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Aiming at the problems of image quality, compression performance, and transmission efficiency of image compression in wireless
sensor networks (WSN), a model segmentation-based compressive autoencoder (MS-CAE) is proposed. In the proposed
algorithm, we first divide each image in the dataset into pixel blocks and design a novel deep image compression network with
a compressive autoencoder to form a compressed feature map by encoding pixel blocks. Then, the reconstructed image is
obtained by using the quantized coefficients of the quantizer and splicing the decoded feature maps in order. Finally, the deep
network model is segmented into two parts: the encoding network and the decoding network. The weight parameters of the
encoding network are deployed to the edge device for the compressed image in the sensor network. For high-quality
reconstructed images, the weight parameters of the decoding network are deployed to the cloud system. Experimental results
demonstrate that the proposed MS-CAE obtains a high signal-to-noise ratio (PSNR) for the details of the image, and the
compression ratio at the same bit per pixel (bpp) is significantly higher than that of the compared image compression
algorithms. It also indicates that the MS-CAE not only greatly relieves the pressure of the hardware system in sensor network
but also effectively improves image transmission efficiency and solves the deployment problem of image monitoring in remote
and energy-poor areas.

1. Introduction

The wireless sensor network (WSN) is widely deployed in
many applications, such as ecological environment monitor-
ing, water quality monitoring, and mine safety monitoring
[1–4]. Image monitoring in WSN is an important topic in
the monitoring field. It has a visual effect and can provide
image information to the management platform. However,
the massive amounts of image information cause network
congestion. Although some novel technologies of congestion
control and packet reordering algorithms are proposed to
solve this problem [5–7], the image compression technology
in the image sensor device has attracted an increasing atten-
tion and is considered as an effective solution in terms of
improving energy and transmission efficiency. Until now,

many image compression algorithms forWSN have been pro-
posed [8]. However, owing to the functional limitations of
hardware equipment for WSN and the high energy consump-
tion of image transmission, it also poses significant challenges
to WSN deployment in remote areas with limited energy.

For traditional image compression techniques in WSN,
the research on image compression can be categorized as
lossless and lossy image compression. JPEG [9] and JPEG
2000 [10] are typical representations of lossy image com-
pression and have been widely applied to WSN. Aiming at
transmission efficiency and memory saving, lossy image
compression draws more attention in WSN than lossless
image compression. In particular, the emergence of image
compression techniques based on Deep Learning Models
(DLMs) provides a completely new direction [11].
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In the field of deep learning image compression, a great
number of efforts have been devoted to improving the reso-
lution of reconstructed compressed images. Using the Con-
volutional Neural Network (CNN) structure, the methods
of training Compact CNN (ComCNN) and Reconstructed
CNN (RecCNN) are proposed simultaneously in [12].
ComCNN mainly optimizes the compression effect, and
ReCNN is used to reconstruct high-quality images. Kuang
et al. propose a new model for a single-image Super-
Resolution (SR) task by utilizing the design of densely con-
nected convolutional networks (DenseNet) [13], which has
a lightweight structure and is extensively evaluated on data-
sets. They attempt to optimize the deep network and adjust
parameter settings to achieve trade-offs between image reso-
lution and running time. The advantage of deep CNNs lies
in its powerful capability to handle large-scale image data-
sets. These works, on the other hand, are complex, making
them difficult to deploy in WSN edge devices.

Currently, autoencoders based on CNN have become a
significant research interest, which are more simple than
deep CNN in network architecture. In an earlier period,
most learning autoencoders were used for dimensionality
reduction for high-efficiency image compression. On the
other hand, the autoencoder, with its relatively simple net-
work architecture, is also faster than CNN in the inference
process. Huang et al. propose a multiscale autoencoder
(MSAE) to improve the compression effect and adopt the
generative adversarial network (GAN) with multiscale dis-
criminators to perform the end-to-end trainable rate-
distortion optimization. This framework achieves excellent
reconstruction effects at a low bit rate [14]. Cheng et al.
use Principal Component Analysis (PCA) to generate an
energy-efficient representation for the CAE architecture to
achieve high coding efficiency, and the algorithm mainly
preserves the principal components in the model training
process and greatly improves the compression ratio [15].
Furthermore, when compared to the traditional deep CNN
architecture, CAE-based image compression is a complete
deep learning architecture that reduces its own network
layers [16]. Based on an autoencoder, the authors in [17]
append quantization and entropy rate estimation to the
CNN structure. Furthermore, in [18], a three-dimensional
convolutional autoencoder (3D-CAE) is proposed, which
has greatly improved the reconstruction precision. All these
algorithms mentioned above improve the network architec-
ture of the compressive autoencoder, which performs well in
reconstructed image detail extraction. In addition, the end-
to-end architecture also offers the possibility of deployment
for WSN. However, some of these algorithms will occupy a
great deal of memory at runtime, which impacts the effi-
ciency of image monitoring for WSN.

Moreover, most of the above-mentioned works focus on
the optimization of rate distortion, visual effect, and image
compression ratio, but the limited memory capacity of the
hardware system in the WSN is not considered. Aiming to
solve the above-mentioned problems, we propose a novel
MS-CAE algorithm to satisfy the demands of WSN image
monitoring in remote areas. The main contributions of the
proposed MS-CAE algorithm areas are as follows:

(1) To address the issue of large networks not being
deployed in sensor nodes due to functional con-
straints, we proposed a model segmentation-based
compressive autoencoder

(2) We proposed an asymmetric architecture for the
encoding and decoding networks in MS-CAE. We
design the simplified encoding network and the
more complex decoding network properly to
improve the resolution of the reconstructed com-
pressed image

The rest of this paper is organized as follows: Section 2
describes the related work of image compression. Section 3
presents the principles of the architecture of a compressive
autoencoder (CAE). In Section 4, we present a novel MS-
CAE image compression algorithm for image monitoring
in WSN. Section 5 evaluates the performance of the pro-
posed MS-CAE algorithm, followed by concluding remarks
in Section 6.

2. Related Work

2.1. Image Compression Based on Deep Learning. Recent
works on the CNN network have made contributions to
image compression, especially in DLMs. To achieve high-
quality image compression at low bit rates, Jiang et al. pro-
pose two CNNs as the pre- and postprocessing steps [12].
Toderici et al. utilize a long short-term memory (LSTM)
recurrent network to compress small patch images and also
adopt quantization to realize the decrease in the encoding
coefficient scale [19]. Li et al. are motivated by the character
of the local information content in a single image, and they
propose learning convolution networks for content-weight
image compression to solve the problem of encoder rate dis-
tortion [20]. The DSSLIC framework is used to obtain the
semantic segmentation map of the input image and encode
it as the base layer of the bitstream [21]. Sushma and Fati-
mah improve the reconstructed image detail information
by predicting chroma at the decoder, which serves as side
information for decoding chroma components [22]. These
algorithms optimize the quality of reconstructed images in
various aspects. For instance, these authors make great prog-
ress in the aspects of high compression ratio, compression
efficiency, high-resolution image, and detail image recon-
struction, whereas the operations mentioned before usually
consume a large amount of storage space in computer
equipment.

2.2. Image Compression Based on CAE. There exist numerous
works on variants of compressive autoencoders (CAE). In dif-
ferent ways, these techniques reduce the distortion of the
reconstructed image for lossy image compression. In [23],
Shi et al. introduce an efficient subpixel convolution layer
learned from an array of upscaling filters to upscale the final
low-resolution feature maps into the high-resolution output
image. Inspired by the work of Shi et al. [23], Theis and Shi
[16] utilize the CAE structure by optimizing quantization
and entropy rate estimation to acquire excellent training
model results. Following the above architectures, the authors
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in [17] append a nonlinear analysis transformation, a uniform
quantizer, and a nonlinear synthesis transformation to a con-
volutional network. Cheng et al. train the improved CAE
architecture to generate a more compact representation of fea-
ture maps, and they optimize the rate-distortion loss function
of CAE to improve image-coding efficiency [15]. An energy
compaction-based image compression using a convolutional
autoencoder is proposed. This work optimizes the CAE archi-
tecture by decomposing it into several down- and upsample
operations and proposes a normalized coding gain metric in
neural networks [24]. Based on the previous high-precision
CAE, Chong et al. [18] exploit a 3D-CAE architecture that
precisely achieves end-to-end joint spectral-spatial compres-
sion and reconstruction. These works in the literature [15,
18, 24] primarily employ a compact compression network
and various upsample operations to trade-off the optimization
of the compression ratio and rate distortion.

2.3. Image Compression Work in the Field of WSN. Efficient
DLM models will be applicable to the interconnection
between hardware systems and cloud devices. From the
requirements of image monitoring, our work is divided into
two aspects: edge devices and cloud-based devices. An edge
device is used to obtain image information [25] and cloud-
based device analysis image-coding coefficients [26]. Ding
et al. deploy DLMs to edge devices and cloud-based devices,
which advance the running speed of the corresponding
device [27]. However, high-performance DLMs usually
require numerous storage and computing resources, which
make the deployment work difficult on an edge device. To
solve this problem, many researchers attempt to improve
the efficiency of DLMs by pruning the convolution layers
or convolution kernels [28, 29]. Some works combine
gradient-based optimization [30, 31] and residual learning
[32] to implement steps to speed up inference in image com-
pression algorithms. These works have made great progress
toward obtaining excellent effects. Because a cloud-based
device is deployed near monitor operators, it is technically
reasonable for a decoder to obtain high-resolution images.

Through comparison and analysis, we found that the
CAE architecture is suitable for image compression in
WSN and presents excellent performance. Furthermore,
CAE is simpler than CNN in network architecture. There-
fore, we design a novel network architecture based on CAE
and propose an image compression algorithm based on a
model segmentation-based compressive autoencoder (MS-
CAE), which not only segments the model to alleviate the
pressure of the hardware system and promote the transmis-
sion efficiency of the sensor network but also improves the
image quality and monitoring energy efficiency, so as to
achieve the purpose of improving the energy efficiency for
WSN image monitoring.

3. Architecture of Compressive Autoencoder

The network architecture of a compressive autoencoder con-
sists of three modules: an encoder E, a decoder D, and a
quantizer Q:

E ℝN ⟶ℝM , 1

D ℝM ⟶ ℝ
N , 2

Q e⟶Q e 3

The encoder E maps the original image x ∈ℝ to a
latent representation e ∈ E x . The quantizer Q maps each
element of e to Q e , which generates the quantized coef-
ficients ê =Q e . Then, the decoder D attempts to recon-
struct the original image x̂ =D ê from the quantized
coefficients ê.

Figure 1 clearly illustrates the flow diagram of the CAE
network. The original image is gradually compressed by
the convolution layers to generate compressed data in the
encoder. Then, the compressed data is quantized through
the quantizer. Subsequently, the decoder reconstructs the
image through the decompressed data.

To assist understanding, we assume that the original
image dataset was encoded using linear mapping and a non-
linear activation function. As a result, the process of an
encoder producing compressed data can be defined as

ℝM = g Wi+2ℝ
N + bi+2 , 4

where ℝN and ℝM represent the original image and com-
pressed data of the original image, respectively. The weight
and the bias of the Conv3 layer are Wi+2 and bi+2, respec-
tively. Moreover, the corresponding node activation func-
tion is defined as g · .

After the encoding process, the quantizer transforms
compressed data into decompressed data. The decoder
obtains the decompressed data and calculates the recon-
structed image sample. Obviously, the decoding process is
the inverse of the encoding process, which is defined as

ℝ
N = g WT

j+2ℝ
M + bj+2 , 5

where ℝ
N
is the reconstructed image sample. The weight

and the bias of the DeConv3 layer are Wj+2 and bj+2,
respectively.

Next, we introduce the quantizer in Figure 1. The quan-
tization is one of the approaches to decrease the complexity
of encoding coefficients. The encoding network exploits the
rounding function in the early period of the deep neural net-
work. The rounding function is used to obtain the nearest
integer of the coefficient. It is denoted as

f x = round x, d , 6

where x and d are the coefficient and accuracy retained after
the decimal point, respectively. Thus, to quantize the coeffi-
cients in more detail, Agustsson et al. in [33] adopt the uni-
form scalar quantizer, which is similar with the rounding
function, as follows:

f xi = round xi , 7
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where x and i are the coefficient and the number of equal
points, respectively. Accordingly, f xi represents quantiza-
tion through equipartition to the nearest interval.

Moreover, Toderici et al. in [19] propose a stochastic
rounding function of binarization, which is written as

y ≈ y + ε, ε ∈ 0, 1 , 8

P ε = 1 = y − y 9

The stochastic rounding function is different from
above-mentioned two rounding functions. The operation
mainly uses the round-down method, namely, the integer
of not more than x. Furthermore, the stochastic rounding
function obtains round results by expectation x and random
probability ε.

In the process of quantization, the rounding function
exists more or less as a deviation. Therefore, rounding and
the uniform scalar quantizer have more deviations. Thus,
CAE uses the loss function to evaluate the train loss. From
the above description, we know that the input original image
sample is X x ∈ℝN , and the output reconstructed image is

X̂ x̂ ∈ ℝ
N
. CAE evaluates the loss rate between ℝN and ℝ

N

by the cross-entropy loss function and mean square error
(MSE) loss function. These two loss functions are defined as

J X, X̂ = −〠
n

i=1
xi log x̂i + 1 − xi log 1 − x̂i 10

J X, X̂ = 1
2〠

n

i=1
x̂i − xi

2
2 11

Following the above analysis, the loss function is mini-
mized to acquire an excellent trained result, which is written as

arg min
W,b

J W, b 12

4. MS-CAE Architecture and
Implementation Method

In this section, we propose an image compression network
architecture based on a model segmentation-based compres-
sive autoencoder (MS-CAE) for WSN. We first present the
proposed MS-CAE framework. Then, the corresponding
implementation process is described. Finally, we provide
the achievement of model segmentation and weight deploy-
ment for WSN.

4.1. MS-CAE Framework for WSN. The existing image com-
pression algorithms based on CAE mainly focus on com-
pression performance. However, few algorithms based on
CAE consider the limited computing resources and the prac-
tical deployment of WSN.

Therefore, we present a novel MS-CAE framework to
solve two problems:

(1) The image sensor node in the WSN cannot carry a
complete trained image dataset for the deep neural
network

(2) A cloud-computing platform makes it difficult to
parse and reconstruct high-quality images from a
simple network with insufficiently encoded data

We illustrate the proposed MS-CAE framework for
WSN in Figure 2. Firstly, we divide the image dataset into
several small pixel blocks by preprocessing the image. Then,
the encoding network implements image compression
through image feature extraction, quantification, and data
compression. Subsequently, the decoding coefficients are
obtained by the quantizer in the decoding network, and
then, they are used to reconstruct images by the data filtering
of the residual block network. In the implementation pro-
cess, the obtained weight parameters by training the MS-
CAE network are divided into two parts, namely, the encod-
ing and decoding networks. Accordingly, the weight param-
eter information in the encoding and decoding networks is
deployed to edge devices and cloud devices, respectively.
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Figure 1: The network architecture of CAE.
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4.2. MS-CAE Network Architecture and
Implementation Process

4.2.1. MS-CAE Network Architecture. The encoding and
decoding networks in traditional CAE architecture are sym-
metrical. The symmetrical CAE architecture, on the other
hand, necessitates a relatively high level of computation
complexity and storage space in edge devices. It is unsuitable
for an edge device with limited resources. To satisfy the
demand for the edge device and cloud device, we propose
a novel asymmetrical MS-CAE architecture, which is shown
in Figure 3. In the proposed MS-CAE architecture, we sim-
plify the encoding network. Meanwhile, we increase the
complexity of the decoding network to improve the resolu-
tion of the reconstructed compressed image. The detailed
description is as follows.

In Figure 3, after the above preprocessing data based on
pixel block segmentation, each picture is decomposed into
60 three-channel (RGB) pixel blocks. The encoding and
decoding networks generate three kinds of feature maps by
the convolution operation. These feature maps are 128 ×
128, 64 × 64, and 32 × 32.

In the MS-CAE network, there are five convolution ker-
nel units. As shown in Table 1, “ConvK/S P” stands for a
convolution layer with kernel size K × K , a stride of S and
a reflection padding size of P. For instance, “Conv5/2 p1.5”
is a convolution unit with 5 × 5 convolution kernel size, 2-
stride size, and 1.5 padding size.

Moreover, the reflection-padding mode is different from
zero-padding. The input matrix of the reflection-padding
mode is N , C,H in,W in , and the output matrix of the
reflection-padding mode is N , C,H in,Wout , where N is
the number, C is the channel number, and H and W are
the matrix height and width, respectively. The correspond-
ing padding mode is written as

Hout =H in + padding top + padding bottom, 13

Wout =W in + padding left + padding right 14

Furthermore, Figure 4 illustrates the zero-padding mode
and the reflection-padding mode. Actually, the filled coeffi-
cients in the reflection-padding mode follow the sequence
of left, right, top, and bottom. Since most deep networks
adopt the zero-padding mode, the boundary pixels cannot
accurately extract the coefficients through convolution oper-
ations, which causes the boundary-blurring effect. Thus, in
our proposed MS-CAE, we use reflection padding to com-
pensate for pixel gaps caused by boundary-blurring effects.
Moreover, by utilizing the reflection padding in the training
process, the boundary of the reconstructed image pixel
blocks does not cause pixel cracks and improves the overall
image quality.

4.2.2. Implementation Process

(1) Preprocessing Data: Pixel Block Segmentation. The pur-
pose of pixel block segmentation is to divide the training
images with pixel 720p (1280 × 720 × 3) into pixel 128p
(128× 128× 3). The specific operation is as follows: We first
fill the width of the image (1280 × 720 × 3 to 1280 × 768 × 3).
Then, the images are divided into small pixel blocks
(128 × 128 × 3). Subsequently, the batches of patches are
packed into the CAE-training network.

(2) Encoder Network. In the proposed MS-CAE in Figure 3,
the encoder network consists of 9 convolutional layers that
contain the labeled different convolution kernel units and
the subsequent nonlinear operation of the parameterized
rectified linear units. We adopt PReLU as an active function,
which is defined as

PReLU xi =
xi, if xi > 0,
aixi, if xi ≤ 0,

15

Residual block
network

Quantizer

Preprocessing of image datasets Encoding network

Decoding network

...

...

Edge device

Cloud computing
equipment

Image sensor
node

Carry weight
parameters

Analysis weight parameters
& upload image

Figure 2: MS-CAE framework of image compression for WSN.
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where xi is the input of the nonlinear activation function in
the matching channel i and ai is the gradient of the negative
axis of the activation function.

PReLU’s nonlinear operation is conducive to the extrac-
tion and retention of negative coefficients. Through the fea-
ture linear superposition of 128 channels 32 × 32 with two
similar Conv3/1 p1 convolution layers in three layers, the
feature matrix coefficients with a lower frequency are
retained as much as possible for image feature extraction.

(3) Decoder Network. The decoder of MS-CAE in Figure 3
reconstructs the 32 × 32 compressed feature maps obtained
by the encoder. The function of the convolution layer
between the encoder and the decoder network is to trans-
form 32 × 32 feature blocks into 64 × 64 feature blocks
before the process of the residual block network. As shown
in Figure 3, following 15 iterations of the residual block net-
work, 6 convolution layers are applied to increase the sam-
ple. The residual block network in the decoder relieves the
gradient-vanishing problem, which efficiently avoids degra-
dation in the next network layer.

The detailed description of the residual block network is
shown in Figure 5. It consists of three convolution layers.
Both the first and third convolution layers employ an 11-
convolution kernel with a stride length of 1. The second
layer uses a 3 × 3-convolution kernel with a stride length of
1. Three convolution layers are normalized and nonlinearly
activated by the PReLU function. Following the filtering of
the feature coefficients by the residual block network, the

64 × 64 feature maps of 128 channels with six Conv3/1 p1
convolution layers are used to effectively retain the nonre-
dundant and high correlation coefficients as the foundation
for reconstructing the image. Finally, the decoder obtains a
reconstructed image by using 4 convolution layers.

4.3. Model Segmentation and Weight Deployment for WSN.
As shown in Figures 2 and 3, we know that the proposed
MS-CAE is divided into two parts, namely, the encoder net-
work and the decoder network. Furthermore, the scale of the
designed encoder network is relatively small, and the decod-
ing network is more complex than the encoder network. The
purpose of this design is to consider the resource limitations
of an image monitoring node for the WSN in remote areas.
We train the novel MS-CAE network model and extract the
weight parameters of the whole model after several periodic
iterations. The weight parameters of the well-trained model
are divided into two parts, the weight parameters of the
encoding network and the decoding network. For the practi-
cal deployment of image monitoring for WSN, we require
the proposed MS-CAE model to be segmented. The encoder
and decoder networks in MS-CAE are deployed to the edge
device and cloud-computing device, respectively.

The divided weight parameters are then loaded into the
edge device’s encoding network and the cloud-computing
device’s decoding network. For remote monitoring, an edge
device is used to collect and compress image data from sen-
sor nodes, which are based on resource-constrained micro-
controllers. A cloud-computing device usually has strong
computing capability and large storage capacity. Thus, a
cloud-computing device is used to parse and restore a large
number of reconstructed images.

Therefore, in order to reduce the burden of the edge
device in WSN, the relatively small-scale encoding network
model parameters are deployed to the edge device. In addi-
tion, to improve the quality of the reconstructed image, the
weight parameters of the more complex decoding network
model are deployed to the cloud device.

5. Experiment Result

5.1. Dataset. Considering the deployment work of the edge
device in WSN, for our experiments, we chose a relatively

15 Iteration

Conv5/2 p1.5
Conv3/1 p1
Conv5/1 p2

ConvTransposed 2/2 p1

Conv3/1 p264 × 64 32 × 32128 × 128

3 64 128 128 128 128 128 128 128 32

64

128

128128128128128128
32 256 16 3

Encoder

Decoder

Residual block

Quantizer

Figure 3: MS-CAE network architecture for enhancing decoder feature extraction.

Table 1: Description of different convolution kernel units.

Name
Kernel size
(K × K)

Stride
(S)

Padding
size (P)

Conv5/2 p1.5 5 × 5 2 1.5

Conv3/1 p1 3 × 3 1 1

Conv5/1 p2 5 × 5 1 2

Conv3/1 p2 3 × 3 1 2

ConvTransposed 2/2 p1 2 × 2 2 1
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small image dataset (yt_small_720p) to train and evaluate
the performance of the proposed MS-CAE. The dataset
covers seven categories: portrait, cartoon, game, natural
scenery, advertisement pattern, city scene, and medical
image. Furthermore, it collects 2285 images with a resolution
of 1280 × 720. According to the above introduction of pixel
block division, we train the proposed MS-CAE network
using 60 pixel blocks for each image. In the testing process,
we use the Kodak 720p dataset with high-resolution photo-
graphs. All procedures are implemented in PyTorch. Each
model is trained for 143 epochs on the NVIDIA GeForce
RTX 2070 with Max-Q Design GPU.

5.2. Evaluation Indicators. To verify the effectiveness of the
proposed MS-CAE, we study the performance with respect
to mean square error (MSE), average loss, peak signal-to-
noise ratio (PSNR), and structural similarity index measure-
ment (SSIM) for reconstructed compressed image quality.
These evaluation indicators are written as follows:

MSE = 1
n
〠
m

i=1
wi yi − yi , 16

Avglossper patch =
1
60〠

60

i

MSElossper patch, 17

PSNR = 10 × log10
2n − 1 2

MSE , 18

SSIM x, y =
2μxμy + c1 2σxy + c2

μ2x + μ2y + c1 σ2x + σ2y + c2
, 19

where n is the number of samples and yi and ŷi are the
real value and predict value, respectively. In (19), μx and
μy refer to the average values of x and y, respectively.
Accordingly, the σ2x is the variance of x and σ2y is the var-

iance of y. σxy is the covariance of x and y. The c1 = k1L 2

and c2 = k2L 2 are constants used to maintain stability,
where L is the dynamic range of the pixel value and k1 =
0 01 and k2 = 0 03.

5.3. Results

5.3.1. Evaluation for Average Loss Rates. The mean square
error is calculated by (16) to measure the error between
the real coefficients and the reconstructed coefficients. Aver-
age loss reflects the difference in loss between the original
image and the reconstructed compressed image. Then, the
average loss of the whole image is evaluated by calculating
the average loss of 60 pixel blocks by (17). The training loss
of a single image can be estimated by averaging the loss of 60
pixel blocks. In Figure 6, we present the average loss of each
pixel block between the MS-CAE and CAE models in train-
ing over 143 epochs. As shown in Figure 6, the average loss
of MS-CAE gradually stabilized and was less than CAE after
80 training epochs. Namely, the training effect of each pixel
block of our proposed MS-CAE is better than that of CAE.
Moreover, Figure 7 shows the comparison result for the
average loss for 24 Kodak images in the test dataset. The
result in Figure 7 shows that the average loss of the proposed
MS-CAE is obviously lower than that of the CAE.

5.3.2. Quality Evaluation of Reconstructed Images. According
to the indicators of PSNR and SSIM in (18) and (19), we
evaluate the quality of the reconstructed compressed image
for our proposed MS-CAE by setting different bits per pixel
(bpp). PSNR is a comprehensive, objective image evaluation
indicator that is based on the difference between the corre-
sponding pixels. SSIM focuses on full-reference image qual-
ity, which evaluates image similarity based on luminance,
contrast, and structure. As a result, these two indicators eval-
uate the quality of reconstructed compressed images from
different perspectives, with higher indexes indicating less
distortion. Furthermore, we compute the average PSNR
and SSIM values for 24 Kodak images to validate the

0 0 0 0

0 1 2 0

0 3 4 0

0 0 0 0

(a) Zero-padding

1 1 2 2

1 1 2 2

3 3 4 4

3 3 4 4

(b) Reflection-padding

Figure 4: Two kinds of padding mode.
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Figure 5: Residual block network.
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performance of five algorithms. The bpp represents the ratio
of the number of valid bits in a compressed image to the
total number of pixels. Thus, the image compression ratio
can also be reflected by the bpp value. The higher bpp value
represents a lower image compression ratio and vice versa.

To further verify the performance of the reconstructed
compressed image, we compare MS-CAE with JPEG, JPEG
2000, CAE, and Toderici’s Full-Resolution Image Compres-
sion with Recurrent Neural Networks (FRIC-RNN) [19].
Figure 8 depicts the PSNR comparison value of recon-
structed images at various bpp. It can be seen that the PSNR
values of MS-CAE are significantly higher than those of
JPEG and FRIC-RNN image compression algorithms.
Between 0.1042 and ~0.7083 bpp, the reconstructed image
quality of MS-CAE is better than that of CAE and JPEG
2000. The results also show that the proposed MS-CAE out-
performs other algorithms in terms of high compression
ratio. Although the PSNR of MS-CAE is slightly lower than

that of CAE and JPEG 2000 in the range of 0.7083~1.0 bpp,
the PSNR performance in the range of 0.7083~1.0 bpp
which represents a low compression ratio is not a cause
for concern for WSN. Furthermore, Figure 9 illustrates the
SSIM values of reconstructed images at different bpp.
Figure 9 shows that the proposed MS-CAE’s structural sim-
ilarity is greatly improved in the range of 0~1.0 bpp and only
slightly lower than that of CAE in the range of 0~0.4 bpp.
The reason is that since the proposed MS-CAE algorithm
adopts residual block network iterations in the decoding
process, it can reduce the network generalization to a small
range and is conducive to the feature extraction of high-
correlation coefficients.
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Therefore, from the above results, our proposed MS-
CAE not only improves the decoding network performance
of the reconstructed compressed image but also achieves
the low-complexity requirement of the encoding network
for energy-limited WSN deployment in remote areas.

5.3.3. Visual Effect of Reconstructed Image. In this section, we
present the comparison of visual effects between MS-CAE
and CAE, JPEG, and JPEG 2000 at 0.3125 bpp for recon-
structed images using the Kodak image dataset. The overall
comparison results are shown in Figure 10. It can be seen
from Figure 10 that the visual effect of the proposed MS-
CAE algorithm is the best at a low 0.3125 bpp. This is
because the MS-CAE effectively avoids the boundary-
blurring effect through reflection-padding. The visual effect
of the JPEG algorithm has severe image information distor-
tion. The reason for the phenomenon is that the JPEG algo-
rithm uses an 8 × 8 matrix of the Discrete Cosine Transform
(DCT) to produce a boundary-blurring effect when the pixel
blocks are spliced. The original image is compressed by the
traditional CAE architecture in Figure 10(a). We can clearly
see that the chroma and pixels of the reconstructed com-
pressed image are severely distorted at 0.3125 bpp. We use
the JPEG algorithm to compress and reconstruct the same
image, as shown in Figure 10(b). Clearly, the PSNR of the
reconstructed image in Figure 10(b) is higher than that of
the CAE in Figure 10(a). However, because of the
boundary-blurring effect caused by the DCT, the SSIM value
of JPEG in Figure 10(b) is slightly lower than that of CAE in

Figure 10(a). The visual effect of the reconstructed image for
JPEG is similar to that of CAE, as shown in Figures 10(c)
and 10(d). JPEG 2000’s vision effects are also comparable
to the proposed MS-CAE. This is because the overall vision
effect of the JPEG 2000 algorithm improves significantly as
a result of the algorithm’s use of the preprocessing proce-
dure, coding, and quantization mode. Furthermore, by uti-
lizing the residual block network and sufficient train
epochs, the proposed MS-CAE algorithm avoids block
effects and maintains detail elements.

In order to further verify the performance of restoring
the image detail texture part, we take the character image
in the Kodak image dataset as an example, and the compar-
ison results are shown in Figure 11. Figures 11(a)–11(d)
depict the visual effects of CAE, JPEG, MS-CAE, and JPEG
2000, respectively. Figures 11(a) and 11(b) show that the
reconstructed image details are not very clear. Their effects
in Figures 11(a) and 11(b) are worse than those of MS-
CAE and JPEG 2000 in Figures 11(c) and 11(d). From
Figures 11(a)–11(d), we know that the proposed MS-CAE
algorithm is much clearer in terms of eyelash and hair tex-
ture than CAE, JPEG, and JPEG 2000 and has a much higher
SSIM value than other algorithms while still maintaining
good PSNR performance.

5.3.4. Complexity Analysis of Algorithm. We know from the
above sections that our proposed MS-CAE clearly distin-
guishes itself from the traditional symmetric CAE architec-
ture, and the corresponding encoder and decoder networks

(a) CAE (PSNR: 28.67 dB, SSIM: 0.8301) (b) JPEG (PSNR: 28.35 dB, SSIM: 0.76)

(c) MS-CAE (PSNR: 29.94 dB, SSIM: 0.8718) (d) JPEG 2000 (PSNR: 30.15 dB, SSIM: 0.8215)

Figure 10: Visual effect comparison of Kodak image at 0.3125 bpp.
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are asymmetric architectures. The purpose of designing the
asymmetric architecture is to reduce the parameters of the
encoder network for the deployment of an edge device in
WSN and to utilize the resource advantages of a cloud-
computing device. The encoder network of the proposed
MS-CAE reduces the number of network layers, channels,
and feature iterations and further improves the computa-
tion complexity of image compression. Then, the decoder
utilizes three layers of a small residual block network to
solve the problem of parameter redundancy and insuffi-
cient analytical accuracy so that the quality of the recon-
structed image is improved. To analyze the computing
complexity of the proposed MS-CAE, we evaluate the
average running time of the above-mentioned algorithms
in the same experimental environment. The results are
shown in Table 2.

As shown in Table 2, the average running time of encod-
ing an image with the proposed MS-CAE is shorter than that
of JPEG and JPEG 2000 when using the same computing

resource. Although our proposed MS-CAE algorithm con-
sumes slightly more than CAE in the time of single image
compression, the accuracy of the reconstructed image is bet-
ter than that of JPEG and JPEG 2000 at low bpp. This con-
sequence results from many operations of the JPEG and
JPEG 2000 image compression algorithms, such as bright-
ness matrix quantization, Huffman coding, DCT, or discrete
wavelet transform (DWT). The computation complexity of
these operations is high.

PSNR: 29.56 dB
SSIM: 0.8450

(a) CAE

PSNR: 27.89 dB
SSIM: 0.78

(b) JPEG

PSNR: 32.4407 dB
SSIM: 0.9010

(c) MS-CAE

PSNR: 34.62 dB
SSIM: 0.8820

(d) JPEG 2000

Figure 11: Visual effect comparison of Kodak image details at 0.3125 bpp.

Table 2: The average running time of encoding an image for
different image compression algorithms.

Algorithm Average time (s)

JPEG 1.25

JPEG 2000 26

CAE 0.56

MS-CAE 0.67
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6. Conclusions

In this paper, a model segmentation-based compressive
autoencoder (MS-CAE) image compression algorithm for
image monitoring of WSN in remote areas is proposed.
We first present the MS-CAE network architecture, which
considers the limited computing resources and the practical
deployment of WSN. Then, we provide the implementation
method for the MS-CAE network. The decoder with a resid-
ual block network optimizes the problem of vanishing gradi-
ent and gradient exploration. Finally, we split the trained
network model and deploy the weight parameters of the
encoder and decoder into the edge device and cloud-
computing device, respectively. Moreover, for the purpose
of obtaining a high-resolution reconstructed compressed
image, we appropriately increase the complexity of the
decoding network. In addition, we also compare the perfor-
mance with JPEG, JPEG 2000, FRIC-RNN, and CAE algo-
rithms between 0 and ~1 bpp. The experimental results
show that the MS-CAE improves image resolution, com-
pression performance, and transmission efficiency. Based
on model segmentation, the designed model MS-CAE has
achieved excellent performance in resource savings for edge
hardware devices. It also has the ability to completely
express the image content. Therefore, it also indicates that
the proposed approach effectively improves the monitoring
efficiency of long-term environmental image monitoring
for WSN.
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Multimedia applications are expected to widely deploy over vehicular networks. In order to meet the low-latency and high-speed
transmission requirements of multimedia applications, edge caching is introduced to reduce the network traffic and the
transmission delay. Due to the limited storage of the edge cache server, an efficient approach for the content management
plays a decisive role for the edge cache performance. This paper proposes a vehicle-to-infrastructure-based cooperative caching
mechanism for Internet of Vehicles to improve the edge cache utilization. The system model is established with the goal of
maximizing the cooperative caching hit rate. To jointly consider the collaborations between macrobase stations (MBS) and
multiple roadside units (RSU), we propose a reinforcement learning algorithm to adaptively control the cache management.
According to the content popularity and the network status, the proposed algorithm can dynamically adjust cached content
across relevant MBSs and RSUs. The simulation results show that the proposed cooperative caching mechanism significantly
improve the cache utilization and the quality of services.

1. Introduction

With the rapid development of the Internet of Vehicles (IoV)
and 5G communication technology, a large number of multi-
media applications, such as traffic video processing, in-vehicle
infotainment, and transportation environment monitoring,
are emerged to enrich the intelligent transport system [1–3].
To provide high quality of services for multimedia applica-
tions in IoV, mobile edge computing (MEC) has attracted
the attention as an emerging technology to improve system
performance, resource utilization, and reduced transmission
delay [4–6]. By introducing computation and storage capabil-
ities to network edge nodes, such as roadside units (RSU) and
base stations, the transmission pressure on the core network
can be effectively relieved, and at the same time, the content
transmission delay can be reduced [7–10]. However, the
limited cache space of edge nodes, the time-varying content
popularity, the high speed of vehicles, and the constant change

of the IoV topology are challenging for the edge cache perfor-
mance. It is necessary to design an efficient management
strategy to efficiently manage the edge cache [11–13].

Currently, there are numerous studies conducted on the
subject of edge cache management for IoV. Huang et al. [14]
proposed a cache location selection mechanism based on the
vehicle trajectory, which can effectively reduce the system
load and cache energy consumption. Shi et al. [15] proposed
a deep learning communication model based on multimodel
compression, which exploited the redundancy between deep
learning models in different scenarios to accelerate content
transmission in edge networks. In [16], a mixed integer non-
linear programming method was proposed to minimize the
cooperative delay between edge servers, and the Lyapunov
optimization method was used to optimize the delay prob-
lem. In [17], the authors comprehensively considered the
mobility of vehicles and proposed an edge caching scheme
with perceptible mobility probability. By dividing the data
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into data blocks of different sizes and buffering these data blocks
in the edge server close to the vehicle, the overhead and trans-
mission delay of backhaul traffic were reduced. Meng et al.
[18] studied the cache service strategy of offline networking in
the edge computing environment and proposed a cache storage
algorithm on node core. In [19], a new information-centric
heterogeneous network framework was designed, using a dis-
tributed algorithm with alternating-direction multipliers to
solve the problem of cache resource allocation. In order to fur-
ther reduce the transmission delay and improve the response
rate, the authors [20] proposed a cooperative cache allocation
and calculation offload scheme, and the MEC servers were
cooperated to perform calculation tasks and data caching. With
the rapid development of artificial intelligence, the deep rein-
forcement learning [21] has been widely used in edge caching
and resource allocation of vehicle networks with its unique
perception and decision-making capabilities [22, 23].

Themain contributions of this paper are as follows: to take
full advantage of edge cache resources, a hierarchical coopera-
tive architecture, including MBSs, RSUs, and vehicles, are
introduced. We establish a Markov decision model based on
the proposed architecture to describe the cooperative caching
process. We propose a reinforcement learning cache manage-
ment algorithm, which follows the Deep Deterministic Policy
Gradient (DDPG) scheme. The proposed algorithm has fast
convergence rate and can self-adapt to the complex network
environment.

The rest of this paper is organized as follows. Section 2
presents the system model for cooperative edge caching. Sec-
tion 3 discusses the proposed cooperative caching mechanism.
The experiment settings and result analysis are presented in
Section 4. Finally, in the Section 5, we discuss concluding
remarks and our future work.

2. System Model

2.1. Cooperative Edge Caching Model. In order to make full use
of the storage of MBSs, RSUs, and vehicles, we construct a
three-layer cooperative cache architecture, as shown in
Figure 1. The core layer includes MBSs and the backhaul net-
work, and the MBSs are connected to the RSUs through wired
links. For the cooperative RSU layer, it consists of RSUs distrib-
uted in different areas, and the RSUs communicate through
wireless links. The vehicle layer includes vehicles running in
different areas. MBSs, RSUs, and vehicles have storage to tem-
porarily buffer certain amount of content. Initially, the vehicle
sends a content request. If the vehicle itself has the content, it
will obtain directly from its cache. If not, it will send the request
to the local RSU. If the local RSU does not store the content, the
local RSU queries the cooperative RSUs. If neither the local
RSU nor the cooperative RSUs have the content, the request
is sent to the core layer.

MBS is responsible for collecting system status informa-
tion, controlling global resource management, and content
caching decisions. Compared with obtaining content from
a remote server, the cooperative caching model can effec-
tively reduce the transmission delay and transmission cost.
The set of RSUs can be expressed as R = f1, 2, 3,⋯, Rg.
V = fv1, v2,⋯, vNg represents the set of vehicles under

the coverage of the RSU. The RSU is responsible for
collecting relevant information of vehicles under its own
coverage area and uploading to the MBS.

2.2. Content Delivery Model. In the multilevel cooperative
edge caching model, the vehicle vi can send content requests
to the RSU or adjacent vehicles. Vehicles within the coverage
area of one RSU use the same frequency band to communi-
cate, and it is leading to interference between vehicles.
Therefore, the transmission rate from RSU r to vehicle v
can be obtained from Shannon’s formula as

Rr,v = br,vBR log 1 + prhr,v
σ2 +∑V

v ′=1,v ′≠vprhr,v ′

 !
, ð1Þ

where br,v represents the channel bandwidth allocated by the
RSU r to the vehicle v, BR represents the channel bandwidth
of the RSU r, and pr is the transmission power of the RSU r.
hr,v is the channel gain between the RSU r and the vehicle v,
and σ2 represents noise power. ∑V

v ′=1,v ′≠vprhr,v ′ is the V2I
communication downlink interference [24].

Orthogonal frequency division multiple access (OFDMA)
is used between MBSs and vehicles. Vehicles associated with
the MBS are assigned an orthogonal subcarrier, and the trans-
mission rate from the MBS to vehicle vi is

Rm,v =
Bm

W
log 1 + pmhm,v

σ2

� �
, ð2Þ

where Bm is the channel bandwidth of the vehicle, and pm
represents the transmission power of the vehicles. hm,v is the
channel gain between the vehicle v and the MBS, and σ2

represents the noise power [25].

2.3. Content Popularity Model. Assuming that there are K
content requests, then the request probability of these K con-
tents are P1, P2, P3,⋯, PK , and the probability obeys the
Zipf distribution [26]. The relationship between the content
request probability and the content popularity level can be
expressed as [27]

P sð Þ = Φ

sθ
s ∈ 1, 2, 3⋯ Kf g, ð3Þ

Φ = 〠
K

i=1

1
i−θ

−1
, ð4Þ

where s represents the content popularity level, and θ is the
Zipf impact factor, also known as the popularity slope. If θ is
getting larger, the distribution of Zipf is steeper, and the
popularity tends to be concentrated [28, 29]. The value of
the Zipf factor depends on the users’ behavior. The relation-
ship between the request probability and popularity level can
be further expressed as

P sð Þ = s−θ

∑K
i=1i

−θ
: ð5Þ
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Figure 2 shows the relationship between the popularity
level and the request probability. It can be seen that the influ-
ence of the popularity inclination on the request probability
distribution. The content with high request probability only
accounts for a small part of all content [30].

3. Cooperative Caching Mechanism

3.1. ProblemModel. The cooperative caching is able to theoret-
ically achieve a high cache hit rate than the noncooperative
caching. We use a binary variable ci,k ∈ f0, 1g, i ∈ R, k ∈ K to

RSU
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Cooperative area
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internet

Cooperative area

MBS
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Figure 1: Cooperative edge cache model of IoV.
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represent the cache state of the content k of RSUi. ci,k = 1
means that the content k is cached in the RSUi, and ci,k = 0
means that the RSUi does not cache the content k. The coop-
erative edge cache hit rate of the RSUi can be expressed as

hi = 〠
k∈K

pk ci,k + 〠
n∈R

cn,kδn,i

 !
, ð6Þ

where the binary variable δn,i ∈ f0, 1g indicates whether the
RSUn is cooperated with the RSUi. Therefore, the average
cooperative cache hit ratio of the system can be expressed as

�h = 1
R
〠
i∈R

hi =
1
R
〠
i∈R

〠
k∈K

pkhi =
1
R
〠
i∈R

〠
k∈K

pk ci,k + 〠
n∈R

cn,kδn,i

 !
:

ð7Þ

For RSUi, the size of the cache space is S
RSUi , and then the

optimization problem of maximum average cooperative cache
hit rate can be expressed as the following:

max
ci,kf g

�h

s:t ci,k ∈ 0, 1f g, i ∈ R, k ∈ K
  〠

k∈K
ci,k ≤ SRSU

i , i ∈ R:

ð8Þ

Regarding to the vehicle cache, the cache hit rate of the
vehicle j can be expressed as

hj = 〠
k∈K

pkcj,k: ð9Þ

Therefore, the average cache hit rate for all vehicles is
expressed as

�hj =
1
V
〠
j∈V

hj =
1
V
〠
j∈V

〠
k∈K

pkhj =
1
V
〠
j∈V

〠
k∈K

pkcj,k: ð10Þ

The size of the cache space of the vehicle j is Sv
j
. Under

the limitation of the cache space, the problem of the maxi-
mum average cache hit rate of vehicles can be expressed as
the following:

max
cj,kf g

�hj

s:t cj,k ∈ 0, 1f g, j ∈ V , k ∈ K
  〠

k∈K
cj,k ≤ Sv

j , j ∈ V :

ð11Þ

Maximizing the cache hit rate of the system is to maxi-
mize the average cache hit rate of the cooperative caches
and vehicles, as the following form:

RSU

MBS

Environment

Reward

Replay Buffer S A R S_

(s
i
, a

i
, r

i
, s

i
+1) 

Batch-Sample

Actor Critic

Update Update

Update

Action

State

Agent

Online
network

Target
network

Online
network

Target
network

Figure 3: Schematic of the cooperative caching algorithm.
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max
ci& j,kf g

H = �h + �hj
� �

,

s:t C1 : ci,k ∈ 0, 1f g, i ∈ R, k ∈ K ,
  C2 : cj,k ∈ 0, 1f g, j ∈ V , k ∈ K ,
  C3 : 〠

k∈K
ci,k ≤ SRSU

i , i ∈ R,

  C4 : 〠
k∈K

cj,k ≤ Sv
j , j ∈ V :

ð12Þ

3.2. Cooperative Caching Algorithm Based on DDPG. To solve
the optimization problem in the previous section, it is neces-
sary to build the Markov decision process for the cooperative
edge caching scenario. The Markov decision process is a tuple
including state, action, and reward. The components are
defined as follows: the system state at each time t is defined
as st = ½SMBS, R ∗ SRSU, V ∗ Sv, qt�, that is, at time t, the cooper-
ative cache space, cache state information, vehicle cache infor-
mation, and vehicle content request. The action space at each
time t is defined as at = ½a0, a1, a2, a3�, where a0 represents the
content cached in the MBS, a1 means the content cached in
the RSU, a2 represents the content cached in the vehicle itself,
and a3 is for the content cached in the randomly.

The system joint reward function R ðtÞ is expressed as
RðtÞ = CP∑∑vð�hðtÞ + �hjðtÞÞ, where C is the characteristic

constant, and �hðtÞ + �hjðtÞ is the average cache hit rate of

the cooperative cache and the average cache hit rate of the
vehicle j at time t, respectively. P represents the penalty coef-
ficient given by the vehicle.

The system block diagram of the cooperative edge caching
algorithm is shown in Figure 3. The environment consists of an
actor network, a critical critic, and an experience replay mem-
ory. The actor and critic network are both composed of two
different deep neural networks. The online network is used

1: Initialize Actor online network parameters θQ, Critic online network parameters θμ, experience replay memory M

2: Initialize Actor target network parameters θQ′ , Critic target network parameters θμ′

3: Initialize caching state of RSUs, MBS and Vehicles, content popularity
4: for episode =1, M do
5: Environment state space initialization, initialization system cache hit rate
6: Randomly choose action N as action exploration
7: for t =1,2,3,…,T do
8: Select action at = μðst , θμÞ +Nt according to observed state st and

current strategy
9: Calculate reward RðtÞ based on current selection action at and state st ,

update state st ⟶ st+1
10: Update the reward RðtÞ = CP∑∑vð�hðtÞ + �hjðtÞÞ and store

ðst , at , RðtÞ, st+1Þ in M
11: Randomly sample N samples from the experience replay memory M,

ðsi, ai, RðtiÞ, si+1Þ
12: Evaluate yi = RðtiÞ + γQ′ðsi+1, μ′ðsi+1jθμ′ÞjθQ′Þ
13: Update Critic Network Parameters θμ by Minimizing Loss

14: LðθÞ = 1/N∑iðyi −Qðsi, aijθQÞÞ
2

15: Update Actor Network Parameters θQ via Policy Gradients
16: ∇θμ J ≈ 1/N∑i∇aQðs, ajθQÞjs=si ,a=μðsiÞ∇θμμðs, jθμÞjsi
17: Update target network parameters

18: θQ
′
⟵ τθQ + ð1 − τÞθQ′

19: θμ
′
⟵ τθμ + ð1 − τÞθμ′

20: end for
21: end for

Algorithm 1: Cooperative edge caching algorithm for Internet of Vehicles based on DDPG.

Table 1: Simulation parameters.

System parameter Value/description

RSU and MBS cache capacity 10 TB, 15 TB

Vehicle cache capacity 5 TB

RSU and MBS transmission power 35 dBm, 38 dBm

Number of contents 7000, 9000, 10000

Zipf impact factor 0.68

Noise power -95 dBm

Wireless bandwidth 10MHz

Wired bandwidth 20MHz

Number of vehicles 25, 30, 35, 40, 45

Number of neural network layers 2

Number of neurons [300, 400]

Learning rate 0.00025

Batch sampling size 64

Replay buffer size 7500

5Wireless Communications and Mobile Computing



for actions, and the target network is used for the evaluation of
actions. The agent receives the environmental state informa-
tion and executes the corresponding the action. Algorithm 1
shows the flow of the cooperative edge caching algorithm
[16]. First, it initializes the network parameters of the actor
network, the critic network, and the experience replay mem-
ory. After the parameter initialization is completed, the
agent obtains the environmental state information and
makes a decision for the content caching. The agent receives

immediate reward feedback from the system, and the system
enters the next new state. The agent store the current status
information into the experience replay memory for future
training.

4. Experiment Results and Analysis

In the simulation environment, the cache capacity of the
MBS is 15TB, and the coverage radius is 2 km. The RSU
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cache capacity is 10TB, and the coverage radius is 200m.
The range of the number of vehicles is from 25 to 45, and
the size of the vehicle cache is 5TB. The transmission power

of RSU and MBS content is 35 dBm and 38dBm, respec-
tively. The Zipf impact factor is 0.68. The neural network
parameters are set as two hidden layers, and the activation
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function is ReLU [15]. The detailed settings of parameters
are shown in Table 1.

To verify the performance of the cooperative edge caching
strategy, we compare the cooperative caching scheme with
noncooperative caching scheme under the parameters setting
of Table 1. The learning process of cooperative and noncoop-
erative caching strategies is shown in Figure 4. The average
reward of cooperative caching rapidly increases to 170 after
50 episodes and then gradually stabilizes. For noncooperative
caching, with the increase of training episodes, the average
reward has stabilized around 100. The cooperative caching
strategy not only make the most use of the cache space but also
effectively improve the system performance. The advantage of
noncooperative caching is that it does not need to consider the
content caching status of other edge servers, and the system
complexity is low.

Figure 5 shows the comparison of the cache hit rate for
different caching strategies. With the continuous increase
of training times, the cooperative cache hit rate obtained
by the system is stable above 85%. For the noncooperative
caching, the system cache hit rate is roughly 10% lower than
the cooperative caching. When the training reaches 400
rounds, the hit rate of the noncooperative cache gradually
tends to 75%. The reason for the gap is that the noncooper-
ative caching cannot make full use of the cache space, which
causes a waste of storage and a low system caching hit rate.

The relationships of the system caching hit rate under dif-
ferent Zipf distributions is shown in Figure 6. When the Zipf
distribution parameter is large, it indicates that the vehicle
users have more requests for the content with high popularity.
Caching the high popularity content is beneficial to the
improvement of the system cache hit rate. When the content
requests increase, the noncooperative caching is difficult to
meet the vehicle requests. The proposed cooperative cache
strategy fully considers the cooperation between RSU and
MBS, and the system cache hit rate increases significantly.

Figures 7 and 8 show the comparison of the average cache
hit rate of different algorithms under the different schemes.
With the increase of training times, the average caching hit
rate of MBS gradually tends to a stable value above 80%. For
the (deep Q network) DQN algorithm, the caching hit rate
fluctuates greatly in the first 250 episodes, because DQN is
difficult to deal with the complex state information. For the
average cache hit rate of RSU, the DDPG algorithm has better
performance in the first 250 episodes. After 250 training
episodes, the effect is slightly lower than that of the (policy
gradient) PG and the DQN algorithm.

Figure 9 presents the cooperative cache performance
under the different numbers of vehicles. Compared with
PG and DQN based algorithms, the DDPG-based algorithm
can bring better benefits to the system and tend to be stable
when dealing with the complex environment. At the same
time, it also verifies that the DDPG-based algorithm has
unique advantage for improving the overall average hit rate.

5. Conclusions

This paper focus on the improving of cache performance in the
IoV environment and proposes a V2I-based cooperative cach-

ing strategy. We propose MBS-RSU-vehicle three layer archi-
tecture and model the problem as maximizing the average
cooperative cache hit rate. The objective function is solved by
using the reinforcement learning algorithm based on DDPG.
In order to verify the performance of the proposed cache strat-
egy, the effects of cooperative caching and noncooperative are
compared under different system parameters. In future work,
we will further consider the content transmission delay and
use game theory to solve the problem of resource competition
between cooperative cache servers.
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Combining multiaccess edge computing (MEC) technology and wireless virtual reality (VR) game is a promising computing
paradigm. Offloading the rendering tasks to the edge node can make up for the lack of computing resources of mobile devices.
However, the current offloading works ignored that when rendering is enabled at the MEC server, the rendering operation
depends heavily on the environment deployed on this MEC serve. In this paper, we propose a dynamically rendering-aware
service module placement scheme for wireless VR games over the MEC networks. In this scheme, the rendering tasks of VR
games are offloaded to the MEC server and closely coupled with service module placement. At the same time, to further
optimize the end-to-end latency of VR video delivery, the routing delay of the rendered VR video stream and the costs of the
service module migration are jointly considered with the proposed placement scheme. The goal of this scheme is to minimize
the sum of the network costs over a long time under satisfying the delay constraint of each player. We model our strategy as a
high-order, nonconvex, and time-varying function. To solve this problem, we transform the placement problem into the min-
cut problem by constructing a series of auxiliary graphs. Then, we propose a two-stage iterative algorithm based on convex
optimization and graphs theory to solve our object function. Finally, extensive simulation results show that our proposed
algorithm can ensure low end-to-end latency for players and low network costs over the other baseline algorithms.

