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Editorial
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Many, if not most of the quantum states which consti-
tute the building blocks of nature, are unstable and decay
spontaneously. As such they require a special treatment in
quantum mechanics which displays new effects as compared
to a classical theory. Examples of such unstable states can
be found in the Standard Model of particle theory includ-
ing quarks, heavy gauge bosons, leptons heavier than the
electron, baryons heavier than the proton, and all mesons
made up from a quark and an antiquark. In nuclear physics
the word “radioactivity” is a synonym for the instability of
the nuclei which either de-excite emitting a photon, decay
via a cluster emission (of which the alpha decay is the most
famous and the best studied example of a quantum tunneling
process) or undergo the weak transition known as beta decay
or inverse beta decay. In atomic physics, excited states are
indeed considered as unstable and in a similar way we could
treat excitedmolecules. Finally, thewhole universe can tunnel
from a false vacuum into a lower lying energy state which
from the point of view of quantum mechanics is understood
as a spontaneous decay. Indeed, in quantum mechanics a
decay process is quite natural as any state will decay unless
we have a conservation law (symmetry) which forbids it.
Quantum mechanics allows also a unified treatment of the
spontaneous decay which can be applied to all unstable
states and exhibits new phenomena (“new” as compared to
the classical “exponential decay”) at short and large times.
At small times the exponential decay law is replaced by a
power law and is closely related to the Zeno and anti-Zeno

effectwhich loosely speaking states that “watched states decay
differently,” a fact which can be even applied in cosmology.
�is behavior is followed by the exponential decay law. At
large times, the latter again gets replaced by a new power
law preceded by a transition region in which the survival
probability can grow locally. �is also finds applications in
cosmology. �e deviations from the exponential decay are a
genuine quantum effect.

�e ramifications of the spontaneous decay process in
understanding nature and its applications are widely spread.
It is the photon emission of excited atoms which gives
information of the matter far away from our sun. It is the beta
decay which plays a decisive role in the nucleosynthesis of
elements heavier than iron. It is the alpha decay of thorium
and uranium which in part heats up the inner core of the
earth, making it fluid, allowing for the continental dri� and
the magnetic field. It is the inverse beta decay supplying us
with the positron needed in medical tomography whose one
version relies on the decay of the positronium.

�e present special issue consists of articles which deal
with instability from a scale as small as that of elementary
particles to that of the universe itself. On the way, the authors
discover interesting phenomena related to the effects of
relativity, violation of symmetries, and the bizarre behaviour
of the universe under certain conditions. Chen andWang, for
example, consider the tunneling of the universe within the
scenario of an inhomogeneous quantum vacuum and, calcu-
lating the tunneling amplitude of the universe from nothing,
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they find that the inhomogeneity leads to a faster tunneling.
In contrast to this approach which uses the Friedmann-
Lemaitre-Robertson-Walker metric, M. Gogberashvili con-
siders a different approach using Einstein’s static universe
metric and investigates the effects of the strong static gravi-
tational field. A. Stachowski et al. bring in a new player, the
metastable dark energy, in the investigation of the evolution
of the universe. G. J. M. Zilioti et al. attempt to resolve some
cosmological puzzles within decaying vacuum models. A
completely different approach using concepts from statistical
physics is introduced by Z. Haba to study the evolution of the
expanding universe. Going over to smaller scales, the paper
by T. V. Obikhod and I. A. Petrenko studies the properties of
new particles predicted by the theories of extra dimensions.
�e survival probabilities of moving unstable particles are
considered by E. V. Stefanovich, F. Giraldi, and F. Giacosa
in three different papers. �e feasibility of testing the time
reversal symmetry in a purely leptonic system is reported
by the Jagellonian-PET team from their pilot measurement
involving the three photon decay of a positronium atom.
Finally, the probability distribution of tunneling times of
particles in connection with the recent laser induced tunnel
ionization experiments is presented by J. T. Lunardi and L. A.
Manzoni.
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This article reports on the feasibility of testing of the symmetry under reversal in time in a purely leptonic system constituted by
positronium atoms using the J-PET detector. The present state ofT symmetry tests is discussed with an emphasis on the scarcely
explored sector of leptonic systems. Two possible strategies of searching for manifestations ofT violation in nonvanishing angular
correlations of final state observables in the decay of metastable triplet states of positronium available with J-PET are proposed and
discussed. Results of a pilot measurement with J-PET and assessment of its performance in reconstruction of three-photon decays
are shown along with an analysis of its impact on the sensitivity of the detector for the determination of T-violation sensitive
observables.

1. Introduction

The concept of symmetry of Nature under discrete transfor-
mations has been exposed to numerous experimental tests
ever since its introduction by E. Wigner in 1931 [1]. The
first evidence of violation of the supposed symmetries under
spatial (P) and charge (C) parity transformations in theweak
interactions has been found already in 1956 and 1958, respec-
tively [2, 3]. However, observation of noninvariance of a

physical system under reversal in time required over 50 years
more and was finally performed in the system of entangled
neutral B mesons in 2012 [4]. Although many experiments
proved violation of the combined CP symmetry, leading to
T violation expected on the ground of the CPT theorem,
experimental evidence for noninvariance under time reversal
remains scarce to date.

The Jagiellonian PET (J-PET) experiment aims at per-
forming a test of the symmetry under reversal in time
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in a purely leptonic system constituted by orthopositron-
ium (o-Ps) with a precision unprecedented in this sector.
The increased sensitivity of J-PET with respect to previous
discrete symmetry tests with o-Ps→3𝛾 is achieved by a
large geometrical acceptance and angular resolution of the
detector as well as by improved control of the positronium
atoms polarization. In this work, we report on the results of
feasibility studies for the planned T violation searches by
determination of angular correlations in the o-Ps→3𝛾 decay
based on a test run of the J-PET detector.

This article is structured as follows: next section briefly
discusses the properties of time and time reversal in quantum
systems. Subsequently, Section 3 provides an overview of
the present status and available techniques of testing of the
symmetry under reversal in time and points out the goals of
the J-PET experiment in this field. A brief description of the
detector and details of the setup used for a test measurement
are given in Section 4. Section 5 discusses possible strategies
to test the time reversal symmetry with J-PET. Results of the
feasibility studies are presented in Section 6 and their impact
on the perspectives for a T test with J-PET is discussed in
Section 7.

2. Time and Reversal of Physical
Systems in Time

Although the advent of special relativity made it common
equate time with spatial coordinates, time remains a distinct
concept. Its treatment as an external parameter used in
classical mechanics still cannot be consistently avoided in
today’s quantum theories [5]. As opposed to position and
momentum, time lacks a corresponding operator in standard
quantum mechanics and thus, countering the intuition,
cannot be an observable. Moreover, a careful insight into the
time evolution of unstable quantum systems reveals a number
of surprising phenomena such as deviations fromexponential
decay law [6, 7] or emission of electromagnetic radiation
at late times [8]. The decay process, inevitably involved in
measurements of unstable systems is also a factor restrict-
ing possible studies of the symmetry under time reversal
[9].

While efforts are taken to define a time operator, obser-
vation of CP violation in the decaying meson systems
disproves certain approaches [10]. Alternatively, concepts of
time intervals not defined through an external parameter
may be considered using tunneling and dwell times [11, 12].
However, also in this case invariance under time reversal is
an important factor [13].

It is important to stress that all considerations made
herein are only valid if gravitational effects are not considered.
In the framework of general relativity with a generic curved
spacetime, the concept of inversion of time (as well as the
P transformation) loses its interpretation specific only to the
linear affine structure of spacetime [14].

The peculiar properties of time extend as well to the
operation of reversing physical systems in time (the T
operator), which results in grave experimental challenges
limiting the possibilities of T violation measurements. In

contrast to the unitary P and C operators, T can be shown
to be antiunitary. As a consequence, no conserved quantities
may be attributed to the T operation [15] excluding symmetry
tests by means of, e.g., testing selection rules.

Feasibility of T tests based on a comparison between
time evolution of a physical system in two directions, i.e.,
|𝜓(𝑡)⟩ → |𝜓(𝑡 + 𝛿𝑡)⟩ and |𝜓(𝑡 + 𝛿𝑡)⟩ → |𝜓(𝑡)⟩, is also
limited as most of the processes which could be used involve
a decaying state making it impractical to obtain a reverse
process with the same conditions in an experiment. The
only exception exploited to date is constituted by transitions
of neutral mesons between their flavour-definite states and
CP eigenstates [16, 17]. A comparison of such reversible
transitions in a neutral B meson system with quantum
entanglement of B0B0 pairs produced in a decay of Υ(4𝑠)
yielded the only direct experimental evidence of violation of
the symmetry under reversal in time obtained to date [4].
While a similar concept of T violation searches is currently
pursued with the neutral kaon system [17–19], no direct tests
of this symmetry have been proposed outside the systems of
neutral mesons.

In the absence of conserved quantities and with the
difficulties of comparing mutually reverse time evolution
processes in decaying systems, manifestations ofT violation
may still be sought in nonvanishing expectation values of
certain operators odd under the T transformation [20]. It
follows from the antiunitarity of the T operator that for any
operator O

⟨𝜙 O
𝜓⟩ = ⟨𝜙  𝑇†𝑇O𝑇†𝑇 𝜓⟩ = ⟨𝜙�푇 O�푇

𝜓�푇⟩
∗ , (1)

where the 𝑇 subscript denotes states and operators trans-
formed by the operator of reversal in time. Therefore, an
operator odd with respect to the T transformation (i.e., O�푇 =
−O) must satisfy

⟨𝜙  𝑂
𝜓⟩ = − ⟨𝜙�푇  𝑂

𝜓�푇⟩
∗ . (2)

For stationary states or in systems where conditions on
interaction dynamics such as absence of significant final state
interactions are satisfied [21], the mean value of a T-odd
and Hermitian operator must therefore vanish in case of T
invariance:

⟨𝑂⟩�푇 = − ⟨𝑂⟩ , (3)

and violation of theT symmetry may thus be manifested as
a nonzero expectation value of such an operator.

3. Status and Strategies of T
Symmetry Testing

Anumber of experiments based on the property of T operator
demonstrated in (1)-(3) have been conducted to date. The
electric dipole moment of elementary systems, constituting
a convenient T-odd operator, has been sought for neutrons
and electrons in experiments reaching a precision of 10−26
and 10−28, respectively [22, 23]. However, none of such
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experiments has observed T violation to date despite their
excellent sensitivity. In another class of experiments, a T-
odd operator is constructed out of final state observables in
a decay process, such as the weak decay 𝐾+ → 𝜋0𝜇+]
studied by the KEK-E246 experiment [24] in which the
muon polarization transverse to the decay plane (P�푇 =
P�퐾 ⋅ (p�휋 × p�휇)/|p�휋 × p�휇|) was determined as an observable
whose nonzero mean value would manifest T violation.
However, neither this measurement nor similar studies using
decay of polarized 8Li nuclei [25] and of free neutrons [26]
have observed significant mean values of T-odd final state
observables.

Notably, although the property of reversal in time shown
in (1)-(3) is not limited to any particular system nor interac-
tion, it has been mostly exploited to test the T symmetry in
weak interactions. Whereas the latter is the most promising
candidate due to well proven CP violation, evidence for
T noninvariance may be sought in other physical systems
and phenomena using the same scheme of a symmetry
test. Systems constituted by purely leptonic matter are an
example of a sector where experimental results related to
the time reversal symmetry—and to discrete symmetries
in general—remain rare. Several measurements of neutrino
oscillations are being conducted by the NO]A and T2K
experiments searching for CP violation in the ]�휇 →
]�푒 and ]�휇 → ]�푒 channels [27, 28], which may provide
indirect information on the T symmetry. Another notable
test of discrete symmetries in the leptonic sector is the
search for the violation of Lorentz and CPT invariance
based on the Standard Model Extension framework [29] and
anti-CPT theorem [30] which has also been performed by
T2K [31, 32]. Other possible tests of these symmetries with
the positronium system include spectroscopy of the 1S-2S
transition [33] and measuring the free fall acceleration of
positronium [34]. However, the question of the T, CP,
andCPT symmetries in the leptonic systems remains open
as the aforementioned experiments have not observed a
significant signal of a violation.

Few systems exist which allow for discrete symmetry tests
in a purely leptonic sector. However, a candidate competitive
with respect to neutrino oscillations is constituted by the
electromagnetic decay of positronium atoms, exotic bound
states of an electron and a positron.With a reducedmass only
twice smaller than that of a hydrogen atom, positronium is
characterized by a similar energy level structure. At the same
time, it is ametastable statewith a lifetime strongly dependent
on the spin configuration. The singlet state referred to as
parapositronium, may only decay into an even number of
photons due to charge parity conservation, and has a lifetime
(in vacuum) of 0.125ns. The triplet state (orthopositronium,
o-Ps) is limited to decay into an odd number of photons and
lives in vacuum over three orders of magnitude longer than
the singlet state (𝜏�표−�푃�푠 = 142ns) [35–37].

Being an eigenstate of the parity operator alike atoms,
positronium is also characterized by symmetry under charge
conjugation typical for particle-antiparticle systems. Positro-
nium atoms are thus a useful system for discrete symme-
try studies. Moreover, they may be copiously produced in

laboratory conditions using typical sources of 𝛽+ radia-
tion [38], giving positronium-based experiments a technical
advantage over those using, e.g., aforementioned neutrino
oscillations. However, few results on the discrete symmetries
in the positronium system have been reported to date. The
most precise measurements studied the angular correlation
operators in the decay of orthopositronium states into three
photons and determined mean values of final state operators
odd under the CP and CPT conjugations, finding no
violation signal at the sensitivity level of 10−3 [39, 40].
Although the aforementioned studies sought for violation of
CP and CPT, it should be emphasized that the operators
used therein were odd under the T operation as well, leading
to an implicit probe also for the symmetry under reversal in
time.

The results obtained to date, showing no sign of viola-
tion, were limited in precision by technical factors such as
detector geometrical acceptance and resolution, uncertainty
of positronium polarization, and data sample size. In terms
of physical restrictions, sensitivity of such discrete symmetry
tests with orthopositronium decay is only limited by possible
false asymmetries arising from photon-photon final state
interactions at the precision level of 10−9 [41, 42]. The J-
PET experiment thus sets its goal to explore the T-violating
observables at precision beyond the presently established
10−3 level [43].

4. The J-PET Detector

The J-PET (Jagiellonian Positron Emission Tomograph) is
a photon detector constructed entirely with plastic scintil-
lators. Along with constituting the first prototype of plastic
scintillator-based cost-effective PET scanner with a large field
of view [44, 45], it may be used to detect photons in the sub-
MeV range such as products of annihilation of positronium
atoms, thus allowing for a range of studies related to discrete
symmetries and quantum entanglement [43].

J-PET consists of three concentric cylindrical layers of
axially arranged 𝛾 detection modules based on strips of EJ-
230 plastic scintillator as shown schematically in Figure 1.
Each scintillator strip is 50 cm long with a rectangular cross-
section of 7 × 19mm2. Within a detection module, both ends
of a scintillator strip are optically coupled to photomultiplier
tubes. Due to low atomic number of the elements constituting
plastic scintillators, 𝛾 quanta interact mostly through Comp-
ton scattering in the strips, depositing a part of their energy
dependent on the scattering angle. The lack of exact photon
energy determination in J-PET is compensated by fast decay
time of plastic scintillators resulting in high time resolution
and allowing for use of radioactive sources with activity as
high as 10MBq.The energy deposited by photons scattered in
a scintillator is converted to optical photons which travel to
both ends of a strip undergoing multiple internal reflections.
Consequently, the position of 𝛾 interaction along a detection
module is determined using the difference between effective
light propagation times to the two photomultiplier tubes
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X

Y
Z

Figure 1: Schematic view of the J-PET detector consisting of 192
plastic scintillator strips arranged in three concentric layers with
radii ranging from 42.5 cm to 57.5 cm. The strips are oriented along
the Z axis of the detector barrel.

attached to a scintillator strip [46]. In the transverse plane of
the detector, 𝛾 interactions are localized up to the position of
a single module, resulting in an azimuthal angle resolution of
about 1∘.

Although the J-PET 𝛾 detection modules do not allow
for a direct measurement of total photon energy, recording
interactions of all photons from a 3𝛾 annihilation allows for
an indirect reconstruction of photons’ momenta based on
event geometry and 4-momentum conservation [47].

As J-PET is intended for a broad range of studies from
medical imaging [48] through quantum entanglement [49,
50] to tests of discrete symmetries [43], its data acquisition is
operating in a triggerless mode [51] in order to avoid any bias
in the recorded sample of events. Electric signals produced by
the photomultipliers are sampled in the time domain at four
predefined voltage thresholds allowing for an estimation of
the deposited energy using the time over threshold technique
[52]. Further reconstruction of photon interactions as well as
data preselection and handling is performed with dedicated
software [53, 54]. Several extensions of the detector are
presently in preparation such as improvements of the J-PET
geometrical acceptance by inclusion of additional detector
layers [47] as well as enhanced scintillator readout with
silicon photomultipliers [55] and new front-end electronics
[52].

5. Discrete Symmetry Tests with
the J-PET Detector

5.1. Measurements Involving Orthopositronium Spin. The
symmetry under reversal in time can be put to test in the
o-Ps→3𝛾 decay by using the properties of T conjugation
demonstrated by (1)-(3). Spin→𝑆 of the decaying orthopositro-
nium atom and momenta of the three photons produced

→
S

o-Ps
→
k1

→
k2

→
k3

Figure 2: Vectors describing the final state of an o-Ps→3𝛾 annihi-
lation in the o-Ps frame of reference. →𝑆 denotes orthopositronium
spin and

→𝑘 1,2,3 are the momentum vectors of the annihilation
photons, lying in a single plane. The operator defined in (4) is a
measure of angular correlation between the positronium spin and
the decay plane normal vector.

in the decay
→𝑘 1,2,3 (ordered according to their descending

magnitude, i.e., |→𝑘 1| > |→𝑘 2| > |→𝑘 3|) allow for construction of
an angular correlation operator odd under reversal in time:

𝐶�푇 =
→𝑆 ⋅ (→𝑘 1 ×

→𝑘 2) , (4)

which corresponds to an angular correlation between the
positronium spin direction and the decay plane as illustrated
in Figure 2.

Such an approach which requires estimation of the spin
direction of decaying positronia was used by both previous
discrete symmetry tests conducted with orthopositronium
decay [39, 40]. These two experiments, however, adopted
different techniques to control the o-Ps spin polarization. In
the CP violation search, positronium atoms were produced
in strong external magnetic field resulting in their polariza-
tion along a thus imposed direction [39]. A setup required
to provide the magnetic field, however, was associated with
a limitation of the geometrical acceptance of the detectors
used.The second measurement, testing theCPT symmetry
using the Gammasphere detector which covered almost a full
solid angle, did not therefore rely on external magnetic field.
Instead, positronium polarization was evaluated statistically
by allowing for o-Ps atoms formation only in a single
hemisphere around a point-like positron source, resulting in
estimation of the polarization along a fixed quantization axis
with an accuracy limited by a geometrical factor of 0.5 [40].
Neither of the previous experiments attempted to reconstruct
the position of o-Ps→3𝛾 decay, instead limiting the volume
of o-Ps creation and assuming the same origin point for all
annihilations.

The J-PET experiment attempts to improve on the latter
approach which does not require the use of external magnetic
field. The statistical knowledge of spin polarization of the
positrons forming o-Ps atoms can be significantly increased
with a positronium production setup depicted in Figure 3,
where polarization is estimated on an event-by-event basis
instead of assuming a fixed quantization axis throughout
the measurement. A trilateration-based technique of recon-
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Figure 3: Scheme of the positronium production setup devised for
positron polarization determination in J-PET experiment. Positrons
are produced in a 𝛽+ source mounted in the center of a cylindrical
vacuum chamber coaxial with the detector. Positronium atoms are
formed by the interaction of positrons in a porousmedium covering
the chamber walls. Determination of an o-Ps→3𝛾 annihilation
position in the cylinder provides an estimate of positronmomentum
direction.

structing the position of o-Ps→3𝛾 decay created for J-PET
allows for estimation of the direction of positron propagation
in a single event with a vector spanned by a point-like
𝛽+ source location and the reconstructed orthopositronium
annihilation point [56].

The dependence of average spin polarization of positrons
(largely preserved during formation of orthopositronium
[57]) on the angular accuracy of the polarization axis deter-
mination is given by (1/2)(1 + cos𝛼) where 𝛼 is the opening
angle of a cone representing the uncertainty of polarization
axis direction [58]. This uncertainty in J-PET results pre-
dominantly from the resolution of determination of the 3𝛾
annihilation point as depicted in Figure 4 and amounts to
about 15∘ [56], resulting in a polarization decrease smaller
than 2%. By contrast, in the previous measurement with
Gammasphere [40] where the polarization axis was fixed, the
same geometrical factor accounted for a 50% polarization
loss.

5.2.MeasurementsUsing Polarization of Photons. Thescheme
of measurement without external magnetic field for positro-
nium polarization may be further simplified with modified
choice of the measured T-odd operator. This novel approach
of testing the T symmetry may be pursued by J-PET with
a spin-independent operator constructed for the o-Ps→3𝛾
annihilations if the polarization vector of one of the final state
photons is included [43]:

𝐶�耠�푇 =
→𝑘 2 ⋅ →𝜀 1, (5)

where →𝜀 1 denotes the electric polarization vector of the
most energetic 𝛾 quantum and

→𝑘 2 is the momentum of
the second most energetic one. Such angular correlation
operators involving photon electric polarization have never
been studied in the decay of orthopositronium. Geometry of

+x

y

→
S

Figure 4: Determination of positron polarization axis using
its momentum direction (black arrow) estimated using the 𝛽+
source position and reconstructed origin of the 3𝛾 annihilation of
orthopositronium in the chamberwall (dark gray band).The shaded
region represents the angular uncertainty of positron flight direction
resulting from achievable resolution of the 3𝛾 annihilation point.

o-Ps


→
k1

→
k2

→
k3

→
k1

→ 1

Figure 5: Scheme of estimation of polarization vector for a photon
produced in o-Ps→3𝛾 at J-PET. Photon of momentum

→𝑘 1 is scat-
tered in one of the detectionmodules and a secondary interaction of

the scattering product
→𝑘
�耠

1 is recorded in a different scintillator strip.
The most probable angle 𝜂 between the polarization vector →𝜀1 and
the scattering plane spanned by

→𝑘 1 and
→𝑘
�耠

1 amounts to 90∘.

the J-PET detector enables a measurement of ⟨𝐶�耠�푇⟩ thanks to
the ability to record secondary interactions of once scattered
photons from the o-Ps→3𝛾 annihilation as depicted in
Figure 5.

6. Test Measurement with the J-PET Detector

The setup presented in Figure 3 was constructed and fully
commissioned in 2017 [59]. One of the first test mea-
surements was dedicated to evaluation of the feasibility of
identification and reconstruction of three-photon events.
A 22Na 𝛽+ source was mounted inside a cylindrical vac-
uum chamber of 14 cm radius. The positronium formation-
enhancing medium, presently under elaboration, was not
included in the measurement. Therefore, the test of 3𝛾
event reconstruction was based on direct 3𝛾 annihilation of
positrons with electrons of the aluminium chamber walls,
with a yield smaller by more than an order of magnitude
than the rate of o-Ps→3𝛾 annihilations expected in the
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Figure 6: Distributions of time over threshold (TOT) values,
for 𝛾 interactions observed in groups of 1, 2 and more within a
coincidence time window of 2.5 ns. In the samples with increasing
number of coincident photons, the contribution of 𝛾 quanta from
3𝛾 annihilations increaseswith respect to other processes. Gray lines
and arrow denote the region used to identify 3𝛾 annihilation photon
candidates.

final measurements with a porous medium for positronium
production.

The capabilities of J-PET to select 3𝛾 events and discrimi-
nate background arising from two-photon 𝑒+𝑒− annihilations
aswell as fromaccidental coincidences are based primarily on
two factors:

(i) a measure of energy deposited by a photon in Comp-
ton scattering, provided by the time over threshold
(TOT) values determined by the J-PET front-end
electronics,

(ii) angular dependencies between relative azimuthal
angles of recorded 𝛾 interaction points, specific to
topology of the event [60].

Distributions of the TOT values, after equalization of
responses of each detectionmodule, are presented in Figure 6.
Separate study of TOT distributions for 𝛾 quanta observed
in groups of 1, 2 and more recorded 𝛾 hits in scintillators
within a short time window reveals the different composition
of photons from 3𝛾 annihilations with respect to those
originating from background processes such as deexcitation
of the 𝛽+ decay products from a 22Na source (1270 keV)
and cosmic radiation. Two Compton edges corresponding to
511 keV and 1270 keV photons are clearly discernible in TOT
distributions, allowing identifying candidates for interactions
of 3𝛾 annihilation products by TOT values located below
the 511 keV Compton edge as marked with dashed lines in
Figure 6.

The second event selection criterion is based on the
correlations between relative azimuthal angles of photon

interactions recorded in the detector in cases of three interac-
tions observed in close time coincidence.The tests performed
with Monte Carlo simulations have shown that annihilations
into two and three photons can be well separated using
such correlations [60]. An exemplary relative distribution of
values constructed using these correlations, obtained with
the test measurement, is presented in Figure 7(a). For a
comparison, the same distribution obtained with a point-like
annihilation medium used in another test measurement of J-
PET is presented in Figure 7(b).

A sharp vertical band at 𝛿𝜃2 + 𝛿𝜃3 ≈ 180∘ seen in
Figure 7(b) originates from events corresponding to anni-
hilations into two back-to-back photons. Broadening of this
2𝛾 band in case of the extensive chamber is a result of the
increased discrepancy between relative azimuthal angles of
detection module locations used for the calculation and the
actual relative angles in events originating in the walls of the
cylindrical chamber as depicted schematically in Figure 8.

The distributions presented in Figure 7 are in good agree-
ment with the simulation-based expectations [60]. Selection
of events with values of 𝛿𝜃2+𝛿𝜃3 significantly larger than 180∘
allows for identification of three-photon annihilations.

The aforementioned event selection techniques allowed
to extract 1164 3𝛾 event candidates from the two-day test
measurement with a 𝛽+ source activity of about 10 MBq
placed in the center of the aluminium cylinder as depicted in
Figure 3. Therefore, a quantitative estimation of the achiev-
able resolution of three-photon event origin points and its
impact on the positronium polarization control capabilities
requires a measurement including a medium enhancing the
positronium production.

Resolution of the detector and its field of view was vali-
dated with a benchmark analysis of the test data performed
using the abundant 2𝛾 annihilation events. Figure 9 presents
the images of the annihilation chamber obtained using 2𝛾
events whose selection and reconstruction was performed
with the same techniques as applied to medical imaging
tests performed with J-PET [48]. Although a large part of
recorded annihilations originate already in the setup holding
the 𝛽+ source, a considerable fraction of positrons reach the
chamber walls. The effective longitudinal field of view of
J-PET for 2𝛾 events which can be directly extended to 3𝛾
annihilations due to similar geometrical constraints spans the
range of approximately |𝑧| < 8 cm.

7. Summary and Perspectives

The J-PET group attempts to perform the first search for
signs of violation of the symmetry under reversal in time
in the decay of positronium atoms. One of the available
techniques is based on evaluation of mean values of final
state observables constructed from photons’ momenta and
positronium spin in an o-Ps→3𝛾 annihilation with a pre-
cision enhanced with respect to the previous realization
of similar measurements by determination of positronium
spin distinctly for each recorded event. Moreover, the J-PET
detector enables a novel test by determination of a T-odd
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Figure 7: Relations between the sum and difference of two smallest relative azimuthal angles (𝛿𝜃2 and 𝛿𝜃3, respectively) between 𝛾 interaction
points in events with three recorded interactions. (a) Distribution obtained in the test measurement with the aluminium chamber presented
in Figure 3. For reference, the same spectrum obtained with a point-like annihilation medium located in the detector center [59] is displayed
in (b). The vertical band around 𝛿𝜃2 + 𝛿𝜃3 ≈ 180∘ arises from two-photon annihilations and is broadened in the first case due to extensive
dimensions of the annihilation chamber used. 3𝛾 annihilation events are expected in the region located at the right side of the 2𝛾 band [60].




Figure 8: Explanation of the broadening of the 2𝛾 annihilation band present in Figures 7(a) and 7(b) at 𝛿𝜃2 + 𝛿𝜃3 ≈ 180∘. Left: when 2𝛾
annihilations originate in a small region in the detector center, the calculated relative azimuthal angles of detectionmodules which registered
the photons correspond closely to actual relative angles between photons’ momenta. Right: with 2𝛾 annihilations taking place in the walls of
an extensive-size annihilation chamber (gray band), the broadening of the band at 180∘ is caused by a discrepancy between the calculated
and actual relative angles. The detector scheme and proportions are not preserved for clarity.

observable constructed using the momenta and polarization
of photons from annihilation.

The pilot measurement conducted with the J-PET detec-
tor demonstrated the possibility of identifying candidates of
annihilation photons interactions in the plastic scintillator
strips by means of the time over threshold measure of
deposited energy and angular dependencies between relative
azimuthal angles of 𝛾 interaction points specific to event
spatial topology. A preliminary selection of three-photon
annihilation events yielded 1164 event candidates from a
two-day test measurement with a yield reduced by more
than an order of magnitude with respect to the planned
experiments with a porous positronium production target
and a centrally located 10 MBq source. The annihilation
reconstruction resolution and performance of the setup

proposed for positron spin determination was validated with
a benchmark reconstruction of two-photon annihilations.
Results obtained from the test measurement confirm the
feasibility of a test of symmetry under reversal in time by
measurement of the angular correlation operator defined
in (4) without external magnetic field once a positronium
production medium is used.

Data Availability

As this article covers a feasibility study of time reversal
symmetry tests with the J-PET detector in the view of the
future measurements, the data with a physical relevance will
only be collected in the future and the presently used data of
a test measurement are mostly of technical importance only.
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Figure 9: Tomographic images of the cylindrical chamber used in the test runof J-PET, obtained using reconstructed 𝑒+𝑒− → 2𝛾 annihilation
events. (a) Transverse view of the chamber (the central longitudinal region of |𝑧| < 4 cm was excluded where the image is dominated by
annihilation events originating in the setup of the 𝛽+ source.). (b) Longitudinal view of the imaged chamber. In the central region, a strong
image of the positron source and its mounting setup is visible.
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[53] W. Krzemień, A. Gajos, A. Gruntowski et al., “Analysis Frame-
work for the J-PET Scanner,” Acta Physica Polonica A, vol. 127,
no. 5, pp. 1491–1494, 2015.
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We consider a cosmology with decaying metastable dark energy and assume that a decay process of this metastable dark energy is a
quantum decay process. Such an assumption implies among others that the evolution of the Universe is irreversible and violates the
time reversal symmetry. We show that if we replace the cosmological time 𝑡 appearing in the equation describing the evolution of
the Universe by the Hubble cosmological scale time, then we obtain time dependentΛ(𝑡) in the form of the series of even powers of
the Hubble parameter𝐻: Λ(𝑡) = Λ(𝐻). Our special attention is focused on radioactive-like exponential form of the decay process
of the dark energy and on the consequences of this type decay.

1. Introduction

In the explanation of the Universe, we encounter the old
problem of the cosmological constant, which is related to
understanding why themeasured value of the vacuum energy
is so small in comparison with the value calculated using
quantum field theory methods [1]. Because of a cosmological
origin of the cosmological constant one must also address
another problem. Namely, it is connected with our under-
standing, with a question of not only why the vacuum energy
is not only small, but also, as current Type Ia supernova
observations to indicate, why the present mass density of the
Universe has the same order of magnitude [2].

Both mentioned cosmological constant problems can be
considered in the framework of the extension of the standard
cosmological ΛCDM model in which the cosmological con-
stant (naturally interpreted as related to the vacuum energy
density) is running and its value is changing during the
cosmic evolution.

Results of many recent observations lead to the conclu-
sion that our Universe is in an accelerated expansion phase
[3].This acceleration can be explained as a result of a presence

of dark energy. A detailed analysis of results of recent
observations shows that there is a tension between local and
primordial measurements of cosmological parameters [3]. It
appears that this tension may be connected with dark energy
evolving in time [4]. This paper is a contribution to the
discussion of the nature of the dark energy. We consider
the hypothesis that dark energy depends on time, 𝜌de =𝜌de(𝑡), and it is metastable: We assume that it decays with
the increasing time 𝑡 to 𝜌bare: 𝜌de(𝑡) → 𝜌bare ̸= 0 as 𝑡 →∞. The idea that vacuum energy decays was considered in
many papers (see, e.g., [5, 6]). Shafieloo et al. [7] assumed
that 𝜌de(𝑡) decays according to the radioactive exponential
decay law. Unfortunately, such an assumption is not able to
reflect all the subtleties of evolution in the time of the dark
energy and its decay process. It is because the creation of the
Universe is a quantum process. Hence the metastable dark
energy can be considered as the value of the scalar field at
the false vacuum state and therefore the decay of the dark
energy should be considered as a quantum decay process.The
radioactive exponential decay law does not reflect correctly
all phases of the quantum decay process. In general, analysing
quantum decay processes one can distinguish the following
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phases [8, 9]: (i) the early time initial phase, (ii) the canonical
or exponential phase (when the decay law has the exponential
form), and (iii) the late time nonexponential phase. The first
phase and the third one are missed when one considers
the radioactive decay law only. Simply they are invisible
to the radioactive exponential decay law. For example, the
theoretical analysis of quantum decay processes shows that
at late times the survival probability of the system considered
in its initial state (i.e., the decay law) should tend to zero as𝑡 → ∞ much more slowly than any exponential function
of time and that as a function of time it has the inverse
power-like form at this regime of time [8, 10, 11]. So, all
implications of the assumption that the decay process of
the dark energy is a quantum decay process can be found
only if we apply a quantum decay law to describe decaying
metastable dark energy. This idea was used in [12], where the
assumption made in [7] that 𝜌de(𝑡) decays according to the
radioactive exponential decay law was improved by replacing
that radioactive decay law by the survival probability P(𝑡),
that is, by the decay law derived assuming that the decay
process is a quantum process.

This is the place where one has to emphasize that the
use of the assumption that dark energy depends on time and
is decaying during time evolution leads to the conclusion
that such a process is irreversible and violates a time reversal
symmetry. (Consequences of this effect will be analysed
in next sections of this paper) Note that the picture of
the evolving Universe, which results from the solutions of
the Einstein equations completed with quantum corrections
appearing as the effect of treating the false vacuum decay as a
quantum decay process, is consistent with the observational
data. The evolution starts from the early time epoch with the
running Λ(𝑡) and then it goes to the final accelerating phase
expansion of the Universe. In such a scenario the standard
cosmological ΛCDMmodel emerges from the quantum false
vacuum state of the Universe.

The paper is organised as follows: In Section 2 one finds
a short introduction of formalism necessary for considering
decaying dark energy as a quantum decay process. Cosmo-
logical implications of a decaying dark energy are considered
in Section 3. Section 4 contains conclusions.

2. Decay of a Dark Energy as a Quantum
Decay Process

In the quantum decay theory of unstable systems, properties
of the survival amplitudes

A (𝑡) = ⟨𝜙𝜙 (𝑡)⟩ (1)

are usually analysed. Here a vector |𝜙⟩ represents the unstable
state of the system considered and |𝜙(𝑡)⟩ is the solution of the
Schrödinger equation

𝑖ℏ 𝜕𝜕𝑡 𝜙 (𝑡)⟩ = H
𝜙 (𝑡)⟩ . (2)

The initial condition for (2) in the case considered is usually
assumed to be 𝜙 (𝑡 = 𝑡0 ≡ 0)⟩ def 𝜙⟩ , (3)

or equivalently

A (0) = 1. (4)

In (2)H denotes the complete (full), self-adjoint Hamiltonian
of the system. We have |𝜙(𝑡)⟩ = exp[−(𝑖/ℏ)𝑡H]|𝜙⟩. It is not
difficult to see that this property and hermiticity of 𝐻 imply
that

(A (𝑡))∗ = A (−𝑡) . (5)

Therefore, the decay probability of an unstable state (usually
called the decay law), i.e., the probability for a quantum
system to remain at time 𝑡 in its initial state |𝜙(0)⟩ ≡ |𝜙⟩,

P (𝑡) def |A (𝑡)|2 ≡ A (𝑡) (A (𝑡))∗ , (6)

must be an even function of time [8]:

P (𝑡) = P (−𝑡) . (7)

This last property suggests that, in the case of the unstable
states prepared at some instant 𝑡0, say 𝑡0 = 0, initial condition
(3) for evolution equation (2) should be formulated more
precisely. Namely, from (7), it follows that the probabilities
of finding the system in the decaying state |𝜙⟩ at the instant,
say 𝑡 = 𝑇 ≫ 𝑡0 ≡ 0, and at the instant 𝑡 = −𝑇 are the same.
Of course, this can never occur. In almost all experiments in
which the decay law of a given unstable subsystem system is
investigated this particle is created at some instant of time, say𝑡0, and this instant of time is usually considered as the initial
instant for the problem. From property (7) it follows that the
instantaneous creation of the unstable subsystem system (e.g.,
a particle or an excited quantum level and so on) is practically
impossible. For the observer, the creation of this object (i.e.,
the preparation of the state, |𝜙⟩, representing the decaying
subsystem system) is practically instantaneous.What ismore,
using suitable detectors he/she is usually able to prove that it
did not exist at times 𝑡 < 𝑡0. Therefore, if one looks for the
solutions of Schrödinger equation (2) describing properties
of the unstable states prepared at some initial instant 𝑡0 in the
system and if one requires these solutions to reflect situations
described above, one should complete initial conditions (3),
(4) for (2) by assuming additionally that𝜙 (𝑡 < 𝑡0)⟩ = 0

orA (𝑡) (𝑡 < 𝑡0) = 0. (8)

Equivalently, within the problem considered, one can use
initial conditions (3), (4) and assume that time 𝑡 may vary
from 𝑡 = 𝑡0 > −∞ to 𝑡 = +∞ only, that is, that 𝑡 ∈ R+.

Note that canonical (that is a classical radioactive) decay
law P𝑐(𝑡) = exp[−𝑡/𝜏0] (where 𝜏0 is a lifetime) does not
satisfy property (7), which is valid only for the quantumdecay
lawP(𝑡).What ismore, from (5) and (6) it follows that at very
early times, i.e., at the Zeno times (see [8, 13]),

𝜕P (𝑡)𝜕𝑡 𝑡=0 = 0, (9)
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which implies that

P (𝑡) > 𝑒−𝑡/𝜏0 def P𝑐 (𝑡) for 𝑡 → 0. (10)

So at the Zeno time region the quantum decay process
is much slower than any decay process described by the
canonical (or classical) decay lawP𝑐(𝑡).

Now let us focus the attention on the survival amplitude
A(𝑡). An unstable state |𝜙⟩ can be modeled as wave packets
using solutions of the following eigenvalue equation H|𝐸⟩ =𝐸|𝐸⟩, where 𝐸 ∈ 𝜎𝑐(H), and 𝜎𝑐(H) denotes a continuum
spectrum of H. Eigenvectors |𝐸⟩ are normalized as usual:⟨𝐸|𝐸⟩ = 𝛿(𝐸 − 𝐸). Using vectors |𝐸⟩ we can model an
unstable state as the following wave-packet:

𝜙⟩ ≡ 𝜙⟩ = ∫∞
𝐸min

𝑐 (𝐸) |𝐸⟩ 𝑑𝐸, (11)

where expansion coefficients 𝑐(𝐸) are functions of the energy𝐸 and 𝐸min is the lower bound of the spectrum 𝜎𝑐(H) of H.
The state |𝜙⟩ is normalized ⟨𝜙|𝜙⟩ = 1, which means that it
has to be ∫∞

𝐸min
|𝑐(𝐸)|2𝑑𝐸 = 1. Now using the definition of the

survival amplitude A(𝑡) and the expansion (11) we can find
A(𝑡), which takes the following form within the formalism
considered:

A (𝑡) ≡ A (𝑡 − 𝑡0) = ∫∞
𝐸min

𝜔 (𝐸) 𝑒−𝑖𝐸(𝑡−𝑡0) 𝑑𝐸, (12)

where 𝜔(𝐸) ≡ |𝑐(𝐸)|2 > 0 and 𝜔(𝐸)𝑑𝐸 is the probability to
find the energy of the system in the state |𝜙⟩ between 𝐸 and 𝐸
+ 𝑑𝐸. The last relation (12) means that the survival amplitude
A(𝑡) is a Fourier transform of an absolute integrable function𝜔(𝐸). If we apply the Riemann-Lebesgue Lemma to integral
(12) then one concludes that there must be A(𝑡) → 0 as𝑡 → ∞. This property and relation (12) are an essence of
the Fock–Krylov theory of unstable states [14, 15].

As it is seen from (12), the amplitude A(𝑡) and thus
the decay law P(𝑡) of the unstable state |𝜙⟩ are completely
determined by the density of the energy distribution 𝜔(𝐸) for
the system in this state [14, 15] (see also [8, 10, 11, 16–21]).

In the general case the density 𝜔(𝐸) possesses properties
analogous to the scattering amplitude; i.e., it can be decom-
posed into a threshold factor, a pole-function 𝑃(𝐸) with a
simple pole, and a smooth form factor 𝐹(𝐸). There is 𝜔(𝐸) =Θ(𝐸 − 𝐸min)(𝐸 − 𝐸min)𝛼𝑙𝑃(𝐸)𝐹(𝐸), where 𝛼𝑙 depends on the
angular momentum 𝑙 through 𝛼𝑙 = 𝛼 + 𝑙 [8] (see equation
(6.1) in [8]), 0 ≤ 𝛼 < 1) andΘ(𝐸) is a step function: Θ(𝐸) = 0
for 𝐸 ≤ 0 and Θ(𝐸) = 1 for 𝐸 > 0. The simplest choice is to
take 𝛼 = 0, 𝑙 = 0, 𝐹(𝐸) = 1 and to assume that 𝑃(𝐸) has a
Breit–Wigner (BW) form of the energy distribution density.
(The mentioned Breit–Wigner distribution was found when
the cross section of slow neutrons was analysed [22]) It turns
out that the decay curves obtained in this simplest case are
very similar in form to the curves calculated for the above
described more general 𝜔(𝐸) (see [16] and analysis in [8]). So
to find the most typical properties of the decay process it is
sufficient to make the relevant calculations for 𝜔(𝐸)modeled
by theBreit–Wigner distribution of the energy density𝜔(𝐸) ≡

𝜔BW(𝐸) def (𝑁/2𝜋)Θ(𝐸 − 𝐸min)(Γ0/((𝐸 − 𝐸0)2 + (Γ0/2)2)),
where𝑁 is a normalization constant. The parameters 𝐸0 andΓ0 correspond to the energy of the system in the unstable state
and its decay rate at the exponential (or canonical) regime of
the decay process. 𝐸min is the minimal (the lowest) energy
of the system. Inserting 𝜔BW(𝐸) into formula (12) for the
amplitude A(𝑡) and assuming for simplicity that 𝑡0 = 0, after
some algebra, one finds that

A (𝑡) = 𝑁2𝜋𝑒−(𝑖/ℏ)𝐸0𝑡𝐼𝛽 (Γ0𝑡ℏ ) , (13)

where

𝐼𝛽 (𝜏) def ∫∞
−𝛽

1𝜂2 + 1/4𝑒−𝑖𝜂𝜏𝑑𝜂. (14)

Here 𝜏 = Γ0𝑡/ℏ ≡ 𝑡/𝜏0, 𝜏0 is the lifetime, 𝜏0 = ℏ/Γ0, and𝛽 = (𝐸0 − 𝐸𝑚𝑖𝑛)/Γ0 > 0. The integral 𝐼𝛽(𝜏) has the following
structure: 𝐼𝛽 (𝜏) = 𝐼pole

𝛽 (𝜏) + 𝐼𝐿𝛽 (𝜏) , (15)

where

𝐼pole𝛽 (𝜏) = ∫∞
−∞

1𝜂2 + 1/4𝑒−𝑖𝜂𝜏𝑑𝜂 ≡ 2𝜋𝑒− 𝜏/2, (16)

and

𝐼𝐿𝛽 (𝜏) = −∫∞
+𝛽

1𝜂2 + 1/4𝑒+𝑖𝜂𝜏𝑑𝜂. (17)

(The integral 𝐼𝐿𝛽(𝜏) can be expressed in terms of the integral-
exponential function [23–26] (for a definition, see [27, 28]))
The result (15) means that there is a natural decomposition of
the survival amplitudeA(𝑡) into two parts:

A (𝑡) = A𝑐 (𝑡) +A𝐿 (𝑡) , (18)

where

A𝑐 (𝑡) = 𝑁2𝜋𝑒−(𝑖/ℏ)𝐸0𝑡𝐼pole
𝛽

(Γ0𝑡ℏ ) ≡ 𝑁𝑒−(𝑖/ℏ)𝐸0𝑡𝑒−Γ0𝑡/2, (19)

and

A𝐿 (𝑡) = 𝑁2𝜋𝑒−(𝑖/ℏ)𝐸0𝑡𝐼𝐿𝛽 (Γ0𝑡ℏ ) , (20)

andA𝑐(t) is the canonical part of the amplitudeA(𝑡) describ-
ing the pole contribution intoA(𝑡) andA𝐿(𝑡) represents the
remaining part ofA(𝑡).

From decomposition (18) it follows that in the general
case within the model considered the survival probability (6)
contains the following parts:

P (𝑡) = |A (𝑡)|2 ≡ A𝑐 (𝑡) + A𝐿 (𝑡)2= A𝑐 (𝑡)2 + 2R [A𝑐 (𝑡) (A𝐿 (𝑡))∗] + A𝐿 (𝑡)2 . (21)

This last relation is especially useful when one looks for a
contribution of late time properties of the quantum unstable
system to the survival amplitude.
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The late time form of the integral 𝐼𝐿𝛽(𝜏) and thus the late
time formof the amplitudeA𝐿(𝑡) can be relatively easy to find
using analytical expression forA𝐿(𝑡) in terms of the integral-
exponential functions or simply performing the integration
by parts in (17). One finds for 𝑡 → ∞ (or 𝜏 → ∞) that
the leading term of the late time asymptotic expansion of the
integral 𝐼𝐿𝛽(𝜏) has the following form:

𝐼𝐿𝛽 (𝜏) ≃ − 𝑖𝜏 𝑒𝑖𝛽𝜏𝛽2 + 1/4 + . . . , (𝜏 → ∞) . (22)

Thus inserting (22) into (20) one can find late time form of
A𝐿(𝑡).

As was mentioned we consider the hypothesis that a dark
energy depends on time, 𝜌de = 𝜌de(𝑡), and decays with the
increasing time 𝑡 to 𝜌bare: 𝜌de(𝑡) → 𝜌bare ̸= 0 as 𝑡 → ∞. We
assume that it is a quantum decay process. The consequence
of this assumption is that we should consider 𝜌de (𝑡0) (where 𝑡0
is the initial instant) as the energy of an excited quantum level
(e.g., corresponding to the false vacuum state) and the energy
density 𝜌bare as the energy corresponding to the true lowest
energy state (the true vacuum) of the system considered. Our
hypothesis means that (𝜌de(𝑡) − 𝜌bare) → 0 as 𝑡 → ∞.
As it was said we assumed that the decay process of the
dark energy is a quantum decay process: From the point of
view of the quantum theory of decay processes this means
that lim𝑡→∞(𝜌de(𝑡) − 𝜌bare) = 0 according to the quantum
mechanical decay law. Therefore if we define

𝜌de (𝑡) def 𝜌de (𝑡) − 𝜌bare, (23)

our assumption means that the decay law for 𝜌de(𝑡) has the
following form (see [12]):

𝜌de (𝑡) = 𝜌de (𝑡0)P (𝑡) ≡ 𝜌de (𝑡0)
⋅ (A𝑐 (𝑡)2 + 2R [A𝑐 (𝑡) (A𝐿 (𝑡))∗] + A𝐿 (𝑡)2) , (24)

where P(𝑡) is given by relation (6), or, equivalently, our
assumption means that the decay law for 𝜌de(𝑡) has the
following form (compare [12]):

𝜌de (𝑡) ≡ 𝜌bare + 𝜌de (𝑡0)
⋅ (A𝑐 (𝑡)2 + 2R [A𝑐 (𝑡) (A𝐿 (𝑡))∗] + A𝐿 (𝑡)2) , (25)

where 𝜌de(𝑡0) = (𝜌de(𝑡0) − 𝜌bare) andP(𝑡) is replaced by (21).
Taking into account the standard relation between𝜌de and the
cosmological constant Λ we can write

Λ eff (𝑡) ≡ Λ bare + Λ̃ (𝑡0)
⋅ (A𝑐 (𝑡)2 + 2R [A𝑐 (𝑡) (A𝐿 (𝑡))∗] + A𝐿 (𝑡)2) , (26)

where Λ̃(𝑡0) ≡ Λ̃ 0 = (Λ(𝑡0) − Λ bare). Thus within the
considered case using definition (6) or relation (21) we can
determine changes in time of the dark energy density 𝜌de(𝑡)
(or running Λ(𝑡)) knowing the general properties of survival
amplitudeA(𝑡).

