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I. Rendina, and L. Sirleto
Volume 2011, Article ID 965967, 10 pages



Hindawi Publishing Corporation
Advances in OptoElectronics
Volume 2011, Article ID 393980, 2 pages
doi:10.1155/2011/393980

Editorial

Optical Waveguides and Resonant Cavities

Ana Vukovic,1 Martin Cryan,2 Snjezana Tomljenovic-Hanic,3 and Jun Shibayama4

1 George Green Institute for Electromagnetic Research, The University of Nottingham, Nottingham NG7 2RD, UK
2 Department of Electrical and Electronic Engineering, University of Bristol, Bristol BS8 1UB, UK
3 School of Physics, The University of Melbourne, Parkville, VIC 3010, Australia
4 Faculty of Science and Engineering, Hosei University, 3-7-2 Kajino-cho, Koganei, Tokyo 184-8584, Japan

Correspondence should be addressed to Ana Vukovic, ana.vukovic@nottingham.ac.uk

Received 30 November 2010; Accepted 30 November 2010

Copyright © 2011 Ana Vukovic et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Optical waveguides and resonant cavities offer highly valu-
able ways of manipulating and processing light over short
distances. Low loss propagation, efficient coupling to fibres,
and ultracompact bends are paramount for creating low-
cost photonics suitable for mass markets. Novel forms of
waveguiding are being further exploited: photonic crystal
waveguides have the potential for low loss guiding and
exhibit slow light phenomena, and surface plasmon waveg-
uides are increasingly used for sensing and imaging appli-
cations. Development of new devices is accelerated when
strong links between research, development, and production
are established, and in that process accurate numerical
modelling is needed to reliably predict the performance and
scope of a new device. This special issue reports on recent
developments in design of photonic devices and addresses
issues that need to be considered and approaches that need
to be used for modelling purposes. In this special issue, we
have invited a few papers that address these issues.

The first and second papers report on modelling and
design of plasmonic-based devices. Plasmonic structures
are very sensitive to design parameters and immediate
environment and are ideal candidates for sensor devices.
Furthermore, as plasmonics offers to integrate light with
electronics on a single platform, large research is being
conducted in the area of design and optimisation of a
variety of optoelectronic devices. The first paper investigates
two structures for the TM-pass/TE-stop surface plasmon
polarizer. The first structure has a thin film sandwiched
between periodic dielectric gratings. Numerical Finite Dif-
ference Time Domain (FDTD) method is used for analysis
and optimisation and reports 94% transmission and an
extinction ratio better than 17 dB. The second structure

addresses a more practical device in terms of fabrication
in which a dielectric grating is sandwiched between two
thin metal layers but reports reduced TM transmission
and extinction ratio. The second paper compares the per-
formance of various plasmonic waveguides and gratings
using the Yee-mesh-based Beam-Propagation Method (YM-
BPM) and frequency-dependent FDTD method. Plasmonic
waveguides are compared in terms of their effective index and
propagation loss, whilst plasmonic gratings are compared
in terms of their transmission spectrum. It is shown that
the shape of the grating can greatly affect the transmission
spectrum of a device.

The third paper considers modelling of photonic waveg-
uides with oblique and tilted incidence in order to eliminate
nonphysical staircasing noise that appears when Cartesian
mesh is used. For this purpose, the oblique BPM method is
implemented with Du-Fort Frankel scheme for fast compu-
tation. The implementation of the method is presented, and
its accuracy and stability is compared with oblique Crank-
Nicholson BPM method.

The fourth paper presents theoretical and numerical
analysis of tunable photonic crystal coupled cavity waveg-
uides for use in single photon transfer. The current challenge
is to reduce the size of components for single photon manip-
ulation by using either photonic crystals or plasmonics. The
paper shows that useful performance could be achieved with
coupled cavity waveguides and will act as an impetus to
experimentalists in the field.

The fifth paper presents an improved design for CMOS
compatible Electro-Optic (EO) modulator that combines
lithium niobate and organic polymers on a silicon substrate.
Combining these materials in the slot waveguide design
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enables tight concentration of both RF and optical fields
for maximum interaction and reports on reduced RF losses
making the modulator applicable for RF frequencies of up to
250 GHz. The hybrid modelling method is used whereby the
modelling of the optical signal is done using the frequency
domain FDTD method, whilst for modelling of the RF signal
Finite Element Method with adaptive meshing is used in
order to accurately describe both the subwavelength and
larger features of the modulator.

The final paper investigates design, characterization, and
realization of silicon microcavity photodetectors operating
at 1.55 µm. The authors compare top- and back-illuminated
configurations with a view to enhance the responsivity of the
Schottky diode-based photodetectors.
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Martin Cryan
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Jun Shibayama



Hindawi Publishing Corporation
Advances in OptoElectronics
Volume 2011, Article ID 867271, 6 pages
doi:10.1155/2011/867271

Research Article

A TM-Pass/TE-Stop Polarizer Based on a Surface
Plasmon Resonance

Yuu Wakabayashi, Junji Yamauchi, and Hisamatsu Nakano

Faculty of Engineering, Hosei University, 3-7-2 Kajino-cho, Koganei, Tokyo 184-8584, Japan

Correspondence should be addressed to Yuu Wakabayashi, yuu.wakabayashi.27@gs-eng.hosei.ac.jp

Received 15 June 2010; Accepted 16 July 2010

Academic Editor: Ana Vukovic

Copyright © 2011 Yuu Wakabayashi et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

A TM-pass/TE-stop polarizer consisting of a metal film sandwiched between dielectric gratings is investigated using the finite-
difference time-domain method. At normal incidence with respect to the grating plane, a transmissivity of more than 94% and
a reflectivity of more than 98% are obtained at λ = 1.55μm for the TM and TE waves, respectively. The extinction ratio is more
than 17 dB over a wavelength range of 1.50 μm to 1.75 μm. A high extinction ratio is maintained at oblique incidence, although the
wavelength range shifts towards longer wavelengths. The TM-pass/TE-stop operation is also achieved with a modified structure,
in which a dielectric grating is sandwiched between metal films.

1. Introduction

There are a great number of papers devoted to the study
of light propagation in periodic structures [1]. One of
the important applications of the periodic structures is to
construct a polarizer, which is used in optical communica-
tions and sensing devices. Recently, high transmission of the
transverse magnetic (TM) wave through a thin metal film
has been suggested and discussed [2–4]. The transmission is
closely related to a surface plasmon (SP) resonance [5]. The
SP resonance is realized using a thin metal film sandwiched
between dielectric gratings. We should also note that recent
interest has been directed toward plasmon waveguides
operating at λ � 1.55μm (optical communication band)
[6, 7].

In this paper, the SP-based enhanced transmission
through a thin metal film is investigated in more detail in
the optical communication band. The finite-difference time-
domain (FDTD) method is used for the analysis. To obtain
a high transmissivity for the TM wave and a high reflectivity
for the transverse electric (TE) wave with a subsequent high
extinction ratio (ER), we appropriately choose the width and
thickness of the dielectric grating. In addition to normal
incidence with respect to the grating plane, we consider the
case of oblique incidence. It was found that the wavelength

range, in which the high ER is observed, shifts towards longer
wavelengths.

To alleviate the fabrication difficulty, we also deal
with a modified structure, in which a dielectric grating
is sandwiched between metal films. The TM-pass/TE-stop
operation is achieved at λ = 1.55μm, although the transmis-
sivity is low compared with that obtained from the original
structure.

2. Configuration and Numerical Method

Figure 1 illustrates the periodic structure of the polarizer, in
which a two-dimensional model is treated. The configuration
is similar to that treated in [2, 3]. We illuminate a uniform
plane wave of either the TE or the TM wave from the input
side and intend to extract the TE wave as a reflected field at
the input side and the TM wave as a transmission field at
the output side. Note that from a different aspect, a similar
structure was also investigated as a low-loss surface plasmon
Bragg grating [8].

The refractive indices of the dielectric materials are taken
to be nH = 3.715 and nL = 2.049. The width and thickness of
the dielectric grating are designated as w and td, respectively.
The widths of the low- and high-index dielectric regions
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Figure 1: Configuration.
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Figure 2: Transmissivity of TM wave (λ = 1.55μm).

are set to be the same, that is, w = w′. The Drude model
is used to express the dispersion of a metal. The refractive
index and thickness of the metal (Ag) film are chosen to be
nm = 0.144− j11.214 at λ = 1.55μm [9] and tm = 0.03μm.

To analyze the present polarizer, we adopt the FDTD
method together with the periodic boundary condition, to
which the field transformation technique [10] is applied.
The piecewise linear recursive convolution technique [11] is
employed so as to treat the structure involving the metal film.
The numerical parameters are chosen to be Δx = Δz = 5 nm.
We consider the case where a linearly polarized plane wave is
incident towards the +z direction whose angle of incidence is
defined by θ.

To obtain a high transmissivity for the TM wave with a
subsequent high ER, we determine the configuration param-
eters of dielectric gratings. Figures 2 and 3, respectively, show
the transmissivity for the TM wave and the ER at λ = 1.55μm
as a joint function of w and td. The angle of incidence is
typically fixed to be θ = 0◦. The ER is defined by

ER = 10 log10
TTM

TTE
, (1)

where TTM and TTE are the transmissivities for the TM and
TE waves, respectively. Calculation shows that the transmis-
sivity reaches a maximum value of 94% with an ER of 20 dB
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Figure 3: Extinction ratio observed at the output (λ = 1.55μm).

for w = 0.29μm and td = 0.22μm. We, therefore, adopt these
configuration parameters in the following discussion.

The determined periodicity is consistent with the follow-
ing relationship at normal incidence, that is, θ = 0◦:

ksp = k0 sin θ ± 2π
Λ

, (2)

where k0 is the free-space wavenumber; Λ(=2w) is the
periodicity; ksp is the propagation constant of the SP mode,
which can be obtained by the eigenmode analysis. Note that
in the eigenmode analysis the refractive index of the dielectric
grating is approximately modeled as a homogeneous layer

with second-order effective index for the TM wave (n(2)
TM),

which is calculated by the effective medium theory [1]:

n(2)
TM =

[
n2

TM +
1
3

{
π
Λ

λ0
f
(
1− f

)}2(
n−2

H − n−2
L

)2
n6

TMn2
TE

]1/2

,

(3)

where λ0 is the free-space wavelength, and f is the grating fill
factor. nTE and nTM are the first-order effective indices for the
TE and TM waves, which are, respectively, expressed as

nTE =
[
n2

L + f
(
n2

H − n2
L

)]1/2
,

nTM =
[
n−2

L + f
(
n−2

H − n−2
L

)]−1/2
.

(4)

3. Wavelength Characteristics

Figure 4 shows the reflectivity and transmissivity at normal
incidence as a function of wavelength. For the TE wave, the
reflectivity is close to unity over a wide range of wavelengths.
The maximum transmissivity for the TM wave is calculated
to be 94% at λ = 1.55μm. The ratio of the transmitted
field to the reflected field is less than −30 dB. This means
that the nontransmitted power is almost absorbed in the
metal film. It should be noted that the double-humped
behavior is observed in the transmissivity. This behavior is
caused by the fact that the structure supports asymmetric
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Figure 4: Wavelength characteristics at normal incidence (θ = 0◦).

and symmetric modes, which, respectively, correspond to
the first and second SP modes [12]. Figures 5(a) and 5(b)
show the Hy-field distributions observed at λ = 1.69μm
and 1.55μm, respectively. Only the fields observed in single
cells are presented due to the periodicity. The high-index
region is situated from x = −0.145μm to x = 0.145μm. The
field in Figure 5(a) exhibits the asymmetric distribution with
respect to the middle plane of the metal film, while that in
Figure 5(b) exhibits the symmetric distribution.

The ERs observed at the input and output sides are
presented in Figure 6. The present polarizer maintains a high
ER of more than 17 dB for the TM wave (at the output) over
a wavelength range of 1.50 μm to 1.75 μm. The maximum
ER is calculated to be approximately 20 dB at λ = 1.55μm.
The ER for the TE wave (at the input) is more than 30 dB at
λ = 1.55μm.

We next study the case of oblique incidence, where θ is
typically set to be 20◦. Figures 7 and 8, respectively, show the
transmissivity and the ER each as a function of wavelength.
For reference, the data at normal incidence shown in Figures
4 and 6 are again plotted. The maximum transmissivity
is obtained at λ = 1.62μm, and then the triple-humped
behavior is observed in this wavelength range. Figure 8 also
shows that the region where the high ER is maintained shifts
towards longer wavelengths. This behavior can be explained
in terms of (2). At normal incidence, only the SP mode
whose propagation constant is determined by ±2π/Λ is
excited, propagating in opposite directions along the metal-
dielectric interface. However, when the angle of incidence is
varied from θ = 0◦, this symmetry is broken. In other words,
(2) provides the following two relationships:

k+
sp = k0 sin θ +

2π
Λ

,

k−sp = k0 sin θ − 2π
Λ

.

(5)
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Figure 5: Field distributions at (a) λ = 1.69μm and (b) λ =
1.55μm.

Therefore, the wavelength at which the SP mode is excited
at normal incidence is separated into two wavelengths. In
Figure 7, the first two modes are excited at λ+

sp = 1.53μm
and λ−sp = 1.79μm, which are separated from λsp = 1.69μm
for θ = 0◦. Only the second mode determined by k−sp can be
seen at λ−sp = 1.63μm because the other one (λ+

sp = 1.33μm)
is beyond the scale. As a result, the triple-humped behavior
of the transmissivity at oblique incidence is observed in this
wavelength range.

4. Modified Structure

In the preceding section, we have studied the characteristics
of the polarizer consisting of the metal film sandwiched
between dielectric gratings. This polarizer requires that the
structure be symmetric with respect to the metal film to
excite the SP mode. It is, however, not easy to fabricate the
symmetrical structure at a lightwave frequency, since a set of
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dielectric gratings must be placed precisely. In this section,
we, therefore, investigate a more practical configuration.

We propose the configuration shown in Figure 9, in
which a single dielectric grating is sandwiched between metal
films. The refractive indices are the same as those treated in
the previous section. It should be noted that the absorption
loss is closely related to the thickness of the metal film. Since
there exist the two metal films in the modified structure,
we have decreased the metal thickness to sufficiently reduce
the loss, so that tm is taken to be 0.01μm. To achieve the
TM-pass/TE-stop operation at λ = 1.55μm, we have carried
out some preliminary calculations similar to those shown
in Figure 2 and finally chose td = 0.44μm and w = w′ =
0.25μm.

Figures 10 and 11 show the data corresponding to those
shown in Figures 4 and 6, respectively. It was found that a
transmissivity of more than 76% for the TM wave and a
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reflectivity of more than 94% for the TE wave are obtained
at λ = 1.55μm, although the transmissivity is low compared
with that obtained from the original structure discussed
in Section 3. In contrast with the original structure, the
enhanced transmission can be explained in terms of the
Fabry-Pérot-like resonance in the cavity between the metal
films [13]. The field distribution observed at λ = 1.55μm
is illustrated in Figure 12, which clearly indicates a standing
wave behavior in the high-index region. The ERs at the
output and input sides are calculated to be 12 dB and 18 dB
at λ = 1.55μm, respectively.

5. Conclusion

A TM-pass/TE-stop polarizer using the surface plasmon
resonance has been analyzed by the FDTD method. At
normal incidence, calculation shows that a transmissivity of

more than 94% for the TM wave is obtained at λ = 1.55μm.
A high ER of more than 17 dB is observed over a wavelength
range of 1.50 μm to 1.75 μm. The high ER region is also
maintained at oblique incidence, although the wavelength
range shifts towards longer wavelengths.

