes a generalized kernel function, with

the properties 𝐾
ℎ
(𝑢, 𝑡) = 0 if 𝑢 > 𝑡 or 𝑢 < 𝑡 − 1, for all

𝑡 ∈ [0, 1]ℎ
−(𝑗+1)

∫
𝑡−1

𝑡𝑢
𝑗

𝐾
ℎ
(𝑢, 𝑡)𝑑𝑢 = 1 if 𝑗 = 0, else 0 if

1 ≤ 𝑗 ≤ 𝑟 − 1. For each 𝜉 ∈ [0, 1], 𝐾
ℎ
(ℎ, 𝜉) is supported

on [(𝜉 − 1)/ℎ, 𝜉/ℎ] ∩ 𝜅, where 𝜅 is a compact interval not
depending on 𝜉. Moreover,

sup
ℎ>0,𝜉∈[0,1],𝑢∈𝜅

𝐾
ℎ
(ℎ𝑢, 𝜉) |< ∞. (26)

Assumption 7. Consider 𝐸W[𝑇
+

𝑓XZW(𝑥, 𝑧,W)]
2

≍

𝐸W[𝑇
+

𝑓XZW(⋅, ⋅,W)]
2 and 𝐸W[𝑇

+

𝑓XZW(⋅, ⋅,W)]
2

≍

∫
1

0

‖𝑇
+

𝑓XZW(⋅, ⋅,W)‖
2

𝑑𝑤.

Theorem 8. Let Assumptions 2–7 hold. Then

𝑔 (𝑥, 𝑧) − 𝑔 (𝑥, 𝑧)

√𝑉
𝑛
(𝑥, 𝑧)

󳨀→
𝑑

𝑁(0, 𝐼) (27)

holds except, possibly, on a set of (𝑥, 𝑧) values whose Lebesgue
is 0.

Corollary 9. Let Assumptions 2–7 hold. And if 𝑉
𝑛
(𝑥, 𝑧) is

replaced with the consistent estimator,

𝑉̂
𝑛
(𝑥, 𝑧) = 𝑛

−1

𝑛

∑

𝑖=1

Û
2

𝑖
[𝑇̂

+

𝑓
−𝑖

𝑥𝑤
(𝑧,W

𝑖
)𝐾

𝑞,ℎ𝑧
(𝑧 − Z

𝑖
, 𝑧)]

2

,

(28)

where Û
𝑖
= Y

𝑖
− 𝑔(X

𝑖
,Z

𝑖
). This yields the Studentized statistic

[𝑔(𝑥, 𝑧) − 𝑔(𝑥, 𝑧)]/√𝑉̂
𝑛
(𝑥, 𝑧). Then

𝑔 (𝑥, 𝑧) − 𝑔 (𝑥, 𝑧)

√𝑉̂
𝑛
(𝑥, 𝑧)

󳨀→
𝑑

𝑁(0, 𝐼) (29)

holds except, possibly, on a set of (𝑥, 𝑧) values whose Lebesgue
is 0.

As was shown in the remark given in the previous
section, even the conditional mean of error of the model is
nonzero, and the newly proposed estimation is consistent
because of themixing dependency; for details see the proof of
Theorem 8. Furthermore, because of the terminal condition,
the asymptotic variance is larger than that without the use of
the terminal condition.

4. Simulation Studies

In this section, we investigate the finite-sample behaviors by
simulation.

Example 10. We consider a simple FBSDE as

𝑑𝑌
𝑡
= (

𝜇 − 𝑟

𝜎
𝑍
𝑡
+ 𝑟𝑌

𝑡
)𝑑𝑡 + 𝑍

𝑡
𝑑𝐵

𝑡

≜ (𝑏𝑌
𝑡
+ 𝑐𝑍

𝑡
) + 𝑍

𝑡
𝑑𝐵

𝑡
; 𝑌

𝑇
= 𝜉,

(30)

where𝑋
𝑡
is Geometric Brownian motion for modeling stock

price satisfying

𝑑𝑋
𝑡
= 𝜇𝑋

𝑡
𝑑𝑡 + 𝜎𝑋

𝑡
𝑑𝐵

𝑡
; 𝑋

0
= 𝑥, (31)

while the riskless asset is the same as formula (31); 𝑑𝑃
𝑡

=

𝑟𝑃
0
𝑑𝑡.

Firstly, let 𝜇 = 0.1, 𝜎 = 0.01, Δ = 0.12, 𝑛 = 300,
𝑇 = 36.6, and 𝑛

0
= 𝑛

1
= 10. Obviously,𝑍

𝑡
= 𝑛

1
𝜎𝑋

𝑡
.We adopt

Epanechnikov kernel defined by𝐾(𝑢) = 3/4(1−𝑢
2

)𝐼(|𝑢| ≤ 1),
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Figure 1: The real lines are the true curves of 𝑍
𝑡
and function 𝑔(𝑡), respectively, and the dashed ones are estimated curves for them in

Example 10.

where 𝐼(⋅) is the indicator function. For bandwidth selection,
various data-driven techniques have been developed, such
as cross-validation, the plug-in method, and the empirical
bias method. However, these useful tools require additional
computation intensiveness. In our simulation, we simply
apply the rule of thumb bandwidth selector. For bandwidth
selection, bandwidth ℎ = std(𝑥)𝑛−1/5. The values of the
tuning parameters are 𝑎

𝑛
= 0.05, 𝛼 = 1.2, 𝛽 = 1. Figure 1

presents the estimated curves for diffusion 𝑍
𝑡
and drift 𝑔 by

one simulation.

Example 11. According to the theory ofmathematical finance,
we represent a European call option by the following FBSDEs
model:

𝑑𝑋
𝑠
= 𝑏𝑋

𝑠
𝑑𝑠 + 𝜎𝑋

𝑠
𝑑𝑊

𝑠
,

𝑑𝑌
𝑠
= [𝑟𝑌

𝑠
+ (𝑏 − 𝑟) 𝜎

−1

𝑍
𝑠
] 𝑑𝑠 + 𝑍

𝑠
𝑑𝑊

𝑠
,

𝑋
0
= 𝑥, 𝑌

𝑇
= (𝑋

𝑇
− 𝐾)

+

, 𝑠 ∈ [0, 𝑇] .

(32)

Here {𝑋
𝑠
}
0≤𝑠≤𝑇

and {𝑌
𝑠
}
0≤𝑠≤𝑇

are the price processes of the
stock and the option, respectively, and𝐾 is the striking price
at the expiration date 𝑇. {𝑋

𝑠
}
0≤𝑠≤𝑇

follows the geometric
Brownian motion as

𝑑𝑋
𝑠
= 𝑏𝑋

𝑠
𝑑𝑠 + 𝜎𝑋

𝑠
𝑑𝑊

𝑠
,

𝑋
0
= 𝑥, 𝑠 ∈ [0, 𝑇] .

(33)

We use the Euler scheme to generate the price series of
the stock as

𝑋
𝑖+1

− 𝑋
𝑖
= 𝑏𝑋

𝑖
Δ + 𝜎𝑋

𝑖
Δ
1/2

𝜖
𝑖
, 𝑖 = 0, . . . , 𝑛 − 1, (34)

where {𝜖
𝑖
}
𝑛−1

𝑖=0
is an i.i.d. series with standard normality.

The price series by Black Scholes formula is part of the
solution of the FBSDEs above at discrete time points; that is,

𝑌
𝑖
= 𝑋

𝑖
𝑁(𝑑

𝑖

+
) − 𝑒

−𝑟(𝑛−𝑖)Δ

𝐾𝑁(𝑑
𝑖

−
) , (35)

which, together with

𝑍
𝑖
= 𝜎𝑋

𝑖
𝑁(𝑑

𝑖

+
) , (36)

gives us data generating formulae, where

𝑁(𝑦) =
1

√2𝜋
∫

𝑦

−∞

𝑒
−𝑥
2
/2

𝑑𝑥 (37)

is a cumulative normal function, and

𝑑
𝑖

±
=

ln (𝑋
𝑖
/𝐾) + (𝑟 ± 𝜎

2

/2) ((𝑛 − 𝑖) Δ)

𝜎√(𝑛 − 𝑖) Δ

. (38)

We produce the true curve of the drift coefficient by

𝑔
𝑖
= −𝑟𝑌

𝑖
− (𝑏 − 𝑟) 𝜎

−1

𝑍
𝑖
. (39)

We first apply formulas (21) and (11) to estimate 𝑔
𝑖
and

𝑍
2

𝑖
, respectively. We adopt Epanechnikov kernel defined by

𝐾(𝑢) = 3/4(1 − 𝑢
2

)𝐼(|𝑢| ≤ 1), where 𝐼(⋅) is the indicator
function. For bandwidth selection, we simply apply the rule
of thumb bandwidth selector:

ℎ = constant × std (𝑌
0
, . . . , 𝑌

𝑛−1
) 𝑛

−1/5 (40)

to implement the estimation.
Let 𝐾 = 110, 𝑋

0
= 100, 𝑏 = 0.1, 𝜎 = 0.18, 𝑟 = 0.08,

𝑇 = 60, and Δ = 1/100. The bandwidth parameters ℎ = 6.06

and ℎ = 0.67 are used for estimation of𝑔
𝑠
and𝑍

𝑠
, respectively.

The values of the tuning parameters are 𝑎
𝑛
= 0.05, 𝛼 = 1.2,

and 𝛽 = 1. To see the performance of our estimationmethod,
the simulated and the estimated curves of the two coefficients
of the backward equation are displayed in Figures 2 and 3.
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Figure 2: The simulated curve and the estimated curves of 𝑔
𝑠
in

Example 11.
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Figure 3: The simulated curve and the estimated curves of 𝑍
𝑠
in

Example 11.

Appendix

A. Proofs

Proof of Theorem 1. Denote C = {𝑋
1
, . . . , 𝑋

𝑛
, . . .}. By the

Taylor expansion and formula (8), we have

𝐸 (𝑍
2

(𝑥
0
) | C)

=

∑
𝑛−1

𝑖=1
Δ
−1

𝐾
ℎ
(𝑋

𝑖
− 𝑥

0
) 𝐸 ((𝑌

𝑖+1
− 𝑌

𝑖
)
2

| C)

∑
𝑛−1

𝑖=1
𝐾
ℎ
(𝑋

𝑖
− 𝑥

0
)

=

∑
𝑛−1

𝑖=1
𝐾
ℎ
(𝑋

𝑖
− 𝑥

0
) (𝑍

2

𝑖
+ 𝑂 (Δ))

∑
𝑛−1

𝑖=1
𝐾
ℎ
(𝑋

𝑖
− 𝑥

0
)

=

∫𝐾
ℎ
(𝑋

𝑖
− 𝑥

0
) (𝑍

2

(𝑥)+𝑂 (Δ))𝑝 (𝑥) 𝑑𝑥 (1+ 𝑂
𝑝
(𝑛ℎ)

−1/2

)

∫𝐾
ℎ
(𝑋

𝑖
− 𝑥

0
) 𝑝 (𝑥) 𝑑𝑥 (1+𝑂

𝑝
(𝑛ℎ)

−1/2

)

= ( (𝑍
2

(𝑥
0
) + 𝑂 (Δ))

× (𝑝 (𝑥
0
) + (1/2) ℎ

2

𝑝
(2)

(𝑥
0
) 𝜎

2

𝐾
+ 𝑜 (ℎ

2

))

× (1 + 𝑂
𝑝
(𝑛ℎ)

−1/2

) )

× ( (𝑝 (𝑥
0
) + (1/2) ℎ

2

𝑝
(2)

(𝑥
0
) 𝜎

2

𝐾
+ 𝑜 (ℎ

2

))

× (1 + 𝑂
𝑝
(𝑛ℎ)

−1/2

) )

−1

= 𝑍
2

(𝑥
0
) +

𝑝
(2)

(𝑥
0
)

2𝑝 (𝑥
0
)
ℎ
2

𝑍
2

(𝑥
0
) 𝜎

2

𝐾
+ 𝑜 (ℎ

2

) + 𝑂 (Δ) .

(A.1)

Furthermore,

Var (𝑍2

(𝑥
0
) | C)

=
1

∑
𝑛−1

𝑖=1
𝐾
2

ℎ
(𝑋

𝑖
− 𝑥

0
)

× {

𝑛−1

∑

𝑖=1

Δ
−2

𝐾
2

ℎ
(𝑋

𝑖
− 𝑥

0
)Var ((𝑌

𝑖+1
− 𝑌

𝑖
)
2

| C)

+

𝑛−1

∑

𝑖=1

𝑛−𝑖

∑

𝑘=1

Δ
−2 cov (𝐾

ℎ
(𝑋

𝑖
− 𝑥

0
) (𝑌

𝑖+1
− 𝑌

𝑖
) ,

𝐾
ℎ
(𝑋

𝑖+𝑘
− 𝑥

0
) (𝑌

𝑖+𝑘+1
− 𝑌

𝑖+𝑘
) | C) } .

(A.2)

From the conditions of Markov process and 𝜌-mixing coeffi-
cient,
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛−1

∑

𝑖=1

𝑛−𝑖

∑

𝑘=1

Δ
−2 cov ( 𝐾

ℎ
(𝑋

𝑖
− 𝑥

0
) (𝑌

𝑖+1
− 𝑌

𝑖
) ,

𝐾
ℎ
(𝑋

𝑖+𝑘
− 𝑥

0
) (𝑌

𝑖+𝑘+1
− 𝑌

𝑖+𝑘
) )

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=
1

(𝑛 − 1)
2

𝑛−1

∑

𝑖=1

𝑛−𝑖

∑

𝑘=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐸 ((Δ)
−2

(𝑌
𝑖+1

− 𝑌
𝑖
)
2

(𝑌
𝑖+𝑘+1

− 𝑌
𝑖+𝑘

)
2

× (𝐾
ℎ
(𝑋

𝑖
− 𝑥

0
) − 𝐸 (𝐾

ℎ
(𝑋

𝑖
− 𝑥

0
)))

×(𝐾
ℎ
(𝑋

𝑖+𝑘
−𝑥

0
)−𝐸 (𝐾

ℎ
(𝑋

𝑖+𝑘
−𝑥

0
))))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=
1

(𝑛 − 1)
2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐸 (𝑍
2

𝑖
𝑍
2

𝑖+𝑙
(𝐾

ℎ
(𝑋

𝑖
− 𝑥

0
) − 𝐸 (𝐾

ℎ
(𝑋

𝑖
− 𝑥

0
)))

× (𝐾
ℎ
(𝑋

𝑖+𝑘
− 𝑥

0
) − 𝐸 (𝐾

ℎ
(𝑋

𝑖+𝑘
− 𝑥

0
))))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+ 𝑂 (Δ)

≤
𝐶

(𝑛 − 1)
2

ℎ

𝑛−1

∑

𝑖=1

𝑛−𝑖

∑

𝑘=1

𝜌
𝑘

= 𝑂(
1

𝑛ℎ
) = 𝑜 (1) .

(A.3)
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Note that (𝑌
𝑖+1

− 𝑌
𝑖
)/√Δ = 𝑔(𝑡

𝑖
, 𝑌

𝑖
, 𝑍

𝑖
)√Δ + 𝑍

𝑖
𝜂
𝑖
, where

𝐸(𝜂
𝑖
) = 0, Var(𝜂

𝑖
) = 1. Thus Var((𝑌

𝑖+1
−𝑌

𝑖
)/√Δ) = 𝑍

4

𝑖
+𝑂(Δ)

and furthermore

Var (𝑍2

(𝑥
0
) | C)

=

∑
𝑛−1

𝑖=1
Δ
−2

𝐾
2

ℎ
(𝑋

𝑖
− 𝑥

0
)Var ((𝑌

𝑖+1
− 𝑌

𝑖
)
2

| C)

∑
𝑛−1

𝑖=1
𝐾
2

ℎ
(𝑋

𝑖
− 𝑥

0
)

+ 𝑂
𝑝
(1)

=

∑
𝑛−1

𝑖=1
𝐾
2

ℎ
(𝑋

𝑖
− 𝑥

0
) (𝑍

4

(𝑥
0
) + 𝑂 (√Δ))

∑
𝑛−1

𝑖=1
𝐾
2

ℎ
(𝑋

𝑖
− 𝑥

0
)

+ 𝑂
𝑝
(1)

=

𝑍
4

(𝑥
0
) 𝐽

𝐾
+ 𝑂 (√Δ)

𝑛ℎ𝑝 (𝑥
0
)

(1 + 𝑂
𝑝
(𝑛ℎ)

−1/2

) .

(A.4)

To our interest, both the conditional expectation and variance
are independent onC, so the condition could be erased.

From Lemma A.1 of Politis and Romano [15] and the
relation between the 𝛼-mixing condition and the 𝜌-mixing
condition (e.g., Theorem 1.1.1 of Lu and Lin [14]), we can
ensure that {(𝑌

𝑖+1
− 𝑌

𝑖
)
2

, 𝑖 = 1, . . . , 𝑛 − 1} is a 𝜌-mixing
dependent process and the mixing coefficient, denoted by
𝜌
𝑌
(𝑙), satisfies

∞

∑

𝑘=1

𝜌
𝑌
(2

𝑘

) ≤ 𝐶

∞

∑

𝑘=1

𝜌 (2
𝑘

) =

∞

∑

𝑘=1

𝜌
2
𝑘

< ∞, (A.5)

where𝐶 is a positive constant. Finally, we use the central limit
theorems for 𝜌-mixing dependent process (e.g., Theorem
4.0.1 of Lu and Lin [14]) to complete this proof.

Proof of Theorem 8. Theorem 8 follows from proving that
𝑆
𝑛1
(𝑥, 𝑧)/√𝑉

𝑛
(𝑥, 𝑧)→

𝑑

𝑁(0, 𝐼
2
) and [𝑆

𝑛2
(𝑥, 𝑧) − 𝑔(𝑥, 𝑧)]/

√𝑉
𝑛
(𝑥, 𝑧) = 𝑜

𝑝
(1) except, possibly, if (𝑥, 𝑧) belongs to a

set of Lebesgue measure 0. The first result is established in
Lemma A.1, and the second is established in Lemma A.2.
Throughout this Appendix, “for almost every (𝑥, 𝑧)” means
“for every (𝑥, 𝑧) ∈ [0, 1]

2 except, possibly, a set of Lebesgue
measure 0.” We make repeated use of the fact that if 𝐸‖𝜓‖2 =

𝑂(𝑛
−𝑠

) for some 𝑠 > 0, then𝜓(𝑥, 𝑧) = 𝑜
𝑝
(𝑛

−𝑠

) for almost every
(𝑥, 𝑧).

Lemma A.1 (asymptotic normality of 𝑆
𝑛1
(𝑥, 𝑧)/√𝑉

𝑛
(𝑥, 𝑧)).

Let Assumptions 2–7 hold. Then 𝑆
𝑛1
(𝑥, 𝑧)/√𝑉

𝑛
(𝑥, 𝑧)→

𝑑

𝑁(0,

𝐼
2
) for almost every (𝑥, 𝑧).

Proof. Define 𝑆
𝑛11

(𝑥, 𝑧) = 𝑛
−1

∑
𝑛

𝑖=1
U
𝑖
(𝑇

+

𝑓XZW)(𝑥, 𝑧,W
𝑖
),

𝐴
𝑛2

(𝑥, 𝑧)

= 𝑛
−1

𝑛

∑

𝑖=1

U
𝑖
[𝑇

+

(𝑓
(−𝑖)

XZW − 𝑓XZW)] (𝑥, 𝑧,W
𝑖
) ,

𝐴
𝑛3

(𝑥, 𝑧)

= 𝑛
−1

𝑛

∑

𝑖=1

U
𝑖
[(𝑇̂

+

− 𝑇
+

) 𝑓XZW] (𝑥, 𝑧,W
𝑖
) ,

𝐴
𝑛4

(𝑥, 𝑧)

= 𝑛
−1

𝑛

∑

𝑖=1

U
𝑖
[(𝑇̂

+

− 𝑇
+

) (𝑓
(−𝑖)

XZW − 𝑓XZW)] (𝑥, 𝑧,W
𝑖
) .

(A.6)

Then 𝑆
𝑛1
(𝑥, 𝑧) = 𝑆

𝑛11
(𝑥, 𝑧)+𝐴

𝑛2
(𝑥, 𝑧)+𝐴

𝑛3
(𝑥, 𝑧)+𝐴

𝑛4
(𝑥, 𝑧).

𝑆
𝑛11

(𝑥, 𝑧)/√𝑉
𝑛
(𝑥, 𝑧)→

𝑑

𝑁(0, 𝐼
2
) by a triangular array version

of the Lindeberg-Levy central limit theorem. The proof of
the triangular-array version of the theorem is identical to the
proof of the ordinary Lindeberg-Levy theorem. The lemma
follows if we can prove that 𝐴

𝑛𝑗
(𝑥, 𝑧)/√𝑉

𝑛
(𝑥, 𝑧) = 𝑜

𝑝
(1) for

𝑗 = 2, 3, 4 and almost every (𝑥, 𝑧) ∈ [0, 1]
2.

Assumption 7 and arguments like those leading to (6.2)
of HH [11] show that

∬

1

0

𝑉
𝑛
(𝑥, 𝑧) 𝑑𝑥 𝑑𝑧 ≍ 𝑛

−[2𝛽+𝛼−𝜌(𝛼+1)]/(2𝛽+𝛼)

. (A.7)

It follows from the Cauchy-Schwartz inequality, 𝐸(𝑓(−𝑖)

XZW −

𝑓XZW) = 𝑂(ℎ
󸀠

), and Var(𝑓(−𝑖)

XZW) = 𝑂[1/(𝑛ℎ
2

)] that

𝐸
󵄩󵄩󵄩󵄩𝐴𝑛2

󵄩󵄩󵄩󵄩

2

= 𝑂(
1

𝑛2ℎ2𝑎2
𝑛

+
ℎ
2𝑟

𝑛𝑎2
𝑛

) . (A.8)

Therefore, it follows from Assumptions 5 and 7 that
𝐴

𝑛2
(𝑥, 𝑧)/√𝑉

𝑛
(𝑥, 𝑧) = 𝑜

𝑝
(1) for almost every (𝑥, 𝑧). Now

consider 𝐴
𝑛3
(𝑥, 𝑧). Define the operator Δ = 𝑇̂ − 𝑇. Then

𝐴
𝑛3

(𝑥, 𝑧) = − (𝑇̂ + 𝑎
𝑛
𝐼) Δ𝐴

𝑛1
(𝑥, 𝑧) . (A.9)

Therefore, the Cauchy-Schwartz inequality gives

𝐸
󵄩󵄩󵄩󵄩𝐴𝑛2

󵄩󵄩󵄩󵄩

2

≤ 𝐸
󵄩󵄩󵄩󵄩󵄩
(𝑇̂ + 𝑎

𝑛
𝐼) Δ

󵄩󵄩󵄩󵄩󵄩

2

𝐸
󵄩󵄩󵄩󵄩𝑆𝑛11

󵄩󵄩󵄩󵄩

2

= 𝐸
󵄩󵄩󵄩󵄩󵄩
(𝑇̂ + 𝑎

𝑛
𝐼) Δ

󵄩󵄩󵄩󵄩󵄩

2

∬

1

0

𝑉
𝑛
(𝑥, 𝑧) 𝑑𝑥 𝑑𝑧.

(A.10)

HH show that

𝐸
󵄩󵄩󵄩󵄩󵄩
(𝑇̂ + 𝑎

𝑛
𝐼) Δ

󵄩󵄩󵄩󵄩󵄩

2

= 𝑂(
1

𝑛ℎ𝑎2
𝑛

+
ℎ
2𝑟

𝑎2
𝑛

) . (A.11)

Therefore, it follows from Assumptions 5 and 7 that
𝐴

𝑛3
(𝑥, 𝑧)/√𝑉

𝑛
(𝑥, 𝑧) = 𝑜

𝑝
(1) for almost every (𝑥, 𝑧). Finally,

some algebra shows that

𝐴
𝑛4

(𝑥, 𝑧) = −(𝑇̂ + 𝑎
𝑛
𝐼)

−1

Δ𝐴
𝑛2

(𝑥, 𝑧) . (A.12)

Therefore, 𝐴
𝑛4
(𝑥, 𝑧)/√𝑉

𝑛
(𝑥, 𝑧) = 𝑜

𝑝
(1) for almost every (𝑥,

𝑧) follows from (A.11) and 𝐴
𝑛2
(𝑥, 𝑧)/√𝑉

𝑛
(𝑥, 𝑧) = 𝑜

𝑝
(1).

Lemma A.2 (asymptotic negligibility of 𝑆
𝑛2
(𝑥, 𝑧) − 𝑔(𝑥, 𝑧)).

Let Assumptions 2–7 hold. Then 𝑆
𝑛2
(𝑥, 𝑧) − 𝑔(𝑥, 𝑧)/

√𝑉
𝑛
(𝑥, 𝑧) = 𝑜

𝑝
(1) for almost every (𝑥, 𝑧).
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Proof. Define

𝐷
𝑛
(𝑥, 𝑧) = ∭

1

0

𝑔 (𝜃, 𝜂) 𝑓XZW (𝜃, 𝜂, 𝑤) 𝑇
+

× (𝑓XZW − 𝑓XZW) (𝑥, 𝑧, 𝑤) 𝑑𝜃 𝑑𝜂 𝑑𝑤,

𝐴
𝑛1

(𝑥, 𝑧) = 𝑛
−1

𝑛

∑

𝑖=1

𝑔 (X
𝑖
, 𝑍

𝑖
) (𝑇

+

𝑓XZW) (𝑥, 𝑧,W
𝑖
) .

(A.13)

Redefine

𝐴
𝑛2

(𝑥, 𝑧)

= 𝑛
−1

𝑛

∑

𝑖=1

𝑔 (X
𝑖
,Z

𝑖
) [𝑇

+

(𝑓
(−𝑖)

XZW − 𝑓XZW)] (𝑥, 𝑧,W
𝑖
)

− 𝐷
𝑛
(𝑥, 𝑧) ,

𝐴
𝑛3

(𝑥, 𝑧)

= 𝑛
−1

𝑛

∑

𝑖=1

𝑔 (X
𝑖
,Z

𝑖
) [(𝑇̂

+

− 𝑇
+

) 𝑓XZW] (𝑥, 𝑧,W
𝑖
) + 𝐷

𝑛
(𝑥, 𝑧) ,

𝐴
𝑛4

(𝑥, 𝑧)

= 𝑛
−1

𝑛

∑

𝑖=1

𝑔 (X
𝑖
,Z

𝑖
) [(𝑇̂

+

− 𝑇
+

) (𝑓
(−𝑖)

XZW − 𝑓XZW)]

× (𝑥, 𝑧,W
𝑖
) .

(A.14)

Then 𝑆
𝑛2
(𝑥, 𝑧) = ∑

4

𝑗=1
𝐴

𝑛𝑗
(𝑥, 𝑧). Arguments identical to

those used to derive (6.2) and (6.3) of HH [11] show that
‖𝐸𝐴

𝑛1
− 𝑔‖

2

= 𝑂[𝑛
−𝜌(2𝛽1)/(2𝛽+𝛼)] and

∬

1

0

Var [𝐴
𝑛1

(𝑥, 𝑧)] 𝑑𝑥 𝑑𝑧 = 𝑂𝑛
−[2𝛽+𝛼−𝜌(𝛼+1)]/(2𝛽+𝛼)

. (A.15)

Therefore, it follows from Assumptions 5 and 7 that

[𝐸𝐴
𝑛1

(𝑥, 𝑧) − 𝑔 (𝑥, 𝑧)]

√𝑉
𝑛
(𝑥, 𝑧)

= 𝑜 (1) , (A.16)

𝑉
−1

𝑛
(𝑥, 𝑧)∬

1

0

Var [𝐴
𝑛1

(𝑥, 𝑧)] 𝑑𝑥 𝑑𝑧 = 𝑂 (1) (A.17)

for almost every (𝑥, 𝑧).
Now consider 𝐴

𝑛2
(𝑥, 𝑧). Define

𝐷
𝑛𝑖
(𝑥, 𝑧) = ∭

1

0

𝑔 (𝜃, 𝜂) 𝑓XZW (𝜃, 𝜂, 𝑤) 𝑇
+

×(𝑓
(−𝑖)

XZW−𝑓XZW)(𝑥, 𝑧, 𝑤) 𝑑𝜃 𝑑𝜂 𝑑𝑤,

𝐴
𝑛21

(𝑥, 𝑧) = 𝑛
−1

𝑛

∑

𝑖=1

𝑔 (X
𝑖
,Z

𝑖
) [𝑇

+

(𝑓
(−𝑖)

XZW − 𝑓XZW)]

× (𝑥, 𝑧,W
𝑖
) − 𝐷

𝑛𝑖
(𝑥, 𝑧) ,

(A.18)

and 𝐴
𝑛22

(𝑥, 𝑧) = 𝑛
−1

∑
𝑛

𝑖=1
[𝐷

𝑛𝑖
(𝑥, 𝑧) − 𝐷

𝑛
(𝑥, 𝑧)]. HH show

that ‖𝐸𝐴
𝑛21

‖
2

= 𝑂((ℎ
2𝑟

/𝑛𝑎
2

𝑛
) + (1/𝑛

2

ℎ
2

𝑎
2

𝑛
)) and ‖𝐸𝐴

𝑛22
‖
2

=

𝑂(1/𝑛
2

𝑎
2

𝑛
). Therefore, it follows from Assumptions 5 and 7

that

𝐴
𝑛2

(𝑥, 𝑧)

√𝑉
𝑛
(𝑥, 𝑧)

= 𝑜
𝑝
(1) (A.19)

for almost every (𝑥, 𝑧). Now consider 𝐴
𝑛3
(𝑥, 𝑧). Write

𝐴
𝑛3

(𝑥, 𝑧) = 𝐴
𝑛31

(𝑥, 𝑧) + 𝐴
𝑛32

(𝑥, 𝑧) , (A.20)

where 𝐴
𝑛31

(𝑥, 𝑧) = −(𝐼 + 𝑇
+

Δ)
−1

𝑇
+

Δ𝑔(𝑥, 𝑧) + 𝐷
𝑛
(𝑥, 𝑧) and

𝐴
𝑛32

(𝑥, 𝑧) = −(𝑇̂
+

+ 𝑎
𝑛
𝐼)

−1

Δ(𝐴
𝑛1

− 𝑔)(𝑥, 𝑧). It follows from
(A.11)-(A.16) and (A.20) that

𝐴
𝑛32

(𝑥, 𝑧)

√𝑉
𝑛
(𝑥, 𝑧)

= 𝑜
𝑝
(1) (A.21)

for almost every (𝑥, 𝑧).
To analyze 𝐴

𝑛31
(𝑥, 𝑧), define

𝐵
𝑛1

(𝑥, 𝑧) = ∭

1

0

[𝑓XZW (𝑥, 𝑧, 𝑤) − 𝑓XZW (𝑥, 𝑧, 𝑤)]

× 𝑓XZW (𝑥, 𝑧, 𝑤) 𝑔 (𝑥, 𝑧) 𝑑𝑥 𝑑𝑧 𝑑𝑤,

𝐵
𝑛2

(𝑥, 𝑧) = ∭

1

0

[𝑓XZW (𝑥, 𝑧, 𝑤) − 𝑓XZW (𝑥, 𝑧, 𝑤)]

× 𝑓XZW (𝑥, 𝑥, 𝑤) 𝑔 (𝑥, 𝑥) 𝑑𝑥 𝑑𝑧 𝑑𝑤,

𝐵
𝑛3

(𝑥, 𝑧) = ∭

1

0

[𝑓XZW (𝑥, 𝑧, 𝑤) − 𝑓XZW (𝑥, 𝑧, 𝑤) ,

𝑓XZW (𝑥, 𝑧, 𝑤) − 𝑓XZW (𝑥, 𝑧, 𝑤)]

× 𝑔 (𝑥, 𝑧) 𝑑𝑥 𝑑𝑧 𝑑𝑤,

𝐵
𝑛11

(𝑥, 𝑧) = ∭

1

0

[𝐸𝑓XZW (𝑥, 𝑧, 𝑤) − 𝑓XZW (𝑥, 𝑧, 𝑤)]

× 𝑓XZW (𝑥, 𝑧, 𝑤) 𝑔 (𝑥, 𝑧) 𝑑𝑥 𝑑𝑧 𝑑𝑤,

𝐵
𝑛12

(𝑥, 𝑧) = ∭

1

0

[𝑓XZW (𝑥, 𝑧, 𝑤) − 𝐸𝑓XZW (𝑥, 𝑤)]

× 𝑓XZW (𝑥, 𝑧, 𝑤) 𝑔 (𝑥, 𝑧) 𝑑𝑥 𝑑𝑧 𝑑𝑤,

𝐵
𝑛21

(𝑥, 𝑧) = ∭

1

0

[𝐸𝑓XZW (𝑥, 𝑧, 𝑤) − 𝑓XZW (𝑥, 𝑧, 𝑤)]

× 𝑓XZW (𝑥, 𝑧, 𝑤) 𝑔 (𝑥, 𝑧) 𝑑𝑥 𝑑𝑧 𝑑𝑤,

𝐵
𝑛22

(𝑥, 𝑧) = ∭

1

0

[𝑓XZW (𝑥, 𝑧, 𝑤) − 𝐸𝑓XZW (𝑥, 𝑧, 𝑤)]

× 𝑓XZW (𝑥, 𝑧, 𝑤) 𝑔 (𝑥, 𝑧) 𝑑𝑥 𝑑𝑧 𝑑𝑤.

(A.22)
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Define 𝛿 = ℎ
2𝑟

+ (𝑛ℎ)
−1. HH show that

𝐴
𝑛31

(𝑥, 𝑧) = −(𝐼 + 𝑇
+

Δ)
−1

𝑇
+

(𝐵
𝑛11

+ 𝐵
𝑛12

+ 𝐵
𝑛3
) (𝑥, 𝑧)

+ (𝐼 + 𝑇
+

Δ)
−1

𝑇
+

Δ𝑇
+

(𝐵
𝑛21

+ 𝐵
𝑛22

) (𝑥, 𝑧) .

(A.23)

Define

𝐴
𝑛31

(𝑥, 𝑧) = −(𝐼 + 𝑇
+

Δ)
−1

𝑇
+

(𝐵
𝑛11

+ 𝐵
𝑛12

+ 𝐵
𝑛3
) (𝑥, 𝑧)

+ (𝐼 + 𝑇
+

Δ)
−1

𝑇
+

Δ𝑇
+

𝐵
𝑛21

.

(A.24)

Then

𝐸
󵄩󵄩󵄩󵄩𝐴𝑛31

󵄩󵄩󵄩󵄩

2

≤ const. [𝐸󵄩󵄩󵄩󵄩󵄩𝐴𝑛31

󵄩󵄩󵄩󵄩󵄩

2

+ 𝐸
󵄩󵄩󵄩󵄩󵄩
(𝐼 + 𝑇Δ)

−1

𝑇
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HH show that
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+

𝐵
𝑛11
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ℎ
𝑟
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𝑛

) , (A.27)

(𝐸
󵄩󵄩󵄩󵄩𝑇

+

Δ𝑇
+

𝐵
𝑛21

󵄩󵄩󵄩󵄩

4

)

1/2

= 𝑂(
𝛿ℎ

2𝑟

𝑎
𝑛

) , (A.28)
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+

𝐵
𝑛3

󵄩󵄩󵄩󵄩

4

)

1/2

= 𝑂(
𝛿
2

𝑎2
𝑛

) . (A.29)

See (6.11), (6.13), (6.14), and (6.15) of HH [11]. Moreover,

𝐸
󵄩󵄩󵄩󵄩󵄩
(𝐼 + 𝑇Δ)

−1

𝑇
+

Δ𝑇
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𝐵
𝑛22

󵄩󵄩󵄩󵄩󵄩

2
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ℎ
2𝑟−1

𝑛𝑎
2+(𝛼+1)/𝛼

𝑛

+
1

𝑛3ℎ5𝑎4
𝑛

+
ℎ
4𝑟

𝑛ℎ𝑎2
𝑛

) .

(A.30)

See the arguments leading to (6.24) in HH [11] and the
analogous result for their equation (6.24) in HH [11] and
the analogous result for their quantity 𝐸‖𝐻

𝑛2
‖
2. Combining

(A.25)–(A.30) with Assumptions 5 and 7 yields the result that

𝐴
𝑛4

(𝑥, 𝑧)

√𝑉
𝑛
(𝑥, 𝑧)

=
−(𝐼 + 𝑇

+

Δ)
−1

𝑇
+

𝐵
𝑛12

√𝑉
𝑛
(𝑥, 𝑧)

+ 𝑜
𝑝
(1) . (A.31)

Now consider −(𝐼 +𝑇
+

Δ)
−1

𝑇
+

𝐵
𝑛12

. Standard calculations for
kernel estimators show that

∭
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= 𝑛
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𝑛
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𝑓XZW (𝑥, 𝑧,W
𝑖
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𝑖
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𝑖
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𝑟

) .

(A.32)

Therefore,

𝑇
+

∭

1

0
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ℎ
𝑟

𝑎
𝑛

) ,

(A.33)

𝑇
+

𝐵
𝑛12

(𝑥, 𝑧) = 𝐴
𝑛1

(𝑥, 𝑧) − 𝐸𝐴
𝑛1

(𝑥, 𝑧) + 𝑜 (
ℎ
𝑟

𝑎
𝑛

) . (A.34)

But
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𝑛
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Δ𝑇
+

𝐵
𝑛12
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(A.35)

Therefore, it follows, by combining Assumption 7 and equa-
tions (A.11), (A.17), and (A.34), that

(𝐼 + 𝑇
+

Δ)
−1

𝑇
+

𝐵
𝑛12

(𝑥, 𝑧) = 𝐴
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(𝑧) − 𝐸𝐴
𝑛1

(𝑥, 𝑧) + 𝑟
𝑛
,

(A.36)

where 𝐸‖𝑟
𝑛
‖
2

/√𝑉
𝑛
(𝑥, 𝑧) = 𝑜(1) for almost every (𝑥, 𝑧).

Combining this result with (A.21) and (A.31) gives
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√𝑉
𝑛
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√𝑉
𝑛
(𝑥, 𝑧)

+ 𝑜
𝑝
(1) (A.37)

for almost every (𝑥, 𝑧).
Now consider 𝐴

𝑛4
(𝑥, 𝑧). HH show that

𝐴
𝑛4

(𝑥, 𝑧) = −(𝐼 + 𝑇
+

Δ)
−1

𝑇
+

Δ (𝐴
𝑛2

− 𝑇
+

𝐵
𝑛2
) (𝑥, 𝑧) .

(A.38)

Therefore, it follows from (A.19) and (A.30) that

𝐴
𝑛4

(𝑥, 𝑧)

√𝑉
𝑛
(𝑥, 𝑧)

= 𝑜
𝑝
(1) (A.39)

for almost every (𝑥, 𝑧).
Now combine (A.19), (A.37), and (A.39) to obtain

𝑆
𝑛2

(𝑥, 𝑧)

√𝑉
𝑛
(𝑥, 𝑧)

=

∑
4

𝑗=1
𝐴

𝑛𝑗
(𝑥, 𝑧)

√𝑉
𝑛
(𝑥, 𝑧)

=
𝐸𝐴

𝑛1
(𝑥, 𝑧)

√𝑉
𝑛
(𝑥, 𝑧)

+ 𝑜
𝑝
(1)

(A.40)

for almost every (𝑥, 𝑧).The lemma follows by combining this
result with (A.16).

This completes the proof.
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A new moving state marine initial alignment method of strap-down inertial navigation system (SINS) is proposed based on high-
degree cubature Kalman filter (CKF), which can capture higher order Taylor expansion terms of nonlinear alignment model than
the existing third-degree CKF, unscented Kalman filter and central difference Kalman filter, and improve the accuracy of initial
alignment under large headingmisalignment angle condition. Simulation results show the efficiency and advantage of the proposed
initial alignmentmethod as comparedwith existing initial alignmentmethods for themoving state SINS initial alignmentwith large
heading misalignment angle.

1. Introduction

It is well known that the attitude update of strap-down inertial
navigation system (SINS) is achieved based on numerical
integration [1]. Therefore, it is necessary to know initial nav-
igation parameters including position, velocity, and attitude
for navigation calculation.The procedure of estimating initial
navigation parameters is initial alignment, and the accuracy
of estimation of these initial navigation parameters, especially
the estimation accuracy of attitude, is very important to
subsequent navigation operation, since the initial attitude
errors (or misalignment angles) will seriously degrade the
performance of SINS and cause positioning and attitude
errors [2]. Thus, it is important to estimate initial attitude
and reduce misalignment angles. Initial alignment of SINS
is usually accomplished in stationary mode [3]. However,
a moving state initial alignment is necessary to maintain
high navigation accuracy. Generally, after initial alignment,
the resulting navigation state errors grow up because of the
initialization errors and cumulative sensor inaccuracies [4].
Consequently, in large navigation errors, due to the growing
sensor error and the poor orientation, SINS often requires to
be realigned, and the initialization needs the ship to stop at
the initial position for at least 5 to 10 minutes [4, 5]. However,

it is inconvenient and impractical that there is not enough
time to stop at the initial position. Therefore, a moving state
initial alignment of SINS is necessary to enable the ship
to start instantly [5]. Besides, in some applications, such as
carrier-launched aircraft, it is necessary to achieve an accurate
moving state (or in-motion) initial alignment of host SINS
[6]. As the host carrier may be sailing while aligning the SINS
of a carrier-launched aircraft, aiding information from host
SINSwill be used to accomplish the alignment, then amoving
state alignment should be implemented to realign SINS for
vessel in sail [6].

In moving state initial alignment of SINS, heading mis-
alignment angle may be large since there is no reference to
indicate current heading, especially for integrated alignment,
and error model of SINS with large heading misalignment
angle is nonlinear, which means linear estimation methods
are not suitable for SINS initial alignment with large heading
misalignment angle [7]. In order to solve the problem of
moving state initial alignment with large heading misalign-
ment angle, Kong et al. proposed an initial alignmentmethod
based on extended Kalman filter (EKF) [8]. However, it
has low alignment accuracy and slow alignment speed. In
order to improve the alignment accuracy and alignment
speed, Zhou et al. proposed an initial alignment method
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based on unscented Kalman filter (UKF), which can at least
capture the posterior mean and covariance to the second
order of the Taylor series of any nonlinearity [9]. To improve
the computational efficiency of UKF method, Chang et al.
proposed an initial alignmentmethod based onmarginalized
UKF [10]. To further improve the accuracy of UKF method,
Long et al. proposed an initial alignment method based on
central difference Kalman filter (CDKF), which can provide
better covariance estimation than UKF [11]. To improve the
numerical stability of UKF method, Sun proposed an initial
alignment method based on cubature Kalman filter (CKF)
[12], which is a special case of UKF with better numerical
stability [13].

However, all moving state initial alignment methods
mentioned above have limited alignment accuracy and align-
ment speed because they cannot capture the fifth order
Taylor expansion terms of nonlinear alignment model. In
order to improve alignment accuracy and alignment speed,
a new moving state initial alignment method based on the
fifth-degree CKF (5th-CKF) is proposed in this paper. For
moving state initial alignment of SINS with large heading
misalignment angle, the 5th-CKF addresses the strong non-
linearity problem better than existing methods because it can
capture the fifth order Taylor expansion terms of nonlinear
alignment model. As will be seen in our simulation results,
the proposed initial alignment method outperforms existing
initial alignmentmethods in terms of alignment accuracy and
alignment speed.

The remainder of this paper is organized as follows. The
nonlinear error model of moving state marine SINS initial
alignment is presented in Section 2. The 5th-CKF method is
formulated in Section 3. Section 4 focuses on the application
of the 5th-CKF to the nonlinear estimation problem of
moving state initial alignment of SINS and compares the
proposed initial alignmentmethodwith existing initial align-
ment methods for the moving state SINS initial alignment
with large heading misalignment angle. Concluding remarks
are drawn in Section 5.

2. Marine SINS Initial Alignment
Nonlinear Error Model

Initial alignment is a process to precisely determine initial
values of strap-downmatrix between the vehicle’s body frame
and the reference frame so that the navigation computer can
start with exact initial conditions. Initial alignment is a key
technique in SINS. The alignment accuracy and alignment
speed will influence the performance of SINS navigation.
Next we will firstly introduce nomenclature used in inertial
technology and then formulate marine SINS nonlinear error
model in moving state initial alignment.

2.1. SINS Nonlinear Error Model for Moving State
Marine Initial Alignment. In this paper, we choose
x = [𝛿𝜑 𝛿𝜆 𝛿V

𝑥
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𝑦
𝜙
𝑥
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𝑦
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𝜀
𝑏

𝑦
𝜀
𝑏

𝑧
]
𝑇

as
state vector in initial alignment, where 𝛿𝜑 and 𝛿𝜆 are errors
of latitude and longitude (note we ignore the altitude error
for marine application), 𝛿V

𝑥
and 𝛿V

𝑦
are velocity errors

in east and north directions, 𝜙
𝑥
, 𝜙
𝑦
, and 𝜙

𝑧
are rolling,

pitching, and heading misalignment angles, respectively, ∇𝑏
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𝑏

𝑦
are constant bias of specific force in b frame, and
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𝑥
, 𝜀𝑏
𝑦
, and 𝜀

𝑏

𝑧
are constant drifts of gyro in b frame. If we

denote vectors 𝛿v𝑛 = [𝛿V
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𝑏

𝑥
𝜀
𝑏

𝑦
𝜀
𝑏

𝑧
]
𝑇

, we will have
the following SINS nonlinear error model for moving state
marine initial alignment [10]:
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(2)

where 𝑅
𝑚
is the meridian radius of curvature and 𝑅

𝑛
is the

transverse radius of curvature, 𝜑 is the computed geographic
latitude, and C𝑛󸀠

𝑛
is the transformation matrix from true nav-

igation frame (𝑛 frame) to erroneously computed navigation
frame (𝑛󸀠 frame) which is formulated as
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, (3)
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where C𝑛󸀠
𝑏
is the computed attitude matrix, f̂𝑏sf is the specific

force measured by accelerometers in the body frame, and 𝛿f𝑏sf
is the specific force error vector in the body frame, which can
be formulated as

𝛿f𝑏sf = w𝑏
𝑎
+ ∇
𝑏

, (4)
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, and 𝛿𝜔𝑛

𝑖𝑒
is the computational error of 𝜔𝑛

𝑖𝑒
. 𝜔𝑛
𝑖𝑒
,

𝛿𝜔
𝑛

𝑖𝑒
, and 𝜔̂𝑛

𝑖𝑒
can be formulated as follows:

𝜔
𝑛

𝑖𝑒
= [0 𝜔

𝑖𝑒
cos𝜑 𝜔

𝑖𝑒
sin𝜑]𝑇,

𝛿𝜔
𝑛

𝑖𝑒
= [0 −𝜔

𝑖𝑒
sin𝜑𝛿𝜑 𝜔

𝑖𝑒
cos𝜑𝛿𝜑]𝑇,

𝜔̂
𝑛

𝑖𝑒
= 𝜔
𝑛

𝑖𝑒
+ 𝛿𝜔
𝑛

𝑖𝑒
,

(6)

where 𝜔𝑛
𝑒𝑛

is the angular rate of the navigation frame with
respect to the earth frame. 𝜔̂𝑛

𝑒𝑛
is the computed value of 𝜔𝑛

𝑒𝑛
,

and 𝛿𝜔𝑛
𝑒𝑛
is the computational error of𝜔𝑛

𝑒𝑛
.𝜔𝑛
𝑒𝑛
, 𝛿𝜔𝑛
𝑒𝑛
, and 𝜔̂𝑛

𝑒𝑛

can be formulated as

𝜔
𝑛

𝑒𝑛
= [−

V
𝑦

𝑅
𝑚

V
𝑥

𝑅
𝑛

V
𝑥
tan𝜑
𝑅
𝑛

]

𝑇

,

𝛿𝜔
𝑛

𝑒𝑛
= [−

𝛿V
𝑦

𝑅
𝑚

𝛿V
𝑥

𝑅
𝑛

𝛿V
𝑥
tan𝜑
𝑅
𝑛

+
V
𝑥
sec 𝜑2𝛿𝜑
𝑅
𝑛

]

𝑇

,

𝜔̂
𝑛

𝑒𝑛
= 𝜔
𝑛

𝑒𝑛
+ 𝛿𝜔
𝑛

𝑒𝑛
,

(7)

where V
𝑥
, V
𝑦
, V
𝑧
are true velocity values in east, north, and up

direction.
According to the definitions of𝜔𝑛

𝑖𝑛
, 𝛿𝜔𝑛
𝑖𝑛
, and 𝜔̂𝑛

𝑖𝑛
, they can

be formulated as
𝜔
𝑛

𝑖𝑛
= 𝜔
𝑛

𝑖𝑒
+ 𝜔
𝑛

𝑒𝑛
,

𝛿𝜔
𝑛

𝑖𝑛
= 𝛿𝜔
𝑛

𝑖𝑒
+ 𝛿𝜔
𝑛

𝑒𝑛
,

𝜔̂
𝑛

𝑖𝑛
= 𝜔
𝑛

𝑖𝑛
+ 𝛿𝜔
𝑛

𝑖𝑛
.

(8)

We choose the velocity and position differences between
SINS and external sensors, such as GPS or other higher
accuracy SINSs as measurement vector z, which can be
formulated as

z =
[
[
[
[

[

𝜑INS − 𝜑ref

𝜆INS − 𝜆ref

VINS,𝑥 − Vref,𝑥
VINS,𝑦 − Vref,𝑦

]
]
]
]

]

, (9)

where 𝜑ref, 𝜆ref, Vref,𝑥, and Vref,𝑦 are measured latitude, longi-
tude, velocity in east, and north directions, respectively.

Note that the process model of moving state initial
alignment introduced in (1) is a continuous model and we
must transform it into discrete form. Given the sample time
𝑇, the propagations of position error, velocity error, and mis-
alignment angles are discretized by using the fourth-degree
Runge-Kutta method, and all the parts related to noise are
discretized by using first-degree Runge-Kutta method. Based
on (1) and (9), the discrete state equation and observation
equation for state estimation can be formulated as

x
𝑘
= f (x

𝑘−1
) +W

𝑘−1
,

z
𝑘
= h (x

𝑘
) + V
𝑘
,

(10)

where h(x
𝑘
) = [I

4×4
0
4×8

] x
𝑘
, W
𝑘−1

is the Gaussian random
process noise with mean 0 and covariance Q

𝑘
and V

𝑘
is

the Gaussian random measurement noise with mean 0 and
covariance R

𝑘
. Equation (10) formulates the nonlinear error

model for moving state marine SINS initial alignment.
It is clear to see from (1) that the state equation of the

error model of moving state marine SINS initial alignment is
typically nonlinear. Thus, nonlinear filtering algorithms are
necessary to estimate the state vector from which misalign-
ment angles can be obtained to finish initial alignment. Next
we will introduce high degree CKF method.

3. High Degree CKF

3.1. Brief Introduction of CKF. The heart of Gaussian filter
is to compute multidimensional Gaussian-weighted inte-
gral [13, 14]. Different Gaussian approximate filters can be
obtained when different integral rules are used. The third-
degree CKF (3rd-CKF) is obtained when the third-degree
spherical-radial cubature rule is used, and the third-degree
spherical-radial cubature rule can be formulated as [13]

∫
R𝑛
g (x)𝑁 (x; x̂,P

𝑥
) 𝑑x

=
1

2𝑛

𝑛

∑

𝑗=1

[g (√𝑛P
𝑥
𝑒
𝑗
+ x̂) + g (−√𝑛P

𝑥
𝑒
𝑗
+ x̂)] ,

(11)

where x is an 𝑛-dimensional Gaussian random vector with
mean x̂ and covariance P

𝑥
and√P

𝑥
is the square root matrix

of P
𝑥
; that is, √P

𝑥
√P
𝑥

𝑇

= P
𝑥
, and 𝑒

𝑗
= [0, 0, . . . , 1

𝑗

, . . . , 0]
𝑇

denotes a unit vector to the direction of coordinate axis 𝑗.
The heart of the 3rd-CKF is the third-degree spherical-

radial cubature rule in (11), whichmakes it possible to numer-
ically computemultivariatemoment integrals encountered in
nonlinear Bayesian filter. The 3rd-CKF provides a systematic
solution for high-dimensional nonlinear filtering problems.
In addition, the 3rd-CKF is more stable and more principled
in mathematics than sigma point approaches [13]. However,
the accuracy of the 3rd-CKF is limit. To improve the accuracy
of the 3rd-CKF, the 5th-CKF is proposed, which can capture
higher order Taylor expansion terms of nonlinear function
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than the 3rd-CKF, thus higher accuracy can be obtained [14].
Next we will introduce the 5th-CKF method.

3.2. 5th-CKF Method. CKF is a recursive filtering
method. We assume the posterior probability density
of x
𝑘−1

has been already known in the previous update
𝑝(x
𝑘−1

) = N(x̂
𝑘−1|𝑘−1

,P
𝑘−1|𝑘−1

). Firstly we calculate the
Cholesky decomposition of P

𝑘−1|𝑘−1
as follows:

P
𝑘−1|𝑘−1

= S
𝑘−1|𝑘−1

S𝑇
𝑘−1|𝑘−1

. (12)

The first class cubature-point and its weight are calculated as
follows:

X
0𝑖,𝑘−1|𝑘−1

= x̂
𝑘−1|𝑘−1

, 𝑤
0
=

2

𝑛 + 2
. (13)

The second class cubature-points and their weights are
calculated as follows:

X
1𝑖,𝑘−1|𝑘−1

= √(𝑛 + 2)S
𝑘−1|𝑘−1

e
𝑖
+ x̂
𝑘−1|𝑘−1

,

X
2𝑖,𝑘−1|𝑘−1

= −√(𝑛 + 2)S
𝑘−1|𝑘−1

e
𝑖
+ x̂
𝑘−1|𝑘−1

,

𝑤
1
=

4 − 𝑛

2(𝑛 + 2)
2
,

(𝑖 = 1, 2, . . . , 𝑛) ,

(14)

where e
𝑖
denotes a unit vector to the direction of coordinate

axis 𝑖.
The third class cubature-points and their weights are

calculated as follows:

X
3𝑖,𝑘−1|𝑘−1

= √(𝑛 + 2)S
𝑘−1|𝑘−1

s+
𝑖
+ x̂
𝑘−1|𝑘−1

,

X
4𝑖,𝑘−1|𝑘−1

= −√(𝑛 + 2)S
𝑘−1|𝑘−1

s+
𝑖
+ x̂
𝑘−1|𝑘−1

,

X
5𝑖,𝑘−1|𝑘−1

= √(𝑛 + 2)S
𝑘−1|𝑘−1

s−
𝑖
+ x̂
𝑘−1|𝑘−1

,

X
6𝑖,𝑘−1|𝑘−1

= −√(𝑛 + 2)S
𝑘−1|𝑘−1

s−
𝑖
+ x̂
𝑘−1|𝑘−1

,

𝑤
2
=

1

(𝑛 + 2)
2
,

(𝑖 = 1, 2, . . . ,
𝑛 (𝑛 − 1)

2
) ,

(15)

where

s+
𝑖
= {√

1

2
(e
𝑗
+ e
𝑙
) : 𝑗 < 𝑙, 𝑗, 𝑙 = 1, 2, . . . , 𝑛} ,

s−
𝑖
= {√

1

2
(e
𝑗
− e
𝑙
) : 𝑗 < 𝑙, 𝑗, 𝑙 = 1, 2, . . . , 𝑛} .

(16)

Sample points are obtained by propagating the above
cubature-points through state equation in (10) as follows:

X∗
0𝑖,𝑘|𝑘−1

= f (X
0𝑖,𝑘−1|𝑘−1

) ,

X∗
1𝑖,𝑘|𝑘−1

= f (X
1𝑖,𝑘−1|𝑘−1

) ,

X∗
2𝑖,𝑘|𝑘−1

= f (X
2𝑖,𝑘−1|𝑘−1

) ,

X∗
3𝑖,𝑘|𝑘−1

= f (X
3𝑖,𝑘−1|𝑘−1

) ,

X∗
4𝑖,𝑘|𝑘−1

= f (X
4𝑖,𝑘−1|𝑘−1

) ,

X∗
5𝑖,𝑘|𝑘−1

= f (X
5𝑖,𝑘−1|𝑘−1

) ,

X∗
6𝑖,𝑘|𝑘−1

= f (X
6𝑖,𝑘−1|𝑘−1

) .

(17)

One-step state prediction x̂
𝑘|𝑘−1

is then obtained as weighted
linear combination of sample points

x̂
𝑘|𝑘−1

= 𝑤
0
X∗
0𝑖,𝑘|𝑘−1

+ 𝑤
1

𝑛

∑

𝑗=1

(X∗
1𝑖,𝑘|𝑘−1

+ X∗
2𝑖,𝑘|𝑘−1

)

+ 𝑤
2

𝑛(𝑛−1)/2

∑

𝑗=1

(X∗
3𝑖,𝑘|𝑘−1

+ X∗
4𝑖,𝑘|𝑘−1

+ X∗
5𝑖,𝑘|𝑘−1

+ X∗
6𝑖,𝑘|𝑘−1

) .

(18)

One-step state prediction error covariance P
𝑘|𝑘−1

is updated
as follows:
P
𝑘|𝑘−1

= 𝑤
0
X∗
0𝑖,𝑘|𝑘−1

X∗𝑇
0𝑖,𝑘|𝑘−1

+ 𝑤
1

𝑛

∑

𝑗=1

(X∗
1𝑖,𝑘|𝑘−1

X∗𝑇
1𝑖,𝑘|𝑘−1

+ X∗
2𝑖,𝑘|𝑘−1

X∗𝑇
2𝑖,𝑘|𝑘−1

)

+ 𝑤
2

𝑛(𝑛−1)/2

∑

𝑗=1

(X∗
3𝑖,𝑘|𝑘−1

X∗𝑇
3𝑖,𝑘|𝑘−1

+ X∗
4𝑖,𝑘|𝑘−1

X∗𝑇
4𝑖,𝑘|𝑘−1

+X∗
5𝑖,𝑘|𝑘−1

X∗𝑇
5𝑖,𝑘|𝑘−1

+ X∗
6𝑖,𝑘|𝑘−1

X∗𝑇
6𝑖,𝑘|𝑘−1

)

− x̂
𝑘|𝑘−1

x̂𝑇
𝑘|𝑘−1

+Q
𝑘−1

.

(19)

Next the measurement update is performed. Cholesky
decomposition of P

𝑘|𝑘−1
is performed firstly:

P
𝑘|𝑘−1

= S
𝑘|𝑘−1

S𝑇
𝑘|𝑘−1

. (20)

The first class cubature-point and its weight are calculated as
follows:

X
0𝑖,𝑘|𝑘−1

= x̂
𝑘|𝑘−1

, 𝑤
0
=

2

𝑛 + 2
. (21)

Then the second class cubature-points and their weights are
calculated as follows:

X
1𝑖,𝑘|𝑘−1

= √(𝑛 + 2)S
𝑘|𝑘−1

e
𝑖
+ x̂
𝑘|𝑘−1

,

X
2𝑖,𝑘|𝑘−1

= −√(𝑛 + 2)S
𝑘|𝑘−1

e
𝑖
+ x̂
𝑘|𝑘−1

,

𝑤
1
=

4 − 𝑛

2(𝑛 + 2)
2
,

(𝑖 = 1, 2, . . . , 𝑛) .

(22)
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The third class cubature-points and their weights are calcu-
lated as follows:

X
3𝑖,𝑘|𝑘−1

= √(𝑛 + 2)S
𝑘|𝑘−1

s+
𝑖
+ x̂
𝑘|𝑘−1

,

X
4𝑖,𝑘|𝑘−1

= −√(𝑛 + 2)S
𝑘|𝑘−1

s+
𝑖
+ x̂
𝑘|𝑘−1

,

X
3𝑖,𝑘|𝑘−1

= √(𝑛 + 2)S
𝑘|𝑘−1

s−
𝑖
+ x̂
𝑘|𝑘−1

,

X
4𝑖,𝑘|𝑘−1

= −√(𝑛 + 2)S
𝑘|𝑘−1

s−
𝑖
+ x̂
𝑘|𝑘−1

,

𝑤
2
=

1

(𝑛 + 2)
2
,

(𝑖 = 1, 2, . . . ,
𝑛 (𝑛 − 1)

2
) .

(23)

Sample points are obtained by propagating the above
cubature-points through observation equation as follows:

Z
0𝑖,𝑘|𝑘−1

= h (X
0𝑖,𝑘|𝑘−1

) ,

Z
1𝑖,𝑘|𝑘−1

= h (X
1𝑖,𝑘|𝑘−1

) ,

Z
2𝑖,𝑘|𝑘−1

= h (X
2𝑖,𝑘|𝑘−1

)

Z
3𝑖,𝑘|𝑘−1

= h (X
3𝑖,𝑘|𝑘−1

) ,

Z
4𝑖,𝑘|𝑘−1

= h (X
4𝑖,𝑘|𝑘−1

) ,

Z
5𝑖,𝑘|𝑘−1

= h (X
5𝑖,𝑘|𝑘−1

) ,

Z
6𝑖,𝑘|𝑘−1

= h (X
6𝑖,𝑘|𝑘−1

) .

(24)

One-step measurement prediction ẑ
𝑘|𝑘−1

is then obtained as
weighted linear combination of sample points:

ẑ
𝑘|𝑘−1

= 𝑤
0
Z
0𝑖,𝑘|𝑘−1

+ 𝑤
1

𝑛

∑

𝑗=1

(Z
1𝑖,𝑘|𝑘−1

+ Z
2𝑖,𝑘|𝑘−1

)

+ 𝑤
2

𝑛(𝑛−1)/2

∑

𝑗=1

(Z
3𝑖,𝑘|𝑘−1

+Z
4𝑖,𝑘|𝑘−1

+Z
5𝑖,𝑘|𝑘−1

+Z
6𝑖,𝑘|𝑘−1

) .

(25)

Autocorrelation covariance matrix Pzz,𝑘|𝑘−1 is obtained as
follows:
Pzz,𝑘|𝑘−1 = 𝑤

0
Z
0𝑖,𝑘|𝑘−1

Z𝑇
0𝑖,𝑘|𝑘−1

+ 𝑤
1

𝑛

∑

𝑗=1

(Z
1𝑖,𝑘|𝑘−1

Z𝑇
1𝑖,𝑘|𝑘−1

+ Z
2𝑖,𝑘|𝑘−1

Z𝑇
2𝑖,𝑘|𝑘−1

)

+ 𝑤
2

𝑛(𝑛−1)/2

∑

𝑗=1

(Z
3𝑖,𝑘|𝑘−1

Z𝑇
3𝑖,𝑘|𝑘−1

+ Z
4𝑖,𝑘|𝑘−1

Z𝑇
4𝑖,𝑘|𝑘−1

+ Z
5𝑖,𝑘|𝑘−1

Z𝑇
5𝑖,𝑘|𝑘−1

+Z
6𝑖,𝑘|𝑘−1

Z𝑇
6𝑖,𝑘|𝑘−1

)

− ẑ
𝑘|𝑘−1

ẑ𝑇
𝑘|𝑘−1

+ R
𝑘
.

(26)

Cross-correlation covariance matrix Pxz,𝑘|𝑘−1 is calculated as
follows:

Pxz,𝑘|𝑘−1 = 𝑤
0
X
0𝑖,𝑘|𝑘−1

Z𝑇
0𝑖,𝑘|𝑘−1

+ 𝑤
1

𝑛

∑

𝑗=1

(X
1𝑖,𝑘|𝑘−1

Z𝑇
1𝑖,𝑘|𝑘−1

+ X
2𝑖,𝑘|𝑘−1

Z𝑇
2𝑖,𝑘|𝑘−1

)

+ 𝑤
2

𝑛(𝑛−1)/2

∑

𝑗=1

(X
3𝑖,𝑘|𝑘−1

Z𝑇
3𝑖,𝑘|𝑘−1

+ X
4𝑖,𝑘|𝑘−1

Z𝑇
4𝑖,𝑘|𝑘−1

+X
5𝑖,𝑘|𝑘−1

Z𝑇
5𝑖,𝑘|𝑘−1

+X
6𝑖,𝑘|𝑘−1

Z𝑇
6𝑖,𝑘|𝑘−1

)

− x̂
𝑘|𝑘−1

ẑ𝑇
𝑘|𝑘−1

.

(27)

The Kalman filter gain is calculated as follows:

K
𝑘
= Pxz,𝑘|𝑘−1P

−1

zz,𝑘|𝑘−1. (28)

State estimation x̂
𝑘|𝑘

is calculated as follows:

x̂
𝑘|𝑘

= x̂
𝑘|𝑘−1

+ K
𝑘
(z
𝑘
− ẑ
𝑘|𝑘−1

) . (29)

The state estimation error covariance P
𝑘|𝑘

is calculated as
follows:

P
𝑘|𝑘

= P
𝑘|𝑘−1

− K
𝑘
Pzz,𝑘|𝑘−1K

𝑇

𝑘
. (30)

x̂
𝑘|𝑘

and P
𝑘|𝑘

will be used in the next iteration. From
the estimated state vector x̂

𝑘|𝑘
we can obtain estimated

misalignment angles 𝜙̂ = [𝜙
𝑥
𝜙
𝑦
𝜙
𝑧
]
𝑇

, with which the
strap-down matrix between vehicle’s body frame and the
reference frame C𝑛

𝑏
can be determined, and the navigation

computer can start with exact initial conditions. P
𝑘|𝑘

can be
used to evaluate the accuracy of estimation. Next simulations
will be performed to show the advantage of the proposed
initial alignment method based on the 5th-CKF as compared
with existing methods in marine initial alignment.

4. Simulations

Three simulations are performed with different parameter
sets under different moving states of ship. In the first
simulation, the ship is on the mooring. In the second
simulation, the ship sails with constant speed V

𝑥
= 2m/s

and V
𝑦
= 2m/s. In the third simulation, the ship accelerates

with 𝑎
𝑥
= 0.02m/s2 and 𝑎

𝑦
= 0.02m/s2 and initial velocity

of V
𝑥
= 2m/s and V

𝑦
= 2m/s. In addition, initial values of

process noise covariance matrix and state and measurement
noise covariance matrix in simulations are set as
diag{0

2×1
(0.001

∘

/h)2(0.001∘/h)2(1 𝜇g)2(1 𝜇g)2(1 𝜇g)20
5×1

},
0
12×1

, diag{(0.1m/s)2(0.1m/s)2(10/Re)2(10/Re)2}, respec-
tively. Other parameters used in simulations are shown in
Table 1.

To compare the performance of existing initial align-
ment methods based on the 3rd-CKF, UKF, CDKF, and the
proposed initial alignment method based on the 5th-CKF,
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Table 1: Parameters used for simulations.

Swing
amplitude (deg)

Swing period (s) Initial error
values of pitch
and roll (deg)

Initial error
values of

heading (deg)

White noise bias
stability of gyro

(deg/h)

Bias of gyro
(deg/h)

White noise error
of accelerometer

(𝜇g)

Bias error of
accelerometer

(𝜇g)Roll Pitch Yaw

10 8 10 6 1 30 0.003 0.01 3.16 10

Table 2: Absolute value of steady state estimation error of mis-
alignment angles when the ship is on the mooring with heading
misalignment angle of 30∘.

Initial alignment methods 3rd-CKF UKF CDKF 5th-CKF
Absolute value of steady state
estimation error of rolling
misalignment (arc mins)

0.75 0.45 0.36 0.15

Absolute value of steady state
estimation error of pitching
misalignment (arc mins)

0.58 0.37 0.32 0.16

Absolute value of steady state
estimation error of heading
misalignment (arc mins)

16 5 3.5 2.45

Table 3: Absolute value of steady state estimation error of misalign-
ment angles when the ship sails with constant speed V

𝑥
= 2m/s and

V
𝑦
= 2m/s and heading misalignment angle of 30∘.

Initial alignment methods 3rd-CKF UKF CDKF 5th-CKF
Absolute value of steady state
estimation error of rolling
misalignment (arc mins)

0.78 0.47 0.4 0.16

Absolute value of steady state
estimation error of pitching
misalignment (arc mins)

0.6 0.4 0.34 0.18

Absolute value of steady state
estimation error of heading
misalignment (arc mins)

16 5.3 4.1 2.5

Table 4: Absolute value of steady state estimation error of misalign-
ment angles when the ship accelerates with heading misalignment
angle of 30∘.

Initial alignment methods 3rd-CKF UKF CDKF 5th-CKF
Absolute value of steady state
estimation error of rolling
misalignment (arc mins)

0.64 0.33 0.25 0.09

Absolute value of steady state
estimation error of pitching
misalignment (arc mins)

0.63 0.4 0.35 0.15

Absolute value of steady state
estimation error of heading
misalignment (arc mins)

14 4.0 3.0 2.2

we choose the absolute value of estimation error of misalign-
ment angles as performancemetric. For a fair comparison, we
make 500 independent Monte Carlo runs. Simulation results
of existing methods and the proposed method are shown in
Figures 1, 2, and 3 and Tables 2, 3, and 4, which corresponds
to simulation 1, simulation 2, and simulation 3, respectively.
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Figure 1: Absolute value of estimation error of misalignment angles
based on existing methods and the proposed method when the ship
is on the mooring with heading misalignment angle of 30∘.

Besides, a comparison of computational complexity between
the proposed method and existing methods is shown in
Table 5.

It is seen from Figures 1–3 that the proposed initial
alignment method has faster alignment speed than existing
initial alignment methods under large headingmisalignment
angle conditions. From Tables 2–4, we also can see that
the proposed initial alignment method outperforms existing
initial alignment methods in terms of alignment accuracy
under large heading misalignment angle conditions. As
shown in Table 5, although the proposed initial alignment
method has higher computational complexity than existing
initial alignment methods, its computation requirement is
acceptable for practical marine navigation application.

Theoretically, as discussed in Section 2, the initial align-
ment model is nonlinear for the case of large heading mis-
alignment angle, and all nonlinear filtering algorithms only
can achieve suboptimal estimation of initial misalignment
angles. However, the 5th-CKF can capture higher order
Taylor expansion terms of nonlinear initial alignment model
than the 3rd-CKF, UKF, and CDKF. Thus, the proposed
initial alignment method based on the 5th-CKF is superior
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Table 5: Comparison of computational complexity.

Initial alignment methods 3rd-CKF UKF CDKF 5th-CKF
Computational complexity 𝑂(𝑛3) (𝑛 = 12) 𝑂(𝑛3) (𝑛 = 12) 𝑂(𝑛3) (𝑛 = 12) 𝑂(𝑛4) (𝑛 = 12)

Absolute value of estimation error of rolling misalignment

Absolute value of estimation error of pitching misalignment

Absolute value of estimation error of heading misalignment
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Figure 2: Absolute value of estimation error of misalignment angles
based on existing methods and the proposed method when the ship
sails with constant speed V

𝑥
= 2m/s and V

𝑦
= 2m/s and heading

misalignment angle of 30∘.
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Figure 3: Absolute value of estimation error of misalignment angles
based on existing methods and the proposed method when the ship
accelerates with heading misalignment angle of 30∘.

to existing methods based on the 3rd-CKF, UKF, and CDKF
in terms of alignment accuracy and alignment speed under
large headingmisalignment angle.Theoretical analysis agrees
with simulation results.

5. Conclusion

In this paper, a new moving state initial alignment method
is proposed based on the 5th-CKF. Three simulations are
performed for marine SINS initial alignment under differ-
ent conditions, including mooring, moving with constant
speed, and moving with constant acceleration. Simulation
results show that the proposedmarine SINS initial alignment
method is superior to existingmethods in terms of alignment
accuracy and alignment speed for the moving state SINS
initial alignment with large heading misalignment angle. It
is more suitable for applications where fast and accurate
alignment is necessary.

Nomenclatures

𝑖 Frame: Inertial frame
𝑒 Frame: Earth frame
𝑛 Frame: True navigation frame

(“east-north-up” local
geographic frame)

𝑏 Frame: Frame fixed to the vehicle
(right-front-up)

𝑛
󸀠 Frame: Erroneously computed

navigation frame
Misalignment angle vector 𝜙: Euler angles between 𝑛

frame and 𝑛󸀠 frame
C𝑛
𝑚
: Direction cosine matrix

from𝑚 frame to 𝑛 frame.
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This paper investigates the problems of robust stochasticmean square exponential stabilization and robust𝐻
∞
for stochastic partial

differential time delay systems. Sufficient conditions for the existence of state feedback controllers are proposed, which ensuremean
square exponential stability of the resulting closed-loop system and reduce the effect of the disturbance input on the controlled
output to a prescribed level of𝐻

∞
performance. A linearmatrix inequality approach is employed to design the desired state feedback

controllers. An illustrative example is provided to show the usefulness of the proposed technique.

1. Introduction

The 𝐻
∞

control, since it was first formulated by [1], has
been extensively studied in the past years, and a great
number of results on this subject have been reported in the
literature; see, for example, [2–7] and the references therein.
Recently, a great deal of attention has been paid regarding
the study of partial differential systems (PDSs) [8–15]. Many
phenomena in science and engineering have beenmodeled by
deterministic partial differential systems, such as the control
for elastic oscillating systems, the control for temperature
field [13], the control for nuclear reactor, the robot with
flexible connecting rod [15], population dynamics [16], neu-
rophysiology, and biodynamics [17]. On the other hand, since
most of the phenomena have spatiotemporal uncertainties
due to the existence of different stochastic fluctuations, for
a more accurate representation of the behavior, a stochastic
partial differential system is an ideal model [16–21]. The
control problem for SPDSs has beenwidely studied, including
stability [16, 20, 21], stabilization [22], boundary and point
adaptive control [23], optimal control [24–26], and parameter
estimation [27]. However, it should be noted that up to now,
there is little corresponding work on the robust 𝐻

∞
control

for SPDSs.

In this paper, we focus on the robust𝐻
∞
control problem

of linear SPDSs with time delay. For robust 𝐻
∞

control of
deterministic PDSs, the main research method is operator
semigroup (see [8, 10, 12]), which is associated with solving
operator equation or linear operator inequality [14].However,
general methods for solving linear operator inequality have
not been developed yet, which makes most existing results
difficult to be applied in practice. Later,the linear matrix
inequality (LMI) is extended to uncertain distributed param-
eter systems [28, 29], and are used in stability analysis and
𝐻
∞

control [13, 14], respectively. Very recently, [17] studied
robust filter for SPDSs by using LMI, which presented an
explicit expression for the robust 𝐻

∞
filter. Motivated by

these facts, our main purpose in this paper is to examine
stochastic exponential stabilization and robust 𝐻

∞
control

for linear SPDSs with time delay under Dirichlet bound-
ary and Robin boundary conditions, respectively. The time
delay is assumed to be unknown but bounded. First, we
consider the problem of stochastic exponential stabilization
for which a state feedback controller is designed such that the
resulting closed-loop system is mean-square exponentially
stable. Then, the problem of robust 𝐻

∞
control is addressed

for which a state feedback controller is designed, for which
not only is the resulting closed-loop system mean-square
exponentially stable, but also is a prescribed𝐻

∞
performance
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level satisfied. In terms of LMIs, sufficient conditions for the
solvability of the above problems are obtained and explicit
expressions of the desired state feedback controllers are
presented. Here, the main method is constructing Lyapunov
functional and using linear matrix inequality. Finally, an
example is given to demonstrate the applicability and effec-
tiveness of the developed theoretic results.

For convenience, we adopt the following basic notations
in this paper. R𝑛 and R𝑛×𝑚 denote, respectively, the 𝑛-
dimensional Euclidean space and the set of all 𝑛 × 𝑚 real
matrices. The superscript “𝑇” denotes the transpose and the
notation 𝑋 ⩾ 𝑌 (resp., 𝑋 > 𝑌) where 𝑋 and 𝑌 are
symmetric matrices, meaning that𝑋−𝑌 is positive semidef-
inite (resp., positive definite). 𝜆max(𝑃), 𝜆min(𝑃) denote,
respectively, maximum and minimum eigenvalue of a real
symmetric matrix 𝑃. 𝐿2(O) is Lebergue square integrable
function space defined on O. For a scalar real value function
ℎ(𝑥) ∈ 𝐿

2

(O), its 𝐿2(O) norm ‖ℎ‖
2

= ∫
O
ℎ
2

(𝑥)𝑑𝑥; if ℎ(𝑥)
is a vector, that is, ℎ(𝑥) = (ℎ

1
(𝑥), ℎ
2
(𝑥), . . . , ℎ

𝑛
(𝑥))
𝑇, then

‖ℎ‖
2

= ∫
Ω

ℎ
𝑇

(𝑥)ℎ(𝑥)𝑑𝑥. L
2
(O × [0,∞);R𝑛𝑓) denotes the

family of measurable function 𝑓(𝑥, 𝑡) : O × [0, 𝑇] → R𝑛𝑓

such that E∫
𝑡

0

∫
O
𝑓(𝑥, 𝑠)

𝑇

𝑓(𝑥, 𝑠)𝑑𝑥 𝑑𝑡 := ∫
Ω

∫
𝑡

0

∫
O
𝑓(𝑥, 𝑠,

𝜔)
𝑇

𝑓(𝑥, 𝑠, 𝜔)𝑑𝑥 𝑑𝑡 𝑃𝑑𝜔 < ∞, where E represents the math-
ematical expectation and {𝑓(𝑥, 𝑡), 𝑡 ∈ [0, 𝑇]} is stochastic
process at the space location 𝑥 ∈ O and a function of three
arguments, that is, 𝑓(𝑥, 𝑡, 𝜔), 𝑥 ∈ O, 𝑡 ∈ [0, 𝑇], 𝜔 ∈ Ω.

2. Problem Statement and Preliminaries

Consider the following linear stochastic partial differential
system with time delay:

𝑑𝑦 (𝑥, 𝑡) = [𝐷Δ𝑦 (𝑥, 𝑡) + 𝐴𝑦 (𝑥, 𝑡) + 𝐴
1
𝑦 (𝑥, 𝑡 − 𝜏)

+ 𝐵𝑢 (𝑥, 𝑡) + 𝐵
𝜐
𝜐 (𝑥, 𝑡)] 𝑑𝑡

+ [𝐶𝑦 (𝑥, 𝑡) + 𝐶
1
𝑦 (𝑥, 𝑡 − 𝜏) + 𝐶

𝜐
𝜐 (𝑥, 𝑡)] 𝑑𝑊

× (𝑥, 𝑡) ,

𝑧 (𝑥, 𝑡) = 𝐿𝑦 (𝑥, 𝑡) ,

(1)

where (𝑥, 𝑡) ∈ O × R+ and O = {𝑥, 0 ⩽ |𝑥| ⩽ 𝑙 < +∞} ⊂ R𝑚

is the bounded domain with smooth boundary 𝜕O. 𝐷 > 0 is
constant. The symbol Δ = ∑

𝑚

𝑖=1
(𝜕
2

/𝜕𝑥
2

𝑖
) is Laplace operator

defined on O, 𝑦(𝑥, 𝑡) = [𝑦
1
(𝑥, 𝑡), 𝑦

2
(𝑥, 𝑡), . . . , 𝑦

𝑛
(𝑥, 𝑡)]

𝑇 is
the systems state variable, and 𝑥 and 𝑡 are the space and
time variables, respectively. 𝑢(𝑥, 𝑡) ∈ L

2
(O × [0,∞);R𝑛𝑢)

is admissible control and 𝑧(𝑥, 𝑡) ∈ L
2
(O × [0,∞);R𝑛𝑧) is

measured output. 𝜐(𝑥, 𝑡) ∈ L
2
(O × [0,∞);R𝑛𝜐) is the vector

of the random external disturbance and 𝐵
𝜐
, 𝐶
𝜐
∈ R𝑛×𝑛𝜐 are

the disturbance influence matrix. 𝐴, 𝐴
1
, 𝐶, 𝐶

1
, 𝐿 are known

real constant matrix of appropriate dimension. The scalar
𝜏 > 0 is an unknown but bounded time delay of the system.
𝑊(𝑥, 𝑡) is Wiener random field (see [18]) with covariance
operator R in 𝐿

2

(O), that is, 𝑊(𝑥, 𝑡) = ∑
∞

𝑖=1
√𝜇𝑖𝑤𝑖(𝑡)𝑒𝑖(𝑥),

where {𝑤
𝑖
(𝑡)} is a sequence of independent, identically

distributed standard Brownian motions defining a complete
probability space (Ω,F,P) with a filtration {F

𝑡
}
𝑡⩾0

, and the
set {𝑒
𝑖
(𝑥)} is a complete orthonormal basis on 𝐿

2

(O). Then
E𝑊(𝑥, 𝑡) = 0, E[𝑊(𝑥

1
, 𝑠)𝑊(𝑥

2
, 𝑡)] = 𝑟(𝑥

1
, 𝑥
2
)(𝑡 ∧ 𝑠), where

𝑟(𝑥
1
, 𝑥
2
) is symmetric kernel of operatorR. For a continuous

adapted random process 𝜎(𝑥, 𝑡), E{∫𝑡
0

∫
O
𝜎(𝑥, 𝑠)𝑑𝑊

𝑠
𝑑𝑥}
2

=

E∫
𝑡

0

∫
O
𝑟(𝑥, 𝑥)𝜎(𝑥, 𝑠)

2

𝑑𝑥 𝑑𝑡. In this paper, we assume covari-
ance function 𝑟(𝑥

1
, 𝑥
2
) is bounded, that is, 𝑟(𝑥

1
, 𝑥
2
) ⩽ 𝑟
0
,

∀𝑥
1
, 𝑥
2
∈ O.

Initial value and boundary value conditions of (1) satis-
fied

𝑦 (𝑥, 𝑠) = 𝜙 (𝑥, 𝑠) , 𝑠 ∈ [−𝜏, 0] , (2)

𝑦 (𝑥, 𝑡) = 0, (𝑥, 𝑡) ∈ 𝜕O × [−ℎ,∞) (3)

or

𝜕𝑦 (𝑥, 𝑡)

𝜕]
+ 𝑁𝑦 (𝑥, 𝑡) = 0, (𝑥, 𝑡) ∈ 𝜕O × [−ℎ,∞) , (4)

where ] is the unit outward normal vector of 𝜕O and 𝑁

is positive constant. 𝜙(𝑥, 𝑠) is continuous adapted random
process and E‖𝜙‖

2

𝐶
= E{sup

−𝜏⩽𝑠⩽0
‖𝜙(⋅, 𝑠)‖

2

} < ∞.

Definition 1. The equilibrium point 𝑦(0, 𝑡) ≡ 0 of the system
(1) is said to be mean-square exponentially stable with a
decay rate 𝛿 > 0 if there exist positive constants 𝑐 such that
E‖𝑦(⋅, 𝑡)‖

2

⩽ 𝑐𝑒
−2𝛿𝑡E‖𝜙‖

2

𝐶
, 𝑡 ⩾ 0.

In this paper, our aim is to develop techniques of robust
stochastic stabilization and robust𝐻

∞
control for stochastic

partial differential time delay systems (1). More specifically,
we are concerned with the following two problems.

(1) Stochastic exponential stabilization problem: design a
state feedback controller

𝑢 (𝑥, 𝑡) = 𝐾𝑦 (𝑥, 𝑡) (5)

for systems (1) with initial boundary value condition
(2) and (3) or (4) with 𝜐(𝑥, 𝑡) = 0 such that the result-
ing closed-loop system is mean-square exponentially
stable.

(2) Robust 𝐻
∞

control problem: given a constant scalar
𝛾 > 0, design a state feedback controller in the
form of (5) such that the resulting closed-loop system
is mean square exponentially stable, and for any
nonzero 𝜐(𝑥, 𝑡) ∈ L

2
(O × [0,∞);R𝑛𝜐), 𝜙(𝑥, 𝑠) = 0,

𝑠 ∈ [−𝜏, 0], and we have

E∫
∞

0

∫
O

𝑧
𝑇

(𝑥, 𝑡) 𝑧 (𝑥, 𝑡) 𝑑𝑥 𝑑𝑡

⩽ 𝛾
2

∫

∞

0

∫
O

𝜐
𝑇

(𝑥, 𝑡) 𝜐 (𝑥, 𝑡) 𝑑𝑥 𝑑𝑡.

(6)

We conclude this section by recalling the following lemmas
which will be used in the proof of our main results.
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Lemma 2 (Schur complement [29]). Given constant matrices
𝑆
1
, 𝑆
2
, 𝑆
3
where 𝑆

1
= 𝑆
𝑇

1
, and 0 < 𝑆

2
= 𝑆
𝑇

2
, then 𝑆

1
+𝑆
𝑇

3
𝑆
−1

2
𝑆
3
< 0

if and only if

[
𝑆
1

𝑆
𝑇

3

𝑆
3
−𝑆
2

] < 0 𝑜𝑟 [
−𝑆
2
𝑆
3

𝑆
𝑇

3
𝑆
1

] < 0. (7)

3. Mean Square Exponential Stabilization

In this section, an LMI approach is developed to solve
the problem of exponential stabilization formulated in the
previous section. The main result is given in the following
theorem.

Theorem 3. Consider the stochastic time-delay partial differ-
ential system

𝑑𝑦 (𝑥, 𝑡)

= [𝐷Δ𝑦 (𝑥, 𝑡) + 𝐴𝑦 (𝑥, 𝑡)

+𝐴
1
𝑦 (𝑥, 𝑡 − 𝜏) + 𝐵𝑢 (𝑥, 𝑡)] 𝑑𝑡

+ [𝐶𝑦 (𝑥, 𝑡) + 𝐶
1
𝑦 (𝑥, 𝑡 − 𝜏)] 𝑑𝑊 (𝑥, 𝑡) ,

(8)

with (2) and (3) being its initial and boundary value conditions,
respectively.Then system (8) is exponential stabilizable inmean
square with decay rate 𝛿 if there exist matrices 𝑌 ∈ R𝑛𝑢×𝑛 and
𝑋 > 0, 𝑍 > 0, such that the following LMI holds:

Γ =

[
[
[

[

Γ
11

𝐴
1
𝑍 √𝑟0𝑋𝐶

𝑇

𝑋

∗ Γ
22 √𝑟0𝑍𝐶

𝑇

1
0

∗ ∗ −𝑋 0

∗ ∗ ∗ −𝑍

]
]
]

]

< 0, (9)

where

Γ
11
= 2𝛿𝑋 + 𝐴𝑋 + 𝑋𝐴

𝑇

+ 𝐵𝑌 + 𝑌
𝑇

𝐵
𝑇

,

Γ
22
= Π
22
= −𝑒
−2𝛿𝜏

𝑍.

(10)

In this case, a stabilizing state feedback controller can be chosen
by 𝑢(𝑥, 𝑡) = 𝑌𝑋

−1

𝑦(𝑥, 𝑡).

Proof. Applying the controller in (5) to system (8), we obtain
the closed-loop system as

𝑑𝑦 (𝑥, 𝑡)

= [𝐷Δ𝑦 (𝑥, 𝑡) + 𝐴𝑦 (𝑥, 𝑡) + 𝐴
1
𝑦 (𝑥, 𝑡 − 𝜏) + 𝐵𝐾𝑦 (𝑥, 𝑡)] 𝑑𝑡

+ [𝐶𝑦 (𝑥, 𝑡) + 𝐶
1
𝑦 (𝑥, 𝑡 − 𝜏)] 𝑑𝑊 (𝑥, 𝑡) .

(11)

For given decay rate 𝛿, choose a Lyapunov functional candi-
date for system (11) as

𝑉 (𝑡, 𝑦) = 𝑉
1
+ 𝑉
2

= 𝑒
2𝛿𝑡

∫
O

𝑦
𝑇

(𝑥, 𝑡) 𝑃𝑦 (𝑥, 𝑡) 𝑑𝑥

+ ∫

𝑡

𝑡−𝜏

∫
O

𝑒
2𝛿𝑠

𝑦
𝑇

(𝑥, 𝑠) 𝑄𝑦 (𝑥, 𝑠) 𝑑𝑥 𝑑𝑠,

(12)

where 𝑃,𝑄 are a pair of positive symmetric matrices. Then,
by Itô’s formula, the stochastic differential 𝑑𝑉(𝑡, 𝑦) along (11)
can be obtained as (see, e.g., [16, 18, 20])

𝑑𝑉 (𝑡, 𝑦) = 𝐿𝑉 (𝑡, 𝑦) 𝑑𝑡

+ 2∫
O

𝑦
𝑇

(𝑥, 𝑡)

× [𝐶𝑦 (𝑥, 𝑡) + 𝐶
1
𝑦 (𝑥, 𝑡 − 𝜏)] 𝑑𝑊 (𝑥, 𝑡) ,

(13)
where 𝐿𝑉(𝑡, 𝑦) = 𝐿𝑉

1
(𝑡, 𝑦) + 𝐿𝑉

2
(𝑡, 𝑦).

We can deduce that
𝐿𝑉
1
(𝑡, 𝑦) ⩽ 2𝛿𝑒

2𝛿𝑡

∫
O
𝑦
𝑇

(𝑥, 𝑡) 𝑃𝑦 (𝑥, 𝑡) 𝑑𝑥

+𝑒
2𝛿𝑡

∫
O
[𝐷Δ𝑦 (𝑥, 𝑡) + 𝐴𝑦 (𝑥, 𝑡) + 𝐴

1
𝑦 (𝑥, 𝑡

ℎ
)

+𝐵𝐾𝑦(𝑥, 𝑡)]
𝑇

𝑃𝑦 (𝑥, 𝑡) 𝑑𝑥

+𝑒
2𝛿𝑡

∫
O
𝑦
𝑇

(𝑥, 𝑡) 𝑃 [𝐷Δ𝑦 (𝑥, 𝑡) + 𝐴𝑦 (𝑥, 𝑡)

+ 𝐴
1
𝑦 (𝑥, 𝑡

ℎ
)

+ 𝐵𝐾𝑦 (𝑥, 𝑡)] 𝑑𝑥

+𝑟
0
𝑒
2𝛿𝑡

∫
O
[𝐶𝑦 (𝑥, 𝑡) + 𝐶

1
𝑦 (𝑥, 𝑡 − 𝜏)]

𝑇

× 𝑃 [𝐶𝑦 (𝑥, 𝑡)+𝐶
1
𝑦 (𝑥, 𝑡

ℎ
)] 𝑑𝑥

= 2𝑒
2𝛿𝑡

∫
O
𝑦
𝑇

(𝑥, 𝑡) 𝑃𝑦 (𝑥, 𝑡) 𝑑𝑥

+𝑒
2𝛿𝑡

∫
O
[(Δ𝑦 (𝑥, 𝑡))

𝑇

⋅ 𝐷𝑃𝑦 (𝑥, 𝑡)

+ 𝑦
𝑇

(𝑥, 𝑡) 𝑃𝐷Δ𝑦 (𝑥, 𝑡) ] 𝑑𝑥

+𝑒
2𝛿𝑡

∫
O
𝑦
𝑇

(𝑥, 𝑡) [𝐴
𝑇

𝑃+𝑃𝐴+(𝐵𝐾)
𝑇

𝑃+𝑃𝐵𝐾

+ 𝑟
0
𝐶
𝑇

𝑃𝐶] 𝑦 (𝑥, 𝑡) 𝑑𝑥

+𝑒
2𝛿𝑡

∫
O
𝑦
𝑇

(𝑥, 𝑡) (𝐴
𝑇

1
𝑃 + 𝑃𝐴

1

+ 𝑟
0
𝐶
𝑇

𝑃𝐶
1
+ 𝑟
0
𝐶
𝑇

1
𝑃𝐶)

× 𝑦 (𝑥, 𝑡 − 𝜏) 𝑑𝑥

+𝑟
0
𝑒
2𝛿𝑡

∫
O
𝑦
𝑇

(𝑥, 𝑡−𝜏) 𝐶
𝑇

1
𝑃𝐶
1
𝑦 (𝑥, 𝑡−𝜏) 𝑑𝑥,

(14)

𝐿𝑉
2
(𝑡, 𝑦) = 𝑒

2𝛿𝑡

∫
O
𝑦
𝑇

(𝑥, 𝑡) 𝑄𝑦 (𝑥, 𝑡) 𝑑𝑥

−𝑒
2𝛿(𝑡−𝜏)

∫
O
𝑦
𝑇

(𝑥, 𝑡 − 𝜏)𝑄𝑦 (𝑥, 𝑡
ℎ
) 𝑑𝑥

= 𝑒
2𝛿𝑡

(∫
O
𝑦
𝑇

(𝑥, 𝑡) 𝑄𝑦 (𝑥, 𝑡) 𝑑𝑥

− 𝑒
2𝛿𝜏

∫
O
𝑦
𝑇

(𝑥, 𝑡 − 𝜏)𝑄𝑦 (𝑥, 𝑡 − 𝜏) 𝑑𝑥) .

(15)
Considering Dirichlet boundary condition (3) and using
Green formula, we have

∫
O

(Δ𝑦 (𝑥, 𝑡))
𝑇

𝐷𝑃𝑦 (𝑥, 𝑡) 𝑑𝑥

= ∫
𝜕O

𝑦(𝑥, 𝑡)
𝑇

𝐷𝑃
𝜕𝑦 (𝑥, 𝑡)

𝜕]
𝑑𝑥

− ∫
O

(∇𝑦 (𝑥, 𝑡))
𝑇

𝐷𝑃∇𝑦 (𝑥, 𝑡) 𝑑𝑥

= −𝐷∫
O

(∇𝑦 (𝑥, 𝑡))
𝑇

𝑃∇𝑦 (𝑥, 𝑡) 𝑑𝑥.

(16)
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Because 𝐷 > 0 and 𝑃 is positive definite matrix, then by (16)
we have

𝑒
2𝛿𝑡

∫
O

[(Δ𝑦 (𝑥, 𝑡))
𝑇

𝐷𝑃𝑦 (𝑥, 𝑡)

+𝑦
𝑇

(𝑥, 𝑡) 𝑃𝐷Δ𝑦 (𝑥, 𝑡) ] 𝑑𝑥 ⩽ 0

(17)

which together with (14)∼(17) yields

𝐿𝑉 (𝑡, 𝑦) ⩽ 𝑒
2𝛿𝑡

∫
O

𝜂(𝑥, 𝑡)
𝑇

Γ𝜂 (𝑥, 𝑡) 𝑑𝑥, (18)

where 𝜂𝑇(𝑥, 𝑡) = [𝑦
𝑇

(𝑥, 𝑡), 𝑦
𝑇

(𝑥, 𝑡
ℎ
)],

Γ = [
Γ
11

Γ
12

∗ Γ
22

] ,

Γ
11
= 2𝛿𝑃 + 𝑃𝐴 + 𝐴

𝑇

𝑃 + 𝑃𝐵𝐾

+ (𝐵𝐾)
𝑇

𝑃 + 𝑄 + 𝑟
0
𝐶
𝑇

𝑃𝐶,

Γ
12
= 𝑃𝐴
1
+ 𝑟
0
𝐶
𝑇

𝑃𝐶
1
,

Γ
22
= − 𝑒

−2𝛿𝜏

𝑄 + 𝑟
0
𝐶
𝑇

1
𝑃𝐶
1
.

(19)

So if Γ < 0, then (18) implies 𝐿𝑉(𝑡, 𝑦) < 0. By Lemma 2, Γ < 0

is equivalent to

Γ̃ = [

[

Γ̃
11

𝑃𝐴
1 √𝑟0𝐶

𝑇

𝑃

∗ Γ̃
22 √𝑟0𝐶

𝑇

1
𝑃

∗ ∗ −𝑃

]

]

< 0, (20)

where

Γ̃
11
= 2𝛿𝑃 + 𝑃𝐴 + 𝐴

𝑇

𝑃 + 𝑃𝐵𝐾 + (𝐵𝐾)
𝑇

𝑃 + 𝑄,

Γ̃
22
= − 𝑒

−2𝛿𝜏

𝑄.

(21)

Then, pre- and postmultiplying the LMI in (20) by diag
{𝑃
−1

, 𝑄
−1

, 𝑃
−1

} and let𝑋 = 𝑃
−1, 𝑍 = 𝑄

−1, 𝑌 = 𝐾𝑋, we have

Γ̂ = [

[

Γ̂
11

𝐴
1
𝑍 √𝑟0𝑋𝐶

𝑇

∗ Γ̂
22 √𝑟0𝑍𝐶

𝑇

1

∗ ∗ −𝑋

]

]

< 0, (22)

where

Γ̂
11
= 2𝛿𝑋 + 𝐴𝑋 + 𝑋𝐴

𝑇

+ 𝐵𝑌 + 𝑌
𝑇

𝐵
𝑇

+ 𝑋𝑍
−1

𝑋,

Γ̂
22
= Π
22
= −𝑒
−2𝛿𝜏

𝑍.

(23)

Therefore, by Lemma 2 again, if the matrix inequality in (9)
holds, then the inequality (22) or, equivalently, (20) holds,
which leads to Γ < 0. Hence 𝐿𝑉(𝑡, 𝑦) < 0.

Nowwe prove system (8) to bemean square exponentially
stable. Integrating both sides of (13) and taking expectation,
we have

E𝑉 (𝑡, 𝑦 (𝑥, 𝑡))

= E𝑉 (0, 𝑦 (𝑥, 0))

+ E{∫
𝑡

0

𝐿𝑉 (𝑠, 𝑦 (𝑥, 𝑠)) 𝑑𝑠

+ 2∫

𝑡

0

∫
O

𝑦(𝑥, 𝑠)
𝑇

𝑃

× (𝐶𝑦 (𝑥, 𝑠) + 𝐶
1
𝑦 (𝑥, 𝑠

ℎ
)) 𝑑𝑊

𝑠
𝑑𝑥}

⩽ E𝑉 (0, 𝑦 (𝑥, 0)) + E∫
𝑡

0

𝐿𝑉 (𝑠, 𝑦 (𝑥, 𝑠)) 𝑑𝑠 ⩽ E𝑉 (0, 𝑦
0
) ,

(24)

E𝑉 (0, 𝑦 (𝑥, 0))

= E∫
O

𝑦(𝑥, 0)
𝑇

𝑃𝑦 (𝑥, 0) 𝑑𝑥

+ E∫
0

−𝜏

∫
O

𝑒
2𝛿𝑠

𝑦(𝑥, 𝑠)
𝑇

𝑄𝑦 (𝑥, 𝑠) 𝑑𝑥 𝑑𝑠

⩽ 𝜆max (𝑃)E
󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩

2

𝐶
+ 𝜆max (𝑄)E

󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩

2

𝐶
∫

0

−𝜏

𝑒
2𝛿𝑠

𝑑𝑠 ⩽ 𝑐
1
E
󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩

2

𝐶
,

(25)

where constant 𝑐
1
= [𝜆max(𝑃) + 𝜆max(𝑄)((1 − 𝑒

−2𝛿𝜏

)/2𝛿)] .
On the other hand, by (12), we have

𝑉 (𝑡, 𝑦 (𝑥, 𝑡)) ⩾ 𝑒
2𝛿𝑡

∫
O

𝑦(𝑥, 𝑡)
𝑇

𝑃𝑦 (𝑥, 𝑡) 𝑑𝑥, (26)

and, hence, (24) and (25) yield

𝜆min (𝑃) 𝑒
2𝛿𝑡

E∫
O

𝑦
𝑇

(𝑥, 𝑡) 𝑦 (𝑥, 𝑡) 𝑑𝑥

⩽ 𝑒
2𝛿𝑡

E∫
O

𝑦
𝑇

(𝑥, 𝑡) 𝑃𝑦 (𝑥, 𝑡) 𝑑𝑥 ⩽ E𝑉 (𝑡, 𝑦 (𝑥, 𝑡))

⩽ E𝑉 (0, 𝑦
0
) .

(27)

Then from (25) and (27), we have

E
󵄩󵄩󵄩󵄩𝑦(⋅, 𝑡)

󵄩󵄩󵄩󵄩

2

= E∫
O

𝑦(𝑥, 𝑡)
𝑇

𝑦 (𝑥, 𝑡) 𝑑𝑥 ⩽ 𝑐E
󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩

2

𝐶
𝑒
−2𝛿𝑡

, (28)

where 𝑐 = 𝑐
1
/𝜆min(𝑃) therefore, by Definition 1, system (8) is

mean square exponentially stable with decay rate 𝛿.The proof
of Theorem 3 is complete.
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If the boundary value condition of system (8) is replaced
by Robin boundary condition (4), then

∫
O

(Δ𝑦 (𝑥, 𝑡))
𝑇

𝐷𝑃𝑦 (𝑥, 𝑡) 𝑑𝑥

= ∫
𝜕O

(𝑦 (𝑥, 𝑡))
𝑇

𝐷𝑃
𝜕𝑦 (𝑥, 𝑡)

𝜕]
𝑑𝑥

− ∫
O

(∇𝑦 (𝑥, 𝑡))
𝑇

𝐷𝑃∇𝑦 (𝑥, 𝑡) 𝑑𝑥

⩽ ∫
𝜕O

(𝑦 (𝑥, 𝑡))
𝑇

𝐷𝑃
𝜕𝑦 (𝑥, 𝑡)

𝜕]
𝑑𝑥

= −𝐷∫
𝜕O

𝑦
𝑇

(𝑥, 𝑡) 𝑃𝑁𝑦 (𝑥, 𝑡) 𝑑𝑥 ⩽ 0.

(29)

Substituting (29) into (14), similar to the proof ofTheorem 3,
we can obtain the following.

Theorem 4. Consider the stochastic partial differential system
(8) whose initial condition is (2) and boundary value (4). Then
the system is mean square exponentially stabilizable if there
exist matrices 𝑌 ∈ R𝑛𝑢×𝑛 and 𝑋 > 0, 𝑍 > 0, such that the
following LMI holds:

Φ =

[
[
[

[

Φ
11

𝐴
1
𝑍 √𝑟0𝑋𝐶

𝑇

𝑋

∗ Φ
22 √𝑟0𝑍𝐶

𝑇

1
0

∗ ∗ −𝑋 0

∗ ∗ ∗ −𝑍

]
]
]

]

< 0, (30)

where

Φ
11
= 2𝛿𝑋 + 𝐴𝑋 + 𝑋𝐴

𝑇

+ 𝐵𝑌 + 𝑌
𝑇

𝐵
𝑇

,

Φ
22
= Π
22
= −𝑒
−2𝛿𝜏

𝑍.

(31)

In this case, a stabilizing state feedback controller can be chosen
by 𝑢(𝑥, 𝑡) = 𝑌𝑋

−1

𝑦(𝑥, 𝑡).

4. Robust 𝐻
∞

Control

In this section, a sufficient condition for the solvability of
the robust 𝐻

∞
control problem is proposed and an LMI

approach for designing the desired state feedback controllers
is developed. Now, we are ready to give ourmain result in this
paper as follows.

Theorem 5. Given a scalar 𝛾 > 0, then under initial boundary
value conditions (2) and (3), the stochastic partial differential
system (1) is robust mean-square exponentially stabilizable
with disturbance attenuation 𝛾 > 0 if there exist matrices
𝑌 ∈ R𝑛𝑢×𝑛 and 𝑋 > 0, 𝑍 > 0, such that the following LMI
holds:

Υ =

[
[
[
[
[
[
[

[

Υ
11

𝐴
1
𝑍 𝐵

𝜐 √𝑟0𝑋𝐶
𝑇

𝑋𝐿
𝑇

𝑋

∗ Υ
22

0 √𝑟0𝑍𝐶
𝑇

1
0 0

∗ ∗ −𝛾
2

𝐼 √𝑟0𝐶
𝑇

𝜐
0 0

∗ ∗ ∗ −𝑋 0 0

∗ ∗ ∗ ∗ −𝐼 0

∗ ∗ ∗ ∗ ∗ −𝑍

]
]
]
]
]
]
]

]

< 0, (32)

where

Υ
11
= 2𝛿𝑋 + 𝐴𝑋 + 𝑋𝐴

𝑇

+ 𝐵𝑌 + 𝑌
𝑇

𝐵
𝑇

,

Υ
22
= − 𝑒

−2𝛿𝜏

𝑍.

(33)

Then a suitable robust𝐻
∞
controller can be chosen by 𝑢(𝑥, 𝑡) =

𝑌𝑋
−1

𝑦(𝑥, 𝑡).

Proof. Obviously, by Lemma 2, if (32) holds, then (9) also
holds. Therefore, by Theorem 3, system (1) is mean square
exponentially stabilizable if 𝜐(𝑥, 𝑡) = 0. Next, we shall show
that under the zero-initial condition, (6) holds for nonzero
𝜐(𝑥, 𝑡) ∈ L

2
(O × [0,∞);R𝑛𝜐).

We consider the Lyapunov functional 𝑉(𝑡, 𝑦) in (12), by
Itô’s formula [16, 18, 20],

𝑑𝑉 (𝑡, 𝑦) = 𝐿
𝜐
𝑉 (𝑡, 𝑦) 𝑑𝑡

+ 2∫
O

𝑦
𝑇

(𝑥, 𝑡) [𝐶𝑦 (𝑥, 𝑡) + 𝐶
1
𝑦 (𝑥, 𝑡

ℎ
)

+𝐶
𝜐
𝜐 (𝑥, 𝑡)] 𝑑𝑊 (𝑥, 𝑡) .

(34)

Integrating 𝑑𝑉(𝑡, 𝑦) from 0 to 𝑡 and taking expectation, we
can obtain that

E𝑉 (𝑡, 𝑦) = E∫
𝑡

0

𝐿
𝜐
𝑉 (𝑠, 𝑦) 𝑑𝑠. (35)

We can calculate that

𝐿
𝜐
𝑉 (𝑡, 𝑦) ⩽ 𝐿𝑉

1
(𝑡, 𝑦) + 𝐿𝑉

2
(𝑡, 𝑦)

+ 𝑟
0
𝑒
2𝛿𝑡

∫
O

𝑦(𝑥, 𝑡)
𝑇

(𝑃𝐵
𝜐
+ 𝐵
𝑇

𝜐
𝑃) 𝜐 (𝑥, 𝑡) 𝑑𝑥

+ 𝑟
0
𝑒
2𝛿𝑡

∫
O

𝑦(𝑥, 𝑡)
𝑇

(𝐶
𝑇

𝑃𝐶
𝜐
+ 𝐶
𝑇

𝜐
𝑃𝐶)

× 𝜐 (𝑥, 𝑡) 𝑑𝑥

+ 𝑟
0
𝑒
2𝛿𝑡

∫
O

𝑦(𝑥, 𝑡
ℎ
)
𝑇

(𝐶
𝑇

1
𝑃𝐶
𝜐
+ 𝐶
𝑇

𝜐
𝑃𝐶
1
)

× 𝜐 (𝑥, 𝑡) 𝑑𝑥

+ 𝑟
0
𝑒
2𝛿𝑡

∫
O

𝜐(𝑥, 𝑡)
𝑇

𝐶
𝑇

𝜐
𝑃𝐶
𝜐
𝜐 (𝑥, 𝑡) 𝑑𝑥,

(36)

where 𝐿𝑉
1
(𝑡, 𝑦) and 𝐿𝑉

2
(𝑡, 𝑦) satisfy (14) and (15), respec-

tively. Then

𝐿
𝜐
𝑉 (𝑡, 𝑦) ⩽ 𝑒

2𝛿𝑡

∫
O

𝜁(𝑥, 𝑡)
𝑇

Υ𝜁 (𝑥, 𝑡) 𝑑𝑥, (37)

where 𝜁𝑇(𝑥, 𝑡) = [𝑦
𝑇

(𝑥, 𝑡) 𝑦
𝑇

(𝑥, 𝑡
ℎ
) 𝜐
𝑇

(𝑥, 𝑡)], and

Υ =

[
[
[

[

Υ
11

Υ
12

𝑟
0
(𝑃𝐵
𝜐
+ 𝐶
𝑇

𝑃𝐶
𝜐
)

∗ Υ
22

𝑟
0
𝐶
𝑇

1
𝑃𝐶
𝜐

∗ ∗ 𝑟
0
𝐶
𝑇

𝜐
𝑃𝐶
𝜐

]
]
]

]

, (38)

Υ
𝑖𝑗
= Γ
𝑖𝑗
, 𝑖, 𝑗 = 1, 2. (39)
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Let

𝐽 = E{∫
𝑡

0

∫
O

(𝑧
𝑇

(𝑥, 𝑡) 𝑧 (𝑥, 𝑡)

−𝛾
2

𝜐
𝑇

(𝑥, 𝑡) 𝜐 (𝑥, 𝑡)) 𝑑𝑥 𝑑𝑡} ,

(40)

and then (6) is equivalent to 𝐽 < 0. Moreover, by (35)∼(38), it
follows that

𝐽 = E{∫
𝑡

0

∫
O

(𝑧
𝑇

(𝑥, 𝑡) 𝑧 (𝑥, 𝑡)

−𝛾
2

𝜐
𝑇

(𝑥, 𝑡) 𝜐 (𝑥, 𝑡)) 𝑑𝑥 𝑑𝑡}

⩽ E{∫
𝑡

0

∫
O

(𝑧
𝑇

(𝑥, 𝑡) 𝑧 (𝑥, 𝑡) 𝑑𝑥 𝑑𝑡

−𝛾
2

𝜐
𝑇

(𝑥, 𝑡) 𝜐 (𝑥, 𝑡)) 𝑑𝑥 𝑑𝑡}

+ 𝑒
−2𝛿𝑡

(E∫
𝑡

0

𝐿𝑉
𝜐
(𝑠, 𝑦) 𝑑𝑠 − E𝑉 (𝑡, 𝑦))

⩽ E{∫
𝑡

0

∫
O

(𝑧
𝑇

(𝑥, 𝑡) 𝑧 (𝑥, 𝑡) 𝑑𝑥 𝑑𝑡

−𝛾
2

𝜐
𝑇

(𝑥, 𝑡) 𝜐 (𝑥, 𝑡)) 𝑑𝑥 𝑑𝑡}

+ 𝑒
−2𝛿𝑡

E∫
𝑡

0

𝐿𝑉
𝜐
(𝑠, 𝑦) 𝑑𝑠

⩽ E{∫
𝑡

0

∫
O

𝜁(𝑥, 𝑡)
𝑇

Υ𝜁 (𝑥, 𝑡) 𝑑𝑥} ,

(41)

where

Υ̂ =

[
[
[
[
[

[

Υ̂
11

Υ̂
12

𝑟
0
𝑃𝐵
𝜐
+ 𝑟
0
𝐶
𝑇

𝑃𝐶
𝜐

∗ Υ̂
22

𝑟
0
𝐶
𝑇

1
𝑃𝐶
𝜐

∗ ∗ −𝛾
2

𝐼 + 𝑟
0
𝐶
𝑇

𝜐
𝑃𝐶
𝜐

]
]
]
]
]

]

(42)

with Υ̂
𝑖𝑗
= Υ
𝑖𝑗
= Γ
𝑖𝑗
, 𝑖, 𝑗 = 1, 2.

According to Lemma 2, Υ̂ < 0 is equivalent to

Υ̃ =

[
[
[
[
[
[
[

[

Υ̃
11

𝑃𝐴
1

𝑃𝐵
𝜐 √𝑟0𝐶

𝑇

𝑃

∗ Υ̃
22

0 √𝑟0𝐶
𝑇

1
𝑃

∗ ∗ −𝛾
2

𝐼 √𝑟0𝐶
𝑇

𝜐
𝑃

∗ ∗ ∗ −𝑃

]
]
]
]
]
]
]

]

< 0, (43)

where

Υ̃
11
= 2𝛿𝑃 + 𝑃𝐴 + 𝐴

𝑇

𝑃

+ 𝑃𝐵𝐾 + (𝐵𝐾)
𝑇

𝑃 + 𝑄 + 𝐿
𝑇

𝐿,

Υ̃
22
= − 𝑒

−2𝛿𝜏

𝑄.

(44)

In (43), pre- and postmultiplying the LMI by
diag {𝑃

−1

, 𝑄
−1

, 𝐼, 𝑃
−1

} and letting 𝑋 = 𝑃
−1, 𝑍 = 𝑄

−1,
𝑌 = 𝐾𝑋

−1 and following the same line as in the proof of
Theorem 3, we can deduce that (32) is equivalent to (43) and
Υ̂ < 0, which together with (41) implies that 𝐽 < 0. Therefore,
the inequality (6) holds. This completes the proof.

Remark 6. Similar to the proof of Theorem 3, in order to
calculate the 𝐿

𝜐
𝑉, the proof of Theorem 5 has been used in

Itô’s formula of infinite dimensional version (see [18]).
If boundary value condition becomes (4), then similar to

the proof of Theorem 5, we have the following.