The above described approach is self-consistent if we
identify 𝜌de(𝑡0) with the energy 𝐸0 of the unstable system
divided by the volume 𝑉0 (where 𝑉0 is the volume of the

system at 𝑡 = 𝑡0): 𝜌de(𝑡0) ≡ 𝜌qft
de

def 𝜌0de = 𝐸0/𝑉0 and𝜌bare = 𝐸min/𝑉0. Here 𝜌qft
de is the vacuum energy density

calculated using quantumfield theorymethods. In such a case

𝛽 = 𝐸0 − 𝐸minΓ0 ≡ 𝜌0de − 𝜌bare𝛾0 > 0, (27)

(where 𝛾0 = Γ0/𝑉0), or equivalently Γ0/𝑉0 ≡ (𝜌0de − 𝜌bare)/𝛽.
3. Cosmological Implications of
Decaying Vacuum

Let us consider cosmological implications of the parameterΛ with the time parameterized decaying part, derived in the
previous section, in the form

Λ ≡ Λ eff (𝑡) = Λ bare + 𝛿Λ (𝑡) , (28)

where 𝛿Λ(𝑡) describes quantum corrections and it is given by
a series with respect to 1/𝑡; i.e.,

𝛿Λ (𝑡) = ∞∑
𝑛=1

𝛼2𝑛 (1𝑡 )2𝑛 , (29)

where 𝑡 is the cosmological scale time and the functionsΛ eff (𝑡) and 𝛿Λ(𝑡) have a reflection symmetry with respect
to the cosmological time 𝛿Λ(−𝑡) = 𝛿Λ(𝑡). The next step
in deriving dynamical equations for the evolution of the
Universe is to consider this parameter as a source of gravity
which contributes to the effective energy density; i.e.,

3𝐻 (𝑡)2 = 𝜌m (𝑡) + 𝜌de (𝑡) , (30)

where𝜌de(𝑡) is identified as the energy density of the quantum
decay process of vacuum

𝜌de (𝑡) = Λ bare + 𝛿Λ (𝑡) . (31)

In this paper, we assume that 𝑐 = 8𝜋𝐺 = 1. The Einstein field
equation for the FRWmetric reduces to

𝑑𝐻 (𝑡)𝑑𝑡 = −12 (𝜌eff (𝑡) + 𝑝eff (𝑡))
= −12 (𝜌m (𝑡) + 0 + 𝜌de (𝑡) − 𝜌de (𝑡)) , (32)

where 𝜌eff = 𝜌m + 𝜌de, 𝑝eff = 0 + 𝑝de, or𝑑𝐻 (𝑡)𝑑𝑡 = −12𝜌m (𝑡) = −12 (3𝐻 (𝑡)2 − Λ bare − 𝛿Λ (𝑡)) . (33)

Szydlowski et al. [12] considered the radioactive-like
decay of metastable dark energy. For the late time, this decay
process has three consecutive phases: the phase of radioactive
decay, the phase of damping oscillations, and finally the phase



Advances in High Energy Physics 5

of power law decaying. When 𝛽 > 0 for 𝑡 > (ℏ/Γ0)(2𝛽/(𝛽2 +1/4)), dark energy can be described in the following form (see
(25) and [12]):

𝜌de (𝑡) ≈ 𝜌bare + 𝜖(4𝜋2𝑒−(Γ0/ℏ)𝑡
+ 4𝜋𝑒−(Γ0/2ℏ)𝑡sin (𝛽 (Γ0/ℏ) 𝑡)(1/4 + 𝛽2) (Γ0/ℏ) 𝑡
+ 1((1/4 + 𝛽2) (Γ0/ℏ) 𝑡)2) ,

(34)

where 𝜖, Γ0, and𝛽 aremodel parameters. Equation (34) results
directly from (25): One only needs to insert (22) into formula
for A𝐿(𝑡) and result (19) instead of A𝑐(𝑡) into (25). In this
paper, we consider the first phase of decay process, in other
words, the phase of radioactive (exponential) decay.

The model with the radioactive (exponential) decay of
dark energy was investigated by Shafieloo et al. [7]. During
the phase of the exponential decay of the vacuum𝑑𝛿Λ (𝑡)𝑑𝑡 = 𝐴𝛿Λ (𝑡) , (35)

where 𝐴 = const < 0 (𝛿Λ(𝑡) is decaying).
The set of equations (33) and (35) constitute a two-

dimensional closed autonomous dynamical system in the
form 𝑑𝐻 (𝑡)𝑑𝑡 = −12 (3𝐻 (𝑡)2 − Λ bare − 𝛿Λ (𝑡)) ,

𝑑𝛿Λ (𝑡)𝑑𝑡 = 𝐴𝛿Λ (𝑡) . (36)

System (36) has the time dependent first integral in the
form 𝜌m (𝑡) = 3𝐻 (𝑡)2 − Λ bare − 𝛿Λ (𝑡) . (37)

At the finite domain, system (36) possesses only one critical
point representing the standard cosmological model (the
running part of Λ vanishes, i.e., 𝛿Λ(𝑡) = 0).

System (36) can be rewritten in variables

𝑥 = 𝛿Λ (𝑡)3𝐻20 ,
𝑦 = 𝐻 (𝑡)𝐻0

(38)

where𝐻0 is the present value of the Hubble function. Then𝑑𝑥𝑑𝜎 = 𝐴𝐻0𝑥𝑑𝑦𝑑𝜎 = −12 (3𝑦2 − 3ΩΛ bare − 3𝑥) , (39)

where ΩΛ bare = Λ bare/3𝐻20 and 𝜎 = 𝐻0𝑡 are a new
reparametrized time. The phase portrait of system (39) is
shown in Figure 1.
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Figure 1: The phase portrait of system (39). Critical point 1 (𝑥 =0, 𝑦 = √Λ bare/√3𝐻0) is the stable node and critical point 2 (𝑥 =0, 𝑦 = −√Λ bare/√3𝐻0) is the saddle. These critical points represent
the de Sitter universes. Here, 𝐻0 is the present value of the Hubble
function. The value of 𝐴 is assumed as −𝐻0. Note that the phase
portrait is not symmetric under reflection𝐻 → −𝐻. While critical
point 1 is a global attractor, only a unique separatrix reaches critical
point 2.

Szydlowski et al. [12] demonstrated that the contribution
of the energy density of the decaying quantum vacuum
possesses three disjoint phases during the cosmic evolution.
The phase of exponential decay like in the radioactive decay
processes is long phase in the past and future evolution. Our
estimation of model parameter shows that we are living in the
Universe with the radioactive decay of the quantum vacuum.

It is interesting that, during this phase, the Universe
violates the reflection symmetry of the time: 𝑡 → −𝑡. In
cosmology and generally in physics there is a fundamental
problem of the origin of irreversibility in the Universe [29].
Note that in our model irreversibility is a consequence of the
radioactive decay of the quantum vacuum.

If we considered radioactivity (in which the time reversal
symmetry is broken) then a direction of decaying vacuum is
in accordance with the thermodynamical arrow of time. First,
note that it is in some sense very natural that the dynamics
of the Universe is in fact irreversible when the full quantum
evolution is taken into account. Therefore, radioactive decay
of vacuum irreversibility has a thermodynamic interpretation
as far as the evolution of theUniverse is concerned: in horizon
thermodynamics the area of the cosmological horizon is
interpreted as (beginning proportional to) the entropy, i.e.,
the Hawking entropy. In a system where Λ decays as a result
of irreversible quantum processes we obtain the very natural
conclusion that the entropy of the Universe grows, in many
cases without an upper bound [30, 31].

In the general parameterization (29), of course, the sym-
metry of changing 𝑡 → −𝑡 is present and this symmetry is
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also in a one-dimensional nonautonomous dynamical system
describing the evolution of the Universe:

𝑑𝐻 (𝑡)𝑑𝑡 = −12 (3𝐻 (𝑡)2 − Λ bare − ∞∑
𝑛=1

𝛼2𝑛𝑡−2𝑛) . (40)

In cosmology, especially in quantum cosmology, the
analysis of the concept of time seems to be the key for the
construction of an adequate quantum gravity theory, which
we would like to apply to the description of early Universe.

The good approximation of (40) is to replace in it the
cosmological time by the Hubble cosmological scale time

𝑡H = 1𝐻. (41)

In consequence, parameterization (29) can be rewritten in the
new form

𝛿Λ (𝑡) = 𝛿Λ (𝐻 (𝑡)) = ∞∑
𝑛=1

𝛼2𝑛𝐻(𝑡)2𝑛 . (42)

After putting this form into (40), we obtain dynamical system
in an autonomous formwith the preserved symmetry of time𝑡 → −𝑡, 𝐻 → −𝐻. In Figure 2 presents a diagram of the
evolution of the Hubble function obtained from the following
one-dimensional dynamical system:

𝑑𝐻 (𝑡)𝑑𝑡 = −12 (3𝐻 (𝑡)2 − Λ bare − ∞∑
𝑛=1

𝛼2𝑛𝐻(𝑡)2𝑛) . (43)

For comparison, the evolution of the Hubble functions
derived in theΛCDMmodel, model (40), and model (43) are
presented in Figure 3. For the existence of the de Sitter global
attractor as 𝑡 → ∞ asymptotically a contribution coming
from the decaying part of 𝛿Λ(𝐻(𝑡)) = ∑∞𝑛=1 𝛼2𝑛𝐻(𝑡)2𝑛 should
be vanishing.

This condition guarantees for us a consistency of our
model with astronomical observations of the accelerating
phase of the Universe [3].

If all parameters 𝛼2𝑛 for 𝑛 > 1 equal zero then the Hubble
parameter is described by the following formula:

𝐻(𝑎) = ±√𝜌m,0𝑎𝛼21−3 + Λ bare3 − 𝛼21 , (44)

or

𝐻(𝑧) = ±√𝜌m,0 (1 + 𝑧)3−𝛼21 + Λ bare3 − 𝛼21 , (45)

where 𝑧 = 𝑎−1 − 1 is redshift. From (44) we can obtain the
following formula for the expanding Universe:

𝑎 (𝑡)
= ( 𝜌m,0Λ bare

sinh(√(3 − 𝛼21) Λ bare2 𝑡))
2/(3−𝛼21) . (46)
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Figure 2: The diagram of the evolution of the Hubble function
with respect to the cosmological time 𝑡, which is described by (43)
with 𝛼21 ̸= 0 and 𝛼2𝑛 = 0 for every 𝑛 > 1. For illustration, two
example values of the parameter 𝛼21 = are chosen: −1 and −2. The
top blue curve describes the evolution of the Hubble function in theΛCDMmodel.Themiddle curve describes one for 𝛼21 = −1 and the
bottom red curve describes one for 𝛼21 = −2. The Hubble function
is expressed in km/s Mpc and the cosmological time 𝑡 is expressed
in s Mpc/km.
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Figure 3:The diagram of the evolution of the Hubble function with
respect to the cosmological time 𝑡, which is described by (40) and
(43) with 𝛼21 ̸= 0 and 𝛼2𝑛 = 0 for every 𝑛 > 1. For illustration,
the value of the parameter 𝛼21 = is chosen as −0.3. The top blue
curve describes the evolution of the Hubble function in the ΛCDM
model. The middle curve describes one for (43) and the bottom red
curve describes one for (40). The Hubble function is expressed in
km/s Mpc and the cosmological time 𝑡 is expressed in s Mpc/km.
Note that these models are not qualitatively different.

Figure 4 presents the evolution of the scale factor, which
is described by (46). Eq. (46) gives us the following formula:

𝐻(𝑡) = √ Λ bare3 − 𝛼21 coth (12√Λ bare (3 − 𝛼21)𝑡) . (47)

In the extension of Friedmann equation (37) matter
is contributed as well as dark energy. The total energy-
momentum tensor 𝑇𝜇] = 𝑇𝜇]m + 𝑇𝜇]de is of course conserved.
However, between the matter and dark energy sectors exist
an interaction—the energy density is transferred between
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Figure 4: The diagram of the evolution of the scale factor with
respect to the cosmological time 𝑡, which is described by (46). For
illustration, two example values of the parameter 𝛼21 = are chosen:−1 and −2. The bottom blue curve describes the evolution of the
scale factor in the ΛCDM model. The middle curve describes one
for 𝛼21 = −1 and the top red curve describes one for 𝛼21 = −2. The
cosmological time 𝑡 is expressed in s Mpc/km.
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Figure 5: The diagram of the evolution of the parameter 𝛿 with
respect to the cosmological time 𝑡. For illustration, two example
values of the parameter 𝐴 are chosen: 𝐴 = −100km/s Mpc (the
top green curve) and 𝐴 = −200km/s Mpc (the middle red curve).
For comparison the ΛCDM model with the parameter 𝛿 = 0
is represented by the bottom blue curve. Here, the value of the
parameter 𝐵 is equal to 1. The cosmological time 𝑡 is expressed in
s Mpc/km.

these sectors. This process can be described by the system of
equations

𝑑𝜌m (𝑡)𝑑𝑡 + 3𝐻 (𝑡) 𝜌m (𝑡) = −𝑑𝜌de (𝑡)𝑑𝑡 = −𝑑Λ eff (𝑡)𝑑𝑡 ,
𝑑𝜌de (𝑡)𝑑𝑡 = 𝑑Λ eff (𝑡)𝑑𝑡 , (48)

where it is assumed that pressure of matter 𝑝m = 0 and 𝑝de =−𝜌de. The time variability of the matter and energy density of
decaying vacuum are demonstrated in Figure 5.

In the special case of radioactive decay of vacuum (48)
reduces to𝑑𝜌m (𝑡)𝑑𝑡 + 3𝐻 (𝑡) 𝜌m (𝑡) = −𝐴𝐵𝑒𝐴𝑡 = −𝐴𝛿Λ (𝑡) ,

𝑑𝜌de (𝑡)𝑑𝑡 = 𝐴𝛿Λ (𝑡) (49)

or 1𝑎 (𝑡)3 𝑑𝑑𝑡 (𝑎 (𝑡)3 𝜌m (𝑡)) = −𝐴𝐵𝑒𝐴𝑡 = −𝐴𝛿Λ (𝑡) ⇒
𝜌m (𝑡) 𝑎 (𝑡)3 = 𝜌m,0𝑎30 − ∫𝐴𝐵𝑒𝐴𝑡𝑎 (𝑡)3 𝑑𝑡,
𝑑𝜌de (𝑡)𝑑𝑡 = 𝐴𝛿Λ (𝑡) .

(50)

In the case of the interaction between matter and decay-
ing dark energy, the natural consequence of conservation of
the total energy-momentum tensor 𝑇𝜇] is a modification of
the standard formula for scaling matter.

Let 𝜌m(𝑡) = 𝜌𝑚,0𝑎−3+𝛿(𝑡), where 𝛿(𝑡) is a deviation from
the canonical scaling of dust matter [32, 33]. Then we have

𝛿 (𝑡) = ln (𝜌m (𝑡) /𝜌m,0)
ln 𝑎 (𝑡) + 3. (51)

4. Conclusions

Fromour investigation of cosmological implications of effects
of the quantum decay of metastable dark energy, one can
derive following results:

(i) The cosmological models with the running cosmo-
logical parameter can be included in the framework
of some extension of Friedmann equation. The new
ingredient in the comparison with the standard cos-
mological model (ΛCDM model) is that the total
energy-momentum tensor is conserved and the inter-
action takes place between thematter and dark energy
sectors. In consequence the canonical scaling law𝜌m ∝ 𝑎−3 is modified. Because Λ(𝑡) is decaying(𝑑Λ/𝑑𝑡 < 0) energy ofmatter in the comoving volume∝ 𝑎3 is growing with time.

(ii) We have found that the appearance of the universal
exponential contribution in energy density of the
decaying vacuum can explain the irreversibility of the
cosmic evolution. While the reversibility 𝑡 → −𝑡 is
still present in the dynamical equation describing the
evolutional scenario, in the first phase of radioactive
decay, this symmetry is violated.

(iii) We have also compared the time evolution of the
Hubble function in the model under consideration
(where Λ(𝑡) is parameterized by the cosmological
time) with Sola et al. [34] parameterization by the
Hubble function. Note that both parameterizations
coincide if time 𝑡 is replaced by the Hubble scale time𝑡𝐻 = 1/𝐻. If the evolution of the Universe is invariant
in the scale, i.e., the scale factor 𝑎 is changing in power
law, then this correspondence is exact.
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We propose a general expression for the probability distribution of real-valued tunneling times of a localized particle, as measured
by the Salecker-Wigner-Peres quantum clock.This general expression is used to obtain the distribution of times for the scattering of
a particle through a static rectangular barrier and for the tunneling decay of an initially bound state after the sudden deformation of
the potential, the latter case being relevant to understand tunneling times in recent attosecond experiments involving strong field
ionization.

1. Introduction

The search for a proper definition of quantum tunneling
times for massive particles, having well-behaved properties
for a wide range of parameters, has remained an important
and open theoretical problem since, essentially, the incep-
tion of quantum mechanics (see, e.g., [1, 2] and references
therein). However, such tunneling times were beyond the
experimental reach until recent advances in ultrafast physics
have made possible measurements of time in the attosecond
scale, opening up the experimental possibility of measuring
electronic tunneling times through a classically forbidden
region [3–6] and reigniting the discussion of tunneling times.
Still, the intrinsic experimental difficulties associated with
both the measurements and the interpretation of the results
have, so far, prevented an elucidation of the problem and,
in fact, contradictory results persist, with some experiments
obtaining a finite nonzero result [3, 6] and others compatible
with instantaneous tunneling [4]. It should be noticed that
the similarity between Schrödinger and Helmholtz equations
allows for analogies between quantum tunneling of massive
particles and photons [7], and a noninstantaneous tunneling
time is supported by this analogy and experiments measuring
photonic tunneling times [8], as well as by many theoretical
calculations based on both the Schrödinger (for reviews see,
e.g., [1, 2]) and the Dirac equations (e.g., [9–16]).

The conceptual difficulty in obtaining an unambiguous
and well-defined tunneling time is associated with the impos-
sibility of obtaining a self-adjoint time operator in quantum
mechanics [17], therefore leading to the need for operational
definitions of time. Several such definitions exist, such as
phase time [18], dwell time [19], the Larmor times [20–23],
and the Salecker-Wigner-Peres (SWP) time [17, 24], and in
some situations these lead to different, or even contradictory,
results. This is not surprising, since by their own nature
operational definitions can only describe limited aspects of
the phenomena of tunneling, and it is unlikely that any one
definition will be able to provide a unified description of
the quantum tunneling times in a broad range of situations.
Nevertheless, it remains an important task to obtain a well-
defined and real time scale that accurately describes the
recent experiments [3–6, 25–27].

It is important to notice that the time-independent
approach to tunneling times (i.e., for incident particles with
sharply defined energy), which comprises the vast majority of
the literature, is ill-suited to accomplish the above-mentioned
goal, since it ignores the essential role of localizability in
defining a time scale [23, 28]; see, however, [29], which
applies the time defined in [30] to investigate the half-life
of 𝛼-decaying nuclei. A few works (e.g., [23, 28, 31, 32])
address the issue of localizability and, consequently, arrive
at a probabilistic definition of tunneling times (that is, an
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average time). In particular, in [28] the SWP clockwas used to
obtain an average tunneling time of transmission (reflection)
for an incident wave packet, and such time was employed to
investigate the Hartman effect [33] for a particle scattered off
a square barrier and it was shown that it does not saturate in
the opaque regime [28, 34].

The tunneling time scales considered in [23, 28, 31]
involve taking an average over the spectral components of
the transmitted wave packet and, thus, obscure the interpre-
tation of the resulting average time. In this paper, we take
as a starting point the real-valued average tunneling time
obtained in [28], using the SWP quantum clock, and obtain
a probability distribution of transmission times, by using
a standard transformation between random variables. In
addition to providing a more accurate time characterization
of the tunneling process, this should provide a clearer con-
nection with the experiments (which measure a distribution
of tunneling times; see, e.g., Figure 4 in [3]). It is worth noting
that some approaches using Feynman’s path integrals address
the problem of obtaining a probabilistic distribution of the
tunneling times (see, e.g., [35]). However, these methods in
general result in a complex time (or, equivalently, multiple
time scales), and some arbitrary procedure is needed to select
the physically meaningful real time a posteriori.

After obtaining a general formula for the distribution of
tunneling times, which is the main result of this work, we
apply it to two specific cases. First, to illustrate the formalism
in a simple scenario, we consider the situation of a particle
tunneling through a rectangular barrier. Then, we consider
a slight modification of the model proposed in [36] for the
tunneling decay of an initially bound state, after the sudden
deformation of the binding potential by the application of
a strong external field; the modification considered here
allows us to investigate the whole range of possibilities for
the tunneling times, without having an “upper cutoff”, as
is the case in the original model. Finally, some additional
comments on the results are reserved for the last section.

2. The SWP Clock’s Average Tunneling Time

We start by briefly reviewing the time-dependent application
of the SWP clock to the scattering of a massive particle off a
localized static potential barrier in one dimension (for details
see [28]) which is appropriate, since it follows from the three-
dimensional Schrödinger equation for this problem that the
dynamics is essentially one-dimensional [3].

The SWP clock is a quantum rotor weakly coupled to
the tunneling particle and that runs only when the particle
is within the region in which 𝑉(𝑥) ̸= 0, where 𝑉(𝑥) is
the potential energy. The Hamiltonian of the particle-clock
system is given by (we use ℏ = 2𝜇 = 1, where 𝜇 is the particle’s
mass) [17]

𝐻 = − 𝜕2𝜕𝑥2 + 𝑉 (𝑥) +P (𝑥)𝐻𝑐, (1)

whereP(𝑥) = 1 if 𝑉(𝑥) ̸= 0 and zero otherwise. The clock’s
Hamiltonian is𝐻𝑐 = −𝑖𝜔(𝜕/𝜕𝜃), where the angle 𝜃 ∈ [0, 2𝜋)
is the clock’s coordinate and 𝜔 = 2𝜋/(2𝑗 + 1)𝜗 is the clock’s

angular frequency, with 𝑗 being a nonnegative integer or half-
integer giving the clock’s total angular momentum, and 𝜗 is
the clock’s resolution. The weak coupling condition amounts
to assume that 𝜗 is large, in such a way that the clock’s energy
eigenvalues, 𝜂𝑚 ≡ 𝑚𝜔 (−𝑗 < 𝑚 < 𝑗), are very small compared
to the barrier height and the particle’s energy. It is assumed
that, at 𝑡 = 0, well before it reaches the barrier, the particle
is well-localized far to the left of the barrier and the wave
function of the system is a product state of the form

Φ(𝜃, 𝑥, 𝑡 = 0) = 𝜓 (𝑥) V0 (𝜃) , (2)

where𝜓(𝑥) is the particle’s initial state, represented by a wave
packet centered around an energy 𝐸0, and the clock initial
state is assumed to be “in the zero-th hour” [17]

V0 (𝜃) = 1
√2𝑗 + 1

𝑗∑
𝑚=−𝑗

𝑢𝑚 (𝜃) , (3)

where 𝑢𝑚(𝜃) = e𝑖𝑚𝜃/√2𝜋 are the clock’s eigenfunctions
corresponding to the energy eigenvalues 𝜂𝑚.

The state V0(𝜃) is strongly peaked at 𝜃 = 0, thus allowing
the interpretation of the angle 𝜃 as the clock’s hand, since for
a freely running clock the peak evolves to 𝜔𝑡𝑐, where 𝑡𝑐 is the
timemeasured by the clock [17]. Since here clock and particle
are coupled according to (1), when the particle passes through
the region𝑉(𝑥) ̸= 0 it becomes entangled with the clock, with
the wave function for the entire system given by

Φ (𝜃, 𝑥, 𝑡) = 1
√2𝑗 + 1

𝑗∑
𝑚=−𝑗

Ψ(𝑚) (𝑥, 𝑡) 𝑢𝑚 (𝜃) ,

Ψ(𝑚) (𝑥, 𝑡) = ∫∞
0
𝑑𝑘𝐴 (𝑘)𝜓(𝑚)𝑘 (𝑥) e−𝑖𝐸𝑡,

(4)

where 𝐸 is the incident particle’s energy, 𝑘 = √𝐸, and 𝐴(𝑘) is
the Fourier spectral decomposition of the initial wave packet𝜓(𝑥) in terms of the free particle eigenfunctions (we are
assuming delta-normalized eigenfunctions). The functions𝜓(𝑚)
𝑘
(𝑥) satisfy a time-independent Schrödinger equation

with a constant potential 𝜂𝑚 in the barrier region. Outside
the potential barrier region and for a particle incident from
the left, the (unnormalized) solution 𝜓(𝑚)

𝑘
(𝑥) of the time-

independent Schrödinger equation is given by [28]

𝜓(𝑚)𝑘 (𝑥) = {{{
e𝑖𝑘𝑥 + 𝑅(𝑚) (𝑘) e−𝑖𝑘𝑥, 𝑥 ≤ −𝐿
𝑇(𝑚) (𝑘) e𝑖𝑘𝑥, 𝑥 ≥ 𝐿, (5)

where 𝑇(𝑚)(𝑘) [𝑅(𝑚)(𝑘)] stands for the transmission (reflec-
tion) coefficient, and it is assumed, without loss of generality,
that the potential is located in the region −𝐿 < 𝑥 <𝐿. Considering only the transmitted solution in (5) and
substituting it into the time-dependent solution (4), it can be
shown that for weak coupling

Φ𝑡𝑟 (𝜃, 𝑥, 𝑡)
= ∫∞
0
𝑑𝑘𝐴 (𝑘) 𝑇 (𝑘) e𝑖(𝑘𝑥−𝐸𝑡)V0 (𝜃 − 𝜔𝑡𝑇𝑐 (𝑘)) , (6)
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where

𝑡𝑇𝑐 (𝑘) = −(𝜕𝜑
(𝑚)
𝑇𝜕𝜂𝑚 )𝜂𝑚=0 (7)

is the stationary transmission clock time corresponding to
the wave number component 𝑘 [17, 37]. The transmission
coefficient 𝑇(𝑘) corresponds to the stationary problem in the
absence of the clock.

For tunneling times one is interested only in the clock’s
reading for the postselected asymptotically transmitted wave
packet.Thus, tracing out the particle’s degrees of freedom, the
expectation value of the clock’s measurement can be defined,
resulting in the average tunneling time [28]

⟨𝑡𝑇𝑐 ⟩ = ∫𝑑𝑘 𝜌 (𝑘) 𝑡𝑐 (𝑘) , 𝜌 (𝑘) = 𝑁 |𝐴 (𝑘) 𝑇 (𝑘)|2 , (8)

where 𝑁 = 1/ ∫ 𝑑𝑘|𝐴(𝑘)𝑇(𝑘)|2 is a normalization constant
and 𝜌(𝑘) is the probability density of finding the component𝑘 in the transmitted wave packet. Similar expressions can be
obtained for the reflection time.

3. The Tunneling Times Distribution

An important aspect of the average tunneling time considered
in the previous section is that it emphasizes the probabilistic
nature of the tunneling process. However, since the average in
(8) is over the time taken by the spectral components of the
wave packet, it does not lend itself to an easy interpretation,
given the spectral components of the wave packet tunnel with
different times. Thus, instead of (8), one would rather obtain
an average over (real) times of the form

⟨𝑡𝑐⟩ = ∫∞
0
𝑑𝜏 𝜏 𝜌𝑡 (𝜏) , (9)

where 𝜌𝑡(𝜏) stands for the probability density for observing a
particular tunneling time 𝜏 for the asymptotically transmitted
wave packet. This can easily be achieved by noticing that
in probability theory (8) and (9), which must be equal,
are related by a standard transformation between the two
random variables 𝑘 and 𝜏 through a function 𝑡𝑇𝑐 (𝑘). It follows
that the probability distribution of times is given by

𝜌𝑡 (𝜏) = ∫𝜌 (𝑘) 𝛿 (𝜏 − 𝑡𝑇𝑐 (𝑘)) 𝑑𝑘 (10)

which, in essence, is the statement that all the 𝑘-components
in the transmitted packet for which 𝑡𝑇𝑐 (𝑘) = 𝜏must contribute
to the value of 𝜌𝑡(𝜏) with a weight 𝜌(𝑘). Finally, using the
properties of the Dirac delta function (specifically, we use
the fact that 𝛿(𝑔(𝑥)) = ∑𝑗(𝛿(𝑥 − 𝑥𝑗)/|𝑔(𝑥𝑗)|), where {𝑥𝑗} is
the set of zeros of the function 𝑔(𝑥) and the prime indicates
a derivative with respect to the independent variable), we
obtain

𝜌𝑡 (𝜏) = ∑
𝑗

𝜌 (𝑘𝑗 (𝜏))𝑡𝑇𝑐 (𝑘𝑗 (𝜏)) , (11)

where {𝑘𝑗(𝜏)} is the set of zeros of the function𝑔(𝑘) ≡ 𝑡𝑇𝑐 (𝑘)−𝜏
and 𝑡𝑇𝑐 is the derivative of 𝑡𝑇𝑐 (𝑘) with respect to 𝑘.

A similar definition of the distribution of tunneling
times given in (10)-(11) can be obtained for any time scale
which is probabilistic in nature, that is, of the form (8).
Although several other probabilistic tunneling times exist in
the literature (e.g., [23, 31, 32, 35]), the SWP clock has proven
to yieldwell-behaved real times both in the time-independent
[17, 37, 38] and time-dependent approaches [28, 34, 39] and
it provides a simple procedure to derive the probabilistic
expression (8). In addition, the role exerted by circularly
polarized light in attoclock experiments [3, 25] seems to
provide a natural possibility for interpretation in terms of the
SWP clock.

As will be illustrated below, for the simple application of
this formalism to the problem of a wave packet scattered off
a rectangular potential barrier, the distribution of times (10)-
(11) cannot, in general, be obtained analytically even for the
simplest cases, except in trivial cases such as for a single Dirac
delta potential barrier [40–42], in which case 𝑡𝑇𝑐 (𝑘) = 0 and𝜌𝑡(𝜏) = 𝛿(𝜏) ∫ 𝑑𝑘𝜌(𝑘).

It should also be noticed that, despite the fact that the
derivation of the previous section leading to (8) and, thus
(10)-(11), assumed a scattering situation, these expressions
can be shown to be valid for any situation involving prese-
lection of an initial state localized to the left of a potential
“barrier” followed by postselection of an asymptotic trans-
mitted wave packet. This allows us to obtain the distribution
of times for a model that simulates the tunneling decay of an
initially bound particle by ionization induced by the sudden
application of a strong external field; the model considered
below is a variant of that introduced in [36].

4. The Distribution of Tunneling Times for
a Rectangular Barrier

As a first illustration of the formalism developed above, let
us consider a rectangular barrier of height 𝑉0 located in the
region 𝑥 ∈ (−𝐿, 𝐿). The particle’s initial state 𝜙0(𝑥) ≡ 𝜓(𝑥, 𝑡 =0) is assumed to be a Gaussian wave packet

𝜙0 (𝑥) = 1
(2𝜋)1/4√𝜎 exp[𝑖𝑘0𝑥 − (𝑥 − 𝑥0)

2

4𝜎2 ] , (12)

where the parameters 𝑥0, 𝜎, and 𝑘0 are chosen such that the
wave packet is sharply peaked in a tunneling wave number𝑘0 = √𝐸0 < √𝑉0 and is initiallywell-localized around𝑥 = 𝑥0,
far to the left of the barrier; in the calculations that follow we
take 𝑥0 = −8𝜎, such that at 𝑡 = 0 the probability of finding the
particle within or to the right of the barrier is negligible. The
transmission coefficient 𝑇(𝑘) and the spectral function 𝐴(𝑘)
are well-known and given by

𝑇 (𝑘) = 2𝑖𝑘𝑞𝑒−2𝑖𝑘𝐿
(𝑘2 − 𝑞2) sinh (2𝐿𝑞) + 2𝑖𝑘𝑞 cosh (2𝐿𝑞) (13)
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𝐴 (𝑘) = ( 2𝜋)
1/4√𝜎 exp [4𝑘𝜎 (𝑘0𝜎 + 4𝑖)

− 𝜎 (𝑘 + 𝑘0) (𝑘𝜎 + 𝑘0𝜎 + 8𝑖)] ,
(14)

where 𝑞 = √𝑉0 − 𝑘2. The stationary transmission clock time
(7) is [22, 28]

𝑡𝑇𝑐 (𝑘) = 𝑘𝑞
⋅ (𝑞2 + 𝑘2) tanh (2𝑞𝐿) + 2𝑞𝐿 (𝑞2 − 𝑘2) sech2 (2𝑞𝐿)4𝑞2𝑘2 + (𝑞2 − 𝑘2)2 tanh2 (2𝑞𝐿) ,

(15)

with tunneling times corresponding to real values of 𝑞 (i.e.,𝑉0 > 𝑘2). Figure 1 shows a plot for the stationary transmission
times 𝑡𝑇𝑐 (𝑘), the distribution of wave numbers 𝜌(𝑘) in the
transmitted wave packet, and the distribution |𝐴(𝑘)|2 of
wave numbers (momenta) in the incident packet, for two
values of the barrier width. For the chosen parameters and
barrier widths both the incident and the transmitted wave
packets have an energy distribution very strongly peaked in
a tunneling component (in the bottom plot of Figure 1 the
barrier is much more opaque than that in the top plot and we
can observe that—despite being with a negligible probability
for the parameters chosen for this plot—in this situation
some above-the-barrier components start to appear in the
distribution of the transmitted wave packet. So, in order to
consider mainly transmission by tunneling we must restrict
the barrier widths to not too large ones). We also observe
the very well-known fact that the transmitted wave packet
“speeds up” when compared to the incident particle [28].
As a general rule, the larger is the barrier width (i.e., the
more opaque is the barrier), the greater is the translation
of the central component towards higher momenta. In what
concerns the off-resonance stationary transmission time, it
initially grows with the barrier width, and saturates for very
opaque barriers (the Hartman effect); on the other hand,
it presents peaks at resonant wave numbers that grow and
narrow with the barrier width; for a detailed discussion see
[28]).

Figure 2 shows plots of the probability distribution 𝜌𝑡(𝜏)
of the tunneling times according to (10)-(11), corresponding
to both the barrier widths shown in Figure 1 [to obtain
these plots we used a Monte Carlo procedure to generate
a large number of 𝑘 outcomes from the distribution 𝜌(𝑘),
which afterwards were transformed into 𝜏 values by using
the function 𝜏 = 𝑡𝑇𝑐 (𝑘)]. The vertical grey lines in these
plots correspond to the time the light takes to cross the
barrier distance. It is observed that for the two distributions
shown in Figure 2 the probability to observe superluminal
tunneling times is negligible. It is also observed that these
distributions have a shape that resembles that of the 𝑘
distribution, albeit with a more pronounced skewness. This
shape could be inferred from Figure 1 and from (11), since𝑡T𝑐 (𝑘) grows very smoothly in the region were 𝜌(𝑘) is
nonvanishing. Furthermore, a comparison between the two
plots in Figure 2 shows that the tunneling times do not grow
linearly with the barrier width and, therefore, the distribution
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Figure 1: Stationary transmission clock time 𝑡𝑇𝑐 (𝑘) (green) and the
distributions 𝜌(𝑘) (orange and arbitrary scale) and |𝐴(𝑘)|2 (blue,
dashed, and arbitrary scale) for the transmitted and incident wave
packets, respectively. Rydberg atomic units ℏ = 2𝜇 = 1 are used
in all plots; the tunneling energies correspond to 0 < 𝑘 < √7,
corresponding to a barrier height 𝑉0 = 7 (the maximum tunneling
wave number√7 is shown by a vertical grey line in the plots). In both
plots the incident wave packet parameters are 𝑘0 = 1.5, 𝜎 = 5, 𝑥0 =−8𝜎. Top: barrier width 2𝐿 = 2. Bottom: barrier width 2𝐿 = 16.

in the bottom plot of Figure 2 is “closer” to the light time
than the distribution shown in the top plot; [28] already
observed that for intermediate values of barrier widths the
average transmission time—corresponding to the mean of
the distribution 𝜌𝑡—reaches a plateau.

5. Distribution of Ionization Tunneling Times

In this section we obtain a distribution for tunneling times for
a particle that is initially in a bound state of a given binding
potential. The potential is then suddenly deformed in such a
way that the particle can escape from the initially confining
region by tunneling. The model considered here is a slight
modification of that proposed by Ban et al. [36] to simulate,
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Figure 2: Probability distribution 𝜌𝑡(𝜏) for the tunneling times 𝜏,
obtained by Monte Carlo samplings of 𝑘-values from the distribu-
tion 𝜌(𝑘) and then transforming these to time values through 𝜏 =𝑡𝑇𝑐 (𝑘). The parameters are the same as in the corresponding plots in
Figure 1 and are all expressed in Rydberg atomic units. Top: 2𝐿 = 2.
Bottom: 2𝐿 = 16. These plots are in the same range and scale and
can be compared. The vertical grey line in both plots corresponds
to the time the light takes to traverse the barrier distance. The ticks
in the horizontal axes correspond to the light time, the minimum,
the median and the maximum values of 𝜏 in the histogram (in the
bottom plot the maximum 𝜏 is out of the plot’s range).

in a simple scenario, key features of the decay of a localized
state by tunneling ionization induced by the application of a
strong external field with a finite duration.

In [36], for 𝑡 < 0, the particle is in an eigenstate of a semi-
infinite square-well potential 𝑉1(𝑥),

𝑉1 (𝑥) =
{{{{{{{{{

+∞ 𝑥 < 0
0 0 ≤ 𝑥 ≤ 𝑎
𝑉0 𝑥 > 𝑎,

(16)

and, therefore, it cannot decay by tunneling. At 𝑡 = 0 the
potential is suddenly deformed to 𝑉2(𝑥),

𝑉2 (𝑥) =
{{{{{{{{{{{{{{{

+∞ 𝑥 < 0
0 0 ≤ 𝑥 ≤ 𝑎
𝑉0 𝑎 < 𝑥 < 𝑏
0 𝑥 ≥ 𝑏,

(17)

such that the particle can now tunnel through the potential
barrier; it is assumed that the wave function does not
change during the sudden change of the potential. Finally,
after a finite time 𝑡0 the potential returns to its original
configuration, 𝑉1(𝑥), and tunneling terminates. The cutoff
time 𝑡0 mimics the natural upper bound for tunneling times
measured in recent attoclock experiments (see, e.g., [3, 6]
and references therein), since the opening and closing of the
tunneling channel in these experiments occur in intervals of
half the laser field’s period.

Here, we deviate from [36] by setting 𝑡0 → ∞; i.e., once
deformed the potential does not return to its original form
and, after a long enough time, the particle will be transmitted
with unit probability; thus, by eliminating the cutoff (which
is just an experimental limitation) we are able to explore the
whole range of possibilities for the ionization tunneling time.
In addition, for 𝑡 ≥ 0, the particle is assumed to be coupled
to a SWP quantum clock running only in the region (𝑎, 𝑏), so
that the clock’s readings for the asymptotic transmitted wave
packet give the time the particle spent within the barrier after𝑡 = 0. Following [36], we assume that for 𝑡 < 0 the particle
is in the ground state of the potential 𝑉1(𝑥), whose stationary
wave function is given by

𝜙0 (𝑥) = 𝑁{{{
sin (𝑘0𝑥) , 0 < 𝑥 ≤ 𝑎
sin 𝑘0e𝑞0(𝑎−𝑥), 𝑥 > 𝑎, (18)

where 𝑁 is a normalization constant, 𝑘0 = √𝐸0, 𝐸0 is the
ground state energy, and 𝑞0 = √𝑉0 − 𝑘20. It is also assumed, as
in [36], that immediately after the sudden deformation of the
potential from𝑉1(𝑥) to𝑉2(𝑥), at 𝑡 = 0, the wave function does
not change. However, for 𝑡 ≥ 0 the particle state, which is no
longer an energy eigenstate, is given by a superposition of the
energy eigenstates 𝜓𝑘(𝑥) (𝑘 = √𝐸) of the potential 𝑉2(𝑥), i.e.,
[36]

𝜓 (𝑥, 𝑡 = 0) = 𝜙0 (𝑥) = ∫∞
0
𝑆 (𝑘) 𝜓𝑘 (𝑥) 𝑑𝑘, (19)

where

𝑆 (𝑘) = ∫∞
0
𝜙0 (𝑥) 𝜓∗𝑘 (𝑥) 𝑑𝑥, (20)

with

𝜓𝑘 (𝑥) =
{{{{{{{{{{{

𝐴(𝑘) sin (𝑘𝑥) , 0 < 𝑥 ≤ 𝑎
𝐶 (𝑘) e𝑞𝑥 + 𝐷 (𝑘) e−𝑞𝑥, 𝑎 < 𝑥 ≤ 𝑏
√ 2𝜋 cos [𝑘 (𝑥 − 𝑏) + Ω (𝑘)] , 𝑥 > 𝑏,

(21)

where 𝑞 = √𝑉0 − 𝑘2 and the coefficients 𝐴(𝑘), 𝐶(𝑘), 𝐷(𝑘)
and the phase Ω(𝑘) are determined by the usual boundary
conditions at 𝑥 = 𝑎 and 𝑥 = 𝑏 and are such that the
normalization ⟨𝜓𝑘(𝑥), 𝜓𝑘(𝑥)⟩ = 𝛿(𝑘 − 𝑘) holds [36]. From
the above expressions it follows that, without any loss of
generality, we can take 𝑆(𝑘) and all the eigenfunctions (21)
to be real.
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In order to consider the coupling with the SWP clock
for times 𝑡 ≥ 0 we proceed as follows. At 𝑡 = 0 the system
particle+clock is described by the product state 𝜓(𝑥, 0)V0(𝜃),
where 𝜓(𝑥, 0) is the state (19) and V0(𝜃) is the initial clock
state given by (3). After 𝑡 = 0 the particle and the clock states
become entangled. For the procedure of postselection of the
asymptotically transmitted wave function we notice that the
role of the transmission coefficient for the wave function
(21) is played by √2/𝜋 e𝑖(−𝑘𝑏+Ω(𝑚)(𝑘)), where the superscript𝑚 indicates the weak coupling with the clock. The right
moving asymptotic wave packet representing the coupled
system formed by the transmitted particle and the clock is

Φ𝑡𝑟 (𝜃, 𝑥, 𝑡) = ∫∞
0
𝑑𝑘𝑆 (𝑘) e𝑖[𝑘(𝑥−𝑏)+Ω(𝑚)(𝑘)−𝐸𝑡]

× V0 [𝜃 − 𝜔𝑡𝑇𝑐 (𝑘)] ,
(22)

where, as before, 𝑡𝑇𝑐 (𝑘) = −(𝜕Ω(𝑚)(𝑘)/𝜕𝜂𝑚)𝜂𝑚=0 = −(1/2𝑞)(𝜕Ω/𝜕𝑞) [with quantities without the subscript “(𝑚)”
representing the limit 𝜂𝑚 → 0]. By following the same steps
described in [28], we trace out the clock’s degree of freedom in
the asymptotic transmitted wave packet in order to obtain the
distribution 𝜌(𝑘) of the wave numbers for the asymptotically
transmitted wave packet, which in this case is simply given by

𝜌 (𝑘) = |𝑆 (𝑘)|2 ; (23)

i.e., the probability to find a wave number 𝑘 in the asymptotic
transmitted wave packet is the same as in the initial state,
which is as expected, since after a long enough time the
initial wave packet will be transmitted with probability unit,
as mentioned earlier.

The general behavior of 𝑡𝑇𝑐 (𝑘) and 𝜌(𝑘) is illustrated in
Figures 3 and 4, corresponding to two barriers with different
opacities (𝑏 − 𝑎 = 2 and 4, respectively). These plots show, as
expected, that the distribution 𝜌(𝑘) is strongly peaked at the
wave number 𝑘0, corresponding to the energy of the initially
bound state and is negligible for nontunneling components.
For tunneling wave numbers (𝑘 < √𝑉0) the function𝑡𝑇𝑐 (𝑘) is also strongly peaked at the same wave number 𝑘0,
which corresponds to a local maximum (for nontunneling
wave numbers there are several other resonance peaks).
From (11) we would expect that the peaks in the tunneling
times distribution 𝜌𝑡(𝜏) would occur for times 𝜏 = 𝑡𝑇𝑐 (𝑘)
corresponding to values of 𝑘 for which 𝑡𝑇𝑐 (𝑘) ≈ 0—which
occur at points of local maxima and minima of the function𝑡𝑇𝑐 (𝑘)—and corresponding to nonnegligible 𝜌(𝑘). Therefore,
from the plots in Figures 3 and 4 one could expect the
first peak of the tunneling time distribution 𝜌𝑡(𝜏) at 𝜏 ≈0.105 𝑎.𝑢. (the local minimum of 𝑡𝑇𝑐 (𝑘), which is similar for
both barrier widths, since nonresonant times 𝑡𝑇𝑐 (𝑘) change
little with the barrier width for opaque barriers, as is the
case in Figures 3 and 4); a second peak in 𝜌𝑡(𝜏) is expected
to occur around the local maximum of 𝑡𝑇𝑐 (𝑘), which corre-
sponds to 𝜏 ≈ 𝑡𝑇𝑐 (𝑘0) (this local maximum—corresponding
to resonant wave numbers—changes significantly with the
barrier widths; see, e.g., [28]). On the other hand, peaks in
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Figure 3: Top: the stationary transmission clock time 𝑡𝑇𝑐 (𝑘) (blue)
and the wave number distribution 𝜌(𝑘) = |𝑆(𝑘)|2 (orange, dashed,
and arbitrary scale), for 𝑉0 = 7, 𝑎 = 1, 𝑏 = 3, and 𝑘0 ≈ 2.175932),
with the initial state given by (18). Bottom: close view of the above
plot for small times. The vertical grey lines in the plots correspond
to 𝑘 = 𝑘0 and 𝑘 = √𝑉0. The regions in which 𝑡𝑇𝑐 (𝑘) ≈ 0 (around the
local maximum and minimum of 𝑡𝑇𝑐 (𝑘)) correspond to times 𝜏 ≈𝑡𝑇𝑐 (𝑘0) and 𝜏 ≈ 0.105 𝑎.𝑢. Rydberg atomic units were used in all the
plots.

𝜌𝑡(𝜏) coming from local maxima (resonances) and minima
associated with nontunneling values of 𝑘 are suppressed,
since 𝜌(𝑘) ≈ 0 in these cases. Figure 5 confirm these
claims. For both barrier widths considered, the distribution
of tunneling times is “U” shaped, having peaks at the times
corresponding to the local maxima and minima of the
stationary time 𝑡𝑇𝑐 (𝑘) inside the tunneling region. It should
be observed that the larger is the barrier width, the broader is
the tunneling time distribution, due to the strong increase of
the resonant tunneling time with the barrier width.

