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Stochastic systems captured by It6 differential equations and
stochastic difference equations play a prominent role in
modern control theory, which describe the systems disturbed
by the randomness in the forms of Brownian motion and
white noise. With the development of mathematical finance,
network control, biology systems, and multiagent, many
challenging stochastic-control problems are springing up,
which need to be deeply investigated by means of more
advanced theories and tools. To reflect the most recent
advances in stochastic systems, we are determined to organize
this special issue.

This special issue is focused on the stochastic-control
systems and their applications to stability, control, filter-
ing, communication, and fault detection. Topics covered
in this issue include (i) stochastic modeling, stability, and
stabilization analysis, (ii) stochastic robust/optimal/adaptive
control, (iii) stochastic filtering and estimation, (iv) stochastic
differential game, and (v) applications of stochastic-control
theory to finance, economics, fault detection, and so forth.
This special issue has received a total of 82 submitted papers
with only 40 papers accepted.

There are 13 manuscripts on the subject “stochastic mod-
eling, stability, and stabilization analysis.” In the following, we
give a brief summary. The paper entitled “Discrete-time indef-
inite stochastic linear quadratic optimal control with second
moment constraints” by W. Zhang and G. Li studies stochastic
LQ problem with constraints on the terminal state, where

the weighting matrices in the cost functional are allowed to
be indefinite. The problem of state-feedback stabilization for
a class of stochastic nonlinear systems is investigated by H.
Wang et al. in the paper “Asymptotic stabilization by state
feedback for a class of stochastic nonlinear systems with time-
varying coefficients” G. Li and M. Chen investigate the stabil-
ity and the stabilizability of delayed stochastic systems in “The
stability and stabilization of stochastic delay-time systems”
In “Integer-valued moving average models with structural
changes,” K. Yu et al. present a first order integer-valued mov-
ing average model which provides a flexible framework for
modeling a wide range of dependence structures. In “Further
results on dynamic additive Hazard rate model;” Z. Zhang and
L. Zhang study the dynamic additive hazard rate model and
investigate its aging properties for different aging classes. C. Li
and J. Duan in “Impact of correlated noises on additive dynam-
ical systems” consider Fokker-Planck type equations under
the fractional white noise measure. By means of Lyapunov
functions, Doob’s martingale inequality, and Borel-Cantelli
lemma, W. Zhu et al. give some sufficient conditions for the
exponential stability in the mean square of a class of stochastic
systems in “Exponential stability of stochastic systems with
delay and Poisson jumps”” In “Stochastic resonance in neuronal
network motifs with Ornstein-Uhlenbeck colored noise,” X. Lou
considers the effect of the Ornstein-Uhlenbeck colored noise
on the stochastic resonance of the feed-forward-loop network
motif. In “Input-to-state stability for a class of switched
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stochastic nonlinear systems by an improved average dwell time
method, the input-to-state stability in the mean property
of switched stochastic nonlinear systems is investigated by
R. Guo et al. In “Optimal dividend and capital injection
strategies in the Cramér-Lundberg risk model, Y. Li and G.
Liu maximize the discounted dividends payments minus the
penalized discounted capital injections. In “Boundedness of
stochastic delay differential systems with impulsive control and
impulsive disturbance,” L. Wang et al. derive several sufficient
conditions which guarantee the p-moment boundedness
of nonlinear impulsive stochastic delay differential systems
by using the Lyapunov-Razumikhin method and stochastic
analysis techniques. In the paper “Exponential stability of
neutral stochastic functional differential equations with two-
time-scale Markovian switching, J. Hu and Z. Xu develop
exponential stability of neutral stochastic equations modeled
by a continuous-time Markov chain which has a large state
space. Y. Li and Y. Shen discuss the impact of stochastic
noise and connection weight matrices uncertainty on global
exponential stability of hybrid BAM neural networks with
reaction diffusion terms. It is found that the perturbed hybrid
BAM neural networks preserve global exponential stability
if the intensities of both stochastic noise and the connection
weight matrix uncertainty are smaller than the defined upper
threshold.

There are 8 contributions closely related to controlled
stochastic differential equations. In “Nonlinear stochastic H,,
control with Markov jumps and (x, u, v)-dependent noise: finite
and infinite horizon cases,” L. Sheng et al. investigate the H,
control problem for nonlinear stochastic Markov jump sys-
tems with state, control, and external disturbance-dependent
noise. In “The H, control for bilinear systems with Poisson
jumps,” R. Zhang et al. discuss the state feedback H_ control
problem for bilinear stochastic systems driven by both Brow-
nian motion and Poisson jumps. S. Wang and Z. Wu focus
on optimal control derived by forward-backward regime-
switching systems with impulse controls in “Maximum
principle for optimal control problems of forward-backward
regime-switching systems involving impulse controls” Maxi-
mum principles and verification theorems for optimality are
obtained and are used to solve an optimal investment and
consumption problem with recursive utility. In “Mean-field
backward stochastic evolution equations in Hilbert spaces and
optimal control for BSPDEs,” R. Xu and T. Wu investigate
an optimal control problem of backward stochastic partial
differential equations. Existence and uniqueness of mild
solutions to mean-field backward stochastic evolution equa-
tions in Hilbert spaces are proved. In “Terminal-dependent
statistical inference for the FBSDEs models,” Y. Song works out
a nonparameter method to estimate parameters of backward
stochastic differential equations from noisy data and terminal
conditions. In “Adaptive neural output feedback control of
stochastic nonlinear systems with unmodeled dynamics, X.
Xia and T. P. Zhang propose an adaptive neural output feed-
back control scheme for stochastic systems with unmodeled
dynamics and unmeasured states. X. Dai et al. investigate
robust stochastic mean-square exponential stabilization and
robust H, control for stochastic partial differential time
delay systems in “Robust H, control for linear stochastic
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partial differential systems with time delay” Based on the
Lyapunov stability theory and stochastic analysis technique,
G. Chen et al. establish both delay-independent and delay-
dependent dissipativity criteria for nonlinear stochastic delay
systems in “Dissipative delay-feedback control for nonlinear
stochastic systems with time-varying delay”

The subject on stochastic filtering and estimation has
occupied 7 contributions. In “Parallel array bistable stochastic
resonance system with independent input and its signal-to-
noise ratio improvement,” W. Li et al. discuss the design
enhancement of the bistable stochastic resonance perfor-
mance on sinusoidal signal and Gaussian white noise. A
new pruning algorithm for Gaussian mixture PHD filter is
proposed by X. Yan in the paper “Iterative mixture component
pruning algorithm for Gaussian mixture PHD filter; where
the pruning algorithm is based on maximizing the posterior
probability density of the mixture weights. In “Covariance-
based estimation from multisensor delayed measurements
with random parameter matrices and correlated noises;” R.
Caballero-Aguila et al. address the optimal least-square linear
estimation problem for a class of discrete-time multisensor
linear stochastic systems subject to randomly delayed mea-
surements with different delay rates. In “Stochastic signal pro-
cessing for sound environment system with decibel evaluation
and energy observation,” A. Tkuta and H. Orimoto propose
a stochastic signal processing method to predict the output
response probability distribution of complex sound environ-
ment systems. A fusion algorithm based on linear minimum
mean-square error estimation is provided by X. Yuan et al.
in “Performance analysis for distributed fusion with different
dimensional data” In “Two identification methods for dual-
rate sampled-data nonlinear output-error systems, J. Chen
and R. Ding present two methods for dual-rate sampled-
data nonlinear output-error systems, which can estimate the
unknown parameters directly. A particle filter based track-
before-detect algorithm is proposed for the monopulse high
pulse repetition frequency pulse Doppler radar by E Cai et
al. in “Dual-channel particle filter based track-before-detect for
monopulse radar”

There are 4 papers that are concerned with stochastic dif-
ferential games. In “Linear quadratic nonzero sum differential
games with asymmetric information;,” D. Chang and H. Xiao
consider an LQ nonzero sum stochastic differential game,
where the information available to players is asymmetric.
In “Algorithms to solve stochastic H,/H control with state-
dependent noise;” several algorithms are proposed to solve
H,/H,, control problems of stochastic systems by M. Gao
et al. X. Chen and Q. Zhu use a maximum principle method
to study a partial information nonzero sum differential game
of backward stochastic differential equation with jumps in
“Nonzero sum differential game of mean-field BSDEs with
jumps under partial information” Here a feature is that both
the game system and the performance functional are of
mean-field type. Z. Wu and Q. Zhang’s paper “Backward
stochastic H,/H_, control: infinite horizon case” establishes a
necessary and sufficient condition for the existence of H,/H,
control of infinite horizon backward stochastic differential
equations.
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There are also 8 contributions on applications of stochas-
tic control theory. X. Cao in “An upper bound of large
deviations for capacities” obtains a type of large deviation
principle under the sublinear expectation. Y.-G. Zhang et al.
in “Moving state marine SINS initial alignment based on high
degree CKF” propose a moving state marine initial alignment
method for strap-down inertial navigation system. In “The
Gerber-Shiu discounted penalty function of Sparre Andersen
risk model with a constant dividend barrier,; Y. Huang and
W. Yu construct a new Sparre Andersen risk model with a
constant dividend barrier and derive an integrodifferential
equation of the Gerber-Shiu discounted penalty function.
One paper entitled “A closed-form solution for robust portfolio
selection with worst-case CVaR risk measure” by L. Tang
and A. Ling considers a robust portfolio selection problem
with WCCVaR constraint and the corresponding closed-
form solution is obtained. In “Stochastic dominance under
the nonlinear expected utilities;” X. Xiao proposes a definition
of stochastic dominance under nonlinear expected utilities
and gives sufficient conditions on which a random choice
X stochastically dominates a random choice Y under the
nonlinear expected utilities. In “Equilibrium model of discrete
dynamic supply chain network with random demand and
advertisement strategy, G. Zhang et al. analyze the impact of
advertising investment on a discrete dynamic supply chain
network which consists of suppliers, manufactures, retailers,
and demand markets associated at different tiers under
random demand. In “Research on multiprincipals selecting
effective agency mode in the student loan system, agency
modes are discussed by building different principal agent
models to solve incentive problems in student loan system.
In the paper “On H fault estimator design for linear discrete
time-varying systems under unreliable communication link,” Y.
Li et al. investigate the H fixed-lag fault estimator design
for linear discrete time-varying systems with intermittent
measurements, which is described by a Bernoulli distributed
random variable.
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An adaptive neural output feedback control scheme is investigated for a class of stochastic nonlinear systems with unmodeled
dynamics and unmeasured states. The unmeasured states are estimated by K-filters, and unmodeled dynamics is dealt with by
introducing a novel description based on Lyapunov function. The neural networks weight vector used to approximate the black
box function is adjusted online. The unknown nonlinear system functions are handled together with some functions resulting
from theoretical deduction, and such method effectively reduces the number of adaptive tuning parameters. Using dynamic surface
control (DSC) technique, It formula, and Chebyshev’s inequality, the designed controller can guarantee that all the signals in the
closed-loop system are bounded in probability, and the error signals are semiglobally uniformly ultimately bounded in mean square
or the sense of four-moment. Simulation results are provided to verify the effectiveness of the proposed approach.

1. Introduction

During the past decades, backstepping in [1] and dynamic
surface control (DSC) in [2] have become two most popu-
lar methods for adaptive controller design. Many adaptive
control schemes based on fuzzy/neural networks have been
proposed for uncertain nonlinear systems using backstepping
or dynamic surface control method in [3-13]. In the exist-
ing literature, three types of uncertainties were commonly
considered, which included unknown system functions and
parameter uncertainties and unmodeled dynamics. Unmod-
eled dynamics was dealt with by introducing an available
dynamic signal in [3]. In addition, it was handled by a
description method of Lyapunov function in [4]. In [4,
5], adaptive tracking control schemes were developed by
backstepping and DSC for a class of strict-feedback uncertain
nonlinear systems, respectively. In [7-10], adaptive control
schemes were presented for a class of pure-feedback non-
linear systems. In [11-13], the adaptive tracking approaches
for single-input single-output (SISO) nonlinear systems were
extended to uncertain large-scale nonlinear systems.

When system states are assumed to be unmeasurable,
output feedback adaptive control based on filters or observers

has attracted much attention. In [14], K-filters were firstly pro-
posed, and adaptive output feedback control was developed
using K-filters. Inspired by the work in [14], robust adaptive
output feedback control schemes were studied for SISO
uncertain nonlinear systems in [15, 16]. In [17], combining
backstepping technique with small-gain approach, indirect
adaptive output feedback fuzzy control was developed. In
(18], decentralized adaptive output-feedback control was
designed based on high-gain K-filters and dynamic surface
control method for a class of uncertain interconnected
nonlinear systems.

It is well known that due to the stochastic terms and
the extra quadratic variation terms resulting from the It6
differentiation rule, both the structures and the controller
design of stochastic systems are commonly more complicated
than those of deterministic systems. In the past decade,
much effort has focused on the study of adaptive control
schemes for uncertain stochastic nonlinear systems and the
proof of the control system stability in probability sense. In
[19-21], Deng et al. proposed the adaptive control scheme,
based on backstepping for stochastic strict feedback or
output-feedback nonlinear systems, and introduced a con-
trol Lyapunov function formula for stochastic disturbance
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attenuation earlier. In [22], by employing the stochastic
Lyapunov-like theorem, adaptive backstepping state feedback
control was developed for a class of stochastic nonlinear
systems with unknown backlash-like hysteresis nonlineari-
ties. In [23], the problem of decentralized adaptive output-
feedback control was discussed for a class of stochastic non-
linear interconnected systems. In [24, 25], output feedback
adaptive fuzzy control approaches were considered using
backstepping method for a class of uncertain stochastic non-
linear systems. In [26], by combining stochastic small-gain
theorem with backstepping design technique, an adaptive
output feedback control scheme was presented for a class of
stochastic nonlinear systems with unmodeled dynamics and
uncertain nonlinear functions. In [27], a concept of stochastic
integral input-to-state stability (SiISS) using Lyapunov func-
tion was first introduced, and output feedback control was
developed for stochastic nonlinear systems with stochastic
inverse dynamics. In [28], two linear output feedback control
schemes were studied to make the closed-loop system noise-
to-state stable or globally asymptotically stable in probability.
In [29], by using the homogeneous domination technique and
appropriate Lyapunov functions, an output-feedback stabi-
lizing controller was designed to be globally asymptotically
stable in probability. In [30], the small-gain control method
was investigated for stochastic nonlinear systems with SiISS
inverse dynamics. In [31], based on a reduced-order observer,
small-gain type condition on SiISS and stochastic LaSalle
theorem, an output feedback controller was developed for
stochastic nonlinear systems. In [32], an adaptive output
feedback control scheme was investigated by combining K-
filters with DSC for a class of stochastic nonlinear sys-
tems with dynamic uncertainties and unmeasured states. In
[33], adaptive control was developed using the backstepping
method for a class of stochastic nonlinear systems with time-
varying state delays and unmodeled dynamics.

Motivated by the above-mentioned results [4, 14, 32], in
this paper, adaptive neural stochastic output feedback control
is developed by combining K-filters with dynamic surface
control to guarantee the stability of the closed-loop system.
The main contributions of the paper lie in the following.

(i) Adaptive neural output feedback control is developed
using K-filters and dynamic surface control for a
class of stochastic nonlinear systems with unmodeled
dynamics and unmeasured states. The advantage of
the design is that once the local system constructed
by the filter signals is stabilized, all the signals in the
closed-loop system are bounded in probability.

(ii) Unmodeled dynamics is dealt with first by introduc-
ing a novel description based on Lyapunove function
without using the dynamic signal to handle dynamic
uncertainty in [32]. The novel description, which
provides an effective method for dealing with unmod-
eled dynamics in output feedback adaptive controller
design, is the development of original idea about
handling unmodeled dynamics in [4].

(iii) Utilizing the boundedness of continuous function,
the unknown nonlinear system functions are handled
together with some functions produced in stability
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analysis, rather than directly approximated before
stability analysisin 6, 8, 9,11,12]. Therefore the design
effectively reduces the order of filters and the number
of adjustable parameters of the whole system, without
estimating 2 in [32].

(iv) Using bounded input bounded output (BIBO) sta-
bility and the filter special structure, the stability
of the closed-loop system is proved. Therefore, the
difficulty, that the transfer function cannot be used
in a stochastic system while it was widely used to
analyze the boundedness of the K-filters signals in the
deterministic systems in [4, 14, 16-18], is solved by the
proposed stability analysis approach in this paper.

The rest of the paper is organized as follows. The problem
formulation and preliminaries are given in Section 2. The
neural filters are designed, and adaptive stochastic output
feedback control is developed based on dynamic surface
control method. The stability in the closed-loop system in
probability sense is analyzed in Section 3. Simulation results
are presented to illustrate the effectiveness of the proposed
scheme in Section 4. Section 5 contains the conclusions.

2. Problem Statement and Preliminaries

Consider the following uncertain stochastic nonlinear sys-
tems with unmodeled dynamics:

dz =q(z,y)dt

dx; = (3%, + f, () + Ay (2, p,1)) dt + g7 (y) dw

dx, | = (xp + foa () + 4,5 (29, t)) dt
+9,1 (y)dw

dx, = (xp+l +f, (y) + A, (2 9.t) + b0 (y) u) dt o

+9g, (y)dw

dx, ;= (x, + fuis () + A,y (2 p0t) + bio (y) u) dt
+ G (y)dw

dx, = (f,(9) + B8, (2 3,t) + byo (y) w) dt + g, () dw

Y =Xp

where x = [x},%,,...,x,]" € R"is the state; u € R is
the input, and y € R is the output; o(y) # 0 is a known
positive continuous function; f;(y) is the unknown smooth
function; z € R™ is the unmodeled dynamics, and A (z, y,t)
is the unknown smooth nonlinear dynamic disturbance; b =
(b, .., b, b,]" € R™1, B(s) = b, s™+- - -+b, s+b, isa Hurwitz
polynomial; A;(z, y,t) and q(z, y) are the unknown Lipschitz
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functions; w is an r-dimensional standard Brownian motion
defined on the complete probability space (Q, F, P) with Q
being a sample space, F being a o field, and P being a
probability measure. In this paper, it is assumed that only
output y is available for measurement.

The control objective is to design output feedback adap-
tive control u for system (1) such that the output y follows
the specified desired trajectory y,, and all the signals of the
closed-loop system are bounded in probability.

Assumption 1 (see [4]). The unknown nonlinear dynamic
disturbances A(z, ¥, 1), i = 1,2,...,n, satisfy |A;(z, y,t)| <
Py + po(Mlizll, and p;; (1) and p,,(y) are the unknown
nonnegative smooth functions, and ||- || denotes the Euclidian
norm of a vector.

Assumption 2. The system z = q(z,0,t) — q(0, 0, t) is globally

exponentially stable when z = 0; that is, there exists a
Lyapunov function W(t, z) satisfying

4 4
alzl” < Wiz t) <qllzll”,

ow ow
E (Z, t) + E (z) t) (q (Z) 0) t) - q (0> 0) t))
‘ @
<-alzl”,
ow
‘g (20| <l

where ¢;,6,, ¢;, ¢, are positive constants, and there exists ¢; > 0
such that [|g(0,0,1)|| < ¢, Vt > 0.

Assumption 3. There exists an unknown function v, and
Y, (0) = 0, such that |lq(z, y,t) — q(z, 0, )|l < y,(|y]) holds.

Assumption 4. The desired trajectory x4 = [y V4> 741" € Qg
is known, where Q; = {x; : ¥+ y3 + 5 < By}, and By is a
known constant.

Assumption 5. There exists a known constant b,,,, such that
the following inequality 0 < |b,,| < b, holds.

ax

Remark 6. Assumption 2 is the extension of the description
of unmodeled dynamics in [4], and it can effectively deal with
unmodeled dynamics in output feedback adaptive controller
design. To the best of authors’ knowledge, this assumption is
first addressed.

Consider the following stochastic nonlinear system:
dx = f (t,x)dt + h" (t, x) dw, (3)

where x € R" is the system state, w is an r-dimensional
standard Brownian motion, f : R* x R* — R", h' : R* x
R" — R™ are locally Lipschitz and f(t,0), h(t, 0) are uni-
formly ultimately bounded. For any given V (¢, x(t)) € C'?,

associated with the stochastic system (3), the infinitesimal
generator ¢ is defined as follows:

WV (Lx(t) OV (x(D)
ot " oxT f

1 o’V (t,x (1), T
—trih———"h ¢,
"2 r{ oxTox

oV (t, x () =
(4)

where tr(A) is the trace of a matrix A.

Definition 7 (see [34]). The stochastic process {x(t)} is said to
be bounded in probability, if lim, _, . Supy.,..o PUX(#)] > ¢) =
0.

Definition 8. The solution x(t) of system (3) is said to be
semiglobally uniformly ultimately bounded (SGUUB) in pth
moment (p > 1), if for some compact set O ¢ R” and any
initial state x, = x(t,) € Q, there exists a constant ¢ > 0 and
a time constant T = T(e, x,) such that E[[|x(¢)[|] < & for all
t >ty + T, especially, when p = 2, it is usually called SGUUB
in mean square.

Lemma 9 (see [32]). For any stochastic process {£(t)}, if there
exists a positive integer p and a positive constant C, such that
E|E(t)P < Cy, Vt 2 0, then {&(t)} is bounded in probability.

Lemma 10 (see [21]). Consider system (3) and suppose that
there exists a C* function V(t,x(t)): R" x R — R, two
constants ¢, > 0, ¢, > 0, class K, functions y,, u, such that

py (Ixl) < V(£ x) < gy (Nl »
V<—V+g

(5)

forall x € R" andt > t, Then, (i) for any initial state
X, € R", there exists a unique strong solution x(t) for system
(3); (ii) the solution x(t) of system (3) is bounded in probability;
(iii) E[V(ty, x)] < V(ty, x0)e " +cy/cp, VE = ¢,

In order to design filters and observer, (1) can be rewritten
as follows:

£=4q(27),
dx = (Ax+f(y)+FT(y,u)b+A)dt+gT(y)dw, (6)

_ T
y=ex

where




4
(A (2 3:t)
A(Z, y, t) = E >
LA, (2 9:1)
e, = [1,0,...,0]",
F (y,u) = —O(”"Il)x('”“) a(y)u.
L m+1

7)
3. Adaptive Robust Controller
Design and Stability Analysis

3.1. Neural Filters and Controller Design. In order to estimate
the state x, we introduce the following filters:

E=Ak+Ly, EcRY,

O = 4,07 + F* (y,u),

8
QT c Rnx(m+1) ( )

where Ay = A~Le], L =[l,,..
that is

117, A, is a Hurwitz matrix;

PAy+ ALP = —hl,

) ©)
pP=P >0,
where h > 0 is a design constant.
Define the state estimate as follows:
£=8+0" (10)
The observer error is defined as ¢ = x — X. Thus
x=8+Qb+e, 1)
de=(Age+ f(y)+A)dt +g" (y)dw. (12)
Denote the columns of Q7 as follows:
O = v v vy],  QF € RO, (13)

Inspired by the work in [14], the filters are designed as follows:

E=Ak+Ly, EcRY,

A=A +e,0(y)u, AeR", (14)

V= Agvit+e, ;0(y)u

n o
f f vieR, j=0,1,...,m.

It is easy to show that

AJOe,,:e j=0,1,...,m, (15)

n—j>
vi= AN j=0,1,...,m, (16)

where e; denotes n dimensional vector with the ith element
being one and other elements being all zeros, i = 1,...,n.
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Let v; ; be the jth element of the vector v; and A; the Ith
element of the vector A, respectively. From [14], we know

M
A
v = [* « 10 |,
17)
i+j
j=L...,ps i=0,1,...,m A, =0, [>n
According to (11), we get
T
X, =&+ bte =8+ [V ViVl bt e )
18

—T7
=b &+ bte,,

where w! denotes the second row of the matrix QT, &, denotes
the second element of the vector &, and ¢, is the second
element of .

Substituting (18) into (1), it yields

dy

= (bm"m,z +E+@ b+e,+ L) +A (2, t))dt (19)

+g; (y)duw,
where
T
w = [vm,Z’mel,Z’ s V1o Vo,z] >
@ = [Vine1,20 -5 V1o Vool » (20)
T
b =[b,....b,b)].

In view of (19) and (14), the system used to design adaptive
output feedback DSC in next section is addressed as follows:

dy = (bmv,m2 + &+ b+ fi(y)+ Al)dt
T
+ dw,
91 () o
Vi = Vvl ~ liVm,l’ i=2,...,p-1,

l./m,p =0 (y) u+ Vinp+1 ~ vam,l'

3.2. Stochastic Adaptive Dynamic Surface Controller Design.
In this subsection, according to (21) and by using dynamic
surface control method, we propose an output feedback
stochastic adaptive tracking control scheme. Similar to back-
stepping, the whole design needs p steps.

For convenience, some notations are presented below. s; =
[515...>5,] 7, y; = [yz,...,yj]T, where s;, y; will be given
in the controller design later, i = 1,2,...,p, j = 2,...,p.
Yj = wj =&, j = 2,...,p, w; is the output of a first-
order filter with «;_; as the input, and «;_, is an intermediate
control which will be developed for the corresponding (i —
1)th subsystem.
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Define some Lyapunov functions as follows:

V.= ' P,
1
Vi = A—W(z,t), Ay >0,
’ (22)
14
Vi, = ek

where W(z, t) is given in Assumption 2.
Using Young’s inequality, the infinitesimal generator of V,
satisfies

eV, =€ (PAy+ AgP)e+2¢ Pf (y) +2¢ PA

+tr(g(y)Pg" (v))

(23)
<" (PAg + ATP) e+ 2% + P12 £ ()|

+ PP 1A +tr (g (») Pg" (»))

According to Assumption 1 and by using Young’s inequality,
we obtain

Vv, S—(h—2)£T8+Z||P||2f]‘2(y)
=1

+ i 1PI* (pjr (15]) + P2 () ||Z||)2

+tr(g(y)Pg" (y))

<-(h-2)'e+ ) IPI* £ (y)
j=1

& 32071 (04 () + 5 () 1)
= (24)
+tr(g () Pg" (v))

<—(h-2)e'e+ Z ||P||2fj2 (»)
j=1

+ 2 211PI7 3, (1y])
j=1

16n/\0

3

Y IPI pjy (v )+—||z||4
j=1

+tr(g(y) Pg" (»))

According to Assumptions 2 and 3, using Young’s inequality,
we get

ow
v
w A(a

563

(z t)z+ (z t)>

(25)
16cfc;1

|| I*+ 3% (IyD) +

03

Step 1. Let w;, = y,. Define the first dynamic surface as
follows:

S =X — ;. (26)
Using the first equation of (21), we obtain

ds, = (bmvm’2 +&, +5TE+82 +f1(y)+A4, —j/d)dt

(27)
T
+g, () dw.
Choose the virtual control law «; as follows:
b =
a = —" (—kls1 —0'b-&-50ly, (X)> , (28)
b, + B

where 8 > 0, k; > 0 are design constants, 51, Em, Z are the
estimates of 0, b,,, b at time ¢, respectively, and b,, = b, — b, ,,
6, =6, -0,,b = b-b,6, and y,(X) will be given later.
Consider

oJa -
by = a_yl (mem,z +E+0 b+ fi(y)+ A, (29, t))

aaﬁ Bocl 3061 .
Gt g b S
oo, . 10°
+ a—yd)’d 5 3y 91 ( ) (),

oa
da, = badt + a—ylgf (y)dw

(29)
Therefore, we have
1A%

Sy

= Si (hm"m,z +&, +5TE+52 +fi(y)+ 4, _Yd) (30)
3
2l I

A first-order filter with «, as the input is designed as
follows:
T,y + Wy = &4,

@, (0) = o, (0). (31)



Let y, = w, — a5 thus, d, = —y,/7,.Since v, , = s, + y, + oy,
using Young’s inequality, it yields

3 - b
eV, < - (kl - Ebmax> s} +by,sio + %sg

b
+ﬁy§+s w b_saA'lr%(X)

1B
B+ B

<_k151 - ETE -& - Siélfll’l (X)) (32)

+ Sifz + Sffl (y) + SiAl - 5?).’11
3 2
+ EST "91 ()’)“ .

From Assumption 1, we obtain
|5§| A, ] < |5i| pu (Iy]) + 'Sﬂ P2 () Izl

. _
< Z P11 |)’| i/ ?Pff () (33)

* o 11"

In view of (24), (25), (32), and (33) and by using Young’s
inequality, we obtain

Ve < —(h—2)¢ s—(k—éb —§>5‘1}

2 max 4

Tb+ bmax 4
4

G 4 7 3
_EHZ" +bm510‘1+5w S

0
(34)

bmax y; + |51'S+5H (X)+Q(y)+182

16c4 c5
AoG;

11//1 (X) + +1,

where

Q(y) = Z IPI £} () + Zz 1PI? o7, (I¥])

16n)»0

G

16
2P Pz () + =5 (131)
j=1 0%3
1
+en (D) + e (g () Pa" (),
9
esla DI + 53,

3[4, ,
H, (X) = z\j 1Pg3 () = ya+

AT
X =[spymya €R.
(35)
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S(sl, o 0,01, 84,15, ¥4) Is @ nonnegative continuous func-
tion, and

<_k151 —0'b-§, - Siérlr‘/’l (x))

__B
fl(y) ‘l;rzn+

(36)

where A,,.» = [A1s.. s A,00] "

Let Oy = {X | |X]| £ My} C R’bea given compact set
with My > 0 being a design constant, and let 67 ¢, (X) be the
approximation of the radial basis function neural networks
on the compact set Qy to H,(X). Then, we have H;(X) =
0]y, (X) + B,(X), where B,(X) denotes the approximation
error and y,(X) = [y1(X),..., ¥, (X)]7 € R™ denotes
the basis function vector with y,;(X) being chosen as the
commonly used Gaussian functions, which have the form

2

X —

¥, (X) = exp [—”1941"] (37)

1j

j=1,...,M,, and p,; is the center of the receptive field and

by; is the width of the Gaussian function; 6, is an adjustable
parameter vector.

According to (34) and by using Young’s inequality, it

yields
3 3 c
Vare=(h=3) e (ki = S5 ) st = 53 1ol

2
7 3 bmax 4 max , 4
+ D50 + S0 b+ omex St =, 0

P 185 (67, 00 + B, (0) + Q)

4 4
16¢,c;

Siérlrll/l (X) +

AoG;
(38)

There exists a nonnegative continuous function «(s;, ¥4, )
satisfying

|By (X)] < % (51> Y Ja) - (39)
Using Young’s inequality, we have

9\ 1 3 9
g\/sWsS —(h—z)s c‘,'—(kl—zbmax—A—})S;1

b
2/\ lzl* +o soc1+s wa+ max;

(40)

me

+ 4a J’4+ ~s* +Q()’)+591‘//1(X)
+1K4+C0,

4

where C, = 16¢/c; /Aoc; + 1.
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Step i (2 < i < p — 1). Define the ith dynamic surface s; =
Vi — @;, thus

$i = Vi1~ LiVm1 — @;. (41)
Select the virtual control law «; as follows:

= —k;s; + L, + @,

bo; = —k; (Vm,i+1 =LV — W
da, = eocdt + i g7 () dw
i =t 3y 9\

A first-order filter with the input o, is designed as follows:

T @i + Wiy = &, Wiy (0) = o (0), (43)
where 7;,; > 0 is a design constant.
Let y1+1 = Wiy — K Then w1+1 - yﬁ-l/ i+1° NOtil’lg
Vimitl = Siv1 T Yip1 + & in view of (41) and (42), we obtain

_ _ 3 ;
ey, 5 $i =5 (Vmirs = [V — W)

= —k;S; + 57501+ S Yo (44)
3 1, 14
<- (ki 2>S + ZSI+1 + y,+1

Step p. The control law will be determined in this step. Define

the. pth dynamic surface as s, = v, , — w,. The derivative of
s, is

P
$, =0 (P) UtV piy = LoV — @, (45)
Choose the control law as follows:

. (—kpsp ~ Vi1 T lpvm1 + d)p). (46)

a(y)

In view of (45) and (46), we have

= 5 =~k st. (47)

The parameters 51, lAam, andz are updated as follows:

0, =1 (Sill’l (X)-0,6,), (48)
b = 12 (S, — 03B).

- - (49)
b=1y, (sf@ - o3l;> ,

where y,, 1,, V5> 0, 05, 05 are the design constants.

3.3. Stability Analysis of Adaptive Control System. In this
subsection, we will discuss the stability analysis of the closed-
loop system. Firstly we define some Lyapunov functions and
compact sets as follows:

~ —_~ :T:
Vi :—5‘11+2V£+l0~1r61+lb;+lb b
N Y2 Vs
S opd
WA
1 1~2
V. = Z—s +2V, +Z y] — —b
P41 Yz (50)
1=T= ¢
+—bb+ 2zt i=2,...,p
& Ao

Q- {(sl,e 8.5,.b, ||z||> LV, < p} c RP,

b,.b, ||z||) V< p} C RV,

wherei =2,...,p, p > 0is adesign constant, p; = 2i + M, +
n+m+ 1. Itis easy to know that Q; x RP»™Pt 5 Q, x RPe7P2 5
QxRS Q.

According to y, = w, — «;, we obtain

y, = w, — o, = —% - fay,
2
3 (51)
o
dy, = bydt - a—ylng (y) dw.
From (4), we obtain
1 oo,

e(301) = rien+ 353 ( > la: DI

(52)

¥ Joy
=2yt 22 (2) T OF
2

There ex1st two nonnegative continuous functions 172(52, V2>

91> b & /\m+2’82’ Ya> Ya» V) and §5(55, 5, 91’ > b, ' /\m+2>
€, Ya» Ya» ¥4) such that
leyz yZ
" (53)

< Uy (EZ’ y2’§l’z;m’z’ E’Xm+2’£2’ yd’yd’j)d) ’

25(Z2) Jon F

<G (32’ 2015 0,05

(54)

G‘I)

. & A +2’52’yd’yd’yd>



From (53), we have

4
y
%<2

2

+ |J’;| M <§2’ V2> él’Em’E’ ¢, Xm+2> &> Ya> Va> yd)

¥ 1 4
<-4y +
7, 4)’2 Cs
(55)
From (52), (54), and (55), we obtain
1 ¥ 3 1
€<— 4>S——2+—4+—4+ . 56
4)’2 7, 4)’2 4’72 G (56)
The infinitesimal generator of y;,; is
Yin1
iy = ——— — boy;,
o Tiv1
(57)
)’z
)’i3+1€)’i+1 = = _)/z+1€“
i+1
4 4
Vi Vi 3
¢ <T+l> =- T:l = Vinto
i+
(58)

3 Jy;
2 (2 o 0OF

There exist two nonnegative continuous functions #;,, (5,1

Zi+1’61’ m’b’f’)‘m+2’82’yd’yd’yd) and (1+1(St+1’yi+1’01’bm’

b, &, A pysas €5 Vs Va» 7) such that the following inequalities
hold:

‘EyHl + ?[/H—l
i+1 (59)
= iy (§i+1’yi+l’§l>bmiz’ E’Xm+2’82’yd’yd’yd) >
3 &; 2 2
D (5) a0l
(60)

< ci+1 <§i+1’7i+1’01’ bm’E> E) Xm+2’ & Va> yd’ yd) .

From (59), we obtain

3

Vi1 &in
4

< _y1+1

Tit1

+ |)’i3+1 ' Niv1 (§i+1>7i+1’ §1>Em’E’ ' Xm+2’ &5 Y Vas yd)

4 4 4
Yier | 3Yin (Y
T, 4 4

i+1

< —

(61)
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From (58), (60), and (61), we obtain

1 4 )’ 1
e(ZyHl) T:] + Zywl + ’71+1 *+Git1- (62)

The continuous function S(-) on the compact set Q; x Q, has
a maximum M(p), which depends on the constant p, and
k(sy» ¥4 yg) on the compact set Q; x Q; has a maximum
No(p), ;11 (-) and {1 (-) on the compact set QO ;xQ);,; have the

maximum N;,,(p) and C;,,(p) when &, A,,,, are bounded.

Theorem 11. Consider the closed-loop system consisting of
the plant (1) under Assumptions 1-5, the controller (46), and
the adaptation laws (48) and (49). For any bounded initial
conditions, there exist constants k;, T;, h, Y, V5 V3 01> 0y, 03
satisfying V(0) < c, such that all of the signals in the closed-loop

system are bounded in probability, and s, ..., s,, y5, ..., y, are
SGUUB in four-moment, 51, l;m, b are SGUUB in mean square,
and k;, T;, and h satisfy
3 1

k; > Ebmax"' 1 + 4“0’ i=12,...,p

! bpax + 1+ 2

— > Ay, i=2,...,p,

T 4 max 4 0 P

(63)

. G
o, = min {Z; V101> V205, Y3‘73]’ >

where ¢ > 0 is a positive constant; V will be given later in the
proof of Theorem 11.

Proof. Choose the following Lyapunov function candidate:

~r
V= sz€+ZV+ Ly 2 06+ 5 b
12

1 =T=
+—0bb
2y;

For any given positive constant, if EV < ¢, according to

Lemma 9, we obtain that s;,...,5, ¥2,..> Yps ¥s 6,, b, b
are bounded in probability. Vi, < Vy, = V3 + Vi + V. <
V < ¢, and, from Assumptlon 2 we obtain that (Cl/)to)”Z" <
(I/A)W < ¢; that is, llz|* Aoc/cy, so z is bounded in
probability.

Furthermore, (64) is rewritten as V. .= (1/A,))W +

(1/2)v, - (5/2A0)l1z]l*%; then V, = 2V = /AW +
(c3//\0)||z4|| < (2 + 6/q)c, and choosing p = (2 + ¢/¢)c,
we getV, < p.

From (14) and (49), we have that £, @, «; are also bounded
in probability. It yields that v,,_,,,...,v,, are all bounded
in probability. Noting v,,, = s, + y, + &, we obtain that
V,..2 is bounded in probability. From (14), we have that v, , =
=Livo, + vy and ¥, = =L, | + v,,,. Thus we obtain that
Vo,1> V1 are also bounded. Furthermore, from (42), we have
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thatey; (i = 2,...,p — 1) are bounded. According to (16) and
(17), we obtain
Vo 100 0] A,
Voo 01 0 0] A,
Vig |=|* * 1 -0 As | (65)
Vim-12 £ e w1 At

Since vg 15 V92> V1,25 - - - Vim_1,2 are bounded in probability, we
have that A,,...,A,,,, are all bounded in probability. From
(17), we get that A,,,, is also bounded. In view of (40), (44),
(47)-(49), and (62), using Young’s inequality, we obtain

P
fVS—(h—2>8Ts—Z(ki—§bmax—2)5;4
4 2 4

i=1
P
11 4 G o
Y (Lol 1)yt B
2 (7 1)t - e

2

~ 2 - =
alp] of =P

2 2 2

(66)

+Q ()
FIN ) g () 1IN )

4 0, "91 "2 azbfn 93 “EHZ
C; C,-
+ igz . (p) + Sttt G

Substituting (63) into (66), we obtain

eV < =y V + py + Uy, (67)

where yi; = (1/4)N;(p) + (1/49M*(p) + (1/4) X2, Nj(p) +
£, Cip)+ 0,10,17/2+ 0,12, /2+ 05]1bl* /2+C,. Since |Q()]
is a nonnegative continuous function, let |Q(y)| < y,, where
Ho > 0.
Ifoy > (4 +y)/c,and EV = ¢, then we have dEV'/dt < 0.
Thus, if EV(0) < ¢, then EV(t) < ¢, Vt > 0; that is,

0<EV () <ttt [V(O) - M] ot
[2 % 2% (68)

<V(0).

Similar to the discussion of Theorem 11 in [32], it is easy to
know that the conclusion is true. O

Remark 12. This paper differs from [32] in the following
several aspects. (1) Unmodeled dynamics is dealt with by
introducing a novel description based on Lyapunov function
in this paper while the dynamic signal was handled with the
help of a dynamic signal in [32]. (2) The unknown nonlinear
system functions are handled together with some functions
produced in stability analysis, but they were directly approx-
imated before constructing the observer in [32]. Therefore,
this brings out a good result that the filter order is reduced. (3)

The neural networks weight vector used to approximate the
black box function at the first design step is adjusted online
in this paper such that much more information of weight
vector can be used in adaptive law, whereas only the norm
of weight vector acts as adaptive tuning parameter in [32].
(4) Utilizing bounded input bounded output stability and
linear equations (65), the stability of the closed-loop system is
proved in this paper, which avoids using the transfer function
to make stability analysis in [32], which is questionable in
probability sense.

Remark 13. The design parameters k;, 7; and «, determined
by (63) in Theorem 11 are only a sufficient condition. They
provide a guideline for the designers. From (63), some
suggestions are given for the choice of some key design
parameters for any given positive constants B, and c.

(i) Increasing y,, v, 5 helps to increase o, subsequently
reduces y, /e.

(ii) Decreasing o, 0,, 05 helps to reduce y; and reduces
/.

(iii) Increasing k;, ..., k, helps to increase o) and reduces
th/%.

In practical applications, to obtain good tracking perfor-
mance, some experiments need to be done before the valid
parameters are given.

4. Simulation Results

To demonstrate the effectiveness of the proposed approach,
two numerical examples are given.

Example 1. Consider the following third-order stochastic
nonlinear system with unmodeled dynamics:

z=4q(zy),

dx, = (x2 + )ll_yj +0.5z) dt+ysin(y3)dw,
ty
dx, = (x3 + {;—ij +0.52+02(35+ ) u) dt
+ x, sin (y3) dw,
dx;,
= (y2 tanh (y) - (y2 +2y)sin y +0.2 (35 + yz) u+yz)dt
+0.5y°dw,

Y =X
(69)

where g(z,y) = -2z + ysint + 0.5, m = 1, p = 2. The
desired tracking trajectory is taken as y; = 0.5sin(0.5t).
Select W(z, 1) = (1/4)z*, q=1/8,¢ =16 =2,¢ =1,



10

¢ = 0.5; then (0W/ot)(z,t) + (0W/0z)(2,1)(q(z,0,t) —
q(0,0,1)) = —2z%, |(0W/02)(z,1)| = |zI’, 19(0,0,1)| = 0.5
Yoyl = Iyl, 1q(z, y,t) = q(2,0,t)| = |ysint| < yy(|yl), and
it satisfies the conditions of Assumptions 2 and 3.

The filters are designed as follows:

51 =-L& +& +1y,
éz =L +& + 1Ly,

& =-5L& +1y,

| (70)
Ay =LA+ A,
Ay =-LA; + s,
Ay =LA +o(y)u
The adaptation laws are employed as follows:
él =N (5:;1/’1 (X) - 0151) >
El =y, (s, — by, (71)

Eo =Y (sivo,z - 0350),

where X = [s,, v, 741"
The virtual control law « is chosen as follows:

__ b
b+ B

(—k151 &= Vo,zzo - 50,y (X))- (72)

o

The control law is employed as follows:

_ (=kys, + Lvo, + @,)

, (73)
a(y)

where vy = Ay, v, = Ay, 0(p) = 35 + y°.

In the simulation, s, = y — y;, 5, = vg, —w,, I} = 6,
L, =111 = 6,k = 40, k, = 50, B = 0.02, w,(0) = 0.1,
T, =00y, =y, =v; =2,0, =0, =03 = 0.05,x(0) =
[0.2,0,0]7, £(0) = [0,0,0]7, A(0) = [0,0,0]%,5,(0) = b, (0) =
1, 51(0) = [O.I]ITXw, M, = 10. Simulation results are shown
in Figures 1, 2, and 3. From Figure 1, it can be seen that fairly
good tracking performance is obtained.

Remark 14. According to (69), we know that b = 0.2 and
boax = 1. From the above selected design parameters and
(63), it is easy to see that ¢;/(2¢,) = 1, &, = 0.1. The constant
h is only used to analyze the stability in the closed-loop
system. Therefore, (63) is true for the above selected design

parameters y;, V5, V3> 01> 0, 03, ky, ky, 7.
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0.5

V> Ya

=05

0 10 20 30 40
t(s)

FIGURE 1: Output y (solid line) and desired trajectory y, (dotted
line).

S1

FIGURE 2: Tracking error s,.

Example 2. To compare the simulation results with [32],
consider the following same stochastic nonlinear system with
unmodeled dynamics in [32]:

z=4(zy),

3
X — X . 3
dx, = x, + —— + 0.5z | dt + x, sin(x] ) dw,
1 (2 1+.X2 ) 1 (1)

1

dx, = (xf tanh (x;) - (xf + 2x1) sin x, o
+0.2 (0.5 + xf) u+ xlz) dt

+ O.Sxfdw,

Yy =X
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0 10 20 30 40
t(s)

F1GURE 3: Control signal u.

Vs Yd

0 10 20 30 40
t(s)

FIGURE 4: Output y (solid line) and desired trajectory y, (dotted
line).

where q(z,y) = -2z + y*, m = 0, p = 2. The desired
tracking trajectory is taken as y; = 0.5sin(0.5¢). The filters
are designed as follows:

51 =-L& +& + 1y,

& =-LE + 1Ly,

| (75)
A =LA+ Ay,
Ay=-LA +o(y)u.
The adaptation laws are employed as follows:
51 =N (5?1//1 (X) - 0151) >
(76)

by =73 (Sivo,z - U3EO)>

where X = [s,, v, 741"
The virtual control law « is chosen as follows:

__b
b+ B

(<kysy =& = Ayby - 510,y (X)), (77)

o)

1

-0.02

S1

-0.04

-0.06

0 10 20 30 40
t(s)

FIGURE 5: Tracking error s;.

150

100 -

50 F

—50 ¢

-100 -

-150

FIGURE 6: Control signal u.

The control law is employed as follows:

Y= (—kys, + Lvo, + ‘bz)) (78)
o(y)

where vy, = A1, 0(y) = 0.5 + y.

In the simulation, s; = y—y;,5, = vy, —wy, [, = 5,1, =6,
k, = 60, k, = 60, B = 0.02, w,(0) = 0.1, 7, = 0.01, , = y; =
1.5,0, = a3 = 0.05, x(0) = [0,0]", z(0) = 0, £(0) = [0,0]",
A0) = [0,0]7, B,(0) = 1,6,(0) = [0.1,0.1,0.1,0.1,0.1],
M, = 5. Simulation results are shown in Figures 4-6. If
the proposed approach in [32] is utilized, and the design
parameters of the adaptive controller are taken, the same
values as in [32], the corresponding simulation results are as
shown in Figures 7-9.

From Figures 4, 5, 7, and 8, it can be seen that better
tracking performance can be obtained than [32]. However, 42
equations need to be solved online using the method in [32]
while only 14 equations need to be solved online using the
approach in this paper. Moreover, we know that increasing
ky, k, helps to improve the tracking precision.
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V> Yd

t(s)

FIGURE 7: Output y (solid line) and desired trajectory y, (dotted
line).

0.1} : : . . . . R

S1

t(s)

FIGURE 8: Tracking error s,.

5. Conclusions

Using K-filters and dynamic surface control, an adaptive
output feedback neural control scheme has been proposed
for a class of stochastic nonlinear systems with unmodeled
dynamics. Unmodeled dynamics has been dealt with by
introducing the novel description based on Lyapunov func-
tion. The unknown nonlinear system functions are handled
together with some functions resulting from stability analysis,
and the filter order is reduced. The neural network weight
vector is adjusted online. Therefore, the more information
included in radial basis function can be fully made use of.
Using Chebyshev’s inequality and It6 formula, the designed
controller can guarantee that all the signals in the closed-
loop system are bounded in probability and the error signals
are semiglobally uniformly ultimately bounded in the sense
of four-moment or mean square. Simulation results illustrate
the effectiveness of the proposed approach.
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This paper considers the p-moment boundedness of nonlinear impulsive stochastic delay differential systems (ISDDSs). Using the
Lyapunov-Razumikhin method and stochastic analysis techniques, we obtain sufficient conditions which guarantee the p-moment
boundedness of ISDDSs. Two cases are considered, one is that the stochastic delay differential system (SDDS) may not be bounded,
and how an impulsive strategy should be taken to make the SDDS be bounded. The other is that the SDDS is bounded, and an
impulsive disturbance appears in this SDDS, then what restrictions on the impulsive disturbance should be adopted to maintain
the boundedness of the SDDS. Our results provide sufficient criteria for these two cases. At last, two examples are given to illustrate

the correctness of our results.

1. Introduction

Boundedness is an important property of a given system;
for example, in the population models, the boundedness
of a biological population is strongly connected with the
persistence and extinction [1]. Another important application
is on the stability; the practical stability actually is of a kind
of boundedness [2]. Impulsive phenomena widely exist in
the real world, and known, impulsive effects can change
the properties of a given system; for example, given an
unstable system, if a suitable impulsive strategy, including
the impulsive strength and impulsive moments, is adopted,
this system can be stabilized [3]. It is easy to understand
that the impulsive effects can destroy the boundedness of a
given system when the impulsive strength is large enough
and the impulsive interval is small enough. Time delay is
extensive in the engineering and applications and impulsive
delay differential systems were considered in lots of papers
[3-9]. The boundedness of impulsive delay differential sys-
tems has also been paid considerable attentions in the past
decades. In [10], the authors presented sufficient conditions
for uniform ultimate boundedness by virtue of the Lyapunov

functional method. The boundedness of variable impulsive
perturbations system was considered in [11] and the eventual
boundedness was studied in [12]. Recently, the perturbing
Lyapunov function method was also used in the study of
boundedness [13].

Stochastic noise is ubiquitous [14-16] and stochastic delay
differential systems (SDDSs) have been one of the focuses of
scientific research for many years. Many properties of SDDSs
have been studied and lots of papers were published; see
[17, 18] and the references therein. Being the wide existence
of stochastic delay and impulsive effects, it is a natural task
to consider the stochastic delay differential systems with
impulsive effects. These systems are described by impulsive
stochastic delay differential systems (ISDDSs). In the past ten
years, the stability of ISDDSs has attracted a lot of researchers,
and a great deal of results on the stability of ISDDSs have been
reported; see [19-24] and the references therein.

However, little attention has been paid to the bounded-
ness of ISDDSs. In this paper, the boundedness of ISDDSs
is considered under two cases. The first case is that the
SDDSs may be unbounded, then what kind of impulsive
strategy should be taken to make the system be bounded.
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The second case is that the SDDSs are bounded, then this
system can tolerate what kind of impulsive effect to maintain
the boundedness.

In this paper, sufficient conditions are presented to
guarantee the boundedness of ISDDSs; these conditions also
admit the global existence of solutions for ISDDSs, which
usually was a standard assumption in many papers [25-
27]. Making use of the Lyapunov-Razumikhin method, we
generalize the results of [10] to the stochastic situation. At
last, two examples are given to illustrate the correctness of our
results.

2. Preliminaries and Model Description

Let (Q, F,{F,};50,P) be a complete probability space with
a filtration {F,},5, satisfying the usual conditions (i.e., the
filtration contains all P-null sets and is right continuous).
Let R = (-0co,+00), R" = [0,+00), and N = {1,2,...}..
If A is a vector or a matrix, its transpose is denoted by AT,
Consider PC(;R") = {p : J — R”", ¢(s) is continuous
for all but at most countable points s € J and at these
points, ¢(s") and ¢(s7) exist and @(s") = ¢(s)}, where
J ¢ R is an interval and ¢(s") and ¢(s”) denote the
right-hand and left-hand limits of the function ¢(s) at time
s, respectively. Consider pPC*? = {o(t, x) o(,x) €
PC and ¢(t,x) € C™ if t is not at the uncontinuous
points s}. Let PCY, ([, 0; R")(PC}, ([T, 0]; R")) denote the
family of all bounded F(F,)-measurable, PC-valued random
variables. Let | - | be the Euclidean norm in R" and [¢|l, =
SUP_ ol P(t + ).

Consider the following nonlinear impulsive stochastic
delay differential system:

dx(t) = f(t,x,)dt + g (t,x,)dB(t),

t>ty, t#t. keN,
ey
x(t) =x(t) +1(t,x(t)), keN,
x(ty+s)=¢(s), se[-1,0],

where x,(s) = x(t+s),s € [-7,0], f : R"x PC([-7,0],R") —
R", g:R" x PC([-7,0],R") - R™, [:R"x R" - R"
and satisfies global Lipschitz condition, 7 represents the delay
in system (1), impulsive moment t; satisfies0 < t; < f, < --- <
t, <---,andt, — ooask — o00.B(t)is an m-dimensenal
Brownian motion and ¢(s) € PC?;U([—T, 0], R™.

Given a function V. ¢ PC"? : R* x R” — R, the
operator &£ of V (¢, x) with respect to system (1) is defined by

PV (t,x)=V,+V,.f(t,x,)

1 . 2)
+ 5 trace [g (t,x,) Vg (£, xt)] ,
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where
aV (t, x)
V. = R
t ot
oV (t,x) 3V (t,x) vV (t,x)\"
V, = , , (3)
0x, 0x, 0x,,

V. - 0%V (t,x) .
axiaxf nxn

Definition 1. System (1) is said to be

(1) p-moment bounded if, for every B, > 0 and ¢, €
R,, there exists B, = B,(ty,B;) such that if ¢ €
PC}, (I-7,0],R") with Ellp|l? < B, and x = x(t,t,, ¢)
is a solution of (1), then E|x(t,ty, ¢)|? < B, for all
t >ty

(2) p-moment uniformly bounded if the system (1) is
p-moment bounded and B, is independent of t;

(3) p-moment ultimately bounded if the system (1) is
p-moment bounded and there exists a positive con-
stant B such that for every B; > 0 and ¢, € R" there
existssome T = T'(t,, B;) > 0;ifp € PC;O([—T, 0],R™)
with E|lgll? < By, then E|x(t, t,, ¢)|” < Bfort > ty+T;

(4) p-moment uniformly ultimately bounded, if the sys-
tem (1) is p-moment ultimately bounded and T is
independent of t,,.

