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The objective of this special issue is to address recent research
trends and developments in the generation, acquisition, and
processing of acoustic signals for industrial and medical
applications. A substantial number of papers were submitted,
and after a thorough peer review process, nine papers were
selected to be included in this special issue. These papers
cover important applications in acoustic sensing, including
nondestructive testing of materials, enhanced ultrasonic
imaging, underwater acoustic modeling, source mapping
and communications. We believe that the original papers
collected in this special issue highlight the contemporary
topics in research related to acoustic sensing and imaging
applications and will introduce readers to the latest advances
in the field.

The paper by P. Etter presents a comprehensive review
of contemporary underwater acoustic modeling methods.
These advanced modeling techniques include forward and
inverse applications, integrated-modeling approaches, non-
intrusive measurements, and novel processing methods
dealing with the changing ocean soundscape due to anthro-
pogenic activity and natural factors.

The paper by P.-P. ]. Beaujean and M. D. Staska, presents
a computationally efficient underwater acoustic propagation
model in a three dimensional rectangular duct closed at
one end. The three-dimensional model presented in this
paper provides a sufficient level of accuracy to be used
in the simulation of an acoustic communication system
operating between 15kHz and 33 kHz, with the benefit of
low computing requirements.

The paper by E. Sarradj analyzes the beamforming
steering vector formulations for three-dimensional acoustic
source mapping. In particular, four different steering vector
formulations from the literature are examined, and their

theoretical backgrounds are discussed. It is shown that no
formulation produces both correct acoustic source location
and correct estimates of their strength. This paper identifies
the two formulations that yield the correct estimation of the
source location at the cost of an insignificant error in the
estimated source strength.

The paper by J. Sandhu et al. reports on the application
of acoustography using acoustooptical sensors for mapping
ultrasonic fields radiated from ultrasonic transducers. This
study is critical to assess the radiated ultrasonic field
characteristics, which can be affected by many factors, such
as piezoelectric material inhomogeneity, lack of bonding,
electrode design and contact placement, acoustic lens quality,
and wear plate uniformity and adhesion.

The paper by C. Quinsac et al., first introduces the theory
of compressive sampling, which has been shown to reduce
data below the Shannon-Nyquist limit. Next, the authors
present different methods to perform compressive sampling
in the context of ultrasound imaging with encouraging
results in 2D and 3D ultrasound images.

The paper by Y. Zhang et al., discusses ultrasonic
flaw imaging via multipath exploitation. In the proposed
approach, by identifying multipaths that reflect at the known
top and bottom surfaces, virtual sensors can be identified.
The locations of these sensors permit visualizations of
the shadowed regions, which otherwise are difficult to
obtain from only direct reflection signals. The proposed
multipath exploitation is supported by analysis and verified
by experimental data.

The paper by J. S. Ullom et al. presents a new speckle
reduction method for improving the contrast-to-noise ratio
in ultrasonic B-mode images. The proposed method is based
on resolution enhancement compression and a frequency



compounding technique but it is enhanced to achieve higher
axial resolution. Simulations and experimental measure-
ments suggest that the proposed method can realize substan-
tial improvements in terms of image visibility and enhance
the boundaries between the target and the background.

The paper by Y. Lu et al. introduces a chirplet sig-
nal decomposition algorithm, based on fractional Fourier
transform in order to analyze ultrasonic signals for NDE
applications. Case studies and experimental results show that
the proposed algorithm not only reconstructs the ultrasonic
signal successfully, but also characterizes ultrasonic echoes
and estimates echo parameters accurately.

The paper by R. Demirli et al., introduces a subspace-
based approach for suppressing unwanted reverberations,
enabling proper flaw detection and imaging. Two different
cases are considered for the application of the proposed
technique. The first case uses a set of flaw-free reference
measurements of reverberation, whereas the second case is
based on array measurements that contain flaws. For the first
case, the clutter can be significantly removed with a negligible
effect on the flaw echoes. In the second case that applies to
ultrasound NDE imaging, it is demonstrated that the clutter
can be mitigated by utilizing the array measurements without
employing any reference data.
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We consider ultrasonic imaging for the visualization of flaws in a material. Ultrasonic imaging is a powerful nondestructive
testing (NDT) tool which assesses material conditions via the detection, localization, and classification of flaws inside a structure.
We utilize reflections of ultrasonic signals which occur when encountering different media and interior boundaries. These
reflections can be cast as direct paths to the target corresponding to the virtual sensors appearing on the top and bottom
side of the target. Some of these virtual sensors constitute a virtual aperture, whereas in others, the aperture changes with the
transmitter position. Exploitations of multipath extended virtual array apertures provide enhanced imaging capability beyond
the limitation of traditional multisensor approaches. The waveforms observed at the physical as well as the virtual sensors yield
additional measurements corresponding to different aspect angles, thus allowing proper multiview imaging of flaws. We derive
the wideband point spread functions for dominant multipaths and show that fusion of physical and virtual sensor data improves
the flaw perimeter detection and localization performance. The effectiveness of the proposed multipath exploitation approach is

demonstrated using real data.

1. Introduction

Ultrasonic nondestructive evaluation (NDE) has tradi-
tionally used single-element sensors for material testing.
Most flaw detectors utilize A-scan measurements obtained
with monolithic transducers externally placed at different
positions on or close to the surface of the material. The
synthesized ultrasound array aperture, generated through
scanning, provides a series of A-scan data whose intensity
profile is used to generate a B-scan cross-section image. Two-
dimensional (2D) sensor scanning (e.g., raster scan) over the
material generates a collection of B-scan images to obtain a
C-scan volume image. These 1D and 2D scanning processes
require dedicated hardware to control precise sensor posi-
tioning and synchronized data collection. This scanning and
imaging process has been typically conducted in laboratory
conditions or in industrial material testing facilities using
immersion testing techniques. We note, however, that this
imaging process is not practical for field testing conditions.

Sensor arrays are more practical for field testing due
to their increased coverage area, rapid data collection, and

direct imaging capability. Although sensor arrays and beam-
forming techniques have been used in medical ultrasound
for decades [1], their use in ultrasonic NDE has not begun
until early 2000s [2]. Recent advances in transducer array
manufacturing technology have permitted the use of sensor
arrays in ultrasonic NDE, and have enabled significant
improvements in the detection, localization, and classifica-
tion of flaws inside a structure. These advances find wide
applications in civil engineering and aerospace, automotive,
and other transportation sectors [3, 4]. For example, a
total focusing technique utilizes all the transmit and receive
data in a 2D array to generate an image of material under
consideration [5]. More recently multimode total focusing
method is used to combine various wave propagation modes
in imaging [6]. With the increased computational power and
memory, it is expected that a large amount of data obtained
with sensor arrays can be processed in a relatively short
and acceptable time. Furthermore, offline processing of large
volume data is tolerated in ultrasonic NDE due to the fact
that the material structures generally do not change over the
course of testing.



The existence of a flaw inside a limited size alloy gives
rise to ghosts, which are false targets that appear due
to the interreflections of the transmitted signals from the
alloy boundaries and the target. Due to the prolonged
distance travelled by these multipaths, the ghosts typically
position outside the alloy boundaries. However, the ghosts
that are located inside the alloy, if not properly identified,
can cause clutter and false positives which could make
visualization difficult, especially in the presence of multiple
flaws. The ghosts may not only appear at positions different
from the target location, but also present themselves with
different image characteristics. This is attributed to the
fact that reflections of ultrasonic signals which occur when
encountering different media and interior discontinuities
can be cast as direct paths to the target corresponding to
the virtual sensors appearing on the top and bottom sides
of the target. Some of these virtual sensors constitute a
virtual aperture, whereas for others, the aperture changes
with the transmitter position. The waveforms observed at
the physical as well as the virtual sensors yield additional
measurements corresponding to different aspect angles, thus
allowing proper multi-view imaging of flaws. Each view has
a different point spread function (PSF) and defocuses the
target image depending on the location and angle of the
respective virtual sensors.

In this paper, we consider multipath exploitations for
ultrasonic imaging for the visualization of flaws in a material.
In particular, our focus is the knowledge-based approach
in which the alloy boundaries are assumed known and the
adopted propagation model accurately represents the propa-
gation and scattering phenomena inside the material. While
multipath has traditionally been considered as troublesome
in radar and wireless communications, significant efforts
have been recently made to take advantage of multipath
propagation. In wireless communications, diversity gains
are obtained by various schemes, including multiple-input
multiple-output (MIMO) and opportunistic communica-
tions (e.g., [7, 8]). In radar systems, the concept of multipath
exploitation radar (MER) is being developed to increase per-
sistent coverage over a large urban terrain. This is achieved
by extending the tracking capabilities of existing radar
sensor architectures beyond line-of-sight (LOS) using both
multipath energy and knowledge of the urban scattering
surfaces [9]. Some important results have been reported
for urban non-LOS applications, indoor imaging, and other
radar applications [10-12]. Multipath exploitation is also
reported in acoustic focusing [13] and ultrasonic imaging
[6]. Time reversal processing technique is also applied for
target detection in a multipath propagation environment
(14].

In the underlying ultrasound imaging applications, mul-
tipaths, when properly utilized, lead to (1) enlarging the
array aperture for image enhancement using both physical
and virtual sensors, (2) extension of angle of view of the
narrow beamwidth of the ultrasound transducers, allowing
improved visibility and array design flexibility, (3) multi-
view observations of the flaw leading to better represen-
tations and characteristics of flaw volume and perimeter.
It is noted that ultrasonic signals experience difficulty in
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penetrating a flaw, thus the aspect angle of the observation
is limited unless access to other sides is available.

In this paper, multipath effects are examined using an
aluminum alloy with artificial flaws. Different multipath
realizations are considered and their virtual array geometries
are identified. For each array geometry, the corresponding
point spread function is developed and examined. In essence,
exploitation of multipath information in ultrasonic imaging
amounts to utilizing the different characteristics of the
PSFs and fusing their collective viewing angles of the same
target. We show that fusion of physical sensor data and
virtual sensor data, due to multipaths, significantly improves
flaw detection and characterization. The effectiveness of the
proposed multipath exploitation approach is demonstrated
through experimental examples.

The rest of the paper is organized as follows. Next section
presents multipath propagation in materials with known
cubic geometry. Section 3 describes ultrasonic imaging
with multipath signals. Section 4 presents point spread
function analyses of multipath signals. Section 5 discusses the
multipath identification and association method. Section 6
presents experimental examples of multipath imaging. Sec-
tion 7 concludes the paper.

2. Multipath Propagation Phenomenon

Ultrasound plane waves are subject to reflection and
transmission from the boundaries of materials [15]. The
propagation model for a beam of plane waves incident
normally at a flat boundary is well known; part of the
energy is transmitted to the support medium whereas the
other part reflects back depending on the impedances of
the medium and material. Normally incident propagation
creates strong multipath (reverberation) in layered media.
This propagation model has been extensively studied and
exploited for nondestructive evaluation of layered materials
(see e.g., [16]). The propagation model for a beam of plane
waves obliquely incident to the medium boundary obeys the
Snell’s law. Assuming the impedance of the support layer
(such as air) is much higher than the material, the majority
of the incident energy reflects as longitudinal waves with
the reflection angle equal to the incident angle, while a
smaller portion of its energy is converted to shear waves.
Shear waves reflect with a smaller angle and a lower speed
than those of the reflected plane waves. In this paper, we
consider longitudinal waves with specular reflections where
the incident and reflected waves are coplanar with equal
incident and reflected angles. As such, ray tracing models are
utilized to predict the multipath signals.

While ultrasound wave reflections from material bound-
aries are explained with the Snell’s law, the ultrasound
scattering from material defects is more complex depending
on the geometry and size of the object. An object whose size
is comparable to the wavelength of the incident ultrasound
wave is considered as a point reflector. Objects whose sizes
are larger than the wavelength yield specular reflections.
However, if the large object has sharp discontinuities or
corners, wave diffraction phenomenon occurs at its extrem-
ities [15]. For example, an analytical diffraction model is
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developed for a penny-shaped crack in solids and verified
experimentally by embedding a large penny-size crack in
titanium [17]. In fact, there is a line of time-of-flight
diffraction (TOFD) techniques used for flaw sizing based
on estimating the time-difference-of-arrival of diffracted
echoes from object boundaries [15]. Diffraction echoes are
measured in a pitch-catch mode by positioning a pair of
angle probes (transmitting and receiving transducers) far
enough on the material’s surface to see the extent of the
crack. As such, measurements of diffraction echoes require
angled and wide-beam ultrasound radiation and adjustment
of the position of probes during acquisition. In this paper,
we utilize direct and multipath specular reflections that can
be observed with a fixed ultrasonic transducer array. These
reflections are due to the plane waves which travel with a
known uniform speed in materials.

We focus on multipaths due to bottom and top surface
of alloys. In assuming wide alloys or limited transducer
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beamwidth, reflections from the sides of the alloy can be
ignored. Thus, among a number of possible multipath
patterns [15], we consider dominant two-way propagation
patterns as illustrated in Figures 1, 2, and 3 where the black
solid lines denote real paths and dashed lines imply virtual
(image) paths. Figures 1(a) and 1(b) show the direct paths for
two possible cases of the flaw. For the first case (a), the flaw
lies inside the vertical strip defined by the transmit/receive
transducer pair, whereas in the second case (b), the flaw is
outside the strip. In Figure 2(a), reflections occurring at the
bottom surface yield a W-shape propagation path. It can be
equivalently represented by using the A-shape virtual path,
with corresponding virtual transmit and receive transducers
located at the bottom of the mirrored object. As such, in
addition to the top view of the flaw accessed from the direct
path, the exploitation of the multipath, in this scenario,
will provide a bottom view of the flaw. On the other hand,
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FIGURE 3: Multipath II-A with the virtual receiver when the target is between the transmit/receive pair (a) and outside of the pair (b).
Multipath II-B with virtual transmitter when the target is between the transmit/receive pair (c) and outside of the pair (d).

the multipath II-A pattern depicted in Figures 3(a) and 3(b)
include reflections from the top and bottom surfaces of a
one-way path (shown in Figure 3(a) for the path from the
flaw to the receive transducer) which results in a virtual
position of the receive transducer with a different top view
of the flaw. Multipath II-B pattern, depicted in Figures 3(c)
and 3(d), includes top and bottom reflections only between
transmit transducer and the flaw (not from the flaw to the
receive transducer), which results in a virtual position of the
transmit transducer with a different top view aspect of the
flaw.

The ranges for various multipath signals can be predicted
based on the known depth of the alloy (h) and trans-
mit/receive sensor coordinates. We show in the Appendix
that multipath I and II-A signals (those depicted in
Figure 2(a) and Figure 3(a)) approximately lie in range
[2h 4h], when h is much larger than the distance between
the T/R sensor pair, d. Multipath I and II signals coincide
when the target is exactly at the center of the alloy inside the
T/R pair strip, that is, when the target is at the coordinates
x = d/2, y = h/2. For all other cases, multipath I and
multipath I signals will be separable.
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3. Signal Model and Ultrasonic Imaging

3.1. Signal Model. We consider an ultrasonic imaging system,
where a single transducer transmits a wideband waveform,
and several other transducers receive echoes from the tested
material. This process is repeated for all transducers in the
system. By the virtue of sequential waveform transmission
and nonoverlapping nature of the transmitted signals, the
transmitted signals can be separated at the receivers. As
such, a multiple-input multiple-output (MIMO) system is
implemented which allows a virtual aperture to by synthe-
sized [18]. The MIMO system configuration outperforms
traditional array configurations in target resolution and
detection, especially, when the signal-to-noise ratio (SNR) is
high. In this paper, we do not address the MIMO aspect of
the imaging system, as it is implicit in our approach. Rather,
we focus on another form of virtual sensors generated by
the multipaths. The latter allows different aspect angles to
the target, allowing detection of the target boundaries and
perimeters.

Denote the signal emitted from the transmit transducer
as sr(t). Let N be the total number of transducers. The
signal received at the nth receive transducer corresponding
to the mth transmit transducer position is denoted as 7, (¢),
where m = 1,...,N and n = 1,...,N with m#n. The
received signal r,,,(t) is considered as the convolution of
the transmitted signal, sr(t), and the respective propagation
channel associated with the mth transmit transducer and the
nth receive transducer, h,,,(t). That is,

Tn(t) = Ry (1) * s7(2), (1

where * denotes the convolution operation.

3.2. Ultrasonic Imaging Based on Direct Reflection Path.
We assume that the respective positions of the transmit-
and-receive array elements are assumed to be known in a
three-dimensional Cartesian space, that is, the mth transmit
transducer is located at Ty, = (X7, YTm>2rm), and the nth
receive transducer is located at R, = (Xrn, Yrn>Zrn). The
coordinate system is shown in Figure 4. Consider a region
of interest (ROI) which is a two-dimensional cross-section
under the linear array and corresponds to the plane as shown
in Figure 4. We utilize a receive mode backprojection beam-
forming algorithm to construct internal images of materials
[19]. The imaging can be performed in coherent or non-
coherent sense [20]. Coherent imaging takes the amplitude
and phase information into consideration when adding the
signals received at each sensor, whereas only the amplitude
information is incorporated in noncoherent imaging. The
signal that is reflected from a hypothetical target located
at the position P(xp, yp,zp) is then received with different
delays at each receiver. The signal corresponding to the direct
reflection path recorded at the nth receive transducer is given
by

rlal(e) = alh (P)sr (£ — 7l (P)), 2)

where aj(P) is the reflectivity of the flaw that also accounts
for the propagation loss, and 7} (P) denotes the delay for

XT, 2T,
(T Yt 2T Ry = (xR,> YRy»2R,)

Ty Ry R, Ry
z® ! !! I x

Qx> y»2Q)

[ Pixel at position Q
[ Target at position P

F1GURE 4: Transducer array and imaging geometry.

the signal to travel from the mth transmit transducer T, to
the target at P and then from location P to the nth receive
transducer R,. The superscript (4! is used to emphasize the
direct reflection path. Assuming a homogeneous material
with ultrasonic propagation speed of v in the material (the
variation of the speed in the material and its compensation
is considered in [18]), the time delay corresponding to any
pixel Q in the image, located at (xq, ¥g, 2q), can be calculated
as

H(me’mi’ZTm) - (xQ’)’Q’ZQ)H

Tal(Q) =
(3)
||(an:)’Rn>ZRn) - (xQ>}’Q>ZQ)||

+ >
v

where || - || denotes the Euclidean norm operation. This
imaging principle is illustrated in Figure 4.

The image intensity I(Q) of every pixel Q in the image
is obtained by adding the weighted time-delayed N(N — 1)
received signals and correlating the resulting signal with
the transmitted signal. The weights influence the point
spread function (PSF) and can be chosen to control the PSF
main lobe and side lobe characteristics [18]. Therefore, the
intensity at pixel Q, using coherent imaging technique, can
be written as

N

1(Q) =

m=

N

> widl(Q)ru (t +7181(Q)) * s2(2)
1 n=1

n#m

t=0

z

m

N
= > D wilQald(P)sr{t+ Tl (Q) - 7P}
1 n=1
n#m

*sr(t)|

t=0

(4)

where whil(Q) is the weight corresponding to the mth
transmit transducer and the nth receiver transducer. The



cross-correlation performs matched filtering and improves
the output signal-to-noise ratio (SNR).

3.3. Ultrasonic Imaging Based on Multipath Signals. Similar
to the direct reflection, we now consider three types of
multipaths that are associated with the target located at

P = (xp,yp,zp). The signal at the receive transducer R,
corresponding to the mth transmit transducer is given by
rlil(6) = alll (Pysr (¢ - 7L (P)), (5)

where the superscript [l with i = 1,2, 3 denotes the index of
multipath I, multipath II-A, and multipath II-B, respectively.
Denoting h as the height of the metallic object, the
time delays corresponding to a point target P, located at
(xp, ¥p, zp), can be, respectively, calculated for the direct and
multipaths as follows.
Direct reflection path

|| (%> Y10 21m) = (b, yps 20)|

rldl(p) = :
(6a)
o 11 Gerns yras z0e) = (e, yos )|
) .
Multipath I
rl(p) = H(me,zh - mi’ZTm) - (xP>yP>ZP)H
! (6b)
+ ||(an> 2h — yRmZRn) — (xP)yP,ZP)H
» )
Multipath IT-A
T[Z](P) _ H(me’mi’ZTm) - (xP)yP,ZP)H
’ (60)
+ || (xRn> YRn — 2h,ZR0) — (xp> yp>2p) ||
" )
Multipath II-B
B e T e R o]
! (6)

|| (me)/RmZRn) - (xP’)’PaZP)”
v

+

Note that these multipaths, when processed using the
actual transducer positions, will result in images outside the
ROL. For multipath exploitations, however, we will synthesize
their respective images using the virtual transducer posi-
tions, respectively, located at T,[nl I = (XTms 20 = Yy 2Tm)

,[11] = (XRn>2h — YRu>2rn) for multipath I, Ty[nz] =T, =
(XTm> Ypps ZTm)s R,[f] = (XRn> YrRn—2h, zp,) for multipath II-A,
and T;qu] = (xm,2h — }’meZTm)’ RE] = Ry = (XRn> YRn> ZRn)
for multipath II-B. In this way, multipath images will align
and display the true position and size of the flaw. Specifically,
multipath I image visualizes the bottom view of the flaw,
whereas the other two images visualize the flaw from the top
view.
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4. Point Spread Functions

The virtual sensors reveal different segments of the flaw
by the virtue of being placed at distinct positions from
their physical sensors counterparts. Additionally, the new
positions of the virtual sensors could be closer or farther
from the target than the physical array sensors. As such,
different segments of the flaw may be imaged with different
resolutions. To demonstrate this fact, we drive in this section
the point spread functions (PSFs) associated with the direct
path, multipath I, and multipath II for a MIMO array
configuration comprised of N ultrasonic transducers. The
PSF is the response of the array imaging system to a
point target. It captures the imaging characteristics of an
array hence will be used herein for assessing the imaging
performance associated with the direct path and multipaths.
The PSF at an imaging point Q is derived in the frequency
domain [19] considering an ideal point target located at P

N N ) N
IQ =2 > W JQRW( £)S*(f) e mQdf, 5y
m=1 n=1

n;m

where R,,,(f) is the Fourier transform of the signal received
by the nth receiver due to the mth transmitter, S(f) is
the Fourier transform of the transmitted waveform, w,,
is a weighting applied to the signal received by the nth
receiver due to the mth transmitter, () is the bandwidth of
the waveform, and 7,,,,(Q) is the estimated total propagation
delay of the signal in traveling from the mth transmit
element to the imaging point Q, and then back to the nth
receive element. If we assume no dispersion, no attenuation,
and monochromatic waveforms, the received signal can be
written as

Run(f) = S(f)e 2/ mm(P), (8)

where 7,,,(P) represents the delay due to the target at P
when a pulse is emitted from the mth transducer and the
back-scattered signal is received from the nth transducer. We
assume an ideal pulse with bandwidth B, that is, [S(f)| =
1,for f, < f < f, + B. Such a pulse can be closely emulated
with a windowed Chirp function. The pulse bandwidth is
sampled with frequencies as f; = fo + kAf fork = 0,...,Ns—
1, where Ny is the number of frequencies and Af = B/Ny.
Inserting (8) into (7) and sampling the bandwidth with
the available discrete frequencies, the pixel value at imaging
point Q (i.e., the PSF) can be written as follows:

N N Ny—1
I(Q) = Z Z Winn Z /2 JotkA f) (T (Q)=Tn (P)) 9)
m=1 1 k=1

n;m

It can be observed that the PSF highly depends on
the target location P, the transducer array geometry and
its characteristics, and the number of frequencies used in
synthesizing the pulse. As such, these factors determine
beamforming image quality. It is important to note that,
given the wavelength, flaw range, and array extent, it is clear
that we deal, in this paper, with a near-field problem. As



Advances in Acoustics and Vibration

d
0 0.0 0
4.5 :

&
1.71

y=h

FIGURE 5: Simulated imaging configuration used for PSF computa-
tions (units are in cm).

such, the image cannot be simply cast as a convolution of the
PSF and spatial extent of the flaw. However, the PSF in the
underlying problem remains indicative to image quality and
can reveal the expected defocusing or blurring of the target
associated with different multipaths.

In order to assess multipath imaging performance, we
derive the PSFs due to multipath I and II and compare
these to that of the direct path for near-field ultrasound flaw
imaging. A simulated sensor array configuration for imaging
a point target in a metallic alloy is illustrated in Figure 5.
This simulation is intended to emulate experimental imaging
conditions in our lab. A point target is assumed to be at
the location (0, 4.5)cm in the near-field of a 4-element
linear transducer array where the center point of the array
denotes the origin (0, 0). The transducers are spaced with
1.13cm (41) where A = 2.82mm is the wavelength of the
propagating sound. The aperture of the transducer array
is 12A. A wideband chirp signal of length 50 ms with a
2.25 MHz center frequency and 2 MHz bandwidth is used to
emulate an ideal pulse transmission.

First, we compute the PSF for the direct path based
on the array geometry shown in Figure 5 and wideband
chirp excitation. The intensity of the image point Q (9) is
computed along the cross-range of the target and within
the array aperture [—6A 61]. This PSF is shown in Figure 6
in a solid black line. For computing the PSF of multipath
I and II, we utilize virtual transmitter and receivers due to
these multipaths as shown in Figures 2 and 3. The delays
corresponding to the targets (7,,,(P)) and the test point Q
(Tmn(Q)) for multipaths are computed based on these virtual
transmitter and receiver locations. These delays are used in
PSF computations (see (9)) for a set of test points along
the cross-range of the target. The virtual array for multipath
I is a mirror image of the physical array with respect to
the y = h axis (i.e., the bottom surface of the material)
and is placed at y = 2h axis. As such, Multipath I virtual
array views the target from a larger distance than that is
seen from the physical array. This causes the main lobe
of the PSF to be widened compared to that of the direct
path PSE, whereas the side-lobes are reduced. For computing
multipath II PSF, we utilize virtual transmitters or receivers
positioned at y = —2h line. More specifically, for multipath

_10 +

(dB)

—15 }+

—-20 +

-25 s s s s s s s

Cross-range (1)

—— Direct path
——  Multipath I
—— Multipath IT

FIGURE 6: Cross-range PSFs for direct path (black line), Multipath
I (red line) and Multipath II (blue line) based on wideband chirp
excitation for the point target with the imaging array in near field as
shown in Figure 5.

II-A, the virtual receivers are positioned at y = —2h line,
while the transmitter stays at its original location. Similarly,
for multipath II-B, the virtual transmitter is positioned at
y = —2h line, while the receivers stay at their original
locations, as shown in Figure 3. The PSFs associated with
these two multipaths are combined into one PSE, since these
two multipaths are generally unresolvable. This PSF is shown
in Figure 6 in solid blue line. While the main-lobe of the
Multipath II PSF is almost identical to that of the direct
path, the side-lobes are reduced markedly, hence offering an
improved imaging performance.

5. Multipath Identification and Association

When the image of the direct reflection path is synthesized
and the location of a potential flaw, P, is identified, it is
possible to identify the region where the images associated
with the multipaths are likely to be located. When the
flaw is assumed to be a point target, the respective delays
corresponding to different paths can be computed from
(6b)—(6d). Note that the actual time delay may be affected
by the flaw shape and size, inhomogeneous propagation
characteristics, and even the surface couplings in the trans-
ducers. Therefore, the objective of multipath association
is to identify the likely multipath signals in the received
waveforms and then process these signals to synthesize the
multipath images.

To help identifying the direct reflection and multipath
signals, we consider the received signal waveforms in
terms of different phases. The first and the second phases
are separated by the time delay corresponding to the
bottom reflection. For specular bottom reflection, the
reflection point corresponding to the mth transmit



transducer  T(XTm, YTm>2tm) and the nth receive
transducer Ry, (Xru, Yrn» Zrn) 15 located at ((xrm + Xgn)/2, h,
(zrm + zrn)/2). Ignoring the gap between the transducers
and the top surface (i.e., yrm = yra = 0), the kth and
the (k+1)th phases are separated by the time delay

(U9t = xwa)/2)” + K1) + (zm — z0)/2°)

In this way, the waveform corresponding to the direct
reflection path is located in Phase I, whereas the first-order
multipath waveforms illustrated in Figures 2 and 3 are
located in Phase II.

Phases I and II are used in the backprojection imaging
to align the target images corresponding to the different
multipaths. Any signal returns received over Phase I will be
attributed to the physical array, whereas the returns of delays
longer than the two-way propagation time to the bottom of
the alloy will be attributed to cases involving virtual sensors.
It is important to note that, according to the multipath
configurations depicted in Figure 3, there is always a com-
bination of physical and virtual sensors when considering
multipath II. Although multipath I and multipath II both
lie in Phase II, one can separate them according to their
respective time delays. It can be observed that the direct-
path delay and multipath I delay are approximately equally
positioned on both sides away from the delay corresponding
to the alloy bottom, which is very evident in Figure 2. One
can, therefore, apply a time window to isolate multipaths I
and II, provided that they are separable, as it is the case in the
underlying example.

6. Experimental Examples

6.1. Experiment Settings. This section provides the results of
our experimental studies. An aluminum block (alloy number
6061) of dimensions 12 in X 6 in X 3 in (304.8 mm X
152.4 mm X 76.2 mm) is used as the test specimen. Figure 7
shows a horizontal hole with a diameter of 9.24 mm going
through the block, which simulates a specular flaw.

The waveform generation and observation are performed
using Acousto/Ultrasonics system manufactured by Physical
Acoustics. A train of 3ms chirp waveform pulses with a
frequency range between 1 MHz and 4 MHz were generated
using an ARB-1410 arbitrary waveform generating board
equipped in system, and the return signals were recorded by
two PCI-2 two-channel AE data acquisition cards equipped
in the same system with a sampling rate of 40 MHz [21]. A
20/40/60 dB preamplifier from Physical Acoustics is inserted
between each receive transducer and the respective receiver
PCI board. Olympus V133-RM contact transducers with
a 2.25MHz center frequency are used as both transmitter
and receivers [22]. Four uniform linear transducer positions
separated by an interelement spacing of 11.43mm are
considered. When a transducer at one position is used for
transmission, transducers at the other three positions are
used for receiving. By sequentially changing the transducer
functions, a combination of 12 observations are recoded to
synthesize an MIMO system.

Because chirp waveforms are transmitted, the received
signal is first compressed using matched filtering [23]. Then,
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FIGURE 7: Dimensions of the aluminum alloy (unit: mm).

the Hilbert transform is applied to the received signals
to form their analytical signal expressions for multipath
identification and imaging.

6.2. Results. The transducers are positioned on the top
surface of the aluminum alloy (y = 0), and their x positions
relative to the flaw center are, respectively, 17.145mm
(position A), 5.715mm (position B), —5.715mm (position
C), and —17.145 mm (position D).

Table 1 summarizes the predicted and measured time
delays of the direct and multipath signals from the flaw
for all possible combinations of transmission and reception
using the four transducers. The time delays are recorded
for the flaw echo, echo from the bottom surface of the
alloy, and multipath I and II echoes. The predicted time
delays are calculated by tracing the direct and multipaths
based on the geometry of the hole and transducer array
as shown in Figure 7. The direct reflection echo from the
flaw appears around 13.5 ps, whereas the multipath I echo
appears around 32.3 ys. Multipath II-A and II-B echoes are
both located around 37 ys and are generally unresolvable. As
it is seen from the table, the measured time delays are in
good agreement with the predicted time delays, indicating
the validity of the multipath models.

Figure 8 shows the received waveform envelopes after
matched filtering for all possible combinations of trans-
mit/receive transducer pairs. It is evident that all waveform
envelopes show clear direct reflection path (approximately
between 13.0 and 14.0 ys) and bottom reflection (approx-
imately between 24.1 and 24.6 us), whereas the level of
multipath signals depends on the transducer positions,
because some multipaths corresponding to certain trans-
ducer positions may be obstructed by the hole itself. In
general, the combination of using transducers positions A
and D vyields a higher multipath signal level.

Figure 9 shows the imaging results generated using
different multipaths with the correct location and size of the
flaw marked with a white circle. Figure 9(a) shows the image
generated using the direct reflection path. The top of the hole
is clearly identified. Multipath I yields an image showing the
bottom of the hole, as depicted in Figure 9(b). Figure 9(c)
shows the results obtained from multipath scenarios II.
Since these images represent reflections at different sensor
positions, image fusion can be applied. Figure 9(d) shows the
fused image obtained by a simple sum of the previous three
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TABLE 1: Predicted and measured time delays of multipath signals for the specular flaw shown in Figure 7 (unit: ys).

Transmit position Receive position

Calculated time delay

Measured time delay

Bottom Flaw MP I MPII-A  MPII-B  Bottom Flaw MP 1 MP II-A/B
D 24.592 13.986  32.562 37.569 37.569 24.600 14.050  32.450 37.200
A C 24.265 13.513  32.364 37.465 37.096 24.280 13.550  32.180 36.880
B 24.067 13.513  32.364 37.465 37.096 24.070 13.600  32.330 36.730
D 24.265 13.513  32.364 37.096 37.465 24.280 13.570  32.180 36.800
B C 24.067 13.040 32.166 36.991 36.991 24.070 13.030  32.180 36.520
A 24.067 13.513  32.364 37.096 37.465 24.070 13.550  32.270 36.630
D 24.067 13.513  32.364 37.096 37.465 24.070 13.630  32.220 36.700
C B 24.067 13.040 32.166 36.991 36.991 24.070 13.030  32.380 36.500
A 24.265 13.513  32.364 37.096 37.465 24.280 13.550  32.180 36.850
C 24.067 13.513  32.364 37.465 37.096 24.070 13.630  32.220 36.670
D B 24.265 13.513  32.364 37.465 37.096 24.280 13.550  32.180 36.800
A 24.592 13.986  32.562 37.569 37.569 24.600 14.030  32.430 37.180
E
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FiGure 9: Ultrasound imaging of a hole via multipath exploitation.

images. It is evident that the size of the hole is now revealed
from the fusion result, which is otherwise unavailable if only
the direct reflection observations were used.

7. Conclusions

Multipath propagation was explored in ultrasonic imaging
for the purpose of nondestructive testing. Reflections from
the flaw, when combined with reflections from the alloy
boundaries, provide an opportunity to reveal segments of the

flaw that are shadowed due the limited range penetration of
ultrasound waves. Knowledge-based multipath exploitation
was made possible by assumed known dimensions of a
metallic alloy and resolvable signal arrivals. We focused
on three categories of multipaths, all traced to reflections
in the vertical plane including the transducers and flaw,
and ignoring reflections from the alloy sides. By identifying
multipaths that reflect at the known top and bottom
surfaces, virtual sensors can be identified. The locations of
these sensors permit visualizations of the shadowed regions
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which otherwise is difficult to obtain from only the direct
reflection signals. With the translation of the virtual sensor
in both dimensions, more aspect angles to the target become
available, aiding in the determination of the flaw type and
perimeter. The point spread functions corresponding to the
different multipath types were derived and shown to be
different, causing the image quality to vary with multipath.
The proposed multipath exploitation is supported by analysis
and verified by experimental data.

Appendix

A. Minimum and Maximum Path Lengths for
Multipath I and IT

We show the minimum and maximum path lengths for
multipath I (Figure 2(a)) and multipath II (Figure 3(a)).
These minimum and maximum lengths will determine the
range of the two-way propagation time delays from the
transmitter and back to the receiver. This will, in turn, aid
in separating multipaths from the direct path and associate
them with their respective virtual arrays.

For multipath I, we fix the origin at the virtual transmit-
ter (V-Tx) location and denote as O (0,0). Then the flaw
location P is assigned as (x,, y,) according to the (x',y")
axis representation in Figure 2(a). Further, assuming the
target is in the strip between the transducer and receiver pair
and between the top and bottom surface, the target point P
coordinates change in ranges as, 0 < x, < d and h < y, < 2h,
where d denotes the distance between the transmitter and
receiver, and h denotes the depth of the material. The total
path length from virtual transmitter (V-Tx) to the target and
from target to the virtual receiver (V-Rx) can be written as
follows:

Ly (x0, yo0) = \/x3+y§+\/(d—xo)2+y§ (A.1)
We find the minimum and maximum values of this path via
maxima points. By taking the partial derivative of the above
equation with respect to x, and setting it equal to 0 yields

oLi(xo,y0) _ %  (d—xo)
oo @+ \d-x)*+ 5%

The maxima point x, satisfying the above equation can be
derived as X, = 0.5d. It can be readily shown that the
path length L;(xo, yo) is minimized at this maxima point.
Similarly, taking the partial derivative of L;(xo, yo) with
respect to y, and setting it equal to 0 yields

=0. (A2)

oL (xo, yo) _ Y Yo —
W g+ Jd-x) R

From the above equation, the maxima point can be found
at yo = Y, = 0. It can be readily shown that this point
minimizes L;(xo, y). Further, it can be seen from (A.1) that
L (xo, yo) is a monotonically increasing function of y,. Since
¥, changes in range, h < y, < 2h, the path length L (xo, yo)
will be minimum at target location (0.5d,%), and will be

(A.3)
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maximum at target locations (0, 2h) and (d, 2h). As a result,
the minimum path length can be calculated as

L,(0.5d, h) = 24/(0.5d)* + h2.

Similarly, the maximum path length can be calculated as

L1(0,2h) = L,(d,2h) = 2h ++/d? + (2h)*.

Furthermore, assuming the material depth is much larger
than the distance between the transmitter and receiver, that
is, h > d, the minimum and maximum path lengths can be
approximated as

(A4)

(A.5)

{Ll}min = LI(OSd) h) = 2]’1)
(A.6)
{Ll}max = Ll(0> Zh) = Ll(d, Zh) = 4h.

Therefore, multipath I will approximately be in range [2h 4h]
and its arrival time will be confined to the time interval,
[2h/v 4h/v], where v is the speed of sound in the material.

For multipath II, we first fix the origin at transmitter
(Tx) location and denote as O (0,0) (See Figure 3(a)). Then,
the flaw location P is assigned as (x,, y,) according to the
(x, y) axis representation in Figure 3(a). Further, assuming
the target is in the strip between the transducer and receiver
pair and between the top and bottom surface, the target point
P coordinates change in ranges as, 0 < x, < d and 0 < y, < h.
Then, the total path length from the transmitter (Tx) to the
target and from target to the virtual receiver (V-Rx) can be
written as

Ly (x0, y0) = \/x(% +yi+ \/(d —x)" + (2h + yo)z. (A.7)

By taking the partial derivative of the above equation with
respect to x, and setting it equal to 0 yields

oLy (x0, y0) %, (d —xo)

= - =0.
o\t d-x) + 2kt )

(A.8)

The maxima point x, satisfying the above equation can be
derived as x,, = yod/2(h + yo). It can be readily shown
that the path length L;(xo, yo) is minimized at this maxima
point. Similarly, taking the partial derivative of L(xo, ¥o)
with respect to y, and setting it equal to 0 yields

oL, (xo, yo) _ Yo 2h+ v,
9o \/xé +y3 \/(d — %)+ (2h + yo)2

=0.

(A9)

From above equation, the maxima point minimizing
Ly(x0, ¥o) can be found as y, = ¥, = 0. Further, it can be
seen from (A.7) that L, (xo, ¥o) is a monotonically increasing
function of y,. Since y, changes in range, 0 < y, < h, the path
length L, (xo, yo) will be minimum at target location (x,,,0),
and maximum at locations (0, /) and (d, h). As a result, the
minimum path length can be calculated as

Ly (X, 1) = X + 20/(d — x)? + (2)%

(A.10)
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Similarly, the maximum path length can be calculated as

L,(0,h) = h++/d? + (3h)?,

Ly(d,h) = Nd? + h? + 3h.

(A.11)

Furthermore, assuming the material depth is much larger
than the distance between the transmitter and receiver, that
is, h > d, the minimum and maximum path lengths can be
approximated as,

{LZ}min = Zh’
(A.12)
{LZ}max = 4h.

Therefore, multipath II-A will approximately be in range
[2h 4h] as in multipath 1.
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A fractional fourier transform (FrFT) based chirplet signal decomposition (FrFT-CSD) algorithm is proposed to analyze ultrasonic
signals for NDE applications. Particularly, this method is utilized to isolate dominant chirplet echoes for successive steps in
signal decomposition and parameter estimation. FrFT rotates the signal with an optimal transform order. The search of optimal
transform order is conducted by determining the highest kurtosis value of the signal in the transformed domain. A simulation
study reveals the relationship among the kurtosis, the transform order of FrFT, and the chirp rate parameter in the simulated
ultrasonic echoes. Benchmark and ultrasonic experimental data are used to evaluate the FrFT-CSD algorithm. Signal processing
results show that FrET-CSD not only reconstructs signal successfully, but also characterizes echoes and estimates echo parameters
accurately. This study has a broad range of applications of importance in signal detection, estimation, and pattern recognition.

1. Introduction

In ultrasonic imaging applications, the ultrasonic signal
always contains many interfering echoes due to the complex
physical properties of the propagation path. The pattern of
the signal is greatly dependent on irregular boundaries, and
the size and random orientation of material microstruc-
tures. For material characterization and flaw detection
applications, it becomes a challenging problem to unravel
the desired information using direct measurement and
conventional signal processing techniques. Consequently,
signal processing methods capable of analyzing the nonsta-
tionary behavior of ultrasonic signals are highly desirable
for signal analysis and characterization of propagation
path.

Various methods such as short-time Fourier transform,
Wigner-Ville distribution, discrete wavelet transform, dis-
crete cosine transform, and chirplet transform have been
utilized to examine signals in joint time-frequency domain
and to reveal how frequency changes with time in those
signals [1-8]. Nevertheless, it is still challenging to adaptively
analyze a broad range of ultrasonic signal: narrowband or

broadband; symmetric or skewed; nondispersive or disper-
sive.

Recently, there has been a growing attention to fractional
Fourier transform (FrFT), a generalized Fourier transform
with an additional parameter (i.e., transform order). It
was first introduced in 1980, and subsequently closed-form
FrFT was studied [8-11] for time-frequency analysis. FrFT
is a power signal analysis tool. Consequently, it has been
applied to different applications such as high-resolution SAR
imaging, sonar signal processing, blind source separation,
and beamforming in medical imaging [12-15]. Short term
FrFT, component-optimized FrFT, and locally optimized
FrFT have also been proposed for signal decomposition [16—
18].

In practice, signal decomposition problem is essentially
an optimization problem under different design criteria.
The optimization can be achieved either locally or glob-
ally, depending on the complexity of the signal, accuracy
of estimation, and affordability of computational load.
Consequently, the results of signal decomposition are not
unique due to different optimization strategies and signal
models. For ultrasonic signal analysis, local responses from



Order of fractional Fourier transform (FrFT)
(b)

FIGURE 1: (a) A simulated LFM signal. (b) The optimal transform
order tracked by Maximum amplitude of FrFT for different FrFT
orders.

microstructure scattering and structural discontinuities are
more of importance for detection and material characteri-
zation. Chirplet covers a board range of signals representing
frequency-dependent scattering, attenuation and dispersion
effects in ultrasonic testing applications. This study shows
that FrFT has a unique property for processing chirp-
type echoes. Therefore, in this paper, the application of
fractional Fourier transform for ultrasonic applications

2 Advances in Acoustics and Vibration
TABLE 1: Parameter estimation results of two slightly overlapped ultrasonic echoes.
7 (us) fe (MHz) B o, (MHz)? o, (MHz)? 0 (Rad)
Echo 1
Actual parameter 2.5 7.0 1 20 35 /6
Estimated parameter 2.50 7.00 1.00 20.00 35.00 0.52
Echo 2
Actual parameter 3.0 5 1 25 20
Estimated parameter 3.00 5.00 1.00 25.00 19.98
TABLE 2: Parameter estimation results of two moderately overlapped ultrasonic echoes.
7 (us) f: (MHz) B a; (MHz)? o, (MHz)? 0 (Rad)
Echo 1
Actual parameter 2.7 7.0 1 20 35 /6
Estimated parameter 2.70 7.02 1.00 20.04 33.55 0.67
Echo 2
Actual parameter 3.0 5 1 25 20 0
Estimated parameter 3.00 5.00 1.00 24.87 20.38 0.01
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FIGURe 2: (a) a simulated ultrasonic single echo with ® =
[3.6us 5MHz 1 25MHz> 25MHz> 0]. (b) Fractional
Fourier transform of the signal in (a) for different transform orders.

has been explored. In particular, FrFT is introduced as a
transformation tool for ultrasonic signal decomposition.
FrFT is employed to estimate an optimal transform order,
which corresponds to highest kurtosis value in the transform
domain. The searching process of optimal transform order
is based on a segmented signal for a local optimization.
Then, the FrFT with the optimal transform order is applied
to the entire signal in order to isolate the dominant echo
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Signal s(¢) containing
multiple echoes
N2
| Initialization j = 1 |

Signal windowing:
sowin(t) = s(t) X wj(t)
)
Fractional Fourier transform:

FrET ¢ (x)s,win(t)

N2
Search an optimal transform order, aqpt,
which generates a maximum Kurtosis value
for FrFT ®(x)s_win(r)

1

Fractional fourier transform:
FrET vt (x)(r)
N
Signal windowing
FrFT_win(x) = FrFt “pt (x)s) X winj(x)
N
Inverse fractional fourier transform

fo;(t) = FrFT ~F (£)per_win (x)

L

Estimate parameters of
decomposed echo, fe j (1)

|2
Obtain residual signal by subtracting

decomposed echo from the signal
N2
Calculate energy of residual signal (E;)

j=j+1

Use residual
signal for next
echo estimation

No

Yes

Signal decomposition and
parameter estimation complete

C

F1GURE 3: Flowchart of FrFT-CSD algorithm.

for parameter estimation. This echo isolation is applied
iteratively to ultrasonic signal until a predefined stop cri-
terion such as signal reconstruction error or the number
of iterations is satisfied. Furthermore, each decomposed
component is modeled using six-parameter chirplet echoes
for a quantitative analysis of ultrasonic signals.