1. Introduction

Wireless virtual reality (VR) games are becoming more and
more popular, and it is reported that the global VR gaming
market size is projected to reach 45 billion dollars by 2025.
A wireless VR game application is generally composed of
two parts: a collection module and a service module. The
collection module is used to collect the geographic location
and actions of players and then delivers the collected infor-
mation to the service module. The service module encapsu-
lates all the necessary environments to perform logical
calculations, render the scene, and synchronize the game
information among players [1]. Players of different VR
games need different service modules to perform their
respective rendering tasks. Players of the same VR game
use the same service modules and need to synchronize the
information of this VR game with each other (such as char-

acter position and score). However, offering low-latency and
high-quality VR gaming services to mass wireless players at
any time and anywhere is always a major challenge [2–8].

Recently, introducing multiaccess edge computing
(MEC) technology to wireless VR games has been a promis-
ing computing paradigm to address the above challenges
[9–14]. By offloading the rendering tasks from the mobile
devices (e.g., VR headsets) to the proximal MEC servers,
the players’ requirements for ultrahigh computational
capacity and strict response latency would be satisfied. Ren-
dering refers to the process of generating images from a
model, which is a representation of a 3D object or virtual
environment defined by a programming language or data
structure. Specifically, since the MEC server has higher com-
puting power than the mobile device, the delay of rendering
VR tasks on the MEC server is less than the delay of render-
ing the same VR tasks on the mobile device [15–19].
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However, edge rendering inevitably introduces the
edge computing delay and the transmission delay caused
by the rendered VR game video stream back to the mobile
terminal. Especially, since the data volume of VR video
streams is generally huge, the increase in delay will be
even more pronounced. Therefore, it is particularly impor-
tant to optimize the routing of rendered VR game video
streams and reasonably allocate the edge resource includ-
ing wireless spectrum and computation. In addition, it
should be noted that deploying service modules on MEC
servers increases placement costs, and limited by the stor-
age capacity, service modules of all kinds of VR games
cannot deploy on each MEC at the same time [20–23].
But the premise of performing the rendering task of the
player on the MEC server is that the service module of
the VR game that this user participates in has been
deployed on this MEC server [24–26]. Based on the above
discussion, the service module placement optimization and
the computation resource allocation should be closely
coupled to jointly optimize the wireless VR game delivery
performance [27–29].

Moreover, in a MEC network scenario of concurrent
multiple kinds of wireless VR games, the geographical posi-
tion of players may change with time, and their access base
stations (BSs) may change as they move. To ensure the low
routing cost of the rendered VR video streams of one group,
the corresponding VR service module serving this group
may need to migrate to a new base station. The above situa-
tion would increase migration costs [30–34] including hard-
ware wear-and-tear costs and data migration delay costs.
Dynamically optimizing the trade-off between the routing
cost and migration cost is necessary.

In this paper, we propose a dynamically rendering-
aware service module placement scheme. In this scheme,
the rendering tasks of VR games are offloaded to the
MEC server and closely coupled with service module place-
ment. At the same time, to further optimize the end-to-end
latency of VR video delivery, the rendered VR video stream
routing delay and service module migration costs are con-
sidered with the proposed placement scheme. Specifically,
the strategies jointly consider the bandwidth, computing,
and storage resource allocation scheme within each time
slot and the service module migration cost optimization
between different base stations in the adjacent time slot.
The goal of this scheme is to minimize the sum of the net-
work costs over a long time under satisfying the delay con-
straint of each player.

(i) In this paper, we propose a dynamically rendering-
aware service module placement scheme, which
jointly optimizes service module placement and
the associated rendering computation allocation.
The goal of this scheme is to minimize the whole
network cost based on satisfying the players’ low
end-to-end delay and high-computing requirements

(ii) We study the problem of how to dynamically place
the VR service module to achieve a good balance
between the routing delay cost of the rendered VR

video stream and the migration cost of the corre-
sponding service module

(iii) We transform our placement problem into the
minimal cut problem by developing algebraic con-
versions and constructing a series of auxiliary
graphs. Then, we propose a two-stage iterative algo-
rithm based on convex optimization and graphs
theory to solve our objective function within poly-
nomial time

The rest of this paper is organized as follows. Section 2
introduces the system model. Section 3 presents the problem
formulation. The proposed solution is presented in Section
4. In Section 5, simulation results are presented and dis-
cussed. Finally, the conclusion is given in Section 6.

1.1. Related Work. At present, most of the research on place-
ment strategy focuses on reducing network delay and net-
work overhead for the user by reasonably deploying the
services, data, or virtual machines in a suitable location with
limited network resources. But the current works ignore
considering the dependency relationships between comput-
ing and storage. Paper [24] proposes a two-time scale frame-
work that jointly optimizes service placement and request
scheduling considering system stability and operation cost.
Paper [1] provides a mix of cost models to optimize the
deployment of collaborative edge applications to achieve
the best overall system performance. Paper [25] proposes a
distributed algorithm based on games theory to optimize
virtual machine placement in mobile cloud gaming through
resource competition to meet the overall requirements of
players in a cost-effective manner. Paper [35] proposes a
novel offline community discovery and online community
adjustment schemes to reduce the internode traffic and the
system overhead, which solve the replica placement problem
in a scalable and adaptive way. Paper [36] has some similar-
ities with our work, which studies the joint optimization of
service placement and request routing in the MEC networks
with multidimensional (storage-computation-communica-
tion) constraints. In paper [5], the author proposes a
MEC-based dynamic cache strategy and an optimized
unload strategy to minimize system delay and energy. Paper
[27] proposes a rendering-aware tile caching scheme to
optimize the end-to-end latency for VR video delivery over
multicell MEC networks. Paper [28] designs a view
synthesis-based 360 VR caching system to meet the require-
ments of wireless VR applications and enhance the quality
of the VR user experience, which supports MEC and hierar-
chical caching.

The goal of the recent research on wireless VR mainly
focuses on improving the quality of service (QoS), reducing
network overhead, or both by proper resource allocation,
transcoding technology, introducing edge networks, and
etc. Insufficient consideration is given to players’ mobility
and the network scenario of concurrent multiple kinds of
wireless VR games. Paper [4] proposes a blockchain-
supported task offloading scheme to resist malicious attacks,
which reduces the computing load of virtual machines and
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satisfy the high QoE of VR users. Paper [10] proposes a
wireless VR network that supports MEC. The network uses
a recurrent neural network (RNN) to predict the field of
view of each VR user in real-time and transfers the render-
ing task of VR from the VR device to the MEC server
through the rendering model migration function. Paper
[16] proposes an adaptive MEC-assisted virtual reality
framework, which can adaptively assign real-time virtual
reality rendering tasks to MEC servers. Meanwhile, the cach-
ing capability of MEC servers can further improve network
performance. Paper [37] proposes a task offloading, and
resource management scheme based on wireless virtual real-
ity is proposed. The scheme comprehensively considers the
factors of cache, computing, and spectrum allocation and
minimizes the content delivery delay while guaranteeing
quality. Paper [38] studies a multilayer wireless VR video
service scenario based on a MEC network. Its main goal is
to minimize system energy consumption and delay and to
find a balance between these two indicators. Paper [11]
proposes to minimize the long-term energy consumption
of MEC systems based on THz wireless access by jointly
optimizing viewport rendering offloading and downlink
transmission power control to support high-quality immer-
sive VR video services. Paper [39] proposes a novel
transcoding-enabled VR video caching and delivery frame-
work for edge-enhanced next-generation wireless networks.
Paper [40] investigates the optimal wireless streaming of a
multi-quality-tiled VR video from a server to multiple users
by effectively utilizing characteristics of multi-quality-tiled
VR videos and computation resources at the users’ side.

2. System Model

The MEC server is a microdata center that is typically
deployed with a cellular base station or WiFi access point.
Some lightweight virtualization technologies are used to vir-
tualize the hardware resources in the MEC server to realize
the flexible sharing of resources.

In this section, as illustrated in Figure 1, we consider a
scenario of concurrent multiple kinds of VR games under
the cellular network equipped with MEC servers. In this net-
work scenario, there are U players and M base stations
(BSs), where each BS is deployed with a MEC server. We
represent the set of BSs asU = f1, 2, 3,⋯,u,⋯,Ug and repre-
sent the set of users as M = f1, 2, 3,⋯,m,⋯,Mg. The base
stations are connected to each other in a wired way. We
assume that there are H kinds of VR games in this scenario,
denoted by the set H = f1, 2, 3,⋯,h,⋯,Hg. Therefore, H
different service modules are required to support these VR
games. In addition, to make dynamic decisions, we model
our problem as a time-slotted system, where we use T = f1,
2, 3,⋯,t,⋯,Tg to denote the set of consecutive time slots
under consideration. We assume that each time slot is much
larger than the delay caused by transmission and processing.

In the remaining subsections, the mathematical models
for communication, dynamic placement, rendering compu-
tation, and whole network cost are discussed. Some impor-
tant notations are summarized in Table 1.

2.1. Placement Cost. In this section, we investigate the
dynamic placement scheme of all VR service modules in
the system.

We assume that the set of service module placement strat-
egies can be denoted as Δ = fδtmhjm ∈M, h ∈H , t ∈T g,
where δtmh = 1 represents that the VRmodule service h is stor-
aged in the BS m; otherwise at the time t, δtmh = 0.

The cost for using the storage resources when placing
service module h on edge node m is characterized by λmh.
The cost of the placement VR service module can be
expressed by the following formula:

CosttP = 〠
M

m=1
〠
H

h=1
λmhδ

t
mh: ð1Þ

We assume the storage capacity of BS m is Πm, and the
size of VR service module h is wh. Due to the total size of the
VR service modules deployed in BS m should not exceed the
maximum storage capacity of BS m, the constraint should be
expressed as

〠
H

h=1
δtmhwh ≤Πm,∀m ∈M: ð2Þ

2.2. Migration Cost. When the players move, due to the
changes in the geographical location, the BS that transmits
the rendered data to the players may change. At the same
time, the BS that originally provided the rendering service
for the game group may no longer be the best choice to pro-
vide service. The group may need to select a suitable new BS
to perform rendering and even may need to deploy the cor-
responding VR service module on the new selected BS. That
is to say, the data information of the service module may
need to be migrated from the old MEC server to the new
MEC server and built the environment on the new MEC.
However, the migration of the VR service module will cause
hardware wear-and-tear costs and impose data migration
latency costs. The migration delay of each player belonging
to the same group is equal and can be expressed as

Dmig
u,t = 〠

M

m=1
〠
H

h=1
phug δtmh, δt−1mh

� �
: ð3Þ

In addition, the all migration costs can be expressed as

CosttM = 〠
M

m=1
〠
H

h=1
f δtmh, δt−1mh

� �
+ g δtmh, δt−1mh

� �� �
, ð4Þ

where f ðδtmh, δt−1mh Þ and gðδtmh, δt−1mh Þ can be, respectively,
defined as

f δtm,h, δt−1m,h
� �

=
f h, δtmh > δt−1mh ,
0, δtmh ≤ δt−1mh ,

(
ð5Þ
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g δtm,h, δt−1m,h
� �

=
υgh, δtmh > δt−1mh ,
0, δtmh ≤ δt−1mh ,

(
ð6Þ

where gh represents the migration delay of the VR service
module h and f h represents the cost of reconfiguring the
VR service module h. To be reasonable, we make the values

of f ðδtmh, δt−1mh Þ and gðδtmh, δt−1mh Þ to the same order of magni-
tude by adjusting the parameter υ.

2.3. Rendering Cost. Players in the same group may have
overlapping computational tasks; in this section, we assume
that the MEC server computes centrally after collecting all
the information of the players in the group. Therefore, we
allocate the computing resources on each server by the group.

In the MEC network, when the MEC server is serving
only one group, that group can certainly get more comput-
ing resources to perform rendering, resulting in a low pro-
cessing latency experience. However, in general, each MEC
server needs to serve multiple groups at the same time,
which can lead to competition for computation resources.
In particular, if too many groups render on the same MEC
server, the delays for all groups connected to this server will
increase dramatically.

phu ∈ f0, 1g is the indicator, to represents whether the
players u join in the VR game h. Due to one player can only
join in one kind of game, so the corresponding constraints
can be, respectively, formulated as

〠
H

h=1
phu = 1,∀u ∈U: ð7Þ

We use S = fstmhjm ∈M, h ∈H , t ∈T g to denote the set
of the rendering base station selection strategies. When the
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Player 1
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Player 4

Player 1

BS 1

BS 3

BS 4
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BS 2 with service 
module 2

BS 5 with service 
module 1

d

d

d

d
d

Task 2 Task 3 Task 4

Task 4

Task 3
Task 3

Task 2
Task 2

Task 1

Task 1Task 5

Task 5

Task 5

Rendering Rendering

VR video 2 VR video 1

Figure 1: System model. Players 1 and 5 belong to the same VR game and need VR service module 1 to perform rendering. Players 2–4
belong to the same VR game and need VR service module 2 to perform rendering. Among them, the player 1 migrates from the
coverage of BS 4 to the coverage of BS 5, and the player 2 migrates from the coverage of BS 2 to the coverage of BS 3. Player 3 access to
BS 1 and offload the task 3 from BS 1 to BS 2.

Table 1: List of key notations.

Notation Definition

M Set of BSs

U Set of users

H Set of VR games

T Set of consecutive time slots

δtmh Placement indicator

Πm The maximum storage capability of BS m

σ2 The variance of additive white Gaussian noise

Bt The maximum bandwidth of BS at time t

Km The maximum computing capability of BS m

atmu The access indicator at the time t

stmh The BS selection indicator at the time t

dm,m′ The delay of routing one bit of data from BSm to BSm′
phu The indicator of player u whether joining in grouph
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group h selects the MEC server m to perform the rendering
task, stmh = 1 at the time t; otherwise, stmh = 0.

In order to ensure the information synchronization
between users in the same group, we assume that a group
can only select one MEC server to process tasks at a time
slot, so the corresponding constraints can be formulated as

〠
M

m=1
stmh = 1,∀h ∈H , t ∈T : ð8Þ

Since the cost of putting the VR service module on the
server is high, we put the VR service module on the BS,
which has been selected to process the groups’ tasks. So,
we can get the following formula:

δtmh = stmh,∀t ∈T , h ∈H ,m ∈M: ð9Þ

We assume that the maximum computing capability of
the MEC server m is Km (Hz) and the computing resource
of the BS m allocated to group h at time t is ktmh. We use
K = fktmhjm ∈M, h ∈H , t ∈T g to represent the computing
resource allocation scheme. Ct

h represents the computing
resource needed for group h at time t. The rendering delay
of players belonging to the same group is equal. So, the ren-
dering delay of player u at time slot t can be expressed as

Drend
u,t = 〠

M

m=1
〠
H

h=1
stmhp

h
u
Ct
h

ktmh

, t ∈T : ð10Þ

So, the rendering cost can be denoted by the sum of the
rendering latency of all groups, which can be expressed by

CosttR = 〠
M

m=1
〠
H

h=1
stmh

Ct
h

ktmh

, t ∈T : ð11Þ

At the same time, a MEC server cannot allocate more
computing resources to the groups; it serves than its maxi-
mum computing resources. Therefore, the corresponding
computing resources constraints can be formulated as

〠
H

h=1
ktmh ≤ Km,∀m ∈M, t ∈T : ð12Þ

2.4. Communication Cost. In this section, we present the
communication model in the mobile edge computing net-
works based on mmWave, which concentrates on the down-
link transmission. At the same time, we introduce the
routing transmission delay.

2.4.1. Downlink Delay. We use A = fatmujm ∈M, u ∈U, t ∈
T g as the access scheme, where the atmu = 1 means that
players u is associated with BS m at the time t to obtain
the rendered game video stream, while atmu = 0 denotes that
players u is not served by BS m at the time t.

Moreover, players cannot connect to multiple base sta-
tions at the same time, and we need to ensure that each

player can connect to a suitable one. So we get the following
constraint formula:

〠
M

m=1
atmu = 1,∀u ∈U: ð13Þ

We adopt the orthogonal spectrum reuse scheme in this
system; i.e., all BS share the total frequency bandwidth, and
there is no interference between the users served by the same
BS. The data amount of the uplink transmission is small,
only including some players' information, such as com-
mands and actions. So, the delay and cost of this process
are ignored in this paper.

The downlink transmission is used to transmit the ren-
dered VR video stream, in which the amount of data is
larger. Therefore, millimeter Wave technology with large
bandwidth is adopted for downlink transmission. Assume
that all channels are subject to independent identically dis-
tributed quasistatic Rayleigh block fading. The path loss
can be expressed as follow:

Ltmu = ηt dtmu

�� ��−ςt� �
, ð14Þ

where ηt is the downlink constant related to frequency, ςt is
the downlink path loss exponent at time t, and jdtmuj is the
distance between the players u and BS m at time t.

Millimeter wave has the characteristics of short wave-
length, small power, and directional antenna. The interfer-
ence between the same frequency beam can be reduced
well by millimeter wave interference cancelation technology.
As the interference cancelation technology is not the focus of
this paper and the millimeter transmission tends to be noise-
limited and weak-interference, the interference in the trans-
mission process of millimeter waves is ignored in this paper
by referring to papers [16, 41, 42]. So, the signal-to-interfer-
ence-plus-noise ratio received by the players u from the BS u
is expressed as follows:

SINRt
mu =

pmug
t
muL

t
mu

σ2 , ð15Þ

where gtmu is the downlink antenna gain using direction
beamforming between players u and BS m at the time t,
pmu is the transmission power between players u and BS m,
and σ2 is the variance of additive white Gaussian noise
(AWGN).

We assume that the spectrum bandwidth allocated to
players u from BS m at time t is Bt

mu and use B = fBt
mujm

∈M, u ∈U, t ∈T g as the bandwidth allocation scheme.
Since the total bandwidths that the BS m allocates to its
access players do not exceed the whole bandwidths in the
wireless access network at time t, which is Bt , corresponding
bandwidth constraints can be formulated as

〠
U

u=1
Bt
mu ≤ Bt ,∀m ∈M, t ∈T : ð16Þ
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Then, the uplink transmission rate between the players u
and the BS m at time t is

rtmu = Bt
mulog2 1 + SINRt

mu

� �
: ð17Þ

We assume that the size of the video images needed to
transmit to the players u at time t is otu, so the delay of down-
link transmission for players u at time t is

Ddown
u,t = 〠

M

m=1
atmu

otu
rtmu

: ð18Þ

The delay of downlink transmission for all players at
time t, i.e., the downlink communication cost of the net-
work, is

Et
1 = 〠

U

u=1
Ddown
u,t : ð19Þ

2.4.2. Routing Delay. In this section, we divided the players
into H groups based on the differences in VR games they
participate in. Different groups need different service mod-
ules to perform rendering. We need to select an appropriate
MEC server to perform rendering for group h and route the
rendered video stream quickly to the access base station of
the user belonging to the group h. The selected MEC server
needs to have deployed the corresponding VR service mod-
ules and has sufficient computing resources to perform ren-
dering tasks.

According to the above assumption, at the time slot t,
the delay of routing the rendered VR content requested by
user u from the working (rendering) BS m to this user’s
access BS m′ can be expressed as

Drout
u,t = 〠

M

m=1
〠
H

h=1
〠
M

m′=1
phua

t
m′us

t
mhd m,m′
� �

otu, ð20Þ

where dðm,m′Þ is the delay of routing one bit of data from
BS m to BS m′, when m =m′, dðm,m′Þ = 0.

The routing delay of all players at time t, i.e., the routing
cost of the network, is

Et
2 = 〠

U

u=1
Drout

u,t : ð21Þ

So, the communication cost at time t can be expressed as
the sum of downlink transmission delay and routing delay.

CosttC = Et
1 + Et

2, t ∈T : ð22Þ

3. Problem Formulation

Our goal is to develop dynamical service module placement
strategies based on rendering-aware. The goal of those strat-
egies is to minimize the sum of the whole network costs over

a long time under satisfying the delay constraint of each
player. The strategies jointly consider the resource allocation
scheme within each time slot and the service module migra-
tion scheme between different base stations in the adjacent
time slot.

We assume that the maximum tolerance delay of the
group u is Du. According to the above formula, the actual
end-to-end delay of player u at time slot t can be expressed
by the following:

Du,t ′ =Ddown
u,t +Drout

u,t +Drend
u,t +Dmig

u,t : ð23Þ

We define ε1 − ε4 as the weight coefficients, which repre-
sent the proportion of communication cost, rendering cost,
placement cost, and migration cost in the objective function,
respectively. So, the optimization problem can be formulated
as follows:

Γ1 : min
A ,S ,B,K ,Δ

〠
T

t=1
ε1CosttC + ε2CosttR + ε3CosttP + ε4CosttM

s:t: C1 : 〠
M

m=1
atmu = 1,∀u ∈U, t ∈T

  C2 : 〠
M

m=1
stmh = 1,∀h ∈H , t ∈T

  C3 : 〠
U

u=1
Bt
mu ≤ Bt ,∀m ∈M, t ∈T

  C4 : 〠
H

h=1
ktmh ≤ Km,∀m ∈M, t ∈T

  C5 : 〠
H

h=1
δtmhwh ≤Πm,∀m ∈M

  C6 : D′u,t ≤Du

  atmu, stmh, δtmh ∈ 0, 1f g:
ð24Þ

Constraint C1 ensures that a player cannot connect to
multiple base stations at the same time; meanwhile, each
user can connect to a BS. Constraint C2 ensures that a group
can only select one MEC server to perform rendering tasks
at a time slot. Constraint C3 ensures that the total band-
widths that the BS m allocates to its access players do not
exceed the whole bandwidths in the wireless access network
at time t. Constraint C4 ensures that a MEC server cannot
allocate more computing resources to the groups; it serves
than its maximum computing resources. Constraint C5
ensures that the total size of the VR service modules storage
in BS m should not exceed the maximum storage capacity of
BS m. Constraint C6 ensures the total delay of each group
cannot exceed its maximum tolerance delay.
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4. Solution

In this section, in order to solve the original problem effi-
ciently, we decompose the original problem into two sub-
problems including dynamic access and service module
placement scheme and the quasistatic resource allocation.
Then, we use minimum cut theory and convex optimization
to solve the above subproblems, respectively.

4.1. Problem Reformulation. Firstly, to get rid of constraint 1
and constraint 2, we redefine sets A = fatmujm ∈M, u ∈U, t
∈T g and S = fstmhjm ∈M, h ∈H , t ∈T g as A∗ = fatu∗, u
∈U, t ∈T g and S∗ = fsth∗, h ∈H , t ∈T g, respectively,
where A t

∗ = fatu∗, u ∈Ug is the set of access decisions at time
t and atu∗ ∈M represents the BS accessed by the players u,
and there is a one-to-one mapping relationship between it
and the set A t

u = fatmu,m ∈Mg. That is, atmu = 1 and fatiu
= 0ji ∈M, i ≠mg when atu∗ =m. This way of coding can sat-
isfy the constraint C1 that a player can only access one base
station at the same time.

In the same way, S t
∗ = fsth∗, h ∈Hg is the set of BS selec-

tion scheme at time t. sth∗ ∈M represents BS serving group h
at time t, and there is a one-to-one mapping relationship
between it and the set S t

h = fstmh,m ∈Mg. This way of cod-
ing can satisfy the constraint C2 that a group can only select
one MEC server to perform editing tasks at a time slot.

So, the δtmh can be redefined as

δtmh =
1, sth∗ =m,∀h ∈H ,
0, otherwise:

(
ð25Þ

Moreover, Bt
∗ = fBt

u∗, u ∈Ug is the set of bandwidth
allocation scheme at time t. Bt

u∗ = Bt
atu∗u

∈ ½0, Bt� is the band-
width that BS atu∗ allocate to the players u at time t. K t

∗ =
fkth∗, h ∈Hg is the set of computing resources allocation
scheme at time t. kth∗ = ktsth∗h ∈ ½0, Km� is the computing

resources that BS sth∗ allocate to the group h at time t.
Thus, we transform the original problem into the follow-

ing problem:

Γ2 : min
A∗ ,S∗ ,B∗ ,K∗

〠
T

t=1
ε1 〠

U

u=1

otu
Bt
atu∗u

log2 1 + SINRt
u∗

� �
 

+ ε1 〠
H

h=1
〠
U

u=1
phud sth∗, atu∗
� �

+ ε2 〠
H

h=1

Ct
h

ktsth∗h

+ ε3 〠
M

m=1
〠
H

h=1
λmh1 sth∗ =m

� �
+ ε4 〠

H

h=1
f sth∗, st−1h∗
� �

+ g sth∗, st−1h∗
� �� �!

 

 C4′ : 〠
h∈Ht

m

kth∗ ≤ Km,∀m ∈M, t ∈T

 C5′ : 〠
H

h=1
δtmhwh ≤Πm,∀m ∈M

 C6′ : D′ut ≤Du

 atu∗, sth∗,∈M,

ð26Þ

where Ht
m represents the set of all the groups that ren-

der on the BS m and Ut
m represents the set of all the players

that access the BS m at time t. Constraint 5 can be satisfied
by the k-size minimum cut algorithm. 1ð:Þ is a binary func-
tion that equals 1 if the specified condition holds and 0 oth-
erwise, where A is the penalty function, which can be
expressed as D′ut :

D′ut = 〠
H

h=1
phu g sth∗, st−1h∗

� ��
+ Ct

h

ktsth∗h
+ d sth∗, atu∗
� �" #

+ otu
Bt
atu∗u

log2 1 + SINRt
u∗

� � :
ð27Þ

Due to our objective function containing dynamic opti-
mization and quasistatic optimization, we divide the target
function into two parts.

For the part one,

CostI = 〠
T

t=1
ε1 〠

H

h=1
〠
U

u=1
phud sth∗, atu∗
� �

+ ε3 〠
M

m=1
〠
H

h=1
λmh1 sth∗ =m

� � 

+ ε4 〠
H

h=1
f sth∗, st−1h∗
� �

+ g sth∗, st−1h∗
� �� �!

:

ð28Þ

We design an iterative algorithm to update the access
decisions of players and the placement schemes of the VR
service module in each round by performing an operation
called α expansion. Furthermore, we optimize the expansion
by minimizing graph cuts.

For the part two,

CostII = 〠
T

t=1
ε1 〠

U

u=1

otu
Bt
u∗log2 1 + SINRt

u∗
� � + ε2 〠

H

h=1

Ct
h

kth∗

 !
:

ð29Þ

We use convex optimization to solve the resource alloca-
tion problem at each time slot.

4.2. Optimizing Dynamic Access and Placement Strategies by
Graph Cuts. In this section, we introduce the α expansion
algorithm and how to construct a helper graph and encode
the costs of part I into weights on the graph edges. Then,
we demonstrate that the min-cut of the graph corresponds
to the optimal decisions for the α expansion.

4.2.1. α Expansion. An α expansion can be defined as a
binary optimization and reflects the trend of moving the
module served for group h from the current base station
to the base station α and the trend of users accessing base
station α from the current base station. As shown in
Figure 2, when we selected BS α as the expansion, atαu∗ has
a binary choice to stay as atαu∗ = atu∗ or change to atαu∗ = α.
In the same way, stαh∗ has a binary choice to stay as stαh∗ =
sth∗ or change to stαh∗ = α.
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For the sake of calculation, the resultant after expansion
also can be expressed by two indicator vectors with binary
decision variables. (1) x′t = fx1′ t,⋯, xu′tg, where for all u
∈U , we define xu′t = 1 if atαu∗ = α; otherwise, xu′t = 0. (2) x
= fxt1,⋯, xthg, where for all h ∈H, we define xth = 1 if stαh∗
= α; otherwise, xh = 0. Note that, if the module served for
group h is already on BS α, xth = 1, if the players u is already
access BS α, xu′t = 1.

4.2.2. Transforming the CostI . After performing an “α expan-
sion,” we reconstruct the CostI as CostαI using binary vari-
ables xt′u and xth; at the same time, we define �xu′t = 1 − xu′t
and �xth = 1 − xth. And we can get

ε1 〠
T

t=1
〠
H

h=1
〠
U

u=1
phuo

t
ud sth∗, atu∗
� �α

= ε1 〠
T

t=1
〠
H

h=1
〠
U

u=1
phuo

t
u d sth∗, atu∗
� �

�xth�xu′ t
h

+ d α, atu∗
� �

xth�xu′t + d sth∗, α
� �

�xthx
t ′
u

i
,

ð30Þ

ε4 〠
T

t=1
〠
H

h=1
f sth∗, st−1h∗
� �α = ε4 〠

T

t=1
〠
H

h=1
f sth∗, st−1h∗
� �

�xth�x
t−1
h

�
+ f α, st−1h∗
� �

xth�x
t−1
h + f sth∗, α

� �
�xthx

t−1
h

�
,

ð31Þ

ε4 〠
T

t=1
〠
H

h=1
g sth∗, st−1h∗
� �α = ε4 〠

T

t=1
〠
H

h=1
g sth∗, st−1h∗
� �

�xth�x
t−1
h

�
+ g α, st−1h∗
� �

xth�x
t−1
h + g sth∗, α

� �
�xthx

t−1
h

�
:

ð32Þ
Then, based on the definition of δtmh, we can rewrite it as

ε3 〠
M

m=1
〠
H

h=1
λmh1 sth∗ =m

� �α = 〠
M

m=1
〠
H

h=1
λαhx

t
h + λmh�x

t
h

� �
: ð33Þ

4.2.3. A Simple Example of Graph Cut. Based on the deriva-
tion above, we find that ∑T

t=1∑
H
h=1∑

U
u=1p

h
uo

t
udðsth∗, atu∗Þα and

∑T
t=1∑

H
h=1∑

U
u=1 f ðsth∗, st−1u∗ Þα correspond to the sum of the

products of pairs of binary variables; ∑M
m=1∑

H
h=1λmh1

ðsth∗ =mÞα corresponds to the sum of binary variables.
Taking θ1�xu�sh + θ2�xu + θ3�sh and β1sh + β2�sh as simple

examples, we next will introduce how to minimize them,
respectively, by constructing a graph. The basic idea is to
construct a helper graph to make the sum of the weights
of the min-cut of the graph equal the optimal value of the
objective function. The above cut edges divide the nodes
in the graph into two parts: one part of the nodes is on
the side of node s, and the corresponding value is 0. The
other part of the nodes is on the side of node t, and the cor-
responding value is 1. In addition, the minimum cut can be
computed in polynomial time only if all the edge weights
are nonnegative. Next, we will introduce how to build a dia-
gram for our example.

For θ1�xu�sh + θ2�xu + θ3�sh, we reformulate the expression
to construct each edge in a subgraph.

θ1�xu�sh + θ2�xu + θ3�sh

= θ1
2 �xu�sh +

θ1
2 �xu�sh + θ2�xu + θ3�sh

= −
θ1
2 xu�sh −

θ1
2 �xush +

θ1
2 + θ2

	 

�xu +

θ1
2 + θ3

	 

�sh:

ð34Þ

As illustrated in the first figure in Figure 3, the weight of
edge between node u and node h is −θ1/2, the weight of
edge between node u and node t is θ1/2 + θ2, and the weight
of edge between node h and node t is θ1/2 + θ3, where −
θ1/2 ≥ 0. For example, when we divide the first graph’s
nodes in Figure 3 into two parts by cutting the edge
between nodes s and h, the edge between nodes h and u,
and the edge between nodes u and t, node u and node s
are in the same part, and node h and node t are in the same
part (i.e., xu = 0, sh = 1, and �xu = 1, �sh = 0). The value of the
first graph function is θ1�xu�sh + θ2�xu + θ3�sh = θ2, which is
equal to the sum of the weights of the cut edges. In the last
figure in Figure 3, the weight of edge between node h and
node s is β1, and the weight of edge between node h and
node t is β2.

u3

u2 u3 u5 u4 u6

m3

m2 m3 m3

m2 m2 m3 m3 m4

m4m2

x3 = 1 x6 = 1

u1 u6

𝛼

u1 u2 u3 u4 u5 u6
Before
After

x 1 0 1
𝛼𝛼

𝛼
𝛼

0 0 1

Figure 2: α expansion. The player u3 changes the access base
station from m2 to α, and u6 changes the access base station from
m4 to α, respectively.

u

s
s

t t

h h

0 0
–𝜃1

2

𝜃1+ 𝜃32
𝜃1+ 𝜃22

𝛽1

𝛽2

Figure 3: Graph construction. The first figure correspond to θ1�xu
�sh + θ2�xu + θ3�sh; the last figure corresponds to β1sh + β2�sh:.
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4.2.4. Constructing a Graph to Solve the Subproblem. In this
section, we construct a graph G ≪ ðV ,EÞ to make the sum
of the edges’ weights in the minimal cut set equals the opti-
mal value of our objective function. In this graph, there are
T ∗U vertices corresponding to the players, and T ∗H ver-
tices corresponding to the groups. Moreover, a source vertex
s and a terminal vertex t are also in the vertex set. As a result,
the set of vertices in G is given by fxu′tju ∈U, t ∈T g ∪ fxth
jh ∈H , t ∈T g ∪ fs, tg.

In the next section, we add edges to the graph and give
each edge an appropriate weight. Firstly, based on the exam-
ple of the last figure in Figure 3. The weights of the edges
between node xth and node s can be represented as λαh, and
the weights of the edges between node xth and node t can
be represented as λmh.

Next, we rewrite formulas (30) and (31) to formulas (40)
and (41) based on the example of the first figure in Figure 3.

Therefore, the weight of the edge between the vertex xu′t
and vertex xth is

phuo
t
u
d α, atu∗ð Þ + d sth∗, αð Þ − d sth∗, atu∗ð Þ

2 , ð35Þ

where dðα, atu∗Þ + dðsth∗, αÞ − dðsth∗, atu∗Þ is always satisfied,
which can be proved by the triangle inequality.

In the same way, the weight of the edge between the ver-
tex xt−1h and vertex xth is

f α, st−1h∗
� �

+ f sth∗, αð Þ − f sth∗, st−1h∗
� �

2 , ð36Þ

where f ðα, st−1h∗ Þ + f ðsth∗, αÞ − f ðsth∗, st−1h∗ Þ is always satisfied,
which can be proved by the triangle inequality.

In addition, based on the above derivation, we can also
get that the partial of weight of the edge between vertex xth
and vertex t is

d sth∗, atu∗ð Þ − d α, atu∗ð Þ + d sth∗, αð Þ
2 : ð37Þ

The partial of weight of the edge between vertex xu′t and
vertex t is

d sth∗, atu∗ð Þ + d α, atu∗ð Þ − d sth∗, αð Þ
2 : ð38Þ

Moreover, the partial of weight of the edge between ver-
tex xth and vertex t is

−f α, st−1h∗
� �

+ f sth∗, αð Þ + f sth∗, st−1h∗
� �

2

+ f α, st−1h∗
� �

− f sth∗, αð Þ + f sth∗, st−1h∗
� �

2 :

ð39Þ

Therefore, we can perform the following transformation
of the objective function based on the above analysis:

ε1 〠
T

t=1
〠
H

h=1
〠
U

u=1
phuo

t
ud sth∗, atu∗
� �α

= ε1 〠
T

t=1
〠
H

h=1
〠
U

u=1
phuo

t
u d sth∗, atu∗
� �

�xth�xu′ t
h

+ d α, atu∗
� �

1 − �xth
� �

�xu′t + d sth∗, α
� �

�xth 1 − �xt ′u
� �i

= ε1 〠
T

t=1
〠
H

h=1
〠
U

u=1
phuo

t
u d α, atu∗
� �

�xu′t + d sth∗, α
� �

�xth
h

+ d sth∗, atu∗
� �

− d α, atu∗
� �

− d sth∗, α
� �� �

�xth�xu′t
i

= ε1 〠
T

t=1
〠
H

h=1
〠
U

u=1
phuo

t
u
d α, atu∗ð Þ + d sth∗, αð Þ − d sth∗, atu∗ð Þð

2 �xthxu′ t
�

+ d α, atu∗ð Þ + d sth∗, αð Þ − d sth∗, atu∗ð Þ
2 xth�xu′ t

+ d sth∗, atu∗ð Þ + d α, atu∗ð Þ − d sth∗, αð Þ
2 �xu′ t

+ d sth∗, atu∗ð Þ − d α, atu∗ð Þ + d sth∗, αð Þ
2 �xth

�
,

ð40Þ

ε4 〠
T

t=1
〠
H

h=1
f sth∗, st−1h∗
� �α

= ε4 〠
T

t=1
〠
H

h=1
f sth∗, st−1h∗
� �

�xth�x
t−1
h

�
+ f α, st−1h∗
� �

1 − �xth
� �

�xt−1h + f sth∗, α
� �

�xth 1 − �xt−1h

� ��
= ε4 〠

T

t=1
〠
H

h=1
f α, st−1h∗
� �

�xt−1h + f sth∗, α
� �

�xth + f sth∗, st−1h∗
� ���

− f α, st−1h∗
� �

− f sth∗, α
� �Þ�xth�xt−1h

�
= ε4 〠

T

t=1
〠
H

h=1

f α, st−1h∗
� �

+ f sth∗, αð Þ − f sth∗, st−1h∗
� �

2 xth�x
t−1
h

�

+ f α, st−1h∗
� �

+ f sth∗, αð Þ − f sth∗, st−1h∗
� �

2 �xthx
t−1
h

+ −f α, st−1h∗
� �

+ f sth∗, αð Þ + f sth∗, st−1h∗
� �

2 �xth

+ f α, st−1h∗
� �

− f sth∗, αð Þ + f sth∗, st−1h∗
� �

2 �xt−1h

�
:

ð41Þ
The detail process of the auxiliary diagram construction

is concluded in Algorithm 1.

4.3. Resource Allocation Scheme Based on Convex
Optimization. In this section, we mainly focus on the opti-
mization of CostII , that is, minimizing the total transmission
and editing delay in each time interval through the reason-
able allocation of computing and spectrum resources. When
A ∗ and S ∗ are determined, the original optimization prob-
lem can be expressed in the following form:
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Γ2′ min
K ,B

〠
T

t=1
〠
M

m=1
ε1 〠

U

u=1

atmuo
t
u

Bt
mulog2 1 + SINRt

mu

� � ε2 〠H
h=1

stmhC
t
h

ktmh

 !

+ CostI + 〠
T

t=1
〠
U

u=1
Λt

u

C3′ : 〠
u∈U

Bt
mu ≤ Bt ,∀m ∈M, t ∈T

C4′ : 〠
h∈H

ktmh ≤ Km,∀m ∈M, t ∈T ,

ð42Þ

where Λ is penalty function, which can be expressed as

Z ∗max 〠
H

h=1
phu

atmuo
t
u

Bt
u∗log2 1 + SINRt

u∗
� � + d sth∗, atu∗

� � !" 

+ g sth∗, st−1h∗
� ��

+ stmhC
t
h

kth∗

#
−Du, 0

!
,

ð43Þ

where Z goes to infinity. dðsth∗, atu∗Þ and gðsth∗, st−1h∗ Þ are con-
stants, when A ∗ and S ∗ are fixed.

Since the structure like 1/Bt
mu is a well-known convex

function, the optimization problem can be proved to be a
convex problem.

Since the variable ktmh can affect multiple spectrum allo-
cation variables, we denote those as global variables. Next,
the local copy of the global variables would be introduced.
Each base station can obtain a distributed feasible solution
by decoupling the above problem.

For BS m, we introduce the new variables k̂m = fk̂etmhje
∈M,m ∈M, h ∈H , t ∈T g as the local information.

k̂
et
mh = kteh,∀e ∈M,m ∈M, h ∈H , t ∈T : ð44Þ

B̂m = fB̂t
mujm ∈M, u ∈Ug is the local variation and rep-

resents the bandwidth resource allocation scheme of the BS
m. Thus, the feasible local variables of the BS m can be
denoted as Φm = ðk̂m, B̂mÞ and the constraint set of the
objective function can be denoted as Ω.

LetΨðΦmÞ be the penalty function, when theΦm belongs
to the constraint set Ω, i.e.,Φm ∈Ω, we can get ΨðΦmÞ = 0.
Otherwise, ΨðΦmÞ = +∞. So, the objective functions equiva-
lent to

min
Φm

, 〠
M

m=1
Ξm Φmð Þ +Ψ Φmð Þ + CostI

s:t: k̂
et
mh − kteh = 0,∀e ∈M,m ∈M, h ∈H , t ∈T ,

ð45Þ

where ΞmðΦmÞ =∑T
t=1ðε1∑U

u=1ðotu/Bt
mulog2ð1 + SINRt

muÞÞ +
ε2∑

H
h=1ðCt

h/ktmhÞÞ, and in the above objective function, we
can view CostI as a constant.

We separate the objective function into multiple local
function of the corresponding BS. Each local function can
determine its local variable by using local information. The
Lagrange formula of the augmented problem is

Input: The network delay between BS m and BS m′dðm,m′Þ; The
switching cost of group h at time t f ðsth∗, st−1h∗ Þ; The migration
delay of group h at time tgðsth∗, st−1h∗ Þ;

Output: The value of binary variables xu′t and xth; The auxiliary
graph G = ðE,V Þ ; the variables stαh∗ and atαu∗

1: Initialization V = fxu′tju ∈U, t ∈T g ∪ fxthjh ∈H , t ∈T g ∪ fsource, terminalg; E = 0;
2: for t = 1 : T do
3: for h = 1 : H do
4: u = 1 : U do
5: eðxth, xu′tÞ = phuo

t
uðdðα, atu∗Þ + dðsth∗, αÞ − dðsth∗, atu∗Þ/2Þ;

6: eðterminal, xu′tÞ = dðsth∗, atu∗Þ + dðα, atu∗Þ − dðsth∗, αÞ/2;
7: end for
8: for Algorithm 1 m = 1 : M do
9: eðxth, xt−1h Þ = f ðα, st−1h∗ Þ + f ðsth∗, αÞ − f ðsth∗, st−1h∗ Þ/2;
10: eðterminal, xthÞ = ð−f ðα, st−1h∗ Þ + f ðsth∗, αÞ + f ðsth∗, st−1h∗ Þ/2Þ +

ð f ðα, st−1h∗ Þ − f ðsth∗, αÞ + f ðsth∗, st−1h∗ Þ/2Þ + ðdðsth∗, atu∗Þ − dðα, atu∗Þ + dðsth∗, αÞ/2Þ + λmh;
11: eðsource, xthÞ = λαh
12: end for
13: end for
14: end for
15: Solve the k-size s-t min cut [43] of G = ðV ,EÞ;

Algorithm 1: Auxiliary graph construction and solving algorithm.
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L Φmf gm∈M, k, ξmf gm∈M
� �
= 〠

M

m=1
Ξm Φmð Þ +Ψ Φmð Þ + CostI

+ 〠
M

m=1
〠
M

e=1
〠
H

h=1
〠
T

t=1
ξetmh k̂

et
mh − kteh

� �

+ ζ

2 〠
M

m=1
〠
M

e=1
〠
H

h=1
〠
T

t=1
k̂
et
mh − kteh

� �2
,

ð46Þ

where ξm = fξetmhg are the vectors of the Lagrange multi-
pliers, and the penalty parameter is ζ/2 ∈ℝ + +.

In order to solve the above problems (46), the iterative
process is as follows.

4.3.1. Local Variables.

Φ ι+1½ �
m = arg min

Φm

Ξm Φmð Þ +Ψ Φmð Þ + CostI

+ 〠
M

e=1
〠
H

h=1
〠
T

t=1
ξet ι½ �mu k̂

et
mh − kt ι½ �eh

� �

+ ζ

2〠
M

e=1
〠
H

h=1
〠
T

t=1
k̂
et
mh − kt ι½ �eh

� �2
,

ð47Þ

where ι denotes the iteration times.
Since the updating process of Φm of each BS is indepen-

dent, we can decouple the problem intoM independent sub-
problems. We can update the local variables by solving the
problem as follow:

We solve the above problem by CVX, due to it being con-
vex, and then, broadcast the decision of each BS to other BSs.

4.3.2. Global Variables.

k ι+1½ � = arg min
keh

〠
M

m=1
〠
M

e=1
〠
H

h=1
〠
T

T=1
ξ
et ι½ �
mh k̂

et ι+1½ �
mh − kteh

� �

+ ζ

2 〠
M

m=1
〠
M

e=1
〠
H

h=1
〠
T

t=1
k̂
et ι+1½ �
mh − kteh

� �2
:

ð49Þ

The above problems are strictly convex and uncon-
strained quadratic problems, because we add the quadratic
regular term to the augmented Lagrangian. Let the gradient
of k be zero. We can get the following results:

〠
M

m=1
ξ
et ι½ �
mh + ζ 〠

M

m=1
k̂
et ι+1½ �
mh − kteh

� �
= 0,∀e, h, t: ð50Þ

And then, we can derive

kt ι+1½ �
eh = 1

Mζ
〠
M

m=1
ξ
et ι½ �
mh + 1

M
〠
M

m=1
k̂
et ι+1½ �
mh ,∀e, u, t: ð51Þ

By using ∑M
m=1ξ

et½ι�
mh = 0, we can derive

kt ι+1½ �
eh = 1

M
〠
M

m=1
k̂
et ι+1½ �
mh ,∀e, u, t: ð52Þ

In other words, we can obtain global variables by aver-
aging the corresponding updated local variables in each
iteration.

4.3.3. Lagrange Multipliers.

ξ ι+1½ �
m = ξ ι½ �

m + ζ k̂ ι+1½ �
m − k ι+1½ �

� �
: ð53Þ

At each iteration, we can calculate the Lagrange multi-
pliers directly by using the updated local variables fΦmg
and global variables fkg. The formulation can be repre-
sented as follows:

ξ
et ι+1½ �
mh = ξ

et ι½ �
mh + ζ k̂

et ι+1½ �
mh − xt ι+1½ �

eh

� �
: ð54Þ

4.3.4. Stopping Criterion and Convergence. The above prob-
lem is a convex problem with strong duality. When the
number of iterations approaches infinity, the algorithm sat-
isfies convergence. Therefore, the reasonable stopping cri-
teria are given as follows:

k̂ ι+1½ �
m − k ι+1½ �




 



2
≤ κpri,∀m ∈M, ð55Þ

k ι+1½ � − k ι½ �



 




2
≤ κdual,∀m ∈M, ð56Þ

where ξpri > 0 and ξdual > 0 indicate the primal feasibility and
dual feasibility conditions, respectively, which are the small
positive constant scalars.

The above iteration process based on convex optimiza-
tion is concluded in Algorithm 2.

4.3.5. Two-Stage Iterative Algorithm Based on α Expansion.
Because there are many optimization variables in the origi-
nal problem, the complexity of the algorithm is high. In
order to reduce the algorithm complexity and obtain the

min
Φm

Ξm Φmð Þ +Ψ Φmð Þ + CostI + 〠
M

e=1
〠
H

h=1
〠
T

t=1
ξ
et ι½ �
mh k̂

et
mh − kt ι½ �eh

� �
+ ζ

2〠
M

e=1
〠
H

h=1
〠
T

t=1
k̂
et
mh − kt ι½ �eh

� �2
s:t: Φm ∈Ω:

ð48Þ
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optimal solution to the original problem, we solve the origi-
nal problem in two steps. So, we need to integrate the above
two subalgorithms. Firstly, we input the result of Algorithm 1
as a fixed value into Algorithm 2 to solve Algorithm 2, and
then, we compared the results of Algorithm 2 with the his-
torical optimal results and updated the related variables.
The above process is summarized in Algorithm 3.

Since we traverse for each MEC (Line 3 in Algorithm 3),
the caching size can be restricted under Πα at each round of
α expansion.

4.4. Algorithm Complexity Analysis. Since Algorithms 1 and
2 are the modules invoked by Algorithm 3 for M × ι3 times,
where M is the number of MECs and ι3 is the maximum
number of iterations in Algorithm 3, we, respectively, inves-
tigate the complexity of Algorithms 1 and 2. According to
paper [44], the complexity of the Algorithm 1 can be
expressed as OðjEjjV j2Þ, where jV j is the number of verti-
ces and jEj is the number of edges in the constructed graph.
In our case, jV j = TðU +HÞ + 2 is bounded by OðTðU +HÞ;
jEj = 3HUT +HðT + 1Þ + TH is bounded by OðTUHÞ.

Therefore, the complexity of Algorithm 1 is OðT3U4Þ, due
to H ≤U . For Algorithm 2, the variables atmu and stmu have
been fixed, and the remaining question can be broken down
into solving local optimization problem (48) at each BS by
using ADMM algorithm, whose complexity is OðUHÞ. ιmax
is the number of iterations required for Algorithm 2

Input: M Set of BSs, U Set of players, H Set of groups, T Set of consecutive time slots;
Output: The variable A , S ,B,K , and the minimum value of the objective function Valuebest ;
1: Initialization the variable sth∗ = rand ½0,M�, atu∗ = rand ½0,M�, ktmh, B

t
mu, and Valuebest = +∞

2: for iter=1:ι3 do
3: for α ∈M,∑H

h=1λαhsαh ≤Πα do
4: run Algorithm 1, obtain stαh∗, a

tα
u∗ and CostI

5: for iter=1:T do
6: run Algorithm 2, obtain ktmh, B

t
mu and Valuecurrent

7: end for
8: if Valuecurrent <Valuebest then
9: Valuebset =Valuecurrent ;
10: sth∗ = α, atu∗ = α;
11: else
12: Valuebest =Valuebest ;
13: sth∗ = sth∗, a

t
u∗ = atu∗ ;

14: end if
15: end for
16: end for

Algorithm 3: Two-stage iterative algorithm based on α expansion.

1: Initialization the number of iterations ι = 0, global variables k½0�
and Lagrange multipliers ξ½0�;

2: Set the maximum number of iterations ιmax and the stopping criterion threshold ξdual ;

3: while ι < ιmax, kk̂
½ι+1�
m − k½ι+1�k2 > κpri and kk½ι+1� − k½ι�k2 > κdual

4: Each BS m update Φm by solving problem (48), and share the local solution to other BSs;
5: Update the global variables k according to the formula (52);
6: Update the Lagrange multipliers ξ according to the formula (54);
7: ι = ι + 1;
8: end while
9: Output the optimal solution;

Algorithm 2: Resource allocation scheme based on convex optimization algorithm.

Table 2: The simulation parameters.

Simulation parameters Value

The total bandwidth [0.8–1.2]GHz

The number of players 100

The number of BSs 10

The number of VR service modules 40

The downlink path loss exponent [2.75–4.75]

The power spectral density of noise -174 dBm/Hz

The transmission power of the players 0.1W

The storage capability of the MEC [400–900]G

The computing capability of the BS [30–80]GHz
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convergence; the total computational complexity is Oðιmax
UHÞ. Therefore, the overall complexity of Algorithm 3 is O
ðι3MðT3U4 + ιmaxU

2TÞÞ.

5. Simulation Results and Discussions

In a wireless cellular network, it is assumed that 100 players
and 10 base stations are randomly distributed in a circle with
a radius of 100m; other major simulation parameters are
shown in Table 2.

To evaluate the performance of our proposed approach,
we compare our proposed α expansion-based two-stage
approach to two other approaches: (1) placing each VR ser-
vice module randomly on a MEC at each time slot, as labeled
as “random placement,” and (2) particle swarm optimization

was used to solve the objective function, as labeled as “parti-
cle swarm optimization.”