3. Boundedness with Impulsive Control

In this section, we consider the first case: when the given
SDDS may not be bounded, we adopt an impulsive strategy
to get the boundedness. The main result is stated as follows.

Theorem 2. Assume there exist a positive function V(t,x) €
PC"? and positive constants p, p,a,b,y, A, where 0 < A < 1
and 1 — A -yt > 0, such that

(1) alx|? < V(t, x) < blx|? for any (¢, x);

(2) fort # t;, any s € [-7,0], and $(t) € PC([-7,0], R"),
ZLV(t,$(0)) < YV(t, ¢(0)) whenever V(t,$(0)) >
AV(t +5,¢(s)) and |p(0)|? > p;

(3) V(ty, p(0)+I(t;, $(0))) < AV (¢, $(0)) for all |p(0)[? =
p;

(4) there exists a positive constant p; > p such that if
SOOI < p, thern [¢(0) + I(t;, pO)IP < pi;

(5) & = supp ity — 1} <00,y <1 - A

Then the system (1) is p-moment uniformly ultimately
bounded.

Proof. We separate the proof into two parts. First, we show
the p-moment uniform boundedness and then we give the
ultimate uniform boundedness.

Step I. Let B; > 0. Without loss of generality, we assume B, >
p; = p. Choose B, = B,(B,) such that bB; < AaB,; then we
can see B, > B,.
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Let E||(p||f < B, andt, € [t;_;,t;) for some positive integer
I. Suppose x(t) = x(t,t,, @) is a solution of system (1) with
initial value ¢ and its maximal interval of existence is [t, —
T,t, + ) for some positive constant 3. We will show that, for
any t € [t, — 7.ty + f3), Elx(t)|f < B,. By the way, if this
statement is true, we know that the solution of system (1) is
not explored in [ty,t, + f3), and the global existence of the
solution follows.

For the sake of contradiction, suppose E|x(t)|” > B, for
somet € [ty t, + f3). Then there exists f = inf{t € [t, - 7,t, +
B) | Elx(t)|” > B,}. Note that E|x(¢)|¥ < Ellg|’ < B; < B,
fort € [t,—T,t,]; we see that € (t,t,+3) and E|x(t)|” < B,
fort € [t, — 7,t) and E|x(¢)|’ > B,.

Write V(t, x(t)) = V(t). For t € [t, —1,t,], we have EV(t)
< bE|x(t)|P < bE|lgll? < bB, < AaB, < aB,, and EV(f) >
aE|x(f)|? = aB,. Define t* = inf{t € [t,,7] | EV(t) > aB,}
and thent* € (t,,f] and EV(t) < aB, fort € [t, — 7,t") and
EV(t") = aB,.

We claim that t* # t; for any k € N and then EV(t*) =
aB,.

If it is not true, suppose t* = t; for some k. If E|x(t,)|f >
p, then aB, < EV(t;) < AEV(t;) < AaB, < aB,, which is
a contradiction. IfEIx(t,;)IP < p, then E|x(t))|” = E|x(t;) +
I(te, x(t))IP < p; < B;. Then aB, < EV(t,) < bB; < AaB, <
aB,, which is a contradiction.

Now we will proceed under two cases.

Case 1. Consider t;_; <t, <t" <t
Lett = sup{t € [t,,t"] | EV(t) < AaB,}. Since EV(¢,) <
bB, < AaB,, EV(t*) = aB, > AaB,, and EV(t) is continuous
on [t,,t*], thent € (t,,t") and EV(t) = AaB, and, when
€ [t,t"], EV(t) > AaB,. Hence, fort € [£,t"] and s € [-7,0],
we have

AEV (t +5s) < AaB, < EV (t),

bB, < AaB, < EV (t) < bE|x (t)|%, @
and we can get
Elx ()P = B, = p. (5)
Then, by virtue of condition (2), for t € [t,t"],
EZV (t) < yEV (1),
BV () - BV (7) = Lt EZV (s)ds ©

-
< J YEV (s)ds < yaaB,.
t
However,

EV (t") - EV (t) = aB, — AaB, = (1 - 1) aB, > yaaB,,
7)

which is contradiction. Then we get, in this case,

E|x ()|” < B,. (8)

Case 2. Consider t;, < t* < t;,, for some k > I.

Note that EV(t;) < AaB,. This inequality can be obtained
by the following reason: if E|x(t;)|” > p, then EV(t,) <
AEV(t;) < AaB,.IfE|x(t;)IP < p,we get E|x(t,)|F < p, < By,
and then

EV (t;) < bB, < AaB,. )

Define t = sup{t € [t;,t"] | EV(t) < AaB,}, and then
t € [t t*), EV(t) = AaB,, and EV(t) > AaB, for t € [t,t"].
The same argument as the one in Case 1 yields a contradiction.
Therefore, in this case, we have, for any t € [t, — 7, 00),

Elx (H)[? < B,. (10)

Now we get that, under conditions (1) to condition (5),
the solutions of (1) are p-moment uniformly bounded. That
is, if Ellpll? < p,, there exists a constant B > 0, such that
E|x(t,ty, 9)|? < Bforallt > t; — 7, and, from the proof, we
have bp, < AaB.

Step 2. Now, let B; > 0 and assume, without loss of generality,
that B; > B. Then, from the proof of uniform boundedness,
there exists some B, = B,(B;) > B, for which if E|¢||f < Bj,
then E|x(t)|f < B, fort > t, - 1.

Take a constant d satistying 0 < d < (1-A—y1)aB/(1-y1);
it is easy to verify that 0 < d < (1 — A)aB. Let N = N(B;) be
the smallest positive integer for which bB, < aB + Nd and
T = T(B;) = a+ (t+a)(N - 1). Given a solution x(t) =
x(t,ty, ) where EIIq)II’Tj < By and ¢, € [t_;,t;), we will show
E|x(t)|P < Bfort >ty +T.

Given a constant A satisfying aB < A —d < bB, and
j > 1, we will show thatif EV(¢t) < Afort € [tj -1, tj), then
EV(t)<A-dfort > t;.

For the sake of contradiction, suppose that there exists
somet > f; for which EV (t) > A — d and define

t* =inf{t>t,| EV(t) > A-d}, (11)

and we suppose t* € [f,t;,,;) for some k € N. We can get
EV(t)< A-dfort € [t; - T,t")and EV(t*) > A —d.

We claim that EV(t,) < AA. The fact follows that if
E|x(t;)I? = p, then EV(f;) < AEV(t;) < AA If E|x(t))IP < p
and we have E|x(t;)|” < p;, then EV(t;) < bp < bB < AaB <
AA.

Now, sinceaB < A,wehave A A= A-(1-A)A<A-(1-
MNaB < A—dand EV(t;) < A — d. This implies that t* # f;;
that is, t* € (t;,f,,) and EV(t") = A — d since EV(¢) is
continuous at t*. Also, for ¢ € [t;,t*], we have EV(t) < A—d.
Define

t=sup{t €[t t"] | EV(t) S A(A-d)}. (12)

Since EV(t") = A—d > AA > AM(A —d), we have t € [t;,t")
and EV(t) = M(A-d)and EV(t) > M(A—d) fort € [t,t¥].
Then, ift € [t,t*] and s € [-1,0],

AEV (t+5s) < A(A—-d) < EV(t),
(13)
bE|x (t)[f > EV (t) > A(A—d) > AaB > bp,



which yields E|x(t)|? > p. Then, in light of condition (2),

EZV (t) < yEV (t). (14)

In terms of Itd formula,
V() - EV (D) = J EZV (s)ds
t (15)
"
< J YEV (s)ds <

t

<yax(A-d).

But

V (t*) - EV (t)

and this contradiction proves that EV(t) < A —d for all t >

tj- D

=A-d-A(A-d)>ypa(A-d), (16)

Now we define a sequence t . € {tp,k = L1+ 1,...},
satistying t,o = t; and fpo_; — 7 < fen < Ho — T, and
then we have t;» < t;0_, + @ < f3-y + T + a. By induction,
we getton <ty +a+ (T+a)(N - 1) =t, +T. We know that
when t € [t, — 7,t;), thatis, t € [t, — 7,t0), EV(t) < bB,;
then by induction we get EV(t) < bB, — Nd for t € [t;w), 00)
and then EV'(¢) < aBfort € [t, + T, 00). Using condition (1),
we get that aE|x(t)|? < EV(t) < aB; that is,

E|x ()| < B. (17)

Remark 3. Condition (2) means the system without impulse
may be unbounded. If the impulsive effects satisfy condition
(3) to condition (5), then this system can be bounded.

4. Boundedness with Impulsive Disturbance

In this section, we consider the case that the SDDS is
bounded, and when the impulsive disturbance appears in
the SDDS, then what restrictions should be added to the
disturbance to maintain the boundedness. The result is stated
as follows.

Theorem 4. Assume that there exist a positive function V (t, x)
and positive constants a,b, ¢, p,A;, Ay, y, where 1 < A, < A,,
such that

(1) alx|? < V(¢t, x) < blx|? for any (¢, x);

(2) fort # ty, any s € [-7,0], and ¢(s) € PC([-7,0], R"),
ZLV(t, $(0)) < —yV(t, ¢(0)) whenever A,V (t,$(0)) =
V(t +s,¢(s)) and |p(0)|” = p;

(3) V(t, ¢(0) + I(t;,$(0))) <
[$(0)IF > p

(4) there exists a positive constant p; > p such that if
[$(0)I” < p, then |(0) + I(z;,, $(0))IP < py;

(5) there exist positive constants y and o, such that yu <
th—ty Saandpuy > A, — 1.

M V(tr, $(0) for all

Then, the system (1) is p-moment uniformly ultimately
bounded.
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Proof. Step1.Let B, > 0; without loss of generality, we assume
B, = p,. Choose B, = B,(B,), such that A,bB; < aB,,
and then we get B, > B,. Let EII(pIIf < B, and assume
t, € [t;_;,t;); moreover, we assume that (1) has a maximal
interval of existence, [t, — 7,t, + f3).

We will prove that E|x(t)|? < B, fort € [ty,t, + ). This
will show that § = co and that solutions of (1) are uniformly
bounded.

For the sake of contradiction, we suppose that E|x(¢)|? >
B, for some t € [ty t, + ). Lett = inf{t € [ty,t, + fB)
E|x(t)[? > B,}. Note that E|x(t)|’ < Ell¢|? < B, < B, for

t € [ty — T.to], and we get t € (ty,t, + B), Elx(t)|? < B, for
t € [ty —7,%) and E|x(?)|” > B
Fort € [t,—1,t,], we have EV () < bE|x(t)|? < bE||g|f <

bB, and then EV(t) < A,EV(t) < A,bB, < aB,. Particularly,

EV(ty) <A EV(tO) < aB, and EVO aEIxOIP > aB,.
Define t* = inf{t € [t,,f] | EV(t) > aB,} and thent* €
(ty,t], EV(t*) > aB,,and EV(t) < aB, for t € [t, — 1,t%).

Now we will proceed under two cases.

Case 1. Consider t;_; <t, <t" <.

Under this case, we have EV(t*) = aB, because of the
continuity of V(t) on (t,t;,;) and \,EV(t") = A,aB, > aB,.
Define t = sup{t € [t,,t"] | A,EV(t) < aB,}and then f # t*,
MEV(E) = aBZ, and A,EV(t) > aB, fort € [t,t*]. 'Iherefor
foranyt € [t,t"] and s € [-7,0], we have EV(t + s) < aB, <
A,EV(t) and A,bB, < aB, < A,EV(t), which yields EV(t)
bBy, and then we have E Ix(t)lp > B, = p. Using condition
(2), we have, when t € [£,t*],

EZV (t) < —yEV (1). (18)

By virtue of It6 formula, we have
. o

BV (£') - BV (F) = f ESV (s)ds< [ —yBV (9ds <0

(19)
However,
. B _
EV(t*) = aB, > % = EV (D). (20)
2
This contradiction gives
Elx (t)|f <B, forte[tyt,+p). (21)

Case 2. Consider t; <t* <ty for some k > I.

We first show A, EV (t;) < aB,. We have two situations to
contemplate: k = land k > I.

If k = I, we suppose A,EV(t;) > aB,. Define t = sup{t €
[te-t)) | A,EV(t) < aB,} and then t € (¢,,¢,) and A,EV () =
aB,. In light of the definition of ¢, we have, for ¢ € [£,;) and
s € [-1,0],

AEV (t)>aB, >EV (t +5), (22)

and, for t € [t,t)),

Elx(t)|f = B, = p. (23)
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By virtue of condition (2), an analogous calculation of
EV(t;) - EV(t) yields EV(t;) < EV/(t); then we get

aB, < M,EV (&) < A,EV (£) = aB,. (24)

If k > I, we suppose A,EV(t,) > aB,. We will proceed
under two subcases.

Subcase 1. Consider A,EV(t) > aB, for all t € [t;_;,t;).

Under this situation, we have A,EV(t) > aB, > EV(t +s)
and E|x(t)|? > pforallt € [t,_;,t;) and s € [-7,0]. In terms
of condition (2), an analogous discussion as done in Case 1
gives

t
EV(£) - EV () = LH EZV (s)ds

. (25)
t
< J ‘ —yEV (s)ds < _Wa_Bz
tk—1 Az
However, by virtue of condition (5),
EV (t;) - EV (f,) = B, _ aB, = <i - 1>aB2
% A,
(26)

. aB,
—yu—2

Ay
This contradiction implies

MEV (t;) <aB, fort, <t <ty k=1 (27)
Subcase 2. Consider A,EV(t) < aB, for some t € [t,_;,t;).
_ Definet = sup{t € [t;_,t;) | )L ,EV(t) < aB,} and then
t € [ty_;»t;) and A,EV () = aB,. Using the definition of £, we
get, fort € [t,t;) and s € [-7,0], A,EV(t) > aB, > EV(t +35).
Since A,EV(t) > aB,, using the fact p; > p,A,bB, < aB,
and b|x|? > V(t, x), we can get E|x(t)]? > p. By virtue of
condition (2), we get, for t € [£,t;),

EZLV (t) < —yEV (). (28)
An analogous discussion as done in the case k = [ gives
EV(t) = EV(t;). Then we have

aB, < \,EV (t;) < \,EV (t) = aB,. (29)
This contradiction gives

MEV (t) <aB, fort, <t" <ty k=1 (30)

Now we claim EV(t,) < aB,. If E|x(t;)|f > p, we get
EV(t,) < MEV(t;) < M,EV(t;) < aB,. If E|x(t,)| < p, we
get EV(t;) < bp; < bB, < A,bB, < aB,. That s, the following
inequality holds:

EV (t;) < aB,. (31)

Since EV(t*) > aB,, we have t* # t; and EV (") = aB,.
IfA\,EV(t") = aB, for all t € [t;,t"], then letf = t, and
we have EV(f) < aB,. Otherwise, let t = sup{t € [t,t") |

A,EV(t) < aB,}, and we have EV(f) < A,EV(f) = aB,. Since
EV(t*) = aB,, we get t € [t;,t"). Moreover, for t € [t,t"], we
have A,EV(t) > aB, > EV(t + s) and, by virtue of 1,bB; <
aB, < A,EV(t), we obtam EV(t) > bB, and then EIx(t)IP >
B, > p.In terms of condition (2) and It6 formula, we can
obtain EV(t) > EV(¢t*). But EV(¢) < aB, = EV(t*), which is
a contradiction and yields
Elx (t)|f <B, forte[tyty+p). (32)
Now we get that, under condition (1) to condition (5), the
solutions of (1) are p-moment uniformly bounded. Then we
know that if E||go||f < p;, there exists a constant B > 0, such
that E|x(t, t,, )|’ < Bforallt > t, — 7, and, from the above
proof, we have 1,bp, < aB.

Step 2. Now, let B; > 0 and assume, without loss of generality,
that By > B. Then, from the proof of uniform boundedness,
there exists a constant B, = B,(B;) > B; for which if E ||(p||£7 <
B,, then E|x(t)|? < B, fort > t, — 7.

Take a constant d satistying 0 < d < min{aB - bp,, (A, -
A)/A,)aB}, N = min{n > ((bB,—aB)/d)},and T = a+ (2N -
1 (a + 7).

Let x(t) = x(t, ty, ) be a solution of (1) with EII(pIIf < B,
to € [ti_1,t;). We will show E|x(t)|P < Bfort >t,+T.

Given a positive number A satisfying aB < A < bB, and
j = I, we will show that if EV(t) < Afort € [tj -1, tj) and
ALEV(t)) < A, then EV(f) < Afort > t;and M,EV(t;,,) <
A.

For the sake of contradiction, suppose that there exists a
constant t € [t ot t..,) for which EV(¢) > A and define

t* =inf{t € [t;t;,,) | EV (t) > A}. (33)

Note that EV(tj) < A, and we have that ifElx(tJ_.)lp 2 p, then
EV(t) < LEV(E;) < LEV(t]) < A If Elx()lF < p, we
have EV(t;) < bp; < A,bp; < aB < A. Then we gett” # t;,
EV(t")=A,and EV(t) < Afort € (tjtial-

IfALEV(t) > Aforallt € [t,t;,,), we lett = tj, and then
EV(t) = EV(t;) < A. Otherwise, let t = supft € [tj,t*] |
MEV(t) < A}, and we get EV(f) < A,EV(f) = A. Since
MEV(t") = AL,A > At # t". Fort € [t,t"] and s € [-7,0],
we have \,EV(¢) > A > EV(t + s). Moreover, for t € [t,t"],

MEV (t) 2 A= aB> A,bp,, (34)
and we get E|x(¢)|? >
It formula, we can get EV (£) >
A > EV(t).

Now we have proven EV(f) <

p1 = p. By virtue of condition (2) and
EV(t"). However, EV(t") =

Afort € [tj,tj+1), and
we are on the position to show A,EV(t;,;) < A. This will
follow in the same way as the arguments used in the proof of
uniform boundedness, where we show A,EV(t,) < aB, for
the case k > [; we just need to replace k by j + 1 and ab, by A.

By induction, we get that if EV(t) < Afort € [t; —7.t))
and AZEV(t]_.) < A, then EV(t) < A for all ¢ 2 t and
MEV(t,) < Afork > j+1.



Next, we will show EV(t) < A-dfort € [tj+1,tj+2), if
EV(t) < Aforallt > t and L,EV(t,) < Ak = j.

We first show EV (¢ ,,) < A—d. This can be easily verified
under two situations: ilf Elx(t;+1)|p < p, we have EV(th) <
bp, < aB-d < A-d;if EIx(tJ_-H)IP > p, EV(t;,,) <
MEV(t;y,) = (AI/AZ)AZEV(tJTH) S (M /A A< A-d.

In order to verify EV(t) < A —dforallt € [t;,,;,,),
suppose that EV(t) > A —d for some t € [t,,f;,,). Let
t* =inf{t € [t;,,,t;,) | EV(t) > A-d}; weknowt™ # t
and then EV(t*) = A—dand AL,EV(t*) = 1,(A—d) > A.

IfA,EV(t) > Aforallt € [t;,,t"],lett =t , EV(t) =
EV(th) <A-d.

If \L,EV(t) > Aforsomet € (tj,,t"], lett = sup{t €
[tjs1,t"] | A,EV(t) < A} and we know £ # t*, EV(£) = A/A,.

Fort € [t,t"] and s € [-1,0], L,EV(t) > A > A-d >
EV(t +s) and EV(t) > A/A, > aB/A, > bp,, and we get
E|x(t)[? > p; = p. In terms of condition (2) and It formula,
we can get EV(t*) < EV(t). However, EV(t*) = A-d >
EV (t), which yields

EV(t)< A-d. (35)

j+1

j+1> j+b>

Applying our results to successive intervals of the form
[ti>tier) fork > j+ 1, wecan get EV(t) S A—dfort > t,,.

Now we need a fact /\ZEV(t];Z) < A - d. This can be
verified just as we did in the proof of uniform boundedness,
where we show A,EV(t;) < aB, for the case k > [.

Take Lo € {tj,j =LI+1,...} Satisfying tin + T St <
tri-n,, + 7. Take A = bB,, when t > t;en, and we get EV/(f) <
bB, - Nd < aB. Since tien <ty + 2N -1)(a+71) <tj+a+
(2N -1)(a+7) = t;+T,wehave EV(t) < aBwhent > t,+T.
By virtue of condition (1), E|x(t)|? < Bfort > t, + T, which
completes the proof. O

Remark 5. Theorem 4 considers that a bounded system
without impulse can tolerate what kind of impulsive effects to
hold the boundedness. It is not surprising that condition (3)
to condition (5) should be satisfied: the interval of impulsive
moments (¢) should be large and impulsive strength (1)
should be small.

5. Examples

In this section, we present two examples to illustrate our
results.

Example 1. Consider the following impulsive stochastic delay
differential system:

1 1 1
dx () = (Ex(t)+Zx(t)>dt+x(t—%>dB(t),
50, 145 k=1, 36
bl 10’ - 3 PELEL LS ] ( )

(35)-2=((5) )

where B(t) is a one-dimension Brownian motion.
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FIGURE 1: Mean square uniform ultimate boundedness of solution
of system (36).

Define V(t,x) = x% the smoothness requirement is
satisfied. Leta = b = 1 and p = 2; condition (1) of Theorem 2
follows. For any solution x(t) of system (36), we have

(1 1 2(, 1
EZV(t,x)—Zx(zx(t)+2x(t)>+x (t 20)

=x2(t)+1+x2<t—i>.
20
Take A = 1/2; condition (3) of Theorem 2 is satisfied.
Now let p = 1; then, when x(O* = 1and V(t, x) >
AV (t, x(t — 7)), that is, x*(t) = (1/2)x*(t — 1/20), we have

PV (t,x) < x° (1) + x° (1) +2x7 (1) = 4x” () = 4V (1, x)..
(38)

Then let y = 4; condition (2) of Theorem 2 is verified.

Condition (4) of Theorem 2 can be verified by taking p, =
1.

Take o = 1/10 and then awy = (1/10) x4 = 2/5 < 1/2
1 — A; condition (5) of Theorem 2 is verified.

Therefore, according to Theorem 2, solutions of system
(36) are mean square uniformly ultimately bounded. The
boundedness can be read from Figure 1, where we take initial
condition x(t) = 1,¢t € [-1/20,0].

To see the contribution of impulsive effect on bounded-
ness, we consider the following system:

dx (t) = <%x(t) + le(t))dt +x<t— %)dB ®, (39)

t>0,

which is the situation of system (36) without impulses. It
is easy to be verified that system (39) is unbounded; see
Figure 2, where we also take initial condition x(t) = 1,t €
[-1/20,0].

Now we give another example to illustrate the correctness
of Theorem 4.
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FIGURE 2: Unboundedness of solution of system (39).

10

o

EX?

FIGURE 3: Mean square uniform ultimate boundedness of solution
of system (40).

Example 2. Consider

dx(t)=<—4x(t)+ >dt+x<t—%>dB(t),

2x (t)

(40)

t>0, t+2k, k=12,...,

x (2k) = V2x ((2k)7),

where B(t) is a one-dimension Brownian motion.

Define V(t,x) = x?; the smoothness requirement is
satisfied. Leta = b = 1 and p = 2; condition (1) of Theorem 4
follows. For any solution x(t) of system (40), we have

LV (t,x) =2x (—4x(t) + le )) +x° (t - %)
(41)

(t
=—8x2(t)+1+x2<t—%>.

FIGURE 4: Simulation of system (43).

Take A, = 2, condition (3) of Theorem 4 is satisfied.

Now let p = 1 and A, = 3; then, when lx(£)]* = 1 and
V(t,x) = A,V (t,x(t — 1)), that is, 3x*(t) > x*(t — 1/2), we
have

PV (t,x) < =8x" (t) + x* () + 3x° (£)
(42)
= —4x> (t) = -4V (t,x).

Then, let y = 4; condition (2) of Theorem 2 is verified.

Condition (4) of Theorem 2 can be verified by taking
P =2

Takepy =2andthenyy =2x8=16>3-1=1,-1and
condition (5) of Theorem 4 is verified.

Therefore, according to Theorem 4, solutions of system
(40) are mean square uniformly ultimately bounded. The
boundedness can be seen in Figure 3, where we take initial
condition x(t) = 3,t € [-1/2,0].

We also present the simulation of system (40) without
impulsive effects; that is,

dx(t):(—4x(t)+ >dt+x(t—%>dB(t), £ 0.

(43)

1
2x (t)

The property of system (43) can be read from Figure 4, where
we take initial condition x(t) = 3,t € [-1/2,0].
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We discuss the optimal dividend and capital injection strategies in the Cramér-Lundberg risk model. The value function V(x) is
defined by maximizing the discounted value of the dividend payment minus the penalized discounted capital injection until the
time of ruin. It is shown that V(x) can be characterized by the Hamilton-Jacobi-Bellman equation. We find the optimal dividend
barrier b, the optimal upper capital injection barrier 0, and the optimal lower capital injection barrier —z*. In the case of exponential
claim size especially, we give an explicit procedure to obtain b, —z*, and the value function V(x).

1. Introduction

In the modern theory of risk, people tend to study the cost of
postponing or avoiding outright ruin; that is, ruin does not
mean the end of the game but only the necessity of raising
additional money. So the risk process can continue if there is
a suitable injection of surplus.

Borch [1] pointed out that it was a good investment to
rescue an insolvent insurance company, provided that its
deficit was not too large. He studied this problem for a
random walk model and suggested that the company should
be rescued only if the deficit was smaller than the expected
profits from the rescue operation.

For a diffusion model, Sethi and Taksar [2] considered
the problem of finding an optimal financing mix of retained
earnings and external equity for maximizing the value of
a corporation. They showed that the optimal policy can be
characterized in terms of two threshold parameters. Lokka
and Zervos [3] studied the same problem with possibility
of bankruptcy in a model of Brownian motion with drift.
Depending on the relationships between the coefficients, the
optimal strategy requires the consideration of two auxiliary
suboptimal models. For more references in diffusion model
see He and Liang [4, 5], and so forth.

As pointed out by Bauerle [6], the classical approach
is to model the liquid assets or risk reserve process of the
insurance company as a piecewise deterministic Markov
process (PDMP). However, within this setting the control
problem is very hard and many characteristics of the risk
process can not be calculated in closed form.

For the Cramér-Lundberg risk model without bankrupt-
cy (i.e., the shareholders will inject capital to cover the deficit
whatever serious it is) the optimal dividend problem was
studied. See, for example, Dickson and Waters [7], Gerber
et al. [8], Kulenko and Schmidli [9], and so forth. This
capital injection strategy makes sense for itself; at the same
time we notice that the injected capital can be viewed as an
investment. Therefore the shareholders should consider the
return of it. If the injected amount is small enough to the
shareholders to earn positive net profit, they accept to do
so and survive the company. Otherwise, they will refuse to
inject capital anymore and ruin occurs. So what is the optimal
capital injection strategy is worth to be discussed.

In this paper, we will discuss the optimal dividend pay-
ment and capital injection strategies in the Cramér-Lundberg
risk model. The objective is to maximize the discounted
dividends payments minus the penalized discounted capital
injections. Through the discussion of the optimal capital
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injection strategy, we find the maximal deficit which the
shareholders can bear. Moreover, from the mathematical
point of view we give a rigorous proof that it is optimal
to inject capital once the reserves are below 0, that is, the
moment ruin occurs (in the previous literature about capital
injection strategy, considering discounting, it could not be
optimal to inject capital before it is really necessary. Therefore,
the shareholders postpone the injection as long as possible
and just conjecture that it is optimal to do so when the
reserves become 0).

Suppose the reserve process of an insurance company at
time t is

Nt
X, =x+ct-)Y, 1)
i=1

where x € R is the initial capital, ¢ > 0 is the premium
rate, {N,, t > 0} is a Poisson process with intensity A >
0, and {Y;, i > 1} is a sequence of strictly positive i.i.d.
random variables with the distribution function F(x). In
addition, {Y;, i > 1} and {N,, t > 0} are independent. We
assume that EY; = p < oo and F(x) is continuous. {X,}
is on a filtrated probability space (Q, F,{F };5(, P), where
{F,}i>0 is the smallest right-continuous filtration such that
{X,} is adapted. Let P, and E, denote the probability and the
expectation with initial capital x, respectively.

Now we enrich the model with a strategy m = {(D,, Z,)}.
{D,} and {Z,} denote the aggregate dividends and capital
injections paid up to time ¢, respectively. The strategy 7 is
admissible if

(1) {D,} is cadlag, increasing and adapted processes with

D,_=0;
(2) {Z,} is caglad, increasing and adapted processes with
Zy=0.

The reserve turns to
Xf =X,-D,+Z,. (2)

Since the strategy 7 will not assure that the process {X}'} is
always larger than 0, ruin is possible. The ruin time is defined

by
T" =inf {t > 0, X}, <0}. 3)

The value of a strategy 7 is

- "
V™ (x) = E, [J e?'dD, - ¢ J e_atdZt] , (4
0- 0
where & > 0 is a discounted factor and ¢ > 1 is a penalizing
factor. The point 0 being included in the integration area is for
the reason of taking an immediate dividend D, > 0 into the
value. Our purpose is to maximize V" (x). The value function
is defined by

V (x) = supV” (x), (5)

mell

where IT denotes the set of all admissible strategies.
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The paper is organized as follows. In Section 2, the
dividend strategy is constrained by a restricted density. Some
properties of the value function V(x) are proved. We show
that V(x) can be characterized by the Hamilton-Jacobi-
Bellman equation. Moreover, if V(x) is concave, the optimal
dividend and capital injection strategies are both barrier
strategies. If we remove the constraint on the dividend strat-
egy, the results on V(x) and optimal strategies are extended
in Section 3. In the last section, we give an explicit procedure
to obtain the optimal dividend barrier b, the optimal lower
capital injection barrier —z*, and the value function V(x)
when the claim size is exponentially distributed.

2. Dividends with Restricted Densities

In this section, we study this optimization problem under
the constraint that the dividends are paid at a dividend rate,
which is bounded by a positive constant u; that is, 0 < U, <

uy < 0o0. Then D, = JZ U,ds and

T T

V™ (x)=E, “0 e*‘”Utdt—qsL e‘”dzt]. (6)

In this section, IT" denotes the set of all admissible restricted
strategies and 7 = (U,, Z,). So the value function

V(x) = supV" (x). )

mell”

2.1. The Value Function V(x). V(x) has the following proper-
ties.

Lemma 1. If the capital injection strategy is defined by

Z, = max {—Olglgt (X,-D,), 0} , (8)

Then, for x € R,, the value under any dividend strategy {D,} is
bounded from below by —pAu/é.

Proof. Under this assumption, ruin time is co. The maximal
amount of capital injection may be that the shareholders
cover all the claims. If we are not considering the dividends,
value under such a strategy is the worst one. Using the time
of the kth claim T}, is Gamma I'(A, k), so

) ~ 0 /\ k /\[4
Yie T | = ( ) =
k; e ] .“k; 35) =3 )

The value is bounded from below by —¢Au/6. O

E

Lemma 2. V(x) is increasing and Lipschitz continuous on
(—00, 00). Moreover, 0 < V(x) < uy/6 and lim, _, . [V (x) =
uy /0.

Proof. Obviously, V(x) is increasing. For x < 0, if define the
strategy 7 as Z, = U, = 0, then V(x) > V"(x) = 0. Because
V(x) is increasing, V(x) = 0 for x € R.If U, = u,, Z, = 0,
then

Uy

5 (10)

Vix) < J uoef&dt =
0
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Consider a strategy n = (U,, Z,), where U, = u, and Z, =
max{-infy_(X;—D;),0}. Then T" = co. Define 7/, = inf{t :
x+ (c—uy)t — ZZ’I Y; < 0}. Using Lemma 1,
™ o © © s
J' edz, = J- edz, = J edz,
0 0 T
(11)
n (O g A,
=% J e?dz,, . < e_‘sr"gb—y.
0 * 8
When x — oo, then 7} — ©o and PX(IOOO edZ, > ) -
0. So we have

Vix)>V"(x)

[ = -5t ot Uy (12)
>E J uye dt—(/)j- e dZt]—>—.
0 0 1)
Combining with (10), we have lim,_,  V(x) = u,/0.
For x > 0, let i > 0 be small. Define
0, ifO<t<hAT,
U =140, iftAT, >h,
L0, if T, <h,
, 13)
0, if0<t<hAT,
Z,=3Z,,, iftAT,>h,
L0, if T, <h,

where 77 = (U, Z) € II" is for the initial capital x + ch. While
P(T, > h) = ¢, then

Vix) = V" (x)
™ "
=E [E [j e_atUtdt - (/)J e_‘StdZt | Tl] ]
0 0

=P(T, 2 h)

(14)
and so

V(x) = sup i T (x+ch) = e Moy (x+ch). (15)

ell”

From the bounded property of V(x), we have

0<V(x+ch)-V(x)< V(x+ch)(1 _e—(A+6)h)
u (16)
SV(x+ch)(A+d)h< go(/\+8)h,

Let the shareholder inject /1 and follow the optimal strategy
afterwards when x < 0. So V(x) > V(x + h) — ¢h; that is,

V(x+h) -V (x) < h. (17)

Thus V(x) is Lipschitz continuous on (—00, 00). O

2.2. HJB Equation and the Optimal Strategy. In this section,
we will derive the HJB equation satisfied by the value function
V(x) and discuss the optimal strategy 7*.

Similar to the discussion in Azcue and Muler [10], the
following dynamic programming principle holds:

TAT”
V(x) =supE, [J e_atUtdt
m 0

TAT" .
—¢ L edz, + e X TIV(XT )
(18)

for x € R, and any {#,}-stopping time 7. This principle may
serve us to derive the HJB equation.

For x > 0, ¢ > 0, and any admissible strategy 7, define
o”" = inf{t > 0, X7 ¢ (x — & x + €)}. Choose ¢ small enough;
then o™ < T".Let7" =0"Ah, h>0.S07" — Oas.h — 0.
Applying 1t6 formula into e 7 V(X™), we have

eV (X%)

= V(X5)

+ j O (c— UV (X7) - eV (X
0

s—

)ds

(19)
+ Y V(XD -V(XD)]
0<s<t”
X7 #XT

vy e VD) - V(XD

0<s<t”
7,y
XS ¢XS+

IfU, > ¢, {X]} could become negative before the first claim
and so dividends lead to ruin. Considering the early penalty,
this dividend strategy with U, > c at a point where X] = 0
will not be optimal. So we can assume without restriction that
{Z,} only increases when the claim arrives; that is, it is a pure
jump process. Thus

P

—0s s T\ _ —0s
Y V) -Vl =] etz o
0<s<t
XT#XT,



When claim arrives, X # X7 . Then
M (") =M (6" Ah)

)

0<s<t”
XL #X]

V(XD -V (XD)] -2

<[ [T v -y -v ) aE (s
(21)

is a martingale with M(0) = 0. So from the dynamic pro-
gramming principle in (18), we have

V(%)

g g

>E, [J e U ds — ¢ J

0 0

e dZ, +V (x)

b

[l [<c ~U)V' (X)) -8V (XT)

+/\J V(X —y)
0

V(X7 ) dF ( y)] ds+ ¢ LTH e‘SSdZS] .
(22)

Equivalently

bid

E, HOT e [(c ~U) V' (XT) +U,
A LOO VX - )dF(y)  (@3)

-+ a)v(xf_)] ds] <0.

Dividing E7” in (23) and letting h — 0 yield

(c—u)V' (x)+u

o (24)
+AJ V(x—y)dF(y)-(A+8)V(x)<0.
0

We have proved that V(x) is increasing, continuous, and
nonnegative, so the above inequality can be rewritten as

(c—uw) V' (x)+u

x+z (25)
+AJ V(x-y)dF(y)-(A+8)V(x)<0
0

forz e R,.

On the other hand, consider a strategy by receiving € > 0
from the shareholder immediately and following the optimal
strategy for the capital x + ¢ afterwards; then V(x) > V(x +
€) — ¢e. Letting e — 0, we get

V' (x) < ¢. (26)
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A more sophisticated analysis shows that one of the inequali-
ties (25) and (26) is always tight (see Fleming and Soner [11]).

As aresult, we get the following HJB equation satisfied by
the value function V(x) on [0, 00):

max § sup {(c—u)V’(x)+u+/\

0<us<u,
zZ€R,

XJO V(x—y)dF(y)—(/\+5)V(x)},
Vix)-¢t =0.

(27)

The expressions to be maximized are

W1V @) [ Ve e

First, because u(1 — V'(x)) is linear in u, u*(x) maximizing

u(1-V'(x)) is
u* (x) = {0’
Uy,

Second, we will maximize j(j( +Z V(x — y)dF(y). Because
V(x) > 0, we can define z* = —inf{z;V(z) > 0}. If x < 0,
the shareholders either inject capital to survive the company
or default to do so. Ruin occurs in the latter case, while in
the former case V(x) will be linear when x < 0; that is,
V(x) = V(0) + ¢x. Thus, from the definition of z*, we have

if V' (x) > 1,

if V! (x) < 1. 29)

o

In fact, z" is the maximal deficit that the shareholder should
bare. We call —z* the optimal lower capital injection barrier.

If V(x) is concave on (0, 00), then there exists an optimal
dividend barrier b := inf{x : V'(x) < 1} with

U (x) = 0, ifx<besV (x)>1,
B Uy, ifx=2be=V'(x)<l.

(30)

(31)

And also a barrier a, := sup{x,V'(x) > ¢}. If the reserves
become less than a,, according to z*, the shareholders may
take actions between the following two choices.

(a) If the deficit is larger than z*, they refuse to inject any
capital and ruin occurs.

(b) Otherwise, they inject capital and the injected amount
should recover the reserves to a,. If a, < 0, the
injected amount could not survive the company.
Therefore, we define the optimal upper capital injec-
tion barrier asa = a, Vv 0.



Mathematical Problems in Engineering

Recall that in the literature (e.g., Kulenko and Schmidli
[9] and He and Liang [4, 5]) concerning the capital injection
strategy, considering the discounting, it can not be optimal
to inject capital before they really are necessary. Therefore,
the shareholders postpone injecting capital as long as possible
and just conjecture that it is optimal to do so only when
the reserves become 0. In the next proposition, from the
mathematical point of view, we will give a rigorous proof of
a=0.

Proposition 3. IfV (x) is concave on (0, 00), the optimal upper
capital injection barrier a = 0.

Proof. Under the assumption, a is unique. Suppose a > 0.
So V(x) = V(0) + ¢x when x € [-z*,a]. Note that V'(a) =
V'(0) = ¢. V(x) fulfils the HJB equation (27), so at x = 0

V(0)/¢

c¢+AJ [V (0) - ¢y]dF (y) = (A+ )V (0) < 0. (32)

0

If we take V(0) = V(a) — ¢a into the left side of (32), the
expression turns into

V(0)/¢
cprr[ V@ - ga-gy]dF(y)
0 (33)

—(A+8)[V(a) - ¢a].

At the optimal upper capital injection barrier g,

V(a)/¢
V' (a+) + AJ [V (@) = ¢y] dF (y) = (A + ) V (@) = 0.
0
(34)
It implies
, Via)/¢
A+8)V(a)=cV (a+)+/\L [V (a) - ¢y]dF ().
(35)

Pulling (35) into (33), we can rewrite the expression by

V(0)/¢

c¢+Aj [V(a) - pa—¢y]dF (y) + (A +6) pa

0

, V(a)/¢
V' (@) - A L [V (a) - ¢y] dF (y)

V(0)/¢ Via)/¢
=_ L gbadF(y)—/\J [V (a) - ¢y] dF (y)

V(0)/¢

+(A+8) ¢a+c(¢p-V' (a+))

= —/\(/)61F<%> +AV(a)F<%>

~ AV (a)F (%) +$A JWW ydF (y)

e

+(A+8) ¢a+c(¢p-V' (a+))

= —/X¢aF<%) +)\V(a)F(%>

—AV(a)F(%) +c(¢—V’ (a+))

—AV(O)F(%)+/\V(¢:)F<

V(a))

V(a)/¢
29[ F()dy+(+)ga
V(0)/¢

= [-Aga + AV (a) — A¢V (0)] F<%;1)> +(A+0)¢a

V(a)/¢
—Agbj F(y)dy+c(¢—V'(a+))
V(0)/¢

V(a)/¢$

F(y)dy+c(</>—V’ (a+)).

(36)

:(A+6)¢a—A¢J

V(0)/¢

However

V(a)/¢ ,
—A¢j F(y)dy+(A+0)ga+c(¢p—V (a+))

V(0)/¢
>-AV (@) + AV (0) + (A + 8) ¢a (37)
=-A(V(a) -V (0) - ¢a) + 5¢a
= 8¢a > 0,

which is contradictory with (32). So a > 0 is impossible and
a = 0 is proved. O

The above proposition tells us that the moment when
deficit occurs is just the time the shareholders consider to
inject capital.

Proposition 4. IfV(x) is concave on (0, 00), it is continuously
differentiable on (0, 00).

Proof. From the concavity of V(x), (31) is true. When x €
(0,b), from HJB equation (27), and V (x) is Lipschitz contin-
uous, so

V(0)

/¢
CV,(X+)—(/\+8)V(X)+)LJ' V(x-y)dF(y)

0

=cV (x=)-(A+8)V (x) (38)

V(0)/¢
”J V(x—y)dF (y) = 0.
0



Thus V'(x=) = V'(x4). Similarly, we can proof V(x) is
continuously differentiable on (b, 00). Now suppose b > 0.
Note

(c—up) V' (b+) +uy — (A +8) V (b)

V(0)/¢
+A I

0

V(b-y)dF(y) =0,

, V(0)/¢
V' (b=) = A+ 8)V (b) +AL V(b-y)dF () =o.
(39)

SocV'(b-) = Uy + (c - uO)V'(b+) or equivalently c(V'(b-) -
V! (b+)) = up(1 = V' (b+)).

If uy < c, either V'(b-) = V'(b+) = 1or1 > V'(b-).
The latter is impossible, so V(x) is continuously differentiable
under this case.

If uy > c, the reserve stays at b until the first claim occurs
because dividend is a barrier strategy. b is independent of the
constant u,. In fact, because the process does not leave the
interval [0, b] and the corresponding strategy is admissible for
any u, > ¢, it must be optimal for any initial value in [0, b].
For x = b, the expected discounted dividends until the first
claim are

e B t _ AC [} N _ c

At ds _ ) At
/\L e Lce dsdt——6 L (1 e )e dt 115
(40)

The expected discounted dividends after the first claim are

[eS) b
A J e Jo eV (b-y)dF (y)dt

0

e j e[V (0)+ ¢ (b y)]dF (y) dt

0

A
A+

['veo-nare)

0

b+z"
[ v ose-nler0).
(41)
Hence, the value at b can be characterized as

c A b
VO =35 1+s “o V{(b-y)dr(y)

b+z"
[ v oree-nlere).
(42)
Pulling V' (b) into (39), we find V'(b-) = V'(b+) = 1. So V(x)
is continuously differentiable in this case, too. O

It holds in an interval (T;_;, T;) between two claims that
dX7 = (c - Uy)dt. AZy, = Zy, — Zy, denotes the injected
capital at the ith claim arrivals.
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(i) IfX%_ ~Y; 20, then AZ; = 0;

(ii) If -z* < X7_ - Y; < 0, then the shareholders pay
as much that X%+ = X%f =Y, + AZp = 0. That is,
AZp =0- (X’i__ —Y;). In this case, the value function
fulfils

V(XE,) (= V() =V (X]_-Y,) +¢AZ,
(43)
if —z* <X;T".—_Yi <0.

(iii) If X7_ —Y; < -z, then the shareholders would get
a negative net profit as long as they cover the deficit
(because V(O)—(/)AZTi < 0). Itisunreasonable. Hence,
they prefer to “no-injection-no-profit” and refuse
to inject capital anymore. In this case, bankruptcy
occurs and T" = T;. So

V() =V (5) =V (X5 %) =0
(44)

*

if X -V, <-2"

Based on the discussion above, when x < 0, we can
express V(x) by

0, if x < -z,

45
V(0)+¢x, if —z"<x<0. (45)

-]

Thus it suffices to consider solutions f to the HJB
equation with the properties

f(x)=0, ifxs—%. (46)
f(x)=f(0)+ ¢x, if—%<x<0. (47)

Lemma 5. Let f(x) be an increasing, bounded, and nonnega-
tive solution to (27) with properties (46) and (47). Then for any
admissible strategy 7 € I, the process

tAT™

{f (o) f - | Pz,

0

7vaid
_ L [ (c-U) f (XT) = A +6) £ (XT)

XT+(f(0)/¢) s
+/\J f(xg—y)dp(y)]e- Sds]»

(48)

0

is a martingale.

Proof. First we decompose f (Xf/\Tn)ef‘s(tATﬂ)
F ()T

N,

- FOE)* 5 [P - ()™

i=
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+ f (X ) e 2T - f(x” )e*‘STNMTn

Ty, ATt
Niprr

=F G+ Y [FOG.) - (X5 ) e

i

Niprr

) [ )e -1 ()™

i=1
b (X)  — f (X5 ) e
tATTE
Nt/\T”
= f)+¢AZr + Y [f(XE_-Y,) - f(XE)]e"

i
i=1

Niprm Nirm T;—
+¢ Y AZpe T Y j de™® f (XT)
i=1 i=1 T+
tNT™
+ de™® £ (XT)
TN:AT"+
Niprm

=fE@+ Y [F(XF--1)-f(x5)]e"

£ 1 1
i=1

tNT™

* J [(c=U) £ (XT) = &f (XT)] e™ds

+
Niarm

Ninpm

' Z JTT: [(c-Uy) £/ (XT) - 8f (XT)] e *ds

tAT™ s
+ ¢J e%dz,
0

Niprn

=f@+ ) [F(XG-Y) - f (X))

i
i=1

AT
+¢ J e >dz,
0

[ e g o e (x] e,

0
(49)

Then in order to make the process { f\jf” [f(X]_-Y,) -

1

. AT . .
f(X%_)]e oT; _ IOA g(X7)ds} become a martingale with the
expected value 0, we must find a measurable function g. Since
the above expression can be written as

Ninpm

S e -l - [

i=1 Ti

9 (x7)as}

t
- g(X7)ds
TN:/\T"

(50)

it is enough to replace t by T} A t; that is,

tAT,

- "1)7 T, - e e - g f s.

[F (X5 -vi) - £ (3 )] e g
(51)

Because the exponential distribution is lack of memory, we
only consider the expected value. g will satisty

B (%7 -1) = £ (35 )]e T e

- JMTI (X7 ds} _o.

0

(52)

The expected values of the first and the second part are

t X+ (e=U,)dv+£(0)/¢
[

<+ [ e-vyar-y)ar )

—f <x v LS (c-U,) dv>} ds, )
Lt Ae™ L g LV (c-U,) dw) dvds
re Lt g <x " JO (c-U,) dv> ds
_ Lt e <x + L (c-U,) dv) ds.

Thus we can choose

o) =2 ([ p0 - ar0)- )

(X7 =y)dF(y) - Ae* f(X]).
(54)

X7 +f(0)/¢
— Ag*@t J
0

So
U3 e -n)- s ()] 7=

<[ e naro)- s o] o

0 0
(55)

and, also, the process

tAT™

{f (XG) e - f =g | ez,

tAT™ O
I [(C-Us)f’ (XT) = L+ 8) (X7

X§+f(0)/¢ s
+)Lj f(x’;—y)dp(y)]e— Sds}

(56)

0

are {#,}-martingales with expected value 0. O

The following theorem serves as a verification theorem.



Theorem 6. Let f(x) be an increasing and bounded solution
to (27) with the properties (46) and (47). Thenlim, _,  f(x) =
uy/8 and f(x) = V(x) on R,. The optimal capital injection and
dividend barriers are given by (30) and (31).

Proof. Because f(x) is increasing and bounded, we assume
lim,_, ., f(x) = f,. Then there exists a sequence x,, — ©0
such that f '(xn) — 0. Let u,, = u(x,). From the definition
of the optimal dividend strategy, we can assume that u,, = u,,.
Asn — 00, the first term in (27) turns to

0= (c—up) f' (x,) + 1ty = Of ()

x,+£(0)/¢
[ a0 - s )| @)

0
— =0f, + -

Equivalently we have lim, _, ., f(x) = u,/$.

Let T* be the ruin time under the strategies (30) and (31)
and V" (x) the corresponding value. From Lemma 5 and the
HJB equation (27), we have

{f (X5 ) e = £ )

(58)
tAT" tAT™
+ J- e ®Ulds - ¢ J edz; }
0 0
is a martingale with expected value 0. Then
. SUAT* tAT” s
f(x)=E, [f (XfAT*)e_ AT J e U ds
0
(59)

0

7V
—¢ J e dz; ] .

Since f is bounded and from the bounded convergence
theorem, as t — 00, we get that E[f (Xf;T* )efé(t/\T*)] N
0. The other terms are monotone, when t — 00, by
interchanging the limit and integration, so we obtain f(x) =
V*(x) < V(x).

On the other hand, because f(x) is increasing and
satisfies (46), f(x) is nonnegative on (—0co,00). For any
admissible strategy 77, HJB equation (27) gives that

tAT™

f ) 2 E; [f () [ P

0

INT™
— I eastS:| (60)

0
INT™ s INT™ s
>E, [J e sUsds—ng e sts] .
0 0

Lett — o00;then f(x) > V™(x), which means f(x) > V(x).
Thus, f(x) = V(x). O

Based on the discussion above, if V(x) is concave on
(0, 00), it is optimal for the shareholders to take no action
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as long as the reserve process takes value in (0, b). When the
process reaches or exceeds the barrier b, dividends have to
be paid at the maximal rate 1. When the reserve is less than
0, the shareholders should consider either to inject capital to
recover the reserve to 0 or default to do so. If the decifit is less
than z*, the shareholders can earn positive net profit. So they
inject capital which covers the deficit to survive the company.
Otherwise, once the deficit is larger than z*, the shareholders
refuse to do so and ruin occurs.

Remark 7. Diftusion models can be used to approximate the
Cramér-Lundberg risk model. During the recent decades,
they have been applied to insurance modeling setting exten-
sively. See Radner and Shepp [12], Asmussen and Taksar [13],
and Hejgaard and Taksar [14, 15], Sethi and Taksar [2], and
so forth. Diffusion models have the advantage that some very
explicit optimal controls and a smooth value function can
be made. Hopefully, these can help to take almost optimal
strategies for the original risk model. However, this statement
is not trivial.

The optimal dividend and issuance equity strategies (or
combined with other strategies) in diffusion risk model had
been studied by Lokka and Zervos [3], He and Liang [4, 5],
and so forth. In their paper, depending on the relationships
between the coefficients, it is optimal for the company either
to involve no issuance equity or to involve issuance equity
without ruin. In this paper, our conclusion in the Cramér-
Lundberg risk model is that the optimal capital injection
strategy will depend on the deficit. Once the deficit is
large, ruin will still occur. Thus the optimal capital injection
strategy looks different for these two models and the diftusion
approximations are not effective here.

Discussion on whether the diffusion approximation is
true can be found in Maglaras [16] and Béuerle [6], and so
forth.

3. Unrestricted Dividends

In this section, we will discuss the dividend strategy without
restriction. Here all increasing, adapted, and cadlag processes
are allowed to be the dividend strategy. Let IT denote the set of
all admissible strategies. The value of an admissible strategy
7T is

VT (x) = “Tﬂ_ Sty JTH ot ]
x)=E e dD,-¢ | e“dz,|. (6])
- 0

The value function is V(x) = sup,,.; V" (x).

Lemma 8. On [0, 00), the function V(x) is increasing and
local Lipschitz continuous; V(x) = V(y) = x — yifx > y;
0<V(x)<x+c/é.

Proof. For any ¢ > 0, define a strategy 7 satisfing V" (y) >
V(y) —e. 7' is a new strategy for x > y. {Z]} in 7' is the same
as{Z,}in . While {D;} is defined as: x— y is paid immediately
as dividend and then the strategy {D,} with initial capital y is
followed. Therefore, V(x) = x—y+ V™ (y) 2 x—y+V(y) —e.
From the arbitrary property of ¢, we have V(x) -V (y) = x—y.
In particulars, V/(x) is strictly increasing.
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Consider such a strategy 7: the initial capital x is paid
to the shareholders as dividends immediately and capital
injection is forbidden. Then V(x) > V"(x) > 0.

To get the upper bound of V(x), we consider a strategy
7. {D,} is defined as: if the initial capital is x (x > 0), then x
is paid immediately and then the dividends are paid at rate
c. If we donot take the capital injection into account, then
x + Ex[_[oOO e®cdt] = x + ¢/d is the upper bound of any
admissible strategy 7; that is, V(x) < x + ¢/8.

The local Lipschitz continuity follows by the local bound-
edness of V(x) as in the proof of Lemma 2. O

3.1. HJB Equation and the Optimal Strategies. Similar to
the discussion in Section 2.2, V(x) satisfies the following
dynamic programming principle:

TAT™ TAT™
V(x)=supE, [J e_&th -¢ J e_&dZt
n 0- 0
(62)

TAT™

n e—E(r/\T”)V (er ):|

for x € R, and any {#,}-stopping time 7.
For x > 0, similarly we define 77 as in Section 2.2. Note
that ™ = T is possible here. Applying Itd formula into

e_‘wV(X’TTn), we have

TV (X%) =V (XD)

bid

" j ey (X ) - 87V (X™) ds
0

+ ) e V(XD -V (XD)] (63)
0<s<t”
XL #XT

o) e V(G -V (X))

0<s<t”
us Ut
XT#XT,

X7 #+ X7, only when capital is injected, so

bid

—0s T T\ _ " —8s
DI L AR IR s
X{#XT,

When claim arrives or dividend occurs, X7 # X7. The jumps
caused by claim arrivals lead to

M (") =M (c" Nh)

= ) VXD -VXD)

0<s<t”
X7 #XT

kg

A v e - v () ar () as
(65)

is a martingale with M(0) = 0. And the amount of the
aggregated jumps caused by dividend are — '[OT_ e %dD;. So
from the dynamic programming principle (62), yields

Vi(x)

>E, “ e®dD, - ¢ J e %dZ, +V (x)
0— 0

b

. J e [cV’ (X7 )= oV (X7 ) + A
0

< TV - n v aEe)|as

- J e dD, + qu- eanZS] .
0- 0
(66)
Equivalently
B[ et [ovomyeaf Ve -nare)
0 0
(67)

—(A+ 6)V(X;f)] ds] <0.