Theorem 7. Given a scalar 𝛾 > 0, then under initial boundary
value conditions (2) and (4), the stochastic partial differential
system (1) is robust stabilizable with disturbance attenuation 𝛾
if there exist matrices 𝑌 ∈ R𝑛𝑢×𝑛 and 𝑋 > 0, 𝑍 > 0, such that
the following LMI holds:

Λ =

[
[
[
[
[
[
[

[

Λ
11

𝐴
1
𝑍 𝐵

𝜐 √𝑟0𝑋𝐶
𝑇

𝑋𝐿
𝑇

𝑋

∗ Λ
22

0 √𝑟0𝑍𝐶
𝑇

1
0 0

∗ ∗ −𝛾
2

𝐼 √𝑟0𝐶
𝑇

𝜐
0 0

∗ ∗ ∗ −𝑋 0 0

∗ ∗ ∗ ∗ −𝐼 0

∗ ∗ ∗ ∗ ∗ −𝑍

]
]
]
]
]
]
]

]

< 0, (45)

where

Λ
11
= 2𝛿𝑋 + 𝐴𝑋 + 𝑋𝐴

𝑇

+ 𝐵𝑌 + 𝑌
𝑇

𝐵
𝑇

,

Λ
22
= − 𝑒

−2𝛿𝜏

𝑍.

(46)

Then a suitable robust𝐻
∞
controller can be chosen by 𝑢(𝑥, 𝑡) =

𝑌𝑋
−1

𝑦(𝑥, 𝑡).

5. An Illustrative Example

In this section, we provide an illustrative example to demon-
strate the effectiveness of the proposed method.

Consider the stochastic partial differential system with
time delay in (1) under initial boundary value conditions (2)
and (3). We let O = [0, 1], that is, 0 ⩽ 𝑥 ⩽ 1, 𝐷 = 1,
𝑦(𝑥, 𝑡) = [𝑦

1
(𝑥, 𝑡), 𝑦

2
(𝑥, 𝑡)]

𝑇. Then 𝑙 = 1, 𝑚 = 1, 𝑛 = 2,
𝑑 = 1. Let time delay 𝜏 = 0.1, decay rate 𝛿 = 0.1, and the
upper bound of covariance function is 𝑟

0
= 1,

𝐴 = [
−0.8 0.5

0.2 −0.5
] , 𝐴

1
= [

−0.4 0.1

0.1 −0.6
] ,

𝐵 = [
−0.5 0.2

0.2 0.4
] , 𝐵

𝜐
= [

0.4 0.1

0.2 −0.5
] ,

𝐶 = [
0.6 0.4

0.1 −0.5
] , 𝐶

1
= [

−0.5 −0.2

0 0.4
] ,

𝐿 = [
−0.5 0

0 0.1
] , 𝐶

𝜐
= [

−0.2 0.1

0.1 0.2
] .

(47)

In this example, attention is focused on the design of a
state feedback controller, the resulting closed-loop system is
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robustly stochastically mean square exponential stable with
disturbance attenuation 𝛾 = 0.8. For this purpose, we use the
Matlab LMIControl Toolbox to solve the LMI (32) and obtain
the solution as follows:

𝑋 = [
2.8437 −0.4194

−0.4194 2.7987
] ,

𝑌 = [
−8.6142 77.4013

−94.8986 0.9777
] ,

𝑍 = [
1.2837 −0.4050

−0.4050 1.4857
] .

(48)

Therefore, by Theorem 5, it can be seen that the robust 𝐻
∞

control problem is solvable and a desired state feedback
control law can be chosen as

𝑢 (𝑥, 𝑡) = [
−7.2557 −28.7426

−34.0280 −4.7460
] 𝑦 (𝑥, 𝑡) . (49)

6. Conclusions

In this paper, the problems of robust stochastic exponential
stabilization and robust 𝐻

∞
control for liner stochastic

partial differential systems with time delay have been studied
under Dirichlet and Robin boundary, respectively. An LMI
approach has been developed to design state feedback con-
trollers, which not only guarantees mean square exponential
stability of the closed-loop system but also reduces the
effect of the disturbance input on the controlled output to a
prescribed level. A numerical example has been given to show
the effectiveness of the proposed method.
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This paper is concernedwith the𝐻
∞
control problem for nonlinear stochasticMarkov jump systemswith state, control, and external

disturbance-dependent noise. By means of inequality techniques and coupled Hamilton-Jacobi inequalities, both finite and infinite
horizon𝐻

∞
control designs of such systems are developed. Two numerical examples are provided to illustrate the effectiveness of

the proposed design method.

1. Introduction

𝐻
∞

control is one of the most important robust control
approaches, which can efficiently eliminate the effect of the
exogenous disturbance [1, 2]. Since Hinrichsen and Pritchard
introduced 𝐻

∞
control to linear stochastic systems [3], the

nonlinear stochastic𝐻
∞

control and filtering problems have
received considerable attention in both theory and practical
applications [4–9]. In [4], the nonlinear stochastic 𝐻

∞

designs were first developed by solving a second-order non-
linear Hamilton-Jacobi inequality.The𝐻

∞
filtering problems

for general nonlinear continuous-time and discrete-time
stochastic systems were discussed in [6] and [7], respectively.
In [8], the quantized 𝐻

∞
control problem for a class of

nonlinear stochastic time-delay network-based systems with
probabilistic data missing is studied.

On the other hand, Itô stochastic systems with Markov
jumps have attracted increasing attention due to their pow-
erful modeling ability in many fields [10, 11]. For linear
stochastic systems with Markov jumps, many important
issues have been studied, such as stability and stabilization
[12, 13], observability and detectability [14], optimal control
[15], and𝐻

2
/𝐻

∞
control [16].The control issues for nonlinear

stochastic Markov jump systems (NSMJSs) have also been
widely investigated. In [17], the notion of exponential dissipa-
tivity of NSMJSs was introduced, and it was used to estimate

the possible variations of the output feedback control. In
[18], the stabilization of nonlinear Markov jump systems
with partly unknown transition probabilities was studied via
fuzzy control. In [19], the 𝐻

∞
control problems of NSMJSs

were studied, which extended the results of [4] to stochastic
systems with Markovian jump parameters.

Most of the existing literature was concerned with
stochastic Markov jump systems with state-dependent noise
or both state and disturbance dependent noise ((𝑥, V)-
dependent noise for short) [16, 19]. However, formost natural
phenomena described by Itô stochastic systems, not only
state but also control input or external disturbance maybe
corrupted by noise. By introducing three coupled Hamilton-
Jacobi equations (HJEs), the finite and infinite horizon 𝐻

∞

control problems were solved for Itô stochastic systems
with all system state, control, and disturbance-dependent
noise ((𝑥, 𝑢, V)-dependent noise for short) in [20] and [21],
respectively. In [22], the finite/infinite horizon𝐻

∞
control of

nonlinear stochastic systems with (𝑥, 𝑢, V)-dependent noise
was solved by means of a Hamilton-Jacobi inequality (HJI)
instead of three coupled Hamilton-Jacobi equations (HJEs).
However, the control problems of nonlinear stochastic sys-
tems with Markov jumps and (𝑥, 𝑢, V)-dependent noise have
never been tackled and deserved further research.

In this paper, the finite and infinite horizon 𝐻
∞

control
problems are studied for nonlinear stochastic Markov jumps
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systems with (𝑥, 𝑢, V)-dependent noise. Firstly, a very useful
elementary identity is proposed.Then, by using the technique
of squares completion, a sufficient condition for finite/infinite
horizon𝐻

∞
control of NSMJSs is presented based on a set of

coupled HJIs. By means of linear matrix inequalities (LMIs),
a sufficient condition for infinite horizon 𝐻

∞
control of

linear stochasticMarkov jump systems is derived. Finally, two
numerical examples are provided to show the effectiveness of
our obtained results.

For conveniences, wemake use of the following notations
throughout this paper. R𝑛 is the 𝑛-dimensional Euclidean
space. R𝑛×𝑚 is the set of all 𝑛 × 𝑚 real matrices. 𝐴 >

0 (𝐴 ≥ 0): 𝐴 is a positive definite (positive semi-definite)
symmetric matrix. 𝐴󸀠 is the transpose of a matrix 𝐴. 𝐼
is the identity matrix. ‖𝑥‖ is the Euclidean norm of a
vector 𝑥. 𝐿2F([0, 𝑇];R

𝑙

) (resp., 𝐿2F(R+
;R𝑙

)) is the space
of nonanticipative stochastic processes 𝑦(𝑡) ∈ R𝑙 with
respect to increasing 𝜎-algebras F

𝑡
(𝑡 ≥ 0) satisfying

‖𝑦(𝑡)‖
𝐿
2

F
([0,𝑇];R𝑙) = (𝐸 ∫

𝑇

0

‖𝑦(𝑡)‖
2

𝑑𝑡)
1/2

< ∞ (resp.,
‖𝑦(𝑡)‖

𝐿
2

F
(R+ ;R

𝑙
)
= (𝐸 ∫

∞

0

‖𝑦(𝑡)‖
2

𝑑𝑡)
1/2

< ∞).

2. Definitions and Preliminaries

Consider the following time-varying nonlinear stochastic
Markov jump systems with (𝑥, 𝑢, V)-dependent noise:

𝑑𝑥 (𝑡) = [𝑓 (𝑡, 𝑥, 𝑟
𝑡
) + 𝑔 (𝑡, 𝑥, 𝑟

𝑡
) 𝑢 (𝑡) + ℎ (𝑡, 𝑥, 𝑟

𝑡
) V (𝑡)] 𝑑𝑡

+ [𝑙 (𝑡, 𝑥, 𝑟
𝑡
) + 𝑞 (𝑡, 𝑥, 𝑟

𝑡
) 𝑢 (𝑡)

+𝑠 (𝑡, 𝑥, 𝑟
𝑡
) V (𝑡)] 𝑑𝑤 (𝑡) ,

𝑧 (𝑡) = col (𝑚 (𝑡, 𝑥, 𝑟
𝑡
) , 𝑢 (𝑡)) := [

𝑚 (𝑡, 𝑥, 𝑟
𝑡
)

𝑢 (𝑡)
] ,

𝑥 (0) = 𝑥
0
∈R

𝑛

,

(1)

where𝑥(𝑡) ∈R𝑛, 𝑢(𝑡) ∈R𝑛𝑢 , V(𝑡) ∈R𝑛V , and 𝑧(𝑡) ∈R𝑛𝑧 rep-
resent the system state, control input, exogenous input, and
regulated output, respectively. 𝑤(𝑡) is the one-dimensional
standardWiener process defined on the complete probability
space (Ω,F, 𝑃), with the natural filter F

𝑡
generated by 𝑤(⋅)

and 𝑟(⋅) up to time 𝑡. The jumping process {𝑟
𝑡
, 𝑡 ≥ 0} is a

continuous-time discrete-state Markov process taking values
in a finite setT = {1, . . . , 𝑁}. The transition probabilities for
the process 𝑟

𝑡
are defined as

𝑃 (𝑟
𝑡+ℎ
= 𝑗 | 𝑟

𝑡
= 𝑘) = {

𝜋
𝑘𝑙
ℎ + 𝑜 (ℎ) , if 𝑘 ̸= 𝑗,

1 + 𝜋
𝑘𝑘
ℎ + 𝑜 (ℎ) , if 𝑘 = 𝑗,

(2)

where ℎ > 0, lim
ℎ→0

(𝑜(ℎ)/ℎ) = 0, and 𝜋
𝑘𝑙
≥ 0 (𝑘, 𝑗 ∈

T, 𝑘 ̸= 𝑗) denotes the switching rate from mode 𝑘 at time
𝑡 to mode 𝑗 at time 𝑡 + ℎ and 𝜋

𝑘𝑘
= −∑

𝑗=1,𝑗 ̸=𝑘
𝜋
𝑘𝑗

for
all 𝑘 ∈ T. In this paper, the processes 𝑟

𝑡
and 𝑤(𝑡) are

assumed to be independent. For every 𝑟
𝑡
= 𝑘 ∈ T, 𝑓(𝑡, 𝑥, 𝑘),

𝑔(𝑡, 𝑥, 𝑘), ℎ(𝑡, 𝑥, 𝑘), 𝑙(𝑡, 𝑥, 𝑘), 𝑞(𝑡, 𝑥, 𝑘), 𝑠(𝑡, 𝑥, 𝑘), and𝑚(𝑡, 𝑥, 𝑘)
are Borel measurable functions of suitable dimensions, which
guarantee that system (1) has a unique strong solution [23].

The finite horizon 𝐻
∞

control for system (1) is defined as
follows.

Definition 1. For given 𝛾 > 0, the state feedback control
𝑢
∗

𝑇
(𝑡) ∈ 𝐿

2

F([0, 𝑇];R
𝑛𝑢) is called a finite horizon𝐻

∞
control

of system (1), if for the zero initial state and any nonzero
V(𝑡) ∈ 𝐿2F([0, 𝑇];R

𝑛V), we have ‖L
𝑇
‖ < 𝛾 with

󵄩󵄩󵄩󵄩L𝑇

󵄩󵄩󵄩󵄩 = sup
V(𝑡)∈L2F([0,𝑇];R

𝑛V),

V(𝑡) ̸=0,𝑢(𝑡)=𝑢
∗

𝑇
(𝑡),𝑥0=0

‖𝑧(𝑡)‖
𝐿
2

F
([0,𝑇];R𝑛𝑧 )

‖V(𝑡)‖
𝐿
2

F
([0,𝑇];R𝑛V )

= sup
V(𝑡)∈L2F([0,𝑇];R

𝑛V),

V(𝑡) ̸=0,𝑢(𝑡)=𝑢
∗

𝑇
(𝑡),𝑥0=0

𝐸{∫

𝑇

0

(
󵄩󵄩󵄩󵄩𝑚 (𝑡, 𝑥, 𝑟𝑡)

󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝑢

∗

𝑇
(𝑡)
󵄩󵄩󵄩󵄩

2

) 𝑑𝑡 | 𝑟
0
= 𝑘}

1/2

× (𝐸{∫

𝑇

0

‖V (𝑡)‖2𝑑𝑡 | 𝑟
0

= 𝑘}

1/2

)

−1

,

𝑖 ∈ T,

(3)

where L
𝑇
is an operator associated with system (1) which is

defined as

L
𝑇
:L

2

F ([0, 𝑇] ;R
𝑛V)󳨃󳨀→L

2

F ([0, 𝑇] ;R
𝑛𝑧) ,

L
𝑇
(V (𝑡)) = 𝑧 (𝑡) |

𝑥0=0
, 𝑡 ∈ [0, 𝑇] .

(4)

Consider the time-invariant nonlinear stochastic Markov
jump systems with (𝑥, 𝑢, V)-dependent noise

𝑑𝑥 (𝑡) = [𝑓 (𝑥, 𝑟
𝑡
) + 𝑔 (𝑥, 𝑟

𝑡
) 𝑢 (𝑡) + ℎ (𝑥, 𝑟

𝑡
) V (𝑡)] 𝑑𝑡

+ [𝑙 (𝑥, 𝑟
𝑡
) + 𝑞 (𝑥, 𝑟

𝑡
) 𝑢 (𝑡) + 𝑠 (𝑥, 𝑟

𝑡
) V (𝑡)] 𝑑𝑤 (𝑡) ,

𝑧 (𝑡) = col (𝑚 (𝑥, 𝑟
𝑡
) , 𝑢 (𝑡)) := [

𝑚 (𝑥, 𝑟
𝑡
)

𝑢 (𝑡)
] ,

𝑥 (0) = 𝑥
0
∈R

𝑛

.

(5)

The infinite horizon 𝐻
∞

control for system (5) is defined as
follows.

Definition 2. For given 𝛾 > 0, the control 𝑢∗
∞
(𝑡) ∈

𝐿
2

F(R+
;R𝑛𝑢) is called an infinite horizon 𝐻

∞
control of

system (1), if the following is considered.
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(i) For the zero initial state and any nonzero V(𝑡) ∈

𝐿
2

F(R+
;R𝑛V), we have ‖L

∞
‖ < 𝛾 with

󵄩󵄩󵄩󵄩L∞

󵄩󵄩󵄩󵄩

= sup
V(𝑡)∈L2F(R+ ; R

𝑛V),

V(𝑡) ̸=0,𝑢(𝑡)=𝑢
∗

∞
(𝑡),𝑥0=0

‖𝑧(𝑡)‖
𝐿
2

F
(R+ ; R

𝑛𝑧 )

‖V(𝑡)‖
𝐿
2

F
(R+ ; R

𝑛V )

= sup
V(𝑡)∈L2F(R+ ;R

𝑛V),

V(𝑡) ̸=0,𝑢(𝑡)=𝑢
∗

∞
(𝑡),𝑥0=0

𝐸{∫

∞

0

(
󵄩󵄩󵄩󵄩𝑚 (𝑥, 𝑟𝑡)

󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝑢

∗

∞
(𝑡)
󵄩󵄩󵄩󵄩

2

) 𝑑𝑡 | 𝑟
0
= 𝑘}

1/2

× (𝐸{∫

∞

0

‖V(𝑡)‖2𝑑𝑡 | 𝑟
0

= 𝑘}

1/2

)

−1

, 𝑖 ∈ T,

(6)

where L
∞

is an operator associated with system (5)
which is defined as

L
∞
:L

2

F (R+
;R

𝑛V)󳨃󳨀→L
2

F (R+
;R

𝑛𝑧) ,

L
∞
(V (𝑡)) = 𝑧 (𝑡) |

𝑥0=0
, 𝑡 ∈R

+
.

(7)

(ii) System (5) is internally stable; that is, the following
system

𝑑𝑥 (𝑡) = [𝑓 (𝑥, 𝑟
𝑡
) + 𝑔 (𝑥, 𝑟

𝑡
) 𝑢

∗

∞
(𝑥, 𝑟

𝑡
)] 𝑑𝑡

+ [𝑙 (𝑥, 𝑟
𝑡
) + 𝑞 (𝑥, 𝑟

𝑡
) 𝑢

∗

∞
(𝑥, 𝑟

𝑡
)] 𝑑𝑤 (𝑡) ,

(8)

is globally asymptotically stable in probability [10].

To give our main results, we need the following lemmas.

Lemma 3 (see [10]). (Generalized Itô formula). Let 𝛼(𝑡, 𝑥, 𝑘)
and 𝛽(𝑡, 𝑥, 𝑘) be givenR𝑛-valued,F

𝑡
-adapted process, 𝑘 ∈ T,

and 𝑑𝑥(𝑡) = 𝛼(𝑡, 𝑥(𝑡), 𝑟
𝑡
)𝑑𝑡+𝛽(𝑡, 𝑥(𝑡), 𝑟

𝑡
)𝑑𝑤(𝑡).Then for given

𝑉(𝑡, 𝑥, 𝑘) ∈ C1,2

([0, 𝑇);R𝑛

), 𝑘 ∈ T, we have

𝐸 {𝑉 (𝑇, 𝑥 (𝑇) , 𝑟
𝑇
) − 𝑉 (𝑠, 𝑥 (𝑠) , 𝑟

𝑠
) | 𝑟

𝑠
= 𝑘}

= 𝐸{∫

𝑇

𝑠

L
𝑇
𝑉 (𝑡, 𝑥 (𝑡) , 𝑟

𝑡
) 𝑑𝑡 | 𝑟

𝑠
= 𝑘} ,

(9)

where

L
𝑇
𝑉 (𝑡, 𝑥, 𝑘) =

𝜕𝑉 (𝑡, 𝑥, 𝑘)

𝜕𝑡
+
𝜕𝑉

󸀠

(𝑡, 𝑥, 𝑘)

𝜕𝑥
𝛼 (𝑡, 𝑥, 𝑘)

+

𝑁

∑

𝑗=1

𝜋
𝑘𝑗
𝑉 (𝑡, 𝑥, 𝑘)

+
1

2
𝛽
󸀠

(𝑡, 𝑥, 𝑘)
𝜕𝑉

2

(𝑡, 𝑥, 𝑘)

𝜕𝑥2
𝛽 (𝑡, 𝑥, 𝑘) .

(10)

Lemma 4. If 𝑥, 𝑏 ∈R𝑛, 𝐴 ∈R𝑛×𝑛 is a symmetric matrix and
𝐴
−1 exists, we have

𝑥
󸀠

𝐴𝑥 + 𝑥
󸀠

𝑏 + 𝑏
󸀠

𝑥 = (𝑥 + 𝐴
−1

𝑏)
󸀠

𝐴(𝑥 + 𝐴
−1

𝑏) − 𝑏
󸀠

𝐴
−1

𝑏.

(11)

Proof. This lemma is very easily proved by using completing
squares technique, so the proof is omitted.

3. Main Results

3.1. Finite Horizon Case. The following sufficient condition is
presented for the finite horizon𝐻

∞
control of system (1). For

convenience, denote (⋅)
𝑘
:= (⋅)(𝑡, 𝑥, 𝑘) in this subsection.

Theorem 5. Assume that there exists a set of nonnegative
functions𝑉(𝑡, 𝑥, 𝑘) ∈ C1,2

([0, 𝑇]×R𝑛

×T;R),𝑉(0, 0, 𝑘) = 0,
and 𝜕2𝑉(𝑡, 𝑥, 𝑘)/𝜕𝑥2 ≥ 0 for all nonzero 𝑥 ∈ R𝑛, 𝑘 ∈ T. If
𝑉(𝑡, 𝑥, 𝑘) solves the following coupled HJIs:

Δ
𝑘
=
𝜕𝑉

𝑘

𝜕𝑡
+
𝜕𝑉

󸀠

𝑘

𝜕𝑥
𝑓
𝑘
+
1

2
𝑙
󸀠

𝑘

𝜕
2

𝑉
𝑘

𝜕𝑥2
𝑙
𝑘
+ 𝑚

󸀠

𝑘
𝑚

𝑘
+

𝑁

∑

𝑗=1

𝜋
𝑘𝑗
𝑉
𝑗

+
1

4
(𝑙

󸀠

𝑘

𝜕
2

𝑉
𝑘

𝜕𝑥2
𝑠
𝑘
+
𝜕𝑉

󸀠

𝑘

𝜕𝑥
ℎ
𝑘
)(𝛾

2

𝐼 − 𝑠
󸀠

𝑘

𝜕
2

𝑉
𝑘

𝜕𝑥2
𝑠
𝑘
)

−1

× (𝑠
󸀠

𝑘

𝜕
2

𝑉
𝑘

𝜕𝑥2
𝑙
𝑘
+ ℎ

󸀠

𝑘

𝜕𝑉
𝑘

𝜕𝑥
)

−
1

4
(𝑙

󸀠

𝑘

𝜕
2

𝑉
𝑘

𝜕𝑥2
𝑞
𝑘
+
𝜕𝑉

󸀠

𝑘

𝜕𝑥
𝑔
𝑘
)(𝐼 + 𝑞

󸀠

𝑘

𝜕
2

𝑉
𝑘

𝜕𝑥2
𝑞
𝑘
)

−1

× (𝑞
󸀠

𝑘

𝜕
2

𝑉
𝑘

𝜕𝑥2
𝑙
𝑘
+ 𝑔

󸀠

𝑘

𝜕𝑉
𝑘

𝜕𝑥
) < 0,

𝛾
2

𝐼 − 𝑠
󸀠

𝑘

𝜕
2

𝑉
𝑘

𝜕𝑥2
𝑠
𝑘
> 0, 𝑉 (𝑇, 𝑥, 𝑘) = 0,

(12)

then

𝑢
∗

𝑇
(𝑡, 𝑥, 𝑘) = −

1

2
(𝐼 + 𝑞

󸀠

𝑘

𝜕
2

𝑉
𝑘

𝜕𝑥2
𝑞
𝑘
)

−1

(𝑞
󸀠

𝑘

𝜕
2

𝑉
𝑘

𝜕𝑥2
𝑙
𝑘
+ 𝑔

󸀠

𝑘

𝜕𝑉
𝑘

𝜕𝑥
)

(13)

is a finite horizon𝐻
∞

control of system (1).

Proof. For any 𝑇 > 0 and the initial state 𝑥
0
= 0, 𝑟

0
= 𝑘,

applying Lemma 3, we have

𝐸 [𝑉 (𝑥 (𝑇) , 𝑟
𝑇
) − 𝑉 (0, 𝑟

0
) | 𝑟

0
= 𝑘]

= 𝐸

{

{

{

∫

𝑇

0

[

[

𝜕𝑉
𝑟𝑡

𝜕𝑡
+

𝜕𝑉
󸀠

𝑟𝑡

𝜕𝑥
(𝑓

𝑟𝑡
+ 𝑔

𝑟𝑡
𝑢 + ℎ

𝑟𝑡
V)

+
1

2
(𝑙
𝑟𝑡
+ 𝑞

𝑟𝑡
𝑢 + 𝑠

𝑟𝑡
V)

󸀠 𝜕
2

𝑉
𝑟𝑡

𝜕𝑥2
(𝑙
𝑟𝑡
+ 𝑞

𝑟𝑡
𝑢 + 𝑠

𝑟𝑡
V)

+
󵄩󵄩󵄩󵄩󵄩
𝑚

𝑟𝑡

󵄩󵄩󵄩󵄩󵄩

2

+ ‖𝑢‖
2

− 𝛾
2

‖V‖2 − ‖𝑧‖2

+𝛾
2

‖V‖2 +
𝑁

∑

𝑗=1

𝜋
𝑘𝑗
𝑉
𝑗

]

]

𝑑𝑡 | 𝑟
0
= 𝑘

}

}

}
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= 𝐸{∫

𝑇

0

[

𝜕𝑉
𝑟𝑡

𝜕𝑡
− ‖𝑧‖

2

+ 𝛾
2

‖V‖2

+

𝑁

∑

𝑗=1

𝜋
𝑘𝑗
𝑉
𝑗
+ Θ

1
(𝑡, V, 𝑥, 𝑟

𝑡
)

+ Θ
2
(𝑡, 𝑥, 𝑟

𝑡
) + Θ

3
(𝑡, 𝑢, 𝑥, 𝑟

𝑡
)

+
1

2
(𝑢

󸀠

𝑞
󸀠

𝑟𝑡

𝜕
2

𝑉
𝑟𝑡

𝜕𝑥2
𝑠
𝑟𝑡
V

+ V󸀠𝑠󸀠
𝑟𝑡

𝜕
2

𝑉
𝑟𝑡

𝜕𝑥2
𝑞
𝑟𝑡
𝑢)]𝑑𝑡 | 𝑟

0
= 𝑘} ,

(14)

where (⋅)
𝑟𝑡
denotes (⋅)(𝑡, 𝑥, 𝑟

𝑡
) and

Θ
1
(𝑡, V, 𝑥, 𝑟

𝑡
) = V󸀠(−𝛾2𝐼 +

1

2
𝑠
󸀠

𝑟𝑡

𝜕
2

𝑉
𝑟𝑡

𝜕𝑥2
𝑠
𝑟𝑡
) V

+
1

2
(𝑙

󸀠

𝑟𝑡

𝜕
2

𝑉
𝑟𝑡

𝜕𝑥2
𝑠
𝑟𝑡
+

𝜕𝑉
󸀠

𝑟𝑡

𝜕𝑥
ℎ
𝑟𝑡
) V

+
1

2
V󸀠(𝑠󸀠

𝑟𝑡

𝜕
2

𝑉
𝑟𝑡

𝜕𝑥2
𝑙
𝑟𝑡
+ ℎ

󸀠

𝑟𝑡

𝜕𝑉
𝑟𝑡

𝜕𝑥
) ,

Θ
2
(𝑡, 𝑥, 𝑟

𝑡
) =

𝜕𝑉
𝑟𝑡

𝜕𝑡
+

𝜕𝑉
󸀠

𝑟𝑡

𝜕𝑥
𝑓
𝑟𝑡
+
1

2
𝑙
󸀠

𝑟𝑡

𝜕
2

𝑉
𝑟𝑡

𝜕𝑥2
𝑙
𝑟𝑡
+ 𝑚

󸀠

𝑟𝑡

𝑚
𝑟𝑡
,

Θ
3
(𝑡, 𝑢, 𝑥, 𝑟

𝑡
) = 𝑢

󸀠

(𝐼 +
1

2
𝑞
󸀠

𝑟𝑡

𝜕
2

𝑉
𝑟𝑡

𝜕𝑥2
𝑞
𝑟𝑡
)𝑢

+
1

2
(𝑙

󸀠

𝑟𝑡

𝜕
2

𝑉
𝑟𝑡

𝜕𝑥2
𝑞
𝑟𝑡
+

𝜕𝑉
󸀠

𝑟𝑡

𝜕𝑥
𝑔
𝑟𝑡
)𝑢

+
1

2
𝑢
󸀠

(𝑞
󸀠

𝑟𝑡

𝜕
2

𝑉
𝑟𝑡

𝜕𝑥2
𝑙
𝑟𝑡
+ 𝑔

󸀠

𝑟𝑡

𝜕𝑉
𝑟𝑡

𝜕𝑥
) .

(15)

Since 𝜕2𝑉
𝑘
/𝜕𝑥

2

≥ 0, 𝑘 ∈ T, we have

1

2
(−𝑢

󸀠

𝑞
󸀠

𝑟𝑡

+ V󸀠𝑠󸀠
𝑟𝑡

)

𝜕
2

𝑉
𝑟𝑡

𝜕𝑥2
(−𝑞

𝑟𝑡
𝑢 + 𝑠

𝑟𝑡
V) ≥ 0, (16)

which means that

1

2
(𝑢

󸀠

𝑞
󸀠

𝑟𝑡

𝜕
2

𝑉
𝑟𝑡

𝜕𝑥2
𝑠
𝑟𝑡
V + V󸀠𝑠󸀠

𝑟𝑡

𝜕
2

𝑉
𝑟𝑡

𝜕𝑥2
𝑞
𝑟𝑡
𝑢)

≤
1

2
𝑢
󸀠

𝑞
󸀠

𝑟𝑡

𝜕
2

𝑉
𝑟𝑡

𝜕𝑥2
𝑞
𝑟𝑡
𝑢 +

1

2
V󸀠𝑠󸀠

𝑟𝑡

𝜕
2

𝑉
𝑟𝑡

𝜕𝑥2
𝑠
𝑟𝑡
V.

(17)

Considering the above inequality and (14), we have

𝐸 [𝑉 (𝑥 (𝑇) , 𝑟
𝑇
) − 𝑉 (0, 𝑟

0
) | 𝑟

0
= 𝑘]

≤ 𝐸{∫

𝑇

0

[Θ
1
(𝑡, V, 𝑥, 𝑟

𝑡
) + Θ

2
(𝑡, 𝑥, 𝑟

𝑡
) + Θ

3
(𝑡, 𝑢, 𝑥, 𝑟

𝑡
)

+

𝑁

∑

𝑗=1

𝜋
𝑘𝑗
𝑉 (𝑥, 𝑗) − ‖𝑧‖

2

+ 𝛾
2

‖V‖2

+
1

2
(𝑢

󸀠

𝑞
󸀠

𝑟𝑡

𝜕
2

𝑉
𝑟𝑡

𝜕𝑥2
𝑞
𝑟𝑡
V

+V󸀠𝑠󸀠
𝑟𝑡

𝜕
2

𝑉
𝑟𝑡

𝜕𝑥2
𝑠
𝑟𝑡
𝑢)]𝑑𝑡 | 𝑟

0
= 𝑘}

= 𝐸[

[

∫

𝑇

0

(Θ
1
(𝑡, V, 𝑥, 𝑟

𝑡
) + Θ

2
(𝑡, 𝑥, 𝑟

𝑡
) + Θ

3
(𝑡, 𝑢, 𝑥, 𝑟

𝑡
)

+

𝑁

∑

𝑗=1

𝜋
𝑘𝑗
𝑉 (𝑥, 𝑗) − ‖𝑧‖

2

+ 𝛾
2

‖V‖2)𝑑𝑡 | 𝑟
0
= 𝑘]

]

,

(18)

where

Θ
1
(V, 𝑥, 𝑟

𝑡
) = V󸀠(−𝛾2𝐼 + 𝑠󸀠

𝑟𝑡

𝜕
2

𝑉
𝑟𝑡

𝜕𝑥2
𝑠
𝑟𝑡
) V

+
1

2
(𝑙

󸀠

𝑟𝑡

𝜕
2

𝑉
𝑟𝑡

𝜕𝑥2
𝑠
𝑟𝑡
+

𝜕𝑉
󸀠

𝑟𝑡

𝜕𝑥
ℎ
𝑟𝑡
) V

+
1

2
V󸀠(𝑠󸀠

𝑟𝑡

𝜕
2

𝑉
𝑟𝑡

𝜕𝑥2
𝑙
𝑟𝑡
+ ℎ

󸀠

𝑟𝑡

𝜕𝑉
𝑟𝑡

𝜕𝑥
) .

Θ
3
(𝑡, 𝑢, 𝑥, 𝑟

𝑡
) = 𝑢

󸀠

(𝐼 + 𝑞
󸀠

𝑟𝑡

𝜕
2

𝑉
𝑟𝑡

𝜕𝑥2
𝑞
𝑟𝑡
)𝑢

+
1

2
(𝑙

󸀠

𝑟𝑡

𝜕
2

𝑉
𝑟𝑡

𝜕𝑥2
𝑞
𝑟𝑡
+

𝜕𝑉
󸀠

𝑟𝑡

𝜕𝑥
𝑔
𝑟𝑡
)𝑢

+
1

2
𝑢
󸀠

(𝑞
󸀠

𝑟𝑡

𝜕
2

𝑉
𝑟𝑡

𝜕𝑥2
𝑙
𝑟𝑡
+ 𝑔

󸀠

𝑟𝑡

𝜕𝑉
𝑟𝑡

𝜕𝑥
) .

(19)

Applying Lemma 4 to Θ
1
(𝑡, V, 𝑥, 𝑟

𝑡
) and Θ

3
(𝑡, 𝑢, 𝑥, 𝑟

𝑡
), we

have

Θ
1
(𝑡, V, 𝑥, 𝑟

𝑡
) = (V + Γ

1
)
󸀠

(−𝛾
2

𝐼 + 𝑠
󸀠

𝑟𝑡

𝜕
2

𝑉
𝑟𝑡

𝜕𝑥2
𝑠
𝑟𝑡
)(V + Γ

1
)

−
1

4
(𝑙

󸀠

𝑟𝑡

𝜕
2

𝑉
𝑟𝑡

𝜕𝑥2
𝑠
𝑟𝑡
+

𝜕𝑉
󸀠

𝑟𝑡

𝜕𝑥
ℎ
𝑟𝑡
)

× (−𝛾
2

𝐼 + 𝑠
󸀠

𝑟𝑡

𝜕
2

𝑉
𝑟𝑡

𝜕𝑥2
𝑠
𝑟𝑡
)

−1

× (𝑠
󸀠

𝑟𝑡

𝜕
2

𝑉
𝑟𝑡

𝜕𝑥2
𝑙
𝑟𝑡
+ ℎ

󸀠

𝑟𝑡

𝜕𝑉
𝑟𝑡

𝜕𝑥
) ,
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Θ
3
(𝑡, 𝑢, 𝑥, 𝑟

𝑡
) = (𝑢 + Γ

2
)
󸀠

(𝐼 + 𝑞
󸀠

𝑟𝑡

𝜕
2

𝑉
𝑟𝑡

𝜕𝑥2
𝑞
𝑟𝑡
)(𝑢 + Γ

2
)

−
1

4
(𝑙

󸀠

𝑟𝑡

𝜕
2

𝑉
𝑟𝑡

𝜕𝑥2
𝑞
𝑟𝑡
+

𝜕𝑉
󸀠

𝑟𝑡

𝜕𝑥
𝑔
𝑟𝑡
)

× (𝐼 + 𝑞
󸀠

𝑟𝑡

𝜕
2

𝑉
𝑟𝑡

𝜕𝑥2
𝑞
𝑟𝑡
)

−1

× (𝑞
󸀠

𝑟𝑡

𝜕
2

𝑉
𝑟𝑡

𝜕𝑥2
𝑙
𝑟𝑡
+ 𝑔

󸀠

𝑟𝑡

𝜕𝑉
𝑟𝑡

𝜕𝑥
) ,

(20)

where

Γ
1
=
1

2
(𝛾

2

𝐼 + 𝑠
󸀠

𝑟𝑡

𝜕
2

𝑉
𝑟𝑡

𝜕𝑥2
𝑠
𝑟𝑡
)

−1

(𝑠
󸀠

𝑟𝑡

𝜕
2

𝑉
𝑟𝑡

𝜕𝑥2
𝑙
𝑟𝑡
+ ℎ

󸀠

𝑟𝑡

𝜕𝑉
𝑟𝑡

𝜕𝑥
) ,

Γ
2
=
1

2
(𝐼 + 𝑞

󸀠

𝑟𝑡

𝜕
2

𝑉
𝑟𝑡

𝜕𝑥2
𝑞
𝑟𝑡
)

−1

(𝑞
󸀠

𝑟𝑡

𝜕
2

𝑉
𝑟𝑡

𝜕𝑥2
𝑙
𝑟𝑡
+ 𝑔

󸀠

𝑟𝑡

𝜕𝑉
𝑟𝑡

𝜕𝑥
) .

(21)

Substituting (20) into (18), and considering (12), it yields

𝐸 [𝑉 (𝑥 (𝑇) , 𝑟
𝑇
) − 𝑉 (0, 𝑟

0
) | 𝑟

0
= 𝑘]

< 𝐸{∫

𝑇

0

[(V + Γ
1
)
󸀠

(−𝛾
2

𝐼 + 𝑠
󸀠

𝑟𝑡

𝜕
2

𝑉
𝑟𝑡

𝜕𝑥2
𝑠
𝑟𝑡
)(V + Γ

1
)

+ (𝑢 + Γ
2
)
󸀠

(𝐼 + 𝑞
󸀠

𝑟𝑡

𝜕
2

𝑉
𝑟𝑡

𝜕𝑥2
𝑞
𝑟𝑡
)(𝑢 + Γ

2
)

+𝛾
2

‖V‖2 − ‖𝑧‖2]𝑑𝑡 | 𝑟
0
= 𝑘} .

(22)

Taking 𝑢 = 𝑢∗
𝑇
= −Γ

2
and considering the second item of (12),

(22) leads to

𝐸(∫

𝑇

0

‖𝑧 (𝑡)‖
2

𝑑𝑡 | 𝑟
0
= 𝑘)

< 𝛾
2

𝐸(∫

𝑇

0

‖V (𝑡)‖2𝑑𝑡 | 𝑟
0
= 𝑘)

− 𝐸[∫

𝑇

0

(V (𝑡) + Γ
1
)
󸀠

× (𝛾
2

𝐼 − 𝑠
󸀠

𝑟𝑡

𝜕
2

𝑉
𝑟𝑡

𝜕𝑥2
𝑠
𝑟𝑡
)

× (V (𝑡) + Γ
1
) 𝑑𝑡 | 𝑟

0
= 𝑘] ,

(23)

which means ‖L
𝑇
‖ < 𝛾 in Definition 1. The theorem is

proved.

Remark 6. Theproof ofTheorem 5 is based on an elementary
identity (11), which avoids using stochastic dissipative theory

as done in [4, 5]. We believe that the identity (11) will have
many other applications in system analysis and synthesis.

3.2. Infinite Horizon Case. In contrast to the finite horizon
case, the infinite horizon𝐻

∞
control exhibits more complex-

ity due to the additional requirement of stabilizing the closed-
loop system internally. The following sufficient condition is
derived for the infinite horizon𝐻

∞
control of system (5). In

this subsection, denote (⋅)
𝑘
:= (⋅)(𝑥, 𝑘).

Theorem 7. Assume that there exists a set of nonnegative
functions 𝑉(𝑥, 𝑘) ∈ C2

(R𝑛

× T;R), 𝑉(0, 𝑘) = 0, and
𝜕
2

𝑉(𝑥, 𝑘)/𝜕𝑥
2

≥ 0 for all nonzero 𝑥 ∈ R𝑛, 𝑘 ∈ T. If 𝑉(𝑥, 𝑘)
solves the following coupled HJIs:

Λ
𝑘
=
𝜕𝑉

󸀠

𝑘

𝜕𝑥
𝑓
𝑘
+
1

2
𝑙
󸀠

𝑘

𝜕
2

𝑉
𝑘

𝜕𝑥2
𝑙
𝑘
+ 𝑚

󸀠

𝑘
𝑚

𝑘
+

𝑁

∑

𝑗=1

𝜋
𝑘𝑗
𝑉
𝑗

+
1

4
(𝑙

󸀠

𝑘

𝜕
2

𝑉
𝑘

𝜕𝑥2
𝑠
𝑘
+
𝜕𝑉

󸀠

𝑘

𝜕𝑥
ℎ
𝑘
)(𝛾

2

𝐼 − 𝑠
󸀠

𝑘

𝜕
2

𝑉
𝑘

𝜕𝑥2
𝑠
𝑘
)

−1

× (𝑠
󸀠

𝑘

𝜕
2

𝑉
𝑘

𝜕𝑥2
𝑙
𝑘
+ ℎ

󸀠

𝑘

𝜕𝑉
𝑘

𝜕𝑥
)

−
1

4
(𝑙

󸀠

𝑘

𝜕
2

𝑉
𝑘

𝜕𝑥2
𝑞
𝑘
+
𝜕𝑉

󸀠

𝑘

𝜕𝑥
𝑔
𝑘
)(𝐼 + 𝑞

󸀠

𝑘

𝜕
2

𝑉
𝑘

𝜕𝑥2
𝑞
𝑘
)

−1

× (𝑞
󸀠

𝑘

𝜕
2

𝑉
𝑘

𝜕𝑥2
𝑙
𝑘
+ 𝑔

󸀠

𝑘

𝜕𝑉
𝑘

𝜕𝑥
) < 0,

𝛾
2

𝐼 − 𝑠
󸀠

𝑘

𝜕
2

𝑉
𝑘

𝜕𝑥2
𝑠
𝑘
> 0,

(24)

then

𝑢
∗

∞
(𝑥, 𝑘) = −

1

2
(𝐼 + 𝑞

󸀠

𝑘

𝜕
2

𝑉
𝑘

𝜕𝑥2
𝑞
𝑘
)

−1

(𝑞
󸀠

𝑘

𝜕
2

𝑉
𝑘

𝜕𝑥2
𝑙
𝑘
+ 𝑔

󸀠

𝑘

𝜕𝑉
𝑘

𝜕𝑥
)

(25)

is an infinite horizon𝐻
∞

control of system (5).

Proof. Similar to the proof of Theorem 5, it is easy to show
‖L

∞
‖ < 𝛾 under condition (24). Next, we need to prove

system (8) to be globally asymptotically stable in probability.
Let 𝑢∗

𝑘
= 𝑢

∗

∞
(𝑥, 𝑘) and letL

∞
be the infinitesimal generator

of the system (8) which is similar toL
𝑇
in Lemma 3; then

L
∞
𝑉
𝑘
=
𝜕𝑉

󸀠

𝑘

𝜕𝑥
(𝑓

𝑘
+ 𝑔

𝑘
𝑢
∗

𝑘
) +

𝑁

∑

𝑗=1

𝜋
𝑘𝑗
𝑉
𝑗

+
1

2
(𝑙
𝑘
+ 𝑞

𝑘
𝑢
∗

𝑘
)
󸀠 𝜕

2

𝑉
𝑘

𝜕𝑥2
(𝑙
𝑘
+ 𝑞

𝑘
𝑢
∗

𝑘
)

=
𝜕𝑉

󸀠

𝑘

𝜕𝑥
𝑓
𝑘
+
𝜕𝑉

󸀠

𝑘

𝜕𝑥
𝑔
𝑘
𝑢
∗

𝑘
+

𝑁

∑

𝑗=1

𝜋
𝑘𝑗
𝑉
𝑗

+
1

2
𝑙
󸀠

𝑘

𝜕
2

𝑉
𝑘

𝜕𝑥2
𝑙
𝑘
+
1

2
𝑙
󸀠

𝑘

𝜕
2

𝑉
𝑘

𝜕𝑥2
𝑞
𝑘
𝑢
∗

𝑘
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+
1

2
(𝑞

𝑘
𝑢
∗

𝑘
)
󸀠 𝜕

2

𝑉
𝑘

𝜕𝑥2
𝑙
𝑘
+
1

2
(𝑞

𝑘
𝑢
∗

𝑘
)
󸀠 𝜕

2

𝑉
𝑘

𝜕𝑥2
(𝑞

𝑘
𝑢
∗

𝑘
)

=
𝜕𝑉

󸀠

𝑘

𝜕𝑥
𝑓
𝑘
+
1

2
𝑙
󸀠

𝑘

𝜕
2

𝑉
𝑘

𝜕𝑥2
𝑙
𝑘
+

𝑁

∑

𝑗=1

𝜋
𝑘𝑗
𝑉
𝑗
+ Υ

1𝑘
+ Υ

2𝑘
,

(26)

where

Υ
1𝑘
=
𝜕𝑉

󸀠

𝑘

𝜕𝑥
𝑔
𝑘
𝑢
∗

𝑘
+
1

2
𝑙
󸀠

𝑘

𝜕
2

𝑉
𝑘

𝜕𝑥2
𝑞
𝑘
𝑢
∗

𝑘
+
1

2
(𝑞

𝑘
𝑢
∗

𝑘
)
󸀠 𝜕

2

𝑉
𝑘

𝜕𝑥2
𝑙
𝑘

= −
1

2

𝜕𝑉
󸀠

𝑘

𝜕𝑥
𝑔
𝑘
(𝐼 + 𝑞

󸀠

𝑘

𝜕
2

𝑉
𝑘

𝜕𝑥2
𝑞
𝑘
)

−1

× (𝑞
󸀠

𝑘

𝜕
2

𝑉
𝑘

𝜕𝑥2
𝑙
𝑘
+ 𝑔

󸀠

𝑘

𝜕𝑉
𝑘

𝜕𝑥
) −

1

4
𝑙
󸀠

𝑘

𝜕
2

𝑉
𝑘

𝜕𝑥2
𝑞
𝑘

× (𝐼 + 𝑞
󸀠

𝑘

𝜕
2

𝑉
𝑘

𝜕𝑥2
𝑞
𝑘
)

−1

(𝑞
󸀠

𝑘

𝜕
2

𝑉
𝑘

𝜕𝑥2
𝑙
𝑘
+ 𝑔

󸀠

𝑘

𝜕𝑉
𝑘

𝜕𝑥
)

−
1

4
(
𝜕𝑉

󸀠

𝑘

𝜕𝑥
𝑔
𝑘
+ 𝑙

󸀠

𝑘

𝜕
2

𝑉
𝑘

𝜕𝑥2
𝑞
𝑘
)

× (𝐼 + 𝑞
󸀠

𝑘

𝜕
2

𝑉
𝑘

𝜕𝑥2
𝑞
𝑘
)

−1

𝑞
󸀠

𝑘

𝜕
2

𝑉
𝑘

𝜕𝑥2
𝑙
𝑘
,

Υ
2𝑘
=
1

2
(𝑞

𝑘
𝑢
∗

𝑘
)
󸀠 𝜕

2

𝑉
𝑘

𝜕𝑥2
(𝑞

𝑘
𝑢
∗

𝑘
)

=
1

8
(
𝜕𝑉

󸀠

𝑘

𝜕𝑥
𝑔
𝑘
+ 𝑙

󸀠

𝑘

𝜕
2

𝑉
𝑘

𝜕𝑥2
𝑞
𝑘
)(𝐼 + 𝑞

󸀠

𝑘

𝜕
2

𝑉
𝑘

𝜕𝑥2
𝑞
𝑘
)

−1

× 𝑞
󸀠

𝑘

𝜕
2

𝑉
𝑘

𝜕𝑥2
𝑞
𝑘
(𝐼 + 𝑞

󸀠

𝑘

𝜕
2

𝑉
𝑘

𝜕𝑥2
𝑞
𝑘
)

−1

× (𝑞
󸀠

𝑘

𝜕
2

𝑉
𝑘

𝜕𝑥2
𝑙
𝑘
+ 𝑔

󸀠

𝑘

𝜕𝑉
𝑘

𝜕𝑥
) .

(27)

It can be checked that

Υ
1𝑘
= −

1

2
(𝑙

󸀠

𝑘

𝜕
2

𝑉
𝑘

𝜕𝑥2
𝑞
𝑘
+
𝜕𝑉

󸀠

𝑘

𝜕𝑥
𝑔
𝑘
)

× (𝐼 + 𝑞
󸀠

𝑘

𝜕
2

𝑉
𝑘

𝜕𝑥2
𝑞
𝑘
)

−1

(𝑞
󸀠

𝑘

𝜕
2

𝑉
𝑘

𝜕𝑥2
𝑙
𝑘
+ 𝑔

󸀠

𝑘

𝜕𝑉
𝑘

𝜕𝑥
) ,

(28)

Υ
2𝑘
≤
1

8
(𝑙

󸀠

𝑘

𝜕
2

𝑉
𝑘

𝜕𝑥2
𝑞
𝑘
+
𝜕𝑉

󸀠

𝑘

𝜕𝑥
𝑔
𝑘
)

×(𝐼 + 𝑞
󸀠

𝑘

𝜕
2

𝑉
𝑘

𝜕𝑥2
𝑞
𝑘
)

−1

(𝑞
󸀠

𝑘

𝜕
2

𝑉
𝑘

𝜕𝑥2
𝑙
𝑘
+ 𝑔

󸀠

𝑘

𝜕𝑉
𝑘

𝜕𝑥
) .

(29)

The following inequality is used during the calculation of
(29):

(𝐼 + 𝑋)
−1

𝑋(𝐼 + 𝑋)
−1

≤ (𝐼 + 𝑋)
−1

(𝐼 + 𝑋) (𝐼 + 𝑋)
−1

= (𝐼 + 𝑋)
−1

, 𝑋 > 0.

(30)

Implementing (28) and (29) into (26) and considering
(24), it yields

L
∞
𝑉
𝑘
≤
𝜕𝑉

󸀠

𝑘

𝜕𝑥
𝑓
𝑘
+
1

2
𝑙
󸀠

𝑘

𝜕
2

𝑉
𝑘

𝜕𝑥2
𝑙
𝑘
+

𝑁

∑

𝑗=1

𝜋
𝑘𝑗
𝑉
𝑗

−
3

8
(𝑙

󸀠

𝑘

𝜕
2

𝑉
𝑘

𝜕𝑥2
𝑞
𝑘
+
𝜕𝑉

󸀠

𝑘

𝜕𝑥
𝑔
𝑘
)

× (𝐼 + 𝑞
󸀠

𝑘

𝜕
2

𝑉
𝑘

𝜕𝑥2
𝑞
𝑘
)

−1

(𝑞
󸀠

𝑘

𝜕
2

𝑉
𝑘

𝜕𝑥2
𝑙
𝑘
+ 𝑔

󸀠

𝑘

𝜕𝑉
𝑘

𝜕𝑥
)

≤
𝜕𝑉

󸀠

𝑘

𝜕𝑥
𝑓
𝑘
+
1

2
𝑙
󸀠

𝑘

𝜕
2

𝑉
𝑘

𝜕𝑥2
𝑙
𝑘
+

𝑁

∑

𝑗=1

𝜋
𝑘𝑗
𝑉
𝑗

−
1

4
(𝑙

󸀠

𝑘

𝜕
2

𝑉
𝑘

𝜕𝑥2
𝑞
𝑘
+
𝜕𝑉

󸀠

𝑘

𝜕𝑥
𝑔
𝑘
)

× (𝐼 + 𝑞
󸀠

𝑘

𝜕
2

𝑉
𝑘

𝜕𝑥2
𝑞
𝑘
)

−1

(𝑞
󸀠

𝑘

𝜕
2

𝑉
𝑘

𝜕𝑥2
𝑙
𝑘
+ 𝑔

󸀠

𝑘

𝜕𝑉
𝑘

𝜕𝑥
)

< −𝑚
󸀠

𝑘
𝑚

𝑘
−
1

4
(𝑙

󸀠

𝑘

𝜕
2

𝑉
𝑘

𝜕𝑥2
𝑠
𝑘
+
𝜕𝑉

󸀠

𝑘

𝜕𝑥
ℎ
𝑘
)

× (𝛾
2

𝐼 − 𝑠
󸀠

𝑘

𝜕
2

𝑉
𝑘

𝜕𝑥2
𝑠
𝑘
)

−1

(𝑠
󸀠

𝑘

𝜕
2

𝑉
𝑘

𝜕𝑥2
𝑙
𝑘
+ ℎ

󸀠

𝑘

𝜕𝑉
𝑘

𝜕𝑥
)

≤ 0

(31)

which implies that (8) is globally asymptotically stable in
probability from [10]. This theorem is completed.

Remark 8. The methods proposed in [19, 24] cannot be
applied to study the 𝐻

∞
problem of NSMJSs with (𝑥, 𝑢, V)-

dependent noise, although they are suitable for NSMJSs with
(𝑥, V)-dependent noise. One reason for this is that 𝑢 and V are
no longer separable in the conditions, when they enter the
diffusion term simultaneously. In the proofs of Theorems 5
and 7, we resort to Lemma 4 to solve this problem.

Remark 9. When there is no Markov jump parameters,
system (1)/(5) will reduce to general nonlinear stochastic
systems with (𝑥, 𝑢, V)-dependent noise, which was studied in
[20, 21]. However, all the conditions of 𝐻

∞
control design

for nonlinear stochastic systems in [20, 21] were given in
terms of three coupledHJEs, whichwere difficult to be solved.
According to this paper, the sufficient condition for 𝐻

∞

control of nonlinear stochastic systems can be derived by
means of a single set of coupled HJIs, which is easier to be
verified than three coupled HJEs in [20, 21].
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From Theorem 7, the following nonlinear stochastic
bounded real lemmawill be derived forMarkov jump system:

𝑑𝑥 (𝑡) = [𝑓 (𝑥, 𝑟
𝑡
) + ℎ (𝑥, 𝑟

𝑡
) V] 𝑑𝑡

+ [𝑙 (𝑥, 𝑟
𝑡
) + 𝑠 (𝑥, 𝑟

𝑡
) V] 𝑑𝑤,

𝑧 (𝑡) = 𝑚 (𝑥, 𝑟
𝑡
) , 𝑥 (0) = 𝑥

0
∈R

𝑛

.

(32)

Lemma 10. For a prescribed 𝛾 > 0, system (32) is internally
stable and ‖L

∞
‖
𝑢(𝑡)≡0

< 𝛾, if there exists a set of nonnegative
functions 𝑉(𝑥, 𝑘) ∈ C2

(R𝑛

× T;R), 𝑉(0, 𝑘) = 0, and
𝜕
2

𝑉(𝑥, 𝑘)/𝜕𝑥
2

≥ 0 for all nonzero 𝑥 ∈ R𝑛, 𝑘 ∈ T, satisfying
the following coupled HJIs:

𝜕𝑉
󸀠

𝑘

𝜕𝑥
𝑓
𝑘
+
1

2
𝑙
󸀠

𝑘

𝜕
2

𝑉
𝑘

𝜕𝑥2
𝑙
𝑘
+ 𝑚

󸀠

𝑘
𝑚

𝑘
+

𝑁

∑

𝑗=1

𝜋
𝑘𝑗
𝑉
𝑗

+
1

4
(𝑙

󸀠

𝑘

𝜕
2

𝑉
𝑘

𝜕𝑥2
𝑠
𝑘
+
𝜕𝑉

󸀠

𝑘

𝜕𝑥
ℎ
𝑘
)

× (𝛾
2

𝐼 − 𝑠
󸀠

𝑘

𝜕
2

𝑉
𝑘

𝜕𝑥2
𝑠
𝑘
)

−1

(𝑠
󸀠

𝑘

𝜕
2

𝑉
𝑘

𝜕𝑥2
𝑙
𝑘
+ ℎ

󸀠

𝑘

𝜕𝑉
𝑘

𝜕𝑥
)

< 0,

𝛾
2

𝐼 − 𝑠
󸀠

𝑘

𝜕
2

𝑉
𝑘

𝜕𝑥2
𝑠
𝑘
> 0, 𝑘 ∈ T.

(33)

Proof. Letting 𝑔
𝑘
≡ 0, 𝑞

𝑘
≡ 0, and 𝑢 ≡ 0 in Theorem 7, we

obtain (33) easily.

Next, we present a sufficient condition for the follow-
ing linear stochastic Markov jump systems with (𝑥, 𝑢, V)-
dependent noise:

𝑑𝑥 (𝑡) = [𝐴 (𝑟
𝑡
) 𝑥 + 𝐵 (𝑟

𝑡
) 𝑢 + 𝐶 (𝑟

𝑡
) V] 𝑑𝑡

+ [𝐴
1
(𝑟

𝑡
) 𝑥 + 𝐵

1
(𝑟

𝑡
) 𝑢 + 𝐶

1
(𝑟

𝑡
) V] 𝑑𝑤,

𝑧 (𝑡) = col (𝐷 (𝑟
𝑡
) 𝑥, 𝑢) , 𝑥 (0) = 𝑥

0
∈R

𝑛

.

(34)

Corollary 11. System (34) is internally stable and ‖L
∞
‖ < 𝛾

for given 𝛾 > 0, if there exist matrices 𝑋
𝑘
> 0, 𝑌

𝑘
𝑘 ∈ T

satisfying the following LMIs:

[
[
[
[
[
[
[

[

Σ
𝑘

𝐶
𝑘

𝑋
𝑘
𝐷

󸀠

𝑘
𝑋

𝑘
𝐴
󸀠

1𝑘
+ 𝑌

󸀠

𝑘
𝐵
󸀠

1𝑘
0 𝜓

󸀠

𝑘
(𝑋)

∗ −𝛾
2

𝐼 0 𝐶
󸀠

1𝑘
𝐶
󸀠

1𝑘
0

∗ ∗ −𝐼 0 0 0

∗ ∗ ∗ −𝑋
𝑘

0 0

∗ ∗ ∗ ∗ −𝑋
𝑘

0

∗ ∗ ∗ ∗ ∗ −𝜙
𝑘
(𝑋)

]
]
]
]
]
]
]

]

< 0,

(35)

where
Σ
𝑘
= 𝐴

𝑘
𝑋

𝑘
+ 𝐵

𝑘
𝑌
𝑘
+ 𝑋

𝑘
𝐴
󸀠

𝑘
+ 𝑌

󸀠

𝑘
𝐵
󸀠

𝑘
+ 𝜋

𝑘𝑘
𝑋

𝑘
,

𝜓
𝑘
(𝑋) = [√𝜋

𝑘1
𝑋

𝑘
, . . . , √𝜋

𝑘𝑘−1
𝑋

𝑘
,

√𝜋
𝑘𝑘+1

𝑋
𝑘
, . . . , √𝜋

𝑘𝑁
𝑋

𝑘
]
󸀠

,

𝜙
𝑘
(𝑋) = diag {𝑋

1
, . . . , 𝑋

𝑘−1
, 𝑋

𝑘+1
, . . . , 𝑋

𝑁
} .

(36)

Moreover, the state feedback gain matrices are given by 𝐾
𝑘
=

𝑌
𝑘
𝑋

−1

𝑘
.

Proof. Firstly, consider the following unforced linear
stochastic Markov jump systems:

𝑑𝑥 (𝑡) = [𝐴 (𝑟
𝑡
) 𝑥 + 𝐶 (𝑟

𝑡
) V] 𝑑𝑡 + [𝐴

1
(𝑟

𝑡
) 𝑥 + 𝐶

1
(𝑟

𝑡
) V] 𝑑𝑤,

𝑧 (𝑡) = 𝐷 (𝑟
𝑡
) 𝑥, 𝑥 (0) = 𝑥

0
∈R

𝑛

.

(37)

Let 𝑉
𝑘
= 𝑥

󸀠

𝑃
𝑘
𝑥, 𝑃

𝑘
> 0, 𝑘 ∈ T; (33) in Lemma 10 can be

written as follows:

2𝑥
󸀠

𝑃
𝑘
𝐴

𝑘
𝑥 + 𝑥

󸀠

𝐴
󸀠

1𝑘
𝑃
𝑘
𝐴

1𝑘
𝑥 + 𝑥

󸀠

𝐷
󸀠

𝑘
𝐷

𝑘
𝑥 + 𝑥

󸀠

𝑁

∑

𝑗=1

𝜋
𝑘𝑗
𝑃
𝑗
𝑥

+ (𝑥
󸀠

𝐴
󸀠

1𝑘
𝑃
𝑘
𝐶
1𝑘
+ 𝑥

󸀠

𝑃
𝑘
𝐶
𝑘
)

× (𝛾
2

𝐼 − 2𝐶
󸀠

1𝑘
𝑃
𝑘
𝐶
1𝑘
)
−1

(𝐶
󸀠

1𝑘
𝑃
𝑘
𝐴

1𝑘
𝑥 + 𝐶

󸀠

𝑘
𝑃
𝑘
𝑥)

= 𝑥
󸀠 [

[

𝑃
𝑘
𝐴

𝑘
+ 𝐴

󸀠

𝑘
𝑃
𝑘
+ 𝐴

󸀠

1𝑘
𝑃
𝑘
𝐴

1𝑘
+ 𝐷

󸀠

𝑘
𝐷

𝑘
+

𝑁

∑

𝑗=1

𝜋
𝑘𝑗
𝑃
𝑗

+ (𝐴
󸀠

1𝑘
𝑃
𝑘
𝐶
1𝑘
+ 𝑃

𝑘
𝐶
𝑘
) (𝛾

2

𝐼 − 2𝐶
󸀠

1𝑘
𝑃
𝑘
𝐶
1𝑘
)
−1

× (𝐶
󸀠

1𝑘
𝑃
𝑘
𝐴

1𝑘
+ 𝐶

󸀠

𝑘
𝑃
𝑘
)]

]

𝑥 < 0,

(38)

𝛾
2

𝐼 − 2𝐶
󸀠

1𝑘
𝑃
𝑘
𝐶
1𝑘
> 0. (39)

By Schur complement, (38) is equivalent to

[
[
[
[
[
[
[
[
[
[
[

[

{

{

{

𝑃
𝑘
𝐴

𝑘
+ 𝐴

󸀠

𝑘
𝑃
𝑘
+ 𝐴

󸀠

1𝑘
𝑃
𝑘
𝐴

1𝑘
𝐴
󸀠

1𝑘
𝑃
𝑘
𝐶
1𝑘
+ 𝑃

𝑘
𝐶
𝑘
𝐷

󸀠

𝑘

+

𝑁

∑

𝑗=1

𝜋
𝑘𝑗
𝑃
𝑗

}

}

}

∗ −𝛾
2

𝐼 + 2𝐶
󸀠

1𝑘
𝑃
𝑘
𝐶
1𝑘

0

∗ ∗ −𝐼

]
]
]
]
]
]
]
]
]
]
]

]

< 0,

(40)

which also implies (39). Moreover, (40) can be rewritten as

[
[
[
[

[

𝑃
𝑘
𝐴

𝑘
+ 𝐴

󸀠

𝑘
𝑃
𝑘
+

𝑁

∑

𝑗=1

𝜋
𝑘𝑗
𝑃
𝑗
𝑃
𝑘
𝐶
𝑘
𝐷

󸀠

𝑘

∗ −𝛾
2

𝐼 0

∗ ∗ −𝐼

]
]
]
]

]

+ [

[

𝐴
󸀠

1𝑘

𝐶
󸀠

1𝑘

0

]

]

𝑃
𝑘
[𝐴

1𝑘
𝐶
1𝑘
0] + [

[

0

𝐶
󸀠

1𝑘

0

]

]

𝑃
𝑘
[0 𝐶

1𝑘
0] < 0,

(41)
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which yields

[
[
[
[
[
[
[
[

[

𝑃
𝑘
𝐴

𝑘
+ 𝐴

󸀠

𝑘
𝑃
𝑘
+

𝑁

∑

𝑗=1

𝜋
𝑘𝑗
𝑃
𝑗
𝑃
𝑘
𝐶
𝑘
𝐷

󸀠

𝑘
𝐴
󸀠

1𝑘
0

∗ −𝛾
2

𝐼 0 𝐶
󸀠

1𝑘
𝐶
󸀠

1𝑘

∗ ∗ −𝐼 0 0

∗ ∗ ∗ −𝑃
−1

𝑘
0

∗ ∗ ∗ ∗ −𝑃
−1

𝑘

]
]
]
]
]
]
]
]

]

< 0,

(42)

according to Schur complement. Pre- and postmultiplying
(42) by diag{𝑃−1

𝑘
𝐼 𝐼 𝐼 𝐼} and denoting𝑋

𝑘
= 𝑃

−1

𝑘
, we have

[
[
[
[
[
[
[
[
[
[
[

[

𝐴
𝑘
𝑋
𝑘
+ 𝑋

𝑘
𝐴
󸀠

𝑘
+ 𝜋

𝑘𝑘
𝑋
𝑘

𝐶
𝑘

𝑋
𝑘
𝐷
󸀠

𝑘
𝑋
𝑘
𝐴
󸀠

1𝑘
0 𝜓

󸀠

𝑘
(𝑋)

∗ −𝛾
2

𝐼 0 𝐶
󸀠

1𝑘
𝐶
󸀠

1𝑘
0

∗ ∗ −𝐼 0 0 0

∗ ∗ ∗ −𝑋
𝑘

0 0

∗ ∗ ∗ ∗ −𝑋
𝑘

0

∗ ∗ ∗ ∗ ∗ −𝜙
𝑘
(𝑋)

]
]
]
]
]
]
]
]
]
]
]

]

< 0,

(43)

where 𝜓
𝑘
(𝑋) and 𝜙

𝑘
(𝑋) are defined as in (35).

Considering closed-loop system (34) with state feedback
control 𝑢(𝑡) = 𝐾

𝑘
𝑥(𝑡), 𝑘 ∈ T. Replacing 𝐴

𝑘
, 𝐴

1𝑘
by 𝐴

𝑘
+

𝐵
𝑘
𝐾
𝑘
, 𝐴

1𝑘
+ 𝐵

1𝑘
𝐾
𝑘
, respectively, and setting 𝑌

𝑘
= 𝐾

𝑘
𝑋

𝑘
in

(43) yield (35).Therefore, the state feedback gainmatrices can
be obtained by 𝐾

𝑘
= 𝑌

𝑘
𝑋

−1

𝑘
.

Remark 12. Although HJIs (12) in Theorem 5 or (24) in
Theorem 7 can be solved by trial and error in some simple
cases (see Example 13 in Section 4), they are difficult to be
dealt with for high-dimensional systems. In order to avoid
solving the HJIs, the Taylor series approach [25] or fuzzy
approach based on Takagi-Sugeno model [24, 26] can be
considered to design the nonlinear stochastic𝐻

∞
controller.

4. Numerical Example

In this section, two numerical examples are provided to
illustrate the effectiveness of the developed results.

Example 13. Consider one-dimensional two-mode time-
invariant nonlinear stochastic Markov jump systems with
generator matrix Π = [

−1 1

1 −1
], and the two subsystems are

as follows:

I : {
𝑑𝑥 = (𝑥

3

+ 4𝑥𝑢 + 𝑥V) 𝑑𝑡 + (𝑥2 + 𝑢 + V) 𝑑𝑤,
𝑧 = col (𝑥2, 𝑢) , 𝑥 (0) = 𝑥

0
∈R𝑛

,

II :
{{

{{

{

𝑑𝑥 = (
1

2
𝑥
3

+ 3𝑥𝑢 +
1

2
𝑥V)𝑑𝑡 + (𝑥2 + 𝑢 + V) 𝑑𝑤,

𝑧 = col(1
2
𝑥
2

, 𝑢) , 𝑥 (0) = 𝑥
0
∈R𝑛

.

(44)

Set 𝑉(𝑥) = 𝑝
𝑖
𝑥
2, 𝑖 = 1, 2, with 𝑝

1
> 0 and 𝑝

2
> 0 to be

determined; then HJIs (24) become

2𝑝
1
𝑥 ⋅ 𝑥

3

+
1

2
𝑥
2

⋅ 2𝑝
1
⋅ 𝑥

2

+ 𝑥
2

⋅ 𝑥
2

+
1

4
(𝑥

2

⋅ 2𝑝
1
+ 2𝑝

1
𝑥 ⋅ 𝑥)

2

(𝛾
2

− 2𝑝
1
)
−1

−
1

4
(𝑥

2

⋅ 2𝑝
1
+ 2𝑝

1
𝑥 ⋅ 4𝑥)

2

(1 + 2𝑝
1
)
−1

− 𝑝
1
𝑥
2

+ 𝑝
2
𝑥
2

< 0,

𝛾
2

− 2𝑝
1
> 0,

2𝑝
2
𝑥 ⋅
1

2
𝑥
3

+
1

2
𝑥
2

⋅ 2𝑝
2
⋅ 𝑥

2

+
1

2
𝑥
2

⋅
1

2
𝑥
2

+
1

4
(𝑥

2

⋅ 2𝑝
2
+ 2𝑝

2
𝑥 ⋅
1

2
𝑥)

2

(𝛾
2

− 2𝑝
2
)
−1

−
1

4
(𝑥

2

⋅ 2𝑝
2
+ 2𝑝

2
𝑥 ⋅ 3𝑥)

2

(1 + 2𝑝
2
)
−1

+ 𝑝
1
𝑥
2

− 𝑝
2
𝑥
2

< 0,

𝛾
2

− 2𝑝
2
> 0.

(45)

For given 𝛾 = √3, the above inequalities have solutions
𝑝
1
= 1 and 𝑝

2
= 1. According to Theorem 7, the infinite

𝐻
∞

controllers of system (44) are 𝑢∗
∞
(𝑥, 1) = −(5/3)𝑥

2 and
𝑢
∗

∞
(𝑥, 2) = −(4/3)𝑥

2.

Example 14. Consider two-dimensional two-mode linear
stochastic Markov jump systems (34) with the following
parameters:

𝐴
1
= [
1 1

0 −2
] , 𝐵

1
= 𝐶

1
= [
1

0
] ,

𝐴
11
= [
1 1

0 1
] , 𝐵

11
= 𝐶

11
= [
1

0
] ,

𝐴
2
= [
2 1

0 −2
] , 𝐵

2
= 𝐶

2
= [
1

1
] ,

𝐴
12
= [
2 0

1 11
] , 𝐵

12
= 𝐶

12
= [
0

1
] ,

𝐷
1
= [1 0] , 𝐷

2
= [1 1] ,

Π = [
−0.5 0.5

0.5 −0.5
] .

(46)

With the choice of 𝛾 = √2, a possible solution of LMIs (35)
in Corollary 11 can be found by using Matlab LMI control
toolbox:

𝑋
1
= [

0.8879 −0.4074

−0.4074 3.6974
] , 𝑋

2
= [
0.5026 0.0464

0.0464 5.4520
] ,

𝑌
1
= [−3.1690 −5.3082] , 𝑌

2
= [−4.5025 −8.5671] .

(47)
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Figure 2: The state responses of unforced system (37).

Then, the 𝐻
∞

control gain matrices of system (34) are as
follows:

𝐾
1
= 𝑌

1
𝑋

−1

1
= [−4.4531 −1.9263] ,

𝐾
2
= 𝑌

2
𝑋

−1

2
= [−8.8209 −1.4963] .

(48)

Figure 1 shows the result of the changing between modes
during the simulation with the initial mode at mode 1. The
initial condition is chosen as 𝑥

0
= [−0.2 0.3]

󸀠 and exogenous
input V(𝑡) = 𝑒−𝑡. By means of Euler-Maruyama method [27],
the state responses of unforced system (37) and controlled
system (34) are shown in Figures 2 and 3, respectively. From
Figure 3, one can find that the controlled system (34) can
achieve stability and attenuation performance in the sense of
mean square by using the proposed𝐻

∞
controller.

0 1 2 3 4 5 6
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x
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x
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)
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x2(t)
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−0.5
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−0.7

Time (s)

Figure 3: The state responses of controlled system (34).

5. Conclusions

In this paper, we have studied the 𝐻
∞

control problem for
NSMJSs with (𝑥, 𝑢, V)-dependent noise. A sufficient condi-
tion for finite/infinite horizon𝐻

∞
control has been derived in

terms of a set of coupled HJIs. It can be found that Lemma 4
plays an essential role during the proof of Theorems 5 and 7.
The validity of the obtained results has been verified by two
examples.
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Copyright © 2014 R. Caballero-Águila et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

The optimal least-squares linear estimation problem is addressed for a class of discrete-time multisensor linear stochastic systems
subject to randomly delayed measurements with different delay rates. For each sensor, a different binary sequence is used to model
the delay process. The measured outputs are perturbed by both random parameter matrices and one-step autocorrelated and cross
correlated noises. Using an innovation approach, computationally simple recursive algorithms are obtained for the prediction,
filtering, and smoothing problems, without requiring full knowledge of the state-space model generating the signal process, but
only the information provided by the delay probabilities and the mean and covariance functions of the processes (signal, random
parameter matrices, and noises) involved in the observation model. The accuracy of the estimators is measured by their error
covariance matrices, which allow us to analyze the estimator performance in a numerical simulation example that illustrates the
feasibility of the proposed algorithms.

1. Introduction

In the past decades, the development of network technologies
has promoted the study of the estimation problem in multi-
sensor systems, where the observations provided by all the
sensor networks are transmitted to a fusion center for being
processed, thus obtaining the whole available information
on the signal. This kind of systems with multiple sensors
is becoming an interesting research topic due to its broad
scope of application as they can provide more information
than traditional communication systems with a single sensor.
This form of transmission has several advantages, such as low
cost or simple installation and maintenance; however, due to
the imperfection of the communication channels, during the
transmission process, there exist often random sensor delays
and/ormultiple packet dropouts. Standard observationmod-
els are not appropriate under these random uncertainties,
and classical estimation algorithms, where themeasurements
generated by the system are available in real time, cannot

be applied directly. Therefore, new algorithms are needed
and, recently, the estimation problem in multisensor systems
with some of the aforementioned random uncertainties has
become a research topic of growing interest (see, e.g., [1–6]
and references therein).

There are many current applications, for example, net-
worked multiple sensor systems with measurement-based
output feedback, where the measurements may be randomly
delayed due to network congestion or random failures in
the transmission mechanism. Several modifications of the
standard estimation algorithms have been proposed to incor-
porate the effects of randomly delayedmeasurements, in both
linear and nonlinear systems. Assuming full knowledge of
the state-space model of the signal process to be estimated
we can mention [7–10] and using covariance information,
[11, 12], among others. Although all papers above mentioned
involve systems with randomly delayed sensors, their major
handicap is that all the sensors are assumed to have the same
delay characteristics. Nevertheless, such an assumption is not
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realistic inmany practical situations, where the information is
gathered by an array of heterogeneous sensors, and the delay
probability at each individual sensor can be different from the
others. In recent years, this approach has been generalized
considering multiple delayed sensors with different delay
characteristics (see, e.g., [13, 14], using the state-space model,
and [15, 16], using covariance information).

Furthermore, in many sensor network applications the
measured outputs present uncertainties which cannot be
described only by the usual additive disturbances, and mul-
tiplicative noises must be included in the observation equa-
tions to model such uncertainties (see, e.g., [17, 18]). Also, in
the context of missing and fading measurements, the obser-
vation equations include multiplicative noises described by
scalar random variables with arbitrary discrete probability
distribution over the interval [0, 1] (see, e.g., [19–21]). The
above systems are a special case of systems with random
parameter matrices, which have important practical signifi-
cance and arise in areas such as digital control of chemical
processes, systems with human operators, economic systems,
and stochastically sampled digital control systems [22].

In [22, 23], the optimal linear filtering problem in systems
with independent random state transition and measurement
matrices is addressed by transforming the original system
into one with deterministic parameter matrices and state-
dependent process and measurement noises, to which the
Kalman filter is applied. Although in [22] the Kalman filter
is applied without providing any theoretical justification, in
[23] it is shown that, under mild conditions, the transformed
system satisfies the Kalman filter requirements and, hence,
optimal linear estimators are obtained for systems with inde-
pendent random parameter matrices. In [24], systems with
deterministic transition matrices and one-step correlated
measurementmatrices are considered, and the optimal recur-
sive state estimation problem is addressed by converting the
observation equation into one with deterministic measure-
ment matrices and applying the optimal Kalman filter for the
case of one-step correlated measurement noise. In the above-
mentioned papers, although the noises of the transformed
system with deterministic matrices depend on the system
state and therefore can be correlated, the original system
noises are assumed to be independent white processes. This
assumption can be restrictive in many real world problems
in which correlation and cross-correlation of the noises
may be present. For this reason, the estimation problem
in systems with correlated and cross-correlated noises is
becoming an active research topic (see [25–29] for systems
with deterministic matrices and [30, 31] for systems with
random parameter matrices, among others). In [30] a locally
optimal filter in the class of Kalman-type recursive filters is
presented and, in [31], the optimal least-squares linear filter
is derived.

Motivated by the above analysis, in this paper we address
the signal estimation problem from measurements coming
from multiple sensors which are randomly delayed by one
sampling time with different delay characteristics, under the
assumption that the measured outputs are perturbed by both
random parameter matrices and one-step autocorrelated and
cross-correlated observation noises. The main contributions

of this paper can be highlighted as follows: (1) the observation
model considers simultaneously random delayed measure-
ments and both random parameter matrices and correlated
noises (one-step autocorrelation and also one-step cross-
correlations between different sensor noises are considered)
in the measured outputs; (2) optimal LS linear recursive
filtering and smoothing algorithms are obtained without
requiring signal augmentation approach thus avoiding the
expensive computational cost; (3) the proposed algorithms
are obtained without requiring full knowledge of the state-
space model generating the signal process; and (4) the
innovation technique is used, simplifying substantially the
derivation of the algorithms since the innovation process is
a white noise.

The rest of the paper is organized as follows. In Section 2,
we present the delayed measurement model to be consid-
ered and the assumptions and properties under which the
LS linear estimation problem is addressed. The innovation
approach which, as mentioned above, yields straightforward
derivation of the estimation algorithms is given in Section 3.
The recursive filtering and smoothing algorithms are derived
in Sections 4 and 5, respectively. In Section 6, the perfor-
mance of the proposed filtering algorithms is illustrated
by a numerical simulation example where the signal of a
first-order autoregressive model is estimated from delayed
observations coming from two sensors with different delay
characteristics, considering two kinds of measured outputs
with correlated noises. The paper concludes with some final
comments in Section 7.

Notation. The notation used throughout the paper is stan-
dard. R𝑛 denotes the 𝑛-dimensional Euclidean space and
R𝑚×𝑛 is the set of all𝑚 × 𝑛 real matrices. 𝐴𝑇 and 𝐴−1 denote
the transpose and inverse of a matrix 𝐴, respectively. The
shorthand Diag(𝑎

1
, . . . , 𝑎

𝑚
) denotes a diagonal matrix whose

diagonal entries are 𝑎
1
, . . . , 𝑎

𝑚
. 1 = (1, . . . , 1)

𝑇 denotes the
all-ones vector and 𝐼 the identity matrix. If the dimensions
of matrices are not explicitly stated, they are assumed to be
compatible with algebraic operations. The notation ∘ denotes
the Hadamard product ([𝐶 ∘ 𝐷]

𝑖𝑗
= 𝐶
𝑖𝑗
𝐷
𝑖𝑗
). 𝛿
𝑘−𝑠

represents
the Kronecker delta function, which is equal to one if 𝑘 = 𝑠

and zero otherwise. Moreover, for arbitrary random vectors,
𝛼 and𝛽, wewill denoteCov[𝛼, 𝛽] = 𝐸[(𝛼−𝐸[𝛼])(𝛽 − 𝐸[𝛽])

𝑇

],
where 𝐸[⋅] stands for the mathematical expectation operator.

2. Problem Formulation

The aim of this paper is to find recursive algorithms for
the optimal least-squares (LS) linear filtering and smoothing
problems of an 𝑛-dimensional discrete-time random signal
𝑧
𝑘
using measurements perturbed by random observation

matrices and correlated additive noises, which are transmit-
ted by multiple sensors where one-step random delays with
different rates may occur during the transmission process.

The estimation problem is addressed under the assump-
tion that the evolution model of the signal to be estimated
is unknown and only information about its mean and
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covariance functions is available; this information is specified
in the following assumption.

Assumption 1. The 𝑛-dimensional signal process {𝑧
𝑘
; 𝑘 ≥ 1}

has zeromean and its autocovariance function is expressed in
a separable form, 𝐸[𝑧

𝑘
𝑧
𝑇

𝑗
] = 𝐴

𝑘
𝐵
𝑇

𝑗
, 𝑗 ≤ 𝑘, where 𝐴 and 𝐵 are

known 𝑛 ×𝑀matrix functions.

Remark 2. Although Assumption 1 might seem restrictive, it
covers many practical situations; for example, when the sys-
tem matrix Φ in the state-space model of a stationary signal
is available, the signal autocovariance function is 𝐸[𝑧

𝑘
𝑧
𝑇

𝑗
] =

Φ
𝑘−𝑗

𝐸[𝑧
𝑗
𝑧
𝑇

𝑗
], 𝑗 ≤ 𝑘, and Assumption 1 is clearly satisfied,

taking 𝐴
𝑘
= Φ
𝑘 and 𝐵

𝑗
= 𝐸[𝑧

𝑗
𝑧
𝑇

𝑗
](Φ
−𝑗

)
𝑇. Also, processes

with finite-dimensional, possibly time-variant, state-space
models have semiseparable covariance functions, 𝐸[𝑧

𝑘
𝑧
𝑇

𝑗
] =

∑
𝑟

𝑖=1
𝑎
𝑖

𝑘
𝑏
𝑖𝑇

𝑗
, 𝑗 ≤ 𝑘 (see [32]), and this structure is a particular

case of that assumed, just taking 𝐴
𝑘
= (𝑎
1

𝑘
, 𝑎
2

𝑘
, . . . , 𝑎

𝑟

𝑘
) and

𝐵
𝑗
= (𝑏
1

𝑗
, 𝑏
2

𝑗
, . . . , 𝑏

𝑟

𝑗
). Consequently, the structural assumption

on the signal autocovariance function covers both stationary
and nonstationary signals.

Next, the observationmodelwith one-step randomdelays
is described and the assumptions under which the LS linear
estimation problem will be addressed are presented.

2.1. Delayed Observation Model. Let {𝑧
𝑘
; 𝑘 ≥ 1} be the signal

process satisfying Assumption 1 and consider 𝑚 sensors
which provide scalar measurements of the signal according
to the following model:

𝑦
𝑖

𝑘
= 𝐻
𝑖

𝑘
𝑧
𝑘
+ Ṽ𝑖
𝑘
, 𝑘 ≥ 1, 𝑖 = 1, 2, . . . , 𝑚, (1)

where 𝑦𝑖
𝑘
∈ R is the measurement provided by the 𝑖th sensor

at time 𝑘 (actual output); {𝐻𝑖
𝑘
; 𝑘 ≥ 1} are 1 × 𝑛 random

parameter matrices; {Ṽ𝑖
𝑘
; 𝑘 ≥ 1} are measurement noises.The

following assumptions are established on this model.

Assumption 3. For 𝑖 = 1, 2, . . . , 𝑚, {𝐻𝑖
𝑘
; 𝑘 ≥ 1} are 1 × 𝑛

randomparametermatriceswith knownmeans,𝐸[𝐻𝑖
𝑘
] = 𝐻

𝑖

𝑘
;

𝐻
𝑖

𝑘
and 𝐻

𝑗

𝑠
are independent for 𝑘 ̸= 𝑠; the covariances and

cross-covariances at the same time, Cov[ℎ𝑘
𝑖,𝑝
, ℎ
𝑘

𝑗,𝑞
], are also

known (ℎ𝑘
𝑖,𝑝

denotes the 𝑝th entry of𝐻𝑖
𝑘
, for 𝑝 = 1, 2, . . . , 𝑛).

Assumption 4. The additive measurement noises {Ṽ𝑖
𝑘
; 𝑘 ≥ 1},

𝑖 = 1, 2, . . . , 𝑚, are zero-mean processes with Cov[Ṽ𝑖
𝑘
, Ṽ𝑗
𝑠
] =

𝑅̃
𝑖𝑗

𝑘,𝑘
𝛿
𝑘−𝑠

+ 𝑅̃
𝑖𝑗

𝑘,𝑠
𝛿
𝑘−𝑠+1

+ 𝑅̃
𝑖𝑗

𝑘,𝑠
𝛿
𝑘−𝑠−1

, for 𝑖, 𝑗 = 1, 2, . . . , 𝑚.

Remark 5. From Assumption 4, the measurement noises of
any two sensors are correlated at the same sampling time and
at consecutive sampling times and uncorrelated otherwise;
the cross-covariances of Ṽ𝑖

𝑘
with Ṽ𝑗

𝑘
, Ṽ𝑗
𝑘−1

, and Ṽ𝑗
𝑘+1

are 𝑅̃𝑖𝑗
𝑘,𝑘
,

𝑅̃
𝑖𝑗

𝑘,𝑘−1
, and 𝑅̃𝑖𝑗

𝑘,𝑘+1
, respectively.

It is assumed that, at any sampling time, the outputs are
transmitted from the𝑚 different sensors to a data processing
center producing the signal estimation and, as a consequence
of possible failures during the transmission process, one-
step delays may occur randomly in the measurements used
for estimation. These measurement delays are modelled by
introducing different sequences of Bernoulli variables whose
values, zero or one, indicate whether the current mea-
surement is up-to-date or delayed, respectively. Specifically,
assume that, at initial time 𝑘 = 1, the actual outputs, 𝑦𝑖

1
, are

always available for the estimation but, at any time 𝑘 > 1,
the available measurements coming from each sensor may
be randomly delayed by one sampling time according to
different delay rates. Therefore, if {𝛾𝑖

𝑘
; 𝑘 > 1}, 𝑖 = 1, 2, . . . , 𝑚,

denote sequences of Bernoulli randomvariables, the available
measurements from the 𝑖th sensor are described by

𝑦
𝑖

𝑘
= (1 − 𝛾

𝑖

𝑘
) 𝑦
𝑖

𝑘
+ 𝛾
𝑖

𝑘
𝑦
𝑖

𝑘−1
, 𝑘 > 1;

𝑦
𝑖

1
= 𝑦
𝑖

1
, 𝑖 = 1, 2, . . . , 𝑚.

(2)

Remark 6. Model (2) is commonly used to describe mea-
surements coming from multiple sensors which are one-
step randomly delayed with different delay rates (see, e.g.,
[13] using the state-space model and [15] using covariance
information). From (2) it is clear that if 𝛾𝑖

𝑘
= 1, which

occurs with a certain probability 𝑝𝑖
𝑘
, then 𝑦

𝑖

𝑘
= 𝑦
𝑖

𝑘−1
and the

measurement from the 𝑖th sensor is delayed by one sampling
period; otherwise, 𝛾𝑖

𝑘
= 0 and 𝑦𝑖

𝑘
= 𝑦
𝑖

𝑘
, which means that the

measurement is up-to-date with probability 1−𝑝𝑖
𝑘
.Therefore,

the variables {𝛾𝑖
𝑘
; 𝑘 > 1}model the random delays of the 𝑖th

sensor and the following assumption is made.

Assumption 7. For 𝑖 = 1, 2, . . . , 𝑚, the process {𝛾𝑖
𝑘
; 𝑘 > 1} is

a sequence of independent Bernoulli random variables with
known probabilities 𝑃[𝛾𝑖

𝑘
= 1] = 𝑝

𝑖

𝑘
, ∀𝑘 > 1. For 𝑖, 𝑗 =

1, 2, . . . , 𝑚 the variables 𝛾𝑖
𝑘
and 𝛾

𝑗

𝑠
are independent for 𝑘 ̸= 𝑠,

and Cov[𝛾𝑖
𝑘
, 𝛾
𝑗

𝑘
] are known.

Note that this assumption is more general than that
considered in [13, 15] where the processes {𝛾𝑖

𝑘
; 𝑘 > 1}, for

𝑖 = 1, 2, . . . , 𝑚, are assumed to be mutually independent.
Finally, the following independence hypothesis is also

assumed.

Assumption 8. For 𝑖 = 1, 2, . . . , 𝑚, the signal process, {𝑧
𝑘
; 𝑘 ≥

1}, and the processes {𝐻𝑖
𝑘
; 𝑘 ≥ 1}, {Ṽ𝑖

𝑘
; 𝑘 ≥ 1}, and {𝛾

𝑖

𝑘
; 𝑘 >

1} are mutually independent.

To address the optimal LS linear estimation problem of
the signal based on the measurements coming from all the
sensors, {𝑦𝑖

1
, 𝑦
𝑖

2
, . . . , 𝑦

𝑖

𝐿
, 𝑖 = 1, 2, . . . , 𝑚}, 𝐿 ≥ 𝑘, the centralized

fusionmethod will be used. For this purpose, the observation
equations of the different sensors (1) and (2) are combined
yielding the following vectorial observation model:

𝑦
𝑘
= 𝐻
𝑘
𝑧
𝑘
+ Ṽ
𝑘
, 𝑘 ≥ 1,

𝑦
𝑘
= (𝐼 − Γ

𝑘
) 𝑦
𝑘
+ Γ
𝑘
𝑦
𝑘−1

, 𝑘 > 1; 𝑦
1
= 𝑦
1
,

(3)
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where 𝑦
𝑘

= (𝑦
1

𝑘
, . . . , 𝑦

𝑚

𝑘
)
𝑇, 𝐻
𝑘

= (𝐻
1𝑇

𝑘
, . . . , 𝐻

𝑚𝑇

𝑘
)
𝑇, Ṽ
𝑘

=

(Ṽ1
𝑘
, . . . , Ṽ𝑚

𝑘
)
𝑇, and Γ

𝑘
= Diag(𝛾1

𝑘
, . . . , 𝛾

𝑚

𝑘
).

Hence, the problem is to obtain the LS linear estimator of
the signal, 𝑧

𝑘
, based on the randomly delayed observations

{𝑦
1
, . . . , 𝑦

𝐿
} given in (3). Next, we present the statistical

properties of the processes involved in observation model
(3), from which the LS linear filtering and fixed-point
smoothing algorithms of the signal 𝑧

𝑘
will be derived; these

properties are easily inferred from themodel Assumptions 3–
8 previously established.

(i) {𝐻
𝑘
; 𝑘 ≥ 1} are 𝑚 × 𝑛 independent random

parameter matrices with known means, 𝐻
𝑘

≡

𝐸[𝐻
𝑘
] = (𝐻

1𝑇

𝑘
, . . . , 𝐻

𝑚𝑇

𝑘
)

𝑇

, and known covariances,
Cov[ℎ𝑘

𝑖,𝑝
, ℎ
𝑠

𝑗,𝑞
], where ℎ𝑘

𝑖,𝑝
denotes the (𝑖, 𝑝)th entry of

matrix,𝐻
𝑘
, for 𝑖 = 1, 2, . . . , 𝑚 and 𝑝 = 1, 2, . . . , 𝑛.

(ii) {Ṽ
𝑘
; 𝑘 ≥ 1} is a zero-mean process with Cov[Ṽ

𝑘
, Ṽ
𝑠
] =

𝑅̃
𝑘,𝑘
𝛿
𝑘−𝑠

+ 𝑅̃
𝑘,𝑠
𝛿
𝑘−𝑠+1

+ 𝑅̃
𝑘,𝑠
𝛿
𝑘−𝑠−1

, where 𝑅̃
𝑘,𝑠

=

(𝑅̃
𝑖𝑗

𝑘,𝑠
)
𝑖,𝑗=1,2,...,𝑚

.

(iii) The randommatrices {Γ
𝑘
; 𝑘 > 1} are independent or,

equivalently, the 𝑚-dimensional process {𝛾
𝑘
; 𝑘 > 1},

where 𝛾
𝑘
= (𝛾
1

𝑘
, . . . , 𝛾

𝑚

𝑘
)
𝑇, is a white sequence. The

first- and second-order moments of these processes
are known, and the following notation will be used:

Γ
𝑘
≡ 𝐸 [Γ

𝑘
] = Diag (𝑝1

𝑘
, . . . , 𝑝

𝑚

𝑘
) ,

𝐾
𝛾

𝑘
≡ 𝐸 [𝛾

𝑘
𝛾
𝑇

𝑘
] ,

𝐾
1−𝛾
𝑘

≡ 𝐸 [(1 − 𝛾
𝑘
) (1 − 𝛾

𝑘
)
𝑇

] ,

𝐾
𝛾,1−𝛾
𝑘

≡ 𝐸 [𝛾
𝑘
(1 − 𝛾

𝑘
)
𝑇

] .

(4)

(iv) The signal process, {𝑧
𝑘
; 𝑘 ≥ 1}, and the processes

{𝐻
𝑘
; 𝑘 ≥ 1}, {Ṽ

𝑘
; 𝑘 ≥ 1}, and {Γ

𝑘
; 𝑘 > 1} aremutually

independent.

Remark 9. From the above properties, the following ones,
which will be frequently used in the derivation of the
algorithms, are obtained.

(a) The covariances of vectors 𝐻̃
𝑘
𝑧
𝑘
, with 𝐻̃

𝑘
= 𝐻
𝑘
−𝐻
𝑘
,

are given by

𝐾
𝐻̃𝑧

𝑘
≡ 𝐸 [𝐻̃

𝑘
𝑧
𝑘
𝑧
𝑇

𝑘
𝐻̃
𝑇

𝑘
] = 𝐸 [𝐻̃

𝑘
𝐴
𝑘
𝐵
𝑇

𝑘
𝐻̃
𝑇

𝑘
] , 𝑘 ≥ 1. (5)

This identity is easily obtained from the conditional
expectation properties, using the independence of 𝑧

𝑘

and 𝐻̃
𝑘
, and Assumption 1:

𝐸 [𝐻̃
𝑘
𝑧
𝑘
𝑧
𝑇

𝑘
𝐻̃
𝑇

𝑘
] = 𝐸 [𝐸 [𝐻̃

𝑘
𝑧
𝑘
𝑧
𝑇

𝑘
𝐻̃
𝑇

𝑘
| 𝐻̃
𝑘
]]

= 𝐸 [𝐻̃
𝑘
𝐸 [𝑧
𝑘
𝑧
𝑇

𝑘
| 𝐻̃
𝑘
] 𝐻̃
𝑇

𝑘
]

= 𝐸 [𝐻̃
𝑘
𝐸 [𝑧
𝑘
𝑧
𝑇

𝑘
] 𝐻̃
𝑇

𝑘
] .

(6)

From (5), these matrices are known and their entries
are given by

(𝐾
𝐻̃𝑧

𝑘
)
𝑖𝑗

=

𝑛

∑

𝑝=1

𝑛

∑

𝑞=1

Cov [ℎ𝑘
𝑖,𝑝
, ℎ
𝑘

𝑗,𝑞
] (𝐴
𝑘
𝐵
𝑇

𝑘
)
𝑝𝑞

,

𝑖, 𝑗 = 1, 2, . . . , 𝑚.

(7)

(b) The covariances of the vectors𝐻
𝑘
𝑧
𝑘
are given by

𝐸 [𝐻
𝑘
𝑧
𝑘
𝑧
𝑇

𝑘
𝐻
𝑇

𝑘
] = 𝐾

𝐻̃𝑧

𝑘
+ 𝐻
𝑘
𝐴
𝑘
𝐵
𝑇

𝑘
𝐻
𝑇

𝑘
, 𝑘 ≥ 1. (8)

(c) If𝐺 is a𝑚×𝑚 randommatrix independent of {Γ
𝑘
, 𝑘 >

1}, the Hadamard product properties and (iii) lead to

𝐸 [Γ
𝑘
𝐺Γ
𝑘
] = 𝐾

𝛾

𝑘
∘ 𝐸 [𝐺] ,

𝐸 [Γ
𝑘
𝐺 (𝐼 − Γ

𝑘
)] = 𝐾

𝛾,1−𝛾
𝑘

∘ 𝐸 [𝐺] ,

𝐸 [(𝐼 − Γ
𝑘
) 𝐺 (𝐼 − Γ

𝑘
)] = 𝐾

1−𝛾
𝑘

∘ 𝐸 [𝐺] .

(9)

To simplify future formulas and expressions, the observa-
tion model (3) will be written equivalently as follows:

𝑦
𝑘
= 𝑥
𝑘
+ V
𝑘
, 𝑘 ≥ 1,

𝑥
𝑘
= (𝐼 − Γ

𝑘
)𝐻
𝑘
𝑧
𝑘
+ Γ
𝑘
𝐻
𝑘−1

𝑧
𝑘−1

, 𝑘 ≥ 2; 𝑥
1
= 𝐻
1
𝑧
1
,

V
𝑘
= (𝐼 − Γ

𝑘
) Ṽ
𝑘
+ Γ
𝑘
Ṽ
𝑘−1

, 𝑘 ≥ 2; V
1
= Ṽ
1
.

(10)

Taking into account the model properties and those specified
in Remark 9, the first- and second-order properties of the
processes {𝑥

𝑘
; 𝑘 ≥ 1} and {V

𝑘
; 𝑘 ≥ 1} and, consequently,

those of the observation process, {𝑦
𝑘
; 𝑘 ≥ 1}, are easily

obtained. They are established in the following lemmas.

Lemma 10. The process {𝑥
𝑘
; 𝑘 ≥ 1} has zero mean and 𝐾𝑥

𝑘
≡

Cov [𝑥
𝑘
, 𝑥
𝑘
] is given by

𝐾
𝑥

𝑘
= 𝐾
1−𝛾

𝑘
∘ (𝐾
𝐻̃𝑧

𝑘
+ 𝐻
𝑘
𝐴
𝑘
𝐵
𝑇

𝑘
𝐻
𝑇

𝑘
)

+ 𝐾
1−𝛾,𝛾

𝑘
∘ (𝐻
𝑘
𝐴
𝑘
𝐵
𝑇

𝑘−1
𝐻
𝑇

𝑘−1
)

+ 𝐾
𝛾,1−𝛾

𝑘
∘ (𝐻
𝑘−1

𝐵
𝑘−1

𝐴
𝑇

𝑘
𝐻
𝑇

𝑘
)

+ 𝐾
𝛾

𝑘
∘ (𝐾
𝐻̃𝑧

𝑘−1
+ 𝐻
𝑘−1

𝐴
𝑘−1

𝐵
𝑇

𝑘−1
𝐻
𝑇

𝑘−1
) , 𝑘 ≥ 2;

𝐾
𝑥

1
= 𝐾
𝐻̃𝑧

1
+ 𝐻
1
𝐴
1
𝐵
𝑇

1
𝐻
𝑇

1
.

(11)
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Lemma 11. {V
𝑘
; 𝑘 ≥ 1} has zero mean and Cov [V

𝑘
, V
𝑠
] =

𝑅
𝑘,𝑘
𝛿
𝑘−𝑠

+ 𝑅
𝑘,𝑠
𝛿
𝑘−𝑠−1

+ 𝑅
𝑘,𝑠
𝛿
𝑘−𝑠−2

, 𝑠 ≤ 𝑘, where

𝑅
𝑘,𝑘

= 𝐾
1−𝛾

𝑘
∘ 𝑅̃
𝑘,𝑘

+ 𝐾
1−𝛾,𝛾

𝑘
∘ 𝑅̃
𝑘,𝑘−1

+ 𝐾
𝛾,1−𝛾

𝑘
∘ 𝑅̃
𝑘−1,𝑘

+ 𝐾
𝛾

𝑘
∘ 𝑅̃
𝑘−1,𝑘−1

, 𝑘 > 1;

𝑅
𝑘,𝑘−1

= (𝐼 − Γ
𝑘
) 𝑅̃
𝑘,𝑘−1

(𝐼 − Γ
𝑘−1

) + Γ
𝑘
𝑅̃
𝑘−1,𝑘−1

(𝐼 − Γ
𝑘−1

)

+ Γ
𝑘
𝑅̃
𝑘−1,𝑘−2

Γ
𝑘−1

, 𝑘 > 2;

𝑅
𝑘,𝑘−2

= Γ
𝑘
𝑅̃
𝑘−1,𝑘−2

(𝐼 − Γ
𝑘−2

) , 𝑘 > 3;

𝑅
1,1

= 𝑅̃
1,1
, 𝑅
2,1

= (𝐼 − Γ
2
) 𝑅̃
2,1

+ Γ
2
𝑅̃
1,1
, 𝑅
3,1

= Γ
3
𝑅̃
2,1
.

(12)

Lemma 12. The processes {𝑥
𝑘
; 𝑘 ≥ 1} and {V

𝑘
; 𝑘 ≥ 1} are

uncorrelated and, consequently,

𝐾
𝑦

𝑘
≡ Cov [𝑦

𝑘
, 𝑦
𝑘
] = 𝐾

𝑥

𝑘
+ 𝑅
𝑘,𝑘
, 𝑘 ≥ 1, (13)

with 𝐾𝑥
𝑘
and 𝑅

𝑘,𝑘
given in (11) and (12), respectively.

3. Innovation Approach to the LS Linear
Estimation Problem

To obtain a recursive algorithm for the LS linear estimator,
𝑧̂
𝑘/𝐿

, of the signal, 𝑧
𝑘
, based on the randomly delayed obser-

vations, {𝑦
1
, . . . , 𝑦

𝐿
}, an innovation approach will be used

[32]. This approach consists of transforming the observation
process {𝑦

𝑘
; 𝑘 ≥ 1} into an equivalent one (innovation

process) of orthogonal vectors {𝜇
𝑘
; 𝑘 ≥ 1}, defined by

𝜇
𝑘
= 𝑦
𝑘
− 𝑦
𝑘/𝑘−1

, where 𝑦
𝑘/𝑘−1

is the orthogonal projection
of 𝑦
𝑘
into the linear space generated by {𝜇

1
, . . . , 𝜇

𝑘−1
}. The

orthogonality property of the new process allows us to
simplify the estimators’ expressions (which also simplifies the
algorithms derivation) in comparison to those obtainedwhen
the estimators are expressed directly as linear combination of
the observations.

Specifically, if 𝑤
𝑘
denotes a random vector to be esti-

mated, the LS linear estimator of 𝑤
𝑘
based on the observa-

tions {𝑦
1
, . . . , 𝑦

𝐿
} (which will be denoted as𝑤

𝑘/𝐿
) agrees with

that based on the innovations {𝜇
1
, . . . , 𝜇

𝐿
} or, equivalently,

with the orthogonal projection of 𝑤
𝑘
onto the linear space

generated by {𝜇
1
, . . . , 𝜇

𝐿
}. Hence,

𝑤
𝑘/𝐿

=

𝐿

∑

𝑗=1

𝑁
𝑘,𝑗
𝜇
𝑗
, (14)

and the impulse-response function,𝑁
𝑘,𝑗
, 𝑗 = 1, . . . , 𝐿, is cal-

culated from the orthogonality property, 𝐸[(𝑤
𝑘
− 𝑤
𝑘/𝐿

)𝜇
𝑇

𝑠
] =

0, 𝑠 ≤ 𝐿, which leads to the Wiener-Hopf equation, taking
into account that 𝐸[𝜇

𝑗
𝜇
𝑇

𝑠
] = 0 for 𝑗 ̸= 𝑠,

𝐸 [𝑤
𝑘
𝜇
𝑇

𝑠
] = 𝑁

𝑘,𝑠
𝐸 [𝜇
𝑠
𝜇
𝑇

𝑠
] , 𝑠 ≤ 𝐿. (15)

Consequently, by denoting Π
𝑗

= 𝐸[𝜇
𝑗
𝜇
𝑇

𝑗
], the following

general expression for the LS linear estimators of 𝑤
𝑘
is

obtained:

𝑤
𝑘/𝐿

=

𝐿

∑

𝑗=1

𝐸 [𝑤
𝑘
𝜇
𝑇

𝑗
]Π
−1

𝑗
𝜇
𝑗
. (16)

3.1. Innovation Process. As indicated above, the innovation
at time 𝑘 is defined as 𝜇

𝑘
= 𝑦
𝑘
− 𝑦
𝑘/𝑘−1

, where 𝑦
𝑘/𝑘−1

, the
orthogonal projection of𝑦

𝑘
onto the linear space generated by

{𝜇
1
, . . . , 𝜇

𝑘−1
}, is the LS one-stage linear predictor of 𝑦

𝑘
. From

(10) and the orthogonal projection lemma, this estimator can
be expressed by

𝑦
𝑘/𝑘−1

= 𝑥
𝑘/𝑘−1

+ V̂
𝑘/𝑘−1

, 𝑘 ≥ 2,

𝑦
1/0

= 0,

(17)

so we need the one-stage predictors 𝑥
𝑘/𝑘−1

and V̂
𝑘/𝑘−1

which,
by using the general expression (16) for the LS linear estima-
tors, are given by

𝑥
𝑘/𝑘−1

=

𝑘−1

∑

𝑗=1

𝐸 [𝑥
𝑘
𝜇
𝑇

𝑗
]Π
−1

𝑗
𝜇
𝑗
,

V̂
𝑘/𝑘−1

=

𝑘−1

∑

𝑗=1

𝐸 [V
𝑘
𝜇
𝑇

𝑗
]Π
−1

𝑗
𝜇
𝑗
.

(18)

(1) From the independence property (iv), it is clear that

𝐸 [𝑥
𝑘
𝜇
𝑇

𝑗
] = (𝐼 − Γ

𝑘
)𝐻
𝑘
𝐸 [𝑧
𝑘
𝜇
𝑇

𝑗
] + Γ
𝑘
𝐻
𝑘−1

𝐸 [𝑧
𝑘−1

𝜇
𝑇

𝑗
] ,

𝑗 ≤ 𝑘 − 2,

(19)

and hence, for 𝑘 > 2,

𝑥
𝑘/𝑘−1

= (𝐼 − Γ
𝑘
)𝐻
𝑘

𝑘−2

∑

𝑗=1

𝐸 [𝑧
𝑘
𝜇
𝑇

𝑗
]Π
−1

𝑗
𝜇
𝑗

+ Γ
𝑘
𝐻
𝑘−1

𝑘−2

∑

𝑗=1

𝐸 [𝑧
𝑘−1

𝜇
𝑇

𝑗
]Π
−1

𝑗
𝜇
𝑗

+ 𝐸 [𝑥
𝑘
𝜇
𝑇

𝑘−1
]Π
−1

𝑘−1
𝜇
𝑘−1

;

(20)

then, from (16) for 𝑧̂
𝑘/𝑘−2

and 𝑧̂
𝑘−1/𝑘−2

, we obtain

𝑥
𝑘/𝑘−1

= (𝐼 − Γ
𝑘
)𝐻
𝑘
𝑧̂
𝑘/𝑘−2

+ Γ
𝑘
𝐻
𝑘−1

𝑧̂
𝑘−1/𝑘−2

+ 𝐸 [𝑥
𝑘
𝜇
𝑇

𝑘−1
]Π
−1

𝑘−1
𝜇
𝑘−1

, 𝑘 > 2,

𝑥
2/1

= 𝐸 [𝑥
2
𝜇
𝑇

1
]Π
−1

1
𝜇
1
.

(21)

(2) The uncorrelation of Ṽ
𝑘
and Ṽ

𝑘−1
with Ṽ

1
, . . . , Ṽ

𝑘−3

and the independence property (iv) guarantee that
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𝐸[V
𝑘
𝜇
𝑇

𝑗
] = 0, 𝑗 = 1, . . . , 𝑘 − 3, and 𝐸[V

𝑘
𝜇
𝑇

𝑘−2
] =

𝐸[V
𝑘
𝑦
𝑇

𝑘−2
], and this last expectation is equal to

𝐸[V
𝑘
V𝑇
𝑘−2

] from the uncorrelation of V
𝑘
and 𝑥

𝑘−2
;

hence,

V̂
𝑘/𝑘−1

= 𝑅
𝑘,𝑘−2

Π
−1

𝑘−2
𝜇
𝑘−2

+ 𝐸 [V
𝑘
𝜇
𝑇

𝑘−1
]Π
−1

𝑘−1
𝜇
𝑘−1

, 𝑘 > 2,

V̂
2/1

= 𝐸 [V
2
𝜇
𝑇

1
]Π
−1

1
𝜇
1
.

(22)

Now, from (21) and (22), by denoting 𝑇
𝑘,𝑘−1

= 𝐸[𝑦
𝑘
𝜇
𝑇

𝑘−1
],

it is immediately clear that the innovation at time 𝑘 can be
expressed as

𝜇
𝑘
= 𝑦
𝑘
− (𝐼 − Γ

𝑘
)𝐻
𝑘
𝑧̂
𝑘/𝑘−2

− Γ
𝑘
𝐻
𝑘−1

𝑧̂
𝑘−1/𝑘−2

− 𝑅
𝑘,𝑘−2

Π
−1

𝑘−2
𝜇
𝑘−2

− 𝑇
𝑘,𝑘−1

Π
−1

𝑘−1
𝜇
𝑘−1

, 𝑘 > 2;

𝜇
2
= 𝑦
2
− 𝑇
2,1
Π
−1

1
𝜇
1
; 𝜇

1
= 𝑦
1
,

(23)

and, hence, its determination requires that of the linear signal
predictors, 𝑧̂

𝑘/𝐿
, 𝐿 = 𝑘 − 1, 𝑘 − 2. The derivation of the linear

predictors is analogous to that of the filter, 𝑧̂
𝑘/𝑘

, so both are
obtained simultaneously in the following section.

4. Prediction and Filtering
Recursive Algorithm

The following theorem presents a recursive algorithm for the
signal LS linear predictor and filter based on the delayed
observation model given in Section 2.

Theorem 13. The signal predictors 𝑧̂
𝑘/𝐿

, 𝐿 < 𝑘, and the signal
filter, 𝑧̂

𝑘/𝑘
, are obtained as

𝑧̂
𝑘/𝐿

= 𝐴
𝑘
𝑂
𝐿
, 𝐿 < 𝑘; 𝑧̂

𝑘/𝑘
= 𝐴
𝑘
𝑂
𝑘
, (24)

where the vectors 𝑂
𝑘
are recursively calculated from

𝑂
𝑘
= 𝑂
𝑘−1

+ 𝐽
𝑘
Π
−1

𝑘
𝜇
𝑘
, 𝑘 ≥ 1; 𝑂

0
= 0. (25)

The matrix function 𝐽 is given by

𝐽
𝑘
= 𝐺
𝑇

𝐵𝑘

− 𝑟
𝑘−2

𝐺
𝑇

𝐴𝑘

− 𝐽
𝑘−2

Π
−1

𝑘−2
𝑅
𝑇

𝑘,𝑘−2
− 𝐽
𝑘−1

Π
−1

𝑘−1
𝑇
𝑇

𝑘,𝑘−1
,

𝑘 > 2;

𝐽
2
= 𝐺
𝑇

𝐵2

− 𝐽
1
Π
−1

1
𝑇
𝑇

2,1
, 𝐽

1
= 𝐵
𝑇

1
𝐻
𝑇

1
,

(26)

with 𝑟
𝑘
= 𝐸[𝑂

𝑘
𝑂
𝑇

𝑘
] recursively obtained from

𝑟
𝑘
= 𝑟
𝑘−1

+ 𝐽
𝑘
Π
−1

𝑘
𝐽
𝑇

𝑘
, 𝑘 ≥ 1; 𝑟

0
= 0. (27)

The innovation, 𝜇
𝑘
, satisfies

𝜇
𝑘
= 𝑦
𝑘
− 𝐺
𝐴𝑘
𝑂
𝑘−2

− 𝑅
𝑘,𝑘−2

Π
−1

𝑘−2
𝜇
𝑘−2

− 𝑇
𝑘,𝑘−1

Π
−1

𝑘−1
𝜇
𝑘−1

,

𝑘 > 2;

𝜇
2
= 𝑦
2
− 𝑇
2,1
Π
−1

1
𝜇
1
, 𝜇

1
= 𝑦
1
,

(28)

where 𝑇
𝑘,𝑘−1

= 𝐸[𝑦
𝑘
𝜇
𝑇

𝑘−1
] is recursively obtained from

𝑇
𝑘,𝑘−1

= 𝐺
𝐴𝑘
𝐽
𝑘−1

+ Γ
𝑘
𝐾
𝐻̃𝑧

𝑘−1
(𝐼 − Γ

𝑘−1
) + 𝑅
𝑘,𝑘−1

− 𝑅
𝑘,𝑘−2

Π
−1

𝑘−2
𝑇
𝑇

𝑘−1,𝑘−2
, 𝑘 > 2;

𝑇
2,1

= 𝐺
𝐴2
𝐵
𝑇

1
𝐻
𝑇

1
+ Γ
2
𝐾
𝐻̃𝑧

1
+ 𝑅
2,1
.

(29)

The innovation covariance matrix, Π
𝑘
, is given by

Π
𝑘
= 𝐾
𝑦

𝑘
− 𝐺
𝐴𝑘
𝑟
𝑘−2

𝐺
𝑇

𝐴𝑘

− 𝑅
𝑘,𝑘−2

Π
−1

𝑘−2
𝑅
𝑇

𝑘,𝑘−2

− 𝑇
𝑘,𝑘−1

Π
−1

𝑘−1
𝑇
𝑇

𝑘,𝑘−1
− 𝐺
𝐴𝑘
𝐽
𝑘−2

Π
−1

𝑘−2
𝑅
𝑇

𝑘,𝑘−2

− 𝑅
𝑘,𝑘−2

Π
−1

𝑘−2
𝐽
𝑇

𝑘−2
𝐺
𝑇

𝐴𝑘

, 𝑘 > 2;

Π
2
= 𝐾
𝑦

2
− 𝑇
2,1
Π
−1

1
𝑇
𝑇

2,1
, Π

1
= 𝐾
𝑦

1
.

(30)

Thematrices𝐾𝐻̃𝑧
𝑘

and𝐾𝑦
𝑘
are given in (5) and (13), respectively.