A bat signal is utilized as a benchmark to demonstrate
the effectiveness of fractional Fourier transform chirplet
signal decomposition (FrFT-CSD). To further evaluate the
performance of FrFT-CSD, ultrasonic experimental data
from different types of flaws such as flat bottom hole, side-
drilled hole and disk-type cracks are evaluated using FrFT-
CSD.

The outline of the paper is as follows. Section 2 reviews
the properties of FrFT and the process of FrFT-based signal
decomposition. Section 3 addresses how kurtosis, transfor-
mation order and chirp rate are related using simulated
data. Section 4 presents the steps involved in FrFT-CSD
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(c)
FIGURE 4: (a) Simulated ultrasonic echoes (20% overlapped). (b)

The first signal component. (c) The second signal component
(simulated signal in blue, estimated signal in red).
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FiGure 5: (a) Simulated ultrasonic echoes (50% overlapped). (b)
The first signal component. (c) The second signal component
(simulated signal in blue, estimated signal in red).

algorithm. Section 5 performs a simulation study of FrFT-
CSD and parameter estimation for complex ultrasonic
signals. Sections 5 and 6 show the results of a benchmark data
(i.e., bat signal); the echo estimation results of benchmark
data from side-drilled hole, and disk-shape cracks; the results
of experimental data with high microstructure scattering
echoes.



2. FrFT of Ultrasonic Chirp Echo
FrFT of a signal, f(t), is given by

e*i ((/4) sgn(ma/2)— (ma/4))

(2r|sin(mas2)])"?

(1/2)ix?cot (ma/2)

F(x) =
X J (=1 Gt/ sin(ra/2) +(1/2)ifcot (na/2)) £(£) gt

where a denotes transform order of FrFT and x denotes the
variable in transform domain.

It has been shown that if the transform order, «, changes
from 0 to 4, (i.e., the rotation angle, ¢, changes from 0 to 2m),
F%(x) rotates the signal, f(¢), and projects it onto the line
of angle, ¢, in time-frequency domain [19]. This property
contributes to FrFT-based decomposition algorithm when
applied to ultrasonic signals.
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For ultrasonic applications, ultrasonic chirp echo is a
type of signal often encountered in ultrasonic backscattered
signals accounting for narrowband, broadband, and disper-
sive echoes. It can be modeled as [8]:

folt) = Bexp|—ai(t — 1)’ + 2 fi(t - 1)
(2)

viay (E—1)° + i@],

where ® = [7 f. f a1 ay 0] denotes the parameter vector,
7 is the time-of-arrival, f. is the center frequency, f3 is the
amplitude, «; is the bandwidth factor, a; is the chirp-rate,
and 0 is the phase.

Hence, for the ultrasonic Gaussian chirp echo, fo(t), the
magnitude of F*(x) given by (1) can be expressed as

1 © .
|Foc(x)| — . J e(fz(xt/sm(ﬂot/Z)) +(1/2)it*cot (ma/2)) (t) dt‘
(2nlsin(ra/2)])* 1) - f
_ 1 }e(BZ—4AC)/4A ) 3)
2 b
(2\/05% + (ap + (1/2)cot(mx/2))2|sin(7roc/2)|>
where the integration part can be written as
‘ Joo e(fi (xt/ sin(ma/2))+(1/2)it*cot (mx/Z))f(t) dt
= ‘ Jw e—[tz(m—azi—(l/Z)icot (ma/2))+t(2aTi—201 727 fyit+xicsc(ma/2))+(on T2 — 0 it> — 0427 fyTi)] dt (4)

>

_ ‘ |70 (B>=4AC)/4A
A

with A = a1 — i — (1/2)i cot (ma/2), B = 20571 — 20T —
27 foi+xicsc(ma/2), and C = o172 — apit? — 0 + 27 fyTi.

From (3), it can be seen that, for a linear frequency
modulation (LEM) signal (i.e., a; = 0), if the transformation
order, a, satisfies the following equation:

(oc + lcot@) sin@ =0
ST e 2

(5)

2 71< 1 )
a = ——tan ,
7T 20(2

then the |F*(x)| compacts to a delta function. This means
that fractional Fourier transform can be used to compress the
duration and compact the energy of ultrasonic chirp echo
with an optimal transform order. Optimal transform order
can be determined using kurtosis. The energy compaction
is a desirable property for ultrasonic signal decomposition,
which allows using a window in FrFT domain for isolation of
an echo of interest.

3. Kurtosis and FrFT Order

Kurtosis is commonly used in statistics to evaluate the degree
of peakedness for a distribution [20, 21]. It is defined as the
ratio of 4th-order central moment and square of 2nd-order
central moment:

pa(F(x))
(2 (F(x))]*

where yy(e) denotes 4th-order central moment and y,(e)
denotes 2nd-order central moment. A signal with high
kurtosis means that it has a distinct peak around the mean.
In the literatures of FrFT [18, 19, 22], kurtosis is typically
used as a metric to search the optimal transform order of
FrFT. Different transform order directs the degree of signal
rotation caused by FrFT, and this rotation affects the extent
of energy compaction of the transformed signal.

Figure 1(a) shows a chirp signal with the param-
eters, ® = [3.6us 5MHz 1 0 25MHz 0]. For this

K(a) = (6)



Advances in Acoustics and Vibration 5

Lo T T T T Q T T T T
E 2
= &
E E
Time (us) Time (us)
(a) (b)
© . .
ERRI
| 0
5 71 i 1 1 1 1
1.5 2 2.5 3 3.5 4
Time (us)
(c)

FIGURE 6: (a) Simulated ultrasonic echoes (70% overlapped). (b) The first estimated echo component. (c) The second estimated echo
component (simulated signal in blue, estimated signal in red).
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FIGURE 7: Left column (top to bottom): decomposed bat signal components in time domain. Right column (top to down): Wigner-Ville
distribution of the corresponding signals in left column.
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FIGURE 8: (a) Reconstructed bat signal. (b) Summed Wigner Ville
distribution of the decomposed signals in (a).
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FIGURE 9: Experiment setup for SDH blocks.

example, the bandwidth factor equals to zero (see (2)),
and according to (5), the optimal transform order can be
calculated as

2 _1( 1 )
=——t — ] =-0.013.
o an 20 (7)

As shown in Figure 1(b), this optimal order can also be
determined by direct search for the maximum amplitude
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TABLE 3: Parameter estimation results of two heavily overlapped ultrasonic echoes.
7 (us) fe (MHz) o, (MHz)? o, (MHz)? 0 (Rad)
Echo 1
Actual parameter 2.7 6 20 55 /6
Estimated parameter 2.70 6.11 18.87 53.79 0.72
Echo 2
Actual parameter 3.0 5 25 20 0
Estimated parameter 3.00 5.00 25.14 20.38 0.01
1 0.8
g 05f o6k
2 o WA E I (T i
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Figure 10: Ultrasonic data from the front surface superimposed
with the estimated chirplet (depicted in dashed red color line).
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FiGure 11: Experiment setup for disc-shaped cracks in a diffusion-
bonded titanium alloy.

of FrFT using different transform orders according to (3).
The transform order corresponding to the maximum FrFT
among all transform orders matches the theoretical result
given in (7).

For ultrasonic applications, the chirp echo is band-
limited. For example, Figure2(a) shows a band-limited
single chirp echo with the parameters ® = [3.6us 5MHz
1 25MHz 25MHz 0]. Chirplet is a model widely used
in ultrasonic NDE applications. Figure 2 illustrates the FrFT
of a chirplet using different transform orders. In particular,
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FiGure 12: Experimental data of crack C (with normalized amplitudes) superimposed with the estimated chirplets. (a) Front surface
reference signal superimposed with sum of 2 chirplets. (b) Experimental data (refracted angle 0) superimposed with sum of 2 chirplets.
(c) Experimental data (refracted angle 30 at point a) superimposed with sum of 4 chirplets. (d) Experimental data (refracted angle 30 at
point b) superimposed with sum of 4 chirplets. (e) Experimental data (refracted angle 45 at point a) superimposed with sum of 4 chirplets.

(f) Experimental data (refracted angle 45 at point b) superimposed with sum of 4 chirplets.

TaBLE 4: Estimated parameters of chirplets (block with 1 mm SDH).

TasBLE 5: Estimated parameters of chirplets (block with 4 mm SDH).

Refracted angle

Chirplet parameters f{efracted angle

Chirplet parameters
30° 45° 30° 45°
Amplitude (m-Volt)  42.5 29 16.01 Amplitude (m-Volt) 87.75 59.34 32.61
Spherically focused TOA (us) 76.62 82.6 89.39 Spherically focused 1. ¢ rival (us) 76,10 82.05 88.88
transducer transducer
Frequency (MHz) 455 46 432 Frequency (MHz)  4.61 4.54 439
Amplitude (m-Volt) 22.71 20.43 14.53 Amplitude (m-Volt) 41.72 37.62 27.97
Planar transducer TOA (us) 76.57 82.80 89.82 Planar transducer Time of arrival (us) 76.11 82.36 89.42
Frequency (MHz) 4.48  4.67 481 Frequency (MHz) 4.46 4.67 4.84

the transform order from (7) (i.e., —0.013) is used for a com-
parison. Our simulation shows that the optimal transform
order for the band-limited echo is different compared with

the one for the LFM echo due to the impact of bandwidth
factor in chirp echoes.
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F1GURE 13: Experimental data of Crack D (with normalized amplitudes) superimposed with the estimated chirplets (depicted in dashed red
line). (a) Front surface reference signal superimposed with sum of 2 chirplets. (b) Experimental data (refracted angle 0) superimposed with
sum of 2 chirplets. (c) Experimental data (refracted angle 30) superimposed with sum of 4 chirplets. (d) Experimental data (refracted angle
45) superimposed with sum of 4 chirplets.

TABLE 6: Estimated parameters of chirplets (crack D).

TOA (us) Center frequency (MHz) Amplitude (m-Volt)
Reference signal 34.583 9.42 363.3
34.725 10.60 54.4
Refracted angle 0° 38.776 10.38 4.64
38.891 13.06 0.50
39.777 7.68 0.50
Refracted angle 30° 40.040 9.10 0.14
39.674 12.57 0.18
39.861 2.18 0.03
40.677 9.85 0.17
Refracted angle 45° 40.956 9.85 0.07
40.675 4.51 0.04

40.620 15.65 0.03
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FIGURE 14: (a) Measured ultrasonic backscattered signal (blue)
superimposed with the reconstructed signal consisting of 8 domi-
nant chirplets (red). (b) Measured ultrasonic backscattered signal
(blue) superimposed with the reconstructed signal consisting of 23
chirplets (red).

One can conclude that the compactness in the fractional
Fourier transform of an ultrasonic echo can be used to track
the optimal transform order. It is also important to point
out that the optimal transform order is highly sensitive to a
small change in the order. Therefore, using kurtosis becomes
a practical approach to obtain the optimal FrFT order for
ultrasonic signal analysis.

4. FrFT Chirplet Signal
Decomposition Algorithm

The objective of FrFT-CSD is to decompose a highly
convoluted ultrasonic signal, s(t), into a series of signal
components:

N
s(t) = > foj(t) + (1), (8)

j=1

where fe;(t) denotes the jth fractional chirplet component
and r(t) denotes the residue of the decomposition process.

The steps involved in the iterative estimation of an
experimental ultrasonic signal are

(1) initialize the iteration index j = 1;

(2) obtain a windowed signal s_win(t) after applying a
window, w;(t), in time domain;

Swin(r) = S(t) X w;(1). )

(3) determine the FrFT of the signal,
FrFT® (%) yin(r)> for different orders, a;

s_win(t),

(4) calculate kurtosis of FrFT®(x),in() for different
orders, a:

ta (FrET® (1), yingr))

K(a) =
[#z (FrFT“(x)S,winu)) ]

75 (10)

(5) estimate the optimal transform order, aopi:
Qopt = argaMAX (K(“))) (11)

aopt corresponds to the FrET transform order where
K(e) has the max value. In our study, a brute-force
search is used to estimate the optimal transform
order. The step size of searching is set to 0.005.
The computation load of calculating the kurtosis
and searching for the optimal order is significant.
Some researchers used the maximum peak in the
transform domain as an alternative metric [17].
For ultrasonic signal decomposition, the optimal
transform order is related to the chirp rate of the
signal. The search range of transform order can be
reduced by considering prior knowledge of ultrasonic
transducer impulse response;

(6) apply FrFT with the estimated order e to the signal
s(t) and obtain FrFT®" (x)y);

(7) obtain a windowed signal from FrFT* (x)):

FrFTyin(x) = FrFT™ (x) ) X win;(x), (12)

(8) apply the transformation order, —aop, to the signal
FrFT_win(x), then reconstruct the jth component by
estimating parameters of the decomposed echo:

f@)]- (t) = FrFT % (t)FrFT,win(x)r (13)

the parameter estimation process here becomes a
single-echo estimation problem. A Gaussian-Newton
algorithm used in [23-25] is adopted in FrFT-CSD;

(9) obtain the residual signal by subtracting the esti-
mated echo from the signal, s(t), and use the residual
signal for next echo estimation;

(10) calculate energy of residual signal (E,) and check con-
vergence: (Enin is predefined convergence condition)
If E; < Emin> STOP; otherwise, go to step 2.

For further clarification, the flowchart of FrFT-CSD
algorithm is shown in Figure 3. It is important to mention
that two windowing steps are used in FrFT-CSD algorithm.
One window is used in step 2 in order to isolate a dominant
echo in time domain. It is inevitable to have an incomplete
echo due to windowing process. A good strategy of choosing
this window is to keep as much of echo information
as possible. The other window is applied in step 7. For
ultrasonic chirp echoes, the energy compactness of FrFT
helps to reduce the window size centered on a desired peak
in the transform domain. As shown in Figure 2, a chirplet
is compressed to a great extent after the transform. An
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automatic windowing process is used to detect the valleys
of the dominant echo. In the cases of heavily overlapping
echoes and high noise levels (i.e., the cases of poor signal-
to-noise ratio), the performance of windowing method
may be compromised. In this situation, a window with a
predetermined size can be used to isolate desirable peaks.

5. Simulation and Benchmark
Study of FrFT-CSD

To demonstrate the advantages of FrFT signal decomposition
in ultrasonic signal processing, ultrasonic chirp echoes
with three different overlapping scenarios are simulated,
where chirp rate models the dispersive effect in ultrasonic
testing of materials. Two slightly overlapped (about 20%
overlapped) echoes is simulated using the sampling fre-
quency of 100 MHz. The parameters of these two echoes
are

0, = [Z.Sus 7MHz 1 20MHZ> 35MHZ E],
(14)
®, = [3.0us 5MHz 1 25MHz? 20MHz> 0].

Figure 4 shows the simulated signal (in blue) super-
imposed with estimated echoes (in red). The estimated
parameters perfectly match the parameters of simulation
signal as compared in Table 1. One can conclude that
the FrFT-CSD not only decomposes the signal efficiently,
but also leads to precise parameter estimation results. A
moderately overlapped (about 50% overlapped) simulated
signal consisting of two echoes is shown in Figure 5. For
this simulated signal, Table2 shows that the estimated
parameters are accurate within a few percents.

Finally, Figure 6 and Table 3 show the simulated and
estimated two heavily overlapped (about 70% overlapped)
echoes. The decomposition results (Figure 6) and estimated
parameters (Table 3) confirm the robustness and effective-
ness of FrFT-CSD in echo estimation for ultrasonic signal
analysis.

An experimental bat data is commonly used as a
benchmark signal in time-frequency analysis. It is a 400-
sample data digitized 2.5 ys echolocation pulse emitted by a
large brown bat with 7 yus sampling period. To evaluate the
performance of FrFT-based signal decomposition algorithm,
the bat data is utilized to demonstrate the effectiveness of
algorithm.

Through the processing of FrFT-CSD, there are four
main chirp-type signal components identified in the bat
signal. The decomposed signals and their Wigner-Ville dis-
tribution (WVD) are shown in Figure 7. The reconstructed
signal and its superimposed WVD are shown in Figure 8.
The results in Figures 7 and 8 are consistent with the analysis
results from other techniques in time-frequency analysis
[26]. The FrFT-based signal decomposition algorithm not
only reveals that the bat signal mainly contains four chirp
stripes in time-frequency domain, but provides a high-
resolution time-frequency representation.

Advances in Acoustics and Vibration

6. Experimental Studies

For experimental studies, two aluminum blocks with differ-
ent size of side-drilled hole (SDH) are used [27]. One is with
1 mm diameter, another is 4 mm diameter. The experimental
setting is shown in Figure 9. It can be seen that the water path
is 50.8 mm and the depth of SDH is 25.4 mm (i.e., from the
water-aluminum interface to the center of SDH).

To provide a rigorous test, two 5MHz transducers are
used to acquire ultrasonic data at normal or oblique refracted
angles, 0. One is planar transducer. Another is spherically
focused transducer with 172.9 mm focal length.

To verify the experiment setup, the FrFT-CSD is utilized
to analyze the ultrasonic data from the front surface of
the specimen. The ultrasonic data superimposed with the
estimated chirplet is shown in Figure 10.

It can be seen that the estimated time-of-arrival (TOA)
of the front surface echo is 68.72 us. In addition, from the
experimental setting, the TOA can be calculated as

TOA = , (15)

where D denotes the water distance, and in the case of
incidence angle 0 this distance is 50.8 mm. The round trip
of ultrasound is twice of the water distance, D. The term
v denotes the velocity of ultrasound in medium: v =
1.484 mm/us for water.

From (15), the theoretical value of TOA is 68.47 us.
The estimated TOA is in agreement (within 0.4%) with the
theoretical TOA.

Furthermore, the parameters of chirplet are strongly
related to the crack size, location, and orientation. For
example, the amplitude is a good indicator of crack size. In
Tables 4 and 5, the estimated amplitude from a 4 mm SDH
is roughly twice of the estimated amplitude from a 1 mm
SDH. In NDE applications, the estimated amplitude of a
known-size crack could be used as a reference to estimate
the size of crack. As shown in (15) and (16), the estimated
TOA can be used to approximate the location of crack.
In addition, different types of cracks could have different
frequency variations. From [8, 26], the response of crack
usually shows a downshift in the frequency compared with
the responses of grains inside the material.

These results indicate that the estimated parameters from
FrFT-CSD algorithm track with reasonable accuracy the
physical parameters of experimental setup. Moreover, the
FrFT-CSD algorithm provides more detailed information
describing the reflected echoes such as phase, bandwidth
factor and chirp rate that can be used for further analysis.

Another experiment is set up to evaluate disk-shaped
cracks in a diffusion-bonded titanium alloy sample [28].
The ultrasonic data of these synthetic cracks are obtained at
normal or oblique refracted angles, 6 using a 10 MHz planar
transducer. The diameter of the transducer is 6.35 mm. The
water depth is 25.4 mm. The surface of diffusion bond is
13 mm below the front surface of water/titanium alloy inter-
face. Two different sizes of cracks are made with the diameter
0.762mm (i.e., crack D) and the diameter 1.905mm (i.e.,
crack C). For crack C, the responded ultrasonic data is
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TaBLE 7: Estimated parameters of chirplets (crack C).

TOA (us) Center frequency (MHz) Amplitude (m-Volt)
. 34.583 9.42 363.3
Reference signal
34.725 10.60 54.4
Refracted angle 0° 38.754 9.78 14.48
38.863 12.93 1.86
39.784 11.02 0.58
Refracted angle 30° (point a) 40.029 6.06 0.19
40.560 7.68 0.13
40.122 10.63 0.06
40.825 9.88 0.14
Refracted angle 45° (point a) 41157 9.92 0.07
40.795 15.64 0.04
41.658 6.87 0.05
39.757 7.78 0.49
Refracted angle 30° (point b) 39.536 5.32 0.11
39.905 4.63 0.10
39.426 11.13 0.10
40.632 9.09 0.21
Refracted angle 45° (point b) 40.270 9.65 0.07
40.468 3.40 0.16
41.100 7.97 0.07

TaBLE 8: Estimated parameters of the 8 dominant chirplets for ultrasonic experimental data.

7 (us) fe (MHz) B a, (MHz)? a; (MHz)? 0 (Rad)
Echo 1 2.95 3.87 1.06 20.16 13.17 2.80
Echo 2 3.47 5.53 0.63 56.86 —41.06 -2.70
Echo 3 0.33 6.57 0.54 37.45 28.66 1.76
Echo 4 1.18 7.24 0.54 27.14 30.17 3.71
Echo 5 2.08 6.66 0.53 39.13 —15.50 2.75
Echo 6 2.40 6.00 0.47 62.91 60.24 2.47
Echo 7 4.64 6.23 0.18 4.75 -0.18 —2.36
Echo 8 1.49 3.97 0.12 0.73 —0.04 —6.64

recorded from the two edges of the crack, which are marked
as point a and point b. The thickness of both disk-shaped
cracks is 0.089 mm. Figure 11 shows the experiment setup for
the alloy sample [28].

From Figure 11, the TOA of crack at refracted angle 0 is
calculated as follows:

TOAgy = TOA,ef + (16)

2 X D/ cos 6

V b
where TOA . denotes the estimated TOA of reference signal
(i.e., 34.58 ys from Tables 6 and 7). The round trip of
ultrasound inside titanium from the front surface to the
diffusion bound is 2 X D/ cos 6, where D denotes the depth
of diffusion bond, which is 13 mm; 6 denotes the refracted
angle and v denotes the velocity of ultrasound in medium:
v = 6.2 mm/ps for titanium. Therefore, TOA at the angle 0°

is 38.777 us. TOAg at the angle 30° is 39.425 ys. At the angle
45°, TOAg is 40.514 ps.

From Tables 6 and 7, it can be seen that the estimated
TOAy at angle 0° is 38.776 yus and 38.754 us. Taking the
thickness of the cracks (0.089 mm) into consideration, it
can be asserted that the estimated TOAs at incident angle
0° are in good agreement with experimental measurements.
Experimental signals of crack C and crack D (with normal-
ized amplitudes) superimposed with the estimated chirplets
(depicted in dashed line and red color) are shown in Figures
12 and 13. It also can be seen that the front surface reference
signal and the experimental data obtained at angle 0° are well
reconstructed by the FrFT-CSD algorithm (see Figures 12(a),
12(b), 13(a) and 13(b)). Nevertheless, with the increase of
refracted angle, more chirplets needed to decompose the
experimental data (see the refracted angle 30 and 45 degree
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cases). In addition, Tables 6 and 7 show that the signal
energy is more evenly distributed to estimated chirplets in
the high refracted angle cases. This spreading of signal might
be caused by geometrical effect of the beam profile of the
planner transducer and corners/edges of disk-shaped crack.

To further evaluate the performance of FrFT-based
signal decomposition algorithm, experimental ultrasonic
microstructure scattering signals are utilized to demonstrate
the effectiveness of the algorithm. The experimental signal
is acquired from a steel block with an embedded defect
using a 5 MHz transducer and sampling rate of 100 MHz.
The acquired experimental data superimposed with the
reconstructed signal consisting of 8 dominant chirplets
are shown in Figure 14(a). The estimated parameters of
dominant chirplets are listed in Table 8. It can be seen
that the 8 dominant chirplets not only provide a sparse
representation of experimental data, but successfully detect
the embedded defect.

To improve the accuracy of signal reconstruction, FrFT-
CSD could be used iteratively to decompose the signal
further. A reconstructed signal using 23 chirplets is shown
in Figure 14(b). The comparison between the experimental
signal and the reconstructed signals clearly demonstrates
that the FrFT-CSD is highly effective in ultrasonic signal
decomposition.

7. Conclusion

In this paper, fractional Fourier transform is studied for
ultrasonic signal processing. Simulation study reveals the
link among kurtosis, the transform order, and the parameters
of each decomposed components. Benchmark and experi-
mental data sets are utilized to test the FrFT-based chirplet
signal decomposition algorithm. Signal decomposition and
parameter estimation results show that fractional Fourier
transform can successfully assist signal decomposition algo-
rithm by identifying the dominant echo in successive esti-
mation iteration. Parameter estimation is further performed
based on the echo isolation. The FrFT-CSD algorithm could
have a broad range of applications in signal analysis including
target detection and pattern recognition.
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Ultrasonic flaw detection and imaging through reverberant layers are challenging problems owing to the layer-induced
reverberations and front surface reflections. These undesired signals present a strong clutter and mask the flaw echoes. In this paper,
a subspace-based approach is developed for removing, or significantly reducing, the unwanted reverberations, enabling proper flaw
detection and imaging. The technique utilizes a set of independent clutter-only reference measurements of the material through
the layer. If these measurements are not available, array measurements of the material with flaws are used instead. The clutter, due
to its high strength relative to the flaw reflections, forms a subspace spanned by the eigenvectors corresponding to the dominant
eigenvalues of the data covariance matrix. The clutter subspace is estimated and removed using orthogonal subspace projection.
The clutter usually occupies multidimension subspace that is dependent on the level of coupling, material inhomogeneity, surface
roughness, and the sampling rate of the measurements. When the clutter-only reference is not available, information theoretic
techniques are used to estimate the dimension of the clutter subspace so that clutter signals are sufficiently suppressed without
distorting the flaw signals. The effectiveness of the proposed approach is demonstrated using simulations and real measurement

results.

1. Introduction

Ultrasonic detection and imaging of flaws through a layer or
screen are challenging problems encountered in ultrasound
nondestructive evaluation (NDE). In particular, industrial
materials are often manufactured in the forms of multiple
layers, which present strong reflections at layer interfaces
when exposed to ultrasound testing. These reflections usually
repeat themselves in the course of an ultrasonic measure-
ment, giving rise to strong and repeating reverberation
patterns [1]. In medical ultrasound, direct access to the
tissue of interest is not always possible, and hence ultrasonic
measurements are often performed through another tissue
or anatomic structure [2]. For example, in ultrasound
imaging of brain for abnormalities or tumors, measurements
are performed through the skull, which presents strong
reverberation signal.

Reverberation signals induced by the top layer (i.e.,
imaging screen) often mask the target echoes and make
the detection and localization of material flaws or tissue
abnormalities extremely difficult, if not impossible. There-
fore, such reverberation signals (which are also referred to
hereafter as reverberation clutter, or simply clutter) must
be suppressed or sufficiently mitigated in order to reveal
the target echoes. The majority of the existing approaches
dealing with reverberation are based on the ideal acoustic
wave propagation model in the layered media [1, 3-6]. For
example, Saniie and Nagle have developed analytical models
of reverberation patterns measured from multilayered media
[1]. These models are used for the classification of echoes
associated with each layer. The predictive deconvolution
technique [7], commonly used in reverberation suppression
in seismic explorations, has been applied to ultrasound
reverberation suppression [3, 4]. This method also assumes,



although implicitly, an ideal propagation model by relying on
the repeatability of reverberating patterns. The methods pre-
sented in [5, 6] deal with the identification of reverberation
echoes in multilayered media based on time-of-flight analysis
of all possible echoes and their power spectrum comparison.
In addition to the ideal propagation models mentioned
above, these techniques assume nonoverlapping echo pat-
terns amenable to time-of-flight analysis, which requires the
thickness of each layer to be relatively large compared to
the echo wavelength. Further, the existing approaches often
deal with ultrasonic measurements in the far field of the
transducer and, as such, use immersion techniques. These
techniques are not practical for field testing scenarios in
ultrasonic NDE where only contact measurements can be
performed in the near field of the transducer. Making contact
measurements through the layer is further complicated by
the coupling issues and strong irregular echoes from the
layer front surface. The reverberation patterns in these
cases cannot be simply predicted and removed from the
measurements.

Among different possible approaches to considerably
attenuate clutter, direct subtraction of background response
signal, measured in empty reference scenes, from the
response signal with targets (flaws) is commonly used
in radar signal processing [8]. Direct application of this
method to practical ultrasonic reverberation suppression,
however, proves inefficient, due to the significant variations
of ultrasound measurements due to the coupling, material
inhomogeneity, and surface roughness.

In this paper, we propose an alternative approach based
on reverberation subspace learning and projection. This
approach has been recently used in through-the-wall radar
imaging to remove the wall clutter and enhance the visibility
of indoor targets [9, 10] and also in ground penetrating radar
for landmine detection [8, 11]. In the proposed approach,
the clutter is removed by projecting the received signal onto
a subspace that is orthogonal to the bases of possible clutter
responses. To construct a comprehensive clutter subspace for
efficient clutter removal, we consider two cases of reverber-
ation subspace learning that are of interest to ultrasound
NDE, namely, (i) reference-based subspace learning (offline)
utilizing a set of flaw-free reverberation measurements and
(ii) reference-free subspace learning directly from the online
array data. The latter is of particular importance in NDE
array imaging when access to a healthy replica is not available
[12]. In the first case, we make use of a few independent
reverberation measurements from selected locations using
a healthy replica of the test material. Then, we construct a
clutter subspace utilizing a shift-based perturbation model
to account for variations due to surface contacts, material
inhomogeneity, and surface roughness. In the second case,
we use a physical or synthetic aperture array and form
the clutter subspace by exploiting the spatial coherency
of the reverberation signals and incoherency of the flaw
echoes in the array data. In both cases, the clutter often
occupies multiple dimensions of the subspace, dependent
on the level of coupling, material inhomogeneity, surface
roughness, and the sampling rate of the measurements.
Therefore, the dimension of the clutter subspace must
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be properly estimated before the orthogonal projection
is applied. Underestimation of the clutter subspace may
result in insufficient clutter removal. On the other hand,
particularly in the second case where the flaw signals are
present in the clutter subspace construction, overestimation
of the clutter subspace will result in flaw signal removal.
To avoid this problem, information theoretic techniques are
used to estimate the dimension of the clutter subspace so that
clutter signals are sufficiently suppressed without distorting
the flaw signals.

The effectiveness of the proposed method is examined
and demonstrated using both simulations and real experi-
ment data. The results clearly show that strong clutter can be
significantly suppressed using the proposed technique based
on subspace learning and orthogonal subspace projection.
For comparison, we also apply the background subtraction
and predictive deconvolution techniques, which show infe-
rior performance to the proposed technique in the presence
of irregular variations.

The remainder of the paper is organized as follows.
Section 2 presents a clutter subspace construction and pro-
jection technique utilizing flaw-free reference measurements
of reverberation. Section 3 presents a reference-free clutter
subspace construction and projection technique based on
transducer array data. Section 4 presents the simulation and
experimental results of the clutter removal techniques in
both scenarios.

2. Clutter Removal Using Reference
Reverberation Measurements

2.1. The Proposed Technique. Consider a flaw detection and
imaging problem through a reverberant layer, as depicted
in Figure 1. We begin with considering a single sensor
measurement, y(t), that may contain flaw echoes, s¢(t), and
the reverberation clutter, r(¢), in the presence of additive
measurement noise

y(t) = sp(t) +r(t) + n(t), (1)

where the noise n(t) is zero-mean white Gaussian and is
independent of the flaw echoes and reverberation clutter.
Measurement noise is usually not considered as a serious
impediment since its effect can be mitigated by averaging
over multiple observations. The reverberation clutter, r(t),
is of quasiperiodic nature damped over time, where the
periodicity and the degree of damping depend on the
thickness and density of the layer. Under ideal measurement
conditions (e.g., the layer is immersed in water in the far
field of the transducer), the reverberation signal from the
layer can be modeled as the superposition of the time-shifted
and amplitude-scaled replicas of the transducer pulse echo
wavelet, s.(t), as [1]

]

r(t) = pse(t) + 261 D (—p) " st = 2mAT),  (2)

m=1
where 2AT denotes the time difference of arrival of successive
echoes, p denotes the reflection coefficient from the propaga-
tion path to the layer, and ¢, 621 denote the transmission
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FiGure 1: Experimental setup for flaw measurements through a
reverberant layer.

coefficients from the propagation path to the layer and
layer to the propagation path, respectively. This analytical
reverberation model can be interpreted as superimposed
echoes with unknown delays and amplitudes. Further, the
reverberation signal can be estimated using a maximum
likelihood estimation algorithm [13].

For contact measurements considered in this paper, the
reverberation signal does not conform to the ideal model
for a number of reasons. First, since the measurements
are performed in the near field, the strong front-surface
reflection (big bang) at the transducer-layer interface makes
the reverberating pattern much more complicated. Second,
the reverberation signal varies from one measurement to
another depending on the coupling between the transducer
and the layer as well as the bounding between the layer and
the test material. On the other hand, the flaw echoes are
short-duration signals with much lower energy compared
to the reverberation clutter. Further, depending on the
location of the flaw in the material, the flaw echo returns
have longer time of arrival than those of the clutter. As
such, the flaw echoes have a very low correlation with
the reverberation clutter. Our objective is to remove the
reverberation clutter without a considerable attenuation of
flaw echoes. To this aim, we exploit the high energy and
low correlation properties of the reverberation clutter with
respect to the flaw echoes.

To model the reverberation clutter, we collect L inde-
pendent measurements of the clutter, dy,...,d;—1, from
L different sites of a healthy replica of the material with
layer, where d; = [di(1),..., d;(N)]T is the measured signal
vector consisting of N time samples and (-)” denotes matrix
transpose. These measurements are stored into an N X L
matrix as

Y=[d d d]. (3)
In the absence of flaw echoes, these measurements only con-
tain reverberation clutter and noise. In order to account for
local delays of reverberation, we expand these measurements
based on a shift-based perturbation model [14]. Basically, all
the measurement vectors are shifted by an integer number of
samples, both upwards and downwards, up to a maximum
potential delay of dmay. Since ultrasound signals are typically
sampled at a much higher rate than the Nyquist rate, shifting
by integer samples will suffice to represent all possible local

delays. With the time shifts, the expanded measurement set
becomes

Y, = [Y[fdmax] Cylu oy yleloL Y[+dmax]:|, (4)
where Y4l is the original measurement matrix shifted by d
samples. The dimension of the expanded data set is N x M
with M = (2dmax + 1)L. The estimated covariance matrix of

the expanded set Y, is

1
M
where C, represents the clutter covariance matrix, 21 repre-
sents the covariance matrix of additive white Gaussian noise
(AWGN), and I denotes the N X N identity matrix. Matrix
Cy, is decomposed into different spectral components using
the eigenvalue decomposition

Cy Y.Y! =C, + 01, (5)

M
CYE = Zlmumuz;p (6)

m=1

where A,, denotes the mth eigenvalue in an ordered set
(M = A, = - -+ = Ay) and u,, denotes the corresponding
eigenvector. The first # eigenvectors belong to the clutter
subspace, whereas the remaining eigenvectors belong to the
noise subspace. Since the dimension of the clutter subspace
is not known a priori, model-order selection methods must
be applied. The techniques found in the literature based on
eigenvalue trend analysis such as the differences (A, — Ayp+1)
or ratios (Am/Ams1) of eigenvalues do not always provide
satisfactory results. We employ information theoretic criteria
such as the Akaike information criterion (AIC) and the
minimum description length (MDL) [15]. The AIC is given
as

[/ =) 20"
Hi\n/lzqﬂ)tm (7)

aic(n) = NIn

+n(2M - 1),

where M denotes the number of measurements in the
expanded data set. Similarly, the MDL is given as

[ (/M= 1)) S0t A
le\n/l=r]+lAm

M-n

mdl(y) = Nln
(8)

+ %W(ZM —n)InN.

The clutter subspace is determined as the model order #
that minimizes the AIC or MDL. Once the model order is
determined, the clutter subspace is formed from the first 4
dominant eigenvectors, that is,

Ur = I:lll u --- ll;1i|. (9)

The clutter removal is performed by projecting the received
signal (A-scan) onto the orthogonal subspace of the clutter
to obtain the flaw enhanced signal, that is,

§ = (1-uUly. (10)



2.2. Clutter Removal via Background Subtraction. For com-
parison, clutter removal via background subtraction is
considered. Since a set of reference measurements are avail-
able for reverberation clutter, one can employ background
subtraction techniques for clutter removal. For this task,
we choose the best match signal from the set of expanded
measurements matrix, Y., to the current measurement Y
and subtract this signal from y. The results represent the
best possible performance that can be achieved with the
background subtraction technique. In this case, the index of
the best match reference signal is the one that maximizes the
normalized correlation coefficient with y, that is,

. yIY,[i]
Im = argi max — : s
Ty (YT (Y. [i])

(11)

where Y,[i] denotes the ith column of the expanded data set
matrix Y.. The clutter removal using background subtraction
is then performed as

~

o (Y Yelim] Ny
Y ((Ye[z'mnT(Ye[imD)YB[””]’ (12

where the scalar in the bracket term is the least square
estimate of the best match reference signal amplitude.

2.3. Clutter Removal via Predictive Deconvolution. For com-
parison, the predictive deconvolution technique [3, 4] is also
considered for reverberation clutter removal. This technique
has been extensively used in seismic signal processing for the
suppression of reverberations due to the top layer of the earth
[7]. The method is based on the linear prediction filtering
and exploits the repetitive patterns in reverberations. The
reverberating pattern is predicted based on the past samples
of data. The method requires knowledge of the prediction-
lag (i.e., the periodicity of reverberation) as well as the pulse
duration to set the predictive filter order and error filter
length. In this paper, we implemented the technique based
on the procedures outlined in [4].

3. Clutter Removal Based on Sensor
Array Measurements

3.1. Clutter Removal. When the clutter-only scene is not
available, the clutter subspace used for clutter removal
must be constructed from data that are measured in the
presence of flaw signals. Therefore, care must be exercised
not to include the flaw signal in clutter subspace. Toward
this end, we consider a K-element array, either consisting
of physically present transducers or being formed through
aperture synthesis, which measures the material of interest
through a reverberant layer as depicted in Figure 1. The
signal received at each sensor can be written as

k=0,1,...,K -1,
(13)

Yi(t) = agsp(t — 7x) + r(t) + n(t),
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where yi(t) denotes the signal received at the kth sensor
position, r(t) denotes the reverberation clutter due to the
layer, axsy(t — 74) denotes the echo signal received at the
kth sensor due to the flaw, and n(t) denotes the AWGN. We
note that the reverberation signal r(¢) is consistent across
all sensor measurements except for local delays and small
perturbations. On the other hand, flaw echo measurement
varies from one sensor to another because each transducer
position yields a distinct distance to the flaw. The variation
in the flaw echo is modeled in terms of both the delays,
(%) due to the spatial arrangement of the array sensors,
and the weighting factors (ax), due to the beamwidth of the
transducers and flaw reflection fluctuations. As a result, the
reverberation measurements are spatially coherent, whereas
flaw measurements are incoherent. In order to exploit the
coherency as well as the relative strength of the reverberation,
we utilize a subspace construction and projection approach.

For clutter subspace construction, we concatenate the

sensor array measurements into a data matrix of size N X K
as

Y, = [Yo Y1 YK—I]; (14)
form the covariance matrix as
Cy = Y, YT (15)
Ya - N atag»

and then perform eigendecomposition of the above esti-
mated covariance matrix. This time, the dominant eigen-
values will correspond to the clutter subspace, followed by
the eigenvalues corresponding to the flaw subspace and those
corresponding to the noise subspace. Because the flaw signals
are much weaker than the clutter, we can determine the
clutter subspace using the AIC or MDL in the same manner
as explained before. Finally, the clutter is removed from each
sensor data by projecting onto the orthogonal subspace of
the clutter to obtain flaw-enhanced signals on each sensor,
that is,

¥ = (1-uuly.. (16)

Based on the clutter-free array data §Bfk] , an ultrasound image
can be constructed for flaw imaging. For this task, we present
a beamforming algorithm in the next section.

3.2. Ultrasound Imaging of Flaw via Beamforming. The
ultrasound measurements from an array composed of K
transducers can be used to image the test material [16].
We consider a linear array and assume that the respective
positions of transducer elements are known in a three-
dimensional Cartesian space, that is, the kth transducer
is located at Tx(xtx, y7k>21K). We consider a region of
interest (ROI), which is a two-dimensional cross-section
under the linear array as depicted in Figure 1. A receiver
mode backprojection beamforming algorithm is used to
construct internal images of materials [17]. The signal that
is reflected from a hypothetical flaw located at the position
P(xp, yp>zp) is then received with different delays at each
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transducer. The signal corresponding to the direct reflection
path recorded at the kth receive transducer is given by

1k(t) = ar(P)se(t — 1(P)), (17)

where ar(P) is the reflectivity of the flaw seen by the
transducer that also accounts for the propagation loss and
7t (P) denotes the signal propagation delay from the location
P to the kth transducer Ti. Assuming a homogeneous
material with ultrasound propagation speed of v, the time
delay corresponding to any pixel Q in the image, located at
Q(x45 ¥4>24), can be calculated as

, (18)

7(Q) = %H(me»)’Tm’ZTm) - (xq’)’q)zq)

where || - || denotes the Euclidean norm. The image intensity
I(Q) of every pixel Q in the imaging plane is obtained
by adding the weighted time-delayed K received signals
and correlating the resulting signal with the emitted signal.
Therefore, the intensity at pixel Q, using the coherent
imaging technique, can be written as

K
D wi(Q)ri(t+ 11(Q)) * se(t)

k=1

1(Q)

t=0

K
D> wi(Q)ak(P)se(t + 14(Q) — 1k(P)) * se(t)

k=1

>
t=0

(19)

where wi(Q) is the weight corresponding to the kth trans-
ducer. The cross-correlation performs matched filtering and
improves the output signal-to-noise ratio (SNR).

The above synthetic aperture beamforming algorithm
is applied for imaging of flaws through layers before
reverberation removal using the original array measurements
and after reverberation removal using the proposed subspace
projection approach. The flaw imaging results will be
presented in the next section.

4. Simulations and Experimental Results

4.1. Experiment Settings. An aluminum block (alloy number
6061) of dimensions 6inx6inx3in (152.4 mmx152.4 mmX
76.2 mm) is used as the test specimen. A thin metal layer with
2 mm uniform thickness is coupled to the material with a gel.
The thin layer is highly reverberant and simulates ultrasonic
flaw imaging through reverberant layers. A flat-bottom hole
with a diameter of 3 mm and a depth of 21 mm was drilled
into the test specimen to emulate a flaw. Figure 1 shows the
schematic illustration of the test specimen, the thin layer,
and the synthesized sensor transducer used for ultrasonic
measurements.

Transducer excitation and signal measurements are
performed using an Olympus Panametrics Pulser/Receiver
(P/R) (model 5072PR) operated in the monostatic (T/R)
mode [18]. The P/R settings are as follows: pulse repetition
frequency (PRF) 1KHz, energy level 3, damping level 4,
amplifier gain 30 dB, low-pass filter with a cutoft frequency

of 1 MHz, and high-pass filter with a cutoff frequency of
10 MHz. All the ultrasonic measurements are made with an
Olympus single-element transducer (model V-110 M) that
has a center frequency of 5MHz [19]. The transducer is
placed on the material surface with an ultrasound coupling
gel. The acquired signals are digitized with a digital scope
(Agilent Technologies DSO7014A Oscilloscope) at a sam-
pling rate of 50 MHz. These signals are collected 32 times and
averaged internally by the scope to obtain a signal with a high
SNR.