If T™ = 0, then 7" = 0. Therefore (67) gives no information.
IfT™ > 0, we can choose ¢ such that Ez” > 0. Dividing Et”
in (67) and letting h — 0, so
[ee]
V' (%) +/\J V(x—-y)dF(y) - (A+8)V(x) <0. (68)
0

Also we can rewrite the above inequality by

X

cV’(x)+AJ +ZV(x—y)dF(y)—(A+8)V(x)SO (69)

0
forz e R,.
Refering to the proof of (26), we have

V' (x) < ¢. (70)

If the company pays out ¢ as dividends, then the initial
capital reduces from x to x — . Using the optimal strategy
afterwards, so V(x) > V(x — €) + €. Subtracting V(x — ¢) from
both sides, dividing by ¢, and letting e — 0, we get

V' (x) > 1. (71)

One of the inequalities (69), (70), and (71) is always tight
(refer to Fleming and Soner [11]).

Thus we derive the HJB equation satisfied by V(x) on
[0, 00)

X+z

max{sup ‘[CV’ (x) + AJ V(x-y)dF(y)

ZER, 0

—(A+6)V(x)},l—V'(x),V'(x)—fl’} =0.
(72)
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To maximize on+z V(x — y)dF(y), let us recall the proof
of z* = V(0)/¢ in Section 2.2. We can find that z* is
independent of 1. So we also have the optimal lower capital
injection barrier

. V(0)
—-z'=——. (73)
¢
Hence when x < 0, V(x) can be expressed by
0 if x <27,
14 = 74
() {V(0)+¢x if 2" < x <0. (74)

In Section 2.2, the optimal dividend strategy and the opti-
mal capital injection strategy are both barrier strategies under
the assumption that V(x) is concave on (0, c0). Moreover,
the optimal dividend barrier b and the upper optimal capital
injection barrier a are both independent of 1. Here if V() is
concave on (0, 00), similar to discussion in Section 2.2, we can
define the optimal dividend barrier b := inf{x : V'(x) < 1}
and the optimal upper capital injection barrier a := sup{x :
V'(x) > ¢} v 0. And also V(x) is continuously differentiable.

Proposition 9. IfV(x) is concave on (0, 00), the optimal upper
capital injection barrier a = 0.

Proof. The proof is similar as in Proposition 3, so we omit it
here. O

Now define a strategy 7' = (D', Z") as follows:

D(l) = max(x - b,0),

t
D§=D5+J

. Cl{Xgl :b}ds, for t >0, (75)

Zt1 = max{—inf (XS—DSI),O} for t > 0.

0<s<t

Let T* = inf{t > 0 : Xfl < —z"}. Define strategy n* =
(D*, Z*) by the strategy 7" stopped at T*:

\ {D:,
D, =

ift <T*, 7 zl, ift<T*,
Dy., ift>T", b

Zpe, ift>T".
(76)

Under 7%, if the initial capital x > b, x — b will be paid to
the shareholders as dividends immediately. When the reserve
process takes value in (0, b), insurance company dose not pay
dividend and shareholders do not inject capital. When the
process reaches the barrier b, the premium income will be
paid as dividends. If deficit occurs and it is less than z*, the
shareholders inject capital to recover the reserve process to 0.
Otherwise, they refuse to inject any capital and ruin occurs.
X, =X, - D; + Z; is the corresponding reserve process.

Theorem 10. If V(x) is concave on (0,00), the strategy m*
defined in (76) is optimal; that is,

V™ (x) =V (x). (77)
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Proof. Note that V'(Xt*) =V'(b) = 1on {X; = b}. According
to (76), the possible increment of {Z; } is at the time of claim
arrivals. As in Lemma 5,

V (X))

INT™
=V (x)-Dy+¢ J e dz!
0
Niar=
+ ) v -v)-v(xg)]e
i=1
Nt/\T

) T (x5 )

ot
e *dz’

=V(x)—Dé+</>J VA

0

(78)

The process

Nipr
{3 ) v )2
i=1

7V X;+z"
xj ¢ “ V(X:_—y)dF(y)—V(X:_)]ds]»
0 0
(79)
is a martingale with expected value 0. Equivalently,

INT™

{V (X7 ) e ) _ vV (x)+ DL - ¢ J e dz!

0
AT X4zt

7 el v - a0
0 0

_(/\+8)V(XS*)] 1{0<X:<b}e—asds
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]

X +z"
AT v -)daEG)

0

— (A + 8) \%4 (X:):| 1{X:_b}€8sd5}
(80)

is a martingale. Because V(x) is concave on (0,00), the
derivatives of V(x) from left and right exist. Moreover, F(y)
is continuous, so V(x) in (72) is continuously differentiable.
For V/(X!) > 1 on {0 < X! < b}, the first term on the left-
hand side of (72) is 0, thus the integral over {0 < X < b} on
the expression above is 0. Furthermore, from V'(X:) =1on
{X; = b} and (72), it follows that

AJXSH V(X =y)dF(y)-A+8) V(X)) = - (81
0

Taking this expression into (80), we have

{V (X} ) e _V (x) + D}

(82)
tAT™ tAT"
_(p J e_ast: + j Cl{X*_b}e_&dS}
0 0 :
is a martingale with expected value 0. Then
~(tAT") s
V(x)=E, [V(XU\T*)e —¢L e °dZ;
(83)
tAT™
+ J CI{X*=b}6765d$ + D(l):| .
0 s
Note that
* —S(tNT™ -5 *
E, [V (Xpg) e ™| = e B, [V (X)) 1ar)]
(84)
<e 'V (b).
By the bounded convergence theorem,
. * —S(tNT™
lim B, [V (X ) e 7] <o (85)
So
V(%)

tNT™

tAT™ s
lim E, [J clixspe Sds—qu
t— 00 0 s 0

eiGSdZ: + Dé]

" - T
E, [J i e ®dD? - ¢ L e dz; ] =V" (x).
(86)

O

1

3.2. Characterization of the Solution. How to characterize the
solution V' (x) among other possible solutions?

Theorem 11. V(x) is the minimal nonnegative solution to (72).

Proof. Let f be a nonnegative solution to the HJB equation
(72). f is increasing because f "(x) > 1. {X;} is the reserve
process under 7*. From Theorem 10

tAT

{f (K )™ - @+ Dy =g | etz

0

tAT* X{+f(0)/¢
[T e e
0

0

f(X; - y)dF(y)

-(A+9) f (X:):| 1{0<X: <b}6765d5

X;+fO)/¢
[ -

0

tNT™
. I [A
0

— (A + 6) f (X:)] 1{X:_b}eésd5}
(87)

is a martingale with expected value 0. f(x) satisfies (72); then

R X;+f(0)/¢ .
of (X)+A | SOy aF ()

(88)
-(A+0) f(X])<o0.
Because f'(x) >1,
X +f(0)/¢ . .
A A () - ) £ (X))
(89)
< —f (XI)<—c.
From the non-negative property of f(x), we have
S(IAT™) Tt S
£ B 5 ()T - [ ez
tNT”
—0s 1
+J Cl{X*:b}e dS+DO:|
0 ' (90)
tAT" — tAT”
> E, “ e *dD! - ¢J e“‘sdzj]
- 0
=V'(x) =V (x).
O

4. Optimal Dividend and Capital Injection
Strategies for Exponential Claims

In this section we will consider the case that the claim size is
exponentially distributed and the dividend strategy without
restriction. Let F(x) = 1 — e **.
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First, we assume that f(x) is an increasing, continuously
differentiable and concave solution to the HJB equation (72)
on [0,00). Define b = inf{x : f'(x) =1} Vv0.0n [0,b], f(x)
satisfies

x
0

cf (x) +/\J f(x-y)ae™dy

x+f(0)/¢
AT O - aeay O

—(A+8) f(x) =0.

X

Let z = x — y and change (91) into

of (x) + Ae ™ JX f(z) ae**dz
0

0 (92)

+ e ™ J [f(0) + ¢z] ae™*dz

-f(0)/¢
—(A+0) f(x)=0.

The above expression can be derivative, so it yields

cf” (x) - ake™™ Jx f(2) ae™dz + aAf (x)
0

0

—ale ™™ J [f(0) + ¢pz] ae™*dz (93)

-f0)/¢
~(A+0) f (x)=0.

Combining (92) with (93), we get the differentiable equation
about f(x)

cf" (x) + (@c — (A +8)) f (x) — adf (x) = 0. (94)
Its solution is
f(x)=Ce"" +Che"™, (95)

where v,, v, are the solutions of equation eV +(ac—(A+8))v—
ad = 0; that is,

A+6—ac—\/()\+8—(xc)2+4txc6
= <

V1 > 0,
c
(96)
A+8—ac+ \/()\+8—cxc)2+4ac8
V2= > 0.
2c
When x > b, we conjecture that
fx)=x-b+f(), x=b (97)

Therefore, from (95) and (97), the suggested solution of HJB
equation (72) has the form

C,e"* + Cye”™ if0<x<b,

= 98
f &) {x—b+C1evlb+C2eV2b if x>0, %8)

where C;, C,, and b are to be determined later.

Mathematical Problems in Engineering

Lemma 12. At x = b, we have

ac—A-08

ad ©9)

ffy=0,  fb)=

Proof. As we have assumed that f(x) satisfies HJB equation
(72), when x > b, we have

x+£(0)/¢
C+/\J Flx-y)ae¥dy—(1+8) f(x) <.
(100)
Note that
x+£(0)/¢
J fx-y)ae@dy
x-b
- | U@+ ey -placay
x+£(0)/¢
+ J fx-y)ae@dy
x-b
=[f () + (x-b)] (1 - e_“("_b)) - J yoae Vdy
0 (101)

b+f(0)/¢ (x—biw)
+J f-u)ae ™" du

0
= [f (b) + (x - b)] (l - e—tx(x—b)) + (x _ b) e—oc(x—b)

_ l + le—(x(x—b)
(04 (04

b+£(0)/¢ b
+ (J fb-u) oce_“”du> e b
0

and from the HJB equation (72), when x = b,

fb-y)ae™dy - (A+8)V (b) =0. (102)

b+£(0)/¢
c+Aj

Plugging (101) and (102) into the left side of (100), then we can
rewrite the expression by

ct+A {[f (b) + (x - b)] (1 _ e—a(x—h))

—a(x— 11 e
+(x—b)e“(XB)——+—ea(Xb)}
a o«

+[(A+8) f(b) —c]e ™™ — (A +8) (f (b) + (x - b))

A el
=(c-8f)-Z)(1-e**P) 5 (x-b).
@ f()a)( e ) 5 (x - b)
(103)
Therefore (100) is established if and only if f(b) > [ac — A -

ad(x — b)/(1 — e ** ™ )]/(ad) for all x > b. When x — b,
f(b) = (ac — A = 8)/(ad).
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In (94), let x = b. From f(b) > (ac — A — §)/(ad), we find
that

0=cf" (b) + (ac — (A + 8)) — adf (b)

<cf" () + (ac— (A +8)) - aa"‘c;—g‘a _of" ),

(104)

which implies f"'(b) > 0.
On the other hand, because f(x) is concave, we have
£"(x) < 0. Particularly, f”(b) < 0. Combining the discussion
above, f"(b) =0.
Furthermore, taking f”(b) = 0and f'(b) = 1 into (94)
yields
A=96

f(b)z‘xc_—

065 (105)

O

Next we will determine C,, C,, and b.
From the expression of f(x) in (95) and f ") = 0 (it has
been proved in Lemma 12), it holds that

1" (b) = Cvie"t + Cple = 0. (106)

The continuously differentiable property of f(x) tells us that

f' () = Cvie"t + Cyvype'?? = 1. (107)
Combining the two equations above, we can get the expres-
sion of C, and C,:

v, v

b’ C, =

C,=——-——
! (v = v) ven

(v) = v,) vpe”?’ (108)

When x = 0, (95) informs us that f(0) = C; + Cz,f'(O) =
C,v; + C,v,. Meanwhile, at x = 0 the integral-differential
equation (91) implies

f0)/¢

of O] [FO-@1dF() -0 +8) 7O =0

(109)
Together with (108), (109) can be rewritten as

e} e*V1b+ Q4! e—vzb

V=V Vi—V,

M (1 _ o @/, >e‘ﬁb+<vl/(vl—vmz)e‘”zbl)
(04

v %
-5 [ 2 e—vlb + 1
(Vz - Vl) V1 (Vl - Vz) V)

e—vzb:| =0,
(110)
which can be used to calculate b.

Proposition 13. The solution of (110) is unique. b = 0 if and
only if

A+82 A (1—e @ thoioy (111)

13

Proof. To analyse the solution of (110), we first define a
function

) efvlz_'_ v efvzz

Vo=V Vi—V,

g(z) =

A_(/) (1 _ e—(a/¢)[(Vz/(Vz-V1)Vl)e_"1’+(vl/(1'1-Vz)vZ)e_vzz])
(04

v v
-4 [ 72 e_"1z + 1 e—vzz]
(v, - V1) Y1 (v - Vz) V2 ’

(112)

where z > 0. In view of v; + v, = [(A +§) — ac]/cand v,v, =
—ad/c, we find that

, Vv _ _
g(Z)ZC 172 (evlz_evzz)
1= "2
% _ v _
+a<_2e ney M, )
Vo=V Vi =V,

_ /\( V2 efvlz + V1 efvzz)
Vi—V V=W

—(“/¢) [(vy/(va=v1)v, )e_vlz+(V1 [(ri=v,)v, Je 27 >0

(113)

-e

which implies g(z) is increasing strictly. So the solution is
unique. Consider

) ) v,
lim g (z) = lim 2 ®
zZ—00 zZ— 00 V2 —_ vl

_Ad (1 _ e—(oc/gb)(m(vl—vl)vl)e’”‘) (114)
[0

V.
—5—2e_vlz] = 00.
(Vz - Vl) V1

Hence b = 0 if and only if g(0) > 0. While

g (0) =C- A—(p (1 _ e_(“/¢)((vl+vz)/v11’z)) _ 6V1 tv,
@ Viva
(115)

A+ A (1 - ¢t hro0/s0)
(04 (04 ’

so the necessary and sufficient condition of b = 0is A + & >
A(/)(l _ e—(occ—(}HB))/qSS). D

Based on the discussion above, we obtain the expression
of f(x). The following proposition will verify the concavity of

f(x).
Proposition 14. f(x) is concave on [0, 00).
Proof. When x € [0,b), from (95) and (108), we have

" VoV b Vv b
f (x) — 271 evl(x )+ 172 evz(x )
Vv, —

>N Vi—V,
(116)
_ N (evl(x—b) _ evz(x—b)) <0
V=V
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due to the fact v, < 0 and v, > 0. What is more, f"'(x) = 0
for x > b. Therefore f "(x) < 0 on [0, 00). This establishes the
concavity of f(x) on [0, 00). O

Proposition 15. f(x) is the solution of HJB equation (72)
when x € [0, 00).

Proof. From the construction of f(x),
f’(x):l for x> b

x+f(0)/¢
C+AJ

f(x-y)ae™@dy-(A+8) f(x)=0 (117)
for0<x<b

are established obviously. We only remain to show that f(x)
satisfies

f’(x)> 1 for0<x<b, (118)
x+£(0)/¢
e[ - y)aedy- (4 8) () <0
(119)
for x > b,
fl(x)<¢ for x>0 (120)

From the concavity of f(x) and f'(b) =1, (118) is true.
Similar to the proof in Lemma 12 we can show (119) is
established.
To prove (120), according to the concavity of f(x), we
only need to show f’(O) < ¢. Let x = 0 in (91) and assume
that £'(0) > ¢. We find

acf' (0) = Ag + Age™ /SO

f(0)= 3
acp- Mg Ao DO
B a0 (121)
ae— A+ e~ @DFO
=¢ f79)

oc

> 9% 0 g5 ).

The last equality comes from f(b) = (ac — A — §)/ad which
is proved in Lemma 12. While f(0) > ¢f(b) is impossible
because f(x) is increasing and ¢ > 1. This also tells us
that f'(O) < ¢. Therefore f’(O) < ¢. And the proof is
completed. O

The following theorem gives the optimal value function
and optimal strategies when the claim size is exponentially
distributed.

Theorem 16. Suppose F(x) = 1 — e **. The value function
V(x) and the optimal strategy are as follows.

Mathematical Problems in Engineering

1) If A+ < Ap(1 — e @Ay o yalue function

0 if x < -2%,
V(0) + ¢x if —z" <x<0,
\%4 = 122
) Ce"* + Ce™ if0<x<b, (122)
x-b+Ce"+Ce? ifx>b,

where C,, C, are given by (108). The optimal lower
capital injection barrier —z* = -V(0)/¢ and the
optimal upper capital injection barrier a = 0. The
optimal dividend barrier b can be calculated from (110).

(2) If A+ 8 = Ap(1 — e~ @Ay o value function

V (x)

(0 if x <-2%,
V(0) + ¢x

- [¢W (% e—(ac—w)/qba)

_ +()CC(_SMZ)](oc+(/)x)71 if —z"<x<0,

x+V(0)

B

+(XC+A¢] () if x>0,

(123)

where W(x) is Lambert W function which is the
solution of W(x)e"'™ = x. The optimal lower capital
injection barrier —z* = -V(0)/¢ and the optimal
upper capital injection barrier a = 0. The optimal
dividend barrier b = 0.

Proof. (1) For x > 0, because f(x) is the solution of HJB
equation (72) on [0, 00), from Theorem 11, we know V(x)
coincides with f(x) on [0, 00). Because V(x) is concave on
[0, 00), Proposition 9 and the expression (73) inform us what
are the optimal upper and lower capital injection barriers.
Under the condition in (1), b > 0 by Proposition 13. b can
be derived by (110). When x < 0, the expression of V(x) has
been discussed in (74). Therefore, (122) is established. Figure 1
shows us the sample path of the reserve process under the
optimal strategy 7" and Figure 2 is the figure of the value
function V(x).

QIA+8 = Ap(1 — e @MDY then b = 0
by Proposition13. b = 0 means that under the optimal
strategy, the shareholders will act as the insurer: they receive
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F1GURE 1: The sample path of the reserve process under the optimal
strategy 7"

V(x)

I
I
I
I
1
1
I
I
I
I
1
1
I
I
I
I
1
1
I
:
b

s
-z

FIGURE 2: The value function V(x).

the premium income and pay each claim in full when it occurs
(see Dickson and Waters [7]). V(0) must be recalculated by

T
V(0)=E “0 ce”®dt +e7°T (V(0) = ¢Y) 1y cviog)

J /\e_)LSJ cedtds
0

0

© —As_—0s vore (3
+ J e e J (V(0) - ¢y) ae™dy ds
0 0

o —8/\?5 . )‘_‘g V)
& (04
(124)

So V(0) = [pW((A/8)e /%) 4 (ac — Ap)/8]/ax, where
W(x) is Lambert W function which is the solution of
W(x)eV® = x. —z* = -V(0)/¢ and a = 0 are same as the
discussion in proof of (1). Therefore, V(x) can be expressed
by (123). Figure 3 is the figure of the value function V(x).
Note that it is the first time that Lambert W function is
used in the risk theory. It simplifies the expression of V(x)
when b = 0. O]
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V(x)

2 t

FIGURE 3: The value function V(x).
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This paper is concerned with optimal control problems of forward-backward Markovian regime-switching systems involving
impulse controls. Here the Markov chains are continuous-time and finite-state. We derive the stochastic maximum principle for
this kind of systems. Besides the Markov chains, the most distinguishing features of our problem are that the control variables
consist of regular and impulsive controls, and that the domain of regular control is not necessarily convex. We obtain the necessary
and sufficient conditions for optimal controls. Thereafter, we apply the theoretical results to a financial problem and get the optimal

consumption strategies.

1. Introduction

Maximum principle was first formulated by Pontryagin et
al’s group [1] in the 1950s and 1960s, which focused on the
deterministic control system to maximize the corresponding
Hamiltonian instead of the optimization problem. Bismut [2]
introduced the linear backward stochastic differential equa-
tions (BSDEs) as the adjoint equations, which played a role
of milestone in the development of this theory. The general
stochastic maximum principle was obtained by Peng in [3] by
introducing the second order adjoint equations. Pardoux and
Peng also proved the existence and uniqueness of solution for
nonlinear BSDEs in [4], which has been extensively used in
stochastic control and mathematical finance. Independently,
Duftie and Epstein introduced BSDEs under economic back-
ground, and in [5] they presented a stochastic recursive utility
which was a generalization of the standard additive utility
with the instantaneous utility depending not only on the
instantaneous consumption rate but also on the future utility.
Then El Karoui et al. gave the formulation of recursive utilities
from the BSDE point of view. As found by [6], the recursive
utility process can be regarded as a solution of BSDE. Peng [7]
first introduced the stochastic maximum principle for opti-
mal control problems of forward-backward control system

as the control domain is convex. Since BSDEs and forward-
backward stochastic differential equations (FBSDEs) are
involved in a broad range of applications in mathematical
finance, economics, and so on, it is natural to study the con-
trol problems involving FBSDEs. To establish the necessary
optimality conditions, Pontryagin maximum principle is one
fundamental research direction for optimal control problems.
Rich literature for stochastic maximum principle has been
obtained; see [8-12] and the references therein. Recently, Wu
[13] established the general maximum principle for optimal
controls of forward-backward stochastic systems in which
the control domains were nonconvex and forward diffusion
coeflicients explicitly depended on control variables.

The applications of regime-switching models in finance
and stochastic control also have been researched in recent
years. Compared to the traditional system based on the diffu-
sion processes, it is more meaningful from the empirical
point of view. Specifically, it modulates the system with a
continuous-time finite-state Markov chain with each state
representing a regime of the system or a level of economic
indicator. Based on the switching diffusion model, much
work has been done in the fields of option pricing, portfolio
management, risk management, and so on. In [14], Crépey
focused on the pricing equations in finance. Crépey and
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Matoussi [15] investigated the reflected BSDEs with Markov
chains. For the controlled problem with regime-switching
model, Donnelly studied the sufficient maximum principle
in [16]. Using the results about BSDEs with Markov chains in
[14, 15], Tao and Wu [17] derived the maximum principle for
the forward-backward regime-switching model. Moreover, in
[18] the weak convergence of BSDEs with regime switching
was studied. For more results of Markov chains, readers can
refer to the references therein.

In addition, stochastic impulse control problems have
received considerable research attention due to their wide
applications in portfolio optimization problems with trans-
action costs (see [19, 20]) and optimal strategy of exchange
rates between different currencies [21, 22]. Korn [23] also
investigated some applications of impulse control in math-
ematical finance. For a comprehensive survey of theory of
impulse controls, one is referred to [24]. Wu and Zhang [25]
first studied stochastic optimal control problems of forward-
backward systems involving impulse controls, in which they
assumed the domain of the regular controls was convex
and obtained both the maximum principle and sufficient
optimality conditions. Later on, in [26] they considered the
forward-backward system in which the domain of regular
controls was not necessarily convex and the control variable
did not enter the diffusion coefficient.

In this paper, we consider a stochastic control system, in
which the control system is described by a forward-backward
stochastic differential equation, all the coefficients contain
Markov chains, and the control variables consist of regular
and impulsive parts. This case is more complicated than
(17, 25, 26]. We obtain the stochastic maximum principle
by using spike variation on the regular control and convex
perturbation on the impulsive one. Applying the maximum
principle to a financial investment-consumption model, we
also get the optimal consumption processes and analyze the
effects on consumption by various economic factors.

The rest of this paper is organized as follows. In Section 2,
we give preliminaries and the formulation of our problems.
A necessary condition in the form of maximum principle
is established in Section 3. Section 4 aims to investigate
sufficient optimality conditions. An example in finance is
studied in Section5 to illustrate the applications of our
theoretical results and some figures are presented to give
more explanations. In the end, Section 6 concludes the
novelty of this paper.

2. Preliminaries and Problem Formulation

Let (Q, F,{F }o<i<1» P) be a complete filtered probability
space equipped with a natural filtration &, generated by
{B,a; 0 < s < t},t € [0,T], where {B,}oc;r is a d-
dimensional standard Brownian motion defined on the space,
{oy, 0 < t < T} is a finite-state Markov chain with the state
space given by I = {1,2,...,k}, and T > 0 is a fixed time
horizon. The transition intensities are A(i, j) for i # j with
A(i, j) nonnegative and bounded. A(i,i) = =2 ;g AG ).
For p > 1, denote by S*(R") the set of n-dimensional adapted
processes {¢,, 0 < t < T} such that [E[supoStSTI(ptlp] < 400
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and denote by H(R") the set of n-dimensional adapted

processes {y,, 0 < t < T} such that [E[(IOT |1//t|2dt)P/2] < +00.

Define 7 as the integer-valued random measure on
([0, T]xI, %B([0, T])®%B ;) which counts the jumps 7", (j) from
« to state j between time 0 and t. The compensator of 7/,(j)
is 1y 4 Ao, j)dt, which means d7/,(j) — 1y, 4 y Aoy, j)dt =
d‘?t( j) is a martingale (compensated measure). Then the
canonical special semimartingale representation for « is
given by

doy = Y Mo j) (j-a)dt+ ) (j - )d7,(j).

jeI jeI
Define n,(j) 1,4 3AMey, j). Denote by ., the set of
measurable functions from (I, %}, p) to R endowed with
the topology of convergence in measure and |v|, = X

[v(j)znt(j)]l/2 € R, U {+oo} the norm of ./ ,; denote by H:;
the space of P-measurable functions V: Q x [0,T] x I — R
such that ¥ o, E[([ V,(j)*m,(j)d)?"?] < +oo.

Let U be a nonempty subset of R and K nonempty
convex subset of R". Let {r;} be a given sequence of increasing
F,-stopping times such that 7, T +oco asi — +o00.
Denote by 7 the class of right continuous processes #(-) =
Yis1 M1 17 (+) such that eachr; isan % -measurable random
variable. It's worth noting that, the assumption 7; T +co
implies that at most finitely many impulses may occur on
[0, T]. Denote by % the class of adapted processes v : [0, T] x
Q — U such that E[supOStsTlvtP] < +o00 and denote by
K the class of K-valued impulse processes 17 € ¥ such that
E[(Qs, |17i|)3] < +00. A = U x K is called the admissible
control set. For notational simplicity, in what follows we focus
on the case where all processes are 1-dimensional.

Now we consider the forward regime-switching systems
modulated by continuous-time, finite-state Markov chains
involving impulse controls. Let b : [0,T] x I x R — R,
0:[0,T]xIxR — R,andC : [0,T] — R be measura-
ble mappings. Given x € R and 5(-) € %, the system is
formulated by

dx, =b(t, o, x,) dt + o (t, o, x,) dB, + C,dy,,
(2
Xy = X.

The following result is easily obtained.

Proposition 1. Assume that b, o are Lipschitz with respect to
x, b(-1,0), 0(-,i,0) € H*(R), Vi € I, and C is a continuous
function. Then SDE (2) admits a unique solution x(-) € S (R).

Given { € L*(Q, Fr,P;R) and 5(-) € K, consider the
following backward regime-switching system modulated by
Markov chains «, involving impulse controls:

dy, == f (b6 yp 2o We (), (1), W, (k) (K)) dt
+2,dB, + Z‘/Vt (/) d7, (j) - Dydn,
jeI

yT = c’
€)
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wheref:[O,T]xIXleRka—>|RandD:
[0,T] — R are measurable mappings and W : Q x
[0,T] x I — R is a measurable function such that };; E

[y WG (DdD*?) < +oo

Proposition 2. Assume that f(t,i,y,z, p) is Lipschitz with
respect to (y,z, p), f(-,0,0,0) € H3*R), Vi € I, and D is a
continuous function. Then BSDE (3) admits a unique solution
() 2(), W() € S(R) x H(R) x Hy(R).

Proof. Define A, := jot Dgdn, = Y. D.n; and F(t,4, ,
z,p) = f(t,i,y — A, 2z, p), Vi € I. It is easy to check that

|F (t.i,y,2,p) — F (.1, 5,2, p'))|
(4)
<a(ly-y|+lz==]+]p- ).

Since #, is uniformly bounded, we have

(W, (5) - W, (D) ()] < W, -W/|, Vel (5

Here ¢, ¢, are positive constants. Then F is Lipschitz with
respect to (y,z, W). We also get that F(,1,0,0,0) € H*(R)
and E|{ + AT|3 < +00. Hence, the following BSDE

dy,= -F(t,a,Y,, Z,, M, (1) n, (1),..., M, (k) n, (k)) dt

+Z,dB, + ZMt (j) a7, (/)
jeI
Y =0+ Ar
(6)

admits a unique solution (Y, Z, M) € S (R)xH*(R) XH;(R)
(see [15, 18] for details). Now define y, := Y, — A,, z, := Z,,
and W, := M,. Then itis easy to check that (y,z, W) € S (R)x
H’(R) x H3.(R) solves BSDE (3).

Let (yl, z', W) and (yz,zz, W?) be two solutions of (3).
Applying It&’s formula to (y! — y7)%, t < s < T and combining
Gronwall’s inequality, we get the uniqueness of solution. [J

Now, we consider the following stochastic control system:
dx, =b(t,a, x,,v,)dt + o (t,0,,x,) dB, + C,dn,,

dy,
=—f(t,ap, xp Y26 W, (D)1, (1), ..., W, (k) n, (k) , v,) dt

+2z,dB, + Z‘/Vt (j) d%t (j) - D,dny,
je1
yr=g(xr),

Xy = X,

7)

whereb: [0, T] X IXRxU — R,0:[0,T]XxI xR — R,
Fl0TIXIXxRxRxRxRFxU - R,andg: R — R
are deterministic measurable functions and C : [0,T] — R,
D : [0,T] — R are continuous functions. In what follows

(W, (Dn, (1), ..., W (k)n,(k)) will be written as W,n, for short.
The objective is to maximize, over class &/, the cost functional

T
J (V(') N ()) =E { L h(t» (Xt’xt’yt’zt"/vtnt’vt) dt+¢ (xT)

+y (yo) + Zl (7 ’11')} >

i>1

(8)

whereh : [O,T]XIXRXRXRXkaU - R,¢:R - R,y:
R — R,and!: [0,T]xR — R aredeterministic measurable
functions. A control (u, &) which solves this problem is called
an optimal control.

In what follows, we make the following assumptions.

(H1) b, 0, f, g, h, ¢, and y are continuous and continuously
differentiable with respect to (x, y,z, p). b, f have
linear growth with respect to (x, y, v). [ is continuous
and continuously differentiable with respect to #.

(H2) The derivatives of b, o, f, and g are bounded.

(H3) The derivatives of h, ¢, y, and [ are bounded by K(1 +
lx| + [yl + |z| + [pl + [v]), K(1 + |x]), K(1 + |yl]), and
K(1+|n]), respectively. Moreover, |h(t, i, 0, 0,0, 0, v)| <
K(1 + |v]*) for any (t,v),i € L.

From Propositions 1 and 2, it follows that, under (HI)-
(H3), FBSDE (7) admits a unique solution (x(-), ¥(-), z(-),
W() € S (R) x S (R) x H*(R) x H3(R) for any (v,7) € of.

3. Stochastic Maximum Principle

In this section, we will derive the stochastic maximum prin-
ciple for optimal control problem (7) and (8). We give the
necessary conditions for optimal controls.

Let &() = Y1 &1 () and (u(-),§()) € o be an
optimal control of this stochastic control problem and let
(x(), ¥(-),2z(:), W(-)) be the corresponding trajectory. Now,
we introduce the spike variation with respect to u(:) as
follows:

us(t):{v’ ifr<t<t+e, ©)

u(t), otherwise,

where 7 € [0,T) is an arbitrarily fixed time, ¢ > 0 1is a
sufficiently small constant, and v is an arbitrary U-valued
F .-measurable random variable such that Elv® < +00. Let
n € 7 be such that £ + # € F. For the reason that domain
K is convex, we can check that & = &+ e, 0 < ¢ <
1, is also an element of . Let (x°(-), ¥*(-), 2°(:), W:()) be
the trajectory corresponding to (u°(-), £°(-)). For convenience,
we denote y(t) = y(t, X, V2, Win,u,), w(u) =
ll/(t’ (xt’ xt’ yt’ Zt’ ‘/tht’ ui) fOl’ 1// = b’ o, f’ h’ bx’ bv’ Ux’ Uv’ fx’

fy’ fo fw(j)’ S heo hy’ h, huJ(j)’ h,, where fw(j) = fW(j)ﬂ(j)’
w(j) == Wn()-



Introduce the following FBSDE which is called the varia-
tional equation:

dx; = [b, (t)x; +b(u) - b ()] dt + 0, (t) x;dB,

+¢eC,dn,,

dy, = - | feOx, + f, )y + f,(O 7

+ wa(j) ) P, (j) m, (j) +

JjeI

f(ui)—f(t)} dt

+z,dB, + Y P, (j)d7, (j) - eD,dn;,
jeI

=0, yp =g () g

(10)

Obviously, this FBSDE admits a unique solution (x', y', 2,
P) € (R) x S’(R) x H*(R) x H,(R).

We have the following lemma. In what follows, we denote
by ¢ a positive constant which can be different from line to
line.

Lemma 3. Consider

3
sup [E|xt' <ce, (11
0<t<T

R (IO
+)E [(LT [P (D (7) dt)m] <.

jeI

(12)

Proof. By the boundedness of (b,
inequality, we have

,0,) and using Holder’s

sup [E|x1|

0<t<r

r 1 3
< CJ x| |dt
0 |O0<s<t
3 3

+c[E(JOT |b(uf)—b(t)|dt) +cs3E<JOT |Ct|d11t> ,

(13)

V0 < r < T. Noting the definition of u®(-), we get

e [ ow)-

= [E(LHS b (t, 0, x,,v) = b (1) dt)

3

b(t)ldt)

3
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<&F J b (t o x,,v) = b (t)|3dt

<c <1+ sup[E[|xt| +|ut| + v ])

o<t<T

(14)
Here we apply Holder’s inequality for p = 3, g = 3/2, and the
growth condition of b in (HI). Since C, is bounded on [0, T,
then (11) is obtained by applying Gronwall’s inequality.
By the result of Section 5 in [6] and noting that the
predictable covariation of 7,(j) is
(7, (7). 7, (j)), = (j)dt, (15)

we obtain

R ((NEEON
+Z[E [(J P, (j)] nt(])dt>3/2]

jeI

T 3
< celg. (er) il (|| [0+ £ ) - £ 0] at)

3

T
+ cs3[E(J |D,| dnt> .
0

On the one hand, since g, is bounded, by (11), we have

(16)

[E'gx (xr) xH3 <ce. 17)

On the other hand, since f, is bounded, using the basic
inequality and (11), we have

f(t)'dt>3

([ 15005+ ) -

(18)
3

<cevee( [ 17 ) - s @]a)

From the growth condition of f in (Hl) and the same
technique as above, it follows that

[E(JOT If (uf) = f @) dt>3 <ce. (19)

Besides, D, is bounded on [0, T]; then (12) is obtained. The
proof is complete. O

QSHOte;C\t =X =X =X = VMV B = 25 -5,
and W, = W/ — W, — P,, and then we have the following.
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Lemma 4. Consider

sup [E|3?t|2 < Cssz, (20)
0<t<T
~ |2 T p s 2 .
sop Elsif* +E | [ [aar |+ T | [ % G)f'n () e
0<t<T 0 jeI 0
< Cgsz,
(21)

where C, — 0ase — 0.

Proof. It is easy to check that X satisfies

dx, = [A, () + A, (t)]dt +[E, (t) + B, (t)] dB,,

(22)
%, =0,
where
Ay () :=b(t e, x5, u;) = b (t, 0 Xp + Xy, U )
A, (1) = b(t,oct,xt + xtl,uf) ~b(u) - b, (t) x;,
(23)
E () =0(ta,x;)—0 (t, o, Xy + xtl),
8 1) =0 (toapx, +x;) -0 (t)—o,(t)x,.
Then we have
; 2
sup E|%,|” < c[E(J |AL () + A, (t)|dt>
0<t<r 0
(24)

+cE J |2, (t) + B, ()| dt
0

V0 < 7 < T.Since Ay () = [ byt & x, + x! + A%, ul)dAR,,
by the boundedness of b, , we have |A | (t)| < ¢|X,|. Further we
get

r 2 r
[E(J |A1(t)|dt) <cE | [z (25)
0 0

On the other hand, since A,(t) = _[01 [b.(t, X, + /\xtl, u;) -
bx(t)]d/\xtl, we have

r T
J |A2(t)|dtgj |[A,@®)|dt <I,+1,, (26)
0 0

Jl (b (£, x, + Ax),v) — b, ()] dAx! | dt,
0

jl (b (0, + Ax), 1) — b, (0)] dAxc| .

(27)

5
Since b, is bounded, by Lemma 3 we get
2
El1,|
T+e 1 2
<e J E J [bx (t, 0y Xy + Axtl, v) -b, (t)] d)txtl dt
T 0
< e 12
< ce” sup [E|xt|
0<t<T
< ce'.
(28)

For I,, by Holder’s inequality, Lemma 3, and the dominated
convergence theorem, it follows that

|2

2

E|I,
Jl (b, (£ i x, + Axt ) — by, (6)] dA| dt

{ T
e[
o |Jo
.JT|xt1|2dt]>
0

Jl (b, (£, x, + Axl, 1) — by (0)] dA

0

T 3/2 2/3
X{E(j jifar) }
0

2
<C.e.

(3 1
) }

(29)
Then we get
[E<Lr 1A, 0) dt>2 <E(LP+ L) e G0
and obtain
[E(JOT A, () + A, (1) dt)z <C.é +cE JOT % fdr. 3D
In the same way, we have
E Lr I8, (1) + &, (1) dt < C.® + cE Lr % fdr. (2
From (24), (31), and (32) it follows that

.
sup [E|3?t|2 <Ce+c J [ sup [E|9?5|2] dt. (33)

0<t<r 0 [0<s<t

Finally, applying Gronwall’s inequality implies (20). O
To get estimate (21), for simplicity, we introduce
0, = (t, A X, + AKX, Y, + Ay 2, + Az, (W, + AP,) nt) ,
DI (t, ay, X, + xt1 +AX, ¥, + ytl + AV, 2, + zt1 + Az,

(Wt + P+ AWt) nt).
(34)



It is easy to check that (7, Z, W) satisfies

~[fi®+ fo®)]dt +ZdB, + YW, (j)

jeI

)d7,(j)

=G +Gy,
(35)

where

fi )= f(ta,xi, vz Wing, uy)
- f(t, Oy, Xy + xtl,yt + ytl,zt + ztl,
(W, + ) nppuif),
L) :=f (t,(xt,xt + xtl,yt + y:,zt + ztl, (W, +PB,) nt,uf)
~f ()~ o) x - £,y
=2 fuiy O P () e ().

JjeI

_fz (t) Ztl

G, = g(xy) - g (r +x7),

Gy=g (xT + xlT) =g (%r) = gy (1) xlT-
(36)

Similar to the proof above, we have

1 1
K= [ o)z | f, o) d,
1
o[ @z,
0

o3 [ S o) T, (), ).

JjeI
1
L0 = [ 1fe©u) - fow]di,
! 1
S RIACKAEYACI
f- (O] dAz

S RIACKTE

+ 3 [ [up ©0) - fuy @] 1B G ().

jel
1

G, = J Ix (xT +xp + )LJ?T) dAXr,
0

1
Gy = | o (r + 2} - g, (xr)]
(37)
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Then for BSDE (35), by the estimates of BSDEs, we obtain
~ 2 . 2 NG .
sup [E|)’t| +E J |Zt| dt Z[E J | t(])l n, (j)dt
0<t<T 0

JjeI
2
<ckE
0

Jl Iy (xT + x; + MET) dAX;

2

[ o (e + 048) - g (o) e

9

[REACREEATI

2

1
Jo fre (B uf) dAx,

2

.
9
dt)z

2

[ 1 @) 1, 0] ary

J T Ll £ (@) - £, (1)) dAz,

(38)

Applying Holder’s inequality, Cauchy-Schwartz inequality,
the dominated convergence theorem, Lemma 3, and (20) and
noting the boundedness of #,, we obtain (21).

Now, we are ready to state the variational inequality.

Lemma 5. The following variational inequality holds:
T
e[ (m®xt+h, @y +h0)z]
0

+ Zh ])(t)P( ) n (7) +h () - h(ﬂ)dt]

jeI

E [¢x (er) xp + vy (30) yo + € L (1) m] <o(e).
i>1

(39)
Proof. From the optimality of (u(-), £(+)), we have

J((),80)-Tw(),&() <0. (40)
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By Lemmas 3 and 4, we have

E [¢ (x7) = ¢ (x7)]
=E[¢(x}) - ¢ (oer + x7) ] + E [ (20 + x7) = ¢ (x1)]

E [, (xp) x1] +0(e),
Ely(v5) —v (o)l
=E[y () -y(3o+ )] +E[y (30 +3) - v()]

=E [y, () o] +0(®).
(41)

Similarly, we obtain
E [Zl (Ti)ff) - Zl (Ti)fi):| =¢E |:Zl£ (1) ’1:'] +o(e).
i>1 i>1 i>1
(42)

Next, we aim to get the first term of (39). For convenience, we
introduce two notations as follows:

T
H,:=E [Jo (h (t o, X5, y;> 20, Wing, ;)
1 1
—h(topx, + X5 9, + 92

+ z,, (W, + P)n,, uf)) dt] ,

T
H,:=E l J <h<t’at’xt+xtl’yt+ytl’
0

Zy +Zt1’(‘/Vt+Pt)”t>uf>
~h () = hy (£)x} —h, (t) y}

- h, (t)Ztl - Zhw(j) ) P, (j)n, (]))dtjl .

jer
(43)

Applying the same technique to the proof of Lemma 4, we
obtain

H,~H,=o0(e). (44)

Hence

T
E ||| (e iz W) ~ h ) e
T
- J B (6)x+ b (6) y) + B (6) 2}
0

+ D hyy O () n () +h(uf) -k (t)> dt}

JjeI

+o0(e).
(45)

Thus, variational inequality (39) follows from (41)-(45).
Let us introduce the following adjoint equations:

dp, = [f, (®) p,—h, (©)] dt + [f, () p, — b, (£)] dB,

+ 2 [futp ) P = hauy 9] A7,.(7), (46)

jel
Po="Yy (o)
_dqu = [bx (t) q; + 0y (t) kt - fx (t) pt + hx (t)] dt

~ kdB, - Y M, (j)d7, (j), (47)

jel

ar = =g (x1) pr + ¢ (x1).
where ¢,,;(t-) Puij) (0 X Yo 2, Winy_, ) for
@ = f,h. It is easy to check that SDE (46) admits a unique
solution p(-) € S*(R). Besides, the generator of BSDE (47)
does not contain M,(j). Therefore, the Lipschitz condition
is satisfied obviously. Hence (47) admits a unique solution
(q(), k(-), M(-)) € S (R)x H*(R) XH;(R). Now we establish
the stochastic maximum principle. O

Theorem 6. Let assumptions (HI1)-(H3) hold. Suppose
(u(-),&(-)) is an optimal control, (x(-), y(-),z(-), W(-)) is the
corresponding trajectory, and (p(-),q(-),k(-), M(:)) is the
solution of adjoint equations (46) and (47). Then, Vv € U,y
(1) € A, it holds that

H(t, Ky Xts Vis Zps ‘/Vt’v’ Ps> qt’kt)
(48)
— H (t, 0, X ¥y 20 Wpo Uy P Gpo k) <0, ace., aus.,

- [Z (lf (Ti’fz’) + q'r,-c'r,- - PT,-DTi) (771 - Ez) <0, (49)

i>1

where H : [0, TIXIXRXRXRX M, xUXxRxRxR — R
is the Hamiltonian defined by

H(t, o, x, ¥, 2,W,v, p,q,k)
=—f(ta,x,y.2,Wn,v) p+b(t,a, x,v) g+ 0 (t, o, x) k

+h(t o, x, y,2,Wn,v),
(50)

where Wn, = (W(1)n,(1),..., W(k)n,(k)).



Proof. Applying Itd’s formula to p,y, + g,x; and combining
with Lemma 5, we obtain

T
E [L (H (t’ ‘xt’xt’yt’zt’m’uf’Pt»%’kt)

_H(t’ Qs Xp> Vo 2 Wi Uy Pt’%’kt)) dt] (51)
+eE [Z (lg (1, &) + 9.C. - PT,.DT,.) Gi] <o(e),
i>1

where 6 € .7 such that £ + 0 = 57 € F#. Then it follows that

T+e
e'E [J (H (t, 0, X1 Y 20 W v, P G- Ky )

T

—H (t, &, Xp» 1> 20 Wy Uy, P> G k) dt] (52)
+E |:Z (lf (Ti’gi) + qT,-C‘r,- - PT,-DTi) 91] <0.
i>1
Lettinge — 0, we obtain
I]E [H (T’ aT’ xT’ y‘[’ ZT’ WT’ V’ pT’ qT’ kT)
- H (T’ &> X5 Vo> 25 W‘r’ Urp, Pr> 9o k‘r)]
(53)
+E Z (ZE (Ti’Ei) + qTiCTi - pr,»DTi) ei <0,
i>1
ae. T€[0,T].

By choosing v = u, we get (49). Setting 7 = &, then for any
v € F_ we have

E [H (T> &> X Vo> 2 Wr’ Vs Pr>qr> kT)
(54)
-H (T’ O X5 Vo> 25 W‘r’ Uss P> s k‘r)] <0, ae

Letv, =vl, +u 1, for A € ¥ andv € U. Obviously v, €
F . and [E|1/T|3 < +0c0. Then it follows that for any A € &,

E {[H (T’ &> X V> 2 Wr’ Vs Pr>Gr> kr)

- H (T’ O X5 Vo> 2o W‘r’ Ups Prs s kr)] lA} <0, ae,

(55)
which implies
E{[H (7, &g, Xp5 Yoo 2o Wes Vs o G K )
= H (7,00, X0 Y00 20 Wy U, P> G ki )| | F 1}
= H (7,00 %0y 20 Wo ¥, i s )
—H (1,0, %0 Y5 20 Woo Ui, Prr G k) <0, e, ass.
(56)

The proof is complete. O
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4. Sufficient Optimality Conditions

In this section, we add additional assumptions to obtain the
sufficient conditions for optimal controls. Let us introduce
the following.

(H4) The control domain U is a convex body in R. The
measurable functions b, f, and [ are locally Lipschitz
with respect to v, and their partial derivatives are
continuous with respect to (x, y, z, W, v).

Theorem 7. Let (H1)-(H4) hold. Suppose that the functions
oC), y(), n —
concave and (p(-),q(),k(:), M(-)) is the solution of adjoint
equations (46) and (47) corresponding to control (u(-),&(-)) €
d. Moreover, assume that y," is of the special form y;" =
K(ocT)x;'7 + ¢, Y(v,n) € o, where K is a deterministic
measurable function and { € L*(Q, F 1, P;R). Then (u,&) is
an optimal control if it satisfies (48) and (49).

Proof. Let (x,", y/", 2", W,”") be the trajectory correspond-
ing to (v,n) € o/. By the concavity of ¢,y and 5 — I(t,7), we
derive

J(vsn) =T (u,&)

T
<FE U (h(tyo, x, y7" 2 W, T, v,) — (1)) dt
0

+E [Zlf (7:&) (n; - fz)] .
. (57)
Define
Z""(t) = H (t,a, x", 37" 27 W v, proqe k) - (58)
Applying It&’s formula to (x" — x**)g, + (3" — y***)p, and
noting qr = —K (o) pr + ¢, (x%), we obtain

J(v,n) =T (u,&)

0

<E [ IT <%"’" (t) = " (1) - e (1) (%" — x°)
_ %;’5 0 (y;”ﬂ _ J’?’E> _ %:’f 0 (Z:’ﬂ _ Z?’E)

X NOIUANORIAIO)E (j)) dt}

JjeI
+E |:Z (IE (Ti>fi) + qricr,» - p-r,.D-ri) (’71 - E,):|

=1 + 1.
(59)
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By (48) and Lemma 2.3 of Chapter 3 in [27], we have

0€0, 7" (t). (60)

By Lemma 2.4 of Chapter 3 in [27], we further conclude that

(745 (1), 755 (0), 25 (1), T (6),0) €0,y 7 (1),
(61)
Finally, by the concavity of H(t, &, -, *» > P> ;> k;) and (49),

we obtain I} < 0,T, < 0. Thus, it follows that J (v, ) - J (1, §) <
0. We complete the proof. O

5. Application in Finance

This section is devoted to studying an investment and con-
sumption model under the stochastic recursive utility arising
from financial markets, which naturally motivates the study
of the problem (7) and (8).

5.1. An Example in Finance. In a financial market, suppose
there are two kinds of securities which can be invested: a
bond, whose price Sy(t) is given by

dSy (t) = 1,8, () dt, S, (0) >0, (62)

and a stock, whose price is

ds, ) =S, () (wdt +0,dB,), S;(0)>0. (63)
Here, {B,} is the standard Brownian motion and r,, 4,, and
o, are bounded deterministic functions. For the sake of
rationality, we assume g, > 7,, g} > 8 > 0. Here, & stands for
a positive constant, which ensures that o, is nondegenerate.
In reality, in order to get stable profit and avoid risk of
bankruptcy, many small companies and individual investors
usually make a plan at the beginning of a year or a period, in
which the weight invested in stock was fixed. Denote by 7, the
weight invested in stock which is called the portfolio strategy.
It means no matter how much the wealth x, is, the portfolio
strategy 7, is fixed, which is a bounded deterministic function
with respect to t. Then the wealth dynamics are given as

dx, = [ryx, + (g — 1) 1%, — 6] dt
+ o,m,x,dB, — 6dn,, (64)
xXg=x>0,

where 6 > 0,¢ > 0, and 7, Yis1 Miliz,) (). Here,
¢ is a continuous consumption process, 7, is a piecewise
consumption process, and 0 is a weight factor. Not only in the
mode of continuous consumption, but also in reality society,
one consumes piecewise. Hence our setting of consumption
process is practical.

Besides, if the macroeconomic conditions are also taken
into account in this model, above model has obvious
imperfections because it lacks the flexibility to describe
the changing stochastically of investment environment. One
can modulate the uncertainty of the economic situation by

a continuous-time finite-state Markov chain. Then the wealth
is formulated by a switching process as

dx, = [r (t> o) x, + (P‘ (t> (Xt) -r (t’ “r)) T (t7 (xt) X = Ct] dt
+o(t,a)m(t o) x,dB, — Odn,,
Xy = X, oy = 1.
(65)

Let U be a nonempty subset of {R, U 0} and K a nonempty
convex subset of {R, U 0}. Suppose {#,} is the natural
filtration generated by the Brownian motion and the Markov
chains, ¢, is an F,-progressively measurable process satisfy-
ing

T
G €U, as, ae, [Ej |ct|3dt < 400, (66)
0

{r;} is a fixed sequence of increasing F,-stopping times, and
each #; is an & -measurable random variable satisfying

2
n; € K, as., [E(Z |17i|> < +00. (67)

i>1

We consider the following stochastic recursive utility, which
is described by a BSDE with the Markov chain «:

~dy, = [b(t,a) %, + f(to) y + g (t ) 2, — ¢ ] dt

- zdB, - Z‘/Vt (j)d7 . (j) - Gdn,, (68)
jeI

Yr = X5

where I = 1,2,...,k, { > 0. The recursive utility is
meaningful in economics and theory. Details can be found
in Duffie and Epstein [5] and El Karoui et al. [6].

Define the associated utility functional as

)I—R

T
](C(-),ﬂ(-))=[E“ Le*ﬁt(ct

Sy, 2
———dt+=-)n, +Hy, |,
Lt 2;'1, Yo

(69)

where L, S, and H are positive constants, 8 is a discount
factor, and § € (0,1) is also called Arrow-Pratt index of
risk aversion (see, e.g., Karatzas and Shreve [28]). To get the
explicit solution, we also assume b(t,«,) > 0. The first and
second terms in (69) measure the total utility from c(-) and
n(-), while the third term characterizes the initial reserve
¥o- It is natural to desire to maximize the expected utility
functional representing cumulative consumption and the
recursive utility y,, which means to find (c(:), #(-)) satistying
(66) and (67), respectively, to maximize J(c(-),#(-)) in (69).
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We solve the problem by the maximum principle derived
in Section 3. The Hamiltonian corresponding to this model is

H (t, o, %, y,2,¢, p,q, k)
=-plb(ta)x+f(ta) y+g(t.a)z—c]
+qlr(to)x+(p(t o) —r(to))m(t o) x —c]

()™
+ko(t,o)m(t o) x + Le‘ﬁtﬁ,

(70)

where (p,q,k, M) is the solution of the following adjoint
equations:

dp, = f (t. o) pidt + g (t. ) p,dB,,
po =-H,
—dg, = [(r(ta) + (u(t) =1 (to)) 7 (£, ) gy
+o(toy)m(to)k, —b(t o) p] dt

~ kdB, - Y M, (j)d7, (j),

jeI

(71)

(72)

qr = —Pr-

From (71) it is easy to obtain that

o[ e 2ot
(73)

t
+ J g (s a) dBS} <0.
0
To solve (72), we introduce the dual process

dA; = [r(s,a) (1 -7 (s,a,)) +p(s,a)m(s )] Ads
+o(s,a)m(s,a)AdB,,

A=1, (s=t).