In Figure 4, we iteratively find the minimum value of the
total network overhead under the condition that the maximiz-
ing computing capacity of each MEC server is 60GHz and the
maximizing storage capacity of each MEC server is 600G,
where total network overhead is the sum of the adjusted place-
ment cost, communication cost, migration cost, and rendering
cost, i.e., this paper’s object function ∑T

t=1ε1CosttC + ε2CosttR
+ ε3CosttP + ε4CosttM . As shown above, the total network
overhead of our proposed scheme and particle swarm optimi-
zation decreases rapidly as the iteration increases at the begin-
ning, and then, the total network overhead converges and
remains at an almost constant value. Moreover, it can be seen
from the iteration diagram that our proposed algorithm
converges in about 18 generations, while particle swarm
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Figure 4: Total network overhead versus iteration times.
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Figure 5: Average delay of user versus computing power of MEC
server.
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Figure 6: Total network overhead versus computing power of
MEC server.
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Figure 7: Average delay of user versus storage capacity of MEC
server.
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optimization converges in about 25 generations. So, compared
with other schemes, our proposed algorithm converges faster
in the iteration process and keeps the lowest total network
overhead.

Figure 5 shows the relationship between the computing
power of the MEC server and the user average latency.
Figure 6 shows the relationship between the computing
power of the MEC server and the total network overhead.
In the above two figures, as the computing power of the
MEC server increases, the average latency and total network
overhead of the user are greatly reduced. This is mainly
because the more computing resources a MEC server can
provide to the player, the less latency it needs to perform
rendering. At the same time, the richer computing resources
on the MEC server, the more MEC servers the system could
be chosen to provide rendering services for a group of VR
players, which saves the network cost of routing.

Figure 7 shows the relationship between the storage
capability of the MEC server and the user average latency.
Figure 8 shows the relationship between the storage capabil-
ity of the MEC server and the total network overhead. As
shown in the above two figures, the placement strategy pro-
posed by us can effectively reduce the total network over-
head. Moreover, with the storage capacity of the MEC
server increasing, the average latency of user and total net-
work overhead is greatly reduced. This is mainly because
the larger the storage capacity of the MEC server, the more
VR service modules can be placed on each edge node, which
can reduce the migration costs between two base stations to
a certain extent. Especially when the number of VR service
modules that can be placed on the MEC server is small, in
order to meet the video processing requirements of the con-
stantly moving player, VR service modules need to migrate
frequently between base stations. As shown in Figure 8, when
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Figure 8: Total network overhead versus storage capacity of MEC server.
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Figure 9: The influence of delay constraint on total network overhead and average delay of user.
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the storage capability of the MEC server is less than 600G, VR
service module migration between base stations becomes fre-
quent, and the total network overhead increases greatly.

In Figure 9, we compare the user average delay and total
network overhead without delay constraint with the user
average delay and total network overhead with delay con-
straint. The network parameter is the maximizing comput-
ing capacity of each MEC server is 60GHz, and the storage
capacity of each MEC server is 600G. When there is no need
to consider satisfying the delay constraint of each user, the
feasible domain of the target problem becomes larger, and
the total network cost is reduced compared with when the
delay constraint is considered, but the average delay of the
user will increase. At the same time, some users cannot com-
plete their corresponding video processing tasks within the
tolerable delay, as shown in Figure 10.

6. Conclusion

In this paper, we develop dynamical service module place-
ment strategies based on rendering-aware to minimize the
sum of the network costs over a long time under satisfying
the delay constraint of each player. The strategies jointly
consider the resource allocation scheme within each time
slot and the service module migration scheme between dif-
ferent base stations in the adjacent time slot. Moreover, we
propose a two-stage algorithm based on graph cut and con-
vex optimization to solve the objective function. In future
work, we will study the online placement strategy of VR ser-
vice modules to further improve user experience and reduce
network overhead in the process of VR video stream delivery
and computing. In addition, we will extend our work to the
security [45] and low-delay delivery of all kinds of superlarge
video streams.
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The identifier/locator split (ILS) architectures are highly promising to reduce the signaling latency of frequent handovers in fifth
generation (5G) networks, while decentralized vehicular mobility management holds greater potential than the traditional
centralized management to enhance the critical performance of highly dynamic and dense cell networks. By carefully
exploiting ILS, dual connectivity, and multiaccess edge computing (MEC) concepts, this paper proposes a decentralized
vehicular mobility management mechanism in the network with dense 5G Non-Standalone deployment. Under such a
mechanism, we design an ILS-based local anchor handover management architecture to reduce signaling costs and handover
latency. Specifically, we propose a quality of service- (QoS-) based handover decision algorithm using a long short-term
memory- (LSTM-) based trajectory prediction method to obtain the cell sojourn time of connected vehicles (CVs) in
predefined QoS coverage areas. Combining a built-in dynamic handover trigger condition, this algorithm can ensure a flexible
load balance as well as low handover times. Extensive simulation results are presented to verify the effectiveness of the
proposed mechanism in improving network performance.

1. Introduction

The ILS architectures, which decouple the IP address seman-
tics into two types of roles, namely, user equipment (UE),
access identifiers (AIDs), and routing identifier (RIDs), have
been identified as a promising paradigm for the 5G and
beyond wireless networks [1]. Such architectures can signif-
icantly reduce the cost of frequent handovers in highly
dynamic networks [2]. For instance, because of the dense
gNB deployment and fast moving vehicles, handovers occur
frequently in the emerging 5G vehicular networks [3–5],
which can cause heavy handover signaling load in tradi-
tional network architectures with the overloading of IP
address semantics. Fortunately, ILS architectures have the
potential to guarantee vehicular communications without
occurring outage [6]. However, vehicular communications
based on the ILS architecture still face some fundamental
challenges in the 5G dense cell scenarios, like mapping

management and real-time handover decisions [7]. There-
fore, it is critical to explore a novel vehicular mobility man-
agement mechanism for improving the quality of the
vehicular communications.

Existing ILS architectures, such as lisp mobile node
(LISP-MN) [8], Host Identity Protocol (HIP) [9], MILSA
[10], MobilityFirst [11], and Smart Identifier Network
(SINET) [12], provide various optimization schemes of the
mobility management. Relevant schemes can be classified
into two categories, namely, mobility signaling [13, 14] and
mapping system update efficiency [15, 16]. The former aims
at simplifying the handover signaling interaction to support
a seamless roaming, while the latter is to boost the efficiency
of mapping update to avoid the outdated identifier-to-
locator mapping during a new handover.

These works mainly focus on the centralized mobility
management system with relatively low handover frequency
and simple handover decision. Recently, some initial works
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focus on the highly dynamic 5G ILS networks [6, 17], which
are intended to provide reliable communications of high-
speed railways.

It is notable that all above works demonstrate the poten-
tials of ILS architectures in reducing the mobility manage-
ment costs. However, these results cannot be directly
applied to the 5G vehicular networks. On one hand, the fre-
quent handovers in such networks can bring heavy update
load to the centralized mapping system via the domain gate-
way (GW), which may lead to a single point of failure once if
the requirements of vehicular communications increase. On
the other hand, the moving routes of vehicles are more com-
plex than high-speed trains, and thus the handover decisions
proposed in high-speed railway communications cannot be
directly applied to the complex target access network selec-
tion of the vehicular communications. Furthermore, the
handover decision algorithms have also been proven to play
vitally important roles in reducing the number of handovers
and network load imbalance among the access entities [18].
Specifically, lacking efficient handover decision algorithms
could not only degrade the Quality of Service (QoS) but also
negate the benefits of mobility management using the ILS
architecture in the 5G vehicular networks.

By now, relevant research efforts have illustrated the
superiority of decentralized mobility management in the tra-
ditional centralized cellular networks [19–24]. In addition,
various handover decision algorithms in such networks are
also proposed in [25–28] (please see Related Works of Sec-
tion 2 for details). A fundamental issue is how to explore a
distributed ILS mapping management scheme with an opti-
mal handover decision algorithm, which fully considers UE’s
requirements and network state in the dense 5G scenario.
However, this issue has not been well addressed by now.
Motivated by this observation, the paper presents a decen-
tralized 5G vehicular mobility management architecture,
which is based on the 5G Non-Standalone (NSA) dual con-
nectivity (DC) networking [29–31] and the decentralized
management capacity of the MEC technology [32]. It aims
to proactively detect, predict, and perform fast handovers
by fully exploiting the advantages of the ILS architecture in
the 5G vehicular networks. To ensure the performance of
the proposed mobility management architecture, we care-
fully address an efficient handover decision algorithm based
on the movement characteristic of vehicles and the require-
ments of on-board services, which can largely reduce the
overhead of mobility management and the unnecessary
handover times as well as increasing the utilization of net-
work resource.

This paper extends our previous work [33], and the main
contributions can be summarized as follows:

(i) We propose a Local Mobility Anchor- (LMA-)
based handover management architecture in the
Evolved Packet Core- (EPC-) based 5G NSA net-
working mode reusing the current LTE facilities.
DC technology in such an architecture, the LTE
master eNB (MeNB), which serves as an LMA, takes
charge of the control-plane (C-plane) procedures
and is also a backup for the user-plane (U-plane)

transmission of the 5G secondary gNB (SgNB).
Remarkably, each MeMB is attached to an MEC
server, which can process handover context param-
eter, manage local mapping information, and exe-
cute the predefined handover decision algorithm
in a distributed manner. We further give the collec-
tion and management methods of the context infor-
mation and the fast handover procedures for intra-
MeNB and inter-MeNB handovers

(ii) For the intra-MeNB handover, we further propose a
vehicular handover decision algorithm with the aim
of reducing the number of SgNB handovers, balan-
cing SgNB load and satisfying different networks
requirements of CV services. In this algorithm, we
design a novel QoS coverage conversion method to
determine the QoS boundary of candidate gNBs
including the specific service requirement and the
real-time network load. Based on this method, we
develop an LSTM-based trajectory prediction
model, which is used to determine a vital decision
variable, i.e., the sojourn time of a vehicle residing
in the QoS boundary of each candidate gNB

(iii) Based on the predicted sojourn time and the real-
time network status, we redefine the trigger condi-
tion of the intra-MeNB handover as a dynamic
Time-to-Trigger (TTT) value, which enhances the
robustness of mobility management in highly
dynamic handover context due to the heterogeneity
of 5G gNBs

(iv) Extensive simulation results are presented to vali-
date the prediction accuracy of the trajectory pre-
diction model in our proposed mechanism and
also to conduct a comparison between our proposed
mechanism and a classic traditional one

The rest of the paper is organized as follows. Section 2
presents the related works. Section 3 introduces our con-
cerned network model. In Section 4, we propose the LMA-
based handover management architecture and the relative
handover procedures under this architecture. Section 5 fur-
ther gives the QoS-based handover decision algorithm.
Extensive simulation results are provided in Section 6.
Finally, Section 7 concludes this paper. The abbreviations
used in this paper are provided in Table 1.

2. Related Works

2.1. Distributed Mobility Management Mechanisms. The
Distributed Mobility Management (DMM) mechanisms
[34, 35] distribute the control and data functions among sev-
eral infrastructures located at the edge of the network,
instead of relying on a single central server in traditional
centralized network. The DMM mechanisms are proposed
in distributed ILS-based mobile networks to relieve the sig-
naling loads and handover delays [19, 20]. The potentials
of such mechanisms are further shown in cellular networks
[21]. The work in [22] proposes an efficient local mobility
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management mechanism in a dense cell scenario. Under the
mechanism, once if a handover happens, the target cell can
establish a local path based on the X2 interface with the serv-
ing cell without sending a handover request to the core net-
work. Similarly, two finer granularity location management
mechanisms are proposed in dense cell networks [23], where
the UE’s location in a cell or a tracking area is registered to
an LMA selected by the surrounding cells, and then the sig-
naling of location update is transmitted using the X2 inter-
face for reducing the overhead at the core network.
However, the efficiency of such DMM schemes probably
depends on the network service duration, compared to the
UE sojourn time within the coverage of the cells [24]. The
DMM mechanisms also show their limitations in their per-
formance when the UE is in a high-speed state and the cell
sojourn time becomes shorter. Therefore, another critical
issue is to design an appropriate handover decision algo-
rithm for improving the performance of DMM mechanisms.

2.2. Handover Decision Algorithms. The work in [36] illus-
trates that a proper handover decision algorithm can signif-
icantly mitigate the negative impact of UE’s mobility on the
QoS. The impact of user trajectories on the final handover
decision is analyzed by deriving the closed-form expressions
for the relative mobility model and the handover rate [25].
The authors in [26] propose a mobility state estimation algo-
rithm, with which UEs are divided into different classes
based on their velocity, and each class is associated with a
handover trigger condition to minimize their handover failure
rate. These results of [25, 26] are still not well applied to prac-
tical scenarios, where the actual vehicular trajectory is more
complicated such that an accurate cell sojourn time is difficult
to be obtained. In [27], a trajectory prediction algorithm based
on deep learning has been used in handover decisions of het-
erogeneous vehicular networks. The predication algorithm
can effectively improve the accuracy of mobility prediction
and reduce unnecessary handovers. Meanwhile, the Cell
Range Expansion technique in [28] is utilized to appropriately
enlarge the small cell coverage to control the number of UEs
access in a specific cell, which relieve the imbalance network
load brought by frequent handovers.

3. Network Architecture

As shown in Figure 1, we present an ILS-based 5G network
architecture consisting of five main communication entities,
namely, LTE MeNB, 5G secondary gNB (SgNB), MEC
server, GW, road side unit (RSU), and connected vehicle
(CV), which is based on the EPC-based 5G NSA DC net-
working. The functions of these entities are introduced as
follows:

MeNB: it can provide radio coverage over a larger area,
which is responsible for both C-plane and U-plane transmis-
sion, working as a mobility anchor for the SgNBs. Here, the
U-plane transmission is used only when no SgNB is avail-
able, and the control region of a MeNB is also called a loca-
tion service domain (LSD)

SgNB: it can cover a relatively small area, which is
responsible for user plane transmission, enhancing system
capacity and providing high data transmission rate for
vehicles

MEC server: it is placed near MeNBs and serves as a dis-
tributed local mapping server, which is responsible for hand-
over context information management, executing the
optimal network selection algorithm to make handover
decisions

GW: in addition to acting as a gateway between MeNB
and the Internet, it manages mapping information between
CVs and each LSD

RSU: it obtains the driving status information of vehicles
within its coverage area, and then sends the information to
MEC servers through fiber line

CV: it is equipped with multiple types of communication
modules. The on-board unit (OBU) periodically broadcasts
Cooperative Awareness Messages (CAMs) [37] such that
RSU can receive CV’s real-time motion status through the
Cellular-Vehicle-to-Everything (C-V2X) technology. Mean-
while, it maintains uninterrupted communication with

Table 1: Key abbreviations.

Abbreviation Description

ILS Identifier/locator split

AID Access identifier

RID Routing identifier

GAID Global access identifier

LAID Local access identifier

QoS Quality of service

GW Domain gateway

CV Connected vehicle

MeNB Master eNodeB (LTE base station)

SgNB Secondary gNodeB (5G base station)

EPC Evolved Packet Core

DC Dual connectivity

LMA Local Mobility Anchor

LSD Location service domain

NSA Nonstandalone networking

C-plane
Control-plane (used for the interactive control
signaling between the user and the network)

U-plane
User-plane (used for data traffic transmission

of users)

MEC Multiaccess edge computing technology

LSTM
Long short-term memory (a variant of

recurrent neural network)

DMM Distributed Mobility Management

RSU Road side unit

OBU On-board unit

CAM Cooperative awareness message

RSRP Reference signal receiving power

RRC Radio Resource Control

TN Target node

RLF Radio link failure

TTT
Time-to-Trigger (the handover is initiated only
if the triggering requirement is fulfilled for a
certain time interval, which is called TTT)
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cellular base stations and requests varieties of vehicular ser-
vices from the remote server through cellular network
connection

The CV in this network architecture connects to MeNB
and SgNB simultaneously based on the DC technology.
The MeNB acts as a mobility anchor for C-plane transmis-
sion and a backup for U-plane transmission. The SgNB does
not exchange control signals with the core network but
enhances U-plane transmission. In this paper, we assume
that the MEC server is merged with an MeNB, which pro-
vides extra storage and computing capacity of the MeNB
for the subsequent mobility management. The combination
of an MeNB and an MEC server is regarded as a mobility
anchor.

4. Decentralized LMA-Based Handover
Management Architecture

A decentralized LMA-based handover management archi-
tecture is proposed in this section. Figure 2 illustrates the rel-
ative functions and behaviors under this architecture
consisting of the obtaining and management of the hand-
over context parameters, the hierarchical mapping system,
the optimal handover decision algorithm, and the handover
executing procedure (intra-MeNB or inter-MeNB). The
details of the optimal handover decision algorithm will be
depicted in the next section.

4.1. Obtaining and Management of Context Parameters. To
make optimal handover decision, it is essential to obtain
the context parameters like SgNB coverage size, SgNB traffic
loads, and vehicle motion trajectory. The MEC server associ-
ated with the MeNB is responsible for managing the context
parameters of the SgNBs and CVs under the coverage of the
MeNB. These parameters can be divided into the following
three categories:

4.1.1. Cooperative Awareness Message. There is the driving
status of the CV vk in the CAM defined by the ETSI standard
[37]. The CV periodically transmits CAMs to RSUs. To
reduce the transmission cost, each CAM only contains
PDU header, basic container, and HF container. When a
RSU receives the CAM, it will synchronize the driving status
information with the time stamp to the specified MEC server
through fiber lines.

4.1.2. Measurement Report. The Radio Resource Control
(RRC) connection can be established between the CV and
the MeNB. The MeNB provides measurement configuration
to the CV through RRC connection reconfiguration [38].
The measurement configuration includes candidate SgNBs,
measurement parameters, and measurement period. Here,
the measurement parameters consist of reference signal
receiving quality, current received data transmission rate,
and service request data rate. The CV measures the link
quality of the nearby networks according to the measure-
ment configuration in the RRC connection reconfiguration
message and periodically uploads measurement reports to

the MeNB. The MeNB will synchronize the measurement
report to the MEC server.

4.1.3. Interaction between MeNBs and SgNBs. The MeNB,
which serves as a mobility anchor, maintains the context
information of its SgNBs, in terms of the maximum trans-
mission power, residual available bandwidth, the number
of current connected terminals, etc. These information will
be periodically synchronized to the MEC server through C-
plane transmission, with negligible transmission delay.

Based on the first two categories of monitoring methods,
we use a CV context set Ct

vk
to synchronize the driving state

and the on-board service network requirement of vk in the
time slot t. The driving state consists of velocity, historical
position sequence, acceleration, etc.

A context information table (CIT) between CVs and
candidate SgNBs can be built and updated on the MEC
server, as depicted in Table 2.

4.2. Identifier-Locator Mapping System. In the proposed
architecture, each CV is identified by a global AID (GAID)
and a local AID (LAID). The GAID is unique and represents
a CV’s identity in the global DNS system. The LAID only
exists when a CV is attached to a SgNB. The dynamic LAID
is highly related to the RID of the SgNB associated with the
CV. Meanwhile, each SgNB and MeMB have an RID serving
as a global service location inside the core network and can
be globally routing.

Each GW has a set of GAIDCV-to-RIDMeNB mapping
cache entries, which is used to map each CV to its MeNB
LSD.

Besides, each MEC server on the MeNB side has three
sets of mapping cache entries: GAIDCV-to-RIDSgNB, RI

InternetGW Remote
server

MEC server

MeNB

SgNB

RSU

CV
CV

MeNB

Core network
Mobility anchor
SgNB coverage area
MeNB coverage area

C-plane transmission
U-plane transmission
C&U-plane transmission

Figure 1: ILS-based LTE-5G dual connectivity network
architecture.
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DSgNB-to-RIDMeNB, and GAIDTN-to-RIDMeNB. The first
entry maps the identifier of the CV to its connected SgNB
service area, and the second entry maps SgNB global loca-
tion to its local anchor, while the last entry is used to map
the identifier of the target communication node to the cur-
rent MeNB LSD through the core network.

4.3. Intra-MeNB Handover Procedure.When an intra-MeNB
handover (SgNB-to-SgNB) is triggered by the MEC server,
the CV will prepare an air interface to turn on for the target
SgNB and continuously monitor the link status. Meanwhile,
CV sends a Map Select Request message to the attached
MeNB to notify its movement, which contains its GAIDTN
list and old and new LAIDs. MeNB configures a new LAID
for the CV and starts a fast intra handover by sending
Map Forwarding Request message to the target SgNB, which
applies the access admission for the CV. The target SgNB
sends a Map Forwarding Response to MeNB, and then the
previous transmitting data is forwarded to the target SgNB.
In this process, the MeNB acts as a backup U-plane trans-
mission to CV, keeping a zero interruption data forwarding.
Then, the MeNB responds to CV with a Map Select
Response message, and CV will attach to the target SgNB.
When the buffered packets on the target SgNB are delivered
to CV, the MeNB stops the U-plane transmission. After the
completion of the handover, the relevant mapping informa-
tion will be updated on the MEC server, the UE context
information on the former SgNB will be released, and the
route will be optimized from CV to TN. Figure 3 gives the
complete process of intra-MeNB handover signaling.

It is obvious that the handover latency of intra-MeNB
handover is possible to be zero. Since the MeNB plays the
role of backup data plane transmission in the process of
SgNB switching, a seamless handover can be ensured.

4.4. Inter-MeNB Handover Procedure. When a CV moves
towards to a new MeNB control region (a new LSD) and sat-
isfies a handover trigger condition, it will send a Map Select
Request message to the source MeNB with its GAID. The
source MeNB then sends a Map Update message through
the overlay network to the target MeNB, which contains
the CV’s relevant GAIDTN list and its RID so that the target
MeNB will update its GAIDTN-to-RIDMeNB cache. Then, the
target MeNB configures a new LAID for the CV and sends a
Map Update Response message to the source MeNB. The
source MeNB and the target MeNB send MAP Forwarding
Request message to the source SgNB and the target SgNB,
respectively. After that, the source SgNB sets up a data for-
warding path with the target SgNB through sending a Map
Forwarding Request message. If the target SgNB promises
the access admission, the target SgNB will response Map
Forwarding Response message to the source SgNB and the
target MeNB. Meanwhile, the source SgNB sends a Map For-
warding Response message to the source MeNB, and then
the previous transmitting data is forwarded to the target
SgNB. At the moment, the source MeNB sends a Map Select
Response message to the CV, and the CV will establish a
connection with the target MeNB and then attach to the tar-
get SgNB. The buffering packets on the target SgNB will be
forwarded to the CV once it is attached to itself. After the
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Local vehicular mobility management

Local mapping entries

Local mapping system management

LSTM trajectory prediction

Target SgNB selection

Handover trigger

Handover decision algorithmNetwork information

Vehicle context
information

Network context
inforinformation

Candidate
network

information

Data rate
requirement

Chosen the
target network

Context information obtaining

CV onboard unit

Historical vehicle 
driving state

Onboard service
requirements

Link state monitor

RSU
Local mapping

update

MeNB/SgNB

Core network

S1

X2

S1

X2Measurement
configuration

Measurement
report

Executing handover
(intra-MeNB or inter-MeNB)

Figure 2: The LMA-based handover management architecture.
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completion of the handover, the relevant mapping informa-
tion will be updated on the MEC server in the new LSD, and
the GAIDCV-to-RIDMeNB mapping cache entries in the GW
will also be updated. The UE context information on the for-
mer SgNB and MeNB will be released, and the route will be
optimized from CV to TN. Figure 4 gives the complete pro-
cess of inter-MeNB handover signaling.

Notice that the above handover procedures assume the
existence of available SgNBs. If at a given time the coverage
holes of SgNB exists, the U-plane transmission on the MeNB
will immediately start. The original GAIDCV-to-RIDSgNB
mapping entry will be deleted, and the CV will discard its
LAID. Once an available SgNB meets the CV’s connection
requirements according to the algorithm described in the
next section, the CV will reconfigure its LAID and performs
a U-plane switch to the target SgNB. Figure 5 shows the sig-
naling interactions of the fast U-plane switch procedures.

5. Handover Decision Algorithm

To further improve the handover performance, we propose a
QoS-based network selection method to select the most suit-
able SgNB for the CV in this section. The algorithm jointly
considers network balance and the network requirements
of CV, which mainly includes two parts: the SgNB QoS-
boundary conversion and the LSTM-based sojourn time
prediction. Moreover, we redefine a dynamic handover trig-
ger condition of the intra-MeNB handover, so as to improve
the robustness of the intrahandover under the dense net-
work scenario. The proposed handover selection algorithm
will be executed on the MEC server based on the handover
context information.

5.1. SgNB QoS-Boundary Conversion. We define a QoS cir-
cular coverage area centered at the serving/candidate SgNB.
As for a specific CV, the SgNB can provide a satisfactory
data transmission rate within its QoS circular area. We call
the boundary of the circle QoS boundary. The derivation
process of the SgNB QoS boundary of a CV jointly considers
the real-time load of the SgNB and the network requirement
of the served CV, which is shown as follows:

Suppose that each SgNB ni has K UEs attached to it, the
data requested rates of these UEs are fD1,D2,⋯,DKg. The
network load of ni can be precisely defined as

Lni = 〠
K

n=1

1
Dn

: ð1Þ

The effective maximum throughput of ni is

Tpni =
1

Lni + 1/Dmax
ni

� � , ð2Þ

where Dmax
ni

is the maximum data transmit rate that ni can
provide at the moment. Dmax

ni
can be predicted based on

the relative measurement report parameters (RSRP and
RSRQ) [39]. When a CV vk requests for a data rate Dreq

vk
, a

ni will be added to the candidate network set F if the condi-
tion Dreq

vk
< Tpni is satisfied.

When a CV is in the coverage of a specific SgNB ni, its
received power is expressed as

PRX
ki = PTX

ki − PLOSS
ki − FM +G, ð3Þ

where FM and PLOSS
ki represent the fading margin and the

path loss, respectively. G represents the antenna gain
between ni and vk. According to the log-distance path loss
model under the urban environment, PLOSS

ki can be calculated
as

PLOSS
ki = λlog10 rð Þ + βlog10 f cð Þ + γ, ð4Þ

where λ, β, and γ are related to the surrounding road envi-
ronment, f c is the carrier frequency of the SgNB, and r rep-
resents the distance between ni and vk.

We use the average signal power PRavg
ki received by vk

over a period of time to represent PRX
ki , which makes the

QoS boundary of ni more representative. PRavg
ki can be

deduced based on the following Shannon’s theorem:

Dmax
ni

=Wlog2 1 +
PRavgki
N

 !
⇔ PRavg

ki =N 2D
max
ni

/W − 1
� �

, ð5Þ

where W and N represent the channel bandwidth and the
noise power, respectively. We use the radius rQoSni

of the
QoS circular coverage area to replace the parameter r in
equation (4), and the value of rQoSni

can be obtained by com-
bining (3)–(5):

rQoSni
= 10 PTX

ki −βlog10 f cð Þ−γ−FM+G−PRavg
kið Þ/λ: ð6Þ

5.2. LSTM-Based Vehicular Sojourn Time Prediction. The
historical motion of a CV can be utilized to predict its future
driving trends in future period to time. We can apply the
LSTM neural network to learn features among CV’s histori-
cal trajectories and predict the CV’s future trajectory [40].
Based on the predicted trajectory, we further obtain the
sojourn time of the CV within the coverage of each candi-
date network. We summarize the architecture of a normal
LSTM cell and the calculation of each parameter in Figure 6.

In Figure 6, f t , it , and ot represent the forget, input, and
output gates, respectively. The function of each gate are
described in [40]. bf , bi, bo, bc are the corresponding variable

Table 2: Context information.

CV CV context set SgNB1 ... SgNBI

v1 Ct
v1

rsrp1,1 ... rsrp1,I
v2 Ct

v2
rsrp2,1 ... rsrp2,I

... ... ... ... ...

vK Ct
vk

rsrpK ,1 ... rsrpK ,I
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biases of ½ht−1, xt� in f t , it , ot , and ~Ct . Wf ,Wi,Wo,Wc are

the corresponding weights of ½ht−1, xt � in f t , it , ot , and ~Ct .
Figure 7 illustrates the architecture of the proposed trajec-
tory prediction model. The input of the prediction architec-
ture is composed of 5 dimensions, i.e., the longitude and
latitude coordinates ðxtvk , ytvkÞ, the driving angle αtvk , the
velocity vtvk , and the acceleration atvk of the vehicle. The final
input set is represented as a vector Xvk

ðnÞ given by

Xvk
nð Þ = xtvk , y

t
vk
, αtvk , v

t
vk
, atvk

n o
, n = t −N + 1,⋯, t, ð7Þ

where N denotes the length of the historical input time
sequence. Note that the actual position sequence of the vehi-
cle is transformed to Frenet coordinates in our prediction
model for improving the adaptability of the training data
and the accuracy of the prediction.

In this architecture, a fully connected (FC) layer made
up of 256 cells can transforms the input data into 256
dimensional equal to the LSTM cell dimension of the follow-
ing LSTM stack. Each dimension has a strong relationship
with the input data. Specifically, according to the feedback
network update parameters, we can determine the input
dimensions which are more relevant to the predicted trajec-
tory trend after the input dimension conversion.

The following LSTM stack consists of two LSTM layers
each of which has 256 LSTM cells. The output vector from
the first LSTM layer is an input of the second LSTM layer.
The function of the LSTM stack is to extract higher-level fea-
tures of the input time series. The output of the LSTM stack
is combined by the FC stack with two FC layers in order to
reduce the data dimension. Meanwhile, the input sequences
are also fed to a 64-dimensional FC layer, bypassing the
above network connections. The outputs of this FC layer
and the previous FC stack are directly fed to the output stack
to obtain the final predicted future states. This kind of design

CV Source SgNB Target SgNB LTE MeNB

MEC Server triggers a SgNB handover

Map forwarding request

UE context release

Map select request 
Mapping cache

updating

Mapping cache
updating

Map forwarding response
Admission
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New map register response
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Route optimization
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Figure 3: Intra-MeNB SgNB handover.
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can establish a closer correlation between the current input
states and the prediction output sequences, which boosts
the training speed and improves the prediction accuracy of
the model.

The output Yvk
ðnÞ of the vehicular trajectory prediction

model is shown as follows:

Yvk
nð Þ = xtvk , y

t
vk

n o
, n = t + 1,⋯, t +M: ð8Þ

Finally, the Frenet coordinates of the predicted trajectory
will be converted back to the actual coordinates.

Based on the QoS boundary coverage of each candidate
SgNB and the LSTM-based vehicular sojourn time predic-
tion model, we can obtain the sojourn time tvkni of a CV vk
in the QoS boundary coverage of the candidate SgNB ni.
For the network access entities of our proposed network
architecture in Figure 8, green dotted circles represent the
QoS coverage range of SgNBs.

Assuming ABCD is a predicted future driving track of vk
, point B and point D are two predicted positions within the
QoS coverage of SgNB3 that are closest to the QoS bound-
ary. Thus, the sojourn time tvkn3 of the vk in SgNB3 can be
determined as tvkD − tvkB , where t

vk
B and tvkD are the time when

the vk reaches the positions B and D.

5.3. Dynamic Time Threshold Condition. Since the heteroge-
neity of 5G gNBs may lead to highly dynamic handover con-
text, we now redefine the trigger condition of the intra-
MeNB handover based on the SgNB RSRP measurement
reports, the predefined time threshold (TTT), and the QoS
coverage area sojourn time tvkni .

A SeNB in the candidate set F can build a link with the
CV under each of the following two conditions that the
SeNB has a better RSRP than the serving one, and it has also
a higher sojourn time than the predefined threshold T th. If
both conditions hold, the MEC server checks for Δ seconds
and then triggers the intra MeNB handover. Notice that
the SgNB with the highest tvkni in the set F can be chosen as
the original target SgNB. During the Δ, if the RSRP of the
serving SgNB becomes the highest or tvkni < Tth, the handover
will be cancelled. The Δ will be reset based on equation (9)
when a new handover condition holds. rsrpc is the RSRP
value of the serving SgNB. rsrpmax and rsrpmin represent
the maximum and minimum RSRP values in the candidate
network set F, respectively. Δmax and Δmin are static values
based on historical experience. Then, we have

Δ = Δmax −
rsrpc − rsrpmin
rsrpmax − rsrpmin

Δmax − Δminð Þ: ð9Þ

CV Target SgNBMeNB

MEC triggers the switch to gNB

U-plane transmission switch 5G

Send
map updating message

U-plane transmission switches to SgNB 

MeNB U-plane transmission switches to SgNB

CV Source SgNBMeNB

MEC triggers the switch to MeNB

Send switch to MeNB

Initiate
U-plane transmission

U-plane transmission switches to MeNB

SgNB U-plane transmission switches to MeNB

Map forwarding request

Map forwarding response
Mapping cache

updatingMapping cache
updating

Figure 5: U-plane fast switch procedure.

Figure 6: LSTM cell architecture.
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The Δ value will become smaller when the difference in
RSRP between the serving SgNB and the target SgNB
becomes larger. It is also worth noting that, when a CV
detects a radio link failure (RLF) [41] with the serving SgNB
and there happens to be no suitable candidate SgNB in the
set F, the terminal maintains the C/U-plane transmission
with the MeNB. Therefore, the impact of an SgNB on RLF
is moderate.

5.4. Algorithm Complexity.We analyze the complexity of our
proposed handover decision algorithm in two parts.

Firstly, we deduce the complexity of training the LSTM-
based vehicular sojourn prediction model. As for an LSTM
layer, its training complexity is based on its input dimen-
sion I and output dimension U [42], which can be pre-
sented as Oð4ðIU +U2 +UÞÞ. Meanwhile, the training
complexity of the fully connected layer is OðIUÞ, so that
the training complexity of our prediction model can be pre-
sented as OðqIq1 + 8ðq1qL + q2L + qLÞ +∑4

m=2qmqm+1 + q5qOÞ,
where qm (m ∈ f1, 2, 3, 4, 5g) is the cell number of each
fully connected layer in our model, respectively. qL is the
cell number of each LSTM layer. qI and qO are the numbers
of input and output cells. Considering that the prediction
model has already completed its training process before
being applied, it will not bring extra computing cost during
the handover decision process.

Moreover, we analyze the complexity of the decision
process. Considering that our algorithm selects the gNB
with the largest sojourn time from the candidate network
set F, the complexity of each check can be easily deduced
as OðjFjlog2ðjFjÞÞ, where jFj is the cardinality of set F.

6. Simulation Results

This section first validates our proposed model and then
conducts the performance evaluation study.

6.1. Model Validation. In this paper, we use the NGSIM data
set [43] to collect relevant vehicle trajectory in US101 sec-
tions for the training and testing of our proposed trajectory
prediction model. We first randomly select 70% of data (i.e.,
4269 trajectories) for training, 20% of data for validation
(i.e., 1220 trajectories), and the remaining 10% of data (i.e.,
610 trajectories) for testing. The sampling frequency of the
dataset is 1Hz. The model training is executed on GPU
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using the Pytorch with a batch size of 128. We have trained
the model for 4 epochs, and the whole dataset has been proc-
essed for 20 times, which results in 80 effective epochs. The
prediction accuracy of the model is measured by the root
mean square error (RMSE) between the predicted value
and the actual expected value of the position. The variation
of RSME loss with training epoches is shown in Figure 9,
and the RSME of our model in different prediction horizons
is provided in Table 3.

When a CV is traveling at an average velocity of 30 km/
h, the average predicted sojourn time error is about 0.486 s
in a 10 s prediction horizon. Since the actual sojourn time
of the CV is about 24 s in a SgNB with coverage radius of
150m, the prediction error of the sojourn time is negligible.

6.2. Handover Performance Evaluation. We build the net-
work simulation environment on the NS-3 simulator [44].
A real road traffic environment around the US101 section
is abstracted by SUMO [45] as shown in Figure 10. LTE
MeNBs and 5G SgNBs with different configuration parame-
ters are deployed in this area. The SgNBs are wired to their
MeNB which act as an LMA. The MeNBs are wired to the
GW. The CVs’ trajectories are randomly generated by
SUMO based on the abstracted road traffic environment,
and we set the value of the velocity as multiple constant
values. The values of the main simulation parameters are
shown in Table 4. We now define some fundamental perfor-
mance metrics as follows:

(i) Handover latency: it is defined as the average time
duration from the time when a CV and the network

system needs to update the relevant mapping infor-
mation to the time when the CV receives the packet
from the target access network entity

(ii) Handover times: it is defined as the average time
over handover events happening for a certain simu-
lation time

(iii) Packet loss rate: It can be expressed as Xtot − Xrec/
Xtot, where Xtot and Xrec are the number of packets
sent by the TNs and that received by the CVs during
a session, respectively

(iv) Mobility management load: it is the average number
of mobility management packets processed at the
relevant control entity per minute under the sce-
nario of CVs’ mobility

(v) gNB utilization rate: it is the average ratio of the
time that the CV is connected to the serving SgNB
(Tused) to the time that the SgNB is available for
CV to attach (Tusable), which can be expressed as
Tused/Tusable

To illustrate the efficiency of our proposed mechanism,
we conduct comparison study with the ILS mobility man-
agement mechanism (LISP-MN) [26] using the A2A4 [38]
handover algorithm.

6.2.1. Handover Latency. As shown in Figure 11, we
explore the average handover latency under two types of
mechanisms with vvk = 40 km/h. Since the vehicular veloc-
ity is usually required to be no more than 40 km/h in the
urban traffic scenario, the vehicular velocity 40 km/h is a
typical example here. It can be observed from Figure 11
that our proposed mechanism has the lowest handover
latency in comparison with the LISP-MN DC and LISP-
MN Hard handover. This can be explained as follows.
Firstly, the decentralized mapping system of our proposed
mechanism significantly reduces the mapping update
latency caused by the backbone transmission of the control
signaling. Meanwhile, the DC technology provides the
backup transmission of MeNB, which can reduce the link
interruption time caused by SgNB handover. This can also
explains the reason why the handover latency of LISP-MN
DC is lower than that of LISP-MN Hard handover as
shown in Figure 11.

Our proposed mechanism reduces the intra-MeNB
handover latency up to 57.1 percent and the inter-MeNB
handover latency up to 61.9 percent compared with the
LISP-MN mechanism.

Table 3: RMSE values of the proposed model.

Prediction horizon
1 s 2 s 3 s 4 s 5 s 6 s 7 s 8 s 9 s 10s

RSME in latitude 0.041 0.072 0.079 0.084 0.088 0.096 0.11 0.12 0.17 0.31

RSME in longitude 0.65 0.86 0.99 1.10 1.15 1.25 1.38 1.66 2.14 4.02

Total RSME 0.66 0.86 1.00 1.11 1.15 1.26 1.38 1.67 2.15 4.03

MeNB
SgNB

Figure 10: Real urban road scenario abstracted by SUMO.
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6.2.2. Handover Times. As shown in Figure 12, we examine
how total network handover times vary with vvk during the
simulation process. We can see from Figure 12 that for each
fixed vvk , total network handover times under our proposed
mechanism are lower than the times under the traditional
handover algorithm (A2A4). This is because the A2A4
handover algorithm only adopts the signal strength as the
handover decision condition, while the CV mobility charac-
teristic can result in unnecessary handovers, which largely
affects the future network access. Our proposed mechanism
not only guarantees the link quality but also consider the
effect of cell sojourn time on the handover times. The SgNB
with the maximum sojourn time is selected as the target
access entity to minimize the possibility of unnecessary
handover. We can also observe from Figure 12 that a larger
vvk leads to higher handover times due to the fact that the
higher velocity leads to a shorter cell sojourn time and thus
higher frequency of handovers. However, our proposed
mechanism can curb the increase of the handover frequency
compared with the traditional mechanism.

6.2.3. Packet Loss Rate. As shown in Figure 13, we investigate
how the packet loss rate varies with different packet arrival

rates λ. We can see from the Figure 13 that for each fixed
vvk , the packet loss rate under our proposed mechanism is
lower than that under the traditional LISP-MN mechanism.
This is due to the following reason. The decentralized map-
ping system in the proposed mechanism brings relative low
update latency, which reduces the session recovery time
and relieves the packet loss during the handover procedure.
Meanwhile, the addition of backup data forwarding and fast
handover signaling methods in the proposed mechanism
further improves the performance of the packet loss rate.

Due to the relevant optimization, our proposed mecha-
nism reduces the packet loss rate up to 51 percent in an
extreme situation (λ = 100packets/s, vvk = 50 km/h) com-
pared with the LISP-MN mechanism.

6.2.4. Mobility Management Load. As shown in Figure 14,
we explore how the total mobility management load on the
GW varies with vvk . We can see from Figure 14 that for each
fixed vvk , the total mobility management load on the GW
under our proposed mechanism is lower than that under
the traditional LISP-MN mechanism. It is because under
the decentralized mapping update strategy, the intra-MeNB
mapping update overhead has been offloaded to the local
MEC server. We can also observe from Figure 14 that our
proposed mechanism can alleviate the load caused by the
velocity and the number of CVs. Specifically, the total mobil-
ity management load on the GW can reduced up to 83.5 per-
cent in a high mobility and mass CV scenario with the
setting of vvk = 50 km/h and CVnumber = 200 compared
with the LISP-MN mechanism.

6.2.5. SgNB Utilization Rate. Finally, we explore how the
average SgNB utilization rate varies with data requested rate
as shown in Figure 15. It can be seen from Figure 15 that for
each fixed vvk , the average SgNB utilization rate under our
proposed mechanism is higher than that under the tradi-
tional LISP-MN mechanism. This is because the proposed

Table 4: Simulation parameters.

Parameters Values

Number of base stations 22 (3 MeNB, 19 SgNB)

Number of GWs 1

Transmitting power of base stations 23 ~ 46 dBm

Maximum coverage radius of
MeNBs

500m

Maximum coverage radius of SgNBs 150m

Operating frequency of base stations
MeNB: 1.85GHz, SgNB:

700MHz

CV velocity (vvk ) {30, 40, 50} km/h

Coefficient of the path loss model λ = 16:7, β = 18:2, γ = 38:77
Fading margin (FM) 8 dB

Antenna gain (G) 13 dB

Δmax 120ms

Δmin 15ms

Transfer protocol UDP

MTU 1300 byte

CIT updating cycle 20ms

The cost of each mobility
management on the GW

24

SgNB to MeNB link
Delay: 5ms

Link type: point to point

MeNB to GW link
Delay: 10ms

Link type: point to point

Intra-SgNB to SgNB link
Delay: 5ms

Link type: point to point

Simulation time 300 s

Simulation area 1000m∗900m
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Figure 11: Handover latency under different handover types.
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mechanism selects the SgNB with the longest sojourn time
as the target SgNB and ignores the SgNBs which do not meet
the load requirements. A further observation from Figure 15
indicates that both the increases of data requested rate and
velocity will reduce the SgNB utilization. We know that the
CV will gain the access admission to the target SgNB when
it has sufficient network resources. The high requested rate
can increase the occupation of the network resource and

cause the access reject during the handover process, which
leads to a decreased Tused. Meanwhile, the increase of veloc-
ity can also reduce the cell sojourn time of the CV, which
also results in a decrease of Tused.

7. Conclusion

This paper proposed an optimal decentralized mobility
management mechanism for the dense 5G networks. Under
this mechanism, we first designed an LMA-based handover
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management architecture, which jointly applies the technical
advantages of ILS, dual connectivity, and MEC to realize a
low signaling cost mobility management under the dense
gNB scenarios. Then, we proposed a QoS-based handover
decision algorithm to ensure network balance and improve
the network utilization, which unitizes a predefined QoS
boundary conversion method involving an LSTM-based
vehicular sojourn time prediction model. Moreover, we
redefined the dynamic trigger condition in the handover
algorithm to enhance the robustness of the intra-MeNB
handover decision in highly different link scenarios with
the heterogeneity of SgNBs. Simulation results illustrate that
the LSTM-based prediction model in our proposed hand-
over decision algorithm can achieve a low trajectory predic-
tion error. Meanwhile, our proposed mobility management
mechanism can significantly reduce the handover latency,
the handover times, the packet loss rate, and the mobility
management load and also improve the gNB utilization rate
compared to a classic traditional mechanism.
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Mobile multimedia services are gaining popularity among many users by developing wireless communication and mobile devices.
Mobile multimedia has alleviated conventional multimedia’s time and space limits, making it easier for consumers to access
services and meet content demands. However, cyber risks lie in the shadows of the expansion of mobile multimedia services,
threatening to continue wreaking havoc. Although various methods exist to defend against these cyber threats, side-channel
analysis has remained a critical challenge in the current approaches that rely on cryptographic algorithms. Nowadays, research
on deep learning-based side-channel analysis is receiving much attention. Attacks are constantly performed against
implementations, to which existing countermeasures against traditional side-channel analysis are applied, using various
artificial neural network structures. However, while studies on the implementations to which masking and simple hiding
schemes using jitter are active, studies on the implementations to which the shuffling scheme or the random insertion of
dummy operations scheme are applied have been relatively less attention. In a previous study, Lee and Han has used deep
learning to distinguish between real and dummy operations in an implementation that combined shuffling scheme and
random insertion of dummy operations scheme. They also proposed countermeasures against their attacks. However, they did
not choose an appropriate environment that is as close to noise-free as possible, and their countermeasure still has flaws.
Therefore, in this study, we analyze the causes of vulnerability of the previous countermeasure and propose a novel
countermeasure that can completely solve them. The novel countermeasure is a method of uniformly applying shuffling
schemes and random insertion of dummy operation schemes to byte-independent and byte-dependent operations of an
advanced encryption standard, respectively. It was confirmed that our countermeasure is safe from attackers who perform
profiled attacks even in an experimental environment with almost no noise.

1. Introduction

Mobile multimedia services have risen in response to the
advancement of mobile communication technologies and
increasing demand for content. Especially with the introduc-
tion of 5G, multimedia content can now be quickly delivered
to users with high communication capacity, transmission
speed, and low latency. Accordingly, the global mobile sub-
scriber base is predicted to grow from 5.1 billion in 2018
to 5.7 billion in 2023, representing an increase from 66%
of the worldwide population in 2018 to 71% in 2023 [1].

However, as the mobile multimedia industry grows, cyber
threats against it become more diverse and complex. These
threats can cause various damages to both customers and
service providers. In this paper, we focus on side-channel
analysis among the cyber threats of mobile multimedia
services.

Side-channel analysis reveals secret information based
on the fact that the power consumption of cryptographic
devices depends on intermediate values of the cryptographic
algorithms. These dependencies are of two types, data and
operation dependency [2]. Typical attack methods utilizing
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data dependency are differential and correlation power anal-
ysis [3, 4]. On the other hand, other methods use operation
dependency is simple power analysis [3]. Simple power anal-
ysis recovers secret information using the difference in oper-
ation according to the secret information for asymmetric
cryptographic algorithms or is mainly used to distinguish
the operation of symmetric cryptographic algorithms to
enable intensive side-channel trace collection. Therefore,
simple power analysis uses a single trace, whereas differential
and correlation power analyses use many traces because
these are attacks that recover secret information using statis-
tical techniques.

Countermeasures against side-channel analysis break
data dependency or operation dependency of side-channel
information. Software countermeasures usually break data
dependency which is divided into masking [5, 6] and hiding
schemes [2, 7]. Masking schemes overlay random values on
an intermediate value to make it seem to be random. This
makes it impossible for an attacker to infer the intermediate
value. On the other hand, hiding schemes randomize the
execution time of operations to prevent an attacker from
estimating the operation time. Masking schemes logically
block specific attacks, and for an attacker to attack a target
that the masking schemes block, high-level attacks must be
used to neutralize the masking schemes, compared with hid-
ing schemes where it only increases an attack complexity by
increasing the number of traces required by the attacker.

There are several methods to reduce the attack complex-
ity increased by hiding schemes. One is the alignment
method, which is commonly used. This type of method
comprises static alignment, elastic alignment, and alignment
schemes using pattern recognition or hidden Markov
models [2, 8–10]. Recently, as research on deep learning-
based side-channel analysis (DLSCA) progresses, studies
have been published where some deep learning-based side-
channel analyses neutralize hiding schemes [11–13]. In addi-
tion, studies on DLSCA against shuffling and dummy oper-
ations are being actively conducted [14–16]. However, they
mainly deal with desynchronization due to jitter, and so
on, rather than shuffling scheme or the random insertion
of dummy operations scheme. Lee and Han performed
machine learning-based side-channel analysis for the first
time on a target in which the shuffling scheme and the ran-
dom insertion of dummy operation schemes were used [17].
They showed that an attack was possible and at the same
time suggested a countermeasure.

1.1. Our Contributions. In this study, we question the safety
of the previous countermeasure. In a previous study, the
authors experimentally demonstrated the safety of the pro-
posed countermeasure but their experimental environment
was noisy when compared to this present study [17]. More-
over, the previous countermeasure directly refers to the
shuffled order array exposing the vulnerability. Because of
the noise in the experimental environment, this vulnerability
did not appear in the experimental results.

The current study shows that the previous countermea-
sure is insecure by performing profiled attacks on the
ChipWhisperer-Lite board [18], which is considered an ideal

environment with particle noise. Furthermore, this shows
that the previous countermeasure is ineffective and reveals
the cause of its weakness.

A novel countermeasure, which is presently used in the
study, was designed based on the vulnerability causes that
were analyzed. The design concept of the novel countermea-
sure is to apply the shuffled operation order to the confusion
and diffusion layers. Therefore, a uniform hiding scheme
can be applied to the entire encryption algorithm. The novel
countermeasure has been experimentally proven to be safe
from profiled attacks with strong attacker assumptions in
an ideal environment.

1.2. Organization. The remainder of this study is structured
as follows: Section 2 introduces hiding schemes, related
works, and previous countermeasures as preliminaries. Sec-
tion 3 describes the profiled attacks targeting the previous
countermeasure and their results. Section 4 shows the novel
shuffling countermeasure, which tolerates profiled attacks.
Section 5 demonstrates the safety of the proposed counter-
measure. Section 6 reveals the conclusion.

2. Preliminaries

This section briefly describes hiding schemes, related works,
and the previous countermeasures as preliminaries.

Input: IN[32], ORD[32]
Output: OUT[32]
1: fori⟵ 0 to 31do
2: OUT[ORD[i]]⟵Sbox[IN[ORD[i]]]
3: end for

Algorithm 1: Pseudocode for the previous countermeasure [19]

1; OUT[ORD[i]] = Sbox[IN[ORD[i]]]
2 movw r28, r24
3 ldi r26, 0x13
4 ldi r27, 0x22
5 ldi r20, 0x33
6 ldi r21, 0x22
7 ld r18, X+
8 ldi r19, 0x00
9 movw r30, r28
10 add r30, r18
11 adc r31, r19
12 ld r30, Z
13 ldi r31, 0x00
14 subi r30, 0xF6
15 sbci r31, 0xDF
16 ld r25, Z
17 movw r30, r22
18 add r30, r18
19 adc r31, r19
20 st Z, r25

Listing 1: Assembly code for the previous countermeasure [19].
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2.1. Hiding Schemes. Hiding schemes make the power con-
sumption of cryptographic devices independent of the inter-
mediate values and the operations that are performed [2].
There are two approaches to achieving this purpose. The
first approach is to make devices consume power randomly,
and the second approach is to make devices consume the
same amount of power for every operation and data value.
Unfortunately, the ideal goal of randomizing or equalizing
power consumption is not realistically achievable. However,
there are several proposals to help get closer to this goal.
These proposals are divided into two groups. The first group
randomizes power consumption by performing operations
at different moments. The second group touches on the
amplitude dimension of power consumption. Because this
study is about the first group, we would explain the first
group in more detail.

The most common techniques for randomizing the exe-
cution of operations are the random insertion of dummy
operations and shuffling. The random insertion of dummy
operations is to randomly insert dummy operations during
the execution of the operations. In this technique, randomly
generated numbers are used to determine how many
dummy operations to insert at different positions. As these
random numbers are larger, it becomes difficult for an
attacker to successfully perform an attack, but there is a dis-
advantage in that the implementation throughput is low-
ered. The shuffling randomly changes the sequence of

operations that can be performed in an arbitrary order.
The shuffling similarly randomizes power consumption as
the random insertion of dummy operations, but the opera-
tions that can be shuffled depend on the cryptographic algo-
rithm and is limited. Therefore, in practice, the shuffling and
the random insertion of dummy operations are often com-
bined and used.