4.2. Simulation Results: Flaw-Free Measurements of Reverber-
ation Clutter Available. We performed a series of simulations
using synthetic data based on separate measurements of
flaw and reverberation clutter to examine the respective
clutter and flaw subspaces and analyze the performance
of the subspace-projection-based clutter suppression tech-
nique. We first acquired a flaw signal measurement without
the thin layer on top of the material. The flaw echo is
properly truncated from this measurement and stored in
memory. Next, the thin layer is placed on top of the
aluminum block using an ultrasound gel as coupling. The
reverberation measurement is performed by placing the
5MHz ultrasonic transducer on the thin layer and covering
a healthy (flaw-free) section of the aluminum. We repeated
this measurement on different sections of the thin layer for 10
times to obtain a diverse set of reverberation measurements
representing clutter.

We used the 10 reverberation measurements with shift-
based subspace expansion (dmax = 1) to form the clutter
subspace as explained in Section 2. A new reverberation
measurement (at a location different from the previous
measurements) is made to test the clutter removal method.
To examine the performance of the clutter removal tech-
nique under different conditions, we add the experimentally
collected flaw echo and its multipath signals as if they
were measured from the top layer to the new reverberation
measurement but varied their amplitude and time of arrivals.

Figure 2 illustrates flaw echoes in reverberation and the
clutter suppression results after respectively exploiting the
subspace projection, background subtraction, and the pre-
dictive deconvolution techniques as described in Section 2.
Figure 2(a) shows the emulated flaw echo and its multipath
signals, whereas Figure 2(b) shows the reverberation mea-
surement with the flaw echoes added. As such, the signal
in Figure 2(b) simulates a flaw echo and its multipaths
in reverberation. The flaw-echo-enhanced signals processed
by the subspace projection, background subtraction, and
predictive deconvolution techniques are, respectively, shown
in Figures 2(c), 2(d), and 2(e). As evident from these plots,
the proposed subspace projection technique highlights the
flaw echoes and enhances their visibility. The background
subtraction method, on the other hand, retains clutter
remnants that can be mistaken as flaw echoes. The predictive
deconvolution technique is also applied to this data with
prediction lag set equivalent to the measured periodicity of
reverberations and prediction filter length set equal to one
echo length. The clutter suppression result (see Figure 2(e))
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Figure 2: Comparison of reverberation removal techniques. (a)
Simulated flaw echo and its multipaths measured through the layer.
(b) Flaw echoes added to a real reverberation measurement. (c)
Reverberation removal via subspace projection. (d) Reverberation
removal via background subtraction. (e) Reverberation removal via
predictive deconvolution.

is inferior to those obtained from background subtraction
and subspace projection. This is due to the fact that, while the
predictive deconvolution technique relies on the repeatability
of reverberating patterns to predict and remove the future
echoes, the actual reverberation echoes vary in their shape
due to irregular variations and the existence of different
propagation modes. For example, the noticeable difference
in shape is observed between the first two echoes shown in
Figure 2(b) during the time interval between 0 ys and 1.5 ys.
Further, predictive deconvolution always retains the first part
of data (e.g., the first echo in Figure 2(e)) before prediction
lag. It is noteworthy that the proposed subspace projection
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FiGure 4: Simulation of flaw and its multipath measurements
through the layer with a transducer array shown in Figure 1. The
flaw is assumed to be in 1.35 cm depth from about the center of the
array (see Figure 1).

technique works for arbitrary signal structures and does not
rely on the repeatability of reverberation patterns.

We also made an ultrasonic measurement of a real flaw
through the thin layer. To emulate a flaw, a through hole with
a diameter of 3 mm is drilled into the aluminum block 3.5 cm
down from the top. Then, the thin layer is placed on top
of the block with gel coupling. The measurement including
reverberations and the flaw echo is shown in Figure 3(a).
The clutter-suppressed signals with subspace projection and
background subtraction are shown in Figures 3(b) and
3(c), respectively. The subspace expansion technique with
dmax = 5 samples is utilized. The model order is chosen
based on the MDL metric. The flaw echo is located around
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FIGURE 5: The eigenvalues (a) of the flaw in reverberation measurements with an array: the MDL (b) and AIC (c) metrics.

12 us. It is seen that the flaw echo is enhanced significantly
after subspace-projection-based clutter removal, whereas
background subtraction retains a significant portion of
clutter.

4.3. Simulations: Independent Measurement of Reverberation
Clutter Unavailable. In this section, we examine the rever-
beration removal technique when reference measurements
of the flaw-free reverberation clutter are not available. This
can be the case where there is no access to a healthy
material. In order to allow clutter subspace estimation, we
use multiple positions of the transducers, thus forming a
synthetic array aperture that enables ultrasound imaging.
By moving the transducer in collinear positions, it becomes
equivalent to measuring the flaw with a linear array through
the reverberant layer. As such, a subset or all measurements
may contain flaw echoes, whereas all measurements contain
the strong reverberation signal due to the layer. Clearly,
clutter removal in this scenario is more challenging since
reference measurements required to form a clutter subspace
also contain flaw echoes.

We simulate an array measurement by moving the single-
element transducer in small steps on the surface of the
thin layer placed on top of the material. To simulate flaw
echoes impinged on reverberation measurements, the flaw
echoes are generated based on the assumed flaw location,
the geometry of the synthesized linear array, the respective
delay between the flaw and sensors, and the approximate
beamwidth of the measuring transducer. The beamwidth is
incorporated as a weighting factor on echo amplitudes based
on the flaw location with respect to transducer, as explained
in [20]. Further, the flaw echo multipaths are simulated
based on the assumed thickness and velocity of the layer
and its reflection and transmission coefficients. A typical
flaw echo and its multipath signals measured with the first
5 elements of the synthesized linear array (see Figure 1) are

shown in Figure 4, where the flaw is located in the range
of 1.35cm from the array boresight. The flaw echo and its
multipath signals received by the sensors close to the center
are stronger and have a shorter time of arrival than those
received by the sensors away from the center. To simulate
the flaw measurement through a reverberant layer with a
transducer array, we added these simulated flaw echoes to the
10 independent reverberation measurements obtained from
the healthy sections of the aluminum block.

Because the flaw signal is contained in the measured
waveforms that are used to construct the clutter subspace for
orthogonal projection, it is important to accurately estimate
the clutter subspace bases that are free of the flaw. As the
reverberation clutter is orders of magnitude stronger than
the flaw echoes, the clutter subspace can be limited to the
eigenvectors associated with the dominant eigenvalues. In
order to determine the dominant clutter subspace, we use
information theoretic criteria, AIC and MDL, that were
presented in Section 2. The flaw echo has a low correlation
with the clutter and its energy is much smaller than the
clutter energy. As such, its subspace is separate from the
clutter subspace and is associated with smaller values of
eigenvalues. The estimation of the flaw subspace dimension,
however, is not necessary since clutter removal is sufficient to
reveal the flaw echoes.

As seen from Figure 5, the dimension of the clutter
subspace is chosen as the value that minimizes the AIC (7)
or MDL (8) metric. In this case, both criteria provide the
same clutter dimension estimate of 5. The subspace-based
clutter removal algorithm is tested on the synthetic data
containing 10 reverberation measurements in the presence
of flaw echoes. Figure 6(a) shows the simulated flaw echo
and its multipath signals synthesized from data measured
at the 4th transducer in the synthetic array (see Figure 1).
Figure 6(b) shows the flaw echo and its multipath signals
added to the reverberation. As such, Figure 6(b) simulates
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FIGURE 6: Reverberation removal based on array measurements
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from the 4th transducer. (c) Reverberation removal via subspace
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the flaw echo measurement with the 4th transducer through
the thin layer. We apply the subspace projection technique
with clutter subspace dimension set to 5 based on the
MDL metric. The reverberation-suppressed signal is shown
in Figure 6(c). Although the flaw echo and its multipath
signals are clearly revealed, their amplitudes are smaller
than the original (Figure 6(a)) owing to the fact that part
of their energy lies in the clutter region. As expected, the
subspace projection method based on the measurements of
reverberations containing flaw echoes is less effective when
the clutter and flaw waveforms overlap.

The background subtraction technique does not work
for this case since flaw-free reference measurements of rever-
beration are not available. Direct application of background
subtraction yields all-zero signal (Figure 6(d)) since the best
match signal to the test signal (Figure 6(b)) is available in the
reference set.

In another simulation, the flaw echo and its multipath
signals are completely buried in reverberation (see Figure 7).
This time, the flaw echo and its multipaths, as shown in
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FIGURE 7: Reverberation removal in a high clutter area. (a) Simu-
lated flaw echo and its multipaths received by the 4th transducer
shown in Figure 1. (b) The flaw echo and its multipaths added
to the reverberation measurement. The flaw echoes are completely
buried in reverberation. (c) Reverberation removal via subspace
projection.

Figure 7(a), are much weaker (the first flaw echo amplitude is
set to 1) and buried in the dominant part of the reverberation
signal as shown in Figure 7(b). As before, this signal is
projected to the orthogonal subspace of the clutter with
dimension 5 to obtain the flaw-enhanced echoes, as shown
in Figure 7(c). The flaw echo and its multipath signals are
visible albeit with smaller amplitudes than their original
version. The remnants of the clutter are also visible but
weaker than the first three flaw echoes.

Finally, we demonstrate the flaw imaging capability of
the subspace projection technique in the presence of heavy
clutter. For this purpose, we utilize the backprojection
beamforming algorithm for synthetic aperture arrays as
described in Section 3.1. The imaging results are depicted in
Figure 8. Figure 8(a) shows the beamformed image of a flaw
in the test material without the thin layer (see Figure 1) based
on the simulated measurements of the flaw with the 10-
element synthetic array. Figure 8(b) shows the beamformed
image when the flaw is measured through the layer. To
simulate the array data associated with this image, the flaw
and its multipath echoes, as measured through the layer, are
added to the 10 independent reverberation measurements
collected with the synthetic array. Finally, Figure 8(c)
shows the beamformed image after the suppression of the
reverberation clutter in the array data using the proposed
subspace projection algorithm. The dimension of the clutter
subspace is estimated as 5 using the MDL criterion. The
positions of the 10-element synthetic arrays with respect to
the flaw are shown in the top of the image.



Advances in Acoustics and Vibration

Transducer array

100

200 200

300 300
e e
g £
=

£ 400 2. 400
j] j)
8 a

500 500

600 600

700 700

20 40 60 80 100

Lateral distance (mm)

(a) (b)

Transducer array

20 40 60 80 100

Lateral distance (mm)

Transducer array

Flaw Echo

Flaw
multipaths

300

400

Depth (mm)

500

600

700

20 40 60 80 100

Lateral distance (mm)

(o)

FiGure 8: The synthetic aperture array imaging of a flaw through a thin reverberant layer. (a) Simulated flaw echo measurement with a
10-element synthetic linear array. The transducer positions are shown on top of the image. (b) Flaw (a) and its multipath measurements
via the thin layer added to 10 reverberation measurements collected with the synthetic array. (c) Imaging after reverberation removed array

data. The flaw echo and its multipaths are clearly revealed.

It is evident from Figure 8 that the proposed clutter
removal algorithm effectively suppresses the clutter and sig-
nificantly enhances the visibility of the flaw echo and its first
few multipaths, which otherwise are buried in reverberation.
Further, the technique is very practical since it operates on
the existing array data and adds a negligible computational
complexity to the synthetic aperture beamforming imaging
algorithm and hence can be incorporated into real-time
ultrasound imaging systems.

5. Conclusions

In this paper we proposed a subspace learning and projection
technique for suppression of reverberation signals that
arise in detection and imaging of flaws through layers.
We addressed reverberation clutter removal in ultrasound
nondestructive evaluation (NDE) in the presence of very
strong reverberation. Two different cases are considered for
the application of the proposed technique. The first case uses
a set of flaw-free reference measurements of reverberation,
whereas the second case is based on array measurements
that contain flaws. For the first case, we have shown that,
by utilizing a set of reference reverberation signals obtained
from the healthy replica of the materials, the clutter can be

significantly removed with a negligible effect on the flaw
echoes. In the second case that applies to ultrasound NDE
imaging, we demonstrated that the clutter can be mitigated
by utilizing the array measurements without employing any
reference data. The effectiveness of the proposed clutter
removal techniques for both cases is verified by analysis and
experimental data. The proposed clutter removal technique
is computationally efficient and practical for array imaging.
It does not require any parameter tuning or the knowledge
of the screening layer propagation characteristics. As such,
it can be easily incorporated into the existing array imaging
systems with minimal complexity.
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Acoustic source mapping techniques using acoustic sensor arrays and delay-and-sum beamforming techniques suffer from bad
spatial resolution at low-aperture-based Helmholtz numbers. This is especially a problem for three-dimensional map grids, when
the sensor array is not arranged around the region spanned by the grid but on only one side of it. Then, the spatial resolution
of the result map in the direction pointing away from the array is much worse than in the other lateral directions. Consequently,
deconvolution techniques need to be applied. Some of the most efficient deconvolution techniques rely on the properties of the
spatial beamformer filters used. As these properties are governed by the steering vectors, four different steering vector formulations
from the literature are examined, and their theoretical background is discussed. It is found that none of the formulations provide
both the correct location and source strength. As a practical example the CLEAN-SC deconvolution methodology is applied to
simulated data for a three-source scenario. It is shown that the different steering vector formulations are not equally well suited for
three-dimensional application. The two preferred formulations enable the correct estimation of the source location at the cost of

a negligible error in the estimated source strength.

1. Introduction

In the context of acoustic measurements, methods based on
acoustic sensor arrays can be used to locate acoustic sources
and to estimate their strength [1]. In most cases, these meth-
ods are adopted to produce acoustic source maps. In general,
such maps can be thought of as an image of the spatial
distribution of an indicator quantity of source strength.
Acoustic source mapping techniques using beamforming
methods have been widely applied for the study of acoustic
sources (e.g., for trains [2], aeroacoustic testing [3, 4],
airframe noise [5, 6], noise source characterization at a heli-
copter [7], and jet noise [8]). These methods use the signals
from an array of acoustic sensors (mostly microphones)
to filter out the signal from a source at an assumed loca-
tion. Such a spatial filter behaves like a directional sound
receiver with a directional characteristic that favours sound
emanating from the assumed source location [9]. If several
of such spatial filters are applied in parallel for a number
of different assumed source locations, an acoustic source

mapping may be generated from the filter outputs. Usually
the assumed source locations are arranged in some sort of
grid and the amplitude of the output from each individual
filter is mapped on the respective grid location. Thus, the
filters constitute a mapping device.

The map produced by this device is an image of the
spatial source distribution. Ideally, it shall have the following
properties: if a certain assumed source location in the grid
coincides with an actual source location, the map shows a
higher value at this location. If there is no coincidence of
assumed and actual source location, the map shows a lower
value. Moreover, stronger sources shall result in higher values
in the map. Thus, the map provides information about the
location of the source, and it allows to estimate the strength
of the source.

The feasibility of this approach depends on the properties
of the beamformer mapping device as given by the point
spread function. The point spread function is the spatial
impulse response of the beamformer. It can be thought of
being the map that is produced if only one single point



source is present at a certain location. It shows the image of
the source as a spot at the source location (main lobe) that
is accompanied by a number of spots (side lobes) at other
locations and lower in level. This mapping is imperfect for
two reasons. First, the width of the main lobe limits the
spatial resolution because sources that are too close to each
other will produce a mapping very similar to that of a single
source. Second, the images of weaker sources may be masked
by the side lobes of a stronger source. The point spread
function depends on a number of factors: the number and
the geometrical layout of the array microphones, the array
aperture, the frequency, and the type and properties of the
filter. It also depends on the source location.

A number of deconvolution techniques have been devel-
oped to recover the true spatial source distribution from the
beamformer result by removing the influence of the point
spread function. Some rely on precalculated point spread
functions (e.g., DAMAS [10]), other approaches assess the
point spread function from the acoustic data recorded during
the measurement (e.g., CLEAN-SC [11]). A critical point,
especially for the latter techniques, is that they require the
maximum in the map to coincide with an actual source
position.

The beamforming source mapping approach is typically
applied using a planar two-dimensional grid. In this case,
all sources are mapped into one plane regardless of their
actual position. In situations where the acoustic sources
under test are not in a common plane (e.g., for complex
machinery parts, engines, and some aeroacoustic sources,
such as, landing gear and pantographs), this leads to an
erroneous source mapping. Therefore, a three-dimensional
mapping is desirable that allows source localisation in three
dimensions. In principle, the three-dimensional application
of beamforming techniques is straightforward and can be
easily realised by using a three-dimensional grid [12-20].
However, there appear to be some practical problems in the
application.

First, the resolution in the third dimension (depth-wise)
is much worse than in the other dimensions unless the
microphone array arrangement encloses the source region
to be mapped. The second problem is the larger number
of points in a three-dimensional grid. While for a two-
dimensional mapping some thousand grid points may be
sufficient, a three-dimensional grid can easily have some
hundred thousand points. Because one filter per grid point
is required to calculate the result, the computational effort
increases considerably. That is why most applications are
using only several ten thousand grid points.

As with two-dimensional map grids, the resolution can
be improved using deconvolution techniques also for the
third dimension. The computational effort connected with
these techniques is generally high and depends on the
number of grid points. Those deconvolution techniques that
require precalculated point spread functions (e.g., DAMAS
[10]) also require to solve a system of equations with as
many unknowns as there are grid points. The effort for the
estimation of the point spread function increases with the
fourth power of the number of grid points in the map grid.
The effort to solve the system of equations itself grows with
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the second to third power. Thus, the large number (hundreds
of thousands or more) of grid points required for a three-
dimensional mapping with fine spatial resolution renders the
application of these techniques inefficient. A possible solu-
tion that has been proposed [21] is to assume that the point
spread function is assumed to be shift invariant. Thus, the
effort would reduce substantially and it would increase then
only with the second power of the number of grid points for
the estimation of the point spread function and with some-
what less than the second power for the solution of the system
of equations based on the fast fourier transform. However,
this approach is limited to cases where the source region is
small compared with its distance to the array [21]. Thus, it is
not applicable to the general case of a larger source region.

Computationally less demanding deconvolution tech-
niques, such as, CLEAN-SC that do not require solving a
huge system of equations in turn need to find sources by
maximums in the three-dimensional map. Therefore, a final
problem in the three-dimensional application of beamform-
ing mapping techniques is to find spatial filters that have
the desired properties also in three dimensions to provide
these maximums. While this problem arises specifically for
deconvolution methods that require maximums in the map
to coincide with acoustic sources, it is relevant because
the computational cost increases roughly linearly with the
number of grid points. This makes these techniques most
appropriate for three-dimensional application and allows for
practical application with several hundred thousand grid
points [17-19].

The problem of desired beamformer filter properties
shall be considered here by comparing different spatial
filter characteristics given by different steering vectors and
analysing their properties with regard to three-dimensional
beamforming with deconvolution. In the remainder of this
contribution the theoretical basis for the beamforming
methods is briefly presented, and four different spatial filter
characteristics are discussed. Their properties are demon-
strated using a single-source scenario as an example. Finally,
a slightly more realistic case is considered. Simulated data
for three-dimensional source mapping is analysed using the
different beamformers and the CLEAN-SC deconvolution
approach. The results are compared with results from two-
dimensional source mapping.

2. Theory

First, the analysis of a single sound source located at x, using
an array of N microphones is assumed. The complex-valued
sound pressure p at the i-th microphone at x; is

p(xi) = a(xi, X0, Xs) g (). (1)

The strength of the source is characterised by the sound
pressure g at the reference location xy due to that source.
Though in principle x, can be freely chosen, for the purpose
of the following analysis it is set to the array centre at
(1/N) S¥ | x;. The transfer function a depends on the type of
the source, its location x;, and the environmental conditions.



Advances in Acoustics and Vibration

If a monopole source under free-field conditions is assumed
and no flow is present, the transfer function is given by:

TS0 _ik(r,—
a(xi, X0, X;) = e K0,

(2)

S50

with r;; = |x, —x;| and 750 = |X; — Xo| indicating the distance
between the source and the microphone location and the
distance between the source and the array centre location,
respectively, and k is the wave number. The vector of sound
pressures at the microphones due to a source at x; is given by
P = a(Xo,X,)q(x,). The transfer vector a(xy,X;) contains all
respective transfer functions and accounts for the individual
time delays and attenuations of the sound that travels from
the source to the microphones.

The beamformer filter is realised by calculating the
weighted sum of the microphone sound pressures using
complex-valued weight factors. The vector h(x;) of these fac-
tors is called the steering vector and depends on an assumed
source location x;. The filter output is then:

pr(x) = h(x))"p, (3)

where the superscript H denotes the hermitian transpose.
Instead of pr, the real-valued autopower spectrum B of the
filter output can be used as a quantity to construct a source
map. Using the cross spectral matrix of microphone signals
G, it can be written as

B(x;) = E{pr(x,)p; (x))} = h(x,)E{pp" |h(x,)

= h (x,)Gh(x,),

(4)

with E{} denoting the expectation operator and the super-
script * denoting the complex conjugate.

Two properties of the beamformer filter are desirable
for a successful application in the case of acoustic source
mapping. First, the filter should provide maximum output
power when the assumed and the actual source position are
the same:

B(x; = x) > B(x; #X,). (5)

This property is essential to have a map showing the peak
value at the source position. Second, if the assumed and the
actual source coincide, the filter output should be a measure
of the source strength. This is true, if

B(x; = x;) = CE{qq*} (6)

holds, where C is an arbitrary constant.

The properties of the beamformer filter are governed
by the steering vector. This vector depends on the assumed
source location x; also referred to as steering location. While

Source

® @ O

Microphone
O array
Assumed

source

X[>< O

FiGURrE 1: Microphone array and distances to actual and assumed
source location.

Xs

not further considered here, it can be noted that it may
also depend on the measured data itself and adapt the filter
properties to the data. Sometimes the distance between array
and source is very large and a plane wave propagation can
be assumed. In this case, x; is replaced by the direction
of arrival and the distance between array and source is set
to be practically infinite. However, for three-dimensional
application this approach is not feasible.

An in-depth examination of the literature on acoustic
beamforming reveals that there are at least four choices
available regarding the formulation of the steering vector
elements h; under these circumstances. In the following,
these formulations are presented and analysed regarding the
desirable properties stated in (5) and (6).

2.1. Formulation I. The most basic idea is to simply com-
pensate for the phase delay [22] between assumed source
and the individual microphone. The steering vector elements
are then derived from the phase part of the transfer vector
elements for the assumed source location:

1oL aixox) 1 eng)

= Nlaox) ~ N° : @

The latter part of this equation holds if the transfer function
from (2) isassumed and r;; = |x;—x;| and r;p = |x,—X| (see
Figure 1). Given this steering vector formulation that shall be
referred to here as “formulation I”, the output power of the
beamformer filter can be derived for the case x; = x;:

N 2
1
Bx =x) = [ =222 E{gq*}. (8)
N D s
Because SN, (roo/rsi) ~ N, the output is an estimate of

the source strength. However, it becomes obvious that the
condition (6) is met only approximately.

Condition (5) requires a local maximum of B(x;) at x; =
X;. A necessary condition for this is that all partial derivatives
of B with respect to the elements of x; are zero. For this, it is
sufficient to have

iB(xt) =0, %B(Xt) =0. 9)

bi Xt =X; X =X;



This holds for the partial derivatives that can be computed
when the steering vector given by (7) is applied in (4). Thus,
the necessary condition to have a maximum response at the
source location is met in this case.

2.2. Formulation II. Another formulation of the steering
vector that is frequently used in the literature (e.g., [3, 5])
aims at compensating also for the amplitude:

11 1

i

1 ai(xex) _ 1
N ai(x0,X¢)a] (x0,X:) N e

e—jk(fz,x—fr,o). (10)

This formulation assures that condition (6) is met because
B(x; = x;) = E{qq*}. However, this comes at the cost that
the derivatives in (9) do not vanish. There is no maximum at
X; = X;, and consequently condition (5) is not met.

2.3. Formulation III. The third formulation of the steering
vector [23] that should be discussed is based on the idea
that signals from the assumed source position should pass
undistorted through the filter, so that B(x; = x;) = E{qq™}.
At the same time signals from all other positions should
be attenuated as much as possible. This is equivalent to
minimising the filter response to spatially white noise [24].
By solving this optimisation problem, the formulation

ai(xo, X¢) _ 1

= e_jk(rt,i—rt,o)
afl (%0, x)a(x0, %) ror; SN (1/@)

m _

(11)

arises. The steering vector here is parallel to a(xo,x;) when
X; = X,. Again, this formulation does not meet condition (5).

2.4. Formulation IV. Formulation IV introduces a steering
vector that is also parallel to a(xo,x;) when x; = X, but
uses a normalisation to ensure that hh; remains constant.
This formulation is usually developed via a least square
minimisation of the error between modelled and measured
sound pressures at the microphones (e.g., [4, 8]). Using the
normalisation h}h; = 1/N, the formulation reads

v _ 1 ai(xo,X;)
i VN +fafl (xg, x¢)a(xo, X¢)
| (12)

_ e—jk(rr.i—rr,o)'

rria| N Z;\;l (l/rtz,j)

In this case condition (5) is met, but the response for x; = x;
is only an approximate measure of the source strength:

LN
B(x; = x,) = NZS—&OE{qq*}. (13)

i=1"si

2.5. Comparison of Formulations. It can be concluded that
in theory neither of this four formulations of the steering
vector has both properties desirable for the application
of the beamformer to acoustic source mapping. The first
formulation (7) and the fourth formulation (12) provide
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the correct location but produce an error in the source
strength and both the second formulation (10) and the third
formulation (6) provide the correct source strength, but
the maximum does not coincide with the correct location.
However, it should be borne in mind that for practical
application it suffices to get approximate estimates of both
location and source strength with acceptable accuracy.

In contrast to the theoretical model used up to here, in
a practical scenario there is often more than one source.
The beamformer output is then a superposition of con-
tributions from the individual sources. Thus, the presence
of multiple sources has an impact on the performance of
the beamformer filter (see [23]). If the signals from these
sources are mutually uncorrelated, B(x;) is the sum of their
nonnegative contributions. In such a case the results will
deviate somewhat from those of the mathematical analysis
presented for the one source scenario. Any conclusions that
were derived for the properties of the different formulations
regarding conditions (5) and (6) are not rigorously valid,
but only approximately. This becomes especially important
when sources are closely spaced with distances less than the
wavelength. As a consequence, the low-frequency application
of source-mapping beamforming techniques leads to results
of limited value. Appropriate deconvolution techniques may
improve the results in this case and are frequently applied for
this reason.

While for all four formulations of the steering vector
meaningful practical results have been reported for acoustic
source mapping applications, there are no results available
yet that compare the mappings produced by the appli-
cation of these different steering vectors. Moreover, the
vast majority of these applications use two-dimensional
mapping grids and assume a priori that all relevant sources
are located in the mapping plane. A three-dimensional
mapping grid does not need this assumption but will usually
require a deconvolution technique to deal with the otherwise
inadequate depth-wise resolution.

The large number of points in a three-dimensional
mapping grid calls for an deconvolution technique that is
computationally efficient. Computationally less demanding
deconvolution techniques, like CLEAN-SC, rely on the
correct estimation of the source location from the maximum
in the map. Because of this requirement, it is important to
assess the quality of the results that follow the application
of the different formulations of the steering vector for
three-dimensional source mapping. In what follows, the
effect of using different steering vector formulations shall
be analysed for both two- and three-dimensional acoustic
source mapping on the basis of simulated measurements.

3. Results

Most practical applications are concerned with sources that
are not compact but spatially extended. A usual assumption
is to assume that the sources can be seen as spatial
distributions of uncorrelated point sources. Thus, in order to
analyze the different steering vectors, no extended source is
considered here but a simple point source scenario. Results
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FIGURE 2: Set-up used for the simulations: 64-channel microphone array and three uncorrelated sources A, B, C with identical source
strength, coordinates, and lengths are nondimensionalised by the array aperture.

for practical cases with extended sources that use three-
dimensional mapping can be found elsewhere [18, 19, 25].

The source mappings that should be discussed here
are based on simulated data that was generated using the
set-up shown in Figure 2. It uses a 64 microphone array
to analyse three point sources. The microphone array is
planar and has a layout that consists of 7 spiral arms that
contain 9 logarithmically spaced microphones each and
an additional microphone in the centre. The aperture d
of the array, defined by the diameter of the smallest circle
containing all microphones, is used as a scaling parameter in
the analysis. All coordinates and lengths in the analysis are
nondimensionalised by the aperture. Frequencies are given
in nondimensional form as Helmholtz numbers He = d/A =
fd/c with A being the wavelength and ¢ being the speed of
sound.

The positions of the sources are chosen randomly to span
a region with lateral dimensions comparable to the array
itself. The distance to the array varies between 0.75 and 1.25
apertures. This choice was made because the application
of threedimensional source mapping is most interesting
when distances of the sources to the array are somewhat
different. However, very large ratios of the distances (i.e.,
one source very close and another source far away) are not
likely to appear in a practical application. Altogether the
scenario is somewhat representative of a situation where the
object under test has dimensions comparable to the aperture.
Typically this would allow for the beamforming analysis at
frequencies with wavelengths much smaller than the object.
An aperture much larger than the object is desirable for
the analysis at lower frequencies. When the application of
large aperture arrays is not practicable, the analysis requires
deconvolution methods. As results from deconvolution are

of special interest here, a scenario representative for this case
was chosen as illustrative example.

The simulated microphone signals were calculated using
a transfer function similar to (2). The point sources were
driven by simulated white noise signals from different gaus-
sian random processes to ensure that they are not coherent.
All three sources had the same power. Nevertheless, because
of the different distances to the array plane and therefore also
to the array centre xo, the relative sound pressure levels at xg
due to the individual sources were different: 0 dB, 1.7 dB, and
—2.2dB for source A, B, and C, respectively.

The array was placed in the plane z = 0 and two different
grids were used. The first grid used for the three-dimensional
source mapping covered a block-shaped region with —1 <
x <1,-1 <y < 1,and 0.125 < z < 2. It had a uniform
grid spacing of 1/32 aperture and the overall number of grid
points was 257, 725. The second grid for two-dimensional
source mapping in a plane parallel to the array had the same
spacing and had the same extent -1 < x < 1, -1 < y < 1,
but for z = 1. The overall number of points in this case was
4225. The simulated microphone signals were sampled at a
rate that corresponds to He = 64. A fast Fourier transform
with prior von Hann weighting was applied for every channel
to 1000 consecutive, 50% overlapping blocks of 1024 samples
each. All 642 cross spectra were calculated and averaged over
the 1000 blocks to produce the cross spectral matrix.

The quality of an acoustic source mapping can be
determined by evaluating the errors in the source levels and
source locations that are estimated using the mapping result.
According to the definition in (1), the source level,

*
Ly = 1010g10%dB, (14)

ref
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FIGURE 3: Maps of sound pressure level contributions at the array centre (in dB relative to the correct value) for steering vector formulations
I-1V, Helmholtz number He = 2, y = 0, white dot: location of the maximum, cross: true source location.

of a certain source is defined as the sound pressure level
calculated from the sound pressure g at the array centre
caused by that source (prf is the reference sound pressure).
The estimated source level is then

B
Le = 1010g10pTdB, (15)

ref

and the error in this level is given by AL = L, — L,, where L,
is taken to be the true level.

The source location is a vector quantity and involves
three components. While the error here could be given as
the distance between the true and the estimated location, this
quantity is always positive and contains no information on
the spatial arrangement. Instead, the error in the estimated
source location shall be defined here as an error of the
distance r between source and the array centre. It is given
by Ar = r, — r5, where r, and r, are the estimated and true
distances, respectively. As it is reasonable to assume that this
error will also increase with the distance, it is used here in the
normalised form Ar/r;. As the errors in source location and
level also depend on the frequency, they are discussed here
regarding their dependence on the Helmholtz number.

3.1. Single Source. In the first test case, only source A was
operated. In this simple single source scenario it is feasible
to use the classic beamforming approach (4) and to do
without a deconvolution technique. In Figure 3, the results
for all four formulations of the steering vector (I-IV) are
compared for He = 2. The source mapping itself is three-
dimensional. However, for clarity of presentation only a slice
of the mapping along the plane y = 0 (perpendicular to
the array plane) is shown which contains the true source
location. The four formulations obviously lead to different
mapping results. In agreement with the theoretical analysis,
both formulations I and IV meet the condition (5) that
the maximum in the map coincides with the actual source
position. For both formulations II and III the maximums in
the map are situated somewhere between the actual source
position and the array centre. Thus, it would not be possible
to estimate the exact source position from the maximum in
the source mapping. The actual source position is located

on the 0dB contour for both formulations II and III. In
agreement with theory, this shows that condition (6) is met.

While for formulations I and IV the error in source
location as shown in Figure 4(a) is zero regardless of He,
for formulations II and III; this error becomes less than
5% only above He ~ 5. However, the estimated distance
between array centre and source is never larger than the
actual distance.

In the present case, the only option to estimate the
source level is to use the maximum in the map. Figure 4(b)
shows the error in comparison for all four formulations.
Formulations T and IV show constant, small errors that
follow the theoretical analysis in (8) and (13), respectively.
For low Helmholtz numbers, the formulations II and III
lead to larger errors because of the error in the estimated
source location (the value at the location of the maximum
in the map taken as source level). The error vanishes for
larger Helmholtz numbers which is in agreement with the
theoretical analysis.

3.2. Three Sources, Two-Dimensional Mapping. The second
test case where all three sources are operated is a slightly more
realistic scenario. In this case, the strength and the location
of all three sources are of interest. If a classic beamforming
approach with the mapping plane parallel to the array is
used, the two-dimensional beamforming maps (Figure 5)
show only minor differences for the four formulations. While
only source A is actually located in the mapping plane at
z = 1, contributions from all three sources appear in the
maps. Thus, without any further analysis the maps suggest
that all sources are located within this plane.

With the exception of source A, the maximums do
not coincide with the projected source positions for both
Helmbholtz numbers shown. The reason is that sources B
and C are not located in the mapping plane. The results
show the tendency to map the sources nearer to the array
more into the direction of the projected array center, while
sources with a distance greater than that of the mapping
plane are mapped to a an apparent position further away
from the center. If there is no information available about
the true distance between source and array, there is no way
to estimate the exact source positions from the mapping
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FIGURE 4: Errors in (a) source location and (b) source strength for formulations I-IV as a function of the Helmholtz number He.
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FIGURE 5: Maps of relative sound pressure level contributions at the array centre (correct values are 0 dB, 1.7 dB, and —2.2 dB for source A,
B, and C, resp.) using classic beamforming without deconvolution for steering vector formulations I-IV, Helmholtz numbers He = 2 and 4,

z = 1, crosses mark the projected position of the sources.

result. For the same reason, it is not feasible to estimate the
source strength or to rank the sources using the result from
the two-dimensional mapping. While all sources have the
same source strength, the result shows the respective sound
pressure level contribution at the array centre. If all sources
are assumed to be within the mapping plane, B then appears
to be the strongest and C appears to be the weakest source.
At the lower frequency shown (He = 2), the sources
are less clearly distinguishable because of the large main
lobe width at this frequency. If the source spacing would be
smaller, the same would happen even at higher frequencies.

Thus, the result can be improved if the real beamformer filter
properties are taken into account by using a deconvolution
technique. In the present case, the deconvolution method
CLEAN-SC was applied (see [11] for more details) to the
beamforming map. The result is a map that shows nonzero
entries only at those grid points where a source is found.
This corresponds to a negligible main lobe width regardless
of frequency.

When applied to the two-dimensional beamforming
results from Figure 5, CLEAN-SC delivers maps that allow
for an easy separation of the sources even at the lower
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FIGURE 6: Maps of relative sound pressure level contributions at the array centre (correct values are 0 dB, 1.7 dB, and —2.2 dB for source A,
B, and C, resp.) using CLEAN-SC on a two-dimensional grid at z = 1, for steering vector formulations I-IV, Helmholtz numbers He = 2 and

4, crosses mark the projected position of the sources.

frequency (Figure 6). Similar to the result from classic beam-
forming, these maps show all sources as they where situated
in the mapping plane. The estimated locations of sources
B and C again do not coincide with the projected source
positions. The four different steering vector formulations
lead to some differences in the estimated source level but
show no divergent effects otherwise. To summarise, these
results allow to conclude that there are at least three sources,
but the information about the (projected) location is limited
and a ranking of the sources is not possible.

The effect on the estimated source level as a function of
frequency can also be estimated. If the source positions are
known, the source level can be estimated from the map by
simply taking the values at the grid points that are located at
source positions. To allow for small errors in the estimated
source positions, in the present case the source level was
estimated by integrating over small square regions of the
map. These regions were centred at the nominal source
positions and had a side length of 0.1 array apertures.

The results in Figures 7(a), 7(c), and 7(e) show that
the errors of the estimated source levels tend to be larger
at very low Helmholtz numbers and become smaller for
He > 2. However, for the sources B and C that are not
situated within the mapping plane, the error again increases
above He = 8, obviously as a result of the wrong mapping.
Similar to the result shown in Figure 6, the four different
steering vector formulations show only small differences,
with formulations I and IV giving somewhat smaller levels
compared to formulations I and II.

3.3. Three Sources, Three-Dimensional Mapping. More infor-
mation can be gathered when the deconvolution is applied

to a three-dimensional beamforming map. To study the
results in comparison to two-dimensional beamforming, the
analysis of a slice from the three-dimensional result is one
option. Figure 8 shows such a slice at z = 1 that is equivalent
to the mapping plane shown in Figure 2. Sources B and C
that are not situated within this plane do not appear in any
of the maps. Source A is within the plane but appears only for
formulations I and IV and in case of formulation III for the
higher frequency (He = 4). The reason for the absence of any
source in the remaining maps is that the sources are mapped
at the wrong position in the z direction. This becomes
obvious in the two-view orthographic projections (Figure 9)
of the three-dimensional map that is another option for the
graphical representation of the result.

The projections along the y-axis (x-z-plane) reveal that
the sources are indeed mapped much closer to the array as
they really are for formulations II and III and low frequencies
(He = 2). For formulations I and IV, the error in the location
is much smaller at this frequency but not zero (Ar/r, =
+0.1- - -0.2). This effect is present only for the multisource
scenario. It can be attributed to the fact that the location
of the maximum in the beamforming map for a certain
source is slightly shifted by the influence of other sources.
For He = 4, no error is visible in the maps with exception of
source A and formulation II. This small error also vanishes at
even higher frequencies. While the estimated source levels are
somewhat different for the different formulations, the errors
are small, and no formulation seems to produce distinctly
smaller errors than the others.

Finally, the error of the estimated source level shall be
examined. Again, the source level was estimated by integrat-
ing over regions with a side length of 0.1 array apertures
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FIGURE 7: Errors (in dB) in the estimated sound pressure levels for formulations I-IV: (a, b) source A, (¢, d) source B, and (e, f) source C.



10 Advances in Acoustics and Vibration
LHe=2 I, He =2 IIL, He = 2 IV, He = 2 4
T T T T T T T T T T T T T T T T T T T T
05 | 4+ - 4+ -
2
- X 4F X . X 4 b X -
B
-0.4dB -0.4dB 0
y  0F A4 X A x 4 F -
| 1L | 1L 1 -2
C
~05 | X 1L X . X 4k X . -4
L L L L L L L L L L L L L L L L L L L L
-6
ILHe =4 IILHe=4 III, He = 4 IV,He =4 4
T T T T T T T T T T T T T T T T T T T T
05| 4+ - 4+ -
2
- X 14 F x . X 4 F x -
-0.5dB —0.2dB —0.4dB 0
y  0F 4k X 1+ ]
| 1 L i 1 L | -2
sk x 4 F  x . X 4F  x 4 H-4
| | | | | | | | | | | | | | | | | | | |
-0.5 0 0.5 -0.5 0 0.5 -0.5 0 0.5 -0.5 0 0.5 -6
X X X X

FIGURE 8: Slices at z = 1 of three-dimensional maps of relative sound pressure level contributions at the array centre (correct values are
0dB, 1.7dB, and —2.2 dB for source A, B, and C, resp.) using CLEAN-SC on a three-dimensional grid for steering vector formulations I-1V,
Helmholtz numbers He = 2 and 4, crosses mark the projected position of the sources.

centred at the source position, but this time the regions
were cubic shaped. Figures 7(b), 7(d), and 7(f) show the
errors of the estimated source levels for all three sources. The
results for formulations I and IV are again very similar and
show a small negative error over a wide range of Helmholtz
numbers. This error is consistent with the results from the
theoretical analysis in (8) and (13) and is negligible for most
practical applications. In contrast to the theoretical analysis,
the error does not vanish completely for formulations IT and
I, though it is also negligibly small. For lower Helmholtz
numbers, the beamforming and deconvolution method
maps the source to a location outside the sector used for
the integration. Thus, the estimated source level becomes
infinitely small and consequently AL = —co. While this is
the case for He < 2 for all three sources and formulations I
and IV, the estimated source level for formulations II and
III vanishes already below He ~ 3 - - - 4. The error does not
increase for higher Helmholtz numbers as it is the case for
the levels estimated from two-dimensional mapping.

It can be concluded that the principal theoretical findings
regarding the different formulations I-IV in a single-source
scenario remain true for the multiple source case: formula-
tions I and IV deliver the correct source locations already for
low Helmholtz numbers but show a small systematic error in
the estimated source level. Formulations II and III deliver a
slightly less erroneous level, but only for higher Helmholtz
numbers, when the error in the estimated source location

is small enough to place the source within the integration
sector. Thus, for the given scenario the practical differences
between the different formulations are generally small for
higher Helmholtz numbers. However, in applications where
small Helmholtz numbers arise, only formulations I and IV
can be applied.

Because the errors in source level are very small for all
formulations, formulations I and IV seem to be preferable
for the practical application of three-dimensional acoustic
source mapping using a beamforming approach. Moreover,
once the correct position of a source is estimated, the
systematic errors in the source levels for formulations I and
IV can be corrected for by taking into account the factors
in (8) and (13), respectively. Finally, formulation I has the
extraadvantage that the calculation of the steering vectors
requires less arithmetic operations.

4. Conclusion

A crucial element for the three-dimensional application of
beamforming source mapping techniques using a micro-
phone array is the formulation of the steering vectors. It was
shown here that four different formulations found in the
literature lead to different results. In theory, no formulation
produces both correct source location and strength. Two
formulations lead to the correct location at the cost of a
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FIGURE 9: Projections of three-dimensional maps of relative sound pressure level contributions at the array centre (correct values are 0 dB,
1.7dB, and —2.2dB for source A, B, and C, resp.) using CLEAN-SC on a three-dimensional grid for steering vector formulations I-1V,
Helmbholtz numbers He = 2 and 4, crosses mark the projected position of the sources.

small error in the estimated source strength. The other two  aperture. In a simulated three-source scenario with CLEAN-
formulations estimate the correct strength but show an error SC deconvolution, all four formulations lead to small errors
in the estimated location of the source. Using simulated  in the estimated strength of the sources. Unlike the systematic
measurement data, it was shown that this error is relevant  errors in source location, the systematic errors in the level
especially at low Helmholtz numbers based on the array  can be corrected for in principle. Thus, the major conclusion
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is that for three-dimensional source mapping those steering
vector formulations are preferable that enable the best
estimation of the source location, for example, formulations
TorIV.
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A common current practice for transducer field mapping is to scan, point-by-point, a hydrophone element in a 2D raster at
various distances from the transducer radiating surface. This approach is tedious, requiring hours of scanning time to generate
full cross-sectional and/or axial field distributions. Moreover, the lateral resolution of the field distribution image is dependent
on the indexing steps between data points. Acoustography is an imaging process in which an acousto-optical (AO) area sensor is
employed to record the intensity of an ultrasound wavefield on a two-dimensional plane. This paper reports on the application
of acoustography as a simple but practical method for assessing transducer field characteristics. A case study performed on a
commercial transducer is reported, where the radiated fields are imaged using acoustography and compared to the corresponding

quantities that are predicted numerically.