Further consideration has been devoted to a more
practical model in which a dielectric grating is sandwiched
between metal films. The TM-pass/TE-stop operation is
achieved at λ = 1.55μm with a transmissivity of more than
76%. The ER at the output side is calculated to be 12 dB.
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Various metal-insulator-metal- (MIM-) type plasmonic waveguides and gratings are investigated numerically. Three gratings are
treated: one is formed by alternately stacking two kinds of MIM waveguides, another by periodic changes in the dielectric insulator
materials of an MIM waveguide, and the other by a periodic variation of the air core width in an MIM waveguide. The dispersion
property of each MIM waveguide of which the grating consists is analyzed using the implicit Yee-mesh-based beam-propagation
method. It is shown that the third one has a relatively large effective index modulation of the guided mode with a simple grating
structure, while maintaining a low propagation loss. Further examination is given to modifications of this grating structure. The
transmission characteristics are examined using the frequency-dependent implicit locally one-dimensional FDTD method. We
discuss how the modified grating structure affects the bandgap of the transmission characteristics.

1. Introduction

Recently, metal-insulator-metal- (MIM-) type plasmonic
waveguides have received considerable attention, since com-
pact optical circuits may be realized [1, 2]. The alternative
effective index modulation of an MIM waveguide leads to a
plasmonic waveguide Bragg grating that is one of the basic
building blocks for small size plasmonic circuits. Three grat-
ings have been mainly investigated: one is formed by alter-
nately stacking two kinds of MIM waveguides (Figure 1(a))
[3], another by periodic changes in the dielectric insulator
materials of an MIM waveguide (Figure 1(b)) [4], and the
other by a periodic variation of the air core width in an MIM
waveguide (Figure 1(c)) [5, 6]. We have numerically studied
the sidelobe suppression of the latter one [7]. It is found that
apodized and chirped gratings are quite effective in reducing
the sidelobes. In addition, we have proposed a plasmonic
microcavity offering a tunable resonance wavelength with
varying an air core width. Note, however, that the character-
istics of the above-mentioned three structures have not been
compared in terms of an effective index modulation that is
quite important to design gratings.

In this paper, we compare the basic characteristics of
several MIM waveguides of which gratings are composed.

The effective index versus core width of each MIM waveguide
is calculated using the imaginary-distance Yee-mesh-based
beam-propagation method (YM-BPM) [8]. It is shown
that the grating with a periodic variation of the air core
width (Figure 1(c)) yields a relatively large effective index
modulation of the guided mode in the grating section, while
maintaining a low propagation loss. We next examine the
transmission coefficient of several gratings, that is, concave
and convex gratings are calculated using the frequency-
dependent locally one-dimensional finite-difference time-
domain method (LOD-FDTD) [7, 9]. It is found that
the convex grating gives a wide bandgap in the trans-
mission coefficient because of a large index modulation.
In addition, a slight modification to the plasmonic grat-
ing is found to yield a large variation in the bandgap,
which is not easily obtainable using conventional dielectric
gratings.

This paper is organized as follows. Section 2 gives the
dispersion model of a metal and the brief explanations of the
numerical techniques based on the efficient implicit schemes.
Section 3 discusses the dispersion properties of each MIM
waveguide with respect to the core width. Section 4 inves-
tigates the transmission coefficient of several modified
gratings. Section 5 provides the concluding remarks.
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2. Numerical Methods

2.1. Dispersion Model. The metal dispersion treated here is
expressed by the following Drude model [5–7]:

εr(ω) = ε∞ +
ω2

D

jω
(
νD + jω

) , (1)

where ε∞ is the dielectric constant of the material at infinite
frequency, ω is the angular frequency, ωD is the electron
plasma frequency, and νD is the effective electron collision
frequency.

2.2. Implicit Imaginary-Distance YM-BPM. The BPM is
widely used to analyze optical waveguides. The BPM can
also produce eigenmode fields quite efficiently, with the
help of the imaginary-distance procedure. Note however that
the conventional BPM cannot simultaneously offer all the
electromagnetic fields, since it is based on the wave equation
of either an electric or magnetic field. To simultaneously
evaluate electric and magnetic field components, the YM-
BPM has been developed on the basis of the explicit scheme
[10]. The implicit scheme has also been introduced to the
YM-BPM for efficient unconditionally stable calculations
[8]. The use of Yee’s mesh also means that the obtained
eigenmode profile is readily used as an initial field in the
following FDTD analysis. Detailed derivation of the three-
dimensional YM-BPM can be found in [8], where the
operator splitting is adopted in the propagation direction.
Here, we present the resultant unsplit FD equations for
the transverse magnetic (TM) waves suitable to the two-
dimensional calculations as follows:

(
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where

a± = jk0

(
1
Δz
± jk0n0

2

)
,

b± = 4 jk0n0 ± k2
0n

2
0

2
,

δ2
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ε1 ε1

ε2 ε2
Air

(a) grating 1

Ag Ag

SiO2

PSiO2

(b) grating 2

Ag AgAir

(c) grating 3

Figure 1: Configurations of plasmonic gratings. (a) grating 1:
formed by alternately stacking two kinds of MIM waveguides, (b)
grating 2: formed by periodic changes in the dielectric insulator
materials of an MIM waveguide, and (c) grating 3: formed by a
periodic variation of the air core width in an MIM waveguide.

in which

c1 = εr,i−1/2

εr,i
,

c2 = εr,i+1/2

εr,i
+
εr,i+1/2

εr,i+1
,

c3 = εr,i+3/2

εr,i+1
.

(5)

In the above equations, k0,n0, and εr , respectively, represent
the free-space wavenumber, the reference refractive index,
and the relative permittivity that is determined with (1) at
a specific ω. As is observed, (2) gives a tridiagonal system
of linear equations that are efficiently solved by the Thomas
algorithm. Once El+1

x is obtained, Hl+1
y is explicitly calculated

by (3).
To perform the eigenmode analysis, we apply the

imaginary-distance procedure to the above YM-BPM [8],
where the real propagation axis z is changed into the
imaginary axis jτ. This means that the phase variation of the
propagating field turns into the amplification of the eigen-
mode field. The effective index gradually converges using the
technique for renewing the reference refractive index n0.

2.3. Frequency-Dependent Implicit LOD-FDTD Method. For
the time-domain analysis of a metal in optical wavelengths,
we have to utilize the frequency-dependent FDTD [11]. Note
that the spatial sampling widths should be quite small for
the analysis of a surface plasmon wave localized around the
metal-dielectric interface. This gives rise to a small time step
due to the Courant-Friedich-Levy (CFL) condition of the
traditional explicit FDTD, resulting in long computational
time. To efficiently perform the time-domain analysis, we
have developed the frequency-dependent implicit LOD-
FDTD [12, 13] that is free from the CFL condition [14]. In
addition, to simply take into account the convolution inte-
gral, we have adopted the trapezoidal recursive convolution
(TRC) technique requiring a single convolution [15, 16],
which leads to almost the same accuracy as the piecewise
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linear RC (PLRC) counterpart requiring two convolution
integrals [17]. We here present the basic equation (TM
waves) of the frequency-dependent LOD-FDTD based on the
TRC technique for the Drude model as follows [7, 9]:

E′x = En
x , (6a)
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D/2

ε∞ + χ0
D/2

En
z +

1
ε∞ + χ0

D/2
φn
z

+
cΔt

2
(
ε∞ + χ0

D/2
)
(
∂H′

y

∂x
+
∂Hn

y

∂x

)
,

(6b)

H′
y −Hn

y

Δt/2
= c
(
∂E′z
∂x

+
∂En

z

∂x

)
, (6c)

for the first step and
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z = E′z, (7a)
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for the second step, where E′ and H′ represent the inter-
mediate fields, and c is the speed of light in a vacuum. The
parameters used above are expressed as follows:

φn
δ =
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δ + En−1

δ

2
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,

Δχ0
D = −
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D

ν2
D

(
1− e−νDΔt

)2

(8)

in which δ = x or z. Note that the normalized expression
of field components is used. The equations for the TRC-
LOD-FDTD are simpler than those for the PLRC-LOD-
FDTD [13]. In the first step, we substitute (6c) into (6b)
and implicitly solve the resultant equation using the Thomas
algorithm. Then, (6c) is explicitly solved. In the second
step, the equations are calculated in the same way as
in the first step. It should be noted that the frequency-
dependent implementation of the LOD-FDTD is much
simpler than that of the frequency-dependent alternating-
direction implicit (ADI) FDTD.

3. Dispersion Properties of MIM Waveguides

It is important to calculate the effective indexes of waveguides
of which the grating is composed, since the alternative
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Figure 2: Effective index of the MIM waveguide.

effective index modulation predominates grating character-
istics. Therefore, we first calculate the dispersion property
of various MIM waveguides with respect to the core width.
To obtain the effective index, we use the YM-BPM with the
imaginary-distance procedure.

Three plasmonic gratings treated here are as follows (see
Figure 1): one is formed by alternately stacking two kinds
of MIM waveguides (grating 1) [3], another by periodic
changes in the dielectric insulator materials of an MIM
waveguide (grating 2) [4], and the other by a periodic
variation of the dielectric insulator width in an MIM
waveguide (grating 3) [5, 6]. For grating 1, ωD = 15 eV
and νD = 0.01 eV are used for ε1, and ωD = 9 eV and
νD = 0.001 eV are for ε2, where ε∞ = 1 is commonly adopted
(metals are not specified) [3]. For grating 2, the permittivity
of Ag is determined with ε∞ = 3.7, ωD = 9.1 eV, and
νD = 0.018 eV (in consistent with the experimental results),
and those of SiO2 and PSiO2 are 1.462 and 1.232, respectively
[4]. For grating 3, the Ag permittivity is the same as that used
for grating 2.

Figure 2 shows the effective index of the MIM waveguide
of which each grating is composed, as a function of core
width W at a wavelength of λ = 1.55μm. In Figure 2, the
results of ε1-air-ε1 and ε2-air-ε2 are presented for grating
1, those of Ag-SiO2-Ag and Ag-PSiO2-Ag are for grating 2,
and the result of Ag-air-Ag is for grating 3. It is interesting to
note that the effective index becomes large as the core width
W is decreased. This contrasts to the case of a conventional
dielectric waveguide, where the effective index becomes small
as the core width is decreased.

Now, we pay attention to the effective index difference
Δne, when the two MIM waveguides are used to form
gratings. For grating 1, Δne is calculated to be 0.138 at
W = 0.05μm and 0.078 at W = 0.1μm from the results
in Figure 2. For grating 2, Δne is to be 0.329 at W = 0.05μm
and 0.278 at W = 0.1μm. For grating 3, Δne is evaluated
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to be 0.172 with a combination of W1 = 0.05μm and
W2 = 0.1μm. As a result, a large Δne can be obtained for
grating 2, although three materials (Ag, SiO2, and PSiO2) are
required. In contrast, for grating 3, a relatively large Δne is
obtainable with a simple grating structure (Ag-air-Ag). The
propagation losses for the latter two cases are calculated in
Figure 3. It is seen that the propagation loss for Ag-air-Ag
is smaller than that for Ag-PSiO2-Ag. Therefore, we choose
the Ag-air-Ag waveguide (grating 3) because of a relatively
large Δne and a low propagation loss, and investigate various
modified gratings in the following analysis.

4. Characteristics of Modified
Plasmonic Gratings

Using the frequency-dependent LOD-FDTD, we investigate
four plasmonic gratings consisting of the Ag-air-Ag MIM
waveguide with the input core width W1 being fixed. The
reference grating (concave type) is shown in Figure 4(a), the
parameters of which are W1 = 0.1μm, W2 = 0.15μm, Lp =
0.660μm, and Ls = 0.292μm. The number of the grating
period is 14. The normalized transmission coefficient for
concave type is presented in Figure 5(a), which is indicated
by the black solid line. Note that the Bragg condition is
expressed by k[ne1(Lp − Ls) + ne2Ls] = (2m + 1)π. For this
grating, the effective indexes are found to be ne1 = 1.20204
and ne2 = 1.139 in Figure 2. Then, the Bragg wavelength is
calculated to be �1.55μm from the above condition, which
almost agrees with the center wavelength of the transmission
coefficient for concave type.

Next, we examine another grating with W3 = 0.05μm
shown in Figure 4(b) (convex type). For this grating, the
effective index for W3 is ne3 = 1.37428, leading to a Bragg
wavelength of�1.69 μm (recall that the effective index for the
MIM waveguide becomes large, as the core width is reduced).
The red solid line in Figure 5(a) represents the coefficient for
convex type, in which the bandgap is found to be much wider
than that for concave type. This is due to the fact that the
bandgap becomes wide as the contrast between the effective

x

z
Lp Ag

W1 W2 · · · Air

Ls
Ag

(a)

W1 W3 · · ·

(b)

W1 W4 · · ·

(c)

W1 W5 · · ·

(d)

Figure 4: Various plasmonic gratings. (a) concave type, (b) convex
type, (c) flat-concave type, and (d) flat-convex type.

indexes of alternating layers is increased [4]. In this case, the
index contrast for convex type is 0.172, while that for concave
type is 0.063, leading to the wide bandgap for convex type.
As a result, the convex type plasmonic grating can yield a
wide bandgap, compared with the concave type where a large
effective index modulation cannot be obtained for a large W
as shown in Figure 2.

We further modify the gratings, in which the one side
of the metals for concave type is replaced with a flat
metal, as shown in Figure 4(c) (flat-concave type). For this
type, the effective index of the W4(= 0.125μm) section is
1.165, resulting in a Bragg wavelength of �1.56. This Bragg
wavelength is close to that without the modification (�1.55
for concave type). It is therefore expected that the bandgap of
the transmission coefficient for flat-concave type is reduced
with the Bragg wavelength being almost fixed. The black
dotted line in Figure 5(b) is the coefficient for flat-concave
type. As expected, the bandgap becomes narrower than that
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Figure 5: Normalized transmission coefficient.

for concave type, while maintaining the Bragg wavelength.
This is almost true for flat-convex type (the one side of the
metals for convex type is taken flat as shown in Figure 4(d)),
in which the coefficient is approximately centered in that for
convex type (see Figure 5(c)). It should be noted that even
the slight modification to the plasmonic grating structure
shown above leads to a large variation in the bandgap,
which is not easily obtainable from conventional dielectric
gratings.

Finally, we point out the efficiency of the LOD-FDTD. In
the above analysis, we have used a time step of 0.102 fs ten
times as large as that determined from the CFL condition
of the explicit FDTD. As a result, the computational time
of the LOD-FDTD is successfully reduced to 30% of the
explicit counterpart, where a PC with Core2Quad processor
(2.66 GHz) is used. The LOD-FDTD is suitable for the
analysis of plasmonic devices in which quite small sampling
widths should be required.

5. Conclusion

We have investigated the dispersion characteristics of several
MIM waveguides and examined the transmission coefficient
of several modified gratings. First, we briefly present the
numerical techniques, that is, the implicit YM-BPM for
the eigenmode analysis and the frequency-dependent LOD-
FDTD for the time-domain analysis. Next, we calculate
the effective index of each MIM waveguide. A simple
MIM waveguide made of Ag-air-Ag is found to provide a
relatively large effective index modulation, maintaining a low
propagation loss. We further calculate the characteristics of
concave and convex gratings. The convex grating is shown to
yield a wide bandgap of the transmission coefficient. Finally,
we modify the grating structures to study the effect on the
transmission coefficient. A slight modification to the grating
leads to a significant change in the transmission coefficient.
Applications to three-dimensional gratings are now under
consideration.
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The oblique BPM based on the Du-Fort Frankel method is presented. The paper demonstrates the accuracy and the computational
improvements of the scheme compared to the oblique BPM based on Crank-Nicholson (CN) scheme.