2.2. Related Works. Assuming that shuffling and random
insertion of dummy operations are combined and imple-
mented and that up to d dummy operations can be added
to n real operations, the attack complexity for recovering
one key byte is 1/ðn + dÞ. That is, when the number of
side-channel traces required to recover one key byte is α in
the implementation without countermeasure, the number
of required side-channel traces increases to α × ðn + dÞ2
when the countermeasures are applied [2]. However, if the
attacker can distinguish dummy operations from real opera-
tions, the random insertion of dummy operations is neutral-
ized and the number of required side-channel traces is
reduced to α × n2. For Sbox of Advanced Encryption Stan-
dard (AES) is fatal with a reduction of 75% when n = d =
16. This is a lethal number and can lower the attack com-
plexity intended by the designer. Therefore, it is critical to
make the dummy operation indistinguishable from the real
operation.
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Figure 1: A power consumption trace of the previous countermeasure at optimization level -Os.
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Lee and Han showed for the first time the possibility of
distinguishing dummy operations according to the declara-
tion form of variables used to implement dummy operations
[19]. The dummy operations were distinguished using the

bounded collision detection criterion (BCDC) [20], which
is a simple criterion of signal similarity. To briefly explain
the method, a part of the first Sbox operation section is set
as a reference area, and the BCDC value is obtained for each
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area shifted by 1 point. If the first Sbox is a dummy (real)
operation, the area having a low BCDC value is a part in
which the dummy (real) Sbox operation is performed. As a
result, the attacker can filter out dummy operations with just
two trials even in a situation where the attacker does not
know whether the first Sbox operation is a dummy or a real
operation. However, the attack using BCDC has a disadvan-
tage where the reference region must be selected
heuristically.

The same authors later performed an attack using a neu-
ral network on the side-channel traces collected in a more
noisy environment [17]. A convolutional neural network
(CNN) for multilabel classification problems were used.
The attacks were successful for all other declaration types
except for the countermeasure proposed in their previous
study [19]. However, vulnerability still exists in the counter-
measure that was proposed. There is noise in the experimen-
tal environment used; thus, no vulnerability was found.

2.3. Previous Countermeasure. Lee and Han also presented
a countermeasure against the proposed attack in their
study [19], which proposes the attack that classifies
dummy operations using BCDC. Algorithm 1 is a pseudo-
code of their countermeasures. It was initially thought that
the vulnerabilities occur because the assembly codes are
generated differently. After all, the arrays used by the
dummy operations and the real operations are different,
or the memory addresses referenced are different even
when the same array is used. Therefore, the switch-case
statements were not used to circumvent the vulnerabilities
analyzed. Furthermore, the countermeasure was designed
so that the dummy and the real operations can use the
same array and refer directly to the array in which the
shuffled order is stored.

Listing 1 is an assembly code compiled with WinAVR
20100110 (GCC-4.3.3) by implementing Algorithm 1 in
the C language.

3. Profiled Attacks on
Previous Countermeasure

We implemented AES with hiding schemes of Algorithm 1
on an XMEGA128D4 microprocessor [21] using C language.
The power consumption was measured with a
ChipWhisperer-Pro (CW1200) [18]. WinAVR 20100110
(GCC-4.3.3) is used in the compiling process and it provides
-O0, -O1, -O2, -O3, and -Os as optimization levels. Detailed
descriptions of each compiler optimization levels are as
follows:

(i) -O0: this option does not attempt to optimize the
execution time and code size. It reduces the compi-
lation time and makes debugging generate the
expected results

(ii) -O1: this compiler reduces the code size and execu-
tion time. This option only performs basic
optimizations

(iii) -O2: this compiler performs nearly all supported
optimizations that do not involve a space-speed
trade-off

(iv) -O3: this compiler turns on all optimizations

(v) -Os: this enables all -O2 optimizations, except those
that often increase code size

Figure 1 shows the trace collected at optimization level
-Os. It was collected to include the first two rounds and part
of the third round because we unified the number of points
in the trace to use the same neural network as the experi-
ments (see Section 5). The trace for the SubBytes function
of the first round is shown in Figure 2. Sixteen real and
dummy operations were shuffled and performed, and it is
impossible to visually distinguish whether each operation is
real or the dummy.

Figure 3 shows the neural network structure to be used
in the experiments in this study. The data length of the 0th
layer in Figure 3 is indicated by n, which is an expression
for generalization because the number of trace points varies
according to the optimisation level. The number of points
collected in the trace at optimisation level -O0 is 62,000,
whereas the number of points collected at the rest is
18,000. This neural network uses a one-dimensional CNN,
five convolution layers, and three pooling layers. ReLU is
used as the activation function for each convolution layer,
and batch normalization is performed after the convolution
layer. The pooling layer is of max-pooling type, and a drop-
out ratio of 0.25 is applied after each pooling layer. After
layer 8, it passes through a dense layer with 32 output nodes.
The kernels of the dense layer are initialized using He nor-
mal initialization [22], and the activation function is Sig-
moid. The neural network is compiled using the Adam
optimizer with a learning rate of 0:001 and decay of 0:0001
and binary cross entropy as the loss function.

The attacker assumption which was set is that the
attacker can collect data to train the neural network and
obtain the shuffled order of operations from the profiling
device. Similar to the previous study [17], the labels are com-
posed of binary that only indicates whether the 32 opera-
tions were real or dummy. For example, if the following
index of the real operations were performed:

2, 3, 5, 6, 8, 10, 14, 16, 17, 18, 19, 24, 26, 27, 30, 31½ �, ð1Þ

Table 1: Test accuracies of the previous countermeasure according
to optimization levels.

Optimization levels Test accuracy

-O0 98.01875%

-O1 99.88125%

-O2 99.65000%

-O3 98.45625%

-Os 99.68125%
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we can construct the following thirty-two labels:

0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0½ �:
ð2Þ

Here, 0 represents the dummy operation and 1 repre-
sents the real operation.

For each optimization level, 10,000 traces were collected
in the variable key environment, 7,500 were used for training
and 2,500 were used for validation. With a fixed key, 1,000
traces were collected for testing. The batch size was set to
10 and 100 epochs were performed; if the validation accu-
racy did not improve during the 10 epochs, the training
was terminated early.

As a result of the training, the training was terminated early
before 80 epochs in all five optimization levels and the

R0 D0 D1 D15R1 R15

R0 D0 D1 D15R1 R15

S S S S S S

... ...

... ...

(a) In the case of the previous countermeasure

R0D1D15 D0R1 R15

R0 D0D1D15R1 R15

S S S S S S

... ...

... ...

(b) In the case of a novel countermeasure

Figure 4: Methods of applying the shuffling technique to the SubBytes function.

Input: Plaintext P½32� with dummy
Output: Plaintext P with dummy, shuffled orders K½32�, L½32�, and M½32�½4�, and inverse order K−1

1: for i⟵ 0 to 31 do ▷ Initialize arrays as non-shuffled orders
2: K½i�⟵ i and K−1½i�⟵ i ▷ K for AddRoundKey and SubBytes
3: S⟵ ð5 × ði mod 16Þ mod 16Þ + 16 × bi/16c
4: L½i�⟵ S and L−1½S�⟵ i ▷ L for ShiftRows
5: for j⟵ 0 to 3 do
6: M½i�½j�⟵ bi/4c + ði + j mod 4Þ ▷ M for MixColumns
7: end for
8: end for
9: for i⟵ 31 to 1 do ▷ Shuffling

10: R⟵
$ f0,⋯, ig

11: Swap P½i� and P½R�
12: Swap K½i� and K½R�
13: Swap K−1½K½i�� and K−1½K½R��
14: Swap L½i� and L½R�
15: Swap L−1½L½i�� and L−1½L½R��
16: L½L−1½i��⟵ R, L½L−1½R��⟵ i
17: Swap L−1½i� and L−1½R�
18: Swap M½i�½1� and M½R�½1�
19: Swap M½i�½2� and M½R�½2�
20: Swap M½i�½3� and M½R�½3�
21: if M½i�½1� = i and M½R�½3� = R
22: Swap M½M½i�½1��½1� and M½M½R�½3��½3�
23: else
24: Swap M½M½i�½1��½3� and M½M½R�½3��½1�
25: end if
26: Swap M½M½i�½2��½2� and M½M½R�½2��½2�
27: if M½i�½3� = i and M½R�½1� = R
28: Swap M½M½i�½3��½3� and M½M½R�½1��½1�
29: else
30: Swap M½M½i�½3��½1� and M½M½R�½1��½3�
31: end if
32: end for
33: return P, K, L, M, K−1

Algorithm 2:Generate orders for full shuffling

6 Wireless Communications and Mobile Computing



validation accuracies were over 98%. There was no overfitting,
and test accuracy at the optimization levels is shown in Table 1.

4. Novel Shuffling Countermeasure

In this section, we highlight the problem of the previous
countermeasure and proposed a novel shuffling counter-
measure that is safe from profiled attacker’s assumption.

4.1. Motivation. Previous research has shown that the com-
piled assembly codes are different when the variables used
by the real and dummy operations are declared separately,
and the assembly codes are different when the switch-case

Input: State S½32�, round key rk[32], and shuffled orders L½32� and M½4, 32�
Output: State S
1: for i⟵ 0 to 31 do ▷ AddRoundKey
2: S½i�⟵ S½i� ⊕ rk½i�
3: end for
4: for i⟵ 0 to 31 do ▷ SubBytes
5: S½i�⟵ Sbox½S½i��
6: end for
7: for i⟵ 0 to 31 do ▷ ShiftRows
8: T½i�⟵ S½L½i��
9: end for
10: for i⟵ 0 to 31 do ▷ MixColumns
11: temp1⟵ T½M½i�½1�� ⊕ T½M½i�½2�� ⊕ T½M½i�½3��
12: temp2⟵ xtimeðT½i� ⊕ T½M½i�½1��Þ
13: S½i�⟵ temp1 ⊕ temp2
14: end for
15: return S

Algorithm 3: Shuffled round function of AES
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Figure 5: Structure of the novel shuffling countermeasure.

1; OUT[i] = Sbox[IN[i]]
2 movw r26, r22
3 movw r28, r24
4 ld r30, Y+
5 movw r24, r28
6 ldi r31, 0x00
7 subi r30, 0xF6
8 sbci r31, 0xDF
9 ld r20, Z

Listing 2: Assembly code for the novel countermeasure.
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statement is used even when the same variable is used [19].
Therefore, similar to Algorithm 1, the authors made the real
and dummy operations use the same array and operated by
directly referencing the array in which the shuffled order is
stored without using a switch-case statement. Therefore,
the assembly codes for the real and dummy operations are
generated identically as shown in Listing 1. Based on this,
the authors assumed that their countermeasure was safe.

Their experiment has a limitation in that the experimen-
tal verification was conducted on a white card with many
noises compared to the ideal environment. Because of the
low signal-to-noise ratio in noisy environments, leakage is
obscured by noise, making accurate experimental verifica-
tion difficult. Therefore, because of the experimental safety
verification of the previous countermeasure in a low-noise
environment, it was not safe at all optimization levels (see
Table 1).

To analyze the cause of this vulnerability, the assembly
code of Listing 1 was noted. Lines 3 and 4 of Listing 1 store
the address of the ORD array to the r26 and r27 registers.
Then, in line 7, the value of the element of the currently
pointed ORD array is loaded into the r18 register, and the
address of the following element is pointed. It was assumed
that the attacker could see the shuffled order (see Section
3). Therefore, line 7, in which the value of shuffled order is
stored in the register, is a vulnerable cause. The traces were
collected by deleting line 7 and attempted to attack the col-
lected traces, which yielded a test accuracy of nearly 50%.

Therefore, this demonstrated that line 7 is a vulnerable
cause.

This study concluded that the method of applying shuf-
fling should be modified to eliminate the abovementioned
vulnerability. A schematic of the method for applying the
shuffling scheme to the SubBytes function of the previous
countermeasure is shown in Figure 4(a). The values for real
and dummy operations are sequentially stored in the array,
and the operations are performed regardless of the order
stored in the array by referring to the shuffled order. Because
the vulnerability exists in the section that refers to the shuf-
fled order, it is necessary to configure the plaintext to be
stored in the shuffled order from the start (see
Figure 4(b)). However, it is difficult to perform encryption
while storing the values in the array in the shuffled order.
This is because, among the internal operations of the AES
encryption algorithm, ShiftRows and MixColumns are
byte-dependent operations. AddRoundKey and SubBytes,
which are byte-independent operations, can sequentially
operate on the shuffled and stored state array, but byte-
dependent operations must calculate the indices of the
values to be operated together. This will be covered in more
detail in the following section.

4.2. The Expansion of Shuffling Scheme to Other Operations.
In this section, a method was proposed for expanding the
shuffling scheme used in SubBytes to ShiftRows and Mix-
Columns, which are byte-dependent operations of AES.
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Figure 6: A power consumption trace of the novel countermeasure at optimization level -Os.
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Algorithm 2 is a pseudocode that shuffles plaintext array and
order arrays for AddRoundKey, SubBytes, ShiftRows, and
MixColumn. In this algorithm, 16 dummy operations are

used. P is the plaintext array with dummy added, and K , L,
and M are the order arrays of AddRoundKey and SubBytes,
ShiftRows, and MixColumns, respectively. Additionally, a
reverse-order array K−1 of K is generated for the recovery
of the ciphertext. Only the order array M for MixColumn,
where four bytes are used for operation at once, is a two-
dimensional array with a size of 32 × 4, and the rest are all
one-dimensional arrays with a length of 32.

First, lines 1 to 8 initialize the arrays in order before
applying the shuffling scheme. After that, lines 9 to 32 apply
the shuffling scheme using Fisher-Yates shuffle [23]. This
loop from the highest index to the lowest, and lines 11 to
13 shuffle the plaintext array and the order array for
AddRoundKey and SubBytes, respectively. Lines 14 and 17
shuffle the order array for ShiftRows, which is different from
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Figure 8: Training result of the novel countermeasure with optimization level -Os.

Table 2: Test accuracies of the novel countermeasure according to
optimization levels.

Optimization levels Test accuracy

-O0 49.56250%

-O1 50.25625%

-O2 50.23750%

-O3 50.60625%

-Os 49.93125%
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order K for byte-independent operation, since values refer-
ring to the swapped value must also be swapped, so line 17
is required. Lines 18 to 31 should be shuffled in the order
of MixColumns. In the case of M, because it is a two-
dimensional array and four bytes are used in the operation
immediately, a maximum of 12 values must be swapped.

Algorithm 3 is the pseudocode for the round function
that uses the shuffled orders generated in Algorithm 2.
AddRoundKey and SubBytes are byte-independent opera-
tions, and because the state array has already been shuffled
and stored, sequential operations are performed in the order
in which they are stored. ShiftRows is a one-byte dependent
operation that operates regarding the order array L (line 8).
In MixColumns, the operations from lines 11 to 13 are con-
ducted. The operation on one column of MixColumns is a
polynomial product with a fixed polynomial mðxÞ using x4

+ 1 as the multiplied modulo over GFð28Þ, which is given by

m xð Þ = 03f gx3 + 01f gx2 + 01f gx + 02f g: ð3Þ

Formulating this in terms of the coefficient is as follows:

si′= 02f g · si ⊕ 03f g · s i+1ð Þ mod 4 ⊕ s i+2ð Þ mod 4 ⊕ s i+3ð Þ mod 4:

ð4Þ

This can be written as follows:

si′= s i+1ð Þ mod 4 ⊕ s i+2ð Þ mod 4 ⊕ s i+3ð Þ mod 4
� �

⊕ 02f g · si ⊕ s i+1ð Þ mod 4
� �

:

ð5Þ

The codes from lines 11 to 13 of Algorithm 3 are the
same as Equation (5). Here, xtime means f02g · x.

Figure 5 schematically shows Algorithm 3. The index of
the state array is an example, and arrows in the schematic of
ShiftRows and MixColumns change each time according to
shuffling.

5. Demonstration

In this section, the safety of the novel shuffling countermea-
sure proposed in Section 4 is experimentally confirmed.
First, the assembly code generated by the compiler was
observed. Listing 2 is the assembly code of the SubBytes part
of the novel countermeasure. Sbox operations are performed
in the order stored in the state array without referring to the
order array.

Figure 6 shows the power consumption trace of the
novel countermeasure. Compared with Figure 1, the length

of one round is approximately 2.1 times longer. In detail,
the length is increased by applying the dummy operation
and shuffling scheme to AddRoundKey, ShiftRows, and
MixColumns, whereas the length of SubBytes is shortened
by reducing the array reference once. The power consump-
tion trace of the SubBytes part is shown in Figure 7. It is
impossible to distinguish between the dummy and the real
operation.

The traces of the novel countermeasure were also col-
lected in the same environment as the traces of the previous
countermeasure. The power consumption trace of the XME-
GA128D4 chip was collected with ChipWhisperer-Pro (see
Section 3). At each of the four optimization levels, 10,000
traces were collected with the variable key and 1,000 traces
were collected with the fixed key. Additionally, the artificial
neural network also used the same model used in the previ-
ous countermeasure (see Figure 3). The experiments were
conducted using the same learning environment in Section
3. The learning graph at the optimization level -Os is shown
in Figure 8. The learning graphs at the remaining optimiza-
tion levels also have a similar shape to Figure 8. While the
training loss decreases and the training accuracy rises, the
validation loss increases again and the validation accuracy
stops around 0.5. The test accuracy of the novel countermea-
sure at all optimization levels is shown in Table 2. The accu-
racy of 0.5 indicates that the neural network does not
properly classify because it is a binary classification problem.
Therefore, our novel countermeasure is safe at all optimiza-
tion levels because attackers cannot distinguish between real
and dummy operations.

The countermeasure of the study is not only safe but also
effective. The cycles per byte of AES implementations are
shown in Table 3. The implementation with the novel coun-
termeasure takes approximately eight times more cycles per
byte than the unprotected implementation, and approxi-
mately 1.8 times as long as the implementation with the pre-
vious countermeasure applied. The previous
countermeasure used dummy operations for only the Sub-
Bytes function, but the novel countermeasure used dummy
operations for all functions, so the overhead is inevitable.
According to H. Kim et al. [24], when a masking counter-
measure is applied to AES, the first and second masking
takes approximately 1.7 times and 23.7 times more cycles
per byte, respectively, compared to the nonprotected imple-
mentation. Considering this, the cost of adding dummy
operations and applying shuffling to the entire encryption
process, which is eight times more cycles, is tolerable.

6. Conclusions

In this study, the authors questioned the safety of the previ-
ous shuffling countermeasure. In a previous study [17], the
authors designed the countermeasure to be safe against
attackers using machine learning and performed experimen-
tal verification but were unable to fully confirm the counter-
measure because the experimental environment was set to a
noisy environment. As a result of reverification in the appro-
priate environment, it was confirmed that the previous
countermeasure was not safe.

Table 3: Cycles per byte of AES implementations with and without
a countermeasure.

Implementation Cycles per byte

Unprotected AES 127

AES with the previous countermeasure 572

AES with the novel countermeasure 1028
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Previous countermeasures applied the hiding schemes
only to the byte-independent operations of the crypto-
graphic algorithm. The cause of the weakness of the previous
countermeasure was analyzed, and a novel countermeasure
was designed using the shuffling and random insertion of
dummy operations schemes up to the byte-dependent oper-
ation of AES to avoid the weakness. Moreover, to confirm
the safety of the proposed countermeasure, an experimental
verification was conducted in an environment with as little
noise as possible. As a result, even assuming a strong
attacker who knows the indices of the dummy operations,
the neural network has not learned to distinguish the
dummy operations. Therefore, the proposed countermea-
sure is safe.

In future works, countermeasures for other block ciphers
can be designed similarly to those designed for AES in this
paper. Since the types of components used for each block
cipher are different, a dedicated design for each is required.
In this paper, an optimized design of the proposed counter-
measure was not considered. Therefore, an optimized design
for the full-hiding scheme is also required.

Data Availability

The data used to support the findings of this study are avail-
able from the corresponding author upon request.

Conflicts of Interest

The authors declare that there is no conflict of interest
regarding the publication of this paper.

Acknowledgments

This work was supported by the Institute of Information &
Communications Technology Planning & Evaluation (IITP)
grant funded by the Korea government (MSIT) (No. 2021-0-
00903, Development of physical channel vulnerability-based
attacks and its countermeasures for reliable on-device deep
learning accelerator design).

References

[1] Cisco, Cisco annual internet report (2018-2023), 2020, https://
www.cisco.com/c/en/us/solutions/collateral/executive-
perspectives/annual-internetreport/white-paper-c11-741490
.html.

[2] S. Mangard, E. Oswald, and T. Popp, Power Analysis Attacks:
Revealing the Secrets of Smart Cards, vol. 31, Springer Science
& Business Media, 2008.

[3] P. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in
Annual international cryptology conference, pp. 388–397, Ber-
lin, Heidelberg, 1999.

[4] E. Brier, C. Clavier, and F. Olivier, “Correlation power analysis
with a leakage model,” in International Workshop on Crypto-
graphic Hardware and Embedded Systems, pp. 16–29, Springer,
Berlin, Heidelberg, 2004.

[5] C. Herbst, E. Oswald, and S. Mangard, “An AES smart card
implementation resistant to power analysis attacks,” in Inter-

national conference on applied cryptography and network secu-
rity, pp. 239–252, Berlin, Heidelberg, 2006.

[6] M. Rivain and E. Prouff, “Provably secure higher-order mask-
ing of AES,” in International Workshop on Cryptographic
Hardware and Embedded Systems, pp. 413–427, Springer, Ber-
lin, Heidelberg, 2010.

[7] M. Rivain, E. Prouff, and J. Doget, “Higher-order masking and
shuffling for software implementations of block ciphers,” in
International Workshop on Cryptographic Hardware and
Embedded Systems, pp. 171–188, Springer, Berlin, Heidelberg,
2009.

[8] J. G. van Woudenberg, M. F. Witteman, and B. Bakker,
“Improving differential power analysis by elastic alignment,”
in Cryptographers’ Track at the RSA Conference, pp. 104–119,
Berlin, Heidelberg, 2011.

[9] D. Strobel and C. Paar, “An efficient method for eliminating
random delays in power traces of embedded software,” in
International Conference on Information Security and Cryptol-
ogy, pp. 48–60, Berlin, Heidelberg, 2011.

[10] F. Durvaux, M. Renauld, F. X. Standaert, L. V. Oldeneel tot
Oldenzeel, and N. Veyrat-Charvillon, “Efficient removal of
random delays from embedded software implementations
using hidden Markov models,” in International Conference
on Smart Card Research and Advanced Applications,
pp. 123–140, Berlin, Heidelberg, 2012.

[11] L. Wu and S. Picek, “Remove some noise: on pre-processing of
side-channel measurements with autoencoders,” IACR Trans-
actions on Cryptographic Hardware and Embedded Systems,
vol. 2020, no. 4, pp. 389–415, 2020.

[12] Y.-S. Won, X. Hou, D. Jap, J. Breier, and S. Bhasin, “Back to the
basics: seamless integration of side-channel pre-processing in
deep neural networks,” IEEE Transactions on Information
Forensics and Security, vol. 16, pp. 3215–3227, 2021.

[13] D. Kwon, H. Kim, and S. Hong, “Non-profiled deep learning-
based side-channel preprocessing with autoencoders,” IEEE
Access, vol. 9, pp. 57692–57703, 2021.

[14] H. Maghrebi, “Assessment of common side channel counter-
measures with respect to deep learning based profiled attacks,”
in 2019 31st International Conference on Microelectronics
(ICM), pp. 126–129, Cairo, Egypt, 2019.

[15] H. Maghrebi, Deep Learning Based Side Channel Attacks in
Practice, Cryptology ePrint Archive, 2019.

[16] L. Masure, C. Dumas, and E. Prouff, “A comprehensive study
of deep learning for side-channel analysis,” IACR Transactions
on Cryptographic Hardware and Embedded Systems, vol. 2020,
no. 1, pp. 348–375, 2020.

[17] J. Lee and D.-G. Han, “DLDDO: deep learning to detect
dummy operations,” in International Conference on Informa-
tion Security Applications, pp. 73–85, Cham, 2020.

[18] NewAE, CW 1200: Chipwhisperer-pro, NewAE Technology,
2021, https://media.newae.com/datasheets/NAE-CW1200_
datasheet.pdf.

[19] J. Lee and D.-G. Han, “Security analysis on dummy based side-
channel countermeasures–case study: AES with dummy and
shuffling,” Applied Soft Computing, vol. 93, p. 106352, 2020.

[20] I. Diop, P.-Y. Liardet, Y. Linge, and P. Maurine, “Collision
based attacks in practice,” in 2015 Euromicro Conference on
Digital System Design, pp. 367–374, Madeira, Portugal, 2015.

[21] Atmel, AVR XMEGA D4 Devices Datasheet, Atmel Corpora-
tion, 2021, http://ww1.microchip.com/downloads/en/

11Wireless Communications and Mobile Computing

https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internetreport/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internetreport/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internetreport/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internetreport/white-paper-c11-741490.html
https://media.newae.com/datasheets/NAE-CW1200_datasheet.pdf
https://media.newae.com/datasheets/NAE-CW1200_datasheet.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-8135-8-and-16-bit-AVRmicrocontroller-ATxmega16D4-32D4-64D4-128D4_datasheet.pdf


DeviceDoc/Atmel-8135-8-and-16-bit-AVRmicrocontroller-
ATxmega16D4-32D4-64D4-128D4_datasheet.pdf.

[22] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into recti-
fiers: surpassing human-level performance on ImageNet clas-
sification,” in Proceedings of the IEEE international
conference on computer vision, pp. 1026–1034, Santiago, Chile,
2015.

[23] R. Durstenfeld, “Algorithm 235: random permutation,” Com-
munications of the ACM, vol. 7, no. 7, p. 420, 1964.

[24] H. Kim, S. Hong, and J. Lim, “A fast and provably secure
higher order masking of AES S-Box,” in International Work-
shop on Cryptographic Hardware and Embedded Systems,
pp. 95–107, Springer, Berlin, Heidelberg, 2011.

12 Wireless Communications and Mobile Computing

http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-8135-8-and-16-bit-AVRmicrocontroller-ATxmega16D4-32D4-64D4-128D4_datasheet.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-8135-8-and-16-bit-AVRmicrocontroller-ATxmega16D4-32D4-64D4-128D4_datasheet.pdf


Research Article
Birds of a Feather Flock Together: Generating Pornographic and
Gambling Domain Names Based on Character
Composition Similarity

Yanan Cheng ,1 Hao Jiang ,1 Zhaoxin Zhang ,1 Yuejin Du,2 and Tingting Chai 1

1Faculty of Computing, Harbin Institute of Technology, Harbin 150001, China
2Beijing Qihoo Technology Co., Ltd, Beijing 100015, China

Correspondence should be addressed to Zhaoxin Zhang; zhangzhaoxin@hit.edu.cn and Tingting Chai; ttchai@hit.edu.cn

Received 10 May 2022; Revised 5 June 2022; Accepted 23 June 2022; Published 11 July 2022

Academic Editor: Yuanlong Cao

Copyright © 2022 Yanan Cheng et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Cybercriminals often register many pornographic or gambling domains (known as abusive domains) with similar character
compositions in bulk to reduce their investment in buying domains and make it easier for clients to remember and spread
them. Therefore, this study combines the ideas of text similarity and text generation and proposes an abusive domain
generation model based on GRU for rapidly generating new abusive domain names from known ones. Additionally, we
develop a two-layer detection system for pornography and gambling domains using fastText and CNN models to obtain an
abusive domain dataset for model training and validation. In the end, our detection system identifies pornographic and
gambling domains with 99% precision while balancing correctness and speed. By inputting 40,000 random keywords into the
abusive domain generation model, we obtained 130,220 online domains that served web pages, of which about 66% were
pornographic or gambling domains. The results show that by exploiting cybercriminals’ behaviors in registering abusive
domain names, such as bulk registration of similar domain names, we can prospectively acquire a large number of new abusive
domains based on known ones. This study demonstrates that predicting new abusive domains not only expands the domain
blacklist but also allows researchers to target the generated suspicious domains and dispose of them in time before they show
abusive behavior.

1. Introduction

Cybercriminals are establishing more and more porno-
graphic and gambling domains (or websites, collectively
referred to as abusive domain names) in pursuit of profit.
At the same time, with the growth of the Internet and social
media, people are increasingly exposed to these abusive
domain names, either intentionally or unintentionally,
including children and minors. Pornographic videos and
images hurt the physical and mental health of minors. Many
gambling sites are fraudulent sites that cheat people out of
their money [1]. At the same time, the current state of the
global epidemic of COVID-19 has led to an even more ram-

pant spread of pornographic and gambling domains on the
Internet [2–7]. Therefore, the sooner governments, security
institutions, and Internet entities can discover, block, and
handle these pornographic and gambling domains, the more
they can mitigate the harm caused by these domains [8].
Therefore, from a technical perspective, the first significant
challenge for each Internet entity is how to quickly, accu-
rately, and early discover pornography and gambling
domains, which is the research objective of this paper.

Generally, much of the existing research in pornography
and gambling domain discovery focuses on detection, where
the website (domain) is entered into the detection model.
Then, information about the website (e.g., text or images)
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is used to determine whether the domain is pornographic or
gambling. These detection methods are necessary to discover
pornographic and gambling domains. However, detection
methods cannot discover abusive domains earlier because
they can only detect the domains that are entered into the
models. In order to discover the abusive domains earlier,
we need to adopt a new perspective to start with.

Through our empirical analysis of many pornographic
and gambling domain names, we find that there are simi-
larities in the composition of these domain names. These
similar characteristics are mainly reflected in two aspects.
On the one hand, to facilitate abusive domain management
and memorization, cybercriminals register many domain
names with similar compositions, such as porn[0-9].com,
in bulk. On the other hand, many pornographic and gam-
bling domain names have no special meaning but are just
combinations of letters and digits. Because domains with
meaningful word combinations are expensive to register,
cybercriminals register many domain names with meaning-
less compositions in bulk to reduce the investment in mali-
cious attack activities (Section 2).

Therefore, in this paper, we develop a two-layer detec-
tion system for pornography and gambling domains using
fastText and CNN models (Section 3.1), which is able to
identify abusive domains quickly and accurately. Meanwhile,
using the compositional similarity features of many porno-
graphic and gambling domains, we combine the ideas of text
similarity and text generation and propose a novel abusive
domain generation model based on GRU to generate new
pornographic and gambling domains from existing ones
(Section 3.2 and Section 3.3). Finally, our detection system
identifies pornographic and gambling domains with 99%
precision while balancing correctness and speed. By input-
ting 40,000 random keywords into the abusive domain gen-
eration model, we obtained 130,220 online domains that
served web pages, of which about 66% were pornographic
or gambling domains (Section 4).

In short, we make the following contributions:

(i) We develop a two-layer detection system using
fastText and CNN models to identify pornographic
and gambling domains. The system is capable of
ensuring high detection efficiency while maintain-
ing a high detection accuracy rate for abusive
domain names. In addition, this method can
exclude websites that contain only pornographic
or gambling keywords in the text of the page

(ii) For the first time, using existing abusive domains,
we propose a novel approach to generate many
new and undiscovered abusive domains based on
domain composition similarity. This method
enables us to discover many pornographic and gam-
bling domains earlier so that they can be blocked
and handled in a timely manner

(iii) For the first time, we share a database (https://reurl
.cc/0p27db, accessed on 6 May 2022, access
password: nist@HIT) of manually labeled website

snapshots of abusive domains, containing 18,428
pornography domains and 15,578 gambling
domains. We hope that more security communities
and researchers can use these samples for research
on pornography and gambling domain detection
or generation

In summary, this paper aims to discover a large number
of pornographic and gambling domains as quickly, accu-
rately, and early as possible. This paper is intended for audi-
ences across Internet infrastructure, cybersecurity industries,
and researchers.

2. Background and Related Work

2.1. Background

2.1.1. Similarity in the Composition of Abusive Domains.
One of the fundamental assumptions of this study is that a
substantial number of abusive domain names share a com-
mon character composition, i.e., they follow the same com-
position rules. We provide some examples of domain
names with similar character compositions. As shown in
Figure 1, the four gaming domains display the exact same
web page content, and their domain name character compo-
sition rules conform to the rules zl ∗∗∗ .com. The same sit-
uation exists for pornographic domains, as shown in
Figure 2, which all conform to rule ∗∗∗∗ av.com.

In addition, we checked the domain name certificate of
the gambling domain lh1769.com, as shown in Figure 3,
and found 120 domain names with similar character compo-
sition to this gambling domain. Once again, it is proven that
pornography or gambling sites use a large number of
domain names with similar character composition. This case
not only facilitates distribution but also makes it easy for the
viewer to remember the domains of sites, and when a
domain name is not available to access the site, the viewer
uses a new domain name to access it.

By observing many abusive domain names of pornogra-
phy and gambling types, we found two main characteristics
of these abused domain names. First, they are mainly com-
posed of pure numbers or a mixture of numbers and letters
with no real meaning. Second, the similarity is primarily
shown by the fact that some characters (numbers or letters)
in the domain name stay the same, but many other charac-
ters in their next or previous positions change. Therefore,
we can design methods to discover abusive domain names
of similar composition as soon as possible using these
characteristics.

On the other hand, many pornography and gambling
domains consist of meaningless letters and numbers, as
described above. Figure 4 shows the frequency of letters and
digits at various positions in popular domains (Alexa top 1
million, http://s3-us-west-1.amazonaws.com/umbrella-static/
top-1m.csv.zip, accessed on 6May 2022) and abusive domains
(domain length less than 16). We can find that the frequency
of characters in abused domain names is different from popu-
lar domain names, especially a large number of numeric char-
acters that appear in pornography and gambling domain
names.
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In general, the similarity in character composition and
nonsense of many pornography and gambling domain
names provides a practical basis for generating new abusive
domain names.

2.1.2. Abusive Domains in Disguise. Pornography and gam-
bling websites have apparent textual features, such as many
keywords (https://github.com/mrcheng0910/reporting_
abusive_domains/blob/main/abusive_keywords.txt, accessed
on 6 May 2022) related to pornography or gambling. There-
fore, high detection accuracy can be achieved by designing a
text-based classifier. Yang et al. designed and implemented
an SVM-based classifier to achieve 99% accuracy in detect-
ing online gambling websites [1]. Therefore, we refer to
text-based related methods to filter gambling and porno-
graphic websites from the textual perspective.

On the other hand, miscreants from online underground
economies regularly exploit website vulnerabilities and inject
fraudulent content into web pages to promote illicit goods
and services. Adversaries often manage to inject content
stealthily by obfuscating the description of illegal products
and/or the presence of defacements to make them undetect-
able [9]. As shown in Figure 5, gambling-related keywords
are maliciously embedded in the title, description, and key-
word tags of the normal website, respectively. However, the
page displayed to the users in the browser is benign.

As a result, such sites are easily misclassified as abusive
domain names through text-based classifiers. In view of this
situation, this paper implements an image-based abusive
domain name detection tool in addition to developing a
text-based filter. The text-based filter is fast, consumes fewer
resources, and can filter out abusive domain names from a
large number of websites as quickly as possible. The
image-based classifier further detects the filtered abusive
domain names to improve the final detection accuracy. In
this paper, we use convolutional neural networks (CNNs)
to detect website snapshots to find pornographic or gam-
bling domains. We describe both methods in detail in Sec-
tion 3.1.

2.2. Related Work

2.2.1. Abusive Domain Detection. Srinivasan et al. [10] pres-
ent DeepURLDetect (DURLD), a method that extracts
features from character level embedding using hidden layers
in deep learning architectures and then uses a nonlinear acti-
vation function to predict the likelihood of the URL is mali-
cious or not. Lison et al. [11] established a model for
detecting domain generation algorithm (DGA) domains
using recurrent neural networks. This model was capable
of making predictions only based on domain names, without
the need for human participation or access to external

(a) (b)

(c) (d)

Figure 1: Gambling domain names with similar character composition. (a) Domain zl459.com. (b) Domain zl468.com. (c) Domain
zl478.com. (d) Domain zl846.com.
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resources. Curtin et al. [12] provided a novel machine learn-
ing system built partially on recurrent neural network
(RNN) that is capable of classifying DGA-generated domain
names even from families traditionally understood as diffi-
cult. Xu et al. [13] proposed a novel n-gram combined

character-based domain classification (n-CBDC) model
using n-grams and a deep convolutional neural network.
This model operates end-to-end and does not require
manually extracted features or DNS context information; it
only requires the domain name itself as input and can

(a) (b)

(c) (d)

Figure 2: Pornographic domain names with similar character composition. (a) Domain 7757av.com. (b) Domain 0004av.com. (c) Domain
0006av.com. (d) Domain 6687av.com.

(a) (b)

Figure 3: Multiple abusive domain names share one certificate. (a) Domain lh1769.com. (b) List of domains that use the domain
lh1769.com’s certificate.
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automatically assess the probability that the domain name
was formed using DGAs. Bharathi et al. [14] proposed to
take a string of characters as the input given in the domain
names and classify them as either benign or malicious
domain names using deep learning architectures such as
Long-Short-Term Memory (LSTM) and bidirectional
LSTM. Ren et al. [15] applied a deep neural network model
with an attention mechanism (ATT-CNN-BiLSTM) for the
detection and classification of DGA domain names. The
main thought behind their ensemble model is that the valid-
ity of the context inherent in domains could contain suffi-
cient information with which to distinguish DGA domain
names, especially the wordlist-based ones. The majority of
traditional approaches focus on a particular feature of these
pornographic and gambling websites, which leaves out more

nuanced and problematic scenarios. Chen et al. [16] devel-
oped an automatic detection system for pornographic and
gambling websites based on visual and textual content using
a decision process to address this issue. Similarly, Zhao et al.
[17] proposed Porn2Vec, a robust end-to-end framework for
detecting pornographic websites using contrastive learning.
This framework, in particular, models pornographic
websites as a heterogeneous network composed of websites,
web pages, images, and text, as well as their interaction
relationships, and formalizes pornographic website identifi-
cation as a node classification problem on the graph. Addi-
tionally, the model employs a novel contrastive learning-
based heterogeneous graph embedding method to learn the
high-level representation of web pages by combining
image-based, text-based, and structure-based information
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Figure 5: Gambling-related keywords are maliciously embedded in the benign website.

5Wireless Communications and Mobile Computing



concurrently. Finally, the learned website characteristics are
sent into a neural network to train an automatic porno-
graphic website detection model.

2.2.2. Prediction or Generation Based on RNN. RNN is one of
the most promising tools for deep learning, which has been
applied to speech recognition, machine translation, music
generation, and text generation in a large number of
previous studies [18–24]. For the first time, we applied it
to domain name generation based on the idea of text
generation.

The RNN is the first algorithm that remembers its
input, due to an internal memory, which makes it
perfectly suited for machine learning problems that
involve sequential data. Therefore, many studies use
RNN for prediction or generation tasks. Wang et al. [18]
proposed a novel attention-based LSTM [25] model for
song iambic generation. Specifically, they encoded the
cue sentences by a bidirectional LSTM model and then
predicted the entire iambic with the information provided
by the encoder, in the form of an attention-based LSTM
that can regularize the generation process by the fine
structure of the input cues. Sturm et al. [19] applied the
LSTM model to music transcription modeling and compo-
sition. They built and trained the LSTM network using
approximately 23,000 music transcriptions expressed using
a high-level vocabulary (ABC notation) and then used
them to generate new transcriptions. For the purpose of
generating Chinese classic poetry, Luo et al. [21] intro-
duced a novel text steganography technique based on the
RNN encoder-decoder structure. They employed a key-
word to construct the first line of a quatrain and then gen-
erated the subsequent lines one by one using the LSTM
model. Additionally, they used a template-based generating
method and established a word-choosing strategy based on
inner-word mutual knowledge to combat poetry’s dramatic
decline in quality. Accurate and real-time traffic flow pre-
diction is important for traffic control. Fu et al. [22] used
LSTM and gated recurrent units (GRU) neural network
methods to predict short-term traffic flow. Unlike prior
template-based systems, Liu et al. [23] showed a system
for generating Chinese classical poetry dubbed Deep
Poetry that utilizes neural networks trained on over 200
thousand poems and 3 million pieces of ancient Chinese
prose. This technology can generate Chinese classical
poetry from plain text, images, or aesthetic notions. More
importantly, this method allows users to engage in the
process of composing poetry. Bartoli et al. [24] proposed
and assessed a system for automatically generating restau-
rant reviews suited to the desired rating and restaurant
category using LSTM. They trained the neural network
on a set of authentic restaurant reviews in order to pro-
duce text that appears to be a restaurant review.

To summarize, the numerous existing approaches for
detecting abusive domains listed above each rely on a single
type of feature, such as the domain character, the URL, tex-
tual, or visual features. In comparison to these single-feature
detection methods, hybrid feature-based methods perform
better and offer broader development prospects. Therefore,

this study combined the textual and visual features of the
website to detect gambling and pornographic domains.
Additionally, many of the different types of tasks (e.g., clas-
sical poetry and criticism) predicted or generated are carried
out using the RNN model and perform well. Therefore, we
generate new abusive domain names based on the RNN
model.

In particular, because the purpose of the research
described in this paper is to generate or predict new abusive
domain names based on existing abusive domain names, the
accuracy of detecting abusive domain names should be high
enough. In addition, considering the significant resource and
time consumption of image-based detection, therefore, we
first filter out many suspected gambling and pornographic
domains with a text-based detection method and then use
an image-based approach for further verification. In this
way, the accuracy and efficiency of domain name abuse
detection meet the requirements.

3. Methodology

In this section, we design methods for generating more new
abusive domains based on the abusive domain samples that
have been acquired, as shown in Figure 6. Thus, our method
consists of three major stages: acquiring abusive domain
name samples; clustering abusive domain names based on
similar composition rules; generating new abusive domain
names based on these clusters.

3.1. Obtaining Abusive Domains. As shown in Figure 6, the
work in this stage is mainly to build a database of abusive
domains for generating new abusive domain names. This
stage contains three main tasks: one is to obtain the web
content of a large number of domain names, including
HTML source code and snapshots; two is to detect porno-
graphic and gambling domains based on HTML source code
and snapshots, respectively; three is to discover more abu-
sive domain names based on the certificate features of por-
nographic and gambling websites.

3.1.1. Crawling Web Content. First, we downloaded over 260
million domain names from Domain Monitor [26]. These
domains come from 1500 zones, which indicates that these
domains have DNS records. Second, we developed two types
of web crawlers to crawl web content.

(i) Requests-based web crawler. This crawler uses the
Python-requests [27] package to crawl the HTML
source code of domains. Then, we extract the title,
keywords, and description tags from the source code.
This text information is used to determine if the
domain name is pornographic or gambling

(ii) Selenium-based web crawler. This crawler uses the
Selenium webdriver [28] to get the snapshots of the
specific domains. We use these snapshots to detect
pornographic and gambling domains. Compared to
fetching web page source code, fetching web page
snapshots is slower and consumes more computing
resources
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We need to emphasize two points. On the one hand, in
order to get as many websites with the same composition
rules as possible, we get their web content in order based
on the initial order of the domain names. On the other hand,
we only need to obtain the web content of a small number of
domains out of 260 million domains to meet our needs.

3.1.2. Detecting Abusive Domains Based on fastText. As
introduced in Section 2, many previous studies detected
the web page source codes of domains to determine whether
they are pornographic or gambling. Also, both acquiring
web page source code and abusive domain detection based
on text are faster than acquiring web page snapshots and
abuse detection based on the images. Therefore, text-based
detection is the optimal solution when a large number of
domains need to be detected while ensuring high efficiency
and accuracy.

The fastText [29] is a natural language processing (NLP)
library generally used for text representations and classifica-
tion. The fastText does not need to rely on feature engineer-
ing like machine learning models for classification, and the
classification effect does not depend on the selection of effec-
tive features. At the same time, although text classification
based on deep learning can achieve good results and does
not require feature engineering, the training speed is slow
and the training conditions are high, so it cannot be used
in large-scale text classification tasks. Therefore, the fastText
model is widely used in text-based classification tasks
because of its fast speed and good effect. Finally, this paper
builds an abusive domain classifier with fastText based on
HTML source codes. The process of detecting pornography
and gambling domain names based on text is shown in
Figure 7.

(1) Training and test sets. The training and test sets con-
tain text samples that have been labeled as abusive or
benign types. The text comes from the requests-
based web crawler that gets the HTML source code
of a large number of domains and extracts the key
HTML tags content, i.e., title, description, and key-

words. On the one hand, we obtain the source code
of websites with a high traffic ranking in China from
Alexa [30], and these text messages are labeled as
benign. On the other hand, we obtain the source
code of the web pages of the domains provided by
Domain Monitor introduced above and filter out
the text content matching pornographic and gam-
bling keywords. These keywords (shared in GitHub
[31]) are the more frequent Chinese words in por-
nography and gambling websites that we collected
manually in the early stages, such as 做爱 (sex), 成
人电影 (adult movies), and 澳门娱乐场 (Macau
casinos). In addition, for the initially obtained
benign and abusive texts, we manually filtered them
again to ensure that the texts were indeed porno-
graphic or gambling. In the end, we get a total of
31,667 benign and 177,963 abusive texts as training
and test sets, which we will describe in detail in Sec-
tion 4.1

(2) Text preprocessing. The task of text preprocessing
for our dataset takes a few steps to convert the data
into a convenient form that we can feed into the fas-
tText classifier. First, since Chinese sentences are not
separated by spaces like English sentences, we use
the open-source tool Jieba [32] to split Chinese sen-
tences into words. Jieba Chinese text segmentation is
the best Python Chinese word segmentation module,
and a lot of research relies on its excellent results. For
example, the pornographic Chinese text “亚洲成人
片不卡无码，天看片免费高清观看，国内自拍视频
在线” (watch Asian adult movies and selfie porn
videos for free every day) is divided into “亚洲
(Asian) 成人片 (adult videos) 不卡 (fluency) 无码
(codeless) 天天 (every day) 看片 (AV) 免费 (free)
高清 (high definition)观看 (watch)国内 (domestic)
自拍 (selfie) 视频 (videos) 在线 (online).” Second,
in this step, we remove the repeated words after the
sentence is divided. Also, remove meaningless words
or symbols from the set of words, including stop
words and special symbols, like #, ∗, and &, etc.

III. Generating abusive domains

II. Domain clustering
composition-based

 I. Obtaining abusive domains

Detecting abusive
domains

Fast text-based

CNN-based

Domain name
database

Abusive domain
database

Domain clustering

K-means

Domain encoding

Generating domainsNew
domainsNew abusive

domains

Checking
domains

Discovering abusive
domains by certificate

Clusters

Cluster 1

Cluster N

........

Keywords

Crawling web

Domain decoding

GRU-based

Figure 6: The process of generating new abusive domain names based on GRU-RNN.
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Finally, the fastText requires the labeling of each line
in the database to be in a particular format like this:
“__label__<label_name> <text>.” For example, for
pornographic text, it is “__label__ abusive 亚洲成
人片不卡无码天天看片免费高清观看国内自拍视
频在线.” Another example, of benign text, is
“__label__benign 百度一下，你就知道.”

(3) FastText-based classifier training and classification.
Text classification mainly uses a classifier to label
the text of an unknown category, so the most impor-
tant part of classification is the selection of the
classification algorithm. The classification task pro-
posed in this paper uses the fastText library by Face-
book. Since the method needs the classification of
texts with our prelabeled dataset, we used the super-
vised technique for text classification

Overall, the detection model we built based on fastText
can detect a large number of domains containing porno-
graphic and gambling texts. The detection model has the
advantages of high accuracy, low resource consumption,
and high efficiency, as detailed in Section 4.1.

3.1.3. Detecting Abusive Domains Based on CNN. As
explained in Section 2.1.2, while some of the site’s HTML
information (title, description, and keywords) are related to
pornography or gambling, the actual content presented on
the site does not. As a result, we need to conduct additional
research to determine whether the website is abusive. This
section investigates the algorithm for detecting abusive
domain names based on web page snapshots. Most porno-
graphic or gambling websites have significantly different
front-end design styles from benign websites. Therefore, fea-
tures of both pages are automatically extracted by CNN,
which are used to detect whether a domain name is being
abused or not.

Abusive domain name detection based on web snapshots
can be tried as an image binary classification problem, i.e.,
domain name snapshots are classified into benign and abu-
sive results. In this paper, CNN is used to train the image

recognition model, and the schematic diagram of the convo-
lutional neural network structure is shown in Figure 8.

We input the web page snapshot into the convolutional
neural network after it has been converted into an RGB 3D
tensor of size 1600∗1000∗3. ReLU is applied nonlinearly to
the output of the convolutional layer and the penultimate
fully connected layer. The last fully connected layer uses a
Sigmoid function to map the output to between 0 and 1 to
obtain the probability that the input snapshot is legal for
binary classification. In the training of the model, the loss
function is a binary cross-entropy loss function, as shown
in Equation (1).

Loss = −∑n
i=0 yi log f i xið Þð Þð Þ + 1 − yið Þ log 1 − f i xið Þð Þ

n
,

ð1Þ

where n denotes the total number of output nodes, yi is the
real label corresponding to the ith category, and f iðxÞ is the
output value of the corresponding model.

Due to the large resolution of the input images, we
increase the depth and width of the network in order to
allow the neural network to extract its deep abstract features,
reduce the number of parameters, and improve the classifi-
cation accuracy. That is, the convolutional kernel width is
3 for each convolutional layer, and the convolutional kernel
width is 2 for the pooling layer.

In order to improve the detection efficiency and accuracy
of detecting pornographic and gambling domains, we com-
bine two methods based on text filtering and image-based
detection. That is, we first get a large number of suspected
pornography and gambling websites by text-based filtering
methods, then get snapshots of these websites, and finally
detect whether these websites are really pornography and
gambling websites by image-based methods.

3.1.4. Discovering Abusive Domains by Certificate. As
described in Section 2.1.1, many abusive domains’ certifi-
cates contain other abusive domains with a fairly similar
character composition that can share these certificates. As
a result, we developed tools to extract abusive domains from
the certificates. Additionally, we extracted the primary
domain name portion of the fully qualified domain names
(FQDNs). For instance, for the domain https://www
.abusive-domain.com, abusive-domain.com is the portion
on which we concentrate our efforts. This enables us to
acquire the maximum number of domain name composition
rules feasible.

3.2. Domain Clustering Based on Composition. As described
above, there are character compositional similarities
between the different domain names in the set of abusive
domain names. In other words, there are many different
malicious domain names, but they come from various forms
of character composition. In order to distinguish the abusive
domain names belonging to different composition forms, we
first cluster the abusive domain names based on the compo-
sition similarity of domain characters in order to provide
training data for the domain name generation model.

TestingTraining

Text
pre-processing

Fast text-based
classifier training

Training set

Classifier

Test set

Text
pre-processing

Abusive domain
classification

Figure 7: The process of detecting pornography and gambling
domains based on fastText.
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3.2.1. Domain Encoding and Decoding. In order to achieve
similar domain name clustering and interconversion with
neural network acceptable input and output forms, encoding
and decoding rules for domain names are constructed based
on domain name composition features.

(i) Domain Encoding. Domain names are formed by the
rules and procedures of the Domain Name System
(DNS). The first-level set of domain names is the
top-level domains (TLDs), including the generic
top-level domains (gTLDs), such as .COM, .ORG,
and .NET, and the country code top-level domains
(ccTLDs). Below these top-level domains in the
DNS hierarchy are the second-level and third-level
domains (2LD and 3LD) that are typically open for
reservation by end-users who wish to connect local
area networks to the Internet, creating another
publicly accessible Internet resource, or run websites.
For example, for the domain name http://google
.com, the top-level domain is .COM and the
second-level domain is Google. We divide the
domain name into two parts, i.e., 2LD.TLD, and
encode the top-level domain and the second-level
domain of the domain name, respectively. The
second-level domains are all composed of letters a-
z, numbers 0-9, and the ligature “-,” while the top-
level domains as a whole act as a specific unit due
to their nondetachable nature. Therefore, we num-
ber all top-level domains and individual characters
in the abusive domain dataset to form a domain-
numbered dictionary. When encoding a domain
name, first, we convert all characters and top-level
domains in the domain name to their corresponding
numbers, forming a domain-numbering vector of
variable length. Then, the domain number vector is
filled to the specified length with null characters to
obtain a domain number vector of definite length
composed of numbers.

(ii) Domain Decoding. Domain name decoding is the
process of converting the domain name number
vector output from the neural network into a
domain name character vector. The domain name
is obtained by looking up the corresponding charac-
ters and top-level domain names according to the
character numbers in the domain character dictio-
nary, obtaining a domain name character vector of

definite length, and then removing the trailing null
characters

3.2.2. Abusive Domains Clustering. In this paper, we use the
K-means algorithm [33] to cluster domain names and divide
the abusive domain names with similar character composi-
tions into the same cluster set. The basic idea of the K
-means algorithm is as follows.