𝑅
𝑘,𝑠
, for 𝑠 = 𝑘, 𝑘−1, 𝑘−2, are given in (12). Finally, the matrices

𝐺
𝐴𝑘

and 𝐺
𝐵𝑘

are defined by

𝐺
Ψ𝑘

= (𝐼 − Γ
𝑘
)𝐻
𝑘
Ψ
𝑘
+ Γ
𝑘
𝐻
𝑘−1

Ψ
𝑘−1

, Ψ = 𝐴, 𝐵. (31)

Proof. From the general expression (16), 𝑧̂
𝑘/𝐿

= ∑
𝐿

𝑗=1
𝐸[𝑧
𝑘
𝜇
𝑇

𝑗
]

Π
−1

𝑗
𝜇
𝑗
, for 𝐿 ≤ 𝑘, and the coefficients 𝑆

𝑘,𝑗
= 𝐸[𝑧

𝑘
𝜇
𝑇

𝑗
], 𝑗 ≤ 𝑘,

must be calculated in order to determine the predictors and
filter of 𝑧

𝑘
. Using expression (23) for 𝜇

𝑗
, we obtain

𝑆
𝑘,𝑗

= 𝐸 [𝑧
𝑘
𝑦
𝑇

𝑗
] − 𝐸 [𝑧

𝑘
𝑧̂
𝑇

𝑗/𝑗−2
]𝐻
𝑇

𝑗
(𝐼 − Γ

𝑗
)

− 𝐸 [𝑧
𝑘
𝑧̂
𝑇

𝑗−1/𝑗−2
]𝐻
𝑇

𝑗−1
Γ
𝑗

− 𝑆
𝑘,𝑗−2

Π
−1

𝑗−2
𝑅
𝑇

𝑗,𝑗−2
− 𝑆
𝑘,𝑗−1

Π
−1

𝑗−1
𝑇
𝑇

𝑗,𝑗−1
, 2 < 𝑗 ≤ 𝑘,

𝑆
𝑘,2

= 𝐸 [𝑧
𝑘
𝑦
𝑇

2
] − 𝑆
𝑘,1
Π
−1

1
𝑇
𝑇

2,1
,

𝑆
𝑘,1

= 𝐸 [𝑧
𝑘
𝑦
𝑇

1
] .

(32)

(a) On the one hand, from (10) and independence
hypotheses, we have

𝐸 [𝑧
𝑘
𝑦
𝑇

𝑗
] = 𝐸 [𝑧

𝑘
𝑥
𝑇

𝑗
]

= 𝐸 [𝑧
𝑘
𝑧
𝑇

𝑗
]𝐻
𝑇

𝑗
(𝐼 − Γ

𝑗
) + 𝐸 [𝑧

𝑘
𝑧
𝑇

𝑗−1
]𝐻
𝑇

𝑗−1
Γ
𝑗

= 𝐴
𝑘
𝐺
𝑇

𝐵𝑗

, 𝑗 ≥ 2,

𝐸 [𝑧
𝑘
𝑦
𝑇

1
] = 𝐸 [𝑧

𝑘
𝑥
𝑇

1
] = 𝐸 [𝑧

𝑘
𝑧
𝑇

1
]𝐻
𝑇

1
= 𝐴
1
𝐵
𝑇

1
𝐻
𝑇

1
,

(33)

where Assumption 1 and expression (31) for 𝐺
𝐵𝑗
have

been used.
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(b) On the other hand, using again (16) for 𝑧̂
𝑗/𝑗−2

and
𝑧̂
𝑗−1/𝑗−2

and 𝐸[𝑧
𝑘
𝜇
𝑇

𝑖
] = 𝑆
𝑘,𝑖
, we have

𝐸 [𝑧
𝑘
𝑧̂
𝑇

ℎ/𝑗−2
]

= 𝐸[

[

𝑧
𝑘
(

𝑗−2

∑

𝑖=1

𝑆
ℎ,𝑖
Π
−1

𝑖
𝜇
𝑖
)

𝑇

]

]

=

𝑗−2

∑

𝑖=1

𝑆
𝑘,𝑖
Π
−1

𝑖
𝑆
𝑇

ℎ,𝑖
,

ℎ = 𝑗, 𝑗 − 1, 𝑗 > 2.

(34)

Therefore,

𝑆
𝑘,𝑗

= 𝐴
𝑘
𝐺
𝑇

𝐵𝑗

−

𝑗−2

∑

𝑖=1

𝑆
𝑘,𝑖
Π
−1

𝑖
𝑆
𝑇

𝑗,𝑖
𝐻
𝑇

𝑗
(𝐼 − Γ

𝑗
)

−

𝑗−2

∑

𝑖=1

𝑆
𝑘,𝑖
Π
−1

𝑖
𝑆
𝑇

𝑗−1,𝑖
𝐻
𝑇

𝑗−1
Γ
𝑗

− 𝑆
𝑘,𝑗−2

Π
−1

𝑗−2
𝑅
𝑇

𝑗,𝑗−2
− 𝑆
𝑘,𝑗−1

Π
−1

𝑗−1
𝑇
𝑇

𝑗,𝑗−1
, 2 < 𝑗 ≤ 𝑘,

𝑆
𝑘,2

= 𝐴
𝑘
𝐺
𝑇

𝐵2

− 𝑆
𝑘,1
Π
−1

1
𝑇
𝑇

2,1
,

𝑆
𝑘,1

= 𝐴
𝑘
𝐵
𝑇

1
𝐻
𝑇

1
,

(35)

and this expression guarantees that

𝑆
𝑘,𝑗

= 𝐴
𝑘
𝐽
𝑗
, 1 ≤ 𝑗 ≤ 𝑘, (36)

where 𝐽 is a function satisfying

𝐽
𝑗
= 𝐺
𝑇

𝐵𝑗

−

𝑗−2

∑

𝑖=1

𝐽
𝑖
Π
−1

𝑖
𝑆
𝑇

𝑗,𝑖
𝐻
𝑇

𝑗
(𝐼 − Γ

𝑗
) −

𝑗−2

∑

𝑖=1

𝐽
𝑖
Π
−1

𝑖
𝑆
𝑇

𝑗−1,𝑖
𝐻
𝑇

𝑗−1
Γ
𝑗

− 𝐽
𝑗−2

Π
−1

𝑗−2
𝑅
𝑇

𝑗,𝑗−2
− 𝐽
𝑗−1

Π
−1

𝑗−1
𝑇
𝑇

𝑗,𝑗−1
, 𝑗 > 2,

𝐽
2
= 𝐺
𝑇

𝐵2

− 𝐽
1
Π
−1

1
𝑇
𝑇

2,1
,

𝐽
1
= 𝐵
𝑇

1
𝐻
𝑇

1
.

(37)

Hence, denoting

𝑂
𝑘
=

𝑘

∑

𝑖=1

𝐽
𝑖
Π
−1

𝑖
]
𝑖
, 𝑂

0
= 0, (38)

which obviously satisfies (25), expression (24) for the predic-
tors and filter is proved.

Next, taking into account (36) and denoting

𝑟
𝑘
= 𝐸 [𝑂

𝑘
𝑂
𝑇

𝑘
] =

𝑘

∑

𝑗=1

𝐽
𝑗
Π
−1

𝑗
𝐽
𝑇

𝑗
, 𝑘 ≥ 1; 𝑟

0
= 0, (39)

expression (26) for 𝐽
𝑘
is easily derived just making 𝑗 = 𝑘 in

(37). The recursive formula (27) for 𝑟
𝑘
is immediately clear

from (39).

Expression (28) for 𝜇
𝑘
is derived by substituting 𝑧̂

𝑘/𝑘−2
=

𝐴
𝑘
𝑂
𝑘−2

and 𝑧̂
𝑘−1/𝑘−2

= 𝐴
𝑘−1

𝑂
𝑘−2

in (23) and considering
expression (31) for 𝐺

𝐴𝑘
.

To prove recursive expression (29) for 𝑇
𝑘,𝑘−1

=

𝐸[𝑦
𝑘
𝜇
𝑇

𝑘−1
] = 𝐸[𝑥

𝑘
𝜇
𝑇

𝑘−1
] + 𝐸[V

𝑘
𝜇
𝑇

𝑘−1
], 𝑘 ≥ 2, we calculate both

expectations as follows.

(1) From expression (10) for 𝑥
𝑘
, using the independence

properties and 𝐸[𝑧
ℎ
𝜇
𝑇

𝑘−1
] = 𝑆
ℎ,𝑘−1

= 𝐴
ℎ
𝐽
𝑘−1

, for ℎ =

𝑘, 𝑘 − 1, we have

𝐸 [𝑥
𝑘
𝜇
𝑇

𝑘−1
] = 𝐺
𝐴𝑘
𝐽
𝑘−1

+ Γ
𝑘
𝐸 [𝐻̃
𝑘−1

𝑧
𝑘−1

𝜇
𝑇

𝑘−1
] , 𝑘 > 2,

(40)

and since

𝐸 [𝐻̃
𝑘−1

𝑧
𝑘−1

𝜇
𝑇

𝑘−1
]

= 𝐸 [𝐻̃
𝑘−1

𝑧
𝑘−1

𝑦
𝑇

𝑘−1
] = 𝐸 [𝐻̃

𝑘−1
𝑧
𝑘−1

𝑥
𝑇

𝑘−1
]

= 𝐸 [𝐻̃
𝑘−1

𝑧
𝑘−1

𝑧
𝑇

𝑘−1
𝐻̃
𝑇

𝑘−1
] (𝐼 − Γ

𝑘−1
) ,

(41)

it is clear that

𝐸 [𝑥
𝑘
𝜇
𝑇

𝑘−1
] = 𝐺
𝐴𝑘
𝐽
𝑘−1

+ Γ
𝑘
𝐾
𝐻̃𝑧

𝑘−1
(𝐼 − Γ

𝑘−1
) , 𝑘 > 2.

(42)

Analogously, 𝐸[𝑥
2
𝜇
𝑇

1
] = 𝐺
𝐴2
𝐽
1
+ Γ
2
𝐾
𝐻̃𝑧

1
.

(2) Using that𝑦
𝑘−1/𝑘−2

= ∑
𝑘−2

𝑗=1
𝑇
𝑘−1,𝑗

Π
−1

𝑗
𝜇
𝑗
and𝐸[V

𝑘
𝜇
𝑇

𝑗
] =

0, 𝑗 = 1, . . . , 𝑘 − 3, we have

𝐸 [V
𝑘
𝜇
𝑇

𝑘−1
]

= 𝐸 [V
𝑘
𝑦
𝑇

𝑘−1
] − 𝐸 [V

𝑘
𝑦
𝑇

𝑘−1/𝑘−2
]

= 𝐸 [V
𝑘
𝑦
𝑇

𝑘−1
] − 𝐸 [V

𝑘
𝜇
𝑇

𝑘−2
]Π
−1

𝑘−2
𝑇
𝑇

𝑘−1,𝑘−2
, 𝑘 > 2,

(43)

and since 𝐸[V
𝑘
𝑦
𝑇

𝑘−1
] = 𝐸[V

𝑘
V𝑇
𝑘−1

] and 𝐸[V
𝑘
𝜇
𝑇

𝑘−2
] =

𝐸[V
𝑘
𝑦
𝑇

𝑘−2
] = 𝐸[V

𝑘
V𝑇
𝑘−2

], we obtain

𝐸 [V
𝑘
𝜇
𝑇

𝑘−1
] = 𝑅
𝑘,𝑘−1

− 𝑅
𝑘,𝑘−2

Π
−1

𝑘−2
𝑇
𝑇

𝑘−1,𝑘−2
, 𝑘 > 2. (44)

Clearly, 𝐸[V
2
𝜇
𝑇

1
] = 𝐸[V

2
𝑦
𝑇

1
] = 𝐸[V

2
V𝑇
1
] = 𝑅
2,1
.

So expression (29) is proved.
Finally, formula (30) for the innovation covariancematri-

ces is obtained by writing Π
𝑘
= 𝐸[𝑦

𝑘
𝑦
𝑇

𝑘
] − 𝐸[𝑦

𝑘/𝑘−1
𝑦
𝑇

𝑘/𝑘−1
],

using the expression for the observation predictor, 𝑦
𝑘/𝑘−1

,
and taking into account that 𝐸[𝑂

𝑘
𝑂
𝑇

𝑘
] = 𝑟
𝑘
and 𝐸[𝑂

𝑘
𝜇
𝑇

𝑘
] =

𝐽
𝑘
.

4.1. Filtering Error Covariance Matrices. The performance of
the LS estimators 𝑧̂

𝑘/𝐿
, 𝐿 ≤ 𝑘, is measured by the covariance

matrices of the estimation errors, Σ
𝑘/𝐿

= 𝐸[(𝑧
𝑘
− 𝑧̂
𝑘/𝐿

)(𝑧
𝑘
−

𝑧̂
𝑘/𝐿

)
𝑇

]. Since the error of a LS linear estimator is orthogonal
to the estimator, using Assumption 1, thesematrices are given
by

Σ
𝑘/𝐿

= 𝐴
𝑘
𝐵
𝑇

𝑘
− 𝐸 [𝑧̂

𝑘/𝐿
𝑧̂
𝑇

𝑘/𝐿
] , 𝐿 ≤ 𝑘. (45)



8 Mathematical Problems in Engineering

Then, by using expression (24) and taking into account that
𝑟
𝐿
= 𝐸[𝑂

𝐿
𝑂
𝑇

𝐿
], we obtain the following expressions for the

prediction and filtering error covariance matrices:

Σ
𝑘/𝐿

= 𝐴
𝑘
[𝐵
𝑇

𝑘
− 𝑟
𝐿
𝐴
𝑇

𝑘
] , 𝐿 ≤ 𝑘. (46)

Note that the computation of the prediction and filtering
error covariance matrices does not depend on the current
set of observations, as it only needs the matrices 𝐴

𝑘
and 𝐵

𝑘
,

which are known, and the matrices 𝑟
𝐿
, which are recursively

calculated from (27); hence, the error covariance matrices
provide a measure of the estimator performance even before
we get any observed data.

5. Fixed-Point Smoothing Algorithm

In this section, we present a recursive algorithm for the LS
linear fixed-point smoothers, 𝑧̂

𝑘/𝐿
, 𝐿 > 𝑘, where 𝑘 is fixed

and recursions for increasing 𝐿 are proposed. By starting
from the general expression for the LS linear estimator of
the signal, 𝑧̂

𝑘/𝐿
= ∑
𝐿

𝑗=1
𝑆
𝑘,𝑗
Π
−1

𝑗
𝜇
𝑗
, where 𝑆

𝑘,𝑗
= 𝐸[𝑧

𝑘
𝜇
𝑇

𝑗
] and

Π
𝑗
= 𝐸[𝜇

𝑗
𝜇
𝑇

𝑗
], it is clear that the linear fixed-point smoothers,

𝑧̂
𝑘/𝐿

, 𝐿 > 𝑘, can be recursively calculated as

𝑧̂
𝑘/𝐿

= 𝑧̂
𝑘/𝐿−1

+ 𝑆
𝑘,𝐿
Π
−1

𝐿
𝜇
𝐿
, 𝐿 > 𝑘, (47)

with the linear filter, 𝑧̂
𝑘/𝑘

, as initial condition.
Hence, to calculate the fixed-point smoothing estimators,

𝑧̂
𝑘/𝐿

, for 𝐿 > 𝑘 (𝑘 fixed), we need a recursive relation in 𝐿 for
𝑆
𝑘,𝐿

= 𝐸[𝑧
𝑘
𝜇
𝑇

𝐿
] = 𝐸[𝑧

𝑘
𝑦
𝑇

𝐿
] − 𝐸[𝑧

𝑘
𝑦
𝑇

𝐿/𝐿−1
], 𝐿 > 𝑘.

On the one hand, as in the proof of Theorem 13, using
(10) and taking into account the independence hypotheses,
together with Assumption 1 and expression (31) for 𝐺

𝐴𝐿
, we

have
𝐸 [𝑧
𝑘
𝑦
𝑇

𝐿
] = 𝐸 [𝑧

𝑘
𝑥
𝑇

𝐿
]

= 𝐸 [𝑧
𝑘
𝑧
𝑇

𝐿
]𝐻
𝑇

𝐿
(𝐼 − Γ

𝐿
) + 𝐸 [𝑧

𝑘
𝑧
𝑇

𝐿−1
]𝐻
𝑇

𝐿−1
Γ
𝑗

= 𝐵
𝑘
𝐺
𝑇

𝐴𝐿

, 𝐿 > 𝑘.

(48)

On the other hand, the expression of𝑦𝑇
𝐿/𝐿−1

obtained from
(28) for 𝑘 = 𝐿 yields

𝐸 [𝑧
𝑘
𝑦
𝑇

𝐿/𝐿−1
] = 𝐸 [𝑧

𝑘
𝑂
𝑇

𝐿−2
] 𝐺
𝑇

𝐴𝐿

+ 𝑆
𝑘,𝐿−2

Π
−1

𝐿−2
𝑅
𝑇

𝐿,𝐿−2

+ 𝑆
𝑘,𝐿−1

Π
−1

𝐿−1
𝑇
𝑇

𝐿,𝐿−1
, 𝐿 > 𝑘, (𝐿 > 2) ,

𝐸 [𝑧
1
𝑦
𝑇

2/1
] = 𝑆
1,1
Π
−1

1
𝑇
𝑇

2,1
= 𝐴
1
𝐽
1
Π
−1

1
𝑇
𝑇

2,1
.

(49)

Therefore, defining the function 𝐸
𝑘,𝐿

= 𝐸[𝑧
𝑘
𝑂
𝑇

𝐿
], the

following expression holds:

𝑆
𝑘,𝐿

= [𝐵
𝑘
− 𝐸
𝑘,𝐿−2

] 𝐺
𝑇

𝐴𝐿

− 𝑆
𝑘,𝐿−2

Π
−1

𝐿−2
𝑅
𝑇

𝐿,𝐿−2

− 𝑆
𝑘,𝐿−1

Π
−1

𝐿−1
𝑇
𝑇

𝐿,𝐿−1
, 𝐿 > 𝑘, (𝐿 > 2) ,

𝑆
1,2

= 𝐵
1
𝐺
𝑇

𝐴2

− 𝑆
1,1
Π
−1

1
𝑇
𝑇

2,1
,

(50)

with initial conditions given by 𝑆
𝑘,𝑘−1

= 𝐴
𝑘
𝐽
𝑘−1

and 𝑆
𝑘,𝑘

=

𝐴
𝑘
𝐽
𝑘
, from (36).
Finally, we need a recursive expression for 𝐸

𝑘,𝐿
, 𝐿 > 𝑘 −

2. Taking into account that, from the orthogonality property,
𝐸
𝑘,𝑘−1

= 𝐸[𝑧
𝑘
𝑂
𝑇

𝑘−1
] = 𝐸[𝑧̂

𝑘/𝑘−1
𝑂
𝑇

𝑘−1
] and 𝐸

𝑘,𝑘
= 𝐸[𝑧

𝑘
𝑂
𝑇

𝑘
] =

𝐸[𝑧̂
𝑘/𝑘

𝑂
𝑇

𝑘
], using (24), and that 𝑟

𝑘
= 𝐸[𝑂

𝑘
𝑂
𝑇

𝑘
], we have that

𝐸
𝑘,𝑘−1

= 𝐴
𝑘
𝑟
𝑘−1

and 𝐸
𝑘,𝑘

= 𝐴
𝑘
𝑟
𝑘
. Now, using (25) for 𝑂

𝐿
, the

following formula is immediately deduced:

𝐸
𝑘,𝐿

= 𝐸
𝑘,𝐿−1

+ 𝑆
𝑘,𝐿
Π
−1

𝐿
𝐽
𝑇

𝐿
, 𝐿 > 𝑘. (51)

Summarizing these results, the following recursive fixed-
point smoothing algorithm is obtained.

Theorem 14. The fixed-point smoother 𝑧̂
𝑘/𝐿

, with, 𝐿 > 𝑘, of
the signal 𝑧

𝑘
is calculated as

𝑧̂
𝑘/𝐿

= 𝑧̂
𝑘/𝐿−1

+ 𝑆
𝑘,𝐿
Π
−1

𝐿
𝜇
𝐿
, 𝐿 > 𝑘, (52)

with initial condition given by the filter, 𝑧̂
𝑘/𝑘

, and

𝑆
𝑘,𝐿

= [𝐵
𝑘
− 𝐸
𝑘,𝐿−2

] 𝐺
𝑇

𝐴𝐿

− 𝑆
𝑘,𝐿−2

Π
−1

𝐿−2
𝑅
𝑇

𝐿,𝐿−2

− 𝑆
𝑘,𝐿−1

Π
−1

𝐿−1
𝑇
𝑇

𝐿,𝐿−1
, 𝐿 > 𝑘, (𝐿 > 2) ,

𝑆
1,2

= 𝐵
1
𝐺
𝑇

𝐴2

− 𝑆
1,1
Π
−1

1
𝑇
𝑇

2,1
,

(53)

with 𝑆
𝑘,𝑘−1

= 𝐴
𝑘
𝐽
𝑘−1

and 𝑆
𝑘,𝑘

= 𝐴
𝑘
𝐽
𝑘
.

The matrices 𝐸
𝑘,𝐿

satisfy the following recursive formula:

𝐸
𝑘,𝐿

= 𝐸
𝑘,𝐿−1

+ 𝑆
𝑘,𝐿
Π
−1

𝐿
J𝑇
𝐿
, 𝐿 > 𝑘;

𝐸
𝑘,𝑘−1

= 𝐴
𝑘
𝑟
𝑘−1

, 𝐸
𝑘,𝑘

= 𝐴
𝑘
𝑟
𝑘
.

(54)

The filter 𝑧̂
𝑘/𝑘

, the matrices 𝐺
𝐴𝐿
, 𝑇
𝐿,𝐿−1

, and 𝐽
𝐿
, and the

innovations ]
𝐿
and their covariance matrices Π

𝐿
are obtained

from the linear filtering algorithm given in Theorem 13.

Using the recursive formula of the fixed-point smoother,
the following recursive expression for the fixed-point smooth-
ing error covariance matrices, Σ

𝑘/𝐿
= 𝐸[(𝑧

𝑘
− 𝑧̂
𝑘/𝐿

)(𝑧
𝑘
−

𝑧̂
𝑘/𝐿

)
𝑇

], 𝐿 > 𝑘, is immediately deduced:

Σ
𝑘/𝐿

= Σ
𝑘/𝐿−1

− 𝑆
𝑘,𝐿
Π
−1

𝐿
𝑆
𝑇

𝑘/𝐿
, 𝐿 > 𝑘, (55)

with the filtering error covariance matrix, Σ
𝑘/𝑘

, as initial
condition.

6. Numerical Simulation Example

In this section, the applicability of the proposed prediction,
filtering, and fixed-point smoothing algorithms is shown by
a numerical simulation example with two kinds of mea-
sured outputs. For this purpose, the signal values and their
observations have been simulated inMATLAB and the signal
estimates have been calculated, as well as the corresponding
error variances, which provide a measure of the estimation
accuracy.

It is assumed that {𝑧
𝑘
; 𝑘 ≥ 1} is a zero-mean scalar signal

with autocovariance function 𝐸[𝑧
𝑘
𝑧
𝑗
] = 1.025641 × 0.95

𝑘−𝑗,
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𝑗 ≤ 𝑘, which is factorizable according to Assumption 1 just
taking, for example, 𝐴

𝑘
= 1.025641 × 0.95

𝑘 and 𝐵
𝑘
= 0.95

−𝑘.
For the simulations, the signal is assumed to be generated by
an autoregressive model, 𝑧

𝑘+1
= 0.95𝑧

𝑘
+ 𝑤
𝑘
, where {𝑤

𝑘
; 𝑘 ≥

1} is a zero-mean white Gaussian noise with variance 0.1, for
all 𝑘.

Measurements coming from two sensors are considered
and, according to the proposed observation model, it is
assumed that, at any sampling time 𝑘 ≥ 2, the measured
output from the 𝑖th sensor, 𝑦𝑖

𝑘
, can be randomly delayed by

one sampling period during network transmission; that is,

𝑦
𝑖

𝑘
= (1 − 𝛾

𝑖

𝑘
) 𝑦
𝑖

𝑘
+ 𝛾
𝑖

𝑘
𝑦
𝑖

𝑘−1
, 𝑘 ≥ 2; 𝑦

𝑖

1
= 𝑦
𝑖

1
, 𝑖 = 1, 2,

(56)

where {𝛾𝑖
𝑘
; 𝑘 > 1}, 𝑖 = 1, 2, are independent sequences of

independent Bernoulli random variables with 𝑃[𝛾
1

𝑘
= 1] =

𝑝
𝑖, ∀𝑘 > 1.

Case 1 (systems with observation multiplicative noises).
Consider measurements coming from two sensors,

𝑦
1

𝑘
= (1 + 0.1𝜖

1

𝑘
) 𝑧
𝑘
+ Ṽ1
𝑘
, 𝑘 ≥ 1,

𝑦
2

𝑘
= (0.5 + 0.1𝜖

2

𝑘
) 𝑧
𝑘
+ Ṽ2
𝑘
, 𝑘 ≥ 1,

(57)

where the multiplicative noises {𝜖𝑖
𝑘
; 𝑘 ≥ 1}, 𝑖 = 1, 2, are

independent zero-mean Gaussian white processes with unit
variance, and the additive noises {Ṽ𝑖

𝑘
; 𝑘 ≥ 1}, 𝑖 = 1, 2, are

defined by Ṽ𝑖
𝑘
= 𝑐
𝑖
(𝜂
𝑘
+ 𝜂
𝑘+1

), 𝑖 = 1, 2, with 𝑐
1
= 1, 𝑐

2
= 0.5,

and {𝜂
𝑘
; 𝑘 ≥ 1} a zero-mean Gaussian white process with

variance 0.5. Clearly, according to Assumption 4, the additive
noises {Ṽ𝑖

𝑘
; 𝑘 ≥ 1} are one-step autocorrelated with

𝑅̃
𝑖𝑖

𝑘,𝑘
= 𝑐
2

𝑖
, 𝑅̃

𝑖𝑖

𝑘,𝑘+1
= 0.5𝑐

2

𝑖
,

𝑅̃
𝑖𝑗

𝑘,𝑘
= 𝑐
𝑖
𝑐
𝑗
, 𝑅̃

𝑖𝑗

𝑘,𝑘+1
= 0.5𝑐

𝑖
𝑐
𝑗
.

(58)

Firstly, to compare the performance of the predictor,
𝑧̂
𝑘/𝑘−1

, filter, 𝑧̂
𝑘/𝑘

, and fixed-point smoothers, 𝑧̂
𝑘/𝐿

, with 𝐿 =

𝑘 + 1, 𝑘 + 2, 𝑘 + 3, the corresponding error variances are
calculated considering constant delay probabilities, 𝑝1 = 0.1

and 𝑝
2

= 0.3. The results are displayed in Figure 1 which
shows that the error variances corresponding to the fixed-
point smoother are less than those of the filter and the filtering
error variances are smaller than the prediction ones, thus
confirming that the smoother has the best performance while
the predictor has the worst performance. This figure also
shows that the performance of the fixed-point smoothers
improves as the number of available observations increases.
Analogous results are obtained for other values of the proba-
bilities 𝑝𝑖, 𝑖 = 1, 2.

Next, we study the filtering error variances, Σ
𝑘/𝑘

, when
the delay probabilities 𝑝1 and 𝑝2 are varied from 0.1 to 0.9. In
all the cases, the filtering error variances present insignificant
variation from the 10th iteration onwards and, consequently,
only the error variances at a specific iteration are shown here.
Figure 2(a) displays the filtering error variances at 𝑘 = 50
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Figure 1: Prediction, filtering, and smoothing error variances, when
𝑝
1

= 0.1 and 𝑝2 = 0.3.

versus 𝑝1 (for constant values of 𝑝2) and Figure 2(b) shows
these variances versus 𝑝2 (for constant values of 𝑝1).

From these figures it is concluded that the performance
of the filter improves as the delay probabilities, 𝑝𝑖, 𝑖 =

1, 2, decrease. Consequently, more accurate estimations are
obtained as 𝑝𝑖 comes nearer to 0, a case in which all the
observations arrive on time.

Case 2 (systems with missing measurements). As in [28],
consider missing measurements from two sensors, with
different missing characteristics and noise correlation:

𝑦
𝑖

𝑘
= 𝜃
𝑖

𝑘
𝑧
𝑘
+ Ṽ𝑖
𝑘
, 𝑘 ≥ 1, 𝑖 = 1, 2, (59)

where the noise processes {Ṽ𝑖
𝑘
; 𝑘 ≥ 1}, 𝑖 = 1, 2, are

the same as those in Example 1. Two different independent
sequences of random variables {𝜃𝑖

𝑘
; 𝑘 ≥ 1}, 𝑖 = 1, 2, with

a probability distribution over the interval [0, 1] are used to
model the missing phenomenon: {𝜃1

𝑘
; 𝑘 ≥ 1} is a sequence of

independent variables with 𝑃[𝜃
1

𝑘
= 0] = 0.1, 𝑃[𝜃

1

𝑘
= 0.5] =

0.5, and 𝑃[𝜃
1

𝑘
= 1] = 0.4, and {𝜃

2

𝑘
; 𝑘 ≥ 1} is a sequence of

independent Bernoulli variables with 𝑃[𝜃
2

𝑘
= 1] = 𝜃. For all

𝑘, themeans and variances of these variables are𝐸[𝜃1
𝑘
] = 0.65,

𝐸[𝜃
2

𝑘
] = 𝜃, Var[𝜃1

𝑘
] = 0.1025, and Var[𝜃2

𝑘
] = 𝜃(1 − 𝜃).

For different values of the missing probability 𝜃 and
the delay probabilities 𝑝

1 and 𝑝
2, a comparative analysis,

similar to that carried out in Case 1, based on the estimation
error variances of the predictor, filter, and smoother was
performed. For all values, the results were similar to those
given in Figure 1, showing that the fixed-point smoothing
error variances are less than the filtering ones which, in
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1
).

turn, are smaller than the prediction error variances, thus
confirming the comments on Figure 1.

Next, considering a fixed value of 𝜃, namely, 𝜃 = 0.5,
the filtering error variances have been calculated for different
values of the delay probabilities 𝑝1 and 𝑝

2. Specifically, the
values 𝑝

1

= 0.1, 0.3, 0.4 and 𝑝
2

= 0.1, 0.3, 0.4, 0.5
have been used. The results are given in Figure 3 which
shows that, as the delay probability 𝑝

1 or 𝑝2 increases, the
filtering error variances become greater and, consequently,
worse estimations are obtained. Also, a similar study to that
performed in Figure 2 has been carried out in this case;
specifically, for fixed values of 𝜃 and fixed delay probability
in one of the sensors, the filtering error variances have been
analyzed for different delay probabilities in the other sensor.
The results are omitted as they are completely analogous to
those displayed in Figure 2.

Also, to analyze the performance of the proposed esti-
mators versus the probability 𝜃 that the signal is present in
the measurements of the second sensor, the filtering error
variances have been calculated for 𝑝1 = 0.1, 𝑝2 = 0.3, and
𝜃 varying from 𝜃 = 0.3 to 𝜃 = 0.8. The results are displayed
in Figure 4; this figure shows that, as 𝜃 increases, the filtering
error variances become smaller and, hence, better estimations
are obtained. Analogous conclusions are deduced for other
values of 𝑝1, 𝑝2, and 𝜃.

Finally, we present a comparative analysis of the proposed
filter and the following filters:

(a) the suboptimal Kalman-type filter [13] for systems
with uncorrelated white noises and one-step random
delays,

(b) the optimal linear filter based on covariance informa-
tion [15] for the same class of systems considered in
[13],

(c) the centralized Kalman-type filter [26] for systems
with correlated and cross-correlated noises,

(d) the optimal centralized filter [28] for systems with
missing measurements and correlated and cross-
correlated noises.

Considering the values 𝜃 = 0.75, 𝑝1 = 0.4, and 𝑝
2

=

0.5 and using one thousand independent simulations, the
different filtering estimates were compared using the mean
square error (MSE) at each time instant 𝑘, which is calculated
as MSE

𝑘
= (1/1000)∑

1000

𝑠=1
(𝑥
(𝑠)

𝑘
− 𝑥
(𝑠)

𝑘/𝑘
)
2

, where {𝑥(𝑠)
𝑘
; 1 ≤ 𝑘 ≤

50} denote the 𝑠th set of artificially simulated data and 𝑥
(𝑠)

𝑘/𝑘

is the filter at the sampling time 𝑘 in the 𝑠th simulation run.
The results are displayed in Figure 5, which shows that (a)
the proposed filtering algorithm provides better estimations
than the other four filtering algorithms; (b) the performance
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of the optimal filter [15] is better than that of the suboptimal
filter [13]; (c) the performance of the filters [13, 15] is better
than that of the filters [26, 28] since these filters ignore any
delay assumption; (d) the filtering algorithm in [26] provides
the worst estimations as this filter considers correlated and
cross-correlated noises, but neither missing observations nor
delayed measurements are taken into account.

7. Conclusions

The optimal least-squares linear estimation problem from
randomly delayed measurements has been investigated for
discrete-timemultisensor linear stochastic systems with both
random parameter matrices and correlated noises in the
measured outputs. The main contributions are summarized
as follows.

(1) The currentmultisensor observationmodel considers
simultaneously one-step random delayed measure-
ments with different delay rates and both random
parameter matrices and correlated noises in the
measured outputs. This observation model covers
those situations where the sensor noises are one-step
autocorrelated and also one-step cross-correlations
between different sensor noises are considered. This
correlation assumption is valid in a wide spectrum of
applications, for example, in target tracking systems
where a target is observed by multiple sensors and
all of them operate in the same noisy environment.
A similar study to that performed in this paper
would allow us to generalize the current results by
considering more general situations in which the
signal and the observation noises are correlated. This
extension would cover systems where the sensor and
process noises are correlated and would constitute an
interesting research topic.

(2) The random delay in each sensor is modelled by a
sequence of independent Bernoulli random variables,
whose parameters represent the delay probabilities.
Another interesting future direction would be to
complement the current study considering randomly
delayedmeasurements correlated at consecutive sam-
pling times, thus covering situations where two suc-
cessive observations cannot be delayed. This kind of
delay is usual in situations such as network conges-
tion, random failures in the transmissionmechanism,
or data inaccessibility at certain times.

(3) Using covariance information, recursive optimal LS
linear prediction, filtering, and smoothing algo-
rithms, with a simple computational procedure, are
derived by an innovation approach without requiring
full knowledge of the state-space model generating
the signal process.

(4) The applicability of the proposed algorithms is illus-
trated by a numerical simulation example, where a
scalar state process generated by a first-order autore-
gressive model is estimated from delayed measure-
ments coming from two sensors, in the following
cases: (1) systems with observation multiplicative
noises and (2) systems with missing measurements,
both with correlated observation noises.
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[4] R. Caballero-Águila, A. Hermoso-Carazo, and J. Linares-Pérez,
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Up to now, most of the academic researches about the large deviation and risk theory are under the framework of the classical
linear expectations. But motivated by problems of model uncertainties in statistics, measures of risk, and superhedging in finance,
sublinear expectations are extensively studied. In this paper, we obtain a type of large deviation principle under the sublinear
expectation. This result is a new expression of the Gärtner-Ellis theorem under the sublinear expectations which is in the classical
theory of large deviations. In addition, we introduce a new process under the sublinear expectations, that is, the𝐺-Poisson process.
We give an application of our result and obtain the rate function of the compound 𝐺-Poisson process in the upper bound of large
deviations for capacities. The application of our result opens a new field for the research of risk theory in the future.

1. Introduction

Large deviation theory is one of the key techniques ofmodern
probability, a role which is emphasized by the recent award of
the Abel prize to S.R.S. Varadhan, one of the pioneers of the
subject. The large deviation principle characterizes the limit-
ing behavior as 𝜀 → ∞ of a family of probability measures
𝜇
𝜀
in terms of a rate function. Also Cramér’s theorem has

been widely known for a long time as a fundamental result in
large deviations. It is very useful in many fields. But Cramér’s
theorem is limited to the i.i.d. case. However, a glance at the
proof should be enough to convince the reader that some
extension to the non-i.i.d. case is possible. As described in
[1], Gärtner-Ellis theorem is a generalization of Cramér’s
theorem in non-i.i.d situation to conclusions.

Motivated by problems of model uncertainties in statis-
tics, measures of risk, and superhedging in finance, sublinear
expectations are extensively studied [2]. Since the paper [3]
on coherent riskmeasures, authors have beenmore andmore
interested in sublinear expectations [4, 5]. By Peng [6], we
know that a sublinear expectation 𝐸 can be represented as
the upper expectation of a set of linear expectations {𝐸

𝜃
:

𝜃 ∈ Θ}; that is, 𝐸[⋅] = sup
𝜃∈Θ
𝐸
𝜃
[⋅]. In most cases, this

set is often treated as an uncertain model of probabilities
{𝑃

𝜃
: 𝜃 ∈ Θ} and the notion of sublinear expectation

provides a robust way to measure a risk loss 𝑋. In fact,

nonlinear expectation theory provides many rich, flexible,
and elegant tools and plays an important role inmany aspects.
In particular, its important application in stochastic dom-
inance, stochastic differential game, financial mathematics,
economics, and partial differential equations attracted a large
number ofmathematicians, economists, and financial experts
to join the research, for instance, the application of nonlinear
expectation in the dynamic measurement and dominance
of financial risk, backward stochastic differential equation
theory and its application in financial products innovation,
pricing, and so forth. We can see its recent developments
from the following literature [7–12].

In this paper, we are interested in

𝐸 [⋅] = sup
𝑃∈P

𝐸
𝑃
[⋅] , (1)

where P is a set of probability measures, especially set
𝑉(𝐴) = 𝐸[𝐼

𝐴
] = sup

𝑃∈P𝐸𝑃
[𝐼

𝐴
], ∀𝐴 ∈ F. Obviously, 𝑉 is a

capacity. Under the sublinear expectation, the upper bound
of Cramér’s theorem has come to a conclusion similar to
the linear expectation (see [13]). On this basis, additionally,
the main aim of this paper is to obtain Gärtner-Ellis’s upper
bound for the capacity 𝑉.

This paper is organized as follows. In Section 2, we give
some notions and lemmas that are useful in this paper. In
Section 3, we give the main result including the proof. In
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Section 4, we give a brief application of our result in the
classical risk model.

2. Preliminaries

We present some preliminaries in the theory of sublinear
expectations. More details of this section can be found in
Peng [6, 14, 15].

Definition 1. Let Ω be a given set and letH be a linear space
of real valued functions defined on Ω. We assume that all
constants are in H and that 𝑋 ∈ H implies |𝑋| ∈ H.
H is considered as the space of our “random variables.” A
nonlinear expectation 𝐸 on H is a functional 𝐸 : H 󳨃→ R

satisfying the following properties: for all𝑋,𝑌 ∈H, one has

(a) monotonicity: if𝑋 ⩾ 𝑌, then 𝐸[𝑋] ⩾ 𝐸[𝑌];
(b) constant preserving: 𝐸[𝑐] = 𝑐, 𝑐 ∈ R.

The triple (Ω,H, 𝐸) is called a nonlinear expectation
space (compare with a probability space (Ω,H, 𝑃)). We
are mainly concerned with sublinear expectation where the
expectation 𝐸 satisfies also

(c) subadditivity: 𝐸[𝑋] − 𝐸[𝑌] ⩽ 𝐸[𝑋 − 𝑌];
(d) positive homogeneity: 𝐸[𝜆𝑋] = 𝜆𝐸[𝑋], ∀𝜆 ⩾ 0.

If only (c) and (d) are satisfied, 𝐸 is called a sublinear
functional.

The following representation theorem for sublinear
expectations is very useful (see Peng [6, 15] for the proof).

Lemma 2. Let 𝐸 be a sublinear functional defined on (Ω,H);
that is, (c) and (d) hold for 𝐸. Then there exists a family {𝐸

𝜃
:

𝜃 ∈ Θ} of linear functionals on (Ω,H) such that

𝐸 [𝑋] = max
𝜃∈Θ

𝐸
𝜃
[𝑋] . (2)

If (a) and (b) also hold, then 𝐸
𝜃
are linear expectations for 𝜃 ∈

Θ. If we make, furthermore, the following assumption.

(H1) For each sequence {𝑋
𝑛
}
∞

𝑛=1
⊂ H such that 𝑋

𝑛
(𝜔) ↓ 0

for 𝜔, one has 𝐸[𝑋
𝑛
] ↓ 0.

Then for each 𝜃 ∈ Θ, there exists a unique (𝜎-additive)
probability measure 𝑃

𝜃
defined on (Ω, 𝜎(H)) such that

𝐸
𝜃
[𝑋] = ∫

Ω

𝑋(𝜔) 𝑑𝑃
𝜃
(𝜔) , 𝑋 ∈H. (3)

In this paper, we are interested in the following sublinear
expectation:

𝐸 [⋅] = sup
𝑃∈P

𝐸
𝑃
[⋅] , (4)

where P is a set of probability measures. Let Ω be a given
set and let F be a 𝜎-algebra. Define 𝑉(𝐴) := 𝐸[𝐼

𝐴
] =

sup
𝑃∈P𝐸𝑃

[𝐼
𝐴
], ∀𝐴 ∈ F; then 𝑉 is a capacity.

Let 𝐶(R𝑛

) denote the space of continuous functions
defined on R𝑛.

Now we recall some important notions of sublinear
expectations distributions (see Peng [6, 14, 15]).

Definition 3. Let 𝑋
1
and 𝑋

2
be two random variables in

a sublinear expectation space (Ω,F, 𝐸). They are called
identically distributed, denoted by 𝑋

1
∼ 𝑋

2
, if for 𝜑 ∈ 𝐶(R),

𝐸[𝜑(𝑋
1
)] and 𝐸[𝜑(𝑋

2
)] exist; then one has

𝐸 [𝜑 (𝑋
1
)] = 𝐸 [𝜑 (𝑋

2
)] . (5)

Definition 4. In a sublinear expectation space (Ω,F, 𝐸), a
random vector 𝑌 = (𝑌

1
, . . . , 𝑌

𝑛
) is said to be independent

of another random vector 𝑋 = (𝑋
1
, . . . , 𝑋

𝑚
), if for 𝜑 ∈

𝐶(R𝑚+𝑛

), 𝐸[𝜑(𝑋, 𝑌)] and 𝐸[𝐸[𝜑(𝑥, 𝑌)]
𝑥=𝑋

] exist; then one
has

𝐸 [𝜑 (𝑋, 𝑌)] = 𝐸 [𝐸[𝜑 (𝑥, 𝑌)]
𝑥=𝑋

] . (6)

We conclude this section with some notations on large
deviations under a sublinear expectation [16].

Let 𝑆 be a topology space and S be a 𝜎-algebra on 𝑆. Let
(𝑈

𝑛
, 𝑛 ≥ 1) be a family of measurable maps fromΩ into 𝑆 and

𝑏(𝑛), 𝑛 ≥ 1 be a positive function satisfying 𝑏(𝑛) → ∞ as
𝑛 → ∞. A nonnegative function 𝐼 on 𝑆 is called a (good)
rate function if {𝐼 ≤ 𝑙} is (compact) closed for all 0 ≤ 𝑙 < ∞.

(𝑉(𝑈
𝑛
∈ ⋅), 𝑛 ≥ 1) is said to satisfy large deviation

principle (LDP) with speed 𝑏(𝑛) and with rate function 𝐼(𝑥)
if for any measurable closed subset 𝐹 ⊂ 𝑆,

lim sup
𝑛→∞

1

𝑏 (𝑛)
log𝑉 (𝑈

𝑛
∈ 𝐹) ≤ −inf

𝑥∈𝐹

𝐼 (𝑥) (7)

and for any measurable open subset 𝑂 ⊂ 𝑆,

lim inf
𝑛→∞

1

𝑏 (𝑛)
log𝑉 (𝑈

𝑛
∈ 𝑂) ≥ −inf

𝑥∈𝑂

𝐼 (𝑥) . (8)

Equations (7) and (8) are referred, respectively, to as upper
bound of large deviations (ULD) and lower bound of large
deviations (LLD).

(𝑉(𝑈
𝑛
∈ ⋅), 𝑛 ≥ 1) is said to be exponentially tight if for

any 𝐿 > 0, there exists a compact set 𝐾
𝐿
⊂ 𝑆 such that

lim sup
𝑛→∞

1

𝑏 (𝑛)
log𝑉 (𝑈

𝑛
∈ 𝐾

𝑐

𝐿
) ≤ −𝐿. (9)

(𝑉(𝑈
𝑛
∈ ⋅), 𝑛 ≥ 1) is said to satisfy 𝑤-upper bound of

large deviations with speed 𝑏(𝑛) and with rate function 𝐼(𝑥)
if (7) for any compact subset 𝐹 ⊂ 𝑆.

It is known that if (𝑉(𝑈
𝑛
∈ ⋅), 𝑛 ≥ 1) satisfies 𝑤-large

deviation principle with speed 𝑏(𝑛) and with rate function
𝐼 and is exponentially tight, then it satisfies large deviation
principle with speed 𝑏(𝑛) and with rate function 𝐼.

Definition 5. For any rate function 𝐼 and any 𝛿 > 0, the 𝛿-rate
function is defined as

𝐼
𝛿

(𝑥) ≜ min {𝐼 (𝑥) − 𝛿, 1
𝛿
} . (10)
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While in general 𝐼𝛿 is not a rate function, its usefulness stems
from the fact that for any set Γ,

lim
𝛿→0

inf
𝑥∈Γ

𝐼
𝛿

(𝑥) = inf
𝑥∈Γ

𝐼 (𝑥) . (11)

Consequently, the upper bound in (7) is equivalent to the
statement that for any 𝛿 > 0 and for any measurable set Γ,

lim sup
𝑛→∞

1

𝑏 (𝑛)
log𝑉 (𝑈

𝑛
∈ Γ) ≤ −inf

𝑥∈Γ

𝐼
𝛿

(𝑥) . (12)

3. Main Result

In this section, firstly let us present some notations and
assumptions that are used in the following details.

Consider a sequence of random vectors 𝑋
𝑛
∈ R𝑑; let

{𝑋
𝑛
; 𝑛 ≥ 1} be identically distributed under 𝐸[⋅], where 𝑋

𝑛

possesses logarithmic moment generating function Λ
𝑛
(𝜆) :=

log𝐸[𝑒⟨𝜆,𝑋𝑛⟩], ∀𝜆 ∈ R𝑑. We also assume that each 𝑋
𝑛+1

is independent of (𝑋
1
, . . . , 𝑋

𝑛
) for 𝑛 = 1, 2, . . . under 𝐸[⋅].

Denote 𝑆
𝑛
= (1/𝑛)∑

𝑛

𝑖=1
𝑋

𝑖
.

Specifically, the following assumption is imposed
throughout this section.

Assumption 6. For each 𝜆 ∈ R𝑑, the logarithmic moment
generating function, defined as the limit

Λ (𝜆) := lim
𝑛→∞

1

𝑛
Λ
𝑛
(𝑛𝜆) (13)

exists as an extended real number. Furthermore, the origin
belongs to the interior ofD

Λ
:= {𝜆 : Λ(𝜆) < ∞}.

Define

𝑥 := −𝐸 [−𝑋] ;

Λ∗
(𝑥) := sup

𝜆∈𝑅

[𝜆𝑥 − Λ (𝜆)] , ∀𝑥 ∈ R
𝑑

,
(14)

where Λ∗(⋅) is the Fenchel-Legendre transform of Λ(⋅), with
D

Λ
∗ := {𝜆 : Λ

∗(𝜆) < ∞}.
We always assume that

(H2) if 𝐴
𝑛
↑ Ω, then 𝑉(𝐴

𝑛
) ↑ 1.

Lemma 7. Let𝑁 be a fixed integer. Then, for every 𝑎𝑖
𝜀
≥ 0,

lim sup
𝜀→0

𝜀 log(
𝑁

∑

𝑖=1

𝑎
𝑖

𝜀
) =

𝑁max
𝑖=1

lim sup
𝜀→0

𝜀 log 𝑎𝑖
𝜀
. (15)

Proof. First note that for all 𝜀,

0 ≤ 𝜀 log(
𝑁

∑

𝑖=1

𝑎
𝑖

𝜀
)−

𝑁max
𝑖=1

𝜀 log 𝑎𝑖
𝜀
≤ 𝜀 log𝑁. (16)

Since𝑁 is fixed, 𝜀 log𝑁 → 0 as 𝜀 → 0 and

lim sup
𝜀→0

𝑁max
𝑖=1

𝜀 log 𝑎𝑖
𝜀
=

𝑁max
𝑖=1

lim sup
𝜀→0

𝜀 log 𝑎𝑖
𝜀
. (17)

The next lemma describes a property of Λ∗(⋅), which
will be used to give a more accurate expression of the rate
function.

Lemma 8. If log𝐸𝑒𝜆𝑋1 < +∞ for some 𝜆 ∈ R+, then for any
𝑥 ≥ 𝑥, Λ∗(𝑥) = sup

𝜆≥0
{𝜆𝑥 − log𝐸𝑒𝜆𝑋1} and for any 𝑥 ≤ 𝑥,

Λ∗(𝑥) = sup
𝜆≤0
{𝜆𝑥 − log𝐸𝑒𝜆𝑋1}.

Here, we omit the proof of Lemma 8 (refer to [13] or [17]).
The following theorem is the main result of this paper.

Theorem 9. Let Assumption 6 hold. Then we have for any
closed set 𝐹 ⊂ R𝑑,

lim sup
𝑛→∞

1

𝑛
log𝑉(𝑆

𝑛
∈ 𝐹) ≤ −inf

𝑥∈𝐹

Λ∗
(𝑥) , (18)

where Λ∗(⋅) is a convex rate function.

Proof. As mentioned in Section 2, establishing the upper
bound is equivalent to proving that for every 𝛿 > 0 and every
closed set 𝐹 ⊂ R𝑑,

lim sup
𝑛→∞

1

𝑛
log𝑉(𝑆

𝑛
∈ 𝐹) ≤ 𝛿 − inf

𝑥∈𝐹

𝐼
𝛿

(𝑥) , (19)

where 𝐼𝛿 is the 𝛿-rate function associated with Λ∗. Fix a
compact set Γ ⊂ R𝑑. For every 𝑞 ∈ Γ, choose 𝜆

𝑞
∈ R𝑑 such

that

⟨𝜆
𝑞
, 𝑞⟩ − Λ (𝜆

𝑞
) ≥ 𝐼

𝛿

(𝑞) . (20)

This is feasible on account of the definitions ofΛ∗ and 𝐼𝛿. For
each 𝑞, choose 𝜌

𝑞
> 0 such that 𝜌

𝑞
|𝜆

𝑞
| ≤ 𝛿 and let 𝐵

𝑞,𝜌𝑞
=

{𝑥 : |𝑥 − 𝑞| < 𝜌
𝑞
} be the ball with center at 𝑞 and radius 𝜌

𝑞
.

Observe for every 𝑛, 𝜆 ∈ R𝑑, and measurable 𝐺 ⊂ R𝑑 that

𝑉(𝑆
𝑛
∈ 𝐺) = 𝐸 [1

𝑆𝑛∈𝐺
]

≤ 𝐸 [exp (𝑛 ⟨𝜆, 𝑆
𝑛
⟩ − inf

𝑥∈𝐺

{𝑛⟨𝜆, 𝑥⟩})] .

(21)

In particular, for each 𝑛 and 𝑞 ∈ Γ,

𝑉(𝑆
𝑛
∈ 𝐵

𝑞,𝜌𝑞
)

≤ 𝐸 [exp (𝑛 ⟨𝜆
𝑞
, 𝑆

𝑛
⟩)] exp(− inf

𝑥∈𝐵𝑞,𝜌𝑞

{𝑛 ⟨𝜆
𝑞
, 𝑥⟩}) .

(22)

Also, for any 𝑞 ∈ Γ,

− inf
𝑥∈𝐵𝑞,𝜌𝑞

⟨𝜆
𝑞
, 𝑥⟩ ≤ 𝜌

𝑞

󵄨󵄨󵄨󵄨󵄨
𝜆
𝑞

󵄨󵄨󵄨󵄨󵄨
− ⟨𝜆

𝑞
, 𝑞⟩ ≤ 𝛿 − ⟨𝜆

𝑞
, 𝑞⟩ , (23)

and therefore,

1

𝑛
log𝑉(𝑆

𝑛
∈ 𝐵

𝑞,𝜌𝑞
) ≤ − inf

𝑥∈𝐵𝑞,𝜌𝑞

⟨𝜆
𝑞
, 𝑥⟩ + Λ (𝜆

𝑞
)

≤ 𝛿 − ⟨𝜆
𝑞
, 𝑞⟩ + Λ (𝜆

𝑞
) .

(24)
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Since Γ is compact, one may extract from the open covering
⋃

𝑞∈Γ
𝐵
𝑞,𝜌𝑞

of Γ a finite covering that consists of𝑁 = 𝑁(Γ, 𝛿) <

∞ such balls with centers 𝑞
1
, . . . , 𝑞

𝑁
in Γ. By the union of

events bound and the preceding inequality,

1

𝑛
log𝑉(𝑆

𝑛
∈ Γ) ≤

1

𝑛
log𝑁 + 𝛿

− min
𝑖=1,...,𝑁

{⟨𝜆
𝑞𝑖
, 𝑞

𝑖
⟩ − Λ (𝜆

𝑞𝑖
)} .

(25)

Hence, by our choice of 𝜆
𝑞
,

lim sup
𝑛→∞

1

𝑛
log𝑉(𝑆

𝑛
∈ Γ) ≤ 𝛿 − min

𝑖=1,...,𝑁

𝐼
𝛿

(𝑞
𝑖
) . (26)

Since 𝑞
𝑖
∈ Γ, the upper bound (7) is established for all

compact sets.
As described earlier in Section 2, the upper bound of large

deviations is extended to all closed subsets of R𝑑 by showing
that 𝑉(𝑆

𝑛
∈ ⋅) is an exponentially tight family of probability

measures. Let𝐻
𝜌
≜ [−𝜌, 𝜌]

𝑑. Since𝐻𝑐

𝜌
= ⋃

𝑑

𝑗=1
{𝑥 : |𝑥

𝑗

| > 𝜌},
the union of events bound yields

𝑉(𝑆
𝑛
∈ 𝐻

𝑐

𝜌
) ≤

𝑑

∑

𝑗=1

𝑉(𝑆
𝑗

𝑛
∈ [𝜌,∞))

+

𝑑

∑

𝑗=1

𝑉(𝑆
𝑗

𝑛
∈ (−∞, −𝜌]) ,

(27)

where 𝑆𝑗
𝑛
, 𝑗 = 1, . . . , 𝑑 are the coordinates of the random

vector 𝑆
𝑛
; namely, (𝑉(𝑆𝑗

𝑛
∈ ⋅)) are the laws governing (1/𝑛)

∑
𝑛

𝑖=1
𝑋

𝑗

𝑖
. Let e

𝑗
denote the 𝑗th unit vector in R𝑑 for 𝑗 =

1, . . . , 𝑑. Since 0 ∈ D0

Λ

(refer to [13, Lemma 3.1]), there exist
𝜃
𝑗
> 0 and 𝜂

𝑗
> 0 such that Λ(𝜃

𝑗
e
𝑗
) < ∞ and Λ(−𝜂

𝑗
e
𝑗
) < ∞

for 𝑗 = 1, . . . , 𝑑. By Chebyshev’s inequality, we have

𝑉(𝑆
𝑗

𝑛
∈ (−∞, −𝜌]) ≤ exp (−𝑛𝜂

𝑗
𝜌 + Λ

𝑛
(−𝑛𝜂

𝑗
e
𝑗
)) ,

𝑉 (𝑆
𝑗

𝑛
∈ [𝜌,∞)) ≤ exp (−𝑛𝜃

𝑗
𝜌 + Λ

𝑛
(𝑛𝜃

𝑗
e
𝑗
)) ,

𝑗 = 1, . . . , 𝑑.

(28)

Hence, for 𝑗 = 1, . . . , 𝑑,

lim
𝜌→∞

lim sup
𝑛→∞

1

𝑛
log𝑉(𝑆𝑗

𝑛
∈ (−∞, −𝜌]) = −∞,

lim
𝜌→∞

lim sup
𝑛→∞

1

𝑛
log𝑉(𝑆𝑗

𝑛
∈ [𝜌,∞)) = −∞.

(29)

Consequently, by the union of events bound and
Lemma 7,

lim
𝜌→∞

lim sup
𝑛→∞

1

𝑛
log𝑉(𝑆

𝑛
∈ 𝐻

𝑐

𝜌
) = −∞. (30)

Therefore, 𝑉(𝑆
𝑛
∈ ⋅) is an exponentially tight family of prob-

ability measures, since the hypercubes𝐻
𝜌
are compact.

Remark 10. Since 𝐸 is not linear, Cramér’s method is not
useful for lower bound of large deviations. This is consistent
with the conclusion of [13]. In the paper [13], the author
gives a counter example to illustrate that under the sublinear
expectation, the lower bound of Cramér’s theorem is not
obtained. Since Gärtner-Ellis theorem be a generalization of
Cramér’s theorem in non-i.i.d situation to conclusions, we
see under the assumptions of theorem, the lower bound of
Gärtner-Ellis theorem does not hold.

4. Application

In this section, we consider the classical risk process
under sublinear expectation 𝐸[⋅]. The classical risk process
(𝑅

𝑥

(𝑡))
𝑡≥0

is defined by

𝑅
𝑥

(𝑡) = 𝑥 + 𝑝𝑡 − 𝑆 (𝑡) , 𝑡 ≥ 0, (31)

where 𝑥 > 0 is the initial capital and 𝑝 > 0 is the (constant)
premium rate, and the aggregate claims process (𝑆(𝑡))

𝑡≥0
is a

compound Poisson process. More precisely we have 𝑆(𝑡) =
∑

𝑁(𝑡)

𝑖=1
𝑋

𝑖
and 𝑁(𝑡) = ∑

𝑖≥1
1
{𝑇𝑖≤𝑡}

, where {𝑋
𝑖
}
𝑖≥1

is a sequence
of positive random variables, (𝑁(𝑡))

𝑡≥0
is a counting process

with points {𝑇
𝑖
}
𝑖≥1

, {𝑋
𝑖
}
𝑖≥1

, and (𝑁(𝑡))
𝑡≥0

independent, the
𝑋

𝑖
, 𝑖 = 1, 2, . . ., are independent and identically distributed,

and where (𝑁(𝑡))
𝑡≥0

is a Poisson process with intensity 𝜇
under linear expectation. Now we consider (𝑁(𝑡))

𝑡≥0
is a 𝐺-

Poisson process (its definition refers to [18]) under sublinear
expectation 𝐸[⋅]. Then, (𝑆(𝑡))

𝑡≥0
is a compound 𝐺-Poisson

process correspondingly.
We also assume the following superexponential condition

holds for the random variables {𝑋
𝑖
}
𝑖≥1

under sublinear
expectation 𝐸[⋅].

Assumption 11. 𝐸[𝑒𝜆𝑋1] < ∞ for all 𝜆 ∈ R.

Let 𝜑
𝑁(𝑡)

(𝜆) be the moment generating function (m.g.f.)
of (𝑁(𝑡))

𝑡≥0
; that is,

𝜑
𝑁(𝑡)

(𝜆) = 𝐸𝑒
𝜆𝑁(𝑡)

, 𝑡 ≥ 0, ∀𝜆 ∈ R. (32)

Then its logarithmic moment generating function is
expressed as follows:

Λ
𝑁(𝑡)

(𝜆) ≜ log𝐸𝑒𝜆𝑁(𝑡)

= log𝜑
𝑁(𝑡)

(𝜆) . (33)

Let 𝜓
𝑁(𝑡)

(𝜆) be the limit of the normalized logarithmic
moment generating function of (𝑁(𝑡))

𝑡≥0
; that is,

𝜓
𝑁(𝑡)

(𝜆) = lim
𝑡→∞

1

𝑡
log𝐸𝑒𝜆𝑁(𝑡)

. (34)

In order to obtain them.g.f. of the process (𝑆(𝑡))
𝑡≥0

, firstly
we introduce a lemma which plays a role in the next lemma.
We omit its proof which can be found in [19, Lemma 1.1].

Lemma 12. If a sequence of 𝑑-dimensions random variables
{𝑋

𝑖
, 𝑖 = 1, . . . , 𝑚} under sublinear expectation space (Ω,H, 𝐸)

satisfies for any 𝑖 = 1, . . . , 𝑚 − 1, 𝑋
𝑖+1

is independent of
(𝑋

1
, . . . , 𝑋

𝑖
), then the following conclusions are established.
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(1) If 𝜑
1
, . . . , 𝜑

𝑚
are lower semicontinuous functions in

R𝑑

→ [0, +∞), one has

𝐸 (𝜑
1
(𝑋

1
) ⋅ ⋅ ⋅ 𝜑

𝑚
(𝑋

𝑚
)) = 𝐸 (𝜑

1
(𝑋

1
)) ⋅ ⋅ ⋅ 𝐸 (𝜑

𝑚
(𝑋

𝑚
)) .

(35)

(2) If 𝜓
1
, . . . , 𝜓

𝑚
are upper semicontinuous functions in

R𝑑

→ [0, +∞) and there exists a continuous function
Ψ such that Ψ(𝑋

𝑖
) ∈ L1

𝑐
≜ {𝑋 ∈ L1

; 𝑋 is quasicontin-
uous and lim

𝑛→∞
𝐸[|𝑋|𝐼

|𝑋|>𝑛
] = 0}, and 𝜓

𝑖
≤ Ψ, for

any 𝑖 = 1, . . . , 𝑚, one has

𝐸 (𝜓
1
(𝑋

1
) ⋅ ⋅ ⋅ 𝜓

𝑚
(𝑋

𝑚
)) = 𝐸 (𝜓

1
(𝑋

1
)) ⋅ ⋅ ⋅ 𝐸 (𝜓

𝑚
(𝑋

𝑚
)) .

(36)

Lemma 13. If (𝑁(𝑡))
𝑡≥0

and {𝑋
𝑖
}
𝑖≥1

are independent, then for
each 𝜆 ∈ R

𝜑
𝑆(𝑡)
(𝜆) = 𝜑

𝑁(𝑡)
(Λ

𝑋1
(𝜆)) , 𝑡 ≥ 0. (37)

Proof. By Lemma 12, we have

𝜑
𝑆(𝑡)
(𝜆) = 𝐸 [𝑒

𝜆𝑆(𝑡)

] = 𝐸 [𝑒
𝜆∑
𝑁(𝑡)

𝑖=1
𝑋𝑖]

= 𝐸 [𝐸[𝑒
𝜆∑
𝑘

𝑖=1
𝑋𝑖]

𝑘=𝑁(𝑡)

] = 𝐸 [[𝐸 [𝑒
𝜆𝑋1]]

𝑘

𝑘=𝑁(𝑡)

]

= 𝐸 [(𝐸𝑒
𝜆𝑋1)

𝑁(𝑡)

] = 𝐸 [𝑒
𝑁(𝑡) log𝐸[𝑒𝜆𝑋1 ]

]

= 𝜑
𝑁(𝑡)

(Λ
𝑋1
(𝜆)) , 𝑡 ≥ 0.

(38)

This completes the proof.

Then we can see

lim
𝑡→∞

1

𝑡
log𝐸 [𝑒𝜆𝑆(𝑡)] = lim

𝑡→∞

1

𝑡
log𝜑

𝑁(𝑡)
(Λ

𝑋1
(𝜆))

= 𝜓
𝑁(𝑡)

(Λ
𝑋1
(𝜆)) .

(39)

That is to say, the normalized logarithmicmoment generating
function of (𝑆(𝑡))

𝑡≥0
has a limit. By Theorem 9 that we

obtained in Section 3, we can say (𝑆(𝑡))
𝑡≥0

satisfies the upper
bound of Gärtner-Ellis theorem with rate function 𝐼 defined
by

𝐼 (𝑥) = sup
𝜆∈R

{𝜆𝑥 − 𝜓
𝑁(𝑡)

(Λ
𝑋1
(𝜆))} , ∀𝑥 ∈ R. (40)

Next, we give you a brief description about 𝐺-Poisson
process in Ren’s Ph.D. thesis [17]. Let (𝑁(𝑡))

𝑡≥0
be 𝐺-Poisson

process under sublinear expectation 𝐸[⋅]. Then, 𝐸[𝜑(𝑥 +

𝑁(𝑡))] satisfies the following one-dimensional equation:

𝜕
𝑡
𝑢 (𝑡, 𝑥) − 𝐺 (𝑢 (𝑡, 𝑥 + 1) − 𝑢 (𝑡, 𝑥)) = 0,

𝑢 (0, 𝑥) = 𝜑 (𝑥) , 0 ≤ 𝑡 ≤ 1,

(41)

where 𝐺(𝑎) = 𝜇
2
𝑎
+

− 𝜇
1
𝑎
−, 0 ≤ 𝜇

1
≤ 𝜇

2
. Referring to [18], we

know, for any increasing function 𝜙,

𝐸 [𝜙 (𝑥 + 𝑁 (𝑡))] =

∞

∑

𝑖=0

𝜙 (𝑥 + 𝑖)
(𝜇

2
𝑡)

𝑖

𝑖!
𝑒
−𝜇2𝑡, (42)

and for any decreasing function 𝜙,

𝐸 [𝜙 (𝑥 + 𝑁 (𝑡))] =

∞

∑

𝑖=0

𝜙 (𝑥 + 𝑖)
(𝜇

1
𝑡)

𝑖

𝑖!
𝑒
−𝜇1𝑡. (43)

Then we have log𝐸𝑒𝜆𝑁(𝑡)

= 𝜇
2
𝑡(𝑒

𝜆

− 1), for any 𝜆 ≥ 0, and
log𝐸𝑒𝜆𝑁(𝑡)

= 𝜇
1
𝑡(𝑒

𝜆

− 1), for any 𝜆 ≤ 0.
Since𝑋

𝑖
represents the amount claimed, we know𝑋

𝑖
≥ 0

and 𝑖 ≥ 1; and so Λ
𝑋1
(𝜆) = log𝐸[𝑒𝜆𝑋1] ≥ 0. In the above

formula (42), we set 𝑥 = 0,

𝜑
𝑁(𝑡)

(Λ
𝑋1
(𝜆)) = 𝐸 [𝑒

𝑁(𝑡)Λ𝑋1
(𝜆)

]

=

∞

∑

𝑖=0

𝑒
𝑖Λ𝑋1

(𝜆)
(𝜇

2
𝑡)

𝑖

𝑖!
𝑒
−𝜇2𝑡

=

∞

∑

𝑖=0

(𝜇
2
𝑡𝑒

Λ𝑋1
(𝜆)

)
𝑖

𝑖!
𝑒
−𝜇2𝑡

= 𝑒
𝜇2𝑡(𝑒
Λ𝑋1
(𝜆)

−1)

.

(44)

Substituting this result into (39), we have

lim
𝑡→∞

1

𝑡
log𝐸 [𝑒𝜆𝑆(𝑡)] = 𝜇

2
(𝑒

Λ𝑋1
(𝜆)

− 1) . (45)

By (40) and Lemma 8, we get the rate function of (𝑆(𝑡))
𝑡≥0

in the upper bound of Gärtner-Ellis theorem. As described
below, for 𝑥 ≥ 𝑥,

𝐼 (𝑥) = sup
𝜆∈R

{𝜆𝑥 − 𝜓
𝑁(𝑡)

(Λ
𝑋1
(𝜆))}

= sup
𝜆≥0

{𝜆𝑥 − 𝜇
2
(𝑒

Λ𝑋1
(𝜆)

− 1)} .

(46)

The above result can be calculated further, specifically accord-
ing to the different distributions of the amount claimed.
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[4] H. Föllmer andA. Schied, “Convexmeasures of risk and trading
constraints,” Finance and Stochastics, vol. 6, no. 4, pp. 429–447,
2002.

[5] M. Frittelli and E. Rossaza Gianin, “Dynamic convex risk
measures,” in New Riak Measures for the 21st Century, G. Szegö,
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The aim of this paper is to investigate the stability and the stabilizability of stochastic time-delay deference system. To do this, we
use mainly two methods to give a list of the necessary and sufficient conditions for the stability and stabilizability of the stochastic
time-delay deference system. One way is in term of the operator spectrum and𝐻-representation; the other is by Lyapunov equation
approach. In addition, we introduce the notion of unremovable spectrum of stochastic time-delay deference system, describe the
PBH criterion of the unremovable spectrum of time-delay system, and investigate the relation between the unremovable spectrum
and the stabilizability of stochastic time-delay deference system.

1. Introduction

The stochastic time-delay system is one of the fundamental
research branches in the theory of control systems, which is
usually applied in the fields of electronics, machinery, chemi-
cals, life sciences, economics, and so on. As is well known, the
stability is an essential concept in linear system theory, which
is relative to the system matrix root-clustering in subregions
of the complex plane, and also the spectral operator approach
is effective in the study of the eigenvalue placement of a
matrix (see [1]). Since two classic books [2, 3] appeared,
stochastic stability and stabilization of Itô differential systems
have been investigated by many researchers for several
decades; we refer the reader to [4–6] and the references
therein. More specifically, for linear time-invariant stochastic
(LTIS) systems, most work is concentrated on the investi-
gation of mean square stabilization, which has important
applications in system analysis and design. Some necessary
and sufficient conditions for the mean square stabilization
of LTIS systems have been obtained in terms of generalized
algebraic Riccati equation (GARE) or linearmatrix inequality
(LMI) in [7–14] or spectra of some operators in [5, 9, 15].
For the stochastic delay-time systems, the present results
were mainly obtained by Lyapunov functional approach. We
concentrate our attention upon the stability and stabilization
of stochastic systems by the operator spectrum.

The structure of this paper is as follows. In Section 2,
with the aid of the operator spectrum,𝐻-representation, and
Lyapunov equation approach, some necessary and sufficient
conditions are given for the stability and the stabilizability of
stochastic delay-time systems. In Section 3, the unremovable
spectrum of stochastic delay-time systems is introduced, and
PBH criterion of the stabilizability of stochastic delay-time
systems is presented.

For convenience, we adopt the following traditional
notations. 𝑆

𝑛: the set of all symmetric matrices, whose
components may be complex; 𝑁 = {0, 1, 2, . . .}; 𝐴󸀠(Ker(𝐴)):
the transpose (kernel space) of a matrix𝐴;𝐴 ≥ 0 (𝐴 > 0) is a
positive semidefinite (positive-definite) symmetric matrix𝐴;
𝐼: identity matrix; 𝜎(𝐿): spectral set of the operator or matrix
𝐿; 𝐶−(𝐶−0): the open left (closed left) hand side complex
plane. 𝐷(0, 𝛼) = {𝜆 | ‖𝜆‖ < 𝛼}; ‖ ⋅ ‖ is the 𝑙

2
-norm;

𝐿
2

F𝑡
(𝑅
+

, 𝑅
𝑛𝑥): space of nonanticipative stochastic processes

𝑥(𝑡) ∈ 𝑅
𝑛𝑥 with respect to an increasing 𝜎-algebra {F

𝑡
}
𝑡≥0

satisfying 𝐸‖𝑥(𝑡)‖
2

< ∞. Finally, we make the assumption
throughout this paper that all systems have real coefficients.

2. The Stability of Stochastic
Delay-Time Systems

In this section, we will investigate the stability and stabiliz-
ability of the stochastic time-delay deference system using
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the spectrum of operator and Lyapunov equation approach.
At first, we introduce a Lyapunove operator. Consider the
following linear difference system with constant delays:

𝑥 (𝑡 + 1) = 𝐹
0
𝑥 (𝑡) + 𝐺

0
𝑥 (𝑡) 𝑤 (𝑡)

+

𝑚

∑

𝑗=1

[𝐹
𝑗
𝑥 (𝑡 − 𝑗) + 𝐺

𝑗
𝑥 (𝑡 − 𝑗)𝑤 (𝑡)] , 𝑡 ∈ 𝑁,

(1)

with the initial condition

𝑥 (𝑘) = 𝜑 (𝑘) , 𝑘 = 0, −1, −2, . . . , −𝑚. (2)

Here,𝑥 ∈ 𝑅
𝑛 is a column vector,𝐹

𝑗
, 𝐺
𝑗
∈ 𝑅
𝑛×𝑛, 𝑗 = 0, 1, . . . , 𝑚,

are constant coefficient matrices, 𝜑(𝑘) ∈ 𝑅
𝑛 is a deterministic

initial condition, {𝑤(𝑡) ∈ 𝑅, 𝑡 ∈ 𝑁} is a sequence of real
random variables defined on a complete probability space
{Ω,F,F

𝑡
, 𝜇} which is a wide sense stationary, second-order

process with 𝐸(𝑤(𝑡)) = 0 and 𝐸(𝑤(𝑡)𝑤(𝑠)) = 𝛿
𝑠,𝑡
, where 𝛿

𝑠,𝑡
is

the Kronecker delta withF
𝑡
= 𝜎{𝑤(𝑠) : 0 ≤ 𝑠 ≤ 𝑡}.

Definition 1. The trivial stationary solution 𝑥(𝑡) = 0 of the
system (1) is called mean square stable if, for any arbitrarily
small number 𝜀 > 0, there exists a number 𝛿 > 0, when ‖𝜑‖ <
𝛿, such that

𝐸‖𝑥(𝑡)‖
2

< 𝜀, (3)

for a solution 𝑥(𝑡) = 𝑥(𝑡, 𝜑) of (1).

Definition 2. The trivial stationary solution 𝑥(𝑡) = 0 of the
system (1) is called asymptotically mean square stable if it is
stable in the sense of Definition 1 and, moreover, any solution
𝑥(𝑡) = 𝑥(𝑡, 𝜑) of (1) satisfies

lim
𝑡→+∞

𝐸‖𝑥(𝑡)‖
2

= 0. (4)

We consider the problem of finding criteria and sufficient
conditions for the mean square asymptotic stability of the
trivial stationary solution 𝑥(𝑡) = 0 by operator spectra. Since
the stochastic system (1) is a systemwith time-delays, it seems
impossible to construct the operator directly for (1) like the
operator in [15]. So, first of all, we introduce the following
column vector 𝑥(𝑡) of new variables of dimension 𝑛(𝑚 + 1):

𝑥 (𝑡) = [𝑥
󸀠

(𝑡), 𝑥
󸀠

(𝑡 − 1), . . . , 𝑥
󸀠

(𝑡 − 𝑚)]
󸀠

. (5)

The stochastic system (1) with time-delays can now be
written in the form of an equivalent stochastic system of
dimension 𝑛(𝑚 + 1) without delay; namely,

𝑥 (𝑡 + 1) = [𝐹 + 𝐺𝜔 (𝑡)] 𝑥 (𝑡) , (6)

where 𝐹 and 𝐺 denote the following 𝑛(𝑚 + 1) × 𝑛(𝑚 + 1)

matrices:

𝐹 = (

𝐹
0
𝐹
1
⋅ ⋅ ⋅ 𝐹
𝑚−1

𝐹
𝑚

𝐼 0 ⋅ ⋅ ⋅ 0 0

...
...

...
...

...
0 0 ⋅ ⋅ ⋅ 𝐼 0

) ,

𝐺 = (

𝐺
0
𝐺
1
⋅ ⋅ ⋅ 𝐺

𝑚−1
𝐺
𝑚

0 0 ⋅ ⋅ ⋅ 0 0

...
...

...
...

...
0 0 ⋅ ⋅ ⋅ 0 0

) .

(7)

If we set 𝑋(𝑡) = 𝐸𝑥(𝑡)𝑥
󸀠

(𝑡), 𝑋(𝑡) satisfies the following
difference equation:

𝑋 (𝑡 + 1) = 𝐹𝑋 (𝑡) 𝐹
󸀠

+ 𝐺𝑋 (𝑡) 𝐺
󸀠

. (8)

Motivated by (8), we introduce the following linear Lyapunov
operator:

L
𝐹,𝐺

: 𝑋 ∈ 𝑆
𝑛(𝑚+1)

󳨃󳨀→ 𝐹𝑋 (𝑡) 𝐹
󸀠

+ 𝐺𝑋 (𝑡) 𝐺
󸀠

∈ 𝑆
𝑛(𝑚+1)

. (9)

With the use of the Kronecker matrix product, the matrix
equation (8) can be rewritten in the vector matrix form as
follows:

𝑋 (𝑡 + 1) = 𝐹𝑋, (10)

where 𝑋(𝑡) denotes the 𝑛
2

(𝑚 + 1)
2-dimensional column

vector

𝑋(𝑡) = [𝑋
1,1

(𝑡) , . . . , 𝑋
1,𝑛

(𝑡) , . . . ,

𝑋
1,𝑛(𝑚+1)

(𝑡) , . . . , 𝑋
𝑛(𝑚+1),𝑛(𝑚+1)

(𝑡)]
󸀠

(11)

and 𝐹 ∈ 𝑅
𝑛
2
(𝑚+1)

2
×𝑛
2
(𝑚+1)

2

has the form 𝐹 = 𝐹 ⊗ 𝐹 + 𝐺 ⊗ 𝐺.
Now, we are in a position to give a spectral description for

the stability of system (1) by𝐻-representation in [14].

Lemma 3. Let𝐻
𝑛(𝑚+1)

be a 𝑛2(𝑚 + 1)
2

×(𝑛(𝑚+1)[𝑛(𝑚+1)+

1]/2)matrix and rank(𝐻
𝑛(𝑚+1)

) = (𝑛(𝑚+1)[𝑛(𝑚+1)+1])/2;
then𝐻

󸀠

𝑛(𝑚+1)
𝐻
𝑛(𝑚+1)

is invertible.

Theorem 4. The trivial solution 𝑥(𝑡) = 0 of system (1) is
asymptotically mean square stable if and only if 𝜎(L

𝐹,𝐺
) ⊂

𝐷(0, 1).

Proof. If we set𝑋(𝑡) = 𝐸𝑥(𝑡)𝑥
󸀠

(𝑡),𝑋(𝑡) satisfies

𝑋 (𝑡 + 1) = 𝐹𝑋 (𝑡) 𝐹
󸀠

+ 𝐺𝑋 (𝑡) 𝐺
󸀠

,

𝑋 (𝑘) = 𝑥 (𝑘) 𝑥
󸀠

(𝑘) ∈ 𝑆
𝑛(𝑚+1)

,

𝑘 = 0, −1, −2, . . . , −𝑚, 𝑡 ∈ 𝑁.

(12)

Since 𝑋(⋅) is real symmetric, (12) is a linear matrix equation
with 𝑛(𝑚 + 1)[𝑛(𝑚 + 1) + 1]/2 different variables; that is, it is
in fact an 𝑛(𝑚+1)[𝑛(𝑚+1)+1]/2 th-order linear system.We
define a map L̃ from 𝑆

𝑛(𝑚+1) to 𝐶𝑛(𝑚+1)[𝑛(𝑚+1)+1]/2 as follows.
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For any 𝑌 = (𝑌
𝑖𝑗
)
𝑛(𝑚+1)×𝑛(𝑚+1)

∈ 𝑆
𝑛(𝑚+1), set

𝑌̃ = L̃ (𝑌) = (𝑌
11
, . . . , 𝑌

1,𝑛(𝑚+1)
, . . . , 𝑌

𝑛(𝑚+1)−1,𝑛(𝑚+1)−1,

𝑌
𝑛(𝑚+1)−1,𝑛(𝑚+1)

, . . . , 𝑌
𝑛(𝑚+1),𝑛(𝑚+1)

)
󸀠

;

(13)

then there exists an unique matrix 𝜃(𝐻
𝑛(𝑚+1)

) ∈

𝑅
(𝑛(𝑚+1)[𝑛(𝑚+1)+1]/2)×(𝑛(𝑚+1)[𝑛(𝑚+1)+1]/2), by 𝐻-representation

of [14], such that (12) is equivalent to

𝑋 (𝑡 + 1) = L̃ (L
𝐹,𝐺

(𝑋)) = 𝜃 (𝐻
𝑛(𝑚+1)

)𝑋 (𝑡) ,

𝑋 (𝑘) = [𝐻
󸀠

𝑛(𝑚+1)
𝐻
𝑛(𝑚+1)

]
−1

𝐻
󸀠

𝑛(𝑚+1)

× 𝑋 (𝑘) ∈ 𝑅
𝑛(𝑚+1)[𝑛(𝑚+1)+1]/2

,

𝑘 = 0, −1, −2, . . . , −𝑚, 𝑡 ∈ 𝑁,

(14)

where 𝜃(𝐻
𝑛(𝑚+1)

) = [𝐻
󸀠

𝑛(𝑚+1)
𝐻
𝑛(𝑚+1)

]
−1

𝐻
󸀠

𝑛(𝑚+1)
[𝐹 ⊗ 𝐹 +

𝐺 ⊗ 𝐺]𝐻
𝑛(𝑚+1)

, 𝑋 ∈ 𝑅
𝑛(𝑚+1)[𝑛(𝑚+1)+1]/2. Obviously, since

the system of (14) for moments is deterministic, the proof
of the theorem is carried out by the standard method
for deterministic difference equations. Seeking the general
solution of system (14) in the exponential form 𝑋(𝑡) = 𝑐𝜆

𝑡,
where 𝑐, 𝜆 = const, we arrive at the characteristic equation
det(𝜆𝐼 − 𝜃(𝐻

𝑛(𝑚+1)
)) = 0. That is, lim

𝑡→+∞
𝐸𝑥(𝑡)𝑥

󸀠

(𝑡) =

lim
𝑡→+∞

𝑋(𝑡) = 0 ⇔ lim
𝑡→+∞

𝑋(𝑡) = 0 ⇔ 𝜎(𝜃(𝐻
𝑛(𝑚+1)

)) ⊂

𝐷(0, 1).
By (9) and (14), for any eigenvalue𝜆 and its corresponding

eigenvector 𝑌 = (𝑌
𝑖𝑗
)
𝑛×𝑛

∈ 𝑆
𝑛 of L

𝐹,𝐺
, from L

𝐹,𝐺
(𝑌) =

𝜆𝑌, we have L̃(L
𝐹,𝐺

(𝑌)) = 𝜃(𝐻
𝑛(𝑚+1)

)𝑌̃ = 𝜆𝑌̃, which
yields 𝜎(L

𝐹,𝐺
) = 𝜎(𝜃(𝐻

𝑛(𝑚+1)
)). The above discussion

concludes the proof of Theorem 4. The proof of Theorem 4
is complete.

Remark 5. InTheorem 4, a necessary and sufficient condition
for the asymptotically mean square stability of system (1)
via the spectrum of L

𝐹,𝐺
is presented, which can be called

“spectral criterion.”

Theorem 6. The trivial solution 𝑥 = 0 of system (1) is
asymptotically mean square stable if and only if, for any 𝑄 ∈

𝑆
𝑛(𝑚+1) with 𝑄 > 0, there exists a 𝑃 ∈ 𝑆

𝑛(𝑚+1) such that 𝑃 > 0

and 𝑃 is a solution of the following Lyapunov equation:

𝑃 −L
𝐹,𝐺

(𝑃) = 𝑄. (15)

Proof. We introduce an 𝑛
2

(𝑚 + 1)
2-parameter stochastic

Lyapunov function as a quadratic form:

𝑉(𝑋 (𝑡)) = 𝑋
󸀠

𝑃𝑋, 𝑃 ∈ 𝑆
𝑛(𝑚+1)

. (16)

The role of parameters is played by 𝑛2(𝑚 + 1)
2 elements

of the positive-definite matrix, which should be determined.
The statement of the theorem can be established in a way
that is standard for the method of Lyapunov functions for
stochastic difference equations. So the trivial solution 𝑥(𝑡) =

0 of system (6) is asymptotically mean square stable if and

only if for any 𝑄 > 0, the Lyapunov equation (15) has a
solution𝑃 > 0. By the proof ofTheorem 4, the trivial solution
𝑥 = 0 of system (1) is asymptotically mean square stable
if and only if the trivial solution 𝑥(𝑡) = 0 of system (6) is
asymptotically mean square stable.The proof ofTheorem 6 is
complete.

From the proof of Theorem 4 and the method of Lya-
punov functions for difference equations, we immediately get
the following result.

Theorem 7. The trivial solution 𝑥 = 0 of system (1) is
asymptotically mean square stable if and only if, for any
𝑄 ∈ 𝑆

𝑛(𝑚+1)[𝑛(𝑚+1)+1]/2 with 𝑄 > 0, there exists a 𝑃 ∈

𝑆
𝑛(𝑚+1)[𝑛(𝑚+1)+1]/2 such that 𝑃 > 0 and 𝑃 is a solution of the
following Lyapunov equation:

𝑃 − 𝐹
󸀠

𝑃𝐹 = 𝑄. (17)

Corollary 8. If 𝜎(L
𝐹,𝐺

) ⊂ 𝐷(0, 1), then 𝜎(𝐹) ⊂ 𝐷(0, 1).

Proof. By Theorems 4 and 6, 𝜎(L
𝐹,𝐺

) ⊂ 𝐷(0, 1) holds if and
only if there is a matrix 𝑃 ∈ 𝑆

𝑛(𝑚+1) such that 𝑃 > 0 and 𝑃 is a
solution of the following Lyapunov equation:

𝑃 −L
𝐹,𝐺

(𝑃) = 𝑄, (18)

for any 𝑄 > 0. So, there exists a 𝑃 ∈ 𝑃 ∈ 𝑆
𝑛(𝑚+1) such that

𝑃 > 0 and 𝑃 is a solution of the following Lyapunov equation:

𝑃 − 𝐹
󸀠

𝑃𝐹 > 0, (19)

which is equivalent to 𝜎(𝐹) ⊂ 𝐷(0, 1); that is, the system

𝑥 (𝑡 + 1) = 𝐹
0
𝑥 (𝑡) +

𝑗=𝑚

∑

1

𝐹
𝑗
𝑥 (𝑡 − 𝑗) ,

𝑥 (𝑘) = 𝜑 (𝑘) , 𝑘 = 0, −1, −2, . . . , −𝑚, 𝑡 ∈ 𝑁,

(20)

is asymptotically Lyapunov stable.The proof of Corollary 8 is
complete.

Now, we present some results about mean square stability
of system (1). From the process of Theorems 4–7, we easily
obtain the followingTheorems 9–10, so we omit their proofs.

Theorem 9. If the trivial stationary solution 𝑥 = 0 of the
system (1) is mean square stable, then 𝜎(L

𝐹,𝐺
) ⊂ 𝐷(0, 1).

Theorem 10. 𝜎(L
𝐹,𝐺

) ⊂ 𝐷(0, 1) if and only if one of the
following conditions holds.

(1) For any 𝜀 > 0 and 𝑄 > 0, the following Lyapunov
equation

𝑃 −L
𝑒
−𝜀
𝐹,𝑒
−𝜀
𝐺
(𝑃) = 𝑄 (21)

has a positive-definite solution 𝑃.
(2) 𝜎(L

𝑒
−𝜀
𝐹,𝑒
−𝜀
𝐺
) ⊂ 𝐷(0, 1).

Corollary 11. If 𝜎(L
𝐹,𝐺

) ⊂ 𝐷(0, 1), then 𝜎(𝐹) ⊂ 𝐷(0, 1).
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Proof. Since 𝜎(L
𝐹,𝐺

) ⊂ 𝐷(0, 1), we have, for any sufficient
small 𝜀 > 0, 𝜎(L

𝑒
−𝜀
𝐹,𝑒
−𝜀
𝐺
) ⊂ 𝐷(0, 1). By Theorem 4,

(𝑒
−𝜀

𝐹, 𝑒
−𝜀

𝐺) is mean square stable, which implies 𝜎(L
𝑒
−𝜀
𝐹
) ⊂

𝐷(0, 1) by Corollary 8. Let 𝜀 → 0, we have 𝜎(𝐹) ⊂ 𝐷(0, 1)

by continuity of spectrum [16]. The proof of Corollary 11 is
complete.

Remark 12. 𝜎(𝐹) ⊂ 𝐷(0, 1) does not imply 𝜎(L
𝐹,𝐺

) ⊂

𝐷(0, 1), which is one of the essential differences between
stochastic system and deterministic system.

Theorem 13. The trivial solution 𝑥 = 0 of system (1) is mean
square stable if and only if, for any 𝑄 ≥ 0, there exists a 𝑃 ∈

𝑆
n(𝑚+1) such that 𝑃 > 0 and 𝑃 is a solution of the following
Lyapunov equation:

𝑃 −L
𝐹,𝐺

(𝑃) = 𝑄. (22)

Proof. We introduce an 𝑛2(𝑚 + 1)
2-parameter stochastic Lya-

punov function as a quadratic form:

𝑉(𝑋 (𝑡)) = 𝑋
󸀠

𝑃𝑋, 𝑃 ∈ 𝑅
𝑛(𝑚+1)×𝑛(𝑚+1)

. (23)

By the method of Lyapunov functions for stochastic differ-
ence equations, we can get the result.The proof ofTheorem 13
is complete.

Now, we give an example to show how to solve the
spectrum of stochastic time-delay deference system by 𝐻-
representation.

Example 14. Consider the following stochastic system:

𝑥 (𝑡 + 1) = 𝑎𝑥 (𝑡) + 𝑏𝑥 (𝑡 − 1) + 𝑐𝑥 (𝑡) 𝜔 (𝑡) + 𝑑𝑥 (𝑡 − 1) 𝜔 (𝑡) .

(24)

Letting 𝑥(𝑡) = (𝑥(𝑡), 𝑥(𝑡 − 1))
󸀠,

𝑥 (𝑡 + 1) = (
𝑎 𝑏

1 0
) 𝑥 (𝑡) + (

𝑐 𝑑

0 0
) 𝑥 (𝑡) 𝜔 (𝑡) . (25)

Letting𝑋(𝑡) = 𝐸𝑥(𝑡)𝑥
󸀠

(𝑡),

𝑋 (𝑡 + 1) = (
𝑎 𝑏

1 0
)𝑋 (𝑡) (

𝑎 1

𝑏 0
) + (

𝑐 𝑑

0 0
)𝑋 (𝑡) (

𝑐 0

𝑑 0
) .

(26)

Letting 𝐹 = ( 𝑎 𝑏
1 0

), 𝐺 = ( 𝑐 𝑑
0 0

),𝑋(𝑡) = (𝑥
11
, 𝑥
12
, 𝑥
12
, 𝑥
22
)
󸀠,

𝑋 (𝑡 + 1) = (𝐹 ⊗ 𝐹 + 𝐺 ⊗ 𝐺)𝑋 (𝑡)

= (

𝑎
2

+ 𝑐
2

𝑎𝑏 + 𝑐𝑑 𝑎𝑏 + 𝑐𝑑 𝑏
2

+ 𝑑
2

𝑎 0 𝑏 0

𝑎 𝑏 0 0

1 0 0 0

)𝑋(𝑡) .

(27)

Choose

𝐻
2
= (

1 0 0

0 1 0

0 1 0

0 0 1

) . (28)

Let𝑋(𝑡) = (𝑥
11
, 𝑥
12
, 𝑥
22
)
󸀠; then𝑋(𝑡) = 𝐻

2
𝑋(𝑡) and

𝑋(𝑡 + 1) = (𝐻
󸀠

2
𝐻
2
)
−1

𝐻
󸀠

2
(𝐹 ⊗ 𝐹 + 𝐺 ⊗ 𝐺)𝐻

2
𝑋 (𝑡) . (29)

So 𝜎((𝐻
󸀠

2
𝐻
2
)
−1

𝐻
󸀠

2
(𝐹 ⊗ 𝐹 + 𝐺 ⊗ 𝐺)𝐻

2
) = 𝜎(L) if we choose

𝑎 = 1, 𝑏 = 0, 𝑐 = 0, 𝑑 = 1/4, and 𝜎(L) = {0, 1/2, 1/2}.
For a state feedback control law 𝑢(𝑡) = 𝐾𝑥(𝑡), we

introduce a linear operator L
𝐾
associated with the closed-

loop system:

𝑥 (𝑡 + 1) = 𝐹
0
𝑥 (𝑡) + 𝑀

0
𝑢 (𝑡) + (𝐺

0
𝑥 (𝑡) + 𝑁

0
𝑢 (𝑡)) 𝑤 (𝑡)

+

𝑚

∑

𝑗=1

[𝐹
𝑗
𝑥 (𝑡 − 𝑗) +𝑀

𝑗
𝑢 (𝑡 − 𝑗)

+ (𝐺
𝑗
𝑥 (𝑡 − 𝑗) + 𝑁

𝑗
𝑢 (𝑡 − 𝑗))𝑤 (𝑡)] ,

𝑥 (𝑘) = 𝜑 (𝑘) ∈ 𝑅
𝑛

, 𝑘 = 0, −1, . . . , −𝑚, 𝑡 ∈ 𝑁,

(30)

where𝑥 ∈ 𝑅
𝑛 is a columnvector,𝐹

𝑗
, 𝐺
𝑗
∈ 𝑅
𝑛×𝑛, 𝑗 = 0, 1, . . . , 𝑚

are constant coefficientmatrices,𝜑(𝑘) is a deterministic initial
condition, and 𝑢(𝑡) ∈ 𝑅

𝑛 is a control input.

Definition 15. The trivial stationary solution 𝑥(𝑡) = 0 of
the system (30) is called mean square stabilization if there
exists an input feedback𝐾 such that, for any arbitrarily small
number 𝜀 > 0, one can find a number 𝛿 > 0, when ‖𝜑‖ < 𝛿,
satisfying

𝐸‖𝑥(𝑡)‖
2

< 𝜀, (31)

for a solution 𝑥(𝑡) = 𝑥(𝑡, 𝜑) of (30).

Definition 16. The trivial stationary solution 𝑥(𝑡) = 0 of the
system (30) is called asymptotically mean square stabilization
if it is stable in the sense of Definition 15 and, moreover,

lim
𝑡→+∞

𝐸‖𝑥(𝑡)‖
2

= 0. (32)

We introduce the following column vectors 𝑥(𝑡) and 𝑢(𝑡)

of new variables of dimension 𝑛(𝑚 + 1):

𝑥 (𝑡) = [𝑥
󸀠

(𝑡), 𝑥
󸀠

(𝑡 − 1), . . . , 𝑥
󸀠

(𝑡 − 𝑚)]
󸀠

,

𝑢 (𝑡) = [𝑢
󸀠

(𝑡) , 𝑢
󸀠

(𝑡 − 1) , . . . , 𝑢
󸀠

(𝑡 − 𝑚)]
󸀠

.

(33)

The stochastic system (30) with time-delays can now be
written in the form of an equivalent stochastic system of
dimension 𝑛(𝑚 + 1) without time-delay; namely,

𝑥 (𝑡 + 1) = 𝐹𝑥 (𝑡) + 𝑀𝑢 (𝑡) + (𝐺𝑥 (𝑡) + 𝑁𝑢 (𝑡)) 𝜔 (𝑡) , (34)
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where

𝐹 = (

𝐹
0
𝐹
1
⋅ ⋅ ⋅ 𝐹
𝑚−1

𝐹
𝑚

𝐼 0 ⋅ ⋅ ⋅ 0 0

...
... ⋅ ⋅ ⋅

...
...

0 0 ⋅ ⋅ ⋅ 𝐼 0

) ,

𝐺 = (

𝐺
0
𝐺
1
⋅ ⋅ ⋅ 𝐺

𝑚−1
𝐺
𝑚

0 0 ⋅ ⋅ ⋅ 0 0

...
...

...
...

...
0 0 ⋅ ⋅ ⋅ 0 0

) .

(35)

𝑀 = (

𝑀
0
𝑀
1
⋅ ⋅ ⋅ 𝑀

𝑚−1
𝑀
𝑚

0 0 ⋅ ⋅ ⋅ 0 0

...
...

...
...

...

0 0
... 0 0

),

𝑁 = (

𝑁
0
𝑁
1
⋅ ⋅ ⋅ 𝑁

𝑚−1
𝑁
𝑚

0 0 ⋅ ⋅ ⋅ 0 0

...
...

...
...

...
0 0 ⋅ ⋅ ⋅ 0 0

) .

(36)

Take a control input 𝑢(𝑡) = 𝐾𝑥(𝑡) with

𝐾 = (

𝐾 0 ⋅ ⋅ ⋅ 0 0

0 𝐾 ⋅ ⋅ ⋅ 0 0

...
...

...
...

...
0 0 ⋅ ⋅ ⋅ 0 𝐾

) , (37)

and set 𝑋(𝑡) = 𝐸𝑥(𝑡)𝑥
󸀠

(𝑡); 𝑋(𝑡) satisfies the following
difference equation:

𝑋 (𝑡 + 1) = (𝐹 +𝑀𝐾)𝑋(𝑡)(𝐹 +𝑀𝐾)
󸀠

+ (𝐺 + 𝑁𝐾)𝑋 (𝑡) (𝐺 + 𝑁𝐾)
󸀠

.

(38)

Motivated by (38), we introduce the following linear Lya-
punov operator:

L
𝐾
: 𝑋 ∈ 𝑆

𝑛(𝑚+1)

󳨃󳨀→ (𝐹 +𝑀𝐾)𝑋 (𝑡) (𝐹 +𝑀𝐾)
󸀠

+ (𝐺 + 𝑁𝐾)𝑋 (𝑡) (𝐺 + 𝑁𝐾)
󸀠

∈ 𝑆
𝑛(𝑚+1)

.

(39)

With the use of the Kronecker matrix product, the matrix
equation (38) can be rewritten in the vector matrix form as
follows:

𝑋 (𝑡 + 1) = 𝐴𝑋, (40)

where 𝑋(𝑡) denotes the 𝑛
2

(𝑚 + 1)
2-dimensional column

vector

𝑋 (𝑡) = [𝑋
1,1

(𝑡) , . . . , 𝑋
1,𝑛

(𝑡) , . . . ,

𝑋
1,𝑛(𝑚+1)

(𝑡) , . . . , 𝑋
𝑛(𝑚+1),𝑛(𝑚+1)

(𝑡)]
󸀠

(41)

and 𝐴 = (𝐹 + 𝑀𝐾) ⊗ (𝐹 + 𝑀𝐾) + (𝐺 + 𝑁𝐾) ⊗ (𝐺 + 𝑁𝐾) ∈

𝑆
𝑛
2
(𝑚+1)

2

.
From Theorems 4–13, we can easily obtain the following

results.

Corollary 17. The trivial solution 𝑥 = 0 of system (30) is
asymptotical mean square stabilizaton if and only if 𝜎(L

𝐾
) ⊂

𝐷(0, 1).

Corollary 18. The trivial solution 𝑥(𝑡) = 0 of system (30) is
asymptotically mean square stable if and only if, for any 𝑄 ∈

𝑆
𝑛(𝑚+1) with 𝑄 > 0, there exists a 𝑃 ∈ 𝑆

𝑛(𝑚+1) such that 𝑃 > 0

and 𝑃 is a solution of the following Lyapunov equation:

𝑃 −L
𝐹+𝑀𝐾,𝐺+𝑁𝐾

(𝑃) = 𝑄. (42)

Corollary 19. The trivial solution 𝑥 = 0 of system (30)
is asymptotically mean square stable if and only if, for any
𝑄 ∈ 𝑆

𝑛(𝑚+1)[𝑛(𝑚+1)+1]/2 with 𝑄 > 0, there exists a 𝑃 ∈

𝑆
𝑛(𝑚+1)[𝑛(𝑚+1)+1]/2 such that 𝑃 > 0 and 𝑃 is a solution of the
following Lyapunov equation:

𝑃 − 𝜃(𝐻
𝐾

𝑛(𝑚+1)
)
󸀠

𝑃𝜃 (𝐻
𝐾

𝑛(𝑚+1)
) = 𝑄, (43)

where

𝜃 (𝐻
𝐾

𝑛(𝑚+1)
) = [𝐻

󸀠

𝑛(𝑚+1)
𝐻
𝑛(𝑚+1)

]
−1

𝐻
󸀠

𝑛(𝑚+1)

× [(𝐹 +𝑀𝐾) ⊗ (𝐹 +𝑀𝐾)

+ (𝐺 + 𝑁𝐾) ⊗ (𝐺 + 𝑁𝐾)]𝐻
𝑛(𝑚+1)

.

(44)

Corollary 20. The trivial solution 𝑥 = 0 of system (30) is
asymptotically mean square stable if and only if, for any 𝑄 ∈

𝑆
𝑛
2
(𝑚+1)

2

, 𝑄 > 0, there exists a 𝑃 ∈ 𝑆
𝑛
2
(𝑚+1)

2

such that 𝑃 > 0

and 𝑃 is a solution of the following Lyapunov equation:

𝑃 − 𝐴
󸀠

𝑃𝐴 = 𝑄. (45)

Corollary 21. The trivial solution 𝑥 = 0 of system (30) is mean
square stable if and only if, for any 𝑄 ∈ 𝑆

𝑛(𝑚+1) with 𝑄 ≥ 0,
there exists a 𝑃 ∈ 𝑆

𝑛(𝑚+1) such that 𝑃 > 0 and 𝑃 is a solution of
the following Lyapunov equation:

𝑃 −L
𝐹+𝑀𝐾,𝐺+𝑁𝐾

(𝑃) = 𝑄. (46)

Corollary 22. The trivial solution 𝑥 = 0 of system (1) is mean
square stable if and only if, for any 𝑄 ∈ 𝑆

𝑛(𝑚+1)[𝑛(𝑚+1)+1]/2 with
𝑄 ≥ 0, there exists a 𝑃 ∈ 𝑆

𝑛(𝑚+1)[𝑛(𝑚+1)+1]/2 such that 𝑃 > 0

and 𝑃 is a solution of the following Lyapunov equation:

𝑃 − 𝜃(𝐻
𝐾

𝑛(𝑚+1)
)
󸀠

𝑃𝜃 (𝐻
𝐾

𝑛(𝑚+1)
) = 𝑄, (47)

where

𝜃 (𝐻
𝐾

𝑛(𝑚+1)
) = [𝐻

󸀠

𝑛(𝑚+1)
𝐻
𝑛(𝑚+1)

]
−1

× 𝐻
󸀠

𝑛(𝑚+1)
[𝐹 ⊗ 𝐹 + 𝐺 ⊗ 𝐺]𝐻

𝑛(𝑚+1)
.

(48)
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Corollary 23. The trivial solution 𝑥 = 0 of system (1) is mean
square stable if and only if, for any 𝑄 ≥ 0, there exists a 𝑃 ∈

𝑆
𝑛
2
(𝑚+1)

2

such that 𝑃 > 0 and 𝑃 is a solution of the following
Lyapunov equation:

𝑃 − 𝐴
󸀠

𝑃𝐴 = 𝑄. (49)

3. Popov-Belevith-Hautus Criterion
of the Stabilizability

In this section, we will investigate the properties of unremov-
able spectrumof time-delay deference systemand the relation
between unremovable spectrum and the stabilizability of
time-delay deference system. Consider the following linear
stochastic system with time-delays:

𝑥 (𝑡 + 1) = 𝐹
0
𝑥 (𝑡) + 𝑀

0
𝑢 (𝑡) + (𝐺

0
𝑥 (𝑡) + 𝑁

0
𝑢 (𝑡)) 𝑤 (𝑡)

+

𝑚

∑

𝑗=1

[𝐹
𝑗
𝑥 (𝑡 − 𝑗) +𝑀

𝑗
𝑢 (𝑡 − 𝑗)

+ (𝐺
𝑗
𝑥 (𝑡 − 𝑗) + 𝑁

𝑗
𝑢 (𝑡 − 𝑗))𝑤 (𝑡)] ,

𝑥 (𝑘) = 𝜑 (𝑘) ∈ 𝑅
𝑛

, 𝑘 = 0, −1, −2, . . . , −𝑚, 𝑡 ∈ 𝑁.

(50)

Definition 24. We say that 𝜆 is an unremovable spectrum of
system (50) with state feedback if there exists𝑍 ̸=0 ∈ 𝑆

𝑛(𝑚+1),
such that,for any𝐾 ∈ 𝑅

𝑛(𝑚+1)×𝑛(𝑚+1),

L
∗

𝐾
(𝑍) = (𝐹 +𝑀𝐾)

󸀠

𝑍(𝐹 +𝑀𝐾)

+ (𝐺 + 𝑁𝐾)
󸀠

𝑍(𝐺 + 𝑁𝐾) = 𝜆𝑍

(51)

holds.

Remark 25. It is easy to see that the operatorL∗
𝐾
is the adjoint

operator of the operatorL
𝐾
with the inner product ⟨𝑍, 𝑌⟩ =

trace(𝑍∗, 𝑌) for any 𝑍,𝑌 ∈ 𝑆
𝑛(𝑚+1). As we restrict the

coefficients to real matrices, 𝜎(L∗
𝐾
) = 𝜎(L

𝐾
). By Corollaries

17–23, we know that any one of them can characterize the
stabilizability of system (50).

Obviously, if 𝜆 is an unremovable spectrum, then it can
be regarded as an uncontrollable mode as in deterministic
systems. We give a theorem with respect to the unremovable
spectrum below.

Theorem 26. (Stochastic PBH criterion) 𝜆 is an unremovable
spectrum of system (50) if and only if there exists 𝑍 ̸=0 ∈

𝑆
𝑛(𝑚+1), such that the following three equalities hold simulta-
neously:

𝐹
󸀠

𝑍𝐹 + 𝐺
󸀠

𝑍𝐺 = 𝜆𝑍,

𝐹
󸀠

𝑍𝑀 + 𝐺
󸀠

𝑍𝑁 = 0,

𝑁
󸀠

𝑍𝑁 = −𝑀
󸀠

𝑍𝑀.

(52)

Proof. Note that (51) can be written as

𝐹
󸀠

𝑍𝐹 + 𝐾
󸀠

𝑀
󸀠

𝑍𝑀𝐾 + 𝐺
󸀠

𝑍𝐺
󸀠

+ 𝐾
󸀠

𝑁
󸀠

𝑍𝑁𝐾

+ (𝐹
󸀠

𝑍𝑀 + 𝐺
󸀠

𝑍𝑁)𝐾 + 𝐾
󸀠

(𝑀
󸀠

𝑍𝐹 + 𝑁
󸀠

𝑍𝐺) = 𝜆𝑍,

(53)

so if (52) holds, then (53) automatically holds. So the
sufficiency is proved.

To prove the necessity, we first take 𝐾 = 0 in (51), then

𝐹
󸀠

𝑍𝐹 + 𝐺𝑍𝐺
󸀠

= 𝜆𝑍 (54)

holds. Again, from (53), it follows that

𝐾
󸀠

𝑀𝑍𝑀
󸀠

𝐾 + 𝐾𝑁𝑍𝑁
󸀠

𝐾
󸀠

+ (𝐹
󸀠

𝑍𝑀 + 𝐺
󸀠

𝑍𝑁)𝐾 + 𝐾
󸀠

(𝑀
󸀠

𝑍𝐹 + 𝑁
󸀠

𝑍𝐺) = 0.

(55)

Let F = 𝐹
󸀠

𝑍𝑀 + 𝐺
󸀠

𝑍𝑁, M = 𝑀𝑍𝑀
󸀠, N = 𝑁𝑍𝑁

󸀠; then
(55) becomes

F𝐾 + 𝐾
󸀠

F
󸀠

= −𝐾
󸀠

M𝐾 − 𝐾
󸀠

N𝐾. (56)

Since the left-hand side in (56) is linear with respect to𝐾, we
must have M + N = 0. In fact, due to the linearity of the
following equation

(𝐾 + 𝐾)
󸀠

(M +N) (𝐾 + 𝐾)

= 4𝐾
󸀠

(M +N) 𝐾 = 2𝐾
󸀠

(M +N) 𝐾,

(57)

𝐾
󸀠

(M + N)𝐾 = 0. Because of the arbitrariness of 𝐾, it is
necessary that M + N = 0; that is, 𝑀𝑍𝑀

󸀠

= −𝑁𝑍𝑁
󸀠. To

proveF = 0 or𝐹󸀠𝑍𝑀+𝐺
󸀠

𝑍𝑁 = 0, we note that (56) becomes
𝐾
󸀠

F󸀠 = −F𝐾. DenoteF = (𝑓
𝑖𝑗
)
𝑛(𝑚+1)×𝑛(𝑚+1)

, and take

𝐾 = 𝐾
𝑖𝑗
= (𝑘
𝑙𝑠
)
𝑛(𝑚+1)×𝑛(𝑚+1)

= {
1, 𝑙 = 𝑖, 𝑠 = 𝑗,

0, otherwise.
(58)

From 𝐾
󸀠

F󸀠 = −F𝐾, one knows that 𝑓
𝑖𝑗

= 0, 𝑖, 𝑗 =

1, 2, . . . , 𝑛(𝑚 + 1); that is, F = 0. The proof of Theorem 26
is complete.

Theorem 27. If system (50) is asymptotically mean square
stabilizable, then all unremovable spectra of system (50) must
belong to𝐷(0, 1).

Proof. If there is an unremovable spectrum 𝜇 of (50) with
|𝜇| ≥ 1, then, by Theorem 26, there exists 𝑍 ̸=0 ∈ 𝑆

𝑛(𝑚+1),
such that the following three equalities hold simultaneously:

𝐹
󸀠

𝑍𝐹 + 𝐺
󸀠

𝑍𝐺 = 𝜇𝑍,

𝐹
󸀠

𝑍𝑀 + 𝐺
󸀠

𝑍𝑁 = 0,

𝑁
󸀠

𝑍𝑁 = −𝑀
󸀠

𝑍𝑀.

(59)
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So, for any feedback gain 𝐾, we obtain L
𝐾
(𝑍) = 𝜇𝑍, 𝜇 ∉

𝐷(0, 1). The proof of Theorem 27 is complete. It follows that,
for any 𝐾, 𝜇 ∈ 𝜎(L

𝐾
), which contradicts the asymptotical

mean square stabilization of system (50).
By Theorems 26 and 27, the deterministic Popov-

Belevith-Hautus Criterion can be stated in another form as
follows.

Corollary 28. Assume that𝐺
𝑗
= 𝑁
𝑗
= 0, 𝑗 = 0, 1, . . . , 𝑚; then

system (50) is asymptotically stabilizable if and only if all of the
unremovable spectra of system (50) belong to 𝐷(0, 1); that is,
there does not exist a nonzero 𝑍 ∈ 𝑆

𝑛(𝑚+1), and 𝜆 ∉ 𝐷(0, 1)

satisfying

𝐹
󸀠

𝑍𝐹 = 𝜆𝑍, 𝑍𝑀 = 0. (60)

Proof. The necessity is obvious. To prove the sufficiency part,
we note that if (𝐹

0
,𝑀
0
) is not stabilizable, then, by Popov-

Belevith-Hautus Criterion, there exists a nonzero 𝜉 ∈ 𝐶
𝑛(𝑚+1),

𝜆 ∉ 𝐷(0, 1) satisfying 𝜉
󸀠

𝐹 = 𝜆𝜉
󸀠, 𝜉󸀠𝑀 = 0. Take 𝑍 =

𝜉𝜉
󸀠, then (60) holds, which contradicts the given condition.

Corollary 28 is proved.

Remark 29. Corollary 28 indicates that there is no difference
between unremovable spectrum and uncontrollablemode for
deterministic systems.

Theorem 30. If system (50) is mean square stabilizable, then
all the existing unremovable spectra of (50) must belong to
𝐷(0, 1).

Proof. If there is an unremovable spectrum 𝜇 of system
(50) with 𝜇 ∉ 𝐷(0, 1), then, by Theorem 26, there exists
𝑍 ̸=0 ∈ 𝑆

𝑛(𝑚+1), such that the following three equalities hold
simultaneously:

𝐹
󸀠

𝑍𝐹 + 𝐺
󸀠

𝑍𝐺 = 𝜇𝑍,

𝐹
󸀠

𝑍𝑀 + 𝐺
󸀠

𝑍𝑁 = 0,

𝑁
󸀠

𝑍𝑁 = −𝑀
󸀠

𝑍𝑀.

(61)

So for any feedback gain 𝐾, we obtain L∗
𝐾
(𝑍) = 𝜇𝑍,

𝜇 ∉ 𝐷(0, 1). It follows that, for any 𝐾, 𝜇 ∈ 𝜎(L
𝐾
), which

contradicts mean square stabilization of system (50). The
proof of Theorem 30 is complete.

4. Conclusion

In this paper, we investigate the stability and stabilizability of
stochastic delay-time systems. By 𝐻-representation, present
the spectral criteria of the stability and stabilizability. By
generalized Lyapunov equation approach, the equivalent
conditions of mean square stabilizability and asymptotically
mean square stabilizability of system (50) are given. We
introduce the notion of unremovable spectrum of stochastic
time-delay deference system, present the PBH criterion of
the unremovable spectrum of stochastic time-delay system,

and investigate the relation between the unremovable spec-
trum and the stabilizability of stochastic time-delay deference
system.
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The mixed𝐻
2
/𝐻
∞
control problem is studied for systems governed by infinite horizon backward stochastic differential equations

(BSDEs) with exogenous disturbance signal. A necessary and sufficient condition for the existence of a unique solution to the
𝐻
2
/𝐻
∞

control problem is derived. The equivalent feedback solution is also discussed. Contrary to deterministic or stochastic
forward case, the feedback solution is no longer feedback of the current state; rather, it is feedback of the entire history of the state.

