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Swarm intelligence (SI) is an artificial intelligence technique
based on the study of behavior of simple individuals (e.g.,
ant colonies, bird flocking, animal herding, and honey bees),
which has attracted much attention of researchers and has
also been applied successfully to solve optimization problems
in engineering. However, for large and complex problems,
SI algorithms consume often much computation time due to
stochastic feature of the search approaches. Therefore, there
is a potential requirement to develop efficient algorithm to
find solutions under the limited resources, time, and money
in real-world applications.

Within this context, this special issue servers as a forum
to highlight the most significant recent developments on
the topics of SI and to apply SI algorithms in real-life
scenario. The works in this issue contain new insights and
findings in this field. A broad range of topics has been
discussed, especially in the following areas, benchmarking
and evaluation of new SI algorithms, convergence proof for SI
algorithms, comparative theoretical and empirical studies on
SI algorithms, and SI algorithms for real-world application.

Some works focus on the application of genetic algorithm
in different area, for example, G. Ning et al.’s “Economic
analysis on value chain of taxi fleet with battery-swapping
mode using multiobjective genetic algorithm” presents an
economic analysis model on value chain of taxi fleet with
battery-swapping mode in a pilot city. A multiobjective
genetic algorithm is used to solve the problem. The real data
collected from the pilot city proves that the multiobjective
genetic algorithm is tested as an effectivemethod to solve this
problem.

B. Zhenming et al. “Direct index method of beam dam-
age location detection based on difference theory of strain
modal shapes and the genetic algorithms application” applies
direct index method SMSD and the Genetic Algorithms
into structural damage identification. Numerical simulation
shows that the criteria of damage location detection can
be obtained by strain mode difference curve through cubic
spline interpolation.

F. Zong et al.’s “Daily commute time prediction based on
genetic algorithm” presents a joint discrete-continuousmodel
for activity-travel time allocation by employing the ordered
probit model for departure time choice and the hazard
model for travel time prediction. Genetic algorithm (GA) is
employed for optimizing the parameter in the hazard model.
The results also show that the genetic algorithm contributes
to the optimization and thus the high accuracy of the hazard
model.

Qu et al.’s “The optimized transport scheme of empty
and heavy containers with novel genetic algorithm” proposed
a model with objective maximizing the route benefits to
design the transport scheme of empty and heavy containers
reasonably. A novel GA is developed to solve the model. The
case study about China-Europe route proves that this model
can improve the liner company’s benefits effectively.

W. Juan et al.’s “Genetic algorithm for multiuser discrete
network design problem under demand uncertainty” presents
a bilevel model for discrete network design. An iterative
approach including an improved genetic algorithm and a
Frank-Wolfe algorithm is used to solve the bilevel model.
The numerical results on the Nguyen Dupuis network show
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that the model and the related algorithms were effective for
discrete network design.

Z. Yu et al.’s “Dynamic route guidance using improved
genetic algorithms” presents an improved genetic algorithm
(IGA) for dynamic route guidance algorithm. The proposed
IGA designs a vicinity crossover technique and a greedy
backward mutation technique to increase the population
diversity and strengthen local search ability. The simulation
results show the effectiveness of the proposed algorithm.

Y. Li and Z. Sun’s “Articulated human motion track-
ing using sequential immune genetic algorithm” proposed a
novel generative method for human motion tracking in the
framework of evolutionary computation.The paper designed
an IGA-based method to estimate human pose from static
images. It also proposed a sequential IGA (S-IGA) algorithm
by incorporating the temporal continuity information into
the traditional IGA. Experimental results show that our
IGA-based pose estimation method can achieve viewpoint
invariant 3D pose reconstruction, and the S-IGA-based
tracking method can achieve accurate and stable tracking of
3D human motion.

Some works present improved algorithm based on parti-
cle swarm optimization. J. Yao and D. Han “Improved bare-
bones particle swarm optimization with neighborhood search
and Its application on ship design” proposed a new BPSO
variant called BPSO with neighborhood search (NSBPSO)
to achieve a tradeoff between exploitation during the search
process. In the paper, experiments are conducted on twelve
benchmark functions and a real-world problem of ship
design. Simulation results show that NSBPSO outperforms
the standard PSO, BPSO, and six other improved PSO
algorithms.

J. Xi et al.’s “Ahybrid algorithm of traffic accident datamin-
ing on cause analysis” puts forward an improved association
rule algorithm based on particle swarm optimization (PSO).
The new method is used to analyze the correlation between
traffic accident attributes and causes.T-testmodel andDelphi
method were deployed to test and verify the accuracy of the
improved algorithm, the result of which was ten times faster
speed for random traffic accident data sampling analyses
on average. And the final result proves that the improved
algorithm was accurate and stable.

Y. Lin’s “Particle swarm optimization algorithm for unre-
lated parallel machine scheduling with release dates” proposed
a heuristic and a very effective particle swarm optimiza-
tion (PSO) algorithm to tackle the problem of minimizing
makespan for 𝑛 jobs on 𝑚 unrelated parallel machines with
release dates. Computational results show that the proposed
PSO is very accurate and that it outperforms the existing
metaheuristic.

A. Szabo and L. de Castro’s “A constructive data classifi-
cation version of the particle swarm optimization algorithm”
introduced new particle swarm optimization algorithm spe-
cially designed to solve continuous parameter optimization
problems. The proposals were applied to wide range of
databases from the literature, and the results show that
they are competitive in relation to other approaches from
the literature, with the advantage of having a dynamically
constructed architecture.

Also, ant colony algorithm is discussed in some works.
Q. Xu et al.’s “Simulated annealing-based ant colony algorithm
for tugboat scheduling optimization” presents a hybrid simu-
lated annealing-based ant colony algorithm to optimize the
tugboat scheduling. In this paper, experiments are conducted
to examine the effectiveness of the proposed algorithm for the
tugboat scheduling problem.

G. Yan and D. Feng’s “Escape-route planning of under-
ground coal mine based on improved ant algorithm” proposed
a new escape-route planning method of underground mines
based on the improved ant algorithm. A tunnel network
zoning method and max–min ant systemmethod are used to
improve the performance of the ant algorithm. Experiments
show that the proposed method can find good escape routes
correctly and efficiently and can be used in the escape-route
planning of large and medium underground cone mines.

There are also some works discussing other algorithms
in this field. J. Wu’s “Solving unconstrained global opti-
mization problems via hybrid swarm intelligence approaches”
gives an overview of two efficient hybrid SGO approaches,
namely, a real-coded genetic algorithm-based PSO (RGA-
PSO)method and an artificial immune algorithm-based PSO
(AIA-PSO)method.Numerical results indicate that theRGA-
PSO and AIA-PSO approaches can be considered alternative
SGO approaches for solving standard-dimensional UGO
problems.

Z. Wei et al.’s “Bus dispatching interval optimization based
on adaptive bacteria foraging algorithm” applied the improved
bacterial algorithm to schedule the bus departing interval.
Based on adaptive bacteria foraging algorithm (ABFA), a
model on one bus line in Hohhot city in China was estab-
lished and simulated.The final results showed that ABFAwas
most feasible in optimizing variables.

S. TUO et al.’s “An improved harmony search based
on teaching-learning strategy for unconstrained optimization
problems” presents an improved global harmony search algo-
rithm named harmony search based on teaching-learning
(HSTL) for high-dimensional complex optimization prob-
lems. The experimental results of 31 complex benchmark
functions demonstrate that the HSTL method has strong
convergence, robustness, and better balance capacity of space
exploration and local exploitation on high-dimensional com-
plex optimization problems.

Y. Xu et al.’s “A simple and efficient artificial bee colony
algorithm” proposes a new artificial bee colony (NABC) algo-
rithm, which modifies the search pattern of both employed
and onlooker bees. Experiments are conducted on a set of
twelve benchmark functions. Simulation results show that
this approach is significantly better or at least comparable to
the original ABC and seven other stochastic algorithms.

S. Zhong et al.’s “Guidance compliance behavior on VMS
based on SOAR cognitive architecture” introduced SOAR
to design the agent with the detailed description of the
working memory, long-term memory, decision cycle, and
learning mechanism based on the multiagent platform.
Experiments are simulated many times under given sim-
ulation network and conditions. The results, including the
comparison between guidance and no guidance, the state
transition times, and average chunking times, are analyzed to
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further study the laws of guidance compliance and learning
mechanism.

Cuevas’s “A Swarm Optimization Algorithm for Multi-
modal Functions and its Application in Multi-circle Detection”
presents a new swarm multimodal optimization algorithm
named as the Collective Animal Behavior (CAB). In the
proposed algorithm, searcher agents emulate a group of ani-
mals which interact to each other based on simple biological
laws that are modeled as evolutionary operators. Numer-
ical experiments are conducted to compare the proposed
method with the state-of-the-art methods on benchmark
functions. The proposed algorithm has been also applied to
the engineering problem of multi-circle detection, achieving
satisfactory results.

G. Cabrera et al.’s “A hybrid approach using an artificial
bee algorithm with mixed integer programming applied to a
large-scale capacitated facility location problem” presents a
hybridization of two different approaches applied to the well-
known capacitated facility location problem (CFLP).The arti-
ficial bee algorithm (BA) is used to select a promising subset
of locations (warehouses) which are solely included in the
mixed integer programming (MIP) model. According to the
results, combining the BAwith amathematical programming
approach appears to be an interesting research area in the
combinatorial optimization.

These articles demonstrate the advancement that swarm
intelligence technologies have made for supporting problem
solving in engineering. Developing the efficient algorithm to
find solutions can provide solutions for large and complex
problems under the limited resources, time, and money
in real-world applications. We would like to express our
gratitude to the many reviewers for their hard works. We
would also like to thank the authors for their contributions
to the special issue. This special issue could not have been
completed without their dedication and support.

Baozhen Yao
Rui Mu
Bin Yu
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Harmony search (HS) algorithm is an emerging population-based metaheuristic algorithm, which is inspired by the music
improvisation process. The HS method has been developed rapidly and applied widely during the past decade. In this paper, an
improved global harmony search algorithm, named harmony search based on teaching-learning (HSTL), is presented for high
dimension complex optimization problems. InHSTL algorithm, four strategies (harmonymemory consideration, teaching-learning
strategy, local pitch adjusting, and random mutation) are employed to maintain the proper balance between convergence and
population diversity, and dynamic strategy is adopted to change the parameters. The proposed HSTL algorithm is investigated
and compared with three other state-of-the-art HS optimization algorithms. Furthermore, to demonstrate the robustness and
convergence, the success rate and convergence analysis is also studied.The experimental results of 31 complex benchmark functions
demonstrate that the HSTL method has strong convergence and robustness and has better balance capacity of space exploration
and local exploitation on high dimension complex optimization problems.

1. Introduction

With the development of scientific technology, many real-
life optimization problems are becoming more and more
complex and difficult. So how to resolve the complex prob-
lems in an exact manner within a reasonable time cost is
very important. The traditional optimization algorithms are
difficult to solve the nonlinear and nondifferential problems.
In recent years, most popular swarm intelligence optimiza-
tion algorithms, such as genetic algorithm (GA), particle
swarm optimization (PSO), and differential evolution (DE)
algorithm, have been successfully applied to large-scale com-
plicated problems of scientific and engineering computing.

Inspired by the process of themusicians’ improvisation of
the harmony, the harmony search (HS) algorithm is proposed
by Geem et al. [1, 2]. Similar to the GA and PSO, the HS algo-
rithm is a meta-heuristic random optimization algorithm. In
recent years, HS has been applied more broadly in the fields
of engineering optimization. Such as pipe network design [3],
structural optimization [4], clustering of text document [5],
combined heat and power economic dispatch problem [6],

and scheduling of multiple dam system [7]. The aforemen-
tioned applications show that HS algorithm has significant
in solving complex engineering application problems. It has
strong ability of exploration and has a cheap running cost.
However, the classical harmony search algorithm is not
efficient enough for solving large-scale problems, which has
a slow convergence speed and low-precision solution. So
some improved HS algorithms were proposed. Mahdavi et al.
proposed an improvedHS algorithm (IHS) [8] that employed
a novel method generating new solution vectors which
enhanced accuracy and convergence speed. Recently, Omran
and Mahdavi tried to improve the performance of HS by
incorporating some techniques from swarm intelligence. Tuo
and Yong presented an improved harmony search algorithm
with chaos (HSCH) [9].The new variant namedGHS (Global
Best Harmony Search) [10] reportedly outperformed the HS
and IHS algorithm over the benchmark problems.

HS algorithm has strong ability on exploring the regions
of the solution space in a reasonable time. However, it
has lower exploitation ability in later period. Therefore,
some improved HS algorithm is proposed to enhance the
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local search ability and solution precision, such as local-
best harmony search algorithmwith dynamic subpopulations
(DLHS) [11], harmony search algorithm with differential
mutation operator (HSDE) [12], and novel global harmony
search algorithm for unconstrained problems (NGHS) [13,
14]. In addition,Gao et al. proposedmodifiedharmony search
methods for unimodal and multimodal optimization [15].
Pan et al. proposed self-adaptive harmony search algorithm
for optimization (SGHS) [16]. Yadav et al. presented an
intelligent tuned HS algorithm [17].

Now some existing state-of-the-art harmony search algo-
rithms, such as NGHS, HSDE, and SGHS, have shown
exceptional problem-solving ability, but they have some
disadvantages over the multimodal and high dimensional
function. To enhance the performance of high dimensional
multimodal problem by HS method, this paper proposed
an improved large-scale HS algorithm with harmony search
teaching-learning (HSTL). In the HSTL algorithm, the HS
algorithm is improved by embedding teaching-learning-
based-optimization (TLBO) [17, 18] method which has a
strong searching capacity for high dimensional problem.

The rest of this paper is organized as follows. In Section 2,
the basic framework of the classical harmony search method
is summarized in a comprehensive style, and the two excellent
variants of HS (SGHS and NGHS) are briefly presented.
A novel teaching-learning-based-optimization algorithm is
provided, and the details of HSTL algorithm are presented in
Section 3. In Section 4, 31 different characteristic benchmark
problems, which consist of separable problems, nonseparable
problems, shifted problems, shifted rotated problems, and
hybrid composite problems, are considered, and the numeri-
cal results of HSTL method are demonstrated. Furthermore,
to investigate the robustness and convergent performance of
the HSTL algorithm, the comparison results of convergence
speed and success rate are presented, and convergence anal-
ysis is preliminary put out. Finally, the research findings and
contributions of the proposed HSTL algorithm are discussed
in Section 5.

2. HS Algorithm and Other Variants

In this section, we introduce the classical harmony search
(HS) algorithm and two excellent variants of HS algorithms:
self-adaptive global-best harmony search (SGHS) algorithm
and novel global harmony search (NGHS) algorithm.

2.1. Classical Harmony Search Algorithm (HS). The steps in
the procedure of classical harmony search algorithm are as
follows.

Step 1 (initialize the problem and algorithm parameters). In
this step, the optimization problem is specified as follows:

min 𝑓 (𝑥) ,

s.t. 𝑥 = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝐷
) ,
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𝑖
∈ [𝑥
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𝑖
, 𝑥
𝑈

𝑖
] , 𝑖 = 1, 2, . . . , 𝐷,

(1)

where 𝑓(𝑥) is an objective function, 𝐷 is the number of
decision variables.

The HS algorithm parameters are also specified in this
step.

HMS: the harmony memory size or the number of
solution vectors in the population;
HMCR: the harmony considering rate;
PAR: pitch adjusting rate;
BW: bandwidth;
maxFEs: the maximum number of improvisations.

Step 2 (initialize the harmonymemory). The harmonymem-
ory (HM) consists of HMS harmony vectors. Each harmony
vector is generated from a uniformdistribution in the feasible
space, as
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Step 3 (improvise a new harmony). A new harmony vector
𝑥
new

= (𝑥
new
1

, 𝑥
new
2

, . . . , 𝑥
new
𝐷

) is generated based on three
rules:

(a) Memory consideration;
(b) Pitch adjustment;
(c) Random generation.

The improvisation procedure of new harmony vector
works as Algorithm 1.

A new potential variation (or an offspring) is generated
in Step 3, which is equivalent to mutation and crossover
operator in standard evolution algorithms (EAs).

Step 4 (update harmony memory). Get the worst harmony
memory 𝑥worst from theHM. If 𝑥new is better than 𝑥

worst then
𝑥
worst

:= 𝑥
new.

Step 5 (check stopping criterion). If the stopping criterion
(maxFEs) is satisfied, computation is terminated. Otherwise,
Steps 3 and 4 are repeated.

2.2. The SGHS Algorithm. In order to select the best parame-
ters automatically, a self-adaptive global-best harmony search
(SGHS) algorithm is proposed by Pan et al. [16]. The SGHS
dynamically changes BW according to

BW (𝑡) =

{

{

{

BWmax −
BWmax − BWmin

𝑇max
× 2𝑡, if 𝑡 < 𝑇max,

BWmin, if 𝑡 ≥ 𝑇max,

(4)
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For i = 1 to D do
If rand( )≤HMCR then

𝑥
new
𝑖

= 𝑥
𝑗

𝑖
, 𝑗 ∈ U{1, 2, . . . , HMS}

If rand( )≤PAR then
𝑥
new
𝑖

= 𝑥
new
𝑖

± rand( ) × BW(𝑖)

𝑥
new
𝑖

= min(max(𝑥new
𝑖

, 𝑥
𝐿

𝑖
), 𝑥
𝑈

𝑖
)

End If
Else

𝑥
new
𝑖

= 𝑥
𝐿

𝑖
+ (𝑥
𝑈

𝑖
− 𝑥
𝐿

𝑖
) × rand( )

End If
End For

Algorithm 1:The improvisation procedure of new harmony vector
by HS.

For i = 1 to D do
𝑥
𝑟

𝑖
= 2 × 𝑥

best
𝑖

− 𝑥
worst
𝑖

𝑥
𝑟

𝑖
= min(max(𝑥𝑟

𝑖
, 𝑥
𝐿

𝑖
), 𝑥
𝑈

𝑖
)

𝑥
new
𝑖

= 𝑥
worst
𝑖

+ rand( ) × (𝑥
𝑟

𝑖
− 𝑥

worst
𝑖

).
If rand( )≤ 𝑝

𝑚
//random mutation

𝑥
new
𝑖

= 𝑥
𝐿

𝑖
+ (𝑥
𝑈

𝑖
− 𝑥
𝐿

𝑖
) × rand( )

End If
End For.

Algorithm 2: The NGHS modifies improvisation step.

where BWmax and BWmin are the maximum and minimum
distance bandwidths.

HMCR (PAR) is dynamically selected froma suitable nor-
mally distributionwithmeanHMCRm(PARm) and standard
deviation 0.01 (0.05). Initially, HMCRm (PARm) is set at
0.98 (0.9). After a specified number of generations, HMCRm
(PARm) is recalculated by averaging all the recorded HMCR
(PAR) values during the period of evolution.

2.3. The NGHS Algorithm. In the novel global harmony
search (NGHS) algorithm [13, 14], three significant parame-
ters, harmonymemory considering rate (HMCR), bandwidth
(BW), and pitch adjusting rate (PAR), are excluded from
NGHS, and a random select rate (𝑝

𝑚
) is included in the

NGHS. In Step 3, NGHS works as Algorithm 2.
Where 𝑥best and 𝑥

worst, respectively, are the best harmony
and the worst harmony inHM, rand() is uniformly generated
random number in [0, 1].

3. HSTL Algorithm

In this section, we proposed a novel harmony search method
with teaching-learning (HSTL) strategy which was derived
from teaching-learning-based optimization (TLBO) algo-
rithm. Above all, the TLBO algorithm is introduced and
analyzed, and then we focus on the details of HSTL algorithm
and the strategies of dynamically adjusting the parameters.

3.1. The TLBO Algorithm. Teaching-learning-based Opti-
mization (TLBO) algorithm [18–20] is a new nature-inspired

For each learner 𝑥
𝑗
(𝑗 = 1, 2, . . . ,NP)

Randomly select another learner 𝑥𝑘 (𝑗 ̸= 𝑘)

If 𝑥
𝑗 is superior to 𝑥

𝑘 then
𝑥
𝑗,new

= 𝑥
𝑗,old

+ rand( ) × (𝑥
𝑗
− 𝑥
𝑘
)

Else
𝑥
𝑗,new

= 𝑥
𝑗,old

+ rand( ) × (𝑥
𝑘
− 𝑥
𝑗
)

End
End for
If 𝑥
𝑗,new is superior to 𝑥

𝑗,old then
𝑥
𝑗
= 𝑥
𝑗,new

End If

Algorithm 3: The procedure of learner phase.

algorithm; it mimics the teaching process of teacher and
learning process among learners in a class. TLBO shows a
better performance with less computational effort for large
scale problems [19], that is, problems of a high dimensionality.
In addition, TLBO needs very few parameters.

In the TLBO method, it is the task of teacher to try
to increase mean knowledge of all learners of the class in
the subject taught by him or her depending on his or her
capability. Learners make efforts to increase their knowledge
by interaction among themselves. A learner is considered as
a solution or a vector, and different design variables of vector
will be analogous to different subjects offered to learners
and the learners’ result is analogous to the “fitness” as in
other population-based optimization techniques.The teacher
is considered as the best solution obtained so far.The process
of working of TLBO is divided into two phases, teacher phase
and learner phase.
(1) Teacher Phase. Assume there are 𝐷 number of subjects
(i.e., design variables), “NP” number of learners (i.e., pop-
ulation size,), then 𝑥

best
𝑖

is the best learner (i.e., teacher) in
subject 𝑖 (𝑖 = 1, 2, . . . , 𝐷).Theworks of teaching are as follows:

𝑥
𝑗,new
𝑖

= 𝑥
𝑗,old
𝑖

+ rand () × (𝑥
best
𝑖

− 𝑇
𝐹
×Mean

𝑖
) ,

Mean
𝑖
=

1

NP

NP
∑

𝑗=1

𝑥
𝑗

𝑖
, 𝑗 = 1, 2, . . . ,NP, 𝑖 = 1, 2, . . . , 𝐷,

(5)

where 𝑥
𝑗,old
𝑖

denotes the result of the 𝑗th (𝑗 = 1, 2, . . . ,NP)
learner before learning the 𝑖th (𝑖 = 1, 2, . . . , 𝐷) subject, and
𝑥
𝑗,new
𝑖

is the result of the 𝑗th learner after learning the 𝑖th
subject. 𝑇

𝐹
is the teaching factor which decides the value of

Mean
𝑖
to be changed. The value of 𝑇

𝐹
is generated randomly

with probability as 𝑇
𝐹
= round[1 + rand()].

When the leaner 𝑥𝑗 finished his or her learning from the
teacher, update the 𝑥𝑗 by 𝑥

𝑗,new if 𝑥𝑗,new is better than 𝑥
𝑗,old.

(2) Learner Phase. Another important approach to increase
knowledge for a learner is to interact with other learners.
Learning method is expressed in Algorithm 3.

Even since the TLBO algorithm proposed in 2011 by Rao
et al. [18], it has been applied in the fields of engineering opti-
mization, such as mechanical design optimization [18, 21],
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heat exchangers [22], thermoelectric cooler [23], and uncon-
strained and constrained real parameter optimization prob-
lems [24].

In the TLBO method, teacher phase relying on the best
solution found so far usually has the fast convergence speed
and the best ability of exploitation; it is more suitable for
improving accuracy of the global optimal solution. Learner
phase relying on other learners usually has the slow conver-
gence speed; however, it bears stronger exploration capability
for solving multimodal problems. Therefore, we use the
TLBO method to improve the performance and efficiency of
HS algorithm in the HSTL method.

3.2. The HSTL Algorithm. In order to achieve the most
satisfactory optimization performance by applying the HS
algorithm to a given problem, we develop a novel harmony
search algorithm combined with teaching-learning strategy,
in which both new harmony generation strategies and asso-
ciated control parameter values can be dynamically changed
according to the process of evolution.

It is of a high importance between the convergence and
the diversity in order to improve the search efficiency. In
the classical HS algorithm, a new harmony is generated in
Step 3. After the selecting operation in Step 4, the population
variance may increase or decrease. With a high population
variance, the diversity and exploration power will increase,
in the same time the convergence and the exploitation power
will decrease accordingly. Conversely, with a low population
variance, the convergence and the exploitation power will
increase [25]; the diversity and the exploration power will
decrease. So it is significant how to keep balance between
the convergence and the diversity. Classical HS algorithm
loses its ability easily at later evolution process [26], because
of improvising new harmony from HM with a high HMCR
and local adjusting with PAR. And HM diversity decreases
gradually from the early iteration to the last. However, in
HS algorithm, a low HMCR employed will increase the
probability (1-HMCR) of random selection in search space;
the exploration power will enhance, but the local search
ability and the exploitation accuracy cannot be improved by
single pitch adjusting strategy.

To overcome the inherent weaknesses of HS, in this
section, we propose HSTL method. An improved teaching-
learning strategy is employed to improve the search ability of
optimal solution in the HSTL method. The HSTL algorithm
works as follows.

(1) Optimization target vector preparation: 𝑥new
= 𝑥
𝑟,

where 𝑥
𝑟 (𝑟 = 1, 2, . . . ,HMS) is a harmony vector

selected randomly in HM. Next, four strategies are
employed to improve the target vector.

(2) Improve the target vector 𝑥
new with the following 4

strategies.

(a) Harmony Memory Consideration. The 𝑖th design value of
the target vector 𝑥

new
𝑖

, (𝑖 = 1, 2, . . . , 𝐷) is chosen randomly

from harmony memory (HM) with a probability of HMCR
as

𝑥
new
𝑖

= 𝑥
𝑗

𝑖
, 𝑗 ∈ U {1, 2, . . . ,HMS} , 𝑖 = 1, 2, . . . , 𝐷. (6)

The HMCR is the rate of choosing one value from the
historical values stored in the HM, which varies between 0
and 1.
(b) Teaching-Learning Strategy. If the ith (𝑖 = 1, 2, . . . , 𝐷)
design variable of the target vector 𝑥

new
𝑗

has not been
considered in HM, it will learn from the best harmony (i.e.,
teacher) with probability TLP in the teacher phase or from
other harmony (i.e., learner) in the learner phase. The TLP is
the probability of performing teaching-learning operator on
design variables that have not been considered in (a). It works
as follows.
Teacher Phase. In this phase, learner will learn from the
best learner (i.e., teacher) in class. Learner modification is
expressed as

𝑥
new
𝑖

= 𝑥
new
𝑖

+ rand () × [𝑥
best
𝑖

− 𝑇
𝐹
× 𝑀
𝑖
] ,

𝑀
𝑖
=

(𝑥
worst
𝑖

+ 𝑥
new
𝑖

)

2

, 𝑖 = 1, 2, . . . , 𝐷,

(7)

where 𝑥
best is the best harmony in HM, 𝑥worst is the worst

harmony in HM, and rand() is a uniformly distributed
random number between 0 and 1.

The contribution in this section is that the mean value of
population is replaced with 𝑀

𝑖
= (𝑥

worst
𝑖

+ 𝑥
new
𝑖

)/2. There
are two aspects to this apparent superiority. First, there are
cheap to running cost because it do not need to compute the
mean value of population in every iteration. Second, diversity
of populationwill be enhancedmore than the standardTLBO
algorithm, that is because the new mean value 𝑀

𝑖
will be

different for each individual, but theMean
𝑖
in standard TLBO

method is the same for every individual.
Learner Phase. In this phase, through comparing the advan-
tages and disadvantages between the other two learners, the
learner 𝑥new will learn from their advantages, which draw on
the idea of differential evolution algorithm. The process is as
follows.

Randomly select two differential integer 𝑟
1
and 𝑟
2
from

1, 2, . . . ,HMS.

If 𝑥
𝑟
1 is better than 𝑥

𝑟
2

𝑥
new
𝑖

= 𝑥
new
𝑖

+ rand() × (𝑥
𝑟
1

𝑖
− 𝑥
𝑟
2

𝑖
)

Else
𝑥
new
𝑖

= 𝑥
new
𝑖

+ rand() × (𝑥
𝑟
2

𝑖
− 𝑥
𝑟
1

𝑖
)

End If

(c) Local Pitch Adjusting Strategy. To achieve better solutions
in the search space, it will carry out the local pitch adjusting
strategy with probability PAR when the 𝑖th design variable
has not performed Harmony memory consideration and
Teaching-Learning Strategy as

𝑥
new
𝑖

= 𝑥
new
𝑖

± rand () × BW (𝑖) , (8)
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𝑥
new

= 𝑥
𝑟
(𝑟 = 1, 2,. . ., HMS); // randomly select 𝑥𝑟 as optimization target vector

For i = 1 to D do
If rand( )≤HMCR //(a)Harmony memory consideration
𝑥
new
𝑖

= 𝑥
𝑗

𝑖
(𝑗 = 1, 2, . . . ,HMS)

Else If rand( )≤TLP //(b) Teaching-Learning strategy
If rand( )≤ 0.5

// Teaching
𝑥
new
𝑖

= 𝑥
new
𝑖

+ rand( ) × [𝑥
best
𝑖

− 0.5𝑇
𝐹
× (𝑥

worst
𝑖

+ 𝑥
new
𝑖

)]

Else
// Learning

Randomly select 𝑟
1
and 𝑟
2
from {1, 2, . . . ,HMS}

If 𝑥
𝑟1 is better than 𝑥

𝑟2

𝑥
new
𝑖

= 𝑥
new
𝑖

+ rand( ) × (𝑥
𝑟1

𝑖
− 𝑥
𝑟2

𝑖
)

Else
𝑥
new
𝑖

= 𝑥
new
𝑖

+ rand( ) × (𝑥
𝑟2

𝑖
− 𝑥
𝑟1

𝑖
)

End
End

𝑥
new
𝑖

= min(max(𝑥new
𝑖

, 𝑥
𝐿

𝑖
), 𝑥
𝑈

𝑙
)

Else If rand(0, 1)≤PAR // (c) Local pitch adjusting strategy
𝑥
new
𝑖

= 𝑥
new
𝑖

± rand( ) × BW(𝑖)

𝑥
new
𝑖

= min(max(𝑥new
𝑖

, 𝑥
𝐿

𝑖
), 𝑥
𝑈

𝑙
)

Else If rand(0, 1)≤ 𝑃
𝑚

// (d) Randommutation operator
𝑥
new
𝑖

= 𝑥
𝐿

𝑖
+ (𝑥
𝑈

𝑖
− 𝑥
𝐿

𝑖
) × rand( )

End If
End For

Algorithm 4: The improvisation process of new harmony in HSTL algorithm.

where rand() is a uniformly distributed random number
between 0 and 1, and BW(𝑖) is an arbitrary distance band-
width.
(d) Random Mutation Operator. As with the HS algorithm, if
design variable did not perform previous actions (harmony
memory consideration, teaching-learning strategy, and local
pitch adjusting strategy), the HSTL method will carry out
random mutation operator in feasible space with probability
𝑃
𝑚
on 𝑖th design variable of 𝑥new as follows:

𝑥
new
𝑖

= 𝑥
𝐿

𝑖
+ (𝑥
𝑈

𝑖
− 𝑥
𝐿

𝑖
) × rand () . (9)

The improvisation of new target harmony in HSTL
algorithm is shown in Algorithm 4.

The flow chart of HSTL algorithm is shown in Figure 1.

Parameters Dynamically Changed. To efficiently balance the
exploration and exploitation power of the HSTL algorithm,
HMCR, PAR, BW, and TLP parameters are dynamically
adapted to a suitable range with the increase of generations.
Equation (10) shows the dynamic change of HMCR, PAR,
BW, and TLP, respectively.

Consider the following [8]:

HMCR = HMCRmin + (HMCRmax −HMCRmin)

× (

𝑡

𝑇max
)

2

,

TLP = TLPmin + (TLPmax − TLPmin) × (

𝑡

𝑇max
)

𝑘

,

𝑘 = 5,

PAR = PARmax −
(PARmax − PARmin) × 𝑡

𝑇max
,

BW = BWmax + exp[ln(

BWmin
BWmax

) × √

𝑡

𝑇max
] .

(10)

4. Numerical Experiments and Results

4.1. Test Functions. The test functions 𝐹
1
–𝐹
23

[27–29] are
shown in Table 1, and 𝐹

24
–𝐹
31

are demonstrated. Table 2 in
Functions 𝐹

24
–𝐹
31

[30] are hybrid composition functions.
The hybrid composition functions are built combining a non-
separable (NS) functionwith other functions.The considered
functions are as folows.

(i) Nonseparable functions:

(a) 𝐹
15
: shifted Rosenbrock’s function,

(b) 𝐹
17
: shifted Griewank’s function,

(c) NS-𝐹
21
: nonshifted Extended 𝐹

10
,

(d) NS-𝐹
22
: nonshifted Bohachevsky.

(ii) Other component functions:

(a) 𝐹
13
: shifted sphere function,

(b) 𝐹
16
: shifted Rastrigin function,

(c) 𝐹
20
: Schwefel2.22 function.
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Memory consideration

Local pitch adjustment 

Random mutation operator

Initialize parameters, termination criterion

Begin

Initialize harmony memory (HM)

Learning

Teaching

Output result

Y

Y

Y

Y

Y

Y

N

N

N

N

N

Y

N

N

N

Y

Termination criterion
is met ?

Rand() ≤ HMCR

Rand() ≤ PAR

Rand() ≤ 𝑃𝑚

𝑖 = 𝑖 + 1 𝑖 + 1 ≤ 𝐷

Rand() ≤ TLP Rand() ≤ 0.5

𝑡 = 1

𝑡 = 𝑡 + 1

𝑥
newis better than
HM (id 𝑥worst, :)

HM (id 𝑥worst, :) = 𝑥new;

𝑖 = 1

𝑥
new

= HM(𝑟, :), 𝑟 is selected randomly from {1, 2, . . ., HMS}

Figure 1: The flowchart of HSTL algorithm.

Hybrid function𝐹ns⊕𝐹

(𝑆) is composed of a nonseparable

function 𝐹ns and other function 𝐹
. The hybrid procedure is

shown as follows. (1) 𝑆 is divided into two parts (part
1
and

part
2
) as follows

If 𝑚ns ≤ 0.5 then

part
1
is composed by the first 𝐷 ⋅ 𝑚ns even

variables. (length (part
1
) =𝐷 ⋅ 𝑚ns)

part
2
is composed by the remaining variables.

(length (part
2
) =𝐷 − length (part

1
))

Else

part
2
is composed by the first𝐷 ⋅ (1 − 𝑚ns) odd

variables. (length (part
2
) =𝐷 ⋅ (1 − 𝑚ns))

part
1
is composed by the remaining variables. (length

(part
1
) =𝐷 − length (part

2
))

End If

(2) Return 𝐹ns (part
1
) ⊕ 𝐹

(part
2
).

We have used 31 well-known unconstrained benchmark
functions [27–30] as a testbed to evaluate the performance

of the HSTL algorithm presented in this paper. These test
functions are considered as particularly challenging for
many existingmeta-heuristic optimization algorithms except
for 𝐹
10
. The composition of these test functions contains

some characteristics, such as separable design variables,
nonseparable design variables, strong unimodality, strong
multimodality, and hybrid. Many of them blend different
characteristics together. Table 3 shows the characteristics of
all test functions.

4.2. Experimental Setup. Simulation experiments are carried
out to compare the optimization (minimization) capabilities
of the presented method (HSTL) with respect to (a) classical
HS [1, 2], (b) SGHS [16], and (c) NGHS [13, 14]. All the
experiments were performed onWindows XP 32 systemwith
Intel(R) Core(TM) i3-2120 CPU@3.30GHz and 2GB RAM,
and all the program codes were written in MATLAB R2009a.

In the experiments, the parameters settings for the com-
pared HS algorithms are shown in Table 4; the dimensions
of the benchmark problems are set as 50, 100, and 200,
respectively. To make the comparison fair, the populations
for all the competitor algorithms (for all problems tested)
were initialized using the same random seeds. The variants
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Table 2: The hybrid functions (𝐹
24
–𝐹
31
).

Function 𝐹ns 𝐹


𝑚ns Range Fitness optimum
𝐹
24

NS-𝐹
21

𝐹
13

0.25 [−100, 100]
𝐷

−450
𝐹
25

NS-𝐹
22

𝐹
15

0.25 [−100, 100]
𝐷 390

𝐹
26

NS-𝐹
23

𝐹
16

0.25 [−5, 5]
𝐷

−330
𝐹
27

NS-𝐹
22

NS-𝐹
20

0.25 [−10, 10]
𝐷 0

𝐹
28

NS-𝐹
21

𝐹
13

0.5 [−100, 100]
𝐷

−450
𝐹
29

NS-𝐹
21

𝐹
15

0.75 [−100, 100]
𝐷 390

𝐹
30

NS-𝐹
21

𝐹
16

0.75 [−5, 5]
𝐷

−330
𝐹
31

NS-𝐹
22

NS-𝐹
20

0.75 [−10, 10]
𝐷 0

Table 3: The characteristics of all test functions.

Function 𝐹
1

𝐹
2

𝐹
3

𝐹
4

𝐹
5

𝐹
6

𝐹
7

𝐹
8

𝐹
9

𝐹
10

𝐹
11

𝐹
12

𝐹
13

𝐹
14

𝐹
15

𝐹
16

Unimodal (U)/multimodal
(M) M M M M M M M M M U U U U U M M

Shifted (Y/N) N N N N N N N N N N N N Y Y Y Y

Separable (Y/N) Y N N Y Y N Y N Y Y Y Y Y N N Y

Hybrid (Y/N) N N N N N N N N N N N N N N N N
Function 𝐹

17
𝐹
18

𝐹
19

𝐹
20

𝐹
21

𝐹
22

𝐹
23

𝐹
24

𝐹
25

𝐹
26

𝐹
27

𝐹
28

𝐹
29

𝐹
30

𝐹
31

Unimodal (U)/multimodal
(M) M M M U U U U U M M M U M M N

Shifted (Y/N) Y Y Y Y Y Y Y Y Y Y Y Y Y Y N

Separable (Y/N) N N N N N N N N N N N N N N N

Hybrid (Y/N) N N N N N N Y Y Y Y Y Y Y Y Y

Table 4: Parameter settings for the compared HS algorithms (HS, SGHS, NGHS, HSTL).

Algorithm HMS HMCR PAR BW Others
HS 35 0.98 0.33 BW = (UB − LB)/1000

SGHS 35 HMCR
𝑚
= 0.9 PARmax = 0.99,

PARmin = 0.01
BWmax = (UB − LB)/10

BWmin = 0.0005 LP = 100

NGHS 35 / / / 𝑃
𝑚
= 0.01

HSTL 35
HMCRmax = 0.99 PARmax = 0.8 BWmax = (UB − LB)/20 TLPmax = 0.5,

TLPmin = 0.15
HMCRmin = 0.75 PARmin = 0.2 BWmin = (UB − LB)/3500 𝑃

𝑚
= 0.15, 𝑘 = 5

of HS algorithmwere set at the same termination criteria: the
number of improvisations (function evaluation times: FEs)
FEs = 500D, respectively.

The best and worst fitness values of each benchmark
problem are recorded for 30 independent runs; the mean
fitness, standard deviation (STD), and mean runtime of each
function are calculated for 30 independent runs, and the
Mean fitness, Standard Deviation (STD) and mean runtime
of each function are calculated for 30 independent runs.

4.3. The Results Comparison between HSTL, HS, SGHS, and
NGHS Algorithm. From Table 5, it can be found that the
mean optimal fitness values of HSTL are always less than
those of other 3HS algorithms for all test functions except
for 𝐹
12
, 𝐹
14
, 𝐹
16
, and 𝐹

29
when dimension are equal to 50 and

maxFEs = 25000, and all these mean optimal fitness values
are slightly larger than the NGHS algorithm for 𝐹

12
, 𝐹
14
,

𝐹
16
, and 𝐹

29
. According to criterions (best, mean, worst, and

STD), the over performance of HSTL method outperforms
the other three HS algorithms for 31 benchmark problems
except 𝐹

12
, 𝐹
14
, and 𝐹

29
. Taken together, the beast, mean, and

STD obtained by the HSTL method are better than those of
other three methods for most test functions. In addition, the
runtime is less than SGHS for all problems.

In Tables 6 and 7, the results are shown for 100D and 200D
problems, respectively. According to the results (best, mean,
worst, and STD) of HSTL algorithm outperforms the other
three harmony search algorithm. And it can be seen from
Tables 6 and 7 that, compared with 50D problems, the HSTL
method has more obvious advantages than other three HS
algorithms (HS, SGHS, and NSGH).
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The convergence of HSTL method is compared with
three other HS algorithms: HS, SGHS, and NGHS on 50-
D functions 𝐹

3
, 𝐹
10
, and 𝐹

27
, where the HSTL algorithm

demonstrates an evident superiority on efficiency and sta-
bility, which can be observed from the convergence graphs
(Figures 2(a) and 4(a)) and boxplots (Figures 2(b) and 4(b)).

For 50-D problems, the convergence graphs and the
boxplots are shown in Figures 2, 3, and 4 on 50-D for sphere
unimodal function, griewank multimodal inseparable func-
tion, and hybrid function, Hybrid5, which is composed of
Bohachevsky and Schwefel2.22 function, where Figures 2(b)
and 4(b) plot the boxplots of best results in 30 independent
runs. Figures 2(a) and 4(a) portray the convergence curves. It
is evident from the convergence graphs that strongly uniform
convergence can be maintained throughout the procedure
of evolution. From the boxplots we can see that the HSTL
algorithm has better convergence, stability, and robustness in
most cases than HS, SGHS, and NGHS algorithms.

Figures 5 and 6 show the boxplots and convergence
graphs of 3 different problems for dimensions equal to 100
and 200, respectively, where HSTL algorithm demonstrates
obvious superiority on efficiency and stability.

4.4. Comparison of the Convergence Speed and Success Rate.
In order to give a fair chance to 4HS algorithm (HS, SGHS,
NGHS, and HSTL) compared. We run each algorithm on
each benchmark test function and stop as soon as the
minimum error value acquired by the algorithm falls below
the predefined threshold or a maximum number of FEs is
exceeded. For all test functions, the algorithms carry out 30
independent runs.

The respective thresholds values of the error for 30
benchmark problems are in Table 11.

Table 8 displays the statistics results about the success rate,
average runtime, and average FEs of 𝐹

1
–𝐹
30
.

As Table 8 shows, for a high-dimensional problem (𝐷 =

100), the HS, SGHS, and NGHS have great difficulty in
finding the global optima on all problems. The HSTL yields
100% success rate for 𝐹

1
, 𝐹
2
, 𝐹
4
–𝐹
11
, 𝐹
14
, 𝐹
15
, 𝐹
18
, 𝐹
20
, 𝐹
21
, 𝐹
24
,

𝐹
26
, 𝐹
29
, 𝐹
30
.TheHSTL algorithm performsmuch better with

success rates of 100% on most problems, and over 50% on 𝐹
3
,

𝐹
13
, 𝐹
16
, 𝐹
17
, 𝐹
19
, 𝐹
22
, and 𝐹

28
where other algorithms fail in

finding the global optima.
Table 9 illustrates the costing run of 4HS algorithm for

𝐹
1
–𝐹
31
. The runtime is equal to the average value of all func-

tions mean runtime; the FEs is equal to the average value of
all functions mean FEs; the Success Rate is equal to the mean
value of the success rate of all functions. In Table 9, we intend
to show how well the presented HSTL algorithm performs
when compared to HS, SGHS and NGHS algorithm. From
the statistics shown in Table 9 can be seen that HSTL uses
the least runtime and FEs, and acquires the best success rate
among these algorithms on over performances.

4.5. Convergence Analysis. To investigate the convergence of
proposedHSTL algorithm,we record the population variance
of each algorithm. As Figure 7 shows, for each type function,
the fluctuation of population variance in HSTL is smaller

than the fluctuation of population variance in SGHS and
NGHS algorithm, and the population variance graphs fall
steadily throughout the search process. As a consequence,
the proposed HSTL algorithm has stronger robustness and
convergence than other variants of HS.

4.6. Parameter HMS Study. In this section, the effect of HMS
value on the performance of theHSTLmethod is investigated.
The experimental results generated by using different HMS
values (5, 10, 15, 20, 25, 30, 35, and 40) for dimensions equal
to 50 are demonstrated in Table 10, respectively.

We can see from Table 10, in which there are some
unimodal functions (i.e., 𝐹

10
–𝐹
14
, 𝐹
23
), a small value of

HMS (i.e., 5 or 10) is superior to a large value. For other
benchmark functions, there is no obvious indication that
one setting value of HMS is superior to the other setting
values. Therefore, we can think that, a small HMS is suitable
for a simple problem. However, for some complex problems,
we can set slightly more HMS that is not exceeding 50.
It is reasonable and logical, for it is similar to the quickly
memory ofmusician for a simple harmony improvisation and
the depth memory of musician for an outstanding harmony
improvisation.

5. Conclusion

In this paper, a novel harmony search combined teaching-
learning (HSTL) algorithm is presented to improve the
performance and efficiency of the harmony search algorithm.
The proposed HSTL algorithm employs the idea of teaching
and learning. Four strategies (harmony memory consider-
ation, teaching-learning strategy, local pitch adjusting, and
random mutation) are employed to maintain the proper
balance between convergence and population diversity. With
the process of evolution, the dynamic strategy is adopted
to change the parameters HMCR, TLP, BW, and PAR.
Numerical experiments show that the dynamic changes of
parameters are especially effective in balance between the
exploration power and the exploitation power. The popu-
lation variance analysis indicated that the HSTL algorithm
has strong convergence throughout evolution progresses.The
sensitivity analysis of HMS parameter showed that it does not
have significant influence on complex multimodal problems.

We have compared the performance of proposed HSTL
algorithm with the classical HS algorithm and two excellent
variant algorithms over a suite of 31 unconstrained numerical
optimization functions and evidently concluded that HSTL
algorithm is more effective and stable in obtaining high
quality solutions and has less FEs, less runtime, and higher
success rates under the same conditions.
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Figure 2: Convergence graph and boxplot for sphere function (𝐹
10
) on𝐷 = 50.
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Figure 3: Convergence graph and boxplot for Griewank function (𝐹
4
) on𝐷 = 50.
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Figure 4: Convergence graph and boxplot for hybrid 15 function (𝐹
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) on𝐷 = 50.
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Figure 5: Convergence graphs and boxplots for functions Rastrigin, Schwefel, and hybrid 19 new on 𝐷 = 100.



Mathematical Problems in Engineering 25

Table 8: The success rate, mean runtime, and FEs for function 𝐹
1
–𝐹
19
, 𝐹
21
–𝐹
31
.

Function Algorithm 𝐹
1

𝐹
2

𝐹
3

𝐹
4

𝐹
5

𝐹
6

𝐹
7

𝐹
8

𝐹
9

𝐹
10

Success rate
(SR)

HS 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
SGHS 0% 0% 0% 0% 60% 0% 0% 0% 0% 0%
NGHS 0% 0% 0% 0% 0% 0% 0% 45% 15% 0%
HSTL 100% 100% 95% 100% 100% 100% 100% 100% 100% 100%

Mean
runtime (s)

HS 19 14 21 50 31 48 15 14 17 16
SGHS 39 34 41 73 40 72 36 35 39 37
NGHS 18 13 20 49 30 48 14 11 16 16
HSTL 20 10 21 48 26 46 18 4 14 19

Mean FEs

HS 500000 500000 500000 500000 500000 500000 500000 500000 500000 500000
SGHS 500000 500000 500000 500000 397181 500000 500000 500000 500000 500000
NGHS 500000 500000 500000 500000 500000 500000 500000 425302 497089 500000
HSTL 475167 291492 452830 450158 386120 443818 482502 105551 332693 483873

Function Algorithm 𝐹
11

𝐹
12

𝐹
13

𝐹
14

𝐹
15

𝐹
16

𝐹
17

𝐹
18

𝐹
19

𝐹
21

Success rate
(SR)

HS 70% 45% 0% 0% 0% 0% 0% 0% 0% 0%
SGHS 0% 0% 0% 0% 65% 0% 0% 0% 0% 0%
NGHS 75% 100% 0% 0% 90% 15% 0% 0% 0% 0%
HSTL 100% 100% 90% 100% 100% 85% 90% 100% 80% 100%

Mean
runtime (s)

HS 8 13 32 32 38 34 55 38 88 527
SGHS 35 34 55 54 39 56 78 60 114 570
NGHS 9 3 31 31 8 32 54 36 92 525
HSTL 5 9 36 31 18 34 51 32 81 467

Mean Fes

HS 264713 471826 500000 500000 500000 500000 500000 500000 500000 500000
SGHS 500000 500000 500000 500000 323631 500000 500000 500000 500000 500000
NGHS 335021 107386 500000 500000 114380 485463 500000 500000 500000 500000
HSTL 122555 240403 494888 418223 206975 437342 488064 434498 415872 445225

Function Algorithm 𝐹
22

𝐹
23

𝐹
24

𝐹
25

𝐹
26

𝐹
27

𝐹
28

𝐹
29

𝐹
30

𝐹
31

Success rate
(SR)

HS 0% 0% 0% 0% 100% 0% 0% 0% 0% 0%
SGHS 0% 0% 0% 0% 95% 0% 100% 0% 0% 0%
NGHS 0% 0% 0% 0% 100% 0% 100% 25% 0% 0%
HSTL 100% 50% 0% 100% 100% 100% 100% 60% 100% 100%

Mean
runtime (s)

HS 289 373 359 364 35 310 453 441 436 312
SGHS 329 416 400 406 133 351 337 476 477 351
NGHS 293 374 360 366 22 310 13 382 437 317
HSTL 273 375 363 271 46 311 104 363 364 273

Mean Fes

HS 500000 500000 500000 500000 54677 500000 500000 500000 500000 500000
SGHS 500000 500000 500000 500000 181162 500000 341216 500000 500000 500000
NGHS 500000 500000 500000 500000 33331 500000 14644 451443 500000 500000
HSTL 459671 497514 500000 367442 85659 500000 132414 432651 415004 429027

Table 9: The average runtime, average FEs, average success rate, and costing run of all functions.

Algorithm Average runtime (ART) Average FEs (AFE) Average success rate (ASR)
HS 145.1399 477136 0.069355
SGHS 169.5528 475586.8 0.103226
NGHS 127.2487 434324.5 0.182258
HSTL 120.8951 384181.3 0.919355
Where ART = ∑31

𝑖=1
runtime𝑖, AFE = ∑

31

𝑖=1
FEs𝑖, ASR = ∑

31

𝑖=1
SR𝑖.
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Figure 6: Convergence graphs and boxplots for shift functions Ackley, fast fractal double, and hybrid 14 on𝐷 = 200.
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In engineering problems due to physical and cost constraints, the best results, obtained by a global optimization algorithm, cannot
be realized always. Under such conditions, if multiple solutions (local and global) are known, the implementation can be quickly
switched to another solution without much interrupting the design process. This paper presents a new swarm multimodal opti-
mization algorithm named as the collective animal behavior (CAB). Animal groups, such as schools of fish, flocks of birds, swarms
of locusts, and herds of wildebeest, exhibit a variety of behaviors including swarming about a food source, milling around a central
location, or migrating over large distances in aligned groups.These collective behaviors are often advantageous to groups, allowing
them to increase their harvesting efficiency to follow bettermigration routes, to improve their aerodynamic, and to avoid predation.
In the proposed algorithm, searcher agents emulate a group of animals which interact with each other based on simple biological
laws that are modeled as evolutionary operators. Numerical experiments are conducted to compare the proposed method with the
state-of-the-art methods on benchmark functions. The proposed algorithm has been also applied to the engineering problem of
multi-circle detection, achieving satisfactory results.

1. Introduction

A large number of real-world problems can be considered
as multimodal function optimization subjects. An objective
function may have several global optima, that is, several
points holding objective function values which are equal to
the global optimum. Moreover, it may exhibit some other
local optima points whose objective function values lay near-
by a global optimum. Since the mathematical formulation of
a real-world problem often produces a multimodal optimiza-
tion issue, finding all global or even these local optima would
provide to the decision makers multiple options to choose
from [1].

Several methods have recently been proposed for solving
the multimodal optimization problem. They can be divided
into twomain categories: deterministic and stochastic (meta-
heuristic) methods. When facing complex multimodal opti-
mization problems, deterministic methods, such as gradient
descent method, the quasi-Newton method, and the Nelder-
Mead’s simplex method, may get easily trapped into the local

optimum as a result of deficiently exploiting local informa-
tion.They strongly depend on a priori information about the
objective function, yielding few reliable results.

Metaheuristic algorithms have been developed combin-
ing rules and randomness mimicking several phenomena.
These phenomena include evolutionary processes (e.g., the
evolutionary algorithm proposed by Fogel et al. [2], de Jong
[3], and Koza [4] and the genetic algorithms (GAs) proposed
by Holland [5] and Goldberg [6]), immunological systems
(e.g., the artificial immune systems proposed by de Castro
et al. [7]), physical processes (e.g., simulated annealing
proposed by Kirkpatrick et al. [8], electromagnetism-like
proposed by Birbil et al. [9], and the gravitational search
algorithm proposed by Rashedi et al. [10]), and the musical
process of searching for a perfect state of harmony (proposed
by Geem et al. [11], Lee and Geem [12], Geem [13], and Gao
et al. [14]).

Traditional GAs perform well for locating a single opti-
mum but fail to provide multiple solutions. Several methods
have been introduced into the GA’s scheme to achieve
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multimodal function optimization, such as sequential fitness
sharing [15, 16], deterministic crowding [17], probabilistic
crowding [18], clustering-based niching [19], clearing pro-
cedure [20], species conserving genetic algorithm [21], and
elitist-population strategies [22]. However, algorithms based
on the GAs do not guarantee convergence to global optima
because of their poor exploitation capability. GAs exhibit
other drawbacks such as the premature convergence which
results from the loss of diversity in the population and
becomes a common problem when the search continues for
several generations. Such drawbacks [23] prevent the GAs
from practical interest for several applications.

Using a different metaphor, other researchers have
employed artificial immune systems (AIS) to solve the multi-
modal optimization problems. Some examples are the clonal
selection algorithm [24] and the artificial immune network
(AiNet) [25, 26]. Both approaches use some operators and
structures which attempt to algorithmically mimic the natu-
ral immune system’s behavior of human beings and animals.

Several studies have been inspired by animal behavior
phenomena in order to develop optimization techniques such
as the particle swarm optimization (PSO) algorithm which
models the social behavior of bird flocking or fish schooling
[27]. In recent years, there have been several attempts to apply
the PSO to multimodal function optimization problems [28,
29]. However, the performance of such approaches presents
several flaws when it is compared to the other multi-modal
metaheuristic counterparts [26].

Recently, the concept of individual organization [30, 31]
has been widely used to understand collective behavior of
animals. The central principle of individual organization is
that simple repeated interactions between individuals can
produce complex behavioral patterns at group level [30, 32,
33]. Such inspiration comes from behavioral patterns seen in
several animal groups, such as ant pheromone trail networks,
aggregation of cockroaches, and themigration of fish schools,
which can be accurately described in terms of individuals fol-
lowing simple sets of rules [34]. Some examples of these rules
[33, 35] include keeping current position (or location) for
best individuals, local attraction or repulsion, randommove-
ments, and competition for the space inside of a determined
distance. On the other hand, new studies have also shown
the existence of collective memory in animal groups [36–38].
The presence of such memory establishes that the previous
history, of group structure, influences the collective behavior
exhibited in future stages. Therefore, according to these new
developments, it is possible to model complex collective
behaviors by using simple individual rules and configuring
a general memory.

On the other hand, the problem of detecting circular
features holds paramount importance in several engineering
applications. The circle detection in digital images has been
commonly solved through the circular Hough transform
(CHT) [39]. Unfortunately, this approach requires a large
storage space that augments the computational complexity
and yields a low processing speed. In order to overcome this
problem, several approaches which modify the original CHT
have been proposed. One well-known example is the ran-
domized Hough transform (RHT) [40]. As an alternative to

Hough-transform-based techniques, the problem of shape
recognition has also been handled through optimization
methods. In general, they have demonstrated to deliver better
results than those based on the HT considering accuracy,
speed, and robustness [41]. Such approaches have produced
several robust circle detectors using different optimization
algorithms such as genetic algorithms (GAs) [41], harmony
search (HSA) [42], electromagnetism-like (EMO) [43], dif-
ferential evolution (DE) [44], and bacterial foraging opti-
mization (BFOA) [45]. Since such evolutionary algorithms
are global optimizers, they detect only the global optimum
(only one circle) of an objective function that is defined over
a given search space. However, extracting multiple-circle
primitives falls into the category of multi-modal optimiza-
tion, where each circle represents an optimumwhichmust be
detected within a feasible solution space.The quality for such
optima is characterized by the properties of their geometric
primitives. Big and well-drawn circles normally represent
points in the search space with high fitness values (possible
global maximum) whereas small and dashed circles describe
points with fitness values which account for local maxima.
Likewise, circles holding similar geometric properties, such
as radius and size, tend to represent locations with similar
fitness values. Therefore, a multi-modal method must be
applied in order to appropriately solve the problem of multi-
shape detection. In this paper, a new multimodal optimiza-
tion algorithm based on the collective animal behavior is
proposed and also applied to multicircle detection.

This paper proposes a new optimization algorithm
inspired by the collective animal behavior. In this algorithm,
the searcher agents emulate a group of animals that interact
with each other based on simple behavioral rules which
are modeled as evolutionary operators. Such operations are
applied to each agent considering that the complete group
has a memory which stores its own best positions seen so far
by applying a competition principle. Numerical experiments
have been conducted to compare the proposed method with
the state-of-the-art methods on multi-modal benchmark
functions. Besides, the proposed algorithm is also applied to
the engineering problem of multicircle detection, achieving
satisfactory results.

This paper is organized as follows. Section 2 introduces
the basic biological aspects of the algorithm. In Section 3,
the proposed algorithm and its characteristics are described.
A numerical study on different multi-modal benchmark
functions is presented in Section 4. Section 5 presents the
application of the proposed algorithm to multi-circle detec-
tion whereas Section 6 shows the obtained results. Finally, in
Section 7 the conclusions are discussed.

2. Biological Fundaments

The remarkable collective behavior of organisms such as
swarming ants, schooling fish, and flocking birds has long
captivated the attention of naturalists and scientists. Despite
a long history of scientific investigation, just recently we are
beginning to decipher the relationship between individu-
als and group-level properties [46]. Grouping individuals
often have to make rapid decisions about where to move
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or what behavior to perform, in uncertain and dangerous
environments. However, each individual typically has only
relatively local sensing ability [47]. Groups are, therefore,
often composed of individuals that differ with respect to their
informational status, and individuals are usually not aware of
the informational state of others [48], such as whether they
are knowledgeable about a pertinent resource or of a threat.

Animal groups are based on a hierarchic structure [49]
which differentiates individuals according to a fitness princi-
ple known as dominance [50]. Such concept represents the
domain of some individuals within a group and occurs when
competition for resources leads to confrontation. Several
studies [51, 52] have found that such animal behavior leads to
stable groups with better cohesion properties among individ-
uals.

Recent studies have illustrated how repeated interac-
tions among grouping animals scale to collective behavior.
They have also remarkably revealed that collective decision-
making mechanisms across a wide range of animal group
types, ranging from insects to birds (and even among humans
in certain circumstances), seem to share similar functional
characteristics [30, 34, 53]. Furthermore, at a certain level
of description, collective decision-making in organisms
shares essential common features such as general memory.
Although some differences may arise, there are good reasons
to increase communication between researchers working in
collective animal behavior and those involved in cognitive
science [33].

Despite the variety of behaviors and motions of animal
groups, it is possible that many of the different collective
behavioral patterns are generated by simple rules followed by
individual groupmembers. Some authors have developed dif-
ferentmodels, such as the self-propelled particle (SPP)model
which attempts to capture the collective behavior of animal
groups in terms of interactions between group members
following a diffusion process [54–57].

On other hand, following a biological approach, Couzin
et al. [33, 34] have proposed a model in which individual
animals follow simple rules of thumb: (1) keep the position of
best individuals, (2) move from or to nearby neighbors (local
attraction or repulsion), (3) move randomly, and (4) compete
for the space inside of a determined distance. Each individual
thus admits three different movements: attraction, repulsion,
or random, while holding two kinds of states: preserve the
position or compete for a determined position. In the model,
the movement experimented by each individual is decided
randomly (according to an internal motivation); meanwhile
the states are assumed according to fixed criteria.

The dynamical spatial structure of an animal group can
be explained in terms of its history [54]. Despite this, the
majority of the studies have failed in considering the existence
of memory in behavioral models. However, recent researches
[36, 58] have also shown the existence of collective memory
in animal groups. The presence of such memory establishes
that the previous history of the group structure influences the
collective behavior exhibited in future stages. Such memory
can contain the position of special group members (the
dominant individuals) or the averaged movements produced
by the group.

According to these new developments, it is possible to
model complex collective behaviors by using simple individ-
ual rules and setting a general memory. In this work, the
behavioral model of animal groups is employed for defining
the evolutionary operators through the proposed meta-
heuristic algorithm. A memory is incorporated to store best
animal positions (best solutions) considering a competition-
dominance mechanism.

3. Collective Animal Behaviour
Algorithm (CAB)

The CAB algorithm assumes the existence of a set of oper-
ations that resembles the interaction rules that model the
collective animal behavior. In the approach, each solution
within the search space represents an animal position. The
“fitness value” refers to the animal dominance with respect to
the group.The complete processmimics the collective animal
behavior.

The approach in this paper implements a memory for
storing best solutions (animal positions) mimicking the
aforementioned biologic process. Such memory is divided
into two different elements, one for maintaining the best
found positions in each generation (M

𝑔
) and the other for

storing best history positions during the complete evolution-
ary process (M

ℎ
).

3.1. Description of the CAB Algorithm. Like other meta-
heuristic approaches, the CAB algorithm is also an iterative
process. It starts by initializing the population randomly,
that is, generating random solutions or animal positions.The
following four operations are thus applied until the termi-
nation criterion is met, that is, the iteration number 𝑁𝐼 is
reached as follows.

(1) Keep the position of the best individuals.
(2) Move from or nearby neighbors (local attraction and

repulsion).
(3) Move randomly.
(4) Compete for the space inside of a determined distance

(updating the memory).

3.1.1. Initializing the Population. The algorithm begins by
initializing a set A of 𝑁

𝑝
animal positions (A = {a

1
, a
2
, . . . ,

a
𝑁
𝑝

}). Each animal position a
𝑖
is a 𝐷-dimensional vector

containing the parameter values to be optimized, which are
randomly and uniformly distributed between the prespeci-
fied lower initial parameter bound 𝑎low

𝑗
and the upper initial

parameter bound 𝑎high
𝑗

:

𝑎
𝑗,𝑖
= 𝑎

low
𝑗

+ rand (0, 1) ⋅ (𝑎high
𝑗

− 𝑎
low
𝑗
) ,

𝑗 = 1, 2, . . . , 𝐷; 𝑖 = 1, 2, . . . , 𝑁
𝑝
.

(1)

with 𝑗 and 𝑖 being the parameter and individual indexes, res-
pectively. Hence, 𝑎

𝑗,𝑖
is the 𝑗th parameter of the 𝑖th individual.
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All the initial positions A are sorted according to the fit-
ness function (dominance) to form a new individual set X =

{x
1
, x
2
, . . . , x

𝑁
𝑝

}, so that we can choose the best 𝐵 positions
and store them in the memoryM

𝑔
andM

ℎ
.The fact that both

memories share the same information is only allowed at this
initial stage.

3.1.2. Keep the Position of the Best Individuals. Analogously
to the biological metaphor, this behavioral rule, typical in
animal groups, is implemented as an evolutionary operation
in our approach. In this operation, the first 𝐵 elements of
the new animal position set A({a

1
, a
2
, . . . , a

𝐵
}) are generated.

Such positions are computed by the values contained in the
historic memory M

ℎ
considering a slight random perturba-

tion around them.This operation can bemodelled as follows:

a
𝑙
= m𝑙
ℎ
+ v, (2)

where 𝑙 ∈ {1, 2, . . . , 𝐵} while m𝑙
ℎ
represents the 𝑙-element of

the historic memoryM
ℎ
and v is a random vector holding an

appropriate small length.

3.1.3. Move from or to Nearby Neighbours. From the biolog-
ical inspiration, where animals experiment a random local
attraction or repulsion according to an internal motivation,
we implement the evolutionary operators that mimic them.
For this operation, a uniform randomnumber 𝑟

𝑚
is generated

within the range [0, 1]. If 𝑟
𝑚

is less than a threshold 𝐻,
a determined individual position is moved (attracted or
repelled) considering the nearest best historical value of the
group (the nearest position contained inM

ℎ
); otherwise it is

considered the nearest best value in the group of the current
generation (the nearest position contained inM

𝑔
).Therefore,

such operation can be modeled as follows:

a
𝑖
=

{

{

{

x
𝑖
± 𝑟 ⋅ (mnearest

ℎ
− x
𝑖
) with probability 𝐻

x
𝑖
± 𝑟 ⋅ (mnearest

𝑔
− x
𝑖
) with probability (1 − 𝐻) ,

(3)

where 𝑖 ∈ {𝐵+1, 𝐵+2, . . . , 𝑁
𝑝
},mnearest
ℎ

andmnearest
𝑔

represent
the nearest elements ofM

ℎ
andM

𝑔
to x
𝑖
, while 𝑟 is a random

number between [−1, 1]. Therefore, if 𝑟 > 0, the individual
position x

𝑖
is attracted to the position mnearest

ℎ
or mnearest
𝑔

;
otherwise such movement is considered as a repulsion.

3.1.4.Move Randomly. Following the biologicalmodel, under
some probability 𝑃 an animal randomly changes its position.
Such behavioral rule is implemented considering the next
expression:

a
𝑖
= {

r with probability 𝑃
x
𝑖

with probability (1 − 𝑃) ,

(4)

where 𝑖 ∈ {𝐵 + 1, 𝐵 + 2, . . . , 𝑁
𝑝
} and r is a random vector

defined within the search space. This operator is similar to
reinitialize the particle in a random position as it is done by
(1).

𝜌

Figure 1: Dominance concept, presented when two animals con-
front each other inside of a 𝜌 distance.

3.1.5. Compete for the Space Inside of a Determined Distance
(Updating the Memory). Once the operations to preserve the
position of the best individuals, to move from or to nearby
neighbors and to move randomly, have all been applied to all
the 𝑁

𝑝
animal positions, generating 𝑁

𝑝
new positions, it is

necessary to update the memoryM
ℎ
.

In order to update the memory M
ℎ
, the concept of

dominance is used. Animals that interact in a group keep a
minimum distance among them. Such distance 𝜌 depends on
how aggressive the animal behaves [50, 58]. Hence, when two
animals confront each other inside of such distance, the most
dominant individual prevails as the other withdraws. Figure 1
shows this process.

In the proposed algorithm, the historic memory M
ℎ
is

updated considering the following procedure.

(1) The elements of M
ℎ

and M
𝑔

are merged into
M
𝑈
(M
𝑈
= M
ℎ
∪M
𝑔
).

(2) Each element m𝑖
𝑈
of the memory M

𝑈
is compared

pairwise with the remainder memory elements ({m1
𝑈
,

m2
𝑈
, . . . ,m2𝐵−1

𝑈
}). If the distance between both ele-

ments is less than 𝜌, the element holding a better
performance in the fitness function will prevail;
meanwhile the other will be removed.

(3) From the resulting elements of M
𝑈

(as they are
obtained in Step 2), the 𝐵 best value is selected to
integrate the newM

ℎ
.

Unsuitable values of 𝜌 result in a lower convergence rate,
longer computation time, larger function evaluation number,
convergence to a localmaximum, or unreliability of solutions.
The 𝜌 value is computed considering the following equation:

𝜌 =

∏
𝐷

𝑗=1
(𝑎

high
𝑗

− 𝑎
low
𝑗
)

10 ⋅ 𝐷

,
(5)

where 𝑎low
𝑗

and 𝑎high
𝑗

represent the prespecified lower bound
and the upper bound of the 𝑗-parameter, respectively, within
a𝐷-dimensional space.



Mathematical Problems in Engineering 5

3.1.6. Computational Procedure. The computational proce-
dure for the proposed algorithm can be summarized as
follows.

Step 1. Set the parameters𝑁
𝑝
, 𝐵,𝐻, 𝑃, and𝑁𝐼.