(74)

Actually, (74) is solved by

A= e[ [rwa) 0-n(ma)) +ulna) n(na)

- %02 (t,0,) 7 (7, ocT)] dr

+ ra(r, o) (T, ap) dBT} > 0.
(75)
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Applying Itd’s formula to A g, and taking conditional expec-
tation with respect to &, we obtain

q,=E [—pTAT - Jth(s, o) pAds | F,
= e [ew | [ [ () +r(na) (1 - (ra)

Fu(na)(na) - 54 (rna,)

- %oz (t,a,) * (1, ,) | dT

. Lt [r(a) (1-7(ra)
+u(r,o)m(r, )

1 2 2
- 30 (ma) 7 (na) | dr
o[ lotra) +o(na)n(na)]as,

- Jt o(r,a,)m(1,a,) dBT} + Jth(5> o)

0

X exp {Js [f(r, o) +r(ra,)(l-n(r,a,))

0
Fu(na)(na) - 54 (na,)

1
- 502 (t,a,) 7" (1,,) | dT

+u(ro)m(r,ar)

- %02 (t,a,) 7" (7, (xT)] dr

N
v | lo(na) +o(ma)m(na)]as,
t
- J O'(T,OCT)T[(T,OCT)dBT} ds | Fit] .
0
(76)
Note that b(t,e;,) > 0; then we have g, > 0. Thus,
by Theorem 6 we get the optimal consumption processes

(c*(-),n" () for the regime-switching investment-consump-
tion problem (65)-(69) as follows:

. I \VR
¢ = < ) e PR ae, as.,
q9: — Pt

* qu—i - (p‘r,.
qi - S 4

where (p,, q,) is given by (73) and (76), respectively.

(77)

Vi>1, as,
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5.2. Numerical Simulation. In this part, we calculate the
optimal consumption functions explicitly according to (71)-
(77) in the case that all coeflicients are constants and discuss
the relationship between consumption and some financial
parameters, which can further illustrate our results obtained
in this paper. We only consider the optimal regular consump-
tion process ¢*(-) and in this case the Markov chain o, = «
has two states {1, -1}. Here o, will not change from 0 to T.
Further we fix [H, 3, L,R] = [0.1,0.5,2,0.2] and T = 1 year
throughout this part.

5.2.1. The Relationship between c*(t) and r. As o = 1, we set

[r1,72,73, f (&), g (@), (@) , 0 (@) , b () , ]
=[0.02,0.03,0.04,0.1,0.1,0.5,0.2,0.2,0.05] .

(78)

From Figurel, we find that the higher the risk-free
interest rate is, the lower the optimal consumption is. It coin-
cides with the financial behaviors in reality. As the risk-free
interest rate r grows higher, the investors can gain more
profits via deposit. Consequently, the desire of consumption
is declined.

As o = —1, we set

[r1,72,73, f (a), g (a) , 71 (@), 0 (), b (), ] )
=[0.02,0.03,0.04, 0.05,0.05, 0.4, 0.3,0.15, 0.05] .

Figure 2 shows the influence of risk-free interest rate
on the optimal consumption function as « = -1. Same
as Figure 1, when the risk-free interest rate gets higher, the
optimal consumption becomes smaller. From Figures 1 and
2, we also find that under different strategies of government’s
macrocontrol (different «), the optimal consumption has
different values and changes trends with respect to t, even for
the same risk-free interest rate . It is natural because o affects
some parameters in this model such as f, g, 1, 0, and b.

5.2.2. The Relationship between c*(t) and y. The following
two figures show the relationships between the optimal con-
sumption function and appreciation rate of stock. First, for
a =1, wefix

(1, 02,43, f (@), g (@), 1 () ;0 (@) , b (@) , 7]
= [0.05,0.06,0.07,0.1,0.1,0.5,0.2,0.2,0.02] .

(80)

From Figure 3, we can see that the higher the appreciation
rate of stock is, the lower the optimal consumption is. It is also
reasonable since a higher appreciation rate of stock y inspires
investors to put more money into stock market and thereby
reduce the consumption. For a = —1, we fix

(11, p2,u3, f (@), g (a), 7 (@) ,0 (), b (), 7]
= [0.05,0.06,0.07,0.05,0.05,0.4,0.3,0.15,0.02] .

(81)

Figure 4 also presents the same influence of appreciation
rate on the optimal consumption function as « = -1. In
addition, Figures 3 and 4 enhance us to understand that the

1

Optimal consumption function ¢ (t)

0 1 1 1 1 1 1 1 1 1
0 01 02 03 04 05 06 07 08 09 1
Time (t)
— r1 =0.02
-- r2=0.03
r3 =0.04

FIGURE 1: The relationship between ¢*(f) and r as o = 1.

Optimal consumption function c” (t)

0 I I I I I I I I I
0 01 02 03 04 05 06 07 08 09 1
Time (t)
— r1 =0.02
--- r2=0.03
r3 =0.04

FIGURE 2: The relationship between ¢*(¢) and r as a = —1.

optimal consumption has different values and changes trends
with respect to t for the same appreciation rate ¢ by consid-
ering different strategies of government’s macrocontrol.

Based on Figures 1-4, we analyze the relationships be-
tween the optimal consumption function and the risk-free
interest rate, the appreciation rate of stock, and the gov-
ernment’s macrocontrol, which are quite important and ap-
plicable in financial problems.

6. Conclusion

In this paper, we consider the optimal control problem
of forward-backward Markovian regime-switching systems



12

x10*

Optimal consumption function c” (¢)

0.5 e
0 01 02 03 04 05 06 07 08 09 1
Time (t)
— ul =005
C- u2=10.06
3 = 0.07

FIGURE 3: The relationship between ¢*(t) and pras & = 1.

Optimal consumption function c¢” (t)

O 1 1 1 1 1 1 1 1 1
0 01 02 03 04 05 06 07 08 09 1
Time (t)
— ul =005
-.— U2 =0.06
u3 =0.07

FIGURE 4: The relationship between ¢*(¢) and pas o« = —1.

involving impulse controls. The control system is described
by FBSDEs involving impulse controls and modulated by
continuous-time, finite-state Markov chains. Based on both
spike and convex variation techniques, we establish the
maximum principle and sufficient optimality conditions for
optimal controls. Here, the regular control does not enter
in the diffusion term of the forward system. In the future,
we may focus on the cases that the diffusion coeflicient
contains controls, fully coupled forward-backward Marko-
vian regime-switching system involving impulse controls,
and game problems in this framework. It is worth pointing
out that if the domain of regular control is not convex and
the control enters in the forward diffusion coeflicient, it will

Mathematical Problems in Engineering

be more complicated and bring some difficulties immediately
by applying spike variation. Based on the methods and results
of [13], we hope to further research for such kind of control
problems and investigate more applications in reality.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

This work is supported by the National Natural Science Foun-
dation of China under Grants (11221061 and 61174092), 111
Project (B12023), the Natural Science Fund for Distinguished
Young Scholars of China (11125102), and the Science and
Technology Project of Shandong Province (2013GRC32201).

References

[1] L. Pontryagin, V. Boltyanskti, R. Gamkrelidze, and E. Mis-
chenko, The Mathematical Theory of Optimal Control Processes,
John Wiley & Sons, New York, NY, USA, 1962.

J. Bismut, “An introductory approach to duality in optimal
stochastic control,” STAM Review, vol. 20, no. 1, pp. 62-78, 1978.

[3] S.G.Peng, “A general stochastic maximum principle for optimal
control problems,” SIAM Journal on Control and Optimization,
vol. 28, no. 4, pp- 966-979,1990.

[4] E. Pardoux and S. Peng, “Adapted solution of a backward
stochastic differential equation,” Systems and Control Letters,
vol. 14, no. 1, pp. 55-61, 1990.

[5] D. Duffie and L. G. Epstein, “Stochastic differential utility;”
Econometrica, vol. 60, no. 2, pp- 353-394, 1992.

[6] N. El Karoui, S. Peng, and M. C. Quenez, “Backward stochastic
differential equations in finance;” Mathematical Finance, vol. 7,
no. 1, pp. 1-71, 1997.

[7] S. Peng, “Backward stochastic differential equations and appli-
cations to optimal control,” Applied Mathematics and Optimiza-
tion, vol. 27, no. 2, pp. 125-144, 1993.

[8] W. S. Xu, “Stochastic maximum principle for optimal control
problem of forward and backward system,” Journal of the
Australian Mathematical Society B, vol. 37, no. 2, pp. 172-185,
1995.

[9] Z. Wu, “Maximum principle for optimal control problem of
fully coupled forward-backward stochastic systems,” Systems
Science and Mathematical Sciences, vol. 11, no. 3, pp. 249-259,
1998.

[10] J. Yong, “Optimality variational principle for controlled
forward-backward stochastic differential equations with mixed
initial-terminal conditions,” SIAM Journal on Control and
Optimization, vol. 48, no. 6, pp. 4119-4156, 2010.

[11] G. Wang and Z. Wu, “The maximum principles for stochastic
recursive optimal control problems under partial information,”
IEEE Transactions on Automatic Control, vol. 54, no. 6, pp.1230-
1242, 2009.

[12] G. Wang and Z. Yu, “A Pontryagin’s maximum principle for
non-zero sum differential games of BSDEs with applications,”
IEEE Transactions on Automatic Control, vol. 55, no. 7, pp. 1742—
1747, 2010.

S



Mathematical Problems in Engineering

[13] Z. Wu, “A general maximum principle for optimal control of

forward-backward stochastic systems,” Automatica, vol. 49, no.
5, pp. 1473-1480, 2013.

[14] S. Crépey, “About the pricing equations in finance;” in Paris-
Princeton Lectures on Mathematical Finance 2010, vol. 2003
of Lecture Notes in Mathematics, pp. 63-203, Springer, Berlin,
Germany, 2011.

(15] S. Crépey and A. Matoussi, “Reflected and doubly reflected
BSDEs with jumps: a priori estimates and comparison,” The
Annals of Applied Probability, vol. 18, no. 5, pp. 2041-2069, 2008.

[16] C. Donnelly, “Sufficient stochastic maximum principle in a
regime-switching diffusion model,” Applied Mathematics and
Optimization, vol. 64, no. 2, pp. 155-169, 2011.

[17] R. Tao and Z. Wu, “Maximum principle for optimal control
problems of forward-backward regime-switching system and
applications,” Systems ¢~ Control Letters, vol. 61, no. 9, pp. 911-
917, 2012.

[18] R. Tao, Z. Wu, and Q. Zhang, “BSDEs with regime switching:
weak convergence and applications,” Journal of Mathematical
Analysis and Applications, vol. 407, no. 1, pp. 97-111, 2013.

[19] M. H. A. Davis and A. R. Norman, “Portfolio selection with
transaction costs,” Mathematics of Operations Research, vol. 15,
no. 4, pp. 676-713,1990.

[20] B. Qksendal and A. Sulem, “Optimal consumption and portfo-
lio with both fixed and proportional transaction costs,” SIAM
Journal on Control and Optimization, vol. 40, no. 6, pp. 1765-
1790, 2002.

[21] A. Cadenillas and E Zapatero, “Classical and impulse stochastic
control of the exchange rate using interest rates and reserves,”
Mathematical Finance, vol. 10, no. 2, pp. 141-156, 2000.

[22] M. Jeanblanc-Picqué, “Impulse control method and exchange
rate,” Mathematical Finance, vol. 3, pp. 161-177, 1993.

[23] R.Korn, “Some applications of impulse control in mathematical
finance,” Mathematical Methods of Operations Research, vol. 50,
no. 3, pp. 493-518, 1999.

[24] B. M. Miller and E. Y. Rubinovich, Impulsive Control in Con-
tinuous and Discrete-Continuous Systems, Kluwer Academic,
Dordrecht, The Netherlands, 2003.

[25] Z. Wu and E. Zhang, “Stochastic maximum principle for opti-
mal control problems of forward-backward systems involving
impulse controls,” IEEE Transactions on Automatic Control, vol.
56, no. 6, pp. 1401-1406, 2011.

[26] Z. Wu and E Zhang, “Maximum principle for stochastic
recursive optimal control problems involving impulse controls,”
Abstract and Applied Analysis, vol. 2012, Article ID 709682, 16
pages, 2012.

[27] J. Yongand X. Y. Zhou, Stochastic Controls: Hamiltonian Systems
and HJB Equations, vol. 43 of Applications of Mathematics,
Springer, New York, NY, USA, 1999.

[28] I. Karatzas and S. E. Shreve, Methods of Mathematical Finance,
Springer, New York, NY, USA, 1998.

13



Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2014, Article ID 571572, 8 pages
http://dx.doi.org/10.1155/2014/571572

Research Article

Performance Analysis for Distributed Fusion with

Different Dimensional Data

Xianghui Yuan,' Zhansheng Duan,’ and Chongzhao Han'

! Ministry of Education Key Laboratory for Intelligent Networks and Network Security (MOE KLINNS),
School of Electronic and Information Engineering, Xian Jiaotong University, Xian, Shaanxi 710049, China
2 Center for Information Engineering Science Research (CIESR), School of Electronic and Information Engineering,

Xian Jiaotong University, Xian, Shaanxi 710049, China

Correspondence should be addressed to Zhansheng Duan; zsduan@mail xjtu.edu.cn

Received 24 June 2014; Accepted 28 August 2014; Published 30 September 2014

Academic Editor: Ming Gao

Copyright © 2014 Xianghui Yuan et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Different sensors or estimators may have different capability to provide data. Some sensors can provide a relatively higher
dimensional data, while other sensors can only provide part of them. Some estimators can estimate full dimensional quantity of
interest, while others may only estimate part of it due to some constraints. How is such kind of data with different dimensions fused?
How do the common part and the uncommon part affect each other during fusion? To answer these questions, a fusion algorithm
based on linear minimum mean-square error (LMMSE) estimation is provided in this paper. Then the fusion performance is
analyzed, which is the main contribution of this work. The conclusions are as follows. First, the fused common part is not affected by
the uncommon part. Second, the fused uncommon part will benefit from the common part through the cross-correlation. Finally,
under certain conditions, both the more accurate common part and the stronger correlation can result in more accurate fused

uncommon part. The conclusions are all supported by some tracking application examples.

1. Introduction

Estimation of the stochastic system state or parameters has
wide applications. For example, in target tracking applica-
tions, the evolution of the target state can often be represented
by a stochastic dynamic system, where the state transition
model is driven by some process noise. The observations
of the measurement model are also corrupted by some
measurement noise in general. Since the state model and
measurement model are both stochastic, the output of the
estimators, for example, a Kalman filter, is also stochastic.
When there are multiple sensors or estimators, the data fusion
techniques are usually used for potential better estimation
purpose.

Data fusion is the problem of how to utilize useful
information contained in multiple sets of data for the purpose
of estimation of an unknown quantity—a parameter or a
process [1]. The most common situation is that the data to be
fused are of the same dimensions. But, in some cases, the data
of different dimensions may need to be fused. The following

are some examples to show the different dimensional data
fusion in target tracking applications.

Measurement-to-Measurement Fusion. Suppose that we have
two radars, A and B. Radar A can sense target 1 and target 2
simultaneously, while radar B can only sense target 1. Then
the measurement-to-measurement fusion for such a scenario
is a fusion problem with different dimensionalities.

Track-to-Track Fusion. Constant velocity (CV) model based
estimator can only provide estimation of position and veloc-
ity, while constant acceleration (CA) model based estimator
can provide estimation of position, velocity, and acceleration.
The fusion of such two estimators is also a fusion problem
with different dimensionalities. This is very common in
maneuvering target tracking using the interacting multiple
model (IMM) algorithm.

Measurement-to-Track Fusion. A CV model based estimator
provides the target’s state estimation of position and velocity,
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while a sensor (a radar or GPS) provides the target’s position
measurement. This is a measurement-to-track fusion prob-
lem with different dimensional data.

The reason for such phenomenons is that some sensors
or estimators may be subject to some constraints compared
to the full dimensional data provider. In the above examples,
radar B may have narrower coverage than radar A; the CV
model based estimator cannot provide acceleration estima-
tion due to the model itself; the sensor cannot provide target
velocity measurement because of its sensing capability.

For such kind of fusion with different dimensional data,
how to deal with the uncommon part is a problem which
needed to be considered. A simple way is to abandon the
uncommon part when fusing. This is quite natural but some
useful information will be lost. To fully use all available
information, an LMMSE estimator is provided in this work.
In fact, if the uncommon part and the common part have
some kind of cross-correlation, the correlation will help in
fusion.

The relationship between the correlation and the estima-
tor’s performance has been discussed in some literatures. For
example, Doppler radar’s range and range rate measurement
errors are often correlated. Reference [2] concluded that
negative correlation has the best tracking performance. With
more detailed simulation and analysis, [3] concluded that,
for steady state estimation, negative correlation has the
best tracking performance, positive correlation is not always
worse than without correlation. Reference [3] also discussed
the coeflicient selection strategy for one step state estima-
tion. Reference [4] proposed a fusion algorithm in which
local estimates have correlations. Reference [5] analyzed
the fusion performance with the correlation for the scalar
case. Reference [6-9] also disscussed the fusion algorithm
in the existence of correlation. Although these literatures
discussed the relationship between correlation and the fusion
performance, the fusion performance analysis of the different
dimensional data fusion is very rare. To reveal the factors
which affect the fusion performance, the performance is
analyzed in this paper.

The rest of the paper is organized as follows. Section 2 is
the problem formulation part. Fusion algorithm is proposed
in Section 3. Performance analysis is given in Section 4, which
is the main contribution of this work. Some examples are
given in Section 5 and Section 6 is the conclusion.

2. Problem Formulation

In general, filter or model’s output can be seen as an estimator.
In this work, for the unification of the problem formulation,
sensor’s measurement is also treated as an “estimator” in
which the filter’s output is the same as the input, the original
measurement.

The following problem is considered. There are two
estimators. One can provide the full dimensional estimate of
an estimand (the quantity to be estimated), and the other
can only provide partial estimate of the estimand. In this
paper, the estimators are stochastic, which means estimators
are affected by some noises.
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Assume X is the estimand, which can be written as X =
T T T
[x y' 1.
Estimator 1 is as follows:

—~ X X V)f
X, - Al] :[ ]+ . 1
! [)’1 y V{ @
Estimator 2 is as follows:

X, =%, =x+). )

It can be seen that x is the common part and y is the
uncommon part. The dimensions of those vectors are

X, %y %,V 05, X, € R,
Jiyvi € R™ (3)
X, X, € R™m™*1
The mean, covariance, and cross covariance of the noises are
E[n]=E[n]=0 E[vj]=0

n>

([VTD b L o
cov y = I = B
"1 Plylx Plyfv

cov(vy) =P, =Py, >0,

cov V, | =P, = >
aNE P

where P;, P, > 0 means P}, P, are positive definite matrices.

m>

(4)

3. Fusion Algorithm with Different
Dimensional Data

3.1 Introduction to the LMMSE Estimator. The minimum
mean-square error (MMSE) estimation is Bayesian estima-
tion where the expected value of a positive definite cost
function is to be minimized. It is a tool which estimates a
random variable X in terms of another random variable Z.
The solution is the conditional mean E[X | Z].

Since the distributional information needed for the eval-
uation of the conditional mean is not always available, the
linear minimum mean-square error (LMMSE) estimator is
often used in practice. LMMSE estimator yields the estimate
as a linear function of the observation and requires only the
first two moments. It is a widely used estimation method.

Consider the vector-valued random variables X and Z,
where Z is a measurement of X. The best estimate of X in
terms of Z in LMMSE sense [10] is

X=X+P,P,(2-2),
_ L (5)
PXXlZ = MSE (X) = Pyx = PxzP;;Pzx»

where X is the prior mean of X, Py is the prior covariance
matrix of X, Z is the prior mean of Z, and P, is the prior
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covariance matrix of Z. Py, is the cross covariance matrix
between X and Z.

The LMMSE estimator of one random vector in terms of
another random vector (the measurement) is such that the
estimation error is

(1) zero-mean,

(2) uncorrelated from the measurements.

LMMSE estimator has the following properties.

(1) It is the best estimator (in the MMSE sense) for
Gaussian random variables.

(2) It is the best estimator within the class of linear

estimators.

LMMSE estimation is essentially known as best linear unbi-
ased estimation (BLUE) [1], which is proved to be identical to
the linear weighted least squares (WLS) estimation [11].

3.2. Fusion Algorithm Using the LMMSE Estimation. Since X,
can provide the full estimate of X, X, can be regarded as the
prior information.

The prior information is as follows:

)

4

b " Py Py
= CO =

T Py P

Next, X, is regarded as the measurement. Since X is the prior
information,

(6)

Z=X,=%,
Z=E[% %] =%,
Py =E|(2-2)(2-2)], 7)
=E[(%,- %) (%, - 551)’] ,
= P4 PP (P

The cross covariance between the prior information and the
measurement is then

PXZ_ [

-5 [0x ) 5]
[(?D ol

[Pf‘f“—Pi‘z"]
= | prx yx | -
P11_P12

Here it is assumed that P,, > 0, which means Z or X, can
also provide some new information.
The LMMSE fuser for this problem is the following:
X=X+Py,P,(2-2)

= Xl + szpéé (X, - X;)

[551] Pflx - Plxzx (Pxx Pxx (P ) )
= |+ + —
52 P)’x _ Plyzx 11 22
x (%, = X,),
9)
-1
Pxx|z = Pxx = PxzP;;P7x
P P [PY-PY
= §Z4 §24
Plylx Plyly P11_P12
(10)

XX XX
x (P11 + P -

(Pxx )
Py P]
yx yx
P11 _P12

It is the updated covariance Pyy,,, which is used for perfor-
mance analysis. Py, can be rearranged as

pXx py ] (11)

Pxxiz = [pyx P

where P** stands for the updated x part’s (common data)
covariance matrix:

-1
P = P (P - P (P 4 P - P - ()

x (P - 12)T- )
12

It is the same as the fusion algorithm in [4].
P’7 stands for the updated y parts (uncommon data)
covariance matrix:

P =P — (P - P (P + P - P - (P)")
< (P - PI)".
(13)

It is affected by the x part. The following performance analysis
is on the updated uncommon part (y part).

4. Performance Analysis of
the Uncommon Part

4.1. The Uncommon Part’s Impact on the Fused Common Part.
From (12), it is very clear that the fused common part will not
be affected by the uncommon part.



4.2. 'The Cross-Correlation’s Impact on the Fused Uncommon
Part. From (13), it can be easily seen that the fused uncom-
mon part is affected by the common part.

First, some properties of the positive matrix are intro-
duced. If A, B € R™" are positive definite matrices, then they
have the following properties [12].

(I) For T € R™" if rank(T) = m, then TATT > 0;
otherwise TATT > 0.

) A>0e A >0.
() A-B>0& B'-A'>o0.

Before fusion, the covariance matrix of y part is P;. After
fusion, it becomes P?”. From (13), it can be seen that

-1
Py =P = (Pl = ) (P + P = P = (P)")
X x\T
x (Pl = P;)

- PR,
(14)

where P”* = P/* — P! and P”* can be regarded as the cross-
correlation matrix.

Theorem 1. If rank(P*™) = m, then P}} — P*” > 0; otherwise
PY - P > 0.

Proof. Because P,, > 0, from Property (II), it follows that

P, > 0.
The conclusion can then be directly obtained from (14)
and Property (I). O

It can be seen from (14) that if P>* = 0, Plyly -P7 =0
The following are the conclusions from the above.

(1) If P”* = 0, which means there is no cross-correlation
between x and y, the fused uncommon part will be
the same as the unfused one.

(2) If rank(P”*) = m, which means the cross-correlation
is full row rank, the fused uncommon part is definitely
better than the unfused one.

If P* + 0 and rank(P”*) < m, the following shows which
component of y will benefit from the fusion. Assume that

PE= () () e (], )

where p/*, i = 1,...,m, are row vectors. If only the ith
component of y is considered, the following corollaries can
be obtained.

Corollary 2. priyx # 0, then P7 (i,i) - P’ (i,i) > 0.

Proof. It can be seen from (14) that P)7(i,i) — P*(i,i) =
_ T
PP (P .
Thus if p}™ # 0, then rank(p;”) = 1.

Furthermore, since P, > 0, from Property (I), it can be
seen that P7(i,i) — P”(i,i) > 0. O
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It can be seen from Corollary 2 that if one certain com-
ponent of the uncommon part y is cross-correlated with
the common part x, then its fused result is better than the
unfused one.

Corollary 3. Ifm = 1and P’ + 0, P)) - P? > 0.

Proof. If m = 1, then P’* is a row vector.
If P7* # 0, then rank(P’*) = m = 1.
From Corollary 2, Corollary 3 can be directly achieved.
O

It can be seen from Corollary 3 that if the uncommon part
y is a scalar and the cross-correlation exists, the fused result
is better than the unfused one.

4.3. The Accuracy of the Independent Common Parts Impact

on the Fused Uncommon Part. Assume that estimator X, can

be obtained with different precision. The covariance matrix of

higher precision is P,;;; and the covariance matrix of lower

precision is P;;; . The corresponding fused covariance matrix
io pYY 324 XX XX
of yis P;;’ and P;”. Assume that P57, — P75y, > 0. If the two

estimators X, and X, are independent, which means Plr=0
and P = 0, the following theorem can be obtained.

Theorem 4. Under the condition that X, and X, are inde-

pendent, if rank(P]") = m, then P}” — P} > 0; otherwise
Yy _ pyy

PY -pY >0

Proof. When X, and X, are independent, P’* = P);". From
(14), the fusion covariance for y is the following:

-1 T
Yy _ pyy VX ([ pxx XX VX
Py —P11_P11(P11+P22,H) (P)
(16)
Pyy _ Pyy Pyx pXX | pxx -1 Pyx T
L_11_11(11+22,L)(11)'
The difference between the two covariance matrices is

PP =Pl (P + Pi) - (P +B3) ) ()

17)
Since P);; — Py5py > 0, it thus follows that Py + Py — (Pj] +
Py > 0.
From Property (III),

1 1
(P +P5y) - (P +P5) >0 (18)
According to (17) and Property (I), if rank(P;") = m, then
P}” - P > 0; otherwise P;” — P}/ > 0. O

It can be seen from Theorem 4 that increasing the
independent common part’s accuracy can improve the fused
performance of uncommon part.

The following two corollaries can be easily obtained.

Corollary 5. Under the condition that X, and X, are inde-
pendent, ifpiyx + 0, then ng(i, i) — PI}_'Iy(i, i) > 0.
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Corollary 6. Under the condition that X, and X, are inde-
pendent, if P # 0 and m = 1, then P;” — P}}’ > 0.

The proof is similar to that of Corollaries 2 and 3 and will
be omitted here.

Corollaries 5 and 6 are the supplement of Theorem 4 for
the single component case and scalar case, which also mean
that increasing the independent common part accuracy can
improve the fused result of the uncommon part.

4.4. The Level of Correlation’s Impact on the Fused Uncommon
Part. Assume that p}™(j) is the jth component of vector p;”
and it is the only nonzero component of p;”:
yx T
Pi = [0 N pi,jax,jay,i N 0]

>

(19)
X .
Piy (j) = Pij0x,i%y.i>

where p; ; is the correlation coefficient.

Theorem 7. Under the condition that there is only one nonzero
component in p!”, if the absolute value of the correlation
coefficient |p; ;| increases, the fused covariance P’ (i,i) will
decrease.

Proof. If there is only one nonzero component in p;”,

.. .. — .. X 2
P (i,i) = P}y (iri) = Py (j. ) (P ()
= P () = P77 () 1) 0% 10
Thus when |p; ;| increases, P?7(i, i) will decrease. O

It can be seen from Theorem 7 that under some condition,
stronger cross-correlation can result in better fused result.

When n = 1, p/™ is a scalar, and the corresponding
correlation coefficient is p;. The following corollary can be
obtained.

Corollary 8. If n = 1, when |p,| increases, the fused results
P (i, 1) will decrease.

The proof is the same as that of Theorem 7.

It can be seen from Corollary 8 that if the common part
is a scalar, stronger cross-correlation can lead to better fused
result.

5. Illustrative Examples

5.1. The Example for Improving the Fusion Result by
the Existence of Cross-Correlation

Example 1. In target tracking applications, constant accel-
eration (CA) model based estimator can provide position,
velocity, and acceleration estimation while constant velocity
(CV) model based estimator can only provide position and
velocity. The state vector of CA is [x X %#]" and the state
vector of CV is [x x]'. When fusing the estimates from
two models, position and velocity estimates are considered

P (3,3)

—— Acceleration variance without fusion

.—.— Acceleration variance with fusion

FIGURE 1: Acceleration fusion performance enhancement.

to be the common part and acceleration is considered to
be the uncommon part. Assume the two estimators are
independent.

Assume there is a target moving with constant velocity
motion. Two estimators are used to estimate the target’s state.
One estimator uses the CA model and the other one uses the
CV model. The two estimators’ initial covariance matrices are

100 0 0
Pey=| 0 100 0
0 0 100

100 O

Assume only the position can be observed by the sensors
and the measurement noise variances are both R = 100.
The sampling interval is T = 1. Both estimators’ updated
state covariance matrices are achieved by the Kalman fil-
ter. Because the CV model cannot provide estimation of
the acceleration part, there are two ways to achieve the
acceleration’s estimation. One way is to use the CA model’s
acceleration estimation directly and the other way is to use the
fusion result. Figure 1 shows the acceleration variance of the
two ways. Acceleration estimate from the CA model is always
correlated with the velocity and position estimates because of
the state equation. The fusion results should benefit from the
correlation and Figure 1 supports this analysis.

The following are some analyses for one step fusion.
Assume the covariance matrices of the two models are

10 4 6
10 4
Py=1|4 10 8|, PCV=[4 10]. (22)
6 8 10

The cross covariance vector between the common part and
uncommon part is P>* = [6 8].
Using (10), the fusion result is

P=

w N G
[NV B \S]

3
4 |. (23)
3

6.33
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—— Acceleration variance fusion with R = 100
-—.— Acceleration variance fusion with R = 1

FIGURE 2: Acceleration fusion performance enhancement with more
accurate estimator.

If there is no cross-correlation between acceleration and
the other part,

10 4 O
10 4
Poya=|4 10 0|, PCV=[4 10], (24)
0 0 10
the fusion result
52 0
P={250 (25)
0 0 10

It can be seen that without cross-correlation, the perfor-
mance of the uncommon part cannot be improved.

However, with correlation, we have 6.33 < 10, which
means that the existence of cross-correlation can help
improve the fusion result.

5.2. The Examples for Increasing the Accuracy of the Indepen-
dent Common Part to Improve the Fusion Result

Example 2. The simulation setting is the same as in Exam-
ple 1, which is a CA-CV fusion problem. In Example 2, CA
model is the same as in Example 1, CV model’s measurement
is more accurate than in Example 1, and the measurement
noise variance is R = 1.

Figure 2 shows the fusion results using two different
CV estimators. It is known that more accurate measurement
can lead to more accurate estimation. So the CV estimator
in Example 2 is more accurate than the CV estimator in
Example 1. Figure 2 supports the conclusion that more
accurate independent common part estimator can lead to
more accurate uncommon part’s fusion result.

The following are some more analyses compared with
Example 1. Here the covariance matrices of the two models
are assumed to be

10 4 6
1 04
Poy=|4 10 8|, PCV=[04 1], (26)
6 8 10 :
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and the fusion result is

0.91 0.36 0.55
P=1036 091 0.73]. (27)
0.55 0.73 3.33

In Example 1, P(3, 3) = 6.33. Here P(3,3) = 3.33.
Since 3.33 < 6.33, it can be easily seen that more accurate
common part estimation can lead to better fusion result.

Example 3. There are two radars which observe the same
target. One is a Doppler radar, which can provide range and
range rate measurements. The other is a regular radar, which
can only provide range measurement. Doppler radar’s range
and range rate measurement errors are sometimes correlated.
The two radars’ measurement errors are independent of each
other. The state vectors are [r 7]’ and r, respectively. The
corresponding covariance matrices are

2
P, :[ 01 parlai"]

2
PO, 0; O}

P, =02, (28)
After fusion,
2 2
o
szaf(l—%). (29)
Url + Urz
When arzz decreases, P, will also decrease.

When o2, — 0, P, — o2(1 - p?).
Let

10 5
Plz[s 10]. (30)

When P, = 10, the covariance after fusion is

5 25
b= [2.5 8.75]' (3D
When P, = 1, the covariance after fusion is
091 0.45
P= [0.45 7.73]' (32)

Since 7.73 < 8.75, it can be easily seen that more accurate
common part estimation can lead to more accurate fusion
result.

Figure 3 shows P, as a function of ¢7,, which changes
from 0 to 10. From the figure, it can be clearly seen that when
improving the regular radar’s range accuracy, the range rate
accuracy will be improved.

5.3. The Example for the Stronger Correlation to Improve
the Fusion Result

Example 4. The simulation setting is the same as in Exam-

ple 3. The correlation coefficient is a variable. From (29), it

can be seen that the bigger the |p|, the smaller the P,, which

means stronger correlation can lead to better fusion result.
When |p| — 1,P, — 0707,/(0}, +02).
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8.5

7.5

FIGURE 3: The relationship between regular radar’s range accuracy
and fused range rate accuracy.

10
9t i
8+ i
14
7r i
6 i
5 1 1 1 1
0 0.2 0.4 0.6 0.8 1
lpl
FIGURE 4: P, as a function of |p|.
Let
10 5
P = [ 5 10] , P, = 10; (33)
then
5 25
p= [2.5 8.75] ’ (34)
Let
10 9
P = [ 9 10] , P, = 10; (35)
then
5 45
p= [4.5 5.95] ’ (36)

Since 5.95 < 8.75, it can be easily seen that stronger
correlation can lead to better fusion result.

Figure 4 shows P, as a function of |p|, which changes from
Otol.

It can be seen that the stronger the correlation, the better
the fused result.

o
—
O=NWHER UV 00O

S gy gy

EE s A S =5 910
010203040506 0705 09 101234 526
ol %)

FIGURE 5: P, as a function of 7, and |p|.

Example 5. Examples 3 and 4 are combined together. The
range accuracy and correlation coefficient are changing
simultaneously. From (29), when |p| increases and 032
decreases, P, will decrease.

Andif|p| — lando?, — 0,P. — 0.

Figure 5 shows P; as a function of o, and |p].

Figure 5 supports the conclusion that fusion result ben-
efits from stronger correlation and more accurate common
part.

6. Conclusion

Some sensors or estimators can provide higher dimensional
measurement or estimation. But due to some constraints,
other sensors or estimators can only provide partial mea-
surement or estimation. To fuse such kind of data with
different dimensions, a fusion algorithm based on LMMSE
estimation is provided. To reveal the relationship between
the common part and the uncommon part, the fusion
performance is analyzed and the following four conclusions
are obtained. (1) The fused common part is not affected by
the uncommon part. (2) The fused uncommon part benefits
from the common part through the cross-correlation. (3) The
more accurate independent common part will result in better
performance of the fused uncommon part. (4) In some cases,
stronger cross-correlation will result in better performance
of the fused uncommon part. The above conclusions are all
supported by some target tracking examples.
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Impact of correlated noises on dynamical systems is investigated by considering Fokker-Planck type equations under the fractional
white noise measure, which correspond to stochastic differential equations driven by fractional Brownian motions with the Hurst
parameter H > 1/2. Firstly, by constructing the fractional white noise framework, one small noise limit theorem is proved, which
provides an estimate for the deviation of random solution orbits from the corresponding deterministic orbits. Secondly, numerical
experiments are conducted to examine the probability density evolutions of two special dynamical systems, as the Hurst parameter
H varies. Certain behaviors of the probability density functions are observed.

1. Introduction

Dynamical systems arising from financial, biological, phys-
ical, or geophysical sciences are often subject to random
influences. These random influences may be modeled by
various stochastic processes, such as Brownian motions,
Lévy motions, or fractional Brownian motions. A fractional
Brownian motion B{{ ,t >0, in a probability space (Q, #, P),
with Hurst parameter H € (0,1), is a continuous-time
Gaussian process with mean zero, starting at zero and having
the following correlation function:

E[BI'B{] = %(|t|2H+ Is* = |t = s*). 6))
In particular, when H = 1/2 it is just the standard Brownian
motion. The time derivative of a fractional Brownian motion,
dBl/dt, as a generalized stochastic process, has nonvanish-
ing correlation [1, 2] and it is thus called a correlated noise
or colored noise. In the special case of H = 1/2, this noise
is uncorrelated and thus is called white noise [3]. Correlated
noises appear in the modeling of some geophysical systems
[4-6].

For systematic discussions about fractional Brownian
motions and their stochastic calculus, we refer to [7-12] and
the references therein. Fractional Brownian motions have sta-
tionary increments and are Holder continuous with exponent

less than H, but they are no longer semimartingales, even
no longer Markovian. They possess some other significant
properties such as long range dependence and self-similarity
which result in wide applications in fields such as hydrology,
telecommunications, and mathematical finance. During the
last decade or so, several reasonable stochastic integrations
with respect to fractional Brownian motions were developed.
See, for example, Lin [13], Duncan et al. [14], Decreusefond
and Ustunel [15], and the references mentioned therein.
Stochastic differential equations (SDEs) driven by fractional
Brownian motions also have been attracting more attention
recently [1, 10, 16-18].

In this paper, we consider the following scalar stochastic
differential equation (SDE):

dX, =b(X,)dt +edB], X, =x, 2

where the drift b(-) is a Lipschitz continuous function on R,
e > 0 is the noise intensity, Bf{ is a fractional Brownian
motion with H > 1/2, and the initial state value & is assumed
to be independent of the natural filtration of Bf'. Since this
system has a unique solution [17, 19], here we intend to
understand some impact of correlated noises on this additive
dynamical system as the Hurst parameter H varies.

This paper is organized as follows. In Section 2, we set
up a fractional white noise analysis framework which makes
correlated noises as functionals of standard white noises and
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prove a small noise limit theorem which implies the stochastic
continuity of the system with respect to noise intensity. In
Section 3, we show that the probability density function of
X, satisfies a Fokker-Planck type partial differential equation
with respect to the fractional white noise measure. Then, we
implement numerical experiments to examine the probability
density evolutions as the Hurst parameter H varies. As to one
linear system and one double-well system, certain behaviors
of the probability density functions are observed.

2. Analysis Framework and Small Noise Limit

2.1. Analysis Framework. White noise framework is one natu-
ral and flexible stochastic analysis thoughtway, and fractional
white noise analysis takes correlated noise as functionals of
standard white noise. This approach has shown to be very
effective in investigating distributions and path properties
of stochastic processes. In the following, we describe the
fractional white noise analysis framework.

Let S(R) be the Schwartz space of rapidly decreasing
smooth functions on R and §'(R) the space of tempered
distributions. And denote by (, -) the dual pairing on & "(R)x
S(R).For 1/2 < H < 1, define

¢(st)=HQRH-1)|s—t[""?, stekR;

o HEH-D 3)

H™ B(H-1/2,2-2H)’
where B(:,-) is beta function; K, (t) = cHtI;_3/2, t, =tVO0,
t_=—(tAO0).
Lemmal. For f € S(R), let

T f ) = (K_* f) (u) = CHJ (s— )2 £ (5) ds,
) (4)

) = (K, + ) = ay J_ (t = ) £ (u) du.
Then, for f,g € S(R),
(r(pf’ g)Lz(R) = (f’ r;g)Lz(R); (5)

that is, I, is the dual map of T,,.

Now we can only prove the linear map I, is continuous

from $(R) to L2(R). Since [, is not continuous from §(R)
to §(R) (even not a proper operator in §'(R)), we could not
obtain a dual map from §'(R) to §'(R) by duality. By using
Itd’s regularization theorem, we construct a unique §"'(R)-
valued random variable T : &'(R) — &'(R) such that

(Tw, &) = <w, F¢E> y—ae. w, (6)
which extends the map 1"; in view of (5).
Theorem 2. Let p, = o T~ be the image measure of

induced by the map T. Then, for any & € S(R), the distribution
of -, §) under p,, is the same as (-, I,§) under y. In particular,

B = (w,T, 1), t20 ()
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is a fractional Brownian motion with Hurst constant H.
Moreover,

IR _ _
B-a(H-3) | [€-w™"-u)as,,
-0

(8)

where By(w) = (w, 1) is the standard Brownian motion.

(See proof in [20].)

Let {#,,t € R,} and (FH ¢ € R.} be the filtrations
generated by {B,} and {B["}, respectively. Then, in view of (8),
we have

1) F, > T HF), forallt € R,;

(2) for any f € Loo(yq,), EJT.f | #,] = T.E (,,[f |
97{{] a.s. [u], where (T, f)(w) = f(Tw). So, the
filtrated probability space (& "(R), F o 1) is the exten-
sion of (8 (R), Fifl , M(P). Thus the stochastic analysis
with respect to measure y, could be reduced to the
standard white noise framework naturally. Therefore,
we choose the standard white noise measure y as the
reference measure rather than i, and this treatment
is more useful and more convenient for applications.
For more details, we refer to [20] and the reference
therein.

2.2. Small Noise Limit. Now, we consider the SDE (2) in
fractional white noise framework
dX, =b(X,)dt +edB’, X, =x. )

And to investigate the impact of noise on deterministic
dynamical system

D) =bx),

7 x(0) = x, (10)

which is solvable on any finite time interval [0, T]. We have
the following result.

Theorem 3. The solution X, of (2) converges in probability to
the solution x(t) of (10) uniformly on any finite time interval

[0, T1].

Proof. Firstly, we rewrite the equation as
t
X, —x(t) = J [b(X.) - b(x(s)]ds+eB. (1)
0

Then, by assuming the Lipschitz condition on b(x) with
Lipschitz constant K > 0, it follows from the Gronwall
inequality that

sup |X, - x(t)| < " sup |Bf{' . 12)
0<t<T 0<t<T
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FIGURE 1: Plot of p(x,t) with b(x) = x — x°, at t = 0.1,0.2,0.5, 1.25.

Hence, for any small enough § > 0, we have

S -
P{ sup |X, - x(t)] > 6} < P{ sup |Bf{| > —e KT}
0<t<T 0<t<T &

(13)

IA

KT
&e H
——E sup |Bt |
0<t<T

eeKTTH

< -
)
which completes the proof when ¢ — 0. In the final step,

we have used the self-similarity of the fractional Brownian
motion

[E|Bf’|,

E sup 'Bﬂ <T"E 'Bﬂ

0<t<T (14)

O

This theorem provides an estimate for the deviation of
random solution orbits from the corresponding deterministic
orbits. Note that the expectation E in the above theorem
corresponds to the fractional white noise measure. And,
henceforth, we take all expectations E with respect to the
fractional white noise measure (i.e., for simplicity, we omit
the subscript ¢ mentioned above).

3. Probability Density Evolution

For SDE, such as (2), the probability density function of the
solution X, carries significant dynamical information. This
is considered here by examining a fractional Fokker-Planck
type equation. The key step in the derivation of this Fokker-
Planck type equation is the application of Ito’s formula for
SDEs driven by fractional Brownian motion, under fractional
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FIGURE 2: Plot of p(x,t) with b(x) = x:t = 0.2, = 0.5, = 0.95, and t = 1.25.

white noise analysis framework [1, 10, 16, 20, 21]. We sketch
the derivation here.

By Ito’s formula [10], Theorem 6.3.6, for a second order
differentiable function h(-) with compact support, we have

dh(X,) = [b(X) (X,) + HE! 22 ' (Xt)] dt
(15)
+ s% (X,)dB}.
Taking expectations on both sides yields
dh(X,)
[E[ = ] E[b(x) 5 ()|
(16)

2
+ HEEE [% (Xt)] :

Let p = p(x,t) be the probability density function of
the solution X, of the system (2). Recall that E[h(X,)] =
jR h(x)p(x, t)dx; by integration by parts and p = 0 at x =
+00, we obtain
g bx)p 21-10° ap
&H = 17

o[22 nr P

that is,
2
opet) _ ob@pEaD] o plet)

ot ox Ox?

(18)

In the following, we numerically simulate this partial differ-
ential equation for two special cases: b(x) = x — x° and
b(x) = x, with finite noise intensity (for simplicity we take
€ = 1). Through these two special cases, we expect to illustrate
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the impact of correlated noises on additive dynamical systems
as the Hurst parameter H varies.

Here, we perform the popular Crank-Nicolson scheme in
Matlab for (17) with zero boundary values;, the grid size is
0.05, total grid points are 801, and the time step size is 0.01.
And the initial probability density function is taken to be

standard normal; that is, p(x, 0) = (1/ \/ﬁ)efxz/ 2,

Since the system is tridiagonal, we could solve it using
Thomas Algorithm efficiently. Moreover, for other initial
conditions and other drift coefficients, for instance, the initial
uniform distribution or b(x) = x — x*, this method also
applies smoothly.

3.1. Numerical Simulation: b(x) = x — x>. We first simulate
the dynamical evolutions of the probability density function
p(x, 1) for the corresponding stochastic differential equation
(2) with the double-well drift b(x) = x — x°, for various
values of H > 1/2. The double-well dynamics is a rich
and typical model for understanding numerous physical
or geophysical systems [22, 23], focusing on the maxima
(minima), symmetry, kurtosis, and so forth.

As observed in Figure 1, the probability density function
p(x,t) evolves from the unimodal (one peak) to the flat top
and then to the bimodal (two peaks) shape for various Hurst
parameter values H, as time ¢ increases. Simultaneously, the
effect of Hurst parameter H on the dynamics is significant.
As H value increases, the plateau for p(x,t) becomes lower
when time exceeds ¢t = 0.5.

3.2. Numerical Simulation: b(x) = x. Now, for comparison
we investigate the dynamical evolutions of the probability
density function p(x,t) of the corresponding stochastic
differential equation (2) with the linear drift b(x) = x, which
is a rich toy example for understanding dynamical systems.

Also as observed in Figure 2, at given time instants,
p(x,t)’s peak becomes higher as H increases. This illustrates
the significant and distinguishing influence of Hurst param-
eter H on the dynamics when time t evolves. The bigger H
makes the solution X, of (2) has more centralized value, but
the long time effect shows that the values of the solution X,
distribute more scatteredly.
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In 1947, von Neumann and Morgenstern introduced the well-known expected utility and the related axiomatic system (see von
Neumann and Morgenstern (1953)). It is widely used in economics, for example, financial economics. But the well-known Allais
paradox (see Allais (1979)) shows that the linear expected utility has some limitations sometimes. Because of this, Peng proposed
a concept of nonlinear expected utility (see Peng (2005)). In this paper we propose a concept of stochastic dominance under the
nonlinear expected utilities. We give sufficient conditions on which a random choice X stochastically dominates a random choice
Y under the nonlinear expected utilities. We also provide sufficient conditions on which a random choice X strictly stochastically
dominates a random choice Y under the sublinear expected utilities.

1. Introduction

In [1], von Neumann and Morgenstern introduced the well-
known expected utility and the related axiomatic system.
It is widely used in economics, for example, financial eco-
nomics. They exhibited four relatively modest axioms of
“rationality” such that any agent satisfying the axioms has a
utility function. They claimed that U(-) can be characterized
by U(X) = E[u(X)]. That is to say they proved that
an agent is (VNM-) rational if and only if there exists
a real-valued function u(-) defined on possible outcomes
such that every preference of the agent is characterized by
maximizing the expected value of u(:), which can then be
defined as the agent's VNM-utility. Here u(-) R —
R is a continuous and strictly increasing function, and
E[-] is the linear expectation in some probability space
(Q,#,P).

However, some real world utilities cannot be represented
by this expected utility. A famous counterexample is the well-
known Allais paradox (see [2]). Allais paradox shows that
linear expected utility has some limitations sometimes.

In [3], Peng developed nonlinear expectation and sub-
linear expectation theory. G-expectation is a kind of special

sublinear expectation. More details can be found in [4-7]. In
[8-11], G-expectation is used in financial economics.

In [12], Peng developed a nonlinear type of von Neu-
mann-Morgenstern representation theorem to utilities. He
proved that there exists a nonlinear expected utility U(:), such
that an agent A prefers a random choice X than Y which is
formulated by U(X) > U(Y).

But nonlinear expected utility can only describe an agent’s
preference; how to describe a group of agents’ preference? In
this paper we consider the question raised upward; to this end
we define a corresponding concept of stochastic dominance
under the nonlinear expected utilities.

The rest of this paper is organized as follows. In Section 2,
we give some basic notions and results of nonlinear expecta-
tions and nonlinear expected utilities. In Section 3, we give
the main results and the proofs.

2. Nonlinear Expectations and Nonlinear
Expected Utilities

In this section we shall give some results of nonlinear
expectations and nonlinear expected utilities.
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2.1. Nonlinear Expectations. We present some preliminaries
in the theory of nonlinear expectations and sublinear expec-
tations. The following definitions and properties can be found
in [3].

Let Q be a given set and let # be a linear space of real
valued functions defined on Q satisfying the following: if
X, e Z,i=12,...,n then (X, X;,...,X,,) € Z, for all
¢ € Gp(R), where € ;,(R) is the space of all real continuous
functions defined on R such that

o) -9 () < B (1+x" +y") [x-y], "
VX,y € R, k depends on ¢.

Definition 1. E : # — Rissaid tobeanonlinear expectation
defined on 7 if it satisfies the following.
(i) Monotonicity:

EX)>E(Y), ifX>Y. (2)
(ii) Constant Preserving:
E(c)=¢, forceR. (3)

A nonlinear expectation is called sublinear expectation if
it also satisfies the following.
(iii) Subadditivity: for each X,Y € 7,

EX+Y)<EX)+E(Y). (4)
(iv) Positive homogeneity:

E(AX) = AE(X), forA>0. (5)
The triple (Q, #, E) is called nonlinear expectation space
and sublinear expectation space correspondingly.

Definition 2. Let E, and E, be two nonlinear expectations
defined on (Q, #); E, is said to be dominated by E, if

E,X)-EY)<E,(X-Y), forX,YeZ. (6)
Remark 3. From (iii), a sublinear expectation is dominated
by itself. In many situations, (iii) is also called the property
of self-domination. It is easy to conclude that in a sublinear
expectation space (Q, %, E), ~E(-X) < E(X), for X € #Z. If
—-E(-X) = E(X), we say X has no mean uncertainty.

Theorem 4 (Represent theorem). Let E be a functional
defined on a linear space X satisfying subadditivity and
positive homogeneity. Then there exists a family of linear
functionals defined on 7 such that

E(X) = supEp (X), for X e # )
Pes

and, for each X € J, there exists Py € P such that E(X) =
Ep, (X).

Furthermore, if E is a sublinear expectation, then the
corresponding Ep_ is a linear expectation.
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According to the represent theorem, if E is a sublinear
expectation, we have

E (X) = sup[EP (X) >

up for X e . (8)

Suppose (Q, F) is a measurable space, for such &, we can
define an upper probability

V(A) =supP(A), AeF )
Pe»
and a lower probability
— I
v(A) = [Plyrg;ﬂj’ (A), AeZF. (10)

Obviously V and v are conjugated to each other; that is,
V(A)+v(A9) =1, 1)
where A° is the complementary set of A.

Definition 5. A set A is polar if V(A) = 0. A property holds
quasisurely (g.s). if it holds outside a polar set.

Definition 6. Let X be a given random variable on a nonlinear
expectation space (Q, #,E). One defines a functional on
€,1ip(R) by

Fx [¢] = E[p(X)]: ¢ € G}y, (R) — R. (12)
Fy is called the distribution of X under E.

Definition 7 Let X, and X, be two random variables
defined on nonlinear expectation spaces (Q,, #,E,) and
(Q,, # 5, E,), respectively. They are called identically dis-

tributed, denoted by X, 2 X,,if

E [¢(X)]=E[p(X;)], forge Cip (R). (13)

It is clear that X, a X, if and only if their distributions
coincide. One says that the distribution of X is stronger than
that of X, if

E, [¢(X))] 2 E, [9(X,)], foreach ¢ € €y, (R). (14)
2.2. Nonlinear Expected Utilities. The following definitions
and properties can be found in [12]. Let E be a self-dominated
nonlinear expectation defined on #. Define a quasinorm
X, o = inf cqic € Ry ¢ > |X|in #}. A utility functional
of an agent A is a real functional U : # — R. This functional
satisfies the following obvious axioms:

(ul) monotonicity: if X > Y in 7, then U(X) > U(Y), and
ifX>Yand|X-Y]|, >0, then U(X) > U(Y);

(u2) continuity: if |X; - X|l,., — 0, then U(X;) —
U(X).

Then we have the following nonlinear expected utility
theorem which generalized the well-known von Neuman-
Morgenstern’s axiom on expected utility.



Mathematical Problems in Engineering

Proposition 8. Let E[-] be a strictly monotonic expectation
satisfying (i) and (ii) in Definition 1. One assumes that E[-]
is continuous in # and let u(-) be a continuous and strictly
increasing function u(-) : R — R. Then the functional U(:)
defined by

U(X):=E[u(X)] (15)
is a utility functional satisfying (ul) and (u2).

Conversely, for each given utility U(-) satisfying (ul) and
(u2), there exist a strict monotonic nonlinear expectation [E[]
and a continuous and strictly increasing function u(-) : R —
R such that (15) holds.

3. Stochastic Dominance under the Nonlinear
Expected Utilities

Using nonlinear expected utility to determine the advantages
between two random choices is only for a single economic
actor. Here comes a problem: can we raise the same question
to a group of economic actors? If we still discuss it by
using nonlinear expected utility, this means asking the same
question to a class of expected utility functions.

In mathematics, it can form such a problem: suppose #
is a collection of random variables. % is a class of strictly
increasing and continuously differentiable functions, which
represents the collection of all the utility functions of an
investor group. Define a partial ordering > in % for any
XY e #Z,

X>Y—=Vue¥ EuX)]=Eu)]. (16)

Here E[-] is nonlinear expectation, X,Y can be regarded
as two risky securities, and u € % can be an investor’s
expected utility function. Thus, this definition of the partial
ordering means that all members of the investor group think
the former is better than the latter. Here it is important to
note that, in general, this is a partially ordering rather than
a complete ordering. That is to say, for some pairs of risky
securities, neither one stochastically dominates the other, and
yet they cannot be said to be equal. At the same time, it is just
investor group’s preferences characterized by the expected
utilities functions theory.

