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1. Introduction

Cloud computing has emerged rapidly as an exciting new
paradigm that offers a challenging model of computing and
services. Leveraging cloud computing technology, bioinfor-
matics tools can be made available as services to anyone, any-
where, and through any device. The use of large biodatasets,
its highly demanding algorithms, and the hardware for
sudden computational resources makes large-scale biodata
analysis an attractive test case for cloud computing.

This special issue aims to foster the dissemination of
high quality research in any new idea, method, theory, and
technique related to cloud computing and bioinformatics
and to showcase the most recent developments and research
in cloud computing for biological, genomics, and drug
design, considering genomics and drug design on the cloud,
biological tools on the cloud, biodatabase on the cloud, cloud-
based biocomputing, and all kinds of successful applications.
The research papers selected for this special issue represent
recent progresses in the aspects, including theoretical studies,
practical applications, new analysis and modeling technology,
programming methodologies, and experimental prototypes.
All of these papers not only provide novel ideas and state-
of-the-art techniques in the field but also stimulate future
research in the biocloud environments.

2. Cloud-Based Biological Service

Large-scale scientific experiments have an ever increasing
demand for High Performance Computing (HPC) resources.

The paper by R. De Paris et al. “wWFReDoW: a cloud-based
web environment to handle molecular docking simulations
of a fully flexible receptor model” proposes a cloud-based
web environment, called web Flexible Receptor Docking
Workflow (wFReDoW), which reduces the CPU time in
the molecular docking simulations of FFR models to small
molecules. It is based on the new workflow data pattern
called Self-adaptive Multiple Instances (P-SaMI) and on a
middleware built on Amazon EC2 instances. P-SaMI reduces
the number of molecular docking simulations while the
middleware speeds up the docking experiments using a
High Performance Computing (HPC) environment on the
cloud. The experimental results show a reduction in the total
elapsed time of docking experiments and the quality of the
new reduced receptor models produced by discarding the
nonpromising conformations from an FFR model ruled by
the P-SaMI data pattern.

On the other hand, as bioinformatics is embracing cloud
computing, the paper by L. Kajan et al. entitled “Cloud
prediction of protein structure and function with PredictProtein
for Debian” reports the release of PredictProtein for the
Debian operating system and derivatives, such as Ubuntu,
Bio-Linux, and Cloud BioLinux. The PredictProtein suite is
available as a standard set of open source Debian packages.
The release covers the most popular prediction methods
from the Rost Lab, including methods for the prediction
of secondary structure and solvent accessibility (profphd),
nuclear localization signals (predictnls), and intrinsically
disordered regions (norsnet). The authors also present two



case studies that successfully utilize PredictProtein packages
for high performance computing in the cloud.

3. High-Performance Biological Computing

Although the computer science technologies can be used to
reduce the costs of the pharmaceutical research, the com-
putation time of the structure-based protein-ligand docking
prediction is still unsatisfied until now. The paper by J.-L.
Chen et al. entitled “A high performance cloud-based protein-
ligand docking prediction algorithm” presents a novel docking
prediction algorithm to accelerate the docking prediction.
The proposed algorithm works by leveraging two high-
performance operators: (1) the novel migration (information
exchange) operator is designed specially for cloud-based
environments to reduce the computation time; (2) the effi-
cient operator is aimed at filtering out the worse search
directions. The simulation results illustrate that the proposed
method outperforms the other docking algorithms compared
in this paper in terms of both the computation time and the
quality of the end result.

The proteome-wide analysis of protein-ligand binding
sites and their interactions with ligands is potentially an
important source of information in structure-based drug
design and in understanding ligand cross-reactivity and
toxicity. The paper by C.-L. Hung and G.-]. Hua entitled
“Cloud computing for protein-ligand binding site comparison”
develops a cloud computing service, called Cloud-PLBS,
combining SMAP and Hadoop framework, and it is deployed
on a virtualization cloud computing platform. Cloud-PLBS
takes advantage of the MapReduce paradigm as means of
management and parallelizing tool under massive number of
protein-ligand binding site pairs compared under the experi-
ment. Cloud-PLBS provides both a web portal and scalability
for biologists to address a wide range of compute intense
questions in biology and drug discovery. The performance
experiment shows that it is desirable for molecular biologists
to investigate the protein structure and function analysis
under reasonable time constraints by using our cloud service.

An understanding of the activities of enzymes could help
to elucidate the metabolic pathways of thousands of chemical
reactions that are catalyzed by enzymes in living systems.
The paper by C.-C. Huang et al. entitled “Enzyme reaction
annotation using cloud techniques” proposes the enzyme
reaction prediction (ERP) method as a novel tool to deduce
enzyme reactions from domain architecture. We used several
frequency relationships between architectures and reactions
to enhance the annotation rates for single and multiple
catalyzed reactions. The deluge of information which arose
from high-throughput techniques in the postgenomic era
has improved our understanding of biological data, although
it presents obstacles in the data-processing stage. The high
computational capacity provided by cloud computing has
resulted in an exponential growth in the volume of incoming
data. Cloud services also relieve the requirement for large-
scale memory space required by this approach to analyze
enzyme kinetic data.
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4. Big Data Intelligence

The rate of accumulation of biomolecular data is increasing
astonishingly. This information explosion is being driven by
the development of low-cost, high-throughput experimental
technologies in genomics, proteomics, molecular imaging,
amongst others. Success in the life sciences will depend on
our ability to rationally interpret these large-scale, high-
dimensional data sets into clinically understandable and
useful information, which in turn requires us to adopt
advances in informatics. The paper by J. Chen et al. entitled
“Translational biomedical informatics in the cloud: present and
future” demonstrates the utility and promise of cloud com-
puting for tackling the big data problems. The authors outline
their vision that cloud computing could be an enabling tool
to facilitate translational bioinformatics research. Biomedical
cloud, given the proper architecture, could integrate all the
petabytes of available biomedical informatics data in one
place and process them on a continuous basis. In this way,
we would continuously observe the connections between
genotypic profiles and phenotypic data. We can envision that
the cloud-supported translational bioinformatics endeavours
will promote faster breakthroughs in the diagnosis, progno-
sis, and treatment of human disease.

Based on the concepts of resources on demand and pay as
you go, scientists with no or limited infrastructure can have
access to scalable and cost-effective computational resources.
However, the large size of next generation sequencing (NGS)
data causes significant data transfer latency from the client’s
site to the cloud, which presents a bottleneck for using cloud
computing services. The paper by S. A. Issa et al. entitled
“Streaming support for data intensive cloud based sequence
analysis” provides a streaming-based scheme to overcome
this problem, where the NGS data is processed while being
transferred to the cloud. The proposed scheme targets the
wide class of NGS data analysis tasks, where the NGS
sequences can be processed independently from one another.
This study also provides the elastream package that supports
the use of this scheme with individual analysis programs or
with workflow systems. The experiments presented in this
paper show that the proposed solution mitigates the effect
of data transfer latency and saves both time and cost of
computation.

5. GPU Technologies

With the endeavor to narrow performance overhead, the
virtualization technology expands its coverage from cloud
computing to high performance computing such as biological
computation. Recently, biological applications start to be
re-implemented into the applications which exploit many
cores of GPUs for better computation performance. The
paper by H. Jo et al. entitled “Exploiting GPUs in virtual
machine for BioCloud” proposes a BioCloud system architec-
ture that enables VMs to use GPUs in cloud environment.
The proposed system exploits the pass-through mode of
PCI express (PCI-E) channel. By making each VM to be
able to access underlying GPUs directly, applications can
show almost the same performance as when those are in
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native environment. The proposed scheme multiplexes GPUs
by using hot plug-in/out device features of PCI-E channel.
By adding or removing GPUs in each VM in on-demand
manner, VMs in the same physical host can time-share their
GPUs. The performance results showed that this prototype
is highly effective for biological GPU applications in cloud
environment.

The Smith-Waterman (SW) algorithm searches for a
sequence database to identify the similarities between a query
sequence and subject sequences. However, this algorithm is
prohibitively high in terms of time and space complexity. The
paper by S.-T. Lee et al. entitled “GPU-based cloud service for
Smith-Waterman algorithm using frequency distance filtration
scheme” presents a novel Smith-Waterman algorithm with
a frequency-based filtration method on GPUs rather than
merely accelerating the comparisons yet expending compu-
tational resources to handle such unnecessary comparisons.
A user friendly interface is also designed for potential cloud
server applications with GPUs. Experimental results indicate
that reducing unnecessary sequence alignments can improve
the computational time by up to 41%.

6. Conclusions

All of the above papers address either big data intelligence
issues in cloud or cloud-based biological service or propose
novel application models in the various cloud and ubiquitous
fields. They also trigger further related research and technol-
ogy improvements in application of Biological computing.
Honorably, this special issue serves as a landmark source
for education, information, and reference to professors,
researchers, and graduate students interested in updating
their knowledge about or active in biological computing,
biocloud services and management, and novel application
models for bioCloud services and computing systems.
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An understanding of the activities of enzymes could help to elucidate the metabolic pathways of thousands of chemical reactions
that are catalyzed by enzymes in living systems. Sophisticated applications such as drug design and metabolic reconstruction
could be developed using accurate enzyme reaction annotation. Because accurate enzyme reaction annotation methods create
potential for enhanced production capacity in these applications, they have received greater attention in the global market. We
propose the enzyme reaction prediction (ERP) method as a novel tool to deduce enzyme reactions from domain architecture. We
used several frequency relationships between architectures and reactions to enhance the annotation rates for single and multiple
catalyzed reactions. The deluge of information which arose from high-throughput techniques in the postgenomic era has improved
our understanding of biological data, although it presents obstacles in the data-processing stage. The high computational capacity
provided by cloud computing has resulted in an exponential growth in the volume of incoming data. Cloud services also relieve
the requirement for large-scale memory space required by this approach to analyze enzyme kinetic data. Our tool is designed as a

single execution file; thus, it could be applied to any cloud platform in which multiple queries are supported.

1. Introduction

Enzymes are biochemical agents that efficiently catalyze
the conversion of substrates into products in organisms.
Enzymes are essential to the metabolic activity of living
systems, and they share 3 features: catalytic power, speci-
ficity, and regulation [1]. Catalytic power is the ratio of
the rate of an enzyme-catalyzed reaction to the rate of the
uncatalyzed reaction. Enzyme-catalyzed reactions provide
faster rates than traditional biochemical processes because
enzymes reduce the energy required for biochemical reac-
tions. Enzymes perform specific actions, and their selec-
tion should be specific to the desired reaction; thus, the
use of enzymes can avoid competing reactions from pro-
ducing side products. Consequently, enzyme applications
are increasingly being employed in industrial applications.
Enzyme activities can be optimized to provide metabolic
reaction rates that are appropriate to cellular require-
ments.

The catalytic power and specificity of enzymes can
enhance productivity in industrial applications. A recent
study published by the BBC research group estimated that
the global market for industrial enzymes was at $3.3 billion
in 2010 and was expected to reach $4.4 billion by 2015
[2]. Enzymes involved in digestion, such as lipase, protease,
and amylase, are classed as hydrolases. The Nomenclature
Committee of the International Union of Biochemistry and
Molecular Biology (NC-IUBMB) classified enzymes into
6 groups: oxidoreductases, transferases, hydrolases, lyases,
isomerases, and ligases. According to the NC-IUBMB scheme
and the Enzyme Commission’s (EC) system, an enzyme reac-
tion is assigned a 4-numerical-block number [3]. The method
presented in our study can facilitate enzyme annotation,
and is also valuable in followups to biochemical studies and
applications, including metabolic process investigations and
drug discovery.

There are 3 main types of enzyme reaction annotations:
sequence similarity, chemical structure comparison, and



domain architecture fingerprint. Certain annotation meth-
ods, such as profils pour lidentification automatique du
métabolisme (PRIAM) [4] and Catalytic Families (CatFam)
[5], are based on protein sequences. These methods gen-
erate high-level profiles from sequences to represent and
determine protein catalytic functions. The EnzymeDetector
[6] annotation method uses sequence similarity analysis and
a comprehensive enzyme database, BRaunschweig ENzyme
DAtabase (BRENDA) [7], which is manually extracted from
the literature. The Enzyme Function Inference by Combined
Approach (EFICAz) [8] method adopts and combines various
independent sequence-based methods.

The second type of enzyme reaction annotation is based
on chemical structure comparison because the conversion of
a particular reactant into a product with a specific molecular
structure in an uncatalyzed chemical reaction can often be
achieved by enzyme catalysis in an organism. Problems are
frequently encountered when an enzyme catalyzes several
reactions and when the same reaction is catalyzed by different
enzymes. Several reported computational methods exist for
assigning EC numbers that use the physicochemical and
topological properties of reactants, products, and bonds
involved in the reaction [9-12].

Domain architecture fingerprint is the third type for
enzyme reaction annotation. Substrates bind to an enzyme
at its active site, where they undergo reaction. An enzyme
reaction is intimately linked to the compact protein structure
of a domain. As a general rule, enzymes of similar domain
architectures catalyze similar reactions; this creates a diffi-
cult mapping problem from the architecture space into the
reaction space. Various machine-learning methods have been
applied to the mapping problem, including the association
rule algorithm [13], the decision tree method [14], support
vector machines [15], neural networks [16], and other clas-
sification schemes including domain teams [17], probabilistic
rule-based models [18], and a weighted domain architecture
comparison tool, the Feature Architecture Comparison Tool
(FACT) [19].

The advent of genomics technologies, including next-
generation sequencing and mass spectrometry-based flow
cytometry [20, 21], creates an exponential growth in the
volume of data. Cloud technologies provide large computing
capacity, and this allows for the integration of distributed
large-scale facilities for managing user requests and providing
cost-efficient responses. Platform as a Service (PaaS) is
provided by several companies, including Google, Microsotft,
and Amazon. Microsoft’s DryadLINQ execution engine and
its application to the Alu clustering problem and an expressed
sequencing tag (EST) assembling program in Apache Hadoop
are extensions of the Google MapReduce platform [22]. Our
proposed scheme requires large-scale computer memory for
estimating and ranking each subset based on the domain
architecture enumeration phase measurements. The results
of queries when using this scheme are efficiently managed
by the cloud’s distributed architectures. Because adopting
cloud technology enables annotation schemes to provide new
architecture, the global enzyme market is expected to benefit
from the increases in production capacity made available by
the new architecture.
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2. Materials and Methods

Proteins comprise polypeptide chains that form several
compact, occasionally loosely connected, global units called
structural domains. Regarding the protein structure, struc-
tural domains are considered fundamental units of pro-
tein function, folding, and evolution [23]. It is reasonable
to consider a protein as one type of domain architecture
consisting of a set of domains. The SUPERFAMILY struc-
tural domain database, integrated into the InterPro database
(release 33.0), is adopted for constructing the domain archi-
tectures of proteins. For example, a Q5VT25 protein con-
sists of the domain architecture with the SUPERFAMILY
domains SSF50729, SSF56112, and SSF57889, such that the set
{SSF50729, SSF56112, SSF57889} is considered to represent
Q5VT25. Moreover, different proteins may share the same
domain architecture of {SSF50729, SSF56112, SSF57889}, such
as Q9BZL6 and EOW264. A particular reaction may be
catalyzed by different enzymes, and an enzyme can often
mediate more than one reaction. The resulting complex
relationship between the set of domain architectures and the
set of enzyme reactions remains a difficult problem, even
after simplifying by considering a protein as one type of
domain architecture. In this study, we identified proteins
and recorded their corresponding domain architectures and
enzyme reactions in our database.

2.1. Data Sets. From the viewpoint of protein function,
enzymes are agents of metabolic function, which control the
rate of biochemical activities in living organisms [1]. The
first block of the EC number indicates to which of these 6
groups an enzyme belongs. The second and third blocks indi-
cate subclass and sub-subclasses according to the enzyme’s
associations with the chemical features of the reactants and
products of the reaction system. The final block is a sequential
number. Enzymes are collected based on their corresponding
EC numbers from the UniProt Knowledgebase (UniProtKB),
such as Q5VT25 associated with EC 2.7.11.1, Q9BZL6 with
2.711.13, and EOW264 with 1.3.1.74 and 2.7.11.13.

UniProtKB [24] is a comprehensive protein sequence
and annotation resource. It comprises UniProtKB/Swiss-
Prot and UniProtKB/TrEMBL sections. The literature-based
records in the Swiss-Prot section are manually annotated and
analyzed computationally by curators. The TrEMBL section
contains records that are annotated automatically, using qual-
itative computational analysis methods. Enzyme reactions
described by either UniProtKB/Swiss-Prot or /TrEMBL are
collected. The InterPro [25] database is an integrated resource
of protein signatures in which protein domains held in
different member databases are cross-referenced. We used
the SUPERFAMILY member database [26] to investigate the
relationship between domain architectures and enzyme reac-
tions. All enzymes assigned EC numbers were collected from
the Swiss-Prot and TrEMBL sections of UniProtKB (release
2011.07). We extracted the proteins that (1) had specific EC
numbers and (2) were cross-referenced to SUPERFAMILY
(version 1.73) in the InterPro database (release 33.0). Based
on the integrated material we gathered from the UniProtKB
and SUPERFAMILY databases, there are totally 1,664,839



BioMed Research International

Q5VT25 D ——

A
r \

SSF50729 [ SSE56112 ][SSF57339]

Q9BZL6 _
A

r 1
SSF50729 [ SSES6112 ][SSF57889]

E0OW264
A

[SSF50729 [ SSFs6112 ]{SSF57889j

¥

(e )

[ 2.7.11.13 J

[ 1.3.1.74,2.7.11.13 ]

[ SsF50729. [ 8856112 ][SSF57339]

[ 2.7.11.1,2.7.11.13,1.3.1.74 ﬂ 1 entry

FIGURE 1: Illustration of an entry.

proteins composed of 1,218 SUPERFAMILY domains and
3,306 related EC numbers.

Relying on the rationale that structural domains are
related to protein functions, we integrated enzymes sharing
the same domain architecture as a single entry. For exam-
ple, Q5VT25, QIBZL6, and EOW264 share the {SSF50729,
SSF56112, SSF57889} architecture with EC numbers 2.7.11.1,
2.711.13, and 13.1.74 and are considered a single entry
(Figure 1). There are 5,203 entries collected in this study,
and each entry consists of one type of domain architecture
associated with several enzyme reactions.

Our proposed method accounts for the frequency of each
potential type of domain architecture from a set, and a rank is
assigned according to several criteria. After determining the
domain architecture that has the greatest score, we obtain the
corresponding enzyme reactions.

2.2. Methods. Because domains are fundamental structural
units that can fold into a compact block, we considered the
appearance of a domain in an enzyme and omitted the repe-
tition of domains. As a result, the number of domain architec-
tures is nearly 5 times the number of types of SUPERFAMILY
domains but does not grow exponentially. This shows a
tendency for one domain to accompany others to form one
type of domain architecture for a protein. The ERP method
is used to predict enzyme reactions from components of
domain architectures. In the model-building process, there
are 2 main phases: “domain architecture enumeration” and
“enzyme reaction ranking”

Before building the prediction model, we divided 5,203
entries into 2 sets, the training set and the testing set. The
training set is used to establish the prediction model and
the testing set is adopted for verification. The details of the
model simulation are described in the 5-fold cross-validation
section.

2.2.1. The Enzyme Reaction Prediction Method. The first
phase of model building is based on the rationale that one
domain has a tendency to accompany others to form one type
of domain architecture. We enumerated all possible subsets
from domain architectures in the training set and estimated
each subset according to 4 measurements: comprising exis-
tence, succinctness, consistency, and simplicity. The domain
architecture candidate with the highest priority was thus
obtained. In the second phase, we ranked enzyme reactions
in alist according to their intensity values associated with one
specific type of domain architecture.

Domain Architecture Enumeration. After inspecting the set
of domain architectures, we learned that the number of
types of adjacent domains was considerably lower than
the numbers encountered when enumerating every possible
combination. Thousands of architectures are enumerated
exhaustively among all the possible subsets associated with
the domain architectures of proteins. A possibility of tandem
domains appearing with the expression of enzyme-catalyzed
reactions also exists. Thus, we propose the following 4 mea-
surements to sequentially estimate each domain’s architecture
during the domain architecture enumeration phase. For
example, if the domain architecture {SSF50729, SSF56112,
SSF57889} could not be found, 6 subarchitectures compris-
ing {SSF50729, SSF56112}, {SSF50729, SSF57889}, {SSF56112,
SSF57889}, {SSF50729}, {SSF56112}, and {SSF57889} are con-
sidered.

(1) Existence of the Protein Consisting of a Given Domain
Subset. In the process of enumerating all possible subsets
of domain architectures, many putative subsets may be pro-
duced. If one subset matches one type of domain architecture
of an enzyme, it is reasonable that this domain subset
contributes directly to its catalyzed reactions and is awarded
higher priority than other subsets are.



(2) Succinctness Measurement of the Domain Architecture
of Enzymes. One reaction can be catalyzed by various
enzymes that can comprise a variety of domain architectures.
Among them, each subset of one type of domain archi-
tecture could also include another type of an enzyme. The
Succinctness g main arch €quation (1) is designed to identify
the most relevant architecture. Given an enumerated domain
subset called domain_arch, we collected a set of entries,
Entries gomain arch» that have domain architectures containing
domains in domain_arch. The number of reactions associ-
ated with the entries which have domain architecture that
exactly match domain_arch is denoted as |ECs.g,|. The
number of reactions associated with the entries that have
architectures containing domains in domain_arch is denoted
as |ECs;,qudedl- The Succinctnessgomqin arch Measurement is
calculated as the ratio of [ECs | to |ECs;qudeql- The type
of domain subset with a greater Succinctness g in arch Value
is assigned higher priority among a set of architecture
candidates for the query domain architecture. For example,
a query architecture domain_arch consisting of domains
SSF56112 and SSF57889 is involved in 10 entries involving
5 types of enzyme reactions, comprising 2.710.2, 2.711.,
2.7.11.13, 2.7.1.107, and 1.3.1.74 (|ECs;,qugeqal = 5) in Figure 2.
The exactly matched architecture {SSF56112, SSF57889} is
associated with 3 reactions, 2.710.2, 2.711.1, and 2.711.13, such
that the Succinctnesssspse; 12, ssps7ssoy 1 estimated as 0.6. We
assign priority to the candidate with the greatest succinctness
value because the corresponding chemical reactions proceed
without requiring auxiliary domains as follows:

|ECSexact| . (1)

Succinctnessygmain arch = |ECs |
included

(3) Multiplicity of Enzyme Reactions from One Type of Domain
Architecture. An enzyme can catalyze different reactions;
alternatively, different enzymes may share the same domain
architecture. Considering a domain subset domain_arch, we
collected all entries that have domain architectures con-
taining domains of domain_arch. Among these entries, the
number of involved reactions is defined similarly to the
definition of |ECs;,uq4eq] in the previous paragraph, but we
denoted it as k for simplicity. To clearly observe the expression
of one specific reaction among various architectures, we
separated an entry with multiple reactions into several entries
with a single reaction, and the number of entries with a
single reaction is counted as N (Figure 3). Furthermore,
we also mark the number of entries associated with each
reaction EC; as n; (i = .,k), such that N = Zi’cq n;.
The mean value # = N/k is calculated as the average
number of entries, and the difference (n; — 1) is estimated
for each reaction EC;. Because k and Entriesy,in arch are
variables dependent on the set of domains in domain_arch,
we provided Consistency,, ... . (2), which summarizes
the different terms and is normalized by N and weighted
with (n;/N) for each reaction for comparison with other
architecture candidates.

If the expression of each reaction is equal, then #;
approaches the mean value, such that the consistency value
becomes smaller. As the consistency value approaches zero,
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it unambiguously indicates a strong relationship between
enzyme-catalyzed reactions and the corresponding domain
architecture:

ConSIStenCYdomain,arch =

n (n,—n
+“+ﬁ<}»> 2)

Ny =My710, =2

b

N = Zn1—17 (where k = 5)

i=1

Ny =My7111 =7

Ny =ty71113 =6 =

_ N 17
My =My71007 = 1 n= T = 5
N5 =My3174 =1
(3)
Consistency ssrse; 12 55857889}
35 4525
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(4) Simplicity of Domain Architecture. In the case that no
protein matching the query architecture domain_arch is
found, the fewest number of domains in an architecture
candidate is preferred.

The aforementioned 4 measurements for 6 subsets of
the domain architecture {SSF50729, SSF561112, SSF57889}
are listed in Table1l. Because each subset has the same
domain architecture as another protein, the subset {SSF56112,
SSF57889} with the highest succinctness value of 0.6 has the
highest priority.

Enzyme Reaction Ranking. After determining the domain
architecture for a nonannotated enzyme, various related
enzyme reactions can be retrieved from the universe data set
(Figure 4). The IntensityECi (5) is calculated based on the ratio
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FIGURE 2: Entries containing domains SSF56112 and SSF57889.

of the mean value to the number of entries associated with
EC; to evaluate the strength of the relationship between the
reaction EC; and the determined domain architecture. An
Intensityy, value of less than 1 indicates that the expression
of EC; is greater than the mean value; thus, low values are
preferred. The intensity values corresponding to reactions of
the domain architecture {SSF56112, SSF57889} are calculated
as follows:

. n N
Intensitye, =~ = ———, €)
1 1
n n 17/5
Intensity, , ,,, = nﬁ = " n02 = T/ =17,
1 7.1
. n n 17/5
Intensity, , ,, = i ==
2 2.7.11.1
= 0.4857142857142857,
. n n 17/5
Intensity, 7,15 = oo 6 (6)
= 0.5555555555555556,
n n 17/5
Intensity, ., 1o, = L .- T/ = 3.4,
o gy My71007
. n n 17/5
Intensity, 5, ,, = i = = 3.4.
5 13.1.74

2.2.2. The Association Rule Method. In the field of data
mining, the association rule (AR) method is an established
method for detecting the relationship between items, partic-
ularly for a large database, T. Given a large transaction set, if
2 sets, X and Y, are involved in a rule, X — Y, 2 constraints
must be met: (1) the union of item sets X and Y must appear

frequently in T, and (2) the relationship between item sets
X and Y is close. A frequent set satisfies the condition that
the number of transactions containing that set is higher than
the support threshold. If set Y accompanies set X in various
transactions, a close relationship exists between sets X and
Y. The confidence value can be estimated as the ratio of the
number of transactions containing both item sets (X and Y)
to that containing item set X alone. If the confidence value
of the item sets in a rule is higher than the given confidence
threshold, it is placed into the rule set.

2.2.3. Fivefold Cross-Validation. In a classification model, the
parameters of the model are optimized to fit the training set
as much as possible during the fitting process. An overfitting
problem results when another independent validation data
set (from the same population) is used to test the model and
does not fit as well as the training set did. Cross-validation
is a technique used to infer the goodness of fit of a model
to a validation set. We used 5-fold cross-validation, in which
the sample is randomly divided into 5 subsets: one subset is
retained as the testing set, and the other subsets are assigned
to the training set. The numbers of entries in each fold for the
4-numerical-block EC number set are shown in Table 2. One
round of 5-fold cross-validation involves taking one part as
the testing set and the remainder as the training sets, resulting
in 20 total rounds of testing.

3. Results and Discussion

A chemical reaction may be catalyzed by more than one
enzyme, and an enzyme may catalyze more than one reaction.
By considering the relationship between enzymes and chem-
ical reactions as a mapping problem, we create a many-to-
many mapping problem. Although there are various methods
avaijlable that approach this type of problem from different



2.7.10.2
2.7.11.1

2.7.11.13

SSF48403

SSF49562

SSF49562

SSF50729
SSF50729

SSF50729

SSF54236

SSF54236

SSF54277

SSE54277

SSE81383
SSF49562

SSF46585

SSF47576

SSF52540

SSF46585 SSF49562 SSE50447

SSF54211

BioMed Research International

2.7.11.13 ]
2.7.11.1 ]

r N
2.7.11.1

~ -

r N
2.7.1.107

> <
2.7.11.13

N ~

r N
1.3.1.74

- <
2.7.11.1

> <
2.7.11.13

N -

r N
2.7.10.2

]S <
2.7.11.1

~ -

P
2.7.11.1

>
2.7.11.13

~

[ 2.7.11.1 ]

-———————‘[ 2.7.11.13 ]

FIGURE 3: Separating entries into certain types of an architecture with one EC number.

TABLE 1: Four measurement values for the six subsets of the domain architecture {SSF50729, SSF56112, SSF57889}.

Domain architecture Existence Succinctness Consistency Number (domains)
{SSF50729, SSF56112} 1 0.45 0.0688271604938272 2
{SSF50729, SSF57889} 1 0.5 0.058641975308642 2
{SSF56112, SSF57889} 1 0.6 0.114878892733564 2
{SSF50729} 1 0.191489361702128 0.0559722260571086 1
{SSF56112} 1 0.595744680851064 0.0765587606003442 1
{SSF57889} 1 0.4 0.11141975308642 1
TABLE 2: The number of entries in each fold.
Data set Fold_1 Fold_2 Fold_3 Fold 4 Fold_5 Total
4-numerical-block EC number set 1,041 1,041 1,041 1,040 1,040 5,203
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FIGURE 5: Population of EC numbers in the universe data set
according to the six NC-IUBMB classes.

viewpoints, we present this intuitive method, which is based
on the frequency of domain architecture and, in an enzyme,
the associated catalyzed reactions.

To examine the feasibility of our method, we compiled
data from the UniProtKB and SUPERFAMILY domains of
the InterPro database. A total of 1,664,839 proteins are
associated with 1,218 SUPERFAMILY domains and 3,306 4-
numerical-block EC numbers. The population of the 6 NC-
ITUBMB classes is shown in Figure 5. If one type of domain
architecture was only associated with one enzyme reaction,
then we collect these entries as a single-EC set. Entries
associated with more than one enzyme-catalyzed reaction
were assigned to a multiple-EC set. There were single-EC
entries and multiple-EC entries in both the training set and
the testing set. The ratio of the number of single-EC entries
to the number of the multiple-EC entries in the testing set
was approximately 6 : 4. Detailed information is shown in the
“Testing set” column in Table 3.

To avoid the bias caused by the selection of the training
data set, we used 20 runs of 5-fold cross-validation. From
5,203 entries, approximately 4,160 entries were used for
model building, and the remaining 1,040 entries were used
for verification. According to the complexity of classification
problems, it is difficult to predict multiple reactions of entries
from domain architectures. We separated 1,040 entries into 2
sets: 624 entries for the single-EC set and 416 entries for the
multiple-EC set; hence, there are 2 main rows in Table 3. If an

entry’s domain architecture could be determined by a model,
it indicated that the entry could be predicted by the model
and it would be counted in the “Match” column. The “Hit”
column records the number of entries that were predicted
correctly.

For comparison with our ERP method, we used the estab-
lished Apriori algorithm [27] to mine for ARs implemented in
a data mining package, Data-Mining-AssociationRules-0.10,
of the Comprehensive Perl Archive Network (CPAN) [28].
The support and confidence threshold values used according
to Chiu’s settings [13] were 3 and 0.6, respectively. Table 3
shows that entries that were predicted using the AR method
were considerably fewer than those predicted using the ERP
method. To compare the 2 methods fairly, the same testing
sets were used in the “AR” and “ERP1” rows, and entry sets
that could be matched using the AR method were used as the
testing set in row “ERP2” When more entries were predicted
using the ERP method (the “ERP1” column), it resulted in
a lower prediction rate than when using the AR method
(the “AR” column) in Table 4. However, the ERP method is
slightly more effective when considering entries that could be
predicted using the AR method (the “ERP2” column).

The accuracy is provided by the ratio of the number of
entries predicted correctly to the number of entry-matching
rules of each method in Table 4. After 20 runs of 5-fold cross-
validation, the mean accuracy values for 100 simulations
were estimated. In a single-EC case, both the AR and ERP
results reached 90%. However, estimation was less accurate
for multiple-EC reactions. It is worth mentioning that both
the ERP1 and ERP2 results are higher than the AR method in
the multiple-EC set.

In the model-building phase, we implemented the AR
method in a server equipped with 12 CPUs (4 cores, 3
packages) and 128 GB of memory, and the server used for the
ERP method was equipped with 2 CPUs (2 cores, 1 package)
and 8 GB of memory. The average model-building time was
over 1 hour for the AR method and 15 minutes for the ERP
method. The reasons may be that the AR method needed to
produce frequent item sets and many redundant rules was
generated. Furthermore, estimates of the prediction time for
a batch of query domain architectures are shown in Figure 6.
The vertical axis indicates the execution time in seconds, and
the horizontal axis marks the number of entries in a batch
query.