1. Introduction

An important aspect of transducer quality control is to assess
the radiated ultrasonic field characteristics, which can be
affected by factors such as piezoelectric element misalign-
ment with respect to transducer housing, material inho-
mogeneity, lack of bonding, electrode design and contact
placement, acoustic lens quality, and wear plate uniformity
and adhesion, to mention a few. A common practice for
assessing beam characteristics is to scan a small hydrophone
element point-by-point in a plane perpendicular to the
transducer’s radiation axis [1, 2]. This generates a 2D cross-
sectional field distribution at a given distance away from
the transducer’s radiating surface. To generate a 3D field
distribution, 2D cross-sectional distributions are generated
at increasing distances along the radiation axis. Hydrophone
scanning is slow and tedious, requiring many hours of
scanning time to generate the complete field characteristics
of the transducer. Moreover, the lateral resolution of the
hydrophone scanning method is dependent on the indexing
steps between data points as well as the hydrophone element
size.

Acoustography [3, 4] is a full-field ultrasonic imaging
process wherein an acousto-optical (AO) area sensor is
employed to convert ultrasound into a visual image in real
time. The AO sensor converts ultrasound energy directly
into a visual image by virtue of the inherent acousto-optic
effect in our proprietary liquid crystal (LC) or “mesophase”
material contained in the AO sensor [3-5]. Theoretical
and experimental investigations into the dynamics of liquid
crystal devices have been performed to assess the role of geo-
metrical and liquid crystal properties in similar devices [6, 7].
Liquid crystal devices utilizing the AO effect have found
utility in acoustic holography [8], medical imaging [9],
optical devices [10], and the inspection of composites [11].

In this paper, we report on the application of acoustog-
raphy for mapping transducer fields. Since it can yield high
spatial-resolution recordings of a 2D cross-sectional field dis-
tribution without the need for mechanical scanning, acous-
tography represents a simple and practical method for this
application. Experimental studies are conducted in which
acoustography is employed to map the fields produced by a
commercial transducer at a collection of distances along the
transducer’s radiation axis. These recordings are compared



to estimates of the fields obtained by numerically solving the
associated Rayleigh diffraction integral.

2. Background: Basic Principles of AO Sensors

In the AO sensor used in this work, the LC molecules are ini-
tially arranged to be parallel to each other but perpendicular
to the confining substrates; confining substrates are acousti-
cally transparent, but one of the substrates is also optically
transparent. In this configuration of the molecules, the LC
material behaves like a slab of a uniaxial, positive birefringent
crystal with optic axis parallel to the LC molecular alignment
direction (n). For such an LC layer, the optical behavior (i.e.,
brightness change, T) under polarized light can be described
by [12]:

T=sin2[(27;—d) ~(np —ny) -sinZQ(I)], (1)
where d is LC layer thickness; A is wavelength of light; »
is refractive index of LC along the optic axis (n); n, is
refractive index of LC perpendicular to optic axis (n); 0(I)
is ultrasonically induced tilt angle of the LC molecules that is
a function of the ultrasonic intensity I.

In the absence of an ultrasound field, the molecular
tilt angle, 6, is zero, and the AO sensor is uniformly dark
across the field of view. However, when an area of the AO
sensor is exposed to an ultrasonic field, the LC molecules
experience a torque [13], which tilts the LC molecules in the
ultrasonically exposed region of the AO sensor. As a result,
the ultrasonically exposed area of the AO sensor appears
bright. Figure 1 illustrates this process. The local induced
brightness level of the AO sensor is related to the local
ultrasonic intensity [13]; therefore, an ultrasonic intensity
image can be created from the visual image of the AO sensor.

The lateral resolution in acoustography is very high
because the visual image is created by the local interaction
between the ultrasound field and the (~2 nanometer) LC
molecules. In practice, the transverse resolution of this
method is limited by the optical camera used to image the AO
sensor. For this study, an optical system with 0.31 mm pixel
size was chosen; however, higher-resolution optical cameras
may be used when the application warrants it. The contrast
resolution in acoustography depends on the AO sensor’s
acousto-optic transfer curve [6, 8], which is analogous to the
characteristic curve of an X-ray detector. The AO transfer
curve expresses the relationship between ultrasonic intensity
and the corresponding optical density (brightness level).

3. Methods

3.1. Imaging System. Figure 2 displays an overhead view of
the acoustography imaging system. The system consists of a
water-immersion tank with dimensions 36" (L) x 36" (W) X
12”(D); a 1” diameter flat circular test transducer (GE
Inspection Technologies) suspended in the water tank; a 5" X
5'" area AO sensor; a digital video camera (Basler A311, not
shown) housed in the Optics Box. The optical system has an
effective pixel size of 0.3l mm X 0.31 mm. The test trans-
ducer was attached to a moveable slide, where the position
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(b) AO sensor stimulated with ultrasound (area shown as
bright spot)

FiGure 1: In panel (a), a schematic of the AO sensor before
insonification by an ultrasound field is shown alongside an image of
the AO sensor, when the LC molecules are aligned along the optical
axis. In panel (b), a schematic of the AO sensor after insonification
by an ultrasound field is shown alongside an image of the AO sensor,
when the LC molecules have been perturbed by an ultrasound field.

of the movable slide could be set with an accuracy of =1 mm
with respect to the position of the AO sensor. The beam angle
of the test transducer was set with an accuracy of better than
0.5°.

3.2. Experimental Studies. For a flat, circular transducer, such
as the one used in this experiment, the ultrasonic intensity
along the central axis of the transducer can be expressed as
[14]

%zsinz[%(m—z)], (2)
where I1(0) is the maximum intensity, I(z) is the intensity at
distance z from the transducer radiating surface, r is radius
of the transducer radiating element, and A is the acoustic
wavelength in water. Two-dimensional images of the radia-
tion pattern of the cylindrical transducer were made at four
distances, as measured along the central axis of the trans-
ducer. Each measurement distance corresponded to either a
minimum or maximum of the intensity along the axis (see
Figure 3), or a point in the far-field of the transducer. The
transition between the near-field and the far-field for this
transducer was calculated to be at 35.3 cm.

The nominal frequency of the transducer was 3.5 MHz.
However, the transducer was operated at 3.3 MHz to match
the operating frequency of the AO sensor. The transducer
beam angle was set at 21° with respect to the AO sensor
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FIGURE 2: An overhead view of the acoustic imaging system.

1 R e - studies. The simulations, performed using the DREAM
09y ¥:0.9998 el g 4556 Toolbox for MATLAB [15], calculated the spatial impulse
2 08¢ " response of a 0.95" diameter transducer on a plane rotated
= P p
= 071 by 21° with respect to the central axis of the transducer,
g o6y a distance z away (where z corresponds to the various
£ g'z I measurement distances). The pixel size was chosen to be the
E) 0‘3 I same as the effective pixel size of the AO sensor + optical
Té‘ oo | system: 0.31 mm X 0.31 mm. The choice of 0.95" for the
g o1l - transducer diameter was chosen to best match the experi-
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FIGURE 3: Intensity profile along the central radiation axis of a 1”
diameter transducer element operated at 3.3 MHz.

normal, to avoid reverberations between the AO sensor
and the transducer’s radiating surface. The transducer was
energized using a continuous wave (CW) signal.

For each measurement distance, the intensity map on the
AO sensor was captured after less than 10 seconds of insoni-
fication. Image capture and processing by the camera system
was performed in 30 seconds. The AO sensor has a reset time
(to realign the LC molecules) of less than 5 seconds. Thus,
the ultrasound intensity at >22,00 distinct spatial positions
(142 x 156 array) was measured in less than 35 seconds
total.

3.3. Computer-Simulation Studies. Simulations of the ultra-
sonic field produced by a 1" transducer were also performed
to corroborate the images acquired in the experimental

plane and one temporal dimension to represent the time-
varying ultrasound field). The discrete Fourier transform of
the resulting time series at each pixel in the measurement
plane was computed by use of the fast Fourier transform
algorithm. The element of the discrete Fourier transform,
most closely corresponding to 3.3 MHz at that pixel, was
selected. The resulting 2D data, corresponding to a mono-
chromatic ultrasound field at 3.3 MHz on the measurement
plane, were then squared to represent the ultrasound inten-
sity. The simulations assume a perfectly flat transducer with
specified diameter.

4. Experimental Results

4.1. Experimental and Simulated Images. The first column of
Figure 4 displays the ultrasonic field maps recorded by use
of the AO sensor in the experimental studies. Specifically,
the images depict the field intensity distributions on planes
located at distances z = 11.76cm (panel (a)), 17.67 cm
(panel (d)), 35.36cm (panel (g)), and 49.36cm (panel
(j)) from the transducer face along the radiation axis.
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FIGURE 4: Images of the experimentally determined transducer radiation patterns are shown in the first column. In the second column,
theoretically determined transducer radiation patterns are shown. Line plots through the center of the experimental data (black dashed
lines) and the theoretical data (blue solid lines) are shown in the third column. The first row corresponds to a propagation distance of
11.76 cm (the location of an intensity maximum on the optical axis in the near zone). The second row corresponds to a propagation distance
of 17.67 cm (the location of an intensity minimum on the optical axis in the near zone). The third row corresponds to a propagation distance
of 35.36 cm (the near-zone/far-zone transition distance). The fourth row corresponds to a propagation distance of 49.36 cm (a distance in
the far zone).
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The distances were chosen based on the on-axis intensity
profile in Figure 3. The ultrasound intensity in these images
was displayed in decibels.

The corresponding simulated intensity images are dis-
played in the middle column of Figure 4. The simulated
intensity data was scaled so that the peak intensity in each
simulation matched the peak intensity in the corresponding
experimental data. Plots along the y-axis (x = 0) of both
the experimental (black dashed lines) and theoretical (blue
solid lines) results are shown in panels (c), (f), (i), and (1) of
Figure 4.

4.2. Discussion of Results. One notes that there is an overall
qualitative agreement between the intensity patterns gener-
ated through simulation and those obtained with the AO
sensor. Comparisons of the intensities in the first and second
columns of Figure 4 show strong agreement in predicting
the ring structure in the near-zone measurements (first and
second rows). For example, in Figure 4(c), the experimen-
tal measurements illustrate the same peak-trough-shoulder
structure as the theoretical results do for z = 11.76 cm. The
experimental data also matches the theoretical model in pre-
dicting the depth of the trough (y = 2 mm) between the two
intensity peaks (y = —3mm and y = 5mm) in Figure 4(f)
(z = 17.67 mm) as well as the predicting the presence of the
intensity shoulders at y = 9mm and y = 14 mm. The height
of the shoulders is slightly underestimated by the simulation
results, however. In Figures 4(i) and 4(1), one notes that the
simulation matches the experimental results in predicting
the width of the radiation pattern as well as predicting
the intensity shoulder at y = +10mm in panel (i). The
simulation underestimates that shoulder height, however.

The quantitative agreement between the two results may
be improved upon through better modeling of the dynamics
of the ultrasound field in the AO sensor. The transmission
of the ultrasound field through the substrate and into the LC
layer of the AO sensor is not accounted for in this analysis.
Because of the large speed-of-sound mismatch between the
substrate layer (~5000m/s) and water (~1500m/s), the
transmission of various components of the angular spectrum
[16] of the ultrasound field can vary greatly. By accounting
for the transmission of sound through the medium, better
quantitative accuracy will be achieved.

5. Conclusion

The possibility of applying acoustography to provide a
simple but practical tool for mapping ultrasonic fields
radiated from ultrasonic transducers has been demonstrated.
Since acoustography does not require elaborate mechanical
scanning equipment, it is suitable for routine use for
quality assessment of transducer fields. The latter capability
may be particularly important for calibration of phased
array systems, which are being used more and more for
nondestructive testing. Other benefits from acoustography
have also been demonstrated: each intensity map took <35
seconds compared to hours using current conventional
scanning techniques and methods; the entire procedure is
user friendly and can be performed by low-skilled operators;

the method does not require calibration of the measurement
device.

Future plans include a more indepth, head-to-head com-
parison and validation study of acoustography against the
ball reflector method. This will remove any discrepancies that
result from simulation modeling errors. In addition, refine-
ment of the process will be pursued including automation,
software development, and improved data analysis by obtain-
ing the AO 2D cross-sectional fields and being able to gener-
ate true 3D axial profiles using frame-grabbing video output
data. This is a distinct advantage over the convention ball
reflector method, where the lateral resolution is primarily
determined by the indexing step size. Fine indexing steps are
required to achieve high resolution but that greatly increases
the scan time required to map the ultrasound field. Further
improvements in the image processing and analysis will also
be pursued to account for the heterogeneous structure of the
AO sensor.
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A computer-efficient model for underwater acoustic propagation in a shallow, three-dimensional rectangular duct closed at one
end has been developed using the method of images. The duct simulates a turning basin located in a port, surrounded with
concrete walls, and filled with sea water. The channel bottom is composed of silt. The modeled impulse response is compared with
the impulse response measured between 15kHz and 33 kHz. Despite small sensor-position inaccuracies and an approximated
duct geometry, the impulse response can be modeled with a relative echo magnitude error of 1.62 dB at worst and a relative echo
location error varying between 0% and 4% when averaged across multiple measurements and sensor locations. This is a sufficient
level of accuracy for the simulation of an acoustic communication system operating in the same frequency band and in shallow

waters, as time fluctuations in echo magnitude commonly reach 10 dB in this type of environment.

1. Introduction

Underwater vehicles and divers routinely operate in ports
for security and maintenance operations. Communicating
with underwater assets using acoustic modems is a critical
feature whenever a tether cannot be used and remains
very challenging due to large amounts of noise and fading
[1-6]. The reader should note that underwater acoustic
communication has become a mature field of research: this
reference list is by no means exhaustive.

As in many marine operations, simulation tools play a
critical role in optimizing a communication system perfor-
mance and often in reducing the duration of field tests.
Simulating underwater acoustic communications in a port
is also a very challenging task, due in part to the complex
geometry of the environment. A small displacement between
acoustic sensors or a change in the channel geometry
can result in a dramatic change in the measured impulse
response when using high-frequency sound above 10 kHz. As
a result, the channel response varies with time and cannot

be modeled exactly. Consequently, stochastic models are
used to estimate the performance of an underwater acoustic
modem [1, 7]. In this case, the accuracy of the acoustic
model is measured in terms of statistical moments rather
than absolute accuracy in predicting the impulse response of
the channel for a specific configuration. This in turn means
that a computer-efficient model of the acoustic channel
can provide acceptable results when averaged over a large
number of simulations in the presence of small geometrical
fluctuations.

To better understand the context of underwater acoustic
simulation tools, Figure 1 shows an example of top-level
architecture for an underwater acoustic network [7]. The
purpose of this tool is to predict the behavior of one or more
vehicles, each carrying an acoustic modem and completing
a specific mission (helm). All the vehicles evolve in a world,
which impacts the acoustic communication quality between
any two acoustic modems. Here, each acoustic modem is
represented as a protocol stack and a sensor within each
vehicle. The passing of information through the acoustic



channel is handled by a medium model within the world. In
its simplest form, this model could be a vehicle and a boat,
both equipped with an acoustic modem.

Acoustic modems transmit series of acoustic (band-
limited) impulses, each containing some binary information,
to relay messages between the source and the receiver [1-
5]. State-of-the-art acoustic modems transmit hundreds or
even thousands of impulses within a message, using either
phase or frequency modulation (or a combination of both).
The probability that this binary information contains errors
is a function of the type of modulation, error coding, signal-
to-noise ratio (SNR), and signal-to-multipath ratio (SMR)
[1]. The SMR is the energy ratio of the direct echo (traveling
directly from the source to the receiver) to the total energy in
the reflected (or scattered) echoes measured at the receiver.
This SMR is especially critical, as it indicates the amount of
fading in the acoustic channel. Modeling the SMR is difficult,
as it is a direct function of the acoustic channel response.

A critical issue is the amount of processing required
to model the entire network operation, especially in terms
of the acoustic channel model. As each acoustic source
and receiver moves within the medium, the acoustic chan-
nel response changes. A very processor-intensive approach
consists in using a powerful acoustic propagation model
and recalculates the acoustic channel response given the
source and receiver location. For example, Beaujean et al.
(8] considered the Parabolic Equation (PE) model approach
in a previous paper on a similar problem but realized
that this approach was simply too processor-intensive for
this application. The impulse response can be precomputed
for each combination of source and receiver position, but
the sheer number of combinations makes this approach
impractical as well.

In contrast, stochastic models are an excellent trade-off
between processor requirements and model accuracy, so long
as a sufficient number of trials are performed to produce
meaningful statistical averages. In the application shown in
Figure 1, the authors use the Nakagami model [7, 9]. If
A? represents the acoustic energy of each impulse within a
message, MNakagami = E{A2}%/Var{A?} is the ratio of the
squared expectation (statistical mean) of A? to the variance
of A%, Here, the expectation is estimated using the average
across all the impulses contained in a message. E{A?} is
the average energy of the message. /Var{A?} is the energy
spread. The parameter MNakagami Usually varies from 0.5 to
10.

The main difficulty with stochastic models is to reconcile
the statistical parameter(s) with the actual environment
in which the acoustic modems operate. In this case, the
parameter Mnakagami Must be a realistic function of the source
and receiver position within the medium. However, this
parameter does not have to be extremely accurate either: two
significant digits are sufficient to provide a reasonable binary
error prediction. Therefore, a simple acoustic propagation
model of limited accuracy may be sufficient to provide a
realistic value for #Nakagami-

A logical choice is the method of images applied to a
specific 3D environment. Although the method is not novel,
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Ficure 1: Example of top-level architecture for an underwater
acoustic network.

it may predict the amplitude and location of every echo
with a sufficient level of accuracy to calculate the parameter
MNakagami- A second option is to convolve the modeled
acoustic response with the transmitted modem message
to generate an artificial received signal. Once artificial
ambient noise has been added, this artificial signal can
be decoded. However, this second option is much more
processor intensive.

In this context, the authors conduct a comparative
analysis between the acoustic response predicted with the
proposed 3D model and the acoustic response measured
experimentally. A complete sensitivity analysis of the param-
eter MNakagami Using the acoustic model and the field
measurements is beyond the scope of this paper, as it requires
a complete description of the actual acoustic message
transmitted by the source. Instead, the band-limited impulse
response of the acoustic channel is studied, using a pulse
transmitted within the entire frequency band of the actual
acoustic modem. The comparison is made in terms of the
relative error in echo magnitude and time of arrival, across a
large number of measurements.

The channel of interest is the south turning basin of Port
Everglades, Florida, which is similar in shape to a three-
dimensional duct open at one end. Unfortunately, most of
the research conducted in underwater acoustic propagation
in partial enclosures focuses on three-dimensional wedge
geometry. Following the seminal work on horizontal refrac-
tion by Weston [10], Deane and Tindle [11] presented a
model for the three-dimensional acoustic field in a wedge,
leading to the calculation of a loss parameter and to the
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modeling of horizontal refraction. The results were also
demonstrated experimentally in a wedge-shaped ocean [12—
14]. To solve the three-dimensional Helmholtz equation,
Buckingham [12] used normal mode theory to derive the
mode shapes based on specific boundary conditions and
found that the mode shapes varied with frequency and
range within the mode coefficients. Borejko [15] created a
representation of the image field in a perfect wedge using the
ray integral method.

These powerful techniques become overly complex and
computer intensive in the present case, due to the short
acoustic wavelength and the geometry of the basin. If
this duct is filled with seawater of uniform and constant
properties and is partially enclosed between a still sea surface,
a silt bottom, and three rigid vertical walls, the computer-
efficient method of images [16, 17] can be used to model
the channel response given specific acoustic sensor locations.
The three-dimensional method of images is mostly used to
model enclosed environments in airborne audio acoustics
[18-22]. Allen and Berkley [18] developed a model to study
the basics of room acoustics and were interested only in
the point-to-point transmission between source and receiver.
Viveiros and Gibbs [19] predicted the field performance
of acoustic louvers using an image model compared with
impulse measurements. Also using the method of images,
Iu and Li [20] computed the acoustic channel in narrow
street canyons, modeled as two parallel, infinitely long
planes perpendicular to a horizontal ground. The geometry
of the duct representing the turning basin is similar to
that of the canyon modeled by Iu and Li [20]. However,
significant differences exist, namely, in terms of the ultra-
sound frequency band, sound absorption, and characteristic
impedance of the medium and the boundaries. It should be
noted that while the image method is not overly complicated
for parallelepiped geometries, it can become very complex
and processor-intensive for other geometries due to the
screening for image sources.

In the following sections, the authors provide the detailed
derivation of the method of images applied to the duct
representing the basin, followed by a description of a set of

experiments and a comparative study between the modeled
and the measured channel response.

2. Acoustic Model

Consider the modeled duct shown in Figure 2, where the
water mass density p and sound velocity ¢ are constant.
For now, we also assume that S;(xs, ys,zs) is a point source
producing a complex, harmonic spherical pressure wave p
measured at the receiver location R(xg, ¥r,zr). This complex,
harmonic pressure wave is the solution to the Helmholtz
equation [23]:

AP (xs, ys, zs, Xk, YR, 2R) + k2P (X3, Vs, 28, xR, Y&, 2R) = 0. (1)

Expressed in Cartesian coordinates and in the complex
domain, the free-field harmonic solution to (1) is

ﬁ(xS: Ys> 285 XR> YR> ZR> t)

P Ges )+ sy +(as—2r)?)~wet) 2)

s — 22 + (s — yr)> + (as — 2r)”

where k = w./c is the acoustic wave number, w. = 27f,
is the angular frequency of the transmitted signal, and Py
(in yPa-m) is the acoustic pressure times unity distance,
measured at 1m from S;. If we define R; as the distance
between the source S; and the receiver as

Ry (xs, s, 28, XR> YR> ZR)

(3)

= \/(xs —xp)> + (ys — yr)% + (25 — zr)%

the complex pressure field produced by the point source
becomes
eikRi

P(Ry,t) = P(Ry)e iwet = pOTle—iwcz_ (4)

The geometry shown in Figure 2 contains a pressure release
boundary II;, a silt bottom II,, and three rigid walls
I15,114, and IIs. The duct along the positive x-axis is open
ended. The approach in developing the model is to break
this three-dimensional problem down to a combination of
two-dimensional acoustic models. For simplicity, all the
calculations take place in Cartesian coordinates.

2.1. Method of Images Applied between Boundary 115 and
the Open-End. We first assume that Is is an infinite rigid
boundary, as shown in Figure 3. S, is located in plane I,
which contains 75 and s;7. Since IIs is a rigid boundary,
the pressure gradient along the normal 75 is null, so that
(8ﬁ/8x)x=0 = 0. Based on the method of images [16], the
pressure at the receiver is the sum of the pressure generated
by the source S; and the pressure generated by the image S,
located at equal and opposite distance from the boundary:

~ ~ ~ Py Py .
P(xs, ys, zs, Xr, YR, 2r) = P(R1) + P(Ry) = O gk =D gikR:
Ry R,
(5)



S2(—xs, ¥, 25)
X ............. .e.

~

ITs

F1GURE 3: Three-dimensional geometry of image

Advances in Acoustics and Vibration

Receiver (xR, yr,zr)

S1(xs, ys, 25)

method with a rigid boundary and an open-end.

X
O

4 z s .-X34 (x5, —2L + ys, 2s)

S3 (x5, —ys, 25) xR

<R3 4

R .

S1 (xs, ¥s, 25)
! ;t};bsﬁ S R _,(K‘Receiver (xR> YR>ZR)

% R a

ARG 2 Bl Wi

S2(xs5,2L — ys, zs)

B

s L/

FIGURE 4: Three-Dimensional Distribution of Images

R, is the distance between S; and the receiver. R, is the
distance between S, and the receiver:

R, = \/(Xs —xp)? + (s — yr)’ + (25 — z8)° ©)

Ry = \(xs +x0)> + (ys — y)* + (25 — 28)°

v, and y] correspond to the angles of transmission and
arrival unique to the source S;, where I = 1,2 is the image
index. Here I = 1 corresponds to the physical source S;:

—arctan(\/( ), ifl=1,
arctan(\/( ), ifl =2,
yf = arctan(\/( )

ys — yr)” + (zs — zr)*
XR — xsl

t

Y=

ys — }/R)2 + (zs — ZR)Z
XR — X§,

ys — yr)’ + (zs — zr)’
XR _xsl

(7)

e

between Rigid Boundaries IT; and Iy, Group m = 0.

Note that the calculation of these angles is only useful if either
the source or receiver is directional. The time of arrival for
each image is given by

(8)

T = —.

2.2. Method of Images Applied between Boundaries 115 and
I1,, We now assume that IT3 and II, are infinite rigid
boundaries, so that the pressure gradient along 73 and 714 is
null, (8ﬁ/ay)y:0 = (aﬁ/ay)y:L = 0. In this case, an infinite
number of images are modeled. The images are grouped by
four, where the very first group contains S;, S, and Ss and the
image of S, across I3, noted S4, as shown in Figure 4. The
index m corresponds to the group number containing the
source S,,,. The second index (a = 1,2,3, or 4) corresponds
to the image number in each group m. The total pressure field
is
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Figure 5 shows the first eight images (m = 0, m = 1) in
plane IT;. Given a group number m, the distance between the
receiver and the corresponding image is defined as

Ryt = (s — x0)° + (25 — 20)° + (2mL+ ys — yx)’,

Rz = \/(xs — xp)* + (25 — z)” + (2mL+ ys + yr)’,

(

Ry = (s = x0)” + (25 — 20)* + [2(m + DL — s — ye]’,
(
[

Ry = \/(xs —xp)’ + (zs —z»)° + [2(m + 1)L — ys+ yR]z'
(10)

The angles of transmission and arrival are defined as

2 2
xs —xr)" + (zs — z
—arctan(\/( s R+ (2~ 2) ), ifa=1,4,

o YR = VS
ma — 3 3
— + -
arctan ( \/(xs ;R) y(Zs 2®) ), ifa=2,3,
R~ YSma
4% — arctan \/(xs —xp)” + (25 — zp)’
" YR = YSua '

(11)

Note that the calculation of these angles is only useful if either
the source or receiver is directional. The times of arrival are
given by

Typa = . (12)

2.3. Method of Images Applied between Boundaries 11, and
IT,. We now assume that IT; and II, are infinite nonrigid
boundaries, as shown in Figure 6. II; is a pressure release
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boundary, where the pressure along the normal #; is null.
The boundary I, is a silt boundary with a mass density of
psitt = 1500 kg/m?> and a sound speed ¢ = 0.985¢ relative to
the sound speed in the channel c¢. The reflection coefficient
V1, is a function of the angle of incidence 68, with respect to
#z. Syp corresponds to the image number b in each group n.
Using these parameters, the reflection coefficient Vi, (0,p) is
obtained [23]:

2
: [
6!, = sin”! ( 1- Cs‘zhcosz(ﬂ,,b)),

(13)
PsiltCsilt/ P — sin(@,ﬁb)/ sin(0,p)

Vi, (0) = .
! PsiltCsilt/ pc + sin( fqb)/ sin(6,5)

6!, is defined with respect to the positive z-axis and
corresponds to the angle of transmission from a given image
location S,p. The resulting pressure field is the sum of the
source pressure field and the pressure fields corresponding to
the images of the source Sy;. Since IT, is a partially reflecting
boundary, the pressure field of the image Sy, is multiplied
by the reflection coefficient of the boundary. Summing the

pressure field of the image source Sy, to that of the pressure
field of the source Sy;, we obtain

~ Py - Py .
P(xs, y5, 25, Xps Yro 2R) = =R+ Vpp, (Bp) = e*Roz,
Rox Rz
(14)

Ro1 = \/(xs —xg)* + (ys — yzz)z +(zs — zr)°,

Ry = \/(xs —xp)” + (ys — yr)> + QH — z5 — z)*

(15)

Since II; is a pressure release boundary, Sp3 and Sps are
out of phase with the actual source. The combined acoustic
pressure field due to these images is

~ Py . Py .
P(xs, ys, 25, XR> YR ZR) = 'R0 + Viy, (6pp) - e'FRoz
Ry Rp2

_ &eikRoa

Py .
—V 2] ~- v lkRm.
Ros nz( o4) Ro4e

(16)
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The distance between the receiver and the corresponding
image is

2

Ro1 = \/(xs —xg)’+ Ys— yr) +(zs — )%

(17)
2

Ros = \/(xs —xp)> + (ys — yr)” + (25 + z8)°,

( )

Ry, = \/(xs — xg)’ + (ys — yR)2 +[2H — zg — zz]%
( )
( )?

Ros = \/(xs —xr)*+ (ys — yr)° + [2H — zs + zz]".

Given a group number n, the total pressure field at the
receiver is

P(xs, ¥s, zs, Xr> YR> ZR)

(VHZ(in)) R, e’kR”‘
1
+(Vir, (6,2)) "V —— eikkie
. (Vir, (6,2)) R,° (18)
=Py > (-1)" 1
n=0 - (VHz (6n3)) etkRus
Rn3
nt1) 1
_(VH2(6n4))( +1)TelkRn4
L n4 .

The distance between the receiver and each image is

2

m—\/(xs—xR) + (ys — yr)° + 2nH + zs — zp)°,

2

nz—\/(xs—xR) + (ys—yr)” + [2(n+ DH — z5 — zr]%,

+(2nH + z5 + zr)%,

2

( )

( )

Ry = \/(xs —xr)’ + (ys — yr)’
( )2+ [2(n+ 1)H — zs + zg]%.

(19)

Ru = \/(Xs—xR) + (ys—yr

The angles of transmission and arrival are

2 p
\/(xs xR)”+ (ys — yr) )’ b= 1.4,

— arctan P
¢ R =™ £Su
nb — 2 2
Xs — xp)" + -
arctan<\/( S j) Z(ys ye) >, ifb=2,3
R ™ <S8y

\/(Xs —xp)’ + (ys — )’R)z)

", = arctan
ZR - anb

(20)

[Me
Mu;

2
P(xs, ¥s, 25, XR> YR> ZR) = Z

3
I
(=}
i)
I
-

Note that the calculation of these angles is only useful if either
the source or receiver is directional. The times of arrival are
given by

Rup
c

Tup = (21)
Although the objective of this paper is not an in-depth
study of the method of images, the reader should be aware
that some approximations are made in (13), (14), (16),
and (18). While the method of images is perfectly accurate
for impenetrable surfaces, either hard (Neumann boundary
condition) or soft (pressure release or Dirichlet boundary
condition), it loses accuracy in the presence of penetrable
surfaces. These issues are covered in detail in [17]. Here we
assume that one of the boundaries is made of a uniform, soft
sediment, so that sound travels more slowly in this sediment
than in water.

We use the geometrical acoustics approximation [17] to
the total reflected field to obtain (14), (16), and (18): the
energy of the acoustic field reflected off the soft boundary
is concentrated about the angle of specular reflection. In
reality, a spherical wave incident to the soft bottom would
produce weaker levels of sound reflected in every direction:
we assume that this secondary sound field is negligible.
To further reduce the complexity of the model, we assume
that the soft bottom is perfectly flat, uniform, and infinitely
deep, so that any possible scattering and diffraction effect is
neglected.

The main consequence of these approximations is that
the model will overestimate the strength of the reflected
sound in the specular direction and omit secondary echoes.
In other terms, the modeled channel response will contain
strong echoes at times directly related to the specular angles,
but will not contain any echo related to wave curvature,
scattering, and diffraction effects.

2.4. Pressure Field in the Duct. The final step is to find the
analytical expression for the pressure field in the duct. We
use the following index notation for each source Spuanp: [
corresponds to the image number in the x-direction (I =
1,2), m and a correspond to the group number (m =
0,1,2,...,0) and the image number (a = 1,2,3,4) in the
y-direction, and »n and b correspond to the group number
(n=0,1,2,...,00) and the image number (b = 1,2,3,4) in
the z-direction. Combining (5), (9), and (18), the acoustic
pressure at the receiver is obtained:

[ 1. I
( VHz (glmanl )) : e’lemam

leanl

n 1
( VHz (elmanz)) (n+1) llermmz

leanZ

> (=1 : (22)
n=0

1
lean3

1 .
- ( Vi, (elman4)) (n+1) —— ptkRimans

ermm4 -

- ( VHz (GlmanS ) ) g eilemanS




The summations in (22) account for the reflected paths
produced by every wall in the duct. The distance Ryuanp
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between the image Spuamy and the receiver is given in
(23):

2

+ (2mL+ ys — )/R)2 +(2nH + z5 — z»)°,

[2(n+ 1)H - zg — zz]°,

+ (2mL+ ys — yR)2 +(2nH + z5 + z8)°,

[2(n+ 1)H — zs + zr)*,

+[2(m+ 1)L — ys — yR]2 + (2nH + zg — ZR)Z,

+[2(m+ 1)L — ys— yr]* +

[2(n+ 1)H - zs — zz]°,

+[2(m+ 1)L — ys — yR]z +(2nH + z5 + z»)°,

+[2(m+ 1)L — ys — yr]* +

[2(n+ 1)H — zs + zz]°,
(23)

(2nH + zg — ZR)Z,

[2(n+ 1)H - zs — zz]°,

+ (2mL+ ys + yR)2 +(2nH + z5 + z»)°,

[2(n+ 1)H — zg + zz )%,

+[2(m+ 1)L — ys +yR]2 +(2nH + z5 — zr)%,

+[2(m+ 1)L — ys +yR]2 +[2(n+ 1DH — z5 — zz]%,

+[2(m+1)L - ys +yR]2 +(2nH + z5 + z»)%,

Rimim :\/[xs+( 1)'x|

Rimin2 = \/[xs+( D'xe]” + @mL+ ys - yo)* +
R = [+ (<1 ] + (

Rt =[5+ (<1l ]” + (2L + s — yn)* +
Rimam = \/[xs+( D'xe] +1

Rz = /[ 5+ (=1'xe]

Rimans = \/[xs-f—( Dixe] + [

Rimans = \/[xs (D] + [

R = [+ (= 'xe]” + (2 + 35+ y)” +
Ripsnz = \/[x5+( D'xe]” + @mL+ ys+ ye)* +
Ripsns = \/[xs+( D'’

Rimsna = \/[xs-f—( D'xe]” + @mL+ ys + y)* +
Rimam = \/[x5+( D'xe] +1

Rimanz = \/[xs+( D'xe] +1

Rintns =[5+ (=1'xe

Rimans = \/[xs+( D'’

For example, if I = 1,2, m = n = 0, and a,b =
1,2,3,4, thirty-two images are created, as shown in Figure 7.
In seawater, a certain amount of the acoustic energy of
the propagating signal is also lost in heat originating from
viscosity and thermal relaxation. This absorption of sound
represents a true loss of acoustic energy within the acoustic
channel of propagation. The value of the sound absorption
coefficient agp is given by Schulkin and Marsh [24]:

Sfrf? £
0.0245“% dB/km. 24
v g HO025 dbkm. o (24)

agg = 0.0170 5———

+[2(m+ l)L—ys+yR]2+

[2(n+ 1)H — zg + zz]*.

S is the salinity in parts per thousand (ppt), f; is the central
operating frequency in Hertz, and fr is the temperature-
dependent relaxation frequency given by

fr =21.9 x 107~ 1920/(T%273) jy, (25)

T is the temperature in degree centigrade. The absorption
coefficient o in 1/m is

_ 4B - ln(IO)

20 10° 1/m. (26)
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To compute the final acoustic pressure field, we assume
that the absorption coefficient (in salt water) per unit of
wavelength is much smaller than the wave number, « <«
k. Using this assumption, we can apply the absorption

e
M=

2
P(xS,yS,ZS,xR))’R,ZR) = POZ
=1

The corresponding distances Ryany between the image Spnanp
and the receiver are defined in (23).

2.5. In-Band Channel Model. The acoustic model must
accommodate broadband chirp signal transmission. One
of two approaches is available for broadband analysis: (a)
each frequency component of the source signal is analyzed
individually to create the modeled transfer function of
the acoustic channel, a computer intensive approach; (b)
the echo location, magnitude, and phase are computed
at the carrier frequency f. and applied to a short, band-
limited impulse of carrier frequency f.. Although this second
approach is less accurate, it is retained as it is far less
computer intensive. The simulated transmitted signal g(t)
consists of a broadband chirp of bandwidth W = 18kHz,
central frequency f. = 24 kHz, and duration T; = 13.54 ms.

Although a complete analysis of using (b) rather than
(a) is beyond the scope of this paper, the impact of
such an approximation should be briefly discussed. The
major impact of using (b) is a distortion of the echo
envelope (including the peak value), while the peak location
for each echo remains fairly accurate. In addition, since
sound absorption increases by 5 dB/km between 15 kHz and
33kHz, the approximation in (b) leads to a small over-
estimation of the pressure field above 24 kHz and inversely
to an underestimation of the pressure field below 24 kHz.
This distortion becomes more severe as the traveled distance
associated with a specific echo increases.

The chirp is frequency modulated (linear sweep), and the
envelope is a Blackman time window bumai(t):

a(t) = ba(t) - sin 27+ ”;’Tst)t)ypa, (28)

> (-1)"
n=0

coefficient to each image individually. Therefore, the final
acoustic pressure field in the three-dimensional environment
is

i 1 I
( VHz (elmanl )) " elik=0)Rimam
leani

+(VH2 (GlmanZ))(nH)

7(VHz(elman3)) lea R

1 .
_(Vnz(elman‘l))(n+ )re(’k ) Rimans

Iman4 i

(k=) Rimar>

RfmanZ . (27)
e(ik—a)lemd

bmai(t) = 0.42 — 0.5 cos (Zni> +0.08 cos (47ri>. (29)
T, T,

The transmitted signal is expressed in analytical form using
a Hilbert transform operation H{}:

Gma(t) = qmai(t) + iH{gma(t)}
® i N (30)
= qmai(t) + ) ﬁqmdl(t —t")dt’ uPa.
Next, the normalized autocorrelation of this complex chirp
gmdi(t) is computed to produce a band-limited impulse:

T~ ~k
?mdl(t) = |:(1/2T$) I—TS del(t)qmdl(t+r)d1] 1)

(1727 [, | Gmar(0) | *dt

The modeled source signal (complex acoustic pressure in
yPa) is scaled using the source level SL:

Smar(t) = 10520 - 7 4i(8). (32)

Using the approximation aforementioned, the impulse

response h(t) of the duct is calculated for each source and
receiver position:

T i 8t — . S
(VHz(glmanl))n(iﬁrlnm’ﬂ)e(’k_“mlmam
6I§Itmanl )
N 2| o | 4| w +(VH2(leunz))(nﬂ)%e(ik’“m’mm
h(t) = Z Z Z Z(—l)n - Iman2 ) (33)
[=1| m=0] a=1| n=0 —(VHZ(leans))"we(ik—zxmmm
Riman3
~(ViL, (O1mana)) () w e(ik=a) Rians
B - - - Rimana I
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Source images within a duct closed at one end
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FiGURre 7: Three-Dimensional Plot of a Block of Thirty-Two Images.

O(t — Timany) represents a Dirac delayed by 7j,anp seconds.
The in-band impulse response is defined as the convolution

Me

2
Panai (£) = Smar(t) % h(t) = >
I=1

> (-1)"
n=0

3
Il
f=}
2
Il
—

~

hmal is computed at fixed time interval n,A7, where n, is
defined as

Tlmanb )
>
S

ny = int( (35)
where At = 1/Fs and Timans = Rimany/c. The function int()
corresponds to the integer part of the result, Fs = 75600 Hz
is the sampling frequency, Timanp is the time of arrival of the
echo produced by image Sj;;anp, and ¢ is the sound speed in
the channel.

3. Simulated and Experimental Results

3.1. Experimental Setup. A set of field experiments has been
conducted on June 8, 2007, in the south turning basin of Port
Everglades, Florida. The basin, shown in Figure 8, contains
an unobstructed, flat bathymetry silt bottom surrounded
with a vertical concrete wall to the south and vertically piled
boulders on the west and north sides. The basin is 14 meters
deep. The west wall is 255 meters long and the north wall is
290 meters long. Towards the east, the bottom slopes slowly
upward towards the shore. The bottom on the east side is
a relatively thick layer of mud and very fine silt. Because of

between (32) and (33):

Smar(t — 7 4
(Vl'lz(elmanl))nwe(lkﬂx)&mm
Imanl

Smar(t — 7 ,
( VHz (elmanZ ) ) (ret) M e(’kf"‘)le'wZ
Rimanz

Smar(t — 7 .
- ( VHz (elmunS ) ) " M e(’k*“)lemza
Iman3

Smal(t—7 ,
(Vn2 (elman4) ) (ret) Me(’kf‘xm’mﬂ"‘l
Rimana 4111

(34)

the frequency of operations (15-33 kHz), the sound traveling
east is for the most part absorbed by this thick layer of
mud. Therefore, the acoustic channel can reasonably be
approximated as a duct closed on the west end and open on
the east end.

The source is an FAU Gateway Buoy [25] configured as a
pinger, equipped with an ITC-3460 transducer and Global
Positioning System with Wide Area Augmentation System
(GPS-WAAS) of =1 meter accuracy. The source transducer is
suspended in the water column at a fixed depth of 1.5 meters
below the sea-surface and transmits the chirp signal given
in (28). The ITC-6156 receiver transducer is mounted on an
air-filled aluminum pressure vessel (6 inches in diameter, 30
inches in length) to simulate the acoustic shading produced
by the underwater vehicle of interest. The source signal
used in the acoustic model is the signal produced by the
omnidirectional source transducer. Therefore, the frequency
response of the transducer is taken into account in the model.

This pressure vessel is tethered to a small research vessel
at a depth of 1.3 meters. The source is at a stationary location
in the turning basin and the receiver produces a record of the
impulse response within the basin at multiple locations. The
receiver pressure vessel is parallel to the hull of the vessel,
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FiGURE 8: Aerial View of GPS Locations for Each Recorded Sample.
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FIGURE 9: Average Sound Velocity Measured by the CTD.

oriented broadside to the source at each record location. A
total of N, = 5 impulse response measurements are collected
at each location.

Considering the large number of receiver locations
tested, these locations have been grouped in separate regions,
labeled 1 to 4 in Figure 8. Region 1 contains the data collected
near the western boundary of the turning basin, composed of
vertically piled boulders. Region 2 contains the data collected
near the flat, concrete southern wall of the turning basin.
Region 3 is the most distant from any walls and the deepest
portion of the basin. The receiver is also located at fairly
close range from the source in this region, so that the echoes
originating from the walls are clearly separated from the
surface and bottom bounces. Region four contains the data
collected near the northern wall, composed of vertically piled
boulders.

A series of vertical sound velocity measurements was
performed at locations indicated in Figure 8. Figure 9 shows
the average sound velocity versus depth for the six casts [26].
The velocity gradient Ac/AH in the turning basin is negative:

Ac Cmax — Cmin _ 1541.3 = 1540
AH  AH 14

=0.092857s7!. (36)

Given the limited depth and range, we can reason-
ably approximate this channel as an iso-velocity channel.
Figure 10 shows the actual noise power spectral density
(PSD) recorded during the field experimentation [26]. The
standard deviation of the in-band noise is 0, = 110148 yPa
between 15 kHz and 33 kHz.
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3.2. Echo Overlap. An issue in estimating the impulse
response of an acoustic channel is the limited source band-
width, which in turn limits the time resolution. Figure 11
shows the magnitude of the modeled impulse response for
a receiver located at point 008, with a receiver depth of
1.3 meters and a source depth of 1.5 meters. Two echoes
corresponding to the direct path and surface bounce are
received between the observation time of 94 ms and 94.5 ms.
In (31), the —6 dB pulse width for each echo is 172 ys, causing
these two echo partially overlap in Figure 11. This in turn
causes echo interference, so that the exact sample spacing
and magnitude cannot be determined exactly. Consider two
received (complex and band-limited) echoes in (34), noted
as:

) = || e Smalt - ),

~ (37)
) = || e Snalt - ).
These echoes may partly overlap and interfere (as depicted
in Figure 12), so that the actual peak location for each
echo cannot be exactly known. This results in inaccuracies
when estimating the time-of-arrival of a given echo. Each
echo phase ¢ is the sum of the phase shift ¢poundary due to
boundary interactions and the phase shift (v due to the
relative movement between the source and the receiver:

¢ = ¢boundary + ¢travel)

¢travel = 27chAT- (38)
At = Al/c is the time shift due to a receiver movement
(Al) in meters, and A = c¢/f, is the wavelength of the
transmitted signal. In our case, the center frequency for the
experimentation is f, = 24kHz and the measured sound
speed within the channel is ¢ = 1540m/s. A change in
distance of a quarter of a wavelength (0.015m) results in
a change of 7/2 radians in the relative phase between the

two echoes. Overall, if |%1| = |Z2|, [71(t) + 72(t)] can vary
between 0 and 2|71(t)| due to small fluctuations in the
receiver location. Therefore, the limited time resolution of
the experimental setup results in inaccurate measurements of
the echo magnitude and location if interference occurs. This
in turn means that clearly separated echoes are measured
more precisely in terms of both magnitude and time of
arrival. Because of the limited time resolution, two or more
echoes arriving within a time window of two —6 dB pulse
width (344 ps) are treated as a group of overlapping echoes
in the field result analysis.