Definition 9. The above-mentioned partial ordering is called
stochastic dominance under the nonlinear expected utility.

Remark 10. Stochastic dominance is a form of stochastic
ordering. The term is used in decision theory and decision
analysis to refer to situations where one random choice can
be ranked as superior to another. It is based on preferences
regarding outcomes. In linear expected utility, there are
first-order stochastic dominance and second-order stochastic
dominance and so on. For more results, see [13-16].

Definition 11. In Definition 9, if for any X,Y € 7,
X>Ye—=VYue% EuX)]>EuY), (17)

then the partial ordering is called strictly stochastic domi-
nance under the nonlinear expected utility.

Next, we give the main results of this paper.

Theorem 12. Let (Q), Z, E) be a nonlinear expectation space,
X,Y € X, and U a class of strictly increasing and continuously
differentiable functions. If any of the following conditions is
satisfied:

1 Xz>Y,
(2) the distribution of X is stronger than Y, namely,

Elp(X)] 2 E[e(V)],

then X stochastically dominates Y, that is,

foreach ¢ € €, (R),  (18)

EuX)]=2E[u)], Vue. (19)
Proof. (1) If X >Y, then
Vue¥, E[u(X)]=E[u()] (20)

is easily concluded by the fact that u € % is strictly increasing
and the monotonicity of E[-].

(2) First, notice that an everywhere differentiable func-
tion g(-) which isalipschitz continuous with k = sup | g' (x)]is
equivalent to the fact that g(-) has bounded first derivative. In
particular, any continuously differentiable function is locally
lipschitz, as continuous functions are locally bounded so its
gradient is locally bounded as well. It means that for all u €
U,u € €;,(R). So if the distribution of X is stronger than
that of Y, we have

Elp O] = E[p(M)],

Because for all u € %, u € €,;,(R); then we can have

foreach ¢ € &), (R).  (21)

Yue%, EuX)]=EmY)]. (22)

So the result holds by Definition 9. O

Remark 13. («) The above conclusion (2) gives sufficient con-
dition on which a random choice X stochastically dominates
a random choice Y under the nonlinear expected utilities. It
is a general extension of the first-order stochastic dominance
under the linear expectation utility.

(B) The above conclusion (1) is very intuitive. Next, we
give an example which is not intuitive.

Example 14. Suppose
Q = {w;, w,}, (23)

and we have two probabilities {2/3,1/3} and {2/5,3/5}
denoted by P and Q, respectively, where

P ({w}) =

P ({w,}) =

(24)

Q({w}) =
Q({w,}) =

G I Wl WIN



We assume # is a collection of random variables, and % is
a class of strictly increasing and continuously differentiable
functions. Take the nonlinear expectation utility like the
following:

E ()] = 2 max Ep [u )], Eo [u (@)}

+ }}min {Ep [u(©)],Eq [u®)]}, )
ueU, &te.
We set

X(w) =1,
X (w,) =0,

(26)
Y (w,) =0,
Y (w,) = 1.

For all u € %, we can calculate the following results:

B (4 (X)) = 4 (1) + $u(0),

Eq [u(X)] = %u(l) " gu(ox

6

Eu(X)] =1

9
u(0) + Eu (1),
(27)

B [w (V)] = 3u(0) + 5 (1),
Eq [u(X)] = %uw) " gu(l),

7 8
Eu®)] = Eu(O) + Eu(l).
Since u € % is strictly increasing, then u(1) > u(0); so
1 1
Eu)]-Eu()] = 1—5u(1) - 1—514(0) >0,

ue. (28)

Eu(X)]>Eu)], ue.

Hence we can say that X strictly stochastic dominates Y.

It is easy to see that neither X > Y nor Y > X in a whole.
We can check that X strictly stochastic dominates Y. This is
not the intuitive way; this implies that stochastic dominance
by the nonlinear expected utilities is meaningful.

When E[-] is a sublinear expectation, Theorem 12 is still
valid. Furthermore, we can also have the following theorem.

Theorem 15. Let (Q), #,E) be a sublinear expectation space,
X,Y € &, and % a class of strictly increasing and continuously
differentiable functions. If X > Y q.s., then X stochastically
dominates Y, that is,

E[u(X)] = E[u(Y)], Yuec. (29)
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Proof. We claim thatif X > Y g.s., then E[X] > E[Y].
This is because we can get V(X < Y) = 0by X > Y g.s,,
which means V(X <Y) =0, (X >Y) = 1; namely,

v(XzY):D;Q;P(XZY)zl. (30)

Then we can get

VP e P, Ep[X]=>EplY], (31
so
supEp (X) = supEp (Y). (32)
PeP Pe»

According to the represent theorem, we have E[X] > E[Y].

Since X > Y g.s. and u € % is strictly increasing, u(X) >
u(Y) g.s. is available by the same procedure as above. So we
can obtain

EuX)]>Eu)], VYue#% (33)

by the above conclusion. O

Next, we shall give a lemma first, then present a strictly
stochastic dominance result under sublinear expectations.

Lemma 16. Let (Q, #,E) be a sublinear expectation space,
Y € Z, and U a class of strictly increasing and continuously
differentiable functions. If u(Y') has no mean uncertainty, that
is,
Eu)] =-E[-u)], (34)
then
Elu(Y)] =EpuY)], VPe (35)

Proof. Since

E[u(Y)] = supEp [u(Y)],

Pe»
—E [-u(Y)] = —supEp [-u (Y)] = —sup (-Ep [u (Y)])
PePp PePp
=" (—H;g;([Ep [u (Y)])) = inf (Ep [u(M)]),
(36)
we can get
;ggtEp [u(¥)] = inf (Ep [u(M)]). (37)
Then
E[u()] = supEp [u()] = inf (Ep [u(¥)])
Pe? €
(38)
=Ep[u(¥)], VPe2 .
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Theorem 17. Let (Q, #,E) be a sublinear expectation space,
X,Y € Z, and % a class of strictly increasing and continuously
differentiable functions. If X > Y q.s., V(X > Y) > 0, and
Eu(Y)] = -E[-u(Y)], for all u € %, that is, u(Y) has no
mean uncertainty, then X strictly stochastically dominates Y,
that is,

Eu(X)]>Eu)], Vue¥. (39)
Proof. Since X > Y g.s. and V(X > Y) > 0, there exists P €
P, such that

PX=Y)=1,
(40)
P(X>Y)>0.
Therefore
Ep [X] > Eg [Y]. (a1)
Since
Elu(¥)]=-E[-u(Y)], Vue, (42)
according to Lemma 16, we have
EuX)] 2 Ep[u(X)]>Ep[uY)] =E[u(Y)], VYue.
(43)
O

Corollary 18. Let (Q, #, E) be a sublinear expectation space,
XY € #,and X > Y q.s. Assume u(x) = kx, k > 0. If
V(X >Y) > 0andY has no mean uncertainty, that is, E[Y] =
—E[-Y], then

Elu(X)] > E[u®)]. (44)

Proof. If u(x) = kx, k > 0, and Y has mean certainty, it is
easy to verify that u(Y) has mean certainty; that is, E[u(Y)] =
—E[-u(Y)]. Then the consequence attains immediately by
Theorem 17. [

Remark 19. This corollary gives sufficient condition for the
result that X strictly stochastically dominates Y to the risk-
neutral group.

Corollary 20. Let (Q, #, E) be a sublinear expectation space,
X,Y € #, and U a class of strictly increasing and continuously
differentiable functions. If X > Y q.s, v(X < Y) < 1, and
Eu(Y)] = -E[-u(Y)], for all u € %, that is, u(Y) has no
mean uncertainty, then X strictly stochastically dominates Y,
that is,

EluX)]>Eu)], Vue. (45)
Proof. By using the relationship between V and v, the conse-
quence attains immediately by Theorem 17. O

Next, we give an example to apply Theorem 17.

Example 21. Suppose there is an outcome Q = [0, 1], which
indicates the market conditions. # is the o-algebra of Borel
sets on Q and | - | is the Lebesgue measure on [0, 1].

We have two prior probabilities denoted by P and Q,

respectively, where
e |

P =z [anfog)[anl35)
AeZF,
5 ATRIEEES

3]
3

AeF.

(46)

@(A):}llAn[O

We assume # is a collection of random variables, which rep-
resents risky securities and % is a class of strictly increasing
and continuously differentiable functions, which represents
the collection of all the utility functions of an investor group.
Take the sublinear expectation utility as follows:

E[u(§)] = max{Ep [u (9], Eq [u ()]}, )
ueU, &te.
There are two risky securities
[-10, w=0,
1
0, wefo)
X(w) = 3 1 2
Loowel33):
48
0, we[2], o
0, we [0,%),
Y (w) = )
10, w € |:§, 1] .

It is clear that above conditions guarantee Theorem 17; there-
fore we have that X strictly stochastically dominates Y, that
is,

Elu(X)]>Eu)], ue. (49)
This means that all members of the investor group think the
former is better than the latter.

In fact, for all u € %, we can calculate the following
results:

B (4 (0] = 2u(0) + Su(1) + 2u(10),
(50)

Eg [u(X)] = %u(O) + 1—52u(1) + %u(lO);
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then
E[u((X)] = %u(O) + %u(l) + %u(lO);
Ep[u(Y)] = 1M(O) + lu(lO) , (51)
2 2
Eq [(1)] = Su(0) + 54 (10);
then

E[u®)] = %u(O) + %u(lo). (52)
Since u € % is strictly increasing, then u(1) > u(0); so

E [ (0]~ E (V)] = = () -4 (0) >0, -

ue.
Then

Eu(X)]>Eu)], ue; (54)

that is, X strictly stochastically dominates Y.

4. Conclusion

In this paper, we study stochastic dominance under the non-
linear expected utilities. First we attain sufficient conditions
on which a random choice X stochastically dominates a
random choice Y under the nonlinear expected utilities; then
we attain sufficient conditions on which strictly stochastic
dominance of a random choice X over a random choice
Y under the sublinear expected utilities; finally we give
sufficient condition for strictly stochastic dominance of X
over Y under the sublinear expected utilities to the risk-
neutral group.
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We study the design enhancement of the bistable stochastic resonance (SR) performance on sinusoidal signal and Gaussian white
noise. The bistable system is known to show an SR property; however the performance improvement is limited. Our work presents
two main contributions: first, we proposed a parallel array bistable system with independent components and averaged output;
second, we give a deduction of the output signal-to-noise ratio (SNR) for this system to show the performance. Our examples show
the enhancement of the system and how different parameters influence the performance of the proposed parallel array.

1. Introduction

Stochastic resonance has attracted considerable attention
over the past decades. SR is defined as a phenomenon that is
manifest in nonlinear systems whereby generally feeble input
information (such as a weak signal) can be amplified and
optimized by the assistance of noise.

The physical mechanism of SR has been known since
the initial work by Benzi et al. at the beginning of the
1980s [1-3] and received much attention by the physical
community in the following years. SR has been observed
in a large variety of systems, including bistable ring lasers
and semiconductor devices. The first discussed and most
developed SR mechanism was the bistable system. Since it
has a precise mathematical expression and can be interpreted
visually, the bistable system draws much attention of the
researchers.

SR can be envisioned as a particular problem of signal
extraction from background noise. It is quite natural that
a number of authors tried to characterize SR within the
formalism of data analysis, most notably by introducing
the notion of SNR [4-6]. The focus of our present work
is on bistable system and its SNR improvement. SNR is
a very important quantity, since it influences information,
detection, estimation, and many other measures [7].

The early study of SR system focused on nature nonlinear
system to analyse its properties [1-3]. Later, the benefit of
the system was known, and researchers started to design
new systems to meet the need in engineering to enhance
the performance of the system. Many works dealt with SR
in engineering such as signal estimation and detection [8-
10]. A good way of designing the SR system is using array
since array can enhance system performance which is widely
studied [11-14]. The array for SR systems can be designed
either in coupled way [12, 15-18] or in uncoupled way [13, 14].
For the coupled array, the processing in each component is
complicated due to coupling with other components. Uncou-
pled parallel array has been widely studied in SR system due
to its simplicity, such as superthreshold system. For bistable
system, the work in [19] gives a brief introduction of a type of
array enhancement for the sinusoidal signal in bistable array
with a similar structure as superthreshold system. In [20]
the theory for this type of array is demonstrated. However,
even with the uncoupled components, the performance of the
system still has room to be improved. Since, in these types of
array, the components are not independent of each other, the
independence in statistics is an importance feature to the best
performance.

This paper is in fact inspired by traditional parallel
system, proposes a new parallel array with independent
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sensors, and focuses on the output SNR performance. This is
different from traditional parallel SR system since traditional
system uses one receiving sensor and parallel array processing
components so that input for each component is not inde-
pendent in statistics. And it is also different from traditional
array signal processing [7] since we do not need to consider
the shape of the array. To simplify the analysis, we limit
our study to two-state bistable system driven by sinusoidal
signal and Gaussian white noise and assume some identical
independent settings in every bistable component. To analyse
the performance of this array theoretically, we give a complete
proof on output SNR and experiments to demonstrate the
parameter influences.

This paper is organized as follows. The framework of
two-state model of bistable system is described in Section 2.
Section 3 deals with the case that a new structure of the
parallel array is assigned to bistable system and the output
SNR of this system is deduced. Section 4 is devoted to
instances of the proposed system whose performance is
indeed enhanced by adding noise. And the influence of the
parameter on the system is also analysed in this section.
Finally, in Section 5, we summarize the following.

Notation. E(-) stands for ensemble average, upper dot a
denotes a time derivative of a, A’ (b) represents the derivative
of A with respect to b, §(-) is Dirac delta function, and f * g
represents the convolution of f and g.

2. Two-State Model of Bistable Systems

We consider the overdamped motion of a Brownian particle
in a bistable potential in the presence of noise and periodic
forcing [21, 22]. The system can be presented by Fokker-
Planck equation. Consider

x(t) = U’ (x) + Ay cos (Qt) + & (t), 1)

where x is the position of Brownian particle, U(x) denotes the
reflection-symmetric quartic potential,

U (x) = —gxz + Zx4, (2)

&(t) denotes a zero-mean, Gaussian white noise with variance
2D, and A, cos(Qt) is periodic forcing. The potential U(x) is
bistable with minima located at +x,,,, with x,,, = (a/ b)l/ 2. The
height of the potential barrier between the minima is given
by AU = a’/4b.

To simplify the problem in this paper we discuss two-
state model [23, 24] that epitomizes the class of symmetric
bistable systems introduced. Such a discrete model under cer-
tain restrictions renders an accurate representation of most
continuous bistable systems. Let us consider a symmetric
unperturbed system that switches between two discrete states
+m,. We define n, (¢) to be the probabilities that the system
occupies either state + at time ¢; that is, x(t) = +x,,. Then

Mathematical Problems in Engineering

- Bistable | X1(f)

Noise | component 1

& (1)

Noise Bistable x,(8)
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FIGURE 1: The parallel bistable array with M independent compo-
nents.

the power spectral density of this symmetric bistable system
commonly reported in the literature [21] is

1/A 2 gyt 4y, x*
S(w): 1——( O'xm) 2 k X 2k m
2\ D J 4ri+Q*| 4]+’
A 2 4
+E< 0xm> x K18 (0 - Q) + 8 (@ + Q)]
2\ D 4r} + 02
(3)
in which Kramers rate
r L e ( AU) (4)
= —exp|—-—).
k > p D

It is rate of transitions between the neighboring potential
wells caused by the fluctuational forces.

Since the noise in the output of the system is no longer
Gaussian, the definition mean?/variance for SNR is not
suitable in this system. Here we adopt the definition for input
and output SNR according to [21] as follow:

J'Q+Aw

2[limy o [ e S (@) doo )

SNR =
Sn ()

For the weak signal (A,x,, « AU), we can omit high
order items; then the output SNR for this symmetric bistable
system is approximately

A 2
SNR = rr< (g"‘) Tk (6)

3. Parallel Bistable Array with Independent
Components

3.1. Proposed Array and Its Output SNR. In this section,
we discuss the parallel array bistable system and its SR
performance.

We consider the parallel array with M components in
Figure 1. Each component has a receiving sensor and a
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processing property as described in the last section. We
suppose that the receiving time difference At < T, = 21/Q
but there still is a considerable distance between every two
different components. This can be set by a suitable Q. Then
the input periodic signal can be taken as A cos(Qt) for
all the components. And the noise &;(t) is independent and
identically distributed (IID) for each input, and the output is
x;(t) for the ith component; then all the outputs are averaged
and the response of the array is given as

M
z(t) = M 7)
M

In the following of this section, we present the main
results with respect to the parallel array bistable system. Two
theorems form the SR performance analysis on output SNR.
We utilize four lemmas for proving the theorems. The proofs
of all the theorems and lemmas of this section are relegated
to appendices.

Theorem 1. For the parallel bistable system with M compo-
nents, the output SNR is

SNR(M)

_ (A g%,/ D)1y (8)
—(1/2) (Agx,n/D)’ (4r2/ (472 + Q?)) = H(M)’

where
_JF(M), if M is even
H(M)_{G(M), if M is odd, ©)
in which
N\MME 2k - M (M
FM)=(=
< ) 2 M <k>
k Mk K\ (M -k M-i-j ..
AEE s
x [(DMT 4 ()] } :
MMk - M (M
G(M)=<E> & M (k>
k M-k
x ZZ(’?)(MTk>BM‘i‘ff(M—i—j)
i=0 j=0 ! J
x [(DM 4 (-] } .
(10)

3
In the above equations,
B= 2rk (AO‘xm/D)
a2 2)
(4 + ) (1)
_ T((x+1)/2)
feo= val (x/2 + 1)
and T is gamma function and defined as
I'(x) = j Fle g (12)
0
The theory is based on the following lemmas.
Lemma 2. The pdf of z(t) is
po (2t 20, ty)
(13)

M
M) m M-m 2m-M
:Z n, (t)n” (t)8<z— X )
m=0 < m ' M "
Lemma 3. If M is even, the autocorrelation function of z(t) is

R, (t+1,t)

=x2, {[— exp (=2r¢ IT) & (6) + k (£ + 1) & ()
\M
- (E) exp (=2r¢ |7])

ME12k-M (M
2 Tk (14)

(e

i=0 j=0

x cos (Qf — )M

x [()MT 4 (—1)"‘1‘]} ,

where

x (t) = Beos (Qt — ). (15)



Lemma 4. If M is odd, the autocorrelation function of z(t) is

R, (t+1,1)

= x,, {[— exp (=2 7)) &% (1) + & (£ + 7)] & (1)

- <%)M exp (—2r; |7])

y Mok - M (M)

2 T \k (16)
M-k
SO0
i=0 j=0
x cos (Qt — )M

x [(~DM7 4 (—1)""‘]} .

Lemma 5. The power spectral density of the output of the
parallel array bistable system with M components is

1/A,x, \2 4r 4y, x*
S(w) =- —(—0 '”) —k _tHM) | S
2\ D 41’k+(22 41’k+w2
2 4} 17
+E<A0xm> 4rkxm ( )
2\ D 4r} + w?

X [0 (w-0Q)+8(w+Q)].

Theorem 6. For the weak signal (Ayx,, < AU), the output
SNR for this parallel bistable system with two components is
approximately

A 2
SNR = 271( Ox’”) . (18)
D

3.2. Remark. We conclude this section with three remarks.
Our first remark is about the simplified noise. The noise
&,(t) in practical problems is the sum of two parts in each
component. The first part is the receiving noise buried in the
receiving signal, and the second part is the tuning noise. Here
we suppose that the receiving noise and the tuning noise are
independent Gaussian white noise. And the variance of the
tuning noise can be set by us. Then we can simplify the noise
in each component as Gaussian white noise with 2D variance.

Our second remark is to point out that the proposed
array is different from the traditional SR array [20] due to its
independent sensors, and it is also different from traditional
array signal processing [7] since the shape of the array does
not affect the performance. We not only proposed an M-array
system for bistable SR, but also provided a rigorous proof for
the output SNR which is nontrivial as evidenced. And the
results also divide M into odd and even situations.

Our third remark is that Theorem 1 can arrive to (6)
by setting M = 1 and Theorem 6 by setting M = 2. In
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Noise variance

> Equation (6), M =1 o Equation (18), M =1
—— Equation (8), M =1 -.- Equation (8), M =2

FIGURE 2: Output SNR as a function of noise variance with A = 0.1,
a=1,b=1,and f = 100.

fact, Figurel shows that if M = 1, the system without
array becomes the conventional single bistable SR system.
The equivalence is also shown in Figure 2 on the same other
parameters.

4. Simulation Results

We now provide examples to illustrate the properties of our
proposed bistable parallel array system.

4.1. SR Effect and the Influence of M. For illustration of the
possibility of an SR in the output SNR, we consider two
different systems based on the theory of (8) for the proposed
array: case Ata = 1,b = 1, A = 0.1,and f = 100 in
Figure 3(a); case B:a = 15,b = 1, A = 1,and f = 10
in Figure 3(b). Though the two systems are set by different
parameters, they both display evolutions of the resulting
output SNR of (8), as a function of the noise variance, in
some typical conditions. Since D cannot be zero in (8), all the
curves start from a small amount D close to zero. As noise
power increases, the SR peak rises, shifts to higher noises,
and then subsides. This result shows us that if the input noise
variance is smaller than the peak point, the tuning noise
can be added to improve the output SNR performance. For
increasing M, the efficiency of the array and the maximum
output SNR increase. This demonstrates that the array of
nonlinear devices can play the role of an SNR amplifier, in
definite conditions.

At M = 2, SR effect gets more pronounced than at
M = 1 which is the traditional SR bistable system. The output
SNR is twice the output of the traditional bistable system
according to Theorem 6. As M increases, SR effect gets more
pronounced. However if M is even (M > 2), the output
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FIGURE 3: SNR curve changes as noise power. (a)a = 1,b=1,A=0.1,and f = 100. (b)a=1.5,b=1,A=1,and f = 10.
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FIGURE 4: Output SNR witha = 1,b = 1, A = 0.02, and f = 0.01.

The solid lines are from the theory of (8). The sets of discrete points
(o) are from Monte Carlo simulations.

SNR between M and M + 1 array is very approximate leaving
very small difference. This is because, for an even M, we have
(GIM + 1) = FIM))/(F(M + 2) = G(M + 1)) = 0. Then
SNR(M +1)/SNR(M) = 1. And the increment grows smaller
even if M is only odd or even with increasing M.

The results of Figure3 reveal that the characteristic
behaviors that identify the array bistable SR are precisely
exhibited by the evolutions of the SNR. However for equal
M, SNR displays different evolutions in the two figures

in Figure 3. This is caused by the other parameters of the
system. We will show the influence of these parameters in the
following examples.

We also offered a validation by a Monte Carlo simulation
of the proposed system in Figure 4 by settinga = 1,b = 1,
A =0.02, and f = 0.01. The results coincided with (8).

4.2. SR Effect and the Influence of Signal Amplitude. We
consider, in Figure 5, the transmission by the array of a
sinusoidal wave s(t) = A,cos(2nt/Ts) buried in noise
based on the theory of (8). The values of the amplitude A,
determine how the input s(¢) is seen by the array. We choose
a parallel array witha = 1,b = 1, M = 38, and f = 100.
Figure 5 shows various evolutions of the SNR at the output of
the array, for different values of the constant A ,. For the value
of A, tested in Figure 5, the performance for the periodic
input s(t) is always SR. With increasing A, as the level
of noise variance is increased, the output SNR experiences
nonmonotonic evolutions. In this experiment, we also set
A, to be very large numbers and very small numbers under
A, > 0. The outputs of the system all perform the SR effect.
And as A grows, the effect gets more enhanced. We relate
these results to the phenomenon of the proposed parallel
array SR, by which nonlinear transmission or processing of
signals with arbitrary amplitude can be improved by adding
noises in arrays.

4.3. SR Effect and the Influence of Signal Frequency. In this
example, we consider A, = 0.1,a = 1.5,b = 1,and M = 33
array system based on the theory of (8). Let f = Q/2m. We
choose different f to see the influence of the signal frequency.
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FIGURE 6: Output SNR as a function of noise variance with A, = 0.1,
a=1.5>b=1,and M = 33.

The output SNR versus noise variance of the two systems is
given in Figure 6. We observe that the output SNR grows from
near zero point to the maximum point and then goes down
with different frequency tested in this example. The noise
variances of maximum output SNR points in this case are
slightly different. With the growing of frequency the SR effect
becomes more enhanced. However, when f is big enough,
the growth of f does not affect the output SNR. No matter
how we increase the frequency, the system stays the same at
the extremal SNR. This property also helps us to choose a
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suitable signal frequency under our hypothesis At < 1/f. In
our experiment when f < 0.2 the system loses the SR effect.
This phenomenon also shows that the system does not have
the SR effect when the signal is DC signal, since we can take
the periodic signal as DC signal, if the frequency of the signal
is extremely low.

4.4. SR Effect and the Influence of System Parameters. Figure 7
shows various evolutions of the SNR at the output of the array,
for different values of system parameters a and b based on the
theory of (8). In Figure 7(a) to observe the influence of a, we
set A=0.1,b=15, f =10,and M = 33. As we can see from
the figure, the smaller the parameter a is, the stronger the SR
effect is. When a becomes big enough, the system loses the
SR effect. In fact, in this condition the output SNR is nearly
zero.

In Figure 7(b) to observe the influence of b, we set A =
0.1,a = 1.5, f = 10, and M = 33, the same as Figure 7(a)
except parameters a and b. The result of the output SNR
versus noise variance indicates that the bigger the parameter
b, the stronger the SR effect. This is the opposite to the
influence of a, because b has a positive effect on reflection-
symmetric quartic potential, while a has a negative one. And
comparing the two figures, the influence of a outweighs that
of b, and this is obvious due to Kramers rate.

4.5. Input-Output SNR Gain. We still adopt the definition
for input and output SNR in (5). Then input SNR for the
sinusoidal signal and a zero-mean, Gaussian white noise
SNR,, = 7A*/D. The input-output SNR gain is defined below.
Consider

SNR

Gonr = WRT: (19)
In this experiment, welet A; =0.1,a=1,b=1,and f = 1.
In Figure 8, the Ggygr grows first and then decreases with
increased noise variance. And the result in Figure 8 shows the
array system outweighs the signal bistable system on SR effect
and the Ggyy can exceed unity for M > 3 in this experiment.
It means that the array can improve the signal-to-noise ratio
(SNR) by noise incoherently. The improvement is measured
by the array gain. For M = 50, the maximum of Ggy is
2.95. Thus, this SR array with independent sensors provides a
preferable strategy for processing periodic signals to the array
without independent sensors which exceeds unity much less
[19].

5. Conclusion

In this work, we study the design of structure of bistable
system aimed at enhancing the SR effect to improve the
performance, driven by sinusoidal signal and Gaussian white
noise. We first proposed a parallel array bistable system
with M independent components and averaged output. We
further deduced the output signal-to-noise ratio (SNR) for
this parallel array system to analyse the performance of this
SR system. Our examples not only show the proposed system
reserves the SR property, but also give an analysis of different



Mathematical Problems in Engineering

Output SNR

02 04 06 08 1 12 14
Noise variance

—— a=5 —<— a=038
e g=2 —+— a=0.6
—— a=15 —— a=05
—e—a=1

()

09 ‘
0.8 +
0.7 +
0.6
0.5t

Output SNR

0.4 +
0.3 H
0.2 f
0.1

0.5 1 1.5 2 2.5

Noise variance

—— b=5 —<— b=0.8
—a—b=2 —— b=06
—— b=15 —— b=05
—— b=1

(®)

FIGURE 7: Output SNR as a function of noise variance. (a) A =0.1,b = 1.5, f =10,and M = 33. (b) A=0.1,a = 1.5, f = 10,and M = 33.
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parameter influences on the performance of the proposed
parallel array, indicating a promising application in array
signal processing.

Appendices

A. Proofs of Lemmas 2-5 and Theorem 1

Proof of Lemma 2. From the structure of the parallel array
bistable system, the output of the system is

Zf’fl x; (t)
=M

z(t) = (A1)

For the ith bistable component, the pdf of x;(t) is

Py (x5t | xg5t9) =1, 1) 8 (x; — x,,,) +1_ (1) S (x; + x,,,) -
(A.2)

Since x;(t) is independent in statistics for i = 1,2,..., M,
the pdf of the sum of the outputs of M components is the
convolution of each component. Then due to property of delta
function, we simplify the result of the convolution and obtain
the following pdf of z(t). Consider

P (2.t | 2, ty)

LM m - 2m-M

='Z‘0(m>n+(t)nﬁ4 (t)6<z—mem>.
(A.3)

O

Proof of Lemma 3. Based on Lemma 2 and the general defini-
tion of autocorrelation function, we can deduce the autocor-
relation function of z(t),

R, (t+1,1)

+00
= ” z212,p, (21t + 7| 25, )

—00

X Pz (Zz’t | 2y, tO) dz,dz,

+00 M M
=” zlzzxz<m>n:"(t+rlzz,t)
-0 m=0



x n™ M (t+ 1| zy,t)

2m— M >
xm

><8<zl— v

M
M
X Z<k>”ﬁ(t|zo’to)
k=0

x ™7 (¢ | zyot,)

2k-M
x 8 <22 - xm) dz,dz,
L& 22m-M (M
_xmz M m
m=0
2k-M
an<t+‘r| i xm,t)

_ 2k - M
x nM m(t+-r| xm,t>
M

M
2k—-M (M &
X}; M (k)”+(t|zo’to)

x nM* (

t]zpty)-
(A4)

The last step follows from the property of delta function.
Since

i <I:7> RN = (e ) (k- ),

i=0

(A5)

and making use of the normalization condition n, (t)+n_(t) =
1, (A.4) becomes

R, (t+1,t)
2 2k-M
=x, |n.(t+7]| v X t
2k-M
M Kpps t
M
2k—M (M\ & Mok
XZ M <k>”+(t|zmto)”- (t ] ztp)
k=0
M
xm,t>—1]

xfn[2n+<t+1|2k_
M
2k-M (M & —k
xk; i <k>n+(t|z0,t0)n§4 (t | zprty) -

—n_<t+r|

(A.6)
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If M is even, the range (0, M) of k can be divided into
(0,M/2 — 1) and (M/2,M). If kK = M/2, it is obvious that
R,(t +7,t) = 0. Then

R, (t +1,t)

:xi{[2n+(t+rl—,t)—l]

M/2-1
2k-M (M &
X 2 T <k>n+(t|zo,t0)

x ™ (¢ | zgot,)

+[2n, (t+1|+t)—1]

M

2k—-M (M
X Z M <k>”ﬁ(t|zo’to)

k=M/2+1

x ™ (¢ | zo,to)} .

(A7)
From [21], we have
n+ (t +7T | > t)
= % {exp(=2rc IT)) [F1 -k ()] + L+ (t + 1)},
(A.8)
n,(t+7|+1)
= % {exp(=2r 7)) [1 =k (O] + 1+ (t + 1)},
where
x (t) = Bcos(Qt — ¢),
B 21 (Agx,,/D) (A9)
(4r7 + 02?)
n(t+t| —t)andn,(t+7 | +t)area < 0and « > 0in

n,(t + 7| a,t), respectively [21].
It greatly simplifies in the stationary limit t{, — —oo,

lim R, (t+1,1)
ty — —00

= xfn <|{exp (=2re 7)) [l —x ()] +x (t + 7)}

M/j2-1
2%k—M (M) &
X k;) M <k)”+(t|20>to)

x ™7 (¢ | zgot,)

+{exp (“=2r 7)) [1 -k ()] + k(£ + 1)}

M

2k-M (M
> M <k>”}i(t|zmto)

k=M/2+1
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™7 (¢ | zo,to)}

= x,, {[—exp (=2 T & () + 5 (¢ + )| e (1)

—exp (—2r¢ |7])

M/2-1
2k—-M (M &
x k;) M (k>”+(t|zo>to)

x ™7 (¢ | 2 t,)

+exp (=27, |7])

M
2k—M<M> k
., (t |z tp)
k:MZ/2+1 M k "

™7 (¢ | zo,to)} .

(A.10)
Take

. 1
t01_1)n_100n+ (t | Zo;to) = E [1 + K(t)] >

(A.11)
lim n(¢] 20.t,) = % [1-x(0)]

ty — —00
into (A.10) to obtain

lim R, (t+1,t)
tp — —00

= x), {[— exp (~2r o) i (1) +x (£ + 1) (1)

—exp (—2r¢ |7])
M2 ok - M (M) (1 k
<2 T <k>{z[1+x(t)]}

FEL —x(t)]}M_k

+exp (=27 |7])

M 2%k-M (M
M k

k=M/2+1

% {%[1+K(t)]}k

x50 —x(t)J}M_k}

= x,, {[—exp (=2 7)) &2 (1) + K (¢ + )] k(1)

-(3) e (2ne e

Mok - M (M) k
X [1+x(t)]
Pt
x [1-x (6]
Az 2k—M<M)
k:]g/:%l M k
x [1+x(@®)]F

x [1—K(t)]M"‘H.

(A.12)

The last part can be reexpressed as

M/2-1 _
y *oM (f) 1+ (011 - (O]

k=0

B M/ZHM ~ 2k ( M
k=0

- k) [+ @11 - (0

METk-M (M
M k

50 (5

k
i=0 j

k=0

X
x [N+ )t

_M/Z“zk—M M
- ()

k=0
k M-k

K\ (M-k\ mij

2 (0 )

M—i-j

x cos (Qt - ¢)

x [(DMF 4 (-]
(A13)
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Then we have

R, (t+1,t)

=x, {[— exp (=21 [T]) & (8) + & (t +7)] e (£)
\M
- <5> exp (—=2r¢ |7l)

M/2-1 _
" Z 2k M(M)
M k

2 (A14)
kMK N -k o
()
i=0 j=0
x cos (Qt — )M
x ()M + (—1)""']} .
O

Proof of Lemma 4. If M is odd, we can prove Lemma 4 in
a similar manner as Lemma 3. After some mathematical
manipulations, we obtain the following:

R, (t +1,1)
= x,, ‘|[_ exp (=2 [T]) k% (£) + x (¢ + r)] x (1)

- (%)M exp (-2, |7])

Mok M (M)
X
M k

k=0

22 ()0

i=0

> gM-i-i

x cos (Ot — )M

x [(~)M + (—1)""']} ,
(A.15)
O

Proof of Lemma 5. It is obvious that the autocorrelation func-
tion depends on both times t + 7 and t. However, in real
experiments t represents the time set for the trigger in the
data acquisition procedure. Typically, the averages implied by
the definition of the autocorrelation function are taken over
many sampling records of the signal x(¢), triggered at a large
number of times ¢ within one period of the forcing T,. Hence,
the corresponding phases of the input signal, 0 = Ot + v, are
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uniformly distributed between 0 and 27. This corresponds
to averaging autocorrelation function as with respect to t
uniformly over an entire forcing period, whence if M is even,

R, (1)

X { [— exp (=2r; 7)) & () + 5 (¢ + T)] Kk (t)

- (%)M exp (~2r Irl)

CEE)

S0

J

M»

X

Il
(=]

i

M—i—j

x cos (Qt — ¢)
x [~ 4 ()] } dt
1
=x, {—E exp (—2r |7|) B’

1, 1\M
+ EB cos (Q7) - <§> exp (21 |7])

M[2-1 .,
« Z 2k-M
M

k=0

(022 (0

B (M =i )

« [(_1)M—k—j + (_l)k—i] }
(A.16)

in which

I'((x+1)/2)

SO = G

N (A7)
I'(x) = L e dr.
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Then
R, (7)
= x? {— exp (-2r |7]) lB2
m k B (A.18)
+ %BZ cos (Q1) — exp (-2r |7]) F (M)} ,
where
F (M)
IN\MME ok - M (M
B <§) I; M < k )
Ak M-k (A.19)
<22 () ()

i=0 j=0
X BYTF (M =i )
x [(~D)M* 4 (-]
Using Fourier transform of (A.18), we obtain the power

spectrum density under the condition that M is even.
Consider

_ 4rkxfn (—1B2>
4r}+w’ \ 2

+ gxanz [0(-0Q)+0(w+Q)]

§(w)

4rkxfn
- F(M
4r7 + w? (M)
1/A 472 4r, x*
= _< Oxm>—k+F(M) Skt
2\ D J 4+ Q? 4r} + w?

[8( - +8(w+Q)].
(A.20)
If M is odd, the method is similar. Consider

R, (1)

1 (To
=—J R, (t+7,t)dt
T Jo

-
=T
To
x j 2,
0
2
X {[— exp (=2r; |7]) k™ (t)

+r(t+1)] K ()

11
M
- (%) exp (—2r, |7])
WM&k -M (M
< S (k)
k M-k
22 ()
xBMT cos (Qt — @)™
x [(~)M + (-1)’“’]} dt
=x {—% exp (—2r |7]) %Bz
+ le cos (Q1) — <1>M exp (=21 |7l)
> > p k
MV ok - M
X
o M
k M-k
( )22 (")
B f (M -i- j)
x [(~D)M7 ¢ (—1)""']} ,
(A.21)

in which f(x) and I'(x) have the same definition in (A.17).
Then

1
R, (1) =, {-3 exp (-2 o) B

+%B2 cos (Qr) — exp (=27 |7]) G (M)} ,
(A.22)

in which
G (M)

1 M‘M‘”/sz—M<M>

) X 5 (&
k M—k

<22 (")
i=0 j=0

< BT (M i - )

x [(D)M + (D).

(A.23)
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The Fourier transform of power spectrum density is

4rkxfn )
(1)
4rf+w? \ 2

¥ gx;Bz [0 (w- Q) +8(w+Q)]

S(w) =

47, x*
_ 2k sz(M)
4rk+w
1/A 2 4yt 4r.x2
_ _( oxm> 2—k+G(M) 2k m
2\ D 4r} + Q2 4r} + w?
. n(onm )2 4r,fx,2n
2\ D 4r + Q2
X [0 (w-Q)+d6(w+Q)].
(A.24)

In conclusion, the power spectrum density of the output
of the system is

S (w)
- l(onm )2 2‘”1% +HO) 427kxfn
2\ D J 4} +Q? 4r} + w?
(A.25)
. n(onm )2 arix?,
2\ D 4r} + w?
X [0 (w—-Q)+6(w+Q)],
in which
F(M), M is even number
H(M) = A.26
(M) {G(M), M is odd number. ( )
O

Proof of Theorem 1. In (A.25), we can easily separate an
exponentially decaying branch due to randomness and a
periodically oscillating tail driven by the periodic input
signal. And as a matter of fact, power spectrum density of
noise Sy (w) is the product of the Lorentzian curve obtained
with no input signal A, = 0 and a factor that depends on
the forcing amplitude A, but it is smaller than unity. Then
the first part of power spectrum density is caused by noise.
Consider

1/ Apx,\> 4r; 4r.x2
Sy (@) = - —( 0’">—k+HM etm
N (@) [2 D 4r} + Q2 (M) 4r} + w?
(A.27)

based on the definition of output SNR in (5).
Then for the parallel bistable system with M components,
the output SNR following the definition in (5) is

ﬂ(AOxm/D)Zrk

T4/ (Agx,n/D)’ (472/ (472 + Q2)) = H (M)
(A.28)

O

SNR
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B. Proof of Theorem 6

Proof of Theorem 6. The proof of Theorem 6 is similar to that
of Theorem 1; an outline is provided as follows. The output in
this system is

x, (1) + x, (t).

5 (B.1)

z(t) =

The pdfs of x; fori = 1,2 are

Dy (xit | x05t0) =1, (£) 6 (x; — x,,,) +1_ (£) 8 (x; + x,,,) -
(B.2)

Then the pdf of z(¢) is

p. (2.t | x,t9) = 2[p, (22,1 | X0, 1) * py (22,8 | X0, 15)] -
(B.3)

Then

Pz (Z’t | xO’tO) = 1’l+(t)28 (Z - xm)

+2n, ()n_ (1) (2) +n_(t)°0 (z +x,,).
(B.4)

According to the general definition of autocorrelation func-
tion, the autocorrelation function of z(t) is

R, (t +1,1)

=E[z(t+1)z(t)]

+00
” 212, (2,1 + 7| 25, 1)

—00

X p, (25t | 2o, 1) dz,dz,

Z12,

Il
| +
8 8

X [m(t +7 | 2pt)°8 (2, - x,,)
+2n, (t+7|zpt)n_(t+7]25t)8(2,)
+n_(t+7| zz,t)zé (z, + xm)]
x [1,(t | 20:10)°8 (2, = X,)
+2n, (t ] zgtg)n_(t | zgot0) 6 (2,)

+n_(t | 2, ty) 0 (2, + xm)] dz,dz,.
(B.5)
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Due to the property of delta function, we obtain

R, (t +1,t)
=2 (t+T | X t) 1, (] Zgo1)
2, (4T | =%, ) 1 (t] Zgoty)
2

2 (4T | X t) n,(t | 200 to)

+ 2 (41| =%, ) 1 (t] 29 t)

= x,, {”+(t | Zo»fo)2

x[2n, (t+ 71| x,,t)—2n, (t+7|—x,,1)]

+[1-2n, (t+7|-x,,t)]

x [1-2n, (t | zg:to)]} -
(B.6)

Simplify it in the stationary limitt, — —oo,

lim R, (t+1,1)

ty — —00
1-x(t)
= x exp (=2r; |7]) [#] +K(E+T)K(L).
(B.7)
And to obtain the average autocorrelation function

(%)

R, (7)

To
J R, (t+7,t)dt
0

2 2 2
x,, 1 ( Ayx,, ) 4ry,
=—exp(2r.|t)) |1 - =| —— ) —/————=
2 ol kll)[ 2\'D ) 422
2 2 2
X, (A 4r,
+ —m<ﬂ> 2—k cos (Q1).
2 D 4r} + Q2
(B.8)
The output power spectrum density is as follows:
1 1/A 2 4 4r.x2
S@ =5 [1-5(582) o | S
2 2\ D 4+ Q2 | 4l + ?
A 2 4r2x?
+ E( Oxm> (5 (w- Q) +6 (w+Q)].
2\ D 4r} + Q?
(B.9)

The first part is due to the noise, and then the power spectrum
density of noise is

1 1/ Agx, \> 4rf 4rkx2
Sy (W) == 1——( °’”> g m_. (B10
v (@) 2[ 2\ D J 4+ Q| 4r} +a? (B.10)
The system output SNR is
A 2
SNR = 21( 22 1+ O (7). (B.11)
D
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Omitting the high order items due to the weak signal, the SNR
following the definition in (5) becomes

(B.12)

A 2
SNR = 271( g’"> .

O
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The advertisement can increase the consumers demand; therefore it is one of the most important marketing strategies in the
operations management of enterprises. This paper aims to analyze the impact of advertising investment on a discrete dynamic supply
chain network which consists of suppliers, manufactures, retailers, and demand markets associated at different tiers under random
demand. The impact of advertising investment will last several planning periods besides the current period due to delay effect.
Based on noncooperative game theory, variational inequality, and Lagrange dual theory, the optimal economic behaviors of the
suppliers, the manufactures, the retailers, and the consumers in the demand markets are modeled. In turn, the supply chain network
equilibrium model is proposed and computed by modified project contraction algorithm with fixed step. The effectiveness of the
model is illustrated by numerical examples, and managerial insights are obtained through the analysis of advertising investment in
multiple periods and advertising delay effect among different periods.

1. Introduction

In the 1980s, the interest in supply chain and supply chain
management increased tremendously. Supply chain man-
agement, which incorporates the raw materials supplying,
production and distribution in the demand markets in the
end [1], is a hot topic in the academic world as well as the
business community. There is abundance of research available
on the supply chain management. We refer the readers to the
work of [2] to achieve a comprehensive review on the supply
chain topic.

These researches mainly focus on the stringy supply
chain or a single manufacturer. In fact, the supply chain is a
network which consists of suppliers, manufacturers, retailers,
and demand markets [3]. Thus, there is limited contribution
in the previous literature that addresses the competition
between the players with the same function, such as various
manufacturers making the homogenous products, and the
complexity resulting from so many actors in the supply chain
network system. By the concept of equilibrium, Nagurney et
al. [4] explore in the general supply chain network setting.

Other researchers expand the work of Nagurney et al. [4].
In particular, Dong et al. [5] study the supply chain network
equilibrium with stochastic market demand which need get
the density function or distribution function of random
demand from history data.

In practice, demand uncertainties arise from the com-
plexity and the evolvement over time of supply chain network
which is actually a dynamic system [6]. The dynamics of
our world results in the changing of network construct;
thus we can discrete the fixed time into several planning
periods, and in one planning period, the parameters in the
network are stable, whereas in different periods, there are
some changes such as the raw materials price fluctuation or
the demand parameter transformation in the markets. In this
paper, we model the discrete dynamic supply chain network
equilibrium.

Moreover, in order to promote the product, firms usually
use some marketing strategies such as advertising. Adver-
tising is a common marketing activity and is widely used
by enterprises. Local advertising, which focuses on the local
market, is mainly accomplished by the cooperation between
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manufacturer and retailer [7]. Since the retailer is closer and
familiar with the consumers, she may have an efficient local
advertising channel, and the manufacturer may provide the
retailer a part of money for local advertising purpose. Warner
Brothers, a maker of corsets, issued the first co-op agreement
in1903 [7]. From then on, the use of co-op advertising spreads
to other industrials such as grocery stores and fashion, and
the automobile is the most common user of cooperative
advertising today.

The advocating of advertisement could make consumers
learn about the characters and related knowledge of the
products provided by manufacturers and retailers, so more
consumers will purchase this product, which result in the
total market share increasing. If we consider the adver-
tisement strategy in a dynamic decision context, then the
relationship among different periods must be taken into
consideration. For example, the advertising investment in the
current period also has some effects in the next periods, and
this effect will reduce over time. This paper incorporates the
co-op advertising investment strategy in discrete dynamic
decision-making environment, and the investment will be
shared by manufacturers and retailers; the sharing ratio is
determined by negotiation between the two tire players. As
we see in the numerical examples, it is interesting to note
that the value of ratio does not impact the equilibrium
results. Since the advertising strategy is an option that is
underutilized, enterprises are unsure about the economic
performance of advertising investment.

To mitigate the ambiguity about advertising investment
for decision makers, in the paper, we model the role of
advertising investment in a supply chain network over time.
Similar to literatures of supply chain network, we assume the
players in the same tier such as all manufacturers compete
in a noncooperative fashion and the players in different tiers
such as manufacturers and retailers must cooperate in order
to agree with each other in transaction price and amount.
In the network, decision makers including manufacturers
and retailers need to decide on the appreciation level of
advertisement investment so that they sell more products to
demand markets to maximize the profit. To simplify problem
studied, we will illustrate this point through numerical
examples and consider the investment levels as a constant
instead of a decision variable.

This paper is organized as follows. Section2 gives
assumptions and notations. In Section 3, we model the
optimal behaviors of various players in supply chain net-
work. In turn, we establish the equilibrium model of the
whole network. Section 4 provides solution algorithm for the
model established, and in Section 5, we illustrate the effective
and managerial insights by numerical examples. Finally, in
Section 6, we conclude the paper.

2. Literature Review

Over the past decades, in the context of supply chain,
advertising strategy has grown up and becomes an important
research topic in operations research and management area.
Cooperative advertising generally has five different mean-
ings [23]. In our research, we employ the first one that
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is vertical cooperative advertising which is also the most
common comprehension. The manufacturers offer to share
a certain percentage of the downstream retailers’ advertising
expenditures [24]. We also refer the readers to the work of
[23] and the literature therein to get a general review about
advertising. Based on the time dependence of parameters
and decision variables, Lei et al. [25] and Xiao et al. [26]
propose various multiperiod models to illustrate the impact
of advertising investment on supply chain, whereas Chen
[27], He et al. [28], Tsao and Sheen [29], and Xiao et al. [26]
pick up the topic of stochastic environment associated with
advertisement. Using game theoretic methods and from two
main parts, simple marketing channels and a more complex
structure, Jogensen and Zaccour [30] survey the literature
on cooperative advertising in marketing channels (supply
chains). Considering corporate social responsibility, Zhang et
al. [31] examine the effectiveness of an advertising initiative
in a leader-follower supply chain with one manufacturer and
one retailer. Lambertini [32] characterizes an optimal two-
part tariff specified as a linear function of the upstream firm’s
advertising effort, performing this task both in the static and
in the dynamic games. It is necessary to point out that these
researches mainly pay attention to the simple supply chain
or a single firm but do not consider the complexity and the
mutual impacts among firms in the supply chain network.

Besides the research of Dong et al. [5], Nagurney et al.
[8], Nagurney and Toyasaki [9], Wu et al. [10], Hammond
and Beullens [11], Yang et al. [12], Masoumi et al. [13], and Yu
and Nagurney [15], Toyasaki et al. [16] study the supply chain
network equilibrium problems from various perspectives and
different supply chain networks. Qiang et al. [14] establish
a closed-loop supply chain network model considering the
competition, distribution channel investment, and demand
uncertainties. The literatures mentioned above deal with
static supply chain or static supply chain network equilibrium
problems.

Recently, a few authors explore supply chain network
equilibrium problems in dynamic setting. For example, Cruz
and Wakolbinger [17] develop a framework for the analysis
of the optimal levels of corporate social responsibility (CSR)
activities in a multiperiod supply chain network consisting
of manufacturers, retailers, and consumers and describe the
problem of carbon emissions. Daniele [18] considers a supply
chain network model with three tiers of decision makers
(manufacturers, retailers, and consumers) in the case when
prices and shipments are evolving on time. Cruz and Liu [19]
analyze the effects of levels of social relationship on a multi-
period supply chain network with multiple decision makers
associated at different tiers. Hamdouch [20] establishes a
three-tier equilibrium model with capacity constraints and
retailers’ purchase strategy from a multiperiod perspective.
Liu and Cruz [21] provide an analytical framework to inves-
tigate how financial risks affect the values of interconnected
supply chain firms from a network perspective and how
financial risks affect the supply chain firms’ profitability and
the cash and credit transactions. Feng et al. [22] develop
a closed-loop supply chain super network model in which
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TABLE 1: Literature sources for network equilibrium.

No. Authors Static/dynamic Demand characteristic Considering factor

1 Nagurney et al. (2002) [4] Static Deterministic No

2 Dong et al. (2004) [5] Static Random uncertainty No

3 Nagurney et al. (2005) [8] Static Random uncertainty B2B transaction, risk

4 Nagurney and Toyasaki (2005) [9] Static Deterministic No

5 Wu et al. (2006) [10] Static Deterministic Pollution tax

6 Hammond and Beullens (2007) [11] Static Deterministic Collection

7 Yang et al. (2009) [12] Static Deterministic Collection

8 Masoumi et al. (2012) [13] Static Deterministic No

9 Qiang et al. (2013) [14] Static Random uncertainty Channel investment

10 Yu and Nagurney (2013) [15] Static Deterministic No

11 Toyasaki et al. (2014) [16] Static Deterministic No

12 Cruz and Wakolbinger (2008) [17] Discrete dynamic Deterministic Corporate social responsibility
13 Daniele (2010) [18] Continuous dynamic Deterministic No

14 Cruz and Liu (2011) [19] Discrete dynamic Deterministic Social relationship

15 Hamdouch (2011) [20] Discrete dynamic Deterministic Purchase strategy

16 Liu and Cruz (2012) [21] Discrete dynamic Deterministic Corporate financial risks, trade credits
17 Feng et al. (2014) [22] Continuous dynamic Deterministic Channel investment

the demand is seasonal and the manufacturers invest the
reverse distribution channel for advocating consumers to
return more end-of-life products.

The metamorphosis of supply chain network equilibrium
literature of recent years is reviewed in Table 1. From Table 1
and literature survey, it is clearly evident that there is no
research on discrete dynamic supply chain network equilib-
rium with advertising strategy and demand uncertainties.

In this paper, our model captures the planning process
and the change of costs and demands and highlights the
performance of advertising with delay effect, and moreover,
this model expresses the uncertainties popularly existing in
practice.

3. Model Assumptions and Notations

3.1. Model Assumptions. We consider a supply chain network
consisting of S suppliers, M manufacturers, N retailers, and
K demand markets and let s denote a typical supplier, m
a typical manufacturer, n a typical retailer, and k a typical
demand market; a retailer is matching a demand market; that
is, one retailer only deals with the demand of one demand
market. All actors in the same tire compete in a noncoop-
erative fashion. Figure 1 illustrates the simple supply chain
network with 2 suppliers, 2 manufacturers, 2 retailers, and 2
demand markets in 2 periods. s, (1) denotes the first supplier
in the first period, and s,(1) denotes the second supplier in
the first period; the other notations can be explained in the
same way. The real lines between two adjacent tiers denote
the related transaction activities, and the dash lines between 2
periods denote inventory transferring from the former period
to the latter period.

Retailers

Demand
markets

FIGURE 1: An illustration of 2-period supply chain network.

In order to explicate the problem studied, we give the
following assumptions:

(1) All vectors are column vectors;

(2) The equilibrium solution or the optimal value of a

w »,

decision variable is denoted by “*7;

(3) The advertising investment is a constant and shared
between the pairs of manufacturer and retailer;

(4) All cost functions and transaction functions are con-
tinuous convex and differentiable;

(5) All players in the network are risk neutral.
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TABLE 2: Basic parameters in the closed-loop supply chain network figure.
Notation Definition
B Raw material conversion rate
t A typical period, t = 1,2,...,T
s A typical supplier, s = 1,2,...,S
m A typical manufacturer,m = 1,2,...,M
n A typical retailer, n = 1,2,...,N
k A typical demand market, k = 1,2,...,K
A,(>0) The unit cost of product shortage of retailer n
AL (>0) The unit cost of product excess of retailer n
D Advertising investment ratio shared by manufacturer m
TaBLE 3: Transactions and production variables associated with various players in the network.
Notation Definition
.0 The raw r.naterigl transaction volume f11’0m sSuIVII)Tplier s to manufacturer m at period t; group all of
these variables into a column vector Q" € R
O, The total raw material volume provided by Ss;lpplier s to all manufacturers at period t; group all of
these variables into a column vector g € R
,(0) Thej total raw material volume of man]\%acturer m used to produce at period ¢; group all of these
variables into a column vector " € R
G0 The. prodgct transaction volume 2from b&r}l\laTnufacturer m to retailer n at period t; group all of these
variables into a column vector Q° € R}
Pon(t) The transaction price charged by manufacturer m for retailer # at period ¢
pa(t) Price charged by retailer # to the product in his outlet for corresponding demand market k at period ¢
¢, (x5 p, (1)) The density function of random variable x
@, (x;p, (1)) The distribution function of random variable x
L,(t) The inventory of manufacturer  at period ¢; group all of I,, () into a column vector I € RM”

3.2. Variables and Notations. The variables and notations are
defined as in Tables 2 and 3, and the production functions and
transaction functions are defined as in Table 4.