1. Introduction

𝐻
∞

control is one of the most important robust control
approaches in which control law is sought to efficiently elim-
inate the effect of the exogenous disturbance in the practical
system. We refer the reader to [1–3] and the references
therein. If the purpose is to select control not only to restrain
the exogenous disturbance, but also to minimize a cost
function when the worst case disturbance 𝑑∗ is implemented,
this is the so-called mixed 𝐻

2
/𝐻
∞

control problem. Mixed
𝐻
2
/𝐻
∞

control problem has attracted much attention and
has been widely applied to various fields. Please refer to [4, 5]
for more information.

It should be pointed out that the above-mentioned works
are concerned only with the forward stochastic systems. The
case of systems governed by backward stochastic differential
equations with exogenous disturbance signal, to our best
knowledge, seems to be open. The objective of this paper
is to develop an 𝐻

2
/𝐻
∞

control theory for infinite horizon
backward stochastic systems.

A BSDE is an Itô stochastic differential equation (SDE)
for which a random terminal condition on the state has been
specified. Since BSDEs are well-defined dynamic systems, it
is very natural and appealing to study the control problems
involving BSDEs as well as their applications in lots of
different fields, especially in finance, economics, insurance,

and so forth. Please refer to [6–12] formore details.This paper
is concernedwithmixed𝐻

2
/𝐻
∞
control of backward systems

governed by infinite horizon linear BSDEs, namely, an infinite
horizon backward stochastic 𝐻

2
/𝐻
∞

control problem. This
means that our purpose is to study mixed𝐻

2
/𝐻
∞

backward
stochastic control problem in infinite horizon which presents
more robust and stable sense in practise. For that, as prelimi-
naries, we first need to review some results on infinite horizon
BSDEs in Section 2. Chen and Wang [13] gave an existence
and uniqueness result under a kind of Lipschitz condition
suitable for one-dimensional infinite horizon BSDEs.Wu [14]
generalized the result of [13] into the poisson jump process
case in unbounded stopping time duration and obtained the
corresponding comparison theorem. In this section, under
this frame, we get the existence and uniqueness result for the
infinite horizon matrix-valued BSDEs.

In Section 3, similar to the deterministic or stochastic
forward case, we formulate the infinite horizon backward
stochastic𝐻

2
/𝐻
∞
control problem. In Section 4, a necessary

and sufficient condition for the existence of a unique solution
to the 𝐻

2
/𝐻
∞

control problem is derived. It is shown that
the existence of a unique solution to the control problem is
equivalent to the corresponding uncontrolled perturbed sys-
tem to have a L

2
-gain less than or equal to 𝛾 and the resulting

solution is characterized by the solution of an uncontrolled
forward backward stochastic differential equation (FBSDE).

Hindawi Publishing Corporation
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Under some monotone assumptions, Hu and Peng [15] and
Peng and Wu [16] obtained the existence and uniqueness
results in an arbitrarily prescribed time duration. Wu and
Xu [17] gave some comparison theorems for FBSDEs. Riccati
equation plays an important role to get the feedback form of
the optimal control; please refer to Yong and Zhou [18] for the
details. Section 5 gives the equivalent linear feedback solution
by virtue of the solution of a Riccati-type equation. As it
turns out, the infinite horizon backward stochastic 𝐻

2
/𝐻
∞

control can no longer be expressed as a linear feedback of the
current state like that in deterministic or stochastic forward
case. Rather, it depends, in general, on the entire past history
of the state pair (𝑥(⋅), 𝑧(⋅)).

2. Notations and Preliminary Results of
Infinite Horizon BSDEs

To treat the infinite horizon backward stochastic 𝐻
2
/𝐻
∞

control problem, we need the following preliminary results
of infinite horizon BSDEs.

Let (Ω,F,F
𝑡
, 𝑃) be a completed filtering probability

space; let (𝑊
𝑡
)
𝑡≥0

be a standard one-dimensional Wiener
process (our assumption that𝑊(⋅) is scalar-valued is for the
sake of simplicity; no essential difficulties are encountered
when extending our analysis to the case of vector-valued
Wiener process). {F

𝑡
}
𝑡≥0

is the natural filtration generated by
this Wiener process𝑊(⋅) up to time 𝑡, whereF

0
contains all

𝑃-null sets ofF andF
∞
= ∨
𝑡≥0

F
𝑡
.

Throughout this paper, we adopt the following conven-
tional notations. 𝑆𝑛: the set of symmetric 𝑛 × 𝑛 matrices
with real elements; 𝐴𝑇: the transpose of the matrix 𝐴;
𝐴 ≥ 0 (𝐴 > 0): 𝐴 is positive semidefinite (positive
definite) real matrix; 𝐼: identity matrix; ‖𝑥‖ := 𝑥

𝑇

𝑥 =

(∑
𝑛

𝑖=1
|𝑥
𝑖
|
2

)
1/2 for 𝑛-dimensional vector 𝑥 = (𝑥

1
, . . . , 𝑥

𝑛
)
𝑇;

‖𝐴‖ := max
𝑥∈𝑅
𝑛
,‖𝑥‖=1

‖𝐴𝑥‖ for𝐴 ∈ 𝑅𝑛×𝑛;𝑁(⋅) > (≥ 0):𝑁(𝑡) >
(≥)0 for a.s. 𝑡 ∈ 𝑅+;𝑀(⋅) > (≥)𝑁(⋅):𝑀(⋅) − 𝑁(⋅) > (≥)0;𝑋: a
given Hilbert space;

𝐿
2

F (𝑅
+

; 𝑋)

=: {𝑓 : 𝑅
+

× Ω 󳨀→ 𝑋 is an F
𝑡

− adapted process such that E∫
∞

0

󵄩󵄩󵄩󵄩𝑓 (𝑡)
󵄩󵄩󵄩󵄩

2

𝑑𝑡

< ∞} ;

S
2

=: {V
𝑡
, 0 ≤ 𝑡 ≤ ∞, is an F

𝑡

− adapted process such that E[ sup
0≤𝑡≤∞

󵄩󵄩󵄩󵄩V𝑡
󵄩󵄩󵄩󵄩

2

]

< ∞} ;

𝐿
2

=: {𝜉, 𝜉 is a vector-valued F
∞

−measurable random variable such that E󵄩󵄩󵄩󵄩𝜉
󵄩󵄩󵄩󵄩

2

< ∞} .

(1)

We consider the infinite horizon BSDE:

𝑥
𝑡
= 𝜉 + ∫

∞

𝑡

𝑓 (𝑠, 𝑥
𝑠
, 𝑧
𝑠
) 𝑑𝑠 − ∫

∞

𝑡

𝑧
𝑠
𝑑𝑊
𝑠
, 𝑡 ∈ [0,∞] ; (2)

(𝑥, 𝑧) take value in 𝑅𝑛 × 𝑅𝑛, 𝜉 ∈ 𝐿2, and 𝑓 is a map from
Ω × [0,∞] × 𝑅

𝑛

× 𝑅
𝑛 onto 𝑅𝑛 which satisfies the following.

(H2.1) For all (𝑥, 𝑧) ∈ 𝑅𝑛 × 𝑅𝑛, 𝑓(⋅, 𝑥, 𝑧) is progressively
measurable and

E(∫
∞

0

󵄩󵄩󵄩󵄩𝑓(𝑠, 0, 0)
󵄩󵄩󵄩󵄩 𝑑𝑠)

2

< ∞. (3)

(H2.2) There exist two positive deterministic functions 𝑢
1
(𝑡)

and 𝑢
2
(𝑡) such that, for all (𝑥

𝑖
, 𝑧
𝑖
) ∈ 𝑅
𝑛

× 𝑅
𝑛, 𝑖 = 1, 2,

󵄩󵄩󵄩󵄩𝑓 (𝑡, 𝑥1, 𝑧1) − 𝑓 (𝑡, 𝑥2, 𝑧2)
󵄩󵄩󵄩󵄩

≤ 𝑢
1
(𝑡)
󵄩󵄩󵄩󵄩𝑥1 − 𝑥2

󵄩󵄩󵄩󵄩 + 𝑢2 (𝑡)
󵄩󵄩󵄩󵄩𝑧1 − 𝑧2

󵄩󵄩󵄩󵄩 , 𝑡 ∈ [0,∞) ,

∫

∞

0

𝑢
1
(𝑡) 𝑑𝑡 < ∞, ∫

∞

0

𝑢
2

2
(𝑡) 𝑑𝑡 < ∞.

(4)

Then we have the following.

Theorem 1 (see Wu [14]). There exists a unique solution
(𝑥, 𝑧) ∈ S2 × 𝐿2F(𝑅

+

; 𝑅
𝑛

) satisfying the BSDE (2).
Let us again consider a function 𝐹, which will be in the

sequel the generator of the BSDE, defined onΩ×[0,∞]×𝑆𝑛×𝑆𝑛,
with values in 𝑆𝑛, such that the process (𝐹(𝑡, 𝑦, 𝑧))

𝑡∈[0,∞]
is a

progressively measurable process for each (𝑦, 𝑧) ∈ 𝑆𝑛 × 𝑆𝑛.
Along the line of Chen andWang [13] orWu [14] combined

with that in Peng [19] for matrixed-valued BSDEs result in
finite horizon, we get the following existence and uniqueness
theorem for infinite horizon matrix-valued BSDEs.

Theorem 2. Suppose that 𝐹 satisfies the following.

(H2.1󸀠) For all (𝑦, 𝑧) ∈ 𝑆𝑛 × 𝑆𝑛, 𝐹(⋅, 𝑦, 𝑧) is progressively
measurable and

E(∫
∞

0

‖𝐹(𝑠, 0, 0)‖ 𝑑𝑠)

2

< ∞. (5)

(H2.2󸀠) There exist two positive deterministic functions 𝑢
1
(𝑡)

and 𝑢
2
(𝑡) such that, for all (𝑦

𝑖
, 𝑧
𝑖
) ∈ 𝑅
𝑛

× 𝑅
𝑛, 𝑖 = 1, 2,

󵄩󵄩󵄩󵄩𝐹 (𝑡, 𝑦1, 𝑧1) − 𝐹 (𝑡, 𝑦2, 𝑧2)
󵄩󵄩󵄩󵄩

≤ 𝑢
1
(𝑡)
󵄩󵄩󵄩󵄩𝑦1 − 𝑦2

󵄩󵄩󵄩󵄩 + 𝑢2 (𝑡)
󵄩󵄩󵄩󵄩𝑧1 − 𝑧2

󵄩󵄩󵄩󵄩 , 𝑡 ∈ [0,∞) ,

(6)
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and ∫∞
0

𝑢
1
(𝑡)𝑑𝑡 < ∞, ∫∞

0

𝑢
2

2
(𝑡)𝑑𝑡 < ∞, 𝜉 is a given 𝑆𝑛-valued

random variable, and 𝜉 ∈ 𝐿2. Then, the following matrix-
valued infinite horizon BSDE

𝑌
𝑡
= 𝜉 + ∫

∞

𝑡

𝐹 (𝑠, 𝑌
𝑠
, 𝑍
𝑠
) 𝑑𝑠 − ∫

∞

𝑡

𝑍
𝑠
𝑑𝑊
𝑠

(7)

admits a unique solution (𝑌, 𝑍) ∈ S2 × 𝐿2F(𝑅
+

; 𝑅
𝑛

).

3. Problem Statement

Now, we consider the following stochastic control system
governed by an infinite horizon linear BSDE:

𝑥 (𝑡) = 𝜉 − ∫

∞

𝑡

[𝐴 (𝑠) 𝑥 (𝑠) + 𝐵 (𝑠) 𝑢 (𝑠)

+ 𝐶 (𝑠) 𝑑 (𝑠) + 𝐷 (𝑠) 𝑧 (𝑠)] 𝑑𝑠

− ∫

∞

𝑡

𝑧 (𝑠) 𝑑𝑊 (𝑠) .

(8)

𝑍 ∈ R𝑛𝑍 is the penalty output, and the energy of the output
signal 𝑍 is given by

‖𝑍‖
2

2
= 𝑥
𝑇

0
𝐻𝑥
0
+ E∫

∞

0

[𝑥
𝑇

𝑡
𝑄
𝑡
𝑥
𝑡
+ 𝑧
𝑇

𝑡
𝑆
𝑡
𝑧
𝑡
+ 𝑢
𝑇

𝑡
𝑢
𝑡
] 𝑑𝑡, (9)

where 𝐻 is a nonnegative symmetric constant matrix and
𝑄
𝑡
(𝜔) and 𝑆

𝑡
(𝜔) are nonnegative symmetric bounded pro-

gressively measurable matrix-valued processes. 𝑢 and 𝑑 stand
for the control input and exogenous disturbance signal,
respectively. The energy of the disturbances is

‖𝑑‖
2

2
= E∫

∞

0

𝑑
𝑇

𝑡
𝑑
𝑡
𝑑𝑡. (10)

Later, we will state assumptions on the coefficients 𝐴(⋅),
𝐵(⋅), 𝐶(⋅), 𝐷(⋅), 𝑄(⋅), 𝑆(⋅) so as to guarantee the existence of a
unique solution pair (𝑥(⋅), 𝑧(⋅)) ∈ S2 × 𝐿2F(𝑅

+

; 𝑅
𝑛

) of BSDE
(8) for any 𝑢 ∈ 𝐿2F(𝑅

+

; 𝑅
𝑛𝑢), 𝑑 ∈ 𝐿2F(𝑅

+

; 𝑅
𝑛𝑑), and 𝜉 ∈ 𝐿2. We

refer to such a four-tuple (𝑥(⋅), 𝑧(⋅); 𝑢(⋅), 𝑑(⋅)) as an admissible
triple.

Now, we first define the infinite horizon backward
stochastic𝐻

2
/𝐻
∞

control as follows.

Definition 3 (backward stochastic𝐻
2
/𝐻
∞
control). For given

𝛾 > 0 and 𝑑 ∈ 𝐿2F(𝑅
+

; 𝑅
𝑛𝑑), find, if possible, a control 𝑢 =

𝑢
∗

∈ 𝐿
2

F(𝑅
+

; 𝑅
𝑛𝑢), such that

(i) the trajectory of the closed-loop system (8) with 𝜉 = 0
satisfies

‖𝑍‖
2

2
≤ 𝛾
2

‖𝑑‖
2

2
, ∀𝑑 ̸=0 ∈ 𝐿

2

F (𝑅
+

; 𝑅
𝑛𝑑) and (11)

(ii) when the worst case disturbance ([4]) 𝑑∗ ∈

𝐿
2

F(𝑅
+

; 𝑅
𝑛𝑑), if existing, is implemented in (8), 𝑢∗

minimizes the quadratic performance ‖𝑍‖2
2
simulta-

neously.

If we define

𝐽
1
(𝑢, 𝑑) = ‖𝑍‖

2

2
− 𝛾
2

‖𝑑‖
2

2
,

𝐽
2
(𝑢, 𝑑) = ‖𝑍‖

2

2

(12)

then the mixed𝐻
2
/𝐻
∞
control problem is equivalent to find

the Nash equilibria (𝑢∗, 𝑑∗) defined as

𝐽
1
(𝑢
∗

, 𝑑
∗

) ≥ 𝐽
1
(𝑢
∗

, 𝑑) , ∀𝑑 ∈ 𝐿
2

F (𝑅
+

; 𝑅
𝑛𝑑) , (13)

𝐽
2
(𝑢, 𝑑
∗

) ≥ 𝐽
2
(𝑢
∗

, 𝑑
∗

) , ∀𝑢 ∈ 𝐿
2

F (𝑅
+

; 𝑅
𝑛𝑢) , (14)

𝐽
1
(𝑢
∗

, 𝑑) ≤ 0, ∀𝑑 ̸=0 ∈ 𝐿
2

F (𝑅
+

; 𝑅
𝑛𝑑) , 𝜉 = 0. (15)

Obviously, inequality (15) is associated with the 𝐻
∞

perfor-
mance. The first Nash inequality (13) is to keep that 𝑑∗ is the
worst case disturbance, while the second one (14) is related
with the 𝐻

2
performance. Clearly, if the Nash equilibria

(𝑢
∗

, 𝑑
∗

) exist and satisfy inequality (15), then 𝑢∗ is our desired
𝐻
2
/𝐻
∞

controller and 𝑑∗ is the worst case disturbance. In
this case, we also say that the infinite horizon backward
stochastic𝐻

2
/𝐻
∞

control admits a solution (𝑢∗, 𝑑∗).
Throughout this paper, we assume the following.

(A1) All matrices mentioned in this paper are bounded
progressively measurable processes.

(A2)

E∫
∞

0

‖𝐴 (𝑡)‖ 𝑑𝑡 < ∞,

E∫
∞

0

‖𝐷(𝑡)‖
2

𝑑𝑡 < ∞.

(16)

(A3)

𝛾 > 0,

𝑄 ≥ 0, E∫
∞

0

‖𝑄 (𝑡)‖ 𝑑𝑡 < ∞,

𝐵𝐵
𝑇

(⋅) >
𝐶𝐶
𝑇

(⋅)

𝛾2
,

E∫
∞

0

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝐵 (𝑡) 𝐵(𝑡)
𝑇

−
𝐶 (𝑡) 𝐶(𝑡)

𝑇

𝛾2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑑𝑡 < ∞.

(17)

From Theorem 2, we obtain that assumption (A2) is
sufficient to guarantee the existence of a unique solution pair
(𝑥(⋅), 𝑧(⋅)) ∈ S2 × 𝐿2F(𝑅

+

; 𝑅
𝑛

) of BSDE (8) for any 𝑢 ∈
𝐿
2

F(𝑅
+

; 𝑅
𝑛𝑢) and 𝑑 ∈ 𝐿2F(𝑅

+

; 𝑅
𝑛𝑑).

4. The Necessary and Sufficient Condition

In this section, we give a necessary and sufficient condition
for the existence of a unique solution to the backward stochas-
tic𝐻
2
/𝐻
∞

control problem. We begin our presentation with
some preliminaries.
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Consider the following uncontrolled stochastic perturbed
system:

𝑑𝑥
𝑡
= [𝐴 (𝑡) 𝑥

𝑡
+ 𝐶 (𝑡) 𝑑

𝑡
+ 𝐷 (𝑡) 𝑧

𝑡
] 𝑑𝑡 + 𝑧

𝑡
𝑑𝐵 (𝑡) ,

𝑥 (∞) = 𝜉, 𝑡 ∈ [0,∞) .

(18)

Let 𝑍 be the to-be-controlled output. For any 0 < 𝑇 <
∞, define the perturbation operator L : 𝐿2F(𝑅

+

; 𝑅
𝑛𝑑) →

𝐿
2

F(𝑅
+

; 𝑅
𝑛𝑍) as

L (𝑑) = 𝑍|
𝑥∞=0
, 𝑡 ≥ 0, 𝑑 ∈ 𝐿

2

F (𝑅
+

; 𝑅
𝑛𝑑) , (19)

with its norm

‖L‖
2
:= sup
𝑑∈𝐿
2

F
(𝑅
+
; 𝑅
𝑛
𝑑 ), 𝑑 ̸=0, 𝑥∞=0

‖L(𝑑)‖
2

‖𝑑‖
2

= sup
𝑑∈𝐿
2

F
(𝑅
+
; 𝑅
𝑛
𝑑 ), 𝑑 ̸=0, 𝑥∞=0

‖𝑍‖
2

‖𝑑‖
2

,

(20)

where

‖𝑍‖
2

2
= 𝑥
𝑇

0
𝐻𝑥
0
+ E∫

∞

0

[𝑥
𝑇

𝑡
𝑄
𝑡
𝑥
𝑡
+ 𝑦
𝑇

𝑡
𝑆
𝑡
𝑦
𝑡
] 𝑑𝑡. (21)

Obviously, L is a nonlinear operator.

Definition 4. Let 𝛾 > 0; system (18) is said to have L
2
-gain

less than or equal to 𝛾 if for any nonzero 𝑑 ∈ 𝐿2F(𝑅
+

; 𝑅
𝑛𝑑),

‖ L‖
2
≤ 𝛾.

Proposition 5. For system (18) and given disturbance attenua-
tion 𝛾 > 0, if there exists a functionP(⋅), satisfying the following
SDE (the variables 𝑡 and 𝜔 are suppressed):

𝑑𝑃 = [−𝐴
𝑇

𝑃 − 𝑃𝐴 − 𝑄 −
𝑃𝐶𝐶
𝑇

𝑃

𝛾2
]𝑑𝑡 − 𝐷

𝑇

𝑃𝑑𝑊(𝑡) ,

𝑃 + 𝑆 ≤ 0, 𝑃 (0) = −𝐻, 𝑡 ∈ [0,∞) ,

(22)

then ‖ L‖
2
≤ 𝛾.

Proof. It only needs to note the following identity:

‖𝑍‖
2

2
− 𝛾
2

‖𝑑‖
2

2

= ‖𝑍‖
2

2
− 𝛾
2

‖𝑑‖
2

2
+ E∫

∞

0

𝑑 (𝑥
𝑇

𝑃𝑥) − 𝑥
𝑇

0
𝐻𝑥
0

= −𝛾
2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

V −
𝐶
𝑇

𝑃𝑥

𝛾2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

2

+ E∫
∞

0

𝑦
𝑇

(𝑃 + 𝑆) 𝑦 𝑑𝑡 ≤ 0.

(23)

The following theorem is a necessary and sufficient
condition for the existence of a unique solution to the infinite
horizon backward stochastic𝐻

2
/𝐻
∞

control problem.

Theorem 6. For system (8), the backward stochastic 𝐻
2
/𝐻
∞

control problem admits a solution if and only if the correspond-
ing uncontrolled system (18) has L

2
-gain less than or equal to 𝛾.

Moreover, if the backward stochastic 𝐻
2
/𝐻
∞

control problem
admits a solution, then the solution is unique with

𝑢
∗

=
𝐵
𝑇

𝑝
∗

2
, 𝑑

∗

= −
𝐶
𝑇

𝑝
∗

2𝛾2
, (24)

where (𝑝∗, 𝑥∗, 𝑧∗) is the solution of the following FBSDE:

𝑑𝑝
∗

𝑡
= [2𝑄𝑥

∗

𝑡
− 𝐴
𝑇

𝑝
∗

𝑡
] 𝑑𝑡 + [2𝑆𝑧

∗

𝑡
− 𝐷
𝑇

𝑝
∗

𝑡
] 𝑑𝐵 (𝑡) ,

𝑑𝑥
∗

𝑡
= [𝐴𝑥

∗

𝑡
+
𝐵𝐵
𝑇

𝑝
∗

𝑡

2
−
𝐶𝐶
𝑇

𝑝
∗

𝑡

2𝛾2
+ 𝐷𝑧
∗

𝑡
]𝑑𝑡 + 𝑧

∗

𝑡
𝑑𝐵 (𝑡) ,

𝑝
∗

0
= 2𝐻𝑥

∗

0
, 𝑥
∗

∞
= 𝜉, 𝑡 ∈ [0,∞) .

(25)

Proof. (1)The Sufficient Condition. To show that the backward
stochastic𝐻

2
/𝐻
∞

control problem admits a unique solution
(𝑢
∗

, 𝑑
∗

) if the corresponding uncontrolled system (18) hasL
2
-

gain less than or equal to 𝛾, we will show that (𝑢∗, 𝑑∗) is a
solution firstly.

Look at the above FBSDE; from [16], the FBSDE (25) has
a unique solution (𝑝∗

𝑡
, 𝑥
∗

𝑡
, 𝑧
∗

𝑡
). Now, we try to prove that 𝑑∗

is the worst case disturbance. For any given 𝑑 ∈ 𝐿2F(𝑅
+

; 𝑅
𝑛𝑑),

suppose that 𝑥𝑑 is the trajectory corresponding to (𝑢∗, 𝑑) ∈
𝐿
2

F(𝑅
+

; 𝑅
𝑛𝑢) × 𝐿

2

F(𝑅
+

; 𝑅
𝑛𝑑). It is easy to see the trajectory

corresponding to

(0, 𝑑
∗

− 𝑑) (26)

is 𝑥∗−𝑥𝑑 with initial state 𝑥∗
0
−𝑥
𝑑

0
and terminal state 0. Hence,

(𝑥
∗

− 𝑥
𝑑

, 𝑧
∗

− 𝑧
𝑑

) is the solution corresponding to 𝑑∗ − 𝑑 for
system (18) with terminal state 0. Since system (18) has L

2
-

gain less than or equal to 𝛾, then

E [∫
∞

0

[−(𝑥
∗

− 𝑥
𝑑

)
𝑇

𝑄(𝑥
∗

− 𝑥
𝑑

) − (𝑧
∗

− 𝑧
𝑑

)
𝑇

𝑆 (𝑧
∗

− 𝑧
𝑑

)

+𝛾
2

(𝑑
∗

− 𝑑)
𝑇

(𝑑
∗

− 𝑑) ] 𝑑𝑡]

− (𝑥
∗

0
− 𝑥
𝑑

0
)
𝑇

𝐻(𝑥
∗

0
− 𝑥
𝑑

0
) ≥ 0,

(27)

𝐽
2
(𝑢
∗

, 𝑑
∗

) − 𝐽
2
(𝑢
∗

, 𝑑)

= E [∫
∞

0

[𝑥
∗𝑇

𝑄𝑥
∗

− 𝑥
𝑑𝑇

𝑄𝑥
𝑑

+ 𝑧
∗𝑇

𝑆𝑧
∗

− 𝑧
𝑑𝑇

𝑆𝑧
𝑑

−𝛾
2

𝑑
∗𝑇

𝑑
∗

+ 𝛾
2

𝑑
𝑇

𝑑] 𝑑𝑡]

+ 𝑥
∗𝑇

0
𝐻𝑥
∗

0
− 𝑥
𝑑𝑇

0
𝐻𝑥
𝑑

0
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= E [∫
∞

0

[(𝑥
∗

− 𝑥
𝑑

)
𝑇

𝑄(𝑥
∗

− 𝑥
𝑑

)

− 2𝑥
𝑑𝑇

𝑄(𝑥
𝑑

− 𝑥
∗

) + (𝑧
∗

− 𝑧
𝑑

)
𝑇

𝑆 (𝑧
∗

− 𝑧
𝑑

)

−2𝑧
𝑑𝑇

𝑆 (𝑧
𝑑

− 𝑧
∗

) − 𝛾
2

𝑑
∗𝑇

𝑑
∗

+ 𝛾
2

𝑑
𝑇

𝑑] 𝑑𝑡]

+ (𝑥
∗

0
− 𝑥
𝑑

0
)
𝑇

𝐻(𝑥
∗

0
− 𝑥
𝑑

0
) − 2𝑥

𝑑𝑇

0
𝐻(𝑥
𝑑

0
− 𝑥
∗

0
) .

(28)

Applying Itô’s formula to 𝑝∗𝑇(𝑥𝑑 − 𝑥∗),

− 2𝑥
∗𝑇

0
𝐻(𝑥
𝑑

0
− 𝑥
∗

0
)

= E [∫
∞

0

𝑑 [𝑝
∗𝑇

(𝑥
𝑑

− 𝑥
∗

)]

= E∫
∞

0

[2𝑥
∗𝑇

𝑄(𝑥
𝑑

− 𝑥
∗

)

+2𝑧
∗𝑇

𝑆 (𝑧
𝑑

− 𝑧
∗

) + (𝐶
𝑇

𝑝
∗

)
𝑇

(𝑑 − 𝑑
∗

)] 𝑑𝑡]

= E [∫
∞

0

[2𝑥
∗𝑇

𝑄(𝑥
𝑑

− 𝑥
∗

)

+2𝑧
∗𝑇

𝑆 (𝑧
𝑑

− 𝑧
∗

) − 2𝛾
2V∗𝑇 (𝑑 − 𝑑∗)] 𝑑𝑡] .

(29)

Substituting 2𝑥∗𝑇
0
𝐻(𝑥
𝑑

0
− 𝑥
∗

0
) into (28), we get

𝐽
2
(𝑢
∗

, 𝑑
∗

) − 𝐽
2
(𝑢
∗

, 𝑑)

= E [∫
∞

0

[−(𝑥
∗

− 𝑥
𝑑

)
𝑇

𝑄(𝑥
∗

− 𝑥
𝑑

)

− (𝑧
∗

− 𝑧
𝑑

)
𝑇

𝑆 (𝑧
∗

− 𝑧
𝑑

)

+ 𝛾
2

(𝑑
∗

− 𝑑)
𝑇

(𝑑
∗

− 𝑑) ] 𝑑𝑡]

− (𝑥
∗

0
− 𝑥
𝑑

0
)
𝑇

𝐻(𝑥
∗

0
− 𝑥
𝑑

0
) .

(30)

From (27), then

𝐽
2
(𝑢
∗

, 𝑑
∗

) − 𝐽
2
(𝑢
∗

, 𝑑) ≥ 0. (31)

So 𝑑∗ is the worst case disturbance.Moreover, for 𝑥
∞
= 0, the

FBSDE (25) admits a unique solution (𝑝∗, 𝑥∗, 𝑧∗) = (0, 0, 0);
then

𝐽
2
(𝑢
∗

, 𝑑) ≤ 𝐽
2
(𝑢
∗

, 𝑑
∗

) = 0. (32)

Hence, 𝑢∗ restrains the exogenous disturbance. In the
following, we will show that 𝑢∗ also minimizes that cost
function when the worst case disturbance 𝑑∗ is implemented
into system (8).

For any𝑢 ∈ 𝐿2F(R
𝑛𝑢), let𝑥𝑢

𝑡
be the trajectory of the system

(8) corresponding to (𝑢, 𝑑∗). Let us first consider

𝐽
1
(𝑢
∗

, 𝑑
∗

) − 𝐽
1
(𝑢, 𝑑
∗

) = 𝐼
1
, (33)

where

𝐼
1
= −E [∫

∞

0

[𝑥
∗𝑇

𝑄 (𝑡) 𝑥
∗

− 𝑥
𝑢𝑇

𝑄𝑥
𝑢

+ 𝑧
∗𝑇

𝑆 (𝑡) 𝑧
∗

− 𝑧
𝑢𝑇

𝑆𝑧
𝑢

+ 𝑢
∗𝑇

𝑢
∗

− 𝑢
𝑇

𝑢] 𝑑𝑡]

+ 𝑥
∗𝑇

0
𝐻𝑥
∗

0
− 𝑥
𝑢𝑇

0
𝐻𝑥
𝑢

0

= E [∫
∞

0

[(𝑥
∗

− 𝑥
𝑢

)
𝑇

𝑄 (𝑥
∗

− 𝑥
𝑢

)

+ (𝑧
∗

− 𝑧
𝑢

)
𝑇

𝑆 (𝑧
∗

− 𝑧
𝑢

) + (𝑢
∗

− 𝑢)
𝑇

(𝑢
∗

− 𝑢)

+ 2𝑥
∗𝑇

𝑄 (𝑡) (𝑥
𝑢

− 𝑥
∗

) + 2𝑦
∗𝑇

𝑆 (𝑡) (𝑧
𝑢

− 𝑧
∗

)

+ 2𝑢
∗𝑇

(𝑢 − 𝑢
∗

)] 𝑑𝑡]

+ (𝑥
∗

0
− 𝑥
𝑢

0
)
𝑇

𝐻(𝑥
∗

0
− 𝑥
𝑢

0
) + 2𝑥

∗𝑇

0
𝐻(𝑥
𝑢

0
− 𝑥
∗

0
) .

(34)

From 𝑝∗
0
= 2𝐻𝑥

∗

0
, we use Itô’s formula to 𝑝∗𝑇

𝑡
(𝑥
𝑢

𝑡
− 𝑥
∗

𝑡
) and

get

2𝑥
∗𝑇

0
𝐻(𝑥
𝑢

0
− 𝑥
∗

0
)

= −E [∫
∞

0

[2𝑥
∗𝑇

𝑄 (𝑡) (𝑥
𝑢

− 𝑥
∗

)

+ 2𝑧
∗𝑇

𝑆 (𝑧
𝑢

− 𝑧
∗

) + 2𝑢
∗𝑇

(𝑢 − 𝑢
∗

)] 𝑑𝑡] .

(35)

Then because of 𝑄, 𝑆, and𝐻 being nonnegative, we have

𝐽
1
(𝑢
∗

, V∗) − 𝐽
1
(𝑢, V∗) = 𝐼

1
≥ 0. (36)

Therefore, 𝑑∗ minimizes the cost function when the worst
case disturbance 𝑑∗ is implemented into system (8).

So, (𝑢∗, 𝑑∗) = (𝐵𝑇𝑝∗/2, −𝐶𝑇𝑝∗/2𝛾2) is a solution of the
backward stochastic𝐻

2
/𝐻
∞

control problem.
We are now in a position to prove the uniqueness of

the solution. Assume that the backward stochastic 𝐻
2
/𝐻
∞

control has a solution (𝑢1, 𝑑1), (𝑥1, 𝑧1) is the corresponding
solution for (8), and 𝑝1 is the solution of the following BSDE:

𝑑𝑝
1

= [2𝑄𝑥
1

− 𝐴
𝑇

𝑝
1

] 𝑑𝑡 + [2𝑆𝑧
1

− 𝐷
𝑇

𝑝
1

] 𝑑𝐵 (𝑡) ,

𝑝
1

0
= 2𝐻𝑥

1

0
.

(37)

Implementing 𝑑1, having

inf
𝑢∈𝐿
2

F
(𝑅
𝑛𝑢 )

𝐽
1
(𝑢, 𝑑
1

) , (38)

is a standard LQ optimal control problem. By uniqueness,
𝑢
1

= 𝐵
𝑇

𝑝
1

/2.
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Let 𝑥 be the trajectory corresponding to (𝑢1, 𝑑) =
(𝑢
1

, −𝐶
𝑇

𝑝
1

/𝛾
2

); then

0 ≥ 𝐽
2
(𝑢
1

, 𝑑) − 𝐽
2
(𝑢
1

, 𝑑
1

)

= E [∫
∞

0

[𝑥
𝑇

𝑄𝑥 − 𝑥
1𝑇

𝑄𝑥
1

+ 𝑧
𝑇

𝑆𝑧 − 𝑧
1𝑇

𝑆𝑧
1

−𝛾
2

𝑑
𝑇

𝑑 + 𝛾
2

𝑑
1𝑇

𝑑
1

] 𝑑𝑡]

+ 𝑥
𝑇

0
𝐻𝑥
0
− 𝑥
1𝑇

0
𝐻𝑥
1

0

= E [∫
∞

0

[(𝑥
1

− 𝑥)
𝑇

𝑄(𝑥
1

− 𝑥)

− 2𝑥
1𝑇

𝑄(𝑥
1

− 𝑥) + (𝑧
1

− 𝑧)
𝑇

𝑆 (𝑧
1

− 𝑧)

−2𝑧
1𝑇

𝑆 (𝑧
1

− 𝑧) + 𝛾
2

𝑑
1𝑇

𝑑
1

− 𝛾
2

𝑑
𝑇

𝑑] 𝑑𝑡]

+ (𝑥
1

0
− 𝑥
0
)
𝑇

𝐻(𝑥
1

0
− 𝑥
0
) − 2𝑥

1𝑇

0
𝐻(𝑥
1

0
− 𝑥
0
) .

(39)

Applying Itô’s formula to 𝑝1𝑇(𝑥1 − 𝑥),

2𝑥
1𝑇

0
𝐻(𝑥
1

0
− 𝑥
0
)

= E∫
∞

0

𝑑 [𝑝
1𝑇

(𝑥
1

− 𝑥)]

= E [∫
∞

0

[2𝑥
1𝑇

𝑄(𝑥
1

− 𝑥)

+(𝐶
𝑇

𝑧
1

)
𝑇

(𝑑
1

− 𝑑) + 2𝑧
1𝑇

𝑆 (𝑧
1

− 𝑧)] 𝑑𝑡]

= E [∫
∞

0

[2𝑥
1𝑇

𝑄(𝑥
1

− 𝑥)

+ 2𝑧
1𝑇

𝑆 (𝑧
1

− 𝑧) − 2𝛾
2

𝑑
𝑇

(𝑑
1

− 𝑑)] 𝑑𝑡] .

(40)

Substituting −2𝑥1𝑇
0
𝐻(𝑥
1

0
− 𝑥
0
) into (39), then

0 ≥ 𝐽
2
(𝛾, 𝑥
0
; 𝑢
1

, 𝑑) − 𝐽
2
(𝛾, 𝑥
0
; 𝑢
1

, 𝑑
1

)

= E [∫
∞

0

[(𝑥
1

− 𝑥)
𝑇

𝑄(𝑥
1

− 𝑥)

+ (𝑧
1

− 𝑧)
𝑇

𝑆 (𝑧
1

− 𝑧)

+𝛾
2

(𝑧 − 𝑧
1

)
𝑇

(𝑧 − 𝑧
1

)] 𝑑𝑡] .

(41)

Because of 𝑄, 𝑆, and𝑀 being nonnegative, we get 𝑑1 = V =
𝐶
𝑇

𝑧
1

/𝛾
2.

Therefore, (𝑢1, 𝑑1) = (𝑢∗, 𝑑∗).

(2) The Necessary Condition. Here we assume that a solution
exists; then from the uniqueness of the solution, we get that

(𝑢
∗

, 𝑑
∗

) is the unique solution and we will show that system
(18) has L

2
-gain less than or equal to 𝛾.

For 𝑥
𝑇
= 0, the FBSDE (25) has a unique solution

(𝑝
∗

, 𝑥
∗

, 𝑧
∗

) = (0, 0, 0); then (𝑢∗, 𝑑∗) = (0, 0) and

𝐽
2
(𝑢
∗

, 𝑑) ≤ 𝐽
2
(𝑢
∗

, 𝑑
∗

) = 0, ∀𝑑 ∈ 𝐿
2

F (R
𝑛𝑑) . (42)

Therefore, system (18) has L
2
-gain less than or equal to 𝛾.

5. The Linear Feedback Solution

The main result of this section gives the equivalent linear
feedback solution. For the purpose of this section the coeffi-
cients𝐴

𝑡
, 𝐵
𝑡
, 𝐶
𝑡
,𝐷
𝑡
, 𝐸
𝑡
,𝑄
𝑡
, and 𝑆

𝑡
are assumed deterministic

functions; (18) has L
2
-gain less than or equal to 𝛾.

Let (𝑝, 𝑥, 𝑧) be the solution of (25); we first give the rela-
tions between𝑝, 𝑥, and 𝑧 using the undetermined coefficients
method.Now,we introduce the following generalizedmatrix-
valued Riccati equation (the variables 𝑡 are suppressed):

𝐾 − 𝐴𝐾 − 𝐾𝐴
𝑇

+ 2𝐾𝑄𝐾 −
𝐵𝐵
𝑇

2

+
𝐶𝐶
𝑇

2𝛾2
+ 𝐷(𝐼 − 2𝐾𝑆)

−1

𝐾𝐷
𝑇

= 0, 𝐾 (∞) = 0.

(43)

Similar to the line developed by Lim and Zhou [6], we can
prove that (43) admits a unique solution𝐾(⋅). Letting𝐾(⋅) be
the solution to (43), we define the following equations:

𝑑ℎ = [𝐴ℎ − 2𝐾𝑄ℎ + 𝐷(𝐼 − 2𝐾𝑆)
−1

𝜂] 𝑑𝑡 + 𝜂𝑑𝐵 (𝑡) ,

ℎ (∞) = 𝜉.

(44)

Equation (44) is a linear BSDE and admits a unique solution
(ℎ, 𝜂).

Theorem7. Suppose that (𝑝(⋅), 𝑥(⋅), 𝑧(⋅)),𝐾(⋅), and (ℎ(⋅), 𝜂(⋅))
are the solutions of (25), (43), and (44), respectively; then the
following relations are satisfied:

𝑥 (𝑡) = 𝐾 (𝑡) 𝑝 (𝑡) + ℎ (𝑡) ,

𝑧 (𝑡) = (𝐼 − 2𝐾(𝑡)𝑆(𝑡))
−1

(𝜂 (𝑡) − 𝐾 (𝑡)𝐷(𝑡)
𝑇

𝑝 (𝑡)) ,

𝑥 (0) = (𝐼 − 2𝐾(0)𝐻)
−1

ℎ (0) .

(45)

Proof. Let 𝑥(𝑡) = 𝐾(𝑡)𝑝(𝑡) + ℎ(𝑡). We apply Itô’s formula to
𝑥(𝑡), 𝐾(𝑡)𝑝(𝑡) + ℎ(𝑡), respectively, and it is easy to check that
𝐾(𝑡) and ℎ(𝑡) satisfy (43) and (44), respectively.

FromTheorem 7, we know that 𝑥(⋅) can be written to the
functions of𝐾(⋅), 𝑝(⋅), and ℎ(⋅). Now we would like to derive
the feedback solution using the undetermined coefficients
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method. First, we introduce the generalized matrix-valued
Riccati equation and a linear SDE:

̇Σ + Σ𝐴 + 𝐴
𝑇

Σ

+ Σ[
𝐵𝐵
𝑇

2
−
𝐶𝐶
𝑇

2𝛾2
− 𝐷(𝐼 − 2𝐾𝑆)

−1

𝐾𝐷
𝑇

]

× Σ − 2𝑄 = 0,

Σ (0) = 2𝐻,

(46)

𝑑𝑟

= [−𝐴
𝑇

𝑟 −
Σ𝐵𝐵
𝑇

𝑟

2
+
Σ𝐶𝐶
𝑇

𝑟

2𝛾2
+ Σ𝐷(𝐼 − 2𝐾𝑆)

−1

𝐾𝐷
𝑇

𝑟

−Σ𝐷(𝐼 − 2𝐾𝑆)
−1

𝜂] 𝑑𝑡

+ [(2𝑆 − Σ) (𝐼 − 2𝐾𝑆)
−1

[𝜂 − 𝐾𝐷
𝑇

(𝐼 − Σ𝐾)
−1

(Σℎ + 𝑟)]

−𝐷
𝑇

(𝐼 − Σ𝐾)
−1

(Σℎ + 𝑟)] 𝑑𝐵 (𝑡) ,

𝑟 (0) = 0.

(47)

Similar to the line developed by Lim and Zhou [6], we can
prove that (46) admits a unique solution Σ(⋅). Equation (47)
is a linear SDE and has a unique solution 𝑟(⋅).

Theorem 8. The backward stochastic𝐻
2
/𝐻
∞
control problem

has a feedback solution (𝑢∗, V∗),

𝑢
∗

=
𝐵
𝑇

(Σ𝑥 + 𝑟)

2
, V∗ = −

𝐶
𝑇

(Σ𝑥 + 𝑟)

2𝛾2
. (48)

Proof. Let 𝑝(𝑡) = Σ(𝑡)𝑥(𝑡) + 𝑟(𝑡). We apply Itô’s formula to
𝑝(𝑡) and Σ(𝑡)𝑥(𝑡) + 𝑟(𝑡), respectively, and it is easy to check
that Σ(𝑡) and 𝑟(𝑡) satisfy (46) and (47).

Remark 9. FromTheorem 8, we see that the solution involves
an additional random nonhomogeneous term 𝑟(⋅).This addi-
tion disqualifies (48) from a feedback control of the current
state, contrary to the deterministic or stochastic forward
𝐻
2
/𝐻
∞

(see [4, 5]) cases. The reason is because 𝑟(⋅) depends
on (ℎ(⋅), 𝜂(⋅)), which in turn depends on 𝜉, the terminal
condition of part of the state variable, 𝑥(⋅). This is one of the
major distinctive features of the backward stochastic𝐻

2
/𝐻
∞

problem.
Finally, it is important to recognize that the expressions

for the backward stochastic 𝐻
2
/𝐻
∞

control, as presented in
Theorems 6 and 8, are equivalent expressions of the same
process; that is, this does not contradict the uniqueness of the
solution.

We present an example to illustrate the above theoretical
results as follows.

Example 10. Consider the backward stochastic𝐻
2
/𝐻
∞

con-
trol problem of the following one-dimensional system:

𝑥 (𝑡)

= 𝜉 − ∫

∞

𝑡

[2𝑒
−𝑠

𝑥 (𝑠) + √4𝑒
−𝑠 + 2𝑢 (𝑠)

+ √𝑒−𝑠 + 1𝑑 (𝑠) + 2𝑒
−𝑠/2

𝑧 (𝑠)] 𝑑𝑠

− ∫

∞

𝑡

𝑧 (𝑠) 𝑑𝑊 (𝑠) ,

(49)

with controlled output energy

‖𝑍‖
2

2
= E∫

∞

0

[
𝑒
−𝑡

𝑥
2

𝑡

2
+ 𝑢
2

𝑡
]𝑑𝑡. (50)

If we take 𝛾 = √2/2, then the Riccati equation (43) specializes
to

𝐾 (𝑡) = ∫

∞

𝑡

[𝑒
−𝑠

(𝐾(𝑠)
2

− 1)] 𝑑𝑠. (51)

Solving it yields 𝐾(𝑡) = (1 − 𝑒2𝑒
−𝑡

)/(1 + 𝑒
2𝑒
−𝑡

). Equation (44)
specializes to

ℎ (𝑡)

= 𝜉 − ∫

∞

𝑡

[{2𝑒
−𝑠

− 𝑒
−𝑠
1 − 𝑒
2𝑒
−𝑠

1 + 𝑒2𝑒
−𝑠
}ℎ (𝑠) + 2𝑒

−𝑠/2

𝜂 (𝑡)] 𝑑𝑡

− ∫

∞

𝑡

𝜂 (𝑡) 𝑑𝑊 (𝑡) .

(52)

Then, fromTheorem 7, we get a unique solution

(𝑢
∗

, 𝑑
∗

)

= (√
2𝑒
−𝑡

+ 1

2
⋅
1 + 𝑒
2𝑒
−𝑡

1 − 𝑒2𝑒
−𝑡
⋅ [𝑥 (𝑡) − ℎ (𝑡)] ,

− √𝑒−𝑡 + 1 ⋅
1 + 𝑒
2𝑒
−𝑡

1 − 𝑒2𝑒
−𝑡
⋅ [𝑥 (𝑡) − ℎ (𝑡)]) ,

(53)

of the backward𝐻
2
/𝐻
∞

control problem.
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This paper discusses the state feedback 𝐻
∞

control problem for a class of bilinear stochastic systems driven by both Brownian
motion and Poisson jumps. By completing square method, we obtain the𝐻

∞
control by solutions of the corresponding Hamilton-

Jacobi equations (HJE). By the tensor power series method, we also shift such HJEs into a kind of Riccati equations, and the𝐻
∞

control is represented with the form of tensor power series.

1. Introduction

The main purpose of 𝐻
∞

control design is to find the
law to efficiently eliminate the effect of the disturbance [1,
2]. Theoretically, study of 𝐻

∞
control first starts from the

deterministic linear systems, and the derivation of the state-
space formulation of the standard 𝐻

∞
control leads to a

breakthrough, which can be found in the paper [3]. In recent
years, stochastic 𝐻

∞
control systems, such as Markovian

jump systems [4–6], 𝐻
∞

Gaussian control design [7], and
Itô differential systems [8–13], have received a great deal
of attention. However, up to now, most of the work on
stochastic 𝐻

∞
control is confined to Itô type or Markovian

jump systems. Yet, there are still many systems which contain
Poisson jumps in economics and natural science. In 1970s,
Boel and Varaiya [14] and Rishel [15] considered the optimal
control problemwith randomPoisson jumps, andmany basic
results have been made. From then on, many scholars and
economists also study the system and its applications; for
further reference, we refer to [16–20] and their references.
But those results mostly concentrate on optimal control and
its application in financial market or corresponding theories.
Of course, such model still can be disturbed by exogenous
disturbance and its robustness is also an important problem.
The objective of this paper is to develop an 𝐻

∞
-type theory

over infinite time horizon for the disturbance attenuation of

stochastic bilinear systems with Poisson jumps by dynamic
state feedback.

Generally, the key of 𝐻
∞

control design is to solve a
general Hamilton-Jacobi equation (HJE). However, up to
now, there is still no effective algorithm to solve such a general
HJE. In order to solve the HJE given in this paper, we extend
a tensor power series approach which is used in [21] and also
give the simulation of the trajectory of output 𝑧 under 𝐻

∞

control. This paper will follow along the lines of [22] to study
the stochastic 𝐻

∞
control with infinite horizons and finite

horizon for a class of nonlinear stochastic differential systems
with Poisson jumps. The paper is organized as follows.

In Section 2, we review Itô’s theories about the system
driven by Brownian motion and Poisson jumps. In Section 3,
we obtain the𝐻

∞
by solving the HJE which is proved by the

completing squaremethod. In Section 4, we discuss the prob-
lem of finite horizon 𝐻

∞
control with jumps, and using the

tensor power series approach, we discuss the approximating
𝐻
∞
control given in the paper. For convenience, we adopt the

following notation.
S
𝑛
(R) denotes the set of all real 𝑛×𝑛 symmetricmatrices;

𝐴
󸀠 is the transpose of the corresponding matrix 𝐴; 𝐴 >

0 (𝐴 ≥ 0) is the positive definite (semidefinite) matrix 𝐴; 𝐼 is
the identity matrix; E𝜉 is the expectation of random variable
𝜉; ‖𝑥‖ is the Euclidean norm of vector 𝑥 ∈ R𝑛𝑥 and 𝑛

𝑥
is the

dimension of 𝑥;L2([0, 𝑇],R𝑛𝑦) is the set of 𝑛
𝑦
-dimensional
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stochastic process𝑦 defined on interval [0, 𝑇] (𝑇 can take∞),
taking values inR𝑛𝑦 , with norm

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩L2([0,𝑇],R𝑛𝑦 )

= (𝐸∫

𝑇

0

󵄩󵄩󵄩󵄩𝑦 (𝑡)
󵄩󵄩󵄩󵄩

2

𝑑𝑡)

1/2

< ∞; (1)

𝐶
1,2

(R
+
,R𝑛𝑥) is the class of function 𝑉(𝑡, 𝑥) twice con-

tinuously differential with respect to 𝑥 ∈ R𝑛𝑥 and once
continuously differential with respect to 𝑡; ⟨𝑥, 𝑦⟩ is the inner
product of two vectors 𝑥, 𝑦 ∈ R𝑛.

2. Preliminaries

For a given complete probability space (Ω,F,P), let𝑊
𝑡
and

𝜇 be the Brownian motion and the Poisson randommeasure,
respectively, which are mutually independent:

(i) a 1-dimensional standard Brownian motion {𝑊
𝑡
}
𝑡≥0

;

(ii) a Poisson randommeasure 𝜇 onR
+
×𝐸, where𝐸 ⊂ R𝑙

is a nonempty open set equipped with its Borel field
B(𝐸), with the compensator 𝜇(𝑑𝑒, 𝑑𝑡) = 𝜆(𝑑𝑒)𝑑𝑡,
such that {𝜇((0, 𝑡] × 𝐴) = (𝜇 − 𝜇)((0, 𝑡] × 𝐴)}

𝑡≥0
is

a martingale for all 𝐴 ∈ B(𝐸) satisfying 𝜆(𝐴) < ∞.
Here 𝜆 is an arbitrarily given 𝜎-finite Lévy measure
on (𝐸,B(𝐸)), that is, ameasure on (𝐸,B(𝐸))with the
property that ∫

𝐸

(1 ∧ |𝑒|
2

)𝜆(𝑑𝑒) < ∞. We also let

F
𝑡
= 𝜎 [∫∫

(0,𝑠]×𝐴

𝜇 (𝑑𝑒, 𝑑𝑠) : 𝑠 ≤ 𝑡, 𝐴 ∈ B (𝐸)] ∨ 𝜎

× [𝑊
𝑠
: 𝑠 ≤ 𝑡] ∨N,

(2)

whereN denotes the totality of 𝑃-null sets.

In order to discuss the systems driven by Brownian
motion and Poisson jumps, we first review the theorem about
Itô’s formula for such stochastic processes.

Theorem 1. Let 𝑀
𝑡
be a square integral continuous martin-

gale; 𝐴
𝑡
is a continuous adapted process with finite variance.

𝛾(𝑠, 𝑒) is locally square integral due to 𝜇 and 𝑃; 𝑥(𝑡) satisfies
the following Itô type stochastic process:

𝑥 (𝑡) = 𝑥 (0) + 𝑀
𝑡
+ 𝐴
𝑡
+ ∫

𝑡

0

∫
𝐸

𝛾 (𝑠, 𝑒) 𝜇 (𝑑𝑒, 𝑑𝑠) . (3)

Then for 𝐹(𝑡, 𝑥) ∈ 𝐶1,2(R
+
,R𝑛𝑥), we have (see [23] Chapter I,

§3, Theorem 11)

𝑑𝐹 (𝑡, 𝑥
𝑡
)

= 𝐹
𝑡
(𝑡, 𝑥
𝑡
) 𝑑𝑡 + 𝐹

𝑥
(𝑡, 𝑥
𝑡
) 𝑑 (𝑀

𝑡
+ 𝐴
𝑡
)

+
1

2
𝐹
𝑥𝑥
(𝑡, 𝑥
𝑡
) 𝑑⟨𝑀⟩

𝑡
+ ∫
𝐸

[𝐹 (𝑡, 𝑥
𝑡
+ 𝛾 (𝑡, 𝑒)) − 𝐹 (𝑡, 𝑥

𝑡
)

−𝐹
𝑥
(𝑡, 𝑥
𝑡
) 𝛾 (𝑡, 𝑒) ] 𝜆 (𝑑𝑒) 𝑑𝑡

+ ∫
𝐸

[𝐹 (𝑡, 𝑥
𝑡
+ 𝛾 (𝑡, 𝑒)) − 𝐹 (𝑡, 𝑥

𝑡
)] 𝜇 (𝑑𝑒, 𝑑𝑡) ,

(4)

where ⟨𝑀⟩ denotes the predictable compensator of martingale
𝑀.

In the paper, for convenience, 𝑥
𝑡
is shorten as 𝑥. Further-

more, for 𝐹 ∈ 𝐶
1,2

(R
+
,R𝑛𝑥), if using Itô formula to 𝐹(𝑡, 𝑥

𝑡
)

and integrating from 𝑠 to 𝑡 (0 ≤ 𝑠 < 𝑡), then taking expectation
with both sides

E𝐹 (𝑡, 𝑥
𝑡
) − E𝐹 (𝑠, 𝑥

𝑠
)

= ∫

𝑡

𝑠

E𝐹
𝑡
(𝑟, 𝑥
𝑟
) 𝑑𝑟

+
1

2
∫

𝑡

𝑠

E [𝜎(𝑟, 𝑥
𝑟
)
󸀠

𝐹
𝑥𝑥
(𝑟, 𝑥
𝑟
) 𝜎 (𝑟, 𝑥

𝑟
)] 𝑑𝑟

+ ∫

𝑡

𝑠

E {∫
𝐸

[𝐹 (𝑟, 𝑥
𝑟
+ 𝛾 (𝑟, 𝑥

𝑟−
, 𝑒))

− 𝐹 (𝑟, 𝑥
𝑟
) − ⟨𝐹

𝑥
(𝑟, 𝑥
𝑟
) , 𝛾 (𝑟, 𝑒)⟩]

×𝜆 (𝑑𝑒) } 𝑑𝑟,

(5)

we can see that E𝐹(𝑡, 𝑥
𝑡
) is continuous with respect to time 𝑡.

Since we mainly use the results of expectations of some well
functions on 𝑥

𝑡
and those expectations are continuous with

respect to time 𝑡, so, for briefness, in the rest of this paper the
sign 𝑥

𝑡−
under integration ∫

𝐸

is also shortened as 𝑥.

3. The 𝐻
∞

Control for Bilinear
Systems with Jumps

We consider the following bilinear system driven by Poisson
jumps:

𝑑𝑥 = (𝐴𝑥 + 𝐵𝑥𝑢 + 𝐾V) 𝑑𝑡 + 𝐶𝑥𝑑𝑊 + ∫
𝐸

𝐺 (𝑒) 𝑥𝜇 (𝑑𝑒, 𝑑𝑡) ,

𝑧 = [
𝑀𝑥

𝑢
] ,

(6)

where V ∈ L2([0, 𝑇],R𝑛𝑑) represents the exogenous distur-
bance, 𝐴, 𝐵, and 𝐶 are constant 𝑛

𝑥
× 𝑛
𝑥
matrices, 𝐾 ∈ R𝐾 ∈

R𝑛𝑥×𝑛𝑑 , and 𝐺(𝑒) ∈ R𝑛𝑥×𝑛𝑥 only depends on 𝑒. If there exists
an 𝑢
∗

𝑇
∈ L2([0, 𝑇],R𝑛𝑢) such that for any given 𝛾 > 0 and

all V ∈ L2([0, 𝑇],R𝑛𝑑), 𝑥(0) = 0, the closed-loop system
satisfies

‖𝑧‖L2([0,𝑇],R𝑛𝑧 ) ≤ 𝛾‖V‖L2([0,𝑇],R𝑛𝑑 ), (7)

we call 𝑢∗
𝑇
the𝐻

∞
control of (6).
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Theorem 2. Suppose there exists a nonnegative solution 𝑉 ∈

𝐶
1,2

([0, 𝑇],R𝑛𝑥) to the HJE

H1
𝑇
(𝑉
𝑇
(𝑡, 𝑥)) :=

𝜕𝑉
𝑇

𝜕𝑡
+
𝜕𝑉
𝑇

𝜕𝑥

󸀠

𝐴𝑥 +
1

2
𝑥
󸀠

𝑀
󸀠

𝑀𝑥

+
1

2𝛾2

𝜕𝑉
𝑇

𝜕𝑥

󸀠

𝐾𝐾
󸀠
𝜕𝑉
𝑇

𝜕𝑥

+
1

2
𝑥
󸀠

𝐶
󸀠
𝜕
2

𝑉
𝑇

𝜕𝑥2
𝐶𝑥 −

1

2

𝜕𝑉
𝑇

𝜕𝑥

󸀠

𝐵𝑥𝑥
󸀠

𝐵
󸀠
𝜕𝑉
𝑇

𝜕𝑥

+∫
𝐸

[𝑉
𝑇
(𝑡, 𝑥 + 𝐺 (𝑒) 𝑥) − 𝑉

𝑇
(𝑡, 𝑥)

−
𝜕𝑉

𝜕𝑥

󸀠

𝐺 (𝑒) 𝑥] 𝜆 (𝑑𝑒) = 0,

𝑉
𝑇
(𝑇, 𝑥) = 0, 𝑉

𝑇
(𝑡, 0) = 0, ∀ (𝑡, 𝑥) ∈ [0, 𝑇] ×R

𝑛𝑥 .

(8)

Then 𝑢∗
𝑇
= −𝑥
󸀠

𝐵
󸀠

(𝜕𝑉
𝑇
/𝜕𝑥) is an𝐻

∞
control for system (6).

Proof . Applying Itô’s formula to 𝑉(𝑡, 𝑥), we have

𝑉 (𝑇, 𝑥
𝑇
) − 𝑉 (0, 0)

= ∫

𝑇

0

{𝑉 (𝑡, 𝑥) + 𝑉
󸀠

𝑥
(𝑡, 𝑥) (𝐴𝑥 + 𝐵𝑥𝑢 + 𝐾V)

+
1

2
𝑥
󸀠

𝐶
󸀠

𝑉
𝑥𝑥
𝐶𝑥

+∫
𝐸

[𝑉 (𝑡, 𝑥 + 𝐺 (𝑒) 𝑥) − 𝑉 (𝑡, 𝑥)

−𝑉
𝑥
(𝑡, 𝑥) 𝐺 (𝑒) 𝑥] 𝜆 (𝑑𝑒) } 𝑑𝑡

+ ∫

𝑇

0

𝑉
󸀠

𝑥
(𝑡, 𝑥) 𝐶𝑥𝑑𝑊

𝑡

+ ∫

𝑇

0

[𝑉 (𝑡, 𝑥 + 𝐺 (𝑒) 𝑥) − 𝑉 (𝑡, 𝑥)] 𝜇 (𝑑𝑒, 𝑑𝑡) .

(9)

Taking expectation with both sides and applying𝑉(𝑇, 𝑥) = 0

and 𝑉(𝑡, 0) = 0, we obtain

0 = ∫

𝑇

0

E {𝑉 (𝑡, 𝑥) + 𝑉
󸀠

𝑥
(𝑡, 𝑥) (𝐴𝑥 + 𝐵𝑥𝑢 + 𝐾V)

+
1

2
𝑥
󸀠

𝐶
󸀠

𝑉
𝑥𝑥
𝐶𝑥

+ ∫
𝐸

[𝑉 (𝑡, 𝑥 + 𝐺 (𝑒) 𝑥) − 𝑉 (𝑡, 𝑥)

−𝑉
𝑥
(𝑡, 𝑥) 𝐺 (𝑒) 𝑥] 𝜆 (𝑑𝑒)

+𝑥
󸀠

𝑡
𝑀
󸀠

𝑀𝑥 + 𝑢
󸀠

𝑡
𝑢 − 𝛾
2V󸀠
𝑡
V} 𝑑𝑡

− ‖𝑧‖
2

L2([0,𝑇],R𝑛𝑧 ) + 𝛾
2

‖V‖2L2([0,𝑇],R𝑛𝑑 ).
(10)

Completing square for 𝑢 and V, respectively, we have

0 = ∫

𝑇

0

E{H
1

𝑇
(𝑉 (𝑡, 𝑥)) +

󵄩󵄩󵄩󵄩𝑢 − 𝑢
∗

𝑇

󵄩󵄩󵄩󵄩

2

−
1

𝛾2

󵄩󵄩󵄩󵄩V − V∗
𝑇

󵄩󵄩󵄩󵄩

2

}𝑑𝑡

− ‖𝑧‖
2

L2([0,𝑇],R𝑛𝑧 ) + 𝛾
2

‖V‖2L2([0,𝑇],R𝑛𝑑 ),
(11)

where

𝑢
∗

𝑇
= −𝑥
󸀠

𝐵
󸀠
𝜕𝑉
𝑇

𝜕𝑥
, V∗

𝑇
=

1

𝛾2
(𝐾
󸀠
𝜕𝑉
𝑇

𝜕𝑥
+ 𝐾
󸀠
𝜕
2

𝑉
𝑇

𝜕𝑥2
𝐶𝑥) .

(12)

By HJE (8) and let 𝑢 = 𝑢
∗

𝑇
, we have

‖𝑧‖
2

L2([0,𝑇],R𝑛𝑧 ) − 𝛾
2

‖V‖2L2([0,𝑇],R𝑛𝑑 )

= −
1

𝛾2
∫

𝑇

0

E {
󵄩󵄩󵄩󵄩V − V∗

𝑇

󵄩󵄩󵄩󵄩

2

} 𝑑𝑡.

(13)

So, the following inequality is true:

‖𝑧‖
2

L2([0,𝑇],R𝑛𝑧 ) ≤ 𝛾
2

‖V‖2L2([0,𝑇],R𝑛𝑑 ). (14)

This proves that 𝑢∗
𝑇
is an𝐻

∞
control for system (6).

Remark 3. From the proof ofTheorems 2 and (13), we can see
that (𝑢∗

𝑇
, V∗
𝑇
) given by (12) is a saddle point for the following

stochastic game problem:

min
𝑢∈L2([0,𝑇],R𝑛𝑢 )

max
𝑑∈L2([0,𝑇],R𝑛𝑑 )

E∫
𝑇

0

(‖𝑧‖
2

− 𝛾
2

‖𝑑‖
2

) 𝑑𝑡. (15)

4. The Tensor Power Series Representation of
𝐻
∞

Control

Generally speaking, it is very hard to solve HJE (8). Now we
use an approximation algorithmwhich is called tensor power
series approach to solve a special case of HJE (8). In what
follows, suppose𝑉

𝑇
(𝑡, 𝑥) satisfying (8) has the following form:

𝑉
𝑇
(𝑡, 𝑥) =

∞

∑

𝑖=1

⟨⊗
𝑖
𝑥, 𝑃
𝑖
(𝑡) ⊗
𝑖
𝑥⟩ , (16)

where𝑃
𝑖
(𝑡), 𝑖 ≥ 1, are symmetrically and continuously differ-

ential matrix-valued functions on [0, 𝑇], ⊗ is the Kronecker
product of matrix (or vectors), and ⊗

𝑖
𝑥 = 𝑥⊗ ⋅ ⋅ ⋅ ⊗𝑥 is 𝑖 times

Kronecker product of 𝑥.
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Figure 1: Tracking performance of Example 10.

Theorem4. For given 𝛾 > 0, suppose𝑃
𝑖
(𝑡) (𝑖 = 1, 2, . . .) satisfy

the following Riccati equations:

̇𝑃
1
+ 𝐴
(1)

𝑃
1
+ 𝑃
1
𝐴
(1)
󸀠

+
1

2
𝑀
󸀠

𝑀+
2

𝛾2
(𝑄
(1)

𝑃
1
) ⊗ (𝑃

1
𝑄
(1)
󸀠

)

+ 𝑅
(1)

(𝑃
1
) + ∫
𝐸

[(𝐼
𝑛𝑥
+ 𝐺 (𝑒))

󸀠

𝑃
1
(𝐼
𝑛𝑥
+ 𝐺 (𝑒)) − 𝑃

1

−𝐺
(1)

(𝑒) 𝑃
1
− 𝑃
1
𝐺
(1)
󸀠

(𝑒)] 𝜆 (𝑑𝑒) = 0,

̇𝑃
𝑖
+ 𝐴
(𝑖)

𝑃
𝑖
+ 𝑃
𝑖
𝐴
(𝑖)
󸀠

+
2

𝛾2
∑

𝑟+𝑗=𝑖+1

(𝐾
(𝑟)

𝑃
𝑟
) ⊗ (𝑃

𝑗
𝐾
(𝑗)
󸀠

)

+ 𝑅
(𝑖)

(𝑃
𝑖
) − 2 ∑

𝑟+𝑗=𝑖

(𝐵
(𝑟)

𝑃
𝑟
) ⊗ (𝑃

𝑗
𝐵
(𝑗)
󸀠

)

+ ∫
𝐸

[(⊗
𝑖
(𝐼
𝑛𝑥
+ 𝐺 (𝑒)))

󸀠

𝑃
𝑖
(⊗
𝑖
(𝐼
𝑛𝑥
+ 𝐺 (𝑒)))

−𝑃
𝑖
− 𝐺
(𝑖)

(𝑒) 𝑃
𝑖
− 𝑃
𝑖
𝐺
(𝑖)
󸀠

(𝑒) ] 𝜆 (𝑑𝑒) = 0,

𝑃
𝑖
(𝑇) = 0, 𝑖 = 1, 2, . . . . (17)

Then the𝐻
∞

control 𝑢∗
𝑇
for system (6) can be given by

𝑢
∗

𝑇
= −2

∞

∑

𝑖=1

⟨⊗
𝑖
𝑥, (𝐵
(𝑖)

𝑃
𝑖
) ⊗
𝑖
𝑥⟩ , (18)

where 𝐵(𝑖) = ∑
𝑛𝑥

𝑗=1
𝐵
󸀠

𝑗
⊗ 𝐷
(𝑖,𝑗) and 𝐷

(𝑖,𝑗) is given by following
Lemma 6.

In order to proveTheorem 4, we need the following lemmas,
and Lemmas 5–8 are given without proofs.

Lemma 5. For any 𝑥 ∈ R𝑛𝑥 , 𝑦 ∈ R𝑛𝑦 , 𝑢 ∈ R𝑛𝑢 , V ∈ R𝑛V ,
𝑃 ∈ R𝑛𝑥×𝑛𝑦 , and 𝑄 ∈ R𝑛𝑢×𝑛V we have

⟨𝑥, 𝑃𝑦⟩ ⟨𝑢, 𝑄V⟩ = ⟨𝑥 ⊗ 𝑢, (𝑃 ⊗ 𝑄) (𝑦 ⊗ V)⟩ . (19)
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Lemma 6. For any matrix 𝑃 ∈ S
𝑛
𝑖

𝑥

(R),𝐾 ∈ R𝑛𝑘 , and integer
𝑖, we have

𝜕⟨⊗
𝑖
𝑥, 𝑃⊗
𝑖
𝑥⟩
󸀠

𝜕𝑥
𝐾 = 2 ⟨⊗

𝑖−1
𝑥, (𝐾
(𝑖)

𝑃)⊗
𝑖
𝑥⟩ , (20)

where 𝐾(𝑖) = ∑
𝑛𝑥

𝑗=1
𝑘
𝑗
𝐷
(𝑖,𝑗), 𝐷(𝑖,𝑗) = ∑

𝑖

𝑙=1
𝐷
(𝑖,𝑗)

𝑙
, and 𝐷

(𝑖,𝑗)

𝑙
=

𝐼
𝑛
𝑙−1

𝑥

⊗ 𝑒
󸀠

𝑗
⊗ 𝐼
𝑛
𝑖−𝑙

𝑥

.

Lemma 7. Let 𝑉
𝑇
(𝑡, 𝑥) = ∑

∞

𝑖=1
⟨⊗
𝑖
𝑥, 𝑃
𝑖
(𝑡)⊗
𝑖
𝑥⟩ exist. We have

𝜕𝑉
𝑇

𝜕𝑥

󸀠

𝐾𝐾
󸀠
𝜕𝑉
𝑇

𝜕𝑥

= 4

∞

∑

𝑚=1

⟨⊗
𝑚
𝑥, ∑

𝑖+𝑗=𝑚+1

(𝐾
(𝑖)

𝑃
𝑖
) ⊗ (𝑃

𝑗
𝐾
(𝑗)
󸀠

) ⊗
𝑚
𝑥⟩ .

(21)

Lemma 8. For any matrix 𝑃 ∈ S
𝑛
𝑖

𝑥

(R), 𝑥 ∈ R𝑛𝑥 , and integer
𝑖, we have

𝜕 ⟨⊗
𝑖
𝑥, 𝑃⊗
𝑖
𝑥⟩

𝜕𝑥

󸀠

𝐴𝑥 = 2 ⟨⊗
𝑖
𝑥, (𝐴
(𝑖)

𝑃)⊗
𝑖
𝑥⟩ , (22)

where 𝐴(𝑖) = ∑
𝑛𝑥

𝑗=1
𝐴
󸀠

𝑗
⊗ 𝐷
(𝑖,𝑗), and 𝐴

𝑗
is the 𝑗th row vector of

matrix 𝐴.

Lemma 9. For any matrix 𝑃 ∈ S
𝑛
𝑖

𝑥

(R) and integer 𝑖, we have

𝑥
󸀠

𝐶
󸀠
𝜕
2

⟨⊗
𝑖
𝑥, 𝑃⊗
𝑖
𝑥⟩

𝜕𝑥2
𝐶𝑥 = 2 ⟨⊗

𝑖
𝑥, 𝑅
(𝑖)

(𝑃) ⊗
𝑖
𝑥⟩ , (23)

where 𝑅(𝑖)(𝑃) = 𝐶
(𝑖)

𝑃𝐶
(𝑖)
󸀠

+ 𝑄
(𝑖)

𝑃, 𝑄(𝑖) = ∑
𝑛𝑥

𝑠=1
∑
𝑛𝑥

𝑡=1
𝐶
󸀠

𝑠
⊗ 𝐶
󸀠

𝑡
⊗

(𝐷
(𝑖−1,𝑠)

𝐷
(𝑖,𝑡)

), 𝐶
𝑠
is the 𝑠th row vector of matrix C, and 𝐶(𝑖) is

determined as 𝐴(𝑖) in Lemma 8.

Proof. Let 𝐾 = 𝐶𝑥 = (𝑘
1
, 𝑘
2
, . . . , 𝑘

𝑛𝑥
)
󸀠; then we have

𝑥
󸀠

𝐶
󸀠
𝜕
2

⟨⊗
𝑖
𝑥, 𝑃⊗
𝑖
𝑥⟩

𝜕𝑥2
𝐶𝑥

=

𝑛𝑥

∑

𝑠=1

𝑛𝑥

∑

𝑡=1

𝜕
2

⟨⊗
𝑖
𝑥, 𝑃⊗
𝑖
𝑥⟩

𝜕𝑥
𝑠
𝜕𝑥
𝑡

𝑘
𝑠
𝑘
𝑡

= 2

𝑛𝑥

∑

𝑠=1

𝑛𝑥

∑

𝑡=1

𝑘
𝑠
𝑘
𝑡

𝜕

𝜕𝑥
𝑠

⟨⊗
𝑖−1
𝑥,

𝑖

∑

𝑙=1

𝐷
(𝑖,𝑡)

𝑙
𝑃⟩

= 2

𝑛𝑥

∑

𝑠=1

𝑛𝑥

∑

𝑡=1

𝑘
𝑠
𝑘
𝑡
[

𝑖−1

∑

𝑚=1

⟨⊗
𝑚−1

𝑥 ⊗ 𝑒
𝑠
⊗ ⊗
𝑖−𝑚−1

𝑥,

𝑖

∑

𝑙=1

𝐷
(𝑖,𝑡)

𝑙
𝑃⊗
𝑖
𝑥⟩

+

𝑖

∑

𝑚=1

⟨⊗
𝑖−1
𝑥,

𝑖

∑

𝑙=1

𝐷
(𝑖,𝑡)

𝑙
𝑃⊗
𝑚−1

𝑥 ⊗ 𝑒
𝑠
⊗ ⊗
𝑖−𝑚

𝑥⟩]

= 2

𝑛𝑥

∑

𝑠=1

𝑛𝑥

∑

𝑡=1

𝑘
𝑠
𝑘
𝑡
[⟨⊗
𝑖−2
𝑥,

𝑖−1

∑

𝑚=1

𝐷
𝑖−1,𝑠

𝑚

𝑖

∑

𝑙=1

𝐷
(𝑖,𝑡)

𝑙
𝑃⊗
𝑖
𝑥⟩

+⟨⊗
𝑖−1
𝑥,

𝑖

∑

𝑚=1

𝑖

∑

𝑙=1

𝐷
(𝑖,𝑡)

𝑙
𝑃𝐷
(𝑖,𝑡)
󸀠

𝑚
⊗
𝑖−1
⟩]

= 2

𝑛𝑥

∑

𝑠=1

𝑛𝑥

∑

𝑡=1

[⟨𝑥, 𝐶
󸀠

𝑠
⟩ ⟨𝑥, 𝐶

󸀠

𝑡
⟩

×⟨⊗
𝑖−2
𝑥,

𝑖−1

∑

𝑚=1

𝐷
𝑖−1,𝑠

𝑚

𝑖

∑

𝑙=1

𝐷
(𝑖,𝑡)

𝑙
𝑃⊗
𝑖
𝑥⟩

+⟨𝑥, 𝐶
󸀠

𝑠
⟩⟨⊗

𝑖−1
𝑥,

𝑖

∑

𝑚=1

𝑖

∑

𝑙=1

𝐷
(𝑖,𝑡)

𝑙
𝑃𝐷
(𝑖,𝑡)
󸀠

𝑚
⊗
𝑖−1
⟩

×⟨𝐶
󸀠

𝑡
, 𝑥⟩] .

(24)
By Lemma 5,

𝑥
󸀠

𝐶
󸀠
𝜕
2

⟨⊗
𝑖
𝑥, 𝑃⊗
𝑖
𝑥⟩

𝜕𝑥2
𝐶𝑥

= 2

𝑛𝑥

∑

𝑠=1

𝑛𝑥

∑

𝑡=1

[⟨⊗
𝑖
𝑥, 𝐶
󸀠

𝑠
⊗ 𝐶
󸀠

𝑡
⊗

𝑖−1

∑

𝑚=1

𝐷
𝑖−1,𝑠

𝑚

×

𝑖

∑

𝑙=1

𝐷
(𝑖,𝑡)

𝑙
𝑃⊗
𝑖
𝑥⟩

+⟨⊗
𝑖
𝑥,(𝐶

󸀠

𝑠
⊗

𝑖

∑

𝑚=1

𝑖

∑

𝑙=1

𝐷
(𝑖,𝑡)

𝑙
𝑃𝐷
(𝑖,𝑡)
󸀠

𝑚

⊗ 𝐶
𝑡
)⊗
𝑖
𝑥⟩] .

(25)

So we can obtain (23).

Proof of Theorem 4. Applying Lemmas 6–9, we have

𝑉
𝑇
(𝑡, 𝑥 + 𝐺 (𝑒) 𝑥) =

∞

∑

𝑖=1

⟨⊗
𝑖
𝑥, (⊗
𝑖
(𝐼
𝑛𝑥
+ 𝐺 (𝑒)))

󸀠

𝑃
𝑖
(𝑡)

× (⊗
𝑖
(𝐼
𝑛𝑥
+ 𝐺 (𝑒))) ⊗

𝑖
𝑥⟩ ,

(26)

𝜕𝑉
𝑇

𝜕𝑡
=

∞

∑

𝑖=1

⟨⊗
𝑖
𝑥, ̇𝑃
𝑖
⊗
𝑖
𝑥⟩ , (27)
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𝜕𝑉
𝑇

𝜕𝑥

󸀠

𝐴𝑥 =

∞

∑

𝑖=1

⟨⊗
𝑖
𝑥, (𝐴
(𝑖)

𝑃
𝑖
) ⊗
𝑖
𝑥⟩

+

∞

∑

𝑖=1

⟨⊗
𝑖
𝑥, (𝑃
𝑖
𝐴
(𝑖)
󸀠

) ⊗
𝑖
𝑥⟩ ,

(28)

𝜕𝑉

𝜕𝑥

󸀠

𝐺 (𝑒) 𝑥 =

∞

∑

𝑖=1

⟨⊗
𝑖
𝑥, (𝐷
(𝑖)

(𝑒) 𝑃
𝑖
) ⊗
𝑖
𝑥⟩

+

∞

∑

𝑖=1

⟨⊗
𝑖
𝑥, (𝑃
𝑖
𝐷
(𝑖)
󸀠

) ⊗
𝑖
𝑥⟩ ,

(29)

𝜕𝑉
𝑇

𝜕𝑥

󸀠

𝐵𝑥𝑥
󸀠

𝐵
󸀠
𝜕𝑉
𝑇

𝜕𝑥

= 4

∞

∑

𝑚=2

⟨⊗
𝑚
𝑥, ∑

𝑖+𝑗=𝑚

(𝐵
(𝑖)

𝑃
𝑖
) ⊗ (𝑃

𝑗
𝐵
(𝑗)
󸀠

) ⊗
𝑚
𝑥⟩ ,

(30)

𝑥
󸀠

𝐶
󸀠
𝜕
2

𝑉
𝑇

𝜕𝑥2
𝐶𝑥 = 2

∞

∑

𝑖=1

⟨⊗
𝑖
𝑥, 𝑅
(𝑖)

(𝑃
𝑖
) ⊗
𝑖
𝑥⟩ . (31)

Substituting (26)–(31) and (21) into (8) with terminal con-
ditions 𝑃

𝑖
(𝑇) = 0 (𝑖 = 1, 2, . . .), we can prove that 𝑉

𝑇
(𝑡, 𝑥)

satisfies HJE (8). By Theorem 2, the 𝐻
∞

control for system
(6) can be given as

𝑢
∗

𝑇
= −𝑥
󸀠

𝐵
󸀠
𝜕𝑉
𝑇

𝜕𝑥
. (32)

Similar to (29), we prove that the 𝐻
∞

control 𝑢∗
𝑇
can be

represented with the form of (18).

By Theorem 4, we can obtain the approximation of 𝐻
∞

control for system (6).
Now we apply the result of tensor power approach to an

example.

Example 10. Consider the system (6) with coefficients

𝐴 = [
0.04 0.02

0.02 0.04
] , 𝐵 = [

0.02 0.02

0.02 0.02
] ,

𝐾 = [
0.02

0.02
] , 𝐶 = [

−0.02 0.04

0.02 0.02
] ,

𝐺 = [
0.02 −0.02

0.02 0.02
] , 𝑀 = [−0.04 0.02] .

(33)

𝑁(𝑡) is Poisson measure with parameter 𝜆 = 2; 𝑊(𝑡)

is 1-dimensional Brownian motion and 𝛾 = 1. Here the
approximation of 𝑢∗

𝑇
is given by

𝑢
∗

= −2

6

∑

𝑖=1

⟨⊗
𝑖
𝑥, (𝐵
(𝑖)

𝑃
𝑖
) ⊗
𝑖
𝑥⟩ , (34)

and Figure 1 is the simulation of𝑚(𝑥) = 𝑀𝑥 and𝐻
∞
control

𝑢
∗, where 𝑢∗ is the approximation of 𝑢∗

𝑇
of system (6). For the

theories of simulation, we will discuss them in another paper.
Here we only give the results of simulation.

5. Concluding Remarks

Wehave discussed the state feedback𝐻
∞
control for a class of

bilinear stochastic system where both Brownian motion and
Poisson process are present. In order to solve theHJE given in
the paper, we also discuss the method of tensor power series
approach.
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The dissipative delay-feedback control problems for nonlinear stochastic delay systems (NSDSs) based on dissipativity analysis are
studied in this paper. Based on the Lyapunov stability theory and stochastic analysis technique, both delay-independent and delay-
dependent dissipativity criteria are established as linear matrix inequalities- (LMIs-) based feasibility tests. The obtained results in
this paper for the nominal systems include the available results on𝐻

∞
approach and passivity for stochastic delay systems as special

cases.The delay-dependent feedback controller is designed by considering the relationship among the time-varying delay, its lower
and upper bound, and its differential without ignoring any terms, which effectively reduces the conservative. A numerical example
is given to illustrate the theoretical developments.

1. Introduction

The stochastic differential systems appear as a natural de-
scription of many observed phenomena of real world, which
have been come to play an important role in many fields
including population dynamics, macroeconomics, chemical
reactor control, communication network, image processes,
and mobile robot localization. Therefore, the stability and
stabilizability of nonlinear stochastic differential systems
affine in the control have been studied in the past years by
means of the stochastic Lyapunov theory [1–4]. As we all
know, time delay in a control loop is one of the main sources
of instability, oscillation, and poor performance and naturally
encountered in a number of engineering control problems
and physical systems. Therefore, time-delay systems [5, 6]
and stochastic time-delay systems [7–12] have attractedmany
researchers’ attention and have been extensively studied.
The problems include stability analysis [5, 6], stabilization
problems [7, 8], and robust controller design [9–12].

On the other hand, studying the dissipativity analysis and
synthesis problems has a strong motivation due to their sim-
plicity and effectiveness in dealing with robust and nonlinear

systems. Since the notation of dissipative dynamical system
was introduced by Willems [13], dissipative systems have
been of particular interest to researchers in areas of systems,
circuits, networks and control, and so forth. Moreover, pas-
sivity of a certain system in a feedback interconnected system
will ensure the overall stability of that feedback system if
uncertainties or nonlinearities can be characterized by a strict
passive system. Hence, dissipative theory has wide ranging
implications and applications in control theory. For instance,
dissipativity was crucially used in the stability analysis of
nonlinear system [14]; the theory of dissipative systems gener-
alizes basic tools including the passivity theory, bounded real
lemma, Kalman Yakubovich lemma, and the circle criterion
[15]. Among the relevant topics are the dissipativity analysis
and synthesis for time-delay systems [16, 17]. These results
show that the dissipativity-basedmethods are highly effective
in design the robust controller.

Due to what is above mentioned, we believe that time
delay is often harmful factor of systems. However, time delay
is also surprising since plenty of studies have shown that
time delay can also benefit the control, such as time-delay
control. As mentioned previously, many results have been
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published about the control of systems with state delays but
without input delays, which is called memoryless controllers,
or to more general, memoryless controllers only includes an
instantaneous feedback term. The time-delay control is an
approach which gives a small delay ℎ in the controller design,
so as to reduce the effect of instability factor and exogenous
disturbance. See, for example [18–20], and the references
therein. Rather than adjusting control gains or identifying
model parameters, its essential idea is to use past observations
regarding both the control input and system response, which
is an open problem now. In this paper, dissipative delay-
feedback control problems for nonlinear stochastic systems
with time-varying delay are studied based on dissipativity.
The delay-dependent feedback controller is designed by con-
sidering the relationship among the time-varying delay, its
lower and upper bound, and its differential without ignoring
any terms, which effectively reduces the conservative.

2. Problems Statement and Preliminaries

In this paper, we consider the following nonlinear stochastic
delayed systems (NSDSs) defined on a probability space
(Ω,F,P):

d𝑥 (𝑡) = {𝐹 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏 (𝑡))) + 𝐵𝑢 (𝑡, 𝑡 − 𝜏 (𝑡))

+𝐷V (𝑡)} d𝑡

+ 𝐺 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏 (𝑡))) d𝜔 (𝑡) ,

𝑧 (𝑡) = 𝐶𝑥 (𝑡) + 𝐶
𝑑
𝑥 (𝑡 − 𝜏 (𝑡)) ,

𝑥 (𝑡) = 𝜑 (𝑡) , 𝑡 ∈ [−𝜏
2
, 0) ,

(1)

where 𝑥(𝑡) ∈ R𝑛 is the state vector; 𝑢(𝑡, 𝑡 − 𝜏(𝑡)) ∈ R𝑚 is
the control input, which depends on not only the real time
but also the delay; we call the controller memory controller;
𝑧(𝑡) ∈ R𝑞 is the control output; V(𝑡) ∈ R𝑝 is the exogenous
disturbance input, which satisfies V(𝑡) ∈ 𝐿

2
([0,∞),R𝑝),

where 𝐿
2
([0,∞),R𝑝) is the space of nonanticipatory square-

summable stochastic process with respect to (F
𝑡
)
𝑡>0

with the
following norm: ‖V(𝑡)‖2

2
= E∫

∞

0

‖V(𝑡)‖2d𝑡. 𝜔(𝑡) ∈ R𝑙 is a
scalar Brownian motion defined on a complete probability
space (Ω,F, 𝑃) with E[d𝜔(𝑡)] = 0, E[d2𝜔(𝑡)] = d𝑡.

In the sequel, we seek to study the problems of dissipative
analysis and delay-feedback control for the two cases of time
delay.

Case 1. Time delay is a constant 𝜏.

Case 2. 𝜏(𝑡) is the time-varying delay, which is a differential
function satisfying

0 ≤ 𝜏
1
≤ 𝜏 (𝑡) ≤ 𝜏

2
, ̇𝜏 (𝑡) ≤ 𝜏

𝑑
≤ 1, (2)

where 𝜏
1
, 𝜏
2
, and 𝜏

𝑑
are nonnegative constants.

Remark 1. Obviously, when 𝜏
𝑑
= 0, 𝜏(𝑡) = 𝜏

1
= 𝜏
2
, that means

the time delay is a constant; this case has been extensively
studied. On the other hand, the time-varying delay 𝜏(𝑡) ≥ 𝜏

1
;

here 𝜏
1
is equal to or greater than 0, which has less conserva-

tiveness than 𝜏(𝑡) > 0.

Assumption 2. 𝐹(⋅, ⋅, ⋅) is a nonlinear vector function which
can be decomposed as follows:

𝐹 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏 (𝑡)))

= 𝐴
0
𝑥 (𝑡) + 𝑓 (𝑡, 𝑥 (𝑡))

+ 𝐴
𝑑
𝑥 (𝑡 − 𝜏 (𝑡)) + 𝑓

𝑑
(𝑡, 𝑥 (𝑡 − 𝜏 (𝑡))) ,

(3)

where 𝑓, 𝑓
𝑑
are vector-valued functions; we assume

󵄩󵄩󵄩󵄩𝑓 (𝑡, 𝑥 (𝑡))
󵄩󵄩󵄩󵄩 ≤ 𝛽 ‖𝑥 (𝑡)‖ , (4)

󵄩󵄩󵄩󵄩𝑓𝑑 (𝑡, 𝑥 (𝑡 − 𝜏 (𝑡)))
󵄩󵄩󵄩󵄩 ≤ 𝛽𝑑 ‖𝑥 (𝑡 − 𝜏 (𝑡))‖ , (5)

where 𝛽, 𝛽
𝑑
are known real positive constants.

Obviously, we know that

𝑓 (0, 0) = 0, 𝑓
𝑑
(0, 0) = 0. (6)

Equivalently stated, condition (4) implies that there exists
a scalar 𝜅 > 0 such that

𝜅 (𝛽
2

𝑥
𝑇

(𝑡) 𝑥 (𝑡) − 𝑓
𝑇

(𝑡, 𝑥 (𝑡)) 𝑓 (𝑡, 𝑥 (𝑡))) ≥ 0. (7)

Similarly, condition (5) implies that there exists a scalar
𝜅
𝑑
> 0 such that

𝜅
𝑑
(𝛽
2

𝑑
𝑥
𝑇

(𝑡 − 𝜏 (𝑡)) 𝑥 (𝑡 − 𝜏 (𝑡))

−𝑓
𝑇

𝑑
(𝑡, 𝑥 (𝑡 − 𝜏 (𝑡))) 𝑓

𝑑
(𝑡, 𝑥 (𝑡 − 𝜏 (𝑡)))) ≥ 0.

(8)

Assumption 3. 𝐺(⋅, ⋅, ⋅) is a nonlinear vector function which
satisfies

Trace (𝐺𝑇 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏 (𝑡))) 𝐺 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏 (𝑡))))

≤ 𝑥
𝑇

(𝑡) Θ
𝑇

1
Θ
1
𝑥 (𝑡) + 𝑥

𝑇

(𝑡 − 𝜏 (𝑡)) Θ
𝑇

2
Θ
2
𝑥 (𝑡 − 𝜏 (𝑡)) ,

(9)

where Θ
1
, Θ
2
are known real matrices.

Hence, nonlinear stochastic delay systems (NSDSs) (1)
can be rewritten as

d𝑥 (𝑡) = {𝐴𝑥 (𝑡) + 𝑓 (𝑡, 𝑥 (𝑡)) + 𝐴
𝑑
𝑥 (𝑡 − 𝜏 (𝑡))

+ 𝑓
𝑑
(𝑡, 𝑥 (𝑡 − 𝜏 (𝑡)))

+ 𝐵𝑢 (𝑡, 𝑡 − 𝜏 (𝑡)) + 𝐷V (𝑡)} d𝑡

+ 𝐺 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏 (𝑡))) d𝜔 (𝑡) ,

𝑧 (𝑡) = 𝐶𝑥 (𝑡) + 𝐶
𝑑
𝑥 (𝑡 − 𝜏 (𝑡)) ,

𝑥 (𝑡) = 𝜑 (𝑡) , 𝑡 ∈ [−𝜏
2
, 0) .

(10)

Definition 4 (see [21]). Given matrices 𝑄𝑇 = 𝑄 ≤ 0, 𝑅𝑇 =
𝑅 ≥ 0, and 𝑆, nonlinear stochastic delay systems (NSDSs) (10)
are called (𝑄, 𝑆, 𝑅)-dissipative if, for some real function 𝜂(⋅),
𝜂(0) = 0,

E∫
𝑇

0

[𝑧
𝑇

(𝑠) 𝑄𝑧 (𝑠) + 2V𝑇 (𝑠) 𝑆𝑧 (𝑠) + V𝑇 (𝑠) 𝑅V (𝑠)] d𝑠

+ 𝜂 (𝑥
0
) ≥ 0, ∀𝑇 ≥ 0.

(11)
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Furthermore, if, for a scalar 𝛼 > 0,

E∫
𝑇

0

[𝑧
𝑇

(𝑠) 𝑄𝑧 (𝑠) + 2V𝑇 (𝑠) 𝑆𝑧 (𝑠) + V𝑇 (𝑠) 𝑅V (𝑠)] d𝑠

+ 𝜂 (𝑥
0
) ≥ E∫

𝑇

0

𝛼V𝑇 (𝑠) V (𝑠) d𝑠, ∀𝑇 ≥ 0,

(12)

NSDSs (10) are called strictly (𝑄, 𝑆, 𝑅)-dissipative.

Lemma 5 (see [22]). Given three constant matrices 𝑆
1
, 𝑆
2
, and

𝑆
3
, where 𝑆

3
= 𝑆
𝑇

3
< 0 and 𝑆

1
= 𝑆
𝑇

1
< 0, then 𝑆

1
− 𝑆
𝑇

2
𝑆
−1

3
𝑆
2
< 0

holds if and only if ( 𝑆1 𝑆2
𝑆
𝑇

2
𝑆3

) < 0 or ( 𝑆3 𝑆2
𝑆
𝑇

2
𝑆1

) < 0.

Lemma6 (see [23]). For given positive symmetricmatrix𝑀 =

𝑀
𝑇

> 0, two scalars 𝑎 and 𝑏 satisfying 𝑎 < 𝑏, and vector
function 𝑥(𝑡) : [𝑎, 𝑏] → R𝑛, then

[∫

𝑏

𝑎

𝑥 (𝑠) 𝑑𝑠]

𝑇

𝑀[∫

𝑏

𝑎

𝑥 (𝑠) 𝑑𝑠] ≤ (𝑏 − 𝑎) ∫

𝑏

𝑎

𝑥
𝑇

(𝑠)𝑀𝑥 (𝑠) 𝑑𝑠.

(13)

3. Dissipativity Analysis for NSDSs

In this section, our primary purpose is to develope delay-
independent and delay-dependent stochastically stability and
dissipativity criteria for NSDSs (10) based on Definition 4.

3.1. Delay-Independent Dissipativity. In this sequel, we con-
sider the time delay as unknown constant pertaining to
Case 1 and hence the results developed hereinafter will be
independent of the size of delay.Without regard to the control
input, setting 𝑢(𝑡, 𝑡 − 𝜏(𝑡)) = 0, then (10) can be rewritten as

d𝑥 (𝑡) = {𝐴𝑥 (𝑡) + 𝑓 (𝑡, 𝑥 (𝑡)) + 𝐴
𝑑
𝑥 (𝑡 − 𝜏)

+𝑓
𝑑
(𝑡, 𝑥 (𝑡 − 𝜏)) + 𝐷V (𝑡)} d𝑡

+ 𝐺 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏)) d𝜔 (𝑡) ,

𝑧 (𝑡) = 𝐶𝑥 (𝑡) + 𝐶
𝑑
𝑥 (𝑡 − 𝜏) ,

𝑥 (𝑡) = 𝜑 (𝑡) , 𝑡 ∈ [−𝜏, 0) .

(14)

Theorem 7. Consider the NSDSs (14). Given some scalars 𝛼 >
0, 𝛽 > 0, and 𝛽

𝑑
> 0 and matrices 𝑄 = 𝑄

𝑇

≤ 0, 𝑅 = 𝑅
𝑇

> 0,
and 𝑆, suppose there exist matrices 𝑃 = 𝑃

𝑇

> 0,𝑊 = 𝑊
𝑇

> 0

and positive scalars 𝜅 > 0, 𝜅
𝑑
> 0 such that the following LMI

holds:

(

(

Σ
1
𝑃𝐴
𝑑

Σ
2

𝑃 𝑃 𝐶
𝑇

𝑄

∗ Σ
3

−𝐶
𝑇

𝑑
𝑆 0 0 𝐶

𝑇

𝑑
𝑄

∗ ∗ −𝑅
𝛼

0 0 0

∗ ∗ ∗ −𝜅𝐼 0 0

∗ ∗ ∗ ∗ −𝜅
𝑑
𝐼 0

∗ ∗ ∗ ∗ ∗ 𝑄

)

)

< 0; (15)

then the NSDSs (14) are strictly (𝑄, 𝑆, 𝑅)-dissipative indepen-
dent of delay, where Σ

1
= 𝐴
𝑇

𝑃 + 𝑃𝐴 + 𝑊 + Θ
𝑇

1
𝑃Θ
1
+ 𝜅𝛽
2

𝐼,
Σ
2
= 𝑃𝐷−𝐶

𝑇

𝑆, Σ
3
= Θ
𝑇

2
𝑃Θ
2
−𝑊+𝜅

𝑑
𝛽
2

𝑑
𝐼, and 𝑅

𝛼
= (𝑅−𝛼𝐼).

Proof. At first we introduce the following Lyapunov-Krasov-
skii functional (LKF):

𝑉 (𝑥
𝑡
) = 𝑥
𝑇

(𝑡) 𝑃𝑥 (𝑡) + ∫

𝑡

𝑡−𝜏

𝑥
𝑇

(𝑠)𝑊𝑥 (𝑠) d𝑠. (16)

Evaluating the Itô derivative of 𝑉(𝑥
𝑡
) along the solution of

NSDSs (14), we have

L𝑉 (𝑥
𝑡
) = 2𝑥

𝑇

𝑃 [𝐴𝑥 (𝑡) + 𝑓 (𝑡, 𝑥 (𝑡)) + 𝐴
𝑑
𝑥 (𝑡 − 𝜏)

+𝑓
𝑑
(𝑡, 𝑥 (𝑡 − 𝜏)) + 𝐷V (𝑡)]

+ 𝑥
𝑇

𝑊𝑥 − 𝑥
𝑇

(𝑡 − 𝜏)𝑊𝑥 (𝑡 − 𝜏)

+ 𝐺
𝑇

(𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏)) 𝑃𝐺 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏)) .

(17)

Noting (7)–(9), we obtain

L𝑉 (𝑥
𝑡
)

≤ L𝑉 (𝑥
𝑡
)

+ 𝜅 (𝛽
2

𝑥
𝑇

(𝑡) 𝑥 (𝑡) − 𝑓
𝑇

(𝑡, 𝑥 (𝑡)) 𝑓 (𝑡, 𝑥 (𝑡)))

+ 𝜅
𝑑
(𝛽
2

𝑑
𝑥
𝑇

(𝑡 − 𝜏 (𝑡)) 𝑥 (𝑡 − 𝜏 (𝑡))

− 𝑓
𝑇

𝑑
(𝑡, 𝑥 (𝑡 − 𝜏 (𝑡)))

×𝑓
𝑑
(𝑡, 𝑥 (𝑡 − 𝜏 (𝑡))) )

≤ 𝜉
𝑇

Σ𝜉,

(18)

where

𝜉 = (𝑥
𝑇

(𝑡) , 𝑥
𝑇

(𝑡 − 𝜏) , V𝑇 (𝑡) , 𝑓𝑇 (𝑡, 𝑥 (𝑡)) ,

𝑓
𝑇

𝑑
(𝑡, 𝑥 (𝑡 − 𝜏)))

𝑇

,

Σ = (

Σ
1
𝑃𝐴
𝑑
𝑃𝐷 𝑃 𝑃

∗ Σ
3

0 0 0

∗ ∗ 0 0 0

∗ ∗ ∗ −𝜅𝐼 0

∗ ∗ ∗ ∗ −𝑘
𝑑
𝐼

) .

(19)

Hence, we have

L𝑉 (𝑥
𝑡
) − 𝑧
𝑇

(𝑠) 𝑄𝑧 (𝑠) − 2V𝑇 (𝑠) 𝑆𝑧 (𝑠)

− V𝑇 (𝑠) (𝑅 − 𝛼𝐼) V (𝑠) ≤ 𝜉𝑇Σ̃𝜉,
(20)

where

Σ̃ = Σ −(

𝐶
𝑇

𝑄𝐶 𝐶
𝑇

𝑄𝐶
𝑇

𝑑
𝐶
𝑇

𝑆 0 0

∗ 𝐶
𝑇

𝑑
𝑄𝐶
𝑑

𝐶
𝑇

𝑑
𝑆 0 0

∗ ∗ (𝑅 − 𝛼𝐼) 0 0

∗ ∗ ∗ 0 0

∗ ∗ ∗ ∗ 0

). (21)
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According to Lemma 5 and applying the congruent trans-
formation, we know that

L𝑉 (𝑥
𝑡
) − 𝑧
𝑇

(𝑠) 𝑄𝑧 (𝑠) − 2V𝑇 (𝑠) 𝑆𝑧 (𝑠)

− V𝑇 (𝑠) (𝑅 − 𝛼𝐼) V (𝑠) ≤ 0.
(22)

Then, integrating (22) from 0 to 𝑇 and taking mathematical
expectation, we obtain that (12) holds which completes the
proof.

Remark 8. When 𝑄 = −𝐼, 𝑆 = 0, and 𝑅
𝛼
= 𝛾
2

𝐼, strictly
(𝑄, 𝑆, 𝑅)-dissipativity reduces to the 𝐻

∞
performance level.

When 𝑄 = 0, 𝑆 = 𝐼, and 𝑅
𝛼

= 𝛾𝐼, strictly (𝑄, 𝑆, 𝑅)-
dissipativity reduces to the strictly passivity.

So the following corollaries stand out as special cases.

Corollary 9. Consider the NSDSs (14). Given some scalars 𝛾 >
0, 𝛽 > 0, and 𝛽

𝑑
> 0, suppose there exist matrices 𝑃 = 𝑃

𝑇

> 0,
𝑊 = 𝑊

𝑇

> 0 and positive scalars 𝜅 > 0, 𝜅
𝑑
> 0 such that the

following LMI holds:

(

(

Σ
1
𝑃𝐴 𝑃𝐷 𝑃 𝑃 −𝐶

𝑇

∗ Σ
3

0 0 0 −𝐶
𝑇

𝑑

∗ ∗ −𝛾
2

𝐼 0 0 0

∗ ∗ ∗ −𝜅𝐼 0 0

∗ ∗ ∗ ∗ −𝜅
𝑑
𝐼 0

∗ ∗ ∗ ∗ ∗ −𝐼

)

)

< 0; (23)

then theNSDSs (14) are stochastically asymptotically stable and
independent of delay with disturbance level 𝛾.

Corollary 10. Consider the NSDSs (14). Given some scalars
𝛾 > 0, 𝛽 > 0, and 𝛽

𝑑
> 0, suppose there exist matrices

𝑃 = 𝑃
𝑇

> 0,𝑊 = 𝑊
𝑇

> 0 and positive scalars 𝜅 > 0, 𝜅
𝑑
> 0

such that the following LMI holds:

(

Σ
1
𝑃𝐴 𝑃𝐷 − 𝐶

𝑇

𝑃 𝑃

∗ Σ
3

−𝐶
𝑇

𝑑
0 0

∗ ∗ −𝛾𝐼 0 0

∗ ∗ ∗ −𝜅𝐼 0

∗ ∗ ∗ ∗ −𝜅
𝑑
𝐼

) < 0; (24)

then the NSDSs (14) are strictly passive independent of delay.

3.2. Delay-Dependent Dissipativity. We now direct attention
to the type of dissipativitywhich depends on the time-varying
delay, which pertains to Case 2. Without consideration of the
control input, and defining a new state variable

𝑦 (𝑡) = 𝐴𝑥 (𝑡) + 𝑓 (𝑡, 𝑥 (𝑡)) + 𝐴
𝑑
𝑥 (𝑡 − 𝜏 (𝑡))

+ 𝑓
𝑑
(𝑡, 𝑥 (𝑡 − 𝜏 (𝑡))) + 𝐷V (𝑡) ,

(25)

then, the NSDSs (10) can be rewritten as

d𝑥 (𝑡) = 𝑦 (𝑡) d𝑡 + 𝐺 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏 (𝑡))) d𝜔 (𝑡) ,

𝑧 (𝑡) = 𝐶𝑥 (𝑡) + 𝐶
𝑑
𝑥 (𝑡 − 𝜏 (𝑡)) ,

𝑥 (𝑡) = 𝜑 (𝑡) , 𝑡 ∈ [−𝜏
2
, 0) .

(26)

Theorem 11. Consider the NSDSs (26). For the given scalars
𝛼 > 0, 𝜏

2
> 𝜏
1
≥ 0, 𝜏

𝑑
> 0, 𝛽 > 0, and 𝛽

𝑑
> 0, the NSDSs

(26) are strictly (𝑄, 𝑆, 𝑅)-dissipative for all time-varying delays
if there exist symmetric positive-definite matrices 𝑃, 𝑉

1
,𝑉
2
,𝑉
3
,

𝑊
1
, 𝑊
2
, 𝑍
1
, and 𝑍

2
; any appropriately dimensioned matrices

𝑁,𝑀, 𝐹, and 𝐻; and two positive scalars 𝜅 > 0, 𝜅
𝑑
> 0 such

that the following LMIs hold:

(
Ξ −𝜏

2
𝑀̂

∗ −𝜏
2
𝑊
1

) < 0,

(
Ξ − (𝜏

2
− 𝜏
1
) 𝑁̂

∗ − (𝜏
2
− 𝜏
1
) (𝑊
1
+𝑊
2
)

) < 0,

(
Ξ − (𝜏

2
− 𝜏
1
) 𝐹

∗ − (𝜏
2
− 𝜏
1
)𝑊
2

) < 0,

(27)

where

Ξ =

(
(
(
(
(

(

Ξ
11

Ξ
12

Ξ
13

Ξ
14

𝐴
𝑇

𝐻 Ξ
16

∗ Ξ
22

−𝐶
𝑇

𝑑
𝑆 0 𝐴

𝑇

𝑑
𝐻 Ξ
26

∗ ∗ −𝑅
𝛼

0 𝐷
𝑇

𝐻 0

∗ ∗ ∗ Ξ
44

Ξ
45

0

∗ ∗ ∗ ∗ Ξ
55

0

∗ ∗ ∗ ∗ ∗ Ξ
66

)
)
)
)
)

)

,

Ξ
11
= 𝑃𝐴 + 𝐴

𝑇

𝑃 + 𝑉
1
+ 𝑉
2
+ 𝑉
3
+ 𝜏
2
𝑍
1

+ (𝜏
2
− 𝜏
1
) 𝑍
2
+𝑀 +𝑀

𝑇

+ 𝜅𝛽
2

𝐼,

Ξ
12
= 𝑁 − 𝐹 −𝑀 + 𝑃𝐴

𝑑
, Ξ

13
= 𝑃𝐷 − 𝐶

𝑇

𝑆,

Ξ
14
= (𝐹 −𝑁 𝑃 𝑃) ,

Ξ
16
= (𝐶
𝑇

𝑄 Θ
1
𝑃 0) , Ξ

22
= − (1 − 𝜏

𝑑
) 𝑉
2
+ 𝜅
𝑑
𝛽
2

𝑑
𝐼,

Ξ
26
= (𝐶
𝑇

𝑑
𝑄 0 Θ

2
𝑃) ,

Ξ
44
= diag {−𝑉

1
, −𝑉
3
, −𝜅𝐼, −𝜅

𝑑
𝐼} ,

Ξ
55
= 𝜏
2
𝑊
1
+ (𝜏
2
− 𝜏
1
)𝑊
2
− 𝐻 −𝐻

𝑇

,

Ξ
66
= diag {𝑄, −𝑃, −𝑃} , Ξ

45
= (0 0 𝐻

𝑇

𝐻
𝑇

)
𝑇

,

𝑁̂ = (𝑁
𝑇

, 0
1×10

)
𝑇

, 𝑀̂ = (𝑀
𝑇

, 0
1×10

)
𝑇

,

𝐹 = (𝐹
𝑇

, 0
1×10

)
𝑇

.

(28)

Proof. We construct a LKF as follows:
𝑉 (𝑥
𝑡
) = 𝑉
1
(𝑥
𝑡
) + 𝑉
2
(𝑥
𝑡
) + 𝑉
3
(𝑥
𝑡
) + 𝑉
4
(𝑥
𝑡
) , (29)
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where

𝑉
1
(𝑥
𝑡
) = 𝑥
𝑇

(𝑡) 𝑃𝑥 (𝑡) ,

𝑉
2
(𝑥
𝑡
) = ∫

𝑡

𝑡−𝜏1

𝑥
𝑇

(𝑠) 𝑉
1
𝑥 (𝑠) d𝑠 + ∫

𝑡

𝑡−𝜏(𝑡)

𝑥
𝑇

(𝑠) 𝑉
2
𝑥 (𝑠) d𝑠

+ ∫

𝑡

𝑡−𝜏2

𝑥
𝑇

(𝑠) 𝑉
3
𝑥 (𝑠) d𝑠,

𝑉
3
(𝑥
𝑡
) = ∫

0

−𝜏2

∫

𝑡

𝑡+𝜃

𝑦
𝑇

(𝑠)𝑊
1
𝑦 (𝑠) d𝑠

+ ∫

−𝜏1

−𝜏2

∫

𝑡

𝑡+𝜃

𝑦
𝑇

(𝑠)𝑊
2
𝑦 (𝑠) d𝑠,

𝑉
4
(𝑥
𝑡
) = ∫

0

−𝜏2

∫

𝑡

𝑡+𝜃

𝑥
𝑇

(𝑠) 𝑍
1
𝑥 (𝑠) d𝑠

+ ∫

−𝜏1

−𝜏2

∫

𝑡

𝑡+𝜃

𝑥
𝑇

(𝑠) 𝑍
2
𝑥 (𝑠) d𝑠.

(30)

Then, the weak infinitesimal operatorL of the stochastic
process 𝑥

𝑡
along the evolution of 𝑉(𝑥

𝑡
) is given by

L𝑉 (𝑥
𝑡
) = L𝑉

1
(𝑥
𝑡
) +L𝑉

2
(𝑥
𝑡
) +L𝑉

3
(𝑥
𝑡
) +L𝑉

4
(𝑥
𝑡
) ,

(31)

where

L𝑉
1
(𝑥
𝑡
) ≤ 2𝑥

𝑇

(𝑡) 𝑃 [𝐴𝑥 (𝑡) + 𝑓 (𝑡, 𝑥 (𝑡))

+ 𝐴
𝑑
𝑥 (𝑡 − 𝜏 (𝑡))

+𝑓
𝑑
(𝑡, 𝑥 (𝑡 − 𝜏 (𝑡))) + 𝐷V (𝑡)]

+ 𝑥
𝑇

(𝑡) Θ
𝑇

1
𝑃Θ
1
𝑥 (𝑡)

+ 𝑥 (𝑡 − 𝜏 (𝑡)) Θ
𝑇

2
𝑃Θ
2
𝑥 (𝑡 − 𝜏 (𝑡)) ,

(32)

L𝑉
2
(𝑥
𝑡
) ≤ 𝑥
𝑇

(𝑡) (𝑉
1
+ 𝑉
2
+ 𝑉
3
) 𝑥 (𝑡)

− 𝑥
𝑇

(𝑡 − 𝜏
1
) 𝑉
1
𝑥 (𝑡 − 𝜏

1
)

− 𝑥
𝑇

(𝑡 − 𝜏
2
) 𝑉
3
𝑥 (𝑡 − 𝜏

2
)

− 𝑥
𝑇

(𝑡 − 𝜏 (𝑡)) (1 − 𝜏
𝑑
) 𝑉
2
𝑥 (𝑡 − 𝜏 (𝑡)) ,

(33)

L𝑉
3
(𝑥
𝑡
) = 𝜏
2
𝑦
𝑇

(𝑡)𝑊
1
𝑦 (𝑡)

− ∫

𝑡

𝑡−𝜏2

𝑦
𝑇

(𝑠)𝑊
1
𝑦 (𝑠) d𝑠

+ (𝜏
2
− 𝜏
1
) 𝑦
𝑇

(𝑡)𝑊
2
𝑦 (𝑡)

− ∫

𝑡−𝜏1

𝑡−𝜏2

𝑦
𝑇

(𝑠)𝑊
2
𝑦 (𝑠) d𝑠.

(34)

By using Lemma 6, we get the following inequality:

L𝑉
4
(𝑥
𝑡
) ≤ 𝜏
2
𝑥
𝑇

(𝑡) 𝑍
1
𝑥 (𝑡) + (𝜏

2
− 𝜏
1
) 𝑥
𝑇

(𝑡) 𝑍
2
𝑥 (𝑡)

−
1

𝜏
2

(∫

𝑡

𝑡−𝜏(𝑡)

𝑥(𝑠)d𝑠)
𝑇

𝑍
1
(∫

𝑡

𝑡−𝜏(𝑡)

𝑥 (𝑠) d𝑠)

−
1

𝜏
2
− 𝜏
1

(∫

𝑡−𝜏(𝑡)

𝑡−𝜏2

𝑥(𝑠)d𝑠)
𝑇

𝑍
2
(∫

𝑡−𝜏(𝑡)

𝑡−𝜏2

𝑥 (𝑠) d𝑠)

−
1

𝜏
2
− 𝜏
1

(∫

𝑡−𝜏1

𝑡−𝜏(𝑡)

𝑥(𝑠)d𝑠)
𝑇

𝑍
2
(∫

𝑡−𝜏1

𝑡−𝜏(𝑡)

𝑥 (𝑠) d𝑠) ,

(35)

setting 𝜉(𝑡) = (𝑥
𝑇

(𝑡), 𝑥
𝑇

(𝑡 − 𝜏(𝑡)), V𝑇(𝑡), 𝑥𝑇(𝑡 − 𝜏
1
), 𝑥
𝑇

(𝑡 −

𝜏
2
), 𝑓
𝑇

(𝑥(𝑡)), 𝑓
𝑇

𝑑
(𝑥(𝑡 − 𝜏(𝑡))), 𝑦

𝑇

(𝑡), (∫
𝑡

𝑡−𝜏(𝑡)

𝑥(𝑠)d𝑠)
𝑇

,

(∫
𝑡−𝜏(𝑡)

𝑡−𝜏2

𝑥(𝑠)d𝑠)𝑇, (∫𝑡−𝜏1
𝑡−𝜏(𝑡)

𝑥(𝑠)d𝑠)𝑇)𝑇. And we introduce
the following four zero equations:

2𝑥
𝑇

(𝑡)𝑀[𝑥 (𝑡) − 𝑥 (𝑡 − 𝜏 (𝑡)) − ∫

𝑡

𝑡−𝜏(𝑡)

d𝑥 (𝑠)] = 0, (36)

2𝑥
𝑇

(𝑡)𝑁[𝑥 (𝑡 − 𝜏 (𝑡)) − 𝑥 (𝑡 − 𝜏
2
) − ∫

𝑡−𝜏(𝑡)

𝑡−𝜏2

d𝑥 (𝑠)] = 0,

(37)

2𝑥
𝑇

(𝑡) 𝐹 [𝑥 (𝑡 − 𝜏
1
) − 𝑥 (𝑡 − 𝜏 (𝑡)) − ∫

𝑡−𝜏1

𝑡−𝜏(𝑡)

d𝑥 (𝑠)] = 0,

(38)

2𝑦
𝑇

(𝑡)𝐻 [𝐴𝑥 (𝑡) + 𝑓 (𝑡, 𝑥 (𝑡)) + 𝐴
𝑑
𝑥 (𝑡 − 𝜏 (𝑡))

+𝑓
𝑑
(𝑡, 𝑥 (𝑡 − 𝜏 (𝑡))) + 𝐷V (𝑡) − 𝑦 (𝑡)] = 0.