(i) K domain feature vectors are selected from the
dataset as the clustering centers

(ii) For each other domain feature vector, calculate its
Euclidean distance [34] from all the cluster centers
and assign it to the cluster center with the closest
distance

(iii) Update the cluster centers of all cluster sets to the
mean value of all domain feature vectors in the clus-
ter set and calculate the squared distance sum JðCÞ
(as shown in Equation (2)) values of all samples to
their category cluster centers

(iv) Finally, determine whether the clustering center and
JðCÞ value have changed; if they have, return to the
second step to continue the iteration, and vice versa,
end the algorithm

J Cð Þ = 〠
K

k=1
〠
n

i=1
dki xi − ykk k2,

where dki =
1, if xi ∈ ck
0, if xi ∉ ck

(
,

ð2Þ

where C is the set of clusters, K is the number of clusters, n is
the number of sample data, xi is the data point, and yk
denotes the cluster center of the kth cluster set. Finally, we
aggregate the abusive domain names with similar character
compositions into K clusters. After that, new abusive
domain names are generated based on each cluster.

3.3. Generating New Abusive Domains. The new abusive
domain name generation problem can be viewed as a char-
acter sequence prediction problem. As described in Section
2.2, LSTM is a special kind of recurrent neural network that
has been successful in dealing with machine translation and

0

1

Convolution + ReLU Pooling Convolution + ReLU Pooling Fully connected SigmoidInput

Figure 8: The process of identifying abusive website snapshots using convolutional neural networks.
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sequence problems. However, the algorithm is slow to con-
verge because of its large number of parameters. Therefore,
in this paper, GRU is used to build the neural network,
which works on the same principle as the LSTM layer but
with computational simplifications making the operation
less expensive, while the difference in model performance
is not significant.

3.3.1. Generating Domains Based on GRU

(1) Building Generation Model

The schematic diagram of the structure of the GRU-
based malicious domain name generation neural network
is shown in Figure 9.

The first embedding layer accepts an integer domain
number vector of definite length as input and will output a
meaningful embedding vector of definite length. Each com-
ponent of the vector consists of floating-point numbers,
which can describe the relationship between the characters
of the domain name in a specific way. The second layer of
the GRU layer accepts the feature vector input of the previ-
ous layer and outputs the information of the character of the
domain name at the next moment. The third layer of the
fully connected layer acts as a classifier, which converts the
input of the second layer into a vector of the size of the
domain-numbered dictionary and outputs it. Finally, the
output vector of the third layer is converted into a logarith-
mic probability distribution by LogSoftMax and output.

The steps of generating a batch of domain name vectors
based on the GRU-based malicious domain name generation
neural network are as follows:

(1) First calling the pseudo-random generator to select a
batch of first character numbers from the number set
corresponding to the set of letters and numbers and
forming the corresponding domain number vector,
that is, a tensor of 1∗batch-size, and input to the
embedding layer, where batch-size is customized by
the user during the generation process

(2) The embedding layer converts each input character
number into an embedding-dim dimensional
embedding vector to obtain the embedding feature
in the shape of 1∗batch-size∗embedding-dim and
outputs it to the GRU layer. During this experiment,
embedding-dim is 128

(3) The GRU layer converts the input of embedding fea-
tures into a tensor in the shape of 1∗batch-size∗
hidden-dim, which contains the information to pre-
dict the character number of the next batch, and
inputs it to the fully connected layer. Hidden-dim
is the size of the hidden layer of the GRU layer. Dur-
ing the experiment, hidden-dim is 256

(4) The fully connected layer converts the input tensor
into a tensor in the shape of batch-size∗char-count
and outputs it. LogSoftMax converts each line to a
probability distribution of the next character number
to be generated, where char-count is the size of the

domain-numbered dictionary. During this experi-
ment, char-count is 627

(5) For each row, the character number with the highest
probability is selected as the number of the next
batch of characters generated. The character number
of the next batch is used as the new input to the neu-
ral network

(6) Repeat steps (2) to (5) until the length of the domain
name reaches the maximum length or the generated
character number belongs to the top-level domain
character numbers, then stop generating. The initial
input character number and the domain name num-
ber generated in each step form a domain name
number vector in the generation order. The domain
name number vector is decoded into the corre-
sponding domain name characters to obtain a batch
of generated domain name vectors

(2) Training Generation Model

The steps of training GRU-based malicious domain
name generation neural networks are as follows:

(1) Read model configuration information and related
parameters

(2) Based on the clustering results, all the original
domain name data in one of the categories that have
not yet participated in model training are read as the
model training dataset

(3) The original domain name data is encoded and con-
verted into a domain name number vector, and the
length of the domain name number vector is filled

Embeddings

GRU

Dense

LogSoftMax

Random_seed

New_domains

Figure 9: The structure of the GRU-based malicious domain name
generation neural network.
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to max-length. During this experiment, max-length
is 50

(4) Configure the Adam optimizer to adapt to gradient
changes to adjust different learning rates according
to parameter changes

(5) Get a batch of training data shaped as max-length∗
batch-size

(6) Each column of training data is a domain name
number vector. The first element to the max-
length-1 element of each domain name number vec-
tor is combined into an input domain vector named
input-vector. A batch of input-vector is combined
into a tensor in the shape of (max-length-1) ∗
batch-size. The second element to the max-length
element of each domain name number vector is
combined into a target vector named target-vector,
and a batch of target-vector is combined into a target
tensor in the shape of (max-length-1) ∗ batch-size

(7) The model is learned and fitted on the input tensor
and the target tensor. The loss value between the
prediction result of the model under the input tensor
and the target tensor is calculated using cross-
entropy as the loss function. The trainable parame-
ters are updated by backpropagation. The network
parameters are updated by the optimizer

(8) Repeat steps (5) to (7) until the maximum number of
iterations is reached or the network loss value stabi-
lizes, and save the network parameters when the loss
value is below the set threshold during the training
process

(9) Repeat steps (2) to (8) until the original domain
name data of all categories in the clustering results
are used as the model training dataset to participate
in the neural network training

3.3.2. Checking Domains. In this step, we first check if the
generated domains are configured with IP addresses. For
domains with configured IP addresses, we then try to obtain
the web content of these domains. Finally, using the method,
we devised (described in Section 3.1) to detect whether these
domains are abusive or not.

3.4. Evaluation Metrics. In this paper, we use standard accu-
racy (Acc, Equation (3)), precision (P, Equation (4)), recall
(R, Equation (5)), and F1-score (F1, Equation (6)) as the
classification evaluation metrics to evaluate the performance
of abusive domain name detection. The specific formulas are
as follows:

Acc = TP + TN
TP + FP + TN + FN

, ð3Þ

P = TP
TP + FP

, ð4Þ

R = TP
TP + FN

, ð5Þ

F1 = 2 ∗ P ∗ R
P + R

, ð6Þ

where TP is true positives, TN is true negatives, FN is false
negatives, and FP is false positives, respectively. We define
the abusive domain names as positive and the benign ones
as negative.

As we described above, pornographic and gambling
domains detected using the fastText-based classifier are
again detected using the CNN-based classifier. Therefore,
we use Equation (7) to evaluate its joint precision (Pjoint).

Pjoint = 1 − 1 − Ptextð Þ ∗ 1 − Pimage
� �

, ð7Þ

where Ptext denotes the precision of detecting abusive
domains based on text, and Pimage denotes the precision of
detecting abusive domains based on the image.

4. Experimental Results

In this section, we mainly show the abusive domain detec-
tion performance and the results of the generated abusive
domains.

4.1. Abusive Domain Database

4.1.1. Performance of fastText-Based Detection. In order to
evaluate the performance of the fastText-based detection
models, we used a 10-fold cross-validation strategy over
the dataset. First, the dataset is split into 10 folds, then the
seven folds are trained, and the remaining one is used for
testing. This process is repeated ten times. Finally, all the
metrics on the validation folds are averaged and a better esti-
mate of the performance is achieved. Based on the method
introduced in Section 3.1, we obtained the text information
of benign and abusive domain names as shown in Table 1.

We trained and tested the model on Apple’s Mac mini
M1 version (8 CPU cores and 16GB RAM). Under our nor-
mal conditions of using the device, such as opening the
browser, PyCharm software, the model training took only
4.3 seconds. In addition, the model took only 1.2 seconds
to complete the classification of 62,751 domain names. The
values of P, R, F1, and Acc of the model in detecting abusive
domain names are 0.98, 0.97, 0.98, and 0.96, respectively.
Thus, the abusive domain name detection model base on
fastText we built has very good performance with high effi-
ciency and low resource consumption.

4.1.2. Performance of CNN-Based Detection. Based on text
detection of pornography and gambling domains, we filtered
out a large number of pornography and gambling websites.
We used the selenium-based crawler to obtain a total of
37,266 web snapshots of pornography and gambling
domains. In addition, we obtained 27,132 web snapshots of
domains provided by Alexa as benign samples. In the exper-
iment, this paper divides the original domain snapshots into
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training set, validation set, and test set according to the
7 : 1 : 2. The dataset division is shown in Table 2.

The GPU graphics card used in this experiment is the
Quadro GV100 with 32GB of video memory. TensorFlow
(https://www.tensorflow.org, accessed on 6 May 2022), Mat-
plotlib, Keras (https://keras.io, accessed on 6 May 2022), and
other services are configured in the operating system (OS)
system Ubuntu 20.04.3LTS environment. In this paper, the
GPU-accelerated convolutional neural network was built
with the Keras framework as the core. The evaluation met-
rics of model classification include training accuracy, train-
ing loss, validation accuracy, and validation loss, where
validation accuracy and loss are used to determine whether
the model is overfitted during the training iteration and to
evaluate the generalization ability of the model. The training
accuracy and loss values are used to evaluate the model’s
performance on the training set. The variation of the classi-
fication accuracy and loss values of the convolutional neural
network with the number of training epochs during the
model training are shown in Figure 10.

As shown in Figure 10, the model’s classification accu-
racy went from 64% to 92% after 26 epochs of training.
The accuracy increases rapidly in the first 10 epochs, fluctu-
ates slightly between 11 and 26 rounds, and starts to grow
slowly after 26 epochs. This indicates that the training of
the model has converged. The trend of the model training
loss value in Figure 10 is basically opposite to the trend of
the model training accuracy. The loss value of the model
decreases from 6.6 to 2.6 after 26 epochs of training. The loss
value of the model starts to fluctuate after 26 and basically
tends to be constant.

The variation of the validation classification accuracy
and the validation loss value of the convolutional neural net-
work with rounds during the model training are shown in
Figure 11.

The accuracy and loss trends in Figure 11 are generally
consistent with Figure 10. The validation accuracy values
in Figure 11 start to fluctuate when the rounds reach 26,
indicating that the fit has converged. After 26 epochs of
training, the final accuracy increases from 0.77 to 0.91. The
validation loss value tends to level off after 26 epochs of
training, with only a slight vibration, which indicates the
strong generalization ability and high accuracy of the model.

Finally, the experimental results show that the model
built in this paper has an accuracy of 0.95 on the training
set, 0.90 on the validation set, and 0.91 on the test set. Based
on the test set, the model’s values of P, R, and F1 in detecting
abusive domain names are 0.92, 0.93, and 0.92, respectively.

Furthermore, as we introduced in the above section, we
use CNN-based identification in the set of pornographic or

gambling domains discovered by the fastText-based model.
That is, we use the built CNN-based model to filter out
benign domains that are misclassified as gambling or por-
nography from the set of abusive domains in this step. After
evaluation, the CNN-based model achieves an accuracy
value of 0.98 in detecting benign domains in this abusive
domain set. Based on Equation (7), the joint model built in
this paper achieves an accuracy (Pjoint) of 0.99 in detecting
pornographic and gambling domains.

4.2. Generating New Abusive Domains

4.2.1. Domain Clustering. When using the K-means algo-
rithm to cluster domain names that are similar in composi-
tion, the first step is how to determine the appropriate K
value. The elbow method [35] is proposed to explain and
verify the consistency of clustering analysis to assist in the
determination of the optimal number of clusters in the data-
set. The core idea of the elbow method is that if the value of
K is much smaller than the optimal number of clusters, as
the value of K increases, which will greatly increase the
degree of aggregation of each cluster, so the value of JðCÞ
will decrease sharply. When the value of K increases close
to the optimal number of clusters, the decrease of the JðCÞ
value slows down as the value of K increases. And when
the value of K reaches the optimal number of clusters, con-
tinuing to increase the value of K will cause JðCÞ to level off.
Therefore, JðCÞ decreases sharply and then flattens out as
the K value increases, and the optimal K value is the K value
at the inflection point.

Therefore, we determine the correct number of clusters
according to the elbow method. Its calculation formula is
shown in Equation (2). We selected different K values to
cluster the abusive domain name dataset while calculating
the JðCÞ values, as shown in Figure 12. It can be seen that
when the curve has an inflection point at K =5 or 6.

The silhouette coefficient or silhouette score [36] is a
metric used to calculate the goodness of a clustering tech-
nique. The silhouette score ranges from -1 to 1. The negative
value indicates that the sample is assigned to the wrong set
of clusters, and the assignment is not satisfactory. When
the value is positive, the larger the value, the smaller the dis-
tance between samples of the same category, and the larger
between samples of different categories, the better the clus-
tering effect. The expression of the sample silhouette coeffi-
cient s is shown in Equation (8).

s = b − a
max a, bð Þ : ð8Þ

Table 1: The summary of the training and test datasets for
fastText-based detection.

Category Training Test

Abusive domains 124,686 53,277

Benign domains 22,193 9,474

Total 146,879 62,751

Table 2: The summary of the training, verification, and test
datasets for CNN-based detection.

Category Training Verification Test

Abusive domains 26,085 3,725 7,456

Benign domains 18,992 2,713 5,427

Total 45,077 6,438 12,883

12 Wireless Communications and Mobile Computing

https://www.tensorflow.org
https://keras.io


0 10 20 30 40 50

Epochs

0.65

0.70

0.75

0.80

0.85

0.90

Ac
cu

ra
cy

6

5

4

3

Lo
ss

Acc
Loss

Figure 10: The accuracy and loss of model classification with epochs during model training.
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In Equation (8), a is the average distance between the
sample and other samples in the same cluster, and b is the
minimum average distance between the sample and not in
the same cluster samples.

The silhouette coefficient S of the sample set is the aver-
age of the silhouette coefficients of all samples, and its
expression is as in Equation (9).

S = ∑n
i=1si
n

, ð9Þ

where n is the total number of samples, and si is the value of
the ith sample silhouette coefficient.

Finally, the values of the silhouette coefficients of the
sample set are 0.866 and 0.831 when K =5 and 6, respec-
tively. When K=5 indicates that the clustering effect is rela-
tively satisfactory, the abusive domains within the uniform
cluster sets are more similar. As a result, we divided the abu-
sive domain names into five categories separately to generate
new abusive domain names.

4.2.2. Generating Domain Names. The goal of abusive
domain name generation is to generate domains that are as
online (with web content) and as abusive as possible. We
measure the performance of the generation model in terms
of two metrics: the online rate of generating domain names
(OG, as shown in Equation (10)) and the generation rate
of abusive domain names (GA, as shown in Equation (11)).

OG = OGD
GD

, ð10Þ

GA = AOD
OGD

: ð11Þ

OG indicates the percentage of domains with web content
to these generating domains. GA indicates the percentage of
online domains that are pornographic or gambling domains.
GD refers to the total number of generated domains. OGD
refers to the number of online generated domains. AOD is
the number of online domains that are abusive.

The neural network in the domain name generation
model is built based on PyTorch (https://pytorch.org,
accessed on 6 May 2022), and the model is configured and
generated as described in Section 3.3. During the training
process, the neural network weight parameters with model
loss values below 0.3 are saved. In addition, for the abusive
domains that have been divided into 5 clusters, 10 neural
network weights are saved under each cluster, i.e., we end
up with a total of 50 neural network weights.

Then, the keywords that compose the domain names are
fed to the trained neural network model, and the model can
generate the domain names with the maximum probability
of abuse based on those keywords. Therefore, based on the
configuration of the domain name generation model, 50
domain names can be generated for each keyword (or called
batch), and the same batch does not contain the same
domain name.

In the experiments, we determine the length of input
keywords based on the length of the domainâ€™s second-
level domain (e.g., the domain http://google.com, whose
second-level domain is Google). As shown in Figure 13,
which shows the distribution of the second-level domain
length of benign and abusive domains we collected, it can
be seen that more than 95% of the domains have a second-
level domain length of less than 15. Therefore, we input
40,000 random strings (batches) (26 letters and ten digits)
with a length less than 15 into the domain generation model.
Finally, we got a total of 964,112 new domain names.

We use the requests-based crawler (introduced in Sec-
tion 3.1) to crawl the web content of the domains in order
to check whether the generated domains are online or not.
The percentage of online domains in each batch of 50 gener-
ated domains is shown in Figure 14. We can discover that
the average OG value is about 0.14, i.e., about 130,220 of
the generated 1 million domains are with web content. In
addition, the maximum and minimum values of OG for
the batches of generated domains are 0.68 and 0.06, respec-
tively. We can also find from the cumulative graph that the
OG for each batch is concentrated between 0.06 and 0.3.
This indicates that the number of online domains is related
to the keywords entered into the generation model. By
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selecting appropriate keywords, the number of online
domains can be enhanced.

Next, we analyze how many of the generated online
domains are malicious. Figure 15 shows the distribution of
the percentage of generated online domains with porno-
graphic or gambling websites in each batch. The average G
A value was 0.53 on March 23, 2022, which means that
about 70,318 domains were pornographic or gambling.
Thus, this suggests that the domain name generation model
we built can discover a large number of new pornographic
and gambling domains in order to expand the list of abusive
domains.

In addition, during our detection of all newly gener-
ated domains for more than one month, we found that
more and more new domain names were gradually com-
ing online, and most of the online domains were porno-
graphic or gambling domains, as shown in Figure 16.
The OG value of generated new domains improved from
0.14 to 0.18, i.e., about 48,205 domains came online in a
month. And the percentage of new online domains that
are abusive increased from 0.54 to 0.78, which indicates
that a large number of pornographic or gambling domains
came online over time and then spread malicious informa-
tion. The experiments show that the domain generation
model used in this paper can find a lot of pornographic
and gambling domains in advance.

To summarize, we entered 40,000 keywords into the
domain generation model and generated a total of 964,112
unique domain names. Eighteen percent of these domains
(177,217 domains) serve web pages, with 127,596 domains
serving pornographic or gambling sites. It turns out that
with this domain name generation model, we can get a lot
of new pornographic and gambling domain names with
the same composition as the old domains.

5. Conclusion

The first step in blocking and dealing with pornographic and
gambling domains is to discover them. The more quickly,
precisely, and early these abusive domains are handled, the
more harm they cause to people, particularly children and
minors, can be mitigated. In this paper, we developed a
two-layer detection system to quickly and precisely detect
pornography and gambling domains using fastText and
CNN models. In particular, in order to discover more abu-
sive domains earlier, we proposed a domain generation
model based on GRU for rapidly generating new abusive
domain names from known ones. The experimental results
demonstrate that our domain name detection and genera-
tion model is capable of discovering a large number of por-
nographic and gambling domains.

Moreover, it should be noted that the number of new
gambling and pornographic domains that can be generated
is more related to the sample of already existing porno-
graphic and gambling domains. The larger the number of
domains in the sample, and the more domains with similar
character composition, the better the generated domains.
Therefore, the limitation of this paper mainly comes from
the number and quality of the sample domain names.

In the future, first, we should detect DGA domains using
the idea of text-based generation and find domains gener-
ated using the same algorithm. Second, we should study
the relationship between different keywords (length and
composition) and the generated domain names that are
more likely to be abusive. Finally, we would like to apply
the detection techniques of this paper for pornography and
gambling domains to discover phishing attack activities.
Also, we would like to discover potential attacks by generat-
ing domain names that are similar to the target domain (e.g.,
http://google.com).
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Accurate indoor visual localization has been a challenging task under large-view scenes with wide baselines and weak texture
images, where it is difficult to accomplish accurate image matching. To address the problem of sparse image features
mismatching, we develop a coarse-to-fine feature matching model using a transformer, termed MSFA-T, which assigns the
corresponding semantic labels to image features for an incipient coarse matching. To avoid the anomalous scoring of sparse
feature interrelationship in the attention assigning phase, we propose a multiscale forward attention mechanism that
decomposes the similarity-based features to learn the specificity of sparse features, the influence of position-independence on
sparse features is reduced and the performance of the fine image matching in visual localization is effectively improved. We
conduct extensive experiments on the challenging datasets; the results show that our model achieves image matching with an
average 79.8% probability of the area under the cumulative curve of the corner point error, which outperforms the related
state-of-the-art algorithms by an improvement of 13% probability at 1m accuracy for the image-based visual localization in
large view scenes.

1. Introduction

Obtaining an accurate indoor location is a key for location-
based services such as seamless indoor-outdoor integrated
navigation and multimedia information push in smart cities
and augmented/virtual reality applications [1]. The demand
for the high-precision location-based services in large indoor
spaces is also becoming increasingly urgent.

Visual indoor localization is currently the mainstream
solution under the premise of high precision location [2].
The localization accuracy estimated with visual information
exceeds that with wireless radio frequency (RF) signals,
IMU, and geomagnetic signals. The RF signal is affected by
multipath effects and signal fading, while IMU suffers from
error accumulation, and they cannot compete with robust
visual localization. Visual localization, i.e., estimating the
camera pose by query image matching to the scene model,
is a core problem under a large-view condition in computer

vision. In the absolute pose estimation of a camera, it is nec-
essary to estimate the pose in an indoor coordinate system
using the information provided by the image database and
3D point clouds. The main challenge for the image-based
[3–5] or structure-based [6, 7] indoor visual localization
methods is to obtain the exact image feature matching (i.e.,
find the feature points corresponding to the query image
from the candidate images) and complete the homography
constraint in optimal camera pose estimation [8, 9]. How-
ever, in complex indoor scenes, especially images in large-
view scenes with long viewing distances and wide baselines,
which contain the visual information with sparse features,
feature distortion or partially occluded makes it difficult to
accomplish accurate feature matching of the visual local-
ization. Similarly, some viewpoint changes in a wide range
of viewing conditions lead to acute perspective distortion,
which results in a little scene structural overlap between
the query and the candidate images. Because image matching
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focuses on the small part of an image [10], the variability of
the scale and rotation of local features makes feature match-
ing in large view scenes highly ambiguous and unable to
accomplish accurate visual localization.

The precise correspondence of image features between
the query and the database is a key to visual localization
under a wide range of viewing conditions. The accuracy of
image matching in such scenes can be improved by visual
semantic information and spatial context [11]. The works
[12, 13] extracted scene semantic information for consistency
matching and used the geometric and semantic understand-
ing of the scene to learn the new generative descriptors for
positioning under failed scenes. These methods are able to
eliminate the influences of illumination and occlusion for
visual long-time localization. However, the accuracy of geo-
metric descriptors [14] and semantic segmentation models
[15] needs to be further improved for getting accurate geo-
metric features and semantic annotation of the large-view
indoor scene 3D model. For the image sparse feature match-
ing of visual localization in large view scenes, the attention-
based matching algorithm provides a promising approach
[16, 17], the translational and rotational invariance of
features is learned to enhance the expression of sparse fea-
tures, and the different matching strategies are accomplished
through different attention weights assignment, which can
solve the ambiguous problem of feature matching in a large
view scene with crossviewpoint. In the existing methods of
self-attention weights and crossattention weights [17–19],
the anomalous attention weights of the sparse feature points
under weak texture scenes are prone to occur for location-
independent feature points (i.e., feature points prone to
distortion) because they are not subject to any constraints,
leading to the pervasive weak texture image matching errors
in large view and increasing visual localization errors.

To tackle the above challenges, we investigate the prob-
lems of ambiguous matching of sparse features and anomaly
weights for visual feature correlation under large view
scenes. We develop a coarse-to-fine feature matching model
to remove the dependence on appearance-based reliable fea-
ture matching and reduce the effects of the large view and
viewpoint changes. As shown in Figure 1, a key insight of
our method is to learn the self-correlation among the image
sparse features and crosscorrelation among the features on
different image patches through semantic correlation and
forward multiscale attention mechanism, which reduces
the influence of image distortion and improves the matching
accuracy of sparse feature points under a wide range of view-
ing conditions. The key contributions are summarized as
follows:

(1) We develop a novel coarse to fine feature matching
network with a transformer, termed MFSA-T, which
solves the problem of sparse feature matching in large
view scenes. Meanwhile, semantic match consistency
and position correlation are exploited to improve the
robustness of the refined matching model

(2) We propose a multiscale forward attention mecha-
nism to solve the anomaly score of sparse feature

point interrelationship and the attention weight on
different image patches. This mechanism enables
our network to decompose the similarity features to
learn the specificity, which improves the matching
accuracy of the sparse features in weak texture
regions and refines the visual localization in large
view scenes

(3) We achieve an average correct matching rate of
79.8% in large view scenes and reduce the localiza-
tion error by 9.5% in wide baseline scenes of the
public datasets, which outperforms the state-of-the-
art image matching algorithms. The performance of
image-based visual localization algorithms using
the MFSA-T model in large-view scenarios is suc-
cessfully improved

The rest of the paper is organized as follows. Section 2
discusses the existing studies related to this research and
Section 3 illustrates the method regarding the developed
sparse feature matching network in large views scenes.
Finally, the experiment results along with their analysis
and the summarization of the developments are discussed
in Section 4 and Section 5, respectively.

2. Related Work

Robust visual localization in large view scenes is an essential
problem in computer vision. The solution of this problem in
difficult situations is not only a challenging task but also
highly relevant in practice, such as augmented reality, multi-
media information push, and autonomous robots. Large
view scenes with extreme viewpoint changes, a wide baseline
of view, and weak textures lead to acute perspective distor-
tion and frequently bring on the few common matching
parts between the query and the database. These challenges
in visual localization attract a large number of researchers
to investigate different visual problems [20]. In this section,
we review and summarize the research on issues related to
visual localization in a large view scene.

2.1. Feature-Based Localization. The mainstream visual
localization algorithms for large-scale complex indoor
scenes use local feature matching of the query image with
the 3D model from the structure from motion (SFM) [21]
of the scene, such as SIFT [22] and FREAK [23]; the homo-
graphy matrix formed by the corresponding features after
RANSAC filtering is solved by perspective-n-point (PnP)
[24] to estimate the pose of the query image [9]. To elimi-
nate the influence of viewpoint changes and weak textures
in large-view scenes, the geometric features of the scene are
utilized in [25] to complete the regional correspondence of
the scene and the multiple scales local correspondence of
the same ratio. This type of traditional descriptor matching
usually uses region priority matching or efficient sparse
feature association, which is typically a direct matching
scheme. But the robustness of this type of method decreased
dramatically due to visual distortion occurring in large-view
scenes; the localization performance is substantially reduced.

2 Wireless Communications and Mobile Computing



Camposeco et al. [26] proposed geometric outlier filtering
to remove the mismatching relationship of features caused
by a viewpoint change in large view scenes. The optimal
camera pose estimation result in a large scene is the one
with the most votes [27, 28], searching for the covisibility
information between a query image and database images
[7, 29, 30], retrieving the structural overlap region to elim-
inate the influence of the wide baseline scenes, and seeking
the key frames and local matching features of query
images [31], which can effectively remove the influence
of viewpoint changes in the visual localization. To ensure
the credibility of visual localization results, Taira et al.
[10, 32] proposed the pose verification and incorporated
scene geometric and semantic information for a trained
pose verification model that generates a pose-score similar
to the query image by a fractional regression convolutional
neural network (CNN).

2.2. Visual Semantic Localization. Visual semantic features
have richer scene information and object class information
than traditional features, which is more robust to visual
information distortion in large views [33]. In recent years,
visual semantic information has been used in indoor posi-
tioning with promising results [34]. An extended structure-
based method was proposed in [12] by combining image
features and semantic understanding of the scene in the
camera pose estimation stage of the query image. The
method uses the geometric outlier filtering [27] and scene
semantic labels to deal with the wide range of viewing sce-
narios where it is hard to seek the correct correspondences
of image features. Toft et al. [35] proposed a sparse 3D point
cloud model composed of scene curves and pixel-wise
semantic labellings of the query image to enhance the image
features discrimination for visual localization. Another
semantic localization strategy is to include the image seman-
tic information in the feature matching process of the visual
localization algorithm [13, 36, 37], i.e., detecting and match-

ing semantic features of the scene images. The latter type of
semantic localization method only provides an additional
weak semantic feature information does not solve the prob-
lem of seeking enough correct matches in wide baseline
scenes, which motivates our work.

In contrast to the approaches previously discussed, our
method focuses on the image feature matching stage of
visual localization. Our model combines the sparse features
in large-view scenes and the corresponding semantic infor-
mation into a single confidence feature and learns discrimi-
native and crosscorrelation of features, which completes
accurate image matching to improve visual localization
accuracy in wide baseline and long-range view scenes.

2.3. Learning-Based Feature Matching Network. Recent
works show that the learning-based image matching net-
work significantly improves matching performance [17].
Learning-based feature matching models can be divided into
two categories. A common strategy of the first category is to
learn the translation invariance and rotation invariance of
feature descriptors [16, 38, 39] to enhance the representation
of image features. A trainable single-image matching CNN
was proposed in [40], which is a dense feature descriptor
as well as a feature detector. The obtained keypoints by
trainable CNN are more robust and stable than their tradi-
tional counterparts. The second category of approaches
mainly focuses on different matching strategies for image
features; for instance, a universal dense correspondence net-
work was proposed [41] for geometric and visual semantic
matching of images. Sarlin et al. [18] proposed a sparse fea-
ture matching model with GNN (graph neural network),
which completes feature matching by self-attention and
crossattention. A pixel dense matching network with a
transformer was proposed in COTR [19], which selects
query interest points and retrieves sparse counterparts
between images to obtain local and global prior information
by iteratively estimating scaling around the points. The same

Query
image

Self-
correlation

Cross-
correlation

Semantic
consistency

Candidate
matching

image

Figure 1: Schematic of sparse feature matching in weak texture scene with viewpoint change.
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self-attention and crossattention layers are used in LoFTR
[17], a coarse-to-fine image matching model, where the steps
of sequentially performing image feature detection, descrip-
tion, and matching are replaced by a pipeline using coarse-
to-fine image feature matching. This algorithm conducts
pixel dense matching at the coarse granularity and then
refines the matching at fine granularity, which improves
the image matching accuracy for weak texture scenes. How-
ever, if feature points are position-independent, they have
similar background features (e.g., walls with weak texture
or untextured corridors); some models [17–19] miscalculate
the image attention weights and cannot complete accurate
matching.

In contrast to the above, we focus on the precise corre-
spondences of image features of the matching stage in visual
localization. We propose multiscale forward attention to
improve the self-correlation and crosscorrelation of sparse
features for the anomalous scores of attention weighting of
sparse feature points in large view scenes. We establish a
coarse-to-fine feature matching model using a transformer
network to better the image feature matching accuracy in
extreme viewpoints.

3. Method

To address the matching ambiguity in the image matching
phase of visual localization under large-view scenes, we pro-
pose a novel coarse to fine sparse feature matching network
using a transformer, named MSFA-T, which is also suitable
for other applications based on image matching such as
object tracking and object retrieval. The structure of our
model is shown in Figure 2, ε is the D2-Net [40] model used
to extract the CNN features and the positions, I − I ′ are the
input images, and M is the mapping of feature map F and
semantic segmentation map S.

Our goal is to train a coarse-to-fine sparse feature
matching model that can output optimal geometric con-
straints for the visual localization algorithm in large-view
scenes. First, we obtain the semantic features of the query
image and candidate images by SETR [15], which can per-
ceive the large view scene with failed localization in scene
recognition. The scene semantic features are embedded into
the sparse feature points of the image for coarse feature
matching. Our model obtains the spatial locations of the fea-
ture points with similar semantics to learn the interrelation-
ship of different feature points and decompose the similarity
features, which completes a coarse matching of image fea-
tures and the division of image patches with semantic classes
and solves the problem of the misclassification of feature
points under distorted view. We propose a multiscale for-
ward attention mechanism (MSFA) embedded into a trans-
former to compute the attention weights of sparse features at
different positions and to motivate the model to learn the
self-correlation of features with the same semantic informa-
tion and the crosscorrelation of features with different
semantic information. MSFA module deals with the prob-
lem that the image distortion at a long-viewing distance pro-
duces anomalous scores on the attention weights of image
features. The main specific constraints derived from the

computation of feature vectors by the neural network (NN)
are also executed. Finally, the transformer output vector is
decoded by a multilayer perceptron (MLP) to obtain a con-
fidence feature matrix for accurate image matching. Our
model provides the optimal geometric constraints for visual
localization.

After expanding the feature patches obtained by coarse
matching to one-dimensional vector, we add positional
encoding. We use the general linear positional encoding in
transformers following DETR [42]; the positional encoding
gives each feature patch unique position information to
ensure that the transformed vectors of the sparse features
become position dependent. This process enables our model
to resist the influence of weak texture regions. The fused
position-encoded feature vectors are fed into the trans-
former, and their weights are obtained according to our pro-
posed multiscale forward attention module for computing
confidence features.

3.1. Semantic Mapping for Coarse Matching. The mapping of
semantic maps to image patches assigns different semantic
labels to the sparse features of images, which facilitates
the calculation of the self-correlation of feature points with
the same semantic information and the crosscorrelation
between different semantic feature points (as shown in
Figure 1); meanwhile, it provides a priori information for
coarse image matching. The incorrect matching of image
features in weak texture scenes is significantly reduced.
The specific computational details are as follows.

Semantic class labels are constructed by performing
pixel-level semantic segmentation on all images [33],
semantic label Sc is assigned to its same semantic class
of image patches. The feature map after semantic mapping
is defined as:

M = Fi,j, Sc, i,jð Þ
� �n oN

i=1,j=1
, ð1Þ

where each feature point and its image coordinates are
defined as Fi,j, its semantic label class and corresponding
semantic label position are defined as Sc,ði,jÞ, and N is the
total number of feature patches.

As each feature patch is given a semantic label, we com-
pare the observed feature patches and the corresponding
semantic labels between the query and the database for scor-
ing semantic consistency to obtain a coarse region where the
feature patches are located. The semantic matching score is
defined as

YFi, j↔Fi, j′
= Sc ∈ℝ

2, Sc ⊖ SC′
�� ��−1n o

: ð2Þ

For the retrieved coarse match region, we crop it out
with a partial window of size m × n, as shown in the blue-
boxed area in Figure 1. Coarse matching outputs of the same
semantic region can be used with the dual-softmax operator,
which is also the optimal transport layer in SuperGlue [18],
as the output results can all be matched differentiable. The
local window of a coarse matching region is refined to a
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subpixel level, the center of the query window is fixed as the
query feature, and then, the distance between the feature in
the window of the candidate image and the center of the fea-
ture in the query window is calculated; the image patches
with highest scores are used as the accurate predicted match
prediction of final image feature.

3.2. Multiscale Forward Attention Module. Feature matching
models with a transformer calculate the attention weights of
different feature points to enhance the correlation and
uniqueness of feature points [17, 18], which reduces the fea-
ture matching errors in weak texture scenes. However, the
type of methods are prone to abnormal scores in the process
of local attention weights, which makes the larger deviation
of relevant scores between neighboring feature points and
leads to position-independent feature point matching errors
in weak textures. We propose the multiscale forward atten-
tion module, MSFA, as shown in Figure 3. This module uses
the self-attention weights at previous moment to smooth the
anomaly scores at current moment and constrains the previ-
ous moment attention weights to optimize the forward
attention model for the purpose of adaptive smoothing. A
multiscale model, then, is introduced to different feature
units for obtaining the target feature vectors with different
characteristics, which solves the problem of attention weight
anomaly scores.

We use different scale convolution filter (S-CF) on the
basis of the multiheaded self-attention model to obtain fea-
ture units at different positions. We then model the feature
units with different weights and calculate the interrelation-
ships between different feature units. In addition, the target
feature vectors with different weights are spliced and fused
by a NN. Finally, the transformer output vector is decoded
by a multilayer perceptron to obtain the confidence feature
matrix. The specific calculation process is formulated as
follows.

By smoothing the self-attention weights from the previ-
ous moment to the current moment, the new attention score
of the current moment is �Ai,j.

�Ai,j = Ai,j∙ 〠
l−1

t=0
�Ai−t,j−1

 !
, ð3Þ

where Ai,j is the self-attention score at position i and
moment j, 0≤Ai,j ≤ 1. The computation of attention weights
is to select relevant information by measuring the similarity
between query (Q) and each key (K); its output vector is
a weighted sum of values with similarity scores. We use
the dot product to weight the input features, which can
be expressed as A = softmaxðQ∙KTÞ ⊙V . l is the one-
dimensional vector expanded by the input vector and
positional encoding, and �Ai−t,j−1 is the forward attention
score at the position i − t of the previous moment.

After normalizing the forward attention weights at dif-
ferent positions using the softmax function, the anomalies
at the current moment are smoothed by the self-attention
weights to eliminate the anomalous scores of the attention
weights, ensuring the continuity between the attention
weights of different feature units at the previous and next
moments. We note that the influence degree of single for-
ward moment attention weight on n forward vectors is not
consistent. It is not consistent for the attention weights of
vectors at different moments; therefore, new constraint
information needs to be added to the forward n vectors to
improve the effect of smoothing anomalous attention score.
We use a NN to generate a constraint factor φj to dynami-
cally control the influence of the attention scores corre-
sponding to different vectors in the previous moment on
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Figure 2: Overview of the proposed method, an image feature extraction, and matching structure.
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the different vectors in the current moment. The constraint
factor φj is:

φj =NN qj−1, vj−1, �Mj−1
� �

, ð4Þ

where qj−1 is the MLP decoder state at the previous moment,

vj−1 is the target vector at the previous moment, �Mj−1 is the
vectors sequence output from the decoder, and NN is a
neural network model containing an implicit layer and a
Sigmoid activation function. The constraint factor φj can
add effective constraint information to the attention weight
score at the previous moment; thus, the importance related
to the vectors with higher attention anomaly scores will be
reduced. By dynamically adjusting the importance of the
attention weight score at the previous moment, one can
optimally smooth that the abnormal attention score at the
current moment is achieved. The smoothing function is
shown by

�Ai,j = Ai,j∙ 〠
l−1

t=0
φj∙�Ai−t,j−1

 !
: ð5Þ

The softmax function is used to normalize �Ai,j so that the
attention weights of vector units important at the previous
moment are better learned at the current moment.
Figure 4 shows the attention weights of the learned image
features. Adaptive smoothing of the abnormal attention
scores at the current moment is achieved by constraint fac-
tors to better align the vector positions of the model.
MSFA-T assigns significant attention weights to the union
distribution of sparse features in weak texture scenarios,
which focuses on significant markings, structure informa-
tion, object types, or feature location to learn the correlation
of sparse feature points within the local regions of semantic
consistency. It learns to ignore dynamic objects like pedes-
trians and repeated patterns like the corridor or wall.

The multiscale forward attention mechanism is used to
solve the problem of anomalous attention weights of some
feature vectors caused by a low degree of the model
representation in weak texture scenes. Different from the
multiheaded attention mechanism, we use different sizes of
convolutional filters to calculate the respective scores of
attention weights for each layer of the multiheaded attention
model. The change patterns of feature vectors at different
moments are obtained to model the vector units at different
scales. Compared to using a single-scale filter in modeling
the fixed vector units, the multiscale attention mechanism
can extract deeper and richer feature information. In the
multiscale model, convolution is computed for the forward
attention score �Aj−1 using different sizes of convolution fil-
ters S-CF as follows.

f j = Ck ∗ �Aj−1, k = 1,⋯, 4
� �

, ð6Þ

where C is the convolution operation and k is the convolu-
tion kernel size. As the image features are expanded as
one-dimensional vectors and the positional encoding is also
one-dimensional data, the one-dimensional convolutional
filtering of different sizes corresponds to sliding windows
of different sizes. Sliding on the vectors ensures that the vec-
tor units included each time can constitute a feature unit,
thus preventing the same feature unit from being assigned
different attention weights. The forward attention score of
the convolution result f j is calculated to obtain the target
vector of K different feature units, which are finally stitched
and integrated by one full connect to obtain the confidence
feature matrix with more discriminative and correlative fea-
ture model representation.

With the MSFA module, not only can we get refined
attention scores by modeling feature units at different scales
but also smooth outliers by using normal attention scores
from the previous moment to effective elimination of abnor-
mal attention scores to complete the exact feature matching.
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Figure 3: Multiscale forward attention module.
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3.3. Refined Matching and Loss Function. We obtain the
exact matching prediction of a query image by selecting
the matching terms based on the confidence threshold θm
and mutual nearest neighbor (MNN) criteria. The matching
process is as follows. We first calculate the score matrix Y
between the output features by

Yi,j = τ−1 Fi,j, Fi,j′
n o

, ð7Þ

where the τ−1 is the scale factor of the matching, then soft-
max and MNN on the two dimensions of the score matrix
Y are applied to predict the matching probability Mc. We
denote the refined matching Mc as:

Mc = ∀ i, jð Þf jMNN softmax Yi, ·ð Þj · softmax Y ·,j
� �

i

h i
>θmg:

ð8Þ

The final loss function includes both coarse-level loss
and fine-level loss, i.e., L = Lc + Lf . In coarse matching, each
feature point Fi,j is directly compared for the score of
semantic label consistency and distance difference; its gener-
ated variance σ2ðiÞ is calculated by the position error to
measure its uncertainty. The weighted loss function of the
coarse-level matching is:

Lc =〠
i,j
σ2 ið Þ−1 Sc ⊖ SC′

�� ��
2: ð9Þ

The fine-level loss function is generated from the
negative log-likelihood loss on matrix Mc obtained by the
dual-softmax operator. The feature matching is performed
using MNN, so that the loss function is:

Lf = −〠
i,j
logMc i, jð Þ: ð10Þ

In the localization phase, the output in feature matching
with MSFA-T model is used to form a homography matrix
using an efficient association algorithm for feature maps
and 3D point clouds [30]. The pose of a query image is
finally solved by PnP-RANSAC [9].

4. Implementation Details and
Experiment Results

In this section, we present the training implementation
details of our model, evaluate the image matching accuracy
of MSFA-T compared with the state-of-the-art methods,
and assess the role of the MSFA-T model in the visual local-
ization systems.

4.1. Datasets. Training data: we train our image matching
model MSFA-T on the ScanNet [43] dataset and the Mega-
Depth [44] dataset. ScanNet is an RGB-D indoor scene data-
set that contains a series of views in 1513 indoor scenes
annotated with 3D camera poses and semantic segmenta-
tions. MegaDepth dataset provides a large number of large-
view images and corresponding dense depth maps generated
by SFM [21], which includes large variations in appearance
of scenes and viewpoint changes of a camera. The above
datasets are required to learn translational invariance and
rotational invariance models to improve the robustness of
the model for large view scenes. Existing accuracy of the
depth maps is sufficient to learn accurate local features
[19] in the large view scenes, reducing the influence of weak
texture scenes.

Testing data for image matching and visual localization:
we used the image matching challenge HPatches dataset [45]
to test the matching accuracy of our model for large-view
scene images, as well as its robustness to viewpoint changes,
long-view distance, and weak texture scenes. HPatches is a
challenging dataset for image matching, which contains
wide-baseline stereo images, long-range views images, and
weak texture images. In addition, we used the InLoc [10]
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Figure 4: Heat maps of sparse feature attention weights in large view scenes.
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indoor dataset to test the improvement of MSFA-T in the
accuracy of the localization algorithm and also used our pre-
vious work EfiLoc [9] and related localization algorithms,
Image Bimodal Localization [46] and HAIL [47] for com-
parison. We compared only the image localization modules
of the above localization algorithms. InLoc provides the
large-scale indoor data based on two Washington University
buildings, including 356 pieces of 4032 × 3024 query images
and 9972 pieces of 1600 × 1200 database images that contain
the scenes with wide baselines and weak textures. Thus, the
localization based on such a dataset is a challenge consider-
ing the complexity of the indoor wide range of view scenes.

4.2. Implementation Details. We used a share backbone
ResNet [48] architecture and a semantic segmentation SETR
model [15] to initialize the CNN feature extraction network
and semantic segmentation network, respectively. We used
the feature map after the fourth downsampling layer of size
16 × 16 × 1024 in the residual network with a convolutional
kernel of size 1 × 1, the initial learning rate of 1 ∗ 10−3 and
a batch size of 64. For the transformer, we used the same
number for layers of encoder and decoder; each encoder
layer contains a self-attention layer and a multiscale
forward-attention layer to ensure that accurate learning
weights are assigned to each feature patch to enhance the
self-correlation of image features. Each decoder layer con-
tains the corresponding encoder-decoder attention layers
without self-attention layers, which prevent the mutual com-
munication between query points in order to enhance the
relevant communication between query points and candi-
date points. Finally, we used 3-layer MLP to decode the vec-
tor output from the transformer and obtain the confidence
matrix for query matching. We evaluate the performance
of image-based visual localization systems [9, 46, 47] that
use our image matching model and compared their localiza-
tion accuracy under different scenarios.

4.3. Experiment Results. Image matching: to evaluate the per-
formance of our model, we compared it with the state-of-
the-art models, D2-Net [40], COTR [19], SuperGlue [18],
Sparse-NCNet [49], and LoFTR [17]. D2-Net is a detector-
based local feature matching network that uses a describe-
and-detect methodology. The detection of D2-Net is
postponed until a more reliable image feature is available
and done jointly with the image description. SuperGlue is
a detector-based local feature matcher, which uses self-
attention and crossattention to improve the matching accu-
racy of image feature points (SuperPoint [16]). COTR,
Sparse-NCNet, and LoFTR are detector-free matchers
models, which have no local feature keypoints and directly
output the dense matching result of the image. In addition,
in order to confirm the important roles in assigning seman-
tic features and multiscale forward attention mechanism to
image CNN features in our model, we trained MS-T model,
i.e., MSFA-T without multiscale forward attention mecha-
nism, and MFA-T model, i.e., MSFA-T without semantic
feature fusion module, respectively. We design ablation
experiments to test their image matching performances in
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Figure 5: Evaluation on HPatches for image matching.

Table 1: Evaluation on HPatches image pairs.

Method
AUC

#matches
3 px 5 px 10 px

D2-net 23.2 35.9 53.6 0.2 K

SuperGlue 53.9 68.3 81.7 0.6 K

COTR 62.8 67.9 80.6 1.0 K

Sparse-NCNet 48.9 54.2 67.1 1.0 K

LoFTR 65.9 75.6 84.6 1.0 K

MS-T 28.5 48.6 52.7 1.0 K

MFA-T 47.7 62.8 73.9 1.0 K

MSFA-T 68.5 76.9 83.5 1.0 K
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comparison with the related state-of-the-art matching
algorithms.

For the matching challenge on the HPatches dataset, we
restricted the number of image keypoints rather than the
correct matching rate. For the image local feature matching
algorithm, we restricted the extraction to a maximum of
2K features with mutual nearest neighbors as the matches
phase. For detector-free methods, which directly output the
matches, we restricted the matches results with a maximum
of 1K outputting matches. Meanwhile, we used the initial
default hyperparameters in the original matching algorithm
implementation for all the baselines. Figure 5 shows the
comparison of image matching results for wide-baseline
view, weak texture, and viewpoint changes. For each
method, we show the mean number of mutual nearest
neighbor matches per image at different matching thresh-
olds. From the comparison results, our method outperforms
the other methods for the matching threshold below 7 pixels,
especially in indoor scenes with weak textures and wide
baseline views. Our approach makes the coarse-to-fine
matching process that from semantic consistency matching
to sparse features with the same semantic labels play an
important role. Our multiscale forward attention overcomes
the problem of anomalous scoring of sparse feature weights
in weak texture scenes, which enhances the self-correlation
and crosscorrelation of these features, improving the overall
performance of the model.

The overall evaluation results on the HPatches dataset
are shown in Table 1. We report the area under the cumula-
tive curve (AUC) of corner error in image matching with the
threshold of corner error being 3, 5, and 10 pixels, respec-
tively. The AUC of the corner error as a function of the
matching threshold in percentage is shown. Bold values in
the table indicate the best results for that particular experi-
ment. Our method has higher matching accuracy, especially
for the error thresholds of 3 and 5 pixels in weak texture
scenes.

Our MSFA-T matching model achieves the optimal per-
formance with the error threshold values of 3 and 5 pixels,
respectively. LoFTR achieves the optimal matching result
with the error threshold value of 10 pixels because it uses
the good matches at a fine level. In contrast, we fused the
scene semantic features with the image CNN features so that

the model filters out some semantic conflicting sparse fea-
tures to ensure the refined matches of the images in complex
large views.

We also perform ablation experiments on models MS-T
and MFA-T. The MS-T model without the multiscale
forward attention mechanism shows some sparse feature
matching errors in weak texture scenes with wide baselines,
which is due to the attention weight learning anomaly on
position-independent features in this scene, causing the cor-
relation between the features to be misallocated. The MFA-T
model without the semantic feature fusion module shows
the matching errors of some different types of objects due
to the lack of the sparse features with semantic label infor-
mation in wide baseline scenes and viewpoint change scenes.
The MSFA-T model, which uses both the semantic informa-
tion fusion mechanism and the multiscale forward attention
mechanism, shows optimal matching results in large view-
point scenes. The performances of the above models with
the error threshold values of 3, 5, and 10 pixels, respectively,
are shown in Table 1. These experimental results demon-
strate the effectiveness of the coarse-to-fine network (seman-
tic correspondence coarse matching to fine matching of
features with the same semantic information) and multiscale
forward attention mechanism proposed in this paper for
refined image matching and also show the robustness of
our method for large view scenes. The partial image match-
ing schematic of our method with different module on
indoor image pairs is shown in Figure 6. The green color
indicates the correct match with a probability close to 1, in
contrast, the lower the probability, the closer the color to
red. MSFA-T achieves the best matches and fewer mis-
matches, which successfully copes with the image matching
in weak texture areas and wide baseline views.

Indoor visual localization: accurate localization of indoor
vision relies on robust image matching algorithms; therefore,
we used the MSFA-T model in the image matching phase of
indoor localization in indoor large view scenes to evaluate
the localization performance of EfiLoc and related state-of-
the-art visual localization algorithms [46, 47]. Similarly, we
compare these localization algorithms using the MSFA-T
model with original localization algorithms. EfiLoc-MSFA-
T denotes the EfiLoc localization algorithm that uses the
MSFA-T model, the same for others, e.g., IBL-MSFA-T

MS-T MFA-T MSFA-T

Figure 6: Comparison results of image matching in large view scenes.
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denotes the Image Bimodal Localization with MSFA-T and
HAIL with-MSFA-T (HAIL-MSFA-T). The comparison of
the cumulative error function (CDF) of these positioning
methods is shown in Figure 7.

The improvement of the visual localization performance
is achieved by using the MSFA-T model instead of the image
matching module in the original localization algorithm. The
correct localized queries rate of the original localization algo-
rithms (dashed lines in Figure 7) with the MSFA-T image
matching model (solid lines) have different degrees of
improvement with different influencing factors. At a local-
ization error of 1m, the performance improvement rate of
the correct localized queries is 12% and 9% for IBL-MSFA-
T and EfiLoc-MSFA-T, respectively. The general localization
performance is most improved with HAIL. This is because
HAIL uses the filtered SIFT feature keypoints that cannot
accomplish robust image feature matching in the challeng-
ing scenarios described above, especially in indoor scenes
with weak textures and viewpoint changes. This also demon-
strates that our image matching model can successfully
improve the performance of visual localization in large view-
point scenes.