4. Discrete Dynamic Supply Chain Network
Equilibrium Model

4.1. The Optimal Behavior and Equilibrium Condition of
Suppliers. In each period, supplier s provides raw material to
various manufacturers at the beginning of every period and
makes decision associated with trade and production volume
of raw material to maximize the profit in the entire planning
horizon. Using the notations defined previously, the profit
maximum criterion for supplier s can be described as

t=1 m=1
T M @
XMOE Zf g, (t))}
t=1m=1
M
Y, (1) < 4. (1), )
m=1
(4, (). q; ) € VT, vs, 3)

Equation (2) expresses that production output of raw
material cannot be lower than total volume of the raw
material transaction between the supplier s and the various
manufacturers.

In this paper, we assume that all the suppliers compete in
a noncooperative fashion. Therefore, we can simultaneously
express the equilibrium condition of the suppliers as the
variational inequality, determining (¢,*,Q"*, ) € Q°, such
that

T r
t_le_Zl[afsaqs (t)(t) - (t)] x [q, (t) - q." ()]
S [od ()
[aqzm (t)
x [d,,, ) =, 1]

T S M
LYY [qz* 0-3d <t>]

m=1
X 1, () =12 ()] 20

v (q.Q\n,) € @,

O <t>]

t=1s=1m=1

(4)

where QS — RiTJrSMTJrST.
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TABLE 4: Functions associated with various players in the network.

Notations Definition

JHORSHCAG)

The raw material production cost function of supplier s at period ¢

() = ¢, (qh, ()
@ = o (Bq @)

The transaction cost function between supplier s and manufacturer m at period ¢
The production cost function using raw materials of manufacturer m at period ¢

c,(t) The exhibition and disposal cost at retailer n at period t

H,(t) = H, (I, )

m
t+i

di (p (1), I}" (£))

The transaction cost function between manufacturer m and retailer # at period ¢
The inventory cost function at manufacturer m

The delay effect factor of advertising investment at period ¢ on the period t + i
The demand function associated with demand market k

In (4), #,(t) is the Lagrange multiplier corresponding to
constraint (2) and 5, € RS is the column vector with the
elements of #,(t).

Based on the equivalence of variational inequality and
complement problem, from the second term of (4), we get

() = 2

T 0, (1)

From the Ist term of (4), in the equilibrium state, 7, () =

ofI(q."(t))/0q.(t); that is, n.(¢) is equal to the marginal

production cost. Therefore, (5) shows that the transaction

price between suppliers and manufacturers is equal to the

sum of marginal transaction cost and marginal production
cost.

+1; (1) ©)

4.2. The Optimal Behavior and Equilibrium Condition of Man-
ufacturers. The manufacturers purchase the raw materials
from various suppliers to make products and sell the new
products to retailers at every period and in the same time
manage inventory between periods according to the market
conditions. The manufacturer m seeks to maximize her profit
that can be described as follows:

T N T S
T, = max {Z men (t) mn (t) - Z Zpsm (t) Dsm (t)

t=1n=1 t=1s=1

T T N T
X ®=-Y Y6 ®-YH, O (6)
t=1 t=1

t=1n=1

T N
3 Gl () Gy (t)} :

t=1n=1

N
st L,(t=1)+ By, ) =L, () + Y g (), ()
n=1

S
NGRS SOR 8)
s=1

Equation (7) expresses the flow conservation; the sum of
production volume from raw materials in ¢ period and the
transferring inventory from ¢ — 1 period is equal to the sum of
the transaction volume with all retailers and the transferring
inventory to next period, and assume the corresponding

Lagrange multiplier is A,,(t); A € RM" is the column vector

with the elements of A,,(¢). Equation (8) shows that the raw
materials amount obtained in manufacturer m is not higher
than that various suppliers sent to her; similarly, assume the
corresponding Lagrange multiplier is y,,(t)and y € RiVIT is
the column vector with the elements of y,,,(t).

The profit maximum object of all manufacturers can
be described as a variational inequality, determining
(@, Q"™ Q™ I",y*, 1) ¢ QM such that

T M afrly\l/f* (t)
ke

B 040 <L, 00 -4 0]

t=1m=1

T M S
+ Y D15 ) = v (O] X [@em ) = &, (D]

e S [ ® ey o
Y)Y [ SR N0 ¢ bl 0

X [qmn (t) - q:;m (t)]

A 10H! (t)
[ oL, (t)

T
+ +A;(t)—A;(t+1)]
t=1m=1
x L, @)=L (1)]

T M S
+y ) [ Tom () — 4, (f)] X [P () =y ()]

s=1

T M N
+Y Y [I,’; t-1)+Bg, t)-I" () - ;q:nn (f)]
X [ (6) = A%, (8)] 2 0

V(qr,Ql,QZ,I, Vs A) e oM,
)
where OM — RJ+VIT+SMT+MNT+2MT % RMT
From the third term of (9), the transaction price can be
written as when the network is in equilibrium:

oc,,. (t)
0y, (1)

From the 2nd term of (9), in the equilibrium state, we
get po. () =y, (t); then from the Ist term, we get A, (t) =

P () = + Ay () + P (1) (10)



(1/B)IBFM* (1)/3qL,(6) + v (O] = (/B2 (0)/3q, (8) +
po.()]. Equation (10) shows that in the equilibrium state,
the transaction price between manufacturers and retailers is
equal to the sum of marginal transaction cost between manu-
facturers and retailers, the Lagrange multiplier corresponding
to constraint (7), and the advertisement investment amount
shared by manufacturer m.

4.3. The Optimal Behavior and Equilibrium Condition of
Retailers. The retailers need to decide to purchase how
many products from manufacturers and sell to consumers in
corresponding demand markets in a certain price.

Due to JM(IZ‘”(t), p,(t)) denoting the random demand
of retailer outlet n, the demand depends on the advertising
investment and the trade price; it is obvious that the more
advertising investment paid by manufacturers and retailers
is, the larger consumer demand is, whereas the increase of
price charged by retailers will lower the product demand. For
a given product transaction price p,(t) at period t, accord-
ing to the notations illustrated in Table 3, ®,(x; p,(t)) =

J: ¢, (x; p,(t))dx. Let s,(t) denote the wholesale amount

from manufacturers and s,,(¢) = fo:l @ (1); group all s, (t)

in period ¢ into a column vector s(t) € RY, and group all

s,(t) into a column vector s,, € RJrN T In order to express the
competition among retailers, we assume that the exhibition
function and disposal cost function at retailer n ¢, (f) =
c,(s(t)) are related with all retailers.

For retailer n, if given s,(t), it is similar as in Dong et
al. [5] and Nagurney et al. [4], the expected sales quantity,
expected shortage quantity, and expected exceed quantity can
be expressed as

S, (5, (1), I} (1) p, (1))

= E[min{d, (17" (©), p, (1) 5, (O}]

s,(t)
=5, (t) - L (s, (t) = x)do,

x (17" (1), p, (1)),
H, (s, (6), 1" (t), p, (1))

= E[max{0,5,(t) - d, (I}" (1), p, (1))}]
_ L (s, — x) dD, (x, 7" (1), py (1))
Qu (5, (0. 13" (1), py (1))
- B [max {0,d, (I7" (8), p, ) - 5, )}

= [, (5,040, ("), ).

(11)
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From (10), we can easily obtain

3, (5, (1), I (£ p, (1))

= 1=, (s, (1), I (t), p, (1)),

Os,, (t)
aHn (S” (t) > Izm (t) > Pn (t)) _ mn

3s, (t) = @, (s, (1), 13" (1) p, (1)),
9Q, (s, (1, 13" (1), pu (V) _ n

3s, (1) = @, (5, (1), 13" (1), pu () = 1.

(12)

For retailer n, the maximum expected profit model can be
expressed as

T
7T, = max {an ®)S, (s, &), 0" (t), p, (1))

t=1

T

- /\;ZHn (Sn (t) > IZm (t) > Pn (t))

t=1

T
=AY Qu (5, (), 13" (8), p, ()
t=1

T T M
- zcn (S (t)) - Z Z Pmn (t) Gmn (t) - (1 - ¢mn)
t=1

t=1m=1

M~

X

M
Y L) Gy <t>},
=1=

t 1

1m

(13)
M
st 5,0 = ) G (©). (14)
m=1
Using (11) and (13) can be rewritten as
T T
7, = max {an (t)s, ) - Z (pa () +A))
t=1 t=1
5,(6) )
X L (s, (1) —x)dD, (x,p, () - A,

T +c0
x Z J (x—s, (1) dD, (x, p, (1)
t=1"75$

X

T T M
- ch (S (t)) - Z Z Pmn (t) Gmn (t) - (1 - ¢mn)
t=1

t=1m=1

T M
xzzwm%m}

t=1 m=1

(15)

All retailers compete in a noncooperation fashion; using
(12), their equilibrium conditions can be described as a
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variational inequality, determining (s, Q**,0*) € QV, such
that

N
| (or O+ 45+ 1) D, (s) (1), py (1))

n=1

M~

t

1l
—

ac, (s (1))

O T

] X [s, (t) = s, (1)]

+
M=
M=
Mz

[(1 = n) 4" ) + Py (8]

_,
Ii
-
3
I
-

1

X [qmn (t) - q;m (t)]

n

M=z

5

t=1n

M
[ G (F) =S, (t)] x [0, () -6 1)) =0

m=1

Il
—

V (s, Q%0) e QY
(16)

where QN = RNTHMNT » RNT,

In (16), 6,(t) is the Lagrange multiplier corresponding to
constraint (14) and 0, (t) € RMT is the column vector with
the elements of 0, (t). The transaction price p, (t) is a decision
variable which can be obtained from the computing results.

4.4. The Optimal Behavior and Equilibrium Condition of
Demand Markets. For the supply chain network, given a fixed
advertising investment, the consumers of demand markets
buy the products under a price charged by the retailers and
it is similar as in Dong et al. [5] and Nagurney et al. [4]

s, (1), p, (t)>0
s, (1), p,(t)=0

The consumers’” optimal behaviors and equilibrium con-
ditions can be described as a variational inequality, determin-
ing p; () € QF, such that

(s, () = d, (1" (), py (1))]

d, (I (t), pl (1)) {: (17)

< [pa (1) = py ()] 20

(18)
Vp, () € QF,

where QX = RfT.

4.5. The Equilibrium Condition of the Supply Chain Network.
Each player in the supply chain network selects the optimal
strategy in every period and seeks to maximize the profit in
the entire planning horizon on the basis of the other players
making optimal decisions. Thus, the network will experience
a strategy selecting process and carry out Nash equilibrium
in the end. In particular, the product transaction amount and
price between the adjacent tires must be equal to that the
players want to purchase or sell at every period, and the man-
ufacturers and retailers also need to make decisions about
the advertising investment to enhance the expected sales to
maximize their profits. So, the whole network equilibrium
condition is the sum of (4), (9), (15), and (18). We sum up
these equations and obtain the following theorem.

Theorem 1. A strategy pattern (q,*,q*,Q"", Q" I",s*, p*,
ns,y"A") € Q of the discrete dynamic supply chain net-
work can be called an equilibrium pattern if and only if
it satisfies the followmg inequality, determining (q;".q ",

QY Q¥ I, 55, p*,nl,y*, A", 0%) € Q, such that

-7, (t)] x [t (t) - %" (t)]

T S ar ())
ZZ[ 5qs(t)

t=1s=1
L& [ofy () . . ]
m —BA
I AR
x g, @) -4, )]

T S M acr*() ) * ]

£) =y, (t
+;;W,Z_1[aqsm(t) s () = ¥, (1)
X [qo (£) = Gy ()]

T M N acrtm(t)
222 a0

t=1m=1n=1

+A, (1)

-0, (t)+ 1™ (t)]
X [qmn (t) - q::rm (t)]

LM roH] (1)
) [afmm

t=1m=1

+ A, ()= A (t+ 1)]

x [L, () = I, (t)]

Mz

5

t=1n

k¢m+u+@mm@axﬁw>

1

A, +00 () +

P - %“Wﬂ

Os,, (1)
x [s, () = s, ()]

+ s, () =d, (1™ (1), p, ()]

x [ (8) = py ()]

S M
Z[ (t) - qﬁfn(t)]

s=1 m=1

X [7’5 (t) -

M=

+
t

I
—_

ne (0]

Mz

5

=1

S
[qum -4, (t)] X [V (6) =y, ()]

s=1

3
N

+
M~
Mk

[Ir’; (t-1)+pB.q, @)

,,
Ii
-
3
I
-

N
S MOEDY . (t)]
n=1



< [A () = A, ()]

t=1n=1 Lm=1

T N M
+y ) [Zq;m(t)—s; (t)] x [0, () -6 (t)] =0

V(qi’qr’Ql’ QZ) Ia S, P) rls) y, A, 9) [S Q

T N

M
ZZ [qun 5; (t)] X [@,(t)—@: (t)] >0

V(qﬁ,qr,Ql,Qz,I,sn,p, He V> A,G) €
(19)

where Q = Q5 x QM x QN x QK

Proof. Let us sum up (4), (9), (15), and (18); we get
the total 1nequa11ty, determining (¢)*,q"*,Q"",Q*", I", s,

phn, ", A, 0%) € Q, such that
5L )
t=15=1 oq; (t) )

x [t (t) - q." (t)]

+t-zlmz_1[ oq.,, (t) _ﬁ”\m(t)ﬂ’m(t)]

x [qh, (t) — g ()]

T S M acr*()
Yy Y|

t=1s=1m=1

+n5 () =y, ()

+ p:m (t) - Ps*m (t)]
X [, (£) = gy, ()]

DR

t=1m=1n=1

A, (1) =0, (t)
+ (1= @) I (1) + L3 (8)

B (04 3, )]

X () = G ()]
< S [OHL®) . *
*thZ_l[aIm(t) ”m“)—Am(m)]

x L, () - (1)]
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Mz

-y

(Pr (O + Ay + 1) @, (s, (1), p, (1)

t=1n=1
) — e 06, (s ()
Py (t)—/\n+0n (t)+w
X [s, () = s, (1)]
+[s, ) = d, (I} (1), p, )]
x [ (8) = py ()]
T S M )
SN AOEDW S0
t=1s=1 m=1 ]
X [775 (t) - ’/Is* (t)]
T M [ S 1
I DY SO MG
t=1m=1 |Ls=1 ]

X [YM (t) - Yr: (t)]

L, (¢t = 1)+ B,q,, (©)

N
—I,) - Y d, (t)]

n=1

+
M=
Mz

N
i
o
3
I
L

X [A,, () =

T N M
£ [qun(t)—s (t):| x[0,t) -6 )] =0

t=1n=1

AL ()]

v (qi, q.Q Q% s, pone ps A,H) € Q.
(20)

We simplify the 3rd and 4th terms in (20) and obtain (19).
From (19), we note that the share ratio of advertising invest-
ment between manufacturers and retailers does not impact
the network equilibrium results; therefore, determining the
share ratio will be up to the power of two kinds of players in
their bargain. O

5. Numerical Examples

In this section, we will provide some numerical examples
to illustrate the efficiency of the previous equilibrium model
and analyze the relevant parameters. To solve the model,
there are several algorithms to choose, such as logarithmic-
quadratic proximal prediction-correction method [33], mod-
ified contraction project method [34], smoothing Newton
algorithm [35], and others, to name a few. In this paper, we
employ the modified contraction project method to solve the
variational inequality (19) for its simple steps and obtain the
decision variables and Lagrange multiplexer simultaneously.
Set the related parameters as follows: the initial value of
decision variables and Lagrange multipliers is set to 1 and
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TaBLE 5: Cost functions for computational study.

Notation Definition

fo(d; ) = tq(©)" + (1) + 1
o) = o) +1.5q,, () + 1
£l = t(B,q}, ()" +3B,q,(5) +2
H,(t) =tI,(t)

Co(t) = 5.5qmn(t)Z + Sqmz,,(t) +2

2
6, (t) = 0.25( > G (t))

m=1

Cost function of producing raw materials for supplier s at period ¢

Transaction cost function undertaken by supplier s related to supply chain sm at period ¢
Production cost function for manufacturer m at period ¢

Inventory cost for manufacturer m at period ¢

Transaction cost function undertaken by manufacturer m related to supply chain mn at period ¢

Disposal costs at retailer # at period ¢

TaBLE 6: Equilibrium results with delay effect of advertising investment.

. (1) = 0.15 (1) =0 (1) =0 I7"(1) = 0.15 (1) =0 7"(1) = 0.15
Variables
(123 7(2) = 0 17(2) = 0.15 7"(2) =0 7"(2) = 0.15 I(2) = 0.15 I7"(2) = 0.15
7"(3) = 0 m3)=0 7"(3) = 0.15 m3)=0 I7"(3) = 0.15 "™ (3) = 0.15
q:m(t) 0.7282 0.7259 0.7214 0.7407 0.7340 0.7488
s=1,2 0.4443 0.4431 0.4408 0.451 0.4474 0.4552
m=1,2 0.3821 0.3813 0.3797 0.3867 0.3842 0.3896
qz ®), q:" t) 1.4563 1.4519 1.4429 1.4814 1.4679 1.4976
s=12 0.8886 0.8863 0.8815 0.9019 0.8948 0.9105
m=1,2 0.7643 0.7627 0.7594 0.7733 0.7685 0.7791
Q@) 0.5357 0.5174 0.5182 0.5336 0.5161 0.5322
m=1,2 0.5228 0.5313 0.5132 0.5399 0.5300 0.5386
n=12 0.4961 0.5017 0.5106 0.5048 0.5195 0.5228
0.3849 0.4170 0.4066 0.4142 0.4358 0.4331
’I/;l”(:t)l) 5 0.2280 0.2407 0.2617 0.2364 0.2706 0.2664
0 0 0 0 0 0
7T, 3.3263 3.2928 3.2254 3.5170 3.4143 3.6415
” 14.3234 14.2429 14.0845 14.7572 14.5163 15.0348
T 27.2004 27.0716 26.7721 28.1674 27.7355 28.8402

the convergence criterion, for example, the absolute value
of difference of decision variables and Lagrange multipliers
between two steps is lower than or equal to 10~®, We assume
Gy = 04, B, = LA =1, AL = 1, I7"(t) = 0.15, f{ = 0.2,
fi*' = 0.1, and £/ = 0.05. The related cost functions
and parameters are set as listed in Table 5. It is assumed
that the random demands follow uniform distribution 1111,
di(pe(0), 13" (1) ~ [0, 6(5)/ P (D], b (1) = 90(1 + ),
b(2) = 93[1,(1 + I7™(2 — i), and b, (3) = 96[ ], (1 +
G- i) fork=1,2,m=1,2,n=1,2,and t = 1,2,3.

This paper focuses on the analysis of the following four
aspects: (1) the equilibrium results of advertising investment
with delay effect and the results listed as in Table 6; (2) the
equilibrium results of advertising investment with no delay
effect, that is, f{ = /"' = f/* = 0, and the results listed as
in Table 7; (3) the equilibrium results with one manufacturer
advertising investment and the results listed as in Table 8;
and (4) the profits of various players with the 1st period
advertising investment increasing with/without delay effect,
which is illustrated as in Figure 2.

From the first three columns in Table 6, we can find that
in the case the advertising delay effect exists, the production
volumes, the transaction volumes, and all the players’ profits
are the highest when the manufacturers and the retailers
make advertisements in the Ist period, and then is the 2nd
period, the lowest is the 3rd period.

From the latter three columns in Table 6, it can be seen
that when advertising is in the 1st and 2nd periods, all the
players’ profits are higher than that in the 2nd and 3rd periods
and lower than that in all the three periods, which implies that
the earlier the advertisement is made, the higher profits the
players can obtain.

We now turn to analyze the inventory between adja-
cent periods which describes the characteristic of discrete
dynamic supply chain network. The manufacturers can adjust
the inventory to maximize the profits in the whole planning
horizon. Compare the 1st three columns of Table 6, because
of the demand increasing in the 2nd period as a result of
advertising, the inventory transfer from the Ist period to 2nd
period increases; on the other hand, due to the delay effect,
the advertising in the 2nd period also has much influence in
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FIGURE 2: Players’ profits in the discrete dynamic supply chain network with delay effect.

the 3rd period; thus the inventory from the 2nd period to
the 3rd period also increases. Due to the increasing of the
demand in the 3rd period, the inventory from the 2nd period
to the 3rd period increases obviously. The latter 3 columns can
be analyzed in the same way.

From the latter three columns in Table 7, we can find
that, in the absence of delay effect, the manufacturers’ profits
when making advertisement in all the three periods are
lower than that only in the Ist and 2nd periods instead. It
illustrates that, in some cases, the increased profit through

advertisement is less than its investment volume, so at this
time, it is meaningless and should not be the manufacturer’s
optimal strategy. On the other hand, the retailers’ profits
remain unchanged.

In Table 7, it is interesting that the volume of g, (¢) g.(t)
and g}, () is almost identical and the profits of all players in
these cases are similar too in the first three columns and the
4th and 5th, respectively.

Comparing Table 6 with Table 7, we can see that because
we only consider three periods, the 3rd period is the last one;
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TABLE 7: Equilibrium results without delay effect of advertising investment.

. (1) =0.15 1) =0 =0 (1) = 0.15 =0 I"™(1) = 0.15
Variables
f=1.2.3 m2)=0 m"™2) =0.15 m2)=0 m"2) =0.15 m(2) =0.15 m2) =0.15

I"3)=0 "™3)=0 I"(3) =0.15 I"™3)=0 I"(3) =0.15 I7™(3) = 0.15

0 0.7214 0.7215 0.7214 0.7294 0.7294 0.7373
s=1,2 0.4408 0.4408 0.4408 0.4450 0.4450 0.4491
m=1,2 0.3797 0.3797 0.3797 0.3826 0.3826 0.3854
q(t), gL, (t) 1.4429 1.4430 1.4429 1.4588 1.4588 1.4746
s=1,2 0.8815 0.8816 0.8815 0.8900 0.8900 0.8983
m=1,2 0.7594 0.7595 0.7594 0.7652 0.7652 0.7708
G () 0.5368 0.5182 0.5182 0.5355 0.5168 0.5342
m=1,2 0.5132 0.5320 0.5132 0.5307 0.5307 0.5295
n=12 0.4919 0.4919 0.5106 0.4907 0.5094 0.5082

0.3692 0.4067 0.4066 0.3878 0.4251 0.4062
f;”(:t) L2 0.2243 0.2243 0.2617 0.2163 0.2536 0.2456

0 0 0 0 0 0

m, 3.2254 3.2263 3.2254 3.3450 3.3450 3.4646
m, 14.0953 14.0955 14.0845 14.3703 14.3597 14.6342
m, 26.7327 26.7527 26.7721 273596 273991 28.0059

TaBLE 8: Equilibrium results with only advertising investment of manufacturer 1.

) I)'(1) =0.15 IV'1)=0 V(1) =0 IV(1) =0.15 V(1) =0 IV(1) =0.15
Variables 1n n 1n n 1n n
f=1.2.3 I'2) =0 11'(2) = 0.15 I}'2) =0 1}'(2) = 0.15 I}'(2) = 0.15 11'(2) = 0.15

1V3)=0 IV(3)=0 1)'(3) = 0.15 IV(3)=0 1)'(3) = 0.15 1V(3) = 0.15

0.5236 0.5207 0.5211 0.5248 0.5222 0.5263

Zl"z(tl)’ 5 0.5212 0.5189 0.5161 0.5257 0.5205 0.5273

0.4970 0.4999 0.4978 0.5038 0.5048 0.5087

0.3955 0.4954 0.3934 0.4064 0.4043 0.4118

I,(t) 0.2345 0.2413 0.2389 0.2435 0.2480 0.2503
0 0 0 0 0 0

m, 14.0075 13.9653 13.8845 14.1539 14.0303 14.2186

0.5327 0.5161 0.5165 0.5293 0.5131 0.5263

Zzi(tl)) 5 0.5166 0.5280 0.5115 0.5302 0.5250 0.5273

0.4924 0.4954 0.5069 0.4947 0.5093 0.5087

0.3773 0.4081 0.4025 0.3973 0.4225 0.4118

L(t) 0.2255 0.2322 0.2571 0.2253 0.2571 0.2503
0 0 0 0 0 0

m, 14.1659 14.1223 14.0353 14.4704 14.3393 14.6873

therefore, the 3rd column in the two Tables has no difference
with or without delay effect. When considering delay effect,
the transaction volume in the Ist period is lower than that
without delay effect except the 3rd column, whereas in the
next 2 periods, the former is higher than the latter.

From Table 8, it can be obviously seen that when only
manufacturer 1 makes advisements, the quantity of selling
products to retailers is higher than that of manufacturer 2,
but his profit is lower; in the same time, the higher the
advertising investment of manufacturer 1 is, the bigger the

profits of the two manufacturers are, and the bigger the
profit difference between the two manufacturers is. Therefore,
we can draw a conclusion when multiple firms engage in
homogeneous products; one firm’s advertising activity also
has a positive effect on the other firms, which makes the
so-called “Free-Rider Phenomenon” emerge and when the
advertising investment is bigger, this phenomenon is more
obvious.

Figures 2 and 3 illustrate the impacts of the advertising
investment in the first period when the advertising in the next



Mathematical Problems in Engineering

14.8

14.75 | -

14.7 | -

14.65 | -

14.6 | -

14.55 | -

14.5 | -

14.45 | -

14.4 | -

14.35
0

0.1 0.2

Profit of manufacturers

()

12

3.52

3.5

348 |-

3.46 |-

344 |-

342

341

338 -

3.36 |-

334

0 0.05 0.1 0.15 0.2
---- Profit of suppliers
(@

28.2
28.1
28 |-
279 |-
278 |-
27.7 |-
27.6
27.5
27.44
27.3

0.05

—— Profit of retailers

0.1

(c)

0.15 0.2

FIGURE 3: Players’ profits in the discrete dynamic supply chain network without delay effect.

2 periods is fixed. The profits of all players in the supply chain
network are higher with advertising than that without adver-
tising and increase depending on the advertising investment
volume, whereas the increasing margin is smaller and smaller.

From Figures 2 and 3, we also note that the profit differ-
ences of all actors are becoming bigger and bigger when the
advertising investment in the Ist period increases. For exam-
ple, when I'7"(1) = 0, the profit difference of manufacturers
is 14.5163 — 14.360 = 0.1563; when I}"*(1) = 0.2, the profit

difference is 14.5163 — 14.360 = 0.1563; 15.1832 — 14.7126 =
0.4706. The profits of suppliers and retailers can be computed
in the same way and have similar trends.

6. Conclusions

In the discrete dynamic decision making environment,
this paper proposes a supply chain network model with
demand uncertainties. The manufacturers purchase the raw
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materials from suppliers and sell products to consumers
in demand markets by way of retailers; in the same time,
the manufacturers and retailers use the advertising strategy
to increase the demand of products, and the advertising
investment has delay effect in the next periods. Using vari-
ational inequality theory, complement theory, and Lagrange
duality theory, we formulate the profit functions and optimal
behaviors of various players in the network and in turn
compute the equilibrium results by modified projection
and contraction algorithm. In the numerical examples, we
illustrate the effectiveness of our model and analyze the
impact of different advertising strategies on the equilibrium
results.

From the numerical examples, we obtain the following
conclusions: (1) when considering the delay effects, the earlier
the advertising investment is made, the more profits the
enterprises can obtain, and the whole supply chain network
will benefit from the advertising strategy; (2) when not
considering the delay effect, the advertising strategy is not
always beneficial for the enterprises; if the investment is
higher than the profit resulting from the strategy, the extra
investment is harmful to enterprise; (3) if there are only part
of the enterprises that make advertising activities, it is likely
that the so-called “Free-Rider Phenomenon” emerges; (4)
when advertising investment increases, the profit difference
will magnify with delay effect than that without the effect. The
managerial insights obtained in this paper may give insights
to the decision makers in the enterprises and theorists in the
supply chain management.

Future research may be in the following directions: as a
common policy for promoting products, advertising strategy
investment must have the cap constraints because of the
limitation of funds.
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A particle filter based track-before-detect (PF-TBD) algorithm is proposed for the monopulse high pulse repetition frequency
(PRF) pulse Doppler radar. The actual measurement model is adopted, in which the range is highly ambiguous and the sum
and difference channels exist in parallel. A quantization method is used to approximate the point spread function to reduce
the computation load. The detection decisions of the PF-TBD are fed to a binary integrator to further improve the detection
performance. Simulation results show that the proposed algorithm can detect and track the low SNR target efficiently. The detection
performance is improved significantly for both the single frame and the multiframe detection compared with the classical detector.
A performance comparison with the PE-TBD using sum channel only is also supplied.

1. Introduction

The developments of stealthy military aircraft and cruise
missiles recently have emphasized the need for detection and
tracking of low signal-to-noise ratio (SNR) targets. This need
is especially urgent for a radar seeker because of its limited
battery capacity and antenna size. High pulse repetition
frequency (PRF) pulse Doppler is generally used in a radar
seeker at early detection stage, which allows thermal noise-
limited detection of targets with high radial velocities [1].
Noncoherent or binary integration is often used after the
coherent processing to improve the detection performance.
But the radar data rate and the unknown target motion have
limited the coherent processing interval (CPI) and noncoher-
ent/binary times. The azimuth and elevation are measured
by monopulse generally, which is a widely used technique to
provide accurate angle measurements in the tracking radar. A
monopulse system for estimating one angle typically consists
of two identical antennas, either separated by some distance
(phase monopulse) or at the same phase center but with
a squint angle (amplitude monopulse), whose outputs are
summed up to produce a sum channel ¥ and are subtracted
to yield the difference channel A as shown in Figure 1. The
angular information 0 is contained in the monopulse ratio

y(0) = A(0)/Z(0) providing the function & — y(0) is revers-
ible. Poor monopulse estimation performance under low
SNR has also deteriorated the guidance performance.

Track-before-detect (TBD) is a simultaneous detection
and tracking paradigm that uses unthresholded data or
thresholded data with significantly lower thresholds than
those used in conventional detectors and integrates them over
time according to the target dynamic model to improve the
sensitivity to low SNR targets. Typical TBD is implemented as
a batch algorithm using the Hough transform [2] or dynamic
programming [3]. The Hough transform TBD is suitable only
for linear trajectories. The dynamic programming TBD is
studied more for the radar application and is applied in pulse
Doppler radars in [4-6]. Particle filter based TBD (PF-TBD)
was introduced by [7] and extended by [8-10]. Compared
to the typical methods, it is recursive and does not require
discretization of the state space.

For simplicity, most researches on PF-TBD are based
on grayscale-image-like measurements (e.g., [8, 10]). Boers
and Driessen [9, 11] have studied PF-TBD on search radar
measurements. A Rao-Blackwellised PF-TBD is proposed
for over-the-horizon radar in [12]. Multisensor PF-TBD is
studied for MIMO radar [13]. There is no open literature
addressing PF-TBD on monopulse radar to the best of
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FIGURE 1: Amplitude of the sum and difference channels at different
deviation angles.

our knowledge. In monopulse radar systems, the sum and
difference channels exist in parallel as Figure 1 has shown.
A PF-TBD algorithm similar to [12] can be applied by using
only the output of the sum channel as the measurements. The
target Doppler and intensity are estimated by it and then the
bearing and azimuth are estimated by classical monopulse
methods (e.g., ML method proposed by [14]). But from
Figure 1 we can see that amplitude of the difference channel
is comparable to that of the sum channel when the target is
not at the beam center, which often occurred in the target
searching stage. So fusion of the sum and difference channels
using Bayesian theory in the PF-TBD algorithm is possible to
improve the detection performance as well as the monopulse
estimation performance.

In this work, the target and measurement models of the
monopulse high PRF pulse Doppler radar are constructed.
Based on them, we derive a PF-TBD algorithm which can
effectively detect and track the low SNR target. Its detection
performance is compared with the classical detector, which
shows that more than 7dB gain in SNR can be attained.
A quantization method of approximating the point spread
function is proposed to reduce the computation load of the
PE-TBD. Binary integration of the PF-TBD’s detection result
is proposed to further improve the detection performance,
which is shown to be very effective and not limited by the
target maneuver.

The rest of the work is organized as follows. In Section 2
the target and sensor models are formulated. The recursive
Bayesian TBD filter for this application is described in
Section 3 and its PF implementation procedure is derived in
Section 4. Two simulated examples are presented in Section 5,
in which the detection and estimation performances of the
proposed algorithm are evaluated in comparison with the
classical method and the sum-only PF-TBD. Conclusions and
future work are drawn in the last section.

Mathematical Problems in Engineering

2. Target and Measurement Models

2.1. Target Model. The high PRF can measure Doppler
unambiguously, but it is highly ambiguous in range, which
precludes the pulse delay ranging. The range information is
not a must for a radar seeker, however, since the proportional
navigation is commonly adopted. As a result, only the target
Doppler is involved in the target state vector in this paper. The
target azimuth and elevation are measured by monopulse.
For the sake of brevity, only one difference channel (azimuth
difference or elevation difference) is considered. Moreover,
the unknown target echo amplitude is also incorporated to
implement the PF-TBD algorithm. The target state vector is
then defined as

Xy = [fg’Al;’Yk]T) ®

where f5, A%, and y, denote the Doppler frequency, echo
amplitude of the sum channel, and monopulse ratio of the
target in frame k, respectively. The Doppler frequency f,; =
2v,/A, where A is the wavelength and v, is the radial velocity.

Although the dynamic model can be as general as x; =
Sfr1(Xe_1> Vie_y) for a particle implementation, where v;_, is
the process noise sequence, for simplicity we model the target
motion relative to the radar as the nearly constant velocity

model with a white acceleration noise v}(cl). The target echo
amplitude and monopulse ratio are modeled as random walk
processes with process noises v](cz) ](3), respectively. The

: 1 Q) (3)
process noises v, -, v;”, and Vi

and v
are mutually independent,

zero mean white noise with variances 0(21), 0(22), and 0(23),
respectively. Thus, the system dynamic equation is

Xe =Xy + T Viy, 2)

where T is the CPIand v;_; = [v,(cl_)l, v,(cz_)l, VI(CS_)I]T. This target
model accommodates not only target maneuver but also
fluctuations of the target intensity and the monopulse ratio.
Target existence variable E; is modeled as a two-state
Markov chain and E, € {0,1}. Here 0 denotes the event
that the target is absent, while 1 denotes the opposite [15].
Furthermore, we define the transitional probabilities of target

“birth” (P,) and “death” (P,) as

P, 2 P{E; =1|E, =0}

(3)
Pd é P{Ek = OEk—l = 1}
Thus the transitional probability matrix IT is given by
_|1-P B
e[ ) @

2.2. Measurement Model. We assume that the target is located
in the clutter-free region; thus the clutter is not considered
in the signal model. When the target is present, the received
signal sequences at the video stage of the sum and difference



Mathematical Problems in Engineering

channels in frame k are denoted as s’g (n) and s’Z (n) and given
by

slg (n) = AI;_ exp {j27'[ (fzi(nTr + qSk)} + nl; (n) (5)
yeAs exp {j2 (finT, + $)} +ri 1) (6)

AkA exp {j271 (f;nT, +¢k)} +n§ (n), (7)

sh (n)

1>

respectively, where AkA is the amplitude of the difference
channel, ¢, is some arbitrary phase, T, is the pulse repetition
interval (PRI), andn = 0, 1,..., N — 1 is index of the sample
in an CPL The background thermal noises nlg(n) and ni(n)
are mutually independent, zero mean, and temporally white
complex Gaussian processes with the same variance. The
Doppler frequency f; is assumed to be constant within an
CPL

The coherent integrations of the sum and difference
echoes are done via fast Fourier transform (FFT) indepen-
dently. To reduce peak side-lobe levels, the signal sequences
are windowed before the FFT. The result of the coherent
integration is given by

e nl
)/Iz(/A (D)= Z Sg/A (n) w, exp {—j27r (N_>} , (8
n=0 f

where the subscript /A denotes sum channel X or difference
channel A for simplification, N is the next power of two that
is greater than or equal to N, sg/s(n) = 0forn > N -1
(also known as zero padding), w,, is the windowing function,
andl = 0,1,...,N; — 1 is the index of the frequency bin.
The signal’s unknown phase component is useless, so the
magnitude of the spectrum in each frequency bin forms the
set of measurements in frame k. Then the measurement can
be modeled as

s/aPr\Ja>t) + Usya k=
. | A% uB (f5:0) + ) O] Ex=1
zyp () = 9)

|u’g/A (l)| E, =0,

where | - | is the complex modulus, Bk(flf,l) = exp{j2n¢;}
Yoo w, exp{j2nfynT,} exp{-j2m(nl/N()}, and ui(l) and
ui(l) are the background noises of the sum and difference
channels, respectively, after the coherent integration. Because
of linearity of the FFT, ug(l) and u’Z (1) are also zero mean i.i.d.
complex Gaussian noise processes. We assume that they both
have a variance 207

As has been stated that not all the frequency bins of the
FFT result are of interest, only bins in clutter-free region
constitute the set of measurements at frame k; that is, zg =
{zg/A(lc : (Ny - I. — 1))}, where [, = ceil(ZVM/(ASf)), Vs
the horizontal velocity of the missile, and § = 1/(T,N f) is
the Doppler bin size.

Following the model described above, the likelihood in
each frequency bin when the target is present has a Ricean
distribution

(s 0 | % B = 1)

_ Z;/A (Z)I Akzm | By (f§7l) | Zg/A ()
a2 o2 (10)
2 + (AIE/A)Z'Bk (f§>l)'2
X exp 4 — o2 ,

where I)(-) is the modified Bessel function of order zero.
The likelihood when the target is absent has a Rayleigh
distribution

k 1 k I 2
p(z5a (D1 Ex=0) = 22?2()“1){_%() } ()

2
u 2 Oy

Because of the windowing before the FFT, the target (if
present) power will spread into the bins in the vicinity of its
location. Let C(x;) denote the bins affected by the target (i.e.,
the targets effect on the other bins is negligible); then the
likelihood function of the whole measurement set when the
target is present can be approximated as follows:

P(ZE/A | X, By = 1) = H P(Zg/A () | % By = 1)

lEC(xk)

X 1—[ p(zg/A () | Ex = 0)

lgEC(xk)

(12)

and the likelihood function when the target is absent is

Ny1-1

p(25 1 Ec=0)= [] p(&5,a O IE-=0). (3)
1=l

We denote the set of complete measurements up to frame
kasZ, = {zy,z),i=1,...,k}.

It is computational complex to calculate the | B, (f, ; , )| for
bins in C(x;) in real time applications. The contribution of
x, to bin [ in C(x;) (i.e., point spread function) is generally
approximated by a Gaussian-like function (e.g., [7, 8] for
optical sensor). Using the Gaussian approximation method,
the point spread function h(xy, [) is

h(xpl) = A5, |Be (f551)]

‘ (18, - i) -
= AZ / AG exp _Z—ﬁz N
where G = YN 'w, is the coherent integration gain
and B is a parameter to be designed to better approxi-
mate the amount of blurring introduced by the FFT win-
dowing functions. But this approximation is valid only
within a limited range as Figure 2 has shown. To solve this
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FIGURE 2: Comparison of different point spread function approxi-
mation methods. Hamming window is used, N = 1024, Napp = 64.

problem, we present an approximation approach which is
calculation-free and more precise. Note that |By( f;, Dl =
| ZnNz_Ol w, exp{jZﬂnTr(fg — 164)}| can be expressed as a
function g, (x) with a parameter w = {w,} and a variable
x = | f; — 16| Because the windowing function w can
be taken as known a priori, we can quantize g, (x) into a
number of points (e.g., gy (k8 /Nypp), k = 0,1,..., Ny, — 1
for x € [0,0), where N, is the number of points each bin
is quantized into, and we can store them as a look-up table in
the read-only memory (ROM). In real time operations, the
value of the quantized point nearest to the true point is read
from the ROM and used; that is,

N, 6
k| Va f
Bk<“18f—fd 6;’*’+o.5JN l)‘

app
(15)

h (Xk’l) ~ AI;/A

where |-] is the floor function and [x + 0.5] rounds x to
the nearest integer. The result of this approximation is also
presented in Figure 2.

3. Recursive Bayesian Filtering Procedure

The posterior probability of target existence Pg 2PE. =1|
Z,} and x; are estimated recursively by a Bayesian method
as follows. Given the joint posterior PDF at frame k — 1,
P(Xi_1> Ex_; | Z;_,) and the latest measurement Z;, the goal is
to construct the joint posterior PDF at frame k, p(x, E;. | Zy,).
Pf and x; are then estimated using p(x;, Ex = 1 | Zy).

Prediction. Prediction of E, is given by
P{E, =112} P{E, =112}
=1I . (16)

P{E, =0]|Z_,} P{E,, =02}
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If E; = 0, X is undefined and no prediction of it is needed. If
E, = 1, the prediction step of x; can be expressed as

P (X Ex=11Z;)
= JP(XIka =11x 1, By = 1,7 )
P (> By = 1| Zyy) dxgey 17)
+ JP(Xk)Ek = 11X, By = 0,Z;y)

P (X By =01 Zy_y) dxi s
where
P (X Ex = 11X, By = L2 y)
=p(% | X1, B = LE, = 1) P{E, = 1| E, = 1}
=p (X I X Bx = LE, =1)(1-Fy),
P (X B =11x1, By =0,Z; )
= p (X | X, B = LE_, = 0) P{E, = 1| E_, = 0}
= Py (%) P
(18)

The transitional density p(x; | x_, Ex = LE, = 1)is
defined by the target dynamic model (2). The PDF p,(x;)
denotes the initial target density on its appearance.

Update. The update equation using Bayes’ rule is given by
P (B = 11Zy)

B p(zlg,zﬁ | X, Ej = I)P(xk’Ek =112.,) @
p(25.25 1 Zi )
where the prediction density p(x;, E, = 1 | Z_,) is given
by (17), the normalizing constant in the denominator is p(zlg,
2 | Z, ) = [ p(z. 25 | %, E, = 1)p(x, E = 1| Z;_,)dx, and
the likelihood function p(z;, ZIZ | x4, B = 1) is

>

p(zlg,zi | X, By = 1)

= p (4 1% B =1) p(2h | X B = 1),

where the likelihood function p(zlg /a | X Ex = 1) is given by
(12).

(20)

Estimate. P is estimated by taking marginal of p(x;, Ej = 1 |
Z,) as follows:

ﬁg = J‘P(Xk,Ek =1 | Zk)dxk. (21)

Using expected a posterior (EAP) estimator, x; is estimated
by

- _[ka(xk’Ek =1 2Z)dx,

Xy 135 (22)
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4. Particle Filter Implementation

To implement the recursive Bayesian filtering procedure,
a SIR particle filter based TBD algorithm described in
[8] is adopted with some modifications. As the particle
filter tends to suffer from a progressive degeneration as the
sequence evolves, an MCMC step referred to as resample-
move in [16] is employed after importance resampling, which
adds diversity to the particles without altering the underly-
ing distribution [10]. A Metropolis-Hasting resample-move
method is used as described in [10, 17]. Taking move of
the y, for example, a proposal distribution g, (y, | ) is
defined, from which a sample is drawn for each particle after
resampling. A monopulse ratio y; is obtained conditioned
on the old monopulse ratio y, while keeping the other two
states unchanged. Under the assumption that the proposal is
symmetric, 4,,(y; | 1) = 9w | 1), the new particle is
accepted or rejected on a test, formed by a ratio of likelihoods

~ L(z | f3, A% %)

) (23)
L(z | f5 A%, p)

IfT)s,, > 1, then the new particle, with monopulse ratio Yy, is
kept. Otherwise the new particle is kept in preference to the
old particle only it U < T}/, where U is a uniform random
number between 0 and 1. T{le move 0perat1on is used twice
in this application, firstly to the amplitude Az and then to the
monopulse ratio y,. Truncated Gaussian distributions with
different variances and means at A’f: and y;, respectively, are
used as the proposal distributions.

A detailed description of the TBD algorithm is given as
follows.

Initialization. Set k = 0 and generate N, samples {E} } from
PO =P(E,=1).1f E’ = 1, generate X, from the birth den51ty
(X, | Zy), or else, x0 is undefined.

Then, given [{xk 1}
1to 5.

1> Z¢) at each frame k, go from Steps

Step I (prediction). Generate (E! }l , on the basis of {E 1}5;]51
and IT. IfE}c = 0, x, is undefined. If E, | = 1 and E} = 1,
predict x; according to (2). For the new born particles, that
is, those with Ej_, = 0 and Ej = 1, generate x, from the birth
density g, (x; | zg).

Step 2 (update). In the SIR filter, the prior PDF p(z; | x}'H) is
chosen to be the important density and, thus, unnormalized
weights are proportional to the likelihood functions. Conse-
quently, using the likelihood ratios as unnormalized weights
will have no effect on the performance of the SIR filter. Thus
the importance weights are calculated by the following [7]:

[] L(AOD.Z5 0 1x) fE =1
IGCi(xk) (24)
1 if E; = 0.

~i
U)k—

5
We simplify the likelihood L(z% (1), 2k (1) | x.) as follows:
L(z5 (.25 () 1 x,)
L P(BEW. 2 () 1%, E = 1)
p(£ (1), 25 (1) | Ex = 0)
(25)

p(EM 1B =1)p (k) 1%, E =1)
p(ZE () | E=0)p(z5 (D) | E, =0)

=L(zx() %) L(z3 (D) | ;).

From (10) and (11), L(zg/A(l) | x;;) can be simplified as

L(z5,, (D) | %)

p (2, 01X B = 1)
p(28, (1) | B, =0)

—1 < |AGRB (5. )] 24/ ) ) (26)
-0

2
Oy

ki) g (i) 2
Xexp{ |[AGAB (£5.0)] }

2
20;,

where A(f"') is calculated by A(i"i) = y,iA(zl"i). Then get the

normalized weights {w};}f\:"l by w), = @,/ Zf\i‘l ]

Step 3 (resample). Generate a new set of samples [{E;;, x;‘(}f\jl]
from [{E, x};, w;;}f\:rsl] and replace them using systematic
resampling algorithm [18]. The weights of the new samples
are not required since they are all equal to 1/Nj.

Step 4 (MCMC move). Generate a new set of samples
from [{x;;}f\:lsl] and replace them by move of AI§: using the
Metropolis-Hasting method described above; do this again by
move of Y. Note that this operation only changes the particles
with E} = 1.

Step 5 (state estimation). Estimate the posterior probability
of target existence PX by

N; i
it B @)
N

N

Pk =

If ﬁg exceeds a certain threshold Th € (0, 1), target presence
is declared, and then the target state is estimated by

N, i pi
2o % By
N @i °
20 By
To be more specific, some application issues are discussed
as follows.

If there is no additional information, the birth density
should be a uniform density over the surveillance region. For

Xk = (28)



o o
=N %
T

S
NS
T

Probability of existence

0.2 -

0 10 20 30 40 50 60
Frame number

---- 3dB
--- 6dB
— 10dB

(a) Averaged by 200 runs

Mathematical Problems in Engineering

1t 0000 00 6004
i i m o, (0(799
13
% 08 o
g 0.
§ L3 * °
w»
s
« 0.6} <
5]
g r L 2
< 04
=)
4 ° s
~ < | \
02} ¢ IS
u' ;" "
| o7 (09
0
0 10 20 30 40 50 60

Frame number

—e 3dB
—=a 6dB
— 10dB

(b) Single run

FIGURE 3: Probability of target existence under different SNRs, asterisk signs () at the bottom indicate the presence of the target.

example, for Doppler component, ff, uniform samples are
drawn from bins in the measurements which have amplitudes
that exceed a predefined threshold. For echo amplitude A,
the birth density is uniform over [A ., A ha)> Where A oo
and A, are expected minimum and maximum intensity
levels, respectively. For monopulse ratio, y,, we assume that
the target only exists within the half-power beamwidth, and
from Figure 1 we can get that y takes value within [0, 0.8];
thus, we choose its birth density to be uniform within [0, 0.8].
If other information is available (e.g., angle, range, or Doppler
information supplied by the carrier aircraft, which usually has
a normal law of error distribution and can be easily sampled
as q,(x; | z;)), the information should be used rather than
the uniform one to improve the performance.

The bins in C(x;) should be selected carefully, one
practical choice is C(x;) = {ig — p,...,ig — Lig,ig+ 1,..., 0+
p}, where i, is the bin nearest to the predicted x; and p
is a design parameter. Bins near the true Doppler position
have comparatively higher amplitudes and can be beneficial
to the performance, while the others will, on the contrary,
deteriorate the performance because the signal amplitudes
there are too low. As can be seen from Figure 2, the spread
function for the points that are one bin away from the true
position is below —20dB; thus we choose p = 1 in this
application.

5. Experiments

5.1. Experiment 1: Stationary Scenario. The radar parameters
are set as follows: the wavelength is A = 3 cm, the PRI is
T, = 4 ps, and the number of pulses per CPI is N = 1000.
Hamming FFT windowing function is used. The target SNR
represents the envelope of the target return compared to that

of just noise. The SNR is measured after the entire coherent
process (losses caused by windowing and straddle effect are
considered). The initial relative velocity between target and
radar is 1900 m/s. The initial monopulse ratio is 0.2. There
are 368 bins in the clutter-free region. The initial amplitudes
for 3, 6, and 10dB are 0.87, 1.23, and 1.95, respectively. The
levels of process noise used in the target model are 0(21) =

0.01 -8, gy = 0.001, and o) = 0.01 (the SNR varies only
marginally). The target is born at frame 11 and disappeared at
frame 51.

The particle filter parameters are set as follows: the level of
the process noise is perfectly matched to the simulated data,
the probabilities of target “birth” P, and “death” P, are both set
as 0.05, the initial target existence probability is P = 0.1, the
threshold T; = 0.32, and each bin of the point spread function

is quantized into N,,, = 64 points. The birth density g, (x, |

z,) is selected as follows: A% ~ U(0.5,3), y, ~ U(0,0.8),
and fJ uniformly distributed in the clutter-free region. The
variances of the proposal distributions in the MCMC move
for Ay and y are 0.04 and 0.01, respectively. p = 1 and 4000
particles are used.

Figure 3 shows the estimation result of the existence
probability PX; asterisk signs (#) at the bottom of the figure
indicate the presence of the target. It can be seen that it is
possible to detect target under an SNR as low as 3 dB. Setting
the threshold Th = 0.6, for example, we can see that the
target can be detected after several frames’ accumulations.
From Figure 3(b) we can see that the false alarms are isolated.
Thus a binary integrator can be used to mitigate them and
at the same time keep the successful detections, which are
continuous after ﬁlg becomes stable.

Now we evaluate the detection performance of the PF-
TBD algorithm in the detection terminologies. We estimate
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FIGURE 4: Probability of detection. For single frame detection, P, = 0.1. For binary integration (3-out-of-5), the Py, of classical detector is

0.02, while that of PF-TBD is 0 (no false alarm occurs in the 200 runs).

the probability of false alarm Pp, using frames 1 to 10 of
the 200 Monte Carlo runs, where no target is present. More
explicitly,

(29)

200 10
Pra = ZOOXIOZZ( 2 )

m=1 k=1 0

where m is the index of each Monte Carlo run. Similarly, P,
is computed when the target is present. To see performance
in the stable region as well as in the whole region, we estimate
P, using frames 41 to 50 and frames 11 to 50, respectively. For
example, P, using frames 41 to 50 is

200 50

k
Fo = 200 10,;;41( "3 Th)

For comparison, the classical detector is applied to the same
data. Because the PF-TBD algorithm makes one decision in
each frame, for a fairly comparison, the classical detector
declares a detection once any bin in the clutter-free region
exceeds the threshold Th'. Setting Py, = 0.1 for both the PF-
TBD and the classical detector (correspondingly, probability
of false alarm for the classical detector in each single bin is
2.86 x 107* and the threshold for the PF-TBD is Th = 0.45),
the Pp, performances of them are shown in Figure 4(a). It can
be observed that the P, of PE-TBD in the stable region at 3 dB
is better than that of the classical detector at 10 dB. Thus an
SNR gain of up to 7 dB is obtained.

Taking results of Figure 4(a) as the primary detection
results, we apply the 3-out-of-5 binary integration strategy
to both the PF-TBD and the classical detector. Once 3
or more frames of consecutive 5 frames pass the primary
detection, a secondary detection is declared. The resulting

(30)

Py, of the classical detector is 0.02, while that of the PF-
TBD is 0 (no false alarm occurs in the 200 runs), which has
proved that the binary integration after the PE-TBD performs
well at false alarm mitigation. The Pp, in binary integration is
defined as the quotient of the number of secondary detections
that have past the 3-out-of-5 logic divided by the total
number of secondary detections. The Pp, results are shown
in Figure 4(b). We can see that the P improvement over
the classical detector is more compared with the single frame
detection even under lower Pp,.

Remark 1. As the number of Monte Carlo runs is compar-
atively small, these results are not intended to provide a
performance assessment. More precise results can be attained
by performing a large number of Monte Carlo simulations.
Compared with the classical target detection problem, it
seems more reasonable to define an index to describe the
delay before the 13}; becomes stable and then evaluate the
detection and estimation performances in the stable region.

