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Slime mould algorithm (SMA) is a new metaheuristic algorithm, which simulates the behavior and morphology changes of slime
mould during foraging. The slime mould algorithm has good performance; however, the basic version of SMA still has some
problems. When faced with some complex problems, it may fall into local optimum and cannot find the optimal solution.
Aiming at this problem, an improved SMA is proposed to alleviate the disadvantages of SMA. Based on the original SMA,
Gaussian mutation and Levy flight are introduced to improve the global search performance of the SMA. Adding Gaussian
mutation to SMA can improve the diversity of the population, and Levy flight can alleviate the local optimum of SMA, so that
the algorithm can find the optimal solution as soon as possible. In order to verify the effectiveness of the proposed algorithm, a
continuous version of the proposed algorithm, GLSMA, is tested on 33 classical continuous optimization problems. Then, on
14 high-dimensional gene datasets, the effectiveness of the proposed discrete version, namely, BGLSMA, is verified by
comparing with other feature selection algorithm. Experimental results reveal that the performance of the continuous version
of the algorithm is better than the original algorithm, and the defects of the original algorithm are alleviated. Besides, the
discrete version of the algorithm has a higher classification accuracy when fewer features are selected. This proves that the
improved algorithm has practical value in high-dimensional gene feature selection.

1. Introduction

With the development of modern social science and technol-
ogy, a variety of problems have arisen in the society, requir-
ing researchers to design more efficient and novel methods
to put forward feasible solutions. In recent years, some meta-
heuristic algorithms have been developed to solve various
optimization problems. Some studies also show that meta-
heuristic methods are more effective than traditional
gradient-based methods [1]. Metaheuristic algorithms can
be divided into several categories according to their causes:
evolutionary algorithm (EAs), such as genetic algorithm
(GA) [2] and differential evolution (DE) [3], and swarm
intelligence algorithms (SI), such as particle swarm optimi-
zation (PSO) [4], Harris hawks algorithm (HHO) [5],
RUNge Kutta optimizer (RUN) [6], hunger games search

(HGS) [7], slime mould algorithm (SMA) [8], monarch but-
terfly optimization (MBO) [9], moth search algorithm
(MSA) [10], colony predation algorithm (CPA) [11], and
weighted mean of vectors (INFO) [12]. In addition, they
have been widely used in various fields, such as solar cell
parameter Identification [13], economic emission dispatch
problem [14], image segmentation [15, 16], plant disease
recognition [17], medical diagnosis [18, 19], scheduling
problems [20–22], optimization of machine learning model
[23], multiobjective problem [24, 25], fault diagnosis [26],
object tracking [27, 28], expensive optimization problems
[29, 30], medical diagnosis [31, 32], combination optimiza-
tion problems [33], feature selection [34, 35], practical engi-
neering problems [36, 37], and robust optimization [38, 39].

Among all the algorithms, SMA is a new one proposed
in recent years. Because of its excellent performance in
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dealing with complex problems and simple implementation,
SMA has been widely applied in recent years. Because of its
exploration and exploitation capabilities, it has been widely
used in various fields to solve specific practical problems.
For example, Kouadri et al. [40] proposed to use SMA in
the actual power system to solve the optimal power problem
and minimize the total cost of conventional and random
power generation under the constraints of the power system.
Khunkitti et al. [41] proposed the multiobjective optimal
power flow (MOOPF) problem based on SMA, taking cost
emission and transmission line loss as part of the objective
function of the power system. Simulation results show that
SMA has better solutions than other algorithms in the liter-
ature. Jafari-Asl et al. [42] proposed a method combining LS
(line sampling) method with slime mould algorithm to solve
the reliability problem under highly nonlinear and implicit
limit states. Izci and Ekinci [43] evaluated the optimization
ability of SMA by using a proportional integral derivative
(PID) controller to adjust the speed of dc motor and main-
tain the terminal output of automatic voltage regulator
(AVR) system and compared the performance of SMA with
that of other controllers designed by competitive algorithms.
Houssein et al. [44] proposed a multiobjective optimization
algorithm based on SMA. The reliability of the proposed
MOSMA was verified by the actual multiobjective optimiza-
tion of automotive helical springs, and the effectiveness of
MOSMA was evaluated by the Wilcoxon test and perfor-
mance indicators. Houssein et al. [45] proposed a method
combining SMA with adaptive guided differential evolution
algorithm (AGDE) (SM-AGDE) to solve some of the defects
of SMA. Gupta et al. [46] proposed a SMA to solve the esti-
mation problem of proton exchange membrane fuel cell
(PEMFC) model, which showed good performance in jump-
ing out of local optimum, and the predicted results were
basically consistent with the actual results. Therefore, SMA
can be used for fuel cell problems. Elsayed et al. [47] used
SMA to identify the parameters of transformer equivalent
circuit and verified the ability and accuracy of SMA in
parameter estimation of single-three-phase transformer, as
well as its high performance and stability in determining
the optimal parameters.

Hassan et al. [48] proposed an improved SMA (ISMA)
to solve the problem of target and dual target economy
and emission scheduling (EED) considering the valve point
effect, in which the best solution was obtained by updating
the position of the solution by using two equations in the
sine and cosine algorithm. At the same time, on the basis
of Pareto dominance concept and fuzzy decision, multiob-
jective ISMA is proposed, which has good performance
and robustness. Jia et al. [49] optimized the SMA by intro-
ducing compound mutation strategy (CMS) and restart
strategy (RS). CMS was used to increase population diver-
sity, RS was used to avoid local optimization, and the effec-
tiveness of the proposed CMSRSSMA was tested on the
benchmark function. Meanwhile, the CMSRSSMA_SVM
model was proposed and used for feature selection and
parameter optimization. Altay [50] utilized 10 different cha-
otic mappings to generate chaotic rather than random values
in SMA. By using chaotic mapping, the global convergence

rate of SMA is improved and the local solution is avoided.
Abdel-Basset et al. [51] integrated SMA and WOA algo-
rithms to maximize Kapur’s entropy and applied them in
the field of image segmentation, achieving good results.
Chauhan et al. [52] proposed a method combining arith-
metic optimizer algorithm (AOA) and slime mould algo-
rithm (SMA), namely, HAOASMA algorithm, which
solved the problems of slime mould algorithm’s insufficient
memory and slow local convergence speed.

Since SMA was proposed, it has been applied in various
fields and used to solve various problems, showing good per-
formance. However, in the face of some complex optimiza-
tion tasks, there are still problems of falling into local
optimum and slow convergence. In order to cope with this
situation and improve the performance of the algorithm, a
combinatorial optimization method (GLSMA) based on
Gaussian mutation and Levy flight is proposed in this paper.
In GLSMA, the global exploration and local exploitation
capabilities of the original algorithm are improved by intro-
ducing Gaussian mutation and Levy flight mechanism. In
the optimization iteration process, the original position of
slime moulds in the population was modified by Gaussian
to enhance the diversity of the population and improve the
global exploration ability of the algorithm, so that the algo-
rithm could achieve a balance between global exploration
and local exploitation. After that, Levy flight was used to
improve the randomness of SMA and to jump out of local
optimum. Benchmark function test results show that the
improved version of GLSMA has better global search and
local exploration ability compared with other advanced algo-
rithms. The discrete version based on GLSMA also shows an
ideal effect on feature selection.

The contributions and highlights of this paper are sum-
marized below:

(1) An improved slime mould algorithm (GLSMA)
based on Gaussian mutation and Levy flight is pro-
posed to solve continuous optimization problems
and high-dimensional gene feature selection
problems

(2) The superiority of GLSMA is proved by comparing
with several well-known algorithms on public data-
sets and achieved good results

(3) Proposed binary GLSMA to solve high-dimensional
gene feature selection problems

(4) The developed GLSMA has faster exploration speed
and convergence speed in the global optimization
task

(5) Binary GLSMA has the highest classification accu-
racy and the least number of features in high-
dimensional gene feature selection task

The remainder of this paper is organized as follows: the
second part introduces the original SMA. The third part
introduces Gaussian mutation mechanism and Levy flight
in detail, as well as the improved SMA based on the two
mechanisms. The fourth part introduces a series of
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comparison experiments between GLSMA and other similar
algorithms, including comparison experiments on continu-
ous function and discrete function. The fifth part reviews
and discusses of the proposed work. The sixth part summa-
rizes the conclusions of this paper and gives several direc-
tions of future work.

2. Slime Mould Algorithm

Li et al. [8] established a mathematical model based on the
oscillation behavior of slime moulds and thus proposed a
metaheuristic slime mould algorithm (SMA).

The mathematical formula of slime moulds is shown in

X t + 1ð Þ =
rand∙ UB − LBð Þ + LB, rand < z,
Xb tð Þ + vb tð Þ∙ W∙XA tð Þ − XB tð Þð Þ, r < p,
vc tð Þ∙X tð Þ, r ≥ p,

8>><
>>:

ð1Þ

where vb represents a random value in the interval ½−a, a�.
Parameter vc ranges in the interval ½−b, b�, which decreases
with the number of iterations. Through the cooperative
interaction between vb and vc, the selection behavior of
slime moulds can be simulated and the optimal solution
can be selected. Maxt indicates the maximum number of
iterations. UB and LB represent the upper and lower bound-
aries of the search space, respectively. Xb represents the posi-
tion vector of the current highest fitness (highest
concentration) individual. XAðtÞ and XBðtÞ represent the
position vectors of random individuals selected from the
slime moulds in the t iteration. rand and r are the random
values between 0 and 1. Parameter z is set to 0.03. XðtÞ
and Xðt + 1Þ represent position vectors of slime moulds at
the t and ðt + 1Þ iterations, respectively.

a = arctanh 1 − t
Maxt

� �� �
, ð2Þ

b = 1 − t
Maxt

� �
: ð3Þ

In addition, the decision parameter p can be calculated
as follows:

p = tanh S ið Þ −DFj j, ð4Þ

where SðiÞ indicates the fitness of the ith individual in the
slime mould, i ∈ 1, 2,⋯,N ; N denotes the size of population;
and DF represents the best fitness, which is attained during
all of the iterations.

W SmellIndex ið Þð Þ =
1 + r∙log bF − SmellOrder ið Þ

bF −wF + 1
� �

, condition,

1 − r∙log bF − SmellOrder ið Þ
bF −wF + 1

� �
, otherwise,

8>>><
>>>:

 

ð5Þ

SmellOrder, SmellIndex½ � = sort Sð Þ, ð6Þ
where W is the weight vector of slime moulds and bF and
wF are the best and worst fitness obtained in the current
iteration, respectively. SmellIndex and SmellOrder represent
fitness ordering order (minimum problems are sorted in
ascending order) and corresponding fitness values, respec-
tively. condition represents the first half of SmellOrder.

3. Description of the GLSMA

3.1. Gaussian Mutation. Gaussian mutation (GM) operator
is derived from Gaussian normal distribution, which is dis-
tinguished from Cauchy distribution. In the vertical direc-
tion, the Gaussian distribution is larger than the Cauchy
distribution, and in the horizontal direction, the Gaussian
distribution is smaller than the Cauchy distribution. Gauss
mutations are more likely to produce new offspring in this
part because of their narrow tail. In response, the search
equation takes smaller steps to explore every corner of the
search space in a better way. The Gaussian density function
can be described as

f Gaussian 0,σ2ð Þ ∝ð Þ = 1ffiffiffiffiffiffiffiffiffiffi
2πσ2

p e−σ
2/2σ2 , ð7Þ

where σ2 is the variance of each member of the population.
By setting the mean to 0 and the standard deviation to 1, this
function is further simplified to generate an N-dimensional
random variable. The generated random variables were
applied to the exploration stage of slime moulds, as shown
below:

Xi′= Xi × 1 +G ∝ð Þð Þ, ð8Þ

where Gð∝Þ is a uniformly distributed random number
derived from Gaussian distribution, Xi is a position in
SMA during the current iteration, and Xi′ is the position cor-
responding to Xi after Gaussian mutation. The introduction
of Gaussian mutation mechanism enhances the diversity of
population and improves the quality of SMA solution.

3.2. Levy Flight. Levy flight (LF) was first proposed by French
mathematician Paul Levy in 1937, after which researchers
used Levy statistics to describe various natural phenomena.
Levy flight operator improves slime mould search capability
by helping all search agents advance to better, more promis-
ing positions. A simple description of the Levy distribution
is as follows:

Levy βð Þ ~ u = t−1−β, 0 < β ≤ 2, ð9Þ

where β is an important index of regulatory stability. Levy
random numbers can be described by the following formula:

Levy βð Þ ~ φ × μ

vj j1/β
, ð10Þ

where μ and v are standard normal distributions, Γ is a
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standard gamma function, β is set to 1.5, and φ is defined as
follows:

φ = Γ 1 + βð Þ × sin π × β/2ð Þ
Γ 1 + βð Þ/2ð Þ × β × 2 β−1ð Þ/2À Á
" #1/β

: ð11Þ

In the exploration phase of slime mould algorithm, Levy
strategy was used to update the location of search agents, so
as to better balance exploration and search capabilities. The
update formula is as follows:

Xi′= Xi × 1 + Levy βð Þð Þ: ð12Þ

In the formula, LevyðβÞ is taken from the Levy distribu-
tion and is the number of random distribution. Xi′ is the new
location of the i-th search agent Xi after the update. The
introduction of Levy flight can help all individuals to jump
out of local optimum and improve the quality of the
population.

3.3. Framework of Proposed GLSMA. In this section, we will
describe GLSMA based on the Gaussian mutation mecha-
nism and Levy flight strategy in detail. In the process of algo-
rithm improvement, adding a mechanism can generally
improve the algorithm in only one aspect but cannot
improve the global exploration and local exploitation ability
at the same time. By adding the Gaussian mutation mecha-
nism, the corresponding value can be obtained from the cur-
rent solution, but this can only improve the local

exploitation ability and will fall into local optimal. The Levy
flight mechanism can expand the search range of solutions,
increase the possibility of obtaining the optimal solution,
and avoid falling into local optimal. As a result, in the orig-
inal SMA, two strategies (GM and LF) were introduced to
facilitate the coordination of global exploration and local
exploitation, forming a new SMA variant.

In the process of iterative optimization, Gaussian muta-
tion was considered for individuals in the slime mould indi-
viduals after initial updating. The individuals obtained after
mutation were compared with the individuals without that.
If the fitness of the individuals in the mutation state was
not improved, the original individuals were retained and
the mutant individuals were discarded to ensure the quality
of the population. Considering that the algorithm is easy to
fall into local optimum, levy flight strategy is introduced to
improve the randomness of SMA and the ability of jumping
out of local optimum. The flowchart of GLSMA is shown in
Figure 1. Experimental results show that compared with
other swarm intelligence algorithms, GLSMA not only has
stronger global exploration ability but also contributes to
increase the quality of solutions and speed up convergence.
The structure of the proposed GLSMA optimizer is shown
in Algorithm 1.

3.4. Computational Complexity Analysis. According to the
structure of GLSMA, it mainly includes initialization, fitness
evaluation, fitness ranking, weight updating, position updat-
ing based on SMA strategy, position adjustment based on
Gaussian mutation mechanism, and position updating based

Update population by Eq.(1)

Use Gaussian mutation
strategy to update the optimal

solution

If no change in ten
generations?

Use Levy fight strategy to
update the optimal solution

If t > Max_iter?

Return the best solution

EndStart

Initialize the parameters

Initialize the population of SMA

Calculate the ftness values of
population

Sort the worst and the best
ftness in the population

Calculate the W, a, b

Update p, vb, vc

No

No

Yes

Yes

Select the best population X

Figure 1: Flowchart of the proposed GLSMA.
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on Levy flight strategy, where N is the number of slime
moulds, D is the function’s dimension, and T is the maxi-
mum number of iterations. The calculation is as follows:

The time complexity for initialization is OðDÞ. In evalu-
ating and ordering fitness, the computational complexity is
O ðN +N log NÞ. The computational complexity of the
update weight is OðN ×DÞ. The computational complexity
of position updating process based on SMA is OðN ×DÞ.
Similarly, the computational complexity of position updat-
ing process based on Gaussian mutation mechanism is Oð
N ×DÞ. The computational complexity of the position
update process based on Levy flight is OðN log DÞ. There-
fore, the total computational complexity of GLSMA is OðD
+ T ×N × ð1 + 3D + log D + log NÞÞ.

4. Experiments and Results

In the experiment, to evaluate the continuous and discrete ver-
sions of GLSMA, the proposed SMA algorithm is compared
with other optimizers on the continuous functions and feature

problems, respectively. The effectiveness and competitiveness
of the proposed algorithm are verified by two parts of experi-
ments. In the first part, the strategies added on SMA were
tested on 23 benchmark test functions (including 7 unimodal
functions, 6 multimodal functions, and more than 10 fixed
dimension multimodal functions) and 10 classic CEC2014
benchmark test functions (including 2 hybrid functions and
8 composition functions), to see whether the mechanism has
a positive effect on the algorithm. Then, in the same test envi-
ronment, GLSMA is compared with some original algorithms
and advancedMA algorithms. In the second part, we compare
the proposed binary GLSMA (BGLSMA) with other classifiers
on feature selection problems.

All GLSMA experiments were written in the MATLAB
R2014a compiler and run on Windows 10(64-bit) operating
system. The computer hardware is Intel(R) Xeon(R) Silver
4110 CPU (2.40GHz) 2.10GHz (dual processors) and
32GB RAM.

In Section 4.1, we will test the influence of different
mechanisms on the algorithm. In Section 4.2, GLSMA is

Table 1: Descriptions of unimodal benchmark functions.

Function Dim Range fmin

F1 xð Þ =〠n

i=1x
2
i 30 [-100, 100] 0

F2 xð Þ =〠n

i=1 xij j +
Yn

i=1
xij j 30 [-10, 10] 0

F3 xð Þ =〠n

i=1 〠i

j−1 xj
� �2

30 [-100, 100] 0

F4 xð Þ =maxi xij j, 1 ≤ i ≤ nf g 30 [-100, 100] 0

F5 xð Þ =〠n−1
i=1 100 xi+1 − x2i

À Á2 + xi − 1ð Þ2
h i

30 [-30, 30] 0

F6 xð Þ =〠n

i=1 xi + 0:5½ �ð Þ2 30 [-100, 100] 0

F7 xð Þ =〠n

i=1ix
4
i + random 0, 1½ � 30 [-128, 128] 0

Begin
Initialize of the parameters: Max iter, N
Initialize of slime mould population X
Whilet ≤Max iter

Calculate the fitness for each individual in slime mould
Update Xb and the best fitness
Calculate the weight W, a, and b according to Equations (2), (3), (5)
Fori = 1 : N
Update p using Equation (4)
Update vb and vc based on a and b, respectively
Update the positions by Equation (1)

End for
Utilize the best individual in the population to perform GM operations
If (meet the condition)
Then use Levy flight to avoid falling into local optimality
Iteration = iteration + 1

End while
Return the best fitness and Xb as the best solution

End

Algorithm 1: Pseudocode of GLSMA.
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compared with seven metaheuristic algorithms to prove its
effectiveness. In Section 4.3, GLSMA is compared with eight
advanced algorithms to verify its ability on exploration and
exploitation. In Section 4.4, we use binary GLSMA
(BGLSMA) to deal with feature selection in 14 UCI datasets.