3.3. Model Sensitivity to Geometrical and Physical Inaccura-
cies. For each receiver location, one record contains N, =
5 impulse responses measured at fixed intervals 7, = 4
seconds. The time origin ¢ = 0 of the record is the estimated
time of arrival of the very first echo of the first impulse
response. The modeled echo, corresponding to the direct
path of the first record, is also located at + = 0. The
modeled impulse response is repeated every 4 seconds. For
each record n,(n, = 1,...,5) and location n; within region
Hreg(treg = 1,...54), Tmdi(My, Mg, 1, ireg) Tepresents the time
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FiGgure 11: Echo Group 1 of Example Modeled Impulse Response.

delay of the modeled echo group n, from the time-of-arrival
of the modeled direct path. Similarly, ey, (1, 1g, 1y, fireg)
represents the estimated time delay of the modeled echo
group ng from the time of arrival of the same modeled
direct path, including the measured direct path (1, = 1).
Each measured echo location is that of the largest echo
| Rexp (175 g, 1, Mreg) | Within a 9 ms search window centered
on the corresponding modeled echo |hmai(#;, g, 11, fireg) |-
The specific 9ms duration is based on the source and
receiver position accuracy and the approximated geometry
of the duct. As an example, Figure 13 shows the measured
and modeled impulse response at location 008 for the first
measured impulse response. Note that the location of each
search window in Figure 13 is not exact. The relative errors
in echo magnitude emag(#;, ng, 11, Mireg) and in echo location
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FiGure 12: Overlapping Echoes associated with the Direct Path and
the first Sea Surface Bounce.

€loc(Mr, Mg, My, Mreg) between the model and the measurement
are

€mag (”ry ng, Ny, nreg)

‘ ‘ hexp (nr) ng, Ny, nreg) ‘ ‘ hmat (nr) ng, Ny, nreg) ) ‘

100 x

hmdl <nr) Ng, Ny, nreg) )

€loc (nr: ng, Ny, nreg)

Texp (nr) Ng, N, nreg) — Tmdl (nr: Mg, N1, nreg) ‘

= 1100 % %.

Tmdl (T’lr, ng, Ny, nreg)
(39)

The mean and standard deviation of these errors, computed
across all the records at a specific location, region and group,
are

Ny

1
zsmag (nr: Ng, 1, nreg) %,
Ti=1

€mag (nga ni, nreg) =

Uemag <ng: nip, nreg)

1 N, _—\ 2
= Z(emag(”r)nganl)nreg)_smag(”g)nl)”reg)) %,
\N' -3
N
1 0,
Sloc(ng:nl’nreg) = ﬁzsloc(nnng:nl)nreg) %o,
Ti=1
(” nl>nreg

- @@ \2
J N, — 810c<nr> Ng, N, nreg) _£loc(nga ni, nreg)) %.
r

(40)



Advances in Acoustics and Vibration
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FIGUre 13: Numbered Echo Groups for Measured and Modeled
Impulse Response at Location 008.
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FIGURE 14: Relative Error in Magnitude and Location for Region 1.

Figures 14 to 17 show the mean and standard deviation of
the relative error between the modeled impulse response
and the measured impulse response. Each numbered point
corresponds to the mean value of the relative error for
each echo group. The error bars in each plot represent two
standard deviations of the relative error for each echo group.
The x-axis corresponds to the relative error for the first
arriving echo of each group. The relative error in magnitude
for the first arriving echo of each group is displayed on the
y-axis. A complete convergence analysis of the model as a
function of the number of images is beyond the scope of this
paper. However, the authors performed a limited study in
[27], which indicated that the model converged using a small
number of images.

Figure 14 shows the relative error for region 1. This
region corresponds to the receiver locations close to the
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western wall of the turning basin. This wall is composed of
boulders piled vertically in an irregular manner. A significant
share of the error observed between the modeled and
measured impulse response is attributed to the structure of
this wall. Since the boulders create a boundary that is not
perfectly flat, the transmitted signal will be scattered at the
interaction with the boundary. This scattering differs for
different locations even within this region. Across the groups,
the mean error in echo location varies between 0.2% and
2.1%. The mean error in echo magnitude varies between
55% (—2.6dB) and 145% (1.62dB). The relative error in
magnitude of the direct path (group 1) of 145% is due
to a significant overlap between the direct path and the
surface bounce, caused by the small difference in time of
travel between the direct path and the first surface echo. This
same observation is made in regions 2 and 4. The standard
deviation of the magnitude error varies from 2% (group 7)
to 120% (group 1). The standard deviation of the location
error varies between 0.1% (group 1) and 1% (group 3).

Figure 15 shows the relative error for each of the eight
groups of echoes in region 2. The best match between
modeled and measured data is observed in this region, as
the relative error in echo group location is less than 1% in
most cases. This is due to the fact that the receiver is relatively
close to the southern wall of the turning basin and further
away from the source. This vertical wall is flat; therefore the
flat rigid surface assumed for the model constitutes a fair
approximation. This large vertical wall is also an excellent
reflector and the scattering is minimal as compared to the
rocky walls to the north and west. Echo group 3 produces
the largest error in echo location (1.7%) as it includes
reflections from the rocky western wall. Across the groups,
the mean error in echo location varies between 0.05% and
1.7%. The mean error in echo magnitude varies between
65% (—1.87 dB) and 120% (0.79 dB). The standard deviation
of the magnitude error varies from 20% (group 5) to 80%
(group 2). The standard deviation of the location error varies
between 0.1% (group 1) and 1% (group 3).

Figure 16 shows the relative error for each of the eight
groups of echoes in region 3, where all of the receiver
locations are relatively close to the source. The relative error
in the direct path (group 1) magnitude is significantly lower
for this region (55%) as compared with the other regions
(115% to 145%). Since the source and receiver depths are
constant, the reduced distance between the source and the
receiver results in an increased difference in time of travel
between the direct path and the first surface echo. As a result,
the overlap between these two echoes is reduced and the
model prediction for the magnitude of the direct path is
more accurate. However, the mean error in echo location for
the direct path is 1.7%, which is significantly larger than the
corresponding error for regions 1, 2, and 4. This is easily
explained by the fact that direct path and surface bounce
occur within the same search window with very similar
magnitudes, so that the peak location of group n, = 1 is
occasionally associated with the surface bounce. The overall
accuracy of the model in region 3 is significantly better than
that in the other regions. Across the groups, the mean error in
echo location varies between 0.4% and 1.7%, while the mean
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FIGURE 15: Relative Error in Magnitude and Location for Region 2.
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FIGURE 16: Relative Error in Magnitude and Location for Region 3.

error in echo magnitude varies between 30% (—5.23 dB) and
80% (—0.97 dB). The standard deviation of the magnitude
error varies from 5% (group 6) to 30% (group 1). The
standard deviation of the location error varies between 0.4%
(group 4) and 1.8% (group 1).

Figure 17 shows the relative error for each of the eight
groups of echoes in region 4. This region corresponds to the
receiver locations that are close to the northern wall of the
turning basin. This case is similar to region 1 since the nearest
boundary is composed of vertically piled boulders. Across the
groups, the mean error in echo location varies between 0.1%
and 1.05%, while the mean error in echo magnitude varies
between 70% (—1.55dB) and 120% (0.79 dB). The standard
deviation of the magnitude error does not exceed 20%, with
the exception of the first group containing the direct path
(120%). The standard deviation of the location error varies
between 0.1% (group 1) and 1.1% (group 2).
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4. Conclusion

At first glance, a mean relative error of up to 145% (1.62 dB)
in estimating the echo magnitude appears significant. How-
ever, this is a very reasonable number from the standpoint
of underwater acoustic communications in nonstationary
fading channels. Indeed, fluctuations in echo magnitude of
10dB are commonly observed in shallow waters [28]. The
error in echo location is also very good overall, as it always
remains within 4% of the measured echo location. These
encouraging results do not mean that the approximations
made in the present model (negligible effects of wave curva-
ture, scattering, and diffraction) should be the norm: a more
realistic model would be expected to produce more accurate
results. Rather, the model may simply be an acceptable trade-
off between accuracy and computational load for acoustic
communication purposes. Since the performance estimation
of underwater acoustic modems is measured in terms of
probability of bit error averaged over a very large number of
samples, the three-dimensional model presented provides a
sufficient level of accuracy to be used in the simulation of an
acoustic communication system operating between 15kHz
and 33 kHz, with the benefit of low computing requirements.
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A method for improving the contrast-to-noise ratio (CNR) while maintaining the —6 dB axial resolution of ultrasonic B-
mode images is proposed. The technique proposed is known as eREC-FC, which enhances a recently developed REC-FC
technique. REC-FC is a combination of the coded excitation technique known as resolution enhancement compression (REC)
and the speckle-reduction technique frequency compounding (FC). In REC-FC, image CNR is improved but at the expense of a
reduction in axial resolution. However, by compounding various REC-FC images made from various subband widths, the tradeoff
between axial resolution and CNR enhancement can be extended. Further improvements in CNR can be obtained by applying
postprocessing despeckling filters to the eREC-FC B-mode images. The despeckling filters evaluated were the following: median,
Lee, homogeneous mask area, geometric, and speckle-reducing anisotropic diffusion (SRAD). Simulations and experimental
measurements were conducted with a single-element transducer (f/2.66) having a center frequency of 2.25MHz and a -3 dB
bandwidth of 50%. In simulations and experiments, the eREC-FC technique resulted in the same axial resolution that would be
typically observed with conventional excitation with a pulse. Moreover, increases in CNR of 348% were obtained in experiments

when comparing eREC-FC with a Lee filter to conventional pulsing methods.

1. Introduction

In imaging, the ability to detect small or low-contrast struc-
tures is of utmost importance. However, ultrasonic images
are riddled with speckle, which reduces the ability to detect
low-contrast and/or small-sized targets. Speckle is formed
by subresolution scatterers that cause constructive and
destructive interference of backscattered ultrasonic signals
within the resolution cell volume of an ultrasonic source [1].
In ultrasound, the difference in contrast between different
soft tissues could be as small as 1%. Consequently, speckle
reduction techniques must be applied to improve image
contrast and enhance the detectability of structures having
low contrast with the background [2].

Speckle-reduction techniques can be classified into
two categories: compounding methods and postprocessing

techniques. The compounding speckle-reduction methods
include spatial [3-6] and frequency compounding [7-11].
These schemes rely on making separate images that have
uncorrelated or partially correlated speckle patterns. These
images are then averaged to reduce the speckle but at
the expense of spatial resolution. Postprocessing speckle-
reduction techniques [12-17] reduce speckle after the ultra-
sound image is formed. The engineering tradeoffs vary
based on the postprocessing speckle-reduction technique
employed but typically include increased contrast and
reduced speckle versus edge preservation, image blurring,
and image texture.

A recently developed speckle-reduction technique—
resolution enhancement compression with frequency com-
pounding (REC-FC)—can improve the visibility of ultra-
sonic images while extending the tradeoff between spatial



resolution and visibility [18, 19]. REC-FC used the coded
excitation and pulse compression technique, REC, which has
the potential to improve the axial resolution of an ultrasonic
imaging system by a factor of two [20]. A larger axial
resolution translated into a larger bandwidth. In addition to
increases in bandwidth, the REC technique has the typical
benefits of coded excitation and pulse compression such as
increased time bandwidth product (TBP) [21]. An excitation
signal with a longer duration than a conventional excitation
signal contains more energy, resulting in an increased echo
signal-to-noise ratio (eSNR) [22]. Consequently, increased
eSNR results in deeper penetration depth. However, because
the pulse duration is increased, the axial resolution degrades.
To restore the axial resolution, pulse compression techniques,
such as a Wiener filter, are used [21].

In REC, the larger bandwidth was exploited by com-
bining the technique with FC. FC is a speckle reduction
technique that subdivides the spectrum of the radio-fre-
quency (RF) echoes into subbands to make partially uncor-
related images [7]. These images were then compounded to
reduce the speckle variance. REC-FC was found to improve
contrast-to-noise ratio (CNR) by as much as 231% compared
to a conventional pulsing (CP) scheme. Overall, REC-
FC improved image quality, CNR, and lesion boundaries.
However, the drawback of REC-FC was that subband filters
only contained a fraction of the original system bandwidth,
which resulted in a reduction of axial resolution.

In this study, an improvement to the REC-FC technique
is proposed, which enhances the visibility of an ultrasonic
image while maintaining the axial resolution to comparable
levels when exciting a transducer with a pulse. The resulting
image can be further enhanced by reducing the speckle
and improving the visibility by applying postprocessing
despeckling filters.

2. Methods and Procedures

2.1. REC. InREC, a preenhanced chirp, x(t), is used to excite
an ultrasonic focused source, h(t). The preenhanced chirp
is obtained through convolution equivalence as discussed in
[18, 20]. The goal of the preenhanced chirp is to boost the
energy in the band edges of the source’s frequency response.

With REC, the spectral support of the echo signal is
much larger than the bandwidth of the source. However,
the pulse duration of the excitation signal, y(t), is longer
than an echo from the same source when the excitation is
&(t), which will be described as conventional pulsing (CP) in
this study. Therefore, in order to recover the benefits of the
larger bandwidth, the resolution must be restored through
pulse compression. Pulse compression is performed using a
Wiener filter, which is described by [21]:

_ ¥ (f) , "
[W(f) | +yeSNR(f)

where f is frequency, and y is a smoothing parameter
that controls the tradeoff between sidelobe levels, axial
resolution, and eSNR. The term eSNR is the echo signal-
to-noise ratio per frequency channel and W(f) corresponds

Hwiener ( f )
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to the Fourier transform of a linear chirp excitation, which
is part of convolution equivalence scheme used to obtain
the preenhanced chirp as discussed in [18, 20]. In practice,
the eSNR is estimated for the imaging system by pointing
the imaging system to a region where no scatterers exist,
for example, water, and the noise of the system can be
isolated for a particular excitation. The compressed echo
waveform and the log-compressed envelope of the echo
waveform for a point target are shown in Figure 1 along with
the CP reference. The Wiener filter allows the compression
to balance between matched filtering and inverse filtering.
Matched filtering provides the best gain in SNR but results in
larger sidelobes and loss in axial resolution. An inverse filter
provides the best compression terms of axial resolution and
sidelobes but amplifies noise in the system.

2.2. REC-FC. In REC-FEC, the wideband RF spectrum of
each scan line was partitioned into N subbands by using
Gaussian bandpass filters. These Gaussian bandpass filters
contained a fraction of the original system bandwidth. The
resulting images from the N subbands were compounded to
form an image with reduced speckle variance. A reduction in
speckle variance translated into CNR improvements. How-
ever, because the subband width was smaller in bandwidth
than the original system, the axial resolution in the com-
pounded images deteriorated. For example, with REC the
axial resolution is doubled compared to CP. If overlapping
subbands with a width of half the REC bandwidth (full
width) are applied, then the resulting axial resolution is the
same as CP and the image has improved visibility because
of the compounding effects. The tradeoff of axial resolution
versus image visibility is shown in Figure 2 for various
subband widths. All subband widths are compared to CP, for
example, third width implies that subbands with one-third
of the CP bandwidth are applied and then compounded.

2.3. Enhanced REC-FC. In this study, a method is proposed
that could provide the improvements in visibility that were
obtained with REC-FC but without degrading the —6dB
axial resolution beyond the axial resolution obtained for
CP. The proposed method consists of compounding REC-
FC images obtained from different subband widths, which
will reduce the speckle variance even further and result in
an improvement of image visibility. This technique will be
known as enhanced REC-FC or eREC-FC [23]. Moreover,
the method has no impact on the lateral resolution of
the imaging system. In this study, eREC-FC utilized the
uniformly weighted sum of the following images (Figure 2):
REC reference image, REC-FC (full-width), REC-FC (half-
width), REC-FC (third-width), REC-FC (fourth-width), and
REC-FC (eighth-width) to form a final enhanced REC-FC
image. The original REC image was included because the
borders of the lesion in the eREC-FC image become much
more distinct because of the high spatial resolution of the
REC technique. REC-FC (eight-width) was the final image
compounded because smaller subband widths require too
much computation time for the minimal improvements in
CNR. Combining REC with REC-FC (eighth-width) resulted
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in similar CNR as in the eREC-FC technique presented
herein; however, the spatial resolution in the image would
be far worse than the eREC-FC technique. Therefore, by
combining more images of varying subbands improvements
in axial resolution could be obtained.

Theoretically, by summing all the compounded images
along with the reference, the final enhanced image would
have a —6dB axial resolution similar to the full-width
REC-FC scenario or equivalent to the original resolution
obtained with CP. The results of summing the envelope of
the reference and subbands are shown in Figure 3. Evaluation
of the eREC-FC envelope at —6 dB in Figure 3(b) indicated
that a loss of 10 ym in axial resolution was obtained when
compared to CP. Compared to the wavelength of the source,
the loss is 1.5%. Furthermore, every drop of —6dB in
amplitude is followed by a slight deterioration in the axial
resolution. However, this degradation should not affect the
image quality unless there is a large contrast difference, such
as in a cystic lesion (i.e., no scatterers).

2.4. Despeckling Filters. Images obtained with the eREC-FC
technique were further processed with several despeckling
filters. These techniques could also be applied to CP and
REC excitations. However, the goal of this particular study
was to judge how well image quality would be improved by
applying coded excitation, novel compounding techniques,
and postprocessing filters. Therefore, to better manage the
amount of data for comparisons, only filtering techniques
will be applied to the eREC-FC images. Similar improve-
ments provided to eREC-FC by the filtering techniques are
also expected for CP and simple REC excitations (except that
the starting point for eREC-FC in terms of image quality
is already improved leading to overall better improvement
using filtering for eREC-FC). Despeckling filters make use
of a moving, overlapping window of size (n X n), where n
is an odd integer, that advances through the entire image
one pixel at a time. The center pixel of the window is the
location that will be adjusted in the filtered image. Some
despeckling filters use iterative techniques, where after the
first iteration (filtering of the original image) the filtered
image becomes the input to the filter for each successive
iteration. The despeckling filters used in this study were as
follows.

2.4.1. Median Filtering [12, 13]. Median filtering makes use
of a moving, overlapping window. The median of the pixels
in the window is the resulting value of the center pixel in
the window for the filtered image. Median filtering is used
to smooth an image and minimize or eliminate noise spikes,
with the idea that all pixels in a small region of an image
should be similar.

2.4.2. Lee Filtering [14]. Lee filtering also uses a moving,
overlapping window. The Lee filter uses statistics within that
window such as mean and variance to adjust the resulting
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center pixel of the window. The equation that governs this
filtering process [24, 25] is

fij =g;;tkij- [gi’f _gi,j]’ (2)

where i and j are pixel coordinates, f; ; is the filtered pixel at
location (i, j), g; ; is the mean of the pixel intensities in the
window, g; ; is the center pixel in the window, and

5 g2
i = M, (3)
T 02(1+02)

where 02 is the variance in the window and o2 is the noise
variance in the whole image. This will result in k € [0, 1].

Because the variance in noise, or speckle, is not known, it is
estimated by [24]

0,

B

(4)

S

o2=>
I

b
>
b

where w), is a window that is 10 times larger than the filtering
window, and aﬁ,h and w;, are the variance and mean of pixel
intensity of the larger window, wy,, respectively. This window
moves through the entire image, I. Statistics obtained for
each region are combined over the entire image to obtain a
single estimate of speckle noise.

2.4.3. Homogeneous Mask Area Filtering [24, 26]. Two win-
dows are used in the homogeneous mask area filtering
technique, a large main window, which determines the pixel
location to filter, and a smaller subwindow within the main
window. For each subwindow, a speckle index is calculated as

S= I (5)

where y and ¢? are the mean and variance of the pixel
intensity in the subwindow, respectively. The mean pixel
intensity of the subwindow with the smallest speckle index
becomes the filtered pixel value. For this study, the dimension
of the subwindow was (n — 2) X (n — 2).

2.4.4. Geometric Filtering [27]. Geometric filtering uses a
moving, overlapping window of size 3 x 3. In addition, the
geometric filter uses an iterative approach to make the center
pixel of the window more like its neighboring pixels. The
idea behind the geometric filter is that a very small region of
an image should be homogeneous. There are four directions
the geometric filter iterates through north-south, east-west,
northwest-southeast, and northeast-southwest. In each case,
a line of three pixels is created and evaluated. The algorithm
for computing the filtered pixel update is shown hereinafter.
In the first iteration, a would correspond to the pixel in the
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north direction, b is the center pixel, and ¢ would correspond
to the pixel in the south direction [24, 27]:

ifa>b+2, thenb=>b+1,
ifa>bandb<c thenb=b+1,
ifc>band b <a, thenb=>b+1,
ifc>b+2, thenb=b+1,
ifa<b-2, thenb=b-1,
ifa<band b=>c, thenb=">b-1,
ifc<band b= a, thenb=0b-1,
ifc<b-2,thenb=b-1.

(6)

2.4.5. Speckle-Reducing Anisotropic Diffusion [16]. Speckle-
reducing anisotropic diffusion (SRAD) is an algorithm that
smears the pixel intensities within homogeneous regions
while preserving edges by not smearing across inhomoge-
neous regions. SRAD is based on anisotropic diffusion [28]
and is used by solving the diffusion equation described as a
nonlinear partial differential equation:

ol .
FTi div[c(|VI|) - VI],

I(t =0) = Iy,

(7)

where div is the divergence operator, V is the gradient
operator, I is the original image, and is greater than zero. c is
the instantaneous coefficient of variation and is described by

1

1+ (x/k)* ®

c(x) =

where x is a spatial position and k is an edge magnitude
parameter.

2.5. Image Quality Metrics. To evaluate the performance of
the eREC-FC technique and the eREC-FC with despeckling
filters compared with CP the following image quality metrics
were used.

2.5.1. Contrast-to-Noise Ratio (CNR) [2]. CNR, also known
as contrast-to-speckle ratio, is a quantitative measure that
will assess image quality and describe the ability to perceive a
target from the background region. CNR is defined as

UB — Ur

N R

where pp and yr are the mean brightness of the background
and the target lesion and o7 and 0% are the variance of the
background and target, respectively. To avoid possible errors
in the calculations due to attenuation, the evaluated regions
of interest in the background and the target lesion will be of
the same size and are located at the same depth. A larger CNR
represents better contrast.

CNR = ) 9)

2.5.2. Histogram Pixel Intensity (HPI). HPI is the mean of
the frequency distribution of gray-scale pixel intensities and
is described by

HPI = E{B}, (10)



where B is the histogram being evaluated and is described by
B(i) = c; (11)

where ¢; represents the number of pixels in the image within
a particular intensity level, i, which is an integer between 0
and 255 that represents the grayscale levels used in B-mode
images. Histograms will be made for same-sized regions for
the target lesion and the background and located at the
same depth. Ideally, for superior target detectability, there
is no overlap present between the target histogram and
the background histogram. Therefore, histogram overlap
(HO), the percentage of overlapping pixels between these two
regions, will be considered as well. In addition to HO, the
difference between the distributions for mean pixel intensity
for the target and the background will be quantified in
order to assess the separation between both distributions.
This quantity will be known as Hgis. Consequently, the
technique with the least amount of overlap and the greatest
separation would represent the technique with the best target
detectability.

2.5.3. Margin Strength (MS). Estimates of MS [29] were
used to detect the edges in the B-mode images. First, a
thresholding scheme was applied to the images. Then, MS
was estimated to detect the strength of the boundaries using
the following expression:

2 2
MS = E (dROI) N dROI ’ (12)
dx dy

where E is the expectation operator, ROI is the region of
interest within the envelope, and x and y correspond to
the image coordinates. The margin strength is then imaged,
which provides a mechanism to qualitatively study the edge
of the targets being imaged.

2.5.4. Comparative Signal-to-Noise Ratio (¢SNR) [24, 30].
cSNR is a comparative measure that quantifies the amount
of noise/speckle reduction between the filtered and the
unfiltered image. cSNR is described by

SH S (g + f2)
p3vall szvzl (gi’j B fi’f)z

A larger ¢SNR represents a larger reduction of speckle noise.
In this study, each filtered image, g, is compared to the
reference image using CP, f.

cSNR = 10log,,

(13)

2.6. Computer Simulations. Computer simulations were car-
ried out in MATLAB (MathWorks, Natick, MA) to charac-
terize the performance of the eREC-FC technique along with
the despeckling filters. The simulations used a received pulse-
echo pressure field model [31] described as

g(x, y,t) = hi(t) * f(x,y) * hpe(y, 1), (14)

where x represents the axial spatial coordinate, y represents
the lateral spatial coordinate, h(¢) is the pulse-echo impulse
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response of the transducer, f(x, ) is the scattering function,
and hpe(y,t) is the modified pulse-echo spatial impulse
response that takes into consideration the geometry of the
transducer to the spatial extent of the scattered field (beam
diffraction). The pulse-echo impulse response, h;(t), for CP
was generated by gating a sinusoid of 4-cycles with a Hann
window:

2nn
0.5<l—cos( )), O<n<lLyg-1,

w(n) = Ly -1 H (15)
0, otherwise,

where 7 is an integer and Ly is the number of samples in the
window. The window and sinusoid parameters were chosen
such that they match the transducer used in experiments.
As a result, the pulse-echo impulse response generated was
located at the focus of a 2.25-MHz single-element transducer
(f/2.66) with a fractional bandwidth of 50% at —3dB,
which would correspond to a window length of n = 128.
For REC, the desired impulse response function, h,(t), was
constructed to have double the fractional bandwidth or
100% at —3 dB, compared with CP method; therefore, a
Hann window of size of half the length, n = 64, was used.
The spatial response for a circular focused piston source can
be simulated as a circular Gaussian beam that is defined as

hpe(y,1) = 8 (t - 271})6,%5, (16)

where Ry is the distance from the source to target in space, ¢
is the speed of sound of the medium, and o,, which is equal
to 1.28 mm, is the nominal lateral beamwidth of the source
at —6 dB.

The received RF backscatter data were sampled at a rate
of 100 MHz and the transducer was translated laterally in
increments of 0.1 mm. The received RF data have a size of
4096 x 58 samples, axially and laterally. The object being
imaged was a simulated phantom that was 20 mm long,
30 mm wide, and 1.92 mm high. A cylindrical target with a
radius of 7.5 mm was located at the center of the phantom.
To generate a hyperechoic target with a contrast of approx-
imately +6 dB, the amplitude of the scatterers in the target
lesion region was twice of the amplitude at the background.
To achieve fully developed speckle, the phantom contained
an average of 20 point scatterers per resolution cell volume.
The scatterers were uniformly distributed throughout the
phantom with random spatial locations. Thirty phantoms
were simulated and evaluated with the image quality metrics
discussed in Section 2.5. Attenuation and noise were not
modeled in the simulations to examine the relationship of
eREC-FC/despeckling filters to speckle effect only.

2.7. Experiments. Experiments were performed to validate
the simulated results. A single-element weakly focused
(f/2.66) transducer (Panametrics, Waltham, MA) with a
center frequency of 2.25 MHz was used to image a phantom
by translating the transducer laterally. The transducer had
a —3-dB bandwidth of 50% along with a pulse-echo
beamwidth of 1.28 mm. These parameters were measured
using the wire technique [32] for transducer characteri-
zation. Using REC, the —6-dB pulse-echo bandwidth was
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enhanced to 100%. There were two different experimental
setups used: one for CP methods and another one for REC
experiments. These setups would contain different noise
levels due to the use of different excitation systems; therefore,
to avoid errors in the comparisons, the noise levels were
normalized to an eSNR of 28 dB. Normalization of eSNR
was accomplished by adding zero mean Gaussian white noise
to the CP RF echo waveform after characterizing the eSNR
from measurements of the signal with no scatterers. The two
experimental setups are described as follows.

2.7.1. CP Experimental Setup. The transducer was excited
by a pulser-receiver (5800, Panametrics, Waltham, MA) and
the receive waveform was displayed on an oscilloscope (9354
TM, Lecroy, Chester Ridge, NY) for visual verification. The
echo signal was recorded at a rate of 100 MHz by a 12-bit
A/D (Digitizing Board UF3025, Strategic Test, Woburn, MA)
for further processing by a PC.

2.7.2. REC Experimental Setup. The preenhanced chirp
was generated in MATLAB (MathWorks, Natick, MA) and
downloaded to an arbitrary waveform generator (W1281A,
Tabor Electronics, Tel Hanan, Israel). The excitation signal
was sampled at a rate of 100 MHz and amplified by an RF
power amplifier (3251, ENI, Rochester, NY). The amplified
signal (50dB) was connected to the transducer through a
diplexer (RDX-6, Ritec Enterprises, Warwick, RI). The echo
signal was received by a pulser-receiver (5800, Panametrics,
Waltham, MA), which was displayed on an oscilloscope
(9354 TM, Lecroy, Chester Ridge, NY) for visual verification.
The echo signal was recorded at a rate of 100 MHz by a 12-bit
A/D (Digitizing Board UF3025, Strategic Test, Woburn, MA)
for further processing by a PC.

A tissue-mimicking phantom (Model 539, ATS Laborato-
ries, Bridgeport, CT) was used to assess the performance of
eREC-FC and the despeckling filters with the image quality
metrics described in Section 2.5. The material from the
tissue-mimicking phantom consisted of urethane rubber,
which has a speed of sound of 1450m/s =1.0% at 23°C
and an attenuation coefficient of 0.5 dB/cm/MHz +5.0%. A
+6-dB echogenic gray-scale target structure with a 15 mm
diameter at a depth of 4 cm was imaged for both CP and REC.
All measurements were conducted at room temperature in a
tank of degassed water.

3. Results and Discussion

3.1. Computer Simulations. The CP reference, REC, REC-FC,
and eREC-FC B-mode images along with the postprocessing
despeckling filtered B-mode images are shown in Figure 4.
The CNR, HO, and cSNR for the B-mode images are listed
in Table 1. Histograms of the background and target regions
for all of the images in Figure 4 are shown in Figure 5 while
edge detection images are shown in Figure 6.

3.1.1. eREC-FC. Examination of the reference scans in
Figures 4(a) and 4(b) revealed that by using the REC
technique the speckle size was finer when compared with CP.

This finer speckle comes from the fact that the bandwidth
was doubled, which translates into improvements in axial
resolution. This smaller speckle size obtained by using
REC is critical because the object boundaries are more
defined compared with CP [18]. Application of frequency
compounding to REC resulted in the B-mode image shown
in Figure 4(c). In this scenario, subband widths that are 1/3
of the CP bandwidth were applied to the REC images. With
REC-FC (third-width), significant improvements in visibility
were observed but at the expense of blurring the image.
Specifically, the CNR for REC-FC (third-width) resulted in
an average improvement of 197% over 30 phantoms. CNR
estimates are listed in Table 1. For eREC-FC, the CNR
improved by an average of 148%. However, in addition to
the CNR enhancement, it was observed in the eREC-FC
results shown in Figure 4(d) that the CNR enhancement was
achieved while maintaining the axial resolution, as suggested
in Figure 3, to comparable levels when exciting a transducer
with a pulse. This result is significant as it suggests that
improvements in CNR can be achieved without significantly
degrading the axial resolution as shown in the REC-FC
technique.

Histogram analysis was performed over the same regions
used to obtain the estimates of CNR. The HO and Hgr
between the target region and the background regions are
listed in Table 1. Previously, it was identified that using
REC resulted in an image with a smaller speckle size.
This improvement had no effect in minimizing the overlap
between the target and background regions when com-
pared to CP. However, by applying frequency compounding
techniques such as REC-FC and eREC-FC, a substantial
reduction in the HO was discovered. It should be noted that
a 3.6% reduction in HO was observed in REC-FC (third-
width) over eREC-FC. Although eREC-FC has a slightly
higher HO, a reduction of 16.3% in HO was observed when
compared to CP. Furthermore, REC-FC (third-width) did
not provide any improvements in terms of the separation
between the target and the background regions as measured
in Hgie compared to CP. On the contrary, eREC-FC provided
a separation of 12 levels of pixel intensities to provide
superior target detectability over REC-FC (third-width).
Therefore, the slight increase in HO observed in eREC-FC
compared to REC-FC (third-width) is acceptable given the
benefits of improved spatial resolution and improved target
detectability brought by using the eREC-FC technique.

As previously stated, REC-FC is known to enhance the
boundaries of the lesions as shown in [18]. However, in
eREC-FC, because images with variable speckle sizes are
being compounded, it was observed that the transition
between the target and the background was slightly blurred.
Applying thresholding along with MS resulted in Figure 6.
From the MS results, it was observed that REC-FC (third-
width) had a more pronounced boundary compared to
eREC-FC. Consequently, the tradeoff in using eREC-FC is a
degradation of the enhanced edges obtained with the REC-
FC technique in order to gain CNR while maintaining the
same axial resolution as CP.

In terms of ¢SNR, REC-FC (third-width) provided the
greatest amount of speckle reduction when compared to
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FIGURE 4: B-mode images of simulated results for the following: (a) CP and (b) REC reference scans, (¢) REC-FC (third-width), (d) eREC-
FC, (e) eREC-FC with median filtering, (f) eREC-FC with Lee filtering, (g) eREC-FC with homogeneous mask area filtering, (h) eREC-FC
with geometric filtering, and (i) eREC-FC with SRAD. Image dynamic range equals —50 dB.

TasLE 1: CNR, HO, Hyifr, and ¢SNR for the 30 cases of simulated RF data for a 15 mm target.!

Technique? CNR HO Haier cSNR

CP 0.728 = 0.172 26.609 = 4.351 36.358 = 8.265 —

REC 0.730 £ 0.146 26.820 = 3.819 35.920 £ 6.809 8.182 £ 0.735
REC-FC (third-width) 2.164 = 0.388 6.699 = 3.258 36.500 = 5.551 14.200 = 0.564
eREC-FC 1.806 = 0.301 10.307 = 3.653 48.590 = 7.496 10.361 = 0.771
eREC-FC and median filtering 2.192 + 0.405 6.366 =+ 3.567 58.334 + 8.923 9.898 = 0.741
eREC-FC and Lee filtering 2.296 + 0.401 5.665 = 3.347 57.477 + 8.563 9.934 £ 0.724
eREC-FC and HMA filtering 2.214 = 0.352 6.335 = 3.073 56.950 = 8.070 9.873 =0.712
eREC-FC and geometric filtering 2.154 +0.363 6.962 + 3.099 50.248 = 7.148 11.027 + 0.647
eREC-FC and SRAD filtering 2.328 +£0.454 5.167 £ 3.170 58.866 * 9.649 17.338 = 0.480
P value 2.252 x 10777 3.900 x 1071 2.482 x 1077 1.922 x 107142

IThe values in the table are described in terms of the mean plus/minus one standard deviation.
2CP: conventional pulsing; REC: resolution enhancement compression; FC: frequency compounding; eREC-FC: enhanced REC-FC; HMA: homogeneous
mask area filtering; SRAD: speckle-reducing anisotropic diffusion.
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FIGURE 5: Histograms of simulated results for the following: (a) CP and (b) REC reference scans, (c¢) REC-FC (third-width), (d) eREC-FC,
(e) eREC-FC with median filtering, (f) eREC-FC with Lee filtering, (g) eREC-FC with homogeneous mask area filtering, (h) eREC-FC with
geometric filtering, and (i) eREC-FC with SRAD (dark: background region; light: target region).

the reference CP image. However, REC-FC (third-width)
suffers from a degradation in axial resolution as the subband
widths were 1/3 of the original CP bandwidth. Conversely,
eREC-FC provided some reduction in speckle without the
deterioration in axial resolution obtained in REC-FC (third-
width). Consequently, because eREC-FC provided CNR
improvements while maintaining spatial resolution along
with improvements as indicated by the comparative metrics,
eREC-FC was further evaluated by applying postprocessing
despeckling filters.

3.1.2. Postprocessing Speckle Reduction Techniques. In this
section, the images generated using the eREC-FC technique
were modified by applying several postprocessing despeck-
ling filters discussed in Section 2.4. For this study, the size of
the filtering window for the median, Lee, and the homoge-
neous mask area techniques was 7 X 7. The units of the pixels
are one beamwidth by one time sample. For the geometric
and SRAD techniques, 5 and 3300 iterations were applied,
respectively. In this study, the main focus was to quantify the
improvements provided by each technique using the image
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FIGURE 6: Edge detection images of simulated results for the following: (a) CP and (b) REC reference scans, (¢) REC-FC (third-width),
(d) eREC-FC, (e) eREC-FC with median filtering, (f) eREC-FC with Lee filtering, (g) eREC-FC with homogeneous mask area filtering, (h)
eREC-FC with geometric filtering, and (i) eREC-FC with SRAD.

quality metrics discussed in Section 2.5. Filter computational
requirements for all the filters studied herein are evaluated
in [33]. Moreover, several real-time implementations of the

iterative SRAD technique are evalulated in [34].

Examination of the filtered images in Figures 4(e) and
4(i) revealed that CNR improvements were obtained when
using postprocessing despeckling filters compared to CP
and eREC-FC. When compared to REC-FC (third-width)
all cases resulted in improvements except in the case where
the geometric filter was applied. However, the difference in
CNR between REC-FC (third-width) and eREC-FC with

geometric filtering was almost negligible (0.01). For the
eREC-FC image with a median filter shown in Figure 4(e)
it was observed that a smearing of the pixels with similar
intensities in the lateral extent occurred. A similar smearing
was observed in Figure 4(f), which shows the eREC-FC
image with a Lee filter. However, the smearing is more
prominent across the target and background boundary. For
the eREC-FC image with homogeneous mask area filtering,
shown in Figure 4(g), a noisy pattern appears around
the boundary between the target and the background. In
Figure 4(h), the eREC-FC image with a geometric filter is
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shown. For the geometric filtering case a similar appearance
to Lee filter was observed. Finally, it was observed that for
eREC-FC with SRAD, shown in Figure 4(i), the speckle was
replaced by a blotchy appearance that was able to enhance or
clearly demarcate the edges in the image. The CNR for eREC-
FC in conjunction with postprocessing despeckling filters
is listed in Table 1. The highest CNR was achieved when
applying SRAD to the eREC-FC images. Overall, by using
despeckling filters in conjunction with eREC-FC the levels
of CNR estimated for REC-FC (third-width) were exceeded.

Histogram analysis was performed over the same regions
used to obtain the estimates of CNR. The HO and Hgg

between the target region and the background regions are
listed in Table 1. Application of postprocessing despeckling
filters to the eREC-FC images resulted in decreases in the
range from 3.35 to 5.14 for HO. In addition, improvements
in terms of the separation between the target and the
background mean pixel intensities in the range of 1.57 to
10.27 were observed. This separation improves the overall
target detectability. In Section 3.1.1 it was identified that
the HO was the smallest for REC-FC (third-width) and the
biggest separation between the target and background mean
pixel intensities was for eREC-FC. By using despeckling
filters, the HO was reduced beyond REC-FC (third-width)
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levels while separating the target and background mean pixel
intensities beyond the levels for eREC-FC. Consequently,
improved CNR and target detectability was achieved with all
despeckling filters.

Application of thresholding along with MS to the eREC-
FC images that were processed with despeckling filters
resulted in Figures 6(e) and 6(i). From the MS results, it
was observed that the median, Lee, homogeneous mask
area, and SRAD produced improved target delineation when

compared to eREC-FC. eREC-FC with geometric filtering
showed some horizontal striations that masked the outline
of the target. Furthermore, it was noted that SRAD had a
similar outline as REC-FC (third-width). Recall that with
eREC-FC a tradeoff of degradation in edges versus CNR
enhancement while maintaining the same axial resolution as
CP was observed. Application of despeckling filters, except
for the geometric filtering case, extended this tradeoff. Con-
sequently, postprocessing despeckling filters in conjunction
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FIGURE 9: Edge detection images of experimental measurements for the

6]

following: (a) CP and (b) REC reference scans, (c) REC-FC (third-

width), (d) eREC-FC, (e) eREC-FC with median filtering, (f) eREC-FC with Lee filtering, (g) eREC-FC with homogeneous mask area
filtering, (h) eREC-FC with geometric filtering, and (i) eREC-FC with SRAD.

with eREC-FC improved the overall target outline while
improving target detectability.

Evaluation of the comparative metric indicates that the
performance of the various despeckling filters varies. For
example, there was observed a reduction in the cSNR for
eREC-FC with median, Lee, and homogeneous mask area
filtering while an improvement in cSNR was achieved for
the geometric and SRAD filtering. The implication is that
only the geometric and SRAD filtering reduced the speckle
beyond the eREC-FC image. Although reduced cSNR was

observed for the median, Lee, and homogeneous mask
area filtering techniques, the reductions were small. Overall,
eREC-FC combined with SRAD resulted in the best cSNR
when compared to the other despeckling filters.

For the simulations, the aforementioned results suggest
that eREC-FC is a useful technique to enhance target
detectability while improving image CNR and maintaining
a spatial resolution comparable to CP. The performance of
eREC-FC was further improved by applying postprocessing
despeckling filters. In summary, eREC-FC combined with
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TaBLE 2: CNR, HO, Hgi, and cSNR for the 15 mm ATS phantom target.
Technique! CNR HO Hgigr c¢SNR
CP 0.56 32.49 16.06 —
REC 0.62 32.49 17.61 8.23
REC-FC (third-width) 1.73 14.07 43.17 12.82
eREC-FC 1.60 17.22 37.64 8.72
eREC-FC and median filtering 2.29 12.12 45.43 8.08
eREC-FC and Lee filtering 2.57 12.09 44.89 8.14
eREC-FC and HMA filtering 2.51 13.41 43.98 8.12
eREC-FC and geometric filtering 1.83 15.17 37.67 10.07
eREC-FC and SRAD filtering 1.86 10.65 40.49 18.32

LCP: conventional pulsing; REC: resolution enhancement compression; FC: frequency compounding; eREC-FC: enhanced REC-FC; HMA: homogeneous

mask area filtering; SRAD: speckle reducing anisotropic diffusion.

SRAD, as quantified by the metrics discussed in Section 2.5,
emerged as the best technique that significantly improves the
quality of ultrasonic images.

3.2. Experiments. The CP reference, REC, REC-FC, and
eREC-FC B-mode images along with the postprocessing
despeckling filtered B-mode images are shown in Figure 7.
The CNR, HO, and cSNR for the B-mode images are listed
in Table 2. Histograms of the background and target regions
for all of the images in Figure 7 are shown in Figure 8 while
edge detection images are shown in Figure 9.

3.2.1. eREC-FC. Similar to simulations, eREC-FC resulted
in CNR, HO, and Hgf improvements when compared to
CP without significantly degrading the axial resolution. A
significant deviation from the simulations was observed
when evaluating the Hgir for REC-FC (third-width). Both
schemes, REC-FC (third width) and eREC-FC, improved
target detectability by separating the mean of the target
and background regions. In simulations, only deviations
were observed for eREC-FC. Evaluating the histogram data
listed in Table 2 suggests that the best target detectability
was obtained with REC-FC (third-width) because of the
combination of a smaller HO and a greater separation
between the target and background mean intensity. However,
the difference between eREC-FC and REC-FC (third-width)
were minimal compared to the improvement both tech-
niques obtained compared to CP. Therefore, by averaging
the CNR of all the REC-FC cases used to generate the
eREC-FC image also resulted in a CNR value in between
the half width and third-width REC-FC cases. This would
suggest that an approximation of the CNR improvements
obtained with eREC-FC can be established by averaging the
CNR of the images being compounded. Furthermore, the
CNR improvements obtained with eREC-FC were achieved
without deteriorating the axial resolution beyond CP levels,
which is the main detriment of the REC-FC technique.