(39)

Summing up (31)–(39), we obtain

L𝑉 (𝑥
𝑡
) ≤ L𝑉 (𝑥

𝑡
)

+ 𝜅 (𝛽
2

𝑥
𝑇

(𝑡) 𝑥 (𝑡) − 𝑓
𝑇

(𝑡, 𝑥 (𝑡)) 𝑓 (𝑡, 𝑥 (𝑡)))

+ 𝜅
𝑑
(𝛽
2

𝑑
𝑥
𝑇

(𝑡 − 𝜏 (𝑡)) 𝑥 (𝑡 − 𝜏 (𝑡))

−𝑓
𝑇

𝑑
(𝑡, 𝑥 (𝑡 − 𝜏 (𝑡))) 𝑓

𝑑
(𝑡, 𝑥 (𝑡 − 𝜏 (𝑡))))

+ 2𝑥
𝑇

(𝑡)𝑀[𝑥 (𝑡) − 𝑥 (𝑡 − 𝜏 (𝑡))

−∫

𝑡

𝑡−𝜏(𝑡)

𝑦 (𝑠) d𝑠]

− 2𝑥
𝑇

(𝑡)𝑀∫

𝑡

𝑡−𝜏(𝑡)

𝐺 (𝑥
𝑠
) d𝜔 (𝑠)

+ 2𝑥
𝑇

(𝑡)𝑁[𝑥 (𝑡 − 𝜏 (𝑡)) − 𝑥 (𝑡 − 𝜏
2
)

−∫

𝑡−𝜏(𝑡)

𝑡−𝜏2

𝑦 (𝑠) d𝑠]
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− 2𝑥
𝑇

(𝑡)𝑁∫

𝑡−𝜏(𝑡)

𝑡−𝜏2

𝐺 (𝑥
𝑠
) d𝜔 (𝑠)

+ 2𝑥
𝑇

(𝑡) 𝐹 [𝑥 (𝑡 − 𝜏
1
) − 𝑥 (𝑡 − 𝜏 (𝑡))

−∫

𝑡−𝜏1

𝑡−𝜏(𝑡)

𝑦 (𝑠) d𝑠]

− 2𝑥
𝑇

(𝑡) 𝐹∫

𝑡−𝜏1

𝑡−𝜏(𝑡)

𝐺 (𝑥
𝑠
) d𝜔 (𝑠)

+ 2𝑦
𝑇

(𝑡)𝐻 [𝐴𝑥 (𝑡) + 𝑓 (𝑡, 𝑥 (𝑡))

+ 𝐴
𝑑
𝑥 (𝑡 − 𝜏 (𝑡))

+ 𝑓
𝑑
(𝑡, 𝑥 (𝑡 − 𝜏 (𝑡)))

+𝐷V (𝑡) − 𝑦 (𝑡)] ,
(40)

where𝑀,𝑁, 𝐹, and𝐻 are matrices with appropriate dimen-
sions. Hence,

L𝑉 (𝑥
𝑡
) − 𝑧
𝑇

(𝑠) 𝑄𝑧 (𝑠) − 2V𝑇 (𝑠) 𝑆𝑧 (𝑠)

− V𝑇 (𝑠) (𝑅 − 𝛼𝐼) V (𝑠)

≤ 𝜉
𝑇

(𝑡) Φ𝜉 (𝑡) − 2𝑥
𝑇

(𝑡)𝑀

× [∫

𝑡

𝑡−𝜏(𝑡)

𝑦 (𝑠) d𝑠 + ∫
𝑡

𝑡−𝜏(𝑡)

𝐺 (𝑥
𝑠
) d𝜔 (𝑠)]

− 2𝑥
𝑇

(𝑡)𝑁[∫

𝑡−𝜏(𝑡)

𝑡−𝜏2

𝑦 (𝑠) d𝑠 + ∫
𝑡−𝜏(𝑡)

𝑡−𝜏2

𝐺 (𝑥
𝑠
) d𝜔 (𝑠)]

− 2𝑥
𝑇

(𝑡) 𝐹 [∫

𝑡−𝜏1

𝑡−𝜏(𝑡)

𝑦 (𝑠) d𝑠 + ∫
𝑡−𝜏1

𝑡−𝜏(𝑡)

𝐺 (𝑥
𝑠
) d𝜔 (𝑠)]

− ∫

𝑡

𝑡−𝜏2

𝑦
𝑇

(𝑠)𝑊
1
𝑦 (𝑠) d𝑠 − ∫

𝑡−𝜏1

𝑡−𝜏2

𝑦
𝑇

(𝑠)𝑊
2
𝑦 (𝑠) d𝑠,

(41)
where

Φ =

(
(
(

(

Φ
11

Φ
12

Φ
13

Φ
14

𝐴
𝑇

𝐻 0

∗ Φ
22

−𝐶
𝑇

𝑑
𝑆 0 𝐴

𝑇

𝑑
𝐻 0

∗ ∗ −𝑅
𝛼

0 𝐷
𝑇

𝐻 0

∗ ∗ ∗ Φ
44

Φ
45

0

∗ ∗ ∗ ∗ Φ
55

0

∗ ∗ ∗ ∗ ∗ Φ
66

)
)
)

)

,

Φ
11
= 𝑃𝐴 + 𝐴

𝑇

𝑃 + Θ
𝑇

1
𝑃Θ
1
+ 𝑉
1
+ 𝑉
2
+ 𝑉
3
+ 𝜏
2
𝑍
1

+ (𝜏
2
− 𝜏
1
) 𝑍
2
+𝑀 +𝑀

𝑇

− 𝐶
𝑇

𝑄𝐶 + 𝜅𝛽
2

𝐼,

Φ
12
= 𝑁 − 𝐹 −𝑀 + 𝑃𝐴

𝑑
− 𝐶
𝑇

𝑄𝐶
𝑑
, Φ

13
= 𝑃𝐷 − 𝐶

𝑇

𝑆,

Φ
14
= (𝐹 −𝑁 𝑃 𝑃) ,

Φ
22
= Θ
𝑇

2
𝑃Θ
2
− 𝐶
𝑇

𝑑
𝑄𝐶
𝑑
− (1 − 𝜏

𝑑
) 𝑉
2
+ 𝜅
𝑑
𝛽
2

𝑑
𝐼,

Φ
44
= diag {−𝑉

1
, −𝑉
3
, −𝜅𝐼, −𝜅

𝑑
𝐼} ,

Φ
45
= (0 0 𝐻

𝑇

𝐻
𝑇

)
𝑇

,

Φ
55
= 𝜏
2
𝑊
1
+ (𝜏
2
− 𝜏
1
)𝑊
2
− 𝐻 −𝐻

𝑇

,

Φ
66
= diag{− 1

𝜏
2

𝑍
1
, −

1

𝜏
2
− 𝜏
1

𝑍
2
, −

1

𝜏
2
− 𝜏
1

𝑍
2
} .

(42)

So it easy to obtain that

L𝑉 (𝑥
𝑡
) − 𝑧
𝑇

(𝑠) 𝑄𝑧 (𝑠) − 2V𝑇 (𝑠) 𝑆𝑧 (𝑠) − V𝑇 (𝑠) (𝑅 − 𝛼𝐼) V (𝑠)

≤
1

𝜏
2

∫

𝑡

𝑡−𝜏(𝑡)

𝜂
𝑇

(𝑡, 𝑠) (
Φ −𝜏

2
𝑀̂

∗ −𝜏
2
𝑊
1

) 𝜂 (𝑡, 𝑠) d𝑠

+
1

𝜏
2
− 𝜏
1

∫

𝑡

𝑡−𝜏(𝑡)

𝜂
𝑇

(𝑡, 𝑠)

× (
Φ − (𝜏

2
− 𝜏
1
) 𝑁̂

∗ − (𝜏
2
− 𝜏
1
) (𝑊
1
+𝑊
2
)
) 𝜂 (𝑡, 𝑠) d𝑠

+
1

𝜏
2
− 𝜏
1

∫

𝑡

𝑡−𝜏(𝑡)

𝜂
𝑇

(𝑡, 𝑠) (
Φ − (𝜏

2
− 𝜏
1
) 𝐹

∗ − (𝜏
2
− 𝜏
1
)𝑊
2

) 𝜂 (𝑡, 𝑠) d𝑠

− 2𝑥
𝑇

(𝑡)𝑀∫

𝑡

𝑡−𝜏(𝑡)

𝐺 (𝑥
𝑠
) d𝜔 (𝑠)

− 2𝑥
𝑇

(𝑡)𝑁∫

𝑡−𝜏(𝑡)

𝑡−𝜏2

𝐺 (𝑥
𝑠
) d𝜔 (𝑠)

− 2𝑥
𝑇

(𝑡) 𝐹∫

𝑡−𝜏1

𝑡−𝜏(𝑡)

𝐺 (𝑥
𝑠
) d𝜔 (𝑠) ,

(43)

where 𝜂𝑇(𝑡, 𝑠) = [𝜉𝑇(𝑡), 𝑦𝑇(𝑠)].
By Lemma 5 and applying the congruent transformation

to (27), it follows that

L𝑉 (𝑥
𝑡
) − 𝑧
𝑇

(𝑠) 𝑄𝑧 (𝑠) − 2V𝑇 (𝑠) 𝑆𝑧 (𝑠)

− V𝑇 (𝑠) (𝑅 − 𝛼𝐼) V (𝑠)

≤ −2𝑥
𝑇

(𝑡)𝑀∫

𝑡

𝑡−𝜏(𝑡)

𝐺 (𝑥
𝑠
) d𝜔 (𝑠)

− 2𝑥
𝑇

(𝑡)𝑁∫

𝑡−𝜏(𝑡)

𝑡−𝜏2

𝐺 (𝑥
𝑠
) d𝜔 (𝑠)

− 2𝑥
𝑇

(𝑡) 𝐹∫

𝑡−𝜏1

𝑡−𝜏(𝑡)

𝐺 (𝑥
𝑠
) d𝜔 (𝑠) .

(44)

Then, integrating both sides of (44) from 0 to 𝑇 and
taking mathematical expectation, we obtain that (12) holds,
which completes the proof.
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Similarly, as the special case, we can easily obtain the fol-
lowing corollaries.

Corollary 12. Consider the NSDSs (26). For the given scalars
𝛾 > 0, 𝜏

2
> 𝜏
1
≥ 0, 𝜏

𝑑
> 0, 𝛽 > 0, and 𝛽

𝑑
> 0, the

NSDSs (26) are stochastically asymptotically stable with 𝐻
∞

performance level for all time-varying delays if there exist
symmetric positive-definite matrices 𝑃, 𝑉

1
, 𝑉
2
, 𝑉
3
,𝑊
1
,𝑊
2
, 𝑍
1
,

and𝑍
2
; any appropriately dimensioned matrices𝑁,𝑀, 𝐹, and

𝐻; and two positive scalars𝜅 > 0, 𝜅
𝑑
> 0 such that the following

LMIs hold:

(
Ξ −𝜏

2
𝑀̂

∗ −𝜏
2
𝑊
1

) < 0,

(
Ξ − (𝜏

2
− 𝜏
1
) 𝑁̂

∗ − (𝜏
2
− 𝜏
1
) (𝑊
1
+𝑊
2
)
) < 0,

(
Ξ − (𝜏

2
− 𝜏
1
) 𝐹

∗ − (𝜏
2
− 𝜏
1
)𝑊
2

) < 0,

(45)

where

Ξ =

(
(
(
(
(

(

Ξ
11

Ξ
12

𝑃𝐷 Ξ
14

𝐴
𝑇

𝐻 Ξ
16

∗ Ξ
22

0 0 𝐴
𝑇

𝑑
𝐻 Ξ
26

∗ ∗ −𝛾
2

𝐼 0 𝐷
𝑇

𝐻 0

∗ ∗ ∗ Ξ
44

Ξ
45

0

∗ ∗ ∗ ∗ Ξ
55

0

∗ ∗ ∗ ∗ ∗ Ξ
66

)
)
)
)
)

)

,

Ξ
16
= (−𝐶

𝑇

Θ
1
𝑃 0) , Ξ

26
= (−𝐶

𝑇

𝑑
0 Θ
2
𝑃) ,

Ξ
66
= diag {−𝐼, −𝑃, −𝑃} ,

Ξ
11
, Ξ
12
, Ξ
14
, Ξ
22
, Ξ
44
, Ξ
45
, Ξ
55
,

(46)

defined in Theorem 11.

Corollary 13. Consider the NSDSs (26). For the given scalars
𝛾 > 0, 𝜏

2
> 𝜏
1
≥ 0, 𝜏

𝑑
> 0, 𝛽 > 0, and 𝛽

𝑑
> 0, the NSDSs

(26) are strictly (𝑄, 𝑆, 𝑅)-passive for all time-varying delays if
there exist symmetric positive-definite matrices 𝑃, 𝑉

1
, 𝑉
2
, 𝑉
3
,

𝑊
1
, 𝑊
2
, 𝑍
1
, 𝑍
2
; any appropriately dimensioned matrices 𝑁,

𝑀, 𝐹, and𝐻; and two positive scalars 𝜅 > 0, 𝜅
𝑑
> 0 such that

the following LMIs hold:

(
Ξ −𝜏

2
𝑀̂

∗ −𝜏
2
𝑊
1

) < 0,

(
Ξ − (𝜏

2
− 𝜏
1
) 𝑁̂

∗ − (𝜏
2
− 𝜏
1
) (𝑊
1
+𝑊
2
)
) < 0,

(
Ξ − (𝜏

2
− 𝜏
1
) 𝐹

∗ − (𝜏
2
− 𝜏
1
)𝑊
2

) < 0,

(47)

where

Ξ =

(
(
(
(
(

(

Ξ
11

Ξ
12

𝑃𝐷 − 𝐶
𝑇

Ξ
14

𝐴
𝑇

𝐻 Ξ
16

∗ Ξ
22

−𝐶
𝑇

𝑑
0 𝐴
𝑇

𝑑
𝐻 Ξ
26

∗ ∗ −𝛾𝐼 0 𝐷
𝑇

𝐻 0

∗ ∗ ∗ Ξ
44

Ξ
45

0

∗ ∗ ∗ ∗ Ξ
55

0

∗ ∗ ∗ ∗ ∗ Ξ
66

)
)
)
)
)

)

,

Ξ
16
= (Θ
1
𝑃 0) , Ξ

26
= (0 Θ

2
𝑃) ,

Ξ
66
= diag {−𝑃, −𝑃} , 𝑁̂ = (𝑁

𝑇

, 0
1×9
)
𝑇

,

𝑀̂ = (𝑀
𝑇

, 0
1×9
)
𝑇

, 𝐹 = (𝐹
𝑇

, 0
1×9
)
𝑇

,

Ξ
11
, Ξ
12
, Ξ
14
, Ξ
22
, Ξ
44
, Ξ
45
, Ξ
55

(48)

defined in Theorem 11.

4. Dissipative Delay-Feedback
Control for NSDSs

Extending on the results of the foregoing section, our aim is to
develope an LMIs-based solution to the problem of designing
a delay-feedback controller as

𝑢 (𝑡, 𝑡 − 𝜏 (𝑡)) = 𝐾
0
𝑥 (𝑡) + 𝐾

1
𝑥 (𝑡 − 𝜏 (𝑡)) , (49)

whichwill render theNSDSs (10) strictly (𝑄, 𝑆, 𝑅)-dissipative.
The closed-loop systems is now described by

d𝑥 (𝑡) = {𝐴𝑥 (𝑡) + 𝑓 (𝑡, 𝑥 (𝑡)) + 𝐴
𝑑
𝑥 (𝑡 − 𝜏 (𝑡))

+ 𝑓
𝑑
(𝑡, 𝑥 (𝑡 − 𝜏 (𝑡))) + 𝐷V (𝑡)} d𝑡

+ 𝐺 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏 (𝑡))) d𝜔 (𝑡) ,

𝑧 (𝑡) = 𝐶𝑥 (𝑡) + 𝐶
𝑑
𝑥 (𝑡 − 𝜏 (𝑡)) ,

𝑥 (𝑡) = 𝜑 (𝑡) , 𝑡 ∈ [−𝜏
2
, 0) ,

(50)

where 𝐴 = 𝐴 + 𝐵𝐾
0
, 𝐴
𝑑
= 𝐴
𝑑
+ 𝐵𝐾
1
.

Applying Theorem 7, together with Lemma 5 and con-
gruent transformation, we can get the following theorem
without detailed proofs.

Theorem 14. Consider the NSDSs (50). Given some scalars
𝛼 > 0, 𝛽 > 0, 𝛽

𝑑
> 0, 𝜅 > 0, and 𝜅

𝑑
> 0 and matrices

𝑄 = 𝑄
𝑇

≤ 0, 𝑅 = 𝑅
𝑇

> 0, and 𝑆, suppose there exist matrices
𝑋 = 𝑋

𝑇

> 0,𝑊 = 𝑊
𝑇

> 0, 𝑌, and 𝑌
𝑑
such that the following

LMI holds:

(

Γ
1
𝐴
𝑑
𝑋 + 𝐵𝑌

𝑑
𝐷 − 𝑋𝐶

𝑇

𝑆 Γ
2

∗ −𝑊̃ −𝑋𝐶
𝑇

𝑑
𝑆 Γ
3

∗ ∗ −𝑅
𝛼

0

∗ ∗ ∗ Γ
4

)< 0; (51)
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then the NSDSs (50) are strictly (𝑄, 𝑆, 𝑅)-dissipative
independent of delay; the feedback gain is 𝐾

0
= 𝑌𝑋

−1, 𝐾
1
=

𝑌
𝑑
𝑋
−1, where Γ

1
= 𝑋𝐴

𝑇

+ 𝐴𝑋 + 𝑌
𝑇

𝐵
𝑇

+ 𝐵𝑌 + 𝑊̃,
Γ
2

= (𝐼 𝐼 𝑋𝐶
𝑇

𝑄 𝑋Θ
1
0 𝜅𝛽𝑋 0), Γ

3
=

(0 0 𝑋𝐶
𝑇

𝑑
𝑄 0 𝑋Θ

2
0 𝜅
𝑑
𝛽
𝑑
𝑋), and Γ

4
= diag(−𝜅𝐼, −𝜅

𝑑
𝐼,

𝑄, −𝑋, −𝑋, −𝜅𝐼, −𝜅
𝑑
𝐼).

Similarly, applying Theorem 11, together with Lemma 5
and congruent transformation, we can obtain the following
theorem without detailed proofs.

Theorem 15. Consider the NSDSs (50). For the given scalars
𝛼 > 0, 𝜏

2
> 𝜏
1
≥ 0, 𝜏

𝑑
> 0, 𝜅 > 0, 𝜅

𝑑
> 0, 𝛽 > 0, and

𝛽
𝑑
> 0, the NSDSs (50) are strictly (𝑄, 𝑆, 𝑅)-dissipative for all

time-varying delays and the feedback gain is𝐾
0
= 𝑌𝑋
−1,𝐾
1
=

𝑌
𝑑
𝑋
−1, if there exist symmetric positive-definitematrices𝑋,𝑉

1
,

𝑉̃
2
, 𝑉̃
3
, 𝑊̃
1
, 𝑊̃
2
,𝑍
1
, and𝑍

2
and any appropriately dimensioned

matrices 𝑁̃, 𝑀̃, 𝐹,𝑌, and𝑌
𝑑
such that the following LMIs hold:

(

Δ −𝜏
2
𝑀

∗ −𝜏
2
𝑊̃
1

) < 0,

(

Δ − (𝜏
2
− 𝜏
1
)𝑁

∗ − (𝜏
2
− 𝜏
1
) (𝑊̃
1
+ 𝑊̃
2
)

) < 0,

(

Δ − (𝜏
2
− 𝜏
1
) ̌𝐹

∗ − (𝜏
2
− 𝜏
1
) 𝑊̃
2

) < 0,

(52)

where

Δ =

(
(
(
(
(

(

Δ
11

Δ
12

Δ
13

Δ
14

Δ
15

Δ
16

∗ Δ
22

−𝑋𝐶
𝑇

𝑑
𝑆 0 Δ

25
Δ
26

∗ ∗ −𝑅
𝛼

0 𝐷
𝑇

0

∗ ∗ ∗ Δ
44

Δ
45

0

∗ ∗ ∗ ∗ Δ
55

0

∗ ∗ ∗ ∗ ∗ Δ
66

)
)
)
)
)

)

,

Δ
11
= 𝐴𝑋 + 𝐵𝑌 + 𝑋𝐴

𝑇

+ 𝑌
𝑇

𝐵
𝑇

+ 𝑉̃
1
+ 𝑉̃
2
+ 𝑉̃
3
+ 𝜏
2
𝑍
1

+ (𝜏
2
− 𝜏
1
) 𝑍
2
+ 𝑀̃ + 𝑀̃

𝑇

,

Δ
12
= 𝑁̃ − 𝐹 − 𝑀̃ + 𝐴

𝑑
𝑋 + 𝐵𝑌

𝑑
, Δ

13
= 𝐷 − 𝑋𝐶

𝑇

𝑆,

Δ
14
= (𝐹 −𝑁̃ 𝐼 𝐼) , Δ

15
= 𝑌
𝑇

𝐵
𝑇

+ 𝑋𝐴
𝑇

,

Δ
16
= (𝑋𝐶

𝑇

𝑄 𝑋Θ
1
0 𝜅𝛽𝑋 0) ,

Δ
22
= − (1 − 𝜏

𝑑
) 𝑉̃
2
,

Δ
25
= 𝑌
𝑇

𝑑
𝐵
𝑇

+ 𝑋𝐴
𝑇

𝑑
,

Δ
26
= (𝑋𝐶

𝑇

𝑑
𝑄 0 𝑋Θ

2
0 𝜅
𝑑
𝛽
𝑑
𝑋) ,

Δ
44
= diag {−𝑉̃

1
, −𝑉̃
3
, −𝜅𝐼, −𝜅

𝑑
𝐼} ,

Δ
45
= (0 0 𝐼 𝐼)

𝑇

,

Δ
55
= 𝜏
2
𝑊̃
1
+ (𝜏
2
− 𝜏
1
) 𝑊̃
2
− 𝑋 − 𝑋

𝑇

,

Δ
66
= diag {𝑄, −𝑋, −𝑋, −𝜅𝐼, −𝜅

𝑑
𝐼} ,

𝑁 = (𝑁̃
𝑇

, 0
1×12

)
𝑇

, 𝑀 = (𝑀̃
𝑇

, 0
1×12

)
𝑇

,

̌𝐹 = (𝐹
𝑇

, 0
1×12

)
𝑇

.

(53)

5. Numerical Example with Simulation

In this section, we will give an example to show the cor-
rectness of the derived results and the effectiveness of
the designed controller. Consider the following nonlinear
stochastic delay systems:

d𝑥 (𝑡) =
[
[
[

[

(

−0.1 1 0 1

2 −1 2.5 0

−1 −1.5 −5 0

0 0 2 −5

)𝑥 (𝑡)

+(

0.1𝑥
1
sin (𝑥

3
)

0.4𝑥
2
cos (𝑥

4
)

0.3𝑥
3
sin (𝑥

1
𝑥
4
)

0.5𝑥
4
cos (𝑥

2
𝑥
3
)

)

+(

−1 1 0 1

2 −3 2.5 0

−1 −2 −3 0

0 0 2 3

)𝑥 (𝑡 − 𝜏)

+(

0.1𝑥
1
(𝑡 − 𝜏) sin (𝑥

3
(𝑡 − 𝜏))

0.2𝑥
2
(𝑡 − 𝜏) cos (𝑥

4
(𝑡 − 𝜏))

0.3𝑥
3
(𝑡 − 𝜏) sin (𝑥

1
(𝑡 − 𝜏) 𝑥

4
(𝑡 − 𝜏))

0.3𝑥
4
(𝑡 − 𝜏) cos (𝑥

2
(𝑡 − 𝜏) 𝑥

3
(𝑡 − 𝜏))

)

+(

0 −1

−0.5 0

−0.2 0

0 −0.2

)𝑢 (𝑡, 𝑡 − 𝜏)

+(

0.5 0.1 0.1 0

0.1 0.1 0.5 0.2

0 0.1 0 1

0 0 1 0.4

) V (𝑡)
]
]
]

]

d𝑡

+

(
(
(
(
(
(
(
(

(

0.35𝑥
1
sin (𝑥

1
)

+0.35𝑥
1
(𝑡 − 𝜏)

× cos (𝑥
2
(𝑡 − 𝜏))

0.71𝑡

1 + 𝑡
(𝑥
2
+ 𝑥
2
(𝑡 − 𝜏))

0.35𝑥
3
sin (𝑥

1
𝑥
3
)

−0.35𝑥
3
(𝑡 − 𝜏)

× sin (𝑥2
3
(𝑡 − 𝜏))

14𝑡

7 + 100𝑡
(𝑥
4
− 𝑥
4
(𝑡 − 𝜏))

)
)
)
)
)
)
)
)

)

d𝜔 (𝑡) ,
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Figure 1: The states curves of open-loop NSDSs in (54) without the
control with initial state (−2, 2, 3, −4)𝑇 and time delay 𝜏 = 1.

𝑧 (𝑡) = (

1 2 0 0

0 0.5 0 0

0 0 1 0

0 0 0.2 1

)𝑥 (𝑡)

+(

1 1 0 −1

0.5 0.5 −1 0

0 0 1 2

0 0 2 −1

)𝑥 (𝑡 − 𝜏) .

(54)

For Case 1, when the initial condition 𝑥(0) = [−2, 2, 3,

−4]
𝑇 is used and V(𝑡) is a random vector of zero mean and

0.3 standard deviation, we can see that the uncontrolled
NSDSs (54) are not stable from Figure 1. Hence the design of
dissipative delay-feedback controller is necessary. From (54),
we can get Θ

1
= Θ
2
= diag(0.5, 1, 0.5, 2), and 𝛽 = 0.5,

𝛽
𝑑
= 0.3, for given 𝑆 = 𝐼, 𝑅 = 5𝐼, and 𝑄 = −0.2𝐼; applying

Theorem 14 to this example, we have

𝑋 = (

38.2649 −9.3804 −3.6924 7.8006

−9.3804 25.9896 10.5274 −1.9189

−3.6924 10.5274 4.5464 −0.7337

7.8006 −1.9189 −0.7337 2.2634

) ,

𝑌 = 1.0𝑒 + 004

∗ (
−0.0254 1.5597 0.6249 −0.0044

0.8881 −0.0450 −0.0175 0.1783
) ,

𝑌
𝑑
= 1.0𝑒 + 003

∗ (
1.1951 0.5087 0.2100 0.2313

0.0308 0.2403 0.0994 −0.0020
) .

(55)

So the delay-feedback controller parameters can be cal-
culated as follows:

𝐾 = (
149.4677 780.3725 −306.7689 27.4064

258.0621 100.2942 −67.4539 −38.6640
) ,

𝐾
𝑑
= (

43.1863 33.7078 0.3173 −17.9504

5.8953 7.6550 6.9022 −12.4934
) .

(56)
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x3(t)

x4(t)
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Figure 2: The states curves of closed-loop NSDSs in (54) under
the delay-feedback control with initial state (−2, 2, 3, −4)𝑇 and time
delay 𝜏 = 1.
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Figure 3: The states curves of closed-loop NSDSs in (54) under
the delay-feedback control with initial state (−2, 2, 3, −4)𝑇 and time
delay 𝜏 = 2.

The states curves and the output curves of closed-loop
NSDSs in (54) can be seen in Figures 2, 3, and 4; from
Figure 5, we can see that (12) holds. Hence, the closed-loop
NSDSs are strictly (𝑄, 𝑆, 𝑅)-dissipative; we can also see that
the delay-feedback controller is delay-independent.

6. Conclusions

The dissipative delay-feedback control problems for nonlin-
ear stochastic delay systems (NSDSs) have been investigated
based on dissipativity analysis. The systems are subjected to
stochastic disturbance, nonlinear disturbance, and two cases
time-delay effects, which often exist in a wide variety of
industrial processes and are the main sources of instability.
Based on the Lyapunov stability theory and stochastic analy-
sis technique, both delay-independent and delay-dependent
dissipativity criteria have been established in terms of linear
matrix inequalities (LMIs). The available results on 𝐻

∞

approach and passivity for stochastic delay systems as special
cases of the developed results also have been given in this
paper. The delay-dependent feedback controller has been
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Figure 4: The output curves of closed-loop NSDSs in (54) under
the delay-feedback control with initial state (−2, 2, 3, −4)𝑇 and time
delay 𝜏 = 1.
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T

0
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T
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T
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E∫
T

0
𝛼�

T
(s)�(s)ds

Figure 5:The dissipativity level of closed-loop NSDSs in (54) under
the delay-feedback control with initial state (−2, 2, 3, −4)𝑇 and time
delay 𝜏 = 1.

designed by considering the relationship among the time-
varying delay, its lower and upper bound, and its difference
without ignoring any terms, which effectively reduces the
conservative. A numerical example also has been given to
verify the effectiveness of the proposed methods.
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This paper studies the discrete-time stochastic linear quadratic (LQ) problem with a second moment constraint on the terminal
state, where the weighting matrices in the cost functional are allowed to be indefinite. By means of the matrix Lagrange theorem,
a new class of generalized difference Riccati equations (GDREs) is introduced. It is shown that the well-posedness, and the
attainability of the LQ problem and the solvability of the GDREs are equivalent to each other.

1. Introduction

LQcontrol, initiated byKalman [1] and extended to stochastic
systems byWonham [2], is one of the most important classes
of optimal control issues from both theory and application
point of view; we refer the reader to [2–8] for representative
work in this area. Different from the classical LQ in modern
control theory, it was found in [9, 10] that a stochastic
LQ problem with indefinite control weighting matrices can
still be well-posed, which evoked a series of subsequent
researches; see, for example, [11, 12].

It is well known that in practical engineering, the sys-
tem state and control input are always subject to various
constraints, so how to solve the constrained stochastic LQ
issue is a more attractive topic; we refer the reader to [13–
19]. Reference [14] presented a tractable approach for LQ
controller design of the systemwith additive noise. Reference
[16] was about the constrained LQ of deterministic systems
with state equality constraints. Reference [13] studied the
parametrization of the solutions of finite-horizon constrained
LQ control. Reference [15] was devoted to a stochastic LQ
optimal control and an application to portfolio selection,
where the control variable is confined to a cone, and all
the coefficients of the state equation are random processes.
Reference [19] studied the indefinite stochastic LQ control
problem of continuous-time Itô systemswith a linear equality

constraint 𝑀𝑥(𝑇) = 𝜉 on the terminal state and gave a
necessary condition for the existence of an optimal controller.
Reference [20] generalized the results of [19] to discrete-time
stochastic systems.

In this paper, different from [19, 20] on the constraint
conditions, we would like to deal with stochastic LQ control
of discrete-time multiplicative noise systems with a second
moment constraint 𝐸[𝑥(𝑇)

𝑇

𝑥(𝑇)] = 𝑐 and such constraints
are often encountered in 𝐻

∞
filtering design; see [21, 22].

By means of Lagrange theorem, we present a necessary
condition for the existence of an optimal linear state feedback
control with the second moment constraint on the terminal
states. It is proved that the solvability of GDRE is necessary
and sufficient for the existence of an optimal control under
either of the state feedback case or of the open-loop forms.
Moreover, we show that the well-posedness and the attain-
ability of the constrained LQ problem, the feasibility of the
LMI, and the solvability of the GDRE are equivalent to each
other. The novel contribution of this paper is to consider
a constrained discrete-time LQ optimal stochastic control,
which includes some results of [23] as special cases. A new
class of generalized difference Riccati equations (GDREs) is
first introduced.

The remainder of the paper is organized as follows.
Section 2 gives some definitions and preliminaries. In
Section 3, the optimal state feedback control is studied using
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the matrix Lagrange theorem. We give a necessary and
sufficient condition for the well-posedness of the constrained
LQ control in Section 4. Section 5 shows the equivalence
among the well-posedness and the attainability of the LQ
problem, the feasibility of the LMI, and the solvability of
the GDRE. The set of all optimal controls is determined. We
conclude the paper in Section 6.

Throughout the paper, the following notations are
adopted: 𝑀𝑇 denotes the transpose of 𝑀. 𝑀 > 0 (𝑀 ≥ 0):
𝑀 is a positive definite (positive semidefinite) symmetric
matrix. tr(𝑀): the trace of a squarematrix𝑀.𝑅𝑚×𝑛: the space
of all 𝑚 × 𝑛 matrices. 𝑆𝑛: the space of all 𝑛 × 𝑛 symmetric
matrices.

2. Problem Setting

Consider the following constrained discrete-time stochastic
LQ control problem.

Problem 1. Consider

min
𝑢(𝑡0),...,𝑢(𝑇−1)

𝐽 (𝑡
0
, 𝑥
0
; 𝑢 (𝑡
0
) , 𝑢 (𝑡

0
+ 1) , . . . , 𝑢 (𝑇 − 1))

s.t. 𝑥 (𝑡 + 1) = [𝐴 (𝑡) 𝑥 (𝑡) + 𝐵 (𝑡) 𝑢 (𝑡)]

+ [𝐶 (𝑡) 𝑥 (𝑡) + 𝐷 (𝑡) 𝑢 (𝑡)] 𝑤 (𝑡) ,

𝑥 (𝑡
0
) = 𝑥
0
,

𝐸 {𝑥(𝑇)
𝑇

𝑥 (𝑇)} = 𝑐,

𝑡 ∈ {𝑡
0
, 𝑡
0
+ 1, . . . , 𝑇 − 1} ,

(1)

where the state 𝑥(𝑡) ∈ 𝑅
𝑛, the control input 𝑢(𝑡) ∈ 𝑅

𝑚, and
the noise 𝑤(𝑡) ∈ 𝑅

1, 𝑡 ∈ {𝑡
0
, 𝑡
0
+ 1, . . . , 𝑇 − 1},

𝐽 (𝑡
0
, 𝑥
0
; 𝑢 (𝑡
0
) , 𝑢 (𝑡

0
+ 1) , . . . , 𝑢 (𝑇 − 1))

:= 𝐸{𝑥(𝑇)
𝑇

𝑄 (𝑇) 𝑥 (𝑇)

+

𝑇−1

∑

𝑡=𝑡0

[𝑥(𝑡)
𝑇

𝑄 (𝑡) 𝑥 (𝑡) + 𝑢(𝑡)
𝑇

𝑅 (𝑡) 𝑢 (𝑡)]} .

(2)

The process {𝑤(𝑡
0
), 𝑤(𝑡
0
+ 1), . . . , 𝑤(𝑇 − 1)} is a sequence

of second-order stationary random variables defined on
a complete probability space (Ω,F,P). Without loss of
generality, we assume that

𝐸 {𝑤 (𝑠)} = 0, 𝐸 {𝑤 (𝑠) 𝑤 (𝑡)} = 𝛿
𝑠𝑡
, (3)

where 𝛿
𝑠𝑡
is the Kronecker delta, 𝑠, 𝑡 ∈ {𝑡

0
, 𝑡
0
+ 1, . . . , 𝑇 − 1}.

𝑐 ≥ 0 is a constant, 𝐴(𝑡), 𝐵(𝑡), 𝐶(𝑡), 𝐷(𝑡), 𝑄(𝑡), and 𝑅(𝑡) are
matrices having appropriate dimensions determined from
context, and 𝑄(𝑡) and 𝑅(𝑡) are real symmetric indefinite
matrices. 𝑥

0
is a given deterministic vector.

Definition 2. Problem 1 is called well-posed, if ∀𝑥
0
∈ 𝑅
𝑛,

𝑉 (𝑥
0
) = inf
𝑢(𝑡0),𝑢(𝑡0+1),...,𝑢(𝑇−1)

𝐽 (𝑡
0
, 𝑥
0
; 𝑢 (𝑡
0
) , . . . , 𝑢 (𝑇 − 1))

> −∞.

(4)

Definition 3. Problem 1 is called attainable, if ∀𝑥
0
∈ 𝑅
𝑛, there

exists a sequence {𝑢∗(𝑡
0
), 𝑢
∗

(𝑡
0
+ 1), . . . , 𝑢

∗

(𝑇 − 1)}, such that
𝑉(𝑥
0
) = 𝐽(𝑡

0
, 𝑥
0
; 𝑢
∗

(𝑡
0
), 𝑢
∗

(𝑡
0
+1), . . . , 𝑢

∗

(𝑇−1)). In this case,
{𝑢
∗

0
, 𝑢
∗

1
, . . . , 𝑢

∗

𝑁−1
} is called an optimal control sequence.

Now, let us consider a mathematical programming (MP)
problem in a matrix space:

min 𝑓 (𝑋)

s.t. h (𝑋) = 0.
(5)

Definition 4. Let𝑋∗ be a point satisfying

h (𝑋
∗

) = (ℎ
1
(𝑋
∗

) , . . . , ℎ
𝑝
(𝑋
∗

))
𝑇

= 0, (6)

and then 𝑋
∗ is said to be a constraint regular point if

the gradient vectors ∇ℎ
𝑗
(𝑋
∗

), 𝑗 = 1, . . . , 𝑝, are linearly
independent.

Lemma 5 (Lagrange theorem [24]). Assume that the func-
tions 𝑓, ℎ

1
, . . . , ℎ

𝑝
, are twice continuously differentiable. If a

regular point 𝑋
∗ is also a relative minimum point for the

original MP, then there exists a vector 𝜆 ∈ 𝑅
𝑝 such that

∇
𝑋
𝐿 (𝑋
∗

, 𝜆
∗

) = 0, (7)

where the Lagrangian function 𝐿(𝑋, 𝜆) := 𝑓(𝑋) + 𝜆
𝑇h(𝑋).

3. A Necessary Condition for State
Feedback Control

In this section, by the matrix Lagrange theorem, we present
a necessary condition for Problem 1 based on a new type of
GDREs.

Let 𝑋(𝑡) = 𝐸[𝑥(𝑡)𝑥(𝑡)
𝑇

]. Through a simple calculation,
the following deterministic optimal control Problem 6 is
equivalent to the original Problem 1 under the state feedback
𝑢(𝑡) = 𝐾(𝑡)𝑥(𝑡) for 𝑡 ∈ {𝑡

0
, 𝑡
0
+ 1, . . . , 𝑇 − 1}.
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Problem 6. Consider
min

𝐾(𝑡0),...,𝐾(𝑇−1)

𝐽 (𝑡
0
, 𝑥
0
; 𝐾 (𝑡
0
) 𝑥
0
, . . . , 𝐾 (𝑇 − 1) 𝑥 (𝑇 − 1))

s.t. 𝑋 (𝑡 + 1) = (𝐴 (𝑡) + 𝐵 (𝑡)𝐾 (𝑡))

× 𝑋 (𝑡) (𝐴 (𝑡) + 𝐵 (𝑡)𝐾 (𝑡))
𝑇

+ (𝐶 (𝑡) + 𝐷 (𝑡)𝐾 (𝑡))

× 𝑋 (𝑡) (𝐶 (𝑡) + 𝐷 (𝑡)𝐾 (𝑡))
𝑇

,

𝑡 = 𝑡
0
, 𝑡
0
+ 1, . . . , 𝑇 − 1,

𝑋 (𝑡
0
) = 𝑋

0
= 𝑥
0
𝑥
𝑇

0
,

tr [𝑋 (𝑇)] = 𝑐

(8)
with

𝐽 (𝑡
0
, 𝑥
0
; 𝐾 (𝑡
0
) 𝑥
0
, . . . , 𝐾 (𝑇 − 1) 𝑥 (𝑇 − 1))

=

𝑇−1

∑

𝑡=𝑡0

tr {[𝑄 (𝑡) + 𝐾(𝑡)
𝑇

𝑅 (𝑡)𝐾 (𝑡)]𝑋 (𝑡)}

+ tr [𝑄 (𝑇)𝑋 (𝑇)] .

(9)

Remark 7. If Problem 1 has a linear feedback optimal control
solution 𝑢

∗

(𝑡) = 𝐾
∗

(𝑡)𝑥(𝑡), 𝑡 ∈ {𝑡
0
, 𝑡
0
+ 1, . . . , 𝑇 − 1}, then

𝐾
∗

(𝑡), 𝑡 ∈ {𝑡
0
, 𝑡
0
+ 1, . . . , 𝑇 − 1}, are the optimal solution of

Problem 6.

Theorem 8. If Problem 1 is attainable by 𝑢(𝑡) = 𝐾
∗

(𝑡)𝑥(𝑡),
and the regular point (𝐾

∗

(𝑡), 𝑋
∗

(𝑡)) is a locally optimal
solution of Problem 6, then there exist symmetric matrices
𝑃(𝑡), 𝑡 ∈ {𝑡

0
, 𝑡
0
+1, . . . , 𝑇−1}, and 𝜆 ∈ 𝑅

1 solving the following
GDRE:

𝑃 (𝑡) = 𝐴(𝑡)
𝑇

𝑃 (𝑡 + 1)𝐴 (𝑡) + 𝐶(𝑡)
𝑇

𝑃 (𝑡 + 1) 𝐶 (𝑡)

+ 𝑄 (𝑡) − 𝐻(𝑡)
𝑇

𝐺(𝑡)
†

𝐻(𝑡) ,

𝐻 (𝑡) = 𝐵(𝑡)
𝑇

𝑃 (𝑡 + 1)𝐴 (𝑡) + 𝐷(𝑡)
𝑇

𝑃 (𝑡 + 1) 𝐶 (𝑡) ,

𝐺 (𝑡) = 𝑅 (𝑡) + 𝐵(𝑡)
𝑇

𝑃 (𝑡 + 1) 𝐵 (𝑡)

+ 𝐷(𝑡)
𝑇

𝑃 (𝑡 + 1)𝐷 (𝑡) ≥ 0,

𝐺 (𝑡) 𝐺(𝑡)
†

𝐻(𝑡) = 𝐻 (𝑡) , 𝑡 ∈ {𝑡
0
, 𝑡
0
+ 1, . . . , 𝑇 − 1} ,

𝑃 (𝑇) = 𝑄 (𝑇) + 𝜆𝐼,

(10)

where 𝐺
† is the Moore-Penrose generalized inverse of 𝐺.

Moreover,
𝐾
∗

(𝑡) = −𝐺(𝑡)
†

𝐻(𝑡) + 𝑌 (𝑡) − 𝐺(𝑡)
†

𝐺 (𝑡) 𝑌 (𝑡) (11)

with 𝑌(𝑡) ∈ 𝑅
𝑚×𝑛, 𝑡 = 𝑡

0
, 𝑡
0
+ 1, . . . , 𝑇 − 1, being any given real

matrices:
𝑉 (𝑥
0
) = 𝐽 (𝑡

0
, 𝑥
0
; 𝑢
∗

(𝑡
0
) , 𝑢
∗

(𝑡
0
+ 1) , . . . , 𝑢

∗

(𝑇 − 1))

= 𝑥
𝑇

0
𝑃 (𝑡
0
) 𝑥
0
− 𝑐𝜆.

(12)

To proveTheorem 8, we mainly use Lemma 5 to Problem
6 together with the following lemma to obtainGDRE (10) and
then apply the technique of completing squares to show (12).

Lemma 9 (see [12]). Let 𝐴, 𝐵, 𝐶 be given matrices with
appropriate sizes; then the matrix equation

𝐴𝑋𝐵 = 𝐶 (13)

has a solution 𝑋 if and only if

𝐴𝐴
†

𝐶𝐵
†

𝐵 = 𝐶. (14)

Moreover, any solution to 𝐴𝑋𝐵 = 𝐶 can be represented by

𝑋 = 𝐴
†

𝐶𝐵
†

+ 𝑌 − 𝐴
†

𝐴𝑌𝐵𝐵
†

, (15)

where 𝑌 is any matrix with appropriate size.

Proof. According to Remark 7, 𝐾
∗

(𝑡) is also the optimal
solution of Problem 6. Problem 6 is a typical MP problem
about𝑋(𝑡) and𝐾(𝑡) as follows:

min 𝑓 [𝑋 (𝑡) , 𝐾 (𝑡)]

s.t. ℎ
𝑡+1

[𝑋 (𝑡) , 𝐾 (𝑡)] = 0, 𝑡 ∈ {𝑡
0
, 𝑡
0
+ 1, . . . , 𝑇 − 1} ,

ℎ [𝑋 (𝑇)] = 0,

(16)

where

𝑓 [𝑋 (𝑡) , 𝐾 (𝑡)] =

𝑇−1

∑

𝑡=𝑡0

tr {[𝑄 (𝑡) + 𝐾(𝑡)
𝑇

𝑅 (𝑡)𝐾 (𝑡)]𝑋 (𝑡)}

+ tr [𝑄 (𝑇)𝑋 (𝑇)] ,

ℎ
𝑡+1

[𝑋 (𝑡) , 𝐾 (𝑡)] = 𝐴 (𝑡)𝑋 (𝑡) 𝐴(𝑡)
𝑇

+ 𝐴 (𝑡)𝑋 (𝑡)𝐾(𝑡)
𝑇

𝐵(𝑡)
𝑇

+ 𝐵 (𝑡)𝐾 (𝑡)𝑋 (𝑡) 𝐴(𝑡)
𝑇

+ 𝐵 (𝑡)𝐾 (𝑡)𝑋 (𝑡)𝐾(𝑡)
𝑇

𝐵(𝑡)
𝑇

+ 𝐶 (𝑡)𝑋 (𝑡) 𝐶(𝑡)
𝑇

+ 𝐶 (𝑡)𝑋 (𝑡)𝐾(𝑡)
𝑇

𝐷(𝑡)
𝑇

+ 𝐷 (𝑡)𝐾 (𝑡)𝑋 (𝑡) 𝐶(𝑡)
𝑇

+ 𝐷 (𝑡)𝐾 (𝑡)𝑋 (𝑡)𝐾(𝑡)
𝑇

𝐷(𝑡)
𝑇

− 𝑋 (𝑡 + 1) ,

ℎ [𝑋 (𝑇)] = tr [𝑋 (𝑇)] − 𝑐.

(17)

Let matrices 𝑃(𝑡 + 1), 𝑡 ∈ {𝑡
0
, 𝑡
0
+ 1, . . . , 𝑇 − 1}, be the

Lagrangian multipliers of

ℎ
𝑡+1

[𝑋 (𝑡) , 𝐾 (𝑡)] = 0, 𝑡 ∈ {𝑡
0
, 𝑡
0
+ 1, . . . , 𝑇 − 1} , (18)



4 Mathematical Problems in Engineering

and let 𝜆 ∈ 𝑅
1 be the Lagrangian multiplier of ℎ[𝑋(𝑇)] = 0;

then the Lagrangian function

L = 𝑓 [𝑋 (𝑡) , 𝐾 (𝑡)]

+

𝑇−1

∑

𝑡=𝑡0

tr {𝑃 (𝑡 + 1) ℎ
𝑡+1

[𝑋 (𝑡) , 𝐾 (𝑡)]} + 𝜆ℎ [𝑋 (𝑇)] .

(19)

According to the the matrix Lagrange theorem, we obtain

𝜕L

𝜕 (𝐾
𝑡
)
= 0, 𝑡 = 𝑡

0
, 𝑡
0
+ 1, . . . , 𝑇 − 1, (20)

𝜕L

𝜕 (𝑋
𝑡
)
= 0 𝑡 = 𝑡

0
, 𝑡
0
+ 1, . . . , 𝑇. (21)

Based on the partial rule of gradient matrices, (20) can be
transformed into

[𝑅 (𝑡) + 𝐵(𝑡)
𝑇

𝑃 (𝑡 + 1) 𝐵 (𝑡) + 𝐷(𝑡)
𝑇

𝑃 (𝑡 + 1)𝐷 (𝑡)]𝐾 (𝑡)

+ 𝐵(𝑡)
𝑇

𝑃 (𝑡 + 1)𝐴 (𝑡) + 𝐷(𝑡)
𝑇

𝑃 (𝑡 + 1) 𝐶 (𝑡) = 0.

(22)

Let

𝐺 (𝑡) = 𝑅 (𝑡) + 𝐵(𝑡)
𝑇

𝑃 (𝑡 + 1) 𝐵 (𝑡) + 𝐷(𝑡)
𝑇

𝑃 (𝑡 + 1)𝐷 (𝑡) ,

𝐻 (𝑡) = 𝐵(𝑡)
𝑇

𝑃 (𝑡 + 1)𝐴 (𝑡) + 𝐷(𝑡)
𝑇

𝑃 (𝑡 + 1) 𝐶 (𝑡) .

(23)

Then we obtain

𝐺 (𝑡) 𝐺(𝑡)
†

𝐻(𝑡) = 𝐻 (𝑡) ,

𝐺 (𝑡)𝐾 (𝑡) + 𝐻 (𝑡) = 0.

(24)

Applying Lemma 9, we have

𝐾
∗

(𝑡) = −𝐺(𝑡)
†

𝐻(𝑡) + 𝑌 (𝑡) − 𝐺(𝑡)
†

𝐺 (𝑡) 𝑌 (𝑡) ,

𝑌 (𝑡) ∈ 𝑅
𝑚×𝑛

, 𝑡 = 𝑡
0
, 𝑡
0
+ 1, . . . , 𝑇 − 1.

(25)

Equation (21) yields

𝑃 (𝑇) = 𝑄 (𝑇) + 𝜆𝐼,

𝑃 (𝑡) = 𝑄 (𝑡) + 𝐴(𝑡)
𝑇

𝑃 (𝑡 + 1)𝐴 (𝑡) + 𝐶(𝑡)
𝑇

𝑃 (𝑡 + 1) 𝐶 (𝑡)

+ 𝐾(𝑡)
𝑇

[𝑅 (𝑡) + 𝐵(𝑡)
𝑇

𝑃 (𝑡 + 1) 𝐵 (𝑡)

+ 𝐷(𝑡)
𝑇

𝑃 (𝑡 + 1)𝐷 (𝑡)]𝐾 (𝑡)

+ 𝐾(𝑡)
𝑇

[𝐷(𝑡)
𝑇

𝑃 (𝑡 + 1) 𝐶 (𝑡)

+𝐵(𝑡)
𝑇

𝑃 (𝑡 + 1)𝐴 (𝑡)]

+ [𝐴(𝑡)
𝑇

𝑃 (𝑡 + 1) 𝐵 (𝑡)

+ 𝐶(𝑡)
𝑇

𝑃 (𝑡 + 1)𝐷 (𝑡)]𝐾 (𝑡) .

(26)

Substituting𝐾
∗

(𝑡) = −𝐺(𝑡)
†

𝐻(𝑡) + 𝑌(𝑡) − 𝐺(𝑡)
†

𝐺(𝑡)𝑌(𝑡) into
(26), it follows

𝑃 (𝑡) = 𝐴(𝑡)
𝑇

𝑃 (𝑡 + 1)𝐴 (𝑡) + 𝐶(𝑡)
𝑇

𝑃 (𝑡 + 1) 𝐶 (𝑡)

+ 𝑄 (𝑡) − 𝐻(𝑡)
𝑇

𝐺(𝑡)
†

𝐻(𝑡) .

(27)

Without loss of generality, we can assume that𝑃 is symmetric.
Otherwise, we can take 𝑃 = (𝑃

𝑇

+ 𝑃)/2. The objective
functional

𝐽 (𝑡
0
, 𝑥
0
; 𝑢 (𝑡
0
) , 𝑢 (𝑡

0
+ 1) , . . . , 𝑢 (𝑇 − 1))

= 𝐸{

𝑇−1

∑

𝑡=𝑡0

[𝑥(𝑡)
𝑇

𝑄 (𝑡) 𝑥 (𝑡) + 𝑢(𝑡)
𝑇

𝑅 (𝑡) 𝑢 (𝑡)]}

+ tr [𝑋 (𝑇)𝑄 (𝑇)]

= 𝐸{

𝑇−1

∑

𝑡=𝑡0

[𝑥(𝑡)
𝑇

𝑄 (𝑡) 𝑥 (𝑡) + 𝑢(𝑡)
𝑇

𝑅 (𝑡) 𝑢 (𝑡)

+ 𝑥(𝑡 + 1)
𝑇

𝑃 (𝑡 + 1) 𝑥 (𝑡 + 1)

−𝑥(𝑡)
𝑇

𝑃 (𝑡) 𝑥 (𝑡)] }

+ 𝐸 {𝑥(𝑇)
𝑇

[𝑄 (𝑇) − 𝑃 (𝑇)] 𝑥 (𝑇) + 𝑥
𝑇

0
𝑃 (𝑡
0
) 𝑥
0
}

= 𝐸{

𝑇−1

∑

𝑡=𝑡0

[𝑥(𝑡)
𝑇

𝑄 (𝑡) 𝑥 (𝑡) + 𝑢(𝑡)
𝑇

𝑅 (𝑡) 𝑢 (𝑡)

−𝑥(𝑡)
𝑇

𝑃 (𝑡) 𝑥 (𝑡)]

+ [𝑥(𝑡)
𝑇

𝐴(𝑡)
𝑇

+ 𝑢(𝑡)
𝑇

𝐵(𝑡)
𝑇

]

× 𝑃 (𝑡 + 1) [𝐴 (𝑡) 𝑥 (𝑡) + 𝐵 (𝑡) 𝑢 (𝑡)]

+ [𝑥(𝑡)
𝑇

𝐶(𝑡)
𝑇

+ 𝑢(𝑡)
𝑇

𝐷(𝑡)
𝑇

]

×𝑃 (𝑡 + 1) [𝐶 (𝑡) 𝑥 (𝑡) + 𝐷 (𝑡) 𝑢 (𝑡)] }

+ 𝐸 {𝑥(𝑇)
𝑇

[𝑄 (𝑇) − 𝑃 (𝑇)] 𝑥 (𝑇) + 𝑥
𝑇

0
𝑃 (𝑡
0
) 𝑥
0
} .

(28)

A completion of square implies

𝐽 (𝑡
0
, 𝑥
0
; 𝑢 (𝑡
0
) , 𝑢 (𝑡

0
+ 1) , . . . , 𝑢 (𝑇 − 1))

= 𝐸{

𝑇−1

∑

𝑡=𝑡0

[𝑢 (𝑡) + 𝐺(𝑡)
†

𝐻(𝑡) 𝑥 (𝑡)]
𝑇

×𝐺 (𝑡) [𝑢 (𝑡) + 𝐺(𝑡)
†

𝐻(𝑡) 𝑥 (𝑡)] }

+ 𝐸 {𝑥(𝑇)
𝑇

[𝑄 (𝑇) − 𝑃 (𝑇)] 𝑥 (𝑇) + 𝑥
𝑇

0
𝑃 (𝑡
0
) 𝑥
0
} .

(29)
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We assert that 𝑃(𝑡 + 1)must satisfy

𝐺 (𝑡) = 𝑅 (𝑡) + 𝐵(𝑡)
𝑇

𝑃 (𝑡 + 1) 𝐵 (𝑡)

+ 𝐷(𝑡)
𝑇

𝑃 (𝑡 + 1)𝐷 (𝑡) ≥ 0.

(30)

If it is not so, there is𝐺(𝑙) for 𝑙 ∈ {𝑡
0
, . . . , 𝑇−1}with a negative

eigenvalue𝜆 < 0. Denote the unitary eigenvectorwith respect
to 𝜆 by V

𝜆
. Let 𝛿 ̸=0 be an arbitrary scalar; we construct a

control sequence as follows:

𝑢̃ (𝑡) = {
−𝐺(𝑡)

†

𝐻(𝑡) 𝑥 (𝑡) , 𝑡 ̸= 𝑙,

𝛿|𝜆|
−1/2V
𝜆
− 𝐺(𝑡)

†

𝐻(𝑡) 𝑥 (𝑡) , 𝑡 = 𝑙.
(31)

The associated cost functional becomes
𝐽 (𝑡
0
, 𝑥
0
; 𝑢̃ (𝑡
0
) , 𝑢̃ (𝑡

0
+ 1) , . . . , 𝑢̃ (𝑇 − 1))

= 𝐸{

𝑇−1

∑

𝑡=𝑡0

[𝑢̃ (𝑡) + 𝐺(𝑡)
†

𝐻(𝑡) 𝑥 (𝑡)]
𝑇

× 𝐺 (𝑡) [𝑢̃ (𝑡) + 𝐺(𝑡)
†

𝐻(𝑡) 𝑥 (𝑡)] }

+ 𝐸 {𝑥(𝑇)
𝑇

[𝑄 (𝑇) − 𝑃 (𝑇)] 𝑥 (𝑇) + 𝑥
𝑇

0
𝑃 (𝑡
0
) 𝑥
0
}

= [𝛿|𝜆|
−1/2V
𝜆
]
𝑇

𝐺 (𝑙) [𝛿|𝜆|
−1/2V
𝜆
]

+ 𝐸 {𝑥(𝑇)
𝑇

[𝑄 (𝑇) − 𝑃 (𝑇)] 𝑥 (𝑇) + 𝑥
𝑇

0
𝑃 (𝑡
0
) 𝑥
0
}

= −𝛿
2

+ 𝐸 {𝑥(𝑇)
𝑇

[𝑄 (𝑇) − 𝑃 (𝑇)] 𝑥 (𝑇) + 𝑥
𝑇

0
𝑃 (𝑡
0
) 𝑥
0
} .

(32)
Let 𝛿 → ∞; then 𝐽(𝑡

0
, 𝑥
0
; 𝑢̃(𝑡
0
), 𝑢̃(𝑡
0
+ 1), . . . , 𝑢̃(𝑇 − 1)) →

−∞, which contradicts the attainability of Problem 1. So (30)
holds.

In view of (29) and (30), (11) and (12) are easily derived.
The proof is completed.

Remark 10. InTheorem 8, in order to apply matrix Lagrange
theorem, we assume the optimal solution (𝐾

∗
(𝑡), 𝑋
∗
(𝑡))
𝑇 is a

regular point. Generally speaking, for a given LQ control, it
is easy to examine the regular condition.

Below, we present a numerical example to illustrate the
effectiveness of Theorem 8.

Example 11. In Problem 1, we set

𝐸 {𝑥(2)
𝑇

𝑥 (2)} = 𝑐 = 73, 𝑥
0
= [

0

1
] ,

𝐴
0
= [

1 0

0 0
] , 𝐴

1
= [

1 0

1 0
] ,

𝐵
0
= [

1

0
] , 𝐵

1
= [

1

1
] ,

𝐶
0
= [

−1 1

0 0
] , 𝐶

1
= [

0 1

1 1
] ,

𝐷
0
= [

1

−1
] , 𝐷

1
= [

1

−1
] .

(33)

The state and control weighting matrices are as

𝑄
0
= [

−1 0

0 −1
] , 𝑄

1
= [

−1 0

0 0
] ,

𝑄
2
= [

0 0

0 0
] , 𝑅

0
= −1, 𝑅

1
= −7.

(34)

By the relationship between Problems 1 and 6, we know

𝑋
0
= [

0 0

0 1
] , tr [𝑋 (2)] = 73. (35)

ApplyingTheorem 8, we obtain

𝑋(0) = [
0 0

0 1
] , 𝑋 (1) = [

5 −2

−2 1
] ,

𝑋 (2) = [
34 −26

−26 39
] ,

𝑃 (2) = 𝜆𝐼 = [
2 0

0 2
] , 𝜆 = 2.

(36)

Stage 2. Consider

𝐺 (1) = 1 > 0, 𝐻 (1) = (2, 0) ,

𝑃 (1) = [
1 2

2 4
] , 𝐾 (1) = (−2, 0) .

(37)

Stage 1. Consider

𝐺 (0) = 1 > 0, 𝐻 (0) = (2, −1) ,

𝐾 (0) = (−2, 1) , 𝑃 (0) = [
5 −3

−3 0
] .

(38)

The optimal cost value of Problem 1 is

𝑉 (𝑥
0
) = 𝐸 [𝑥

𝑇

0
𝑃 (𝑡
0
) 𝑥
0
− 𝑐𝜆] = −146. (39)

We are able to test the regular condition of (𝐾∗(𝑡), 𝑋∗(𝑡))𝑇 as
follows. In Problem 6,

ℎ
(𝑡+1)

(𝑋 (𝑡) , 𝐾 (𝑡)) = 𝐴 (𝑡)𝑋 (𝑡) 𝐴(𝑡)
𝑇

+ 𝐴 (𝑡)𝑋 (𝑡)𝐾(𝑡)
𝑇

𝐵(𝑡)
𝑇

+ 𝐵 (𝑡)𝐾 (𝑡)𝑋 (𝑡) 𝐴(𝑡)
𝑇

+ 𝐵 (𝑡)𝐾 (𝑡)𝑋 (𝑡)𝐾(𝑡)
𝑇

𝐵(𝑡)
𝑇

+ 𝐶 (𝑡)𝑋 (𝑡) 𝐶(𝑡)
𝑇

+ 𝐶 (𝑡)𝑋 (𝑡)𝐾(𝑡)
𝑇

𝐷(𝑡)
𝑇

+ 𝐷 (𝑡)𝐾 (𝑡)𝑋 (𝑡) 𝐶(𝑡)
𝑇

+ 𝐷 (𝑡)𝐾 (𝑡)𝑋 (𝑡)𝐾(𝑡)
𝑇

𝐷(𝑡)
𝑇

− 𝑋 (𝑡 + 1) , 𝑡 = 0, 1,

(40)
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which is linear about 𝑋(𝑡) and quadratic about 𝐾(𝑡), while
ℎ(𝑋(𝑇)) = tr[𝑋(𝑇)] − 𝑐 is linear about 𝑋(𝑇). By sim-
ple calculations, ∇ℎ

1
(𝐾
∗

(0), 𝑋
∗

(0)), ∇ℎ
2
(𝐾
∗

(1), 𝑋
∗

(1)), and
∇ℎ(𝑋

∗

(𝑇)) are all nonzero vectors and hence are linearly
independent.

4. Well-Posedness

In this section, we first establish the link between the well-
posedness of Problem 1 and the feasibility of some LMIs
and then prove that the solvability of GDRE (10) is not
only necessary but also sufficient to the well-posedness of
Problem 1.Moreover, the well-posedness and the attainability
of Problem 1, the feasibility of some LMIs, and the solvability
of GDRE (10) are equivalent to each other.

Theorem 12. Problem 1 is well-posed if there exist symmetric
matrices 𝑃(𝑡), 𝑡 ∈ {𝑡

0
, 𝑡
0
+ 1, . . . , 𝑇 − 1}, and 𝜆 ∈ 𝑅

1 solving the
following LMIs:

𝑀
𝑡

:= [

𝐴(𝑡)
𝑇

𝑃 (𝑡 + 1)𝐴(𝑡) − 𝑃 (𝑡) + 𝐶(𝑡)
𝑇

𝑃 (𝑡 + 1)𝐶(𝑡) + 𝑄(𝑡) 𝐻(𝑡)
𝑇

𝐻(𝑡) 𝐺(𝑡)
]

≥ 0,

(41)

𝑃 (𝑇) ≤ 𝑄 (𝑇) + 𝜆𝐼, (42)

where

𝐻(𝑡) = 𝐵(𝑡)
𝑇

𝑃 (𝑡 + 1)𝐴 (𝑡) + 𝐷(𝑡)
𝑇

𝑃 (𝑡 + 1) 𝐶 (𝑡) ,

𝐺 (𝑡) = 𝑅 (𝑡) + 𝐵(𝑡)
𝑇

𝑃 (𝑡 + 1) 𝐵 (𝑡) + 𝐷(𝑡)
𝑇

𝑃 (𝑡 + 1)𝐷 (𝑡) .

(43)

Proof. Note that

𝐽 (𝑡
0
, 𝑥
0
; 𝑢 (𝑡
0
) , 𝑢 (𝑡

0
+ 1) , . . . , 𝑢 (𝑇 − 1))

= 𝐸{

𝑇−1

∑

𝑡=𝑡0

[𝑥(𝑡)
𝑇

𝑄 (𝑡) 𝑥 (𝑡) + 𝑢(𝑡)
𝑇

𝑅 (𝑡) 𝑢 (𝑡)]

+ 𝑥(𝑇)
𝑇

𝑄 (𝑇) 𝑥 (𝑇)}

= 𝐸{

𝑇−1

∑

𝑡=𝑡0

[𝑥(𝑡)
𝑇

𝑄 (𝑡) 𝑥 (𝑡) + 𝑢(𝑡)
𝑇

𝑅 (𝑡) 𝑢 (𝑡)

+ 𝑥(𝑡 + 1)
𝑇

𝑃 (𝑡 + 1) 𝑥 (𝑡 + 1)

− 𝑥(𝑡)
𝑇

𝑃 (𝑡) 𝑥 (𝑡)]

+𝑥(𝑇)
𝑇

[𝑄 (𝑇) − 𝑃 (𝑇)] 𝑥 (𝑇) + 𝑥
𝑇

0
𝑃 (𝑡
0
) 𝑥
0
}

= 𝐸{

𝑇−1

∑

𝑡=𝑡0

[
𝑥 (𝑡)

𝑢 (𝑡)
]

𝑇

𝑀
𝑡
[
𝑥 (𝑡)

𝑢 (𝑡)
]

+𝑥(𝑇)
𝑇

[𝑄 (𝑇) − 𝑃 (𝑇)] 𝑥 (𝑇) + 𝑥
𝑇

0
𝑃 (𝑡
0
) 𝑥
0
} .

(44)

By (41), it is easy to deduce that the cost functional is bounded
from below by

𝐸 {𝑥(𝑇)
𝑇

[𝑄 (𝑇) − 𝑃 (𝑇)] 𝑥 (𝑇) + 𝑥
𝑇

0
𝑃 (𝑡
0
) 𝑥
0
}

≥ 𝑥
𝑇

0
𝑃 (𝑡
0
) 𝑥
0
− 𝑐𝜆.

(45)

Hence, Problem 1 is well-posed.

Remark 13. Theorem 12 tells us that any symmetric matrices
𝑃(𝑡), 𝑡 ∈ {𝑡

0
, 𝑡
0
+ 1, . . . , 𝑇 − 1}, and 𝜆 ∈ 𝑅

1 satisfying LMIs
(41)-(42) provide a lower bound

𝑥
𝑇

0
𝑃 (𝑡
0
) 𝑥
0
− 𝑐𝜆 (46)

for the cost function. In what follows, we will show that this
lower bound is an exact optimal cost value if 𝑃(𝑡) and 𝜆 ∈ 𝑅

1

solve GDRE (10).
We have shown that if the LMIs (41)-(42) are satisfied,

then the constrained LQ Problem 1 is well-posed. Below, we
further show some other equivalent conditions.

Lemma 14 (extended Schur’s lemma [25]). Let the matrices
𝑀 = 𝑀

𝑇, 𝐻, 𝐺 = 𝐺
𝑇 be given with appropriate sizes. Then,

the following three conditions are equivalent:

(1) 𝑀 − 𝐻𝐺
†

𝐻
𝑇

≥ 0, 𝐺 ≥ 0, 𝐻 (𝐼 − 𝐺𝐺
†

) = 0.

(2) [
𝑀 𝐻

𝐻
𝑇

𝐺
] ≥ 0.

(3) [
𝐺 𝐻
𝑇

𝐻 𝑀
] ≥ 0.

(47)

Theorem 15. Problem 1 is well-posed if and only if there exist
symmetric matrices 𝑃(𝑡), 𝑡 ∈ {𝑡

0
, 𝑡
0
+ 1, . . . , 𝑇 − 1}, and 𝜆 ∈ 𝑅

1

satisfying GDRE (10). Furthermore, the optimal cost is

𝑉 (𝑥
0
) = 𝑥
𝑇

0
𝑃 (𝑡
0
) 𝑥
0
− 𝐸 {𝑥(𝑇)

𝑇

[𝑄 (𝑇) − 𝑃 (𝑇)] 𝑥 (𝑇)}

= 𝑥
𝑇

0
𝑃 (𝑡
0
) 𝑥
0
− 𝑐𝜆.

(48)

A key to prove Theorem 15 is the necessity part, where the
stochastic optimization principle is used.
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Proof. Necessity. For 𝑡
0
≤ 𝑙 ≤ 𝑇 − 1, define

𝑉
𝑙

[𝑥 (𝑙)]

= inf
𝑢(𝑙),...,𝑢(𝑇−1)

𝐸{

𝑇−1

∑

𝑡=𝑙

[𝑥(𝑡)
𝑇

𝑄 (𝑡) 𝑥 (𝑡) + 𝑢(𝑡)
𝑇

𝑅 (𝑡) 𝑢 (𝑡)]

+𝑥(𝑇)
𝑇

𝑄 (𝑇) 𝑥 (𝑇)} .

(49)

By the stochastic optimization principle, when 𝑉
𝑙1[𝑥(𝑙
1
)] is

finite, then so is 𝑉𝑙2[𝑥(𝑙
2
)] for any 𝑙

1
≤ 𝑙
2
. Since Problem 1 is

assumed to be well-posed at 𝑡
0
, 𝑉𝑙[𝑥(𝑙)] is finite at any stage

0 ≤ 𝑙 ≤ 𝑇 − 1. Now let us start with 𝑙 = 𝑇 − 1, and let 𝑃(𝑇) =

𝑄(𝑇) − 𝜆𝐼, and we have

𝑉
𝑇−1

[𝑥 (𝑇 − 1)] − 𝐸 {𝑥(𝑇)
𝑇

[𝑄 (𝑇) − 𝑃 (𝑇)] 𝑥 (𝑇)}

= inf
𝑢(𝑇−1)

{𝐸 [𝑥(𝑇 − 1)
𝑇

𝑄 (𝑇 − 1) 𝑥 (𝑇 − 1)

+ 𝑢(𝑇 − 1)
𝑇

𝑅 (𝑇 − 1) 𝑢 (𝑇 − 1)]}

+ 𝐸 [𝑥(𝑇)
𝑇

𝑃 (𝑇) 𝑥 (𝑇)]

= inf
𝑢(𝑇−1)

𝐸 {𝑥(𝑇 − 1)
𝑇

× [𝑄 (𝑇 − 1) + 𝐴(𝑇 − 1)
𝑇

𝑃 (𝑇)𝐴 (𝑇 − 1)

+𝐶(𝑇 − 1)
𝑇

𝑃 (𝑇)𝐶 (𝑇 − 1)] 𝑥 (𝑇 − 1)

× 2𝑥(𝑇 − 1)
𝑇

× [𝐵(𝑇 − 1)
𝑇

𝑃 (𝑇)𝐴 (𝑇 − 1)

+𝐷(𝑇 − 1)
𝑇

𝑃 (𝑇)𝐶 (𝑇 − 1)] 𝑢 (𝑇 − 1)

+ 𝑢(𝑇 − 1)
𝑇

× [𝑅 (𝑇 − 1) + 𝐵(𝑇 − 1)
𝑇

𝑃 (𝑇) 𝐵 (𝑇 − 1)

+𝐷(𝑇 − 1)
𝑇

𝑃 (𝑇)𝐷 (𝑇 − 1)] 𝑢 (𝑇 − 1)} .

(50)

Since 𝑉
𝑇−1

[𝑥(𝑇 − 1)] is finite, using Lemma 4.3 of [23], there
exists a symmetric matrix 𝑃(𝑇 − 1) such that

𝑉
𝑇−1

[𝑥 (𝑇 − 1)] − 𝐸 {𝑥(𝑇)
𝑇

[𝑄 (𝑇) − 𝑃 (𝑇)] 𝑥 (𝑇)}

= 𝐸 [𝑥(𝑇 − 1)
𝑇

𝑃 (𝑇 − 1) 𝑥 (𝑇 − 1)] ,

𝑃 (𝑇 − 1) = 𝐴(𝑇 − 1)
𝑇

𝑃 (𝑇)𝐴 (𝑇 − 1)

+ 𝐶(𝑇 − 1)
𝑇

𝑃 (𝑇)𝐶 (𝑇 − 1)

+ 𝑄 (𝑇 − 1) − 𝐻(𝑇 − 1)
𝑇

× 𝐺(𝑇 − 1)
†

𝐻(𝑇 − 1) ,

𝐻 (𝑇 − 1) = 𝐵(𝑇 − 1)
𝑇

𝑃 (𝑇)𝐴 (𝑇 − 1)

+ 𝐷(𝑇 − 1)
𝑇

𝑃 (𝑇)𝐶 (𝑇 − 1) ,

𝐺 (𝑇 − 1) = 𝑅 (𝑇 − 1) + 𝐵(𝑇 − 1)
𝑇

𝑃 (𝑇) 𝐵 (𝑇 − 1)

+ 𝐷(𝑇 − 1)
𝑇

𝑃 (𝑇)𝐷 (𝑇 − 1) ≥ 0.
(51)

The obtained solution sequence of symmetric matrices 𝑃(𝑡),
𝑡 = 𝑙, 𝑙 + 1, . . . , 𝑇 − 1, and 𝜆 ∈ 𝑅

1 to GDRE (10) satisfy

𝑉
𝑙

[𝑥 (𝑙)] − 𝐸 {𝑥(𝑇)
𝑇

[𝑄 (𝑇) − 𝑃 (𝑇)] 𝑥 (𝑇)}

= 𝐸 [𝑥(𝑙)
𝑇

𝑃 (𝑙) 𝑥 (𝑙)] .

(52)

Then by the stochastic optimality principle, the following
holds:

𝑉
𝑙−1

[𝑥 (𝑙 − 1)]

= inf
𝑢(𝑙−1)

𝐸 {𝑥(𝑙 − 1)
𝑇

𝑄 (𝑙 − 1) 𝑥 (𝑙 − 1)

+ 𝑢(𝑙 − 1)
𝑇

𝑅 (𝑙 − 1) 𝑢 (𝑙 − 1)

+ 𝑉
𝑙

[𝑥 (𝑙)]}

= inf
𝑢(𝑙−1)

𝐸 [𝑥(𝑙 − 1)
𝑇

𝑄 (𝑙 − 1) 𝑥 (𝑙 − 1)

+ 𝑢(𝑙 − 1)
𝑇

𝑅 (𝑙 − 1) 𝑢 (𝑙 − 1)

+𝑥(𝑙)
𝑇

𝑃 (𝑙) 𝑥 (𝑙)]

+ 𝐸 {𝑥(𝑇)
𝑇

[𝑄 (𝑇) − 𝑃 (𝑇)] 𝑥 (𝑇)}

= inf
𝑢(𝑙−1)

𝐸 {𝑥(𝑙 − 1)
𝑇

× [𝑄 (𝑙 − 1) + 𝐴(𝑙 − 1)
𝑇

𝑃 (𝑙) 𝐴 (𝑙 − 1)

+𝐶(𝑙 − 1)
𝑇

𝑃 (𝑙) 𝐶 (𝑙 − 1)] 𝑥 (𝑙 − 1)

+ 2𝑥(𝑙 − 1)
𝑇

× [𝐵(𝑙 − 1)
𝑇

𝑃 (𝑙) 𝐴 (𝑙 − 1)

+𝐷(𝑙 − 1)
𝑇

𝑃 (𝑙) 𝐶 (𝑙 − 1)] 𝑢 (𝑙 − 1)

+ 𝑢(𝑙 − 1)
𝑇

× [𝑅 (𝑙 − 1) + 𝐵(𝑙 − 1)
𝑇

𝑃 (𝑙) 𝐵 (𝑙 − 1)

+𝐷(𝑙 − 1)
𝑇

𝑃 (𝑙)𝐷 (𝑙 − 1)] 𝑢 (𝑙 − 1)} .

(53)
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Lemma 4.3 of [23] provides necessary and sufficient condi-
tions for the finiteness of 𝑉𝑙−1[𝑥(𝑙 − 1)]:

𝑃 (𝑙 − 1) = 𝐴(𝑙 − 1)
𝑇

𝑃 (𝑙) 𝐴 (𝑙 − 1) + 𝐶(𝑙 − 1)
𝑇

𝑃 (𝑙) 𝐶 (𝑙 − 1)

+ 𝑄 (𝑙 − 1) − 𝐻(𝑙 − 1)
𝑇

𝐺(𝑙 − 1)
†

𝐻(𝑙 − 1) ,

𝐻 (𝑙 − 1) = 𝐵(𝑙 − 1)
𝑇

𝑃 (𝑙) 𝐴 (𝑙 − 1)

+ 𝐷(𝑙 − 1)
𝑇

𝑃 (𝑙) 𝐶 (𝑙 − 1) ,

𝐺 (𝑙 − 1) = 𝑅 (𝑙 − 1) + 𝐵(𝑙 − 1)
𝑇

𝑃 (𝑙) 𝐵 (𝑙 − 1)

+ 𝐷(𝑙 − 1)
𝑇

𝑃 (𝑙)𝐷 (𝑙 − 1) ≥ 0,

𝐺 (𝑙 − 1) 𝐺(𝑙 − 1)
†

𝐻(𝑙 − 1) − 𝐻 (𝑙 − 1) = 0.

(54)

Moreover,

𝑉
𝑙−1

[𝑥 (𝑙 − 1)] − 𝐸 {𝑥(𝑇)
𝑇

[𝑄 (𝑇) − 𝑃 (𝑇)] 𝑥 (𝑇)}

= 𝑥(𝑙)
𝑇

𝑃 (𝑙) 𝑥 (𝑙) .

(55)

The above proves the necessity part via mathematical induc-
tion.
Sufficiency.From the proof ofTheorem 8, ifGDRE (10) admits
a solution 𝑃(𝑡) and 𝜆, Problem 1 is not only well-posed, but
also attainable. The proof of this theorem is complete.

5. Other Equivalent Conditions

In this section, we present some other equivalent conditions
for Problem 1.

Theorem 16. For the constrained LQ Problem 1, the following
are equivalent:

(i) Problem 1 is well-posed.

(ii) Problem 1 is attainable.

(iii) The LMIs (41)-(42) are feasible.

(iv) The GDRE (10) is solvable.

Furthermore, when any one of the above conditions is satisfied,
Problem 1 is attainable by

𝑢 (𝑡) = [𝑅 (𝑡) + 𝐵(𝑡)
𝑇

𝑃 (𝑡 + 1) 𝐵 (𝑡) + 𝐷(𝑡)
𝑇

𝑃 (𝑡 + 1)𝐷 (𝑡)]
†

⋅ [𝐵(𝑡)
𝑇

𝑃 (𝑡 + 1)𝐴 (𝑡) + 𝐷(𝑡)
𝑇

𝑃 (𝑡 + 1) 𝐶 (𝑡)] 𝑥 (𝑡) ,

(56)

where 𝑃(𝑡), 𝑡 ∈ {𝑡
0
, 𝑡
0
+1, . . . , 𝑇−1}, are solutions to the GDRE

(10).

Proof. Applying Theorems 12–15, (i) ⇔ (iii) ⇔ (iv). (ii) ⇒

(iv) is shown by Theorem 8. The rest is to prove (iv) ⇒ (ii)

and (56). Let 𝑃(𝑡), 𝑡 ∈ {𝑡
0
, 𝑡
0
+ 1, . . . , 𝑇 − 1}, solve the GDRE

(10). In view of
𝑇−1

∑

𝑡=𝑡0

[𝑥(𝑡 + 1)
𝑇

𝑃 (𝑡 + 1) 𝑥 (𝑡 + 1) − 𝑥(𝑡)
𝑇

𝑃 (𝑡) 𝑥 (𝑡)]

= 𝐸 [𝑥(𝑇)
𝑇

𝑃 (𝑇) 𝑥 (𝑇) − 𝑥
𝑇

0
𝑃 (𝑡
0
) 𝑥
0
] ,

(57)

a completion of squares yields

𝐽 (𝑡
0
, 𝑥
0
; 𝑢 (𝑡
0
) , 𝑢 (𝑡

0
+ 1) , . . . , 𝑢 (𝑇 − 1))

= 𝐸{

𝑇−1

∑

𝑡=𝑡0

[𝑢 (𝑡) + 𝐺(𝑡)
†

𝐻(𝑡) 𝑥 (𝑡)]
𝑇

× 𝐺 (𝑡) [𝑢 (𝑡) + 𝐺(𝑡)
−1

𝐻(𝑡) 𝑥 (𝑡)] }

+ 𝐸 {𝑥(𝑇)
𝑇

[𝑄 (𝑇) − 𝑃 (𝑇)] 𝑥 (𝑇) + 𝑥
𝑇

0
𝑃 (𝑡
0
) 𝑥
0
} ,

(58)

which shows

𝑉 (𝑥
0
) = 𝐸 {𝑥(𝑇)

𝑇

[𝑄 (𝑇) − 𝑃 (𝑇)] 𝑥 (𝑇) + 𝑥
𝑇

0
𝑃 (𝑡
0
) 𝑥
0
} ,

𝑢
∗

(𝑡) = −𝐺(𝑡)
†

𝐻(𝑡) 𝑥 (𝑡) , 𝑡 ∈ {𝑡
0
, 𝑡
0
+ 1, . . . , 𝑇 − 1} .

(59)

Finally, we present a general expression for the optimal
control set based on the solution to GDRE (10).

Theorem 17. Assume that the GDRE (10) admits a solution.
Then the set of all optimal controls is determined by

𝑢(𝑡)
[𝑌(𝑡),𝑍(𝑡)]

= − [𝐺(𝑡)
†

𝐻(𝑡) + 𝑌 (𝑡) − 𝐺(𝑡)
†

𝐺 (𝑡) 𝑌 (𝑡)] 𝑥 (𝑡)

+ 𝑍 (𝑡) − 𝐺(𝑡)
†

𝐺 (𝑡) 𝑍 (𝑡) ,

(60)

where 𝑌(𝑡) ∈ 𝑅
𝑚×𝑛 and 𝑍(𝑡) ∈ 𝑅

𝑚 are arbitrary random
variables defined on the probability space (Ω,F,P).Moreover,
the optimal cost value is uniquely given by

𝑉 (𝑥
0
) = 𝑥
𝑇

0
𝑃 (𝑡
0
) 𝑥
0
− 𝑐𝜆, (61)

where 𝑃(𝑡), 𝑡 ∈ {𝑡
0
, 𝑡
0
+ 1, . . . , 𝑇 − 1}, and 𝜆 are the solution to

the GDRE (10).

Proof. This theorem can be proved by repeating the same
procedure as in Theorem 5.1 of [23].

6. Conclusion

In this paper, we have investigated a class of indefinite
stochastic LQ control problems with second moment con-
straints on the terminal state. By the matrix Lagrange
theorem, we have established a new GDRE (10) associated
with the constrained optimization Problem 1. In addition, by
introducing LMIs (41)-(42), we show that the well-posedness
and the attainability of Problem 1, the feasibility of the LMIs
(41)-(42), and the solvability of GDRE (10) are equivalent to
each other.
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An effective agency mode is the key to solve incentive problems in Chinese student loan system. Principal-agent frameworks are
considered in which two principals share one common agent that is performing one single task but each prefers the different
aspect of the task.Three models are built and decision mechanisms are given.The studies show that the three modes have different
effects. Exclusive dealing mode is not good for long-term effect because sometimes it guides agent ignoring repayment. If effort
proportionality coefficient and observability are both unchanged, principals all prefer common agency, but independent contracting
mode may be more efficient in reality because not only the total outputs under that mode are larger than those under cooperation
one, but also preferring independent contracting mode can stimulate the bank participating in the game.

1. Introduction

An effective management structure is a necessary condition
for the student loans operation. Different countries have
different structures of loan management system, such as
bank, state agency, and other types of organization. In China,
the student loans are operated by the most basic level agency
called county-student financial assistance center which is
regulated by government, and the funds are provided by
policy bank. In this structure, one agent faces two or more
principals; namely, various principals share one common
agent. In these situations, conflicts typically arise among
principals when the agent uses its time and effort to different
principals; moreover, the agent’s moral hazard and adverse
selection problems can make the conflicts complicated. Usu-
ally, incentives must be provided to induce optimal perfor-
mance when the agent’s effort or his ability is unobservable,
but the incentives provided by different principals could affect
each other, which can decide how to use its time and effort
alternatively by the agent.

Traditional principal-agent theory has offeredmany tech-
niques dealing with optimal performance in principal-agent
problems; some new techniques dealing with optimization

problems in ambiguity environment are discussed by a study
group [1–4], and backward stochastic differential equations
are used in their important works in this field to deal with
more complex problems [5–8]. In our study, multiprincipals
sharing one agent which was called common agent and
how to select an optimal agent mode are the core. Different
principals sharing a common agent were first developed in
the seminal paper of Bernheim and Whinston [9, 10]. In
their studies, different principals simultaneously and inde-
pendently influence a common agent. While complete and
incomplete information were both contained in the studies,
they show that implementation is always efficient and that
noncooperative behavior induces an efficient action choice if
and only if collusion among the principals would implement
the first-best action at the first-best level of cost. They also
investigate the existence of equilibria, the distribution of
net rewards among principals, the characteristics of actions
chosen in inefficient equilibria, and potential institutional
remedies for welfare losses induced in noncooperative behav-
ior. Subsequently, the studies about common agency are
blooming so that more andmore scholars focus on incentives
in common agency, among which Martimort’s series of
work [11–17] forms a study framework of multiprincipals;
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others also contribute to characteristics of common agency
game equilibrium [18–22]. Some researchers are interested in
designing incentive mechanism [14, 16, 23] and pay attention
to agent facingmultitasks [24, 25], and others paymore atten-
tion to the cooperation and competition among multiprin-
cipals [24, 26, 27]. In the field of application, in addition to
common sales agency problems, financial and insurancemar-
ket, tax competition, and auction, researchers focus on mul-
tiprincipals problems of regulation or organizational design
[12, 13, 28–31].

In Chinese current student loan system, the government
is not only the regulator, but also a principal, who designs
the management structure and selects the bank which takes
part in the student loan system. So in this current paper,
we consider a principal-agent framework, in which the
model has multiple principals (basic level government and
policy bank) and one single agent (staff of county-student
financial assistance center) performing one single task, but
the two principals have different preference in the same task’s
different aspects. From the government’s point of view, the
objective of the loan policy is to achieve the maximum of
social welfare. The government hopes that students, as many
as possible, from families with financial difficulties could be
able to obtain loans to solve education problem. In the long
run, the government’s concern should not be the number of
students who obtain loans but the students’ repayment in
order to facilitate the repeated game and obtain the long-
term cooperation with banks. But in reality, the government
often pays more attention to the short-term effect, which
is manifested as its excessive emphasis on the quantity of
students accepted by the agent, but does not pay enough
attention to the effort of agent urging borrowers’ repayment.
In otherwords, the government prefers the agent payingmore
effort to handlingmore loan contracts. On the contrary, from
the bank’s point of view, more loan agreements often mean
more benefits along with more risks; the bank pays more
attention to the repayment of those students, so the agent’s
effort to urge the borrowers to repay on time is the key to
the bank. In other words, the bank’s preference is the effort
to urge students to repay the loans. Resolving the conflicts
of different preferences of principals is the key to guarantee
the effective implementation of the student loans policy. In
our hypothesis, the task’s two aspects are regarded as two
alternative tasks because the agent must reduce the effort and
time in one aspect when he wants to take another aspect
seriously. So incentive contracts offered by principals are the
key to solve the conflict and meanwhile maximize their own
profit.

InMezzetti’smodel [27], the single agent performs related
tasks for different principals who are horizontally differ-
entiated and each principal requires that a task should be
performed. The equilibrium under cooperation between two
principals, exclusive dealing, and independent contracting
are discussed in Mezzetti’s article. Firstly, the principals offer
the common agent an incentive contract that maximizes
their joint payoff under cooperation. Secondly, each principal
chooses an incentive contract noncooperatively and cannot
contract on the agent’s output for the other principal under

independent contracting. Thirdly, each principal makes con-
tract with a different, but ex ante identical, agent under exclu-
sive dealing. In our paper, ideas are borrowed from Mezzetti
[27] to discuss the incentive contracts offered by government
and bank (principals) to county-student financial assistance
center staff (agent) and help the principals having different
preferences select effective agency mode. In any kind of
agency mode, the agent will select the optimal effort level
to maximize his expected utility when his effort or ability is
unobservable.

2. Major Assumptions and
Variable Declaration

(1) Two principals 𝑖 (𝑖 = 1, 2; 1 is the government; 2 is the
bank) contract with a common agent (county-student
financial assistance center staff) to perform the
student-loan-management task. Government prefers
the agent paying more effort to handling more loan
contracts; the bank prefers more the agent’s efforts
to urge students’ repayment. The principals are all
risk neutral whose expected utility is equal to their
expected return. The agent is risk averse: his utility
function has the characteristics of constantly absolute
risk aversion and 𝜌 = −𝑢

󸀠󸀠

/𝑢
󸀠

> 0 is the parameter of
risk aversion degree.

(2) Principal’s utility function is V
𝑖
; the agent’s corre-

sponding utility function is 𝑢
1
, 𝑢
2
; reservation wage

𝜔
𝑖
> 0, 𝜔

2
> 𝜔
1
> 0, means the agent’s opportunity

income obtaining from the bank is higher than that
from the government.

(3) The effort level 𝑎
1
, 𝑎
2
, agent working for different

principals’ preference, is unobservable. Let 𝑘
𝑖

>

0 be the proportionality coefficient between agent’s
effort and his output for two principals. 𝜃

𝑖
is private

information of the agent and as a random variable,
normally distributed in [0, 𝜎

2

𝑖
]: variance 𝜎

2

1
< 𝜎
2

2

means the bank’s preference is more difficult than
government’s preference to be completed. Thus, the
agent’s output on principals’ task is 𝜋

𝑖
= 𝑘
𝑖
𝑎
𝑖
+ 𝜃
𝑖
.

(4) Let 𝛼
𝑖
and 𝛽

𝑖
be the flat fee and the incentive

coefficient, respectively, that each principal pays to the
agent. The principals offer incentives contracts to the
agent, and the agent’s payoff is

𝑠 (𝜋
𝑖
) = 𝛼
𝑖
+ 𝛽
𝑖
𝜋
𝑖
, (0 ≤ 𝛽

𝑖
≤ 1) . (1)

(5) The common agent’s effort cost in different tasks is
alternative; let 𝑡 be the alternative coefficient; 𝑡 = 1

means the maximum alternative. The cost function is
𝐶(𝑎
1
, 𝑎
2
) = 𝑎

2

1
/2 + 𝑎

2

2
/2 − 𝑡𝑎

1
𝑎
2
, 0 ≤ 𝑡 ≤ 1. The cost

function in exclusive dealing mode is 𝐶(𝑎
𝑖
) = 𝑎
2

𝑖
/2.

3. Exclusive Dealing Mode

Under exclusive dealing mode, the optimal incentive con-
tracts offered by two principals exclusively are similar to
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different principals selecting different agents and offering his
agent exclusive contract, which is a model containing the
single principal and single agent.Thus, the agent’s real income
is

𝜔
𝑖
= 𝑠 (𝜋

𝑖
) − 𝑐 (𝑎

𝑖
) = 𝛼
𝑖
+ 𝛽
𝑖
𝑘
𝑖
(𝑎
𝑖
+ 𝜃) −

𝑎
2

𝑖

2
, (2)

and the agent’s certainty equivalence wealth (CEW) is

𝜔
𝑖
= 𝐸𝜔
𝑖
−

𝜌𝛽
2

𝑖
𝜎
2

𝑖

2
= 𝛼
𝑖
+ 𝛽
𝑖
𝑘
𝑖
𝑎
𝑖
−

𝑎
2

𝑖

2
−

𝜌𝛽
2

𝑖
𝜎
2

𝑖

2
. (3)

Under exclusive dealing incentive contract, each agent,
using his reservation wage as a benchmark, performs his task
maximizing his own certainty equivalence wealth.

The agent’s incentive compatibility constraint (IC) is

max
𝑎𝑖

(𝛼
𝑖
+ 𝛽
𝑖
𝑘
𝑖
𝑎
𝑖
−

𝑎
2

𝑖

2
−

𝜌𝛽
2

𝑖
𝜎
2

𝑖

2
) , (4)

and the agent’s individual rationality constraint (IR) is

𝛼
𝑖
+ 𝛽
𝑖
𝑘
𝑖
𝑎
𝑖
−

𝑎
2

𝑖

2
−

𝜌𝛽
2

𝑖
𝜎
2

𝑖

2
≥ 𝜔
𝑖
. (5)

Each risk-neutral principal’s expected utility, equal to his
expected return, is

𝐸V
𝑖
[𝜋
𝑖
− 𝑠 (𝜋

𝑖
)] = V

𝑖
{𝐸 [𝜋
𝑖
− 𝑠 (𝜋

𝑖
)]}

= V
𝑖
[−𝛼
𝑖
+ (1 − 𝛽

𝑖
) 𝑘
𝑖
𝑎
𝑖
]

= −𝛼
𝑖
+ (1 − 𝛽

𝑖
) 𝑘
𝑖
𝑎
𝑖
,

(6)

and each principal will select the optimal incentive
scheme (𝛼

𝑖
, 𝛽
𝑖
), to maximize his own expected income.

The model is
max
𝛼𝑖 ,𝛽𝑖

[−𝛼
𝑖
+ (1 − 𝛽

𝑖
) 𝑘
𝑖
𝑎
𝑖
]

s.t. (IR) 𝛼
𝑖
+ 𝛽
𝑖
𝑘
𝑖
𝑎
𝑖
−

𝑎
2

𝑖

2
−

𝜌𝛽
2

𝑖
𝜎
2

𝑖

2
≥ 𝜔
𝑖

(IC)max
𝑎𝑖

𝐶𝐸
𝐴

= 𝜔
𝑖
= (𝛼
𝑖
+ 𝛽
𝑖
𝑘
𝑖
𝑎
𝑖
−

𝑎
2

𝑖

2
−

𝜌𝛽
2

𝑖
𝜎
2

𝑖

2
) .

(7)

Under each optimal incentive scheme (𝛼
𝑖
, 𝛽
𝑖
), the agent’s

IC should ensuremaximizing his CEW,𝜔
𝑖
, and the first-order

condition is
𝜕𝜔
𝑖

𝜕𝑎
𝑖

= 𝛽
𝑖
𝑘
𝑖
− 𝑎
𝑖
= 0, thus, 𝑎

𝑖
= 𝛽
𝑖
𝑘
𝑖
. (8)

We denote by 𝛽
∗

𝐸
, 𝑎
∗

𝐸𝑖
, 𝛼
∗

𝐸
(subscript E on behalf of the

exclusive dealing situation) the second-best solution when
feeding IC, IR, and formula (8) to objective function. The
second-best solution is

𝛽
∗

𝐸
=

𝑘
2

𝑖

𝑘
2

𝑖
+ 𝜌𝜎
2

𝑖

, 𝑎
∗

𝐸𝑖
=

𝑘
3

𝑖

𝑘
2

𝑖
+ 𝜌𝜎
2

𝑖

,

𝛼
∗

𝐸
= 𝜔
𝑖
+

𝜌𝜎
2

𝑖
𝑘
4

𝑖
+ 𝑘
6

− 2𝑘
9

2(𝑘
2

𝑖
+ 𝜌𝜎
2

𝑖
)
2

.

(9)

Proposition 1. Under exclusive dealing mode, the decision
mechanism of principal is to determine the second-optimal
incentive coefficient which satisfies the following:

𝛽
∗

𝐸𝑖
=

𝑘
2

𝑖

𝑘
2

𝑖
+ 𝜌𝜎
2

𝑖

. (10)

In order to obtain the agent’s optimal response

𝑎
∗

𝐸𝑖
=

𝑘
3

𝑖

𝑘
2

𝑖
+ 𝜌𝜎
2

𝑖

. (11)

The incentive coefficient was determined by the agent’s
risk aversion degree, variances, and proportionality coeffi-
cient.

4. Independent Contracting Mode

Under independent contractingmode, each principal designs
incentive contract to common agent noncooperativelymean-
while maximizing his own profit:

𝑠 (𝜋
𝑖
) = 𝛼
𝑖
+ 𝛽
𝑖
𝜋
𝑖
, (0 ≤ 𝛽

𝑖
≤ 1) , (12)

and the agent’s effort costs in two principals’ preference are
correlative. In two principals’ separate incentive mechanism,
the agent’s response selects the optimal effort level to adapt to
the incentive contracts; meanwhile its IC should ensure that
its separate real income is not less than the separate 𝜔

𝑖
, and

the IR should ensure maximizing agent’s own total CEW:

𝐶𝐸
𝐴

= 𝛼
1
+ 𝛼
2
+ 𝛽
1
𝑘
1
𝑎
1
+ 𝛽
2
𝑘
2
𝑎
2
−

𝜌𝛽
𝑇

Σ𝛽

2
− 𝐶 (𝑎

1
, 𝑎
2
) .

(13)

Principals will determine their separate optimal incentive
scheme (𝛼

𝑖
, 𝛽
𝑖
), and their maximization problems can be

written as follows:
max
𝛼𝑖 ,𝛽𝑖

[−𝛼
𝑖
+ (1 − 𝛽

𝑖
) 𝑘
𝑖
𝑎
𝑖
]

s.t. (IR) 𝛼
𝑖
+ 𝛽
𝑖
𝑘
𝑖
𝑎
𝑖
−

𝜌𝛽
2

𝑖
𝜎
2

𝑖

2
− 𝐶 (𝑎

1
, 𝑎
2
) ≥ 𝜔
𝑖

(IC)max
𝑎1 ,𝑎2

𝐶𝐸
𝐴

= 𝛼
1
+ 𝛼
2
+ 𝛽
1
𝑘
1
𝑎
1
+ 𝛽
2
𝑘
2
𝑎
2

−
𝜌𝛽
𝑇

Σ𝛽

2
− 𝐶 (𝑎

1
, 𝑎
2
)

(14)

and the results of calculating the partial derivative of CEW
about 𝑎

1
, 𝑎
2
are

𝜕𝐶𝐸
𝐴

𝜕𝑎
1

= 𝛽
1
𝑘
1
− 𝑎
1
+ 𝑡𝑎
2

𝜕𝐶𝐸
𝐴

𝜕𝑎
2

= 𝛽
2
𝑘
2
− 𝑎
2
+ 𝑡𝑎
1
,

𝑎
1
=

𝛽
1
𝑘
1
+ 𝑡𝛽
2
𝑘
2

1 − 𝑡2

𝑎
2
=

𝛽
2
𝑘
2
+ 𝑡𝛽
1
𝑘
1

1 − 𝑡2
.

(15)



4 Mathematical Problems in Engineering

Feed 𝑎
1
, 𝑎
2
into IC, and then get results as follows:

𝛼
1
= 𝜔
1
− 𝛽
1
𝑘
1
𝑎
1
+

𝜌𝛽
2

1
𝜎
2

1

2
+

𝑎
2

1

2
+

𝑎
2

2

2
− 𝑡𝑎
1
𝑎
2
,

𝛼
2
= 𝜔
2
− 𝛽
2
𝑘
2
𝑎
2
+

𝜌𝛽
2

2
𝜎
2

2

2
+

𝑎
2

1

2
+

𝑎
2

2

2
− 𝑡𝑎
1
𝑎
2
.

(16)

Feed 𝛼
𝑖
into two principals’ separate objective function

(subscript I on behalf of the independent contracting situa-
tion):

max V
𝐼1

= −𝜔
1
−

𝜌𝛽
2

1
𝜎
2

1

2
−

𝑎
2

1

2
−

𝑎
2

2

2
+ 𝑡𝑎
1
𝑎
2
+ 𝑘
1
𝑎
1

=−𝜔
1
−

𝜌𝛽
2

1
𝜎
2

1

2
− ((𝛽

2

1
𝑘
1
+ 𝛽
2

2
𝑘
2

2
) + 2𝑡 (𝛽

1
𝑘
1
+ 𝛽
2
𝑘
2
)

−2𝑘
1
(𝛽
1
𝑘
1
+ 𝑡𝛽
2
𝑘
2
) ) (2 (1 − 𝑡

2

))
−1

,

max V
𝐼2

= −𝜔
2
−

𝜌𝛽
2

2
𝜎
2

2

2
−

𝑎
2

1

2
−

𝑎
2

2

2
+ 𝑡𝑎
1
𝑎
2
+ 𝑘
2
𝑎
2

=−𝜔
2
−

𝜌𝛽
2

2
𝜎
2

2

2
− ((𝛽

2

1
𝑘
1
+ 𝛽
2

2
𝑘
2

2
) + 2𝑡 (𝛽

1
𝑘
1
+ 𝛽
2
𝑘
2
)

−2𝑘
2
(𝛽
2
𝑘
2
+ 𝑡𝛽
1
𝑘
1
) ) (2 (1 − 𝑡

2

))
−1

.

(17)

Calculate the partial derivative of the previous two for-
mulas about 𝛽

1
, 𝛽
2
. We have

𝛽
1
=

𝑘
2

1
− 𝑡𝑘
1
𝑘
2
𝛽
2

𝜌𝜎
2

1
(1 − 𝑡2) + 𝑘

2

1

,

𝛽
2
=

𝑘
2

2
− 𝑡𝑘
1
𝑘
2
𝛽
1

𝜌𝜎
2

2
(1 − 𝑡2) + 𝑘

2

2

.

(18)

We denote by 𝛽
∗

𝐼1
, 𝛽
∗

𝐼2
the second-best solutions under

independent contracting mode of simultaneous equations
(15) and (18). Thus,

𝛽
∗

𝐼1
=

𝜌𝜎
2

2
(1 − 𝑡

2

) 𝑘
2

1
+ 𝑘
2

1
𝑘
2

2
− 𝑡𝑘
1
𝑘
3

2

[𝜌𝜎
2

1
(1 − 𝑡2) + 𝑘

2

1
] [𝜌𝜎
2

2
(1 − 𝑡2) + 𝑘

2

2
] − 𝑡2𝑘

2

1
𝑘
2

2

,

𝛽
∗

𝐼2
=

𝜌𝜎
2

1
(1 − 𝑡

2

) 𝑘
2

2
+ 𝑘
2

1
𝑘
2

2
− 𝑡𝑘
2
𝑘
3

1

[𝜌𝜎
2

1
(1 − 𝑡2) + 𝑘

2

1
] [𝜌𝜎
2

2
(1 − 𝑡2) + 𝑘

2

2
] − 𝑡2𝑘

2

1
𝑘
2

2

,

𝑎
∗

𝐼1
=

𝜌 [𝜎
2

2
𝑘
3

1
+ 𝑡𝜎
2

1
𝑘
3

2
] + 𝑘
3

1
𝑘
2

2

[𝜌𝜎
2

1
(1 − 𝑡2) + 𝑘

2

1
] [𝜌𝜎
2

2
(1 − 𝑡2) + 𝑘

2

2
] − 𝑡2𝑘

2

1
𝑘
2

2

,

𝑎
∗

𝐼2
=

𝜌 [𝜎
2

1
𝑘
3

2
+ 𝑡𝜎
2

2
𝑘
3

1
] + 𝑘
3

2
𝑘
2

1

[𝜌𝜎
2

1
(1 − 𝑡2) + 𝑘

2

1
] [𝜌𝜎
2

2
(1 − 𝑡2) + 𝑘

2

2
] − 𝑡2𝑘

2

1
𝑘
2

2

.

(19)

Proposition 2. Under independent contracting mode, the
different incentive coefficients given by different principal are
as follows:

𝛽
∗

𝐼1
=

𝜌𝜎
2

2
(1 − 𝑡

2

) 𝑘
2

1
+ 𝑘
2

1
𝑘
2

2
− 𝑡𝑘
1
𝑘
3

2

[𝜌𝜎
2

1
(1 − 𝑡2) + 𝑘

2

1
] [𝜌𝜎
2

2
(1 − 𝑡2) + 𝑘

2

2
] − 𝑡2𝑘

2

1
𝑘
2

2

,

𝛽
∗

𝐼2
=

𝜌𝜎
2

1
(1 − 𝑡

2

) 𝑘
2

2
+ 𝑘
2

1
𝑘
2

2
− 𝑡𝑘
2
𝑘
3

1

[𝜌𝜎
2

1
(1 − 𝑡2) + 𝑘

2

1
] [𝜌𝜎
2

2
(1 − 𝑡2) + 𝑘

2

2
] − 𝑡2𝑘

2

1
𝑘
2

2

,

(20)

which are determined jointly by the agent’s risk aversion
degree, variances, alternative coefficient, and proportionality
coefficient. The best corresponding responses of agent are

𝑎
∗

𝐼1
=

𝜌 [𝜎
2

2
𝑘
3

1
+ 𝑡𝜎
2

1
𝑘
3

2
] + 𝑘
3

1
𝑘
2

2

[𝜌𝜎
2

1
(1 − 𝑡2) + 𝑘

2

1
] [𝜌𝜎
2

2
(1 − 𝑡2) + 𝑘

2

2
] − 𝑡2𝑘

2

1
𝑘
2

2

,

𝑎
∗

𝐼2
=

𝜌 [𝜎
2

1
𝑘
3

2
+ 𝑡𝜎
2

2
𝑘
3

1
] + 𝑘
3

2
𝑘
2

1

[𝜌𝜎
2

1
(1 − 𝑡2) + 𝑘

2

1
] [𝜌𝜎
2

2
(1 − 𝑡2) + 𝑘

2

2
] − 𝑡2𝑘

2

1
𝑘
2

2

.

(21)

5. Cooperation between Principals Mode

Under cooperation mode, two principals offer common
incentive contract (𝛼, 𝛽) to common agent in order to
maximize their joint profit:

𝑠 (𝜋
1
, 𝜋
2
) = 𝛼 + 𝛽 (𝜋

1
+ 𝜋
2
) , (0 ≤ 𝛽 ≤ 1) , (22)

and the total expected return of two principals is

𝐸 (V
1
+ V
2
) = 𝐸V [𝜋

1
+ 𝜋
2
− 𝑠 (𝜋

1
+ 𝜋
2
)]

= V {𝐸 [𝜋
1
+ 𝜋
2
− 𝑠 (𝜋

1
+ 𝜋
2
)]}

= V [−𝛼 + (1 − 𝛽) (𝑘
1
𝑎
1
+ 𝑘
2
𝑎
2
)]

= −𝛼 + (1 − 𝛽) (𝑘
1
𝑎
1
+ 𝑘
2
𝑎
2
) .

(23)

Under cooperation, we consider that (𝛼, 𝛽) must satisfy
IC with the sum of reservation wages of two principals’
separate contract in order for incentive agent to perform the
tasks, and IR is to maximize agent’s CEW:

𝐶𝐸
𝐴

= 𝛼 + 𝛽 (𝑘
1
𝑎
1
+ 𝑘
2
𝑎
2
) −

𝜌𝛽
2

(𝜎
2

1
+ 𝜎
2

2
)

2
− 𝐶 (𝑎

1
, 𝑎
2
) .

(24)

We can write principals’ maximization problem as fol-
lows:
max
𝛼,𝛽

[−𝛼 + (1 − 𝛽) (𝑘
1
𝑎
1
+ 𝑘
2
𝑎
2
)]

s.t. (IR) 𝛼 + 𝛽𝑘
1
𝑎
1
+ 𝛽𝑘
2
𝑎
2
−

𝜌𝛽
2

(𝜎
2

1
+ 𝜎
2

2
)

2

− 𝐶 (𝑎
1
, 𝑎
2
) ≥ 𝜔
1
+ 𝜔
2

(IC)max
𝑎1 ,𝑎2

𝐶𝐸
𝐴

= 𝛼 + 𝛽𝑘
1
𝑎
1
+ 𝛽𝑘
2
𝑎
2

−

𝜌𝛽
2

(𝜎
2

1
+ 𝜎
2

2
)

2
− 𝐶 (𝑎

1
, 𝑎
2
) .

(25)
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The calculation process and results are as follows:
𝜕𝐶𝐸
𝐴

𝜕𝑎
1

= 𝑘
1
𝛽 − 𝑎
1
+ 𝑡𝑎
2

𝜕𝐶𝐸
𝐴

𝜕𝑎
2

= 𝑘
2
𝛽 − 𝑎
2
+ 𝑡𝑎
1
,

𝑎
1
=

(𝑘
1
+ 𝑡𝑘
2
) 𝛽

1 − 𝑡2
𝑎
2
=

(𝑘
2
+ 𝑡𝑘
1
) 𝛽

1 − 𝑡2
.

(26)

Feed 𝑎
1
, 𝑎
2
into IC separately. Then,

𝛼 = 𝜔
1
+ 𝜔
2
− (

2𝑘
2

1
+ 3𝑡𝑘
1
𝑘
2
+ 2𝑘
2

2

2 (1 − 𝑡2)
−

𝜌 (𝜎
2

1
+ 𝜎
2

2
)

2
)𝛽
2

.

(27)

Feed 𝛼 into principals’ joint objective function (subscript
C on behalf of the cooperation situation):

max
𝛼,𝛽

V
𝐶
= − (𝜔

1
+ 𝜔
2
)

+ (

(𝑘
2

1
+ 𝑡𝑘
1
𝑘
2
+ 𝑘
2

2
)

2 (1 − 𝑡2)
−

𝜌 (𝜎
2

1
+ 𝜎
2

2
)

2
)𝛽
2

+

(𝑘
2

1
+ 𝑘
2

2
+ 2𝑡𝑘
1
𝑘
2
)

1 − 𝑡2
𝛽,

(28)

and the first-order condition is

(
𝑘
2

1
+ 𝑡𝑘
1
𝑘
2
+ 𝑘
2

2

1 − 𝑡2
− 𝜌 (𝜎

2

1
+ 𝜎
2

2
))𝛽 +

𝑘
2

1
+ 𝑘
2

2
+ 2𝑡𝑘
1
𝑘
2

1 − 𝑡2
= 0.

(29)

We denote by 𝛽
∗

𝐶
the second-best solutions under coop-

eration; the results are

𝛽
∗

𝐶
=

𝑘
2

1
+ 𝑘
2

2
+ 2𝑡𝑘
1
𝑘
2

(𝑘
2

1
+ 𝑡𝑘
1
𝑘
2
+ 𝑘
2

2
) − 𝜌 (𝜎

2

1
+ 𝜎
2

2
) (1 − 𝑡2)

,

𝑎
∗

𝐶1
=

(𝑘
1
+ 𝑡𝑘
2
) (𝑘
2

1
+ 𝑘
2

2
+ 2𝑡𝑘
1
𝑘
2
)

(1 − 𝑡2) [𝜌 (𝜎
2

1
+ 𝜎
2

2
) (1 − 𝑡2) − (𝑘

2

1
+ 𝑡𝑘
1
𝑘
2
+ 𝑘
2

2
)]

𝑎
∗

𝐶2
=

(𝑘
2
+ 𝑡𝑘
1
) (𝑘
2

1
+ 𝑘
2

2
+ 2𝑡𝑘
1
𝑘
2
)

(1 − 𝑡2) [𝜌 (𝜎
2

1
+ 𝜎
2

2
) (1 − 𝑡2) − (𝑘

2

1
+ 𝑡𝑘
1
𝑘
2
+ 𝑘
2

2
)]

.

(30)

Proposition 3. Under cooperation contracting mode, the joint
decision mechanism of two principals is

𝛽
∗

𝐶
=

𝑘
2

1
+ 𝑘
2

2
+ 2𝑡𝑘
1
𝑘
2

(𝑘
2

1
+ 𝑡𝑘
1
𝑘
2
+ 𝑘
2

2
) − 𝜌 (𝜎

2

1
+ 𝜎
2

2
) (1 − 𝑡2)

. (31)

The best effort responses of common agent to different
tasks are

𝑎
∗

𝐶1
=

(𝑘
1
+ 𝑡𝑘
2
) (𝑘
2

1
+ 𝑘
2

2
+ 2𝑡𝑘
1
𝑘
2
)

(1 − 𝑡2) [𝜌 (𝜎
2

1
+ 𝜎
2

2
) (1 − 𝑡2) − (𝑘

2

1
+ 𝑡𝑘
1
𝑘
2
+ 𝑘
2

2
)]

,

𝑎
∗

𝐶2
=

(𝑘
2
+ 𝑡𝑘
1
) (𝑘
2

1
+ 𝑘
2

2
+ 2𝑡𝑘
1
𝑘
2
)

(1 − 𝑡2) [𝜌 (𝜎
2

1
+ 𝜎
2

2
) (1 − 𝑡2) − (𝑘

2

1
+ 𝑡𝑘
1
𝑘
2
+ 𝑘
2

2
)]

.