5. Conclusion

In this paper, we propose a model MSFA-T, a robust sparse
feature matching network with a transformer, which accom-
plishes accurate image matching in visual localization in
large view indoor scenes. MSFA-T successfully solves the
problems of viewpoint distortion and weak textures using
the image semantic information and the optimal confidence
features. In addition, to deal with the problems of interre-
lationship and attention weight anomaly score of sparse
feature points on different image patches, we use the
transformer with our MSFA module for learning the spec-
ificity and correlation of the sparse features, which
improves the matching accuracy of the sparse features in
weak textures regions to enhance refined visual localiza-

tion in large view scenes. MSFA-T accomplishes an aver-
age 79.8% probability of the AUC of the corner error in
large view scenes, which outperforms the related state-of-
the-art image matching algorithms. Moreover, our model
improves on average the localization accuracy of image-
based visual localization by 11.2% on the InLoc dataset.
We believe the MFSA-T model takes a promising step
toward refined image matching to improve a practical
smartphone indoor localization services.
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With the advent of the 5G network, edge devices and mobile and multimedia applications are used a lot; malware appeared to
target edge devices. In the fourth quarter of 2020, 43 million pieces of malware targeting mobile devices occurred. Therefore, a
lot of researchers studied various methods to quickly protect users from malware. In particular, they studied detecting malware
for achieving the high accuracy with deep learning-based classification models on mobile devices. However, such deep
learning-based classifiers consume a lot of resources, and mobile devices have limited hardware resources such as RAM and
battery. Therefore, such approaches are difficult to be used in the mobile devices in practice. In this work, we study how a
deep learning classifier classifies malware and proposed a novel approach to generate a light-weight classifier that can
efficiently and effectively detect malware based on the insight that malware exhibits distinctive features as they are
programmed to perform malicious actions such as information leaks. Therefore, by analyzing and extracting distinctive
features used by a deep learning classifier from malicious dataset, we generate a light-weight rule-based classifier with high
accuracy to efficiently detect malware on edge devices called LiDAR. On an edge device, LiDAR detects malware with 94%
accuracy (F1-score) and 85.67% and 328.24% lower usages for CPU and RAM, respectively, than a CNN classifier, and showed
the classification time 454.37% faster than the classifier.

1. Introduction

With the introduction of the 5G network, people enter the
era of Internet of Things (IoT) in which more devices are
connected as developed IoT; edge devices are growing a
lot. It is expected that there will be more than 7.49 billion
edge device (e.g., smartphones and wearable devices) users
worldwide in 2025 [1]. Also, due to the high use of edge
devices, multimedia applications are used a lot, and it is
seen that cumulative downloads of multimedia applica-
tions (e.g., WhatsApp, YouTube, and Facebook) are about
28.4 billion or more [2]. Furthermore, mobile multimedia
usage is about 4.23 hours per day which is consumed a
lot of time [3]. Unfortunately, due to the severe security

threats (e.g., Botnets and man-in-the-middle attack) and
major privacy violations (e.g., social security numbers,
credit card numbers, and passwords), the use of the edge
devices is still risky [4–8]. For example, a single wrong
click can launch a malicious program causing damage
such as personal information leakage or financial loss. In
the fourth quarter of 2020, 43 million pieces of malware
targeting mobile devices appeared [9].

Such threats have led to the release of many commer-
cial antivirus products such as Avast, Kaspersky, McAfee,
and Norton. However, those antivirus products have a
fatal limitation: They cannot detect unknown malware
because they mostly rely on the signatures of known mali-
cious applications [10]. To overcome the limitation, a lot
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of research works have focused on developing malware
detection approaches using deep learning algorithms to
protect users [11–23].

Recently, along with the advances in mobile systems-
on-a-chip (SoCs), there have been increasing pushes to
run malware detection schemes directly on edge devices
[11, 12]. This is because executing the schemes on the
edge devices can improve the service response time by
eliminating the data transfer overhead. It can save up to
46% overhead system consumption than local execution
[24]. However, running deep learning-based malware
detection approaches on edge devices is still at the nascent
stage, since the edge devices are usually energy and
resource constrained [25]. Running complex neural net-
works including many layers, nodes, and many features
makes the edge devices consume CPU usage of at least
60% or more (six cores) and RAM usage of about 10GB
[26, 27]. Although previously studied deep learning-based
malware detection approaches could achieve very high
accuracy, it is hard to apply them on the edge device of
which executing resources are limited. Consequently, it is
of importance to develop approaches that can employ
deep learning-based malware detection on the edge device.

In this work, we propose a novel approach to generate a
deep learning-based light-weight classifier, named LiDAR, to
enable efficient malware detection at the edge. To build the
LiDAR, we first analyze malicious dataset such as SMS spam
dataset, e-mail spam dataset, and Android malware dataset.
We then extract word tokens from the malware dataset
and train a convolutional neural network (CNN) algorithm
using the extracted word tokens. Based on the trained
CNN algorithm, we extract features that have high weight
values using a visual explanation method of decisions from
a large class of a CNN-based model, called gradient-
weighted class activation map (Grad-CAM) [28], assuming
that those features highly contribute to the prediction accu-
racy. Based on those features, we build a light-weight rule-
based classifier.

To show the efficiency and effectiveness of LiDAR, we
evaluate it on a workstation as well as the Raspberry Pi.
Our evaluation results clearly demonstrate that LiDAR sig-
nificantly improves the resource utilization as well as the
classification time, compared to the state-of-the-art CNN-
based classifiers, achieving the feasible accuracy: on aver-
age, LiDAR showed 85.67% and 328.24% lower usages
for CPU and RAM, respectively, than a CNN classifier,
and showed the classification time 454.37% faster than a
CNN classifier to detect Android malware, while achieving
93% of the prediction accuracy.

In summary, our contributions are as follows:

(i) First, we analyze general approaches of malware
detection process using deep learning-based classifi-
cation models with spam dataset and Android
application dataset

(ii) Second, based on the analysis, we use a deep learn-
ing algorithm to find distinctive features of mal-
ware. And, we design a light-weight classifier with

the high accuracy to efficiently detect malware on
edge devices

(iii) Lastly, we thoroughly evaluate a prototype of
LiDAR. Also, we compare our classifier against deep
learning classifiers to demonstrate the computation
resources and classification time of it. Our approach
shows better performance of 85.67% and 328.24%
lower usages for CPU and RAM than CNN classi-
fiers with 94% accuracy (F1-score)

2. Background and Related Work

In this section, we introduce the advantages and disadvan-
tages of Android malware detection using deep learning-
based approaches. We, also, discuss commonly used features
of Android malware employed by the previous studies.

2.1. A Limitation of Deep Learning-Based Android Malware
Classification Approaches. Recently, a surge of studies were
proposed to detect Android malware by using deep
learning-based approaches using various features [11–23].
The advance of deep learning algorithms helps achieve the
high accuracy by learning distinctive features of data with
complex neural networks. Table 1 shows the accuracies (or
F1-score) of previous deep learning-based malware detec-
tion approaches with algorithms and features used. How-
ever, classifiers generated by deep learning algorithms
usually require the high computation time and resource
usage because many approaches use excessive and detail fea-
tures based on complex neural networks to achieve the high
accuracy [11–19]. Consequently, even though they could
achieve the high accuracy, it is difficult to employ them in
practical on the most of smart edge devices which have lim-
ited computing resources.

2.2. Commonly Used Features for Android Malware
Detection. Table 1 summarizes state-of-the-art deep
learning-based malware detection approaches. In general,
the methods are built based on various features including
permissions and/or API calls. Permissions include informa-
tion on the system-level functionalities, such as current loca-
tion and network status. API calls are related to the
functionalities that an application provides to users (e.g.,
SMS functions, call functions, and read and write functions).
Malicious applications usually exploit specific permissions
or API calls, such as reading sensitive data (e.g., a function
reading a password) or transferring data (e.g., a function
writing to a socket), to leak private data or capture the user
behaviors. By using combinations of such features, previ-
ous approaches aimed to not only detect malware but also
discover its malicious behaviors to assist the wholistic
analysis process.However, in edge use cases, it does not
necessarily use such detailed features because we merely
need to discover whether an application is malicious or
not rather than discovering its malicious behaviors in
detail. Also, malicious applications usually share distinct
features because they are programmed to inflict damages
such as sensitive information leaks or financial loss to
users. Hence, based on this insight, we propose a way to
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generate a light-weight classifier that can efficiently detect
malicious applications.

3. Overview

We first analyze how deep learning-based classifiers classify
malware. Based on the analysis, we aim to design an
approach to generate a light-weight classifier with the high
accuracy to efficiently detect malware on edge devices. To
achieve the goal, we employ a deep learning algorithm to
find distinctive features of malware. Since we cannot directly
obtain the distinctive features from the trained neural net-
work due to its insufficient explainability, we use Grad-
CAM that visualizes how much the features contribute to
the classification accuracy. Based on the extracted distinctive
features, we build a light-weight rule-based classifier, named
LiDAR. It is worth noting that our approach can be applied
onto the malware classification problem as well as other
types of data which have remarkable features such as scam

email. In general, such “malicious” samples in any dataset
have distinguishable features from benign samples because
attackers create them to have uncommon features shared
by benign samples. Therefore, by using distinctive features
from malware, we could reduce features and lowering over-
head classification for malware detection.

In the following sections, we show how we collected the
dataset for this study (in Section 4.1), how we preprocess the
dataset (in Section 4.2), how we learn features of the dataset
by using a deep learning algorithm (in Section 4.3), how we
select important features with a visual explanation technique
from the deep learning-based model (in Section 4.4), and
how we generate a light-weight classifier based on the fea-
tures (in Section 4.5).

4. Design

In this section, we demonstrate our approach to generate a
light-weight classifier based on the learning result of a deep

Table 1: Summary of deep learning-based malware classification approaches.

Name Algorithm Accuracy or F1-score Features

MalDozer [11] CNN 96% API call

DL-Droid [12] MLP 99% Permission, etc.

Droid-Sec [13] DBN 97% Permission, API call, etc.

Kim et al. [14] DNN 99% Permission, component, string, opcode, API

DroidDetector [15] DBN 97% API, permission, etc.

DroidDeep [16] DBN 99% Permission, API call, action, component, etc.

Li et al. [17] DNN 97% Permission, API call, etc.

Ganesh et al. [18] CNN 93% Permission

Nix and Zhang [19] CNN 99% API call
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Figure 1: The overview of our approach to generate a deep learning-based light-weight classifier.

Table 2: The summary of our dataset.

Malicious data Benign data

Spam SMS Spam e-mail
Android
malware Spam SMS Spam e-mail

Android
malware

2019 2020 2019 2020

Training dataset 600 2,953 1,600 1,600 3,857 5,575 1,600 1,600

Test dataset 147 768 400 400 968 1,364 400 400
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Table 3: Malicious and benign features discovered by Grad-CAM.

(a)

SMS spam dataset E-mail spam dataset
No. Weight value Features No. Weight value Features

1 0.0023 call 1 0.0159 click

2 0.0016 free 2 0.0141 run

3 0.0016 www 3 0.0088 could

4 0.0014 stop 4 0.0086 file

5 0.0013 txt 5 0.0074 remov

6 0.0013 repli 6 0.0070 modem

7 0.0010 cash 7 0.0068 send

… …

800 -0.0017 see 31,860 -0.0144 link

801 -0.0017 heart 31,861 -0.0178 make

802 -0.0018 give 31,862 -0.0237 one

803 -0.0018 weekend 31,863 -0.0334 nbsp

804 -0.0031 get 31,864 -0.0454 emailaddr

805 -0.0038 got 31,865 -0.1133 httpaddr

(b)

Android malware dataset
2019 2020
No. Weight value Features No. Weight value Features

1 0.0118
android.app->
android.view

1 0.0180
android.app->
android.view

2 0.0094
android.content->
android.content

2 0.0142
android.view->
android.content

3 0.0088
android.content->

android.app
3 0.0135

android.os->
java.lang

4 0.0082
android.webkit->

java.lang
4 0.0130

android.content->
java.lang

5 0.0081
android.app->
android.content

5 0.0124
android.content->

android.app

6 0.0068 android.app->android.os 6 0.0094
android.view->
android.view

7 0.0058
android.view->
android.view

7 0.0092
android.net->
android.net

… …

4,667 -0.0051 java.net->java.lang 13,201 -0.0018
android.content.res->

java.lang

4,668 -0.0056 android.view->java.lang 13,202 -0.0023
android.database.sqlite->
android.database.sqlite

4,669 -0.0064 java.io->java.io 13,203 -0.0025
android.webkit->

android.util

4,670 -0.0065
android.widget->

java.lang
13,204 -0.0064 java.io->java.io

4,671 -0.0069
android.content->

android.os
13,205 -0.0065

android.view->
android.util

4,672 -0.0081
android.widget->

android.util
13,206 -0.0068

android.widget->
android.util
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learning algorithm to classify data samples that have distinc-
tive features such as malware. Figure 1 shows the overview of
our approach.

4.1. Dataset. In this work, we collected 24,232 real-world
data as in Table 2, which consists of SMS spam message
dataset [29], e-mail spam dataset [30], and Android malware
dataset appeared from 2019 to 2020 [4]. By using our data-
set, we demonstrate that malicious samples of the dataset
have notable features to distinguish them from benign data
samples, and thus, we can generate a much lighter classifier
than deep learning-based models.

4.2. Preprocessing. To make light-weight classifiers, we use
word tokens. We, thus, transform the malicious dataset
(i.e., SMS spam dataset, e-mail spam dataset, and Android
malware dataset) to word tokens. Finally, we remove dupli-
cated word tokens.

4.2.1. Word Normalization. To remove unnecessary texts
such as special characters, newline, and stopword for mal-
ware classification, we normalize the dataset. We, then,
group texts that means the same (e.g., abc@abc.com to email
address, https (http) to http address, and $ to dollar). On the
other hand, Android malware datasets have many text
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Figure 2: Examples of weights obtained from the SMS spam dataset by using Grad-CAM.

Table 4: The number of word tokens used in our experiments. M: malicious features; B: benign features.

SMS spam [37] E-mail spam [38]
Android malware [4]

2019 2020

CNNc 6,272 82,005 9,211 18,925

CNNg and LiDAR
M B M B M B M B

428 337 12,382 19,483 2,644 2,028 6,576 6,630

8%
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Figure 3: The comparison of F1-scores and the performance overhead of the CNN-based classifiers on the workstation based on the
evaluation results of LiDAR.
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features (in Section 2.2). Hence, we use Android framework
APIs as the main feature of Android malware. We, also,
extract API call graphs (ACG) by which we can track data
flows between a point where sensitive data is read and
another point where the sensitive data is exported by using
FlowDroid [31].

4.2.2. Word Encoding for the Malware Dataset. To learn the
malware dataset, we convert a preprocessed each word token
in the malware dataset to an integer number for the effi-
ciency. When we meet unknown tokens that could not find
in the learning process, we map such word tokens to
“Unknownword” token. Lastly, add paddings to make the
malware dataset the same length.

4.3. CNN Architecture. We employ a simple CNN for the
deep learning algorithm [32, 33]. CNN is widely used to find
common features of malware word tokens that are fre-
quently used in actual malware dataset [34]. We use a stan-
dard convolutional neural network architecture. The input
first goes through an embedding layer and then a one-
dimensional convolutional layer (Conv1D) with ReLu acti-
vations. The last layer is a dense layer after we flattened data

into a vector. The Conv1d is trained by a word using kernel
size of 1 to capture a feature of each. We also use the Sig-
moid activation function, to further classify binary labels.

4.4. Feature Selection. To investigate how different word
token features contribute to the accuracy of a CNN classifier,
we use Grad-CAM. Grad-CAM enables one to visualize each
feature map layer and understand how the input data of a
CNN affect the classification. Also, Grad-CAM can extract
weight values without architectural changes or retraining.
Grad-CAM exploits the feature maps extracted from the
Conv1D layers to identify the impact of the features on the
classification results. Grad-CAM sorts the feature maps
based on the weight values of any class flowing into the final
convolutional layer. As a result, Grad-CAM can extract a
heat map of weight values for the word tokens which can
be used for the light-weight classification.

Table 3 shows extracted features of the malware dataset
using Grad-CAM. Higher values indicate malicious features,
while lower values indicate benign features.

4.5. LiDAR. To build the light-weight classifier, we identify
important features to classify malware from the malware

Table 5: The evaluation results on the workstation using the three classifiers.

Dataset Classifier CPU (%) RAM (MB) Classification time (seconds) F1-score

SMS

CNNc 245.80% 262.13 0.96 0.94

CNNg 168.90% 256.27 0.94 0.89

LiDAR 37.90% 83.30 0.09 0.90

E-mail

CNNc 4,451.80% 1,986.491 14.04 0.99

CNNg 4,067.00% 972.08 4.57 0.98

LiDAR 106.90% 243.92 3.78 0.93

Malware in 2019

CNNc 3,868.80% 980.04 1.85 0.94

CNNg 3,693.00% 835.86 1.22 0.90

LiDAR 97.00% 146.55 0.43 0.94

Malware in 2020

CNNc 3,862.50% 944.33 1.57 0.99

CNNg 3,538.50% 792.52 1.51 0.97

LiDAR 190.70% 221.27 1.31 0.94

Table 6: The evaluation results on the Raspberry Pi using the three classifiers.

Dataset Classifier CPU (%) RAM (MB) Classification time (seconds) F1-score

SMS

CNNc 176.00% 264.21 3.31 0.94

CNNg 169.00% 256.54 3.28 0.89

LiDAR 84.70% 111.01 0.34 0.90

E-mail

CNNc 353.00% 2,029.13 130.73 0.99

CNNg 345.80% 870.11 45.35 0.98

LiDAR 167.50% 280.37 18.44 0.93

2019

CNNc 306.70% 582.38 7.51 0.94

CNNg 294.10% 515.59 5.94 0.90

LiDAR 189.60% 166.84 1.71 0.94

2020

CNNc 305.40% 638.52 8.15 0.99

CNNg 303.40% 582.70 6.99 0.97

LiDAR 172.80% 262.40 6.51 0.94
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dataset based on the weight values of the extracted features
(Section 4.4). As a running example, Figure 2 shows the
classified malicious data from the SMS spam dataset based
on the weighted values by using the CNN algorithm. In
Figure 2, the first three words indicate malicious weighted
values, and the others indicate benign weighted values. In
this case, an average of more than one-third of the 600
training SMS spam dataset can be identified as the mali-
cious weight values. This means that the malware dataset
has more than one-third of distinct malicious features,
and the malware dataset can be classified by the number
of malicious values. The rule-based classifier can be built
based on the observation, by analyzing the number of
malicious weight values. Because the CNN classifier does
not classify the malware with the context information of
SMS spam dataset but with the observed number of dis-
tinct words, the rule-based classifier can be built using
the following two conditions: (i) When a data has a lot
of prelearned words—in this case, we can apply a heuristic
condition when a data do not have more than 1/3 of pre-
learned malicious or benign words. If a data sample has
more than one-third of malicious words, we classify it as
malware. (ii) On the other hand, if a data sample contains
more malicious words than benign words, we classify it as
malware. By exploiting distinctive features of malware, we
can generate an effective classifier much lighter than a
deep learning classifier, albeit we need manual efforts to
decide the threshold for classifying malware.

5. Evaluation

In this section, we evaluate our approach to demonstrate
its efficiency and effectiveness. We use a Raspberry Pi
using the ARM64 architecture as well as a workstation.
For the convenience, we refer the CNN classifier to CNNc,
CNN classifier using high-weight features to CNNg, and
our approach to Light-weight Deep Learning-based Mal-
ware Classifier (LiDAR).

5.1. Experiment Setup. We performed our evaluations on a
workstation running Ubuntu 18.04 with 20-core Intel Xeon
Gold 6230 two CPUs at 2.10GHz, 256GB RAM, and a NVI-
DIA GeForce RTX 2080 GPU. And we conduct experiments
on a Raspberry Pi 4 Model B (Rev 1.4) running Ubuntu
18.04 with a 4-core Cortex-A72 (ARM v8), 4GB RAM. We
implemented LiDAR by using Python v3.7.1, TensorFlow
GPU v1.14.0, Keras v2.2.4, CUDA v11.2, and FlowDroid
v1.5 for extracting ACG.

Table 4 shows that the number of words used for perfor-
mance comparison in each classifier.

5.2. Evaluation Metrics. To explore the effectiveness and effi-
ciency, we used the following metrics.

(1) CPU Usage. We consider the maximum workload
that a single CPU can handle is 100%, and we show
the classifier’s CPU usage based on it (e.g., if CPU
usage is 200%, it means we need two cores fully to
perform a classification)

(2) RAM Usage. We measure the resident set size (RSS)
of a classifier when it runs

(3) Classification Time. We measure the total execution
time of a classifier

(4) F1-Score. We use the F1-score of classification results
to show the effectiveness of each classifier

5.3. Evaluation Results on the Workstation. In this section,
we evaluate classifiers on a workstation using malware data-
set (SMS spam dataset, e-mail spam dataset, Android mal-
ware dataset).

Figure 3 and Table 5 show the experimental results.
CNNc used an average of 3,107% of the CPU usage, and
CNNg used an average of 2,867%. On the other hand,
LiDAR showed an average of 108% of the CPU usage, which
is much lower than the CPU usage of CNNc and CNNg. In
addition, the RAM usage of LiDAR is also averagely 500.4%
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Figure 4: The comparison of F1-scores and the performance overhead of the CNN-based classifiers on the Raspberry Pi based on the
evaluation results of LiDAR.
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and 311.02% lower than that of CNNc and CNNg, respec-
tively, as shown in Table 4. These results yielded the signif-
icant improvement of classification time of LiDAR
(averagely 228% and 46.78% faster than CNNc and CNNg,
respectively). Nevertheless, LiDAR achieves almost similar
F1-score with CNNs and CNNg; the accuracy difference of
CNNc and CNNg is only 3.87%. These results imply that
LiDAR strikes a good trade-off point between the perfor-
mance and prediction accuracy.

5.4. Evaluation Results on the Raspberry Pi. Table 6 and
Figure 4 illustrate evaluation results of each classifier on
the Raspberry Pi. CNNc and CNNg used 285% and 278%
CPU usages on average, but the CPU usage of LiDAR is
154% on average, which is 80.98% and 85.67% lower than
the CPU usage of CNNc and CNNg, while the RAM usage
of CNNc and CNNg is 328.24% and 171.13% on average,
which is much higher than that of LiDAR. As a result,
LiDAR has an average classification time of 454.37% and
127.95% faster than CNNc and CNNg. Despite the improve-
ment of these results, there is only a small difference in F1-
score of 3.87% with CNNs and CNNg, such as the experi-
mental results on a workstation. Consequently, we can
observe that LiDAR offers a good compromise between the
performance and classification accuracy in any environment.

6. Conclusion

With the advent of the 5G network, a lot of malware target-
ing IoT devices occurred. Accordingly, a lot of research is on
deep learning-based approaches to quickly protect users
from malware. However, such deep learning-based
approaches consume a lot of resources. In this work, to
enable efficient malware detection on the edge devices, we
proposed a novel approach to generate a light-weight classi-
fier, LiDAR. We analyzed the SPAM and malware features
by using deep learning-based Grad-CAM. Based on distinct
features extracted by Grad-CAM, we built LiDAR with a
rule-based classifier. Our evaluation results show that
LiDAR can effectively detect malware achieving 92.78% of
prediction accuracy, while only exhibiting 154% and
205.15MB of CPU and memory resources, respectively,
which resulted in the significant improvement in the classi-
fication time: roughly two times faster than a CNN-based
deep learning model on average.

6.1. Limitations and Future Works. First off, LiDAR has the
out of vocabulary problem as the other deep learning-based
approaches have. If our classifier meets an unknown word
token, the token is simply ignored. Therefore, to use LiDAR
in practice, it is important to continuously learn emerging
malware. In addition, similar to the other malware classifica-
tion approaches, LiDAR cannot detect heavily obfuscated
malware because we cannot find effective word tokens from
malware if obfuscation techniques such as the class encryp-
tion are applied on the malware. We note that classifying
unknown and obfuscated malware is a challenging problem,
and the limitation is common in deep learning-based
approaches. We leave these limitations as future work.
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The detection of image edges plays an important role for image processing. In view of the fact that these existing methods cannot
effectively detect the edge of the image when facing the image with rich details. This paper proposes a novel method of asymmetric
spike-timing-dependent plasticity (STDP) image edge detection based on the visual physiological mechanism. In the proposed
method, the original image is preprocessed by the Gabor filter to simulate the visual physiological orientation characteristics to
obtain the image information in different directions, and the orientation feature fusion is used to reconstruct the primary edge
feature information of the image. Then, based on the mechanism of the visual nervous system, a neuron network composed of
dynamic synapses based on the asymmetric STDP mechanism is constructed to further process it to obtain impulse response
images. In order to eliminate disturbance of the neuron’s system noise on the impulse response image, the impulse response
image is filtered by a Gaussian filter. Then, the lateral inhibition between neurons is applied to refine the filtered image edges.
Finally, the result is normalized, and the final edge of the experimental image is obtained. Experimental results based on the
colony image data set collected in the laboratory indicate that the proposed method achieved better performance than these
state-of-the-art methods; meanwhile, the AUC value remains above 0.6.

1. Introduction

At present, for the low-level visual feature processing of
images based on bionic vision, many related theories have
been proposed and good experimental results have been
obtained [1–3]. The edges and contours are the dominant
features to describe an image; hence, these two features are
usually employed for higher-level image processing. Detec-
tion of edges and contours is a hot topic in the field of image
processing. It is widely used in computer vision fields such as
image classification, target detection, and image segmenta-
tion [4–7]. How to effectively and accurately detect the edges
and contours of the image is of great significance to the sub-
sequent image analysis, recognition, and understanding.

A number of methods have been proposed for image
edge detection. This mainly includes the following: (1) the
method based on the space domain, which is mainly based
on spatial calculations, uses a relatively primitive differential
operator, and judges the position of the edge based on the

extreme value of the first derivative of edge gray value and
the zero-crossing point of the second derivative. The tem-
plate of the edge detection operator is convolved with the
input image to directly perform edge detection on the
acquired image. The Roberts operator [8] achieved high edge
positioning accuracy, and the detected edges are relatively
delicate, but it is sensitive to noise and of poor robustness.
It is easy to cause local edge loss and cause the edge contour
of the detected object to be discontinuous. Although the
Sobel operator [9] and Prewitt operator [10] can suppress
noise, the detection boundary line is wider. Compared with
the above-mentioned method, the Canny operator [11] is
relatively insensitive to noise but is susceptible to the influ-
ence of gradient amplitude and double thresholds and
detects false edges and edge discontinuities. The Laplace
operator [12] is of isotropy, linearity, and displacement
invariance, but it needs to perform two-level difference pro-
cessing while obtaining the edge, which produces a double-
pixel edge and doubles the noise and affects the detection

Hindawi
Wireless Communications and Mobile Computing
Volume 2022, Article ID 5883324, 12 pages
https://doi.org/10.1155/2022/5883324

https://orcid.org/0000-0001-8411-4387
https://orcid.org/0000-0003-0252-9664
https://orcid.org/0000-0001-6853-5878
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/5883324


accuracy. The Log operator [13] is implemented on the basis
of the Laplace operator. First, the Gaussian function is used
to low-pass filter the noise existing in the original image, and
then, the Laplace operator is used for edge detection. Com-
pared with the Laplace operator, although the noise in the
image is suppressed, it weakens some low-intensity edges
and causes a discontinuity in edge detection. (2) Another is
a method based on the transform domain, which transforms
the image to the corresponding transform domain through
various image transformations, obtains the coefficient
matrix, and performs a certain correction on the coefficient
matrix to obtain the result. For example, wavelet transform
[14] uses the transformed high-frequency components to
eliminate the sudden change information and noise in the
image. However, wavelet is not optimal in terms of the spar-
sity of the representation function, and the scale of wavelet
transform is difficult to be unified, which will cause the con-
tradiction between edge positioning accuracy and noise.
Mathematical morphology [15] is a method that uses non-
linear filtering. By introducing the basic features and struc-
ture of the image, the problem of image processing such as
noise suppression, feature extraction, and edge detection is
solved; meanwhile, it balances off the detection accuracy
and antinoise performance. However, there are shortcom-
ings such as the problem of a single structural element and
poor performance of edge detection in the context of rich
details.

The increasements of the complexity and diversity of
images require more effective edge detection methods. With
the advancement of the physiological experiments of the
visual mechanism in recent years, a large number of results
have been obtained, which enables people to have a certain
understanding of the cognitive process of vision. Given the
near-perfect ability of the human visual system in processing
complex image tasks, it can eliminate noise well and has
extremely strong fault tolerance, which is unmatched by
any existing image processing technology. Therefore, the
human visual system currently provides inspiration and
guidance while proposing novel models for image processing
[16, 17]; e.g., image edge detection based on PCNN, which
simulates the distribution and transmission of neuron pulse
information flow, gives full play to the nonlinear modeling
ability of neuron network in edge detection [18]. As well as
the Gabor filter that simulates the direction selectivity of
the visual nervous system, it has also been better applied in
edge detection [19]. The paper [20] studied the experimental
and theoretical methods for searching for effective local
training rules for unsupervised pattern recognition through
high-performance memristor spike neural networks. The
paper [21] proposed a temporal preprocessing model of
video frames using a biologically inspired vision model,
and the bioinspired model consists of multiple layers of pro-
cessing analogous to the photoreceptor cells in the visual
system of small insects. There are also some deep learning-
based methods for edge detection. For example, the paper
[22] uses a spherical camera and two personal computers
to build a remote apple growth monitoring hardware system
and obtain apple images regularly. A fusion convolutional
feature (FCF) edge detection network is designed to segment

apple images for remote estimation of the apple size
throughout the growth period. The paper [23] proposes an
edge detection model with improved performance based on
the convolutional neural networks and Laplacian filters, and
the proposed method successfully detected the fuzzy defects
on the noisy X-ray image. However, these methods lack an
in-depth study of the related physiological mechanisms;
moreover, the experimental objects are also homogeneous.

In order to address these issues in these existing
methods, this paper studies the application of image edge
detection based on neuron pulse emission coding under
the asymmetric STDP mechanism of the visual pathway
from the perspective of biological vision. Consider that the
synapse is the key physiological structure for the effective
transmission of impulse information between biological
neurons [24]. It will be subject to changes in the intensity
of the stimulation signal inside and outside of the biological
organism, constantly self-adjust and change, and reshape the
connection strength between neurons to meet the needs of
biological nervous system information processing and action
guidance. The asymmetric STDP information processing
mechanism of the visual pathway of excitatory and inhibi-
tory synapses is studied. This is in view of the fact that the
neurotransmitters found in physiological anatomy experi-
ments can be divided into two types: excitatory neurotrans-
mitters and inhibitory neurotransmitters [25]. These
different types of neurotransmitters also play a very impor-
tant role in the process of biological visual information pro-
cessing and play a decisive role in regulating the synaptic
connections between neurons. Therefore, the time windows
of long-term potentiation (LTP) and long-term inhibition
(LTD) based on dynamic synaptic plasticity are asymmetric.
This paper proposes that the Izhikevich neurons are used as
the basic nodes of the network, and the information flow
between neurons is transmitted through the physiological
structure of dynamic synapses, and the information flow
pulses are coded in time series. At the same time, the lateral
inhibition mechanism of information transmission between
neurons based on physiological experiments can be used to
improve the contrast between the edge pixels of the image
and the background information of the image. This can
make the edges of the image richer and provide better basic
feature information of the main content of the image for
subsequent higher-level image-related tasks.

The rest of the present study is organized as follows. In
Section 2, the experimental materials and methods of this
article are introduced. In Section 3, experimental results
are discussed and analyzed. The conclusion is drawn in Sec-
tion 4.

2. Materials and Methods

In this paper, by simulating the visual processing mechanism,
a dynamic synaptic neuron network based on the asymmetric
STDP mechanism is constructed to realize the effective detec-
tion of image edges. According to physiological experiments,
neurons in the visual cortex have direction selectivity for input
stimuli. In view of the fact that the frequency and direction of
the Gabor filter are similar to the human visual system, the
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original image is preprocessed by using the Gabor filter to sim-
ulate the human visual mechanism to obtain image features in
different directions. After the feature fusion is carried out, it
will be transmitted to a neuron network composed of dynamic
synapses based on the asymmetric STDP mechanism. By
recording the first pulse firing time of the neuron, the informa-
tion flow processing scheme based on time sequence coding is
given. As the neurons in the visual pathway are disturbed by a
lot of noise, Gaussian filtering is performed on the pulse infor-
mation stream based on timing coding. In addition, consider-
ing the physiological mechanism of lateral inhibition between
neurons, this paper simulates the mechanism of lateral inhibi-
tion, further processes the image after Gaussian filtering, and
finally obtains the image after neuron lateral inhibition.
Finally, the normalization process is performed to obtain the
final edge of the image. The specific process is shown in
Figure 1.

According to related physiological research, this paper
constructs a dynamic synaptic network with the Izhikevich
neurons as the basic unit and uses time series coding for
the information flow pulse [26]. At the same time, the
important physiological significance of excitatory synapses/
inhibitory synapses in the process of visual information pro-
cessing and processing is considered, as well as visual phys-
iological mechanisms such as asymmetric STDP mechanism
and lateral inhibition (the specific structure is shown in

Figure 2). Neurons promote or inhibit each other through
the formation of excitatory synaptic transmitter AMPA/
inhibitory synaptic transmitter GABA and dynamically
adjust the weight of synaptic connections between neurons.
And based on the asymmetric STDP mechanism, it realizes
the effective transmission and processing of various sensory
information [27]. In this article, the processing of visual
information is mainly considered.

The neuron model is an important foundation of the
neuron network. Taking into account the computational
efficiency, complexity, and mathematical analysis perfor-
mance of the existing neuron model. In this paper, the Izhi-
kevich neuron model is used to construct a pulsed neuron
network, and its mathematical model is shown in

vi′= 0:04v2i + 5vi + 140 − ui + γIi + 〠
N

j=1
wij vj − veq

� �
+ ξi tð Þ,

ui′= a bvi − uið Þ,
if vi ≥ 30, c⟵ vi, ui + d⟵ ui,

8>>>>><
>>>>>:

ð1Þ

where a, b, c, dare model parameters. tis the time variable. vi
is the membrane potential of neuron i. ui is the recovery

Input image

Gabor

Image fusion

Final result

Normalized

Lateral inhibition

Gaussian filtering

Spiking neuron networks
(With white noise)

Dynamic synapse Spiking time
coding

Spiking response

Figure 1: Algorithm block diagram.
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variable of neuron i. ξiðtÞ is Gaussian white noise with inten-
sity D. veq is the threshold value of the membrane voltage.
wij is the strength of the synaptic connection from the j-th
neuron to the i-th neuron. The external input is γIi, where

Ii = xiθ tð Þ, xi ∈ 0, 1f g,

θ tð Þ =
1, t ≥ 0,

0, t < 0,

( ð2Þ

where xi is a binary factor, which indicates whether the i-th
neuron has input, and γ is the strength of the external input
signal.

If the system parameters are inconsistent, the Izhikevich
neuron model will show different firing patterns. In this
paper, we take a = 0:02, b = 0:2, c = −65, and d = 8, and the
intensity of white noise is D = 0:01.

2.1. Asymmetric STDP Mechanism. Synapse is the key struc-
ture for information transmission between neurons, and it is
constantly changing and remodeling its connection strength
to meet the needs of all aspects of the body due to changes in
the body and outside of the body [28]. A complete synapse is
composed of the presynaptic membrane, postsynaptic mem-
brane, and synaptic cleft in between neurons. The presynap-
tic membrane has vesicles that store neurotransmitters, and
there are receptors for the corresponding neurotransmitter
on the postsynaptic membrane. After the presynaptic mem-
brane is electrically or chemically stimulated, the vesicles
release neurotransmitters to the synaptic cleft and bind to
the corresponding receptors on the postsynaptic membrane
to generate various electrical activities (local potentials).
Then, it spreads to the corresponding neural circuits in a
short period of time, producing different neurobehavioral
activities [29].

The two main types of neurotransmitters in the brain are
excitatory transmitters and inhibitory transmitters [30].
These transmitters also play an important role in the process
of visual information processing. AMPA is the vast majority
of excitatory synaptic transmitters in the brain. Synaptic

plasticity, that is, the dynamic changes of neuron synaptic
performance, is considered to be the basis of information
encoding and storage in learning and memory. One of the
most important mechanisms is that the regulation of synap-
tic strength is closely related to the regulation of AMPA
receptor transport in the synapse [31]. GABA is the most
widely distributed inhibitory neurotransmitter in the central
nervous system. The specific mechanism of GABA is that
GABA released from the presynaptic membrane binds to
the GABA receptors of the postsynaptic membrane to form
a receptor complex and undergo configuration changes, acti-
vate ion channels, allow ions to pass selectively, and cause
neuronal hyperpolarized. It inhibits the excessive discharge
of excitatory neurons and finally plays a role in hindering
the transmission of nerve signals [32]. The existence of excit-
atory synapse/inhibitory synapse is an important part of
information transmission in the nervous system, and it is
also of great significance to synaptic plasticity.

Studies have found that the time sequence of presynaptic
spikes and postsynaptic spikes affects the strength of the
connections between presynaptic and presynaptic neurons.
Hebb first interpreted this phenomenon from a mathemati-
cal point of view and proposed the Hebb learning rule. The
principle is to increase or decrease the connection weight
of the synapse according to the correlation of the firing of
the neurons before and after the synapse.

According to the experimental results [33], the relation-
ship between the time difference between the two neurons to
produce nerve impulses on the excitatory post-synaptic cur-
rent (EPSC). Aiming at the time asymmetry of synaptic plas-
ticity changes, Bi and Poo further proposed the “spike-
timing-dependent plasticity” mechanism. According to the
length of the time course, it can be divided into short-term
plasticity and long-term plasticity (mainly including LTP
and LTD). They can unsupervised and autonomously adjust
the synaptic weights of neural networks, more accurately
describe the changes in the weight connections of neurons
in biology, and amend the Hebb learning rule.

The LTP/LTD change time window of asymmetric
STDP synaptic plasticity is asymmetric, and its essence is
based on the interval of neuron firing time, reflecting the
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Figure 2: Dynamic synaptic network.
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causal relationship between neurons in the form of direc-
tional connections. The typical asymmetric STDP learning
mechanism is shown in Figure 3. When the presynaptic neu-
ron pulse firing time tPre is before the postsynaptic neuron
pulse firing time tPost, that is, tPre < tPost, the strength of the
synaptic connection between them will increase; on the con-
trary, for tPre ≥ tPost, the strength of synaptic connections is
weakened. Its function expression is shown in

Δgji = gjiS Δtð Þ,

S Δtð Þ =
A+ ∗ exp −Δt/τ+ð Þ if Δt ≥ 0,

A− ∗ exp Δt/τ−ð Þ if Δt < 0,

( ð3Þ

where gji represents the connection strength between neu-
ron i and neuron j. Δt is the difference between the time
when the presynaptic cell produces spike and the time when
the postsynaptic neuron produces spike, that is, Δt = t j − ti.
SðΔtÞ is the STDP adjustment function. The parameters A+
and A− affect the adjustment range. The larger their value

is, the larger the synaptic connection strength increases or
decreases within one step. τ+ and τ− are the delay constants
of STDP adjustment parameters, and τ+ = 25, τ− = 15, A+
= 0:05, and A− = 1:05 ∗ A+ = 0:0525 are used in this article.

2.2. Lateral Inhibition. Hartline discovered the phenomenon
of lateral inhibition for the first time when conducting mon-
ocular electrophysiological experiments on Limulus.
According to further in-depth experiments on visual physi-
ology, it is found that visual lateral inhibition is carried out
in the analog signal part, which has an important manifesta-
tion in horizontal cells. When horizontal cells receive a sig-
nal from a light information pathway, they are affected by
glutamate released by photoreceptor cells and release GABA,
which inhibits the release of glutamate from receptor cells in
other light information pathways, thereby weakening the
response of adjacent pathways.

According to this physiological phenomenon, this article
introduces the lateral inhibition between neurons in the
cerebral cortex when constructing the interconnection of
neuronal networks. When a neuron is excited, it will inhibit
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Table 1: The AUC value of the edge image under various experimental algorithms.

Image
Method

Sobel Roberts Prewitt Canny Log PCNN Gabor Proposed

Lena 0.6232 0.6320 0.5735 0.6256 0.6093 0.6393 0.6683 0.8863

Cameraman 0.6033 0.6227 0.5842 0.6084 0.6320 0.5030 0.5993 0.8049

Mandril 0.5534 0.5546 0.5432 0.5513 0.5615 0.5133 0.5406 0.7519

Peppers 0.5802 0.6019 0.5678 0.5860 0.6140 0.6011 0.6076 0.7949

FPS 28 21 19 14 16 1/4 1 2

Sobel

Roberts

Prewitt

Canny

Log

PCNN

Gabor

Original

Proposed

Lena Cameraman Mandril Peppers

Figure 5: Edge detection result.
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the excitement of other neurons in the area, which can sig-
nificantly enhance the recognition of the visual system dur-
ing target recognition and enhance the recognition of
image edge information. This article considers the sequence
of neuron firing and adopts the neuron lateral inhibition
method as shown in Figure 4. If the neuron at the center
of the receptive field is excited earlier than other neurons,
it will have an inhibitory effect on the corresponding neuron.
If the peripheral neurons are excited first, the central neu-
rons will be inhibited. In this way, not only the edge points
of the image can be highlighted, but also different levels of
information can be processed in a targeted manner, so as
to express rich image edge information.

To reduce complexity and facilitate calculations, a 3 × 3
receptive field window is constructed, and the lateral inhibi-
tion of adjacent neurons is shown in

ϑPost′ =

ϑPost exp −
ϑPost
ϑPre

� �
ϑPost < ϑPreð Þ,

ϑPost exp
ϑPre
ϑPost

� �
ϑPost > ϑPreð Þ,

ϑPost ϑPost = ϑPreð Þ,

8>>>>>><
>>>>>>:

ð4Þ

ϑPre′ =

ϑPre exp −
ϑPre
ϑPost

� �
ϑPre < ϑPostð Þ,

ϑPre exp
ϑPost
ϑPre

� �
ϑPre > ϑPostð Þ,

ϑPre ϑPre = ϑPostð Þ,

8>>>>>><
>>>>>>:

ð5Þ

where ϑPost, ϑPost′ , respectively, represent the central element
before and after the update in the receptive field window
and ϑPre, ϑPre′ , respectively, represent the noncentral element
before and after the update in the receptive field window.

3. Experimental Results and Discussion

In order to verify the effectiveness of the method in this
paper, the image data sets such as Lena, which are com-
monly used in edge detection, and the colony image data sets
collected by this research group in the laboratory are used as
the experimental objects. Among them, the colony map is
obtained by the laboratory using the imitating natural light
suspension dark-field system, through the F/1.4 large aper-
ture lens, and the colony after the Petri dish culture is
obtained by imaging at the level of tens of millions of pixels.
This article installs Matlab R2016b version on Ubuntu 20.04
LTS version for experiment. The main hardware includes
AMD Ryzen5 5600H CPU and 16GB memory.

And compare the results of the method proposed in this
article with traditional edge detection methods such as the
Sobel, Roberts, Prewitt, Canny, Log, PCNN, and Gabor; the
experimental results are shown in Figure 5. Among them,
the first row is the original picture. The second row is the test
result of the Sobel method. The third row is the test result of
the Roberts method. The fourth row is the detection result of
the Prewitt method. The fifth row is the result of the Canny
method. The sixth row is the test result of the Log method.
The seventh row is the PCNN method. The eighth row is the
test result of the Gabormethod. The ninth row is the test result
of the method in this paper. From the experimental results in
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Figure 5, it can be seen that the Sobel and other methods can
detect the more obvious edge information of the salient target
when targeting simpler pictures such as Peppers but will lose
most of the edge information of the background. In addition,
for images with richer details such as Lena, although the over-
all edge information of the image can be outlined, most of the
detailed edge information will also be lost, resulting in discon-
tinuous edge detection.

In Figure 5, it can be intuitively found that although the
detected edge information of Log is richer, it has certain
shortcomings. It will cause excessive segmentation during
detection, which is too sensitive to noise points, and the
detected image edge information is too redundant. This
affects the subsequent processing of the image and is not
conducive to observation. From the experimental results, it
can be found that the edge continuity detected by the algo-
rithm in this paper is good, and a better single-pixel edge
can be obtained after refinement. The edge detection accu-
racy is high, and the edge information can be highlighted,
for example, for images such as Lena. In the case of prevent-
ing excessive segmentation, their detailed edge information
can still be well characterized, and it has a better detection
effect than other edge detection methods.

The 1st row is the original image. The 2nd row is the
detection result of the Sobel method. The 3rd row is the result
of the Roberts method. The 4th row is the detection result of
the Prewitt method. The 5th row is the test result of the Canny

method. The 6th row is the detection result of the Log method.
The 7th row is the detection result of the PCNN method. The
8th row is the detection result of the Gabor method. The 9th
row is the test result of the method in this paper. On the basis
of qualitative analysis, in order to better quantitatively com-
pare the experimental results of different methods, this article
uses the ROC/AUC indicators commonly used in machine
learning to evaluate the experimental effects of various edge
detection methods. The ROC curve mainly includes two indi-
cator parameters: false positive rate (FPR) and true positive
rate (TPR). A series of target values can be obtained by chang-
ing the threshold, and the ROC curve can be drawn with TPR
as the ordinate and FPR as the abscissa. AUC is the sum of the
ROC curve and the accumulated area under the horizontal
axis. The larger the area, the better the edge detection effect
of the image, and vice versa, the poorer the edge detection
effect. The specific calculation is shown in (6). In Figure 5, it
can be intuitively found that although the detected edge infor-
mation of Log is richer, it has certain shortcomings. It will
cause excessive segmentation during detection, which is too
sensitive to noise points, and the detected image edge informa-
tion is too redundant. This affects the subsequent processing
of the image and is not conducive to observation. From the
experimental results, it can be found that the edge continuity
detected by the algorithm in this paper is good, and a better
single-pixel edge can be obtained after refinement. The edge
detection accuracy is high, and the edge information can be
highlighted, for example, for images such as Lena. In the case
of preventing excessive segmentation, their detailed edge
information can still be well characterized, and it has a better
detection effect than other edge detection methods.

TPR = TP
TP + FN

,

FPR =
FP

FP + TN
,

8>><
>>: ð6Þ

Original Sobel Log PCNN Gabor Proposed

Figure 7: The effect of colony edge experiment. The first column is the original image; the second column is the detection result of the Sobel
method; the third column is the detection result of the Log method; the fourth column is the detection result of the PCNN method; the fifth
column is the detection result of the Gabor method; the sixth column is the result of this method.

Table 2: Information entropy value of edge image under various
detection algorithms.

Image
Method

Sobel Log PCNN Gabor Proposed

Colony 1 0.6010 0.6892 0.5523 0.7185 0.7309

Colony 2 0.5801 0.6217 0.6168 0.5800 0.7763

Colony 3 0.9652 0.9857 0.9792 0.8540 0.9862
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where TP represents the pixel set that correctly classifies the
positive example as the positive example under different
thresholds. TN represents the pixel set that correctly clas-
sifies negative examples as negative examples under differ-
ent thresholds. FP represents the set of pixels that
misclassify negative examples as positive examples under
different thresholds. FN represents a set of pixels that
incorrectly classify a positive example as a negative example
under different thresholds.

In the process of calculating AUC, it is necessary to
obtain the ground truth of the image. Since manual hand-
drawing is inefficient and subjective, an objective and auto-
matic judgment method is needed to obtain the reference
map. In this paper, N edge images are obtained by taking
multiple thresholds for different edge detection methods,
and the number of edge points at the same position in the
N edge images is counted, so as to obtain N candidate edge
images. Then, the best candidate edge image is determined
by combining ROC statistical indicators and the diagnosis
line, and this image is used as the edge reference image.
Then, according to the above-mentioned index calculation
method, this paper, respectively, calculated the Sobel, Rob-
erts, Prewitt, Canny, Log, and the ROC/AUC index value
of this method relative to the edge reference image. The
AUC values of this method in Lena, Cameraman, Mandril,
and Peppers can reach 0.8863, 0.8049, 0.7519, and 0.7949,
respectively, which are significantly higher than the compar-
ative experimental method, indicating the effectiveness of
the edge detection method in this paper. The specific results
are shown in Table 1. It can be intuitively found from
Figure 6 that the ROC curve of the method proposed in this
paper is closer to the upper left corner of the coordinate axis,

indicating that the method proposed in this paper is superior
to the existing traditional methods in the effect of image
edge detection.

At the same time, this article counts the processing speed
of different algorithms in image detection. According to the
experimental results, it can be found that the edge detection
speed of the Sobel, Log, and Gabor images based on tradi-
tional mathematical methods is relatively faster, but their
edge detection accuracy is lower. Compared with the PCNN
algorithm, which is also based on biological inspiration, the
method in this paper has a faster processing speed while
maintaining a higher edge detection accuracy.

At the same time, in order to further illustrate the effec-
tiveness of this method, in this paper, the experimental
objects are further processed, and the experimental results
are further analyzed by using information entropy as the
evaluation index. The larger the entropy value, the more
edge detail information contained in the research object.
The calculation is shown in

H = 〠
255

i=0
pi log pið Þ, ð7Þ

where i represents the gray value of the image and pi repre-
sents the probability of the pixel with the gray value i in the
image appearing in the image.

The experimental results are shown in Figure 7. By com-
paring the experimental images with rich details such as the
colony, it can be intuitively found that the edge detection of
the colony in this article has more obvious contrast and the
continuity of the colony is more perfect. At the same time, it
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Figure 8: Visualization of information entropy of experimental results of different algorithms.
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also has a very good detection effect under a small detection
target. In addition, through formula (7), the method in this
paper and several comparative experimental methods are used
to calculate the information entropy of the edge detection
results. The specific results are shown in Table 2. According
to the quantitative analysis, the information entropy value of
the method in this paper has a relatively large advantage over
the methods such as the Sobel, Log, PCNN, and Gabor, reach-
ing 0.7309, 0.7763, and 0.9862, respectively.

Through the visualization in Figure 8, it is obvious that
the method in this paper can achieve higher information
entropy in general and has greater advantages. This also
shows that the method in this paper can obtain richer image
edge details.

In addition, in order to further verify the effectiveness
and scalability of the method proposed in this paper, this
paper applies it to the segmentation and extraction of fundus
blood vessels while keeping the parameters unchanged.
Through the experimental results, it can be found that for
different types of fundus blood vessels, the method in this
paper can better extract the main blood vessel segmentation
results, which also provides a good foundation for subse-
quent blood vessel processing tasks. The specific experimen-
tal results are shown in Figure 9.

Through the above qualitative analysis of the experimental
results of different experimental methods, it can be found that
the method in this paper can ensure the completeness and
coherence of edge detection as much as possible while pre-

venting the oversegmentation of the image and at the same
time highlight the edge details of the image. This is of great sig-
nificance for edge detection applied on images with richer
details such as colonies. It is also necessary to improve the per-
formance of this method through further research.

In addition, through further quantitative analysis of the
experimental results, the AUC value of this method on differ-
ent experimental images is relatively better than the existing
traditional methods, which shows that the accuracy of edge
detection is higher. The statistical analysis of the information
entropy of the experimental results also shows that themethod
in this paper can retain more edge detail information when
performing image edge detection. According to the qualitative
and quantitative analysis of the experimental results, it consis-
tently shows that the method in this paper has greater advan-
tages over the existing traditional methods.

4. Conclusion

Different from traditional image edge detection methods
based on spatial and exchange domains, this paper introduces
asymmetric STDP, excitatory synapses/inhibitory synapses,
time coding, and lateral inhibition based on physiological
experiments related to visual physiological mechanisms.
Through the introduction of its principle and function, the
corresponding calculation model is established, and a method
based on asymmetric STDP image edge detection is proposed.
At present, the method proposed in this paper is mainly used

Original

Proposed

Original

Proposed

Figure 9: The result of segmentation and extraction of fundus blood vessels. The first and third rows are the original images of the fundus
blood vessels, and the second and fourth rows are the segmentation results.
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in the extraction of low-level visual features of the image and
has a good effect in the edge detection of the colony image col-
lected in the laboratory. The later application of this method in
the field of image preprocessing has certain practical signifi-
cance and at the same time provides some ideas for image pro-
cessing methods based on vision mechanisms. How to further
explain and simulate the characteristics of biological visual
pathways will also be the focus of our next research work.
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With the 5G millimeter wave (mmWave) application, ultradense cellular networks are gradually becoming one of the core
characteristics of 5G cellular networks. In the edge computing environment, considering load balancing among edge nodes is
beneficial to slow down the process of distributed denial of service (DDoS) attack. However, most existing studies have given
less consideration to congestion in the multiuser and multiedge server models. Someone who uses the M/M/1 model also
seems to ignore the effect of scheduling algorithms on the Markov property of the task arrival process. In this manuscript,
based on ensuring the quality of experience (QoE) for users, the G/M/1 model is introduced to the task scheduling of edge
servers for the first time to improve load balancing between edge servers. For the multi armed bandit (MAB) algorithm
framework, specific metrics are established to quantify the degree of its equilibrium. The number of users assigned to the edge
nodes and each edge node’s processing of specific tasks is taken into account. We experimentally evaluated its performance
against two baseline approaches and three state-of-the-art approaches on a real-world dataset. And the experimental results
validate the effectiveness of this method.