4.1. The Influence of Gaussian Mutation and Levy Flight. As
mentioned above, GLSMA consists of two main improved
strategies: Gaussian mutation mechanism and Levy flight
strategy. The purpose of this section is to validate the effec-
tiveness of the combination of the two strategies. To this
end, we compare GLSMA, SMA, and their variants GSMA
and LSMA on 33 benchmark functions. GSMA only uses
Gaussian mutation strategy, LSMA only uses Levy flight
strategy, and SMA is the original algorithm.

All algorithm tests were carried out under the expected
conditions to eliminate the influence of irrelevant factors
on the experiment and ensure the fairness of the test. The
population size was set to 30; the maximum evaluation test
was uniformly set to 300,000. In order to weaken the influ-
ence of algorithm randomness on the experiment, we con-
ducted 30 independence tests for each test case. In this
paper, the average value of optimal function (Avg) and stan-
dard deviation (Std) of the selection algorithm results are
compared. The global exploration ability and result quality
of the algorithm were evaluated on the average (Avg), and
Std of the optimal function was used to evaluate the robust-
ness of the algorithm. In order to show the best results more
clearly, all the best results are italicized.

In addition, nonparametric statistical verification Wil-
coxon signed-rank test was used to measure the degree of
improvement and whether it was statistically significant.
The significance level was set at 0.05. The symbolic label
“+/=/-” in the results states that the proposed method
GLSMA is superior to, equal to, and inferior to other
methods of competition, respectively. For a comprehensive
statistical comparison, the Friedman [53] test was used to
evaluate the average behavior of all different algorithms for
further statistical comparison, and the average ranking was
given in these comparison results, and the average rank
value (ARV) of the Friedman test was used to evaluate the
average performance of the compared methods.

Tables 1–4 contain 23 benchmark functions and 10 test
functions in CEC2014. The selected 33 test functions include
several different problems, covering unimodal function,
multimodal function, fixed dimension multimodal function,
hybrid function, and composition function. These test func-
tions can be used to test the algorithm’s global exploration
capabilities and local exploitation capabilities and can be
used to verify the balance between exploration and exploita-
tion capabilities.

As can be seen from the results in Tables 5 and 6,
GLSMA is significantly superior to other mechanism com-
binations and the original SMA. After careful analysis, Avg
and Std in Table 5 represent the superiority of GLSMA
over F1-F7, F9-F14, F17-F18, and F22-F33 functions. On
the test functions F1-F4, F9-F11, F26-F28, and F30-F33,
the GLSMA’s Std value is 0, indicating that GLSMA has
strong robustness. This is because the combination of

Gaussian mutation and Levy flight mechanism improves
the performance of the original SMA and can successfully
find global optimal solutions for various complex prob-
lems. According to the statistical results of p value in
Table 6, many values of SMA column are less than 0.05,
indicating that GLSMA has a certain improvement on
the original SMA. As can be seen from the ARV tested
by Friedman in Table 7, when comparing the four algo-
rithms, GLSMA ranks first and is significantly superior
to other algorithms. Moreover, it can be seen that the
improvement effect of Gaussian mutation mechanism or
Levy flight mechanism on the original SMA is not good,
even can be said to be poor, but the combination of the
two can achieve a good balance between exploration and
exploitation, so as to achieve a good effect. In summary,
the results show that the addition of Gaussian mutation
mechanism and Levy flight mechanism is not only benefi-
cial to the exploration and exploitation ability of GLSMA
but also beneficial to the balance between the exploitation
and exploration ability of GLSMA, which has a certain
positive effect on the algorithm and improves the robust-
ness of the original algorithm, which has improved
significance.

Compared with the table, the image can more intuitively
and clearly reflect the optimization results of GLSMA com-
pared with other comparison objects. Figure 2 shows the con-
vergence curves of the four comparison methods on nine
functions. It is obvious that GLSMA using two mechanisms
achieves better results than its variants. The combination of
Gaussian mutation and Levy flight enables GLSMA to escape
from local traps faster and obtain the global optimal solution.
In the meantime, it can be seen that GLSMA has the fastest
rate of convergence and can get the optimal value first. The
results show that this combination of mechanisms can
quicken the convergence of the algorithm while jumping out
of local optimum. In general, the combination of GM and
LF improves the overall performance of the original SMA.

4.2. Comparison with Well-Known Algorithms. In this exper-
iment, 23 classical functions and 10 of the CEC2014 bench-
mark functions were selected to evaluate the performance of

Table 4: Descriptions of CEC2014 functions (search range: [−100,
100]D).

Function Class Functions Optimum

F24
Hybrid

Hybrid 5: N = 5 2100

F25 Hybrid 6: N = 5 2200

F26

Composition

Composition 1: N = 5 2300

F27 Composition 2: N = 3 2400

F28 Composition 3: N = 3 2500

F29 Composition 4: N = 5 2600

F30 Composition 5: N = 5 2700

F31 Composition 6: N = 5 2800

F32 Composition 7: N = 3 2900

F33 Composition 8: N = 3 3000
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Table 5: Experimental results of GLSMA, SMA, GSMA, and LSMA on 33 benchmark functions.

F1 F2 F3

Avg Std Avg Std Avg Std

GLSMA 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

SMA 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

GSMA 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

LSMA 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F4 F5 F6

Avg Std Avg Std Avg Std

GLSMA 0.00E+00 0.00E+00 1.29E-03 1.16E-03 7.00E-06 4.61E-06

SMA 0.00E+00 0.00E+00 1.97E-03 1.01E-03 9.52E-06 4.12E-06

GSMA 0.00E+00 0.00E+00 1.96E-03 1.40E-03 1.32E-05 5.03E-06

LSMA 0.00E+00 0.00E+00 4.39E-03 2.62E-03 1.23E-05 5.56E-06

F7 F8 F9

Avg Std Avg Std Avg Std

GLSMA 5.98E-06 5.13E-06 -1.26E+04 1.07E-02 0.00E+00 0.00E+00

SMA 9.56E-06 8.00E-06 -1.26E+04 2.62E-04 0.00E+00 0.00E+00

GSMA 9.94E-06 9.90E-06 -1.26E+04 2.32E-04 0.00E+00 0.00E+00

LSMA 1.62E-05 1.41E-05 -1.27E+04 4.23E-04 0.00E+00 0.00E+00

F10 F11 F12

Avg Std Avg Std Avg Std

GLSMA 8.88E-16 0.00E+00 0.00E+00 0.00E+00 2.35E-06 4.36E-06

SMA 8.88E-16 0.00E+00 0.00E+00 0.00E+00 1.05E-05 1.00E-05

GSMA 8.88E-16 0.00E+00 0.00E+00 0.00E+00 8.42E-06 1.16E-05

LSMA 8.88E-16 0.00E+00 0.00E+00 0.00E+00 8.46E-06 8.61E-06

F13 F14 F15

Avg Std Avg Std Avg Std

GLSMA 3.40E-06 2.79E-06 9.98E-01 4.51E-16 3.12E-04 2.13E-05

SMA 6.59E-06 3.86E-06 9.98E-01 4.77E-16 3.08E-04 1.89E-06

GSMA 8.30E-06 5.62E-06 9.98E-01 5.49E-16 3.15E-04 3.67E-05

LSMA 8.12E-06 2.21E-06 9.98E-01 5.79E-16 3.21E-04 5.70E-05

F16 F17 F18

Avg Std Avg Std Avg Std

GLSMA -1.03E+00 6.32E-14 3.98E-01 7.20E-12 3.00E+00 1.04E-14

SMA -1.03E+00 1.21E-14 3.98E-01 1.32E-11 3.00E+00 1.16E-14

GSMA -1.03E+00 9.28E-15 3.98E-01 1.14E-11 3.00E+00 1.21E-14

LSMA -1.03E+00 1.31E-14 3.98E-01 2.58E-11 3.00E+00 1.03E-14

F19 F20 F21

Avg Std Avg Std Avg Std

GLSMA -3.86E+00 6.18E-11 -3.24E+00 5.70E-02 -1.02E+01 1.27E-06

SMA -3.86E+00 4.13E-11 -3.23E+00 4.84E-02 -1.02E+01 1.03E-06

GSMA -3.86E+00 1.24E-10 -3.23E+00 4.84E-02 -1.02E+01 9.16E-07

LSMA -3.86E+00 6.17E-11 -3.21E+00 3.02E-02 -1.02E+01 1.27E-06

F22 F23 F24

Avg Std Avg Std Avg Std

GLSMA -1.04E+01 9.50E-07 -1.05E+01 8.73E-07 1.05E+05 8.26E+04

SMA -1.04E+01 1.15E-06 -1.05E+01 1.06E-06 1.50E+05 4.96E+04

GSMA -1.04E+01 1.56E-06 -1.05E+01 1.49E-06 1.16E+05 5.52E+04

LSMA -1.04E+01 1.18E-06 -1.05E+01 1.44E-06 1.38E+05 6.74E+04
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GLSMA. The 33 benchmark test functions used in all exper-
iments of continuous optimization can be divided into four
categories: unimodal function, multimodal function, hybrid

function, and composition function. The unimodal function
(F1-F7) has only one solution, which can be used to test the
development ability of the algorithm. The multimodal func-
tion (F8-F23) has several local optimal solutions and is suit-
able for verifying the exploration ability of the algorithm.
The hybrid function and composition function (F24-F33)
selected from CEC2014 are used to verify the balance
between algorithm exploration and exploitation. These func-
tions are often used to assess the overall power of algorithms.
In this experiment, the performance of the improved

Table 5: Continued.

F25 F26 F27

Avg Std Avg Std Avg Std

GLSMA 2.53E+03 1.78E+02 2.50E+03 0.00E+00 2.60E+03 0.00E+00

SMA 2.70E+03 2.13E+02 2.50E+03 0.00E+00 2.60E+03 0.00E+00

GSMA 2.71E+03 1.75E+02 2.50E+03 0.00E+00 2.60E+03 0.00E+00

LSMA 2.65E+03 2.04E+02 2.50E+03 0.00E+00 2.60E+03 0.00E+00

F28 F29 F30

Avg Std Avg Std Avg Std

GLSMA 2.70E+03 0.00E+00 2.70E+03 9.59E-02 2.90E+03 0.00E+00

SMA 2.70E+03 0.00E+00 2.70E+03 1.42E-01 2.90E+03 0.00E+00

GSMA 2.70E+03 0.00E+00 2.70E+03 1.46E-01 2.90E+03 0.00E+00

LSMA 2.70E+03 0.00E+00 2.70E+03 1.21E-01 2.90E+03 0.00E+00

F31 F32 F33

Avg Std Avg Std Avg Std

GLSMA 3.00E+03 0.00E+00 3.10E+03 0.00E+00 3.20E+03 0.00E+00

SMA 3.00E+03 0.00E+00 4.11E+03 1.10E+03 5.38E+03 1.64E+03

GSMA 3.00E+03 0.00E+00 4.20E+03 1.12E+03 5.14E+03 1.67E+03

LSMA 3.00E+03 0.00E+00 3.89E+03 1.10E+03 5.67E+03 2.19E+03

Table 6: Wilcoxon signed-rank test results between GLSMA, SMA, GSMA, and LSMA.

Function SMA GMSA LSMA Function SMA GMSA LSMA

F1 1.00E+00 1.00E+00 1.00E+00 F18 2.40E-01 5.15E-01 5.92E-01

F2 1.00E+00 1.0E+00 1.00E+00 F19 4.72E-02 8.61E-01 5.04E-01

F3 1.00E+00 1.00E+00 1.00E+00 F20 3.71E-01 3.19E-01 1.38E-03

F4 1.00E+00 1.00E+00 1.00E+00 F21 4.65E-01 7.81E-01 2.13E-01

F5 2.18E-02 1.75E-02 3.11E-05 F22 8.94E-01 8.98E-02 1.41E-01

F6 4.95E-02 4.53E-04 1.06E-04 F23 7.04E-01 2.18E-02 3.82E-01

F7 3.68E-02 1.41E-01 5.71E-04 F24 9.27E-03 6.58E-01 7.87E-02

F8 4.53E-04 1.38E-03 1.48E-03 F25 1.40E-02 4.90E-04 1.96E-02

F9 1.00E+00 1.00E+00 1.00E+00 F26 1.00E+00 1.00E+00 1.00E+00

F10 1.00E+00 1.00E+00 1.00E+00 F27 1.00E+00 1.00E+00 1.00E+00

F11 1.00E+00 1.00E+00 1.00E+00 F28 1.00E+00 1.00E+00 1.00E+00

F12 7.71E-04 8.73E-03 2.11E-03 F29 8.22E-02 1.78E-01 2.90E-01

F13 4.39E-03 7.71E-04 6.98E-06 F30 1.00E+00 1.00E+00 1000E+00

F14 5.08E-01 7.27E-01 5.081E-01 F31 1.00E+00 1.00E+00 1.00E+00

F15 1.11E-01 9.59E-01 7.66E-01 F32 6.10E-05 4.38E-04 6.10E-05

F16 3.37E-01 3.16E-01 1.32E-01 F33 5.96E-05 8.86E-05 1.32E-04

F17 3.49E-01 2.85E-02 2.99E-01 +/=/- 9/22/2 9/23/1 9/231

Table 7: Average ranking values using the Friedman test.

Algorithm GLSMA SMA GSMA LSMA

AVR 1.454545 1.878788 2.151515 2.30303

Rank 1 2 3 4
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GLSMA was compared with PSO [4], WOA [54], GWO
[55], SCA [56], FOA [57], DE [3], and SSA [58].

Tables 8–10 record the comparison results of GLSMA
with seven well-known algorithms. The comparison results
are shown in Table 10; among GLSMA and seven famous
algorithms, the average Friedman test result of GLSMA is
2.328283, ranking first, and the average Friedman test result
of DE is 2.730303, ranking second. It is obvious that the Fried-
man test of GLSMA and DE is obviously better than other
algorithms. The average value (Avg) and standard deviation
(Std) of optimal solution of GLSMA and other well-known
algorithms are shown in Table 8. GLSMA has a significant
advantage. Moreover, in all the comparison algorithms,

GLSMA has Std 0 on more test functions, which proves that
GLSMA algorithm has stronger stability. In addition, GLSMA
shows obvious advantages and stability in almost all of the
composition functions (F26-F28 and F30-F33). Table 9 shows
the Wilcoxon symbol test results between GLSMA and other
well-known algorithms. It can be seen that the p value of
GLSMA is less than 0.05 on almost all benchmark functions,
which proves that GLSMA is significantly better than other
algorithms, especially FOA, in all functions. Therefore, com-
pared with these basic metaheuristic algorithms, GLSMA has
statistical significance.

From the convergence curves of 8 algorithms on 9 func-
tions shown in Figure 3, it can be seen that GLSMA
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Figure 2: Convergence curves of GLSMA, SMA, GSMA, and LSMA on nine selected benchmark functions.
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Table 8: Experimental results of GLSMA and seven original metaheuristic algorithms on 33 benchmark functions.

F1 F2 F3

Avg Std Avg Std Avg Std

GLSMA 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

PSO 1.03E+02 1.01E+01 4.58E+01 3.92E+00 1.94E+02 2.47E+01

WOA 0.00E+00 0.00E+00 0.00E+00 0.00E+00 4.18E+01 7.47E+01

GWO 0.00E+00 0.00E+00 0.00E+00 0.00E+00 2.37E-183 0.00E+00

SCA 2.04E-56 6.25E-56 1.69E-58 5.76E-58 5.41E+00 1.51E+01

FOA 2.50E-09 9.63E-12 2.74E-04 4.17E-07 7.88E-07 1.85E-09

DE 3.70E-159 1.03E-158 2.85E-94 4.33E-94 1.27E+03 5.02E+02

SSA 3.79E-09 9.30E-10 2.96E-01 5.45E-01 5.90E-08 1.81E-08

F4 F5 F6

Avg Std Avg Std Avg Std

GLSMA 0.00E+00 0.00E+00 1.24E-03 1.37E-03 6.31E-06 3.72E-06

PSO 3.82E+00 1.26E-01 8.65E+04 2.0279E+04 1.02E+02 1.14E+01

WOA 4.37E+00 1.06E+01 2.44E+01 7.73E-01 5.80E-06 2.37E-06

GWO 1.81E-152 4.50E-152 2.65E+01 8.77E-01 4.89E-01 2.88E-01

SCA 1.52E-02 6.23E-02 2.75E+01 6.24E-01 3.53E+00 2.92E-01

FOA 9.14E-06 1.46E-08 2.87E+01 1.09E-04 7.50E+00 3.59E-07

DE 3.17E-15 5.95E-15 3.29E+01 2.01E+01 0.00E+00 0.00E+00

SSA 1.92E-01 3.42E-01 4.59E+01 3.57E+01 3.81E-09 7.66E-10

F7 F8 F9

Avg Std Avg Std Avg Std

GLSMA 7.45E-06 7.29E-06 -1.26E+04 1.27E-02 0.00E+00 0.00E+00

PSO 1.11E+02 2.41E+01 -6.69E+03 8.24E+02 3.41E+02 1.52E+01

WOA 2.15E-04 2.53E-04 -1.24E+04 5.62E+02 0.00E+00 0.00E+00

GWO 6.44E-05 4.41E-05 -6.16E+03 6.56E+02 0.00E+00 0.00E+00

SCA 2.44E-03 2.59E-03 -4.42E+03 2.83E+02 1.18E-12 6.47E-12

FOA 3.15E-05 1.44E-05 -2.31E+02 1.13E+02 4.97E-07 1.73E-09

DE 2.39E-03 5.48E-04 -1.24E+04 1.29E+02 1.33E-01 3.44E-01

SSA 7.64E-03 3.24E-03 -7.76E+03 7.13E+02 6.91E+01 1.83E+01

F10 F11 F12

Avg Std Avg Std Avg Std

GLSMA 8.88E-16 0.00E+00 0.00E+00 0.00E+00 1.16E-06 1.62E-06

PSO 7.79E+00 3.02E-01 1.01E+00 9.86E-03 3.55E+00 3.93E-01

WOA 3.97E-15 2.59E-15 5.23E-04 2.86E-03 9.31E-07 4.33E-07

GWO 7.88E-15 6.49E-16 4.98E-04 1.90E-03 2.53E-02 1.77E-02

SCA 1.13E+01 9.36E+00 3.78E-09 2.07E-08 3.54E-01 1.30E-01

FOA 3.65E-05 4.17E-08 1.67E-10 6.21E-13 1.67E+00 6.05E-08

DE 7.53E-15 1.23E-15 0.00E+00 0.00E+00 1.57E-32 5.57E-48

SSA 1.78E+00 7.00E-01 1.28E-02 1.34E-02 9.54E-01 1.46E+00

F13 F14 F15

Avg Std Avg Std Avg Std

GLSMA 4.57E-06 2.70E-06 9.98E-01 4.76E-16 3.08E-04 8.17E-07

PSO 1.59E+01 1.70E+00 2.78E+00 2.17E+00 9.76E-04 5.57E-05

WOA 7.74E-04 2.78E-03 9.98E-01 1.10E-14 4.70E-04 3.12E-04

GWO 4.08E-01 1.69E-01 3.15E+00 3.56E+00 7.53E-03 1.29E-02

SCA 2.03E+00 1.27E-01 9.98E-01 6.09E-07 5.15E-04 3.78E-04

FOA 5.79E-01 7.79E-02 1.27E+01 1.04E-15 8.36E-04 2.74E-04

DE 1.35E-32 5.57E-48 9.98E-01 0.00E+00 3.72E-04 1.83E-04

SSA 3.60E-03 6.49E-03 9.98E-01 1.13E-16 7.38E-04 3.71E-04
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Table 8: Continued.