Step 2. Generate randomly the position set A = {a
1
, a
2
, . . . ,

a
𝑁
𝑝

} using (1).

Step 3. Sort A, according to the objective function (domi-
nance), building X = {x

1
, x
2
, . . . , x

𝑁
𝑝

}.

Step 4. Choose the first 𝐵 positions of X and store them into
the memoryM

𝑔
.

Step 5. Update M
ℎ
according to Section 3.1.5 (for the first

iterationM
ℎ
= M
𝑔
).

Step 6. Generate the first 𝐵 positions of the new solution set
A = {a

1
,a
2
, . . . , a

𝐵
}. Such positions correspond to elements of

M
ℎ
making a slight random perturbation around them: a

𝑙
=

m𝑙
ℎ
+v, v being a random vector holding an appropriate small

length.

Step 7. Generate the rest of the A elements using the attrac-
tion, repulsion, and random movements:

for 𝑖 = 𝐵 + 1 : 𝑁
𝑝

if (𝑟
1
< 1 − 𝑃) then

attraction and repulsion movement
{if (𝑟
2
< 𝐻) then

a
𝑖
= x
𝑖
± 𝑟 ⋅ (mnearest

ℎ
− x
𝑖
)

else if

a
𝑖
= x
𝑖
± 𝑟 ⋅ (mnearest

𝑔
− x
𝑖
)

}

else if
random movement
{

a
𝑖
= r

}

end for
where 𝑟

1
, 𝑟
2
, 𝑟 ∈ rand(0, 1).

Step 8. If 𝑁𝐼 is completed, the process is thus completed;
otherwise go back to Step 3.

3.1.7. Optima Determination. Just after the optimization pro-
cess has finished, an analysis of the final M

ℎ
memory is exe-

cuted in order to find the global and significant local minima.
For it, a threshold value Th is defined to decide which
elements will be considered as a significant local minimum.
Such threshold is thus computed as

Th =

maxfitness (Mℎ)
6

, (6)

where maxfitness(Mℎ) represents the best fitness value among
M
ℎ
elements. Therefore, memory elements whose fitness

values are greater than Th will be considered as global and
local optima as other elements are discarded.

3.1.8. Capacities of CAB andDifferences with PSO. Evolution-
ary algorithms (EAs) have been widely employed for solving
complex optimization problems.These methods are found to
be more powerful than conventional methods based on for-
mal logics or mathematical programming [59]. Exploitation
and exploration are two main features of the EA [60]. The
exploitation phase searches around the current best solutions
and selects the best candidates or solutions. The exploration
phase ensures that the algorithm seeks the search space more
efficiently in order to analyze potential unexplored areas.

The EAs do not have limitations in using different sources
of inspiration (e.g., music-inspired [11] or physic-inspired
charged system search [9]). However, nature is a principal
inspiration for proposing newmetaheuristic approaches, and
the nature-inspired algorithms have been widely used in
developing systems and solving problems [61]. Biologically
inspired algorithms are one of the main categories of the
nature-inspired metaheuristic algorithms. The efficiency of
the bio inspired algorithms is due to their significant ability
to imitate the best features in nature. More specifically, these
algorithms are based on the selection of the most suitable
elements in biological systems which have evolved by natural
selection.

Particle swarm optimization (PSO) is undoubtedly one of
themost employed EAmethods that use biologically inspired
concepts in the optimization procedure. Unfortunately, like
other stochastic algorithms, PSO also suffers from the prema-
ture convergence [62], particularly in multi modal problems.
Premature convergence, in PSO, is produced by the strong
influence of the best particle in the evolution process. Such
particle is used by the PSO movement equations as a main
individual in order to attract other particles. Under such
conditions, the exploitation phase is privileged by allowing
the evaluation of new search position around the best individ-
ual. However, the exploration process is seriously damaged,
avoiding searching in unexplored areas.

As an alternative to PSO, the proposed scheme modifies
some evolution operators for allowing not only attracting but
also repelling movements among particles. Likewise, instead
of considering the best position as reference, our algorithm
uses a set of neighboring elements that are contained in an
incorporated memory. Such improvements allow increasing
the algorithm’s capacity to explore and to exploit the set of
solutions which are operated during the evolving process.

In the proposed approach, in order to improve the balance
between exploitation and exploration, we have introduced
three new concepts. The first one is the “attracting and
repelling movement”, which outlines that one particle cannot
be only attracted but also repelled. The application of this
concept to the evolution operators (3) increases the capac-
ity of the proposed algorithm to satisfactorily explore the
search space. Since the process of attraction or repulsion
of each particle is randomly determined, the possibility of
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premature convergence is very low, even for cases that hold
an exaggerated number of local minima (excessive number
of multimodal functions).

The second concept is the use of the main individual.
In the approach, the main individual, that is considered as
pivot in the equations (in order to generate attracting and
repulsive movements), is not the best (as in PSO) but one
element (mnearest

ℎ
or mnearest
𝑔

) of a set which is contained in
memories that store the best individual seen so far. Such
pivot is the nearest element in memory with regard to the
individual whose position is necessary to evolve. Under such
conditions, the points considered to prompt themovement of
a new individual are multiple. Such fact allows to maintain a
balance between exploring new positions and exploiting the
best positions seen so-far.

Finally, the third concept is the use of an incorporated
memory which stores the best individuals seen so far. As it
has been discussed in Section 3.1.5, each candidate individual
to be stored in the memory must compete with elements
already contained in thememory in order to demonstrate that
such new point is relevant. For the competition, the distance
between each individual and the elements in the memory
is used to decide pair-wise which individuals are actually
considered. Then, the individual with better fitness value
prevails whereas its pair is discarded. The incorporation of
such concept allows simultaneous registering and refining of
the best-individual set seen so far.This fact guarantees a high
precision for final solutions of the multi-modal landscape
through an extensive exploitation of the solution set.

3.1.9. Numerical Example. In order to demonstrate the algo-
rithm’s step-by-step operation, a numerical example has been
set by applying the proposed method to optimize a simple
function which is defined as follows:

𝑓 (𝑥
1
, 𝑥
2
) = 𝑒
−((𝑥
1
−4)
2
−(𝑥
2
−4)
2
)
+ 𝑒
−((𝑥
1
+4)
2
−(𝑥
2
−4)
2
)

+ 2 ⋅ 𝑒
−((𝑥
1
)
2
+(𝑥
2
)
2
)
+ 2 ⋅ 𝑒

−((𝑥
1
)
2
−(𝑥
2
+4)
2
)
.

(7)

Considering the interval of −5 ≤ 𝑥
1
, 𝑥
2
≤ 5, the function

possesses two global maxima of value 2 at (𝑥
1
, 𝑥
2
) = (0, 0)

and (0, −4). Likewise, it holds two local minima of value 1
at (−4, 4) and (4, 4). Figure 2(a) shows the 3D plot of this
function. The parameters for the CAB algorithm are set as
𝑁
𝑝
= 10, 𝐵 = 4,𝐻 = 0.8, 𝑃 = 0.1, 𝜌 = 3, and𝑁𝐼 = 30.
Like all evolutionary approaches, CAB is a population-

based optimizer that attacks the starting point problem by
sampling the objective function at multiple, randomly cho-
sen, initial points. Therefore, after setting parameter bounds
that define the problem domain, 10 (𝑁

𝑝
) individuals (i

1
,

i
2
, . . . , i

10
) are generated using (1). Following an evaluation

of each individual through the objective function (7), all
are sorted decreasingly in order to build vector X =

(x
1
, x
2
, . . . , x

10
). Figure 2(b) depicts the initial individual

distribution in the search space. Then, both memories
M
𝑔
(m1
𝑔
, . . . ,m4

𝑔
) and M

ℎ
(m1
ℎ
, . . . ,m4

ℎ
) are filled with the

first four (𝐵) elements present in X. Such memory elements
are represented by solid points in Figure 2(c).

The new 10 individuals (a
1
, a
2
, . . . , a

10
) are evolved at each

iteration following three different steps: (1) keep the position
of best individuals, (2) move from or nearby neighbors, and
(3) move randomly.The first new four elements (a

1
, a
2
, a
3
, a
4
)

are generated considering the first step (keeping the position
of best individuals). Following such step, new individual posi-
tions are calculated as perturbed versions of all the elements
which are contained in the M

ℎ
memory (that represent the

best individuals known so far). Such perturbation is done
by using a

𝑙
= m𝑙
ℎ
+ v (𝑙 ∈ 1, . . . , 4). Figure 2(d) shows

a comparative view between the memory element positions
and the perturbed values of (a

1
, a
2
, a
3
, a
4
).

The remaining 6 new positions (a
5
, . . . , a

10
) are individ-

ually computed according to Steps 2 and 3 of the numerical
example. For such operation, a uniform random number 𝑟

1
is

generated within the range [0, 1]. If 𝑟
1
is less than 1 − 𝑃, the

new position a
𝑗
(𝑗 ∈ 5, . . . , 10) is generated through Step 2;

otherwise, a
𝑗
is obtained from a random reinitialization (Step

3) between search bounds.
In order to calculate a new position a

𝑗
at Step 2, a decision

must be made on whether it should be generated by using
the elements of M

ℎ
or M
𝑔
. For such decision, a uniform

random number 𝑟
2
is generated within the range [0, 1]. If

𝑟
2
is less than 𝐻, the new position a

𝑗
is generated by using

x
𝑗
±𝑟 ⋅ (mnearest

ℎ
−x
𝑗
); otherwise, a

𝑗
is obtained by considering

x
𝑗
± 𝑟 ⋅ (mnearest

𝑔
− x
𝑗
), where mnearest

ℎ
and mnearest

𝑔
represent

the closest elements to x
𝑗
inmemoryM

ℎ
andM

𝑔
, respectively.

In the first iteration, since there is not available information
from previous steps, both memories M

ℎ
and M

𝑔
share the

same information which is only allowed at this initial stage.
Figure 2(e) shows graphically the whole procedure employed
by Step 2 in order to calculate the new individual position
a
8
whereas Figure 2(f) presents the positions of all new

individuals (a
1
, a
2
, . . . , a

10
).

Finally, after all new positions (a
1
, a
2
, . . . , a

10
) have been

calculated, memoriesM
ℎ
andM

𝑔
must be updated. In order

to update M
ℎ
, new calculated positions (a

1
, a
2
, . . . , a

10
) are

arranged according to their fitness values by building vector
X = (x

1
, x
2
, . . . , x

10
). Then, the elements of M

ℎ
are replaced

by the first four elements in X (the best individuals of its
generation). In order to calculate the new elements of M

ℎ
,

current elements of M
ℎ
(the present values) and M

𝑔
(the

updated values) are merged into M
𝑈
. Then, by using the

dominance concept (explained in Section 3.1.5) over M
𝑈
,

the best four values are selected to replace the elements in
M
𝑔
. Figures 2(g) and 2(h) show the updating procedure for

both memories. Applying the dominance (see Figure 2(g)),
since the distances 𝑎 = dist(m3

ℎ
,m4
𝑔
), 𝑏 = dist(m2

ℎ
,m3
𝑔
),

and 𝑐 = dist(m1
ℎ
,m1
𝑔
) are less than 𝜌 = 3, elements

with better fitness evaluation will build the new memory
M
ℎ
. Figure 2(h) depicts final memory configurations. The

circles and solid circles points represent the elements of M
𝑔

and M
ℎ
, respectively, whereas the bold squares perform as

elements shared by bothmemories.Therefore, if the complete
procedure is repeated over 30 iterations, the memoryM

ℎ
will

contain the 4 global and localmaxima as elements. Figure 2(i)
depicts the final configuration after 30 iterations.
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(i)

Figure 2: CAB numerical example. (a) 3D plot of the function used as example. (b) Initial individual distribution. (c) Initial configuration of
memoriesM

𝑔
andM

ℎ
. (d)The computation of the first four individuals (a

1
, a
2
, a
3
, a
4
). (e) It shows the procedure employed by Step 2 in order

to calculate the new individual position a
8
. (f) Positions of all new individuals (a

1
, a
2
, . . . , a

10
). (g) Application of the dominance concept over

elements ofM
𝑔
andM

ℎ
. (h) Final memory configurations ofM

𝑔
andM

ℎ
after the first iteration. (i) Final memory configuration ofM

ℎ
after

30 iterations.

4. Results on Multimodal
Benchmark Functions

In this section, the performance of the proposed algorithm
is tested. Section 4.1 describes the experiment methodology.
Sections 4.2 and 4.3 report on a comparison between theCAB
experimental results and other multimodal metaheuristic
algorithms for different kinds of optimization problems.

4.1. ExperimentMethodology. In this section, wewill examine
the search performance of the proposed CAB by using a test
suite of 8 benchmark functions with different complexities.
They are listed in Tables 1 and 2. The suite mainly contains
some representative, complicated, and multimodal functions
with several local optima. These functions are normally
regarded as difficult to be optimized as they are particularly
challenging to the applicability and efficiency of multimodal

metaheuristic algorithms. The performance measurements
considered at each experiment are the following:

(i) the consistency of locating all known optima;
(ii) the averaged number of objective function evalua-

tions that are required to find such optima (or the
running time under the same condition).

The experiments compare the performance of CAB against
the deterministic crowding [17], the probabilistic crowding
[18], the sequential fitness sharing [15], the clearing procedure
[20], the clustering based niching (CBN) [19], the species con-
serving genetic algorithm (SCGA) [21], the elitist-population
strategy (AEGA) [22], the clonal selection algorithm [24], and
the artificial immune network (AiNet) [25].

Since the approach solves real-valued multimodal func-
tions, we have used, in the GA approaches, consistent
real coding variable representation, uniform crossover, and
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Table 1: The test suite of multimodal functions for Experiment 4.2.

Function Search space Sketch
Deb’s function
5 optima

𝑓
1
= sin6(5𝜋𝑥) 𝑥 ∈ [0, 1]

1.2
1

0.8
0.6
0.4
0.2

0
0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Deb’s decreasing function
5 optima

𝑓
2
(𝑥) = 2

−2((𝑥−0.1)/0.9)
2

⋅ sin(5𝜋𝑥) 𝑥 ∈ [0, 1]

1.2
1

0.8
0.6
0.4
0.2

00 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Roots function
6 optima

𝑓
3
(𝑧) =

1

1 +




𝑧
6
+ 1






𝑧 ∈ 𝐶, 𝑧 = 𝑥
1
+ 𝑖𝑥
2

𝑥
1
, 𝑥
2
∈ [−2, 2] 1 1 22

1
0.8
0.6
0.4
0.2

0

0 0−1 −1−2−2

Two dimensional multi-modal function
100 optima

𝑓
4
(𝑥
1
, 𝑥
2
) = 𝑥
1
sin(4𝜋𝑥

1
) − 𝑥
2
sin(4𝜋𝑥

2
+ 𝜋) + 1 𝑥

1
, 𝑥
2
∈ [−2, 2]

2
4
6

0

1 1 22
0 0−1−1

−2−2

−2
−4

mutation operators for each algorithm seeking a fair com-
parison. The crossover probability 𝑃

𝑐
= 0.8 and the muta-

tion probability𝑃
𝑚
= 0.1have been used.Weuse the standard

tournament selection operator with a tournament size of 2
in our implementation of sequential fitness sharing, clearing
procedure, CBN, clonal selection algorithm, and SCGA. On

the other hand, the parameter values for the AiNet algorithm
have been defined as suggested in [25], with the mutation
strength 𝛽 = 100, the suppression threshold 𝜎

𝑠(𝑎𝑖𝑁𝑒𝑡)
= 0.2,

and the update rate 𝑑 = 40%.
In the case of the CAB algorithm, the parameters are set

to𝑁
𝑝
= 200, 𝐵 = 100, 𝑃 = 0.8, and𝐻 = 0.6. Once they have
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Table 2: The test suite of multimodal functions used in the Experiment 4.3.

Function Search space Sketch
Rastringin’s function
100 optima

𝑓
5
(𝑥
1
, 𝑥
2
) = −(20 + 𝑥

2

1
+ 𝑥
2

2
− 10(cos(2𝜋𝑥

1
) + cos(2𝜋𝑥

2
))) 𝑥

1
, 𝑥
2
∈ [−10, 10]

−100

−200
−250

−150

−50
0

10 105 50 0−5 −5−10 −10

Shubert function
18 optima

𝑓
6
(𝑥
1
, 𝑥
2
) = −

2

∏

𝑖=1

5

∑

𝑗=1

cos((𝑗 + 1)𝑥
𝑖
+ 𝑗) 𝑥

1
, 𝑥
2
∈ [−10, 10]

−100
−200
−300

0

200
100

10 105 50 0−5 −5−10 −10

Griewank function
100 optima

𝑓
7
(𝑥
1
, 𝑥
2
) =

1

4000

2

∑

𝑖=1

𝑥
2

𝑖
−

2

∏

𝑖=1

cos(
𝑥
𝑖

√2

) + 1 𝑥
1
, 𝑥
2
∈ [−100, 100]

0
−2

−4
−6
−8

100
10050 500 0−50 −50−100 −100

Modified Griewank function
100 optima

𝑓
8
(𝑥
1
, 𝑥
2
) =

cos(0.5𝑥
1
) + cos(0.5𝑥

2
)

4000

+ cos(10𝑥
1
) cos(10𝑥

2
) 𝑥

1
, 𝑥
2
∈ [0, 120]

−2

0
2

120

120
80

80
40

400 0

been all experimentally determined, they are kept for all the
test functions through all experiments.

To avoid relating the optimization results to the choice of
a particular initial population and to conduct fair compar-
isons, we perform each test 50 times, starting from various

randomly selected points in the search domain as it is com-
monly given in the literature. An optimum 𝑜

𝑗
is considered

as found if ∃𝑥
𝑖
∈ Pop(𝑘 = 𝑇) | 𝑑(𝑥

𝑖
, 𝑜
𝑗
) < 0.005, where

Pop(𝑘 = 𝑇) is the complete population at the end of the run
𝑇 and 𝑥

𝑖
is an individual in Pop(𝑘 = 𝑇).
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All algorithms have been tested in MATLAB over the
sameDell OptiPlexGX260 computerwith a Pentium4 2.66G
HZ processor, running Windows XP operating system over
1 Gb of memory. Next sections present experimental results
for multimodal optimization problems which have been
divided into two groups with different purposes. The first
one consists of functions with smooth landscapes and well-
defined optima (local and global values), while the second
gathers functions holding rough landscapes and complex
location optima.

4.2. Comparing CAB Performance for Smooth Landscapes
Functions. This section presents a performance comparison
for different algorithms solving multimodal problems 𝑓

1
–𝑓
4

in Table 1. The aim is to determine whether CAB is more
efficient and effective than other existing algorithms for
finding all multiple optima of 𝑓

1
–𝑓
4
. The stopping criterion

analyzes if the number-identified optima cannot be further
increased over 10 successive generations after the first 100
generations; then the execution will be stopped. Four mea-
surements have been employed to evaluate the performance:

(i) the average of optima found within the final popula-
tion (NO);

(ii) the average distance between multiple optima detect-
ed by the algorithm and their closest individuals in
the final population (DO);

(iii) the average of function evaluations (FE);
(iv) the average of execution time in seconds (ET).

Table 3 provides a summarized performance comparison
among several algorithms. Best results have been bold faced.
From the NO measure, CAB always finds better or equally
optimal solutions for the multimodal problems 𝑓

1
–𝑓
4
. It is

evident that each algorithm can find all optima of 𝑓
1
. For

function 𝑓
2
, only AEGA, clonal selection algorithm, aiNet,

and CAB can eventually find all optima each time. For
function𝑓

3
, clearing procedure, SCGA, AEGA, and CAB can

get all optima at each run. For function 𝑓
4
, deterministic

crowding leads to premature convergence and all other
algorithms cannot get any better results, but CAB yet can
find all multiple optima 48 times in 50 runs and its average
successful rate for each run is higher than 99%. By analyzing
the DO measure in Table 3, CAB has obtained the best score
for all the multimodal problems except for 𝑓

3
. In the case

of 𝑓
3
, the solution precision of CAB is only worse than

that of clearing procedure. On the other hand, CAB has
smaller standard deviations in the NO and DO measures
than all other algorithms and hence its solution is more
stable.

From the FEmeasure in Table 3, it is clear that CAB needs
fewer function evaluations than other algorithms considering
the same termination criterion. Recall that all algorithms use
the same conventional crossover and mutation operators. It
can be easily deduced from results that the CAB algorithm
is able to produce better search positions (better compromise
between exploration and exploitation), in amore efficient and
effective way than other multimodal search strategies.

To validate that CAB improvement over other algorithms
occurs as a result of CAB producing better search positions
over iterations, Figure 3 shows the comparison of CAB and
other multimodal algorithms for 𝑓

4
. The initial populations

for all algorithms have 200 individuals. In the final pop-
ulation of CAB, the 100 individuals belonging to the M

ℎ

memory correspond to the 100 multiple optima, while, on
the contrary, the final population of the other nine algo-
rithms fail consistently in finding all optima, despite that they
have superimposed several times over some previously found
optima.

When comparing the execution time (ET) in Table 3,
CAB uses significantly less time to finish than other algo-
rithms.The situation can be registered by the reduction of the
redundancy in the M

ℎ
memory due to competition (domi-

nance) criterion. All these comparisons show that CAB gen-
erally outperforms all othermultimodal algorithms regarding
efficacy and efficiency.

4.3. Comparing CAB Performance in Rough Landscapes Func-
tions. This section presents the performance comparison
among different algorithms solvingmultimodal optimization
problems which are listed in Table 2. Such problems hold
lots of local optima and very rugged landscapes. The goal of
multimodal optimizers is to find as many global optima as
possible and possibly good local optima. Rastrigin’s function
𝑓
5
and Griewank’s function 𝑓

7
have 1 and 18 global optima,

respectively, becoming practical as to test whether a multi-
modal algorithm can find a global optimum and at least 80
higher fitness local optima to validate the algorithms’ perfor-
mance.

Our main objective in these experiments is to determine
whether CAB is more efficient and effective than other exist-
ing algorithms for finding the multiple high fitness optima
of functions 𝑓

5
–𝑓
8
. In the experiments, the initial population

size for all algorithms has been set to 1000. For sequential
fitness sharing, clearing procedure, CBN, clonal selection,
SCGA, and AEGA, we have set the distance threshold 𝜎

𝑠

to 5. The algorithms’ stopping criterion checks whenever
the number of optima found cannot be further increased in
50 successive generations after the first 500 generations. If
such condition prevails, then the algorithm is halted. We still
evaluate the performance of all algorithms using the afore-
mentioned four measures NO, DO, FE, and ET.

Table 4 provides a summary of the performance compar-
ison among different algorithms. From the NO measure, we
observe that CAB could always find more optimal solutions
for the multimodal problems 𝑓

5
–𝑓
8
. For Rastrigin’s function

𝑓
5
, only CAB can find all multiple high fitness optima 49

times out of 50 runs and its average successful rate for each
run is higher than 97%. On the contrary, other algorithms
cannot find all multiple higher fitness optima for any run. For
𝑓
6
, 5 algorithms (clearing procedure, SCGA, AEGA, clonal

selection algorithm, AiNet, and CAB) can get all multiple
higher fitness maxima for each run, respectively. For Grie-
wank’s function (𝑓

7
), only CAB can get all multiple higher fit-

ness optima for each run. In case of the modified Griewank’s
function (𝑓

8
), it has numerous optima whose value is always
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Table 3: Performance comparison among the multimodal optimization algorithms for the test functions 𝑓
1
–𝑓
4
. The standard unit in the

column ET is seconds. (For all the parameters, numbers in parentheses are the standard deviations.) Bold faced letters represent best obtained
results.

Function Algorithm NO DO FE ET

𝑓
1

Deterministic crowding 5 (0) 1.52 × 10
−4
(1.38 × 10

−4
) 7,153 (358) 0.091 (0.013)

Probabilistic crowding 5 (0) 3.63 × 10
−4
(6.45 × 10

−5
) 10,304 (487) 0.163 (0.011)

Sequential fitness sharing 5 (0) 4.76 × 10
−4
(6.82 × 10

−5
) 9,927 (691) 0.166 (0.028)

Clearing procedure 5 (0) 1.27 × 10
−4
(2.13 × 10

−5
) 5,860 (623) 0.128 (0.021)

CBN 5 (0) 2.94 × 10
−4
(4.21 × 10

−5
) 10,781 (527) 0.237 (0.019)

SCGA 5 (0) 1.16 × 10
−4
(3.11 × 10

−5
) 6,792 (352) 0.131 (0.009)

AEGA 5 (0) 4.6 × 10
−5
(1.35 × 10

−5
) 2,591 (278) 0.039 (0.007)

Clonal selection algorithm 5 (0) 1.99 × 10
−4
(8.25 × 10

−5
) 15,803 (381) 0.359 (0.015)

AiNet 5 (0) 1.28 × 10
−4
(3.88 × 10

−5
) 12,369 (429) 0.421 (0.021)

CAB 5 (0) 1.69 × 10−5 (5.2 × 10−6) 1,776 (125) 0.020 (0.009)

𝑓
2

Deterministic crowding 3.53 (0.73) 3.61 × 10
−3
(6.88 × 10

−4
) 6,026 (832) 0.271 (0.06)

Probabilistic crowding 4.73 (0.64) 2.82 × 10
−3
(8.52 × 10

−4
) 10,940 (9517) 0.392 (0.07)

Sequential fitness sharing 4.77 (0.57) 2.33 × 10
−3
(4.36 × 10

−4
) 12,796 (1,430) 0.473 (0.11)

Clearing procedure 4.73 (0.58) 4.21 × 10
−3
(1.24 × 10

−3
) 8,465 (773) 0.326 (0.05)

CBN 4.70 (0.53) 2.19 × 10
−3
(4.53 × 10

−4
) 14,120 (2,187) 0.581 (0.14)

SCGA 4.83 (0.38) 3.15 × 10
−3
(4.71 × 10

−4
) 10,548 (1,382) 0.374 (0.09)

AEGA 5 (0) 1.38 × 10
−4
(2.32 × 10

−5
) 3,605 (426) 0.102 (0.04)

Clonal selection algorithm 5 (0) 1.37 × 10
−3
(6.87 × 10

−4
) 21,922 (746) 0.728 (0.06)

AiNet 5 (0) 1.22 × 10
−3
(5.12 × 10

−4
) 18,251 (829) 0.664 (0.08)

CAB 5 (0) 4.5 × 10−5 (8.56 × 10−6) 2,065 (92) 0.08 (0.007)

𝑓
3

Deterministic crowding 4.23 (1.17) 7.79 × 10
−4
(4.76 × 10

−4
) 11,009 (1,137) 1.07 (0.13)

Probabilistic crowding 4.97 (0.64) 2.35 × 10
−3
(7.14 × 10

−4
) 16,391 (1,204) 1.72 (0.12)

Sequential fitness sharing 4.87 (0.57) 2.56 × 10
−3
(2.58 × 10

−3
) 14,424 (2,045) 1.84 (0.26)

Clearing procedure 6 (0) 7.43 × 10−5 (4.07 × 10−5) 12,684 (1,729) 1.59 (0.19)
CBN 4.73 (1.14) 1.85 × 10

−3
(5.42 × 10

−4
) 18,755 (2,404) 2.03 (0.31)

SCGA 6 (0) 3.27 × 10
−4
(7.46 × 10

−5
) 13,814 (1,382) 1.75 (0.21)

AEGA 6 (0) 1.21 × 10
−4
(8.63 × 10

−5
) 6,218 (935) 0.53 (0.07)

Clonal selection algorithm 5.50 (0.51) 4.95 × 10
−3
(1.39 × 10

−3
) 25,953 (2,918) 2.55 (0.33)

AiNet 4.8 (0.33) 3.89 × 10
−3
(4.11 × 10

−4
) 20,335 (1,022) 2.15 (0.10)

CAB 6 (0) 9.87 × 10
−5
(1.69 × 10

−5
) 4,359 (75) 0.11 (0.023)

𝑓
4

Deterministic crowding 76.3 (11.4) 4.52 × 10
−3
(4.17 × 10

−3
) 1,861,707 (329,254) 21.63 (2.01)

Probabilistic crowding 92.8 (3.46) 3.46 × 10
−3
(9.75 × 10

−4
) 2,638,581 (597,658) 31.24 (5.32)

Sequential fitness sharing 89.9 (5.19) 2.75 × 10
−3
(6.89 × 10

−4
) 2,498,257 (374,804) 28.47 (3.51)

Clearing procedure 89.5 (5.61) 3.83 × 10
−3
(9.22 × 10

−4
) 2,257,964 (742,569) 25.31 (6.24)

CBN 90.8 (6.50) 4.26 × 10
−3
(1.14 × 10

−3
) 2,978,385 (872,050) 35.27 (8.41)

SCGA 91.4 (3.04) 3.73 × 10
−3
(2.29 × 10

−3
) 2,845,789 (432,117) 32.15 (4.85)

AEGA 95.8 (1.64) 1.44 × 10
−4
(2.82 × 10

−5
) 1,202,318 (784,114) 12.17 (2.29)

Clonal selection algorithm 92.1 (4.63) 4.08 × 10
−3
(8.25 × 10

−3
) 3,752,136 (191,849) 45.95 (1.56)

AiNet 93.2 (7.12) 3.74 × 10
−3
(5.41 × 10

−4
) 2,745,967 (328,176) 38.18 (3.77)

CAB 100 (2) 2.31 × 10−5 (5.87 × 10−6) 697,578 (57,089) 5.78 (1.26)

the same. However, CAB still can find all global optima with
an effectiveness rate of 95%.

From the FE and ET measures in Table 4, we can clearly
observe that CAB uses significantly fewer function evalua-
tions and a shorter running time than all other algorithms
under the same termination criterion. Moreover, determin-
istic crowding leads to premature convergence as CAB is at
least 2.5, 3.8, 4, 3.1, 4.1, 3.7, 1.4, 7.9, and 4.9 times faster than

all others, respectively, according to Table 4 for functions
𝑓
5
–𝑓
8
.

5. Application of CAB in Multicircle Detection
5.1. Individual Representation. In order to detect circle
shapes, candidate images must be preprocessed first by the
well-known Canny algorithm which yields a single-pixel
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Table 4: Performance comparison among multimodal optimization algorithms for the test functions 𝑓
5
–𝑓
8
. The standard unit of the column

ET is seconds (numbers in parentheses are standard deviations). Bold faced letters represent best results.

Function Algorithm NO DO FE ET

𝑓
5

Deterministic crowding 62.4 (14.3) 4.72 × 10
−3
(4.59 × 10

−3
) 1,760,199 (254,341) 14.62 (2.83)

Probabilistic crowding 84.7 (5.48) 1.50 × 10
−3
(9.38 × 10

−4
) 2,631,627 (443,522) 34.39 (5.20)

Sequential fitness sharing 76.3 (7.08) 3.51 × 10
−3
(1.66 × 10

−3
) 2,726,394 (562,723) 36.55 (7.13)

Clearing procedure 93.6 (2.31) 2.78 × 10
−3
(1.20 × 10

−3
) 2,107,962 (462,622) 28.61 (6.47)

CBN 87.9 (7.78) 4.33 × 10
−3
(2.82 × 10

−3
) 2,835,119 (638,195) 37.05 (8.23)

SCGA 97.4 (4.80) 1.34 × 10
−3
(8.72 × 10

−4
) 2,518,301 (643,129) 30.27 (7.04)

AEGA 99.4 (1.39) 6.77 × 10
−4
(3.18 × 10

−4
) 978,435 (71,135) 10.56 (4.81)

Clonal selection algorithm 90.6 (9.95) 3.15 × 10
−3
(1.47 × 10

−3
) 5,075,208 (194,376) 58.02 (2.19)

AiNet 93.8 (7.8) 2.11 × 10
−3
(3.2 × 10

−3
) 3,342,864 (549,452) 51.65 (6.91)

CAB 100 (2) 2.22 × 10−4 (3.1 × 10−5) 680,211 (12,547) 7.33 (1.84)

𝑓
6

Deterministic crowding 9.37 (1.91) 3.26 × 10
−3
(5.34 × 10

−4
) 832,546 (75,413) 4.58 (0.57)

Probabilistic crowding 15.17 (2.43) 2.87 × 10
−3
(5.98 × 10

−4
) 1,823,774 (265,387) 12.92 (2.01)

Sequential fitness sharing 15.29 (2.14) 1.42 × 10
−3
(5.29 × 10

−4
) 1,767,562 (528,317) 14.12 (3.51)

Clearing procedure 18 (0) 1.19 × 10
−3
(6.05 × 10

−4
) 1,875,729 (265,173) 11.20 (2.69)

CBN 14.84 (2.70) 4.39 × 10
−3
(2.86 × 10

−3
) 2,049,225 (465,098) 18.26 (4.41)

SCGA 4.83 (0.38) 1.58 × 10
−3
(4.12 × 10

−4
) 2,261,469 (315,727) 13.71 (1.84)

AEGA 18 (0) 3.34 × 10
−4
(1.27 × 10

−4
) 656,639 (84,213) 3.12 (1.12)

Clonal selection algorithm 18 (0) 3.42 × 10
−3
(1.58 × 10

−3
) 4,989,856 (618,759) 33.85 (5.36)

AiNet 18 (0) 2.11 × 10
−3
(3.31 × 10

−3
) 3,012,435 (332,561) 26.32 (2.54)

CAB 18 (0) 1.02 × 10−4 (4.27 × 10−5) 431,412 (21,034) 2.21 (0.51)

𝑓
7

Deterministic crowding 52.6 (8.86) 3.71 × 10
−3
(1.54 × 10

−3
) 2,386,960 (221,982) 19.10 (2.26)

Probabilistic crowding 79.2 (4.94) 3.48 × 10
−3
(3.79 × 10

−3
) 3,861,904 (457,862) 43.53 (4.38)

Sequential fitness sharing 63.0 (5.49) 4.76 × 10
−3
(3.55 × 10

−3
) 3,619,057 (565,392) 42.98 (6.35)

Clearing procedure 79.4 (4.31) 2.95 × 10
−3
(1.64 × 10

−3
) 3,746,325 (594,758) 45.42 (7.64)

CBN 71.3 (9.26) 3.29 × 10
−3
(4.11 × 10

−3
) 4,155,209 (465,613) 48.23 (5.42)

SCGA 94.9 (8.18) 2.63 × 10
−3
(1.81 × 10

−3
) 3,629,461 (373,382) 47.84 (0.21)

AEGA 98 (2) 1.31 × 10
−3
(8.76 × 10

−4
) 1,723,342 (121,043) 12,54 (1.31)

Clonal selection algorithm 89.2 (5.44) 3.02 × 10
−3
(1.63 × 10

−3
) 5,423,739 (231,004) 47.84 (6.09)

AiNet 92.7 (3.21) 2.79 × 10
−3
(3.19 × 10

−4
) 4,329,783 (167,932) 41.64 (2.65)

CAB 100 (1) 3.32 × 10−4 (5.25 × 10−5) 953,832 (9,345) 8.82 (1.51)

𝑓
8

Deterministic crowding 44.2 (7.93) 4.45 × 10
−3
(3.63 × 10

−3
) 2,843,452 (353,529) 23.14 (3.85)

Probabilistic crowding 70.1 (8.36) 2.52 × 10
−3
(1.47 × 10

−3
) 4,325,469 (574,368) 49.51 (6.72)

Sequential fitness sharing 58.2 (9.48) 4.14 × 10
−3
(3.31 × 10

−3
) 4,416,150 (642,415) 54.43 (12.6)

Clearing procedure 67.5 (10.11) 2.31 × 10
−3
(1.43 × 10

−3
) 4,172,462 (413,537) 52.39 (7.21)

CBN 53.1 (7.58) 4.36 × 10
−3
(3.53 × 10

−3
) 4,711,925 (584,396) 61.07 (8.14)

SCGA 87.3 (9.61) 3.15 × 10
−3
(2.07 × 10

−3
) 3,964,491 (432,117) 53.87 (8.46)

AEGA 90.6 (1.65) 2.55 × 10
−3
(9.55 × 10

−4
) 2,213,754 (412,538) 16.21 (3.19)

Clonal selection algorithm 74.4 (7.32) 3.52 × 10
−3
(2.19 × 10

−3
) 5,835,452 (498,033) 74.26 (5.47)

AiNet 83.2 (6.23) 3.11 × 10
−3
(2.41 × 10

−4
) 4,123,342 (213,864) 60.38 (5.21)

CAB 97 (2) 1.54 × 10−3 (4.51 × 10−4) 1,121,523 (51,732) 12.21 (2.66)

edge-only image. Then, the (𝑥
𝑖
, 𝑦
𝑖
) coordinates for each edge

pixel 𝑝
𝑖
are stored inside the edge vector 𝑃 = {𝑝

1
, 𝑝
2
, . . . ,

𝑝
𝑁
𝑝

}, with 𝑁
𝑝
being the total number of edge pixels. Each

circle𝐶 uses three edge points as individuals in the optimiza-
tion algorithm. In order to construct such individuals, three
indexes 𝑝

𝑖
, 𝑝
𝑗
, and 𝑝

𝑘
are selected from vector 𝑃, considering

the circle’s contour that connects them. Therefore, the circle

𝐶 = {𝑝
𝑖
, 𝑝
𝑗
, 𝑝
𝑘
} that crosses over such points may be

considered as a potential solution for the detection problem.
Considering the configuration of the edge points shown by
Figure 4, the circle center (𝑥

0
, 𝑦
0
) and the radius 𝑟 of 𝐶 can

be computed as follows:

(𝑥 − 𝑥
0
)
2

+ (𝑦 − 𝑦
0
)
2

= 𝑟
2
. (8)
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Figure 3: Typical results of the maximization of 𝑓
4
. (a)–(j) Local and global optima located by all ten algorithms in the performance

comparison.
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𝑟

𝑝
𝑖

𝑝
𝑘

𝑝
𝑗

(𝑥0, 𝑦0)

Figure 4: Circle candidate (individual) built from the combination
of points 𝑝

𝑖
, 𝑝
𝑗
, and 𝑝

𝑘
.

Consider

A =
[

[

𝑥
2

𝑗
+ 𝑦
2

𝑗
− (𝑥
2

𝑖
+ 𝑦
2

𝑖
) 2 ⋅ (𝑦

𝑗
− 𝑦
𝑖
)

𝑥
2

𝑘
+ 𝑦
2

𝑘
− (𝑥
2

𝑖
+ 𝑦
2

𝑖
) 2 ⋅ (𝑦

𝑘
− 𝑦
𝑖
)

]

]

,

B =
[

[

2 ⋅ (𝑥
𝑗
− 𝑥
𝑖
) 𝑥
2

𝑗
+ 𝑦
2

𝑗
− (𝑥
2

𝑖
+ 𝑦
2

𝑖
)

2 ⋅ (𝑥
𝑘
− 𝑥
𝑖
) 𝑥
2

𝑘
+ 𝑦
2

𝑘
− (𝑥
2

𝑖
+ 𝑦
2

𝑖
)

]

]

,

(9)

𝑥
0
=

det (A)
4 ((𝑥
𝑗
− 𝑥
𝑖
) (𝑦
𝑘
− 𝑦
𝑖
) − (𝑥

𝑘
− 𝑥
𝑖
) (𝑦
𝑗
− 𝑦
𝑖
))

,

𝑦
0
=

det (B)
4 ((𝑥
𝑗
− 𝑥
𝑖
) (𝑦
𝑘
− 𝑦
𝑖
) − (𝑥

𝑘
− 𝑥
𝑖
) (𝑦
𝑗
− 𝑦
𝑖
))

,

(10)

𝑟 = √(𝑥
0
− 𝑥
𝑑
)
2

+ (𝑦
0
− 𝑦
𝑑
)
2

, (11)

with det(⋅) being the determinant and 𝑑 ∈ {𝑖, 𝑗, 𝑘}. Figure 2
illustrates the parameters defined by (8) to (11).

5.2. Objective Function. In order to calculate the error pro-
duced by a candidate solution 𝐶, a set of test points is
calculated as a virtual shapewhich, in turn,must be validated,
that is if it really exists in the edge image. The test set is
represented by 𝑆 = {𝑠

1
, 𝑠
2
, . . . , 𝑠

𝑁
𝑠

}, where 𝑁
𝑠
is the number

of points over which the existence of an edge point, corre-
sponding to 𝐶, should be validated. In our approach, the set
𝑆 is generated by the midpoint circle algorithm (MCA) [63].
The MCA is a searching method which seeks the required
points for drawing a circle digitally.ThereforeMCAcalculates
the necessary number of test points 𝑁

𝑠
to totally draw the

complete circle. Such a method is considered the fastest
because MCA avoids computing square-root calculations by
comparing the pixel separation distances among them.

The objective function 𝐽(𝐶) represents thematching error
produced between the pixels 𝑆 of the circle candidate 𝐶

(animal position) and the pixels that actually exist in the edge
image, yielding

𝐽 (𝐶) = 1 −

∑
𝑁
𝑠

𝑣=1
𝐸 (𝑥
𝑣
, 𝑦
𝑣
)

𝑁
𝑠

, (12)

where𝐸(𝑥
𝑖
, 𝑦
𝑖
) is a function that verifies the pixel existence in

(𝑥
𝑣
, 𝑦
𝑣
), with (𝑥

𝑣
, 𝑦
𝑣
) ∈ 𝑆, and𝑁

𝑠
being the number of pixels

lying on the perimeter corresponding to 𝐶 currently under
testing. Hence, function 𝐸(𝑥

𝑣
, 𝑦
𝑣
) is defined as

𝐸 (𝑥
𝑣
, 𝑦
𝑣
) = {

1 if the pixel (𝑥
𝑣
, 𝑦
𝑣
) is an edge point

0 otherwise.
(13)

A value near zero of 𝐽(𝐶) implies a better response from
the “circularity” operator. Figure 5 shows the procedure to
evaluate a candidate solution 𝐶 with its representation as a
virtual shape 𝑆. In Figure 5(b), the virtual shape is compared
to the original image, point by point, in order to find
coincidences between virtual and edge points. The virtual
shape is built from points 𝑝

𝑖
, 𝑝
𝑗
, and 𝑝

𝑘
shown by Figure 5(a).

The virtual shape 𝑆 gathers 56 points (𝑁
𝑠
= 56) with only 18

of such points existing in both images (shown as blue points
plus red points in Figure 5(c)) yielding ∑𝑁𝑠

𝑣=1
𝐸(𝑥
𝑣
, 𝑦
𝑣
) = 18

and therefore 𝐽(𝐶) ≈ 0.67.

5.3. The Multiple-Circle Detection Procedure. In order to
detect multiple circles, most detectors simply apply a one-
minimum optimization algorithm, which is able to detect
only one circle at a time, repeating the same process several
times as previously detected primitives are removed from
the image. Such algorithms iterate until there are no more
candidates left in the image.

On the other hand, the method in this paper is able to
detect single or multiples circles through only one optimiza-
tion step. The multidetection procedure can be summarized
as follows: guided by the values of a matching function, the
whole group of encoded candidate circles is evolved through
the set of evolutionary operators. The best circle candidate
(global optimum) is considered to be the first detected circle
over the edge-only image. An analysis of the historical mem-
oryM

ℎ
is thus executed in order to identify other local optima

(other circles).
In order to find other possible circles contained in the

image, the historical memory M
ℎ
is carefully examined. The

approach aims to explore all elements, one at a time, assessing
which of them represents an actual circle in the image. Since
several elements can represent the same circle (i.e., circles
slightly shifted or holding small deviations), a distinctiveness
factor𝐷

𝐴,𝐵
is required tomeasure themismatch between two

given circles (𝐴 and 𝐵). Such distinctiveness factor is defined
as follows:

𝐷
𝐴,𝐵

=




𝑥
𝐴
− 𝑥
𝐵





+




𝑦
𝐴
− 𝑦
𝐵





+




𝑟
𝐴
− 𝑟
𝐵





, (14)

with (𝑥
𝐴
, 𝑦
𝐴
) and 𝑟

𝐴
being the central coordinates and radius

of the circle 𝐶
𝐴
, respectively, while (𝑥

𝐵
, 𝑦
𝐵
) and 𝑟

𝐵
represent
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𝑝𝑖 𝑝𝑘

𝑝𝑗

(a) (b)

𝑝𝑖 𝑝𝑘

𝑝𝑗

(c)

Figure 5: Evaluation of candidate solutions 𝐶: the image in (a) shows the original image while (b) presents the virtual shape generated
including points 𝑝

𝑖
, 𝑝
𝑗
, and 𝑝

𝑘
. The image in (c) shows coincidences between both images marked by blue or red pixels while the virtual

shape is also depicted in green.

the corresponding parameters of the circle𝐶
𝐵
. One threshold

value 𝐸
𝑠Th

is also calculated to decide whether two circles
must be considered different or not. Th is computed as:

Th =

𝑟max − 𝑟min
𝑑

, (15)

where [𝑟min, 𝑟max] is the feasible radii’s range and 𝑑 is a sen-
sitivity parameter. By using a high 𝑑 value, two very similar
circles would be considered different while a smaller value
for 𝑑 would consider them as similar shapes. In this work,
after several experiments, the 𝑑 value has been set to 2.

Thus, since the historical memoryM
ℎ
{𝐶

M
1
, 𝐶

M
2
, . . . , 𝐶

M
𝐵
}

groups the elements in descending order according to their
fitness values, the first element 𝐶M

1
, whose fitness value

represents the best value 𝐽(𝐶M
1
), is assigned to the first circle.

Then, the distinctiveness factor (𝐷
𝐶
M
1
,𝐶

M
2

) over the next
element 𝐶M

2
is evaluated with respect to the prior 𝐶M

1
. If

𝐷
𝐶
M
1
,𝐶

M
2

> Th, then𝐶M
2
is considered as a new circle; otherwise

the next element 𝐶M
3

is selected. This process is repeated
until the fitness value 𝐽(𝐶M

𝑖
) reaches a minimum threshold

𝐽Th. According to such threshold, other values above 𝐽Th
represent individuals (circles) that are considered significant
while other values lying below such boundary are considered
as false circles and hence they are not contained in the image.
After several experiments the value of 𝐽Th is set to (𝐽(𝐶

M
1
)/10).

Thefitness value of each detected circle is characterized by
its geometric properties. Big and well-drawn circles normally
represent points in the search space with higher fitness
values whereas small and dashed circles describe points with
lower fitness values. Likewise, circles with similar geometric
properties, such as radius and size tend to represent locations
holding similar fitness values. Considering that the historical
memoryM

ℎ
groups the elements in descending order accord-

ing to their fitness values, the proposed procedure allows the
cancelling of those circles which belong to the same circle and
hold a similar fitness value.

5.4. Implementation of CAB Strategy for Circle Detection. The
implementation of the proposed algorithm can be summa-
rized in the following steps.

Step 1. Adjust the algorithm parameters𝑁
𝑝
, 𝐵,𝐻, 𝑃,𝑁𝐼, and

𝑑.

Step 2. Randomly generate a set of 𝑁
𝑝
candidate circles

(position of each animal) C = {𝐶
1
, 𝐶
2
, . . . , 𝐶

𝑁
𝑝

} set using (1).

Step 3. Sort C according to the objective function (domi-
nance) to build X = {x

1
, x
2
, . . . , x

𝑁
𝑝

}.

Step 4. Choose the first 𝐵 positions of X and store them into
the memoryM

𝑔
.

Step 5. UpdateM
ℎ
according to Section 3.1.5. (during the first

iteration:M
ℎ
= M
𝑔
).

Step 6. Generate the first 𝐵 positions of the new solution
set C({𝐶

1
, 𝐶
2
, . . . , 𝐶

𝐵
}). Such positions correspond to the

elements ofM
ℎ
making a slight random perturbation around

them:

𝐶
𝑙
= m𝑙
ℎ
+ v, with being v a random vector of

a small enough length.
(16)

Step 7. Generate the rest of the C elements using the attrac-
tion, repulsion, and random movements:

for 𝑖 = 𝐵 + 1 : 𝑁
𝑝

if (𝑟
1
< 𝑃) then

attraction and repulsion movement
{if (𝑟
2
< 𝐻) then

𝐶
𝑖
= x
𝑖
± 𝑟 ⋅ (mnearest

ℎ
− x
𝑖
)

else if
𝐶
𝑖
= x
𝑖
± 𝑟 ⋅ (mnearest

𝑔
− x
𝑖
)

}

else if
random movement
{

𝐶
𝑖
= r
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(a)

Original images

GA-based algorithm

BFOA

CAB

(b) (c)

Figure 6: Synthetic images and their detected circles for GA-based algorithm, the BFOA method, and the proposed CAB algorithm.

}

end for where 𝑟
1
, 𝑟
2
, 𝑟 ∈ rand(0, 1).

Step 8. If𝑁𝐼 is not completed, the process goes back to Step 3.
Otherwise, the best values inM

ℎ
{𝐶

M
1
, 𝐶

M
2
, . . . , 𝐶

M
𝐵
} represent

the best solutions (the best found circles).

Step 9. The element with the highest fitness value 𝐽(𝐶M
1
) is

identified as the first circle 𝐶
1
.

Step 10. The distinctiveness factor 𝐷
𝐶
M
𝑚
,𝐶

M
𝑚−1

of circle 𝐶M
𝑚
(ele-

ment 𝑚) with the next highest probability is evaluated with

respect to 𝐶M
𝑚−1

. If𝐷
𝐶
M
𝑚
,𝐶

M
𝑚−1

> Th, then 𝐶M
𝑚
is considered as a

new circle; otherwise the next action is evaluated.

Step 11. Step 10 is repeated until the element’s fitness value
reaches (𝐽(𝐶M

1
)/10).

The number of candidate circles 𝑁
𝑝
is set considering a

balance between the number of local minima to be detected
and the computational complexity. In general terms, a large
value of 𝑁

𝑝
suggests the detection of a great amount of

circles at the cost of excessive computer time. After exhaustive
experimentation, it has been found that a value of 𝑁

𝑝
= 30

represents the best tradeoff between computational overhead
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(a)

Original images

GA-based algorithm

BFOA

CAB

(b) (c)

Figure 7: Real-life images and their detected circles for GA-based algorithm, the BFOA method, and the proposed CAB algorithm.

and accuracy and therefore such value is used throughout the
study.

6. Results on Multicircle Detection

In order to achieve the performance analysis, the proposed
approach is compared to the BFAO detector, the GA-based
algorithm, and the RHT method over an image set.

The GA-based algorithm follows the proposal of Ayala-
Ramirez et al. [41], which considers the population size as 70,
the crossover probability as 0.55, the mutation probability as
0.10, and the number of elite individuals as 2. The roulette
wheel selection and the 1-point crossover operator are both

applied. The parameter setup and the fitness function follow
the configuration suggested in [41]. The BFAO algorithm
follows the implementation from [45] considering the exper-
imental parameters as 𝑆 = 50, 𝑁

𝑐
= 350, 𝑁

𝑠
= 4, 𝑁ed = 1,

𝑃ed = 0.25, 𝑑attract = 0.1, 𝑤attract = 0.2, 𝑤repellant = 10,
ℎrepellant = 0.1, 𝜆 = 400, and 𝜓 = 6. Such values are found
to be the best configuration set according to [45]. Both, the
GA-based algorithm and the BAFO method use the same
objective function that is defined by (12). Likewise, the RHT
method has been implemented as it is described in [40].
Finally, Table 5 presents the parameters for the CAB algo-
rithm used in this work. They have been kept for all test
images after being experimentally defined.
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(a)

(b)

Original images CABRHT

(c)

Figure 8: Relative performance of the RHT and the CAB.

Table 5: CAB detector parameters.

𝑁
𝑝

𝐻 𝑃 𝐵 NI
30 0.5 0.1 12 200

Images rarely contain perfectly shaped circles. Therefore,
with the purpose of testing accuracy for a single circle, the
detection is challenged by a ground-truth circle which is
determined from the original edge map. The parameters
(𝑥true, 𝑦true, 𝑟true) representing the testing circle are computed
using (6)–(9) for three circumference points over the manu-
ally drawn circle. Considering the center and the radius of the
detected circle are defined as (𝑥

𝐷
, 𝑦
𝐷
) and 𝑟

𝐷
, the error score

(Es) can be accordingly calculated as

Es=𝜂 ⋅ (

𝑥true−𝑥𝐷





+




𝑦true − 𝑦𝐷





) + 𝜇 ⋅





𝑟true − 𝑟𝐷





. (17)

The central point difference (|𝑥true − 𝑥
𝐷
| + |𝑦true − 𝑦

𝐷
|)

represents the center shift for the detected circle as it is com-
pared to a benchmark circle.The radiomismatch (|𝑟true−𝑟𝐷|)
accounts for the difference between their radii. 𝜂 and 𝜇

represent two weighting parameters which are to be applied
separately to the central point difference and to the radio
mismatch for the final error Es. At this work, they are chosen
as 𝜂 = 0.05 and 𝜇 = 0.1. Such particular choice ensures that
the radii difference would be strongly weighted in compari-
son to the difference of central circular positions between the
manually detected and themachine-detected circles. Here we
assume that if Es is found to be less than 1, then the algorithm
gets a success; otherwise, we say that it has failed to detect the
edge circle. Note that for 𝜂 = 0.05 and 𝜇 = 0.1, Es < 1means
that the maximum difference of radius tolerated is 10 while
the maximum mismatch in the location of the center can be
20 (in number of pixels). In order to appropriately compare
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Table 6: The averaged execution time, detection rate, and the averaged multiple error for the GA-based algorithm, the BFOA method, and
the proposed CAB algorithm, considering six test images (shown by Figures 6 and 7).

Image Averaged execution time ± standard deviation (s) Success rate (DR) (%) Averaged ME ± standard deviation
GA BFOA CAB GA BFOA CAB GA BFOA CAB

Synthetic images
(a) 2.23 ± (0.41) 1.71 ± (0.51) 0.21 ± (0.22) 88 99 100 0.41 ± (0.044) 0.33 ± (0.052) 0.22 ± (0.033)
(b) 3.15 ± (0.39) 2.80 ± (0.65) 0.36 ± (0.24) 79 92 99 0.51 ± (0.038) 0.37 ± (0.032) 0.26 ± (0.041)
(c) 4.21 ± (0.11) 3.18 ± (0.36) 0.20 ± (0.19) 74 88 100 0.48 ± (0.029) 0.41 ± (0.051) 0.15 ± (0.036)

Natural images
(a) 5.11 ± (0.43) 3.45 ± (0.52) 1.10 ± (0.24) 90 96 100 0.45 ± (0.051) 0.41 ± (0.029) 0.25 ± (0.037)
(b) 6.33 ± (0.34) 4.11 ± (0.14) 1.61 ± (0.17) 83 89 100 0.81 ± (0.042) 0.77 ± (0.051) 0.37 ± (0.055)
(c) 7.62 ± (0.97) 5.36 ± (0.17) 1.95 ± (0.41) 84 92 99 0.92 ± (0.075) 0.88 ± (0.081) 0.41 ± (0.066)

Table 7: 𝑃 values produced by Wilcoxons test comparing CAB to
GA and BFOA over the averaged ME from Table 2.

Image 𝑃 value
CAB versus GA CAB versus BFOA

Synthetic images
(a) 1.8061𝑒 − 004 1.8288𝑒 − 004

(b) 1.7454𝑒 − 004 1.9011𝑒 − 004

(c) 1.7981𝑒 − 004 1.8922𝑒 − 004

Natural images
(a) 1.7788𝑒 − 004 1.8698𝑒 − 004

(b) 1.6989𝑒 − 004 1.9124𝑒 − 004

(c) 1.7012𝑒 − 004 1.9081𝑒 − 004

the detection results, the detection rate (DR) is introduced
as a performance index. DR is defined as the percentage of
reaching detection success after a certain number of trials. For
“success” it does mean that the compared algorithm is able to
detect all circles contained in the image, under the restriction
that each circle must hold the condition Es < 1. Therefore, if
at least one circle does not fulfil the condition of Es < 1, the
complete detection procedure is considered as a failure.

In order to use an error metric for multiple-circle detec-
tion, the averaged Es produced from each circle in the image
is considered. Such criterion, defined as the multiple error
(ME), is calculated as follows:

ME = ( 1

𝑁𝐶

) ⋅

𝑁𝐶

∑

𝑅=1

Es
𝑅
, (18)

where𝑁𝐶 represents the number of circles within the image
according to a human expert.

Figure 6 shows three synthetic images and the resulting
images after applying theGA-based algorithm [41], the BFOA
method [45], and the proposed approach. Figure 7 presents
experimental results considering three natural images. The
performance is analyzed by considering 35 different exe-
cutions for each algorithm. Table 6 shows the averaged
execution time, the detection rate in percentage, and the
averaged multiple error (ME), considering six test images
(shown by Figures 6 and 7). The best entries are boldfaced in

Table 6. Close inspection reveals that the proposedmethod is
able to achieve the highest success rate keeping the smallest
error, still requiring less computational time for most cases.

In order to statistically analyze the results in Table 6, a
nonparametric significance proof known as the Wilcoxon’s
rank test [64–66] for 35 independent samples has been con-
ducted. Such proof allows assessing result differences among
two related methods. The analysis is performed considering
a 5% significance level over multiple error (ME) data. Table 7
reports the 𝑃 values produced by Wilcoxon’s test for a pair-
wise comparison of the multiple error (ME), considering
two groups gathered as CAB versus GA and CAB versus
BFOA. As a null hypothesis, it is assumed that there is no
difference between the values of the two algorithms.The alter-
native hypothesis considers an existent difference between
the values of both approaches. All 𝑃 values reported in
Table 7 are less than 0.05 (5% significance level) which is a
strong evidence against the null hypothesis, indicating that
the bestCABmean values for the performance are statistically
significant which has not occurred by chance.

Figure 8 demonstrates the relative performance ofCAB in
comparisonwith the RHT algorithm as it is described in [40].
All images belonging to the test are complicated and con-
tain different noise conditions. The performance analysis is
achieved by considering 35 different executions for each algo-
rithmover the three images.The results, exhibited in Figure 8,
present themedian-run solution (when the runs were ranked
according to their finalME value) obtained throughout the 35
runs. On the other hand, Table 4 reports the corresponding
averaged execution time, detection rate (in %) and average
multiple error (using (10)) for CAB and RHT algorithms over
the set of images (the best results are boldfaced). Table 8
shows a decrease in performance of the RHT algorithm as
noise conditions change. Yet the CAB algorithm holds its
performance under the same circumstances.

7. Conclusions

In recent years, several metaheuristic optimization methods
have been inspired from nature-like phenomena. In this
paper, a new multimodal optimization algorithm known as
the collective animal behavior algorithm (CAB) has been



20 Mathematical Problems in Engineering

Table 8: Average time, detection rate, and averaged error for CAB and HT, considering three test images.

Image Average time ± standard deviation (s) Success rate (DR) (%) Average ME ± standard deviation
RHT CAB RHT CAB RHT CAB

(a) 7.82 ± (0.34) 0.30 ± (0.10) 100 100 0.19 ± (0.041) 0.11 ± (0.017)
(b) 8.65 ± (0.48) 0.22 ± (0.13) 64 100 0.47 ± (0.037) 0.13 ± (0.019)
(c) 10.65 ± (0.48) 0.25 ± (0.12) 11 100 1.21 ± (0.033) 0.15 ± (0.014)

introduced. In CAB, the searcher agents emulate a group of
animals that interact with each other depending on simple
behavioral rules which are modeled as mathematical opera-
tors. Such operations are applied to each agent considering
that the complete group hold a memory to store its own best
positions seen so far, using a competition principle.

CAB has been experimentally evaluated over a test
suite consisting of 8 benchmark multimodal functions for
optimization. The performance of CAB has been compared
to some other existing algorithms including deterministic
crowding [17], probabilistic crowding [18], sequential fitness
sharing [15], clearing procedure [20], clustering-based nich-
ing (CBN) [19], species conserving genetic algorithm (SCGA)
[21], elitist-population strategies (AEGA) [22], clonal selec-
tion algorithm [24], and the artificial immune network
(aiNet) [25]. All experiments have demonstrated that CAB
generally outperforms all other multimodal metaheuristic
algorithms regarding efficiency and solution quality, typically
showing significant efficiency speedups.The remarkable per-
formance of CAB is due to two different features: (i) operators
allow a better exploration of the search space, increasing the
capacity to findmultiple optima; (ii) the diversity of solutions
contained in the M

ℎ
memory in the context of multimodal

optimization ismaintained and even improved through of the
use of a competition principle (dominance concept).

The proposed algorithm is also applied to the engineering
problem of multicircle detection. Such a process is faced
as a multimodal optimization problem. In contrast to other
heuristic methods that employ an iterative procedure, the
proposed CAB method is able to detect single or multiple
circles over a digital image by running only one optimization
cycle. The CAB algorithm searches the entire edge map for
circular shapes by using a combination of three noncollinear
edge points as candidate circles (animal positions) in the
edge-only image. A matching function (objective function)
is used to measure the existence of a candidate circle over the
edge map. Guided by the values of such matching function,
the set of encoded candidate circles is evolved using the CAB
algorithm so that the best candidate can be fitted into an
actual circle. After the optimization has been completed, an
analysis of the embedded memory is executed in order to
find the significant local minima (remaining circles). The
overall approach generates a fast subpixel detector which can
effectively identify multiple circles in real images despite that
some circular objects exhibit a significant occluded portion.

In order to test the circle detection performance, both
speed and accuracy have been compared. Score functions are
defined by (17) and (18) in order to measure accuracy and
effectively evaluate the mismatch between manually detected
andmachine-detected circles.We have demonstrated that the

CABmethod outperforms both the GA (as described in [41])
and the BFOA (as described in [45]) within a statistically
significant framework (Wilcoxon test). In contrast to the
CAB method, the RHT algorithm [40] shows a decrease in
performance under noisy conditions. Yet the CAB algorithm
holds its performance under the same circumstances. Finally,
Table 6 indicates that the CABmethod can yield better results
on complicated and noisy images compared with the GA and
the BFOA methods.
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Stochastic global optimization (SGO) algorithms such as the particle swarm optimization (PSO) approach have become popular for
solving unconstrained global optimization (UGO) problems.The PSO approach, which belongs to the swarm intelligence domain,
does not require gradient information, enabling it to overcome this limitation of traditional nonlinear programming methods.
Unfortunately, PSO algorithm implementation and performance depend on several parameters, such as cognitive parameter, social
parameter, and constriction coefficient.These parameters are tuned by using trial and error. To reduce the parametrization of a PSO
method, this work presents two efficient hybrid SGO approaches, namely, a real-coded genetic algorithm-based PSO (RGA-PSO)
method and an artificial immune algorithm-based PSO (AIA-PSO) method.The specific parameters of the internal PSO algorithm
are optimized using the external RGA and AIA approaches, and then the internal PSO algorithm is applied to solve UGO problems.
The performances of the proposed RGA-PSO andAIA-PSO algorithms are then evaluated using a set of benchmarkUGOproblems.
Numerical results indicate that, besides their ability to converge to a global minimum for each test UGO problem, the proposed
RGA-PSO and AIA-PSO algorithms outperformmany hybrid SGO algorithms.Thus, the RGA-PSO and AIA-PSO approaches can
be considered alternative SGO approaches for solving standard-dimensional UGO problems.

1. Introduction

An unconstrained global optimization (UGO) problem can
generally be formulated as follows:

Minimize 𝑓 (x) , x = [𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑁
]
𝑇

∈ R
𝑁
, (1)

where 𝑓(x) is an objective function and x represents a
decision variable vector. Additionally, x ∈ 𝑆, 𝑆 ⊆ R𝑁 denotes
search space (𝑆), which is 𝑁 dimensional and bounded by
parametric constraints as follows:

𝑥
𝑙

𝑛
≤ 𝑥
𝑛
≤ 𝑥
𝑢

𝑛
, 𝑛 = 1, 2, . . . , 𝑁, (2)

where 𝑥𝑙
𝑛
and 𝑥𝑢

𝑛
are the lower and upper boundaries of the

decision variables 𝑥
𝑛
, respectively.

Many conventional nonlinear programming (NLP) tech-
niques, such as the golden search, quadratic approximation,

Nelder-Mead, steepest descent, Newton, and conjugate gra-
dient methods, have been used to solve UGO problems [1].
Unfortunately, such NLP methods have difficulty in solving
UGO problems when an objective function of an UGO prob-
lem is nondifferential. Many stochastic global optimization
(SGO) approaches developed to overcome this limitation
of the traditional NLP methods include genetic algorithms
(GAs), particle swarm optimization (PSO), ant colony opti-
mization (ACO), and artificial immune algorithms (AIAs).
For instance, Hamzaçebi [2] developed an enhanced GA
incorporating a local random search algorithm for eight
continuous functions. Furthermore, Chen [3] presented a
two-layer PSOmethod to solve nineUGOproblems. Zhao [4]
presented a perturbed PSO approach for 12 UGO problems.
Meanwhile, Toksari [5] developed an ACO algorithm for
solving UGO problems. Finally, Kelsey and Timmis [6]
presented an AIA method based on the clonal selection
principle for solving 12 UGO problems.



2 Mathematical Problems in Engineering

This work focuses on a PSO algorithm, based on it is
being effective, robust and easy to use in the SGO meth-
ods. Research on the PSO method has considered many
critical issues such as parameter selection, integration of
the PSO algorithm with the approaches of self-adaptation,
and integration with other intelligent optimizing methods
[7]. This work surveys two issues: first is a PSO approach
that integrates with other intelligent optimizingmethods and
second is parameter selection for use in a PSO approach.

Regarding the first issue, the conventional PSO algorithm
lacks evolution operators of GAs, such as crossover and
mutation operations. Therefore, PSO has premature conver-
gence, that is, a rapid loss of diversity during optimization
[4]. To overcome this limitation, many hybrid SGO methods
have been developed to create diverse candidate solutions
to enhance the performance of a PSO approach. Hybrid
algorithms have some advantages; for instance, hybrid algo-
rithms outperform individual algorithms in solving certain
problems and thus can solve general problems more effi-
ciently [8]. Kao and Zahara [9] presented a hybrid GA
and PSO algorithm to solve 17 multimodal test functions.
Their study used the operations of GA and PSO methods to
generate candidate solutions to improve solution quality and
convergence rates. Furthermore, Shelokar et al. [10] presented
a hybrid PSO and ACO algorithm to solve multimodal
continuous optimization problems.Their study used an ACO
algorithm to update the particle positions to enhance a
PSO algorithm performance. Chen et al. [11] presented a
hybrid PSO and external optimization based on the Bak–
Sneppen model to solve unimodal and multimodal bench-
mark problems. Furthermore, Thangaraj et al. [12] surveyed
many algorithms that combine the PSO algorithm with other
search techniques and compared the performances obtained
using hybrid differential evolution PSO (DE-PSO), adaptive
mutation PSO (AMPSO), and hybridGA and PSO (GA-PSO)
approaches to solve nine conventional benchmark problems.

Regarding the second issue, a PSO algorithm has numer-
ous parameters that must be set, such as cognitive parameter,
social parameter, inertia weight, and constriction coefficient.
Traditionally, the optimal parameter settings of a PSO algo-
rithm are tuned based on trial and error. The abilities of
a PSO algorithm to explore and exploit are constrained to
optimum parameter settings [13, 14]. Therefore, Jiang et al.
[15] used a stochastic process theory to analyze the parameter
settings (e.g., cognitive parameter, social parameter, and
inertia weight) of a standard PSO algorithm.

This work focuses on the second issue related to the
application of a PSO method. Fortunately, the optimization
of parameter settings for a PSO algorithm can be viewed as an
UGOproblem.Moreover, real-coded GA (RGA) andAIA are
efficient SGO approaches for solving UGO problems. Based
on the advantage of a hybrid algorithm [8], thiswork develops
two hybrid SGO approaches. The first approach is a hybrid
RGA and PSO (RGA-PSO) algorithm, while the second one
is a hybridAIA and PSO (AIA-PSO) algorithm.The proposed
RGA-PSO and AIA-PSO algorithms are considered as a
means of solving the two optimization problems simulta-
neously. The first UGO problem (optimization of cognitive
parameter, social parameter, and constriction coefficient) is

optimized using external RGA and AIA approaches, respec-
tively. The second UGO problem is then solved using the
internal PSO algorithm. The performances of the proposed
RGA-PSO and AIA-PSO algorithms are evaluated using a set
of benchmark UGO problems and compared with those of
many hybrid algorithms [9, 10, 12].