1. Introduction

As is known to all, user equipment (UE) has low computing
capacity. It may not efficiently solve task requests initiated
by users, while cloud services have problems such as long
transmission delays. The presence of mobile edge computing
(MEC) brings mobile computing, network storage, and con-
trol issues down from the cloud to the network edge, driving
the execution of compute-intensive, latency-critical applica-
tions on mobile devices, effectively reducing latency and
energy consumption [1–3].

There are still deficiencies in interoperability, heteroge-
neous architecture, data privacy, and load balancing in het-
erogeneous edge computing systems, which can be
considered to be compensated for by requirements such as
federated deployment and resource management [4]. Edge
servers have limited memory, central processing unit

(CPU), storage, and other resources. They generally deploy
at base stations close to user terminals, and users are guaran-
teed low latency and stable connectivity by using edge
servers [5]. The emergence of the user plane function
(UPF) separates the control plane from the user plane, mak-
ing MEC even more critical in 5G technology. The emer-
gence of the 5G millimeter wave has significantly expanded
the transmission bandwidth and reduced the transmission
delay of mobile communications, but there are also chal-
lenges such as easy loss. Increasing the density of base sta-
tions (BSs) helps to minimize losses, and thus, ultradense
cellular networks are gradually becoming one of the core fea-
tures of 5G cellular networks [6]. The deployment of large-
area and high-density BSs will bring new network security
issues. Due to the limited signal transmission range and edge
server resources, a typical IoT-based distributed denial of
service (DDoS) attack can disable most nodes in a particular
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area by continuously trying to occupy the resources of edge
nodes [7], thus paralyzing the Internet of Things (IoT)
devices in its service interval within a specific period (smart
monitors, infrared sensors, etc.) [8], causing severe social
impacts and security problems.

DDoS attack is a resource competition problem between
attackers and defenders [9], and this competition will be
more prominent in resource-limited edge service environ-
ments [8]. Based on the careful consideration of system
characteristics such as proximity constraint, capacity con-
straint, and delay constraint among edge servers [10], balan-
cing the workload among edge servers can slow down the
DDoS attack process [8], thus leaving enough reaction time
for the system and reducing the possibility of the system
being breached. We consider the load balancing problem
of edge user allocation (EUA) based on users’ quality of
experience (QoE) and establish specific metrics to quantify
the degree of balance. To more precisely quantify the QoE,
we introduce the multi-armed bandit (MAB) algorithm
framework and add nonstationary factors to the learning

mechanism to better adapt to the actual complex and vari-
able task assignment process.

For the time being, there is relatively little research on
the load balancing problem and mainly reflected in the rela-
tively balanced number of choices of edge servers [11–13]. In
reality, in addition to the task volume of each mobile device
which may be different, there may also be performance dif-
ferences among MEC servers. Simply considering the rela-
tive uniformity of task allocation among servers may cause
the performance of high-performance servers to be wasted
and aggravate the waiting time and performance wear and
tear of less performing servers. In studies involving user task
waiting time (stay time), they are mainly divided into two
forms: computational time accrual for queueing tasks [14]
[15] [13] and the use of the M/M/1 queuing model [16]
[17]. For the latter, researchers have ignored the effect of
the scheduling algorithm on the Markov property of the
M/M/1 queuing model, i.e., subjective task scheduling that
undermines the principle of no posteriority of the task
arrival process.
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Figure 1: Ultradense cellular network topology diagram.
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Queuing systems generally consist of customers, service
desks, and queuing rules [18]. Under conditions indepen-
dent of other factors, a customer’s arrival satisfies Poisson
distribution, the service time satisfies negative exponential
distribution, and a single service desk processes the task of
the customer, those situations that can be represented by
the M/M/1 model [18–20]. A customer’s arrival is usually
independent of others, while the service desk is responsible
for solving the task requests of arriving customers. The pro-
cessing time of specific tasks is influenced by stochastic fac-
tors such as the nature of the customer’s task and the service
desk. When we use the algorithm to schedule the user
assignment process in the edge environment, customer
arrivals will no longer follow the Poisson distribution, and
continuing to use the M/M/1 model at this point seems to
deviate from reality. Regarding the G/M/1 model, the pro-
cess of customer’s arrival is not restricted, which is “general
arrival,” and the service process still follows a negative expo-
nential distribution, which considers the randomness of cus-
tomer tasks and service desks [18–20].

In the actual edge user assignment process, we reduce
the impact of the scheduling algorithm on the Markov prop-
erty of the edge server’s task arrival process by applying the
G/M/1 queuing theory model. And a nonstationary factor is
added to the MAB algorithm framework to consider the
impact of the edge server’s task processing capacity fluctua-
tion on the computation delay. In an attempt to improve

load balancing in the edge user assignment scenario to mit-
igate the DDoS attack process, we further consider factors
such as the number of tasks offloaded by edge users, possible
performance differences among edge servers, and more in-
depth consideration of the specific task processing of each
edge node. To enhance the experiment’s credibility, we used
a real dataset from the Central Business District (CBD) of
Melbourne [21] and compared it extensively with existing
studies, and the experimental results verified the effective-
ness of the algorithm. The main contributions are as follows:

(i) We attempt to improve the load balancing for edge
user allocation in edge computing to slow down the
DDoS attack process

(ii) This is the first attempt to study the EUA problem
through the MAB algorithm framework in 5G ultra-
dense cellular networks, considering the processing
of specific tasks in each edge node. The number of
users in edge nodes is no longer considered solely

(iii) This is the first attempt to introduce the G/M/1
queuing theory model to the MEC system, consider-
ing the impact of scheduling algorithms on the Mar-
kov property of the actual task arrival process. And
the performance is experimentally evaluated on a
widely used real-world dataset

The rest of the paper is organized as follows. Section 2
presents related work. Section 3 offers the system model.
Section 4 proposes the Thompson sampling nonstationary
(TSNS) algorithm. Section 5 designs experiments and evalu-
ates the algorithm’s performance, and Section 6 concludes
the paper.

2. Related Work

Currently, relatively little research has been done on DDoS
attack in edge computing, mainly in edge collaboration,
attack identification, and defense [8, 22–27]. The literature
[8] studied the DDoS attack mitigation problem in edge
computing, proved its NP-hardness, and proposed a game-
theoretic approach to solving the problem. The literature
[22] considered mitigating the DDoS attack process by bal-
ancing the incoming control plane’s total traffic and induc-
ing the attack initiator to stop the attack. The literature
[23] designed an adaptive traffic scheduling algorithm to
enhance collaboration among edge nodes and thus reduce
DDoS attack. The literature [24] developed an intrusion
detection and defense method for edge environments by
learning the original data distribution through Deep Convo-
lution Neural Network (DCNN) and building defense
through Q-network algorithm. In a software-defined net-
work (SDN), [25] established initial detection of intrusion
based on entropy and further accurate detection by inte-
grated learning, reducing communication overhead and
attack detection latency. From the perspective of smart cit-
ies, [26] on the fractional-level fusion of multimodal biomet-
rics effectively improves recognition accuracy and [27]

Require:Cmax, B⟶∞, δ = 1, η = 0, σ
1: forsi ∈ Sdo
2: Generate uniformly distributed random variables λi, μi, ζi
from [0,1)
3: ifμi ≤ λithen
4: μi ↔ λi
5: end if
6: Ci,n = δððaj/BÞ + ðl j,i/vÞ + ð1/μið1 − ζiÞÞÞ + η · κ · ϕi,n
7: end for
8: Generate normally distributed random variables αi, βi
with (1, 0.5)
9: while t ≤ Tdo
10: forsi ∈ Sdo
11: θi ⟵ Betaðαi, βiÞ
12: end for
13: sjðtÞ⟵ argmax θi∀si ∈ S
14: nj = nj + 1
15: Generate uniformly distributed random variable U from
[0,1)
16: cj,t = −ln ð1 −UÞ/μjð1 − ζjÞ
17: rj ′ = 1 − p = 1 − ðcj,t/cmaxÞðp ≤ 1Þ
18: rj ⟵ r j + σðr j ′ − r jÞ
19: μj ⟵ μj + ðrj ′/njÞ

20: ðαk, βkÞ =
ðαk, βkÞif sjðtÞ=k
ðαk + r j, βk + 1 − rjÞif sjðtÞ = k

(

21: t = t + 1
22: end while

Algorithm 1: Thompson sampling nonstationary (TSNS).
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proposed a data encryption technique applicable to the IoT,
etc.

The low latency of edge computing is fundamental for
users to execute resource-intensive and latency-sensitive
applications on edge devices. It is a crucial factor affecting
the QoE of user experience [4]. In the study of resource allo-
cation for computational offloading, with the goal of latency
optimization, [28–31] schedule computational tasks through
a Markov decision process, [14, 32, 33] consider game the-
ory to obtain the best strategy for task offloading, and [11,
12, 34–39] consider algorithms such as reinforcement learn-
ing to solve problems related to resource allocation. The lit-

eratures [13, 15–17] introduced the MAB algorithm
framework to learn online to adjust task allocation in real
time. Among them, only the literatures [11–14, 34] consider
the load balancing problem of edge servers from the per-
spective of resource allocation.

The literature [14] proposed a decentralized learning
algorithm from a game-theoretic perspective, considering a
relatively uniform number of users allocated across edge
servers. However, the experimental design with the same
upper bound of acceptable cost for users may deviate from
reality. From the perspective of on-edge computing, [11]
transformed the offloading and load balancing problem into

+
−

Leaflet (https://leafletjs.com) | Data by © OpenStreetMap (http://openstreetmap.org), under ODbL (http://www.openstreetmap.org/copyright).

(a) Point distribution

Leaflet (https://leafletjs.com) | Data by © OpenStreetMap (http://openstreetmap.org), under ODbL (http://www.openstreetmap.org/copyright).
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Figure 2: Dataset for Melbourne’s Central Business District.
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a mixed-integer nonlinear programming problem and chan-
ged the problem into two subproblems for optimization. The
literature does not seem to consider the effect of the waiting
factor, and the possible case of multiple tasks appearing at
the same node is not further explored. It is only described
from a collision perspective. The literature [34] introduced
fiber-wireless (Fi-Wi) technology to enhance the signals of
vehicular edge computing networks (VECNs), which in turn
use software-defined networking (SDN) to achieve load bal-
ancing. The literature considers the possibility of task assign-
ment locally, at the edge nodes or in the cloud. Still, the
impact of the coverage of the signaling edge nodes may be
neglected in the selection process of the offload servers,
and task processing at the edge nodes seems to lack consid-
eration of congestion factors. The literature [39] utilized
multipath TCP to increase application throughput and used
reinforcement learning-empowered multipath manager to
address the buffer congestion problem further. In the litera-
ture [12], on the premise of determining the set of optional
edge service nodes for each mobile device users (MDUs),
the situation of the user devices to be assigned to each edge
node and their computational capabilities were considered
comprehensively, and new devices were assigned to the edge
server with less computational pressure accordingly. The
algorithm design process seems to ignore the influence of
congestion factors within the edge nodes, and the optimal
edge server may deviate from the actual scenario only in
terms of transmission and computation delay; i.e., there
may be a large waiting delay after the task arrives at the
redistributed edge node. In addition, there may be a signifi-
cant task assignment delay. Uncertainty decision-making is
an essential challenge in machine learning, and the MAB
algorithm is a common framework for solving this problem,
where each MEC server is considered an arm [40]. The liter-
ature [13] proposed a utility table-based MAB algorithm
with online learning to adjust the workload allocation in real
time and update the feedback signal after task allocation
through the utility table to determine the optimal solution.
The literature mainly considers load balancing from cloud-
edge collaboration and gives less consideration to task allo-
cation among edge servers.

As we know, the DDoS attack problem is currently a hot
topic of research in network security, and relatively little
research has been conducted from the perspective of edge

computing. In edge computing, considering the load balan-
cing of edge user allocation, we make the first attempt to
study the EUA problem in 5G ultradense cellular networks
through the MAB algorithm framework, focusing on the
processing of specific tasks at each edge node. We made
the first attempt to introduce the G/M/1 queuing theory
model into the MEC system, considering the impact of the
scheduling algorithm on the Markov property of the actual
task arrival process.

3. System Model

In the ultradense cellular network scenario, in the edge user
allocation process, as in Figure 1, we use si ∈ S to denote the
set of MEC servers and ui ∈U to represent the set of user
devices. In edge computing, in addition to service requests
from regular users, DDoS attack can launch frequent task
requests to the edge server by controlling multiple IoT
devices in the service range. Considering the influence of
the scheduling algorithm on the Markov property of the
resource allocation process, we assume that the task arrival
process follows a general distribution and the service time
follows a negative exponential distribution. Since each
MEC server has different task arrival and service capacity
and there is no restriction on queue length and task origin,
the task offloading process can be represented by the G/M/
1 queueing theory model. We denote by ζi the task arrival
impact factor per unit time of server si, which can be
obtained by solving the scheduling process and by μi the
average service rate of server si. Every time a task assignment
is made, the average service rate of the selected server is
updated by a nonstationary method.

We consider Ci,n to denote the cost of processing task n
for server i and Di,n and Ei,n to denote the corresponding ser-
vice latency and energy consumption. Therefore, Ci,n is com-
puted as follows:

Ci,n = δ ·Di,n + η · Ei,n: ð1Þ

In the formula, δ and η, respectively, represent the
weight of delay and energy consumption in the cost, δ + η
= 1.

We understand that in 5G ultradense cellular network
architecture, the physical distance between microcell BSs is
typically between 100 and 200m [6]. The delay can be fur-
ther subdivided into transmission delay, propagation delay,
waiting delay, and computation delay. The sum of the wait-
ing and computation delays is the delay of the task staying in
the system. The signal strength decreases from the central
node in all directions [5]. We may assume that the effective
signal coverage of each edge node is 200m (edge servers
beyond the signal range can be selected, but the selection
cost is relatively high [5]), and on this basis, we consider
the limited nature of each user when selecting an edge
server. And since the physical distance li,j of the computing
task from the user end ui to the edge node sj generally does
not exceed 200m, its actual propagation delay will be at the
microsecond level. We usually use the ratio of task volume aj

Table 1: MEC servers.

Parameter s1 s2 s3 s4 s5
μ 0.4250 0.8865 0.6233 0.9485 0.9973

ζ 0.0735 0.7655 0.2477 0.8558 0.9471

Parameter s6 s7 s8 s9 s10
μ 0.7121 0.9000 0.8639 0.6185 0.8444

ζ 0.9921 0.0281 0.9425 0.4937 0.3638

Parameter ...... s122 s123 s124 s125
μ ...... 0.7192 0.9712 0.1817 0.3955

ζ ...... 0.8388 0.2631 0.6614 0.4781
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to channel bandwidth B to express the transmission delay. In
the ultradense cellular network structure, the case of transi-
tion node forwarding tasks is basically nonexistent; i.e., the
transmission delay of tasks will also be close to a subtle level.
According to the queuing theory [18–20], the stay time T
obeys the distribution PfT ≤ tg = 1 − e−μð1−ζÞt , whose average
stay time is 1/ðμð1 − ζÞÞ, and the actual stay time of each
task can be randomized by the distribution function. We
use κ to represent the energy consumption influencing factor
that comprehensively considers power, signal-to-noise ratio,
and other factors. Let ϕi,n denote the task size of task n in
server si, and the energy consumption is Ei,n = κ · ϕi,n [41,
42]. Further, we can get the following formula:

Ci,n = δ
aj
B

+
l j,i
v

+ 1
μi 1 − ζið Þ

� �
+ η · κ · ϕi,n, ð2Þ

where aj denotes the number of tasks to be processed by user
device uj, which in general is equal to ϕi,n. B is the channel
bandwidth, and aj/B is the transmission delay. l j,i denotes
the physical distance between user device uj and edge node
si. v indicates the propagation speed of the task in the chan-
nel, which is generally equal to or slightly less than the speed
of light, and l j,i/v is propagation delay.

To measure the QoE more specifically, we introduced
the MAB algorithm framework. An upper bound on the cost
is chosen as Cmax, and we assume that the cost as a percent-

age of the given threshold is p. The reward after each selec-
tion can be calculated as follows:

Ri,n = 1 − pð Þ · 1 C≤Cmaxð Þ, ð3Þ

where 1 is the indicator function.

4. Algorithm Design

The MAB model is a simple but compelling algorithmic
framework that can make decisions over time in uncertain
situations [43]. It simulates an agent, learning new knowl-
edge to optimize selection decisions.

We know that considering load balancing in the edge
environment is beneficial to slow down the DDoS attack pro-
cess [8, 22]. We use the MAB algorithm framework to bal-
ance the limited task processing latency and cost and
offload the tasks to each MEC server as evenly as possible.
Each MEC server can be considered an arm of varying
nature, and each selection of the arm can be rewarded and
cost accordingly. This property is unknown to the task
assignor, so we may call it an implicit property. As the num-
ber of selections increases, the resource allocation of edge
servers will become more rational, and the number of tasks
processed per unit time will improve. In addition, consider-
ing the complexity and variability of the actual task arrival
and processing, the server’s performance may also change
with the increasing number of selections, and we introduce
a nonstationary factor.

Cost distribution in each method
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Figure 5: Boxplot for the cost distribution.
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To reduce useless exploration and increase the explora-
tion of the arm with larger pairwise differences, we consider
applying the improved Thompson sampling to the MAB
algorithm. In the Thompson sampling algorithm, the payoff
value of each action follows a beta distribution, with α and β

as prior probability parameters. All the arms will generate a
random number as payoff value through beta distribution
according to their prior probability parameters whenever a
selection is made. The system will select the arm with the
largest payoff value. The probability distribution law of
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Figure 6: QoE values during the selection process.
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Figure 7: Continued.
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Bernoulli distribution and the probability density of beta dis-
tribution are as follows:

p xð Þ = θx 1 − θð Þ1−x, x = 0, 1, ð4Þ

p θð Þ = Γ α + βð Þ
Γ αð ÞΓ βð Þ θ

α−1 1 − θð Þβ−1, θ ∈ 0, 1½ �, ð5Þ

where the two refer to the distribution of returns and the dis-
tribution of the parameter θ of the return distribution. ΓðzÞ
satisfies the formula

Γ zð Þ =
ð∞
0
xz−1e−xdx, R zð Þ > 0: ð6Þ

We assume that there are S edge servers, and T tasks are
processed in a certain period of time. Each selection will
update the distribution. When action k is selected, the return
is subject to a Bernoulli distribution with parameter θk.The
probability of returning 1 is θk, and returning 0 is 1 − θk, θ
= ðθ1, θ2, θsÞ. In round t, select the action at ∈ f1, 2, sg will
receive a return rt ∈ ð0, 1Þ. Assuming that θk are indepen-
dent of each other, the prior distribution obeys betaðαk, βkÞ
, and the posterior distribution obeys betaðαk + rt , βk + 1 −
rtÞ.

p θkð Þ∝ θαk−1k 1 − θkð Þβk−1, ð7Þ

p θk rtjð Þ∝ θrtk 1 − θkð Þ1−rtθαk−1k 1 − θkð Þβk−1 = θαk+rt−1k 1 − θkð Þβk+1−rt−1:

ð8Þ
For each selection made, the parameters of the posterior

distribution of the selected arm will be calculated based on
its return values. The posterior distribution of the last round
can be used as the prior distribution of the next round, and
the parameter update rule of the posterior distribution beta
is [44]

αk, βkð Þ =
αk, βkð Þ if at ≠ k,
αk + rt , βk + 1 − rtð Þ if at = k:

(
ð9Þ

We use the reward Ri,n of the edge nodes after perform-
ing the task processing as the QoE measure for the corre-
sponding users. As we analyzed above, the propagation
delay and transmission delay under delay segmentation is
at the microsecond level, which is negligible compared to
the task’s computation delay and queuing delay. In contrast,
the task processing energy consumption is a weak user expe-
rience. To simplify the model, we set η = 0 and δ = 1, and the
channel bandwidth is infinite concerning the task volume
and mainly considers the average stay time of the task in
the system. After each selection, we add a nonstationary util-
ity learning mechanism [45].

Qi,n =Qi,n−1 + γ Ri,n −Qi,n−1ð Þ, ð10Þ

where γ represents the learning rate in the selection process;
i.e., the greater the γ, the greater the importance of the actual
reward, and the greater the degree of learning in calculating
the utility reward. The updated utility reward is used as the
reward value. In particular, after each selection, the average
service rate of the selected service desk is optimized to sim-
ulate the effect of random factors in the user assignment
process.

μi,n+1 = μi,n +
Ri,n
n

: ð11Þ

The arm with the largest parameter θ is considered dur-
ing each selection, and the calculated reward of the actual
choice is used to update the posterior distribution parame-
ters beta. The corresponding regret value is

R Tð Þ = 〠
T

t=1
C atð Þ − 〠

T

t=1
C∗
t at ∈ Sð Þ, ð12Þ

where at represents the edge server selected for time t and
CðatÞ is the corresponding cost of the currently selected
server. C∗

t denotes the minimum value of the corresponding
cost of each edge server at time t.

The specific idea of the TSNS algorithm is represented in
Algorithm 1 in an ordered manner. Each user assignment is

(f) UCB

Figure 7: Relationship between edge nodes and user devices.
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made that the corresponding service time and stay time are
calculated according to the G/M/1 queuing theory model.
Service time is an essential statistic for measuring load bal-
ancing. Stay time can be used to calculate rewards and, in
turn, utility rewards.

We learn and record the specific situation after each task
assignment through the MAB algorithm framework, includ-
ing the actual cost and reward after each user assignment
and the actual task processing latency of edge nodes, which
can measure QoE and load balancing more precisely and
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Figure 8: Accumulated computation time in each edge node.
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effectively. The specific experiments are described in detail
in Section 5.

5. Performance Evaluation

In this section, we conducted extensive experiments to eval-
uate the TSNS algorithm based on a real-world dataset from
the CBD of Melbourne (e.g., Figure 2). The excerpted dataset
contains 125 service base stations and 816 random users. We
model the difference in task volume between users using a
normal distribution with mean 10 and variance 2, in which
the ratio of the random number to the mean is used as the
weight of the effect of task volume on processing latency
and use this as the basis for a series of experiments.

5.1. Preferences. Combining the ideas of the Monte Carlo
method, we conducted an experimental design. First, we
record and calculate the average stay time as the initial prop-
erty of the corresponding service desk, in which the average
service rate and the task arrival impact factor per unit time
are solved by a uniform distribution in the interval [0,1), as
in Table 1 (the experiment contains but is not limited to
the parameters given in Table 1). Based on the nature of
queuing theory regarding the G/M/1 model, we obtain the
distribution function of the task sojourn time and consider
randomizing the essential stay time of the current task at
the selected server by the distribution function. For each
user’s specific task, we assume that it satisfies a normal distri-
bution with a mean of 10 and a variance of 2. The ratio of the
random value to the mean is used as the influence of the stay
time for the specific task. That is, for each task assignment,
the corresponding edge server randomizes the corresponding
sojourn time for calculating the reward and, in turn, the util-
ity reward. The calculated utility rewards are used to update
the parameters of the posterior distribution beta, which in
turn affects the next round of task assignment.

Regarding the initial prior distribution corresponding to
each server in the TSNS algorithm, it is considered random-
ized out through a normal distribution with a mean of 1 and
a variance of 0.5. In each task assignment process, the poste-
rior distribution will be used as the prior distribution corre-
sponding to the following selection, and the parameters θi
will be randomized through the prior distribution. Then,
the server with the largest parameters will be selected for
the task processing.

First, we assume that the learning parameter σ = 0:5 and
the cost upper bound Cmax = 20. During the selection pro-
cess of the simulated edge servers, we obtained the upper
quartile (Q3), median, and lower quartile (Q1) of the corre-
sponding cost distribution for each method. We calculated
the maximum observed value of the upper edge by Q3 +
1:5 ∗ ðQ3 −Q1Þ [46]. Subsequently, we averaged the upper
edge observations for all methods and calculated an approx-
imate cost upper bound of 10. Further, we compared the
average reward profile under different learning parameters
and obtained the average profile after removing the anoma-
lous profile σ = 0. In multiple experiments, the larger the
parameter σ, the better the distribution of the average
reward might be, and σ = 0:4 basically fluctuates up and
down around the average curve, as shown in Figure 3. We
simulated the user assignment process under different
parameters and obtained the variance comparison among
the edge nodes, as shown in Figure 4. To balance the load sit-
uation of the server, we might as well set it as the experimen-
tal parameter. Comparison of cost distribution among
methods for the upper cost bound Cmax = 10 and learning
parameter σ = 0:4 is shown in Figure 5.

5.2. Algorithm Performance. We determine the cost upper
bound and learning parameters through the above experi-
ments. Subsequently, we will examine the performance of
the TSNS algorithm in terms of user QoE and load balancing
by comparing it with classical methods and related work.
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Figure 9: Load profile in each edge node.
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(i) Improved ε-greedy: the edge node with the highest
utility value is explored or selected with a certain
probability. After the algorithm is improved, ε keeps
getting smaller, and the exploration probability
keeps decreasing as the number of selections
increases

(ii) UCB: all optional but not yet selected edge servers
are first explored. Subsequently, the edge node with
the largest utility value is selected, and the utility
value is updated after each selection

(iii) UBL [40]: based on the improvement of the general
greedy algorithm, the utility value of the selected
edge node is updated after each selection. If the
same edge server is selected twice in a row, the util-
ity value of the corresponding server is updated to a
temporary value

(iv) LBCO [35]: first, determine the number of mobile
devices offloaded to each edge node, consider the
different available uplink data rates of the user-
side devices and the computing power of the edge
nodes, calculate the upload and service times for
each task, obtain the set of edge nodes available to
the users, calculate the corresponding times, and
force each user to select the optimal edge node for
the task

(v) MTOTC [27]: each user has partially selectable edge
nodes, and the selection probability of all selectable
nodes is summed to 1. The stochastic congestion
game with incomplete information is performed
based on the careful consideration of each user’s
task type and different task volumes. When the
probability of all users selecting an edge node is 1
or the probability within an acceptable error range
is greater than the set value, the game stops, and
the corresponding edge node is the final choice of
users

We evaluated the methodology from two main
perspectives.

(i) QoE: the metric is expressed in terms of the average
reward earned by users after uninstalling a task and
is necessary for measuring service quality

(ii) Load balancing: this metric compares the total num-
ber of tasks ultimately served by each edge service
but specifically considers the cumulative computa-
tion time for task processing in each service. This
manuscript’s load balancing degree is the primary
metric to measure DDoS attack mitigation

In Figure 6, by computing the actual reward after each
selection, we obtain a graph of the evolutionary trend of
the average reward for each algorithm and, in turn, represent
it as the evolutionary trend of the QoE. First, the algorithm
was compared with the TS algorithm, which is based on
the M/M/1 queuing model and the classical algorithms

(improved ε-greedy and UCB) within the framework of the
MAB algorithm. We find that the algorithm with the G/M/
1 model will significantly outperform the case with the M/
M/1 model in terms of QoE performance, having more sig-
nificant advantages and potential. The algorithm that uses
the M/M/1 model is similar to the UCB algorithm but signif-
icantly lower than the improved ε-greedy algorithm and the
TSNS algorithm. Subsequently, during the comparison with
related work, we found that the UBL, LBCO, and MTOTC
algorithms reach their QoE peaks relatively quickly and are
largely stable. In contrast, the TSNS algorithm suffers from
a slow learning ascent. However, as the user assignment pro-
cess continues, the TSNS algorithm outperforms the other
algorithms in terms of QoE overall.

We can find that all algorithms in the MAB algorithm
framework fluctuate to some extent at the operation begin-
ning, especially during the first 100 edge user assignments.
Because properties, such as the service rate of all servers,
are unknown to the algorithm in the MAB framework at
the beginning, the quality of user assignment could be grad-
ually improved through continuous selection. Considering
the influence of stochastic factors in the actual task arrival
and processing process, server performance may also change
with time; we introduce a nonstationary factor in the algo-
rithm improvement; i.e., after each task assignment, a
reward is calculated based on the task processing process,
and the service rate of the edge servers is updated based on
the reward.

In experiments, we count the specifics of user selection
of edge nodes in different methods and represent them as
Figure 7. We can see that large numbers of clusters form
the representation graph for each method. The centers of
the clusters represent edge servers, while the ends represent
users, and the connecting lines between them represent their
selection relationships. The size and density of the clusters
can reflect the uniformity in selecting edge nodes by users.
Among them, UBL, LBCO, and improved ε-greedy algo-
rithms mainly focus on choosing some fixed edge nodes,
and fewer edge nodes connect more users. In contrast, the
TSNS, MTOTC, and UCB algorithms can distribute edge
users more evenly, and the number of users served by each
edge node is similar.

However, since the task volume of tasks to be processed
by different users and the computational capacity of edge
nodes vary, we also need to discuss the task processing of
each edge node more specifically.

As in Figure 8, we count the work of each edge server
between methods. Where the vertical coordinate represents
the accumulated computation time of each edge server,
which is expressed as the degree of load, ideally, the degree
of load should be essentially similar between edge servers,
although there are some fluctuations. This figure shows
more intuitively that the load within the UCB, TSNS, and
MTOTC algorithms are relatively homogeneous, compared
to other algorithms, with slight fluctuations basically around
a certain level. To quantify this balance’s level more con-
cretely, the changes in stay time are calculated and subse-
quently expressed as the variance. As shown in Figure 9,
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we can conclude that the TSNS algorithm has some advan-
tages in load balancing compared with other algorithms.
This advantage is beneficial in resource-limited edge envi-
ronments, facilitating the mitigation of DDoS attack pro-
cesses and, in turn, reducing the probability of system
breaches.

6. Conclusion

In this paper, to slow down the DDoS attack process in edge
computing, we have focused on the EUA problem in a 5G
ultradense cellular network scenario and considered improv-
ing the load balancing of edge servers while guaranteeing the
QoE. To quantify the QoE, we have introduced the MAB
algorithm framework and added nonstationary factors to
the learning mechanism. Considering the effect of schedul-
ing algorithms on the Markov property of the task arrival
process, we have introduced the G/M/1 queueing theory
model to EUA for the first time. We have focused on pro-
cessing specific tasks in each edge server and conducted a
series of experiments on real-world datasets, which verified
the strength and potential of the algorithm in the target
scenario.

In future research, in the context of non-orthogonal
multiple access (NOMA) for 5G networks, we will consider
more general cases of load balancing of edge demand
response under the impact of latency and energy consump-
tion. And we will slow down the process of DDoS attack in
edge computing by pursuing load balancing of edge servers.
First, we will specifically consider the number and perfor-
mance of physical machines installed in each edge server
and further consider the specific processing process after
tasks reach edge servers; subsequently, we will combine
cloud-edge collaboration and collaboration among edge
nodes to set the threshold to determine whether users need
to receive cloud services; more importantly, we will consid-
ering the performance of the algorithm in three aspects:
mobile users, edge infrastructure providers, and edge service
providers, considering the QoE, system energy consump-
tion, and DDoS attack mitigation, to make the model more
generalized, etc.

Data Availability

The data used to support the findings of this study is cited in
the article and can be viewed via the link https://github.com/
swinedge/eua-dataset.
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In mobile multimedia applications, deep learning has received significant interest. Due to the limited computation and storage
resources of mobile devices, however, general training methods are hardly suited for mobile multimedia computing. For this
reason, we propose an adaptive momentum training (FWAdaBound) algorithm to reduce computation and storage cost, where
the Frank-Wolfe method is employed. Furthermore, we rigorously prove the regret bound in order that OðT3/4Þ can be
achieved, where T is a time horizon. Finally, the convergence, cost-reduction, and generalization ability of FWAdaBound are
validated through various experiments on public datasets.

1. Introduction

In mobile multimedia applications [1, 2], deep learning is a
significant method for multimedia computing [3]. Mean-
while, various deep learning models have been successfully
implemented in many important fields, such as convolu-
tional neural network [4, 5], recurrent neural network [6,
7], deep belief networks [8, 9], and industrial internet appli-
cations [10]. In order to implement deep learning models in
mobile multimedia, the training of deep neural networks is a
crucial technology. Moreover, because the computation and
storage resources of each mobile device is limited, general
training methods of deep neural networks are hardly
adapted to mobile multimedia computing. For this reason,
how to train rapidly deep learning models with lower com-
putational cost is one of challenging tasks in mobile multi-
media applications.

In fact, the training process of deep neural networks can
be regarded as an optimization process. For this reason, the
design of optimization algorithms is necessary in the train-
ing process. Currently, stochastic gradient descent (SGD) is
a dominative algorithm for training deep networks. SGD is

applied widely over the past years since its good generaliza-
tion ability and could be implemented easily. Despite SGD
having performed well in some applications, however, it
converges slowly. To accelerate the convergence of SGD,
many researchers have proposed various adaptive momen-
tum algorithms based on gradient descent. Generally, opti-
mizing step size and gradient direction of SGD are two
main directions that have been studied by researchers.

SGD often oscillates around the optimal solution when
step sizes are fixed. To address this issue, some novel algo-
rithms with adaptive step size have been proposed. AdaGrad
[11], RMSProp [12], and Adadelta [13] make step sizes
changed adaptively as training process goes on. Besides,
the current gradient direction in each iteration is randomly
selected, thereby it cannot find the direction to reach the
optimal solution in the shortest time. For this reason, histor-
ical gradient information has been used to adjust the current
gradient direction in many novel algorithms. Moreover,
these algorithms often use the first-order momentum to
maintain historical gradient information and the second-
order momentum to adaptive step size at the same time
(Adam [14], AMSGrad [15], and AdaBound [16]). It is gen-
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erally believed that algorithms combining first-order and
second-order momentum originated from Adam and are
Adam-type algorithms.

Being an Adam-type algorithms, AdaBound not only
inherits good generalization ability of SGD but also maintains
fast convergence rate of Adam. However, like other Adam-
type algorithm else, AdaBound also uses higher-order projec-
tion operators to handle the case where the iteration point is
not within the feasible region. Since the projection operation
includes the second-order Euclidean distance calculation or
higher-order methods measurement, it has a large computa-
tional cost in each iteration. Therefore, algorithms with pro-
jection operations like AdaBound become prohibitive when
dealing with large-scale problems including massive high-
dimensional data. To tackle this problem, we focus on propos-
ing a projection-free algorithm based on AdaBound. In the
field of optimization, the Frank-Wolfe method is one of the
projection-free technologies, which is commonly used in
replacing high-order projection operators with linear searches.
Therefore, in this paper, we redesign AdaBound algorithm,
which is called FWAdaBound by using the Frank-Wolfe
method to reduce computation cost of AdaBound. Moreover,
we prove that the FWAdaBound algorithm converges under
convex conditions and attain a guaranteed regret bound
related to the sublinear correlation of time horizon. In addi-
tion, FWAdaBound successfully retains AdaBound’s perfor-
mance on convergence and generalization ability.

In this paper, the summary of our contributions is pre-
sented as follows:

(i) We propose the FWAdaBound algorithm based on
the Frank-Wolfe method and AdaBound optimiza-
tion algorithm to eliminate costly projection steps
in large-scale problems

(ii) We prove the convergence of FWAdaBound under
the online learning framework. Moreover, we also
show that the regret of FWAdaBound is OðT3/4Þ,
where T is a time horizon

(iii) We present various of experiments to validate com-
putation cost reduction of FWAdaBound and show
good generalization ability of FWAdaBound on
public dataset

The rest of this paper is organized as follows: in Section
2, we review some important related work of FWAdaBound.
In Section 3, we introduce preliminary knowledge about
optimization object and online learning. In Sections 4, we
present some frequently used assumptions and detailed
design of FWAdaBound. In Section 5, we prove the conver-
gence of FWAdaBound in theory and obtain the regret
bound. In Section 6, we conduct various experiments in
detail on public datasets. Finally, we present the conclusion
of this paper in Section 7.

2. Related Work

SGD performs linear iteration of decision variables based on
gradient. Therefore, SGD is one of the simplest and easiest

implemented algorithms in deep learning. It has good gener-
alization ability if labeled training samples are sufficient.
However, the slow convergence rate of SGD always makes
it difficult to converge to optima under limited labeled train-
ing samples. To speed up convergence rate of SGD, the first-
order momentum and the second-order momentum based
on the gradient are used in optimization algorithms. More
specifically, the fist-order momentum of the gradient is used
to retain historical information of gradient, and the second-
order momentum of gradient is used to make the step size
adaptive. The first algorithm combining these two momen-
tums of gradient is Adam, which obtains a faster conver-
gence rate than SGD [14]. However, Reddi et al. found that
the convergence proof of Adam was problematic and pro-
posed an improved variant of Adam, called AMSGrad [15].
Moreover, [17] advocated that it is beneficial to consider
more past gradients when designing adaptive learning rates,
and thereby, they proposed NosAdam.

Despite Adam, AMSGrad, and NosAdam both improv-
ing the convergence rate, however, these three algorithms
all have lower generalization ability than SGD under suffi-
cient training samples. For this reason, [18] proposed
SWATS to improve generalization performance by switch-
ing from Adam to SGD in the later stages of training.
Although SWATS improves generalization ability for adap-
tive momentum algorithms, its switching time is difficult to
be accurately controlled. Based on works mentioned above,
[16] analyzed that unstable and extreme learning rates may
lead to the lack of generalization performance of adaptive
methods. Moreover, [16] used a dynamic boundary of the
learning rate, where the upper and lower limits can smoothly
converge to a constant final step size, respectively. Further-
more, the algorithm proposed is called AdaBound. There-
fore, AdaBound currently performs better in terms of
convergence speed and generalization ability compared with
other algorithms.

Although AdaBound performs well in the convergence
rate and generalization ability, projection steps in AdaBound
produce numbers of computation cost and make training
process prohibit when dealing with large-scale problems.
To be specific, the projection operator defined as ΠF,M can
be formed as follows:

ΠF,M yð Þ = arg min
x∈F

M1/2 x − yð Þ�� ��, ð1Þ

where F is a convex feasible set, x is a decision variable in
the feasible domain, and y is an unknown variable.

Equation (1) shows the high-order calculation method of
a projection operation, which brings a lot of calculation cost
to the algorithm. The efficiency of algorithms like AdaBound
are highly dependent on time and hardware. Therefore, it is
necessary to eliminate projection steps of AdaBound in
order to improve its efficiency. However, this much needed
algorithm has not yet been proposed. For this reason, we
propose a projection-free algorithm based on AdaBound,
which uses the Frank-Wolfe method to replace high-order
projection steps with one-dimensional linear searches.
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3. Preliminaries

In this section, we first introduce some notations for conve-
nience. Throughout this paper, we let a boldtype letter, like x
, denote a vector. For operative symbol, we let x/y denote the
element-wise division, x2 denotes the element-wise square,
and

ffiffiffixp
denotes the element-wise square root. For the tth

iteration, we let xt denote the decision vector, f t denote
the cost function, and xt,i denote the ith coordinate of xt .
Moreover, diag fxg denotes a diagonal matrix generated by
the elements of x in order, max f·, · g represents element-
wise maximum, and h·, · i denotes the scalar inner product.
In addition, we let R denote the real number set and ΠF,M
ð·Þ denotes the weighted projection operation, where F is a
feasible set and M represents a positive definite matrix.

In this paper, we consider an online convex optimization
problem, in which the cost function changes over the time or
iteration. If F ⊂ R is a convex and compact set, the decision
vector x ∈F , and the cost function at time t is f t ; then, we
focus on the following optimization objective:

min
x∈F

〠
T

t=1
f t xð Þ: ð2Þ

In order to solve the online optimization problem, i.e.,
Equation (2), an online optimization algorithm is required.
In addition, to measure the performance of an online opti-
mization algorithm, one of standard approaches is regret.
Moreover, if we let x∗ denote the theoretical optimal solu-
tion, then the definition of regret is as follows:

R Tð Þ = 〠
T

t=1
f t xtð Þ − 〠

T

t=1
f t x∗ð Þ, ð3Þ

where t = 1,⋯, T , and x∗ = arg minx∈F f ðxÞ.

4. Algorithm Design and Assumptions

In this section, the proposed algorithm design will be firstly
introduced in detail. Then, to analyze the convergence of the
proposed algorithm, we present some reasonable
assumptions.

4.1. Algorithm Design. The input of FWAdaBound is x1 ∈F ,
where F is a convex and compact set. The parameter β1t ∈
½0, 1Þ and let β11 = β1. Moreover, the parameter β2 ∈ ½0, 1Þ.
In addition, the parameters α, η ∈ ð0, 1�. Let gt denote the
gradient at time t ∈ f1,⋯, Tg; thus, gt = ∇f tðxtÞ. The overall
idea of our algorithm is as follows:

At first, we use the first-order momentum of the gradient
ut to define the sum function for time t: StðxÞ = ηh∑t

τ=1uτ,
xi + kx − x1k2; then, we use this function to implement
one-dimensional linear search wt = arg minx∈Fh∇StðxtÞ, xi,
which can accelerate convergence and avoid projection
operators, so it is the key of FWAdaBound to reduce the
computational cost. Next, we introduce second-order
momentum dt and use it to generate the dynamic upper
bound of learning rate ϖt adaptively. Finally, we apply ϖt

to update the decision variable as xt+1 = xt + ϖteðwt − xtÞ.
The specific algorithm is shown in Algorithm 1.

The first-order momentum of the gradient, ut , is com-
puted by FWAdaBound for time t as follows:

ut = β1tut−1 + 1 − β1tð Þgt: ð4Þ

The first-order momentum is generated by weighted
average of the current gradient and the historical gradient,
which speed up convergence rate for optimization algo-
rithms. Next, to implement one-dimensional linear search
which replaces of the projection operators, we define the fol-
lowing sum function for time t:

St xð Þ = η 〠
t

τ=1
uτ, x

* +
+ x − x1k k2: ð5Þ

To reduce the computational cost of the projection oper-
ation, FWAdaBound searches the feasible variable, wt ,
through one-dimensional linear as follows:

wt = arg min
x∈F

∇St xtð Þ, xh i: ð6Þ

Moreover, to realize the adaptive learning rate, FWAda-
Bound computes the second-order momentum of the gradi-
ent, dt , for time t as follows:

dt = β2dt−1 + 1 − β2ð Þg2t : ð7Þ

To ensure the convergence of the proposed algorithm,
FWAdaBound chooses the bigger value from fdt , dt−1g for
time t, i.e. d̂t =max fdt , dt−1g. In addition, the diagonal
matrix, Dt , based on d̂t is defined as Dt = diag fd̂tg. Next,
FWAdaBound generates a dynamic bound for learning rate
at time t:

ϖt = Clip
αtffiffiffiffiffi
Dt

p ,
ϖlow tð Þffiffi

t
p ,

ϖupp tð Þffiffi
t

p
� �

, ð8Þ

where ϖlowðtÞ is the lower bound and ϖuppðtÞ is the upper
bound. Therefore, Equation (5) clips the output of αt/

ffiffiffiffiffi
Dt

p
between the low bound and the upper bound. Finally, FWA-
daBound updates the decision variable for time t + 1 as fol-
lows:

xt+1 = xt + ϖt⨀ wt − xtð Þ: ð9Þ

Therefore, the design of the proposed algorithm is intro-
duced completely. And we present some following common
assumptions, which are the premises of the convergence of
the algorithm.

4.2. Assumptions. Next, three assumptions are presented for
the proposed algorithm as follows.
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Assumption 1. The constraint set F is convex and compact.
Moreover, the set F is bounded, i.e., kx − yk∞ ≤ B∞ for all
x, y ∈F , where B∞ > 0.

Assumption 2. The cost function f t of FWAdaBound is con-
vex and differentiable on F for all t ∈ f1,⋯, Tg. In addition,

all the cost functions, f f1,⋯, f tg, are Lipschitz functions
with L constant, where L > 0.

Assumption 3. The gradient of decision variable xt is
bounded for all t ∈ f1, 2,⋯, Tg over F , i.e., gt = k∇f tðxtÞk
≤G∞, where G∞ > 0.

Input: x1
Parameter: x1 ∈F , and β1t ∈ ½0, 1Þ where β11 = β1, β2 ∈ ½0, 1Þ. Moreover, α, η ∈ ð0, 1�:
Initially set: m1 = 0 and v1 = 0.
Output: xt+1
1: fort = 1, 2, 3,⋯do
2: t⟵ t + 1
3: Compute gradient of decision variables at time t:
4: gt = ∇f tðxtÞ
5: Compute the first-order momentum at time t:
6: ut = β1tut−1 + ð1 − β1tÞgt
7: Generate a new sum function:
8: StðxÞ = η∑t

τ=1‍uτ, x + ∥x − x1∥2
9: Search wt by one-dimensional linearly:
10: wt = arg minx∈F∇StðxtÞ, x
11: Compute the second-order momentum at time t:
12: dt = β2dt−1 + ð1 − β2Þg2t
13: Select a bigger value for the second-order momentum:
14: d̂t =max fdt , dt−1g and Dt = diag fd̂tg
15: Compute the dynamic bound for learning rate at time t:
16: ϖt = Clipfðαt/

ffiffiffiffiffi
Dt

p Þ, ðϖlowðtÞ/
ffiffi
t

p Þ, ðϖuppðtÞ/
ffiffi
t

p Þg
17: Update the decision variables for time t + 1:
18: xt+1 = xt + ϖteðwt − xtÞ
19: end for
20: returnxt+1

Algorithm 1: FWAdaBound
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Figure 1: Comparison of the relationship between the average loss and the running time of each algorithm.
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Assumption 1 is one of the most basic assumptions of
projection-free method, and almost all projection-free
related articles use it, such as these classic articles [19, 20].
Assumption 2–3 are supposed commonly and reasonably
for analyzing convergence of optimization algorithms such
as these research works [14–16]. Next, we present the con-
vergence analysis of the proposed algorithms based on
Assumptions 1–3.

In many research works [14–16], Assumptions 1–3 were
supposed commonly and reasonably for analyzing conver-
gence of proposed algorithms. Next, we present the conver-

gence analysis of the proposed algorithms based on
Assumptions 1–3.

5. Convergence Analysis

We first introduce the following definitions as the beginning
of this section. Moreover, the introduced definitions are
standard and common in convex optimization.

f xð Þ − f yð Þj j ≤ L x − yk k, ð10Þ
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Figure 2: Comparison of the relationship between the training accuracy and the running time of each algorithm.
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Definition 4. A function f : F ↦ R is called L-Lipchitz if for
any two points x, y ∈F we have

where L is a positive constant.

Definition 5. A function f : F ↦ R is convex and differentia-
ble if for all x, y ∈F , we have

f xð Þ − f yð Þ ≤ ∇f xð ÞΤ x − yð Þ: ð11Þ

Definition 6. Let f : F ↦ R be an arbitrary convex function.
Then, the function f is also called μ-smooth if for any two
points x, y ∈F , we have

f xð Þ − f yð Þ ≥ ∇f xð ÞΤ x − yð Þ − μ

2
y − xk k2, ð12Þ

where μ > 0.

Definition 7. Let f : F ↦ R be an arbitrary convex function.
Then, the function f is δ-strongly convex if for all x, y ∈F ,

p = 0.1
p = 0.4

p = 0.7
p = 1.0

×10–3
6

4

2

0
10 20 40 60 80 100

Runtime (second)

A
ve

ra
ge

 L
os

s 

(a) news20 (4 nodes)

p = 0.1
p = 0.4

p = 0.7
p = 1.0

8

6

4

2

0
50 100 150 200 250

Runtime (second)

×10–3

A
ve

ra
ge

 L
os

s 

(b) news20 (64 nodes)

p = 0.1
p = 0.4

p = 0.7
p = 1.0

12

10

8

6

4

2

0
50 100 200 300 400 500

Runtime (second)

×10–3

A
ve

ra
ge

 L
os

s 

(c) news20 (128 nodes)

p = 0.1
p = 0.4

p = 0.7
p = 1.0

1

0.8

0.6

0.4

0.2

0
1 2 3 4 5 6 7 8

Runtime (second)

×10–3

A
ve

ra
ge

 L
os

s 

(d) aloi (4 nodes)

p = 0.1
p = 0.4

p = 0.7
p = 1.0

4

3

2

1

0
1 2 4 6 8 10 12 14

Runtime (second)

×10–3

A
ve

ra
ge

 L
os

s 

(e) aloi (64 nodes)

p = 0.1
p = 0.4

p = 0.7
p = 1.0

10

8

6

4

2

0
1 2 4 6 8 10 12 14 16 18 20

Runtime (second)

×10–3

A
ve

ra
ge

 L
os

s 

(f) aloi (128 nodes)

Figure 4: Comparison of the relationship between the perplexity and the running time of each algorithm. Lower is better.
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we have

f xð Þ − f yð Þ ≤ ∇f xð ÞΤ x − yð Þ − δ

2
y − xk k2, ð13Þ

where δ > 0.

In addition, if a function f is δ-strongly convex and let
x∗ = arg minx∈F f ðxÞ, then we have

f xð Þ − f x∗ð Þ ≥ δ

2
x − x∗k k2: ð14Þ

Moreover, from Definition 6, we obtain the following
equivalent relation:

∇f xð Þ−∇f yð Þk k ≤ μ x − yk k, ð15Þ

where x, y ∈F .
In order to simplify the process of convergence analysis,

we define some intermediate variables. Let x∗t = arg minx∈F
StðxÞ for any t ∈ f1,⋯, Tg. Moreover, we define S0ðxÞ = ∥x
− x1∥2 at time t = 0. In addition, we present the following
relation for St :

zt xð Þ = St xð Þ − St x∗tð Þ: ð16Þ

When x = xt , for brevity, denoting zt = ztðxtÞ. Next, we
present the following Lemma 8 to bound zt+1.