3.2.2. Postprocessing Speckle Reduction Techniques. In this
section, the images generated from experimental measure-
ments using the eREC-FC technique were modified by

applying several postprocessing despeckling filters discussed
in Section 2.4.

Examination of the filtered images in Figures 7(e)—
7(i) revealed that CNR improvements were obtained when
using postprocessing despeckling filters compared to CP
and eREC-FC. Unlike simulations, all cases resulted in
improvements when compared to REC-FC (third-width).
The CNR for eREC-FC in conjunction with postprocessing
despeckling filters is listed in Table 2. The highest CNR
was achieved when applying the Lee filter to the eREC-FC
technique. In terms of CNR, the Lee filter in conjunction
with the eREC-FC technique was the second best technique
as determined by the simulations. Moreover, it was deter-
mined in the simulations that eREC-FC in conjunction with
SRAD provided the best visibility. However, this was not
true in the experiments although the relative improvements
for simulations and experiment were quite similar when
using SRAD. The significant difference between the eREC-
FC images for the simulation and experiment is that a
larger overlap in pixel intensity between the background
and the target occurs during the experiment. Consequently,
the experimental measurements allow for improvements
without saturating the effectiveness of the despeckling
filters, which could have occurred during the simulations.
Moreover, unlike simulations, all of the despeckling filters
when combined with eREC-FC improved the image CNR
beyond what was obtained when using REC-FC (third-
width). In fact, in simulations the largest improvement
over REC-FC (third-width) was approximately 7% when
combining eREC-FC with SRAD, while in the experiments
an improvement of 49% was achieved over REC-FC (third-
width) when combining eREC-FC with the Lee filter. Overall,
by using despeckling filtering in conjunction with eREC-FC
significant improvements in CNR were obtained over REC-
FC (third-width) along with improvements in terms of the
spatial resolution because the eREC-FC image was used as
the reference filtered image.

For histogram analysis and cSNR, similar trends were
observed in the experimental measurements as predicted by
the computer simulations. As in simulations, all postprocess-
ing despeckling filters reduced the HO below REC-FC (third-
width) levels except the geometric filtering case. However,



Advances in Acoustics and Vibration

in the experimental measurements, Hgig for the geometric
filtering case resulted in a smaller separation between the
target and background histograms when compared to the
REC-FC (third-width) case.

The aforementioned experimental results validate the
simulation findings listed in Section 3.1. Overall, the results
suggest that eREC-FC is a useful technique to enhance target
detectability while improving image CNR and maintaining a
spatial resolution comparable to CP. Also, the performance of
eREC-FC was further improved by applying postprocessing
despeckling filters. In summary, eREC-FC combined with
Lee provided the best improvement in terms of CNR while
SRAD provided the best improvement in terms of target
detectability and speckle reduction. Therefore, both of these
techniques significantly improved the quality of ultrasonic
images beyond what is available when using CP, REC, REC-
FC (third-width), and eREC-FC.

4. Conclusions

A technique that improves target visibility in ultrasound
images, known as eREC-FC, was proposed. It was observed
that with eREC-FC the quality of the B-mode images
generated from echoes of simulated and experimental tissue-
mimicking phantoms was drastically improved by increasing
the CNR. The CNR values obtained with eREC-FC were
observed to be within the CNR values estimated for the half-
width and third-width REC-FC cases that were determined
in a previous study [18]. A potential detriment to eREC-FC
technique would be if the difference in contrast between the
background and the target is larger than 20 dB. As shown
in Figure 3 the axial resolution at —20dB is double of that
for CP. Therefore, a smearing in the image, similar to that
observed in the REC-FC study, is possible under targets
with large contrast difference with the background (i.e.,
cystic targets). A potential solution would be to evaluate
the image using a sliding window by applying spatial filter
that preserves brightness at the edges (i.e., keep the original
pixel in the image) and smooths the original image otherwise
(i.e., replace original pixel in the image by the pixel obtained
with eREC-FC technique). The potential tradeoff with this
solution could be that small targets, depending on the size
of the sliding window, may not be improved using a spatial
eREC-FC technique.

By itself, the eREC-FC provided substantial improve-
ments in image visibility compared to CP and REC. How-
ever, the REC-FC (third-width) appeared to provide better
image visibility compared to eREC-FC. Although eREC-FC
improved the CNR of ultrasonic B-mode images, further
improvements were obtained by applying several postpro-
cessing despeckling filter schemes. These techniques include
median filtering, Lee filtering, homogeneous mask area fil-
tering, geometric filtering, and speckle-reducing anisotropic
diffusion. Simulations and experimental measurements were
used to establish the usefulness of the combination of the
eREC-FC technique with despeckling filters in enhancing
image CNR, improving target detectability, and reducing
speckle noise. Simulations and experimental measurements
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suggest that eREC-FC combined with despeckling filters was
a useful tool to obtain substantial improvements in terms of
image visibility and to enhance the boundaries between the
target and the background.
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Compressed sensing or compressive sampling is a recent theory that originated in the applied mathematics field. It suggests a robust
way to sample signals or images below the classic Shannon-Nyquist theorem limit. This technique has led to many applications,
and has especially been successfully used in diverse medical imaging modalities such as magnetic resonance imaging, computed
tomography, or photoacoustics. This paper first revisits the compressive sampling theory and then proposes several strategies to
perform compressive sampling in the context of ultrasound imaging. Finally, we show encouraging results in 2D and 3D, on high-

and low-frequency ultrasound images.

1. Introduction

Ultrasound (US) imaging acquisition, like all other imaging
modalities, relies on Shannon’s theorem. This theorem states
that, in order to reconstruct perfectly a signal, its sampling
frequency must be at least twice the highest-frequency
component present in the signal. Often, US devices use a
sampling rate that is at least four times the central frequency
(wideband), to guarantee Shannon’s theorem. However, the
volume of data obtained is large, especially in 3D imaging,
and can impair imaging in real-time or data transfer [1-4].

Compressed sensing (CS) or compressive sampling is
a novel theory aiming to reduce the volume of data
acquired, below the one dictated by Shannon’s theorem. First
introduced by Candes et al. and Donoho in 2006 [5, 6],
CS guarantees the reconstruction of a signal from far fewer
samples than usually necessary. CS has led to many applica-
tions, including medical imaging (particularly in magnetic
resonance imaging (MRI) and tomography), sampling the
spatial or frequency domains [7-9]. In ultrasound imaging,
a few groups proposed very recently preliminary works for
adapting the compressive sampling framework to ultrasound
imaging [10-15], to ultrasound Doppler [16, 17], or to
photoacoustic tomography [18].

The success of this reconstruction lies on two principles
inherent to CS: sparsity and incoherence.

Sparsity reflects the ability of a signal to be compressed.
A signal that has a sparse representation in a given basis will
have most of its coefficients (or entries) null or very close
to zero in this representation. Hence, by suppressing those
negligible coefficients, the signal can be compressed, that is,
reconstructed from relatively few samples [19]. Of course,
during data acquisition, there is no knowledge about which
coefficients are significant and which are not. CS overcomes
this issue using a sampling basis incoherent with the sparsity
basis.

Incoherence in CS expresses the idea that signals that are
sparse in a given basis cannot be sampled in this basis but in
another where the signal is dense. This property guarantees
that the samples acquired contain the same amount of
information. If the sparse basis was sampled, there would be
arisk of acquiring negligible coefficients, not participating to
the signal reconstruction.

The challenge of CS is to design a sampling protocol that
will capture the information contained on the relatively few
coefficients of the sparse basis. This sampling protocol will
also suit any type of images within a specific application, here
US imaging, without prior knowledge on the signal or image
to sample.

By means of optimization methods, the original signal
can then be recovered from those few measurements and



the reconstruction quality will be similar to the one obtained
respecting Shannon’s theorem.

In summary, CS is a simple acquisition method where
only a few samples of a signal are blindly measured. The full
signal is later retrieved using reconstruction methods.

The purpose of this paper is twofold: first, make CS
familiar to US imaging, and second, show the mechanisms
involved in a successful CS reconstruction. The structure of
the paper includes a reminder of the theory of sampling.
Then, an overview of the CS theory and its components
(essentially sparsity, incoherence, and optimization) will be
given in detail and illustrated in a US context. Then, an
application to US imaging will be proposed and results of
US image reconstruction from usually 25%, 33%, and 50%
of samples acquired will be shown. Finally, perspectives for
CS in US will be drawn and future work will be described.

2. Sampling a Signal

The general framework of sampling can be summarized by
measuring linear combinations of an analog signal f(t),
possibly considered as projections on a given basis:

vk = (oK f), fork=1,...,m, (1)
where (-,:) denotes an inner product, yx are the mea-
surements, @ are sampling vectors, and m is the number
of measurements. The most common sampling protocol
consists of vectors ¢ of Diracs at equal time laps (ideal
sampling). The measurements obtained represent then a
simple discretization of f(t).

However, if the sampling vectors ¢x are complex expo-
nentials, then the measurements y; are Fourier coefficients.
This sampling protocol is used in MRI, for example.

In CS, the number of measurements m is far below
the criteria established by Shannon’s theorem for a given
signal duration. If f is a digital signal of size n (respecting
Shannon’s theorem), then m < n. This situation can rise
with slow imaging devices, for example, or when the number
of sensors is limited. When it is possible to sample signals
respecting Shannon’s theorem, like in US imaging, it might
be more advantageous to reduce the volume of data or the
acquisition time.

However, when the number of measurements is smaller
than the signal size, then we are facing an ill-posed inverse
problem. If ® is a matrix of size m X n, concatenating the
sampling vectors @, then y = @ f. When we want to recover
the signal f corresponding to the measurements y, then there
is an infinity of solutions possible.

CS shows that it is possible to recover f, provided that
it has a sparse representation in a given basis and that
the measurements are incoherent with that basis [20]. The
following two sections explain those two concepts.

3. The Concept of Sparsity

Sparsity is the idea that signals may have a concise repre-
sentation in a given basis. For example, a signal composed
of three sinusoids will be sparse in the Fourier domain as
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its representation in this domain is very concise: namely 12
coefficients (6 symmetrical magnitudes and phases). Hence a
dense signal in the time domain can be coded with only a few
samples.

Other examples include photographic images. On the
image, almost all the pixels have a nonzero value. However,
in the wavelet domain, these images are sparse; that is, they
contain a majority of null or very small coefficients. By dis-
carding those negligible samples, an approximation of the
original image can be obtained, with minimal loss of infor-
mation. Usually, this loss of information is not noticeable:
that is, the concept of JPEG2000 compression [19].

Mathematically, it translates as follows:

f@) = >xyio), (2)

i=1

where f(t) is the original signal, x; are the coefficients of the
signal in the sparse basis, and y;(t) is an orthonormal basis
(Fourier or wavelets e.g.). The S largest coefficients x; are
noted x5, and the corresponding signal fs(¢). If f(t) is sparse
in the basis ¥ composed of the vectors y;, then f = Wx and
the error || f — fsl|, is small.

Figure 1 illustrates the sparsity of radio-frequency (RF)
US signals. Because the sparse representation of the RF
US signal (here, its Fourier transform) concentrates the
information on a few coefficients, it is possible to reconstruct
almost perfectly the signal from only 30% of its largest
Fourier coefficients (keeping only 30% of the largest x; in
(2)).

This concept of concentrated information is also visible
when plotting the Fourier coefficients in order of magnitude
(Figure 2). If they decay rapidly, then the compressed signal
fs(t) including the S largest coefficients will be close to the
original signal f(¢).

Sparsity therefore leads to the compressive nature of
a signal: if a signal has a sparse representation, then the
information coding that signal can be compressed on a few
coefficients. A reconstruction from those few coefficients can
be obtained with minimal loss compared to the original
signal. Note however that CS and compression are different
in that when sampling a signal, it is impossible to directly
acquire the significant coefficients as their positions are not
known a priori. CS overcomes this issue via an incoherent
sampling.

4. Incoherent Sampling

The term incoherent sampling conveys the idea that the
sampling protocol ¢ in (1) has to be as little correlated
as possible with the sparse representation y; in (2). This
requirement prevents from the risk of sampling insignificant
bits of information (the close-to-zero coefficients described
in Section 3). Instead, the idea of an incoherent sampling is
to introduce noise-like interferences to the signal to recover.
The mathematical definition of incoherence is [21, 22]:

u(®,¥) = ﬁlgggn <¢>k, V/j>

, (3)
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FIGURE 2: Ordered relative values of a thyroid in vivo US image
Fourier magnitude coefficients (see Figure 13). They decay very
rapidly, indicating a sparse representation of the image by Fourier
transform.

where @ is the sampling basis and W is the sparsifying basis.
According to (3), if the two bases are strongly correlated, then
y will be close to /i, and if they are not correlated at all, then
it will be close to 1. CS requires a low coherence between the
bases. In other words, incoherence is guaranteed provided
that the two bases are not correlated.

Pairs of bases with minimum coherence include, for
example, a basis of Diracs associated with a Fourier basis
(a spatial Dirac contains information about all the frequen-
cies). In addition, if the sampling basis is completely random,
then it will be maximally incoherent with any sparsifying
fixed basis (wavelets, curvelets, etc.) [21].

Figure 3 shows an example of coherent and incoherent
samplings of a US RF signal. When the sampling is inco-
herent with the sparsifying basis (Figures 3(c) and 3(d)),
then the measurements (namely, in practical situations) in
that basis are dense (by opposition to sparse). The original
sparse signal is polluted by noise-like interferences and can be
reconstructed by optimization. However, when the sampling
basis and the sparsifying basis are coherent (Figures 3(e)
and 3(f)), the measurements in the sparsifying basis are
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themselves sparse. There is significant information (large
Fourier coefficients) missing and CS will not be able to
recover the original signal.

From those incoherent measurements and knowing the
sparsifying basis, CS theory states that it is possible to recover
the original signal using an optimization routine.

5. Signal Reconstruction
through Optimization

Knowing that the signal to recover f has a sparse representa-
tion x in a given basis ¥, it is possible to reconstruct it from
the incomplete incoherent measurements y obtained using
the sampling basis ®. This reconstruction is performed via a
convex optimization program:

min||x||; subjectto y = ®f = OYX, (4)
where X is the reconstructed sparse signal and |- -- I
denotes the ¢; norm.

This optimization searches amongst all the signals that
verify the measurements y, the one with the smallest ¢,
norm, that is, the sparsest. The choice of the ¢; norm
(sum of magnitudes) over the ¢, norm (size of support) is
mainly practical: while solving of the £, norm minimization
is computationally infeasible, the ¢, norm minimization
can easily be recast as a linear program. The ¢ norm
(sum of magnitudes squared) is unsuited to CS because the
minimization would not recover the sparsest signal [23].

In other words, the optimization routine (4) removes
the interferences caused by the incoherent undersampling
from the sparse representation of the measurements (as
in Figure 3(d)). Figure 4 illustrates the process of ¢; norm
minimization applied to the Fourier transform of an RF
signal: the significant coefficients tend to be amplified
while the others, corresponding to the interferences, are
attenuated.

In this example, at the last iteration, the recovered signal
is exactly equal to the original signal. Generally speaking,
recovering the signal is true with overwhelming probability
if the number of measurements m follows:

m=C-u*(®,¥)-S-logn, (5)

where C is a positive constant, y is the coherence as defined
in (3), S is the degree of sparsity, and # is the signal size. From
(5) it follows that the number of measurements depends on
the sparsity S of the signal (the sparsest, the best) in a given
basis and the coherence y of the sampling protocol with that
basis.

In practice, many researchers observed that accurate
reconstructions can be achieved if the number of mea-
surements m is roughly 2 to 5 times the sparsity S of the
signal [24-26]. The work herein matches this statement. For
an offline reconstruction, plots in Figure 2 could be used
to determine the degree of sparsity and consequently the
minimum number of measurements required. For online
reconstruction, priors on the US imaging device bandwidth
could be exploited. Classic US scanners bandwidth ranges

from 50% to 100% or more (depending on the scanner) and
is practically estimated at 3 or 6 dB attenuations. An example
of an experimental PSF together with its Fourier trans-
form showing the bandwidth at 6 dB is given in Figure 5.
Thus, we can observe that, taking into account the device
bandwidth, the k-space may be considered even sparser than
the impression given by Figure 2. The sparsity could then be
set as the number of significant coefficients in the practical
bandwidth, or two times this number.

The optimization routine utilizes no prior knowledge
about the positions or amplitudes of the sparse coefficients
or about the signal to recover.

In practical situations, the measurements y are often
corrupted by noise #, originating from the instrumentation.
Therefore, the term guaranteeing data consistency in (4) has
to be relaxed, so that y = Ax+#. In addition, the signal might
not have an exact sparse representation but an approximate
sparse representation where very small but not exactly nil
coefficients will be neglected. Again, this approximation will
introduce some noise.

In those cases, the CS method will still allow a reconstruc-
tion of the signal, provided that the CS matrix A (A = OVY)
respects the Restricted Isometry Property (RIP) [21, 27]:

(1= 8s)lxll3 < 1Al < (1 + 85)llxII3, (6)

where § are integers and Js is the isometry constant. A obeys
(6) when the smallest §s that verifies (6) for all S-sparse
signals x is not too close to 1. In other words, if A obeys the
RIP, then the Euclidean lengths, or norms, will be preserved
in A: this is the isometry. This property basically ensures that
a sparse signal x will not fall in a null space in A, where it
would be impossible to recover.

If (6) is true, then the minimization will allow an accu-
rate reconstruction of the signal. More precisely, the recon-
struction of an approximately sparse signal will approach the
corresponding compressed signal.

Interestingly, random matrices obey the RIP with over-
whelming probability if m > C - S - log(n/S) with C being a
constant.

The minimization in the case of noisy data is as follows:

min||x||, subjectto HAJ?sz <e, (7)

where the fidelity of the measurement constraint is relaxed to
take into account the level of noise ¢. This is again a convex
minimization, computationally feasible.

6. Sampling Protocols in Ultrasound Imaging

The sampling protocols in US imaging are designed to fulfill
both the requirements of CS and of the US instrumentation.
The CS theory has been described in the previous section
and, from this perspective, the sampling basis mainly has
to be incoherent with the sparsifying basis. The US imaging
devices have physical constraints that limit the sampling
strategies one can adopt for CS.

The data acquisition in US imaging is performed in
the image space (spatial domain), unlike MRI, for example
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reflecting the sparsity of the ultrasound k-space.

[7,24]. There are several possible sampling protocols adapted
to US imaging and incoherent with the sparsifying basis.
They all consist in taking samples of that image at more or
less random locations. This is equivalent to taking samples at
specific times on the RF signals or taking RF lines at specific
locations.

In this paper, eight different sampling protocols are
proposed: three 2D masks and five 3D masks. In two
dimensions, the CS uniformly random mask, denoted @,

and shown in Figure 6(a), will be studied on different types
of RF US images. This sampling protocol is maximally
incoherent with the Fourier transform (considered as the
sparse decomposition basis in this paper) and therefore
should give the best results.

However, switching rapidly from one position to the
next in this kind of sampling pattern might be difficult
from the instrumentation point of view. Consequently, two
other sampling masks denoted by @, and @3 where studied
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FIGURE 6: Sampling masks @; (a), @, (b), and @3 (c) adapted to a spatial sampling of the US images. The white pixels correspond to the
samples used for CS. The proportion of samples here is 50% of the original image.

were whole lines or columns of the images are not sampled
at all (Figures 6(b) and 6(c), resp.). The sampled lines or
columns are chosen in a uniformly random fashion. On the
remaining lines or columns, random points are sampled.
The total number of points sampled and chosen was the
same as for the sampling mask @, to be able to compare
the quality of the CS reconstructions. The sampling masks
@, and ®; are slightly less incoherent than ®; (due to a
certain coherence in the direction that is not sampled at all),
so the results are expected to be worse than for @;. However,
these two strategies could translate as a gain of time from the
instrumentation point of view as some lines (resp., columns)
of the image will not be acquired at all.

For 3D US datasets, five sampling strategies are proposed.
The first, similar to @;, and maximizing incoherence is a
uniformly random mask in three directions, denoted ©,
(Figure 7(a)).

The other four, ®, to ®s, are inspired by @, and @3,
that is, sampling only certain RF lines. Whereas ©®, and ©3
consist in sampling different RF lines or columns on each
slice of the azimuthal direction (see Figures 7(b) and 7(c)),
with @4 and @s, the set of unsampled RF lines or lateral
profiles is always the same in each slice (see Figures 7(d) and
7(e)). Consequently, with @4 (resp., ®s), some whole axial-
azimuthal (resp., lateral-azimuthal) plans of the volume are
not sampled.

7. Reconstructions of Ultrasound Images
and Volumes

In US imaging, the acquisition consists in taking samples of
the image (or of the RF signals). This sampling protocol is
similar to a basis of Diracs (sampling mask). To guarantee
the success of the CS reconstruction, a basis incoherent
with Diracs and where the US images are sparse is needed.
The basis chosen in this paper is the Fourier basis as it is
maximally incoherent with Diracs and because the US image
k-space is sufficiently sparse. The function to minimize is

argmin||[AM — y||, + A|M|;, (8)
M

where M is the k-space of the US RF image m (M = ¥ m),
and A is the sampling scheme (A = ®F ~! here, where ®
corresponds to @ (k = 1,...,3), the RF random sample
locations in 2D, or to ® (k = 1,...,5) in 3D). £ ! stands
for the inverse Fourier transform, y are the RF US image
measurements and A is a coefficient weighting for sparsity.

Other bases of sparsity such as the wavelet transform
of the US image k-space have been investigated in previous
work and give similar results to those presented here [12].

The first term of (8) represents the fidelity of the mea-
surements and the second term guarantees the signal sparsity
in the Fourier basis. The balance between those two terms is
given by A. The choice of A is crucial to a good reconstruction
as it corresponds to a threshold for the recovery of significant
coefficients in the sparse basis.

In this paper, the optimal A chosen was the one giving
the minimum errors of reconstruction. However, finding the
optimal A by trials and errors is obviously not possible during
acquisition where no comparison with the real signal can be
performed.

One solution to minimize the fluctuations in the CS
reconstructions due to a poor choice of lambda is to add
an elastic-net regularization, that is, £, minimization term
on the sparse coefficients [28]. The resulting reconstruction
errors around the optimal A were however quite large
compared to the minimum errors found with only the ¢,
minimization.

Another method, based on an adapting A and called
reweighted ¢, minimization, has been developed [29] to
address that issue. It consists in performing (8) with an initial
A (equal to one e.g.). Then, (8) is reiterated using a new A,
which value is calculated from the results of the first iteration
of (8). Thus, the optimization performed is given as follows:

argmin||[AM — y||, + Z(wfe)lMill). 9)
M i

Namely, the weighted A at each iteration is wffﬂ)

1/(|Mi(€)| + ¢) where £ is the iteration number, Mfe) are
the sparse coefficients estimated after ¢ iterations, and ¢
is a coefficient ensuring stability (that should be slightly
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FIGURE 7: Sampling masks @, (a), ®, (b), ©3 (¢), ®, (d), and O;s (e) adapted to a spatial sampling of the 3D US volumes. The white pixels
correspond to the samples used for CS. The proportion of samples here is 50% of the original volume.

smaller than the smallest nonnil sparse coefficient). At the

first iterations, all w; coefficients are set to 1 (WEO) =1,
for all i). In this setting, the choice of lambda is replaced
by the choice of ¢. However, we observed that the results
of the CS reconstructions were a lot less dependant on ¢
than A. A major drawback of the reweighted ¢; minimization
method is its iterative process. Thus, at least two classic
optimizations are performed (corresponding to a minimum
of two iterations) in order to get an accurate result.

In Section 8, the two techniques of CS reconstruction:
using a fixed optimal A and the reweighted ¢, minimization
were compared for the sampling patterns described in
Section 6. In both cases, a nonlinear conjugate gradient algo-
rithm was used for numerical optimization. This algorithm is

particularly suited to large-scale data and is used for similar
convex optimization problems (see, e.g., [30]).
In addition, different undersampling ratios were tested.

8. Results on a 2D Simulation Image

The CS strategy described in (8) was used to reconstruct the
k-space of an RF image simulated using the Field II US sim-
ulation program [31]. The parameters and the example scat-
terer map of a kidney used were as follows Transducer centre
frequency = 5 MHz, sampling frequency = 20 MHz, number
of scatterers = 50,000, number of RF lines generated =
256, size of the object = 88 x 147 mm. The image was then
cropped to a 1792 by 128 size matrix.
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F1GURE 8: CS on a simulated US image (a) using a two-dimensional random sampling pattern ®; (b) and two alternative sampling mask @,
(c) and @5 (d) using 33% of the samples. The B-mode images of the RF random measurements are shown on the second row. Those from
the CS reconstructed k-spaces with the optimal A = 0.005 are on the third row: (e) to (g), and those from the CS-reconstructed k-spaces
with the reweighted ¢, minimization on the fourth row: (h) to (j). The dotted lines correspond to the position of the RF signals plotted in

Figures 9, 10, and 11.

The three different schemes of sampling, ®;, @,, and 3
(Figure 6), were studied to compare the CS reconstructions,
using a fixed optimal A set to 0.005 and the reweighted ¢,
minimization. The results are shown in Figure 8 for the three
sampling patterns (using 33% of the samples).

For the classic 2D random sampling pattern ®;, one
RF line of the reconstructed signal was plotted against the
corresponding RF lines of the original signal and of the
random measurements (Figure 9).

For the sampling pattern ®,, one RF line of the recon-
structed signal was displayed in Figure 10, corresponding to a
line that was not sampled at all (shown with the dash-dotted
line on Figure 8(f)). RF lines that were partially sampled are
very similar to the ones shown in Figure 9.

Figure 11 shows one lateral profile that was not sampled
at all with the sampling mask @3 (denoted by a dash-dotted

line on Figure 8(g)). Again, the reconstruction quality of
lateral profiles that were partially sampled was similar to
Figure 9.

Table 1 shows the errors of CS reconstructions for the
three sampling masks @;, ®,, and @3 at three undersampling
ratios: 25%, 33%, and 50%.

For the reconstruction from ®,; (Figure 8(e)), the parts
of the image that contained less signal, shown in black on the
B-mode images, were less successfully reconstructed, but the
diagnostic information was maintained. On the RF signals
(Figures 9, 10, and 11), the amplitudes of the reconstructed
signals were sometimes reduced. However, the differences in
amplitude were constant and the timing information of the
signal was maintained. Consequently, the CS-reconstructed
images would give very close visualizations in B-mode and
could also be used for tissue motion estimation or tissue
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F1GURE 10: An example of a local region of an RF line after CS reconstruction using @, sampling mask, corresponding to the dotted line in

Figure 8(f). This line was not sampled at all.

characterization. The errors of reconstruction increased with
a smaller undersampling ratio as one would expect. In
addition, the errors were always reduced when @, was used,
due to a greater incoherence.

With @, the reconstruction of partially sampled RF lines
was again very close to the original signal. For the RF lines
that were not sampled at all (Figure 10), a good reconstruc-
tion was performed as well, showing the potential of CS
for US imaging with reduced pulse emissions. The visual-
izations in B-mode were again very satisfactory in terms of
diagnostic power.

When the sampling mask ®3; was used, partially sam-
pled and unsampled lateral lines were well reconstructed
(Figure 11). The overall CS reconstruction displayed in B-
mode did not exhibit any line artifact.

Results obtained from the reweighted minimization (i.e.,
with an adaptive 1) were similar to those with the optimal A,
found experimentally.

9. Results on In Vivo 2D Images

In this section, US CS is performed using high- and low-
frequency ultrasound images. These images were sampled a
posteriori using CS.

First, results of a CS reconstruction using method (8) on
in vivo images of the skin are shown. The central frequency
was 20 MHz and the sampling frequency 100 MHz (ATYS
Medical). Results from three different sampling patterns @,
®,, and @5 (Figure 6) are shown in Figure 12.

The same CS method (8) was used to reconstruct a
US image of the right lobe of a normal human thyroid.
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TaBLE 1: NRMSE between the CS-reconstructed RF US image and the original simulated image of a kidney for different sampling ratios and

patterns.
(O} ©, R
25% 0.48 0.58 0.6
Classic ¢; minimization (A = 0.005) 33% 0.33 0.45 0.49
50% 0.15 0.28 0.29
25% 0.51 0.56 0.64
Reweighted ¢, minimization 33% 0.36 0.47 0.49
50% 0.17 0.24 0.3

The imaging was performed using a clinical scanner that was
modified for research with a 7.5 MHz linear probe (Sonoline
Elegra, Siemens Medical Systems, Issaquah, WA, USA). The
sampling frequency was adjusted to 40 MHz. For the image
presented here, A = 0.01 and 33% of the samples were
measured a posteriori. The three different sampling patterns
®;, ©, and 5 (Figure 6) were used. The reconstructed US
images of the thyroid are shown in Figure 13.

On in vivo US images, similarly to simulation images,
the CS reconstruction using both sampling patterns was very
good. The tissue structures were restored and the diagnostic
information was maintained. Note that the results do not
depend on the US frequency used. Tables 2 and 3 show the
reconstruction errors for both in vivo images and for the
different sampling schemes proposed.

10. Results on an In Vivo 3D Volume

In vivo US volumes of mouse embryos, acquired on anaes-
thetised mice, were reconstructed using the sampling masks
described in Section 6 (Figure 7).

A single element-high-resolution scanner SHERPA,
developed and commercialized by Atys Medical (Lyon,
France) where RF data was available, was used (central fre-
quency 22 MHz, frame rate 10 images per second, scanning
width 16 mm, sampling frequency 80 M samples/second,

emission frequency 20 MHz, exploration depth 7.8 mm).
The volume was then cropped to a 128 size volume for
illustration purposes.

The CS reconstruction of the volume was performed
using (8) and A = 0.4.

Figure 14 shows the CS reconstruction obtained from the
sampling masks @1, ©;, O3, 4, and Os for a 50% undersam-
pling factor. Figure 14(a) represents the original volume and
Figures 14(g), 14(h), 14(i), 14(j), and 14(k) the CS recon-
structions obtained from each mask, whereas Figures 14(b),
14(c), 14(d), 14(e), and 14(f) are the measurements obtained
from ©, to ®5 masks, respectively.

The first observation to make is that for all the sampling
masks, the CS method (8) provided good reconstructions of
the whole volume from only 50% of the samples. The plan
that was best reconstructed in each case was always the axial-
lateral plan, where the 2D masks were applied (and then
repeated along the azimuthal direction). However this setting
could easily be changed for other applications where another
plan is more crucial.

When the coherence increased, that is, from ®3 to ®,
to ®; and from Os to @4 to ®;, the reconstructions were
degraded, as expected. This is particularly visible on the
axial-azimuthal plans of Figures 14(g), 14(h), and 14(i).
However, considering that absolutely no samples were kept
for the axial-azimuthal plan visible on Figure 14(i), the result
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TaBLE 2: NRMSE between the CS-reconstructed RF US image and the original in vivo image of the skin for different sampling ratios and
patterns.

D, D, (O

25% 0.64 0.71 0.64

Classic #; minimization (A = 0.01) 33% 0.48 0.57 0.35
50% 0.28 0.35 0.35

25% 0.65 0.67 0.73

Reweighted ¢; minimization 33% 0.51 0.65 0.61
50% 0.38 0.44 0.43

TaBLE 3: NRMSE between the CS-reconstructed RF US image and the original in vivo image of a human thyroid right lobe for different
sampling ratios and patterns.

q)l (I)Z (D3
25% 0.34 0.63 0.38
Classic £; minimization (A = 0.01) 33% 0.22 0.53 0.26
50% 0.12 0.38 0.13
25% 0.36 0.64 0.39
Reweighted ¢; minimization 33% 0.24 0.56 0.26
50% 0.15 0.40 0.16
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F1GURE 12: CS reconstruction on a US image of the skin (a) using a two-dimensional random sampling pattern @, (b) and two alternative
sampling masks @, (c) and @3 (d) and 33% of samples. The B-mode images of the samples are shown on the second row from (b) to (d). The
B-mode images of the CS-reconstructed k-spaces with the optimal A are shown on the third rows (e) to (g). Those from the CS-reconstructed
k-spaces using the reweighted ¢; minimization are on the fourth row: (h) to (j).
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FIGuRre 13: CS reconstruction on a US image of a human thyroid right lobe (a) using a two-dimensional random sampling pattern @, (b)
and two alternative sampling masks @, (c) and @; (d) and 33% of samples. The B-mode images of the CS-reconstructed k-spaces with the

optimal A = 0.01 are shown on the second row from (b) to (d).

TaBLE 4: NRMSE between the reconstructed RF US volume and the original volume for different sampling ratios and patterns.

Sampling 25% 33% 50%

0, 0.61 0.49 0.27

0, 0.69 0.57 0.40

Cubic spline interpolation Lateral regular 1.09 1.02 0.83

is still quite impressive. This setting could be used in a
situation where the speed of imaging would prevail on the
quality of the reconstruction. In addition, despite being less
sharp, the image still exhibits the tissue structure and might
be sufficient in many applications.

For puropse of illustration, Table 4 shows the normalised
root mean squared errors of reconstruction between the RF
original and reconstructed US volumes for the two sampling
patterns ®; and ©, and different rates of decimation
(25%, 33%, and 50%). In addition, the NRMSE of the CS
reconstructions was compared with results from an interpo-
lation reconstruction method, based on a 2D cubic spline
interpolation. The decimation used for the interpolation
was a regular lateral undersampling corresponding to the
sampling ratios 33% (no axial decimation). As expected, CS
outperforms interpolated regular subsampling.

11. Some Hints for Practical Implementation

As shown previously, one of the key points for compressive
sampling success is the incoherence of the acquired samples.

For this, random sampling schemes are necessary, in both
axial and lateral directions.

Regarding the axial direction for the sampling masks @,
and ®,, one way to incoherently sample one RF line is to
fix a constant sampling frequency f,, to consider a vector
of random integers #, and to only acquire samples situated
at n,/f.. This can be achieved by programming specific
acquisition devices such as FPGA or CPLD. If the mask @3
is considered, the same 7, random vector is repeated on each
RF line.

Alternatively, for all the masks proposed in the paper, the
whole RF line can be acquired respecting Shannon’s theorem
and random samples subsequently discarded, in order to
speed up the transfer to the scanner memory.

In the lateral direction, for RF lines selection, the
acquisition scheme depends on the type of scanner. For
multiple element transducers, each element can be randomly
set to be active or not. For single-element transducers, each
RF line is acquired separately. Thus, RF lines at random
lateral positions can be omitted.
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TaBLE 5: Qualitative assessment of the speed of acquisition, the quality of reconstruction, and the ease of a practical implementation of
different sampling masks and undersampling ratios (+++ denotes high-speed), high-quality reconstruction and easy implementation.
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F1GURre 14: 3D CS reconstructions following (8) on an in vivo US volume of a mouse kidney (a) using 50% of the samples and the sampling
masks @, ©,, ©3, @4, and Os. The B-mode volumes of the RF random measurements are shown in (b), (c), (d), (e), and (f) and of CS

reconstructed US volume in (g), (h), (i), (j), and (k).

This methodology could be suitable to all the sampling
strategies presented in this paper.

Of course, one could also implement direct random
acquisitions through random triggering acquisition board.
But this possibility needs more sophisticated electronic
design.

12. Summary

Table 5 summarizes the different results presented so far
and qualitatively compares the speed of the acquisition, the
quality of the reconstruction in term of errors, and the ease
of a practical implementation of the different masks and
undersampling ratios tested in this paper.

13. Discussion and Conclusion

This paper investigates the feasibility of CS in ultrasound
imaging. From this presentation many questions are opened.

13.1. Sparsity of Ultrasound Signals. Sparsity is key point
in the success of CS. We dealt here with the fact that the
Fourier transform of US is sparse. This may of course be
questionable.

US signals exhibit bandpass characteristics and thus
are sparse in frequency domain. Consequently, a highly
oversampled version of the ultrasound signal could be
reconstructed from fewer regular samples. However, it is
well known that sampling using high sampling rate is
neither easy nor cost-effective particularly in high-frequency
US applications. The interest of CS lies in the ability of
allowing under sampling from Nyquist limits. Indeed when
sampled at Nyquist (which is cost-effective), by taking the
demodulated I/Q signal, which remains sparse, CS allows
correct reconstruction, whereas no reconstruction is possible
after under sampling from Nyquist rate, according to the
regular sampling theory.

In addition CS allows skipping RF line in lateral and
azimuthal directions.
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13.2. Real-Time Nature. In this paper, we showed the power-
ful potential of CS to reduce data volume and speed up acqui-
sitions at the price of a reconstruction using the /; norm.
However, using dedicated circuits (GPU type) for the CS
reconstruction could allow a great improvement in process-
ing times and overall increase the imaging rate, keeping the
real-time nature of US imaging.

In addition, various sampling protocols suited to US
imaging were proposed here where the RF signals can
be sampled at random times to provide measurements of
the final image k-space. Through the /; minimization, the
original k-space can be reconstructed and the RF US image
subsequently recovered with minimal loss of information.

The method presented here differs from inpainting
methods as the reconstruction is performed in another
domain than the image itself.

Future work will include the identification of optimal
conditions as well as an investigation of several optimization
routines and better sparsity basis. Additional knowledge
about the US images will be inserted in the reconstruction
process (statistics of the signal, attenuation). The aim is to
reach the fastest and most reliable reconstruction from as
little samples as possible. Various applications will also be
considered (multidimensional Doppler and tissue character-
ization).
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Changes in the ocean soundscape have been driven by anthropogenic activity (e.g., naval-sonar systems, seismic-exploration
activity, maritime shipping and windfarm development) and by natural factors (e.g., climate change and ocean acidification).
New regulatory initiatives have placed additional restrictions on uses of sound in the ocean: mitigation of marine-mammal
endangerment is now an integral consideration in acoustic-system design and operation. Modeling tools traditionally used in
underwater acoustics have undergone a necessary transformation to respond to the rapidly changing requirements imposed by this
new soundscape. Advanced modeling techniques now include forward and inverse applications, integrated-modeling approaches,
nonintrusive measurements, and novel processing methods. A 32-year baseline inventory of modeling techniques has been updated
to reflect these new developments including the basic mathematics and references to the key literature. Charts have been provided

to guide soundscape practitioners to the most efficient modeling techniques for any given application.

1. Introduction

Over the past several decades, the soundscape of the
marine environment has responded to changes in both
natural and anthropogenic influences. A soundscape is a
combination of sounds that characterize, or arise from, an
ocean environment. The study of a soundscape is sometimes
referred to as acoustic ecology. The idea of a soundscape
refers to both the natural acoustic environment (consisting
of natural sounds including animal vocalizations, the sounds
of weather, and other natural elements) and anthropogenic
sounds (created by humans) including sounds of mechanical
origin associated with the use of industrial technology. The
disruption of the natural acoustic environment results in
noise pollution.

This paper is concerned with the underwater soundscape.
The field of underwater acoustics enables us to observe
quantitatively and predict the behavior of this soundscape
and the response of the natural acoustic environment to
noise pollution. Specifically, underwater acoustics entail the
development and employment of acoustical methods to
image underwater features, to communicate information via
the oceanic waveguide, or to measure oceanic properties.
In the present context, underwater acoustics encompasses

both the science and the technology necessary to deploy
functioning acoustical systems in support of naval and
commercial operations.

Broadly defined, modeling is a method for organizing
knowledge accumulated through observation or deduced
from underlying principles. Modeling applications fall into
two basic categories: prognostic and diagnostic. Prognostic
applications include prediction and forecasting functions
where future oceanic conditions or acoustic sensor perfor-
mance must be anticipated. Diagnostic applications include
system-design and analysis functions typically encountered
in engineering tradeoff studies.

The challenges of managing the underwater soundscape
are being met by enabling technologies and by emerging
solutions. Throughout this paper, the utility of the available
inventory of models is stressed and relevant examples from
the recent literature are provided in support.

After a brief background in Section 1, the balance of
this paper is divided into three main sections. Section 2
addresses evolving challenges. Section 3 discusses enabling
technologies. Section 4 reviews emerging solutions. Finally,
Section 5 summarizes the notable advances in underwater
acoustic modeling that support management of the under-
water soundscape.



2. Evolving Challenges

2.1. Background. The soundscape baseline is defined by
ambient noise, which is the prevailing background of sound
at a particular location in the ocean at a given time of the
year. It does not include transient sounds such as the noise
of nearby ships and marine organisms, or of passing rain
showers. In practice, ambient noise excludes all forms of self-
noise, such as the noise of current flow around the sonar.
For sonar processing, however, it is the background of noise
(including interfering sounds), typical of the time, location,
and depth against which an acoustic signal must be detected.

2.2. Naval Operations in Coastal Environments

2.2.1. The Coastal Environment. Coastal environments are
generally characterized by high spatial and temporal variabil-
ities. When coupled with attendant acoustic spectral depen-
dencies of the surface and bottom boundaries, these natural
variabilities make coastal regions very complex acoustic
environments. Specifically, changes in the temperature and
salinity of coastal waters affect the refraction of sound in the
water column. These refractive properties have a profound
impact on the transmission of acoustic energy in a shallow-
water waveguide with an irregular bottom and a statistically
varying sea surface. Thus, accurate modeling and prediction
of the acoustic environment is essential to understanding
sonar performance in coastal oceans.

Physical processes controlling the hydrography of shelf
waters often exhibit strong seasonal variations. Annual cycles
of alongshore winds induce alternating periods of upwelling
and downwelling. The presence of coastal jets and the
frictional decay of deep-water eddies due to topographic
interactions further complicate the dynamics of coastal
regions. Episodic passages of meteorological fronts from
continental interiors affect the thermal structure of the
adjacent shelf waters through intense air-sea interactions.
River outflows create strong salinity gradients along the
adjacent coast. Variable bottom topographies and sediment
compositions with their attendant spectral dependencies
complicate acoustic bottom boundary conditions. At higher
latitudes, ice formation complicates acoustic surface bound-
ary conditions near the coast. Waves generated by local
winds under fetch-limited conditions, together with swells
originating from distant sources, conspire to complicate
acoustic surface boundary conditions and also create noisy
surf conditions. Marine life, which is often abundant in
nutrient-rich coastal regions, can generate or scatter sound.
Anthropogenic sources of noise are common in coastal seas
including fixed sources such as drilling rigs and mobile
sources such as merchant shipping and fishing vessels.
Surface weather, including wind and rain, further contribute
to the underwater noise field. Even noise from low-flying
coastal aircraft can couple into the water column and add to
the background noise field.

2.2.2. Littoral Operations. Over the past decade, naval mis-
sion requirements have shifted from open-ocean operations
to shallow-water (or littoral) scenarios. For convenience,
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shallow water will be defined by water depths less than
200 meters. This has not been an easy transition for
sonar technologists since sonar systems that were origi-
nally designed for operation in deep water seldom work
optimally in coastal regions. This has also held true for
modeling and simulation (M&S) technologies, which have
undergone a redefinition and refocusing to support a new
generation of multistatic naval systems that are intended
to operate efficiently in littoral regions while still retaining
a deepwater capability. Shallow-water geometries increase
the importance of boundary interactions, which diminish
acoustic energy through scattering and also complicate
localization of diesel submarines and coastal mines due
to multipath propagation. Moreover, the higher levels of
interfering noises encountered in coastal regions combined
with higher levels of boundary reverberation mask signals
of interest. In advance of naval deployments, synoptic
meteorological and oceanographic (METOC) measurements
are often required in remote or hostile (i.e., harsh or heavily
defended) coastal environments to forecast acoustic sensor
performance. Coupled atmosphere-ocean-acoustic models
could reduce the need for hazardous in situ data collection
by numerically computing initial states for the embedded
acoustic models.

In support of naval operations in littoral regions,
acoustical oceanographers have employed ocean-acoustic
models as adjunct tools that can be used to conduct rapid
environmental assessments (REAs) in remote locations. Due
to an increased awareness of the potential technological
impacts on marine life, naval commanders and acoustical
oceanographers must also be aware of new environmental
regulations governing the acoustic emissions of their sonar
systems.

In shallow water, interactions of the acoustic fields with
the sea bed require an understanding of the sedimentary
structure of the bottom to a level of detail that is usually
not required in deep-water environments. In the forward-
propagation case, this means that a significant amount of
information is necessary to properly characterize the bottom
boundary to ensure the generation of high-fidelity model
outputs. This generally requires a good understanding of
the physics of bottom-interacting acoustics in diverse ocean
environments.