The rest of this paper is organized as follows. Section 2
describes RGA, PSO, and AIA approaches. Section 3 then
presents the proposed RGA-PSO and AIA-PSO methods.
Next, Section 4 compares the experimental results of the
proposed RGA-PSO and AIA-PSO approaches with those
of many hybrid methods. Conclusions are finally drawn in
Section 5.

2. Related Works

The SGO approaches such as RGA, PSO, and AIA [16] are
described as follows.

2.1. Real-Coded Genetic Algorithm. GAs are based on the
concepts of natural selection anduse three genetic operations,
that is, selection, crossover, and mutation, to explore and
exploit the solution space. In solving continuous function
optimization problems, RGA method outperforms binary-
coded GA approach [17]. Therefore, this work describes
operators of a RGA method [18].

2.1.1. Selection Operation. A selection operation picks up
strong individuals from a current population based on their
fitness function values and then reproduces these individuals
into a crossover pool. Many selection operations developed
include the roulette wheel, the ranking, and the tournament
methods [17, 18]. This work employs the normalized geomet-
ric ranking method as follows:

𝑝
𝑗
= 𝑞

(1 − 𝑞)

rank −1
, 𝑗 = 1, 2, . . . , psRGA, (3)

where 𝑝
𝑗
= probability of selecting individual 𝑗, 𝑞 = probabil-

ity of choosing the best individual (here 𝑞 = 0.35), 𝑞 = 𝑞/(1−
(1 − 𝑞)

psRGA
), and rank = individual ranking based on fitness

value, where 1 represents the best, rank = 1, 2, . . . , psRGA, and
psRGA = population size of the RGA method.

2.1.2. Crossover Operation. While exploring the solution
space by creating new offspring, the crossover operation
randomly chooses two parents from the crossover pool and
then uses these two parents to create two new offspring. This
operation is repeated until the psRGA/2 is satisfied.The whole
arithmetic crossover is easily performed as follows:

v
1
= 𝛽 × v1 + (1 − 𝛽) × v2,

v2 = (1 − 𝛽) × v1 + 𝛽 × v2,
(4)
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where v1 and v
2
= parents (decision variable vectors), v1 and

v
2
= offspring (decision variable vectors), and 𝛽 = uniform

random number in the interval [0, 1.5].

2.1.3. Mutation Operation. Mutation operation can improve
the diversity of individuals (candidate solutions). Multi-non-
uniform mutation is described as follows:

𝑥trial,𝑛 =

{
{
{
{
{
{

{
{
{
{
{
{

{

𝑥current,𝑛 + (𝑥
𝑢

𝑛
− 𝑥current,𝑛) pert (𝑔RGA)

if 𝑈
1
(0, 1) < 0.5,

𝑥current,𝑛 − (𝑥current,𝑛 − 𝑥
𝑙

𝑛
) pert (𝑔RGA)

if 𝑈
1
(0, 1) ≥ 0.5,

(5)

where pert(𝑔RGA) = [𝑈
2
(0, 1)(1 − 𝑔RGA/𝑔max,RGA)]

2, per-
turbed factor, 𝑈

1
(0, 1) and 𝑈

2
(0, 1) = uniform random vari-

able in the interval [0, 1], 𝑔max,RGA = maximum generation
of the RGA method, 𝑔RGA = current generation of the RGA
method, 𝑥current,𝑛 = current decision variable 𝑥

𝑛
, and 𝑥trial,𝑛

= trial decision variable (candidate solution) 𝑥
𝑛
.

2.2. Particle Swarm Optimization. Kennedy and Eberhart
[19] first presented a standard PSO algorithm, which is
inspired by the social behavior of bird flocks or fish schools.
Like GAs, a PSO method is a population-based algorithm. A
population of candidate solutions is called a particle swarm.
The particle velocities can be updated by (6) as follows:

𝑣
𝑗,𝑛
(𝑔PSO + 1) = 𝑣𝑗,𝑛 (𝑔PSO) + 𝑐1𝑟𝑗,1 (𝑔PSO)

× [𝑝
lb
𝑗,𝑛
(𝑔PSO) − 𝑥𝑗,𝑛 (𝑔PSO)]

+ 𝑐
2
𝑟
𝑗,2
(𝑔PSO) [𝑝

gb
𝑗,𝑛
(𝑔PSO) − 𝑥𝑗,𝑛 (𝑔PSO)]

𝑗 = 1, 2, . . . , psPSO, 𝑛 = 1, 2, . . . , 𝑁
(6)

where 𝑣
𝑗,𝑛
(𝑔PSO +1) = particle velocity of decision variable 𝑥

𝑛

of particle 𝑗 at generation𝑔PSO+1, 𝑣𝑗,𝑛(𝑔PSO)=particle veloc-
ity of decision variable 𝑥

𝑛
of particle 𝑗 at generation 𝑔PSO, 𝑐1 =

cognitive parameter, 𝑐
2
= social parameter, 𝑥

𝑗,𝑛
(𝑔PSO) = parti-

cle position of decision variable 𝑥
𝑛
of particle 𝑗 at generation

𝑔PSO, 𝑟𝑗,1(𝑔PSO), 𝑟𝑗,2(𝑔PSO) = independent uniform random
numbers in the interval [0, 1] at generation 𝑔PSO, 𝑝

lb
𝑗,𝑛
(𝑔PSO)

= best local solution at generation 𝑔PSO, 𝑝
gb
𝑗,𝑛
(𝑔PSO) = best

global solution at generation 𝑔PSO, and psPSO = population
size of the PSO algorithm.

Theparticle positions can be obtained using (7) as follows:

𝑥
𝑗,𝑛
(𝑔PSO + 1) = 𝑥𝑗,𝑛 (𝑔PSO) + 𝑣𝑗,𝑛 (𝑔PSO + 1) ,

𝑗 = 1, 2, . . . , psPSO, 𝑛 = 1, 2, . . . , 𝑁.
(7)

Shi and Eberhart [20] introduced a modified PSO algo-
rithm by incorporating an inertia weight (𝜔in) into (8) to

control the exploration and exploitation capabilities of a PSO
algorithm as follows:

𝑣
𝑗,𝑛
(𝑔PSO + 1) = 𝜔in𝑣𝑗,𝑛 (𝑔PSO) + 𝑐1𝑟𝑗,1 (𝑔PSO)

× [𝑝
lb
𝑗,𝑛
(𝑔PSO) − 𝑥𝑗,𝑛 (𝑔PSO)]

+ 𝑐
2
𝑟
𝑗,2
(𝑔PSO) [𝑝

gb
𝑗,𝑛
(𝑔PSO) − 𝑥𝑗,𝑛 (𝑔PSO)]

𝑗 = 1, 2, . . . , 𝑝𝑠PSO, 𝑛 = 1, 2, . . . , 𝑁.

(8)

A constriction coefficient (𝜒) in (9) is used to balance the
exploration and exploitation tradeoff [21–23] as follows:

𝑣
𝑗,𝑛
(𝑔PSO + 1) = 𝜒 {𝑣𝑗,𝑛 (𝑔PSO) + 𝜏1 (𝑔PSO)

× [𝑝
lb
𝑗,𝑛
(𝑔PSO) − 𝑥𝑗,𝑛 (𝑔PSO)]

+𝜏
2
(𝑔PSO) [𝑝

gb
𝑗,𝑛
(𝑔PSO) − 𝑥𝑗,𝑛 (𝑔PSO)]}

𝑗 = 1, 2, . . . , psPSO, 𝑛 = 1, 2, . . . , 𝑁,
(9)

where

𝜒 =

2𝑈
3
(0, 1)






2 − 𝜏 − √𝜏 (𝜏 − 4)







, (10)

𝑈
3
(0, 1) = uniform random variable in the interval [0, 1], 𝜏 =

𝜏
1
+ 𝜏
2
, 𝜏
1
= 𝑐
1
𝑟
𝑗,1
, 𝜏
1
= 𝑐
2
𝑟
𝑗,2
.

This work considers parameters 𝜔in and 𝜒 to modify the
particle velocities as follows:

𝑣
𝑗,𝑛
(𝑔PSO + 1) = 𝜒 {𝜔in𝑣𝑗,𝑛 (𝑔PSO) + 𝑐1𝑟𝑗,1 (𝑔PSO)

× [𝑝
lb
𝑗,𝑛
(𝑔PSO) − 𝑥𝑗,𝑛 (𝑔PSO)]

+ 𝑐
2
𝑟
𝑗,2
(𝑔PSO)

× [𝑝
gb
𝑗,𝑛
(𝑔PSO) − 𝑥𝑗,𝑛 (𝑔PSO)]}

𝑗 = 1, 2, . . . , psPSO, 𝑛 = 1, 2, . . . , 𝑁,

(11)

where 𝜔in = ((𝑔max,PSO − 𝑔PSO)/𝑔max,PSO), increased 𝑔PSO
value reduces the 𝜔in, and 𝑔max,PSO = maximum generation
of the PSO algorithm.

According to (11), the optimal values of parameters 𝑐
1
, 𝑐
2
,

and 𝜒 are difficult to obtain through trial and error.This work
thus optimizes these parameter settings by using RGA and
AIA approaches.

2.3. Artificial Immune Algorithm. Wu [24] presented an AIA
approach based on clonal selection and immune network
theories to solve constrained global optimization problems.
The AIAmethod consists of selection, hypermutation, recep-
tor editing, and bone marrow operations. The selection
operation is performed to reproduce strong antibodies (Abs).
Also, diverse Abs are created using hypermutation, receptor
editing, and bone marrow operations, as described in the
following subsections.
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2.3.1. Ab and Ag Representation. In the human system, an
antigen (Ag) has multiple epitopes (antigenic determinants),
which can be recognized by many Abs with paratopes
(recognizers), on its surface. In the AIA approach, an Ag
represents known parameters of a solved problem. The Abs
are the candidate solutions (i.e., decision variables 𝑥

𝑛
, 𝑛 =

1, 2, ..., 𝑁) of the solved problem. The quality of a candidate
solution is evaluated using an Ab-Ag affinity that is derived
from the value of an objective function of the solved problem.

2.3.2. Selection Operation. The selection operation controls
the number of antigen-specificAbs.This operation is defined
according to Ab-Ag and Ab-Ab recognition information as
follows:

𝑝
𝑗,rec =

1

𝑁

𝑁

∑

𝑛=1

1

𝑒
𝑑
𝑗,𝑛

,

𝑑
𝑗,𝑛
=











𝑥
∗

𝑛
− 𝑥
𝑗,𝑛

𝑥
∗

𝑛











, 𝑗 = 1, 2, . . . , rsAIA, 𝑛 = 1, 2, . . . , 𝑁,

(12)

where 𝑝
𝑗,rec = probability that Ab

𝑗
recognizes Ab∗ (the best

solution), 𝑥∗
𝑛
= the best Ab∗ with the highest Ab-Ag affinity,

𝑥
𝑗,𝑛

= decision variables 𝑥
𝑛
of Ab

𝑗
, and rsAIA = repertoire

(population) size of the AIA approach.
TheAb∗ is recognized by otherAb

𝑗
in a currentAb reper-

toire. Large 𝑝
𝑗,rec implies that Ab

𝑗
can effectively recognize

Ab∗. The Ab
𝑗
with 𝑝

𝑗,rec that is equivalent to or larger than
the threshold degree of AIA approach 𝑝rt,AIA is reproduced
to generate an intermediate Ab repertoire.

2.3.3. HypermutationOperation. The somatic hypermutation
operation can be expressed as follows:

𝑥trial,𝑛 =

{
{
{
{
{
{

{
{
{
{
{
{

{

𝑥current,𝑛 + (𝑥
𝑢

𝑛
− 𝑥current,𝑛) pert (𝑔AIA) ,

if 𝑈
4
(0, 1) < 0.5,

𝑥current,𝑛 − (𝑥current,𝑛 − 𝑥
𝑙

𝑛
) pert (𝑔AIA) ,

if 𝑈
4
(0, 1) ≥ 0.5,

(13)

where pert(𝑔AIA) = {𝑈
5
(0, 1)(1 − 𝑔AIA/𝑔max,AIA)}

2 = pertur-
bation factor, 𝑔AIA = current generation of the AIA method,
𝑔max,AIA = maximum generation number of the AIAmethod,
and 𝑈

4
(0, 1) and 𝑈

5
(0, 1) = uniform random number in the

interval [0, 1].
This operation has two tasks, that is, a uniform search and

local fine tuning.

2.3.4. Receptor-Editing Operation. A receptor-editing opera-
tion is developed based on the standard Cauchy distribution
𝐶(0, 1), in which the local parameter is zero and the scale
parameter is one. Receptor editing is implemented using

Cauchy randomvariables that are created from𝐶(0, 1), owing
to their ability to provide a large jump in the Ab-Ag affinity
landscape to increase the probability of escaping from the
local Ab-Ag affinity landscape. Cauchy receptor editing can
be defined by

xtrial = xcurrent + 𝑈6(0, 1)
2
× 𝜎, (14)

where 𝜎 = [𝜎
1
, 𝜎
2
, . . . , 𝜎

𝑁
]
𝑇, vector of Cauchy random

variables, and 𝑈
6
(0, 1) = uniform random number in the

interval [0, 1].
This operation is used in local fine-tuning and large

perturbation.

2.3.5. Bone Marrow Operation. The paratope of anAb can be
created by recombining gene segments VHDHJH and VLJL
[25]. Therefore, based on this metaphor, diverse Abs are
synthesized using a bone marrow operation. This operation
randomly selects two Abs from the intermediate Ab reper-
toire and a recombination point from the gene segments of
the paratope of the selected Abs. The selected gene segments
(e.g., gene𝑥

1
ofAb
1
and gene𝑥

1
of theAb

2
) are reproduced to

create a library of gene segments.The selected gene segments
in the paratope are then deleted. The new Ab

1
is formed by

inserting the gene segment, which is gene 𝑥
1
of theAb

2
in the

library plus a random variable created from standard normal
distribution 𝑁(0, 1), at the recombination point. The details
of the implementation of the bone marrow operation can be
found [24].

3. Methods

This work develops the RGA-PSO and AIA-PSO approaches
for solving UGO problems.The implementation of the RGA-
PSO and AIA-PSO methods is described as follows.

3.1. RGA-PSO Algorithm. Figure 1 shows the pseudocode
of the proposed RGA-PSO algorithm. The best parameter
setting of the internal PSO algorithm is obtained by using the
external RGAmethod. BenchmarkUGOproblems are solved
by using the internal PSO algorithm.

External RGA
Step 1 (initialize the parameter settings). Parameter settings
such as psRGA, crossover probability of the RGA method
𝑝
𝑐,RGA, mutation probability of the RGA approach 𝑝

𝑚,RGA,
psPSO aswell as lower andupper boundaries of the parameters
(𝑐
1
, 𝑐
2
, and 𝜒) for a PSO algorithm are given. The candi-

date solution (individual) of a RGA method represents the
optimized parameters of internal PSO algorithm. Figure 2
illustrates the candidate solution of the RGA method.
Step 2 (calculate the fitness function value). The fitness
function value fitness

𝑗
of the external RGA method is the
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candidate
solution

Procedure internal PSO Algorithm
begin

(1) Generate an initial particle swarm
(a) parameter settings obtained from external RGA
(b) generate an initial particle swarm
while do
(2) Compute the objective function value
(3) Update the particle velocity and position
(4) Perform an elitist strategy

endWhile
end

end

Procedure external RGA method
begin

Step 1: Initialize the parameter settings
(a) parameter settings
(b) generate an initial population

while do

Step 3: Perform a selection operation
For each candidate solution do

if rand then
Step 4: Implement a crossover operation

endIf
endFor
For each candidate solution do

if rand then
Step 5: Conduct a mutation operation

endIf
endFor

Step 6: Perform an elitist strategy

endIf

break
endIf

endWhile
end

end

Step 2: Calculate the fitness function value

if fitness(𝑥𝑛,𝜒,𝑐1,𝑐2,𝑔 RGA + 1) − fitness(𝑥𝑛,𝜒,𝑐1,𝑐2,𝑔 RGA ) ≤ 1 × 10−9 then

𝑔RGA ← 𝑔RGA + 1

𝑔RGA ←0

𝑔PSO ←0

𝑔PSO ← 𝑔PSO + 1

← + 1

← 0

if ≤ 5 then

𝑔RGA ≤ 𝑔max,RGA 𝑔PSO ≤ 𝑔max,PSO

𝑗, 𝑗 = 1,2, . . . ,psRGA/2

𝑗, 𝑗 = 1,2, . . . ,psRGA

𝑗, 𝑗 = 1,2, . . . ,psRGA

() ≤ 𝑃𝑐,RGA

() ≤ 𝑃m,RGA

count

count

count count

χ c1 c2

PSO𝑗 = 𝑓(𝒙∗ PSO𝒙∗)fitness

Figure 1: The pseudocode of the proposed RGA-PSO algorithm.

Table 1: The parameter settings for the proposed RGA-PSO and AIA-PSO approaches.

Methods Parameter settings Search space

External RGA
𝑝
𝑐,RGA = 1

𝑝
𝑚,RGA = 0.15
psRGA = 20
𝑔max,RGA = 20

[𝜒
𝑙
, 𝜒
𝑢
] = [0.1, 1]

[𝑐
𝑙

1
, 𝑐
𝑢

1
] = [0.1, 5]

[𝑐
𝑙

2
, 𝑐
𝑢

2
] = [0.1, 5]

External AIA
𝑝rt,AIA = 0.9
rsAIA = 20
𝑔max,AIA = 20

Internal PSO
psPSO = 20

𝑔max,PSO = 1000 for𝑁 ≤ 3

𝑔max,PSO = 3000 for 5 ≤ 𝑁 ≤ 30

[𝑥
𝑙

𝑛
, 𝑥𝑢
𝑛
] for a UGO problem

Candidate solution j

χ c1 c2 Fitnessj

Figure 2: Candidate solution of the RGA method.

best objective function value 𝑓(x∗PSO) obtained from the best
solution x∗PSO of each internal PSO algorithm execution as
follows:

fitness
𝑗
= 𝑓 (x∗PSO) , 𝑗 = 1, 2, . . . , psRGA. (15)

The candidate solution 𝑗 of the external RGA method is
incorporated into the internal PSO algorithm and, then, the
internal PSO algorithm is used to solve anUGOproblem.The
internal PSO algorithm is executed as follows.

Internal PSO Algorithm

(1) Generate an initial particle swarm. An initial particle
swarm is created based on psPSO from [𝑥𝑙

𝑛
, 𝑥
𝑢

𝑛
] of

an UGO problem. A particle represents a candidate
solution of an UGO problem.
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Procedure internal PSO algorithm
begin

(1) Generate an initial particle swarm
(a) parameter settings obtained from external AIA
(b) generate an initial particle swarm

(3) Update the particle velocity and position
(4) Perform an elitist strategy

endWhile
end

end

Procedure external AIA method
begin

Step 1: Initialize the parameter settings
while AIA max,AIA do

Step 2: Evaluate the Ab-Ag affinity
← max

Step 3: Perform a clonal selection operation
for each Ab , do

if then
promote (clone)

else
suppress

endIf
endFor

Step 4: Implement an Ab-Ag affinity maturation operation
for each promoted Abj do

if rand() ≤ 0.5 do
somatic hypermutation

else
receptor editing

endIf
endFor

Step 5: Introduce diverse Abs
Step 6: Update an Ab repertoire

endIf

break
endIf

endWhile
end

end

while do𝑔PSO ≤ 𝑔max,PSO

𝑔PSO ←0

(2) Compute the fitness value

χ c1 c2

−1 × 𝒙∗PSO

𝑔 𝑔

if ≤ 5 then

𝑔AIA← 𝑔AIA+ 1

𝑗 = 1,2, . . . ,r𝑠AIA

𝑗 = 1,2, . . . ,r𝑠(affnity𝑗

𝑗

),

𝑔PSO ← 𝑔PSO + 1

<

if  affinity(𝑥𝑛,𝜒,𝑐1,𝑐2,𝑔AIA+ 1) − affinity(𝑥𝑛,𝜒,𝑐1,𝑐2,𝑔AIA) ≤ 1 × 10−9 then
← + 1

𝑔AIA ←0
← 0

∗Ab

𝑝𝑗 ,rec ≥ 𝑝rt,AIA

count

count count

count

Figure 3: The pseudocode of the proposed AIA-PSO algorithm.

(2) Compute the objective function value. The objective
function value of the internal PSO algorithm of
particle 𝑗𝑓(x

𝑗,PSO) 𝑗 = 1, 2, . . . , psPSO is the objective
function value of an UGO problem.

(3) Update the particle velocity and position. Equations (7)
and (11) can be used to update the particle position
and velocity.

(4) Perform an elitist strategy. A new particle swarm is
generated from internal step (3). Notably, 𝑓(x

𝑗,PSO)
of a candidate solution 𝑗 (particle 𝑗) in the particle
swarm is evaluated.This work makes a pairwise com-
parison between the 𝑓(x

𝑗,PSO) of candidate solutions
in the new particle swarm and that in the current
particle swarm. A situation in which the candidate
solution 𝑗 (𝑗 = 1, 2, . . . , psPSO) in the new particle
swarm is better than candidate solution 𝑗 in the cur-
rent particle swarm implies that the strong candidate
solution 𝑗 in the new particle swarm replaces the
candidate solution 𝑗 in the current particle swarm.
The elitist strategy guarantees that the best candidate
solution is always preserved in the next generation.
The current particle swarm is updated to the particle
swarm of the next generation.

Internal steps from (2) to (4) are repeated until the
maximum generation number of the PSO method 𝑔max,PSO
of the internal PSO algorithm is satisfied.

End

Step 3 (perform a selection operation). Equation (3) is used
to select the parents into a crossover pool.
Step 4 (implement a crossover operation). The crossover
operation performs a global search. The candidate solutions
are created by using (4).
Step 5 (conduct a mutation operation). The mutation opera-
tion implements a local search. A solution space is exploited
using (5).
Step 6 (perform an elitist strategy). This work presents an
elitist strategy to update the population. A situation in which
the fittness

𝑗
of candidate solution 𝑗 in the new population is

larger than the fittness
𝑗
of candidate solution 𝑗 in the current

population suggests that a replacement of the weak candidate
solution 𝑗 takes place. Additionally, a situation in which the
fittness

𝑗
of candidate solution 𝑗 in the new population is equal

to or worse than that in the current population implies that
the candidate solution 𝑗 in the current population survives. In
addition to maintaining the strong candidate solutions, this
strategy effectively eliminates weak candidate solutions.
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χ c1 c2

Epitope (antigenic determinants)

Ag

The known coefficient parameters

for an UGO problem

Max(affinityj) = −1×f(x∗PSO)

Stimulate
Suppress

Candidate solution

x1 x2 x3

Ab

Ab

Ab

Ab

Paratope (recognizer)

AIA-PSO approach

Figure 4: Ab and Ag representation.

External steps 2 to 6 are repeated until the 𝑔max,RGA of the
external RGA method is met.

3.2. AIA-PSO Algorithm. Figure 3 shows the pseudocode of
the proposed AIA-PSO algorithm.The external AIA method
is used to optimize the parameter settings of the internal
PSO method, which is employed to solve benchmark UGO
problems.

External AIA
Step 1 (initialize the parameter settings). Several parameters
must be predetermined. These include repertoire (popula-
tion) size rsAIA and 𝑝rt,AIA. An availableAb repertoire (popu-
lation) is randomly generated using rsAIA from the lower and
upper boundaries of parameters 𝜒 [𝜒𝑙, 𝜒𝑢], 𝑐

1
[𝑐𝑙
1
, 𝑐
𝑢

1
], and 𝑐

2

[𝑐𝑙
2
, 𝑐
𝑢

2
]. Figure 4 shows the Ab and Ag representation.

Step 2 (evaluate the Ab-Ag affinity).

Internal PSO Algorithm. The external AIA approach offers
parameter settings 𝑐

1
, 𝑐
2
, and 𝜒 for the internal PSO algo-

rithm. Subsequently, internal steps (1)–(4) of the PSO algo-
rithm are implemented.The internal PSOmethod returns the
best fitness value of PSO𝑓(x∗PSO) to the external AIAmethod.

(1) Generate an initial particle swarm. An initial particle
swarm is created based on psPSO from [𝑥𝑙

𝑛
, 𝑥𝑢
𝑛
] of

an UGO problem. A particle represents a candidate
solution of an UGO problem.

(2) Compute the fitness value. The fitness value of the
internal PSO algorithm 𝑓(xPSO,𝑗) 𝑗 = 1, 2, . . . , psPSO
is the objective function value of an UGO problem.

(3) Update the particle velocity and position. Equations (7)
and (11) can be used to update the particle position
and velocity.

(4) Perform an elitist strategy. A new particle swarm
(population) is generated from internal step (3).
Notably, 𝑓(x

𝑗,PSO) of a candidate solution 𝑗 (particle
𝑗) in the particle swarm is evaluated. This work
makes a pairwise comparison between the 𝑓(x

𝑗,PSO)
of candidate solutions in the new particle swarm and
that in the current particle swarm.The elitist strategy
guarantees that the best candidate solution is always
preserved in the next generation.The current particle
swarm is updated to the particle swarm of the next
generation.

Internal steps from (2) to (4) are repeated until the
𝑔max,PSO of the internal PSO algorithm is satisfied.

End

Consistent with the Ab-Ag affinity metaphor, an Ab-Ag
affinity is determined using (16) as follows:

max (affinity
𝑗
) = −1 × 𝑓 (x∗PSO) 𝑗 = 1, 2, . . . , rsAIA. (16)

Following the evaluation of the Ab-Ag affinities of Abs
in the current Ab repertoire, the Ab with the highest Ab-
Ag affinity (Ab∗) is chosen to undergo clonal selection in
external Step 3.
Step 3 (perform a clonal selection operation). To control the
number of antigen-specific Abs, (12) is employed.
Step 4 (implement an Ab-Ag affinity maturation operation).
The intermediate Ab repertoire that is created in external
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Step 3 is divided into two subsets.TheseAbs undergo somatic
hypermutation operation by using (13) when the random
number is 0.5 or less. Notably, these Abs suffer receptor-
editing operation using (14) when the random number
exceeds 0.5.
Step 5 (introduce diverse Abs). Based on the bone marrow
operation, diverse Abs are created to recruit the Abs sup-
pressed in external Step 3.
Step 6 (Update an Ab repertoire). A new Ab repertoire is
generated from external Steps 3–5. The Ab-Ag affinities of
the Abs in the generated Ab repertoire are evaluated. This
work presents a strategy for updating the Ab repertoire. A
situation in which the Ab-Ag affinity of Ab

𝑗
in the new Ab

repertoire exceeds that in the current Ab repertoire implies
that a strong Ab in the new Ab repertoire replaces the weak
Ab in the current Ab repertoire. Additionally, a situation in
which the Ab-Ag affinity of Ab

𝑗
in the new Ab repertoire

equals to or is worse than that in the current Ab repertoire
implies that the Ab

𝑗
in the current Ab repertoire survives.

In addition to maintaining the strong Abs, this strategy
eliminates nonfunctional Abs

Repeat external Steps 2–6 until the termination criterion
𝑔max,AIA is satisfied.

4. Results

The proposed RGA-PSO and AIA-PSO algorithms were
applied to a set of benchmark UGO problems taken from
other studies [9, 10, 17, 26], as detailed in the Appendix. The
proposed RGA-PSO and AIA-PSO approaches were coded
in MATLAB software and run on a Pentium D 3.0 (GHz)
personal computer. One-hundred independent runs were
conducted for each test problem (TP). To have comparable
numerical results, the accuracy was chosen based on the
numerical results reported in [9, 10, 17, 26]. Numerical results
were summarized, including rate of successful minimizations
(success rate %), best mean worst, mean computational CPU
time (MCCT), and mean error ME (average value of the
gap between the objective function values calculated using
the AIA-PSO and RGA-PSO solutions and the known global
minimum value). Table 1 lists the parameter settings for the
proposed RGA-PSO and AIA-PSO approaches. The table
shows 20,000 (20 × 1000) objective function evaluations of
the internal PSO approach for an UGO problem with𝑁 ≤ 3

decision variables and 60,000 (20 × 3000) objective function
evaluations of the internal PSO for an UGO problem with
5 ≤ 𝑁 ≤ 30 decision variables. Moreover, the external AIA
and RGAmethods stop when 𝑔max,RGA= 20 and 𝑔max,AIA= 20
are met or the best fitness value of the RGA approach (or the
bestAb-Ag affinity of the AIAmethod) does not significantly
change for the past five generations.

4.1. Numerical Results Obtained Using the RGA-PSO and AIA-
PSO Algorithms for Low-Dimensional UGO Problems (2 ≤
𝑁 ≤ 10). Table 2 lists the numerical results obtained using
the proposed RGA-PSO algorithm. The numerical results
indicate that the RGA-PSO algorithm can obtain the global
minimum for each test UGO problem since these MEs equal

or closely approximate “0,” and the RGA-PSO algorithm has
an acceptable MCCT for each TP. Table 3 lists the optimal
parameter settings obtained using the proposed RGA-PSO
algorithm to solve 14 UGO problems.

Table 4 lists the numerical results obtained using the
proposed AIA-PSO algorithm. Numerical results indicate
that the AIA-PSO algorithm can obtain the global minimum
for each test UGO problem since these MEs equal or closely
approximate “0,” and that the AIA-PSO algorithm has an
acceptable MCCT for each TP. Table 5 lists the optimal
parameter settings obtained using the proposed AIA-PSO
algorithm for solving 14 UGO problems.

4.2. Numerical Results ObtainedUsing the RGA-PSO andAIA-
PSO Algorithms for a Standard-Dimensional UGO Problem
(𝑁=30). To investigate the effectiveness of the RGA-PSO
and AIA-PSO methods for solving a standard-dimensional
UGO problem, the Zakharov problem with 30 decision
variables (ZA

30
), as described in the Appendix, has been

solved using the RGA-PSO and AIA-PSO approaches. Fifty
independent runs were performed to solve the UGO prob-
lem. To increase the diversity of candidate solutions for use in
the external RGAmethod, the parameter𝑝

𝑚,RGA was set from
0.15 to “1.” Table 6 lists the numerical results obtained using
the RGA-PSO and AIA-PSO approaches. This table indicates
that the two approaches converge to the global optimum
value, since the MEs closely approximate “0,” and the MCCT
of the RGA-PSO method is larger than that of the AIA-PSO
method. Moreover, the success rates of the proposed RGA-
PSO and AIA-PSO approaches are 100%. The Wilcoxon test
is performed to the difference of median values of the MEs
obtained using the RGA-PSO and AIA-PSO methods. The 𝑃
value of the Wilcoxon test is 0.028, which is smaller than the
significance level of 0.05, indicating that the performance of
the RGA-PSO method is statistically different to that of the
AIA-PSOmethod. Table 7 summarizes the optimal parameter
settings obtained using the proposed RGA-PSO and AIA-
PSO algorithms for the UGO problem ZA

30.

The UGO problem ZA
50

was solved using the RGA-
PSO and AIA-PSO methods. The RGA-PSO and AIA-PSO
methods fail to solve the UGO problem, since the diversity
of the particle swarm in the internal PSO method cannot
be maintained. Hence, future work will focus on improving
the diversity of the particle swarm by applying mutation
operations.

4.3. Comparison. Table 8 lists the results of the Wilcoxon
test for theMEs obtained using the proposed RGA-PSO and
AIA-PSO methods for 14 UGO problems. In this table, the
“∗∗” represents the 𝑃 value of Wilcoxon test which cannot
be obtained, since the MEs obtained using the RGA-PSO
and AIA-PSO methods for a TP are identical. Moreover, the
median values of theMEs obtained using the RGA-PSO and
AIA-PSO methods for TP 10 are not statistically different,
since their 𝑃 value is larger than the significance level of 0.05.
Overall, the performances obtained using the RGA-PSO and
AIA-PSO methods are statistically identical.
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Table 3: The optimal parameter settings obtained using the proposed RGA-PSO algorithm for solving 14 UGO problems.

TP number Function name 𝜒 𝑐
1

𝑐
2

1 SHCB 0.36497798 1.79972890 2.36717639
2 GP 0.86138264 3.74964714 0.10000000
3 ES 0.36038653 0.42043804 4.78367612
4 B2 0.75486133 0.17875492 0.95144705
5 DJ 0.39357143 3.17898242 4.72512283
6 Booth 0.56703400 4.84740898 2.58109482
7 RC 0.44153938 2.71748076 3.81076900
8 RA 0.93533829 0.76530619 3.53402840
9 RS2 0.87003776 1.28577955 2.77423057
10 RS5 0.62553666 0.10000000 5.00000000
11 SH 0.45903159 1.07452631 4.15038556
12 ZA2 0.75044069 0.50883133 1.93860581
13 ZA5 0.52013863 1.05471011 4.61197390
14 ZA10 0.56126516 0.39456605 4.95735921

Table 9 compares the numerical results obtained using
the RGA-PSO and AIA-PSO methods with those obtained
using the hybrid algorithms for 11 TPs. Specifically, the table
lists the numerical results obtained using the Nelder-Mead
simplex search and PSO (NM-PSO) and GA-PSO taken
from [9], those obtained using particle swarm ant colony
optimization (PSACO), continuous hybrid algorithm (CHA)
and continuous tabu simplex search (CTSS) taken from [10],
and those obtained using DE-PSO, AMPSO1, and AMPSO2
taken from [12]. Table 9 indicates that the RGA-PSO and
AIA-PSO methods yield superior accuracy of MEs obtained
using the NM-PSO, GA-PSO, DE-PSO, AM-PSO1, AM-
PSO2, CHA and CTSS approaches for TPs 2, 3, 4, 5, 7, 9, 11,
and 12 and that RGA-PSO and AIA-PSO approaches yield
superior accuracy ofMEs obtained using the PSACOmethod
for TPs 4, 5, 7, 9, 10, 11, 12, 13 and 14. Table 10 compares the
percentage success rates of the proposed RGA-PSO and AIA-
PSOapproaches and those of the hybrid algorithms for 11 TPs,
indicating that all algorithms except for the CHA and CTSS
methods achieved identical performance (100% success rate)
for all TPs.

4.4. Summary of Results. The proposed RGA-PSO and AIA-
PSO algorithms have the following benefits.

(1) Parameter manipulation of the internal PSO algo-
rithm is based on the solved UGO problems. Owing
to their ability to efficiently solve UGO problems, the
external RGA and AIA approaches are substituted for
trial and error to manipulate the parameters (𝜒, 𝑐

1
,

and 𝑐
2
).

(2) Besides obtaining the optimum parameter settings of
the internal PSO algorithm, the RGA-PSO and AIA-
PSO algorithms can yield a global minimum for an
UGO problem.

(3) Beside, outperforming some published hybrid SGO
methods, the proposed RGA-PSO and AIA-PSO

approaches reduce the parametrization for the inter-
nal PSO algorithm, despite being more complex than
individual SGO approaches.

The proposed RGA-PSO and AIA-PSO algorithms are
limited in that they cannot solve high-dimensional UGO
problems (such as 𝑁 = 50). Future work will focus on
increasing the diversity of the particle swarm of the internal
PSOmethod by applyingmutation to solve high-dimensional
UGO problems.

5. Conclusions

This work developed RGA-PSO and AIA-PSO algorithms.
Performances of the proposed RGA-PSO and AIA-PSO
approaches were evaluated using a set of benchmark UGO
problems. Numerical results indicate that the proposed RGA-
PSOandAIA-PSOmethods can converge to globalminimum
for each test UGO problem and obtain the best parameter
settings of the internal PSO algorithm.Moreover, the numer-
ical results obtained using the RGA-PSO and AIA-PSO algo-
rithms are superior to those obtained using many alternative
hybrid SGOmethods.The RGA-PSO and AIA-PSOmethods
can thus be considered efficient SGO approaches for solving
standard-dimensional UGO problems.

Appendix

(1) Six-hump camel back (SHCB) (two variables) [17]:

𝑓 (x) = (4 − 2.1𝑥2
1
+

𝑥
4

1

3

)𝑥
2

1
+ 𝑥
1
𝑥
2
+ (−4 + 4𝑥

2

2
) 𝑥
2

2
(A.1)

search domain: −3 ≤ 𝑥
1
≤ 3; −2 ≤ 𝑥

2
≤ 2

one global minimum at two different points: x∗ =

(−0.0898, 0.7126) and x∗ = (0.0898, −0.7126),
𝑓(x∗) = −1.0316.
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Table 5: The optimal parameter settings obtained using the proposed AIA-PSO algorithm for solving 14 UGO problems.

TP number Function name 𝜒 𝑐
1

𝑐
2

1 SHCB 0.59403239 1.75960560 4.12826475
2 GP 0.29584147 2.62468918 4.41787729
3 ES 0.39500323 0.84589484 2.64979988
4 B2 0.64806710 1.78727677 1.83995777
5 DJ 0.45630341 1.11829588 4.10382418
6 Booth 0.60889449 2.53158038 1.32827344
7 RC 1.00000000 1.48772085 0.43921335
8 RA 0.38157302 4.93248942 4.08732827
9 RS2 0.39872504 4.65992304 4.84228028
10 RS5 0.55519288 0.10000000 4.52483714
11 SH 0.54293231 2.10545153 4.52889414
12 ZA2 0.44530811 1.05474921 3.20092987
13 ZA5 0.51683760 1.17129205 4.94965004
14 ZA10 0.53688659 0.53752883 4.99881022

Table 6: Numerical results obtained from the proposed RGA-PSO and AIA-PSO algorithms for solving a standard-dimensional UGO
problem.

Function
name

Global
minimum

Required
accuracy Methods Success rate (%) 𝑓(x∗RGA-PSO) 𝑓(xmean

RGA-PSO) 𝑓(xworstRGA-PSO) ME MCCT (sec)

ZA30 0 1𝐸 − 3

RGA-PSO 100 4.186𝐸 − 13 4.537𝐸 − 06 5.331𝐸 − 05 4.537𝐸 − 06 1753.86
AIA-PSO 100 6.520𝐸 − 12 8.099𝐸 − 06 9.175𝐸 − 05 8.099𝐸 − 06 1453.98

(2) Goldstein-price (GP) (two variables) [9, 10]:

𝑓 (x) = [1 + (𝑥
1
+ 𝑥
2
+ 1)
2

× (19 − 14𝑥
1
+ 3𝑥
2

1
− 14𝑥

2
+ 6𝑥
1
𝑥
2
+ 3𝑥
2

2
)]

× [30 + (2𝑥
1
− 3𝑥
2
)
2

× (18 − 32𝑥
1
+ 12𝑥

2

1
+48𝑥
2
− 36𝑥

1
𝑥
2
+ 27𝑥

2

2
)]

(A.2)

search domain: −2 ≤ 𝑥
𝑛
≤ 2, 𝑛 = 1, 2

four localminima; one globalminimum: x∗ = (0, −1),
𝑓(x∗) = 3.

(3) Easom (ES) (two variables) [9]:

𝑓 (x) = − cos (𝑥
1
) cos (𝑥

2
) 𝑒
−(𝑥
1
−𝜋)
2
−(𝑥
2
−𝜋)
2 (A.3)

search domain: −100 ≤ 𝑥
𝑛
≤ 100, 𝑛 = 1, 2

several local minima (exact number unspecified in
usual literature);
one global minimum: x∗ = (𝜋, 𝜋), 𝑓(x∗) = −1.

(4) B2 (two variables) [9, 10, 17]:

𝑓 (x) = 𝑥2
1
+ 2𝑥
2

1
− 0.3 cos (3𝜋𝑥

1
) − 0.4 cos (4𝜋𝑥

2
) + 0.7

(A.4)

search domain: −100 ≤ 𝑥
𝑛
≤ 100, 𝑛 = 1, 2

several local minima (exact number unspecified in
usual literature);
one global minimum x∗ = (0, 0), 𝑓(x∗) = 0.

(5) De Jong (DJ) (three variables) [9, 10]:

𝑓 (x) =
3

∑

𝑛=1

𝑥
2

𝑛
(A.5)

search domain: −5.12 ≤ 𝑥
𝑛
≤ 5.12, 𝑛 = 1, 2, 3

one global minimum: x∗ = (0, 0, 0), 𝑓(x∗) = 0.

(6) Booth (BO) (two variables) [26]:

𝑓 (x) = (𝑥
1
+ 2𝑥
2
− 7)
2

+ (2𝑥
1
+ 𝑥
2
− 5)
2 (A.6)

search domain: −10 ≤ 𝑥
𝑛
≤ 10, 𝑛 = 1, 2

one global minimum: x∗ = (1, 3), 𝑓(x∗) = 0.

(7) Branin RCOC (RC) (two variables) [9, 10]:

𝑓 (x) = (𝑥
2
−

5.1

4𝜋
2
+

5

𝜋

𝑥
1
− 6)

2

+ 10 (1 −

1

8𝜋

) cos (𝑥
1
) + 10

(A.7)



Mathematical Problems in Engineering 13

Table 7:The optimal parameter settings obtained using the proposed RGA-PSO andAIA-PSO algorithms for solving a standard-dimensional
UGO problem.

Function name Methods 𝜒 𝑐
1

𝑐
2

ZA30
RGA-PSO 0.58721675 0.56183025 4.91401312
AIA-PSO 0.61082112 0.38556559 5.00000000

Table 8: Results of Wilcoxon test for the MEs obtained using the proposed RGA-PSO and AIA-PSO methods for 14 UGO problems.

TP number Function name RGA-PSO versus AIA-PSO
P value

1 SHCB ∗∗

2 GP ∗∗

3 ES ∗∗

4 B2 ∗∗

5 DJ ∗∗

6 Booth ∗∗

7 RC ∗∗

8 RA ∗∗

9 RS2 ∗∗

10 RS5 0.833
11 SH ∗∗

12 ZA2 ∗∗

13 ZA5 ∗∗

14 ZA10 ∗∗

search domain: −5 ≤ 𝑥
1
≤ 10, 0 ≤ 𝑥

1
≤ 15

no local minimum;
three global minima: x∗ = (−𝜋, 12.275), x∗ =

(𝜋, 2.275), x∗ = (3𝜋, 2.475), 𝑓(x∗) = 5/4𝜋.
(8) Rastrigin (RA) (two variables) [10]:

𝑓 (x) = 𝑥2
1
+ 𝑥
2

2
− cos (18𝑥

1
) − cos (18𝑥

2
) (A.8)

search domain: −1 ≤ 𝑥
𝑛
≤ 1,𝑛 = 1, 2

50 local minima;
One global minimum: 𝑓(x∗) = −2, x∗ = (0, 0).

(9) Rosenbrock (RSn) (N variables) [9, 10]:

𝑓 (x) =
𝑁−1

∑

𝑛=1

[100(𝑥
2

𝑛
− 𝑥
𝑛+1
)

2

+ (𝑥
𝑛
− 1)
2

] (A.9)

Two functions were considered: RS
2
, RS
5

search domain: −5 ≤ 𝑥
𝑛
≤ 10, 𝑛 = 1, 2, . . . , 𝑁

several local minima (exact number unspecified in
usual literature);
global minimum: x∗ = (1, 1), 𝑓(x∗) = 0.

(10) Shubert (SH) (two variables) [9, 10]:

𝑓 (x) =
𝑁−1

∑

𝑛=1

[100(𝑥
2

𝑛
− 𝑥
𝑛+1
)

2

+ (𝑥
𝑛
− 1)
2

] (A.10)

search domain: −10 ≤ 𝑥
𝑛
≤ 10, 𝑛 = 1, 2

760 local minima;
18 global minima;
𝑓(x∗) = −186.7309.

(11) Zakharov (ZAn) (N variables) [9, 10]:

𝑓 (x) =
𝑁

∑

𝑛=1

𝑥
2

𝑛
+ (

𝑁

∑

𝑛=1

0.5𝑛𝑥
𝑛
)

2

+ (

𝑁

∑

𝑛=1

0.5𝑛𝑥
𝑛
)

4

. (A.11)

Three functions were considered: ZA
2
, ZA
5
, ZA
10
,

ZA
30

search domain: −5 ≤ 𝑥
𝑛
≤ 10, 𝑛 = 1, 2, . . . , 𝑁

several local minima (exact number unspecified in
usual literature);
global minimum: x∗ = (0, . . . , 0), 𝑓(x∗) = 0.
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When amine disaster occurs, to lessen disaster losses and improve survival chances of the trappedminers, good escape routes need
to be found and used. Based on the improved ant algorithm, we proposed a new escape-route planning method of underground
mines. At first, six factors which influence escape difficulty are evaluated and a weight calculation model is built to form a weighted
graph of the underground tunnels. Then an improved ant algorithm is designed and used to find good escape routes. We proposed
a tunnel network zoning method to improve the searching efficiency of the ant algorithm. We use max-min ant system method
to optimize the meeting strategy of ants and improve the performance of the ant algorithm. In addition, when a small part of the
mine tunnel network changes, the system may fix the optimal routes and avoid starting a new processing procedure. Experiments
show that the proposed method can find good escape routes efficiently and can be used in the escape-route planning of large and
medium underground coal mines.

1. Introduction

In mining, water, fire, gas, and other natural disasters often
occur. The disasters have a heavy effect to mines’ safety pro-
duction. Statistics show the coal mine industry has the most
serious casualty accidents in China [1]. From 1991 to 2001,
86000 people died in coal mine accident, accounts for 85%
of deaths in the mining industry. According to statistics in
2006–2008, in high-risk industries of China, the proportion
of coal mine accidents and deaths equal 21.3% and 28.5%,
respectively, top the list of industrial and mining business
enterprises [2].

When mine disaster occurs, it is very important to find
good escape routes. Escape routes planning can be realized
based on computers, sensor networks, and relevant data.This
problem had been studied at home and abroad, literature
[3–7] use the Dijkstra algorithm or its improved algorithm
to solve the problem. These algorithms are different in time
complexity, space complexity, and so forth.TheDijkstra algo-
rithm has three shortages. First, large amounts of calculation
are required when number of network nodes and edges
reaches several hundred, because these algorithms usually

need to traverse all vertices of the network. Second, the
Dijkstra algorithm only obtains the best route and in fact the
second-best route is needed sometimes. Third, the Dijkstra
algorithm is static, if mine states change, it needs to be
recalculated.

Put forward by Italian scholar Dorigo et al., the ant al-
gorithm [8] is a new heuristic evolutionary algorithm. Bio-
logical ant colony can produce a chemical substance called
pheromone for communication and coordination of ants.
Pheromone can form positive feedback and make individual
ants gradually gathered in the shortest route between the
food source and the nest. The algorithm has advantages of
strong robustness, distributed computing, positive feedback
mechanism and it is easy to combine with other algorithms.
When solving the shortest route in large-scale network, it has
excellent feasibility and adaptability.

In this paper, factors which influence passing difficulty in
tunnels are led into. Based on these factors and the actual
lengths of the tunnels, equivalent lengths of the tunnels are
calculated and acted as weights of the underground tunnel
graph. This graph acts as the input of the improved ant
algorithm.
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In this paper, an important improvement to the ant
algorithm is introducing tunnel zoning. Underground mine
networks include many faces and main tunnels. This paper
divides all mine zones into two types: the backbone-zone 𝑆

0

and the nonbackbone-zone 𝑆
𝑛
(𝑛 = 1, 2, 3 . . .). The backbone-

zone 𝑆
0
is the main searching area, containing backbone

tunnels and the safety point. The nonbackbone-zone 𝑆
𝑛

containing several zones, each face is a nonbackbone-zone.
They connect to the main road (See Figure 2). By zoning the
weighted graph of tunnels, the ants’ behaviors can be affected
and the searching efficiency can be improved.

The experimental results in this paper show the improved
algorithm are suitable for escape routes planning of large and
medium sized mines.

2. System Framework

To calculate the optimal escape routes in undergroundmines,
tunnels’ status and data should be provided. And these
can be obtained by sensor network in tunnels. In different
mine disasters, factors that influence men passing difficulty
of the tunnel are various and complex. Based on methods
proposed by literature [9, 10], these factors are generalized for
six classes including tunnel type, wind speed, tunnel slope,
particle concentrations, crowded degree, and special factors
related with mine disaster. Firstly, these factors are converted
to tunnel equivalent length according to the formula (1).
Secondly, a graph denoted by 𝐺(𝑉, 𝐸) is built based on
the tunnel network topology and the normalized tunnel
equivalent lengths which act as the graph weights. Thirdly,
a group of underground workers is set as node 𝑉

0
and a

safety point or exit point is set as 𝑉
𝑒
in 𝐺. Finally, improved

ant algorithm is used to plan the optimal route and several
alternative routes between the terminals (𝑉

0
, 𝑉
𝑒
) in 𝐺. The

system implementation framework is shown in Figure 1.

3. Calculation of Tunnel Weights

3.1. Calculation of Tunnel Equivalent Length. Status of under-
ground tunnels are various and complex. Factors influencing
passing difficulty of tunnels are generalized for six classes

including tunnel type, wind speed, tunnel slope, particle con-
centrations, crowded degree, and special factors related to
mine disasters. These factors influence people’s escape speed
and they can increase or decrease the escape speed 𝑣. The
influences of these factors to the escape speed 𝑣 are trans-
formed to the tunnels’ equivalent length. The smaller the
value of the speed 𝑣 is, the longer the tunnel equivalent length
is and vice versa. Formula (1) gives the calculation method of
the tunnel equivalent lengths. And these equivalent lengths
are as weights of the graph 𝐺 after normalizing:

𝑙
𝑖
= (𝑘
𝑡𝑖
⋅ 𝑘
𝑤𝑖
⋅ 𝑘
𝑔𝑖
⋅ 𝑘
𝑣𝑖
⋅ 𝑘
𝑚𝑖
⋅ 𝑘
𝑑𝑖
) 𝑙
𝑟𝑖
. (1)

In (1), 𝑙
𝑟𝑖
indicates the actual length of the tunnel 𝑖 and 𝑙

𝑖
is

the equivalent length of the tunnel 𝑖; 𝑘
𝑡𝑖
, 𝑘
𝑤𝑖
, 𝑘
𝑔𝑖
, 𝑘
𝑣𝑖
, 𝑘
𝑚𝑖
, 𝑘
𝑑𝑖

are tunnel type influence coefficient, tunnel wind speed influ-
ence coefficient, tunnel slope influence coefficient, tunnel
particle concentrations influence coefficient, tunnel crowded
degree influence coefficient, special factors related to mine
disasters influence coefficient of the tunnel 𝑖, respectively.
Belowwe explain the relationship of these coefficients and the
escape speed 𝑣.

We denote the people’s normal walking speed by 𝑣
0
.

Under the influence of the tunnel type coefficient, the people
escape speed 𝑣 equals to 𝑣

0
/𝑘
𝑡𝑖
.These six coefficients are inde-

pendent, and under their common influence, the escape
speed 𝑣 equals to 𝑣

0
/(𝑘
𝑡𝑖
⋅ 𝑘
𝑤𝑖
⋅ 𝑘
𝑔𝑖
⋅ 𝑘
𝑣𝑖
⋅ 𝑘
𝑚𝑖
⋅ 𝑘
𝑑𝑖
). Through

formula (1), we can know the escape time 𝑡 (which equals to
𝑙
𝑟𝑖
/𝑣) also equals to 𝑙

𝑖
/𝑣
0
. Below we will explain in detail how

these coefficients are calculated and how they influence the
escape speed 𝑣 separately.

3.1.1. Tunnel Type InfluenceCoefficient. Underground tunnels
can generally be divided into working surface, transport tape
lane, contact lane, rail lane, shaft, air leakage branch, and
ventilation borehole, in which the air leakage branch and the
ventilation borehole are forbidden for people to pass. Tunnel
type may influence the people’s escape speed. For example,
in the rail lane, the passing speed is equal to the speed of
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transportation tool. Formula (2) gives the calculatingmethod
of the tunnel type influence coefficient.

𝑘
𝑡𝑖
=

{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{

{

𝑣
0

𝑣vehicle
, tunnel 𝑖 is the rail lane type,

+∞, tunnel 𝑖 is the air leakage branch

or the ventilation borehole type,

1, other tunnel type.

(2)

The parameter 𝑣vehicle represents the speed of the trans-
formation tool. People’s moving speed equals to the speed of
the vehicle when people are in the vehicle. When the value of
𝑣vehicle is greater than the value of 𝑣0, the value of 𝑘𝑡𝑖 is smaller

than 1. And this indicates the equivalent length of the tunnel 𝑖
will decrease according to the formula (1) and the people will
spend less time to pass through the tunnel.

3.1.2. Wind Speed Influence Coefficient. The mine networks
is a thorough ventilation system itself. Generally in the total
return lanes the wind speed is big. The wind speed may
influence people’s escape speed.

It influence degree is in direct ratio with the actual road-
way length. We assume the human’s walking power is con-
stant and denote it by 𝑃

0
, and only taking stable states into

account, we can derive the formula under against wind situ-
ation as follows:

𝑃
0
= 𝐹𝑣
0
= (𝐹 + 𝐹

𝑤
) 𝑣, (3)
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where 𝐹 is the power of the humanand 𝑣
0
is the normal

human walking speed without any outside influence. And 𝐹
𝑤

is the power of wind and 𝑣 is the human’s speed after affected
by wind.

Assume the person is a cuboid object, and 𝐹
𝑤
can be

derived from the Bernoulli’s equation [11]:

𝐹
𝑤
=

𝑐
𝑑
𝜌𝑆𝑣
2

𝑤

2

. (4)

The parameter 𝑐
𝑑
is a resistance coefficient, experience

shows that it is related to the Reynolds number; 𝜌 is the
density of the gas; 𝑆 is the touching surface area between the
human body and thewind; 𝑣

𝑤
is thewind speed in the current

roadway.
This paper concludes (5) from (3) and (4):

𝑣 =

2𝑣
0
𝑃
0

2𝑃
0
+ 𝑐
𝑑
𝜌𝑆𝑣
0
𝑣
2

𝑤

. (5)

The wind speed influence coefficient under against wind
situation is shown as

𝑘
𝑤𝑖
=

𝑙
𝑖

𝑙
𝑟𝑖

=

𝑣
0

𝑣

=

2𝑃
0
+ 𝑐
𝑑
𝜌𝑆𝑣
0
𝑣
2

𝑤

2𝑃
0

. (6)

Similarly, the coefficient under following wind situation
is shown as follows:

𝑘
𝑤𝑖
=

2𝑃
0
− 𝑐
𝑑
𝜌𝑆𝑣
0
𝑣
2

𝑤

2𝑃
0

. (7)

Formula (7) has a limitation: when the wind speed is too
big, this formula is not applicable.

3.1.3. Tunnel Slope Influence Coefficient. Tunnel gradient
influences the peoples’ walking speed.The greater the slope is,
the greater the resistance is. With the same analysis method
as Section 3.1.2, we get the formula as follows under climbing
situation:

𝑃
0
= 𝐹𝑣
0
= 𝑚𝑔𝑣 sin 𝜃

𝑖
+ 𝐹𝑣 cos 𝜃

𝑖
, (8)

where 𝑚 is the standard human mass, 𝑔 is the gravity
acceleration, 𝜃

𝑖
is the current tunnel’s angle of slope. The

tunnel upslope influence coefficient can be represented as
follows:

𝑘
𝑔𝑖
=

𝑣
0

𝑣

=

𝑚𝑔𝑣
0
sin 𝜃
𝑖

𝑃
0

+ cos 𝜃
𝑖
. (9)

When workers pass down slope tunnels, we assume their
speed will still be 𝑣

0
(i.e., 𝑘

𝑔𝑖
= 1).

The parameter values in Sections 3.1.2 and 3.1.3 are shown
in Table 1.

3.1.4. Tunnel Particle Concentrations Influence Coefficient.
Tunnel particle concentrations mainly include tunnel visibil-
ity, the height between the gas critical layer and the floor.They
have important effects on the walking speed of people who

Table 1: Parameters’ values.

Parameter name Value
𝜌 1.2 (kg/m3)
𝑆 0.7225 (m2)
𝑐
𝑑

0.8
𝑃
0

200 (w)
𝑚 80 (kg)
𝑣
0

5 (m/s)

are escaping [12]. This coefficient is denoted by 𝑘
𝑣𝑖
, and its

calculation method is

𝑘
𝑣𝑖
= (1 + 𝛼

ℎ
+ 𝐿
𝑟
) . (10)

In (10), 𝛼
ℎ
is the effecting coefficient of the height of gas

layer and its empirical value is shown in Table 2 [12]; 𝐿
𝑟
is the

affecting coefficient of visibility; its empirical value is shown
in Table 3.

3.1.5. Tunnel Crowded Degree. The denseness of the crowd
affects the walking speed to some extent. Thompson pro-
posed a speed calculation method which utilized the crowd
denseness factor in Simulex model [13]. This method can be
expressed as a coefficient calculation formula as follows:

𝑘
𝑚𝑖
=

{

{

{

1

sin {90∘ × ((𝑑 − 𝑏) / (𝑡
𝑑
− 𝑏))}

, 𝑏 < 𝑑 < 𝑡
𝑑
,

1, 𝑑 ≥ 𝑡
𝑑
.

(11)

In (11), 𝑑 represents the body interval between people,
here the body interval means the distance from one person’s
body center to another person’s body center (we assume the
people have the same height); 𝑡

𝑑
represents the upper limit

of the moving constraint interval; 𝑏 represents the size of the
body in horizontal direction.

3.1.6. Special Factors Related to Mine Disaster Influence Coef-
ficient. In order to create a simple and unified mathematical
model for various tunnel disasters, we consider special factors
related to mine disaster, which refers to the extreme cases
of different tunnel disasters, denoted by 𝑘

𝑑𝑖
. Its value is in

{1, +∞}, and 1 indicates that this tunnel is normal and there is
not exist mine disaster’s influence, and +∞means this tunnel
cannot be passed. There are a lot of factors which can cause
the tunnel cannot be passed, for example:

(1) there is serious landslide in the tunnel and people
cannot go through it.

(2) There exists high temperature (or large amount of
smoke, toxic gas) in the tunnel, people cannot bear
it.

(3) There is flood in the tunnel and the water height is
more than people’s bear limitation.

3.2. The Normalization of Tunnel Weights. According to the
above calculation model, the tunnel equivalent length’s range
is (0, +∞], in which +∞ indicates that the tunnel cannot
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Table 2: Value of parameter 𝛼
ℎ
.

Height of gas
layer (m) Coefficient 𝛼

ℎ

Height of gas
layer (m) Coefficient 𝛼

ℎ

>6 0 1.6–1.8 2
4–6 0.1 1.4–1.6 5
2–4 0.5 1–1.4 10
1.8–2 1 <1 100

Table 3: Value of parameter 𝐿
𝑟
.

Visibility distance (m) Coefficient 𝐿
𝑟

>20 1
10–20 1.25
5–10 2.95
3–5 6.25
<3 12.5

be got through. For the convenience of data processing, the
data is mapped to range (0, 1]. The linear mapping is used as
follows:

𝑤
𝑖
= 0.1 +

(𝑙
𝑖
−min (𝑙))

(max (𝑙) −min (𝑙))
∗ (0.9 − 0.1) . (12)

In which min(𝑙) refers to the minimum equivalent length
of all tunnels’, max(𝑙) is the maximum equivalent length of
all tunnels’ (except for the length value +∞). This function
means the closer to 0 the values after mapping is, and the
easier to pass through it. When the value is 1, it means the
tunnel cannot be passed.

Based on calculated weights and the tunnel topology
graph 𝐺(𝑉, 𝐸), the following improved ant algorithm can do
a good route planning processing.

4. Searching the Optimal Escape
Routes with Improved Ant Algorithm

This paper presents an improved ant algorithm which can
quickly and effectively find the best route and several sub
optimal routes from 𝑉

𝑜
(the trapped personnel position) to

𝑉
𝑒
(the safety point) in the tunnel network. There are two

improvements to the ant algorithm: firstly, tunnel zoning
characteristics are used to influence the ants’ behaviors
and improve the searching efficiency of ants; secondly, the
strategy of meeting of ants and the ant death rules are
modified to improve the ant algorithm’s performance.

4.1. Calculation Steps of the Improved Ant Algorithm. Basic
steps of the improved ant algorithm are as follows.

Step 1. Based on the above tunnel weights calculation model,
weighted graph 𝐺 is built. The trapped personnel position is
denoted by 𝑉

𝑜
and the exit point (safety point) is denoted by

𝑉
𝑒
in graph 𝐺. The zoning attribute information is loaded.

Step 2. Initializes the ant algorithm’s parameters including 𝛼,
𝛽, iter, 𝐶max, the pheromone trail matrix and the ant routes
record table, and so forth; assigns the zoning number to each

node according to the zoning attribute information acquired;
arranges the ants’ positionwith the distribution requirements
of Section 4.2.

Step 3. In the graph 𝐺, every ant is constructed an accessible
node set in accordance with the moving rules in Section 4.2,
and the tunnel zoningmay influence the ants’ accessible node
set. The ant selects the next node by formula (14), and puts
the selected node into its route record. After every live ant
has selected a node, the system will judge whether the ant
is dead or not (based on the rules described in Section 4.3).
The procedure is repeated until all ants are dead and by this
manner an iteration step is finished.The whole ant algorithm
calculating procedure requires 𝐶max times iteration.

Step 4. Updates the pheromone trail matrix and the parame-
ter 𝛼, 𝛽 in accordance with the update rules in Section 4.4.
Records the optimal route and 𝐿 alternative routes in this
iteration, and denotes it by OP𝑗

𝑖
(𝑖 is the number of current

iteration; 𝑗 = 0, 1, 2, . . . , 𝐿; 𝑗 = 0 indicates the optimal route).
According to the information of the current underground
tunnels, weighted graph 𝐺 is reconstructed. The change rate
of Δ𝐺 is calculated according to the formula (19). If Δ𝐺 is
less than a small constant 𝛿, it changes optimal routes of all
executed iterations if these routes contain changed tunnels. If
Δ𝐺 is greater than 𝛿, a new ant algorithm is restarted (go to
Step 1).

Step 5. Initializes ant routes recording table; fixes and con-
trols pheromone trail matrix by the MMAS method; updates
parameter iter as (iter + 1). If current iter’s value is less than
𝐶max, go to Step 2.

Step 6. From the records of the iterations’ routes OP𝑗
𝑖
(𝑖 =

1, 2, . . ., 𝐶max, 𝑗 = 0, 1, 2, . . . , 𝐿), select the optimal route and
𝐿 suboptimal routes for the current underground trapped
workers.

4.2. Ants’ Distribution andMoving Rules. The𝑉
𝑜
and𝑉
𝑒
nodes

of the graph 𝐺 are set 𝑚 ants separately. For the ant 𝑘, its
current node 𝑖’s accessible nodes set is built as

allow𝑘
𝑖
= 𝐴
𝑖
− 𝐵
𝑘
− (1 − 𝑝)𝐶

𝑘
, 𝑝 = {0, 1} . (13)

In (13), if the node 𝑖 is in the backbone zone 𝑆
0
or expected

zone 𝑆
𝑒
, 𝑝’s value is 1, else 𝑝’s value is 0. The set 𝐴

𝑖
is {nodes

| the node which connected with node 𝑖}, and the set 𝐵
𝑘
is

{nodes | the node that the ant 𝑘 has passed}, and the set 𝐶
𝑘
is

{nodes | the node which does not belong to zone 𝑆
0
and zone

𝑆
𝑒
}. Through the use of the set 𝐶

𝑘
, unnecessary detour can be

avoided and the searching efficiency can be improved.
In accordance with the probability value calculated

through (14), the ant 𝑘 selects the next node in allow𝑘
𝑖
. Formu-

la (14) is described as follows:

𝑝
𝑘

𝑖𝑗
=

{
{
{

{
{
{

{

𝜏
𝛼

𝑖𝑗
𝑤
𝛽

𝑖𝑗

∑
𝑠∈allow𝑘

𝑖

𝜏
𝛼

𝑖𝑠
𝑤
𝛽

𝑖𝑠

, 𝑗 ∈ allow𝑘
𝑖
,

0, else.

(14)
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In (14), 𝛼, 𝛽 are factors of importance of the pheromone
trail and the heuristic function respectively. And 𝜏

𝑖𝑗
, 𝑤
𝑖𝑗
are

pheromone trail concentration and weights respectively from
the node 𝑖 to the node 𝑗. The heuristic function is defined as
weights between the current nodes.

4.3. The Rules of Meeting and Death of Ants. Every ant has
attributes of a start node and an expected node.There are two
improvements in meeting and death strategy showed in rule
(2) and (4).

These rules are as follows.

(1) If there is no way for the ant, the ant dies and is
marked with no available route status.

(2) When two ants meet, if the expecting point of one ant
and the start point of the other ant intersect, the ant
having short route gives its route to another, and then
the latter dies and is marked with an available route
status. The former moves on.

(3) If the ant reaches the expected point, the ant dies and
is marked with an available route status.

(4) Sets a physical power parameter to the trapped work-
ers group 𝑖 and denotes it as PF

𝑖
which will reduce

gradually. The PF
𝑖
parameters are assigned to ants.

The ant will die when PF
𝑖
of the ant is reduced to

zero no matter what status the ant is in and then it
is marked with no available route status.

4.4. Update of Pheromone Trail and Main Parameters. When
one iteration processing is completed, the pheromone matrix
and the parameter 𝛼 and 𝛽 need to be updated. To prevent
premature problem, the MMAS method [10] is used in the
pheromone updating procedure. After an iteration process-
ing, only the pheromone of this iteration optimal route is
updated, according to (15) and (16). In addition, in order to
improve the convergence of the later iteration and the early
intelligence, factors 𝛼 and 𝛽 are dynamically changed at a
fixed length between two iterations. At the later stage,𝛼 acts as
the major factor; at the early stage, 𝛽 acts as the major factor.
See (17) and (18):

𝜏
𝑖𝑗
(𝑡 + 1) = (1 − 𝜌) 𝜏

𝑖𝑗
(𝑡) + Δ𝜏

𝑖𝑗
(𝑡) , (15)

Δ𝜏
𝑖𝑗
=

{
{

{
{

{

𝑄

∑𝑤

, arc (𝑖, 𝑗) in optimal route,

0, arc (𝑖, 𝑗) not in optimal route,
(16)

𝛼 (𝑡 + 1) = 𝛼 (𝑡) + Δ𝛼, Δ𝛼 =

(𝛼max − 𝛼min)

𝑐max
, (17)

𝛽 (𝑡 + 1) = 𝛽 (𝑡) − Δ𝛽, Δ𝛽 =

(𝛽max − 𝛽min)

𝑐max
. (18)

Formula (15) gives the pheromone relationship between
the iteration (𝑡+1) and the iteration 𝑡, and 𝜌 is the volatile fac-
tor of the pheromone, andΔ𝜏

𝑖𝑗
is the incremental pheromone.

Formula (16) is built based onMMAS strategy, only if the
arc(𝑖, 𝑗) is in the optimal route of the iteration, the pheromone

Table 4: Parameters value of the ant algorithm.

Parameters Value
𝛼 1-2
𝛽 2-1
𝜌 0.3
𝑄 (in formula (16)) 1
𝐶max 150
𝑚 (the number of ants) 16
𝐿 (the number of alternative routes) 2

of the arc(𝑖, 𝑗) is updated. ∑𝑤 is the length of the current
optimal route.

In (17), 𝛼max is the maximum of 𝛼, and 𝛼min is the mini-
mum of 𝛼, 𝑐max is the total iteration number. The meaning of
formula (18) is similar to the meaning of formula (17).

4.5. Condition of the Algorithm Stopping. When one iteration
calculation is completed, according to current information,
underground tunnel diagram 𝐺

 is reconstructed, and the
diagram’s change rate can be represented as

Δ𝐺 (𝑡) =






𝐺

(𝑡) − 𝐺







𝐺

.
(19)

In (19), |𝐺(𝑡) − 𝐺| indicates the changing number of arcs
between 𝐺 of iteration 𝑡 and the original 𝐺, and 𝐺 indicates
the total number of arcs of the original diagram.