A substantial demand exists for enzymes for indus-
trial and medical applications in the global market; thus,
enzyme function annotation is receiving considerable atten-
tion because it offers reductions in the cost of chemical
processes. In this study, we proposed the ERP tool for
annotating enzyme reactions based on the query domain
architecture (Figure 7). After providing the domain archi-
tecture of a protein, the tool is used to determine whether
avaijlable enzyme reactions exist; if not, an absence message
is displayed. If enzyme reactions are available, the ERP tool is
used to locate one type of the same domain architecture such
that the corresponding enzyme reactions could be obtained
with confidence. If the same architecture is not found, the
next most promising subset is chosen from the given domain
architecture, and its corresponding enzyme reactions are
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TABLE 3: The average number of entries for 100 simulations.

Data set Method Hit Match Testing set
AR 25.36 £ 4.49 27.92 +4.43 624.60 + 15.15
Single EC ERP1 298.95 +13.12 592.53 + 14.93 624.60 + 15.15
ERP2 25.82 £ 4.47 27.92 +£4.43 27.92+£4.43
AR 3.76 £ 1.81 44.44 + 5.02 416.00 + 15.24
Multiple ECs ERP1 137.35+ 11.72 378.61 + 14.87 416.00 + 15.24
ERP2 18.47 + 3.37 44.44 + 5.02 44.44 +5.02
TABLE 4: Accuracy of the AR and ERP models.
AR ERP1 ERP2
Single EC 90.72% + 5.71% 50.45% + 1.85% 92.39% = 5.22%
Multiple ECs 8.36% + 3.80% 36.28% + 2.74% 41.66% £ 6.62%
Execution time of the ERP method values expressing the strength of the domain architec-
700 ooy 612.97 ture are listed. If no enzyme sharing the same archi-
6001 76551-39' tecture is located, subsets of the domain architecture
500 43183 e are evaluated, and the domain subset with the highest
l i, 37718 riority is selected.
400 313.09 p Y
300 4 255.65

100 200 300 400 500 600 700 800 900 1000

B Execution time (s)

FIGURE 6: The average execution time of the ERP method for 100
simulations.

provided. If a similar domain architecture or a domain subset
exists, proteins consisting of this architecture are displayed.

To implement the deduction of enzyme reactions from
the domain architectures of enzymes, we designed a tool by
using the Perl script language as follows. The set of domains
in a protein must be listed before applying the ERP method.
In the “Domain set” dialog, the domain set may be comma-or
space-delimited. When the domain set is ready, pressing the
“Predict” button starts processing according to the flowchart
in Figure 7.

Two main situations in which analysis of the entered
domain set could fail are described as follows.

(1) If the ERP tool cannot deduce the corresponding
enzyme reactions from the ERP integrated universe
set, a failure message, such as the domain architecture
failure notice {SSF54211, SSF54236} shown in Figure 8
is displayed in the results dialog, indicating that
enzyme reactions associated with the query domain
architecture could not be deduced from the universe
data set.

(2) In deducible cases, the existence of enzymes sharing
the same architecture is considered. If the corre-
sponding protein exists, succinctness and consistency

In the event that the same architecture protein (Figure 9)
is found, a confirmation message is displayed and the domain
architecture (Figure 9, {SSF51110, SSF55486}) is identified.
The succinctness value of 1 indicates that an enzyme with
this type of domain architecture is capable of catalyzing the
reaction denoted as 3.4.24.21 without any auxiliary domains.
The consistency value of 0 indicates that a strong relationship
between the domain architecture {SSF51110, SSF55486} and
enzyme reaction 3.4.24.21 exists and that an association with
other enzyme reactions does not exist. Because only one
associated enzyme reaction exists, the strength measurement
Intensity, , ,4,, is calculated as 1. The protein consisting of
the architecture {SSF51110, SSF55486} is shown in Figure 9 as
accession number F4KTN6 and UniProt ID FAKTN6_9SPHI.

In the absence of a protein consisting of the same
architecture (Figure 10), the subsets of domain architecture
{SSF54211, SSF54814} are enumerated as {SSF54211} and
{SSF54814}. After evaluating the 4 measurements used for
enumerating the domain architecture, the candidate with the
highest priority {SSF54814} is obtained. Similarly, an enzyme
with this architecture is capable of catalyzing the reaction
2.7.7.8 independently and with succinctness value of 1. The
relationship between the domain set {SSF54814} and enzyme
reaction 2.7.7.8 is strong according to the consistency value
of 0. Only one reaction, 2.7.7.8, is related to {SSF54814}; thus,
Intensity, , , ¢ is calculated as 1. The protein with the accession
number DIPMT6 and UniProt ID DIPMT6_9ZZZZ consist-
ing of this type of domain architecture {SSF54814} is listed in
Figure 10.

4. Conclusion

In this study, we investigated the intimate relationship
between domain architecture and enzyme-catalyzed reac-
tions by applying various criteria to the compiled uni-
verse data set of domains and EC numbers. The advent of
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FIGURE 7: Workflow of querying a domain architecture in the ERP model.

File Others Help

This tool is relied in the rationale that enzyme reaction(s) could be deduced from a certain type of domain architecture.
Itis necessary to assign a set of domains to the query enzyme in the begining.

Domain set:

SSF51110, SSFE5486  Predict

An enzyme consisting of this domain architecture {SSF$1110,S5SF55486} exists.
Succinctness = 1
Consistency = 0

Predicted EC intensicy
3.4.24.21

Enzymes consisting of this type of domain architecture {SSF51110,6SSF55486}:
1 F4KING-F4KTNG_SSPHI

FIGURE 8: Message of the failure case for the domain architecture {SSF54211, SSF54236}.

File Others Help

This tool is relied in the rationale that enzyme reaction(s) could be deduced from a certain type of domain architecture.
Itis necessary to assign a set of domains to the query enzyme in the begining.

Domain set:

SSF51110, S5F55486  Predict

An enzyme consisting of this domain archi {SsFs1110, } exists.
Succinctness = 1
Consistency = 0

Predicted EC intensity
3.4.24.21 1

Enzymes consisting of this type of domain architecture {SSF51110,SSFS5486}:
1 F4KTN6-F4KIN6_9SPHI

FIGURE 9: The case of existence of the same architecture protein for the domain architecture {SSF51110, SSF55486}.
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File Others Help

Domain set:

SSF54211, 55F54814  Predict

This tool is relied in the rationale that enzyme reaction(s) could be deduced from a certain type of domain architecture.
Itis necessary to assign a set of domains to the query enzyme in the begining.

Succinctness = 1
Consistency = 0

Predicted EC
2.7.7.8 1

intensity

& D9PMT6-DOPMT6_9222Z

There is no enzyme consisting of this domain architecture {SSF54211,SSF54814}

The highest pricrity candidate of domain set is: {SSF54814}

Enzymes consisting of this type of domain architecture {SSF54814}:

FIGURE 10: The report displayed in the case of an absence of any protein for the domain architecture {SSF54211, SSF54814}.

high-throughput techniques has produced numerous gene
sequences, and annotating each enzyme reaction based on
experimental results is difficult. However, we can consider
domains as segments of sequences that fold into compact
structural units; thus, we can model protein sequences and
structures as these folded domains. We can identify and
retrieve domains by integrating established sequence align-
ment tools with the proposed ERP tool.
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We report the release of PredictProtein for the Debian operating system and derivatives, such as Ubuntu, Bio-Linux, and Cloud
BioLinux. The PredictProtein suite is available as a standard set of open source Debian packages. The release covers the most
popular prediction methods from the Rost Lab, including methods for the prediction of secondary structure and solvent accessibility
(profphd), nuclear localization signals (predictnls), and intrinsically disordered regions (norsnet). We also present two case studies
that successfully utilize PredictProtein packages for high performance computing in the cloud: the first analyzes protein disorder
for whole organisms, and the second analyzes the effect of all possible single sequence variants in protein coding regions of the

human genome.

1. Background

Bioinformatics is embracing cloud computing. Recent months
have seen the publication of cloud sequence analysis plat-
forms, CloVR [1] and Galaxy Cloud [2], and the cloud version
of Bio-Linux [3], Cloud BioLinux [4]. Cost analysis depicts
cloud computing as an attractive and sustainable solution
for computational biology and bioinformatics [5-8]. The rate
of data generation of “next generation” sequencing (NGS)
drives the efforts to turn to cloud computing as a solution
to handling peak-time loads, without the need to maintain
large clusters [9]. Cloud-enabled bioinformatics tools are now
available in the context of high throughput sequencing and
genomics [10].

The Rost Lab provides protein structure and function pre-
diction tools for cloud computing in the PredictProtein suite
[11]. PredictProtein began as an Internet server for sequence

analysis and the prediction of aspects of protein structure and
function in 1992 [12]. Queried with a protein sequence, Pre-
dictProtein returns secondary structure and accessibility pre-
dictions, predictions of unstructured loops, nuclear localiza-
tion signals, protein-protein interaction sites, disulfide bonds,
regions lacking regular secondary structure, protein family
hits, low-complexity regions, bacterial transmembrane beta
barrels, coiled-coil regions, protein residue flexibility, and
homologous sequences (Figure 1).

Cloud computing is commonly realized on machine
instances that run on virtual hardware providing “infrastruc-
ture as a service” (IaaS) [13, 14]. This type of cloud computing
instantiates compute nodes from machine images. Machine
images usually contain an operating system with software
tools. For example, one could request the instantiation of 10
worker nodes of PredictProtein on Debian operating system
at the Amazon EC2 TaaS offering.



Laptop$ ssh cloud1
cloudl$ PredictProt-|
ein

Secondary

structure

AN ———
Unannotated protein|

sequences

BioMed Research International

Laptop$ ssh cloud ]
cloudl$ PredictProt-
ein

[DONE

cloud1s

fypeopduiod-MOl

PredictProtein

Annotations from

prediction methods

FIGURE 1: Protein annotation by PredictProtein. PredictProtein annotates input sequences with the features shown.

The PredictProtein cloud solution builds upon the open
source operating system Debian [15] and provides its func-
tionality as a set of free [16] software packages. Bio-Linux is
an operating system for bioinformatics and computational
biology. The latest Bio-Linux release 7 provides more than
500 bioinformatics programs on an Ubuntu Linux base [17].
Ubuntu is a “derivative” operating system [18] based on
Debian, with its own additions. Cloud BioLinux is a com-
prehensive cloud solution that is derived from Bio-Linux
and Ubuntu. Debian derivatives can easily share packages
between each other. For example, Debian packages are
automatically incorporated in Ubuntu [19] and are also usable
in Cloud BioLinux (the procedure is described in [4]).

2. Implementation

The PredictProtein suite is implemented as a set of free pack-
ages released at http://debian.org/. Software packaging con-
formed with the Policy Manual [20], and following the
recommendations of the Developer’s Reference [21].

3. Results and Discussion

High-throughput experiments generate vast amounts of data
at an ever-increasing rate; the pace of creating reliable anno-
tations needed to use that data increases much slower. One of
the major challenges for computational tools is to narrow the
resulting increase in the protein annotation gap [22]. Of the
over 35 m (million) sequences in the UniProt Knowledgebase
2013_05 [23], only about 500k (500 thousand) have explicit
experimental annotations in Swiss-Prot [24]. Computational
prediction methods, such as those included in PredictProtein,

can annotate important features for the remainder and enable
us to draw scientific insights. Unfortunately, the task is often
intractable for any single desktop computer within reasonable
time. Fortunately, cloud computing is now at hand. On-
demand servers in the cloud promise to fit computing power
to most tasks economically, and without a fair portion of the
usual worries of system management: hardware purchasing,
recruiting a system manager, high availability issues, and
so forth ([13] and the references therein). One problem
remains: how to get the often adhoc analysis toolset from
the desktop environment into the cloud? Directly addressing
this problem, here we report the first Debian package release
of the protein feature prediction toolset “PredictProtein,’
developed at the Rost Lab.

The publication of scientific results has, overall, changed
surprisingly little since the Internet exists [25]. Research code
is regularly distributed as a “zip” file of the development
directory. Often, the only “documentation” distributed along
with the code is the published paper accompanied by some
“README” file. Software distributed this way often fails
outside the laboratory without expert attention. In order to
address this issue in the PredictProtein suite, we decided to
apply the community and time-tested packaging and release
requirements of Debian to PredictProtein components. We
have traced all dependencies, eliminated convenience copies,
carefully documented each of our prediction methods, and
made them go through the thorough review process every
Debian package receives. This converted PredictProtein from
an adhoc implementation to a reusable software component
(Figure 2).

Our packages facilitate the generation of purpose-built
machine images for cloud computing. As an example, we dis-
tribute a slim PredictProtein machine image (PPMI) through
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PredictProtein

FIGURE 2: Package dependencies for PredictProtein. Arrows represent “depends on” relationships. Only significant dependencies are shown

for clarity. Convenience copies of “profnet” for “profphd,” “norsnet,
Similar merging was done for all code convenience copies.

the PredictProtein website [26]. This image contains a min-
imal installation of Debian with the command line version
of PredictProtein. Databases are provided as a separate disk
image. The PPMI is bootable on server instances in cloud
infrastructure services, or on locally installed virtualization
software. The latter allows for a cross-platform solution to use
PredictProtein. Apart from virtualization, “chroot” environ-
ments present an option to run the software on Linux distri-
butions where Debian packages are not readily usable. After
booting the machine image, a friendly message at the login
prompt offers usage tips and directions to documentation. A
“Getting Started with PredictProtein” guide is available online
[27]. The PPMI and the data image are updated regularly
and are freely available at http://predictprotein.org/. For a
comprehensive bioinformatics and computational biology
computing environment, we recommend using PredictPro-
tein with Bio-Linux [3] or Cloud BioLinux [4], where Pre-
dictProtein is either preinstalled or is easily installable from
package repositories. We plan to release the web-based graph-
ical interface of PredictProtein for these platforms in the near
future.

The PredictProtein suite has attracted respectable popu-
larity both online and ofline. PredictProtein has been operat-
ing continuously since 1992, that is, the dawn of the Internet.
Today, over 100,000 online users are registered; over 500 users
access the PredictProtein web page every day and 12,000
unique users apply the service every month. Our Media
Wiki page presenting an overview of the Rost Lab software

» «

profbval,” and “profisis” have been merged to a single “profnet” package.

packages has been accessed nearly 60,000 times since its
launch 36 months ago. Adoption of the PredictProtein pack-
ages by the community has also been remarkable. Over 200
packages of the PredictProtein suite are installed from the
Debian repository alone, while these and other installations
have performed over 57 million protein feature predictions
over the past year, not counting our own usage. Out of
this, ~30 million were secondary structure and accessibility
predictions from the “profphd” method [28].

4. PredictProtein Packages

The following protein feature prediction methods—compo-
nents of PredictProtein—are available (feature—“package
name”): secondary structure, accessibility, and transmem-
brane helices—“profphd” [29-31]; unstructured loops—
“norsnet” [32]; nuclear localization signals—“predictnls”
[33]; protein-protein interaction sites—“profisis” [34];
disulfide bridges—“disulfinder” [35]; nonregular secondary
structure—“norsp” [36]; PFAM hits—“hmmer” [37, 38]; local
complexity—“ncbi-seg” [39]; bacterial transmembrane beta
barrels—“proftmb” [40]; coiled-coils—“ncoils” [41]; protein
residue flexibility—“profbval” [42]; sequence homologies—
“blast2” [43]; protein feature prediction suite—“predictpro-
tein” [11].

These tools are available under a free license through
Debian and are automatically incorporated into other Linux



distributions such as Ubuntu. An overview of the packages
offered for bioinformatics and cloud computing, complete
with literature references, is available at Debian Med [44].
PredictProtein is listed in the Biology task.

5. Case Study 1: Protein Disorder in
Completely Sequenced Organisms

The goal of this study is to collect evidence for three hypothe-
ses on protein disorder: (1) it is more useful to picture disorder
as a distinct phenomenon than as an extreme example of
protein flexibility; (2) there are many very different flavors of
protein disorder, but it is advantageous to recognize just two
main types, namely, well structured and disordered; (3) nature
uses protein disorder as a tool to adapt to different environ-
ments [45]. We predicted protein disorder both on an in-
house compute grid and on a compute grid manually setup in
the OpenNebula [46] cloud service provided by the CSC Fin-
land [47]. Data and tool (the PPMI) images for grid nodes in
the cloud were downloaded from http://predictprotein.org/.
The PPMI image was extended with a grid client, and a
separate machine instance was used as grid master. Pre-
dictProtein for the local grid was installed from the main
Debian repository. Required databases (28 GB) were included
on a data disk image for cloud machine instances. Input to
PredictProtein jobs consisted of protein sequences (in total
less than 1GB). Grid job submissions to the local and the
cloud grid were manually adjusted according to available
resources. Over 9 million disorder predictions were made
over the course of the past few years.

6. Case Study 2: Comprehensive In Silico
Mutagenesis of Human Proteome

This project aims at providing information about the func-
tional effect of every possible point mutation in all human
proteins, that is, for the replacement of 19N amino acids for
a protein with N residues. Overall, this generated 300 million
human sequence variants (point mutants). The method SNAP
[48] predicted the effect of each variant, that is, each “nonsyn-
onymous single nucleotide polymorphisms” (nsSNPs) upon
protein function. These predictions are useful for several rea-
sons. First, the study of all possible mutations in human will
provide the background against which we can assess the effect
of mutations that are actually observed between people. This
is crucial for both the advance toward personalized medicine
and health and the understanding of human diversity and
variation. Second, our computation provides quick “look-
up” answers available for all the important variants that are
observed and implied in important phenotypes. The only way
to cover those lookups is by precomputing all the possible
changes. SNAP can take advantage of PredictProtein results
for faster processing. With the PredictProtein packages pre-
sented here, a solution was built in the form of a public Ama-
zon Machine Image (AMI, ami-3{5{8156) that allows running
PredictProtein on the Amazon Elastic Compute Cloud (EC2).
We extended an Ubuntu-based StarCluster [49] AMI with
PredictProtein and its required databases (28 GB). Because
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every protein can be computed independently, we formed
a grid job out of each protein and used the Grid Engine
(GE) to distribute work on the machine instances. We used
StarCluster to automate grid setup on the EC2. Because a lot
of CPU power was needed, the “Cluster Compute Eight Extra
Large Instance” was chosen. This instance type is especially
crafted for big data with a lot of CPU power. One instance has
60.5 GB memory, 88 EC2 Compute Units (2x Intel Xeon E5-
2670, eight-core-architecture “Sandy Bridge”), and 3370 GB
instance storage. The sequence variants were analyzed based
on the human reference proteome from the National Center
for Biotechnology Information (build 37.3, proteins, 21MB).
We processed 29,036 sequences with 16,618,608 residues. This
amounted to predicting the functional effect of 315,753,552
individual amino acid changes.

7. Conclusion

The open source release of the PredictProtein protein struc-
ture and function prediction suite from the Rost Lab is now
available for Debian and derivative operating systems, such as
Ubuntu, Bio-Linux, and Cloud BioLinux. The software, due
to its standard packaging, is readily deployable in the cloud.
Successfully addressing the challenges of cloud computing
brings PredictProtein—developed over almost two decades—
into the present and the future. In accordance with the Rost
Lab open policy [50], and supported by anonymous statistics,
PredictProtein is now shared with a wide range of users. We
encourage the bioinformatics community to take advantage
of our open source software, itself a result of the collaboration
of the wider open source software community.
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The proteome-wide analysis of protein-ligand binding sites and their interactions with ligands is important in structure-based drug
design and in understanding ligand cross reactivity and toxicity. The well-known and commonly used software, SMAP, has been
designed for 3D ligand binding site comparison and similarity searching of a structural proteome. SMAP can also predict drug
side effects and reassign existing drugs to new indications. However, the computing scale of SMAP is limited. We have developed
a high availability, high performance system that expands the comparison scale of SMAP. This cloud computing service, called
Cloud-PLBS, combines the SMAP and Hadoop frameworks and is deployed on a virtual cloud computing platform. To handle
the vast amount of experimental data on protein-ligand binding site pairs, Cloud-PLBS exploits the MapReduce paradigm as a
management and parallelizing tool. Cloud-PLBS provides a web portal and scalability through which biologists can address a wide
range of computer-intensive questions in biology and drug discovery.

1. Introduction

By virtue of its 3D structure, a protein performs thousands
of life-critical functions at the molecular level. Detection
and characterization of protein structural ligand binding sites
and their interactions with binding partners are pivotal to
a wide range of structure-function correlation problems—
predicting functions for structural genomics targets, identi-
tying and validating drug targets, prioritizing and optimizing
drugleads, and correlating molecular functions to physiolog-
ical processes in drug design [1].

Xie etal. [2-4] proposed an efficient and robust algorithm
called SMAP, which quantitatively characterizes the geomet-
ric properties of proteins. Ligand binding sites predicted by
SMAP have been experimentally validated [4-7]. SMAP has
also been applied to drug design problems, such as construct-
ing drug-target interaction networks [4], designing polyphar-
macology drugs [5], assigning old drugs to new indications
[6], and predicting the side effects of drugs [8, 9]. The web
service tool SMAP-WS [1] implements SMAP via Opal [10].

Although the parallel implementation of SMAP improves the
speed of database searching, it cannot operate at the scale and
availability demanded by current Internet technology.
Recently, an Internet service concept known as cloud
computing has become popular for providing various ser-
vices to users. The cloud computing environment is a dis-
tributed system with extremely scalable IT-related capabili-
ties, providing multiple external customers with numerous
services. Cloud computing also enables the copying of vast
datasets to many users with high fault tolerance. Another
popular open-source software framework designed for data-
intensive distribution is Hadoop [11]. This framework pro-
cesses petabytes of data intercepting thousands of nodes.
Hadoop provides the MapReduce programming model, by
which parallel computing of large data sets can be imple-
mented in the cloud computing environment. MapReduce
enables distributed computing of the mappers and reducers.
Each mapper performs an independent map operation which
is parallelized with the tasks of other mappers. Similarly, a
set of reducers can perform a set of reduce operations. All
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FIGURE 2: The architecture of Hadoop cluster.

outputs of the map operations possessing the same key are
presented to the same reducer at the same time. Two addi-
tional important benefits of Hadoop are scalability and fault
tolerance. Hadoop can guide jobs toward successful com-
pletion even when individual nodes or network components
experience high failure rates. Meanwhile, a machine can be
readily attached as a mapper and reducer in the Hadoop
cluster. The Hadoop platform, therefore, is regarded as a
superior solution to real-world data distribution problems. To
date, Hadoop has been applied in a range of bioinformatics
domains [12-16].

Cloud computing platforms are usually based on vir-
tualization technology. Computing resources are combined

or divided into one or more operating environments using
methodologies such as hardware and software partitioning
or aggregation, partial or complete machine simulation, and
emulation and time sharing. A virtual machine (VM) is
a machine simulation created by virtualization technology,
which resides in a physical machine and shares its physical
resources. The web service Amazon Elastic Compute Cloud
(Amazon EC2) [17] uses virtualization technology to generate
resizable computing capacity in the cloud. The service pro-
vides a true virtual computing environment, allowing users
to launch VMs with a variety of operating systems. Users can
construct their own elastic cluster systems by attaching or
removing VMs.
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FIGURE 3: The cloud platform of Cloud-PLBS.

In this paper, we combine three technologies, Hadoop
framework, virtualization, and SMAP, to develop a cloud
computing service for structural ligand binding site compar-
ison. Each mapper or reducer in the cloud platform is a VM.
The platform uses MapReduce to simultaneously process nu-
merous comparison jobs. Similarly, the number of VMs can
be adjusted to the size of the comparison job (large and small
jobs demand more and fewer VMs, resp.). Hadoop enables
our cloud platform to recover the comparison job from a
crashed VM or physical machine by reassigning the job to a
healthy VM or a physical machine. The cloud platform can
achieve high performance, scalability, and availability. The
experimental results demonstrate that applying the Hadoop
framework on a virtualization platform enhances the com-
putational efficiency of the proposed service. The cloud ser-
vice is available at http://bioinfo.cs.pu.edu.tw/cloud-PLBS/
index.html.

2. Method

Cloud-PLBS is a robust, elastic cloud computing service for
protein-ligand binding site comparison. It guarantees rapid
return of comparison results. Cloud-PLBS embraces three
technologies, virtualization, Hadoop, and SMAP, used to
build the cloud computing infrastructure, perform parallel
computation, and compare ligand binding sites, respectively.

2.1. Structural Proteome-Wide Ligand Binding Site Compari-
son. SMAP is an efficient and robust algorithm that performs
pair-wise comparison of two potential ligand binding sites.
The user enters two protein structure IDs, and SMAP down-
loads the relevant protein structures from the RCSB Protein
Data Bank (PDB) [18]. Protein structure binding sites are
compared in four stages.

Step 1. The protein structures are represented by C-« atoms
for structural variation tolerance.

Step 2. Amino acid residues are characterized by surface
orientation and a geometric potential.

Step 3. Protein structures are compared using a sequence
order-independent profile-profile alignment (SOIPPA) algo-
rithm.

Step 4. Similarity between two binding sites is determined
through the combination of geometrical fit, residue conser-
vation and physiochemical similarity.

In Cloud-PLBS, each paired protein structure compari-
son is regarded as an SMAP job. Each SMAP job compares
two ligand binding sites by the four stages listed above.

2.2. Cloud-PLBS by Combining Hadoop and Virtualization.
As mentioned above, Cloud-PLBS comprises Hadoop, virtu-
alization, and SMAP. Hadoop coordinates computing nodes
to parallelize distributed data. Parallel computing applica-
tions are developed via the map/reduce parallel program-
ming model. The standard map/reduce mechanism has been
applied in many successful cloud computing service provid-
ers, such as Yahoo, Amazon EC2, IBM, and Google. The
map/reduce framework of Hadoop is illustrated in Figure 1.
Input data are divided into smaller chunks corresponding to
the number of mappers. The mapper stage output is formatted
as (key, value) pairs. Output from all mappers is classified
by key before being distributed to the reducer. The reducer
then combines the keyed values. Its output is also formatted
as (key, value) pairs, where each key is unique.

The Hadoop cluster includes a single master and mul-
tiple slave nodes. The master node comprises a job tracker,
task tracker, name node and data-node. A slave node, or
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FIGURE 5: The result produced by Cloud-PLBS. The protein IDs are 101 M and 100D.

computing node, consists of a data node and task tracker. The
job tracker distributes map/reduce tasks to computing nodes
within the cluster, ideally those already containing the data,
or at least within the same rack. A task tracker node accepts
map, reduce and shuffle operations from the job tracker. The
architecture of the Hadoop cluster is shown in Figure 2.

Hadoop Distributed File System (HDES) is the primary
file system used by the Hadoop framework. Each input file
is split into data blocks that are distributed to data nodes.
Hadoop also creates multiple replicas of data blocks and
distributes them to data nodes throughout a cluster, ensuring
reliable, extremely rapid computations. The name node serves
as both a directory namespace manager and a node metadata
manager for the HDFS. The HDFS architecture operates on a
single name-node.

Resource capacity permitting virtualization technology
can host several virtual machines within a physical machine.
The proposed cloud service platform combines Hadoop and
virtualization technology, such that all nodes of the Hadoop
cluster reside in VMs. The cloud computing architecture
of Cloud-PLBS is illustrated in Figure 3. As shown in that

figure, master node (name node) and slave node (data
node) constitute the master VM and slave VM, respectively.
Submitted SMAP jobs are recorded in a job queue. The master
node periodically obtains SMAP jobs from the job queue
and assigns them to slave nodes; a slave node (or mapper)
performs the task. Once all of the SMAP jobs are complete,
the reducer collects the comparison results from all mappers
and stores them in the Network File System (NFS) storage.
A single comparison result is stored in a single file in NFS.
This architecture imbues Cloud-PLBS with three desirable
characteristics: high performance, scalability, and availability.

2.2.1. High Performance. In Cloud-PLBS, the SMAP jobs are
performed in parallel by the map/reduce framework. The
number of SMAP jobs that can be performed simultaneously
is the number of data nodes. If the number of SMAP jobs
exceeds the number of data nodes, the number node assigns
the remaining jobs as soon as a data node becomes available.

2.2.2. Availability. In the event of system failure, Cloud-
PLBS continues performing SMAP jobs via the Hadoop
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FIGURE 6: Performance of sequential SMAP program and Cloud-
PLBS using 2, 4, 6, and 8 mappers.

fault tolerance mechanism. When a data node (mapper) fails
during SMAP computation, name node reassigns its job to
another slave node (mapper). Therefore, in Cloud-PLBS, all
of the submitted SMAP jobs are executed in the event of data
node failure. A hardware failure on the physical server will
terminate all virtual machines running on it. In this more
catastrophic event, SMAP jobs can be reassigned to several
new virtual machines created on available hosts. As a result
of this operation, Cloud-SMAP has high availability.

2.2.3. Scalability. If excessively many SMAP jobs are submit-
ted, Cloud-PLBS can create new slave VMs as data nodes
to accept more jobs, leading to enhanced performance. New
VMs are easily created in the Cloud-PLBS architecture. At
the same time, redundant VMs can be destroyed to preserve
physical resources.

3. Cloud-PLBS Platform

Cloud-PLBS is a software (SaaS) as a service service operating
under the Hadoop framework and virtualization technology.
The cloud computing platform is composed of an NES server
and four IBM blade servers in the Providence University
Cloud Computation Laboratory. Each server is equipped with
two Quad-Core Intel Xeon 2.26 GHz CPUs, 24 G RAMs,
and 296 G disks. Each server can accommodate 8 virtual
machines; each virtual machine is set to one core CPU, 2G
RAM, and 30 G disk running under the Ubuntu operating
system version 10.4 with Hadoop version 0.2 MapReduce
framework. Each virtual machine is responsible for a map
operation and a reduce operation. Therefore, up to eight map/
reduce operations may be undertaken.

Cloud-PLBS)

154 ’//0—//‘

Speedup (time of sequential SMAP/time of

0.5 4
0
20 pair 30 pair 40 pair
—@- 2 mappers 6 mappers
- 4 mappers —m- 8 mappers

FIGURE 7: Execution speed of sequential SMAP program and Cloud-
PLBS using 2, 4, and 6 mappers.

Figure 4 shows the web portal of Cloud-PLBS. Data
may be entered in three ways: by entering two protein
IDs (Figure 4(a)), by listing several pairs of protein IDs
(Figure 4(b)), or by uploading containing paired protein IDs
(Figure 4(c)). All of these pair protein IDs are recorded in a
job queue upon submission. The name node (mater node)
extracts the paired protein IDs from the queue, and assigns
individual SMAP jobs to data nodes (slave nodes). Figure 5
shows the results of comparisons produced by Cloud-PLBS.

4. Performance Evaluation

To assess the performance of the proposed cloud ser-
vice, we compared the execution time between stand-alone
SMAP and Cloud-PLBS. The performance of both programs
depends upon the number of SMAP jobs (the number of
paired protein IDs) and the number of computing nodes
(the number of VMs). Therefore, the performance between
the programs is tested with respect to these two factors. The
results are shown in Figure 6. As shown in the figure, the
execution time of 20 protein pairs (jobs) can be reduced from
375 seconds (consumed by the sequential SMAP program)
to 280 seconds, 188 seconds, 149 seconds, and 112 seconds
by executing Cloud-PLBS with 2, 4, 6, and 8 mappers,
respectively. Given 20, 30 and 40 protein pairs, Cloud-PLBS
with 2, 4, and 6 and 8 mappers saves roughly 30%, 54%,
66%, and 74% execution time (relative to sequential SMAP)
in average, respectively (see Table 1). Figure 7 demonstrates
the enhanced speed achieved by Cloud-PLBS using different
numbers of mappers. Clearly, the execution time is effectively
reduced when more than two mappers are involved. In gen-
eral, more mappers (VMs) achieve a faster processing speed.
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TaBLE 1: Execution time and proportional reduction (relative to sequential SMAP) of Cloud-PLBS using different numbers of mappers.
20 pairs 30 pairs 40 pairs
Method Execution time Reduction rate Execution time Reduction rate Execution time Reduction rate
(sec) (sec) (sec)
Sequential SMAP 375 733 1141
Cloud-PLBS for 2 mappers 280 24.44% 501 31.66% 754 33.92%
Cloud-PLBS for 4 mappers 188 48.87% 319 56.49% 491 56.97%
Cloud-PLBS for 6 mappers 149 60.27% 244 66.72% 340 70.21%
Cloud-PLBS for 8 mappers 112 70.13% 183 75.03% 255 77.65%
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FIGURE 8: Execution time of a half of node failure of Cloud-PLBS. (a) 20 pair (b) 30 pair (c) 40 pair.