Sonar clutter, particularly in shallow-water environ-
ments, introduces false targets that change the statistics
of the reverberation signal. Specifically, clutter increases
the probability of false alarm for a given probability of
detection. This is because clutter adds to the length of
the tails of the reverberation-envelope PDF (probability
distribution function), moving the statistics away from the
Rayleigh canonical form. Clutter can be caused by target-like
features, either natural or man-made, or by non-Gaussian
distributions of the scatterers. Typically, high-bandwidth or
highly directive systems (or both) have more problems with
clutter since, as the size of the scattering patch is reduced,
the PDF of the generally non-Gaussian scatterer distributions
becomes resolved by the system [1].

2.2.3. Training Ranges. At issue here is operational naval
training with active sonars. These high-power multistatic
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sonars have become more important in the face of improved
diesel-electric submarine threats operating in complex
coastal environments.

The US Navy has explored the environmental conse-
quences of installing and operating an undersea warfare
training range (USWTR) in conjunction with appropriate
coordination and consultation with the National Marine
Fisheries Service (NMEFES) and in compliance with applicable
laws and executive orders including the Marine Mammal
Protection Act (MMPA), the Endangered Species Act (ESA),
the National Environmental Policy Act (NEPA), and the
Coastal Zone Management Act (CZMA).

2.2.4. Underwater Networks. Ocean-bottom sensor nodes are
used for oceanographic data collection, pollution monitor-
ing, offshore exploration, tactical surveillance applications,
and rapid environmental assessments [2, 3]. Factors that
determine the temporal and spatial variability of the acoustic
channel also limit the available bandwidth of the ocean
channel and make it dependent on range and frequency.
Specifically, long-range systems (~10km) have bandwidths
of a few kilohertz while short-range systems (~0.1 km) have
bandwidths on the order of a hundred kilohertz. A moored-
buoy ocean observatory system comprising oceanographic
sensors was linked by acoustic communications to retrieve
data from sensors in the water column at ranges of approxi-
mately 3 km [4]; the observatory was deployed off Vancouver
Island in the northeastern Pacific Ocean in May 2004 (for 13
months) to study the correlation of seismicity and fluid flow
in a seep area along the Nootka fault.

Underwater networks consist of variable numbers of
sensors and vehicles deployed in concert to perform collabo-
rative monitoring tasks over a given area. Underwater sensor
networks comprise nodes that communicate via acoustic
waves over multiple wireless hops to perform collaborative
tasks such as environmental monitoring, naval surveillance,
and oceanic exploration. Nodes in underwater sensor net-
works are constrained by harsh physical environments. Data
delivery schemes originally designed for terrestrial sensor
networks are unsuitable for use in the underwater environ-
ment. Relatively few new schemes have been proposed for
underwater use, and no single scheme has yet emerged as the
de facto standard.

Underwater acoustic communications are influenced by
spreading loss, noise, multipath discrimination, Doppler
spread, and high and variable propagation delays. More-
over, underwater acoustic channels normally have low data
rates and time-varying fading. These factors determine the
temporal and spatial variability of the acoustic channel and
make the available bandwidth of the ocean channel both
limited and dependent on range and frequency. Challenges
due to the presence of fading, multipath, and refractive prop-
erties of the sound channel necessitate the development of
precise underwater-channel models. Some existing channel
models are simplified and do not consider multipaths or
fading. Multipath interference due to boundary reflection
in shallow-water acoustic communications poses major
obstacles to reliable high-speed underwater communication
systems.

Cooperative transmission is a new wireless communica-
tion technique in which diversity gain can be achieved by
utilizing relay nodes as virtual antennae. These transmission
techniques have been investigated for underwater acoustic
communications. First, the performance of several cooper-
ative transmission schemes was studied in an underwater
scenario. Second, by taking advantage of the relatively low
propagation speed of sound in water, a new wave cooperative
transmission scheme was designed in which the relay nodes
amplified the signal received from the source node and
then forwarded the signal immediately to the intended
destination. The goal was to alter the multipath effect at
the receiver. Third, the upper bound of performance was
derived for the proposed wave cooperative transmission
scheme. The simulation results showed that the proposed
wave cooperative transmission had significant advantages
over both the traditional direct transmission and the existing
cooperative transmission schemes originally designed for
radio wireless networks [5].

Localization algorithms are relevant to underwater sen-
sor networks, but there are challenges in meeting require-
ments imposed by emerging applications for such networks
in offshore engineering [6]. Localization algorithms can be
broadly categorized into range-based and range-free schemes.
Range-based schemes use precise distance or angle measure-
ments to estimate the location of nodes in a network. Range-
free schemes are simpler than range-based schemes, but they
only provide a coarse estimate of a node’s location.

Underwater networking is an enabling technology for the
operation of autonomous underwater vehicles. In particular,
ad hoc networks entail wireless communications for mobile
hosts called nodes. In these networks, there is no fixed infras-
tructure. Mobile nodes that are within range communicate
directly via wireless links, while those that are far apart rely
on other nodes to relay messages as routers. Node mobility
in an ad hoc network causes frequent changes of the network
topology. Since ad hoc networks can be deployed rapidly
with relatively low cost, they are attractive for military,
emergency, commercial and scientific applications [2, 3]. A
channel simulator was developed for testing the performance
of unmanned undersea vehicle (UUV) communications [7].

2.2.5. Unmanned Underwater Vehicles. Autonomous under-
water vehicles (AUVs), or unmanned undersea vehicles
(UUVs), constitute part of a larger group of undersea systems
known as unmanned underwater vehicles, a classification
that includes nonautonomous remotely operated vehicles
(ROVs) that are controlled and powered from the surface by
an operator (or pilot) via an umbilical connection.

Underwater gliders actually constitute a new class of
autonomous underwater vehicles that glide by controlling
their buoyancy and attitude using internal actuators [8].
Gliders have useful applications in oceanographic sensing
and data collection because of their low cost, autonomy, and
capability for long-range extended-duration deployments.
They serve as adjuncts to ship-based hydrographic casts,
towed sensors, UUV/AUV and satellite-based sensors, but
they also present challenges in communications common to
all untethered subsurface sensors.



2.3. Marine Seismic Operations

2.3.1. Seismic Exploration. Marine seismic surveys are used
to assess the location of hydrocarbon resources, including
gas and oil. There are two acquisition methods: 2D and 3D.
The 2D method tows a single seismic cable (or streamer)
behind the seismic vessel, together with a single source.
The reflections from the subsurface of the sea floor are
assumed to lie directly below the path (sail line) of the
vessel. In a 3D survey, groups of sail lines (or swathes)
are used to acquire orthogonal or oblique lines relative to
the acquisition direction. By utilizing more than one source
together with many parallel streamers towed by the seismic
vessel, the acquisition of many closely spaced subsurface 2D
lines can be achieved by a single sail line. Computationally
intensive processing is necessary to produce a 3D image
of the subsurface of the sea floor. The source arrays are
powered by high-pressure air that is compressed onboard the
seismic vessel. These compressors are capable of recharging
the airguns rapidly and continuously, enabling the airgun
source arrays to be fired at approximately 10-second intervals
for periods of up to 12 hours. Typical towing depths range
from 4-5 meters for shallow high-resolution surveys or 8-
10 meters for deeper penetration, lower-frequency targets
in open waters. Typical source outputs are approximately
220dB re 1 yPa/Hz at 1 m. Other types of seismic sources
include water guns and marine vibrators.

2.3.2. Marine Mammal Impacts. In 2002, the International
Association of Geophysical Contractors (IAGC) hosted an
informal meeting to discuss future Acoustics Research rele-
vant to seismic operations related to the effects of seismic
exploration on sperm whales in the Gulf of Mexico [9].
The TAGC offered its support for sperm-whale research
through the contribution of a seismic-source vessel for
controlled-exposure experiments. In response, a proposed
sperm whale seismic study (SWSS) was approved by the
Minerals Management Service (MMS) in 2002. (The MMS is
now the Bureau of Ocean Energy Management, Regulation
and Enforcement, or BOEMRE.) In subsequent years, IAGC
was joined by a number of oil and gas companies to form
the Industry Research Funders Coalition (IRFC) that has
continued to provide contributions in support of SWSS
studies.

Long-term (monthly to seasonal) movements and distri-
butions of sperm whales were studied using satellite-tracked
radio telemetry tags (S-tags). Short-term (hours) diving
and swimming behavior and vocalizations of sperm whales
were examined using recoverable digital-recording acoustic
tags (D-tags) that logged whale orientation (i.e., pitch, roll,
heading) and depth, as well as the sounds made by the whale
and received at the whale from the environment. Diving
depths and movements were examined using 3D passive
acoustic tracking techniques.

To examine potential changes in the behavior of sperm
whales when subjected to seismic airgun sounds, controlled
exposure experiments (CEEs) were conducted using the D-
tags in conjunction with a seismic-source vessel. The location
and level of airgun sounds delivered at the tagged sperm
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whales were controlled by the science team. These CEEs
provided data on the immediate and short-term (hours)
response of sperm whales to airgun sounds. Longer-term
avoidance or displacement behaviors of sperm whales to
seismic vessel airgun sounds were examined using location
data from the S-tags and from proprietary commercial
seismic shot data.

The 3D tracking method requires at least two widely
separated hydrophones to obtain the horizontal range and
depth of acoustically active sperm whales and would thus be
suited for eventual use on a standard seismic vessel, where the
passive acoustic arrays (streamers) can be over a kilometer
long. Instead of relying on four hydrophones deployed
as a three-dimensional array (which would be difficult to
deploy and process), the method used here exploited surface
multipath (or “ghosts”) to reduce the number of required
hydrophones to three and further permitted the phones
to be deployed along a single towed cable. The horizontal
separation between the widely-spaced hydrophones needed
to be at least 200 m in order to obtain adequate range and
depth resolution at 1 km horizontal ranges. The method did
not require the use of multipath from the ocean bottom, but
when such bottom returns were detected they could provide
an independent confirmation of these tracking procedures
[10].

2.4. Shipping Activity. Shipping lanes, a term used to indicate
the general flow of merchant traffic between two ports, are
routes that historically have been optimized for shortest
distances and travel times, and which are modified to avoid
extreme weather events [11]. Noise from distant shipping
generally occupies the frequency band 20-500 Hz.

A comparison of time-series measurements of ocean
ambient noise over two periods (1963-1965 and 1994—
2001) revealed that noise levels from the latter period
exceeded those of the earlier period by about 10dB in the
frequency ranges 20-80 Hz and 200-300 Hz, and by about
3 dB at 100 Hz [12]. The observed increase was attributed to
increases in shipping. Ambient noise measurements collected
at the same site but separated by an interval of nearly 40
years (1964-1966 and 2003-2004) revealed an average noise
increase of 2.5-3dB per decade in the frequency band 30—
50 Hz [13, 14].

2.5. Windfarm Development. Wind power, as an alternative
to fossil fuels, is plentiful, renewable, widely distributed,
clean, and produces no greenhouse gas emissions during
operation. A wind farm, which is a group of wind turbines
in the same location used for production of electric power,
may be located offshore. The installation of ocean wind farms
requires medium water depths (<30m) and construction
logistics such as access to specialized vessels to install the
turbines. Economic wind generators require wind speeds of
16 km/h or greater.

A concerted effort has been made by industry to
minimize any undesirable effects relating to windfarm devel-
opment and operation [15]. One potential effect of offshore
windfarm development is the creation of underwater noise.
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Knowing the length of time the marine environment is
exposed to an underwater noise source is useful when
assessing environmental effects. Measurements of offshore
wind turbine noise showed low-frequency sound levels with
a maximum of 153dB re 1uPa at 1m at 16 Hz. These
measurements were of individual turbines of a relatively
low power (less than 1 MW). Despite the low-level and
low-frequency nature of the sound, behavioral reactions of
marine mammals have been observed in response to the
reproduction of wind-turbine noise.

2.6. Ocean Acidification. Climate change also affects the
ocean soundscape. The emission of carbon into the atmo-
sphere through the effects of fossil-fuel combustion and
industrial processes increases atmospheric concentrations of
carbon dioxide (CO,). Ocean acidification, which occurs
when CO, in the atmosphere reacts with water to create
carbonic acid (H,COs3), is increasing.

The attenuation of low-frequency sound in the sea is pH
dependent; specifically, the higher the pH, the greater the
attenuation. Thus, as the ocean becomes more acidic (lower
pH) due to increasing CO, emissions, the attenuation will
diminish and low-frequency sounds will propagate farther,
making the ocean noisier.

Recent investigations modeled what effect the increasing
acidity of the ocean would have on ambient-noise levels in
shallow water in the presence of internal waves [16]. This
model assumed an isotropic distribution of noise sources.
Exploring a scenario typical of the East China Sea, the noise
at 3kHz was predicted to increase by 30%, or about one
decibel, as the pH decreased from 8.0 to 7.4. These results
are representative of other contemporaneous investigations
into this matter.

3. Enabling Technologies

3.1. Background

3.1.1. Regulatory Initiatives. An examination of anthro-
pogenic sound in a global context considered the need for
new regulatory initiatives to deal with the conflicting uses of
ocean space related to noise [17]. This study identified the
existing legal, economic, and political barriers to the creation
and implementation of a new international regime designed
to manage anthropogenic noise in the ocean.

The Committee on Potential Impacts of Ambient Noise
in the Ocean on Marine Mammals was charged by the Ocean
Studies Board of the US National Research Council to assess
the state of our knowledge of underwater noise and recom-
mend research areas to assist in determining whether noise
in the ocean adversely affects marine mammals [18]. One
of the findings of this committee was that models describing
ocean noise are better developed than are models describing
marine mammal distribution, hearing, and behavior. The
biggest challenge lies in integrating the two types of models.
The National Research Council [19] also examined what
constitutes biologically significant in the context of Level
B harassment as used in the latest amendments to the

US Marine Mammal Protection Act (MMPA). The MMPA
separates harassment into two levels. Level A harassment
is defined as “any act of pursuit, torment, or annoyance
which has the potential to injure a marine mammal or
marine mammal stock in the wild” Level B harassment
is defined as “any act of pursuit, torment, or annoyance
which has the potential to disturb a marine mammal or
marine mammal stock in the wild by causing disruption of
behavioral patterns, including, but not limited to, migration,
breathing, nursing, breeding, feeding, or sheltering.” The
MMPA, enacted in 1972, was the first legislation that called
for an ecosystem approach to natural-resource management
and conservation; it specifically prohibited the take (i.e.,
hunting, killing, capture, and/or harassment) of marine
mammals.

The ocean biogeographic information system (OBIS)
is an on-line worldwide atlas for accessing, modeling
and mapping marine biological data in a multidimen-
sional geographic context [20]. Also see the website at
http://www.iobis.org/home.

3.1.2. Modeling Uncertainty. Uncertainty has been defined
as a quantitative measure of our lack of knowledge of the
sound-speed field and boundary conditions constituting
the waveguide information necessary for simulation of the
acoustic field [21]. This uncertainty is distinct from any
errors related to numerical solution of the wave equation.
Existing methods typically solve a deterministic wave equa-
tion separately over many realizations, and the resulting set
of pressure fields is then used to estimate statistical moments
of the field. Proper sampling may involve the computation
of thousands of realizations to ensure convergence of the
statistics.

A study of the effects of uncertainty in the modeling of
anthropogenic impacts suggested a precautionary approach
to regulation [22]. It was further noted that due to the
complex patterns of sound propagation encountered in
diverse shelf regions, some marine mammals may not
necessarily encounter the average sound exposure conditions
predicted for any given seismic survey.

3.2. Numerical Modeling Techniques. Four types of models
will be discussed: propagation, noise, reverberation, and
sonar performance. The order of presentation will follow
that indicated in Figure 1. This box-type format will be
used throughout the text to present compact summaries of
methods that have been developed in detail elsewhere [23].

3.2.1. Propagation Models. As sound propagates through the
ocean, the effects of spreading and attenuation diminish its
intensity. Spreading loss includes spherical and cylindrical
spreading losses in addition to focusing effects. Attenuation
loss includes losses due to absorption, leakage out of ducts,
scattering, and diffraction. Propagation losses increase with
increasing frequency due largely to the effects of absorption.
Sound propagation is profoundly affected by the conditions
of the surface and bottom boundaries of the ocean as well
as by the variation of sound speed within the ocean volume.
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FIGURE 1: Flow of underwater acoustic modeling from propagation, through noise and reverberation, to sonar performance.

Sound-speed gradients introduce refractive effects that may
focus or defocus the propagating acoustic energy.

Formulations of acoustic propagation models gener-
ally begin with the three-dimensional, time-dependent
wave equation. For most applications, a simplified linear,
hyperbolic, second-order, time-dependent partial differen-
tial equation is used:
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c2 o2’

where V2 = (9%/0x?) + (9*/dy?) + (9?/9z?) is the Laplacian
operator, @ is the potential function, c is the speed of sound,
and ¢ is the time.

Subsequent simplifications incorporate a harmonic
(single-frequency, continuous wave) solution in order to
obtain the time-independent Helmholtz equation. Specif-
ically, a harmonic solution is assumed for the potential
function @:

V20 = (1)

2

where ¢ is the time-independent potential function, w is the
source frequency (27 f), and f is the acoustic frequency.
Then the wave equation (1) reduces to the Helmholtz
equation:

D = ¢e—iwt

V2¢+ k¢ =0, (3)
where k = (w/c) = (2n/A) is the wavenumber and A is
the wavelength. Equation (3) is referred to as the time-
independent (or frequency-domain) wave equation.
Propagation models are integral to the higher-level
modeling of noise, reverberation, and, ultimately, sonar
performance. The graphic in Figure 1 shows the flow of sonar
modeling from propagation, through noise and reverber-
ation, through to sonar performance. Estimates of passive

sonar performance would require the input of propagation
and noise while active sonar performance would require
inputs of both noise and reverberation.

Propagation models can be categorized into five distinct
techniques [23].

(a) Ray-theoretical models calculate propagation loss on
the basis of ray tracing.

(b) Normal-mode solutions are derived from an integral
representation of the wave equation.

(c) Multipath expansion techniques expand the acoustic
field integral representation of the wave equation
in terms of an infinite set of integrals, each of
which is associated with a particular ray-path family.
Thus, each normal mode can then be associated with
corresponding rays.

(d) In underwater acoustics, fast-field theory is also
referred to as “wavenumber integration.” In seis-
mology, this approach is commonly referred to as
the “reflectivity method” or “discrete-wavenumber
method.”

(e) The parabolic approximation approach replaces the
elliptic reduced wave equation with a parabolic
equation (PE). Use of the parabolic approximation
in wave propagation problems can be traced back to
the mid-1940s when it was first applied to long-range
tropospheric radio wave propagation.

As shown in Figure 2, a further division can be made
according to range-independent (1D, or depth-dependence
only) or range-dependent environmental specifications,
where environmental range-dependence can be 2D (depth
and range) or 3D (depth, range, and azimuth). Since all five
techniques are derived from the wave equation by restricting
solutions to the frequency domain, the resulting models
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= Frequency-domain solutions
= Ray theory
= Normal mode

= Multipath expansion

= Parabolic equation

= Environmental range dependence
= Range independent (1D)
= Range dependent (2D, 3D)

= Fast field/wavenumber integration
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FIGURE 2: Organization of propagation models into five distinct techniques. A further division is made according to range-independent (1D)

or range-dependent (2D or 3D) environmental specifications.

are appropriate for traditional sonar applications. (Solutions
obtained in the time domain would be appropriate, e.g.,
for modeling shock propagation in the ocean.) Each of
the five techniques has a unique domain of applicability
that can be defined in terms of acoustic frequency and
environmental complexity. These domains are determined
by the assumptions that were invoked in deriving each
solution. Hybrid formulations obtained by combining two
or more different techniques are often developed to improve
domain robustness.

Table 1 provides a summary of stand-alone propagation
models. Superscript letters identify those models that have
been added to the inventory since 2003. These letters
refer to a brief summary and appropriate documentation.
Model documentation can range from informal program-
ming commentaries to journal articles to detailed technical
reports containing a listing of the actual computer code.
Corresponding information on the legacy models is provided
in the 2003 baseline [23] and is not repeated here.

In Table 1: (Propagation models), (a) FeyRay was
developed to accommodate the speed, fidelity, and im-
plementation requirements of sonar trainers and simu-
lators. It is a broadband, range-dependent, point-to-point
propagation model optimized for computa-tional efficiency.
FeyRay utilizes the Gaussian-beam approximation, which
reduces the acoustic wave equation (a partial differential
equation) to a more tractable system of ordinary differential
equations [24-28], (b) PlaneRay provides a unique sorting
and interpolation routine for efficient determination
of a large number of eigenrays in range-dependent
environments. No rays are traced into the bottom since
bottom interaction is modeled by plane-wave reflection
coefficients. The bottom structure is modeled as a fluid
sediment layer over a solid half-space. This approach
balances two conflicting requirements: ray tracing is valid
for high frequencies while plane-wave reflection coefficients
are valid for low frequencies where the sediment layers
are thin compared with the acoustic wavelength [29-33],
(c) PWRC is a ray-based model that performs geoacoustic
inversions in range-dependent ocean waveguides. The
pressure field is modeled approximately by separating
the ocean propagation ray paths from the layered bottom
interaction. The bottom interaction is included by using a

full-wave description, making PWRC a hybrid model, in
contrast to a full-ray theory approach that traces rays into
the bottom layers. The field contribution from the bottom
interactions partially includes beam-displacement effects
associated with internally reflected or refracted returns
from the sediment since the complex bottom reflection
coefficients are obtained from a full-wave solution. This
method is comparable in accuracy to normal mode and
analytic solutions (in range-dependent environments) for
frequencies >100 Hz [34], (d) Ray5, developed by Trond
Jenserud at the Forsvarets forskningsinstitutt (Norwegian
Defence Research Establishment), uses direct integration
in a sound-speed field specified either analytically or by
interpolation from measured data. The Ray5 program is
well suited for ray-tracing calculations in acoustic fields
described analytically. It needs the sound-speed values, their
spatial derivatives and second derivatives at all points within
the field. Hence, if these values can be given analytically as
functions of the oceanographic and bathymetric parameters,
no interpolation is necessary and the program reduces
its computing time. Further developments in Ray5 have
made it possible to calculate eigenrays. This allows phase
information to be retained for a given frequency so that
coherent pressure values can be summed for the rays arriving
at the receiver. The actual pressure values for the individual
rays are calculated by assuming the pressure distribution in
the direction normal to the ray to have a Gaussian behavior
(i.e., Gaussian beams). It is also possible to calculate the
incoherent sound levels [35]. A separate report includes the
MATLAB code for Ray5 [36], (¢) RAYSON was developed
by Semantic (France) to solve the Helmholtz equation
using a ray-theoretic approximation for high frequencies.
In a stratified (range-independent) environment, analytic
solutions are obtained for ray paths that are portions of
circles. In range-dependent environments, the ray equations
are numerically integrated using a fourth-order Runge-Kutta
method to propagate the rays along the range axis. The
bottom composition can vary with range and the state of the
sea surface can vary in time as well as in range. The software
is coded in C++ and is available commercially [37-40], (f)
XRAY combines ray tracing in a range-dependent water
column with local full-field modeling of interactions with a
seabed composed of multiple range-dependent layers of fluid
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or solid materials [41], (g) POPP is a range-independent
version of the PROLOS normal-mode propagation model
[42], (h) IECM is a two-way coupled-mode formalism
that provides an exact solution to the wave equation [43].
This model was used to establish a benchmark solution
that is an exact numerical solution for the reverberation
time series for an environment with a range-dependent,
fine-scale rough bottom boundary that induces mode
coupling and generates a scattered field. The solution
includes scattering effects to all orders in that it sums the
infinite series of forward and backward contributions at each
range point and maintains energy conservation, (i) SWAMP
is a range-dependent normal-mode model that contains
closed-analytical forms of the vertical mode functions,
which facilitate computation of one-way mode-coupling
coefficients between adjacent range-independent regions
by neglecting weak backscattering components [44, 45].
The model was used to understand the physics of pulse
propagation in double-ducted shallow-water environments
where precursors have been observed. The pulse temporal
response is modeled using Fourier synthesis in the frequency
domain. The model accounts for scattering events along
the acoustic signal propagation path and has been extended
to model acoustic pulse scattering by spherical elastic-shell
targets in inhomogeneous waveguides within the T-matrix
approach [46], (j) Integrated Mode extends the multipath
expansion method to range-dependent environments [47].
This approach accounts for horizontal variations in bottom
depth, bottom type, and sound speed using the stationary
phase approximation, (k) OASES-3D target modeling
framework is used to investigate scattering mechanisms of
flush buried spherical shells under evanescent insonification
[48-51], (I) The Cartesian 3D parabolic equation program
implements a split-step Fourier algorithm with a wide-angle
PE approximation, and is thus a 3D variant of the PE
model of Thomson and Chapman [52]. The advantage of
employing Cartesian coordinates in the numerical scheme is
that the model resolution is uniform over the computational
domain [53, 54], (m) MONM3D incorporates techniques
that reduce the required number of model grid points.
The concept of tessellation (i.e., covering the plane with
a pattern in such a way as to leave no region uncovered)
is used to optimize the radial grid density as a function
of range, reducing the required number of grid points
in the horizontal planes of the grid. The model marches
the solution out in range along several radial propagation
paths emanating from a source position. Tessellation, as
implemented in MONMS3D, allows the number of radial
paths in the model grid to depend on range from the
source. In addition, the model incorporates a higher-
order azimuthal operator which allows a greater radial
separation and reduces the required number of radial
propagation paths [55], (n) NSPE, the Navy Standard PE
model, consists of two methods of solving the acoustic
parabolic wave equation: split-step Fourier parabolic
equation model (SSFPE); and split-step Padé (finite-
element) parabolic equation (SSPPE) known as RAM.
[http://www.nrl.navy.mil/content.php?P=03REVIEW212],

(o) OWWE [56] is based on the innovative one-way wave

equation developed by Godin [57]. This equation was
generalized by Godin to include the source terms and also
to account for motion of the medium. The solutions of
the differential OWWE are strictly energy conserving and
reciprocal. The derivation presented for the multiterm Padé
PE model is applicable to a broad class of finite-difference
PE models, (p) RAMGEO is a version of RAM modified
to handle sediment layers that are range dependent and
parallel to the bathymetry [58], (q) RMPE is a ray-mode
parabolic-equation solution that is expressed in terms of
normal modes in the vertical direction and mode coefficients
in the horizontal direction. The model is based on the beam-
displacement ray-mode (BDRM) theory and the parabolic
equation (PE) method. The BDRM theory is used to analyze
the local normal modes. The PE method is used to solve the
wave equations for mode coefficients [59], and (r) 3DWAPE
incorporates higher-order finite-difference schemes to
handle the azimuthal derivative term in a three-dimensional
(3D) parabolic equation model [60]. Broadband pulse
propagation problems were solved in a 3D waveguide using a
Fourier synthesis of frequency-domain solutions (3DWAPE)
in a penetrable wedge-shaped waveguide [61]. The 3DWAPE
model includes a wide-angle paraxial approximation for the
azimuthal component. This version of 3DWAPE was used
to investigate broadband sound pulse propagation in two
shallow-water waveguides: the 3D ASA benchmark wedge
and the 3D Gaussian canyon [62].

The specific utility of these categories is further explained
below. In applying ocean-acoustic propagation models, the
analyst is normally faced with a decision matrix involving
water depth (deep versus shallow), frequency (high ver-
sus low), and range-dependence (range-independent ver-
sus range-dependent ocean environments). The following
assumptions and conditions were imposed in construction
of Figure 3, which was originally adapted from F. B. Jensen
(see [23]).

(1) Shallow water includes those water depths for which
the sound can be expected to interact significantly
with the sea floor. Typically, a maximum depth of
200m is used to delimit shallow water regions. A
more accurate definition of shallow water would
be expressed in terms of water depth and acoustic
wavelength [23].

(2) The threshold frequency of 500 Hz is somewhat arbi-
trary, but it does reflect the fact that above 500 Hz,
many wave-theoretical models become computation-
ally intensive. Also, below 500 Hz, the physics of some
ray-theoretical models may become questionable due
to restrictive assumptions.

(3) A solid circle indicates that the modeling approach
is both applicable (physically) and practical (compu-
tationally). Distinctions based on speed of execution
may change as progress is made in computational
capabilities. A partial circle indicates that the mod-
eling approach has some limitations in accuracy or
in speed of execution. An open circle indicates that
the modeling approach is neither applicable nor
practical.
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F1GURre 3: Domains of applicability of underwater acoustic propagation models.

To provide compact summaries, propagation models
are arranged in categories reflecting the basic modeling
technique employed (i.e., the five canonical approaches) as
well as the ability of the model to handle environmental
range dependence (Figure 3). Such factors define what is
termed domains of applicability. Hybrid models occasionally
compromise strict categorization, and some arbitrariness has
been allowed in this classification process. The environmen-
tal range dependence considers variations in sound speed
or bathymetry. Other parameters may be considered to be
range dependent by some of the models, although they are
not explicitly treated in this paper.

Figure 3 has been modified in two important respects
relative to previous versions [23]. Specifically, a range-
dependent capability has been added to the multipath-
expansion and to the fast-field (or wavenumber integration)
approaches. This change is warranted by the substantial
progress made by modelers over the past several years.

Taken together, Figure 3 and Table 1 provide a useful
mechanism for selecting a subset of candidate models once
some preliminary information is available concerning the
intended applications. Note that range-dependent models
can also be used for range-independent environments by
inserting a single environmental description to represent the
entire horizontal range.

3.2.2. Noise Models. Noise is the prevailing, unwanted back-
ground of sound at a particular location in the ocean at a
particular time. The local noise field is thus characterized
by temporal, spatial, and spectral variabilities. The noise
generated by natural or anthropogenic point sources is
diminished through the effects of propagation to the sonar
receiver.

Noise models can be segregated into two categories:
ambient-noise models and beam-noise statistics models, as

illustrated in Box 1. Ambient-noise models are applicable
over a broad range of frequencies and consider noise origi-
nating from surface weather, biologics, shipping, and other
commercial activities [63]. Beam-noise statistics models
[64] predict the properties of low-frequency shipping noise
using either analytic (deductive) or simulation (inductive)
methods. Table2 provides a summary of noise models.
Superscript letters identify those models that have been
added to the inventory since 2003. These letters refer to
a brief summary and appropriate documentation. Model
documentation can range from informal programming
commentaries to journal articles to detailed technical reports
containing a listing of the actual computer code. Corre-
sponding information on the legacy models is provided in
the 2003 baseline [23] and is not repeated here.

In Table 2: (Noise models), (a) ARAMIS consists of
a number of FORTRAN, C++ and MATLAB codes that
integrate US Navy standard databases with user-provided
sonar system parameters to assess the performance of
passive spatial processors [65], (b) DANM is the successor
to ANDES. DANM predicts the azimuthal dependence of
noise in the 25-5,000 Hz band [18]. The dynamic ambient
noise model (DANM) provides a realistic simulation of the
temporal noise field in which a passive receive array operates.
The total noise field is obtained by separately calculating
wind and shipping noise. The temporal variability of the
noise field is simulated by moving merchant ships along
major shipping lanes. Shipping databases provide seasonal
information about shipping lanes between the world’s major
ports, as well as the type and number of ships that move in
the lanes, (c) ISAAC uses a Gaussian ray-tracing approach
to determine the acoustic ray paths between source and
target, including those reflected from the sea surface and sea
bed. The ray paths may refract with changes in bathymetry,
water density, salinity, temperature, and sea-bed type. ISAAC
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Ambient noise

N(¢) = [, N(6, ¢) cos 0 d6.
N(8) = (1/27) [;" Ni(6, ¢) d¢.
N = fozn f,/fz/z N;(0,¢) cos 0 dO de,

or

N = [;" N(¢) d¢.

and N(¢).
Beam-noise statistics

e
Yy=2>" Z;-lzl >t SiikZijkBijis

Given: the directional noise intensity per unit solid angle [N;(6, ¢)].
(i) The horizontal noise directionality [N(¢)] is calculated from [N;(6, ¢)] as:

(ii) The vertical noise directionality [N (0)] is calculated from [N;(0, ¢)] as:

(iii) The omnidirectional noise level (N) is then calculated as:

(iv) The horizontal angle (¢) is measured positive clockwise from true North while the vertical angle (8) is measured
positive upward from the horizontal plane. No receiver beam patterns were convolved with the noise levels N (0)

The averaged noise power at the beamformer output (Y) can be expressed as:

where m: number of routes in the basin; n: number of ship types; A;;: number of ships of type j on route
i (a random variable); S;jx: source intensity of the kth ship of type j on route i (a random variable that is
statistically independent of the source intensity of any other ship); Z;j;: intensity transmission ratio from
ship ijk to the receiving point; Bjj: gain for a plane wave arriving at the array from ship ijk

Box 1: Organization of underwater acoustic noise models into two categories.

TaBLE 2: Summary of underwater acoustic noise models. Super-
script letters identify those models that have been added to the
inventory since 2003.

Ambient noise Beam-noise statistics

ANDES Analytic
AMBENT BBN shipping noise
ARAMIS? BTL

CANARY Sonobuoy noise
CNOISE USI Array noise
DANES

DANMP Simulation
DINAMO BEAMPL
DUNES DSBN

FANM NABTAM
ISAACS SIAM-I/II¢
MONM¢

Normal mode ambient noise

RANDI-I/I/III

allows sensitive marine areas such as marine mammal loca-
tions, migratory routes and fisheries to be displayed in the
GIS alongside acoustic propagation results. Noise impacts on
individual species can be assessed by comparing the sound
pressure levels generated from anthropogenic activities with
sensitivity thresholds to perform environmental risk assess-
ments. The system has been configured specifically for use by
offshore industries, environmental agencies, regulators and
others to help assess the environmental impact of underwater
noise. The dBht (species) approach provides a measurement
of sound that accounts for interspecies differences in hearing

ability by passing the sound through a filter which mimics the
hearing ability of the species. (The dBht (species) metric is a
pan-specific metric incorporating the concept of “loudness”
by using a frequency-weighted curve based on the species’
hearing threshold as the reference unit for a dB scale.
A large number of both field and controlled-laboratory
measurements have been made of the avoidance of a range of
idealized noises, using fish with greatly different hearing as a
model. All data, irrespective of source or species, indicate a
dependence of avoidance reaction on the dBht(species) level.
The data indicate three regions: no reaction below 0dBht
(i.e., below the species’ threshold of hearing), a cognitive
avoidance region where increasing numbers of individuals
will avoid the noise from 0 to 90dBht, and instinctive
reaction at and above 90 dBht where all animals will avoid
the noise. This probabilistic model allows the behavioral
impact of any noise source to be estimated [66].) This
approach provides an indication of the noise level that will
be received for the species at various distances from the noise
source. These values can then be compared to published
data to indicate distances at which a species will demon-
strate a strong avoidance reaction, a temporary elevation
of hearing threshold or a permanent elevation of hearing
threshold [67], (d) MONM (marine operations noise model)
incorporates a range-dependent, split-step parabolic equa-
tion acoustic model including a shear-wave computation
capability. MONM has been used for precise estimation
of noise produced by subsea construction noise, marine
facilities operation, and seismic exploration, particularly in
complex coastal regions. The core algorithm in MONM
computes frequency-dependent acoustic transmission loss
parameters along fans of radial tracks originating from each
point in a specified set of source positions. The modeling
is performed in individual one-third octave spectral bands
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covering frequencies from 10 Hz to several kHz, which covers
the overlap between the auditory frequency range of marine
mammals and the spectral region in which sound propagates
significantly beyond the immediate vicinity of the source.
The MONM software makes use of geo-referenced databases
to automatically retrieve the bathymetry and acoustic-
environmental parameters along each propagation traverse,
and incorporates a tessellation algorithm that increases the
angular density of modeling segments at greater ranges
from a source to provide more computationally efficient
coverage of the area of interest. The grid of transmission-
loss values produced by the model for each source location
is used to attenuate the spectral acoustic output levels of
the corresponding noise source to generate absolute received
sound levels at each grid point. These are then summed
across frequencies to provide broadband levels. A further
step of Cartesian resampling and summing of the received
noise levels from all the sources in a modeling scenario
yields the aggregate noise level for the entire operation on
a regular grid from which contours can be drawn on a
GIS map. The model can either generate contours at evenly
spaced levels or draw boundaries representing biologically
significant threshold levels [68], and (e) SIAM II (S.C.
Wales, unpublished manuscript) was designed to provide
many replications of surface-ship noise for horizontal array
systems, particularly narrow-beam systems, but could also
be used for omnidirectional systems. Its predecessor, SIAM
I [69, 70], predicted ship-generated noise over the band 20—
120Hz by generating many replications so that ensemble
statistics could be examined. A review report provides more
details on SIAM (I/II) in addition to other legacy beam-
noise statistics models [71]. Plotting packages for SIAM were
described elsewhere [72].

3.2.3. Reverberation Models. Reverberation is sound that
is scattered by the ocean boundaries (sea surface and sea
floor) or by the volumetric inhomogeneities. Reverberation
is produced by the sonar itself; therefore, the spectral
characteristics are essentially the same as the transmitted
sonar signal. The intensity of reverberation varies with the
range of the scatterers (due to propagation loss) and also with
the intensity of the transmitted signal.

Most traditional active sonars are configured in what is
termed a monostatic geometry, meaning that the source and
receiver are at the same position. In some sonar systems,
however, the source and receiver are separated in range or
depth, or both, in what is termed a bistatic configuration.
Bistatic geometries are characterized by a triangle of source,
target and receiver positions, and by their respective veloci-
ties. Such geometries are commonly employed in sonobuoy
applications and also in active surveillance applications.
Geometries involving multiple sources and receivers are
termed multistatic.

Reverberation models can be categorized according to
cell-scattering or point-scattering techniques (Box 2). Cell-
scattering formulations divide the ocean into cells, where
each cell contains a large number of uniformly distributed

Advances in Acoustics and Vibration

scatterers [73]. Point-scattering formulations assume a ran-
dom distribution of (point) scatterers. Table 3 provides a
summary of stand-alone reverberation models. Superscript
letters identify those models that have been added to the
inventory since 2003. These letters refer to a brief summary
and appropriate documentation. Model documentation can
range from informal programming commentaries to journal
articles to detailed technical reports containing a listing of
the actual computer code. Corresponding information on
the legacy models is provided in the 2003 baseline [23] and
is not repeated here.

In Table 3: (Reverberation models), (a) C-SNAP-REV
computes reverberation using the C-SNAP range-dependent
normal-mode model. Range dependence of the environment
is treated as a one-way coupled-mode solution. Surface
and bottom reverberation is obtained by integrating the
received intensity over the area insonified by the emitted
pulse and that contributes to the reverberation at a given
time. An average sound speed is assumed for all the
paths (i.e., no group-velocity dependence). The scattering is
described by a mode-coupling matrix that is equivalent to the
plane-wave scattering function evaluated at discrete angles
corresponding to the modes. The incident and scattered
mode angles are modified to take into account the local
slope and are given by the local phase velocity and the
sound speed at the interface. Coherent summation of mode
contributions is used to correctly model the effects of deep-
water convergent zones. The empirical scattering function
is based on Lambert’s rule. The model deals mainly with
the monostatic case, though the technique is extendable to
bistatic geometries. (Unpublished notes by Ellis, SACLANT
Undersea Research Centre, La Spezia, Italy, various dates.)
(b) HYREV is a high-frequency, monostatic reverberation
model suitable for shallow-water environments. Arrival
times and transmission losses from the source to scatterers
are obtained from the appropriate eigenrays. The composite-
roughness theory is used to predict the boundary scattering
[74], (¢) NOGRP first runs the normal-mode program
POPP (a variant of PROLOS), which calls the normal
mode subprogram MODES and writes out a binary file
of mode information that is then read by the monostatic
reverberation code. ROSELLA, an extension of NOGRP, is
used to execute the reverberation calculations with beam
patterns [75, 76], (d) PAREQ-REV is a range-dependent
wave-theory model based on the parabolic approximation of
the wave equation. The numerical method uses the split-step
Fourier marching solution with automatic interpolation of
environmental data with range. The code allows a choice of
either the standard Tappert-Hardin parabolic equation or the
wide-angle equation of Thomson-Chapman. Several choices
of starting fields are provided, including a Gaussian source
beam of varying width and tilt with respect to the horizontal.
Reverberation from the ocean boundaries is computed using
standard scattering laws: Lambert’s rule for bottom backscat-
ter, and either Chapman-Harris curves or Lambert’s rule for
sea-surface backscatter. The computational scheme uses reci-
procity of propagation to compute the reverberation field for
arbitrary receiver depths at the source range. (Unpublished
notes by Schneider, SACLANT Undersea Research Centre,
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Cell scattering:
Cell-scattering models assume:

or area (dA) at range r.

RL, = 10log,,[(Io/r*)s, [, b(0,$)b'(6,¢) dV].
The plane-wave level of boundary reverberation is

RL, = 10log,,[(Io/r*)s;, [ b(6, $)b' (6, ¢) dA].
Point scattering:

(1) a homogeneous distribution of scatterers throughout the area or volume producing reverberation at any given time;
(2) a sufficiently high density of scatterers to ensure that a large number of scatterers occurs in an elemental volume (dV)

The projector beam pattern is denoted by b(0, ¢) and the axial intensity at unit distance is I,.

The receiver beam pattern is denoted by b’'(6, ¢) and s, is the ratio of the intensity of the scattering produced by
a unit volume at a distance of 1 m from the volume to the intensity of the incident sound wave.

The equivalent plane-wave volume reverberation level (RL,) is

Point-scattering models are based on a statistical approach that assumes the scatterers are randomly distributed
throughout the ocean. The echoes from each individual scatterer are then summed to compute the reverberation level.

Box 2: Organization of underwater acoustic reverberation models into two categories.

La Spezia, Italy, various dates.), (e) PERM-2D computes
backscatter from range-dependent bathymetry in the oceanic
waveguide [77]. This technique extends the approach of
Collins and Evans [78] to problems involving small-scale
and large-scale boundary roughness. The PERM-2D model
subdivides the oceanic waveguide into range-independent
regions and applies the single-scattering approximation (i.e.,
multiple forward and backward coupling in the scattered
fields is neglected) to formulate a scattering problem for
the reflected and transmitted pressure field at each range
step. Forward-scattering loss, which can be significant at
long ranges and very rough surfaces, is included in the
solution. Wide-angle operators, which are accurate for the
propagating and evanescent spectrum, are applied to yield
stable and convergent iteration formulas for the reflected and
transmitted fields [79]. Unlike perturbative methods that
are restricted to small-roughness amplitudes, the PERM-2D
model is valid for arbitrary roughness subject to the single-
scattering approximation, (f) REVPA is a parabolic-equation
reverberation model intended for shallow-water applications
[80], (g) R-SNAP is a coherent monostatic reverberation
model employing the range-dependent propagation model
SNAP [81, 82], (h) ARTEMIS (adiabatic reverberation and
target echo mode incoherent sum) is a general-purpose
numerical model of bistatic target echo level and surface
and bottom reverberation for bistatic arrangements in
an arbitrary range-dependent environment with arbitrary
sound-speed variation [83]. The model minimizes com-
putation time while retaining a reasonably accurate power
envelope. The approach is based on the adiabatic normal-
mode approximation, but with the modal series treated as
a continuum and with WKB mode amplitudes (excluding
the oscillatory modulation). Outputs are three-dimensional
and they can be presented in map form as target echo,
reverberation or signal-to-reverberation ratio. Given sparse
environmental data, the tradeoff between accuracy and speed
is negotiated by intelligent interpolation. This is done by
constructing quantities (functions of the desired variables,
such as cycle distance, ray angles, etc.) that are more or less
linear in space or in mode number. These are converted

back to the original variables after linear interpolation,
(i) BISTAR is a bistatic, range-dependent reverberation
model based on the method of coupled normal modes. The
environment is discretized into range-independent segments
and the outward propagating field is coupled at the inter-
faces under the single-scatter hypothesis. The propagation
theory and implementation are those of C-SNAP. In order
to implement the reverberation prediction, the CW field
estimate of C-SNAP has been augmented with a narrowband
time-series estimator. The time-domain estimates for the
range-dependent environment are available separately and
are also used to obtain the reverberation estimates. The
scattering process itself can be modeled either as a parametric
scattering strength such as Lambert’s law or via perturbation
theory. The model includes coherent propagation to and
from the scattering patch [84—87]. (Also, unpublished notes
by K.D. LePage, SACLANT Undersea Research Centre, La
Spezia, Italy, various dates.), (j) MURAL, the multistatic
reverberation algorithm, supports trainer development, and
can be used with any propagation model that produces
range-sampled grids of transmission loss, travel time, launch
and grazing angles. MURAL contains functions that calculate
propagation, scattering and beam patterns. The operation
of MURAL couples the algorithm controls to the requested
resolution of the prediction with the goal of self-optimizing
its performance for the requested resolution [88], (k) S-
SCARAB is a range-independent raytracing model for cal-
culating both forward propagating and reverberant acoustic
fields. Features include improved algorithms to calculate the
coherent forward propagating field, the inclusion of upward
refracting rays in the sediment, definition of bistatic source-
receiver geometries, and the possibility of specifying 3D
beam patterns of the source and receivers. The forward and
back propagating acoustic fields are calculated by tracing rays
both in the water column and sediment. Only contributions
from the ocean bottom are considered in calculation of
the reverberation. The local scattering properties of the
seabed are described by known power-law expressions for
both the interfaces of stratified sediment layers and volume
inhomogeneities in the sediment. These scattering kernels
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TaBLE 3: Summary of underwater acoustic reverberation models.
Superscript letters identify those models that have been added to
the inventory since 2003.