1. Introduction

Increasingly complex optical devices demand computation-
ally fast and memory efficient algorithms for modelling
purposes. Finite difference beam propagation method (FD-
BPM) is a popular numerical technique for simulating large
network of optical components due to its computational
advantages over classical numerical techniques such as
Finite Difference Time Domain (FDTD) method. The BPM
method is commonly applied in the Cartesian coordinate
system. However when the boundaries of an optical com-
ponent are not aligned to the Cartesian mesh, for example
in the case of tilted waveguides, bends and Mach-Zehnder
modulators, sampling on the Cartesian mesh introduces
nonphysical staircasing noise. The noise can be minimised
by using very fine mesh but that in return incurs large
computational costs. To more efficiently reduce the sampling
error an improved three-point formulas are used at the
interface which take into account the distance between the
boundary and the transverse sampling points [1–3]. Further
increase in accuracy of the Cartesian BPM, particularly
for strongly guided waveguides, is achieved by considering
the longitudinal component of magnetic field which is
commonly neglected in the standard FD-BPM method [4].
In contrast to Cartesian system, Oblique and Structure
Related (SR) coordinate system offers an accurate and
efficient alternative for modelling nonorthogonal structures
and automatically satisfies ∂n/∂z = 0. The sampling grid
of the SR mesh is aligned with the component material
boundary thus eliminating staircase error and allowing
relaxation in mesh size. Various SR-BPM schemes have been

introduced [5–11] and different schemes can be combined
together to map out the optical component. Furthermore,
the SR coordinate system ensures high accuracy for the
simple paraxial BPM formulation even without the use of
wide-angled schemes [10]. The oblique equation takes into
account the propagation direction, which is usually parallel
to the structure boundary. Hence the mode-mismatch error
is small. One of the motivations for implementation in
oblique coordinates is to remove the need for high-order
wide-angle scheme which requires substantial computational
resources. Wide-angle for oblique coordinate has been
developed by Sujecki [11]. However the author has also
confirmed that the wide-angle oblique approach should in
principle only be applied to low refractive index contrast
structures [12].

So far SR and oblique BPM schemes have been imple-
mented using implicit scheme such as CN. Whilst for the
two-dimensional (2D) structures this is computationally
fast, in the case of modelling three-dimensional (3D)
structures the CN scheme uses iterative matrix solvers such
as BI-CGSTAB or GMRES [13] and thus requires huge
computational resources. More computationally efficient
Alternate Direction Iterative (ADI) schemes [14] cannot be
implemented in SR coordinates due to mixed derivatives in
transverse directions and are limited to Cartesian meshes.
Alternatively, Du-Fort Frankel (DFF) schemes provide larger
step size and better stability condition than simple explicit
schemes and can be implemented on a parallel computa-
tional platform thus providing computational efficiency for
modelling realistic 3D optical components. The downside of
the DFF scheme is the inherent spurious or “ghost” mode
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that can affect the accuracy and stability of the scheme and
which can be alleviated by the right choice of parameters and
initial fields [15, 16].

In this paper, the oblique BPM method is implemented
using the DFF scheme. Section 2 outlines the formulation
of the method and Section 3 presents the results for the
power loss and computational efficiency of the scheme and
compares it against the oblique CN BPM scheme. The results
are presented for tilted 2D and 3D waveguides and scalar
fields.

2. Formulation

A general approach for formulating oblique BPM is outlined
in [5] and is limited to structures that do not vary with the
propagation direction and the β reference is parallel to the
propagating direction.

In this section an oblique BPM method based on
the paraxial approximation and implemented in the DFF
algorithm is outlined. Figure 1 shows schematic presentation
of two coordinate systems u, y, z′, and x, y, z, where z and
z′ form an angle θ. It is assumed that the fields propagate
with respect to the z′ axis. The 3D oblique coordinate BPM
equation adopted from [9] is used as

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
+ k2(x, y, z

))
Ψ = 0, (1)

where Ψ represents the scalar field of the form

Ψ(u, z′) = ϕ(u, z′) exp
(− jβ0z

′). (2)

The relationship between the oblique and the Cartesian
coordinate systems is given as

x = u + z′ sin θ,

z = z′ cos θ.
(3)

The difference equations are obtained using the chain
rule as

∂Ψ

∂u
= ∂Ψ

∂x
, (4)

∂Ψ

∂z′
= ∂Ψ

∂x
sin θ +

∂Ψ

∂z
cos θ, (5)

∂2Ψ

∂u2
= ∂2Ψ

∂x2
, (6)

∂2Ψ

∂u∂z′
= ∂2Ψ

∂x2
sin θ +

∂2Ψ

∂x∂z
cos θ, (7)

∂2Ψ

∂z′2
= ∂2Ψ

∂x2
sin2θ + 2

∂2Ψ

∂x∂z
sin θ cos θ +

∂2Ψ

∂z2
cos2θ. (8)

Rearranging (6)–(8) and substituting into (1) results in
the oblique wave equation:
(
∂2Ψ

∂z′
2 − 2

∂2Ψ

∂u∂z′
sin θ +

∂2Ψ

∂u2
+

∂2

∂y2

)
+ k2 cos θΨ = 0. (9)

u, x

y θ

z

z′

P(u, z′)

Figure 1: Oblique coordinate system.

Substituting the field from (2) into (9) gives the scalar
oblique BPM equation as

2 jβ0
∂ϕ

∂z′
+ sin θ

∂2ϕ

∂u∂z′

= 2 jβ0 sin θ
∂ϕ

∂u
+
∂2ϕ

∂u2
+

∂2

∂y2
+
(
k2 cos θ − β2

0

)
ϕ.

(10)

This equation can be straightforwardly implemented
using the CN scheme. In the case of the 2D modelling where
the ∂2/ ∂2y = 0, CN scheme requires tridiagonal matrix solver
known as Thomas algorithm is used to solve (10) which is
much faster than the sparse matrix solver. However in the
3D modelling, term ∂2/ ∂2y in (10) introduces two additional
unknown field points in each calculation step thus resulting
in five unknown field points. In CN scheme this requires
sparse matrix solver such as the commonly used BI-CGSTAB
iterative solver [17].

In order to implement DFF scheme the local field point
ϕl,m,n and the transverse second derivatives are discretized as

ϕl,m,n ≈
ϕl+1,m,n + ϕl−1,m,n

2
,

∂2ϕl,m,n

∂u2
≈ ϕl,m+1,n + ϕl,m−1,n −

(
ϕl+1,m,n + ϕl−1,m,n

)
Δu2

,

(11)

where l, m, and n are the discretised position in the z′,
u, and y direction. Substituting the DFF scheme into (10),
the numerical implementation for oblique DFF BPM is as
follows:

L

2

(
ϕl+1,m,n − ϕl−1,m,n

Δz′
− sin θ

ϕl,m+1,n − ϕl,m−1,n

2Δu

)

+ sin θ
(
ϕl+1,m+1,n − ϕl−1,m+1,n

2ΔuΔz′

−ϕl+1,m−1,n + ϕl−1,m−1,n

2ΔuΔz′

)

= ϕu′′ + ϕy′′ +
(
k2 − β2

0

)(ϕl+1,m,n + ϕl−1,m,n
)

2
,

(12)

where L = 2 jβ0, and ϕ′′a = (ϕm,a+1 + ϕm,a−1 − ϕm+1,a −
ϕm−1,a)/Δa2.The additional term in (10) diminishes the
explicit nature of the DFF, the 3D oblique DFF scheme
corresponds to separable tri-diagonal matrices on each
layer of the 3D structure. This can be efficiently solved by
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Figure 2: Power loss for a range of tilted angles for the oblique DFF-
BPM and the Cartesian DFF-BPM method.

Thomas algorithm and is algorithmically efficient for parallel
computing. Solving of the tri-diagonal matrix is more
computationally efficient than solving the sparse matrix thus
ensuring better computational efficiency of the 3D oblique
DFF-BPM compared to the oblique CN-BPM.

3. Results

In this section the accuracy and computational stability of
the oblique DFF-BPM method is analyzed and compared
with the oblique CN-BPM method. Both 2D and 3D tilted
waveguides are analyzed.

In an oblique coordinate system a tilted waveguide
is essentially a straight waveguide and ideally the power
transmitted in a tilted waveguide in the oblique system is
identical to the power transmitted in a straight waveguide
in the Cartesian mesh. Figure 2 compares power loss of the
2D tilted waveguide analyzed using the oblique DFF-BPM
with that analyzed using the DFF scheme in Cartesian mesh
for different tilted angles and different sampling meshes.
Perfectly matched layer (PML) is used for absorbing any
leakage from the simulation window. The implementation of
PML for the DFF method is described in [16]. The PML layer
is set as 1.0 μm and strength, σ/ω is set as 10. Guided mode
at the wavelength of 1.15 μm is launched in the 1 μm wide
slab waveguide with core refractive index n = 1.1 surrounded
by air. Longitudinal sampling Δz′ is fixed at 0.1 μm and the
waveguide length is 409.6 μm. It can be seen that by reducing
the sampling of the mesh the power loss in the Cartesian
BPM is reduced whilst for the oblique DFF-BPM the change
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of the mesh size does not significantly change the power loss.
This indicates that the mesh size can be more relaxed in the
case of the oblique DFF-BPM ensuring faster run time.

Figure 3 compares the computational runtime of the
3D oblique and Cartesian DFF- and CN-BPM methods for
different number of total mesh points N. A simple 1 μm
by 1 μm square metal-air waveguide is chosen for a fair
speed test. Longitudinal step Δz′ is fixed at 0.05 μm, Δu =
Δy, and the waveguide is 100 μm long. For the oblique
simulation, the same waveguide is used but tilted at an
angle of 5◦. Figure 3 shows that the Cartesian DFF excels
in speed even without any parallelization involved. Figure 3
also shows that oblique DFF-BPM is substantially slower
than Cartesian DFF-BPM due to the implementation of
the Thomas algorithm. However, when compared with the
Cartesian and oblique CN-BPM methods, the oblique DFF-
BPM method is much faster, especially for large mesh sizes.
However, it should be noted that DFF-BPM requires smaller
longitudinal step size than CN-BPM to achieve the same level
of accuracy and maintain stability. The 3D oblique DFF-BPM
is also suitable for parallel computing platform allowing for
more computationally efficient simulations.

Figure 4 analyses the stability of the oblique DFF-BPM
method. It is well known that the main weakness of the
DFF algorithm is the appearance of the spurious solution
[15]. The position of the spurious mode can be controlled
by appropriate choice of the mesh size and the excitation
[16]. It is desirable that the spurious mode is not too close
to the waveguide true mode so that the stability of the
algorithm is not affected. Generally increasing the transverse
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mesh size and reducing the propagation size step will place
the spurious mode further away from the true mode [16].
Figure 4 investigates the impact of the tilted angle on the
position of the spurious mode for a fixed mesh size. Figure 4
gives the Fourier transform of the field overlap between the
incident field and the field evolved along the waveguide for
different tilted angles. The 3D waveguide is a rectangular
metal-air waveguide with dimensions of 1 μm by 0.5 μm
and 204.8 μm long. Transverse mesh size is Δu = Δy =
0.1μm and longitudinal step sized is Δz′ = 0.05μm. Half
sine wave of 1.15 μm wavelength is launched at the input.
Figure 4 shows that the increase of the tilted angle brings
the spurious and the true mode closer together. This will
have implications on the maximum tilted angle that can be
considered using the oblique DFF-BPM method.

The stability of oblique DFF is determined by the oblique
angle and the mesh size. The effect of the mesh size is
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Figure 6: Effective index of a slab waveguide using Cartesian DFF
and 10 degree tilted oblique DFF method. Accuracy deteriorates as
it reaches the unstable region.

examined in Figure 5 for Δu = 0.01μm and different tilted
angles. The waveguide parameters are as in Figure 2. It shows
that for small transverse mesh size, it is necessary to keep the
propagation step size small to maintain stability. It can be
seen that when the oblique angle is small, the oblique DFF
behaves similar to the Cartesian DFF. As the oblique angle
increases, the oblique DFF requires smaller propagation step
or larger transverse mesh size to maintain the stability.

Figure 6 examines the parameter choice and instability
on the calculation of the effective index. The waveguide
parameters are the same as in Figure 2. The obtained effective
index is plotted for Δz′ = 0.025μm with various mesh
sizes and compared between the Cartesian DFF applied to
the straight waveguides and the oblique DFF applied to the
10◦ tilted waveguide. Figure 6 shows the Cartesian DFF and
the 10◦ tilted oblique DFF agree very well for small mesh
sizes but have significant discrepancy when the transverse
mesh size is increased. It can be concluded that the stability
condition has restrained the use of very small transverse
mesh size in DFF. However, using large transverse mesh size
would risk losing accuracy. However, it should be noted
that the difference in coordinate system makes it difficult to
compare results directly. A slice in the oblique coordinate is
equivalent to a diagonal cross-section through multiple slices
on a Cartesian coordinate system.

Figures 7(a)–7(c) shows the field profiles of the 2D tilted
waveguide obtained using the oblique and Cartesian DFF-
BPM method. The slab waveguide is as in Figure 2 but
10 μm long and tilted by 10◦. Figure 7(a) shows the field
profile of the 10◦ tilted waveguide mapped in the Cartesian
mesh and Figure 7(b) shows the same waveguide analysed
using the oblique DFF-BPM method. It can be seen that the
Cartesian mesh introduces large staircasing noise even for
very fine sampling mesh. For comparison, the field profile
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Figure 7: (a) Field surface plot for 10◦ tilted waveguide on Cartesian mesh. Scale has been capped to show the stair case noise. (b) Field
surface plot for 10◦ tilted waveguide on oblique coordinate. (c) Field surface plot for straight waveguide on Cartesian mesh.

of a standard nontilted waveguide modelled on the Cartesian
mesh in Figure 7(c) behaves similarly to the tilted waveguide
modelled on oblique coordinate. Perfectly Matched Layer
(PML) boundary condition is used to absorb the wave
leakage from the waveguide and the nonphysical staircase
noise. The slight leakage of the guided mode near the input of
the waveguide is due to the mismatch of the analytical mode
used to excite the waveguide and the actual numerical field
solution. This leakage disappears as the propagating mode is
settled in the waveguide.

4. Conclusion

The paper demonstrates the implementation of the DFF
algorithm into the 3D scalar oblique BPM method. The
accuracy and stability of the oblique DFF is investigated

on the 2D and 3D tilted waveguides and compared against
the oblique CN-BPM method. The resulting method is
computationally faster than oblique CN-BPM method and
is suitable for parallel computing for further computational
savings. It is noted that the appearance of the spurious mode
can potentially limit the application of the DFF to very large
titled angles.
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To the end of realizing a quantum network on-chip, single photons must be guided consistently to their proper destination both on
demand and without alteration to the information they carry. Coupled cavity waveguides are anticipated to play a significant role
in this regard for two important reasons. First, these structures can easily be included within fully quantum-mechanical models
using the phenomenological description of the tight-binding Hamiltonian, which is simply written down in the basis of creation
and annihilation operators that move photons from one quasimode to another. This allows for a deeper understanding of the
underlying physics and the identification and characterization of features that are truly critical to the behavior of the quantum
network using only a few parameters. Second, their unique dispersive properties together with the careful engineering of the
dynamic coupling between nearest neighbor cavities provide the necessary control for high-efficiency single-photon on-chip
transfer. In this publication, we report transfer efficiencies in the upwards of 93% with respect to a fully quantum-mechanical
approach and unprecedented 77% in terms of transferring the energy density contained in a classical quasibound mode from one
cavity to another.