F16 F17 F18

Avg Std Avg Std Avg Std

GLSMA -1.03E+00 2.38E-14 3.98E-01 2.57E-12 3.00E+00 1.16E-14

PSO -1.03E+00 9.52E-05 3.98E-01 6.35E-05 3.01E+00 7.37E-03

WOA -1.03E+00 7.33E-15 3.98E-01 4.58E-10 3.00E+00 4.61E-08

GWO -1.03E+00 2.82E-11 3.98E-01 4.01E-09 3.00E+00 8.51E-08

SCA -1.03E+00 1.84E-06 3.98E-01 5.20E-05 3.00E+00 1.53E-07

FOA -1.55E-01 1.29E-01 1.34E+00 8.72E-01 6.00E+02 1.89E-05

DE -1.03E+00 6.78E-16 3.98E-01 0.00E+00 3.00E+00 2.03E-15

SSA -1.03E+00 6.14E-16 3.98E-01 6.14E-16 3.00E+00 1.36E-14

F19 F20 F21

Avg Std Avg Std Avg Std

GLSMA -3.86E+00 7.54E-11 -3.23E+00 4.84E-02 -1.02E+01 6.78E-07

PSO -3.86E+00 2.82E-03 -2.92E+00 2.30E-01 -7.10E+00 1.54E+00

WOA -3.86E+00 3.29E-03 -3.25E+00 8.23E-02 -1.02E+01 7.34E-07

GWO -3.86E+00 2.00 E-03 -3.27E+00 7.29E-02 -9.98E+00 9.31E-01

SCA -3.86E+00 3.107E-03 -2.98E+00 2.31E-01 -2.76E+00 2.52E+00

FOA -3.62E+00 2.47E-01 -1.87E+00 4.40E-01 -3.68E+00 7.81E-01

DE -3.86E+00 2.71E-15 -3.3E+00 2.83E-04 -9.90E+00 1.36E+00

SSA -3.86E+00 1.56E-15 -3.23E+00 5.11E-02 -1.02E+01 2.65E-12

F22 F23 F24

Avg Std Avg Std Avg Std

GLSMA -1.04E+01 9.95E-07 -1.05E+01 7.81E-07 1.19E+05 6.92E+04

PSO -7.27E+00 1.19E+00 -7.50E+00 1.12E+00 9.22E+04 4.53E+04

WOA -1.04E+01 2.57E-06 -1.05E+01 5.21E-07 1.40E+06 1.10E+06

GWO -1.00E+01 1.35E+00 -1.05E+01 1.01E-06 1.02E+06 2.20E+06

SCA -4.98E+00 3.34E+00 -4.66E+00 2.44E+00 1.29E+06 9.63E+05

FOA -3.50E+00 8.81E-01 -3.40E+00 7.13E-01 8.34E+08 3.13E+08

DE -1.04E+01 1.81E-15 -1.05E+01 1.68E-15 3.04E+05 1.59E+05

SSA -9.70E+00 1.83E+00 -1.04E+01 9.79E-01 5.96E+04 3.68E+04

F25 F26 F27

Avg Std Avg Std Avg Std

GLSMA 2.64E+03 1.50E+02 2.50E+03 0.00E+00 2.60E+03 0.00E+00

PSO 2.90E+03 2.51E+02 2.62E+03 4.54E-01 2.63E+03 6.08E+00

WOA 2.97E+03 2.25E+02 2.63E+03 2.67E+01 2.61E+03 3.91E+00

GWO 2.59E+03 1.25E+02 2.64E+03 1.08E+01 2.60E+03 7.27E-04

SCA 2.99E+03 1.68E+02 2.66E+03 8.83E+00 2.60E+03 4.61E-02

FOA 1.25E+06 3.71E+05 2.50E+03 2.26E-06 2.60E+03 1.43E-05

DE 2.40E+03 7.71E+01 2.62E+03 1.39E-12 2.63E+03 3.42E+00

SSA 2.65E+03 2.00E+02 2.62E+03 1.77E-01 2.64E+03 8.96E+00

F28 F29 F30

Avg Std Avg Std Avg Std

GLSMA 2.70E+03 0.00E+00 2.70E+03 1.09E-01 2.90E+03 0.00E+00

PSO 2.71E+03 5.77E+00 2.78E+03 3.80E+01 3.45E+03 2.74E+02

WOA 2.72E+03 1.91E+01 2.70E+03 1.82E+01 3.72E+03 3.83E+02

GWO 2.71E+03 6.19E+00 2.76E+03 5.02E+01 3.37E+03 1.18E+02

SCA 2.73E+03 5.42E+00 2.70E+03 6.12E-01 3.44E+03 3.20E+02

FOA 2.70E+03 3.54E-08 2.80E+03 7.06E-11 2.90E+03 2.75E-07

DE 2.71E+03 1.04E+00 2.70E+03 4.42E-02 3.20E+03 8.08E+01
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Table 8: Continued.

SSA 2.71E+03 4.09E+00 2.70E+03 1.20E-01 3.45E+03 1.46E+02

F31 F32 F33

Avg Std Avg Std Avg Std

GLSMA 3.00E+03 0.00E+00 3.10E+03 0.00E+00 3.20E+03 0.00E+00

PSO 7.19E+03 7.21E+02 8.87E+04 1.18E+05 1.55E+04 6.61E+03

WOA 5.04E+03 6.16E+02 4.55E+06 4.93E+06 7.94E+04 4.77E+04

GWO 3.97E+03 2.24E+02 1.87E+06 4.50E+06 5.28E+04 3.81E+04

SCA 4.83E+03 3.05E+02 1.04E+07 6.28E+06 2.19E+05 8.49E+04

FOA 3.00E+03 6.77E-07 4.65E+03 2.03E+00 3.31E+03 1.804E-01

DE 3.64E+03 2.41E+01 2.77E+04 1.16E+05 5.82E+03 9.58E+02

SSA 3.79E+03 8.08E+01 2.20E+06 5.20E+06 1.20E+04 4.50E+03

Table 9: Wilcoxon signed-rank test results between GLSMA and seven original metaheuristic algorithms.

Function PSO WOA GWO SCA FOA DE SSA

F1 1.73E-06 1.00E+00 1.00E+00 1.73E-06 1.73E-06 1.73E-06 1.73E-06

F2 1.73E-06 1.00E+00 1.00E+00 1.73E-06 1.73E-06 1.73E-06 1.73E-06

F3 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06

F4 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06

F5 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06

F6 1.73E-06 7.50E-01 2.35E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06

F7 1.73E-06 1.73E-06 1.73E-06 1.73E-06 5.75E-06 1.73E-06 1.73E-06

F8 1.73E-06 4.99E-03 1.73E-06 1.73E-06 1.73E-06 1.36E-05 1.73E-06

F9 1.73E-06 1.00E+00 1.00E+00 1.00E+00 1.73E-06 1.25E-01 1.73E-06

F10 1.73E-06 4.15E-05 6.80E-08 1.73E-06 1.73E-06 1.96E-07 1.73E-06

F11 1.73E-06 1.00E+00 5.00E-01 1.00E+00 1.73E-06 1.00E+00 1.73E-06

F12 1.73E-06 5.72E-01 1.92E-06 1.73E-06 1.73E-06 1.73E-06 1.36E-05

F13 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 6.73E-01

F14 1.73E-06 6.13E-05 1.73E-06 1.73E-06 4.32E-08 4.32E-08 1.21E-07

F15 1.73E-06 4.45E-05 9.75E-01 1.73E-06 1.73E-06 7.97E-01 2.60E-05

F16 1.73E-06 1.55E-01 1.73E-06 1.73E-06 1.73E-06 1.14E-05 1.34E-04

F17 1.73E-06 3.16E-03 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06

F18 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.53E-06 6.87E-01

F19 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06

F20 3.52E-06 8.13E-01 5.71E-02 1.73E-06 1.73E-06 1.92E-06 4.39E-03

F21 1.73E-06 1.36E-01 7.73E-03 1.73E-06 1.73E-06 3.11E-05 1.73E-06

F22 1.73E-06 4.11E-03 1.53E-01 1.73E-06 1.73E-06 1.73E-06 1.48E-02

F23 1.73E-06 4.99E-03 1.17E-02 1.73E-06 1.73E-06 1.73E-06 3.11E-05

F24 4.95E-02 2.60E-06 1.60E-04 1.73E-06 1.73E-06 2.88E-06 1.74E-04

F25 1.48E-04 6.98E-06 2.18E-02 2.13E-06 1.73E-06 1.36E-05 8.77E-01

F26 1.73E-06 2.56E-06 1.73E-06 1.73E-06 1.73E-06 4.32E-08 1.73E-06

F27 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06

F28 1.73E-06 2.93E-04 1.22E-05 1.73E-06 1.73E-06 1.73E-06 1.73E-06

F29 5.75E-06 9.84E-03 2.26E-03 1.73E-06 1.73E-06 3.18E-06 1.17E-02

F30 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06

F31 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06

F32 1.73E-06 1.72E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06

F33 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06

+/=/- 32/0/1 22/91 25/7/1 31/2/0 33/0/0 17/3/13 21/3/9
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improves the global search ability under the dual mechanism
and can quickly escape from the local optimal trap and faster
to find the global optimal.

In conclusion, compared with other well-known algo-
rithms, GLSMA shows good overall superiority and stability.
The strategy combination of Gaussian mutation and Levy
flight enables the proposed GLSMA to obtain higher quality
solutions in the optimization process, thus achieving a bal-
ance between exploration and exploitation.

4.3. Comparison with Advanced Algorithms. In this experi-
ment, the proposed GLSMA algorithm is compared with
8 classical advanced algorithms in order to fully prove its
global search and avoiding local optimality, including
MPEDE [59], LSHADE [60], ALCPSO [61], CLPSO [62],
CMAES [63], BMWOA [64], CESCA [65], and IGWO
[66]. These include two classic DE variants, two superior
PSO variants, and variations of WOA and GWO
algorithms.

Table 10: Average ranking values using the Friedman test.

Algorithm GLSMA PSO WOA GWO SCA FOA DE SSA

AVR 2.328283 6.591919 4.190404 4.187879 5.958081 5.80202 2.730303 4.211111

Rank 1 8 4 3 7 6 2 5
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Figure 3: Convergence curves of GLSMA and seven original metaheuristic algorithms on nine selected benchmark functions.
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Table 11: Experimental results of GLSMA and eight advanced algorithms on 33 benchmark functions.

F1 F2 F3

Avg Std Avg Std Avg Std

GLSMA 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

MPEDE 2.37E-225 0.00E+00 1.61E-102 8.82E-102 1.61E-102 8.82E-102

LSHADE 1.22E-202 0.00E+00 1.46E-86 4.69E-86 1.46E-86 4.69E-86

ALCPSO 6.12E-186 0.00E+00 6.26E-05 2.21E-04 6.26E-05 2.21E-04

CLPSO 3.07E-34 2.84E-34 6.48E-21 2.80E-21 6.48E-21 2.80E-21

CMAES 1.93E-29 1.55E-30 5.24E-02 2.49E-01 5.24E-02 2.49E-01

BMWOA 4.41E-04 7.36E-04 6.11E-03 4.84E-03 6.11E-03 4.84E-03

CESCA 1.13E+03 7.79E+02 8.02E+00 1.94E+00 8.02E+00 1.94E+00

IGWO 0.00E+00 0.00E+00 3.84E-260 0.00E+00 3.84E-260 0.00E+00

F4 F5 F6

Avg Std Avg Std Avg Std

GLSMA 0.00E+00 0.00E+00 1.69E-03 1.45E-03 5.79E-06 3.48E-06

MPEDE 7.92E-06 1.05E-05 1.46E+00 1.95E+00 3.08E-33 4.05E-33

LSHADE 1.34E-04 1.91E-04 1.33E+00 1.91E+00 2.36E-33 4.10E-33

ALCPSO 3.92E-05 4.38E-05 3.59E+01 3.40E+01 2.33E-31 4.95E-31

CLPSO 1.32E+00 2.40E-01 4.82E-01 4.50E-01 0.00E+00 0.00E+00

CMAES 2.11E-15 1.18E-16 3.99E-01 1.22E+00 2.00E-29 1.64E-30

BMWOA 4.50E-03 4.85E-03 2.26E-02 5.96E-02 1.54E-03 3.03E-03

CESCA 2.00E+01 7.77E+00 2.88E+05 3.21E+05 1.25E+03 9.97E+02

IGWO 1.33E-38 7.27E-38 2.32E+01 2.03E-01 1.19E-05 4.26E-06

F7 F8 F9

Avg Std Avg Std Avg Std

GLSMA 7.92E-06 5.81E-06 -1.26E+04 9.65E-03 0.00E+00 0.00E+00

MPEDE 2.98E-03 1.02E-03 -1.19E+04 3.27E+02 7.67E+00 4.62E+00

LSHADE 6.16E-03 3.19E-03 -1.89E+03 2.65E+01 2.06E+00 3.60E+00

ALCPSO 8.49E-02 2.98E-02 -1.14E+04 2.88E+02 2.07E+01 7.79E+00

CLPSO 2.74E-03 7.42E-04 -1.26E+04 2.16E+01 0.00E+00 0.00E+00

CMAES 5.52E-02 1.56E-02 -7.13E+03 8.61E+02 2.30E+02 5.09E+01

BMWOA 1.17E-03 9.76E-04 -1.26E+04 1.03E-02 3.69E-04 6.17E-04

CESCA 4.93E-01 3.46E-01 -3.97E+03 2.51E+02 5.46E+01 1.26E+01

IGWO 3.76E-04 4.52E-04 -7.61E+03 6.63E+02 0.00E+00 0.00E+00

F10 F11 F12

Avg Std Avg Std Avg Std

GLSMA 8.88E-16 0.00E+00 0.00E+00 0.00E+00 1.68E-06 2.71E-06

MPEDE 1.60E+00 8.45E-01 2.02E-02 2.11E-02 1.77E-01 3.04E-01

LSHADE 3.38E-14 3.72E-15 1.43E-02 1.73E-02 7.08E-01 8.66E-01

ALCPSO 6.93E-01 8.23E-01 1.47E-02 1.73E-02 1.83E-02 3.50E-02

CLPSO 1.24E-14 2.59E-15 0.00E+00 0.00E+00 1.57E-32 5.57E-48

CMAES 1.94E+01 1.33E-01 1.23E-03 2.80E-03 1.07E-30 1.63E-31

BMWOA 2.11E-03 2.22E-03 9.96E-04 3.66E-03 7.11E-06 2.34E-05

CESCA 6.61E+00 1.41E+00 9.54E+00 5.47E+00 9.55E+04 1.70E+05

IGWO 4.91E-15 1.23E-15 0.00E+00 0.00E+00 1.09E-06 4.02E-07

F13 F14 F15

Avg Std Avg Std Avg Std

GLSMA 3.08E-06 2.99E-06 9.98E-01 5.77E-16 3.09E-04 6.72E-06

MPEDE 3.97E-03 6.58E-03 9.98E-01 0.00E+00 2.37E-03 6.10E-03

LSHADE 4.20E-01 1.14E+00 9.98E-01 0.00E+00 9.80E-04 3.64E-05
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Table 11: Continued.