Figures 6 and 7 show close views of the tunneling
time distributions 𝜌𝑡(𝜏) for small and large tunneling times
(Figure 6 corresponds to the plot at the top of Figure 5, while
Figure 7 corresponds to the plot at the bottom of Figure 5).
In the top plots of these Figures we can clearly observe the
first peak around the local minimum of 𝑡𝑐(𝑘) in the tunneling
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Figure 4: Top: the stationary transmission clock time 𝑡𝑇𝑐 (𝑘) (blue)
and the wave number distribution 𝜌(𝑘) = |𝑆(𝑘)|2 (orange, dashed,
and arbitrary scale), for 𝑉0 = 7, 𝑎 = 1, 𝑏 = 5, and 𝑘0 ≈ 2.175932),
with the initial state given by (18). Bottom: close view of the above
plot for small times. The vertical grey lines in the plots correspond
to 𝑘 = 𝑘0 and 𝑘 = √𝑉0. The region of relatively slow growth of
the derivative 𝑡𝑇(𝑘) correspond to times around 0.105 𝑎.𝑢. Rydberg
atomic units were used in all the plots.

region, which in both plots corresponds to almost the same
value 𝜏 ≈ 0.105 𝑎.𝑢 ≈ 5.1 attoseconds. The top plot of
Figure 6 shows that for the less opaque barrier there exists a
(very small) probability to observe a superluminal tunneling
time. Even if this possibility cannot be precluded in principle
(see, e.g., [16]), in the present case the possibility of emergence
of such small times was expected, since at 𝑡 = 0 there
was a significant portion of the wave packet (roughly 27%)
penetrating the whole distance of the barrier, and this has an
important contribution to the emergence of small times in
the clock’s readings associated with the transmitted particle.
On the other hand, the top plot of Figure 7 shows that for
the thicker barrier the probability for superluminal times is
negligible; the portion of the wave packet already inside the
barrier at 𝑡 = 0 is the same (∼27%), but the wave packet
penetrates proportionally a smaller distance inside the barrier
and, thus, it does not contribute in a significant way to the
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Figure 5: Distributions of tunneling decay times 𝜌𝑡(𝜏) through
the barrier of the potential 𝑉2(𝑥) for the initial bound state 𝜙0(𝑥)
given by (18). The histograms were built by using the Monte Carlo
procedure described in Figure 2 and in the main text. The vertical
grey lines indicate percentiles of the distribution (the first and the
last correspond to 1% and 99%, the remaining ones range from 5%
to 95%, in steps of 5%); the three thick vertical lines indicate the
first quartile (percentile 25%), the median, and the third quartile
(percentile 75%). Rydberg atomic units were used in all the plots.
Top: barrier width 𝑏 − 𝑎 = 2 and bin length ≈ 0.0031𝑎.𝑢. (≈ 0.15
attoseconds).Bottom: barrier width 𝑏−𝑎 = 4 and bin length≈ 40𝑎.𝑢.
(≈ 1,935 attoseconds).

emergence of very small times in the clock readings. We note
that the introduction of the cutoff 𝑡0, as in [36], would result
in a time distribution similar to the truncated distributions
shown in the top plots of Figures 6 and 7.

It is also worth observing that, for small times, the
distributions obtained here resemble qualitatively those in
Figure 4 of [3], except for the presence of several peaks at
discrete values of the time in the latter. The considerations
above, relating the peaks of the distribution of clock times𝜌𝑡(𝜏) to the local maxima and minima of the stationary
time 𝑡𝑇𝑐 (𝑘) and the magnitude of distribution 𝜌(𝑘) in the
neighborhood of these points, suggest a scenario in which
such multiple peaks at discrete values of time can appear in
the distribution 𝜌𝑡(𝜏) of transmission times. Indeed, if above-
the-barrier wave numbers had a significant contribution to
the initial wave packet, then the several local maxima and
minima present in the vicinities of the resonant nontunneling
components will also contribute in a significant way to build
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Figure 6: Close views of the plot at the top of Figure 5, correspond-
ing to the barrier width 𝑏 − 𝑎 = 2, with the bin length ≈ 0.0031𝑎.𝑢.
(≈ 0.15 attoseconds). Top: small tunneling times. The vertical grey
line in the left of this plot corresponds to the time the light takes to
travel the barrier distance.The second grey vertical line corresponds
to the percentile 1%.Bottom: large tunneling times.The vertical grey
lines correspond to the percentiles 95% and 99%, respectively.

multiple peaks in the distribution of transmission times; these
peaks, however, could not be associated with the tunneling
process. We can consider such a scenario by choosing as
the initial state a tightly localized state given by 𝜓(𝑥, 0) =√2 sin 𝑘0𝑥, with 𝑘0 = 𝜋 and the barrier parameters 𝑎 = 1,𝑏 = 2, and 𝑉0 = 11, in Rydberg atomic units. In this situation
the initial wave function is perfectly confined to the left of
the barrier (0 < 𝑥 < 1), and above-the-barrier components
contribute in a significant way to build the wave packet, as
can be seen from 𝜌(𝑘) in the top plot of Figure 8 (in this
case the probability of finding a nontunneling 𝑘 component
in the wave packet is approximately 75%). In this plot we can
also observe that all the local maxima and minima of 𝑡𝑇𝑐 (𝑘)
shown occur in neighborhoods of wave numbers 𝑘 for which𝜌(𝑘) is nonnegligible; therefore, all these local maxima and
minima contribute significantly to build multiple peaks in
the distribution of transmission times 𝜌𝑡(𝜏). The middle and
the bottom plots of Figure 8 confirm this statement: all the
peaks of the distribution of transmission times correspond
very closely to the local maxima and minima of 𝑡𝑐(𝑘), as can
be seen by comparing the plots in the top and the bottom
of this figure (except for the first, all the other significant
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Figure 7: Close views of the plot at the bottom of Figure 5,
corresponding to the barrier width 𝑏 − 𝑎 = 4. Top: small tunneling
times and bin length ≈ 0.0031𝑎.𝑢. (≈ 0.15 attoseconds).The vertical
grey line in the left of this plot corresponds to the time the light takes
to travel the barrier distance. The percentile 1% (corresponding to≈ 5.1 𝑎.𝑢. ≈ 247 attoseconds) is out of the range of this plot. Bottom:
large tunneling times, with bin length ≈ 2 𝑎.𝑢 ≈ 100 attoseconds.
The vertical grey line corresponds to the percentile 99%.

peaks in the bottom plot are associated with nontunneling
components).

6. Conclusions

Taking as a starting point the probabilistic (average) tunneling
time obtained in [28] with the use of a SWP clock [17, 24, 37],
we obtained a probability distribution of times (10)-(11). An
important advantage of using the SWP clock, in addition to
those already mentioned, is that by running only when the
particle is inside the barrier it allows us to address the concept
of tunneling time in a proper way, since the time spent by
the particle standing in the well before penetrating the barrier
is not computed. A clear advantage of having a probability
distribution of transmission (tunneling) times is that, in
addition to the usual expectation value, we can obtain all the
statistical properties of this time, such as its most probable
values (peaks of the distribution), the dispersion around the
mean value, and the probability to observe extreme outcomes
(superluminal times, for instance).

As an initial test, the distribution of times (10)-(11) was
applied to the simple problem of a particle tunneling through
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Figure 8: Top: the stationary time 𝑡𝑇𝑐 (𝑘) and the wave number
distribution 𝜌(𝑘), for 𝑉0 = 11, barrier width 𝑏 − 𝑎 = 36, 𝑘0 = 𝜋,
and an initial state 𝜓(𝑥, 0) = √2 sin 𝑘0𝑥, with 𝑘0 = 𝜋. The vertical
lines correspond to 𝑘 = 𝑘0 and 𝑘 = √𝑉0. Middle: distribution𝜌𝑡(𝜏) for the transmission times, with the histogram built by the
Monte Carlo procedure described in the text. Vertical lines indicate
the percentiles, as in the Figure 5. Bottom: close view of the above
histogram for the range of small times. The first vertical line at the
left indicates the time the light takes to cross the barrier distance.
In both the histograms we used a bin length ≈ 0.0031 𝑎.𝑢. ≈ 0.15
attoseconds. Rydberg atomic units were used in all these plots.

a rectangular barrier. Unsurprisingly, it revealed behavior
similar to that already known from previous works using
a distribution of wave numbers (momentum)—see, e.g.,
[28]—although, using 𝜌𝑡(𝜏) these conclusions are muchmore
transparent. For example, one could answer the question
about the possibility of superluminal tunneling by direct
calculation from the probability distribution 𝜌𝑡(𝜏). In the
nonstationary case—which is the correct to address this
question—this problem is usually answered by considering

just the average tunneling time. But, given its probabilistic
nature, an answer based only on the average time may not
be satisfactory, especially if the dispersion of the distribution
of tunneling times is large, which is often the case when one
deals with well-localized particles, as suggested by the two
situations addressed in the present work.

As a main application of (10)-(11), we considered a
slight modification of the problem considered in [36] to
model strong field ionization by tunneling. The modification
considered here was the elimination of the cutoff time that
was introduced in [36] to simulate the upper bound that
arises in attoclock experiments [3, 6] due to the opening
and closing of the tunneling channel, naturally associated
with the oscillations in the laser field intensity. This cutoff
is not a fundamental requirement, but rather it is associated
with the experimental methods employed—in any case, its
implementation is rather trivial, since it just truncates the
distribution of times. The consideration of the full range
of the distribution of times allowed us to show that an
important contribution to 𝜌𝑡(𝜏) comes from very large times
associated with the resonance peaks in the tunneling region;
these very long tunneling times occur with a probability
comparable to very short ones, thus having an important
impact on the average tunneling times and, therefore, cause
difficulties when comparing theoretical predictions based on
an average time with the outcomes of experiments presenting
a natural cutoff in the possible time measurements. In
particular, in the attoclock experiments the relevant measure
is often associated with the peak of the tunneling time, which
may be promptly identified once one knows the probability
distribution for all possible times. A remark is in place; the
distribution of times proposed here, built on the SWP clock
readings, refers to the time the particle dwells within the
barrier, while the tunneling times often measured in recent
attoclock experiments actually refer to exit times [43].

In sum, the approach introduced above and resulting in
(10)-(11) builds upon the already (conceptually) well tested
SWP clock to provide a real-valued distribution of times
that, in the simplemodels considered here, was demonstrated
to have physically sound properties and, in fact, (rough)
similarities with the time distribution obtained in recent
experiments [3], therefore warrantying further investigation
with more realistic potentials.
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The numerical data used in the construction of the his-
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[29] N.G. Kelkar, H.M.Castañeda, andM.Nowakowski, “Quantum
time scales in alpha tunneling,” Europhysics Letters, vol. 85, no.
2, Article ID 20006, 2009.

[30] M. Goto, H. Iwamoto, V. De Aquino, V. C. Aguilera-Navarro,
andD. H. Kobe, “Relationship between dwell, transmission and
reflection tunnelling times,” Journal of Physics A: Mathematical
and General, vol. 37, no. 11, pp. 3599–3606, 2004.

[31] S. Brouard, R. Sala, and J. G. Muga, “Systematic approach to
define and classify quantum transmission and reflection times,”
Physical Review A: Atomic, Molecular and Optical Physics, vol.
49, no. 6, pp. 4312–4325, 1994.

[32] V. Petrillo and V. S. Olkhovsky, “Time asymptotic expansion
of the tunneled wave function for a double-barrier potential,”
Europhysics Letters, vol. 74, no. 2, p. 327, 2006.

[33] T. E. Hartman, “Tunneling of a wave packet,” Journal of Applied
Physics, vol. 33, pp. 3427–3433, 1962.

[34] B. A. Frentz, J. T. Lunardi, and L. A. Manzoni, “Average clock
times for scattering through asymmetric barriers,” European
Physical Journal Plus, vol. 129, no. 1, Article ID 5, 2014.

[35] N. Turok, “On quantum tunneling in real time,” New Journal of
Physics, vol. 16, Article ID 063006, 2014.

[36] Y. Ban, E. Y. Sherman, J. G. Muga, and M. Büttiker, “Time
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Decaying vacuum cosmological models evolving smoothly between two extreme (very early and late time) de Sitter phases are
able to solve or at least to alleviate some cosmological puzzles; among them we have (i) the singularity, (ii) horizon, (iii) graceful-
exit from inflation, and (iv) the baryogenesis problem. Our basic aim here is to discuss how the coincidence problem based on a
large class of running vacuum cosmologies evolving from de Sitter to de Sitter can also be mollified. It is also argued that even the
cosmological constant problem becomes less severe provided that the characteristic scales of the two limiting de Sitter manifolds
are predicted from first principles.

1. Introduction

The present astronomical observations are being successfully
explained by the so-called cosmic concordance model orΛ 0CDM cosmology [1]. However, such a scenario can hardly
provide by itself a definite explanation for the complete
cosmic evolution involving two unconnected accelerating
inflationary regimes separated by many aeons. Unsolved
mysteries include the predicted existence of a space-time sin-
gularity in the very beginning of the Universe, the “graceful-
exit” from primordial inflation, the baryogenesis problem,
that is, the matter-antimatter asymmetry, and the cosmic
coincidence problem. Last but not least, the scenario is also
plagued with the so-called cosmological constant problem
[2].

One possibility for solving such evolutionary puzzles is to
incorporate energy transfer among the cosmic components,
as what happens in decaying or running vacuum models or,
more generally, in the interacting dark energy cosmologies.
Here we are interested in the first class of models because the
idea of a time-varying vacuum energy density orΛ(𝑡)-models
(𝜌Λ ≡ Λ(𝑡)/8𝜋𝐺) in the expanding Universe is physically

more plausible than the current view of a strict constant Λ
[3–13].

The cosmic concordance model suggests strongly that we
live in a flat, accelerating Universe composed of ∼ 1/3 of
matter (baryons + dark matter) and ∼ 2/3 of a constant vac-
uum energy density. The current accelerating period ( ̈𝑎 > 0)
started at a redshift 𝑧𝑎 ∼ 0.69 or equivalently when 2𝜌Λ =𝜌𝑚. Thus, it is remarkable that the constant vacuum and the
time-varying matter-energy density are of the same order of
magnitude just by now thereby suggesting that we live in a
very special moment of the cosmic history.This puzzle (“why
now”?) has been dubbed by the cosmic coincidence problem
(CCP) because of the present ratioΩ𝑚/ΩΛ ∼ O(1), but it was
almost infinite at early times [14, 15].There aremany attempts
in the literature to solve such a mystery, some of them closely
related to interacting dark energy models [16–18].

Recently, a large class of flat nonsingular FRW type
cosmologies, where the vacuum energy density evolves like
a truncated power-series in the Hubble parameter 𝐻, has
been discussed in the literature [19–22] (its dominant term
behaves like 𝜌Λ(𝐻) ∝ 𝐻𝑛+2, 𝑛 > 0). Such models has
some interesting features; among them, there are (i) a new
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mechanism for inflation with no “graceful-exit” problem, (ii)
the late time expansion history which is very close to the
cosmic concordance model, and (iii) a smooth link between
the initial and final de Sitter stages through the radiation and
matter dominated phases.

In this article we will show in detail how the coincidence
problem is also alleviated in the context of this class of
decaying vacuum models. In addition, partially based on
previous works, we also advocate here that a generic running
vacuum cosmology providing a complete cosmic history
evolving between two extreme de Sitter phases is potentially
able to mitigate several cosmological problems.

2. The Model: Basic Equations

TheEinstein equations, 𝐺𝜇] = 8𝜋𝐺 [𝑇𝜇]
(Λ)

+𝑇𝜇]
(𝑇)
], for an inter-

acting vacuum-matter mixture in the FRW geometry read
[19, 20]

8𝜋𝐺 𝜌𝑇 + Λ (𝐻) = 3𝐻2, (1)

8𝜋𝐺 𝑝𝑇 − Λ (𝐻) = −2�̇� − 3𝐻2, (2)

where 𝜌𝑇 = 𝜌𝑀 + 𝜌𝑅 and 𝑝 = 𝑝𝑀 + 𝑝𝑅 are the total
energy density and pressure of the material medium formed
by nonrelativistic matter and radiation. Note that the bare Λ
appearing in the geometric side was absorbed on the matter-
energy side in order to describe the effective vacuum with
energy density 𝜌Λ = −𝑝Λ ≡ Λ(𝐻)/8𝜋𝐺. Naturally, the time
dependence of Λ is provoked by the vacuum energy transfer
to the fluid component. In this context, the total energy
conservation law, 𝑢𝜇[𝑇𝜇](Λ) +𝑇𝜇]

(𝑇)
];] = 0, assumes the following

form:

̇𝜌𝑇 + 3𝐻 (𝜌𝑇 + 𝑝𝑇) = − ̇𝜌Λ ≡ − Λ̇8𝜋𝐺. (3)

What about the behavior of Λ̇? Assuming that the created
particles have zero chemical potential and that the vacuum
fluid behaves like a condensate carrying no entropy, as
what happens in the Landau-Tisza two-fluid description
employed in helium superfluid dynamics[23], it has been
shown that Λ̇ < 0 as a consequence of the second law of
thermodynamics [10], that is, the vacuum energy density
diminishes in the course of the evolution. Therefore, in what
follows we consider that the coupled vacuum is continuously
transferring energy to the dominant component (radiation or
nonrelativistic matter components). Such a property defines
precisely the physical meaning of decaying or running vac-
uum cosmologies in this work.

Now, by combining the above field equation it is readily
checked that

�̇� + 3 (1 + 𝜔)2 𝐻2 − 1 + 𝜔2 Λ (𝐻) = 0, (4)

where the equation of state 𝑝𝑇 = 𝜔𝜌𝑇 (𝜔 ≥ 0) was used. The
above equations are solvable only if we know the functional
form of Λ(𝐻).

Thedecaying vacuum law adopted herewas first proposed
based on phenomenological grounds [7–9, 11] and later on

suggested by the renormalization group approach techniques
applied to quantum field theories in curved space-time [24].
It is given by

Λ (𝐻) ≡ 8𝜋𝐺𝜌Λ = 𝑐0 + 3]𝐻2 + 𝛼𝐻𝑛+2𝐻𝐼𝑛 , (5)

where𝐻𝐼 is an arbitrary time scale describing the primordial
de Sitter era (the upper limit of the Hubble parameter), ]
and 𝛼 are dimensionless constants, and 𝑐0 is a constant with
dimension of [𝐻]2.

In a point of fact, the constant 𝛼 above does not represent
a new degree of freedom. It can be determined with the
proviso that, for large values of 𝐻, the model starts from a
de Sitter phase with 𝜌 = 0 and Λ 𝐼 = 3𝐻2𝐼 . In this case, from
(5) one finds 𝛼 = 3(1 − ]) because the first two terms there
are negligible in this limit [see Eq. (1) in [9] for the case 𝑛 = 1
and [11] for a general 𝑛]. The constant 𝑐0 can be fixed by the
time scale of the final de Sitter phase. For𝐻 << 𝐻𝐼we also see
from (4) that 𝑐0 = 3(1−])𝐻2𝐹, where𝐻𝐹 characterizes the final
de Sitter stage (see (6) and (8)). Hence, the phenomenological
law (5) assumes the final form:

Λ (𝐻) = 3 (1 − ])𝐻2𝐹 + 3]𝐻2 + 3 (1 − ]) 𝐻𝑛+2𝐻𝐼𝑛 . (6)

This is an interesting 3-parameter phenomenological expres-
sion. It depends on the arbitrary dimensionless constant ] and
also the two extreme Hubble parameters (𝐻𝐼,𝐻𝐹) describing
the primordial and late time inflationary phases, respectively.
Current observations imply that the value of ] is very small,|]| ∼ 10−6 − 10−3 [25, 26]. More interestingly, the analytical
results discussed below remain valid even for ] = 0. In this
case, we obtain a sort of minimal model defined only by
a pair of physical time scales, 𝐻𝐼 and 𝐻𝐹, determining the
entire evolution of the Universe. As we shall see, the possible
existence of these two extreme de Sitter regimes suggests a
different perspective to the cosmological constant problem.

By inserting the above expression into (3) we obtain the
equation of motion:

�̇� + 3 (1 + 𝜔) (1 − ])2 𝐻2 [1 − 𝐻2𝐹𝐻2 − 𝐻𝑛𝐻𝑛𝐼 ] = 0. (7)

In principle, all possible de Sitter phases here are simply
characterized by a constantHubble parameter (𝐻𝐶) satisfying
the conditions �̇� = 𝜌 = 𝑝 = 0 andΛ = 3𝐻2𝐶. For all physically
relevant values of ] and 𝜔 in the present context, we see that
the condition �̇� = 0 is satisfied whether the possible values
of𝐻𝐶 are constrained by the algebraic equation involving the
arbitrary (initial and final) de Sitter vacuum scales𝐻𝐼 and𝐻𝐹:

𝐻𝑛+2𝐶 − 𝐻𝑛𝐼𝐻2𝐶 + 𝐻2𝐹𝐻𝑛𝐼 = 0. (8)

In particular, for 𝑛 = 2, the value preferred from the
covariance of the action, the exact solution is given by

𝐻2𝐶 = 𝐻2𝐼2 ± 𝐻2𝐼2 √1 − 4𝐻2𝐹𝐻2𝐼 , (9)
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and since 𝐻𝐹 << 𝐻𝐼 we see that the two extreme scaling
solutions for 𝑛 = 2 are 𝐻1𝐶 = 𝐻𝐼 and 𝐻2𝐶 = 𝐻𝐹. However,
we also see directly from (8) that the condition 𝐻𝐹 << 𝐻𝐼,
also guarantees that such solutions are valid regardless of the
values of 𝑛. In certain sense, since 𝐻0 is only the present
day expansion rate, characterizing a quite casual stage of the
recent evolving Universe, probably, it is not the interesting
scale to be a priori predicted. In what follows we consider that
the pair of extreme de Sitter scales (𝐻𝐼, 𝐻𝐹) are the physically
relevant quantities. This occurs because different from 𝐻0,
the expanding de Sitter rates are associated with very specific
limiting manifolds. For instance, it is widely known that de
Sitter spaces are static when written in a suitable coordinate
system. Besides the discussion on the coincidence problem
(see next section), a new idea to be advocated here is that the
prediction of such scales, at least in principle, should be an
interesting theoretical target. Their first principles prediction
would open a new and interesting route to investigate the
cosmological constant problem.

The solutions for theHubble parameter describing analyt-
ically the transitions vacuum-radiation (𝜔 = 1/3) andmatter-
vacuum (𝜔 = 0) can be expressed in terms of the scale factor,
the couple of scales (𝐻𝐼, 𝐻𝐹), and free parameters (], 𝑛):

𝐻 = 𝐻𝐼[1 + 𝐶𝑎2𝑛(1−])]1/𝑛 , (10)

𝐻 = 𝐻𝐹 [𝐷𝑎−3(1−]) + 1]1/2 . (11)

We remark that the transition radiation-matter is like that in
the standard cosmic concordance model. The only difference
is due to the small ] parameter that can be fixed to be zero
(minimal model). Indeed, if one fixes ] = 0, the matter-
vacuum transition is exactly the same one appearing in the
flat ΛCDM model. As we shall see below, the final scale 𝐻𝐹
can be expressed as a simple function of 𝐻0, ], and ΩΛ.
Naturally, the existence of such an expression is needed in
order to compare with the present observations. However, it
cannot be used to hide the special meaning played by𝐻𝐹 in a
possible solution of the cosmological constant problem.

3. Alleviating the Coincidence Problem

The so-called coincidence problem is very well known.
It comes from the fact that the matter-energy density of
the nonrelativistic components (baryons + dark matter)
decreases as the Universe expands while the vacuum energy
density (𝜌Λ 0) is always constant in the cosmic concordance
model (Λ 0CDM). This happens also because the energy
densities of the radiation 𝜌𝛾 (CMB photons) and neutrinos
(𝜌]) are negligible today. Thus, in a broader perspective, one
may also say that the ratio (𝜌𝑀+𝜌𝑅)/𝜌Λ 0 , where 𝜌𝑅 = 𝜌𝛾 +𝜌],
was almost infinite at early times, but it is nearly of the order
unity today.

The current fine-tuning behind the coincidence problem
can also be readily defined in terms of the corresponding
density parameters, since (ΩΛ 0 ∼ 0.7 andΩ𝑀+Ω𝑅 ∼ 0.3), so
that the ratio is of the order unity some 14 billion years later.
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Figure 1: Standard coincidence problem in the cosmic concordance
model (Λ 0CDM). Solid and dashed lines represent the evolution of
the vacuum (ΩΛ 0) and total matter-radiation (Ω𝑀 + Ω𝑅) density
parameters.The circlemarks the low (and unique!) redshift present-
ing the extreme coincidence between the density parameter of the
vacuum and material medium. Note that the model discussed here
is fully equivalent toΛ 0CDMwhen the time dependent corrections
in the decay Λ(𝑡) expression are neglected [see (5)].

In Figure 1 we display the standard view of the coin-
cidence problem in terms of the corresponding density
parameters: Ω𝑀 = Ω𝑏 + Ω𝑐𝑑𝑚 (baryons + cold dark matter)
and Ω𝑅 = Ω𝛾 + Ω] (CMB photons + relic neutrinos). As
one may conclude from the figure, the ratio was practically
infinite at very high redshifts, that is, at the early Universe
(say, roughly at the Planck time). However, both densities are
nearly coincident at present. The ratio (Ω𝑅 + Ω𝑀)/ΩΛ 0 ∼ 1)
is at low redshifts. Note also that, in the far future, that is,
very deep in the de Sitter stage, the ratio approaches zero or
equivalently the inverse ratio is almost infinite because the
vacuum component becomes fully dominant.

A natural way to solve this puzzle is to assume that the
vacuum energy density must vary in the course of the expan-
sion. As shown in the previous section, the characteristic
scales of the Λ(𝑡) model specify the evolution during the
extreme de Sitter phases: the primordial vacuum solution
with 𝐶𝑎2𝑛(1−]) << 1 and 𝐻 = 𝐻𝐼 behaves like a “repeller” in
the distant past, while the final vacuum solution for 𝑎 >> 1,
that is, 𝐷𝑎3(1−]) → 0 and 𝐻 = 𝐻𝐹, is an attractor in the
distant future.

The arbitrary integration constants C andD are also easily
determined. The constant C can be fixed by the end of the
primordial inflation ( ̈𝑎 = 0) or equivalently 𝜌Λ = 𝜌𝑅. This
means that 𝐶 = 𝑎−2𝑛(1−])(𝑒𝑞) /(1 − 2]) [𝑎(𝑒𝑞) corresponds to the
value of the scale factor at vacuum-radiation equality]. In
terms of the present day observable quantities we also find𝐷 = Ω𝑀0/(ΩΛ0 − ]) and 𝐻𝐹 = 𝐻0√ΩΛ0 − ]/√1 − ]. For
] = 0 and ΩΛ0 ∼ 0.7 one finds 𝐻𝐹 ∼ 0.83𝐻0, as expected
a little smaller than 𝐻0. The small observable parameter
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] < 10−3 quantifies the difference between the late time de-
caying vacuum model and the cosmic concordance cosmol-
ogy; namely,

𝐻 = 𝐻0√1 − ]
[Ω𝑀0𝑎−3(1−]) + 1 − Ω𝑀0 − ]]1/2 . (12)

As remarked above, the 𝐻(𝑎) expression of the standardΛCDMmodel is fully recovered for ] = 0.
The solution of the coincidence problem in the present

framework can be demonstrated as follows. The density
parameters of the vacuum and material medium are given by

ΩΛ ≡ Λ (𝐻)3𝐻2 = ] + (1 − ]) 𝐻2𝐹𝐻2 + (1 − ]) 𝐻𝑛𝐻𝑛𝐼 , (13)

Ω𝑇 ≡ 1 − ΩΛ = 1 − ] − (1 − ]) 𝐻2𝐹𝐻2 − (1 − ]) 𝐻𝑛𝐻𝑛𝐼 . (14)

Such results are a simple consequence of expression (6)
for Λ(𝐻) and constraint Friedman equation (1). Note thatΩ𝑇 ≡ Ω𝑀+Ω𝑅 is always describing the dominant component,
either the nonrelativistic matter (𝜔 = 0) or radiation (𝜔 =1/3).

The density parameters of the vacuum and material
medium are equal in two different epochs specifying the
dynamic transition between the distinct dominant compo-
nents. These specific moments of time will be characterized
here by Hubble parameters 𝐻𝑒𝑞1 and 𝐻𝑒𝑞2 . The first equality
(vacuum-radiation, 𝜌Λ = 𝜌𝑅) occurs just at the end of the
first accelerating stage ( ̈𝑎 = 0), that is, when 𝐻𝑒𝑞1 = [(1 −2])/2(1 − ])]1/𝑛𝐻𝐼, while the second one is at low redshifts
when 𝐻𝑒𝑞2 = [2(1 − ])/(1 − 2])]1/2𝐻𝐹. Note that such results
are also valid for the minimal model by taking ] = 0. In
particular, inserting ] = 0 in the first expression above we
find 𝐻𝑒𝑞1 = 𝐻𝐼/21/𝑛. The scale 𝐻𝑒𝑞2 can also be determined in
terms of 𝐻0. By adding the result 𝐻𝐹 ∼ 0.83𝐻0 we find for
] = 0 that 𝐻𝑒𝑞2 ∼ 1.18𝐻0, which is higher than 𝐻0, as should
be expected for the matter-vacuum transition.

Naturally, the existence of two subsequent equalities on
the density parameter suggests a solution to the coincidence
problem. Neglecting terms of the order of 10−120 and 10−60𝑛
in above expressions, it is easy to demonstrate the following
results:

(1) lim𝐻→𝐻𝐼ΩΛ = 1 and lim𝐻→𝐻𝐼Ω𝑇 = 0,
(2) lim𝐻→𝐻𝐹ΩΛ = 1 and lim𝐻→𝐻𝐹Ω𝑇 = 0.

The meaning of the above results is quite clear. The density
parameters of the vacuum and material components (radia-
tion + matter) perform a cycle, that is, ΩΛ, and Ω𝑀 + Ω𝑅 are
periodic in the long run.

In Figure 2, we show the complete evolution of the vac-
uum and matter-energy density parameters for this class of
decaying vacuum model. Different from Figure 1 we observe
that the values ofΩΛ andΩ𝑀 +Ω𝑅 are cyclic in the long run.

These parameters start and finish the evolution satisfying
the above limits. The physical meaning of such evolution is
also remarkable. For any value of 𝑛 > 0, the model starts as
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Figure 2: Solution of the coincidence problem in running vacuum
cosmologies. The right graphic is our model; the left is ΛCDM.
Solid and dashed lines represent the evolution of the vacuum (ΩΛ)
and total matter-radiation (Ω𝑀 + Ω𝑅) density parameters for n=2,
] = 10−3, and 𝐻𝐼/𝐻0 = 1060. The late time coincidence between the
density parameter of the vacuum and material medium (left circle)
has already occurred at very early times (right circle). Note also that
the values 5 and 75 in the horizontal axis were glued in order to
show the complete evolution (the suppressed part presents exactly
the same behavior). Different values of 𝑛 change slightly the value of
the redshift for whichΩΛ = Ω𝑀 +Ω𝑅 at the very early Universe (see
also discussion in the text).

a pure unstable vacuum de Sitter phase with 𝐻 = 𝐻𝐼 (in the
beginning there is nomatter or radiation,ΩΛ = 1,Ω𝑀+Ω𝑅 =0). The vacuum decays and the model evolves smoothly to a
quasi-radiation phase parametrized by the small ]-parameter.

The circles show the redshifts for which ΩΛ = Ω𝑀 + Ω𝑅.
Of course, the existence of two equality solutions alleviates
the cosmic coincidence problem.

The robustness of the solution must also be commented
on. It holds not only for any value of 𝑛 > 0 but also for
] = 0. In the latter case, the primordial nonsingular vacuum
state deflates directly to the standard FRW radiation phase.
Later on, the transition from radiation to matter-vacuum
dominated phase also occurs, thereby reproducing exactly the
matter-vacuum transition of the standard Λ 0CDMmodel.

The “irreversible entropic cycle” from initial Sitter (𝐻𝐼)
to the late time de Sitter stage is completed when the Hubble
parameter approaches its small final value (𝐻 → 𝐻𝐹). The
de Sitter space-time that was a “repeller” (unstable solution)
at very early times (𝑧 → ∞) becomes an attractor in the
distant future (𝑧 → −1) driven by the incredibly low energy
scale𝐻𝐹 which is associatedwith the late time vacuumenergy
density, 𝜌𝑀 → 0, 𝜌Λ𝐹 ∝ 𝐻2𝐹.

Like the above solution to the coincidence problem, some
cosmological puzzles can also be resolved along the same
lines because the time behavior of the present scenario even
fixing 𝛼 = 1 − ] has been proven here to be exactly the one
discussed in [20] (see also [9] for the case 𝑛 = 1).
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4. Final Comments and Conclusion

As we have seen, the phenomenological Λ(𝑡)-term provided
a possible solution to the coincidence problem because the
ratio Ω𝑀/ΩΛ is periodic in long run (see Figure 2). In
other words, the coincidence is not a novelty exclusive of
the current epoch (low redshifts) since it also happened in
the very early Universe at extremely high redshifts. In this
framework, such a result seems to be robust because it is not
altered even to the minimal model, that is, for ] = 0.

It should also be stressed that the alternative complete
cosmological scenario (from de Sitter to de Sitter) is not a
singular attribute of decaying vacuummodels. For instance, it
was recently proved that at the background level such models
are equivalent to gravitationally induced particle production
cosmologies [27, 28] by identifying Λ(𝑡) ≡ 𝜌Γ/3𝐻, whereΓ is the gravitational particle production rate. In a series of
papers [29, 30], the dynamical equivalence of such scenario
at late times with the cosmic concordance model was also
discussed. It is also interesting that such a reduction of
the dark sector can mimic the cosmic concordance model
(Λ 0CDM) at both the background and perturbative levels
[31, 32]. In principle, this means that alternative scenarios
evolving smoothly between two extreme de Sitter phases
are also potentially able to provide viable solutions of the
main cosmological puzzles. However, different from Λ(𝑡)-
cosmologies, such alternatives are unable to explain the
cosmological constant problem with this extreme puzzle
becoming restricted to the realm of quantum field theory.

At this point, in order to compare our results with
alternative models also evolving between two extreme de
Sitter stages, it is interesting to review briefly how the main
cosmological problems are solved (or alleviated) within this
class ofmodels driven by a pure decaying vacuum initial state:

(i) Singularity: the space-time in the distant past is
a nonsingular de Sitter geometry with an arbitrary
energy scale𝐻𝐼. In order to agree with the semiclassi-
cal description of gravity, the arbitrary scale 𝐻𝐼 must
be constrained by the upper limit 𝐻𝐼 ≤ 1019 GeV
(Planck energy) in natural units or equivalently based
on general relativity is valid only for times greater
than the Plank time, 𝐻−1𝐼 ≥ 10−43 sec.

(ii) Horizon problem: the ansatz (6) can mathematically
be considered as the simplest decaying vacuum law
which destabilizes the initial de Sitter configuration.
Actually, in such a model the Universe begins as a
steady-state cosmology, 𝑅 ∼ 𝑒𝐻𝐼𝑡. Since the model
is nonsingular, it is easy to show that the horizon
problem is naturally solved in this context (see, for
instance, [22]).

(iii) “Graceful-Exit” from inflation: the transition from
the early de Sitter to the radiation phase is smooth
and driven by (10). The first coincidence of density
parameters happens for 𝐻 = 𝐻𝑒𝑞1 , 𝜌Λ = 𝜌𝑅, and̈𝑎 = 0, that is, when the first inflationary period
ends (see Figure 2). All the radiation entropy (𝑆0 ∼1088, in dimensionless units) and matter-radiation
content nowobservedwere generated during the early

decaying vacuum process (see [21] for the entropy
produced in the case 𝑛 = 2). For an arbitrary 𝑛 >0, the exit of inflation and the entropy production
had also already been discussed [22]. Some possible
curvature effects were also analyzed [33].

(iv) Baryogenesis problem: recently, it was shown that
the matter-antimatter asymmetry can also be induced
by a derivative coupling between the running vac-
uum and a nonconserving baryon current [34, 35].
Such an ingredient breaks dynamically CPT thereby
triggering baryogenesis through an effective chemical
potential (for a different but related approach see
[36]). Naturally, baryogenesis induced by a running
vacuum process has at least two interesting features:
(i) the variable vacuum energy density is the same
ingredient driving the early accelerating phase of the
Universe and it also controls the baryogenesis process;
(ii) the running vacuum is always accompanied by
particle production and entropy generation [8, 10, 22].
This nonisentropic process is an extra source of T-
violation (beyond the freeze-out of the B-operator)
which as first emphasized by Sakharov [37] is a basic
ingredient for successful baryogenesis. In particular,
for ] = 0 it was found that the observed B-asymmetry
ordinarily quantified by the 𝜂 parameter

5.7 × 10−10 < 𝜂 < 6.7 × 10−10 (15)

can be obtained for a large range of the relevant
parameters (𝐻𝐼, 𝑛) of the present model [34, 35].
Thus, as remarked before, the proposed running
vacuum cosmology may also provide a successful
baryogenesis mechanism.

(v) de Sitter Instability and the future of the Universe:
another interesting aspect associated with the pres-
ence of two extreme Sitter phases as discussed here is
the intrinsic instability of such space-time. Long time
ago, Hawking showed that the space-time of a static
black hole is thermodynamically unstable to macro-
scopic fluctuation in the temperature of the horizon
[38]. Later on, it was also demonstrated by Mottola
[39] based on the validity of the generalized second
law of thermodynamics that the same arguments used
byHawking in the case of black holes remain valid for
the de Sitter space-time. In the case of the primordial
de Sitter phase, described here by the characteristic
scale 𝐻𝐼, such an instability is dynamically described
by solution (10) for 𝐻(𝑎). As we know, it behaves like
a “repeller” driving the model to the radiation phase.
However, the instability result in principle must also
be valid to the final de Sitter stage which behaves
like an attractor. In this way, once the final de Sitter
phase is reached, the space-time would evolve to an
energy scale smaller than 𝐻𝐹 thereby starting a new
evolutionary “cycle” in the long run.

(vi) Cosmological constant problem: it is known that phe-
nomenological decaying vacuum models are unable
to solve this conundrum [22, 34]. The basic reason
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seems to be related to the clear impossibility to
predict the present day value of the vacuum energy
density (or equivalently the value of 𝐻0) from first
principles. However, the present phenomenological
approach can provide a new line of inquiry in the
search for alternative (first principle) solutions for this
remarkable puzzle. In this concern, we notice that the
minimal model discussed here depends only on two
relevant physical scales (𝐻𝐹, 𝐻𝐼) which are associated
with the extreme de Sitter phases. The existence of
such scales implies that the ratio between the late
and very early vacuum energy densities 𝜌Λ𝐹/𝜌Λ𝐼 =(𝐻𝐹/𝐻𝐼)2 does not depend explicitly on the Planck
mass. Indeed, the gravitational constant (in natural
units, 𝐺 = 𝑀−2𝑃𝑙𝑎𝑛𝑐𝑘) arising in the expressions of the
early and late time vacuum energy densities cancels
out in the above ratio. Since 𝐻𝐹 ∼ 10−42GeV, by
assuming that 𝐻𝐼 ∼ 1019GeV (the cutoff of classical
theory of gravity), one finds that the ratio 𝜌Λ𝐹/𝜌Λ𝐼 ∼10−122, as suggested by some estimates based on
quantum field theory, a result already obtained in
some nonsingular decaying vacuum models [19]. In
this context, the open new perspective is related to
the search for a covariant action principle where both
scales arise naturally. One possibility is related to
models whose theoretical foundations are based on
modified gravity theories like 𝐹(𝑅), 𝐹(𝑅, 𝑇), 𝑒𝑡𝑐 [see,
for instance, [40, 41]].

The results outlined above suggest that decaying vacuum
models phenomenologically described by Λ(𝑡)-cosmologies
may be considered an interesting alternative to the mixing
scenario formed by the standard ΛCDMplus inflation. How-
ever, although justified from different viewpoints, the main
difficulty of such models seems to be a clear-cut covariant
Lagrangian description.

Data Availability

The data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

G. J. M. Zilioti is grateful for a fellowship from CAPES
(Brazilian Research Agency), R. C. Santos acknowledges the
INCT-A project, and J. A. S. Lima is partially supported by
CNPq, FAPESP (LLAMA project), and CAPES (PROCAD
2013).The authors are grateful to Spyros Basilakos, Joan Solà,
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We derive a stochastic wave equation for an inflaton in an environment of an infinite number of fields. We study solutions of
the linearized stochastic evolution equation in an expanding universe. The Fokker-Planck equation for the inflaton probability
distribution is derived. The relative entropy (free energy) of the stochastic wave is defined. The second law of thermodynamics for
the diffusive system is obtained. Gaussian probability distributions are studied in detail.

1. Introduction

The ΛCDMmodel became the standard cosmological model
since the discovery of the universe acceleration [1, 2]. It
describes very well the large-scale structure of the universe.
The formation of an early universe is explained by the
inflationary models involving scalar fields (inflatons) [3, 4].
Such models raise the questions concerning the dynamics
from their early stages till the present day. The origin of the
cosmological constant as a manifestation of “dark energy”
could also be explored. In models of the dark sector we hope
to explain the “coincidence problem”: why the densities of the
dark matter and the dark energy are of the same order today
as well as “the cosmological constant problem” [5]; why the
cosmological constant is so small. We assume that the dark
matter and dark energy consist of some unknown particles
andfields.They interact in an unknownwaywith baryons and
the inflaton. The result of the interaction could be seen in a
dissipative and diffusive behaviour of the observed luminous
matter. The diffusion approximation does not depend on
the details of the interaction but only on its strength and
“short memory” (Markovian approximation). In this paper
we follow an approach appearing in many papers (see [6–
10] and references quoted there) describing the dark matter
and the fields responsible for inflation (inflatons) by scalar
fields. In the ΛCDM model the universe originates from

the quantum Big Bang. The quantum fluctuations expand
forming the observed galactic structure. The transition to
classicality requires a decoherence. The decoherence can
be obtained through an interaction with an environment.
The environment may consist of any unobservable degrees
of freedom. In [11, 12] these unobservable variables are
the high energy modes of the fields present in the initial
theory. We assume that the environment consists of an
infinite set of scalar fields interacting with the inflaton.
The model is built in close analogy to the well-known
infinite oscillator model [13–16] of Brownian motion. As the
model involves an infinite set of unobservable degrees of
freedom the statistical description is unavoidable. We have
an environment of an infinite set of scalar 𝜒 fields which have
an arbitrary initial distributions. We begin their evolution
from an equilibrium thermal state. In such a case we obtain
a random physical system driven by thermal fluctuations of
the environment. We could also take into account quantum
fluctuations extracting them as high momentum modes of
the inflaton as is done in the Starobinsky stochastic inflation
[17]. In such a framework a description of a quantum random
evolution is reduced to a classical stochastic process. We
can apply the thermodynamic formalism to the study of
evolution of stochastic systems. In such a framework we
can calculate the probability of a transition from one state
to another. In particular, a vacuum decay can be treated

Hindawi
Advances in High Energy Physics
Volume 2018, Article ID 7204952, 9 pages
https://doi.org/10.1155/2018/7204952

http://orcid.org/0000-0003-3178-4082
https://doi.org/10.1155/2018/7204952


2 Advances in High Energy Physics

as a stochastic process leading to a production of radiation
[18].

The plan of this paper is the following. In Section 2
we derive the stochastic wave equation for an inflaton
interacting with an infinite set of scalar fields in a homoge-
neous expanding metric. In Section 3 we briefly discuss a
generalization to inhomogeneous perturbations of themetric
satisfying Einstein-Klein-Gordon equations. In Section 4 we
approximate the nonlinear systemby a linear inhomogeneous
stochastic wave equation with a space-time-dependent mass.
The Fokker-Planck equation for the probability distribution
of the inflaton is derived. A solution of the Fokker-Planck
equation in the form of a Gibbs state with a time-dependent
temperature is obtained. In Section 5 a general linear system is
discussed. In Section 6weobtain partial differential equations
for the correlation functions of this system. In Section 7
Gaussian solutions of the Fokker-Planck equation and their
relation to the equations for correlation functions are studied.
In Section 8 we discuss thermodynamics of time-dependent
(nonequilibrium) diffusive systems based on the notion of
the relative entropy (free energy). In the Appendix we treat
a simple system of stochastic oscillators in order to show that
the formalism works well for this system.

2. Scalar Fields Interacting Linearly
with an Environment

TheCMB observations show that the universe was once in an
equilibrium state. The Hamiltonian dynamics of scalar fields
usually discussed in the model of inflation do not equilibrate.
We can achieve an equilibration if the scalar field interacts
with an environment. We suggest a field theoretic model
which is an extension of the well-known oscillator model
discussed in [13–16]. We consider the Lagrangian

L = 𝑅√𝑔 + 1
2𝜕𝜇𝜙𝜕

𝜇𝜙 − 𝑉 (𝜙)

+∑
𝑏

(12𝜕𝜇𝜒
𝑏𝜕𝜇𝜒𝑏 − 1

2𝑚
2
𝑏𝜒𝑏𝜒𝑏 − 𝜆𝑏𝜙𝜒𝑏 − 𝑈𝑏 (𝜒𝑏)) .

(1)

Equations of motion for the scalar fields read

𝑔−1/2𝜕𝜇 (𝑔1/2𝜕𝜇) 𝜙 = −𝑉 −∑
𝑏

𝜆𝑏𝜒𝑏, (2)

𝑔−1/2𝜕𝜇 (𝑔1/2𝜕𝜇) 𝜒𝑏 + 𝑚2𝑏𝜒𝑏 = −𝜆𝑏𝜙 − 𝜕𝑈𝑏
𝜕𝜒𝑏 , (3)

where 𝑔𝜇] is the metric tensor and 𝑔 = | det[𝑔𝜇]]|.
We consider the flat expanding metric:

𝑑𝑠2 = 𝑑𝑡2 − 𝑎2𝑑x2, (4)

In the metric (4), (3) reads

𝜕2𝑡 𝜒𝑏 + 3𝐻𝜕𝑡𝜒𝑏 − 𝑎−2𝜒𝑏 + 𝑚2𝑏𝜒𝑏 = −𝜆𝑏𝜙 − 𝜕𝑈𝑏
𝜕𝜒𝑏 . (5)

We may choose

𝑈𝑏 (𝜒𝑏) = 𝜅𝑏 (𝜒2𝑏 − V2𝑏)2 . (6)

We write

𝜒 = V + 𝑎−3/2𝜒. (7)

Then

𝜕2𝑡 𝜒𝑏 − 𝑎−2𝜒𝑏 + 𝜔2𝑏𝜒𝑏 = −𝜆𝑏𝑎3/2𝜙 + 𝑎−3/2𝑜 (𝜒2) (8)

where

𝜔2𝑏 = 𝑚2𝑏 + 8𝜅𝑏V2𝑏 − 3
2𝜕𝑡𝐻 − 9

4𝐻
2. (9)

We consider large 𝑎 → ∞ so that for a large time we may
neglect 𝑎−2 term. Moreover, we assume that 𝜔2𝑏 > 0 and that
𝜔𝑏 is approximately constant (this is exactly so for the de Sitter
space and approximate for power-law expansion when the𝐻
dependent term decays as 𝑡−2). Then, the solution of (8) is

𝜒𝑏 = cos (𝜔𝑏𝑡) 𝜒𝑏0 + sin (𝜔𝑏𝑡) 𝜔−1𝑏 �̃�𝑏0
− 𝜆𝑏 ∫

𝑡

𝑡0

sin (𝜔𝑏 (𝑡 − 𝑠)) 𝜔−1𝑏 𝑎 (𝑠)3/2 𝜙𝑠 𝑑𝑠.
(10)

Inserting the solution of (3) in (2) we obtain an equation of
the following form:

𝑔−1/2𝜕𝜇 (𝑔1/2𝜕𝜇) 𝜙 + 𝑉 (𝜙)

= ∫𝑡
𝑡0

K (𝑡, 𝑡) 𝜙 (𝑡) 𝑑𝑡 + 𝑎−3/2𝜂 (𝜒 (0) , �̃�) ,
(11)

where

K (𝑡, 𝑠) = 𝑎 (𝑡)−3/2∑
𝑏

𝜆2𝑏 sin (𝜔𝑏 (𝑡 − 𝑠)) 𝜔−1𝑏 𝑎 (𝑠)3/2 (12)

and the noise 𝜂 depends linearly on the initial conditions
(𝜒(0), �̃�(0)):

𝜂𝑡 = −∑
𝑏

𝜆𝑏 cos (𝜔𝑏𝑡) 𝜒𝑏0 + 𝜆𝑏 sin (𝜔𝑏𝑡) 𝜔−1𝑏 �̃�𝑏0 . (13)

If the correlation function of the noise is to be stationary
(depend on time difference) then we need

⟨𝜒𝑏0𝜒𝑏0⟩ = ⟨𝜔−2𝑏 �̃�𝑏0�̃�𝑏0⟩ . (14)

Then, (assuming that ⟨𝜒�̃�⟩ = 0, true in the classical Gibbs
state) we get

⟨𝜂𝑡 (x) 𝜂𝑠 (y)⟩
= 𝑎−3∑

𝑏

𝜆2𝑏 ⟨(𝜔−2𝑏 cos (𝜔𝑏 (𝑡 − 𝑠)) �̃�𝑏0 (x) , �̃�𝑏0 (y))⟩ . (15)

We assume a certain probability distribution for initial values.
Relation (14) is satisfied for classical as well as quantumGibbs
distribution with the Hamiltonian �̃�𝑏 = (1/2)(�̃�2 + 𝜔2𝑏𝜒2𝑏).
In the classical field theory in the Gibbs state the covariance
of the fields in (14) is (−𝑎−2 + 𝜔2𝑏)−1. If 𝑎−2 = 0 then this
covariance is approximated by [19]𝛽−1𝜔−2𝑏 𝛿(x−y).We choose

𝜆𝑏 ≃ √𝛽𝛾𝜋−1/2𝜔𝑏 (16)
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Under assumption (16) and a continuous spectrum of 𝜔𝑏 in
(11) we shall have

∫𝑡
𝑡0

𝑑𝑠K (𝑡, 𝑠) 𝜙 (𝑠)

= −𝛾2𝜕𝑡𝜙 (𝑡) − 3
2𝛾
2𝐻(𝑡) 𝜙 (𝑡) + 𝛾2𝛿 (0) 𝜙 (𝑡)

− 𝛾2𝛿 (𝑡 − 𝑡0) 𝜙 (𝑡0) 𝑎 (𝑡)−3/2 𝑎 (𝑡0)3/2
(17)

Here, 𝛿(𝑡) comes from𝛽−1∑𝑏 𝜆2𝑏𝜔−2𝑏 cos(𝜔𝑏𝑡); the 𝛿(0) term is
(an infinite) mass renormalization which appears already in
the Caldeira-Leggett model [15]; it could be included in 𝑚2.
The last term can be neglected when 𝑡0 tends to −∞. We shall
omit these terms in further discussion.