1. Introduction

In order to obtain an efficient quantum computing architec-
ture, the general consensus is that various implementations
of the qubit should be combined. This calls on the one
hand for stationary qubits that are good for storage, such
as atoms to be used at quantum network nodes, and on the
other hand for flying qubits that have desirable properties for
travel, such as photons to be used as quantum interconnects.
Moreover, the storage qubits can map their quantum state
onto the traveling qubits and vice versa by means of
coherent interfaces [1–3]. With the intention of realizing an
efficient quantum computing architecture, this composite
qubit approach to a quantum technology has been proposed
for ion trap qubits [4] and also for neutral atoms [5]. We,
in addition, have proposed a similar approach in connection
with semiconductor-based artificial atoms or quantum dots

[6]. Regardless of choice, these various implementations of
the composite qubit architecture are only possible if single
photons are able to be guided from one node to another with
both high efficiency and fidelity.

Recently, the on-chip generation and transfer of
microwave single photons have been demonstrated in con-
nection with superconducting qubits via transmission line
cavities [7–10]. In addition, the generation and transfer of
single photons on photonic crystal chips using a 25μm long
defect waveguide structure has been studied by England
et al. showing 12% transfer efficiency with quantum dots
inside the nodes and 49% transfer efficiency without [11].
In this publication, we investigate the use of a photonic
crystal coupled-cavity waveguide (CCW) for the generation
and transfer of single photons on-chip. Such approach to an
on-chip quantum network present several advantages. For
example, since the photons we use have a wavelength of
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Figure 1: Two high-Q cavities connected via a coupled-cavity waveguide.
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Figure 2: Dispersion of a 12 coupled-cavities waveguide.

around 1μm (IR) as opposed to 1 cm or more (microwave),
the surface area of a quantum network in any optical
system would be a great deal smaller and thus much more
suitable for on-chip integration. In addition, the transfer
of microwave photons was shown to take few hundred
nanoseconds, whereas the transfer of optical photons inside
the photonic crystal chip is anticipated to take no more than
few tens of picoseconds.

Furthermore, CCWs offer a truly unique and sophis-
ticated control over the transport of single photons [12].
Because modes of CCWs resemble those of the high-Q cavity
modes and possess the same field symmetries, these devices
can be used to make bends with no reflection. In addition,
they can dramatically slow down optical waves, and because
of their versatile dispersion properties (both positive and
negative dispersion are achievable), they allow for a great deal
of control over a single-photon pulse propagation. Moreover,
since each mode is strongly localized, the guided mode is
composed of a linear combination of these individual bound
modes. This renders the propagating mode easy to model
quantum-mechanically [13], therefore allowing for their
guiding behavior to be optimized with respect to maximized
fidelity of quantum operations inside the quantum network.
And, once their guiding behavior has been characterized
with a few parameters, namely, the coupling coefficient κ
and resonant frequency ωc, their physical structure can be
constructed to emulate their intended behavior.
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The paper is organized as follows. The modeling of
the on-chip single-photon transfer dynamics is described in
Section 2. Included in that section are the single-photon
pulse propagation characteristics, the engineering of the
source/target cavity to waveguide dynamic coupling as well
as resulting transfer efficiencies. A physical implementation
of a CCW based on a photonic crystal structure for the
purpose of transferring single photon on-chip is presented in
Section 3. An analysis and discussion of the performance of
CCWs is provided in Section 4, followed by a final summary
and conclusions in Section 5.

2. Modeling On-Chip Single-Photon
Transfer Dynamics

The device under investigation is depicted in Figure 1. It
consists of two cavities, cavity 1 and cavity N , linked to one
another by means of a CCW, consisting of cavity 2 through
cavity N−1. In this specific example, N is 12. The coefficient
Γ describes the weak coupling between the cavities forming
the waveguide.

A general Hamiltonian for this system is derived from the
tight-binding Hamiltonian and it is shown in (1). â†j and â j

are the creation and the annihilation for the field in the jth
cavity, ωc is the resonant cavities frequency, VC1−W (t) is the
time-dependent interaction between the first cavity and the
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waveguide, and VW−CN (t) is the time-dependent interaction
between the waveguide and the last cavity

Ĥ =
∑
j

�ωcâ
†
j â j +

N−2∑
2

Γ
(

â†j â j+1 + â†j+1â j

)

+ VC1−W (t) + VW−CN (t).

(1)

Our key concern in this publication is the engineering of
the interaction between cavities and the waveguide structure
VC1−W (t) and VW−CN (t). First, we consider the waveguide
by itself and design its characteristics. Then, both the
cavities and the waveguide are considered, and the system
is engineered such that the photon is unloaded into the

waveguide and transferred to its destination with minimum
loss.

2.1. Waveguide. First, it is useful to consider a CCW by
itself. The Hamiltonian that can describe such a waveguide
is exactly the tight-binding Hamiltonian in

ĤTB =
∑
j

�ωcâ
†
j â j +

∑
j

Γ
(

â†j â j+1 + â†j+1â j

)
, (2)

In the Wannier representation, essentially a real-space pic-
ture of localized orbitals, this Hamiltonian matrix is written
as

ĤTB =

〈1n| 〈2n| 〈3n| 〈4n| 〈5n| 〈6n| 〈7n| 〈8n| 〈9n| 〈10n| 〈11n| 〈12n|⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ec Γ 0 0 0 0 0 0 0 0 0 Γ

Γ Ec Γ 0 0 0 0 0 0 0 0 0

0 Γ Ec Γ 0 0 0 0 0 0 0 0

0 0 Γ Ec Γ 0 0 0 0 0 0 0

0 0 0 Γ Ec Γ 0 0 0 0 0 0

0 0 0 0 Γ Ec Γ 0 0 0 0 0

0 0 0 0 0 Γ Ec Γ 0 0 0 0

0 0 0 0 0 0 Γ Ec Γ 0 0 0

0 0 0 0 0 0 0 Γ Ec Γ 0 0

0 0 0 0 0 0 0 0 Γ Ec Γ 0

0 0 0 0 0 0 0 0 0 Γ Ec Γ

Γ 0 0 0 0 0 0 0 0 0 Γ Ec

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

|1n〉
|2n〉
|3n〉
|4n〉
|5n〉
|6n〉
|7n〉
|8n〉
|9n〉
|10n〉
|11n〉
|12n〉

,
(3)

where state |1 n〉 corresponds to the Wannier function
localized in the first cavity forming the CCW, and state |2 n〉
corresponds to the Wannier function localized in the second
cavity forming the waveguide, and so on. The diagonal
matrix element for each site is Ec, this is the energy of the
resonant mode for each cavity. Periodic boundary conditions
are expressed at the waveguide ends as â†1 = â†12 and
â1 = â12.

2.2. Dispersion, Group Velocity, and GVD. It is assumed
that the wavelength of the single photon λph of 1.182μm,
which is a realistic wavelength for a GaAs/InGaAs-based
QD emitter. This wavelength corresponds to the cavity
resonant frequency ωc = 1.594 · 1015 rad/s, where Ec =
�ωc. Next, assuming a quality factor Q = 1000 for
each cavity of the CCW, the coupling rate between neigh-
boring cavities is thus calculated to be Γ = 1.594 ·
1012 rad/s, where Γ is defined as ωc/Q. This definition of
Γ assumes that coupling to the nearest neighbor cavity
is the only loss channel, that is, out-of-plan losses are
ignored.

The dispersion relation of this CCW is solved from
the diagonalization of the Hamiltonian matrix. Although
working in a real space representation, the problem is fully
equivalent to the reciprocal space-based Bloch representa-
tion. In fact, for N sites, Nk points exist in reciprocal space
and are defined as k = 2πK/Na where K is a quantum
number such that K = −N/2 + 1, . . . ,N/2 and a the lattice
constant of the periodic waveguide. As a result, the same
energy eigenvalues are obtained. They are plotted in red for
the normalized positive k points of the first Brillouin zone in
Figure 2.

The dispersion obtained numerically matches very well
the theoretical dispersion for CCWs in (4) in the linear
dispersion approximation. Under this approximation, we
assume weak coupling, which means that photons may only
leak into the nearest neighbor cavity [14–18]. The tight-
binding model yields the optical carrier frequencies

ωk = ωc[1 + κ cos(ka)], (4)

where ωc is the resonant frequency of a single cavity, κ is
the coupling coefficient between cavities, k is the Bloch wave
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number, and a is the lattice constant. For this waveguide, the
coupling coefficient was found to be κ = −0.002.

An expression for the group velocity vg can be derived
from (4) as follows:

vg = ∇kωk = −ωcκa sin(ka). (5)

The group velocity vg normalized over c (the speed of light
in vacuum) is plotted in Figure 3 throughout the normalized
coupled cavity waveguide band. It is obtained by taking the
derivative of obtained energy eigenvalues with respect to k.
At the edges of the waveguide band, that which corresponds
to when k is 0 or 1, the group velocity tends toward zero.

This result has two important consequences. First, the
group velocity dispersion is ill defined when k is 0 or 1
according to the standard definition in (6). Second, the

0

0.5

1

1.5
×1011

A
rr

iv
al

ti
m

e
(s

)

0 0.005 0.01 0.015

κ

Time delay

Figure 6: Time Delay.

group velocity dispersion may be either positive or negative
depending on which band edge k is closest to

GVD = −
(

2πc
λ2

)
d

dω

(
1

vg(k)

)
. (6)

The group velocity dispersion (GVD) for the 12 cavities
forming the waveguide is plotted in Figure 4 within the CCW
band. For practical applications, Mookherjea derived more
appropriate definitions of GVD that satisfy a small fractional
change of the GVD coefficient over the range of frequencies
of interest [19].

2.3. Single-Photon Propagation. A single-photon pulse is
shown propagating for the waveguide composed of 12 cav-
ities in Figure 5. The time dependence for the coupled-cavity
waveguide is obtained numerically using the Louiville or Von
Neumann Equation (similar to the approach discussed in
[20]) in conjunction with the tight-binding Hamiltonian to
solve for the time evolution of the density matrix whose states
correspond to the Wannier functions localized in the cavities
forming the waveguide. It is assumed that there are neither
any out-of-plane losses or material absorption causing the
CCW mode to decay nor any scattering resulting in a sudden
change of the phase.

The single photon pulse can be seen traveling from cavity
1 to Cavity 12 in about 9 picoseconds before being reflected.
An oscillatory structure at the trailing edge of the pulse can
be noticed. We believe this feature has to do with the single-
photon pulse defined initially at a precise point in space
and time. The consequence is a wideband single-photon
pulse, and therefore higher-order terms can no longer be
neglected resulting in envelope distortion. It is also helpful
to compare that propagation time with the decoherence time
of atoms or QDs. The time it takes to transfer a photon
from a source cavity to a target cavity is a relatively fast
process compared to the decoherence processes associated



Advances in OptoElectronics 5

1

Γ1(t)

2

Γ

3

· · ·

N − 1

Γ2(t)

N
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with electron spin qubits in self-assembled QD (our storage
qubit of interest). In a recent publication of ours [20],
we showed how the coherent exchange between a photon
qubit and an electron spin qubit in a QD is affected by
decoherence resulting from hyperfine interactions. Although
these decoherence processes prevented the interacting qubits
from reaching maximum entanglement, there were at least
partially entangled. It is important to note that these
interactions were taking place over a longer period of time,
about 1 to 2 orders of magnitude longer than the time
needed for a photon to propagate down 12 cavities. In
addition, a novel scheme based on ultrafast optical spin echo
shows that decoherence times on the order of microseconds
are achievable [21]. Therefore, it is anticipated that the
propagation time of the photon will not be much of an issue
over small to medium range distances.

Figure 5 also depicts the single-photon pulse propagation
in the linear region of the CCW; therefore, the single-photon
frequency is tuned to the middle of the waveguide band.
(This corresponds to a normalized frequency equal to 1 in
Figure 2.) As a result, ignoring the oscillatory structure at
the trailing edge of the pulse, a pulse propagates mostly
unchanged in shape. On the other hand, when the single-
photon pulse propagation is determined by the flat region of
the CCW dispersion corresponding to one of the edges of the
transmission band, there exists a considerable slowing of the
group velocity. Figure 6 depicts the travel time from cavity 1
to cavity 12 as a function of coupling coefficient κ.

2.4. Engineering Cavity-Waveguide Couplings. Dynamically
coupling the end cavities to the waveguide can be achieved
in two different ways. On one hand, this can be done
by setting all the resonant modes to be the same for all
cavities including the end cavities while varying the coupling
coefficients between the end cavities and the waveguide in
time in order to load and unload the photon from and
onto the waveguide. This is depicted in Figure 7, and its
corresponding Hamiltonian is described in

Ĥ =
∑
j

�ωcâ
†
j â j +

N−2∑
2

Γ
(

â†j â j+1 + â†j+1â j

)

+ Γ1(t)
(

â†1 â2 + â†2 â1

)
+ Γ2(t)

(
â†N−1âN + â†N âN−1

)
.

(7)

On the other hand, dynamic coupling can also be completed
by setting coupling coefficients to be the same for all cavities
including the end cavities while varying the resonant modes
of cavity 2 and cavity N − 1 in time in order to load and
unload the photon from and onto the waveguide. This is

depicted in Figure 8, and its corresponding Hamiltonian is
described in

Ĥ =
∑

j /= 2,N−1

�ωcâ
†
j â j + �ω2(t)â†2 â2 + �ωN−1(t)â†N−1âN−1

+
N−1∑

1

Γ
(

â†j â j+1 + â†j+1â j

)
.

(8)

In practice, both of these approaches can be realized by
means of a spatial modulation of the refractive index
within the quantum network. In order for these loading
and unloading operations to be feasible in a functioning
quantum network though, they must be performed at speeds
much greater than usual decoherence possesses therefore
requiring the assistance of ultrafast optical pulses. Methods
for the dynamical tuning of refractive index are based on
nonlinear effects, carrier injection by linear absorption of
an optical pump (free-carrier plasma dispersion effect),
carrier injection using a PIN diode, or thermal tuning via
optical heating. We are interested in carrier injection by
linear absorption of an optical pump which many groups
have shown to be a viable method. For example, Tanaka
et al. demonstrated a change in cavity Q from 12,000 to
3,000 in 4 ps [22]. Lipson’s group at Cornell University
used a 100 fs pump pulse to generate a 18 ps index change
pulse [23] and also demonstrated how a 1.5 ps pump pulse
corresponding to a 25 ps index change pulse could change the
Q factor of a cavity from 60000 to 17000 [24]. Tanabe et al.
generated a 14 ps pump pulse resulting in a change in photon
lifetime from 320 ps to 70 ps inside a high Q cavity [25].
Carrier injection using PIN diode is an interesting alternative
and allows for both the injection and extraction of carrier
simultaneously. The resulting shape of the free carrier index
change looks a lot like a square pulse. Gardes et al. showed a
7 ps rise and fall time in the index change was possible [26].

2.5. Transfer Efficiencies. On-chip on-demand single-photon
transfer stipulates that the photon is unloaded onto a
waveguide from a cavity 1 at a time t1 allowing it to travel
down the waveguide before being loaded into a cavity 2 at
a time t2. Considering the two approaches mentioned in the
previous section, a critical question to be answered is what
transfer efficiencies can be obtained.

First, we consider the case of time-varying coupling
coefficients. The unloading of the photon onto the waveguide
is achieved by dynamically switching the magnitude of the
coupling coefficient between cavity 1 and cavity 2 starting
at t1. Perhaps, this can be realized using an approach similar
to Noda’s [22]. Then, the loading of the photon from
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the waveguide into cavity N is achieved by once again
dynamically switching the magnitude of coupling coefficient
between cavity N − 1 and cavity N starting at t2.

Design parameters of interest for both switching func-
tions, Γ1(t) and Γ2(t), are their shape or time dependence,
the range of coupling strength over which they are varied,
the window in time over which they should be varied. There
are also few design constraints. The temporal width of Γ1(t)
or FWHM should be larger than the natural cavity decay
into the CCW so as to allow the photon to escape yet
smaller than round trip time. Similarly, properties of Γ2(t)
will greatly depend on factors such as the CCW length, the
group velocity, or the group velocity dispersion. Figure 9
shows the switching functions Γ1(t) and Γ2(t) qualitatively.