Cell scattering

Monostatic Bistatic/multistatic
C-SNAP-REV? ARTEMISP
DOP BAM
EIGEN/REVERB BiKR
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REVPAS RUMBLE
REVSIM S-SCARABK
R-SNAP?
TENAR
Point scattering

Monostatic Bistatic/multistatic
REVGEN BORIS-SSA™
RITSHPA! Under-ice reverberation

Simulation

are dependent on physical descriptors of the bottom such
as seabed roughness. S-SCARAB is computationally efficient
compared to other reverberation tools based on normal-
mode or parabolic equation approaches, particularly at
higher frequencies [89], (1) RITSHPA is a reverberation
module intended for use in high-resolution, wideband
sonar simulators [90] in which reverberation is stochastic
(non-Rayleigh) and follows the K-distribution [91]. Hybrid
multipaths, in which the return path is different from
the transmit path, are also considered. RITSHPA assumes
spherical propagation loss (i.e., isovelocity water column)
and uses widely known formulas to compute reflection and
scattering at boundaries, and (m) BORIS-SSA (bottom rever-
beration from inhomogeneities and surfaces small-slope
approximation) simulates time series resulting from acoustic
scattering off various seafloor types involving various source-
receiver geometries [92-96]. This package is an upgrade of
BORIS-3D. The model parameters characterize the sonar
directivity and pulse shape, the geometrical configuration of
the scattering problem and the geophysical characteristics of
the seafloor, the sea surface, or other surfaces. These surfaces
can have various statistical behaviors or can be obtained from
deterministic data based on measured surface heights.

3.2.4. Sonar Performance Models. Sonar performance mod-
els combine environmental models, propagation models,
noise models, reverberation models, and appropriate signal-
processing models to solve the sonar equations. A further
segregation can be made according to source/receiver geom-
etry into monostatic and bistatic categories (Box 3). The
monostatic formulation of the sonar equations follows a
traditional format [73], while the bistatic formulation is
adapted from H. Cox (see [23]). The performance of passive
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sonars (i.e., those that detect sound emitted from a target of
interest) could be modeled using the appropriate environ-
mental descriptors together with suitable propagation-loss
and noise models. The performance of active sonars (i.e.,
those that transmit an interrogation signal and then detect
the echo returned from a target of interest) could be modeled
similarly with the addition of suitable reverberation models.

Sonar performance models can be further categorized as
active sonar models, model operating systems and tactical
decision aids. Model-operating systems provide a framework
for the direct linkage of data-management software with
computer-implemented codes of acoustic models, thus facil-
itating the construction of versatile simulation capabilities.
Model-operating systems are further distinguished from
stand-alone active sonar performance models by virtue of
their ability to conduct sensitivity analyses by computing
components of the active-sonar equation using alternative
solution techniques. Since sonar model operating systems
normally utilize existing ocean-acoustic models and standard
oceanographic databases, these systems are unique only in
the sense of the number and types of models and databases
included, and the particular architectures, graphical user
interfaces (GUIs), and other features employed. Tactical
decision aids represent a form of engagement-level simu-
lation that blends environmental information with tactical
rules. These decision aids guide system operators and scene
commanders in planning missions and allocating resources
by exploiting knowledge of the operating environment.
Table 4 provides a summary of sonar performance models.
Superscript letters identify those models that have been
added to the inventory since 2003. These letters refer to
a brief summary and appropriate documentation. Model
documentation can range from informal programming
commentaries to journal articles to detailed technical reports
containing a listing of the actual computer code. Corre-
sponding information on the legacy models is provided in
the 2003 baseline [23] and is not repeated here.

In Table 4: (Sonar performance models), (a) ESPRESSO is
a minehunting sonar performance assessment tool developed
as a NATO standard for interfacing with NATO planning
and evaluation tactical decision aids [97]. It uses BELLHOP
as a propagation submodel, which has also been modified
to calculate beam-based, high-frequency reverberation [98].
Espresso exists in two versions: one intended for scientific
use and the other for military use. The scientific version
of Espresso provides greater flexibility than the military
version, including the ability to select sub-models and view
the results of any sub-model. A user guide addresses the
user interface for Espresso and describes the underlying
software models and data output options available within
Espresso [99]. There is a separate user guide for the military
version, Espresso (m), which provides greater tailoring
of the user interface, including the ability to customize
parameters [100]; (b) LYBIN is a range-dependent, ray-
theoretical model developed by Svein Mjolsnes of the Nor-
wegian Defence Logistic Organization [101-103]. Range-
dependent environmental inputs include bottom type and
topography, volume backscatter, sound speed, tempera-
ture, salinity, wind speed, and wave height. Choices of
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Active sonar equations (monostatic)
(i) Noise background

SL —2TL+ TS = NL — DI + RDy.
(i1) Reverberation background

SL —2TL+ TS = RL + RDxg.
Passive sonar equation

SL - TL = NL — DI+ RD.
RL: reverberation level; RD: recognition differential.

Active sonar equations (bistatic)

The signal excess (SE) can be represented as:

(ii) ESL = SL + 10log,, T

where T is the duration of the transmitted pulse,

(iii) EEL = ESL — TL, — TL, + TS,

SL: source level; TL: transmission loss; TS: target strength; NL: noise level; DI: receiving directivity index;

(1) SE=ESL—TL; — TL, — [(No — AGN) @D Ro] + TS— A — L,

the energy source level (ESL) is related to the intensity source level (SL) as:

The echo energy level (EEL) received from the target at a hydrophone on the receiver array is then:

where TS is the target strength, Nj is the noise spectral level, R, represents the reverberation spectral level, AGy is the array
gain against noise, A is the threshold on the signal-to-noise ratio (SNR) required for detection,

L is a loss term to account for time spreading and system losses,

@ represents power summation, TL, is the transmission loss from source (S) to target (T),

and TL, is the transmission loss from target (T') to receiver (R).

Box 3: Sonar performance models are based upon the sonar equations, which are the basic building blocks for both monostatic and bistatic

sonar geometries.

calculation outputs include ray trace, transmission loss,
reverberation (surface, volume, and bottom), noise, signal
excess, probability of detection, travel time, and impulse
response. The transmission-loss module was evaluated by
NURC [104]. LYBIN is available commercially from the
Forsvarets forskningsinstitutt (FFI), (¢) MOC3D [105] is a
3D model developed from the 2D model MOCASSIN [106].
MOC3D was used to investigate the importance of out-
of-plane sound propagation in a shallow-water experiment
in the Florida Straits [107], (d) MODRAY was developed
in conjunction with DSTO (Australia) to simulate the
propagation of sound through the underwater environment
[108, 109]. MODRAY uses classical ray-tracing theory to
produce sound-pressure time series at one or more receivers.
The marine environment is range-independent. Seafloor
composition can be specified, the sound-speed profile can
be arbitrary, noise includes wind, rain, biological and
shipping sources, and scattering by marine organisms is
included. MODRAY can model an arbitrary number of
sound sources, reflectors and receivers stationed on moving
platforms. MODRAY has been used extensively to model
the effectiveness of underwater communications algorithms

[110, 111], (e) SUPREMO is a multistatic sonar performance
model that includes propagation, target echoes, reverbera-
tion and noise, all plotted as a function of delay time and
bearing using an equivalent map projection. A modular
propagation section makes it possible to separate the effects
of propagation modeling (e.g., theoretical basis and range-
dependence) from those of scattering computations (e.g.,
computational efficiency, bottom slope and scattering law).
Special attention is paid to problems of interference from
multiple sources firing in sequence, target aspect dependence
from multiple receivers, mixed FM and CW, mismatched
source and receivers, multiple displays (one for each bistatic
pair), and presentation of results [82, 112-115]. Predictions
of acoustic reverberation and target echo intensity made by
the SUPREMO sonar performance model were compared
with measured data gathered in the Malta Plateau region of
the Mediterranean Sea. The observed model-measurement
agreement demonstrated the suitability of SUPREMO for
use with an environmentally adaptive, low-frequency, active
sonar system [116]. Version 2.0 of SUPREMO has been
documented [117, 118], (f) SWAMI models range-and-
azimuth dependence (N x 2D) via adiabatic modes [119].
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TaBLE 4: Summary of sonar performance models. Superscript
letters identify those models that have been added to the inventory
since 2003.

Active sonar models
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Tactical decision aids

ASPECT SPPSk

IMAT
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SWAMI has been used to support the towed integrated
active-passive sonar (TIAPS), which was developed as a
technology demonstrator for the Canadian Forces. Software
development utilized a system test bed (STB) comprising a
collection of scaleable, portable, and reusable components
for constructing sensor-based applications. The toolset con-
tains modules to produce predictions of transmission loss,
reverberation (MONOGO), signal excess, and probability of
detection. SWAMI includes the capability to model various
source and receiver configurations including omnidirec-
tional arrays, line-arrays (both horizontal and vertical) and
volumetric arrays [120]. DMOS (DRDC Atlantic Model
Operating System) is an evolution of the SWAMI suite of
programs that enables a user to model transmission loss,
reverberation, signal excess, and probability of detection
for active sonars [121]. Originally, the suite was based
on normal-mode theory (PMODES); however, normal-
mode theory is best suited to shallow water and low
acoustic frequencies, and users occasionally need to model
reverberation and other parameters under other conditions.
DMOS was enhanced to include a Gaussian-beam acoustic
propagation model, BELLHOP, as an alternate propagation
engine. A DRDC-extended version that included a range-
dependent capability was chosen. DMOS may now be used
to model both active and passive sonars in shallow or
deep water; (g) UAIM is a system of computer algorithms
designed to predict multibeam sonar performance and image
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the effects of variations in bathymetry, clutter objects, and
bottom type, particularly in complex shallow-water environ-
ments [122]. The model addresses perceived weaknesses in
existing mine-countermeasure (MCM) sonar performance
models. The propagation code in UAIM was derived from
RASP while the reverberation and signal excess codes were
derived from GSM. Modifications were made to these
codes to accommodate high-frequency range-dependent
applications. A utility package called SoundGuide assists the
operator in creating the large input file, executes UAIM and
plots the resulting data, (h) CALYPPSO (KAAYWYQ) is an
integrated computer environment that was developed for
the analysis of underwater acoustic detection systems [123].
The communication language is Greek. It can treat passive
detection, broadband, or LOFAR, as well as active detection,
monostatic or multistatic. The system contains compact
databases for environmental (coastline, bathymetry, oceano-
graphic, geological) and operational (system parameters,
target characteristics) data. Acoustic propagation calcula-
tions are performed using normal-mode, parabolic approx-
imation, and ray-theoretical codes supporting broadband
calculations in range-dependent environments. The results
include transmission loss, reverberation levels, detection
thresholds and probabilities of detection for a variety of user-
defined operational scenarios. (This work was supported
by the Greek MOD.) (i) ESME (effects of sound on the
marine environment) is a multidisciplinary research and
development effort to explore the interactions between
anthropogenic sounds, the acoustic environment and marine
mammals [124, 125]. The “ESME workbench” models the
entire sound path including the sound sources (impulsive
or explosive), the medium (water column and seafloor),
and the temporary threshold shift (TTS) models of the
marine mammals. (TTS refers to a temporary increase in the
threshold of hearing, i.e., the minimum intensity needed to
hear a sound at a specific frequency, but which returns to its
preexposure level over time.) The goal is to predict impacts
of anthropogenic sounds on marine mammals. This entails
three elements: (1) accurate estimates of the sound field in
the ocean; (2) accurate estimates of the cumulative sound
exposure of the marine mammals; (3) reliable predictions
of the incidence of TTS for the species of interest given the
estimated cumulative exposure. The flexibility and computa-
tional efficiency of the ESME Workbench will be enhanced
by merging the NEMO (NUWC exposure model) and ESME
approaches into the “One Navy Model,” which is intended to
serve as the standard simulation system for use in predicting
impacts of anthropogenic sound sources on marine life for
environmental compliance purposes, (j) SPPS, the sonar
performance prediction system (developed in Germany),
evaluates the performance of sonar systems in various naval-
warfare scenarios and assists in sonar-system design efforts.
The model accommodates active and passive sonar detection
problems involving both broadband and narrowband signals
using a variety of sonar antennas. The integrated ocean-
acoustic propagation model spans the frequency range 10 Hz
to 1 MHz by using a hybrid combination of parabolic-
equation, coupled-mode, and ray propagation submodels.
Environmental databases describe the ocean environment,
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targets, platforms and sonar-system characteristics. The
reverberation model predicts volume, surface and bottom
components. Noise sources include ambient, biological, rain,
shipping, ice, seismic exploration, and self-noise [126],
and (k) ASPECT, the active system performance estimate
computer tool, is a multistatic tactical decision aid (TDA). It
computes estimates of system performance for active under-
water acoustic sensors. ASPECT was originally designed to
satisfy the requirements of mission planning software for the
IEER (improved extended echo ranging) system. However,
virtually any multistatic or monostatic active acoustic system
can be modeled using this software package. ASPECT uses
the FAME (fast multipath expansion) model for range-
independent calculations of transmission loss and ASPM
(active system performance model) for range-dependent
transmission loss and reverberation. These computations are
then fed into MSASM, which is capable of estimating the
performance of active sonar systems for multiple sources,
receivers, and targets. It simulates target motion including
such features as normal and uniform probability distribu-
tion, various speed, and course distributions, as well as target
evasion modeling to a limited degree. ASPECT version 2.0
(and beyond) supersedes the MSASM Interactive Execution
and Optimization System (MINEOS), which was the first
version of mission planning software developed for the IEER
program. ASPECT also exists as a standalone version [127].

3.3. Inversion Techniques

3.3.1. Adjunct Tools for Oceanographers. Inverse acoustic
sensing techniques presently constitute adjuncts to direct
measurement methods. However, the application of inverse
acoustic sensing techniques to dynamical studies of the
oceans’ boundaries and interior show great promise for
three reasons. First, such data can be used to establish
comparative baselines for other remote sensors, such as
satellites, by providing synoptic portraitures of the interior
oceans together with concurrent ground-truth data at the
sea surface. Second, inverse acoustic techniques often afford
useful insights into a broad class of oceanic phenomena
since their successful employment relies heavily on the use of
numerical models first to understand the role of the oceans
as an acoustic medium. Third, inverse data provide estimates
of spatially integrated and temporally averaged oceanic
conditions that are not readily available from traditional
oceanographic sensors.

Recently, acoustical oceanographers have employed
underwater-acoustic models as adjunct tools for inverse-
sensing techniques that can be used to obtain synoptic
portraitures of large ocean areas or to monitor long-term
variations in the ocean.

Useful information about the ocean can be derived
from both forward and inverse applications of underwater
sound. Direct (or forward) methods include traditional
sonar applications. Inverse methods extract information
from direct measurements of the physical properties of the
ocean. These inverse methods combine the direct physi-
cal measurements with theoretical models of underwater
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acoustics. The objective is to estimate detailed underwater-
acoustic fields from sparse physical measurements using
the theoretical models as guides. Inversions of controlled-
source, noise, and reverberation fields have been performed
successfully (Box 4).

Inverse sensing techniques that employ acoustics have
been used in several subdisciplines of geophysics including
seismology, meteorology, and oceanography. In oceanog-
raphy, inverse acoustic data provide estimates of spatially
integrated and temporally averaged oceanic conditions that
are not readily available from a traditional constellation of
point sensors. Forward (or direct) models are important in
solving inverse problems.

3.3.2. Propagation (Acoustic Field Measurements). Acoustic
propagation characteristics in the deep oceans are deter-
mined largely by the refractive properties of the water
column and, to a lesser extent, by the surface and bottom
boundary conditions. Propagation measurements can be
used to infer bulk properties of the water column such
as temperature, sound speed, density, and currents. In
shallow-ocean areas, where propagation characteristics can
be strongly affected by the bottom boundary, propagation
measurements can be used to infer properties of the sea
floor such as composition and scattering characteristics. A
wide spectrum of inverse problems has been addressed in
underwater acoustics including estimation of geoacoustic
parameters, acoustic thermometry, and shallow-water char-
acterization. Inverse acoustic sensing methods utilizing the
propagation characteristics of the oceans include matched
field processing, ocean acoustic tomography and deductive
geoacoustic inversion [23]. A new technique known as a
time reversal mirror (TRM) uses inverse methods to refocus
received signals back to the source.

Range-dependent ray-theoretical models are typically
used for deep-water applications involving tomographic
experiments as well as for high-frequency experiments in
shallow water. Range-dependent wave-theoretical models
based on normal-mode, fast-field (wavenumber integra-
tion), or parabolic-equation approaches are preferred for
low-frequency experiments in shallow water.

3.3.3. Noise. The ambient noise field in the oceans is
described by the spectral, spatial, and temporal character-
istics of sound generated by both natural and industrial
sources. Measurements of these characteristics can provide
useful information regarding the nature of the noise sources
themselves as well as physical features within the oceans.
Examples of inverse applications of the noise field include
wind speed determination, rainfall measurements, object
imaging (acoustic daylight), and geoacoustic inversion.

3.3.4. Reverberation. The reverberation field in the oceans
is the product of acoustic scattering by the surface and
bottom boundaries and by inhomogeneities within the
oceans. The utility of the reverberation field as an inverse
sensing technique is analogous to that of the ambient noise
field. For example, the reverberation field can be inverted to
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Propagation
(i) Matched field processing:
(a) source localization,
(b) marine environment characterization.
(i1) Ocean acoustic tomography:
(a) density field (eddies, currents),
(b) temperature (climate monitoring).
(iii) Deductive geoacoustic inversion:
(a) sediment parameters,
(b) sea-floor scattering characteristics.
(iv) Time reversal mirror (TRM):
(a) signal refocusing.
Noise
(1) Field inversion:
(a) wind speeds,
(b) rainfall rates.
(i1) Acoustic daylight:
(a) object imaging.
(ii1) Geoacoustic inversion:
(a) seabed acoustics.
Reverberation
(i) Field inversion:
(a) sea-floor imaging.
(ii) TRM nulling:
(a) reverberation attenuation.

Box 4: Summary of inverse ocean acoustic sensing techniques.

image the sea floor. A new development uses time reversal
mirror (TRM) methods to attenuate reverberant returns.

4. Emerging Solutions

4.1. Background. This section addresses advanced processing
methods in addition to novel methods by which to maximize
the interpretation, and thus utility, of archival and experi-
mental data.

4.2. Advanced Integrated Modeling Approaches

4.2.1. Acoustic Integration Model. The acoustic integra-
tion model (AIM) combines a movement simulator with
underwater acoustic models to predict (and thus minimize
and mitigate) the potential effect of sound on marine
mammals [128]. Simulated sound sources and animals are
programmed to move in location and depth over time in
a realistic fashion. AIM is a Monte Carlo statistical model
based on a whale movement and tracking model and an
underwater acoustic backscattering model for a moving
source. Currently, AIM incorporates the BELLHOP and PE
propagation models in addition to the ETOP05 bathymetry
and GDEM sound-speed profile databases. The ETOP05 data
set is the highest resolution topographic data set with global
coverage that is publicly available, with elevations posted
every 5 arc minutes (approximately 10 km) for all land and
sea floor surfaces. ETOPO05 is distributed without restriction
by the National Oceanic and Atmospheric Administration
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(NOAA) through its National Geophysical Data Center
(NGDCQ).

4.2.2. Marine Mammal Movement Models. A method has
been developed for modeling marine mammal movement
and behavior (3MB) for use in environmental impact assess-
ments [129]. Estimating the impact of anthropogenic sound
on marine animals entails consideration of animal location
and behavior at the time of sound exposure. The ESME
model (see Table 4) incorporates 3MB to provide fine-scale
control over simulated marine-animal (animat) movement
and behavior. Control over the animats is scaleable to
the information available regarding the species of concern.
Movement and behavior are stochastically determined by
sampling from distributions describing rates of movement
in the horizontal and vertical planes, direction of travel, time
at the surface between dives, time at depth, and time in and
transition between behavioral states. Influence of behavior
over each of the other distributions is also permitted.

As part of the NATO Undersea Research Centre
(NURC) broadband environmentally adaptive concept, the
SUPREMO sonar performance model was incorporated
within a feedback mechanism for sonar-parameter opti-
mization for any specified ocean environment [130]. The
feasibility of using active sonars to monitor the movement
of marine mammals was investigated in order to recommend
stand-off distances within which an acoustic source should
not be deployed [131].

4.2.3. Energy Flux Models. Some applications, such as work
relating to acoustic impacts on marine mammals, do not
require extremely high-fidelity model outputs. Transmission
losses averaged over depth, for example, are often adequate.

An approach referred to as energy-flux models [132]
is useful for rapid calculation of transmission loss where
the propagation conditions are dominated by numerous
boundary-reflected multipaths and when only the coarse
characteristics of the acoustic field are needed.

In specific configurations, especially at long ranges in
shallow-water environments, the transmitted field can be
viewed as being composed of many paths propagating by
successive reflections from the surface and bottom bound-
aries. Here, the acoustic energy will remain trapped between
these two boundaries. Furthermore, if the acoustic frequency
is high enough that the field oscillations can be considered to
be random, then an average intensity can be calculated using
simple algebraic formulas [23].

This concept can be extended to ocean environments
where the sound speed is not constant, or where there are
slight losses at the boundaries. In such cases, the transmitted
field cannot be taken as a volumetric average. Rather, it has
to be decomposed into its angular components and the cyclic
characteristics of the various beams must be detailed [133].

This approach is very useful for predicting incoherent
transmission losses in cases where there are a large number
of modes (=6). These flux models are fast because there is no
requirement to find modes or eigenrays. They can also lead to
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very simple and intuitive expressions. This method has been
extended for reverberation [134].

4.2.4. Waveguide Invariant Models. In weakly range-
dependent ocean environments, it has been observed
that the acoustic wavefield can be described in terms of
ray-based or mode-based approaches [135, 136]. Using
ray-based descriptions, distributions of the ray amplitude
and phase (travel time) are largely controlled by the
so-called stability parameter (). Alternatively, using mode-
based descriptions in either purely range-independent
environments or in range-independent environments upon
which weak (range-dependent) perturbations have been
superimposed, many wavefield properties are controlled by
the so-called waveguide invariant (f8). When f3 is evaluated
using asymptotic mode-theoretical results (in a stratified
environment), it was found that § = &, which is consistent
with the well-known ray-mode duality. In weakly range-
dependent environments, however, « was found to control
ray stability and several measures of travel-time dispersion
while f controlled the spread of modal-group delays due to
mode coupling.

In essence, the waveguide invariant () summarizes the
pattern of constructive and destructive interference between
acoustic modes propagating in the ocean waveguide. It
manifests itself as interference fringes (or striations) in a
plot of frequency versus source-receiver separation. The
waveguide invariant summarizes in a single scalar parameter
the dispersive propagation characteristics in a waveguide.

4.3. Advanced Nonintrusive Measurement Approaches

4.3.1. Acoustic Transmission Options. In acoustic probing,
transmit signals can be adapted according to in situ estimates
of channel conditions. Waveform characteristics could be set
using returns from the previous transmission as an indicator
of channel response. Rapidly modifying processing param-
eters by analyzing previously received signals addresses the
problem of fluctuating acoustic channel response owing to
variations in environmental factors. Such optimal matching
to the estimated channel response would improve target-
echo stability [137].

Since sound level, frequency, and duration are critical
parameters in causing physical damage to marine life,
transmitting over a wider frequency spectrum using spread-
spectrum techniques or noise-like signals could avoid tissue
damage by reducing the time spent (or energy transmitted)
in particular frequency bands. Spread-spectrum techniques
use a pseudorandom spreading code to produce a wide-
band source signature. Signals must possess high range
and Doppler resolution and minimize cross-talk between
different users.

Noise-like signals emulate ambient noise by covertly
adapting to the fluctuating ambient noise field. Designers
could model pseudo-random signals based on bioacoustic
noise, surf noise (when high-frequency broadband transients
should be useful [138]) or shipping noise (when near CW
would be more useful).
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Advances in sonar technologies have rendered modern
sonar systems useful for in situ measurements of the
ambient marine environment. For example, through-the-
sensor measurements of the ocean impulse response have
enabled modern sonars to perform collateral functions as
tactical environmental processors.

A recent through-the-sensor remote-sensing technique for
acoustic-parameter estimation has been referred to as SABLE
(sonar active boundary loss estimation) [139]. Bottom
scattering strengths were derived from active hull-mounted
naval sonar data by using eigenray paths modeled by CASS
and GRAB to associate sonar-signal attributes with specific
propagation paths.

4.3.2. Collision Avoidance. Cetaceans are prone to collisions
with fast-moving vessels. In areas of high cetacean and vessel
densities, the sperm whale (Physeter macrocephalus) is of
great concern. Sperm whales are highly vocal and can be
localized with passive sonar; however, when at or near the
surface (i.e., when they are at greatest risk of collision), they
tend to stop vocalizing. Techniques employing active sonars
have proved to be inefficient due to short detection ranges
and high closing speeds. The efficiency of a passive-sonar
solution was evaluated that used vocalizing whale clicks (at
depth) as acoustic sources to detect silent whales [140]. This
solution could serve as a noninvasive complement to a more
complex passive localization and collision-avoidance system.
A wideband N X 2D (range-and-azimuth-dependent) ray
model was used to simulate a passive solution comprising
an arbitrary number of active acoustic sources (vocalizing
whales), an illuminated object (silent whale) and a passive-
sonar receiver, all positioned in three-dimensional space with
arbitrary bathymetry. Both curved-line and straight-line
ray solutions were implemented, with the latter providing
greater computational speeds at the expense of temporal
and angular fidelity. The simulation recreated the resultant
mixture of direct, reverberated and target-backscattered
signals arriving at the receiver for any array configuration,
any number of sources and one target. In the vicinity
of the Canary Islands, the simulations demonstrated the
applicability of the concept with a maximum detection range
on the order of 1 km.

4.4. Advanced Processing Methods

4.4.1. Adjoint Modeling. The principal application of adjoint
models is sensitivity analysis. When quantitative estimates
of sensitivity are desired, a mathematical model of the
phenomenon or relationship is required. While models have
been used to assess the impacts of perturbations and thus
estimate sensitivity, a more efficient approach is to use the
model’s adjoint to determine optimal solutions. The adjoint
operates backward in the sense that it determines a gradient
with respect to input from a gradient with respect to output.
In a temporally continuous model, this would appear as
integration backwards in time. If there are no numerical
instabilities associated with irreversible processes in the
tangent linear model acting forward in time, there will be
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none in the adjoint acting backward in time (a tangent linear
model provides a first-order approximation to the evolution
of perturbations in a nonlinear forecast trajectory). The
greatest limitation to the application of adjoints is that the
results are useful only when the linearized approximation is
valid. The adjoint operator (matrix transpose) back-projects
information from data to the underlying model. Geophysical
modeling calculations generally use linear operators that
predict data from models. The usual task is to find the inverse
of these calculations, that is, to find models (or make maps)
from the data. The adjoint operator tolerates imperfections
in the data and does not demand that the data provide full
information.

The concept of adjoint modeling was introduced in
shallow water acoustics for solving inverse problems [141]. In
related work, the concept of backpropagation was reviewed
in the context of adjoint modeling [142]. The different
implementations of this concept were compared and dis-
cussed in the framework of experimental acoustic inver-
sion in shallow water with application to source localiza-
tion, ocean acoustic tomography, geoacoustic inversion and
underwater communications. Well-established inversion (or
focalization) methods based on matched-field processing,
model-based matched filter and time-reversal mirror are
related to lesser known techniques such as acoustic retroga-
tion and other variants of backpropagation. In contrast to the
latter, adjoint-based variational inversion approaches make
use of the adjoint of a forward model to backpropagate the
model-data mismatch at the receiver toward the source.

An adjoint model was derived from a forward-propaga-
tion model (e.g., normal mode or parabolic equation)
to propagate data-model misfits at the observation point
back through the medium to the site of those medium
perturbations that were not accounted for in the forward
model and which gave rise to the observed data-model
misfits [143]. This property makes adjoint models attractive
for use in acoustic inversion experiments.

4.4.2. Stochastic Resonance. Stochastic resonance refers to
a phenomenon that is manifested in nonlinear systems
whereby weak signals can be amplified in the presence of
noise [144]. Three components are necessary: a threshold,
a periodic signal and a source of noise. The response of
the system undergoes resonance-like behavior as the noise
level is varied [145]. Stochastic resonance was applied to
enhance the detection of target signals masked by shallow-
water reverberation [146]. Specifically, parameter-induced
stochastic resonance was used to tune system parameters to
recover the spatial signal that was corrupted by Gaussian
noise. This method also has applicability when processing
spatial signals that are corrupted by K-distributed envelope
noise (a standard model for radar clutter).

4.4.3. Optimization Techniques. Ant colony optimization
(ACO) has elements in common with genetic algorithms
[147]. Both are population-based algorithms that search
a discrete space and provide uncertainty analyses. The
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main difference is the mechanism that handles and recom-
bines components of better candidate solutions (i.e., ant-
pheromones trails versus genetic operators). Ant colony opti-
mization is further distinguished by having a form of mem-
ory (the ant pheromone trails), while genetic algorithms
are without memory. Specifically, when the pheromones
evaporate, identifiers of paths with above-average quality
fade out. Thus, high rates of evaporation mean that only
recent information can be retrieved (typical for short-
term memory); alternatively, low rates of evaporation allow
recollection of much older information (typical for long-
term memory). When applied to inversion, the world of the
ants acts as an analogy for the geoacoustic environment.

An efficient and reliable method was proposed for
performing the inversion of a neural-network underwater
acoustic model to obtain sea-floor parameters [148]. Two
different versions of a modified particle-swarm optimization
were used: two-step gradient approximation and hierarchical
cluster-based approximation. Both approaches worked well.

Tabu search has traditionally been applied to combina-
tional optimization problems [149, 150]. The tabu search
begins by marching to a local minimum. This approach
avoids entrapment in cycles by forbidding (tabu), or penal-
izing, moves that take the solution in the next iteration to
points in the solution space previously visited.

4.4.4. Chaos. In the presence of weak fluctuations in the
sound-speed field, it has been observed that ray trajectories
in ocean waveguides exhibit a chaotic behavior in which
the travel times along eigenrays form compact clusters,
the center of which is close to the arrival time of an
unperturbed ray with similar geometry [151]. The deep-
water acoustic waveguide was modeled by an unperturbed
sound-speed profile [¢y(z)] combined with weak fluctuations
of sound speed [d¢c(r, z)] caused by a random field of internal
waves conforming to the Garrett-Munk spectrum. Formally,
ray equations in a random inhomogeneous medium can
be considered as stochastic equations whose parameters
are determined by a random function dc. Such nonlinear
equations can be solved in the framework of ordinary
perturbation theory, but only for short ranges. Instead,
the ray structure was analyzed by using the Hamiltonian
formalism in terms of action-angle canonical variables whose
variation was small under conditions of weak perturbations.
It was estimated that ray arrival times at a distance r occupied
an interval whose average width increased in proportion with
rl3 in agreement with previous investigators. Moreover, for
r < 10° km, the ray trajectories forming the cluster deviated
only slightly from the unperturbed ray trajectory and the
cluster width grew in proportion with 3. For r > 103 km,
the width of the cluster grew in proportion with 2.

Chaotic and stochastic nonlinear ray dynamics can
occur in underwater-acoustic waveguides with longitudinal
variations in the sound speed caused by internal waves
[152]. This situation was investigated using a model of a
“frozen” medium in which the temporal variations in the
environment were neglected and only the spatial variations
due to the comparatively small propagation time of sound
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in the ocean were considered. Coherent ray clusters were
observed in which large fans of rays with close initial
conditions preserved close current dynamical characteristics
over long distances. The cluster structure could be considered
to consist of statistical and coherent parts. Rays belonging
to the statistical part propagated in the same areas of phase
space with the same value of the Lagrangian, but did not
correlate with each other and demonstrated exponential sen-
sitivity to initial conditions. Rays belonging to the coherent
part did not demonstrate sensitivity to initial conditions.
This coherent clusterization might be a useful property
for acoustic tomography in terms of determining spatio-
temporal variations in the hydrological environment under
conditions of ray chaos [153].

5. Summary

This paper has reviewed changes in the ocean soundscape,
changes that have been driven by both anthropogenic
activity and natural factors. New regulatory initiatives have
placed additional restrictions on uses of sound in the
ocean, and mitigation of marine-mammal endangerment
is now an integral consideration in acoustic-system design
and operation. Emphasis has been placed on leveraging
advanced modeling methods to solve emerging scientific and
engineering challenges in this field.

Naval sonars have been redesigned as high-power mul-
tistatic systems capable of operating in complex coastal
environments against quiet submarines. Littoral training
ranges to support this new generation of sonar systems
must comply with more stringent environmental regula-
tions. Such compliance is often assessed using advanced
modeling techniques coupled with in situ data collection.
Oceanographic data collection is supported by underwater
networks consisting of sensors and vehicles deployed in
concert. These networks employ nodes that communicate via
acoustic channels that have low data rates and time-varying
fading.

Seismic exploration has ventured into deeper waters in
search of diminishing energy resources using source arrays
that are powered by high-pressure air. Controlled-exposure
experiments have studied changes in the behavior of nearby
whales due to these powerful sources; however, modeling
uncertainty complicates the regulatory interpretation of
average sound-exposure conditions.

Increased merchant shipping activity has had a mea-
sureable impact on the ocean soundscape over the past
four decades: the average noise has increased by 2.5-3 dB
per decade in the frequency band 30-50 Hz. Moreover,
the growing number of wind farms in coastal waters of
medium depth (<30 m) has added to the soundscape at low
frequencies and resulted in behavioral reactions of nearby
marine mammals.

Climate change has also affected the ocean soundscape.
The emission of carbon into the atmosphere through the
effects of fossil-fuel combustion and industrial processes
has increased atmospheric concentrations of carbon dioxide
(CO,). Ocean acidification, which occurs when CO, in
the atmosphere reacts with water to create carbonic acid
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(H2COs3), has increased. The attenuation of low-frequency
sound in the sea is pH dependent; specifically, the higher
the pH, the greater the attenuation. Thus, as the ocean has
become more acidic (lower pH) due to increasing CO, emis-
sions, the attenuation has diminished and low-frequency
sounds propagate farther, making the ocean noisier. Recent
investigations have estimated that the noise at 3 kHz would
increase by 30% if the pH decreased from 8.0 to 7.4.

Modeling tools traditionally used in underwater
acoustics have undergone a necessary transformation;
these tools include propagation, noise, reverberation, and
sonar-performance models. Advanced modeling techniques
now include forward and inverse applications, integrated-
modeling approaches, nonintrusive measurements and
novel processing methods. The flow of the sonar modeling
processes was used to demonstrate advances in modeling
technology relevant to assessments of the ocean soundscape.
A 32-year baseline inventory of modeling techniques was
updated with the latest developments, including basic
mathematics and references to the key literature, to guide
soundscape practitioners to the most efficient modeling
techniques for any given application.

Advanced processing methods included integrated mod-
eling approaches that combine marine-mammal movement
simulators with underwater acoustic models to predict (and
thus minimize and mitigate) the potential effect of sound
on marine mammals. Advances have been achieved using
energy-flux and waveguide-invariant techniques that can
simplify interpretation of channel models. Nonintrusive
measurement approaches included new acoustic transmis-
sion options to minimize marine-mammal impacts. Colli-
sion avoidance techniques have proved useful in areas of
high cetacean and vessel density. Finally, adjoint modeling,
stochastic resonance, optimization techniques, and chaos
were shown to facilitate understanding of advance underwa-
ter acoustic modeling results.

Abbreviations

1D: One-dimensional

2D: Two-dimensional

3D: Three Dimensional

3DWAPE: 3D wide-angle parabolic equation
3MB: Marine mammal movement and

behavior

ACM: Association for computing machinery
ACO: Ant colony optimization

AIM: Acoustic integration model
ARAMIS:  Array response advanced modal

integrated simulator
ARTEMIS: Adiabatic reverberation and target echo
mode incoherent sum

ASA: Acoustical Society of America

ASPECT:  Active system performance estimate
computer tool

AUV: Autonomous underwater vehicle

BISTAR: Incoherent bistatic reverberation for

range-dependent environments
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BLM:

BMT:

BOEMRE:

BORIS-SSA:

CALYPSO:

Cartesian 3DPE:

CEE:
CiSE:

CMM:
CORDA:

COWRIE:

C-SNAP-REV:

CW:
CZMA:
DANM:
dB:
DMOS:
DRDC:

DREA:
DSTO:

EIA:
ESA:
ESME:

ESPRESSO:

ETOPO5:
FeyRay:

FFI:

FFP:

FM:
FORTRAN:
GDEM:

GIS:
GmbH:
GOATS:
GUIL
HYREV:

IAGC:

Bureau of Land Management (now
BOEMRE)

British Maritime Technology Ltd
Bureau of Ocean Energy Management,
Regulation and Enforcement (formerly
BLM)

Bottom reverberation from
inhomogeneities and
surfaces-small-slope approximation
Model operating system

3DPE Employing Cartesian
Coordinates in the Numerical Scheme
Controlled exposure experiments
Computational intelligence and
software engineering

Caractérisation du Milieu Marin
Centre for Operational Research and
Defence Analysis

Collaborative Offshore Wind Energy
Research Into the Environment
Reverberation using the C-SNAP
Normal-Mode Model

Continuous wave

Coastal zone Management Act
Dynamic ambient noise model
Decibel

DRDC Atlantic model operating system
Defence Research and Development
Canada

Defence Research Establishment
Atlantic (Canada)

Defence Science and Technology
Organisation (Australia)
Environmental impact assessment
Endangered Species Act

Effects of sound on the marine
environment

Extensible performance and evaluation
suite for sonar

Earth topography five-minute grid
Broadband, range-dependent
Gaussian-beam propagation model
Forsvarets forskningsinstitutt
(Norwegian Defence Research
Establishment)

Fast field program

Frequency modulation

Formula translation

Generalized digital environmental
model

Geographic information system
Gesellschaft mit beschrinkter Haftung
Generic Ocean Array Technology Sonar
Graphical User Interface

HanYang University Reverberation
Model

International Association of
Geophysical Contractors

TARIA:

ICC:

IECM:
IEEE:

IEER:

Integrated Mode:

IOMEDEX:

IRFC:
ISAAC:

JASA:
LRAPP:

LSMS:
LYBIN:

MATLAB:

MCM:
METOC:
MINEOS:

MMPA:
MMS:
MOC3D:

MOCASSIN:

MOD:
MODRAY:

MONM:
MONM3D:
MONOGO:
M&S:

MTS:
MURAL:

N x 2D:
NATO:
NEMO:
NEPA:
NGDC:
NMES:
NOAA:

NOGRP:

NSPE:
NTNU:

NURC:
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International Academy, Research, and
Industry Association

International Conference on
Communications

Integral equation coupled-mode
Institute of Electrical and Electronics
Engineers

Improved extended echo ranging
Multipath expansion method extended
to range-dependent environments
Ionian Sea/Mediterranean Sea Exercise
(part of LRAPP)

Industry Research Funders Coalition
Impact on Species from Anthropogenic
Acoustic Channels

Journal of the Acoustical Society of
America

Long Range Acoustic Propagation
Project

Life system modeling and simulation
Range-dependent ray-theoretical
propagation model

Matrix Laboratory

(Mathworks, Inc.)

Mine countermeasures

Meteorology and oceanography
MSASM interactive execution and
optimization system

Marine Mammal Protection Act
Minerals Management Service

3D Version of MOCASSIN

Monte Carlo Schall-Strahlen
Intensititen (Monte Carlo Sound Ray
Intensities)

Ministry of Defence

Maritime Operations Division
Ray-tracer

Marine Operations Noise Model

3D PE Model for MONM
Reverberation Module in SWAMI
Modeling and Simulation

Marine Technology Society
Multistatic reverberation algorithm
Quasi-3D modeling approach

North Atlantic Treaty Organization
NUWC Exposure Model

National Environmental Policy Act
National Geophysical Data Center
National Marine Fisheries Service
National Oceanic and Atmospheric
Administration

Fast normal mode (monostatic)
reverberation model

Navy Standard Parabolic Equation
Norwegian University of Science and
Technology

NATO Undersea Research Centre
(formerly SACLANTCEN)
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NUSC:
NUWC:
OASES:
OASES-3D:
OBIS:

OCS:

ONR:
OWWE:
PAREQ:
PAREQ-REV:

PDF:

PDPE:

PE:
PERM-2D:
PlaneRay:

PMODES:

POPP:
PWRC:
RAM:
RAMGEOQ:

Ray5:
RAYSON:

RDS:
REA:
REVPA:

RITSHPA:

RMPE:
ROSELLA:

ROV:
R-SNAP:

SABLE:
SACLANT:
SACLANTCEN:
SIAM:

SIGBED:

SPPS:
S-SCARAB:

SSEF:
SSFEPE:
SSPPE:
STB:

Naval Underwater Systems Center (now
NUWC)

Naval Undersea Warfare Center
(formerly NUSC)

Ocean acoustics and seismic
exploration synthesis

Version of OASES incorporating 3D
scattering effects

Ocean biogeographic information
system

Outer continental shelf

Office of Naval Research

One-way wave equation

Parabolic equation model
Reverberation using the PAREQ
parabolic equation model

Probability density (or distribution)
function

Pseudo-differential PE

Parabolic equation

Reverberation model

Eigenray Model for range-dependent
environments

Range-independent normal-mode
transmission-loss module in SWAMI
Range-independent version of PROLOS
Plane wave reflection coefficient
Range-dependent acoustic model
RAM modified for range-dependent
sediment layers

Range-dependent ray model
Range-dependent ray-theoretic model
for high frequencies

Rapidly deployable system

Rapid environmental assessment
Parabolic-equation reverberation
model

Reverberation including the statistics of
hybrid path arrivals

Ray-Mode Parabolic Equation Model
Extension of NOGRP to handle beam
patterns

Remotely operated vehicle

Coherent monostatic reverberation
model

Sonar active boundary loss estimation
Supreme Allied Commander, Atlantic
SACLANT Undersea Research Centre
Simulated ambient noise model
Special Interest Group on Embedded
Systems (ACM)

Sonar performance prediction system
SACLANTCEN-scattering
reverberation and backscatter
Split-step Fourier

SSF PE Model

Split-step Padé PE model

System test bed
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SUPREMO: Multistatic sonar model
SWAMI:  Shallow Water Active-Sonar Modelling

Initiative
SWAMP:  Shallow Water Acoustic Modal
Propagation
SWSS: Sperm Whale Seismic Study
TDA: Tactical decision aid
TIAPS: Towed integrated active-passive sonar
TRM: Time-reversal mirror
TTS: Temporary threshold shift
UAIM: Underwater acoustic imaging model
UDT: Undersea defence technology
USWTR:  Undersea warfare training range
UuuVv: Unmanned undersea vehicle
WHOI: Woods Hole Oceanographic Institution
WKB: Wentzel, Kramers, and Brillouin
WUWNet: Workshop on Underwater Networks
XRAY: Range-dependent ray theoretical model

combined with full-field modeling of
seabed interactions.
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