5.2. Experiment 2: Maneuvering Target. Now we consider
a real scenario on a 2D plane. As Figure 5 has shown, the
missile performs a straight motion with its antenna direction
1 degree deviated off the south to the east side. After 10 noise
only frames, the target enters the main beam of the seeker
radar and performs a 2s evasive maneuver. The trajectory
of the target is generated by the simulation software JSBSim
(http://jsbsim.sourceforge.net/). The target’s velocity is about
280 m/s and its normal acceleration during the maneuver is
6 g. The missile’s velocity is 1200 m/s and its monopulse sum
and difference beam patterns are the same as those shown in
Figure 1. The echo amplitude is inversely proportional to the
square of the range between missile and target (the eclipsing
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effect and the target fluctuation are not considered). The radar
parameters are the same as those in Experiment 1 except that
N = 5000; thus, the CPI is 20 ms and there are 100 target
presented frames. Because the number of bins in the clutter-
free region is too large, only 200 bins (bins from 3100 to
3300) containing the target are used. The initial SNR is 6 dB.
The levels of process noise used in the particle filter are set
as 0(21) = 5. Sf, 0(22) = 0.05, and 0(23) = 0.05. The birth
density q,(x, | 2zo) is AY ~ U(L,4), y, ~ U(0.79,0.8),
and f) uniformly distributed in the 200 bins. The other
parameters of the particle filter are the same as Experiment
1. For comparison, the PE-TBD algorithm using sum channel
only is also developed and tested using the same data. The
sum-only PF-TBD is obtained through omitting the y, in the
state vector and the filtering process. To distinguish them, the
filter proposed in this paper is referred to as the dual-channel
PE-TBD.

In Figure 6, the estimated probabilities of existence prove
the effectiveness of the two filters in target detection. Note
that the sum-only filter results in worse 13; when the target
is both absent and present, which means that its detection
performance is worse than that of the dual-channel one.
This is because the dual-channel PF-TBD benefits from the
difference channel whose amplitude is high near the half-
power point.

Figures 7(a)-7(c) present the state estimation results of
the two filters. We can see that both of the two filters can
successfully track in target maneuvering. The dual-channel
filter has better Doppler estimation performance. Note that
the target Doppler can travel across half the bin size per
frame; the binary integration of the classical detector will
fail while that of the PF-TBD is unaffected. As the sum-only
filter does not output the monopulse estimation result, the
monopulse estimation performance of the dual-channel PF-
TBD is compared with the classical single frame monopulse
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FIGURE 6: Probability of target existence (averaged by 100 runs),
asterisk signs () at the bottom indicate the presence of the target.

estimation method as shown in Figure 7(d). To use the
same a priori knowledge, the result of the classical method
is constrained to be within (0, 0.8) and that is why its
estimation result is biased. The classical method assumes
index of the bin which contains the target is known while the
PE-TBD does not use this information. In spite of this, the
monopulse estimation performance of the dual-channel PF-
TBD is better.

Remark 2. This example shows that the detection perfor-
mance can be improved by using the difference channel when
the target is near beam edge. When the target is at the beam
center, however, the difference channel amplitude is approxi-
mately zero as can be seen from Figure 1. Then the detection
performance may be deteriorated instead compared with
the sum-only PF-TBD. In fact, through simulation we have
found that when y > 0.1, detection performance of the
dual-channel PE-TBD is better. In practical application, the
two methods should be selected according to the scenario
(e.g., whether there is precise angular targeting information),
and the estimation performance should also be taken into
account.

6. Conclusions and Future Work

Using PF-TBD in monopulse high PRF pulse Doppler radar
to improve detection and estimation performances under low
SNR is addressed in this paper. The target and measurement
models are analyzed and defined for this application. Based
on them, a PF-TBD algorithm with resample-move opera-
tions is developed. Extensive simulations have shown that the
proposed algorithm can improve both the detection and esti-
mation performances compared with the classical and sum-
only methods. To further improve the detection performance,
binary integration after the PF-TBD is proposed. Simulation
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result shows that it can effectively mitigate the false alarms in
the PF-TBD detection result.

As a byproduct of the PF-TBD algorithm, the estimated
amplitude can be used to predict range eclipsing and to
estimate the SNR. Application of the PF-TBD requires exact
knowledge of the thermal noise power, which can be esti-
mated on-the-fly before the PF-TBD is enabled. For seekers
incorporating multispectral sensors, targeting information
(e.g., angular information of the target, probability of exis-
tence of target in the main beam) from other sensors like
the infrared sensor or the passive radar can be fused easily
as Section 4 has stated.
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This paper is concerned with the algorithms which solve H,/H_, control problems of stochastic systems with state-dependent
noise. Firstly, the algorithms for the finite and infinite horizon H,/H_, control of discrete-time stochastic systems are reviewed and
studied. Secondly, two algorithms are proposed for the finite and infinite horizon H,/H,, control of continuous-time stochastic
systems, respectively. Finally, several numerical examples are presented to show the effectiveness of the algorithms.

1. Introduction

Mixed H,/H,, control is an important robust control method
and has been extensively investigated by many researchers
[1-4]. Compared with the sole H,, control, the mixed
H,/H_, control is more attractive in engineering practice
[4], since the former is a worst-case design which tends
to be conservative while the latter minimizes the average
performance with a guaranteed worst-case performance.
Recently, stochastic H,/H,, control for continuous- and
discrete-time systems with multiplicative noise has become
a popular topic and has attracted a lot of attention [5-7]. In
[5], the finite and infinite horizon H,/H,, control problems
were discussed for continuous-time stochastic systems with
state-dependent noise. The finite and infinite horizon H,/H,,
control problems were solved for discrete-time stochastic
systems with state and disturbance dependent noise by [6]
and [7], respectively. Moreover, mixed H,/H,, control was
widely studied for stochastic systems with Markov jumps and
multiplicative noise [8-11] due to their powerful modeling
ability in many fields [12, 13].

Generally, the existence of a H,/H_, controller is equiva-
lent to the solvability of several coupled matrix-valued equa-
tions. However, it is difficult to solve these coupled matrix-
valued equations analytically. Several numerical algorithms

have appeared in dealing with deterministic and stochastic
H,/H,, control. In [1], the finite horizon H,/H_, controller
for continuous-time deterministic systems was obtained
by using the Runge-Kutta integration procedure. In [14],
an exact solution to the suboptimal deterministic H,/H,
control problem was studied via convex optimization. Two
iterative algorithms were proposed for finite and infinite
horizon H,/H_, control of discrete-time stochastic systems
in [6] and [7], respectively. In [15], an iterative algorithm
was proposed to solve a kind of stochastic algebraic Riccati
equation in LQ zero-sum game problems.

However, most of these algorithms were concerned with
the H,/H_, control for discrete-time systems. Up to now, the
algorithm for stochastic H,/H,, control of continuous-time
systems has received little research attention. This is because
the coupled matrix-valued equations for the continuous-
time H,/H,, control cannot be solved by recursive algo-
rithms as in the discrete-time case. In this paper, we will
study the algorithms to solve H,/H_, control problems for
stochastic systems with state-dependent noise. Firstly, the
algorithms for finite and infinite horizon H,/H_, control of
discrete-time stochastic systems are reviewed. An iterative
algorithm is presented to solve the infinite horizon H,/H_,
control of discrete-time time-varying stochastic systems.
For continuous-time stochastic systems, two algorithms are
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proposed for the finite and infinite horizon H,/H, control,
respectively. Some numerical examples are presented to
illustrate the developed algorithms.

For conveniences, we make use of the following notations
throughout this paper: %#": n-dimensional Euclidean space;
S": the set of all nxn symmetric matrices; A > 0 (A > 0): A is
a positive definite (positive semidefinite) symmetric matrix;
A': the transpose of a matrix A; I: the identity matrix; Tr[A]:
the trace of matrix A; E(x): the mathematical expectation of
X.

2. Preliminaries

In this section, we will present some preliminary results
for stochastic H,/H,, control, including the finite horizon
case for discrete-time time-varying systems, the infinite hori-
zon case for discrete-time time-invariant systems, the finite
horizon case for continuous-time time-varying systems, and
the infinite horizon case for continuous-time time-invariant
systems.

Consider the following discrete-time time-varying
stochastic system with state-dependent noise:

Xies1 = Ak.xk + Bkuk + Ck'Vk + Dkkak’

@

z = [Fkxk], X € R" k=0,1,...,T,
Uy

where x;, € ", u, € B, v, € ™, and y, € R are,
respectively, the system state, control, disturbance signal, and
output; {w }iso € X isasequence of independent white noise
defined on the filtered probability space (Q, F, F, %) with
E(w,) = 0 and E(ww,) = 0y, where &, is a Kronecker
function defined by 8y, = 0 for k # s while §;, = 1 for k = s.
X, is assumed to be deterministic for simplicity purposes. A,
By, Cy, Dy, and Fy, are matrix-valued continuous functions of
appropriate dimensions.

Lemma 1 (see [6]). For giveny > 0, the finite horizon H,/H_,
control for system (1) has solutions (u*,v*) as u”(k,x;,) =
Kyxp and v¥(k,x;) = Kyxp with Ky and Ky, being
continuous matrix-valued functions, if and only if the following
coupled difference matrix-valued equations

!
- Py + (A + ByKy) Py jen (Ag + BiKy) + Dy Py je1 Dy
-1
- F{F, - K3 Ky — [(Ak + Bszk),PI,kHCk] Ty (Pyjesr)

!
X [(Ak + Bszk)’PI,kHCk] =0,

P1,T+1 =0,
Ty (Pryst) = YZI + C}LP1,k+1Ck >0,
(2)
-1 !
Ky = _rl(Pl,k+1) [(Ak + BkKZk),Pl,kHCk] > (3)
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!
= Py + (Ap + CLKyy) P a1 (Ap +CKyy) + Dy P, j1 Dy
! -1
+ FF, - [(Ak + CKyy) Pz,k+lBk] 0 (Pyis1)

!
X [(Ak + CkKlk)’Pz,kHBk] =0,

PZ,T+1 =0,

(4)
-1 !
Ky = —T(Pon) [(Ax + CKig) Poet By ®)

with Ty(Pyp1) = I + ByPy s, By, admit a bounded solution
(Plk < O’Klk;PZk > O,sz), k = 0, 1,...,T.

Consider the following discrete-time time-invariant sto-
chastic systems with state-dependent noise:

xk+1 = Axk + Buk + CVk + kawk,
(6)
z = [ka], xp € A", k=0,1,2,....
Uy
Briefly, system (6) can be denoted by (A, B,C; D | F), and
similar notations will be used in the following section.

Lemma 2 (see [7]). Suppose that (A; D | F) and (A+BK; D |
F) are exactly observable. For giveny > 0, the infinite horizon
H,/H,, control for system (6) has solutions (u*,v") as u;, =
K,xy, and v = K,x, if and only if the following coupled
algebraic matrix-valued equations

~ P, +(A+BK,) P, (A+BK,) + DP,D - F'F - KK,
~[(a+BK,)'PC] T, (P,) (A + BK,) PC] =0,

I, (P)=yI1+C'PC >0,

7)

K, =-I,(P,)"'[(A + BK,) P.C] (8)
~P,+(A+CK,)'P,(A+CK,)+DP,D+F'F

- [(A+CK,) P,B| L,(P,)"[(A + CKI)'PZB]I =0, Y

K, = -T,(R,) '[(A +CK,)'P,B] (10)

with T,(P,) = I + B'P,B, have a solution (P, < 0,K;P, >
0,K,).

Consider the following continuous-time time-varying
stochastic system with state-dependent noise:

dx(t) = [AWM) x () +B(t)u(t) +C(t)v(t)] dt

+D(t) x(t)dw (t), a
z(t) = [F(Z)(f)(t)] , x(0)=x,€ %", te0,T],

where x(¢) € R",u(t) € R™,v(t) € RB™,and y(t) € R are,
respectively, the system state, control, disturbance signal, and
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output. w(t) is a standard one-dimensional Wiener process
defined on the filtered probability space (Q, &, F,, ) with
F, = o{w(s) : 0 < s <t} x, is assumed to be deterministic
for simplicity purposes. A(t), B(t), C(t), D(t), and F(t) are
matrix-valued continuous functions of suitable dimensions.

Lemma 3 (see [5]). Forgiveny > 0, the finite horizon H,/H_,
control for system (11) has solutions (u*,v*) as u*(t,x,) =
K,(t)x(t), and v*(t,x,) = K, (t)x(t), with K,(t) and K,(t)
being continuous matrix-valued functions, if and only if the
following coupled differential matrix-valued equations

-P (t)=P () A(t)+ A" (t) P, (t) + D' (t) P, (t) D (t)
-F (t)F(t)- [P (t) P,(D)]

LJricmc @ BmB (t)] [Pl (t)]
BB (t) B®B 1)) [P®)]

P (T)=0,
(12)

—P,(t) =P, (1) A(t) + A" (t) P, (t) + D' (t) P, (t) D (t)
+F () F(t) - [P, (t) P,(1)]

0 )ﬂandmnam]ﬂﬁ

“lcwc o BoB® |[PRO

P,(T) =0

have a bounded solution (P,(t) < 0,K,(t); P,(t) > 0,K,(1)),
with K,(t) = —y2C(t)P,(t) and K,(t) = -B(t)Py(t), t €
[0,T].

Consider the following continuous-time time-invariant
stochastic system with state-dependent noise:

dx (t) = [Ax (t) + Bu(t) + Cv ()] dt + Dx (t) dw (t),

(14)
2(t) = [i"(g)], x(0) = x, € B, t € [0,00).

Lemma 4 (see [5]). Suppose that (A; D | F) and (A+BK; D |
F) are exactly observable. For giveny > 0, the infinite horizon
H,/H,, control for system (14) has solutions (u”,v*) asu™(t) =
K,x(t) and v*(t) = K x(¢), if and only if the following coupled
algebraic matrix-valued equations

PA+A'P,+D'PD-FF

1 p[7 BB'] [Pl- -0 "
17211 BB BB||P]

P,A+A'P,+D'P,D+F'F

- [Pl Pz] _)/_ZCC’ BB'

0 y‘zcc’] 'Pl] “o (16)
_PZ

have a solution (P, < 0,K,; P, > 0,K,), with K, = —y"*CP,,
K, = -BP,.

3. Discrete-Time Case

In [6, 7], Zhang et al. provided the recursive algorithms to
solve the coupled matrix-valued equations in Lemmas 1 and
2, respectively. Based on those results, this paper will present
an algorithm to solve the infinite horizon H,/H_, control of
discrete-time time-varying stochastic systems.

The following algorithm can be used to solve the coupled
difference matrix-valued equations (2)-(5) in Lemma 1 [6].

Algorithm 5. Consider the following.

(i) Set k = T, then I'(P, r,,) and T,(P,r,,) can be
computed according to the final conditions P, ;,; = 0
and Py r,, = 0.

(ii) Solve the matrix recursions (3) and (5), then K, and
K, are derived.

(iii) Substituting the obtained K, and K into the matrix
recursions (2) and (4), respectively, then P, < 0 and
P, > 0 are available.

(iv) Repeat the above procedures; (P, Kyz; Py, Kyy) can
be computed fork =T - 1,T - 2,...,0, recursively.

In Algorithm 5, the priori condition T (P;;) > 0 should be
checked to guarantee it to proceed backward. Otherwise, the
algorithm has to stop. It is noted that T, (P, 1-,,) and [}, (P, 1)
can be computed first, provided that the final conditions
Py 1y =0and P, 1, = 0 are known.

The following algorithm can be used to solve the coupled
algebraic matrix-valued equations (7)-(10) in Lemma 2 [7].

Algorithm 6. Consider the following.

(i) Establish difference equations (2)-(5) corresponding
to algebraic equations (7)-(10).

(ii) Give a large T'. By means of Algorithm 5, the differ-
ence equations (2)-(5) can be solved and (P, Kz;
Py, Ky) k=T, T-1,T -2,...,0 can be derived.

(iii) If the sequences (P, Ky Pope» Koy )k = T, T = 1, T —
2,...,0 are convergent, then (7)-(10) have solutions
(P, K3 Py, Ky) = (P, Kyg; Pyg» Kyp). Otherwise, the
problem is unsolvable.

In [10], a necessary and sufficient condition for the infinite
horizon H,/H,, control problem of discrete-time time-
varying stochastic systems with Markov jumps was derived
in terms of four coupled discrete-time Riccati equations.
However, the Riccati equations in [10] were solved by trial and
error and cannot be extended to the complicated case. The
condition for the infinite horizon H,/H_, control of time-
varying stochastic system (A, By, Cy; Dy | F) (or system (1))
is as follows.

Lemma 7. For systems (A, By, Ci; Dy, | Fy), assume that
(A Dy | Fp) and (A + B K3 Dy | F,) are stochastically
detectable. The infinite horizon H,[H, control problem has
solutions u* (k, x;.) = Kyxp, and v* (k, x;.) = Kyx;, with Ky,



and K, being continuous matrix-valued functions, if and only
if the following coupled difference matrix-valued equations

— Pyt (Ap+ BkKZk),Pl,kH (Ax + BiKy)

+ DPy g Dy = FiFy = Ky Ko

- [(Ak + Bszk),Pl,kHCk] Iy (Prgn) (17)

X [(Ak + Bszk)lpl,kHCk], =0,

T} (Pyysr) = YL+ CI,cPI,kHCk >0,
Ky = _rl(Pl,k+1)_l[(Ak + BkKZk)’Pl,kJrle]” (18)

= Py + (A + CuK i) Py (Ag + CuKyy) + DiPyj Dy

+ FI:Fk - [(Ak + CkKlk),PZ,k+1Bk] rz(Pz,kH)il

!
X [(Ak + CkKlk)’Pz,kHBk] =0,
(19)

-1 !
Ky = -Ty(Pojei1) [(Ak + CkKlk),PZ,kHBk] (20)

with Ty(Py 1) = I + ByPy s, By, admit a bounded solution
(Plk < O’Klk;PZk > O,sz), k = 0, 1,2,....

Proof. This is a direct corollary of Theorem 2 in [10] and the
proof is omitted. O

In this paper, the essential difference between Lemmas 1
and 7 is that k is finite in the former while it is infinite in
the later. Based on Algorithm 6, the coupled matrix-valued
equations (17)-(20) can be solved by the following recursive
algorithm.

Algorithm 8. Consider the following.

(i) Given k = k;, (17)-(20) reduce to time-invariant
matrix-valued equations.

(ii) Compute the solution of these time-invariant matrix-
valued equations by using Algorithm 6.

(iii) Set k; = k; + 1 and go to step 1.

It is difficult for Algorithm 8 to compute all the solutions
as k — oo for general time-varying system. However, it is
easy to verify that the solutions of (17)-(20) are also periodic
for periodic systems. Hence, Algorithm 8 is suitable for the
periodic case, which will be shown by Example 1.

4. Continuous-Time Case

In contrast to the discrete-time case, it is more difficult to
deal with the continuous-time stochastic H,/H, control in
Lemmas 3 and 4. In this study, the Runge-Kutta integration
procedure and the convex optimization approach are applied
to solve the coupled matrix-valued equations in Lemmas 3
and 4, respectively.

Mathematical Problems in Engineering

In Lemma 3, the coupled differential matrix-valued equa-
tions (12) and (13) can be viewed as a set of backward
differential equations with known terminal conditions, which
can be solved by the Runge-Kutta integration procedure [1].
The following algorithm can be used to solve (12) and (13) in
Lemma 3.

Algorithm 9. Consider the following.

(i) Rewrite (12) and (13) as a set of equations with (n(n +
1)/2)x2 time-varying backward differential equations
with known terminal conditions.

(ii) Solve this set of equations by using the Runge-Kutta
integration procedure.

(iii) If the solutions of the set of equations are convergent,
then the finite horizon H,/H_, control problem is
solvable. Otherwise, the problem is unsolvable.

Next, we will study the algorithm for the solution of
coupled algebraic matrix-valued equations (15) and (16) in
Lemma4. In the scalar case, the curves represented by
(15) and (16) can be plotted in a (P}, P,)-plane, and the
intersections of these curves, if they exist, are the solutions
of (15) and (16). Moreover, the intersection in the second
quadrant is the solution that we need, which will be shown
in Example 2.

In the high-dimensional case, a suboptimal H,/H_
controller design algorithm for Lemma 4 was obtained in
[8] by solving a convex optimization problem. However, this
algorithm was developed under the assumption P, = -P,
which was very conservative. Rewrite (15) and (16) as

©, =P A+A'P +D'PD-FF-P,BBP,

-y ?P,CC'P, - P,BB'P, - P,BB'P, = 0,
1)
©,=P,A+A'P,+D'P,D+F'F-P,BB'P,

-y *P,CC'P, -y *P,CC'P, = 0.
Substituting P, = —P, into (21) yields

P,A+A'P,+D'P,D+F'F-P,BB'P,+yP,CC'P, = 0,

P,A+A'P,+D'P,D+F'F - P,BB'P, + 2y *P,CC'P, = 0.
(22)

From the above, it can be seen that one matrix P, cannot
satisfy two different equations simultaneously expect in some
very special cases.

In this paper, we try to present another convex optimiza-
tion algorithm to solve (15) and (16). By Theorem 10 of [16],
(P, P,) € " x &" is the optimal solution to

N

max Y Tr[P +P,)]. (23)
sit. ©;20,0,20, P <0, P, >0
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Since

-P,BB'P, - P,BB'P, > —~P,BB'P, - P,BB'P,,

—y*P,CC'P, —y*P,CC'P, > -y *P,CC'P, -y *P,CC'P,,

(24)
we have ®; > 0and ©, > 0 if
®,=PA+A'P +D'PD-FF-2P,BB'P,
- P, (BB +yCC') Py
>0,
(25)

®,=P,A+A'P,+D'P,D+FF-y?’PCC'P,
- P, (BB +y*CC') P,
>0,

respectively. According to Schur’s complement lemma, ©®, >
0 and @, > 0 are, respectively, equivalent to

-

z11 z12 PZB
!
> = 212 I 0 > 0,
1
B'P, 0 -I
L 2 (26)
[ Qll QIZ Plc
!
=0, 1 o0 |=o0,
[C'P, 0 I
with
%,=PA+A'P +D'PD-F'F,
_ 1/2
=, = (BB +y~cC') "
(27)

Q,=PA+A'P,+D'P,D+F'F,

0, = P,(BB +ycc’)”.

Since (26) are linear matrix inequalities (LMIs), a suboptimal
solution to coupled matrix-valued equations (21) may be
derived by solving the following convex optimization prob-
lem:

N

ma Tr [P, + P,]. (28)
-1

X
s.t. 220,020, P, <0, 0
Moreover, the infinite horizon H,/H_, control problem of
system (14) has a pair of solutions:

u* (t) = K,x (t) = —B'P,x (1),
(29)
v () = Kx (t) = -y °C'Px (t).

Summarizing the above, the following algorithm can be
used to solve (15) and (16) in Lemma 4.

Algorithm 10. Consider the following.

(i) Establish LMISs (26) corresponding to algebraic equa-
tions (15) and (16) in Lemma 4.

(ii) If the convex optimization problem (28) is solvable,
then P, and P, can be derived. Moreover, K, =
—~y2C'P, and K, = -B'P, can be computed.
Otherwise, (15) and (16) in Lemma 4 are unsolvable.

Remark 11. Note that, in Algorithm 10, conditions (26) are
given in terms of linear matrix inequalities; therefore, by
using the Matlab LMI-Toolbox, it is straightforward to check
the feasibility of the convex optimization problem (28)
without tuning any parameters. In fact, Algorithm 10 is also a
suboptimal algorithm, and the conservatism comes from the
inequality transforms (24).

Remark 12. In this paper, we consider the H,/H_, control
for stochastic systems with only state-dependent noise. As
discussed in [17, 18], for most natural phenomena described
by Itd stochastic systems, not only state but also control input
or external disturbance maybe corrupted by noise. Therefore,
it is necessary to study stochastic systems with state, control,
and disturbance-dependent noise which makes the condi-
tions for H,/H,, control more complicated. Searching for
the numerical solutions for these conditions deserves further
study.

5. Numerical Examples

In this section, several numerical examples will be provided
to illustrate the effectiveness of Algorithms 8-10.

Example 1. Consider the infinite horizon H,/H,, control
for two-dimensional periodic stochastic systems (1) with the
following parameters:

0.2 0 0.5
A= [—1 02 (—1)"]’ B = [(—1)"]’
; (30)
Jo o5 (-1)% o0
Ci = [—1]’ Dk‘[ 0 —0.2]’

F. = [0 1]. Apparently, the period of this system is 7 = 2.
By setting y = 1.8 and applying Algorithm 8, the evolutions
of Py, Py» Kijo Ky k= 1,2 are illustrated in Figures 1
and 2, respectively, which clearly show the convergence of the
algorithm.

Example 2. Consider the finite horizon H,/H,, control for
the following one-dimensional stochastic system:

dx () =[2x @) +3u @) +v(@)]dt + x(t)dw (t),

3x (1) Gy

z(t)=[u(t)], tel0,2].



1.5 ¢

i

n

I O ek R Rl
[

Evolutions of Py (t) and Py (t), k =1

Mathematical Problems in Engineering

0.6
o4l
< O
= 02F
N
e
2 of
=02
X
S
]
2 —0.4
2
5
= —0.6F
>
m

_08 L L " "

0 5 10 15 20 25 30
t
— Ky(LD) — Ku(LD)
--- Ky(1,2) Ky (1,2)

FIGURE 1: Convergence of Py, Py, Ky, and K, in Example 1, k = 1.

_. Y
S <Y
o [
05t
S I T
_15 "
0 5 10 15 20 25 30
t
— Py(L1) -= Py(1,1)
--- Pp(12) Py (1,2)
—— P;(2,2) —— Py(2,2)
2
st

n
I e e St
P
B 1
________________________________________ - '

0.5 s

-0.5 |

Evolutions of Py (t) and Py (t), k
o

-15 :
0 5 10 15 20 25 30
t
I Plk(l)l) - sz(l,l)
--- P(12) Py(1,2)
—— Py(2.2) —— Py(2.2)

0.6
T 0.5}
~
=< 04r
=
X 03}
=]
=]
=02t
=
v 01}
—
o
g 0f
R O et
s _
E 0.1 b
0

-0.2 :

0 5 10 15 20 25 30

- K1k(1a1)
--- Ky(1,2) Ky (1,2)

F1GURE 2: Convergence of P, Py, Ky, and K, in Example 1, k = 2.

According to Algorithm 9, coupled differential equations
(12) and (13) can be viewed as the following set of equations
with known terminal conditions:

~Py (t) = 5P, (t) -9 — y "P} (t) - 9P; (t) - 18P, (1) P, (1),
P1 (2) =0,
~P, (t) = 5P, (t) + 9~ 9P, (t) = 2y °P, (1) P, (t),

P,(2) = 0.
(32)

Setting y = 0.4 and using the Runge-Kutta integration proce-
dure, the evolutions of P, (t), P,(t), K,(t), K,(t) are given in

Figure 3, which clearly show the convergence of the solutions
of (12) and (13).

On the other hand, for one-dimensional time-invariant
system (31), the infinite horizon H,/H_, control can be solved
by searching for the intersection in the second quadrant of
the curves represented by (15) and (16). From Figure 4, it can
be found that the solution of (15) and (16) is P, = -7.9777,
P, = 11.7207, which coincides with the P,(0) and P,(0) in
Figure 3. Therefore, algebraic matrix-valued equations (15)
and (16) can be solved by computing the initial conditions of
the corresponding differential matrix-valued equations (12)
and (13), which will be called “initial condition method” in
the following analysis.
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FIGURE 4: The intersection in the second quadrant of curves
represented by (15) and (16) in Example 2.

Example 3. Consider the finite horizon H,/H, control for
two-dimensional time-varying stochastic systems (11) with
the following parameters:

Al = [—01 0.5 c_ols (t)] ’ B(t) = [gi] ’

cw-[) e[t ro-[2]

(33)

In this case, let P(t) = A Pl(lz)(t)], P, (t)

bl B2)0) P (12)(t) P(22)(t)
1)(t t
[piﬁlz% PzEZZ;Et)], and (12) and (13) correspond to a set of

equations with 6 differential equations.
Set y = 1, T = 12. By applying Algorithm 9, the
evolutions of P, (), P,(t), K, (t), K, (t) are shown in Figure 5.

Example 4. Consider the infinite horizon H,/H_, control for
three-dimensional stochastic systems (14) with the following
parameters:

2 0 -02 12 0.6
A=103 =2 05|, B=|04|, cCc=1|05],
0.5 0.1 -1.5 0.8 1.3
1 02 03 017

D=|0 -0302|, F=|03
05 0.6 0.8 0.2
(34)

According to Algorithm 10, by solving the convex optimiza-
tion problem (28), we have the following solutions to (15) and
(16):

-0.0567 -0.0320 -0.0525
P, =|-0.0320 -0.0320 -0.0370 |,
-0.0525 -0.0370 -0.0535

0.0196 0.0142 0.0204
P, =10.0142 0.0123 0.0164 |, (35)
0.0204 0.0164 0.0225

K, = [0.0296 0.0208 0.0299],

K, = [-0.0455 —0.0351 —0.0490] .
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0.1} B
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Evolutions of K, (t) and K, (t)
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— K;(1,1)(®) - = Ky (L))
--- K(12)@) K, (1,2)(t)

FIGURE 5: Convergence of P (t), P,(t), K, (t), and K, (t) in Example 3.

Example 5. Consider the infinite horizon H,/H_, control for
two-dimensional stochastic systems (14) with the following

parameters:
0.2 1
o-fog] e loa)

!
1 05 0.2
D:[o 1]’ F:[OA]'
In this example, (15) and (16) will be solved by two dif-
ferent methods, that is, the initial condition method and
Algorithm 10. Set y = 2 and T' = 20. By using Algorithm 9,
the convergence of the solutions to (12) and (13) is shown in

Figure 6, and the initial conditions of P,(¢) and P,(t) are as
follows:

(36)

~0.0376 —0.1267
P (0) = [—0.1267 —0.5100] :
(37)
0.0384 0.1307
P (0) = [0.1307 0.5319]'

On the other hand, according to Algorithm 10, we have
the following solutions to (15) and (16):

p = [—0.0524 —0.2200]
17 1-0.2200 -1.1381|’
(38)
P = [0.0081 0.0307]
2 0.0307 0.1159]°

Remark 13. Substituting the solutions from initial condition
method and those from Algorithm 10 into (15) and (16), it can
be found that the former has a higher accuracy than the later.
Moreover, the initial condition method is less conservative
than Algorithm 10 in some cases. For instance, the infinite
horizon H,/H,, control of system (31) can be solved by
initial condition method (see Example 2), while there is

0.6 T T

0.4

Evolutions of P;(t) and P, (¢)

_()8 "
0 5 10 15 20
t
— P(L,1)(®) -— Py(1,1)(t)
--- PO Py(1,2)(¢)
— P(22)®) Py (2,2)(t)

FIGURE 6: Convergence of P, (t) and P,(t) in Example 5.

no optimization solution by using Algorithm 10. However,
Algorithm 10 has more advantages in the high-dimensional
case than initial condition method. For example, it is difficult
to deal with the problem in Example 4 for initial condition
method, since it needs to solve a set of equations with 12
differential equations. Therefore, each method has its own
advantage and proper scope.

6. Conclusions

In this paper, we have studied the algorithms for H,/H_,
control problems of stochastic systems with state-dependent
noise. For the finite and infinite horizon stochastic H,/H,
control problems, algorithms in the discrete-time case
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have been reviewed and studied, and algorithms in the
continuous-time case have been developed. The validity of
the obtained algorithms has been verified by numerical exam-
ples. This subject yields many interesting and challenging
topics. For example, how can we design numerical algorithms
to solve the H,/H,, control problems of stochastic systems
with state, control, and disturbance-dependent noise? This
issue deserves further research.
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This paper focuses on the model of a class of nonlinear stochastic delay systems with Poisson jumps based on Lyapunov stability
theory, stochastic analysis, and inequality technique. The existence and uniqueness of the adapted solution to such systems are
proved by applying the fixed point theorem. By constructing a Lyapunov function and using Doob’s martingale inequality and
Borel-Cantelli lemma, sufficient conditions are given to establish the exponential stability in the mean square of such systems,
and we prove that the exponentially stable in the mean square of such systems implies the almost surely exponentially stable. The
obtained results show that if stochastic systems is exponentially stable and the time delay is sufficiently small, then the corresponding
stochastic delay systems with Poisson jumps will remain exponentially stable, and time delay upper limit is solved by using the
obtained results when the system is exponentially stable, and they are more easily verified and applied in practice.

1. Introduction

In nature, physics, society, engineering, and so on we always
meet two kinds of functions with respect to time: one is
deterministic and another is random. Stochastic differential
equations (SDEs for short) were first initiated and developed
by K. It6 [1]. Today they have become a very powerful tool
applied to mathematics, physics, biology, finance, and so
forth.

Currently, the study of analysis and synthesis of stochastic
time delay systems, described by stochastic delayed differen-
tial equations (SDDE for short), is a popular topic in the field
of control theory [2-8]. Delays in the dynamics can represent
memory or inertia in the financial system [9]. Because the
existence of time delay is the main reason about bringing
instability and deteriorating the control performance, the
study on time delay systems stability and control has impor-
tant theoretical and practical values. Furthermore, it often
happens in real lives that a stochastic system jumps from a
“normal state” or “good state” to a “bad state,” and the strength
of system is random. For this class of systems, it is natural
and necessary to include a jump term in them. The effect of
Poisson jumps should be taken into account when studying
the stability of SDEs [10-16]. Therefore, except stochastic and

delay effects, Poisson jumps’ effects is likely to exist widely
in variety of evolution processes in which states are changed
abruptly at some moments of time, including such fields as
finance, economy, medicine, electronics, and so forth. Then,
it is natural to consider the effect of Poisson jumps when
studying the stability of SDDEs.

So far, these topics have received a lot of attention and
there are so many references about them. For instance,
[2-8] established some stability criteria of the stochastic
systems with delay by using Lyapunov function method or
Razumikhin technique or inequality technique and so on.
By using the fixed point theory and Borel-Cantelli lemma,
Guo and Zhu [13] studied that the solution to a class of
stochastic Volterra-Levin equations with Poisson jumps is not
only existent and unique but also pth moment exponentially
stable. By constructing a novel Lyapunov-Krasovskii func-
tional and using some new approaches and techniques, Zhu
and Cao [14] focused on the exponential stability for a class
of Markovian jump impulsive stochastic Cohen-Grossberg
neural networks with mixed time delays and got several novel
sufficient conditions. By applying a Lyapunov-Krasovskii
functional, the stochastic analysis theory, and LMI approach,
Zhu and Cao [15] investigated a class of stochastic neural
networks with both Markovian jump parameters and mixed
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time delays and derived some novel sufficient conditions. In
[16], Zhu proposed several good sufficient conditions under
which he proved the asymptotic stability in the pth moment
and almost sure stability of the SDEs with Lévy noise. Based
on fixed point theory, Chen et al. [17] proved that the mild
solution to a class of impulsive SPDEs with delays and Poisson
jumps is not only existent and unique but also pth moment
exponentially stable.

Delay and Poisson jumps always coexist in real dynamic
systems. Thus, it is reasonable to consider them together,
leading us to investigate SDDEs with Poisson jumps. How-
ever, the delayed response gives us more difficulties to deal
with the delayed stochastic control problems, not only for
the infinite-dimensional problem, but also for the absence
of Ito’s formula to deal with the delayed part of the tra-
jectory. So the stochastic controlled delay systems are more
complicated. Because Lévy processes are not continuous,
but their sample paths are right-continuous and have a
number of random jump discontinuities occurring at random
times, on each finite time interval. Since Lévy noise has
more advantages than the standard Gausian noise despite its
increased mathematical complexity, it is very interesting and
challenging to study SDDEs with Lévy noise. There is little
literature focusing on a certain class of this system, [14-17],
that discussed the exponential stability of the trivial solution
for this system, but these stable conditions only ensure the
exponential stability of the respective solution and do not give
abound for the time delay 8, and Chen et al. pointed out that
it is impossible to analyze the stability of mild solutions to
SDDEs by Lyapunov method.

The main objective of this paper is to fill this gap. We
investigate not only the exponential stability in the mean
square but also the almost surely exponential stability for a
class of SDDE with Poisson jumps based on Lyapunov sta-
bility theory, It6 formula, stochastic analysis, and inequality
technique. We first consider the existence and uniqueness
of the adapted solution by employing fixed point theorem.
Next, some sufficient conditions of exponential stability and
corollaries for SDDE with Poisson jumps are obtained by
using Lyapunov function. By utilizing Doob’s martingale
inequality and Borel-Cantelli lemma, it is shown that the
exponentially stable in the mean square of SDDE with
Poisson jumps implies the almost surely exponentially stable.
Our results generalize and improve some recent results (for
instance [5-8, 14-17]). In particular, our results show that if
SDE is exponentially stable and the time delay is sufficiently
small, then the corresponding SDDE with Poisson jumps will
remain exponentially stable. Moreover, when the system is
exponentially stable, the time delay upper limit is solved by
using our results which are more easily verified and applied
in practice. Our approach in the current paper is different
from the above [14-17]. Finally, we present a simple example
to illustrate the effectiveness of our stable results.

The rest of this paper is organized as follows. In Section 2,
we give the preliminary results about SDDE with Poisson
jumps. Main results and proofs for SDDE with Poisson jumps
are provided in Section 3. Section 4 presents a simple example
to illustrate our stable results. Section 5 lists some concluding
remarks.
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2. Preliminaries

Throughout this paper and unless specified, we let B(t) =
B(t,w) be an m-dimensional motion and N(dt,dz) =
N(dt,dz) — v(dz)dt which is the I-dimensional compen-
sated jump measure of #(-)an independent compensated
Poisson random measure on a filtered probability space
(Q FAF Yoy P). N(dt,dz) is the I-dimensional jump
measure and v(dz) is the Lévy measure of [-dimensional Lévy
process 7(-) and T > 0.

We denote the notation | - | for the Euclidean norm. If
A is a vector or matrix, its transpose is denoted by A”. If
A is a square matrix, the trace of A is denoted by tr(A)
and then the operator norm of A is denoted by || Al|; that is,
Al = Vtr(ATA). We also use the notation: L;([s, rl;R") =
{ob(t) : {¢(t), s < t < r} which is R”-valued adapted stochastic
processes s.t.f; E|¢(t)|2dt < oo}

Suppose X(t) € R” is an Itd-Lévy process of the form

dX () =b(t X (1),Y (t),w)dt
+o (X (1),Y (t),w0)dB(t)

+J Y (X ()Y (), 2.0) N (d dz);
R;

te[0,T],

X =8@); te[-5,0], 2)
where Y(t) = X(t - 6), Ry := R"/{0}, and § > 0. Here b :
[0,T]xR"xR"xQ — R",0:[0,T]xR"XR"xQ — R™",
andy : [0, T]xR"xR" xR x Q) — R™, are given functions
such that for all ¢, b(t, x, y, ), o(t, x, y,-), and y(t, x, y, z, -) are
F,-measurable for all x € R",y € R"and z € Ry. In the
following, we suppress the w, for notational simplicity. The
initial date X(t) = &(t) is satisfied with & := {&(s) : =0 < s <
0} € L‘;O([—(?, 0;R").

Now let us present an existence and uniqueness result
for (1)-(2). First we let the maps b(t, x, y,-), o(t, x, ¥, ), and
y(t, x, y, 2, -) satisty the following conditions.

(H2.1) At most linear growth: there exists a constant C; > 0
such that

bt % I + ot x )|
Lo ,
+J Z'y( ) (t, x, y,zk)| v (dzy) (3)
Ry k=1

<C, (1 + |x|2 + |y|2)

for all x € R", y € R", where y¥ € R" is column
number k of the n x I matrix y = [y, ] and yi(k) = P is
the coordinate number i of y*), and y*(t, x, y,2) =
Y(k)(t, X% 9,2);2=(2),...,2) € R.
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(H2.2) Lipschitz continuity: there exists a constant C, > 0
such that

|b(t, x, y) = b(t, x, y’)'2 + “(r(t, x, y) —o(t, x',y')”2
1
+ J Z'y(k)(t, x y,z) — Yt x',y',zk)|2vk (dz.)
Ry k=1

<G, ('x - x'|2 + |y - y"z)
(4)

forallx e R", y € R".

Lemma 1 (see [18]). For any real matrices {},{, € R" and a
constant 0 > 0, the following matrix inequality holds:

210, <607, + 5014, ©

Theorem 2. Let (H2.1) and (H2.2) hold. Then for any &(t) €
LZCJO([—S, 0 R"), ()-(2) have a unique adapted solution
X(t; &) such that

E[|X#O] < 0o (6)

for all t. When b(t,0,0,0) = o(t,0,0,0) = 0, it is easy to see
that (1)-(2) have a trivial solution X(t;0) = 0.

We present the proof of Theorem 2 which is left in
Appendix.

To develop our theories and results, we need to introduce
the following concepts. For stochastic system, exponential
stability in mean square and almost surely exponential
stability are generally used [7].

Definition 3. The trivial solution of (1)-(2) is said to be
pth moment exponentially stable. If there exists a positive
constant ¢ such that

lim supl In (E|X(t; f)|P) < -¢ (7)
t— 00 t
forany & € L{;O([—& 0];R™).
Particularly, p = 2; it is called mean square exponentially
stable.

Definition 4. The trivial solution of (1)-(2) is said to be almost
surely exponentially stable. If there exists a positive constant
1 such that

lim sup% In|X (58] <-n as. (8)
t— 00
forany & € Lpgo([—& 0];RY).

3. Main Results

For simplicity, in what follows we write X(t; &) = X(¢).
We make the following assumptions for the coefficients of

1D-(2).

In the study of mean square exponential stability, it is
often to use a quadratic function as the Lyapunov function;
that is, V(,x) = x'Gx, where G is a symmetric positive
definite n X n matrix.

Theorem 5. Let (H2.1)-(H2.2) hold; then the trivial solution of
(1)-(2) is exponentially stable in the mean square. Assume that
there exists a symmetric positive definite n x n matrices G and
a constant A > 0 such that

2X"Gb (t, X, X) < -MX)%, V(% y) € [0,T] x R" xR",

©)

A > 4||G| C, + 2 |G| /6C,C,8 (8 + 2). (10)

In order to prove Theorem 5, we need two lemmas, proofs
of which are left in Appendix.

Lemma 6. Fix the initial data &(t) arbitrarily. Then,

t s t
J e“J E|X(r)[2dr ds < 6e€5J X (D)Pdr, (1)
S5 5

S— 0

t ¢
j ¢“E|X(s - 8)|*ds < ¢;, ¢ +€® J “E|X(s)]*ds (12)
0 0

foranyt > §, where c,, is a constant larger than ﬁa E|E(s)*ds.

Lemma 7. Let (H2.1) and (H2.2) hold. Fix the initial data &(t)
arbitrarily; then,

t s
J e“J E|X(r - 8)Pdr ds
5 -8

S

, (13)
< 8¢,,e* + 86 J ¢“E|X (s)|*ds,
0
t
J e“E|X(s) - X(s — 8)°ds < ¢y,
0
t
£3C, (8 +2) 02 J | X(s)ds (14)
0

t
+3C, (8 +2) (cllaem +6e*? J e“ElX(s)Izds)
0
forany t > 6, where

5
Gy > J ¢“E|X (s) — X (s — 8)|*ds
’ (15)
+ 36C1 (8 + 2) (eST B (356) .
&

Based on Lemmas 6 and 7 above, we now carry out a proof
for Theorem 5.



Proof of Theorem 5. Fix the initial data &(¢) arbitrarily. Apply-
ing Ito’s formula to X" GX, we have

d(X'GX) =2X"Gb(t, X, Y)dt
+2XTGo (t,X,Y)dB (t)

+tr[o" (t,X,Y)Go (1, X,Y)] dt

1
1 e
k=1 7lzkI<R

x Gy® (t, X, Y, z,) v (dz;) dt

+

1
k=

L 9 (6% 7,2) GyY (1. X,7,2,)
1 7Ro

+ X" () 6y® (1, X,Y, 2;)
+y™ (6 X,Y,2,) GX (t)}

x N (dt,dz;).
(16)

Applying Itd’s formula to e X" GX and taking the expecta-
tion, we have

E(e“X"GX) < E(£" (0)GE(0))
+¢E J-t e“ X" GX ds

0

t
+E J e“2XTGb (s, X,Y) ds
0

t
+E J e“tro’ (5, X,Y)Go (s, X,Y)] ds
0

!

g *)
x Gy® (5, X,Y,z;)
x v (dz;) ] ds
= E (&7 (0)GE(0))

t

+¢E J E“X'GXds+1, + 1, + I,
0

(17)

t
I = EJ “2XTGb (s, X, Y) ds,
0

t
I, = EJ- e tr [O’T (5,X,Y)Go (s, X, Y)] ds,
0
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t 1
I = EJ- e [ZJ Y9 (4, X,Y,2,)
0 k=1

x Gy® (1, X,Y, ) . (dz.) | ds.

(18)
Combining Lemma 1 and (9) as well as (H2.2), we can esti-

mate I, as follows:

t
I, =E J e {2X"Gb (s, X, X)
0

+2X"G[b(s, X,Y) - b(s, X, X))} ds

t (19)
< EJ e {—Mxﬁ +0|X|?
0
2
+ (@> -C2|X—Y|2} ds.
0
where 6 > 0 is a constant.
By (H2.1), I, + I; of (17) yields
L +1 < 2C, |Gl (e - 1)
(20)

+2C, |G| Lt ¢ (EIX| + E|Y|) ds.
Substituting the above two into (17) and using Lemmas 6 and
7, we get an estimate of E(e XTGX) as follows:
E(e"X"GX)
<E(E" (0)GE(0)) +2C, |Gl "

t
-[A-6-1G| (2C, +€)] J ¢“E|X|*ds
0

t
+2C, |G <c11e55 +e® J e“E|X|2ds)
0

2
+ < "(;” ) .C, [022 +3C, (8 +2)6e?

t
X j e“E|X|*ds +3C, (8 +2)
0

t
X <C11862£5 + 6™ J e‘“Elezds>]
0

= Gs-
(1)
for t > &, where
o3 = E(E7(0)GE(0)) +2C, |Gl T + 2C,c |Gl €
(22)

L (61T
0

[%2 +3C¢;0 (6 +2) 6286) .
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For small enough ¢ > 0, we derive

IG] (2C, +€) + 6 + 2C, |G| €®

., IGIVECE 28)"
0

(688 + 6266)
(23)
> 4|GIC, +6

. (IGIl V6C,C,0@ +2))°
- .

If (10) holds, then we can choose ¢ > 0 small enough such
that

A= |G| (2C, +¢€) + 6 +2C, |G|| €?

2 24
N 3(||G|| VCIC, (6 +2)5) ( &, 256) ey
(e +e™).
0
Since G is positive definite,
XTGX > A, (G)|X)% (25)
where A, (G) > 0 is the smallest eigenvalue of G.
Then,
E(e"X"GX) 2 E (" A pyn (G) IX]*). (26)
It then follows from (21) that
1 2 1 G4 ] —st)
—In(E|X (¢ < -1 —
Fn(EXOF) = Tin( |25 )«
(27)
1 c
- _ _1 44 ] .
= H[Amm(@
This easily yields
Jim sup% In(EIX (®)F) < . (28)
t— 00

Then (1)-(2) is exponentially stable in the mean square.  [J

Theorem 8. Let ¢ > 0, under the same assumption as
Theorem 5. If inequality (28) holds, then,

1
lim sup; In(|X (t)]) < —g a.s. (29)
t— 00

Proof. Lete > 0, under the same assumption as Theorem 5. It
follows from (27) that

1 ) 1
—In(E|X (t < - —-InM 30
I (EIX(@OF) < e+~ -In (30)

forall t > 8. Here M = ¢, /A
1)8], k =2,3,..., we have

(G). Then, for t € [kS, (k +

min

E( sup E|X(t)|2) < Me™k°, (31)
ké<t<(k+1)8

Let g, € (0, €) be arbitrary. By Doob’s martingale inequal-
ity. It follows from (31) that

P(w :osup X ()] > e(se")ka/z) < cpe . (32)

kd<t<(k+1)8

Thus, it follows from the Borel-Cantelli lemma that, for
almost all w € Q, there exists ky(w), and k > ky(w),

P(w: sup |X(t)|ge‘<€-fo>k5/2>:1. (33)

ké<t<(k+1)8

Since ¢, is arbitrary, we must have

1
lim sup- In | (1) < —% as. (34)

t— 00

O

Remark 9. The exponentially stable in the mean square of (1)-
(2) implies the almost surely exponentially stable. In general,
Theorem 8 is still true for pth moment exponential stable.

Let us single out three important special cases.

Casel. If o = 0 and N = 0 (no jumps), then (1)-(2) reduces
to ODE with delay

dX () =b(t,X,Y)dt,

X(t)=¢&@),

Applying Theorem 5 to (35), we obtain the following useful
result.

te[0,T],
(35)
t € [-6,0].

Corollary 10. Let (H2.1)-(H2.2) hold; then the trivial solution
of (35) is exponentially stable in the mean square. Assume that
there exists a symmetric positive definite n x n matrices G and
a constant A > 0 such that

2XTGh (1, X, X) < -MX[>, V(tx x)€[0,T] x R"xR",

(36)
A > 2G| 8+/2C,C,. (37)

Case 2. If N = 0 (no jumps), then (1)-(2) reduces to SDE with
delay

dX () =b(t, X,Y)dt + 0 (t,X,Y)dB(1),
X () =&(),

te[0,T],

t € [-6,0].
(38)

Applying Theorem 5 to (38), we obtain the following useful
result.

Corollary 11. Let (H2.1)-(H2.2) hold; then the trivial solution
of (38) is exponentially stable in the mean square. Assume that
there exists symmetric positive definite n X n matrices G and a
constant A > 0 such that

2XTGh (t, X, X) < -MX[>, V(tx x)€[0,T] x R"xR",

(39)

A > 2G| C, +4|G|\/C,C,8 (8 +1). (40)



Remark 12. The bound for the time delay § when (1)-(2) is
exponentially stable which follows from (10), the bound for
the corresponding deterministic case follows from (37), and

the bound for the corresponding stochastic case follows from
(40).

Case 3. If the time delay 6 = 0, then (1)-(2) reduces to the
nondelay SDE with jumps

dX () =b(t, X, X)dt + o (t, X, X)dB ()

+j y(t, X, X,z,0) N (dt,dz); te[0,T].
R;
(41)

One of the powerful techniques employed in the study of
the stability problem is the method of the Lyapunov functions
or functional [19]. However, it is generally much more
difficult to construct the Lyapunov functionals in the case of
delay than the Lyapunov functions in the case of nondelay.
Therefore another useful technique has been developed, that
is, to compare the stochastic differential delay equations with
the corresponding nondelay equations. To explain, let uslook
at a SDE (1) with delay and jumps?

dX (t)=b(t, X,Y)dt + o (t, X,Y)dB ()
[ pexE)Y )N Ed: ()

t €[0,T].
Equation (1) can be rewritten as

dX () =b(t, X, X)dt + o (t, X, X)dB (1)

+j p (X (), X (£),2) N (dt, dz)
.

0

b X, X) - b(t, X, Y)] dt
43
ot X, X) -0 (t,X,Y)]dB(2) )

- | pexE).x).2)

—y(£X(£),Y(£),2)] N (d.dz),

and regard it as the perturbed system of the corresponding
nondelay SDE (41). Obviously, if the time delay § is suffi-
ciently small then the perturbation term,

bt X, X)-b(t,X,Y)]dt
+[ot, X, X)—0(t,X,Y)]dB(t)

o[ ExE).x0).2)

0

(44)

—y(6X(£),Y (t),2)] N (dt, dz),

could be so small that the perturbed equation (1) would
behave in a similar way as (41) asymptotically. Applying
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Theorem 5 and Remark 12 in [20], we derive (1) which will
remain exponentially stable.

Corollary 13. If the nondelay equation (41) is exponentially
stable and the time delay & is sufficiently small, then the
corresponding delay equation (1) will remain exponentially
stable.

4. Example

Let us now present a simple example to illustrate our results,
which can help us find the time delay upper limit.

Example 1. For simplicity of presentation, let us consider a
simple one-dimensional (i.e., n = m = [ = 1, thus, the indices
i and j in Theorem 5 will be omitted below) delay equation
with jumps

dX () = b(t, X,Y)dt + o (t, X, Y) dB (1)
" jR y(LX (), Y (0),2) Ndhdz);  (45)

te[0,T],

where B(t) is one-dimensional Brownian motion. Constants
T > 0and d > 0 is a given finite time delay. For convenience,
let us choose G = 1 in this one-dimensional case. Hence (9)
is satisfied with A > 2.

Moreover, we let b(t, x, y) = —y, o(t, x, y) = 0.5x — 0.5y
and y(t,x, y,z) = z, N(dt,dz) = dN(t), v(dz) = kf(z)dz,
where dN(t) is a Poisson process with jump intensity x, f(z)
is log-normal density: f(z) = (1/ \@wz)e_(]"Z"")z/z‘"2 with
E[z] = eH 2 and Dlz] = (e“’2 - 1)62‘”“’2, {4, is mean of jump
z and w is the variance of jump z and x € R, y € R. Then
N(dt,dz) = dN(t) - kf(z)dz dt. Here we let y = —0.9, w =
0.45, and x = 0.1. Then

J |z|*v (dz) = kE [zz] = 12~ 0,025, (46)
R

One can write (45) as the following stochastic differential
delay equation with jumps:

dX (t) = —X (t — 8) dt

+0SX () -05X (¢ -OdBO)

+ J zN (dt,dz) .
RO

Itis easy to see that hypotheses (H2.1)-(H2.1) are satisfied with
C, = 1.5, C, = 1.5. On the other hand, it is easy to see that
condition (9) is satisfied with A = 8 and (10) becomes § <
0.037.