It was found that the optimum shape of switching
functions Γ1(t) and Γ2(t) is a Gaussian profile. In a CCW
with constant coupling between its cavities, when a photon is
allowed to propagate freely, though highly localized initially
(effectively represented by a delta function in space), it
eventually exhibits a distribution in space that happens to
be well approximated by a Gaussian. It may be that the
distribution could be also approximated by other functions,
for example, a squared hyperbolic secant. The authors believe
it is worth further investigating the mechanism behind the
broadening associated with the probability of finding the
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scatterers in a triangular lattice. The structure simulated here is a
hole type crystal of index 3.4.

photon in space. In any case, this is certainly related to
the fact that the coupled cavities have a finite Q which
introduces an uncertainty in the time over which the photons
actually hops from one cavity to the next. That being said,
the context of Figure 9 is slightly different as it relates not
just to a waveguide with constant coupling coefficient but
to time-varying coupling coefficients. In other words, the
coupling constant between two quasi-bound modes that are
degenerate in frequency is varied. And the cavity Q depends
on the coupling Γ(t) where Q = ω/Γ(t). Providing that the
switching function Γ(t) has a Gaussian shape, the Q(t) will
also have a Gaussian shape, thus allowing for minimum
reflections at the target cavity boundaries since the incoming

Figure 14: Structure of the high-Q cavity intended as a classical
embodiment to the j = 1 and j = N cavities in the quantum model
above.
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inset. There are only confined, nondispersive modes in the M crystal
direction but along the K crystal direction, our intended direction
of CCW propagation, dispersion is observed.

photon also has a Gaussian-like probability distribution in
time.

As far as the range over which the coupling strength
should be varied for Γ1(t), it is assumed that there is
not any coupling, initially, between cavity 1 and cavity 2,
yielding Γ1(0) = 0. However, the maximum of the Gaussian
shaped switching function is designed to be Γmax = 1.594 ·
1012 rad/s, which corresponds to the regular coupling rate
between neighboring cavities of the CCW. The minimum
FWHM for Γ1(t) that allows the entire photon to leak out of
the cavity was found to be 3 ps. The characteristics of Γ2(t)
are engineered so as to maximize the transfer efficiency.

Figure 10 shows transfer efficiencies for various FWHM
for Γ2(t) and a large range of t2. These transfer efficiencies are
calculated assuming Γ1(t) with a FWHM equal to 3 ps, a peak
coupling rate equal to 1.594·1012rad/s, and t1 equal to 1.5 ps.
A maximum transfer efficiency of 93% is obtained for Γ2(t)
with a FWHM equal to 2.75 ps and a starting time t2 equal
to 7.25 ps. The transfer efficiency is defined as the ratio of
the probability of finding a photon in cavity N following its
capture (once Γ2(t) goes back to zero) over the probability of
finding a photon in Cavity 1 before its release (when Γ1(0) =
0), which is always unity.

Next, the case of time-varying resonant frequencies is
considered. The unloading of the photon onto the waveguide



8 Advances in OptoElectronics

0.31

0.32

0.33

0.34

0.35

N
or

m
al

iz
ed

fr
eq

u
en

cy
(a

/λ
)

0 0.02 0.04 0.06 0.08 0.1

Kx

(a)

0.316

0.318

0.32

0.322

0.324

0.326

N
or

m
al

iz
ed

fr
eq

u
en

cy
(a

/λ
)

0 0.02 0.04 0.06 0.08 0.1

Kx

(b)

Figure 16: Dispersion relation for the L3s2 CCW structure
described above. (a) we see that many modes exist in the crystal’s
photonic band gap, some with high confinement that result in
no dispersion and others that allow coupled-cavity resonance for
propagation that result in the sinusoidal k-relation from (4). The
mode of interest is selected and zoomed in upon for (b).

is achieved by dynamically switching the resonant frequency
of cavity 2 from ωc +Δ to ωc starting at t1. Then, the loading
of the photon from the waveguide into cavity N is achieved
by dynamically switching the resonant frequency of cavity
N − 1 from ωc +Δ to ωc starting at t2 and subsequently from
ωc back to ωc + Δ.

Design parameters of interest for both switching
functions, S1(t) and S2(t), are their shape or time depen-
dence, the range of frequencies over which the cavity
resonant frequencies are varied, the time window over which
resonant frequencies should be varied. As far as design
constraints, it is desirable that the amount of detuning Δ
for the resonant frequency of the “barrier” cavities to be
larger than the waveguide bandwidth to avoid any significant
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Figure 17: (a) represents the spectra inside a single L3s cavity
isolated from any other cavities, while (b) represents the spectra
through a 7 cavity coupled L3s2 system. Results calculated from
FDTD.

coupling between the waveguide and the end cavities. Also,
the duration of S1(t), which is the time during which the
resonant frequency of cavity 2 is switched from ωc +Δ to ωc,
should be large enough for the photon to escape, yet smaller
than the round trip time. Similarly, S2(t) needs to be large
enough for the photon to be captured. Figure 11 shows S1(t)
and S2(t) qualitatively.

It was found that the optimum shape for S1(t) and S2(t)
is a square profile. In the case of the time-varying frequency
scheme, the coupling is mostly dictated by ω (Γ � ω),
so until the frequency of the “barrier” cavity matches the
frequencies of adjacent cavities, the probability of tunneling
through is insignificant. That explains why a square profile
is more appropriate. Earlier, in the case of the time-varying
coupling coefficient scheme, the difference was that all
the ω’s were the same; therefore, the probability of tunneling
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Figure 18: Simulated CCW modes in the L3s2 system. On the left, a PWE calculation of the allowed mode corresponding to the dispersive
mode in Figure 15 matches well with the FDTD simulation of the propagating mode on the right, both showing the out of plane field
component (Hy).
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Figure 19: Cavity resonance shifting due to a change in material
index of refraction. Using a standard index of 3.4 (red) as our
base, to comply with Si or GaAs substrates, switching the barrier
regions of our heterostructured cavity to an index of 3.3 (yellow)
offers negligible overlap between “barrier” cavity resonances and
the waveguide bandwidth (grey). Further confinement would be
possible with lower switched index but is less physically reasonable.

through was only depending on Γ(t). In fact, much higher
transfer efficiencies were achieved for the time-varying
frequency scheme with a square shape switching function
with the prescribed duration (about 75%) compared to a
Gaussian shape switching function with a wide range of
duration (no more than 10%). The authors believe that the
transfer efficiency could further be improved if the switching
function was switched on and off adiabatically, resulting in
a rounded square shape. In addition, the switching function
duration is now chosen to correspond to approximately twice
the photon lifetime in the “barrier” cavity since the photon
has to both enter and exit the “barrier” cavity before it can
reach the target cavity.

As far as the range over which the resonant frequency of
the “barrier” cavities should be varied, we assume that each

cavity in the CCW has a Q of 1000 resulting in a coupling
coefficient of Γ = 1.594 · 1012 rad/s at the wavelength of
interest and a bandwidth of BW = ω ± κ = 1 ± 0.002 in
normalized units of frequency. In our case, this corresponds
to BW = 1.59 · 1015 ± 3.18 · 1012 rad/s. Consequently, we
designed the detuning parameter to be Δ = 3.24 · 1012 rad/s
such that |κ| ≤ Δ � ω. Therefore, by switching “barrier”
cavity frequencies from ωc to ωc + Δ, we are able to prevent
coupling between the end cavities and the CCW.

Figure 12 shows transfer efficiencies for various FWHM
for S2(t) and a large range of t2. These transfer efficiencies
are calculated assuming S1(t) with a FWHM equal to 4.875 ps
and t1 equal to 1.5 ps. A maximum transfer efficiency of 75%
is obtained for S2(t) with a FWHM equal to 3.985 ps and a
starting time t2 equal to 5.7 ps.

3. Physical Design

As a sort of proof of principal, a classical optical system was
designed to compare and contrast the propagation properties
of light in CCW systems. Using photonic crystal as a means
to integrate such a coupled system allows great potential for
high density integration of waveguides and high-Q cavities
that are readily reproducible in fabrication. There has been
much work showing from both theory and experiment, that
photonic crystal CCW systems can exploit the unique disper-
sive properties discussed previously for applications of slow
light pulse compression and transparency [27–30]. Many
different systems have been shown to stop light including
traditional defect waveguides with side-coupled integrated
sequence of resonators. Initially, these systems seem identical
to CCW structures; they both exhibit a cosine-like dispersion
relation inside the photonic bandgap, which is eventually
flattened adiabatically to stop the light. Differences become
apparent when one consider the photonic wave function.
In the CCW system under consideration, a highly localized
photonic wave function is anticipated once the light is
stopped, that is, within a single cavity. On the other hand, for
defect waveguides with side-coupled integrated sequence of
resonators, the photonic wave function would be spread over
the defect waveguide and several cavities. For the reasons just
mentioned, a CCW structure decrease device footprint. In
addition, CCW structures lend themselves more readily to
cavity QED applications. In this publication we focus on the
maneuvering of light through a network of cavities only.
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Figure 20: (a) spectra of 3 coupled cavities simulated through FDTD. (b) the first and third cavities have been index switched to show
spectra that now represents an isolated heterostructured High-Q cavity. The spatial mode profile of this High-Q mode is also shown in (c).
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Figure 21: High Q cavity mode release and capture process. A
shows the confined cavity with both barriers activated with an index
of 3.3. B shows the opening of the inside cavity by index switching
to n = 3.4. With the second cavity’s outside barrier closed, C, the
energy accumulates and is then trapped by closing the inner barrier
of the second cavity in D.

The coupling of cavity modes to waveguide modes has
been a topic of intense research effort for the realization
of both quantum and classical integrated optical circuit
[11, 31, 32]. It is therefore useful, in photonic crystal
devices, to design similarities between isolated cavity modes
and propagating CCW modes. This similarity makes for
efficient coupling toward the effort of release and capture of
optical energy as well as bends and splitters for waveguide
routing [33, 34]. The bandwidth of a CCW band may
also be adjusted by changing localization properties of the
cavities, or the coupling strength (overlap integral) between

the localized cavity modes. For instance, decreasing the
intercavity distance leads to a wider bandwidth [35].

With many such degrees of design freedom that impact
the modes of both the isolated cavity and the CCW, use
of photonic crystal cavities for analysis of a coupled cavity
system is a fruitful choice. The remainder of this section
will review the methods and findings of the design and
characterization of a CCW system with isolated cavity release
and capture switching ability.

3.1. Numerical Methods. Analysis of our classical system
makes use of the standard numerical simulation tools
employed in photonic crystal devices, Plane Wave Expansion
(PWE), and Finite-Difference Time Domain (FDTD). The
proposed embodiment of this CCW system in a photonic
crystal featuring a triangular lattice of circular holes will be
performed for TE (even) polarized light only. This choice
of polarization allows both a more comfortable band gap
in which to engineer defects as well as a more accurate
approximation from a 3D slab to a 2D effective index method
approximation for future work. All results presented herein
may be taken as approximations to a 3D finite slab or simply
as a proof of concept in an infinite 2D system. The potential
barriers and loss mechanisms for moving to a fully 3D model
will be discussed later.

PWE provides an initial glimpse of the resonant behavior
of these index-periodic metamaterials. The band in which
the structure exhibits this periodicity-induced resonance, as
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Figure 22: Three step release of an optical mode in a high-Q cavity
into a CCW and capture into a second high-Q cavity with 77%
efficiency. Energy density (a) and field evolution (b) are shown to
illustrate the process.

shown in Figure 13 represents a range of frequencies in which
light is not allowed to propagate in the structure.

It is then, in this forbidden spectral range that engineered
crystal defects lead to allowed optical modes that may be
localized (cavities) or allowed to propagate (waveguides).
PWE will also provide the means to find the dispersion
relation for our coupled-cavity waveguide modes which is
key to the calculation of GVD.

Finally, FDTD is implemented to study the spectral
response as well as the operational efficiency of these devices.
This simulation tool allows the designers to observe how
their device would operate under perfect conditions.

3.2. Structure. The envisioned system will consist of coupled
cavities which exhibit guided modes as well as well-confined
cavities that will exhibit high Q-factors in comparison.
Lengths of CCW cavities will act as transmission lanes
between the high-Q cavities and so the resonances of the two

structures will have to align. We choose, as a simple proof of
concept, to implement L3s cavities for both the CCW unit
cavity as well as the high Q cavity. L3 is the representation
of a defect line cavity of three missing holes, while the s
denotes that the holes on the ends of the cavity are reduced
in size. This size reduction enables the designer to sculpt
the cavity resonance but is not considered variable for the
current study. The CCW will be a chain of these cavities as
defects in a triangular array of air hole circles of r =0.4a with
2 hole spacers (r = 0.3a) between each cavity as shown in
Figure 14. The variable a is the lattice spacing of holes in the
crystal.

In order to create the optical isolation necessary between
the high-Q cavity and the CCW chain, barriers of variable
index material will be used. These regions represent targets
for optically induced refractive index switching using off
resonant excitation [22].

3.3. Coupled Cavity Waveguide. Implementation of our PWE
scheme with the above device shows that light will be nondis-
persive and therefore strongly confined along the M crystal
direction but will exhibit dispersion and therefore propagate
along the K crystal direction, as shown in Figure 15.

By orthogonalizing the k-vectors calculated in the PWE
scheme so as to consider only the K direction, we may
increment the PWE’s eigenvalue calculations along only the
direction of propagation to simulate the CCW structure’s
dispersion relation, shown in Figure 16.

The resulting spectral signature of this mode dispersion
is shown in Figure 17 and will result in as many peaks over
the range of resonant frequencies as there are coupled cavities
in the chain.

Finally, it is important for the spatial field mode profiles
of our cavity and CCW to be similar in order to maximize
coupling between the two structures. Using both PWE
and FDTD simulation methods, we verify the spatial field
dependence shown in Figure 18 of our mode of choice.

3.4. Cavity. Relying on FDTD and the analysis of spectra,
the design of our cavity is made through observation of the
behavior of cavity resonance with changes to surrounding
regions. First, an isolated L3s cavity is simulated to establish
a basis for the types of modes this sort of cavity is likely to
support. This sort of isolated defect is unable to be readily
released into a CCW chain, and so a heterostructured cavity
is implemented by including index-switchable regions to act
as barriers to confine light away from the CCW portion of
the device. Because the resonances of identical cavities shift
in materials of different refractive index, shown in Figure 19,
it is possible to use this resonance mismatch as a confining
mechanism.

By implementing switched index cavities as barriers
for the generation of a high-Q cavity, the mode of inter-
est for both barrier-open (left) and barrier-closed (right)
three cavity segments are shown in Figure 20. While the
heterostructured cavity is greatly diminished in Q-factor
when compared to a single well isolated L3 cavity, it still
represents a functional and well-confined optical mode that
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is effectively isolated from the neighboring CCW chain. With
a Q-factor just under 2000, this proof of concept cavity
represents an area for future research in optimization if
strong coupling is desired.

Now, as we look toward coupling this cavity mode to the
CCW chain, it should be noted that the cavity resonance
of our isolated cavity is now centered to the CCW spectral
feature. With these tools, the release and capture of an optical
cavity mode is now outlined.

3.5. Implementing Coupling Mechanism. To perform release
of the cavity mode into the CCW chain, one cavity barrier
is index switched (opened) by optically induced carrier
injection. Now matching the chain region, the cavity mode is
allowed to couple to the CCW resonance and propagate from
cavity to cavity down the chain. As the energy propagates
down the chain, it becomes distributed amongst the coupled
cavities and must be collected in a two step process by which
the propagating mode is stopped by the outside secondary
cavity barrier and allowed to accumulate before the inside
secondary cavity barrier is activated, trapping the mode in
the secondary heterostructured cavity. The full three step
release and capture process is diagrammed here in Figure 21.