In an expanding metric, (11) takes the following form:

𝜕2𝑡 𝜙 − 𝑎−2𝜙 + (3𝐻 + 𝛾2) 𝜕𝑡𝜙 + 3
2𝛾
2𝐻𝜙 + 𝑉 (𝜙)

= 𝛾𝑎−3/2𝜂,
(18)

where

⟨𝜂 (𝑡, x) 𝜂 (𝑡, x)⟩ = 𝛿 (𝑡 − 𝑡)𝐾𝑡 (x, x) . (19)

Here,𝐾(x, x) = 𝛿(x−x) comes from the expectation value of
the initial values𝜒 and �̃�with the neglect of 𝑎−2. If we do not
neglect 𝑎−2 in (8) then the form of (19) would bemuchmore
complicated (wewould obtain a nonlocal equation).Wemake
the approximation (19) which preserves theMarkov property
and provides stochastic fields which are regular functions of
x ( it can be considered as a cutoff ignoring high momenta
components of 𝜙). Equation (18) has been derived earlier in
[19]. It is applied in the model of warm inflation [20].

3. Stochastic Equations in a Perturbed
Inhomogeneous Metric

We did not write yet equations for the metric which result
from Lagrangian (1). The power spectrum of inflaton pertur-
bations depends on the metric [3, 4, 21–23]. In general, the
equations for the metric are difficult to solve. They are solved
in perturbation theory.We consider only scalar perturbations
of the homogenous metric using the scalar fields 𝐴, 𝐵, 𝐸, 𝜓.
Then, the metric is expressed in the following form [3, 23]:

𝑑𝑠2 == − (1 + 2𝐴) 𝑑𝑡2 + 2𝑎𝜕𝑗𝐵𝑑𝑥𝑗𝑑𝑡
+ 𝑎2 ((1 − 2𝜓) 𝛿𝑖𝑗 + 2𝜕𝑖𝜕𝑗𝐸) 𝑑𝑥𝑖𝑑𝑥𝑗

(20)

Inserting the metric in (2)-(3) we obtain

𝜕2𝑡 𝜙 + (3𝐻 + Γ) 𝜕𝑡𝜙 − 𝑎−2𝜙 + 𝑉 (𝜙) (1 + 2𝐴)
= −∑
𝑏

𝜆𝑏𝜒𝑏 (1 + 2𝐴) (21)

and

𝜕2𝑡 𝜒𝑏 + (3𝐻 + Γ) 𝜕𝑡𝜒𝑏 − 𝑎−2𝜒𝑏 + 𝑚2𝑏𝜒𝑏 (1 + 2𝐴)
= −𝜆𝑏𝜙 (1 + 2𝐴) − 𝜕𝑈𝑏

𝜕𝜒𝑏 (1 + 2𝐴)
(22)

where

−Γ = 𝜕𝑡𝐴 + 3𝜕𝑡𝜓 − 𝑎−2(𝑎2𝜕𝑡𝐸 − 𝑎𝐵) (23)

Let

𝜒𝑏 = exp (𝜎) 𝜒𝑏 + V𝑏 (24)

with

𝜕𝑡𝜎 = −12 (3𝐻 + Γ) (25)

Then, in the approximation neglecting higher powers of 𝜒 in
𝑈

𝜕2𝑡 𝜒𝑏 − 𝑎−2𝜒𝑏 + Ω2𝑏𝜒𝑏 = −𝜆𝑏 exp (−𝜎) (1 + 2𝐴) 𝜙 (26)

where

Ω2𝑏 = (𝑚2𝑏 + 8V2𝑏𝜅𝑏) (1 + 2𝐴) − 1
4 (3𝐻 + Γ)2

− 1
2𝜕𝑡 (3𝐻 + Γ)

(27)

We again assume thatΩ2 ≃ 𝑚2𝑏+8V2𝑏𝜅𝑏.Then, in the derivation
of (18) for 𝜙 the only change comes from the differentiation
of exp(𝜎) inside the integral (11) and the factor (1 + 2𝐴)
multiplying the fields. So,

3
2𝛾
2𝐻𝜙 → 1

2𝛾
2 (3𝐻 + Γ) 𝜙 (1 + 2𝐴)2 (28)

and

𝛾2𝜕𝑡𝜙 → 𝛾2 (1 + 2𝐴) 𝜕𝑡 ((1 + 2𝐴) 𝜙) (29)

Hence, our final equation is (for a general theory of a
stochastic wave equation on a Riemannian manifold see [24]
and references cited there)

𝜕2𝑡 𝜙 + (3𝐻 + 𝛾2 + Γ) 𝜕𝑡𝜙 − 𝑎−2𝜙 + 1
2𝛾
2 (3𝐻 + Γ) 𝜙

+ 6𝛾2𝐴𝐻𝜙 + 2𝛾2𝜕𝑡𝐴𝜙 + 4𝛾2𝐴𝜕𝑡𝜙
+ 𝑉 (𝜙) (1 + 2𝐴) = 𝛾 (1 + 2𝐴) 𝑎−3/2𝜂

(30)

4. A Simplified System of a Decaying Inflaton

The metric (𝐴, 𝐵, 𝜓, 𝐸) can be expressed by 𝜙 from Einstein
equations resulting from the Lagrangian (1). We expand
inflaton equation with a potential 𝑉 around the classical
solution of Klein-Gordon-Einstein equation. The linearized
version of the equation for fluctuations takes the form of the
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Klein-Gordon equation with a space-time-dependent mass
[3, 4, 23, 25, 26]:

𝜕𝑡𝜙 = Π
𝑑Π + (3𝐻 + 𝛾2)Π𝑑𝑡 + 3

2𝛾
2𝐻𝜙𝑑𝑡 + ]𝜙𝑑𝑡 + 𝑎−2𝜙𝑑𝑡

= 𝛾𝑎−3/2𝑑𝐵
(31)

where we write 𝜂 = 𝑑𝐵/𝑑𝑡 and treat (31) as Ito stochastic
differential equation [27]. The function ] depends on the
potential𝑉 in (18) and on the choice of coordinates (𝑡, 𝑥) (the
choice of gauge [28]). We do not discuss ] in this paper. We
consider in this section the simplified version of (31) without
𝜙 terms:

𝑑Π + (3𝐻 + 𝛾2)Π𝑑𝑡 = 𝛾𝑎−3/2𝑑𝐵 (32)

We define the energy density:

𝜌 = 1
2Π
2 (33)

Then, from (32) applying the stochastic calculus [27, 29] and
(32), we obtain

𝑑Π2 = 2Π𝑑Π + 𝑑Π𝑑Π
= −2 (3𝐻 + 𝛾2)Π2𝑑𝑡 + 2𝛾𝑎−3/2Π𝑑𝐵
+ 𝛾2𝑎−3𝐾 (𝑥, 𝑥) 𝑑𝑡

(34)

We may first integrate this equation and use ⟨∫𝑡
0
𝑓𝑑𝐵⟩ = 0 for

the Ito integral. Differentiating the expectation value over 𝑡
we obtain

𝑑 ⟨𝜌⟩ + 6𝐻⟨𝜌⟩ 𝑑𝑡 = −2𝛾2 ⟨𝜌⟩ 𝑑𝑡
+ 1
2𝛾
2𝐾 (𝑥, 𝑥) 𝑎−3𝑑𝑡

(35)

Equation (35) describes the inflaton densitywith𝑤 = 𝜌/𝑝 = 1
and a cosmological term varying with the speed 𝑎−3. The
term−2𝛾2⟨𝜌⟩ violates the energy conservation of the inflaton.
It describes a decay of the inflaton into the 𝜒 fields. If we
couple the 𝜒 fields to radiation then if 𝜒 fields are invisible the
observable effect will be detected as a production of radiation
from the decay of the inflaton [18, 30].

For the stochastic system (32) the Fokker-Planck equation
reads

𝜕𝑡𝑃 = 𝛾2
2 ∫𝑑x𝑑xG𝑡 (x, x) 𝛿2

𝛿Π (x) 𝛿Π (x)𝑃

+ ∫𝑑x 𝛿
𝛿Π (x) (3𝐻 + 𝛾2)Π𝑃.

(36)

Then, the Gaussian solution is

𝑃 = 𝐿 exp (−12 ∫√𝑔Π𝛽Π) (37)

where√𝑔 = 𝑎3. It can be checked that

𝛽 = exp (2𝛾2𝑡) 𝑎3 (𝑅 + 𝛾2 ∫𝑡
0
𝑑𝑠𝑎 (𝑠)3 exp (2𝛾2𝑠))

−1

(38)

and

𝐿−1𝜕𝑡𝐿 = −12𝛾
2𝑎−3𝑇𝑟 (𝐾𝛽) + (3𝐻 + 𝛾2) 𝛿 (0) ∫ 𝑑x. (39)

This normalization factor is infinite (needs renormalization)
but the value of 𝐿 does not appear in the expectation values
⟨𝐹⟩ = (∫𝑃)−1 ∫𝑃𝐹.

𝛽 has the meaning of the inverse temperature. The
dependence (38) of the temperature of the diffusing system
on the scale factor 𝑎 has been derived (for 𝛾 = 0 and arbitrary
𝑤) in [31–33] for any systemwith𝑤 = 1 and the 𝑎−3 correction
(35) to the cosmological term (in eq. (38) 𝑤 = 1) (for time-
dependent cosmological term see [5, 34, 35]).

5. The Linearized Wave Equation

We can rewrite (4)-(5) in a way that they do not contain first-
order time derivatives of fields. Let

𝜙 = 𝑎−3/2 exp(−12𝛾
2𝑡)Φ (40)

Then, the linearized version of the inflaton equation
expanded around the classical solution (with an account of
metric perturbations ) reads

𝜕𝑡Φ = Π (41)

𝜕𝑡Π + 𝐾2Φ − 3
2𝜕𝑡𝐻Φ − 9

4𝐻
2Φ − 1

4𝛾
2Φ + ]Φ

= 𝜕𝑡Π + 𝐾2Φ + ]̃Φ = 𝛾𝑎3/2 exp(12𝛾
2𝑡) 𝜂

(42)

where

𝐾2 = −𝑎−2 + 𝑚2 (43)

For the stochastic system (42) the Fokker-Planck equation
reads

𝜕𝑡𝑃 = 𝛾2
2 ∫𝑑x𝑑xG𝑡 (x, x) 𝛿2

𝛿Π (x) 𝛿Π (x)𝑃

+ ∫𝑑x (𝐾2Φ + ]̃Φ) 𝛿
𝛿Π (x)𝑃

− ∫𝑑xΠ (x) 𝛿
𝛿Φ (x)𝑃 ≡ AP.

(44)

where

G𝑡 (x, x) = 𝑎3 exp (𝛾2𝑡)𝐾𝑡 (x, x) (45)

and ] depends on the classical solution in the potential𝑉 [23,
25].

We may write the noise in the Fourier momentum space:

⟨𝜂 (𝑡, k) 𝜂 (𝑡, k)⟩ = G𝑡 (k) 𝛿 (k + k) 𝛿 (𝑡 − 𝑡) (46)

Then, (42) is rewritten as an ordinary (instead of partial)
differential equation.
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6. A Differential Equation for Correlations

Let us consider (42) expressed in the following form:

𝜕𝑡Φ = Π (47)

𝜕𝑡Π = 𝐴Φ + 𝛾𝑎3/2 exp (12𝛾
2𝑡) 𝜂 (48)

where

−𝐴 = 𝐾2 + ]̃ = −𝑎−2 + 𝑚2 + ]̃ (49)

Let us denote

⟨Φ𝑡 (x) Φ𝑡 (y)⟩ = 𝐶𝑡 (x, y) (50)

⟨Φ𝑡 (x) Π𝑡 (y)⟩ = 𝐸𝑡 (x, y) (51)

⟨Π𝑡 (x) Π𝑡 (y)⟩ = 𝐷𝑡 (x, y) (52)

Using the stochastic calculus [27, 29] and taking the expec-
tation value we get a system of differential equations for the
correlation functions:

𝜕𝑡𝐶𝑡 (x, y) = 𝐸𝑡 (x, y) + 𝐸𝑡 (y, x) (53)

𝜕𝑡𝐷𝑡 (x, y) = 𝐴𝑥𝐸𝑡 (x, y) + 𝐴𝑦𝐸𝑡 (y, x) + 𝛾2G𝑡 (x, y) (54)

𝜕𝑡𝐸𝑡 (y, x) = 𝐴𝑥𝐶𝑡 (x, y) + 𝐷𝑡 (x, y) (55)

If the system is translation invariant then we can Fourier
transform these equations obtaining a system of ordinary
differential equations for Fourier transforms:

𝜕𝑡𝐶𝑡 (𝑘) = 𝐸𝑡 (𝑘) + 𝐸𝑡 (−𝑘) (56)

𝜕𝑡𝐷𝑡 (𝑘) = − (𝑎−2𝑘2 + 𝑚2 + ]̃) (𝐸𝑡 (𝑘) + 𝐸𝑡 (−𝑘))
+ 𝛾2G𝑡 (𝑘)

(57)

𝜕𝑡𝐸𝑡 (𝑘) = − (𝑎−2𝑘2 + 𝑚2 + ]̃) 𝐶𝑡 (𝑘) + 𝐷𝑡 (𝑘) (58)

whereG𝑡(𝑘) is defined in (46).

7. Gaussian Solutions of
the Fokker-Planck Equation

We look for a solution of the Fokker-Planck equation (44) in
the following form:

𝑃𝐼𝑡 = 𝐿 (𝑡) exp(−𝛾−2 ∫𝑑x𝑑x (12Π𝛽1 (𝑡, x, x
)Π + Π𝛽2 (𝑡, x, x)Φ + 1

2Φ𝛽3 (𝑡, x, x
)Φ) + ∫𝑑x𝑀Φ + ∫𝑑x𝑁Π) . (59)

or in the momentum space

𝑃𝐼𝑡 = 𝐿 (𝑡) exp (−𝛾−2 ∫𝑑k (12Π𝛽1 (𝑡, k) Π + Π𝛽2 (𝑡, k) Φ + 1
2Φ𝛽3 (𝑡, k) Φ) + ∫𝑑k𝑀(k) Φ (−k) + ∫𝑑k𝑁(k) Π (−k)) . (60)

In the configuration space 𝛽 is an operator and in the
momentum space a function of k. 𝐿(𝑡) is determined by
normalization or directly from the Fokker-Planck equation:

𝐿−1𝜕𝑡𝐿 = −12 ∫𝑑x𝑑x

G𝑡 (x, x) 𝛽1 (x, x) (61)

The equations for 𝛽 read

𝜕𝑡𝛽1 = −𝛽1G𝑡𝛽1 − 2𝛽2 (62)

𝜕𝑡𝛽2 = −𝛽2G𝑡𝛽1 + 𝜔2𝛽1 − 𝛽3 (63)

𝜕𝑡𝛽3 = −𝛽2G𝑡𝛽2 + 2𝜔2𝛽2 (64)

where

𝜔2 = 𝑎−2𝑘2 + 𝑚2 + ]̃ (65)

We skip the equations for𝑀 and𝑁.

It is useful to introduce instead of𝛽𝑗 the variables (defined
by Fourier transforms of 𝛽):

𝑋 = 𝛽3 − 𝛽22
𝛽1 (66)

𝑌 = 𝛽2
𝛽1 (67)

𝑍 = 𝛽3
𝛽1 (68)

We can invert these relations:

𝛽1 = 𝑋
𝑍 − 𝑌2 (69)

𝛽2 = 𝑋𝑌
𝑍 − 𝑌2 (70)

𝛽3 = 𝑍𝑋
𝑍 − 𝑌2 (71)
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𝑃𝐼𝑡 can be expressed as

𝑃𝐼𝑡 = 𝐿 (𝑡) exp(−∫𝑑x𝑑x

⋅ 12𝛾
−2 ((Π + 𝑌Φ) 𝛽1 (Π + 𝑌Φ) + Φ𝑋Φ)) .

(72)

From (72) it can be seen that the probability distribution
is diagonal in the variables Φ and Π + 𝑌Φ. So, we obtain
the expectation value ⟨(Π + 𝑌Φ)(x)(Π + 𝑌Φ)(x)⟩ =
𝛾2𝛽−11 (x, x).

Assume that we calculate the expectation values at time 𝑡:

𝐷 = ⟨Π2𝑡⟩ = 𝛾2𝛽3 (𝛽1𝛽3 − 𝛽22)−1 = 𝛾2𝑍𝑋−1 (73)

𝐶 = ⟨Φ2𝑡⟩ = 𝛾2𝛽1 (𝛽1𝛽3 − 𝛽22)−1 = 𝛾2𝑋−1 (74)

𝐸 = ⟨Φ𝑡Π𝑡⟩ = −𝛾2𝛽2 (𝛽1𝛽3 − 𝛽22)−1 = −𝛾2𝑌𝑋−1 (75)

𝑋,𝑌, 𝑍 can be expressed by𝐷,𝐶, 𝐸 as

𝑍 = 𝐷𝐶−1 (76)

𝑌 = −𝐸𝐶−1 (77)

𝑋 = 𝛾2𝐶−1 (78)

If we know𝐷,𝐸, 𝐶 then we can express

𝛽1 = 𝐶 (𝐷𝐶 − 𝐸2)−1 (79)

𝛽2 = −𝐸 (𝐷𝐶 − 𝐸2)−1 (80)

𝛽3 = 𝐷(𝐷𝐶 − 𝐸2)−1 (81)

Note that 𝛽2(𝑡 = 0) = 0means 𝐸(𝑡 = 0) = 0.
The relations (67)-(81) allow relating the solutions of the

stochastic equation (42) with the solutions of the differential
equations (62)-(64) and the solution of the Fokker-Planck
equation (44). In fact, the solution 𝑃𝐼 can be expressed by the
Fokker-Planck transition function𝑃𝑡 (which is defined by the
solution of the stochastic equation (42) [27]) as follows:

𝑃𝐼𝑡 (𝜙, Π) = ∫𝑑𝜙𝑑Π𝑃𝐼0 (𝜙, Π) 𝑃𝑡 (𝜙, Π; 𝜙, Π) (82)

The expectation values of the solution of the stochastic
equation with the initial condition (𝜙, Π) is

⟨𝐹 (𝜙𝑡 (𝜙, Π) , Π𝑡 (𝜙, Π))⟩
= ∫𝑑𝜙𝑑Π𝑃𝑡 (𝜙, Π; 𝜙, Π) 𝐹 (𝜙, Π)

(83)

Hence,

∫𝑑𝜙𝑑Π𝑃𝐼0 (𝜙, Π) ⟨𝐹 (𝜙𝑡 (𝜙, Π) , Π𝑡 (𝜙, Π))⟩

= ∫𝑑𝜙𝑑Π𝑃𝐼0 (𝜙, Π)∫ 𝑑𝜙𝑑Π𝑃𝑡 (𝜙, Π; 𝜙, Π)

⋅ 𝐹 (𝜙, Π) = ∫𝑑𝜙𝑑Π𝑃𝐼𝑡 (𝜙, Π) 𝐹 (𝜙, Π)

(84)

Note that the initial value 𝑃𝐼0 in (84) according to (59) is
determined by the initial values of 𝛽𝑗. A possible choice for
the initial value is the thermal Gibbs distribution:

𝑃𝐼0 = exp (− 1
2𝑇 ∫𝑑x (Π2 + (∇𝜙)2 + 𝑚2𝜙2)) (85)

which corresponds to the initial condition 𝛽2(𝑡 = 0) = 0,
𝛽1(𝑡 = 0, x, x) = (1/𝑇)𝛿(x − x) and 𝛽3(𝑡 = 0, x, x) =
(1/𝑇)𝛿(x−x).We could also consider the initial probability
distribution:

𝑃𝐼0 = exp(− 1
2𝜎2 ∫𝑑x (𝜙 (x) − V)2) (86)

describing the field concentrated at V. Then, in (59) 𝑀(𝑡 =
0, x) = 𝜎−2V. In such a case, the probability distribution (59)
describes the probability of the transition from V to𝜙 (see [36]
for such calculations in quantum mechanics).

8. The Relative Entropy

Assume we have a functional equation of the form (like (44)):

𝜕𝑡𝑃 = 1
2 ∫𝑑x𝑑x


D𝑡 (x, x) 𝛿2

𝛿Π (x) 𝛿Π (x)𝑃

+ ∫𝑑x 𝛿
𝛿Π (x)𝐷1 (𝜙 (x) , Π (x)) 𝑃

+ ∫𝑑x 𝛿
𝛿Φ (x)𝐷2 (Φ (x) , Π (x)) 𝑃 ≡ A𝑃

(87)

Let us assume that we have two solutions 𝑃1 and 𝑃2 of this
equation. Define the relative entropy

𝐹 = ∫𝑑Φ𝑑Π𝑍−11 𝑃1 ln (𝑍2𝑍−11 𝑃1𝑃−12 ) (88)

where

𝑍1 = ∫𝑑Φ𝑑Π𝑃1 (89)

𝑍2 = ∫𝑑Φ𝑑Π𝑃2 (90)

From the definition of 𝐹 it follows that [37]

𝐹 ≥ 0 (91)

Calculation of the time derivative of 𝐹 gives
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𝜕𝑡𝐹 = −12 ∫𝑑𝜙𝑑Π𝑃1 (𝑃2𝑃
−1
1 )2 𝑑x𝑑xD𝑡 (x, x) 𝛿

𝛿Π (x) (𝑃1𝑃
−1
2 ) 𝛿

𝛿Π (x) (𝑃1𝑃
−1
2 ) ≤ 0 (92)

We choose 𝑃2 = 𝑃𝐼 (then 𝑍2 = 1 because 𝐿(𝑡) is the normal-
ization factor). Then, we define the entropy (the entropy of
inflaton and gravitational perturbations has been discussed
earlier in [38, 39]):

𝑆 = −𝑍−1 ∫𝑑Φ𝑑Π𝑃 ln (𝑍−1𝑃) (93)

Using (87) we calculate the time derivative:

𝜕𝑡𝑆 = −𝑍−1 ∫𝑑Φ𝑑ΠA𝑃 ln𝑃 − 𝑍−1 ∫𝑑Φ𝑑ΠA𝑃 (94)

The second term is zero, whereas the first term is equal to

𝜕𝑡𝑆
= 1
2 ∫𝑑Φ𝑑Π𝑃

−1𝑑x𝑑xD𝑡 (x, x) 𝛿
𝛿Π (x)𝑃

𝛿
𝛿Π (x)𝑃

+ ∫𝑑𝜙𝑑Π∫𝑑x(𝐷1 𝛿𝑃
𝛿Π (x) + 𝐷2

𝛿𝑃
𝛿Φ (x))

(95)

In (95) the first term is positive whereas the second term
depends on the dynamics (it is vanishing for Hamiltonian
dynamics). Using formula (59) for 𝑃2 = 𝑃𝐼 we obtain

𝐹 + 𝑆 = 𝑍−1 ∫𝑑Φ𝑑Π𝑃(12𝛾
−2Π𝛽1Π + 𝛾−2Φ𝛽2Π

+ 1
2𝛾
−2Φ𝛽3Φ) − ln 𝐿 (𝑡)

(96)

Formula (96) has a thermodynamic meaning relating the
sum of free energy 𝐹 and entropy 𝑆 to the internal energy
expressed by the rhs of (96). At the initial time (with the initial
conditions discussed at the end of Section 7) the rhs of (96)
is the mean value of the energy

𝑈0 = 1
2 ∫𝑑x (Π

2 + (∇Φ)2 + 𝑚2Φ2) (97)

In the static universe we would have an equilibrium distribu-
tion as 𝑃2. In such a case the thermodynamic relation (95)
would describe the standard version of the second law of
thermodynamics of diffusing systems. 𝐹 with 𝜕𝑡𝐹 ≤ 0 in (92)
would show the approach to equilibrium. In the expanding
universe the relation (96) can serve for a comparison of
various probability measures starting from different initial
conditions.

9. Summary

The main source of observational data [1, 2] comes from
measurements of the cosmic microwave background (CMB)

and observations of galaxies evolution (including galaxies
distribution). The CMB spectrum and its fluctuations are
the test ground for models involving quantum and thermal
fluctuations. A simplified description of an interaction of a
relativistic system with an environment leads to a stochastic
wave equation for an inflaton generating the expansion (infla-
tion) of the universe. We considered a linearization of the
wave equation. We discussed the Fokker-Planck equation for
the probability distribution of the inflaton.Gaussian solutions
of the Fokker-Planck equation for linearized systems can be
treated as Gibbs states with a time-dependent temperature.
The model leads to a formula for density and temperature
evolution. We have derived the density evolution law in (35)
and the temperature evolution in (38) in a simplified model.
In order to obtain the results in the complete model we
would have to solve (numerically) equations of Section 7.
The comparison of density evolution (38) with observations
is discussed in [32] and in similar models with the decaying
vacuum ( see [34, 35] and references cited there). The
model allows calculating (and compare with observations)
the power spectrum resulting from thermal fluctuations
which may go beyond the approximations applied in the
warm inflation of [20].We have introduced a thermodynamic
description of the expanding diffusive systems in terms of
the relative entropy (free energy) and entropy. The state of
a stochastic system can be identified with its probability
distribution. The relative entropy allows comparing the evo-
lution of the probability distributions with different initial
conditions. In this sense relative entropy can be treated as a
quantitative measure of a decay of one state into another state
(as an alternative to a quantum description of vacuum decay
in cosmology [40, 41]).

Appendix

A. Statistical Physics of a Static Finite
Dimensional Model

A finite dimensional analog of the wave equation is (x ∈ 𝑅𝑛):

𝑑𝑥𝑘
𝑑𝑡 = 𝑝𝑘 (A.1)

𝑑𝑝𝑘
𝑑𝑡 = −Γ𝑝𝑘 − 𝜔2𝑥𝑘 + 𝛾𝜂𝑘 (A.2)

The Fokker-Planck equation reads

𝜕𝑡𝑃 = −𝑝𝑘 𝜕𝜕𝑥𝑘 +
𝜕
𝜕𝑝𝑘 (Γ𝑝

𝑘 + 𝜔2𝑥𝑘) 𝑃 + 𝛾2
2

𝜕2𝑃
𝜕𝑝𝑘𝜕𝑝𝑘 (A.3)
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The stationary solution is

𝑃∞ = exp(− Γ
𝛾2 (p
2 + 𝜔2x2)) = exp(−E𝑇) (A.4)

where E is the energy of the oscillator. It describes a Gibbs
state with the temperature

𝑇 = 𝛾2
2Γ (A.5)

We look for a solution of (A.3) in the following form:

𝑃𝑡 = 𝐿 (𝑡) exp(−12𝛼1p
2 − 𝛼2xp − 1

2𝛼3x
2) (A.6)

Then

𝐿−1𝜕𝑡𝐿 = −𝑛2𝛾
2𝛼1 + Γ𝑛 (A.7)

𝜕𝑡𝛼1 = −2𝛼2 − 𝛾2𝛼21 + 2Γ𝛼1 (A.8)

𝜕𝑡𝛼2 = −𝛼3 − 𝛾2𝛼1𝛼2 + Γ𝛼2 + 𝜔2𝛼1 (A.9)

𝜕𝑡𝛼3 = −𝛾2𝛼22 + 2𝜔2𝛼2 (A.10)

Let us write

𝑥𝑘 = exp(−Γ2 𝑡) 𝑦
𝑘 (A.11)

Then, the stochastic equation for 𝑦 reads

𝑑2𝑦𝑘
𝑑𝑡2 = −Ω2𝑦𝑘 + 𝛾 exp(Γ2 𝑡) 𝜂

𝑘 (A.12)

where

Ω2 = 𝜔2 − Γ2
4 (A.13)

The solution of (A.12) is

𝑦𝑘 (𝑡)
= cos (Ω𝑡) 𝑦𝑘 (0) + sin (Ω𝑡)Ω−1𝜕𝑡𝑦𝑘 (0)
+ 𝛾∫𝑡
0
sin (Ω (𝑡 − 𝑠))Ω−1 exp(Γ2 𝑠)𝑤 (𝑠) 𝑑𝑠

(A.14)

We can easily calculate the correlation functions of 𝑥𝑘(𝑠)
and 𝑝𝑘(𝑠) in two ways: either from the stochastic equations
or using the probability distribution 𝑃𝑡 resulting from the
solution of the differential equations (A.8)-(A.10).
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We present a quantum field theoretical derivation of the nondecay probability of an unstable particle with nonzero three-
momentum p. To this end, we use the (fully resummed) propagator of the unstable particle, denoted as 𝑆, to obtain the energy
probability distribution, called 𝑑p

�푆 (𝐸), as the imaginary part of the propagator.The nondecay probability amplitude of the particle 𝑆
with momentum p turns out to be, as usual, its Fourier transform: 𝑎p�푆 (𝑡) = ∫∞√�푚2

𝑡ℎ
+p2 𝑑𝐸𝑑p

�푆 (𝐸)𝑒−�푖�퐸�푡 (𝑚�푡ℎ is the lowest energy threshold
in the rest frame of 𝑆 and corresponds to the sum of masses of the decay products). Upon a variable transformation, one can
rewrite it as 𝑎p�푆 (𝑡) = ∫∞�푚𝑡ℎ 𝑑𝑚𝑑0

�푆(𝑚)𝑒−�푖√�푚2𝑡ℎ+p2�푡 [here, 𝑑0
�푆(𝑚) ≡ 𝑑�푆(𝑚) is the usual spectral function (or mass distribution) in the rest

frame]. Hence, the latter expression, previously obtained by different approaches, is here confirmed in an independent and, most
importantly, covariant QFT-based approach. Its consequences are not yet fully explored but appear to be quite surprising (such
as the fact that the usual time-dilatation formula does not apply); thus its firm understanding and investigation can be a fruitful
subject of future research.

1. Introduction

The study of the decay law is a fundamental part of quantum
mechanics (QM). It is now theoretically [1–9] and experimen-
tally [10, 11] established that deviations from the exponential
decay exist, but they are usually small. Such deviations are
also present in quantum field theory (QFT) [9, 12].

An interesting question addresses the decay of anunstable
particle with nonzero momentum p. In [13–17], it was
shown—by using QM-based approaches enlarged to include
special relativity—that the nondecay probability of an unsta-
ble particle 𝑆with momentum p is given by (in natural units)

𝑃p
�푆 (𝑡) = 𝑎p�푆 (𝑡)2

with 𝑎p�푆 (𝑡) = ∫∞
�푚𝑡ℎ

dm𝑑�푆 (𝑚) 𝑒−�푖√�푚2+p2�푡, (1)

where𝑑�푆(𝑚) is the energy (ormass) distribution of 𝑆 in its rest
frame [dm𝑑�푆(𝑚) is the probability that the unstable state 𝑆 has

energy (or mass) between 𝑚 and 𝑚 + dm]. A review of the
derivation is presented in Section 2. Quite remarkably, there
aremany interesting properties linked to this equation, which
include deviations from the standard dilatation formula; see
below.

The purpose of this work is straightforward: we derive
(1) in a QFT framework (see Section 3). We thus confirm
its validity and, as a consequence, its peculiar features. For
definiteness, an underlying Lagrangian involving scalar fields
is introduced, but our discussion is valid for any spin of the
unstable particle and of the decay products. A central quantity
of our study is the relativistic propagator of the unstable
particle 𝑆: the mass distribution 𝑑�푆(𝑚) is then obtained by the
imaginary part of the propagator.

In this Introduction, we recall some basic and striking
features connected to (1). The normalization

∫∞
�푚𝑡ℎ

dm𝑑�푆 (𝑚) = 1 (2)
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is a crucial feature of the spectral function, implying that𝑎p�푆 (0) = 1. It must be valid both in QM and in QFT. Here,
without loss of generality, we set the lower limit of the integral
to 𝑚�푡ℎ ≥ 0. In fact, a minimal energy 𝑚�푡ℎ is present in
each physical system; in particular, for a (relevant for us)
relativistic system, it is given by the sum of the rest masses
of the produced particles (𝑚�푡ℎ = 𝑚1 + 𝑚2 + ⋅ ⋅ ⋅ ≥ 0). Clearly,
for p = 0, (1) reduces to the usual expression

𝑃�푟�푒�푠�푡�푆 (𝑡) = 𝑃0
�푆 (𝑡) = 𝑎0�푆 (𝑡)2 = ∫

∞

�푚𝑡ℎ
dm𝑑�푆 (𝑚) 𝑒−�푖�푚�푡

2 . (3)

A detailed study of (1) shows that the usual time dilatation
does not hold:

𝑃p
�푆 (𝑡) ̸= 𝑃�푟�푒�푠�푡�푆 (𝑡 𝑀√𝑀2 + p2

) , (4)

where 𝑀 is the mass of the state 𝑆 defined, for instance, as
the position of the peak of the distribution 𝑑�푆(𝑚); in general,
however, other definitions are possible, such as the real part
of the pole of the propagator; see Section 3. The point is that,
no matter which definition one takes, expression (4) remains
an inequality.

It is always instructive to investigate the exponential limit,
in which the spectral function of the state 𝑆 reads [18, 19]

𝑑�퐵�푊�푆 (𝑚) = Γ2𝜋 [(𝑚 −𝑀)2 + Γ24 ]−1 , (5)

where 𝑀 is the “mass of the unstable state” corresponding
to the peak. Even if the spectral function 𝑑�퐵�푊�푆 (𝑚) is clearly
unphysical because there is nominimal energy (𝑚�푡ℎ → −∞),
in many physical cases it is a good approximation for a quite
broad energy range. Here, the decay amplitude and the decay
law in the rest frame of the decaying particle notoriously read

𝑎�퐵�푊,0�푆 (𝑡) = 𝑒−�푖�푀�푡−Γ�푡/2 →
𝑃�퐵�푊,�푟�푒�푠�푡�푆 (𝑡) = 𝑒−Γ�푡. (6)

When a nonzero momentum is considered, the nondecay
probability is still an exponential given by

𝑃�퐵�푊,p�푆 (𝑡) = 𝑒−Γp�푡 (7)

where the width is [17]

Γp
= √2√[(𝑀2 − Γ24 + p2)2 +𝑀2Γ2]1/2 − (𝑀2 − Γ24 + p2). (8)

Clearly, Γp=0 = Γ. One realizes, however, that Γp differs
from the naively expected standard time-dilatation formula,
according to which the decay width of an unstable state with
momentum p should simply be

Γ𝑀√p2 +𝑀2 = 𝛾Γ. (9)

Namely, the quantity 𝛾 = √p2 +𝑀2/𝑀 = 1/√1 − k2 is
the usual dilatation factor for a state with (definite) energy𝑀. Deviations between (8) and (9) are very small, as the
numerical discussion in [17] shows. Although notmeasurable
by current experiments [20], the very fact that deviations exist
is very interesting and deserves further study.

As a last point, it should be stressed that in this work we
consider unstable states with a definite momentum p. This
is a subtle point: while for a state with definite energy, a
boost and a momentum translation are equivalent, this is not
so for an unstable state, since it is not an energy eigenstate.
Even more surprisingly, a boost of an unstable state is a
quantum state whose nondecay probability is actually zero:
it is already decayed (on the contrary, its survival probability
presents a peculiar time contraction [21]). In other words,
a boosted muon consists of an electron and two neutrinos
[15, 17]. In this sense, the boost mixes the Hilbert subspace
of the undecayed states with the subspace of the decay
products; see [17] for details. There, it is also discussed
why the basis of unstable states contains states with definite
three-momentum. Indeed, the investigation of this paper also
confirms this aspect: unstable states with definite momentum
naturally follow from the study of its propagator in QFT.

The paper is organized in this way: in Section 2 we recall
the QM derivation of (1), while in Section 3—the key part of
this paper—we present this derivation in a QFT context. In
the end, in Section 4 we describe our conclusions.

2. Recall of the QM-Based Derivation of (1)

For completeness, we report here the “standard” derivation of
(1). To this end, we use the arguments presented in [17], but
similar ones can be found in [13–16].

We consider a system described by the Hamiltonian 𝐻,
whose eigenstates are denoted as

|𝑚,p⟩ = 𝑈p |𝑚, 0⟩ , (10)

where 𝑈p is the unitary operator associated with the trans-
lation in momentum space. Standard normalization expres-
sions are assumed:

⟨𝑚1, p1 | 𝑚2, p2⟩ = 𝛿 (𝑚1 − 𝑚2) 𝛿 (p1 − p2) . (11)

The state |𝑚,p⟩ has definite energy,
𝐻 |𝑚,p⟩ = √p2 + 𝑚2 |𝑚,p⟩ , (12)

definite momentum,

P |𝑚, p⟩ = p |𝑚, p⟩ , (13)

and definite velocity p/√p2 + 𝑚2. Note, assuming that the
energy of |𝑚,p⟩ is√p2 + 𝑚2, we have a relativistic spectrum.

Formally, the Hamiltonian can be written as

𝐻 = ∫ d3p∫∞
�푚𝑡ℎ

𝑑𝑚√p2 + 𝑚2 |𝑚,p⟩ ⟨𝑚,p|
= ∫ d3p𝐻p

(14)
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where

𝐻p = ∫∞
�푚𝑡ℎ

𝑑𝑚√p2 + 𝑚2 |𝑚, p⟩ ⟨𝑚, p| (15)

is the effective Hamiltonian in the subspace of states with
definite momentum p.

Let us now consider an unstable state 𝑆 in its rest frame.
The corresponding quantum state at rest is assumed to be

| 𝑆, 0⟩ = ∫∞
�푚𝑡ℎ

dm𝛼�푆 (𝑚) |𝑚, 0⟩ , (16)

where 𝛼�푆(𝑚) is the probability amplitude that the state 𝑆 has
energy 𝑚. Hence, it is natural that the quantity 𝑑�푆(𝑚) =|𝛼�푆(𝑚)|2 is the mass distribution: 𝑑�푆(𝑚)dm is the probability
that the unstable particle 𝑆 has amass between𝑚 and𝑚+dm.
As a consequence, ∫∞0 dm𝑑�푆(𝑚) = 1, as already discussed in
the Introduction.

For the states of zero momentum, the Hamiltonian 𝐻p=0
can be expressed in terms of the undecayed state |𝑆, 0⟩ and its
decay products in the form of a LeeHamiltonian [22] (similar
effective Hamiltonians are used also in quantum mechanics
[6, 19] and quantum field theory [9, 23]):

𝐻p=0 = ∫∞
�푚𝑡ℎ

dm𝑚 |𝑚, 0⟩ ⟨𝑚, 0|
= 𝑀0 | 𝑆, 0⟩ ⟨𝑆, 0| + ∫ d3k𝜔 (k) |k, 0⟩ ⟨k, 0|

+ ∫ d3k(2𝜋)3/2 𝑔𝑓 (k) [| 𝑆, 0⟩ ⟨k, 0| + |k, 0⟩ ⟨𝑆, 0| ] ,
(17)

where |k, 0⟩ represents a decay product with vanishing total
momentum: in the two-body decay case, |k, 0⟩ describes two
particles, the first with momentum k and the second with
momentum −k, hence

𝜔 (k) = √k2 + 𝑚21 + √k2 + 𝑚22. (18)

The last term in (17) represents the “mixing” between |𝑆, 0⟩
and |k, 0⟩, which causes the decay of the former into the latter.
Moreover, 𝑔 is a coupling constant and 𝑓(k) encodes the
dependence of themixing on themomentumof the produced
particles. The explicit expressions connecting the states |k, 0⟩
to |𝑚, 0⟩ formally read

|k, 0⟩ = ∫∞
�푚𝑡ℎ

dm𝛽k (𝑚) |𝑚, 0⟩ (19)

where 𝛽k(𝑚) can be found by diagonalizing the Hamiltonian
(17).

Let us now consider an unstable state with definite
momentum p, which is denoted as |𝑆, p⟩:

| 𝑆, p⟩ = 𝑈p |𝑆, 0⟩ = ∫∞
�푚𝑡ℎ

dm𝛼�푆 (𝑚) |𝑚,p⟩ . (20)

The normalization

⟨𝑆, p1 | 𝑆, p2⟩ = 𝛿 (p1 − p2) (21)

follows. Note that (20) is not a state with definite velocity.This
is due to the fact that each state |𝑚, p⟩ in the superposition has
a different velocity p/√p2 + 𝑚2. The subset of Hilbert space
given by {|𝑆,p⟩∀p ⊂ 𝑅2} represents the set of all undecayed
quantum states of the system under study.

The form of the Hamiltonian 𝐻p in terms of the states|𝑆, p⟩ and 𝑈p|k, 0⟩ = |k,p⟩ can be in principle derived by
using the expressions above. Togetherwith (20), one shall also
take (19) and apply 𝑈p in order to get

𝑈p |k, 0⟩ = |k,p⟩ = ∫∞
�푚𝑡ℎ

dm𝛽k (𝑚) |𝑚,p⟩ . (22)

Then, one should invert (20) and (22) and insert it into𝐻p of
(15). However, its explicit expression is definitely not trivial
but, fortunately, also not needed in the present work. Hence,
we do not attempt to write it down here.

We now turn to the nondecay amplitude of the state 𝑆.
In its rest frame (p = 0), upon starting from a properly
normalized state with zero momentum, |𝑆, 0⟩/√𝛿(0), one
obtains the usual expression

𝑎0�푆 (𝑡) = 1𝛿 (0) ⟨𝑆, 0 𝑒−�푖�퐻�푡 𝑆, 0⟩
= 1𝛿 (0) ∫

∞

�푚𝑡ℎ
dm1dm2 ⟨𝑚1, 0 𝑒−�푖�퐻�푡 𝑚2, 0⟩

= ∫∞
�푚𝑡ℎ

dm𝑑�푆 (𝑚) 𝑒−�푖�푚�푡,
(23)

in agreement with (3). The theory of decay is discussed in
great detail for the case p = 0 in [4, 6, 7, 9] and references
therein. Note here the nondecay probability coincides with
the survival probability (that is, the probability that the state
did not change), but in general this is not the case [17].

Next, we consider a normalized unstable state 𝑆 with
nonzero momentum: |𝑆,p⟩/√𝛿(0). The resulting nondecay
probability amplitude

𝑎p�푆 (𝑡) = 1𝛿 (0) ⟨𝑆, p 𝑒−�푖�퐻�푡 𝑆, p⟩
= 1𝛿 (0) ∫

∞

�푚𝑡ℎ
dm1dm2 ⟨𝑚1,p 𝑒−�푖�퐻�푡 𝑚2, p⟩

= ∫∞
�푚𝑡ℎ

dm𝑑�푆 (𝑚) 𝑒−�푖√�푚2+p2�푡
(24)

coincides with (1), hence concluding our derivation.
In principle, one could also start from the Hamiltonian𝐻p and obtain the energy distribution associated with this

state, denoted as 𝑑p�푆 (𝐸). Then, 𝑎p�푆 (𝑡) should also emerge as
the Fourier transform of the latter. This is hard to do here,
since the explicit expression of𝐻p in terms of |𝑆, p⟩ and |k,p⟩
was not written down (as mentioned previously, this is not an
easy task). Quite interestingly, in the framework of QFT, the
function 𝑑p�푆 (𝐸) can be easily determined; see Section 3.
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As a last comment of this section, we recall that the
general nondecay probability of an arbitrary state |Ψ⟩ reads

𝑃|Ψ⟩ (𝑡) = ∫ d3p ⟨𝑆, p 𝑒−�푖�퐻�푡 Ψ⟩2 , (25)

whose interpretation is straightforward: we project |Ψ⟩ onto
the basis of undecayed states. In general, 𝑃|Ψ⟩(0) is not unity.
Notice also that 𝑃|Ψ⟩(𝑡) is not the survival probability of the
state |Ψ⟩ (a state can change with time but still be undecayed
if it is a different superposition of |𝑆, p⟩).

When a boost 𝑈k on the state with zero momentum (and
hence with zero velocity) |𝑆, 0⟩ is considered, the resulting
state reads [17]𝜑k⟩ = 𝑈k | 𝑆, 0⟩

= ∫∞
�푚𝑡ℎ

dm𝛼�푆 (𝑚)√𝑚𝛾3/2 𝑚,𝑚𝛾k⟩ , (26)

where 𝛾 = (1 − k2)−1/2. In fact, each element of the
superposition, |𝑚,𝑚𝛾k⟩, has velocity k. Of course, |𝜑k⟩ is not
an eigenstate of momentum, since each element in (26) has
a different momentum p = 𝑚𝛾k. In this respect, the state|𝑆, 0⟩ is special: it is the only state which has at the same
time definite momentum and definite velocity (both of them
vanishing). As mentioned in the Introduction, the nondecay
probability associated with |𝜑k⟩ vanishes:𝑃|�휑k⟩ (𝑡) = 0 ∀k ̸= 0. (27)

As soon as a nonzero velocity is considered, the state has
decayed. This result is quite surprising but also rather “del-
icate”: when a wave packet is considered, 𝑃|�휑k⟩�푛�푑 (𝑡) is nonzero
(even if it is not 1 for 𝑡 = 0) [17].
3. Covariant QFT Derivation of (1)

Let us consider an unstable particle described by the scalar
field 𝑆(𝑥) ≡ 𝑆(𝑡, x). For an illustrative example, one can couple𝑆with baremass𝑀0 to two scalar fields𝜑1 (withmass𝑚1) and𝜑2 (withmass𝑚2) via the interaction term 𝑔𝑆𝜑1𝜑2, leading to
the QFT Lagrangian

L = 12 [(𝜕�휇𝜑1)2 − 𝑚21𝜑21] + 12 [(𝜕�휇𝜑2)2 − 𝑚22𝜑22]
+ 12 [(𝜕�휇𝑆)2 −𝑀20𝑆2] + 𝑔𝑆𝜑1𝜑2.

(28)

This is the QFT counterpart of the QM system of the previous
section. Note we use scalar fields for simplicity, but our
discussion is in no way limited to it.

The (full) propagator of the state 𝑆 (details in [24]) reads

Δ �푆 (𝑝2) = 1𝑝2 −𝑀20 + Π (𝑝2) + 𝑖𝜀
with 𝑝2 = 𝐸2 − p2, (29)

where 𝐸 = 𝑝0 is the energy and p the three-momentum.
Because of covariance, Δ �푆(𝑝2) depends only on 𝑝2. The

quantity Π(𝑝2) is the one-particle irreducible diagram. Its
calculation is of course nontrivial (it requires a proper
regularization), but it is not needed for our purposes. The
imaginary part is

ImΠ (𝑝2) = √𝑝2Γ (√𝑝2)
= |k|
8𝜋√𝑝2𝑔2𝑓2Λ (|k|) + ⋅ ⋅ ⋅ , (30)

where dots refer to higher orders, which are however typically
very small [25]. Once ImΠ(𝑝2) is fixed, ReΠ(𝑝2) can be
determined by dispersion relations (for an example of this
technique, see, e.g., [26]). The quantity Γ�푡�푙 = Γ(√𝑝2 = 𝑀)
is the usual tree-level decay width; hence in the exponential
limit the decay law 𝑃�푆(𝑡) = 𝑒−Γ𝑡𝑙�푡 must be reobtained. As
mentioned in the Introduction, an unstable state has not a
definite mass: this is why different definitions for 𝑀 (which
is not the bare mass 𝑀0 entering in (29)) are possible:
ReΔ−1�푆 (𝑝2 = 𝑀2) = 0 (zero of the real part of the
denominator), or Re[√𝑠�푝�표�푙�푒], with Δ−1�푆 (𝑠�푝�표�푙�푒) = 0 (real part of
the pole), or the maximum of the spectral function defined
below.