To evaluate the reliability and availability of the proposed
cloud service, we performed a simulation to observe the
performance when mappers fail. In this simulation, half of the
mappers failed in the duration of executing SMAP. According
to the features of Hadoop, the computing process at the failed
node is able to continue at another node that has the replica
of data of the failed node. In this simulation, the heartbeat
time is set to one minute, and the number of replica is set

to three as default. Therefore, all of jobs can be completed
even when some of the nodes fail. Figures 8(a), 8(b), and
8(c) demonstrate the performance between the different
number of nodes meeting corresponding half of nodes fail for
processing 20 pair, 30 pair, and 40 pair data set, respectively.
The execution time with no failure is shown as the blue bar,
and the execution time with failure in a half of nodes is
the sum of blue bar and red bar which is extra time when
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failure occurrence. From the experiment results, it shows that
the jobs can be completed less than the double successful
execution time in the proposed service. Although half of the
nodes fail, the execution time of redundancy is related to
the number of nodes too. There are extra 165 seconds for
8 mappers, 263 seconds for 6 mappers, 313 seconds for 4
mappers, and 391 seconds for 2 mappers when half of the
nodes fail Occurs, respectively. Thereby, our cloud service is
node failure-free.

5. Conclusion

The detection and characterization of protein ligand binding
sites and their interactions with binding partners are an es-
sential component of modern drug design. The software tool
SMAP was designed to achieve these goals. Although SMAP
outperforms most existing ligand binding site comparison
tools, it cannot achieve the high scalability and availability
demanded by huge database searching.

In this paper, we exploit the new internet service concept
known as cloud computing. The proposed cloud computing
service is called Cloud-PLBS (where PLBS denotes protein-
ligand binding site). The platform integrates the Hadoop
framework, virtualization technology, and SMAP tool to
guarantee high performance, availability, and scalability.
Cloud-PLBS ensures that all submitted jobs are properly com-
pleted, even on a large cloud platform where individual nodes
or network components are prone to failure. We experimen-
tally verified that the platform is computationally more effi-
cient than standard SMAP. Therefore, it presents as a desirable
tool for analyzing protein structure and function under
reasonable time constraints.
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The potential of predicting druggability for a particular disease by integrating biological and computer science technologies has
witnessed success in recent years. Although the computer science technologies can be used to reduce the costs of the pharmaceutical
research, the computation time of the structure-based protein-ligand docking prediction is still unsatisfied until now. Hence, in this
paper, a novel docking prediction algorithm, named fast cloud-based protein-ligand docking prediction algorithm (FCPLDPA), is
presented to accelerate the docking prediction algorithm. The proposed algorithm works by leveraging two high-performance
operators: (1) the novel migration (information exchange) operator is designed specially for cloud-based environments to reduce
the computation time; (2) the efficient operator is aimed at filtering out the worst search directions. Our simulation results illustrate
that the proposed method outperforms the other docking algorithms compared in this paper in terms of both the computation

time and the quality of the end result.

1. Introduction

The ultimate goal of most people is looking for every possible
solution that provides a more comfortable life; therefore,
most researchers have done their best to advance the interest
of human from different positions, domains, concerns, and
backgrounds. One important work for the lighthearted life
is finding a new drug for particular disease. Needless to
say, drug design can always help human health because
it can be used in preventing and curing diseases. The
structure-based drug design [1] usually can be used to
predict the interactions between small drug molecules and
protein receptor complexes, and now, it is one of the well-
known computer-aided drug design methods. With advance
of computer technologies, the prediction method based on
theoretical computing method and molecular modeling to
establish the three-dimensional structure for designing a new
drug molecule can be used to speed up finding the good

possible candidate solutions. As observed by Volkamer et al.
[2], even though we invest more than one thousand billion
US dollars for drug development, the prediction accuracy and
the development time are still unsatisfied. In other words, the
prediction accuracy of the docking prediction is no more than
70% while the drug discovery process still takes a tremendous
amount of computation time just to find the possible drugs.
To measure the simulation results, the Van der Waals
(VDW), atomic radius, charge, torsional angles, intermolec-
ular hydrogen bonds, and hydrophobicity of the contact
force are usually used to bind the energy between receptor
and ligand. The empirical energy function [3], such as the
score function, is usually used to evaluate the results of
ligand molecular docking conformation which is suitable or
not for binding area of receptor. Each candidate solution
of the protein-ligand docking prediction (PLDP) problem
contains the three-dimensional coordinates of the ligand
center point, the four orientation parameters, and some



additional special atoms, such as coal, nitrogen, and hydrogen
whose free torsion degrees are used as the parameters. The set
of candidate solutions X can be expressed as the total energy
of the protein-ligand interaction and the sum of the internal
energy for both ligand and protein which is given as follows:

min E, ., (X)=E,+E,+E,+E; + E,, (1)

where E,, E,, and E, denote, respectively, the interaction
forces of intermolecular, namely, Van der Waals forces,
hydrogen bond, and electronic potential energy; E; is the
internal attraction of ligand and protein molecules; E; is the
desolvation of binding area meaning the performance for
hydrophobic.

Because the search space of possible conformations is
extremely large, how to reduce the computation time has
become a very important research issue, especially that all
these problems are usually either NP-hard or NP-complete
problem [4]. Hence, a high-performance search method
is required to speed up the overall performance of the
search process. This explains why many search methods for
reducing the computation time have been presented to solve
the docking problem [5]. The heuristic algorithms, such as
simulated annealing (SA) [6] and genetic algorithm (GA) [3,
7], provide a fast method to search for approximate solutions
which are faster than the brute force search algorithms and
traditional search algorithms. As such, it is one of the efficient
ways for solving the docking problem [8].

To enhance the performance of heuristic algorithms for
the docking problem, this paper presents a novel protein-
ligand docking prediction algorithm to speed up the process
of drug design and development on a cloud computing
environment, by using a novel migration method while at the
same time attempting to improve the accuracy rate (success
rate) of prediction by using an eflicient operator to filter out
the worst search direction.

The rest of the paper is organized as follows. In Section 2,
a brief introduction to the parallel computing for the protein-
ligand docking prediction problem is given. After that, the
concept and design of the proposed algorithm are detailed
in Section 3. Section 4 begins with a brief description of
the materials presented in this paper and then compares
the simulation results of the proposed algorithm with those
of other protein-ligand docking prediction algorithms. The
conclusion is drawn in Section 5.

2. Related Work

In addition to using metaheuristics to improve the perfor-
mance of the docking prediction algorithm as we mentioned
in Sectionl, another way is to enhance the computation
power of hardware, such as parallel computing. However,
since the communication and synchronization costs of the
search algorithm for PLDP on a cloud computing envi-
ronment are much higher than those on a grid or cluster
computing environments, to enhance the performance of
the protein-ligand docking prediction process, we have to
take into consideration these factors in the design and
development of protein-ligand docking prediction algorithm
(PLDPA).
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Among others, three major parallel computation models
are usually used in the evolutionary computation and other
metaheuristics [9-11] for enhancing the search performance,
to not only cut down the computation time but also improve
the quality of the end result. These parallel computation mod-
els are master-slave model [9], fine-grained model (cellular
model) [9], and coarse-grained model (island model) [11].
For instance, the master-slave model for genetic algorithm
will divide the population into several subpopulations and
then assign them to different processors to accelerate the
computation speed. For the fine-grained model, it also
divides the population into several subpopulations each of
which are assigned to different processors or machines. But
each subpopulation can only exchange information with
other subpopulations to which they are directly connected.
The coarse-grained model (also called the island model)
uses the concept of island and migration to exchange
the information between subpopulations. Unlike traditional
computing approaches, the parallel computation models take
into account both the architecture of the search algorithm and
the computation resources together. The major concerns now
become how the chromosomes communicate and exchange
information between the subpopulations to affect their search
performance [12-15].

For the protein-ligand docking prediction (PLDP), Wang
et al. [16] use the master-slave model for Lamarckian genetic
algorithm (LGA) (one kind of hybrid genetic algorithm for
which the genetic algorithm (GA) plays the role of global
search while the local search algorithm plays the role of
fine-tuning the search results found by GA) to speed up the
computation time of the docking prediction process. Various
successful works have been presented in recent years. For
instance, Kannan and Ganji [17] used GPU to speed up the
search process of PLDP. Sampling methods [18] have been
employed to provide not only better initial seeds but also the
possibility of finding better results. Some researchers [19, 20]
attempted to redesign or modify the scoring function for
PLDP because the scoring function takes a large percentage
of the computation time [17]. These researches focus on either
reducing the computation time, increasing the accuracy of
prediction, or both.

As a promising research area in recent years (after the
grid [21] and cluster [22, 23] system), cloud computing
provides a better way to enhance the performance of PLDP,
such as a tremendous amount of the compute and storage
resources, which leverages the strengths of grid computing
and cluster computing. How to apply the PLDP algorithm
to this new infrastructure have nowadays become a critical
research issue. Figure 1 gives the details of master-slave model
and island model. For these distributed computing models,
the main concern is how to divide the computations of a
search algorithm and then dispatch them to the computer
nodes to improve the search performance.

3. The Proposed Method

3.1. Concept. Since most heuristic algorithms do not guaran-
tee that they can find the optimal solution, one of the most
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FIGURE 1: A simple example for illustrating the parallel computation models. (a) Master-slave model; (b) island model.

important problems for the heuristic algorithms to deal
with is to balance the computation cost and the quality of
the solution. For the cluster computing environment, most
computer resources (nodes) are centralized in the same place;
therefore, the communication and synchronization costs are
not as high. For grid and cloud computing environments,
they are, however, an important issue because most com-
puting nodes are not centralized in the same place. Also,
from the perspective of algorithm design, because the total
computation time of each slave (or island) is different, no
matter which of the parallel computation models is used, it is
almost unavoidable to waste time waiting for the other slaves
to finish their tasks.

The proposed algorithm integrates two efficient opera-
tors. The first one is a novel migration operator to mitigate
the costs incurred on a cloud-based environment whereas
the second operator is the pattern reduction operator [29,
30] to filter out the worst search directions. Just like other
researches on protein-ligand docking prediction and [29], the
main focus of this research is not only on the development
of a faster search process but also on getting better solutions
for the binding locations of the protein-ligand docking
prediction.

3.2. The FCPLDPA. As shown in Algorithm 1, the proposed
algorithm (FCPLDPA) is applied to the Lamarckian genetic
algorithm (LGA) to solve the docking problem for the
rigid protein and flexible drug molecules. The FCPLDPA
will first construct the initial solution S and then divide
it into m subpopulations (the number of m is predefined
by the user, which usually matches the number of virtual

(1) Create an initial population S.
(2) Divide the population into m subpopulations and
dispatch them to m islands.

(3) Do

(4)  For each island

(5) Perform the evolutionary process (EP).
(6) End

(7) While the stop criterion is satisfied, then stop and output
the best result.

AvrcoriTHM I: Outline of FCPLDPA for the protein-ligand docking
prediction problem.

machines (computing nodes) that can be used for solving
the docking prediction problem) S = {S,,S,,...,S,,}. Next,
each subpopulation will be dispatched to a virtual machine
(island). Like the island model, each subpopulation will now
undergo the evolution process independently from each
other except that some of the chromosomes are immigrations
or emigrations of the island. Unlike the classical island model,
the migrations of the proposed algorithm are not restricted
to be at the same iteration number (era) because such a
restriction may delay the migration process, by waiting for
the other islands to converge. Algorithm 2 gives the details
of the evolution process for the islands and the migration
procedure, which include the evolution process of the simple
genetic algorithm—selection, crossover, and mutation
operations. However, in addition to applying the pattern
reduction operator [29] (as shown in line 5 of Algorithm 2)
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FIGURE 2: A simple example illustrating how the proposed algorithm works. (a) island-1 and island-2 complete their work at time t + 1; (b)
island-2 and island-4 complete their work at about time ¢ + 2; (c) after the exchange of information between all the islands, FCPLDPA will
synchronize the information; (d) and then FCPLDPA will continue to let all the islands exchange information with approximate island.

(1) T; « 0 and F,; « false.

(2) Calculate the fitness value of each chromosome.

(3) Select the approximate chromosomes to be the parents
of the next generation.

(4) Perform the crossover and mutation operators to create
the children.

(5) Apply the pattern reduction (PR) operator to eliminate
computations that are essentially redundant.

6)T, —T;+1

(7) If (T;% M = 0) Synchronize the migration.

(8) Ify(T, F,; M, = 1, perform the emigration.

9) Ify(T, F,, M;) =2, perform the immigration.

(10) Go to step 2 otherwise.

(11) End If

ALGorITHM 2: Outline of the evolutionary process (EP).

to the proposed algorithm, the timing for migrating
the chromosomes to the other islands (virtual machines) is
the main concern of this paper, as shown in lines 7 and 10 of
Algorithm 2. The migration mechanism is as given below:

v (T, F, M;)
1 fT,=9y F,="false )
=42 T, =9y, F,;="false, M; = true,

0 otherwise,

where M denotes the timing (i.e., migration interval) to
synchronize all the islands (virtual machines), T; is the num-
ber of iterations that has been performed on the evolution
process of the ith virtual machine (VM), 7 ; is the threshold
to determine the timing to migrate the chromosomes to the
other islands, #; is the flag to show whether any migration
process has been done or not since the previous migration
process was performed, and #; is the policy of master
to determine the timing to exchange information between
islands. More precisely, because the migration process of the
islands occurs for particular islands (as shown in Figure 1, this
means that some of the islands will complete their tasks at

about the same time). The synchronization process is needed
to be performed after some of the migration processes (or
once every My iterations) so that the proposed algorithm
is able to transmit the information from one island to the
others. Note that M is defaulted to 25, and T; is defaulted
to 5.

In the case of emigration, that is, the first case in (2),
it illustrates that the migration process will be performed
when the number of iterations at the ith island is equal
to Ty and F; is false. In this case, the proposed algorithm
will select a chromosome (elite solution) to migrate to the
other islands, just like the island model of GA. However, in
the case of immigration, that is, the second case in (2), any
chromosome that wants to enter the ith island must also
satisfy the condition T; = Ty (i.e., after T}; iterations). The
master needs to choose the islands the evolution processes
of which are completed at about the same time to exchange
the information. It will become time oriented; thus, most of
the migration processes need not to wait for the evolution
processes of the other islands to finish.

A simple example is given in Figure 2 to explain the main
idea of the migration strategy of the proposed algorithm.
Figure 2(a) shows that not all the islands will complete their
work at the same time if the time for migration is set
up to, say, once every five iterations. The problem of all
the islands not being able to finish the same work at the
same time is owing to two important factors. One is due
to the communication cost (including the synchronization
and other transmission costs) while the other is due to
the randomness of the convergence speed of most meta-
heuristics. The proposed algorithm attempts to deal with
this problem, by letting islands exchange the information
once they completed their work at about the same time. A
very simple method is to let island-b exchange information
with island-a if the completion time of island-b is closest to
that of island-a and they have not exchanged information
to the other islands in this information exchange round
(i.e., over the past five iterations). Similar to Figure 2(a),
Figure 2(b) also lets island-2 and island-4 exchange infor-
mation (chromosome migration) at time t + 2 because their
completion times are closest to each other.
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Figure 2(c) shows that when all the islands have
exchanged their information after My iterations that is,
migrate the chromosomes to other islands, the proposed
algorithm will then perform a synchronization procedure.
That is, it will randomly pick the chromosomes from these
groups (island-1 and island-3 as the first group while island-2
and island-4 as the second group) and migrate them to islands
of the other group so that the information can be circulated
to all the islands. After that, as shown in Figure 2(d),
FCPLDPA will continuously let all the islands evolve their
subpopulations again and migrate their chromosomes to
the other islands later. In summary, if the communication
costs are high and the convergence speeds of all the islands
are not the same, the proposed algorithm can be used to
avoid wasting time to wait for the other islands to complete
their work. The detailed analysis will be given in later
sections.

4. Simulation Results

In this paper, the performance of the proposed algorithm
is evaluated by using it to solve the protein-ligand docking
problem. All the empirical analyses are conducted on 16
VMs, each of which consists of one CPU (2.5 GHz), 4 GB of
memory, a 100 MBps NIC card, and GNU C++ v4.12, and
runs CentOS_64 v6.2. Also, the test platform for docking is
AutoDock 4.2 [31].

Several state-of-the-art algorithms, namely, differential
evolution [32], particle swarm optimization [33], Lamarckian
genetic algorithm with island model (parallel GA; PGA)
[34, 35], FCPLDPA without PR, and FCPLDPA with PR,
are applied to the AutoDock environment to search for
the possible protein-ligand binding sites. The energy func-
tion which calculates the energy value between the protein
and ligand molecule is used by these search algorithms to
determine which conformation is the candidate with the
most appropriate binding points. The details of composition
formula for free energy expressions could be referred to the
study of [3]. For all these algorithms, the population size N
is fixed at 256, the subpopulation size for the parallel model
is fixed at N/I, where I, denotes the number of islands, the
crossover rate is set equal to 0.9, the mutation rate is set
equal to 0.08, and the number of generations ¢ is set equal
to 10,000.

4.1. Materials. The molecular docking problem can be
regarded as the key matching problem where the lock and
key are the receptor and ligand, respectively, and the goal
of all the simulations is to provide an efficient way to find
the approximate positions of the key and lock from a large
search space or the candidate set of drugs. Although until
now, the accuracy of most candidate sets of approximate
positions (solutions) found by a search algorithm is not as
precise as it is supposed to be; it does provide an efficient
way to find out a good drug molecule which is not validated
yet by a laboratory. In this paper, an effective tool for drug
design based on structure-based protein molecule, AutoDock
[6], is used to evaluate the proposed algorithm and the other

state-of-the-art docking prediction algorithms, such as GA
and parallel GA (PGA). In addition, four different kinds
of data sets, as shown in Figure 3, are used to evaluate the
performance of the proposed algorithm and the state-of-the-
art docking prediction algorithms compared in this paper.
The data sets are taken from the RCSB Protein Data Bank
database (http://www.pdb.org/).

4.2. Results. Our observation shows that most computation
costs of LGA come from the local search process. But this
characteristic will be changed for the parallel GA on a
cloud computing environment. As shown in Figure 4, two
interesting phenomena can be easily observed. First, the
communication costs will increase as the number of islands
(virtual machines) increases. These results show that the
communication costs and the convergence speed of different
islands all may affect the performance of the system. Second,
the local search process may change the percentage of the
computation time for all the operators of protein-ligand
docking prediction. Figures 4(a) and 4(b) show that the
local search of PGA takes much more computation time
than the function evaluation, especially when we invest
much more resources to the local search process for the
four different datasets which differs from the observation
described in [17] because Kannan and Ganji believe that the
function evaluation takes most of the computation time of
the whole convergence process. However, our observation is
that the function evaluation will not affect the computation
time of the whole search process. These results help us
emphasize that the local search, the communication cost,
and the different convergence speed of all the islands are
the other important factors to be taken into account for
the computation time of protein-ligand docking predic-
tion, especially when we are using the cloud computing
environment to solve the protein-ligand docking prediction
problem.

As shown in Table 1, seven different datasets are used to
evaluate the performance of the proposed algorithm and the
other docking prediction algorithms. For each algorithm, the
table gives the percentage of time taken by the initialization,
selection, crossover, mutation, function evaluation, local
search, and send and receive operators. The results show that
the proposed algorithm outperforms the PGA in most cases,
either without PR or with PR in terms of the success rate and
the average time.

Comparison of the proposed algorithm with PGA shows
that if the send and receive costs can be decreased, the overall
computation time can also be decreased. According to our
observation, FCPLDPA without PR can provide a better suc-
cess rate than PGA and DE because the proposed algorithm
postpones the transmission of information from the island to
all the other islands; therefore, the search diversity between
islands can be maintained. Another strategy for the proposed
algorithm is to combine it with PR, called FCPLDPA with PR
(FCPLDPA + PR). The simulation results in Table 1 also show
that FCPLDPA + PR can provide better results than DE, PSO,
PGA, and FCPLDPA alone in terms of the success rate with a
little more investment of the computation time.
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FIGURE 3: Structure diagrams [28] for both protein and ligand molecules.
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TaBLE 1: Comparison of the proposed algorithm with the other
docking prediction algorithms.

Islands 1 2 4 8 16 32

Chromosomes 256 128 64 32 16 8
DE (island model)

Initialization 0.11% 0.13% 0.34% 0.53% 1.34% 2.63%

Mutation 239% 2.44% 2.36% 2.37% 2.76% 2.72%

Evaluation 0.61% 0.71% 0.68% 0.66% 0.77% 0.64%

Local search 96.88% 93.92% 90.13% 82.86% 70.59% 48.69%
Send and receive 0.00% 3.51% 717% 14.24% 23.31% 43.96%
22.86% 2714% 30.71% 33.57% 40.71% 39.29%

Success rate

Average time  1,726.52 995.23 506.34 251.93 154.33 104.07
PSO (island model)

Initialization 0.07% 0.14% 0.26% 0.78% 1.56% 3.12%

Evaluation 2.37% 2.75% 2.74% 211% 3.28% 2.94%

Local search 97.55% 95.44% 94.61% 90.96% 82.4% 52.69%
Send and receive 0.00% 1.68% 2.39% 6.15% 13.02% 26.14%
17.86% 21.43% 25.00% 31.43% 35.71% 32.14%

Success rate

Average time 284.41 176.39 8739 4294 2815 18.78
PGA (island model)

Initialization 0.20% 0.29% 0.68% 0.94% 0.90% 0.90%

Selection 0.20% 0.34% 0.68% 0.94% 0.90% 0.90%

Crossover 0.01% 0.01% 0.01% 0.01% 0.01% 0.01%

Mutation 0.01% 0.01% 0.01% 3.86% 0.10% 0.01%

Evaluation 0.98% 1.69% 3.41% 4.72% 4.44% 4.50%

Local search 98.63% 88.95% 76.72% 62.57% 26.22% 22.20%
Send and receive 0.00% 8.98% 18.29% 28.50% 67.28% 71.35%
15.00% 19.29% 21.43% 28.54% 34.29% 27.14%

Success rate

Average time 572,74 330.71 168.07 84.33 50.14  33.59
FCPLDPA without PR

Initialization — 0.34% 0.68% 0.94% 0.90% 0.90%

Selection — 0.34% 0.68% 0.94% 0.90% 0.90%

Crossover — 0.01% 0.01% 0.01% 0.01% 0.01%

Mutation — 0.01% 0.01% 1.29% 0.01% 0.01%

Evaluation — 1.78% 3.74% 5.26% 5.19% 5.89%

93.35% 84.13% 69.61% 30.69% 26.67%
4.43% 10.41% 19.42% 61.69% 65.61%
25.00% 25.71% 30.71% 37.14% 32.14%

Local search —
Send and receive —

Success rate —

Average time — 313.49 153.78 7590 42.69 30.54
FCPLDPA with PR

Initialization — 0.34% 0.68% 0.86% 0.90% 0.90%

Selection — 0.31% 0.68% 0.83% 0.90% 0.90%

Crossover — 0.01% 0.01% 0.01% 0.01% 0.01%

Mutation — 0.01% 0.01% 1.43% 0.01% 0.01%

Evaluation — 1.78% 3.75% 5.02% 4.06% 5.96%

93.20% 83.59% 70.60% 32.66% 28.50%
4.48% 10.24% 20.88% 61.17% 64.09%
27.86% 32.14% 40.00% 47.14% 45.71%
32091 156.19 7756 44.07 33.49

Local search —
Send and receive —

Success rate —
Average time —

5. Conclusion

In this paper, a novel docking prediction algorithm named
fast cloud-based protein-ligand docking prediction algo-
rithm (FCPLDPA) is presented to enhance the performance

of metaheuristics (i.e., GA-based algorithm) for pharmaceu-
tical research. The simulation results show that the proposed
algorithm can not only significantly reduce the computation
cost of GA in solving the protein-ligand docking prediction
problem by using cloud computing technologies but also
improve the quality of the end result by using the pattern
reduction method. They also show the possibility of using
cloud computing technologies and the dilemmas we need
to face when applying the drug prediction approaches to
the cloud computing environment. More precisely, many
approaches can be used to reduce the computation costs of
metaheuristics, such as investing more computing resources
to finish the job faster or using better search strategy
(i.e., sampling or dimension reduction methods). However,
according to our observation, the improvement was not pro-
portional to the investment because the communication costs
and the different convergence speeds of virtual machines
(islands) all affect the performance of the docking system
on cloud. The main purpose of this research is to eliminate
the waiting between different virtual machines of cloud-based
docking prediction algorithm. The simulation results are
consistent with our assumptions and observations that the
communication costs and the different convergence speeds
between islands may strongly impact the performance of the
purposed algorithm. Two efficient operators are employed in
this paper: (1) the novel migration operator is aimed to avoid
wasting of the computation power and waiting for the other
virtual machines on a cloud computing environment, and
(2) the pattern reduction operator is aimed to enhance the
search performance. The main contributions of this research
can be summarized as follows: (1) we discovered that the
communication costs and the different convergence speeds
between virtual machines (islands) will eventually affect the
performance of the search algorithm on cloud; and (2) we
presented a high-performance cloud-based protein-ligand
docking prediction algorithm to deal with this problem to
guide the search algorithm to find the approximate candidate
solution quickly. In the future, we will focus on finding a more
efficient prediction method to improve the accuracy of the
solution of FCPLDPA while reducing the computation time
of the whole process.
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Cloud computing provides a promising solution to the genomics data deluge problem resulting from the advent of next-generation
sequencing (NGS) technology. Based on the concepts of “resources-on-demand” and “pay-as-you-go’, scientists with no or limited
infrastructure can have access to scalable and cost-effective computational resources. However, the large size of NGS data causes a
significant data transfer latency from the client’s site to the cloud, which presents a bottleneck for using cloud computing services. In
this paper, we provide a streaming-based scheme to overcome this problem, where the NGS data is processed while being transferred
to the cloud. Our scheme targets the wide class of NGS data analysis tasks, where the NGS sequences can be processed independently
from one another. We also provide the elastream package that supports the use of this scheme with individual analysis programs
or with workflow systems. Experiments presented in this paper show that our solution mitigates the effect of data transfer latency

and saves both time and cost of computation.

1. Introduction

Over the past few years, cloud computing has emerged
as a new form of providing scalable computing resources
on demand. Customers using cloud services have access
to remote computational resources that can be scaled up
and down and they are charged according to the time of
utilization. The cloud model is appealing for many scien-
tific applications, where large computational resources are
required on an ad hoc basis for analyzing large datasets pro-
duced or collected after some experimental work. Currently,
there are a number of academic as well as commercial cloud
computing providers worldwide; these include Amazon Web
Services (AWS) [1] (which pioneered the provision of such
services), Microsoft Azure [2], IBM Smart Cloud Enterprise
[3], Rackspace [4], Magellan [5], and DIAG [6], to name a few.

The bioinformatics academic community has already
recognized the advantages of cloud computing since its early
days and considered it as a promising solution to overcome
the ever increasing genomic data volume [7-12], especially for
the scientists with limited computational power. Cloud-based
software tools have been developed by the academic commu-
nity for the analysis of biological sequences. These include,
among others, Crossbow [13], RSD-Cloud [14], Myrna [15],
and CloudBurst [16]. The life science industry has moved in
the same direction and started to support cloud computing
as well. Interestingly, recent NGS instruments can stream
the sequenced reads to the cloud infrastructure during the
sequencing process (https://basespace.illumina.com/). This
has the advantage that all the new sequence data become
available in the cloud upon completion of the wet-lab
work.



This exciting advancement in providing cloud-based
bioinformatics services is however limited by the latency
of copying the user’s data to the computing machines in
the cloud. To take one example, uploading the African
human genome dataset (130 GB) takes around 37 hours
with upload rate of one MB/s, while processing this dataset
(as we will show in the experiment) using Bowtie [17]
takes about 32 hours. That is, the data transfer time can
exceed or at least be a considerable fraction of the pro-
cessing time. This directly increases the overall experiment
time and accordingly increases the associated costs. Current
solutions to overcome this problem are mostly commercial
and they only focus on the reduction of the data transfer
time, by using faster data transfer protocols and compres-
sion techniques (c.f., [18], http://www.filecatalyst.com/ and
http://asperasoft.com/). These solutions are however limited
by the user’s bandwidth and the nature of the data that is
compressed and transferred. In this paper, we show that it
is possible to further reduce the overall experiment time by
incorporating an online data processing (streaming) scheme
to process the data while it is transferred. This solution
fits the wide class of NGS problems, in which the NGS
sequences can be processed independently from one another;
the problems of mapping NGS sequences to a reference
genome or searching them in a given set of databases are
examples of these problems. In the aforementioned example
of the African human genome, the overall processing time
using our scheme will converge to the data transfer time, as
the data transfer and computation proceed in parallel. As we
will show in the paper, this scheme has the extra advantage of
reducing the overall cost of the experiment due to the use of
fewer compute nodes.

In this paper, we present the incremental (online) data
processing package elastream (elastic-stream) that has the
following set of features:

(i) automatic creation and management of a computer
cluster in the cloud (including MapReduce clusters),
equipped with necessary NGS analysis tools,

(ii) automatic submission of jobs to the cluster and
monitoring them,

(iii) incremental (online) data processing for individual
tools as well as for workflow engines installed on the
cloud machines, even if the tools and engines do not
directly read/write to standard Unix pipes,

(iv) adaptive load balancing where the number of cluster
nodes can be increased or decreased in run time in
response to changes in the computation load.

To further facilitate the use of elastream for individual
applications, we provide a client software that can be used
from the user’s local machine to activate the elastream cloud
cluster and submit analysis jobs to it. Furthermore, we also
provide add-on’s in the form of workflows to enhance the
popular workflow systems Taverna [19, 20] and Galaxy [21].
These add-on’s facilitate the use of cloud computing power
with the data streaming option. These add-on’s are useful for
the developers and users of the Taverna and Galaxy systems
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to scale up their resources and enhance the performance of
their workflows.

This paper is organized as follows: Section 2 includes
related work and a summary of the Amazon cloud computing
products. In Section 3, we introduce our elastream package,
which supports establishment and use of a cloud computing
cluster. In this section, we explain the design principles as
well as the implementation details of elastream. Section 4
introduces our on-line processing scheme for individual
tools as well as for workflow systems. Section 5 introduces
the features of elastream distribution and its add-ons. In
Section 6, we present a demonstration of our scheme based
on elastream in the Galaxy workflow system. We also evaluate
the performance of the streaming solution. Finally, Section 7
includes the conclusions and future work.

2. Background and Related Work

2.1. Cloud Computing and Amazon Web Services

2.1.1. Cloud Computing Services. Cloud computing provides
access to remote computing resources (processors, memory,
storage, bandwidth, software, etc.), where such resources
are encapsulated as services that can be metered and
charged for on a pay-per-usage basis. From a service-oriented
point of view, cloud computing services can be categorized
as Infrastructure-as-a-Service (IaaS), Platform-as-a-Service
(PaaS), or Software-as-a-Service (SaaS).

The SaaS model provides an abstraction of traditional
Internet applications. A piece of software is deployed at the
cloud provider’s site and is accessed as a remote service.
Using this model, analysis tools are deployed as acces-
sible remote services, allowing users to access and exe-
cute these tools. Crossbow [13], (http://bowtie-bio.source-
forge.net/crossbow/ui.html), which is hosted at Amazon, is
an example of these tools. In this case, users do not need to
worry about the low-level issues related to resource allocation
and execution of the tool; these are handled by the Saa$S
provider.