4. Results and Discussion

Through the switching protocol described above, transfer of
energy from the optical mode in one high-Q cavity, through
a chain of 5 coupled cavities, to a second high-Q cavity
was achieved in a 2D FDTD scheme with 77% efficiency.
Confinement at the first cavity, propagation between cavities,
and capture in the second cavity is shown in Figure 22.

5. Conclusion

We have demonstrated that in theory using both a quantum
model and a classical model that single photons can be
transferred efficiently on-chip from a high-Q cavity to
another using coupled cavity waveguides if the dynamic
coupling between nearest neighbor cavities is carefully
engineered. From the quantum model, as far as single-
photon trapping and releasing mechanisms are concerned,
dynamically switching coupling coefficients between “end”
cavities and the waveguide yields much higher single photon
transfer efficiencies (93% versus 75%) than dynamically
switching the resonant frequencies of the “barrier” cavities.
However, so far, only the single-photon trapping and
releasing mechanism based on dynamically switching the
resonant frequencies of the “barrier” cavities was able to be
implemented in a practical way within our classical model.
The endeavor to realize this system in a realistic form of
a 3D photonic crystal slab (PCS) presents two hurdles:
increased numerical cost, and out of plane loss mechanisms.
It is expected that the increased numerical cost may be
greatly alleviated by using 2D approximation methods for TE
(even) polarization. However, due to the low group velocity
of CCW modes and the zero group velocity of the high-
Q state, careful engineering of the Fourier components of

the field distributions in this system will be necessary to
avoid coupling to out-of-plane radiative modes. Until then,
though, the two models shown in this work yield strikingly
similar single-photon transfer efficiencies (∼75%), which
reinforces the versatility of CCWs and the advantage of using
such structures to implement photonic quantum networks.
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We present a novel hybrid silicon-polymer dual slot waveguide for high speed and ultra-low driving voltage electro-optic (EO)
modulation. The proposed design utilizes the unique properties of ferroelectric materials such as LiNbO3 to achieve dual RF and
optical modes within a low index nanoslot. The tight mode concentration and overlap in the slot allow the infiltrated organic EO
polymers to experience enhanced nonlinear interaction with the applied electric field. Half-wavelength voltage-length product and
electro-optic response are rigorously simulated to characterize the proposed design, which reveals ultrabroadband operation, up
to 250 GHz, and subvolt driving voltage for a 1 cm long modulator.

1. Introduction

Low driving voltage and high-speed electro-optic (EO)
modulators are of great interest due to their wide variety
of applications including broadband communication, RF
photonic links, millimeter wave imaging, and phased-array
radars. In order to attain optical modulation at low driving
voltages, a strong mode concentration and a tight mode over-
lap between optical and radio-frequency (RF) modes in the
nonlinear EO material are required. Typically, to maintain a
single mode operation in optical domain, the optical mode
size is on an order of wavelength, that is, 2 um at telecommu-
nication region. As a result, to match with the optical mode,
the RF guiding structure essentially has to reduce a factor of
three orders of magnitude. Conventional traveling wave EO
modulators are usually driven by RF transmission lines, such
as coplanar waveguides (CPWs) and microstrip lines. These
electrode designs provide not only high speed operation
but also a strong overlap between optical and RF modes.
While the device operates at very high frequency, that is,
over 20 GHz, the RF wave propagation attenuation attributed
from both conduction loss and dielectric loss becomes the
key issue that prevents the device from operating over a wide
bandwidth. Physically, a small mode size provides a strong
RF field concentration, or a small mode volume, however,

leads to a significant increase in propagation loss. As a result,
an optimal design of RF electrode design including signal
electrode and gap between signal and ground is required to
minimize the overall RF propagation loss.

To date, many high speed traveling wave EO modulators
have been designed, fabricated, and characterized, leading
to operation at speeds as high as 140 GHz. Most of these
modulators were developed using crystalline EO materials,
such as LiNbO3 [1–5] and GaAs [6, 7]. Recently, tremendous
efforts have gone into the development and optimization
of organic EO polymers. State-of-the-art nonlinear electro-
optic polymers have been reported to have an EO coefficient
of r33 = 100 pm/V or higher [8–14], which is nearly an order
of magnitude higher than the crystalline LiNbO3 and two
orders of magnitude higher than most III-V materials. With
the recent breakthroughs in silicon photonics, specifically
vertical and horizontal slot waveguides [15, 16], the silicon
organic hybrid represents a tremendous opportunity to
develop highly sensitive devices for an array of photonics
applications [17–20]. A variety of designs including ridged
slot waveguides and segmented slot waveguides have been
proposed for modulation applications [21–24]. By placing
low index EO polymer material in the slot region, the optical
mode will be tightly confined in the nonlinear material.
This requires an extremely small RF mode concentration
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for deep modulation. One of the approaches is to dope the
silicon ridges at the edge of the slot; the voltage then will be
applied directly across the slot region, thereby maximizing
the electric field. This confinement of the optical mode
and electric field allows for modulation at millivolt driving
voltages [22, 23]. However, the introduction of doping in
the silicon ridges also induces significant RF propagation
loss. The loss is strongly dependent on the operational
frequency and the doping level but can reach values up
to 30 dB/cm at 100 GHz. To mitigate the RF loss, a novel
modulator design based on a dual horizontal slot waveguide,
where a unique ferroelectric material is used to form an
RF and optical nanoslot in a microstrip line with a large
electrode separation, has been proposed. An ultra-high speed
modulation and extremely low driving voltage are achieved
[25]. In this paper we present a CMOS compatible vertical
dual slot waveguide EO modulator design, where the slot
waveguide is formed on silicon-on-insulator wafer.

In order to accurately characterize the proposed device,
both optical and RF analysis are performed by using vectorial
waveguide mode solvers. In the optical domain, a Finite-
difference Frequency-domain (FDFD) method is employed
[26]. On the other hand, due to nanometer scale of slot
structure, the analysis of such a device at RF frequency
becomes extremely challenging. To this end, a finite-element
method (FEM) based commercial software package, ANSYS
High Frequency Surface Simulation (HFSS), was employed.
The adaptive meshing scheme allows handling both very
subwavelength and larger features to achieve convergent
results. In the rest of paper we will present the slot
waveguide analysis and design, as well as its electro-optic
characterization in terms of sensitivity and high frequency
response.

2. Dual RF Photonic Slot Waveguide

The dual vertical slot waveguide is formed on a silicon-on-
insulator (SOI) substrate. As depicted in Figure 1, the device
consists of two ridges with a high refractive index, that is,
silicon, and a nanometer-scale slot infiltrated with a lower
refractive index EO polymer material that is sandwiched
between the ridges. The silicon ridges then are bounded
with ferroelectric materials, such as LiNbO3 and TiO2. The
nanoslot has a gap size of wp and silicon ridges have a width
ofwsi. The outer claddings have a width ofwc and their height
is aligned with silicon substrate. The polymer is infiltrated
in the slots as well as the gaps between signal electrodes
and ground of coplanar waveguide. As shown in Figure 1,
by introducing an RF coplanar waveguide, two sets of slot
waveguides can be embedded in the gaps, thereby forming a
push-pull EO modulator configuration. The gold electrodes
have a signal width of wm and thickness of hm. In this design
a SOI wafer with thickness of hsi = 260 nm and an oxide layer
of 2 μm are used, thereby leading to a single mode operation
in the vertical direction at telecommunication wavelengths.

The ferroelectric materials possess unique material prop-
erties, that is, low optical refractive indices and very high
RF dielectric constants. In particular, LiNbO3 material is
used to form the waveguide due to its additional EO effect
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Figure 1: Dual vertical slot waveguide EO modulator. (a) Schematic
layout of dual nanoslot waveguides embedded in the CPW, where
three-dimensional RF and optical mode profiles in the middle plane
along the waveguide propagation direction are shown on the top
of slot waveguide. (b) Cross-sectional view of dual slot waveguide,
where strong mode confinement and overlap are illustrated in the
center slot.

on the modulation. In the optical wavelength range, that
is, at an operation wavelength of 1.55 μm, the ordinary and
extraordinary refractive indices of LiNbO3 are no = 2.214
and ne = 2.138, respectively. However, in the RF frequency
range, the anisotropic LiNbO3 substrates have high relative
permittivities of 28 and 43 perpendicular and parallel to the
substrate surface. Silicon ridges have an RF relative dielectric
constant of 11.97, which is a slight variation compared to
their optical refractive index of 3.5. The EO polymer has an
optical refractive index of 1.6 and an RF relative dielectric
constant of 2.49. Obviously, the indices of LiNbO3 are lower
than that of silicon at optical wavelengths and much greater
than that of silicon in the RF frequency range. These unique
material properties allow us to construct a dual nanoslot
waveguide in order to achieve both optical and RF mode
concentration.
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Figure 2: Optical and RF mode profiles. (a) Optical electric field distribution at a wavelength of 1.55 μm. (b) RF electric field distribution at
a frequency of 100 GHz with 1 V applied between the signal electrode and ground. The colorbar scale confirms the field concentration near
1.1 MV/m within the low index EO polymer infiltrated slot. The dashed box indicates the position of the optical mode as shown in (a).

First, consider a quasitransverse electric (TE) mode
in the optical domain, where the dominant electric field
component is parallel to the horizontal plane, as shown in
Figure 1. The electromagnetic boundary conditions reveal
the electric field discontinuity across the slot, thereby
resulting in an enhancement in the electric field strength in
the low index material [15]. In order to characterize optical
confinement within the polymer material, the confinement
factor is defined as the ratio of the propagation power
inside the slot to the total power of the guiding mode,
Γo =

∫
Slot Re(E × H)ds/

∫
Waveguide Re(E × H)ds. The figure of

merit, Γo, is strongly dependent on the design parameters,
such as waveguide height, slot width, and silicon ridge
width. Therefore, optimization of the design parameters is
required to maximize mode confinement factor to achieve
an improved EO modulation.

A full-vectorial finite-difference (FD) analysis [26] that is
capable of handling anisotropic and lossy material properties
is developed and employed to simulate the waveguiding
characteristics, that is, the guided mode and effective index.
We consider a slot waveguide with a gap size of wp = 120 nm
and a silicon ridge width of wsi = 250 nm. The EO polymer
has a total height of hp = 1.2μm. Figure 2(a) shows the
optical electric field distribution at the wavelength of 1.55 μm
with an effective index of 2.027. Across the middle plane of
the waveguide structure an enhancement of (nsi/np)2 = 4.7
in the electric field can be observed. Based on the mode
profile, the calculated optical confinement factor in the EO
polymer is Γo = 36.56%. The large mode concentration
in the nanoslot provides an opportunity for the enhanced
nonlinear interaction with applied electric field. As shown
in Figure 2(a), the further extension of optical mode into top
cladding of EO polymer and edge cladding of LiNbO3 will
lead to an improved EO modulation.

The strong optical mode confinement in the slot suggests
a RF mode overlap in the slot to maximize the modulation.
Due to the very extremely different wavelength scales
between RF and optical waves, the design for RF mode
in a nanometer-scale slot becomes extremely challenging.
Efforts have been made to establish the electrical field in
the vertical slot by highly doping the silicon. However, at
high frequencies the doped silicon becomes extremely lossy
rather than conductive, thereby prohibiting its high speed
operation. With the application of LiNbO3 as the outer
claddings, let’s also concern with concentrating the RF signal.
While an RF signal is applied to the CPW electrodes, a CPW
mode is established in which the dominant electric field
in the gap between signal and ground is aligned in the x
direction. Since LiNbO3 material has a much larger dielectric
constant than the silicon and EO polymer materials, the
boundary conditions reveal that the resultant RF electric field
inside the ferroelectric and silicon materials is much weaker
than within the EO polymer. The weak electric field in the
high dielectric constant materials indicates a small fraction of
voltage drop across the materials; as a result, a large portion
of the applied voltage is directly across the slot. The resulting
structure creates an effective RF nanoslot waveguide within
the transmission line. Due to the strong mode confinement
in the low index EO polymer infiltrated slot, a lower overall
RF effective index can be achieved. In the proposed design,
the signal electrode width is wm = 8μm and the CPW gap
size is wgap = 6μm. The electrode thickness, hm, is optimized
to match the RF effective index with that of the optical
mode, enabling high speed operation. The loss tangents of
LiNbO3 and silicon are 0.004 and 0.002, respectively, and the
conductivity of gold is 4.1×107 S/m. As shown in Figure 2(a),
a strong electric field confinement, over 1.1 × 106 V/m, is
observed when a voltage of 1 V is applied across the signal



4 Advances in OptoElectronics

250200150100500

Frequency (GHz)

Microwave
Optical

2

2.1

2.2

2.3

E
ff

ec
ti

ve
in

de
x

0

5

10

15

A
tt

en
u

at
io

n
co

n
st

an
t

(d
B

/c
m

)

(a)

Real part

Imaginary part

250200150100500

Frequency (GHz)

−10

0

10

20

30

40

50

60

Im
pe

da
n

ce
(O

h
m

s)

(b)

Figure 3: RF propagation characteristics of dual slot waveguide. (a) RF and optical effective indices and RF attenuation constant over the
frequencies of 250 GHz. The dashed blue line indicates the effective optical index of 2.502. (b) Characteristic impedance.

electrode and ground at a frequency of 100 GHz. Such a
strong electric field concentration will induce a significant
optical index change in the nonlinear EO polymer material,
resulting in a deep optical modulation. An ultrabroadband
response that spans from DC to 250 GHz is performed by
HFSS.

On the other hand, the introduction of the high dielec-
tric constant material potentially allows for an increased
electrode separation between signal and ground without
significantly decreasing the electric field confinement in
the slot. As a result, the RF mode will experience reduced
conduction loss. This becomes of particular importance for
the modulators to operate at high frequencies. Figure 3(a)
shows the comparison between the optical effective index
and frequency dependent RF effective index, as well as the
attenuation constant for the RF slot waveguide. An optimal
electrode thickness, hm = 2.2μm, is found to minimize the
index mismatch to a value as low as 0.038 at high frequencies.
Due to tight concentration in the slot, the overall RF effective
does not vary significantly, and tends to be convergent to
2.065 at the frequencies over 50 GHz. Figure 3(b) shows the
real and imaginary parts of the characteristic impedance. The
finite conductivity has a strong impact on the characteristic
impedance. At frequencies over 50 GHz, the characteristic
impedance remains to be 49 Ohms.

3. Electro-Optic Modulation Analysis

In order to characterize the high speed electro-optic response
and sensitivity of the proposed device based on the simulated
optical and RF guided mode characteristics in the previous
section, consider a traveling wave electro-optic modulator,
where both optical and RF guided modes are copropagated
along the same direction over a length of L. The RF voltage

amplitude along the transmission line can be expressed as
[4, 27]

V
(
fm, y

) = V0e
−αm( fm)ye j(kmδy−2π fmt0), (1)

where V0 is the amplitude of the RF wave at the input
port, km = 2πnm/λm is the RF wave number, αm is the
RF attenuation constant, δ = 1 − no/nm is the relative
index mismatch between RF effective index nm and optical
effective index no, and fm is the RF frequency. Driven by
the microwave, the optical phase induced at the end of
modulator is derived by integrating the induced phase over
the modulator, given by

Δφ
(
fm
) =

∫ L

0

2π
λo
ΓV0e

−αm( fm)ye j(kmδy−2π fmt0)dy, (2)

where the mode overlap integral factor, Γ, that characterizes
the induced changes in refractive index for a given applied
voltage of V0, is defined by the mode overlap integral
between optical and RF electric fields in the cross section
transversal to the modulator propagation direction,

Γ = 1
V0

∫∫
S(1/2)n3

effr33(x, z)Em(x, z)|Eo(x, z)|2ds∫∫
S|Eo(x, z)|2ds , (3)

where neff is the effective index of the optical mode, r33 is the
EO coefficient distribution, and Em and Eo are the RF and
optical electric fields, respectively. To characterize the high-
speed response of the modulator, the electro-optic response
of the modulator, derived from the induced phase at a given
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Figure 4: Electro-optical response of the proposed modulators with
different modulator lengths of 1 and 2 cm.