ALCPSO 7.73E-03 1.12E-02 9.98E-01 1.17E-16 3.69E-04 2.32E-04

CLPSO 1.35E-32 5.57E-48 9.98E-01 0.00E+00 5.50E-04 6.96E-05

CMAES 7.32E-04 2.79E-03 1.25E+01 6.58E+00 1.16E-02 2.06E-02

BMWOA 9.90E-05 1.76E-04 9.98E-01 3.13E-16 3.69E-04 2.32E-04

CESCA 7.14E+05 1.20E+06 2.87E+00 3.70E-01 4.38E-03 2.87E-03

IGWO 1.47E-02 3.56E-02 9.98E-01 3.01E-15 3.61E-04 2.05E-04

F16 F17 F18

Avg Std Avg Std Avg Std

GLSMA -1.03E+00 2.81E-14 3.98E-01 4.35E-12 3.00E+00 1.26E-14

MPEDE -1.03E+00 6.78E-16 3.98E-01 0.00E+00 3.00E+00 1.87E-15

LSHADE -1.03E+00 6.78E-16 3.98E-01 0.00E+00 3.00E+00 1.20E-15

ALCPSO -1.03E+00 6.39E-16 3.98E-01 0.00E+00 3.00E+00 2.66E-15

CLPSO -1.03E+00 6.65E-16 3.98E-01 1.15E-15 3.00E+00 1.17E-15

CMAES -9.72E-01 2.07E-01 3.98E-01 0.00E+00 3.46E+01 1.53E+02

BMWOA -1.0E+00 4.54E-16 3.98E-01 2.57E-13 3.00E+00 1.30E-14

CESCA -1.03E+00 5.79E-03 8.44E-01 3.91E-01 3.06E+00 8.45E-02

IGWO -1.03E+00 5.32E-13 3.98E-01 6.44E-11 3.00E+00 4.95E-14

F19 F20 F21

Avg Std Avg Std Avg Std

GLSMA -3.86E+00 4.37E-11 -3.23E+00 4.84E-02 -1.02E+01 1.22E-06

MPEDE -3.86E+00 2.71E-15 -3.27E+00 5.99E-02 -8.81E+00 2.53E+00

LSHADE -3.86E+00 7.59E-11 -1.63E+00 1.65E+00 -8.81E+00 2.53E+00

ALCPSO -3.86E+00 2.63E-15 -3.27E+00 5.92E-02 -8.63E+00 2.36E+00

CLPSO -3.86E+00 2.71E-15 -3.32E+00 1.21E-12 -1.02E+01 1.53E-06

CMAES -3.58E+00 8.73E-01 -3.30E+00 4.84E-02 -5.92E+00 3.77E+00

BMWOA -3.86E+00 2.26E-14 -3.26E+00 6.05E-02 -1.02E+01 3.44E-11

CESCA -3.53E+00 2.38E-01 -2.05E+00 4.88E-01 -8.77E-01 3.53E-01

IGWO -3.86E+00 2.66E-09 -3.26E+00 6.05E-02 -9.31E+00 1.93E+00

F22 F23 F24

Avg Std Avg Std Avg Std

GLSMA -1.04E+01 1.03E-06 -1.05E+01 1.23E-06 1.14E+05 8.22E+04

MPEDE -9.10E+00 2.70E+00 -1.03E+01 1.48E+00 3.06E+03 4.43E+02

LSHADE -9.93E+00 1.82E+00 -1.00E+01 1.89E+00 2.80E+03 2.66E+02

ALCPSO -9.52E+00 2.00E+00 -10.00E+00 1.64E+00 1.32E+05 2.18E+05

CLPSO -1.04E+01 1.24E-06 -1.05E+01 5.43E-10 8.77E+04 6.01E+04

CMAES -5.70E+00 3.22E+00 -7.16E+00 3.75E+00 3.18E+03 3.38E+02

BMWOA -1.04E+01 3.50E-11 -1.05E+01 2.87E-11 1.10E+06 1.12E+06

CESCA -1.18E+00 4.67E-01 -1.31E+00 5.62E-01 3.40E+07 1.28E+07

IGWO -9.70E+00 1.83E+00 -10.00E+00 1.64E+00 3.08E+05 2.48E+05

F25 F26 F27

Avg Std Avg Std Avg Std

GLSMA 2.54E+03 1.70E+02 2.50E+03 0.00E+00 2.60E+03 0.00E+00

MPEDE 2.54E+03 1.54E+02 2.62E+03 1.68E-12 2.64E+03 5.74E+00

LSHADE 2.45E+03 1.17E+02 2.62E+03 2.13E-12 2.64E+03 5.18E+00

ALCPSO 2.67E+03 1.68E+02 2.62E+03 2.26E-02 2.64E+03 6.89E+00

CLPSO 2.42E+03 7.90E+01 2.62E+03 3.14E-06 2.62E+03 7.39E+00

CMAES 2.54E+03 2.59E+02 2.62E+03 1.39E-12 2.661E+03 9.29E+01

BMWOA 3.00E+03 2.03E+02 2.50E+03 4.14E-01 2.60E+03 1.99E-01

CESCA 5.95E+03 1.75E+03 3.03E+03 1.03E+02 2.66E+03 1.74E+01
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The comparison results of GLSMA with eight advanced
algorithms are shown in Tables 11–13. Table 11 shows the
average value and standard deviation of the optimal solution
obtained by GLSMA and advanced algorithms. As can be seen,
compared to other algorithms, GLSMA shows good superiority
and stability in F1-F5, F7-F11, F13, F15, F21, F26-F28, and
F30-33 functions. Table 12 shows the Wilcoxon rank test
result’s p value among GLSMA and eight advanced algorithms.
From the table values, it can be seen that GLSMA outperforms
other comparison algorithms on most benchmark functions.
GLSMA is superior to CESCA in all functions. Therefore,
GLSMA is obviously competitive with other excellent algo-
rithms. Table 13 shows the comparison results; amongGLSMA
and other 8 advanced algorithms, the average Friedman test
result of GLSMA ranks the first, which is 3.629293.

The convergence curves of all nine algorithms on nine
functions shown in Figure 4 show that GLSMA’s conver-
gence speed is faster than other advanced algorithms, and
it can jump out of local optimum faster and avoid falling
into local optimum better than other algorithms.

In summary, the introduction of Gaussian mutation
mechanism and Levy flight mechanism gives GLSMA an
advantage over competitive advanced algorithms, showing
superior performance in different types of functions.
GLSMA not only has stronger global search ability but also
can avoid falling into local optimum.

4.4. The Experiments for Feature Selection. In this section, we
transform the proposed algorithm GLSMA into a discrete
version, namely, BGLSMA, which is applied to feature selec-

tion problems of high-dimensional gene data, thus making
the proposed algorithm more realistic.

The purpose of feature selection problem is to remove
some redundant and irrelevant features from the sample, so
as to reduce the complexity of feature selection problem, reduce
the subsequent calculation cost, and obtain higher classification
accuracy. In the process of feature selection, it is necessary to
determine which features should be selected. As a result, we
transform continuous GLSMA into discrete GLSMA, namely,
BGLSMA. The proposed GLSMA increases the population
diversity, strengths the local exploitation ability, and helps us
select favorable features in the search space, so as to obtain bet-
ter feature subsets and improve classification accuracy.

4.4.1. Binary GLSMA. In feature selection algorithm based
on GLSMA, x = ðxi,1, xi,2,⋯, xi,nÞ represents a subset of fea-
tures. In BGLSMA, if xi,1 = 1, this feature is selected, and
conversely, if xi,1 = 0, this feature is discarded. In order to
solve discretization problems, GLSMA needs to be discre-
tized. The individual with binary position vector is initial-
ized by random threshold, and then, the discretization of
position Xi can be expressed as

Xj
i t + 1ð Þ =

1, if rand ≥ T Xj
i tð Þ

� �
,

0, if rand < T Xj
i tð Þ

� �
,

8><
>:
T xð Þ = 1

1 + e−2x

ð13Þ

Table 11: Continued.

IGWO 2.55E+03 1.48E+02 2.62E+03 2.36E+00 2.60E+03 4.00E-03

F28 F29 F30

Avg Std Avg Std Avg Std

GLSMA 2.70E+03 0.00E+00 2.70E+03 1.27E-01 2.90E+03 0.00E+00

MPEDE 2.71E+03 5.13E+00 2.71E+03 3.04E+01 3.27E+03 1.51E+02

LSHADE 2.71E+03 3.82E+00 2.71E+03 3.45E+01 3.27E+03 9.40E+01

ALCPSO 2.71E+03 3.70E+00 2.76E+03 4.88E+01 3.47E+03 2.23E+02

CLPSO 2.71E+03 9.97E-01 2.70E+03 6.83E-02 3.13E+03 4.63E+01

CMAES 2.70E+03 2.03E+00 2.72E+03 5.81E+01 3.07E+03 3.98+01

BMWOA 2.70E+03 5.68E-03 2.71E+03 1.04E-01 2.90E+03 1.63E-01

CESCA 2.72E+03 8.91E+00 2.71E+03 1.44+00 3.98E+03 1.58E+02

IGWO 2.71E+03 2.75E+00 2.70E+03 1.71E-01 3.11E+03 4.03E+00

F31 F32 F33

Avg Std Avg Std Avg Std

GLSMA 3.00E+03 0.00E+00 3.10E+03 0.00E+00 3.20E+03 0.00E+00

MPEDE 4.00E+03 3.22E+02 1.72E+06 3.94E+06 5.62E+03 1.14E+03

LSHADE 3.77E+03 1.41E+02 3.71E+03 1.61E+02 5.56E+03 9.79E+02

ALCPSO 4.31E+03 4.70E+02 1.45E+06 4.41E+06 1.82E+04 2.92E+04

CLPSO 3.70E+03 5.81E+01 3.86E+03 1.14E+02 6.15E+03 8.22E+02

CMAES 6.49E+03 2.96E+03 3.67E+03 1.31E+02 5.23E+03 6.37E+02

BMWOA 3.00E+03 5.17E-01 6.28E+05 6.18E+05 6.17E+04 5.38E+04

CESCA 5.43E+03 2.83E+02 1.78E+07 3.48E+06 1.42E+06 2.43E+05

IGWO 3.86E+03 1.94E+02 7.34E+05 2.75E+06 2.69E+04 1.15E+04
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In the formula above, Xiðt + 1Þ indicates the value of the
i-th dimension of the agent individual position X searched
in the discrete space, and rand means a random number
within the range of [0, 1]. TðxÞ means converting the value
of the i-th dimension of X in the continuous motion space
to 0 or 1, thus realizing the discretization of the continuous
space. The transformation of TðxÞ does not change the
structure of the algorithm.

As described above, feature selection is a process of
using the least gene subset to obtain the optimal classifi-
cation accuracy, that is, to improve the classification
accuracy and reduce the number of features. This prob-
lem is described as a combinatorial optimization problem.
In order to satisfy each objective, a linear combination of
feature number and error rate is used to define fitness
function, and the candidate solutions are evaluated

Table 13: Average ranking values using the Friedman test.

Algorithm GLSMA MPEDE LSHADE ALCPSO CLPSO CMAES BMWOA CESCA IGWO

AVR 3.62929 3.84293 4.20808 5.25202 3.93131 4.83384 5.16212 8.75455 5.38586

Rank 1 2 4 7 3 5 6 9 8

Table 12: Wilcoxon signed-rank test results between GLSMA and eight advanced algorithms.

Function MPEDE LSHADE ALCPSO CLPSO CMAES BMWOA CESCA IGWO

F1 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.00E+00

F2 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06

F3 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06

F4 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06

F5 3.82E-01 6.44E-01 1.73E-06 1.73E-06 2.77E-03 1.59E-01 1.73E-06 1.73E-06

F6 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 5.75E-06 1.73E-06 5.22E-06

F7 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06

F8 1.73E-06 1.73E-06 1.73E-06 3.11E-05 1.73E-06 3.68E-02 1.73E-06 1.73E-06

F9 1.73E-06 4.92E-06 1.73E-06 1.00E+00 1.73E-06 1.73E-06 1.73E-06 1.00E+00

F10 1.71E-06 9.53E-07 1.44E-06 1.12E-06 1.73E-06 1.73E-06 1.73E-06 1.96E-07

F11 2.69E-05 8.79E-05 5.93E-05 1.00E+00 6.25E-02 1.73E-06 1.73E-06 1.00E+00

F12 4.72E-02 5.31E-05 3.82E-01 1.73E-06 1.73E-06 1.92E-01 1.73E-06 5.72E-01

F13 9.75E-01 3.71E-01 8.73E-03 1.73E-06 3.59E-04 9.71E-05 1.73E-06 1.73E-06

F14 1.21E-07 1.21E-07 1.21E-07 1.21E-07 1.90E-06 2.75E-04 1.73E-06 6.33E-06

F15 5.71E-02 1.73E-06 3.59E-04 1.73E-06 1.15-04 3.59E-04 1.73E-06 3.59E-04

F16 3.20E-06 3.20E-06 4.85E-06 3.20E-06 6.95E-04 7.32E-06 1.73E-06 6.98E-06

F17 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 2.84E-05 1.73E-06 2.16E-05

F18 1.49E-06 1.54E-06 2.18E-06 1.54E-06 1.97E-02 1.12E-04 1.73E-06 6.62E-02

F19 1.73E-06 3.11E-05 1.73E-06 1.73E-06 2.77E-03 1.73E-06 1.73E-06 1.92E-06

F20 1.02E-05 1.38E-03 9.32E-06 1.73E-06 5.22E-06 1.80E-05 1.73E-06 5.30E-01

F21 3.71E-01 3.71E-01 9.75E-01 1.60E-04 3.61E-03 1.73E-06 1.73E-06 8.47E-06

F22 1.65E-01 3.59E-04 5.71E-02 3.11E-05 1.15E-04 1.73E-06 1.73E-06 6.34E-06

F23 3.11E-05 3.59E-04 2.77E-03 1.73E-06 4.72E-02 1.73E-06 1.73E-06 2.16E-05

F24 1.73E-06 1.73E-06 2.13E-01 1.36E-01 1.73E-06 1.73E-06 1.73E-06 1.48E-03

F25 9.92E-01 1.67E-02 3.33E-02 3.16E-03 6.58E-01 2.3534E-06 1.73E-06 8.77E-01

F26 4.32E-08 4.32E-08 1.73E-06 1.73E-06 4.32E-08 1.73E-06 1.73E-06 1.73E-06

F27 1.73E-06 1.73-06 1.73E-06 2.13E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06

F28 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06

F29 9.78E-02 1.59E-01 8.92E-05 7.51E-05 8.97E-02 1.48E-02 1.73E-06 2.60E-05

F30 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06

F31 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06

F32 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06

F33 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06

+/=/- 18/7/8 21/4/8 22/4/7 16/3/14 25/3/5 21/2/10 33/0/0 26/7/0
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comprehensively.

fit = α · E + β · R
D
: ð14Þ

In the above formula, E is the classification accuracy
rate of KNN classifier, the length of selected feature sub-
set is represented by R, and the total number of features
in the dataset is represented by D. α andβ are the
weights of classification error rate and feature reduction,
respectively. Compared with feature reduction, more
attention is paid to accuracy; we set α to 0.95 and the
latter to 0.05.

4.4.2. Simulation Experiments. In this experiment, the result-
ing BGLSMA is compared with other excellent metaheuristic
optimizers on 14 UCI feature selection datasets. In Table 14,
the details of these datasets are shown, including the number
of samples, the number of features, and the number of cate-
gories. Table 14 shows that, in these datasets, the sample
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Figure 4: Convergence curves of GLSMA and eight advanced algorithms on nine selected benchmark functions.

Table 14: Characteristics of gene expression datasets.

Datasets Samples Features Categories

Colon 62 2000 2

SRBCT 83 2309 4

Leukemia 72 7131 2

Brain_Tumor1 90 5920 5

Brain_Tumor2 50 10368 4

CNS 60 7130 2

DLBCL 77 5470 2

Leukemia1 72 5328 3

Leukemia2 72 11226 3

Lung_Cancer 203 12601 3

Prostate_Tumor 102 10509 2

Tumors_9 60 5726 9

Tumors_11 174 12534 11

Tumors_14 308 15010 26
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number is 50-308, the feature number is 2000-15010, and
the number of categories is 2-11. These datasets contain sev-
eral different types of data. These high-dimensional gene
datasets have such characteristics: the sample number is
small, and the feature number is thousands, which has some
impact on data dimension reduction.

In order to select fewer features while maintaining classi-
fication accuracy, K-nearest neighbor (KNN) [67] algorithm
is used for data classification. K-nearest neighbor is a non-
parametric regression statistical method with wide applica-
tion in classification problems. The steps of KNN
algorithm are as follows: firstly, the original data is prepro-
cessed, and the processed data is divided into training set
and test set; second, set the appropriate parameter k to 1.
Then, the initial group is selected in the training set, and
the distance D between the initial group and the test group
is calculated. The distance calculation formula is shown in
Equation (15). At the same time, calculate the distance L
between the training group and the test group, and compare
whether L is less than D. If L is less than Dmax, repeat the

above steps until the termination condition is reached.

D x, yð Þ = 〠
N

k

xk − ykð Þ
 !1/2

: ð15Þ

Metaheuristic classifiers used for comparison include
bGWO [68], BBA [69], BGSA [70], BPSO [71], bALO [72],
BSSA [73], and, the binary form of the original SMA, BSMA.
The above classifiers are used for feature selection, and the
relevant data of feature subsets found by various algorithms
in the search process are learned in KNN classifier, and the
corresponding result information is finally output for com-
parison. In order to reduce the influence of random factors,
10-fold cross validation was adopted, and the average value
of multiple cross experimental results was taken as the result
to evaluate the algorithm’s accuracy.

Tables 15–18 list the statistical results of the average
number of selected features, the average error rate, the aver-
age fitness, and the average calculation time. According to

Table 15: Comparison between BGLSMA and other FS optimizers on average number of the selected features.

Datasets Metrics bGWO BBA BGSA BPSO bALO BSSA BSMA BGLSMA

Colon
Std 20.7964 54.9142 26.5991 12.8966 18.8043 318.1085 17.0098 0.52705

Avg 165.4 781.7 768.8 891.9 856.6 768.1 32 1.5

SRBCT
Std 12.3306 67.0439 18.7723 21.6972 21.4828 336.9647 24.8697 6.1968

Avg 186.6 933 906.8 1029.1 998.2 978.9 34.5 11.2

Leukemia
Std 45.8786 186.7911 33.7377 22.1761 34.2379 1602.754 12.5526 0.5164

Avg 793.2 2991.7 3119.7 3334 3269.3 2046.7 39.3 1.4

Brain_Tumor1
Std 52.7674 163.1894 36.7792 51.0565 60.6781 1004.231 73.4078 7.5491

Avg 623.2 2393.1 2564.6 2771.1 2732.5 2164.1 88.6 6.9

Brain_Tumor2
Std 57.3682 129.1005 45.7117 57.4886 52.4006 1816.777 114.1627 5.1251

Avg 1191 1191 1191 1191 1191 1191 1191 1191

CNS
Std 35.9365 367.5338 59.1534 53.6694 68.2541 1448.946 116.9699 1.4757

Avg 863.9 2848.3 3202.7 3391.8 3340.2 2456.3 199.2 2.2

DLBCL
Std 20.1594 153.9154 40.0012 32.3934 21.6705 1104.873 13.0826 1.0593

Avg 567.2 2231.2 2358.1 2545 2495.5 2102.2 28.6 1.7

Leukemia1
Std 31.8462 133.4618 33.8856 36.5345 25.776 1035.249 62.1035 20.1

Avg 564.8 2150.6 2283.7 2477.1 2433.8 1785.5 70.8 13.7

Leukemia2
Std 85.2763 256.4667 67.8352 47.7568 53.6723 2515.541 61.4167 3.8355

Avg 1253.6 4632.5 5042.5 5335.6 5279.6 2553 76.3 4.6

Lung_Cancer
Std 117.4218 256.5553 73.7741 51.4295 46.6363 2856.425 182.022 22.5982

Avg 1548.9 5207.2 5766.8 6020.9 5957.5 4110.1 206.3 34.3

Prostate_Tumor
Std 56.0124 607.9035 107.2774 58.1687 63.221 2544.318 128.1768 2.5927

Avg 1281.5 4093.7 4834 5058.4 4974.7 2748.4 171.8 4.5

Tumors_9
Std 38.0935 139.8954 104.17 53.1402 48.8599 692.926 274.6595 50.4341

Avg 661 2320.6 2572.5 2701.9 2661.8 2570.3 374.4 28.4

Tumors_11
Std 97.3416 668.8177 117.447 77.4884 76.3216 2645.298 308.9831 1207.602

Avg 1639.5 1639.5 1639.5 1639.5 1639.5 1639.5 1639.5 1639.5

Tumors_14
Std 80.6821 499.8572 120.4111 57.0264 77.2704 1516.641 1914.11 2399.334

Avg 2271.6 2271.6 2271.6 2271.6 2271.6 2271.6 2271.6 2271.6

ARV 2.9286 4.9286 5.8571 8 6.9286 4.2857 2 1.0714

Rank 3 5 6 8 7 4 2 1

21Computational and Mathematical Methods in Medicine



the average number of selected features in Table 15, the pro-
posed BGLSMA has the least average number of selected fea-
tures in all datasets except Tumors_11 and Tumors_14. On
Colon and Leukemia datasets, BGLSMA obtained a small
selected feature with a standard deviation less than 1. This
proves that GLSMA can obtain fewer features and higher
classification accuracy. As can be seen from the tables,
BGLSMA has higher classification accuracy in processing
some complex high-dimensional data and can find smaller
number of features and reduce the data scale. In terms of
ARV index, BGLSMA ranks first. This suggests that
BGLSMA can obtain very competitive results in terms of
the number of features selected.