The PaaS model provides an abstraction of a complete
development platform deployed as a service. The platform
typically comprises a restricted software development envi-
ronment with an associated software stack. This enables
application builders to develop new programs, usually for
specified classes of applications. A scientific workflow system,
for example, Galaxy [21], deployed in the cloud is an example
of a PaaS. In this case, again, it is the PaaS provider who
handles all resource allocation decisions and low level details
of workflow execution.

Within the [aaS model, a cloud service provider, such
as Amazon, hosts large pools of computing machines and
offers access to them via a set of APIs. Users can configure
the machines as they wish (operating system, software, etc.)
and then use them for executing their applications. The
machines provided are commonly virtual machines (VMs)
that the provider manages on behalf of the consumer. For the
provider, the use of the VM abstraction supports scalability
by allowing a physical machine to be shared by multiple VMs
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and also allowing them to bill users only for the time the VMs
are running. For the user, any number of virtual machines
can be allocated and configured. Moreover, SaaS and Paa$
applications can be freely installed and used. In this case,
the user has to handle decisions about VM configuration
and software installation as well as about allocation and de-
allocation of the VMs based on performance and budget
requirements.

2.1.2. Amazon Web Services. Because the current version
of elastream is based on the Amazon cloud infrastructure,
we review the basic technical and financial features of this
infrastructure. Our use of the Amazon platform is motivated
by the fact that it is the largest and most popular one so
far. Though, we would like to stress that the methods and
approaches presented in this paper are applicable to any cloud
computing platforms and are not specific to Amazon; it is
planned that future versions of elastream will support more
platforms.

Amazon Web Services (AWS) of Amazon offers infras-
tructure as a service (IaaS) in terms of computational power
(CPUs and RAM), storage, and connectivity. AWS offers a
variety of machine instance types that range in computing
power and cost. Table1 summarizes the features of some
instance types including the strongest ones. With each of
these types, mounted disks (called ephemeral disks) are
also provided. Machine instances are created from Amazon
Machine Images (AMIs), which are templates containing
software configurations (e.g., operating system, application
server, and applications). AWS includes a directory of AMIs
prepared by the AWS team and by the community. The
deposited AMIs in this directory have different operating
systems and are equipped with different applications.

Because the ephemeral disks are volatile and vanish with
the termination of the virtual machine, AWS offers two types
of persistent storage: EBS and S3. The former is defined in
terms of volumes, where one or more EBS volumes can be
attached (mounted) to a running virtual machine instance,
similar to a USB thumb drive (volume size ranges between
1GB and 1TB). The latter is like a data center providing data
hosting, accessed through certain methods (basically POST
and GET methods).

The AWS business model is “pay-as-you-go,” where the
user is charged only when own machines are running. The
user is also charged for reserved storage on Amazon and
for data transfer out of the AWS site and from/to persistent
storage solutions. Table1 summarizes the storage options
and their prices in AWS (last price update November 2012).
For more information about the AWS pricing schemes, we
refer the readers to the documentation available in the AWS
website [1].

2.2. Related Work

2.2.1. Cloud-Based Solutions for Sequence Analysis. Currently,
there are some cloud-based programs for the analysis of next-
generation sequencing data. These include, among others,
Crossbow [13], RSD-Cloud [14], Myrna [15], and CloudBurst

[16]. In addition, there are some libraries and packages that
support the creation and management of computer clusters
in the cloud. To the best of our knowledge, these include
so far StarCluster [22], Vappio [23], and CloudMan [24].
StarCluster [22] has been developed as a general cluster
management solution for AWS and it is not specific to
bioinformatics applications or any bioinformatics use cases.
CloudMan [24] has been developed as part of the Galaxy
project to basically provide a version of the Galaxy workflow
system [21, 25] in the cloud. Vappio [23], unlike CloudMan, is
astandalone library for supporting the creation of a computer
cluster in the cloud. It enables submission of remote jobs
to the cloud instances. These solutions assume that the data
should be available in the cloud before any processing takes
place. Our work in this paper can be used to enhance these
solutions with incremental processing features.

2.2.2. Online Data Processing. Online data processing (also
referred to as stream or incremental data processing) has been
addressed since the early days of distributed computing, espe-
cially in the area of distributed database systems. Specifically,
pipelined query evaluation models have been introduced
to hide data transfer latencies within the processing of the
queries [26]. The same approach can be readily used in other
applications and over a computer cluster empowered by a
job-scheduler (e.g., PBS) to manage job submissions. Online
processing with the MapReduce framework is relatively new
and has just appeared in [27, 28]. The involved approach in
these papers is based on modifying the MapReduce imple-
mentation and providing a stream-based data processing
system underneath. The problem of these solutions is that
they have not yet been supported by the Amazon MapReduce
product. In this paper, we will overcome this limitation by
following a different approach based on the elasticity property
of the cloud model. But once it is supported by Amazon, we
will enhance our package with this feature to further serve the
bioinformatics community.

In preliminary work [29, 30], we evaluated the incremen-
tal data processing approach for certain bioinformatics tools
like SHRiMP [31] and Bowtie [17] based on an industrial
streaming engine (IBM InfoShphere Streams). In this paper,
we extend this work in several directions: first, we introduce
a scheme that supports stream processing in a generic way
with no dependencies on any streaming engine. Second, our
scheme is applicable not only to specific software tools but
also to workflow systems like Galaxy [21] and Taverna [19, 20].
Finally, our work supports incremental processing over the
Elastic MapReduce framework of AWS.

3. Elastream: Design and Implementation

3.1. Block Diagram. Elastream is a software package com-
posed of a set of modules for constructing a computer
cluster in the cloud and executing analysis jobs on it. Figure 1
shows the block diagram of elastream. As shown in Figure 1,
the package is composed of three basic modules: cloud
cluster creation module, cloud cluster runtime module, and job
module.
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TABLE 1: Amazon services: virtual machines, storage, data transfer, and disk access. This information is for the Amazon US site. Prices for

other sites are available on the AWS website.

Resource type AWS service Service unit CPUs (#(GHz)) Memory (GB) Cost ($/Hr)
ml.large 2(2) 7.5 0.32
ml.xlarge 4(2) 15 0.64
Computation EC2 cl.xlarge 8(2.5) 7 0.66
m2.4xlarge 8 (3.25) 68.4 1.80
ccl.4xlarge 8 (4.19) 23 1.30
Resource type AWS service Service unit Size Tiers Cost ($/GB/month)
S3 Bucket Unlimited 1st1TB 0.14
Storage S3 Bucket Unlimited Next 450 TB 0.1
S3 Bucket Unlimited Next 4000 TB 0.08
EBS Volume Upto1TB 0.10
Resource type AWS service Service unit Type Size Cost ($/GB/month)
S3 I/0 Data IN/within AWS Any 0.00
S3 1/0 Data OUT 1st1GB 0.00
Data transfer S3 1/0 Data OUT Next 10 TB 0.12
S3 1/0 Data OUT Next 100 TB 0.07
S3 /0 Data OUT Next 150+ TB 0.05
S3 API GET, PUT, POST 1K request 0.01
Disk access S3 API COPY, LIST 1K request 0.01
EBS 1/0 R/W 1M request 0.1

3.11 Cloud Cluster Creation Module. This module includes
functions for creation of the cluster in the cloud. These
functions can be categorized into three submodules.

The first submodule includes functions for setting up
the master node of the cluster. The master node is created
from the elastream virtual machine image, which we have
already prepared and deposited in AWS as AMI. This virtual
image includes the Linux operating system and all necessary
software libraries and packages. It also includes the whole
elastream package. (Detailed description of the image is given
in Section 5.) This sub-module is based on invoking certain
APIs provided by AWS. The activation of the cluster node
includes some built in bootstrapping scripts that conduct
necessary configuration steps (e.g., SSH key settings) and
installation of some important libraries and packages.

The second submodule includes functions for creating
the worker nodes and associating them to each other and
to the master node. The worker nodes are created from the
same elastream virtual machine image used for creating the
master node. This sub-module also includes installation and
configuration of the job scheduler (PBS Torque is the default
job scheduler) over the created worker nodes.

The third sub-module includes functions for creating the
EBS volumes and attaching them to the cluster nodes. It also
includes functions for connecting the nodes to the S3 storage
to save the result data. There are also functions to establish
shared storage among the cluster nodes using NFS or through
S3 using S3fs so that the input data becomes available to every
job running at any node.

3.1.2. Cloud Cluster Run-Time Module. 'This module includes
functions responsible for checking the cluster status and

terminating the cluster. It also includes functions for adding
more nodes and attaching more EBS volumes and S3 buckets
to the cluster nodes.

3.1.3. Job Module. This module includes functions respon-
sible for submitting jobs to the cluster from a remote
machine. It also includes functions for checking job status
and redirecting the results to certain directories or to the
persistent S3 storage.

3.2. Use Case Scenario. Figure 2 shows the basic use case
scenario, in which the functions of elastream are used to
create a computer cluster in the cloud from remote user’s
machine and to submit analysis jobs to it. As mentioned
before, the cluster is created from the specific elastream vir-
tual machine image we have already prepared and deposited
in AWS. The first step in this use case scenario is that the
user installs the client program of elastream from its website.
This client program invokes the cluster creation module using
the user’s credentials so that the created computer cluster
is associated with the user’s account in AWS. The creation
procedure includes the following steps.

First, the function for creating the master node from the
elastream machine image is invoked. Once the master node
is created, a job request is sent to it to execute a program
in the master node that creates other worker nodes. This job
request includes invocation of the node creation function to
create the specified number of worker nodes. Technically, the
node creation function is the same as the one used for creating
the master node. The only difference is that it already has
the credential information, which is reused automatically. We
would like to stress that the image of any created machine
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FIGURE I: Elastream block diagram. Elastream is composed of three modules. Each module includes submodules conducting certain tasks.

includes the elastream package with all its functions that can
be directly used once the machine is activated. After the
creation of all worker nodes, another job request is sent to the
master node to configure the cluster and the job scheduler.
This job invokes a certain script in the cloud cluster to
accomplish this task. Once the configuration tasks have been
successfully completed, the cluster is ready to run any analysis
job.

Running an analysis job can be achieved by using the
client program (1) to execute a command line of the analysis
tool, (2) to specify the input, and (3) to specify the destination
directory of the output. Note that the command line itself can
specify that the analysis task runs through the installed job
scheduler. Note also that the job should invoke a program
already installed in the elastrearn machine. (Note that all
elastream programs are accessible once the cluster starts.) It
is important to mention that this mode of operation does
not prevent the user from accessing and utilizing the cluster,
using for example the SSH program. The user manual and
source code of the elastream functions are available on the
package website.

3.3. Major Implementation Details

3.3.1. Elastream Virtual Machine Image. To facilitate the use
of elastream, we prepared a virtual machine image deposited
at Amazon public pages. (The package website includes
details about this image and its ID in AWS.) The elastream
image is based on Ubuntu Linux and it is equipped with a
number of software packages, including Amazon Command
Line Tools (the APIs of Amazon), PBS Torque as a job
scheduler, NFS as a shared file system, s3fs [32] to handle the

S3 as a shared file system, Python/Perl interpreters, MPICH2,
and C/C++ and JRE. The image comprises a large library
of sequence analysis software tools, summarized in the next
section. It also contains the ready-to-use elastream modules
presented above. Furthermore, it includes a server module
and a client module to facilitate communication between the
nodes as described below.

3.3.2. Client-Server Software Pattern. To facilitate the com-
munication between the local machine and the master node
at one side and between the master node and other worker
nodes on the other side, we used a client-server software
pattern. We developed a server module and preinstalled it in
the machine image. This server module starts automatically
whenever the respective machine is activated from its image;
this includes the master node as well as any worker node.
(We use operating system features to enable creation and
automatic startup of the server; see the manual for more
details.) The server module listens to certain ports, identifies
the incoming messages from the client, maps them to one of
the functions in the modules discussed above, and executes
them. The client connects to the server through the specified
port and invokes one of the server functions. Note that
the elastream machine image includes a copy of the client
program so that its functionalities are used inside the cloud to
create extra nodes and to submit specific jobs to all or certain
worker nodes. The server and client are written in Python,
and both of them use APIs of AWS to handle all cloud-
related functions. They also use (shell) scripts we developed
to configure the cluster and the associated job scheduler.
For remote job submissions (from the client program to the
cloud cluster), we have developed and used an asynchronous
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FIGURE 2: Use case scenario based on the functions of elastream. The user uses the client program from own local machine to establish and

use a computer cluster in the cloud.

protocol. This protocol is similar to the RESTful protocol and
it is implemented in Python.

3.3.3. Establishment of MapReduce Clusters. MapReduce [33]
is a programming model and an execution framework that
facilitates the processing of large amounts of data on a
computer cluster. Amazon offers a product for MapReduce
called Elastic MapReduce (EMR), based on the open source
Hadoop implementation of MapReduce.

Compared to job schedulers, the MapReduce model
is more complex, as it requires that the analysis task is
formulated in terms of a Map and a Reduce functions. The
former function processes the input items in parallel and
emits the results as well as some key-value pairs. The Reduce
function uses these pairs to postprocess the output of the Map
function in parallel. Considerable programming experience
is usually needed so as to fit the structure of computation
at hand in terms of Map-Reduce functions. Moreover, not
all problems can be formulated in the MapReduce model.
Nevertheless, the advantage of using the EMR product lies in
its lower machine price compared to traditional nodes of the
same type (e.g., one cl.xlarge instance costs $0.66 when used
in traditional cluster and costs just $0.12 when used in EMR).
These reduced costs make it appealing to use the EMR for
NGS data processing. Furthermore, various bioinformatics
programs are already based on the MapReduce framework
and are demonstrated to work using the EMR product.
Examples of these tools include Crossbow [13], RSD-Cloud
[14], Myrna [15], and CloudBurst [34].

The client program of elastream can create an EMR cluster
using the APIs of AWS from the user’s local machine. The
creation steps are similar to that of the traditional cluster
but there are some differences due to the MapReduce model
and Hadoop implementation. The EMR cluster cannot be
created from a user’s own image, such as the elastream image
we prepared. It can only be built from specific EMR images
previously created by the Amazon team. The EMR image

contains the basic Hadoop code and basic programming
languages (Java and Python), but it does not include any
analysis software. Therefore, the required analysis programs
should be installed using a bootstrap script specified in the
creation function. Note that the bootstrap script is executed
before the Hadoop system starts, and it can be generally used
for any necessary (initialization) tasks related to the required
analysis. (The elastream manual includes an example of this
bootstrap script).

Analysis jobs can be directly submitted, once the cluster
is created and Hadoop system starts. The analysis job is
specified using a distinct elastream command, and it should
include the path to the input data as well as the Map and
Reduce functions implemented either in Java or Python. The
elastream composes a Hadoop job using these items and
executes it on the EMR cluster.

3.3.4. Stream Processing Support. To support online data
processing, the job submission/execution method of the
elastream has to be extended with an additional layer. The
following section includes the underlying scheme and the
implementation details of this layer. In that section, we will
discuss this scheme with traditional and EMR clusters. We
will also discuss how it can be used within workflow systems.

4. Online Sequence Processing

In this part, we describe our method to support on-line
sequence processing for both individual analysis tools and
workflow systems. Our method does not depend on any
streaming engine and does not require that the involved tools
or systems are able to read and write to the standard Unix

pipes.

4.1. Supporting Individual Tools. To support incremental
data processing in the cloud, we developed the software
design pattern shown in Figure 3. This pattern works only
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FIGURE 3: Software design pattern to support incremental data processing in the cloud. The client streams the data into the cloud cluster.
The server monitors the received data buckets and manages the launch of analysis jobs on cluster nodes. After completion, the output data is
either transferred back to the client machine or transferred to the user’s S3 account.

for data intensive tasks in which input sequences can be
processed independently from one another. Examples of such
problems include, among others, mapping NGS sequences
to a reference genome and searching sequences in a given
set of databases. In this pattern, a local machine streams
the data to a cloud cluster and an analysis program already
available in that cluster will begin with the processing as soon
as the data arrive. To achieve this, there is a server (we call it
streaming server) installed in the cloud machine and a client
program (we call it streaming client) at the local machine.
The streaming client communicates with the streaming server
to start a job in the cloud. The job submission in this
pattern includes (1) sending the command line specifying
the respective program call and (2) the transfer of the data
from the local machine to the cloud machine. Note that the
data transfer issue is in sharp what distinguishes this method
of job submission from the previousely described oftline
(nonstreaming based) one, which requires that the input
data is completely uploaded to the cloud before starting the
analysis. While the data is being transferred, the streaming
server monitors the incoming data stream, parses it into
sequences, and accumulates the sequences in buckets. When
a bucket is complete, the analysis tool is invoked to process
the bucket at hand. If the data transfer rate is so high that
many buckets are ready at one time point, then more jobs are
launched in parallel to process the buckets. After completion,
the output data can be downloaded to the user’s local machine
or exported to an S3 account.

The client module of this design pattern can do more
than establishing a connection to the server and transferring
data to it. Actually, it can preprocess the data before sending
it to further speed up data transfer and reduce the server
side work. This pre-processing includes partitioning the data
into chunks and compressing them. In this case, the server

expects to receive chunks and it just forward them to the next
processing steps.

This design pattern is implemented in elastream by
extending the functionality of both the server and the client
programs. The elastream server is extended by two extra
threads per job. The first thread is for receiving the data
stream, and the second is for monitoring the incoming
data and constructing the buckets. The latter thread is also
responsible for submitting the jobs to process the completed
buckets in a pipelined fashion; that is, a just completed bucket
can be directly processed even if the previous buckets are
still being processed. The client program can be extended
by dividing the data into buckets and sending them in
sequence.

4.2. Streaming for MapReduce-Based Applications. The Elas-
tic MapReduce (EMR) product of AWS does not support
incremental data processing and assumes that all the data is
avaijlable in the cloud in advance. To overcome this limitation,
we use the same scheme in which the input data is divided
into buckets and these are processed independently. We also
make use of the elasticity property of the cloud to expand the
cluster when needed. The details are as follows.

Elastream provides a programmatic means for creating
and using the Elastic MapReduce (EMR) product of AWS.
Therefore, an initial EMR cluster is first constructed when
an analysis job is submitted. The streaming server monitors
the received data and accumulates them into buckets. Once
a bucket is complete, a Hadoop job is submitted to process
this bucket over the EMR. This solution looks fine, but its
scalability is in fact limited due to the following reason.
EMR is offline in the sense that new buckets cannot join
the parallel processing of the currently running job even if
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FIGURE 4: Streaming/pipelining in workflow systems: (a) no pipelining, where A starts computation only when all its input items [x; - - - x,,]
are available, and so does B which processes the output items of A. (b) Pipelining, where A starts computation when any data item is available,
and so does B. Note that in this mode A and B run concurrently on different data items.

there are enough resources, and the new buckets have to
be queued to be processed one after another. To overcome
this limitation, we exploit the elasticity property of the cloud
and automatically create another EMR cluster to process the
pending buckets. This elastic creation of EMR clusters enables
processing of the buckets with minimal queuing time.

4.3. Supporting Workflow Systems. Bioinformatics workflows
include the use of multiple software tools and data resources
in a staged fashion, with the output of one tool being passed as
input to the next. Workflow systems have been introduced to
facilitate the design and execution of sophisticated workflows.
Examples of the systems that support sequence analysis
applications include, among others, Taverna [19, 20], Kepler
[35], Triana [36, 37], Galaxy [21], Conveyor [34] Pegasus
[38], and Pegasys [39]. In these systems, the workflows are
represented in the form of a directed graph, where nodes
represent tasks to be executed and edges represent either data
flow or execution dependencies between different tasks. The
workflow system maps the edges and nodes in the graph
to real data and software components. The workflow engine
(also called execution or enactment engine) executes the
software components either locally on the user’s machine
or remotely at distributed locations. The engine takes care
of data transfer between the nodes and can also exploit the
use of high-performance computing architectures so that
independent tasks run in parallel. This allows the application
scientists to focus on the logic of their applications without
worrying about the technical details of invoking the software
components or using distributed computing resources.

There are two classes of workflow engines: one that
supports stream processing (also referred to as pipelining in
workflow literature) and others that do not. For example, the
engines of Kepler [35] and Taverna [19, 20] belong to the first
class, while the engines of Galaxy and Conveyor [34] belong
to the second one. The idea of pipelining in workflow engines
is illustrated in Figure 4. In engines that support pipelining,
the output of task A is a list of items [a,, a,, ..., a,] and task B
can start processing whenever an item g; is produced. That
is, tasks A and B can run concurrently in such workflow
systems. In engines not supporting pipelining, task A must
finish computation over all list items [a,...,q,], before B
starts processing.

Changing a workflow system to support pipelining re-
quires some modification of the workflow engine itself, which
is a difficult task. Still, this modification is not sufficient

per se to achieve efficient online processing during data
transfer. This is because some tools within the workflow
may not support pipelining at all, which would lead to
blocking at some stage of the workflow. To overcome these
issues and to support on-line data processing, even for those
workflow engines that do not support pipelining, we suggest
the following strategy.

We handle the whole workflow system as a usual program
that can be invoked from the command line to execute a
given workflow over certain input data. In the streaming
mode, the streaming server monitors the incoming data items
to establish sequence buckets. Once a bucket is ready, the
workflow engine is invoked to process this bucket. If multiple
buckets are available, multiple instances of the workflow
engine are invoked in parallel to process these buckets. This
solution permits stream processing even if the workflow
engine does not directly support this mode of execution
and even if the tools within the workflow do not support
pipelining.

5. Elastream Distribution

5.1. Basic Components. The elastream distribution includes
the package executables, the source code, and the client
program to be used from a local machine to invoke package
functionality in the cloud. The distribution also includes the
following additional features that further facilitate its use for
bioinformatics applications.

(i) We prepared a virtual machine image (AMI)
deposited at the AWS machine image directory. The
elastream package website includes details about
this image and its identifier in AWS. This virtual
machine image can be used to create a computer
cluster from the AWS interface or from our client
program installed in the local machine. The elastream
image includes a set of preinstalled tools that can be
directly accessed upon the creation of the cluster.
In the current version of elastream, there are about
200 tools, coming from BioLinux, EMBOSS [40],
SAMtools [41], fastx [42], NCBI BLAST Toolkit
[43-45], and other individual sequence analysis
programs. Addition of extra tools and updating this
image is explained in the elastream manual.

(ii) To save costs and to facilitate usage of database-
dependent programs, we prepared snapshots of dif-
ferent biological databases and indexes, including the
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FIGURE 5: The use of elastream in Galaxy in the form of a workflow that establishes the cloud machines and submit jobs. The key nodes of
this workflow are the Create Cluster and Run a job. The parameters associated with these nodes are set in the right pane of the web-based
interface. We show a part of the file including a command line and a part of another file including NGS sequences; these files are referenced

to in the nodes “Input dataset” connected to the “Run a Job”

NCBI nucleotide and protein databases in the form of
raw and formatted sequences; the raw human genome
sequence, and precomputed indexes of it for Bowtie
[17]. These snapshots are made available to the user
free of charge through a simple interface, to create
EBS volumes and mount them to the cluster.

5.2. Elastream in Workflow Systems. We have developed add-
on’s (as subworkflows) to support the popular workflow
systems Taverna and Galaxy with cloud computing power
enhanced with the data streaming option. These add-on’s are
available as part of elastream distribution.

For Galaxy, we have created a workflow that enables
streaming based on elastream. This workflow, which is shown
in Figure 5, is composed of the following. There are two
major nodes: “Create Cluster” and “Run a Job.” The former is
responsible for creating a cluster and the latter is responsible
for submitting a job. These two nodes use the functionalities
of the elastream client program, which is installed within
the Galaxy tool set. The elastream website includes a link
to a Galaxy system with this workflow already built in. The
website includes also information for Galaxy administrators
on how to integrate this workflow in their systems. We also
like to attract the attention that these workflow nodes can be
generically used in other user created workflows.

The number and type of machines for the
“Create Cluster” node are specified in an adjacent editing
area on the right side of the GUI The two nodes titled
“Input Dataset” connected to “Create Cluster” node specify

the credential files (certificate and private key files) required
to associated the created cluster with the user’s account.
(Note that input node names cannot be changed in Galaxy).

The “Run a Job” node is responsible for (1) transferring
the data from the local user’s machine to the cloud machines,
(2) invoking a tool (or a system) already installed in the
cloud machine, and (3) transferring the result data to the
local machines or the S3 cloud storage. The parameters for
the “Run a Job” node are also specified in an adjacent editing
area on the right-hand side of the GUI. The parameters
mainly associate the input files to variable names in the
command line and specify if streaming is enabled or not.
The input node connected to the command port of the
node “Run a Job” specifies the command line of the analysis
program in the cloud. The input node connected to the inputl
port specifies the input data. The input to this workflow is a
set of sequences to be processed in the cloud. The “Run a Job”
node includes an optional process to split the input data into
chunks before sending them to the cloud.

For Taverna, the workflow that enables streaming is
composed of two Taverna sub-workflows for management of
the cloud cluster and submission of jobs in streaming mode.
This workflow can be generically used as sub-workflows in
other user created workflows running on Taverna. Figure 6
shows these two Taverna workflows. The first workflow
(called CreateCluster) establishes a computer cluster in the
cloud. The blue nodes (rectangles) in this workflow define
the parameters for creating the cluster. The node titled nodes
specifies the number and type of nodes, the node path
contains the working directory in the cloud machine, the
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FIGURE 6: The use of elastream with Taverna in the form of a workflow that establishes the cloud machines and submit jobs. The key nodes
of this workflow are the Create Cluster and run Job nodes. The former is responsible for creating computer cluster in the cloud. The latter

workflow submits jobs to the remote cloud machines.

node awsFile includes the Amazon access credentials, the
node S3 states the name of S3 bucket, the nodes securityGroup
and key specify the security groups, and the node ec2client
defines the path to the elastream client tools on the machine
where Taverna runs. (Note that the parameters of a node in
Taverna are specified through other direct predecessor nodes
and not through edit boxes in GUI as in Galaxy.)

The second workflow (called runjob) is responsible for
(1) transferring the data from the local user’s machine to the
cloud machines, (2) invoking a tool (or a system) already
installed in the cloud machine, and (3) sending the result
data to the local machines or cloud S3. The input to this
workflow is a set of sequences to be processed in the cloud.
The blue nodes specify the parameters of this workflow: The
node titled stream specifies the streaming option, the node
command includes the command line to be invoked, and the
nodes Inputsmap and OutputsMap map the input and output
ports to the command (see the manual for more details). If
output ports are not specified, then the result data will not
be transferred back to the local machine and remain in the
cloud. This workflow includes an optional process to split the
input data into chunks before sending them to the cloud.

6. Demonstrations and Experiments

In this section, we demonstrate the use of our streaming
scheme elastream and evaluate its performance. In the fol-
lowing subsection, we demonstrate the use of the Galaxy
workflow that supports streaming as discussed in Section 5.2.

In the subsequent sub-section, we evaluate the performance
of our solution using traditional and EMR computer clusters.

6.1. Streaming Cloud-Based Workflows of Galaxy. Figure7
shows the sequence of steps for using the Galaxy workflows,
which we have provided to support the use of cloud comput-
ing enhanced with the streaming option within Galaxy. From
the elastream website, the user can access the Galaxy work-
flow system, which is running on our local infrastructure.
Our workflows that support cloud usage with streaming are
accessed by selecting the elastream_demo from the workflows
drop-down menu. The workflow editing page shows the
workflow nodes, where the user can specify the number and
type of the cluster machines. If anyone decides to execute
this workflow, one will be forwarded to the execution and
input page to enter the paths to the credential file, security
file, command line file, and input NGS data. For this demo,
we have already provided example files for these input types.
The example command line includes invocation of the Bowtie
program [17] with a set of NGS sequences as input. We stress
that this workflow can be used in other Galaxy workflows or
with tools other than Bowtie.

6.2. Evaluating Performance. We compare two use case sce-
narios: in the first, the data is processed after it is transferred
completely to the cloud (i.e., without on-line processing). In
the second, the data is processed while it is transferred (i.e.,
with on-line processing).
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TABLE 2: Description of the used datasets. All the datasets are NGS sequences (reads). The third column includes the number of sequences
in millions, and the third column is the data size in GB. There are four sets of the African human genomes of different sizes. The final dataset
(130 G) is the original complete one. The three previous ones (1 G, 10 G, 40 G) are subsets of it.

Description Source No_Seq Size
E. coli genome [13] ~9 million ~1.4 GB
1G African human genome http://trace.ddbj.nig.ac.jp/dra/index_e.shtml (study SRP000239) =7 million =~1GB
10 G African human genome http://trace.ddbj.nig.ac.jp/dra/index_e.shtml (study SRP000239) =72 million =10 GB
40 G African human genome http://trace.ddbj.nig.ac.jp/dra/index_e.shtml (study SRP000239) ~437 million =40
130 G African human genome http://trace.ddbj.nig.ac.jp/dra/index_e.shtml (study SRP000239) ~1419 million ~130 GB

The data intensive task we used in our experiments is
the NGS read mapping, where millions of reads have to be
aligned to a reference genome. On the traditional cluster, we
used the popular program Bowtie [17] as an example tool that
performs this task. On the MapReduce cluster, we used the
popular Crossbow [13] program. Crossbow is a MapReduce
based version of Bowtie implemented using Hadoop and it
is enhanced with more functions for SNP detection using
soapSNP.

The parameters of these experiments are the data size,
the upload speed, and the size of the computer cluster. We
used datasets of different sizes, as described in Table 2. The
upload speed has been controlled using the program Trickle

[46]. To reduce the effects of location, time-of-the-day, and
congestion on data transfer, we ran the whole experiments
within the Amazon cloud environment. That is, we created
one machine to represent the user’s machine. This machine
is equipped with the Trickle program and the elastream client
program. The bandwidth we observed within the Amazon site
is approximately 20 MB/s to 30 MB/s, which is large enough
for our experiments.

Table 3 shows the runtimes for executing Bowtie in
streaming and non-streaming modes using computer clusters
of variable size. Each cluster node is of the type cl.xlarge
and is composed of 8 cores. Each row in the table shows the
upload speed, the upload time, and the computation time for
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TABLE 3: Running times in minutes for mapping NGS reads to a reference genome using Bowtie based on the use of traditional computer
cluster. The column titled upload_speed specifies the upload speed. The column titled “upload” includes the time in minutes for uploading
the data to the cloud with the respective upload speed. The column titled “compTime” includes the computation time in minutes of the whole
dataset after being uploaded to the cloud. The column titled totalTimeS includes the experiment time in streaming mode and the column
titled total TimeT includes the time in nonstreaming mode, where all the data is first transferred and then processed. The numbers in brackets

in this column are the respective monetary cost.

Upload_speed Read size Nodes Upload CompTime TotalTimeT TotalTimeS
E. coli reads
250 KB/s 14G 1 100 3 103 ($1.32) 102 ($1.32)
250 KB/s 14G 2 100 3 103 ($1.98) 102 ($2.64)
250 KB/s 14G 4 100 3 103 ($3.3) 102 ($5.28)
1GB human reads
250 KB/s 1G 1 71 17 88 ($1.32) 72 ($1.32)
250 KB/s 1G 2 71 1 82 ($1.98) 72 ($2.64)
250 KB/s 1G 4 71 7 73 ($3.3) 72 ($5.28)
10 GB human reads
250 KB/s 10G 1 800 (13.3h) 220 1021 ($11.88) 832 ($9.24)
250 KB/s 100G 2 800 (13.3h) 130 930 ($12.54) 818 ($9.24)
250 KB/s 100G 4 800 (13.3h) 60 860 ($11.88) 818 ($9.24)
E. coli reads
1 MB/s 14G 1 25 3 28 ($0.66) 27 ($0.66)
1 MB/s 14G 2 25 3 28 ($1.32) 27 ($1.32)
1 MB/s 1.4G 4 25 3 28 ($2.64) 27 ($2.64)
1GB human reads
1 MB/s 1G 1 18 17 35 ($0.66) 21 ($0.66)
1 MB/s 1G 2 18 1 29 ($1.32) 21 ($1.32)
1 MB/s 1G 4 18 7 25 ($2.64) 21 ($2.64)
10 GB human reads
1MB/s 100G 1 200 220 421 ($5.28) 231 ($2.64)
1 MB/s 10G 2 200 130 330 ($5.94) 215 ($5.28)
1 MB/s 10G 4 200 60 261 ($5.28) 215 ($10.56)
40 GB human reads
1 MB/s 40G 1 690 590 1280 ($14.52) 1100 ($12.54)
1 MB/s 40G 2 690 325 1015 ($15.18) 695 ($15.84)
1 MB/s 40G 4 690 180 870 ($15.84) 695 ($31.68)
130 GB human reads
1 MB/s 130G 1 2220 1720 3940 ($43.56) 3600 ($39.6)
1 MB/s 130G 2 2220 940 3160 ($45.54) 2400 ($52.8)
1MB/s 130G 4 2220 520 2740 ($48.18) 2400 ($105.6)
1 MB/s 130G 8 2220 284 2504 ($50.82) 2400 ($211.2)
E. coli reads
10 MB/s 14G 1 25 3 5.5 ($0.66) 5 ($0.66)
10 MB/s 14G 2 25 3 5.5 ($1.32) 5 ($1.32)
10 MB/s 1.4 G 4 2.5 3 5.5($2.64) 5($2.64)
10 GB human reads
10 MB/s 100G 1 18 220 238 ($2.64) 180 ($1.98)
10 MB/s 10G 2 18 130 148 ($3.96) 85 ($2.64)
10 MB/s 10G 4 18 60 78 ($3.3) 50 ($2.64)
40 GB human reads
10 MB/s 40G 1 70 590 660 ($7.26) 686 ($7.92)
10 MB/s 40G 2 70 310 380 ($8.58) 350 ($7.92)
10 MB/s 40G 4 70 170 240 ($8.58) 180 ($7.92)
10 MB/s 40G 8 70 95 165 ($11.22) 100 ($10.56)
10 MB/s 40G 16 70 53 123 ($11.88) 73 ($21.12)
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TaBLE 3: Continued.