When Δ𝐺 is less than the small value 𝛿, weights of the
related arcs in the optimal routes of executed iterations are
updated. Under this situation, the optimal length of executed
iterations changes, but the order of passed node does not
change. When Δ𝐺 is more than 𝛿, current calculation is
stopped and a new algorithm calculation is restarted.

5. Implementation of the Algorithm and
the Experimental Results

5.1. Parameter Setting. Different𝛼,𝛽,𝜌parameter values have
different influence to the stability and convergence of the ant
algorithm. Based on literature [14] and relative experiments,
to an underground tunnel networkwhich has 210 tunnels and
147 nodes, these parameters’ values are set in Table 4.

5.2. Experiment Data. The underground tunnel data come
from a large sized coal mine in China. Partial data are showed
in Table 5.

In Table 5, some simulated factors (such as slope, tunnel
particle concentrations influence, tunnel crowded degree and
special factors influence) are created based on original data.
The network topology of the mine and its zoning result is
shown in Figure 2.

TheMatlab tool is used to realize the data processing and
the ant algorithm. The node 83 is set as 𝑉

𝑜
and the node 1 is

set as 𝑉
𝑒
. The iteration curve of the ant algorithm is shown in

Figure 3.
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Table 5: Partial data and weights of underground tunnel network.

Start point End
point

Tunnel
type

influenc 𝑘
𝑡𝑖

Wind
speed
(m/s)

Angle of
slope (∘)

Special
factors
influence

𝑘
𝑑𝑖

The lowest
height of

smoke layer
(m)

Visibility
distance
(m)

Body
interval
(m)

Length
(m)

31 30 ∞ 0 0 1 6 20 1 40
30 32 1 10.3 10 1 6 20 0.8 35
32 33 1 5.6 0 1 6 20 0.8 242
35 12 0.5 9.4 0 1 5 20 0.8 80
12 37 1 10.3 10 ∞ 5 20 0.8 281
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 50 100 150
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0.45
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0.6
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Figure 3: Iteration curve of the ant algorithm.

In Figure 3, the𝑥-axis represents the number of iterations,
and the ordinate represents the minimum cost of the current
iteration. The cost is the sum of arc weights in the optimal
route of the current iteration. From the chart we can see the
algorithm has better convergence ability: after three conver-
gences the global optimal route is found in 100 iterations
about.

The algorithm procedure loads related parameters and
experimental data firstly and then does calculation. Five cal-
culation results are shown in Table 6. The experimental data
is showed in Table 7.

In Table 6, what in small brackets is the sequence of
passed nodes. To observe the calculated routes intuitively,
the first running result is marked in Figure 2. The red line
indicates the optimal route, and the green line is the first
alternative route and the blue line is the second alternative
route.

In fact, through the manual calculation we know the
shortest cost between node 83 and node 1 is 0.42799 and
the route is (83, 84, 82, 80, 77, 76, 74, 63, 57, 55, 45, 1). From

results in Table 6 we can see the best route is found steadily,
meanwhile, two alternative routes are found but not stable.

6. Conclusion

An improved ant algorithm is proposed in this paper to solve
the escape routes planning problem of underground coal
mines. A simple unified tunnel weights calculation model is
designed, which considers various impact factors. By the tun-
nel zoning method, searching efficiency of the ant algorithm
has been improved effectively. The MMAS method is used to
optimize the meeting strategy to improve the performance of
the ant algorithm. In the algorithm’s processing procedure,
when small part of mine networks changes, the system may
fix the optimal routes and avoid starting a new process-
ing procedure. The algorithm was achieved in the Matlab
platform and the best route was worked out steadily. The
algorithm obtained good results when treating the data of a
large coalmine of China.Theproposed algorithm can be used
in underground mine disaster rescue.
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Table 7: Experimental data.

Start point End
point

Tunnel type
influence 𝑘

𝑡𝑖

Wind
speed
(m/s)

Angle of
slope (∘)

Special
factors

influence 𝑘
𝑑𝑖

The lowest
height of
smoke

layer (m)

Visibility
distance
(m)

Body
interval
(m)

Length
(m)

31 30 ∞ 0 0 1 6 20 1 40
30 32 1 10.3 10 1 6 20 0.8 35
32 33 1 5.6 0 1 6 20 0.8 242
35 12 0.5 9.4 0 1 5 20 0.8 80
12 37 1 10.3 10 ∞ 5 20 0.8 281
37 38 1 10.4 0 1 5 20 0.8 135
38 40 1 10.4 0 1 5 20 0.8 43
40 42 0.5 10.2 0 1 5 20 0.8 28
45 46 1 0 0 1 5 20 0.8 136.4
46 40 1 0.3 −20 1 5 20 1 70.6
46 38 1 0.3 −20 1 6 20 1 27.6
42 129 1 6.4 0 1 6 20 1 194
50 51 0.5 10.9 0 1 6 20 1 40
52 51 1 0 0 ∞ 6 20 1 56
51 53 1 10.9 0 1 6 20 1 120
50 52 1 0 0 1 6 20 1 40
1 45 0.5 3.3 10 1 6 20 1 670
45 55 0.5 2.5 0 1 6 20 1 67
56 37 0.5 0.6 0 1 3 20 1 40
56 55 0.5 4.9 0 1 3 20 1 131.5
55 57 0.5 0.1 0 1 3 20 1 50
57 58 0.5 10.9 0 1 3 20 1 100
59 58 0.5 0.6 0 1 3 20 1 100
58 60 0.5 4.9 15 1 3 20 1 580
61 59 0.5 0 0 1 3 20 1 45
36 61 0.5 10.5 0 1 3 20 1 517
61 62 1 10.6 0 1 6 20 1 28
62 63 1 0.2 0 1 6 20 1 40
63 57 1 10.4 0 1 6 20 1 85
65 59 1 0.6 0 1 6 20 1 26
126 65 1 0 0 1 6 20 1 20
66 65 1 0.4 −15 1 6 20 1 40
67 66 1 0.5 0 1 6 20 1 72
62 67 1 10 0 1 6 20 1 27
67 237 1 10.8 0 1 6 20 1 348
69 68 0.5 1.9 0 1 6 20 1 20
71 70 0.5 0 0 1 6 15 1 15
72 70 0.5 1.6 0 ∞ 6 20 0.7 30
74 63 0.5 11 0 1 3 20 0.7 375
69 75 0.5 0 0 1 3 20 0.7 20
76 74 0.5 10.4 20 1 3 20 0.7 50
75 76 0.5 10.4 0 1 3 20 0.7 22
77 76 0.5 0 20 1 3 20 0.7 40
78 77 0.5 2.8 0 1 3 20 0.7 25
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Table 7: Continued.

Start point End
point

Tunnel type
influence 𝑘

𝑡𝑖

Wind
speed
(m/s)

Angle of
slope (∘)

Special
factors

influence 𝑘
𝑑𝑖

The lowest
height of
smoke

layer (m)

Visibility
distance
(m)

Body
interval
(m)

Length
(m)

129 78 1 6.4 0 1 3 20 0.7 223
52 79 1 0 0 1 3 20 0.7 460
125 92 1 0 0 1 3 20 0.7 35
80 93 1 0 20 1 6 20 0.7 90
82 84 0.5 2.7 0 1 6 20 0.7 40
83 81 0.5 2.6 0 1 6 20 1.5 240
84 83 0.5 2.7 0 1 6 20 1.5 630
128 56 0.5 5.6 0 1 6 20 1.5 300
87 86 0.5 4.3 0 1 5 20 1.5 25
88 87 0.5 3 0 1 5 20 1.5 20
33 88 0.5 2.1 0 1 5 20 1.5 47
33 89 1 3.4 0 1 5 20 1.5 27
89 90 1 2.5 0 1 5 20 1.5 20
90 86 1 1.6 0 1 5 20 1.5 45
90 87 1 0 0 1 5 20 1.5 20
89 88 1 1.3 0 1 5 20 1.5 20
31 91 1 4 −20 1 5 20 1.5 286
81 93 1 2.6 0 1 6 20 1.5 640
93 94 1 2.7 0 1 6 20 1.5 35
53 80 1 10.9 0 1 6 20 1.5 90
80 82 1 10.9 0 1 6 20 1.5 204
77 99 1 4.7 0 1 6 20 1.5 254
80 77 1 2 0 1 6 20 1.5 40
82 96 0.5 9.1 0 1 6 20 1.5 61
96 97 1 8.5 15 1 6 20 1.5 40
97 98 1 0 0 1 6 20 1.5 196
99 98 1 3.5 0 1 6 20 1.2 80
96 99 1 0.6 15 1 3 20 1.2 40
99 110 1 1.9 0 ∞ 3 20 1.2 29.2
98 101 1 3.4 15 1 3 20 1.2 40
101 102 1 0.1 0 1 3 20 1.2 265.2
103 241 0.5 3.1 0 1 3 20 1.2 163.3
104 103 1 5.3 −20 1 3 20 1.2 21.2
105 104 0.5 3.7 0 1 3 20 1.2 110
106 105 0.5 10.8 0 1 3 20 1.2 40
106 107 1 0.1 0 1 3 20 1.2 75
98 107 1 0.1 −15 1 3 20 1.2 50
102 107 1 10.1 0 1 6 20 1.2 85
107 108 1 10.1 0 1 6 20 1.2 218.2
109 108 0.5 8.1 0 1 6 20 1.2 50
110 106 0.5 10.8 0 1 6 20 1.2 70
68 110 1 10.2 0 1 6 20 1.2 243
110 100 1 1.1 10 1 6 5 1.2 5
71 112 0.5 1.7 0 1 6 20 1.2 128
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Table 7: Continued.

Start point End
point

Tunnel type
influence 𝑘

𝑡𝑖

Wind
speed
(m/s)

Angle of
slope (∘)

Special
factors

influence 𝑘
𝑑𝑖

The lowest
height of
smoke

layer (m)

Visibility
distance
(m)

Body
interval
(m)

Length
(m)

72 71 0.5 2.4 0 1 6 14 1.2 14
112 68 0.5 0.8 0 1 6 11 1.2 11
237 113 1 4.3 0 1 5 20 0.8 65.1
113 141 1 2 10 1 5 20 0.8 248
1 131 1 0.1 −15 1 5 20 0.8 50
60 115 1 10.3 0 1 5 20 0.8 50
105 241 1 8.1 0 1 5 20 0.8 130
35 91 1 9.5 10 1 5 20 0.8 40
91 138 0.5 10.4 0 1 5 20 0.8 40
108 75 0.5 10.7 20 1 5 20 0.8 95
78 72 0.5 3 0 1 5 7.6 0.8 7.6
81 94 1 0 0 1 5 20 0.8 690
94 125 1 2.7 0 1 5 20 0.8 61.2
53 125 1 0 0 1 5 20 0.8 57
125 74 1 2.7 −20 1 5 20 0.8 530
127 126 0.5 0 0 1 5 20 0.8 40
66 127 0.5 0 20 1 5 15 0.8 15
86 128 0.5 5.9 0 1 6 20 0.8 24.7
50 129 1 0 0 1 6 20 0.8 40
70 69 1 1.8 20 1 6 20 0.8 65
131 60 1 0 0 1 6 20 0.8 20
1 115 0.5 10.4 −15 1 6 20 0.8 25
32 34 0.5 10 0 1 6 20 0.8 100
136 34 0.5 0 0 1 6 20 0.8 46.1
136 137 1 10.1 0 1 6 20 0.8 210
137 35 1 11 0 1 6 20 0.8 41.4
138 36 1 10.4 0 1 6 20 0.8 39
112 139 1 0 0 1 6 20 0.8 26
100 109 1 4.3 0 1 6 20 0.8 40
142 145 0.5 0 0 1 6 20 0.8 52.2
144 145 0.5 0 0 1 6 20 0.8 71
143 144 0.5 0 0 1 6 20 0.8 71
141 143 0.5 0.4 0 ∞ 6 20 0.8 71
148 140 1 1.4 0 1 6 20 0.8 52.2
147 148 1 0 −10 1 6 20 0.6 71
146 147 1 0 −10 1 5 20 0.6 71
139 146 1 0.4 0 1 5 20 0.6 71
143 146 1 0 0 1 5 20 0.6 25
144 147 1 0 0 1 5 20 0.6 25
145 148 1 0 0 1 5 20 0.6 25
149 150 0.5 4.4 0 1 5 20 0.6 265.2
141 151 0.5 2.2 20 1 5 20 0.6 150
152 153 0.5 2.3 20 1 5 20 0.6 165
153 154 0.5 2.3 0 1 5 20 0.6 160
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Table 7: Continued.

Start point End
point

Tunnel type
influence 𝑘

𝑡𝑖

Wind
speed
(m/s)

Angle of
slope (∘)

Special
factors

influence 𝑘
𝑑𝑖

The lowest
height of
smoke

layer (m)

Visibility
distance
(m)

Body
interval
(m)

Length
(m)

154 149 1 4.3 0 1 5 20 0.6 20
113 155 1 2.1 0 1 6 10 0.6 10
155 156 1 2.1 0 1 6 20 0.6 159.6
156 157 1 2.1 10 1 6 20 0.6 165.8
157 158 1 2 0 1 6 20 0.6 155.1
158 154 1 1.8 0 1 6 20 0.6 25.5
157 153 1 0 0 1 6 20 0.6 26.9
156 152 1 0 0 1 6 20 0.6 26.6
155 151 1 0 0 1 6 20 0.6 27.9
140 109 1 3.7 0 1 6 20 1 25.7
142 140 1 2.6 0 1 6 20 1 25.2
97 159 1 8.6 −10 1 6 20 1 240
159 160 1 4.1 −10 1 6 20 1 44
159 162 1 4.7 0 1 6 20 1 47
162 163 1 2.6 0 1 6 14.4 1 14.4
163 164 1 0 0 1 3 19 1 19
162 164 1 1.7 0 1 3 20 1 33.4
163 165 1 2.2 0 1 3 20 1 61.8
164 165 1 2.4 0 ∞ 3 20 1 51.2
165 104 1 4.6 20 1 3 20 1 92.3
104 166 1 3 20 1 3 20 1 120
166 167 1 2.7 0 1 3 20 1 157.9
167 168 1 2.2 0 1 3 20 1 225.9
168 169 1 2.2 0 1 3 20 1 201.4
169 170 0.5 2.2 0 1 3 20 1 212.5
170 171 0.5 2.2 0 1 3 20 1 202.8
171 172 0.5 2.2 10 1 3 20 1 175.5
172 173 0.5 2.2 10 1 3 20 1 197.5
173 174 0.5 2.2 0 1 3 20 1 216.8
174 175 1 2.2 0 1 3 20 1 203.9
175 176 1 2.4 0 1 3 20 1 51.9
176 177 1 0 0 ∞ 3 20 1 24.2
177 178 1 0 0 1 6 20 1 23.5
179 178 1 2.4 0 1 6 20 1 24.3
179 176 1 0 0 1 6 20 1 23.5
176 180 1 1.4 20 1 6 20 1 266.2
180 181 1 1.4 0 1 6 20 1 1285.6
182 100 1 3 0 1 6 20 1 9.2
183 182 1 1.9 0 1 6 20 1 24.9
184 183 1 2.6 0 1 6 20 1 151.2
185 184 1 1.3 0 1 6 20 1 203.5
181 185 1 1.4 0 1 6 20 1 207.6
186 142 1 3.1 0 1 6 20 1 132.7
187 186 1 4.4 0 ∞ 6 20 1 203.6



Mathematical Problems in Engineering 13

Table 7: Continued.

Start point End
point

Tunnel type
influence 𝑘

𝑡𝑖

Wind
speed
(m/s)

Angle of
slope (∘)

Special
factors

influence 𝑘
𝑑𝑖

The lowest
height of
smoke

layer (m)

Visibility
distance
(m)

Body
interval
(m)

Length
(m)

188 187 1 4.4 0 1 6 20 1 209
150 188 1 4.4 0 1 6 20 1 112.9
181 188 1 0 −15 1 6 20 1 29.2
187 185 1 0 0 1 6 20 1 30.3
186 184 1 1.8 0 1 6 20 1 30.3
101 160 1 1.2 0 1 6 20 1 240
103 190 1 2.1 10 1 6 20 1 25
167 190 1 0 10 1 6 20 1 29.3
190 191 0.5 2.7 0 1 5 20 1 215.6
191 168 0.5 0 0 1 5 20 1 35.8
191 192 0.5 2.6 0 1 5 20 1 211.5
169 192 0.5 0 0 1 5 20 1 29.2
192 193 1 2.7 0 ∞ 5 20 1 216.4
170 193 1 0 0 1 5 20 1 27.1
193 194 1 2.6 0 1 5 20 1 200
171 194 1 0 0 1 5 20 1 28.4
194 195 1 2.7 0 1 5 20 1 174.2
195 172 1 0 0 1 5 20 1 29.1
195 196 1 2.7 0 1 6 20 1 195
196 173 1 0 0 1 6 20 1 30.6
196 197 1 2.7 0 1 6 20 1 219.3
174 197 1 0 0 1 6 20 1 29.2
197 198 1 2.7 −10 1 6 20 1 197.3
198 175 1 0 −10 1 6 20 1 33.1
198 179 1 2.4 0 1 6 20 1.4 74.6
237 68 0.5 8.5 0 1 6 20 1.4 72
183 238 0.5 0 0 1 6 20 1.4 77
166 239 0.5 0.4 0 ∞ 6 20 1.4 101.5
239 238 0.5 0 0 1 6 20 1.4 86.1
239 240 0.5 0 0 1 6 20 1.4 112.9
238 240 1 0 0 1 6 20 1.4 25.1
240 182 1 0.8 0 1 6 20 1.4 77
237 74 1 0 20 1 6 20 1.4 40
241 102 1 0.1 0 1 6 20 1.4 40
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The particle swarm optimization algorithm was originally introduced to solve continuous parameter optimization problems. It
was soon modified to solve other types of optimization tasks and also to be applied to data analysis. In the latter case, however,
there are few works in the literature that deal with the problem of dynamically building the architecture of the system. This paper
introduces new particle swarm algorithms specifically designed to solve classification problems. The first proposal, named Particle
Swarm Classifier (PSClass), is a derivation of a particle swarm clustering algorithm and its architecture, as in most classifiers, is
pre-defined. The second proposal, named Constructive Particle Swarm Classifier (cPSClass), uses ideas from the immune system
to automatically build the swarm. A sensitivity analysis of the growing procedure of cPSClass and an investigation into a proposed
pruning procedure for this algorithm are performed.The proposals were applied to a wide range of databases from the literature and
the results show that they are competitive in relation to other approaches, with the advantage of having a dynamically constructed
architecture.

1. Introduction

Data classification is one of the most important tasks in
data mining, which is applied to databases in order to label
and describe characteristics of new input objects whose
labels are unknown. Generally, this task requires a classifier
model, obtained from samples of objects from the database,
whose labels are known a priori. The process of building
such a model is called learning or training and refers to the
adjustment of parameters of the algorithm so as to maximize
its generalization ability.

The prediction for unlabeled data is usually done using
models generated in the training step or some lazy learning
mechanism able to compare objects classified a priori with
new objects yet to be classified. Thus, not all algorithms
generate an explicit classification model (classifier), as is the
case of k-NN (k-nearest neighbors) [1, 2], andNäıve Bayes [3],
which use historical data in a comparative process of distance
or probability estimation, respectively, to classify new objects.
Examples of algorithms that generate an explicit classification
model are the decision trees [4, 5], artificial neural networks

[6, 7], and learning vector quantization (LVQ) algorithms [8–
11].

This paper proposes two algorithms for data classifi-
cation—Particle Swarm Classifier (PSClass) and its succes-
sor Constructive Particle Swarm Classifier (cPSClass), both
based on the particle swarm optimization algorithm (PSO)
[12]. These algorithms were developed from adaptations of
the PSO and other bioinspired techniques, and were eval-
uated in seven databases from the literature. Their perfor-
mance was compared with that of other swarm algorithms
and also with some well-known methods from the literature,
such as k-NN, naı̈ve Bayes, and an MLP neural network.

In the PSClass algorithm, two steps are necessary to con-
struct the classifier. In the first step, a number of prototypes
are positioned, in an unsupervised way, on regions of the
input space with some density of data; for this, the Particle
Swarm Clustering (PSC) [13] algorithm is used. In the next
step, the prototypes are adjusted by an LVQ1 method [14] in
order to minimize the percentage of misclassification. Thus,
the PSClass automatically positions the prototypes in the
respective classes of objects, defining the decision boundaries
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between classes and increasing the efficiency of the algorithm
during the construction of the classifier.

The cPSClass, in turn, improved its unsupervised step
by inserting mechanisms inspired by the immune system to
automatically build the classifier model, more specifically,
to automatically set the number of cells (prototypes) in
the swarm. At this step, the PSC has been replaced by the
Constructive Particle Swarm Clustering (cPSC) [15], which
uses the clonal selection principle [16] to iteratively control
the number of particles in the swarm. Furthermore, a pruning
phase was introduced so as to avoid the explosion in the
number of particles. Thus, cPSClass eliminates the need for
the user to define the swarm size a priori, a critical parameter
required for many data classification algorithms.

The paper is organized as follows. As the cPSClass
algorithm borrows ideas from swarm intelligence and the
immune system, Section 2 is dedicated to a brief review of
the biological concepts necessary for a proper understanding
of the algorithm. Section 3 presents the PSC and cPSC
algorithms, which form the basis for designing PSClass and
cPSClass. In Section 4, two classifiers are proposed based
on the PSO—PSClass and cPSClass. Section 5 provides a
literature review emphasizing algorithms based on the PSO to
solve classification problems and PSO versions with dynamic
population. The PSClass and cPSClass algorithms are eval-
uated in Section 6 and a parametric sensitivity analysis for
cPSClass was performed to evaluate the growth of the swarm.
The paper is concluded in Section 7, with discussions and
proposals for future works.

2. Biological Background

Biological and behavioral mechanisms are some of the
natural inspirations that motivate scientists and engineers to
construct intelligent computational tools. One of the pioneer
computational bioinspired tools was proposed byMcCulloch
and Pitts [17], with their logic model of the neuron. After
that, several other lines of research have emerged, with new
bioinspirations, such as evolutionary computing with the
Darwinian laws of evolution [18–20], swarm intelligence
[12, 21–23] inspired by the emergent behavior of social
agents (most often insects), and artificial immune systems,
inspired by the vertebrate immune system [24, 25].These four
approaches constitute one of the three major areas of natural
computing [26]. The following sections briefly review swarm
intelligence concepts and their main lines of research, as well
as an overview of the vertebrate immune system and its main
defense mechanisms.

2.1. Swarm Intelligence. Collective systems (swarms) are
composed of agents that interact with each other and with
the environment in order to achieve a common objective.
These agents can be formed by a flock of birds, a school of
fish, or a colony of insects, which are able to learn from their
own experience and with the social influence and adapt to
changes in the environmentwhere they live [27].These agents
individually have limited cognitive abilities that allow them to
perform only simple tasks. However, when put together and

interacting with one another, they can perform substantially
complex tasks [28]. The emergent behavior of this social
interaction is called swarm intelligence.

This terminology was first used in the work of Beni and
Wang [21], which described the behavior of a group of robots
that interacted with each other in a particular environment,
respecting a set of local rules inspired by the behavior of ants.
According to Kennedy et al. [29], any collective behavior, like
a flock of birds or an immune system, can be named a swarm.

There are basically two approaches in Swarm Intelligence:
the works based on the behavior of social insects [30] and
those based on the human ability to process knowledge [31].
In both lines of research, there is a group of agents that
interact with one another and with the environment.

Among the swarm intelligence algorithms, a great deal of
attention has been given to the PSO algorithm, introduced by
Kennedy and Eberhart [12]. PSO was inspired by the social
behavior of flocks of birds or schools of fish to solve complex
optimization problems. It uses a population of solutions,
called particles, which interact with one another exchanging
experience in order to optimize its ability within a certain
environment. The main bioinspiration in the PSO is that one
behaves according to its ownpast experience and that of other
interacting agents. Since its introduction, PSO has also been
improved and adapted to be applied to various tasks [32].

2.2. Immune System. Living organisms have cells and
molecules that protect their body against the onslaught of
disease-causing agents (pathogens). Specific cells and their
mechanisms, such as identification, signaling, reproduction,
and attack, are parts of a complex system called the immune
system [24], responsible for keeping diseases at bay. The
vertebrate immune system is divided mainly into innate
immune system and adaptive immune system.

The innate immune system does not evolve, remaining
the same throughout the life time of the individual. It
recognizes many infectious diseases and is responsible for
combating infectious agents while the adaptive immune
system is preparing to act. The innate immune system, by
itself, cannot remove most pathogens [24]. The main role of
the innate immune system is to signal other immune system
cells, since most pathogens do not directly stimulate the cells
of the adaptive immune system.

The adaptive immune system is also called specific
immune system, because somepathogens are recognized only
by cells and molecules of the adaptive immune system. One
of its main features is the ability to learn from infections and
develop an immune memory, in other words, to recognize an
antigen when it is presented recursively to the body.Thus, the
adaptability of the adaptive immune system renders it more
capable of recognizing and combating specific antigens each
time it tries to reinfect the body.

The main components of the innate immune system are
the macrophages and granulocytes, while in the adaptive
immune system these are the lymphocytes. Both systems
depend on the activity of white blood cells (leukocytes).

The organs that make up the immune system are called
lymphoid organs consisting of the following two subsystems:
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(i) primary lymphoid organs are responsible for the pro-
duction, growth, development, and maturation of
lymphocytes.

(ii) secondary lymphoid organs are sites in which lym-
phocytes recognize and fight pathogens.

Some lymphocytes are generated, developed, and ma-
tured in the bone marrow. These lymphocytes are called
B cells. However, some lymphocytes generated in the bone
marrow migrate to an organ called thymus, where they are
matured and come to be called the T cells. The B cells and T
cells are the lymphocytes of the immune system.

The main mechanisms of recognition and activation of
the immune system are described by the clonal selection prin-
ciple or the clonal selection theory [16], which explains how the
adaptive immune system responds to pathogens. Only cells
that recognize antigens are selected for reproduction, whilst
the remainder die after some time due to a lack of stimulation.

The immune cells subjected to high concentrations of
antigens (pathogens) are selected as candidates for reproduc-
tion. If the affinity between this cell receptor (called antibody)
and an antigen of greater affinity to it exceeds a certain
threshold, the cell is cloned. The immune recognition, thus,
triggers the proliferation of antibodies as one of the main
mechanisms of immune response to an antigenic attack, a
process called clonal expansion. During clonal expansion
B cells are subjected to an affinity proportional mutation
process, resulting in variations in the repertoire of immune
cells and, thus, antibodies, which are B-cell receptors free in
solution.

The clonal selection theory is considered the core of the
immune response system, since it describes the dynamics of
the adaptive immune system when stimulated by disease-
causing agents. Therefore, it is used in the design of adaptive
problem solving systems [24] and was used in the design of
the cPSClass algorithm to be proposed in this paper.

3. Clustering Using Particle Swarm

The idea of using the PSO algorithm to solve clustering
problems was initially proposed in [33], so that each particle
corresponds to a vector containing the centroid of each group
of the database. Since then, several clustering algorithms
based on the PSO have been proposed [13, 15, 31, 33–
56]. Among them, the PSC and cPSC algorithms, form the
basis for the PSClass and cPSClass classification algorithms,
respectively, proposed in this paper. In this section, the
precursors of PSClass and cPSClass are reviewed.

3.1. Particle Swarm Clustering (PSC). The PSC, proposed in
[13], is an adaptation of the PSO to solve data clustering prob-
lems. In the PSC, particles interact with one another and with
the environment (database) so that they become representa-
tives of a natural group from the database. The convergence
criterion of the algorithm is determined by the stabilization
of the path of the particles, and the number of particles in the
swarm is initialized empirically. The dimension of a particle
is given by the dimension of the input objects, where each
vector position is an attribute of the object.

Themain structural differences between the PSC andPSO
algorithms are as follows.

(i) In PSC, the particles altogether compose a solution to
the data clustering problem.

(ii) The PSC does not use an explicit cost function to
evaluate the quality of the particles. Instead, the
Euclidean distance is used as a measure to assess the
dissimilarity between a particle and an object, and
particles move around the space in order to represent
statistical regularities of the input data.

(iii) A self-organizing term, which moves the particle
towards the input object, was added to the velocity
equation.

(iv) In the PSO algorithm, all the particles in the swarm
are updated at each iteration. In the PSC, the particles
to be updated are defined by input objects (i.e., only
the winner—the one closest to the input datum—is
updated according to (1) and (2)).

For each input object, there is a particle of greater
similarity to it, obtained by the Euclidean distance between
the particle and the object. This particle is called winner, and
is updated following the proposed velocity equation (1) as

𝑣
𝑖
(𝑡 + 1) = 𝜔 ∗ 𝑣

𝑖
(𝑡) + 𝜑

1
⊗ (𝑝
𝑗

𝑖
(𝑡) − 𝑥

𝑖
(𝑡)) + 𝜑

2

⊗ (𝑔
𝑗
(𝑡) − 𝑥

𝑖
(𝑡)) + 𝜑

3
⊗ (𝑦
𝑗
− 𝑥
𝑖
(𝑡)) .

(1)

In (1), the parameter𝜔, called inertiamoment, is responsi-
ble for controlling the convergence of the algorithm.The cog-
nitive term, 𝜑

1
⊗(𝑝
𝑗

𝑖
(𝑡)−𝑥

𝑖
(𝑡)), associated with the experience

of the particle, represents the best particle’s position 𝑝𝑗
𝑖
(𝑡), in

relation to the input object so far, that is, the smallest distance
between the input object (𝑦𝑗) and thewinner particle (𝑥

𝑖
).The

social term, 𝜑
2
⊗ (𝑔
𝑗
(𝑡) − 𝑥

𝑖
(𝑡)), is associated with the particle

𝑔
𝑗
(𝑡) closest to the input object, that is, the particle that had

the smallest distance in relation to the input object (𝑦𝑗) so far.
The self-organizing term, 𝜑

3
⊗ (𝑦
𝑗
−𝑥
𝑖
(𝑡)), moves the particle

towards the input object.

𝑥
𝑖
(𝑡 + 1) = 𝑥

𝑖
(𝑡) + 𝑣

𝑖
(𝑡 + 1) . (2)

Thus, the particles converge to the centroid of the groups,
or regions of higher density of objects, becoming prototypes
representatives of groups from the database.

The pseudocode of the PSC algorithm is described in
Pseudocode 1.

Step 13 of Pseudocode 1 assigns a label (PLABELS) to
each input object, which is given by a label (CLABELS)
that represents the dominant class of objects for which each
particle was the winner. Generally, in real world problems
the correct labels are not known a priori. So, each label
(CLABELS) must be given by each particle in the swarm.

Step 26 of Pseudocode 1 updates all those particles that did
not move at iteration 𝑡. Thus, after all objects were presented
to the swarm, the algorithm verifies whether some particle
𝑥
𝑖
did not win in that iteration (𝑥

𝑖
! = win). If yes, then
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1. procedure [X, V, P, g, 𝜔, PLABELS] = PSC (Y, 𝑣max,𝑚, 𝜔, CLABELS)
2. Y//dataset
3. initialize X//initialize at random each particle 𝑥

𝑖
∈ [0,1]

4. initialize 𝑣
𝑖
//initialize at random each v

𝑖
∈ [−𝑣max, 𝑣max]

5. initialize dist
6. 𝑡 = 1
7. while stopping criterion is not met
8. for 𝑗 = 1 to 𝑛//for each input datum
9. for 𝑖 = 1 to𝑚//for each particle
10. dist (𝑖) = distance (𝑥

𝑖
, 𝑦
𝑗)

11. end for
12. 𝐼 = index (min (dist))
13. [PLABELS] = label (𝑥

𝐼
, CLABELS (𝑦𝑗))//predicted label

14. if distance (𝑥
𝐼
, 𝑦
𝑗) < distance (𝑝𝑗

𝐼
, 𝑦
𝑗)

15. 𝑝
𝑗

𝐼
= 𝑥
𝐼

16. end if
17. if distance (𝑥

𝐼
, 𝑦
𝑗) < distance (𝑔𝑗, 𝑦𝑗)

18. 𝑔
𝑗
= 𝑥
𝐼

19. end if
20. 𝑣

𝐼
(𝑡 + 1) = 𝜔 ∗ 𝑣

𝐼
(𝑡) + 𝜑1⊗ (𝑝

𝑗

𝐼
(𝑡) − 𝑥

𝐼
(𝑡)) + 𝜑2⊗ (𝑔

𝑗
(𝑡) − 𝑥

𝐼
(𝑡)) + 𝜑3⊗ (𝑦

𝑗
− 𝑥
𝑖
(𝑡))

21. 𝑣
𝐼
∈ [−𝑣max, 𝑣max]

22. 𝑥
𝐼
(𝑡 + 1) = 𝑥

𝐼
(𝑡) + 𝑣

𝐼
(𝑡 + 1)

23. 𝑥
𝐼
∈ [0, 1]

24. end for
25. for 𝑖 = 1 to𝑚
26. if (𝑥

𝑖
! = win )//particles did not 𝑤𝑖𝑛

27. 𝑣
𝑖
(𝑡 + 1) = 𝜔 ∗ 𝑣

𝑖
(𝑡) + 𝜑4⊗ (x most win − 𝑥𝑖(𝑡))

28. 𝑣
𝑖
∈ [−𝑣max, 𝑣max]

29. 𝑥
𝑖
(𝑡 + 1) = 𝑥

𝑖
(𝑡) + 𝑣

𝑖
(𝑡 + 1)

30. end if
31. end for
32. 𝑡 = 𝑡 + 1
33. 𝜔 = 0.95 ∗ 𝜔
34. Test the stopping criterion
35. end while
36. end procedure

Pseudocode 1: Particle Swarm Clustering (PSC).

these particles are updated in relation to the particle that was
elected the winner more often at iteration 𝑡. Such particle
is called 𝑥most win (step 27 in Pseudocode 1), where 𝜑

4
is a

random vector within the interval (0,1).

3.2. Constructive Particle Swarm Clustering (cPSC). To
dynamically determine the number of particles in PSC, Prior
and de Castro [15] proposed a successor, called cPSC, which
eliminated the need for the user to input the number of
particles (prototypes) in the swarm. cPSC automatically finds
a suitable number of prototypes in databases by employing
strategies borrowed from the PSC algorithm with the addi-
tion of three new features inspired by the antibody network
named ABNET [57]: growth of the particle swarm, pruning
of particles, and automatic stopping criterion. Furthermore,
the cPSC algorithmuses an affinity threshold (𝜀) as a criterion
to control the growth of the swarm.The growth, pruning and
stopping functions are described below and are evaluated at
every two iterations.

3.2.1. Swarm Growth. The growth stage is based on the
immune cell reproduction mechanism during clonal selec-
tion and expansion [16, 24], as described previously. The
cells that are subjected to high concentrations of antigens are
chosen as candidates to reproduce. If the affinity between the
antibodies of these cells in relation to the antigens of higher
affinities to them is greater than a threshold 𝜀, then these cells
are cloned.

These principles of selection and reproduction of anti-
bodies inspired the design of the constructive particle swarm
clustering algorithm. In the cPSC, particles are analogs to
immune cells and objects from the database to antigens. The
algorithm starts with only one particle (immune cell), with
position and velocity initially random.At every two iterations
the algorithm evaluates the necessity of growing the swarm
as follows: the particle that was elected the winner more
times (cell submitted to the highest concentration of antigen)
is selected. The algorithm evaluates the degree of affinity
between the particle and the object (antigen) of higher affinity
to it, using threshold 𝜀. If the affinity between them is greater
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1. Procedure [X, V, P, g, 𝜔, PLABELS] = cPSC (Y,𝑚, 𝜔, 𝑣max, 𝜀, CLABELS)
2. Y//dataset
3. initialize X//initialize at random only one particle 𝑥

𝑖
∈ [0, 1]

4. initialize V//initialize at random, 𝑣
𝑖
∈ [−𝑣max, 𝑣max]

5. initialize dist
6. 𝑡 = 1
7. while stopping criterion is not met
8. for 𝑗 = 1 to 𝑛//for each input datum
9. for 𝑖 = 1 to𝑚//for each particle
10. dist (𝑖) = distance (𝑥

𝑖
, 𝑦
𝑗)

11. end for
12. I = index (min (dist))
13. [PLABELS] = label (𝑥

𝐼
, CLABELS (𝑦𝑗))//predicted label

14. if distance (𝑥
𝐼
, 𝑦
𝑗) < distance (𝑝𝑗

𝐼
, 𝑦
𝑗)

15. 𝑝
𝑗

𝐼
= 𝑥
𝐼

16. end if
17. if distance (𝑥

𝐼
, 𝑦
𝑗) < distance (𝑔𝑗, 𝑦𝑗)

18. 𝑔
𝑗
= 𝑥
𝐼

19. end if
20. 𝑣

𝐼
(𝑡 + 1) = 𝜔 ∗ 𝑣

𝐼
(𝑡) + 𝜑1⊗(𝑝

𝑗

𝐼
(𝑡) − 𝑥

𝐼
(𝑡)) + 𝜑

2
⊗ (𝑔𝑗(𝑡) − 𝑥

𝐼
(𝑡)) + 𝜑

3
⊗ (𝑦𝑗 − 𝑥

𝑖
(𝑡))

21. 𝑣
𝐼
∈ [−𝑣max, 𝑣max]

22. 𝑥I (𝑡 + 1) = 𝑥𝐼(𝑡) + 𝑣𝐼 (𝑡 + 1)
23. 𝑥

𝐼
∈ [0,1]

24. end for
25. if mod (𝑡, 2)==0
26. Eliminate particles from the swarm if necessary
27. Test the stopping criterion
28. Clone particles if necessary
29. end if
30. 𝑡 = 𝑡 + 1
31. 𝜔 = 0.95 ∗ 𝜔
32. end while
33. end procedure

Pseudocode 2: Constructive particle swarm clustering.

than 𝜀, then a new particle is created in the swarm. This new
particle is positioned in the middle between the winner and
the object of higher affinity to it.

3.2.2. Pruning of Particles. At every two iterations, the algo-
rithmevaluates the need for pruning particles. If a particle has
not moved at all in two iterations, then it is deleted from the
swarm. A new step, called suppression, was added right after
the pruning of particles step. If the particles are close to one
another (Euclidean distance < 0.3), they are eliminated. It is a
metaphor based on the immune system: cells and molecules
recognize each other even in the absence of antigens. If the
cell recognizes an antigen (positive response), then a clonal
immune response is started; otherwise, (negative response) a
suppression, which refers to the death of cells recognized as
self, happens.

3.2.3. Stopping Criterion. At every two iterations the algo-
rithm evaluates the stopping criterion by the average
Euclidean distance between the current position and the
position of the memory particles. Thus, the algorithm stops
when this distance is less than or equal to 10−3 or 200
iterations.

The pseudocode of the cPSC algorithm is described as in
Pseudocode 2.

4. Classification Using Particle Swarm

This paper proposes two data classification algorithms based
on particle swarms: (1) PSClass, that uses the LVQ1 heuristics
to adjust the position of prototypes generated by a clustering
swarm-based algorithm; and (2) cPSClass, an improved
version of PSClass that uses ideas from the immune system to
dynamically determine the number of particles in the swarm.

The training process of PSClass consists of the iterative
adjustment of the position of particles (prototypes). After
training, there is a predictor model formed by a set of
prototypes able to describe and predict the class to which a
new input object from the database must belong. The testing
step assesses the generalization capability of the classifier.
At this stage, a number of test objects are presented to the
classifier and their classes are predicted.

Two methods are combined to generate the predictor:
the PSC algorithm, and an LVQ1 model. The LVQ1 heuristics
was adopted for its simplicity and allows, through simple
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1. procedure[X, PLABELS] = PSClass (Y, 𝑣max,𝑚, 𝜔, CLABELS)
2. Y//dataset
3. CLABELS//correct labels
4. [X, V, P, g, 𝜔, PLABELS] = PSC (Y, 𝑣max,𝑚, 𝜔, CLABELS)
5. while stopping criterion is not met
6. for 𝑗 = 1 to 𝑛//for each object
7. for 𝑖 = 1 to𝑚//for each particle
8. dist (𝑖) = distance (𝑥

𝑖
, 𝑦
𝑗)

9. end for
10. I = index (min (dist))
11. if distance (𝑥

𝐼
, 𝑦
𝑗) < distance (𝑝𝑗

𝐼
, 𝑦
𝑗)

12. 𝑝
𝑗

𝐼
= 𝑥
𝐼

13. end if
14. if distance (𝑥

𝐼
, 𝑦
𝑗) < distance (𝑔𝑗, 𝑦𝑗)

15. 𝑔
𝑗 = 𝑥
𝐼

16. end if
17. 𝑣

𝐼
(𝑡 + 1) = 𝜔 ∗ 𝑣

𝐼
(𝑡) + 𝜑1⊗(𝑝

𝑗

𝐼
(𝑡) − 𝑥

𝐼
(𝑡)) + 𝜑

2
⊗ (𝑔𝑗(𝑡) − 𝑥

𝐼
(𝑡)) + 𝜑

3
⊗ (𝑦𝑗 − 𝑥

𝑖
(𝑡))

18. 𝑣
𝐼
∈ [−𝑣max, 𝑣max]

19. if (PLABELS (𝐼) == CLABELS (𝐼))
20. 𝑥

𝐼
(𝑡 + 1) = 𝑥

𝐼
(𝑡) + 𝑣

𝐼
(𝑡 + 1)

21. else
22. 𝑥

𝐼
(𝑡 + 1) = 𝑥

𝐼
(𝑡) − 𝑣

𝐼
(𝑡 + 1)

23. end if
24. end for
25. 𝜔 = 0.95 ∗ 𝜔
26. Test the stopping criterion
27. end while
28. end procedure

Pseudocode 3: Particle Swarm Classifier (PSClass).

procedures of position adjustment, the correction of mis-
placed prototypes in the data space [10].

Within PSClass, the PSC algorithm is run to find groups
of objects in the database by placing the particles (prototypes)
on the natural groups of the database.Thenumber of particles
must be informed by the user and this number should be
at least equal to the number of the existing classes in the
database. The algorithm places the prototypes in the input
objects space in order to map each object in a representative
prototype of each class. Thus, the algorithm generates a
decision boundary between classes based on the prototypes
that represent the classes. Then, the LVQ1 heuristics is used
to adjust the position of the prototypes so as to minimize the
classification error.

In its classification version, the PSC algorithm was mod-
ified such that the number of iterations for convergence is
not determined by the user. Instead, its stopping criterion is
defined by the stabilization of the prototypes around the input
objects.

Two steps are required to generate the PSClass classifier.

(i) Unsupervised Step. In this stage, the PSC algorithm
is run in order to position the particles in regions of
the input space that are representative of the natural
clusters of data.

(ii) Supervised Step. Some steps are added to the PSC
algorithm such that the prototypes are adjusted by

the LVQ1 method so as to minimize the classification
error, as shown in (3) and (4).

For each object 𝑗 in the database, there is a prototype 𝑖
with greater similarity to it, determined by a nearest neighbor
method. This prototype is updated considering the PSC
equations combined with the LVQ1 method as

𝑥
𝑖
(𝑡 + 1) = 𝑥

𝑖
(𝑡) + 𝑣

𝑖
(𝑡 + 1) , (3)

if the prototype 𝑥
𝑖
and the object 𝑦𝑗 belong to the same class;

and
𝑥
𝑖
(𝑡 + 1) = 𝑥

𝑖
(𝑡) − 𝑣

𝑖
(𝑡 + 1) , (4)

if the prototype 𝑥
𝑖
and the object 𝑦𝑗 do not belong to the same

class.
Thus, when a particle labels correctly an object from the

database, the particle is moved toward this object (3); other-
wise, it is moved in the opposite direction to the object (4).

The following pseudocode presents the supervised step of
the PSClass classifier (see Pseudocode 3).

As in most data classification algorithms, the user must
define the architecture of the system, for example, number
of particles in the swarm or neurons in the neural network;
some changes in the PSClass classifierwere proposed so that it
could dynamically determine the number of prototypes in the
swarm, and, thus, the automatic construction of a classifier
model, giving rise to cPSClass. The cPSClass algorithm was
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inspired by the work of Prior and de Castro [15], with the
proposal of the cPSC, discussed in Section 3.2.

Like its predecessor, PSClass, two steps are necessary to
generate the cPSClass classifier.

(i) Unsupervised Step. In this stage, the cPSC algorithm
is run in order to position the particles in regions of
the input space that are representative of the natural
clusters of data and also to determine a suitable
number of particles in the swarm (Pseudocode 2).

(ii) Supervised Step. Some steps are added to the PSC
algorithm such that the prototypes are adjusted by
the LVQ1 method so as to minimize the classification
error, as shown in (3) and (4).

5. Related Works

As the contributions of this paper emphasize a constructive
particle swarm classification algorithm, the related works
to be reviewed here include the use of the PSO algorithm
for data classification and PSO techniques with dynamic
population.

5.1. PSO for Data Classification. There are several works in
the literature involving data classification with PSO, such as
[34–41]. These will be briefly reviewed in this section.

In [34], two approaches to the binary PSO are applied to
classification problems: one called Pittsburgh PSO (PPSO)
and the other called Michigan PSO (MPSO). In the Pitts-
burgh approach, each particle represents one or more pre-
diction rules. Thus, a single particle is used to solve a
classification problem. The classification is done based on
the nearest neighbors rule (NN). In the Michigan PSO, by
contrast, each particle represents a single prototype. Thus,
all particles are used to solve a classification problem. A
refinement of theMPSO is presented in [35] with the adaptive
Michigan PSO (AMPSO), where the population is dynamic
and the whole swarm is used to solve the problem.The fitness
of each particle is used to calculate its growth probability.

In [36], the authors proposed an extension of the binary
PSO, called DPSO, to discover classification rules. Each
attribute may or may not be included in the resulting rule.
An improvement of DPSOwas proposed in [37], culminating
in the hybrid algorithm PSO/ACO. The proposal starts with
an empty set of rules, and for each class from the database it
returns the best rule for the class evaluated.

Hybrid algorithms are common, as is the case of PSORS
[38], which is used to cluster and classify objects. It combines
the PSO, rough sets (RS), and a modified form of the Huang
Index function to optimize the number of groups found in
the database. The number of groups for each attribute of the
particle is limited by a range defined by the Huang index,
which is applied to the database. Attributes are fuzzified by
the fuzzy 𝑐-means [42], and the index function is applied to
each object to determine the group to which it belongs.

In [39] it was proposed a hybrid algorithm, named
hybrid particle swarm optimization tabu search (HPSOTS),
for selecting genes for tumor classification. The HPSOTS
combines PSO with tabu search (TS) to maintain population

diversity andprevent deceptive local optimum.Thealgorithm
initializes a population of individuals represented by binary
strings. Ninety percent of the neighbors of an individual are
assessed according tomechanisms from themodified discrete
PSO [43, 44]. The algorithm selects a new individual of the
neighborhood according to the tabu conditions and updates
the population.

According to Wang et al. [40], many classification tech-
niques, such as decision trees [4, 5] and artificial neural net-
works [6, 7], do not produce acceptable predictive accuracy
when applied to real problems. In this sense, the authors
proposed the use of the PSO algorithm [12] to discover
classification rules. Their method initializes a population of
individuals (rules) with the dimension given by the number
of attributes of the objects evaluated. A fitness function is
defined to evaluate the solution (classification rules) for the
problem in question. The smaller the rule set, the easier to
understand it.

The works presented in [40, 45] also cite the quality
of the results produced when using classical techniques to
solve real world problems. For Wang et al. [40], decision
trees, artificial neural networks, and naive Bayes are some of
the classic techniques applied to classification problems and
they work well in linearly separable problems. The authors
proposed a classification method based on a multiple linear
regressionmodel (MRLM) and the PSO algorithm, called the
PSO-MRLM, which is able to learn the relationship between
objects from a database and also express it mathematically.
The MRLM technique builds a mathematical model able to
represent the relationship between variables, associating the
value of each independent variable with the value of the
dependent variable. The set of equations (rules) contemplate
this relationship using coefficients that act on each of the
attributes of each rule. The proposed method uses the PSO
algorithm to estimate the value of the coefficients.

A classifier based on PSO is proposed in [41] and applied
to power systems operations. Pattern recognition based
on PSO (PSO-PR) evaluates a condition of operation and
predicts whether this is safe or unsafe.The first step to obtain
the classifier is to generate the patterns (data) necessary to the
training process. As the number of variables describing the
power system state is very large, the next step in this process
involves a feature selection procedure, responsible for elim-
inating redundant and irrelevant variables. In the next step
PSO is used to minimize the percentage of misclassification.

Comparedwith the proposed PSClass and cPSClass, none
of the works available in the literature work by using a clus-
tering algorithm followed by a vector quantization approach.
The proposals here initially operate in a completely self-
organized manner, and only after the particles are positioned
in regions of the space that represent the input data, their
positions are corrected so as to minimize the classification
error. Despite these differences, in the present paper the
performances of PPSO, MPSO, and AMPSO algorithms are
compared with that of PSClass and cPSClass.

5.2. PSO with Dynamic Population. The original PSO has
also been modified to dynamically determine the number
of particles in the swarm. According to [46], there are few
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publications dealing with the issue of dynamic population
size in PSO, and the main ones are briefly reviewed below.

In [47] two dynamic population approaches are proposed
to improve the PSO speed: expanding population PSO (EP-
PSO) and diminishing population PSO (DP-PSO). According
to the experiments shown, both approaches reduce the run
time of PSO by 60% on average.

In [48], it was proposed the dynamic population PSO
(DPPSO), where the number of particles is controlled by
a function that contains an attenuation item (responsible
for reducing the number of particles) and a waving item
(particles are generated to avoid local optimum and the ones
considered inefficient die and are removed from the swarm)
to control the population size.

In [46] it was proposed the dynamic multiobjective
particle swarm optimization (DMOPSO) algorithm, which
uses the particle growth strategy inspired by the algorithm
incrementing multiobjective evolutionary (IMOEA) [49] in
which particles of best fitness are selected to generate new
particles.

In [50], the authors proposed the ladder particle swarm
optimization (LPSO) algorithm, where the population size is
determined based on its diversity.

In [51], two approaches to multiobjective optimization
with dynamic population are proposed: dynamic multiob-
jective particle swarm optimization (DPSMO) and dynamic
particle swarm evolutionary algorithms (DPSEA), which
combine PSO and genetic algorithm mechanisms to regulate
the number of particles in the swarm.

All PSO versions with dynamic population present
growth strategies for the number of particles to ensure the
diversity of solutions and pruning strategies to reduce the
processing cost. Their applications, however, are focused on
optimization problems, not on data classification problems,
as proposed in the present paper.Therefore, no direct perfor-
mance comparisons will be made with these methods.

6. Performance Assessment

The PSClass and cPSClass algorithms were implemented in
MATLAB 7.0, and their performances were compared with
those three algorithms based on the PSO: PPSO, MPSO
and AMPSO, and also with the three well-known classi-
fication algorithms from the literature: naı̈ve Bayes, k-NN
and a multi-layer perceptron (MLP) neural network trained
with the backpropagation algorithm [11]. The parametric
configurations for the MLP were as follows: learning rate
equals to 0.3, maximum number of epochs equals to 500,
and number of nodes in the hidden layers equals to 4.0. The
number of hidden layers was given by (number of attributes
+ number of classes)/2. The classic algorithms were run
using the Weka 3.6 [58] tool, and the results of the PSO-
based algorithms were taken from the literature. A k-fold
cross-validation procedure was used to train the algorithms
and estimate the prediction error, and the algorithms were
run 30 times for a validation with 𝑘 = 10 folders each.
The objects of each class were distributed evenly and with
stratification among the 10 folders. For benchmarking we

Table 1: Main characteristics of the databases used for performance
assessment.

Databases Objects Attributes Classes
Iris 150 4 3
Yeast 205 20 4
Wine 178 13 3
Glass identification 214 9 6
Haberman’s survival 306 3 2
Ruspini 75 2 4
E.coli 336 8 5

used seven databases available in the UCI Data Repository
(http://archive.ics.uci.edu/ml/datasets.html). The main fea-
tures of these databases are listed in Table 1.

The parametric configurations used in the two algorithms
proposed here have been inherited from their predecessor,
the PSC.The vectors 𝜑

1
, 𝜑
2
, and 𝜑

3
are random in the interval

(0, 1). The inertia moment (𝜔) has an initial value of 0.90,
with a decay of 0.95 iteratively to 0.01.Thenumber of particles
used in PSClass was twice the number of classes present in the
respective database in Table 1.The domain of the vector space
was limited to [0, 1] and the velocity of the particles was also
controlled andwas set in the range [−0.1, 0.1] to avoid particle
explosion.

In its original version, the PSC stops after a fixed number
of iterations. For the construction of the PSClass, the PSC
was modified such that the number of iterations required for
their convergence is not defined by the user. To do that, a
stopping criterion had to be proposed: the stabilization of the
swarm; that is, if the average Euclidean distance between the
current position and the position of the memory prototypes
is less than a given threshold, then the algorithm is assumed
to have converged. This stopping criterion is assessed every
two iterations.

In cPSClass, the pruning of particles occurs when they
do not move during two consecutive iterations. When the
similarity between the prototype and the object of greater
similarity to it is greater than the affinity threshold, the
prototype is cloned and the new prototype is positioned in
themiddle between it and the object evaluated. A suppression
step was added right after the pruning step so as to minimize
the number of prototypes generated.

The threshold 𝜀 depends on the dataset, for which it must
be defined empirically. A number of particles added to the
swarm much different from the number of classes in the
database compromise the effectiveness of the algorithm. To
understand the influence of 𝜀 in the cPSClass algorithm, a
sensitivity analysis of 𝜀 was performed using the databases
fromTable 1.The following values for 𝜀were tested: 0.15, 0.20,
0.25, 0.30, 0.35, 0.40, 0.45, and 0.50. The results in terms of
accuracy (percentage of correct classification—Pcc), number
of particles (NP), and number of iterations (NI) for each value
of 𝜀 tested are shown in Table 2. The results presented are the
average over 30 runs, and the best results of Pcc, NP and NI
on average were made in bold.

Increasing the value of 𝜀 is the same as increasing the
affinity degree between the winner particle and the input
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Table 3: Accuracy (Pcc) and number of prototypes (NP) of cPSClass and ScPSClass.

Database cPSClass ScPSClass
Pcc NP Pcc NP

Iris 95.56 ± 4.74 11.87 ± 3.25 89.78 ± 3.38 3.03 ± 0.18

Yeast 100.0 ± 0.0 23.90 ± 5.19 100.0 ± 0.0 4.0 ± 0.0

Wine 93.54 ± 2.59 15.87 ± 3.43 95.0 ± 2.54 7.23 ± 0.86

Glass 60.35 ± 7.66 22.60 ± 5.06 52.63 ± 8.85 6.83 ± 0.38

Haberman 93.67 ± 3.08 22.10 ± 3.79 92.44 ± 3.15 8.13 ± 0.63

Ruspini 100.0 ± 0.00 7.97 ± 1.13 100.0 ± 0.0 4.0 ± 0.0

E.coli 89.68 ± 2.86 17.97 ± 3.58 84.73 ± 6.45 5.73 ± 0.78

Table 4: Number of prototypes for PSClass, cPSClass, PPSO, MPSO, and AMPSO algorithms.

Database PSClass cPSClass PPSO MPSO AMPSO
Iris 6 3.03 ± 0.18 10 16 18
Yeast 8 4.0 ± 0.0 — — —
Wine 6 7.23 ± 0.86 — — —
Glass 12 6.83 ± 0.38 10 16 19
Haberman 4 8.13 ± 0.63 — — —
Ruspini 8 4.0 ± 0.0 — — —
E.coli 10 5.73 ± 0.78 — — —

Table 5: Classification accuracy for PSClass, cPSClass, PPSO, MPSO, AMPSO, näıve Bayes, K-NN, and MLP (ANN).

Database PSClass cPSClass PPSO MPSO AMPSO Näıve Bayes k-NN ANN
Iris 91.78 ± 5.16 89.78 ± 3.38 90.89 ± 0.0 96.70 ± 0.0 96.89 ± 0.0 96.00 ± 0.0 96.00 ± 0.0 97.36 ± 0.0
Yeast 100.0 ± 0.0 100.0 ± 0.0 — — — 97.56 ± 0.0 98.05 ± 0.0 96.59 ± 0.0

Wine 93.96 ± 1.14 95.0 ± 2.54 — — — 96.63 ± 0.0 97.75 ± 0.0 97.19 ± 0.0

Glass 59.82 ± 6.84 52.63 ± 8.85 74.34 ± 0.0 86.27 ± 0.0 86.94 ± 0.0 49.53 ± 0.0 71.63 ± 0.0 68.37 ± 0.0

Haberman 86.11 ± 4.88 92.44 ± 3.15 — — — 74.51 ± 0.0 69.28 ± 0.0 74.18 ± 0.0

Ruspini 99.44 ± 3.04 100.0 ± 0.0 — — — 98.67 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
E.coli 79.78 ± 10.44 84.73 ± 6.45 — — — 87.46 ± 0.0 84.71 ± 0.0 86.85 ± 0.0

object. Thus, when the threshold increases, the number of
clones tends to increase, which can compromise the effective-
ness of the algorithm. As the accuracy of the algorithm is, in
principle, its most important measure of interest, the value of
𝜀 detached in bold in Table 2 as the most suitable one for each
dataset was that with higher Pcc. It can be observed, though,
that the algorithm presents some robustness in relation to 𝜀,
in the sense that its performance in terms of Pcc, NP, and NI
changes little even with a high variation in 𝜀.

To evaluate the performance of the suppression step in
cPSClass, its performance was compared with that without
using it. The results are shown in Table 3 and the cPSClass
with the suppression step is identified by ScPSClass to
differentiate it from the standard cPSClass. It can be observed
that the accuracy of cPSClass with the suppression step was
worse for the Iris, Glass and E. coli datasets, but the number of
prototypes generated was substantially smaller. By contrast,
the performance of ScPSClass was equivalent or increased
even with a substantial reduction in the number of particles
in the swarm.

The parametric configurations of the PPSO, MPSO and
AMPSO algorithms are available in [34, 35]. The number

of prototypes of such algorithms, as well as of PSClass and
cPSClass, is shown in Table 4. For the MLP network, the
number of output neurons used was equal to the number of
classes in the database (Table 1), as well as the value of k for
the k-NN.

Table 5 shows the performance of PPSO,MPSO, AMPSO,
PSClass, cPSClass algorithms and the classic algorithms from
the literature when applied to the databases in Table 1. The
best absolute results, on average, are made in bold in the
table. The PSClass and cPSClass algorithms showed similar
performances, on average, for the databases of Table 1. For
the Yeast and Ruspini databases, the cPSClass algorithm
presented maximal accuracy, whilst no other algorithm was
capable of presenting such performance. It is worth noting
that the number of particles generated by the cPSClass is
greater than that used in the PSClass for the Wine and
Haberman databases, as can be observed in Table 4. Näıve
Bayes, k-NN, and MLP presented a worse performance
than PSClass and cPSClass for the Haberman databases but
were competitive for the other databases. PPSO, MPSO, and
AMPSO performed quite well for the Glass database, being
competitive with PSClass and cPSClass.
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A Shapiro-Wilk test [59] was used to determine whether
the behavior presented by the algorithms had a normal
distribution. Assuming a confidence level equals to 0.95,
the test of normality revealed that the null hypothesis (𝐻

0
)

should be rejected and, thus, a nonparametric test should be
used to assess the statistical significance of performances. In
order to determine whether the difference in performance
among the evaluated algorithms is significant, we used the
Friedman test [60, 61], a nonparametric method analogous
to the parametric ANOVA (analysis of variance) [62]. The
Friedman test is based on the ranking of the results obtained
for each sample (database) 𝑗 to all 𝑘 algorithms. The value of
the degrees of freedom is obtained by 𝑘 − 1, being 𝑘 = 8, so
there are 7 degrees of freedom.Thus, according to the𝜒2 table
[63], the critical values of probability, for 𝛼 = 5% and 𝛼 = 1%,
are 14.07 and 18.48, respectively. As 𝜒2 calculated is less than
the critical values, the null hypothesis 𝐻

0
is not rejected.

In other words, the difference in performance between the
algorithms is not statistically significant for the Haberman
databases tested.

7. Conclusion

This paper presented two algorithms based on the orig-
inal particle swarm optimization algorithm—PSClass and
cPSClass—to solve data classification problems. The PSClass
initially finds natural groups within the database, in an
unsupervised way, and then adjusts the prototypes’ position
using an LVQ1 method, in a supervised way, in order to
minimize the misclassification error.The cPSClass algorithm
is similar to PSClass, except in its unsupervised phase, where
it dynamically determines the number of particles in the
swarm using the immune clonal selection metaphor. A para-
metric sensitivity analysis for cPSClass was also performed
to evaluate the relation between the growth of the swarm and
𝜀. For cPSClass, a suppression step was added right after the
pruning step to reduce the number of prototypes generated
by the algorithm.

The algorithms were applied to seven data classification
problems and their performance was compared with that of
algorithms well known in the literature—k-NN, MLP, and
Näıve Bayes, in addition to three algorithms based on the
original PSO-PPSO, MPSO, and AMPSO. It was used a 𝑘-
fold cross-validation to train the algorithms and estimate
the prediction error. The algorithms were run 30 times for
𝑘 = 10 folders. The results showed that cPSClass was the
best algorithm, on average, for theHabernamdatabase, whilst
AMPSOwas the best forGlass, näıve Bayeswas best forE. coli,
k-NNwas the best forWine, and theMLPwas the best for Iris.
The PSClass and cPSClass algorithms showed similar results
with each other for all the databases evaluated. However, the
cPSClass has the advantage of automatically determining the
number of prototypes (particles) in the swarm.
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We consider the NP-hard problem of minimizing makespan for n jobs onm unrelated parallel machines with release dates in this
research. A heuristic and a very effective particle swarm optimization (PSO) algorithm have been proposed to tackle the problem.
Two lower bounds have been proposed to serve as a basis for comparison for large problem instances. Computational results show
that the proposed PSO is very accurate and that it outperforms the existing metaheuristic.

1. Introduction

This research considers the problem of scheduling 𝑛 jobs
on 𝑚 unrelated parallel machines in the presence of release
dates. The performance measure, makespan, is defined as
max(𝐶

1
, . . . , 𝐶

𝑛
), where 𝐶

𝑗
is the completion time of job

𝑗. Minimizing makespan not only completes all jobs as
quickly as possible but also is a surrogate for maximizing the
utilization of machines. Following the three-field notation of
Graham et al. [1], we refer to this problem as 𝑅|𝑟

𝑗
|𝐶max. This

problem is NP hard [2].
Chen and Vestjens [3] used the largest processing time

(LPT) to minimize makespan for identical parallel machines
with release dates (𝑃|𝑟

𝑗
|𝐶max). The release date of a job is not

known in advance, and its processing time becomes known at
its arrival. Kellerer [4] proposed algorithms for the 𝑃|𝑟

𝑗
|𝐶max

problem and 𝑃|𝑟
𝑗
|𝐶min problem. Koulamas and Kyparisis [5]

considered uniform parallel machine scheduling problems
(𝑄|𝑟
𝑗
|𝐶max). They proposed a heuristic and derived a tight

worse-case ratio bound for this heuristic. Centeno and
Armacost [6] showed that the LPT rule performed better than
the least flexible job (LFJ) rule for the problem with machine
eligibility restrictions (𝑃|𝑟

𝑗
,𝑀
𝑗
|𝐶max). Lancia [7] applied a

branch-and-bound (b & b) procedure to solve scheduling
problemswith release dates and tails on twounrelated parallel
machines (𝑅

2
|𝑟
𝑗
, 𝑞
𝑗
|𝐶max). Similarly, Gharbi and Haouari [8]

also presented a b & b procedure to solve the 𝑃|𝑟
𝑗
, 𝑞
𝑗
|𝐶max

problem. Carlier and Pinson [9] reported new results on
the structures of Jackson’s pseudopreemptive scheduling
applied to the 𝑃|𝑟

𝑗
, 𝑞
𝑗
|𝐶max problem. Li et al. [10] used

a polynomial time approximation scheme for scheduling
identical parallel batchmachines (𝑃|𝑟

𝑗
, 𝐵|𝐶max). Li andWang

[11] proposed an efficient algorithm for scheduling with
inclusive processing set restrictions and job release times
(𝑃|𝑟
𝑗
, 𝑖𝑛𝑐𝑙.𝑝𝑟𝑜𝑐.𝑠𝑒𝑡𝑠|𝐶max).
To the best of our knowledge, no research has yet been

published that develops an efficient algorithm to minimize
makespan for unrelated parallel machines with release dates.
The rest of this paper is organized as follows. Section 2
presents our proposed lower bounds. Section 3 presents the
proposed PSO. In Section 4, the computational results are
reported. Section 5 presents our conclusions and suggestions
for future research.

2. Lower Bounds to 𝑅|𝑟
𝑗
|𝐶max

We propose two straightforward and easily implementable
lower bounds for the studied problem. 𝐿𝐵

1
is the maximum

value of each job’s release date plus the minimum processing
time (across all machines). 𝐿𝐵

2
is set to the minimum release

date (among all jobs) plus the sum of all jobs’ minimum
processing times (across machines) divided by the number
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Table 1: The matrix of processing times for example 1.

𝑝
𝑖𝑗

𝑗
1

𝑗
2

𝑗
3

𝑗
4

𝑗
5

𝑗
6

𝑗
7

𝑚
1

15 29 40 32 46 8 44
𝑚
2

41 29 40 32 31 24 49
𝑟
𝑗

27 4 3 9 13 17 1

of machines. We set lower bound LB equal to the maximum
value of 𝐿𝐵

1
and 𝐿𝐵

2
:

𝐿𝐵
1
= max
1≤𝑗≤𝑛

(𝑟
𝑗
+ min
1≤𝑖≤𝑚

𝑝
𝑖𝑗
)

𝐿𝐵
2
= min
1≤𝑗≤𝑛

𝑟
𝑗
+

(∑
𝑛

𝑗=1
min
1≤𝑖≤𝑚

𝑝
𝑖𝑗
)

𝑚

LB = max {𝐿𝐵
1
, 𝐿𝐵
2
} .

(1)

To illustrate the proposed lower bounds, we consider
example 1, which has 2 machines and 7 jobs. The matrix of
processing times for example 1 is given in Table 1:

𝐿𝐵
1

= max {27 + 15, 4 + 29, 3 + 40, 9

+32, 13 + 31, 17 + 8, 1 + 44} = 45

𝐿𝐵
2

= 1 +

(15 + 29 + 40 + 32 + 31 + 8 + 44)

2

= 1 +

199

2

= 100.5

LB = max {45, 100.5} = 100.5.

(2)

3. The Proposed PSO Algorithm

PSO was first introduced by Kennedy and Eberhart [12] for
solving continuous nonlinear function optimization prob-
lems. PSO is based on the metaphor of social interaction and
communication in flocks of birds or schools of fish. In these
groups, there is a leader (the one with the best performance)
who guides the movement of the whole swarm. In a PSO,
each individual is called a “particle,” and each particle flies
around the search space with some velocity. In each iteration,
a particle moves from its previous location to a new location
at its newly updated velocity, which is calculated based on
the particle’s own experience and the experience of the whole
swarm.