We also recall that

|k| = √𝑝4 + (𝑚21 − 𝑚22)2 − 2𝑝2 (𝑚21 + 𝑚22)4𝑝2 (31)

coincides, for the on-shell decay, with the modulus of the
three-momentum of one of the outgoing particles. The vertex
function 𝑓Λ(|k|) is a proper regularization which fulfills the
condition 𝑓Λ(|k| → 0) = 1 and describes the high-
energy behavior of the theory (its UV completion); hence the
parameter Λ is some high-energy scale; 𝑓Λ(|k|) is formally
not present in (28) since it appears in the regularization
procedure, but it can be included directly in the Lagrangian
by rendering it nonlocal [27] in a way that fulfills covariance
[28]. In a renormalizable theory (such as the one of (28)), the
dependence on Λ disappears in the low-energy limit.

The properties outlined above, although in general very
important in specific calculations, turn out to be actually
secondary to the proof that we present below, where only
the formal expression of the propagator of (29) is relevant.
Moreover, even when the unstable particle is not a scalar, one
can always define a scalar part of the propagator which looks
just as in (29), then the outlined properties apply, mutatis
mutandis, to each QFT Lagrangian.

As a next step, upon introducing theMandelstam variable𝑠 = 𝑝2, the function 𝐹(𝑠) defined as

𝐹 (𝑠) = 1𝜋 Im [Δ �푆 (𝑝2 = 𝑠)] (32)

fulfills the normalization condition:

∫∞
�푠𝑡ℎ

ds𝐹 (𝑠) = 1, (33)
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where 𝑠�푡ℎ = 𝑚2�푡ℎ is the minimal squared energy. For the case
of (28), one has obviously 𝑠�푡ℎ = (𝑚1+𝑚2)2.Thenormalization
(33) is a consequence of the Källén–Lehmann representation
[29]

Δ �푆 (𝑝2) = ∫∞
�푠𝑡ℎ

ds 𝐹 (𝑠)𝑝2 − 𝑠 + 𝑖𝜀 , (34)

in which the propagator Δ �푆(𝑝2) has been rewritten as the
“sum” of free propagators [𝑝2 − 𝑠 + 𝑖𝜀]−1, each one of them
weighted by 𝐹(𝑠): ds𝐹(𝑠) is the probability that the squared
mass lies between 𝑠 and 𝑠 + ds. Of course, the normalization
(33) is a very important feature of our approach. For a detailed
proof of its validity, we refer to [30]. Here we recall a simple
version of it, which is obtained by assuming the rather strong
requirementΠ(𝑝2) = 0 for 𝑝2 > Λ2, whereΛ is a high-energy
scale (no matter how large). Under this assumption

Δ �푆 (𝑝2) = 1𝑝2 −𝑀20 + Π (𝑝2) + 𝑖𝜀
= ∫Λ2
�푠𝑡ℎ

ds 𝐹 (𝑠)𝑝2 − 𝑠 + 𝑖𝜀 .
(35)

Then, upon taking a certain value 𝑝2 ≫ Λ2, the previous
equation reduces to

1𝑝2 = ∫Λ2
�푠𝑡ℎ

ds𝐹 (𝑠)𝑝2 →
∫Λ2
�푠𝑡ℎ

ds𝐹 (𝑠) = 1
(36)

The general case in whichΠ(𝑝2 → ∞) = 0 smoothly requires
more steps, but the final result of (33) still holds [30].

Let us now consider the rest frame of the decaying
particle: p = 0, 𝑠 = 𝑝2 = 𝐸2 = 𝑚2. Here, upon a simple
variable change (𝑚 = √𝑠), we obtain the mass distribution
(or spectral function) 𝑑p=0�푆 (𝑚) through the equation

dm𝑑p=0�푆 (𝑚) = ds𝐹 (𝑠) , (37)

out of which

𝑑�푆 (𝑚) = 𝑑p=0�푆 (𝑚) = 2𝑚𝐹 (𝑠 = 𝑚2) . (38)

As already mentioned, dm𝑑�푆(𝑚) is the probability that the
particle 𝑆 has a mass between 𝑚 and 𝑚 + dm [24, 31]. In this
context, the normalization

∫∞
�푚𝑡ℎ

dm𝑑�푆 (𝑚) = 1 (39)

follows from (33). Once the function 𝑑�푆(𝑚) is identified
as the mass distribution of the undecayed quantum state,
the nondecay probability’s amplitude 𝑎0�푆 (𝑡) can be obtained
by repeating the steps of Section 2. The result coincides, as
expected, with (3). Yet, it should be stressed that the unstable
quantum state |𝑆, 0⟩ characterized by the distribution 𝑑�푆(𝑚)

is not simply given by 𝑎†0 |0�푃�푇⟩, where |0�푃�푇⟩ is the perturbative
vacuum and 𝑎†p the creator operator of the noninteracting
field 𝑆. The case of neutrino oscillations shows a similar
situation: the state corresponding to a certain flavour, such
as the neutrino ]�푒, must be constructed with due care
by making use of Bogolyubov transformations [32]. Along
this line, the exact and formal determination of the state|𝑆, 0⟩, corresponding to the mass distribution 𝑑�푆(𝑚), in the
context of QFT requires a generalization of Bogolyubov
transformations and was, to our knowledge, not yet explicitly
done (it is left for the future). Nevertheless, it is not needed
for the purpose of this paper.

Let us now consider the particle 𝑆 moving with a certain
momentum p. Upon using 𝑠 = 𝐸2 − p2, the energy
distribution—as function of 𝐸—is obtained by

dE𝑑p�푆 (𝐸) = ds𝐹 (𝑠) , (40)

leading to

𝑑p�푆 (𝐸) = 2𝐸𝐹 (𝑠 = 𝐸2 − p2)
= 𝐸√𝐸2 − p2

𝑑�푆 (√𝐸2 − p2) . (41)

The quantity dE𝑑p�푆(𝐸) is the probability that the particle 𝑆
with definite momentum p has an energy between 𝐸 and𝐸 + dE (clearly, 𝑑p=0�푆 (𝐸) = 𝑑�푆(𝑚 = 𝐸)). Also in this case,
the normalization

∫∞
√�푚2
𝑡ℎ
+p2

dE𝑑p�푆 (𝐸) = 1 (42)

is a consequence of (33). When 𝑑�푆(𝑚) has a maximum at𝑀, then 𝑑p�푆(𝐸) has a maximum at ∼ √𝑀2 + p2. Note the
very fact that the propagator depends on 𝑝2 = 𝐸2 − p2
allows to determine the spectral function 𝑑p�푆 (𝐸) for a definite
momentump, that corresponds to the state |𝑆, p⟩of Section 2.

The nondecay probability’s amplitude for a state 𝑆moving
with momentum p is then given by

𝑎p�푆 (𝑡) = ∫∞
√�푚2
𝑡ℎ
+p2

dE𝑑p�푆 (𝐸) 𝑒−�푖�퐸�푡, (43)

where we have taken into account that the minimal energy is
now given by√𝑚2�푡ℎ + p2.

This expression can be manipulated by using (41) and via
a change of variable:

𝑎p�푆 (𝑡) = ∫∞
√�푚2
𝑡ℎ
+p2

dE𝑑p�푆 (𝐸) 𝑒−�푖�퐸�푡
= ∫∞
√�푚2
𝑡ℎ
+p2

dE 𝐸√𝐸2 − p2
𝑑�푆 (√𝐸2 − p2) 𝑒−�푖�퐸�푡

= ∫∞
�푚𝑡ℎ

dm𝑑�푆 (𝑚) 𝑒−�푖√�푚2+p2�푡,
(44)

which coincides exactly with (1), as we wanted to demon-
strate.Thus, we confirm the validity of (1) in a covariant QFT-
based framework.
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4. Conclusions

The decay law of a moving unstable particle is an interesting
subject that connects special relativity to QM and QFT. An
important aspect is the validity of (1), which expresses the
nondecay probability of a state with nonzero momentum and
whose standard derivation is reviewed in Section 2.

The main contribution of this paper has been the deriva-
tion of a quantum field theoretical proof of (1). To this end, we
started from the (scalar part of the) propagator of an unstable
quantum field, denoted as 𝑆. Then, we have determined the
energy distribution of the state S with definite momentum p,
out of which the survival’s probability amplitude is calculated.

As discussed in the Introduction, there are interesting
and peculiar consequences of (1). Future studies are definitely
needed to further understand the properties of a decay of a
moving unstable particle and to look for feasible experimen-
tal tests.
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The relativistic quantum decay laws of moving unstable particles are analyzed for a general class of mass distribution densities
which behave as power laws near the (nonvanishing) lower bound 𝜇0 of the mass spectrum. The survival probability P𝑝(𝑡), the
instantaneous mass𝑀𝑝(𝑡), and the instantaneous decay rate Γ𝑝(𝑡) of the moving unstable particle are evaluated over short and long
times for an arbitrary value 𝑝 of the (constant) linear momentum. The ultrarelativistic and nonrelativistic limits are studied. Over
long times, the survival probability P𝑝(𝑡) is approximately related to the survival probability at rest P0(𝑡) by a scaling law. The
scaling law can be interpreted as the effect of the relativistic time dilation if the asymptotic value𝑀𝑝(∞) of the instantaneous mass
is considered as the effective mass of the unstable particle over long times. The effective mass has magnitude 𝜇0 at rest and moves
with linear momentum 𝑝 or, equivalently, with constant velocity 1/√1 + 𝜇20/𝑝2.The instantaneous decay rate Γ𝑝(𝑡) is approximately
independent of the linearmomentum𝑝, over long times, and, consequently, is approximately invariant by changing reference frame.

1. Introduction

The description of the decay laws of unstable particles via
quantum theory has been a central topic of research for
decades [1, 2]. Many unstable particles which are generated in
astrophysical phenomena or high-energy accelerator experi-
ments are moving in the laboratory frame of the observer at
relativistic or ultrarelativistic velocity. For this reason, plenty
of studies have been devoted to formulate the decay laws in
terms of relativistic quantum theory. See [1, 3–6], to name but
a few.

A fundamental subject in the description of the relativis-
tic decays of moving unstable particles is the way the decay
laws transform by changing the reference frame. Naturally, it
is essential to understand how the decay laws, holding in the
rest reference frame of the moving particle, are transformed
in the laboratory frame of an observer. The nondecay or
survival probability of an unstable particle has been evaluated
in [7, 8] for nonvanishing and vanishing values of the linear
momentum in terms of themass distribution density (MDD).
The condition of vanishing linear momentum, 𝑝 = 0,

provides the survival probability in the reference framewhere
the particle is at rest, while the condition of nonvanishing
linear momentum, 𝑝 > 0, can be referred to the laboratory
frame of an observer where the particles move with linear
momentum 𝑝. The effects of the relativistic time dilation in
quantum decay laws of moving unstable particles remain a
matter of central interest. See [7–17], to name but a few.

As a continuation of the scenario described above, here,
we evaluate the survival probability, the instantaneous energy,
and the instantaneous decay rate of a moving unstable
particle over short and long times for a wide variety of
MDDs and for an arbitrary value of the (constant) linear
momentum. In light of the short-time transformations of
the survival probability according to the relativistic time
dilation, we search for further scaling relations in the decay
laws which can relate the conditions of nonvanishing and
vanishing linear momentum. In this way, we aim to find
further descriptions of the ways the decay laws of moving
unstable particle transform by changing reference frame.

The paper is organized as follows. Section 2 is devoted
to the relativistic quantum decay laws of a general moving
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unstable particle. In Section 3, the survival probability is
evaluated over short and long times for an arbitrary value
of the linear momentum and a general class of MDD.
In Section 4, the transformation of the long-time survival
probability is described via a scaling law. Section 5 is devoted
to the evaluation of the instantaneousmass and instantaneous
decay rate over short and long times. In Section 6, the scaling
law, describing the transformation of the survival probability,
is interpreted in terms of the relativistic time dilation and
of the instantaneous mass of the moving unstable particle.
Summary and conclusions are reported in Section 7.

2. Relativistic Quantum Decay Laws

An extended and detailed description of the relativistic
quantum decay laws of moving unstable particles has been
recently provided in [14, 17]. Following these references, a
brief summary of unstable quantum states, of the survival
probability, and of the instantaneous energy and decay rate
is reported below for the sake of clarity, by adopting the
system of units where ℏ = 𝑐 = 1. The motion is assumed
to be one-dimensional, due to the conservation of the linear
momentum [1, 7, 8, 14–17].

In the Hilbert space H of the quantum states which
describe the unstable particle, let the state kets |𝑚, 𝑝⟩ be the
common eigenstates of the linear momentum 𝑃 operator and
the Hamiltonian 𝐻 self-adjoint operator, 𝑃|𝑚, 𝑝⟩ = 𝑝|𝑚, 𝑝⟩
and 𝐻|𝑚, 𝑝⟩ = 𝐸(𝑚, 𝑝)|𝑚, 𝑝⟩, for every value of the mass
parameter 𝑚 and of the linear momentum 𝑝. The mass
parameter 𝑚 belongs to the spectrum of the Hamiltonian
which is supposed to be continuous with lower bound 𝜇0,
which means 𝑚 ≥ 𝜇0. In the rest reference frame of the
moving particle the linear momentum vanishes and the
mentioned state kets become |𝑚, 0⟩, while the eigenstates
of the Hamiltonian are 𝐸(𝑚, 0) = 𝑚. Let |𝜙⟩ be the ket
of the Hilbert space H which describes the quantum state
of the unstable particle. Such state can be expressed in
terms of the eigenstates |𝑚, 0⟩ of the Hamiltonian as |𝜙⟩ =∫∞𝜇0 𝑓(𝑚)|𝑚, 0⟩𝑑𝑚, via the expansion function 𝑓(𝑚). The
survival amplitude𝐴0(𝑡) is defined in the rest reference frame
of the moving unstable particle as 𝐴0(𝑡) = ⟨𝜙|𝑒−𝚤𝐻𝑡|𝜙⟩ and is
given by the integral expression

𝐴0 (𝑡) = ∫∞
𝜇0

𝜔 (𝑚) 𝑒−𝚤𝑚𝑡𝑑𝑚, (1)

where 𝚤 is the imaginary unit. The function 𝜔(𝑚) represents
the MDD and reads 𝜔(𝑚) = |𝑓(𝑚)|2. The probability P0(𝑡)
that the decaying particle is in the initial state at the time 𝑡,
i.e., the survival probability, is given by the following form,
P0(𝑡) = |𝐴0(𝑡)|2, in the rest reference frame of the moving
unstable particle.

Let Λ be the Lorentz transformation which relates the
reference frame where the unstable moving particle is at
rest, to the one with velocity V = 𝑝/(𝑚𝛾𝐿), where 𝛾𝐿 is
the corresponding relativistic Lorentz factor. Let 𝑈(Λ) be an
unitary representation of the transformation Λ acting on the
Hilbert space H such that |𝑚, 𝑝⟩ = 𝑈(Λ)|𝑚, 0⟩ for every
value of the mass parameter𝑚 in the Hamiltonian spectrum.

The state ket |𝜙, 𝑝⟩ describes the moving unstable particle
with nonvanishing linear momentum 𝑝. Such state is related
to the state ket |𝜙⟩ as follows: |𝜙, 𝑝⟩ = 𝑈(Λ)|𝜙⟩. The form
𝐸(𝑚, 𝑝) = 𝑚𝛾𝐿 = √𝑝2 + 𝑚2 is obtained by considering the
energy-momentum 4-vector and the Lorentz invariance [6,
18].The quantity𝐴𝑝(𝑡) is defined as𝐴𝑝(𝑡) = ⟨𝑝, 𝜙|𝑒−𝚤𝐻𝑡|𝜙, 𝑝⟩
and represents the survival amplitude in the reference frame
where the particle has linear momentum 𝑝. The approach
described above leads to the following integral expression of
the survival amplitude:

𝐴𝑝 (𝑡) = ∫∞
𝜇0

𝜔 (𝑚) 𝑒−𝚤√𝑝2+𝑚2𝑡𝑑𝑚. (2)

The quantity P𝑝(𝑡) represents the survival probability that
the decaying particle is in the initial state at the time 𝑡 in
the reference frame where the unstable particle has linear
momentum 𝑝 and is given by the square modulus of the
survival amplitude,P𝑝(𝑡) = |𝐴𝑝(𝑡)|2. See [7, 8, 17] for details.

The decay laws of the unstable particles are obtained from
the MDD via (1) and (2). In literature, the MDD is usually
represented via the Breit-Wigner function [19]:

𝜔BW (𝑚) = Θ (𝑚 − 𝜇0) 𝜆BWΓ/ (2𝜋)
(𝑚 − 𝑚0)2 + Γ2/4 , (3)

where 𝜆BW is a normalization factor, Θ(𝑚) is the Heaviside
unit step function, 𝑚0 is the rest mass of the particle,
and Γ is the decay rate at rest. A detailed analysis of the
survival amplitude of a moving unstable particle has been
performed in [8] by considering the Breit-Wigner form of the
MDD [7]. The long-time behavior of the survival amplitude
results in dominant inverse power laws, besides additional
decaying exponential terms. Refer to [8] for details. In [17,
20, 21] general forms of MDD are considered with power-law
behaviors near the lower bound of the mass spectrum. The
long-time decay of the survival amplitude 𝐴0(𝑡) is described
by inverse power laws which are determined by the low-
mass profile of the MDD [20, 21]. Additional removable
logarithmic singularities in the low-mass form of the MDD
lead to logarithmic-like relaxations of the survival amplitude
at rest 𝐴0(𝑡) which can be arbitrarily slower or faster than
inverse power laws [22, 23].

Since the unstable particle decays, the initial state is
not an eigenstate of the Hamiltonian and the instantaneous
mass (energy) is not defined during the time evolution. For
this reason, instantaneous mass (energy) and decay rate are
defined in the rest reference frame of the moving particle
in terms of an effective Hamiltonian. Such operator acts on
the subspace of the Hilbert space H which is spanned by
the initial state. Refer to [14, 17, 20, 21, 24] for details. In the
same way, the instantaneous mass (energy) and decay rateΓ𝑝(𝑡) of the moving unstable particle are defined in the frame
system where the particle has linear momentum 𝑝. For both
vanishing and nonvanishing values of the linear momentum𝑝, the instantaneous mass 𝑀𝑝(𝑡) and decay rate Γ𝑝(𝑡) are
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obtained from the survival amplitude𝐴𝑝(𝑡) via the following
forms [14, 17, 20–23]:

𝑀𝑝 (𝑡) = − Im{�̇�𝑝 (𝑡)𝐴𝑝 (𝑡)} (4)

Γ𝑝 (𝑡) = −2Re{�̇�𝑝 (𝑡)𝐴𝑝 (𝑡)} . (5)

The long-time behavior of the instantaneous mass𝑀𝑝(𝑡) and
decay rate Γ𝑝(𝑡) has been evaluated in [14, 15] for the Breit-
Wigner form of the MDD.

2.1. Relativistic Time Dilation. The interpretation of decay
processes via the theory of special relativity suggests that
the lifetime which is detected in the rest reference frame of
the unstable particle increases in the reference frame where
the particle is moving. The increase is due to the relativistic
dilation of times and is determined by the relativistic Lorentz
factor [25].

The appearance of the relativistic time dilation in quan-
tum decays is a matter of great interest and fruitful dis-
cussions. See [7–17], to name but a few. A broadly shared
opinion is that the relativistic time dilation influences the
survival probability uniquely in the short-time exponential
decay. Briefly, this means that the survival probability P𝑝(𝑡)
and the survival probability at rest P0(𝑡) are given by the
exponential forms P𝑝(𝑡) ∼ 𝑒−𝑡/𝜏𝑝 and P0(𝑡) ∼ 𝑒−𝑡/𝜏0 , over
short times. Under this assumption, the survival probability
obeys the scaling law

P𝑝 (𝑡) ∼ P0 ( 𝑡𝛾𝐿) , (6)

over short times. The parameter 𝜏0 represents the lifetime of
the particle at rest, while 𝜏𝑝 is the lifetime which is detected in
the reference frame where the particle is moving with linear
momentum 𝑝. According to the relativistic time dilation, the
lifetimes are related as follows: 𝜏𝑝 = 𝜏0𝛾𝐿, where 𝛾𝐿 is the
corresponding relativistic Lorentz factor. Refer to [7, 8, 12–
17] for an extended explanation. In this context, we intend
to study the survival probability P𝑝(𝑡) and the survival
probability at restP0(𝑡) over short and long times for a wide
variety of MDDs. We search for further ways to describe the
transformations of the decay laws which occur by changing
reference frame.

3. Survival Probability versus
Linear Momentum

In the present section the short- and long-time behaviors
of the survival probability are studied for a general value 𝑝
of the constant linear momentum of the moving unstable
particle. The analysis performed in the whole paper is based
entirely on form (2) of the survival amplitude [7, 12]. For the
sake of convenience, the survival amplitude is expressed via
the dimensionless variables 𝜏, 𝜉, 𝜌, and 𝜂. These variables
are defined in terms of a generic scale mass 𝑚𝑠 as follows:

𝜏 = 𝑚𝑠𝑡, 𝜉 = 𝑚/𝑚𝑠, 𝜌 = 𝑝/𝑚𝑠, and 𝜂 = √𝜌2 + 𝜉2. The
MDD is expressed in terms of the auxiliary functionΩ(𝜉) via
the scaling law 𝜔(𝑚𝑠𝜉) = Ω(𝜉)/𝑚𝑠, for every 𝜉 ≥ 𝜉0, where𝜉0 = 𝜇0/𝑚𝑠. In this way, the survival amplitude 𝐴𝑝(𝑡) results
in the expression below:

𝐴𝑝 (𝑡) = ∫∞
𝜉0

Ω (𝜉) 𝑒−𝚤𝜂𝜏𝑑𝜉. (7)

The MDDs under study are defined over the infinite
support [𝜇0,∞) by auxiliary functions Ω(𝜉) of the following
form:

Ω (𝜉) = (𝜉 − 𝜉0)𝛼Ω0 (𝜉) . (8)

In order to study the long-time behavior of the decay laws of
themoving unstable particle, theMDDs are requested to obey
the conditions below.The lower bound of the mass spectrum
is chosen to be nonvanishing, 𝜉0 > 0. The constraints 𝛼 ≥ 0
and Ω0(𝜉0) > 0 are also requested. The function Ω0(𝜉) and
the derivativesΩ(𝑗)0 (𝜉) are required to be summable, for every𝑗 = 1, . . . , ⌊𝛼⌋+4, and continuously differentiable in thewhole
support [𝜇0,∞), for every 𝑗 = 1, . . . , ⌊𝛼⌋ + 3. Consequently,
the limits lim𝜉→𝜉+0Ω(𝑗)0 (𝜉) must exist as finite and be Ω(𝑗)0 (𝜉0)
for every 𝑗 = 0, . . . , ⌊𝛼⌋ + 4. The functions Ω(𝑗)0 (𝜉) have
to decay sufficiently fast as 𝜉 → +∞, so that the auxiliary
functionΩ(𝜉) and the derivativesΩ(𝑗)(𝜉) vanish as 𝜉 → +∞,
for every 𝑗 = 0, . . . , ⌊𝛼⌋.

As far as the short-time behavior of the survival amplitude
is concerned, let the auxiliary function decay as follows:Ω(𝜉) = O(𝜉−1−𝑙0) for 𝜉 → +∞, with 𝑙0 > 5. Under this
condition, the survival amplitude evolves algebraically over
short times:

𝐴𝑝 (𝑡) ∼ 1 − 𝚤𝑎0𝑡 − 𝑎1𝑡2 + 𝚤𝑎2𝑡3, (9)

for 𝑡 ≪ 1/𝑚𝑠. The constants 𝑎0, 𝑎1, and 𝑎2 are given by the
expressions below:

𝑎0 = ∫∞
𝜇0

𝜔 (𝑚)√𝑝2 + 𝑚2𝑑𝑚,
𝑎1 = 12 ∫∞

𝜇0
𝜔 (𝑚) (𝑝2 + 𝑚2) 𝑑𝑚,

𝑎2 = 16 ∫∞
𝜇0

𝜔 (𝑚) (𝑝2 + 𝑚2)3/2 𝑑𝑚.
(10)

The short-time evolution of the survival probability is derived
from (7) and (9) and is algebraic:

P𝑝 (𝑡) ∼ 1 − 𝜋0𝑡2, (11)

for 𝑡 ≪ 1/𝑚𝑠, where 𝜋0 = 2𝑎1 − 𝑎20 .
The long-time behavior of the survival amplitude is

obtained from (7) and from the following equivalent form:

𝐴𝑝 (𝑡) = ∫∞
𝜂0

𝜂Ω(√𝜂2 − 𝜌2)
√𝜂2 − 𝜌2 𝑒−𝚤𝜂𝜏𝑑𝜂, (12)
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where 𝜂0 = √𝜌2 + 𝜉20 . Notice that the constraint of non-
vanishing lower bound of the mass spectrum, 𝜉0 > 0, is
fundamental for the equivalence of expressions (7) and (12)
of the survival amplitude. The asymptotic analysis [26, 27] of
the integral form, appearing in (12) for 𝜏 ≫ 1, provides the
expression of the survival amplitude over long times:

𝐴𝑝 (𝑡) ∼ 𝑐0𝑒−𝚤((𝜋/2)(1+𝛼)+√𝜇20+𝑝2𝑡) ( 𝜒𝑝𝑚𝑠𝑡)
1+𝛼 , (13)

for 𝑡 ≫ 1/𝑚𝑠, where 𝑐0 = Γ(1 + 𝛼)Ω0(𝜉0), and
𝜒𝑝 = √1 + 𝑝2𝜇20 . (14)

Asymptotic form (13) of the survival amplitude holds for
every value of the linear momentum 𝑝, nonvanishing, arbi-
trarily large or small, or vanishing; for the variety of MDDs
under study; for every 𝛼 ≥ 0; and for every value 𝜇0 of the
lower bound of the mass spectrum such that 𝜇0/𝑚𝑠 > 0.
The last condition is crucial and will be interpreted in the
next section in terms of the instantaneous mass at rest of the
moving unstable particle. The square modulus of asymptotic
expression (13) approximates the survival probability over
long times:

P𝑝 (𝑡) ∼ 𝑐20 ( 𝜒𝑝𝑚𝑠𝑡)
2(1+𝛼) , (15)

for 𝑡 ≫ 1/𝑚𝑠. Notice that the time scale 1/𝑚𝑠 and,
consequently, the short or long times, 𝑡 ≪ 1/𝑚𝑠 or 𝑡 ≫1/𝑚𝑠, are independent of the auxiliary functionΩ(𝜉) and are
determined uniquely by the MDD.

4. Scaling Law for the Survival Probability

Expression (15) of the survival probability holds for every
value of the constant linear momentum 𝑝. Such arbitrariness
allows evaluating the survival probability in the nonrelativis-
tic andultrarelativistic limits. For vanishing value of the linear
momentum, 𝑝 = 0, or, equivalently, in the rest reference
frame of the unstable particle, the survival probability is
approximated over long times as follows:

P0 (𝑡) ∼ 𝑐20(𝑚𝑠𝑡)2(1+𝛼) , (16)

for 𝑡 ≫ 1/𝑚𝑠. Instead, consider large values of the linear
momentum, 𝑝 ≫ 𝜇0. In such condition the survival
probability is approximated over long times as follows:

P𝑝 (𝑡) ∼ 𝑐20 ( 𝑝𝜇0𝑚𝑠𝑡)
2(1+𝛼) , (17)

for 𝑡 ≫ 1/𝑚𝑠. By comparing (15) and (16), we observe that,
for the MDDs under study, the survival probability obeys,
approximately over long times, the following scaling law:

P𝑝 (𝑡) ∼ P0 ( 𝑡𝜒𝑝) , (18)
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Figure 1: (Color online) the survival probabilityP𝑝(𝑡) versus (𝑚𝑠𝑡)
for 0 ≤ 𝑚𝑠𝑡 ≤ 20, MDDs given by (21), 𝛼 = 0, 𝜇0 = 𝑚𝑠, and different
values of the linear momentum 𝑝. Curve (𝑎) corresponds to 𝑝 =0𝑚𝑠; (𝑏) corresponds to 𝑝 = 𝑚𝑠; (𝑐) corresponds to 𝑝 = 2𝑚𝑠; (𝑑)
corresponds to 𝑝 = 3𝑚𝑠; (𝑒) corresponds to 𝑝 = 4𝑚𝑠.

for 𝑡 ≫ 1/𝑚𝑠. This is the main result of the paper. In fact,
the above scaling law describes how the survival probability
at rest transforms, approximately over long times, in the
reference frame where the particle moves with constant
linear momentum 𝑝. The transformation can be interpreted,
approximately, as the effect of a time dilation which is deter-
mined by the scaling factor 𝜒𝑝. Notice that the scaling factor,
given by (14), diverges in the limit 𝜇0 → 0+. In Section 6,
the scaling law (18) is interpreted, via the special relativity, as
the effect of the relativistic time dilation. This interpretation
holds if the asymptotic value of the instantaneous mass is
considered as the effective mass of the moving unstable
particle over long times.

The correction to the scaling law (18) can be estimated via
the expression (P𝑝(𝑡) −P0(𝑡/𝜒𝑝))/P0(𝑡/𝜒𝑝). For the MDDs
under study, such correction vanishes inversely quadratically
over long times:

P𝑝 (𝑡) − P0 (𝑡/𝜒𝑝)
P0 (𝑡/𝜒𝑝) ∼ 𝜅𝑝

(𝑚𝑠𝑡)2 , (19)

for 𝑡 ≫ 1/𝑚𝑠, where
𝜅𝑝 = (1 + 𝛼) (2 + 𝛼)𝑚𝑠𝑝2𝜇30 (2Ω0 (𝜇0/𝑚𝑠)Ω0 (𝜇0/𝑚𝑠) − 𝑚𝑠𝜇0𝜒2𝑝

× (3 + 𝛼 + (52 + 𝛼) 𝑝2𝜇20 )) .
(20)

Numerical analysis of the survival probability P𝑝(𝑡) has
been displayed in Figures 1, 2, 3, 4, and 5. The computed
MDDs are given by the following toy form of the auxiliary
function:

Ω (𝜉) = 𝑤𝛼𝜉 (𝜉2 − 𝜉20)𝛼 𝑒−𝜉2 , (21)
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Figure 2: (Color online) the survival probabilityP𝑝(𝑡) versus (𝑚𝑠𝑡)
for 0 ≤ 𝑚𝑠𝑡 ≤ 15, MDDs given by (21), 𝛼 = 1, 𝜇0 = 𝑚𝑠, and different
values of the linear momentum 𝑝. Curve (𝑎) corresponds to 𝑝 =0𝑚𝑠; (𝑏) corresponds to 𝑝 = 𝑚𝑠; (𝑐) corresponds to 𝑝 = 2𝑚𝑠; (𝑑)
corresponds to 𝑝 = 3𝑚𝑠; (𝑒) corresponds to 𝑝 = 4𝑚𝑠.
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Figure 3: (Color online) quantity |log (P𝑝(𝑡))| versus log (𝑚𝑠𝑡) for𝑒−1 ≤ 𝑚𝑠𝑡 ≤ 𝑒5, MDDs given by (21), 𝜇0 = 𝑚𝑠, and different
values of the parameter 𝛼 and of the linear momentum 𝑝. Curve(𝑎) corresponds to 𝛼 = 0 and 𝑝 = 5𝑚𝑠; (𝑏) corresponds to 𝛼 = 0
and 𝑝 = 3𝑚𝑠; (𝑐) corresponds to 𝛼 = 0 and 𝑝 = 0; (𝑑) corresponds
to 𝛼 = 1 and 𝑝 = 5𝑚𝑠; (𝑒) corresponds to 𝛼 = 1 and 𝑝 = 2𝑚𝑠; (𝑓)
corresponds to 𝛼 = 2 and 𝑝 = 4𝑚𝑠; (𝑔) corresponds to 𝛼 = 2 and𝑝 = 2𝑚𝑠; (ℎ) corresponds to 𝛼 = 1 and 𝑝 = 0𝑚𝑠; (𝑖) corresponds to𝛼 = 2 and 𝑝 = 0.

where𝑤𝛼 is a normalization factor and reads𝑤𝛼 = 2𝑒𝜉20/Γ(1+𝛼). Different values of the nonnegative power 𝛼 and linear
momentum 𝑝 are considered. The corresponding MDDs
belong to the class under study which is defined in Section 3
via (8). The asymptotic lines appearing in Figure 3 agree
with the long-time inverse-power-law decays of the survival
probability, given by (15). The ordinates of the asymptotic
horizontal lines of Figures 4 and 5 are in accordance with
form (14) of the scaling factor 𝜒𝑝. The long-time dilation
in the survival probability, given by the scaling law (18),
is confirmed by the common horizontal asymptotic line, at
ordinate 1, which appears in Figures 6 and 7.
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Figure 4: (Color online) ratio P𝑝(𝑡)/P0(𝑡) versus (𝑚𝑠𝑡) for 0 ≤𝑚𝑠𝑡 ≤ 50, MDDs given by (21), 𝜇0 = 𝑚𝑠, 𝛼 = 0, and different
values of the linear momentum 𝑝. Curve (𝑎) corresponds to 𝑝 = 𝑚𝑠;(𝑏) corresponds to 𝑝 = 2𝑚𝑠; (𝑐) corresponds to 𝑝 = 3𝑚𝑠; (𝑑)
corresponds to 𝑝 = 4𝑚𝑠; (𝑒) corresponds to 𝑝 = 5𝑚𝑠.
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Figure 5: (Color online) ratio P𝑝(𝑡)/P0(𝑡) versus (𝑚𝑠𝑡) for 0 ≤𝑚𝑠𝑡 ≤ 50, MDDs given by (21), 𝜇0 = 𝑚𝑠, and different values of the
parameter 𝛼 and of the linear momentum 𝑝. Curve (𝑎) corresponds
to 𝛼 = 1 and 𝑝 = 2𝑚𝑠; (𝑏) corresponds to 𝛼 = 1 and 𝑝 = 3𝑚𝑠; (𝑐)
corresponds to 𝛼 = 2 and 𝑝 = 2𝑚𝑠; (𝑑) corresponds to 𝛼 = 1 and𝑝 = 4𝑚𝑠.

5. Instantaneous Mass and Decay Rate versus
Linear Momentum

In the present section the instantaneous mass and decay
rate are analyzed over short and long times for every value
of the constant linear momentum 𝑝 of the particle, which
is detected in the laboratory frame of the observer. The
instantaneous mass and decay rate are evaluated from the
survival amplitude via (4) and (5).

Again, let the auxiliary function decay asΩ(𝜉) = O(𝜉−1−𝑙0)
for 𝜉 → +∞, with 𝑙0 > 5. The short-time evolution of
the instantaneous mass and decay rate are obtained from
behavior (9) of the survival amplitude and from (4) and (5). In
this way, the following algebraic evolution results over short
times:
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Figure 6: (Color online) ratioP𝑝(𝑡)/P0(𝑡/𝜒𝑝) versus (𝑚𝑠𝑡) for 0 ≤𝑚𝑠𝑡 ≤ 50, MDDs given by (21), 𝜇0 = 𝑚𝑠, 𝛼 = 0, and different values
of the linear momentum 𝑝. Curve (𝑎) corresponds to 𝑝 = 5𝑚𝑠;(𝑏) corresponds to 𝑝 = 4𝑚𝑠; (𝑐) corresponds to 𝑝 = 3𝑚𝑠; (𝑑)
corresponds to 𝑝 = 2𝑚𝑠; (𝑒) corresponds to 𝑝 = 𝑚𝑠.
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Figure 7: (Color online) ratio P𝑝(𝑡)/P0(𝑡/𝜒𝑝) for 0 ≤ 𝑚𝑠𝑡 ≤ 60,
MDDs given by (21), 𝜇0 = 𝑚𝑠, and different values of the parameter𝛼 and of the linear momentum 𝑝. Curve (𝑎) corresponds to 𝛼 = 2
and 𝑝 = 4𝑚𝑠; (𝑏) corresponds to 𝛼 = 1 and 𝑝 = 5𝑚𝑠; (𝑐) corresponds
to 𝛼 = 2 and 𝑝 = 3𝑚𝑠; (𝑑) corresponds to 𝛼 = 1 and 𝑝 = 2𝑚𝑠; (𝑒)
corresponds to 𝛼 = 1 and 𝑝 = 𝑚𝑠.

𝑀𝑝 (𝑡) ∼ 𝑎0 − 𝜋1𝑡2,
Γ𝑝 (𝑡) ∼ 𝜋2𝑡, (22)

for 𝑡 ≪ 1/𝑚𝑠, where𝜋1 = 𝑎30+3(𝑎2−𝑎0𝑎1) and𝜋2 = 2(2𝑎1−𝑎20).
The long-time behavior of the instantaneous mass and

decay rate are studied in case that the MDD fulfills the
constraints which are reported in the second paragraph of
Section 3. In addition, the functions 𝜉Ω0(𝜉) and 𝜉Ω(𝜉) are
required to obey the conditions which are requested in the
same paragraph for the function Ω0(𝜉) and the auxiliary
function Ω(𝜉), respectively. The asymptotic analysis [26, 27]
of the instantaneous mass or the instantaneous decay rate is
obtained from the results of Section 3 and from (4) or (5),
respectively.

The instantaneous mass tends over long times, 𝑡 ≫ 1/𝑚𝑠,
to the asymptotic value 𝑀𝑝(∞), given by

𝑀𝑝 (∞) = √𝜇20 + 𝑝2, (23)

according to the following dominant algebraic decay:

𝑀𝑝 (𝑡) ∼ 𝑀𝑝 (∞) (1 + 𝜁𝑝 (𝑚𝑠𝑡)−2) . (24)

The constant 𝜁𝑝 is defined as

𝜁𝑝 = (1 + 𝛼)
⋅ 𝑚𝑠𝜇0 ((1 + 𝛼2 ) 𝑚𝑠𝜇0

𝑝2𝜇20 + 𝑝2 −
Ω0 (𝜇0/𝑚𝑠)Ω0 (𝜇0/𝑚𝑠)) . (25)

For large values of the linear momentum, 𝑝 ≫ 𝜇0, the
instantaneous mass decays over long times, 𝑡 ≫ 1/𝑚𝑠, as
follows:

𝑀𝑝 (𝑡) ∼ 𝑝 (1 + 𝜁𝑝 (𝑚𝑠𝑡)−2) , (26)

where

𝜁𝑝 = (1 + 𝛼) 𝑚𝑠𝜇0 ((1 + 𝛼2 ) 𝑚𝑠𝜇0 − Ω0 (𝜇0/𝑚𝑠)Ω0 (𝜇0/𝑚𝑠)) . (27)

If the linear momentum vanishes, 𝑝 = 0, the instanta-
neous mass (at rest) tends over long times, 𝑡 ≫ 1/𝑚𝑠, to the
minimum value of the mass spectrum:

𝑀0 (∞) = 𝜇0, (28)

with the following dominant algebraic decay:

𝑀0 (𝑡) ∼ 𝑀0 (∞) (1 + 𝜁0 (𝑚𝑠𝑡)−2) , (29)

where

𝜁0 = − (1 + 𝛼) 𝑚𝑠𝜇0
Ω0 (𝜇0/𝑚𝑠)Ω0 (𝜇0/𝑚𝑠) . (30)

The instantaneous decay rate Γ𝑝(𝑡) vanishes over long
times, 𝑡 ≫ 1/𝑚𝑠, according to the following dominant
algebraic decay:

Γ𝑝 (𝑡) ∼ 2 (1 + 𝛼)𝑡 . (31)

Differently from the survival probability and from the
instantaneous mass, the dominant asymptotic form of the
instantaneous decay rate is independent of the linearmomen-
tum 𝑝. Consequently, the instantaneous decay rate at rest
remains approximately unchanged over long times in the
reference framewhere the unstable particlemoves with linear
momentum 𝑝. Notice that decay laws (29) and (31) are in
accordance with the ones which are obtained in [23] for a
wider class of MDDs.
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Figure 8: (Color online) quantity 𝑀𝑝(𝑡)/𝑚𝑠 versus (𝑚𝑠𝑡) for 0 ≤𝑚𝑠𝑡 ≤ 15, MDDs given by (21), 𝜇0 = 𝑚𝑠, 𝛼 = 1, and different values
of the linear momentum 𝑝. Curve (𝑎) corresponds to 𝑝 = 0𝑚𝑠; (𝑏)
corresponds to 𝑝 = 𝑚𝑠; (𝑐) corresponds to corresponds to 𝑝 = 2𝑚𝑠;(𝑑) corresponds to 𝑝 = 3𝑚𝑠; (𝑒) corresponds to 𝑝 = 4𝑚𝑠.
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Figure 9: (Color online) quantity 𝑀𝑝(𝑡)/𝑚𝑠 versus (𝑚𝑠𝑡) for 0 ≤𝑚𝑠𝑡 ≤ 15, MDDs given by (21), 𝜇0 = 𝑚𝑠, 𝛼 = 2, and different values
of the linear momentum 𝑝. Curve (𝑎) corresponds to 𝑝 = 0𝑚𝑠; (𝑏)
corresponds to 𝑝 = 𝑚𝑠; (𝑐) corresponds to corresponds to 𝑝 = 2𝑚𝑠;(𝑑) corresponds to 𝑝 = 3𝑚𝑠; (𝑒) corresponds to 𝑝 = 4𝑚𝑠.

Numerical analysis of the instantaneous mass or the
instantaneous decay rate is displayed in Figures 8, 9, 12, and
13 or Figures 10, 11, 14, and 15, respectively. The computed
MDDs are given by the toy form (21) of the auxiliary
function for different values of the nonnegative power 𝛼
and of the linear momentum 𝑝. The asymptotic lines of
Figure 12 and the asymptotic horizontal lines of Figure 13 are
in accordance with the long-time inverse-power-law decays
of the instantaneous mass, given by (24) and (29). The
asymptotic horizontal lines of Figure 13 agree with (32) and
with expression (14) of the scaling factor.The asymptotic lines
appearing in Figure 14 and the asymptotic horizontal lines
of Figure 15, at ordinate 1, agree with the long-time inverse-
power-law behavior of the instantaneous decay rate, given by
(31).
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Figure 10: (Color online) quantity Γ𝑝(𝑡)/𝑚𝑠 versus (𝑚𝑠𝑡) for 0 ≤𝑚𝑠𝑡 ≤ 30, MDDs given by (21), 𝜇0 = 𝑚𝑠, 𝛼 = 1, and different values
of the linear momentum 𝑝. Curve (𝑎) corresponds to 𝑝 = 4𝑚𝑠;(𝑏) corresponds to 𝑝 = 3𝑚𝑠; (𝑐) corresponds to 𝑝 = 2𝑚𝑠; (𝑑)
corresponds to 𝑝 = 1𝑚𝑠; (𝑒) corresponds to 𝑝 = 0𝑚𝑠.
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Figure 11: (Color online) quantity Γ𝑝(𝑡)/𝑚𝑠 versus (𝑚𝑠𝑡) for 0 ≤𝑚𝑠𝑡 ≤ 30, MDDs given by (21), 𝜇0 = 𝑚𝑠, 𝛼 = 2, and different values
of the linear momentum 𝑝. Curve (𝑎) corresponds to 𝑝 = 4𝑚𝑠;(𝑏) corresponds to 𝑝 = 3𝑚𝑠; (𝑐) corresponds to 𝑝 = 2𝑚𝑠; (𝑑)
corresponds to 𝑝 = 1𝑚𝑠; (𝑒) corresponds to 𝑝 = 0𝑚𝑠.

6. Relativistic Time Dilation
and Survival Probability

In Section 2.1 how the survival probability at rest, P0(𝑡),
transforms, due to the relativistic time dilation, in the refer-
ence frame where the unstable particle moves with constant
linear momentum 𝑝 is reported. The transformed survival
probability,P𝑝(𝑡), is related to the survival probability at rest,
P0(𝑡), by the scaling law (6).The scaling factor consists in the
corresponding relativistic Lorentz factor 𝛾𝐿.

The analysis performed in Section 3 shows that, for the
class of MDDs under study, the survival probability P𝑝(𝑡)
and the survival probability at rest P0(𝑡) are related by the
scaling law (18) over long times. The corresponding scaling
factor 𝜒𝑝 is given by (14). It is worth noticing that the
scaling factor 𝜒𝑝 coincides with the ratio of the asymptotic
form of the instantaneous mass 𝑀𝑝(𝑡) and the asymptotic
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Figure 12: (Color online) quantity |log (|𝑀𝑝(𝑡)/√𝑝2 + 𝜇20 − 1|)|
versus log (𝑚𝑠𝑡) for 𝑒 ≤ 𝑚𝑠𝑡 ≤ 𝑒3.3, MDDs given by (21), 𝜇0 = 𝑚𝑠,
and different values of the parameter 𝛼 and of the linear momentum𝑝. Curve (𝑎) corresponds to 𝛼 = 2 and 𝑝 = 4𝑚𝑠; (𝑏) corresponds
to 𝛼 = 2 and 𝑝 = 2𝑚𝑠; (𝑐) corresponds to 𝛼 = 1 and 𝑝 = 2𝑚𝑠; (𝑑)
corresponds to 𝛼 = 2 and 𝑝 = 𝑚𝑠; (𝑒) corresponds to 𝛼 = 0 and𝑝 = 3𝑚𝑠; (𝑓) corresponds to 𝛼 = 0 and 𝑝 = 5𝑚𝑠.
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Figure 13: (Color online) ratio 𝑀𝑝(𝑡)/𝑀0(𝑡) versus (𝑚𝑠𝑡) for 0 ≤𝑚𝑠𝑡 ≤ 10, MDDs given by (21), 𝜇0 = 𝑚𝑠, and different values of the
parameter 𝛼 and of the linear momentum 𝑝. Curve (𝑎) corresponds
to 𝛼 = 1 and 𝑝 = 𝑚𝑠; (𝑏) corresponds to 𝛼 = 0 and 𝑝 = 𝑚𝑠; (𝑐)
corresponds to 𝛼 = 1 and 𝑝 = 2𝑚𝑠; (𝑑) corresponds to 𝛼 = 0 and𝑝 = 2𝑚𝑠; (𝑒) corresponds to 𝛼 = 2 and 𝑝 = 3𝑚𝑠; (𝑓) corresponds
to 𝛼 = 1 and 𝑝 = 3𝑚𝑠; (𝑔) corresponds to 𝛼 = 1 and 𝑝 = 4𝑚𝑠; (ℎ)
corresponds to 𝛼 = 0 and 𝑝 = 4𝑚𝑠.

expression of the instantaneous mass at rest 𝑀0(𝑡) of the
moving unstable particle:

𝜒𝑝 = 𝑀𝑝 (∞)
𝑀0 (∞) . (32)

At this stage, consider the reference frame S where a
mass at rest which is equal to the asymptotic value 𝑀0(∞)
becomes 𝑀𝑝(∞) due to the relativistic transformation of
the mass. According to (32), in the reference frame S the
corresponding relativistic Lorentz factor coincides with the
scaling factor 𝜒𝑝. We remind that, initially, the unstable
quantum system is not in an eigenstate of the Hamiltonian.
Consequently, in the present model the mass of the unstable
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Figure 14: (Color online) quantity |log (Γ𝑝(𝑡)/𝑚𝑠)| versus log (𝑚𝑠𝑡)
for 𝑒1.5 ≤ 𝑚𝑠𝑡 ≤ 𝑒3.8, MDDs given by (21), 𝜇0 = 𝑚𝑠, and different
values of the parameter 𝛼 and of the linear momentum 𝑝. Curve (𝑎)
corresponds to 𝛼 = 2 and 𝑝 = 0𝑚𝑠; (𝑏) corresponds to 𝛼 = 2 and𝑝 = 2𝑚𝑠; (𝑐) corresponds to 𝛼 = 2 and 𝑝 = 4𝑚𝑠; (𝑑) corresponds
to 𝛼 = 1 and 𝑝 = 0𝑚𝑠; (𝑒) corresponds to 𝛼 = 1 and 𝑝 = 2𝑚𝑠; (𝑓)
corresponds to 𝛼 = 1 and 𝑝 = 5𝑚𝑠; (𝑔) corresponds to 𝛼 = 0 and𝑝 = 0𝑚𝑠; (ℎ) corresponds to 𝛼 = 0 and 𝑝 = 3𝑚𝑠; (𝑖) corresponds to𝛼 = 0 and 𝑝 = 5𝑚𝑠.
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Figure 15: (Color online) ratio Γ𝑝(𝑡)/Γ0(𝑡) versus (𝑚𝑠𝑡) for 0 ≤𝑚𝑠𝑡 ≤ 30, MDDs given by (21), 𝜇0 = 𝑚𝑠, and different values of the
parameter 𝛼 and of the linear momentum 𝑝. Curve (𝑎) corresponds
to 𝛼 = 1 and 𝑝 = 4𝑚𝑠; (𝑏) corresponds to 𝛼 = 2 and 𝑝 = 3𝑚𝑠; (𝑐)
corresponds to 𝛼 = 2 and 𝑝 = 2𝑚𝑠; (𝑑) corresponds to 𝛼 = 0 and𝑝 = 2𝑚𝑠; (𝑒) corresponds to 𝛼 = 0 and 𝑝 = 𝑚𝑠.

particle is not defined. On the contrary, the instantaneous
mass is properly defined in terms of the survival amplitude.
See [14, 16, 17] for details.