Upload_speed Read size Nodes Upload CompTime Total TimeT Total TimeS
130 GB human reads

10 MB/s 130G 1 224 1720 1944 ($21.78) 2050 ($23.1)

10 MB/s 130G 2 224 950 1174 ($23.76) 1100 ($25.08)

10 MB/s 130G 4 224 520 744 ($26.4) 580 ($26.4)

10 MB/s 130G 8 224 284 508 ($33.66) 320 ($31.68)

10 MB/s 130G 16 224 160 384 ($34.32) 235 ($42.24)

certain cluster size. It also includes the total experiment time
without streaming (which is the summation of upload and
computation times) and total time with streaming.

From the results in Table 3, we observe the following.

(i) The use of more machines leads to further reduction
of the runtime. For example, it takes 950 minutes to
analyze the 130 G human dataset using a cluster of two
nodes, and it takes 160 minutes if the cluster size is
increased to 16 nodes.

(ii) The streaming mode reduces the overall experiment
time, because there is an overlap between data
transfer and computation. For example, it takes 508
minutes to upload the 130 G human datasets and to
analyze it using a cluster of 8 nodes without streaming
(with upload speed of 10 MB/s). With streaming, it
takes 320 minutes, which saves about 188 minutes (i.e.,
~37%). With 16 nodes, it takes 384 minutes without
streaming and 235 with streaming (i.e., 38%). One
can easily note that the overall experiment time with
streaming converges to the overall data transfer time
of 224 minutes.

(iii) Comparing the different datasets, we note that the
advantage of using on-line processing is more appar-
ent with larger data sizes. For small datasets, like
the E. coli, where the computation time is neglected,
the overhead associated with processing the buckets
outweighs the advantage of streaming.

(iv) With slower transfer rate, there is no advantage in
using more machines, because there is no much data
to be processed in parallel. The E. coli and 1 M human
genome cases with transfer rates of 250 KB/s and
1 MB/s represent this situation.

(v) The advantage with respect to the cost of the exper-
iment can be observed when we fix the computation
time and compare the experiment cost. For the 130 GB
human dataset, the cost of finishing the analysis in 320
minutes using streaming over a cluster with 8 nodes
is $31.68. To finish the experiment in the same time,
a larger cluster of more than 16 nodes is needed with
a cost larger than $34.32.

Table 4 shows the runtimes in minutes for mapping NGS
reads to a reference genome using Crossbow based on the
Elastic MapReduce (EMR) product of Amazon. In Table 4,
there are more than one EMR clusters in each experiment;
this is because we establish a new cluster when more buckets
become available. The column titled cluster includes the

number of these clusters. Each cluster is composed of 4 nodes
of the type cl.xlarge.

In this experiment, the results are analogous to that
obtained with the traditional cluster running Bowtie. Here,
we also observe that the streaming mode is also superior
to the nonstreaming mode with larger datasets. The use
of streaming option is not advantageous for small datasets,
because Crossbow has some overhead time to preprocess
each bucket received, and this overhead outweighs the gain
of streaming.

7. Conclusions

In this paper, we have introduced elastream as a framework
for supporting incremental data processing in the cloud. This
framework, which is based on the client-server model, is
composed of (1) a module for creating and management of
cloud computing infrastructure, (2) a module for submission
of jobs to the cloud machines with incremental processing
feature, (3) a prepared virtual machine image equipped with
a large library of bioinformatics tools and databases and all
necessary tools, and (4) add-ons in the form of workflows for
the popular workflow systems Taverna and Galaxy.

Elastream targets the class of tasks where the input data is
composed of large number of sequences that can be processed
in parallel. Examples of such tasks include NGS read mapping
and blast based queries. Our experiments have shown that
the streaming option is useful when the dataset is large
enough and the amount of computation at the server size
is considerable. With streaming option, one can use fewer
machines to finish computation, which leads to reduction
of the cost. To sum up, our elastream facilitates the use of
cloud computing resources for these tasks and its streaming
option is of significant advantage to mitigate the effect of the
associated data transfer latency.

Currently elastream is limited to AWS and to Linux
environment. In future versions, we will extend it to include
other cloud providers and the Windows operating system.
Streaming for MapReduce requires that the tool has short pre-
processing time, as this forms an overhead that limits the use
of on-line processing option. In this version of elastream, we
did not use streaming-based MapReduce solution, because
they are not yet supported by Amazon. Once they are
supported, we will integrate them as part of our package
distribution.

All resources related to elastream are available at
http://www.nubios.nileu.edu.eg/tools/elastream and http://
www.elastream.org/.
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TABLE 4: Running times in minutes for mapping NGS reads to a reference genome using Crossbow. The column titled speed specifies the
upload speed. The column titled cluster includes the number of created EMR clusters. The column titled compTime incudes the computation
time of the whole data after uploading it. The column titled totalTimeS includes the experiment time in streaming mode, and the column
titled total TimeT includes the time in nonstreaming mode, where all the data is first transferred and then processed. The number in brackets
in this column is the respective monetary cost.

Upload_speed Read_size Clusters Upload_time CompTime TotalTimeT TotalTimeS
E. coli reads

250 KB/s 14G 1 100 9 109 ($0.72) 110 ($0.96)

250 KB/s 1.4G 2 100 7 107 ($1.2) 110 ($1.92)

250 KB/s 14G 4 100 7 107 ($2.26) 110 ($3.84)

1GB human reads

250 KB/s 1G 1 71 6 77 ($0.72) 84 ($0.96)

250 KB/s 1G 2 71 5 76 ($1.2) 84 ($1.92)

250 KB/s 1G 4 71 5 76 ($1.2) 84 ($3.84)
10 GB human reads

250 KB/s 10G 1 800 60 860 ($2.16) 820 ($6.82)

250 KB/s 10G 2 800 31 831 ($2.64) 820 ($13.44)

250 KB/s 10G 4 800 18 818 ($3.6) 820 ($26.88)

E. coli reads

1 MB/s 14G 1 25 9 34 ($0.6) 65 ($0.96)

1 MB/s 14G 2 25 7 32 ($1.08) 65 ($1.92)

1MB/s 14G 4 25 7 32 ($2.04) 65 ($3.84)

1GB human reads

1 MB/s 1G 1 18 6 24 ($0.6) 31($0.48)

1MB/s 1G 2 18 5 23 ($1.09) 32 ($0.96)

1 MB/s 1G 4 18 5 23 ($2.04) 31($0.1.92)
10 GB human reads

1 MB/s 10G 1 200 60 260 ($0.96) 220 ($1.92)

1 MB/s 10G 2 200 31 231 ($1.54) 220 ($3.84)

1 MB/s 10G 4 200 18 218 ($2.40) 220 ($7.68)
40 GB human reads

1 MB/s 40G 1 690 580 1270 ($6.24) 630 ($5.28)

1 MB/s 40G 2 690 300 990 ($6.24) 630 ($10.56)

1 MB/s 40G 4 690 150 840 ($7.2) 630 ($21.12)

1 MB/s 40G 8 690 80 770 ($9.12) 630 ($42.24)
130 GB human reads

1MB/s 130G 1 2220 1890 4110 ($19.8) 2360 ($19.2)

1 MB/s 130G 2 2220 945 3165 ($19.8) 2320 ($37.44)

1 MB/s 130G 4 2220 476 2696 ($19.8) 2320 ($74.88)

1MB/s 130G 8 2220 184 2404 ($19.8) 2320 ($149.76)

1 MB/s 130G 16 2220 126 2346 ($27.48) 2320 ($299.52)
10 GB human reads

10 MB/s 10G 1 20 60 80 ($1.08) 160 (51.44)

10 MB/s 10G 2 20 31 51 ($1.08) 95 ($1.92)

10 MB/s 10G 4 20 18 38 ($2.04) 65 ($3.84)
40 GB human reads

10 MB/s 40G 1 70 580 650 ($5.04) 610 ($5.28)

10 MB/s 40G 2 70 300 370 ($5.04) 310 ($5.76)

10 MB/s 40G 4 70 150 220 ($6.00) 170 ($5.76)

10 MB/s 140G 8 70 80 150 ($7.92) 110 ($7.68)
130 GB human reads

10 MB/s 130G 1 224 1890 2114 ($15.84) 1960 ($15.84)

10 MB/s 130G 2 224 945 1169 ($15.84) 1000 ($16.32)

10 MB/s 130G 4 224 476 700 ($15.84) 520 ($17.28)

10 MB/s 130G 8 224 184 470 ($15.84) 300 ($19.2)

10 MB/s 130G 16 224 126 350 ($23.52) 300 ($38.4)
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Recently, biological applications start to be reimplemented into the applications which exploit many cores of GPUs for better
computation performance. Therefore, by providing virtualized GPUs to VMs in cloud computing environment, many biological
applications will willingly move into cloud environment to enhance their computation performance and utilize infinite cloud
computing resource while reducing expenses for computations. In this paper, we propose a BioCloud system architecture that
enables VMs to use GPUs in cloud environment. Because much of the previous research has focused on the sharing mechanism of
GPUs among VMs, they cannot achieve enough performance for biological applications of which computation throughput is more
crucial rather than sharing. The proposed system exploits the pass-through mode of PCI express (PCI-E) channel. By making each
VM be able to access underlying GPUs directly, applications can show almost the same performance as when those are in native
environment. In addition, our scheme multiplexes GPUs by using hot plug-in/out device features of PCI-E channel. By adding or
removing GPUs in each VM in on-demand manner, VMs in the same physical host can time-share their GPUs. We implemented
the proposed system using the Xen VMM and NVIDIA GPUs and showed that our prototype is highly effective for biological GPU

applications in cloud environment.

1. Introduction

Virtualization technology has been widely adopted into com-
puting systems to increase hardware resource utilization and
reduce total cost of ownership (TCO). Virtualization technol-
ogy enables multiple computing environments to be consoli-
dated in a single physical machine. This consolidation brings
efficient use of hardware resources and flexible resource
provisioning to each computing environment [1]. In cloud
computing, virtualization is key enabling technology because
flexible resource provisioning is essential for unpredictable
user demands.

Although virtualization adds an additional software layer
over bare metal hardware, the overhead incurred by the
additional layer has been reduced by various efforts. Hard-
ware vendors have extended their architectures to support

virtualization. In system software area, paravirtualization
techniques, such as the Xen [2], reduce the performance gap
between native environment and virtualized environment
by slightly modifying operating systems in virtual machines
(VMs). Due to the narrowed performance gap, the virtualiza-
tion technology expands its coverage from cloud computing
to high performance computing [3-5]. Recently, biological
applications, which require high performance computing
environment, are moving into cloud computing environment
due to the narrowed performance gap and the advantage of
flexible resource provisioning [6-8]. It is better to use elastic
resources in cloud than to build one’s own computing cluster
in terms of TCO.

Meanwhile, graphic processing units (GPUs) are recently
exploited in high performance computing because a GPU
provides one or two orders of magnitude faster computation



than a CPU does. The computing capability of GPU has
been rapidly improved for a decade. To cover vastly increased
demands of 2D and 3D data processing, GPU embeds
hundreds of computing cores in a single chipset. In addition,
memory bandwidth in GPU is also widened to follow the
increased computing power. For example, NVIDIA Tesla
C2090, a state-of-the-art GPU device, is equipped with 512
computing cores, 6 GB of dedicated memory and 177 GB/s
internal memory bus [9]. It provides 1331 GFLOPS for single
precision floating point operation and 665 GFLOPS for
double precision floating point operation.

With the advance of GPU hardware, general purpose
GPU computation on graphic processing units (GPGPU)
has been emerging to exploit high performance computing
capability of GPU not only for 3D graphic manipulation but
also for general-purpose computation. The GPU program-
ming framework such as the CUDA [10] and the OpenCL
[11] provide application programming interfaces (APIs) of
underlying GPU hardware, GPU programming model, and
memory model. Due to the open APIs, many general-purpose
applications can exploit fast GPUs for their computation-
intensive applications [12].

Data copies between host memory and internal memory
of GPU could be overhead of GPU computing. In GPU
programming models, it is essential to store data on GPU-
accessible memory for GPU to manipulate them. Accord-
ingly, the data copies become a critical performance bottle-
neck of GPU computing. The data copy overhead, however,
has been alleviated by making host memory GPU-accessible.
In the application processing unit (APU) of AMD, CPU and
GPU are integrated in a single chipset, and the two computing
units share the same memory controller so that GPU can
access the host memory. In addition, various studies have
been conducted to lessen the data copy overhead. Despite
of the data copy overhead, the performance improvement by
GPU computing is significant in many research areas [10, 13-
15].

With the trend of GPU computing in high performance
computing and biological applications, virtualization needs
to be incorporated in the GPU based high performance com-
puting platforms. By providing virtualized GPUs to VMs in
cloud computing environment, many biological applications
will willingly move into cloud environment to reduce their
expenses for computations. However, few studies have been
done to use GPU computing in virtual machine environment,
and most of them have limitations in terms of performance
penalties by GPU virtualization overhead. Therefore, it is
also important to minimize the overhead caused by GPU
virtualization.

In this paper, we propose a BioCloud system architecture
that enables VMs to use GPUs in cloud environment. From
the high performance computing power of GPUs, biological
applications hosted in cloud can also show high performance
while minimizing TCO of their computing infrastructure.
The proposed system exploits the pass-through mode of PCI
express (PCI-E) channel. By making each VM to be able
to access underlying GPUs directly, applications can show
almost the same performance as when those are in native
environment. In addition, our scheme multiplexes GPUs
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by using hot plug-in/out device features of PCI-E channel.
By adding or removing GPUs in each VM in on-demand
manner, VMs in the same physical host can time-share its
GPUs.

The rest of the paper is organized as follows. Section 2
introduces brief background and describes related work.
Section 3 presents the design and operation of our GPU vir-
tualization and sharing mechanisms. Section 4 demonstrates
evaluation results and usability, and Section 5 discusses the
superiority of our proposed system for biological applica-
tions. Finally, Section 6 concludes our work.

2. Background and Related Work

2.1. VMM and GPU Virtualization. Virtualization provides
an illusion, a VM, to its hosted operating system. By multi-
plexing underlying hardware resources, a physical host can
consolidate multiple VMs simultaneously. The core of virtu-
alization technology is virtual machine monitor (VMM) that
is in charge of multiplexing hardware resources such as CPU,
memory, and I/O devices to multiple VMs. The common
role of VMM is to provide virtualized resources albeit their
implementations diverse from emulation of virtual devices to
hardware-assisted virtualization.

Hardware-level assists to virtualization take overhead out
of a VMM. Previously, a VMM either emulates the behavior
of virtualized devices or incorporates with operation systems
in VMs. The overhead of these approaches affects the system
performance as compared to native environment. To reduce
this overhead, hardware vendors extended their CPUs to
support virtualization. The Intel VT [16] and the AMD-V
[17] unburden the VMM overhead of CPU and memory
virtualization. In addition, the Intel VT-d [18] and the AMD-
Vi [19] support device virtualization so that operating systems
in VMs can directly access I/O devices without security
concerns. Despite of these technology advances, GPU has
limitations for virtualization by itself. Since a GPU is in charge
of manipulating graphic data, a large amount of data should
be transferred from a VM to a GPU device. Since the amount
of data is too large, emulation, one of methods to virtualize a
device, is inefficient for GPUs.

In GPU virtualization, there have been some related
previous research such as the gVirtuS [20], the GViM [21],
and the vCUDA [22]. These ultimately aim at providing the
flexible sharing of a GPU among VMs taking performance
degradation lying down. Therefore, they have the similar
architecture that host operating system or VMM manages the
overall operations and privileges of GPU. In the case of the
gVirtuS based on KVM, one of VMMs working on top of
host operating system provides a mechanism to access GPU
based on the communication between virtual device drivers
on host operating system and VM for each. The GViM and
the vCUDA are based on the Xen, a VMM on bare-metal, and
similarly use virtual device drivers between VMs and VMO
which is in charge of I/O. Although these GPU virtualization
architectures, which are based on virtual device drivers, can
enhance the sharing of GPUs among VMs, there are two
critical limitations as below.
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(i) Reimplementation and low flexibility of GPU APIs:
for sharing of GPU among VMs, the management
of GPU is concentrated on host operating system
or VMM, and the communication between virtual
device drivers is highly dependent on the implemen-
tation of them. Actually, they have to reimplement all
GPU APIs, and this limits flexibility and portability.
For example, if a version of GPU APIs is updated
or modified, the virtual device drivers should be
reengineered according to the changes. Even more,
VMs in a physical host should use the same GPU APIs
and version as the implemented virtual device drivers.

(ii) High performance overhead: the architectures on
related work adopt the fine-grained time-sharing
technique among VMs to share GPU, but these
largely depredate the overall performance of GPU by
increasing the communication traffic between virtual
device drivers and system bus. Moreover, the response
times of GPU are not uniform due to the scheduling
of VMs. According to the papers, they show 10-40%
performance degradation.

In order to overcome these limitations, our scheme uses
the direct pass-through approach to use GPU in virtual-
ized environment [23]. By using the direct pass-through
approach, operating systems in VMs can exclusively and
directly access underlying GPU devices. Accordingly, the
performance penalty when VMM involves in arbitrating
GPUs can be eliminated.

2.2. GPU and Biological Application. The term GPU was
mentioned by NVIDIA Corporation first, when it announced
a new graphic controller named GeForce in 1999. In the
early 1990s, graphic controllers in general PCs were in charge
of simply translating computation results of CPU to visual
characters on monitors. After the mid of 1990s, the role of
graphic controller started to change into manipulating rich
multimedia contents. Multimedia contents usually require
lightning effects and texture mapping in order to make the
contents more realistic. These computations burden CPU,
thus an additional coprocessor, like GPU, is needed to lessen
the computation load for multimedia processing in CPU.

Although the architecture of GPU is similar to that of
CPU, GPU has enhanced processing parallelism as shown
in Figure 1. In the figure, CPU has a few high performance
arithmetic and logic units (ALUs) and the large region of
chipset is assigned to internal caches. The reason for this
composition is to improve performance in task-level paral-
lelism. On the other hands, GPU consists of many small ALUs
optimized for graphic data processing in a single chipset.
Since the characteristic of computations on GPU is highly
data parallel, multiple data can be calculated by the same
arithmetic operations. Accordingly, GPU outperforms the
CPU in terms of parallel processing on the same computation
with multiple data [24].

Since computations supported by GPU are specialized to
graphical data manipulation, general-purpose computations
cannot be easily ported into GPU. To address this obstacle,
various general-purpose GPU frameworks have been built.

3
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FIGURE 1: The architecture of a GPU equipped machine on PCI-E
channel.

The CUDA of NVIDIA and the OpenCL of Khronos Group
are most representative frameworks in the area of general-
purpose high performance computing. These frameworks
provide an extended C language so that non-graphic-friendly
programmers can intuitively translate their computation
logics into GPU-friendly ones.

From the consensus between GPU performance improve-
ment and easy programming APIs, biological applications
prevalently start to use GPUs for their computations. Espe-
cially, computations requiring a large amount of data, such
as next generation sequencing and protein simulation, are
proper targets to exploit GPUs. Manavski and Valle suggested
a GPU implementation of Smith-Waterman sequence align-
ment [6], and Vouzis and Sahinidis transformed the BLAST
tool to a GPU based application, named the GPU-BLAST [7].
The barraCUDA [25] and the G-aligner [26] are also kinds of
short sequence alignment tool with GPU acceleration.

3. GPU Virtualization

3.1. Overview. Our approach for virtualizing and sharing
of GPUs is based on the GPU direct access scheme in
our previous work [23]. The previous work exploits the
PCI-E direct pass-through mechanism of GPUs in order
to reduce the virtualization overhead and to increase the
GPU API flexibility. Since the direct pass-through approach
can minimize the interference incurred by VMM, VMs can
achieve bare-metal performance. Moreover, since each VM
can use their own GPU APIs, it can be freed from the
reengineering and modification of GPU APIs.

The direct pass-through approach in virtualized system
should be supported by input/output memory management
unit (IOMMU) hardware feature. Similar to a traditional
memory management unit (MMU) which translates CPU-
visible virtual addresses to physical addresses, IOMMU takes
care of mapping device-visible I/O addresses to physical
addresses and also provides memory protection from misbe-
having devices.

Figure 2 shows the system architecture diagram of the
proposed scheme, the GPU virtualization using direct pass-
through. The system we suppose has a privileged control VM,
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FIGURE 2: The system architecture of direct pass-through GPU
virtualization.

generally called VMO, to interface with VMM and control
other user VMs. Note that VMO denotes the privileged
control VM, and guest VMs denote other VMs of users. In the
system, each GPU is attached to PCI-E channels and VMM
passes the control of PCI-E channel and GPU to VMs. Each
VM has its own GPU API and GPU device driver, and it can
access and control GPU without the intervention of VMM.

However, the direct pass-through mechanism has a limi-
tation that the sharing of GPU among VMs is not possible.
For example, once a GPU is allocated to a VM at booting
time of the VM, it cannot be deallocated until the VM halts.
To address this problem, we extend our previous work to
have the coarse-grained sharing mechanism based on the hot
plug functionality of PCI-E channel. The sharing mechanism
enables VMO to allocate GPUs to VMs and deallocate GPUs
from VMs while the VMs are running. To enhance the
utilization of GPUs, we add two features: (1) allocating GPUs
when a VM actually requires GPUs to compute its data and
(2) deallocating GPUs immediately after the computation.

The hot plug-in/out mechanism that is adopted in this
research is a mechanism to install or remove PCI devices
on online. To utilize the hot plug mechanism in virtualized
systems, VMM needs the functionality of IOMMU. The
system we suppose has GPU installed on a PCI-E channel,
and a GPU can be allocated or deallocated by using the PCI-
E channel hot plug-in/out. Due to this mechanism, the users
of VMs can utilize virtualized GPUs in the same way with
native GPUs.

Figure 3 shows the overall coarse-grained GPU sharing
mechanism. First, (1) each guest VM requests GPU allocation
to the VMO when it needs GPU computation. Then, (2) the
VMO checks the GPU pool which has all GPUs installed on
the host machine to find an available GPU. If there is an
available GPU in the GPU pool, the VMO plugs in the GPU
into the requested VM. (3) The guest VM processes its job,
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and (4) the GPU is revoked from the guest VM after the end
of computation using the hot plug-out message.

In this mechanism, largely, we have two main considera-
tions. One is when to allocate and deallocate GPUs. Although
the users of guest VMs can directly request the allocation
and deallocation of GPUs, it might decrease usability. It
is inconvenient to allocate GPUs manually before invoking
a GPU application. We need to provide more convenient
interfaces. The other is how to prevent excessive occupation
of GPUs by VM. It is crucial to increase the overall utilization
of GPUs in a system. Therefore, we need a compulsory
revoking mechanism when a GPU of a guest VM is not
utilized for computation. Then, the reclaimed GPU can be
used for other guest VMs. For this mechanism, we designed
and implemented the GPU-Admin module in the VMO and
the GPU-Manager module in the guest VMs, respectively,
as shown in Figure 4. The detailed operations of them are
described in the following subsections.

3.2. GPU-Admin. The GPU-Admin is a daemon process in
the VMO and performs allocation and deallocation of GPUs
according to the request of the GPU-Managers. It also takes
in charge of compulsory revocation of unused GPUs. For
this responsibility, it periodically checks the status of GPUs
allocated for guest VMs and deallocates them if GPUs are not
actually used for computation.

In the initial stage of the GPU-Admin, it identifies the
number of GPUs installed on a virtualized system and records
the PCI-E channel information and the slot ID of each GPU.
Using this information, the GPU-Admin registers all GPUs
into the GPU pool for later management. All of the registered
GPUs are initialized and stay in available state, and one of
them is allocated via the GPU-Admin when a guest VM
requests a GPU. At this moment, the GPU-Admin stores
the virtual machine identification (VMID) and IP address
of the guest VM to be referred for usage checking and
compulsory revoking operations. After the initialization of
GPU pool, the GPU-Admin creates two worker threads: the
ManagerListener which handles the requests of the GPU-
Manager and the PoolChecker to prevent unnecessary GPU
occupation of VMs.

3.2.1. ManagerListener. The ManagerListener worker is a part
of GPU-Admin to accept and handle the requests from guest
VMs. The message types of GPU-Managers in guest VMs are
five, and the corresponding reactions are as follows.

(1) GPU allocation request by a user: it is the case that the
user of a guest VM explicitly requests the allocation
of GPU for computation. Responding to this request,
the ManagerListener picks an available GPU from the
GPU pool and allocates it into the requested guest VM
via hot plug-in mechanism.

(2) GPU deallocation request by a user: on contrary to
(1), this message is to explicitly deallocate an allocated
GPU of guest VM by a user. The ManagerListener
deallocates the GPU from the guest VM and registers
it again into the GPU pool after reinitialization of the
GPU.
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(3) GPU allocation request by the WrapCUDA library:
when a user of a VM invokes a GPU application
without an allocated GPU, the WrapCUDA library
detects the situation and automatically requests GPU
allocation to the GPU-Admin. This request message is
delivered implicitly and transparently without recog-
nition of users. The handling of this message is the
same with the case (1).

(4) GPU deallocation request by the WrapCUDA library:
before finishing GPU application, if it calls several
specific CUDA library call, the WrapCUDA library
requests the deallocation of GPUs implicitly. This
mechanism is also performed without the inter-
vention of users. Responding to this message, the
ManagerListener deallocates the GPU similarly to the
case (2).

(5) Disconnection from WrapCUDA library: from
the case (3) to (4), the ManagerListener and the
WrapCUDA library keeps their connection. If the
connection is disconnected for any reasons such
as halting or finishing the GPU application, the
ManagerListener recognizes it and then deallocates
the GPU of the guest VM.

In our prototype, we use TCP/IP network communi-
cation method between the GPU-Admin and the GPU-
Manager to utilize the virtue of its well-defined and con-
crete interfaces. Since the communication messages are
not incurred frequently, its overhead is negligible. The hot
plug-in/out operations of GPUs by the ManagerListener are
performed via the management interface of the Xen.

In the case that there is no available GPU in the GPU
pool, the allocation request is inserted into the waiting queue



of the ManagerListener, and the response is blocked until
a GPU become available by being deallocated from other
guest VMs. If more than one allocation request messages are
waiting in the waiting queue, the ManagerListener prioritizes
them according to their waiting time.

3.2.2. PoolChecker. The major role of the PoolChecker is
to find the allocated GPUs to guest VMs and decide that
they are currently used for computation or not. We add
this mechanism to prevent the situation that a guest VM
excessively occupies GPUs while it does not actually utilize
GPUs for computation. Due to this mechanism, the system
can achieve higher overall utilization of GPUs by inhabiting
unnecessary occupation of GPUs.

The PoolChecker works periodically. When triggered, it
checks the GPU pool to search GPUs already allocated to
guest VMs and sends a message requesting usage report of
GPU to each GPU-Manager of guest VMs. On receipt of
this message, each GPU-Manager investigates the usage of its
own GPU and replies to the PoolChecker. The PoolChecker
tracks the utilization of each GPU and deallocates it forcibly,
if it has not been used for computation for a while. This
GPU utilization check mechanism of the PoolChecker is a last
resort to prevent useless occupation of GPUs by guest VMs.
In most cases, where the users of guest VMs are not evil, the
unused GPUs are immediately reclaimed by the deallocation
message or the disconnection message of the WrapCUDA
library.

Our prototype sets the trigger period of the PoolChecker
as five seconds and the reclaim time limit as ten seconds.
These configured values are decided intuitively because
we assume that the users of VMs might not need GPUs
currently, if the GPUs are not used for computation more
than ten seconds. The time-out value of the PoolChecker is
easily reconfigurable by editing the configuration file of the
PoolChecker.

3.3. GPU-Manager. The GPU-Manager is a module working
in a guest VM to provide interfaces allocating or deallocating
GPUs and report the utilization of its GPU responding to
the request of the PoolChecker in the GPU-Admin. The
interfaces to request GPU allocation and deallocation can be
divided in two. One is a transparent and implicit interface,
which is requested by the WrapCUDA library when a user
starts and finishes a GPU application. The other is an explicit
interface, which is performed by a user action of guest VM.

In the initialization stage of the GPU-Manager, it iden-
tifies its hostname, local IP address, and GPU-Admin IP
address to communicate with the GPU-Admin for allocation
and deallocation of GPUs. The GPU-Manager consists of
three parts: the AdminListener thread which handles the
request of the PoolChecker, the WrapCUDA library hooking
the API calls of the native CUDA library to support the
implicit allocation or deallocation, and the RequestSender to
provide the explicit user interface.

3.3.1. AdminListener. AdminListener thread works similarly
to the ManagerListener of GPU-Admin. It opens a specified
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port and waits the GPU usage report request. After allocation
of GPUs, the PoolChecker sends periodical requests to check
the utilization of GPUs, and the AdminListener responds
to this request. To get the utilization of its GPUs, the
AdminListener searches the usage of GPU driver module in
the proc filesystem, a virtual filesystem presenting process
and system information. At least, if more than one GPU
application utilizes GPU hardware, the driver module works
and the usage of the driver module increases. Therefore,
sending this information, the AdminListener reports the
usage of GPUs to the PoolChecker. Then, the GPU-Admin
can deallocate the GPUs of guest VMs based on this criteria,
if it decides that the GPUs are not used for computation.

3.3.2. WrapCUDA Library. The WrapCUDA library of GPU-
Manager is to allocate and deallocate GPUs automatically.
To increase the usability of GPUs, the WrapCUDA library
enables GPU allocation and deallocation without the inter-
vention of users, when a GPU application starts and finishes.

The WrapCUDA library is implemented in a shared
library and is preloaded using LD_PRELOAD environment
variable after the startup of guest VMs. It is in charge
of dynamic allocation of GPU when a user starts a GPU
application even if one’s VM does not have a GPU. A GPU
application should use a specified programming framework
such as the CUDA to interface GPU, and several APIs of
them are generally called to probe and initialize its GPU
in the initial stage of the application. For example, the
cudaGetDeviceCount() function to get the number of GPUs
installed on system and the cudaMalloc() to allocate heap
memory on GPU are representatives. The WrapCUDA library
hooks these kinds of several native CUDA library calls. If a
GPU application calls the wrapped CUDA library functions
to access GPU, they are redirected to the WrapCUDA library
which implements the same function due to LD_PRELOAD
environment value. Then, the WrapCUDA library checks
whether its guest VM has a GPU and requests GPU allocation
if the guest VM has no GPU. After a GPU is allocated, the
function of WrapCUDA library executes the native function
of the CUDA library.