A population of 𝑀 particles are assumed to evolve in
an 𝑁-dimensional vector search 𝑅

𝑁 such that each particle
𝑘 is assigned the position vector 𝑋𝑡

𝑘
= (𝑥
𝑡

𝑘1
, 𝑥
𝑡

𝑘2
, . . . , 𝑥

𝑡

𝑘𝑁
)

and velocity vector 𝑉
𝑡

𝑘
= (𝑣

𝑡

𝑘1
, 𝑣
𝑡

𝑘2
, . . . , 𝑣

𝑡

𝑘𝑁
), where 𝑥

𝑡

𝑘𝑑

represents the location and 𝑣
𝑡

𝑘𝑑
represents the velocity of

particle 𝑘 in the dth dimension of the search space at the
tth iteration and 𝑘 ∈ {1, 2, . . . ,𝑀}, 𝑑 ∈ {1, 2, . . . , 𝑁}. Each
particle knows its position and the corresponding objective

7 6 1 4 3 2 5∗

Figure 1: Representation of a particle’s solution.

function.The local best position for each particle 𝑘 is encoded
in the variables 𝑃

𝑡

𝑘
= (𝑃

𝑡

𝑘1
, 𝑃
𝑡

𝑘2
, . . . , 𝑃

𝑡

𝑘𝑁
), and the global

best position among all particles is encoded in the variable
𝑃
𝑡

𝑔
= (𝑃
𝑡

𝑔1
, 𝑃
𝑡

𝑔2
, . . . , 𝑃

𝑡

𝑔𝑁
). The standard PSO equations can be

described as follows [12]:

𝑣
𝑡+1

𝑘𝑑
= 𝑤𝑣
𝑡

𝑘𝑑
+ 𝑐
1
𝑟
1
(𝑝
𝑡

𝑘𝑑
− 𝑥
𝑡

𝑘𝑑
) + 𝑐
2
𝑟
2
(𝑝
𝑡

𝑔𝑑
− 𝑥
𝑡

𝑘𝑑
)

𝑥
𝑡+1

𝑘𝑑
= 𝑥
𝑡

𝑘𝑑
+ 𝑣
𝑡+1

𝑘𝑑
,

(3)

where𝑤 is the weight that controls the impact of the previous
velocities on the current velocity, 𝑐

1
is the cognition learning

factor, 𝑐
2
is the social learning factor, and 𝑟

1
and 𝑟
2
are random

numbers uniformly distributed in [0, 1].
PSO has been successfully applied to a variety of con-

tinuous nonlinear optimization problems. In recent years,
considerable effort has been expended on solving scheduling
problems by PSO algorithms. Articles [13, 14] used PSO
algorithms to solve scheduling problems similar to the
problems in this paper. Reference [13] provided a PSO
algorithm for scheduling identical parallel machines to min-
imize makespan (𝑃||𝐶max). Reference [14] presented a PSO
algorithm for scheduling nonidentical parallel batch process-
ing machines to minimize makespan (𝑃|𝑏𝑎𝑡𝑐ℎ, 𝑠

𝑗
, 𝑆
𝑚
|𝐶max).

This research uses PSO for the 𝑅|𝑟
𝑗
|𝐶max problem. The

following five headings describe the PSO algorithm used
in this research: particle representation, initial population
generation, particle velocity and sequence metric operators,
local search, stopping criteria, and parameter settings.

3.1. Particle Representation. A coding scheme developed in
[15] is used to represent a solution to the problem at hand.
The coding scheme uses a list of job symbols and partitioning
symbols. A sequence of job symbols, denoted by integers,
represents a possible sequence of jobs. The partitioning
symbol, an asterisk, designates the partition of jobs to
machines. Generally, for an 𝑚-machine 𝑛-job problem, a
solution contains 𝑚 − 1 partitioning symbols and 𝑛 job
symbols, resulting in a total size of (𝑚 + 𝑛 − 1). For example,
for a schedule with 7 jobs and 2 machines, the particle can be
represented as shown in Figure 1.

The completed schedule is thus jobs 7, 6, 1, and 4 on
machine 1; jobs 3, 2, and 5 on machine 2.This coding scheme
specifies not only which jobs are assigned to which machine
but also the order of the jobs on eachmachine.These pieces of
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information are important, since we are scheduling unrelated
parallel machines with release dates.

3.2. Initial Population Generation. In order to give the PSO
algorithmgood initial solutions and to increase the chances of
getting closer to regions that yield good objective functions,
we propose a heuristic, named SRD Reassign. The proposed
heuristic SRD Reassign is described as follows.

3.2.1. Heuristic SRD Reassign

Step 1. Let 𝑈 be the set of unscheduled jobs; let 𝑡
𝑖
be the

sum of the processing times of the jobs that have already
been scheduled on machine 𝑖, 𝑖 = 1, . . . , 𝑚. Initially, set 𝑈 =

{1, . . . , 𝑛} and 𝑡
𝑖
= 0, for 𝑖 = 1, . . . , 𝑚.

Step 2. Arrange the jobs in the order of the shortest release
date (SRD) first, and then assign the job to machine 𝑖∗ that
has theminimumprocessing time, that is,𝑝

𝑖
∗
𝑗
= min

1≤𝑖≤𝑚
𝑝
𝑖𝑗
.

Repeat until all jobs have been scheduled to generate a
complete schedule.

Step 3. Let 𝐴
𝑖
be the set of scheduled jobs on machine 𝑖, 𝑖 =

1, . . . , 𝑚; let 𝐶max = max
𝑖=1,...,𝑚

{𝑡
𝑖
} represent the maximum

completion time and denote the set of candidate jobs for
reassignment as 𝐵. Initially, set 𝐵 = {𝑛𝑢𝑙𝑙}.

Step 4. Identify machine 𝑖 for which 𝑡
𝑖
= 𝐶max. For every

job 𝑗, 𝑗 ∈ 𝐴
𝑖
, search for machine ℎ(ℎ ̸= 𝑖), such that if job

𝑗 was reassigned to machine ℎ and the jobs on machine ℎ
were sorted in SRD, the new calculated 𝑡

ℎ
would be smaller

than 𝐶max, that is, 𝑡ℎ = max(𝑡
ℎ
, 𝑟
𝑗
) + 𝑝
ℎ𝑗,𝑗∈𝐴

ℎ

< 𝐶max. If job
𝑗 and machine ℎ can be found, update the candidate set by
adding job 𝑗 on machine ℎ to the candidate set 𝐵 by setting
𝐵 = 𝐵 ∪ {(ℎ, 𝑗)}. If 𝐵 = {𝑛𝑢𝑙𝑙}, then go to Step 6.

Step 5. Select machine ℎ and job 𝑗 from 𝐵 for the reassign-
ment that has maximumGain, where Gain = max{𝐶max−𝑡ℎ}.
Reassign job 𝑗 to machine ℎ by setting 𝐴

ℎ
= 𝐴
ℎ
∪ {𝑗}. Sort

the jobs on machine ℎ in SRD and update 𝑡
ℎ
= max(𝑡

ℎ
, 𝑟
𝑗
) +

𝑝
ℎ𝑗, 𝑗∈𝐴

ℎ

. Remove job 𝑗 from machine 𝑖 by setting 𝐴
𝑖
= 𝐴
𝑖
\

{𝑗}. Sort the jobs on machine 𝑖 in SRD and update 𝑡
𝑖
=

max(𝑡
𝑖
, 𝑟
𝑗
)+𝑝
𝑖𝑗,𝑗∈𝐴

𝑖

. Set𝐶max = max
𝑖=1,...,𝑚

{𝑡
𝑖
} and 𝐵 = {𝑛𝑢𝑙𝑙}.

Go to Step 4.

Step 6. Terminate the procedure.

The first two particles are generated by first-come, first-
serve (FCFS) rule and SRD Reassign.The remaining particles
are generated by applying local search to the solution found
by SRD Reassign. For FCFS rule, we consider all unscheduled
jobs and schedule each one on the first available machine
according to FCFS. Local search is done by randomly
choosing two jobs 𝑗

1
and 𝑗

2
from the solution found by

SRD Reassign and then interchanging jobs 𝑗
1
and 𝑗

2
to

generate a new solution. From the initial population pool, we
identify the best current solution 𝐶∗max and update the global
best location (𝑃𝑡

𝑔
).

3.3. Particle Velocity and Sequence Metric Operators. Kashan
and Karimi [13] worked on the classical PSO equations to
provide a discrete PSO algorithm that maintained all major
characteristics of the original continuous PSO equations
when solving parallel machine scheduling problems. In this
research, we use the two equations proposed in [13] to update
the particle velocity and the sequence metric operators as
shown in (4) and (5):

𝑉
𝑡+1

𝑘
= 𝑉
𝑡

𝑘

+

O((𝑅
1

×

O(𝑃
𝑡

𝑘

−

O𝑋𝑡
𝑘
))

+

O(𝑅
2

×

O(𝑃
𝑡

𝑔

−

O𝑋𝑡
𝑘
)))

(4)

𝑋
𝑡+1

𝑘
= 𝑋
𝑡

𝑘

+

O𝑉𝑡+1
𝑘

.
(5)

In (4),𝑉𝑡
𝑘
and𝑋𝑡

𝑘
represent the velocity and position arrays of

particle 𝑘 at the tth iteration, respectively.𝑃𝑡
𝑘
and𝑃𝑡
𝑔
represent

the local best position for each particle 𝑘 and the global best
position among all particles visited so far. 𝑅

1
and 𝑅

2
are 1-

by-(𝑚 + 𝑛 − 1) arrays in which each digit is 0 or 1. These
random arrays are generated from a Bernoulli distribution.
−

O,
×

O, and
+

O are subtraction, multiplication, and addition
operators, respectively.The definitions of the operators are as
follows.

The subtraction operator (
−

O) defines the differences
between the current position of the kth particle, 𝑋𝑡

𝑘
, and a

desired position 𝑃𝑡
𝑘
(or 𝑃𝑡
𝑔
). It first finds elements that do not

have the same content in𝑋𝑡
𝑘
and 𝑃𝑡
𝑘
(or 𝑃𝑡
𝑔
). It schedules those

elements based on their orders in 𝑃
𝑡

𝑘
(or 𝑃𝑡
𝑔
). Next, it finds

elements that have the same content in𝑋𝑡
𝑘
and 𝑃𝑡
𝑘
(or 𝑃𝑡
𝑔
) and

gives those elements zero values. It puts zero-valued elements
in SRD and then schedules them on whatever machine
that offers the earliest completion time (ECT). Figure 2

demonstrates the manner in which the
−

O operator works for
example 1.

The multiplication operator (
×

O) can enhance our PSO
algorithm’s exploration. It first generates a 1-by-(𝑚 + 𝑛 −

1) binary vector for a solution vector, and then it does
a multiplication process where the asterisk positions from
solution are kept. These random binary arrays perform
subroutineswithin PSO that use randomnumbers to enhance
the exploration ability of PSO. Figure 3 demonstrates the

manner in which the
×

O operator works for example 1. The

nonzero-valued elements in 𝐴
×

O𝐵 are scheduled first. Then,
all zero-valued elements in 𝐴

×

O 𝐵 are sorted in SRD, and
then each zero-valued element is assigned to themachine that
offers the ECT.

The addition operator (
+

O) is a crossover operator that
is commonly used in genetic algorithms. Here, we used a
crossover that was proposed in [15]. The crossover scheme
has three main steps: (1) it obtains asterisk positions from the
first parent 𝐴; (2) it obtains a randomly selected subschedule
from the first parent 𝐴; (3) it scans the second parent 𝐵 from

left to right and fills the gaps in the child’s (𝐴
+

𝑂𝐵) schedule



4 Mathematical Problems in Engineering

7 6 1 4 3 2 5

4 7 2 6 3 1 5

7 6 1 4 0 2 0

7 6 1 4 2

7 6 1 4 2 3 5
Complete 
 schedule

Assign jobs 7, 6, 1, and 4 to
machine 1 and job 2 to
machine 2. The zero valued

jobs 3 and 5. Sort jobs 3 and 5
by SRD and assign them to the
machine that o ffers ECT

∗

∗

∗

∗

∗

elements in A
−
𝑂B correspond to

𝐴(𝑃𝑡𝑔)

𝐵(𝑋𝑡𝑘)

𝐴
−
𝑂𝐵

Figure 2: The subtraction operator (
−

O) applied to example 1.
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O) applied to example 1.

7 6 1 4 3 2 5

4 7 2 6 3 1 5

4 7 6 1 3 2 5

𝐴

𝐵

𝐴
+
𝑂𝐵

∗

∗

∗

Figure 4: The addition operator (
+

O) applied to example 1.

with jobs taken from the second parent 𝐵. Figure 4 shows an
illustration of this crossover scheme.

During the execution of the
−

O,
×

O, and
+

O operators,
whenever a complete schedule generates a better solution
than the best current solution 𝐶

∗

max, we will update the best
current solution 𝐶∗max and the global best location (𝑃𝑡

𝑔
).

3.4. Local Search. It is well known that evolutionary memetic
algorithms can be improved by hybridization with local
search. For each particle 𝑃𝑡

𝑘
, we do the following local search

procedure (LSP) to further improve the current solution.

3.4.1. Local Search Procedure (LSP)

Step 1. Initially, set 𝑙 = 1.

Step 2. Identify machine 𝑖 that has maximum completion
time (𝐶max). Randomly choose one job 𝑗

1
frommachine 𝑖 and

randomly choose one job 𝑗
2
frommachine ℎ(ℎ ̸= 𝑖). Insert job

𝑗
1
after job 𝑗

2
on machine ℎ. If a better 𝐶max(𝑃

𝑡

𝑘
) is found,

update 𝑃𝑡
𝑘
and go to Step 2; otherwise, go to Step 3.

Step 3. Randomly choose two jobs 𝑗
1
and 𝑗
2
from 𝑃

𝑡

𝑘
; 𝑗
1
and

𝑗
2
can be on the same machine or on two different machines.

Interchange jobs 𝑗
1
and 𝑗

2
. If a better 𝐶max(𝑃

𝑡

𝑘
) is found,

update 𝑃𝑡
𝑘
and go to Step 2; otherwise, go to Step 4.

Step 4. If 𝑙 = 𝐿, stop; otherwise set 𝑙 = 𝑙 + 1 and go to Step 2.

Again, during the execution of LSP, whenever a complete
schedule generates a better solution than the best current
solution 𝐶∗max, we will update the best current solution 𝐶

∗

max
and the global best location (𝑃𝑡

𝑔
).

3.5. Stopping Criteria and Parameter Settings. We studied
the effects of five important parameters (𝑅

1
, 𝑅
2
, local search

moves 𝐿, population size, and number of iterations) on the
performance of our proposed PSO.Themodel was tested and
parameterized through a factorial study. The selected PSO
parameters were 𝑅

1
= 0.9, 𝑅

2
= 0.1, 𝐿 = 10, population

size = 73, and number of iterations = 4044. The appendix
includes a detailed description of our parameterization study.

4. Computational Results

In this section, we present several computational results
of the proposed PSO algorithm. We compare our pro-
posed PSO algorithm with a mixed integer programming
(MIP) model developed in our previous research [16] on
the 𝑅|𝑟

𝑗
|𝐶max problem. The MIP model [16] was coded

in AMPL and implemented in CPLEX 11.2. The proposed
heuristic, SRD Reassign, and the proposed PSO algorithm
were implemented in C. The MIP model, heuristic, and PSO
algorithm were executed on a computer with a 2.5 GHz CPU
and 2GB of memory. Processing times 𝑝

𝑖𝑗
were generated

from the uniform distribution [1, 100]. Release dates were
generated in a manner similar to that of Mönch et al. [17].
We generated release dates 𝑟

𝑗
from the uniform distribu-

tion [0, (𝛼/𝑚)((∑
𝑚

𝑖=1
∑
𝑛

𝑗=1
𝑝
𝑖𝑗
)/𝑚)]. 𝛼 controlled the range

of release dates. High values of 𝛼 tend to produce widely
separated release dates. 𝛼 values were set at 0.1, 0.25, and 0.5.
We used 4 machines with 18 jobs (4𝑚18𝑛) to represent small
problem instances and 10 machines with 100 jobs (10𝑚100𝑛)
to represent large problem instances. For each 𝛼, 20 problem
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Table 2: The performance of heuristic SRD Reassign for small problem instances.

4m18n MIP SRD Reassign FCFS
𝛼 Mean Avg. time Mean Avg. time Mean Avg. time
0.10 1 1176.32 1.11 0.003 1.46 0.000
0.25 1 239.19 1.09 0.002 1.43 0.000
0.50 1 58.02 1.04 0.002 1.34 0.000
Average 1 491.18 1.08 0.002 1.41 0.000
Mean = average ratios of heuristic/MIP obtained from 20 instances.

Table 3: The performance of heuristic SRD Reassign for large problem instances.

10𝑚100𝑛 SRD Reassign FCFS
𝛼 Mean Avg. time Mean Avg. time
0.10 1.43 0.005 2.03 0.001
0.25 1.17 0.003 1.62 0.000
0.50 1.05 0.005 1.36 0.000
Average 1.22 0.004 1.67 0.000
Mean = average ratios of heuristic/LB obtained from 20 instances.

instances were randomly generated.The effectiveness of each
algorithm was evaluated by the mean performance and the
required computation time (labeled as “Avg. time”). For small
problem instances, a ratio was calculated by dividing the
algorithm’s makespan by the optimal MIP makespan. For
large problem instances, a ratio was calculated by dividing the
algorithm’s makespan by the makespan from LB. The mean
performance of the algorithm for each 𝛼was the average ratio
obtained from 20 runs of the algorithm.

4.1. Comparison of Heuristics for 𝑅|𝑟
𝑗
|𝐶max Problem. We

compared the proposed heuristic SRD Reassign with the
optimal solutions obtained from the MIP model [16] and
FCFS. FCFS is a dispatching rule that is commonly used for
practical problems with release dates. Computational results
for small and large problem instances are given in Tables
2 and 3, respectively. The results show that the proposed
SRD Reassign outperformed FCFS in terms of makespan.
For small problem instances, the average SRD Reassign
makespan was 1.08 times the optimum, and the average
FCFS makespan was 1.41 times the optimum. Both heuristics
outperformed the MIP model in terms of computation time.
When 𝛼 was small, both heuristics had larger ratios to the
optimal solutions than they had when 𝛼 was large. Also, the
MIP took more computation time to find optimal solutions
when 𝛼 was small. This probably indicates that problems
with small release date ranges are harder to solve than
problems with large release date ranges. For large problem
instances, the average SRD Reassign makespan was 1.22-
times greater than the lower bound (LB), and the average
FCFS makespan was 1.67 times the LB. Both heuristics were
calculated very quickly (in less than 1 second) even for large
problem instances.

4.2. Comparison of Metaheuristics for 𝑅|𝑟
𝑗
|𝐶max Problem. We

compared the proposed PSO with an existing metaheuristic,

namely, the version of simulated annealing (SA) described
by Lee et al. [18]. This SA variant was originally designed
for solving the 𝑃||𝐶max problem. SA is a metaheuristic, and
it can be used without any problem-dependent knowledge;
therefore, it can be used to solve the 𝑅|𝑟

𝑗
|𝐶max problem.

In order to provide a fair comparison, we used the same
initial solution (SRD Reassign) for both PSO and SA.We also
adjusted the SA parameters to ensure that both PSO and SA
ran for similar computation times. The termination criterion
for SA was set to run for 12 seconds for small problem
instances and 83 seconds for large problem instances. If SA
found a solution equal to LB, the program would terminate
earlier. Computational results for small and large problem
instances are given in Tables 4 and 5, respectively.

Computational results show that the proposed PSO out-
performed the SA in terms of makespan. For small problem
instances, the PSO found optimal solutions at all three
𝛼 settings. The average SA makespan was 1.05 times the
optimum. Bothmetaheuristics outperformed theMIPmodel
in terms of computation time. The last column in Table 4
reports how many times a given algorithm produced a better
makespan than the other algorithm. For instance, a value of
𝑐/𝑑 in column PSO/SA means that, out of 20 problems, there
were 𝑐 problems for which PSO yielded a better solution than
SA, 𝑑 problems for which SA performed better, and 20-𝑐-𝑑
problems for which PSO and SA yielded the same makespan.

For large problem instances, the average PSO makespan
was 1.08-times greater than the LB, and the average SA
makespan was 1.15 times the LB. The last column in Table 5
shows how many times out of 20 the LB was obtained by 𝐿𝐵

1

andhowmany times the LBwas obtained by𝐿𝐵
2
.When𝛼was

small, 𝐿𝐵
2
provided a better lower bound than 𝐿𝐵

1
; however,

when 𝛼 was large, 𝐿𝐵
1
provided a better lower bound than

𝐿𝐵
2
. This suggests that 𝐿𝐵

2
performs better for problems

with narrow release date ranges, and 𝐿𝐵
1
performs better for

problems with wide release date ranges.
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Table 4: The performance of PSO for small problem instances.

4𝑚18𝑛 MIP PSO SA PSO/SA
𝛼 Mean Avg. time Mean Avg. time Mean Avg. time
0.10 1 1176.32 1.00 11.73 1.05 12.79 11/0
0.25 1 239.19 1.00 10.69 1.06 12.17 18/0
0.50 1 58.02 1.00 8.69 1.03 10.28 10/0
Average 1 491.18 1.00 10.37 1.05 11.75 13/0
Mean = average ratios of algorithm/MIP obtained in 20 instances.

Table 5: The performance of PSO for large problem instances.

10𝑚100𝑛 PSO SA PSO/SA 𝐿𝐵
1
/𝐿𝐵
2

𝛼 Mean Avg. time Mean Avg. time
0.10 1.20 82.61 1.32 84.1 20/0 0/20
0.25 1.03 49.37 1.11 85.54 20/0 10/10
0.50 1.00 25.34 1.01 55.18 10/0 20/0
Average 1.08 52.44 1.15 74.94 16.7/0 10/10
Mean = average ratios of algorithm/LB obtained in 20 instances.

4.3. The Effects of the Proposed PSO. Next, since the pro-
posed PSO effectively incorporates a number of ideas (initial
solutions, SRD, ECT, and LSP), we examine which parts
are essential to its functionality. We examine these effects
by disabling a single component, running the proposed
PSO without that component, and observing performance.
We choose to study large problems. These experiments are
described as follows.

PSO-Initial Heuristics: instead of generating an initial
population by heuristics, we randomly generated an initial set
of solutions to make up the initial population.

PSO-SRD: instead of sorting elements by SRD and then
scheduling them on whatever machine that offered the

ECT within PSO operators (
−

O and
×

O), we randomly chose
unscheduled jobs and then scheduled them on whatever
machine that offered the ECT.

PSO-ECT: instead of sorting elements by SRD and then
scheduling them on whatever machine that offered the ECT

within PSO operators (
−

O and
×

O), we sorted elements by SRD
and then scheduled them on the first available machine.

PSO-LSP: local search procedure was disabled.
𝑃𝑆𝑂-𝐿𝑆𝑃 + 𝐿𝑆 [13]: local search procedure was disabled

and a local search algorithm used in [13] was applied. Since
the formulation 0 < 𝑝

𝑎
− 𝑝
𝑏
< 𝐹𝑇
𝑖
− 𝐹𝑇
𝑗
in step 4 [13] was

not suitable for the unrelated parallel machines environment,
we modified it to find two jobs from𝑀

𝑖
and𝑀

𝑗
such that an

exchange of those two jobs was able to improve the current
best makespan.

Table 6 lists the average makespan ratio of PSO-variant
to standard PSO (which has initial heuristics, SRD, ECT, and
LSP by default). Table 6 shows that the PSOperformed poorly
when the initial heuristics were not applied and when the
initial population was randomly generated. The PSO also
performed poorly when the ECT strategy was not applied
within the PSO operators. The average ratio of PSO without

initial heuristics to standard PSO was 1.019, the average of
PSO without SRD to standard PSO was 1.006, the average of
PSOwithout ECT to standard PSOwas 1.020, and the average
of PSOwithout LSP to standard PSOwas 1.007. In all, all of the
proposedPSOversionswithout any one of the parts (heuristic
initial solutions, SRD, ECT, and LSP) performed worse than
the PSO with all of them.

Moreover, we compared our proposed PSO with another
existing PSO. The closest existing PSO that we were able to
find was the hybridized discrete PSO (HDPSO) proposed in
[13]. The HDPSO [13] was designed to minimize makespan
for identical parallel machines (𝑃||𝐶max). The proposed PSO
and the HDPSO both are designed to minimize makespan
for parallel machines and they both use formulas (4)-(5)
to update each particle’s velocity and position. However,
the HDPSO is still quite different from our PSO. The
HDPSO considers problems without release dates; hence, its
coding scheme does not consider the order of jobs on the
same machine. Also, HDPSO considers an identical parallel
machine environment; it uses the LPT rule to assign jobs

with zero-valued elements within
−

O,
×

O, and
+

O operators in
formulas (4)-(5). It is well known that the LPT rule does not
perform well in unrelated parallel machine environments.
If HDPSO is used to solve the 𝑅|𝑟

𝑗
|𝐶max problem without

modifications, it will not perform very well. Table 7 shows
a comparison between HDPSO and our PSO. Since the
−

O,
×

O, and
+

O operators within formulas (4)-(5) are quite
different in both PSOs, there is no point in comparing
them. We focus our comparison on initial heuristics and
local searches. The first column in Table 6 indicates that our
PSO with an initial heuristic performs better than a version
without an initial heuristic. HDPSO might exhibit similar
performance differences.The last column in Table 6 indicates
that our proposed LSP performs better than the local search
algorithm used in [13]. The standard PSO (LSP is embedded)
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Table 6: The effects of the proposed PSO.

10𝑚100𝑛 PSO-initial heuristics PSO-SRD PSO-ECT PSO-LSP PSO-LSP + LS [13]
𝛼 Mean Mean Mean Mean Mean
0.10 1.054 1.017 1.055 1.019 1.023
0.25 1.001 1.001 1.004 1.002 1.003
0.50 1.001 1.001 1.001 1.001 1.001
Average 1.019 1.006 1.020 1.007 1.009
Ave. time 52.55 51.14 51.29 48.44 1624.31
Mean = average ratios of PSO-variant/standard PSO obtained in 20 instances.

Table 7: Comparison between two PSOs.

Problem Initial heuristic
−

O,
×

O, and
+

O operators
within formulas (4)-(5)

Local search

HDPSO 𝑃||𝐶max n/a
Coding scheme and LPT
rule are not suitable for the

𝑅|𝑟
𝑗
|𝐶max problem

Local search algorithm

PSO 𝑅|𝑟
𝑗
|𝐶max SRD Reassign

Coding scheme, SRD, and
ECT are designed for the

𝑅|𝑟
𝑗
|𝐶max problem

LSP

Table 8: Factors and levels of PSO parameter study.

Factor Design units
−1 +1

𝐴:𝑅
1

0.1 0.9
𝐵:𝑅
2

0.1 0.9
𝐶: 𝐿 10 50
𝐷: population size 10 100
𝐸: iteration 1000 5000

versus PSO-LSP+LS [13] is 1.000 versus 1.009. Moreover, the
proposed LSP outperforms the local search algorithm used
in [13] in terms of average computation time. Therefore,
we can conclude that our proposed PSO provides better
and more efficient strategies for parallel machine makespan
minimization problems than what HDPSO provides. Our
PSO ismore likely to provide promising results thanHDPSO.

5. Conclusions and Future Work

We studied the problem of scheduling jobs on unrelated
parallel machines with release dates to minimize makespan.
In this research, we proposed two lower bounds for the stud-
ied problem. We also proposed a heuristic, SRD Reassign,
and a metaheuristic, PSO, to tackle the problem. Computa-
tional results showed that SRD Reassign outperformed the
commonly used heuristic, FCFS, in terms of makespan. The
proposed PSO outperformed a comparable variant of SA in
terms of makespan. Future work can extend our approach for
other performance criteria or even for multiobjective parallel
machine scheduling problems.

Appendix

We studied the effects of five important parameters (𝑅
1
,

𝑅
2
, local search moves 𝐿, population size, and number of

iterations) on the performance of our proposed PSO. In
order to test the significance of each parameter, 10𝑚100𝑛was
chosen as a representative problem instance; the objective
was to minimize 𝐶max in an unrelated parallel machine
environment with release dates. Because problems with small
ranges of release dates are harder to solve than problems
with large ranges of release dates, the release date factor
𝛼 was set to 0.1. In order to obtain information about the
importance of each of the factors, we conducted an initial
screening experiment. Each parameter was categorized as
being at a high or low level, as shown inTable 8.We conducted
a 2
5−2

III screening experiment to determine which factors
were significant. The results of this experiment are shown in
Table 9 where each 𝐶max value is the average of 20 problem
instances. The half normal plot provided by Design Expert
indicates that 𝑅

1
(factor 𝐴), population size (factor 𝐷), and

iterations (factor 𝐸) were significant to the 𝐶max response
in the screening experiment. The model in terms of coded
factors is 𝑦 = 116.43 − 1.13𝐴 − 0.45𝐷 − 0.59𝐸. The model
shows that increasing the 𝐴, 𝐷, and 𝐸 values could decrease
makespan.

Next, we used the method of steepest descent (Myers
et al. [19]) to provide information about the region of
improved response. The path of steepest descent is shown
in Table 10. The results show that a reduction in 𝐶max was
experienced after Run 2. Although Run 2 improved 𝐶max by
2.4% compared with Run 0, its computation time was very
long. Run 1 improved𝐶max by 2.1% relative to Run 0 and used
less computation time. We chose the settings of Run 1 as our
final set of parameters. Hence, PSO parameters were set to
𝑅
1
= 0.9, population size = 73, and iterations = 4044. Since
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Table 9: Results of 25−21
𝐼𝐼𝐼

factorial design for parameters of PSO.

Run 𝐴:𝑅
1

𝐵:𝑅
2

𝐶: 𝐿 𝐷: Pop-size 𝐸: Iteration 𝐶max

1 0.1 0.9 50 10 1000 118.65
2 0.9 0.1 50 10 5000 115.45
3 0.9 0.9 10 100 1000 115.00
4 0.9 0.1 10 10 1000 116.30
5 0.1 0.1 10 100 5000 116.35
6 0.9 0.9 50 100 5000 114.45
7 0.1 0.9 10 10 5000 117.10
8 0.1 0.1 50 100 1000 118.10

Table 10: The path of steepest descent for PSO.

Run Coded units Natural units
𝐶max Improv. Time

𝐴 𝐷 𝐸 𝑅
1

Pop. size Iteration
0 Base 0 0 0 0.5 55 3000 117.30 — 50.68

Increment =  1 0.40 0.52 0.4 18 1044.4 — — —
1 Base + 1 0.40 0.52 0.90 73 4044 114.80 0.021 82.61
2 Base + 2 2 0.80 1.04 0.90 91 5089 114.40 0.024 129.06
3 Base + 3 3 1.20 1.57 0.90 109 6133 114.95 0.002 193.28

the 𝑅
2
and 𝐿 were not significant, they were kept at low levels

(𝑅
2
= 0.1 and 𝐿 = 10) to save computation time.
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This paper presents an improved genetic algorithm (IGA) for dynamic route guidance algorithm. The proposed IGA design a
vicinity crossover technique and a greedy backward mutation technique to increase the population diversity and strengthen local
search ability. The steady-state reproduction is introduced to protect the optimized genetic individuals. Furthermore the junction
delay is introduced to the fitness function. The simulation results show the effectiveness of the proposed algorithm.

1. Introduction

Online route guidance is one of the most desirable features in
intelligent transportation systems (ITSs) [1]. Dynamic route
guidance algorithm compute routes with minimum travel
time by taking into account the rapid changes in the network
traffic conditions and guide the behavior of travelers by
providing them with optimal route based on real-time traffic
information. As a result the travel time can be saved and the
traffic congestion can be avoided.

Various algorithms are available for computing the opti-
mal route. The most popular algorithm is the Dijkstra’s
algorithm. Many variations to the Dijkstra’s algorithm such
as bidirectional search and binary heap implementation
have been proposed to improve its response time. The 𝐴∗
algorithm, which is widely used in vehicle navigation, is an
improved version of the Dijkstra’s algorithm [2, 3]. It makes
use of an appropriate heuristic function to search the most
promising nodes first thereby reducing the computation time.
However, the traditional optimal algorithms often cannot
be used because they are too computationally intensive to
be feasible for real-time operations. A number of heuristic
search strategies have been developed for increasing the
computational efficiency of route search. Most of these
heuristic search algorithms originated in the artificial intel-
ligence field, such as genetic algorithm (GA) [4]. GA is
an intelligence search algorithm based on the hypothesis of

natural selections and natural genetics and has been success-
fully applied to various areas of optimization [5–10]. GA-
based approaches have several advantages. Naturally, they
cannot only treat the discrete variables but also overcome the
dimensionality problem. In addition, they have the capability
to search for the global optimum or quasi optimums within
a reasonable computation time. But in engineering practice,
premature convergence often happens, and sometimes the
speed of convergence is very slow. Accordingly, researchers
have been designing the improved genetic algorithms. Zou
proposes an improved genetic algorithm for dynamic route
guidance algorithm that generate initial population by ran-
dom 𝐴

∗ algorithm to increase the population diversity [8].
Kanoh proposes a method for finding the quasishortest
route within a given time using a genetic algorithm. In the
proposed method, he improves the search rate and quality
of solutions by giving direction to the search, using viruses
[9].

In this paper, an improved genetic algorithm (IGA) for
dynamic route guidance, which can overcome the aforemen-
tioned problems of the conventional GA to some extents,
is developed. The proposed IGA incorporates the following
three main features. First, a vicinity crossover scheme is
devised to increase the diversity of population. Second, a
greedy backwardmutation scheme is developed to strengthen
the local search ability. Third, the steady-state reproduction
is introduced to protect the optimized genetic individuals.
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In order to test the performance of the proposed algorithm,
we implement the algorithm in matlab 2009. Simulation
experiments demonstrate the effectiveness of the algorithm
by evaluating it on random road topologies.

The paper is organized as follows. Problem definition
andmathematical formulation is introduced in Section 2.The
improved genetic algorithm for dynamic route guidance algo-
rithm is developed in Section 3. The numerical simulation is
reported in Section 4. Finally, conclusions are presented in
Section 5.

2. Problem Definition and
Mathematical Formulation

Aroad trafficnetwork is represented by a digraph𝐺(𝑉, 𝐸) that
consists of a set of nodes 𝑉 and a set of links 𝐸. Denote the
number of nodes |𝑉| = 𝑛 and the number of links |𝐸| = 𝑚.
A link 𝐸

𝑖𝑗
∈ 𝐸 is directed from node 𝑖 to node 𝑗. Each link

has an associated average travel time function 𝑡(𝐸
𝑖𝑗
) and delay

function 𝑑(𝐸
𝑖𝑗
). Let𝑇(𝐸

𝑖𝑗
) denote the weight of link𝐸

𝑖𝑗
. It can

be expressed as

𝑇 (𝐸
𝑖𝑗
) = 𝑡 (𝐸

𝑖𝑗
) + 𝑑 (𝐸

𝑖𝑗
) . (1)

A path from an origin (𝑜) to destination (𝑑) may be
defined as a sequential list of links: (𝑜, 𝑗), . . . , (𝑖, 𝑑) and the
weight of the path is the sum of weights on the individual
links.The problem is to find the path𝑃 that has theminimum
total weight from the origin node to the destination node

min ∑

𝐸
𝑖𝑗
∈𝑃

𝑇 (𝐸
𝑖𝑗
) , (2)

where 𝑖, 𝑗 ∈ 𝑉 and 𝑖 ̸= 𝑗.

2.1. Link Travel Time Function. Using BPRmodel the average
travel time for a vehicle can be expressed as

𝑡 (𝐸
𝑖𝑗
) = 𝑡
0
(1 + 0.15(

𝑞 (𝐸
𝑖𝑗
)

𝑐 (𝐸
𝑖𝑗
)

)

4

) , (3)

where 𝑡
0
= free flow travel time on link𝐸

𝑖𝑗
, inminute; 𝑞(𝐸

𝑖𝑗
)=

volume of traffic on link 𝐸
𝑖𝑗
per hour; 𝑐(𝐸

𝑖𝑗
) = capacity of link

𝐸
𝑖𝑗
per hour; 𝑡(𝐸

𝑖𝑗
) = the average travel time for a vehicle on

link 𝐸
𝑖𝑗
, in minute.

2.2. Delay Functions for Signalized Intersections. Over the
past few decades, a number of delay formulas have been
proposed to account for delay at signalized intersections.
Among the better known of these delay formulas areWebster
and HCM 2000.

As for nonsaturated intersections, Webster model can be
used. Average delay at intersection can be expressed as

𝑑 (𝐸
𝑖𝑗
) = 0.9(

𝑇 (1 − 𝜆
2
)

2 (1 − 𝜆𝑋)

+

𝑋
2

2𝑄 (1 − 𝑋)

) , (4)

where 𝑑(𝐸
𝑖𝑗
) = average delay at intersection, in seconds; 𝑇 =

cycle length of the traffic light, in seconds; 𝜆 = green time

Table 1: Characteristics of the IGA.

Encoding: Path string, no duplicate individuals
Selection: Roulette
Crossover: Vicinity crossover
Mutation: Greedy backward mutation

Improvements:
Vicinity crossover
Greedy backward mutation
Steady-state reproduction

of the traffic light/cycle length of the traffic light; 𝑄 = traffic
volume on entering link, in vehicle per hour;𝑋 = intersection
saturation degree.

This model can be applied under saturated (𝑋 < 0.8)
conditions only.

As for saturated intersections (𝑋 > 0.8), average delay at
intersection is estimated as

𝑑 (𝐸
𝑖𝑗
) = 𝑑
1
(𝐸
𝑖𝑗
) + 𝑑
2
(𝐸
𝑖𝑗
) ,

𝑑
1
= 0.38𝑇

(1 − 𝜆)
2

(1 − 𝜆𝑋)

,

𝑑
2
= 173𝑋

2
((𝑋 − 1) + √(𝑋 − 1)

2
+

16𝑋

𝑆

) ,

(5)

where 𝑑(𝐸
𝑖𝑗
) = average delay at intersection, in seconds;

𝑑
1
(𝐸
𝑖𝑗
) = uniform delay at intersection, in seconds; 𝑑

2
(𝐸
𝑖𝑗
) =

oversaturation delay at intersection, in seconds; 𝑆 = saturate
volume of intersection, in vehicle per hour; 𝑋 = intersection
saturation degree.

3. The Improved Genetic Algorithm

By introducing the following new techniques, the perfor-
mance of a simple genetic algorithm for dynamic route guid-
ance algorithm has been improved essentially. Various char-
acteristics of this proposed IGA are shown in Table 1.

3.1. Coding and Initial Population. We regard each route from
the origin node to the destination node as a chromosome
and express it as a sequence of nodes. The first gene in the
chromosome is always the origin node, and the last gene
in the chromosome is always the destination node. Since
different paths may have different number of intermediate
nodes, the chromosomes will be of variable length. However,
the maximum length of a chromosome cannot exceed the
total number of nodes in the network. Any repeated nodes
in the chromosome signify that the path represented by the
chromosome contains a loop and in network routing, any
loop should be eliminated. At the beginning, the population
is filled with chromosomes that represent random paths.

The algorithm to generate the random path is adapted
from [10]. The algorithm goes as follows.

Step 1. Start from the origin node.

Step 2. Randomly choose, with equal probability, one of the
nodes that are connected to the current node.
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Step 3. If the chosen node has not been visited before, mark
that node as the next node in the path. Otherwise, find
another node.

Step 4. If all the neighboring nodes have been visited, go back
to Step 1.

Step 5. Otherwise, repeat Step 2 by using the next node as the
current node. Do this until the destination node is found.

3.2. Fitness Function. For the dynamic route guidance prob-
lem, the lower the total weight of the path, the better the
solution. The fitness function is defined as follows:

𝑓 =

1

∑
𝐸
𝑖𝑗
∈𝑃
𝑇 (𝐸
𝑖𝑗
)

. (6)

3.3. Selection. In this GA, roulette wheel (Monte Carlo)
method is adopted as the selection operator. Chromosomes
with better fitnesswill have a higher probability to be selected.

3.4. Steady-State Reproduction. To avoid the highest fitness
chromosome destroyed in the process of crossover and
mutation, we adopt steady-state reproduction and replace the
worst chromosome produced by the genetic operators with
the best chromosome in the previous population.

3.5. Vicinity Crossover Strategy. The common way of cross-
over is the two chromosomes selected must have at least one
common node other than the origin and destination nodes.
The common node is called the crossover point. Crossover
operationwill be carried out on crossover point. In this paper,
we propose a new vicinity crossover strategy. The main idea
is crossover operation will be carried out not on common
point but on vicinity point. The vicinity point is the two
adjacent points that the distance between them less than the
given maximal vicinity value in the networks. The distance
between vicinity points is vicinity value. To ensure that the
paths generated by the crossover operation are still valid
paths, the two chromosomes selected must have at least one
vicinity node other than the origin and destination nodes.
If more than one vicinity node exists, one of them will be
randomly chosen with equal probability. For the sake of
clearly describing the concept of vicinity crossover strategy,
we consider the following example. The topology of network
is shown in Figure 1(a). Assume origin node is 1, destination
node is 8 and maximal vicinity value is 3.

Assume we have the following parent chromosomes.

Parent chromosome1 = [1 5 | 4 8].
Parent chromosome2 = [1 3 | 2 8].

where node 1 and node 8 are the origin node and destina-
tion node respectively. In this example, the vicinity nodes
are node 5 of parent chromosome1 and node 2 of parent
chromosome2, node 3 of parent chromosome2 and node 4
of parent chromosome1. Therefore, crossover operation will
exchange the first portion of chromosome1 with the second
portion of chromosome2 and vice versa. The vicinity value
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Figure 1: The process of vicinity crossover operation.

of node 5 and node 2 is 2. Hence 5 → 3 → 2 is a generated
vicinity path. The vicinity value of node 3 and node 4 is 1.

As a result, the following child chromosomes will be
generated.

Child chromosome1: [1 5 3 2 8].
Child chromosome2: [1 3 4 8].

These two chromosomes would then become new mem-
bers of the population as shown in Figure 1(b). It is possible
that loops may occur after crossover operation is performed.
Loops in a chromosome can be repaired by performing a
search along the chromosome to find repeated nodes. The
nodes in between the repeated nodes are then eliminated. For
example, in Figure 1(c), assume that we have the following
chromosome that contains a loop.

Chromosome with loop: [1 3 4 3 2 8].

In this case, there are two node 3 in the chromosome
which signifies that the path contains a loop. This chromo-
some can be fixed by eliminating one of the node 3 and
all the other nodes in between the two node 3’s. The fixed
chromosome would become like this.

Fixed chromosome: [1 3 2 8].

The fixed chromosome can be searched again just in case
there are multiple loops in the chromosome. The vicinity
crossover strategy will increase population diversity.
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1 5 4 7 8

1 5 4 7 8

1 3 4 7 8

Choose node 4 as mutation point

(1) Keep the path after node 4
(2) Starting from node 4, backward to
generate a path to node 1: 1→ 3→ 4

Figure 2: The process of greedy backward mutation.

3.6. Greedy Backward Mutation Strategy. Instead of bitwise
mutation, a new greedy backward mutation strategy is
used. The main idea is the following. For each chromosome
that is chosen to be mutated, if the correlation degree of
intermediate nodes in the path from origin to destination
(i.e., the origin and destination node cannot be chosen as
the mutation point) is greater than 2, then the intermediate
nodes will be chosen as candidate nodes. A mutation point
will be chosen randomly, with equal probability, among the
candidate nodes. Once the mutation point is chosen, the
chromosome will be changed starting from the node before
themutation point and backwards. To explain this procedure,
we still use the network as shown in Figure 1(a) and the
procedure of greedy backwardmutation is shown in Figure 2.

Assume that the following chromosome has been chosen
to be mutated.

Original chromosome: [1 5 4 7 8].

Where 1 and 8 are the origin node and the destination
node, respectively. Assume also that the node 4 has been
chosen as the mutation point. The mutated chromosome
would become like this.

Mutated chromosome: [1 𝑥
1
𝑥
2
⋅ ⋅ ⋅ 4 7 8].

The mutated chromosome now contains a new backward
path from 4 to 1, where 𝑥

𝑖
is the 𝑖th new node in the path.The

new path is generated randomly; the same way as the paths
in the initial population is generated.

4. Simulation Results

To test the effectiveness of the proposed IGA for dynamic
route guidance, we implement the algorithm and conduct
a series of simulation experiments. The algorithm has been
coded in Matlab 2009 and implemented on an Intel Core
2, CPU 2.53Ghz, RAM 2GB, Windows XP System. Several
main performance metrics are considered: number of gener-
ation, population size, convergence ability, and convergence
speed.

We performed a set of experiments on a virtual square
matrix map. The virtual maps of square matrix had sizes of
4 × 4, 8 × 8, 16 × 16, and 32 × 32. As shown in Figure 3, the
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Figure 3: Virtual map of square matrix.
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Figure 4:Thenumber of generations required to find a feasible solu-
tion.

origin was at the upper left corner and the destination was
at the lower right corner. The distances between nodes were
varied from 10 to 50.

We generate 20 random datasets using the 4 × 4 vir-
tual square matrix maps. Figure 4 shows the number of
generations required to find a feasible solution. From the
numerical results, we observe that all 20 datasets are able
to converge to a feasible solution and the proposed IGA is
correct. From the result, it can also be seen that most of time,
the number of generations required to find a feasible solution
is quite low and acceptable. However, in some cases, the
number of generations required to find a feasible solution can
exceed 200. The difference is quite large. The fact is probably
caused by the state of initial population. The quality of initial
population may be very low and takes many generations to
find a feasible solution.

To solve the problem above, we can adjust the population
size. Figure 5 shows the effect of population size on the
average number of generations needed to find a solution. We
execute the algorithm 10 times and record the average value.
From Figure 5, we can conclude that the average number of
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Table 2: Simulation parameters for IGA and SGA.

IGA SGA
Population size 60 60
Selection mode Roulette Roulette

Vicinity crossover One-point crossover
Crossover operator Crossover rate 𝑝

𝑐
= 0.9 Crossover rate 𝑝

𝑐
= 0.9

Maximal vicinity value = 3
Mutation operator Greedy backward mutation One-point mutation

Mutation rate 𝑝
𝑚
= 0.01 Mutation rate 𝑝

𝑚
= 0.01

Termination 500 500
Execution run 20 20
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Figure 5: Average number of generations for different population
size.

Table 3: Average generation to find optimal path.

Number of nodes IGA SGA
16 4.5 4.5
64 5.5 6.5
256 10 15.5
1024 18.5 39

generations become less with the increase of population size
and is acceptable most of time.

We compare our improved genetic algorithm (IGA) with
simple genetic algorithm (SGA) on virtual square matrix
maps. Table 2 showed all of the simulation parameters for
IGA and SGA.

Table 3 gives the average number of generational pro-
cesses to find the optimal path. It shows that our IGA
converges very fast, less than 20 generations even when the
number of nodes growing to 1024. Also for a complex map
with thousands of nodes, the average number of generational
processes for the genetic algorithm beginning to converge is
still small enough for real time applications.

Table 4 shows the experiment results of the minimal path
weight and average path weight for our IGA and SGA for

Table 4: The comparison of IGA and SGA.

Number
of
nodes

IGA
Mini weight

SGA
Mini weight

IGA
Avg weight

SGA
Avg weight

16 126 126 128.2 129.6
64 201 207 212.4 224.2
256 392 396 403.9 418.3
1024 784 791 795.5 824.3

different network sizes. IGA achieves betterminimumweight
and average weight than SGA for all scenarios.

5. Conclusion

This paper presented an improved genetic algorithm for
dynamic route guidance algorithm. Several details of the
genetic algorithm such as vicinity crossover scheme, greedy
backward mutation scheme, and steady-state reproduction
have been specifically designed for solving this problem
while other details are adapted from previous works. The
simulation results show that the proposed algorithm works
well in finding an optimal path for real-time applications and
converges much faster to better solutions. The performance
gets better with larger population size.
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Road traffic accident databases provide the basis for road traffic accident analysis, the data inside which usually has a radial,
multidimensional, and multilayered structure. Traditional data mining algorithms such as association rules, when applied alone,
often yield uncertain and unreliable results. An improved association rule algorithm based on Particle Swarm Optimization (PSO)
put forward by this paper can be used to analyze the correlation between accident attributes and causes.The new algorithm focuses
on characteristics of the hyperstereo structure of road traffic accident data, and the association rules of accident causes can be
calculatedmore accurately and in higher rates. Anew concept ofAssociationEntropy is also defined to help compare the importance
between different accident attributes. T-testmodel andDelphimethodwere deployed to test and verify the accuracy of the improved
algorithm, the result of which was a ten times faster speed for random traffic accident data sampling analyses on average. In the
paper, the algorithms were tested on a sample database of more than twenty thousand items, each with 56 accident attributes. And
the final result proves that the improved algorithm was accurate and stable.

1. Introduction

In recent years, with the growth of the volume and travel
speed of road traffic, the number of traffic accidents, espe-
cially severe crashes, has been increasing rapidly on a yearly
basis. The issue of traffic safety has raised great concerns
across the globe, and it has become one of the key issues
challenging the sustainable development of modern traffic
and transportation. Therefore, it is crucial for engineers to
be able to extract useful information from existing data
to analyze the causes of traffic accidents, so that traffic
administrations can be more accurately informed and better
policies can be introduced [1–3].

Traffic conditions are a complex system due to many
stochastic factors [4–6], and traffic accident data has long
been known to be very difficult to process. Many attempts
have been made in recent years through applying differ-
ent methodologies and algorithms. Association rules has

captured wide attentions and careful studies because of its
adoptability and the nature of being easily understood, the
focus of study of which is how to increase the accuracy
and efficiency of the calculation. Among the researches to
date, Geurts et al. [7] used association rules to identify
accident circumstances that frequently occur together at high
frequency accident locations; Tesema et al. [8] developed
an adaptive regression trees to build a decision support
system to handle road traffic accident analysis; Marukatat
[9] has made noticeable attempts at identifying the degree of
importance of Information Entropy for road traffic accident
analyses. Dong et al. [10], Lee et al. [11], Hassan and Tazaki
[12], Zhang et al. [13], and other researchers have achieved
multileveled data mining of traffic accidents by means of
a comprehensive application of data mining techniques.
The researches above all achieved the mining of accident
data on a certain level; however, the overall calculating
processes are largely too complicated and cannot be applied

http://dx.doi.org/10.1155/2013/302627
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to all types of data, especially the multiattribute ones. On
the other hand, the PSO algorithm has been applied in
many fields. Shi and Eberhart [14] studied the parameters’
optimization, based on particle swarm optimizer. Wang et al.
[15] propose an association rules algorithm based on particle
swarm optimization algorithm to mining the transaction
data in the stock market. Moreover, others [16–20] improved
and applied PSO algorithm to their purpose. So far, there
have been a lot of researches targeting at different types of
data, and due to the “capricious” nature of real-world data,
coupled with the innate shortcomings of the algorithm, the
association rules still falls short of people’s expectations in
being less complicated, less time and space-consuming, and
more efficient.

In this paper, a new method of traffic accident data
mining, based on PSO, association rules, and Information
Entropy theories and through a comparative analysis of a
variety of traffic accident data mining techniques, is put
forward to identify the importance of different attributes
and their respective values. The method is an attempt to
come up with a multidimensional, all-inclusive method of
data analysis to simplify existing algorithms as well as apply
computational intelligence algorithms such as PSO to road
traffic data analyses.

2. Characteristics of Road Traffic
Accident Data

Road traffic accident is under the influence of many factors,
which makes it a complicated, and as far as information is
concerned, an unfinished, uncertain gray system. There are
different databases of traffic accident in different countries
[8, 21, 22]. At present, roughly 60 items of information are
contained in the China “Database of Road Traffic Accident”
which is used by Chinese traffic administrative agencies,
spawning off approximately 130 items of single-unit infor-
mation, which can be used to reconstruct the whole process
of the accident in a relatively full and objective manner. It
provides more than adequate the information and references
for road traffic accident analyses.

Road traffic accidents have their innate, random nature
but are also subject to other factors. If the connections of
those factors could be identified, throughmanual control and
interference, the rates of traffic accidents could be lower.

Traffic accident data is the foundation of traffic accident
analysis, the form and structure of which determine the form
and structure of the analysis model. From in-depth analysis
of the traffic accident database operated by the Ministry
of Public Security, the data could be regards as a radial,
multidimensional, and multilayered structure, as shown in
Figure 1.

The structure of the data determines the structure of
the causation-analysis model. This paper designs a double-
layered analysis model and provides an improved algorithm
according to the hyperstereo structure of the data. The
purpose is to analyze the importance of each value on the
attribute value layer with the association rules method and
to compare the importance of each attribute on the attribute
value layer with the Information Entropy method.

Road traffic accident database
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Figure 1: Structure of the traffic accidents data.

3. Characteristics of Data Analysis Algorithms

3.1. Association Rules. Association rules is a data mining
method for investigating the associative property of different
events, which can be used in traffic accident data mining
to mine the importance of attributes, that is, the associative
relationship of events with certain types of accident. Its basic
idea is to treat each characteristic as an item. Accident site,
number of death, and so on can all be called an item. The
higher the association, the more likely one event is directly
linked to the cause of a certain type of accident.

To decide how related two items are, we need to identify
how many times some characteristics appear at the same
time in a large number of similar events. If items show up
at the same time frequently, indicating that there is a statistic
pattern behind it, we can start to believe that the items are
relevant.

In the association rules algorithm, 𝑋 and 𝑌 are two
random events, which can be thought as relevant and also
can be thought as seemingly irrelevant. Assume there is a
causal relationship between 𝑋 and 𝑌, which means when 𝑋
happens, 𝑌 also happens (and vice versa). “𝑋 → 𝑌” is used
to indicate this relationship, while “support” and “confidence”
are used to measure the degree of it.

Agrawal et al. first put forward the problem of mining
the association rules of datasets in consumer transaction
databases and designed a simple algorithm [7, 23], the basic
idea of which is based on the recursivemethod of frequent set
theory. The classical frequent set algorithm is as follows.

(1) The basic idea. First, find out all the frequent sets and
create the association rules from them.

(2) The procedure. The Apriori algorithm [23] is origi-
nated by Agrawal in 1994, the basic idea of which is
to scan the database repeatedly. A brief description of
the essential program is as follows:
𝐿
1

= {large 1 − itemsets};
for (𝑘 = 2; 𝐿

𝑘
− 1 /= <; 𝑘++) do begin

𝐶
𝑘
= apriori gen (𝐿

𝑘
− 1); //New candidate set
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for all transactions 𝑡 ∈ 𝐷 do begin

𝐶
𝑡
= subset (𝐶

𝑘,𝑡
); //candidate sets that contained in

event 𝑡 do
for all candidates 𝑐 ∈ 𝐶

𝑡

𝑐. count ++;
end

𝐿
𝑘

= {𝑐 ∈ 𝐶
𝑘

| 𝑐.count ≥ min sup}
end

Answer = ⋃
𝑘

𝐿
𝑘
.

But the main drawback of the Apriori algorithm is
that it produces a large number of candidate sets during
the computation process and the database may need to be
scanned once again. In order to avoid the repetitiveness, an
easier method must be developed.

3.2. PSO Algorithm. PSO was originated by Kennedy and
Kberhart [15] and was intended for simulating social behav-
ior, which has many advantages such as higher convergence
rates and being more applicable than other algorithms.
However, it generally has a lower accuracy than genetic
algorithms and under certain initial conditions it can only
reach optima in a subset of the problem.

PSO is a population-based search algorithm and is initial-
ized with a population of random solutions, called particles.
Unlike in the other evolutionary computation techniques,
each particle in PSO is also associated with a velocity. Par-
ticles fly through the search space with velocities which are
dynamically adjusted according to their historical behaviors.
Therefore, the particles have the tendency to fly towards the
better search area over the course of search process. The PSO
was first designed to simulate birds seeking food which is
defined as a “cornfield vector.”

3.3. Definition of Information Entropy. Traffic accidents are
events with strong randomness, while entropy is the mathe-
maticalmethod for analyzing an event’s uncertainty. From the
perspective of statistical mathematics, entropy is a measure
of system randomness. Information Entropy is a value for
characterizing the statistical characteristics of random vari-
ables. It is a measure of the average uncertainty of random
variables, an objective description of statistical characteristics
of the population.

In the traffic accident data gathering process, due to the
influence and limitations from many factors, the number
of traffic accident data items is usually insufficient, which
cannot be used to analyze the statistical characteristics. The
use of Information Entropy as a statistical measure of the
uncertainty information does not require the probability
distribution of the data to be known and does not require the
distribution to be single humped; that is, no prior information
is needed. So Information Entropy is very suitable for testing
the degree of discreteness of the population. As far as Infor-
mation Entropy is concerned, the decrease of uncertainty
means the reduction of entropy value.

According to the definition of Information Entropy by
Shannon [13],

𝐻 = − 𝑚∑
𝑘=1

𝑝
𝑘
log
2
𝑝
𝑘
, (1)

where 𝑚 is the dimension of state space and 𝑝
𝑘
is the

probability of the 𝑘th state.
If 𝑛𝑘 is the number of times when 𝑘 happens, and the

number of samples is 𝑁, then 𝑝
𝑘

= 𝑛
𝑘
/𝑁.

Information Entropy is a measure of the degree of how
sequenced a system is. Data measuring with Information
Entropy does not require the probability distribution to be
known, and the probability distribution of the data does not
have to be in a single-hump shape; therefore, it is suitable
for examining the discrete level of the distribution.The value
indicates how certain factor is affecting the system.The lower
the value, the more important factor in the system. Applying
the Information Entropy theory to traffic accident, when the
attribute spreads evenly across the distribution, indicates that
the accident depends weakly on that attribute, which suggests
that the importance of the accident is lower.

4. The Method of Traffic Accident
Data Preprocessing

Due to human factors, in the actual accident data gathering
process, some data items may be unavailable [10], affecting
the integrity of the data and causing the results of the
causation analysis to be considered not convincible. Data
preprocessing is an essential step in any of the data min-
ing processes. Researches on data preprocessing techniques
mainly focus on the preprocessing of data which follows
obvious patterns, the widely used method of which is to find
the patterns, characteristics, and properties so that data can
be preprocessed in a certain way. In contrast, it is rarely seen
that data in nondigital form is processed in the samemanner.
The process includes the following parts: data washing, data
filling, data integration, and data transformation.

(1) This paper adopts the data-washing methodology
according to the characteristics of traffic accidents to
build a traffic accident database using a form which
resembles how “antivirus” software works, which has
an “antivirus” definition library of its own, that is,
an error database that is artificially created, and to
predefine a set of rules for the “software” to use in
order to hunt down all the “viruses.” However, before
the data-washing can be initiated, a database of all
the errors needs to be created. The error database
comprises a gathering of area-specific knowledge and
common sense, through which data that contains
errors aremarked through comparison.Of course, the
data washing only could correct and delete the error
data which is detected in logic, not all error types.

(2) Due to the fact that data format and structure in
data mining are not entirely identical with those in
the database, data needs to be transformed before it
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can be mined, so that existing data can be changed
into proper format or form to be mined through data
mining techniques. The current data inside the traffic
accident database happens to be coded; only part of
the statistical attributes is in coded format which is
required by the association rules; therefore, the data
in the database should be kept as close to their original
form as possible. Attributes whose attribute values are
not coded but sequential ought to be scattered to a
certain extend and coded in orders (seen in Table 1).

5. The Improved Algorithm in Traffic Accident
Data Mining

5.1. Fundamental Principle of the Algorithm. Focusing on the
characteristics of road traffic accident data, causation analyses
need to examine the double-leveled structure. Unfortunately,
although they can analyze the causes of accident from
different angels and each method has its advantages, none
of the data mining methods currently being widely used can
accomplish an overall, multiangled,multilayered datamining
task on its own.

With the accumulation of traffic accidents database, the
data quantity is more and more huge, so how to obtain the
effective knowledge, hiding rules, and fundamental causes is
changing into one key issue for road traffic administration.

To meet the demand of better accuracy and efficient
analysis of traffic accident causes, this paper combines the
binary PSO algorithm to improve the association rules. The
reason is that the speed of the PSO algorithm does not
decrease with the increase of the number of datasets. To
solve the problem that accident data needs to be analyzed
in different layers, this paper introduces the Information
Entropy theory into road traffic accident analysis, with the
help of the Association Rules theory, and puts forward the
concept of Association Entropy and its algorithm.

With the introduction of PSO and Association Entropy,
traffic accident causes can be analyzed from all angles and
on all layers, satisfying the requirement that the association
rules have to be within a certain support level. In the
meanwhile, causes on different levels can provide references
for different traffic administrations at different levels, so that
more effective preventative measures can be taken.

5.2. Importance of Traffic Accident Attribute Value. Conduct-
ing data mining with association rules, first large item sets
must be found from the original information datasets. Later,
the association rules are made up of all the large item
sets. It is required that the frequency of any item must be
greater than the min sup, otherwise the item is considered
not common enough because it falls short of the frequency
requirement, which may render it meaningless. Meanwhile,
the rules calculated from the large item sets must be greater
than the minimum confidence. Otherwise the results from
the rule cannot be trusted. However, due to the fact that
the information in the database does not include all types
of traffic accident information, the ratios of the samples
themselves do not match reality. Therefore, traditional data

Table 1: Coding schedule of attributes on road condition.

The name of attributes Coding of association rule
Attribute value Coding

Intact 1
In construction 2

Road surface condition Concave-convex 3
Collapsed 4
Roadblock 5
Others 6

Not separated 1

Road physical separation Median separated (1) 2
Separated between vehicles

and nonvehicles (2) 3

(1) and (2) 4
Straight line 1
Common turn 21
Sharp turn 22

Common slope 31

Road alignment Steep slope 32
Continuous downward

slope 33

Regular slope 41
Sharp turn and steep slope 42

Regular slope turn 51
Regular turn slope 52

Guard rail 1
Barrier wall 2

Roadside safeguarding
types Barrier barrel 3

Others 4
None 5

mining methods often lead to large sample volume, that
is, high importance mistakes. To solve this problem, this
paper made some modifications to the traditional methods,
as shown in the following.

(1) According to the Association Rules theory, it is when
confidence level reaches the minimum confidence
min conf and support level reaches the minimum
threshold min sup that the importance of attribute
value layer starts to make sense. The function for
calculating the importance of the association rules is

𝑐𝑧
𝑖𝑗𝑘

={{{{{

𝑠𝑔
𝑖𝑗𝑘

𝑠𝑡
𝑖𝑗

= 𝐵
𝑖𝑗𝑘

/𝐴
𝐷
𝑖𝑗

/𝐴 = 𝐵
𝑖𝑗𝑘

𝐷
𝑖𝑗𝑘

, 𝑠𝑡
𝑖𝑗

>min sup
1
, 𝑠𝑔
𝑖𝑗𝑘

>min sup
2

0, others,
(2)
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where 𝑐𝑧
𝑖𝑗𝑘

is the attribute 𝑖, 𝑗’s value of importance;
𝑠𝑔
𝑖𝑗𝑘

is the attribute 𝑖, 𝑗’s support on 𝑘 level of traffic
accident severity; 𝑠𝑡

𝑖𝑗
is the attribute 𝑖, 𝑗’s support; 𝐵

𝑖𝑗𝑘

is the entry number of 𝑖 and 𝑗 on 𝑘 level in the
database; 𝐷

𝑖𝑗
is the entry number in the database

that contains 𝐼 and 𝑗; 𝐴 is the entry number in the
database; min sup

1
is the minimum support of 𝑖 and𝑗; min sup

2
is the minimum support of 𝑖 and 𝑗 on 𝑘

level;
The function for conditional support is

𝑠𝑡
𝑖𝑗

= {{{
𝐷
𝑖𝑗

𝐴 , 𝐷
𝑖𝑗

𝐴 > min sup
1

0, others. (3)

In order to tell the severity, traffic accidents are graded
according to the number of deaths. Therefore, the
function for calculating the association rule support
is

𝑠𝑔
𝑖𝑗𝑘

= {{{
𝐵
𝑖𝑗𝑘

𝐴 , 𝐵
𝑖𝑗𝑘

𝐴 > min sup
2

0, others. (4)

(2) In the traffic accident database, the following attrib-
utes are used to describe the severity of the accident:
number of deaths, number of injuries, and property
loss. Through surveys on experts, this model takes
number of death as the determining attribute to
indicate severity. The group of experts consists of
4 researchers of traffic safety at university, 4 staffs
of traffic management, and 4 policemen of traffic
accidents, who are at least 5 years of work experience.
In order to make sure that the attribute value meets
the requirement of support level, the model divides
traffic accident into different levels based on the
graded idea. It used the Delphi method to calculate
the grade standards and the degree of importance of
traffic accident 𝑝𝑘, shown in Table 2.

According to the calculation method of association rules,
with reference of the importance value in Table 2, the
importance of attribute 𝑗 with respect to severity is calculated
as such:

𝜌𝑗 = 4∑
𝑘=1

𝑝𝑘
𝑖

⋅ 𝑐𝑧
𝑖𝑗𝑘

− 1, (5)

where 𝑝𝑘 is the relative degree of importance with regard to
the 𝑘th severity level; 𝜌𝑗 is the attribute 𝑗’s degree of impor-
tance with regard to accident severity under the association
rules.

As shown in the above models, in the calculations of
attribute value importance according to the association rules,
it has the advantage of being able to effectively shield out
certain attribute values of high importance because they have
higher frequencies. It is a method of quantifying severity

Table 2: Graded severity of accident and importance.

Grade Set Importance 𝑝𝑖
1 [0, 1) 1
2 [1, 3) 2
3 [3, 10) 6
4 [10, ∞) 24

importance of traffic accidents from single datum under the
requirement of confident level.

In the calculation results of association rule, the value of
degree of importance with regard to accident severity, the
association of attributes with consequence of traffic accident,
can be used to indicate the relationship of attributes and the
causes of traffic accident; that is, factors with higher value of
importance are the major causes in traffic accidents.

5.3. The Application of PSO Algorithm. Assume there are𝑁 particles, and each individual is treated as a volume-less
particle (a point) in the 𝐷-dimensional search space. The
speed, location, individual best position, and swarm best
position of the 𝑖th particle at “𝑡” moment are represented
as 𝑣
𝑖
(𝑡), 𝑥
𝑖
(𝑡), 𝑝
𝑖
(𝑡), and 𝑔

𝑖
(𝑡), respectively, from which we

can have the following recursive equations of the speed and
location of the 𝑖th particle:

𝑣
𝑖𝑑

(𝑡 + 1) = 𝑤 ⋅ 𝑣
𝑖𝑑

(𝑡) + 𝑐
1
𝑟
1

(𝑝
𝑖𝑑

(𝑡) − 𝑥
𝑖𝑑

(𝑡))
+ 𝑐
2
𝑟
2

(𝑔
𝑑

(𝑡) − 𝑥
𝑖𝑑

(𝑡)) ,
𝑣
𝑖𝑑

(𝑡 + 1) = {1, 𝑟
3

< Sig (𝑣
𝑖𝑑

(𝑡 + 1))
0, 𝑟
3

≥ Sig (𝑣
𝑖𝑑

(𝑡 + 1))
(6)

while 𝑖 = 1, . . . , 𝑁, 𝑁 is the size of the group, usually assigned
20;𝑑 = 1, . . . , 𝐷, represents the number of dimensions of each
individual, which is decided by specific problems; 𝑟

1
, 𝑟
2
, 𝑟
3
are

randomnumberswithin the range (0,1); 𝑐
1
, 𝑐
2
are two learning

factors, usually given as 𝑐
1

= 𝑐
2

= 2; 𝑤 is greater or equal
to 0 and is called the inertia factor, usually given the value
of 1; Sig(⋅) is the sigmoid function; that is, Sig(𝑥) = 1/(1 +
exp(−𝑥)).The 𝑋

𝑖𝑑
of each particle in the search space is given

the value of 0 or 1; 𝑣
𝑖𝑑

∈ [−𝑣max, 𝑣max] is the probability of 𝑋
𝑖𝑑

equals 1; hence, when Sig(𝑣
𝑖𝑑

) = 0, 𝑋
𝑖𝑑
equals 0.

Because Sig(𝑥) = 1/(1 + exp(−𝑥)) when 𝑥 is from the
range [−10, 10], we usually has a result within the range [0, 1];
therefore, the maximum speed 𝑣max is usually less than 10.

With PSO, determining attributes of traffic accident can
be sequenced to form a series of attributes all at once, no
longer needing to change the sequence during the mining
process, which conforms to the procedure of discrete binary
PSO algorithm.

In the binary space, the moving of particles is done
through switching the position values, and the speed of the
particle is the change of digits after each recursive calculation.
Attribute swarm is for finding out frequent item sets; each
individual particle in a swarm is represented by m (m is the
number of accident determining attributes) digits of 1s and
0s. And in the determining attribute swarm, each digit of
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the particle is used to indicate whether the corresponding
attributes appear or not; 1 means the attribute appears and
0 not.

The adaptability function is for measuring the quality of
particles’ rule sets. In the competition of all the rules, only the
ones with high confidence and credibility may survive.