Table 16 shows the comparison results of eight algo-
rithms in terms of average error rate. It can be seen from
the ranking that BGLSMA has the lowest average error rate,
which proves that the proposed algorithm not only has bet-
ter performance in global optimization problems but also
has good classification ability in feature selection optimiza-

tion. It can be seen that the average error rate of BGLSMA
is significantly lower than that of BSMA. The Gaussian
mutation mechanism enables the population to search a
larger space. As the number of iterations increases, the most
representative features in each dataset are gradually selected,
and the classification accuracy is also improved.

It is clear from the key measurements listed in Table 17,
namely, the weighted number of features and the weighted
error rate, that BGLSMA outperformed other competitors on
78.6% of the dataset. In addition, both the detailed data and
the final ARV value show that BGLSMA has greatly improved
compared with BSMA, which is due to the introduction of Levy
flight mechanism, which increases the diversity and random-
ness of the population and selects features from a wider range
of features, thus achieving higher classification accuracy.

Table 18 shows the average calculation time results of
algorithm comparison. The computation cost of BGLSMA
optimizer proposed in this paper is higher than that of
BBA, BGSA, and other optimizers, and the time complexity

Table 16: Comparison between BGLSMA and other FS optimizers on average error rate.

Datasets Metrics bGWO BBA BGSA BPSO bALO BSSA BSMA BGLSMA

Colon
Std 6.549E-02 2.097E-01 1.277E-01 1.241E-01 1.365E-01 1.236E-01 0.000E+00 0.000E+00

Avg 3.095E-02 2.619E-01 1.929E-01 1.571E-01 1.619E-01 1.810E-01 0.000E+00 0.000E+00

SRBCT
Std 0.000E+00 1.416E-01 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00

Avg 0.000E+00 1.237E-01 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00

Leukemia
Std 0.000E+00 6.942E-02 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00

Avg 0.000E+00 5.357E-02 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00

Brain_Tumor1
Std 5.197E-02 9.735E-02 7.147E-02 5.520E-02 7.216E-02 5.636E-02 4.216E-02 3.162E-02

Avg 3.222E-02 1.081E-01 6.222E-02 5.222E-02 4.222E-02 5.333E-02 2.000E-02 1.000E-02

Brain_Tumor2
Std 7.770E-02 1.775E-01 1.370E-01 9.088E-02 9.875E-02 1.012E-01 0.000E+00 0.000E+00

Avg 3.667E-02 2.850E-01 7.667E-02 7.000E-02 5.929E-02 6.167E-02 0.000E+00 0.000E+00

CNS
Std 5.271E-02 2.084E-01 8.784E-02 1.760E-01 8.635E-02 8.988E-02 4.518E-02 0.000E+00

Avg 1.667E-02 4.171E-01 8.333E-02 1.143E-01 5.333E-02 8.429E-02 1.429E-02 0.000E+00

DLBCL
Std 3.953E-02 8.996E-02 4.518E-02 4.518E-02 3.953E-02 0.000E+00 0.000E+00 0.000E+00

Avg 1.250E-02 7.857E-02 1.429E-02 1.429E-02 1.250E-02 0.000E+00 0.000E+00 0.000E+00

Leukemia1
Std 0.000E+00 1.214E-01 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00

Avg 0.000E+00 7.143E-02 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00

Leukemia2
Std 0.000E+00 9.989E-02 0.000E+00 3.953E-02 0.000E+00 6.023E-02 0.000E+00 0.000E+00

Avg 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00

Lung_Cancer
Std 2.385E-02 4.691E-02 2.491E-02 3.310E-02 2.587E-02 3.376E-02 3.012E-02 1.664E-02

Avg 1.479E-02 6.862E-02 1.929E-02 1.883E-02 2.452E-02 1.952E-02 9.524E-03 5.263E-03

Prostate_Tumor
Std 5.750E-02 1.470E-01 9.661E-02 5.182E-02 6.654E-02 6.542E-02 6.650E-02 0.000E+00

Avg 1.818E-02 1.818E-02 1.818E-02 1.818E-02 1.818E-02 1.818E-02 1.818E-02 1.818E-02

Tumors_9
Std 0.000E+00 2.171E-01 0.000E+00 1.125E-01 9.223E-02 1.265E-01 3.953E-02 7.027E-02

Avg 0.000E+00 4.168E-01 0.000E+00 5.000E-02 5.417E-02 4.000E-02 1.250E-02 3.333E-02

Tumors_11
Std 1.757E-02 8.280E-02 3.749E-02 4.035E-02 3.412E-02 6.182E-02 5.476E-02 3.857E-02

Avg 5.556E-03 5.556E-03 5.556E-03 5.556E-03 5.556E-03 5.556E-03 5.556E-03 5.556E-03

Tumors_14
Std 5.974E-02 8.847E-02 7.256E-02 5.155E-02 6.288E-02 7.715E-02 6.560E-02 3.950E-02

Avg 1.908E-01 3.376E-01 2.339E-01 2.781E-01 2.669E-01 3.063E-01 2.736E-01 2.787E-01

ARV 2 8 3.5714 4.4286 3.7857 4.7143 2 1.7143

Rank 2 8 4 6 5 7 2 1
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of the BSMA and bGWO with better performance is also
higher than that of other optimizers, as shown in
Tables 15–18. The introduction of GM and LF strategies
not only improves the performance of BGLSMA but also
increases the cost of computing time. Meanwhile, the time
cost of the original SMA is higher than that of other algo-
rithms, which leads to the high time cost of BGLSMA to a
certain extent.

To sum up, BGLSMA is found to be the best optimizer
in the overall comparison with other optimizers. Although
the time cost is relatively high, BGLSMA can select the
optimal feature subset on the vast majority of high-
dimensional gene datasets without losing meaningful fea-
tures and achieve the best fitness and classification error
rate at the same time. The experimental results show that
the combined strategy of Gaussian mutation and Levy
flight guarantees the good results of GLSMA in global
exploration.

5. Discussions

In this part, the GLSMA algorithm proposed in this paper,
its advantages, and the points that can be improved are dis-
cussed. In the original SMA, the slime mould is not able to
find the optimal solution in the search space, and it will fall
into the local optimum when encountering some problems,
which limits the use of the algorithm. In this paper, Gaussian
mutation and Levy flight are introduced to update the pop-
ulation, which can enhance the global exploration ability
and avoid the algorithm falling into local optimum. Experi-
mental results show that the optimization effect of the dual
mechanism is better than that of the single mechanism,
and the optimization effect of GLSMA is better than some
advanced optimization algorithms.

We monitor the situation after the population updates its
optimal fitness value to determine whether it falls into local
optimum. If it falls into local optimum, then Levy flight

Table 17: Comparison between BGLSMA and other FS optimizers on average fitness.

Datasets Metrics bGWO BBA BGSA BPSO bALO BSSA BSMA BGLSMA

Colon
Std 6.219E-02 1.416E-01 1.214E-01 1.179E-01 1.298E-01 1.177E-01 4.253E-04 1.318E-05

Avg 3.354E-02 2.032E-01 2.024E-01 1.716E-01 1.752E-01 1.911E-01 8.000E-04 3.750E-05

SRBCT
Std 2.671E-04 3.431E-02 4.067E-04 4.700E-04 4.654E-04 7.300E-03 5.388E-04 1.343E-04

Avg 4.043E-03 2.862E-02 1.965E-02 2.229E-02 2.163E-02 2.121E-02 7.474E-04 2.426E-04

Leukemia
Std 3.217E-04 2.016E-03 2.366E-04 1.555E-04 2.401E-04 1.124E-02 8.803E-05 3.621E-06

Avg 5.562E-03 1.924E-02 2.188E-02 2.338E-02 2.293E-02 1.435E-02 2.756E-04 9.818E-06

Brain_Tumor1
Std 4.935E-02 6.543E-02 6.796E-02 5.232E-02 6.844E-02 4.909E-02 3.995E-02 3.005E-02

Avg 3.588E-02 8.786E-02 8.077E-02 7.302E-02 6.319E-02 6.895E-02 1.975E-02 9.558E-03

Brain_Tumor2
Std 7.366E-02 1.106E-01 1.302E-01 8.625E-02 9.379E-02 9.388E-02 5.506E-04 2.472E-05

Avg 4.058E-02 1.352E-01 9.527E-02 9.028E-02 7.990E-02 7.645E-02 7.345E-04 2.122E-05

CNS
Std 5.002E-02 2.023E-01 8.344E-02 1.670E-01 8.186E-02 9.031E-02 4.304E-02 1.035E-05

Avg 2.189E-02 2.113E-01 1.016E-01 1.324E-01 7.409E-02 9.730E-02 1.497E-02 1.543E-05

DLBCL
Std 3.749E-02 4.246E-02 4.290E-02 4.277E-02 3.763E-02 1.010E-02 1.196E-04 9.685E-06

Avg 1.706E-02 3.127E-02 3.513E-02 3.684E-02 3.469E-02 1.922E-02 2.615E-04 1.554E-05

Leukemia1
Std 2.989E-04 2.989E-04 2.989E-04 2.989E-04 2.989E-04 2.989E-04 2.989E-04 2.989E-04

Avg 5.301E-03 4.443E-02 2.144E-02 2.325E-02 2.284E-02 1.676E-02 6.645E-04 1.286E-04

Leukemia2
Std 3.799E-04 3.799E-04 3.799E-04 3.799E-04 3.799E-04 3.799E-04 3.799E-04 3.799E-04

Avg 5.584E-03 4.486E-02 2.246E-02 3.564E-02 2.352E-02 3.852E-02 3.399E-04 2.049E-05

Lung_Cancer
Std 2.298E-02 4.072E-02 2.363E-02 3.148E-02 2.459E-02 3.729E-02 2.851E-02 1.579E-02

Avg 2.019E-02 6.019E-02 4.121E-02 4.178E-02 4.694E-02 3.486E-02 9.866E-03 5.136E-03

Prostate_Tumor
Std 5.479E-02 7.082E-02 9.162E-02 4.910E-02 6.320E-02 6.686E-02 6.357E-02 1.234E-05

Avg 2.337E-02 2.337E-02 2.337E-02 2.337E-02 2.337E-02 2.337E-02 2.337E-02 2.337E-02

Tumors_9
Std 3.326E-04 1.828E-01 9.096E-04 1.071E-01 8.783E-02 1.214E-01 3.912E-02 6.714E-02

Avg 5.772E-03 1.681E-01 2.246E-02 7.109E-02 7.470E-02 6.044E-02 1.514E-02 3.192E-02

Tumors_11
Std 1.651E-02 6.199E-02 3.563E-02 3.821E-02 3.251E-02 5.882E-02 5.134E-02 3.794E-02

Avg 1.182E-02 1.030E-01 6.002E-02 6.892E-02 8.389E-02 8.022E-02 4.772E-02 4.175E-02

Tumors_14
Std 5.678E-02 8.676E-02 6.881E-02 4.890E-02 5.967E-02 7.255E-02 6.031E-02 3.776E-02

Avg 1.888E-01 1.888E-01 1.888E-01 1.888E-01 1.888E-01 1.888E-01 1.888E-01 1.888E-01

ARV 2.5 7.5714 5.0714 6.3571 5.7143 5.0714 2.2143 1.5

Rank 3 8 4 7 6 4 2 1
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mechanism is invoked to help the algorithm increase the
search space and jump out of local trap. The combination of
the dual mechanism is significantly better than the single
mechanism. However, it can be seen from Table 18 that the
time cost of BGLSMA is relatively high, which is partly due
to the high time cost of BSMA and partly due to the addition
of mechanism, which leads to the increase of time cost. Corre-
spondingly, the mechanism greatly improves the performance
of the algorithm, allowing it to be applied to more domains,
such as human activity recognition [74], microgrid planning
[75], medical image augmentation [76], autism spectrum dis-
order classification [77], disease prediction [78, 79], named
entity recognition [80], information retrieval services
[81–83], and recommender systems [84–87].

6. Conclusions and Future Directions

In this paper, an improved SMA (GLSMA) algorithm based on
Gaussian mutation and Levy flight is proposed. Experimental
results show that the two mechanisms play an important role

in further enhancing the global search of SMA and alleviating
falling into local optimum. Firstly, the effectiveness of GLSMA
method is verified by comparison with DE, PSO, GWO, and
other well-known algorithms. Secondly, compared with other
advanced swarm intelligence algorithms, such as MPEDE,
LSHADE, ALCPSO, and CLPSO, GLSMA is able to find the
optimal solution faster. Finally, in order to prove the perfor-
mance of GLSMA in practical applications, BGLSMA is
obtained by mapping GLSMA into binary space through trans-
formation function, and it is applied to feature selection prob-
lems of 14 commonly used UCI high-dimensional gene
datasets. Compared with excellent metaheuristic optimizer,
general average characteristics selected number, average error
rate, and average fitness and calculated the cost four aspects; it
can be seen that GLSMA in the application of feature selection
still has good global search ability and be able to select fewer fea-
tures and higher classification accuracy. Therefore, the above
conclusions indicate that GLSMA can be a promising method
for not only function optimization problems but also practical
feature selection problems.

Table 18: Comparison between BGLSMA and other FS optimizers on average computational time.

Datasets Metrics bGWO BBA BGSA BPSO bALO BSSA BSMA BGLSMA

Colon
Std 2.5514 2.5514 2.5514 2.5514 2.5514 2.5514 2.5514 2.5514

Avg 31.9062 30.4906 13.6746 8.584 8.0335 37.1659 70.1156 114.1263

SRBCT
Std 2.9138 2.9361 1.8018 0.91374 0.8866 3.2522 9.1156 16.0452

Avg 34.0148 34.1434 17.2141 10.1891 9.9331 45.3289 79.6426 139.0788

Leukemia
Std 9.0416 8.7894 3.5903 1.6512 1.437 13.8392 27.5824 46.7772

Avg 91.0773 86.08 41.7215 19.6962 18.1027 122.9642 235.5459 383.8539

Brain_Tumor1
Std 7.8949 7.2781 4.1147 1.5711 2.0128 11.921 15.8751 35.8179

Avg 77.839 75.6561 37.1795 20.7058 19.0823 106.5918 204.8332 331.4628

Brain_Tumor2
Std 13.1514 10.441 6.5964 2.3475 1.8691 17.5793 39.2047 53.3446

Avg 129.8032 116.4358 53.2582 20.6694 18.4634 170.6433 339.6091 519.5528

CNS
Std 8.7883 7.4052 4.2408 1.4574 1.5028 13.3078 28.6106 44.1968

Avg 89.6331 86.575 38.5343 17.6038 15.9767 120.3373 235.2898 363.2358

DLBCL
Std 7.2489 6.5617 3.362 1.5989 1.342 10.6978 20.8082 28.7903

Avg 71.175 67.8196 33.2668 16.5984 16.1274 95.6511 181.2594 299.2078

Leukemia1
Std 7.4559 7.4559 7.4559 7.4559 7.4559 7.4559 7.4559 7.4559

Avg 70.1512 65.732 31.9728 15.5488 14.9732 92.9905 179.7238 284.7675

Leukemia2
Std 14.1082 13.8476 8.4149 3.1481 3.1518 20.2226 43.5071 64.6559

Avg 139.8351 130.1774 62.3828 28.8214 26.3602 192.8016 369.2325 591.9679

Lung_Cancer
Std 20.2852 25.0081 17.671 9.2944 3.67 35.113 52.5769 136.7772

Avg 186.6111 219.1699 141.8596 115.52 114.9638 281.4307 436.7065 893.1362

Prostate_Tumor
Std 14.2167 14.4316 6.592 4.633 3.9045 22.1621 26.0276 61.9174

Avg 135.8685 130.3268 71.3971 37.1729 36.0317 187.0535 376.2129 565.8891

Tumors_9
Std 7.598 5.6978 3.1465 1.17 1.4113 10.018 18.957 26.6486

Avg 72.981 73.0313 31.4313 15.3876 14.656 98.7644 228.8745 291.5208

Tumors_11
Std 19.6112 18.8848 19.1443 5.764 9.1023 37.9402 45.4794 98.5864

Avg 179.912 193.265 121.7997 94.3676 90.4458 265.7033 519.6271 661.6608

Tumors_14
Std 32.6068 44.7828 15.9668 14.1586 17.9125 72.9596 45.6897 114.9044

Avg 278.9632 368.5713 323.2499 287.037 289.2344 458.6548 714.792 835.4772

ARV 4.4286 4.3571 3.0714 2 1.1429 6 7 8

Rank 5 4 3 2 1 6 7 8
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There are still many aspects to explore in our research.
We can consider applying GLSMA to other feature selection
datasets and study the effectiveness of BGLSMA on other
datasets. Further improvements to the SMA can be
attempted to improve the balance between global explora-
tion and local development. Finally, it is an interesting topic
to apply SMA to more fields, such as photovoltaic parameter
optimization and image segmentation (see Tables 5–18).
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Background. Accurate pathological diagnosis of gastric endoscopic biopsy could greatly improve the opportunity of early diagnosis
and treatment of gastric cancer. The Japanese “Group classification” of gastric biopsy corresponds well with the endoscopic
diagnostic system and can guide clinical treatment. However, severe shortage of pathologists and their heavy workload limit
the diagnostic accuracy. This study presents the first attempt to investigate the applicability and effectiveness of AI-aided
system for automated Japanese “Group classification” of gastric endoscopic biopsy. Methods. In total, 260 whole-slide images of
gastric endoscopic biopsy were collected from Dalian Municipal Central Hospital from January 2015 to January 2021. These
images were annotated by experienced pathologists according to the Japanese “Group classification.” Five popular
convolutional neural networks, i.e., VGG16, VGG19, ResNet50, Xception, and InceptionV3 were trained and tested. The
performance of the models was compared in terms of widely used metrics, namely, AUC (area under the receiver operating
characteristic curve, i.e., ROC curve), accuracy, recall, precision, and F1 score. Results. Results showed that ResNet50 achieved
the best performance with accuracy 93.16% and AUC 0.994. Conclusion. Our results demonstrated the applicability and
effectiveness of DL-based system for automated Japanese “Group classification” of gastric endoscopic biopsy.