Similarly, a GPU application calls several CUDA APIs
to release the resource of GPU at finishing time, and the
WrapCUDA library catches these calls before transferring
to the native CUDA library for deallocation of GPU from
its VM. Although a GPU application might not call these
resource release APIs by implementation, the WrapCUDA
library can deallocate the GPU of VM immediately, since the
connection between the WrapCUDA library and the GPU-
Admin is disconnected after the halt of a GPU application.
Additionally, as mentioned in Section 3, we also implement
the PoolChecker mechanism, which checks the status of
GPU and deallocates it after several seconds to prevent the
occupation of GPUs unnecessarily.

In order to interpose the API calls of GPU applications,
the WrapCUDA library has to define API functions to catch
and embed the implementations of them. These might not
be a burden to implement the WrapCUDA library, since
the number of APIs to start GPU application is limited to
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TaBLE 1: The functions that are wrapped by the WrapCUDA library.

GPU allocation call
cudaGetDeviceCount ()
cudaGetDevice ()
cudaMalloc ()
cudaDeviceReset ()

GPU deallocation call
cudaThreadExit ()

cudaChooseDevice ()
cudaDeviceSynchronize ()

TaBLE 2: The specifications of evaluation system.

Device Specification

CPU Intel(R) Xeon(R) E5620 (2.40 GHz)
Chipset Intel(R) 5520

Memory DDR3 1333 MHz (24 G)

PCI slot PCI Express Gen2, 4 EA
GPU NVIDIA Quadro FX 3800, 4 EA

several ones and the patterns to develop a GPU application
are regularized. Actually, our prototype implements the API
functions listed in Table 1, and the top three functions
can cover all the 84 GPU application examples and several
biological GPU applications used in the evaluation section.
Even more, for the implementation of a function call in
the WrapCUDA library, we used seventeen C language code
lines as shown in Algorithm 1. This engineering overhead is
negligible for an experienced programmer and can be applied
to other GPU programming frameworks besides the CUDA
programming framework.

3.3.3. RequestSender. To run GPU applications without the
WrapCUDA library mechanism, the users of VMs can explic-
itly request the allocation and deallocation of GPUs. The
RequestSender module provides the explicit interfaces. In
this case, the GPU explicitly allocated via the RequestSender
is specially handled as an exception for the PoolChecker.
Therefore, it is not deallocated automatically until the user
requests deallocation of the GPU via the RequestSender
interface. Since this mechanism enables a user of VM to
monopolize GPUs in a system, it should be allowed to
trusted users when they need continuous and reliable GPU
computing environment.

4. Evaluation

4.1. Overview. We used the Xen VMM for implementing
and evaluating the prototype of the proposed BioCloud
architecture. For GPU computation, we used the NVIDIA
GPUs and the CUDA programming frameworks. The host
machine specification is summarized in Table 2. Briefly,
the machine is equipped with Intel Xeon E5620 CPU, four
NVIDIA Quadro FX 3800 GPUs, and 24 GB of main memory.
Each GPU is installed on PCI-E (2nd generation) channel in
the host machine.

The main goals of the prototype evaluation are (1) the
GPU virtualization overhead of our scheme, when GPU

applications run in virtualized environment as compared to
those in native environment, (2) the latencies of GPU hot
plug-in/out in VMs, and (3) the benefits by our scheme.

4.2. Virtualization Overhead. In this section, we compare
the proposed virtualization scheme with others which are
mentioned in the related work and measure the biological
application execution time when each application runs in
native environment and in virtualized environment using our
scheme.

Figure 5 shows the execution time comparison of
BlackScholes application among the GViM, the vCUDA, and
our scheme. Unfortunately, we cannot replay all the three
schemes (gVirtuS, GViM, vCUDA) because their hardware
and software configuration are too outdated. Instead, we bor-
rowed the evaluation results compared native environment
based on their papers. Note that the gVirtuS scheme is omit-
ted because it does not evaluate BlackScholes application.
Although their evaluation environments are all different from
each other, we can focus on the gap between native and VM
and identify that the execution time overhead of our scheme
is less than 0.5%, while those of others are 25~73%. Because
the other two schemes are based on the virtual device driver
mechanism and focused on the sharing of a GPU among
VMs, their overheads are not negligible.

Figure 6 is the evaluation results of several biological
applications. In this evaluation, we ran the barraCUDA [25],
CUDASW++ [27], MUMmerGPU [28], and CUDA-MEME
[29]. The x-axis denotes the workloads and biological appli-
cations, and the y-axis is normalized execution time which
includes disk I/O, CPU computation, and GPU computation.
The overhead of our scheme is 3% on average, and the
maximum overhead case is the MUMmerGPU with the
SSUIS workload by 10%. From our analysis, the most part
of overhead is caused by the disk I/O of virtualized system
to read workload data files, not by the GPU virtualization.
Except the disk I/O time, the GPU computation time is the
same as that in the native environment. Comparing the result
of Figure 5 which does not include the disk I/O overhead, we
can confirm that the direct pass-through GPU virtualization
mechanism shows the least overhead and highly useful for
long running biological applications.

4.3. Sharing Effect

4.3.1. GPU Allocation and Deallocation Overhead. Our
scheme uses GPU hot plug-in/out to provide sharing of GPUs
among VMs. In this evaluation, we measure additional time
overhead to hot plug-in/out of GPUs to a VM. Table 3 shows
the time for allocating and deallocating a GPU in a VM. Each
value is the average of ten attempts. As shown in the table,
the allocation time and the deallocation time are 1.3 seconds,
identically. Considering general biological applications take
from tens of minutes to hundreds of minutes, this allocation
and deallocation time penalty is negligible compared to the
total execution time of general biological applications.

4.3.2. Effect of Real Workload. The main role of our scheme
is to make a GPU directly accessible and to coordinate
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(3) char "error;
(4) cudaError_trs;

(8) if (lofuncp) {

(14) }
(15) rs = ofuncp(count);
(16) return rs;

(1) cudaError_t cudaGetDeviceCount(int *count) {
(2) static cudaError_t (*ofuncp)(int *count);

(6) checkgpuon(); // Checks having GPU. Request a GPU, if not.

9) ofuncp = dlsym(RTLD_NEXT, “cudaGetDeviceCount”);
(10) if ((error = dlerror()) != NULL) {

11) fputs(error, stderr);
(12) exit(1);
)y 1

ALGORITHM I: An example implementation of the WrapCUDA library function.
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the ownership of a GPU among VMs for time sharing. In
order to reveal the effect of GPU sharing in our scheme, we
measured the application execution time when multiple VMs
share a finite number of GPUs. In this evaluation, we used
the barraCUDA application that performs next generation
sequencing. Each of the barraCUDA applications performs
five-million read mappings of E. coli genome data. One
execution of the application takes 18 seconds in average.
One workload in a VM runs the barraCUDA application
five times with sleep time between consecutive runs. The
sleep time models the behavior of a user that interprets the
result of a previous run and adjusts parameters for the next
run. We varied the sleep time to 9, 18, and 36 seconds, and
each are 50%, 100%, and 200% of the application execution
time, respectively. During this sleep time, an allocated GPU
to a VM is returned to the GPU-Admin and could be
reallocated to another VM for sharing. Accordingly, we can
expect performance improvement by reducing the idle time
of GPUs.

Figure 7 shows the evaluation results with four VMs and
varying the number of GPUs from one to four. The sleep
time of each evaluation is denoted in the parentheses of each
legend. For example, Execution(S9) denotes that the sleep
time is 9 seconds. Execution denotes the real execution of
four VMs while Theoretical denotes the theoretical execution
time in four VMs when a GPU(s) is exclusively used by
the VM. Hence, the time is the same as the execution time
when four workloads run in a single VM sequentially with
the given number of GPUs. Albeit the theoretical execution
time is not realizable without our mechanism, the time is
used for comparison purpose. The execution time in our
scheme is normalized to the theoretical time with the same
configuration of sleep time and the number of GPUs, for each.

In case of Execution(S9), the sleep time after each com-
pletion of application is 9 seconds. When four VMs share
one GPU, our scheme shows reduced total execution time
by 20% as compared to the theoretical time. When the



BioMed Research International

Normalized time
oo —
Sree

Number of GPUs

= Execution (S18)
o Theoretical (S36)
0O Execution (S36)

Theoretical (S9)
@ Execution (S9)
O Theoretical (S18)

FIGURE 7: The GPU sharing effect using the barraCUDA.

305
25.05
25 -
T 20
g
215 4
g
2 10 4 :
]
= 5 4.15 2.05
0 T T T |
1 2 3 4
Number of GPUs

B Execution (S36)

FIGURE 8: The average waiting time of VMs.

sleep time increases, our scheme reduces the total execution
time because the increased sleep time naturally increases
the probability to share the GPU during the sleep time. In
case of Execution(S36) with one GPU, our scheme shows
reduced total execution time by 53%. As the number of GPUs
increases, the performance benefit of our scheme reduces.
When the number of VMs is the same as the number of GPUs,
our scheme shows no performance benefit. But, we believe
that the number of VMs requiring GPUs will be more than the
number of GPUs installed in a physical host, since multiple
applications and VMs will be consolidated in a single physical
machine in the cloud computing environment.

4.3.3. Waiting Time. Finally, we measure the waiting time, the
time to wait for allocation of a GPU, in the same evaluation.
When there is no available GPU, a VM should be idle until a
GPU becomes available. Accordingly, this additional waiting
time can worse the overall execution time of each workload.
Figure 8 shows the average GPU waiting time with varying
the number of GPUs from one to four. When the number
of GPU is one, the average waiting time is 25.05 seconds.
Although this waiting time could increase the execution time
of a single workload, the overall performance is still improved
as shown in Figure 7. In addition, when the number of
GPU increases more than one, the average waiting time is
significantly reduced to 4.15 seconds. Except the hot plug-in
time, 1.3 seconds as shown in Table 3, a VM should wait 2.85
seconds on average when the number of GPU is two. This
result indicates that if the number of GPUs is more than one,

TaBLE 3: The time to hot plug-in/out of PCI-E channel.

Operation Time (second)
GPU allocation (hot plug-in) 13+0.1
GPU deallocation (hot plug-out) 1.3+0.1

GPUs can be efficiently shared among VMs with negligible
performance degradation.

The modeled scenario in the two previous subsections
is synthetic and might be different case by case. Note that
the benefit gap and the waiting time in these evaluations
will diverse according to the running time and the sleep
time of GPU applications. But, at least, we can confirm that
our mechanism to virtualize and share GPUs works fine
and is reasonably effective for biological GPU applications in
BioCloud.

5. Discussion

In this section, we discuss how our proposed architecture is
suitable for biological applications in terms of memory and
time of workloads in bioinformatics.

One of major characteristics of workloads in bioinfor-
matics is massively data-intensive computing. For example,
in a protein sequence alignment workload, a large volume
of gnome references are indexed by large-size hashing index
(tens of GBs). The workload can perform better when the
reference indices are (mostly) in GPU memory and most of
them are filled in GPU’s internal cache memory [26]. When
multiple workloads share a single GPU device at fine-grained
level (e.g., API-level multiplexing [20-22]), the GPU memory
should be shared between multiple workloads. Accordingly,
the memory size for each workload is inevitably reduced.
Otherwise, when a GPU context switch occurs, the data in a
GPU’s memory should be replaced with the data for the next
workload [30]. This data replacement leads to unnecessary
and slow data copies between host memory and GPU mem-
ory (and memory copies between host memory and guest
VM memory [22]). Since the bioinformatics workloads are
highly data intensive, these penalties by memory sharing can
result in performance degradation.

Our scheme, however, does not cause those penalties.
In our GPU virtualization architecture, a workload can fully
exploit the memory in a GPU device while the workload is
running. A GPU context switch only occurs after a currently
scheduled workload finishes. Accordingly, our scheme can
show better performance by eliminating those memory
penalties.

The other characteristic to note is that bioinformatics
workload usually takes a long time from several minutes to
hundreds of minutes depending on the workloads [25, 28].
Therefore, when the API-level multiplexing schemes are used,
fine-grained sharing of GPUs may result in thousands of
context switches on a GPU in a second. This frequent context
switch causes frequent flushes of warmed-up data in GPU
internal caches and even in GPU memory [30, 31]. Although
the batching GPU APIs [22] are aimed at reducing the
frequent context switches, it cannot eliminate whole context
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switches in a long-time period (tens of seconds) so that
flushing warmed-up data in GPU cache and GPU memory
is inevitable.

Our GPU-virtualization architecture can avoid the fre-
quent context switches in a GPU device thereby showing
better performance. Since a GPU is multiplexed at coarse-
grained level (at workload), each scheduled workload can
fully exploit the cache and memory in a GPU without
unnecessary flushing of data until the workload finishes.
When the context switch occurs, the previous workload never
reuses the warmed-up data in those memory spaces because
the workload is finished. As evidence, our architecture shows
minimal performance degradation as compared to the other
schemes.

6. Conclusions

For higher utilization of systems, the machine virtualization
and cloud computing trend will prevail more and more.
Besides, the high performance computing based on GPU also
has proved its outstanding capabilities for general-purpose
computation in many research areas. Especially, the biologi-
cal applications are outstanding, since their computation can
derive a large amount of benefit from many cores of GPUs.

For biological GPU applications, we propose a cloud
system to exploit GPUs in VM while multiplexing them
among VMs and achieving almost the same performance as
that with native use of GPUs. Considering the characteristics
of bioinformatics workloads which have long execution time,
our GPU virtualization mechanism is focused on high GPU
computation throughput, rather than sharing GPUs among
VMs. Although our prototype is based on the Xen VMM
and NVIDIA GPUgs, it can be easily ported into other
implementations. In the evaluation section, we showed the
effectiveness of our mechanism using a modeled scenario.
Although the performance benefit and the waiting time can
diverse in case by case, we believe that our scheme is highly
effective for biological computation using GPUs in cloud
environment.
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Molecular docking simulations of fully flexible protein receptor (FFR) models are coming of age. In our studies, an FFR model
is represented by a series of different conformations derived from a molecular dynamic simulation trajectory of the receptor. For
each conformation in the FFR model, a docking simulation is executed and analyzed. An important challenge is to perform virtual
screening of millions of ligands using an FFR model in a sequential mode since it can become computationally very demanding.
In this paper, we propose a cloud-based web environment, called web Flexible Receptor Docking Workflow (wFReDoW), which
reduces the CPU time in the molecular docking simulations of FFR models to small molecules. It is based on the new workflow data
pattern called self-adaptive multiple instances (P-SaMIs) and on a middleware built on Amazon EC2 instances. P-SaMI reduces
the number of molecular docking simulations while the middleware speeds up the docking experiments using a High Performance
Computing (HPC) environment on the cloud. The experimental results show a reduction in the total elapsed time of docking
experiments and the quality of the new reduced receptor models produced by discarding the nonpromising conformations from

an FFR model ruled by the P-SaMI data pattern.

1. Introduction

Large-scale scientific experiments have an ever-increasing
demand for high performance computing (HPC) resources.
This typical scenario is found in bioinformatics, which
needs to perform computer modeling and simulations on
data varying from DNA sequence to protein structure to
protein-ligand interactions [1]. The data flood, generated by
these bioinformatics experiments, implies that technologi-
cal breakthroughs are paramount to process an interactive
sequence of tasks, software, or services in a timely fashion.
Rational drug design (RDD) [2] constitutes one of the
earliest medical applications of bioinformatics [1]. RDD aims
to transform biologically active compounds into suitable
drugs [3]. In silico molecular docking simulation is one

of the main steps of RDD. It is used to deal with compound
discovery, typically by computationally virtual screening a
large database of organic molecules for putative ligands
that fit into a binding site [4] of the target molecule or
receptor (usually a protein). The best ligand orientation and
conformation inside the binding pocket is computed in terms
of the free energy of bind (FEB) by software, for instance the
AutoDock4.2 [5].

In order to mimic the natural, in vitro and in vivo, behav-
ior of ligands and receptors, their plasticity or flexibility
should be treated in an explicit manner [6]: our receptor
is a protein that is an inherently flexible system. However,
the majority of molecular docking methods treat the ligands
as flexible and the receptors as rigid bodies [7]. In this
study we model the explicit flexibility of a receptor by using



an ensemble of conformations or snapshots derived from its
molecular dynamics (MD) simulations [8] (reviewed by [9]).
The resulting model receptor is called a fully-flexible receptor
(FFR) model. Thus, for each conformation in the FFR model,
a docking simulation is executed and analyzed [7].

Organizing and handling the execution and analysis of
molecular docking simulations of FFR models and flexible
ligands are not trivial tasks. The dimension of the FFR model
can become a limiting factor because instead of performing
docking simulations in a single, rigid receptor conformation,
we must carry out this task for all conformations that make up
the FFR model [6]. These conformations can vary in number
from thousands to millions. Therefore, the high computing
costs involved in using FFR models to perform practical
virtual screening of thousands or millions of ligands may
make it unfeasible. For this reason, we have been developing
methods to simplify or reduce the FFR model dimensionality
[6, 9, 10]. We named this simpler representation of an
FFR model a reduced fully flexible receptor (RFFR) model.
An RFFR model is achieved by eliminating redundancy in
the FFR model through clustering its set of conformations,
thus generating subgroups, which should contain the most
promising conformations [6].

To address these key issues, we propose a cloud-based
web environment, called web Flexible Receptor Docking
Workflow (wFReDoW), to fast handle the molecular docking
simulations of FFR models. To the best of our knowledge,
it is the first docking web environment that reduces both
the dimensionality of FFR models and the overall docking
execution time using an HPC environment on the cloud.
The wFReDoW architecture contains two main layers: Server
Controller and (flexible receptor middleware) FReMI. Server
Controller is a web server that prepares docking input
files and reduces the size of the FFR model by means of
the self-adaptive multiple instances (P-SaMlIs) data pattern
[9]. FReMI handles molecular docking simulations of FFR
models integrated with an HPC environment on Amazon
EC2 resources [11].

There are a number of approaches that predict ligand-
receptor interactions on HPC environments using Auto-
Dock4.2 [5]. Most of them use the number of ligands to
distribute the tasks among the processors. For instance,
DOVIS 2.0 [12] uses a dedicated HPC Linux cluster to execute
virtual screening where ligands are uniformly distributed
on each CPU. VSDocker 2.0 [13] and Mola [14] are other
examples of such systems. Whilst VSDocker 2.0 works
on multiprocessor computing clusters and multiprocessor
workstations operated by a Windows HPC Server, Mola
uses AutoDock4.2 and AutoDock Vina to execute the virtual
screening of small molecules on nondedicated compute clus-
ters. Autodock4.lga.MPI [15] and mpAD4 [16] use another
approach to enhance the performance. As well as the docking
parallel execution, Autodock4.lga.MPI and mpAD4 reduce
the quantity of network I/O traffic during the loading of
grid maps at the beginning of each docking simulation.
Another approach is the AutoDockCloud [17]. This is a
high-throughput screening of parallel docking tasks that
uses the open source Hadoop framework implementing the
MapReduce paradigm for distributed computing on a cloud
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platform using AutoDock4.2 [5]. Although every one of
these environments reduces the overall elapsed time of the
molecular docking simulations, they only perform docking
experiments with rigid receptors. Conversely, wFReDoW
applies new computational techniques [6, 10, 11, 18] to reduce
the CPU time in the molecular docking simulations of FFR
models using public databases of small molecules, such as
ZINC [19].

In this work we present the wFReDoW architecture and
its execution. From the wFReDoW executions we expect
to find better ways to reduce the total elapsed time in the
molecular docking simulations of FFR models. We assess the
gains in performance and the quality of the results produced
by wFReDoW using a small FFR model clustered by data
mining techniques, a ligand from ZINC database [19], differ-
ent P-SaMI parameters [10], and an HPC environment built
on Amazon EC2 [18]. Thus, from the best results obtained,
we expect that future molecular docking experiments, with
different ligands and new FFR models, will use only the
conformations that are significantly more promising [6] in a
minimum length of time.

2. Methods

2.1. The Docking Experiments with an FFR Model. To perform
molecular docking simulations we need a receptor model, a
ligand, and docking software. We used as receptor the enzyme
2-trans-enoyl-ACP (CoA) reductase (EC 1.3.1.9) known as
InhA from Mycobacterium tuberculosis [20]. The FFR model
of InhA was obtained from a 3,100 ps (1 picosecond =
107*2 second) MD simulation described in [21], thus making
an FFR model with 3,100 conformations or snapshots. In
this study, for each snapshot in the FFR model, a docking
simulation is executed and analyzed. Figure 1 illustrates the
receptor flexibility.

The ligand triclosan (TCL400 from PDB ID: 1P45A) [20]
was docked to the FFR model. We chose TCL from the
referred crystal structure because it is one of the simplest
inhibitors cocrystallized with the InhA enzyme. Figure 2
illustrates the reference position of the TCL400 ligand into
its binding site (PDB ID: 1P45A) and the position of the TCL
ligand after an FFR InhA-TCL molecular docking simulation.

For docking simulations, we used the AutoDock Tools
(ADT) and AutoDock4.2 software packages [5]. Input coor-
dinate files for ligand and the FFR model of InhA were
prepared with ADT as follows. (1) Receptor preparation.
A PDBQT file for each snapshot from the FFR model was
generated employing Kollman partial atomic charges for
each atom type. (2) Flexible ligand preparation. The TCL
ligand was initially positioned in the region close to its
protein binding pocket and allowed two rotatable bonds.
(3) Reference ligand preparation. This is the ideal position
and orientation of the ligand that is expected from docking
simulations. A TCL reference ligand was also prepared using
the coordinates of the experimental structure (PDB ID:
1P45A). 1t is called the reference ligand position. (4) Grid
preparation. For each snapshot a grid parameter file (GPF)
was produced with box dimensions of 100 A x 60 A x 60 A.
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FIGURE 1: Flexibility of the InhA enzyme receptor from Mycobac-
terium tuberculosis [PDB ID: 1P45A]. Superposition of different
InhA conformations, represented as ribbons, along an MD simula-
tion. The initial conformation of the simulation is the experimental
crystal structure and is colored in green. Two other conformations
or snapshots were taken from the MD simulation at 1,000 ps (blue)
and 3,000 ps (magenta). The outlined rectangle highlights the most
flexible regions of this receptor.

FIGURE 2: Molecular docking simulation. Molecular surface repre-
sentation of the binding pocket of the InhA enzyme receptor in the
crystal structure [PDB ID: 1P45A] colored by atom type (carbon and
hydrogen: light grey; nitrogen: blue; oxygen: red; sulphur: yellow).
The TCL ligand (TCL400 from PDB ID: 1P45A) is represented by
stick models. The crystallographic reference for the TCL ligand is
colored orange. The TCL ligand generated by molecular docking
simulation is colored cyan.

The other parameters maintained the default values. (5)
Docking parameters. Twenty-five Lamarckian genetic algo-
rithm (LGA) independent runs were executed for each
docking simulation. The LGA search method and parameters
were: a population size of 150 individuals, a maximum of
250,000 energy evaluations and 27,000 generations. The other
docking parameters were kept at default values.

2.2. Reducing the Fully Flexible Receptor Model. The snap-
shots of the FFR model used in this study are derived from
an MD simulation trajectory of the receptor. Even though this
approach is considered the best to mimic the natural behavior
ofligands and receptors [9], its dimension or size may become
a limiting factor. Moreover, the high computing cost involved
could also make the practical virtual screening of such recep-
tor models unfeasible. For these reasons, new methods have
been developed to assist in the simplification or reduction of
an FFR model to an RFFR model. The primary rationale of
this approach is to eliminate redundancy in the FFR model
through clustering of its constituent conformations [6]. This
is followed by the generation of subgroups with the most
promising conformations via the P-SaMI data pattern [10].

2.2.1. Clusters of Snapshots from an FFR Model. The clusters of
snapshots used in this study were generated using clustering
algorithms with different similarity functions developed by
[6, 7]. Basically, in this approach, our FFR model was used
to find patterns that define clusters of snapshots with similar
features. In this sense, if a snapshot is associated with a
docking with significantly negative FEB, for a unique ligand,
it is possible that this snapshot will interact favorably with
structurally similar ligands [6]. As a consequence, the clusters
of snapshots, which were related to different classes of FEB
values, are postprocessed using the P-SaMI data pattern to
select the receptor conformations and, thus, to reduce the
complexity of the FFR model.

2.2.2. P-SaMI Data Pattern for Scientific Workflow. P-SaMI is
the acronym for pattern-self-adaptive multiple instances—a
data pattern for scientific workflows developed by [10]. The
purpose of this approach is to define a data pattern which
is able to dynamically perform the selection of the most
promising conformations from clusters of similar snapshots.
As shown in Figure 3, the P-SaMI first step is to capture
a clustering of snapshots from [6]. Next, P-SaMI divides
each cluster into subgroups of snapshots to progressively
execute autogrid4 and autodock4 for each conformation that
makes up the FFR model using an HPC environment. The
results (docking results) are the best FEB value for each
docked snapshot. From these results, P-SaMI uses previous
FEB results (evaluation criteria) to determine the status
and priority of the subgroups of snapshots. Status denotes
whether a subgroup of snapshots is active (A), finalized (F),
discarded (D), or with changed priority (P). Priority indicates
how promising the snapshots are belonging to that subgroup,
on a scale of 1 to 3 (1 being the most promising). Thus, if
the docking results of a subgroup present an acceptable value
of FEB then that subgroup is credited with a high priority.
Conversely, the subgroup has its priority reduced or its status
changed to “D” and is discarded, unless all the snapshots of
that subgroup have already been processed (status “F”).

The reason for using P-SaMI in this work is to make full
use of its data pattern to eliminate the exhaustive execution
of docking simulations of an FFR model without affecting its
quality [6, 10] from clusters of snapshots produced by [6, 7]
as input files. In this sense, we make use of a web server
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FIGURE 3: Model of P-SaMI data pattern execution. Clustered
snapshots are divided into subgroups using the P-SaMI data pattern.
Molecular docking simulations are executed on these subgroups.
P-SaMI analyses the docking results, based on some evaluation
criteria, to select promising conformations from subgroups of
snapshots.

environment, herein called server controller, to perform the
P-SaMI data pattern and a middleware (FReMI) to handle
promising snapshots and send them to an HPC environment
on the cloud to execute the molecular docking simulations.

2.3. HPC on Amazon EC2 Instances. Cloud computing is
a new promising trend for delivering information technol-
ogy services as computing utilities [22]. Commercial cloud
services can play an attractive role in scientific discovery
because they provide computer power on demand over the
internet, instead of several commodity computers connected
by a fast network. Our virtual HPC environment on Amazon
EC2 was built using the GCC 4.6.2 and MPICH2 based
on a master-slave paradigm [23]. It contains 5 High-CPU
extra large (cI.xlarge) EC2 Amazon instances, each equipped
with 8 cores with 2.5 EC2 computer units, 7 GB of RAM,
and 1,690 GB of local instance storage. A rating of one EC2
computer units is a unit of CPU capacity which corresponds
to 1.0-1.2 GHZ 2007 Opteron or 2007 Xeon processor.

Figure 4 shows the cluster pool created on Amazon EC2’s
instances where the same files directory is shared by network
file system (NFS) among the instances to store all input and
output files used during run time of FReMI. In this pool, all
data are stored on the Elastic Block Store (EBS) of the master
machine and all the instances have permission to read and
write in this shared directory, even if a slave instance termi-
nates. However, if the master instance terminates, all data are
lost because the master instance EBS volume terminates at the
same time. Thus, the S3cmd source code (S3cmd is an open
source project available under GNU Public License v2 and
free for commercial and private use. It is a command line tool
for uploading, retrieving, and managing data in Amazon’s S3.
S3cmd is available at http://s3tools.org/s3cmd) and package
is used to replicate the most important information from
Amazon EC2 to Amazon S3 bucket (bucket is the space to
store data on Amazon S3. Each bucket is identified with a
unique bucket name).
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3. Results

The results are aimed at showing the wFReDoW architecture
and validating its execution using clusters of snapshots of
a specific FFR model against a single ligand. From these
results we try to evidence that the proposed cloud-based
web environment can be more effective than other methods
used to automate molecular docking simulations with flexible
receptors, such as [24]. In this sense we divided our results
into three parts. Firstly, we present the wFReDoW conceptual
architecture to get a better understanding about its operation.
Next, a set of experiments is examined to discover the best
FReMI performance on Amazon EC2 Cloud. Finally, the
new RFFR models are presented by means of the wFReDoW
execution.

3.1. wFReDoW Conceptual Architecture. This section pre-
sents the wFReDoW conceptual architecture (Figure 5)
which was developed to speed up the molecular docking
simulations for clusters of the FFR model’s conformations.
wFReDoW contains two main layers: Server Controller and
FReMLI. Server Controller is a web workflow based on P-SaMI
data pattern that prepares Autodock input files and selects
promising snapshots through docked snapshots. FReMI is a
middleware based on the many-task computing (MTC) [25]
paradigm that handles high-throughput docking simulations
using an HPC environment built on Amazon EC2 instances.
In our study, MTC is used to address the problem of executing
multiple parallel tasks in multiple processors. Figure 5 details
the wFReDoW conceptual architecture with its layers and
interactions. The wFReDoW components are distributed in
three layers: Client, Server Controller and FReMI.

3.L1 Client Layer. The Client layer is a web interface used
by the scientist to configure the environment. It initializes
the wFReDoW execution and analyzes information about
the molecular docking simulations. Client is made up of
three main components: (i) Setup component sets up the
whole environment before starting the execution; (ii) Execute
starts the wFReDoW execution and; (iii) Analyze shows the
provenance of each docking experiment. The communication
between Client and Server Controller is done by means of
Ajax (http://api.jquery.com/category/ajax/).

3.1.2. Server Controller. Server Controller is a web workflow
environment that aids in the reduction of the execution time
of molecular docking simulations of FFR models by means of
P-SaMI data pattern. It was built using the web framework
FLASK 0.8 (http://flask.pocoo.org/) and the Python 2.6.6
libraries. The Server Controller central role is to select
promising subgroups of snapshots from an FFR model
based on the P-SaMI data pattern [10]. It contains three
components: Configuration, Molecular Docking, and P-SaMI.
The Configuration component only stores data sent from
Setup (Client layer).

The Molecular Docking component manages the P-SaMI
input files and performs the predocking steps required for
AutoDock4.2 [5]. Firstly, the Prepare Files activity reads the
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clustering of snapshots generated by [6] and stores them
in the Database. Next, the Prepare Receptor and Prepare
Ligand activities generate the PDBQT files used as input files
to autogrid4 and autodock4. Finally, the Prepare Grid and
Prepare Docking activities create the input files according to
the autogrid4 and autodock4 parameters, respectively.

After all files have been prepared by the Molecular
Docking component, the P-SaMI component is invoked. This
identifies the most promising conformations using the P-
SaMI data pattern [10] from different clusters of snapshots
of an FFR model identified by [6]. The P-SaMI component
contains three activities: Uploader, Data Analyzer, and Prove-
nance.

Uploader starts the FReMI execution and generates
subgroups from snapshot clustering [6]. These subgroups
are stored in an XML file structure, called wFReDoW
control file (Figure 6). The wFReDoW control file is sent
to the Parser/Transfer component (within FReMI) before
starting the wFReDoW execution. It contains three root
tags described as: experiment, subgroup, and snapshot. The
experiment identification (id) is a unique number created
for each new docking experiment with an FFR model and
one ligand. The subgroup tag specifies the information of the
subgroups. The stat and priority tags indicate how promising
the snapshots belonging to that subgroup are, according
to the rules of the P-SaMI data pattern. The snapshot tag
contains information about the snapshots and is used by
FReMI to control the docked snapshots.

The Data Analyzer activity examines the docking results,
which are sent from FReMI by HTTP Post, based on P-
SaMI data pattern. The result of these analyses is a parameter
set that is stored in the wFReDoW update files (Figure 7).
Thus, to keep FReMI updated with the P-SaMI results, Data
Analyzer sends wFReDoW update files to FReMI by SFTP
protocol every time P-SaMI modifies the priority and/or
status of a subgroup of snapshots.

The Database component is based on FReDD database
[26], built with PostgreSQL 4.2 (http://www.postgresql.org/
docs/9.0/interactive/), and is used to provide provenance
about data generated by Server Controller. The Provenance
activity stores the Server Controller data in the Database
component. Hence, the scientist is able to follow wFReDoW
execution whenever he/she needs.