In light of the above observations, the long-time scaling
law (18) can be interpreted as an effect of the relativistic time
dilation if the asymptotic value 𝑀𝑝(∞) of the instantaneous
mass is considered to be the effective mass of the unstable
particle over long times. In fact, in the reference frameS the
mass at rest 𝑀0(∞), which is equal to the value 𝜇0, moves
with linear momentum 𝑝, or, equivalently, with constant
velocity 1/√1 + 𝜇20/𝑝2, and becomes the relativistic mass

𝑀𝑝(∞), which is equal to the value √𝜇20 + 𝑝2. Concurrently,
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in the reference frameS the survival probability at restP0(𝑡)
transforms, according to the relativistic time dilation, in the
survival probability P𝑝(𝑡) and obeys the scaling law (6),
or, equivalently, (18), over long times. In this context, the
crucial condition of nonvanishing lower bound of the mass
spectrum, 𝜇0/𝑚𝑠 > 0, suggests that the long-time relativistic
dilation and the scaling law (6), or, equivalently, (18), hold
uniquely for an unstable moving particle with nonvanishing
effective mass, 𝑀0(∞) > 0.

7. Summary and Conclusions

The relativistic quantum decay laws of a moving unstable
particle have been analyzed over short and long times for an
arbitrary value 𝑝 of the (constant) linear momentum. The
MDDs under study exhibit power-law behaviors near the
(nonvanishing) lower bound 𝜇0 of themass spectrum. Due to
the arbitrariness of the linearmomentum, the ultrarelativistic
and nonrelativistic limits have been obtained as particular
cases.

The survival probability, which is detected in the rest
reference frame of the unstable particle, transforms in the
reference framewhere the unstable particlemoves with linear
momentum 𝑝, approximately according to a scaling law, over
long times. The scaling factor is determined by the lower
bound 𝜇0 of the mass spectrum and by the linear momentum𝑝 of the particle. The scaling law can be interpreted as
the effect of the relativistic time dilation if the asymptotic
form of the instantaneous mass 𝑀𝑝(𝑡) is considered as the
effectivemass of themoving unstable particle over long times.
In fact, consider the reference frame S where a mass at
rest of magnitude 𝜇0 moves with velocity 1/√1 + 𝜇20/𝑝2, or,
equivalently, with linear momentum 𝑝. The mass at rest 𝜇0
coincideswith the asymptotic value of the instantaneousmass
at rest, 𝑀0(∞), of the moving unstable particle. In the refer-
ence frame S the transformed mass, which is equal to the
value √𝜇20 + 𝑝2, coincides with the asymptotic value 𝑀𝑝(∞)
of the instantaneous mass of the particle. Simultaneously,
in the reference frame S the dilation of times, which is
suggested by the special relativity, transforms the survival
probability at rest according to the mentioned scaling law.
The above description indicates the value 1/√1 + 𝜇20/𝑝2 as the
asymptotic velocity of the moving unstable particle.

We stress that the present interpretation is an attempt
to ascribe the transformation laws of the long-time survival
probability to the dilation of times which is provided by the
theory of special relativity. However, a clear scaling transfor-
mation of the survival probability at rest holds, approximately
over long times, if the decay is observed in the reference
frame where the unstable particle moves with constant linear
momentum. The scaling law can still be interpreted as the
effect of a time dilation which appears by changing reference
frame. The dilation is determined uniquely by the scaling
factor which depends on the mass spectrum and on the
dynamics of the unstable particle. The theoretical results are
confirmed by the numerical analysis.

While the instantaneous mass transforms by changing
reference frame, no transformation is found, approximately,
for the instantaneous decay rate over long times. In fact,
the instantaneous decay rate vanishes, over long times,
approximately independently of the linear momentum of the
moving particle. Consequently, the long-time instantaneous
decay rate is approximately invariant by changing reference
frame.

In conclusion, the present analysis shows further ways
to describe the long-time transformations of the decay laws
of moving unstable particles in terms of model-independent
properties of the mass spectrum.The role of the (nonvanish-
ing) mass at rest in the relativistic transformation is assumed
in the present description by the (nonvanishing) lower bound
of the mass spectrum.
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with unstable particles,” Physical Review D: Particles, Fields,
Gravitation and Cosmology, vol. 28, no. 10, pp. 2621–2627, 1983.

[6] E. V. Stefanovich, Relativistic Quantum Theory of Particles, vol.
1 and 2, Lambert Academic, 2015.

[7] E. V. Stefanovich, “Quantum effects in relativistic decays,”
International Journal of Theoretical Physics, vol. 35, no. 12, pp.
2539–2554, 1996.

[8] M. Shirokov, “Decay law of moving unstable particle,” Interna-
tional Journal ofTheoretical Physics, vol. 43, no. 6, pp. 1541–1553,
2004.

[9] D. H. Frisch and J. H. Smith, “Measurement of the relativistic
time dilation using 𝜇-mesons,”American Journal of Physics, vol.
31, no. 5, article 342, 1963.



10 Advances in High Energy Physics

[10] J. Bailey, K. Borer, F. Combley et al., “Measurements of relativis-
tic time dilatation for positive and negative muons in a circular
orbit,” Nature, vol. 268, no. 5618, pp. 301–305, 1977.

[11] F. J. M. Farley, “The CERN (g-2) measurements,” Zeitschrift für
Physik C Particles and Fields, vol. 56, supplement 1, pp. S88–S96,
1992.

[12] M. I. Shirokov, “Evolution in time of moving unstable systems,”
Concepts of Physics, vol. 3, pp. 193–205, 2006.

[13] M. I. Shirokov, “Moving system with speeded-up evolution,”
Physics of Particles and Nuclei Letters, vol. 6, no. 1, pp. 14–17,
2009.

[14] K. Urbanowski, “Decay law of relativistic particles: quantum
theory meets special relativity,” Physics Letters. B. Particle
Physics, Nuclear Physics and Cosmology, vol. 737, pp. 346–351,
2014.

[15] F. Giacosa, “Decay law and time dilatation,” Acta Physica
Polonica B, vol. 47, no. 9, pp. 2135–2150, 2016.

[16] K. Urbanowski, “On the velocity of moving relativistic unstable
quantum systems,” Advances in High Energy Physics, vol. 2015,
Article ID 461987, 2015.

[17] K. Urbanowski, “Non-classical behavior of moving relativistic
unstable particles,” Jagellonian University. Institute of Physics.
Acta Physica Polonica B, vol. 48, no. 8, pp. 1411–1432, 2017.

[18] W. M. Gibson and B. R. Pollard, Symmetry Principles in
Elementary Particle Physics, Cambridge, UK, 1976.

[19] M. L. Goldberger and K. M. Watson, Collision Theory, Wiley,
New York, NY, USA, 1964.

[20] K. Urbanowski, “General properties of the evolution of unstable
states at long times,” The European Physical Journal D, vol. 54,
no. 1, pp. 25–29, 2009.

[21] K. Urbanowski, “Long time properties of the evolution of an
unstable state,” Open Physics, vol. 7, no. 4, pp. 696–703, 2009.

[22] F. Giraldi, “Logarithmic decays of unstable states,”TheEuropean
Physical Journal D, vol. 69, no. 1, 2015.

[23] F. Giraldi, “Logarithmic decays of unstable states II,” The
European Physical Journal D, vol. 70, no. 11, article no. 229, 2016.

[24] K. Urbanowski, “Early-time properties of quantum evolution,”
Physical Review A: Atomic, Molecular and Optical Physics, vol.
50, pp. 2847–2853, 1994.

[25] C.Møller,The theory of relativity, Clarendon Press, Oxford, UK,
1972.
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We investigate the quantum vacuum and find that the fluctuations can lead to the inhomogeneous quantum vacuum. We find that
the vacuum fluctuations can significantly influence the cosmological inhomogeneity, which is different from what was previously
expected. By introducing the modified Green’s function, we reach a new inflationary scenario which can explain why the Universe
is still expanding without slowing down. We also calculate the tunneling amplitude of the Universe based on the inhomogeneous
vacuum.We find that the inhomogeneity can lead to the penetration of theUniverse over the potential barrier faster than previously
thought.

1. Introduction

Gravity governs the evolution of the Universe. A great break-
through in gravitational research in the last century is the
discovery of general relativity (GR). After Einstein laid down
the relationship between the space-time geometry through
the curvature and the matter through energy momentum,
the general relativity theory has been applied to many
fields, especially in astrophysics and cosmology. Another
great achievement of modern physics is quantummechanics.
Based on that, quantum field theory (QFT) emerged, which
has been tested in many experiments. Due to the success of
relativity in the macroscopic world and quantum mechanics
in the microscopic world, it is natural to ask how we can
combine them together. In cosmology, this issue becomes
more apparent after the birth of the theory of inflationary
Universe [1, 2] and successful in solving the horizon and
flatness problems and eventually quantifying the seeds in
terms of the density fluctuations for large scale structure
formation and inhomogeneity for themicrowave background
radiation. In this theory, at the very early history, theUniverse
expanded exponentially, and the expansion was sustained by

the vacuum energy. Despite the success, one issue remains
on how the Universe quits this stage. Many proposals were
suggested to resolve this issue [3, 4]. It turns out rather
difficult to complete and have a graceful exit for the old
inflationary scenario with multiple bubbles coalescing in a
Universe suggested byGuth [1]. Chaotic inflationary scenario
has been suggested with essentially one bubble for a Universe
but forever evolving to avoid the exiting issue.

The idea of the inflationary scenario is to combine the
quantum vacuum energy for describing the matter and the
Einstein’s equation for describing the space-time evolution
together. Based on the equivalence principle of GR, each form
of the energy influences the space-time in the same way.
Quantum vacuumbrings a new source of energy. Naively, one
can study how the quantum vacuum influences the space-
time evolution by simply put the energy-momentum tensor
for the quantum vacuum on the right hand side and the
Einstein space-time curvature tensor on the left hand side of
the Einstein equation of GR.

Unfortunately, there is an issue once one naively puts
these two theories of general relativity and quantummechan-
ics together. This is because there is currently no applicable
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method for quantizing GR or space-time. This indicates that
quantum mechanics and GR are at totally different footing
and do not match each other. Therefore, many existing
theories suggested certain approximate equations relating
these two theories. However, these approaches often show
great ambiguity. Firstly, let us look at Einstein’s field equation:

𝑅�휇] − 12𝑅𝑔�휇] = 𝑘𝑇�휇]. (1)

This equation in the current formwould notmake sense if𝑇�휇]
represents the quantum (such as vacuum here) rather than
classicalmatter.This is because the energy-momentum tensor
is an operator in quantum world. In quantum mechanics,
once we attempt to observe something about a system, the
expected observed values correspond to the average values of
the corresponding operator for the observable. Therefore, it
seems natural to modify the Einstein equation by changing
the energy-momentum operator for the average value of it:

𝑅�휇] − 12𝑅𝑔�휇] = 𝑘 ⟨𝑇�휇]⟩ . (2)

This describes, at the average level, how the quantum matter
influences the space-time evolution. For quantummatter, we
know that fluctuations are unavoidable. This is even true for
the quantum vacuum. One natural question to ask is how
the quantum matter fluctuations influence the space-time
evolution. Another way to modify the Einstein equation for
taking the fluctuations into account is to take the square of
both sides of the Einstein equation and then take the average
value on the right hand side:

(𝑅�휇] − 12𝑅𝑔�휇])2 = 𝑘 ⟨𝑇�휇]2⟩ . (3)

In fact, (2) and (3) are equivalent only if the fluctuation of
energy-momentum tensor is zero, but this of course is not the
case since the energy-momentum tensor even for quantum
vacuum is not zero.

This example illustrates that before we “totally” under-
stand quantum gravity, there could be many ways of com-
bining the general relativity and quantum field theory, which
are not equivalent at the semiclassical level. Furthermore,
these differences in semiclassical treatments are caused by the
fluctuations of the quantum field vacuum. The cosmological
constant problem [5] is a good example to demonstrate
this issue, where the vacuum energy density predicted by
quantum field theory is much larger than the cosmological
constant from the observations. A natural question one can
ask is whether taking the fluctuation into account can be
an effective way to improve the quantitative descriptions of
the cosmological evolution driven by the quantum vacuum
energy [6]. The idea of considering the quantum vacuum
fluctuations was suggested [6] to solve the cosmological
constant problem at present. However, quantum fluctuations
exist not only in the current Universe with approximately
flat space-time but also in the very early history of the
Universe. Therefore, it is also important to consider the
impacts of quantum vacuum fluctuations on the evolution of
the Universe, in particular the early Universe.

In this study, by improving the method developed in [6],
we suggest going one step further beyond the conventional
semiclassical method for combining the GR and the QFT
by taking into account the vacuum fluctuations and, based
on that, reaching a new inflationary scenario. In this new
scenario, the cosmological constant issue, which arises when
trying to combine GR and QFT, can be resolved.

This paper is organized as follows: in Section 2, we
illustrate that the quantum vacuum is not homogeneous, but
inhomogeneous, due to quantum fluctuation. In Section 3,
by introducing the modified Green’s function, we build up a
model to quantify the fluctuations of the quantum vacuum.
We study the influence of the quantum vacuum fluctuations
and its physical interpretation. In Section 4, we consider
a simple case and solve the corresponding Einstein’s field
equation. In Section 5, by introducing finite temperature field
theory, we take into account the temperature, which is a key
element in cosmological evolution. In Section 6, based on
our solutions to the cases in Sections 4 and 5, we propose
a new inflationary scenario, which can help to resolve the
cosmological constant problem. In Section 7, we analyze the
influence of the inhomogeneous vacuum on the tunneling
amplitude of the Universe from nothing.

The units and metric signature are set to be 𝑐 = ℏ = 1
and (+, −, −, −) throughout. And in this paper, 4-vectors are
denoted by light italic type, and 3-vectors are denoted by
boldface type.

2. The Quantum Fluctuation and
Inhomogeneous Vacuum

Vacuum energy plays an very important role in the infla-
tionary theory. In this theory, at the very early time, the
Universe expanded exponentially. In this period, vacuum
energy dominated the expansion of the Universe. Usually, the
vacuum energy density is treated as a constant; for example,
just as in (2), the average value of 𝑇00 is

⟨𝑇00⟩ ∼ Λ416𝜋2 , (4)

where 𝑇00 = (1/2)( ̇𝜙2 + (∇𝜙)2 + 𝑚2𝜙2) is the energy density
of a free scalar field, and the high energy cutoff Λ is much
greater than the mass in the free scalar field.

By recalling the example in the introduction section, the
vacuum fluctuations are not zero.This is because the vacuum|0⟩ is not the eigen state of 𝑇00, but the eigenstate of Hamil-
tonian 𝐻 = ∫𝑇00𝑑3𝑥 (for the detailed discussions, see [6]).
Therefore, the fluctuations in energy density should be con-
sidered. Due to the vacuum fluctuations, the conventional
assumption of homogeneous Universe is only approximately
correct. When fluctuations are taken into account, the vac-
uum is not homogeneous. Thus, a more suitable theory
should include the effects of the fluctuations in energy
density. To achieve this goal, the strategy we adopt is to
modify both sides of the field equation, in order to have
the fine structures which are compatible with the fluctua-
tions.
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2.1. Generalizing the FLRW Metric. To describe a homo-
geneous, isotropic expanding Universe, we introduce Fried-
mann–Lemaı̂tre–Robertson–Walker (FLRW) metric [7]:

𝑑𝑠2 = 𝑑𝑡2 − 𝑎2 (𝑡) ( 𝑑𝑟21 − 𝑘𝑟2 + 𝑟2𝑑𝜃2 + 𝑟2sin2𝜃𝑑𝜑2) , (5)

where 𝑘 can be−1, 0, or +1, which indicates the 3-dimensional
space is elliptical space (closed), Euclidean space (flat), or
hyperbolic space (open), respectively. The factor 𝑎(𝑡), known
as the scale factor, depends only on 𝑡. Although the FLRW
metric can naturally describe an expanding Universe, it
cannot describe the inhomogeneous Universe where the
inhomogeneity is caused by the vacuum fluctuations. The
corresponding resolution is to allow the scale factor 𝑎(𝑡) to
have spatial dependence.

𝑑𝑠2 = 𝑑𝑡2
− 𝑎2 (𝑡, 𝑟) ( 𝑑𝑟21 − 𝑘𝑟2 + 𝑟2𝑑𝜃2 + 𝑟2sin2𝜃𝑑𝜑2) . (6)

To simplify our model, we only assume that the scale factor
has only radius 𝑟 dependence, so the rotational symmetry is
preserved. For the spatial part, 𝑘 = 1 is chosen (the reason
will be explained in Section 5). Now, the Ricci tensor for the
metric becomes

𝑅00 = −3 ̈𝑎𝑎 ,
𝑅01 = 𝑅10 = 2 ( ̇𝑎𝑎�耠 − 𝑎 ̇𝑎�耠)𝑎2 ,
𝑅11 = 2 (1 − 2𝑟2) 𝑎�耠𝑟 (𝑟2 − 1) 𝑎 + 2𝑎�耠2𝑎2 − 2𝑎�耠�耠𝑎 − 2 ( ̇𝑎2 + 1) + ̈𝑎𝑎𝑟2 − 1 ,
𝑅22 = 𝑅33

sin2𝜃
= 𝑟 [(4𝑟2 − 3) 𝑎�耠 + 𝑟 (𝑟2 − 1) 𝑎�耠�耠 + 𝑟 ̈𝑎𝑎2 + 2𝑟 ( ̇𝑎2 + 1) 𝑎]𝑎 ,

(7)

where the dot represents the derivative with respect to 𝑡, and
the prime represents the derivative with the respect to 𝑟.Then
the Ricci tensor can be substituted into the Einstein’s field
equation:

𝑅�휇] = 8𝜋𝐺𝑆�휇], (8)

where 𝑆�휇] is given by the energy-momentum tensor:

𝑆�휇] = 𝑇�휇] − 12𝑔�휇]𝑇, (9)

where 𝑇 is the trace of the energy-momentum tensor 𝑇�휇].
2.2. Quantification of the Inhomogeneous Vacuum. After
transforming the left hand side of (8), now we can focus on
the right hand side. Following the description of the intro-
duction section, the 𝑆�휇] which is often taken as the average

value (expectation value) of the tensor over the entire space-
time should not be taken as a constant due to the vacuum
fluctuations. By only taking the expectation values of the
energy-momentum tensor, some fine structures which come
from the fluctuations are lost. Here, our main task is to find a
correct 𝑆�휇] for (8), which describes the inhomogeneity of the
vacuum fluctuations.⟨0 𝑆�휇] 0⟩ = 𝑆�휇] (x, 𝑡) . (10)

Before studying how to find the suitable 𝑆�휇], we introduce
the scalar field to describe the matter field in our toy model.
For simplicity, 𝜙-4 theory is adopted:

L = 12𝑔�휇]𝜕�휇𝜙𝜕]𝜙 − 12𝑚2𝜙2 − 14!𝜆𝜙4 − 3𝑚42𝜆 , (11)

where𝑚2 = −𝜇2 < 0. Due to the Higgs mechanism, the sym-
metry is broken spontaneously at low temperatures. The
effective potential becomes

𝑉 (𝜙) = −𝜇22 𝜙2 + 𝜆4!𝜙4 + 3𝜇42𝜆 > 0. (12)

To be compatible with the modification of the FLRWmetric,
we reduce a number of degrees of freedom of the field 𝜙(𝑡, 𝑟)
and preserve the rotational symmetries just as what we did
before.

According to Noether’s theorem, the energy-momentum
tensor for this field is given as𝑇�휇] = 𝜕�휇𝜙𝜕]𝜙

− 𝑔�휇]2 (𝜕�휌𝜙𝜕�휌𝜙 − 𝜇2𝜙2 − 112𝜆𝜙4 − 3𝜇42𝜆 ) . (13)

Substituting (13) in (9), we reach𝑆00 = 𝜕�푡𝜙𝜕�푡𝜙 − 𝑉 (𝜙) ,
𝑆11 = − 1 − 𝑟2𝑎2 (𝑡, 𝑟)𝜕�푟𝜙𝜕�푟𝜙 − 𝑉 (𝜙) ,
𝑆22 = 𝑆33 = −𝑉 (𝜙) .

(14)

Now, we are ready to substitute 𝑆 into Einstein’s equations. At
first, let us look at one of the Einstein equations:

𝑅00 = −3 ̈𝑎𝑎 = 8𝜋𝐺𝑆00 (𝑟, 𝑡)
= 8𝜋𝐺 (⟨ ̇𝜙 ̇𝜙⟩ − ⟨𝑉 (𝜙)⟩) . (15)

Next, the main challenge becomes the evaluations of⟨𝑉(𝜙)⟩ and ⟨ ̇𝜙 ̇𝜙⟩. However, it is impossible to obtain the
correct ⟨𝑉(𝜙)⟩ and ⟨ ̇𝜙 ̇𝜙⟩ in conventional methods.The key to
obtain the correct expectation values of the potential is to first
find out ⟨0|𝜙𝜙|0⟩. In general, this expectation value is given
as ⟨0 𝜙 (𝑥) 𝜙 (𝑥) 0⟩ = lim

�푥→�푥
⟨0 𝜙 (𝑥�耠) 𝜙 (𝑥) 0⟩

= lim
�푥→�푥

𝐺(𝑥�耠, 𝑥) , (16)
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where𝐺(𝑥�耠, 𝑥) is the full Green’s propagator. To gain insights,
the free propagator should be derived at first following
the perturbation theory. Due to the spontaneous symmetry
breaking, the free propagator cannot be obtained directly. To
resolve this issue, we make a shift of the variable, 𝜙 → 𝜙+𝜙0,
where 𝜙20 = 6𝜇2/𝜆. Then we have

L = 12𝑔�휇]𝜕�휇𝜙𝜕]𝜙 − 12 (𝜆𝜙202 − 𝜇2)𝜙2 − 𝜆4!𝜙4 − 3𝜇42𝜆
+ (𝜇2 − 𝜆𝜙206 )𝜙0𝜙 − 𝜆6𝜙0𝜙3
+ (𝜇22 − 𝜆4!𝜙20)𝜙20 .

(17)

Now it is easy to see that the square of the effective mass of
the new field 𝜙 is

𝑚2eff = 𝜆2𝜙20 − 𝜇2 = 2𝜇2. (18)

After shifting the variables, we can derive the solution for 𝜙
and return back to the original variable:

𝜙 = 𝜙0 + (2𝜋)−3 ∫ 𝑑3𝑘√2𝜔 [𝑎†�푘𝜓 (𝑥, 𝑡) + 𝑎�푘𝜓∗ (𝑥, 𝑡)] , (19)

where 𝜓 satisfies the equation of motion for the free scalar
field. For example, in the flat space-time, 𝜓(𝑥) = exp(𝑖𝑘𝑥),
and in this case, the Green’s function is

𝐺(𝑥�耠, 𝑥) = 𝜙20 + 𝜙0 ⟨𝜙⟩ + 𝜙0 ⟨𝜙�耠⟩ + ⟨𝜙𝜙�耠⟩
= 𝜙20 + ∫ 𝑑3𝑘(2𝜋)3 2𝜔𝑒�푖�푘(�푥−�푥), (20)

where 𝜔 = √𝑘2 + 𝑚2eff = √𝑘2 + 4𝜇2. In the curved space,
the propagator is not as simple as it is in the flat space.
Following [8], by introducing Riemann normal coordinates
and expanding themetric, the propagator in the curved space
can also be obtained in momentum space:

𝐺(𝑥, 𝑥�耠) = 𝑖Δ1/2 (𝑥, 𝑥�耠)(4𝜋)�푛/2 ∫ 𝑑�푛𝑘(2𝜋)�푛 𝑒�푖�푘(�푥−�푥)
⋅ [1 + 𝑓1 (𝑥, 𝑥�耠) (− 𝜕𝜕𝑚2) + 𝑓2 (𝑥, 𝑥�耠) ( 𝜕𝜕𝑚2)2]
⋅ 1𝑘2 + 𝑚2 ,

(21)

where 𝑓1(𝑥, 𝑥�耠) and 𝑓2(𝑥, 𝑥�耠) are certain functions which are
related to the curvature tensor. If the curvature is not quite
large, the second and third terms in (21) would be much
smaller than the first term. In that case, we can establish a
perturbative propagator in the curved space-time. For our
toy model, we omit 𝑓1(𝑥, 𝑥�耠) and 𝑓2(𝑥, 𝑥�耠) terms and just
preserve the leading term for the approximate flat space-time

(because when the scale factor 𝑎 is large, the Ricci scalar
for FLRW metric is proportional to 𝑎−1, so the curvature,
especially after inflation, is very small). Meanwhile, the van
Vleck determinant Δ(𝑥, 𝑥�耠) should also be one in this case.
Thus, the approximate propagator in the curved space-time
becomes

𝐺(𝑥, 𝑥�耠) = ∫ 𝑑3𝑘(2𝜋)3 12𝜔𝑒−�푖(�휔Δ�푡+k⋅Δx), (22)

where the Δ𝑡 and Δx are geodesic distances. After that, we
can calculate the full propagator. For simplicity, the tree level
propagator is considered, and higher order corrections are
neglected.

3. Modifications of the Green’s Function

In this section, we aim to explore the fluctuations of the
vacuumand take this into account in ourmodel bymodifying
the propagator; then we can establish an effective field theory
taking into account of the effects of the fluctuations by
introducing the modified Green’s function.

3.1. AnotherApproach toObtaining the Propagator. Following
the previous section, the free propagator for the scalar field is
given as

𝐺(𝑥, 𝑥�耠) = ∫ 𝑑3𝑘(2𝜋)3 2𝜔𝑒�푖�푘�푥. (23)

Usually, in quantum field theory, the free propagator can
be derived by calculating the Green’s function in momentum
space and then integrating over 𝑡 with a suitable contour.
However, the two-point correlation function obtained by
this way is not the expectation value, ⟨0|𝜙𝜙|0⟩(𝑥), which we
expect for the energy-momentum tensor.This is because cer-
tain hidden structures inside the correlation functions which
can cause the fluctuations are ignored. To show the fine struc-
tures of the expectation values for the energy-momentum
tensor, here we introduce another approach to obtaining the
Green’s function. We will write down the explicit solution of𝜙 and then calculate the correlation directly.

Here, we represent the solution of 𝜙 in terms of the
creation and annihilation operators 𝑎 and 𝑎† for the scalar
field without interactions:

𝜙 (x, 𝑡) = ∫ 𝑑3𝑘(2𝜋)3√2𝜔 (𝑎�푘𝑒−�푖�푘�푥 + 𝑎†�푘𝑒�푖�푘�푥) . (24)

Then the multiplication of the two 𝜙s becomes

𝜙 (x, 𝑡) 𝜙 (x�耠, 𝑡�耠) = ∫ 𝑑3𝑘𝑑3𝑘�耠(2𝜋)6 12√𝜔𝜔�耠
⋅ [𝑎�푘𝑎�푘𝑒−�푖(�푘�푥+�푘�푥) + 𝑎†�푘𝑎†�푘𝑒�푖(�푘�푥+�푘�푥)
+ 𝑎�푘𝑎†�푘𝑒−�푖(�푘�푥−�푘�푥) + 𝑎†�푘𝑎�푘𝑒�푖(�푘�푥−�푘�푥)] .

(25)

Conventionally, in (25), the first two terms do not give
contributions to the propagator.This is because their vacuum
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expectation values are zero. When we take the expectation
value of (25), ⟨0|𝜙(𝑥)𝜙(𝑥�耠)|0⟩, there would be no difference
in the result in (23). However, the crucial thing to consider is
how to evaluate the first two terms. To see the significance of
the first two terms, here by setting 𝑥�耠 → 𝑥 and rewriting (25),
we have

𝜙2 (x, 𝑡) = ∫ 𝑑3𝑘𝑑3𝑘�耠(2𝜋)6 12√𝜔𝜔�耠⋅ [(𝑎�푘𝑎�푘 + 𝑎†�푘𝑎†�푘) cos (𝑘 + 𝑘�耠) 𝑥+ 𝑖 (𝑎†�푘𝑎†�푘 − 𝑎�푘𝑎�푘) sin (𝑘 + 𝑘�耠) 𝑥+ (𝑎�푘𝑎†�푘 + 𝑎†�푘𝑎�푘) cos (𝑘 − 𝑘�耠) 𝑥+ 𝑖 (𝑎†�푘𝑎�푘 − 𝑎�푘𝑎†�푘) sin (𝑘 − 𝑘�耠) 𝑥] .

(26)

Similarly, the last two terms indicate zero point energy, and
the first two terms are zero when they are taken vacuum
expectation value. However, the first two terms are the parts
in (26) where the fluctuations emerge

𝐴 (x, 𝑡)
= ∫ 𝑑3𝑘𝑑3𝑘�耠2 (2𝜋)6√𝜔𝜔�耠 (𝑎�푘𝑎�푘 + 𝑎†�푘𝑎†�푘) cos (𝑘 + 𝑘�耠) 𝑥,𝐵 (x, 𝑡)
= ∫ 𝑖𝑑3𝑘𝑑3𝑘�耠2 (2𝜋)6√𝜔𝜔�耠 (𝑎†�푘𝑎†�푘 − 𝑎�푘𝑎�푘) sin (𝑘 + 𝑘�耠) 𝑥.

(27)

Obviously, ⟨𝐴(𝑥, 𝑡)⟩ = ⟨𝐵(𝑥, 𝑡)⟩ = 0. However, ⟨𝐴2(𝑥, 𝑡)⟩ and⟨𝐵2(𝑥, 𝑡)⟩ are not zero. In fact, they are the reason why the
vacuum state is not the eigen state of the energy density. In
this case, 𝐴(𝑥, 𝑡) and 𝐵(𝑥, 𝑡) are the key elements to show the
“hidden” structure of ⟨𝜙𝜙⟩. Here, we have

⟨|𝐴|2⟩ = ∫ 𝑑3𝑘�耠𝑑3𝑘(2𝜋)6 12𝜔�耠𝜔cos2 (𝑘 + 𝑘�耠) 𝑥,
⟨|𝐵|2⟩ = ∫ 𝑑3𝑘�耠𝑑3𝑘(2𝜋)6 12𝜔�耠𝜔 sin2 (𝑘 + 𝑘�耠) 𝑥.

(28)

A simplest way to preserve the part which quantifies the
fluctuation is given as

𝐺 (x, 𝑡) = Λ28𝜋2 + √⟨|𝐴|2 (x, 𝑡)⟩ + √⟨|𝐵|2 (x, 𝑡)⟩. (29)

Here, we simply preserve the latest nonzero order of⟨|𝐴(x, 𝑡)|�푛⟩ and ⟨|𝐵(𝑥, 𝑡)|�푛⟩, so as to leave all the parts in (26)
“survived” after taking the expectation value. Fortunately,𝐺(x, 𝑡) is convergent when x and 𝑡 go to infinity and

lim
x,�푡→∞

𝐺 (x, 𝑡) ∼ Λ2
𝐺 (0, 0) ∼ Λ2 (30)

𝐺(0, 0) is related toΛ2. In order to be independent of the high
momentum cutoff, we can rewrite this result by subtracting𝐺(0, 0) = 𝐺0, so

𝐺�푅 (x, 𝑡) = 𝐺 (x, 𝑡) − 𝐺0
= √⟨𝐴2 (x, 𝑡)⟩ + √⟨𝐵2 (x, 𝑡)⟩
− √⟨𝐴2 (0, 0)⟩ − √⟨𝐵2 (0, 0)⟩.

(31)

Now, the new Green’s function is totally composed of the
terms of the fluctuations𝐴(x, 𝑡) and 𝐵(x, 𝑡) and starts at zero.
Meanwhile, the large constant which is proportional to Λ2
is eliminated. This constant is the vacuum energy which is
nonobservable, due to the QFT.

3.2. The Interpretation of Modified Green’s Function. To gain
the modified Green’s function, (28) should be computed.
However, the integration is not simple. Here is a way which
can be used to estimate the integrals for ⟨|𝐴(x, 𝑡)|2⟩ and⟨|𝐵(x, 𝑡)|2⟩. At first, divide the interval of the integration:

⟨|𝐴|2 (x, 𝑡)⟩
= (∫Λ
Λ 0

+∫Λ 0
0

) 𝑑3𝑘𝑑3𝑘�耠(2𝜋)6 12𝜔𝜔�耠 cos2 (𝑘 + 𝑘�耠) 𝑥,
⟨|𝐵|2 (x, 𝑡)⟩
= (∫Λ
Λ 0

+∫Λ 0
0

) 𝑑3𝑘𝑑3𝑘�耠(2𝜋)6 12𝜔𝜔�耠 sin2 (𝑘 + 𝑘�耠) 𝑥.
(32)

For the first part of integrals, because Λ ≫ 2𝜇, we have
𝜔 = √2𝜇2 + 𝑘2 ≈ 𝑘. (33)

In this case, the integrals become

⟨𝐴21⟩ = ∫Λ
Λ 0

𝑑3𝑘𝑑3𝑘�耠(2𝜋)6 12𝜔𝜔�耠 cos2 (𝑘 + 𝑘�耠) 𝑥
≈ ∫2�휋
0

𝑑𝜑𝑑𝜑�耠 ∫�휋
0
sin 𝜃 sin 𝜃�耠𝑑𝜃 𝑑𝜃�耠

⋅ ∫Λ
Λ 0

𝑘𝑘�耠𝑑𝑘 𝑑𝑘�耠2 (2𝜋)6 cos2 (𝑘 + 𝑘�耠) 𝑥,
⟨𝐵21⟩ = ∫Λ

Λ 0

𝑑3𝑘𝑑3𝑘�耠(2𝜋)6 12𝜔𝜔�耠 sin2 (𝑘 + 𝑘�耠) 𝑥
≈ ∫2�휋
0

𝑑𝜑𝑑𝜑�耠 ∫�휋
0
sin 𝜃 sin 𝜃�耠𝑑𝜃 𝑑𝜃�耠 ∫Λ

Λ 0

𝑘𝑘�耠𝑑𝑘 𝑑𝑘�耠2 (2𝜋)6
⋅ sin2 (𝑘 + 𝑘�耠) 𝑥.

(34)
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To see the result of integrals in (34) more clearly, we set x =0 and keep ⟨𝐴21⟩ and ⟨𝐵21⟩ as functions only with variable 𝑡.
Here we have

⟨𝐴21 (0, 𝑡)⟩ = 132𝑡4 [4𝑡4 (Λ2 − Λ20)2+ (1 − 4Λ20𝑡2) cos (4Λ 0𝑡) + (1 − 4Λ2𝑡2) cos (4Λ𝑡)
+ 2 (4Λ 0Λ𝑡2 − 1) cos (2𝑡 (Λ 0 + Λ))− 4 (Λ 0 + Λ) 𝑡 sin (2𝑡 (Λ 0 + Λ))
+ 4Λ 0𝑡sin (4Λ 0𝑡) + 4Λ𝑡sin (4Λ𝑡)] ,

⟨𝐵21 (0, 𝑡)⟩ = 132𝑡4 [4𝑡4 (Λ2 − Λ20)2+ (4Λ20𝑡2 − 1) cos (4Λ 0𝑡) + (4Λ2𝑡2 − 1) cos (4Λ𝑡)
+ 2 (1 − 4Λ 0Λ𝑡2) cos (2𝑡 (Λ 0 + Λ))+ 4 (Λ 0 + Λ) 𝑡 sin (2𝑡 (Λ 0 + Λ))
− 4Λ 0𝑡 sin (4Λ 0𝑡) − 4𝑡Λ sin (4Λ𝑡)] .

(35)

After direct calculations, ⟨𝐴21⟩ and ⟨𝐵21⟩ have limits where

lim
�푡→∞

⟨𝐴21⟩ = lim
�푡→∞

⟨𝐴22⟩ = (Λ2 − Λ20)264𝜋4 . (36)

At the origin, we also have

⟨𝐴21 (0, 0)⟩ = (Λ2 − Λ20)232𝜋4 ,
⟨𝐵21 (0, 0)⟩ = 0.

(37)

Then, think about the next part of integrals. In the next
part of integrals, because Λ 0 ≪ 𝜇,

𝜔 = √2𝜇2 + 𝑘2 ≈ √2𝜇. (38)

Similarly, we have

⟨𝐴22⟩ = ∫Λ 0
0

𝑑3𝑘𝑑3𝑘�耠(2𝜋)6 12𝜔𝜔�耠 cos2 (𝑘 + 𝑘�耠) 𝑥
≈ ∫2�휋
0

𝑑𝜑𝑑𝜑�耠 ∫�휋
0
sin 𝜃 sin 𝜃�耠𝑑𝜃 𝑑𝜃�耠

⋅ ∫Λ 0
0

𝑘2𝑘�耠2𝑑𝑘 𝑑𝑘�耠4 (2𝜋)6 𝜇2 cos2 (𝑘 + 𝑘�耠) 𝑥,
⟨𝐵22⟩ = ∫Λ 0

0

𝑑3𝑘𝑑3𝑘�耠(2𝜋)6 12𝜔𝜔�耠 sin2 (𝑘 + 𝑘�耠) 𝑥
≈ ∫2�휋
0

𝑑𝜑𝑑𝜑�耠 ∫�휋
0
sin 𝜃 sin 𝜃�耠𝑑𝜃 𝑑𝜃�耠

⋅ ∫Λ 0
0

𝑘2𝑘�耠2𝑑𝑘 𝑑𝑘�耠4 (2𝜋)6 𝜇2 sin2 (𝑘 + 𝑘�耠) 𝑥.

(39)
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Figure 1: Approximate 𝐺�푅(0, 𝑡) in (41).
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Figure 2: 𝐺�푅(0, 𝑡) derived by numerical calculation.

For simplicity, setting 𝑥 = 0, we can easily evaluate (39)
directly:

⟨𝐴22 (0, 𝑡)⟩ = 1288𝜋4 Λ 06𝜇2 cos2 (2√2𝜇𝑡) ,
⟨𝐵22 (0, 𝑡)⟩ = 1288𝜋4 Λ 06𝜇2 sin2 (2√2𝜇𝑡) .

(40)

Combining (36) and (40), the modified Green’s function𝐺�푅(0, 𝑡) is obtained. Because Λ ≫ 𝜇 ≫ Λ 0, the approximate
result is given as

𝐺�푅 (0, 𝑡) ≈ √⟨𝐴21 (0, 𝑡)⟩ + √⟨𝐵21 (0, 𝑡)⟩ − Λ24√2𝜋2 . (41)

In this case, the limit when time goes infinity becomes

lim
�푡→∞

𝐺�푅 ≈ (2 − √2)Λ28𝜋2 . (42)

To check the validity of the approximatemodified Green’s
function derived here, we calculate 𝐺�푅(0, 𝑡) numerically.

In Figure 2, the numerical result is seen to be close to
the result in Figure 1 which is plotted with the approximate
Green’s function. The amplitude of the oscillation of 𝐺�푅(0, 𝑡)
remains nearly a constant in Figure 1 at initial times; how-
ever, when the time becomes very long, the amplitude of
the oscillations of our approximate result approaches zero.



Advances in High Energy Physics 7

0.298614

0.298614

0.298614

Λ
2
/2


2

2

502 503 504501
Λt

Figure 3: 𝐺�푅(0, 𝑡) derived by numerical calculation when 𝑡 goes
larger. The oscillation of 𝐺�푅(0, 𝑡) can be seen clearly when 𝑡 is large.
The maximal values of the two results derived by different
methods are slightly different. In fact, this is not hard to
explain. In (41), we drop the ⟨𝐴22(0, 𝑡)⟩ and ⟨𝐵22(0, 𝑡)⟩ terms,
which influence the amplitude and the value of peak. Roughly
speaking, comparing to the value of the Green’s function’s
limit when 𝑡 → ∞, the oscillation’s amplitude is much
smaller compared to the overall value. Therefore, it can be
omitted. The oscillation of the Green’s function is shown
in Figure 3 by computing the Green’s function numeri-
cally.

Now, a problem arises naturally: how to interpret this
result. In Figures 1 and 2, the modified Green’s function
starts at the origin and finally reaches the peak. Meanwhile
after reaching the peak, the function oscillates with a small
amplitude. To make a correspondence to the evolution of 𝜙,
we notice that when 𝑡 = 0, the scalar field 𝜙 = 0 and then 𝜙
evolves with time. However, 𝜙 cannot always increase. This
is because once it starts evolving not at the true vacuum,
the global minimal point of the potential, there is always a
tendency towards getting back to the stable true vacuum.
Taking this thought into account, 𝐺�푅(0, 0) = 0 indicates
that the scalar field 𝜙 starts at the origin and reaches the
true vacuum periodically. Because the energy for driving the
inflation of theUniverse is gradually dissipated, the amplitude
of 𝜙 becomes smaller and smaller. Finally, 𝜙 oscillates around
the global minimal point with a small amplitude. This idea
can be true only when we admit such a postulation:

the maximum of 𝐺�푅 ≈ (2 − √2)Λ28𝜋2 = V = 6𝜇2𝜆 . (43)

Therefore, we obtained a correlation of the ultraviolet cutoffΛ and the global minimal of the potential. This kind of
relationship does not appear in QFT. This is because, in
QFT, the ultraviolet cutoff is set by an exterior constant
which is there just for regularization. However, for this case,
we hope to establish an effective field theory which takes
into consideration the quantum vacuum fluctuations. In this
case, the key question is how the energy density of this
effective field drives the Universe to expand. As a result, there
is an exterior constraint on the cosmological background
and we cannot treat it as the usual QFT in fixed back-
ground.

4. Toy Model: How the Inhomogeneous
Vacuum Influences the Evolution of
the Universe

After deriving the modified Green’s function, now we are
able to explore how the inhomogeneous vacuum influences
the evolution of the Universe. Recalling Einstein’s equation
in Section 2 (15), adopting the approximation in (41), and
substituting it into (15), we have [9]

−3 ̈𝑎𝑎 = 8𝜋𝐺(⟨ ̇𝜙 ̇𝜙⟩ + 𝜇22 𝐺�푅 + 𝜆4!𝐺�푅2 + 3𝜇22𝜆 ) . (44)

However, here, a new issue emerges, that is, how to calculate⟨ ̇𝜙 ̇𝜙⟩. As a matter of fact, we have such a relation between⟨ ̇𝜙 ̇𝜙⟩ and the modified Green’s function:

⟨ ̇𝜙 ̇𝜙⟩ (𝑥) = lim
�푥→�푥

⟨ ̇𝜙 (𝑥) ̇𝜙 (𝑥�耠)⟩
= lim
�푥→�푥

𝜕�푡𝜕�耠�푡 ⟨𝜙 (𝑥) 𝜙 (𝑥�耠)⟩ . (45)

In analogy to the method that we use to derive the
modified Green’s function for ⟨𝜙𝜙⟩ in the previous section,
functions 𝐴(x, 𝑡) and 𝐵(x, 𝑡) can also be introduced, and due
to (45), the new 𝐴(x, 𝑡) and 𝐵(x, 𝑡) are given as

𝐴�耠 (x, 𝑡)
= ∫ 𝑑3𝑘𝑑3𝑘�耠(2𝜋)6 √𝜔𝜔�耠2 (𝑎�푘𝑎�푘 + 𝑎†�푘𝑎†�푘) cos (𝑘 + 𝑘�耠) 𝑥,

𝐵�耠 (x, 𝑡)
= ∫ 𝑑3𝑘𝑑3𝑘�耠(2𝜋)6 √𝜔𝜔�耠2 (𝑎†�푘𝑎†�푘 − 𝑎�푘𝑎�푘) sin (𝑘 + 𝑘�耠) 𝑥.

(46)

After the direct calculations, results in (46) are quite similar to
that of the 𝐺�푅. Therefore, the regulation is also necessary for⟨ ̇𝜙 ̇𝜙⟩. However, unlike the method we used for the modified
Green’s function, the final version of ⟨ ̇𝜙 ̇𝜙⟩ after regulation
becomes

⟨ ̇𝜙 ̇𝜙⟩ = √⟨𝐴�耠2 (x, 𝑡)⟩ + √⟨𝐵�耠2 (x, 𝑡)⟩
− lim
�푡→∞

(√⟨𝐴�耠2 (x, 𝑡)⟩ + √⟨𝐵�耠2 (x, 𝑡)⟩) . (47)

The reason that this type of regulation is adopted, which is
different from what we used for 𝐺�푅, is not hard to explain. It
is clear that the scalar field 𝜙 finally decays to the true vacuum
which is the minimal of the potential energy. Equivalently,
recalling the interpretation for 𝐺�푅 in the previous section,
we can discuss the correspondence to the evolution of 𝜙. We
notice that when 𝑡 grows larger and larger, 𝜙 will be stable at
the minimal point. Meanwhile, all the derivatives of 𝜙 should
be approximately zero at this stage in order to preserve the
stability. The numerical result of ⟨ ̇𝜙 ̇𝜙⟩ is shown in Figure 4.
The evolution of this correlation function is similar to the
evolution of the modified Green’s functions.
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Figure 4: The correlation function ⟨ ̇𝜙 ̇𝜙⟩ after regulation in (47).
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Figure 5: Scale factors at the beginning. The blue curve is for our
toy model, and the orange one is for standard scenario. To illustrate
the behavior of scale factors clearly, the vertical axis is rescaled as(𝑎 − 1)/𝐻−1, where𝐻 = √8𝜋𝐺𝑉(0)/𝜆.

Substituting (47) into (44), we are able to solve the equa-
tion for the evolution of the scale factor 𝑎. After numerical
calculation, two figures are plotted for the scale factor 𝑎(0, 𝑡)
compared to the standard scenario.

In Figures 5 and 6, it is not hard to see that at the
beginning, the scale factor in our toy model grows much
faster that the scale factor in the standard scenario. However,
when the time becomes larger, the scale factor in our toy
model grows slower and finally 𝑎 ∝ 𝑡. This is because when𝑡 is large, the scalar field 𝜙 falls down from the top of the
potential and oscillates around the global minimal point. In
this case, the right hand side of (44) is approximately zero, sȯ𝑎 is also approximately zero [9].

5. More Elaborated Model: When Temperature
Is Involved

Once the temperature is introduced in our model, there are
significant changes. Based on the finite temperature quan-
tum field theory, correlation functions should satisfy Kubo–
Martin–Schwinger relations [10]

⟨𝜒 (𝑡) 𝜒 (𝑡�耠)⟩
�훽
= ⟨𝜒 (𝑡�耠) 𝜒 (𝑡 + 𝑖𝛽)⟩

�훽
. (48)

Here, time 𝑡 is also extended to the complex plane and 𝛽
in (48) is the reciprocal for the temperature, 𝛽 = 𝑇−1. Not
only the background becomes more complicated, but also
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Figure 6: Scale factors when time is large. The blue curve is for our
toymodel, and the orange one is for standard scenario. Like Figure 5,
the vertical axis is also rescaled.

the Lagrangian changes. If the field is not at zero Kelvin, the
effective mass becomes

𝜇2 → 𝜇2 − 𝜆4!𝑇2. (49)

Thus, the Lagrangian becomes

L = 12𝑔�휇]𝜕�휇𝜙𝜕]𝜙 + 12 (𝜇2 − 𝜆4!𝑇2)𝜙2 − 𝜆4!𝜙4
− 3𝜇42𝜆 ,

(50)

and in this case, the minimal position of the potential is no
longer at ] = 6𝜇2/𝜆, but at

] (𝑇) = 6𝜇2 (𝑇)𝜆 = 6𝜆 (𝜇2 − 𝜆4!𝑇2) = ] (0) − 𝑇24 . (51)

Recalling the postulation in (43), the ultraviolet cutoff now in
finite temperature field theory is related to the temperatureΛ = Λ(𝑇). But what would happen when the temperature is
higher than the critical point 𝑇 > 𝑇�푐 = √24𝜇2/𝜆? In this
case, ](𝑇) = 0, and the spontaneous symmetry breaking
no longer exists. Meanwhile, due to the postulation in (43),
the ultraviolet cutoff should be zero. However, the behavior
of 𝐺�푅 when time becomes long gives us hint that 𝜙 should
oscillate around the origin at the minimal of the potential.
For more details, the modified Green’s function should be
discussed, which involves temperature. Similarly to the zero
temperature approach, we start with 𝐴(x, 𝑡) and 𝐵(x, 𝑡).
Replacing 𝑡 → 𝑡 + 𝑖𝛽, we reach [11]

𝐴 (x, 𝑡) = ∫ 𝑑3𝑘𝑑3𝑘�耠2 (2𝜋)6√𝜔𝜔�耠 (𝑎�푘𝑎�푘𝑒�훽 + 𝑎†�푘𝑎†�푘𝑒−�훽)
⋅ cos (𝑘 + 𝑘�耠) 𝑥,

𝐵 (x, 𝑡) = ∫ 𝑖𝑑3𝑘𝑑3𝑘�耠2 (2𝜋)6√𝜔𝜔�耠 (𝑎†�푘𝑎†�푘𝑒−�훽 − 𝑎�푘𝑎�푘𝑒�훽)
⋅ sin (𝑘 + 𝑘�耠) 𝑥.