1. Background

Gastric cancer has long been acknowledged as a severe pub-
lic health problem across the globe [1] with a 5-year survival
rate of lower than 40% [2]. Despite the decrease of mortality
over the past few decades in some countries, it remains the
fourth leading cause of cancer death worldwide [3] and third
in China [4]. In China, it is still highly prevalent and
accounts for over 40% of new cases in the world [3, 4]. Most
gastric cancer cases are diagnosed at an advanced stage due
to its atypical symptoms in early stage and late aggressive
behaviors [5]. The situation is more severe in China, where
more than 60% of patients were diagnosed at an advanced
stage [6]. However, the treatment options are often limited
at this stage, resulting in unsatisfactory prognosis [7]. Early

diagnosis of gastric cancer enables early clinical intervention,
thus improving prognosis and survival rate. Currently,
timely and correct diagnosis of gastric cancer relies heavily
on pathological examination of gastric biopsy tissue, which
is performed by highly trained pathologists with an optical
microscopy. However, this process is tedious and time-
consuming. Moreover, the accuracy of pathological diagno-
sis of gastric biopsy is quite limited [4] due to the shortage
of pathologists worldwide. Such shortage leads to heavy
workload for pathologists and possible errors in diagnosis.

Therefore, there is a great need for automated and
accurate pathology diagnosis of gastric cancer. Several
applications of deep learning (DL) models have emerged in
digital pathology image analysis. The common task is either
binary classification task as tumor detection or three-way

Hindawi
Computational and Mathematical Methods in Medicine
Volume 2022, Article ID 6899448, 9 pages
https://doi.org/10.1155/2022/6899448

https://orcid.org/0000-0002-5002-6968
https://orcid.org/0000-0001-9798-5835
https://orcid.org/0000-0003-2637-3289
https://orcid.org/0000-0001-8746-1974
https://orcid.org/0000-0002-7772-1995
https://orcid.org/0000-0003-2039-7917
https://orcid.org/0000-0002-5762-7803
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/6899448


classification task as cancer classification. For instance,
Wang et al. [8] proposed GastricNet, a DL-based framework
for automatic gastric cancer identification. The model
achieved 100% accuracy for slice-based classification, out-
performing the state-of-the-art networks like DenseNet
and ResNet. Leon et al. [9] proposed two independent
approaches based on convolutional neural network (CNN)
for gastric cancer detection using histopathological image
samples. The first one analyzed the morphological features
of the whole image. The second one analyzed the local
characteristic properties. The histopathological image was
classified as either benign or malignant. Qu et al. [10]
performed the same task with a transfer learning strategy.
The model was first pretrained with ImageNet and further
fine-tuned with a well-annotated benign/malignant dataset.
A detection accuracy of up to 89.72% was achieved, showing
the promise of automated gastric cancer detection. On the
other hand, Sharma et al. [11] explored the deep learning
methods for classification in H&E-stained histopathological
whole slide images (WSIs) of gastric carcinoma. The WSIs
were classified as HER2+ tumor, HER2- tumor, or nontu-
mor. The model achieved an overall accuracy of 0.6690.
More recently, Iizuka et al. [12] investigated the feasibility
of CNNs and recurrent neural networks (RNNs) for classify-
ing WSI into adenocarcinoma, adenoma, and nonneoplastic,
achieving area under the curves (AUCs) up to 0.97 and 0.99
for gastric adenocarcinoma and adenoma, respectively. The
work described above suggests that DL models are promis-
ing for pathological image analysis for gastric cancer. How-
ever, clinical application remains challenging. The ultimate
purpose of automated pathological image analysis is to
better serve for decision making in treatment. However, this
work does not immediately translate to clinic decisions.

In China, the majority of pathologists are trained with
WHO classification [13] while most treatment options are
adopted from Japan [4, 5] with reference to the Japanese
Gastric Cancer Treatment Guidelines [14] (Japanese guide-
lines). However, the pathological classification adopted in
Japanese guidelines is the “group classification” of gastric
biopsy specimens (Groups 1~5), rather than WHO classifi-
cation. Thereby, the pathologists and gastroenterologists
speak different languages, and the pathological diagnosis
does not correspond well with clinical treatment decisions.

In this paper, the feasibility of deep learning models
for automated Japanese “Group classification” of WSIs of
gastric endoscopic biopsy was investigated. Five popular
DL models, VGG-16 [15], VGG-19 [15], ResNet-50 [16],
Xception [17], and InceptionV3 [18], were trained and
compared. Results showed that ResNet50 achieved the best
performance with an accuracy of 93.16% and an AUC of
0.994. To the best of our knowledge, this is the first
attempt to investigate the applicability and effectiveness
of AI-aided system for pathological group classification
of human gastric epithelial lesions.

2. Methods

2.1. Whole-Slide Image Preparation. In total, 260 cases of
gastric endoscopic biopsy from 173 patients (128 males

and 45 females, aged from 27 to 92 years old, mean ± std:
65:2 ± 11:4) with human gastric epithelial lesions were
collected from Dalian Municipal Central Hospital from Jan-
uary 2015 to January 2021. The WSIs were stained with
hematoxylin and eosin (H&E) and further produced at ×40
magnification (0.238μm/pixel) by the digital scanner (KF-
PRO-005). All procedures performed in studies involving
human participants were approved by the Medical Ethics
Committee of Dalian Municipal Central Hospital and in
accordance with the 1964 Helsinki declaration and its later
amendments or comparable ethical standards. Informed
written consent was also obtained from individual partici-
pants included in the study. The workflow of the study is
illustrated in Figure 1.

2.2. Annotation Procedure. All the WSIs were annotated by
two experienced pathologists using an open-source annota-
tion tool labelme (https://github.com/wkentaro/labelme).
According to the Japanese “Group classification,” gastric
endoscopic biopsy can be classified as 5 groups (see
Figure 2 for illustration). The description of the 5 groups is
shown in Table 1. Briefly, it defines Group 1 as normal tissue
or nonneoplastic lesion tissue, Group 2 as tissue that is diffi-
cult to make diagnosis between neoplastic and nonneoplastic
lesions, Group 3 as adenoma, Group 4 as tissue with neo-
plastic lesion that is suspected to be carcinoma, and Group
5 as tissue with carcinoma [14].

The annotation tool, labelme, enables the pathologists to
segment a WSI into various regions and label each region
with the group they belong to. It has to be noted that differ-
ent regions from a single WSI could be labeled as different
groups, whereas a single region can only be labeled as a
single group. The annotation process was accomplished by
two pathologists. Pathologist 1 first drew the outline of each
region and annotated with Groups 1~5. The initial annota-
tion was then modified, confirmed, or verified by a senior
pathologist. An example of WSI with final annotation is
illustrated in Figure 3. The region outlined in red was anno-
tated as Group 5, while the region outlined in green was
annotated as Group 1. The remaining regions that were
not outlined were the regions that are hard to classify.

2.3. Preprocessing and Datasets. A big challenge faced in
computational pathology is the huge size of a WSI. A single
image can contain hundreds of millions of pixels. To apply
deep learning models, a WSI image was first segmented into
small tiles with 400 × 400 pixel size. The tiles with a tissue
area less than 50% were discarded. In clinical practice, in
order to increase diagnostic accuracy, pathologists often
observe the specimens under various magnifications of the
view (40×, 100×, 200×, and 400×). Therefore, we varied
the size of the tiles from 400 × 400 pixel, 600 × 600 pixel,
800 × 800 pixel to 1000 × 1000 pixel and established 5 data-
sets consisting of tiles with different sizes (see Table 2). All
datasets underwent the tile selection process described
above.

2.4. Model Training, Testing, and Evaluation. Each dataset
was split into a training set (60%), validation set (20%),
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and testing set (20%). To avoid data imbalance, the splitting
process was done within each group. Five popular models
were trained, i.e., VGG16, VGG19, ResNet50, Xception,
and InceptionV3. Standard data augmentation techniques
(such as reflection, rotation, and shift) and early stopping
were employed to avoid overfitting. TensorFlow was used
as the framework to build DL models. All models were

trained/tested on one Nvidia GeForce RTX 2080Ti 8GB
GPU.

Commonly used metrics, namely, overall accuracy (Acc)
and area under the receiver operator characteristic (ROC)
curve (AUC), were used to evaluate the performance of the
models, which were calculated from comparing model
prediction with the annotation of pathologists. The accu-
racy, recall, precision, and F1 score were also calculated for
each group to provide detailed information of model
performance.

Acc represents the overall accuracy, which was defined
as the percentage of correctly predicted tiles in all tiles.

The recall for Group i was defined as

Recall = TP
TP + FN

, ð1Þ

where TP (true positive) is the number of tiles that were
annotated as Group i by pathologists and correctly predicted

Annotation Segmentation

Tile selection

Data split

Annotation Segmentation

Tile selecti

Data splitTraining
evaluation
testing

Figure 1: Workflow of the study.

Group 1 Group 2

Group 3 Group 4 Group 5

Figure 2: Typical examples of Groups 1~5 according to the Japanese “Group classification.” Framed in the left corner of each subfigure is
the typical appearance of the corresponding class.

Table 1: Description of Japanese “Group classification”.

Group Description

Group 1 Normal tissue or nonneoplastic lesion tissue

Group 2
Difficult to make diagnosis between neoplastic and

nonneoplastic lesions

Group 3 Adenoma

Group 4
Can be diagnosed as neoplastic lesion and is

suspected to be carcinoma

Group 5 Carcinoma
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as Group i by the model; FN (false negative) is the number of
tiles that were annotated as Group i but predicted incorrectly
as any other groups by the model. It represents the percent-
age of tiles that were correctly predicted by the model in all
tiles annotated as Group i by pathologists.

The precision for Group i was defined as

Precision =
TP

TP + FP
, ð2Þ

where FP (false positive) is the number of tiles that were
predicted as Group i but annotated as any other groups by
pathologists. It stands for the percentage of tiles that were
annotated as Group i by pathologists in all tiles that were
predicted as Group i by the model.

The F1 score, a metric that combines both precision and
recall, was defined as

F1 score =
2 × precision × recall
Precision + recall

: ð3Þ

3. Results

3.1. Among the Five Model Architectures, ResNet50 Performs
the Best.We first compared the performance of five different
models trained with Dataset 1 (see Table 3). Among the five
models, ResNet50 achieved the best performance with an
AUC of 0.988 and an Acc of 89.5%, followed by VGG16
and VGG19 with an AUC of 0.970 and 0.949, respectively.
We further analyzed the accuracy, recall, precision, and F1
score of the five models for each group individually (see
Figure 4). Results showed that ResNet50 achieved 90.33%,
81.56%, 88.33%, 81.15%, and 95.18% recall for Groups

Figure 3: An example of annotated WSI, segmented with labelme. Outlined in red was annotated as Group 5 while in green was annotated
as Group 1.

Table 2: Information of datasets.

Group 1 Group 2 Group 3 Group 4 Group 5

Number of WSIs 166 84 45 68 58

Dataset 1 (400 × 400) 45001 10274 17999 20845 41521

Dataset 2 (600 × 600) 21430 4307 7584 8967 17834

Dataset 3 (800 × 800) 10875 2291 4204 4931 9944

Dataset 4 (1000 × 1000) 7243 1387 2652 3044 6318

Dataset 5 (mixed size∗) 39548 7985 14440 16942 34096
∗Tiles with various sizes (600 × 600, 800 × 800, and 1000 × 1000) were mixed to construct Dataset 5.

Table 3: Test accuracy of five different models∗.

Model AUC Acc (%)

ResNet50 0.988 89.5

VGG16 0.970 83.1

VGG19 0.949 76.6

Xception 0.894 66.2

InceptionV3 0.881 63.0

∗The models were trained on Dataset 1.
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1~5, respectively, leading all the other models for all groups.
As also can be seen, ResNet50 outperformed all other
models in terms of all metrics (higher green bars in
Figure 4), except precision for Group 1, which is slightly
lower compared to VGG16 (89.08% compared to 90.22%).

3.2. The Best Performance Was Achieved with Dataset 5 with
Mixed Size of Tiles.We further tested the performance of the
ResNet50 models trained with different datasets. The AUC
and Acc are listed in Table 4. As can be seen, ResNet50 per-
formed the best when trained with Dataset 5 with an AUC of
0.994 and an Acc of 93.16%, which consists of tiles with
mixed sizes. Apart from the overall AUC and Acc, we also
calculated the accuracy, recall, precision, and F1 score of
ResNet50 models for each group trained with different data-
sets (Figure 5). Results showed that ResNet50 achieved the
highest accuracy, recall, precision, and F1 score for all
groups when trained on Dataset 5 (higher green bars in
Figure 5), except the highest recall for Group 5, which was
achieved when the model was trained on Dataset 3.
Figure 6 shows the normalized confusion matrix of
ResNet50 trained on Dataset 5 to better illustrate the model
performance.

4. Discussion

The present study is the first attempt to investigate the feasi-
bility of deep learning models for automated Japanese
“Group classification” based on WSIs. Specifically, we
trained 5 popular CNN models, namely, VGG16, VGG19,

ResNet50, Xception, and InceptionV3. Results showed that
ResNet50 achieved the leading performance in terms of
AUC and Acc. This is not surprising since comprehensive
empirical evidence has shown that residual network can gain
accuracy from considerably increased depth. To apply DL
models to huge WSIs, each WSI was first segmented into
small tiles. We varied the size of tiles and built five datasets
that constitute tiles of different sizes (see Table 2). In clinic,
pathologists observe the biopsy under various magnifica-
tions of view to enhance diagnosis. Similarly, a dataset with
mixed sized tiles was also constructed in this work. We
further trained ResNet50 with different datasets. Results
showed that when trained with mixed sized tiles (Dataset
5), the model achieved the best performance, with an AUC
of 0.994 and an Acc of 93.16%. With tiles of different sizes,
the model is able to “see” the samples at various spatial
scales, as the pathologists observe the biopsy under various
magnifications of view. Our results suggest that DL models

Group 1 Group 2 Group 3 Group 4 Group 5

93.12% 97.01% 97.33% 95.44% 96.05%
90.94% 94.32% 95.80% 91.51% 93.65%
89.44% 93.04% 92.52% 86.60% 91.54%
81.64% 91.58% 91.29% 85.43% 82.55%
77.62% 92.15% 89.55% 84.74% 81.89%

93.12% 97.01% 97.33% 95.44% 96.05%
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Group 1 Group 2 Group 3 Group 4 Group 5

ResNet50 90.33% 81.56% 88.33% 81.15% 95.18%
VGG16 81.52% 67.01% 80.81% 74.53% 94.11%
VGG19 83.82% 30.27% 80.50% 70.04% 81.76%
Xception 60.36% 42.09% 55.72% 56.56% 88.03%
InceptionV3 68.40% 21.51% 61.69% 40.92% 78.99%
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Group 1 Group 2 Group 3 Group 4 Group 5

89.08% 79.54% 91.30% 88.21% 92.16%
90.22% 61.45% 86.63% 71.46% 86.36%
84.27% 57.75% 68.59% 55.03% 89.71%
79.35% 44.16% 72.29% 52.41% 66.16%
65.62% 46.09% 60.39% 50.43% 67.44%
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0.897 0.805 0.898 0.845 0.936
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Figure 4: Performance (accuracy, recall, precision, and F1 score) of five different models for each group evaluated on the test set. All models
were trained on Dataset 1. The values of the metrics for ResNet50 are highlighted above the corresponding green bars.

Table 4: AUC and accuracy of ResNet-50 models trained on
different datasets.

Dataset AUC Acc (%)

Dataset 1 (400 × 400) 0.988 89.48%

Dataset 2 (600 × 600) 0.989 90.64%

Dataset 3 (800 × 800) 0.983 88.09%

Dataset 4 (1000 × 1000) 0.979 87.21%

Dataset 5 (mixed size) 0.994 93.16%
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Group 1 Group 2 Group 3 Group 4 Group 5

Dataset 1 93.12% 97.01% 97.33% 95.44% 96.05%
Dataset 2 94.10% 96.76% 97.28% 95.94% 97.19%
Dataset 3 93.16% 96.39% 96.14% 94.48% 96.01%
Dataset 4 91.25% 96.78% 96.15% 94.86% 95.37%
Dataset 5 95.42% 97.91% 98.17% 97.09% 97.72%

95.42%

97.91% 98.17%
97.09%

97.72%
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96.00%
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100.00%
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Group 1 Group 2 Group 3 Group 4 Group 5

Dataset 1 90.33% 81.56% 88.33% 81.15% 95.18%
Dataset 2 92.74% 74.68% 87.61% 83.21% 96.97%
Dataset 3 90.39% 64.63% 85.14% 76.27% 98.09%
Dataset 4 89.85% 67.51% 81.32% 79.64% 94.62%
Dataset 5 92.76% 88.48% 91.07% 90.70% 96.82%
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Dataset 1 89.08% 79.54% 91.30% 88.21% 92.16%
Dataset 2 90.88% 78.99% 90.53% 88.86% 93.77%
Dataset 3 89.44% 80.65% 85.24% 86.04% 89.91%
Dataset 4 85.87% 81.30% 87.78% 84.64% 90.67%
Dataset 5 94.06% 83.07% 94.40% 89.99% 95.68%
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Figure 5: Performance (accuracy, recall, precision, and F1 score) of ResNet50 evaluated on the test set. The models were trained on five
different datasets. The values of the metrics for ResNet50 trained on Dataset 5 are highlighted above the green bars.
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Figure 6: Normalized confusion matrix of ResNet50 on the test set. The model was trained on Dataset 5.
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for automated Group classification of neoplastic lesion
biopsy is promising and could help relief the workload of
pathologists and increase diagnosis accuracy.

A closer investigation suggested that such improvement
lies in a much higher recall for Group 2 (88.48% compared
to 81.56%, 74.68%, 64.63%, and 67.51%) and Group 4
(90.70% compared to 81.15%, 83.21%, 76.27%, and
79.64%) and a fairly higher recall for Group 3 (91.07% com-
pared to 88.33%, 87.61%, 85.14%, and 81.32%). The correct
recognition of Groups 2~4 gastric biopsy is challenging in
clinical practice. Meanwhile, it is critical for early detection
of gastric cancer, enabling good prognosis with proper
intervention. Therefore, higher recall for Groups 2~4 is
of high clinical importance. Our results suggest that train-
ing the model with mixed sized tiles enables a higher
recall for Groups 2~4.

In addition, our results suggest that the size of tiles has
an effect on the model performance. An interesting trend
revealed by our results is that the model degenerates when
trained with bigger tiles. Two possible reasons may explain
this. First, when segmented into big-sized tiles, the number
of tiles is smaller. The samples in the training set could be
insufficient for model training, leading to underfitting of
the model. Second, the big-sized tiles are more likely to
contain unwanted information, increasing the difficulty of
model training.