Construct a series of rule structures with all the deter-
mining and task attributes in the form of {𝐵

1
, 𝐵
2
, . . . , 𝐵

𝑚
,𝐴

1
, 𝐴
2
, . . . , 𝐴

𝑛
}, where 𝐴

𝑖
represents determining attributes,

which is the severity of traffic accidents and 𝐵
𝑖
is task

attributes, which are driving years, weather, and so forth.
The rule support is

Sup (𝑅) = Cover (𝐴 + 𝐵) (7)

while 𝑅 is the rule; Cover(𝐴 + 𝐵) is the ratio of two events in
a database.

The rule confidence is

Conf (𝑅) = cover (A + B)
cover

= Sup (𝑅)
Sup (𝑅

𝐴
) (8)

while𝑅
𝐴
represents the datasets in𝑅 thatmatch the attributes

of rule R.
Then the adaptability function of the swarm is defined

as such: Fitness = 𝑎 Sup(𝑅) + 𝑏Conf(𝑅), while 𝑎 and 𝑏 are
constants, and 0 ≤ 𝑎 ≤ 1, 0 ≤ 𝑏 ≤ 1; the value of 𝑎 and 𝑏 can
be adjusted according to specific problems.

5.4. Calculation of Accident Causation Attributes Association
Entropy. In the calculation of Association Entropy, using
each attribute value’s association rule importance as the
source of information analyzes the entropy to compare the
importance between different attributes. Borrowing from the
calculation method of Information Entropy, the Association
Entropy of traffic accident is calculated as follows:

�̃� = 𝐻
𝐻max

(9)

while 𝐻 is the Association Entropy of attributes; 𝐻max is the
maximum association entropy value from 𝑚 traffic accident
attributes; According to the definition of Shannon entropy [4,
8, 10],

𝐻 = − 𝑚∑
𝑘=1

𝑝
𝑘
log
2
𝑝
𝑘
, (10)

where 𝑚 is the attribute number under attribute 𝑖’s values; 𝑝
𝑖𝑗

is the degree of importance probability under attribute 𝑗; 𝑝
𝑖𝑗

is calculated as follows:

𝑝
𝑖𝑗

= 𝜌
𝑖𝑗

∑𝑚
𝑗=1

𝜌
𝑖𝑗

(11)

while 𝜌
𝑖𝑗
is the association rule importance of attribute 𝑗’s

relative determinative attribute; (𝑗 = 1, 2, . . . , 𝑚).
From (10) and (11), association importance probability

reaches maximum entropy value when distributed according

to importance. And themaximum entropy value is calculated
as follows:

𝐻max = − 𝑚∑
𝑖=1

𝑝
𝑖
log
2
𝑝
𝑖

= − 𝑚∑
𝑘=1

1
𝑚 log

2
( 1

𝑚 )

= −𝑚 1
𝑚 log

2
( 1

𝑚 ) = log
2
𝑚.

(12)

Carry (10) and (12) into (9), the entropy value of traffic
accident attribute importance is calculated as such:

�̃� = 𝐻
𝐻max

= − ∑𝑚
𝑗=1

𝑝
𝑖𝑗
log
2
𝑝
𝑖𝑗

log
2
𝑚 . (13)

Sequence the results according to entropy value. The
larger the entropy, themore evenly distributed the association
among all the attributes and the more uncertain the result;
that is, the lower the importance of traffic accident attribute,
and in contrast, the higher the importance of accident
attributes.

6. Application and Validation of the Algorithm

6.1. Sample Data Declaration. The sample data sets in the
model and algorithm validation of the paper are more than
twenty thousand in total and each of them contains 56
accident attributes. And all of them are randomly collected
from traffic accident database, which come from traffic
accident data in Northeast China, North China, East China,
SouthCentral China, Southwest China, andNorthwest China
based on equivalent sampling principle, so that it can reflect
the whole picture of road traffic accident nationwide better.

6.2. ValidationMethod. It is needed to know the computation
result and standard answer of a method to test and verify
the accuracy of the new model method and to compare
and analyze the data. While in the validation of the traffic
accident factor analysis model, because the standard answer
is unavailable, accurate analysis cannot be implemented using
the traditional method. But we can use another completely
different and widely acceptedmethod to carry on the analysis
for the same target and then use the consistency of two kinds
of methods to verify the relative accuracy of the existing
model calculation results. Therefore, the Delphi method is
used to compare the computation result and standard answer
exactly, which is a common method in testing uncertain
event. We can design expert experience questionnaire by
using Delphi method to get the attribute value of pavement
condition and the importance weight of road traffic accidents
attribute through the way of expert experience questionnaire.

The degree of importance of attribute and attribute value
are calculated through different methods in the model of the
paper, so it will be conducted into two parts when analyzing
the results. First, test and verify the part of attribute value
which is calculated through improved association rules.

(1) For attribute value, use formulae (1) and (2) to con-
duct support test to the data. In consideration of the
sample size in the model, we have min sup

1
= 0.0001

and min sup
2

= 0.005.
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Table 3: Graded severity of accident in relation to importance.

Attribute value The average weight by expert The degree of importance of associated
regulation

The checking result𝛼 = 0.025
t = 2.3646

Common bending 0.163 0.083 Zero difference
Sharp turn 0.138 0.099 Zero difference
Common bending slope 0.053 0.145 Different
Sharp turn abrupt slope 0.159 0.151 Zero difference
Common slope sharp turn 0.102 0.171 Zero difference
Common bending abrupt slope 0.052 0.351 Zero difference

Table 4: Part of road traffic accidents attributes importance for comparative table.

Attribute The average weight by expert The degree of importance of associated
regulation

The checking result𝛼 = 0.025
t = 2.3646

Driving years 0.048 0.206 Zero difference
Road alignment 0.177 0.196 Zero difference
Weather 0.109 0.202 Zero difference
The safeguard types on roadside 0.071 0.204 Zero difference
Vehicle safety condition 0.196 0.193 Zero difference

(2) Use formulae (3) and (4) to calculate the importance
of attribute value and make normalization.

(3) Use the degree of importance of attribute value as the
source of information and use formulae (10) and (12)
to analyze the entropy value of the attribute.

Because of the complexity of the factors of traffic accident,
in data mining process if we want to get the result smoothly,
we should consider the calculation results of multigroup
equal precision sample and then get their average value. And
the more the sample groups, the closer the final average
results to the truth. So, in order to test and verify the accuracy
of the computing method of the model, make random
sampling analysis ten times for the data and conduct check
consistency with matching 𝑡-test for the model calculating
results and Delphi method results.

6.3. Calculation Results and Verification Analysis. By apply-
ing the algorithm in Sections 5.2 and 5.3 and then using the
verification method in Section 6.2, the final results are listed
as follows.

FromTable 3 we can see that general bend and sharp bend
steep slopes have the most influence on accident severity,
respectively, 0.163 and 0.159. The main reason is although
the former alignment condition is good, but driver has a
lower safety cognitive level, often because over speed driving
led to accident, the later alignment condition and road side
security level are relatively low; once a vehicle loses control in
this section, the result must be serious. However, real traffic
accident analysis result showed that, except for general bend
slope factor, other road sections have no obvious difference to
the influence on accident severity.This shows that the expert’s
subjective impression not necessarily represents the truth. In
themeantime, the accident influencing factors’ absolute value

of importance from association rules algorithm in different in
numbers, but before significance check, also cannot represent
that it really has difference between accident influence factor.

Same as the result shown in Table 3, as far as people
are concerned, it is clearly different how years of driving,
road geometrics, weather, and so forth affect traffic accident
severity; however, the result of datamining does not show the
same degree of obviousness as how the corresponding factors
differ, which suggests the limitedness of people’s experiences;
for example, years of driving is indeed one of the major
factors triggering accidents, but that does not mean relatively
inexperienced drivers tend to have more severe accidents
than more experienced drivers.

According to the results in Tables 3 and 4, most of the
data of importance in the two methods have no difference
from a statistical point of view, and only the importance of
common bending slope has difference.The reason may come
from the difference of the data between the experts’ judgment
and the model use which are limited in sample size. But in
general, the importance from the twomethods has almost no
difference, and the relative precision of the computing results
from the method can meet requirements.

7. Conclusion

This paper aims at the hierarchically structured character-
istics of road traffic accident databases, mixed using the
method of associated rules, PSO, and Information Entropy
to analyze the degree of importance of traffic accidents.
Through a modification of traditional methodologies and
algorithms, a PSO algorithm and associated entropy model
are built for calculating the degree of importance of road
accidents. Through applying the improved algorithm on
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both the attribute and the attribute value layers, respectively,
each accident-triggering factor’s influence on the severity of
accident is calculated. The algorithm this paper introduced
has the advantage of better accuracy and higher mining rates
over the traditional association rules and PSO algorithms,
the result of which is quite different from what the experts
concluded, which indicates when facing a large amount of
random information, people’s experiences and how people
perceive things are limited. Of course, traffic accident data as
a type of data possesses certain physical meanings—whether
there really exist connections between certain types of data,
and that certain types of data were manually gathered so they
may not be error-free, as well as whether they can be fully
applied to the models and algorithms of this paper in their
entirety questions as those that are yet to be discussed in
future researches.However, approved by real applications and
tests of effectiveness, this type of data mining method which
is based on traffic accident database provides yet another
powerful tool to quantify data in traffic accident analysis,
which is going to be helpful to accident experts and traffic
administrative agencies to clarify how much of role different
factors play in investigations of traffic severity.
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Barebones particle swarm optimization (BPSO) is a new PSO variant, which has shown a good performance onmany optimization
problems. However, similar to the standard PSO, BPSO also suffers from premature convergence when solving complex
optimization problems. In order to improve the performance of BPSO, this paper proposes a new BPSO variant called BPSO with
neighborhood search (NSBPSO) to achieve a tradeoff between exploration and exploitation during the search process. Experiments
are conducted on twelve benchmark functions and a real-world problem of ship design. Simulation results demonstrate that our
approach outperforms the standard PSO, BPSO, and six other improved PSO algorithms.

1. Introduction

Particle swarm optimization (PSO), developed by Kennedy
and Eberhart [1], is a new optimization technique inspired
by swarm intelligence. Liker other evolutionary algorithms
(EAs), PSO is also a population-based stochastic search
algorithm, but it does not contain any crossover or mutation
operator. During the search process, each particle adjusts its
search behavior according to the search experiences of its
previous best position (𝑝best) and the global best position
(𝑔best). Due to its simplicity and easy implementation, PSO
has been successfully applied to various practical optimiza-
tion problems [2–5].

However, like other stochastic algorithms, PSO also
suffers from premature convergence when handling complex
multimodal problems. The main reason is that the attraction
search pattern of PSO greatly depends on 𝑝best and 𝑔best.
Once these best particles (𝑝best and 𝑔best) get stuck, all
particles in the swarm will quickly converge to the trapped
position. In order to enhance the performance of PSO,
different versions of PSO have been proposed in the past
decades. Shi and Eberhart [6] introduced an inertia weight
𝑤 into the original PSO to achieve a balance between the

global and local search. Reported results show that a linearly
decreased𝑤 is a parameter setting. Parsopoulos and Vrahaits
[7] proposed a unified PSO (UPSO) which is a hybrid
algorithm by combining the global and local versions of PSO.
In [8], a fully informed PSO, called FIPS, is proposed by
employing a modified velocity model. van den Bergh and
Engelbrecht [9] used a cooperativemechanism to improve the
performance of PSO on multimodal optimization problems.
In the standard PSO, particles are attracted by their corre-
sponding previous best particles and the global best particle.
This search pattern is a greedy method which may result in
premature convergence. To tackle this problem, Liang et al.
[10] proposed a comprehensive learning PSO (CLPSO), in
which each particle can be attracted by different previous
best positions. Computational results on a set of multimodal
problems demonstrate the effectiveness of CLPSO. In [11],
Wang et al. proposed a new PSO algorithm (NSPSO) to
search the neighbors of particles. This can provide more
chances of finding better candidate solutions. Simulation
studies show that NSPSO outperforms UPSO, FIPS, CPSO-
H, andCLPSO. In [12], another version ofNSPSO is proposed
by employing neighborhood search and diversity enhanced
mechanism.
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Similar to other EAs, the performance of PSO also
greatly depends on its control parameters, 𝑤, 𝑐

1
, and 𝑐

2
.

The first parameter is known as inertia weight, and the last
two are acceleration coefficients. Slight differences of these
parameters may result in significantly different performance.
To tackle this problem, some PSO variants based on adaptive
parameters have been proposed to minimize the dependency
of these parameters [13, 14]. Compared to these adaptive
PSO algorithms, Kennedy developed a novel PSO called
barebones PSO (BPSO) [15], which eliminates the velocity
term and does not contain the parameters 𝑤, 𝑐

1
, and 𝑐

2
.

In BPSO, a Gaussian sampling is used to generate new
positions of particles. Empirical studies demonstrate that
the performance of BPSO is competitive to the standard
PSO and some improved PSO algorithms. Inspired by the
idea of BPSO, some new algorithms haven been proposed.
In [16], Omran et al. combined BPSO with differential
evolution (DE) and the proposed barebones DE (BBDE).
The reported results show that BBDE outperforms the
standard DE and BPSO and it also achieves promising
solutions for unsupervised image classification. Krohling and
Mendel [17] introduced Gaussian and Cauchy mutations
into BPSO to improve its performance. Experimental studies
on a suite of well-known multimodal benchmark functions
demonstrate the effectiveness of this approach. Blackwell
[18] presented a theoretical analysis of BPSO. A series of
experimental trials confirmed that the BPSO situated at the
edge of collapse is comparable to other PSO algorithms and
that performance can be still further improved with the
use of an adaptive distribution. In [19], Wang embedded
opposition-based learning (OBL) into BPSO to solve con-
strained nonlinear optimization problems. In addition, a new
boundary search strategy is utilized. Simulation studies on
thirteen constrained benchmark functions show that the new
approach outperforms PSO, BPSO, and six other improved
PSO algorithms.

In this paper, we also propose an improved barebones
PSO called NSBPSO which employs a global and local
neighborhood search strategies to make a balance between
exploration and exploitation during the search process. In
order to verify the performance of NSBPSO, twelve well-
known benchmark functions and a real-world problem on
ship design are used in the experiments. Computational
results show that our approach outperforms PSO, BPSO, and
several other improved PSO variants in terms of the quality
of solutions.

The rest of the paper is organized as follows.The standard
PSO and barebones PSO are given in Section 2. In Section 3,
our approach NSBPSO is proposed. Experimental studies
are presented in Section 4. Section 5 presents a real-world
application on ship design. Finally, the work is summarized
in Section 6.

2. Barebones Particle Swarm Optimization

PSO is a population-based stochastic search algorithm,which
simulates the behaviors of fish schooling or birds flocking.
Each particle has a velocity and a position vectors. During

the search space, a particle dynamically adjusts its velocity to
generate a new position as follows:

𝑉
𝑖
(𝑡 + 1) = 𝑤 ⋅ 𝑉

𝑖
(𝑡) + 𝑐

1
⋅ 𝑟
1
⋅ (𝑝best

𝑖

− 𝑋
𝑖
(𝑡))

+ 𝑐
2
⋅ 𝑟
2
⋅ (𝑔best − 𝑋𝑖 (𝑡)) ,

𝑋
𝑖
(𝑡 + 1) = 𝑋

𝑖
(𝑡) + 𝑉

𝑖
(𝑡 + 1) ,

(1)

where 𝑋
𝑖
and 𝑉

𝑖
are the position and velocity vector for the

𝑖th particle, respectively. 𝑝best
𝑖

is the previous best particle of
the 𝑖th particle and 𝑔best is the global best particle. 𝑟

1
and

𝑟
2
are two independently generated random numbers within
[0, 1]. The parameter 𝑤 is known as inertia weight. 𝑐

1
and 𝑐
2

are acceleration coefficients.
A recent study [20] proved that the particles in PSO

converge to the weighted position of𝑝best and𝑔best as follows:

lim
𝑡→+∞

𝑋
𝑖
(𝑡) =

𝑐
1
⋅ 𝑝best

𝑖

+ 𝑐
2
⋅ 𝑔best

𝑐
1
+ 𝑐
2

. (2)

Based on the convergence characteristic of PSO, Kennedy
[15] proposed a new PSO variant called barebones PSO
(BPSO), in which each particle only has a position vector
and eliminates the velocity vector. Therefore, BPSO does not
contain the parameters𝑤, 𝑐

1
, and 𝑐

2
. In BPSO, a new position

is updated by Gaussian sampling as follows:

𝑋
𝑖
(𝑡 + 1) = 𝑁(

𝑔best + 𝑝best
𝑖

2

,






𝑔best − 𝑝best

𝑖






) , (3)

where 𝑁(⋅) indicates a Gaussian distribution with mean
(𝑔best + 𝑝best

𝑖

)/2 and standard deviation |𝑔best − 𝑝best
𝑖

|.

3. Barebones PSO with Neighborhood Search

Due to the intrinsic randomness, both PSO and EAs suffer
from premature convergence when solving complex multi-
modal problems. Sometimes, the suboptima are near to the
global optimum and the neighborhoods of trapped particles
may contain the global optimum. For this case, searching the
neighbors of particles is beneficial for finding better solutions.
Based on this idea, some neighborhood search strategies have
been successfully applied to various algorithms.

In [11], Wang et al. proposed a new PSO algorithm
called PSO with neighborhood search strategies (NSPSO),
which utilizes one local and two global neighborhood search
strategies. The NSPSO includes two operations. First, for
each particle, three trial particles are generated by the above
neighborhood search strategies, respectively. Second, the best
one among the three trial particles and the current particle
is chosen as the new current particle. Simulation studies on
twelve unimodal andmultimodal benchmark problems show
that NSPSO achieves better results than standard PSO and
five other improved PSO algorithms.

Although NSPSO has shown good search abilities, its
performance is still seriously influenced by its control param-
eters, 𝑤, 𝑐

1
, and 𝑐

2
. In [11], NSPSO used an empirical

parameter settings, 𝑐
1
= 𝑐
2
= 1.49618 and 𝑤 = 0.72984.

In order to minimize the effects of the control parameters
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𝑃2

𝑃3

𝑃4

𝑃5

𝑃6

The 2-neighborhood radius of 𝑃4

Figure 1: The ring topology and 2-neighborhood radius.

on the performance of NSPSO, this paper proposes an
improved PSO algorithm by combining barebones PSO and
the neighborhood search strategies.

There are various population topologies, such as ring,
wheel, star, Von Neumann, and random. A recent study
shows that the complexity of population topology affects the
performance of PSO. A population topology with few con-
nections (low complexity) may perform well on multimodal
problems, while a highly interconnected population topology
may performwell on unimodal problems. In this paper, a ring
topology is used by the suggestions of [11].

The ring topology assumes that particles are organized
as a ring. In [21], a special ring topology is proposed by
connecting the indices of particles. For example, the fourth
particle 𝑃

4
is connected by the third one 𝑃

3
and the fifth one

𝑃
5
. In other words, 𝑃

3
and 𝑃

5
are two immediate neighbors

of 𝑃
4
. Figure 1 shows the employed ring topology. Based on

the ring topology, a 𝑘-neighborhood radius is defined, where
𝑘 is a predefined integer number. For each particle 𝑃

𝑖
, its 𝑘-

neighborhood radius consists 2𝑘+1 particles (include itself),
which are 𝑃

𝑖−𝑘
, . . . , 𝑃

𝑖−1
, 𝑃
𝑖
, 𝑃
𝑖+1
, . . . , 𝑃

𝑖+𝑘
. It is obvious that the

parameter 𝑘 satisfies 0 ≤ 𝑘 ≤ (𝑁 − 1)/2. Figure 1 shows the
2-neighborhood radius of𝑃

4
, where 5 particles are covered by

the neighborhood. By the suggestions of [11], 𝑘 = 2 is used in
this paper.

Based on the 𝑘-neighborhood radius, a local neighbor-
hood search strategy is proposed. For each particle 𝑃

𝑖
, a local

particle 𝐿
𝑖
is generated as follows [11]:

𝐿𝑋
𝑖
(𝑡 + 1) = 𝑎

1
⋅ 𝑋
𝑖
(𝑡) + 𝑎

2
⋅ 𝑝best

𝑖

+ 𝑎
3
⋅ (𝑋
𝑖1
(𝑡) − 𝑋

𝑖2
(𝑡)) ,

(4)

where 𝑋
𝑖1
and 𝑋

𝑖2
are the position vectors of two particles,

𝑃
𝑖1

and 𝑃
𝑖2
, randomly selected from the 𝑘-neighborhood

neighborhood, 𝑖1, 𝑖2 ∈ [𝑖 − 𝑘, 𝑖 + 𝑘] ∧ 𝑖1 ̸= 𝑖2 ̸= 𝑖, 𝑎
1
, 𝑎
2
, 𝑎
3
are

three random numbers within (0, 1), and 𝑎
1
+ 𝑎
2
+ 𝑎
3
= 1.

In [11], the velocity of 𝐿
𝑖
keeps the same with 𝑃

𝑖
. Although

the velocity mechanism is simple, it may not beneficial for
the next flight of 𝐿

𝑖
. Therefore, we use a similar method to

generate 𝐿𝑉
𝑖
:

𝐿𝑉
𝑖
(𝑡 + 1) = 𝑎

1
⋅ 𝑉
𝑖
(𝑡) + 𝑎

2
⋅ 𝑝best

𝑉𝑖

+ 𝑎
3
⋅ (𝑉
𝑖1
(𝑡) − 𝑉

𝑖2
(𝑡)) ,

(5)

where 𝑝best
𝑉𝑖

is the velocity vector of 𝑝best
𝑖

and𝑉
𝑖1
,𝑉
𝑖2
are the

velocity vectors of 𝑃
𝑖1
and 𝑃

𝑖2
, respectively.

Beside the local neighbor strategy, a global neighborhood
search strategy is proposed. For each particle 𝑃

𝑖
, a global

particle 𝐺
𝑖
is generated as follows [11]:

𝐺𝑋
𝑖
(𝑡 + 1) = 𝑎

1
⋅ 𝑋
𝑖
(𝑡) + 𝑎

2
⋅ 𝑔best + 𝑎3 ⋅ (𝑋𝑖3 (𝑡) − 𝑋𝑖4 (𝑡)) ,

(6)

where𝑋
𝑖3
and𝑋

𝑖4
are the position vectors of two particles,𝑃

𝑖3

and 𝑃
𝑖4
, randomly selected from the current swarm, 𝑖3, 𝑖4 ∈

[1,𝑁]∧𝑖3 ̸= 𝑖4 ̸= 𝑖, 𝑎
1
, 𝑎
2
, 𝑎
3
are three randomnumbers within

(0, 1), and 𝑎
1
+𝑎
2
+𝑎
3
= 1. In [11], the velocities of𝐺

𝑖
keeps the

samewith𝑃
𝑖
. So, the velocity of 𝐿

𝑖
,𝐺
𝑖
, and𝑃

𝑖
are the same, but

𝐿
𝑖
(local) and 𝐺

𝑖
(global) are two different types of particles.

Like (5), this paper uses a new method to generate 𝐺𝑉
𝑖
:

𝐿𝑉
𝑖
(𝑡 + 1) = 𝑎

1
⋅ 𝑉
𝑖
(𝑡) + 𝑎

2
⋅ 𝑔best

𝑉

+ 𝑎
3
⋅ (𝑉
𝑖3
(𝑡) − 𝑉

𝑖4
(𝑡)) ,

(7)

where 𝑔best
𝑉

is the velocity vector of 𝑔best and 𝑉𝑖3, 𝑉𝑖4 are the
velocity vectors of 𝑃

𝑖3
and 𝑃

𝑖4
, respectively.

After generating two new particles 𝐿
𝑖
and 𝐺

𝑖
, a greedy

selection mechanism is used. Among 𝑃
𝑖
, 𝐿
𝑖
, and 𝐺

𝑖
, we select

the best one as the new 𝑃
𝑖
.

In our approach NSBPSO, it embeds the local and
global neighborhood search strategies into barebones PSO.
The neighborhood search strategies focus on searching the
neighbors of particles and provide different search behaviors.
TheBPSO concentrates onminimizing the dependency of the
control parameters (without 𝑤, 𝑐

1
, and 𝑐

2
). By hybridization

of BPSO and the neighborhood strategies, NSBPSO is almost
a parameter-free algorithm (except for the probability of the
neighborhood search), which achieves a tradeoff between
exploration and exploitation.

The main steps of NSBPSO are listed as follows.

Step 1. Randomly initialize the swarm, and evaluate the
fitness values of all particles.

Step 2. Initialize 𝑝best and 𝑔best.

Step 3. For each particle 𝑃
𝑖
, calculate its new position vector

𝑋
𝑖
according to (3). Evaluate the fitness value of 𝑃

𝑖
. If needed,

update 𝑝best
𝑖

and 𝑔best.

Step 4. For each particle 𝑃
𝑖
, if 𝑟 and (0, 1) < 𝑃ns, where 𝑟

and (0, 1) is a random number within [0, 1] and 𝑃ns is the
probability of conducting neighborhood search, then go to
Step 5; otherwise go to Step 6.

Step 5. Generate a local particle 𝐿
𝑖
according to (4) and (5).

Generate a local particle𝐺
𝑖
according to (6) and (7). Evaluate

the fitness values of 𝐿
𝑖
and𝐺

𝑖
. Among𝑃

𝑖
, 𝐿
𝑖
, and𝐺

𝑖
, we select

the best one as the new 𝑃
𝑖
. If needed, update 𝑝best

𝑖

and 𝑔best.

Step 6. If the stop criterion is satisfied, then stop the algo-
rithm and output the results; otherwise go to Step 3.



4 Mathematical Problems in Engineering

Table 1: The twelve benchmark problems.

Problems 𝐷 Search range

𝑓
1
(𝑥) =

𝐷

∑

𝑖=1

𝑥
2

𝑖
30 [−100, 100]

𝑓
2
(𝑥) =

𝐷−1

∑

𝑖=1

[100(𝑥
2

𝑖
− 𝑥
𝑖+1
)

2

+ (𝑥
𝑖
− 1)
2

] 30 [−2.048, 2.048]

𝑓
3
(𝑥) = −20 exp(−0.2√ 1

𝐷

𝐷

∑

𝑖=1

𝑥
2

𝑖
) − exp( 1

𝐷

𝐷

∑

𝑖=1

cos (2𝜋𝑥
𝑖
)) + 20 + 𝑒 30 [−32.768, 32.768]

𝑓
4
(𝑥) =

𝐷

∑

𝑖=1

𝑥
2

𝑖

4000

−

𝐷

∏

𝑖=1

cos(
𝑥
𝑖

√𝑖

) + 1 30 [−600, 600]

𝑓
5
(𝑥) =

𝐷

∑

𝑖=1

(

𝑘max
∑

𝑘=0

[𝑎
𝑘 cos (2𝜋𝑏𝑘 (𝑥

𝑖
+ 0.5))]) − 𝐷

𝑘max
∑

𝑘=0

[𝑎
𝑘 cos (2𝜋𝑏𝑘 ⋅ 0.5)]

𝑎 = 0.5, 𝑏 = 3, 𝑘max = 20
30 [−0.5, 0.5]

𝑓
6
(𝑥) =

𝐷

∑

𝑖=1

(𝑥
2

𝑖
− 10 cos (2𝜋𝑥

𝑖
) + 10) 30 [−5.12, 5.12]

𝑓
7
(𝑥) =

𝐷

∑

𝑖=1

(𝑦
2

𝑖
− 10 cos (2𝜋𝑦

𝑖
) + 10)

𝑦
𝑖
=

{
{

{
{

{

𝑥
𝑖
,





𝑥
𝑖





<

1

2

round (2𝑥
𝑖
)

2

,




𝑥
𝑖





≥

1

2

30 [−5.12, 5.12]

𝑓
8
(𝑥) = 418.9829 ⋅ 𝐷 −

𝐷

∑

𝑖=1

(𝑥
𝑖
sin(√


𝑥
𝑖





)) 30 [−500, 500]

𝑓
9
(𝑥) = −20 exp(−0.2√ 1

𝐷

𝐷

∑

𝑖=1

𝑦
2

𝑖
) − exp( 1

𝐷

𝐷

∑

𝑖=1

cos (2𝜋𝑦
𝑖
)) + 20 + 𝑒

𝑦 = M ∗ 𝑥

30 [−32.768, 32.768]

𝑓
10
(𝑥) =

𝐷

∑

𝑖=1

𝑦
2

𝑖

4000

−

𝐷

∏

𝑖=1

cos(
𝑦
𝑖

√𝑖

) + 1

𝑦 = M ∗ 𝑥
30 [−600, 600]

𝑓
11
(𝑥) =

𝐷

∑

𝑖=1

(

𝑘max
∑

𝑘=0

[𝑎
𝑘 cos (2𝜋𝑏𝑘 (𝑦

𝑖
+ 0.5))]) − 𝐷

𝑘max
∑

𝑘=0

[𝑎
𝑘 cos (2𝜋𝑏𝑘 ⋅ 0.5)]

𝑦 = M ∗ 𝑥
30 [−0.5, 0.5]

𝑓
12
(𝑥) =

𝐷

∑

𝑖=1

(𝑦
2

𝑖
− 10 cos (2𝜋𝑦

𝑖
) + 10)

𝑦 = M ∗ 𝑥
30 [−5.12, 5.12]

4. Experimental Study

4.1. Test Problems. In order to verify the performance of our
approach, there are twelve well-known benchmark problems
used in the following experiments [10]. According to the
properties of these problems, they are divided into two three
types: unimodal problems (𝑓

1
–𝑓
2
), unrotated multimodal

problems (𝑓
3
–𝑓
8
), and rotated multimodal problems (𝑓

9
–

𝑓
12
). For rotated problems, the original variable 𝑥 is left

multiplied by the orthogonal matrix M to get the new
rotated variable 𝑦 = M ∗ 𝑥. For all test problems, they
are to be minimized and their global optima are zero. The
specific descriptions of these problems are presented in
Table 1.

4.2. Effects of the Parameter 𝑃ns. The main contribution of
this paper is to minimize the effects of the control parameters
and improve the performance of BPSO. Although NSBPSO
eliminates the control parameters, 𝑤, 𝑐

1
, and 𝑐

2
, it introduces

two new parameters 𝑘 and 𝑃ns. The parameter 𝑘 is the size
of neighborhood radius. The ring population topology used
in this paper assumes that particles are connected by their
indices. Although 𝑃

2
and 𝑃

3
are two neighbors of 𝑃

1
, they

may not be the nearest one to 𝑃
1
(Euclidean distance). So, the

size of the neighborhood radius does not affect the selection
of particles in the local neighborhood search. Our empirical
studies also confirm it (here we do not list the results of
NSBSO with different 𝑘-neighborhood radius). According to
the suggestions of [11], 𝑘 is set to 2 in this paper.
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Table 2: Results achieved by NSBPSO with different 𝑃ns.

Problems 𝑃ns = 0.0 𝑃ns = 0.1 𝑃ns = 0.3 𝑃ns = 0.5 𝑃ns = 0.7 𝑃ns = 1.0

Mean Mean Mean Mean Mean Mean
𝑓
1

3.60𝐸 − 87 1.47𝐸 − 285 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00
𝑓
2

1.84𝐸 + 01 1.81E + 01 2.01𝐸 + 01 2.08𝐸 + 01 2.13𝐸 + 01 2.23𝐸 + 01

𝑓
3

1.12𝐸 − 14 5.89E − 16 5.89E − 16 5.89E − 16 5.89E − 16 5.89E − 16
𝑓
4

9.86𝐸 − 03 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00
𝑓
5

5.65𝐸 − 05 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00
𝑓
6

3.38𝐸 + 01 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00
𝑓
7

2.50𝐸 + 01 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00
𝑓
8

2.13𝐸 + 03 1.80𝐸 + 03 1.01E + 03 2.78𝐸 + 03 2.63𝐸 + 03 4.17𝐸 + 03

𝑓
9

1.90𝐸 + 00 5.89E − 16 5.89E − 16 5.89E − 16 5.89E − 16 5.89E − 16
𝑓
10

2.95𝐸 − 02 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00
𝑓
11

7.95𝐸 + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00
𝑓
12

6.07𝐸 + 01 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00

The parameter 𝑃ns controls the probability of conducting
neighborhood search. A larger 𝑃ns will result in more neigh-
borhood search operations, while a smaller 𝑃ns will have less.
This may affect the performance of NSBPSO. To investigate
the effects of 𝑃ns, this section presents an experimental study.
In the experiment, the 𝑃ns is set to 0.0, 0.1, 0.3, 0.5, 0.7, and
1.0, respectively. The performance of NSBPSO with different
𝑃ns is compared.

For other parameters of NSBPSO, we use the following
settings by the suggestions of [10].Thepopulation size𝑁 is set
to 40. When the number of fitness evaluations (FEs) reaches
the maximum value MAX FEs, the algorithm stops running.
In the experiment, MAX FEs is set to 2.0𝑒 + 05. For each test
problem, NSBPSO is run 30 times and the mean fitness error
values are reported.

Table 2 presents the computational results of NSBPSO
under different𝑃ns, where “Mean” represents themean fitness
error values. The best results among the comparison are
shown in boldface. As seen, the performance of NSBPSO is
not sensitive to the parameter 𝑃ns. A smaller (𝑃ns < 0.3) or
larger (𝑃ns > 0.5) value of 𝑃ns almost achieves similar results.
For 𝑃ns = 0.0, NSBPSO is equal to the original BPSO, because
the neighborhood search operations are not conducted. For
this case, the algorithm shows poor performance and falls
into local minima on most test functions. When 𝑃ns = 0.1,
NSBPSO significantly outperforms NSBPSO with 𝑃ns = 0.0.
It demonstrates that the neighborhood search strategies are
very effective. Even if we use a small 𝑃ns, NSBPSO can also
obtain promising results.

The value of 𝑃ns does not affect the performance of
NSBPSO, and 𝑃ns > 0 is applicable for all test problems. In
this paper, 𝑃ns = 0.3 is used in the following experiments.

Figure 2 presents the convergence processes of NSBPSO
with different𝑃ns. Although different𝑃ns of NSBPSO can find
the global optimum on the majority of test functions, they
show different convergence characteristics. For problem 𝑓

1
,

larger 𝑃ns converges faster than smaller 𝑃ns. For problem 𝑓2,
𝑃ns = 0.1 converges fastest than other values. For𝑓8,𝑃ns = 0.3
shows the fastest convergence speed.

4.3. Comparison of NSBPSO with Other PSO Algorithms. In
this section, experiments are conducted to compare nine PSO
algorithms including the proposed NSBPSO on the 12 test
problems. The involved algorithms are listed as follows.

(1) standard PSO,
(2) barebones PSO (BPSO),
(3) unified PSO (UPSO) [7],
(4) fully informed PSO (FIPS) [8],
(5) cooperative PSO (CPSO-H) [9],
(6) comprehensive learning PSO (CLPSO) [10],
(7) adaptive learning PSO (APSO) [13],
(8) pSO with neighborhood search (NSPSO) [11],
(9) our approach (NSBPSO).

For the sake of fair comparison, we use the same settings
for the same parameters. For all algorithms, the population
size 𝑁 is set to 40, and the maximum number of fitness
evaluations (MAX FEs) is set to 2.0𝑒 + 05. For standard PSO,
𝑤 is linearly decreased from 0.9 to 0.4, and 𝑐

1
= 𝑐
2
=

1.49618. For NSPSO, the probability of neighborhood search
𝑃ns is set to 0.3. The parameter settings of UPSO, CPSO-
H, FIPS, and CLPSO are described in [10]. For NSPSO and
APSO, the same parameters are used by the literature [11,
13], respectively. For each test problem, each algorithm is
conducted 30 times and the mean fitness error values are
reported.

Table 3 lists the comparison results of NSBPSOwith other
eight PSO algorithms, where “Mean” represents the mean
fitness error values. The best results are shown in boldface.
From the results, it can be seen that NSBPSO outperforms
PSO, BPSO, and FIPS on all test problems. UPSO and APSO
perform better than NSBPSO on 𝑓

2
, while NSBPSO achieves

better results for the rest 11 problems. CPSO-H obtains better
solution than NSBPSO on 𝑓

2
, while NSBPSO outperforms

CPSO-H on 10 problems. For problem 𝑓
6
, both NSBPSO

and CPSO-H can find the global optimum. NSPSO performs
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Figure 2: The convergence curves of NSBPSO with different 𝑃ns.
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Table 4: Results ofWilcoxon signed-rank test betweenNSBPSOand
other eight PSO algorithms.

NSBPSO versus 𝑃 values
PSO 4.88E − 04
BPSO 6.05E − 03
UPSO 6.35E − 03
FIPS 1.17E − 02
CPSO-H 4.88E − 04
CLPSO 6.54𝐸 − 02

APSO 6.35E − 03
NSPSO 3.75𝐸 − 01

better than NSBPSO on 𝑓
2
, while NSBPSO outperforms

NSPSO on 4 problems. Both of them can converge to the
global optimum on 7 problems.

From the comparison of BPSO and PSO, BPSO out-
performs PSO on 6 problems, while PSO achieves better
results than BPSO for the rest 6 problems. The results
demonstrate that the performance of BPSO is similar to
PSO on these problems. Compared to PSO, BPSO is more
competitive, because BPSO does not contain any control
parameter (except for the population size), while PSO
employs empirical parameter settings. By hybridization of
BPSO (or PSO) and the neighborhood search, NSBPSO (or
NSPSO) achieves significantly improvements on the perfor-
mance of BPSO (or PSO). Compared to NSPSO, NSBPSO
not only achieves better results, but also has less control
parameters.

In order to compare the performance differences between
NSBPSO and the other eight PSO algorithms, we conduct the
Wilcoxon signed-rank test by the suggestions of [22]. Table 4
shows the 𝑃-values achieved by the Wilcoxon test. The 𝑃
values below 0.05 are shown in boldface. As shown, NSBPSO
is significantly better than all other algorithms except for
CLPSO and NSPSO. Though NSBPSO is not significantly
better than them, it outperforms them in the majority of test
problems.

5. Application on Ship Design

5.1. Problem Description. This section investigates the per-
formance of our approach NSBPSO for a conceptual ship
design. The original optimization statements are presented
in [23, 24]. The ship design optimization problem used in
this paper has six design variables, three objectives, and
9 inequality constraints. The design variables are length
(𝐿), beam (𝐵), depth (𝐷), draft (𝑇), block coefficient (𝐶

𝐵
),

and speed in knots (𝑉
𝑘
). The ship design problem aims to

minimize transportation cost (𝑇
𝑐
) and lightship weight (𝐿

𝑠
)

and maximize annual cargo (𝐴
𝑐
) [24]:

Minimize {𝑇
𝑐
, 𝐿
𝑠
}

Maximize 𝐴
𝑐
,

(8)

where 𝑇
𝑐
= 𝐶
𝐴
/𝐴
𝑐
, 𝐴
𝑐
= (DWT − 𝐹

𝑐
−DWT

𝑀
) ⋅ RTPA, and

𝐿
𝑠
= 𝑊
𝑠
+𝑊
𝑜
+𝑊
𝑚
.The specificmodel definition is described

in Table 5 [25]. The search ranges of the six variables 𝐿, 𝐵,𝐷,
𝑇, 𝐶
𝐵
, and 𝑉

𝑘
are listed in Table 6.

There are 9 inequality constraints listed as follows:

6 −

𝐿

𝐵

≤ 0,

𝐿

𝐷

− 15 ≤ 0,

𝐿

𝑇

− 19 ≤ 0,

𝑇 − 0.45DWT0.31 ≤ 0,

𝑇 − 0.7𝐷 + 0.7 ≤ 0,

DWT − 500000 ≤ 0,

25000 − DWT ≤ 0,

𝐹
𝑛
− 0.32 ≤ 0,

0.07𝐵 − 𝐾𝐵 − 𝐵𝑀𝑇 + 𝐾𝐺 ≤ 0.

(9)

5.2. Constraint Handling. In order to deal with the con-
straints, an adaptive penalty method is employed by the
suggestions of [19]. Let 𝑓(𝑥) be the objective function (𝑇

𝑐
, 𝐿
𝑠
,

or 𝐴
𝑐
). The fitness evaluation function 𝐹(𝑥) is defined by

𝐹 (𝑥) =

{
{

{
{

{

𝑓 (𝑥) , if 𝑥 is feasible,

𝑓 (𝑥) +

𝑚

∑

𝑗=1

𝑘
𝑗
⋅ 𝐶𝑉
𝑗
, otherwise, (10)

where 𝑚 is the number of inequality constraints, 𝐶𝑉
𝑗
=

min{0, 𝑐
𝑗
(𝑥)} is the constraint violation for the 𝑗th constraint,

𝑐
𝑗
(𝑥) is the 𝑗th constraint,𝑓(𝑥) is themean objective function

value in the current swarm, and 𝑘
𝑗
is a penalty coefficient

defined as follows:

𝑘
𝑗
=





𝑓 (𝑥)





⋅ 𝐶𝑉
𝑗
(𝑥)

∑
𝑚

𝑖=1
[𝐶𝑉
𝑖
(𝑥)]

2
, (11)

where𝐶𝑉
𝑗
(𝑥) is the average violation of the 𝑗th constraint for

all particles in the swarm.

5.3. Computational Results. The ship design problem is a
multiobjective optimization problem which has three objec-
tives. By the suggestions of [24, 25], this paper only considers
single objective optimization. Therefore, the whole problem
is divided into three single objective optimization problems:
(1) minimize transportation cost (𝑇

𝑐
), (2) minimize lightship

weight (𝐿
𝑠
), and (3) maximize annual cargo (𝐴

𝑐
).

In this section, we conduct three series of experiments for
the three single optimization problems. In order to verify the
performance of our approach NSBPSO, we compare it with
four other algorithms. The involved algorithms are listed as
follows:

(1) parsons and Scott’s method [24],
(2) standard PSO,
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Table 5: Model definition of the ship design problem.

Parameter Definition Parameter Definition
Steel weight (𝑊

𝑠
) 0.034 𝐿

1.7
𝐵
0.7
𝐷
0.4
𝐶
0.5

𝐵
Port cost (𝐶

𝑃
) 6.3DWT0.8

Outfit weight (𝑊
𝑜
) 1.0 𝐿

0.8
𝐵
0.6
𝐷
0.4
𝐶
0.5

𝐵
Fuel carried (𝐹

𝑐
) 𝐷

𝑐
(𝐷
𝑠
+ 0.5)

Displacement (Δ) 1.025𝐿𝐵𝑇𝐶
𝐵

Misc. deadweight (DWT
𝑀
) 2.0DWT0.5

Machinery weight (𝑊
𝑚
) 0.17𝑃0.9 Cargo deadweight (DWT

𝑐
) DWT−𝐹

𝑐
− DWT

𝑀

Capital cost (𝐶
𝑐
) 0.2𝐶

𝑠
Port days (𝐷

𝑝
) 2 (DWT

𝑐
/𝐻
𝑅
+ 0.5)

Running cost (𝐶
𝑅
) 40000DWT0.3 Round trips per year (RTPA) 350/(𝐷

𝑠
+ 𝐷
𝑝
)

Daily cost (𝐷
𝑐
) (0.19 ⋅ 24 ⋅ 𝑃/1000) + 0.2 Voyage cost (𝐶

𝑉
) (𝐶

𝐹
+ 𝐶
𝑃
) RTPA

Handling rate (𝐻
𝑅
) 8000 (𝑡/day) Round trip miles (RTM) 5000 (nm)

Fuel price (𝐹
𝑃
) 100 (£/𝑡) Sea days (𝐷

𝑠
) RTM/24𝑉

𝑘

Power (𝑃) 3
√Δ
2
𝑉
3

𝑘
/(𝑎 + 𝑏𝐹

𝑛
) Fuel cost (𝐶

𝐹
) 1.05𝐷

𝐶
𝐷
𝑆
𝐹
𝑃

Froude number (𝐹
𝑛
) 𝑉/√𝑔𝐿,𝑉 = 0.5144𝑉

𝑘
𝑔 9.8065

Annual cost (𝐶
𝐴
) (DWT

𝐶
) RTPA KB 0.53𝑇

𝐾𝐺 1.0 + 0.52𝐷 BMT (0.085𝐶
𝐵
− 0.002)𝐵2/(𝑇𝐶

𝐵
)

Ship cost (𝐶
𝑠
) 1.3 (2000𝑊0.85

𝑠
+ 3500𝑊

𝑜
+ 2400𝑃0.8)

Table 6: Search ranges of the six design variables.

150 ≤ 𝐿 ≤ 274.32 10 ≤ 𝑇 ≤ 11.71

20 ≤ 𝐵 ≤ 32.31 0.63 ≤ 𝐶
𝐵
≤ 0.75

13 ≤ 𝐷 ≤ 25 11 ≤ 𝑉
𝑘
≤ 20

(3) barebones PSO (BPSO),

(4) PSO with neighborhood search (NSPSO),

(5) our approach (NSBPSO).

To have a fair comparison, the same parameter settings
are used for common parameters. For all algorithms, the pop-
ulation size and the maximum number of fitness evaluations
(MAX FEs) are set to 100 and 1.0𝑒+06. For standard PSO,𝑤 is
linearly decreased from 0.9 to 0.4 and 𝑐

1
= 𝑐
2
= 1.49618. For

NSBPSO and NSPSO, 𝑃ns is set to 0.3. For each optimization
problem, each algorithm is run 10 times and the best results
among these runs are presented.

Tables 7–9 show the computational results for the three
problems. For Table 7, NSBPSO achieves the minimal trans-
portation cost among the five algorithms; but it also obtains
the minimal value of annual cargo. For the objective of 𝑇

𝑐
,

NSBPSO is the best among the five algorithms, however, it
could not obtain the best results for all three objectives. For
annual cargo 𝐴

𝑐
, Parsons and Scott’s [24] method is the best.

Tables 8 and 9 can also get similar conclusions. The results
demonstrate that NSBPSO shows better performance than
the other three algorithms for single objective optimization
problem of the ship design. When considering all objectives,
we cannot conclude which algorithm is the best. To perfectly
solve this problem, we may use multiobjective optimization
algorithms. Figures 3, 4, and 5 present the convergence
curves of PSO, BPSO, NSPSO, and NSBPSO for the three
single objective problems. For minimizing transportation
cost, NSBPSO shows faster convergence speed at the last
stage of the evolution. For minimizing lightship weight,
NSBPSO converges faster than other three PSO algorithms.
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Figure 3: The convergence curves of PSO, BPSO, NSPSO and
NSBPSO for minimizing transportation cost.

For maximizing annual cargo, both NSBPSO and NSPSO
show similar convergence characteristics.

6. Conclusions

Barebones PSO (BPSO) is a new variant of PSO which
eliminates the velocity term. Although some reported results
show that BPSO is better than PSO, it still gets stuck
when solving complex multimodal problems. In order to
enhance the performance of BPSO, this paper proposes an
improved version called BPSO with neighborhood search
(NSBPSO). The new approach embeds one local and one
global neighborhood search strategies into the original BPSO
to achieve a tradeoff between exploration and exploitation.
Compared to other improved PSO algorithms, NSBPSO is
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Table 7: Computational results for minimizing transportation cost.

Objective Parsons and Scott [24] PSO BPSO NSPSO NSBPSO
Transportation cost (𝑇

𝑐
) 8.377 8.213 8.195 8.176 8.162

Lightship weight (𝐿
𝑠
) 9029.0 8420.1 8486.3 8452.8 8355.2

Annual cargo (𝐴
𝑐
) 551265 509078 508069 505738 503261

𝐿 193.86 190.63 191.72 193.04 192.36
𝐵 32.31 30.15 30.13 29.57 29.34
𝐷 15.73 15.54 15.49 15.42 15.39
𝑇 11.71 11.64 11.50 11.51 11.48
𝐶
𝐵

0.681 0.729 0.730 0.730 0.730
𝑉
𝑘

14.00 12.25 12.32 12.21 12.48

Table 8: Computational results for minimizing lightship weight.

Objective Parsons and Scott [24] PSO BPSO NSPSO NSBPSO
Transportation cost (𝑇

𝑐
) 9.474 9.374 9.341 9.325 9.286

Lightship weight (𝐿
𝑠
) 5240.3 5019.9 4946.6 4932.6 4809.2

Annual cargo (𝐴
𝑐
) 386500 371960 369257 366855 361372

𝐿 150.73 155.32 154.59 155.7 152.8
𝐵 25.12 24.36 24.42 24.78 22.87
𝐷 13.84 14.43 14.18 13.02 13.92
𝑇 10.39 10.76 10.62 10.38 10.57
𝐶
𝐵

0.750 0.693 0.69 0.705 0.750
𝑉
𝑘

14.00 13.62 13.78 13.29 13.25
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Figure 4: The convergence curves of PSO, BPSO, NSPSO, and
NSBPSO for minimizing lightship weight.

almost parameter-free algorithm except for the probability of
neighborhood search (𝑃ns).

Experimental studies are conducted on twelve well-
known benchmark problems, including unimodal, multi-
modal, and rotated multimodal problems. Computational
results show that the parameter 𝑃ns does not affect the
performance of NSBPSO.When 𝑃ns > 0, NSBPSO can obtain
good performance. Another comparison demonstrates that
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Figure 5: The convergence curves of PSO, BPSO, NSPSO, and
NSBPSO for maximizing annual cargo.

NSBPSO performs better than, or at least comparable to,
several other state-of-the-art PSO algorithms. Compared
to PSO with neighborhood search (NSPSO), our approach
NSBPSO not only achieves better results, but also has less
control parameters.

For the ship design problem, NSBPSO performs bet-
ter than other three algorithms when optimizing a single
objective. When considering all three objectives, we cannot



Mathematical Problems in Engineering 11

Table 9: Computational results for maximizing annual cargo.

Objective Parsons and Scott [24] PSO BPSO NSPSO NSBPSO
Transportation cost (𝑇

𝑐
) 10.294 10.884 11.308 11.59 12.213

Lightship weight (𝐿
𝑠
) 12436 12558.2 12694.5 12757.4 12769.2

Annual cargo (𝐴
𝑐
) 700533 706405 737952 741928 753137

𝐿 222.49 235.86 231.95 235.27 238.2
𝐵 32.31 32.20 32.32 32.14 32.31
𝐷 15.73 16.60 17.29 16.62 15.73
𝑇 11.71 11.42 11.70 11.70 11.71
𝐶
𝐵

0.750 0.720 0.750 0.750 0.750
𝑉
𝑘

18.00 18.09 18.73 18.68 18.89

determinewhich algorithm is the best. Because one algorithm
only achieves better results than other algorithms on one or
two objectives. To tackle this problem, we can usemultiobjec-
tive optimization algorithms to optimize the three objectives
at the same time.This will be investigated in the future work.
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Artificial bee colony (ABC) is a new population-based stochastic algorithm which has shown good search abilities on many
optimization problems. However, the original ABC shows slow convergence speed during the search process. In order to enhance
the performance of ABC, this paper proposes a new artificial bee colony (NABC) algorithm, which modifies the search pattern
of both employed and onlooker bees. A solution pool is constructed by storing some best solutions of the current swarm. New
candidate solutions are generated by searching the neighborhoodof solutions randomly chosen from the solution pool. Experiments
are conducted on a set of twelve benchmark functions. Simulation results show that our approach is significantly better or at least
comparable to the original ABC and seven other stochastic algorithms.

1. Introduction

Optimization problems arise in many application areas such
as engineering, economy, and management. Effective and
efficient optimization algorithms are always required to tackle
increasingly complex real-world optimization problems. In
the past several years, some swarm intelligence algorithms,
inspired by the social behaviors of birds, fish, or insects, have
been proposed to solve optimization problems, such as par-
ticle swarm optimization (PSO) [1], ant colony optimization
(ACO) [2], artificial bee colony (ABC) [3], and firefly algo-
rithm (FA) [4]. A recent study has shown that ABC performs
significantly better or at least comparable to other swarm
intelligence algorithms [5].

ABC is a new swarm intelligence algorithm proposed
by Karaboga in 2005, which is inspired by the behavior of
honey bees [3]. Since the development of ABC, it has been
applied to solve different kinds of problems [6]. Similar to
other stochastic algorithms, ABC also faces up some chal-
lenging problems. For example, ABC shows slow convergence
speed during the search process. Due to the special search
pattern of bees, a new candidate solution is generated by
updating a random dimension vector of its parent solution.

Therefore, the offspring (new candidate solution) is similar
to its parent, and the convergence speed becomes slow.
Moreover, ABC easily falls into local minima when handling
complex multimodal problems. The search pattern of bees is
good at exploration but poor at exploitation [7]. However, a
good optimization algorithm should balance exploration and
exploitation during the search process.

To improve the performance of ABC, this paper proposes
a new search pattern for both employed and onlooker bees.
In the new approach, some best solutions are utilized to
accelerate the convergence speed. In addition, a solution pool
is constructed by storing the best 100𝑝% solutions in the
current swarm with 𝑝 ∈ (0, 1]. The best solution used in the
search pattern is randomly selected from the solution pool.
This is helpful to balance the exploration and exploitation.
Experiments are conducted on twelve benchmark functions.
Simulation results show that our approach outperforms the
original ABC and several other stochastic algorithms.

The rest of the paper is organized as follows. In Section 2,
the original ABC algorithm is presented. Section 3 gives a
brief overview of related work. Section 4 describes the
proposed approach. In Section 5, experimental studies are
presented. Finally, the work is concluded in Section 6.
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2. Artificial Bee Colony

Artificial bee colony (ABC) algorithm is a recently proposed
optimization technique which simulates the intelligent for-
aging behavior of honey bees. A set of honey bees is called
swarm which can successfully accomplish tasks through
social cooperation. In the ABC algorithm, there are three
types of bees: employed bees, onlooker bees, and scout bees.
The employed bees search food around the food source in
theirmemory;meanwhile they share the information of these
food sources to the onlooker bees. The onlooker bees tend to
select good food sources from those found by the employed
bees. The food source that has higher quality (fitness) will
have a large chance to be selected by the onlooker bees than
the one of lower quality. The scout bees are translated from
a few employed bees, which abandon their food sources and
search new ones [8].

In the ABC algorithm, the first half of the swarm con-
sists of employed bees, and the second half constitutes the
onlooker bees.The number of employed bees or the onlooker
bees is equal to the number of solutions in the swarm [3].

The ABC generates a randomly distributed initial popu-
lation of SN solutions (food sources), where SN denotes the
swarm size. Let 𝑋

𝑖
= {𝑥
𝑖,1
, 𝑥
𝑖,2
, . . . , 𝑥

𝑖,𝐷
} represent the 𝑖th

solution in the swarm, where 𝐷 is the dimension size. Each
employed bee𝑋

𝑖
generates a new candidate solution𝑉

𝑖
in the

neighborhood of its present position as follows:
𝑣
𝑖,𝑗

= 𝑥
𝑖,𝑗

+ 𝜙
𝑖,𝑗

⋅ (𝑥
𝑖,𝑗

− 𝑥
𝑘,𝑗

) , (1)

where 𝑋
𝑘

is a randomly selected candidate solution
(𝑖 ̸= 𝑘), 𝑗 is a random dimension index selected from the set
{1, 2, . . . , 𝐷}, and 𝜙

𝑖,𝑗
is a random number within [−1, 1].

Once the new candidate solution 𝑉
𝑖
is generated, a greedy

selection is used. If the fitness value of 𝑉
𝑖
is better than that

of its parent 𝑋
𝑖
, then update 𝑋

𝑖
with 𝑉

𝑖
; otherwise keep 𝑋

𝑖

unchangeable.
After all employed bees complete the search process, they

share the information of their food sources with the onlooker
bees through waggle dances. An onlooker bee evaluates the
nectar information taken from all employed bees and chooses
a food source with a probability related to its nectar amount.
This probabilistic selection is really a roulette wheel selection
mechanism which is described as follows:

𝑝
𝑖
=

fit
𝑖

∑
SN
𝑗=1

fit
𝑗

, (2)

where fit
𝑖
is the fitness value of the 𝑖th solution in the swarm.

As seen, the better the solution 𝑖, the higher the probability of
the 𝑖th food source selected.

If a position cannot be improved over a predefined
number (called limit) of cycles, then the food source is
abandoned. Assume that the abandoned source is 𝑋

𝑖
, then

the scout bee discovers a new food source to be replaced with
𝑋
𝑖
as follows:

𝑥
𝑖,𝑗

= 𝑙𝑏
𝑗
+ rand (0, 1) ⋅ (𝑢𝑏

𝑗
− 𝑙𝑏
𝑗
) , (3)

where rand(0, 1) is a random number within [0, 1] based
on a normal distribution and 𝑙𝑏, 𝑢𝑏 are lower and upper
boundaries of the𝑗th dimension, respectively.

3. Related Work

Since the development of ABC, it has attracted much
attention for its excellent characteristics. In the last decade,
different versions of ABCs have been applied to various
problems. In this section, we present a brief review of these
ABC algorithms.

Karaboga and Akay [5] presented a comparative study
of ABC. A large set of benchmark functions are tested in
the experiments. Results show that the ABC is better than
or similar to those of other population-based algorithms
with the advantage of employing fewer control parameters.
Inspired by differential evolution (DE) algorithm, Gao and
Liu [7, 9] proposed two improved versions of ABC. In [7], a
new search pattern called ABC/best/1 is utilized to accelerate
the convergence speed. In [9], ABC/best/1 and another
search pattern called ABC/rand/1 are employed. Moreover, a
parameter 𝑞 is intruded to control the frequency of these two
patterns. Zhu and Kwong [8] utilized the search information
of the global best solution (𝑔best) to guide the search of
ABC. Reported results show that the new approach achieves
better results than the original ABC algorithm. Akay and
Karaboga [10] proposed a modified ABC algorithm, in which
two new search patterns, frequency and magnitude of the
perturbation, are employed to improve the convergence rate.
Results show that the original ABC algorithm can efficiently
solve basic and simple functions, while the modified ABC
algorithm obtains promising results on hybrid and complex
functions when compared to some state-of-the-art algo-
rithms. Banharnsakun et al. [11] modified the search pattern
of the onlooker bees, in which the best feasible solutions
found so far are shared globally among the entire swarm.
Therefore, the new candidate solutions are similar to the
current best solution. Kang et al. [12] proposed a Rosen-
brock ABC (RABC) algorithmwhich combines Rosenbrock’s
rotational direction method with the original ABC. There
are two alternative phases of RABC: the exploration phase
realized by ABC and the exploitation phased completed by
the Rosenbrock method. Wu et al. [13] combined harmony
search (HS) and the ABC algorithm to construct a hybrid
algorithm. Comparison results show that the hybrid algo-
rithm outperforms ABC, HS, and other heuristic algorithms.
Li et al. [14] proposed an improved ABC algorithm called I-
ABC, in which the best-so-far solution, inertia weight, and
acceleration coefficients are introduced to modify the search
process. Moreover, a hybrid ABC algorithm (PS-ABC) based
on 𝑔best-guided ABC (GABC) [8] and I-ABC is proposed.
Results show that PS-ABC converges faster than I-ABC and
ABC.

Karaboga and Ozturk [15] used ABC algorithm for data
clustering. Experiments are conducted on thirteen typical
test data sets from UCL Machine Learning Repository. The
performance of ABC is compared with PSO and other nine
classification techniques. Simulation results demonstrate that
the ABC algorithm can efficiently solve data clustering.
Zhang et al. [16] also used ABC algorithm for clustering.
Three data sets are tested. The performance of ABC is
compared with genetic algorithm, simulated annealing, tabu
search, ACO, and K-NM-PSO. Results demonstrate the
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effectiveness of ABC on clustering. Karaboga and Ozturk
[17] applied ABC to solve fuzzy clustering. Three data sets
including cancer, diabetes, and heart chosen from UCI
database are tested. Results indicate that the performance of
ABC is successful in fuzzy clustering.

TheABCalgorithm is usually used to solve unconstrained
optimization problems. In [18], Karaboga and Akay investi-
gated the performance of ABC on constrained optimization
problems. In order to handle constraints, Deb’s rules con-
sisting of three simple heuristic rules are employed. Mezura-
Montes and Velez-Koeppel [19] proposed an elitist ABC
algorithm for constrained real-parameter optimization, in
which the operators used by different types of bees are mod-
ified. Additionally, a dynamic tolerance control mechanism
for equality constraints is utilized to facilitate the approach
to the feasible region of the search space. Yeh and Hsieh
[20] proposed a penalty-guided ABC algorithm to solve
reliability redundancy allocation problems. Sabat et al. [21]
presented an application of ABC to extract the small signal
equivalent circuitmodel parameters of GaASmetal-extended
semiconductor field effect transistor (MESFT) device. The
performance comparison shows that ABC is better than PSO.

It is known that the ABC algorithm is good at solving
optimization problems over continuous search space. For
discrete optimization problems, it is a big challenge for the
ABC algorithm. Li et al. [22] used a hybrid Pareto-based ABC
algorithm to solve flexible job shop-scheduling problems. In
the new algorithm, each food sources is represented by two
vectors, that is, the machine assignment and the operation
scheduling. Moreover, an external Pareto archive set is uti-
lized to record nondominated solutions. In [23], Kashan et al.
designed a new ABC algorithm called DisABC to optimize
binary structured problems. Szeto et al. [24] proposed an
enhanced ABC algorithm to solve capacitated vehicle routing
problem. The performance of the new approach is tested
on two sets of standard benchmark instances. Simulation
results show that the new algorithm outperforms the original
ABC and several other existing algorithms. Pan et al. [25]
presented a discrete ABC algorithm hybridized with a variant
of iterated greedy algorithm to solve a permutation flow shop-
scheduling problem with the total flow time criterion.

4. Proposed Approach

Differential evolution (DE) has shown excellent search abili-
ties on many optimization problems. Like other population-
based stochastic algorithms, DE also starts with an initial
population with randomly generated candidate solutions.
After initialization, DE repeats three operations: mutation,
crossover, and selection. Among these operations, mutation
operation is very important. The mutation scheme highly
influences the performance of DE.There are several different
mutation schemes, such as DE/rand/1, DE/rand/2, DE/best/1,
and DE/best2 [26].

The property of amutation scheme determines the search
behavior of individuals in the population. For DE/rand/1,
it results in good exploration but slow convergence speed.
For DE/best/1, it obtains fast convergence speed but poor

exploration. The DE/rand/1 and DE/best/1 are described as
follows:

𝑣
𝑖,𝑗

= 𝑥
𝑟1,𝑗

+ 𝐹 ⋅ (𝑥
𝑟2,𝑗

− 𝑥
𝑟3,𝑗

) ,

𝑣
𝑖,𝑗

= 𝑥best,𝑗 + 𝐹 ⋅ (𝑥
𝑟1,𝑗

− 𝑥
𝑟2,𝑗

) ,

(4)

where𝑋
𝑟1
,𝑋
𝑟2
, and𝑋

𝑟3
are three randomly selected individ-

uals from the current population, 𝑖 ̸= 𝑟1 ̸= 𝑟2 ̸= 𝑟3, 𝑋best is the
best individual found so far, and the parameter 𝐹 is known as
the scale factor which is usually set to 0.5.

As seen, the search pattern of employed and onlooker
bees is similar to themutation schemes ofDE. It is known that
the ABC algorithm is good at exploration, but it shows slow
convergence speed. By combining theDE/best/1 and the ABC
algorithm, it may accelerate the convergence speed of ABC.
However, this hybridization is not a new idea. In [7], Gao
and Liu embedded DE/rand/1 and DE/best/1 into the ABC
algorithm. To balance the exploration and exploitation, a new
parameter 𝑞 is introduced. Results reported in [7] show that
the parameter 𝑞 is problem oriented, and an empirical value
𝑞 = 0.7 is used.

In this paper, we propose a newABC (calledNABC) algo-
rithm by employing a modified DE/best/1 strategy. NABC
differs from other hybrid algorithms [7, 9], which combine
ABC and DE. Although the global best individual used
in DE/best/1 can accelerate the convergence speed by the
attraction, it may result in attracting too fast. It means
that new solutions move to the global best solution very
quickly. To tackle this problem, a solution pool is constructed
by storing the best 100p% solutions in the current swarm
with 𝑝 ∈ (0, 1]. The idea is inspired by an adaptive DE
algorithm (JADE) [27]. It shares in commonwith the concept
of belief space of cultural algorithm (CA) [28]. Both of them
utilize some successful solutions stored in solution pool or
situational knowledge to guide other individuals. But the
updating rule of the solution pool or situational knowledge is
different.ThenewABC/best/1 strategy is described as follows:

𝑣
𝑖,𝑗

= 𝑥
𝑝

best,𝑗 + 𝜙
𝑖,𝑗

⋅ (𝑥
𝑟1,𝑗

− 𝑥
𝑟2,𝑗

) , (5)

where 𝑥𝑝best,𝑗 is randomly chosen from the solution pool,𝑋
𝑟1
,

𝑋
𝑟2
are two randomly selected candidate solutions from the

current swarm, 𝑖 ̸= 𝑟1 ̸= 𝑟2, 𝑗 is a random dimension index
selected from the set {1, 2, . . . , 𝐷}, and 𝜙

𝑖,𝑗
is a random

number within [−1, 1]. Empirical studies show that a good
choice of the parameter𝑝 should be set between 0.08 and 0.15.
In this paper, 𝑝 is set to 0.1 for all experiments.

According to the new search pattern described in (5),
new candidate solutions are generated around some best
solutions.This is helpful to accelerate the convergence speed.
For the existing ABC/best/1 strategy proposed in [7], it only
searches the neighborhood of the global best solution. In our
approach, bees can search the neighborhood of different best
solutions. This can help avoid fast attraction.

Themain steps of our new approachNABC algorithm are
listed as follows.

Step 1. Randomly initialize the swarm.

Step 2. Update the solution pool.
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Table 1: Benchmark functions used in the experiments.

Name Function Range Opt
Sphere 𝑓

1
= ∑
𝐷

𝑖=1
𝑥
2

𝑖
[−100, 100] 0

Schwefel 2.22 𝑓
2
= ∑
𝐷

𝑖=1





𝑥
𝑖





+ ∏
𝐷

𝑖=1
𝑥
𝑖

[−10, 10] 0

Schwefel 1.2 𝑓
3
= ∑
𝐷

𝑖=1
(∑
𝑖

𝑗=1
𝑥
𝑗
)

2 [−100, 100] 0

Schwefel 2.21 𝑓
4
= max

𝑖
(




𝑥
𝑖





, 1 ≤ 𝑖 ≤ 𝐷) [−100, 100] 0

Rosenbrock 𝑓
5
= ∑
𝐷−1

𝑖=1
[100(𝑥

𝑖+1
− 𝑥
2

𝑖
)
2
+ (𝑥
𝑖
− 1)
2
] [−30, 30] 0

Step 𝑓
6
= ∑
𝐷

𝑖=1
(⌊𝑥
𝑖
+ 0.5⌋)

2 [−100, 100] 0

Quartic with noise 𝑓
7
= ∑
𝐷

𝑖=1
𝑖𝑥
4

𝑖
+ rand[0, 1) [−1.28, 1.28] 0

Schwefel 2.26 𝑓
8
= ∑
𝐷

𝑖=1
−𝑥
𝑖
sin (√|𝑥

𝑖
|) [−500, 500] −12569.5

Rastrigin 𝑓
9
= ∑
𝐷

𝑖=1
[𝑥
2

𝑖
− 10 cos(2𝜋𝑥

𝑖
) + 10] [−5.12, 5.12] 0

Ackley 𝑓
10

= −20 exp(−0.2√
1

𝐷

∑
𝐷

𝑖=1
𝑥
2

𝑖
) − exp(

1

𝐷

∑
𝐷

𝑖=1
cos (2𝜋𝑥

𝑖
)) + 20 + 𝑒 [−32, 32] 0

Griewank 𝑓
11

=

1

4000

∑
𝐷

𝑖=1
𝑥
2

𝑖
− ∏
𝐷

𝑖=1
cos(

𝑥
𝑖

√𝑖

) + 1 [−600, 600] 0

Penalized
f 12 =

𝜋

𝐷

{10sin2
(3𝜋𝑦
𝑖
) + ∑
𝐷−1

𝑖=1
(𝑦
𝑖
− 1)
2
[1 + 10sin2

(𝜋𝑦
𝑖+1

)]

+(𝑦
𝐷
− 1)
2
} + ∑
𝐷

𝑖=1
𝑢(𝑥
𝑖
, 5, 100, 4)

[−50, 50] 0

Step 3. For each employed bee, generate a new candidate
solution𝑉

𝑖
according to (5). Evaluate the fitness of𝑉

𝑖
and use

a greed selection to choose a better one between𝑋
𝑖
and 𝑉

𝑖
as

the new𝑋
𝑖
.