(52)
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Notice here that the square of the effective mass in 𝜔 is𝑚2eff = 𝜆𝑇2/4! − 𝜇2. Following the process in previous sec-
tion, √|𝐴(x, 𝑡)|2 and √|𝐵(x, 𝑡)|2 need to be calculated. Nev-
ertheless, the term which depends on 𝛽 is canceled out.
Therefore, finally, the modified Green’s function here is not
different from the previous one. To find the explicit form
when 𝑇 is very high, considering the approximation in (39)
and Λ ≪ 𝜆𝑇2, we reach

𝐺�푅 (0, 𝑡) ≈ √212𝜋2 Λ3𝑚�푒 (cos 2𝑚�푒𝑡 + sin 2𝑚�푒𝑡 − 1) , (53)

where 𝑚2�푒 = 𝜆𝑇2/4! − 𝜇2 ≈ 𝜆𝑇2/4!. It is easy to find out that𝐺�푅(0, 𝑡) oscillates at the origin and the amplitude is small.
Before solving the Einstein’s field equation for the scale

factor, we notice that the term ⟨ ̇𝜙 ̇𝜙⟩ in (15) is still unknown.
Similarly to the previous described approach with zero
temperature, introducing 𝐴�耠(x, 𝑡) and 𝐵�耠(x, 𝑡) in (46) for the
finite temperature field, we reach

𝐴�耠 (x, 𝑡) = ∫ 𝑑3𝑘𝑑3𝑘�耠(2𝜋)6 √𝜔𝜔�耠2 (𝑎�푘𝑎�푘𝑒�훽 + 𝑎†�푘𝑎†�푘𝑒−�훽)
⋅ cos (𝑘 + 𝑘�耠) 𝑥,

𝐵�耠 (x, 𝑡) = ∫ 𝑑3𝑘𝑑3𝑘�耠(2𝜋)6 √𝜔𝜔�耠2 (𝑎†�푘𝑎†�푘𝑒−�훽 − 𝑎�푘𝑎�푘𝑒�훽)
⋅ sin (𝑘 + 𝑘�耠) 𝑥.

(54)

Using the approximation 𝜔 ≈ 𝑚eff , in this case, we reach

⟨ ̇𝜙 ̇𝜙⟩ = 𝑚2eff𝐺�푅. (55)

Then plugging (53) and (55) into (15), we obtain the equation
for the scale factor:̈𝑎𝑎 = 8𝜋𝐺3 (−12𝑚2eff (𝑇) 𝐺�푅 + 𝜆4!𝐺2�푅 + 3𝜇42𝜆 ) . (56)

To solve this equation, the relation between the temperature
and the scale factor is needed. Due to the total entropy con-
servation, the relation is given as 𝑇 ∝ 𝑎−1. In (56), because
the amplitude of 𝐺�푅 is negligibly small, the last term 𝑉(0) =(3𝜇4)/(2𝜆)dominates the equation.Therefore, it is not hard to
predict that the scale factor 𝑎 increases exponentially before
the temperature is below the critical temperature.

6. A New Inflationary Scenario

In this section, we mainly discuss a new inflationary scenario
which is built based on our model. At the beginning, in
this new inflationary scenario, we investigate the idea that
the Universe is created from nothing [12, 13]. Hence, in our
model, the curvature is greater than zero or, equivalently, we
take 𝑘 = 1 in the FLRW metric. From the tunneling theory,
before tunneling through the barrier, the “Universe” was in
Euclidean space. After penetrating the potential barrier, the
Universe was “created” and began expanding. At this stage,

the vacuum energy drove the Universe expanding expon-
entially. Following the previous section, the symmetry was
restored because the field was at a very high temperature
which is much higher than the critical temperature where
phase transition of the field occurs. Therefore, 𝜙 oscillates at
the origin with a tiny amplitude which can almost be negli-
gible. By omitting the terms containing𝐺�푅 in (56), during this
period, the equation for the scale factor becomes

̈𝑎𝑎 ≈ 8𝜋𝐺3 3𝜇42𝜆 = 4𝜋𝐺𝜇4𝜆 = 𝐻2. (57)

Taking the initial condition when 𝑡 ≈ 0, we reach 𝑎(𝑥, 𝑡) =𝑎(𝑡) = 𝐻−1cosh(𝐻𝑡).This also gives the solution to the Fried-
mann equation for homogeneous and isotropy space-time
with positive curvature [13]. In this case, we have the same
solution to (57):

𝑎 ≈ 𝐻−1cosh (𝐻𝑡) . (58)

In fact, following the Friedmann equations, besides the 00
component of Einstein’s field equation as (15), the other ones
are derived from the first one and the trace of Einstein’s field
equations. Similarly, we can derive the second equation for
our model.

LHS. = 16 (𝑅00𝑔00 − 𝑅11𝑔11 − 𝑅22𝑔22 − 𝑅33𝑔33 )
= 4 ((3𝑟2 − 2) 𝑎�耠 + 𝑟 (𝑟2 − 1) 𝑎�耠�耠) 𝑎 − 2𝑟 (𝑟2 − 1) 𝑎�耠26𝑟𝑎4
+ ̇𝑎2 + 1𝑎2 ,

RHS. = 16 (𝑇00𝑔00 − 𝑇11𝑔11 − 𝑇22𝑔22 − 𝑇33𝑔33)
= 8𝜋𝐺6 (⟨ ̇𝜙 ̇𝜙⟩ + 1 − 𝑟2𝑎2 ⟨𝜙�耠𝜙�耠⟩ + 2𝑉 (𝜙))
≈ 8𝜋𝐺3 𝑉 (0) = 𝐻2.

(59)

On the left hand side of the second Friedmann equation, it
separates into two parts. One part comes from the spatial
dependence of the scale factor, and the other part is a com-
mon term. Because the right hand side is approximately a
constant, we can alsomake the approximation so that 𝑎(𝑟, 𝑡) ≈𝑎(𝑡). Then the first part on the left hand side disappears.
Hence, a much more simplified equation is derived:

̇𝑎2 + 1 ≈ 𝐻2𝑎2. (60)

It is obvious that the solution to this equation is the same as
that of (57).

At the first stage, the Universe expanded exponentially, so
the temperature of the entire Universe decreased rapidly, due
to the relation of temperature and entropy [1], 𝑇 ∝ 𝑠−1. Once
the temperature becomes lower than the critical temperature,
the Universe switched to the next stage. Recalling Section 4
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Figure 7: Numerical result of 𝐺�푅(𝑟, 𝑡) in 3D.

and considering that ⟨ ̇𝜙 ̇𝜙⟩ goes to zero and𝐺�푅 reaches the sta-
ble point extremely fast, these termsmake very limited contri-
butions. Therefore, they can be neglected in the large scale
space-time. However, if we want to solve the second Fried-
mann equation, (59), for the scale factor during this period,
there is still an issue: how the spatial dependence of the scale
factor influences the result. Ideally, if the spatial factor has
no significant effects, we can also drop those terms involving𝑎�耠 and 𝑎�耠�耠 and obtain a simple equation as (60). To check
this assumption, both two variables should be considered for𝐺�푅. To illustrate how the spatial part influences the modified
Green’s function, we plot a 3D figure for 𝐺�푅(𝑟, 𝑡). In Figure 7,
except the very little area where 𝑡 is small, the surface in the
figure is almost flat.Thismeans that the spatial fluctuations of
the variables are very small and can be omitted when 𝑡 is not
too small. Thus, it is fine to get rid of the part which contains𝑎�耠 or 𝑎�耠�耠 in (59) and obtain a new equation:

̇𝑎2 + 1 ≈ 8𝜋𝐺3 𝑎2𝑉 (𝜙, 𝑇)min

= 8𝜋𝐺3 (𝑐2𝑇28 − 𝜆𝑇4384 ) 𝑎2.
(61)

Because the expansion of the Universe is adiabatic, the total
entropy of the Universe is conserved and set 𝑎𝑇 = 𝑆; then 𝑇
can be replaced in (61):

̇𝑎2 + 1 ≈ 8𝜋𝐺3 (𝜇2𝑆28𝑎2 − 𝜆𝑆4384𝑎4)𝑎2. (62)

In this switching period, (62) could be rewritten as

̇𝑎 ≈ [(𝜋𝐺𝜇2𝑆23𝑎2 − 1) − 𝜋𝐺𝜆𝑆4144𝑎2 ]
1/2 = √𝑃 − 𝑄/𝑎2. (63)

Therefore, it is easy to find that when scale factor grew larger,
the second term 𝑄/𝑎2 became smaller and 𝑎�耠 ≈ constant,
whichmeans the Universe expanded approximately in a fixed
speed at this stage. In this case, the expansion of the Universe
was linearly in time. Meanwhile, during this period, the
acceleration of the expansion kept on decreasing (in fact, the

acceleration cannot be zero, but, at a very small value, we will
explain this effect next).

After the switching period, the Universe cooled down.
due to the coupling with other fields, the bosons of the scalar
field would decay into other particles. Thus, the 𝑃 = 𝑃(𝑡)
and 𝑄 = 𝑄(𝑡) in (63) dropped down, so the speed of linear
expansion in the last period also decreased rapidly.Moreover,
at this stage, the vacuum energy of the scalar field contributed
to the Universe’s expansion decreases, so the speed of expan-
sion continued decreasing. However, this does not mean that
the Universe stopped expanding. In fact, the expansion of the
Universe was still accelerating because of one element that we
neglect in the previous stage, which became more important.
In Section 3, the behavior of 𝐺�푅 shows that the field 𝜙 falls
into the minimal of the potential very fast. However, once
it reaches that point, it will oscillate at that point with a
tiny amplitude. The oscillation makes a tiny shift, which
is quite small compared to the right hand side of (61). To
calculate the tiny shift caused by the oscillations of 𝜙, the two
approximations in Section 3which are applied to calculate𝐺�푅
should be both considered; when 𝑡 is large, we reach
𝐺�푅 (x, 𝑡) = √𝐴21 (x, 𝑡) + 𝐴22 (x, 𝑡)

+ √𝐵21 (x, 𝑡) + 𝐵22 (x, 𝑡) − √𝐴21 (0, 0) + 𝐴22 (0, 0)
− √𝐵21 (0, 0) + 𝐵22 (0, 0) ≈ (√𝐴21 (x, 𝑡)
+ √𝐵21 (x, 𝑡) − √𝐴21 (0, 0) − √𝐵21 (0, 0))
+ 12 ( 𝐴22 (x, 𝑡)√𝐴21 (x, 𝑡) +

𝐵22 (x, 𝑡)√𝐵21 (x, 𝑡)) ≈ ] (𝑇) + 136𝜋2
⋅ Λ 06Λ2 (𝑇) 𝜇2 (𝑇) ,

(64)

where Λ(𝑇) is the ultraviolet cutoff which is related to
temperature. 𝜇2(𝑇) = 𝜇2 − 𝜆𝑇2/4! is the square of the effect-
ive mass in this temperature. ](𝑇) = 6𝜇2(𝑇)/𝜆 indicates the
minimal point of the potential. Thus, we can define the shift
of the scalar field 𝜙:
(Δ𝜙)2 = lim

�푡→∞
𝐺�푅 (x, 𝑡) − ] (𝑇) = 136𝜋2 Λ 06Λ2 (𝑇) 𝜇2 (𝑇) . (65)

Then, the tiny shift of the potential can also be obtained

Δ𝑉 = 𝑉 (𝜙0 + Δ𝜙) − 𝑉 (𝜙0) ≈ 𝑉�耠�耠 (𝜙0)2 (Δ𝜙)2 , (66)

where 𝜙0 = √](𝑇), which indicates the minimal point, and𝑉�耠�耠 = 𝜕2𝑉/𝜕𝜙2. Substituting (65) and the Lagrangian into
(66), here we have

Δ𝑉 = Λ 0636𝜋2Λ2 (𝑇) . (67)



Advances in High Energy Physics 11

Currently, in the case that 𝑇 ≈ 2.7𝑘, we have Λ2(𝑇) ≈ Λ2(0)≈ (48𝜋2𝜇2)/((2 − √2)𝜆) ≫ Λ 0, so the energy shift Δ𝑉 is a
very small constant.

Besides the energy shift began playing a role in the
Universe expansion; after the particles of the scalar field
decayed into other particles, the density of particle 𝜙 kept
decreasing. According to the radiation thermodynamics, the
density of particle is proportional to𝑇4 [14].Therefore, in this
period, the particle density is given as

𝜌 = 𝜌0𝑒−Γ�푡 ∝ 𝑇4𝑒−Γ�푡, (68)

where Γ is the decay rate which is dependent on the coupling
constants of𝜙 and other fields.Therefore, equivalently, we can
replace the original temperature by 𝑇 → 𝑇exp(−Γ𝑡/4). Now,
we are able to establish the equation for the last stage of the
inflation evolution:

̇𝑎2 + 1
≈ 8𝜋𝐺3 (𝜇2𝑆28𝑎2 𝑒−

Γ𝑡2 − 𝜆𝑆4384𝑎4 𝑒−Γ�푡 + 𝜌𝑎3 + Δ𝑉)𝑎2, (69)

where 𝜌 indicates the density of nonrelativistic matter. Now,
we have established the equation which can explain the
scenario of the Universe nowadays. In this equation, the
first term which is proportional to 𝑎−2 decreases rapidly.
The next term is negligible when 𝑡 is large. The third term
comes from the nonrelativistic matter which is created by the
energy that the scalar field dissipates. The last term, which is
approximately a constant, plays the role of vacuum energy or,
in other words, the cosmological constant.

According to the observations, now, the Universe is still
expanding, and the expansion is accelerating. Using the
observational data, one can check which factor dominates the
current Universe evolution. To describe the behavior of the
current Universe, a general evolution equation is introduced:

̇𝑎2
= 𝐻20 [ΩΛ + Ω�퐾 (𝑎0𝑎 )2 + Ω�푀 (𝑎0𝑎 )3 + Ω�푅 (𝑎0𝑎 )4] , (70)

where 𝐻0 is the current Hubble’s parameter and 𝑎0 is the
current scale factor. Meanwhile, the energy densities of
nonrelative matter, radiation, and vacuum are, respectively,

𝜌�푀0 = 3𝐻20Ω�푀8𝜋𝐺 ,
𝜌�푅0 = 3𝐻20Ω�푅8𝜋𝐺 ,
𝜌Λ0 = 3𝐻20ΩΛ8𝜋𝐺 .

(71)

By fitting with the observed data of the supernova [15, 16], the
ratio of each component which sustains the expansion of the
Universe can be obtained. One of the results obtained is that

Ω�퐾 = Ω�푅 = 0, ΩΛ + Ω�푀 = 1, and ΩΛ ≈ 0.7. In (69), because
at this stage 𝑡 is large, the first term is small. To match the
current statue of the Universe, an approximate formula can
be laid down.

𝑐2𝑆2/38 𝑒−Γ�푡/2 ≈ 38𝜋𝐺. (72)

Thus, the curvature constant is effectively equal to zero.Then,
by neglecting the second term on the right hand side of (69),
we reach the equation which describes the current Universe
as

̇𝑎2 ≈ 8𝜋𝐺3 ( 𝜌𝑎3 + Δ𝑉)𝑎2. (73)

In this case, the expansion of the Universe is dominated by
vacuum energy which is from the energy shift caused by the
oscillations of the scalar field 𝜙 around the potential minimal
and nonrelativistic matter, while other effects are ruled out.
Meanwhile, plugging the current observed Hubble constant
[17] in (71), we obtain the energy density of vacuum energy
(cosmological constant):

𝜌Λ0 ≈ 2.57 × 10−47 (GeV)4 . (74)

This result is much smaller than the energy scales of various
theories of QFT. Since Δ𝑉 in (67) is also much smaller than
the energy that QFT can predict, this result can be used to
explain why the current energy density of the vacuum energy
is so small [6]. In our model, the density of effective vacuum
energy caused by Δ𝑉 is

𝜌Λ = Δ𝑉 ∝ Λ−2. (75)

In this case, the Hubble parameter𝐻 ∝ Λ−1 → 0. Compared
to another resolution to the cosmological constant problem
[6], the effective Hubble parameter approaches zero, 𝐻 ∝Λ𝑒−�훽√�퐺Λ → 0. Although both two models draw a conclusion
that the Hubble parameter𝐻 → 0when the ultraviolet cutoff
is taken as infinity, Λ → ∞, the results in the two models
are still different. This is because, in our model, the quantum
vacuum fluctuations have direct impacts on the scalar field 𝜙.
Thus we obtain the effective density of vacuum energyΔ𝑉. In
[6], the vacuumfluctuations have direct impacts on the space-
time structure, but not on the field itself. To summarize, there
are three main stages of this new inflation scenario (shown in
Figure 8): At the first stage (curve (I) in Figure 8), the scalar
field had no symmetry breaking at the very high temperature
and the Universe expanded exponentially. Meanwhile, the
temperature kept decreasing rapidly and once it dropped
below the critical point, the scenario switched to the next
stage. At this transient period (curve (II) in Figure 8), the
expansion was no longer exponential, but the acceleration
of the expansion decreased, and finally the expansion was
approximately linearly in time.Next, along the decrease of the
temperature, the 𝑃 and 𝑄 in (63) can no longer be constants
but went down quickly. Therefore, in this stage (curve (III)
in Figure 8), the speed of the expansion became slower and
slower, and finally 𝑃(𝑡) ≈ 0. However, one effect buried
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Figure 8: The scale factor of the new scenario. Notice that there are
three stages of the evolution of the scale factor.

in previous stages became important now. After 𝑃(𝑡) being
approximately zero, the effective potential in (67) leads to the
acceleration of the expansion of the current Universe.

Compared to the standard inflationary scenario, the new
scenario proposed here has no issue of how the Universe
quits the inflationary stage from the exponential expansion.
The acceleration of expansion decreased smoothly from the
first stage to the second stage, and finally the expansion was
almost linearly in time. This smooth transition is guaranteed
by the behavior of themodifiedGreen’s functionwhich shows
that the scalar field at each point of the whole Universe can
reach the localminimumon the effective potential landscape.
Therefore, the new inflationary scenario does not have to quit
through bubble collisions.

7. Tunneling Amplitude: How the
Inhomogeneous Vacuum Influences the
Creation of the Universe

After establishing the model describing the evolution of the
Universe, let us go back to the moment where the Universe
has not been created. Due to the tunneling theory [12, 13],
the Universe can be created from “nothing” by tunneling
through the potential barrier. It is therefore useful to estimate
the tunneling amplitude in our model and the influence of
the inhomogeneous vacuum on the tunneling amplitude.
To compute the amplitude, we followed the following step.
First find the minimal coupling action. Then derive the
Wheeler–DeWitt (WD) equation. Finally solve the WD
equation, then find the outgoing wavefunction, and calculate
the tunneling amplitude.

The minimal coupling of Einstein–Hilbert action and the
scalar field action is given as

𝑆 = ∫ [− 𝑅16𝜋𝐺 + 12𝑔�휇]𝜕�휇𝜙𝜕]𝜙 − 𝑉 (𝜙)]√−𝑔𝑑4𝑥, (76)

where the potential 𝑉(𝜙), based on our model, is given as

𝑉 (𝜙) = 12𝜇2𝜙2 + 14!𝜆𝜙4 + 3𝜇42𝜆 . (77)

By setting 𝑟 = sin𝜒, the metric becomes 𝑑𝑠2 = 𝑑𝑡2 − 𝑎2(𝑡,𝜒)[𝑑𝜒2 + sin2𝜒(𝑑𝜃2 + sin2𝜃𝑑𝜙2)] = 𝑑𝑡2 − 𝑎2(𝑡, 𝜒)𝑑Ω23. Then
after direct calculation, the Ricci scalar in our model is given
as

𝑅 = − 2𝑎4 [𝑎�耠2 − 2𝑎 (2 cot (𝜒) 𝑎�耠 + 𝑎�耠�耠) + 3 (1 + ̇𝑎2)
+ 3𝑎3 ̈𝑎] , (78)

where ̇𝑎 = 𝜕𝑎/𝜕𝑡 and 𝑎�耠 = 𝜕𝑎/𝜕𝜒. Substituting the potential
and Ricci scalar into action and writing out the action
explicitly, we have

𝑆 = ∫𝑑𝑡𝐿 (𝑎, ̇𝑎, 𝑎�耠; 𝜙, ̇𝜙, 𝜙�耠) , (79)

where the Lagrangian reads

𝐿 = ∫[ 18𝜋𝐺𝑎4 (𝑎�耠2 − 2𝑎 (2 cot (𝜒) 𝑎�耠 + 𝑎�耠�耠)
+ 3 (1 + ̇𝑎2) 𝑎2 + 3𝑎3 ̈𝑎) + ̇𝜙2 − 𝜙�耠2𝑎2 − 𝑉 (𝜙)]
⋅ 𝑎3sin2𝜒 sin 𝜃 𝑑𝜒 𝑑𝜃 𝑑𝜑.

(80)

There is an issue involving the difficulty in evaluating
the integrations in (80). To evaluate the integral, we make
the approximation that 𝜙 and 𝑎 are approximately constants
when integrating over 𝜒. In fact, this approximation is
acceptable. Recalling Figure 7, the spatial variation of 𝜙 is
small, and because 𝑎 is determined by 𝜙, the spatial variation
of 𝑎 is also small. Then we have the approximate Lagrangian

𝐿 = 2𝜋2 [ 18𝜋𝐺𝑎 (𝑎�耠2 + 3 (1 − ̇𝑎2) 𝑎2) + 𝑎3 ̇𝜙2 − 𝑎𝜙�耠2
− 𝑎3𝑉 (𝜙)] . (81)

Then, following the same idea, we can make further approx-
imations that neglect 𝑎�耠. Therefore, now we have a simpler
Lagrangian

𝐿 = 2𝜋2 [ 38𝜋𝐺 (1 − ̇𝑎2) 𝑎 + 𝑎3 ̇𝜙2 − 𝑎𝜙�耠2 − 𝑎3𝑉 (𝜙)] . (82)

Now, we can derive the WD equation. Firstly, the canonical
momenta should be obtained:

𝑃�푎 = 𝜕𝐿𝜕𝑎 = 3𝜋𝑎 ̇𝑎2𝐺 ,
𝑃�휙 = 𝜕𝐿𝜕𝜙 = 2𝜋2𝑎3 ̇𝜙. (83)

By Legendre transform and substituting the canonical mo-
menta into (82), we have the Hamiltonian:

𝐻 = − 𝐺3𝜋𝑎𝑃�푎2 + 14𝜋2𝑎3𝑃�휙2
− 3𝜋4𝐺𝑎 [1 − 8𝜋𝐺3 (𝜙�耠2 + 𝑎2𝑉 (𝜙))] . (84)
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To obtain Wheeler–DeWitt equation, introduce canonical
quantization by replacing 𝑃�푎 → −𝑖𝜕/𝜕𝑎, 𝑃�휙 → −𝑖𝜕/𝜕𝜙; then
we have the WD equation:

[ 𝜕2𝜕𝑎2 + 𝑝𝑎 𝜕𝜕𝑎 − 1𝑎2 𝜕2𝜕𝜙2 − 𝑈 (𝑎, 𝜙)]𝜓 = 0, (85)

and here, 𝜙2 = 4𝜋𝐺𝜙2/3, the parameter 𝑝 represents the
ambiguity:

𝑃�푎2 ∼ 𝑎2 ̇𝑎2 = 1𝑎�푝 (𝑎 ̇𝑎) 𝑎�푝 (𝑎 ̇𝑎) . (86)

In this case, it is not appropriate to just write 𝑃�푎2 as 𝜕2/𝜕𝑎2,
but

𝑃�푎2 = − 1𝑎�푝 𝜕𝜕𝑎 (𝑎�푝 𝜕𝜕𝑎) = 𝜕2𝜕𝑎2 + 𝑝𝑎 𝜕𝜕𝑎 . (87)

In the WD (85), the potential 𝑈 is given as

𝑈 (𝑎, 𝜙) = ( 3𝜋2𝐺)2 𝑎2 [1 − 8𝜋𝐺3 (𝜙�耠2 + 𝑎2𝑉 (𝜙))] . (88)

Based on the tunneling approach, before theUniverse was
created, everything was formulated in Euclidean space. To
know the behavior of the Universe before tunneling through
the potential barrier, gravitational instanton solution should
be considered. At this stage, 𝜙 is assumed not to change with
time. Therefore, it is possible to set 𝜙 = 0. This is because,
in the inflationary scenario that we discussed in the pre-
vious section, the scalar field 𝜙 starts at the extremum, 𝜙 =0. We assume that before tunneling through the barrier, in
Euclidean space, the Universe preserved the highest sym-
metry. Therefore, we assume that the Universe was homo-
geneous and the scale factor was not related to 𝑟. Therefore,
in Euclidean region, 𝜙 = 0. Now we have Freedman equation
in Euclidean space as

− ̇𝑎2 + 1 = 𝐻2𝑎2, (89)

where 𝐻 = (8𝜋𝐺𝑉(0)/3)1/2, V(0) = 3𝑐4/2𝜆. The solution to
this simple equation is

𝑎 (𝑡) = 𝐻−1cos (𝐻𝑡) . (90)

This solution shows that, before the Universe “penetration”
through the potential barrier in Euclidean space, it expanded
and contracted periodically. In this case, when we analyze
the wave function of the WD equation, the region 𝑎 < 𝐻−1
is in Euclidean space representation. Meanwhile, the region𝑎 > 𝐻−1 is in Lorentz space representation. At the very early
time after the Universe has been created, 𝑡 ≪ 1, following the
Lorentz space representation, we have

̇𝑎2 + 1 ≈ 𝐻2𝑎2. (91)

The solution is

𝑎 (𝑟, 𝑡) ≈ 𝐻−1cosh (𝐻𝑡) , (92)

U

a

H−1

Figure 9: Potential 𝑈(𝑎) for WD equation. Notice the step at 𝑎 =𝐻−1.
and this is also the initial condition that we used for our
model.

Following the same approach by which we obtained the
WD equation for Lorentz region, in 𝑎 < 𝐻−1, the WD
equation for Euclidean region is simpler:

[ 𝜕2𝜕𝑎2 + 𝑝𝑎 𝜕𝜕𝑎 − 1𝑎2 𝜕2𝜕𝜙2 − 𝑈0 (𝑎, 𝜙)]𝜓 = 0, (93)

where the potential 𝑈0 is
𝑈0 (𝑎, 𝜙) = ( 3𝜋2𝐺)2 𝑎2 [1 − 𝐻2𝑎2] . (94)

After the WD equation is obtained, we can calculate the
tunneling amplitude, which is proportional to 𝜓(𝐻−1)/𝜓(0).
WKB approximation can be used to derive the amplitude:

𝜓 (𝐻−1)𝜓 (0) = exp[−∫�퐻−1
0

√𝑈0 (𝑎)𝑑𝑎]
= exp [− 316𝐺2𝑉 (0)] .

(95)

Because of 𝜙�耠2, the potential 𝑈(𝑎) is a little bit different from
before. In Figure 9, we can see clearly that there is a clear
sharp step at 𝑎 = 𝐻−1, which means the tunneling ampli-
tude should be greater than the conventional result exp(−3/[16𝐺2𝑉(0)]). This reflects the influence caused by the inho-
mogeneous vacuum. Meanwhile, the sharp step caused by𝜙�耠2 and 𝜙 is also a spatial function. Therefore, the size of the
sharp step at 𝐻−1 is also related to spatial variable 𝑟. This
means that the tunneling probabilities vary at different spatial
locations. Therefore, in our model, each spatial point of the
Universe is not expected to tunnel through the barrier at the
same time due to the different tunneling probability.TheWD
equation can be solved exactly with the choice of 𝑝 = −1. The
choice of the factor-ordering factor 𝑝 dose not influence the
probabilities. Now introducing a new variable,

𝑧 = − (1 − 𝑎2𝐻2) . (96)
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Thus, the potential 𝑈0 becomes

𝑈0 = ( 3𝜋2𝐺)2 𝑎2𝑧. (97)

Setting 𝑝 = −1, we have
[ 𝜕2𝜕𝑧2 + ( 3𝜋2𝐺)2 𝑧4𝐻2]𝜓 = 0. (98)

After introducing the new variable, we can rewrite the WD
equation in 𝑎 < 𝐻−1. Similarly, we can also introduce another
variable for the WD equation in the region 𝑎 > 𝐻−1 [12]:

𝑧�耠 = −(1 − 8𝜋𝐺3 𝜙�耠2 − 𝑎2𝐻2) . (99)

At the very early times, 𝜙 ≈ 0. Therefore, here, 8𝜋𝑉(𝜙)/3 ≈𝐻2 and 𝜙�耠2 are irrelevant to 𝑎. The equation can be rewritten
once again as

[ 𝜕2𝜕𝑧�耠2 + ( 3𝜋2𝐺)2 𝑧�耠4𝐻2]𝜓 = 0. (100)

The solution to these equations are Airy functions:

𝜓 = {{{
𝐶1Ai (− 3√𝐴𝑧) + 𝐶2Bi (− 3√𝐴𝑧) , 𝑎 < 𝐻−1
𝐶�耠1Ai (− 3√𝐴𝑧�耠) + 𝐶�耠1Bi (− 3√𝐴𝑧�耠) , 𝑎 > 𝐻−1, (101)

where 𝐴 = (3𝜋/4𝐻𝐺)2. Next, we should find the coefficients
in the solution. The continuities of 𝜓 and 𝜕𝜓/𝜕𝑎 should be
considered. Meanwhile, based on the tunneling theory, only
an outgoing wave should be considered outside the barrier,
which means 𝑖𝜓−1𝜕𝜓/𝜕𝑎 > 0 for 𝑎 > 𝐻−1. For large 𝑧, we
reach the asymptotic formulas for Ai and Bi:

Ai (−𝑧) ∼ sin ((2/3) 𝑧3/2 + 𝜋/4)√𝜋𝑧1/4 ,
Bi (−𝑧) ∼ cos ((2/3) 𝑧3/2 + 𝜋/4)√𝜋𝑧1/4 .

(102)

Due to the asymptotic formulas and Euler’s formula, it is easy
to find out that the proper form of 𝜓 for 𝑎 > 𝐻−1 is

𝜓 = 𝐶 (Ai (−𝑧�耠) + 𝑖Bi (−𝑧�耠)) . (103)

Then we can obtain the coefficients 𝐶1 and 𝐶2 related to 𝐶
by two continuity equations. Now, we are able to calculate the
tunneling amplitude:

𝜓 (𝐻−1)𝜓 (0) = 2 ⋅ 33/2𝑋(34/3Γ (2/3)𝑋 − 3Γ (1/3) 𝑌)Ai ( 3√𝐴) + (35/6Γ (2/3)𝑋 + 31/2Γ (1/3) 𝑌)Bi ( 3√𝐴), (104)

where𝑋 and 𝑌 inside (104) are

𝑋 = Ai(−8𝜋𝐺 3√𝐴𝜙�耠23 ) + 𝑖Bi(−8𝜋𝐺 3√𝐴𝜙�耠23 ) ,
𝑌 = Ai�耠 (−8𝜋𝐺 3√𝐴𝜙�耠23 ) + 𝑖Bi�耠 (−8𝜋𝐺 3√𝐴𝜙�耠23 ) .

(105)

Compared to the conventional solution (95), the result in
(104) is muchmore complicated, and we can see that not only𝐻 but also 𝜙�耠 plays an important role in tunneling process,
whichmeans the quantumvacuumfluctuation also affects the
creation of the Universe.

8. Conclusion

In this paper, we analyzed the inhomogeneous vacuum in the
Universe and come upwith a newmethod for introducing the
inhomogeneity by modifying Green’s function. Meanwhile,
substituting the modified Green’s function in Friedmann
equation, we obtained a new inflationary scenario which can
explain why the Universe is still expanding and where the
vacuum energy comes from which leads to the accelerated
expansion. At last, we also applied our inhomogeneous
model to find the tunneling amplitude of the Universe from

nothing. We found that the spatial fluctuations caused by
the inhomogeneous vacuum lead to faster tunneling while
the tunneling amplitude is dependent on the spatial loca-
tions.

There are still some issues that we have not addressed
with our model in this paper. First, in our model, we take the
simplest potential for the scalar field. However, our method
which describes the inhomogeneity by modifying Green’s
function is general. Therefore, an improvement on our
model is to consider more complicated cases, such as grand
unified theory. Second, no higher order correlations, such
as one-loop correlations, are considered here in our model.
Thus, the loop correction should be involved in our model
and then more accurate effective potential can be obtained.
Third, it would be interesting to consider the cosmological
consequences of the new inflation scenario suggested here,
especially the density fluctuations, as the seed of the large
scale structure formation and the related fluctuation power
spectrum. These are closely associated with the current
observations of the microwave background radiation and
large scale density map.
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The Standard Model problems lead to the new theories of extra dimensions: Randall-Sundrum model, Arkani-Hamed-
Dimopoulos-Dvali model, and TeV−1 model. In the framework of these models, with the help of computer program Pythia8.2,
the production cross sections for Kaluza-Klein particles at various energies at the LHC were calculated. The generation of monojet
events from scalar graviton emission was considered for number of extra dimensions (𝑛 = 2, 4, and 6) for the energy at the LHC
14TeV.The graviton production processes through the gluon-gluon, quark-gluon, and quark-quark fusion processes are also studied
and some periodicity was found in the behavior of the graviton mass spectrum. Production cross sections multiplied by branching
fractionswere calculated for themassive graviton,G, withinRandall-Sundrum scenario and themost probable processes of graviton
decay at 13 TeV, 14 TeV, and 100 TeV were counted.

1. Introduction

The problems with theoretical explanation of vacuum energy
aswell as dark energy, darkmatter, and cosmological constant
problems are only the tip of the iceberg of problems in the
modern theoretical physics. Some of them are

(i) ordinary matter accounting for about 5% of mass
energy in the Universe and no dark matter candidate
in the Standard Model (SM),

(ii) hierarchy problem,
(iii) fine tuning of SM Higgs mass,
(iv) no explanation for fermion masses and mixings and

three family structures,
(v) unification of strong, electroweak, and gravitational

forces,
(vi) compositeness of leptons and quarks,

It is an experimental fact that there is something we cannot
explain within the SM.

As is known, vacuum is produced in the processes of
phase transitions in Early Universe and the space-time struc-
ture of the physical vacuum exhibits the connection to the
structure formation in ourUniverse. So, the understanding of

Universe formation is deeply connected with the conception
of the space-time. According to hierarchy formula [1], Plank
energy can be reduced to the energy of about 10 TeV that
is achieved at the LHC. So, the phenomena of the Universe
formation at the early stages and the accompanying processes
of particle physics could be studied at modern colliders.
In spite of the fact that no new physics beyond the SM is
discovered at the LHC at 13 TeV, the planned upgrading of
the LHC to high luminosities and energies up to 100 TeV
gives the possibility for the discovery of new physics. Among
such searches for new physics, the most popular are the
experimental searches for the Kaluza-Klein (KK) particles.

Historically, KK theory appeared as the unification of
gravitational and electromagnetic interactions due to the
proposition of a fifth dimension in addition to the usual
four-dimensional space-time [2–4], which leads to the con-
sideration of the concept of deformation of Riemannian
geometry defined by extrinsic curvature of the space-time.
The conclusions of this result are based, in particular, on the
five-dimensional space from the paper [5]. Arkani-Hamed et
al. proposed the solution to the hierarchy problem on the
basis of the existence of new compact spatial dimensions.
KK excitations in this extra dimensional space through the
combined effect of all the gravitons became observable.

Hindawi
Advances in High Energy Physics
Volume 2018, Article ID 3471023, 9 pages
https://doi.org/10.1155/2018/3471023

http://orcid.org/0000-0003-1103-4006
https://doi.org/10.1155/2018/3471023


2 Advances in High Energy Physics

Gravity brane

Weak brane

Gravity productionfunction

Figure 1: RS theory presented by the gravity and weak branes as the 4-dimensional boundaries of the extra dimension (from [12]).

Today, the idea of additional space as the instrumentation
of the unification of all four interactions is of interest not only
in theoretical physics [6–8] but also in experimental searches
at the LHC for exoticmatter that deviates fromnormalmatter
[9].

Our paper is devoted to the searches for KK parti-
cles in three models of extra dimensions: Arkani-Hamed-
Dimopoulos-Dvali (ADD) model, [6], Randall-Sundrum
(RS) model [7, 8], and TeV−1 model [10]. Using computer
program Pythia8.2 [11], within these three extra dimensional
models, we have calculated

(i) the production cross section of KK modes of massive
gravitons and gauge bosons at energies from 14 TeV to
planned 100 TeV,

(ii) the graviton mass spectrum for three graviton, G,
emission processes: (a) gg → 𝐺𝑔, (b) qg → 𝐺𝑞, and
(c) 𝑞𝑞 → 𝐺𝑔 at 14 TeV at the LHC,

(iii) the graviton mass spectrum at 14 TeV at the LHC for
numbers of extra dimensions (𝑛 = 2, 4, and 6) (for
simplicity and brevity). Since the maximum of 𝑛 is
equal to 6 for ADDmodel, it was of interest to look at
the behavior of gravitonmass spectrumat the extreme
values of 𝑛, from 𝑛 = 2 to 𝑛 = 6,

(iv) the production cross section of graviton, 𝑔𝑔 → 𝐺,
multiplied by branching ratios, Br(𝐺 → 𝑔𝑔) (gluon-
gluon (gg) pair), Br(𝐺 → 𝑙𝑙) (leptons, 𝑙 are of any
type, 𝑒, 𝜇, 𝜏), and Br(𝐺 → ℎℎ) (ℎ, Higgs boson) of the
most probable processes of decay within RS model at
13 TeV, 14 TeV, and 100 TeV.

2. Models of Extra Dimensions

In this section, we will observe three models of extra dimen-
sions, ADD, RS, and TeV−1, which are the base for our further

calculations of KK particle properties. In the framework of
M-theory [13], the metric of ADD model is as follows:

𝐺𝑀𝑁 (𝑥, 𝑦) = 𝜂𝑀𝑁 + 2
𝑀1+𝑛/2 ℎ𝑀𝑁 (𝑥, 𝑦) , (1)

where 𝐺𝑀𝑁(𝑥, 𝑦) is the metric of (4 + 𝑛)-dimensional space-
time with compact extra dimensions, where the gravitational
field propagates and the SM localized on a 3-brane embedded
into the (4 + 𝑛)-dimensional space-time, 𝜂𝑀𝑁 is (4 + 𝑛)-
dimensional Minkowski background and ℎ𝑀𝑁(𝑥, 𝑦) is the
deviation of Minkowski metrics,𝑀 is the fundamental mass
scale, and 𝑛 is the number of extra dimensions. Masses of KK
modes for ADD model are given by

𝑚𝑛 = 1
𝑅√𝑛21 + 𝑛22 + ⋅ ⋅ ⋅ + 𝑛2𝑑 =

|𝑛|
𝑅 . (2)

Five-dimensional metric of RS model with one extra dimen-
sion compactified to the orbifold, S1/Z2, is with nonfactoriz-
able geometry:

𝑑𝑠2 = 𝑒−2𝜎(𝑦)𝜂𝜇]𝑑𝑥𝜇𝑑𝑥] + 𝑑𝑦2. (3)

Two 3-branes are located at points 𝑦 = 0 and 𝑦 = 𝜋𝑅 of the
orbifold with radius, 𝑅, of S1. 𝑥𝜇, 𝜇 = 0, 1, 2, 3, and 𝜂𝜇] are
four-dimensional coordinates and Minkowski metrics; the
function 𝜎(𝑦) inside the interval −𝜋𝑅 < 𝑦 < 𝜋𝑅 is equal
to 𝜎(𝑦) = 𝑘|𝑦|. (𝑘 > 0, dimensional parameter). In Figure 1
a nonfactorizable geometry with one spatial extra dimension
is presented as a line segment between two four-dimensional
branes, known as Planck and TeV brane.

Masses of KK particles for RS model are given by

𝑚𝑛 = 𝛽𝑛𝑘𝑒−𝜋𝑘𝑅, (4)

where 𝛽𝑛 = 3.83, 7.02, 10.17, 13.32, . . . for 𝑛 = 1, 2, 3, 4, . . . .
Themetric of TeV−1model for ten-dimensional string theory
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Figure 2: Processes for the graviton resonance production through (a) quark-quark and (b) gluon-gluon fusion.

is determined by the conditions on Calabi-Yau manifold:
Ricci-flatness of metric, vanishing first Chern class, and
SU(𝑛) holonomy. Low-energy effective action has much
smaller scale than Planck mass related to an internal com-
pactification radius. In these scenarios, the SM fields as well
as ZKK and WKK resonances are allowed to propagate in the
bulk, but gravity is not included in the model. Masses of KK
modes for TeV−1 model are given by

𝑚𝑛 = (𝑚20 + 𝑛 ⋅ 𝑛
𝑅2𝑐 )
1/2

, (5)

where 𝑛⋅𝑛 is scalar production of 𝑛 = (𝑛1, 𝑛2, . . .)which labels
KK excitation levels, and𝑚0 is the mass of gauge zero-mode,
which corresponds to SM gauge field.

The advantage of the presented models of extra dimen-
sions lies in the possibility of the observation of the physics
of Planck scales, 𝑀Pl, at the energies achievable at modern
colliders, 𝑀, due to the presence of extra dimensions, 𝑛.
This result is possible due to the hierarchy formulas for the
presented models:

ADD model:𝑀2Pl ∼ 𝑅𝑛𝑀2+𝑛
RS model:𝑀2Pl = (𝑀3/𝑘)(𝑒2𝑘𝜋𝑅 − 1)
TeV−1 model: hierarchy formula is determined by the
low-energy effective action

3. Results of Computer Modeling for
Properties of KK Particles

RS resonances, connected with production of KK graviton,
G, are described in [14]. Experimental searches for massive
Graviton production are carried out at the LHC by ATLAS
andCMSCollaborations and the latest data on the lower limit
on graviton mass are presented in [15]. The production of
narrow graviton resonances in the TeV range at the LHC as
well as the decays into fermion and boson pairs was studied in
this paper. For the discovering of graviton resonance, G, the
parton showering formalism was used, which agrees with the
NLOmatrix element calculations.The partonic subprocesses
are demonstrated in Figure 2.

The ADD graviton emission and virtual graviton
exchange processes are described in [16]. Within model
with large extra dimensions (LED), the processes that could
give rise to new phenomena at LHC due to emission or
exchange of gravitons were considered. The implementation

of these processes in the Monte Carlo generator Pythia8.2
was presented in this paper. The considered processes are
connected with monojet, diphoton, and dilepton final states.
It is also possible to generate monojet events from scalar
graviton emission as described in [17].

TeV−1 sized extra dimensional KK production processes
involve the production of electroweak KK gauge bosons, ZKK
andWKK, in one TeV−1 sized extra dimension.The processes
are described in [18, 19] and allow the specification of final
states. In this article, the observation of a certain KK hard
process in pp interactions at the LHC was presented within
the S1/Z2, TeV

−1 extra dimensional theoretical framework.
The analytic form for the hard process cross section has been
calculated and has been implemented within the Pythia8.2
Monte Carlo generator.

3.1. The Production Cross Section of KK Particles at Different
Energies. With the help of computer program Pythia8.2 for
three models of extra dimensions, we have calculated the
production cross sections of KK particles at energies varying
from 14 to 100 TeV. According to the latest experimental
data presented in [15], we reconstructed jets with the anti-
k𝑡 clustering algorithm, transverse momenta, 𝑝jet

𝑇 ≻ 20 GeV,
and rapidity |𝜂| ≺ 2.4 of jets to drop data connected with
missing transverse momentum. Events were produced with
Monte Carlo event sample using the NNPDF23LO parton
distribution function (PDF) for the proton beam and scales of
renormalizations and factorizations.The results are presented
in Figure 3.

From Figure 3(a), we can see the significant predom-
inance of production for dijet final states above monojet
final states within LED model. Figure 3(b) shows that RS KK
particles are produced at much higher values than ZKK and
WKK bosons in TeV−1 extra dimensional model.

Within TeV−1 model with parameters 𝑛 = 10 and𝑚∗ = 2–10 TeV, we calculated the production cross sections
at 20 TeV, 60 TeV, and 100 TeV at the center of mass energies
as a function of KKmass, MZKK

, presented in Figure 4. As the
decay of ZKK to muon pair is the dominant one, we decided
to calculate, namely, this process of KK particle decay.

From Figure 4, we can see the sharp drop in the curve
for 20 TeV compared with other curves at 60 TeV and
100 TeV at the center of mass energies.This result emphasizes
the most important result for the further searches of new
physics at high energies. As the last two curves (60 TeV and
100 TeV) are almost parallel, it is preferable to search for new
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Figure 5: Graviton mass spectrum within monojet LEDmodel for three graviton, G, emission processes: (a) gg → 𝐺𝑔, (b) qg → 𝐺𝑞, and (c)𝑞𝑞 → 𝐺𝑔 at the center of mass energies of 14 TeV.

phenomena at energies up to 30 TeV, when the production
cross sections of KK particles can be varied in the wide
range.

3.2. The Graviton Mass Spectrum at 14 TeV at the LHC. We
will apply large-extra-dimensional (ADD-type) models in
production processes for virtual extra dimensional scalars
of graviscalar type. With the help of Pythia8.2, it is possible
to generate monojet events from scalar graviton emission as
described in [17].

The group of lowest-orderG jet emission processeswithin
monojet model was considered with the following parame-
ters: ExtraDimensionsLED: 𝑛 = 6; ExtraDimensionsLED:𝑀
= 10000. Three graviton, G, mass spectra for G jet emission
processes, gg → 𝐺𝑔 (gluon-gluon fusion (gg) with emission
of graviton, G, and gluon, g), qg → 𝐺𝑞 (quark-gluon fusion
(qg) with emission of graviton, G, and quark, q), and 𝑞𝑞 →𝐺𝑔 (quark-antiquark fusion (𝑞𝑞) with emission of graviton,
G, and gluon, g) at the center of mass energies of 14 TeV at
the LHC, are presented in Figure 5.

From Figure 5, the peak of the graviton mass spectrum
distribution is viewed depending on the process of monojet
emission. Although this dependence is insignificant, never-
theless, for the process 𝑞𝑞 → 𝐺𝑔 of monojet graviton, G,
emission, it is shifted by almost 1 TeV.

As LED model depends on the number of extra dimen-
sions, 𝑛, it was important to study the gravitonmass spectrum
distributions for 𝑛 = 2, 4, and 6. The results of our
calculations of G jet emission process, gg → 𝐺𝑔, at the center
of mass energies of 14 TeV is presented in Figure 6.

From Figure 6, substantial dependence of G jet emission
process in the LEDmodel on the number of extra dimensions
is seen.Moreover, we can see clear periodicity of dependence,
when peaks are shifted by 1 TeV with an increase of the
number of extra dimensions by 2. According to the hierarchy
formula of ADD model, this shifting is connected with the
change in the radius of compactification, 𝑅. As 𝑛 increases, 𝑅
must decrease. Therefore, the mass shift to the right of 1 TeV
indicates the decreasing of compactification radius.

3.3. The Production Cross Section of Graviton Emission Mul-
tiplied by Branching Ratio in RS Model. As is known, the
discovery of a Higgs boson, ℎ, at the LHC motivates the
searches for physics beyond SM in channels involving Higgs
boson. Higgs pair production is predicted by RS model with
KK graviton, GKK, emission that may decay to a pair of
Higgs bosons. Such experimental searcheswere performedby
ATLAS Collaboration, [20] at 13 TeV, presented in Figure 7.

From [12], branching fractions of graviton decay to SM
particles are taken, presented in Figure 8. The predictions
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Figure 6: Graviton mass spectrum within monojet LED model for G jet emission process gg → 𝐺𝑔 for (a) 𝑛 = 2, (b) 𝑛 = 4, and (c) 𝑛 = 6 at
the center of mass energies of 14 TeV.
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Figure 8: Branching fractions of graviton, G (from [12]).

for decay were updated using state-of-the-art computation
tools with the highest branching fraction to dijet final
states.