3.1.3. FReMLI: Flexible Receptor Middleware. FReMI is a mid-
dleware on the Amazon Cloud [18] that handles many tasks
to execute, in parallel, the molecular docking simulations of
subgroups of conformations of FFR models. It also provides
the interoperability between the Server Controller layer and
the virtual HPC environment built using the Amazon EC2
instances. FReMI contains five different components: Start,
wFReDoW Repository, FReMI workspace, FReMI execution,
and HPC environment. Start begins the execution of FReMI
and HPC Environment denotes the virtual cluster on EC2
instances. The remaining components are described below.
The wFReDoW Repository contains the Input/Update Files
repository. This repository stores all files sent by Server
Controller layer using the SFTP network protocol. It consists
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H<experiment id="1">

- <Subgroup>

<idSubgroup>GlL1</idSubgroup>

<stat>A</stat>

<priority>2</priority>

<snapshot>
<idSnap>001055</idSnap>
<status>P</stacus>

</snapshot>

<snapshot>
<idSnap>000100</idSnap>
<status>P</status>

</snapshot>

</Subgroup>
</experiment>

FIGURE 6: Fragment of the wFReDoW control file. The file places the
subgroups of snapshots generated by data mining techniques and its
parameters according to P-SaMI.

<?xml version="1.0" 2>
<experiment id="1">
<idSubgroup>GlL1</idSubgroup>
4 <priority>1</priority>
</experiment>

(a)
<?xml wversion="1.0" 2>
l<experiment id="1">
<idSubgroup>G2L2</idSubgroup>
<stat>D</stat>
“</experiment>

(b)

FIGURE 7: Examples of wFReDoW update files. (a) An XML file
where the priority from GILI1 subgroup changed to 1. (b) An XML
file where the status from G2L2 subgroup changed to D.

of predocking files, a wFReDoW control file (Figure 6), and
different wFReDoW update files (Figure 7).

The FReMI Workspace component represents the direc-
tory structure used to store the huge volume of data manip-
ulated to execute the molecular docking simulations. The
input files placed in the wFReDo W Repository are transferred,
during FReMI’s execution time, to its workspace by the
Parser/Transfer activity within the FReMI Execution set of
activities.

The FReMI Execution component—the engine of
FReMI—contains every procedure invoked to run
the middleware. Its source code was written in the C
programming language and its libraries. Figure 8 shows
the data flow control followed by the FReMI Execution
component. Basically, the FReMI Execution identifies the
active snapshots (status A), inserts them in queues of
balanced tasks that are created based on subgroup priorities
emerging from the P-SaMI data pattern, and submits
these queues into the HPC environment. These actions are
performed through three activities: Create Queue, Parser/
Transfer, and Dispatcher/Monitor.



BioMed Research International

FReMI execution

Create .
queue get_priority( )
(XML file) Heuristic
get_snapshots( ) function
(XML file) l
HEERERERERERNEN
Queue of tasks
Parser/
transfer transfer files( ) FReMI
get files() workspace|
Dispatcher/
monitor Master Slave
function| function|
ldistribute_tasks( )Hrequest_queue( )|[run_tasks( )| frun_tasks( )|
| I

—> Call function
—> Information flow
<> Send work/work status

FIGURE 8: Scheme of the FReMI execution implementation. The
Create Queue, Parser/Transfer, and Dispatcher Monitor compo-
nents include the main functions executed by FReMI. The Dis-
patcher/ Monitor component deals with the master-slave paradigm
on the EC2 instances.

The Create Queue activity produces a number of queues
of balanced tasks during FReMI run time based on the infor-
mation from wFReDoW control file (Figure 6). According
to the priorities, this activity uses a heuristic function to
determine how many processors from HPC environment will
be allocated for each subgroup of snapshots. Furthermore,
it uses the status to identify whether a snapshot should
be processed or not. For this purpose, the Create Queue
activity starts calculating the maximum number of snapshots
that each queue can support. Thus, the amount of nodes or
machines allocated (N) and the amount of parallel tasks (T')
executed per node are used to obtain the queue length (Q),
with the following equation:

Q=NxT. 1)

Afterward, the amount of snapshots per subgroup is
calculated in order to achieve the balanced distribution of
tasks in every queue created. A balanced queue contains one
or more snapshots of an active group. From the subgroup
priorities, it is possible to determine the percentage of
snapshots to be included in the queues. Thus, subgroups with
higher priority are queued before those with lower priority.
Equation (2) is used to calculate the amount of snapshots for

a balanced queue:
S, =Q ( % ) )
=Qx . 2
’ 2 (P,)

S, is the amount of snapshots of the subgroup g that are
placed in the queue. Q is the queue length from (1). P, is

the priority of the subgroup g, and }(P,) is the sum of the
priorities of all subgroups. From (2) one queue of balanced
tasks (Bq) is created with the following equation:

B, = Z(Sy)' (3)

The Parser/Transfer activity handles and organizes the
files sent by the Server Controller layer to its workspace on
FReML. It has three functions: to transfer all files received
from Server Controller to the FReMI workspace by means
of the transfer file function (see Figure 8); to perform a parse
on predocking files in order to recognize the FReMTs files
directory structure; and to update the parameters of the
subgroups of snapshots, when necessary, using the get files
function. The purpose of this last activity is to maintain
FReMI updated with the Server Controller layer.

The functions from the Dispatcher/Monitor activity, as
shown in Figure 8, are invoked to distribute tasks among
the processors/cores from the virtual computer cluster on
EC2 Amazon [18] based on the master-slave paradigm [23].
Slave Function only runs the tasks while Master Function,
aside from running tasks, also performs two other functions:
distribute tasks, which is activated when a node/machine asks
for more work; and request queue, which is activated when the
queue of tasks is empty. Furthermore, to take advantage of the
multiprocessing of each virtual machine, we use the hybrid
parallel programming model [27]. This model sends bags of
tasks among the nodes by means of MPI and it shares out the
tasks inside every node by OpenMP parallelization.

3.2. FReMI-Only Execution on Amazon EC2 MPI Cluster. 'The
purpose of executing this set of experiments is to obtain the
best MPI/OpenMP performance in the HPC environment on
Cloud, which reduces the total elapsed time in the molecular
dockings experiments, in order to become the reference
to the wFReDoW experiments. For this reason, we have
processed the TCL ligand (TCL400 from PDB ID: 1P45A)
with two rotatable bonds against all 3,100 snapshots that make
up the FFR model using FReMI-only execution. The HPC
environment was executed on a scale of 1 to 8 EC2 instances.
The number of tasks executed per instance was 32 (from (1):
T = 32), and the size of the queues of balanced tasks ranged
according to the number of instances used. The performance
of each FReMI-only experiment versus the number of cores
used is shown in Figure 9.

The performance gain obtained using the virtual MPI/
OpenMP cluster on Amazon EC2 is substantial when com-
pared to the serial version. We observed that the serial ver-
sion, which was performed using only one core from an EC2
instance, took around 4 days to execute all 3,100 snapshots
from the FFR model, and its parallel execution decreased
this time by over 92% for the scales of cores examined. Even
though the overall time of the parallel executions was reduced
considerably, we also evaluated the speedup and efficiency in
the virtual HPC environment to take further advantage of
every core scaled during the wFReDoW execution.

The FReMI-only execution is unable to take advantage
of more than 48 cores because its efficiency ranges only
from 22% to 29% (see Figure 9). Conversely, the cores were
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well used during the execution when we used less than 40.
As can be seen, the best FReMI-only execution efficiency
(i.e., 42%) was achieved using 32 and 40 cores from virtual
HPC environment. However, the overall execution time spent
between them was 7 hours and 28 minutes for 32 cores against
5 hours and 47 minutes for 40 cores. As a consequence of
these assessments, the best FReMI-only configuration found
in this set of experiments was 5 clxlarge EC2 Amazon
instances with 8 cores each. It is worth mentioning that this
configuration is able to reduce the total docking experiment
time (i.e., 5 hours and 47 minutes) about 94% from its
reference serial execution time, which took 90 hours and 47
minutes.

3.3. wFReDoW Execution on Amazon EC2 MPI Cluster.
The main goal of this set of experiments is to show the
performance gains in the molecular docking simulations
of an FFR model and the new flexible models produced
using wFReDoW. The wFReDoW experiments were con-
ducted using 3,100 snapshots from an FFR InhA model,
which are clustered by similarity functions [6], and TCL
ligand (TCL400 from PDB ID: 1P45A) with two rotatable
bonds. We used only an FFR model and a single ligand
to evaluate wFReDoW because our goal was to analyze
the performance gain in the docking experiments of FFR
models by investigating the best way to coordinate, in one
unique environment, all the computational techniques, such
as data mining [6], data patterns for scientific workflow
[10], cloud computing [18], parallel program, web server
and the FReMI middleware. This variety of technological
approaches contains their particular features and limits that
should be dealt with in order to obtain an efficient wFReDoW
implementation, avoiding fault communications, overhead,
and idleness issues. Thus, from the best results, we expect
that future wFReDoW executions may allow practical use
of totally fully flexible receptor models playing in virtual
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screening of thousands or millions of compounds, which
are in virtual chemical structures libraries [3], such as ZINC
database [19].

According to the P-SaMI data pattern, the analyses start
after a percentage of snapshots has been docked. In these
experiments we seek to know how many snapshots are
discarded and what the quality is of the RFFR models which
are produced for each clustering when the P-SaMI data
pattern starts to evaluate after 30%, 40%, 50%, 70%, and
100% of the docked snapshots. When 100% of snapshots are
docked P-SaMI does not analyze the docking results. Thus, we
perform fifty different kinds of docking experiments—one P-
SaMI configuration for each clustering of snapshots. In this
sense, Server Controller prepared three different wFReDoW
control files—one for each clustering of snapshots generated
by [6]—and four different P-SaMI configurations followed
the above mentioned percentage.

Figure 10 summarizes the total execution time and the
number of snapshots docked and discarded for each wFRe-
DoW experiment. In this Figure, each graph represents the
wFReDoW results obtained by running a P-SaMI configura-
tion for each clustering of snapshots, which are represented
by 01, 02, and 03 clustering. Every clustering contains 3,100
snapshots from the FFR model, which are grouped from 4 to
6 clusters depending on the similarity function used by [6].
The total time execution for each experiment (one clustering
for one P-SaMI configuration) is calculated from the moment
the preparation of the wFReDoW control file (in the Server
Controller) begins, until the last docking result comes in the
Server Controller.

4. Discussion

In this paper we presented the roles of wFReDoW—a cloud-
based web environment to faster execute molecular docking
simulations of FFR models—and, through its execution, we
showed the RFFR models produced. As can be observed in
Figure 10, wFReDoW, as well as creating new RFFR models,
also speeds up the docking experiments for all cases due to
the reduction of docking experiments provided by the P-
SaMI data pattern and the simultaneous docking execution
performed by the virtual HPC environment. Although we
use a small FFR model and only a single ligand, it is clear to
see that wFReDoW is a promising tool to start performing
molecular docking simulations for new FFR models even
using large libraries of chemical structures for the practice of
virtual screening.

4.1. wFReDoW Performance. According to [10], the earlier
the analysis starts (in this case 30%), the larger the quantity of
unpromising snapshots that can be recognized and discarded
is. Figure 10 evidences this statement. The wFReDoW results
show that when P-SaMI data pattern starts the analyses of
the FFR model with 30% of docked snapshots, the number of
unpromising snapshots discarded is higher. Additionally, as
this percentage increases, the number of unpromising docked
snapshots increases as well. Consequently, if the number of
docked snapshots decreases, the overall execution time also
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decreases. Thus, considering the best run time of wFReDoW,
that is, 3 hours and 54 minutes (Figure 10), the gain achieved
by the use of P-SaMI showed a fall of 30% from the FReMI-
only overall execution (5 hours and 47 minutes).

Another consideration for wFReDoW performance is
that FReMI middleware also runs in local cluster infras-
tructure. However, the efficiency is not the same. We also
executed FReMI only using a sample of snapshots from the
FFR InhA model on the Atlantica cluster with the intention to
compare the performance gains obtained between the virtual
and the local cluster infrastructures (Atlantica cluster consists
of 10 nodes connected by a fast network system. Each node
contains two CPUs Intel Xeon Quad-Core E5520 2.27 GHZ
with Hyper-Threading, and 16 GB of RAM, aggregating 16
cores per node. The cluster is connected by a two-gigabit
Ethernet network, one for communication between nodes
and another for management. Atlantica cluster supplies
high performance computational resources for the academic
community.) We made several investigations for different
nodes and core scales, even for different numbers of tasks
executed per node. At the end we found that, in most cases,
Amazon EC2 outperforms the Atlantica cluster. For instance,
using the same number of cores from Amazon EC2, that is, 5

nodes with 8 cores each, for a sample of 126 snapshots from
the FFR model and 16 tasks executed per instance (from (1):
T = 16), the total execution time was 14.94 minutes for the
Atlantica cluster and 8.78 minutes for Amazon EC2. Possibly,
this performance difference is because we used the Atlantica
cluster in a nonexclusive mode, sharing the cluster’s facilities.
From this evidence and our previous studies, we concluded
that the EC2 configuration bestows itself as a very attractive
HPC solution to execute molecular docking simulations of a
larger set of snapshots and for different ligands.

4.2. The Quality of the RFFR Models Produced. We showed
that the approach used in this study enhances the perfor-
mance of the molecular docking simulations of FFR models
in most cases. However, to make sure that the P-SaMI
data pattern selected the best snapshots from the cluster
of snapshots used, we verified the quality of the RFFR
models built by wFReDoW. Regarding this, we took only
the first run of the 25 runs performed by AutoDock 4.2,
which contains the best FEB of each docking, to evaluate the
produced models. The best docking result of each snapshot
was organized according to the percentage of snapshots with
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TABLE 1: Analysis of the wFReDoW results obtained by running a P-SaMI configuration for each clustering of snapshots. Column 1 identifies
the three different types of clustering. Column 2 specifies the percentage of docked snapshots after which P-SaMI analysis of the model
quality starts. Columns 3, 5, and 7 display the total number of selected snapshots that are in the best 10%, best 20%, and best 30%, respectively.

Columns 4, 6, and 8 present the accuracy percentage for the best 10%, 20%, and 30%, respectively.

Clustering P-SaMI Best 10% Accuracy % Best 20% Accuracy % Best 30% Accuracy %
01 30% 305 98.39 598 96.45 879 94.52
01 40% 305 98.39 600 96.77 887 95.38
01 50% 306 98.71 603 9725 894 96.13
01 70% 308 99.35 608 98.06 910 97.85
02 30% 302 97.42 593 95.65 871 93.66
02 40% 302 97.42 599 96.61 888 95.48
02 50% 303 97.74 599 96.61 891 95.81
02 70% 308 99.35 612 98.71 913 98.17
03 30% 300 96.77 596 96.13 885 95.16
03 40% 301 9710 599 96.61 891 95.81
03 50% 303 97.74 604 97.42 898 96.56
03 70% 303 97.74 610 98.39 909 97.74
— 100% 310 100.00 620 100.00 930 100.00

the best FEB values in an ascending order (set of best FEB).
Then, we investigated if the selected snapshots belonged to
the percentage of this set. As a result we obtained the data
described in Table 1 with the number of docked snapshots for
each set of best FEB and its respective accuracy.

Based on the data illustrated in Table 1 we can observe
that wFReDoW worked well for all P-SaMI analyses. This
is evidenced from the computed accuracy in the produced
RFFR models, which contain more than 94% of its snapshots
within the set of best FEB values. In the clustering 02, for
instance, when P-SaMI started the analysis in 70%, wFRe-
DoW worked best, selecting 308 of the 310 best ones, 612 of
the 620 best ones, and 913 of the 930 best ones. Whilst, when
P-SaMI started the analysis in 30% in the same clustering,
wFReDoW selected 302 of the 10% best ones, 593 of the
20% best ones, and 871 of the 30% best ones. Even though
wFReDoW selected fewer snapshots in the latter P-SaMI
configuration, it represents 97.42%, 95.65% and 93.66% of
the 10%, 20%, and 30% best FEB, respectively. The difference
between the best and worst wFReDoW selections is slight.
However, the difference between them of 1 hour in the total
wFReDoW execution time (3 hours and 54 minutes for P-
SaMI analysis from 30% against 4 hours and 57 minutes for P-
SaMI analysis from 70%) could be a good motivation to start
the P-SaMI analyses when only 30% of the snapshots have
been docked. Consequently, it also is a promising opportunity
for reducing the overall execution time and preserving the
quality of the models produced.

It is worth mentioning that wFReDoW is only capable
of building an RFFR model, without losing the quality of
its original model, if the clustering methods used as input
data contain high affinity among the produced clusters of
snapshots from [6]. This means that wFReDoW, with its
features, is always able to improve the performance. However,
for improving the quality of the RFFR models produced, the
used clustering also needs to be of a high quality.

4.3. Amazon Cloud. The most significant advantage of shared
resources is the guaranteed access time of the resources wher-
ever you are and whenever you need. There is no competition
or restrictions for access to the machines. However, it is
necessary to pay for as many computing nodes as needed,
which are charged at an hourly rate. The rate is calculated for
what resources are being used and when; for example, if you
do not need computing time, you do not need to pay.

5. Conclusions

The main contribution of our article is wFReDoW, a cloud-
based web environment to faster handle molecular docking
simulations of FFR models using more than one compu-
tational approach cooperatively. wFReDoW includes the P-
SaMI data pattern to select promising snapshots and the
FReMI middleware that uses an HPC environment on the
Amazon EC2 instances to reduce the total elapsed time
of docking experiments. The results showed that the best
FReMI-only performance decreased the overall execution
time by about 94% with its respective serial execution.
Furthermore, wFReDoW reduced the total execution time
a further 10-30% from FReMI-only best execution without
affecting the quality of the produced RFFR models.

There are several possible ways to further improve the
efficiency of wFReDoW. One of the biggest limitations for
wFReDoW’s performance is that the Server Controller layer
runs in a web server located outside of Amazon EC2. Even
though we posted all docking input files inside wFReDoW
repository (inside FReMI layer) in advance, there are still a
large number of files that are transferred during the wFRe-
DoW execution. In this experiment, the time taken to transfer
these files was irrelevant since our FFR model holds only
3,100 snapshots. However, when using FFR models with hun-
dreds to thousands of snapshots, the time will be increased
significantly. A way to enhance the overall performance is
by the use of an EC2 instance to host the Server Controller
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layer. This would greatly reduce the time taken to transfer
the files from Server Controller to FReMI. Furthermore, the
Server Controller layer could also send only the docking
input files from promising snapshots during the wFReDoW
execution, contributing to the reduction in the amount of files
transferred and in the overall elapsed time.

wFReDoW was tested with a single ligand and an FFR
model containing only 3,100 conformations of InhA gener-
ated by an MD simulation. MD simulations are now running
on tens to hundreds of nanoseconds for the same model.
This could produce FFR models with more than 200,000
snapshots! wFReDoW should be tested with such models.
Additionally, it would be interesting to make use of other
ligands by means of investigation of public databases of small
molecules, such as ZINC [19].
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As the conventional means of analyzing the similarity between a query sequence and database sequences, the Smith-Waterman
algorithm is feasible for a database search owing to its high sensitivity. However, this algorithm is still quite time consuming.
CUDA programming can improve computations efficiently by using the computational power of massive computing hardware as
graphics processing units (GPUs). This work presents a novel Smith-Waterman algorithm with a frequency-based filtration method
on GPUs rather than merely accelerating the comparisons yet expending computational resources to handle such unnecessary
comparisons. A user friendly interface is also designed for potential cloud server applications with GPUs. Additionally, two data sets,
HINI protein sequences (query sequence set) and human protein database (database set), are selected, followed by a comparison
of CUDA-SW and CUDA-SW with the filtration method, referred to herein as CUDA-SWf. Experimental results indicate that
reducing unnecessary sequence alignments can improve the computational time by up to 41%. Importantly, by using CUDA-SWf
as a cloud service, this application can be accessed from any computing environment of a device with an Internet connection

without time constraints.

1. Introduction

The Smith-Waterman (SW) algorithm searches for a sequence
database to identify the similarities between a query sequence
and subject sequences [1, 2]. However, this algorithm is
prohibitively high in terms of time and space complexity;
the exponential growth of sequence databases also poses
computational challenges [3]. Owing to the computational
challenges of the Smith-Waterman algorithm, some faster
heuristic solutions (e.g., FASTA [4] and BLAST [5, 6]) have
been devised to reduce the time complexity yet degrading the
sensitivity of alignment results.

The feasibility of using massive computational devices to
enhance the performance of many bioinformatics programs
has received considerable attention in recent years, especially
many-core devices such as FPGAs [7-9], Cell/BEs [10-12],
and GPUs [13]. The recent emergence of GPUs has led to
the creation of hundreds of cores, with their computational

power having exceeded one TFLOPS and NVIDIA released
the CUDA programming environment [14], which allows
programmers to use a common programming language (e.g.,
C/C++) to develop GPU-related applications to enhance
the computing performance. Additionally, the feasibility of
using GPUs to accelerate the SW database search problem
has been widely studied, in which the pioneering work is
proposed by Liu et al. [15] to develop SW algorithm using
OpenGL for general-purpose GPUs (GPGPU). Following
the development of the CUDA programming model, SW-
CUDA [16] as the CUDA-based SW solution on GPUs
could run on multiple G80 GPUs. However, SW-CUDA
distributed the SW algorithm among multicore CPUs and
GPUs, making it a highly dependent CPU, owing to their
inability to utilize the entire computational power of GPUs.
Thereafter, CUDASW++ 1.0 [17], as designed for multiple
G200 GPUs, deployed all of the SW computations on GPUs
to fully utilize the powerful GPUs. In contrast to previous



works, CUDASW++ 2.0 [18] contributes to SW database
search problem and optimizes the SIMT abstraction in
order to outperform CUDASW++ 1.0. The previous research
significantly improves the performance of SW algorithm; in
addition, CUDASW++ 2.0 significantly reduces the search
time in protein database searches.

However, when using a sequence to query a protein
database, biologists do not require all results between the
query sequence and all database sequences; however, the
similarities are more than at a certain level. Therefore,
many computations can be omitted when performing protein
database searches if the minimal difference of all alignment
combinations can be known in advance, allowing us to
omit the extremely different combinations and retain the
possible combinations in order to perform the SW alignment.
Related research in recent years has heavily focused on
establishing the multicore of a multicomputer system. Having
received considerable attention in bioinformatics research,
cloud computing integrates a large amount of computational
power and storage resources, as well as provides different
services through a network, such as infrastructure as a
service (IaaS), platform as a service (PaaS), and software as
a service (SaaS). In these cloud services, users can access
desired services without location constraints. Therefore, a
cloud service focuses on acquiring services via a remote
connection through a network, such as the Amazon EC2 ser-
vice which is an TaaS and provides various virtual machines
with operating systems for users. Other service such as the
Google App Engine is a PaaS cloud computing platform for
developing and hosting web applications in Google-managed
data centers. Other services using the SaaS$ platform are those
such as G-mail or Dropbox services. This cloud computing
platform can be viewed as an extended SaaS concept, which
refers to customized software, made available via the Internet.
Thus, no real computing environments in a local client do not
need to be set up since these software applications do not need
to ask each end user to manually download, install, configure,
run, or use the software applications on their own computing
environments. By using cloud services, users can even use a
mobile device to complete their tasks, which could only be
completed on a PC previously.

This work implements an efficient CUDA-SW program
for a SW database search on GPUs. A real-time filtration
method based on the frequency distance [19], referred
to hereinafter as CUDA-SWH, is also designed to reduce
unnecessary computations efficiently. Before the database
search, a frequency vector is constructed for the query
sequence and the database sequences. Frequency distances
are then counted on GPUs for all combinations between
query and database sequences. Frequency distance refers to
the minimum difference between the query and database
sequence, allowing us to record frequency distance in order
to determine which combinations should be used to perform
a SW alignment and then output the alignment results.
Additionally, a friendly user interface (UI) is designed for the
potential cloud server with GPUs. Cloud service is combined
with GPU computing, in which the Saa$S concept through a
network is used and a Ul is provided to access the service.
In our test data sets, the CUDA-SWf can reduce up to
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41% of the computational time by comparing with CUDA-
SW. Moreover, CUDA-SWf is about 76x faster than its CPU
version.

The rest of this paper is organized as follows. Section 2
briefly describes the preliminary concepts for SW algorithm,
CUDA programming model, and related works for SW
algorithm on GPUs. Section 3 then introduces the method
of CUDA-SW algorithm and the implementations of the
frequency filtration method. Next, Section 4 summarizes
the experimental results. Conclusions are finally drawn in
Section 5, along with recommendations for future research.

2. Related Works

2.1. SW Algorithm. The SW algorithm is designed to identify
the optimal local alignment between two sequences by
estimating the similarity score of an alignment matrix. The
computation is based on a scoring matrix such as BLOSUM62
[20] or PAM250 [21] and on a gap-penalty function. Given
two sequences S; and S, whose lengths are [, and [,,
respectively, the SW algorithm calculates the similarity score
H(i, j) of two sequences ending at positions i and j of S; and
S,. Next, H(i, j) is computed, as shown in (1), for 1 <i < [},
1<j<l:

E(i,j)=max{E(i,j-1)-G,, H(i,j—1)-G; - G,},
F (i, j) = max{F (i-1,j) -G, H(i- 1,j) - G; - G},
H(i,j) = max{0,E(i,j),F(i,j), H(i—-1,j - 1)

+sc(8, [i],S, [])}
1)

where sc denotes the character substitution scoring matrix, G;
represents the gap opening penalty, and G, refers to the gap
extension penalty. A scoring matrix sc gives the substitution
rates of amino acids in proteins, as derived from alignments
of protein sequences.

The recurrences are initialized as H(i,0) = H(0,j) =
E(i,0) = F(0,j) = 0for0 < i < l;and0 < j < I,. The
maximum local alignment score refers to the maximum score
in H function. Estimating each cell in H function depends on
its left, upper, and upper-left neighbors, as shown by the three
arrows in Figure 1. Additionally, this data dependency implies
that all cells on the same minor diagonal in the alignment
matrix are independent of each other and can be calculated
in parallel. Thus, the alignment can be estimated in a minor-
diagonal order from the top-left corner to the bottom-right
corner in the alignment matrix, where calculating the minor
diagonal i only requires the results of minor diagonals i — 1
andi-2.

2.2. CUDA Programming Model (CUDA 3.2). Compute uni-
fied device architecture (CUDA) is an extension of C/C++,
in which users can write scalable multithreaded programs for
GPU computing field. The CUDA program is implemented
in two parts: host and device. The host is executed by CPU,
and the device is executed by GPU. The function executed
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Query sequence

Database sequence

FIGURE 1: Smith-Waterman method.

on the device is called a kernel. The kernel function can be
invoked as a set of concurrently executing threads, and it
is executed by threads. These threads are in a hierarchical
organization which can be combined into thread blocks and
grids. A grid is a set of independent thread blocks, and a
thread block contains many threads. The grid size is the
number of thread blocks per grid, and the block size is the
number of threads per thread block. Threads in a thread
block can communicate and synchronize with each other.
Threads within a thread block can communicate through
a per-block shared memory, whereas threads in different
thread blocks fail to communicate or synchronize directly.
Besides shared memory, four memory types are per-thread
private local memory, global memory for data shared by all
threads, texture memory, and constant memory. Of these
memory types, the fastest memories are the registers and
shared memories. The global memory, local memory, texture
memory, and constant memory are located on the GPU’s
memory. Besides shared memory accessed by single thread
block and registers only accessed by a single thread, the other
memory can be used by all of the threads. The caches of
texture memory and constant memory are limited to 8 KB
per streaming multiprocessor. The optimum access strategy for
constant memory is all threads reading the same memory
address. The texture cache is designed for threads to read
between the proximity of the address in order to achieve
an improved reading efficiency. The basic processing unit in
NVIDIAs GPU architecture is called the streaming processor.
Many streaming processors perform the computation on
GPU. Several streaming processors can be integrated into
a streaming multiprocessor. While the program runs the
kernel function, the GPU device schedules thread blocks
for execution on the streaming multiprocessor. The SIMT
scheme refers to threads running on the streaming multipro-
cessor in a small group of 32, called a warp. For instance,
NVIDIA GeForce GTX 260, each streaming multiprocessor
with 16,384 32-bit registers, has 16 KB of shared memory.
The registers and shared memory used in a thread block
affect the number of thread blocks assigned to the streaming
multiprocessor. Streaming multiprocessor can be assigned up

to 8 thread blocks. More details and other version of CUDA
can be found in the CUDA programming guides.

2.3. SW Algorithm on GPUs. The several platforms that the
SW algorithm has been implemented on include FPGAs,
Cell/Bes, and GPUs [7-18]. A query sequence compared with
all database sequences is more practical than with a single
sequence [22-26] (pairwise comparison). Many works have
implemented the SW algorithm on GPUs. Liu et al. [13] first
attempted to implement the SW algorithm on a GPU by
using OpenGL. The SW algorithm has subsequently been
implemented on NVIDIA graphics cards by using CUDA
[14, 16]. As for database searches, many efficient methods
implement the SW algorithm either by a thread called
intertask parallelization or by a thread block called intratask
parallelization [27]. By using intertask parallelization [27],
this work calculates the similarity score of each pair of input
sequences by a single thread. Additionally, a related work
developed a method to perform large sequence alignment,
not only a similarity score, but also alignment results, with
limitations on hardware [28]. Those works improved the
performance of the SW database search by using GPUs to
reduce the time spent. However, increasing the efficiency
of a database search is of priority concern. Performing a
protein database search involves finding the most similar
protein sequence in a specific database; biologists frequently
perform this task. However, many low-quality results are
available when performing all database comparisons, indicat-
ing the low similarity between query sequence and database
sequences. The ability to identify those sequences and distin-
guish them from deep comparisons will significantly decrease
the computational time. Additionally, the ability to qualify
a filtration algorithm under this circumstance allows us to
reduce computational resources and time. The most similar
sequence can be obtained by filtering out the dissimilarity
of characters, followed by a series of computations. When
sequences are filtered, the level of filtering depends on the
length of the query sequence. Longer database sequences
are generally preserved to prevent containment of the query
sequence. Hence, a longer query sequence implies a more
efficient filtering algorithm implemented in this work.

3. CUDA-SW and CUDA-SWf Methods

There are two methods, CUDA-SW and CUDA-SWI,
designed and implemented in this work. By integrating
the frequency-based filtration method [19], CUDA-SWf
performs better by reducing the comparisons than the
CUDA-SW. The CUDA-SWf algorithm can be divided into
three parts.

Part 1: Inputs Processing (Host, CPU). The inputs of CUDA-
SWtare a query sequence and a specific protein database with
a large amount of sequences. Before filtration on the device
(GPU) is performed, these inputs must be processed in the
following steps.

(1) For a query sequence, CUDA-SWTf records the query
string and the query length, referred to hereinafter as “Q,”
and “Q,,” respectively, followed by an analysis of the string



character structure to construct a frequency vector (FV) for
a query sequence named “Q,” The Q, is an integer array
with 26 indices that record the frequency of each alphabet
occurring in a string. Finally, Q, is stored in a character array,
Q, is stored as an integer, and Q, is stored in an integer array.

(2) For a protein database, CUDA-SWTF scans the entire
database and then records the sequence string and sequence
length for each database sequence, which is stored in the
host memory. All database strings are stored in three one-
dimensional arrays, referred to hereinafter as “D,;” “D;;” and
“D,, respectively. Notably, D, stores all characters of each
database sequence; D; stores the length of each database
sequence in Dg; D, stores the start position of each database
sequence in D,. The sequence length must be shorter than
2,000 characters; owing to that when executing the SW
algorithm, some data must be stored in the local memory;
in addition, local memory size for each thread is limited.
In this step, CUDA-SWf does not construct the frequency
vector for each database sequence; owing to that the database
contains a large amount of sequences and the cost is high
for constructing the frequency vector for each database
sequence on the host (sequentially). CUDA-SWI constructs
a frequency vector for each database sequence on the device
(GPU) when executing the filtration method (run time
filtration method).

Part 2: Implementation of the Frequency Filtration Method
(Device, GPU). Inputs on the host should first be transferred
from the host to the device. Because the query data are used
and not updated, the query string, Q,, query length, Q,,
and query frequency vector, Q,, are stored in the constant
memory. The size of database sequence data (D, D, and D,)
is too large and stored in the global memory.