Step 4. Each onlooker bee calculates 𝑝
𝑖
according to (2).

Step 5. Generate a new 𝑉
𝑖
according to (5) based on 𝑝

𝑖
and

the current solution 𝑋
𝑖
(food source). Evaluate the fitness of

𝑉
𝑖
and use a greed selection to choose a better one between

𝑋
𝑖
and 𝑉

𝑖
as the new𝑋

𝑖
.

Step 6. The scout bee determines the abandoned 𝑋
𝑖
, if exists

and update it by (3).

Step 7. Update the best solution found so far, and cycle =
cycle + 1.

Step 8. If the number of cycles reaches to the maximum
value MCN, then stop the algorithm and output the results;
otherwise go to Step 2.

Compared to the original ABC algorithm, our approach
NABC does not add extra operations except for the con-
struction of the solution pool. However, this operation does
not add the computational complexity. Both NABC and the
original ABC have the same computational complexity.

5. Experimental Study

5.1. Test Functions. In order to verify the performance of
NABC, experiments are conducted on a set of twelve bench-
mark functions. These functions were early used in [29].

According to their properties, they are divided into two
classes: unimodal functions (𝑓

1
− 𝑓
7
) and multimodal func-

tions (𝑓
8
−𝑓
12
). All functions areminimization problems, and

their dimensional size is 30. Table 1 presents the descriptions
of these functions, where Opt is the global optimum.

The experiments are performed on the same computer
with Intel (R) Core (TM)2 Duo CPU T6400 (2.00GHz) and
2GB RAM. Our algorithm is implemented using C++ and
complied with Microsoft Visual C++ 6.0 under theWindows
XP (SP3).

5.2. Comparison of NABC with ABC. In order to investigate
the effectiveness of our new search pattern, this section
presents a comparison of NABC with the original ABC
algorithm. In the experiments, both NABC and ABC use
the same parameter settings. The population size SN, limit,
and maximum number of cycles (MSN) are set to 100, 100,
and 1000, respectively. The parameter 𝑝 is set to 0.1 based
on empirical studies. All results reported in this section are
averaged over 30 independent runs.

Table 2 presents the computational results of ABC and
NABC on the twelve functions, where “Mean” indicates the
mean function value and “Std Dev” represents the standard
deviation. The best results between ABC and NABC are
shown in bold. From the results, it can be seen that NABC
achieves better results than ABC on all test functions except
for 𝑓
6
. On this function, both the two algorithms can find the

global optimum. For 𝑓
8
and 𝑓

9
, NABC can successfully find

the global optimum, while ABC converges to near-optimal
solutions. It demonstrates that the new search pattern used
in NABC is helpful to improve the accuracy of solutions.

In order to compare the convergence speed of NABC and
ABC, Figure 1 lists the convergence processes of them on
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Table 2: Results achieved by the ABC algorithm and NABC.

Functions ABC NABC
Mean Std Dev Mean Std Dev

𝑓
1

3.75𝑒 − 10 2.73𝑒 − 10 4.75e − 16 3.86e − 16
𝑓
2

2.29𝑒 − 06 4.26𝑒 − 06 1.79e − 15 2.53e − 15
𝑓
3

1.23𝑒 + 04 2.39𝑒 + 03 9.90e + 03 1.67e + 03
𝑓
4

3.92𝑒 + 01 1.52𝑒 + 01 1.45e + 01 4.32e + 00
𝑓
5

2.83𝑒 + 00 1.79𝑒 + 00 4.50e − 02 2.38e − 02
𝑓
6

0.00e + 00 0.00e + 00 0.00e + 00 0.00e + 00
𝑓
7

1.91𝑒 − 01 2.33𝑒 − 01 1.56e − 02 3.24e − 02
𝑓
8

−12332.4 1.57𝑒 + 02 −12569.5 1.23e − 10
𝑓
9

2.90𝑒 − 09 5.31𝑒 − 09 0.00e + 00 0.00e + 00
𝑓
10

3.93𝑒 − 06 2.78𝑒 − 06 3.97e − 14 5.12e − 15
𝑓
11

4.52𝑒 − 09 3.81𝑒 − 09 1.13e − 16 3.39e − 16
𝑓
12

1.04𝑒 − 11 2.43𝑒 − 11 3.19e − 16 3.26e − 16

some representative functions. As seen, NABC shows faster
convergence speed than ABC. It confirms that the new search
pattern can accelerate the convergence speed.

5.3. Comparison of NABC with Other Algorithms. To further
verify the performance of NABC, this section compares
NABC with other population-based algorithms, including
some recently proposed ABC algorithms.

5.3.1. Comparison of NABC with Evolution Strategies. This
section focuses on the comparison of the NABC algorithm
with Evolution Strategies (ES).The versions of the ES include
classical evolution strategies (CES) [30], fast evolution strate-
gies (FES) [30], covariance matrix adaptation evolution
strategies (CMA-ES) [31], and evolutionary strategies learned
with automatic termination (ESLAT) [32].

Theparameter settings of CES, FES, CMA-ES, andESLAT
can be found in [32]. For NABC, the population size and the
maximum number of fitness evaluations are set to 20 and
100000 (it means that the MSN is 2500), respectively. The
parameter limit is set to 600 [5]. The parameter 𝑝 is set to
0.1 based on empirical studies. All algorithms are conducted
on 50 runs for each test function.

Table 3 presents the comparison results of CES, FES,
CMA-ES, ESLAT, and NABC. Results of CES, FES, CMA-
ES, and ESLAT were taken from Table 20 in [5]. Among
these algorithms, the best results are shown in bold. The
last column of Table 3 reports the statistical significance
level of the difference of the means of NABC and the best
algorithm among the four evolution strategies. Note that here
“+” represents the 𝑡 value of 49 degrees of freedom which is
significant at a 0.05 level of significance by two-tailed test,
“⋅” indicates the difference of means which is not statistically
significant, and “NA”means not applicable, covering cases for
which the two algorithms achieve the same accuracy results
[33].

From the results, it can be seen that NABC outperforms
CES and FES on eight functions, while CES and FES achieve
better results on three. For 𝑓

6
, CES, FES, and NABC find

the global optimum, while ESLAT and CMA-ES fail to solve
it. NABC performs better than ESLAT on ten functions,
while ESLAT outperforms NABC for the rest of the two
functions. CMA-ES achieves better results than NABC on
three functions, while NABC performs better for the rest
of the nine functions. The comparison results show that
the evolutionary strategies perform better than NABC on
unimodal functions, such as 𝑓

1
− 𝑓
4
. NABC outperforms the

evolutionary strategies on all multimodal functions (𝑓
8
−𝑓
12
).

5.3.2. Comparison of NABC with Other Improved ABC Algo-
rithms. In this section, we present a comparison of NABC
with three recently proposed ABC algorithms. The involved
algorithms are listed as follows.

(1) 𝑔best-guided ABC algorithm (GABC) [8].
(2) Improved ABC algorithm (I-ABC) [14].
(3) Hybridization of GABC and I-ABC (PS-ABC) [14].
(4) Our approach NABC.

In the experiments, the population size SN is set to 40,
and limit equals 200. The maximum number of cycles is set
as 1000. Other parameter settings of GABC, I-ABC, and PS-
ABC can be found in [14]. The parameter 𝑝 used in NABC
is set to 0.1 based on empirical studies. All algorithms are
conducted 30 times for each test function, and the mean
function values are reported.

Table 4 presents the comparison results of NABC with
three other ABC algorithms. Results of GABC, I-ABC and
PS-ABC were taken from Tables 4 and 5 in [14]. The best
results among the four algorithms are shown in bold. From
the results, NABC outperforms GABC on all test functions
except for 𝑓

2
. On this function, GABC is slightly better than

NABC. I-ABC achieves better results than NABC on five
functions, while NABC performs better on six functions.
For the rest of 𝑓

9
, I-ABC, PS-ABC, and NABC can find the

global optimum. PS-ABC obtains better results than NABC
on six functions, while NABC outperforms PS-ABC on five
functions. Both I-ABC and PS-ABC achieve significantly
better results on three unimodal functions, such as𝑓

1
,𝑓
2
, and
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Table 3: Comparison of NABC with evolution strategies.

Functions CES FES ESLAT CMA-ES NABC Significance
Mean Mean Mean Mean Mean

𝑓
1

1.70e − 26 2.50𝑒 − 04 2.00𝑒 − 17 9.70𝑒 − 23 2.88𝑒 − 16 .
𝑓
2

8.10e − 20 6.00𝑒 − 02 3.80𝑒 − 05 4.20𝑒 − 11 1.37𝑒 − 15 .
𝑓
3

3.38𝑒 + 02 1.40𝑒 − 03 6.10𝑒 − 06 7.10e − 23 6.86𝑒 + 03 .
𝑓
4

2.41𝑒 + 00 5.50𝑒 − 03 7.80𝑒 − 01 5.40e − 12 4.30𝑒 − 01 .
𝑓
5

2.77𝑒 + 01 3.33𝑒 + 01 1.93𝑒 + 00 4.00𝑒 − 01 2.62e − 01 +
𝑓
6

0.00e + 00 0.00e + 00 2.00𝑒 − 02 1.44𝑒 + 00 0.00e + 00 NA
𝑓
7

4.70𝑒 − 02 1.20e − 02 3.90𝑒 − 01 2.30𝑒 − 01 1.38𝑒 − 02 +
𝑓
8

−8000 −12556.4 −2300 −7637.1 −12569.5 +
𝑓
9

1.34𝑒 + 01 1.60𝑒 − 01 4.65𝑒 + 00 5.18𝑒 + 01 0.00e + 00 +
𝑓
10

6.00𝑒 − 13 1.20𝑒 − 02 1.80𝑒 − 08 6.90𝑒 − 12 3.25e − 14 +
𝑓
11

6.00𝑒 − 14 3.70𝑒 − 02 1.40𝑒 − 03 7.40𝑒 − 04 1.11e − 16 +
𝑓
12

1.46𝑒 + 00 2.80𝑒 − 06 1.50𝑒 − 12 1.20𝑒 − 04 2.52e − 16 +

Table 4: Comparison of NABC with other ABC algorithms.

Functions GABC I-ABC PS-ABC NABC Significance
Mean Mean Mean Mean

𝑓
1

6.26𝑒 − 16 0.00e + 00 0.00e + 00 5.43𝑒 − 16 .
𝑓
2

9.36𝑒 − 16 0.00e + 00 0.00e + 00 6.24𝑒 − 15 .
𝑓
3

1.09𝑒 + 04 1.43𝑒 + 04 6.11e + 03 8.44𝑒 + 03 .
𝑓
4

1.26𝑒 + 01 1.27𝑒 − 197 0.00e + 00 5.79𝑒 + 00 .
𝑓
5

7.48𝑒 + 00 2.64𝑒 + 01 1.59𝑒 + 00 1.45e − 01 +
𝑓
6

2.49𝑒 − 09 3.84𝑒 − 10 5.72𝑒 − 16 0.00e + 00 +
𝑓
7

1.56𝑒 − 01 1.96𝑒 − 02 2.15𝑒 − 02 1.72e − 02 +
𝑓
8

−12407.3 −12251.03 −12564.2 −12569.5 +
𝑓
9

3.31𝑒 − 02 0.00e + 00 0.00e + 00 0.00e + 00 NA
𝑓
10

7.78𝑒 − 10 8.88e − 16 8.88e − 16 1.07𝑒 − 13 .
𝑓
11

6.96𝑒 − 04 0.00e + 00 0.00e + 00 1.11𝑒 − 16 .
𝑓
12

5.85𝑒 − 16 7.11𝑒 − 12 5.53𝑒 − 16 4.67e − 16 +

𝑓
4
. On these functions, they can find the global optimum,

while GABC and NABC only find near-optimal solutions
except for 𝑓

4
. For 𝑓

4
, both GABC and NABC fall into local

minima. I-ABC and PS-ABC successfully find the global
optimum on 𝑓

11
, while GABC and NABC fail. For function

𝑓
10
, I-ABC and PS-ABC are slightly better than NABC. For

other two multimodal functions 𝑓
8
and 𝑓
12
, NABC performs

better than other three ABC algorithms. Compared to I-ABC
and PS-ABC, our approach NABC is simpler and easier to
implement.

6. Conclusions

Artificial bee colony is a new optimization technique which
has shown to be competitive to other population-based
stochastic algorithms. However, ABC and other stochastic
algorithms suffer from the same problems. For example, the
convergence speed of ABC is typically slower than PSO and
DE. Moreover, the ABC algorithm easily gets stuck when

handling complex multimodal problems. The main reason
is that the search pattern of both employed and onlooker
bees is good at exploration but poor at exploitation. In order
to balance the exploration and exploitation of ABC, this
paper proposes a new ABC variant (NABC). It is known that
DE/best/1 mutation scheme is good at exploitation. Based
on DE/best/1, a new search pattern called ABC/best/1 with
solution pool is proposed. Our approach differs from other
improved ABC algorithms by hybridization of DE/best/1 and
ABC.

To verify the performance of our approach, a set of
twelve benchmark functions are used in the experiments.
Comparison of NABC with ABC demonstrates that our
new search pattern can effectively accelerate the convergence
speed and improve the accuracy of solutions. Another com-
parison demonstrates that NABC is significantly better or at
least comparable to other stochastic algorithms. Compared to
other improvedABC algorithms, our approach is simpler and
easier to implement.
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Figure 1: The convergence processes of ABC and NABC on some functions.
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We formulate human motion tracking as a high-dimensional constrained optimization problem. A novel generative method is
proposed for human motion tracking in the framework of evolutionary computation. The main contribution is that we introduce
immune genetic algorithm (IGA) for pose optimization in latent space of humanmotion. Firstly, we performhumanmotion analysis
in the learnt latent space of human motion. As the latent space is low dimensional and contents the prior knowledge of human
motion, it makes pose analysis more efficient and accurate. Then, in the search strategy, we apply IGA for pose optimization.
Compared with genetic algorithm and other evolutionary methods, its main advantage is the ability to use the prior knowledge of
human motion. We design an IGA-based method to estimate human pose from static images for initialization of motion tracking.
Andwe propose a sequential IGA (S-IGA) algorithm formotion tracking by incorporating the temporal continuity information into
the traditional IGA. Experimental results on different videos of different motion types show that our IGA-based pose estimation
method can be used for initialization ofmotion tracking.The S-IGA-basedmotion trackingmethod can achieve accurate and stable
tracking of 3D human motion.

1. Introduction

Tracking articulated 3D human motion from video is an
important problem in computer vision which has many
potential applications, such as virtual character animation,
human computer interface, intelligent visual surveillance,
and biometrics. Despite having been attacked by many re-
searchers, this challenging problem is still long standing
because of the difficulties conduced mainly by the compli-
cated nature of 3D human motion, self-occlusions, and high-
dimensional search space.

In the previous work, twomain classes ofmotion tracking
approaches can be identified: discriminative approaches and
generative approaches [1]. Discriminative methods attempt
to learn a direct mapping from image features to 3D pose
using training data.Themapping is often approximated using
nearest neighbor [2], regression models [3] or mixture of
regressors [4]. Discriminative approaches are effective and
fast. However, they need a large training database and are
limited to fixed classes of motion. Moreover, the inherent
one-to-manymapping from2D images to 3Dposes is difficult

to learn accurately. In contrast, generative methods exploit
the fact that although the mapping from visual features
to poses is complex and multimodal, the reverse mapping
is often well posed. Therefore, pose recovery is tackled
by optimizing an object function that encodes the pose-
feature correspondence [5] or by sampling posterior pose
probabilities [6]. Compared with discriminative methods,
generative methods are usually more accurate. However,
generative methods are generally computationally expensive
because one has to perform complex search over the high-
dimensional pose state space in order to locate the peaks of
the observation likelihood. Moreover, prediction model and
initialization are also the bottlenecks of the approach in the
tracking scenario. In this work, we focus on recovering 3D
human pose within the generative framework.

In general, high-dimensional state space and search
strategy are two main problems in generative approaches.
High-dimensional pose state space makes pose analysis
computationally expensive or even infeasible. Despite the
high dimensionality of the configuration space, many human
motion activities lie intrinsically on low-dimensional latent
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Figure 1: The framework of our approach.

space [7, 8].Motivated by this observation, we use ISOMAP, a
nonlinear dimensionality reductionmethod, to learn the low-
dimensional latent space of pose state, by which the aim of
both reducing dimensionality and extracting the prior knowl-
edge of human motion are achieved simultaneously. On the
other hand, search strategy, in general how to track in the
low-dimensional latent space, is another important problem.
The search strategy should suit for the characteristics of the
subspace and be global, optimal, and convergent. Although
considerable work has already been done, a more effective
search strategy is still intensively needed for robust visual
tracking. In our opinion, motion prior knowledge has great
influence on the search strategy, which can aid in performing
more stable tracking. Compared with the previous methods,
extracting the prior knowledge and introducing it in the
designing of search strategy are of particular interests to us.

In this paper, we propose a novel generative approach
in the framework of evolutionary computation, by which we
try to widen the bottlenecks mentioned above with effective
search strategy embedded in the extracted state subspace.The
framework of our approach is illustrated in Figure 1. Firstly,
we use ISOMAP to learn this latent space. Then we propose
a manifold reconstruction method to establish the inverse
mapping, which enables pose analysis in this latent space. As
the latent space is low dimensional and contents the prior
knowledge of human motion, it makes pose analysis more
efficient and accurate. In the search strategy we introduce
immune genetic algorithm (IGA) for pose optimization.
Details of the implementations, such as encoding and initial-
ization, computation of affinity, and genetic and immunity
operators, are designed. We propose an IGA-based method
for pose estimation, which can be used for initialization of
motion tracking. In order to make IGA suitable for human
motion tracking, a sequential IGA (S-IGA) framework is pro-
posed by incorporating the temporal continuity information
into the traditional IGA. Experimental results on different
motion types and different image sequences demonstrate our
methods.

The rest of the paper is organized as follows. Section 2
gives an introduction to the related works. Section 3 gives
a description of how the latent space is learnt. In Section 4,
we give a detailed description of how we apply IGA for pose
optimization in the latent space. We then show how to apply
IGA-based pose optimization algorithm for pose estimation
and tracking in Section 5. Section 6 contains experimental
results and comparison with other tracking algorithms. The
conclusions and possible extension for future work are given
in Section 7.

2. Related Works

There has been a great deal of prior works on human motion
analysis from video [1, 8, 9]. Here we focus our survey on the
most related research on generative methods. In generative
humanmotion trackingmethods, the high-dimensional pose
state space is the most significant problem. There are several
possible strategies for reducing the dimensionality of the
configuration space, including using motion models [10],
hierarchical search [11], and dimensionality reduction [5,
12]. Motion models are often derived from training data
of a single class of movement. Although they can aid in
performing more stable tracking, this comes at the cost of
putting a strong restriction on the poses that can be recov-
ered. Another way to constrain the configuration space is to
perform a hierarchical search. For example, John et al. [11]
proposed a hierarchical particle swarm optimization method
to search the best pose hierarchically. An inherent problem
with this approach is the need to estimate accurately the
position and orientation of the initial body segment (typically
the torso), as a wrong pose estimate for the initial segment
can distort the pose estimates for subsequent limbs. Nowa-
days, dimensionality reduction has become the most widely
used methods. For example, Urtasun et al. [12] construct
a differentiable objective function based on the Principle
Component Analysis (PCA) of motion capture data and then
find the poses of all frames simultaneous by optimizing a
function in low-dimensional space. However, this method
needs many example sequences of data to perform PCA,
and all of these sequences must keep the same length and
same phase by interpolating and aligning. Zhao and Liu [5]
use PCA to learn the low-dimensional state space of human
pose and perform pose analysis in the latent space. However
since the mapping between the original pose space and the
latent space is in general nonlinear, linear PCA is inadequate.
Nonlinear dimensionality reduction methods have also been
used. For example, Sminchisescu and Jepson [13] use spectral
embedding to learn the embedding which is modeled as
a Gaussian mixture model. Radial Basis Functions (RBFs)
are learned for inverse mapping. A linear dynamical model
is used for tracking. Elgammal and Lee [14] learn view-
based representations of activity manifolds using nonlinear
dimensionality reductionmethod (LLE).Then, the nonlinear
mappings from the embedding space into both visual input
space and 3D pose space are learnt using the generalized
radial basis function. Although nonlinear dimensionality
reduction methods can learn this nonlinear mapping, they
are not invertible. The smooth inverse mapping is still a not
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well-solved problem. In this paper, we use ISOMAP [15],
a nonlinear dimensionality reduction method, to learn the
low dimensionality subspace of a specific activity. And then,
based on the intrinsic executive mechanism of ISOMAP, a
manifold reconstruction method is proposed to generate
smooth mappings between the subspace and the original
space. This enables us to perform human motion tracking in
the learned subspace.

Search strategy is another key research problem of pose
tracking in the generative framework. They are typically
tackled using either deterministic methods or stochastic
methods. Deterministic methods usually involve a gradient
descent search to minimize a cost function [16]. Although
these methods are usually computationally efficient, they
easily become trapped in localminima. In contrast, stochastic
methods introduce some stochastic factors into the searching
process in order to have a higher probability of reaching the
global optimum of the cost function. Particle filter [6] is the
most wildly studied stochastic method which is based on
Monte Carlo sampling. Although, in theory, particle filter
is very suitable for tracking, it needs a large number of
particles to approximate the posterior distributions, and it
tends to suffer from sample impoverishment, so that the
final particle sets cannot represent the true distributions.
Therefore, many improvements on the traditional particle fil-
ter have been proposed. For example, Deutscher et al. [17]
introduced the annealed particle filter which combines a
deterministic annealing approach with stochastic sampling
to reduce the number of samples required. At each time
step the particle set is refined through a series of annealing
cycles with decreasing temperature to approximate the local
maxima in the fitness function. In Krzeszowski et al. [18],
a particle swarm optimization algorithm is utilized in the
particle filter to shift the particles toward more promising
configurations of the human model. Compared with the
deterministic counterparts, stochastic methods are usually
more robust, but they suffer a large computational load,
especially in high-dimensional state space. In recent years,
evolutional computing methods, such as genetic algorithm
[5] and particle swarm optimization [11, 18, 19], have received
increasing attention. For example, Zhao and Liu [5] proposed
an annealed genetic algorithm to track human motion in
compact base space, where the base space is learned using
PCA. John et al. [11] proposed a hierarchical particle swarm
optimization (HPSO) algorithm for articulated human track-
ing. Their comparative experimental results show that HPSO
is more accurate than particle filter. However, based on our
experimental results, due to the high-dimensional pose state
space and imperfect image observations, HPSO may deviate
from the pose state space and result in inaccurate tracking.
Evolutionary algorithms are all good searching algorithms
with an iterative process of generation and test. Two opera-
tors, crossover and mutation, give each individual the chance
of optimization and ensure the evolutionary tendency with
the select mechanism of survival of the fittest. However,
the two operators change individuals randomly and indi-
rectly under some conditions. Therefore, they not only give
individuals the evolutionary chance but also cause certain
degeneracy. Recently, immune algorithms have been another

hotspot succeeding genetic algorithm and particle swarm
optimization for its success in solving pattern recognition
and optimization problems. Its main advantage, compared
with GA and PSO, is it has the ability to use the prior
knowledge of problem by vaccination and immune selection
[20]. In this paper, we apply immune genetic algorithm (IGA)
[20], a novel immune method, for pose optimization. We
propose an IGA-based method for pose estimation from
monocular images. In order to make IGA suitable for pose
tracking, we propose a sequential IGA (S-IGA) algorithm by
incorporating the temporal continuity information into the
traditional IGA. To the best of our knowledge, the proposed
algorithm is new in the human motion tracking literature.

3. Learning the Latent Space of Human Motion

Tracking in a low-dimensional latent space requires three
components [8]. First, amapping between original pose space
and low-dimensional subspace must be learned. Second, an
inverse mappingmust be defined.Third, how tracking within
the low-dimensional space occurs must be defined. In this
section, we first learn the low-dimensional subspace using
ISOMAP [15]. Then, we propose a manifold reconstruction
method to establish the mappings between high- and low-
dimensional states.

3.1. ISOMAP-Based Latent Space Learning. We describe the
human body as a kinematic tree consisting of rigid limbs that
are linked by joints. Every joint contains a number of degrees
of freedom (DOF), indicating in how many directions the
joint canmove. All DOF in the bodymodel together form the
pose representation. In this paper, the pose is described by
a 66D vector 𝑥 = {𝑥

𝑟
, 𝑥

𝑘
}, where 3D vector 𝑥

𝑟
represents

the root joint rotations and 63D vector 𝑥
𝑘
represents the

body joints rotations. Apart from the kinematic structure, the
human shape is also modeled. Each rigid limb of the body is
fleshed out using conic sections with elliptical cross-sections
(see Figure 2). Human shape will be used to compute the
likelihood function (see Section 4.2).

Since the mapping between the original pose space and
latent space is in general nonlinear, linear PCA is inadequate.
So we use ISOMAP to learn the nonlinear mapping. We
extract the subspace usingmotion capture data obtained from
the CMU database [21].

As for a special activity, such as walking, running, jump-
ing, and so forth, the original pose state space has no relation
with the global motion. Different from the previous methods
of learning different manifolds for the same activity (such as
walking) of different views, we filter out the rotations of root
joint (𝑥

𝑟
) and represent the pose using the rotations of body

joints (𝑥
𝑘
) only. Assuming {𝑥

𝑖
| 𝑥

𝑖
∈ 𝑋, 𝑖 = 1, . . . , 𝑙} is a

given sequence of motion capture data corresponding to one
motion type, where 𝑥

𝑖
= (𝑥

𝑘
)
𝑖
, 𝑖 is the frame index, 𝑙 is the

number of total frames, and𝑋 is the original pose state space,
the subspace 𝑌 is extracted by ISOMAP as follows.

(1) Construct Neighborhood Graph. Define the graph 𝐺

over all data points (in our method the data point is
one frame in motion sequence) by connecting point
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Figure 2: (a) The 3D human skeleton model. (b) The shape model.
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Figure 3: ISOMAP-based dimensionality reduction results. (a), (b) are manifolds of two sequences of walking and running in 3D subspace,
respectively.
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where 𝑀 is the dimensionality of pose state space;
𝑀 = 63 here.

(2) Compute Shortest Paths. Initialize 𝑑
𝐺
(𝑥

𝑖
, 𝑥

𝑗
) =

𝑑
𝑥
(𝑥

𝑖
, 𝑥

𝑗
) if 𝑥

𝑖
and 𝑥

𝑗
are linked by an edge;

𝑑
𝐺
(𝑥

𝑖
, 𝑥

𝑗
) = ∞ otherwise. Then for each value of 𝑖 =

1, 2, . . . , 𝑙 in turn, replace all entries 𝑑
𝐺
(𝑥

𝑖
, 𝑥

𝑗
) by

min{𝑑
𝐺
(𝑥

𝑖
, 𝑥

𝑗
), 𝑑

𝐺
(𝑥

𝑖
, 𝑥

𝑡
) + 𝑑

𝐺
(𝑥

𝑡
, 𝑥

𝑗
)}. The matrix of

final values𝐷
𝐺
= {𝑑

𝐺
(𝑥

𝑖
, 𝑥

𝑗
)}will contain the shortest

path distances between all pairs of points in 𝐺.
(3) Construct 𝑑-Dimensional Embedding. Let 𝜆

𝑝
be the

𝑝th eigenvalue (in decreasing order) of the matrix
𝜏(𝐷

𝐺
) and 𝜈

𝑖

𝑝
the 𝑖th component of the 𝑝th eigenvec-

tor.Then set the 𝑝th component of the 𝑑-dimensional
coordinate vector 𝑦

𝑖
to be equal to√𝜆

𝑝
𝜈
𝑖

𝑝
.

The subspace 𝑌 learned by ISOMAP is shown in Fig-
ure 3. Actually, similar low-dimensional subspace can be

extracted from the training sequences that belong to the same
type of motions but performed by different subjects. And
the training sequences corresponding to different types of
motions produce different subspaces. For example, experi-
ments demonstrate that different walking sequences generate
similar manifolds in the 3D subspace, which is different from
that of running motion.

ISOMAP cannot only reduce the dimensionality of high-
dimensional input space, but also find meaningful low-dim
structures hidden behind their high-dim observations. In
doing so, infeasible solutions, namely, the absurd poses, can
be avoided naturally during optimization, which will make
pose tracking in this subspace more efficient and accurate.

3.2. Mapping between High- and Low-Dimensional States.
Traditional ISOMAP can only learn the mapping from the
original pose space to the latent space but not the inverse
mapping. However, in order to track human motion in the
low-dimensional manifold, the inverse mapping is required.
Based on the intrinsic executive mechanism of ISOMAP,
we proposed an ISOMAP-based manifold reconstruction
method to establish the mapping between high- and low-
dimensional states.
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Input:The training data set {𝑥
𝑖
| 𝑥

𝑖
∈ 𝑋, 𝑖 = 1, . . . , 𝑙}.

Output:Themappings 𝑔 : 𝑋 → 𝑌, 𝑦 = 𝑔(𝑥) and 𝑓 : 𝑌 → 𝑋, 𝑥 = 𝑓(𝑦).
Step 1: (preparing)
(1) Using the ISOMAP algorithm to compute the low-dim vector {𝑦

𝑖
| 𝑦

𝑖
∈ 𝑌, 𝑖 = 1, . . . , 𝑙} for the

original input vector {𝑥
𝑖
| 𝑥

𝑖
∈ 𝑋, 𝑖 = 1, . . . , 𝑙};

(2) Construct the following matrixes:
𝑋

𝑖
= (𝑥

𝑖1
− 𝑥

𝑖
, . . . , 𝑥

𝑖𝑙𝑖

− 𝑥
𝑖
) ∈ 𝑅

𝑛×𝑙𝑖 , 𝑌
𝑖
= (𝑦

𝑖1
− 𝑦

𝑖
, . . . , 𝑦

𝑖𝑙𝑖

− 𝑦
𝑖
) ∈ 𝑅

𝑑×𝑙𝑖 , where {𝑥
𝑖𝑗
| 𝑗 = 1, . . . , 𝑙

𝑖
} is the

𝜀-neighbor of 𝑥
𝑖
.

(3) Compute 𝑄
𝑖
= 𝑋

𝑖
𝑌

𝑇

𝑖
(𝑌

𝑖
𝑌

𝑇

𝑖
)
𝐺
∈ 𝑅

𝑛×𝑑, where (𝑌
𝑖
𝑌

𝑇

𝑖
)
𝐺 is the generalized inverse matrix of 𝑌

𝑖
𝑌

𝑇

𝑖
.

Step 2: (manifold reconstruction)
(1) Mapping from original space to latent space: 𝑔 : 𝑋 → 𝑌, 𝑦 = 𝑔(𝑥).
Given a high-dim pose vector 𝑥

0
, the corresponding low-dim vector 𝑦 can be computed as:

(1.1) Find the nearest neighbor of 𝑥
0
in {𝑥

𝑖
| 𝑖 = 1, . . . , 𝑙}, set it to be 𝑥

𝑠
;

(1.2) The low-dim vector correspondence to 𝑥
0
can be formulated as:

𝑦 = 𝑔(𝑥
0
) = 𝑦

𝑠
+ 𝑄

𝑇

𝑠
(𝑥

0
− 𝑥

𝑠
);

(2) Mapping from latent space to original space: 𝑓 : 𝑌 → 𝑋, 𝑥 = 𝑓(𝑦).
Given a low-dim pose vector 𝑦

0
, the corresponding high-dim vector 𝑥 can be computed as:

(2.1) Find the nearest neighbor of 𝑦
0
in {𝑦

𝑖
| 𝑖 = 1, . . . , 𝑙}, represented as 𝑦

𝑠
;

(2.2) The high-dim vector correspondence to 𝑦
0
can be formulated as:

𝑥 =
̃
𝑓(𝑦

0
) = 𝑥

𝑠
+ 𝑄

𝑠
(𝑦

0
− 𝑦

𝑠
).

Algorithm 1: ISOMAP-based manifold reconstruction.

Suppose the pose state space to be 𝑋 ⊂ 𝑅
𝑛 and the low-

dim state space to be 𝑌 ⊂ 𝑅
𝑑. Denote the mapping as 𝑓 :

𝑌 → 𝑋, 𝑥 = 𝑓(𝑦) and 𝑔 : 𝑋 → 𝑌, 𝑦 = 𝑔(𝑥), where 𝑥, 𝑦 are
the high- and low-dimensional vectors, respectively. The set
of input instances is {𝑥

𝑖
| 𝑥

𝑖
∈ 𝑋, 𝑖 = 1, . . . , 𝑙}, and their

corresponding points in the embedding space learned by
ISOMAP are {𝑦

𝑖
| 𝑦

𝑖
∈ 𝑌, 𝑖 = 1, . . . , 𝑙}. Assume {𝑥

𝑖
𝑗

|

𝑗 = 1, . . . , 𝑙
𝑖
} are the 𝜀-neighbors of point 𝑥

𝑖
, where 𝑙

𝑖
is the

number of neighbors. And their corresponding points in the
embedding space are {𝑦

𝑖
𝑗

| 𝑗 = 1, . . . , 𝑙
𝑖
}. Then our ISOMAP-

based manifold reconstruction method can be described as
in Algorithm 1.

Using the ISOMAP-basedmanifold reconstructionmeth-
od, we can generate smooth mapping between the original
pose space and the latent space, which enables us to track
human pose in the latent space. In the following section, we
will show how tracking within the latent space occurs.

4. Immune Genetic Algorithm for
Pose Optimization

We formulate pose estimation as a constrained optimization
problem and solve it using immune genetic algorithm. In this
section, we first give a brief introduction to IGA. Then, we
design an IGA-based method for pose optimization.

4.1. ImmuneGenetic Algorithm. In IGA, the idea of immunity
is mainly realized through two steps based on reasonably
selecting vaccines, that is, a vaccination and an immune
selection, of which the former is used for raising fitness and
the latter is for preventing the deterioration. A very clear
overview of IGA, from immunology and engineering points
of view, is presented in [20].

4.1.1. Immunological Terms. In order to describe the IGA
clearly, some immunological terms will be given first [22].

Antigen. In immunology, an antigen is any substance that
causes immune system to produce antibodies against it. In
this paper, IGA is used for optimization:

Minimize 𝑓 (𝑥) , (2)

where 𝑥 = [𝑥
1
, 𝑥

2
, . . . , 𝑥

𝐷
] ∈ 𝐹, 𝐹 is the feasible region, 𝐷

is the number of problematic parameter, and the antigen is
defined as the objective function 𝑓(𝑥).

Antibody and Antibody Population. In this paper, an antibody
is a representation of a candidate solution of an antigen. The
antibody ⃗𝑎 = [𝑎

1
, 𝑎

2
, . . . , 𝑎

𝐷
] is the coding of variable 𝑥,

denoted by 𝑎 = 𝑒(𝑥), and 𝑥 is called the decoding of antibody
𝑎, expressed as 𝑥 = 𝑒

−1
(𝑎). The representation of antibody

𝑎 varies with antigen and can be binary string, real number
sequence, symbolic sequence, and characteristic sequence. In
this study, we adopt real-coded representation, that is, 𝑎 =

𝑒(𝑥) = 𝑥.
An antibody population,

𝐴 = {𝑎
1
, 𝑎

2
, . . . , 𝑎

𝑁
} , 𝑎 ∈ 𝐹, 1 ≤ 𝑖 ≤ 𝑁, (3)

is an𝑁-dimensional group of antibody 𝑎, where the positive
integer𝑁 is the size of antibody population 𝐴.

Affinity. In immunology, affinity is the fitness measurement
for an antibody. For the optimization problem, the affinity,
Affinity(𝑎) ≥ 0, is a mapping of the objective function 𝑓(𝑥)

for a given antibody 𝑎.

4.1.2. Description of IGA. In this paper, we use the IGA for
optimization task.The flow chart of IGA is shown in Figure 4.
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Figure 4: Flow chart of IGA for pose optimization.

The main steps of our modified IGA can be summarized as
follows.

Step 1. Initialization: randomly generate the initial antibody
population 𝐴(𝑘); set 𝑘 = 0.

Step 2. Vaccine construction: abstract vaccines according to
the prior knowledge.

Step 3. Evaluation: calculate the affinities of all antibodies in
𝐴(𝑘).

Step 4. Termination test: if termination criteriion is satisfied,
export the antibody having the highest affinity in 𝐴(𝑘) as the
output of the algorithm and stop the algorithm; otherwise,
continues.

Step 5. Genetic operators: perform genetic operators on the
𝑘th parent 𝐴(𝑘) and obtain the results 𝐵(𝑘).

Step 6. Vaccination: perform vaccination on 𝐵(𝑘) and obtain
the results 𝐶(𝑘).

Step 7. Immune selection: perform immune selection on𝐶(𝑘)
and obtain the next parent 𝐴(𝑘 + 1), then go to Step 3.

In general, the IGA algorithm is to be implemented as the
following evolvement process:

𝐴 (𝑘)

𝑇
𝑝

𝑔

→ 𝐵 (𝑘)

𝑇
𝑝

𝜈

→ 𝐶 (𝑘)

𝑇
𝑝

𝑠

→ 𝐴 (𝑘 + 1) ,
(4)

where 𝐴(𝑘), 𝐵(𝑘), and 𝐶(𝑘) are the antibody populations
during different periods in a single evolution generation, 𝑘 is
the iterative step. 𝑇𝑝

𝑔
, 𝑇𝑝

𝜈
, and 𝑇

𝑝

𝑠
are the genetic, vaccination,

and immune selection operators, respectively.

4.2. Apply IGA for Pose Optimization. In this section, we
apply IGA for human pose optimization. Some details of our
implementations are discussed below.

4.2.1. Encoding and Initialization. In IGA, each antibody
represents a potential solution in the search space. For our
problem, we perform human motion analysis in the latent
space. So an antibody is corresponding to a pose vector in the
latent space. In this paper, we represent the full 3Dpose vector
as 𝑥 = {𝑥

𝑟
, 𝑦}, where 3D vector 𝑥

𝑟
= (𝑟

𝑥
, 𝑟

𝑦
, 𝑟

𝑧
) represents

the root joint rotations, 𝑦 = (𝑦
1
, . . . , 𝑦

𝑑
) corresponds to the

pose vector in latent space; we set 𝑑 = 6 here. So 𝑥 is a 9-
dimensional vector. We use real encodings. We represent the
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Figure 5: Silhouette-based affinity measurement, a bidirectional likelihood version [23].

Table 1: The genetic operators in IGA.

Operator Example
Exchange 𝑦 = (𝑦

1
, 𝑦

2
, 𝑦

3
, 𝑦

4
, 𝑦

5
, 𝑦

6
) → 𝑦


= (𝑦

1
, 𝑦

6
, 𝑦

3
, 𝑦

4
, 𝑦

5
, 𝑦

2
)

Segment reversion 𝑦 = (𝑦
1
, 𝑦

2
, 𝑦

3
, 𝑦

4
, 𝑦

5
, 𝑦

6
) → 𝑦


= (𝑦

1
, 𝑦

6
, 𝑦

5
, 𝑦

4
, 𝑦

3
, 𝑦

2
)

Segment shift 𝑦 = (𝑦
1
, 𝑦

2
, 𝑦

3
, 𝑦

4
, 𝑦

5
, 𝑦

6
) → 𝑦


= (𝑦

1
, 𝑦

6
, 𝑦

2
, 𝑦

3
, 𝑦

4
, 𝑦

5
)

Point mutation 𝑦 = (𝑦
1
, 𝑦

2
, 𝑦

3
, 𝑦

4
, 𝑦

5
, 𝑦

6
) → 𝑦


= (𝑦

1
, 𝑦

2
, 𝑦



3
, 𝑦

4
, 𝑦

5
, 𝑦

6
)

Segment mutation 𝑦 = (𝑦
1
, 𝑦

2
, 𝑦

3
, 𝑦

4
, 𝑦

5
, 𝑦

6
) → 𝑦


= (𝑦

1
, 𝑦



2
, 𝑦



3
, 𝑦



4
, 𝑦



5
, 𝑦



6
)

antibody population as 𝐴 = {𝑥
1
, 𝑥

2
, . . . , 𝑥

𝑁
}, where 𝑁 is the

size of population.

4.2.2. Computation of Affinity. For each antibody, an affinity
measure needs to be computed to estimate how well a
given antibody (pose) matches the observed images. Here
we use the bidirectional likelihood proposed by [23]. Let𝑀𝑏

represent the binary silhouette map for the body model and
𝑀

𝑓 the image foreground. We seek to minimize the non-
overlapping regions, red and blue, therefore maximizing the
Yellow region (see Figure 5). The size of each region can be
computed by summing over all image pixels 𝑝 using

𝑅 = ∑

𝑝

(𝑀
𝑓
(𝑝) (1 −𝑀

𝑏
(𝑝))) ,

𝐵 = ∑

𝑝

(𝑀
𝑏
(𝑝) (1 −𝑀

𝑓
(𝑝))) ,

𝑌 = ∑

𝑝

(𝑀
𝑓
(𝑝)𝑀

𝑏
(𝑝)) .

(5)

Then the objective function of candidate pose 𝑥 with
regard to image 𝑧 can be calculated as

𝑓 (𝑥) = (1 − 𝛾)

𝐵

𝐵 + 𝑌

+ 𝛾

𝑅

𝑅 + 𝑌

, (6)

where 𝛾 is the weight. We set 𝛾 = 0.5 in this paper.
Affinity is the fitness measurement for an antibody. As

defined above, the affinity, Affinity(𝑥), for a given antibody 𝑥

is a linear mapping of the objective function 𝑓(𝑥). Therefore,
we define the affinity of antibody 𝑥 as

Affinity (𝑥) = 𝑆
∗ exp (−𝑓 (𝑥))

= 𝑆
∗ exp (−((1 − 𝛾)

𝐵

𝐵 + 𝑌

+ 𝛾

𝑅

𝑅 + 𝑌

)) ,

(7)

where 𝑆 is a positive constant; we set 𝑆 = 100 in this paper.

4.2.3. Genetic Operators. We design five genetic operators,
which are executed orderly in IGA. We introduce the oper-
ators by evolving an example antibody 𝑥 = (𝑥

𝑟
, 𝑦) =

(𝑥
𝑟
, 𝑦

1
, 𝑦

2
, 𝑦

3
, 𝑦

4
, 𝑦

5
, 𝑦

6
). The new antibody generated by the

operators is denoted as 𝑥
= (𝑥



𝑟
, 𝑦


). Assuming the positions

generated randomly are numbers 2 and 6 or 3 (for point
mutation operator) of 𝑦 = (𝑦

1
, 𝑦

2
, 𝑦

3
, 𝑦

4
, 𝑦

5
, 𝑦

6
), for example,

the five operators are illustrated in Table 1. The application
order of the genetic operators in the algorithm is just as that
listed in Table 1.

The genetic operators were represented as 𝑇
𝑝

𝑔
. We per-

form genetic operator on the 𝑘th parent 𝐴(𝑘) and obtain the
results 𝐵(𝑘).

4.2.4. Vaccine Construction and Immune Operators. Genetic
operators give each antibody the chance of optimization and
ensure the evolutionary tendency with the select mechanism
of survival of the fittest. However, it changes individuals
randomly and indirectly under some conditions. Therefore,
they not only give individuals the evolutionary chance but
also cause certain degeneracy. In IGA, the idea of immunity
is mainly realized through two steps based on reasonably
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Figure 6: Clustering of human pose in 3D subspace, where (a), (b) represent the results of walking and running data, respectively.

selecting vaccines, that is, a vaccination and an immune
selection, of which the former is used for raising fitness and
the latter is for preventing the deterioration.

In this section, we extract the prior knowledge of human
motion and construct two vaccines. Then we design the vac-
cination and immune selection operators.

(1) Vaccine Construction. A vaccine is abstracted from
the prior knowledge of the pending problem. Human
pose in subspace is located on a manifold structure
but not the whole subspace. Actually, pose subspace
is a compact space. We constrained the subspace of
human motion and construct two vaccines for our
human pose estimation problem.

(i) Vaccine 1. Every dimensionality 𝑦
𝑖
of subspace

pose 𝑦 = (𝑦
1
, 𝑦

2
, . . . , 𝑦

𝑑
) should be distributed

in a scope as min(𝑦
𝑖
) < 𝑦

𝑖
< max(𝑦

𝑖
), where the

bound max(𝑦
𝑖
) and min(𝑦

𝑖
) are learned from

the motion training data.
(ii) Vaccine 2. Vaccine 2 is motivated by the fact

that every generated pose should locate on the
manifold. Based on the consistency of human
motion, we partition the manifolds into differ-
ent subparts with 𝑘-means clustering, where the
number of class 𝑐 is 5 in this paper (see Figure 6).
For each class 𝑐

𝑖
, 𝑖 = 1, . . . , 5, we assume the

poses in it is of Gaussian distribution, described
as follows:

𝑝
𝑖
(𝑌) =

1

(2𝜋)
𝑑/2



Σ

𝑖






1/2
𝑒
(−1/2)(𝑌−𝜇

𝑖
)
𝑇
Σ
−1

𝑖
(𝑌−𝜇
𝑖
)
,

𝑖 = 1, . . . , 5,

(8)

where, 𝜇
𝑖
is the mean vector, Σ

𝑖
is the covariance

matrix, 𝑑 = 6 is the dimensionality of the pose sub-
space. Then the vaccine 2 can be described as for all
𝑦 ∈ 𝑌, ∃𝑖, such that 𝑝

𝑖
(𝑦) > 𝜒, where 𝑖 = 1, . . . , 5.

(2) Vaccination. A vaccination means the course of mod-
ifying the genes of an individual 𝑥 = (𝑥

𝑟
, 𝑦) on some

bits in accordance with prior knowledge so as to gain
higher fitness with greater probability. For an anti-
body 𝑥

= (𝑥


𝑟
, 𝑦


), 𝑥

∈ 𝐵(𝑘) generated using genetic
operators, we perform vaccination operator on 𝑥

 to
generator a new antibody 𝑥

= (𝑥


𝑟
, 𝑦


).

Inoculation of Vaccine 1. Vaccine 1 indicates that
every dimensionality 𝑦



𝑖
of subspace pose 𝑦


=

(𝑦


1
, 𝑦



2
, . . . , 𝑦



6
) should be distributed in a scope.

When it moves out of this scope, we set it to be the
border. The process can be formulated as

if (𝑦


𝑖
< min (𝑦

𝑖
)) ,

𝑦


𝑖
= min (𝑦

𝑖
) ; if (𝑦



𝑖
> max (𝑦

𝑖
)) ,

𝑦


𝑖
= max (𝑦

𝑖
) , where 𝑖 = 1, . . . , 6.

(9)

Inoculation of Vaccine 2. Vaccine 2 indicates that
every pose 𝑦

= (𝑦


1
, 𝑦



2
, . . . , 𝑦



𝑑
) should locate on the

manifold. If a pose 𝑦 does not locate on themanifold,
that is, 𝑝

𝑖
(𝑦


) < 𝜒, for 𝑖 = 1, . . . , 5, we first calculate

to which class it is most likely to belong, suppose it to
be 𝑐

𝑖
. Then, we set 𝑦 to be a random antibody in this

class.
The vaccination operator was represented as 𝑇𝑝

𝜈
. We

perform vaccination operator on the 𝑘th parent 𝐵(𝑘)
and obtain the results 𝐶(𝑘).

(3) Immune Selection. This operation is accomplished
by the following three components. The first one is
the immune test, that is, testing the antibodies. If
the affinity is better than that of the parent, we add
it to a temporal population 𝐷(𝑘), 𝐷(𝑘) = {𝑥


|

Affinity(𝑥
) > Affinity(𝑥)}. The second one is the an-

nealing selection, that is, if the affinity is worse than
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Input: total number of antibodies𝑁, maximum number of generations𝐾.
Steps:

(1) Initialization: generate the initial population with𝑁 antibodies. The initial population can
be represented as 𝐴(0) = {𝑥

1
(0), 𝑥

2
(0), . . . , 𝑥

𝑁
(0)}.

(2) Repeat:
While (𝑘 < 𝐾) do
(2.1) Genetic operator: Perform genetic operators 𝑇𝑝

𝑔
on the 𝑘th parent 𝐴(𝑘) and obtain the

results 𝐵(𝑘);
(2.2) Vaccination: Perform vaccination 𝑇

𝑝

𝑣
on 𝐵(𝑘) and obtain 𝐶(𝑘);

(2.3) Immune selection: Perform immune selection 𝑇
𝑝

𝑠
on 𝐶(𝑘) and obtain the next generation

population 𝐴(𝑘 + 1);
(2.4) 𝑘 = 𝑘 + 1.
End while

(3)Output: output the population 𝐴(𝐾) = {𝑥
1
(𝐾), 𝑥

2
(𝐾), . . . , 𝑥

𝑁
(𝐾)}.

Algorithm 2: IGA-based pose optimization algorithm.

that of the parent, select an individual in the present
population 𝐶(𝑘) to join in the temporal population
𝐷(𝑘) with the probability as follows:

𝑃 (𝑥

) =

Affinity (𝑥
) ∗ 𝑒

Affinity(𝑥)/𝑇
𝑘

∑
𝑁

𝑖=1
Affinity (𝑥

) ∗ 𝑒
Affinity(𝑥)/𝑇

𝑘

, (10)

where Affinity(𝑥
) is the affinity of the individual 𝑥

and 𝑇
𝑘
is the temperature controlled series tending

towards 0. The third one is the next population
generation. We design a hybrid (𝜇 + 𝜆) evolutionary
strategy to generate the new generation 𝐴(𝑘 + 1).
(𝜇 + 𝜆) evolutionary strategy means selecting the first
𝑁 individuals from the current population𝐴(𝑘) (with
the size of 𝑁) and temporal population 𝐷(𝑘) (with
the size of 𝑀) to compose a new parent population
𝐴(𝑘 + 1).

4.3. IGA-Based Human Pose Optimization. Based on the des-
cription above, the IGA-based pose optimization algorithm
can be described as in Algorithm 2.

We will show how to apply IGA-based pose optimization
algorithm for pose estimation and tracking in the next
section.

5. Sequential Immune Genetic Algorithm for
Pose Tracking

In tracking applications, the data is typically a time sequence,
and hence the task is essentially a dynamic optimization
problemwhich distinguishes it from traditional optimization
problems. In tracking situation, the previous estimation
results can be used to cut the current search space. From the
Bayes’ view, we can formulate the pose tracking problem as

𝑝 (𝑥
𝑡
| 𝑧

𝑡
) ∝ 𝑝 (𝑧

𝑡
| 𝑥

𝑡
) 𝑝 (𝑥

𝑡
| 𝑥

𝑡−1
) , (11)

where {𝑥
𝑡
| 𝑡 = 1, 2, . . . , 𝑇} and {𝑧

𝑡
| 𝑡 = 1, 2, . . . , 𝑇} repre-

sent temporal states and observations, respectively. How to

determine the conditional distribution𝑝(𝑥
𝑡
| 𝑥

𝑡−1
) effectively

is the core problem for 3D human pose tracking.
In this paper, we proposed a sequential IGA- (S-IGA)-

based framework for human motion tracking. The flowchart
of the S-IGA framework is shown in Figure 7. First, we
perform human pose estimation on the first frame of the
video as initialization for tracking. Then, the previous con-
verged antibodies at time 𝑡 are randomly propagated as
initial antibodies for the next time (frame) 𝑡 + 1. Finally, we
perform IGA-based pose optimization on current antibodies.
The individual with best affinity is used to approximate the
tracking result of time 𝑡 +1, and the converged antibodies are
used to initial the next frame. There are three major stages
in the S-IGA framework: automatically initialization, next
frame propagation, and IGA-based optimization.

5.1. Pose Estimation for Initialization of Motion Tracking. Ini-
tialization is an important problem of human motion track-
ing. How to begin the tracking process from a good starting
point sometimes is an intractable problem. We achieve the
automatic initialization by determining the pose of the first
frame using the IGA-based human pose estimation algo-
rithm, which can be described as follows.

Pose estimation is the process to estimate articulated hu-
man pose from a single image which can be formulated as
an optimization process. We apply IGA for pose estimation.
For clarity, we redefine the full 3D pose vector as 𝑥 = {𝑥

𝑟
, 𝑦},

where 𝑥
𝑟
is the global motion of human body with respect

to the camera and 𝑦 is the pose vector in state subspace.
We perform the state posterior inference by optimizing the
affinity function. The optimal pose can be represented as

𝑥 = argmax
𝑥

(Affinity (𝑥)) . (12)

We maximize the search efficiency by embedding the
global search capability of IGA into the local conditions of
state subspace.

The global motion of human body is very important for
its visual appearance in an image and is also critical in disam-
biguating the left-right confusion. Determining this motion
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Figure 7: Overview of the sequential IGA.

accurately makes our method viewpoint invariant. With the
aim of both cutting the search space and determining the
motion direction roughly, we incorporated the global motion
process step [5] into the framework of IGA. The global
motion process can be summarized as follows. (1) In state
vector 𝑥 = {𝑥

𝑟
, 𝑦}, the global motion 𝑥

𝑟
= (𝑟

𝑥
, 𝑟

𝑦
, 𝑟

𝑧
) include

the rotation of the full body about the coordinate axes 𝑋, 𝑌,
and 𝑍, respectively. In the first round of state evolution (𝑘 =

1), we only actually search the optimal solutions of global
motion. Other state components (𝑦) are taken as one of the
clustering centers 𝑦

𝑐
𝑖

, 𝑖 = 1, . . . , 5, randomly. The variance
domainmin(𝑥

𝑟
) andmax(𝑥

𝑟
) of𝑥

𝑟
is computed by storing the

𝑁
 best antibodies. 𝑁 is determined empirically according

to the threshold value of affinity. (2) In the rest rounds of
state evolution, the antibody is evolved normally as described
in Section 4. In doing so, we can get the coarse scopes of
globalmotion in the first round of state evolution, and the fine
tuning of these parameters can be achieved in the followed
evolution rounds.

Based on the proposed IGA pose optimization algorithm,
the antibody with the highest affinity in population 𝐴(𝐾) =

{𝑥
1
(𝐾), 𝑥

2
(𝐾), . . . , 𝑥

𝑁
(𝐾)} will be selected to be the optimal

pose. Figure 8 is the process of pose estimation, where (a) is
one frame of input video, (b) is the initialized poses, (c), and
(d) are results with 10, 40 times of iteration, respectively. We
can see that the poses generated by our initialization method
can cover the whole walking pose state space, and the poses
become convergent with times of iteration increase.

5.2. Next-Frame Propagation. Next-frame propagation is the
key stage in the S-IGA framework which aims to find the
dynamic model 𝑝(𝑥

𝑡
| 𝑥

𝑡−1
). In this paper, we design a ran-

domly propagation method. The randomly propagation
method is actually a first-order Gauss-Markov dynamical
model. Given the converged antibodies𝑥

𝑖,𝑡−1
(𝐾) at frame 𝑡−1,

the antibodies in the next frame 𝑡 are initialized by sampling a
Gaussian distribution centered in the current best antibodies.

Consider,

𝑥
𝑖,𝑡
(0) ∼ 𝑝 (𝑥

𝑡
| 𝑥

𝑡−1
) = 𝑁 (𝑥

𝑖,𝑡−1
(𝐾) , Σ) , (13)

where 𝑥
𝑖,𝑡
(0) are the initial antibodies at time 𝑡, 𝑥

𝑖,𝑡−1
(𝐾)

are the converged antibodies at time 𝑡 − 1, 𝑖 = 1, . . . , 𝑁,
and Σ is the covariance matrix of Gaussian distribution. Low
value Σwill promote temporal consistency but is likely to lose
the diversity. We set it empirically according to the motion
type and speed. S-IGA propagates only a minimal amount
of information between frames and does not incorporate any
motion model. Although randomly propagation is simple, it
is sufficient because it is only used to produce an initial value
for a subsequent search for the optimal state.

We do not incorporate any learnt constant motion model
here, which is motivated by two considerations.

(1) Generality: many prior motion models are derived
from training data. A possible weakness of these
motion models is that the ability to accurately rep-
resent the space of realizable human movements
generally depends significantly on the amount of
available training data.This comes as a cost of putting
a strong restriction on the poses that can be recovered.
Therefore, we do not use any constant learnt motion
models here.

(2) The effectiveness of our IGA pose optimization algo-
rithm, which can explore efficiently large portions of
the search space starting from the initial distribution
of antibodies.

Actually, the S-IGA framework is a “sample-and-refine”
search strategy. Firstly, the initial antibodies are sampled for
the transition distribution as 𝑥

𝑖,𝑡
(0) ∼ 𝑁(𝑥

𝑖,𝑡−1
(𝐾), Σ). Then
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(a) (b) (c) (d)

Figure 8: The process of human pose estimation, where (a) is a frame of input video, (b) is the initialized poses, and (c), (d) are results with
different times of iteration, respectively.

(1) Initialization: perform human pose estimation on the first frame of the video, output the
converged antibodies {𝑥

1,𝑡
(𝐾), 𝑥

2,𝑡
(𝐾), . . . , 𝑥

𝑁,𝑡
(𝐾)}, where 𝑡 = 0;

(2) for 𝑡 = 1 : 𝑇 do
(3) Next-frame propagation: randomly propagate the antibodies to enhance their diversities
according to the following transition model:

𝑥
𝑖,𝑡
(0) ∼ 𝑁(𝑥

𝑖,𝑡−1
(𝐾), Σ), 𝑖 = 1, . . . , 𝑁;

(4) IGA-based pose optimization: using Algorithm 2 to optimize the initial antibodies:
{𝑥

1,𝑡
(0), 𝑥

2,𝑡
(0), . . . , 𝑥

𝑁,𝑡
(0)};

(5) Check the convergence criterion: if satisfied, the converged antibodies are used to initial
the next frame;
(6) The individual with best affinity in population {𝑥

1,𝑡
(𝐾), 𝑥

2,𝑡
(𝐾), . . . , 𝑥

𝑁,𝑡
(𝐾)} is used to

approximate the tracking result of time 𝑡;
(7) end for.

Algorithm 3: S-IGA-based motion tracking algorithm.

the antibodies are updated according to the newest observa-
tions in each IGA iteration. Through the IGA iteration, the
antibodies aremoved towards the regionwhere the likelihood
of observation has larger values and are finally relocated to
the dominant modes of the likelihood. And in a Bayesian
inference view, the IGA iterations are essentially amulti-layer
importance sampling strategy which incorporates the new
observations into a sampling stage and thus avoids the sample
impoverishment problem suffered by the particle filter [6].

5.3. Sequential Immune Genetic Algorithm-Based Pose Track-
ing. Based on the designing above, we can formulate our
sequential IGA for pose tracking as in Algorithm 3.

6. Experimental Results

6.1. Experimental Data and Evaluation Measures

Experimental Data. The data for latent space training is
from CMU Database [21]. We quantitatively evaluate our
method on synthesized image sequences as in [3]. We also
give experimental results on real image sequences from [24],
CMU Database [21], and HumanEva [23].

Evaluation Measures. In this paper, we use the evaluation
measures proposed in [23]. The average error over all joint
angles (in degrees) is defined as

𝐷 (𝑥, 𝑥) =

𝑀

∑

𝑚=1





𝑥

𝑚
− 𝑥

𝑚






𝑀

, (14)

where 𝑥 = (𝑥
1
, 𝑥

2
, . . . , 𝑥

𝑀
) and 𝑥 = (𝑥

1
, 𝑥

2
, . . . , 𝑥

𝑀
) are the

ground truth pose and the estimated pose date, respectively.
For the sequence of 𝑇 frames, the average performance and
the standard deviation of the performance are computed
using the following:

𝜇seq =

1

𝑇

𝑇

∑

𝑡=1

𝐷(𝑥
𝑡
, 𝑥

𝑡
) ,

𝜎seq = √
1

𝑇

𝑇

∑

𝑡=1

[𝐷 (𝑥
𝑡
, 𝑥

𝑡
) − 𝜇seq]

2

.

(15)

6.2. The Convergence of IGA. It is understood that the
number of antibodies𝑁 and iteration times 𝐾 will affect the
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Figure 9: The convergence process.

convergence.We take pose estimation experiment on a single
image and report the affinities of the best antibody during
iteration. Figure 9 demonstrates the convergence process.
Different lines represent different numbers of antibodies
used. The 𝑥-axis is the times of iteration while the 𝑦-axis is
the affinity value. As shown in Figure 9, the affinities will
converge as the times of iteration increase. The experimental
results demonstrate that our IGA-based pose optimization is
convergent.

We have ascertained experimentally that higher numbers
of 𝑁 and 𝐾 will achieve better results. However, in order to
deal with the tradeoff of computational time and accuracy, we
set𝑁 = 40, 𝐾 = 60.

6.3. IGA-Based Pose Estimation Results. We test our IGA-
based pose estimation method on three image sequences,
including one straight walk sequence [24], one turning walk
sequence [23], and one run sequence [21]. The purpose is to
test the capability of the method to cope with limb occlusion,
left-right ambiguity, and view-point problems, which are the
main challenges that a pose estimation method has to deal
with. As mentioned in Section 3, we first learn the subspace
of walking and running. To extract the motion subspace of
walking, a data set consisting of motion capture data of a
single subject was used. The total number of frame is 316.
For running subspace learning, a data set with 186 frames
was used. It was found that the different subjects and different
frame numbers can produce generally identical subspace. So
the learned subspaces are also used in the tracking experi-
ments.

For pose estimation on a single image, the parameters of
IGA are set as 𝑁 = 40 and 𝐾 = 60 to deal with the trade-
off of computational time and accuracy. We test our IGA-
based pose estimation method on 100 frames of images for
all three types of motions, and the mean errors of joint angle
are reported, which are shown in Figure 10. From Figure 10
we can see that, except for some particular joints, the mean
errors of most joints for three sequences are less than 5
degrees. The mean errors of some joint angles are larger than

others because they have wider range of variation or less
observability related to 2D image features. Our results are
competitive with others reported in the related literatures.

Table 2 shows the ground truth and estimated values of
some joint angles in an example frame. Three values in each
cell are the rotation angles of the joints around 𝑋, 𝑌, and 𝑍

axes, respectively. The values come from a frame on the level
of average error. Actually, other frames show generally the
similar comparison results. From Table 2 we can see that
estimated joint angles are close to the ground truth data.
The experiment results demonstrate that our IGA-based pose
estimation method is effective to analyze articulated human
pose from a single image.

The results on real images are shown in Figure 11. From
the above experiment results, we can see that, on most of
the frames, the occlusion and left-right confusion problems
are tackled by searching the optimal pose in the extracted
subspace because the prior knowledge about motions is con-
tained in this subspace. And the pose estimator is view invari-
ant, mainly because of the viewpoint-independent manifold
learning and special step for searching the global motion.
In addition, the experiment results on walking and running
sequence demonstrate that our algorithm is efficient for
different types of motions. Actually, our method can be
generalized to any other types of motions as long as the cor-
responding subspace can be properly extracted from training
data.

6.4. S-IGA-Based Pose Tracking Results. We demonstrate our
tracking algorithmonwalking and running image sequences.
And then we compare S-IGA quantitatively with other
tracking methods and include particle filter (PF) method [6],
particle swarm optimization (PSO) [11], and pose tracking in
linear subspace using annealing genetic algorithm (PCA +
GA) [5].

As suggested in [6], for a human model with DOF
between 6 and 12, PF needs about 1000 particle to run. And
in [17], PF used 4000 particles for a 29 DOF human model.
While in [11], 7200 particles are used for a 31 DOF human
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Figure 10: The mean errors of individual joint angle for different sequences.

Table 2: Ground truth (𝑇) and estimated (𝐸) results of some joint angles for different motions.

Joint angles
L Femur R Femur L Knee R Knee

Walk
straight

𝑇 (−23.235, 47.366, 13.754) (−1.237, 6.456, 25.356) (−3.245, 50.782, 4.567) (−1.982, 30.425, 3.904)

𝐸 (−20.967, 43.459, 8.351) (−0.923, 4.535, 26.429) (−3.024, 4.368, 8.546) (0.673, 30.456, 5.336)

Walk in
circle

𝑇 (−15.324, 50.339, 8.479) (−0.923, 3.546, 20.764) (−4.234, 59.436, 7.451) (−1.590, 28.904, 2.405)

𝐸 (−16.847, 48.837, 5.435) (−0.456, −0.345, 25.763) (−3.458, 60.348, 5.345) (0.890, 34.941, −1.234)

Run 𝑇 (−10.213, 43.225, 10.863) (0.456, 6.433, 24.567) (−0.932, 49.687, 8.891) (−0.379, 34.227, 7.904)

𝐸 (−10.763, 46.678, 15.304) (1.023, 5.645, 31.566) (−0.983, 42.684, 6.894) (0.374, 36.679, 2.570)

model. In this paper, the human model in the original space
is with 66 DOF; we set the particles size to be 12000 for
PF. While in IGA, the quantitative results of experiments
show that IGAwith 40 antibodies yields results, under similar
testing conditions, more accurate than PF available to us. For
motion tracking, the iteration time is set to be 𝐾 = 20. Thus,
the number of likelihood evaluations for a single imagewould
be 800 at most, which is much less than 4000 for GA [5] (size
of population is 100, iteration time is 40), 7200 for PSO [13],
and 12000 for PF.

We first use IGA-based pose estimation method to ana-
lyze human pose on the first image of the video for initial-
ization, where the parameters are set as 𝑁 = 40, 𝐾 = 60 for
careful search of the state space in initialization.While on the
following frames, we set the iteration times to be 𝐾 = 20.
It is mainly because our next-frame propagation strategy can
produce a compact antibodies population for optimization.

And in our experiment, we set Σ = 0.01 for straight walking
sequences and Σ = 0.02 for running sequences.

Themean errors of different methods over all joint angles
of the test sequences are shown in Figure 12. And Table 3 is
the statistics of the average errors and the standard deviations.
From Figure 12 and Table 3, we can see that our method
achieve better results. The average errors and the standard
deviations over all frames are near 3∘ and 1∘, respectively, in
general. It also can be found that the change of mean error of
our method in whole sequence is small, which indicates that
our method can achieve stable tracking of 3D human pose.

Figure 13 is the tracking results on walking and running
image sequences, respectively. From the above experimental
results we can see that our IGA-based pose estimation meth-
od can successfully be used for initialization of tracking.
Acutely, our IGA-based pose estimation method is also used
for initialization of PF in our experiments. Experimental
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Figure 11: Pose estimation results on different image sequences.
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Figure 12: Comparison of different tracking methods.

results on different types of motion sequence show that S-
IGA has good performance even without any learnt constant
motion models, which demonstrate our next-frame propa-
gation strategy is effective to generate initial distribution of
antibodies for the next frame.

Experimental results demonstrate that our S-IGA-based
tracking method can achieve accurate and stable tracking of
3D human motion. However, our method has some draw-
backs as discussed below. Firstly, though pose optimization
in the latent space makes our method more effective and
accurate, it makes our method not suitable for more compli-
cated motion analysis. So in our future work, we will extend
our algorithm to cover a wider class of human motions

and explore switch mechanism between different subspaces.
Secondly, in generative tracking approaches, the time taken
by an algorithm depends mostly on the number of likelihood
evaluations. In our IGA pose optimization method, the
time complexity would be 𝑂(𝑁𝐾), which makes it cannot
work for real time applications. In addition, our method
is dependent on the silhouette detection from video. But
human silhouette detection from video is difficult especially
in uncontrolled environment. More robust human silhouette
detection method and more sophisticated image likelihood
function will be considered in our future work.

Recently, Gaussian Process Latent Variable Models
(GPLVM [25]) has been another widely studied latent space
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Table 3: Results of different tracking methods.