Lemma 8. If Assumptions 1–3 are satisfied, and variables f
xtg, futg, and fdtg are generated by Algorithm 1 for t ∈ f1,
⋯, Tg, and β1t = β1λ

t−1 ≤ β1ðt−1Þ ≤ β1, where λ ∈ ð0, 1�. In
addition, suppose that 0 ≤ ϖlowðtÞ ≤ ϖlowðt + 1Þ, and 0 ≤
ϖuppðt + 1Þ ≤ ϖuppðtÞ, denoting B∞ = ϖuppð1Þ and C∞ = ϖlow

ð1Þ. Then, we have

zt+1 ≤ 1 −
B2
∞ffiffi
t

p
� �

zt +
nηG∞
1 − β1

ffiffiffiffiffiffiffiffi
zt+1

p +
B4
∞
t

: ð17Þ

Proof. By Definition 6, we know that StðxÞ is a 2-smooth
function. Moreover, using the definition of ztðxÞ (i.e., Equa-
tion (16)) and xt , we obtain the following relation:

zt xt+1ð Þ = St xt+1ð Þ − St x∗tð Þ = St xt + ϖte wt − xtð Þð Þ − St x∗tð Þ:
ð18Þ

From the bounds of ϖlowðtÞ and ϖuppðtÞ, we have the fol-
lowing:

zt xt+1ð Þ ≤ St xt +
ϖupp 1ð Þffiffi

t
p e wt − xtð Þ

� �
− St x∗tð Þ ≤ St xt +

B∞ffiffi
t

p e wt − xtð Þ
� �

− St x∗tð Þ:

ð19Þ

In addition, from the Definition 7 and the strong-

convexity of StðxÞ, we obtain the following:

zt xt+1ð Þ ≤ St xtð Þ − St x∗tð Þ + B2
∞
t

wt − xtk k2 + B2
∞ffiffi
t

p ∇St xtð Þ, wt − xtð Þh i:

ð20Þ

From the definition of wt , we attain the following rela-
tion:

∇St xtð Þ,wth i ≤ ∇St xtð Þ, x∗th i: ð21Þ

Moreover, from Equation (21), we have the following:

∇St xtð Þ, wt − xtð Þh i ≤ ∇St xtð Þ, x∗t − xtð Þh i: ð22Þ

Plugging Equation (22) into Equation (20), we attain the
following relation:

zt xt+1ð Þ ≤ St xtð Þ − St x∗tð Þ + B2
∞
t

wt − xtk k2 + B2
∞ffiffi
t

p ∇St xtð Þ, x∗t − xtð Þh i:

ð23Þ

According to Definition 5 and the convexity of StðxÞ, we
obtain the following relation:

∇St xtð Þ, x∗t − xtð Þh i ≤ St x∗ð Þ − St xtð Þ: ð24Þ

Furthermore, plugging Equation (24) into Equation (23),
we get the following relation:

zt xt+1ð Þ ≤ St xtð Þ − St x∗tð Þ + B2
∞
t

wt − xtk k2 + B2
∞ffiffi
t

p St x∗ð Þ − St xtð Þð Þ

≤ 1 −
B2
∞ffiffi
t

p
� �

St xtð Þ − St x∗tð Þð Þ + B2
∞
t

wt − xtk k2:

ð25Þ

Next, we consider the term ztðxt+1Þ in Equation (25). By
the definition of ztðxÞ, we first obtain the following relation:

zt+1 xt+1ð Þ ≤ St+1 xt+1ð Þ − St+1 x∗t+1ð Þ: ð26Þ

Then, transforming Equation (26), and we attain the fol-
lowing relation:

zt+1 xt+1ð Þ ≤ St xt+1ð Þ − St x∗t+1ð Þ + St+1 xt+1ð Þ − St xt+1ð Þ + St+1 x∗t+1ð Þ − St x∗t+1ð Þ:
ð27Þ

In addition, due to the fact that x∗t = arg minx∈FStðxÞ,
we have Stðx∗t Þ ≤ Stðx∗t+1Þ. For this reason, we obtain the fol-
lowing relation from Equation (27):

zt+1 xt+1ð Þ ≤ St xt+1ð Þ − St x∗tð Þ + St+1 xt+1ð Þ − St xt+1ð Þ + St+1 x∗t+1ð Þ − St x∗t+1ð Þ
= zt xt+1ð Þ + St+1 xt+1ð Þ − St xt+1ð Þ + St+1 x∗t+1ð Þ − St x∗t+1ð Þ:

ð28Þ

Next, we consider the terms St+1ðxt+1Þ − Stðxt+1Þ and
St+1ðx∗t+1Þ − Stðx∗t+1Þ in Equation (28). From the definition
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of StðxÞ, we have the following relation:

St xð Þ − St xð Þ = η〠
t+1

τ=1
uΤτ x + x − x1k k2 − η〠

t

τ=1
uΤτ x − x − x1k k2 = ηuΤt+1x:

ð29Þ

Let x = xt+1 in Equation (29), we obtain

St xt+1ð Þ − St xt+1ð Þ = ηuΤt+1xt+1: ð30Þ

In addition, let x = x∗t+1 in Equationss (29), we attain

St x∗t+1ð Þ − St x∗t+1ð Þ = ηuΤt+1x∗t+1: ð31Þ

Combining Equations (28), (30), and (31), we have the
following:

zt+1 xt+1ð Þ ≤ zt xt+1ð Þ + ηuΤt+1xt+1 + ηuΤt+1x∗t+1 = zt xt+1ð Þ + ηuΤt+1 xt+1 − x∗t+1ð Þ
≤ zt xt+1ð Þ + η uΤt+1

�� �� xt+1 − x∗t+1k k:
ð32Þ

The second inequality in Equation (32) follows from
Cauchy-Schwarz inequality. Besides, plugging Equation
(23) into Equation (32), we obtain

zt+1 xt+1ð Þ ≤ 1 −
B2
∞ffiffi
t

p
� �

St xtð Þ − St x∗tð Þð Þ + B2
∞
t

wt − xtk k2 + η uΤt+1
�� �� xt+1 − x∗t+1k k:

ð33Þ

Since ztðxtÞ = StðxtÞ − Stðx∗t Þ, we attain the following
relation from Equation ((33))

zt+1 xt+1ð Þ ≤ 1 −
B2
∞ffiffi
t

p
� �

zt xtð Þ + B2
∞
t

wt − xtk k2 + η uΤt+1
�� �� xt+1 − x∗t+1k k

≤ 1 −
B2
∞ffiffi
t

p
� �

zt +
B2
∞
t

wt − xtk k2 + η uΤt+1
�� �� xt+1 − x∗t+1k k:

ð34Þ

The second inequality in Equation (34) follows the defi-
nition of zt = ztðxtÞ.

Before estimating the bound of zt+1ðxt+1Þ, we consider
the bound of ∥ut+1∥. To this end, applying the recursive algo-
rithm on ut , we have

ut = 〠
t

j=1
1 − β1j

� 	Yt−j
k=1

β1 t−k+1ð Þgj: ð35Þ

From Assumption 3 and Equation (35), we attain

utk k ≤ 〠
t

j=1
1 − β1j

� 	Yt−j
k=1

β1 t−k+1ð Þ 〠
n

σ=1
gj,σ

 !

≤ nG∞ 〠
t

j=1
1 − β1j

� 	Yt−j
k=1

β1 t−k+1ð Þ ≤ nG∞ 〠
t

j=1

Yt−j
k=1

β1 t−k+1ð Þ:

ð36Þ

In addition, because β1t = β1λ
t−1, we obtain the follow-

ing relation from Equation (36):

utk k ≤ nG∞ 〠
t

j=1
βt−j
1 ≤

nG∞
1 − β1

: ð37Þ

Plugging Equation (37) into Equation (34), we attain

zt+1 ≤ 1 −
B2
∞ffiffi
t

p
� �

zt +
B2
∞
t

wt − xtk k2 + nηG∞
1 − β1

xt+1 − x∗t+1k k:

ð38Þ

Since wt = arg minx∈Fh∇StðxtÞ, xi, we have wt ∈F .
Moreover, from Assumption 1, we have

wt − xtk k ≤ B∞: ð39Þ

Hence, combining Equations (38) and (40), we obtain

zt+1 ≤ 1 −
B2
∞ffiffi
t

p
� �

zt +
nηG∞
1 − β1

xt+1 − x∗t+1k k + B4
∞
t

: ð40Þ

Applying δ = 2 on Definition 7, we attain that the func-
tion StðxÞ is 2-strongly convex. In addition, from Equation
(14), we have

xt+1 − x∗t+1k k ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
St+1 xt+1ð Þ − St+1 x∗t+1ð Þ

p
= ffiffiffiffiffiffiffiffi

zt+1
p

: ð41Þ

Moreover, substituting Equation (41) into Equation (40),
and we can obtain the following:

zt+1 ≤ 1 −
B2
∞ffiffi
t

p
� �

zt +
nηG∞
1 − β1

ffiffiffiffiffiffiffiffi
zt+1

p +
B4
∞
t

: ð42Þ

Therefore, the proof of Lemma 8 is completed.
Now, we get the iterative relations between zt and zt+1

from Lemma 8. In order to attain the final bound of zt , we
should present the following two lemmas. First of all, we
introduce the first lemma of the two lemmas.

Lemma 9. For all t = 1, 2,⋯, we can obtain the following
relation:

1ffiffi
t

p 1 −
1

2
ffiffi
t

p
� �

≤
1ffiffiffiffiffiffiffiffiffi
t + 1

p : ð43Þ

Proof. We first square both sides of Equation (43) and take
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the difference; then, we have the following relation:

1ffiffi
t

p 1 −
1

2
ffiffi
t

p
� �� �2

−
1ffiffiffiffiffiffiffiffiffi
t + 1

p
� �2

=
1
t
−

1
t
ffiffi
t

p +
1
4t2

−
1

t + 1

=
1
t
−

1
t
ffiffi
t

p +
1
4t2

−
1

t + 1

� �
t t + 1ð Þ
t t + 1ð Þ

=
t + 1 + t + 1/4tð Þ − t + 1/

ffiffi
t

p
− t

t t + 1ð Þ

=
t + t + 1/4ð Þ − t + 1ð Þ ffiffi

t
p

t2 t + 1ð Þ =
5t + 1ð Þ − 4

ffiffi
t

p
t + 1ð Þ ffiffi

t
p

t2 t + 1ð Þ :

ð44Þ

Observing terms ð5t + 1Þ and 4
ffiffi
t

p ðt + 1Þ ffiffi
t

p
, we can

know that they all increase with t, and the latter grows faster
than the former. Therefore, we can further attain the follow-
ing relation from Equation (44):

1ffiffi
t

p 1 −
1

2
ffiffi
t

p
� �� �2

−
1ffiffiffiffiffiffiffiffiffi
t + 1

p
� �2

=
5t + 1ð Þ − 4

ffiffi
t

p
t + 1ð Þ ffiffi

t
p

t2 t + 1ð Þ ≤ 0:

ð45Þ

In addition, combining Equations (44) and (43), we
obtain the following relation:

1ffiffi
t

p 1 −
1

2
ffiffi
t

p
� �� �2

≤
1ffiffiffiffiffiffiffiffiffi
t + 1

p
� �2

: ð46Þ

From Equation (46), we have the following relation:

1ffiffi
t

p 1 −
1

2
ffiffi
t

p
� �

≤
1ffiffiffiffiffiffiffiffiffi
t + 1

p : ð47Þ

Therefore, the proof of Lemma 9 is completed.
Next, we introduce the last lemma about the final bound

of zt as follows.

Lemma 10. If Assumptions 1–3 are satisfied, and variables
fxtg, futg, fdtg are generated by Algorithm 4.1 for t = f1,
⋯, Tg, and β1t = β1λ

t−1 ≤ β1ðt−1Þ ≤ β1, where λ ∈ ð0, 1�. In
addition, suppose that 0 ≤ ϖlowðtÞ ≤ ϖlowðt + 1Þ, and 0 ≤
ϖuppðt + 1Þ ≤ ϖuppðtÞ. Denoting B∞ = ϖuppð1Þ, and C∞ =
ϖlowð1Þ. Moreover, as the parameters n, η, and β1 are chosen
such that ðnηG∞/ð1 − β1Þ1 − β1Þ

ffiffiffiffiffiffiffiffi
zt+1

p ≤ ð3B4
∞ − 2B2

∞Þ/t by
Algorithm 1, we then have

zt+1 ≤
4B2

∞ffiffiffiffiffiffiffiffiffi
t + 1

p : ð48Þ

Proof. By Equation (42), we have the following relation:

zt+1 ≤ 1 −
B2
∞ffiffi
t

p
� �

zt +
4B4

∞ − 2B2
∞

t
: ð49Þ

Now, we can use mathematical induction to get the
bound of zt . First, when t = 1, from definition of zt , we attain

z1 ≤ S1 x1ð Þ − S1 x∗1ð Þ ≤ x1 − x1k k2 − x∗1 − x1k k2 = − x∗1 − x1k k2 ≤ 4B2
∞:

ð50Þ

Therefore, the base of mathematical induction is true for
t = 1. Second, supposing that the mathematical induction is
also true for t, and we present that it also true for t + 1 as fol-
lows:

zt+1 ≤ 1 −
B2
∞ffiffi
t

p
� �

4B2
∞ffiffi
t

p +
4B4

∞ − 2B2
∞

t
≤
4B2

∞ffiffi
t

p −
4B4

∞
t

+
4B4

∞
t

−
2B2

∞
t

≤
4B2

∞ffiffi
t

p 1 −
1

2
ffiffi
t

p
� �

:

ð51Þ

Applying Lemma 9 into Equation (51), we obtain

zt+1 ≤
4B2

∞ffiffiffiffiffiffiffiffiffi
t + 1

p : ð52Þ

Therefore, the proof of Lemma 10 is completed.
Next, we present the following result to attain the bound

of RðTÞ.

Theorem 11. If the Assumptions 1–3 are satisfied. Moreover,
the sequences ut , wt , and dt are all generated by our proposed
algorithm, which t ∈ f1, 2,⋯, Tg. Then, we obtain that

R Tð Þ ≤ 8LB∞
3

T3/4 +
B2
∞

η 1 − β1ð Þβ1T
: ð53Þ

Proof. From Lemma 10 and Equation (41), we have the fol-
lowing:

xt − x∗tk k ≤ ffiffiffiffi
zt

p
≤

ffiffiffiffiffiffiffiffiffi
4B2

∞ffiffi
t

p
s

= 2B∞t−1/4: ð54Þ

Summing over Equation (54) for t = 1,⋯, T , we attain
the following relation:

〠
T

t=1
xt − x∗tk k ≤ 〠

T

t=1
2B∞t−1/4 ≤

8B∞
3

T3/4: ð55Þ

By Assumption 2, we know that f t is a Lipschitz func-
tion. In addition, applying Definition 4, we have

f t xtð Þ − f t x∗tð Þj j ≤ L xt − x∗tk k: ð56Þ

In addition, combining Equation (55) and (56), we
obtain

〠
T

t=1
f t xtð Þ − f t x∗tð Þj j ≤ 〠

T

t=1
L xt − x∗tk k ≤ 8LB∞

3
T3/4: ð57Þ

9Wireless Communications and Mobile Computing



Moreover, from the definition of RðTÞ, we have

R Tð Þ = 〠
T

t=1
f t xtð Þ − f t x∗ð Þ½ � = 〠

T

t=1
f t xtð Þ − f t x∗tð Þ½ � + 〠

T

t=1
f t x∗tð Þ − f t x∗ð Þ½ �:

ð58Þ

Since S0ðxÞ = ∥x − x1∥2, we attain the following relation:

ST x∗tð Þ − ST x∗ð Þ ≤ η〠
T

t=1
utx∗t + x∗t − x1k k2

" #
− η〠

T

t=1
utx∗t + x∗ − x1k k2

" #

≤ η〠
T

t=1
ut x∗t − x∗ð Þ + x∗t − x1k k2 − x∗ − x1k k2 ≤ 0:

ð59Þ

Since x∗, x1 ∈F , and by Assumption 1, we have kx∗ −
x1k ≤ B∞. Moreover, according to Equation (59), we obtain
the following relation:

〠
T

t=1
ut x∗t − x∗ð Þ ≤ 1

η
x∗ − x1k k2 − x∗t − x1k k2

h i
≤
B2
∞
η

: ð60Þ

Then, combining Equations (35) and (60), we have the
following relation:

〠
T

t=1
ut x∗t − x∗ð Þ = 〠

T

t=1
〠
t

j=1
1 − β1j

� 	Yt−j
k=1

β1 t−k+1ð Þg j

" #
× x∗t − x∗ð Þ

≥ 〠
T

t=1
〠
t

j=1
1 − β1j

� 	
β1tgj

" #
x∗t − x∗ð Þ

≥ 1 − β1ð Þβ1T 〠
T

t=1
gt x∗t − x∗ð Þ:

ð61Þ

Therefore, from Equations (60) and (61), we attain the
following relation:

〠
T

t=1
gt x∗t − x∗ð Þ ≤ B2

∞
η 1 − β1ð Þβ1T

: ð62Þ

Applying Definition 5 and Equation (58), we obtain

R Tð Þ ≤ 〠
T

t=1
f t xtð Þ − f t x∗tð Þj j + 〠

T

t=1
gt x∗t − x∗ð Þ: ð63Þ

Finally, substituting Equations (57) and (62) into Equa-
tion (63), we have

R Tð Þ ≤ 8LB∞
3

T3/4 +
B2
∞

η 1 − β1ð Þβ1T
: ð64Þ

Therefore, the proof of Theorem 11 is completed.
From Theorem 11, we get that limT⟶∞RðTÞ/T = 0,

which indicates that our proposed algorithm is convergent.

In addition, by Equation (64), we know that the regret
bound of our proposed algorithm is OðT3/4Þ.

Remark 12. This work is closed to the previous works
[14–16]. Our regret bound OðT3/4Þ is worse than the regret
bound Oð ffiffiffiffi

T
p Þ, which is obtained by [15, 16], but the num-

ber of iterations is increased within the same amount of time
due to the lower computational cost per iteration. Hence, the
overall convergent rate of the proposed algorithm is faster
than the Adam-type algorithms such as Adam [14] and Ada-
Bound [16].

Next, we will validate the performance of our proposed
algorithm by simulation experiments.

6. Experiments

Our algorithm is mainly used in the field of multimedia
communication. Specifically, through modeling and analy-
sis, it is proved that the algorithm can reduce the calculation
and storage cost of text, voice, picture, and other informa-
tion in multimedia information transmission.

So, in this section, we, respectively, apply and compare
the proposed algorithm on different dataset to validate the
convergence and performance of the proposed algorithm.
One application is the image classification on CIFAR-10
[21] dataset, and another one is the language modeling on
the Penn Treebank dataset [22]. The experiments are exe-
cuted on the equipment with 1080Ti GPU and CUDA
0.4.0, and written in Python 3.7 with Torch 1.0.1 framework.
The details of experiment settings and results are described
in the content below.

6.1. Experiment Settings. The CIFAR-10 is a famous and
standard dataset for image classification, which consists of
60,000 32 × 32 color images in 10 classes, and with 6,000
images per class. Moreover, the dataset has 50,000 training
images and 10,000 test images, respectively. We use deep
models, ResNet-34 and DenseNet-121, to finish the classifi-
cation tasks on CIFAR-10. The model ResNet-34, a popular
model in deep learning, is a deep residual networks with 34
layers. In addition, DenseNet-121 is a dense convolutional
network with 121 layers, in which each layer accepts all pre-
ceding layers as its additional input.

The Penn Treebank is a popular and classical dataset for
language modeling. The corpus of this dataset comes from
the Wall Street Journal. Moreover, this dataset contains
2,499 articles with a total of 1M words. In this experiments,
we use three LSTM models, including 1-layer, 2-layer and 3-
layer, to train this dataset.

In our experiments, we compare our proposed algo-
rithm, FWAdaBound, with classical and latest proposed
algorithms including OGD, Adam [14], and AdaBound
[16]. Furthermore, the setting of parameters of all algo-
rithms are shown as follows.

(i) OGD, the initial step size α is chosen from
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1e − 2, 5e − 3, 1e − 3, 5e − 4, 1e − 4f g ð65Þ

(ii) Adam [14], with β1 = 0:9, β2 = 0:999, αt = α/
ffiffi
t

p
, in

which the initial step size α is chosen from

1e − 2, 5e − 3, 1e − 3, 5e − 4, 1e − 4f g ð66Þ

Moreover, we use for the perturbation value ε = 1e − 8.

(iii) AdaBound [16], with β1 = 0:9, β2 = 0:999, αt = α/
ffiffi
t

p
, in which the initial step size α is chosen from

1e − 2, 5e − 3, 1e − 3, 5e − 4, 1e − 4f g ð67Þ

Moreover, ε = 1e − 8.

(iv) FWAdaBound, our proposed algorithm, we directly
applied the default hyperparameters of AdaBound
(a learning rate of 0.001, β1 = 0:9, β2 = 0:999, and ε
= 1e − 8)

Next, we show the results of our experiments on CIFAR-
10 and present the related analysis of the experimental
results.

6.2. Experiment Results and Analysis

6.2.1. Image Classification. In the first experiment, we run
the algorithms on CIFAR-10 for 200 epochs and measure
the relationship between running time and average loss. It
can be concluded from the first experiment that with the
same epoch number, FWAdaBound spends the shortest time
to complete the iterative task. It also confirms that FWAda-
Bound takes the least computation cost among all the exper-
imental algorithms. The reason is that FWAdaBound uses
linear search instead of the high-order projection steps in
Adam and AdaBound. Moreover, Figure 1 shows the results
for each algorithm on both ResNet-34 and DenseNet-121. In
the part (a) of Figure 1, the average loss of our proposed
algorithm FWAdaBound reaches the expected stable value
in the shortest time in model ResNet-34. Similarly, in part
(b) of Figure 1, FWAdaBound also takes the least time to
reduce the average loss in model DenseNet-121. This sug-
gests that with the same number of epochs, FWAdaBound
spends the least time to complete the iteration task. More-
over, this validates that FWAdaBound takes the least com-
putation cost among all the experimental algorithms. The
reason is that FWAdaBound uses linear search instead of
the high-order projection steps in Adam and AdaBound.
Therefore, FWAdaBound can iterates much faster than
Adam and AdaBound in each epoch.

Then, we execute the second experiment to verify the
generalization ability of training accuracy. The results of
the second experiment are shown in Figure 2. This figure
shows that the training accuracy of FWAdaBound rises rap-
idly in the early stage of training and finally reaches the same

height as AdaBound, which validates the generalization abil-
ity of training accuracy of FWAdaBound is better. Moreover,
the figure also shows that the training accuracy of FWAda-
Bound is higher than that of Adam and AdaBound at each
moment, which further indicates that the iteration cost of
FWAdaBound is the lowest.

Finally, the last experiment verify the generalization abil-
ity of test accuracy of our proposed algorithm. And the
results of this experiment are presented in Figure 3. Like-
wise, the test accuracy of FWAdaBound performs well in
the early stage of iteration process and achieves the same
performance as AdaBound in the final stage. Therefore,
FWAdaBound also has a good generalization ability on test
accuracy. In general, the generalization ability of FWAda-
Bound is the same as that of AdaBound but takes much less
computation cost than AdaBound and Adam.

6.2.2. Language Modeling. In this group of experiments, we
implement all the algorithms in 1-, 2-, and 3-layer LSTM
models on the Penn Treebank dataset. The results of the
experiments are shown in Figure 4 which presents the rela-
tionship between the perplexity and the running time of
each algorithm. Note that the lower perplexity the better.

The experiment results of 1-layer LSTM show that
FWAdaBound takes the least time to minimize the perplex-
ity. On 1-layer LSTM model, FWAdaBound performs best
in all algorithms, and Adam performs better than
AdaBound.

In addition, in the experiments executed on 2-layer
LSTM model, FWAdaBound has the quickest convergence
rate among all the algorithms. Moreover, FWAdaBound
takes 16.67% and 17.65% less running time than Adam
and AdaBound, respectively. In this experiment, AdaBound
performs better than Adam on the perplexity.

Finally, all the three algorithms are executed on the 3-
layer LSTM model. The results show that FWAdaBound
takes the least time to minimize the perplexity on Penn
Treebank. In addition, FWAdaBound takes 11.83% and
14.05% less time than Adam and AdaBound, respectively.
Moreover, AdaBound also performs better than Adam on
the perplexity in this experiments.

7. Conclusion

In this paper, we proposed a Frank-Wolfe adaptive momen-
tum online algorithm named FWAdaBound, which uses the
Frank-Wolfe technique to avoid the projection operation.
Moreover, our convergence analysis showed that the regret
bound of FWAdaBound achieves to OðT3/4Þ, where T is a
time horizon. In order to validate the performance of FWA-
daBound in applications, we execute three groups of experi-
ments for image classification and language modeling. The
results show that FWAdaBound has good performance in
the generalization ability of training and test accuracy.

Data Availability

The data that support the findings of this study are CIFAR-
10 [21] and Penn Treebank datasets [22].
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According to recent research, attacks on USIM cards are on the rise. In a 5G setting, attackers can also employ counterfeit USIM
cards to circumvent the identity authentication of specified standard applications and steal user information. Under the
assumption that the USIM can be replicated, the identity authentication process of common mobile platform applications is
investigated. The identity authentication tree is generated by examining the application behavior of user login, password reset,
and sensitive operations. We tested 58 typical applications in 7 categories, including social communication and personal
health. We found that 29 of them only needed the SMS verification code received by the USIM card to pass the authentication.
In response to this problem, it is recommended to enable two-step verification and use USIM anti-counterfeiting methods to
complete the verification.

1. Introduction

USIM (Global User Identity Module) [1] is widely used as an
identification module for user identity in UMTS (Universal
Mobile Telecommunication System) networks and is com-
monly used in various mobile devices to provide users with
authentication services, short message services, etc. Com-
pared with the SIM (Subscriber Identity Module), the USIM
Card has been upgraded in application support and security.
While the USIM card supports 3G/4G services, it is back-
ward compatible with the 2G network supported by the
SIM card. In the increasingly mature 5G network, the USIM

card will play a more important role in entity authentication
and information exchange.

The promotion of mobile devices and the development
of mobile applications complement and promote each other.
As of the third quarter of 2019, data from the National
Bureau of Statistics show that the number of 4G mobile
phone users in my country has increased by 10.1% year-
on-year, and mobile Internet access traffic has increased by
34.9% year-on-year [2].

At the same time, 130,000 5G base stations have been
built, and 5G communication technology and commerciali-
zation have ushered in rapid development. Globally, in
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2018, users all over the world downloaded a total of 194 bil-
lion mobile applications (Apps), covering financial payment,
social communication, travel, entertainment, audio and
video applications, etc., of which online financial payment
applications have developed rapidly. The number of user
downloads has increased by 27.8% compared with 2017 [3,
4]. The subsequent data privacy risks continue to grow.
Mobile devices equipped with USIM cards and the applica-
tions in them have become a part of people’s lives. These
applications often have operating rights for sensitive user
information and authenticate the logged-in user’s identity.
When implementing identity authentication, SMS verifica-
tion code has been widely used as a low-cost, easy-to-
implement, and low-threshold verification method for users
to learn. As a necessary carrier for receiving SMS verifica-
tion codes, the USIM card will directly threaten the security
of all USIM devices once it can be copied or forged, and it
will inevitably pose a considerable threat to the identity
authentication process of the App in the device and user
privacy [5–7].

1.1. SIM/USIM Security Research Status. When a user uses a
mobile device to communicate, the SIM/USIM card in the
device needs to be authenticated and connected to the net-
work first. Research shows that although the USIM card uses
the MILENAGE algorithm to achieve two-way authentica-
tion [8, 9], and the SIM card uses the A3/A8 algorithm to
achieve one-way authentication, they all face the possibility
of being copied.

1.1.1. SIM/USIM Card Copy Attack. Miškovsky et al. [10]
proposed a feasible differential power analysis (DPA) side-
channel attack method based on the power signal difference
in the USIM authentication process. In the MILENAGE
algorithm, the differential power consumption analysis is
performed by selecting the f5 function among them. The
expected value of the round key used in the authentication
parameter calculation and the OPc can be calculated with
the help of the Pearson correlation coefficient [11]. Based
on this, the attacker can complete the copy of the original
USIM card within a few minutes only by using an oscillo-
scope, a smart card analyzer, and a personal computer and
realize the authentication and normal communication with
the AuC (Authentication Center) [12–14].

In addition, Saxena and Chaudhari [15] studied the A3/
A8 algorithm based on COMP128, combined with the SRES
response number of the A3 authentication algorithm to
crack the pseudorandom number generator used by AuC,
and can extract the customer authentication secret of AuC
and SIM card.

A copy of the SIM card is now displayed. Tabassum [16]
considered that the COMP128 authentication algorithm
used by GSM (Global System for Mobile Communications)
enables attackers to successfully extract the authentication
key of SIM by brute force cracking and proposed the basic
process and common methods for OTA copying of SIM
cards. Xie et al. [17] proposed a side-channel attack method
called partition attack, which can perform fast power con-
sumption analysis on the divided lookup table structure in

COMP128 to extract the authentication key. For CDMA
technology, Chen et al. [18] analyzed the look-up table in
the CAVE protocol and the cyclic shift operation in the
AKA protocol and designed different power analysis
methods, which cost a very short time on 8-bit microproces-
sors and SIM cards. Time can successfully extract the
authentication key [19, 20].

In the 5G network environment, the AKA authentica-
tion protocol adopted by USIM is consistent with the
main process and algorithm parameters of the 3G/4G
AKA protocol in the NSA mode [21, 22]. Therefore, the
security analysis methods and cracking methods of the
USIM card in the 3G/4G environment are still effective
in the 5G network [23, 24]. The above research shows that
there are a large number of USIM cards that are easy to
be copied in the domestic and foreign markets. Attackers
only need to spend a few minutes of power consumption
data collection time to achieve offline cracking and copy-
ing of the target user’s USIM card. It only takes a few
minutes to tens of minutes to complete the cracking and
copying using a personal PC.

In order to deal with the risk of USIM cards being
cracked by the abovementioned attack methods, many chip
design companies at home and abroad have begun to study
various chip protection methods and apply protection tech-
nologies to newly designed and taped-out USIM chips.
However, compared with the repair of software vulnerabili-
ties, the solution of chip security problems often requires
the redesign and development of the chip and the tape out.
This is undoubtedly a longer time. For the USIM chip, even
if it has been produced with antiattack capability USIM
cards, these chips must be widely used.

Operators are still required to carry out a large-scale
recall or forced replacement of the issued USIM chips, which
is obviously not feasible. This objectively causes a large num-
ber of USIM cards that can be copied to be used for a long
time and widely in reality [25–27].

1.1.2. SMS Verification Code Application and Security. SMS
verification codes have been widely used in authentication
links such as logging in to applications on mobile platforms
or resetting passwords. As a carrier and bridge for the USIM
card to transmit information to the App, it represents the
connection between a specific USIM card and the device
holder. SMS verification code is essentially a time-based
one-time password (TOTP, time-based one-time password)
[28], and its architecture is shown in Figure 1.

The authentication and message transmission from MSC
(Mobile Switching Center) to UE are often based on GSM or
UMTS networks. In practice, attacks against SMS mostly
occur during the authentication process between the device
and the base station or after the user receives the SMS mes-
sage. Yubo et al. [29] analyzed various SMS attack vectors
and pointed out that installing malware on devices to steal
data is a common attack method against SMS security. Kot-
kar and Game [30] implemented an attack method that
allows the device to send SMS messages without user per-
mission and prevents the device from receiving the mes-
sages. When the attacker uses the copied USIM card to
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access the base station, he can receive the SMS verification
code instead of the original user and complete the authenti-
cation process in the App.

1.2. The Main Work and Results of This Article. To avoid the
security vulnerabilities or potential hazards of App applica-
tions created by the copied USIM card, the current practica-
ble method is to update the App or security patches in a
timely manner from the software level to compensate for
the security risks caused by the usage of the copied USIM.
In this context, this study analyzes and tests common apps
in depth, identifying which apps have security issues when
the USIM is duplicated and raising the alarm about the need
for app updates and technology upgrades.

This article summarizes the general model of authentica-
tion for the general process of mobile application identity
authentication and focuses on the analysis of possible secu-
rity problems in the identity authentication strategy in the
environment where the USIM card is copied. In an environ-
ment that simulates the USIM card being copied by an
attacker, this paper studies the identity authentication link
of 58 typical applications on the mobile terminal platform
was tested, and the real machine test was carried out. The
authentication process of application login, reset password,
and sensitive operation was observed, and the application
login data and jump process were analyzed and studied.
The request-response data format and code execution pro-
cess of these applications in the identity authentication pro-
cess and finally recorded the use and performance of various
security services (such as SMS verification codes) in the
environment of copying the USIM card.

The test results found that 29 out of 58 applications have
identity authentication services that can be directly bypassed

in the environment where the USIM card is copied. Among
them, 9 apps can be bypassed directly during password reset
and login, 10 apps can be bypassed directly only during pass-
word reset, and the remaining 10 apps can be bypassed
directly only during login. The test results in this article
show that for applications that have identity authentication
problems caused by USIM card copy attacks, mobile app
developers, and security vendors should use at least two-
step authentication and other software protection methods
to avoid USIM card copy attacks on mobile applications
and security risk.

2. Certification Process for Mobile Applications

Applications need to verify their identity before users per-
form functions. The identity authentication interfaces pro-
vided by various apps usually exist in user login, user reset
the password, and performing sensitive operations. This sec-
tion analyzes the general pattern of mobile application iden-
tity authentication and summarizes the users—identity
verification tree.

2.1. Functional Scenarios of Identity Authentication. User
login authentication: when a user accesses an application,
the App needs to identify and authenticate the user’s iden-
tity. User login usually requires a matching user name and
password. The common user name types are usually user-
defined strings, mailboxes, user mobile phone numbers,
etc. After the password matches the user name, the current
user will be allowed to log in. The general user login authen-
tication process is shown in Figure 2. User reset password
authentication: in practice, users forget their passwords from
time to time, and user the application will also provide a
password recovery function. After the user provides the cor-
rect user name, the authenticity of the username must be
verified in conjunction with other information. The type of
username determines the process of verifying identity. When
using an email address or mobile phone number as a user-
name, the application will send a verification email or SMS
verification code. Only after the user receives the verification
information and performs the corresponding operation will
the password be allowed to reset, and some applications also
adopt two-step verification and other means.

E-mail and mobile phones are an important part of daily
life. Private mailbox letters and SMS verification codes are
usually owned by individuals. Therefore, it is reasonable
for application vendors to use them as necessary informa-
tion for identity authentication, but some applications do
not adopt additional verification methods to ensure current
users. The correctness of the identity only guarantees the
necessity of verification means. Once an external attacker
manages to provide correct verification information, he can
also reset the password and have the operation authority of
the original user to achieve the purpose of the attack.

User authentication for sensitive operations: if a user
performs certain sensitive operations after logging in, such
as transferring money or viewing operation history, some
applications will require the user to perform additional
authentication, usually requiring the user to enter a PIN

Messaging-
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SMS-C
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WCDMA LTE

SGSN MME

SAE
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Figure 1: Overall structure of short message service (SMS) [7].
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code, SMS verification code, or biometric verification. This
measure can better protect the core business data. When
personal financial apps involve banking services, it is often
recommended that users turn on operation authentication
to protect the safety of personal property.

2.2. The User Authentication Tree of the Application.
According to the three common authentication processes
in applications, this article can summarize the common user
authentication trees in mobile applications. In the verifica-
tion process, in order to achieve login applications, attackers
can perform attacks on user login authentication and reset
password authentication. In the process of user login
authentication, potential logic vulnerabilities in the applica-
tion can be used to initiate attacks; and in the process of
resetting the password, there are many authentication
methods involved, which also cause the attacker to have
more attack originating points, such as SMS for USIM cards
attack methods such as verification code security and email
security. At the same time, because some applications have
not developed a secondary verification process when reset-
ting the password, the difficulty of the attack faced by the
attacker is further reduced. Once the attacker successfully
logs in to the application, and the application is not correct
and sensitive operations are verified again, the attacker can
obtain the response and use authority to steal user
information.

3. Application Test of the Mobile
Terminal Platform

This section adopts a field test method to examine the
behavior of different applications in the certification process
and introduces the standard test types and test techniques of
mobile applications.

3.1. Mobile Application Testing and Analysis Technology.
Common test types: various tests of mobile applications
can help improve software quality to ensure long-term stable
iterations of software versions. The main classification
results of the test target and test method of the mobile appli-
cation test method are shown in Figure 3.

Among them, functional testing examines the basic ser-
vices, user interaction, and flexibility of the application.
Safety testing, flow testing, power consumption testing, etc.
have become necessary testing links in recent years [31].
Automated testing often uses a black box- (white box-)
based automation framework to dynamically or statically
analyze the product’s modular units. In order to adapt to
the rapid development and iteration of products, most man-
ufacturers adopt automatic or semiautomatic testing
methods.

Test analysis technology: the GUI automation frame-
work API in the literature [32, 33] provides a common inter-
face for the basic system functions of the mobile platform as
the basis for other test functions. Testers write scripts
through these APIs and use assert statements to test status
information.

R&R-based test schemes such as “Reran” [34] and “Ver-
satile” [35] may replace manual test scripts, and such
methods can provide fine-grained capture and replay. The
automatic input generation (AIG) technology [36] auto-
mates the generation process of test cases, which can
improve code coverage, detect more errors, and reduce the
scale of test programs. In addition, there are error reporting
tools [37], equipment flow testing tools, etc.

Access Request
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1st factor OK? Context OK?

2nd factor OK?

Authenticate
with 2nd Factor

Request
Denied

Request
Approved

YES

NO

NO

NO

Figure 2: Procedure of authentication for App users logging in [12].
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Figure 3: Classification of mobile applications [13].
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The researchers have analyzed the data interaction pro-
cess and interaction strategy of several typical applications
in the traditional test environment. Still, these applications
have not been tested and researched in the environment
where the USIM card is copied. This article makes up for
this shortcoming and proposes to the behaviors and pro-
cesses of App-like apps are tested to give out the security
problems and deficiencies in the identity authentication of
these apps and give solutions to them.

3.2. Identity Authentication Process Test for Typical
Applications. In this section, in an environment where the
attacker already has a copy of the USIM card, study the iden-
tity authentication of the test App in the USIM device, and
analyze the data request and response results during the
jump process of the identity authentication process by exe-
cuting the identity authentication tree of different applica-
tions, observe and record the behavior of the App, and
analyze the links that the attacker may bypass.

3.2.1. Test Conditions. Test object: the value of the informa-
tion contained in the application is one of the main factors
that affect the attacker’s selection of attack targets. This test
selects applications that are more likely to be targeted by
the attacker. These applications usually occupy the main-
stream market and can have a profound impact on the per-
sonal lives of a large number of users. These applications
have a high user stickiness, are closely integrated with users’
lives, and can access personal privacy and other data, which
will be researched and targeted by attackers, and the poten-
tial security vulnerabilities of these applications will also lead
to more serious data leakage incidents. Therefore, in order to
improve the representativeness of the test results, combined
with the abovementioned App analysis data, this article
covers 7 types of applications in social communication,
financial payment, travel delivery, health care, file cloud disk,
entertainment video, and information retrieval. Launched
the test, each type of application selected a total of 58 typical
applications according to the download and usage rankings.
The details are shown in Tables 1 and 2. The mobile big data
service provider shows that applications such as short video,
integrated e-commerce, and mobile payment have devel-
oped rapidly. These applications have a high user stickiness,
are closely integrated with the user’s life, can access personal
privacy and other data, and will be subject to research and
targeting by attackers, and these applications.

The potential security breaches will also lead to more
serious data breaches. Therefore, in order to improve the
representativeness of the test results, combined with the
abovementioned App analysis data, this article covers 7
types of applications in social communication, financial pay-
ment, travel delivery, health care, file cloud disk, entertain-
ment video, and information retrieval. A total of 58 typical
applications are selected according to the ranking of down-
loads and usage. The details are shown in Tables 1 and 2.

The above 58 applications can access the user’s commu-
nication content, property status, geographic location and
travel trajectory, physical health status, private files, and
retrieve information. This information is directly related to
user privacy, and the leakage of this information will endan-
ger user data security poses serious personal information
security risks. Once these applications cannot guarantee
the security of user identity verification, they will pose a
greater potential threat to users’ lives.

Test environment: the test model information used in
this article is as follows.

Apple iOS and Google Android are the main types of
mobile device systems. Except for the Apple authentication
mechanism represented by iCloud, the remaining 57 apps
have the same authentication process on iOS and Android.
Therefore, the test results and conclusions of 58 applications
of the equipment used in this test are consistent with the
tests under different test systems result. Based on the above
test conditions, the following prerequisites must be given
before the test.

(1) The copied USIM card and the original USIM card
are the same to the base station when sending and
receiving messages

(2) The username of the target user and the mobile
phone number of the USIM card are easy to obtain.

Table 1: Tested mobile applications.

Category Application composition

Social communication WhatsApp, Messenger, Facebook, Instagram, Twitter, Skype, WeChat, Snapchat, Pinterest

Financial payment Amazon, wish, eBay, Apple store, Walmart, Flipkart, cash, Paypal, Bank Internet Banking

Takeaway Uber, Zomato, Parkmobile, Waze, UberEats, DoorDash, iFood, are you hungry

Health care Keep, Nike Training Club, calm, pregnancy

File cloud disk Dropbox, Google Drive, iCloud, Onedrive

Entertainment video Youtube, TikTok, Netflix, Amazon Prime Video

Information retrieval Google Chrome, search, Bing search

Table 2: Tested mobile platforms.

Index Information

Model iPhone XR

System iOS 12.4.1

Operator China Unicom

IMEI 357394092794037

ICCID 89860116208410304191

MEID 35739409279403
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According to the above test conditions, a general
method of testing can be proposed

3.2.2. Test Methods. In this section, test the real device based
on the verification tree of the mobile application. After
downloading each application, use the target phone number
or email address to register to complete the general registra-
tion process for new users. Then log out to simulate the
behavior of an attacker, test the password reset function on
the login page, pay attention to the response results of differ-
ent steps and the links that require SMS verification codes,
and record whether the application can be bypassed in pass-
word reset and other links. In the test process, use Stream to
capture the Http/Https data request and response during the
App login process, analyze the data packet fields and control
methods, and combine the actual behavior of the App to give
the test results. The basic test procedure is shown in
Figure 4.

Other test requirements are as follows.

(1) For applications that can use mobile phone number
or email to register and log in

In terms of usage, priority is given to using mobile phone
to register and log in.

(2) For applications that use SSO services, the authenti-
cation logic is the same as that of the identity pro-
vider (IdP), and it is preferred not to use SSO
services for testing

(3) For applications that do not enable secondary verifi-
cation by default, keep the original settings for test-
ing. If the application forces two-step verification to
be turned on

Do not turn off this function during testing.
This article selects “Do you need SMS verification code,”

“Do you need secret information,” “Do you need email ver-
ification,” and “Do you verify the current device” as the test
indicators in the password reset process. Combining the
Http/Https data fields applied during the test and the control
functions in the page code, if the user only needs the SMS
verification code and does not need to verify the device envi-
ronment to complete the password reset, it can be consid-
ered that the attacker is copying the USIM card
environment. You can directly bypass the authentication
link of the application, that is, the application is insecure.

3.3. Data Analysis in Identity Authentication of Typical
Applications. During the testing process, this article captures
and analyzes the request data and response results of the
application. This section takes two typical applications of
WeChat and Alipay as examples to analyze the format and
jump flow of the request and response data in the process
of resetting the password. And combined with the applica-
tion behavior, give the test results of the two in the copied
USIM environment.

3.3.1. Data Capture and Analysis in WeChat Login. Accord-
ing to the requirements in Section 3.2.2, this section needs to
test the authentication process of WeChat to retrieve the
password. Since WeChat can directly use the mobile phone
number and SMS verification code to complete the login,
when the user selects the “Retrieve Password” function,
WeChat will make users taste.

Try to log in directly with your mobile phone number. In
this process, Stream1.0.4 is used to capture and analyze Http
network traffic. WeChat login process.

After analyzing the server response data, it can be seen
that the above three request data correspond to the three
stages of “request for password retrieval,” “request for
mobile verification code login,” and “request for login appli-
cation” when the client retrieves the password. The key fields
and the code execution process of the response page expand
the description of the identity authentication process during
the login phase of WeChat.

Request to retrieve the password: when the user requests
to retrieve the password on the WeChat login page, the cli-
ent will initiate a request to support. After the verification
is passed, the server responds, and the client jumps to the
prompt message page for retrieving the password. At this
time, WeChat will prompt the user to log in with a mobile
phone. The response data includes the control code of the
page, select the function button of “Can receive SMS,” the
ican function in the corresponding code will realize the jump
to the next page. After confirming on the next page, the go
function constructs a request for the mobile phone verifica-
tion code to log in to the application.

Request mobile phone verification code login: when the
user can log in with the SMS verification code, the user will
be redirected to the login page using the SMS verification
code according to the prompt. Among them, the go function
sets the p1 and p2 fields to 1 and assigns rid to the p10 field.
The above fields are spliced and used as report data, which is
passed as part of the login request in the next stage to the

Enter User wants to enter
the system

User is presented
with a challenge

User is given
access to the

system

Exit
Yes

No

User attempts the
challenge

Figure 4: General procedure of authentication test [14].
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server. At this stage, the client will construct an ap_msg field
that contains information about the current device’s net-
work environment and system parameters and use the
GET method to request the server to send the verification
code to the login page.

Request to log in to the application: when the user logs in
using the SMS verification code, the 6-digit SMS verification
code is required. After the client is authenticated, the report-
Func function uses the characteristics of the Image object of
Javascript and realizes the static of the server resources by
changing the source link attribute of the object access.
Finally, the report data field in the message can tell the iden-
tity of the server user and the method used to log in to the
application and use the GET method to send it to the server
to complete the login.

In summary, in the process of retrieving the password
and logging into WeChat, the client uses scan and go func-
tions to complete the application identity authentication
process based on the user’s existing identity credentials. On
the client-side, when the attacker chooses to log in with
the SMS verification code during the password reset process.
When used, you can copy the USIM card to directly obtain
the SMS verification code to complete the login.

3.3.2. Data Analysis in Password Reset. Use the same method
as in Section 3.3.1 to analyze password reset process analysis.
When logging in to your account, this article chooses to reset
the password instead of the SMS verification code to log in.
Use Stream to capture the Https data in password.

The above request data packets correspond to the client’s
request to retrieve the password, send the SMS verification
code, and send the reset password, respectively. When reset-
ting the password, the client will repeatedly send to the host
of http://abc.com/ the data including the phone model, net-
work environment, operator type, and other device environ-
ment parameters, and the data will be returned by the server.

The status code determines whether the current device
can continue the next operation. Due to the large amount
of Https traffic data in this link, only the three request
response processes will be explained below.

4. Identity Authentication Test Results and
Analysis of Typical Applications

According to the test requirements and test methods in Sec-
tion 3, through the process observation and recording of the
identity authentication functions such as login and password
retrieval of the test application, this section presents the test
results and analysis.

4.1. Overview of Test Results. According to records, when
resetting the password, 19 of the 58 apps used in the test
can be directly used to reset the password through the SMS
verification code to complete the login. The remaining 39
apps are attacked due to additional requirements such as
confidential information, email verification, and device
verification.

Apps cannot be bypassed because the app only provides
email verification but not SMS verification. Except for

Apple’s App store and iCloud, the verification methods for
other test applications are SMS verification or email verifica-
tion. Among the 21 apps that performed secondary verifica-
tion, 4 adopted additional confidential information, 4
adopted additional email verification, and 13 apps tested
the current device environment to remind or warn the orig-
inal logged-in user of the current attacker. Behavior to pre-
vent attackers from bypassing directly. Some of these 21
applications also use multiple verification methods to ensure
product safety.

The test also found that when the attacker can obtain
the SMS verification code sent to the user’s device, 9 apps
can be bypassed during password reset and normal login,
and 10 apps are easily bypassed only during password
reset. However, there are 10 other applications that can
be bypassed only during normal login. Among them, the
application names included in each indicator are shown
in Table 3.

When at least one verification method is additionally
adopted, it is difficult for an attacker to steal user informa-
tion. However, when logging in normally, the attacker can
use the user’s mobile phone number to log in, which makes
each application default to the original legitimate user who is
currently logged in remotely, so no additional verification is
performed.

4.2. Application Classification and Index Test Results. For
each test indicator, 38 apps provide an interface for SMS ver-
ification to reset passwords, and only 4 apps require users to
provide confidential information, such as historical orders
and purchased product names. For email verification, 4 apps
require SMS verification. In the case of, additional email ver-
ification is still required, while 22 models only require email
verification, and 16 apps will perform environmental testing
of newly logged-in devices, etc.

Seven types of applications tested, the proportion of
financial applications that are directly bypassed is the least,
only 20%. Among the 20 apps in social, health, and enter-
tainment, 11 can be bypassed. In the global mobile applica-
tion market, applications that directly involve the safety of
users’ personal property have relatively safe protection mea-
sures, while applications that indirectly involve user privacy,
such as providing entertainment and personal health infor-
mation, still have relatively simple identity authentication
strategies and are vulnerable to attackers.

4.3. Analysis and Research of Test Results. Combining the
test results, this section analyzes the current status and char-
acteristics of the mobile application’s identity authentication
process from the perspective of the characteristics of the
application process, the relationship between the application
type and the authentication process.

4.3.1. Differences in SMS Verification Services at Home and
Abroad. During the test, it was noticed that most of the apps
in India have implemented the service entrance, while many
foreign apps only use email addresses and user names for
authentication. Further analysis found that all 17 domestic
applications provide SMS verification and reset password
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services, and 6 of them are deemed to be directly bypassable,
while 21 of foreign applications provide SMS verification,
and 13 of them can be bypassed, such as shown in Figure 5.

The reason why mobile Internet companies and relevant
departments implement SMS verification code services on a
large scale is not only because of the low cost and difficulty
of operation of SMS verification codes but also the effective
supervision of mobile applications. The test also found that
foreign apps do not require mobile phone number binding,
and even a small number of apps do not have a mobile
phone number registration entry.

4.3.2. Lack of Confidential Information. For the test results of
each indicator, only 6.9% of applications use secret informa-
tion as the second step of verification. For different types of
confidential information, too high uniqueness may increase
the user’s operation difficulty, while low uniqueness will
appear very fragile in the face of various social engineering
methods, as shown in Figure 6.

Secret information required by the application is the last
four digits of a random merchant order number in the user’s
previous orders. This operation is difficult for users who do
not frequently use mobile smartphones. The application
requires any of the historical orders to be filled in the name
of a consignee, and this information is easily leaked by var-
ious phishing and retrieval methods. Therefore, the design
of confidential information with low user operation diffi-
culty but high uniqueness should become a problem that
needs to be considered in the application of the App user
identity verification system in the future.

4.3.3. Value Difference of Application Information Type. For
different types of applications, having a low bypass ratio only
indicates that it has a better security performance in the

environment of copying the USIM card, but it does not indi-
cate that it has a strong degree of protection in protecting
user information. More retail applications and a small num-
ber of payment applications do not require additional iden-
tity binding when registering, and the secondary verification
function is not mandatory. It can be considered that in the
information value evaluation system of users and mobile
Internet companies, compared with personal online assets
(such as all property, cloud files, etc.), the sensitivity of per-
sonal interests, health conditions, and social content is not
high.

Making entertainment, health care, and social network-
ing applications have a single verification method, resulting
in a higher percentage of bypassable applications for these
three types of applications.

Table 3: Comparison between domestic and foreign Apps.
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Figure 5: Comparison between domestic and foreign Apps.
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Figure 6: Confidentiality level between domestic and foreign Apps.
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Figure 7: Validity level of verification methods.

Table 4: Verification label validity.

Validity level of verification methods
SMS

verification
Environmental

testing
Device
testing

Domestic
apps

0.78 0.49 0.54

Foreign apps 0.82 0.56 0.62
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4.3.4. Improvement of Equipment Verification Methods. The
test found that when resetting the password, 27.6% of the
applications will detect the user’s device model and environ-
ment, such as capturing the current network IP address, geo-
graphic location, and machine hardware parameters, and log
in frequently with the original device. Information matching
and peer recognition of the user who tried to log in before or
remind the original device user.

At present, there are three main methods for the verifica-
tion of new devices: SMS verification, device testing, and
environmental testing as shown in Figure 7 and Table 4.
The device detection link is one of the two-step verification
methods adopted by apps such as Google when they detect
a new device login. When an attacker tries to reset the pass-
word on a device, the application that the original device
logs in will prompt the user whether to allow the operation
to occur. Only after the authentication is completed in the
device, the user account can request other devices to reset
the password. For example, when an attacker tries to reset
the password of a target Apple ID on a certain device, Apple
requires the ID to log in to other devices for first verification.
This can effectively prevent attackers from using the copied
USIM card to log in to the application.

5. Conclusion

This paper focuses on the problem of mobile application
identity authentication. It first explains the authentication
process of mobile applications and describes the general ver-
ification tree of mobile applications to identify problematic
linkages in the identity authentication strategy; then, when
various mobile applications authenticate users, log in to the
application. The authentication methods used in resetting
passwords and completing sensitive actions may be the
same, whereas SMS verification codes and email verification
are commonly employed in the process of resetting pass-
words and login authentication. The USIM card copy attack
makes it possible for the attacker to obtain the SMS verifica-
tion code sent to the original user device, so that the pass-
word reset and application login in the verification tree can
be used as the starting point of the attack, and user informa-
tion can be stolen after bypassing the authentication login
application.

This article uses real machine testing to simulate the
security flaws of password reset and login authentication of
various applications after the attacker successfully imple-
ments the USIM card copy attack. After analyzing the Https
traffic data in the identity authentication process and com-
bining the application behaviors, it is found that a total of
29 of 58 applications face security risks that can be directly
bypassed by copying the USIM card. Among them, 9 appli-
cations can be used for password reset and login. It is
bypassed directly. There are 10 apps that can be bypassed
only when the password is reset, and the remaining 10 apps
can only be bypassed directly when logging in.

Among them, social communication and entertainment
applications are most easily bypassed. Mobile application
developers and security personnel should complete and
improve the authentication logic of current products, adopt

two-step authentication or two-factor authentication to pre-
vent USIM card copy attacks, and implement effective
deployment of user data security protection methods.
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