When implementing the filtration method, assume that
two similar sequences found by SW algorithm may have
a certain number of the same characters. As restated,
counting the different characters can help to filter out the
dissimilar sequences by the enormous difference among
character structures. Counting the different characters for
each database sequence and query sequence is relatively easy;
CUDA-SWf allows a thread to analyze the difference between
the query and a database sequence. To analyze the differences
between query and database sequences, each thread must
construct an FV for a database sequence named “D,” Similar
to Q,, the D, value of each database sequence is also an
array with 26 indices to store the appeared frequency of each
alphabet. Next, counting the sum of the differences between
the number of each alphabet in the D, and Q, allows us to
calculate the differences in their character structure, which is
called frequency distance (FD). Frequency distance refers to
the minimum differences between two sequences. The details
of FV and FD can be found in the literature [19].

Finally, a variable “mismatch percentage (MP)” is avail-
able to determine whether to perform SW comparisons.
Notably, MP refers to the allowed maximum differences
ratio between a query and a database sequence; a small
value implies a strict filter due to the small FD allowed;
otherwise, it implies loose with large FD. When the FD value
between a query sequence and a database sequence is greater
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than MP, it refers to a situation in which the maximum
similarity ratio of these two sequences is not satisfied, and
this database sequence can be filtered out. When the FD
value between a query sequence and a database sequence is
lower than MP, it refers to a situation in which the maximum
similarity ratio of these two sequences may be satisfied, and
this database sequence should make a SW comparison with
the query sequence. An attempt is made to prevent database
sequences from having too long length, which would make
the sequences filtered out due to the large value of FD.
When calculating FD, if D; is longer than Q;, CUDA-SWf
will consider that this database sequence must be compared
with the query sequence by a SW algorithm. In doing so, a
situation can be avoided in which the query sequence is alocal
(partial) sequence of the database sequences.

Part 3: SW Comparison (Device and Host). Following selec-
tion of the frequency filtration method, CUDA-SWf performs
the SW comparison for each selected database sequence
with the query sequence. CUDA-SWf uses a thread to make
a SW comparison that is called intertask parallelization.
To improve the load balance and memory access pattern,
CUDA-SWf moves the selected database sequences to the
host memory before making SW comparisons for sorting
and rearranging the memory pattern for selected database
sequences for two subjects: (i) improved load balance for
each thread in the same thread block and (ii) coalesced
global memory access [17]. In the CUDA programming
model, a thread block occupies the resource of a streaming
multiprocessor (SM) until all threads in the same thread
block complete their computations. To improve the load
balance for interftask parallelism, CUDA-SWf must ensure
that all threads in the same thread block are assigned a similar
length of sequences to achieve a better load balance by sorting
the database sequences to assemble the sequences of a similar
length, as shown in Figure 2. In order to simply the work in
CUDA-SWI, the sorting is performed on CPU. After sorting
the database sequences, CUDA-SWf converts the memory
configuration from the row major to the column major, as
shown in Figure 3 in order to coalesced global memory
access. Therefore, all threads in a thread block can access
sequences in a continuous memory space. During implemen-
tation of the SW algorithm, the alignment sequences must
be stored in the global memory and then moved to the local
memory of a multiprocessor. The Fermi architecture has per-
SM L1 cache and unified L2 cache to service the load/store
to global memory; to maximize the performance of cache
memory, all threads in the same warp should access the
alignment data in global memory to maximize the efficiency
of cache memory.

To output the alignment result by the trace back path,
the original SW comparison must calculate and store the
values in a M x N matrix (M denotes the query length
and N represents the selected database sequence length),
explaining why its space complexity is O(N?), assuming that
M is equal to N. In this work, CUDA-SWf only reports the
similarity score, not alignment result, and does not need
to record the trace back path, explaining why its runtime
space complexity to each thread can decrease O(2N) and
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FIGURE 2: Sorting of the selected sequence to assemble the sequences
of a similar length for an improved load balance.

|

FIGURE 3: Memory patterns of sequences in the global memory.

suitable for using the intertask parallelization. Because each
thread service requires a selected sequence comparison to
perform the query sequence, the shared memory cannot load
all alignment data. CUDA-SWf thus stores the alignment data
of each thread in the local memory. In the Fermi architecture,
it is still efficient to store data in the local memory due to
L1/L2 cache. Notably, performance of the local memory is
not far away from that of the shared memory and is even
better than that of the shared memory when the bank conflict
occurs in shared memory. The SW comparison of each thread
can be divided to three steps: (i) create alignment data: when
the comparison is initiated, each thread must create two
integer arrays A and B, in which size denotes the length of a
selected sequence and stored in the local memory. Owing to
that the size limitation of local memory is 16 KB per-thread
and the maximum length of database sequence is 2,000. (ii)
Row by row comparison: CUDA-SWf can only output the
alignment similarity score. Array A is first assigned the value
of 0 and, then, each row cell can be calculated simultaneously
and the calculated score is stored in array B. Next, the values
in array B are moved to array A. Finally, the next row is
calculated until all comparisons are finished. (iii) Store the
maximum score and final output: when each row comparison
is completed, CUDA-SWf confirms the maximum score and
records it; finally, CUDA-SWI stores the maximum score in
the global memory and, then, moves it to the host memory
and finally outputs the database sequences that are similar to
the query sequence. The flowchart of CUDA-SWT is shown
in Figure 4. The CUDA-SW method is similar to CUDA-SWf
without the frequency filtration method.

4. Results

CUDA-SWf was implemented on NVIDIA Tesla C2050
(G400 GPU) with 14 streaming multiprocessors, consisting
of 448 CUDA cores and 2.5 GB RAM. The host (CPU) is Intel

Host Device

Load database
Load query

Sort database
Find max

Program by C

Scoring matrix

Part 1 Part 2

Filter sequences

Smith-Waterman

Part 3

i

Program by CUDA

FIGURE 4: Flowchart of CUDA-SWI.

Xeon E5506 2.13 GHz with 12GB RAM running on Linux
operation system. The protein sequence database was human
protein database downloaded from NCBI (http://www.ncbi.
nlm.nih.gov/); the query sequences were selected from the
HINI virus database from the Influenza Virus Resource from
NCBI (http://www.ncbi.nlm.nih.gov/genomes/FLU/FLU.ht-
ml). The testing data sets include the following: (1) 32,799
protein sequences of human with an average length of 555 as
the database, and (2) HINI virus protein sequences that were
randomly selected from the NCBI HINI virus database, and
the length brackets are 100, 200, 300, 400, 500, 600, and 700
as query sequences. After deleting the protein sequence with
length larger than 2,000, there are 32,133 human sequences
used in the following tests. The gap open penalty was set to
10.0; the gap extension penalty was set to 2.0; the scoring
matrix was BLOSUM62. Next, the MP was set to 10%, 30%,
50%, and 100%, implying the number of different characters
between query sequence and database sequences. When the
MP is set to 100%, it means that no filtration method is used
in CUDA-SWT. The number of threads in a thread block is set
to 128; the number of thread blocks depends on the number
of sequences that must be compared with query sequences.

Table 1 shows the overall computation time of CPU
version of SW algorithm, CUDA-SW, and CUDA-SWf for
human protein database and HINI virus sequences under
various query sequence lengths with MP of 10%. The overall
computation time of CUDA-SWHT is the sum of computation
time in each part. Table 1 indicates that the proposed
frequency filtration method can reduce up to 46% of the
computation time by filtering out the database sequences in
which the minimum different ratio exceeds 10%. Besides,
there are two observations in Table 1. First, the computation
time increases when the query sequence (HIN1 virus) length
increases. The time complexity of SW algorithm is propor-
tional to the query sequence length. Second, the improved
ratio increases when the query sequence length increases. The
reason is that the number of filtered database sequences is few
when the query sequence length is short. When the query
sequence length is short, most of database sequences have
larger length than it, and they should make SW comparisons
in Part 3 of CUDA-SWH.
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TABLE 1: Overall computation time of CPU version of SW algorithm, CUDA-SW, and CUDA-SWf with MP (10%).

HINI virus query CPU version of SW CUDA-SW CUDA-SWf Improved ratio

sequence length (bp) (second) (second) (second) (CUDA-SWf versus CUDA-SW)

100 49.91 6.79 6.68 1.62%

200 97.84 7.04 6.25 11.22%

300 145.6 7.27 5.71 21.46%

400 193.62 7.52 5.02 33.24%

500 243.56 777 4.71 39.38%

600 293.43 8.02 4.52 43.64%

700 343.31 8.29 4.48 45.96%

Table 2 shows the overall computation time of CUDA-
SW for human protein database and HIN1 virus sequences
under various MPs with the query length of 700. Table 2
indicates that the number of selected database sequences
decreases when the MP decreases. When MP is 100%,
there are 32,133 human protein sequences selected to make
following SW comparisons; when MP is 10%, only 21.8% of
32,133 human protein sequences can be selected. Therefore,
the computation time of CUDA-SWT is reduced from 8.27 to
4.4 (near to 47% improved ratio). When doing the filtration
method, extra computation time is needed for CUDA-SWf
to construct FV and calculate FD for each database sequence
and sorting database sequences on the host. From Table 2, the
best score can be found by CUDA-SWf under various MPs. It
implies that the frequency filtration method in CUDA-SW is
suitable for database search problem. Besides, in Table 2, the
worst score found by CUDA-SWf when MP is 10% is closer
to that when MP is 100%. This phenomenon indicates that
a selected database sequence with low FD may have large
difference to a query sequence. Therefore, the FD can be used
to filter out the dissimilar sequences; however, it cannot be
used to determine the similarity score.

Figure 5 shows the speedup ratio of CUDA-SW and
CUDA-SWIf by comparing with CPU version of SW algo-
rithm for Human protein database and HIN1 virus sequences
under various query sequence lengths with MP of 10%. From
Figure 5, the speedup ratios of CUDA-SW range from 7x
to 41x; the speedup ratios of CUDA-SWf range from 7x to
76x. The improvement is significant when the query sequence
length is larger than 400 due to large number of database
sequence filtered out.

For the user interface, this work constructs a workbench
for CUDA-SWf with QT Creator 2.4.1 (http://qt.nokia.com/
/products) on Ubuntu 10.04.1, as shown in Figure 6. As a
cross-platform application framework, QT is used to design
the same Ul for different operating systems then through
a network, which transfer the input data to a cloud server.
Figure 6 reveals 7 steps to run the CUDA-SWf method.

Step 1 (select the scoring matrix). Notably, the scoring matrix
is needed when doing the SW comparison. Five matrices
are provided in this work: Blosum50, Blosumé62, Blosum80,
PAMI100, and PAM250.

TaBLE 2: Overall computation time of CUDA-SWf with query
sequence length (700).

Number of Differences Differences CUDA-SWf

MP selected database
(worst score) (best score)  (second)

sequences
100% 32,133 3,542 1,169 8.27
50% 17,913 3,542 1,169 5.77
30% 8,578 3,536 1,169 4.63
10% 7,007 3,525 1,169 4.4

Speedup ratio

100 200 300 400 500 600 700
Query sequence
B CUDA-SW
B CUDA-SWf

FIGURE 5: Speedup ratio of CUDA-SW, and CUDA-SWf with MP
(10%).

Step 2 (select the gap penalty). Users can select the desired
penalty. The open gap penalty range is 5~20, and the gap
extension penalty range is 0~10.

Step 3 (select query sequence). Users select a sequence as a
query sequence. If a new query file is available, a new file can
be created using File(F)->New(N).

Step 4 (select the database). A database can be selected or
created by the button “Create FV file” Users can download
the database from NCBI. Also, a new database can be created
using the button, in order to implement the frequency
filtration method. This button creates two files: the first one
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F1GURE 6: Workbench of CUDA-SWH.

is the new database sorted by length; and the second one is
the FV file by the new database file.

Step 5 (select the filter ratio (MP)). Filter ratio can allow
users to determine how strict the CUDA-Swf is used with
the filtration method. Users can choose from 10% ~100%.
10% refers to the sequences with those with more than 90%
similarity to be computed.

Step 6 (select the FV file). Users select the FV file to be created
at Step 4, which helps to execute the frequency filtration
method.

Step 7 (execute CUDA-SWf). Two modes can be selected,
CPU or GPU. GPU version requires CUDA. Following their
execution, the result window is shown (Figure 7). The empty
text line displays a message with some errors.

The workbench for CUDA-SWIF is freely available to
download at http://163.25.101.18/~ppcb/main/research/CU-
DASWEhtml.

5. Conclusions

This work designs and implements a novel CUDA-SWf
method to solve the Smith-Waterman database search prob-
lem with a frequency-based filtration method and CUDA.
The proposed method focuses on the intratask parallelization
to calculate the frequency distance and perform Smith-
Waterman comparisons on a single GPU. Experimental
results demonstrate that the proposed CUDA-SWf method
achieves up to 76x speedup ratio under a single GPU for the
computation time. Moreover, CUDA-SWf can improve the
computational time by up to 41% than CUDA-SW without
the frequency filtration method. These results demonstrate
that CUDA-SWT can accelerate the Smith-Waterman algo-
rithm on GPUs, and the novel idea is still worth to be

=)

FIGURE 7: Result window of CUDA-SWH.

designed and proposed in order to enhance the performance
of CUDA applications.
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Next generation sequencing and other high-throughput experimental techniques of recent decades have driven the exponential
growth in publicly available molecular and clinical data. This information explosion has prepared the ground for the development
of translational bioinformatics. The scale and dimensionality of data, however, pose obvious challenges in data mining, storage, and
integration. In this paper we demonstrated the utility and promise of cloud computing for tackling the big data problems. We also
outline our vision that cloud computing could be an enabling tool to facilitate translational bioinformatics research.

1. Introduction

The rate of accumulation of biomolecular data is increasing
astonishingly. This information explosion is being driven by
the development of low-cost, high-throughput experimental
technologies in genomics, proteomics, and molecular imag-
ing, amongst others. Success in the life sciences will depend
on our ability to rationally interpret these large-scale, high-
dimensional data sets into clinically understandable and use-
ful information, which in turn requires us to adopt advances
in informatics. Translational informatics, given the available
data resources, is now evolving as a promising methodology
that can drive the translation of laboratory data at the bench
to health gains at the bedside. This “translation” involves
correlating genotype with phenotype, which often requires
dealing with information at all structural levels ranging from
molecules and cells to tissues and organs, individuals to
populations.

2. Translational Bioinformatics:
Imperative to Collaborate

According to the scale of investigation, the fields of trans-
lational informatics can be roughly classified into four sub-
disciplines [1]: (1) bioinformatics (molecules and cells);
(2) imaging informatics (tissues and organs); (3) clinical

informatics (individuals); and (4) public health informatics
(populations). Each of the subfields is directed at a particular
level of research scale. Tablel outlines the spectrum of
translational bioinformatics activities. The four subfields of
translational bioinformatics are compared along several
dimensions, including (1) areas of research purpose; (2) data
types; (3) informatics tools to support practice.

Bioinformatics traditionally concerns applying computa-
tional approaches to the analysis of massive data from geno-
mics, proteomics, metabolomics, and the other “-omic” sub-
fields. Such research might help better comprehend the intri-
cate biological details at molecular and cellular levels. Imag-
ing informatics is focused on what happens at the level of
tissues and organs. The essential informatics techniques to
extract and manage the biological knowledge from images are
summarized in Table 1. At the individual level, clinical bioin-
formatics is oriented to provide the technical infrastructure
to understand clinical risk factors and pathophysiological
mechanisms. As for public health informatics, the stratified
population of patients is at the center of interest. Such
research relies on informatics solutions to study shared risk
factors for disease on a population level.

Ateach of these levels, large amounts of experimental data
are being generated. To fully understand a disease pheno-
menon, however, it is important to gather data at various lev-
els and analyze them in an integrated fashion. While the four
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TABLE 1: Spectrum of translational bioinformatics activities.

Subfields Research purpose Data types Informatics tools
Sequencing Sequence information Pattern recognition [45-47]
Structure analysis Microarray Data mining [48-50]

Bioinformatics Expression analysis Mass spectrum Machine learning [47, 51, 52]
Phylogenetic analysis SNP Visualization [53-55]
Structure modeling Haplotypes Automatic annotation [49, 55-58]
Image feature identification DICOM
Image segmentation JPEG

Imagine informatics Image reconstruction TIFF Content-based image retrieval [59, 60]

Bing Image annotation PNG Natural language processing [61, 62]

Image indexing GIF
Image visualization BMP

Clinical informatics

Clinical decision support
Clinical information access

Electronic patient record system

Disease reclassification

Clinical laboratory results
Physical examination
Symptoms and signs

Patient history
Prescriptions

Probabilistic decision-making [63]
Expert reasoning system [64-66]
Assessment and validation vocabularies
(67, 68]

Text-parsing tools [69]

Tracking of infectious diseases
Assessment clinical interventions
Monitoring disease risk factors

Public health
informatics

PHCDM-based health
information

Access control [70, 71]

Information security technology [37, 72]
Semantic and syntactic standards [73]
Structured data-collection techniques
(74, 75]

areas of research differ in their scientific foundations, they
nevertheless share a core set of informatics methodologies,
such as data acquisition systems, controlled vocabularies,
knowledge representation, simulation and modeling, infor-
mation retrieval, and signal and image processing, which
provide a basis for their intersection.

3. Crisis Looms for
Multidisciplinary Collaboration

The current push for personalized disease treatment is enco-
uraging bioinformatics to seamlessly integrate data acquired
from multiple levels of investigation, from molecular scale to
organisms and tissues and further to individuals and popu-
lations. To achieve this goal, multidisciplinary collaboration
between the fundamental aspects of translational informatics
(e.g., bioinformatics, imaging informatics, clinical informat-
ics, and public health informatics) has become essential.

However, the large scale and high dimensionality of data
have posed obvious challenges in data mining, storage, and
integration. Traditionally, basic research, clinical research,
and public health are seen as different worlds based on
distinct or incompatible principles. Data transfer, access con-
trol, and model building rank are among the most pressing
challenges.

4. Cloud Computing to the Rescue

Recent studies and commentaries [2-6] have proposed cloud
computing as a solution that addresses many of the lim-
itations mentioned above. Cloud computing is a relatively
recent invention. It refers to a flexible and scalable internet
infrastructure where processing and storage capacity are

dynamically provisioned. The basic idea of cloud computing
is to divide a large task into subtasks, which can then
be executed on a number of parallel processors. A key
technology with the cloud is the virtual machine (VM) that
can be prepackaged with all software needed for a particular
analysis.

Large utility-computing services have been emerging in
the commercial sector, for example, the Amazon Elastic
Compute Cloud (EC2) (http://aws.amazon.com/ec2/) [7],
and noncommercial public cloud computing platforms also
exist to support research, such as the IBM/Google Cloud
Computing University Initiative [8] launched by Google and
IBM.

Cloud computing infrastructures offer a new way of
working. It features a special parallel programming model
(e.g., MapReduce [9] designed by Google) to efficiently scale
computation to many thousands of commodity machines.
These commodity machines form a cluster that can be
rented over the internet. Applications in the cloud have also
benefited from hadoop (http://hadoop.apache.org/) [10], an
open-source implementation of MapReduce. Since it is easy
to fine tune and highly portable, Hadoop, together with
MapReduce, has been widely used for large-scale distributed
data analysis in both academy and industry.

Cloud computing infrastructures offer a highly flexible
and economical means of working. Cloud computing pro-
vides scalable, flexible access to larger computer processing
power and storage and avoids the fixed cost of capital invest-
ments in local computing infrastructures, computing main-
tenance, and personnel. The end users are essentially renting
capacity on their demand [11].

Cloud computing allows the sharing of data in real-time
collaboration with other users. It addresses one of the chal-
lenges related to transferring and sharing data. Researchers
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TABLE 2: Application of cloud computing in bioinformatics research.

Software Website Description Reference

ArrayExpressHTS  http://www.ebi.ac.uk/Tools/rwiki/ RNA-Seq data processing and quality [76]
assessment

Bioscope http://www.lifescopecloud.com/ Reference-based read mapping [77]

Cloud-MAQ http://sourceforge.net/projects/cloud-magq/ Read mapping and assembly (78]

CloudAligner http://sourceforge.net/projects/cloudaligner/ Read mapping [79]

CloudBurst http://cloudburst-bio.sourceforge.net/ Reference-based read mapping (6]

CloudCoftee http://www.tcoffee.org/homepage.html Multiple sequence alignment [20]

Contrail http://contrail-bio.sourceforge.net/ De novo read assembly [80]

Crossbow http://bowtie-bio.sourceforge.net/crossbow/ Read mapping and SNP calling (4]
RNA-Seq data analysis for gene

FX http://fx.gmi.ac.kr/ expression levels and genomic variant (81]
calling

GeneSifter http://www.geospiza.com/Products/AnalysisEdition.shtml SCeL;iti(C)Iersler—oriented NGS data analysis [82]

Myrna hitp://bowtie-bio.sf.net/myrna/ Differential expression analysis for [83]
RNA-Seq data

PeakRanger http://www.modencode.org/software/ranger/ Peak caller for ChIP-Seq data [84]

Roundup http://rodeo.med.harvard.edu/tools/roundup/ Op timi.zed computation for comparative [19]
genomics

SeqMapReduce http://www.seqmapreduce.org/ Read mapping [85]

. Gene set analysis for biomarker
YunBe http://tinyurl.com/yunbedownload/ ‘dentification [86]

can store their data in the cloud with high availability.
For example, Amazon web services provide free access to
many useful data sets, for example, the Ensembl [12] and
1000 Genomes data [13]. In addition, the users can have
thousands of on-demand powerful computers ready to run
their analysis. To this end, cloud computing has the potential
to facilitate large-scale efforts in translational data integration
and analysis.

5. Translational Bioinformatics Research
in the Cloud

There is considerable enthusiasm in the bioinformatics com-
munity to deploy open-source applications in the cloud.
Various services provided by cloud-computing vendors are
described below.

5.1. Cloud-Based Application in Bioinformatics. Numerous
of studies have reported the successful application cloud
computing in bioinformatics research. Most of these cloud
computing applications deal with high-throughput sequence
data analysis. CloudBLAST [14] is the first cloud-based
implementation to solve sequence analysis problems. Other
projects have since been launched on the cloud. Some
initiatives have utilized preconfigured software on cloud sys-
tems to support large-scale sequence processing. Some tools
are available for sequence alignment, short read mapping,
SNP identification, genome annotation, and RNA differential
expression analysis, amongst others (Table 2). Efforts in

comparative genomics [15-20] and proteomics [21] have also
incorporated the cloud to expedite their data processing.

5.2. Cloud-Based Application in Imaging Informatics. The
volumes of high-resolution and dynamic imaging data can be
estimated to reach petabytes, which indicates that the image
reconstruction and analysis is computationally demanding.
Cloud-computing is an obvious potential contributor to this
end. Image clouds would enable multinational sharing of
imaging data, as well as advanced analysis of imaging data
away from its place of origin.

Many studies have shown the utility of MapReduce for
solving large-scale medical imaging problems in a cloud
computing environment. For example, Meng et al. [22]
developed an ultrafast and scalable image reconstruction
technique for 4D cone-beam CT using MapReduce in a cloud
computing environment. Avila-Garcia et al. [23] proposed
a cloud computing-based framework for colorectal cancer
imaging analysis and research for clinical use. Silva et al.
[24] implemented a set of DICOM routers interconnected
through a public cloud infrastructure to support medical
image exchange among institutions.

Imaging clouds is also making unprecedentedly large-
scale imaging research feasible. For example, Euro-Bioimag-
ing [25], a pan-European research infrastructure project aims
to deploy a distributed biological and biomedical imaging
infrastructure in Europe in a coordinated and harmonized
manner. It is expected to offer platforms for storing, remotely
accessing, and post-processing imaging data on a large scale.



5.3. Cloud-Based Application in Clinical Informatics. A major
challenge for clinical bioinformatics pertains to the accom-
modation of the range of heterogeneous data into a single,
queryable database for clinical or research purposes. Elec-
tronic health record (EHR), an integrated clinical informa-
tion storage systems, has recently emerged and stimulated
increased research interest. EHR is a record in digital format
that is capable of organizing clinical data by phenotypic
categories. An ideal EHR provides complete personal health
and medical summary by integrating personal medical infor-
mation from different sources. The inclusion of genetic
imaging and population-based information in EHR has the
potential to provide patients with valuable risk assessment
based on their genetic profile and family history and to carve
a niche for personalized cancer management.

The potential benefits of cloud computing facilitating
EHR sharing and EHR integration have been realized. With
cloud computing, EHR service could store data into cloud
servers. In this way the resources could be flexibly utilized
and the operation cost can be reduced. It is envisioned that
through the internet or portable media, cloud computing
can reduce electronic health record startup expenses, such
as hardware, software, networking, personnel, and licensing
fees and therefore will promise an explosion in the storage of
personal health information online [26-29].

Many previous studies proposed different cloud-based
frameworks in an attempt to improve EHR. Among them,
Chen et al. [30] proposed a new patient health record access
control scheme under cloud computing environments which
allows accurate access to patient health record with security
and is suitable for enormous multiusers. Chen et al. [31]
proposed an EHR sharing and integration system in health-
care clouds. Doukas et al. [32] presented the implementation
of a mobile system that enables electronic healthcare data
storage, update and retrieval using cloud computing. Rolim
et al. [33] proposed a cloud-based solution to automate
processes for patients’ vital data collection via a network of
sensors connected to legacy medical devices and to deliver
the data to a medical center’s cloud for storage, processing,
and distribution. The system provides users with real-time
data accessibility labor work to collect, input, and analyze the
information. Rao et al. [34] introduced a pervasive cloud-
based healthcare application called Dhatri, which leveraged
the power of cloud computing and mobile communications
technologies to enable physicians to access real-time patient
health information from remote areas.

Besides academic researches described above, multi-
ple commercial vendors are competing on this relatively
new market. Many world-class commercial companies have
heavily invested in the cloud, offering personal medical
records services, such as Microsoft’s HealthVault [35], which
is currently the largest commercial personal health report
platform.

5.4. Cloud-Based Application in Public Health Informatics.
Public health informatics heavily relies on the data exchange
between public health departments and clinical providers.
However, public health’s information technology systems lack
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the capabilities to accept the types of data proposed for
exchange. Data silos across organizations and programs will
present a set of challenges. With cloud services, however,
public health applications, software systems, and services
would be made available to health departments, therefore
facilitating the exchange of specified types of data between
different organizations. In addition, through remote hosting
and shared computing resources, public health departments
could overcome the problem of funding constraints and
insufficient infrastructure for public health systems.

6. Concerns and Challenges for
the Biomedical Cloud

Cloud computing offers new possibilities for biomedical
research, as data can now be easily accessed and shared.
Despite the potential gains achieved, there are also several
important issues to be addressed before the cloud computing
can become more popular. The most significant concerns
pertain to information security and data transfer bottlenecks.

6.1. Information Security and Privacy. Lately, many health-
care organizations are looking to move data and applications
to a cloud environment. While this offers flexibility and easy
access to computational resources, it also introduces security
and privacy concerns, which are particularly evident in fields
such as clinical informatics and public health informatics.
Highly specialized data, such as clinical data from human
studies, have exceptional security needs. Hosting such data
on publicly accessible servers may increase the risk of security
breaches. There are additional privacy concerns relating to
personal information. Therefore these data must be posted
according to privacy and security rules, such as the Health
Insurance Portability and Accountability Act (HIPAA) [36].
For a biomedical cloud to be viable, a secure protection
scheme will be necessary to protect the sensitive information
of the medical record. For example, sensitive data will have to
be encrypted before entering the cloud. Also, only authorized
users are allowed to place and acquire sensitive security
metadata in the cloud. More advanced encryption measures
as well as access control schemes need to be deployed under
cloud computing environments.

So far, some research efforts have been made to build
security and privacy architectures for biomedical cloud com-
puting [37, 38]. Main cloud service providers (e.g., Amazon,
Microsoft, and Google) have also made commitments to
develop best practices to protect data security and privacy.

6.2. Data Transfer Bottlenecks. Another major obstacle to
moving to the cloud is the time and cost of data transfer.
Biomedical research institutions may need to frequently
export or import large volumes of data (on the order of
terabytes and soon to be petabytes) to and from the cloud.
Given the size of the data set, one may find that there is a
data transfer bottleneck. Networking bandwidth limitation
causes delays in data transfer and incurs high bandwidth
costs from service providers. Bandwidth costs might be
low for smaller internet-based applications that are not
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data intensive. However, as applications continue to become
more data intensive, these costs can quickly add up, making
data transfer costs an important issue. For applications that
require substantial data movement on a regular basis, cloud
computing currently does not make economic sense.

7. Future Developments and Applications

As discussed above, the future of translational medical bioin-
formatics will depend on integration of diverse data types
of patient characteristics. It is therefore crucial to develop
an open, data-sharing environment. We suggest that future
initiatives should include (1) development of standards to
facilitate informational exchange, (2) integration of databases
to allow cross-referencing of multilevel data.

7.1. The Need for Standardized Data Formats. Data exchange
across the subfields of translational bioinformatics is often
difficult because the data come from heterogeneous infor-
matics platforms and are stored in different formats (e.g.,
numerical values, free text, and graphical and imaging
material). The high dimensionality of potential data types
mandates standards to represent data in a uniform manner.
To work toward this goal, integrated medical/biological
terminologies and ontologies have to be adopted, together
with advanced semantic-based models and natural language
processing (NLP) techniques to objectively describe medical
and biomolecular findings.

Numerous attempts have been made in developing
standards for data integration in specialized domains. For
example, minimum information about microarray experi-
ment (MIAME) [39] is a standard developed to represent
and exchange microarray data. In the field of imaging
informatics, existing standards include the foundational
model of anatomy clinical community, and digital imaging
and communications in medicine (DICOM) [40]. Health
level 7 (HL7), clinical data standards interchange con-
sortium (CDISC), systematized nomenclature of medicine
(SNOMED) and the international statistical classification of
diseases and related health problems (ICD-10) represent the
standard for clinical community.

These community-specific standards alone, however, are
not sufficient to enable intercommunity data sharing. In
this regard, the development of integrated standards will be
essential. While it is unlikely to develop a single standard to
cover all domains, semantic mapping between terminologies
seems more practical. Several pioneering medical informat-
ics projects are underway to define such intercommunity
standard. For example, the ACGT project [41] launched
by the European Union developed a set of methodological
approaches as well as tools and services for semantic integra-
tion of distributed multilevel databases.

7.2. The Need for Unified Databases. Currently different layers
of biomedical data are stored within databases that are
highly distributed, and often not interoperable. Even the
databases that hold large data sets are often specialized and
fragmented, obstructing the path to information sharing. We

need database integration to allow cross-referencing of mul-
tilevel data for research or clinical purposes. Opportunities to
develop integrated storage systems are increasing as a result of
participatory initiatives. Funded by the US National Institutes
of Health (NIH), many local platforms in the biomedical
informatics space have been established to support data
sharing, including informatics for integrating biology and
the bedside (i2b2) [42], cancer biomedical informatics grid
(caBIG) [43], and biomedical informatics research network
(BIRN) [44].

NIH-funded i2b2 Center developed an open-source scal-
able informatics framework that integrates clinical research
data from medical record and genomic data from basic
science research. This platform helps better understand the
genetic bases of complex diseases. To date, i2b2 has been
deployed by over 70 sites internationally. caBIG aims to
provide open source standards for data exchange and inter-
operability in cancer research. At the heart of the caBIG
approach is a grid middleware infrastructure called caGrid.
caGrid is a service-oriented platform that provides the tools
for organizations to integrate data silos, securely share data,
and compose analysis pipelines. caBIG enjoys widespread
adoption throughout the cancer community. BIRN is an
initiative funded by NIH to provide infrastructure, software
tools, strategies, and advisory services for sharing biomedical
research across disparate groups. These efforts contributed
to the transfer and integration of distributed, heterogeneous
and multilevel data across the major realms of translational
bioinformatics.

8. Conclusion

Biomedical cloud, given the proper architecture, could inte-
grate all the petabytes of available biomedical informatics
data in one place and process them on a continuous basis.
In this way, we would continuously observe the connections
between genotypic profiles and phenotypic data. We can envi-
sion that the cloud-supported translational bioinformatics
endeavors will promote faster breakthroughs in the diagnosis,
prognosis, and treatment of human disease.
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