There is currently no standardized treatment protocol
that is globally accepted, and clinical practice alters across
countries. This is mainly due to the fact that gastric cancer
populations from different countries have distinct etiology,
epidemiological characteristics, and clinicopathological fea-
tures, especially between the East and the West [2, 4, 5].
There are several pathological diagnosis systems of gastric
cancer around the world. Two main systems are the
“WHO classification of tumors of digestive system” [13]
and the Japanese “Group classification” [14]. Most patholo-
gists in China are trained with the “WHO classification”
while the gastroenterologists are trained with the Japanese
guidelines. Such discrepancy causes a reduction in collabora-
tion efficiency between the pathologists and gastroenterolo-
gists. Therefore, current pathological diagnosis system in
China does not fully play its due role in guiding clinical
treatment. The Japanese “Group classification,” on the other
hand, corresponds well with the endoscopic diagnostic sys-
tem and could provide direct guidance for clinical treatment.
Another problem that cannot be ignored in China is that the
pathologists are extremely in short. Therefore, AI-aided
automatic system for Japanese “Group classification” of
gastric epithelial lesions is of clinical importance and the
present study is the first attempt. If validated, such a system
could be applied, not only to relieve the workforce of pathol-
ogists and improve their diagnosis accuracy but also to
better translate pathological diagnosis to clinical practice.

To the best of our knowledge, the present study is the
first to investigate the feasibility of automated Japanese
“Group classification” of gastric biopsies based on patholog-
ical images. Automated pathological image analysis for
human gastric epithelial lesions is not a novel topic. Most
studies focus on early cancer diagnosis or cancer classifica-

tion and treat the task as a binary [9, 10] or three-way clas-
sification problem [19]. For instance, Qu et al. [10] proposed
a step-wise fine-tuning approach for gastric pathology image
classification, where the model was first pretrained with
ImageNet and further fine-tuned with a well-annotated
benign/malignant dataset. Similarly, Leon et al. [9] proposed
a CNN-based approach to classify gastric histopathological
images as benign or malignant. On the other hand, Li et al.
[19] proposed a DL-based approach for early diagnosis of
gastric cancer, where non-precancerous lesion, precancerous
lesion, and gastric cancer were automatedly differentiated.
Sharma et al. [11] proposed a convolutional neural network
for cancer classification based on immunohistochemical
response and achieved 0.669 accuracy, in which the WSIs
of surgical sections were classified as HER2+ tumor,
HER2- tumor, or nontumor.

A common limitation of DL models for medical applica-
tions is that their interpretability is very weak. Their decision
should be suggestive or assisted, rather than deterministic.
However, they are still quite helpful. One important applica-
tion of the present study is to quickly screen out Group 1
and Group 5 biopsy, which is defined as normal tissue or
nonneoplastic lesion tissue and carcinoma, respectively.
Although the pathological diagnosis of Group 1 and Group
5 is relatively easy, it still takes time. Such automated screen-
ing could greatly reduce the workload of pathologists so that
they have more time spending on other suspicious speci-
mens, thus increasing the diagnosis accuracy, as well as
efficiency. ResNet50 achieved 7.24% false-negative rate for
Group 1 and 4.32% false-positive rate for Group 5, respec-
tively, suggesting its potential to be applied as so. The
false-positive rate and false-negative rate for each group
are provided in Table 5. The false-negative rate for Group
5 indicates the rate of missed diagnosis of carcinoma, which
can have a more negative effect on the patient. Therefore, a
low value is highly expected. Our results showed 3.18%
false-negative rate for Group 5, which is acceptable for an
assistive screening system. Moreover, the inference time for
one WSI is about 30 seconds, which is shorter than conven-
tional diagnosis by pathologists with a microscope. The
elapsed training time is about 7 hours.

One limitation of the present study is that all WSIs were
collected from one center and produced by an identical
digital scanner. WSIs from multiple centers with various
digital scanners should be included for further validation
of this approach.

5. Conclusions

This paper presents the first attempt to investigate the appli-
cability of convolutional neural networks for automated

Table 5: The false-positive rate (FPR) and false-negative rate
(FNR) of each group.

Group 1 Group 2 Group 3 Group 4 Group 5

FPR 5.94% 16.93% 5.60% 10.01% 4.32%

FNR 7.24% 11.52% 8.93% 9.30% 3.18%
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Japanese “Group classification” of WSIs of gastric endo-
scopic biopsy. Five popular CNNs were trained and tested.
Results showed that ResNet50 achieved the best perfor-
mance with an accuracy of 93.16% and an AUC of 0.994.
Our results demonstrated the applicability and effectiveness
of DL-based system for automated Japanese “Group classifi-
cation” of gastric endoscopic biopsy.
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Breast cancer is one of the most widespread and fatal cancers in women. At present, anticancer drug-inhibiting estrogen receptor α
subtype (ERα) can greatly improve the cure rate for breast cancer patients, so the research and development of this kind of drugs
are very urgent. In this paper, the problem of how to screen excellent anticancer drugs is abstracted as an optimization problem.
Firstly, the graph model is used to extract low-dimensional features with strong distinguishing and describing ability according to
various attributes of candidate compounds, and then, kernel functions are used to map these features to high-dimensional space.
Then, the quantitative analysis model of ERα biological activity and the classification model based on ADMET properties of the
support vector machine are constructed. Finally, sequential least square programming (SLSQP) is utilized to solve the ERα
biological activity model. The experimental results show that for anticancer data sets, compared with principal component
analysis (PCA), the error rate of the graph model constructed in this paper is reduced by 6.4%, 15%, and 7.8% on mean
absolute error (MAE), mean squared error (MSE), and root mean square error (RMSE), respectively. In terms of classification
prediction, compared with principal component analysis (PCA), the recall and precision rates of this method are enhanced by
19.5% and 12.41%, respectively. Finally, the optimal biological activity value (IC50_nM) 34.6 and inhibitory biological activity
value (pIC50) 7.46 were obtained.

1. Introduction

In countries all over the world, the proportion of cancer in
many factors harmful to people’s health is increasing year
by year. Breast cancer has been the most common cancer,
with a mortality rate of 11.5% to 28.4% [1]. At present, in
the process of studying the treatment of breast cancer, some
scholars have found that an estrogen receptor α subtype
(estrogen receptor alpha, ERα) can be used as a key target
for effective treatment of breast cancer, and compounds that
can antagonize the activity of ERα can be used as candidate
drugs for the treatment of breast cancer.

There are many kinds of anticancer compounds, and
the extraction of low-dimensional features with strong

description ability from various properties of the com-
pounds can greatly improve the efficiency of screening
anticancer drug candidates. Many scholars’ abstract anti-
cancer drug selection as feature extraction, such as Tassen-
berg et al. [2], use automatic feature extraction algorithm
DenMap to detect single crystal dendrite core quickly,
accurately, and repeatably and realize average automated
feature extraction. Xue et al. [3] adopted an analytic hier-
archy process entropy (HDE) feature extraction method
based on the analytic hierarchy process to effectively diag-
nose the fault of rolling bearings, which eliminates the
redundant information between features and retains the
fault-related information. Yang et al. [4] used nonlinear
simulation feature extraction to complete the tasks of
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speech detection and keyword location in inference sensor
system with low power consumption. Xue et al. [5] pro-
posed a feature extraction method based on asymmetric
probability distribution function to reconstruct the distilla-
tion curve in industrial refining process, which is beneficial
to the modeling and optimization of the oil refining
process. Liu et al. [6] used feature extraction method to
classify the biogenetic mechanism of circular RNA, which
confirmed the view that multiple biogenetic mechanisms
of different subsets of human CircRNA coexist. Zhu
et al. [7] proposed a lightweight single image superresolu-
tion network with an expectation-maximization attention
mechanism (EMASRN) to extract feature maps of differ-
ent sizes. The experimental results demonstrate the supe-
riority of EMASRN over state-of-the-art lightweight SISR
methods in terms of both quantitative metrics and visual
quality.

On the other hand, whether anticancer compounds can
be selected as drug candidates, we also need to consider
the following five characteristics: (1) intestinal epithelial cell
permeability, (2) cytochrome P450 enzyme, (3) cardiac
safety evaluation of compounds, (4) human oral bioavail-
ability, and (5) micronucleus test. These five characteristics
are often referred to as ADMET properties [8–10].

For the evaluation of the screening of anticancer com-
pounds listed above, this problem is abstracted as the prob-
lem of classification and prediction of anticancer drugs
based on ADMET properties. For example, Guo et al. [11]
proposed a novel Relation Separation Network (RSNet)
in this paper, aiming to boost few-shot learning by
improving similar-class recognition performance. Com-
pared to PT+MAP, RSNet improves the accuracy of classi-
fication on the CUB data set by approximately 5% and
that of similar-class classification by more than 10%.
Wang et al. [12] used a scalable window waveform sam-
pling method (SWWS) based on the classification pattern
to classify the workload requested by all users and then
reasonably predict the usage of user cloud resources to
minimize the cost of use. Wang et al. [13] combined miss-
ing value analysis with likelihood ratio test, introduced
weighted decay random forest model, realized ICU read-
mission classification based on sparse data, and greatly
reduced patients’ expenses. Zhang et al. [14] adopted
recursive partition classification method, established a classi-
fication prediction model of 58 between derivative inhibitors
and du’s amastigotes, and determined its molecular target
and molecular mechanism. Steckenrider and Furukawa [15]
adopted a highly random road crack perception network
detection and classification method based on probability
formula, which allows features to be extracted from crack
images and retains the uncertainty in the detection. Chen
et al. [16] adopted a classification diagnosis method com-
bining FTIR near-infrared spectroscopy (NIRS) and sup-
port vector machine to differentiate malignant pleural
effusion (MPE) from benign pleural effusion (BPE). Barth
et al. [17] adopted the classification method of combining
principal component analysis (PCA) with K-nearest neigh-
bor (KNN) to address the problem of high correlation var-
iables in wine classification. Lamge et al. [18] adopted a

skin disease detection and classification method based on
the combination of image processing technology and neu-
ral network to classify and evaluate patients’ skin lesions
images. Schultz et al. [19] used recurrent neural network
and convolution neural network to classify airport perfor-
mance on the basis of weather data. This method quan-
tifies the correlation between airport performance decline
and weather severity, and the prediction accuracy of air-
craft take-off can reach more than 90%.

At present, the research and development of anticancer
compounds in the medical field can be roughly classified
into three steps. Firstly, the properties of the compounds
were examined, and then, the activity model of the com-
pound against cancer cells and the classification model of
ADMET properties were constructed. Finally, the charac-
teristic value of the antagonistic activity of the compound
to cancer cells was obtained by solving the model. There-
fore, in this paper, the research and development of anti-
breast cancer drugs are abstracted as an optimization
problem, and an optimization method based on graph
model feature extraction is constructed. In this paper, the
kernel function is used to map the features to a higher
dimensional space to construct a nonlinear quantitative
prediction function of biological activity, and then, a clas-
sification prediction model of ADMET properties of anti-
cancer drugs based on support vector machine (SVM) is
constructed as a constraint. Sequential least square pro-
gramming (SLSQP) is used to efficiently and quickly solve
the distinguishing variable value of the optimal biological
activity value, the optimal biological activity value (IC50_
nM), and the inhibitory biological activity value (pIC50).
Specifically, we have studied the following four specific
issues:

(i) Question 1: For a wide variety of compounds, can
the graph model method designed in this paper
extract low-dimensional features with stronger
description ability from many attributes than the
principal cost analysis method?

(ii) Question 2: Can the quantitative prediction model
constructed by regression method accurately predict
the biological activity of ERα?

(iii) Question 3: Compared with principal component
analysis, can support vector machine predict
ADMET properties more accurately in a shorter
time?

(iv) Question 4: Can the improved sequential least
square programming (SLSQP) be solved faster and
more accurately than the traditional intelligent opti-
mization algorithm?

Through the research to solve the above problems, we
can efficiently and intelligently predict whether the com-
pound can become a candidate for breast cancer treatment
and assist human doctors to accurately select effective anti-
breast cancer drugs for breast cancer patients. Effectively
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improve the cure rate of breast cancer. The specific contribu-
tions of this article are as follows:

(1) A graph model method is proposed to extract low-
dimensional features with strong descriptive ability
and eliminate redundant features

(2) Through the graph model-SVM classification pre-
diction method, five classification models for the
properties of ADMET are constructed to test
whether the candidate drugs are suitable for patients

(3) The bioactivity function of anticancer drug ERα was
constructed, and the candidate anticancer drug ERα
with optimal bioactivity was obtained by SLSQ algo-
rithm as the best anticancer drug

2. Overview of Methods

The purpose of this paper is to select candidate drugs with
superior efficacy from many anti-breast cancer compounds.
First of all, the low-dimensional features with strong ability
to describe effectively are selected from the many attributes
of the compound. Then, the activity of the compound
against cancer cells is measured to determine whether the
compound can be used as a candidate drug. Below, we will
describe the methodology framework and technical details
in detail.

2.1. General Framework. The overall framework of this
approach is shown in Figure 1. The steps for screening anti-
cancer drugs are as follows:

(i) Step 1: use the graph model method to extract low-
dimensional features with strong distinguishing
ability from anti-breast cancer drug candidates

(ii) Step 2: the kernel function is used to map the
extracted features to high-dimensional space to con-
struct a quantitative analysis model of ERα biologi-
cal activity

(iii) Step 3: at the same time, anti-breast cancer drugs
also need to consider the properties of ADMET,
using SVM to build a classification prediction
model

(iv) Step 4: taking the ERα biological activity function in
step 2 as the objective function and the classification
prediction model in step 3 as the constraint, the
improved least square method-sequential least
square programming (SLSQP) is used to solve the
optimal ERα biological activity value

2.2. Graph Model-Minimum Spanning Tree (MST). In view
of the large number of attributes of anticancer drugs, we
compare the attributes of compounds to nodes in graph
theory and the correlation between attributes to the

Extraction of low-dimensional
features from graph model

Construction of ER𝛼
bioactivity function by

kernel function

Solving the optimal
eigenvalue by SLSQP

algorithm

Numerical
constraint of

feature

ADMET property
classification prediction

model

Whether it
satisfies more

than 3
ADMET

Output result

Delete the solution

Yes

No

Figure 1: the overall framework.
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distance between nodes, from which the adjacency matrix
between attributes is established. Finally, all nodes can
generate a minimum spanning tree to extract low-
dimensional features with strong description ability. When
constructing the adjacency matrix, we need to choose an
appropriate threshold to construct the adjacency matrix,
so the crux of the problem is how to select the applicable
threshold.

First of all, N characteristic attributes of anticancer drugs
are expressed as follows:

T0 = TO
m,n,m = 1, 2,⋯,M ; n = 1, 2⋯ ,N

� �
, ð1Þ

where TO
m,n is the data of the n(th) feature in the m(th) sam-

ple and N = 729,M is the number of samples. The correla-
tion coefficient matrix is

Rn1,n2
=

∑M
m=1 Tn1,m − Tn1

� �� �
× Tn2,m − Tn2

� �� �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑M

m=1 Tn1,m − Tn1

� �� �2q
∑M

m=1 Tn2,m − Tn2

� �� �2 ,
ð2Þ

where Tn1,Tn2,are the two features ofn1, n2(th) and the simi-
larity degree D between the features is defined as follows:

Dn1,n2
= 1 − Rn1,n2

			 			: ð3Þ

Then, the Kruskal algorithm is used to generate the
minimum spanning tree according to the distance matrix
and then according to the correlation coefficient between
nodes. HðH <NÞ important features (nodes) are selected.
If these nodes are connected, the similarity between them
is calculated, and the maximum distance value is selected
as the threshold DNImin of the adjacency matrix.

2.3. Support Vector Machine (SVM). ADMET properties of
anti-breast cancer compounds determine whether they can
be used as candidate drugs, and the quality of the index
can be regarded as a multiattribute dichotomous problem.

In order to meet the requirements of Question 3, this paper
takes N compound attributes of anticancer drugs as inde-
pendent variables and ADMET properties as dependent
variables and then constructs five classification prediction
models, which are compared with the principal component
analysis.

The attribute data dimension of anticancer compounds
is quite high, and there is a lot of redundancy. If the classifi-
cation algorithm is directly used for classification, it is diffi-
cult to get satisfactory results in a short time. Therefore, this
paper comprehensively applies SVM algorithm and graph
model to classify and predict. The model framework is
shown in Figure 2. The ideas are as follows:

(i) For high-dimensional attribute data of compounds,
the graph model is used to extract low-dimensional
features with strong descriptive ability to reduce
redundant information

(ii) SVM is a good binary classifier, and satisfactory
results can be obtained with fewer samples

2.4. Kernel Function and Sequential Least Square
Programming (SLSQP). In this paper, the low-dimensional
features of compounds with strong descriptive ability are
screened out by the graph model, and these features are
mapped to high-dimensional space by kernel function to
further strengthen the ability of differentiation. Then, the
best nonlinear ERα bioactivity model was fitted by the least
square method.

The relationship between features is nonlinear, and the
least square method cannot effectively fit the nonlinear
relationship, so we increase the least square algorithm. For
solving nonlinear programming problems, it is of great
importance whether the objective function and constraint
conditions are continuous and smooth. If smooth, all deci-
sion variables are differentiable. The vector composed of
partial derivatives of multivariate function can be used as
the gradient direction indicating the fastest growth of empir-
ical function. As the introduction of ADMET property
increases the complexity of solving the problem, we add a
Lagrange multiplier method (Lagrange multiplier) to the

Inputing N characteristics
of sample

Constructing adjacency
matrix Setting threshold

Generating the minimum
spanning tree for all

features

Calculating the weights
of all nodes

Screening H
low-dimensional features

SVM classification and
prediction of ADMET

properties of compounds

Outputing classification
results

Figure 2: Graph model framework of ADMET property classification and prediction model for SVM compounds.
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least square algorithm and transform the constrained opti-
mization problem into an unconstrained problem by intro-
ducing additional variables. For this reason, we construct

sequential least square programming (sequential least square
programming optimization algorithm, SLSQP). SLSQP effi-
ciently preserves the nonlinear relationship between fea-
tures. When solving the parameters, this method can
consider the constraints other than the objective function
at the same time, which meets the need of considering the
ADMET properties of anticancer compounds in Question
3. The basic description of the square programming problem
is as follows:

min F xð Þ
subject toCj xð Þ = 0, j = 1,⋯,MEQ

Cj xð Þ ≥ 0, j =MEQ + 1,⋯,M
XL ≤ x ≤ XU , I = 1,⋯,N

ð4Þ

Table 1: The degree change of the minimum spanning tree of some feature nodes.