(32)

6. Numerical Analysis and Discussions

Numerical analysis is discussed in this section in order to
illustrate the decision mechanism of both sides and compare
the incentive efficient further in different modes.

Firstly, parameters are set according to their ranges in the
models’ assumption as follows:

𝜎
2

1
= 0.1, 𝜎

2

2
= 1, 𝜌 = 0.005,

𝑘
1
= 1, 𝑘

2
3, 𝜔

1
= 1, 𝜔

2
= 2.

(33)

The results of 𝛽, 𝑎, 𝜋 in three modes are compared when
𝑡 = 0.1, 0.3, 0.5, 0.8; the influence of alternative coefficient on
principals and the agent’s decision mechanism are illustrated
in Table 1.

Under the condition of unchangeable alternative coeffi-
cient the following can be drawn from Table 1.

(1) Under exclusive dealingmode,𝛽∗
𝐸1

> 𝛽
∗

𝐸2
; namely, the

principals offer greater incentive on the easy super-
vision task. Under independent contracting mode,
𝛽
∗

𝐼2
> 𝛽
∗

𝐼1
; namely, the principal offers greater

incentive on the difficult supervision task.
(2) Both principals prefer to select common agency who

only considers the influence of alternative coefficient
and𝛽

∗

𝐶
> 𝛽
∗

𝐼1
and 𝛽

∗

𝐶
> 𝛽
∗

𝐸1
mean principal with easy

supervision task prefers to select cooperation mode,
but principal with difficult supervision task will select
cooperation mode when alternative coefficient (𝑡) is
small; otherwise independent mode will be selected
when 𝑡 gradually becomes larger and 𝜋

∗

𝐼(sum) >

𝜋
∗

𝐶(sum) and 𝜋
∗

𝐼(sum) > 𝜋
∗

𝐸(sum) mean that total outputs
under independent mode are always larger than
those under the other two modes. The changing
of alternative coefficient (𝑡) will not influence the
incentive under exclusive dealing mode, but it can
influence that in common agency.That is to say, under
cooperation mode, the incentive will change in the
samedirectionwith alternative coefficient. Andunder
independent contracting mode, it will change still in
the same direction on the difficult supervision task
but change inversely on the easy one.

(3) Consider that 𝑎∗
𝐸2

> 𝑎
∗

𝐸1
, 𝑎
∗

𝐼2
> 𝑎
∗

𝐼1
, and 𝑎

∗

𝐶2
> 𝑎
∗

𝐶1

mean that agent makes more efforts on the difficult
supervision task under any agency mode because of
the principal’s different incentives in different mode.
When other conditions remain unchanged, the effort
becomes greater, while the alternative coefficient gets
larger.When other conditions remain unchanged, the
efforts on two tasks both become greater gradually
with the difficult supervision task’s variance getting
larger under cooperation mode. On the contrary, the
effort becomes smaller under independent mode.

Secondly, parameters are set according to its range in
models assumption as follows:

𝜔
1
= 1, 𝜔

2
= 2, 𝜌 = 0.005,

𝑡 = 0.3, 𝑘
1
= 1, 𝑘

2
= 3.

(34)
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Table 1: Different outputs under three modes when alternative coefficient (𝑡) changes.

Common agency Exclusive dealing
Independent contracting mode Cooperation mode

𝑡 0.1 0.3 0.5 0.8 𝑡 0.1 0.3 0.5 0.8
𝛽
∗

𝐼1
0.7072 0.1103 −0.6658 −3.8863

𝛽
∗

𝐶
1.0296 1.0830 1.1308 1.1937 𝛽

∗

𝐸1
1.0000

𝛽
∗

𝐼2
0.9759 0.9885 1.1105 2.0358 𝛽

∗

𝐸2
0.9994

𝑎
∗

𝐼1
1.2345 2.0407 3.9995 24.9909 𝑎

∗

𝐶1
1.3520 2.2613 3.7694 11.2741 𝑎

∗

𝐸1
1.0000

𝑎
∗

𝐼2
3.7017 6.1193 11.9940 74.9600 𝑎

∗

𝐶2
3.2241 3.9275 5.2771 12.6004 𝑎

∗

𝐸2
2.9983

𝜋
∗

𝐼1
1.2345 2.0407 3.9995 24.9909

𝜋
∗

𝐶
4.5761 6.1887 9.0465 23.8745 𝜋

∗

𝐸1
1.0000

𝜋
∗

𝐼2
11.1051 18.3580 35.9821 224.8799 𝜋

∗

𝐸2
8.9950

𝜋
∗

𝐼 (sum) 12.3396 20.3987 39.9821 249.8708 𝜋
∗

𝐶(sum) 4.5761 6.1887 9.0465 23.8745 𝜋
∗

𝐸 (sum) 9.9950

Table 2: Different outputs under three modes when one variance (𝜎2
2
) changes.

Common agency Exclusive dealing
Independent contracting mode Cooperation mode

𝜎
2

2
100 36 9 𝜎

2

2
100 36 9 𝜎

2

2
100 36 9

𝛽
∗

𝐼1
0.1490 0.1231 0.1116

𝛽
∗

𝐶
1.1317 1.1010 1.0885 𝛽

∗

𝐸1
0.9804 0.9804 0.9804

𝛽
∗

𝐼2
0.9356 0.9681 0.9826 𝛽

∗

𝐸2
0.9474 0.9804 0.9950

𝑎
∗

𝐼1
2.0226 2.0295 2.0325 𝑎

∗

𝐶1
2.3629 2.2987 2.2726 𝑎

∗

𝐸1
0.9804 0.9804 0.9804

𝑎
∗

𝐼2
5.8193 6.0027 6.0840 𝑎

∗

𝐶2
4.1040 3.9925 3.9472 𝑎

∗

𝐸2
2.8421 2.9412 2.9851

𝜋
∗

𝐼1
2.0226 2.0295 2.0325

𝜋
∗

𝐶
6.4669 6.2912 6.2199 𝜋

∗

𝐸1
0.9804 0.9804 0.9804

𝜋
∗

𝐼2
17.4578 18.0082 18.2520 𝜋

∗

𝐸2
8.5263 8.8235 8.9552

𝜋
∗

𝐼 (sum) 19.4804 20.0377 20.2845 𝜋
∗

𝐶(sum) 6.4669 6.2912 6.2199 𝜋
∗

𝐸 (sum) 9.5067 9.8039 9.9366

The results of 𝛽, 𝑎, 𝜋 in three modes are compared when

𝜎
2

1
= 4, 𝜎

2

2
= 100, 𝑘

2

1
𝜎
2

2
> 𝑘
2

2
𝜎
2

1
,

𝜎
2

1
= 4, 𝜎

2

2
= 36, 𝑘

2

1
𝜎
2

2
= 𝑘
2

2
𝜎
2

1
,

𝜎
2

1
= 4, 𝜎

2

2
= 9, 𝑘

2

1
𝜎
2

2
< 𝑘
2

2
𝜎
2

1
.

(35)

The influence of variance on principals and the agent’s
decision mechanism are illustrated in Table 2.

According to Table 2, if the influence of task’s variance
was considered merely it can be obtained as follows.

𝛽
∗

𝐶
> 𝛽
∗

𝐼𝑖
and 𝛽

∗

𝐶
> 𝛽
∗

𝐸𝑖
mean that principals always

prefer cooperation mode. When other conditions remain
unchanged, with the difficult supervision task’s variance
getting larger, the incentive offered by the principal whose
task is difficult to be supervised becomes smaller gradually
under exclusive dealingmode.The incentive becomes greater
on the easy supervision task, but it becomes smaller on
the difficult supervision task under independent contracting
mode, while the incentive becomes greater gradually under
cooperation mode.

Through the above analysis, implications and suggestions
on how to select the effective agency mode can be got as
follows.

(1) Because the government’s ultimate goal is to realize
the maximum social welfare, it should think highly
of urging borrowers’ repayment rather than merely
consider the quantity of loan contracts just like
what they do in reality. Because the principal whose

task is easy to be supervised prefers to offer more
incentives under exclusive dealing mode, selecting
exclusive dealing mode will lead the staff to pay more
attention to sign more loan contracts but ignore to
urge repayment, which is not good for the long-term
effect of national student financial aid policy.

(2) If the effort proportionality coefficient and vari-
ance are both unchanged, both principals prefer to
select common agency, but each principal’s prefer-
ence degree of selecting cooperation or independent
mode is different according to the difficulty degree
of the task. We consider that the government prefers
cooperation mode, although under it the total output
is less than that under independent mode. In order
to stimulate the bank participating in the policy, the
government should select the mode that the bank
prefers.

(3) The study shows that although principals offer dif-
ferent incentives in different modes, the agent always
offers more effort to the difficult supervision task
under any mode, which not only gives enlightenment
that the student loans repayment is the key in financial
aid policy, but also warns that incentive mechanism
designing absolutely according to the study results
may lead us to ignore the quantity of student loans
which is the base to realize national policy objective.
So in the practical mechanism designing, the govern-
ment that is not just a principal but more importantly
a regulator should comprehensively consider more
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affecting factors such as total output, bank and staff ’s
enthusiasm, and the continuity of policy.

7. Conclusions

The research on multiprincipals and how to select effective
agencymode in the student loan system has been carried out.
Three models of cooperation between principals, exclusive
dealing, and independent contracting have been investigated
and discussed. Decision mechanisms are given and efficien-
cies among threemodes are contrasted by numerical analysis.
Under the condition of unchangeable alternative coefficient
three main conclusions were obtained and discussed. Under
exclusive dealing mode and independent contracting mode
the principals offer greater incentive on the easy supervision
task and difficult supervision task, respectively. And both
principals prefer to select common agency who only con-
siders the influence of alternative coefficient. Considering
the influence of task’s variance principals always prefer
cooperation mode. The studies show that exclusive dealing
mode is not good for student financial aid policy’s long-
term effect because it sometimes guides agent ignoring
repayment; if effort proportionality coefficient and observ-
ability are both unchanged, both principals prefer common
agency, but independent contracting mode may be more
efficient in reality because not only the total outputs under
it are larger than those under cooperation mode, but also
preferring independent contractingmode could stimulate the
bank participating in the game; the conclusion that agent
always offers more efforts to the difficult supervision task
under any mode warns that incentive mechanisms designing
absolutely according to the study results may lead us to
ignore loans quantity, so the government, which is not just a
principal but more importantly a regulator, should consider
comprehensively more affecting factors in practice.
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We study the impact of stochastic noise and connection weight matrices uncertainty on global exponential stability of hybrid BAM
neural networks with reaction diffusion terms. Given globally exponentially stable hybrid BAM neural networks with reaction
diffusion terms, the question to be addressed here is how much stochastic noise and connection weights matrices uncertainty the
neural networks can tolerate while maintaining global exponential stability.The upper threshold of stochastic noise and connection
weights matrices uncertainty is defined by using the transcendental equations. We find that the perturbed hybrid BAM neural
networks with reaction diffusion terms preserve global exponential stability if the intensity of both stochastic noise and connection
weights matrices uncertainty is smaller than the defined upper threshold. A numerical example is also provided to illustrate the
theoretical conclusion.

1. Introduction

The bidirectional associative memory (BAM) neural net-
works were first introduced by Kosko in which the neurons
in one layer are fully interconnected to the neurons in the
other layer, while there are no interconnection among the
neurons in the same layers [1–3]. The BAM neural net-
works widely have applications in pattern recognition, robot,
signal processing, associative memory, solving optimization
problems, and automatic control engineering. For most
successful applications of BAM neural networks, the stability
analysis on BAM neural networks is usually a prerequisite.
The exponential stability and periodic oscillatory solution
of BAM neural networks with delays were studied by Cao
et al. [4, 5]. Moreover, in BAM neural networks, diffusion
phenomena can hardly be avoided when electrons are mov-
ing in asymmetric electromagnetic fields. The BAM neural
networks with reaction diffusion terms described by partial
differential equations were investigated by many authors [6–
11]. Sometimes, it is necessary to assess the parameters of the

neural network that may experience abrupt changes caused
by certain phenomena such as component failure or repair,
change of subsystem interconnection, and environmental
disturbance. The continuous-time Markov chains have been
used to model these parameter jumps [12–14]. These neural
networks with Markov chains are usually called hybrid
neural networks. The almost surely exponential stability,
moment exponential stability, and stabilization of hybrid
neural networks were also researched; see, for example, [15–
17]. By making use of impulsive control, Zhu and Cao [18]
considered the stability of hybrid neural networks withmixed
delay.

For neural networks with stochastic noise, the system
is usually described by stochastic differential equations. The
stability of stochastic neural networks with delay or reaction
diffusion terms was extensively analyzed by using the Itô
formula and the linear matrix inequality (LMI) methods [18–
22]. As is well known, stochastic noise is often the sources
of instability and may destabilize the stable neural networks
[23]. For stable hybrid BAM neural networks with reaction
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diffusion terms, it is interesting to determine howmuch noise
the stochastic neural networks can tolerate whilemaintaining
global exponential stability.

Moreover, the connection weights of neurons depend
on certain resistance and capacitance values which include
uncertainty. The robust stability about parameter matrices
uncertainty in neural networks was investigated by many
authors [24, 25]. If the uncertainty in connection weights
matrices is too large, the neural networks may be unstable.
Therefore, for stable hybrid BAM neural networks with
reaction diffusion terms, it is also interesting to determine
how much connection weights matrices uncertainty the
neural networks can also tolerate while maintaining global
exponential stability.

In this paper, we will study the impact of stochastic noise
and connection weight matrices uncertainty of hybrid BAM
neural networks with reaction diffusion terms. We give the
upper threshold of stochastic noise and connection weights
matrices uncertainty defined by using the transcendental
equations. We find that the perturbed hybrid BAM neural
networks with reaction diffusion terms preserve global expo-
nential stability if the intensity of both stochastic noise and
connection weights matrices uncertainty is smaller than the
defined upper threshold.

The remainder of this paper is organized as follows. Some
preliminaries are given in Section 2. Section 3 discusses the
impact of the stochastic noise on global exponential stability
of these neural networks. Section 4 discusses the impact of
the connection weight matrices uncertainty and stochastic
noise on global exponential stability of these neural networks.
Finally, an example with numerical simulation is given to
illustrate the effectiveness of the obtained results in Section 5.

2. Preliminaries

Throughout this paper, unless otherwise specified, let
(Ω,F, {F

𝑡
}
𝑡≥0
,P) be complete probability space with a

filtration {F
𝑡
}
𝑡≥0

satisfying the usual conditions (i.e., it is
increasing and right continuous while F

0
contains all P-

null sets). Let 𝑊(𝑡) be a scalar Brownian motion (Wiener
process) defined on the probability space. Let 𝐴𝑇 denote the
transpose of 𝐴. If 𝐴 is a matrix, its operator norm is denoted
by ‖𝐴‖ = sup{|𝐴𝑥| : |𝑥| = 1}, where | ⋅ | is the Euclidean
norm. Let 𝑟(𝑡), 𝑡 ≥ 0, be a right-continuous Markov chain
on the probability space taking values in a finite state space
S = {1, 2, . . . , 𝑁} with the generator Γ = (𝛾

𝑝𝑞
)
𝑁×𝑁

given by

P {𝑟 (𝑡 + Δ) = 𝑞 | 𝑟 (𝑡) = 𝑝}

= {
𝛾
𝑝𝑞
Δ + 𝑜 (Δ) if 𝑝 ̸= 𝑞

1 + 𝛾
𝑝𝑝
Δ + 𝑜 (Δ) if 𝑝 = 𝑞,

(1)

where Δ > 0. Here, 𝛾
𝑝𝑞
> 0 is the transition rate from 𝑝 to 𝑞

if 𝑝 ̸= 𝑞 while

𝛾
𝑝𝑝
= −∑

𝑞 ̸=𝑝

𝛾
𝑝𝑞
. (2)

We assume that the Markov chain 𝑟(⋅) is independent of the
Brownian motion 𝑊(⋅). It is well known that almost every
sample path of 𝑟(⋅) is a right-continuous step function with
finite number of simple jumps in any finite subinterval of
R
+
:= [0, +∞).
In this paper, we will consider the following hybrid BAM

neural networks with reaction diffusion terms:

𝜕𝑢̃
𝑖
(𝑡, 𝑥)

𝜕𝑡
=

𝑙

∑

𝑘=1

𝜕

𝜕𝑥
𝑘

(𝐷
𝑖𝑘
(𝑟 (𝑡))

𝜕𝑢̃
𝑖
(𝑡, 𝑥)

𝜕𝑥
𝑘

)

− 𝑎
𝑖
(𝑟 (𝑡)) 𝑢̃

𝑖
(𝑡, 𝑥)

+

𝑛

∑

𝑗=1

𝑐
𝑗𝑖
(𝑟 (𝑡)) 𝑓

𝑗
(Ṽ
𝑗
(𝑡, 𝑥)) + 𝐼

𝑖
,

𝜕Ṽ
𝑗
(𝑡, 𝑥)

𝜕𝑡
=

𝑙

∑

𝑘=1

𝜕

𝜕𝑥
𝑘

(𝐷
∗

𝑗𝑘
(𝑟 (𝑡))

𝜕Ṽ
𝑗
(𝑡, 𝑥)

𝜕𝑥
𝑘

)

− 𝑏
𝑗
(𝑟 (𝑡)) Ṽ

𝑗
(𝑡, 𝑥)

+

𝑚

∑

𝑖=1

𝑒
𝑖𝑗
(𝑟 (𝑡)) 𝑔

𝑖
(𝑢̃
𝑖
(𝑡, 𝑥)) + 𝐽

𝑗
,

(3)

where 𝑖 = 1, 2, . . . , 𝑚, 𝑗 = 1, 2, . . . , 𝑛, 𝑡 ≥ 𝑡
0
≥ 0,

𝑡
0
∈ R
+
, and the initial value 𝑟(𝑡

0
) = 𝑖

0
∈ S. Consider

𝑥 = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑙
) ∈ Ω

0
⊂ R𝑙; Ω

0
is a compact set with

smooth boundary 𝜕Ω
0
in space R𝑙, and 0 < mesΩ

0
<

+∞. 𝑢̃(𝑡, 𝑥) = (𝑢̃
1
(𝑡, 𝑥), . . . , 𝑢̃

𝑚
(𝑡, 𝑥)) ∈ R𝑚 and Ṽ(𝑡, 𝑥) =

(Ṽ
1
(𝑡, 𝑥), . . . , Ṽ

𝑛
(𝑡, 𝑥)) ∈ R𝑛 𝑢̃

𝑖
(𝑡, 𝑥), Ṽ

𝑗
(𝑡, 𝑥), are the state of

the 𝑖th neurons and the 𝑗th neurons at times 𝑡 and in space
𝑥, respectively. 𝑓

𝑗
and 𝑔

𝑖
denote the signal functions on the

𝑗th neurons and the 𝑖th neurons at times 𝑡 and in space 𝑥,
respectively. 𝐼

𝑖
and 𝐽

𝑗
denote the external input on the 𝑖th

neurons and the 𝑗th neurons, respectively. 𝑎
𝑖
(𝑟(𝑡)) > 0 and

𝑏
𝑗
(𝑟(𝑡)) > 0 denote the rates with which the 𝑖th neurons and

the 𝑗th neurons will reset its potential to the resting state in
isolation when disconnected from the networks and external
inputs, respectively. 𝑐

𝑗𝑖
(𝑟(𝑡)) and 𝑒

𝑖𝑗
(𝑟(𝑡)) denote the strength

of the 𝑗th neurons on the 𝑖th neurons and the 𝑖th neurons on
the 𝑗th neurons, respectively. Smooth functions 𝐷

𝑖𝑘
(𝑟(𝑡)) :=

𝐷
𝑖𝑘
(𝑟(𝑡), 𝑥, 𝑢) ≥ 0 and 𝐷

∗

𝑗𝑘
(𝑟(𝑡)) := 𝐷

∗

𝑗𝑘
(𝑟(𝑡), 𝑥, 𝑢) ≥ 0

correspond to the transmission diffusion operator along the
𝑖th neurons and the 𝑗th neurons, respectively.

The initial conditions and boundary conditions are given
by

𝑢̃
𝑖
(𝑡
0
, 𝑥) = 𝜙

𝑖
(𝑥) , 𝑥 ∈ Ω

0
, 𝑡
0
∈ R
+
, 𝑖 = 1, 2, . . . , 𝑚,

Ṽ
𝑗
(𝑡
0
, 𝑥) = 𝜓

𝑗
(𝑥) , 𝑥 ∈ Ω

0
, 𝑡
0
∈ R
+
, 𝑗 = 1, 2, . . . , 𝑛,

𝜕𝑢̃
𝑖
(𝑡, 𝑥)

𝜕 ⃗𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜕Ω0

= (
𝜕𝑢̃
𝑖
(𝑡, 𝑥)

𝜕𝑥
1

, . . . ,
𝜕𝑢̃
𝑖
(𝑡, 𝑥)

𝜕𝑥
𝑙

)

𝑇

= 0,
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(𝑡, 𝑥) ∈ [𝑡
0
, +∞) × 𝜕Ω

0
, 𝑖 = 1, 2, . . . , 𝑚,

𝜕Ṽ
𝑗
(𝑡, 𝑥)

𝜕 ⃗𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜕Ω0

= (

𝜕Ṽ
𝑗
(𝑡, 𝑥)

𝜕𝑥
1

, . . . ,

𝜕Ṽ
𝑗
(𝑡, 𝑥)

𝜕𝑥
𝑙

)

𝑇

= 0,

(𝑡, 𝑥) ∈ [𝑡
0
, +∞) × 𝜕Ω

0
, 𝑗 = 1, 2, . . . , 𝑛.

(4)

The neuron activation functions 𝑓 and 𝑔 are global
Lipschitz continuous; that is, there exist constants𝐾 > 0 and
𝐿 > 0, such that

󵄨󵄨󵄨󵄨󵄨
𝑓 (Ṽ) − 𝑓 (Ṽ∗)

󵄨󵄨󵄨󵄨󵄨
≤ 𝐾

󵄨󵄨󵄨󵄨Ṽ − Ṽ∗󵄨󵄨󵄨󵄨 , ∀Ṽ, Ṽ∗ ∈ R
𝑛

󵄨󵄨󵄨󵄨𝑔 (𝑢̃) − 𝑔 (𝑢̃
∗

)
󵄨󵄨󵄨󵄨 ≤ 𝐿

󵄨󵄨󵄨󵄨𝑢̃ − 𝑢̃
∗󵄨󵄨󵄨󵄨 , ∀𝑢̃, 𝑢̃

∗

∈ R
𝑚

.

(5)

Then, the neural networks (3) have a unique state
(𝑢̃(𝑡, 𝑥; 𝑡

0
, 𝜙(𝑥)) and Ṽ(𝑡, 𝑥; 𝑡

0
, 𝜓(𝑥))) for any initial values

(𝜙(𝑥), 𝜓(𝑥)) (see [26, 27]).
In addition, we assume that the neural networks (3) have

an equilibrium point 𝑢∗ = (𝑢
∗

1
, . . . , 𝑢

∗

𝑚
) ∈ R𝑚, V∗ =

(V∗
1
, . . . , V∗

𝑛
) ∈ R𝑛.

Let𝑢(𝑡, 𝑥) = 𝑢̃(𝑡, 𝑥)−𝑢∗, V(𝑡, 𝑥) = Ṽ(𝑡, 𝑥)−V∗, 𝑓(V(𝑡, 𝑥)) =
𝑓(V(𝑡, 𝑥) + V∗) − 𝑓(V∗), 𝑔(𝑢(𝑡, 𝑥)) = 𝑔(𝑢(𝑡, 𝑥) + 𝑢

∗

) −

𝑓(𝑢
∗

), 𝐷
𝑖𝑘
(𝑟(𝑡)) = 𝐷

𝑖𝑘
(𝑟(𝑡), 𝑥, 𝑢(𝑡, 𝑥) + 𝑢

∗

), and 𝐷∗
𝑖𝑘
(𝑟(𝑡)) =

𝐷
∗

𝑖𝑘
(𝑟(𝑡), 𝑥, V(𝑡, 𝑥) + V∗), and then (3) can be rewritten as

𝜕𝑢
𝑖
(𝑡, 𝑥)

𝜕𝑡
=

𝑙

∑

𝑘=1

𝜕

𝜕𝑥
𝑘

(𝐷
𝑖𝑘
(𝑟 (𝑡))

𝜕𝑢
𝑖
(𝑡, 𝑥)

𝜕𝑥
𝑘

)

− 𝑎
𝑖
(𝑟 (𝑡)) 𝑢

𝑖
(𝑡, 𝑥)

+

𝑛

∑

𝑗=1

𝑐
𝑗𝑖
(𝑟 (𝑡)) 𝑓

𝑗
(V
𝑗
(𝑡, 𝑥))

𝜕V
𝑗
(𝑡, 𝑥)

𝜕𝑡
=

𝑙

∑

𝑘=1

𝜕

𝜕𝑥
𝑘

(𝐷
∗

𝑗𝑘
(𝑟 (𝑡))

𝜕V
𝑗
(𝑡, 𝑥)

𝜕𝑥
𝑘

)

− 𝑏
𝑗
(𝑟 (𝑡)) V

𝑗
(𝑡, 𝑥)

+

𝑚

∑

𝑖=1

𝑒
𝑖𝑗
(𝑟 (𝑡)) 𝑔

𝑖
(𝑢
𝑖
(𝑡, 𝑥)) .

(6)

The initial conditions and boundary conditions are given
by

𝑢
𝑖
(𝑡
0
, 𝑥) = 𝜙

𝑖
(𝑥) = 𝜙

𝑖
(𝑥) − 𝑢

∗

𝑖
,

𝑥 ∈ Ω
0
, 𝑡
0
∈ R
+
, 𝑖 = 1, 2, . . . , 𝑚,

V
𝑗
(𝑡
0
, 𝑥) = 𝜓

𝑗
(𝑥) = 𝜓

𝑗
(𝑥) − V∗

𝑗
,

𝑥 ∈ Ω
0
, 𝑡
0
∈ R
+
, 𝑗 = 1, 2, . . . , 𝑛,

𝜕𝑢
𝑖
(𝑡, 𝑥)

𝜕 ⃗𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜕Ω0

= (
𝜕𝑢
𝑖
(𝑡, 𝑥)

𝜕𝑥
1

, . . . ,
𝜕𝑢
𝑖
(𝑡, 𝑥)

𝜕𝑥
𝑙

)

𝑇

= 0,

(𝑡, 𝑥) ∈ [𝑡
0
, +∞) × 𝜕Ω

0
, 𝑖 = 1, 2, . . . , 𝑚,

𝜕V
𝑗
(𝑡, 𝑥)

𝜕 ⃗𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜕Ω0

= (

𝜕V
𝑗
(𝑡, 𝑥)

𝜕𝑥
1

, . . . ,

𝜕V
𝑗
(𝑡, 𝑥)

𝜕𝑥
𝑙

)

𝑇

= 0,

(𝑡, 𝑥) ∈ [𝑡
0
, +∞) × 𝜕Ω

0
, 𝑗 = 1, 2, . . . , 𝑛.

(7)

Hence, the origin is an equilibrium point of (6). The stability
of the equilibrium point of (3) is equivalent to the stability of
the origin of the state space of (6).

From (5), we give the assumption about activations
functions 𝑓 and 𝑔.

Assumption (H1). The neuron activation functions 𝑓 and 𝑔
are global Lipschitz continuous; that is, there exist constants
𝐾 > 0 and 𝐿 > 0, such that
󵄨󵄨󵄨󵄨𝑓 (V) − 𝑓 (V

∗

)
󵄨󵄨󵄨󵄨 ≤ 𝐾

󵄨󵄨󵄨󵄨V − V∗󵄨󵄨󵄨󵄨 , ∀V, V∗ ∈ R
𝑛

, 𝑓 (0) = 0,

󵄨󵄨󵄨󵄨𝑔 (𝑢) − 𝑔 (𝑢
∗

)
󵄨󵄨󵄨󵄨 ≤ 𝐿

󵄨󵄨󵄨󵄨𝑢 − 𝑢
∗󵄨󵄨󵄨󵄨 , ∀𝑢, 𝑢

∗

∈ R
𝑚

, 𝑔 (0) = 0.

(8)

We consider the following function vector space:

𝑈 =

{{

{{

{

V (𝑡, 𝑥) : [𝑡
0
, +∞) × Ω

0
󳨀→ R𝑛,

V (𝑡, 𝑥) is continuous on 𝑡 and
twice continuous differentiable on 𝑥.

(9)

For every pair of (V, 𝑧) in𝑈 and every given 𝑡 ∈ R
+
, define

inner product for V and 𝑧 with

⟨V, 𝑧⟩ = ∫
Ω0

(V (⋅, 𝑥))𝑇𝑧 (⋅, 𝑥) 𝑑𝑥 ∈ R
+
. (10)

Obviously, it satisfies inner product axiom, and the norm can
be deduced by

‖V (⋅, 𝑥)‖
2
= √⟨V (⋅, 𝑥) , V (⋅, 𝑥)⟩

= √∫
Ω0

|V (⋅, 𝑥)|2𝑑𝑥 = √
𝑛

∑

𝑖=1

∫
Ω0

󵄨󵄨󵄨󵄨V𝑖 (⋅, 𝑥)
󵄨󵄨󵄨󵄨

2

𝑑𝑥.

(11)

Definition 1. The neural networks (6) are said to be global
exponentially stable if for any 𝜙, 𝜓, there exist 𝛼 > 0 and
𝛽 > 0, such that

󵄩󵄩󵄩󵄩𝑢(𝑡, 𝑥; 𝑡0, 𝜙)
󵄩󵄩󵄩󵄩

2

2
+
󵄩󵄩󵄩󵄩V(𝑡, 𝑥; 𝑡0, 𝜓)

󵄩󵄩󵄩󵄩

2

2

≤ 𝛼 (
󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩

2

2
+
󵄩󵄩󵄩󵄩𝜓
󵄩󵄩󵄩󵄩

2

2
) exp (−𝛽 (𝑡 − 𝑡

0
)) , ∀𝑡 ≥ 𝑡

0
.

(12)

For the purpose of simplicity, we rewrite (6) as follows:

𝜕𝑢

𝜕𝑡
= ∇ ⋅ (𝐷 (𝑟 (𝑡)) ∘ ∇𝑢) − 𝐴 (𝑟 (𝑡)) 𝑢 (𝑡, 𝑥)

+ 𝐶 (𝑟 (𝑡)) 𝑓 (V (𝑡, 𝑥))

𝜕V
𝜕𝑡

= ∇ ⋅ (𝐷
∗

(𝑟 (𝑡)) ∘ ∇V) − 𝐵 (𝑟 (𝑡)) V (𝑡, 𝑥)

+ 𝐸 (𝑟 (𝑡)) 𝑔 (𝑢 (𝑡, 𝑥)) .

(13)
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The initial conditions and boundary conditions are given
by

𝑢 (𝑡
0
, 𝑥) = 𝜙 (𝑥) = 𝜙 (𝑥) − 𝑢

∗

, 𝑥 ∈ Ω
0
, 𝑡
0
∈ R
+
,

V (𝑡
0
, 𝑥) = 𝜓 (𝑥) = 𝜓 (𝑥) − V∗, 𝑥 ∈ Ω

0
, 𝑡
0
∈ R
+
,

𝜕𝑢 (𝑡, 𝑥)

𝜕 ⃗𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜕Ω0

= (
𝜕𝑢 (𝑡, 𝑥)

𝜕𝑥
1

, . . . ,
𝜕𝑢 (𝑡, 𝑥)

𝜕𝑥
𝑙

)

𝑇

= 0,

(𝑡, 𝑥) ∈ [𝑡
0
, +∞) × 𝜕Ω

0
,

𝜕V (𝑡, 𝑥)
𝜕 ⃗𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜕Ω0

= (
𝜕V (𝑡, 𝑥)
𝜕𝑥
1

, . . . ,
𝜕V (𝑡, 𝑥)
𝜕𝑥
𝑙

)

𝑇

= 0,

(𝑡, 𝑥) ∈ [𝑡
0
, +∞) × 𝜕Ω

0
,

(14)

where

𝐷 (𝑟 (𝑡)) = (𝐷
𝑖𝑘
(𝑟 (𝑡) , 𝑥, 𝑢))

𝑚×𝑙
,

𝐷
∗

(𝑟 (𝑡)) = (𝐷
∗

𝑗𝑘
(𝑟 (𝑡) , 𝑥, V))

𝑛×𝑙

,

𝑢 (𝑡, 𝑥) = (𝑢
1
(𝑡, 𝑥) , . . . , 𝑢

𝑚
(𝑡, 𝑥))

𝑇

,

V (𝑡, 𝑥) = (V
1
(𝑡, 𝑥) , . . . , V

𝑛
(𝑡, 𝑥))

𝑇

,

∇𝑢 = (∇𝑢
1
, . . . , ∇𝑢

𝑚
)
𝑇

, ∇V = (∇V
1
, . . . , ∇V

𝑛
)
𝑇

,

∇𝑢
𝑖
= (

𝜕𝑢
𝑖

𝜕𝑥
1

, . . . ,
𝜕𝑢
𝑖

𝜕𝑥
𝑙

)

𝑇

, ∇V
𝑗
= (

𝜕V
𝑗

𝜕𝑥
1

, . . . ,

𝜕V
𝑗

𝜕𝑥
𝑙

)

𝑇

,

𝐴 (𝑟 (𝑡)) = diag (𝑎
1
(𝑟 (𝑡)) , . . . , 𝑎

𝑚
(𝑟 (𝑡))) ,

𝐵 (𝑟 (𝑡)) = diag (𝑏
1
(𝑟 (𝑡)) , . . . , 𝑏

𝑛
(𝑟 (𝑡))) ,

𝐶 (𝑟 (𝑡)) = (𝑐
𝑗𝑖
(𝑟 (𝑡)))

𝑛×𝑚

,

𝐸 (𝑟 (𝑡)) = (𝑒
𝑖𝑗
(𝑟 (𝑡)))

𝑚×𝑛

,

𝑓 (V) = (𝑓
1
(V
1
) , . . . , 𝑓

𝑛
(V
𝑛
))
𝑇

,

𝑔 (𝑢) = (𝑔
1
(𝑢
1
) , . . . , 𝑔

𝑚
(𝑢
𝑚
))
𝑇

,

(𝐷 (𝑟 (𝑡)) ∘ ∇𝑢) = (𝐷
𝑖𝑘
(𝑟 (𝑡))

𝜕𝑢
𝑖

𝜕𝑥
𝑘

) ,

(𝐷
∗

(𝑟 (𝑡)) ∘ ∇V) = (𝐷∗
𝑗𝑘
(𝑟 (𝑡))

𝜕V
𝑗

𝜕𝑥
𝑘

) .

(15)

Here, ∘ denotes Hadamard product of matrix 𝐷 and ∇𝑢 and
𝐷
∗ and ∇V.

3. Noise Impact on Stability

In this section, we consider the noise-induced neural net-
works (6) described by the stochastic partial differential
equations

d ̄𝑢
𝑖
(𝑡, 𝑥) =

{

{

{

𝑙

∑

𝑘=1

𝜕

𝜕𝑥
𝑘

(𝐷
𝑖𝑘
(𝑟 (𝑡))

𝜕 ̄𝑢
𝑖
(𝑡, 𝑥)

𝜕𝑥
𝑘

)

− 𝑎
𝑖
(𝑟 (𝑡)) ̄𝑢

𝑖
(𝑡, 𝑥)

+

𝑛

∑

𝑗=1

𝑐
𝑗𝑖
(𝑟 (𝑡)) 𝑓

𝑗
( ̄V
𝑗
(𝑡, 𝑥))

}

}

}

d𝑡

+ 𝜎 ̄𝑢
𝑖
(𝑡, 𝑥) d𝑊(𝑡) ,

d ̄V
𝑗
(𝑡, 𝑥) = {

𝑙

∑

𝑘=1

𝜕

𝜕𝑥
𝑘

(𝐷
∗

𝑗𝑘
(𝑟 (𝑡))

𝜕 ̄V
𝑗
(𝑡, 𝑥)

𝜕𝑥
𝑘

)

− 𝑏
𝑗
(𝑟 (𝑡)) ̄V

𝑗
(𝑡, 𝑥)

+

𝑚

∑

𝑖=1

𝑒
𝑖𝑗
(𝑟 (𝑡)) 𝑔

𝑖
( ̄𝑢
𝑖
(𝑡, 𝑥))} d𝑡

+ 𝜎 ̄V
𝑗
(𝑡, 𝑥) d𝑊(𝑡) .

(16)

The initial conditions and boundary conditions are given
by

̄𝑢
𝑖
(𝑡
0
, 𝑥) = 𝜙

𝑖
(𝑥) , 𝑥 ∈ Ω

0
, 𝑡
0
∈ R
+
, 𝑖 = 1, 2, . . . , 𝑚,

̄V
𝑗
(𝑡
0
, 𝑥) = 𝜓

𝑗
(𝑥) , 𝑥 ∈ Ω

0
, 𝑡
0
∈ R
+
, 𝑗 = 1, 2, . . . , 𝑛,

𝜕 ̄𝑢
𝑖
(𝑡, 𝑥)

𝜕 ⃗𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜕Ω0

= (
𝜕 ̄𝑢
𝑖
(𝑡, 𝑥)

𝜕𝑥
1

, . . . ,
𝜕 ̄𝑢
𝑖
(𝑡, 𝑥)

𝜕𝑥
𝑙

)

𝑇

= 0,

(𝑡, 𝑥) ∈ [𝑡
0
, +∞) × 𝜕Ω

0
, 𝑖 = 1, 2, . . . , 𝑚,

𝜕 ̄V
𝑗
(𝑡, 𝑥)

𝜕 ⃗𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜕Ω0

= (

𝜕 ̄V
𝑗
(𝑡, 𝑥)

𝜕𝑥
1

, . . . ,

𝜕 ̄V
𝑗
(𝑡, 𝑥)

𝜕𝑥
𝑙

)

𝑇

= 0,

(𝑡, 𝑥) ∈ [𝑡
0
, +∞) × 𝜕Ω

0
, 𝑗 = 1, 2, . . . , 𝑛,

(17)

where 𝜎 is the noise intensity.
We rewrite (16) as follows:

d ̄𝑢(𝑡, 𝑥) = {∇ ⋅ (𝐷 (𝑟 (𝑡)) ∘ ∇ ̄𝑢) − 𝐴 (𝑟 (𝑡)) ̄𝑢 (𝑡, 𝑥)

+𝐶 (𝑟 (𝑡)) 𝑓 ( ̄V (𝑡, 𝑥))} d𝑡 + 𝜎 ̄𝑢(𝑡, 𝑥) d𝑊(𝑡) ,

d ̄V (𝑡, 𝑥) = {∇ ⋅ (𝐷
∗

(𝑟 (𝑡)) ∘ ∇ ̄V) − 𝐵 (𝑟 (𝑡)) ̄V (𝑡, 𝑥)

+𝐸 (𝑟 (𝑡)) 𝑔 ( ̄𝑢(𝑡, 𝑥))} d𝑡 + 𝜎 ̄V (𝑡, 𝑥) d𝑊(𝑡) .

(18)
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For the globally exponentially stable neural networks (6), we
will characterize how much stochastic noise the neural net-
works (16) can tolerate while maintaining global exponential
stability.

Definition 2. The neural networks (16) are said to be almost
surely globally exponentially stable, if for any 𝜙 and 𝜓 the
Lyapunov exponent

lim sup
𝑡→∞

log (󵄩󵄩󵄩󵄩 ̄𝑢(𝑡, 𝑥; 𝑡0, 𝜙)
󵄩󵄩󵄩󵄩2
+
󵄩󵄩󵄩󵄩 ̄V (𝑡, 𝑥; 𝑡0, 𝜓)

󵄩󵄩󵄩󵄩2
)

𝑡
< 0, a.s.

(19)

Definition 3. The neural networks (16) are said to be mean
square globally exponentially stable, if, for any 𝜙 and 𝜓, the
Lyapunov exponent

lim sup
𝑡→∞

logE {󵄩󵄩󵄩󵄩 ̄𝑢(𝑡, 𝑥; 𝑡0, 𝜙)
󵄩󵄩󵄩󵄩

2

2
+
󵄩󵄩󵄩󵄩 ̄V (𝑡, 𝑥; 𝑡0, 𝜓)

󵄩󵄩󵄩󵄩

2

2
}

𝑡
< 0, (20)

where ( ̄𝑢(𝑡, 𝑥; 𝑡
0
, 𝜙), ̄V(𝑡, 𝑥; 𝑡

0
, 𝜓)) is the state of neural net-

works (16).

From the above definitions, it is clear that the almost
sure global exponential stability of the neural networks (16)
implies the mean square global exponential stability of the
neural networks (16) (see [26, 27]) but not vice versa.

Theorem 4. Under Assumption (H1), the mean square global
exponential stability of neural networks (16) implies the almost
sure global exponential stability of the neural networks (16).

Proof. For any (𝜙(𝑥), 𝜓(𝑥)) ̸≡ (0, 0), we denote the state
( ̄𝑢(𝑡, 𝑥; 𝑡

0
, 𝜙), ̄V(𝑡, 𝑥; 𝑡

0
, 𝜓)) of (16) as ( ̄𝑢(𝑡, 𝑥), ̄V(𝑡, 𝑥)). By

Definition 3, there exist 𝜆 > 0 and 𝐶 > 0, such that

E {‖ ̄𝑢(𝑡, 𝑥)‖
2

2
+ ‖ ̄V (𝑡, 𝑥)‖2

2
}

≤ 𝐶 (
󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩

2

2
+
󵄩󵄩󵄩󵄩𝜓
󵄩󵄩󵄩󵄩

2

2
) 𝑒
−𝜆(𝑡−𝑡0), 𝑡 ≥ 𝑡

0
.

(21)

Let 𝑟(𝑡) = 𝑝 ∈ S. Construct average Lyapunov functional

𝑉 ( ̄𝑢(𝑡, 𝑥) , ̄V (𝑡, 𝑥) , 𝑝)

= ∫
Ω0

| ̄𝑢 (𝑡, 𝑥)|
2d𝑥 + ∫

Ω0

| ̄V (𝑡, 𝑥)|2d𝑥

= ∫
Ω0

𝑚

∑

𝑖=1

̄𝑢
2

𝑖
(𝑡, 𝑥) d𝑥 + ∫

Ω0

𝑛

∑

𝑗=1

̄V2
𝑗
(𝑡, 𝑥) d𝑥.

(22)

Let 𝑛 = 1, 2, . . ., by Itô formula and Assumption (H1), for 𝑡
0
+

𝑛 − 1 ≤ 𝑡 ≤ 𝑡
0
+ 𝑛,

𝑉 ( ̄𝑢(𝑡, 𝑥) , ̄V (𝑡, 𝑥) , 𝑝)

= 𝑉 ( ̄𝑢(𝑡
0
+ 𝑛 − 1, 𝑥) , ̄V (𝑡

0
+ 𝑛 − 1, 𝑥) , 𝑝)

+ ∫

𝑡

𝑡0+𝑛−1

∫
Ω0

2 ̄𝑢
𝑇

(𝑠, 𝑥) [∇ ⋅ (𝐷 (𝑟 (𝑠)) ∘ ∇ ̄𝑢) − 𝐴 (𝑟 (𝑠)) ̄𝑢

+𝐶 (𝑟 (𝑠)) 𝑓 ( ̄V)] d𝑥d𝑠

+ 𝜎
2

∫

𝑡

𝑡0+𝑛−1

∫
Ω0

| ̄𝑢 (𝑠, 𝑥)|
2d𝑥d𝑠

+ ∫

𝑡

𝑡0+𝑛−1

∫
Ω0

2 ̄V𝑇 (𝑠, 𝑥) [∇ ⋅ (𝐷∗ (𝑟 (𝑠)) ∘ ∇ ̄V) − 𝐵 (𝑟 (𝑠)) ̄V

+𝐸 (𝑟 (𝑠)) 𝑔 ( ̄𝑢)] d𝑥d𝑠

+ 𝜎
2

∫

𝑡

𝑡0+𝑛−1

∫
Ω0

| ̄V (𝑠, 𝑥)|2d𝑥d𝑠

+ 2𝜎∫

𝑡

𝑡0+𝑛−1

∫
Ω0

| ̄𝑢 (𝑠, 𝑥)|
2d𝑥d𝑊(𝑠)

+ 2𝜎∫

𝑡

𝑡0+𝑛−1

∫
Ω0

| ̄V (𝑠, 𝑥)|2d𝑥d𝑊(𝑠)

+

𝑁

∑

𝑞=1

𝛾
𝑝𝑞
∫

𝑡

𝑡0+𝑛−1

∫
Ω0

(| ̄𝑢 (𝑠, 𝑥)|
2

+ | ̄V (𝑠, 𝑥)|2) d𝑥d𝑠.

(23)

By boundary condition and Gauss formula, we get

2∫
Ω0

̄𝑢
𝑇

(𝑠, 𝑥) [∇ ⋅ (𝐷 (𝑟 (𝑠)) ∘ ∇ ̄𝑢)] d𝑥

= 2

𝑚

∑

𝑖=1

𝑙

∑

𝑘=1

∫
Ω0

̄𝑢
𝑖

𝜕

𝜕𝑥
𝑘

(𝐷
𝑖𝑘
(𝑟 (𝑠))

𝜕 ̄𝑢
𝑖

𝜕𝑥
𝑘

) d𝑥

= 2

𝑚

∑

𝑖=1

∫
Ω0

∇ ⋅ ( ̄𝑢
𝑖
𝐷
𝑖𝑘
(𝑟 (𝑠))

𝜕 ̄𝑢
𝑖

𝜕𝑥
𝑘

)

𝑙

𝑘=1

d𝑥

− 2

𝑚

∑

𝑖=1

∫
Ω0

(𝐷
𝑖𝑘
(𝑟 (𝑠))

𝜕 ̄𝑢
𝑖

𝜕𝑥
𝑘

)

𝑙

𝑘=1

⋅ ∇ ̄𝑢
𝑖
d𝑥

= 2

𝑚

∑

𝑖=1

∫
𝜕Ω0

( ̄𝑢
𝑖
𝐷
𝑖𝑘
(𝑟 (𝑠))

𝜕 ̄𝑢
𝑖

𝜕𝑥
𝑘

)

𝑙

𝑘=1

d𝑥

− 2

𝑚

∑

𝑖=1

𝑙

∑

𝑘=1

∫
Ω0

𝐷
𝑖𝑘
(𝑟 (𝑠)) (

𝜕 ̄𝑢
𝑖

𝜕𝑥
𝑘

)

2

d𝑥

= −2

𝑚

∑

𝑖=1

𝑙

∑

𝑘=1

∫
Ω0

𝐷
𝑖𝑘
(𝑟 (𝑠)) (

𝜕 ̄𝑢
𝑖

𝜕𝑥
𝑘

)

2

d𝑥,

(24)

2∫
Ω0

̄V𝑇 (𝑠, 𝑥) [∇ ⋅ (𝐷∗ (𝑟 (𝑠)) ∘ ∇ ̄V)] d𝑥

= 2

𝑛

∑

𝑗=1

𝑙

∑

𝑘=1

∫
Ω0

̄V
𝑗

𝜕

𝜕𝑥
𝑘

(𝐷
∗

𝑗𝑘
(𝑟 (𝑠))

𝜕 ̄V
𝑗

𝜕𝑥
𝑘

) d𝑥

= 2

𝑛

∑

𝑗=1

∫
Ω0

∇ ⋅ ( ̄V
𝑗
𝐷
∗

𝑗𝑘
(𝑟 (𝑠))

𝜕 ̄V
𝑗

𝜕𝑥
𝑘

)

𝑙

𝑘=1

d𝑥

− 2

𝑛

∑

𝑗=1

∫
Ω0

(𝐷
∗

𝑗𝑘
(𝑟 (𝑠))

𝜕 ̄V
𝑗

𝜕𝑥
𝑘

)

𝑙

𝑘=1

⋅ ∇ ̄V
𝑗
d𝑥
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= 2

𝑛

∑

𝑗=1

∫
𝜕Ω0

( ̄V
𝑗
𝐷
∗

𝑗𝑘
(𝑟 (𝑠))

𝜕 ̄V
𝑗

𝜕𝑥
𝑘

)

𝑙

𝑘=1

d𝑥

− 2

𝑛

∑

𝑗=1

𝑙

∑

𝑘=1

∫
Ω0

𝐷
∗

𝑗𝑘
(𝑟 (𝑠)) (

𝜕 ̄V
𝑗

𝜕𝑥
𝑘

)

2

d𝑥

= −2

𝑛

∑

𝑗=1

𝑙

∑

𝑘=1

∫
Ω0

𝐷
∗

𝑗𝑘
(𝑟 (𝑠)) (

𝜕 ̄V
𝑗

𝜕𝑥
𝑘

)

2

d𝑥.

(25)

By Hölder’s inequality, we have

∫
Ω0

2 ̄𝑢(𝑡, 𝑥)
𝑇

𝐶 (𝑟 (𝑠)) 𝑓 ( ̄V (𝑡, 𝑥)) d𝑥

≤ max
𝑝∈S

󵄩󵄩󵄩󵄩𝐶 (𝑝)
󵄩󵄩󵄩󵄩 [∫
Ω0

| ̄𝑢 (𝑡, 𝑥)|
2d𝑥 + 𝐾2 ∫

Ω0

| ̄V (𝑡, 𝑥)|2d𝑥] ,

(26)

∫
Ω0

2 ̄V(𝑡, 𝑥)𝑇𝐸 (𝑟 (𝑠)) 𝑔 ( ̄𝑢(𝑡, 𝑥)) d𝑥

≤ max
𝑝∈S

󵄩󵄩󵄩󵄩𝐸 (𝑝)
󵄩󵄩󵄩󵄩 [∫
Ω0

| ̄V (𝑡, 𝑥)|2d𝑥 + 𝐿2 ∫
Ω0

| ̄𝑢 (𝑡, 𝑥)|
2d𝑥] .

(27)

Substituting (24)–(27) into (23), we get

𝑉 ( ̄𝑢(𝑡, 𝑥) , ̄V (𝑡, 𝑥) , 𝑝)

= 𝑉 ( ̄𝑢(𝑡
0
+ 𝑛 − 1, 𝑥) , ̄V (𝑡

0
+ 𝑛 − 1, 𝑥) , 𝑝)

+max
𝑝∈S

[2
󵄩󵄩󵄩󵄩𝐴 (𝑝)

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝐶 (𝑝)

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝐸 (𝑝)

󵄩󵄩󵄩󵄩 𝐿
2

+ 𝜎
2

]

× ∫

𝑡

𝑡0+𝑛−1

∫
Ω0

| ̄𝑢 (𝑠, 𝑥)|
2d𝑥d𝑠

+max
𝑝∈S

[2
󵄩󵄩󵄩󵄩𝐵 (𝑝)

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝐸 (𝑝)

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝐶 (𝑝)

󵄩󵄩󵄩󵄩𝐾
2

+ 𝜎
2

]

× ∫

𝑡

𝑡0+𝑛−1

∫
Ω0

| ̄V (𝑠, 𝑥)|2d𝑥d𝑠

+ 2 |𝜎| ∫

𝑡

𝑡0+𝑛−1

∫
Ω0

(| ̄𝑢 (𝑠, 𝑥)|
2

+ | ̄V (𝑠, 𝑥)|2) d𝑥d𝑊(𝑠) ,

(28)

where we use ∑𝑁
𝑞=1

𝛾
𝑝𝑞
= 0.

From (28), we have

E( sup
𝑡0+𝑛−1≤𝑡≤𝑡0+𝑛

𝑉 ( ̄𝑢(𝑡, 𝑥) , ̄V (𝑡, 𝑥) , 𝑝))

≤ 𝑉 ( ̄𝑢(𝑡
0
+ 𝑛 − 1, 𝑥) , ̄V (𝑡

0
+ 𝑛 − 1, 𝑥) , 𝑝)

+ 𝐶
1
∫

𝑡0+𝑛

𝑡0+𝑛−1

E𝑉 ( ̄𝑢(𝑠, 𝑥) , ̄V (𝑠, 𝑥) , 𝑟 (𝑠)) d𝑠

+ 2 |𝜎|E( sup
𝑡0+𝑛−1≤𝑡≤𝑡0+𝑛

∫

𝑡

𝑡0+𝑛−1

𝑉 ( ̄𝑢(𝑠, 𝑥) , ̄V (𝑠, 𝑥) ,

𝑟 (𝑠)) d𝑊(𝑠) ) ,

(29)

where 𝐶
1
= [2‖𝐴‖+2‖𝐵‖+ ‖𝐶‖+ ‖𝐶‖𝐾

2

+‖𝐸‖+ ‖𝐸‖𝐿
2

+2𝜎
2

]

and ‖𝐴‖ = max
𝑝∈S‖𝐴(𝑝)‖.

On the other hand, by the Burkholder-Davis-Gundy
inequality [27] and 2√𝑎𝑏 ≤ (𝑎/𝜀) + 𝜀𝑏(𝑎 > 0, 𝑏 > 0, 𝜀 > 0),
we have

2 |𝜎|E( sup
𝑡0+𝑛−1≤𝑡≤𝑡0+𝑛

∫

𝑡

𝑡0+𝑛−1

𝑉 ( ̄𝑢(𝑠, 𝑥) , ̄V (𝑠, 𝑥) , 𝑟 (𝑠)) d𝑊(𝑠))

≤ 4√2E(∫
𝑡0+𝑛

𝑡0+𝑛−1

4𝜎
2

𝑉
2

( ̄𝑢 (𝑠, 𝑥) , ̄V (𝑠, 𝑥) , 𝑟 (𝑠)) d𝑠)
1/2

≤ 4√2E( sup
𝑡0+𝑛−1≤𝑡≤𝑡0+𝑛

𝑉 ( ̄𝑢(𝑠, 𝑥) , ̄V (𝑠, 𝑥) , 𝑟 (𝑠))

×∫

𝑡0+𝑛

𝑡0+𝑛−1

4𝜎
2

𝑉 ( ̄𝑢(𝑠, 𝑥) , ̄V (𝑠, 𝑥) , 𝑟 (𝑠)) d𝑠)
1/2

≤
1

2
E( sup
𝑡0+𝑛−1≤𝑡≤𝑡0+𝑛

𝑉 ( ̄𝑢(𝑡, 𝑥) , ̄V (𝑡, 𝑥) , 𝑝))

+ 64𝜎
2

∫

𝑡0+𝑛

𝑡0+𝑛−1

E𝑉 ( ̄𝑢(𝑠, 𝑥) , ̄V (𝑠, 𝑥) , 𝑟 (𝑠)) d𝑠.

(30)

Substituting the above inequality into (29), we get

E( sup
𝑡0+𝑛−1≤𝑡≤𝑡0+𝑛

𝑉 ( ̄𝑢(𝑡, 𝑥) , ̄V (𝑡, 𝑥) , 𝑝))

≤ 2E𝑉 ( ̄𝑢(𝑡
0
+ 𝑛 − 1, 𝑥) , ̄V (𝑡

0
+ 𝑛 − 1, 𝑥) , 𝑝)

+ 2 [𝐶
1
+ 64𝜎

2

] ∫

𝑡0+𝑛

𝑡0+𝑛−1

E𝑉 (𝑠) d𝑠.

(31)

By induction and themean square global exponential stability
of neural networks (16),

E( sup
𝑡0+𝑛−1≤𝑡≤𝑡0+𝑛

𝑉 ( ̄𝑢(𝑡, 𝑥) , ̄V (𝑡, 𝑥) , 𝑝))

≤ 𝐶 (
󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩

2

2
+
󵄩󵄩󵄩󵄩𝜓
󵄩󵄩󵄩󵄩

2

2
) (2 + 2 [𝐶

1
+ 64𝜎

2

]) 𝑒
−𝜆(𝑛−1)

.

(32)

Let 𝜀 ∈ (0, 𝜆), by Chebyshev’s inequality [27], it follows from
(32) that

P{ sup
𝑡0+𝑛−1≤𝑡≤𝑡0+𝑛

𝑉 ( ̄𝑢(𝑡, 𝑥) , ̄V (𝑡, 𝑥) , 𝑝) > 𝑒−(𝜆−𝜀)(𝑛−1)}
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≤ 𝑒
−(𝜆−𝜀)(𝑛−1)

E( sup
𝑡0+𝑛−1≤𝑡≤𝑡0+𝑛

𝑉 ( ̄𝑢(𝑡, 𝑥) , ̄V (𝑡, 𝑥) , 𝑝))

≤ 𝐶 (
󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩

2

2
+
󵄩󵄩󵄩󵄩𝜓
󵄩󵄩󵄩󵄩

2

2
) (2 + 2 [𝐶

1
+ 64𝜎

2

]) 𝑒
−𝜀(𝑛−1)

.

(33)

By Borel-Cantelli Lemma [27], for almost all 𝜔 ∈ Ω,

sup
𝑡0+𝑛−1≤𝑡≤𝑡0+𝑛

2𝑉 ( ̄𝑢(𝑡, 𝑥) , ̄V (𝑡, 𝑥) , 𝑝) ≤ 2𝑒−(𝜆−𝜀)(𝑛−1) (34)

holds for all but finitely many 𝑛. Hence, there exists an 𝑛
0
=

𝑛
0
(𝜔), for all 𝜔 ∈ Ω, excluding a P-null set, for the above

inequality that holds whenever 𝑛 ≥ 𝑛
0
. Consequently, for

almost all 𝜔 ∈ Ω,

log 2𝑉 ( ̄𝑢(𝑡, 𝑥) , ̄V (𝑡, 𝑥) , 𝑝)
𝑡

≤ −
(𝜆 − 𝜀) (𝑛 − 1)

𝑡
0
+ 𝑛 − 1

+
2

𝑡
0
+ 𝑛 − 1

,

(35)

if 𝑡
0
+ 𝑛 − 1 ≤ 𝑡 ≤ 𝑡

0
+ 𝑛. Therefore,

lim sup
𝑡→∞

log (‖ ̄𝑢(𝑡, 𝑥)‖
2
+ ‖ ̄V (𝑡, 𝑥)‖

2
)

𝑡
≤ −

(𝜆 − 𝜀)

2
a.s. (36)

Theorem 5. Let Assumption (H1) hold and the neural net-
works (6) be globally exponentially stable. Then, the neural
networks (16) is mean square globally exponentially stable and
also almost surely globally exponentially stable, if there exist
𝜇
𝑞
> 0, (𝑞 ∈ S) and |𝜎| < ̄𝜎, where ̄𝜎 is a unique positive

solution of the transcendental equation

4 ̄𝜎
2

𝛼𝜇

𝛽
exp

{

{

{

2Δ (𝜇𝐶
2
+max

𝑝∈S∑
𝑁

𝑞=1
𝛾
𝑝𝑞
𝜇
𝑞
)

̆𝜇

}

}

}

+ 2𝛼 exp {−𝛽Δ} = 1,

(37)

Δ >
ln (2𝛼)
𝛽

> 0, (38)

where 𝐶
2
= [2‖𝐴‖ + 2‖𝐵‖ + (1 +𝐾

2

)‖𝐶‖ + (1 + 𝐿
2

)‖𝐸‖ + 2 ̄𝜎
2

],
‖𝐴‖ = max

𝑝∈S ‖𝐴(𝑝)‖, and so forth and 𝜇 = max
𝑝∈S 𝜇𝑝 and

̆𝜇 = min
𝑝∈S 𝜇𝑝.

Proof. For any (𝜙(𝑥), 𝜓(𝑥)), we denote the state
( ̄𝑢(𝑡, 𝑥; 𝑡

0
, 𝜙), ̄V(𝑡, 𝑥; 𝑡

0
, 𝜓)) of (16) as ( ̄𝑢(𝑡, 𝑥), ̄V(𝑡, 𝑥)) and

the state (𝑢(𝑡, 𝑥; 𝑡
0
, 𝜙), V(𝑡, 𝑥; 𝑡

0
, 𝜓)) of (6) as (𝑢(𝑡, 𝑥), V(𝑡, 𝑥)).

From (6) and (18) and stochastic Fubini’s Theorem, we
have

∫
Ω0

(𝑢 (𝑡, 𝑥) − ̄𝑢(𝑡, 𝑥)) d𝑥 + ∫
Ω0

(V (𝑡, 𝑥) − ̄V (𝑡, 𝑥)) d𝑥

= ∫

𝑡

𝑡0

∫
Ω0

∇ ⋅ (𝐷 (𝑟 (𝑠)) ∘ ∇ (𝑢 − ̄𝑢)) d𝑥d𝑠

+ ∫

𝑡

𝑡0

∫
Ω0

[ − 𝐴 (𝑟 (𝑠)) (𝑢 (𝑠, 𝑥) − ̄𝑢(𝑠, 𝑥))

+𝐶 (𝑟 (𝑠)) (𝑓 (V (𝑠, 𝑥)) − 𝑓 ( ̄V (𝑠, 𝑥)))] d𝑥d𝑠

− ∫

𝑡

𝑡0

∫
Ω0

𝜎 ̄𝑢(𝑠, 𝑥) d𝑥d𝑊(𝑠)

+ ∫

𝑡

𝑡0

∫
Ω0

∇ ⋅ (𝐷
∗

(𝑟 (𝑠)) ∘ ∇ (V − ̄V)) d𝑥d𝑠

+ ∫

𝑡

𝑡0

∫
Ω0

[ − 𝐵 (𝑟 (𝑠)) (V (𝑠, 𝑥) − ̄V (𝑠, 𝑥))

+𝐸 (𝑟 (𝑠)) (𝑔 (𝑢 (𝑠, 𝑥)) − 𝑔 ( ̄𝑢(𝑠, 𝑥)))] d𝑥d𝑠

− ∫

𝑡

𝑡0

∫
Ω0

𝜎 ̄V (𝑠, 𝑥) d𝑥d𝑊(𝑠) .

(39)

Construct average Lyapunov functional

𝑉 (𝑢 (𝑡, 𝑥) , V (𝑡, 𝑥) , ̄𝑢 (𝑡, 𝑥) , ̄V (𝑡, 𝑥) , 𝑟 (𝑡))

= ∫
Ω0

𝜇
𝑟(𝑡)
[|𝑢 (𝑡, 𝑥) − ̄𝑢(𝑡, 𝑥)|

2

+ |V (𝑡, 𝑥) − ̄V (𝑡, 𝑥)|2] d𝑥,

(40)

where 𝜇
𝑟(𝑡)

> 0.
By applying generalized Itô formula [27], we have

d𝑉 (𝑢 (𝑡, 𝑥) , V (𝑡, 𝑥) , ̄𝑢 (𝑡, 𝑥) , ̄V (𝑡, 𝑥) , 𝑝)

= ∫
Ω0

2𝜇
𝑝
(𝑢 (𝑡, 𝑥) − ̄𝑢(𝑡, 𝑥))

𝑇

(∇ ⋅ (𝐷 (𝑝) ∘ ∇ (𝑢 − ̄𝑢))) d𝑥d𝑡

+ ∫
Ω0

2𝜇
𝑝
(𝑢 (𝑡, 𝑥) − ̄𝑢(𝑡, 𝑥))

𝑇

× [ − 𝐴 (𝑝) (𝑢 (𝑡, 𝑥) − ̄𝑢(𝑡, 𝑥))

+𝐶 (𝑝) (𝑓 (V (𝑡, 𝑥)) − 𝑓 ( ̄V (𝑡, 𝑥)))] d𝑥d𝑡

+ ∫
Ω0

𝜎
2

𝜇
𝑝
| ̄𝑢 (𝑡, 𝑥)|

2d𝑥d𝑡

− 2∫
Ω0

𝜎(𝑢 (𝑡, 𝑥) − ̄𝑢(𝑡, 𝑥))
𝑇

̄𝑢(𝑡, 𝑥) d𝑥d𝑊(𝑡)

+ ∫
Ω0

2𝜇
𝑝
(V (𝑡, 𝑥) − ̄V (𝑡, 𝑥))𝑇

× (∇ ⋅ (𝐷
∗

(𝑝) ∘ ∇ (V − ̄V))) d𝑥d𝑡

+ ∫
Ω0

2𝜇
𝑝
(V (𝑡, 𝑥) − ̄V (𝑡, 𝑥))𝑇

× [ − 𝐵 (𝑝) (V (𝑡, 𝑥) − ̄V (𝑡, 𝑥))

+𝐸 (𝑝) (𝑔 (𝑢 (𝑡, 𝑥)) − 𝑔 ( ̄𝑢(𝑡, 𝑥)))] d𝑥d𝑡

+ ∫
Ω0

𝜎
2

𝜇
𝑝
| ̄V (𝑡, 𝑥)|2d𝑥d𝑡
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− 2∫
Ω0

𝜎(V (𝑡, 𝑥) − ̄V (𝑡, 𝑥))𝑇 ̄V (𝑡, 𝑥) d𝑥d𝑊(𝑡)

+

𝑁

∑

𝑞=1

𝛾
𝑝𝑞
𝜇
𝑞
∫
Ω0

[|𝑢 (𝑡, 𝑥) − ̄𝑢(𝑡, 𝑥)|
2

+|V (𝑡, 𝑥) − ̄V (𝑡, 𝑥)|2] d𝑥.
(41)

By boundary condition and (24), we have

2𝜇
𝑝
∫
Ω0

(𝑢 (𝑡, 𝑥) − ̄𝑢(𝑡, 𝑥))
𝑇

(∇ ⋅ (𝐷 (𝑝) ∘ ∇ (𝑢 − ̄𝑢))) d𝑥d𝑡

= −2𝜇
𝑝

𝑚

∑

𝑖=1

𝑙

∑

𝑘=1

∫
Ω0

𝐷
𝑖𝑘
(𝑝)(

𝜕 (𝑢
𝑖
− ̄𝑢
𝑖
)

𝜕𝑥
𝑘

)

2

d𝑥.

(42)

By boundary condition and (25), we have

2𝜇
𝑝
∫
Ω0

(V (𝑡, 𝑥) − ̄V (𝑡, 𝑥))𝑇 (∇ ⋅ (𝐷∗ (𝑝) ∘ ∇ (V − ̄V))) d𝑥d𝑡

= −2𝜇
𝑝

𝑛

∑

𝑗=1

𝑙

∑

𝑘=1

∫
Ω0

𝐷
∗

𝑗𝑘
(𝑝) (

𝜕(V
𝑗
− ̄V
𝑗
)

𝜕𝑥
𝑘

)

2

d𝑥.

(43)

By Hölder’s inequality, we get

2𝜇
𝑝
∫
Ω0

(𝑢 (𝑡, 𝑥) − ̄𝑢(𝑡, 𝑥))
𝑇

𝐶 (𝑝)

× (𝑓 (V (𝑡, 𝑥)) − 𝑓 ( ̄V (𝑡, 𝑥))) d𝑥

≤ max
𝑝∈S

(𝜇
𝑝

󵄩󵄩󵄩󵄩𝐶 (𝑝)
󵄩󵄩󵄩󵄩) [∫
Ω0

|𝑢 (𝑡, 𝑥) − ̄𝑢(𝑡, 𝑥)|
2d𝑥

+𝐾
2

∫
Ω0

|V (𝑡, 𝑥) − ̄V (𝑡, 𝑥)|2d𝑥] ,

(44)

2𝜇
𝑝
∫
Ω0

(V (𝑡, 𝑥) − ̄V (𝑡, 𝑥))𝑇𝐸 (𝑝)

× (𝑔 (𝑢 (𝑡, 𝑥)) − 𝑔 ( ̄𝑢(𝑡, 𝑥))) d𝑥

≤ max
𝑝∈S

(𝜇
𝑝

󵄩󵄩󵄩󵄩𝐸 (𝑝)
󵄩󵄩󵄩󵄩) [∫
Ω0

|V (𝑡, 𝑥) − ̄V (𝑡, 𝑥)|2d𝑥

+𝐿
2

∫
Ω0

|𝑢 (𝑡, 𝑥) − ̄𝑢(𝑡, 𝑥)|
2d𝑥] .

(45)

From (42)–(45) and Assumption (H1), we obtain that

d𝑉 (𝑢 (𝑡, 𝑥) , V (𝑡, 𝑥) , ̄𝑢 (𝑡, 𝑥) , ̄V (𝑡, 𝑥) , 𝑝)

≤ (𝜇𝐶
1
+max
𝑝∈S

𝑁

∑

𝑞=1

𝛾
𝑝𝑞
𝜇
𝑞
)

× ∫
Ω0

(|𝑢 (𝑡, 𝑥) − ̄𝑢(𝑡, 𝑥)|
2

+ |V (𝑡, 𝑥) − ̄V (𝑡, 𝑥)|2) d𝑥d𝑡

+ 2𝜎
2

𝜇∫
Ω0

(|𝑢 (𝑡, 𝑥)|
2

+ |V (𝑡, 𝑥)|2) d𝑥d𝑡

− 2∫
Ω0

𝜎(𝑢 (𝑡, 𝑥) − ̄𝑢(𝑡, 𝑥))
𝑇

̄𝑢(𝑡, 𝑥) d𝑥d𝑊(𝑡)

− 2∫
Ω0

𝜎(V (𝑡, 𝑥) − ̄V (𝑡, 𝑥))𝑇 ̄V (𝑡, 𝑥) d𝑥d𝑊(𝑡) .

(46)

When 𝑡 ≤ 𝑡
0
+ 2Δ, we have

E𝑉 (𝑢 (𝑡, 𝑥) , V (𝑡, 𝑥) , ̄𝑢 (𝑡, 𝑥) , ̄V (𝑡, 𝑥) , 𝑟 (𝑡))

≤ (𝜇𝐶
1
+max
𝑝∈S

𝑁

∑

𝑞=1

𝛾
𝑝𝑞
𝜇
𝑞
)

× ∫

𝑡

𝑡0

E∫
Ω0

(|𝑢 (𝑠, 𝑥) − ̄𝑢(𝑠, 𝑥)|
2

+|V (𝑠, 𝑥) − ̄V (𝑠, 𝑥)|2) d𝑥d𝑠

+ 2𝜎
2

𝜇∫

𝑡

𝑡0

𝛼 (
󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩

2

2
+
󵄩󵄩󵄩󵄩𝜓
󵄩󵄩󵄩󵄩

2

2
) exp (−𝛽 (𝑠 − 𝑡

0
)) d𝑠

− 2𝜎E∫
𝑡

𝑡0

∫
Ω0

(𝑢 (𝑠, 𝑥) − ̄𝑢(𝑠, 𝑥))
𝑇

̄𝑢(𝑠, 𝑥) d𝑥d𝑊(𝑠)

− 2𝜎E∫
𝑡

𝑡0

∫
Ω0

(V (𝑠, 𝑥) − ̄V (𝑠, 𝑥))𝑇 ̄V (𝑠, 𝑥) d𝑥d𝑊(𝑠) .

(47)

By stochastic Fubini’s Theorem, we have

E∫
𝑡

𝑡0

∫
Ω0

(𝑢 (𝑠, 𝑥) − ̄𝑢(𝑠, 𝑥))
𝑇

̄𝑢(𝑠, 𝑥) d𝑥d𝑊(𝑠) = 0,

E∫
𝑡

𝑡0

∫
Ω0

(V (𝑠, 𝑥) − ̄V (𝑠, 𝑥))𝑇 ̄V (𝑠, 𝑥) d𝑥d𝑊(𝑠) = 0.

(48)

By (47), one get

E𝑉 (𝑢 (𝑡, 𝑥) , V (𝑡, 𝑥) , ̄𝑢 (𝑡, 𝑥) , ̄V (𝑡, 𝑥) , 𝑟 (𝑡))

≤

(𝜇𝐶
1
+max

𝑝∈S∑
𝑁

𝑞=1
𝛾
𝑝𝑞
𝜇
𝑞
)

̆𝜇

× ∫

𝑡

𝑡0

E𝑉 (𝑢 (𝑠, 𝑥) , V (𝑠, 𝑥) , ̄𝑢 (𝑠, 𝑥) , ̄V (𝑠, 𝑥) , 𝑟 (𝑠)) 𝑑𝑠

+

2𝜎
2

𝛼𝜇 (
󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩

2

2
+
󵄩󵄩󵄩󵄩𝜓
󵄩󵄩󵄩󵄩

2

2
)

𝛽
.

(49)

When 𝑡
0
+Δ ≤ 𝑡 ≤ 𝑡

0
+2Δ, by applying Gronwall’s inequality,

we have

E (‖𝑢 (𝑡, 𝑥) − ̄𝑢(𝑡, 𝑥)‖
2

2
+ ‖V (𝑡, 𝑥) − ̄V (𝑡, 𝑥)‖2

2
)

= E𝑉 (𝑢 (𝑡, 𝑥) , V (𝑡, 𝑥) , ̄𝑢 (𝑡, 𝑥) , ̄V (𝑡, 𝑥) , 𝑟 (𝑡))

≤

2𝜎
2

𝛼𝜇 (
󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩

2

2
+
󵄩󵄩󵄩󵄩𝜓
󵄩󵄩󵄩󵄩

2

2
)

𝛽
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× exp
(𝜇𝐶
1
+max

𝑝∈S∑
𝑁

𝑞=1
𝛾
𝑝𝑞
𝜇
𝑞
)

̆𝜇
(𝑡 − 𝑡
0
)

≤ sup
𝑡0≤𝑡≤𝑡0+Δ

E (‖ ̄𝑢(𝑡, 𝑥)‖
2

+ ‖ ̄V(𝑡, 𝑥)‖2)

×
2𝜎
2

𝛼𝜇

𝛽
exp

2Δ (𝜇𝐶
1
+max

𝑝∈S∑
𝑁

𝑞=1
𝛾
𝑝𝑞
𝜇
𝑞
)

̆𝜇
.

(50)

By the global exponential stability of (6), we have

E (‖ ̄𝑢(𝑡, 𝑥)‖
2

2
+ ‖ ̄V (𝑡, 𝑥)‖2

2
)

≤ 2E (‖𝑢 (𝑡, 𝑥) − ̄𝑢(𝑡, 𝑥)‖
2

2
+ ‖V (𝑡, 𝑥) − ̄V (𝑡, 𝑥)‖2

2
)

+ 2E (‖𝑢 (𝑡, 𝑥)‖
2

2
+ ‖V (𝑡, 𝑥)‖2

2
)

≤ sup
𝑡0≤𝑡≤𝑡0+Δ

E (‖ ̄𝑢(𝑡, 𝑥)‖
2

+ ‖ ̄V (𝑡, 𝑥)‖2)

×
4𝜎
2

𝛼𝜇

𝛽
exp

2Δ (𝜇𝐶
1
+max

𝑝∈S∑
𝑁

𝑞=1
𝛾
𝑝𝑞
𝜇
𝑞
)

̆𝜇

+ 2𝛼 (
󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩

2

2
+
󵄩󵄩󵄩󵄩𝜓
󵄩󵄩󵄩󵄩

2

2
) exp {−𝛽 (𝑡 − 𝑡

0
)} .

(51)

Moreover,

E (‖ ̄𝑢(𝑡, 𝑥)‖
2

2
+ ‖ ̄V (𝑡, 𝑥)‖2

2
)

≤

{{{{

{{{{

{

4𝜎
2

𝛼𝜇

𝛽
exp

{

{

{

2Δ (𝜇𝐶
1
+max

𝑝∈S∑
𝑁

𝑞=1
𝛾
𝑝𝑞
𝜇
𝑞
)

̆𝜇

}

}

}

+ 2𝛼 exp {−𝛽Δ}
}}}}

}}}}

}

× sup
𝑡0≤𝑡≤𝑡0+Δ

E (‖ ̄𝑢(𝑡, 𝑥)‖
2

+ ‖ ̄V (𝑡, 𝑥)‖2) .

(52)

From (37), when |𝜎| < ̄𝜎, we have

4𝜎
2

𝛼𝜇

𝛽
exp

{

{

{

2Δ (𝜇𝐶
1
+max

𝑝∈S∑
𝑁

𝑞=1
𝛾
𝑝𝑞
𝜇
𝑞
)

̆𝜇

}

}

}

+ 2𝛼 exp {−𝛽Δ} < 1.

(53)

Let

𝛾 = (− log
{{{{

{{{{

{

4𝜎
2

𝛼𝜇

𝛽

× exp
{

{

{

2Δ (𝜇𝐶
1
+max

𝑝∈S∑
𝑁

𝑞=1
𝛾
𝑝𝑞
𝜇
𝑞
)

̆𝜇

}

}

}

+ 2𝛼 exp {−𝛽Δ}
}}}}

}}}}

}

)

× (Δ)
−1

> 0.

(54)

By (52), we have

sup
𝑡0+Δ≤𝑡≤𝑡0+2Δ

E (‖ ̄𝑢(𝑡, 𝑥)‖
2

2
+ ‖ ̄V (𝑡, 𝑥) ‖2

2
)

≤ exp (−𝛾Δ)( sup
𝑡0≤𝑡≤𝑡0+Δ

E (‖ ̄𝑢(𝑡, 𝑥)‖
2

2
+ ‖ ̄V (𝑡, 𝑥)‖2

2
)) .

(55)

For any positive integer 𝑚 = 1, 2, . . ., from the existence and
uniqueness of the flow of (16) (see [28]), when 𝑡 ≥ 𝑡

0
+ (𝑚 −

1)Δ, we have

( ̄𝑢(𝑡, 𝑥; 𝑡
0
, 𝜙) , ̄V (𝑡, 𝑥; 𝑡

0
, 𝜓))

= ( ̄𝑢(𝑡, 𝑥; 𝑡
0
+ (𝑚 − 1) Δ, ̄𝑢(𝑡

0
+ (𝑚 − 1) Δ, 𝑥; 𝑡

0
, 𝜙)) ,

̄V (𝑡, 𝑥; 𝑡
0
+ (𝑚 − 1) Δ, ̄V (𝑡

0
+ (𝑚 − 1) Δ, 𝑥; 𝑡

0
, 𝜓))) .

(56)

From (55) and (56),

sup
𝑡0+𝑚Δ≤𝑡≤𝑡0+(𝑚+1)Δ

E (
󵄩󵄩󵄩󵄩
̄𝑢(𝑡, 𝑥; 𝑡

0
, 𝜙)

󵄩󵄩󵄩󵄩

2

2
+
󵄩󵄩󵄩󵄩 ̄V (𝑡, 𝑥; 𝑡0, 𝜓)

󵄩󵄩󵄩󵄩

2

2
)

= sup
𝑡0+(𝑚−1)Δ+Δ≤𝑡≤𝑡0+(𝑚−1)Δ+2Δ

E
󵄩󵄩󵄩󵄩
̄𝑢(𝑡, 𝑥; 𝑡

0
+ (𝑚 − 1) Δ,

̄𝑢(𝑡
0
+ (𝑚 − 1) Δ, 𝑥; 𝑡

0
, 𝜙))

󵄩󵄩󵄩󵄩

2

2

+ sup
𝑡0+(𝑚−1)Δ+Δ≤𝑡≤𝑡0+(𝑚−1)Δ+2Δ

E
󵄩󵄩󵄩󵄩 ̄V (𝑡, 𝑥; 𝑡0 + (𝑚 − 1) Δ ,

̄V (𝑡
0
+ (𝑚 − 1) Δ, 𝑥; 𝑡

0
, 𝜓))

󵄩󵄩󵄩󵄩

2

2

≤ exp (−𝛾Δ)( sup
𝑡0+(𝑚−1)Δ≤𝑡≤𝑡0+𝑚Δ

E (
󵄩󵄩󵄩󵄩
̄𝑢(𝑡, 𝑥; 𝑡

0
, 𝜙)

󵄩󵄩󵄩󵄩

2

2

+
󵄩󵄩󵄩󵄩 ̄V (𝑡, 𝑥; 𝑡0, 𝜓)

󵄩󵄩󵄩󵄩

2

2
))

...

≤ exp (−𝛾𝑚Δ)( sup
𝑡0≤𝑡≤𝑡0+Δ

E (
󵄩󵄩󵄩󵄩
̄𝑢(𝑡, 𝑥; 𝑡

0
, 𝜙)

󵄩󵄩󵄩󵄩

2

2

+
󵄩󵄩󵄩󵄩 ̄V (𝑡, 𝑥; 𝑡0, 𝜓)

󵄩󵄩󵄩󵄩

2

2
)) .

(57)

Hence, for any 𝑡 ≥ 𝑡
0
+ Δ, there exists a positive integer 𝑚,

such that 𝑡
0
+ 𝑚Δ ≤ 𝑡 ≤ 𝑡

0
+ (𝑚 + 1)Δ, and we have
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E (
󵄩󵄩󵄩󵄩
̄𝑢(𝑡, 𝑥; 𝑡

0
, 𝜙)

󵄩󵄩󵄩󵄩

2

2
+
󵄩󵄩󵄩󵄩 ̄V (𝑡, 𝑥; 𝑡0, 𝜓)

󵄩󵄩󵄩󵄩

2

2
)

≤ exp (−𝛾𝑚Δ)

× ( sup
𝑡0≤𝑡≤𝑡0+Δ

E (
󵄩󵄩󵄩󵄩
̄𝑢(𝑡, 𝑥; 𝑡

0
, 𝜙)

󵄩󵄩󵄩󵄩

2

2
+
󵄩󵄩󵄩󵄩 ̄V (𝑡, 𝑥; 𝑡0, 𝜓)

󵄩󵄩󵄩󵄩

2

2
))

≤ exp {−𝛾𝑡 + 𝛾𝑡
0
+ 𝛾Δ}

× ( sup
𝑡0≤𝑡≤𝑡0+Δ

E (
󵄩󵄩󵄩󵄩
̄𝑢(𝑡, 𝑥; 𝑡

0
, 𝜙)

󵄩󵄩󵄩󵄩

2

2
+
󵄩󵄩󵄩󵄩 ̄V (𝑡, 𝑥; 𝑡0, 𝜓)

󵄩󵄩󵄩󵄩

2

2
))

≤ 𝐶
3
exp {𝛾Δ} exp {−𝛾 (𝑡 − 𝑡

0
)} ,

(58)

where 𝐶
3
= sup

𝑡0≤𝑡≤𝑡0+Δ
E(‖ ̄𝑢(𝑡, 𝑥; 𝑡

0
, 𝜙)‖
2

2
+ ‖ ̄V(𝑡, 𝑥; 𝑡

0
, 𝜓)‖
2

2
).

The above inequality also holds for 𝑡
0
≤ 𝑡 ≤ 𝑡

0
+ Δ.

Therefore, the neural networks (16) are mean square
globally exponentially stable, and by Theorem 4, the neural
networks (16) are also almost surely globally exponentially
stable.

4. Connection Weight Matrices Uncertainty
and Noise Impact on Stability

In this section, we first consider the parameter uncertainty
intensity which is added to the self-feedback matrix (𝐴, 𝐵)𝑇
of the neural networks (16). Then, the neural networks (16)
are changed as

d ̄𝑢
𝑖
(𝑡, 𝑥) = {

𝑙

∑

𝑘=1

𝜕

𝜕𝑥
𝑘

(𝐷
𝑖𝑘
(𝑟 (𝑡))

𝜕 ̄𝑢
𝑖
(𝑡, 𝑥)

𝜕𝑥
𝑘

)

− (1 + 𝜆) 𝑎
𝑖
(𝑟 (𝑡)) ̄𝑢

𝑖
(𝑡, 𝑥)

+

𝑛

∑

𝑗=1

𝑐
𝑗𝑖
(𝑟 (𝑡)) 𝑓

𝑗
( ̄V
𝑗
(𝑡, 𝑥))

}

}

}

d𝑡

+ 𝜎 ̄𝑢
𝑖
(𝑡, 𝑥) d𝑊(𝑡)

d ̄V
𝑗
(𝑡, 𝑥) = {

𝑙

∑

𝑘=1

𝜕

𝜕𝑥
𝑘

(𝐷
∗

𝑗𝑘
(𝑟 (𝑡))

𝜕 ̄V
𝑗
(𝑡, 𝑥)

𝜕𝑥
𝑘

)

− (1 + 𝜆) 𝑏
𝑗
(𝑟 (𝑡)) ̄V

𝑗
(𝑡, 𝑥)

+

𝑚

∑

𝑖=1

𝑒
𝑖𝑗
(𝑟 (𝑡)) 𝑔

𝑖
( ̄𝑢
𝑖
(𝑡, 𝑥))} d𝑡

+ 𝜎 ̄V
𝑗
(𝑡, 𝑥) d𝑊(𝑡) .

(59)

The initial conditions and boundary conditions are given
by

̄𝑢
𝑖
(𝑡
0
, 𝑥) = 𝜙

𝑖
(𝑥) , 𝑥 ∈ Ω

0
, 𝑡
0
∈ R
+
, 𝑖 = 1, 2, . . . , 𝑚,

̄V
𝑗
(𝑡
0
, 𝑥) = 𝜓

𝑗
(𝑥) , 𝑥 ∈ Ω

0
, 𝑡
0
∈ R
+
, 𝑗 = 1, 2, . . . , 𝑛,

𝜕 ̄𝑢
𝑖
(𝑡, 𝑥)

𝜕 ⃗𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜕Ω0

= (
𝜕 ̄𝑢
𝑖
(𝑡, 𝑥)

𝜕𝑥
1

, . . . ,
𝜕 ̄𝑢
𝑖
(𝑡, 𝑥)

𝜕𝑥
𝑙

)

𝑇

= 0,

(𝑡, 𝑥) ∈ [𝑡
0
, +∞) × 𝜕Ω

0
, 𝑖 = 1, 2, . . . , 𝑚,

𝜕 ̄V
𝑗
(𝑡, 𝑥)

𝜕 ⃗𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜕Ω0

= (

𝜕 ̄V
𝑗
(𝑡, 𝑥)

𝜕𝑥
1

, . . . ,

𝜕 ̄V
𝑗
(𝑡, 𝑥)

𝜕𝑥
𝑙

)

𝑇

= 0,

(𝑡, 𝑥) ∈ [𝑡
0
, +∞) × 𝜕Ω

0
, 𝑗 = 1, 2, . . . , 𝑛,

(60)

where 𝜆 is the self-feedback matrix (𝐴, 𝐵)
𝑇 uncertainty

intensity and 𝜎 is the noise intensity.
We rewrite (59) as follows:

d ̄𝑢(𝑡, 𝑥) = {∇ ⋅ (𝐷 (𝑟 (𝑡)) ∘ ∇ ̄𝑢) − (1 + 𝜆)𝐴 (𝑟 (𝑡)) ̄𝑢 (𝑡, 𝑥)

+𝐶 (𝑟 (𝑡)) 𝑓 ( ̄V (𝑡, 𝑥))} d𝑡 + 𝜎 ̄𝑢(𝑡, 𝑥) d𝑊(𝑡)

d ̄V (𝑡, 𝑥) = {∇ ⋅ (𝐷
∗

(𝑟 (𝑡)) ∘ ∇ ̄V) − (1 + 𝜆) 𝐵 (𝑟 (𝑡)) ̄V (𝑡, 𝑥)

+ 𝐸 (𝑟 (𝑡)) 𝑔 ( ̄𝑢(𝑡, 𝑥))} d𝑡 + 𝜎 ̄V (𝑡, 𝑥) d𝑊(𝑡) .

(61)

For the global exponential stability of neural networks
(6), we will characterize how much the intensity of both
the self-feedback matrix (𝐴, 𝐵)𝑇 uncertainty and stochastic
noise the stochastic neural networks (59) can tolerate while
maintaining global exponential stability.

Theorem 6. Let Assumption (H1) hold and let the neural
networks (6) be globally exponentially stable. Then, the neural
networks (59) are mean square globally exponential stability
and also almost sure globally exponential stability, if there exists
𝜇
𝑞
> 0, (𝑞 ∈ S), and (𝜆, 𝜎) is in the inner of the closed curve

described by the following transcendental equation:

4𝜇 (𝜎
2

+ 𝜆
2

(
󵄩󵄩󵄩󵄩󵄩
𝐴
󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝐵
󵄩󵄩󵄩󵄩󵄩
)) 𝛼

𝛽

× exp
{

{

{

2Δ (𝜇𝐶
4
+max

𝑝∈S∑
𝑁

𝑞=1
𝛾
𝑝𝑞
𝜇
𝑞
)

̆𝜇

}

}

}

,

+ 2𝛼 exp {−𝛽Δ} = 1,

(62)

Δ >
ln (2𝛼)
𝛽

> 0, (63)

where𝐶
4
= [(3+2𝜆

2

)(‖𝐴‖+‖𝐵‖)+(1+𝐾
2

)‖𝐶‖+(1+𝐿
2

)‖𝐸‖+

2𝜎
2

], ‖𝐴‖ = max
𝑝∈S ‖𝐴(𝑝)‖, and so forth and 𝜇 = max

𝑝∈S 𝜇𝑝

and ̆𝜇 = min
𝑝∈S 𝜇𝑝.

Proof. For any (𝜙(𝑥), 𝜓(𝑥)), we denote the state
( ̄𝑢(𝑡, 𝑥; 𝑡

0
, 𝜙), ̄V(𝑡, 𝑥; 𝑡

0
, 𝜓)) of (59) as ( ̄𝑢(𝑡, 𝑥), ̄V(𝑡, 𝑥)) and

the state (𝑢(𝑡, 𝑥; 𝑡
0
, 𝜙), V(𝑡, 𝑥; 𝑡

0
, 𝜓)) of (6) as (𝑢(𝑡, 𝑥), V(𝑡, 𝑥)).

From (6) and (61) and stochastic Fubini’s Theorem, we
have

∫
Ω0

(𝑢 (𝑡, 𝑥) − ̄𝑢(𝑡, 𝑥)) d𝑥 + ∫
Ω0

(V (𝑡, 𝑥) − ̄V (𝑡, 𝑥)) d𝑥

= ∫

𝑡

𝑡0

∫
Ω0

∇ ⋅ (𝐷 (𝑟 (𝑠)) ∘ ∇ (𝑢 − ̄𝑢)) d𝑥d𝑠



Mathematical Problems in Engineering 11

+ ∫

𝑡

𝑡0

∫
Ω0

[ − 𝐴 (𝑟 (𝑠)) (𝑢 (𝑠, 𝑥) − ̄𝑢(𝑠, 𝑥))

+𝐶 (𝑟 (𝑠)) (𝑓 (V (𝑠, 𝑥)) − 𝑓 ( ̄V (𝑠, 𝑥)))] d𝑥d𝑠

− ∫

𝑡

𝑡0

∫
Ω0

𝜎 ̄𝑢(𝑠, 𝑥) d𝑥d𝑊(𝑠)

+ ∫

𝑡

𝑡0

∫
Ω0

𝜆𝐴 (𝑟 (𝑠)) ̄𝑢 (𝑠, 𝑥) d𝑥d𝑠

+ ∫

𝑡

𝑡0

∫
Ω0

∇ ⋅ (𝐷
∗

(𝑟 (𝑠)) ∘ ∇ (V − ̄V)) d𝑥d𝑠

+ ∫

𝑡

𝑡0

∫
Ω0

[ − 𝐵 (𝑟 (𝑠)) (V (𝑠, 𝑥) − ̄V (𝑠, 𝑥))

+𝐸 (𝑟 (𝑠)) (𝑔 (𝑢 (𝑠, 𝑥)) − 𝑔 ( ̄𝑢(𝑠, 𝑥)))] d𝑥d𝑠

− ∫

𝑡

𝑡0

∫
Ω0

𝜎 ̄V (𝑠, 𝑥) d𝑥d𝑊(𝑠)

+ ∫

𝑡

𝑡0

∫
Ω0

𝜆𝐵 (𝑟 (𝑠)) ̄V (𝑠, 𝑥) d𝑥d𝑠.

(64)

Construct the average Lyapunov functional

𝑉 (𝑢 (𝑡, 𝑥) , V (𝑡, 𝑥) , ̄𝑢 (𝑡, 𝑥) , ̄V (𝑡, 𝑥) , 𝑟 (𝑡))

= ∫
Ω0

𝜇
𝑟(𝑡)
[|𝑢 (𝑡, 𝑥) − ̄𝑢(𝑡, 𝑥)|

2

+ |V (𝑡, 𝑥) − ̄V (𝑡, 𝑥)|2] d𝑥,

(65)

where 𝜇
𝑟(𝑡)

> 0.
By applying generalized Itô formula [27], we have

d𝑉 (𝑢 (𝑡, 𝑥) , V (𝑡, 𝑥) , ̄𝑢 (𝑡, 𝑥) , ̄V (𝑡, 𝑥) , 𝑝)󵄨󵄨󵄨󵄨(21)

= ∫
Ω0

2𝜇
𝑝
(𝑢 (𝑡, 𝑥) − ̄𝑢(𝑡, 𝑥))

𝑇

(∇ ⋅ (𝐷 (𝑝) ∘ ∇ (𝑢 − ̄𝑢))) d𝑥d𝑡

+ ∫
Ω0

2𝜇
𝑝
(𝑢 (𝑡, 𝑥) − ̄𝑢(𝑡, 𝑥))

𝑇

× [−𝐴 (𝑝) (𝑢 (𝑡, 𝑥) − ̄𝑢(𝑡, 𝑥))

+ 𝐶 (𝑝) (𝑓 (V (𝑡, 𝑥)) − 𝑓 ( ̄V (𝑡, 𝑥)))

+𝜆𝐴 (𝑝) ̄𝑢(𝑡, 𝑥)] d𝑥d𝑡

+ ∫
Ω0

𝜎
2

𝜇
𝑝
| ̄𝑢 (𝑡, 𝑥)|

2d𝑥d𝑡

− 2∫
Ω0

𝜎(𝑢 (𝑡, 𝑥) − ̄𝑢(𝑡, 𝑥))
𝑇

̄𝑢(𝑡, 𝑥) d𝑥d𝑊(𝑡)

+ ∫
Ω0

2𝜇
𝑝
(V (𝑡, 𝑥) − ̄V (𝑡, 𝑥))𝑇

× (∇ ⋅ (𝐷
∗

(𝑝) ∘ ∇ (V − ̄V))) d𝑥d𝑡

+ ∫
Ω0

2𝜇
𝑝
(V (𝑡, 𝑥) − ̄V (𝑡, 𝑥))𝑇

× [−𝐵 (𝑝) (V (𝑡, 𝑥) − ̄V (𝑡, 𝑥))

+ 𝐸 (𝑝) (𝑔 (𝑢 (𝑡, 𝑥)) − 𝑔 ( ̄𝑢(𝑡, 𝑥)))

+𝜆𝐵 (𝑝) ̄V (𝑡, 𝑥)] d𝑥d𝑡

+ ∫
Ω0

𝜎
2

𝜇
𝑝
| ̄V (𝑡, 𝑥)|2d𝑥d𝑡

− 2∫
Ω0

𝜎(V (𝑡, 𝑥) − ̄V (𝑡, 𝑥))𝑇 ̄V (𝑡, 𝑥) d𝑥d𝑊(𝑡)

+

𝑁

∑

𝑞=1

𝛾
𝑝𝑞
𝜇
𝑞
∫
Ω0

[|𝑢 (𝑡, 𝑥) − ̄𝑢(𝑡, 𝑥)|
2

+|V (𝑡, 𝑥) − ̄V (𝑡, 𝑥)|2] d𝑥.
(66)

By Hölder’s inequality, we get

∫
Ω0

2𝜇
𝑝
(𝑢 (𝑡, 𝑥) − ̄𝑢(𝑡, 𝑥))

𝑇

𝜆𝐴 (𝑝) ̄𝑢(𝑡, 𝑥) d𝑥

≤ max
𝑝∈S

󵄩󵄩󵄩󵄩󵄩
𝜇
𝑝
𝐴 (𝑝)

󵄩󵄩󵄩󵄩󵄩
[∫
Ω0

|𝑢 (𝑡, 𝑥) − ̄𝑢(𝑡, 𝑥)|
2d𝑥

+𝜆
2

∫
Ω0

| ̄𝑢 (𝑡, 𝑥)|
2d𝑥]

= max
𝑝∈S

󵄩󵄩󵄩󵄩󵄩
𝜇
𝑝
𝐴 (𝑝)

󵄩󵄩󵄩󵄩󵄩
[∫
Ω0

|𝑢 (𝑡, 𝑥) − ̄𝑢(𝑡, 𝑥)|
2d𝑥

+𝜆
2

∫
Ω0

|𝑢 (𝑡, 𝑥) − ̄𝑢(𝑡, 𝑥) − 𝑢 (𝑡, 𝑥)|
2d𝑥]

≤ max
𝑝∈S

󵄩󵄩󵄩󵄩󵄩
𝜇
𝑝
𝐴 (𝑝)

󵄩󵄩󵄩󵄩󵄩
[(1 + 2𝜆

2

)∫
Ω0

|𝑢 (𝑡, 𝑥) − ̄𝑢(𝑡, 𝑥)|
2d𝑥

+2𝜆
2

∫
Ω0

|𝑢 (𝑡, 𝑥)|
2d𝑥] ,

∫
Ω0

2𝜇
𝑝
(V (𝑡, 𝑥) − ̄V (𝑡, 𝑥))𝑇𝜆𝐵 (𝑝) ̄V (𝑡, 𝑥) d𝑥

≤ max
𝑝∈S

󵄩󵄩󵄩󵄩󵄩
𝜇
𝑝
𝐵 (𝑝)

󵄩󵄩󵄩󵄩󵄩
[∫
Ω0

|V (𝑡, 𝑥) − ̄V (𝑡, 𝑥)|2d𝑥

+𝜆
2

∫
Ω0

| ̄V (𝑡, 𝑥)|2d𝑥]

= max
𝑝∈S

󵄩󵄩󵄩󵄩󵄩
𝜇
𝑝
𝐵 (𝑝)

󵄩󵄩󵄩󵄩󵄩
[∫
Ω0

|V (𝑡, 𝑥) − ̄V (𝑡, 𝑥)|2d𝑥

+ 𝜆
2

∫
Ω0

|V (𝑡, 𝑥) − ̄V (𝑡, 𝑥) − V (𝑡, 𝑥)|2d𝑥]

≤ max
𝑝∈S

󵄩󵄩󵄩󵄩󵄩
𝜇
𝑝
𝐵 (𝑝)

󵄩󵄩󵄩󵄩󵄩
[(1 + 2𝜆

2

) ∫
Ω0

|V (𝑡, 𝑥) − ̄V (𝑡, 𝑥)|2d𝑥

+ 2𝜆
2

∫
Ω0

|V (𝑡, 𝑥)|2d𝑥] .
(67)
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From (42), (43), and (67) and Assumption (H1), we obtain
that

d𝑉 (𝑢 (𝑡, 𝑥) , V (𝑡, 𝑥) , ̄𝑢 (𝑡, 𝑥) , ̄V (𝑡, 𝑥) , 𝑝)

≤ (𝜇𝐶
4
+max
𝑝∈S

𝑁

∑

𝑞=1

𝛾
𝑝𝑞
𝜇
𝑞
)

× ∫
Ω0

(|𝑢 (𝑡, 𝑥) − ̄𝑢(𝑡, 𝑥)|
2

+ |V (𝑡, 𝑥) − ̄V (𝑡, 𝑥)|2) d𝑥d𝑡

+ 2𝜇 (𝜎
2

+ 𝜆
2

(
󵄩󵄩󵄩󵄩󵄩
𝐴
󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝐵
󵄩󵄩󵄩󵄩󵄩
))

× ∫

Ω0

(|𝑢 (𝑡, 𝑥)|
2

+ |V (𝑡, 𝑥)|2) d𝑥d𝑡

− 2∫
Ω0

𝜎(𝑢 (𝑡, 𝑥) − ̄𝑢(𝑡, 𝑥))
𝑇

̄𝑢(𝑡, 𝑥) d𝑥d𝑊(𝑡)

− 2∫
Ω0

𝜎(V (𝑡, 𝑥) − ̄V (𝑡, 𝑥))𝑇 ̄V (𝑡, 𝑥) d𝑥d𝑊(𝑡) .

(68)

When 𝑡 ≤ 𝑡
0
+ 2Δ, we have

E𝑉 (𝑢 (𝑡, 𝑥) , V (𝑡, 𝑥) , ̄𝑢 (𝑡, 𝑥) , ̄V (𝑡, 𝑥) , 𝑟 (𝑡))

≤ (𝜇𝐶
4
+max
𝑝∈S

𝑁

∑

𝑞=1

𝛾
𝑝𝑞
𝜇
𝑞
)

× ∫

𝑡

𝑡0

E∫
Ω0

(|𝑢 (𝑠, 𝑥) − ̄𝑢(𝑠, 𝑥)|
2

+|V (𝑠, 𝑥) − ̄V (𝑠, 𝑥)|2) d𝑥d𝑠

+ 2𝜇 (𝜎
2

+ 𝜆
2

(
󵄩󵄩󵄩󵄩󵄩
𝐴
󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝐵
󵄩󵄩󵄩󵄩󵄩
))

× ∫

𝑡

𝑡0

𝛼 (
󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩

2

2
+
󵄩󵄩󵄩󵄩𝜓
󵄩󵄩󵄩󵄩

2

2
) exp (−𝛽 (𝑠 − 𝑡

0
)) d𝑠

− 2𝜎E∫
𝑡

𝑡0

∫
Ω0

(𝑢 (𝑠, 𝑥) − ̄𝑢(𝑠, 𝑥))
𝑇

̄𝑢(𝑠, 𝑥) d𝑥d𝑊(𝑠)

− 2𝜎E∫
𝑡

𝑡0

∫
Ω0

(V (𝑠, 𝑥) − ̄V (𝑠, 𝑥))𝑇 ̄V (𝑠, 𝑥) d𝑥d𝑊(𝑠) .

(69)

By stochastic Fubini’s Theorem, we have

E∫
𝑡

𝑡0

∫
Ω0

(𝑢 (𝑠, 𝑥) − ̄𝑢(𝑠, 𝑥))
𝑇

̄𝑢(𝑠, 𝑥) d𝑥d𝑊(𝑠) = 0,

E∫
𝑡

𝑡0

∫
Ω0

(V (𝑠, 𝑥) − ̄V (𝑠, 𝑥))𝑇 ̄V (𝑠, 𝑥) d𝑥d𝑊(𝑠) = 0.

(70)

By (69), one get

E𝑉 (𝑢 (𝑡, 𝑥) , V (𝑡, 𝑥) , ̄𝑢 (𝑡, 𝑥) , ̄V (𝑡, 𝑥) , 𝑟 (𝑡))

≤

(𝜇𝐶
4
+max

𝑝∈S∑
𝑁

𝑞=1
𝛾
𝑝𝑞
𝜇
𝑞
)

̆𝜇

× ∫

𝑡

𝑡0

E𝑉 (𝑢 (𝑠, 𝑥) , V (𝑠, 𝑥) , ̄𝑢 (𝑠, 𝑥) , ̄V (𝑠, 𝑥) , 𝑟 (𝑠)) 𝑑𝑠

+

2𝜇 (𝜎
2

+ 𝜆
2

(
󵄩󵄩󵄩󵄩󵄩
𝐴
󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝐵
󵄩󵄩󵄩󵄩󵄩
)) 𝛼 (

󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩

2

2
+
󵄩󵄩󵄩󵄩𝜓
󵄩󵄩󵄩󵄩

2

2
)

𝛽
.

(71)

When 𝑡
0
+Δ ≤ 𝑡 ≤ 𝑡

0
+2Δ, by applying Gronwall’s inequality,

we have

E (‖𝑢 (𝑡, 𝑥) − ̄𝑢(𝑡, 𝑥)‖
2

2
+ ‖V (𝑡, 𝑥) − ̄V (𝑡, 𝑥)‖2

2
)

= E𝑉 (𝑢 (𝑡, 𝑥) , V (𝑡, 𝑥) , ̄𝑢 (𝑡, 𝑥) , ̄V (𝑡, 𝑥) , 𝑟 (𝑡))

≤

2𝜇 (𝜎
2

+ 𝜆
2

(
󵄩󵄩󵄩󵄩󵄩
𝐴
󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝐵
󵄩󵄩󵄩󵄩󵄩
)) 𝛼 (

󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩

2

2
+
󵄩󵄩󵄩󵄩𝜓
󵄩󵄩󵄩󵄩

2

2
)

𝛽

× exp
(𝜇𝐶
4
+max

𝑝∈S∑
𝑁

𝑞=1
𝛾
𝑝𝑞
𝜇
𝑞
)

̆𝜇
(𝑡 − 𝑡
0
)

≤ sup
𝑡0≤𝑡≤𝑡0+Δ

E (‖ ̄𝑢(𝑡, 𝑥)‖
2

+ ‖ ̄V (𝑡, 𝑥)‖2)

×

2𝜇 (𝜎
2

+ 𝜆
2

(
󵄩󵄩󵄩󵄩󵄩
𝐴
󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝐵
󵄩󵄩󵄩󵄩󵄩
)) 𝛼

𝛽

× exp
2Δ (𝜇𝐶

4
+max

𝑝∈S∑
𝑁

𝑞=1
𝛾
𝑝𝑞
𝜇
𝑞
)

̆𝜇
.

(72)

By the global exponential stability of (6), we have

E (‖ ̄𝑢(𝑡, 𝑥)‖
2

2
+ ‖ ̄V (𝑡, 𝑥)‖2

2
)

≤ 2E (‖𝑢 (𝑡, 𝑥) − ̄𝑢(𝑡, 𝑥)‖
2

2
+ ‖V (𝑡, 𝑥) − ̄V (𝑡, 𝑥)‖2

2
)

+ 2E (‖𝑢 (𝑡, 𝑥)‖
2

2
+ ‖V (𝑡, 𝑥)‖2

2
)

≤ sup
𝑡0≤𝑡≤𝑡0+Δ

E (‖ ̄𝑢(𝑡, 𝑥)‖
2

+ ‖ ̄V (𝑡, 𝑥)‖2)

×

4𝜇 (𝜎
2

+ 𝜆
2

(
󵄩󵄩󵄩󵄩󵄩
𝐴
󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝐵
󵄩󵄩󵄩󵄩󵄩
)) 𝛼

𝛽

× exp
2Δ (𝜇𝐶

4
+max

𝑝∈S∑
𝑁

𝑞=1
𝛾
𝑝𝑞
𝜇
𝑞
)

̆𝜇

+ 2𝛼 (
󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩

2

2
+
󵄩󵄩󵄩󵄩𝜓
󵄩󵄩󵄩󵄩

2

2
) exp {−𝛽 (𝑡 − 𝑡

0
)} .

(73)
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Moreover,

E (‖ ̄𝑢(𝑡, 𝑥)‖
2

2
+ ‖ ̄V (𝑡, 𝑥)‖2

2
)

≤

{{{{

{{{{

{

4𝜇 (𝜎
2

+ 𝜆
2

(
󵄩󵄩󵄩󵄩󵄩
𝐴
󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝐵
󵄩󵄩󵄩󵄩󵄩
)) 𝛼

𝛽

× exp
{

{

{

2Δ (𝜇𝐶
4
+max

𝑝∈S∑
𝑁

𝑞=1
𝛾
𝑝𝑞
𝜇
𝑞
)

̆𝜇

}

}

}

+ 2𝛼 exp {−𝛽Δ}
}}}}

}}}}

}

× sup
𝑡0≤𝑡≤𝑡0+Δ

E (‖ ̄𝑢(𝑡, 𝑥)‖
2

+ ‖ ̄V (𝑡, 𝑥)‖2) .

(74)

From (62), when (𝜆, 𝜎) is in the inner of the closed curve
described by the transcendental equation, we have

4𝜇 (𝜎
2

+ 𝜆
2

(
󵄩󵄩󵄩󵄩󵄩
𝐴
󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝐵
󵄩󵄩󵄩󵄩󵄩
)) 𝛼

𝛽

× exp
{

{

{

2Δ (𝜇𝐶
4
+max

𝑝∈S∑
𝑁

𝑞=1
𝛾
𝑝𝑞
𝜇
𝑞
)

̆𝜇

}

}

}

+ 2𝛼 exp {−𝛽Δ} < 1.

(75)

Let

𝛾 = (− log
{{{

{{{

{

4𝜇 (𝜎
2

+ 𝜆
2

(‖ 𝐴 ‖ + ‖ 𝐵 ‖)) 𝛼

𝛽

× exp
{

{

{

2Δ (𝜇𝐶
4
+max

𝑝∈S∑
𝑁

𝑞=1
𝛾
𝑝𝑞
𝜇
𝑞
)

̆𝜇

}

}

}

+2𝛼 exp {−𝛽Δ}
}}}}

}}}}

}

)(Δ)
−1

> 0.

(76)

By (74), we have

sup
𝑡0+Δ≤𝑡≤𝑡0+2Δ

E (‖ ̄𝑢(𝑡, 𝑥)‖
2

2
+ ‖ ̄V (𝑡, 𝑥)‖2

2
)

≤ exp (−𝛾Δ)( sup
𝑡0≤𝑡≤𝑡0+Δ

E (‖ ̄𝑢(𝑡, 𝑥)‖
2

2
+ ‖ ̄V (𝑡, 𝑥)‖2

2
)) .

(77)

Similar to the proof of Theorem 5, we can prove that the
neural networks (59) are mean square globally exponen-
tially stable and also almost surely globally exponentially
stable.

To continue, we consider the parameter uncertainty
intensity which is added to the connection weight matrix
(𝐶, 𝐸)

𝑇 of the neural networks (16).Then, the neural networks
(16) are changed as

d ̄𝑢
𝑖
(𝑡, 𝑥) =

{

{

{

𝑙

∑

𝑘=1

𝜕

𝜕𝑥
𝑘

(𝐷
𝑖𝑘
(𝑟 (𝑡))

𝜕 ̄𝑢
𝑖
(𝑡, 𝑥)

𝜕𝑥
𝑘

)

− 𝑎
𝑖
(𝑟 (𝑡)) ̄𝑢

𝑖
(𝑡, 𝑥)

+

𝑛

∑

𝑗=1

(1 + 𝛿) 𝑐
𝑗𝑖
(𝑟 (𝑡)) 𝑓

𝑗
( ̄V
𝑗
(𝑡, 𝑥))

}

}

}

d𝑡

+ 𝜎 ̄𝑢
𝑖
(𝑡, 𝑥) d𝑊(𝑡) ,

d ̄V
𝑗
(𝑡, 𝑥) = {

𝑙

∑

𝑘=1

𝜕

𝜕𝑥
𝑘

(𝐷
∗

𝑗𝑘
(𝑟 (𝑡))

𝜕 ̄V
𝑗
(𝑡, 𝑥)

𝜕𝑥
𝑘

)

− 𝑏
𝑗
(𝑟 (𝑡)) ̄V

𝑗
(𝑡, 𝑥)

+

𝑚

∑

𝑖=1

(1 + 𝛿) 𝑒
𝑖𝑗
(𝑟 (𝑡)) 𝑔

𝑖
( ̄𝑢
𝑖
(𝑡, 𝑥))} d𝑡

+ 𝜎 ̄V
𝑗
(𝑡, 𝑥) d𝑊(𝑡) .

(78)

The initial conditions and boundary conditions are given
by

̄𝑢
𝑖
(𝑡
0
, 𝑥) = 𝜙

𝑖
(𝑥) , 𝑥 ∈ Ω

0
, 𝑡
0
∈ R
+
, 𝑖 = 1, 2, . . . , 𝑚,

̄V
𝑗
(𝑡
0
, 𝑥) = 𝜓

𝑗
(𝑥) , 𝑥 ∈ Ω

0
, 𝑡
0
∈ R
+
, 𝑗 = 1, 2, . . . , 𝑛,

𝜕 ̄𝑢
𝑖
(𝑡, 𝑥)

𝜕 ⃗𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜕Ω0

= (
𝜕 ̄𝑢
𝑖
(𝑡, 𝑥)

𝜕𝑥
1

, . . . ,
𝜕 ̄𝑢
𝑖
(𝑡, 𝑥)

𝜕𝑥
𝑙

)

𝑇

= 0,

(𝑡, 𝑥) ∈ [𝑡
0
, +∞) × 𝜕Ω

0
, 𝑖 = 1, 2, . . . , 𝑚,

𝜕 ̄V
𝑗
(𝑡, 𝑥)

𝜕 ⃗𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜕Ω0

= (

𝜕 ̄V
𝑗
(𝑡, 𝑥)

𝜕𝑥
1

, . . . ,

𝜕 ̄V
𝑗
(𝑡, 𝑥)

𝜕𝑥
𝑙

)

𝑇

= 0,

(𝑡, 𝑥) ∈ [𝑡
0
, +∞) × 𝜕Ω

0
, 𝑗 = 1, 2, . . . , 𝑛,

(79)

where 𝛿 is the connection weight matrix (𝐶, 𝐸)𝑇 uncertainty
intensity and 𝜎 is the noise intensity.