Table 1: DC half-wavelength length-product.

r33 (pm/V) DC VπL (mV·cm)

30 675.8

100 215.5

170 128.2

RF frequency of fm, is defined as a normalized quantity
compared to the phase change at DC,

m
(
fm
) =

∣∣Δφ( fm)∣∣∣∣Δφ(0)
∣∣

= e−αm( fm)L/2

√√√√ sinh2(αmL/2) + sin2(kmδL/2)

(αmL/2)2 + (kmδL/2)2 .

(4)

From the above equation, the electro-optic response is
strongly dependent on the RF loss coefficient and index
matching, or velocity matching, between optical and RF
guided modes. The half-wavelength voltage of Vπ( fm) corre-
sponding to a phase change of π over the interaction length
of L to produce a zero optical output can be derived as,

Vπ
(
fm
) = Vπ(DC)

m
(
fm
) , (5)

where DC half-wavelength voltage is given by the Vπ(DC) =
λo/2ΓL. The longer the length of the modulator is, the lower
the DC Vπ is; however, the lower the EO response is due to
RF loss. Therefore, there is an optimal length for achieving a
minimum half-wavelength voltage at high frequency.

From the analysis of both RF and optical characteristics
in the previous section, the electro-optic modulation can
be characterized based on the DC half-wavelength voltage-

length product and the electro-optic response. The DC half-
wavelength voltage-length product is strongly dependent on
the mode overlap integral factor, Γ, that is inherently related
to the RF and optical mode concentration and overlap, as
well as the EO coefficients. To evaluate these expressions, the
EO coefficient of the EO polymer is assumed to be r33 =
30, 100, or 170 pm/V [8, 11, 22, 28]. The resulting VπL is
listed accordingly in Table 1, indicating nearly two orders
of magnitude enhancement in EO modulation compared
to traditional LiNbO3 traveling wave modulators. Figure 4
depicts the EO response of the proposed modulators with
two different lengths: L = 1 and 2 cm, obtained from (4).
Minimal RF propagation loss and good index matching
provide an ultrabroadband electro-optic response, that is,
250 GHz. The frequency-dependent driving voltage, derived
from the DC VπL and electro-optic response m( fm), demon-
strates a subvolt driving voltage, at ultra-high frequencies.
The push-pull configuration of the modulator will further
reduce the DC Vπ by a factor of 2 if an intensity modulation
is interested.

Compared to conventional traveling wave modulators,
the proposed dual vertical slot waveguide EO modulators
demonstrate superior advantages from a variety of aspects.
The extremely strong RF and optical modes confinement
within a nanoslot lead to a tight mode overlap, enhancing
nonlinear interaction of EO polymer. The reduced RF
loss due to a large electrode gap improves the electro-
optic response, thereby enabling high speed operation.
The application of exotic organic EO polymer owing to
its high EO coefficient further lower the driving voltage,
therefore enhancing sensitivity. In addition to these, the
application of EO property of polymer requires careful
material preparation, including EO activation. In order to
activate the EO property, EO polymer is required to pole at
an appropriate temperature with an extremely high field, that
is, 50 V/μm [22]. The proposed design may offer potential
in the EO material poling process. An applied DC bias
on the electrodes can be directly extended across the slot.
For a given 120-nm slot and 40-V applied voltage, an
electric field about 44 V/μm can be produced. The small
slot size and the strong field established with a low applied
voltage make an in situ poling process of the polymer
feasible.

4. Conclusion

In summary, we have presented an integrated RF and optical
vertical dual slot waveguide traveling wave EO modulator. By
harnessing the unique material properties of the ferroelectric
LiNbO3 material and organic EO polymers, the proposed
design is able to tightly concentrate both RF and optical
modes in a slot for maximizing the nonlinear interaction
with the applied electric field. Numerical simulations are
performed to characterize the design. The tight mode overlap
and large EO coefficient of polymer significantly leverage
the modulation sensitivity, leading to a subvolt driving
voltage over a length of 1 cm. The improved electrode design
significantly reduce the RF propagation attenuation, thereby
enabling the design operate over the frequencies of 250 GHz.
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The design, the realization, and the characterization of silicon resonant cavity enhanced (RCE) photodetectors, working at
1.55 μm, are reported. The photodetectors are constituted by a Fabry-Perot microcavity incorporating a Schottky diode. The
working principle is based on the internal photoemission effect. We investigated two types of structures: top and back-illuminated.
Concerning the top-illuminated photodetectors, a theoretical and numerical analysis has been provided and the device quantum
efficiency has been calculated. Moreover, a comparison among three different photodetectors, having as Schottky metal: gold, silver,
or copper, was proposed. Concerning the back-illuminated devices, two kinds of Cu/p-Si RCE photodetectors, having various
bottom-mirror reflectivities, were realized and characterized. Device performances in terms of responsivity, free spectral range,
and finesse were theoretically and experimentally calculated in order to prove an enhancement in efficiency due to the cavity effect.
The back-illuminated device fabrication process is completely compatible with the standard silicon technology.

1. Introduction

In the last two decades, there has been growing interest in
photonic devices based on Si-compatible materials [1, 2]
in the field of both optical telecommunications and optical
interconnects. In this context, tremendous progresses in the
technological processes have allowed to realize effectively
fully CMOS compatible optical components, such as low-
loss waveguides, high-Q resonators, high speed modulators,
couplers, and optically pumped lasers [3–8]. All these devices
have been developed to operate in the wavelength range from
the C optical band (1528–1561 nm) to the L optical band
(1561–1620 nm) where the defect-free intrinsic bulk Si has
minimal absorption. On the other hands, this transparency
window limits the Si applications as absorbing material for
infrared photodetection, so that the development of high-
performance waveguide-integrated photodetectors on Si-
CMOS platform has remained an imperative but unaccom-
plished task. In order to develop all Si photodetectors and to
take advantage of the low-cost standard Si-CMOS processing
technology without additional materials or process steps,
a number of options have been proposed, in particular,
the two-photon absorption (TPA) [9], the incorporation of

optical dopants/defects with mid-bandgap energy levels into
the Si lattice [10, 11], and the internal photoemission effect
(IPE) [12]. The IPE has been recently used also in silicon
photodetectors realized with plasmonics structures [13, 14].

Silicon infrared photodiodes based on the IPE are usually
employed in infrared imaging systems [15]. Unfortunately,
due to their low potential barriers (≤0.25 eV), they must
work at cryogenic temperature (70 K) in order to avoid high
dark-current densities. The main advantages of these devices
reside in their large bandwidth and simple fabrication
process, but, due to the leakage photon flux within the
metallic layer, their quantum efficiency (number of collected
electrons per incident photon) is very small. In this paper,
with the aim to enhance the device quantum efficiency
at room temperature, top- and back-illuminated photode-
tectors at 1.55 μm, based on IPE and incorporated into a
microcavity structure, have been investigated. A theoretical
and numerical analysis of a top-illuminated structure has
been provided, and in order to estimate the device theoretical
quantum efficiency, we have taken advantage of the analytical
formulation of the Fowler’s theory [16], including the image
force effect and its extension for thin films. On the other
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hand, concerning the device optical analysis, a numerical
approach, based on the transfer matrix method (TMM), has
been implemented. We prove that a significant enhancement
in quantum efficiency can be achieved by using an RCE
structure. A comparison among three different Schottky
barrier silicon photodetectors, having as metal layers: gold,
silver, and copper, has been proposed. Our numerical results
prove that in order to improve the device quantum efficiency,
the Schottky barrier plays a key role.

However, concerning the top-illuminated structure, the
crucial point is the realization of a metal thin film
(semitransparent). The precise control of the thin metal

thickness and an acceptably low defect concentration are
not trivial tasks. Therefore, the design, the realization, and
the characterization of back-illuminated RCE photodetectors
having a thick metal layer as top mirror, have been reported.
In order to experimentally prove the responsivity (ratio
between photogenerated current and incident optical power)
enhancement, which can be achieved by using a resonant
structure, a comparison between a Schottky diode, with
and without Bragg reflector, has been made. An improve-
ment in responsivity at 1.55 μm has been theoretically and
experimentally demonstrated for the Cu/p-Si Schottky diode
provided by a high reflectivity Bragg mirror.

2. Internal Photoemission Theory

Internal photoemission is the optical excitation of electrons
in the metal to an energy above the Schottky barrier and then
transport of these electrons to the conduction band of the
semiconductor (Figure 1).

The standard theory of the photoemission from a metal
into the vacuum is due to Fowler [16]. In a gas of electrons
obeying the Fermi-Dirac statistics, if the energy of the
incoming photons is close to the potential barrier (hν ≈ ΦB),
the fraction (Fe) of the absorbed photons, which produce
photoelectrons with the appropriate energy and moment
before scattering to contribute to the photocurrent, is given
by

Fe =
[(
hν− (φB0 − ΔφB

))2 +
(

(kTπ)2/3
)
− 2(kT)2e−hν−((φB0−ΔφB ))/kT

]
8kTEF log

[
1 + e(hν−(φB0−ΔφB ))/kT

] , (1)

where hν is photon’s energy, ΦB0 is the potential barrier
at zero bias, ΔΦB is the lowering due to the image force
effect (as we will see later), and EF is the metal Fermi level.
As it is possible to see in (1), Fe is strongly depending
on the potential barrier height of the metal-semiconductor
interface.

In order to study the quantum efficiency for thin metal
films, the theory must be further extended, taking into
account multiple reflections of the excited electrons from
the surface of the metals film, in addition to the collisions
with phonons, imperfections, and cold electrons. Assuming
a thin metal film, a phenomenological, semiclassical, ballistic
transport model for the effects of the scattering mechanisms
resulting in a multiplicative factor for quantum efficiency
was developed by Vickers [17]. According to this model,
the accumulated probability PE that the electrons will have
sufficient normal kinetic energy to overcome the potential
barrier is given by

PE ∼=
[

1− e−(d/Le)
]1/2

, (2)

where d is the metal thickness and Le is the mean free path.

In order to complete the internal photoemission theory,
the image force between an electron and the metal surface
must be taken into account. The image force effect causes
a lowering (ΔΦB) and displacement (xm) of the metal-
semiconductor interface potential barrier. These barrier
lowering and displacement are given by [18]

xm =
√

q

16πεSi

W

|VBias|
, ΔφB =

√
q

4πεSi

|VBias|
W

, (3)

where εSi is the permittivity of silicon (10−12 C/cmV), W is
the depletion width, and VBias the applied bias voltage.

Finally, the probability that an electron travels from
the metal-semiconductor interface to the Schottky barrier
maximum without scattering in the Si is taken into account
by the barrier collection efficiency ηc, which is given by [19]

ηc = e−(xm/Ls) , (4)

where Ls is the electron scattering length in the silicon. It
is worth noting that by increasing the bias voltage, a shift
of Schottky barrier closer to metal-semiconductor interface
is obtained. Therefore, the barrier collection efficiency
increases.
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Figure 2: Schematic cross-section of top-illuminated RCE Schottky photodetector.
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Figure 3: Schematic of the multilayer RCE photodetector.

3. Top-Illuminated Device

3.1. Proposed Device. The sketch of the proposed top-
illuminated photodetector is shown in Figure 2.

The resonant cavity is a Fabry-Perot surface normal
structure. It is formed by a buried reflector, a metallic top
mirror, and, in the middle, a λ/2 silicon cavity. On top of
the λ/2 silicon cavity has been deposited a semitransparent
Schottky metal and a coating dielectric layer, working as
top reflector of the resonant cavity. We point out that our
structure is different from the RCE Schottky photodetectors
in which the Schottky contact is only an electric contact and
not the active layer. In our device, the metal layer works as

top contact, as active (absorbing) layer, and as mirror. This is
the crucial point and the novelty of our device.

The distributed Bragg reflector (DBR) could be formed
by alternate layers of Si and SiO2 having refractive indices
3.45 and 1.45, respectively. One of the many benefits of
this reflector is the large index contrast provided by Si/SiO2

structures allowing the realization of high-reflectivity and
wide spectral stop-band DBR. Commercially reproducible
dielectric mirrors consisting of a two-period DBR fabricated
using a double silicon-on-insulator (DSOI) process have
been successfully realized showing a reflectivity of 92.7% at
1550 nm [20, 21]. In the same way, it could be possible to
realize DBR formed of more than two Si/SiO2 pairs. The
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Table 1: Optical and electrical properties for three metals: gold,
silver, and copper.

Metal
Complex
refractive
index (N)

Mean free
path (Le)

[μm]

Fermi
level
(EF)
[eV]

Potential
barrier
(ΦB)
[eV]

Au 0.174–j9.960 0.055 5.530 0.780

Ag 0.450–j9.290 0.057 5.480 0.780

Cu 0.145–j9.830 0.045 7.050 0.580

use of SOI substrate has been investigated extensively for
the fabrication of Si-based photodetectors; this technique
is particularly attractive given the widespread acceptance of
SOI technology as a platform for high performance CMOS
[22]. The benefits gained by using SOI substrates, due to the
high index contrast of the buried oxide, would be the same
offered by substrates constituted with more Si/SiO2 pairs.
Starting from these considerations, in our design we propose
a DBR centred at 1.55 μm formed by 4 periods of Si/SiO2

having thicknesses of 340 nm (limitations in fabrication
process usually do not allow to realize a Si layer thickness
as thin as (λ/4n); for this reason a thickness of (3λ/4n) was
considered [20]) and 270 nm, respectively. Reflectivity of the
proposed Si/SiO2 DBR is 0.99 at 1550 nm.

In order to achieve an Ohmic contact, the top layer of
the DBR is supposed to be realized by a very thin but heavily
doped 1019 cm−3 silicon layer. Concerning the top reflector
of the resonant cavity, we consider three metals: gold, silver,
and copper, whose optical and electrical properties are
summarized in Table 1 [21, 23, 24].

The efficiency of the RCE-PD is given by (5) [17]

η = ATFePEηc, (5)
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Figure 5: Calculated quantum efficiency versus wavelength for
devices with DBRs formed by 4 Si/SiO2. Top mirror is realized with
various metals: Ag (blue dashed line), Cu (black solid line), and Au
(red dotted line).

where AT is the total optical absorbance of the metal while
Fe, PE, and ηc have been previously introduced. The cavity
effect is taken into account in the calculation of the AT factor,
which has been carried out by using a transfer matrix method
(TMM) [24, 25].

3.2. Absorbance Calculation and Quantum Efficiency. In
order to estimate the quantum efficiency, the calculation of
the absorbance (AT) is numerically carried out by TMM.
Normal incidence condition and the restriction to variations
of n(z), that is, the unidimensional refractive index profile,
along the propagation direction (z) are taken into account.

Let us consider a general structure for proposed photode-
tector in which layer 3 is the absorbing material (Figure 3).