Features
Nodes

Degree_1
Nodes

Degree_0
Nodes

Degree_diff
Features

Nodes
Degree_1

Nodes
Degree_0

Nodes
Degree_diff

nHCsatu 190 23 167 MDEN-11 142 33 109

nG12Ring 156 0 156 MLFER_BH 178 69 109

SHCsatu 167 16 151 maxdNH 140 31 109

nHBint3 166 29 137 mindNH 139 31 108

ETA_Shape_Y 70 207 137 minHdNH 138 31 107

maxHBd 38 167 129 maxaasC 73 179 106

SsNH2 158 29 129 nBondsD2 211 106 105

nsNH2 158 30 128 minsCH3 31 135 104

nHsNH2 158 30 128 MDEN-12 137 33 104

SHsNH2 158 32 126 SHBint2 173 69 104

ATSm1 158 33 125 minHBd 49 151 102

SHdNH 155 31 124 nBase 162 61 101

minHCsats 12 136 124 minaaaC 43 144 101

SdNH 154 31 123 minHBint6 2 102 100

nHdNH 154 31 123 SHBint8 156 57 99

ndNH 154 31 123 SHsOH 81 180 99

ATSc5 142 20 122 nHBint2 163 66 97

nHBint7 157 37 120 SsssCH 179 82 97

nHBint8 162 46 116 SaaaC 43 139 96

MLFER_BO 179 68 111 maxsCH3 43 138 95

SHBint3 167 56 111 maxaaaC 46 141 95

ndssC 168 58 110 nsssCH 194 100 94

XLogP 73 183 110 minHsOH 68 161 93

nHBint10 165 55 110 maxssssC 96 4 92

maxHdNH 141 31 110 SdO 200 108 92

Table 2: Weight ranking of the first 15 feature variables in graph
model extraction.

Feature number Feature name Weight

659 MDEC-23 0.110333

587 LipoaffinityIndex 0.100936

406 minsssN 0.075303

476 maxHsOH 0.036822

531 maxssO 0.036599

357 minHsOH 0.031988

56 C1SP2 0.025563

39 BCUTc-1 l 0.024249

673 MLFER_A 0.016138

652 MLogP 0.016063

79 VC-5 0.012582

639 nHBAcc 0.010918

351 minHBint5 0.010303

410 minsOH 0.009069

103 CrippenLogP 0.007243

Table 3: Error results of two feature extraction algorithms.

Arithmetic
Evaluation index

MAE MSE RMSE

Graph model 0.5217 0.5044 0.7102

PCA 0.5571 0.5936 0.7704
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In equation (4), FðxÞ is the objective function. CjðxÞ = 0
is the equality constraint. CjðxÞ ≥ 0 is the inequality con-
straint. XL and XU are the lower and upper bounds of the
variable x. The solution process of the algorithm is as follows:

(i) Step 1: given the initial point x0 and convergence
accuracy ϵ, set the parameter k = 0

(ii) Step 2: FðxÞ is added to the Lagrangian operator at
x0 for Taylor expansion, and the current optimal
solution sk is calculated

(iii) Step 3: sk is taken as the search direction of the next
iteration, and the next iteration point xk is obtained
by one-dimensional search of FðxÞ according to
constraints

(iv) Step 4: if xk+1 satisfies the termination criterion of a
given accuracy, xk+1 is taken as the optimal solution
and Fðxk+1Þ as the optimal cost of the objective
function to terminate the calculation

3. Experimental Results and Analysis

In this section, we introduce the experimental environment,
the source of the data set, and the specific experimental
results. Depending on the four research questions designed,
we have carried out comparative experiments and analysis.

The program is clearly understood by Python3.6 pro-
gramming, and the program runs on a microcomputer with
CPU 2.40GHz and 8GB memory.

The data set used throughout this paper is the D prob-
lem data set provided by the 18th Huawei Cup Mathematical
Modeling Competition. The data set contains a large num-
ber of 729 attribute data of anti-breast cancer compounds
and the corresponding ADMET property data.

3.1. Question 1: Feature Selection of Anticancer Drugs Based
on Graph Model. The similarity between the characteristic

variables is computed according to the degree change
between the minimum spanning tree nodes. The positive
and negative degree changes of some of the nodes are given
in Table 1. If they are greater than the threshold DNImin, the
two nodes are connected, and the value is 1 in the adjacency
matrix. Otherwise, the value is 0. Finally, the minimum
spanning tree of all nodes is obtained, and the degrees of
all nodes are calculated and arranged in a descending order.
The size of the value is invoked as the additional weight of
the feature.

First, standardize the integrated data; then, use the graph
model to solve the weight coefficients of 729 feature compo-
nents; and select the first 15 feature components according
to the weight, as shown in Table 2.

In order to make a quantitative comparison with
PCA algorithm, MAE (mean absolute error), MSE (mean
squared error), and RMSE (root mean square error) are
selected to evaluate the effect of feature extraction. Among
them, MAE is the average of the absolute error which can
represent the actual situation of the predicted error. MSE
is the expected value of the square of the difference
between the estimated value and the true value of the
parameter. RMSE is the arithmetic square root of MSE.
They all can evaluate the change degree of the data, and
the smaller their values are, the better the accuracy of
the prediction model which provides a description of the
experimental data. The calculation formula of each index
is as follows:

MAE = 1
m
〠
m

i=1
yi − byið Þj j,

MSE = 1
m
〠
m

i=1
yi − byið Þ2,

RMSE =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
〠
n

i=1
ŷi − yið Þ2

s
:

ð5Þ
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Figure 3: Optimize the fitting effect of the model for inhibiting the biological activity of ERα.
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The comparison of the three indicators of the algo-
rithm and PCA for the data set of anti-breast cancer com-
pounds is shown in Table 3.

It can be seen in Table 3 that the error index of the graph
model is smaller and better than that of the principal compo-
nent analysis. In MAE, the error rate of the graph model is
6.4% lower than that of PCA. In MSE, the error rate of the
graph model is 15% lower than that of PCA. In RMSE, the
error rate of the graph model is 7.8% lower than that of
PCA. This shows the superiority of the graphmodel in extract-
ing essential feature indexes and provides excellent character-
istic variables for the construction of quantitative analysis
model of biological activity of compounds against ERα.

3.2. Question 2: Quantitative Prediction of the Biological
Activity of Anticancer Substances against ERα. In this paper,
the kernel function is used to fit the low-dimensional fea-
tures extracted from problem 1 many times by high-
dimensional mapping to fit the nonlinear function. The
fitting effect of the model is the best when the number of
variables is 2 (for example, x2i); that is, the new 135 features
can be constructed from the kernel function through 15 fea-
ture variables and compared with Adaboost regression and
Lasso regression. The fitting effect diagram and model eval-
uation comparison table are shown in Figure 3 and Table 4.

As can be seen from Figure 3, the nonlinear function
fitted by high-dimensional mapping of features by using ker-
nel functions has a good fitting effect on the test set data, and
most of the predicted data sets are consistent with the test set
data. The fitting degree score of the function is 0.6231.

As can be seen from Table 4, compared with Adaboost
and Lasso, the sequential least square programming con-
structed in this paper reduces the error rate by 22.4% and
32.2% on MAE, 23.8% and 44.3% in MSE, and 12.7% and
25.4% in RMSE and increases the fitting degree by 19.4%
and 48.0%, respectively. This shows that the nonlinear inhi-
bition ERα bioactivity optimization model constructed by
sequential least square programming has good fitting effect
and a small error.

Therefore, this paper constructs the following objective
function:

max F x1, x2,⋯,x15ð Þ = 〠
i=15

i=1
kixi + 〠

i=15

i=1
kixi

 !2

+ b, i = 1, 2,⋯, 15,

ð6Þ

where xi is the characteristic variable, ki is the regression
coefficient, and b is the intercept of the function. The poly-

nomial coefficients ckm ðm = 1, 2,⋯,135Þ (partial display) are
shown in Table 5.

As can be seen from Table 5, the regression coefficients
of these 135 features can be divided into three types: greater
than 0, less than 0, and equal to 0. From the mathematical
point of view, we can see that there is an inflection point
in the model; that is, there is a local optimal solution.
Among them, the characteristic of regression coefficient
greater than 0 was positively correlated with the inhibition
of cancer cell activity, the characteristic of regression coeffi-

cient less than 0 was negatively correlated with the inhibition
of cancer cell activity, and the characteristic of regression
coefficient equal to 0 had no effect on the inhibition of can-
cer cell activity.

3.3. Question 3: Classification Prediction Results of ADMET
Properties of Anticancer Substances Based on Support
Vector Machine (SVM). Considering the high-dimensional
attributes of anticancer compounds, firstly, PCA and graph
model are used to extract features with strong distinguishing
ability, and then, SVM algorithm is used to classify the fea-
tures, and then, the optimal classification prediction model
MST-SVM of compound ADMET is constructed and com-
pared with PCA-SVM model. The operation flow chart of
Question 3 is shown in Figure 4.

Table 5: Regression coefficient ckm result (partial display).

Regression coefficient ckm Regression coefficient valueck1 1.5541e-07ck2 -0.0029ck3 0.2517ck4 -0.0141ck5 0ck6 -0.3898ck7 0ck8 0.1859ck9 0ck10 0ck11 0ck12 0.4203ck13 -0.0173ck14 0

⋮ ⋮dk131 -0.1225dk132 -0.0051dk133 -0.0038dk134 -0.0008dk135 0.0001

Table 4: Comparison table of model evaluation results.

Arithmetic
Evaluation index

MAE MSE RMSE Score

SLSQP 0.6587 0.7715 0.8783 0.6231

Adaboost 0.8492 1.0127 1.0063 0.5023

Lasso 0.9721 1.3849 1.1767 0.3236
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Based on the 15 important features extracted by the
graph model, the 15-dimensional features are input into
the SVM classification model combined with the compound
ADMET properties (0 or 1) for classification prediction. The
classification results are shown in Figures 5–9.

Among them, blue dots and orange dots in all the classi-
fication effect maps represent 0 and 1, respectively, that is,
the ADMET properties of the compound. From the classifi-
cation effective images of the above five property classifica-
tion models, we can see that the classification effect is
obvious, and the positive and negative samples can be well
distinguished. This shows that the classification prediction
model of ADMET properties of MST-SVM compounds
has a good classification effect. In order to make a more
accurate quantitative analysis, we further introduce four
indicators, namely, accuracy, accuracy, recall, and F1-score,
to evaluate the classification effect, as shown in Table 6.

As can show in Table 6, the classification prediction
models based on the properties of Caco-2, CYP3A4 and
MN are 0.8580, 0.9379 and 1.0000 in recall, respectively.
This shows that there are small false counterexamples in
the classification model, and the model can achieve good
results in predicting correct counterexamples. The classifica-
tion prediction models based on CYP3A4 and hERG proper-
ties are 0.8947 and 0.8643 in precision, respectively. This
shows that there are few correct examples in the prediction
of the classification model, and the model can achieve good
results in predicting the correct instances. At the same time,
in accuracy, all the five classification models have higher
accuracy scores. This shows that the graph model-support
vector machine classification prediction model set out in
the present paper can accurately judge whether the candi-
date drugs conform to the ADMET properties.On the basis
of the above, the classification results of the ADMET proper-
ties of compounds by this method and PCA-SVM are com-
pared as showed in Table 7:

It can be seen from Table 7 that the score of the classifi-
cation prediction model of ADMET properties of PCA-SVM
compounds is better than that of the MST-SVM classifica-
tion prediction model in accuracy and F1-score. However,
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Figure 5: Classification effect diagram based on property Caco-2.
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Figure 6: Classification effect diagram based on property CYP3A4.
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the PCA-SVM model performs poorly in the recall and pre-
cision indexes. It is worth noting that in the HOB property
classification, the recall and precision of the PCA-SVM
model are both 0, indicating that the stability of the model
in this property classification is weak. It can be seen that
the high score of accuracy in additional property classifica-
tion of the PCA-SVM model cannot accurately evaluate
the classification effect. On the contrary, the MST-SVM
model performs well in each evaluation index, and the over-
all score of recall and precision is better than that of the
PCA-SVM model, with an average increase of 19.5% and
12.41% in recall and precision, indicating that its classifica-
tion effect is stable. Therefore, based on the above analysis,
this paper chooses the MST-SVM classification prediction
model which is more stable.

3.4. Question 4: Sequential Least Square Programming
(SLSQP) Is Used to Solve the Quantitative Prediction Model
of the Bioactivity of Anticancer Substances against ERα. In
this paper, the compound is required to optimize the inhibi-
tion of ERα biological activity (pIC50 value) under the pre-
mise of satisfying ADMET properties (at least three
properties), so that the pIC50 value is the best (the higher
the better), and the corresponding characteristic variables
are obtained. In this paper, the equation (6) is taken as the
objective function, and 15 important characteristic variables
are numerically constrained.

10 ≤ X1 ≤ 50,
3 ≤ X2 ≤ 12,
0 ≤ X3 ≤ 0:00001,
0:5 ≤ X4 ≤ 0:7,
5 ≤ X5 ≤ 6:5,
0:4 ≤ X6 ≤ 0:6,
0 ≤ X7 ≤ 2,
−0:36 ≤ X8≤−0:35,
0:5 ≤ X9 ≤ 1,
0:04 ≤ X10 ≤ 0:3,
0 ≤ X11 ≤ 3,
2 ≤ X12 ≤ 3,
−0:1 ≤ X13≤−0:008,
3:6 ≤ X14 ≤ 15,
60 ≤ X15 ≤ 80:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð7Þ

0 10 20
4030

60 70
50 –15

–5
0 5

101520

–10
–5
0
5

10

1
0

–10
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Figure 9: Classification effect diagram based on property MN.

Table 6: Graph model-SVM various accuracy results of classified
prediction models.

ADMET Accuracy Recall Precision F1-score

Caco-2 0.8127 0.8580 0.7616 0.8141

CYP3A4 0.8734 0.9379 0.8947 0.8704

hERG 0.8025 0.7713 0.8643 0.8034

HOB 0.7392 0.0381 0.6667 0.6420

MN 0.7443 1.0000 0.7443 0.6352
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Figure 7: Classification effect diagram based on property hERG.
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By solving the model composed of equations (6) and (7),
the optimal pIC50 value is obtained. Then, the ADMET
property of the compound is tested; that is to say, the SVM
classification prediction model is used to make a classifica-
tion prediction according to the 15 variables xi to be
obtained in this problem. If the variables can satisfy more
than 3 ADMET properties, then the values of the variables
xi and pIC50 are directly output as the final optimization
scheme, and if they are not satisfied, the new variable _xi is
put into the constraint to judge.

The mathematical expression of ADMET property con-
straints is as follows:

MCaco‐2
1, the property is good,

0, the property is poor,

(

MCYP3A4
1, the property is poor,

0, the property is good,

(

MhERG
1, the property is poor,

0, the property is good,

(

MHOB
1, the property is good,

0, the property is poor,

(

MMN
1, the property is poor,

0, the property is good:

(

ð8Þ

Finally, we obtained the optimal inhibitory activity value
of ERα and the corresponding characteristic variable xi
value. The results are shown in Table 8.

Depending on the above table, under the constraint of the
ADMET property of the compound, the values of 15 charac-
teristic variables, the optimal bioactivity value (IC50_nM),
and the inhibitory bioactivity value (pIC50) were obtained.
Among them, the distinguishing variable of positive value
was positively correlated with the biological activity of ERα.
The characteristic variable of negative value was negatively
correlated with the biological activity of ERα, and the charac-
teristic variable of 0 value had no effect on the biological
activity of ERα. Finally, the functional relationship between

inhibitory activity value and biological activity value is pre-
sented in the following equation:

F2 = 9 − log10F1: ð9Þ

In equation (9), F1 is the value of biological activity and
F2 is the value of inhibitory activity.

It is found that 15 characteristic variable inputs satisfy
more than 3 ADMET properties when they are put into
the constraint. This demonstrates that the low-dimensional
features screened by the graph model not only have strong
ability to describe and distinguish but also perform better
through ADMET properties. It can be seen that the quanti-
tative analysis model of ERα biological activity and the clas-
sification model based on ADMET properties of the support
vector machine can quickly and accurately screen effective
compounds from anti-breast cancer drug candidates. The
running time of the experimental program is 0.1369 s, and
the number of iterations is 22. From the analysis of time
complexity and iterative process, sequential least square pro-
gramming (SLSQP) algorithm constructed in this paper is

Table 7: Accuracy comparison of ADMET property classification prediction model in two classification algorithms.

Accuracy Recall Precision F1-score
PCA-SVM MST-SVM PCA-SVM MST-SVM PCA-SVM MST-SVM PCA-SVM MST-SVM

Caco-2 0.8633 0.8127 0.9136 0.8580 0.7878 0.7916 0.8643 0.8141

CYP3A4 0.8785 0.8734 0.9000 0.9379 0.9321 0.8947 0.8802 0.8704

hERG 0.8228 0.8025 0.8430 0.7713 0.8430 0.8643 0.8228 0.8034

HOB 0.7342 0.7392 0.0000 0.7381 0.0000 0.6667 0.6212 0.6420

MN 0.7722 0.7443 0.9966 1.0000 0.7670 0.7443 0.6990 0.6352

Table 8: Solution results of bioactivity optimization model for
inhibition of ERα.

Characteristic variable xi

MDEC-23 10

LipoaffinityIndex 12

minsssN 0

maxHsOH 0.5

maxssO 6.5

minHsOH 0.6

C1SP2 0

BCUTc-1 l -0.36

MLFER_A 1

VC-5 0.3

nHBAcc 3

minHBint5 3

ATSc3 -0.1

MDEC-33 12.9

TopoPSA 80

Biological activity IC50_nM 34.6

Inhibitory bioactivity pIC50 7.46
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better than the traditional intelligent optimization algorithm
(such as ant colony algorithm, genetic algorithm).

4. Conclusions

In view of the increasing number of breast cancer patients,
various kinds of anti-breast cancer candidate drugs, and
great pressure on doctors to use anti-breast cancer drugs,
this paper is aimed at the problem of screening anti-breast
cancer candidate drugs that propose an optimal modeling
method of anti-breast cancer candidate drugs based on
graph model feature extraction. Compared with the tradi-
tional feature extraction methods (such as principal compo-
nent analysis and random forest), the graph model feature
extraction method proposed in this paper addresses the
problem of large error and low accuracy of the existing
methods in the evaluation index. At the same time, the
classification prediction model constructed in this paper is
utilized to effectively detect whether the drug will have
adverse reactions to the human body when screening candi-
date drugs. Therefore, through the method of this paper, we
can efficiently and intelligently predict whether the com-
pound can become a candidate drug for the treatment of
breast cancer and assist human doctors to accurately select
effective anti-breast cancer drugs for breast cancer patients,
which is of great significance to improve the cure rate of
breast cancer.
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