We rewrite (78) as follows:

d ̄𝑢(𝑡, 𝑥) = {∇ ⋅ (𝐷 (𝑟 (𝑡)) ∘ ∇ ̄𝑢) − 𝐴 (𝑟 (𝑡)) ̄𝑢 (𝑡, 𝑥)

+ (1 + 𝛿) 𝐶 (𝑟 (𝑡)) 𝑓 ( ̄V (𝑡, 𝑥))} d𝑡
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+ 𝜎 ̄𝑢(𝑡, 𝑥) d𝑊(𝑡) ,

d ̄V (𝑡, 𝑥) = {∇ ⋅ (𝐷
∗

(𝑟 (𝑡)) ∘ ∇ ̄V) − 𝐵 (𝑟 (𝑡)) ̄V (𝑡, 𝑥)

+ (1 + 𝛿) 𝐸 (𝑟 (𝑡)) 𝑔 ( ̄𝑢(𝑡, 𝑥))} d𝑡

+ 𝜎 ̄V (𝑡, 𝑥) d𝑊(𝑡) .

(80)

For the global exponential stability of neural networks (6),
we will characterize how much the intensity of both the
connection weight matrix (𝐶, 𝐸)𝑇 uncertainty and stochastic
noise the stochastic neural networks (78) can tolerate while
maintaining global exponential stability.

Theorem 7. Let Assumption (H1) hold and let the neural
networks (6) be global exponential stability. Then, the neural
networks (78) are mean square globally exponentially stable
and also almost surely globally exponentially stable, if there
exists 𝜇

𝑞
> 0, (𝑞 ∈ S), and (𝛿, 𝜎) is in the inner of the closed

curve described by the following transcendental equation:

4𝜇 (𝜎
2

+ 𝛿
2

(𝐾
2
󵄩󵄩󵄩󵄩󵄩
𝐶
󵄩󵄩󵄩󵄩󵄩
+ 𝐿
2
󵄩󵄩󵄩󵄩󵄩
𝐸
󵄩󵄩󵄩󵄩󵄩
)) 𝛼

𝛽

× exp
{

{

{

2Δ (𝜇𝐶
5
+max

𝑝∈S∑
𝑁

𝑞=1
𝛾
𝑝𝑞
𝜇
𝑞
)

̆𝜇

}

}

}

+ 2𝛼 exp {−𝛽Δ} = 1,

Δ >
ln (2𝛼)
𝛽

> 0,

(81)

where 𝐶
5
= [2(‖𝐴‖ + ‖𝐵‖) + (2 + (1 + 2𝛿

2

)𝐾
2

)‖𝐶‖ + (2 + (1 +

2𝛿
2

)𝐿
2

)‖𝐸‖ + 2𝜎
2

], ‖𝐴‖ = max
𝑝∈S ‖𝐴(𝑝)‖, and so forth and

𝜇 = max
𝑝∈S 𝜇𝑝 and ̆𝜇 = min

𝑝∈S 𝜇𝑝.

The proof is similar to the proof of Theorem 6.

5. Illustrate Example

Example 1. Consider hybrid BAM neural networks with
reaction diffusion terms

𝜕𝑢 (𝑡, 𝑥)

𝜕𝑡
= 𝐷 (𝑟 (𝑡))

𝜕
2

𝑢 (𝑡, 𝑥)

𝜕𝑥2
− 𝑎 (𝑟 (𝑡)) 𝑢 (𝑡, 𝑥)

+ 𝑐 (𝑟 (𝑡)) 𝑓 (V (𝑡, 𝑥)) ,

𝜕V (𝑡, 𝑥)
𝜕𝑡

= 𝐷
∗

𝑘
(𝑟 (𝑡))

𝜕
2V (𝑡, 𝑥)
𝜕𝑥2

− 𝑏 (𝑟 (𝑡)) V (𝑡, 𝑥)

+ 𝑒 (𝑟 (𝑡)) 𝑔 (𝑢 (𝑡, 𝑥)) .

(82)

The initial conditions and boundary conditions are given
by

𝑢 (0, 𝑥) = sin (𝑥) , 𝑥 ∈ [−5, 5] ,

V (0, 𝑥) = cos (𝑥) − 1, 𝑥 ∈ [−5, 5] ,

𝜕𝑢 (𝑡, 𝑥)

𝜕 ⃗𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜕Ω0

=
𝜕𝑢 (𝑡, 𝑥)

𝜕𝑥
= 0, (𝑡, 𝑥) ∈ [𝑡

0
, +∞) × 𝜕Ω

0
,

𝜕V (𝑡, 𝑥)
𝜕 ⃗𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜕Ω0

=
𝜕V (𝑡, 𝑥)
𝜕𝑥

= 0, (𝑡, 𝑥) ∈ [𝑡
0
, +∞) × 𝜕Ω

0
,

(83)

where

Γ = (
−2 2

1 −1
) ,

(
𝐷 (1) 0

0 𝐷
∗

(1)
) = (

0.002 0

0 0.003
) ,

(
𝐷 (2) 0

0 𝐷
∗

(2)
) = (

0.001 0

0 0.002
) ,

(
𝑎 (1) 0

0 𝑏 (1)
) = (

0.2 0

0 0.3
) ,

(
0 𝑐 (1)

𝑒 (1) 0
) = (

0 0.2

0.2 0
) ,

(
𝑎 (2) 0

0 𝑏 (2)
) = (

0.3 0

0 0.2
) ,

(
0 𝑐 (2)

𝑒 (2) 0
) = (

0 0.2

0.2 0
) ,

(84)

and 𝑓(V) = sin(V), 𝑔(𝑢) = (1/2)(|𝑢 + 1| − |𝑢 − 1|), and 𝐾 =

𝐿 = 1. According to Theorem 1 in [9] andTheorem 1 in [29],
the neural networks (82) are global exponential stability with
𝛼 = 1 and 𝛽 = 1.

In the presence of stochastic noise and self-feedback
matrix (𝐴, 𝐵)𝑇 uncertainty, the neural networks (82) become

d𝑢 (𝑡, 𝑥) = {𝐷 (𝑟 (𝑡))
𝜕
2

𝑢 (𝑡, 𝑥)

𝜕𝑥2

− (𝑎 (𝑟 (𝑡)) + 𝜆) 𝑢 (𝑡, 𝑥)

+ 𝑐 (𝑟 (𝑡)) 𝑓 (V (𝑡, 𝑥))} d𝑡

+ 𝜎𝑢 (𝑡, 𝑥) d𝑊(𝑡) ,

dV (𝑡, 𝑥) = {𝐷
∗

(𝑟 (𝑡))
𝜕
2V (𝑡, 𝑥)
𝜕𝑥2

− (𝑏 (𝑟 (𝑡)) + 𝜆) V (𝑡, 𝑥)

+ 𝑒 (𝑟 (𝑡)) 𝑔 (𝑢 (𝑡, 𝑥))} d𝑡

+ 𝜎V (𝑡, 𝑥) d𝑊(𝑡) .

(85)

According to Theorem 6, let Δ = 0.7 > log(2𝛼)/𝛽 = 0.6931

and 𝜇
1
= 1 and 𝜇

2
= 2. From (62), we have

8 (𝜎
2

+ 0.6𝜆
2

) exp {10.08 + 3.36𝜆2 + 5.6𝜎2}

+ 2 exp {−0.7} = 1.
(86)
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Figure 1:The stability regionwith (𝜆, 𝜎) of the neural networks (85).
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Figure 2: Surface curve of 𝑢(𝑡, 𝑥) of the neural networks (85) in
model 1.

Then,we can obtain its closed curve for (𝜆, 𝜎). Figure 1 depicts
the stability region for (𝜆, 𝜎) in (85).

Figures 2, 3, 4, and 5 depict the surface curves of the
neural networks (85) with (𝜆, 𝜎) = (−10

−4

, 10
−4

). It shows
that the state of the neural networks (85) is mean square
globally exponential stability and almost surely globally
exponential stable, as the parameter (𝜆, 𝜎) in the inner of the
curve of Figure 1.

Figures 6, 7, 8 and 9 show the surface curves of the neural
networks (85) with (𝜆, 𝜎) = (−0.1, 1.5). It shows that when
the conditions inTheorem 6 do not hold, the neural networks
(85) become unstable.
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Figure 3: Surface curve of V(𝑡, 𝑥) of the neural networks (85) in
model 1.
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Figure 4: Surface curve of 𝑢(𝑡, 𝑥) of the neural networks (85) in
model 2.
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Figure 5: Surface curve of V(𝑡, 𝑥) of the neural networks (85) in
model 2.
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Figure 6: Surface curve of 𝑢(𝑡, 𝑥) of the neural networks (82) in
model 1.
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Figure 7: Surface curve of V(𝑡, 𝑥) of the neural networks (82) in
model 1.
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Figure 8: Surface curve of 𝑢(𝑡, 𝑥) of the neural networks (82) in
model 2.
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Figure 9: Surface curve of V(𝑡, 𝑥) of the neural networks (82) in
model 2.
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This paper presents two methods for dual-rate sampled-data nonlinear output-error systems. One method is the missing output
estimation based stochastic gradient identification algorithm and the other method is the auxiliary model based stochastic gradient
identification algorithm. Different from the polynomial transformation based identification methods, the two methods in this
paper can estimate the unknown parameters directly. A numerical example is provided to confirm the effectiveness of the proposed
methods.

1. Introduction

System identification plays an important part in many
engineering applications [1–6]. Many identification methods
assume that the input-output data at every sampling instant
are available for linear systems [7–11] and nonlinear systems
[12–20], which is usually not the case in practice. When
the input and output signals of the systems have different
sampling rates, these systems are usually called irregularly
sampled-data systems [21–27], for example, dual-rate or
multirate systems [28–30]. Dual-rate/multirate systems in
which the input and the output are sampled at different
frequencies arise widely in robust filtering and control [31–
33], adaptive control [34–37], and system identification [38–
43]. In the literature of dual-rate system identification, the so-
called polynomial transformation technique is often used to
transform the dual-rate model [44, 45].

As far as we know, the identification methods based
on the polynomial transformation technique cannot directly
estimate the parameters of the dual-rate system and the
number of the unknown parameters to be estimated is more
than the number of the unknown parameters of the original
dual-rate system.

The nonlinear system consisting of a static nonlin-
ear block followed by a linear dynamic system is called

a Hammerstein system [46–49]. The nonlinearity of the
Hammerstein system is usually expressed by some known
basis functions [50, 51] or by a piece-wise polynomial func-
tion [52, 53]. When the Hammerstein system is a dual-rate
system and has a preload nonlinearity, to the best of our
knowledge, there is nowork on identification of such systems.
The main contributions of this paper are presenting the two
methods directly for estimating the parameters of the dual-
rate system.Theproposedmethods of this paper can combine
the auxiliary model identification methods [54–57], the iter-
ative identification methods [58–62], the multi-innovation
identification methods [63–70], the hierarchical identifi-
cation methods [71–83], and the two-stage or multistage
identification methods [84, 85] to study identification prob-
lems for other linear systems [86–90] or nonlinear systems
[91–97].

The rest of this paper is organized as follows. Section 2
introduces the dual-rate nonlinear output-error systems.
Section 3 gives a missing output identification model based
stochastic gradient algorithm. Section 4 provides an auxiliary
model based stochastic gradient algorithm. Section 5 intro-
duces an illustrative example. Finally, concluding remarks are
given in Section 6.
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2. Problem Formulation

Let “𝐴 =: 𝑋” or “𝑋 := 𝐴” stand for “𝐴 is defined as𝑋,” let the
norm of a column vector 𝑋 be ‖X‖

2

:= tr[XTX], and let the
superscript T denote the matrix transpose.

Consider the following dual-rate nonlinear output-error
system with colored noise:

𝑦 (𝑡) =
𝐵 (𝑧)

𝐴 (𝑧)
𝑓 (𝑢 (𝑡)) + V (𝑡) , (1)

where𝑦(𝑡) is the systemoutput,𝑢(𝑡) is the system input, V(𝑡) is
a stochastic white noise with zeromean,𝐴(𝑧) and𝐵(𝑧) are the
polynomials in the unit backward shift operator [𝑧

−1

𝑦(𝑡) =

𝑦(𝑡 − 1)],

𝐴 (𝑧) = 1 + 𝑎
1
𝑧
−1

+ 𝑎
2
𝑧
−2

+ ⋅ ⋅ ⋅ + 𝑎
𝑛
𝑧
−𝑛

,

𝐵 (𝑧) = 𝑏
1
𝑧
−1

+ 𝑏
2
𝑧
−2

+ ⋅ ⋅ ⋅ + 𝑏
𝑛
𝑧
−𝑛

,

(2)

and 𝑓(𝑢(𝑡)) is a preload nonlinearity shown in Figure 1 and
can be expressed as [98, 99]

𝑓 (𝑢 (𝑡)) =

{{

{{

{

𝑢 (𝑡) + 𝑚
1
, 𝑢 (𝑡) > 0,

0, 𝑢 (𝑡) = 0,

𝑢 (𝑡) − 𝑚
2
, 𝑢 (𝑡) < 0,

(3)

where 𝑚
1
and −𝑚

2
are two preload points.

For the dual-rate sampled-data system, all the input data
{𝑢(𝑡), 𝑡 = 0, 1, 2, . . .} and only the scarce output data {𝑦(𝑡𝑞),
𝑡 = 0, 1, 2, . . . , (𝑞 ⩾ 2)} are known. The intersample outputs
ormissing outputs 𝑦(𝑡𝑞+𝑗), 𝑗 = 1, 2, . . . , 𝑞−1 are unavailable.

Define a sign function

sgn (𝑢 (𝑡)) :=

{{

{{

{

1, if 𝑢 (𝑡) > 0,

0, if 𝑢 (𝑡) = 0,

−1, if 𝑢 (𝑡) < 0.

(4)

Then the function 𝑓(𝑢(𝑡)) can be expressed as

𝑓 (𝑢 (𝑡)) = 𝑢 (𝑡) +
𝑚
1
+ 𝑚
2

2
sgn (𝑢 (𝑡))

+
𝑚
1
− 𝑚
2

2
sgn (𝑢

2

(𝑡)) .

(5)

Let

𝑔
1
=

𝑚
1
+ 𝑚
2

2
, 𝑔

2
=

𝑚
1
− 𝑚
2

2
. (6)

Hence, we have
𝑓 (𝑢 (𝑡)) = 𝑢 (𝑡) + 𝑔

1
sgn (𝑢 (𝑡)) + 𝑔

2
sgn (𝑢

2

(𝑡)) . (7)

Once 𝑔
1
and 𝑔

2
are estimated, the parameters𝑚

1
and𝑚

2
can

be computed by 𝑚
1
= 𝑔
1
+ 𝑔
2
, 𝑚
2
= 𝑔
1
− 𝑔
2
.

3. The Missing Outputs Identification Model
Based Stochastic Gradient Algorithm

Substituting (7) into (1) gets

𝐴 (𝑧) 𝑦 (𝑡) = 𝐵 (𝑧) (𝑢 (𝑡) + 𝑔
1
sgn (𝑢 (𝑡)) + 𝑔

2
sgn (𝑢

2

(𝑡)))

+ 𝐴 (𝑧) V (𝑡) .

(8)

m1

−m2
u

f(u)

Figure 1: The preload characteristics.

Define the parameter vector 𝜃 and information vector 𝜑
1
(𝑡)

as

𝜃 := [𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
, 𝑏
1
, 𝑏
2
, . . . , 𝑏

𝑛
, 𝑏
1
𝑔
1
, 𝑏
2
𝑔
1
, . . . ,

𝑏
𝑛
𝑔
1
, 𝑏
1
𝑔
2
, 𝑏
2
𝑔
2
, . . . , 𝑏

𝑛
𝑔
2
]
T
∈ R
4𝑛

,

(9)

𝜑
1
(𝑡) := [ − 𝑦 (𝑡 − 1) + V (𝑡 − 1) ,

− 𝑦 (𝑡 − 2) + V (𝑡 − 2) , . . . , −𝑦 (𝑡 − 𝑛) + V (𝑡 − 𝑛) ,

𝑢 (𝑡 − 1) , 𝑢 (𝑡 − 2) , . . . , 𝑢 (𝑡 − 𝑛) ,

sgn (𝑢 (𝑡 − 1)) , sgn (𝑢 (𝑡 − 2)) , . . . ,

sgn (𝑢 (𝑡 − 𝑛)) , sgn (𝑢
2

(𝑡 − 1)) ,

sgn (𝑢
2

(𝑡 − 2)) , . . . , sgn (𝑢
2

(𝑡 − 𝑛))]
T
∈ R
4𝑛

.

(10)

From (9) and (10), we get

𝑦 (𝑡) = 𝜑
T
1
(𝑡) 𝜃 + V (𝑡) (11)

or

𝑦 (𝑡𝑞) = 𝜑
T
1
(𝑡𝑞) 𝜃 + V (𝑡𝑞) . (12)

Let 𝜃̂(𝑡) be the estimate of 𝜃. Defining and minimizing the
cost function

𝐽 (𝜃) := [𝑦(𝑡𝑞) − 𝜑
T
1
(𝑡𝑞)𝜃]

2 (13)

give the following stochastic gradient (SG) algorithm for
estimating 𝜃:

𝜃̂ (𝑡𝑞) = 𝜃̂ (𝑡𝑞 − 𝑞) +
𝜑̂
1
(𝑡𝑞)

𝑟
1
(𝑡𝑞)

𝑒
1
(𝑡𝑞) , (14)

𝜃̂ (𝑡𝑞 − 𝑖) = 𝜃̂ (𝑡𝑞 − 𝑞) , 𝑖 = 𝑞 − 1, 𝑞 − 2, . . . , 1,

𝑒
1
(𝑡𝑞) = 𝑦 (𝑡𝑞) − 𝜑̂

T
1
(𝑡𝑞) 𝜃̂ (𝑡𝑞 − 𝑞) ,

(15)
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𝜑̂
1
(𝑡𝑞) = [ − 𝑦 (𝑡𝑞 − 1) + V̂ (𝑡𝑞 − 1) ,

− 𝑦 (𝑡𝑞 − 2) + V̂ (𝑡𝑞 − 2) , . . . ,

− 𝑦 (𝑡𝑞 − 𝑛) + V̂ (𝑡𝑞 − 𝑛) ,

𝑢 (𝑡 − 1) , 𝑢 (𝑡 − 2) , . . . , 𝑢 (𝑡 − 𝑛) ,

sgn (𝑢 (𝑡 − 1)) , sgn (𝑢 (𝑡 − 2)) , . . . ,

sgn (𝑢 (𝑡 − 𝑛)) , sgn (𝑢
2

(𝑡 − 1)) ,

sgn (𝑢
2

(𝑡 − 2)) , . . . , sgn (𝑢
2

(𝑡 − 𝑛))]
T
,

(16)

V̂ (𝑡𝑞 − 𝑖) = 𝑦 (𝑡𝑞 − 𝑖) − 𝜑̂
T
1
(𝑡𝑞 − 𝑖) 𝜃̂ (𝑡𝑞 − 𝑖) , (17)

𝑟
1
(𝑡𝑞) = 𝑟

1
(𝑡𝑞 − 𝑞) +

󵄩󵄩󵄩󵄩𝜑̂1(𝑡𝑞)
󵄩󵄩󵄩󵄩

2

, 𝑟 (0) = 1. (18)

Since the information 𝜑̂
1
(𝑡𝑞) on the right-hand sides of (16)

contains the unknown variables −𝑦(𝑡𝑞 − 𝑖) + V̂(𝑡𝑞 − 𝑖), 𝑖 =

𝑞 − 1, 𝑞 − 2, . . . , 1, the SG algorithm in (14)–(18) is impossible
to implement. In this section, we use the missing outputs
identification model (MOI) to overcome this difficulty; these
unknown −𝑦(𝑡𝑞 − 𝑖) + V̂(𝑡𝑞 − 𝑖) are replaced with the output
estimates −𝑦(𝑡𝑞 − 𝑖) + V̂(𝑡𝑞 − 𝑖) of an MOI model,

− 𝑦 (𝑡𝑞 − 𝑖) + V̂ (𝑡𝑞 − 𝑖) = −𝜑̂
T
1
(𝑡𝑞 − 𝑖) 𝜃̂ (𝑡𝑞 − 𝑖) ,

𝑖 = 𝑞 − 1, 𝑞 − 2, . . . , 1,

𝜑̂
1
(𝑡𝑞 − 𝑖 + 1)

= [ − 𝑦 (𝑡𝑞 − 𝑖) + V̂ (𝑡𝑞 − 𝑖) ,

− 𝑦 (𝑡𝑞 − 𝑖 − 1) + V̂ (𝑡𝑞 − 𝑖 − 1) , . . . ,

− 𝑦 (𝑡𝑞 − 𝑞 + 1) + V̂ (𝑡𝑞 − 𝑞 + 1) ,

− 𝑦 (𝑡𝑞 − 𝑞) + V̂ (𝑡𝑞 − 𝑞) , . . . ,

− 𝑦 (𝑡𝑞 − 𝑖 + 1 − 𝑛) + V̂ (𝑡𝑞 − 𝑖 + 1 − 𝑛) ,

𝑢 (𝑡𝑞 − 𝑖) , 𝑢 (𝑡𝑞 − 𝑖 − 1) , . . . ,

𝑢 (𝑡𝑞 − 𝑖 + 1 − 𝑛) , sgn (𝑢 (𝑡𝑞 − 𝑖)) ,

sgn (𝑢 (𝑡𝑞 − 𝑖 − 1)) , . . . ,

sgn (𝑢 (𝑡𝑞 − 𝑖 + 1 − 𝑛)) , sgn (𝑢
2

(𝑡𝑞 − 𝑖)) ,

sgn (𝑢
2

(𝑡𝑞 − 𝑖 − 1)) , . . . ,

sgn (𝑢
2

(𝑡𝑞 − 𝑖 + 1 − 𝑛))]
T
,

(19)

where −𝑦(𝑡𝑞− 𝑖) + V̂(𝑡𝑞 − 𝑖) represents the estimate of −𝑦(𝑡𝑞−

𝑖) + V(𝑡𝑞 − 𝑖) at time 𝑡𝑞 − 𝑖, 𝜃̂(𝑡𝑞 − 𝑖) represents the estimate
of 𝜃 at time 𝑡𝑞 − 𝑖, and 𝜑̂

1
(𝑡𝑞 − 𝑖) represents the estimate of

𝜑
1
(𝑞 − 𝑖).

Thus, we have the following missing output estimates
based SG (MOE-SG) algorithm for estimating the parameter
vector 𝜃 in (9):

𝜃̂ (𝑡𝑞) = 𝜃̂ (𝑡𝑞 − 𝑞) +
𝜑̂
1
(𝑡𝑞)

𝑟
1
(𝑡𝑞)

𝑒
2
(𝑡𝑞) , (20)

𝜃̂ (𝑡𝑞 − 𝑖) = 𝜃̂ (𝑡𝑞 − 𝑞) , 𝑖 = 𝑞 − 1, 𝑞 − 2, . . . , 1, (21)

−𝑦 (𝑡𝑞 − 𝑖) + V̂ (𝑡𝑞 − 𝑖) = −𝜑̂
T
1
(𝑡𝑞 − 𝑖) 𝜃̂ (𝑡𝑞 − 𝑖) , (22)

𝜑̂
1
(𝑡𝑞 − 𝑖 + 1)

= [ − 𝑦 (𝑡𝑞 − 𝑖) + V̂ (𝑡𝑞 − 𝑖) ,

− 𝑦 (𝑡𝑞 − 𝑖 − 1) + V̂ (𝑡𝑞 − 𝑖 − 1) , . . . ,

− 𝑦 (𝑡𝑞 − 𝑞 + 1) + V̂ (𝑡𝑞 − 𝑞 + 1) ,

− 𝑦 (𝑡𝑞 − 𝑞) + V̂ (𝑡𝑞 − 𝑞) , . . . ,

− 𝑦 (𝑡𝑞 − 𝑖 + 1 − 𝑛) + V̂ (𝑡𝑞 − 𝑖 + 1 − 𝑛) ,

𝑢 (𝑡𝑞 − 𝑖) , 𝑢 (𝑡𝑞 − 𝑖 − 1) , . . . ,

𝑢 (𝑡𝑞 − 𝑖 + 1 − 𝑛) , sgn (𝑢 (𝑡𝑞 − 𝑖)) ,

sgn (𝑢 (𝑡𝑞 − 𝑖 − 1)) , . . . , sgn (𝑢 (𝑡𝑞 − 𝑖 + 1 − 𝑛)) ,

sgn (𝑢
2

(𝑡𝑞 − 𝑖)) , sgn (𝑢
2

(𝑡𝑞 − 𝑖 − 1)) , . . . ,

sgn (𝑢
2

(𝑡𝑞 − 𝑖 + 1 − 𝑛))]
T
,

(23)

𝑒
1
(𝑡𝑞) = 𝑦 (𝑡𝑞) − 𝜑̂

T
1
(𝑡𝑞) 𝜃̂ (𝑡𝑞 − 𝑞) , (24)

𝑟
1
(𝑡𝑞) = 𝑟

1
(𝑡𝑞 − 𝑞) +

󵄩󵄩󵄩󵄩𝜑̂1(𝑡𝑞)
󵄩󵄩󵄩󵄩

2

, 𝑟 (0) = 1. (25)

The steps of computing the parameter estimate 𝜃̂(𝑡𝑞) by the
MOE-SG algorithm are listed as follows.

(1) Let 𝑢(−𝑗) = 0, 𝑦(−𝑗) = 0, 𝑗 = 0, 1, 2, . . . , 𝑛 − 1, and
give a small positive number 𝜀.

(2) Let 𝑡 = 1, 𝑟(0) = 1, and 𝜃̂(0) = 1/𝑝
0
with 1 being

a column vector whose entries are all unity and 𝑝
0
=

10
6.

(3) Collect the input data 𝑢(𝑡𝑞), 𝑢(𝑡𝑞 − 1), . . . , 𝑢(𝑡𝑞 − 𝑛),
and collect the output data 𝑦(𝑡𝑞).

(4) Let 𝑖 = 𝑞−1 and compute −𝑦(𝑡𝑞−𝑖)+ V̂(𝑡𝑞− 𝑖) by (22).
(5) Form 𝜑̂

1
(𝑡𝑞 − 𝑖 + 1) by (23).

(6) Decrease 𝑖 by 1; if 𝑖 ⩾ 1, go to step (4); otherwise, go
to the next step.

(7) Compute 𝑒
1
(𝑡𝑞) and 𝑟

1
(𝑡𝑞) by (24) and (25), respec-

tively.
(8) Update the parameter estimation vector 𝜃̂(𝑡𝑞) by (20).
(9) Compare 𝜃̂(𝑡𝑞) and 𝜃̂(𝑡𝑞 − 𝑞); if ‖𝜃̂(𝑡𝑞) − 𝜃̂(𝑡𝑞 − 𝑞)‖ ⩽

𝜀, then terminate the procedure and obtain the 𝜃̂(𝑡𝑞);
otherwise, increase 𝑡 by 1 and go to step (3).
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Figure 2: The flowchart of computing the estimate 𝜃̂(𝑡𝑞).

The flowchart of computing the MOE-SG parameter
estimate 𝜃̂(𝑡𝑞) is shown in Figure 2.

4. The Auxiliary Model Based Stochastic
Gradient Algorithm

Define

𝑥 (𝑡) =
𝐵 (𝑧)

𝐴 (𝑧)
(𝑢 (𝑡) + 𝑔

1
sgn (𝑢 (𝑡)) + 𝑔

2
sgn (𝑢

2

(𝑡))) .

(26)

From (8) and (26), we have

𝑦 (𝑡) = 𝑥 (𝑡) + V (𝑡) . (27)

Define the information vector 𝜑
2
(𝑡) as

𝜑
2
(𝑡) := [ − 𝑥 (𝑡 − 1) , −𝑥 (𝑡 − 2) , . . . , −𝑥 (𝑡 − 𝑛) ,

𝑢 (𝑡 − 1) , 𝑢 (𝑡 − 2) , . . . , 𝑢 (𝑡 − 𝑛) ,

sgn (𝑢 (𝑡 − 1)) , sgn (𝑢 (𝑡 − 2)) , . . . ,

sgn (𝑢 (𝑡 − 𝑛)) ,

sgn (𝑢
2

(𝑡 − 1)) , sgn (𝑢
2

(𝑡 − 2)) , . . . ,

sgn (𝑢
2

(𝑡 − 𝑛))]
T
∈ R
4𝑛

.

(28)

Then we get

𝑥 (𝑡) = 𝜑
T
2
(𝑡) 𝜃, (29)

𝑦 (𝑡) = 𝜑
T
2
(𝑡) 𝜃 + V (𝑡) . (30)

Assume 𝑡 is an integer multiple of 𝑞 and rewrite (30) as

𝑦 (𝑡𝑞) = 𝜑
T
2
(𝑡𝑞) 𝜃 (𝑡𝑞) + V (𝑡𝑞) . (31)

Let 𝜃̂(𝑡) be the estimate of 𝜃. Defining andminimizing the
cost function

𝐽 (𝜃) := [𝑦(𝑡𝑞) − 𝜑
T
2
(𝑡𝑞)𝜃]

2 (32)

give the following SG algorithm of estimating 𝜃:

𝜃̂ (𝑡𝑞) = 𝜃̂ (𝑡𝑞 − 𝑞) +
𝜑
2
(𝑡𝑞)

𝑟
2
(𝑡𝑞)

𝑒
2
(𝑡𝑞) , (33)

𝑒
2
(𝑡𝑞) = 𝑦 (𝑡𝑞) − 𝜑

T
2
(𝑡𝑞) 𝜃̂ (𝑡𝑞 − 𝑞) , (34)

𝜑
2
(𝑡𝑞) = [ − 𝑥 (𝑡𝑞 − 1) , −𝑥 (𝑡𝑞 − 2) , . . . , −𝑥 (𝑡𝑞 − 𝑛) ,

𝑢 (𝑡 − 1) , 𝑢 (𝑡 − 2) , . . . , 𝑢 (𝑡 − 𝑛) ,

sgn (𝑢 (𝑡 − 1)) , sgn (𝑢 (𝑡 − 2)) , . . . ,

sgn (𝑢 (𝑡 − 𝑛)) ,

sgn (𝑢
2

(𝑡 − 1)) , sgn (𝑢
2

(𝑡 − 2)) , . . . ,

sgn(𝑢2(𝑡 − 𝑛))]
T
,

(35)

𝑟
2
(𝑡𝑞) = 𝑟

2
(𝑡𝑞 − 𝑞) +

󵄩󵄩󵄩󵄩𝜑2(𝑡𝑞)
󵄩󵄩󵄩󵄩

2

, 𝑟 (0) = 1. (36)

Because of the unknown variables 𝑥(𝑡𝑞 − 𝑖) in (33), the SG
algorithm in (33)–(36) is impossible to implement. In this
section, we use the auxiliary model; these unknown 𝑥(𝑡𝑞 − 𝑖)

are replaced with the outputs 𝑥
𝑎
(𝑡𝑞− 𝑖) of an auxiliary model,

𝑥
𝑎
(𝑡𝑞 − 𝑖) = 𝜃

T
𝑎
(𝑡𝑞 − 𝑖)𝜑

𝑎
(𝑡𝑞 − 𝑖) , (37)

where 𝜃
𝑎
(𝑡𝑞 − 𝑖) is the estimate 𝜃̂(𝑡𝑞 − 𝑖) of 𝜃 and 𝜑

𝑎
(𝑡𝑞 − 𝑖) is

the estimate 𝜑̂
2
(𝑡𝑞−𝑖) of𝜑

2
(𝑡𝑞−𝑖). We can obtain an auxiliary

model based stochastic gradient (AM-SG) algorithm:

𝜃̂ (𝑡𝑞) = 𝜃̂ (𝑡𝑞 − 𝑞) +
𝜑̂
2
(𝑡𝑞)

𝑟
2
(𝑡𝑞)

𝑒
2
(𝑡𝑞) , (38)

𝜃̂ (𝑡𝑞 − 𝑖) = 𝜃̂ (𝑡𝑞 − 𝑞) , 𝑖 = 𝑞 − 1, 𝑞 − 2, . . . , 1, (39)

𝑥
𝑎
(𝑡𝑞 − 𝑖) = 𝜃̂

T
(𝑡𝑞 − 𝑖) 𝜑̂

2
(𝑡𝑞 − 𝑖) , (40)



Mathematical Problems in Engineering 5

𝜑̂
2
(𝑡𝑞 − 𝑖 + 1) = [ − 𝑥

𝑎
(𝑡𝑞 − 𝑖) , −𝑥

𝑎
(𝑡𝑞 − 𝑖 − 1) , . . . ,

− 𝑥
𝑎
(𝑡𝑞 − 𝑖 + 1 − 𝑛) ,

𝑢 (𝑡 − 𝑖) , 𝑢 (𝑡 − 𝑖 − 1) , . . . ,

𝑢 (𝑡 − 𝑖 + 1 − 𝑛) ,

sgn (𝑢 (𝑡 − 𝑖)) , sgn (𝑢 (𝑡 − 𝑖 − 1)) , . . . ,

sgn (𝑢 (𝑡 − 𝑖 + 1 − 𝑛)) ,

sgn (𝑢
2

(𝑡 − 𝑖)) ,

sgn (𝑢
2

(𝑡 − 𝑖 − 1)) , . . . ,

sgn(𝑢2(𝑡 − 𝑖 + 1 − 𝑛))]
T
,

(41)

𝑒
2
(𝑡𝑞) = 𝑦 (𝑡𝑞) − 𝜑̂

T
2
(𝑡𝑞) 𝜃̂ (𝑡𝑞 − 𝑞) , (42)

𝑟
2
(𝑡𝑞) = 𝑟

2
(𝑡𝑞 − 𝑞) +

󵄩󵄩󵄩󵄩𝜑̂2(𝑡𝑞)
󵄩󵄩󵄩󵄩

2

, 𝑟 (0) = 1. (43)

The steps of computing the parameter estimate 𝜃̂(𝑡𝑞) by the
AM-SG algorithm are listed as follows.

(1) Let𝑢(−𝑗) = 0,𝑦(−𝑗) = 0,𝑥(−𝑗) = 0, 𝑗 = 0, 1, 2, . . . , 𝑛−

1, and give a small positive number 𝜀.

(2) Let 𝑡 = 1, 𝑟(0) = 1, and 𝜃̂(0) = 1/𝑝
0
with 1 being

a column vector whose entries are all unity and 𝑝
0
=

10
6.

(3) Collect the input data 𝑢(𝑡𝑞), 𝑢(𝑡𝑞 − 1), . . . , 𝑢(𝑡𝑞 − 𝑛),
and collect the output data 𝑦(𝑡𝑞).

(4) Let 𝑖 = 𝑞 − 1 and compute 𝑥
𝑎
(𝑡𝑞 − 𝑖) by (40).

(5) Form 𝜑̂
2
(𝑡𝑞 − 𝑖 + 1) by (41).

(6) Decrease 𝑖 by 1; if 𝑖 ⩾ 1, go to step (4); otherwise, go
to next step.

(7) Compute 𝑒
2
(𝑡𝑞) and 𝑟

2
(𝑡𝑞) by (42) and (43), respec-

tively.

(8) Update the parameter estimation vector 𝜃̂(𝑡𝑞) by (38).

(9) Compare 𝜃̂(𝑡𝑞) and 𝜃̂(𝑡𝑞 − 𝑞); if ‖𝜃̂(𝑡𝑞) − 𝜃̂(𝑡𝑞 − 𝑞)‖ ⩽

𝜀, then terminate the procedure and obtain the 𝜃̂(𝑡𝑞);
otherwise, increase 𝑡 by 1 and go to step (3).

The flowchart of computing the AM-SG parameter esti-
mate 𝜃̂(𝑡𝑞) is shown in Figure 3.

Remark 1. Compared with the polynomial transformation
technique, theMOE-SGmethod and theAM-SGmethod can
estimate the unknown parameters directly.

Start
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Initialize: t = 1

Update I/O data
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2
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Figure 3: The flowchart of computing the estimate 𝜃̂
2
(𝑡𝑞).

5. Example

Consider the following nonlinear output-error system with
the updating period 𝑞 = 2:

𝑦 (𝑡) =
𝐵 (𝑧)

𝐴 (𝑧)
𝑓 (𝑢 (𝑡)) + V (𝑡) ,

𝐴 (𝑧) = 1 + 𝑎
1
𝑧
−1

+ 𝑎
2
𝑧
−2

= 1 + 0.49𝑧
−1

− 0.2𝑧
−2

,

𝐵 (𝑧) = 𝑏
1
𝑧
−1

+ 𝑏
2
𝑧
−2

= 0.2𝑧
−1

+ 0.4𝑧
−2

,

𝑓 (𝑢 (𝑡)) = 𝑢 (𝑡) +
𝑚
1
+ 𝑚
2

2
sgn (𝑢 (𝑡))

+
𝑚
1
− 𝑚
2

2
sgn (𝑢

2

(𝑡))

= 𝑢 (𝑡) +
0.5 + 0.3

2
sgn (𝑢 (𝑡))

+
0.5 − 0.3

2
sgn (𝑢

2

(𝑡))
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Table 1: The MOE-SG algorithm estimates and errors.

𝑡 1000 2000 3000 4000 5000 True values
𝑎
1

0.30790 0.43409 0.48162 0.49513 0.49505 0.49000
𝑎
2

−0.16601 −0.20319 −0.20626 −0.20656 −0.20341 −0.20000
𝑏
1

0.19508 0.19548 0.19462 0.19665 0.19816 0.20000
𝑏
2

0.36487 0.39043 0.39879 0.40105 0.39987 0.40000
𝑏
1
𝑔
1

0.09729 0.09384 0.08995 0.08769 0.08705 0.08000
𝑏
2
𝑔
1

0.13565 0.14818 0.15401 0.15931 0.15867 0.16000
𝑏
1
𝑔
2

0.02161 0.02602 0.02558 0.02764 0.02770 0.02000
𝑏
2
𝑔
2

0.02641 0.03181 0.03127 0.03378 0.03385 0.04000
𝛿 (%) 26.70140 8.46344 2.72656 2.15284 1.91759

Table 2: The AM-SG algorithm estimates and errors.

𝑡 1000 2000 3000 4000 5000 True values
𝑎
1

0.39201 0.46141 0.50310 0.49802 0.48917 0.49000
𝑎
2

−0.18980 −0.19696 −0.19784 −0.20113 −0.20307 −0.20000
𝑏
1

0.18974 0.19349 0.19872 0.20192 0.20281 0.20000
𝑏
2

0.40122 0.41674 0.39648 0.40109 0.40350 0.40000
𝑏
1
𝑔
1

0.09799 0.08924 0.08427 0.08475 0.08276 0.08000
𝑏
2
𝑔
1

0.14716 0.15484 0.15489 0.16514 0.16040 0.16000
𝑏
1
𝑔
2

0.02005 0.02781 0.02034 0.02761 0.02600 0.02000
𝑏
2
𝑔
2

0.02674 0.03708 0.02712 0.03682 0.03467 0.04000
𝛿 (%) 14.27547 5.08770 2.79209 1.91002 1.41209

= 𝑢 (𝑡) + 𝑔
1
sgn (𝑢 (𝑡)) + 𝑔

2
sgn (𝑢

2

(𝑡))

= 𝑢 (𝑡) + 0.4 sgn (𝑢 (𝑡)) + 0.1 sgn (𝑢
2

(𝑡)) ;

(44)

the input {𝑢(𝑡)} is taken as a persistent excitation signal
sequence with zero mean and unit variance and {V(𝑡)} is a
white noise sequence with zero mean and variance 𝜎

2

=

0.10
2. The unknown parameters are as follows:

𝜃 = [𝑎
1
, 𝑎
2
, 𝑏
1
, 𝑏
2
, 𝑏
1
𝑔
1
, 𝑏
2
𝑔
1
, 𝑏
1
𝑔
2
, 𝑏
2
𝑔
2
]
T

= [0.49, −0.2, 0.2, 0.4, 0.08, 0.16, 0.02, 0.04]
T
.

(45)

Applying the MOE-SG algorithm and the AM-SG algorithm
to estimate the parameters, the parameter estimates and their
errors based on the MOE-SG algorithm and the AM-SG
algorithm are shown in Tables 1 and 2 and the parameter
estimation errors 𝛿 := ‖𝜃̂ − 𝜃‖/‖𝜃‖ versus 𝑡 are shown in
Figures 4 and 5.

From Tables 1 and 2 and Figures 4 and 5, we can draw the
following conclusions.

(1) Both the MOE-SG algorithm and the AM-SG algo-
rithm can estimate the unknown parameters directly.

(2) The parameter estimation errors become smaller and
smaller and go to zero with 𝑡 increasing.
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Figure 4: The parameter estimation errors 𝛿 versus 𝑡 (MOE-SG).

6. Conclusions

Two identification methods for dual-rate nonlinear output-
error systems are presented to estimate the unknown param-
eters directly and can avoid estimating more parameters than
the original systems. Furthermore, the two methods can also
be extended to other systems such as

𝑦 (𝑡) =
𝐵 (𝑧)

𝐴 (𝑧)
𝑓 (𝑢 (𝑡)) +

𝐷 (𝑧)

𝐶 (𝑧)
V (𝑡) ,

𝐴 (𝑧) 𝑦 (𝑡) = 𝐵 (𝑧) 𝑓 (𝑢 (𝑡)) + 𝐷 (𝑧) V (𝑡) .

(46)
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Figure 5: The parameter estimation errors 𝛿 versus 𝑡 (AM-SG).
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This paper investigates the input-to-state stable in the mean (ISSiM) property of the switched stochastic nonlinear (SSN) systems
with an improved average dwell time (ADT) method in two cases: (i) all of the constituent subsystems are ISSiM and (ii) parts of
the constituent subsystems are ISSiM. First, an improved ADT method for stability of SSN systems is introduced. Then, based on
that not only a new ISSiM result for SSN systems whose subsystems are ISSiM is presented, but also a new ISSiM result for such
systems in which parts of subsystems are ISSiM is established. In comparison with the existing ones, the main results obtained in
this paper have some advantages. Finally, an illustrative example with numerical simulation is verified the correctness and validity
of the proposed results.

1. Introduction

Switched systems, which provide a unified framework for
mathematical modeling of many physical or man-made
systems, display switching features such as communica-
tion networks, manufacturing, computer synchronization,
auto pilot control design, automotive engine control, traffic
control, and chemical processes. The systems consist of a
collection of indexed differential or difference equations and
a switching signal governing the switching among them. In
the past two decades, increasing attention has been paid
to the analysis and synthesis of switched systems because
of their significance in both theory and applications, and
many significant results have been established for the stability
analysis and control design of such switched systems; see [1–
12] and references therein. Regarding the stability analysis
problem, there are two famous analysis methods, that is,
common Lyapunov function (CLF) method [4, 5], and
multiple Lyapunov functions (MLF) method [9]. Although
the CLFmethod is very useful in stability analysis and control
design, it is difficult to be applied in practice because of the
following reason: for a given switched nonlinear system, there

is no general method to determine whether all subsystems
share a CLF or not, even for the switched linear systems.
About the MLF method, it has been proved in [9] that the
switched linear systems with stable subsystems are globally
asymptotically stable (GAS) if the dwell time (DT) 𝜏

𝑑
is

sufficiently large. Therefore, a DT method [9] is established
to analyze the stability analysis and control design of the
switched systems; that is, given a constant 𝜏

𝑑
> 0, let 𝑆

𝑑
[𝜏

𝑑
]

denote the set of all switching signals with interval between
consecutive switchings being no smaller than 𝜏

𝑑
, 𝜏

𝑑
is called

the “dwell time”. Recently, Ni et al. think it is necessary to
find a minimum dwell time (MDT) 𝜏∗

𝑑
, which ensures that

the switched system stays on each mode for period greater
than or equal to 𝜏∗

𝑑
; the system is GAS and have obtained a

new method called MDT method [13]. However, the above
MDT method is only for the switched linear systems, and it
is impossible to be extended to switched nonlinear systems
concluding from the proofs of the results in [13]. It is well
known that the ADT scheme characterizes a large class of
stable switching signals than dwell time scheme. Thus, the
ADT method is very important not only in practice but also
in theory. Considerable attention has been paid, and many
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efforts have been done to take advantage of the ADTmethod
to investigate the stability analysis and control design both in
switched linear and nonlinear systems. In [14], we obtain an
improved ADT method for the switched nonlinear systems,
which have two advantages over the existing ADT methods
[15–18]: one is that the conditions of the improved ADT
method are less than those; the other one is that the obtained
lower bound of ADT (i.e., 𝜏∗

𝑎
) is also smaller than those

obtained by the above ADT methods.
When a control system is affected by an external input,

it is important to analyze how the external input affects
the system’s behavior. Input-to-state stable (ISS) property
[19] characterizes the continuity of state trajectories on the
initial states and the external inputs, and integral input-to-
state stable (iISS) property is a weaker concept introduced in
[20], and the iISS property has been shown to be a natural
generalization of ISS. Both ISS and iISS have been proven
to be useful in the stability analysis and control design of
nonlinear systems; see [21–25] and the references therein.
Various extensions of the ISS property have been made for
different types of dynamical systems, such as discrete time
systems [21], time-delay systems [22], impulsive system [23],
and switched systems [24–26]. Many works about the ISSiM
of SSN systems have been done, but this problemhas not been
solved completely so far. Thus, investigating the ISSiM of the
SSN systems is not only very important in theory but is also
reasonable in practice.

In this paper, we present several new sufficient conditions
under which a SSN system with an improved ADT switching
signal is ISSiM, also examine the case where parts of the
constituent subsystems are not ISSiM. First, we introduce
an improved ADT method, and by which we present a new
sufficient condition for the SSN system whose subsystems
are ISSiM. Then, we obtain some new ISSiM results for such
switched systems that parts of the constituent subsystems
are ISSiM. Finally, an illustrative example with numerical
simulation is studied using the above obtained results. The
study of example shows that our analysis methods work very
well in analyzing the ISSiM of SSN systems.

The rest of the paper is organized as follows. Section 2
introduces some notations and preliminary results which are
used in this paper. Section 3 presents the main results of this
paper. In Section 4, an illustrative example with numerical
simulation is given to support our new results, which is
followed by the conclusion in Section 5.

2. Notations and Preliminary Results

Throughout this paper, R
+
denotes the set of all nonnegative

real numbers; R𝑛 and R𝑛×𝑚 denote 𝑛-dimensional real space
and 𝑛 × 𝑚 dimensional real matrix space, respectively. For
vector 𝑥 ∈ R𝑛, |𝑥| denotes the Euclidean norm; that is,
|𝑥| = (∑

𝑛

𝑖=1
𝑥
2

𝑖
)
1/2. All the vectors are column vectors unless

otherwise specified; the transpose of vectors andmatrices are
denoted by superscript 𝑇; C𝑖 denotes all the 𝑖th continuous
differential functions. A function 𝜑(𝑢) is said to belong to
the class K if 𝜑 ∈ C(R

+
,R

+
), 𝜑(0) = 0 and 𝜑(𝑢) is strictly

increasing in 𝑢. K
∞

is the subset of K functions that are
unbounded.

Consider the following SSN systems:

𝑑𝑥 = 𝑓
𝜎
(𝑥, 𝑢) 𝑑𝑡 + 𝑔

𝜎
(𝑥, 𝑢) 𝑑𝑤, 𝑡 ≥ 0, (1)

where 𝑥 ∈ R𝑛 and 𝑢 ∈ L𝑚

∞
are the system state and input,

respectively; L𝑚

∞
denotes the set of all the measurable and

locally essentially bounded input 𝑢 ∈ R𝑚 on [0,∞) with
norm

‖𝑢 (𝑡)‖ = inf
A⊂Ω,𝑃(A)=0

sup {|𝑢 (𝑡, 𝜔)| : 𝜔 ∈ Ω \A} . (2)

𝑤 is an 𝑟-dimensional independent standard Wiener process
(or Brownian motion); 𝜎(⋅) : [0,∞) → I (I is the index
set, maybe infinite) is the switching path (or law, signal) and
is right-hand continuous and piecewise constant on 𝑡. More
specifically, we impose restrictions on the set of admissible
switching signals by defining the set

𝐷
𝑇
= {𝜎 (𝑡) : 𝑡

𝑘+1
− 𝑡

𝑘
≥ 𝑇} , (3)

where 𝑡
𝑘
are the commutation instants and 𝑇 ≥ 0. For

every 𝑖 ∈ I, 𝑓
𝑖
: R𝑛

× R𝑚

→ R𝑛, 𝑔
𝑖
: R𝑛

× R𝑚

→

R𝑛×𝑟 is continuous, uniformly locally Lipschitz, and satisfies
𝑓
𝑖
(0, 0) = 𝑔

𝑖
(0, 0) = 0; initial data 𝑥

0
∈ R𝑛. For an arbitrary

matrix𝐷, we define |𝐷| = [𝜆
𝑀
(𝐷

𝑇

𝐷)]
1/2, where 𝜆

𝑀
denotes

the largest eigenvalue of𝐷𝑇

𝐷.
For any given 𝑉(𝑥) ∈ 𝐶

2

(R𝑛

;R
+
), associated with the

SSN system (1), we define the differential operatorL to every
𝑖 ∈ I as follows:

L𝑉 =
𝜕𝑉

𝜕𝑥
𝑓
𝑖
(𝑥, 𝑢) +

1

2
Tr{𝑔𝑇

𝑖
(𝑥, 𝑢)

𝜕
2

𝑉

𝜕𝑥2
𝑔
𝑖
(𝑥, 𝑢)} . (4)

With the development of this paper, we first present some
definitions.

Definition 1 (see [15]). For any switching signal 𝜎(𝑡) and any
𝑡 ≥ 𝜏, let𝑁

𝜎
(𝜏, 𝑡) denote the number of switching of 𝜎(𝑡) over

the interval [𝜏, 𝑡) satisfying

𝑁
𝜎
(𝜏, 𝑡) ≤ 𝑁

0
+
𝑡 − 𝜏

𝜏
𝑎

, (5)

where 𝜏
𝑎
is called average dwell time and 𝑁

0
denotes the

chatter bound.

Definition 2 (see [27]). The SSN system (1) is ISSiM if there
exist 𝛽 ∈ KL and 𝛼, 𝛾 ∈ K

∞
, such that for any 𝑢 ∈ R𝑚,

𝑥
0
∈ R𝑛, we have

𝐸 [𝛼 (|𝑥 (𝑡)|)] ≤ 𝛽 (
󵄨󵄨󵄨󵄨𝑥0
󵄨󵄨󵄨󵄨 , 𝑡) + 𝛾 (‖𝑢‖[0,𝑡)) , ∀𝑡 ≥ 0. (6)

The SSN system (1) is 𝑒𝜆𝑡-weighted ISSiM for some 𝜆 > 0;
if there exist 𝛼

1
, 𝛼

2
, 𝛾 ∈ K

∞
such that for any 𝑢 ∈ R𝑚, 𝑥

0
∈

R𝑛, we have

𝑒
𝜆𝑡

𝐸 [𝛼
1
(|𝑥 (𝑡)|)]

≤ 𝛼
2
(
󵄨󵄨󵄨󵄨𝑥0
󵄨󵄨󵄨󵄨) + sup

𝑠∈[0,𝑡)

{𝑒
𝜆𝑠

𝛾 (‖𝑢 (𝑠)‖)} , ∀𝑡 ≥ 0.
(7)
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The SSN system (1) is 𝑒𝜆𝑡-weighted integral ISSiM for
some 𝜆 > 0; if there exist 𝛼

1
, 𝛼

2
, 𝛾 ∈ K

∞
such that for any

𝑢 ∈ R𝑚, 𝑥
0
∈ R𝑛, we have

𝑒
𝜆𝑡

𝐸 [𝛼
1
(|𝑥 (𝑡)|)]

≤ 𝛼
2
(
󵄨󵄨󵄨󵄨𝑥0
󵄨󵄨󵄨󵄨) + ∫

𝑡

0

𝑒
𝜆𝜏

𝛾 (‖𝑢 (𝜏)‖) 𝑑𝜏, ∀𝑡 ≥ 0.

(8)

In [28], we have obtained an improved ADT method to
investigate the stability of the SSN system (1) with 𝑢 ≡ 0 in
two cases: one is that all constituent subsystems are globally
exponentially stable in the mean (GASiM) and the other is
that some constituent subsystems are GASiM, while some
of them are not GASiM. We introduce those results in the
following.

Lemma3 (see [28]). For the SSN system (1)with 𝑢 ≡ 0, if there
exist C1 functions 𝑉

𝑖
: R𝑛

→ [0,∞), 𝑖 ∈ I, and functions
𝛼, 𝛽 ∈K

∞
such that

𝛼 (|𝑥|) ≤ 𝑉
𝑖
(𝑥) ≤ 𝛽 (|𝑥|) , ∀𝑖 ∈ I, (9)

L𝑉
𝑖
(𝑥)
󵄨󵄨󵄨󵄨(𝑖)
≤ −𝜆

𝑖
𝑉
𝑖
(𝑥) , (10)

where 𝜆
𝑖
> 0, 𝑖 ∈ I, then the SSN system (1) with 𝑢 ≡ 0 is

GASiM under any switching signal with ADT:

𝜏
𝑎
> 𝜏

∗

𝑎
=

𝑎

𝜆min
, (11)

where

𝑎 = ln 𝜇, 𝜇 = sup
𝑥 ̸=0

𝛽 (|𝑥 (𝑡)|)

𝛼 (|𝑥 (𝑡)|)
, 𝜆min = min

𝑖∈I
𝜆
𝑖
. (12)

Remark 4. If 𝜇 = 1, which implies that 𝑉
𝑖
(𝑥) ≡ 𝑉(𝑥),

𝑖 ∈ I, 𝑉(𝑥) is a CLF for the SSN system (1) with 𝑢 ≡ 0,
and thus this system is GASiM under arbitrary switching.
It is also noted that the ADT method proposed in [15–18]
needs the conditions (9)-(10) and an additional condition as
“𝑉

𝑖
(𝑥) ≤ 𝜇𝑉

𝑗
(𝑥), 𝜇 ≥ 1, 𝑖 ̸= 𝑗, 𝑖, 𝑗 ∈ I”. Comparing Lemma 3

with the corresponding results in [15, 16], Lemma 3 needs
fewer conditions and thus can be applied to a wider range of
systems.

Moreover, it is noted that the above 𝛼 and 𝛽 in (9) should
have the same order, and which can ensure that 𝜇 exists.
Furthermore, if 𝑉

𝑖
(𝑥) = 𝑥

𝑇

𝑃
𝑖
𝑥, 𝑃

𝑖
> 0, then inequality (9)

becomes

𝛼
𝑖
|𝑥|

2

≤ 𝑉
𝑖
(𝑥) ≤ 𝛽

𝑖
|𝑥|

2 (13)

and 𝜇 is given as

𝜇 = max
𝑖∈I

𝛽
𝑖

𝛼
𝑖

. (14)

For this case, if we use the ADTmethod in [15–18], we can
get

𝜇
󸀠

= max
𝑖,𝑗∈I

𝛽
𝑖

𝛼
𝑗

. (15)

Obviously, 𝜇 ≤ 𝜇󸀠.

In particular, for the switched linear systems, the lower
bound ADT 𝜏

∗

𝑎
obtained by Lemma 3 is smaller than the

lower bound ADT 𝜏󸀠
𝑎
obtained in [15]; that is,

𝜏
∗

𝑎
= max

𝑖∈I
{

𝜆max (𝑃𝑖)

𝜆min (𝑃𝑖) 𝜆min
} ≤ max

𝑖,𝑗∈I
{

𝜆max (𝑃𝑗)

𝜆min (𝑃𝑖) 𝜆min
} = 𝜏

󸀠

𝑎
,

(16)

where𝑉
𝑖
(𝑥) = 𝑥

𝑇

𝑃
𝑖
𝑥with 𝑃

𝑖
> 0 is the Lyapunov function for

the 𝑖th subsystem, 𝑖 ∈ I.
This improved ADT method can also be extended to

analyze the stability of the SSN system (1) with 𝑢 ≡ 0

in which both stable and unstable subsystems coexist. For
the switching signal 𝜎(𝑡) and any 𝑡 > 𝜏, we let 𝑇𝑢

(𝜏, 𝑡)

(resp.,𝑇𝑠

(𝜏, 𝑡)) denote the total activation time of the unstable
subsystems (resp., the stable subsystems) on interval [𝜏, 𝑡).
Then, we let I = I

𝑠
∪ I

𝑢
such that I

𝑠
∩ I

𝑢
= 0 and

introduce a switching law form [16].

(S1) Determine the 𝜎(𝑡) satisfying 𝑇𝑠

(𝑡
0
, 𝑡)/𝑇

𝑢

(𝑡
0
, 𝑡) ≥

(𝜆
𝑢
+ 𝜆

∗

)/(𝜆
𝑠
− 𝜆

∗

) holds for any 𝑡 > 𝑡
0
, where

𝜆
∗

∈ (0, 𝜆
𝑠
); 𝜆

𝑢
and 𝜆

𝑠
are given as (19).

Next, we introduce the result in the following.

Lemma 5 (see [28]). Consider the SSN system (1) with 𝑢 ≡ 0;
if there exist C1 functions 𝑉

𝑖
(𝑥): R𝑛

→ [0,∞), 𝑖 ∈ I, and
functions 𝛼, 𝛽 ∈K

∞
such that (9), and

L𝑉
𝑖
(𝑥)
󵄨󵄨󵄨󵄨(𝑖)
≤ 𝜆

𝑖
𝑉
𝑖
(𝑥) , 𝑖 ∈ I

𝑢
,

L𝑉
𝑖
(𝑥)
󵄨󵄨󵄨󵄨(𝑖)
≤ −𝜆

𝑖
𝑉
𝑖
(𝑥) , 𝑖 ∈ I

𝑠
,

(17)

where 𝜆
𝑖
> 0, 𝑖 ∈ I, then under the switching law S1, the

switched system (1) with 𝑢 ≡ 0 is GASiM for any switching
signal with ADT:

𝜏
𝑎
> 𝜏

∗

𝑎
=
𝑎

𝜆∗
, (18)

where 𝑎 is given as (12), and𝜆∗ ∈ (0, 𝜆
𝑠
) is an arbitrarily chosen

number,

𝜆
𝑠
= max

𝑖∈I𝑠

𝜆
𝑖
, 𝜆

𝑢
= max

𝑖∈I𝑢

𝜆
𝑖
. (19)

Remark 6. Similar to Remark 4, comparing Lemma 5 with
the corresponding existing results in [15, 16], Lemma 5 needs
fewer conditions, and thus Lemma 5 is really an improvement
of the existing results.

3. Main Results

3.1. All Subsystems Are ISSiM. In this section, we first inves-
tigate the ISSiM stability of the SSN system (1) in which all
constituent subsystems are ISSiM. According to Lemma 3, we
obtain the following result.
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Theorem 7. Considering the SSN system (1), if there exist C1

functions𝑉
𝑖
: R𝑛

→ [0,∞), 𝑖 ∈ I, functions ̄𝛼
1
, ̄𝛼

2
, ̄𝛾 ∈K

∞

and number 𝜆
0
> 0 such that 𝑓𝑜𝑟 𝑎𝑙𝑙 𝜉 ∈ R𝑛, 𝜂 ∈ RL,

̄𝛼
1
(
󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨) ≤ 𝑉𝑖 (𝜉) ≤

̄𝛼
2
(
󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨) , (20)

L𝑉
𝑖
(𝜉)
󵄨󵄨󵄨󵄨(𝑖)
≤ −𝜆

0
𝑉
𝑖
(𝜉) + ̄𝛾(

󵄨󵄨󵄨󵄨𝜂
󵄨󵄨󵄨󵄨) , 𝑖 ∈ I, (21)

then

(I) if 𝜏
𝑎
> 𝜏

∗

𝑎
= 𝑎/𝜆

0
, then the SSN system (1) is ISSiM;

(II) if 𝜏
𝑎
> 𝜏

∗

𝑎
= 𝑎/(𝜆

0
− 𝜆 − 𝛿), for some 𝜆 ∈ (0, 𝜆

0
− 𝛿),

where 𝛿 > 0, then the SSN system (1) is 𝑒𝜆𝑡-weighted
ISSiM;

(III) if 𝜏
𝑎
> 𝜏

∗

𝑎
= 𝑎/(𝜆

0
− 𝜆), for some 𝜆 ∈ (0, 𝜆

0
), then the

SSN system (1) is 𝑒𝜆𝑡-weighted integral ISSiM,

where 𝑎 is given as (12).

Proof. For notational brevity, define 𝐺
𝑏

𝑎
(𝜆) =

∫
𝑏

𝑎

𝑒
𝜆𝑠

̄𝛾(‖𝑢(𝑠)‖)𝑑𝑠. Let 𝑇 > 0 be an arbitrary time. Denote by
𝑡
1
, . . . , 𝑡

𝑁𝜎(0,𝑇)
the switching times on the interval (0, 𝑇) (by

convention, 𝑡
0
:= 0, 𝑡

𝑁𝜎(0,𝑇)
:= 𝑇). Consider the piecewise

continuously differentiable function

𝑊(𝑠) := 𝑒
𝜆0𝑠𝑉

𝜎(𝑠)
(𝑥 (𝑠)) . (22)

On each interval [𝑡
𝑖
, 𝑡

𝑖+1
), the switching signal is constant.

Consider

𝑊(𝑡) = 𝑊(𝑡
𝑖
) + ∫

𝑡

𝑡𝑖

𝑒
𝜆0𝑠
𝜕𝑉

𝜎(𝑡𝑖)

𝜕𝑥
𝑔
𝜎(𝑠)

(𝑠, 𝑥 (𝑠)) 𝑑𝑤 (𝑠)

+ ∫

𝑡

𝑡𝑖

𝑒
𝜆0𝑠 (L𝑉

𝜎(𝑠)
(𝑥 (𝑠)) + 𝜆

0
𝑉
𝜎(𝑠)

(𝑥 (𝑠))) 𝑑𝑠.

(23)

If 𝑡 is replaced by 𝑡
𝑟
= min{𝑡, 𝜏

𝑟
} in the above, where

𝜏
𝑟
= inf{𝑠 ≥ 0 : |𝑥(𝑠)| ≥ 𝑟}, then the stochastic integral

(first integral) in (23) defines a martingale (with 𝑟 fixed
and 𝑡 varying), not just a local martingale. Thus, on taking
expectations in (23) with 𝑡

𝑟
in place of 𝑡 and then using (21)

on the right, we get

𝐸𝑊(𝑡
𝑟
) ≤ 𝐸𝑊(𝑡

𝑖
) + 𝐸 [∫

𝑡𝑟

𝑡𝑖

𝑒
𝜆0𝑠 ̄𝛾(‖𝑢 (𝑠)‖) 𝑑𝑠] . (24)

On letting 𝑟 → ∞ and using Fatou’s Lemma on the left and
monotone convergence on the right, we conclude

𝐸𝑊(𝑡) ≤ 𝐸𝑊(𝑡
𝑖
) + ∫

𝑡

𝑡𝑖

𝑒
𝜆0𝑠 ̄𝛾(‖𝑢 (𝑠)‖) 𝑑𝑠. (25)

According to inequality (20), we obtain

𝐸 ̄𝛼
1
(
󵄨󵄨󵄨󵄨𝑥𝑇
󵄨󵄨󵄨󵄨)

≤ 𝐸𝑉
𝜎(𝑡𝑘)

(𝑥
𝑇
) ≤ 𝑒

−𝜆0(𝑇−𝑡𝑘)𝐸𝑉
𝜎(𝑡𝑘)

(𝑥
𝑘
)

+ 𝑒
−𝜆0𝑇𝐺

𝑇

𝑡𝑘

(𝜆
0
)

≤ 𝑒
−𝜆0(𝑇−𝑡𝑘)𝐸 ̄𝛼

2
(
󵄨󵄨󵄨󵄨𝑥𝑘
󵄨󵄨󵄨󵄨) + 𝑒

−𝜆0𝑇𝐺
𝑇

𝑡𝑘

(𝜆
0
)

= 𝑒
−𝜆0(𝑇−𝑡𝑘)

𝐸 ̄𝛼
2
(
󵄨󵄨󵄨󵄨𝑥𝑘
󵄨󵄨󵄨󵄨)

𝐸 ̄𝛼
1
(
󵄨󵄨󵄨󵄨𝑥𝑘
󵄨󵄨󵄨󵄨)
𝐸 ̄𝛼

1
(
󵄨󵄨󵄨󵄨𝑥𝑘
󵄨󵄨󵄨󵄨) + 𝑒

−𝜆0𝑇𝐺
𝑇

𝑡𝑘

(𝜆
0
)

≤ 𝜇𝑒
−𝜆0(𝑇−𝑡𝑘)𝐸 ̄𝛼

1
(
󵄨󵄨󵄨󵄨𝑥𝑘
󵄨󵄨󵄨󵄨) + 𝑒

−𝜆0𝑇𝐺
𝑇

𝑡𝑘

(𝜆
0
)

≤ 𝜇
2

𝑒
−𝜆0(𝑇−𝑡𝑘−1)𝐸 ̄𝛼

1
(
󵄨󵄨󵄨󵄨𝑥𝑘−1

󵄨󵄨󵄨󵄨) + 𝜇𝑒
−𝜆0𝑇𝐺

𝑡𝑘

𝑡𝑘−1

(𝜆
0
)

+ 𝑒
−𝜆0𝑇𝐺

𝑇

𝑡𝑘

(𝜆
0
)

...

≤ 𝜇
𝑁𝜎(𝑡)(𝑡0 ,𝑇)+1𝑒

−𝜆0(𝑇−𝑡0)𝐸 ̄𝛼
1
(
󵄨󵄨󵄨󵄨𝑥0
󵄨󵄨󵄨󵄨)

+ 𝑒
−𝜆0𝑇

𝑁𝜎(𝑡)(𝑡0 ,𝑇)

∑

𝑗=0

𝜇
𝑁𝜎(𝑡)(𝑡0 ,𝑇)−𝑗𝐺

𝑡𝑗+1

𝑡𝑗

(𝜆
0
)

= 𝜇𝑒
𝑎𝑁𝜎(𝑡)(𝑡0 ,𝑇)−𝜆0(𝑇−𝑡0)𝐸 ̄𝛼

1
(
󵄨󵄨󵄨󵄨𝑥0
󵄨󵄨󵄨󵄨)

+

𝑁𝜎(𝑡)(𝑡0 ,𝑇)

∑

𝑗=0

𝜇
𝑁𝜎(𝑡)(𝑡0 ,𝑇)−𝑗𝐺

𝑡𝑗+1

𝑡𝑗

(𝜆
0
)

≤ 𝜇
1+𝑁0𝑒

(𝑎/𝜏𝑎−𝜆0)(𝑇−𝑡0)𝐸 ̄𝛼
1
(
󵄨󵄨󵄨󵄨𝑥0
󵄨󵄨󵄨󵄨)

+

𝑁𝜎(𝑡)(𝑡0 ,𝑇)

∑

𝑗=0

𝜇
𝑁𝜎(𝑡)(𝑡0 ,𝑇)−𝑗𝐺

𝑡𝑗+1

𝑡𝑗

(𝜆
0
) .

(26)

For every 𝛿 ∈ [0, 𝜆
0
−𝜆−𝑎/𝜏

∗

𝑎
], that is, 𝜏∗

𝑎
≥ 𝑎/(𝜆

0
−𝜆−𝛿),

where 𝜆 > 0,

𝐺
𝑡𝑗+1

𝑡𝑗

(𝜆
0
) ≤ 𝑒

(𝜆0−𝜆−𝛿)𝑡𝑘+1𝐺
𝑡𝑗+1

𝑡𝑗

(𝜆 + 𝛿) ,

𝜇
𝑁𝜎(𝑡)(𝑡0 ,𝑇)−𝑗 ≤ 𝜇

1+𝑁0𝑒
(𝜆0−𝜆−𝛿)(𝑇−𝑡𝑗+1).

(27)

Therefore,

𝑁𝜎(𝑡)(𝑡0 ,𝑇)

∑

𝑗=0

𝜇
𝑁𝜎(𝑡)(𝑡0 ,𝑇)−𝑗𝐺

𝑡𝑗+1

𝑡𝑗

(𝜆
0
)

≤ 𝜇
1+𝑁0𝑒

(𝜆0−𝜆−𝛿)𝑇𝐺
𝑇

𝑡0

(𝜆 + 𝛿) .

(28)

Substituting inequality (28) to inequality (26), we get

𝐸 ̄𝛼
1
(
󵄨󵄨󵄨󵄨𝑥𝑇
󵄨󵄨󵄨󵄨) ≤ 𝜇

1+𝑁0 [𝑒
(𝑎/𝜏𝑎−𝜆0)(𝑇−𝑡0) ̄𝛼

1
(
󵄨󵄨󵄨󵄨𝑥0
󵄨󵄨󵄨󵄨)

+ 𝑒
−(𝜆+𝛿)𝑇

𝐺
𝑇

𝑡0

(𝜆 + 𝛿)] ,

(29)
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that is,

𝑒
(𝜆+𝛿)𝑇

𝐸 ̄𝛼
1
(
󵄨󵄨󵄨󵄨𝑥𝑇
󵄨󵄨󵄨󵄨) ≤ 𝜇

1+𝑁0 [𝑒
𝜆+𝛿𝑡0𝑒

((𝑎/𝜏𝑎)−𝜆0+𝜆+𝛿)(𝑇−𝑡0)

× ̄𝛼
1
(
󵄨󵄨󵄨󵄨𝑥0
󵄨󵄨󵄨󵄨) + 𝐺

𝑇

𝑡0

(𝜆 + 𝛿)]

= 𝐶 [𝑒
(𝜆+𝛿)𝑡0𝑒

(𝑎/𝜏𝑎−𝜆0+𝜆+𝛿)(𝑇−𝑡0)

× ̄𝛼
1
(
󵄨󵄨󵄨󵄨𝑥0
󵄨󵄨󵄨󵄨) + 𝐺

𝑇

𝑡0

(𝜆 + 𝛿)] ,

(30)

where 𝐶 = 𝜇1+𝑁0 .
For inequality (30), if 𝛿 = 0, then

𝑒
𝜆𝑇

𝐸 ̄𝛼
1
(
󵄨󵄨󵄨󵄨𝑥𝑇
󵄨󵄨󵄨󵄨)

≤ 𝐶𝑒
𝜆𝑡0𝑒

(𝑎/𝜏𝑎−𝜆0+𝜆)(𝑇−𝑡0) ̄𝛼
1
(
󵄨󵄨󵄨󵄨𝑥0
󵄨󵄨󵄨󵄨) + 𝐶𝐺

𝑇

𝑡0

(𝜆)

= 𝐶𝑒
𝜆𝑡0𝑒

(𝑎/𝜏𝑎−𝜆0+𝜆)(𝑇−𝑡0) ̄𝛼
1
(
󵄨󵄨󵄨󵄨𝑥0
󵄨󵄨󵄨󵄨)

+ 𝐶∫

𝑇

𝑡0

𝑒
𝜆𝑠

̄𝛾(|𝑢 (𝑠)|) 𝑑𝑠.

(31)

For inequality (31), if 𝜏
𝑎
> 𝑎/(𝜆

0
− 𝜆), we have property

(8) with

𝛼
1
(
󵄨󵄨󵄨󵄨𝑥𝑇
󵄨󵄨󵄨󵄨) :=

̄𝛼
1
(
󵄨󵄨󵄨󵄨𝑥𝑇
󵄨󵄨󵄨󵄨) ,

𝛼
2
(
󵄨󵄨󵄨󵄨𝑥0
󵄨󵄨󵄨󵄨) := 𝐶𝑒

𝜆𝑡0𝑒
(𝑎/𝜏𝑎−𝜆0+𝜆)(𝑇−𝑡0) ̄𝛼

1
(
󵄨󵄨󵄨󵄨𝑥0
󵄨󵄨󵄨󵄨) .

(32)

Note that

𝐺
𝑇

𝑡0

(𝜆 + 𝛿) ≤
1

𝜆 + 𝛿 − ̄𝜆

𝑒
(𝜆+𝛿−

̄
𝜆)𝑇 sup

𝜏∈[0,𝑇)

{𝑒
̄

𝜆𝜏

̄𝛾(|𝑢 (𝜏)|)} .

(33)

Substituting inequality (33) to inequality (30), we obtain

𝑒
(𝜆+𝛿)𝑇

𝐸 ̄𝛼
1
(
󵄨󵄨󵄨󵄨𝑥𝑇
󵄨󵄨󵄨󵄨)

≤ 𝐶𝑒
(𝜆+𝛿)𝑡0𝑒

(𝑎/𝜏𝑎−𝜆0+𝜆+𝛿)(𝑇−𝑡0) ̄𝛼
1
(
󵄨󵄨󵄨󵄨𝑥0
󵄨󵄨󵄨󵄨)

+ 𝐶
1

𝜆 + 𝛿 − ̄𝜆

𝑒
(𝜆+𝛿−

̄
𝜆)𝑇 sup

𝜏∈[0,𝑇)

{𝑒
̄

𝜆𝜏

̄𝛾(|𝑢 (𝜏)|)} .

(34)

For inequality (34), if 𝛿 ̸= 0, ̄𝜆 = 𝜆, we get

𝑒
𝜆𝑇

𝐸 ̄𝛼
1
(
󵄨󵄨󵄨󵄨𝑥𝑇
󵄨󵄨󵄨󵄨)

≤ 𝐶𝑒
𝜆𝑡0𝑒

(𝑎/𝜏𝑎−𝜆0+𝜆+𝛿)(𝑇−𝑡0)

× 𝐸 ̄𝛼
1
(
󵄨󵄨󵄨󵄨𝑥𝑇
󵄨󵄨󵄨󵄨) + 𝐶

1

𝛿
𝑒
𝛿𝑇 sup

𝜏∈[0,𝑇)

{𝑒
̄

𝜆𝜏

̄𝛾(|𝑢 (𝜏)|)} .

(35)

For inequality (35), if 𝜏
𝑎
> 𝑎/(𝜆

0
−𝜆−𝛿), we have property

(7) with

𝛼
1
(
󵄨󵄨󵄨󵄨𝑥𝑇
󵄨󵄨󵄨󵄨) := 𝑒

−𝛿𝑇
𝛿

𝐶
̄𝛼
1
(
󵄨󵄨󵄨󵄨𝑥𝑇
󵄨󵄨󵄨󵄨) ,

𝛼
2
(
󵄨󵄨󵄨󵄨𝑥0
󵄨󵄨󵄨󵄨) := 𝑒

−𝛿𝑇

𝛿𝑒
𝜆𝑡0𝑒

(𝑎/𝜏𝑎−𝜆0+𝜆+𝛿)(𝑇−𝑡0) ̄𝛼
1
(
󵄨󵄨󵄨󵄨𝑥0
󵄨󵄨󵄨󵄨) .

(36)

For inequality (34), if ̄𝜆 = 𝛿 = 0, we obtain that

̄𝛼
1
(
󵄨󵄨󵄨󵄨𝑥𝑇
󵄨󵄨󵄨󵄨) ≤ 𝐶𝑒

𝜆𝑡0𝑒
(𝑎/𝜏𝑎−𝜆0)(𝑇−𝑡0) ̄𝛼

1
(
󵄨󵄨󵄨󵄨𝑥𝑇
󵄨󵄨󵄨󵄨)

+ 𝐶
1

𝜆
sup

𝜏∈[0,𝑇)

{ ̄𝛾 (|𝑢 (𝜏)|)} .

(37)

For inequality (37), if 𝜏
𝑎
> 𝑎/(𝜆

0
− 𝜆), we have property

(6) with

𝛼
1
(
󵄨󵄨󵄨󵄨𝑥𝑇
󵄨󵄨󵄨󵄨) := 𝐶𝑒

𝜆𝑡0𝑒
(𝑎/𝜏𝑎−𝜆0)(𝑇−𝑡0) ̄𝛼

1
(
󵄨󵄨󵄨󵄨𝑥𝑇
󵄨󵄨󵄨󵄨) , 𝛾 := 𝐶

1

𝜆
̄𝛾.

(38)

Remark 8. It should be pointed out that the result proposed in
[25] needs conditions (20)-(21) and an additional condition
as “𝑉

𝑖
(𝑥) ≤ 𝜇𝑉

𝑗
(𝑥), 𝜇 ≥ 1, 𝑖 ̸= 𝑗, 𝑖, 𝑗 ∈ I”. Comparing

Theorem 7 with the existing result in [25], Theorem 7 needs
fewer conditions and thus is an improvement of the existing
result.

3.2. Some Subsystems Are Not ISSiM. In the next, we consider
the SSN system (1) in which both ISSiM and not ISSiM
subsystems coexist. Similarly, for the switching signal 𝜎(𝑡)
and any 𝑡 > 𝜏, we let 𝑇𝑢

(𝜏, 𝑡) (resp., 𝑇𝑠

(𝜏, 𝑡)) denote the total
activation time of the not ISSiM subsystems (resp., the ISSiM
subsystems) on interval [𝜏, 𝑡).

According to Lemma 5, we give the following result.

Theorem 9. Considering the SSN system (1), if there exist C1

functions 𝑉
𝑖
: R𝑛

→ [0,∞), 𝑖 ∈ I, and functions 𝛼
1
, 𝛼

2
,

𝜑
1
∈ K

∞
, constants 𝜆

𝑠
, 𝜆

𝑢
> 0 such that (20) for all 𝑥 ∈ R𝑛,

and furthermore, the following inequalities hold:

|𝑥| ≥ 𝜑
1
(𝑢)

󳨐⇒ {
L𝑉

𝑖
(𝑥)
󵄨󵄨󵄨󵄨(𝑖)
≤ 𝜆

𝑢
𝑉
𝑖
(𝑥) , 𝑖 ∈ I

𝑢
,

L𝑉
𝑖
(𝑥)
󵄨󵄨󵄨󵄨(𝑖)
≤ −𝜆

𝑠
𝑉
𝑖
(𝑥) , 𝑖 ∈ I

𝑠
.

(39)

Then, under the switching law S1, the SSN system (1) is ISSiM
for any switching signal with ADT:

𝜏
𝑎
> 𝜏

∗

𝑎
=
𝑎

𝜆∗
, (40)

where 𝑎 is given as (12), and𝜆∗ ∈ (0, 𝜆
𝑠
) is an arbitrarily chosen

number; 𝜆
𝑠
and 𝜆

𝑢
are given as (19).

Proof. Let 𝑡
0
≥ 0 be arbitrary. For 𝑡 ≥ 𝑡

0
, define ](𝑡) :=

𝜑
1
(‖𝑢‖

[𝑡0 ,𝑡]
) and 𝜉(𝑡) := 𝛼

−1

1
(𝜇

𝑁0𝛼
1
(](𝑡))), where 𝑁

0
comes

from (5). Furthermore, define the balls around the origin
𝐵](𝑡) := {𝑥 : |𝑥| ≤ ](𝑡)}, 𝐵

𝜉
(𝑡) := {𝑥 : |𝑥| ≤ 𝜉(𝑡)}. Note

that ] and thus also 𝜉 are nondecreasing functions of time,
and thus the balls 𝐵] and 𝐵𝜉 have nondecreasing volume.

If |𝑥(𝑡)| ≥ ](𝑡) ≥ 𝜑
1
(‖𝑢(𝑡)‖) during some time interval

𝑡 ∈ [𝑡
󸀠

, 𝑡
󸀠󸀠

], then 𝑥(𝑡) can be bounded above by

𝐸 |𝑥 (𝑡)| ≤ 𝐸𝛼
−1

1
(𝜇

𝑁0𝑒
−𝜆
∗
(𝑡−𝑡
󸀠
)

𝛼
1
(
󵄨󵄨󵄨󵄨󵄨
𝑥 (𝑡

󸀠

)
󵄨󵄨󵄨󵄨󵄨
))

:= 𝛽 (
󵄨󵄨󵄨󵄨󵄨
𝑥 (𝑡

󸀠

)
󵄨󵄨󵄨󵄨󵄨
, 𝑡 − 𝑡

󸀠

)

(41)

for some 𝜆∗ ∈ (0, 𝜆
𝑠
).
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In fact, on any interval [𝜏
𝑖
, 𝜏

𝑖+1
) ∩ [𝑡

󸀠

, 𝑡
󸀠󸀠

], according to
(39), we arrive at

𝐸𝛼
1
(|𝑥 (𝑡)|) ≤ 𝑒

𝑎𝑁𝜎(𝑡
󸀠
,𝑡)+𝜆𝑢𝑇

𝑢
(𝑡
󸀠
,𝑡)−𝜆𝑠𝑇

𝑠
(𝑡
󸀠
,𝑡)

𝐸𝛼
1
(
󵄨󵄨󵄨󵄨󵄨
𝑥 (𝑡

󸀠

)
󵄨󵄨󵄨󵄨󵄨
) .

(42)

Then, according to (5) and the switching law S1, we
conclude from (42) that

𝐸𝛼
1
(|𝑥 (𝑡)|) ≤ 𝑒

𝑎𝑁0𝑒
(𝑎/𝜏𝑎−𝜆

∗
)(𝑡−𝑡
󸀠
)

𝐸𝛼
1
(
󵄨󵄨󵄨󵄨󵄨
𝑥 (𝑡

󸀠

)
󵄨󵄨󵄨󵄨󵄨
)

= 𝜇
𝑁0𝑒

(𝑎/𝜏𝑎−𝜆
∗
)(𝑡−𝑡
󸀠
)

𝐸𝛼
1
(
󵄨󵄨󵄨󵄨󵄨
𝑥 (𝑡

󸀠

)
󵄨󵄨󵄨󵄨󵄨
) .

(43)

Thus, if 𝜏
𝑎
> 𝜏

∗

𝑎
= 𝑎/𝜆

∗, we can get (41).
Denote the first time when 𝑥(𝑡) ∈ 𝐵](𝑡) by ̆𝑡

1
; that is, ̆𝑡

1
:=

inf{𝑡 ≥ 𝑡
0
: |𝑥(𝑡)| ≤ ](𝑡)}. For 𝑡

0
≤ 𝑡 ≤ ̆𝑡

1
, according to (41),

we obtain

𝐸 |𝑥 (𝑡)| ≤ 𝛽 (
󵄨󵄨󵄨󵄨𝑥0
󵄨󵄨󵄨󵄨 , 𝑡 − 𝑡0) . (44)

If ̆𝑡
1
= ∞, which only can happen if ](𝑡) ≡ 0, that is, the

input 𝑢 ≡ 0 for all times, then the SSN system (1) is ISSiM.
Hence in the following we assume that ̆𝑡

1
< ∞.

For 𝑡 > ̆𝑡
1
, 𝑥(𝑡) can be bounded above in terms of ](𝑡).

Namely, let 𝑡̂
1
:= inf{𝑡 > ̆𝑡

1
: |𝑥(𝑡)| > ](𝑡)}. If this is an empty

set, let 𝑡̂
1
:= ∞. Clearly, for all 𝑡 ∈ [ ̆𝑡

1
, ̆𝑡

2
), it holds that |𝑥(𝑡)| ≤

](𝑡) ≤ 𝜉(𝑡). For the case that 𝑡̂
1
< ∞, due to continuity of

𝑥(⋅) and monotonicity for ](𝑡), it holds that |𝑥(𝑡̂
1
)| = ](𝑡̂

1
).

Furthermore, for all 𝜏 > 𝑡̂
1
, if |𝑥(𝜏)| > ](𝜏), define

𝑡̂ := sup {𝑡 < 𝜏 : |𝑥 (𝑡)| ≤ ] (𝑡)} (45)

which can be interpreted as the previous exit time of the
trajectory 𝑥(𝑡) from the ball 𝐵]. Again, due to the same
argument as above, one obtains that 𝐸|𝑥(𝑡̂

1
)| = ](𝑡̂

1
). But

then, according to (41), it holds that

𝐸 |𝑥 (𝜏)| ≤ 𝛽 (] (𝑡̂) , 𝜏 − 𝑡̂) = 𝐸𝛼−1
1
(𝜇

𝑁0𝑒
−𝜆
∗
(𝜏−𝑡̂)

𝛼
1
(] (𝑡̂)))

≤ 𝐸𝛼
−1

1
𝜇
𝑁0𝐸𝛼

1
(] (𝑡̂)) = 𝜉 (𝑡̂) ≤ 𝜉 (𝜏) .

(46)

Summarizing the above, for all 𝑡 ≥ ̆𝑡
1
, it holds that

𝐸 |𝑥 (𝑡)| ≤ 𝜉 (𝑡) = 𝐸𝛼
−1

1
(𝜇

𝑁0𝛼
1
(𝜑

1
(‖𝑢‖

[𝑡0 ,𝑡]
)))

≤ 𝐸𝛼
−1

1
𝜇
𝑁0𝛼

1
(2𝜑

1
(‖𝑢‖

[𝑡0 ,𝑡]
)) := 𝛾

1
(‖𝑢‖

[𝑡0 ,𝑡]
) .

(47)

Combining (44) and (47), we obtain that

𝐸 |𝑥 (𝑡)| ≤ 𝛽 (
󵄨󵄨󵄨󵄨𝑥0
󵄨󵄨󵄨󵄨 , 𝑡 − 𝑡0) + 𝛾1 (‖𝑢‖[𝑡0 ,𝑡]

) (48)

for all 𝑡 ≥ 𝑡
0
, which means the SSN system (1) is ISSiM and

also completes the proof.

4. An Illustrative Example

In this section, we give an illustrative example to show how to
use the obtained results to analyze the ISSiM stability of SSN
systems.

Example 1. Consider the following SSN system:

𝑑𝑥 = 𝑓
𝑖
(𝑥, 𝑢) 𝑑𝑡 + 𝑔

𝑖
(𝑥) 𝑑𝑤 (𝑡) , (49)

where 𝑖 ∈ I = {1, 2}, 𝑤 is an 𝑟-dimensional standard
Brownian motion, and

𝑓
1
(𝑥, 𝑢) = (

−𝑥
1
− 𝑥

1
𝑥
2

2
− 𝑥

1
sin2𝑡

𝑥
2

1
𝑥
2
− 3𝑥

2
− 𝑥

2
cos2𝑡) ,

𝑓
2
(𝑥, 𝑢) = (

2𝑥
1
+ 2𝑥

2

𝑥
1
+ 3𝑥

2

) ,

𝑔
1
(𝑥) = (

1

2
𝑥
1
−
1

2
𝑥
2

−
1

2
𝑥
1
+
1

2
𝑥
2

),

𝑔
2
(𝑥) = (

−
1

2
𝑥
1

√3

2
𝑥
2

).

(50)

It is easy to know that 𝑉(𝑥) = 𝑥
𝑇

𝑥 is a CLF for the system
(49), and

L𝑉
1
(𝑥)
󵄨󵄨󵄨󵄨(1)

=
𝜕𝑉

𝜕𝑥
𝑓
𝑖
(𝑥) +

1

2
Tr{𝑔𝑇

𝑖
(𝑥)

𝜕
2

𝑉

𝜕𝑥2
𝑔
𝑖
(𝑥)}

= −2𝑥
2

1
− 6𝑥

2

2
≤ −2𝑉

1
(𝑥) ,

L𝑉
2
(𝑥)
󵄨󵄨󵄨󵄨(2)

=
𝜕𝑉

𝜕𝑥
𝑓
𝑖
(𝑥) +

1

2
Tr{𝑔𝑇

𝑖
(𝑥)

𝜕
2

𝑉

𝜕𝑥2
𝑔
𝑖
(𝑥)}

= 2𝑥
2

1
+ 4𝑥

1
𝑥
2
+ 3𝑥

2

2
≤ 5𝑉

2
(𝑥) .

(51)

According to the above results, we obtain that 𝜆
𝑢
= 5, 𝜆

𝑠
= 2

and 𝑎 = 0. Therefore, the lower bound ADT 𝜏∗
𝑎
= 0; that is,

the ADT can be arbitrary. Next, we choose 𝜆∗ = 0.1; then the
switching law S1 will require

𝑇
𝑠

(𝑡
0
, 𝑡)

𝑇𝑢 (𝑡
0
, 𝑡)

≥
𝜆
𝑢
+ 𝜆

∗

𝜆
𝑠
− 𝜆∗

=
5.1

1.9
≈ 2.68. (52)

According to Theorem 9, the switched system (49) is ISSiM
under the above switching law S1.

To illustrate the correctness of the above conclusion, we
carry out some simulation results with the following choices.
Initial condition [𝑥

1
(0), 𝑥

2
(0)] = [−2.5, 3], and switching

path

𝜎 (𝑡)

= {
2, 𝑡 ∈ [𝑡

2𝑚
, 𝑡

2𝑚+1
) , 𝑡

2𝑚+1
− 𝑡

2𝑚
= 0.2 ∗ rand,

1, 𝑡 ∈ [𝑡
2𝑚+1

, 𝑡
2𝑚+2

) , 𝑡
2𝑚+2

− 𝑡
2𝑚+1

= 0.6 + 0.1 ∗ rand,
(53)
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Figure 1: The state’s response.

where 𝑚 = 0, 1, 2, . . . , rand ∈ (0, 1) is a stochastic number.
The simulation result is given in Figure 1, which is the
response of the state under the above path 𝜎(𝑡).

It can be observed from Figure 1 that the trajectory
𝑥(𝑡) converges to origin quickly. The simulation shows that
Theorem 9 is very effective in analyzing the stability for the
SSN systems with both unstable and ISSiM subsystems.

5. Conclusions

In this paper, we have investigated the ISSiM property of a
class of SSN systems under ADT switching signals in two
cases: (i) all of the constituent subsystems are ISSiM and (ii)
parts of constituent subsystems are ISSiM and then proposed
several new results about ISSiM of such systems. Firstly, a
new ISSiM result for the SSN systems whose constituent
subsystems are ISSiM has been obtained by applying an
improved ADT method. Secondly, a new ISSiM result for
the SSN system in which parts of subsystems are ISSiM has
been given. In comparison with the existing results, the main
results obtained in this paper have some advantages in some
cases. Finally, an illustrative example with simulation has
verified the validity and correctness of our results.
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We develop exponential stability of neutral stochastic functional differential equations with two-time-scale Markovian switching
modeled by a continuous-time Markov chain which has a large state space. To overcome the computational effort and the
complexity, we split the large-scale system into several classes and lump the states in each class into one class by the different states
of changes of the subsystems; then, we give a limit system to effectively “replace” the large-scale system. Under suitable conditions,
using the stability of the limit system as a bridge, the desired asymptotic properties of the large-scale system with Brownian motion
and Poisson jump are obtained by utilizing perturbed Lyapunov function methods and Razumikhin-type criteria. Two examples
are provided to demonstrate our results.

1. Introduction

In many practical dynamical systems such as neural net-
works, computer aided design, population ecology, chemical
process simulation, and automatic control, stochastic differ-
ential equations represent the class of important dynamics
(see [1–4]). During the recent several years, the asymptotic
properties of neutral stochastic functional differential equa-
tions have been investigated by many authors (see [5–14]).
Mao [10, 11] gave the exponential stability of neutral stochastic
functional differential equations by using the Razumikhin-
type theorems. Zhou and Hu [14] used the same argument
to discuss the exponential stability in 𝑝th moment of neu-
tral stochastic functional differential equations and neutral
stochastic functional differential equations with Markovian
switching. Wu et al. [13] examined the almost sure robust
stability of nonlinear neutral stochastic functional differen-
tial equations with infinite delay, including the exponential
stability and the polynomial stability. Song and Shen [12]
investigated the asymptotic behavior of neutral stochastic
functional differential equations under the more general
conditions than the classical linear growth condition. Chen
et al. [5] considered the exponential stability in mean square

moment of mild solution for impulsive neutral stochastic
partial functional differential equations by employing the
inequality technique. The attraction and quasi-invariant sets
of neutral stochastic partial functional differential equations
were also studied in the recent paper [9].

In this paper, we will consider neutral stochastic func-
tional differential equations with two-time-scale Markovian
switching modeled by a continuous-time Markov chain
which has a large state space. The computational effort and
the complexity become a real concern. To overcome the
difficulties, we have devoted much effort to the modeling
and analysis of such systems, in which one of the main
ideas is to split a large-scale system into several classes and
lump the states in each class into one state (see [3, 15–21]).
Khasminskii et al. for the first time established the asymptotic
properties of the Markov chain 𝑟

𝜀

(⋅) by introducing a small
parameter 𝜀 > 0 (see [22]). Yin and Zhang developed the
method in their book [4] that a complicated system can be
replaced by the corresponding limit system that has a much
simpler structure. Motivated by the papers [16, 21], under
suitable conditions, using the stability of the limit system as
a bridge, we will study the exponential stability of neutral
stochastic functional differential equations with Brownian
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http://dx.doi.org/10.1155/2014/907982

http://dx.doi.org/10.1155/2014/907982


2 Mathematical Problems in Engineering

motion and Poisson jump by utilizing perturbed Lyapunov
function methods and Razumikhin-type criteria.

The remainder of this paper is organized as follows. In
Section 2, we introduce some notations and notions needed
in our investigation. In Section 3, we state our main results,
that is, exponential stability of neutral stochastic functional
differential equations with two-time-scaleMarkovian switch-
ing.The exponential stability for neutral stochastic functional
differential equations driven by pure jumps is also discussed
in Section 4. Finally, two examples are presented to justify and
illustrate applications of the theory in Section 5.

2. Preliminaries

Throughout this paper, unless otherwise specified, let
(Ω,F, {F

𝑡
}
𝑡≥0

,P) be a complete probability space with a
filtration {F

𝑡
}
𝑡≥0

satisfying the usual conditions (i.e., it is
increasing and right continuous and F

0
contains all P-

null sets). Let 𝑊(𝑡) = (𝑊
1
(𝑡), . . . ,𝑊

𝑚
(𝑡))

𝑇 be an 𝑚-
dimensional Brownian motion defined on the probability
space. For 𝜏 > 0, let 𝐶([−𝜏, 0];R𝑛

) denote the family of
continuous functions 𝜑 from [−𝜏, 0] to R𝑛 with norm ‖𝜑‖ =

sup
−𝜏≤𝜃≤0

|𝜑(𝜃)|, where | ⋅ | is the Euclidean norm in R𝑛.
If 𝐴 is a vector or matrix, its transpose is denoted by 𝐴

𝑇,
while its trace norm is denoted by |𝐴| = √trace(𝐴𝑇𝐴).
Denote by 𝐶

𝑏

F0
([−𝜏, 0];R𝑛

) the family of all F
0
measurable

and bounded 𝐶([−𝜏, 0];R𝑛

)-valued random variables. For
𝑝 > 0 and 𝑡 ≥ 0, denote by 𝐿

𝑝

F𝑡
([−𝜏, 0];R𝑛

) the family
of allF

𝑡
-measurable𝐶([−𝜏, 0];R𝑛

)-valued random variables
𝜙 = {𝜙(𝜃) : −𝜏 ≤ 𝜃 ≤ 0} such that sup

−𝜏≤𝜃≤0
𝐸|𝜙(𝜃)|

𝑝

< ∞.
We will denote the indicator function of a set 𝐺 by 𝐼

𝐺
.

Consider an 𝑛-dimensional neutral stochastic functional
differential equation with Markovian switching as follows:

𝑑 [𝑥 (𝑡) − 𝐷 (𝑥
𝑡
, 𝑟 (𝑡))]

= 𝑓 (𝑥
𝑡
, 𝑡, 𝑟 (𝑡)) 𝑑𝑡 + 𝑔 (𝑥

𝑡
, 𝑡, 𝑟 (𝑡)) 𝑑𝑤 (𝑡) ,

(1)

on 𝑡 ≥ 0 with initial data 𝑥
0

= 𝜉 ∈ 𝐶([−𝜏, 0];R𝑛

) and 𝑥
𝑡
=

𝑥(𝑡 + 𝜃) : −𝜏 ≤ 𝜃 ≤ 0, which is regarded as a 𝐶([−𝜏, 0];R𝑛

)-
valued stochastic process. Moreover, 𝑓 : 𝐶([−𝜏, 0];R𝑛

) ×

R
+

× S → R𝑛, 𝑔 : 𝐶([−𝜏, 0];R𝑛

) × R
+

× S → R𝑛×𝑚,
𝐷 : 𝐶([−𝜏, 0];R𝑛

) × S → R𝑛.
Let 𝑟(𝑡) (𝑡 ≥ 0) be a right-continuous Markov chain on

the probability space taking values in a finite state space S =

{1, 2, . . . ,𝑀} with generator Γ = (𝛾
𝑖𝑗
)
𝑀×𝑀

given by

P {𝑟 (𝑡 + Δ) = 𝑗 | 𝑟 (𝑡) = 𝑖} = {
𝛾
𝑖𝑗
Δ + ∘ (Δ) , if 𝑖 ̸= 𝑗,

1 + 𝛾
𝑖𝑖
Δ + ∘ (Δ) , if 𝑖 = 𝑗,

(2)

where Δ > 0. Here, 𝛾
𝑖𝑗

≥ 0 is the transition rate from 𝑖 to 𝑗 if
𝑖 ̸= 𝑗, while 𝛾

𝑖𝑖
= −∑

𝑖 ̸=𝑗
𝛾
𝑖𝑗
.

We assume the Markov 𝑟(⋅) is independent of the Brown-
ian motion 𝑊(⋅). It is well known that almost every sample
path 𝑟(⋅) is a right-continuous step function with finite
number of simple jumps in any finite subinterval of R

+
:=

[0,∞). As a standing hypothesis, we assume that the Markov

chain is irreducible. This is equivalent to the condition that,
for any 𝑖, 𝑗 ∈ S, we can find 𝑖

1
, 𝑖
2
, . . . , 𝑖

𝑘
∈ S, such that

𝛾
𝑖,𝑖1

𝛾
𝑖1,𝑖2

⋅ ⋅ ⋅ 𝛾
𝑖𝑘,𝑗

> 0. (3)

Then, Γ always has an eigenvalue 0. The algebraic interpreta-
tion of irreducibility is rank (Γ) = 𝑀−1. Under this condition,
theMarkov chain has a unique stationary distribution𝜋Γ = 0,
subject to ∑

𝑀

𝑗=1
𝜋
𝑗

= 1 and 𝜋
𝑗

> 0 for all 𝑗 ∈ S. For a real-
valued function 𝜎(⋅) defined on S, we define

Γ𝜎 (⋅) (𝑖) := ∑

𝑗∈S

𝛾
𝑖𝑗
𝜎 (𝑗) = ∑

𝑗 ̸= 𝑖

𝛾
𝑖𝑗
(𝜎 (𝑗) − 𝜎 (𝑖)) , (4)

for each 𝑖 ∈ S.
Let 𝐶

2,1

(R𝑛

× R
+

× S;R
+
) denote the family of all

nonnegative functions 𝑉(𝑥, 𝑡, 𝑖) on R𝑛

× R
+

× S, which are
continuously twice differentiable in 𝑥 and once differentiable
in 𝑡. If 𝑉(𝑥, 𝑡, 𝑖) ∈ 𝐶

2,1

(R𝑛

× R
+
× S;R

+
), define an operator

L𝑉 from 𝐶([−𝜏, 0];R𝑛

) × R
+
× S to R by

L𝑉 (𝜑, 𝑡, 𝑖) = 𝑉
𝑡
(𝜑 (0) − 𝐷 (𝜑, 𝑖) , 𝑡, 𝑖)

+ 𝑉
𝑥
(𝜑 (0) − 𝐷 (𝜑, 𝑖) , 𝑡, 𝑖) 𝑓 (𝜑, 𝑡, 𝑖)

+
1

2
trace [𝑔

𝑇

(𝜑, 𝑡, 𝑖)

× 𝑉
𝑥𝑥

(𝜑 (0) − 𝐷 (𝜑, 𝑖) , 𝑡, 𝑖)

× 𝑔 (𝜑, 𝑡, 𝑖) ]

+

𝑙

∑

𝑗=1

𝛾
𝑖𝑗
𝑉 (𝜑 (0) − 𝐷 (𝜑, 𝑗) , 𝑡, 𝑗) ,

(5)

where

𝜑 ∈ 𝐶 ([−𝜏, 0] ;R
𝑛

) , 𝑉
𝑡
=

𝜕𝑉 (𝑥, 𝑡, 𝑖)

𝜕𝑡
,

𝑉
𝑥
= (

𝜕𝑉 (𝑥, 𝑡, 𝑖)

𝜕𝑥
1

,
𝜕𝑉 (𝑥, 𝑡, 𝑖)

𝜕𝑥
2

, . . . ,
𝜕𝑉 (𝑥, 𝑡, 𝑖)

𝜕𝑥
𝑛

) ,

𝑉
𝑥𝑥

= (
𝜕
2

𝑉(𝑥, 𝑡, 𝑖)

𝜕𝑥
𝑖
𝜕𝑥

𝑗

)

𝑛×𝑛

.

(6)

For a parameter 𝜀 > 0, we rewrite the Markov chain 𝑟(𝑡)

as 𝑟
𝜀

(𝑡) and the generator Γ as Γ
𝜀. Γ𝜀 is given by

Γ
𝜀

=
1

𝜀
Γ + Γ̂, (7)

where Γ/𝜀 represents the fast varying motions and Γ̂ rep-
resents the slowly changing dynamics. Set Γ

𝜀

= (𝛾
𝜀

𝑖𝑗
)
𝑀×𝑀

,
Γ = (𝛾

𝑖𝑗
)
𝑀×𝑀

, and Γ̂ = (𝛾
𝑖𝑗
)
𝑀×𝑀

. For the sake of simplicity,
suppose that

S = S
1

∪ S
2

∪ ⋅ ⋅ ⋅ ∪ S
𝑙

, (8)

with S𝑘

= {𝑠
𝑘1

, . . . , 𝑠
𝑘𝑀𝑘

}, 𝑀 = 𝑀
1
+ 𝑀

2
+ ⋅ ⋅ ⋅ + 𝑀

𝑙
, and

Γ = diag (Γ
1

, . . . , Γ
𝑙

) , (9)
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where Γ
𝑘 is a generator of aMarkov chain taking values inS𝑘,

for every 𝑘 ∈ {1, . . . , 𝑙}.
We give the first assumption as follows.

Assumption 1. For each 𝑘 ∈ {1, . . . , 𝑙}, Γ𝑘 is irreducible.

In order to emphasize the effect of the fast switching, (1)
can be given by

𝑑 [𝑥
𝜀

− 𝐷 (𝑥
𝜀

𝑡
, 𝑟

𝜀

(𝑡))]

= 𝑓 (𝑥
𝜀

𝑡
, 𝑡, 𝑟

𝜀

(𝑡)) 𝑑𝑡 + 𝑔 (𝑥
𝜀

𝑡
, 𝑡, 𝑟

𝜀

(𝑡)) 𝑑𝑤 (𝑡) ,

𝑥
𝜀

0
= 𝜉 ∈ 𝐶 ([−𝜏, 0] ;R

𝑛

) , 𝑟
𝜀

= 𝑟
0
.

(10)

To assure the existence and uniqueness of the solution, we
give the following standard assumptions.

Assumption 2 (local Lipschitz condition). For each integer
𝛼 ≥ 1, there exists a constant 𝐿

𝛼
> 0 such that

󵄨󵄨󵄨󵄨𝑓 (𝜑, 𝑡, 𝑖) − 𝑓 (𝜙, 𝑡, 𝑖)
󵄨󵄨󵄨󵄨 ∨

󵄨󵄨󵄨󵄨𝑔 (𝜑, 𝑡, 𝑖) − 𝑔 (𝜙, 𝑡, 𝑖)
󵄨󵄨󵄨󵄨

≤ 𝐿
𝛼

󵄩󵄩󵄩󵄩𝜑 − 𝜙
󵄩󵄩󵄩󵄩

2

,

(11)

for all 𝑖 ∈ S, 𝑡 ≥ 0 and those 𝜑, 𝜙 ∈ 𝐶([−𝜏, 0];R𝑛

) with ‖𝜑‖ ∨

‖𝜙‖ ≤ 𝛼, and 𝑓(0, 𝑡, 𝑖) ≡ 0, 𝑔(0, 𝑡, 𝑖) ≡ 0.

Assumption 3 (linear growth condition). There is an 𝐿 > 0,
for any 𝜑 ∈ 𝐶([−𝜏, 0];R𝑛

), 𝑡 ≥ 0, 𝑖 ∈ S such that

󵄨󵄨󵄨󵄨𝑓 (𝜑, 𝑡, 𝑖)
󵄨󵄨󵄨󵄨

2

∨
󵄨󵄨󵄨󵄨𝑔 (𝜑, 𝑡, 𝑖)

󵄨󵄨󵄨󵄨

2

≤ 𝐿 (1 +
󵄩󵄩󵄩󵄩𝜑

󵄩󵄩󵄩󵄩

2

) . (12)

Assumption 4. For all 𝑖 ∈ S and those 𝜑, 𝜙 ∈ 𝐶([−𝜏, 0];R𝑛

),
there is a constant 0 < 𝜅 < 1 such that

󵄨󵄨󵄨󵄨𝐷 (𝜑, 𝑖) − 𝐷 (𝜙, 𝑖)
󵄨󵄨󵄨󵄨 ≤ 𝜅

󵄩󵄩󵄩󵄩𝜑 − 𝜙
󵄩󵄩󵄩󵄩

2

,

𝐷 (0, 𝑖) ≡ 0.

(13)

Under Assumptions 2, 3, and 4, (10) has a unique solution
denoted by 𝑥

𝜀,𝜉,𝑖

(𝑡) on 𝑡 ≥ 0, where 𝑥
𝜀,𝜉,𝑖 is dependent on the

initial value (𝜉, 𝑖) (see [8]). Moreover, for every 𝑝 > 0 and
any compact subset 𝐺 of 𝐶([−𝜏, 0];R𝑛

), there is a positive
constant 𝐻 which is independent of 𝜀 such that

sup
(𝜉,𝑖)∈𝐺×S

𝐸[ sup
−𝜏≤𝑠≤𝑡

󵄨󵄨󵄨󵄨󵄨
𝑥
𝜀,𝜉,𝑖

(𝑠)
󵄨󵄨󵄨󵄨󵄨

𝑝

] ≤ 𝐻, 𝑡 ≥ 0. (14)

Since the state space of the Markov chain is large, it is too
complicated to deal with directly.We need to analyse the limit
equation of (10). To continue, make all the states in each S𝑘

into a single state and define an aggregated process 𝑟
𝜀

(⋅) as

𝑟
𝜀

(𝑡) = 𝑘, if 𝑟
𝜀

(𝑡) ∈ S
𝑘

. (15)

Denote the state space of 𝑟𝜀(𝑡) by S̃ = {1, . . . , 𝑙}, the stationary
distribution Γ̃

𝑘 by 𝜇
𝑘

= (𝜇
𝑘

1
, . . . , 𝜇

𝑘

𝑀𝑘

) ∈ R1×𝑀𝑘 , and 𝜇 =

diag(𝜇1

, . . . , 𝜇
𝑙

) ∈ R𝑙×𝑀. Define

Γ̃ = (𝛾
𝑖𝑗
)
𝑙×𝑙

= 𝜇Γ̂1 (16)

with 1 = diag(1
𝑀1

, . . . , 1
𝑀𝑙

) and 1
𝑀𝑘

= (1, . . . , 1)
𝑇

∈ R𝑀𝑘×1,
𝑘 = 1, . . . , 𝑙. It has been known that 𝑟𝜀(⋅) converges weakly to
𝑟(⋅) as 𝜀 → 0, where 𝑟(⋅) is a continuous-time Markov chain
with generator Γ̃ and state space S̃ (see [4]). Define

𝐷(𝜑, 𝑘) =

𝑀𝑘

∑

𝑗=1

𝜇
𝑘

𝑗
𝐷(𝜑, 𝑠

𝑘𝑗
) ,

𝑓 (𝜑, 𝑡, 𝑘) =

𝑀𝑘

∑

𝑗=1

𝜇
𝑘

𝑗
𝑓 (𝜑, 𝑡, 𝑠

𝑘𝑗
) ,

𝑔 (𝜑, 𝑡, 𝑘) 𝑔
𝑇

(𝜑, 𝑡, 𝑘) =

𝑀𝑘

∑

𝑗=1

𝜇
𝑘

𝑗
𝑔 (𝜑, 𝑡, 𝑠

𝑘𝑗
) 𝑔

𝑇

(𝜑, 𝑡, 𝑠
𝑘𝑗
) ,

(17)

for each 𝑠
𝑘𝑗

∈ S𝑘 with 𝑘 ∈ {1, . . . , 𝑙} and 𝑗 ∈ {1, . . . ,𝑀
𝑘
}. It is

easy to know that𝐷(𝜑, 𝑘),𝑓(𝜑, 𝑡, 𝑘), and𝑔(𝜑, 𝑡, 𝑘) are the lim-
its with respect to the stationary distribution of the Markov
chain. Consider that, for any 𝜑 ̸= 0, 𝑔(𝜑, 𝑡, 𝑠

𝑘𝑗
)𝑔

𝑇

(𝜑, 𝑡, 𝑠
𝑘𝑗
)

are nonnegative definite matrices, so we denote its “square
root” of 𝑔(𝜑, 𝑡, 𝑠

𝑘𝑗
)𝑔

𝑇

(𝜑, 𝑡, 𝑠
𝑘𝑗
) by 𝑔(𝜑, 𝑡, 𝑘). For degenerate

diffusions, we can see the argument in [23].
The limit equation of (10) is defined as follows:

𝑑 [𝜑 (0) − 𝐷 (𝜑, 𝑟 (𝑡))]

= 𝑓 (𝜑, 𝑡, 𝑟 (𝑡)) 𝑑𝑡 + 𝑔 (𝜑, 𝑡, 𝑟 (𝑡)) 𝑑𝑤 (𝑡) ,

𝑥
0
= 𝜉, 𝑟 = 𝑟

0
.

(18)

3. Exponential Stability of NSFDE with
Two-Time-Scale Markovian Switching

In this section, we establish the Razumikhin-type theorem
on the exponential stability for (10). Denote by 𝐶

𝑝

(R𝑛

×

R
+
× S̃;R

+
) the family of nonnegative real-valued functions

defined on R𝑛

× R
+

× S̃ that are 𝑝-times continuously
differentiable with respect to 𝑥. At the same time, we need
another assumption and a lemma with respect to 𝑉(𝑥, 𝑡, 𝑖) ∈

𝐶
𝑝

(R𝑛

× R
+
× S̃;R

+
) for some 𝑝 ≥ 4.

Assumption 5. For each 𝑘 ∈ S̃, 𝑉(𝑥, 𝑡, 𝑖) → ∞ as |𝑥| →

∞. Moreover, 𝜕𝑝𝑉(𝑥, 𝑡, 𝑖) = 𝑂(1), 𝜕𝜄𝑉(𝑥, 𝑡, 𝑖)(|𝑥|
𝜄

+ |𝑦|
𝜄

) ≤

𝐾(|𝑥|
𝑝

+|𝑦|
𝑝

+1) for 1 ≤ 𝜄 ≤ 𝑝−1, where 𝜕𝜄𝑉(𝑥, 𝑡, 𝑖)denotes the
𝜄th derivative of 𝑉(𝑥, 𝑡, 𝑖) with respect to 𝑥 and 𝑂(𝑦) denotes
the function of 𝑦 satisfying sup

𝑦
|𝑂(𝑦)|/𝑦 < ∞.

Lemma 6. Suppose that 𝑝 ≥ 1; there is a positive constant
𝜅 ∈ (0, 1) such that

E
󵄨󵄨󵄨󵄨𝐷 (𝜑, 𝑘)

󵄨󵄨󵄨󵄨

𝑝

≤ 𝜅
𝑝 sup
−𝜏≤𝜃≤0

𝑒
𝛾𝜃󵄩󵄩󵄩󵄩𝜑

󵄩󵄩󵄩󵄩

𝑝

,

(𝜑, 𝑖) ∈ 𝐿
𝑝

F𝑡
([−𝜏, 0] ;R

𝑛

) × S.

(19)



4 Mathematical Problems in Engineering

Then, for any 𝜉 ∈ 𝐿
𝑝

F0
([−𝜏, 0];R𝑛

), the solution for (10)
satisfies

sup
−∞<𝑠≤𝑡

𝑒
𝛾𝑠

E |𝑥 (𝑠)|
𝑝

≤

󵄩󵄩󵄩󵄩𝜉
󵄩󵄩󵄩󵄩

𝑝

1 − 𝜅
∨
sup

0≤𝑠≤𝑡
𝑒
𝛾𝑠E

󵄨󵄨󵄨󵄨𝑥 (𝑠) − 𝐷 (𝑥
𝑠
, 𝑟 (𝑠))

󵄨󵄨󵄨󵄨

𝑝

(1 − 𝜅)
𝑝

,

𝑡 ≥ 0.

(20)

Proof. Note the following elementary inequality:

(𝑥 + 𝑦)
𝑝

= (1 − 𝜅
1
)
1−𝑝

(𝑥
𝑝

+ 𝜅
1

1−𝑝

𝑦
𝑝

) ,

∀𝑥, 𝑦 ≥ 0, 𝜅
1
> 0.