As shown in Figure 3, let E2,F (E4,F) and E2,B (E4,B) be the
frequency domain electric field complex amplitudes of the
forward and backward travelling plane waves in layer 2 (layer
4); the total powers incident on and going out from the metal
are

Pinput = n2

2η0

∣∣E2,F
∣∣2 +

n4

2η0

∣∣E4,B
∣∣2

=
⎛
⎝n2

∣∣∣∣∣ MA11

MTOT11

∣∣∣∣∣
2

+ n4

∣∣∣∣∣ MB21

MTOT11

∣∣∣∣∣
2
⎞
⎠ |Einc|2

2η0
,

Poutput = n2

2η0

∣∣E2,B
∣∣2 +

n4

2η0

∣∣E4,F
∣∣2

=
⎛
⎝n2

∣∣∣∣∣ MA21

MTOT11

∣∣∣∣∣
2

+ n4

∣∣∣∣∣ MB11

MTOT11

∣∣∣∣∣
2
⎞
⎠ |Einc|2

2η0
,

(6)

where η0 is the vacuum characteristic impedance.
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Figure 6: Schematic cross-section of the proposed back-
illuminated RCE Schottky photodetector.

Air being the first layer considered (n1 = 1) and Pinc

being the power incident on the whole system, absorbance
in the metal layer is given by

AT =
Pinput − Poutput

Pinc

=
⎧⎨
⎩
⎛
⎝n2
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2

+ n4

∣∣∣∣∣ MB11

MTOT11

∣∣∣∣∣
2
⎞
⎠
⎫⎬
⎭,

(7)

where n2 and n4 are the real parts of the refractive index of
the 2th and 4th layer, respectively.

We point out that we could apply the power balance to
the whole device instead that to the only metal layer, but,
in this case, we would have considered also the absorbance
contribution due to the layer heavily doped on top of the
DBR necessary to achieve Ohmic contact (Figure 2).

AT depends critically upon the metal thickness. The
value of thickness must be a compromise between the top
reflectivity value and the absorbance of metal layer. In
order to calculate the maximum absorbance, the resonance
condition must be imposed

2β(λ0)L + ψ1(λ0) + ψ2(λ0) = 2π, (8)

where β = 2nπ/λ0 is the propagation constant, L is the
thickness of silicon cavity and, ψ1 and ψ2 are the phases
introduced by the top and bottom mirror, respectively.

An analytical formulation of the quantum efficiency for
a simplified RCE-PD structure with lossless mirrors was
given by Kishino et al. [26]. In the case of an absorbing
mirror, such as the semitransparent metallic top mirror of
RCE Schottky PDs, the previous formulation is no longer
valid. Therefore, in order to calculate the device maximum

Table 2: Cavity parameter coming out from our simulations.

Metal
Cavity

thick-ness
(L) [μm]

Metal
thick-ness
(d) [nm]

R1
Ψ1

[rad]
AT

Q
value

Au 0.420 30 0.920 −2.140 0.780 525

Ag 0.410 20 0.730 −2.110 0.930 153

Cu 0.420 32 0.930 −2.360 0.740 585

quantum efficiency, the following methodology has been
adopted:

(1) bottom-mirror reflectivity and phase (R2, ψ2) have
been calculated. They result in 0.990 and 3.11 rad,
respectively,

(2) top-mirror reflectivities and phases (R1, ψ1) have
been calculated for metal thicknesses ranging from
0 to 50 nm consequently, the value of silicon cavity
thickness yielding a resonance condition can be
obtained by (8). Finally, the resulting absorbance is
calculated using (7). We obtain a curve of absorbance
depending on the metal thickness in the range of 0–
50 nm and we consider the maximum,

(3) dielectric coating thickness, chosen in order to avoid
perturbation of resonance condition, is a Si3N4 layer,
having refractive index 2.0 and thickness of 390 nm,
and

(4) at this point, the parameters of the optimized cavity
are fixed and the quantum efficiency as a function of
wavelength in the range of interest can be calculated
using (1)–(5), (7).

The parameters calculated by the aforementioned
methodology have been summarized in Table 2.

Efficiency versus wavelength for various metals has been
reported for a device without DBR in Figure 4 and with DBR
in Figure 5, respectively.

It is worth noting that a significant quantum efficiency
enhancement of two order of magnitude is achieved by using
a resonant cavity structure. We note that the copper top
contact cavity has the best quantum efficiency (about 0.2%,
corresponding to a responsivity of 2.5 mA/W at 1550 nm)
and selectivity due to its lower potential barrier and to its
higher reflectivity, respectively. It is interesting in comparing
gold and silver, due to the same value of barrier (Table 1), we
get the same order of efficiency (about 0.06%, corresponding
to a responsivity of 0.75 mA/W at 1550 nm), but in the case
of gold a better selectivity, due to the higher reflectivity, is
obtained.

4. Back-Illuminated Device

4.1. Proposed Device. The sketch of the proposed back-
illuminated device is shown in Figure 6.

The resonant cavity is a surface normal Fabry-Perot
structure. It is formed by a dielectric bottom mirror, a
metallic top mirror, and, in the middle, a silicon cavity.
The advantage of a back-illuminated device is that the top
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Figure 8: Top view of the back-illuminated realized photodetector.

mirror can be realized very thick reducing the importance
of the roughness control during metal deposition process.
The dielectric bottom reflector will be realized by alternating
layers of amorphous hydrogenated silicon (a-Si:H) and
silicon nitride (Si3N4) having λ/4 thicknesses.

4.2. Responsivity Calculation. By (1)–(5) and (7), devices
having bottom-mirror reflectivities (RBM) of 0.3 (reflectivity
of a silicon/air interface), 0.73, and 0.98 were numerically
investigated. All optical and electrical properties for silicon
and copper used in our simulations are reported in Table 3
[21, 23–27].

Table 3: Optical and electrical properties for silicon and copper
used in our simulations.

Complex
refractive
index at
1550 nm

Thickness
[μm]

Mean
free path
(Le) [μm]

Fermi
level (EF)

[eV]

Potential
barrier
(ΦB)
[eV]

Copper
(Cu)

0.145-
j9.830

0.20 0.045 7.050 0.720

Silicon 3.48 100 — — —

Table 4: Cavity parameters coming out from our simulations.

Peak responsivity
[uA/W]

Cavity finesse

Cu/p-Si photodiode
with bottom reflectivity
at 1550 nm of 0.30

3 4.7

Cu/p-Si photodiode
with bottom reflectivity
at 1550 nm of 0.73

9.1 16.5

Cu/p-Si photodiode
with bottom reflectivity
at 1550 nm of 0.98

19.9 89

In Figure 7, responsivity (linked to the efficiency by the
formula: R = (λ[nm]/1242)η) versus wavelength at various
bottom-mirror reflectivities is reported.

The results coming out of our simulation are summa-
rized in Table 4.

In all cases, the free spectral range is 3.3 nm. It is worth
noting that a responsivity enhancement is achieved by using
resonant cavity structure at higher finesse. The maximum
responsivity of 19.9 μA/W obtained in our simulations is
about two orders of magnitude lower compared with the top-
illuminated structure numerically investigated above. This is
expected from the fact that in top illuminated structure the
goal was to optimize the device in order to get the highest
efficiency while in this back-illuminated structure the layer
thicknesses are chosen taking into account our capability to
realize a preliminary device in order to make a comparison
between theoretical and experimental data.

4.3. Device Fabrication. In order to validate our numerical
results, we only fabricated back-illuminated structures in two
variants: one with high-reflectivity bottom mirror realized
with 5 pairs of a-Si:H/Si3N4 and one with a low reflectivity
bottom mirror realized with simple silicon/air interface. Both
structures have been provided by Cu metal working as the
top mirror.

The samples were fabricated starting from a slightly
doped (1014 cm−3) p-type bi-polished 100-μm-thick silicon
wafer.

The collecting ohmic contact was realized on the top of
the samples. The collecting contact was made by a 200-nm-
thick aluminum film, thermally evaporated at 3 · 10−6 mbar
and 150◦C, and patterned by a lift-off process of photoresist
Shipley S1813 which, deposited by a spincoater at 4000 rpm,
has a thickness of 1.4 μm. Then, an annealing at 475◦C in
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Table 5: Value of thicknesses and refractive indices as calculated.

D [nm] n1550

a-Si:H 108 3.58

Si3N4 220 1.82

nitrogen for 30 min, in order to get a not-rectifying behavior,
was carried out [28].

On the back of one device, a multilayer Bragg mirror was
fabricated by Plasma Enhanced Chemical Vapor Deposition
technique (PECVD). The mirror is composed by a quarter-
wave stack of a-Si:H and Si3N4 layers, having nominal refrac-
tive index, at 1550 nm, of 3.52 and 1.82, respectively. Silicon
nitride was deposited at pressure of 1.2 mbar, temperature
of 250◦C, at 30 W of RF power. In the deposition chamber,
10 sccm of NH3, 88 sccm of SiH4 (5% in He), and 632 sccm
of N2 were flowed. The deposition rate is 22.93 nm/min, and
the suitable Si3N4 thickness was obtained with a process time
of 9 min and 17 sec. The amorphous hydrogenated silicon,
instead, was deposited at pressure of 0.8 mbar, temperature
of 250◦C, power of 2 W, and a SiH4 (5% in He) flow of
600 sccm. The a-Si:H deposition rate is 3.15 nm/min, and the
suitable thickness was obtained with a process time of 34 min
and 56 sec.

Finally, the Schottky contact was fabricated on top
of both samples. Copper was thermally evaporated and
patterned by liftoff, so obtaining a metal thickness of 200 nm,
thicker than optical field penetration depth. The collecting
contact and the Schottky contact are shaped by a ring and a
disk having radius of about 2 mm, as shown in Figure 8.

4.4. Device Characterization

4.4.1. Bragg Mirror Reflectivity Characterization. As far as
the realization of our device is concerned, the crucial point
is the Bragg mirror. Bragg reflectivity measurements were
carried out by means of Spectroscopic Ellipsometry (SE)
[29, 30]. Spectroscopic ellipsometric data were acquired by
a Jobin Yvon UVISEL-NIR phase-modulated spectroscopic
ellipsometer apparatus, at 70◦ angle of incidence, operating
from 280 to 1600 nm. The optical properties of a-Si:H
and Si3N4, that is, the complex refractive index dispersion
spectra, were calculated using the Tauc-Lorentz dispersion
model [31–33]. The thicknesses and the refractive indices
at λ = 1550 nm, for both a-Si:H and Si3N4 films, are
summarized in Table 5.

The Bragg mirror theoretical model is composed by five
distinct pairs of a-Si:H/Si3N4 layers, deposited on single-
crystal silicon substrate, and by a superficial roughness,
modelled by a Bruggeman effective medium approximation
(EMA) [34], and consisting of 50% of air and 50% of a-
Si. The fitting procedure between the experimental data and
the theoretical model was executed using the Levenberg–
Marquardt algorithm and returned a fit goodness factor
χ2 = 2.9. Starting from the results shown in Table 5, a
simulated reflectivity at normal incidence has been reported
in Figure 9 (solid line).
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Figure 9: Measured and simulated reflectivity of the Bragg mirror,
formed by 5 pairs of a-Si:H/Si3N4, from 600 to1600 nm at normal
incidence.
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Figure 10: J-V characteristic of the realized Cu/p-Si Schottky diode.
The inset shows diodes dark current.

Finally, the reflectivity spectra of the Bragg reflector was
measured at normal incidence by means of a Y optical
reflection probe (Avantes), connected to a white light source
and to an optical spectrum analyzer (Ando, AQ6315B). The
comparison between simulated and measured (dotted line)
Bragg mirror reflectivity, for light normally incident in the
range 600−1600 nm, is reported in Figure 9.

4.4.2. Electrical Characterization. Typical density current-
voltage (J-V) curve of Cu/p-Si diode, obtained by a
parameter analyzer (Hewlett Packard 4145B), is depicted in
Figure 10.

The Schottky barrier height (SBH) was deduced fitting
the experimental J-V characteristic, in the forward bias
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region, to the following equation of the Schottky diode (9)
[18]:

J = A∗∗T2e−φB/VT

(
e−((V−RsI)/ηVT ) − 1

)
, (9)

where Rs is the series resistance, ΦB the potential barrier, η
the ideality factor, T the absolute temperature, and VT is the
thermal voltage. The calculated SBH is 0.72 ± 0.01 eV.

The maximum detectable wavelength is given by (10):

λmax [nm] = 1242
φB

. (10)

We obtain that Cu/p-Si photodiodes are able to detect
wavelengths up to 1725 nm.

4.4.3. Optical Characterization. The experimental set-up for
external responsivity measurements is shown in Figure 11.
The laser beam emitted by a wavelength tunable laser is split
by a Y fiber junction. One branch is used to monitor the

optical power, while the other one is collimated, chopped,
and sent onto the device. The photocurrent produced by
our device is measured by a lock-in amplifier. A trans-
impedance amplifier is employed to provide a reverse bias to
the photodetector and at the same time for reducing the dark
current. The dark current cancellation circuit realised by
using a transimpedance amplifier has a limited bandwidth;
however, it is adequate for our scope, that is dc or quasistatic
measurements [35].

Responsivity measurements were carried out in the range
of 1545–1558 nm (step of 0.05 nm). Figure 12 shows the
room temperature responsivity versus the wavelength in two
conditions: device with a bottom-mirror reflectivity (RBM) of
0.3 (blue solid line) and 0.99 (black dashed line), respectively.
The measured free spectral range of 3.3 nm agrees with the
value numerically calculated. By looking at device having
RBM = 0.3, the measured cavity finesse F and responsivity are
2.9 and 1.6 μA/W, respectively. Moving our attention to the
device having RBM = 0.99, we get a measured cavity finesse F
and responsivity of 4.7 and 4.3 μA/W, respectively.

By comparing Figures 7 and 12, we note that while
the experimental and numerical free spectral range agree,
as far as finesse and peak responsivity are concerned,
experimental and numerical values show a discrepancy. In
our opinion, such a discrepancy can be due to the cavity
losses, which are not taken into account in our simulations.
In fact, it is well known that if we assume a Fabry-Perot
interferometer having ideal plane-parallel plates, the finesse
is determined only by the reflectivity R of the mirrors. In
practice, however, deviations of the surfaces from an ideal
plane, slight inclinations of the two surfaces, and surface
irregularities cause imperfect superposition of the interfering
waves. This results in a broadening of the transmission peak
and a decreasing of the total finesse [36].

5. Conclusions

In this paper, a new approach for sub-bandgap detec-
tion at 1.55 μm in Si-based devices is investigated. The
proposed devices are RCE structures incorporating silicon
photodetectors based on the internal photoemission effect.
We investigated two types of structures: top and back
illuminated.
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Concerning the top-illuminated photodetectors, a device
theoretical investigation has been carried out. A method-
ology based on TMM has been implemented in order to
design and to optimize the structures. We proved that a
significant enhancement in quantum efficiency, of about two
orders of magnitude, can be achieved due to the effect of
the Fabry-Perot microcavity. Moreover, a comparison among
three different photodetectors, having as Schottky metal:
gold, silver, or copper, was proposed. We proved that due
to its lowest potential barrier, the best quantum efficiency
has been obtained by considering copper as Schottky metal,
demonstrating that the metal-silicon interface potential
barrier plays a key role.

It is worthy noting that the fabrication of top illuminated
devices could be not simple, in fact, the precise control
of the thin metal thickness and an acceptably low defect
concentrations are not trivial tasks. For these reasons, back
illuminated devices constituted by a thick metal layer as top
mirror have been realized.

Concerning the back-illuminated photodetectors, a the-
oretical and experimental investigation on devices having
bottom mirror reflectivities of 0.3 and 0.99, respectively, have
been carried out. Simulated and measured responsivities
around 1550 nm show a good agreement from a qualitative
point of view, demonstrating that the responsivity enhance-
ment is strictly linked to the increased cavity finesse.

Even if the measured responsivities could be already
suitable for power monitoring applications, we believe that
our results could be further improved by investigating more
complex microcavities at higher finesse (for example, ring
resonator), which could be also very promising in the
integration of photonic components with integrated circuit
electronics enabling interconnection bandwidth that is not
limited by the RC time constant and reliability constraints of
metal lines.
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