Therefore, by Theorems 5 and 8, we can conclude that (47)
is both mean square and almost surely exponentially stable
provided § < 0.037.

Particularly, x = 0; then (45) reduces to SDE with delay

dX (t) = —X (t - 8) dt + [0.5X (t) — 0.5X (t — 8)] dB(¢).
(48)
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It is easy to see that hypotheses (H2.1)-(H2.2) are satisfied
with C; = 1.5 and C, = 1.5. On the other hand, it is easy to
see that condition (9) is satisfied with A = 8 and (40) becomes
6 < 0.395.

Therefore, by Corollary 11 and Theorem 8, we can con-
clude that (48) is both mean square and almost surely
exponentially stable provided § < 0.395.

Moreover, setting b(t, x, y) = —y, o(t,x, y) = 0, and x =
0, then (45) becomes

dX (t) =-X(t-9)dt. (49)

It is easy to see that hypotheses (H2.1)-(H2.2) are satisfied
with C; = 1 and C, = 1. On the other hand, it is easy to see
that condition (9) is satisfied with A = 8 and (37) becomes
8 <2v2.

Therefore, by Corollary 10 and Theorem 8, we can con-
clude that (49) is both mean square and almost surely
exponentially stable provided § < 2+V/2.

Remark 14. Figure 1 gives the simulation results of Example 1
when o # 0,x # 0,and § < 0.037. The parameter values used
in the calculations are |G|l = 1,A = 8,C, = 1.5,C, = 1.5, and
0 = 0.03. Figure 2 gives the simulation results of Example 1
when o # 0,x = 0,and § < 0.395. The parameter values used
in the calculations are |G| = 1,A = 8,C, = 1.5,C, = 1.5,
and § = 0.3. Figure 3 gives the simulation results of Example 1
when o = 0, x = 0, and § < 2V/2. The parameter values used
in the calculations are |G| = 1, A = 8,C; = 1,C, = 1, and
d=1

5. Concluding Remarks

In this paper, we investigate not only the exponential stability
in the mean square but also the almost surely exponential
stability for a class of SDDE with Poisson jumps based on
Lyapunov stability theory, It6 formula, stochastic analysis,
and inequality technique. We first consider the existence and
uniqueness of the adapted solution by employing fixed point
theorem. Next, some sufficient conditions of exponential
stability and corollaries for SDDE with Poisson jumps are
obtained by using Lyapunov function. By utilizing Doob’s
martingale inequality and Borel-Cantelli lemma, we find
that the exponentially stable in the mean square of SDDE
with Poisson jumps implies the almost surely exponentially
stable. Our results generalize and improve some recent results
([5-8, 14-17]). In particular, our results show that if SDE
is exponentially stable and the time delay is sufficiently
small, then the corresponding SDDE with Poisson jumps will
remain exponentially stable. Moreover, when the system is
exponentially stable, the time delay upper limit is solved by
using our results which are more easily verified and applied
in practice. Our approach in the current paper is different
from the above [14-17]. Finally, we present a simple example
to illustrate the effectiveness of our stable results. Another
challenging problem is to study a class of SDEs with variable
delays and Poisson jumps. We hope to study these problems
in forthcoming papers.

x(t)

State response

8 10 12 14 16 18 20
Time (t)

FIGURE I: The simulation results of Example 1 when o # 0, x # 0,
and 6 = 0.03.

x(t)

State response

8 10 12 14 16 18 20
Time (t)

FIGURE 2: The simulation results of Example 1 when ¢ # 0, x = 0,
and 6 = 0.3.

x(t)

0.1
3
= 0.05
15
a,
g
1o}
= ot
w

—0.05 N N N N N
0 5 10 15 20 25 30
Time (t)

FIGURE 3: The simulation results of Example 1 when o = 0, N = 0,
d=1

Appendix

We now present proof of Theorem 2.

Proof of Theorem 2. Let us define a norm in Banach space
L% ([-8, T]; R") as follows:

1/2

Oy = (E Hz e*SSlx(s)Fds]) ,

9> 0. (A1)
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Clearly it is equivalent to the original norm of

ng([—& T1];R"). We consider

t
X () =£&(0)+ L b(s,X,yX)ds
t
+ L o (s, x> yX) dB (s)

(A.2)

+J v (X ()Y (), 2) N (ds, d2)s
Rﬂ

0

t €[0,T]

X () =£&@®), te[-5,0],

where V= x(t=6). Define a mapping T : ng([—é, Tl;R") —
L?G;([—S, T1;R") such that T(x(-)) = X(-). We desire to prove
that T is a contraction mapping under the norm [y(-)|,.
For arbitrary y(-), x'() € L%([-8,T];R"), set T(x() =
X(-),T(X'(J)j x'(),and () = x() - x'(), X() = X(-) -
X'(-). Then, X(-) satisfies

X()= L [b (5’ X’)’X) - b(S, X’,y;()] ds
[ fo(sr3) -0 (s )] B

e[ rex) o 6).2)

~y(s X' (5.5, (s).2)| N (ds. dz);
t>0,

X()=0, te[-60].

(A3)

Applying It&’s formula to e~ | X (t)I2 and taking the expecta-
tion, we have

T - 2
o | e |Reo[ar
0
Y JOT e X6 (62 7y) - b (56X ;)| dt

T 2
+EJ'0 ef‘%|a(s,)(,yx)—G(S,X',y;)' dt
T O (k)
— t — —
VB[ [ () 60).2)
0 j=1 Jlzkl<R
_ _ 2
—y 0 X ),y ), z)|

x v (dz,) dt.
(A4)
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Lemma 1 yields
T e g2
SEJ e t|X(t)| dt
0
T 9t (|57 ]? BN
<E| e (IR + ot v ~ bt 1 )| ) it

T
+E J e_9t|o‘(5, X yX) —o(s, XI’ y)l()'zdt
0

1 IR TG BAGRS

0 k=1

—y® (61 ()0, () z)[

X 'Vk (dzk) dt
(A5)
Then by (H2.2), we obtain
T
©O-1)E j VX o) at
0
T 2
<3C, E U g0 dr (A.6)
0

T -9t 2
+ JO e |y, ) dt],
where

JTe‘9f|y O dtr=t-0
0 X

T-6
_ e-eﬁj | 7(0)dr < j e |g@fdr (A7)
-0 =

T 2

< J e_91|)f(‘r)| dr.
8

Then,

T T
9-1)E j e“"t|}?(t)|2dt <6C, - E J e x| dt.
0 -6

(A.8)
Let 9 = 12C, + 1, then the above yields
T 9| /|2 1 T 9t = 48 ]2
EJ e | X(0)| dt < —EJ g 0 dt. (A.9)
-5 2 -8
That is,
_ 1,
X0, = $|X(')|s~ (A.10)

This implies that T is a strict contraction mapping. Then it
follows from the fixed point theorem that (1)-(2) has a unique
solution in ng([—& T];R"). Since b and o satisfy (H2.1) and
(H2.2), we can easily derive that E[| X (¢; f)lz] < 00,and x(t; &)
is continuous with respect to t € [0,T]. Furthermore, by
b(t,0,0,0) = o(t,0,0,0) = 0, (1)-(2) have a trivial solution
X(t;0) = 0. O
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Proof of Lemma 6. For any t > §, we easily get

t s
J e J E|X (1))’ dr ds
[ s—0

t (r+O)At
= J EIX(1))? <J eesds) dr
0 V8

t
< 6e86j & - BIX (1) dr.
0
t
j ESEIX (s - 8)2ds
0
(A1)

5
< esﬁj E|X(s - )2ds
0

t
+e® J ECIE|X (s - 8))PdsT = s — 8¢
)

0
X J E|E(T)|2dr
-5
-8
+e® J T E|X (1) dr
0
s e[
< e +ef J ¢ E|X(1)|2dr
0
for any t > §, where ¢;; > _[_08 E[((7)|dr. O
Proof of Lemma 7. Similar to (11), for any ¢ > &, we have

t s
J essJ E|X(t - 8)*drds
s

o t (A.12)
<8¢ | e EIX(r - o)Pdr.
0
Substituting (12) into the above inequality yields
t s
[ | Exe-sraras
oo (A13)

t
< 8¢y € + 8™ J e E|X(s)|ds.
0

The relation (13) in Lemma 7 is then proved.
On the other hand, for s > §, we have

S

X ()= X (s—0) = Jiab(t,X,Y)dt

§

+ J o (t,X,Y)dB(t)

S—

+r j Y (£ X,Y,2) N (dt,dz) .
.
(A.14)

By (H2.1), we get

S

E|X-Y|* <36E J b(t, X, V)| dt
-6

S

+3E j tr[o’ (X, Y)o (t,X,Y)]dt

s—0

S
+3EJ

1
5-8 L Zh,(k) (£ XY, Zk)|2”k (dz) dt

0 k=1

=30C, (6 +2)+3C, (6 +2)

X r (EIXP +ElY) dt.
5=

(A.15)

Similar to (12), for t > &, we have

t
J ¢“E|X — Y|*ds
0

S
_ J ¢ EIX(s) - X(s — 8)ds
0

t
+ J ¢“E|X (s) - X (s = 8)|*ds
[

t s
<, +3C, (5+2) J & J (EIXP + EYP) dt ds,
S s—
(A.16)
where
5
6 2 j e“E|X (s) - X (s = 8)|*ds
0 (A.17)

35C1(6+2) T &0
+f(€ —€ )

Substituting (11) and (13) into (A.16), for t > §, we get

r ¢“E|X(s) — X(s — 8)|*ds
0

t
< e +3C, (8 +2) 8¢ J E|X (s)*ds
0

t
+3C, (6 +2) (cu(‘iezaS +8e*° J essElX(s)lzds) .
0
(A18)
O
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This paper studies a linear quadratic nonzero sum differential game problem with asymmetric information. Compared with the
existing literature, a distinct feature is that the information available to players is asymmetric. Nash equilibrium points are obtained
for several classes of asymmetric information by stochastic maximum principle and technique of completion square. The systems
of some Riccati equations and forward-backward stochastic filtering equations are introduced and the existence and uniqueness of
the solutions are proved. Finally, the unique Nash equilibrium point for each class of asymmetric information is represented in a
feedback form of the optimal filtering of the state, through the solutions of the Riccati equations.

1. Introduction

Throughout this article, we denote by R* the k-dimensional
Euclidean space, R¥ the collection of k x [ matrices. The
superscript * denotes the transpose of vectors or matri-
ces. Let (Q, F,(%,),P) be a complete filtered probabil-
ity space in which &%, denotes a natural filtration gen-
erated by a three dimensional standard Brownian motion
W), W, (1), W5(t)), F = Fp,and T > 0 be a fixed
time horizon. For a given Euclidean space, we denote by
() (resp., | - |) the scalar product (resp., norm). We also
denote by 3’?% (0, T; S) the space of all S-valued, & ,-adapted
and square integrable processes, by 3?%(0; S) the space of
all S-valued, & -measurable and square integrable random
variables, by 32(0, T;S) the space of all S-valued functions

satisfying jOT | f(t)°dt < co, and by f(t)* the square of f(t).
For the sake of simplicity, we set

Fl=o{Ww;(s),0<s<t} (j=1,23),

FP =0 (W, (s),W,(5),0<s<t},

F7P =0 {W,(s),W;(5),0<s<t},
ht)=E(h() | F}7),

ht)=E(h@t)| F}), ht)=E(h@®)|F)),

h(t):w.

h(t)=E(h@t) | F°), =

)

This work is interested in linear quadratic (LQ, for short)
non-zero sum differential game with asymmetric informa-
tion. For simplicity, we only study the case of two players. Let
us now begin to specify the problem. Consider the following
one-dimensional stochastic differential equation (SDE, for
short)

dx"" )= [a@®) x"" () + b, () v; ()
+b, (t) v, (t) + c ()] dt + g, (£) AW, (t)
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+ [e (1) X" (£) +g, ()] AW, (¢)
+g; () dW; (1),

xv1,V2 (0) — x()’

2)

and cost functionals of the form

T
Ji(n (), v, ()= %[E HO (L@ X" @)+ my () vi(e)) dt

411" (T)Z] (i=1,2).
3)

Herea,b,,b,,c,e, g, g, and g, are bounded and deterministic
functions in t, I, and [, are bounded, nonnegative and
deterministic functions in t, m, and m, are bounded, positive
and deterministic functions in ¢, and r; and r, are two
nonnegative constants. Hereinafter, we omit all dependence
on time variable t of all processes or deterministic functions
if there is no risk of ambiguity from the context for the
notational simplicity; v, (-) and v, (-) are the control processes
of Player 1 and Player 2, respectively. We always use the
subscript 1 (resp., the subscript 2) to characterize the control
variable corresponding to Player 1 (resp., Player 2) and use
the notation x"" to denote the dependence of the state on
the control variable (v;, v,). ‘

Let %, denote the full information up to time t and &} ¢
F , be a given sub-filtration which represents the information
avaijlable to Player i (i = 1,2) at time ¢ € [0, T]. If f‘?’t CF,
and ¥, # F,, we call the available information partial or
incomplete for Player i. If ¥} # ¥, we call the available
information asymmetric for Player 1 and Player 2. Now we
introduce the admissible control set

U ={vi() e szg (0, T5R) | v; (t) € Upt € [0,T]},  (4)

where &' = @, and U, are nonempty convex subsets of R (i =
1,2). Each element of %; is called an open-loop admissible
control for Player i (i = 1,2). And %, x %, is said to be the
set of open-loop admissible controls for the players.

Suppose each player hopes to minimize her/his cost
functional J;(v,(-), v5(-)) by selecting a suitable admissible
control v;(-) (i = 1,2). In this study, the problem is, under the
setting of asymmetric information, to look for (u(-), u,(-)) €
U, x U, which is called the Nash equilibrium point of the
game, such that

5 (“1 (), uy (')) = vlr(l-%iel“}lljl (Vl (), u, (')) >
(5)
P (”1 (), u, ()) = vr(r}le% N (”1 ()>v, ())

We call the problem above an LQ non-zero sum differential
game with asymmetric information. For simplicity, we denote
it by Problem (LQ NZSDG).

The LQ problems constitute an extremely important
class of optimal control or differential game problems, since
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they can model many problems in applications, and also
reasonably approximate nonlinear control or game problems.
On the other hand, there also exist so called partial and
asymmetric information problems in real world. For example,
investors only partially know the information from security
market (see [1, 2]); in many situations, “insider trading”
maybe exist, which means that the insider has access to
material and non-public information about the security and
the available information is asymmetric between the insider
and the common trader (see, e.g., [3, 4]); the principal faces
information asymmetric and risk with regards to whether the
agent has effectively completed a contract, when a principal
hires an agent to perform specific duties (see, e.g., [5, 6]). For
more information about LQ control or game problems, the
interested readers may refer the following partial list of the
works including [7-13] with complete information, and [14]
with partial information, and the references therein.

It is very important and meaningful to find explicit Nash
equilibrium points for differential game problems. When
the available information is partial or asymmetric, we need
to derive the corresponding optimal filtering of the states
and adjoint variables which will be used to represent the
Nash equilibrium points. It is very difficult to obtain the
equations satisfied by the optimal filtering when the available
information is asymmetric for Player 1 and Player 2. Up till
now, it seems that there has been no literature about LQ
differential games with asymmetric information ¢, and %7.
However, in case where ?lt (i = 1,2) are chosen as certain
special forms, we can still derive the filtering equations and
then obtain the explicit form of the Nash equilibrium point.
In the sequel, we will study Problem (LQ NZSDG) under the
following four classes of asymmetric information:

(i) ?tl = 93’2 and ff = 9?’3; that is, the two players
possess the common partial information 5

(i) 9} = F}? and G7 = F7; that is, Player 1 possesses
more information than Player 2;

(ili) ¥} = F, and ¥ = F; that is, Player 1 possesses
the full information and Player 2 possesses the partial
informaion;

(iv) ?tl = 97:’2 and ?f = 97?; that is, the two players

possess the mutually independent information.

In Section 3, we will point out that some other cases similar
to (i)-(iv) can be also solved by the same idea and method. To
our knowledge, this paper is the first try to study LQ nonzero
sum differential games in the setting of the asymmetric
information.

The rest of this paper is organized as follows. In Section 2,
we introduce some preliminaries which will be used to
derive the forward-backward filtering equations and prove
the corresponding existence and uniqueness of the solutions.
In Section 3, we obtain the unique explicit Nash equilibrium
point for each class of asymmetric information above. We
also introduce some Riccati equations and represent the
unique Nash equilibrium point in a feedback form of the
optimal filtering of the state with respect to the corresponding
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asymmetric information, through the solutions of the Riccati
equations. Some conclusions are given in Section 4.

2. Preliminary Results

In this section, we are going to introduce two lemmas,
which will be often used later. First, we present existence
and uniqueness for the solutions of the forward-backward
stochastic differential equation (FBSDE, for short), whose
dynamics is described by

dx=b(t,x,y)dt +o(t,x,y)dW,
—dy = f(t,x, y,z)dt — zdW, (6)
y(T) = (x(T)).

x(0) = x,

Here x(-) satisfies an (forward) SDE, (y(-),z(-)) satisfies
a backward stochastic differential equation, W(-) is a d-
dimensional standard Brownian motion, (x, y, z) takes value
in R" x R" x R™? and b, o, f, and @ are the mappings with
suitable sizes.

We introduce the notations

u=(xyz2)" A(t,u) = (-f,b,0)" (t,tu), (7)

and make the following assumption.

(H,) A(t,u) and ¢ are uniformly Lipschitz continuous
with respect to their variables; for each x, ¢(x)
is in gng(Q;R"); for every (w,t) € Q X
[0, T], b(@,1,0,0) € Z%(0,T;R"), o(w,,0,0) €
Z2(0,T; R™), and f(w,t,0,0,0) € £2.(0,T;R").

We also make the following assumption.

(H,) The functions A(t,u) and ¢ satisfy the monotonic
conditions:

<A (t’ “1) -A (t’ ”2)>“1 - ”2>
< _K1|x1 - x2|2 - K2|J’1 - )’2|2>

(8)

(@ (x1) =9 (x5) % = x,) 2 15]x, = x2|2,

Vuy, —u, = (xl —X»p )17 V2 _Zz)’

where «,, k;, and x5 are given nonnegative constants satisty-
ingx; +x, > 0, %, + %3 > 0.

Then we have the following lemma, which is a direct
deduction of Theorem 1 in Wu and Yu [11] with no random
jumps.

Lemmal. Ifthe assumptions (H,) and (H,) hold, then (6) has
a unique triple (x(-), y(-),z(-)) € "?25%(0’ T, Ry,

Remark 2. If we assume ¢ = 0 and all functions are
deterministic, then (6) is reduced to a forward-backward
ordinary differential equation (ODE, for short):

dx =0b(t,x, y)dt,

-dy = f (t,x, y)dt, ©)

x(0) = xo, y(T) =@ (x(T)).

We define the notation u = (x, y)*, G(t,u) = (- f,b)* (¢, u).
If b, f, ¢, and G satisty the assumptions (H;) and (H,)
with SZLZ%(O, T;S) replaced by ZF*0,T;S) and ¢ is uni-
formly bounded, then (9) has a unique solution (x, y) €
L0, T;R™™).

The following lemma is from the monograph by Chung
[15] (see the example, Section 9.2).

Lemma3. If F,,%,, and & ; are three 0-algebras, and F |V
&, is independent of &, then, for any integrable random
variable X € &, we have E[X | &,V &F;] = E[X | &,].
3. Nash Equilibrium Point

In this section, we will derive the explicit form of the
Nash equilibrium point for Problem (LQ NZSDG), applying
stochastic maximum principle for partial information opti-
mal control problem and the technique of complete square.
Further, we also introduce the Riccati equations and represent
the Nash equilibrium point as a feedback of the optimal filters
X, X, and X, through the solutions to the Riccati equations.

We first introduce two LQ stochastic control problems
with two pieces of general asymmetric information ¥; and
?f which is closely related to problem (LQ NZSDG).

Problem (LQSCI):
min {J;* (v; ()) | v; () € %y},
“ (v, () = %[E [ LT (L") + my(v))") dt + 7" (T)Z] ,
(10)
subject to
dx" = [ax" +byv, (t) + byu, + c] dt
+ g,dW, + [ex" + g,| AW, + g;dW;, 1)
x"1(0) = x,.
Problem (LQSC2):
min {J;" (v, ()) | v, () € %,},

u 1 T V5\2 2 V. 2
02 0)= 3E | [ (b6 + o))+ rxry |,
(12)



subject to
dx"” = [ax" + byu, (t) + byv, + c] dt
+ g dW, + [ex"? + g,| AW, + g;dW;,  (13)

x" (0) = x,.

We can check that x*' = x*2 = x"" = x, J/?(u, () =
T2 (s, () and 2 (1)) = T, (a4, (), 4,()) bold. T (1, )
is a Nash equilibrium point, then, from the definition of
Nash equilibrium point (see (5)), we can conclude that u,
(resp., u,) is an optimal control for Problem (LQSCI) (resp.,
Problem (LQSC2)). Appealing to the stochastic maximum
principle under partial information (see [16], Remark 2.1
with the drift coefficient of the observation equation being
zero and convex control domain, or [17], Theorem 3.1 with
nonrandom jumps), we can derive the following necessary
conditions of the optimal controls for Problem (LQSCI) and
Problem (LQSC2).

Lemma 4. If u, (resp., u,) is an optimal control for Problem
(LQSCI) (resp., Problem (LQSC2)), then we have

u () =-m Ob OE(y®)1%;),
(14)
uy (6) = —my (b, OE (3, (1) | Z7),

where (x, (¥1>211> 212> 213)> (V2> 221> 223> Z23)) is a solution to
the following FBSDE:

dx = [ax - b{m;'E(y, () | G;) - bym; 'E (y, (1) | &7)

+c] dt + g,dW, + [ex + g,| AW, + g;dW;,
(15a)

—dy, =|ay, + ez, + I, x| dt — z;;,dW, — z,dW, — z,3dW;,
(15b)

—dy, = [ay, + ezy, + Lx] dt — zy;dW| — 2,,dW, — z,3dW;,
(15¢)

Y, (T) =ryx (T).
(15d)

x(0) = x,, y (T) =rx(T),

It is obvious that (u;,u,) € %, x %, is a candidate Nash
equilibrium point for Problem (LQ NZSDG). We will prove
(u,,u,) is exactly a Nash equilibrium point in the sequel.

Lemma 5. (u;,u,) in (21) is indeed a Nash equilibrium point
for Problem (LQ NZSDG).

Proof. For any v,(-) € %,, we have

N (V1 (), uy ()) -5 (“1 (), uy ())

1 T Vsl 2 2
- E[EJO [ll(x —x) +m(v, —uy) ]dt (16)

+ %[E [ (x" (1) = x ()] + @,
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where
T
0= [EJ [1x (X" = x) + myuy (v —uy)] dt
0 (17)
+E [r;x (T) (™" (T) - x (T))] .

ViU

We apply It6’s formula to y, (x""2 — x) and get

T
O=E L (my @) uy @)+ b, () y, () (vy (t) —uy (2)) dt

T
E L E[ (my (1) uy (0) + b, (1) 3, (1)

x (v () —uy, (1) | G, | dt

T
“E[ (m 00 +b OE(n©15))

x (v (1) —uy (1)) dt = 0.
(18)

Then, because I, and r, are nonnegative, and m; is positive,
we have

T (), () = Ty (g (), () 2 0. (19)
Similarly, for any v,(-) € %,, we also have
I, (”1 OF 12 ()) - (ul OF U, ()) > 0. (20)

Therefore, we can conclude that (u;,u,) in (14) is a Nash
equilibrium point for Problem (LQ NZSDG) indeed. O

Combining Lemmas 4 and 5, we obtain the following
theorem.

Theorem 6. (u,,u,) is a Nash equilibrium point for Problem
(LQ NZSDQG) if and only if (u;,u,) has the form denoted
by (14) and (x, (1> 21152120 213)> (V2> 2215 222> Z23))  satisfies
FBSDE (15a)-(15d).

Remark 7. 1f (15a)-(15d) has a unique solution, then Problem
(LQ NZSDG) has a unique Nash equilibrium point. If (15a)-
(15d) have many solutions, then Problem (LQ NZSDG) may
have many Nash equilibrium points. If (22a)-(22d) have no
solution, Problem (LQ NZSDG) has no Nash equilibrium
point. The existence and uniqueness of the Nash equilibrium
point for Problem (LQ NZSDG) are equivalent to the existence
and uniqueness of (15a)-(15d).

Note that, under the two pieces of general asymmetric
information ?tl and Sﬁf, the optimal filtering E(y;(t) |
?i) (i = 1,2) is very abstract which leads to the difficulty
in finding the filtering equations satisfied by E(y;(t) |
@) (i = 1,2). In the following, we begin to study Problem
(LQ NZSDG) under several classes of particular asymmetric
information. Though the chosen observable information is
a bit special, the mathematical deductions are still highly
complicated, and the derived results are interesting and
meaningful.
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3.1.Casel: 9 = F}* and G} = F}°. Inthis case, from the
notations defined by (1), we have E(y,(t) | Z;) = y,(¢) and
E(y,(t) | ?f) = ,(t). Hereinafter, we simply call y; and
¥, the optimal filters of y; and y,, respectively, if there is no
ambiguity from the notations and context. Then Theorem 6

can be rewritten as follows.

Theorem 8. (u,,u,) is a Nash equilibrium point for Problem
(LQ NZSDQG) if and only if (u,,u,) has the following form:

up (t) = -m; ()b (1) 9, (1),

u, (t) = -my' (1) b, (1) 7, (1),

(21)

where (x, (¥1,211> 2125 213)> (V2> 2215 222> Z53)) is a solution to
the following FBSDE:

dx = [ax ~bim'y, - bim,'y, + c] dt
(22a)
+ g,dW, + [ex + g,| AW, + g3dW;,

—dy, = [ay, + ez}, + x| dt — zy,dW, — z,dW, — z,3dW;,

(22b)
—dy, = [ay, + ezy, + Lx]| dt — zy;dW| — 2,,dW, — z,3dW;,
(22¢)

x(0) = x,, y (T) =rx(T), Y, (T) =ryx (T).
(22d)

We can see that (22a)-(22d) is a very complicated FBSDE.
First, (forward) SDE (22a) is one dimensional and the
combination of BSDEs (22b) and (22c¢) is two dimensional,
which is more intricate than the case of forward SDE and
BSDE with the same dimension. Second, the drift terms and
terminal conditions in (22b) and (22¢) contain x. Finally, the
drift term in (22a) contains the optimal filter y, (resp., ¥,)
of y, (resp., y,) with respect to 97}’2 (resp., 9?’3), whose
dynamics has not been known.

Now it is the position to seek the dynamics of ¥,(¢) and
¥,(t) which will be used to construct the analytical represen-
tation of the Nash equilibrium point. Applying Lemma 5.4
in Xiong [18] and Lemma 3, we obtain the optimal filters of
x and y; in (22a) and (22b) with respect to F}** for Player 1
which satisfies

dz = [ax - bjm,'§, - bym;' 3, + c| dt

(23a)

+ g,dW, + [eX + g,| dW,,
—dy, = [ay, + ez}, + ,X] dt - 2,,dW, - Z;,dW,, (23b)
x(0) = xo, Y (1) =rx(T). (23¢)

Similarly, we can obtain the optimal filters of x and y, in (22a)
and (22c) with respect to %2 for Player 2 which satisfies

dx = [a% - blszlj/'l - bzzmgliz + c] dt

(24a)

+ [ex + g,] AW, + g3dW;,
-dy, = [a72 + ez, + 127] dt — z,,dW, — z,5dW;, (24b)
x(0) = x,, y,(T) =r,x(T). (24¢)

Note that (23a) and (24a) involve the optimal filter y; of y;
with respect to 9?; that is, 7;(t) = E(y;(t) | 97?) (i=12).
We can derive that %, and 7, together with the optimal filter
X of x satisfy

dx = [a% - bjm['§, - bym;' , +c| dt + [eX + g,] AW,

(25a)
-dy, = [ay, + ez, + | X]| dt — Z,dW,, (25b)
-dy, = [ay, + €Zy, + LX| dt — Z,,dW,, (25¢)

x(0) = xq, n (T)=rx(T), ¥, (T) =r,x(T).
(254d)

Note that (23a)-(25d) are coupled forward-backward
stochastic filtering equations. It is remarkable that the
filtering equations are essentially different from the classical
ones of SDEs, and the main reason is that BSDEs are included
in the equations. To our best knowledge, this class of filtering
equations is originally found by Huang et al. [19] when
they studied the partial information control problems of
backward stochastic systems. This class of filtering equations
is later also discussed when some authors investigated the
optimal control or differential games of partial informatio in
BSDEs or FBSDE:s (see [20-26]).

We introduce an assumption:

(Hy) B (t)my " (1) = by (tym, (1), ¢ € [0,T],
which is needed in the following lemmas and theorems.

Lemma 9. Under the assumption (Hs), (25a)-(25d) have a
unique solution (X, (¥,,Z,,),(¥5,2,,)) € 2;?(0, T; RY).

Proof. We first introduce another FBSDE:

dn= (an ~bim{'p+ c) dt + (en+ g,) dw,,
—dp = (ap +eq + (I, + 1) n) dt — qgdW,, (26)

n(0) = x,, p(T)=(ry +1,)n(T).

If (X,(¥,,Z13), (¥,25,)) is a solution to (25a)-(25d), then
(n, p,q) is a solution to (26), where
n=Xx,

P=1+ 5 q=Zy + 2y (27)



On the other hand, if (n, p,q) is a solution to (26), we
introduce the following BSDE:

—dp, = [ap, + eqy, + L,n] dt — q,,dW,,
—dp, = [ap, + eqy, + Ln] dt — g,,dW,, (28)
P (T) =rn(T), py (T) =r,n(T).

From the existence and uniqueness of BSDE (see [27]), (28)
has a unique solution (p;, 45, P2> 422) With p; + p, = p, g5 +
4y, = q. Further, we can check that (1, (p;,q5), (P2, 422)) is
a solution to (25a)-(25d). In other words, the existence and
uniqueness of (25a)-(25d) are equivalent to those of (26). It
is easy to check that (26) satisfies the assumptions (H,) and
(H,). From Lemma 1, it has a unique solution (n, p, q). So do
(25a)-(25d). O

We observe that (25a)-(25d) are independent of (23a)-
(23¢) and (24a)-(24c). We can first solve (25a)-(25d) and
derive the unique solution (X, (¥},2,),(¥,,Z25,)). Then we
plug 7, (resp., ;) into (23a)-(23c) (resp., (24a)-(24c)). From
Lemma 1, we have the following lemma.

Lemma 10. If the assumption (H;) holds, there exists a
unique solution (X, ¥,,2,;,2;,) € =?;I,Z(O,T;R‘l) (resp.,
t

(%, 95,222, 293) € 9;2,3(0, T; RY)) to (232)-(23¢) (resp., (24a)-
(240)). ‘

After we obtain the unique solutions y, and y, by solving
(23a)-(23c) and (24a)-(24c), respectively, from the existence
and uniqueness of solutions of SDEs, we conclude that
(22a) has a unique solution x. Further, (22b) and (22c¢) also
have unique solutions (y,, 21,215, 213) and (15, 251> 222> 223)>
respectively. Then we can say that (22a)-(22d) have a unique
solution, which implies the following theorem.

Theorem 11. Under the assumption (Hs), Problem (LQ
NZSDG) has a unique Nash equilibrium point denoted by

up (t) = -m; ()b () , (1),
(29)

u, () =-m;' ()b, (1) 7, (1),

where y, and y, are uniquely determined by the systems of
(23a)-(25d).

In the following, the Riccati equations are introduced, and
the Nash equilibrium point is represented in a feedback of
the optimal filters X, X, and x. Hereinafter, we suppose the
assumption (H;) always holds.

Set

V=X +p (i=12), (30)

where «; and f; are undetermined deterministic functions on
[0, T satisfying o;(T) = r; and 3,(T) = 0.
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Applying Ito’s formula to ¥, in (30), it yields
dy, = [(dcl - blzmIlocf - bzzmglocloc2 + aocl) x
+ ([31 - bfm[loclﬁl - bzzmgloclﬁz + oclc)] dr (31
+a, (ex + g,) dW,,
which implies
Zp=a,(ex+g,). (32)

Substituting (30) and (32) into (25b) and comparing the
coeflicients between (25b) and (31), we have

& - blszlocf + (Za + ez) o - lazzmglocloc2 +1, =0, (33a)

ﬁl + (“ - blzmzl‘xl) B - bzzmglo‘lﬁz +(c+egy) e =0.
(33b)

Applying It6’s formula to ¥, in (30), it yields
dy, = [(0’42 - bzzmgl(x; - blzml_locloc2 + aocz) X
+ (ﬁz - bzzmgl(xzﬂz - blzmiloczﬁl + oczc)] dr (34)
+ o, (ex + g,) dAW,,
which implies
Zp = (X +g,). (35)

Substituting (30) and (35) into (25c) and comparing the
coeflicients between (25¢) and (34), we have

& - bim; ol + (Za + ez) o, —bim o, +1, =0, (36a)

Bz + (‘1 - bzzm;“z)ﬂz - blzml_l(XZﬁl +(c+eg,)a, = 0.
(36b)

Let « = «; + o,. From (H;), we have

o'c—blzml_loc2 +(2a+ez)oc+l1 +5L,=0
(37)
on [0,T), «a(T)=r +r,.
Since (37) is a standard Riccati equation, it has a unique
solution «(-). Introduce two auxiliary equations:

o+ [(Za + ez) - blszloc] o+, =0
| (38)
on [0,T), &, (T)=r,
o, + [(Za + ez) - bzzmgl(x] o, +1,=0
| (39)
on [0,T), &, (T)=r,,
where « is the solution to (37). Obviously, ODEs (38) and (39)
have unique solutions «; and «,, respectively. In addition,
we can check that «; and «, in (33a) and (36a) are also
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the solutions to (38) and (39), respectively. From the unique-
ness of solutions to (38) and (39), it follows that

o =ap,

a = o, (40)

which implies in turn that (33a) and (36a) have the unique
solutions to «; and «,.
Let B = B, + f3,, and then we have

ﬁ+(a—b12mfloc)[3+(c+egz)oc:0
B(T) =0,

where « is the solution to (37). Note that ODE (41) has a
unique solution 3. Introduce two another auxiliary equations:

(41)
on [0,T),

E1 + aﬁl - bzzmgl‘xl/-’) +(ctegy)o =0
on [0,T), B, (T)=0,
(42)

Ez + C‘Bz - blzml_l(XZﬁ +(cteg)a, =0
on [0,T), Bz (T) =0,

where «,, «,, and f are the solutions to (38), (39), and (41),
respectively. Similarly, we can prove that (33b) and (36b) also
have unique solutions f3; and f3, satisfying

Bi = B> B, =B, (43)

Based on the arguments above, we can derive the analyt-
ical expressions for «;, a,, B, 35> &, and f. Then (25a) can be
rewritten as

dx = [(a - bfm}loc)f— bim; B+ c] dt + [eX + g,| AW,

x(0) = x,,
(44)

which has a unique solution
t
X(f) = T'xy + L T [(cs) — b (5) miy (5) B (s)

—e(s) g, (5) ) ds + g, () AW, (5) |,
(45)

with T! = exp{ j:[a(r) - i (r)ym [ (r)adr) - (1/2)e(r))dr +
[[ eryaw, ().

From the uniqueness of ay, ay, 5;, 3;, and X, it follows
that ¥, in (30) has a unique analytical expression.
Substituting 7, in (30) into (23a)-(23c), we have

dx = [afc —bim{'y, - bmy X - bim, ' By + c] dt

(46a)

+ g, dW, + [eX + g,| dW,,
-dy, = [ay, + ez}, + |,X] dt - 2,,dW, - Z,,dW,, (46b)
x(0)=xp y (T)=rx(T). (46¢)

Set
N =nX+pX+y; (47)

with y,(T) = 1, y,(T) = y5(T) = 0. Applying Itd’s formula to
¥, in (47), we have

d, = [( - bim'y} +an) %
+ (12 + (a-bim o bmi' )y,
~bym, ayy) X
+95=Bm s + (e = Bmy B
+(c=bfm; )y, dt

+719:dW, + [y, (eX + g,) + 7, (eX + g,)] AW,
(48)

which implies
Zp=1(eX+g) +1(eX+g,).  (49)

Z11 = NM9p

Substituting (47) and (49) into (46b) and comparing the drift
and diffusion coefficients with (48), we conclude that
Y- blzmIlylz + (2a + ez) y+1 =0, (50a)

V2 t (2“ +e’ —bim;la- blzml_l))I) ¥, - bymy ayy, =0,
(50b)

Vs + (a - blzml_lyl) Y3+ (c - bzzmglﬂz + eg2> "
(50¢)
+ (C —bim,' B+ egz) Y, = 0.

It is clear that there exists a unique solution (y;,},,¥3) to
(50a)—-(50c). We denote

fi=- (bzzm;“z + bf""?)’z) X- bfm{l)@ - bzzmglﬁz +c
(51)

and then, in terms of (47), (46a) can be rewritten as
dx = [(a - blszlyl) X+ f1] dt + g,dW, + [eX + g,| dW,,

%(0) = x,,
(52)

which has a unique solution:
t ! t
20 = Yixo+ | YI(h O - e g, ) ds

+g) () dW, (5) + g, (s) AW, ()],
(53)

with Y! = exp{ ! [a(r) - b (r)m; (), (r) - (1/2)eX()]dr +
[[ eryaw, ().



Substituting ¥, in (30) into (24a)-(24c), we have
dx = [aE ~bim{ X - bm,'y, —bim] ' B, + c] dt
(54a)
+ [ex + g,] AW, + g;dW;,
-dy, = [ay, + ez,, + Lx] dt — Z5,dW, — Z,3dW;,  (54b)
x(0) = x,, ¥, (T) =ryx(T). (54¢)
Set

VY, = X+ X + 13, (55)

with 7,(T) = r,, 7,(T) = 73(T) = 0. In the similar manner, we
can deduce that (7,, 7,, 73) satisfies

f-bymy't +(2a+ €)1 +1, =0, (56a)

T, + (Za +e —bim - bzzmgl‘rl) 7, —bim] o1, = 0,
(56b)

T3+ (a - bjmglrl) T3+ (c - bfm[lﬁl + egz) T
(56¢)
+ (c - blsz[j’ + eg2)12 =0,

which has a unique solution (7;, 7,, 7;). We denote
HLE- (bzzmgl'rz + blzml_l‘xl) X- blszlﬁl - bzzmgl'rs +c
(57)
and then, in terms of (55), (54a) can be rewritten as
dx = [(a - bzzmglrl)a_c + fz] dt + [ex + g, AW, + g;dW,

x(0) = xq,
(58)

which has a unique solution

t
X () = Wyx + JO Y (f,(s) —e(s) g, (s))ds

+ g, (s)dW, (5) + g3 () dW; (s)] »
(59)

with W/ = exp{ jj la(r) = b} (r)m ()7, (r) = (1/2)é*(r)]dr +
[[ eryaw, ().

Based on the arguments above, we derive the Nash
equilibrium point which is represented in the feedback of the
optimal filters X, X, and X of the state x. Then Theorem 11 can
be rewritten as follows.

Theorem 12. Under the assumption (H;), Problem (LQ
NZSDG) has a unique Nash equilibrium point denoted by

uy (8) = —my (O by (6) (1, (DX () + 7, () () + 95 (1)),
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wy (8) = =y (O b, () (1 OF (1) + 1, (D F () + 73 (1)),
(60)
where X,X, and X are as shown in (45), (53), and (59),
respectively, and y; and 7; (i = 1,2, 3) are uniquely determined
by the systems of (50a)-(50c) and (56a)-(56¢), respectively.
Remark 13. We introduce another assumption:
(H;)' b>m:" (i = 1,2) are independent of ¢.

We can check that when the assumption (H;) is replaced
by (H,)', the foregoing lemmas and theorems still hold.

3.2. Case 2: ?tl = gﬁ”tl’zand ?f = 973 In this case, we have

E(y,(t) | }) = 7,(t) and E(y,(t) | ) = 7,(t). Applying
the similar methods shown in Section 3.1, we can obtain the
following theorem.

Theorem 14. (u,,u,) is a Nash equilibrium point for Problem
(LQ NZSDQG) if and only if

up (t) = -m; ()b () , (1),
(61)
u, (t) = -my' (1) b, (1) 7, (1),

where (x, (¥1,211> 212> Z213)> (V2> 221> 222> Z3)) 15 a solution of
the following FBSDE:

dx = [ax - blzml_l)71 - bzzmglf/z + c] dt
+ g,dW, + [ex + g,| AW, + g3dW;,
—dy, = [ay, + ez}, + ,x] dt
—z21,dW, = z1,dW, — z,5dW;,
—dy, = [ay, + ezy, + Lx| dt
— 2,1dW, — 25,dW, — z,5d W5,

n (1) =rx(T), ¥, (T) = r,x(T).
(62)

x(0) = xq,

Under the assumption (H;), we can check that the filtering
equations (23a)-(23c), (25a)-(25d), and the linear relations
(30) and (47) still hold, and the systems of equations (33a),
(33b), (36a), (36b), and (50a)-(50c¢) are still uniquely solvable.
Then we have the following theorem.

Theorem 15. If (H;) holds, then Problem (LQ NZSDG) has a
unique Nash equilibrium point denoted by
u (6) = = my (b () (1 (DX @) +7, (O F () + 93 (1)),

uy (t) = = my" (1) by () (ay (1) T () + B, (1)),
(63)

where X and X are shown in (45) and (53), respectively.



Mathematical Problems in Engineering

Remark 16. In the cases similar to Case 2, such as &} = F.”°
and @7 = F,, 9} = F}°,and G} = F/, the corresponding
results can be easily derived.

3.3. Case 3: Y} =F, and G} =F.. In this case, we have
E(y,(t) | €}) = y,(t) and E(y,(t) | ©7) = 3,(t). Then we
have the following theorem.

Theorem 17. (u,,u,) is a Nash equilibrium point for Problem
(LQ NZSDQG) if and only if

up (t) = -m; () by () y, (1),

u, (t) = -my" (1) by () 7, (1),
(64)

where (x, (¥1>211> 212 213)> (V2> 221> 223> Z23)) 1S a solution to
the following FBSDE:

dx = [ax ~bim{'y, —bm; 'y, + C] dt + g,dw,
(65a)
+ [ex + g,] AW, + g;dW;,

—dy, = [ay, + ezy, + x| dt — z;,dW, — z,dW, — z,3dW;,

(65b)
—dy, = [ay, + ezy, + Lx]| dt — zy;dW| — 2,,dW, — z,3dW;,
(65¢)

x(0) = X0 b4t (T) = rx (1), V2 (T) = r,x (T).
(65d)
Under the assumption (H;), we can check that

(X, (31, Z12), (35, 2,55)) still satisfies the filtering equations
(25a)-(25d). From Section 3.1, we know that X is shown as
(45) and y; is uniquely represented by (30). Then (65a) can be
rewritten as

dx = [ax - bfm;1y1 - bzzmgloczf— bzzmglﬁz + c] dt
(66a)
+ g1dW, + [ex + g,] AW, + g3dW;,

—dy, = [ay, + ez}, + ;x| dt — z;,dW] — z,dW, — z,3dW;,
(66b)

x(0) = x, y (1) =rx(T). (66¢)

From Lemma 1, we can say that (66a)-(66¢) has a unique
solution (x, y;,211, 215> 213). Further, the relation between y,
and (x, X) is as follows:

VI =NX+ X+, (67)

wherey; (i = 1,2, 3) is the solution to (50a)-(50¢), and

x () = Ygx, + L Y| (fy(s)—e(s) g, (s))ds

(68)
3
+Y g, (s) dW, (s)] ,

i=1

with Y! = exp{j: [a(r) = b} (r)m " (r)y,(r) — (1/2)e*(r)]dr +

Lt e(r)dW,(r)} and f, defined by (51). Then we have the
following theorem.

Theorem 18. Under the assumptions (H,), Problem (LQ
NZSDG) has a unique Nash equilibrium point denoted by

up ()= —my (£)by (6) (y, (1) x (1) +p, (1) X () + 95 (1)),

uy () = —my' (1) by (1) (@, (1) X (1) + B, (1)),
(69)

where X and x are shown as (45) and (68), respectively.

Remark 19. In the cases similar to Case 3, such as &, = F,
and ?f = 97:, Z’tl = %, and ?f = 973 the corresponding
results can be easily derived.

34. Case 4: ¢} = F* and ©? = &,. In this case, we have
E(y,(0) | ?tl) = y,(t) and E(y,(¢) | fﬁtz) = 5,(t). Throughout
this subsection, we make an additional assumption on (2):

(H,)e(t) = 0, € [0,T].

Similar to Sections 3.2 and 3.3, we directly present the
following theorem.

Theorem 20. (u,,u,) is a Nash equilibrium point for Problem
(LQ NZSDG) if and only if

up (t) = -m; ()b () §, (1),

u, () = -m;' ()b, (t) 7, (1),

(70)

where (x, (V1> 211> 212> Z213)> (V2> 2215 222> Z53)) is a solution to
the following FBSDE:

dx = [ax - blzml_lfll - bzzmgljzz + c] dt
(71a)
+ AW, + g,dW, + g;dW;,
—dy, = [ay, + 1,x] dt — z,,dW, — z;,dW, — z,;;dW;, (71b)
—dy, = [ay, + Lx] dt — z,;dW, — z5,dW, — z,,dW;, (71c)

y (T) =rx(T), Y, (T) =ryx (T).
(71d)

X (0) = Xp»

Using the similar method shown in Section 3.1, we obtain
the optimal filters of x and y, in (71a) and (71b) with respect to
F 1* which satisfies

dx = [af - blzmzl}‘/l - bzzmgl[Ey2 + c] dt + g,dW, + g,dW,,

(72a)
-dy, = [ay, + ,x]dt - Z;,dW, — Z,,dW,, (72b)
X (0) = x,, y (1) =rx(T). (72¢)

Here we denote by En the mathematical expectation E(y(t))
of the variable n(t) and omit t for simplicity. Similarly, we can
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obtain the optimal filters of x and y, in (71a) and (71c) with
respect to F, which satisfy

dx = [ak - blzml_l[Ey1 - bzzmgljzz + c] dt + g;dWs, (73a)

—dy, = [ay, + Lx] dt — Z,;dW;, (73b)
x(0) = xo, P, (T) = % (T). (73¢)
In addition, Ey, and Ey, together with Ex satisfy
Ex = aEx — blzmIl[Ey1 - bzzmgl[Ey2 +c, (74a)
-Ey, = aky, +,Ex, (74b)
-Ey, = aky, + LEx, (74¢)
Ex (0) = x, Ey, (T) = rEx(T),
(74d)

Ey, (T) = r,Ex(T),
where Ey denotes dE(y(t))/dt forn = x, y,, ¥,.

It is clear that (74a)—(74d) are a forward-backward ODE
independent of (72a)-(73c). Using the similar method shown
in Lemma 9 and Remark 2, we conclude that (74a)- (74d)
have a unique solution (Ex, Ey,, and E y,). Plugging the solu-
tions Ey, and Ey, into (72a)-(72c) and (73a)-(73c), respec-
tively, and applying Lemma 1, we conclude that (72a)-(73c)
have the unique solutions (X, y,,2;;,2;,) and (X, ,,2,3),
respectively. Then we derive the more explicit representation
of the Nash equilibrium point in (70) as follows.

Theorem 21. Under the assumptions (H;) and (H,), Problem
(LQ NZSDG) has a unique Nash equilibrium point denoted by

up (t) = -m; ()b () 9, (1),

u, (t) = -my' () b, (1) 3, (1),

(75)

where ¥, and y, are uniquely determined by the systems of
(72a)-(74d).

In the sequel, we only present the results and omit the
deduction procedures, because the method and technique are
parallel to those in Section 3.1.

The relation between E y; and Ex is as follows:

Ey,=aEx+f; (i=12), (76)
where o, 3;, &, and f are the unique solutions to the systems

of (33a), (33b), (36a), (36b), (37), and (41) with e(-) replaced
by 0, respectively, and

t
Ex () = Thxy + L I [(c ()-8 () m;" () B(s))]ds (77)

with T! = exp{ [/ [a(r) - bA(r)m; " (a(r)]dr}.
The relation between ¥, and (X, Ex) is as follows:

=X+ pEx+ys, (78)
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where y; (i = 1,2,3) is the solution to (50a)-(50c) with e(-)
replaced by 0, and

X(t) = Yox, + L Y![f, (s)ds + g, (s) dW, (s)

79)
+9, () dW, (9)],
with
t
Y! = exp {J. [a () -b (m )y (7’)] dr} ,
fi=- (bzzm;“z + blzm;l)’z) Ex - bf”";l% - bzzmglﬁz +c.
(80)
The relation between y, and (X, Ex) is as follows:
Y, =X + Ex + 13, (81)

where 7; (i = 1,2,3) is the unique solution to (56a)-(56¢)
with e(:) replaced by 0, and

t
() = Wixg + L WL, (s)ds + gs ()W, ()], (82)
with
¥! = exp “t [a(r) -85 (rymy' ()7, (1)] dr]» ,

fr=- (bzzmglrz + blszlocl) Ex - blszlﬁl - b22m5113 +c.
(83)

Then Theorem 21 can be rewritten as follows.

Theorem 22. Under the assumption (H;) and (H,), Problem
(LQ NZSDG) has a unique Nash equilibrium point denoted by

up (t) = —m () by (t) (y; (1) X () +p, () Ex (£) + 5 (1)),

Uy (8) = —my () by (1) (1, (1) % (1) + 7, (8) Ex () + 75 (1)),
(84)

where Ex, X, and X are shown in (77), (79), and (82), respec-
tively, and y; and 7; (i = 1,2, 3) are uniquely determined by the
systems of (50a)-(50c) and (56a)-(56¢) with e(-) replaced by
0, respectively.

Remark 23. In the cases similar to Case 4, such as ?tl =% t1’3
and ?f = ?f, Ztl = ?f’3 and ?f = ?;, the corresponding
results can be easily derived.

4. Conclusion Remark

In this paper, we investigate LQ nonzero sum differential
game problem where the information available to players is
asymmetric. We discuss the game problem under the four
classes of cases: (i) ?tl = 97:’2 and ?f = (9‘7?’3; (ii) ?tl = Fitl’z
and &} = F7; (i) 9} = F,and G7 = F.; (iv) G} = F°
and ¥; = F.. Some forward-backward stochastic filtering
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equations with respect to the asymmetric information ?tl and

@7 are introduced and the existence and uniqueness of the
solutions are proved. Finally, the corresponding unique Nash
equilibrium point is represented in a feedback form of the
optimal filtering of the state, through the solutions of some
Riccati equations.
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In real sound environment system, a specific signal shows various types of probability distribution, and the observation data are
usually contaminated by external noise (e.g., background noise) of non-Gaussian distribution type. Furthermore, there potentially
exist various nonlinear correlations in addition to the linear correlation between input and output time series. Consequently, often
the system input and output relationship in the real phenomenon cannot be represented by a simple model using only the linear
correlation and lower order statistics. In this study, complex sound environment systems difficult to analyze by using usual structural
method are considered. By introducing an estimation method of the system parameters reflecting correlation information for
conditional probability distribution under existence of the external noise, a prediction method of output response probability
for sound environment systems is theoretically proposed in a suitable form for the additive property of energy variable and the
evaluation in decibel scale. The effectiveness of the proposed stochastic signal processing method is experimentally confirmed by

applying it to the observed data in sound environment systems.

1. Introduction

A specific signal in real sound environment system usually
exhibits multifarious and complex characteristics such as
non-Gaussian distribution and nonlinear property relating
to natural, social, or human factors. Furthermore, the obser-
vation data usually are contaminated by external noise (e.g.,
background noise) with complex statistical properties. In this
situation, in order to evaluate the sound environment system,
precise estimation of the system characteristics of the sound
environment is required by considering the contaminated
observation data.

Furthermore, the internal physical mechanism of the real
sound environment system is often difficult to recognize ana-
Iytically, and it contains unknown structural characteristics.
In our previous study, it was found that complex sound
environment systems are difficult to analyze by using usual
structural methods based on the physical mechanism [1].
Therefore, a nonlinear system model was derived in the
expansion series form reflecting various types of correlation
information from the lower order to the higher order between

input and output variables [2]. The conditional probability
density function contains the linear and nonlinear correla-
tions in the expansion coefficients and these correlations play
an important role as the statistical information for the input
and output relationship of sound environment system.

On the other hand, in considering the relationship
between the evaluation from top-down viewpoint and the
countermeasure from bottom-up viewpoint in the sound
environment system, noise evaluation quantities in decibel
scale like L, ((100 — x) percentile level) and L Aeq (averaged
energy on decibel scale) and some countermeasure methods
in energy scale are widely used. Since there is a certain
scale transform between decibel and energy variables, a
unified general consideration without losing their mutual
relationship has to be derived.

In this study, a general type of complex sound envi-
ronment systems is considered. A stochastic signal process-
ing method for predicting the output response probability
distribution in decibel scale based on the input observa-
tions is proposed for complex sound environment systems.
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More specifically, an expansion expression of the condi-
tional probability distribution in decibel scale is adopted as
the system characteristics. Next, a method to estimate the
system parameters reflecting several orders of correlation
information between the input and output variables is derived
by considering the additive property of energy variables
under existence of external noise. Furthermore, a prediction
method for the output probability distribution in decibel scale
is also considered.

The effectiveness of the proposed theory is confirmed
experimentally by applying it to real data of a sound insula-
tion system and the road traffic noise environment measured
around a national road in Hiroshima city.

2. Evaluation of Sound Environment System
under Existence of External Noise

2.1. Statistical Model for Sound Environment System. Let X
and Y be the sound pressure levels of input and output signals
for a complex sound environment system. The probability
distribution of output Y has to be predicted on the basis of
the observed data of the input level X, because noise evalu-