(21)

We have from condition (20) that, for any 𝑡 ≥ 0,

𝑒
𝛾𝑡

E|𝑥 (𝑡)|
𝑝

≤ 𝑒
𝛾𝑡

[(1 − 𝜅)
1−𝑝

E
󵄨󵄨󵄨󵄨𝑥 (𝑡) − 𝐷 (𝑥

𝑡
, 𝑟 (𝑡))

󵄨󵄨󵄨󵄨

𝑝

+ 𝜅
1−𝑝

E
󵄨󵄨󵄨󵄨𝐷 (𝑥

𝑡
, 𝑟 (𝑡))

󵄨󵄨󵄨󵄨

𝑝

]

≤ (1 − 𝜅)
1−𝑝

𝑒
𝛾𝑡

E
󵄨󵄨󵄨󵄨𝑥 (𝑡) − 𝐷 (𝑥

𝑡
, 𝑟 (𝑡))

󵄨󵄨󵄨󵄨

𝑝

+ 𝜅𝑒
𝛾𝑡 sup
−𝜏≤𝜃≤0

𝑒
𝛾𝜃

E |𝑥 (𝑡 + 𝜃)|
𝑝

≤ (1 − 𝜅)
1−𝑝 sup

0≤𝑠≤𝑡

𝑒
𝛾𝑠

E
󵄨󵄨󵄨󵄨𝑥 (𝑠) − 𝐷 (𝑥

𝑠
, 𝑟 (𝑠))

󵄨󵄨󵄨󵄨

𝑝

+ 𝜅 sup
−𝜏≤𝜃≤0

𝑒
𝛾(𝑠+𝜃)

E |𝑥 (𝑠 + 𝜃)|
𝑝

≤ (1 − 𝜅)
1−𝑝 sup

0≤𝑠≤𝑡

𝑒
𝛾𝑠

E
󵄨󵄨󵄨󵄨𝑥 (𝑠) − 𝐷 (𝑥

𝑠
, 𝑟 (𝑠))

󵄨󵄨󵄨󵄨

𝑝

+ 𝜅 sup
−∞<𝑠≤𝑡

𝑒
𝛾𝑠

E |𝑥 (𝑠)|
𝑝

.

(22)

Then,

sup
−∞<𝑠≤𝑡

𝑒
𝛾𝑠

E |𝑥 (𝑠)|
𝑝

≤ [ sup
−𝜏≤𝜃≤0

E |𝑥 (𝜃)|
2

]

∨ [(1 − 𝜅)
1−𝑝 sup

0≤𝑠≤𝑡

𝑒
𝛾𝑠

E
󵄨󵄨󵄨󵄨𝑥 (𝑠) − 𝐷 (𝑥

𝑠
, 𝑟 (𝑠))

󵄨󵄨󵄨󵄨

𝑝

+𝜅 sup
−∞<𝑠≤𝑡

𝑒
𝛾𝑠

E |𝑥 (𝑠)|
𝑝

] .

(23)

Therefore, the desired result holds.

Theorem 7. Let Assumptions 1–4 hold and let 𝑐
1
, 𝑐

2
, 𝜆, 𝑝 be all

positive numbers and 𝑞 > 1. Assume that there exists a function
𝑉(𝑥, 𝑡, 𝑘) ∈ 𝐶

𝑝

(R𝑛

×R
+
×S̃;R

+
) satisfying Assumption 5, such

that

𝑐
1
|𝑥|

𝑝

≤ 𝑉 (𝑥, 𝑡, 𝑘) ≤ 𝑐
2
|𝑥|

𝑝

, (24)

for all (𝑥, 𝑡, 𝑘) ∈ R𝑛

× R
+

× S̃, 𝑡 ≥ 0, 𝑘 ∈ S̃. Consider the
following:

E
󵄨󵄨󵄨󵄨𝐷 (𝜑, 𝑘)

󵄨󵄨󵄨󵄨

𝑝

≤ 𝜅
𝑝 sup
−𝜏≤𝜃≤0

𝑒
]𝜃󵄩󵄩󵄩󵄩𝜑

󵄩󵄩󵄩󵄩

𝑝

,

𝜅 = max {𝜅
1
, . . . , 𝜅

𝑘
} , 𝜑 ∈ 𝐿

𝑝

F𝑡
,

(25)

for all 𝑡 ≥ 0, 0 < 𝜅
𝜎
< 1, 𝜎 = {1, . . . , 𝑘}, and

E [max
𝑘∈

̃S

L𝑉 (𝜑, 𝑡, 𝑘)]

≤ −𝜆E [max
𝑘∈

̃S

𝑉 (𝜑 (0) − 𝐷 (𝜑, 𝑘) , 𝑡, 𝑘)] ,

(26)

provided 𝜑 = {𝜑(𝜃) : −𝜏 ≤ 𝜃 ≤ 0} ∈ 𝐿
𝑝

F𝑡
([−𝜏, 0];R𝑛

),
satisfying

E [min
𝑘∈

̃S

𝑉 (𝜑 (𝜃) , 𝑡 + 𝜃, 𝑘)]

< 𝑞E [max
𝑘∈

̃S

𝑉 (𝜑 (0) − 𝐷 (𝜑, 𝑘) , 𝑡, 𝑘)] ,

(27)

for all −𝜏 ≤ 𝜃 ≤ 0. Then, for all 𝜉 ∈ 𝐶
𝑏

F0
([−𝜏, 0];R𝑛

), 𝑡 ≥ 0,

lim sup
𝜀→0

E
󵄨󵄨󵄨󵄨𝑥

𝜀

(𝑡)
󵄨󵄨󵄨󵄨

𝑝

≤
𝑐
2
(1 + 𝜅)

𝑝

𝑐
1
(1 − 𝜅)

𝑝

󵄩󵄩󵄩󵄩𝜉
󵄩󵄩󵄩󵄩

𝑝

𝑒
−]𝑡

, (28)

where

] = min{𝛾,
1

𝜏
log

𝑞

(𝑐
2
/𝑐
1
) (1 − 𝜅)

𝑝
} , (29)

𝛾 being the root of the following equation:

𝑐
2

𝑐
1

(1 − 𝜅)
𝑝

𝑒
𝛾𝜏

= 𝜆. (30)

In other words, the trivial solution of (10) is 𝑝th moment
exponentially stable and the𝑝thmoment Lyapunov exponent
is not greater than −].

Proof. Let

𝑉̃ (𝜑, 𝑡, 𝑗) =

𝑙

∑

𝑘=1

𝑉 (𝜑, 𝑡, 𝑘) 𝐼
{𝑗∈S𝑘} = 𝑉 (𝜑, 𝑡, 𝑘) , if 𝑗 ∈ S

𝑘

.

(31)

By the definition of 𝑉̃, we know that

𝑉̃ (𝜑
𝜀

, 𝑡, 𝑟
𝜀

(𝑡)) = 𝑉 (𝜑
𝜀

, 𝑡, 𝑟
𝜀

(𝑡)) ,

𝑀

∑

𝑖=1

𝛾
𝑙𝑖
𝑉̃ (𝜑, 𝑡, 𝑖) =

𝑀

∑

𝑖=1

𝛾
𝑙𝑖

𝑙

∑

𝑘=1

𝑉 (𝜑, 𝑡, 𝑘) 𝐼
{𝑖∈S𝑘} = 0.

(32)

Extend 𝑟(𝑡) to [−𝜏, 0] by setting 𝑟(𝑡) = 𝑟(0). Recalling the
facts that 𝑥(𝑡) is continuous for all −𝜏 ≤ 𝜃 ≤ 0 and 𝑟(𝑡) is
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right continuous, it is easy to see that E𝑉(𝑥(𝑡), 𝑡, 𝑟(𝑡)) is right
continuous on 𝑡 ≥ −𝜏. Let 𝛾 ∈ (0, ]) be arbitrary and define

𝑈 (𝑡) := sup
−𝜏≤𝜃≤0

[𝑒
𝛾(𝑡+𝜃)E𝑉 (𝑥

𝜀

(𝑡 + 𝜃) − 𝐷 (𝑥
𝜀

𝑡+𝜃
, 𝑟

𝜀

(𝑡 + 𝜃)) ,

𝑡 + 𝜃, 𝑟
𝜀

(𝑡 + 𝜃)) ]

= sup
−𝜏≤𝜃≤0

[𝑒
𝛾(𝑡+𝜃)

E𝑉̃ (𝑥
𝜀

(𝑡 + 𝜃) − 𝐷 (𝑥
𝜀

𝑡+𝜃
, 𝑟

𝜀

(𝑡 + 𝜃)) ,

𝑡 + 𝜃, 𝑟
𝜀

(𝑡 + 𝜃)) ] ,

(33)

for all 𝑡 ≥ 0. We claim that

𝐷
+

𝑈 (𝑡) = lim sup
ℎ→0+

𝑈 (𝑡 + ℎ) − 𝑈 (𝑡)

ℎ
≤ 0, ∀𝑡 ≥ 0. (34)

Note that, for each 𝑡 ≥ 0, either 𝑈(𝑡) > 𝑒
𝛾𝑡E𝑉(𝑥

𝜀

(𝑡) −

𝐷(𝑥
𝜀

𝑡
, 𝑟

𝜀

(𝑡)), 𝑡, 𝑟
𝜀

(𝑡)) or 𝑈(𝑡) = 𝑒
𝛾𝑡E𝑉(𝑥

𝜀

(𝑡) − 𝐷(𝑥
𝜀

𝑡
, 𝑟

𝜀

(𝑡)),

𝑡, 𝑟
𝜀

(𝑡)).
If 𝑈(𝑡) > 𝑒

𝛾𝑡E𝑉(𝑥
𝜀

(𝑡) − 𝐷(𝑥
𝜀

𝑡
, 𝑟

𝜀

(𝑡)), 𝑡, 𝑟
𝜀

(𝑡)), because
E𝑉(𝑥(𝑡), 𝑡, 𝑟(𝑡)) is right continuous on 𝑡 ≥ −𝜏, it is easy
to obtain that, for all ℎ > 0 sufficiently small, 𝑈(𝑡) >

𝑒
𝛾(𝑡+ℎ)E𝑉(𝑥

𝜀

(𝑡 + ℎ) −𝐷(𝑥
𝜀

𝑡+ℎ
, 𝑟

𝜀

(𝑡 + ℎ)), 𝑡 + ℎ, 𝑟
𝜀

(𝑡 + ℎ)); hence,
𝑈(𝑡 + ℎ) ≤ 𝑈(𝑡) and 𝐷

+

𝑈(𝑡) ≤ 0.
If 𝑈(𝑡) = 𝑒

𝛾𝑡E𝑉(𝑥
𝜀

(𝑡) − 𝐷(𝑥
𝜀

𝑡
, 𝑟

𝜀

(𝑡)), 𝑡, 𝑟
𝜀

(𝑡)), we have

𝑒
𝛾(𝑡+𝜃)

E𝑉 (𝑥
𝜀

(𝑡 + 𝜃) − 𝐷 (𝑥
𝑡+𝜃

, 𝑟
𝜀

(𝑡 + 𝜃)) , 𝑡 + 𝜃, 𝑟
𝜀

(𝑡 + 𝜃))

≤ 𝑒
𝛾𝑡

E𝑉 (𝑥
𝜀

(𝑡) − 𝐷 (𝑥
𝑡
, 𝑟

𝜀

(𝑡)) , 𝑡, 𝑟
𝜀

(𝑡)) ,

(35)

for all −𝜏 ≤ 𝜃 ≤ 0.
Then,

E𝑉 (𝑥
𝜀

(𝑡 + 𝜃) − 𝐷 (𝑥
𝑡+𝜃

, 𝑟
𝜀

(𝑡 + 𝜃)) , 𝑡 + 𝜃, 𝑟
𝜀

(𝑡 + 𝜃))

≤ 𝑒
−𝛾𝜃

E𝑉 (𝑥
𝜀

(𝑡) − 𝐷 (𝑥
𝑡
, 𝑟

𝜀

(𝑡)) , 𝑡, 𝑟
𝜀

(𝑡))

≤ 𝑒
𝛾𝜏

E𝑉 (𝑥
𝜀

(𝑡) − 𝐷 (𝑥
𝑡
, 𝑟

𝜀

(𝑡)) , 𝑡, 𝑟
𝜀

(𝑡)) ,

(36)

for all −𝜏 ≤ 𝜃 ≤ 0.
On the other hand, by Lemma 6, we derive

𝑒
𝛾(𝑡+𝜃)

E𝑉 (𝑥
𝜀

(𝑡 + 𝜃) , 𝑡 + 𝜃, 𝑟
𝜀

(𝑡 + 𝜃))

≤ 𝑐
2
𝑒
𝛾(𝑡+𝜃)

E
󵄨󵄨󵄨󵄨𝑥

𝜀

(𝑡 + 𝜃)
󵄨󵄨󵄨󵄨

𝑝

≤ 𝑐
2
(1 − 𝜅)

𝑝 sup
0≤𝑠≤𝑡

𝑒
𝛾𝑠

E
󵄨󵄨󵄨󵄨𝑥

𝜀

(𝑠) − 𝐷 (𝑥
𝜀

𝑠
, 𝑟 (𝑠))

󵄨󵄨󵄨󵄨

𝑝

≤
𝑐
2

𝑐
1

(1 − 𝜅)
𝑝 sup
0≤𝑠≤𝑡

𝑒
𝛾𝑠

E𝑉 (𝑥
𝜀

(𝑠) − 𝐷 (𝑥
𝜀

𝑠
, 𝑟 (𝑠)) , 𝑠, 𝑟 (𝑠))

≤
𝑐
2

𝑐
1

(1 − 𝜅)
𝑝

𝑒
𝛾𝑡

E𝑉 (𝑥
𝜀

(𝑡) − 𝐷 (𝑥
𝜀

𝑡
, 𝑟 (𝑡)) , 𝑡, 𝑟 (𝑡)) .

(37)

Then,

E𝑉 (𝑥
𝜀

(𝑡 + 𝜃) , 𝑡 + 𝜃, 𝑟
𝜀

(𝑡 + 𝜃))

< 𝑞E𝑉 (𝜑
𝜀

(0) − 𝐷 (𝜑
𝜀

, 𝑟
𝜀

(𝑡)) , 𝑡, 𝑟
𝜀

(𝑡)) ,

(38)

where 𝑞 > (𝑐
2
/𝑐
1
)(1 − 𝜅)

𝑝

𝑒
𝛾𝜏; that is, 𝛾 < (1/𝜏)(log(𝑞/(𝑐

2
/𝑐
1
)

(1 − 𝜅)
𝑝

)).
Consequently, there exists a sufficiently small 𝜀

0
> 0, such

that, for any 𝜀 ∈ (0, 𝜀
0
),

E [min
𝑘∈

̃S

𝑉 (𝜑
𝜀

(𝜃) , 𝑡 + 𝜃, 𝑘)]

< 𝑞E [max
𝑘∈

̃S

𝑉 (𝜑
𝜀

(0) − 𝐷 (𝜑
𝜀

, 𝑘) , 𝑡, 𝑘)] ,

(39)

for all −𝜏 ≤ 𝜃 ≤ 0. Thus,

E [max
𝑘∈

̃S

L𝑉 (𝜑
𝜀

, 𝑡, 𝑟
𝜀

(𝑡))]

≤ −𝜆E [max
𝑘∈

̃S

𝑉 (𝜑
𝜀

(0) − 𝐷 (𝜑
𝜀

, 𝑟
𝜀

(𝑡)) , 𝑡, 𝑟
𝜀

(𝑡))] ,

(40)

which implies that

E [L𝑉 (𝜑
𝜀

, 𝑡, 𝑟
𝜀

(𝑡))]

≤ −𝜆E [𝑉 (𝜑
𝜀

(0) − 𝐷 (𝜑
𝜀

, 𝑟
𝜀

(𝑡)) , 𝑡, 𝑟
𝜀

(𝑡))] .

(41)

By the condition of 𝛾 < ] ≤ 𝜆, we get

E [L𝑉 (𝜑
𝜀

, 𝑡, 𝑟
𝜀

(𝑡))]

≤ −𝛾E [𝑉 (𝜑
𝜀

(0) − 𝐷 (𝜑
𝜀

, 𝑟
𝜀

(𝑡)) , 𝑡, 𝑟
𝜀

(𝑡))] .

(42)

Next, we consider

𝑈 (𝑡 + ℎ) − 𝑈 (𝑡)

= lim sup
𝜀→0

[𝑒
𝛾(𝑡+𝜃+ℎ)

E [𝑉 (𝑥
𝜀

(𝑡 + 𝜃 + ℎ)

− 𝐷 (𝑥
𝜀

𝑡+𝜃+ℎ
, 𝑟

𝜀

(𝑡 + 𝜃 + ℎ)) ,

𝑡 + 𝜃 + ℎ, 𝑟
𝜀

(𝑡 + 𝜃 + ℎ)) ]

− 𝑒
𝛾(𝑡+𝜃)

E [𝑉 (𝑥
𝜀

(𝑡 + 𝜃) − 𝐷 (𝑥
𝜀

𝑡+𝜃
, 𝑟

𝜀

(𝑡 + 𝜃)) ,

𝑡 + 𝜃, 𝑟
𝜀

(𝑡 + 𝜃))]]

= lim sup
𝜀→0

E∫

𝑡+𝜃+ℎ

𝑡+𝜃

𝑒
𝛾𝑠

[L𝑉 (𝜑
𝜀

, 𝑠, 𝑟
𝜀

(𝑠))

+ 𝛾𝑉 (𝜑
𝜀

(0) − 𝐷 (𝜑
𝜀

, 𝑟
𝜀

(𝑠)) ,

𝑠, 𝑟
𝜀

(𝑠))] 𝑑𝑠

= lim sup
𝜀→0

E∫

𝑡+𝜃+ℎ

𝑡+𝜃

𝑒
𝛾𝑠

[L𝑉̃ (𝜑
𝜀

, 𝑠, 𝑟
𝜀

(𝑠))

+ 𝛾𝑉 (𝜑
𝜀

(0) − 𝐷 (𝜑
𝜀

, 𝑟
𝜀

(𝑠)) ,

𝑠, 𝑟
𝜀

(𝑠)) ] 𝑑𝑠.

(43)
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By the definition of operatorL, we have

L𝑉̃ (𝜑
𝜀

, 𝑡, 𝑟
𝜀

(𝑡))

= 𝑉̃
𝑡
(𝜑

𝜀

(0) − 𝐷 (𝜑
𝜀

, 𝑟
𝜀

(𝑡)) , 𝑡, 𝑟
𝜀

(𝑡))

+ 𝑉̃
𝑥
(𝜑

𝜀

(0) − 𝐷 (𝜑
𝜀

, 𝑟
𝜀

(𝑡)) , 𝑡, 𝑟
𝜀

(𝑡))

× 𝑓 (𝜑
𝜀

, 𝑡, 𝑟
𝜀

(𝑡))

+
1

2
trace [𝑔

𝑇

(𝜑
𝜀

, 𝑡, 𝑟
𝜀

(𝑡))

× 𝑉̃
𝑥𝑥

(𝜑
𝜀

(0) − 𝐷 (𝜑
𝜀

, 𝑟
𝜀

(𝑡)) , 𝑡, 𝑟
𝜀

(𝑡))

× 𝑔 (𝜑
𝜀

, 𝑡, 𝑟
𝜀

(𝑡)) ]

+

𝑀

∑

𝑖=1

𝛾
𝜀

𝑟
𝜀
(𝑡)𝑖

𝑉̃ (𝜑
𝜀

(0) − 𝐷 (𝑥
𝜀

𝑡
, 𝑖) , 𝑡, 𝑖)

= 𝑉̃
𝑡
(𝜑

𝜀

(0) − 𝐷 (𝜑
𝜀

, 𝑟
𝜀

(𝑡)) , 𝑡, 𝑟
𝜀

(𝑡))

+ 𝑉̃
𝑥
(𝜑

𝜀

(0) − 𝐷 (𝜑
𝜀

, 𝑟
𝜀

(𝑡)) , 𝑡, 𝑟
𝜀

(𝑡))

× 𝑓 (𝜑
𝜀

, 𝑡, 𝑟
𝜀

(𝑡))

+
1

2
trace [𝑔

𝑇

(𝜑
𝜀

, 𝑡, 𝑟
𝜀

(𝑡))

× 𝑉̃
𝑥𝑥

(𝜑
𝜀

(0) − 𝐷 (𝜑
𝜀

, 𝑟
𝜀

(𝑡)) , 𝑡, 𝑟
𝜀

(𝑡))

× 𝑔 (𝜑
𝜀

, 𝑡, 𝑟
𝜀

(𝑡)) ]

+

𝑀

∑

𝑖=1

𝛾
𝑟
𝜀
(𝑡)𝑖

𝑉̃ (𝜑
𝜀

(0) − 𝐷 (𝑥
𝜀

𝑡
, 𝑖) , 𝑡, 𝑖)

= 𝑉
𝑡
(𝜑

𝜀

(0) − 𝐷 (𝜑
𝜀

, 𝑟
𝜀

(𝑡)) , 𝑡, 𝑟
𝜀

(𝑡))

+ 𝑉
𝑥
(𝜑

𝜀

(0) − 𝐷 (𝜑
𝜀

, 𝑟
𝜀

(𝑡)) , 𝑡, 𝑟
𝜀

(𝑡))

× 𝑓 (𝜑
𝜀

, 𝑡, 𝑟
𝜀

(𝑡))

+
1

2
trace [𝑔

𝑇

(𝜑
𝜀

, 𝑡, 𝑟
𝜀

(𝑡))

× 𝑉
𝑥𝑥

(𝜑
𝜀

(0) − 𝐷 (𝜑
𝜀

, 𝑟
𝜀

(𝑡)) , 𝑡, 𝑟
𝜀

(𝑡))

× 𝑔 (𝜑
𝜀

, 𝑡, 𝑟
𝜀

(𝑡)) ]

+

𝑙

∑

𝑘=1

𝛾
𝜀

𝑟
𝜀
(𝑡)𝑘

𝑉 (𝜑
𝜀

(0) − 𝐷 (𝑥
𝜀

𝑡
, 𝑘) , 𝑡, 𝑘)

+ 𝑉
𝑥
(𝜑

𝜀

(0) − 𝐷 (𝜑
𝜀

, 𝑟
𝜀

(𝑡)) , 𝑡, 𝑟
𝜀

(𝑡))

× [𝑓 (𝜑
𝜀

, 𝑡, 𝑟
𝜀

(𝑡)) − 𝑓 (𝜑
𝜀

, 𝑡, 𝑟
𝜀

(𝑡))]

+
1

2
trace [𝑔

𝑇

(𝜑
𝜀

, 𝑡, 𝑟
𝜀

(𝑡))

× 𝑉
𝑥𝑥

(𝜑
𝜀

(0) − 𝐷 (𝜑
𝜀

, 𝑟
𝜀

(𝑡)) , 𝑡, 𝑟
𝜀

(𝑡))

× 𝑔 (𝜑
𝜀

, 𝑡, 𝑟
𝜀

(𝑡)) − 𝑔
𝑇

(𝜑
𝜀

, 𝑡, 𝑟
𝜀

(𝑡))

× 𝑉
𝑥𝑥

(𝜑
𝜀

(0) − 𝐷 (𝜑
𝜀

, 𝑟
𝜀

(𝑡)) , 𝑡, 𝑟
𝜀

(𝑡))

× 𝑔 (𝜑
𝜀

, 𝑡, 𝑟
𝜀

(𝑡)) ]

+

𝑀

∑

𝑖=1

𝛾
𝑟
𝜀
(𝑡)𝑖

𝑉̃ (𝜑
𝜀

(0) − 𝐷 (𝑥
𝜀

𝑡
, 𝑖) , 𝑡, 𝑖)

−

𝑙

∑

𝑘=1

𝛾
𝑟
𝜀
(𝑡)𝑘

𝑉 (𝜑
𝜀

(0) − 𝐷 (𝑥
𝜀

𝑡
, 𝑘) , 𝑡, 𝑘)

= L𝑉 (𝜑
𝜀

, 𝑡, 𝑟
𝜀

(𝑡))

+ 𝑉
𝑥
(𝜑

𝜀

(0) − 𝐷 (𝜑
𝜀

, 𝑟
𝜀

(𝑡)) , 𝑡, 𝑟
𝜀

(𝑡))

× [𝑓 (𝜑
𝜀

, 𝑡, 𝑟
𝜀

(𝑡)) − 𝑓 (𝜑
𝜀

, 𝑡, 𝑟
𝜀

(𝑡))]

+
1

2
trace [𝑔

𝑇

(𝜑
𝜀

, 𝑡, 𝑟
𝜀

(𝑡))

× 𝑉
𝑥𝑥

(𝜑
𝜀

(0) − 𝐷 (𝜑
𝜀

, 𝑟
𝜀

(𝑡)) , 𝑡, 𝑟
𝜀

(𝑡))

× 𝑔 (𝜑
𝜀

, 𝑡, 𝑟
𝜀

(𝑡)) − 𝑔
𝑇

(𝜑
𝜀

, 𝑡, 𝑟
𝜀

(𝑡))

× 𝑉
𝑥𝑥

(𝜑
𝜀

(0) − 𝐷 (𝜑
𝜀

, 𝑟
𝜀

(𝑡)) , 𝑡, 𝑟
𝜀

(𝑡))

× 𝑔 (𝜑
𝜀

, 𝑡, 𝑟
𝜀

(𝑡)) ]

+

𝑀

∑

𝑖=1

𝛾
𝑟
𝜀
(𝑡)𝑖

𝑉̃ (𝜑
𝜀

(0) − 𝐷 (𝑥
𝜀

𝑡
, 𝑖) , 𝑡, 𝑖)

−

𝑙

∑

𝑘=1

𝛾
𝑟
𝜀
(𝑡)𝑘

𝑉 (𝜑
𝜀

(0) − 𝐷 (𝑥
𝜀

𝑡
, 𝑘) , 𝑡, 𝑘) .

(44)

Therefore,

𝑈 (𝑡 + ℎ) − 𝑈 (𝑡)

= lim sup
𝜀→0

E

× ∫

𝑡+𝜃+ℎ

𝑡+𝜃

𝑒
𝛾𝑠

× [L𝑉 (𝜑
𝜀

, 𝑠, 𝑟
𝜀

(𝑠))

+𝛾𝑉 (𝜑
𝜀

(0) − 𝐷 (𝜑
𝜀

, 𝑟
𝜀

(𝑠)) , 𝑠, 𝑟
𝜀

(𝑠))] 𝑑𝑠

+ lim sup
𝜀→0

E

× ∫

𝑡+𝜃+ℎ

𝑡+𝜃

𝑒
𝛾𝑡

𝑉
𝑥
(𝜑

𝜀

(0) − 𝐷 (𝜑
𝜀

, 𝑟
𝜀

(𝑠)) , 𝑠, 𝑟
𝜀

(𝑠))

× [𝑓 (𝜑
𝜀

, 𝑠, 𝑟
𝜀

(𝑠)) − 𝑓 (𝜑
𝜀

, 𝑠, 𝑟
𝜀

(𝑠))] 𝑑𝑠

+
1

2
lim sup
𝜀→0

E

× ∫

𝑡+𝜃+ℎ

𝑡+𝜃

𝑒
𝛾𝑠
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× trace [𝑔
𝑇

(𝜑
𝜀

, 𝑠, 𝑟
𝜀

(𝑠))

× 𝑉
𝑥𝑥

(𝜑
𝜀

(0) − 𝐷 (𝜑
𝜀

, 𝑟
𝜀

(𝑠)) , 𝑠, 𝑟
𝜀

(𝑠))

× 𝑔 (𝜑
𝜀

, 𝑠, 𝑟
𝜀

(𝑠)) − 𝑔
𝑇

(𝜑
𝜀

, 𝑠, 𝑟
𝜀

(𝑠))

× 𝑉
𝑥𝑥

(𝜑
𝜀

(0) − 𝐷 (𝜑
𝜀

, 𝑟
𝜀

(𝑠)) , 𝑠, 𝑟
𝜀

(𝑠))

× 𝑔 (𝜑
𝜀

, 𝑠, 𝑟
𝜀

(𝑠)) ] 𝑑𝑠

+ lim sup
𝜀→0

E

× ∫

𝑡+𝜃+ℎ

𝑡+𝜃

𝑒
𝛾𝑠

× (

𝑀

∑

𝑖=1

𝛾
𝑟
𝜀
(𝑠)𝑖

𝑉̃ (𝜑
𝜀

(0) − 𝐷 (𝑥
𝜀

𝑠
, 𝑖) , 𝑠, 𝑖)

−

𝑙

∑

𝑘=1

𝛾
𝑟
𝜀
(𝑠)𝑘

𝑉 (𝜑
𝜀

(0) − 𝐷 (𝑥
𝜀

𝑠
, 𝑘) , 𝑠, 𝑘))𝑑𝑠

=: 𝐼
1
+ 𝐼

2
+ 𝐼

3
+ 𝐼

4
.

(45)

By the definition of 𝑓,

𝑓 (𝜑
𝜀

, 𝑡, 𝑟
𝜀

(𝑡)) − 𝑓 (𝜑
𝜀

, 𝑡, 𝑟
𝜀

(𝑡))

=

𝑙

∑

𝑘=1

𝑀𝑘

∑

𝑗=1

𝑓 (𝜑
𝜀

, 𝑡, 𝑠
𝑘𝑗
) × [𝐼

{𝑟
𝜀
(𝑡)=𝑠𝑘𝑗}

− 𝜇
𝑘

𝑗
𝐼
{𝑟
𝜀
(𝑡)=𝑘}

] .

(46)

This implies that

lim
𝜀→0

E∫

𝑡+𝜃+ℎ

𝑡+𝜃

𝑒
𝛾𝑠

𝑉
𝑥
(𝜑

𝜀

(0) − 𝐷 (𝜑
𝜀

, 𝑟
𝜀

(𝑠)) , 𝑠, 𝑟
𝜀

(𝑠))

× [𝑓 (𝜑
𝜀

, 𝑠, 𝑟
𝜀

(𝑠)) − 𝑓 (𝜑
𝜀

, 𝑠, 𝑟
𝜀

(𝑠))] 𝑑𝑠

≤ lim
𝜀→0

[E

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑡+𝜃+ℎ

𝑡+𝜃

𝑒
𝛾𝑠

𝑉
𝑥
(𝜑

𝜀

(0) − 𝐷 (𝜑
𝜀

, 𝑟
𝜀

(𝑠)) , 𝑠, 𝑟
𝜀

(𝑠))

× [𝑓 (𝜑
𝜀

, 𝑠, 𝑟
𝜀

(𝑠)) − 𝑓 (𝜑
𝜀

, 𝑠, 𝑟
𝜀

(𝑠))] 𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

]

1/2

= lim
𝜀→0

[

[

E

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑡+𝜃+ℎ

𝑡+𝜃

𝑒
𝛾𝑠

𝑉
𝑥
(𝜑

𝜀

(0) − 𝐷 (𝜑
𝜀

, 𝑟
𝜀

(𝑠)) , 𝑠, 𝑟
𝜀

(𝑠))

×

𝑙

∑

𝑘=1

𝑀𝑘

∑

𝑗=1

𝑓 (𝜑
𝜀

, 𝑠, 𝑠
𝑘𝑗
)

× [𝐼
{𝑟
𝜀
(𝑠)=𝑠𝑘𝑗}

− 𝜇
𝑘

𝑗
𝐼
{𝑟
𝜀
(𝑠)=𝑘}

] 𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

]

]

1/2

≤ lim
𝜀→0

[

[

E

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑡+𝜃+ℎ

𝑡+𝜃

𝑙

∑

𝑘=1

𝑀𝑘

∑

𝑗=1

𝑒
𝛾𝑠

𝐿 (1 +
󵄩󵄩󵄩󵄩𝜑

󵄩󵄩󵄩󵄩

𝑝

)

× [𝐼
{𝑟
𝜀
(𝑠)=𝑠𝑘𝑗}

− 𝜇
𝑘

𝑗
𝐼
{𝑟
𝜀
(𝑠)=𝑘}

] 𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

]

]

1/2

.

(47)

By the argument of Lemma 7.14 in [4], the right side of the
above inequality is equivalent to 0; that is, 𝐼

2
= 0. Similarly,

we can show that

𝐼
3
=

1

2
lim sup
𝜀→0

E

× ∫

𝑡+𝜃+ℎ

𝑡+𝜃

𝑒
𝛾𝑠

× trace [𝑔
𝑇

(𝜑
𝜀

, 𝑠, 𝑟
𝜀

(𝑠))

× 𝑉
𝑥𝑥

(𝜑
𝜀

(0) − 𝐷 (𝜑
𝜀

, 𝑟
𝜀

(𝑠)) , 𝑠, 𝑟
𝜀

(𝑠))

× 𝑔 (𝜑
𝜀

, 𝑠, 𝑟
𝜀

(𝑠))

− 𝑔
𝑇

(𝜑
𝜀

, 𝑠, 𝑟
𝜀

(𝑠))

× 𝑉
𝑥𝑥

(𝜑
𝜀

(0) − 𝐷 (𝜑
𝜀

, 𝑟
𝜀

(𝑠)) , 𝑠, 𝑟
𝜀

(𝑠))

× 𝑔 (𝜑
𝜀

, 𝑠, 𝑟
𝜀

(𝑠)) ] 𝑑𝑠 = 0.

(48)

By the definition of Γ̂ and Γ̃, we have

𝑀

∑

𝑖=1

𝛾
𝑟
𝜀
(𝑡)𝑖

𝑉̃ (𝜑
𝜀

(0) − 𝐷 (𝑥
𝜀

𝑡
, 𝑖) , 𝑡, 𝑖)

= Γ̂𝑉̃ (𝜑
𝜀

(0) − 𝐷 (𝑥
𝜀

𝑡
, 𝑖) , 𝑡, ⋅) (𝑟

𝜀

(𝑡)) ,

𝑙

∑

𝑘=1

𝛾
𝑟
𝜀
(𝑡)𝑘

𝑉 (𝜑 (0) − 𝐷 (𝑥
𝜀

𝑡
, 𝑘) , 𝑡, 𝑘)

= Γ̃𝑉 (𝜑 (0) − 𝐷 (𝑥
𝜀

𝑡
, 𝑘) , 𝑡, ⋅) (𝑟

𝜀

(𝑡)) .

(49)

Hence,

𝐼
4
= lim sup

𝜀→0

E

× ∫

𝑡+𝜃+ℎ

𝑡+𝜃

𝑒
𝛾𝑠

× (

𝑀

∑

𝑖=1

𝛾
𝑟
𝜀
(𝑠)𝑖

𝑉̃ (𝜑
𝜀

(0) − 𝐷 (𝑥
𝜀

𝑠
, 𝑖) , 𝑠, 𝑖)

−

𝑙

∑

𝑘=1

𝛾
𝑟
𝜀
(𝑠)𝑘

𝑉 (𝜑
𝜀

(0) − 𝐷 (𝑥
𝜀

𝑠
, 𝑘) , 𝑠, 𝑘))𝑑𝑠
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= lim sup
𝜀→0

E

× ∫

𝑡+𝜃+ℎ

𝑡+𝜃

𝑒
𝛾𝑠

× (Γ̂𝑉̃ (𝜑
𝜀

(0) − 𝐷 (𝑥
𝜀

𝑠
, 𝑖) , 𝑠, ⋅) (𝑟

𝜀

(𝑠))

− Γ̃𝑉 (𝜑
𝜀

(0) − 𝐷 (𝑥
𝜀

𝑠
, 𝑘) , 𝑠, ⋅) (𝑠

𝑘𝑗
)) 𝑑𝑠

= lim sup
𝜀→0

E

× ∫

𝑡+𝜃+ℎ

𝑡+𝜃

𝑒
𝛾𝑠

𝑙

∑

𝑘=1

𝑀𝑘

∑

𝑗=1

Γ̂𝑉̃ (𝜑
𝜀

(0) − 𝐷 (𝑥
𝜀

𝑠
, 𝑖) , 𝑠, ⋅) (𝑠

𝑘𝑗
)

× [𝐼
{𝑟
𝜀
(𝑠)=𝑠𝑘𝑗}

− 𝜇
𝑘

𝑗
𝐼
{𝑟
𝜀
(𝑠)=𝑘}

] 𝑑𝑠

≤ lim sup
𝜀→0

[

[

E

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑡+𝜃+ℎ

𝑡+𝜃

𝑒
𝛾𝑠

×

𝑙

∑

𝑘=1

𝑀𝑘

∑

𝑗=1

Γ̂𝑉̃ (𝜑
𝜀

(0) − 𝐷 (𝑥
𝜀

𝑠
, 𝑖) , 𝑠, ⋅) (𝑠

𝑘𝑗
)

× [𝐼
{𝑟
𝜀
(𝑠)=𝑠𝑘𝑗}

− 𝜇
𝑘

𝑗
𝐼
{𝑟
𝜀
(𝑠)=𝑘}

]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

]

]

1/2

.

(50)

By the argument of Lemma 7.14 in [4], the right side of the
above inequality is equivalent to 0; that is, 𝐼

4
= 0. Therefore,

𝑈 (𝑡 + ℎ) − 𝑈 (𝑡)

= lim
𝜀→0

E

× ∫

𝑡+𝜃+ℎ

𝑡+𝜃

𝑒
𝛾𝑠

× [L𝑉 (𝜑
𝜀

, 𝑠, 𝑟
𝜀

(𝑠))

+𝛾𝑉 (𝜑
𝜀

(0) − 𝐷 (𝜑
𝜀

, 𝑟
𝜀

(𝑠)) , 𝑠, 𝑟
𝜀

(𝑠))] 𝑑𝑠

≤ 0.

(51)

That is

𝑈 (𝑡 + ℎ) ≤ 𝑈 (𝑡) . (52)

So, 𝑈(𝑡 + ℎ) = 𝑈(𝑡) for all ℎ > 0 sufficiently small, and hence
𝐷

+

𝑈(𝑡) = 0. Inequality (34) holds.

It follows from (34) that 𝑈(𝑡) ≤ 𝑈(0) for all 𝑡 ≥ 0. By the
definition of 𝑈(𝑡),

lim sup
𝜀→0

𝑒
𝛾𝑡

E
󵄨󵄨󵄨󵄨𝑥

𝜀

(𝑡) − 𝐷 (𝑥
𝜀

𝑡
, 𝑟

𝜀

(𝑡))
󵄨󵄨󵄨󵄨

𝑝

≤ 𝑐
2
lim sup
𝜀→0

sup
𝜏≤𝜃≤0

𝑒
𝛾𝜃

E
󵄨󵄨󵄨󵄨𝑥

𝜀

(𝜃) − 𝐷 (𝑥
𝜀

𝜃
, 𝑟

𝜀

(𝜃))
󵄨󵄨󵄨󵄨

𝑝

≤ 𝑐
2
lim sup
𝜀→0

sup
−𝜏≤𝜃≤0

(1 + 𝜅)
𝑝−1

× [E
󵄨󵄨󵄨󵄨𝑥

𝜀

(𝜃)
󵄨󵄨󵄨󵄨

𝑝

+ 𝜅
1−𝑝

E
󵄨󵄨󵄨󵄨𝐷 (𝑥

𝜀

𝜃
, 𝑟

𝜀

(𝜃))
󵄨󵄨󵄨󵄨

𝑝

]

≤ 𝑐
2
(1 + 𝜅)

𝑝󵄩󵄩󵄩󵄩𝜉
󵄩󵄩󵄩󵄩

𝑝

, 𝑡 ≥ 0.

(53)

By Lemma 6, we derive

lim sup
𝜀→0

𝑒
𝛾𝑡

E
󵄨󵄨󵄨󵄨𝑥

𝜀

(𝑡)
󵄨󵄨󵄨󵄨

𝑝

≤
𝑐
2
(1 + 𝜅)

𝑝

𝑐
1
(1 − 𝜅)

𝑝

󵄩󵄩󵄩󵄩𝜉
󵄩󵄩󵄩󵄩

𝑝

. (54)

That is,

lim sup
𝜀→0

E
󵄨󵄨󵄨󵄨𝑥

𝜀

(𝑡)
󵄨󵄨󵄨󵄨

𝑝

≤
𝑐
2
(1 + 𝜅)

𝑝

𝑐
1
(1 − 𝜅)

𝑝

󵄩󵄩󵄩󵄩𝜉
󵄩󵄩󵄩󵄩

𝑝

𝑒
−𝛾𝑡

, ∀𝑡 ≥ 0. (55)

4. Neutral Stochastic Functional System with
Pure Jump

In this section, we discuss the stability of the following neutral
stochastic functional system with pure jump:

𝑑 [𝜑
𝜀

(0) − 𝐷 (𝜑
𝜀

, 𝑟
𝜀

(𝑡))]

= 𝑓 (𝜑
𝜀

, 𝑡, 𝑟
𝜀

(𝑡)) 𝑑𝑡 + ∫
R𝑚

𝑏 (𝑥
𝜀

𝑡−
, 𝑡, 𝑟

𝜀

(𝑡) , 𝑧) 𝑁̃ (𝑑𝑡, 𝑑𝑧)

𝑥
0
= 𝜉 ∈ 𝐶 ([−𝜏, 0] ;R

𝑛

) , 𝑟 (0) ∈ S,

(56)

where 𝑥
𝜀

𝑡−
= lim

𝑠↑𝑡
𝑥
𝜀

𝑠
, 𝐷 : 𝐶([−𝜏, 0];R𝑛

) × S → R𝑛, 𝑏 :

𝐶([−𝜏, 0];R𝑛

) ×R
+
×S×R𝑚

→ R𝑛×𝑚. We assume that each
column 𝑏

(𝛿) of the 𝑛 × 𝑚 matrix 𝑏 = [𝑏
𝑖𝑗
] depends on 𝑧 only

through the 𝛿th coordinate 𝑧
𝛿
; that is,

𝑏
(𝛿)

(𝜑, 𝑡, 𝑖, 𝑧) = 𝑏
(𝛿)

(𝜑, 𝑡, 𝑖, 𝑧
𝛿
) ;

𝑧 = (𝑧
1
, . . . , 𝑧

𝑚
) ∈ R

𝑚

, 𝑖 ∈ S.

(57)

𝑁(𝑡, 𝑧) is an𝑚-dimensional Poisson process and the compen-
sated Poisson process is defined by

𝑁̃ (𝑑𝑡, 𝑑𝑧) = (𝑁̃
1
(𝑑𝑡, 𝑑𝑧

1
) , . . . , 𝑁̃

𝑚
(𝑑𝑡, 𝑑𝑧

𝑚
))

= (𝑁
1
(𝑑𝑡, 𝑑𝑧

1
) − 𝜆

1
(𝑑𝑧

1
) 𝑑𝑡, . . . , 𝑁

𝑚
(𝑑𝑡, 𝑑𝑧

𝑚
)

− 𝜆
𝑚

(𝑑𝑧
𝑚
) 𝑑𝑡) ,

(58)

where {𝑁
𝛿
, 𝛿 = 1, . . . , 𝑚} are independent one-dimensional

Poisson random measures with characteristic measure
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{𝜆
𝛿
, 𝛿 = 1, . . . , 𝑚} coming from 𝑚 independent one-

dimensional Poisson point processes. The limit system of
(56) is defined as follows:

𝑑 [𝜑
𝜀

(0) − 𝐷 (𝑥
𝜀

𝑡
, 𝑟

𝜀

(𝑡))]

= 𝑓 (𝑥
𝜀

𝑡
, 𝑡, 𝑟

𝜀

(𝑡)) 𝑑𝑡

+ ∫
R𝑚

𝑏̃ (𝑥
𝜀

𝑡−
, 𝑡, 𝑟

𝜀

(𝑡) , 𝑧) 𝑁̃ (𝑑𝑡, 𝑑𝑧)

𝑥
0
= 𝜉 ∈ 𝐶 ([−𝜏, 0] ;R

𝑛

) , 𝑟 (0) ∈ S,

(59)

where 𝑥
𝜀

𝑡−
= lim

𝑠↑𝑡
𝑥
𝜀

𝑠
and 𝑏̃ : 𝐶([−𝜏, 0];R𝑛

)×R
+
× S̃×R𝑚

→

R𝑛×𝑚. Similar to the definition of 𝑓, we define

𝐷(𝜑, 𝑘) =

𝑁𝑚

∑

𝑗=1

𝜇
𝑘

𝑗
𝐷(𝜑, 𝑠

𝑘𝑗
) ,

𝑏̃ (𝜑, 𝑡, 𝑘, 𝑧) =

𝑁𝑚

∑

𝑗=1

𝜇
𝑘

𝑗
𝑏 (𝜑, 𝑡, 𝑠

𝑘𝑗
, 𝑧) ,

(60)

for each 𝑠
𝑘𝑗

∈ S𝑘 with 𝑘 ∈ {1, . . . , 𝑙} and 𝑗 ∈ {1, . . . , 𝑁
𝑚
}.

To assure the existence and uniqueness of the solution of
(59), we also give the following standard assumptions.

Assumption 8. For any integer 𝜁, there is a constant 𝐿
𝜁

> 0,
such that

󵄨󵄨󵄨󵄨𝑓 (𝜑, 𝑡, 𝑖) − 𝑓 (𝜙, 𝑡, 𝑖)
󵄨󵄨󵄨󵄨

∨

𝑚

∑

𝛿=1

∫
R

󵄨󵄨󵄨󵄨󵄨
𝑏
(𝛿)

(𝜑, 𝑡, 𝑖, 𝑧
𝛿
) − 𝑏

(𝛿)

(𝜙, 𝑡, 𝑖, 𝑧
𝛿
)
󵄨󵄨󵄨󵄨󵄨
𝜆
𝛿
(𝑑𝑧

𝛿
)

≤ 𝐿
𝜁

󵄩󵄩󵄩󵄩𝜑 − 𝜙
󵄩󵄩󵄩󵄩

2

,

(61)

for all 𝑖 ∈ S and those𝜑, 𝜙 ∈ 𝐶([−𝜏, 0];R𝑛

)with ‖𝜑‖∨‖𝜙‖ ≤ 𝜁,
and𝑓(0, 𝑡, 𝑖) ≡ 0, 𝑏(0, 𝑡, 𝑖, 𝑧) ≡ 0.

Assumption 9. There is an 𝐿 > 0, such that, for any 𝜑, 𝜙 ∈

𝐶([−𝜏, 0];R𝑛

), 𝑖 ∈ S,

󵄨󵄨󵄨󵄨𝑓 (𝜑, 𝑡, 𝑖)
󵄨󵄨󵄨󵄨 ∨

𝑚

∑

𝛿=1

∫
R

󵄨󵄨󵄨󵄨󵄨
𝑏
(𝛿)

(𝜑, 𝑡, 𝑖, 𝑧
𝛿
)
󵄨󵄨󵄨󵄨󵄨
𝜆
𝛿
(𝑑𝑧

𝛿
)

≤ 𝐿 (1 +
󵄩󵄩󵄩󵄩𝜑

󵄩󵄩󵄩󵄩

2

) .

(62)

Assumption 10. For all 𝑖 ∈ S and those 𝜑, 𝜙 ∈ 𝐶([−𝜏, 0];R𝑛

),
there is a constant 0 < 𝜅 < 1 such that

󵄨󵄨󵄨󵄨𝐷 (𝜑, 𝑖) − 𝐷 (𝜙, 𝑖)
󵄨󵄨󵄨󵄨 ≤ 𝜅

󵄩󵄩󵄩󵄩𝜑 − 𝜙
󵄩󵄩󵄩󵄩

2

,

𝐷 (0, 𝑖) ≡ 0.

(63)

Given that 𝑉 ∈ 𝐶
𝑝

(R𝑛

× R
+
× S;R

+
), define an operator

L𝑉 by

L𝑉 (𝜑, 𝑡, 𝑖)

= 𝑉
𝑡
(𝜑 (0) − 𝐷 (𝜑, 𝑖) , 𝑡, 𝑖)

+ 𝑉
𝑥
(𝜑 (0) − 𝐷 (𝜑, 𝑖) , 𝑡, 𝑖) 𝑓 (𝜑, 𝑡, 𝑖)

+

𝑁

∑

𝑗=1

𝛾
𝑖𝑗
𝑉 (𝜑 (0) − 𝐷 (𝜑, 𝑖) , 𝑡, 𝑗)

+ ∫
R

𝑚

∑

𝛿=1

{𝑉 (𝜑 (0) − 𝐷 (𝜑, 𝑖) + 𝑏
(𝛿)

(𝜑, 𝑡, 𝜄, 𝑧
𝛿
) , 𝑡, 𝜄)

− 𝑉 (𝜑 (0) − 𝐷 (𝜑, 𝑖) , 𝑡, 𝑖)

− 𝑉
𝑥
(𝜑 (0) − 𝐷 (𝜑, 𝑖) , 𝑡, 𝑖)

× 𝑏
(𝛿)

(𝜑, 𝑡, 𝜄, 𝑧
𝛿
)} 𝜆

𝛿
(𝑑𝑧

𝛿
) ,

(64)

where

𝑉
𝑥
(𝜑 (0) − 𝐷 (𝜑, 𝑖) , 𝑡, 𝑖)

= (
𝜕𝑉 (𝜑 (0) − 𝐷 (𝜑, 𝑖) , 𝑡, 𝑖)

𝜕𝑥
1

, . . . ,

𝜕𝑉 (𝜑 (0) − 𝐷 (𝜑, 𝑖) , 𝑡, 𝑖)

𝜕𝑥
𝑚

) .

(65)

Lemma 11 (see [20]). Let Assumptions 1, 8, and 9 hold, as
𝜀 → 0; then, (𝑥𝜀

(⋅), 𝑟
𝜀

(⋅)) converges weakly to (𝑥(⋅), 𝑟(⋅)) in
𝐷([0,∞),R𝑛

× S̃), where 𝐷([0,∞),R𝑛

× S̃) is the space of
functions defined on [0,∞) that are right continuous and have
left limits taking values in R𝑛

× S̃ and are endowed with the
Skorohod topology.

Theorem 12. Let Assumptions 1 and 8–10 hold and let 𝑐
1
, 𝑐

2
,

𝜆, 𝑝 be all positive numbers and 𝑞 > 1. Assume that there
exists a function 𝑉(𝑥, 𝑡, 𝑘) ∈ 𝐶

𝑝

(R𝑛

× R
+
× S̃;R

+
) satisfying

Assumption 5, such that

𝑐
1
|𝑥|

𝑝

≤ 𝑉 (𝑥, 𝑡, 𝑘) ≤ 𝑐
2
|𝑥|

𝑝

, 𝑘 ∈ S̃, (66)

for all (𝑥, 𝑡, 𝑘) ∈ R𝑛

× R
+
× S̃ and 𝑡 ≥ 0, 𝑘 ∈ S̃. Consider the

following:

E
󵄨󵄨󵄨󵄨𝐷 (𝜑, 𝑘)

󵄨󵄨󵄨󵄨

𝑝

≤ 𝜅
𝑝 sup
−𝜏≤𝜃≤0

𝑒
]𝜃 󵄩󵄩󵄩󵄩𝜑

󵄩󵄩󵄩󵄩

𝑝

,

𝜅 = max {𝜅
1
, . . . , 𝜅

𝑘
} , 𝜑 ∈ 𝐿

𝑝

F𝑡
,

(67)

for all 𝑡 ≥ 0, 0 < 𝜅
𝜎
< 1, 𝜎 = {1, . . . , 𝑘}, and

E [max
𝑘∈

̃S

L𝑉 (𝜑, 𝑡, 𝑘)] ≤ −𝛾E [max
𝑘∈

̃S

𝑉 (𝜑 (0) − 𝐷 (𝜑, 𝑘))] ,

(68)
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provided 𝜑 = {𝜑(𝜃) : −𝜏 ≤ 𝜃 ≤ 0} ∈ 𝐿
𝑝

F𝑡
([−𝜏, 0];R𝑛

),
satisfying

E [min
𝑘∈

̃S

𝑉 (𝑥 (𝑡 + 𝜃) , 𝑡 + 𝜃, 𝑘)]

< 𝑞E [max
𝑘∈

̃S

𝑉 (𝜑 (0) − 𝐷 (𝜑, 𝑘) , 𝑡, 𝑖)] , −𝜏 ≤ 𝜃 ≤ 0.

(69)

Then, for all 𝜉 ∈ 𝐶([−𝜏, 0];R𝑛

), 𝑡 ≥ 0,

lim sup
𝜀→0

E
󵄨󵄨󵄨󵄨𝑥

𝜀

(𝑡)
󵄨󵄨󵄨󵄨

𝑝

≤
𝑐
2
(1 + 𝜅)

𝑝

𝑐
1
(1 − 𝜅)

𝑝

󵄩󵄩󵄩󵄩𝜉
󵄩󵄩󵄩󵄩

𝑝

𝑒
−]𝑡

, (70)

where

] = min{𝛾,
1

𝜏
log

𝑞

(𝑐
2
/𝑐
1
) (1 − 𝜅)

𝑝
} , (71)

𝛾 being the root of the following equation:

𝑐
2

𝑐
1

(1 − 𝜅)
𝑝

𝑒
𝛾𝜏

= 𝜆. (72)

Proof. Define

𝑉̃ (𝜑, 𝑡, 𝜌) =

𝑙

∑

𝑘=1

𝑉 (𝜑, 𝑡, 𝑘) 𝐼
{𝜌∈S𝑘} = 𝑉 (𝜑, 𝑡, 𝑘) , if 𝜌 ∈ S

𝑘

.

(73)

Extend 𝑟(𝑡) to [−𝜏, 0] by setting 𝑟(𝑡) = 𝑟(0); then,
E𝑉(𝑥(𝑡), 𝑡, 𝑟(𝑡)) is right continuous on 𝑡 ≥ −𝜏. Let 𝛾 ∈ (0, ])
be arbitrary and define

𝑈 (𝑡)

:= sup
−𝜏≤𝜃≤0

[𝑒
𝛾(𝑡+𝜃)

E𝑉 (𝑥
𝜀

(𝑡 + 𝜃) − 𝐷 (𝑥
𝜀

𝑡+𝜃
, 𝑟

𝜀

(𝑡 + 𝜃)) ,

𝑡 + 𝜃, 𝑟
𝜀

(𝑡 + 𝜃)) ]

= sup
−𝜏≤𝜃≤0

[𝑒
𝛾(𝑡+𝜃)

E𝑉̃ (𝑥
𝜀

(𝑡 + 𝜃) − 𝐷 (𝑥
𝜀

𝑡+𝜃
, 𝑟

𝜀

(𝑡 + 𝜃)) ,

𝑡 + 𝜃, 𝑟
𝜀

(𝑡 + 𝜃)) ] ,

(74)

for all 𝑡 ≥ 0. We claim that

𝐷
+

𝑈 (𝑡) = lim sup
ℎ→0+

𝑈 (𝑡 + ℎ) − 𝑈 (𝑡)

ℎ
≤ 0, ∀𝑡 ≥ 0. (75)

Similar to the proof of Theorem 7, we derive

E𝑉 (𝑥
𝜀

(𝑡 + 𝜃) , 𝑡 + 𝜃, 𝑟
𝜀

(𝑡 + 𝜃))

< 𝑞E𝑉 (𝜑 (0) − 𝐷 (𝜑
𝜀

, 𝑟
𝜀

(𝑡)) , 𝑡, 𝑟
𝜀

(𝑡)) ,

(76)

for all −𝜏 ≤ 𝜃 ≤ 0, where 𝑞 > (𝑐
2
/𝑐
1
)(1 − 𝜅)

𝑝

𝑒
𝛾𝜏; that is, 𝛾 <

(1/𝜏)(log(𝑞/(𝑐
2
/𝑐
1
)(1 − 𝜅)

𝑝

)).

Thus,

E [max
𝑘∈

̃S

L𝑉 (𝜑
𝜀

, 𝑡, 𝑟
𝜀

(𝑡))]

≤ −𝜆E [max
𝑘∈

̃S

𝑉 (𝜑
𝜀

(0) − 𝐷 (𝜑
𝜀

, 𝑟
𝜀

(𝑡)) , 𝑡, 𝑟
𝜀

(𝑡))] ,

(77)

which implies that

E [L𝑉 (𝜑
𝜀

, 𝑡, 𝑟
𝜀

(𝑡))]

≤ −𝜆E [𝑉 (𝜑
𝜀

(0) − 𝐷 (𝜑
𝜀

, 𝑟
𝜀

(𝑡)) , 𝑡, 𝑟
𝜀

(𝑡))] .

(78)

By the condition of 𝛾 < ] ≤ 𝜆, we get

E [L𝑉 (𝜑
𝜀

, 𝑡, 𝑟
𝜀

(𝑡))]

≤ −𝛾E [𝑉 (𝜑
𝜀

(0) − 𝐷 (𝜑
𝜀

, 𝑟
𝜀

(𝑡)) , 𝑡, 𝑟
𝜀

(𝑡))] .

(79)

We now consider

𝑈 (𝑡 + ℎ) − 𝑈 (𝑡)

= lim sup
𝜀→0

[𝑒
𝛾(𝑡+𝜃+ℎ)

E

× [𝑉 (𝑥
𝜀

(𝑡 + 𝜃 + ℎ)

− 𝐷 (𝑥
𝜀

𝑡+𝜃+ℎ
, 𝑟

𝜀

(𝑡 + 𝜃 + ℎ)) ,

𝑡 + 𝜃 + ℎ, 𝑟
𝜀

(𝑡 + 𝜃 + ℎ)) ]

− 𝑒
𝛾(𝑡+𝜃)

E

× [𝑉 (𝑥
𝜀

(𝑡 + 𝜃) − 𝐷 (𝑥
𝜀

𝑡+𝜃
, 𝑟

𝜀

(𝑡 + 𝜃)) ,

𝑡 + 𝜃, 𝑟
𝜀

(𝑡 + 𝜃)) ] ]

= lim sup
𝜀→0

E

× ∫

𝑡+𝜃+ℎ

𝑡+𝜃

𝑒
𝛾𝑠

[L𝑉 (𝜑
𝜀

, 𝑠, 𝑟
𝜀

(𝑠))

+𝛾𝑉 (𝜑
𝜀

(0) − 𝐷 (𝜑
𝜀

, 𝑟
𝜀

(𝑠)) , 𝑠, 𝑟
𝜀

(𝑡))] 𝑑𝑠

= lim sup
𝜀→0

E

× ∫

𝑡+𝜃+ℎ

𝑡+𝜃

𝑒
𝛾𝑠

× [L𝑉̃ (𝜑
𝜀

, 𝑠, 𝑟
𝜀

(𝑠))

+ 𝛾𝑉 (𝜑
𝜀

(0) − 𝐷 (𝜑
𝜀

, 𝑟
𝜀

(𝑡)) , 𝑠, 𝑟
𝜀

(𝑠)) ] 𝑑𝑡.

(80)



Mathematical Problems in Engineering 11

By the definition of the operator L, we have

L𝑉̃ (𝜑
𝜀

, 𝑡, 𝑟
𝜀

(𝑡))

= 𝑉̃
𝑡
(𝜑

𝜀

(0) − 𝐷 (𝜑
𝜀

, 𝑟
𝜀

(𝑡)) , 𝑡, 𝑟
𝜀

(𝑡))

+ 𝑉̃
𝑥
(𝜑

𝜀

(0) − 𝐷 (𝜑
𝜀

, 𝑟
𝜀

(𝑡)) , 𝑡, 𝑟
𝜀

(𝑡))

× 𝑓 (𝜑
𝜀

, 𝑡, 𝑟
𝜀

(𝑡))

+

𝑚

∑

𝛿=1

∫
R

{𝑉̃ (𝜑
𝜀

(0) − 𝐷 (𝜑
𝜀

, 𝑟
𝜀

(𝑡))

+ 𝑏
(𝛿)

(𝑥
𝜀

𝑡−
, 𝑡, 𝑟

𝜀

(𝑡) , 𝑧
𝛿
) , 𝑡, 𝑟

𝜀

(𝑡))

− 𝑉̃ (𝜑
𝜀

(0) − 𝐷 (𝜑
𝜀

, 𝑟
𝜀

(𝑡)) , 𝑡, 𝑟
𝜀

(𝑡))

− 𝑉̃
𝑥
(𝜑

𝜀

(0) − 𝐷 (𝜑
𝜀

, 𝑟
𝜀

(𝑡)) , 𝑡, 𝑟
𝜀

(𝑡))

× 𝑏
(𝛿)

(𝑥
𝜀

𝑡−
, 𝑡, 𝑟

𝜀

(𝑡) , 𝑧
𝛿
)} 𝜆

𝛿
(𝑑𝑧

𝛿
)

+

𝑁

∑

𝑗=1

𝛾
𝜀

𝑟
𝜀
(𝑡)𝑗

𝑉̃ (𝜑
𝜀

(0) − 𝐷 (𝜑
𝜀

, 𝑗) , 𝑡, 𝑗)

= L𝑉 (𝜑
𝜀

, 𝑡, 𝑟
𝜀

(𝑡))

+ 𝑉
𝑥
(𝜑

𝜀

(0) − 𝐷 (𝜑
𝜀

, 𝑟
𝜀

(𝑡)) , 𝑡, 𝑟
𝜀

(𝑡))

× [𝑓 (𝜑
𝜀

, 𝑡, 𝑟
𝜀

(𝑡)) − 𝑓 (𝜑
𝜀

, 𝑡, 𝑟
𝜀

(𝑡))]

+

𝑚

∑

𝛿=1

∫
R

{𝑉 (𝜑
𝜀

(0) − 𝐷 (𝜑
𝜀

, 𝑟
𝜀

(𝑡))

+ 𝑏
(𝛿)

(𝑥
𝜀

𝑡−
, 𝑡, 𝑟

𝜀

(𝑡) , 𝑧
𝛿
) , 𝑡, 𝑟

𝜀

(𝑡))

− 𝑉 (𝜑
𝜀

(0) − 𝐷 (𝜑
𝜀

, 𝑟
𝜀

(𝑡))

+ 𝑏̃
(𝛿)

(𝑥
𝜀

𝑡−
, 𝑡, 𝑟

𝜀

(𝑡) , 𝑧
𝛿
) , 𝑡, 𝑟

𝜀

(𝑡))}

× 𝜆
𝛿
(𝑑𝑧

𝛿
)

−

𝑚

∑

𝛿=1

∫
R

{𝑉
𝑥
(𝜑

𝜀

(0)

− 𝐷 (𝜑
𝜀

, 𝑟
𝜀

(𝑡)) , 𝑡, 𝑟
𝜀

(𝑡))

× (𝑏
(𝛿)

(𝑥
𝜀

𝑡−
, 𝑡, 𝑟

𝜀

(𝑡) , 𝑧
𝛿
)

−𝑏̃
(𝛿)

(𝑥
𝜀

𝑡−
, 𝑡, 𝑟

𝜀

(𝑡) , 𝑧
𝛿
))} 𝜆

𝛿
(𝑑𝑧

𝛿
)

+

𝑁

∑

𝑗=1

𝛾
𝑟
𝜀
(𝑡)𝑗

𝑉̃ (𝜑
𝜀

(0) − 𝐷 (𝜑
𝜀

, 𝑗) , 𝑡, 𝑗)

−

𝑙

∑

𝑘=1

𝛾
𝑟
𝜀
(𝑡)𝑘

(𝜑
𝜀

(0) − 𝐷 (𝜑
𝜀

, 𝑘) , 𝑡, 𝑘) .

(81)

This implies that

𝑈 (𝑡 + ℎ) − 𝑈 (𝑡)

= lim sup
𝜀→0

E

× ∫

𝑡+𝜃+ℎ

𝑡+𝜃

𝑒
𝛾𝑠

× [L𝑉 (𝜑
𝜀

, 𝑠, 𝑟
𝜀

(𝑠))

+ 𝛾𝑉 (𝜑
𝜀

(0)

−𝐷 (𝜑
𝜀

, 𝑟
𝜀

(𝑠)) , 𝑠, 𝑟
𝜀

(𝑠))] 𝑑𝑠

+ lim sup
𝜀→0

E

× ∫

𝑡+𝜃+ℎ

𝑡+𝜃

𝑒
𝛾𝑠

× 𝑉
𝑥
(𝜑

𝜀

(0) − 𝐷 (𝜑
𝜀

, 𝑟
𝜀

(𝑠)) , 𝑠, 𝑟
𝜀

(𝑠))

× [𝑓 (𝜑
𝜀

, 𝑠, 𝑟
𝜀

(𝑠)) − 𝑓 (𝜑
𝜀

, 𝑠, 𝑟
𝜀

(𝑠))] 𝑑𝑠

+ lim sup
𝜀→0

E

× ∫

𝑡+𝜃+ℎ

𝑡+𝜃

𝑒
𝛾𝑠

× [

𝑚

∑

𝛿=1

∫
R

[𝑉 (𝜑
𝜀

(0) − 𝐷 (𝜑
𝜀

, 𝑟
𝜀

(𝑠))

+𝑏
(𝛿)

(𝑥
𝜀

𝑠−
, 𝑠, 𝑟

𝜀

(𝑠) , 𝑧
𝛿
) , 𝑠, 𝑟

𝜀

(𝑠))

− 𝑉 (𝜑
𝜀

(0) − 𝐷 (𝜑
𝜀

, 𝑟
𝜀

(𝑠))

+ 𝑏̃
(𝛿)

(𝑥
𝜀

𝑠−
, 𝑠, 𝑟

𝜀

(𝑠) , 𝑧
𝛿
) ,

𝑠, 𝑟
𝜀

(𝑠) )]

×𝜆
𝛿
(𝑑𝑧

𝛿
) ] 𝑑𝑠

− lim sup
𝜀→0

E

× ∫

𝑡+𝜃+ℎ

𝑡+𝜃

𝑒
𝛾𝑠

× {

𝑚

∑

𝛿=1

∫
R

[𝑉
𝑥
(𝜑

𝜀

(0) − 𝐷 (𝜑
𝜀

, 𝑟
𝜀

(𝑠)) , 𝑠, 𝑟
𝜀

(𝑠))

× (𝑏
(𝛿)

(𝑥
𝜀

𝑠−
, 𝑠, 𝑟

𝜀

(𝑠) , 𝑧
𝛿
)

−𝑏̃
(𝛿)

(𝑥
𝜀

𝑠−
, 𝑠, 𝑟

𝜀

(𝑠) , 𝑧
𝛿
))]

×𝜆
𝛿
(𝑑𝑧

𝛿
) } 𝑑𝑠



12 Mathematical Problems in Engineering

+ lim sup
𝜀→0

E

× ∫

𝑡+𝜃+ℎ

𝑡+𝜃

𝑒
𝛾𝑠

× (

𝑁

∑

𝑗=1

𝛾
𝑟
𝜀
(𝑠)𝑗

𝑉̃ (𝜑
𝜀

(0) − 𝐷 (𝜑
𝜀

, 𝑗) , 𝑠, 𝑗)

−

𝑙

∑

𝑘=1

𝛾
𝑟
𝜀
(𝑠)𝑘

(𝜑
𝜀

(0) − 𝐷 (𝜑
𝜀

, 𝑘) , 𝑠, 𝑘))𝑑𝑠

=: 𝐽
1
+ 𝐽

2
+ 𝐽

3
+ 𝐽

4
+ 𝐽

5
.

(82)

By the definition of 𝑏̃,

𝑏
(𝛿)

(𝑥
𝜀

𝑡−
, 𝑡, 𝑟

𝜀

(𝑡) , 𝑧
𝛿
) − 𝑏̃

(𝛿)

(𝑥
𝜀

𝑡−
, 𝑡, 𝑟

𝜀

(𝑡) , 𝑧
𝛿
)

=

𝑙

∑

𝑖=1

𝑁𝑘

∑

𝑗=1

𝑏
(𝛿)

(𝑥
𝜀

𝑡−
, 𝑡, 𝑠

𝑘𝑗
, 𝑧

𝛿
)

× [𝐼
{𝑟
𝜀
(𝑡)=𝑠𝑘𝑗}

− 𝜇
𝑘

𝑗
𝐼
{𝑟
𝜀
(𝑡)=𝑘}

] .

(83)

By Assumption 8, we have

𝐽
4
= lim sup

𝜀→0

𝑚

∑

𝛿=1

E

× ∫

𝑡+𝜃+ℎ

𝑡+𝜃

𝑒
𝛾𝑠

× 𝑉
𝑥
(𝜑

𝜀

(0) − 𝐷 (𝜑
𝜀

, 𝑟
𝜀

(𝑠)) , 𝑠, 𝑟
𝜀

(𝑠))

× ∫
R

[𝑏
(𝛿)

(𝑥
𝜀

𝑠−
, 𝑠, 𝑟

𝜀

(𝑠) , 𝑧
𝛿
)

− 𝑏̃
(𝛿)

(𝑥
𝜀

𝑠−
, 𝑠, 𝑟

𝜀

(𝑠) , 𝑧
𝛿
)]

× 𝜆
𝛿
(𝑑𝑧

𝛿
) 𝑑𝑠

= lim sup
𝜀→0

𝑚

∑

𝛿=1

𝑙

∑

𝑘=1

𝑁𝑘

∑

𝑗=1

E

× ∫

𝑡+𝜃+ℎ

𝑡+𝜃

𝑒
𝛾𝑠

× 𝑉
𝑥
(𝜑

𝜀

(0) − 𝐷 (𝜑
𝜀

, 𝑟
𝜀

(𝑠)) ,

𝑠, 𝑟
𝜀

(𝑠))

× ∫
R

𝑏
(𝛿)

(𝑥
𝜀

𝑠−
, 𝑠, 𝑠

𝑘𝑗
, 𝑧

𝛿
)

× [𝐼
{𝑟
𝜀
(𝑠)=𝑠𝑘𝑗}

−𝜇
𝑘

𝑗
𝐼
{𝑟
𝜀
(𝑠)=𝑘}

]

× 𝜆
𝛿
(𝑑𝑧

𝛿
) 𝑑𝑠

≤ lim sup
𝜀→0

𝑚

∑

𝛿=1

𝑙

∑

𝑘=1

𝑁𝑘

∑

𝑗=1

[E

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑡+𝜃+ℎ

𝑡+𝜃

𝑒
𝛾𝑠

× 𝑉
𝑥
(𝜑

𝜀

(0) − 𝐷 (𝜑
𝜀

, 𝑟
𝜀

(𝑠)) ,

𝑠, 𝑟
𝜀

(𝑠))

× ∫
R

𝑏
(𝛿)

(𝑥
𝜀

𝑠−
, 𝑠, 𝑠

𝑘𝑗
, 𝑧

𝛿
)

× [𝐼
{𝑟
𝜀
(𝑠)=𝑠𝑘𝑗}

− 𝜇
𝑘

𝑗
𝐼
{𝑟
𝜀
(𝑠)=𝑘}

]

×𝜆
𝛿
(𝑑𝑧

𝛿
) 𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

]

1/2

.

(84)

By the argument of Lemma 7.14 in [4], the right side of the
above inequality is equivalent to 0; that is, 𝐽

4
= 0. Similarly,

by mean-value theorem, we can show that there exists 𝜂
(𝛿)

𝑡

which is between 𝜑
𝜀

(0) − 𝐷(𝜑
𝜀

, 𝑟
𝜀

(𝑡)) + 𝑏
(𝛿)

(𝑥
𝜀

𝑡−
, 𝑡, 𝑟

𝜀

(𝑡), 𝑧
𝛿
)

and 𝜑
𝜀

(0) − 𝐷(𝜑
𝜀

, 𝑟
𝜀

(𝑡)) + 𝑏̃
(𝛿)

(𝑥
𝜀

𝑡−
, 𝑡, 𝑟

𝜀

(𝑡), 𝑧
𝛿
) such that

𝐽
3
= lim

𝜀→0

𝑚

∑

𝛿=1

E

× ∫

𝑡+𝜃+ℎ

𝑡+𝜃

𝑒
𝛾𝑠

{∫
R

𝑉
𝑥
(𝜂

𝑠
)

× [𝑏
(𝛿)

(𝑥
𝜀

𝑠−
, 𝑠, 𝑟

𝜀

(𝑠) , 𝑧
𝛿
)

−𝑏̃
(𝛿)

(𝑥
𝜀

𝑠−
, 𝑠, 𝑟

𝜀

(𝑠) , 𝑧
𝛿
)]

× 𝜆
𝛿
(𝑑𝑧

𝛿
) } 𝑑𝑠

= lim
𝜀→0

𝑚

∑

𝛿=1

𝑙

∑

𝑘=1

𝑁𝑘

∑

𝑗=1

E

× ∫

𝑡+𝜃+ℎ

𝑡+𝜃

𝑒
𝛾𝑠

𝑉
𝑥
(𝜂

𝑠
)

× ∫
R

𝑏
(𝛿)

(𝑥
𝜀

𝑠−
, 𝑠, 𝑠

𝑘𝑗
, 𝑧

𝛿
)

× [𝐼
{𝑟
𝜀
(𝑠)=𝑠𝑘𝑗}

− 𝜇
𝑘

𝑗
𝐼
{𝑟
𝜀
(𝑠)=𝑘}

]

× 𝜆
𝛿
(𝑑𝑧

𝛿
) 𝑑𝑠

≤ lim
𝜀→0

𝑚

∑

𝛿=1

𝑙

∑

𝑘=1

𝑁𝑘

∑

𝑗=1

[E

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑡+𝜃+ℎ

𝑡+𝜃

𝑒
𝛾𝑠

𝑉
𝑥
(𝜂

𝑡
)

× ∫
R

𝑏
(𝛿)

(𝑥
𝜀

𝑠−
, 𝑠, 𝑠

𝑘𝑗
, 𝑧

𝛿
)
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× [𝐼
{𝑟
𝜀
(𝑠)=𝑠𝑘𝑗}

− 𝜇
𝑘

𝑗
𝐼
{𝑟
𝜀
(𝑠)=𝑘}

]

× 𝜆
𝛿
(𝑑𝑧

𝛿
)𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

]

1/2

.

(85)

By the argument of Lemma 7.14 in [4], we have 𝐽
3
= 0. Similar

to the proof ofTheorem 7, we derive 𝐽
2
= 0, 𝐽

5
= 0.Therefore,

we arrive at
𝑈 (𝑡 + ℎ) − 𝑈 (𝑡)

= lim
𝜀→0

E∫

𝑡+𝜃+ℎ

𝑡+𝜃

𝑒
𝛾𝑠

× [L𝑉 (𝜑
𝜀

, 𝑠, 𝑟
𝜀

(𝑠))

+𝛾𝑉 (𝜑
𝜀

(0) − 𝐷 (𝜑
𝜀

, 𝑟
𝜀

(𝑠)) , 𝑠, 𝑟
𝜀

(𝑠))] 𝑑𝑠

≤ 0.

(86)

Then,

𝑈 (𝑡 + ℎ) ≤ 𝑈 (𝑡) . (87)

Similar to the proof of Theorem 7, we get

E
󵄨󵄨󵄨󵄨𝑥

𝜀

(𝑡)
󵄨󵄨󵄨󵄨

𝑝

≤
𝑐
2
(1 + 𝜅)

𝑝

𝑐
1
(1 − 𝜅)

𝑝

󵄩󵄩󵄩󵄩𝜉
󵄩󵄩󵄩󵄩

𝑝

𝑒
−]𝑡

. (88)

The proof is therefore completed.

5. Examples

We will give two examples to illustrate our theory.

Example 1. Let 𝑟𝜀(⋅) be a Markov chain generated by Γ
𝜀 given

in (14) with

Γ = (

−1 0 1 0 0

1 −2 1 0 0

2 1 −3 0 0

0 0 0 −1 1

0 0 0 1 −1

), (89)

Γ̂ = (

−1 0 1 0 0

0 −1 0 1 0

0 0 −1 0 1

0 1 0 −1 0

1 0 0 0 −1

). (90)

The generator Γ is made up of two irreducible blocks; by

(𝜋
1

𝜋
2

𝜋
3
)(

−1 0 1

1 −2 1

2 1 −3

) = 0 (91)

and 𝜋
1
+ 𝜋

2
+ 𝜋

3
= 1, we get 𝜇1

= (5/8, 1/8, 1/4). In the same
way, by

(𝜋
4

𝜋
5
) (

−1 1

1 −1
) = 0 (92)

and 𝜋
4
+ 𝜋

5
= 1, we have 𝜇

2

= (1/2, 1/2). So,

Γ = 𝜇Γ̂1 = (

5

8

1

8

1

4
0 0

0 0 0
1

2

1

2

)

× (

−1 0 1 0 0

0 −1 0 1 0

0 0 −1 0 1

0 1 0 −1 0

1 0 0 0 −1

)(

1 0

1 0

1 0

0 1

0 1

)

= (
−
3

8

3

8
1 −1

) .

(93)

Consider a one-dimensional neutral stochastic functional
differential equation as follows:

𝑑 [𝜑
𝜀

(0) − 𝐷 (𝜑
𝜀

, 𝑟
𝜀

(𝑡))]

= 𝑓 (𝜑
𝜀

, 𝑟
𝜀

(𝑡)) 𝑑𝑡 + 𝑔 (𝜑
𝜀

, 𝑟
𝜀

(𝑡)) 𝑑𝑤 (𝑡) ,

(94)

with

𝐷(𝜑, 𝑠
11
) = −0.6 ∫

0

−1

𝜑 (𝜃) 𝑑𝜃,

𝐷 (𝜑, 𝑠
12
) = −0.2 ∫

0

−1

𝜑 (𝜃) 𝑑𝜃,

𝐷 (𝜑, 𝑠
13
) = −0.4 ∫

0

−1

𝜑 (𝜃) 𝑑𝜃,

𝑓 (𝜑, 𝑠
11
) = −16𝜑 (0) − 8 cos [𝜑 (0)] ,

𝑓 (𝜑, 𝑠
12
) = 8𝜑 (0) + 4 cos [𝜑 (0)] ,

𝑓 (𝜑, 𝑠
13
) = 16𝜑 (0) ,

𝑔 (𝜑, 𝑠
11
) =

√10

10
∫

0

−1

𝜑 (𝜃) 𝑑𝜃 cos [∫
0

−1

𝜑 (𝜃) 𝑑𝜃] ,

𝑔 (𝜑, 𝑠
12
) = −

√2

2
∫

0

−1

𝜑 (𝜃) 𝑑𝜃 sin [∫

0

−1

𝜑 (𝜃) 𝑑𝜃] ,

𝑔 (𝜑, 𝑠
13
) =

√3

2
∫

0

−1

𝜑 (𝜃) 𝑑𝜃,

𝐷 (𝜑, 𝑠
21
) = 0.5 ∫

0

−1

𝜑 (𝜃) 𝑑𝜃,

𝐷 (𝜑, 𝑠
22
) = 0.5 ∫

0

−1

𝜑 (𝜃) 𝑑𝜃,

𝑓 (𝜑, 𝑠
21
) = −2𝜑 (0) , 𝑓 (𝜑, 𝑠

22
) = −2𝜑 (0) ,
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𝑔 (𝜑, 𝑠
21
) =

∫

0

−1

𝜑 (𝜃) 𝑑𝜃 sin [∫

0

−1

𝜑 (𝜃) 𝑑𝜃]

4√2

,

𝑔 (𝜑, 𝑠
22
) =

∫

0

−1

𝜑 (𝜃) 𝑑𝜃 cos [∫
0

−1

𝜑 (𝜃) 𝑑𝜃]

4√2

.

(95)

For any 𝜑 ∈ 𝐿
2

F𝑡
([−1, 0];R) and 𝜅 = max{0.6, 0.2, 0.4} = 0.6,

applying the Hölder inequality yields

E
󵄨󵄨󵄨󵄨𝐷 (𝜑, 𝑖)

󵄨󵄨󵄨󵄨

2

≤ 0.6
2 sup
−1≤𝜃≤0

𝑒
]𝜃
E

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

0

−1

𝜑 (𝜃) 𝑑𝜃

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

≤ 0.36
󵄩󵄩󵄩󵄩𝜑

󵄩󵄩󵄩󵄩

2

,

(96)

which implies condition (24). Then, the limit equation is

𝑑 [𝜑 (0) − 𝐷 (𝜑, 𝑟 (𝑡))] = 𝑓 (𝜑, 𝑟 (𝑡)) 𝑑𝑡 + 𝑔 (𝜑, 𝑟 (𝑡)) 𝑑𝑤 (𝑡) ,

(97)

where 𝑟 is the Markov chain generated by Γ̃ and

𝐷(𝜑, 1) = −0.5 ∫

0

−1

𝜑 (𝜃) 𝑑𝜃,

𝐷 (𝜑, 2) = 0.5 ∫

0

−1

𝜑 (𝜃) 𝑑𝜃,

𝑓 (𝜑, 1) = −5𝜑 (0) , 𝑓 (𝜑, 2) = −2𝜑 (0) ,

𝑔 (𝜑, 1) =
1

2
∫

0

−1

𝜑 (𝜃) 𝑑𝜃, 𝑔 (𝜑, 2) =
1

4
∫

0

−1

𝜑 (𝜃) 𝑑𝜃.

(98)

We define 𝑉(𝑥, 1) = 2𝑥
2, 𝑉(𝑥, 2) = 𝑥

2. And by simple
calculation, we can get

L𝑉 (𝜑, 1) ≤ −20
3

8
𝜑
2

(0) +
13

32

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

0

−1

𝜑 (𝜃) 𝑑𝜃

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

,

L𝑉 (𝜑, 2) ≤ −
5

2
𝜑
2

(0) +
13

16

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

0

−1

𝜑 (𝜃) 𝑑𝜃

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

.

(99)

Consequently,

max
𝑖=1,2

L𝑉 (𝜑, 𝑖) ≤ −
5

2
𝜑
2

(0) +
13

16

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

0

−1

𝜑 (𝜃) 𝑑𝜃

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

= −
5

4
[max
𝑖=1,2

𝑉 (𝑥, 𝑖)] +
13

16
[min
𝑖=1,2

𝑉 (𝑥, 𝑖)] .

(100)

It is easy to find a 𝑞 > 1 such that 5/4−13𝑞/16 > 0.Therefore,
for any 𝜙 ∈ 𝐿

2

F𝑡
([−1, 0];R) satisfying E[min

𝑖∈
̃S𝜙(𝜃)] ≤

𝑞E[max
𝑖∈
̃S𝜙(0)] on −1 ≤ 𝜃 ≤ 0, (100) yields

E [max
𝑖∈
̃S

L𝑉 (𝜑, 𝑖)] ≤ − (
5

4
−

13𝑞

16
)E [max

𝑖=1,2

𝑉 (𝑥, 𝑖)] . (101)

Hence, byTheorem 7, the solution 𝑥
𝜀

(𝑡) is mean square stable
when 𝜀 is sufficiently small.

Example 2. Let 𝑟𝜀(⋅) be a Markov chain generated by

Γ
𝜀

=
1

𝜀
Γ̃ + Γ̂ =

1

𝜀
(

−2 0 2 0

1 −2 0 1

0 2 −2 0

0 1 1 −2

) . (102)

Here, we set Γ̂ = 0. By a similar way, we get the stationary
distribution 𝜇 = (2/11, 4/11, 3/11, 2/11).

Consider the following one-dimensional equation:

𝑑 [𝜑
𝜀

(0) − 𝐷 (𝜑
𝜀

, 𝑟
𝜀

(𝑡))]

= 𝑓 (𝜑
𝜀

, 𝑟
𝜀

(𝑡)) 𝑑𝑡 + ∫

∞

0

𝜎 (𝑟
𝜀

(𝑡) , 𝑧) 𝑥
𝜀

𝑡−
𝑁̃ (𝑑𝑡, 𝑑𝑧)

(103)

with

𝐷(𝜑, 1) = −0.9 ∫

0

−1

𝜑 (𝜃) 𝑑𝜃,

𝐷 (𝜑, 2) = −0.4 ∫

0

−1

𝜑 (𝜃) 𝑑𝜃,

𝐷 (𝜑, 3) = −0.5 ∫

0

−1

𝜑 (𝜃) 𝑑𝜃,

𝐷 (𝜑, 4) = −0.3 ∫

0

−1

𝜑 (𝜃) 𝑑𝜃,

𝑓 (𝜑, 1) = 2 sin [𝜑 (0)] , 𝑓 (𝜑, 2) = −
11

2
𝜑 (0) ,

𝑓 (𝜑, 3) = −
11

3
𝜑 (0) , 𝑓 (𝜑, 4) = −2 sin [𝜑 (0)] .

(104)

Let

𝛼 (𝑧) =
2

11
𝜎 (1, 𝑧) +

4

11
𝜎 (2, 𝑧) +

3

11
𝜎 (3, 𝑧) +

2

11
𝜎 (4, 𝑧) ,

∫

∞

0

𝛼
2

(𝑧) 𝜆 (𝑑𝑧) < 2.

(105)

For any 𝜑 ∈ 𝐿
2

F𝑡
([−1, 0];R) and 𝜅 = max{0.9, 0.4, 0.5, 0.3} =

0.9, applying the Hölder inequality yields

E
󵄨󵄨󵄨󵄨𝐷 (𝜑, 𝑖)

󵄨󵄨󵄨󵄨

2

≤ 0.9
2 sup
−1≤𝜃≤0

𝑒
]𝜃
E

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

0

−1

𝜑 (𝜃) 𝑑𝜃

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

≤ 0.81
󵄩󵄩󵄩󵄩𝜑

󵄩󵄩󵄩󵄩

2

,

(106)

which implies condition (67). Then, the limit equation is

𝑑 [𝜑 (0) + 0.5 ∫

0

−1

𝜑 (𝜃) 𝑑𝜃]

= −3𝜑 (0) 𝑑𝑡 + ∫

∞

0

𝛼 (𝑧) 𝑥
𝑡−
𝑁̃ (𝑑𝑡, 𝑑𝑧) .

(107)
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Let 𝑉(𝑥) = 𝑥
2; then

L𝑉 (𝜑, 𝑖) ≤ −6𝜑
2

(0) + ∫

∞

0

𝛼
2

(𝑧) 𝜆 (𝑑𝑧)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

0

−1

𝜑 (𝜃) 𝑑𝜃

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

.

(108)

We can find a 𝑞 > 1 such that 6−2𝑞 > 0.Therefore, for any𝜙 ∈

𝐿
2

F𝑡
([−1, 0];R) satisfying E[min

𝑖∈
̃S𝜙(𝜃)] ≤ 𝑞E[max

𝑖∈
̃S𝜙(0)]

on −1 ≤ 𝜃 ≤ 0, (108) yields

E [max
𝑖∈
̃S

L𝑉 (𝜑, 𝑖)] ≤ − (6 − 2𝑞)E [max
𝑖=1,2

𝑉 (𝑥, 𝑖)] . (109)

Hence, by Theorem 12, the solution 𝑥
𝜀

(𝑡) is mean square
stable.
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This paper investigates the problem of state-feedback stabilization for a class of upper-triangular stochastic nonlinear systems with
time-varying control coefficients. By introducing effective coordinates, the original system is transformed into an equivalent one
with tunable gain. After that, by using the low gain homogeneous domination technique and choosing the low gain parameter
skillfully, the closed-loop system can be proved to be globally asymptotically stable in probability.The efficiency of the state-feedback
controller is demonstrated by a simulation example.

1. Introduction

Consider a class of upper-triangular stochastic nonlinear
systems with time-varying control coefficients described by

𝑑𝑥
1
= (𝑑
1
(𝑡) 𝑥
2
+ 𝑓
1
(𝑥
3
)) 𝑑𝑡 + 𝑔

𝑇

1
(𝑥
3
) 𝑑𝜔,

𝑑𝑥
2
= (𝑑
2
(𝑡) 𝑥
3
+ 𝑓
2
(𝑥
4
)) 𝑑𝑡 + 𝑔

𝑇

2
(𝑥
4
) 𝑑𝜔,

...

𝑑𝑥
𝑛−2

= (𝑑
𝑛−2

(𝑡) 𝑥
𝑛−1

+ 𝑓
𝑛−2

(𝑥
𝑛
)) 𝑑𝑡 + 𝑔

𝑇

𝑛−2
(𝑥
𝑛
) 𝑑𝜔,

𝑑𝑥
𝑛−1

= 𝑑
𝑛−1

(𝑡) 𝑥
𝑛
𝑑𝑡,

𝑑𝑥
𝑛
= 𝑑
𝑛
(𝑡) 𝑢𝑑𝑡,

(1)

where 𝑥 = (𝑥
1
, . . . , 𝑥

𝑛
)
𝑇

∈ R𝑛, 𝑢 ∈ R are the measurable
state and the input of system, respectively. 𝑥

𝑖
= (𝑥
𝑖
, . . . , 𝑥

𝑛
)
𝑇.

𝜔 is an 𝑟-dimensional standard Wiener process defined on
a probability space (Ω,F, 𝑃), with Ω being a sample space,
F being a filtration, and 𝑃 being a probability measure. The
functions 𝑓

𝑖
: R𝑛−𝑖−1 → R and 𝑔

𝑖
: R𝑛−𝑖−1 → R𝑟, 𝑖 =

1, . . . , 𝑛 − 2, are assumed to be C1 with their arguments and

𝑓
𝑖
(0) = 0, 𝑔

𝑖
(0) = 0. 𝑑

𝑖
: 𝑅
+
→ 𝑅, 𝑖 = 1, . . . , 𝑛, are unknown

time-varying control coefficients with known sign.
In recent years, the global controller design for stochas-

tic nonlinear systems has been attracting more and more
attention. According to the difference of selected Lyapunov
functions, the existing literature on controller design can be
mainly divided into two types. One type is to derive the
backstepping controller design by using quadratic Lyapunov
function and a risk-sensitive cost criterion [1–3]. Another
essential improvement belongs to Krstić and Deng. By
introducing the quartic Lyapunov function, [4–12] present
asymptotical stabilization control under the assumption that
the nonlinearities equal zero at the equilibrium point of
the open-loop system. Subsequently, for several classes of
stochastic high-order nonlinear systems, by combiningKrstić
and Deng’s method with stochastic analysis, [13, 14] study
the problem of state-feedback stabilization and the output-
feedback stabilization problem is considered in [15, 16].

The study of stabilization control for upper-triangular
nonlinear systems has long been recognized as difficult due
to the inherent nonlinearity. In the existing literature, most
results are established using the nested-saturation method
[17, 18] and forwarding technique [19]. When no a priori

Hindawi Publishing Corporation
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information of the system nonlinearities is known, the work
[20] proposes a universal stabilizer for feedforward nonlinear
systems by employing a switching controller. Note that the
listed results above do not consider the stochastic noise.
However, from both practical and theoretical points of
view, it is more important to study the control of upper-
triangular stochastic nonlinear systems with time-varying
control coefficients. Therefore, in this paper, under some
appropriate assumptions, we consider the stabilization for
system (1). To the best of the authors’ knowledge, there are
not any results about this topic.

In this paper, based on the low gain homogeneous
domination technique, for system (1), we design a stabiliza-
tion state-feedback controller, under which the closed-loop
systems can be proved to be globally asymptotically stable in
probability.

The contributions of this paper are highlighted as follows.

(i) This paper is the first result about state-feedback
stabilization of upper-triangular stochastic nonlinear
systems with time-varying control coefficients.

(ii) Due to the complex of upper-triangular system struc-
ture, how to deal with stochastic noise and time-
varying control coefficients in the controller design is
a nontrivial work.

The remainder of this paper is organized as follows.
Section 2 offers some preliminary results. The state-feedback
controller is designed and analyzed in Section 3. After that,
in Section 4, a simulation example is presented to show
the effectiveness of the state-feedback controller. Finally, the
paper is concluded in Section 5.

2. Preliminary Results

The following notation will be used throughout the paper.R
+

denotes the set of all nonnegative real numbers. For a given
vector or matrix 𝑋, 𝑋𝑇 denotes its transpose, Tr{𝑋} denotes
its trace when𝑋 is square, and |𝑋| is the Euclidean norm of a
vector 𝑋.C𝑖 denotes the set of all functions with continuous
𝑖th partial derivatives. K denotes the set of all functions:
R
+
→ R

+
, which are continuous, strictly increasing, and

vanishing at zero;K
∞

denotes the set of all functions which
are of class K and unbounded; KL denotes the set of all
functions 𝛽(𝑠, 𝑡): R

+
× R
+
→ R
+
, which are of K for each

fixed 𝑡 and decrease to zero as 𝑡 → ∞ for each fixed 𝑠.
Consider the following stochastic nonlinear system:

𝑑𝑥 = 𝑓 (𝑥) 𝑑𝑡 + 𝑔
𝑇

(𝑥) 𝑑𝜔, (2)

where 𝑥 ∈ R𝑛 is the state of the system and 𝜔 is an 𝑟-
dimensional standard Wiener process defined on the prob-
ability space (Ω,F, 𝑃). The Borel measurable functions 𝑓 :

R𝑛 → R𝑛 and 𝑔𝑇 : R𝑛 → R𝑛×𝑟 are local Lipschitz in 𝑥 ∈ R𝑛.
The following definitions and lemma will be used

throughout the paper.

Definition 1 (see [5]). For any given 𝑉(𝑥) ∈ C2 associated
with stochastic system (2), the differential operator L is
defined as

L𝑉 (𝑥) ≜
𝜕𝑉 (𝑥)

𝜕𝑥
𝑓 (𝑥) +

1

2
Tr{𝑔 (𝑥) 𝜕

2

𝑉 (𝑥)

𝜕𝑥2
𝑔
𝑇

(𝑥)} . (3)

Definition 2 (see [5]). For the stochastic system (2) with
𝑓(0) = 0, 𝑔(0) = 0, the equilibrium 𝑥(𝑡) = 0 of (2) is
globally asymptotically stable (GAS) in probability if, for any
𝜀 > 0, there exists a class KL function 𝛽(⋅, ⋅) such that
𝑃{|𝑥(𝑡)| < 𝛽(|𝑥

0
|, 𝑡)} ≥ 1 − 𝜀 for any 𝑡 ≥ 0 and 𝑥

0
∈ R𝑛 \ {0}.

Lemma 3 (see [5]). Consider the stochastic system (2); if there
exist a C2 function 𝑉(𝑥), class K

∞
functions 𝛼

1
and 𝛼

2
,

constants 𝑐
1
> 0 and 𝑐

2
≥ 0, and a nonnegative function𝑊(𝑥)

such that

𝛼
1
(|𝑥|) ≤ 𝑉 (𝑥) ≤ 𝛼

2
(|𝑥|) , L𝑉 ≤ −𝑐

1
𝑊(𝑥) + 𝑐

2
, (4)

then

(a) for (2), there exists an almost surely unique solution on
[0,∞);

(b) when 𝑐
2
= 0, 𝑓(0) = 0, 𝑔(0) = 0, and𝑊(𝑥) = 𝛼

3
(|𝑥|),

where 𝛼
3
(⋅) is a classK function, then the equilibrium

𝑥 = 0 is GAS in probability and 𝑃{lim
𝑡→∞

|𝑥(𝑡)| =

0} = 1.

3. Controller Design and Stability Analysis

The following assumptions are made on system (1).

Assumption 1. For 𝑖 = 1, . . . , 𝑛, there exists a constant 𝑏 > 0

such that
󵄨󵄨󵄨󵄨𝑓𝑖 (𝑥𝑖+2)

󵄨󵄨󵄨󵄨 ≤ 𝑏 (
󵄨󵄨󵄨󵄨𝑥𝑖+2

󵄨󵄨󵄨󵄨 + ⋅ ⋅ ⋅ +
󵄨󵄨󵄨󵄨𝑥𝑛

󵄨󵄨󵄨󵄨) ,

󵄨󵄨󵄨󵄨𝑔𝑖 (𝑥𝑖+2)
󵄨󵄨󵄨󵄨 ≤ 𝑏 (

󵄨󵄨󵄨󵄨𝑥𝑖+2
󵄨󵄨󵄨󵄨 + ⋅ ⋅ ⋅ +

󵄨󵄨󵄨󵄨𝑥𝑛
󵄨󵄨󵄨󵄨) .

(5)

Assumption 2. Without loss of generality, the sign of 𝑑
𝑖
(𝑡)

is assumed to be positive, and there exist known positive
constants 𝜆

𝑖
and 𝜇

𝑖
such that, for any 𝑡 ∈ R+ and 𝑖 = 1, . . . , 𝑛,

0 < 𝜆
𝑖
≤ 𝑑
𝑖
(𝑡) ≤ 𝜇

𝑖
. (6)

Remark 4. From Assumption 1, the system investigated has
an upper-triangular form. Due to the complex of upper-
triangular system structure and the effect of stochastic noise,
the stabilization of such systems is usually very difficult. In
this paper, by using the low gain homogeneous domination
approach, the state-feedback stabilization problem is investi-
gated for the first time.

Remark 5. By Assumption 2, we know that 𝑑
𝑖
(𝑡)s are time-

varying control coefficients; how to effectively deal with them
in the design process is nontrivial work.

Firstly, introduce the following coordinate transforma-
tion:

𝑧
𝑖
=

𝑥
𝑖

𝜀𝑖−1
, 𝜐 =

𝑢

𝜀𝑛
, 𝑖 = 1, . . . , 𝑛, (7)
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where 0 < 𝜀 < 1 is a parameter to be designed. System (1) can
be rewritten as

𝑑𝑧
1
= (𝜀𝑑

1
(𝑡) 𝑧
2
+ 𝑓
1
(𝑧̃
3
)) 𝑑𝑡 + 𝑔

𝑇

1
(𝑧̃
3
) 𝑑𝜔,

𝑑𝑧
2
= (𝜀𝑑

2
(𝑡) 𝑧
3
+ 𝑓
2
(𝑧̃
4
)) 𝑑𝑡 + 𝑔

𝑇

2
(𝑧̃
4
) 𝑑𝜔,

...

𝑑𝑧
𝑛−2

= (𝜀𝑑
𝑛−2

(𝑡) 𝑧
𝑛−1

+ 𝑓
𝑛−2

(𝑧̃
𝑛
)) 𝑑𝑡 + 𝑔

𝑇

𝑛−2
(𝑧̃
𝑛
) 𝑑𝜔,

𝑑𝑧
𝑛−1

= 𝜀𝑑
𝑛−1

(𝑡) 𝑧
𝑛
𝑑𝑡,

𝑑𝑧
𝑛
= 𝜀𝑑
𝑛
(𝑡) 𝜐𝑑𝑡,

(8)

where 𝑓
𝑖
(𝑧̃
𝑖+2
) = 𝑓
𝑖
(𝑥
𝑖+2
)/𝜀
𝑖−1, 𝑔
𝑖
(𝑧̃
𝑖+2
) = 𝑔
𝑖
(𝑥
𝑖+2
)/𝜀
𝑖−1.

The nominal system for (8) is

𝑑𝑧
1
= 𝑑
1
(𝑡) 𝑧
2
,

𝑑𝑧
2
= 𝑑
2
(𝑡) 𝑧
3
,

...

𝑑𝑧
𝑛−2

= 𝑑
𝑛−2

(𝑡) 𝑧
𝑛−1

,

𝑑𝑧
𝑛−1

= 𝑑
𝑛−1

(𝑡) 𝑧
𝑛
𝑑𝑡,

𝑑𝑧
𝑛
= 𝑑
𝑛
(𝑡) 𝜐𝑑𝑡.

(9)

Theorem 6. For nominal system (9), with Assumption 2, one
can design a stabilizing state-feedback controller to guarantee
that

(1) the closed-loop system has an almost surely unique
solution on [0,∞);

(2) the equilibrium of the closed-loop system is GAS in
probability.

Proof. The controller design process proceeds step by step.

Step 1.Defining 𝜉
1
= 𝑧
1
and choosing𝑉

1
= (1/4)𝑧

4

1
, from (9),

it follows that

L𝑉
1
≤ 𝑑
1
(𝑡) 𝑧
3

1
𝑧
2
. (10)

Suppose that 𝑧∗
2
= −𝑧
1
𝛼
1
= −𝜉
1
𝛼
1
, where 𝛼

1
≥ 0 is a constant

to be chosen. Thus, by Assumption 2, we have

𝑑
1
(𝑡) 𝑧
3

1
𝑧
∗

2
≤ 𝜆
1
𝑧
3

1
𝑧
∗

2
≤ 0. (11)

By (10) and (11), one gets

L𝑉
1
≤ 𝜆
1
𝑧
3

1
𝑧
∗

2
+ 𝑑
1
(𝑡) 𝑧
3

1
(𝑧
2
− 𝑧
∗

2
) . (12)

Choosing the virtual smooth control 𝑧∗
2
as

𝑧
∗

2
= −

𝑛

𝜆
1

𝜉
1
≜ −𝜉
1
𝛼
1
, (13)

which substitutes into (12), yields

L𝑉
1
≤ −𝑛𝜉

4

1
+ 𝑑
1
(𝑡) 𝑧
3

1
(𝑧
2
− 𝑧
∗

2
) . (14)

Deductive Step. Assume that, at step 𝑘 − 1, there are a C2,
proper and positive definite Lyapunov function𝑉

𝑘−1
, and the

virtual controllers 𝑧∗
𝑗
defined by

𝑧
∗

1
= 0, 𝜉

1
= 𝑧
1
− 𝑧
∗

1
,

𝑧
∗

2
= −𝜉
1
𝛼
1
, 𝜉

2
= 𝑧
2
− 𝑧
∗

2
,

...

𝑧
∗

𝑘
= −𝜉
𝑘−1

𝛼
𝑘−1

, 𝜉
𝑘
= 𝑧
𝑘
− 𝑧
∗

𝑘
,

(15)

where 𝛼
𝑖
≥ 0, 1 ≤ 𝑖 ≤ 𝑘 − 1, are positive constants, such that

L𝑉
𝑘−1

(𝑧
𝑘−1

) ≤ − (𝑛 − 𝑘 + 2)

𝑘−1

∑

𝑖=1

𝜉
4

𝑖
+ 𝑑
𝑘−1

(𝑡) 𝜉
3

𝑘−1
(𝑧
𝑘
− 𝑧
∗

𝑘
) ,

(16)

where 𝑧
𝑘−1

= (𝑧
1
, . . . , 𝑧

𝑘−1
)
𝑇. To complete the induction, at

the 𝑘th step, one can choose the following Lyapunov function:

𝑉
𝑘
(𝑧
𝑘
) = 𝑉
𝑘−1

(𝑧
𝑘−1

) +
1

4
𝜉
4

𝑘
, (17)

where 𝑧
𝑘
= (𝑧
1
, . . . , 𝑧

𝑘
)
𝑇.

By (15)–(17), one has

L𝑉
𝑘
(𝑧
𝑘
) ≤ − (𝑛 − 𝑘 + 2)

𝑘−1

∑

𝑖=1

𝜉
4

𝑖
+ 𝑑
𝑘−1

(𝑡) 𝜉
3

𝑘−1
𝜉
𝑘

+ 𝜉
3

𝑘
(𝑑
𝑘
(𝑡) 𝑧
𝑘+1

−

𝑘−1

∑

𝑖=1

𝜕𝑧
∗

𝑘

𝜕𝑧
𝑖

𝑑
𝑖
(𝑡) 𝑧
𝑖+1
) .

(18)

By using Young’s inequality and Assumption 2, one has

𝑑
𝑘−1

(𝑡) 𝜉
3

𝑘−1
𝜉
𝑘
≤
1

2
𝜉
4

𝑘−1
+ 𝑐
𝑘
𝜉
4

𝑘
,

−𝜉
3

𝑘

𝑘−1

∑

𝑖=1

𝜕𝑧
∗

𝑘

𝜕𝑧
𝑖

𝑑
𝑖
(𝑡) 𝑧
𝑖+1

≤ 𝑐
𝑘1

󵄨󵄨󵄨󵄨𝜉𝑘
󵄨󵄨󵄨󵄨

3

𝑘

∑

𝑖=1

󵄨󵄨󵄨󵄨𝑧𝑖
󵄨󵄨󵄨󵄨 ≤

1

2

𝑘−1

∑

𝑖=1

𝜉
4

𝑖
+ 𝑐
𝑘
𝜉
4

𝑘
,

(19)

where 𝑐
𝑘
> 0, 𝑐
𝑘1
> 0, and 𝑐

𝑘
> 0 are constants. Suppose that

𝑧
∗

𝑘+1
= −𝜉
𝑘
𝛼
𝑘
, (20)

where 𝛼
𝑘

≥ 0 is a constant to be chosen. Then, by
Assumption 2, one has

𝑑
𝑘
(𝑡) 𝜉
3

𝑘
𝑧
∗

𝑘+1
≤ 𝜆
𝑘
𝜉
3

𝑘
𝑧
∗

𝑘+1
. (21)

Substituting (19) and (21) into (18) yields

L𝑉
𝑘
(𝑧
𝑘
) ≤ − (𝑛 − 𝑘 + 1)

𝑘−1

∑

𝑖=1

𝜉
4

𝑖
+ 𝑑
𝑘
(𝑡) 𝜉
3

𝑘
(𝑧
𝑘+1

− 𝑧
∗

𝑘+1
)

+ 𝜆
𝑘
𝜉
3

𝑘
𝑧
∗

𝑘+1
+ (𝑐
𝑘
+ 𝑐
𝑘
) 𝜉
4

𝑘
.

(22)
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Choosing the virtual smooth control

𝑧
∗

𝑘+1
= −

1

𝜆
𝑘

(𝑛 − 𝑘 + 1 + 𝑐
𝑘
+ 𝑐
𝑘
) 𝜉
𝑘
≜ −𝜉
𝑘
𝛼
𝑘
, (23)

which substitutes into (22), yields

L𝑉
𝑘
(𝑧
𝑘
) ≤ − (𝑛 − 𝑘 + 1)

𝑘

∑

𝑖=1

𝜉
4

𝑖
+ 𝑑
𝑘
(𝑡) 𝜉
3

𝑘
(𝑧
𝑘+1

− 𝑧
∗

𝑘+1
) .

(24)

Step n. By choosing the actual control law

𝜐 = −𝜉
𝑛
𝛼
𝑛
, (25)

where 𝛼
𝑛
≥ 0 is a constant and 𝜉

𝑛
= 𝑥
𝑛
− 𝑥
∗

𝑛
, one gets

L𝑉
𝑛
(𝑧
𝑛
) ≤ −

𝑛

∑

𝑖=1

𝜉
4

𝑖
, (26)

where

𝑉
𝑛
(𝑧
𝑛
) = 𝑉
𝑛−1

(𝑧
𝑛−1

) +
1

4
𝜉
4

𝑛
. (27)

Finally, based on (26) and (27), by Lemma 3, one immediately
gets the conclusion.

Now, we are in a position to get the main results of this
paper.

Theorem 7. If Assumptions 1 and 2 hold for the upper-
triangular stochastic nonlinear systems (1), with the coordinate
transformation (7), by appropriately choosing the parameter
0 < 𝜀 < 1, then, under the state-feedback controller (25), one
has the following:

(1) the closed-loop system has an almost surely unique
solution on [0,∞);

(2) the equilibrium of the closed-loop system is GAS in
probability.

Proof. For system (8), with the state-feedback controller (25)
and Lyapunov function (27), one has

L𝑉
𝑛
(𝑧
𝑛
) ≤ −𝜀

𝑛

∑

𝑖=1

𝜉
4

𝑖
+

𝑛

∑

𝑖=1

𝜕𝑉
𝑛

𝜕𝑧
𝑖

𝑓
𝑖
(𝑧̃
𝑖+2
) +

1

2
Tr{𝐺

𝜕
2

𝑉
𝑛

𝜕𝑧2
𝐺
𝑇

} ,

(28)

where 𝑧 = (𝑧
1
, . . . , 𝑧

𝑛
)
𝑇, 𝐺 = (𝑔

1
, . . . , 𝑔

𝑛−2
, 0, 0). From (15)

and (27), one has

𝑉
𝑛
(𝑧
𝑛
) =

1

4

𝑛

∑

𝑖=1

𝜉
4

𝑖
=
1

4

𝑛

∑

𝑖=1

(𝑧
𝑖
+ 𝑐
𝑖,𝑖−1

𝑧
𝑖−1

+ ⋅ ⋅ ⋅ + 𝑐
𝑖,1
𝑧
1
)
4

, (29)

where 𝑐
𝑖,𝑗
, 𝑗 = 1, . . . , 𝑖 − 1, are constants. By (7), (15) and

Assumption 1, one can get

󵄨󵄨󵄨󵄨󵄨
𝑓
𝑖
(𝑧̃
𝑖+2
)
󵄨󵄨󵄨󵄨󵄨
=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑓
𝑖
(𝑥
𝑖+2
)

𝜀𝑖−1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝑏𝜀
2

𝑛

∑

𝑗=𝑖+2

󵄨󵄨󵄨󵄨󵄨
𝑧
𝑗

󵄨󵄨󵄨󵄨󵄨

≤ 𝑏𝜀
2

𝑛

∑

𝑗=𝑖+2

(
󵄨󵄨󵄨󵄨󵄨
𝜉
𝑗

󵄨󵄨󵄨󵄨󵄨
+ 𝛼
𝑗−1

󵄨󵄨󵄨󵄨󵄨
𝜉
𝑗−1

󵄨󵄨󵄨󵄨󵄨
) .

(30)

By Young’s inequality, using (29) and (30), one has

𝑛

∑

𝑖=1

𝜕𝑉
𝑛

𝜕𝑧
𝑖

𝑓
𝑖
(𝑧̃
𝑖+2
) ≤ 𝑏
𝑓
𝜀
2

𝑛

∑

𝑖=1

𝜉
4

𝑖
. (31)

Similarly, one can prove that

1

2
Tr{𝐺

𝜕
2

𝑉
𝑛

𝜕𝑧2
𝐺
𝑇

} ≤ 𝑏
𝑔
𝜀
2

𝑛

∑

𝑖=1

𝜉
4

𝑖
. (32)

Substituting (31) and (32) into (28), one has

L𝑉
𝑛
(𝑧
𝑛
) |
(8)

≤ − 𝜀

𝑛

∑

𝑖=1

𝜉
4

𝑖
+ (𝑏
𝑓
+ 𝑏
𝑔
) 𝜀
2

𝑛

∑

𝑖=1

𝜉
4

𝑖

= −𝜀 (1 − (𝑏
𝑓
+ 𝑏
𝑔
) 𝜀)

𝑛

∑

𝑖=1

𝜉
4

𝑖
.

(33)

By choosing 0 < 𝜀 < 1 appropriately, (33) can be written as

L𝑉
𝑛
(𝑧
𝑛
)
󵄨󵄨󵄨󵄨(8)

≤ −𝑐
0

𝑛

∑

𝑖=1

𝜉
4

𝑖
, (34)

where 𝑐
0
> 0 is a constant.

By (34) and the coordinate transformation (7), using
Lemma 3, the conclusions hold.

Remark 8. Theorems 6 and 7 provide us a new perspective
to deal with the state-feedback control problem for upper-
triangular stochastic nonlinear systems with time-varying
coefficients. The main technical obstacle in the Lyapunov
design for stochastic upper-triangular systems is that Itô
stochastic differentiation involves not only the gradient but
also the higher order Hessian term. The traditional design
methods are invalid to deal with these terms. However, with
the design methodology provided inTheorems 6 and 7, there
is no need to estimate the bounds of drift and diffusion
terms step by step. Based on this technique, a homogeneous
nonlinear controller for the nominal nonlinear system is
firstly constructed. Then we will design a scaled controller
which can effectively dominate the drift and diffusion terms
by taking advantage of the homogenous structure of the
controller.

4. A Simulation Example

Consider the following system:

𝑑𝑥
1
= ((2 − sin2𝑡) 𝑥

2
+ 𝑥
3
sin𝑥
3
) 𝑑𝑡 + 𝑥

3
cos𝑥
3
𝑑𝜔,

𝑑𝑥
2
= (2 − cos 𝑡) 𝑥

3
𝑑𝑡,

𝑑𝑥
3
= (1 + sin2𝑡) 𝑢𝑑𝑡.

(35)

Obviously, Assumptions 1 and 2 hold.
Introduce the following coordinate transformation:

𝑧
1
= 𝑥
1
, 𝑧

2
=
𝑥
2

𝜀
, 𝑧

3
=
𝑥
3

𝜀2
, 𝜐 =

𝑢

𝜀3
, (36)
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Figure 1: The response of closed-loop system (35)–(38).

where 0 < 𝜀 < 1 is a design parameter. Then (35) can be
written as

𝑑𝑧
1
= (𝜀 (2 − sin2𝑡) 𝑧

2
+ 𝜀
2

𝑧
3
sin2 (𝜀2𝑧

3
)) 𝑑𝑡

+ 𝜀
2

𝑧
3
cos (𝜀2𝑧

3
) 𝑑𝜔,

𝑑𝑧
2
= 𝜀 (2 − cos 𝑡) 𝑧

3
𝑑𝑡,

𝑑𝑧
3
= 𝜀 (1 + sin2𝑡) 𝜐𝑑𝑡.

(37)

By following the design procedure in Section 3, one gets

𝜐 (𝑧
1
, 𝑧
2
, 𝑧
3
) = −1310 (372𝑧

1
+ 124𝑧

2
+ 𝑧
3
) . (38)

By choosing 𝜀 = 0.001, with the initial values 𝑧
1
(0) =

3, 𝑧
2
(0) = 2, and 𝑧

3
(0) = 5, Figure 1 gives the system response

of the closed-loop system consisting of (35)–(38), fromwhich
the efficiency of the tracking controller is demonstrated.

5. Concluding Remarks

For a class of upper-triangular stochastic nonlinear systems
with time-varying control coefficients, this paper investigates
the state-feedback stabilization problem. The designed con-
troller can guarantee that the closed-loop systemhas a unique
solution and the closed-loop system can be proved to be GAS
in probability.

There are many related problems to be investigated, for
example, how to generalize the result in this paper to more
general stochastic upper-triangular nonlinear systems.
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