We will consider three processes of graviton decay, G →𝑔𝑔, G → 𝑙𝑙, and G → ℎℎ, for further 𝜎 × 𝐵𝑟 calculations
within RS scenario for graviton production process gg →𝐺 at 13 TeV, 14 TeV, and 100 TeV at the center of mass
energies. In Figure 9, our calculations performed with the
help of Pythia8.2 are presented, with parameters 𝑘/𝑀 = 1 and
0.1.

From Figure 9, we see the dependence of the 𝜎 × 𝐵𝑟
calculations on the parameter 𝑘/𝑀 and on the energy at
the center of mass. Comparison of Figure 9(a) and 9(b)
shows that the resonance peak shifts from 5TeV to 7 TeV
with increasing of energy at the collider. This mass shift of
2 TeV for case (b) indicates decreasing of the compactification
radius of RS model according to hierarchy formula. In
the case of Figure 9(c), we can see that there is no peak
at 100 TeV and that the cross section for the formation
of the resonance as a function of energy is observed to
decrease.

4. Conclusion

The modern high energy physics is connected with exper-
imental searches of new physics beyond the SM. These
searches are connected not only with new possibilities of
modern accelerating technics but also with problems of
SM physics. The SM problems are not only of theoretical

character but also of experimental one, which is confirmed
by modern experiments on the Higgs boson. Our work is
dedicated to the studying of the properties of the new par-
ticles predicted by the theories of extra dimensions. Within
three models, ADD, RS, and TeV−1, we have calculated
the production cross sections of massive graviton formation
as well as the production of KK modes of gauge bosons
depending on the energies of themodern and future colliders.
Within LED model, the behavior of graviton mass spectrum
for G jet emission processes for different numbers of extra
dimension (𝑛 = 2, 4, and 6) was studied and clear periodicity
of peaks shifted by 1 TeV was seen with an increase in
the number of extra dimensions by 2. The graviton mass
spectrum for three graviton, G, emission processes was also
investigated: (a) gg → 𝐺𝑔, (b) qg → 𝐺𝑞, and (c) 𝑞𝑞 →𝐺𝑔 at 14 TeV at the LHC. The experimental searches for
KK graviton emission and decay to a pair of Higgs bosons,
performed by ATLAS Collaboration at 13 TeV, stimulated us
to perform calculations at different parameters and energies
within RS model. Our calculations of 𝜎 × 𝐵𝑟 shows that the
resonance peak shifts from 5TeV to 7 TeV with increasing of
energy at the colliders from 13 TeV to 14 TeV as well as the
absence of peak at energy of 100 TeV at the center of mass
energies.
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We suggest using Einstein’s static universe metric for the metastable state after reheating, instead of the Friedman-Robertson-
Walker spacetime. In this case, strong static gravitational potential leads to the effective reduction of the Higgs vacuum expectation
value, which is found to be compatible with the Standard Model first-order electroweak phase transition conditions. Gravity could
also increase the CP-violating effects for particles that cross the new phase bubble walls and thus is able to lead to the successful
electroweak baryogenesis scenario.

According to standard cosmology at the electroweak scale,
our universe is in radiation dominated phase where all Stan-
dard Model particles are massless [1]. Once the temperature
drops below the critical value, 𝑇 ∼ 170GeV, the electroweak
phase transition has occurred and the Higgs boson, gauge
bosons, and fermions (except neutrinos) acquire masses
through the Higgs mechanism. The order of this phase
transition depends on the details of the Higgs potential with
the temperature dependent terms [2–5]. To have a first-order
phase transition effective Higgs potential of themodel should
have several minima. Of special importance is the cubic term
in effective potential, which is essential to generate a potential
barrier between the symmetric and broken phases and thus
can provide the phase transition to be of the first order. In
the Standard Model the cubic term, 𝐸𝑇3, is contributed only
by the electroweak gauge bosons. If at zero temperature the
Higgs field at the minimum of the potential has the value

V ≈ 246GeV, (1)

the parameter 𝐸 is the cubic term of the effective potential of
order of

𝐸 ≈ 2𝑀3𝑊 +𝑀3𝑍4𝜋V3 ≈ 0.01, (2)

where 𝑀𝑊 and 𝑀𝑍 are the gauge bosons masses. Then the
condition that the Higgs effective potential has two minima

leads to the very small value for theHiggs self-coupling param-
eter,

𝜆 ≈ 2𝐸 ≈ 0.02, (3)

which according to (1) is incompatible with the observed
Higgs boson mass,

𝑚𝐻 = √2𝜆V ≃ 125GeV. (4)

Thismeans that within theminimal StandardModel the elec-
troweak phase transition is a smooth crossover, or of the
second order [4, 5].

On the other hand, the first-order electroweak phase tran-
sitions may solve some cosmological problems, like the gen-
eration of the baryon asymmetry of the universe (see recent
reviews [6, 7]). A first-order cosmological phase transition
proceeds through the formation and expansion of cosmic
bubbles. In this scenario spacetime is separated into two
manifolds with their own distinctmetrics, which are typically
joined across a thin wall (domain wall).The dynamics of such
objects can be very complicated, depending on the matter
content of the interior (true vacuum) and exterior (false
vacuum) regions aswell as the tension on the bubblewalls and
how they interact with the surrounding plasma [8]. In bubble
models matter-antimatter asymmetry can be generated at
the electroweak scale, because all three Sakharov conditions
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(baryonnumber violation,𝐶 andCP-violation, and departure
from the thermal equilibrium) are fulfilled. Baryon produc-
tion is a bubble surface effect but can be used to explain
the observed matter-antimatter asymmetry, since the entire
universe is swept out during the first-order phase transition
and we may live in one bubble today [9, 10]. However, in tra-
ditional approach not only is the electroweak phase transition
not of first order, but the CP-violation from the Cabibbo-
Kobayashi-Maskawa matrix is too small, and to obtain the
observed baryon asymmetry various extensions of the Stan-
dard Model have been proposed [4–7].

We want to emphasize that the conventional scenario of
electroweak baryogenesis does not take into account grav-
itational effects. It is assumed that at the electroweak scale
the universe was radiation dominated (filled with relativis-
tic particles in thermal equilibrium) and the Friedmann-
Robertson-Walker scale factor was unimportant for the par-
ticle reactions [1]. However, details of the anticipated periods
(inflation and reheating) and conditions at the moment of
transition to the radiation dominated phase, with the normal
expansion of spacetime, are still poorly understood. For
instance, if one assumes the existence of black holes in the
early universe, the gravitational effects in their static fields are
able tomodify parameters of the effectiveHiggs potential and
lead to the first-order phase transitions [11–14].

It is known that the Cosmological Principle for the
uniformmatter distribution not only leads to the Friedmann-
Robertson-Walker nonstatic solution, but gives the Einstein’s
static universe as well [15]. Einstein’s static universe refers
to the homogenous and isotropic universe with the positive
cosmological constant and positive spatial curvature. In the
framework of General Relativity this model has been widely
investigated for several kinds of matter sources (see [16, 17]
and references therein). The metric of Einstein’s universe can
be written in the form:

𝑑𝑠2 = 𝑑𝑡2 − 𝑑𝑟21 − Φ (𝑟) − 𝑟2 (𝑑𝜃2 + sin2𝜃𝑑𝜙2) , (5)

where

Φ (𝑟) = 8𝜋3 𝐺𝜌𝑟2 (6)

denotes the gravitational potential and 𝜌 is the uniform
cosmic fluid density. In (5), it has been set 𝑔𝑡𝑡 = 1, since in
cosmological case there must be a universal proper time for
all fundamental observers. Introducing the radial coordinate
transformation,

𝑟 = 𝑅1 + 2𝜋𝐺𝜌𝑅2/3 , (7)

the metric (5) can be written also in terms of Cartesian coor-
dinates [18, 19]:

𝑑𝑠2 = 𝑑𝑡2 − 1
(1 + 2𝜋𝐺𝜌𝑅2/3)2 (𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2) . (8)

It was found that Einstein’s static universe (5) is critically
unstable to gravitational collapse or expansion and inmodern

cosmological models usually is considered only as the initial
state for the inflationary phase [20].

In our opinion, the short metastable period with ̈𝑎 = ̇𝑎 =0, in course of transition of the inflation ( ̈𝑎 > 0) into the decel-
eration stage ( ̈𝑎 < 0), that is, during or after the reheating
epoch, when our universe was a spherule with the homoge-
nous cosmic fluid of all kinds of ultrarelativistic particles, is
natural to be described by Einstein’s static solution (5), with
the later transition to the nonstationary radiation dominated
phase with the Friedmann-Robertson-Walker metric. This
can be achieved by introducing a dark energy like substance,
presence of which at early times is a quite generic feature of
several dynamical dark energy models [21, 22], for example,𝑓(𝑅) modification of gravity [23, 24], or the decaying scalar
field (quintessence) [25], rather than a large fixed value classi-
cal cosmological constant. One can also assume that the high-
er-energy degrees of freedom of the quantum vacuum during
reheating do not cancel the contribution of the zero-point
motion of the quantum fields and the nullification of vacuum
energy in the equilibrium vacuum is not acquired at this
stage.

Introduction of Einstein’s static metric (5) for our spher-
ule-universe can radically change the common view that for
the observed large Higgs mass the cosmological electroweak
phase transition is of the second order [4, 5]. In a static island
of space we can expect appearance of large gravitational
potential in the Standard Model Lagrangian, similar to the
case with a static black hole background [11–14]. Indeed,
introducing the density function,Ω = 𝜌/𝜌𝑐, where

𝜌𝑐 = 38𝜋𝐺𝑑2 , (9)

is the critical density parameter and 𝑑 is the horizon distance
at the electroweak scale, and the gravitational potential (6)
can be written in the form:

Φ (𝑟) = Ω 𝑟2𝑑2 . (10)

A preferred location in the universe is absent and for uniform
matter distributionwe expect the existence of a constant aver-
age gravitational potential, ⟨Φ(𝑟)⟩, and the radial dependence
will disappear. The total matter density of our universe at all
stages of its evolution is assumed to be close to unity [26],

Ω ≲ 1.005. (11)

Then the average gravitational potential (10) in the Einstein
static universe (5) is estimated to reach the value:

⟨Φ (𝑟)⟩ = 1𝑉 ∫𝑑𝑉Φ (𝑟) = 3Ω𝑑5 ∫
𝑑

0
𝑑𝑟𝑟4 ≈ 0.6. (12)

Thus the factor which would multiply spatial components of
the metric in matter Lagrangian will be of the order of

𝑆2 = 11 − ⟨Φ (𝑟)⟩ ≈ 2.5. (13)

Unlike the case of Friedmann-Robertson-Walker scale factor,
one cannot hide the function 𝑆 in the definitions of the spatial
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coordinates, which are already set by the assumption to have
the asymptotical Minkowski (or de Sitter) metric.

In the case of static, isotropic metrics (5), one can apply
the well-established effective potential technique to particle
models. The optical-mechanical analogy leads to a remark-
able simplification of the equations of motion of particles and
general-relativistic problems become formally identical to the
classical ones with the effective index of refraction [27, 28],

𝑛 (𝑟) = √𝑔𝑟𝑟𝑔𝑡𝑡 =
1𝑆 ≈ 0.6. (14)

In addition to the gravitational refraction index (14), in the
Standard Model Lagrangian one can take into account the
constant gravitational factor (13) by introduction of the new
time parameter, 𝑡 → 𝑆𝑡, and conducting the conformal
transformation of the Minkowski metric,

𝜂𝜇] → 1𝑆2 𝜂𝜇],
√−𝜂 → 1𝑆4√−𝜂.

(15)

It is known that it is possible to bring the conformally equiv-
alent matter Lagrangian to the Minkowskian form by the re-
scaling,

𝐴] → 𝐴],
𝜙 → 𝑆𝜙,
𝜓 → 𝑆3/2𝜓,

(16)

of the gauge, scalar, and spinor fields, respectively [29, 30].
In general, the gravitational field affects strongly the

symmetry behaviors of all quantum-field models, including
scalar field Lagrangian [29, 30]. Currently, we do not have
a standard theory of massive scalar bosons in curved space-
time, and several models exist with theminimal or conformal
couplings with curvature. Nonminimal couplings usually are
supposed in inflation models [31]. Investigations of the min-
imal case are important as well, since massive vector mesons
and gravitons satisfy equations of this type [29], and also for
nonminimal couplings in general it is impossible to conserve
conformal invariance not only of the effective action (the
conformal anomaly) but of the action itself [30].

To explore properties of cosmological phase transitions in
the presence of static external gravitational field, one should
evaluate the expectation value of the Higgs field over the
lowest energy state. To find an energy spectrum it is impor-
tant construction of the Hamiltonian of the system, which
in general is difficult problem in the presence of gravitational
field. However, in stationary conformal metric there exist
some eligiblemodels, even formassive scalar fields [32]. It was
found that, inmost situations, in regionswhere the conformal
factor is almost constant, the conformal transformations
finally amount to rescaling of a scalar boson mass in this
region [29, 30, 32]. Our situation with the static gravitational
field in some finite region of bulk spacetime differs with the
cases where the parameters of cosmological phase transitions

were investigated in the infinite universe at the one-loop level
[33, 34].

Since a solution of the Higgs equation in the metric 𝜂𝜇]
is the solution of the similar equation with an effective mass
(for simplicity, we consider minimal coupling of the Higgs
field to gravity) in the conformal metric, then under the
transformation (15) the Standard Model Lagrangian obtains
the ordinary form, but with the modified Higgs mass,

𝑚𝐻 → 1𝑆𝑚𝐻 ≈ 0.6𝑚𝐻. (17)

This means that in the early universe at the electroweak scale
(in the symmetric phase) the effective vacuum expectation
value (1) probably was smaller than in the present broken
phase,

V → 0.6V ≈ 156GeV. (18)

Under the conformal rescaling (15), other parameters of
the Standard Model are unchanged (including gauge boson
masses), and in the perturbative analysis on the static back-
ground themodification of the vacuumexpectation value (18)
leads to the alteration of the parameter (2),

𝐸 → 𝐸0.2 ≈ 0.05. (19)

Then from the condition to have the first-order electroweak
phase transition in the early universe (3), we obtain the
acceptable value for the Higgs self-coupling constant,

𝜆 ≃ 0.1. (20)

This means that for the minimal Standard Model in the Ein-
stein static universe background (5), the electroweak phase
transitions can be of the first order. After the expansion of new
phase bubbles and the passage to the Friedman-Robertson-
Walker expansion of spacetime in the broken phase, the
gravitational potential in the universe (6) will tend to zero
and all parameters of the Standard Model will get the present
values.

Note that, together with the allowance of electroweak
phase transition to be of the first order, gravitational effects
are able to solve another problem of the Standard Model
baryogenesis—the smallness of CP-violating parameters.

It is known that, in general, gravitation can induce CP-
violation processes [35–44]. Since antimatter can be inter-
preted as an ordinary matter propagating backward in time,
for nonstationary spacetime (like an expanding new phase
bubble) the time and thus CP-violation could be accrued in
a CPT preserving framework [45]. To explore gravitational
CP-violations for static backgrounds as well, one can use the
fact that some quantum mechanical effects depend upon the
gravitational potential themselves, not only to its gradient.
Equations of quantum particles with a gravitational interac-
tion terms contain inertial and gravitational mass separately.
If within a model inertial and gravitational masses are not
equal then in fermions wavefunctions there can appear the
mass dependent gravitationally induced CP-violating phases
[46, 47].
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It is known that topological defects could violate theWeek
Equivalence Principle and exhibit nontrivial gravitational
features [48]. Since it is impossible to surround any topo-
logical object by a spatial boundary, one cannot define their
gravitational mass, 𝑀, by the integral from the zero-zero
component of energy-momentum tensor, 𝑇00, but needs to
use the Tolman formula,

𝑀 = ∫√−𝑔𝑑𝑉 (𝑇00 − 𝑇11 − 𝑇22 − 𝑇33 ) . (21)

From this formula it follows that, in spite of having large ten-
sions, cosmic strings do not produce any gravitational force
on the surrounding matter locally, while global monopoles,
global strings, and planar domain walls exhibited repulsive
nature [48].

In the bubble scenario spacetime is separated into two
manifolds by a specific topological object—a spherical
domain wall [8]. Spherical domain walls with the outer
Schwarzschild metric can be gravitationally repulsive as well
(with the negative mass parameter), when the time coordi-
nate changes its direction on the bubble surface [49], or if one
assumes that the asymptotic metric is non-Minkowskian
[50]. Having written the interior/exterior metrics in a
static form (Einstein’s static universe (5) inside and the
Schwarzschild outside), we must allow for the time coordi-
nate to be different in each region, and it need not match
across the bubble. On the other hand, the radial coordinate
measures the proper size of the spheres of a spherically
symmetric spacetime and therefore has to vary continuously
across the bubble. Note that the reversion of time direction
is equivalent to the introduction of a new family of negative
tension bubbles [51, 52].

Due to the violation of the Weak Equivalence Principle,
particles penetrating a topological object undergo strong
jump in the gravitational potential, [Φ], and pick up the addi-
tion phases in their wavefunctions [53]. The gravitationally
induced phases 𝜙𝑖𝑗 can be approximated by [54, 55],

𝜙𝑖𝑗 ∼ [Φ]Δ𝑚2𝑖𝑗, (22)

whereΔ𝑚𝑖𝑗 are themass differences between different flavors.
So the large jump of the gravitational potential at the new
phase bubble walls, [Φ], could significantly increase CP-
violating effects within the electroweak baryogenesis sce-
nario.

In summary, it is taken for granted that the minimal
StandardModel is unable to explain the baryon asymmetry of
the universe, since electroweak phase transition in the early
universe appeared to be of second order (without nonequi-
librium processes) and the CP-violation parameter from the
Cabibbo-Kobayashi-Maskawa matrix is too small. However,
if for the description of themetastable state at the electroweak
scale we replace the Friedman-Robertson-Walker spacetime
with the Einstein static universemodel, the strong static grav-
itational potential leads to the effective reduction of theHiggs
vacuum expectation value, which is found to be compatible
with the first-order electroweak phase transition conditions.
We also argue that gravitational effects could increase the CP-
violating parameters for the particles crossing the new phase

bubble walls, which are appearing in electroweak baryogene-
sis scenarios.
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In Poincaré-Wigner-Dirac theory of relativistic interactions, boosts are dynamical. This means that, just like time translations,
boost transformations have a nontrivial effect on internal variables of interacting systems. In this respect, boosts are different from
space translations and rotations, whose actions are always universal, trivial, and interaction-independent. Applying this theory to
unstable particles viewed from a moving reference frame, we prove that the decay probability cannot be invariant with respect to
boosts. Different moving observers may see different internal compositions of the same unstable particle. Unfortunately, this effect
is too small to be noticeable in modern experiments.

1. Introduction

Time dilation is one of the most spectacular predictions
of special relativity. This theory predicts that any time-
dependent process slows down by the universal factor of1/√1 − V2/𝑐2 ≡ cosh 𝜃 when viewed from a reference frame
moving with the speed V (and rapidity 𝜃). The textbook
example of such a time-dependent process is the decay lawΥ(0, 𝑡) of an unstable particle at rest. The function Υ(0, 𝑡) is
the probability of finding the unstable particle at time 𝑡, if
it was prepared with 100% certainty at time 𝑡 = 0. Then,
according to special relativity, the decay law of a moving
particle should be exactly cosh 𝜃 times slower:

Υ𝑆𝑅 (𝜃, 𝑡) = Υ(0, 𝑡
cosh 𝜃) . (1)

Indeed, this prediction was confirmed in numerous mea-
surements [1–4]. The best accuracy of 0.1% was achieved in
experiments with relativistic muons [5, 6].

However, the exact validity of (1) is still a subject of
controversy.One point of view [7–9] is that special-relativistic
time dilationwas derived in the framework of classical theory
andmaynot be directly applicable to unstable particles, which
are fundamentally quantum systems without well-defined
masses, velocities, positions, and so on.

However, such a quantum clock as an unstable
particle cannot be at rest (i.e., cannot have zero
velocity or zero momentum) and simultaneously
be at a definite point (due to the quantum uncer-
tainty relation). So, the standard derivation of
the moving clock dilation is inapplicable for the
quantum clock. The related quantum-mechanical
derivation must contain some reservations and
corrections. Shirokov [10]

Indeed, detailed quantum-mechanical calculations [8,
10–12] suggest that (1) is not accurate, and that corrections
to this formula should be expected, especially at large times,
exceeding multiple lifetimes. Although these corrections are
too small to be observed in modern experiments, their
presence casts doubt on the limits of applicability of Einstein’s
special relativity.

Unfortunately, the corrections to (1) were derived in [8,
10–12] under certain assumptions and approximations. So,
the question remains whether one can design a relativistic
model in which the decay slowdown will acquire exactly the
form (1) demanded by special relativity [13, 14]?

In order to answer this question we will analyze the status
of interactions in special relativity from a more general point
of view. We are going to prove that under no circumstances
the decay law transforms with respect to boosts exactly as in
(1).
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Table 1: Inertial transformations.

Transformation Type Parameter Generator Meaning of generator
Space translation Kinematical Distance a P = P0 Total momentum
Rotation Kinematical Angle 𝜑 J = J0 Total angular momentum
Time translation Dynamical Time 𝑡 𝐻 = 𝐻0 + 𝑉 Total energy (Hamiltonian)
Boost Dynamical Rapidity 𝜃 K = K0 + Z Boost operator

2. Materials and Methods

2.1. Inertial Transformations. The theory of relativity tries to
connect views of different inertial observers. The principle of
relativity says that all such observers are equivalent; that is,
two inertial observers performing the same experiment will
obtain the same results.

There are four classes of inertial transformations, space
translations, time translations, rotations, and boosts, and
their actions on observed systems differ very much (see
Table 1). For example, it is easy to describe the results of
space translations and rotations. An observer displaced by
the 3-vector a sees all atoms in the Universe simply shifted
in the opposite direction −a. This shift is absolutely exact and
universal. It applies to all systems, however complicated. The
same can be said about rotations. One can switch to the point
of view of the rotated observer by simply rotating all atoms
in the Universe. For example, rotation through the angle 𝜑
about the 𝑧-axis results in the transformation of coordinates

𝑥 = 𝑥 cos𝜑 − 𝑦 sin𝜑
𝑦 = 𝑦 cos𝜑 + 𝑥 sin𝜑
𝑧 = 𝑧

(2)

which is independent on the composition of the observed
system and on its interactions. Due to this exact universality,
we can regard space translations and rotations as purely
geometrical or kinematical transformations.

Time translation is also an inertial transformation,
because repeating the same experiment at different times
will not change the outcome. However, this transformation
is by no means kinematical. Time evolutions of interacting
systems can be very complicated. Their description requires
intimate knowledge of the system’s composition, state, and
interactions acting between system’s parts. We will say that
time translations are dynamical inertial transformations.

Now, what about boosts? Are they kinematical or dynam-
ical? In nonrelativistic classical physics boosts are definitely
regarded as kinematical, they simply change velocities of
all atoms in the Universe. However, things become more
complicated in relativistic physics, as we shall see below.

2.2. Boosts in Special Relativity. Description of boost trans-
formations is the central subject of special relativity. Einstein
based his approach on the already mentioned relativity
postulate and on his second postulate about the invariance
of the speed of light. It is remarkable how all results of
special relativity can be derived from these two simple and
undeniable statements.

Consider the light clock shown in Figure 1(a). It consists
of two parallel mirrors and the light pulse reflecting back and
forth between them. The period of the clock at rest is equal
to 𝜏 = 2𝑡 = 2𝑙/𝑐. If the clock is moving, as in Figure 1(b), the
distance traveled by the light pulse increases to 𝑙 = 2𝑐𝑡 =2√𝑙2 + (V𝑡)2. Solving this system of equations with respect
to the clock period, we obtain

𝜏 = 2𝑡 = 𝜏
√1 − V2/𝑐2 = 𝜏 cosh 𝜃. (3)

So, the moving clock runs cosh 𝜃 times slower than the clock
at rest. This is the time dilation effect that we used in (1).

Let us now consider the same clock oriented parallel to its
velocity, as in Figure 2.The clock’s rate should not depend on
its orientation, so we already know the period of this clock in
motion (3). Taking into account the invariance of the speed of
light, this result can be achieved only if the distance between
the two mirrors decreases. The corresponding system of
equations is

𝜏 = 𝑡1 + 𝑡2 = (𝑙 + V𝑡1)𝑐 + (𝑙 − V𝑡2)𝑐 . (4)

Solving with respect to 𝑙, we obtain the familiar length
contraction formula:

𝑙 = 𝑙√1 − V2𝑐2 = 𝑙
cosh 𝜃 . (5)

Formulas (3) and (5) already imply that nomaterial object
can move faster than the speed of light. Otherwise, the factor√1 − V2/𝑐2 would become imaginary, which is absurd.

We can also make a clock, in which, instead of the light
pulse, we have a massive steel ball bouncing between the
two mirrors. The ball’s speed 𝑤 is less than 𝑐, and the speed
invariance postulate does not apply to 𝑤. Nevertheless, we
expect this clock to obey the same time dilation and length
contraction rules as derived above. Then, for consistency,
we have to modify the classical velocity transformation law.
For example, if the resting clock in Figure 2(a) had ball’s
velocities ±𝑤, then the moving clock in Figure 2(b) should
have velocities

𝑤1 = 𝑤 + V1 + 𝑤V/𝑐2 (6)

𝑤2 = −𝑤 + V1 − 𝑤V/𝑐2 . (7)
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Figure 1: Light clock: (a) at rest and (b) in motion perpendicular to the clock’s axis.
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Figure 2: Light clock: (a) at rest and (b) inmotion parallel to the clock’s axis.The time evolution is shown in three frames stacked up vertically.

Indeed, it is not difficult to verify that these values solve the
system of equations

𝑤1𝑡1 = 𝑙 + V𝑡1
−𝑤2𝑡2 = 𝑙 − V𝑡2
𝑡1 + 𝑡2 = (2𝑙𝑤) cosh 𝜃

(8)

that describe the movement of the ball during one clock
period.

As a consistency check, by applying the velocity addition
law (6) to the photon moving with the speed of light (𝑤 = 𝑐),
we return back to Einstein’s light speed invariance postulate

𝑤1 = 𝑐 + V1 + V/𝑐 = 𝑐. (9)

Special relativity explains how all these particular results
can be generalized into Lorentz transformations for the
times and positions of events. For example, any event having

4-coordinates (𝑡, 𝑥, 𝑦, 𝑧) in the rest frame will have other 4-
coordinates

𝑡 = 𝑡 cosh 𝜃 − (𝑥𝑡 ) sinh 𝜃
𝑥 = 𝑥 cosh 𝜃 − 𝑐𝑡 sinh 𝜃
𝑦 = 𝑦
𝑧 = 𝑧

(10)

in the frame moving with velocity V = 𝑐 tanh 𝜃 along the 𝑥-
axis. The linear character and the exact universality of these
formulas are similar to transformations of 3-coordinates
under rotations (2). So, it is tempting to continue this analogy
and to introduce the idea of the 4D Minkowski space-time,
whose points constitute physical events, and where boosts
are represented by purely geometrical (kinematical) pseudo-
rotations.

However, it is important to note that all the above
derivations used model systems without interactions. The
second Einstein postulate is formally applicable only to light
pulses and events associated with them. So, strictly speaking,
we are not allowed to extend results of special relativity
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beyond corpuscular optics. In addition, one can show [15]
that Lorentz transformations (10) can be extended to special
events, such as intersections of particle trajectories, involving
massive noninteracting particles, for example, our steel ball
and mirrors. (Of course, reflections of light pulses or steel
balls from the mirrors do involve interactions, but in our
idealized thought experiments we can assume that these
processes take negligibly short times.)

How can we be confident that the same conclusions apply
to interacting systems? For example, what if the steel ball is
bouncing between plates of a charged capacitor? Can we be
sure that Lorentz formulas (10) still apply?

Here we meet the following fork in the road. On the
one hand, we can choose to postulate that the laws of
special relativity established above are valid independent of
interactions. Then boosts should be rigorously kinematical,
just as space translations and rotations. This nonobvious
postulate is tacitly assumed in all textbooks. In particular,
it was used in numerous attempts [16–22] to derive Lorentz
transformations from the first Einstein postulate only.

Alternatively, we can assume that, similar to time transla-
tions, boosts are dynamical; that is, they involve interactions,
and their actions cannot be expressed by simple universal
formulas, like (10). We will discuss these two possibilities
in Section 3. However, before doing that, in the rest of
this section, we are going to recall the fundamentals of
relativistic quantum theory pioneered by Wigner and Dirac.
This theory is based on the extremely important fact that
inertial transformations form the Poincaré group.

2.3. Representations of the Poincaré Group in Quantum
Mechanics. We are interested in application of inertial trans-
formations to quantum systems. Properties of such systems
are described by objects in the Hilbert spaceH, such as state
vectors and Hermitian operators of observables. So, we have
to define the action (a.k.a. representation) of inertial transfor-
mations inH. Operators of this representation 𝑈𝑔 must pre-
serve quantum-mechanical probabilities, so these operators
have to be unitary [23]. This brings us to the classical math-
ematical problem of constructing unitary representations of
the Poincaré group in the given Hilbert spaceH [24].

Important role is played by the so-called “infinitesimal
transformations” or generators.They are represented by Her-
mitian operators in H (see Table 1). Unitary representatives𝑈𝑔 of finite transformations can be expressed by exponential
functions of theHermitian generators. For example, a general
inertial transformation 𝑔 is a composition of (boost 𝜃) ×
(rotation 𝜑) × (space translation a) × (time translation 𝑡). It is
represented by the following product of unitary exponents:

𝑈𝑔 = 𝑒−(𝑖𝑐/ℏ)K⋅𝜃𝑒−(𝑖/ℏ)J⋅𝜑𝑒−(𝑖/ℏ)P⋅a𝑒(𝑖/ℏ)𝐻𝑡. (11)

Commutators of theHermitian generators are fully deter-
mined by the structure of the Poincaré group [25, 26]

[𝐽𝑖, 𝑃𝑗] = 𝑖ℏ 3∑
𝑘=1

𝜖𝑖𝑗𝑘𝑃𝑘 (12)

[𝐽𝑖, 𝐽𝑗] = 𝑖ℏ 3∑
𝑘=1

𝜖𝑖𝑗𝑘𝐽𝑘 (13)

[𝐽𝑖, 𝐾𝑗] = 𝑖ℏ 3∑
𝑘=1

𝜖𝑖𝑗𝑘𝐾𝑘 (14)

[𝑃𝑖, 𝑃𝑗] = [𝐽𝑖, 𝐻] = [𝑃𝑖, 𝐻] = 0 (15)

[𝐾𝑖, 𝐾𝑗] = − 𝑖ℏ𝑐2
3∑
𝑘=1

𝜖𝑖𝑗𝑘𝐽𝑘 (16)

[𝐾𝑖, 𝑃𝑗] = − 𝑖ℏ𝑐2𝐻𝛿𝑖𝑗 (17)

[𝐾𝑖, 𝐻] = −𝑖ℏ𝑃𝑖. (18)

2.4. Hilbert Space of Unstable Particle. According to Wigner
and Weinberg [24, 26], the Hilbert space H(𝑖) of each stable
elementary particle carries an unitary irreducible represen-
tation 𝑈(𝑖)𝑔 of the Poincaré group. The Hilbert space of an𝑁-particle system is constructed as a tensor product (with
proper (anti)symmetrization) of one-particle spaces

H
𝑁 = H

(1) ⊗H
(2) ⊗ ⋅ ⋅ ⋅ ⊗H

(𝑁). (19)

In the formalism with varied numbers of particles (e.g., in
quantum field theory), one builds the Fock space as a direct
sum of spaces (19). For example, in a good approximation one
can describe the unstable particle 𝛼 with one decay channel𝛼 → 𝛽 + 𝛾, in the part of the Fock space, which includes the
particle 𝛼 itself and its decay products 𝛽 + 𝛾

H = H
(𝛼) ⊕ (H(𝛽) ⊗H

(𝛾)) . (20)

Each normalized state vector |Ψ⟩ in the Hilbert spaceH
can be represented as a sum of two orthogonal components

|Ψ⟩ = |Ψ⟩𝛼 + |Ψ⟩𝛽𝛾 , (21)

where the component

|Ψ⟩𝛼 ≡ 𝑇 |Ψ⟩ ∈ H
(𝛼) (22)

lies entirely in the subspace of the unstable particle, while the
other component

|Ψ⟩𝛽𝛾 ≡ (1 − 𝑇) |Ψ⟩ ∈ H
(𝛽) ⊗H

(𝛾) (23)

is in the subspace of decay products. Here we denoted by 𝑇
the Hermitian projection on the subspaceH(𝛼)

𝑇H(𝛼) = H
(𝛼). (24)

According to basic rules of quantummechanics, the norms of
these two components have simple physical interpretations:

Υ ≡ |Ψ⟩𝛼2 (25)

is the probability of finding the unstable particle 𝛼 in the state|Ψ⟩, and ‖|Ψ⟩𝛽𝛾‖2 = 1 − ‖|Ψ⟩𝛼‖2 is the probability of finding
its decay products.
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Observations of the unstable particle can be also
described in the quantum-logical language of yes-no ques-
tions, like “Do we see the unstable particle?” and an observ-
able, which can take two values 1 or 0, corresponding to
the possible answers “yes” or “no.” Obviously, the Hermitian
operator of this observable is the projection 𝑇 introduced
above. Its eigensubspaces H(𝛼) and H(𝛽) ⊗H(𝛾) correspond
to the eigenvalues 1 and 0, respectively. Then the probability
of finding the particle 𝛼 can be written as the expectation
value of the projection 𝑇. Taking into account the property𝑇2 = 𝑇, we see that this definition is in full agreement with
(25)

⟨Ψ| 𝑇 |Ψ⟩ = (⟨Ψ| 𝑇) (𝑇 |Ψ⟩) = ‖𝑇 |Ψ⟩‖2 = |Ψ⟩𝛼2
= Υ. (26)

2.5. Interacting Representation of the Poincaré Group. Next
we should find out how the quantity Υ depends on the
observer. To obtain the formula for the decay law (i.e., the
time evolution of the probability Υ), we can use either the
Schrödinger representation, where state vectors depend on
time

Υ (0, 𝑡) = (⟨Ψ| 𝑒(𝑖/ℏ)𝐻𝑡) 𝑇 (𝑒−(𝑖/ℏ)𝐻𝑡 |Ψ⟩) , (27)

or, equivalently, the Heisenberg picture, where observables
are time-dependent

Υ (0, 𝑡) = ⟨Ψ (𝑒(𝑖/ℏ)𝐻𝑡𝑇𝑒−(𝑖/ℏ)𝐻𝑡) Ψ⟩ . (28)

To perform these calculations, we have to specify the Hamil-
tonian 𝐻 in the Hilbert space H. In order to keep the
relativistic invariance, this Hamiltonian should be consistent
with other Poincaré generators: that is, commutation rela-
tions (12)–(18) have to be satisfied.

Using available 1-particle irreducible representations𝑈(𝛼)𝑔 , 𝑈(𝛽)𝑔 , 𝑈(𝛾)𝑔 , one can easily construct one valid represen-
tation of the Poincaré group inH

𝑈0𝑔 ≡ 𝑈(𝛼)𝑔 ⊕ (𝑈(𝛽)𝑔 ⊗ 𝑈(𝛾)𝑔 ) . (29)

It is appropriate to call this representation “noninteracting,”
because its generators {P0, J0,K0, 𝐻0} take the forms cor-
responding to free particles. Apparently, in this case, the
subspace H𝛼 remains invariant with respect to all inertial
transformations. In particular, noninteracting translation
generators commute with the projection 𝑇

[𝑇,𝐻0] = 0 (30)

[𝑇,P0] = 0. (31)

According to Dirac and Weinberg [25, 26], one can
introduce relativistic interaction by defining in H a new
unitary representation 𝑈𝑔 ̸= 𝑈0𝑔 of the Poincaré group with
generators {P, J,K, 𝐻}. Referring to our understanding of the

kinematical/dynamical character of inertial transformations
from Section 2.1, we can immediately conclude that gener-
ators of space translations and rotations coincide with their
noninteracting counterparts

P = P0 (32)

J = J0, (33)

while the generator of time translations contains a nontrivial
interaction term 𝑉

𝐻 = 𝐻0 + 𝑉 (34)

(see Table 1). It is important to note that the Hermitian
projection 𝑇 cannot commute with this interaction and with
the total Hamiltonian𝐻

[𝑇,𝐻] = [𝑇, 𝑉] ̸= 0. (35)

Indeed, only in this case, the decay law is a nontrivial function
of time

Υ (0, 0) = ⟨Ψ| 𝑇 |Ψ⟩ = 1
𝑒−(𝑖/ℏ)𝐻𝑡 |Ψ⟩ ∉ H𝛼, if 𝑡 ̸= 0
Υ (0, 𝑡 > 0) = ⟨Ψ 𝑒(𝑖/ℏ)𝐻𝑡𝑇𝑒−(𝑖/ℏ)𝐻𝑡 Ψ⟩ < 1

(36)

as required for any unstable particle prepared at time 𝑡 = 0.
A Poincaré-Wigner-Dirac relativistic quantum descrip-

tion of any isolated interacting system is constructed in a
similar manner. In the Hilbert space H of the system one
defines 10 Hermitian generators {P0, J0,K0 + Z, 𝐻0 + 𝑉} with
commutators (12)–(18). These operators not only specify the
basic total observables of the system, but also determine
how the results of observations transform from one inertial
system to another. Moreover, one can switch to the classical
relativistic description by taking the limit ℏ → 0 and
considering only states describable by localized quasiclassical
wave packets, which can be approximated by points in
the phase space. In this limit, observables are replaced by
real functions on the phase space, quantum commutators
are represented by Poisson brackets, and time evolution is
approximated by trajectories in the phase space [27, 28].

3. Results and Discussion

3.1. Kinematical Boosts. As we mentioned at the end of
Section 2.2, Einstein’s special relativity assumes that boost
transformations can be represented by exact Lorentz for-
mulas (10), which are valid universally for all events and
physical systems, independent on their state, composition,
and involved interactions. In other words, in special relativity
boosts are kinematical.

In classical relativistic physics, this hypothesis is known
as the condition of “invariant trajectories” or “manifest
covariance.” The well-known Currie-Jordan-Sudarshan the-
orem [29] states that this condition is not compatible with
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the Hamiltonian description of dynamics presented in the
previous section. In other words, a Poincaré-invariant theory
with invariant trajectories can exist only in the absence of
interactions. This explains the name “no-interaction the-
orem” often used for the Currie-Jordan-Sudarshan result.
Several options were tried in the literature for explaining this
paradox.

One idea was that Hamiltonian dynamics is not suitable
for describing relativistic interactions. Instead, various non-
Hamiltonian theories were developed [30–35], which devi-
ated from the Poincaré-invariantWigner-Dirac approach. So
far, the predictive power of these theories remains rather
limited.

Another idea is to abandon particles and replace them by
(quantum)fields [36–39], because “there are no particles, there
are only fields” [40]. This approach goes as far as claiming
that there is no point in discussing observables (positions and
momenta) of interacting particles, their wave functions, and
also their time evolutions in the interacting regime.

The foregoing discussion suggests that the the-
ory will not consider the time dependence of
particle interaction processes. It will show that
in these processes there are no characteristics
precisely definable (even within the usual limi-
tations of quantum mechanics); the description
of such a process as occurring in the course of
time is therefore just as unreal as the classical
paths are in non-relativistic quantum mechanics.
The only observable quantities are the properties
(momenta, polarizations) of free particles: the
initial particles which come into interaction, and
the final particles which result from the process (L.
D. Landau and R. E. Peierls, 1930). Berestetskii et
al. [41]

The more one thinks about this situation, the
more one is led to the conclusion that one should
not insist on a detailed description of the system
in time. From the physical point of view, this
is not so surprising, because in contrast to non-
relativistic quantummechanics, the time behavior
of a relativistic system with creation and annihi-
lation of particles is unobservable. Essentially only
scattering experiments are possible, therefore we
retreat to scattering theory. One learns modesty in
field theory. Scharf [42]

We cannot accept this point of view, because it has
nothing to say about such interacting time-dependent system
as the unstable particle.

3.2. Dynamical Boosts. Our preferred way to resolve the
Currie-Jordan-Sudarshan controversy is to abandon the
hypothesis of “invariant trajectories” and admit that boost
transformations are dynamical. Actually, even in the original
Dirac’s paper [25], it was mentioned that, in a theory with
kinematical space translations (32) and rotations (33), boosts

must depend on interactions. Indeed, if we assume that
boosts are kinematical (Z = 0), then we obtain from (17)

𝐻 = 𝑖𝑐2ℏ [𝐾𝑥, 𝑃𝑥] = 𝑖𝑐2ℏ [(𝐾0)𝑥 , (𝑃0)𝑥] = 𝐻0 (37)

the absurd proposition that interaction in the Hamiltonian
must vanish (𝑉 ≡ 𝐻 −𝐻0 = 0).

Therefore, we should have 𝑉 ̸= 0, Z ̸= 0, which
means that we are working in the instant form of dynamics,
according to Dirac’s classification [25].

3.3. Decays Caused by Boosts. Our conclusion about the
dynamical character of boosts disagrees with the usual
special-relativistic “geometrical” view on boosts. In particu-
lar, we can no longer claim that

Any event that is “seen” in one inertial system is
“seen” in all others. For example if observer in one
system “sees” an explosion on a rocket then so do
all other observers. Polishchuk [21]

Returning to our example of unstable particle, we can say
that when the observer at rest sees the pure unstable particle𝛼, moving observersmay see also its decay products𝛽+𝛾with
some probability. We can prove an even stronger statement:
if all (both resting and moving with different rapidities 𝜃)
observers see the particle 𝛼 at 𝑡 = 0 with 100% probability

Υ (𝜃, 0) = 1 (38)

then this particle is stable with respect to time translations as
well.

Suppose that (38) is true; that is, for any |Ψ⟩ ∈ H𝛼,

Υ (𝜃, 0) ≡ ⟨Ψ 𝑒−(𝑖𝑐/ℏ)𝐾𝑥𝜃𝑇𝑒(𝑖𝑐/ℏ)𝐾𝑥𝜃 Ψ⟩ = 1. (39)

This means that all boosts leave the subspaceH𝛼 invariant

𝑒(𝑖𝑐/ℏ)𝐾𝑥𝜃 |Ψ⟩ ∈ H𝛼, ∀𝜃 (40)

and that the interacting boost operator𝐾𝑥 commuteswith the
projection 𝑇. Then commutators (17) and (31) and the Jacobi
identity imply

[𝑇,𝐻] = −𝑖𝑐2ℏ [𝑇, [𝐾𝑥, 𝑃0𝑥]]
= 𝑖𝑐2ℏ [𝐾𝑥, [𝑃0𝑥, 𝑇]] + 𝑖𝑐2ℏ [𝑃0𝑥, [𝑇, 𝐾𝑥]] = 0

(41)

which contradicts the fundamental property (35) of unstable
particles. To resolve this contradiction, we have to admit that
the boosted state 𝑒(𝑖𝑐/ℏ)𝐾𝑥𝜃|Ψ⟩ does not correspond to the
particle 𝛼 with 100% probability. This state must contain an
admixture of decay products even at the initial time 𝑡 = 0

𝑒(𝑖𝑐/ℏ)𝐾𝑥𝜃 |Ψ⟩ ∉ H𝛼, if 𝜃 ̸= 0. (42)
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This means that, from the point of view of the moving
observer, the state vector’s projection on the subspace of decay
products is nonzero

0 < (1 − 𝑇) 𝑒(𝑖𝑐/ℏ)𝐾𝑥𝜃 |Ψ⟩2
= ⟨Ψ 𝑒−(𝑖𝑐/ℏ)𝐾𝑥𝜃 (1 − 𝑇) (1 − 𝑇) 𝑒(𝑖𝑐/ℏ)𝐾𝑥𝜃 Ψ⟩
= ⟨Ψ 𝑒−(𝑖𝑐/ℏ)𝐾𝑥𝜃 (1 − 𝑇) 𝑒(𝑖𝑐/ℏ)𝐾𝑥𝜃 Ψ⟩
= 1 − ⟨Ψ 𝑒−(𝑖𝑐/ℏ)𝐾𝑥𝜃𝑇𝑒(𝑖𝑐/ℏ)𝐾𝑥𝜃 Ψ⟩

(43)

and that the nondecay probability is less than unity

Υ (𝜃, 0) = ⟨Ψ 𝑒−(𝑖𝑐/ℏ)𝐾𝑥𝜃𝑇𝑒(𝑖𝑐/ℏ)𝐾𝑥𝜃 Ψ⟩ < 1. (44)

This is the “decay caused by boost” [11, 12, 43], which means,
among other things, that special-relativistic formulas (1) and
(38) are inaccurate, and that boosts have a nontrivial effect on
the internal state of the unstable particle.

It is important that (44) describes decays viewed from a
moving reference frame, that is, by a moving detector. This
is completely different from the more familiar experimental
setup in which a stationary detector looks at a moving
particle. In the latter case, the state vector of the moving
unstable particle lies entirely in the subspace H𝛼, and there
is no “decay caused by boost.”

3.4. Discussion. Here we discussed the dynamical effect of
boosts on unstable particles (44). However, similar nontra-
ditional effects should be visible also in other interacting
systems, even in classical (nonquantum) ones [44–46]. In
order to verify these predictions, one has to look at composite
interacting systems, where interaction acts for a sufficiently
long time.Unfortunately,most experimental checks of special
relativity [47–49] do not satisfy these criteria. For example,
dynamical boosts do not change the relativistic kinematics
(the relationships between momenta, velocities, and energies
of free particles) in collisions, reactions, and decays. Likewise,
dynamical boosts do not affect Doppler type experiments
[50, 51], which measure the frequency (energy) of light and
its dependence on the motion of the source or the observer.
Michelson-Morley type experiments [52–54], studying the
invariance of the speed of light, are not affected as well.

The time dilation experiments with unstable particles
[1–4] are exceptional, because they study systems that are
under the action of interaction during sufficiently long
time interval. Unfortunately, predicted deviations from the
special-relativistic time dilation formula (1) are too small to
be observed. One can see that the “decay caused by boost”
effect is also very small and beyond the sensitivity of modern
experiments [12].

Perhaps, the most convincing evidence for the dynamical
character of boosts was obtained in the Frascati experiment
[55–57], which established the superluminal dynamics of
the electric field of relativistic charges. This observation was
explained from the point of view of the Poincaré-Wigner-
Dirac theory in [27, 58, 59].

4. Conclusions

We applied Poincaré-Wigner-Dirac theory of relativistic
interactions to unstable particles. In particular, we were
interested in how the sameparticle is seen by differentmoving
observers. We proved that the decay probability cannot be
invariant with respect to boosts. Different moving observers
may see different internal compositions of the same particle.
In spite of being very small, this effect is fundamentally
important as it sets the limit of applicability for special
relativity.
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[44] W. Glöckle and Y. Nogami, “Relativistic dynamics and Lorentz
contraction,” Physical Review D: Particles, Fields, Gravitation
and Cosmology, vol. 35, no. 12, pp. 3840–3846, 1987.
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[54] T. Alväger, F. J. M. Farley, J. Kjellman, and L.Wallin, “Test of the
second postulate of special relativity in the GeV region,” Physics
Letters, vol. 12, no. 3, pp. 260–262, 1964.

https://arxiv.org/abs/physics/0410262
https://arxiv.org/abs/physics/0410262
https://arxiv.org/abs/physics/0110076
https://arxiv.org/abs/1701.00270
https://arxiv.org/abs/physics/0504062
http://web.ihep.su/library/pubs/prep1997/ps/97-84.pdf
http://web.ihep.su/library/pubs/prep1997/ps/97-84.pdf


Advances in High Energy Physics 9

[55] R. de Sangro, G. Finocchiaro, P. Patteri, M. Piccolo, and G.
Pizzella, “Measuring propagation speed of Coulomb fields,”The
European Physical Journal C, vol. 75, no. 3, 2015.

[56] R. de Sangro, G. Finocchiaro, P. Patteri, M. Piccolo, and G.
Pizzella, “Why the interpretation of “Measuring propagation
speed of Coulomb fields” stands,”TheEuropean Physical Journal
C, vol. 77, no. 2, 2017.

[57] R. de Sangro, G. Finocchiaro, P. Patteri, M. Piccolo, and G.
Pizzella, “Experimental result on the propagation of Coulomb
fields,” Journal of Physics: Conference Series, vol. 845, Article ID
012015, 2017.

[58] E. Stefanovich, Relativistic QuantumTheory of Particles, vol. II,
Lambert Academic Publishing, Saarbrücken, Germany, 2015.

[59] E. V. Stefanovich, “Does Pizzella’s experiment violate causality?”
Journal of Physics: Conference Series, vol. 845, Article ID 012016,
2017.