Walking Running
Mean error Standard deviations Mean error Standard deviations

PF 4.5113 2.3217 4.4669 2.0188
PSO 4.4369 1.5181 4.3949 0.9821
GA 3.5705 1.5651 4.1494 1.4779
S-IGA 3.0626 0.8345 3.0455 0.6370

(a)

(b)

(c)

Figure 13: Human tracking results on real image sequences, where (a) is results on a subject walking straight (the data is from [24]) (b) is
results on a subject walking in circle (the data is from HumanEva [21]), and (c) is results on a subject running (the data is from CMUMocap
database [23]).

learningmethod for humanmotion tracking. Comparedwith
manifold learning method (ISOMAP), GPLVM could build-
ing the inverse mapping easily. However, GPLVM cannot
work well on small training dataset and high-dimensional
data. So in our future work, we will study how to apply
GPLVM for motion tracking effectively. And more, studies
onmotion tracking using evolutional computingmethods are
still limited. In our future work, we will consider to apply
other evolutional computing methods for motion tracking.

7. Conclusions

We presented a novel generative approach to reconstruct
3D human pose from a single monocular image as well as
from monocular image sequences. The main contribution
is to optimize human pose in learnt latent human motion

space. Pose analysis in the latent space learnt using ISOMAP
happens to be more efficient and accurate. In the search
strategy, we apply the immune genetic algorithm for pose
estimation. A sequential IGA framework is proposed for pose
tracking by incorporating the temporal continuity informa-
tion into the traditional IGA. Compared with GA and PSO,
IGA has the ability to use the prior knowledge of human
motion. Experiment results on different motion types and
image sequences demonstrated that our IGA-based method
for pose estimation is effective to deal with occlusion, left-
right ambiguity, and the viewpoint problem. The sequential
IGA method can achieve stable and accurate pose tracking.
Quantitative experiments compared with other state-of-art
methods show that our methods achieve better results.

In the futurework, wewill extend our algorithm to cover a
wider class of humanmotions and explore switchmechanism
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between different subspaces. In addition, we will also con-
sider more sophisticated image likelihood and how to reduce
the computation time. How to apply other evolutionary
computation methods for human motion tracking will also
be considered in our future work.
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To design the transport scheme of empty and heavy containers reasonably, a model with objective maximizing the route benefits is
proposed. The model considered two factors: (1) the fluctuation of cargo transport demand and the switching of different voyages;
(2) the optimal transport scheme of empty and heavy containers in slack and brisk seasons and the handover process of these two
seasons. In order to solve this model, a novel GA is developed. With this model and algorithm, the optimal transport scheme of
empty and heavy containers is put forward, and the optimization allocation of resources can be realized. The case study about
China-Europe route proves that this model can improve the liner company’s benefits effectively.

1. Introduction

Currently, there are many studies about optimization scheme
of empty and heavy containers. Some studies [1–3] devel-
oped an optimization method studying the transporting
scheme of empty containers based on simulation and two-
stage random network model, and the model took short-
term container leasing into consideration. Reference [4]
studied the transporting plan of empty containers from a
new perspective, which determined the number of empty
containers to be transported by using inventory management
theory andMarkov process theory.With the constantly rising
proportion of heavy containers to be transported, scholars
paid more attention to the heavy container optimization
problem among ports. Chen and Zeng [4] attempted to
deal with the programming problem of empty and heavy
containers simultaneously by utilizing decision supporting
system. When studying container route optimization, they
did an in-depth analysis about the optimization transporting
problem of empty and heavy containers. Concerning the
cyclical fluctuations of cargo demand, this paper proposed an
optimizationmodel of empty and heavy containers.However,
this model does not consider two problems: the first one is
the effect of network change has on transporting scheme of

empty and heavy containers; the second one is the adjustment
problem of different empty and heavy containers. Therefore,
in this paper, we established an integer programming model
aiming at maximizing the total voyage profits. Considering
the variation of transport demand and alteration of routes, the
optimal transporting scheme of empty and heavy containers
is proposed. Finally taking the data of China-Europe route as
research data, the practicality of model is tested.

Before 2009most researchers only fixed their attention on
the slot allocation for empty containers, often called empty
container relocation problem as we know. For example,
Crainic et al. [2] raised two dynamic deterministic formu-
lations to deal with the single and multicommodity cases;
for empty container relocation they also put forward an
ordinary model. Cheung and Chen [3] adopted a two-stage
stochastic network model to optimize the empty container
relocation problem and ascertained theminimumquantity of
leased containers. Imai and Rivera [5] analyzed the accurate
number of container fleet size and the relocation of the
empty containers by utilizing simulation model. Li et al.
[6] disposed the problem of empty container relocation by
offering a new method. They applied methods of inventory
management and Markov processes to analyze the quantity
of empty containers conveyed among ports and compute the
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Figure 1: The diagram of segments.

floor level and maximum quantity of the empty containers
stored in ports. Feng and Chang [7] used a two-stage model
considering both inventory management and the nature
of the shipping network to deal with the empty container
relocation problem. These studies above-cited are based on
some assumption that the shipping routes are given and
all transport demands are ought to be served. The latter
assumptionmeans that from one port to another, the number
of full containers is fixed, so is the quantity of slot allocation
for full containers.

Lindstrom Bandeira et al. [1] wanted to use a decision
support system to optimize the slot allocation both for full
and empty containers simultaneously. But the system cannot
serve all transport demand. Lu et al. [8] also optimized slot
allocation for full and empty containers by using a new
integer programming model. In this paper, we assume that
shipping lines could give up some transport demand to obtain
maximum profit.

2. Problem Description

2.1. The Transporting Process of Empty and Heavy Containers.
The transporting process of containers includes two parts: the
transporting process at sea and the circulation at ports.

2.1.1.TheTransport Process at Sea. The liner transport process
at sea is relatively simple. Liner companies accomplish con-
tainer transport by sailing among ports. During this process,
route structure has a big influence on transport plan of empty
and heavy containers. As shown in Figure 1, shipping com-
panies should consider the import/export demand of port 3
under the route structure of route (a), which is unnecessary
in route (b). Apart from the direct influence route structure
has on transport demand, its another influence is it limits the
transport capacity of empty and heavy containers. For the
case in route (a), shipping company should consider whether
the total number of empty and heavy containers exceed the
maximum vessel capacity. There are three segments on route
(a), and each segment is loaded with containers between
different ports. On segment 1, the total number of empty and
heavy containers transported from port 3 to port 1 should not
exceed the ship’s transport capacity.

1 2

3

2

Container
leaseYard

Port
1, 3

Port
1, 3

Figure 2: The circulation of containers at port.

2.1.2. The Container Circulation at Port. The container cir-
culation process at port includes transport cargoes, stock
empty containers, empty heavy containers, and return empty
containers. For instance, take port 2 in Figure 2 as exam-
ple. As shown in Figure 2, port 2 will import empty and
heavy containers from port 1 and port 3. According to the
attribution of containers, these containers should be divided
into three categories: (1) empty containers owned by liner
company, (2) heavy containers owned by liner company,
and (3) short-term leasing heavy container. The circulation
process of these three containers is different. After unloaded,
the empty containers owned by liner companies will either be
stored in container yard at port, or be loadedwith cargoes and
transported to the port of discharge. The heavy containers
will be delivered to consignees after being unloaded from a
ship. After being emptied and returned, heavy containers will
either be stored at container yard, or shipped to the ports
where empty containers are needed. Different from the two
above mentioned containers, after unloading the short-term
leasing containers, these containers will be returned to the
port of discharge due to the relatively high leasing costs.

It can be learned that from the container circulation
process, shipping company should formulate a series of inter-
actional plans, as shown below: the transport plan of empty
& heavy container owned by liner company, transport plan of
short-term leasing heavy containers among ports, and stock
capacity of empty containers at each port. These schemes
are not only influenced by determined factors like route
structure, freight rate, handling costs at port, stockpiling
costs, but cyclical fluctuation of transport demand.

2.2. Cyclical Fluctuation of Transport Demand. The fluctu-
ation of transport demand among different ports has the
following two characteristics: (1) the fluctuation of transport
demand is obviously seasonal, which can be divided into the
slack season with less transport demand and brisk season
with more demand; and (2) there are slight fluctuations
during both slack and brisk seasons, and the overall demand
is relatively stable.

According to those characteristics, we use the following
method to deal with fluctuations of transport demand. One
year is divided into four phases: slack season, the transition
phase from slack season to brisk season, brisk season, and



Mathematical Problems in Engineering 3

the transition phase from brisk season to slack season. In
slack season and brisk season, the transport plan of heavy
containers is not changed, while the transport scheme of
empty containers can be adjusted anytime. In the other
two transition phases, to accomplish the transition process
between slack season and brisk season, both the transport
scheme of empty and heavy containers can be adjusted. It
should be noted that the transition here not only includes the
transport scheme of different empty and heavy containers,
but the transition of empty container stockpiling plan.

3. The Optimization Model of Empty and
Heavy Containers

3.1. Model Hypotheses. Thismodel is established according to
the following assumptions: (1) the density of liner schedule is
on weekly basis and only container of 20 ft is considered; (2)
shipping companies only adjust route structure once a time
in a year; (3) every port can lease enough empty containers
and have enough space to stock them, if they want; (4) to
simplify calculation, the decision variables are not set as
integer, besides, 𝐾 in the model means the total working
weeks within a year (52 weeks); (5) in nontransition phases,
the number of heavy containers transported does not change;
(6) it is assumed that 1 − 𝑁

1
week is set as slack season,

𝑁
1
+ 1 − 𝑁

2
is set as the transition phase of slack season and

brisk season,𝑁
2
+1−𝑁

3
is set as brisk season, and𝑁

3
+1−𝑁

4

is set as the transition phase between brisk season and slack
season.

3.2. Model Establishment. Based on the above analyses, a
linear integer programmingmodel is established.The specific
formulation of model is shown as follows:

Max𝑍 = ∑
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𝑗𝑖
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𝑗
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𝑖𝑗
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𝑖𝑗
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(𝑜𝑥
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+ 𝑜𝑦
𝑘
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𝑘

𝑗𝑖
+ 𝑜𝑦
𝑘

𝑗𝑖
) ≥ 0,

∀𝑖 ∈ 𝑃.

(10)

3.3. Model Explanation. The model aims at maximizing the
total profits 𝑍 of voyage, its decision variables are as follows:
𝑜𝑥
𝑘

𝑖𝑗
—the number of heavy containers which are owned by

liner companies transported from port 𝑖 to port 𝑗; 𝑜𝑦𝑘
𝑖𝑗
—

the number of empty containers which are owned by liner
companies transported from port 𝑖 to port 𝑗; 𝑟𝑥𝑘

𝑖𝑗
—the

number of heavy containers which are leased in short-term
by liner companies from port 𝑖 to port 𝑗; 𝑠𝑦𝑘

𝑖
—the number of

empty containers stocked in port 𝑖 of week 𝑘.
Equation (1) is the objective function, where 𝑖 and 𝑗

represent port, 𝑃 is the set of all ports in all voyages, 𝐾 is
the total working week within a year, 𝑅𝑘

𝑖𝑗
means the freight

rate from port 𝑖 to port 𝑗 at week 𝑘, 𝐶𝐹𝑘
𝑖𝑗
and 𝐶𝐸𝑘

𝑖𝑗
represents

from port 𝑖 to port 𝑗, the total handling costs generated by
one heavy container and empty container, respectively, 𝐶𝑅𝑘

𝑖𝑗

represents the total costs of short-term container leasing costs
and handling cost from port 𝑖 to port 𝑗, and 𝐶𝑆𝑘

𝑖
is the stock

cost of one TEU in port 𝑖. Equations (2) and (3) ensure that
in the case with different route structures, the containers
loaded on ship do not exceed shipping capacity on each
segment, where SEG

1
and SEG

2
are, respectively, the segment

set of route structure 1 and 2. Equation (4) means the heavy
containers transported are not bigger than actual transport
demand, where 𝐷𝑘

𝑖𝑗
is the transport demand from port 𝑖 to

port 𝑗 at week 𝑘. Equation (5)means the change of stockpile at
ports. Equations (6)–(9) assure that in slack season and brisk
season, the number of heavy container transported between
ports is constant. The model is liner programming model,
which can be solved by using classic algorithm.

4. Solution of the Model

Because the integer programming model considers some
additional constraints such as transport of heavy and empty
containers, short-term container lease, and stock capacity
of ports, it is hard to be solved. Genetic algorithms (GA)
have been applied to a very wide range of practical prob-
lems, for example, transit dispatching [9, 10], route network
optimization [11], and route headway design [12]. To find an
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approximate solution, we design a novel GA, named NGA
hereafter. The running steps are as follows.

Step 1 (Initialization). Set 𝑛 = 0, and then generate an
initial population 𝑃

𝑛
= {pop

𝑣
| 𝑣 = 1, . . . , 𝜆} where pop

𝑣
=

{𝑜𝑥
𝑘

𝑖𝑗
, 𝑜𝑦
𝑘

𝑖𝑗
}; 𝜆 is the population size.

Step 2 (Calculation of the Fitness Value). Computing the
fitness value of individual 𝑣 as fit

𝑣
with (1).

Step 3 (Convergence Judgment). Checking whether the gap
between the maximum fitness and the average fitness in
current generation is less than the preinstalled threshold 𝜇,
if yes, go to Step 4; otherwise, terminate the calculation.

Step 4 (Implementation of Selection, Crossover, andMutation
Operations). Let 𝑛 = 𝑛 + 1 and do selection, crossover, and
mutation operations to get a new generation of individuals
𝑃
𝑛
. Then return to Step 1.

5. Case Study

In this paper, we take the China-Europe voyage as our
study object. During slack season, the Asia-Europe voyage
is Qingdao-Hong Kong-Le Havre-Felix Stowe-Hamburger-
Qingdao; during brisk season, the voyage is Dalian (DL)-
Qingdao (QD)-Shanghai (SH)-Hong Kong (HK)-Le Havre-
Felix Stowe-Hamburger-Dalian.The total amount of contain-
ers from Asia to Europe in slack season is about 10500 TEU.
The freight in slack season is set as the average Maersk and
COSCO’s freight rate promulgated betweenMarch and April.
During brisk season, the transport demand is 50% higher
than brisk season, and the freight rate is 100% higher. The
stockpile cost of this liner company is 1 USD/TEU at ports
in Europe, and 0.5USD/TEU at ports in Asia.

For calculation, we set the maximum calculating itera-
tions as 200, the crossover probability as 0.92 and the muta-
tion probability as 0.01. We will terminate the calculation
when the gap between the maximum fitness and the average
one is less than 0.002.

After calculation, the result of model is obtained: the
fluctuation of empty and heavy container’s transport demand
at each port is shown in Figures 3 and 4. It can be learned
from Figure 3 that the transport scheme of heavy containers
remains stable inmajority of time.This result is in accordance
with the hypotheses proposed in model.

To stabilize the transport plan of heavy containers,
transport scheme of empty containers should be adjusted
constantly, and that is the reason why the number of empty
container from the first week to the twenty-sixth week of
each port changes regularly.The effects of cyclical fluctuation
of transport demand and route adjustment have on the
allocation of empty containers are shown in Figure 5. It can
be seen that during slack season (from the 1th week to the
13th week), the amount of empty containers stocked in Asia
ports and Europe ports fluctuates around 6000TEU and
3000TEU; while during the handover phase of slack season
and brisk season (from the 4th week to the 26th week), the
number of containers stocked at Europe port declines, and
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Figure 3: Heavy containers fluctuation of Asia ports.
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the empty containers stocked at Asia ports gradually increase.
The reason why this outcome is generated is liner companies
should store enough empty containers for the upcoming brisk
season in Asia ports. In brisk season (from 27th week to 39th
week), the number of empty containers in both Asia and
Europe ports is 0. In this case, all the empty containers owned
by liner company have been fully utilized, andmeanwhile, the
use efficiency is improved greatly.

6. Conclusion

In this paper, a model with objective maximizing total voyage
profits is proposed. In this model, cyclical fluctuation of
voyage, alteration of routes and the handover of transition
scheme are taken into consideration. The case study verified
the practicability of this model.
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This paper presents a joint discrete-continuous model for activity-travel time allocation by employ-
ing the ordered probit model for departure time choice and the hazard model for travel time pre-
diction. Genetic algorithm (GA) is employed for optimizing the parameters in the hazard model.
The joint model is estimated using data collected in Beijing, 2005. With the developed model,
departure and travel times for the daily commute trips are predicted and the influence of socio-
demographic variables on activity-travel timing decisions is analyzed. Then the whole time alloca-
tion for the typical daily commute activities and trips is derived. The results indicate that the
discrete choice model and the continuous model match well in the calculation of activity-travel
schedule. The results also show that the genetic algorithm contributes to the optimization and
thus the high accuracy of the hazard model. The developed joint discrete-continuous model can
be used to predict the agenda of a simple daily activity-travel pattern containing only work, and it
provides potential for transportation demand management policy analysis.

1. Introduction

The time allocation of individuals for trip making is an important determinant of the tem-
poral pattern of traffic demand on a transportation network. An analysis of individual time
allocation decision is, therefore, important for the practical work of transportation planning
and management as well as the theoretical work about travel behavior analysis and modeling.
Practically, understanding individuals’ time allocation decisions is essential for (a) planning
the development and construction of new transportation infrastructure by providing
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predicted temporal travel demands, (b) examining the potential responses to improved
operational measures (such as real-time information), (c) assessing the effectiveness of time-
specific transportation demand management policies, such as compressed working week [1],
staggered shift [2], road tolling [3], and other similar strategies [4, 5]. Theoretically, under-
standing time allocation decisions will not only facilitate the efforts toward developing a com-
prehensive full-scale model of daily activity patterns but also provide useful insights into the
nature of the impact of sociodemographic variables and time-space constraints on individual
dimensions of activity behavior. Therefore, time allocation has been a focused issue for re-
gional and transportation science since the 1970s [6].

In the time dimension, a daily activity-travel pattern includes all the timing and dura-
tion of all the activities and trips in a day. The need to analyze the daily activity pattern makes
it essential to consider time of day and activity-travel durations together. However, to date,
timing and duration have been largely treated separately in the literature [7], and many exist-
ing studies only considered part of daily activity agenda. For example, Vovsha and Bradley
[8] focused on the departure-from-home and arrival-back-home time decisions. Fujii and
Kitamura [9] and Hamed and Mannering [10] examined the time allocation of postwork
activities. Bhat and Singh [11] and Habib et al. [12] modeled the departure time of daily
commute trips, without involving the commute travel time. This study is aimed at addressing
this issue by developing a joint daily time allocation model to predict a typical daily activity-
travel schedule.

One important objective of transportation planning is to relief congestion by improv-
ing the level of service during the peak hours on the transportation network. Peak periods’
traffic demands, or the source of congestion, are largely contributed by commute trips. For
example, based on one survey conducted in Beijing, China, in 2005, over 32% of all the trips
in both morning and evening peak periods are commute trips. Therefore, commute trips are
at the core of many recent studies, such as Habib et al. [12], Zhang et al. [13], and Bhat and
Singh [11].

As stressed above, the study on commute trips and daily time allocation is of great
importance for learning the travel behavior during the peak hours as well as obtaining the
daily activity pattern, both of which are essential component of for transportation planning
and management. However, to the authors’ knowledge, there is no study that considered the
overall daily time allocation of commute activity-travel pattern as a whole and developed a
model system to predict it. Therefore, this paper focuses on predicting timing and duration
of daily commute trips, expecting that commuter’s typical travel schedule can be obtained
based on the developed model. Using data from a 2.5% sample household survey in Beijing,
China, a joint discrete-continuous model system for prediction of daily commute time
allocation was developed and estimated, including ordered probit models for departure time
analyzing and hazard models for travel time forecasting.

The choice of parameters is of great importance for the estimation efficiency and pre-
diction accuracy of the models. As there are a lot of potential factors affecting traveler’s deci-
sion about time allocation, genetic algorithms (GAs) will be employed in parameters opti-
mization. Being one of the heuristic algorithms, GA has been successfully applied in various
optimization problems [14, 15].

The remainder of this paper is organized as follows: Section 2 presents the literature
review on activity-travel time allocation in general. In Section 3, the joint discrete-continuous
time allocation model is built, in which the ordered probit method, AFT model, and GA
are employed. Section 4 predicts the commute activity-travel agenda by using the developed
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model. The paper closes with some overall conclusions and a discussion of future research
directions.

2. Relevant Literature

With respect to the two dimensions of time allocation, timing and duration, existing studies
can be classified into three categories: those only looked at departure time, those only looked
at travel time, and those looked at both.

For the first direction, timing, the major method employed is discrete choice model. For
example, Bowman and Ben-Akiva [16] modeled the departure and arrival time of daily trips
using the multinomial logit (MNL) model. Small [17] built an MNL model for home-work
morning departure time choice. Vovsha and Bradley [8] and Ettema et al. [7] also employed
the MNL model but specified a continuous time variable in its utility function. Bhat [18] and
Small [19] derived the ordered generalized extreme value (OGEV) model for departure time
choice and time of day analysis, respectively. Habib et al. [12] introduced OGEV model into
analysis of work start time and work duration because it allows for the accommodation of
correlation among time period alternatives. In this way, it resolves the IIA (independence
of irrelevant alternatives) problem of MNL model, which assumes zero correlation among
different time periods.

For the second aspect (duration analysis), the most widely used model is the hazard
model. The hazard model recognizes the dynamics of travel or activity durations by con-
sidering the conditional probability of event termination, usually as a function of covariates
(explanatory variables) [12]. Bhat [20, 21] applied hazard modeling framework to analyze
after-work activity duration. Juan and Xianyu [22] considered daily travel time using hazard-
based duration model. Bhat [20, 21] analyzed the duration of shopping activity by employing
hazard-based duration model. As a matter of fact, a few studies also used hazard model in
timing analysis. Examples include research by Habib et al. [12] on investigation of trip timing
and by Bhat and Steed [23] on departure time choice for shopping trip.

Comparing with the first two categories of studies, those using the joint analysis of tim-
ing and duration are more helpful for the modeling of daily activity schedule, by contribut-
ing to an insight into the influence and connection among duration and time of day choice
as well as activities and trips. The examples include the study done by Janssens et al. [24]
on time allocation of daily activity-travel patterns, by Fujii and Kitamura [9] on timing and
duration of commuters’ daily activity patterns after work hours, by Habib [25] on work start
time and work duration, by Raux et al. [6] on daily time allocation of travel and out-of-home
activity, by Schwanen and Dijst [26] on relationship between commuting time and work dura-
tion, and by Vovsha and Bradley [8] on departure-time and duration of home-based trips.
Similar studies also include Ettema et al. [7], Pendyala and Bhat [27], and Habib et al. [28].
The models involved in these studies include reinforcement machine learning technique [24],
structural equations model [9], hazard model [6, 25, 28], and MNL model with a continuous
time variable in the utility of its function [7, 8].

There is also a kind of conjunct model that was used in the analysis of timing and dura-
tion, which is the discrete-continuous choice model. Pendyala and Bhat [27] examined the
relationship between time of day choice and activity episode duration using discrete-contin-
uous simultaneous equations, but it was neither on daily time allocation simulation nor
the commute trips. Similar discrete-continuous models were employed by Habib et al. [12],
Habib [25], and Hamed and Mannering [10]. Both of the first two studies modeled the joint
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Figure 1: Basic time allocation of daily commute activity-travel pattern.

mode and commute timing choice with discrete choice model and continuous model, but
not focusing on daily activity-travel schedule particularly. Concerning the research by Hamed
and Mannering [10], the discrete-continuous models are used to predict the travelers activity-
type preference (discrete choice model), the travel time to the activity and back home (con-
tinuous model), and activity duration (continuous model). For modeling of time allocation,
only continuous model was employed. However, the results of these four studies mentioned
above all confirmed that the discrete-continuous choice models work well for the activity-
travel behavior related study.

Moreover, the study of Pendyala and Bhat [27] suggests that time of day and activity
duration is only loosely related for the commuter sample. Therefore, travel departure time
and travel duration will be modeled in this paper, instead of activity duration. In this case, the
work duration can be calculated according to the arrival time at work location and departure
time of the next activity after work.

3. Modeling Time Allocation of Daily Commute Trips

3.1. Analysis of the Commute Activity-Travel Agenda

In this paper, work location refers to the usual work location for a worker and the usual school
location for a student. As shown in Figure 1, a typical daily commute activity-travel pattern
is home-to-work commute—work activity—work-to-home commute. Key time and duration
values in this pattern include home-to-work morning departure time (Dt1)—home-to-work
travel time (T1)—arrival time at work location (A1)—duration of work (D1)—work-to-home
evening departure time (Dt2)—work-to-home travel time (T2)—arrival time at home (A2).
Within this pattern, the departure times Dt1 and Dt2 and the travel times T1 and T2 are most
important. Known their values, one can easily derive the other three times (A1, D1, and A2)
using the following equations:

A1 = Dt1 + T1,

D1 = Dt2 −A1,

A2 = Dt2 + T2.

(3.1)

This study employs the ordered probit model (belonging to the discrete choice models)
for departure time forecasting and the hazard model (belonging to the continuous models)
for travel time analysis. Four models, home-to-work departure time choice model, home-to-
work travel time estimation model, work-to-home departure time choice model, and work-
to-home travel time estimation model will be developed and the values of Dt1, T1, Dt2, and
T2 will be predicted. Values of A1, D1, and A2 are then calculated based on (3.1). Figure 2 is a
schematic representation of the entire modeling process.
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Figure 2: Modeling process of the commute activity-travel time allocation.

3.2. Data

This study uses data from a large-scale daily travel survey conducted in Beijing, China, in
2005. A face-to-face interview was given to a sample of 54,398 households, and activity/travel
information of all household members on one particular working day is collected. The study
area is 1,368 km2 (covering all 18 districts of Beijing) and had more than 30 millions’ popula-
tion in 2005. In addition to weekday OD information, the survey also collected information
regarding household (size, car ownership, home location, monthly income, and mobility),
people (age, gender, driving license, and occupation), and trips (departure time, arrival time,
purpose, mode, transit path, etc.). With records containing missing values eliminated, our
final sample consists of 37,842 commute trips of 37,842 individual workers/students from
28,382.

Based on a preliminary correlation test, 15 sociodemographic and trip characteristics
variables were selected from the survey, shown in Table 1.

The statistics of the variables based on the sample data are shown in Table 2.

3.3. Departure Time Choice Model

The reported home-to-work morning departure time and the work-to-home evening depar-
ture time cover the time period of 4:00 am–12:00 am and 15:00 pm–22:00 pm, respectively, in
our sample. Moreover, we observed that the home-to-work morning and the work-to-home
evening peak hours in Beijing are 6:00 am–9:00 am and 16:00 pm–19:00 pm using our sample
data. In order to reduce the number of alternatives in the models’ choice set, we divided
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Table 1: Variables in the departure time choice models.

Factors Variables Values

Gender Gender Male: 1, female: 0

Age Age Continuous values
Below 1500 RMB: 1

1501–2500 RMB: 2

2501–3500 RMB: 3

Month income Income 3501–5500 RMB: 4
5501–10000 RMB: 5

10001–20000 RMB: 6

20001–30000 RMB: 7

Over 30001 RMB: 8

Vocation
Blue-collar worker (manufacture,
construction, maintenance, etc.)

Occu-b Yes: 1, No: 0

Administration Occu-a Yes: 1, No: 0

Education Occu-e Yes: 1, No: 0

Services Occu-s Yes: 1, No: 0

Health care Occu-h Yes: 1, No: 0

Travel mode
Walk Mode-w Yes: 1, No: 0

Bike Mode-bi Yes: 1, No: 0

Bus Mode-bu Yes: 1, No: 0

Auto Mode-a Yes: 1, No: 0

Travel distance Distance Continuous value (meter)

Dummy variable of going to work Work Yes: 1, no: 0 (going to school)

departure times into one-hour segments in peak periods and segments of two or three hours
in off-peak periods. Table 3 shows the discrete alternatives for the home-to-work and work-
to-home departure time choices.

As shown in Table 2, the alternatives of the departure time choice models are naturally
ordered time periods. MNL model, which is commonly used in departure time modeling,
would fail to account for the ordinal nature of the dependent variable and have the problem of
IIA. This study will employ the ordered multiple choice model for departure time modeling
instead.

The ordered multiple choice model assumes the following relationship:

J∑

j=1

Pn

(
j
)
= F
(
αj − βjXn, θ

)
, j = 1, . . . , J − 1,

Pn(J) = 1 −
J∑

j=1

Pn

(
j
)
,

(3.2)

where Pn(j) is the probability that alternative j is chosen as departure time of trip n (n = 1,. . .,
N), αj is an alternative specific constant, Xn is a vector of attributes of trip n, βj is a vector of
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Table 2: Statistics index of the variables.

Variables Percentage of each value
1 0

Gender 50.96% 49.04%
Occu-b 42.44% 57.56%
Occu-a 3.48% 96.52%
Occu-e 30.29% 69.71%
Occu-s 9.19% 90.81%
Occu-h 2.49% 97.51%
Mode-w 42.51% 57.49%
Mode-bi 43.89% 56.11%
Mode-bu 0.31% 99.69%
Mode-a 4.67% 95.33%
Work 72.79% 27.21%

1: 13.46% 5: 11.86%

Income 2: 24.90% 6: 1.41%
3: 24.18% 7: 0.16%
4: 23.92% 8: 0.10%

Continuous variables
Variables Mean Standard deviation
Distance 2806.1 3416.91
Age 32.93 15.32

Table 3: Alternatives in the departure time choice models.

Home-to-work departure time Work-to-home departure time Coded value
(4:00, 6:00] (15:00, 16:00] 1
(6:00, 7:00] (16:00, 17:00] 2
(7:00, 8:00] (17:00, 18:00] 3
(8:00, 9:00] (18:00, 19:00] 4
(9:00, 12:00] (19:00, 22:00] 5

estimable coefficients, and θ is a parameter that controls the shape of probability distribution
F. Therefore, F can have various shapes of distribution based on a different value of θ.

The ordered probit model, which assumes standard normal distribution for F, is the
most commonly used. The ordered probit model has the following form:

Pn(1) = Φ
(
α1 − βjXn

)
,

Pn

(
j
)
= Φ
(
αj − βjXn

) −Φ(αj−1 − βjXn

)
, j = 2, . . . , j − 1,

Pn(J) = 1 −
J−1∑

j=1

Pn

(
j
)
,

(3.3)

where Pn(j) is the cumulative standard normal distribution function. For all the probabilities
to be positive, we must have α1 < α2 < · · · < αJ−1. The estimation results of the home-to-work
and the work-to-home departure time choice models are shown in Table 4.
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The estimation results indicate that high-income travelers are more likely to depart
from home or work location later than travelers with low income. Older persons tend to have
earlier departure times than younger ones. Commuters whose occupations are administra-
tion or health care are more likely to depart from home earlier but back to home (from work
location) later than those with other occupations. The probability that students or teachers
have early departure times both from home and school is high. Workers and servers tend to
depart from workplace late. Concerning gender, men are more likely to leave home earlier but
leave work later than women. Regarding travel modes, commuters choosing walk or auto
have late home-to-work and work-to-home departure times. Bikers tend to leave home ear-
lier, while commuters taking bus depart from workplace later. Long-distance trips tend to be
made later from home while earlier from work location. Workers are more likely to leave
home later than students.

3.4. Travel Time Estimation Models

3.4.1. AFT Model and KM Estimator

According to the travel survey data in Beijing, the average travel time for the home-to-work
commute is 19.36 minutes, with a maximum of 205 minutes and a minimum of 1 minute; the
average duration for the work-to-home commute is 18.36 minutes, with a maximum and a
minimum of 168 minutes and 1 minute, respectively.

Treating travel times as natural continuous variables, one can use the hazard model to
predict both the home-to-work and the work-to-home travel times. Hazard-based duration
models are ideally suited to modeling duration data [20, 21], such as travel time and activity
duration. The hazard (also called a hazard rate) represents a termination rate of the duration.

Let T be a nonnegative random variable representing the travel time. The hazard at
time t on the continuous time-scale h(t) is defined as the instantaneous probability that the
travel duration under study will end in an infinitesimal time period Δt after time t, given that
the duration has not elapsed until time t. A mathematical definition for the hazard function
is as follows:

h(t) = lim
Δ→ 0+

P(t ≤ T < t + Δ | T > t)
Δ

. (3.4)

Let f(·) and F(·) be the density and cumulative distribution function for T , respec-
tively. Then the probability of ending in an infinitesimal interval of range Δt, after time t, is
f(t)Δt. And the probability that the process lasts for at least t is given by the survival equation
(3.5):

S(t) = P(T > t) = 1 − F(t). (3.5)

Thus, the hazard function can be further expressed as

h(t) =
f(t)
S(t)

=
dF(t)/dt

S(t)
=
−dS(t)/dt

S(t)
=
−d lnS(t)

dt
. (3.6)

The distribution of the hazard can be assumed to be one of many parametric forms
or to be nonparametric. Because the distribution of the travel time is unknown, one of
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Table 4: Estimation results of the departure time choice models.

Variables Home-to-work departure time choice model Work-to-home departure time choice model
Coef. t-stat. Coef. t-stat.

Income 0.09 19.14∗ 0.06 16.18∗

Age −0.01 −10.49∗ −0.01 −29.41∗

Occu-w — — 0.43 32.00∗

Occu-a −0.14 −4.60∗ 0.35 11.44∗

Occu-e −0.72 −27.09∗ −0.25 −12.96∗

Occu-s — — 0.27 11.68∗

Occu-h −0.48 −12.96∗ 0.33 9.24∗

Gender −0.11 −9.34∗ 0.08 8.36∗

Mode-w 0.18 7.89∗ 0.42 35.49∗

Mode-bi −0.41 −19.30∗ — —
Mode-bu — — 0.59 4.76∗

Mode-a 0.10 3.12∗ 0.41 15.29∗

Distance 0.000067 −32.89∗ −6.26e − 06 −3.11∗

Work 0.39 12.92∗ — —
α1 −2.42 — −1.30 —
α2 −0.98 — 0.01 —
α3 0.58 — 0.97 —
α4 1.60 — 2.07 —
Hit ratio 64.36% 61.00%
P value 0.0000 0.0000
N 37842
∗Significant at 1% level.

the nonparametric methods, the Kaplan-Meier (KM) product limit estimator, is conducted
to explore the covariate effects and the potential distribution.

As a nonparametric method, the KM estimator produces an empirical approximation
of survival and hazard but hardly takes any covariate effects into consideration. It is similar
to an exploratory data analysis. Denoting the distinct failure times of individuals n as t1 < t2 <
· · · < tm, the KM estimator of survival at time ti is computed as the product of the conditional
survival proportions:

SKM(ti) =
i∏

k=1

r(tk) − d(tk)
r(tk)

, (3.7)

where r(tk) is the total trips at risk for ending at tk and d(tk) is the number of trips stopping
at tk.

By using the KM estimator, the survival function curves of the home-to-work and the
work-to-home travel time are estimated, which are shown in Figures 3 and 4, respectively.
The results indicate that the survival probability decreases with travel time, which implies
an accelerated failure time (AFT) model with Weibull or Exponential distribution should be
employed. Therefore, the AFT model is developed to examine the linkages between travel
time and covariates relative to individual and household.

The AFT model is one of the popular parametric forms of hazard model. It permits the
covariates to affect the duration dependence. The survival function of AFT model is given as

S(t) = S0
[
t · exp

(−β′X)], (3.8)
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Figure 3: Survival curve of the home-to-work travel time.
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Figure 4: Survival curve of work-to-home travel time.

where S0(·) is the baseline survival function. The corresponding hazard function is

h(t) =
−∂S(t)/∂t

S(t)
= h0

[
t · exp

(−β′X)] exp
(−β′X). (3.9)

The AFT model can be expressed as a log-linear model:

ln t = β′X + ε. (3.10)

Assuming the random error ε follows either a Weibull distribution or an Exponential
distribution, one can get two kinds of AFT models, and both of them are often used in dura-
tion analysis.
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3.4.2. GA for Parameter Optimization

The parameters in the AFT models will influence the estimation efficiency and prediction
accuracy of the models greatly, especially for large-scale or real-time feature practice applica-
tion. Therefore, this paper attempts to find the appropriate parameters in AFT models by
using GA. GA is a part of evolutionary computing, which is a rapidly growing area of artif-
icial intelligence. The process of GA is as follows.

Encoding of Chromosome

GA is started with a set of solutions (represented by chromosomes) called population. The
individuals comprising the population are known as chromosomes. In most GA applications,
the chromosomes are coded as a series of zeroes and ones, or a binary bit string. For the
travel time forecasting models, some parameters are continuous valued (like distance and
age) while some are discrete valued (such as the variables about mode and occupation).
Therefore, the real encodings were adopted for continuous-valued parameters, and the binary
bit string was adopted for discrete-valued parameters. Thus, each chromosome consists of n
“genes”, gent1, gent2,. . ., gentn, which represents n parameters, respectively.

Crossover

Crossover is a reproduction technique that takes two parent chromosomes and produces two
child chromosomes. A commonly used method for crossover called one-point crossover [29,
30] will be employed in this study. In this method, both parent chromosomes are split into
left and right subchromosomes, where the left subchromosomes of each parent are the same
length, and the right subchromosomes of each parent are the same length. Then each child
gets the left subchromosome of one parent and the right subchromosome of the other parent,
as shown in Figure 5. The split position (between two successive genes) is called the crossover
point. For example, if the parent chromosomes are 011 10010 and 100 11110 and the crossover
point is between bits 3 and 4 (where bits are numbered from left to right starting at 1), then
the children are 01111110 and 100 10010. We will call crossover applied at the bit level to bit
strings binary crossover, and crossover applied at the real parameter level real crossover.

Mutation

Mutation is a common reproduction operator used for finding new points in the search space
to evaluate. A genetic mutation operation [31] is used in this paper.

Assume a chromosome is G = (gent1,gent2, . . . ,gentn) if the genti (i = 1, . . . , n) is selected
for the mutation, the mutation can be shown in

G′ =
(

gent−1
1 ,gent−1

2 , . . . ,gent−1
n

)
,

genti =

⎧
⎨

⎩
gent−1

i + Δ
(
t,genti,max − gent−1

i

)
if random (0, 1) = 0,

gent−1
i + Δ

(
t,gent−1

i − genti,min

)
if random (0, 1) = 1,

(3.11)

where n is the total number of the parameters.
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Parent 1

Parent 2

Child 1

Child 2

Figure 5: Crossover diagram.

The function Δ(t, y) returns a value between [0, y] given in

Δ
(
t, y
)
= y ×

(
1 − r(1−t/Tmax)n

)
, (3.12)

where r is a random number between [0, 1]; Tmax is a maximum number of generations. This
property causes this operation to make a uniform search in the initial space when t is small
and a very local one in later stages.

To deal with the problem that the mutation may violate the parameters constraints,
we will assign a relatively high weight to reduce their probability of being selected in the
following search [31].

Termination

There are four GA parameters, namely, pc, pm, psize, and Tmax, that need to be predetermined.
Considering the features of this problem and our experiences in GA, the values of four GA
parameters are set to be 0.6, 0.05, 80, and 5000, respectively.

3.4.3. Estimation Results

Home-To-Work Travel Time Estimation Model

Figure 6 illustrates the survival curves for the home-to-work travel time influenced by several
major variables. It shows that factors of departure time, travel mode, income, gender, and
going to work have influences on home-to-work travel time.

Two AFT models are estimated, each of which assumes the random error in (3.10)
follows a Weibull distribution, and an Exponential distribution, respectively. The parameters
are optimized using GA and then estimated using maximum likelihood estimation (MLE).
The estimation results are shown in Table 5.

The mean absolute percentage error (MAPE), which looks at the average percentage
difference between predicted values and observed ones, is adopted to examine the accuracy
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Table 5: Estimation results of the home-to-work travel time model.

Variables
Weibull distribution Exponential distribution

Coef. z-stat. Coef. z-stat.
Constant 3.11 163.26 2.84 73.09
Income −0.01 −4.82 −0.01 −2.65
Age 0.01 22.49 0.00 7.00
Occu-e −0.20 −19.86 −0.10 −4.49
Gender −0.04 −7.38 −0.04 −3.72
Mode-w −0.18 −17.28 −0.14 −7.65
Mode-bi 0.07 7.04 0.15 8.93
Mode-bu 0.20 4.28 — —
Mode-a −0.04 −2.97 — —
Distance 0.00013 100.58 0.00012 57.51
Departure time −0.09 −29.84 −0.09 −13.06
Work −0.32 −29.82 −0.19 −7.36
γ 0.50 — 1 —
Prob > chi2 0.0000 0.0000
N 37842

Table 6: Goodness of fit index and estimated distribution statistics of the home-to-work travel time model.

Model statistics Weibull distribution Exponential distribution
MAPE value 0.4449 0.3882
Mean (min) 18.46 13.66
Maximum (min) 6.02 5.09
Minimum (min) 158.64 114.08

of the developed home-to-work travel time model. MAPE is calculated as

MAPE =
1
n

n∑

i−1

∣∣∣∣
Ai − Pi

Ai

∣∣∣∣, (3.13)

where Ai is the observed value and Pi is the predicted value for observation i. The MAPE
values of the two AFT models are shown in Table 6.

According to the results shown in Table 5, the MAPE value of the Exponential distribu-
tion is less than that of the Weibull distribution, indicating that the values predicted by the
AFT model with the Exponential distribution is more close to the actual travel time. There-
fore, the Exponential distribution function is chosen. The hazard function and survival func-
tion are shown as follows:

h(t) = exp (2.84 − 0.01 Income + 0.0098 Age − 0.1 Occue − 0.04 Gender − 0.14 Modew

+ 0.15 Modebi + 0.00012 Distance − 0.09 Departure time − 0.19 Work),

s(t) = exp ( − exp(2.84 − 0.01 Income + 0.0098 Age − 0.1 Occue − 0.04 Gender − 0.14 Modew

+ 0.15 Modebi + 0.00012 Distance − 0.09 Departure time − 0.19 Work)).

(3.14)
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(b) Dummy variable of going to work
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(d) Income
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(e) Gender
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(f) Occupation

Figure 6: Survival curves of the home-to-work travel time impacted by several factors.

The estimation results indicate that the most essential factor of travel time is distance.
The longer the distance from home to work is, the more time it will take. Comparing with
other travel modes, the travel times of walk are 14% lower while those of bike are 15% higher.
The reason is that, at first short distance encourages short travel time according to the estima-
tion results, and then distance has influence on mode decisions, that is, walking usually
belongs to short-distance travel comparing to biking. As for the factor of departure time,
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the results show that the later the departure times are, the longer the travel times will be. In
the above three parameters, the factors of distance and mode are related to the transportation
network, while the real traffic condition is considered by using departure time as a factor,
because the traffic condition depends regularly on departure time. For instance, if a traveler
departs from home in the morning peak time, the probability that he/she encounters traffic
congestion is much larger than that in the nonpeak time. The results also show that the higher
travelers’ income is, the less their travel time will be. The travel times of students or teachers
are about 10% less than those of other travelers. The older the travelers are, the longer the
travel time will be. Women have longer travel time than men. The travel times of travelers
whose occupation is administration are 19% longer than that of education.

Work-To-Home Travel Time Estimation Model

Figure 7 illustrates the survival curves for the work-to-home travel time influenced by several
variables of the interest. The AFT models with both Weibull distribution and Exponential
distribution are employed for the work-to-home travel time modeling. The estimation results
and the MAPE values of the two AFT models are shown in Tables 7 and 8, respectively.

Same as the home-to-work model, the AFT model of work-to-home travel times with
Exponential distribution is better than that with Weibull distribution. Therefore, the former
is selected. The hazard function and survival function are as follows:

h(t) = exp (2.53 − 0.01 Income + 0.0033 Age − 0.03 Occuw + 0.07 Occue − 0.06 Modew

+ 0.08 Modebi + 0.00015 ∗Distance − 0.06 Departure time),

s(t) = exp( − exp(2.53 − 0.01 Income + 0.0033 Age − 0.03 Occuw + 0.07 Occue

− 0.06 Modew + 0.08 Modebi + 0.00015 ∗Distance − 0.06 Departure time)).
(3.15)

The estimation results indicate that the travel time of high-income travelers is 1% lower
than that of low-income travelers. Moreover, old persons are likely to spend longer time in
work-home trip. Regarding commuter’s occupation, blue-collar workers are likely to spend
shorter time for evening commute trip, while the travel times for teachers or students are
longer. Comparing with other modes, walking trips have shorter time, while cycling trips
have longer time. Long-distance trip takes longer travel time. The later the commuters depart
from work, the longer the travel times will be.

4. Prediction of the Commute Activity-Travel Agenda

As explained in Section 3.1, the key timings and durations A1, D1, and A2 can be calculated
once the values of Dt1, T1, Dt2, and T2 are predicted. Here is an example: the first member
in the family with ID number 010104065 in our sample, Mr. Chen, is 45 years old, has an
occupation of services, and earns 0–1500 RMB every month. His commute mode is walk, and
the distance of one-way commute trip is 1500 meters. He had a typical commute activity-
travel pattern on the survey day, which is shown in Figure 8.

Based on the developed models, his daily commute time allocation is predicted and
shown in Figure 9.
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Figure 7: Survival curves of the work-to-home travel time impacted by several factors.

Table 7: Estimation results of the work-to-home travel time model.

Variables Weibull distribution Exponential distribution
Coef. z-stat. Coef. z-stat.

Constant 2.65 164.15 2.53 79.98
Income −0.01 −8.13 −0.01 −3.57
Age 0.0034 19.23 0.0033 8.80
Occu-w −0.03 −6.20 −0.03 −2.22
Occu-e 0.05 6.56 0.07 4.25
Mode-w −0.06 −5.53 −0.06 −3.51
Mode-bi 0.05 4.38 0.08 −3.51
Mode-a 0.05 3.33 — —
Distance 0.00015 119.81 0.00015 66.12
Departure time −0.06 −23.50 −0.06 −11.96
γ 0.4835 — 1 —
Prob > chi2 0.0000 0.0000
N 37842
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Table 8: Goodness of fit index and estimated distribution statistics of the work-to-home travel time model.

Model statistics Weibull distribution Exponential distribution
MAPE value 0.4541 0.3905
Mean (min) 18.50 13.36
Maximum (min) 8.44 6.17
Minimum (min) 269.11 172.80

7:45 8:00 17:00 17:15

Home
Work-to-home

commute Work activity Home

Home-to-work
commuteWork Work

15 minutes8:00–17:0015 minutes

Figure 8: Observed commute activity-travel pattern and time allocation.

7:00–8:00 7:09–8:09 16:00–17:007:09–17:00

Home

Work-to-home
commute Work activity Home

Home-to-work
commuteWork Work

9.13 minutes 10.31 minutes
16:10–17:10

Figure 9: Predicted commute time allocation.

Comparing with the observed values, the errors of the predicted results can be cal-
culated as follows.

(i) The errors of home-to-work departure time: the maximum error is 45 minutes, the
minimum error is 15 minutes.

(ii) The error of home-to-work travel time: 5.47 minutes.

(iii) The errors of arrival time at work location: the maximum error is 51 minutes, and
the minimum error is 0 minute.

(iv) The errors of work-to-home departure time: the maximum error is 60 minutes, and
the minimum error is 0 minute.

(v) The error of work-to-home travel time: 4.29 minutes.

(vi) The errors of arrival time at home: the maximum error is 65 minutes, and the mini-
mum error is 5 minutes.

By comparing the predicted values of the developed daily time allocation model with
the observed values of our sample, the maximum errors for all the departure times and the
activity-travel durations are as follows: error(Dt1) = 21.38 minutes; error(T1) = 7.40 minutes;
error(A1) = 28.78 minutes; error(D1) = 28.78 minutes; error(Dt2) = 23.40 minutes; error(T2) =
7.17 minutes; error(A2) = 30.57 minutes. These statistics indicate that the overall goodness of
fit of the model is rather satisfying.

Results also show that the errors of departure and arrival time are much larger than
that of the travel time. The main reason is that we divided the natural continuous departure
time into discrete time interval artificially, which reduces the predictive accuracy of the
model. It has been tested that the smaller the interval is, the higher the predictive accuracy
will be. However, as there are already five alternatives for both of the departure time choice
models, at least half-an-hour interval will make the number of the alternatives double. Then
the model will be more complex and the efficiency of the model will be lower.
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5. Conclusions

In this paper, we have formulated and estimated a joint model of departure time choice
and travel duration for commuters’ daily activity-travel time allocation. Two ordered probit
models have been employed to forecast the home-to-work and work-to-home commute
departure time. By doing so, we were able to recognize the natural temporal ordering among
the departure time alternatives and address the IIA limitation of the standard MNL model.
Furthermore, two AFT models were built and estimated to predict home-to-work and work-
to-home travel times by using GA as parameters optimization. Then timing choice of a simple
daily activity-travel pattern has been calculated.

Comparing with the previous studies, this paper developed a joint discrete-continuous
model system to predict all the departure times and the activity-travel durations of a typical
daily commute activity pattern. Results of this study not only contribute to developing a full-
scale daily activity pattern forecasting model but also provide useful insights in the influence
of sociodemographic variables on activity-trip timing decisions as well as the time constraint
between daily activities and trips. Moreover, GA contributes to the optimization and thus the
high accuracy of the travel time prediction model. In addition, this analysis of daily commute
time allocation can be applied to a wide range of TDM policies, especially the measures aimed
at adjusting the commute times, such as flexible work and compressed working week. For
examining the effects of the traffic demand strategies, the developed model cannot only
describe the overall change of the daily activity schedule caused by the strategies but also
explore the time tradeoff between the connected trips as well as trips and activities. Besides
evaluating the effects of the transportation demand management strategies, this study is also
essential for planning the development and construction of new transportation infrastructure
as well as examining the potential responses to improved traffic operational measures.

The results of this paper confirm that the discrete choice models and the continuous
models can match well in the calculation of a whole-day activity-travel schedule, although
comparing with the continuous models, the predictive accuracies of the discrete choice
models are a little lower, as they divide the naturally continuous time into artificially defined
time periods. Similar studies were also found to employ the discrete-continuous methods to
model coupled mode and commute timing choice [12, 25]; joint activity-type preference,
travel time, and activity duration [10]; as well as other activity-travel behaviors [27].
Therefore, it can be expected that we can further employ the combination of the discrete and
continuous models to predict all the dimensions of the entire-day activities and trips. This
future study can provide more useful insights into the nature of travelers’ daily activity-travel
decision making.

It should be pointed out that only the typical commute activity-travel pattern, com-
prising two commute trips and one work activity, has been considered in this paper. In reality,
it is also common to observe other commute activity-travel patterns such as those including
work-based subtour or home-based nonwork trips, or those having stops during commute
travel. Further study may be done to model such daily activity-travel patterns. It will also be
very important to exam one’s activity-travel patterns over multiple days if the multiday travel
survey data can be obtained.
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We present a hybridization of two different approaches applied to the well-known Capacitated
Facility Location Problem (CFLP). The Artificial Bee algorithm (BA) is used to select a promising
subset of locations (warehouses) which are solely included in the Mixed Integer Programming
(MIP) model. Next, the algorithm solves the subproblem by considering the entire set of customers.
The hybrid implementation allows us to bypass certain inherited weaknesses of each algorithm,
which means that we are able to find an optimal solution in an acceptable computational
time. In this paper we demonstrate that BA can be significantly improved by use of the MIP
algorithm. At the same time, our hybrid implementation allows the MIP algorithm to reach
the optimal solution in a considerably shorter time than is needed to solve the model using
the entire dataset directly within the model. Our hybrid approach outperforms the results
obtained by each technique separately. It is able to find the optimal solution in a shorter time
than each technique on its own, and the results are highly competitive with the state-of-the-
art in large-scale optimization. Furthermore, according to our results, combining the BA with a
mathematical programming approach appears to be an interesting research area in combinatorial
optimization.
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1. Introduction

Heuristics and bioinspired techniques have become efficient and effective alternatives for
researchers in solving several complex optimization problems. These types of techniques are
able to provide satisfactory solutions for most of the applied problems within acceptable
computational times. However, in spite of their effectiveness, these techniques are not
able to reach the optimal solution (or ensure its optimality) for large-scale combinatorial
optimization problems. In contrast, mathematical programming techniques, particularly the
Mixed Integer Programming (MIP), have been studied and developed by scholars over
several decades with the main goal of obtaining optimal solutions to difficult problems
using as little CPU time as possible. In this case, researchers must face the tradeoff between
computational time and the quality of the result. For these reasons, the combination of meta-
heuristics and various mathematical approaches has become a well-studied area. Interested
readers can find two recent and comprehensive works on the hybridization of stochastic
techniques and mathematical programming (MP) approaches in [1, 2].

Swarm Intelligence (SI), as well as other mathematical programming techniques, has
been applied successfully to several difficult combinatorial optimization problems (see [3–
6] for a range of applications). Additionally, as mentioned above, hybrid strategies have
been developed to improve the effectiveness of these techniques. A more complete review
is provided in Section 2.

The Artificial Bee algorithm (BA) is a relatively new approach in SI. Originally
proposed in 2006 [7], it was mainly inspired by the foraging behavior of honeybees and
has been applied to a range of problems in both combinatorial and functional optimizations
with highly successful results. The BA has also been applied to large-scale problems [8]
and has outperformed other well-known swarm-based algorithms, including Particle Swarm
Optimization (PSO) and Differential Evolution (DE). However, as with almost all stochastic
approaches, the BA cannot ensure optimality even when the optimal solution is found. For
small- and medium-size instances, this limitation is not highly relevant because heuristics
techniques have empirically demonstrated their ability to achieve convergence in quite
acceptable time; therefore, solutions provided by stochastic approaches are likely to be
optimal (or a very good approximation) in large-scale instances. However, when large-scale
optimization is considered, it is not possible to know how “good” the solution provided by
the heuristic.

In this paper, we propose a hybrid algorithm of the BA and the MIP for solution
of several large-scale instances of the well-known Capacitated Facility Location Problem
(CFLP). The CFLP is one of the most important problems for companies that distribute
products to their customers. The problem consists of selecting specific sites at which to install
plants, warehouses, and distribution centers while assigning customers to service facilities
and interconnecting facilities using flow assignment decisions. This paper considers a two-
level supply chain in which a single plant serves a set of warehouses, which in turn serve a
set of end customers or retailers. Figure 1 shows the basic configuration of our supply chain.
Therefore, we aim to solve this problem by finding a set of locations that allow us to serve
the entire set of customers in an optimal way. As Figure 1 shows, each customer (or cluster)
is served only by one warehouse.

Despite its good performance in several optimization problems, the BA is not able to
provide an optimal solution for large-scale problems. Furthermore, it is possible to become
trapped in a local optimum. To bypass these drawbacks, we propose a hybrid algorithm that
selects a subset of promising centers using the BA and subsequently solves the subproblem
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Figure 1: A two-level supply chain network configuration.

using a simple MIP algorithm. The BA guides the process while the MIP provides the optimal
values of the simplified problems. One distinctive feature of our algorithm is that it solves the
primary problem directly using the MIP algorithm, which is possible due to the reduction of
the search space produced by the BA algorithm.

Although several works that have proposed various hybrid approaches to solve the
CFLP and its uncapacitated (UFLP) version exist in the literature (e.g., [9, 10]), we are
unaware of any prior publications that use the Bees Algorithm (BA) to solve a large-scale
CFLP. Moreover, we have found no articles that hybridize the BA with an MP approach
in any optimization problem. Therefore, one contribution of this paper is the presentation
of a performance analysis for the hybrid BA-MIP algorithm. A second contribution is the
application of the BA to a large-scale problem that provides optimal solutions rather than
only locally optimal solutions.

The remainder of this paper is organized as follows. Section 2 presents an overview
of the CFLP and BA concepts. The hybrid BA-MIP algorithm is covered in Section 3, and a
detailed explanation of the algorithm is also presented in this section. Section 4 begins with
a brief description of the benchmarks used in this paper, and the experimental results are
subsequently presented and discussed. Finally, Section 5 outlines selected conclusions.

2. Literature Review

This section presents a literature review. Section 2.1 discusses the mathematical model for
CFLP and provides relevant background for certain approaches presented in the literature.
Section 2.2 provides an overview of the BA and highlights its main features.

2.1. Capacitated Facility Location Problem

The CFLP in this work contains a set of warehouses that supply a set of customers that are
uniformly distributed in a limited area. The model considers the installation cost (i.e., the
cost associated with opening a specific warehouse) and transportation or assignation cost
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(i.e., the cost related to transportation of a specific amount of products from a warehouse to
a customer). The mathematical model for the CFLP is presented as follows:

N∑

i=1

FiXi +
N∑

i=1

M∑

j=1

CijYij , (2.1)

s.t.:

N∑

i=1

Yij = 1, ∀j = 1, . . . ,M (2.2)

Yij ≤ Xi, ∀i = 1, . . . ,N, ∀j = 1, . . . ,M (2.3)

M∑

j=1

μjYij ≤ ICAP
i , ∀i = 1, . . . ,N (2.4)

Xi ∈ {0, 1}, Yij[0, 1], ∀i = 1, . . . ,N; ∀j = 1, . . . ,M. (2.5)

Equation (2.1) represents the total system cost. The first term denotes the fixed setup and
operating cost for opening warehouses, and the second term indicates the daily transport
cost between the warehouse and the customers. Equation (2.2) ensures that the customer
demands are completely served by the system. Equation (2.3) ensures that the customers are
assigned to the installed warehouses (Xi = 1). Equation (2.4) states that the summation of the
demand μ of each customer served by a particular warehouse imust be less than or equal to a
threshold ICAP

i , which can be different for each warehouse. Finally, (2.5) states the integrality
(0-1) for the variableXi and sets the range of the variable Yij . This model is NP-hard because it
is clearly an extension of the UFLP, which is known to be NP-hard. Additionally, this model
is one of the most basic examples related to location research, and several comprehensive
surveys on location theory can be found in [11, 12].

The CFLP is well known in the operational research literature, and several
authors have tackled this problem using different techniques (e.g., Genetic Algorithms are
implemented in [13], and the Tabu Search (TS) algorithm is used in [14]). A comparison
of the performance of these heuristics is provided in [15]. Additionally, mathematical-based
approaches have been extensively developed to solve the CFLP, and algorithms based on
Lagrangian relaxation represent the most common math-based approach [4, 8, 16]. In [17],
the authors develop a column generation strategy to obtain the exact solution for large-
scale instances. Other mathematical approaches are revised in [18, 19]. Moreover, mixed
approaches using MP techniques and heuristics have been previously proposed. For instance,
in [20], the authors develop a Lagrangian-based heuristic (LH) that provides lower bounds
to the problem, and the TS algorithm is subsequently used to find the upper bound of
the problem. In this case, the TS is initialized using the primary information provided
by LH. Additionally, in [21], the authors combine Lagrangian relaxation with Ant Colony
Optimization (ACO). Although the CFLP is one of the most studied models in combinatorial
optimization, to the best of our knowledge, no BA study has tackled this problem.
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2.2. Bees Algorithm

The Bees Algorithm (BA) is a nature-inspired approach that was originally proposed by
Pham et al. [7] to solve complex optimization problems. Subsequently, several authors have
applied different versions of the BA to tackle a wide range of combinatorial and continuous
optimization problems. The algorithm has been demonstrated to be highly competitive,
especially when compared with other swarm/population-based approaches such as the PSO
[22] or Genetic Algorithms [23]. Karaboga and Akay [24] provide a comprehensive literature
review and a comparison of the most important swarm/population-based approaches. A
complete survey of various BA applications is also provided by Karaboga and Akay in [25].
In the following section, we present a brief description of the general structures of our BA.
This description is mainly based on the descriptions provided by [7, 24–26].

One of the most important characteristics of swarm intelligence is the ability to
exchange relevant information among individuals. This feature allows the swarm to generate
and develop collective knowledge. In the case of the BA, this information addresses the
recognition of promising sources of food found by any individual insect of the swarm.
Another relevant feature of the bee swarm is the ability to intensify the search in certain
patches that have been identified as promising. The two main attributes of most heuristics
used in optimization are exploration and exploitation. The first provides a fast and wide
search throughout the search space (which is usually too large). The second allows an
intensive search of certain reduced search spaces (neighborhoods) that have been identified
as “good-quality patches” during the exploration phase. In the BA case, the scout bees
provide the exploration characteristics. The scout bees seek the search space in a (usually)
random manner. Each scout bee visits a patch and evaluates it, and the scout bees have the
ability to communicate the quality of the patch (fitness) to the unemployed bees. Depending
on the attractiveness of each patch, the unemployed foragers will follow the scout bees
to exploit the most promising patches. Once the patch is no longer attractive, a subset of
bees will continue to search while the others wait for another promising patch. As in other
heuristics, the balance between exploitation and exploration is a notably important issue for
the BA. If we prioritize the exploration phase of the BA, it is likely to suffer from rather slow
convergence. However, if we prioritize the exploitation phase of the BA, it is likely to become
trapped in local minima. In most of the swarm optimization algorithms as well as other
heuristics (e.g., Tabu Search), the BA uses memory structures to influence the next population
(swarm). In this case, two main strategies provide information from former population to the
new population. The first strategy uses experienced foragers, that is, bees with notably good
fitness are included in the next population. The second strategy includes the best bee from a
subset of the high-quality patches. In this manner, the use of various elements will determine
the balance between exploration and exploitation.

3. Hybrid BA and LP Algorithm

In this paper, we present a BA that is hybridized with a MIP algorithm provided by GUROBI.
Our algorithm contains the following distinctive features.

3.1. Variable Neighborhood Sizes

We use three different neighborhood sizes. It is important to note that we only refer to
the “size” and not the “structure” of the neighborhood. More specifically, the neighborhood
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1 1 0 0 0 1 0

1 1 0 1 0 1 0
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1 1 0 0 0 1 0
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1 1 0 0 0 1 0

0 1 0 1 0 0 1
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Figure 2: Three implemented neighborhood sizes: (a) small-size movement, (b)medium-size movement, and
(c) large-size movement.

structure does not change during the algorithm execution. Figure 2 shows the three sizes
and their function in the experiments. Figure 2(a) shows a small-size move in which only
one location is modified (in this case, warehouse 4 is opened), and Figure 2(b) presents an
example of a medium-size move. In this case, two locations are modified (warehouse 1 is
closed, and warehouse 4 is opened). Figure 2(c) shows a large-size move.

Using notation from [27], we describe our variable neighborhoods as follow: let S
denote any subset of open warehouses (S ⊆ M); the solution space � may be subsequently
defined as all such possible subsets. The total number of solutions in � is 2m− 1. To define
the neighborhoods, [27] defines a distance function as follows: let S1, S2 be any two solutions
in �; the distance between them is defined by ρ(S1, S2) = |(S1 \ S2) ∪ (S1 \ S2)|. Therefore,
the distance between one solution and another will increase when allocation of a specific
customer in S1 is different from the allocation of the same customer made in S2. An intuitive
consequence of the above is that the distance between solutions S1, S2 is zero if and only if S1

= S2. Figure 1 shows an example of the distance between the different solutions. For instance,
in Figure 2(a), ρ(S1, S2) = 1; in Figure 2(b), ρ(S1, S2) = 2; and in Figure 2(c), ρ(S1, S2) = 4.
The values of ρ() used in our algorithm are shown at the end of Section 3. It is important
to note that we do not implement a variable neighborhood strategy as in [27]. Instead, we
define different neighborhood structures that are only applied for quite specific tasks during
the execution of our algorithm.

(i) Neighborhood-based start strategy: the set of scout bees is initialized with a
neighborhood-based strategy that uses the “large” movement to move from one
solution to the other. This strategy allows us to use the LP solver more efficiently
without compromising the algorithm performance.

(ii) Intensification procedure: we implement an intensification procedure to exploit the
promising patches found by the bees. When a promising solution is found, the
intensification procedure is triggered, and a local search using a rather “small”
neighborhood movement is carried out. The intent behind this procedure is to find
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a local (and hopefully global) minimum as fast as possible, and this minimum is
likely to be located near the promising solutions.

(iii) Roulette-wheel selection procedure: we implement a procedure based on the well-
known roulette wheel to select the elite bees and to assign the follower bees to
particular elite (or selected nonelite) bees. This procedure allows for the inclusion
of selected diversification mechanisms during the algorithm execution.

(iv) Use of experienced foragers: we include the information of the best solution in the
form of “experienced foragers” in each iteration of the algorithm, which allows us to
include certain historical information to improve the convergence of the algorithm.

The algorithm begins with a set of ns scout bees, which are initialized using the
neighborhood-based start strategy. Other techniques have found that certain “warm” start
solutions could be implemented as well. However, in our practical experience, our approach
is an easier and faster method of initializing the set of scout bees mainly due to the efficiency
mechanisms of the solver. Once the ns scout bees are generated, they are sorted according to
their fitness. The fitness is calculated using the objective function (2.1), which corresponds
to an attractiveness measure in relation to the other scout bees. Note that the cost of
each bee corresponds to the optimal solution for the subset of warehouses. This optimal
value is provided by the MIP solver in less than two seconds on average. Therefore, this
approach allows us to carry out a “global” optimization in different subspaces of the problem.
Equations (3.1) and (3.2) state this attractiveness measure:

∑

b∈S
f(b) = tc, (3.1)

fitnessb =
(
f(b)
tc

)
, (3.2)

where S is the set of scout bees and f(x) is our objective function (2.1). The total cost of
the set of scout bees is calculated n (3.1) and in (3.2), and the fitness is calculated based
on the fitness of a specific bee and the total cost of the swarm. Because we are aiming to
optimize the fitness, our results must be normalized such that the lowest cost becomes the
most attractive. Once the scout bees have been sorted, the e bees (elite bees) are selected
using the roulette-wheel selection procedure. We note that, if there are important differences
among the costs of the ns scout bees, then the algorithm will likely select the e most attractive
ones. In the same way, the ne (nonelite) bees are selected from the remaining scout bees.
Subsets e and ne are sorted, and the attractiveness of each bee is calculated as explained
above. Next, a set F (followers) is generated and assigned to the both elite and nonelite bees.
Because the roulette-wheel selection procedure is used again, the elite bees are likely to recruit
more followers than the less attractive nonelite bees. A local search is carried out at this stage
using medium-size movements. Once the local search is completed, the algorithm selects
the best bee from each patch. If a new best solution is reached, the intensification procedure
is triggered. Following that procedure, the entire swarm is sorted based on fitness. Next,
the elite and nonelite classification is executed again. In this step, a few random bees are
added to the swarm to diversify the search. Additionally, the best solution is included via
an experienced forager. The pseudocode for our hybrid BA-MIP algorithm is presented as
follows Algorithm 1.
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(1) Init
(2) Generate initial swarm S
(3) Solve MIP of each Sb
(4) Sort S based on fitness
(2.5) Select elite and non-elite bees
(3.1) While not end-criterion
(3.2) Assign followers
(8) For each elite and non-elite
(9) Search η(E) ∪ η(NE)
(10) End For
(11) Select Best Bee (bBEST)
(12) If bBEST < BestSol
(13) BestSol← bBEST
(14) Intensification
(15) End If
(16) Joint and Sort F , E , NE
(17) Sort S based on fitness
(18) Select elite and non-elite bees
(19) Add Random Bees
(20) Add BestSol Bee
(21) End While
(22) End

Algorithm 1: Hybrid BA-MIP algorithm.

Table 1: Results of the parameter tuning process.

Item Test Best
ns 10; 20 10
e 10%; 20%; 50% of ns 20%
ne 10%; 40% of ns 10%
Followers 20; 100 20
Neigh small 1; 2 2
Neigh med 4; 6 4
Intensification size 10; 20 20
Elite followers 60%; 90% 60%

3.2. Parameter Tuning

To obtain a parameter set for the BA algorithm, we performed several tests using different
values for each parameter of the algorithm, and these values are presented in Table 1. The
tests were applied on one of the medium-size instances. The selected values are shown in
bold.

4. Computational Experiments and Discussion

This section explains the experiments, certain benchmarks from the literature included to
validate our algorithm, and the generation of a set of large-scale instances. The results
obtained from our BA-MIP algorithm are compared with those from a simple local search
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Table 2: Optimal DND obtained for both the ILM-PR and ILM-CR models.

Instance Opt BA BA + MIP LS + MIP
Time GAP Time (sec) GAP Time (sec) GAP

capa 19,240,822.449 Max >300% 426.022 0% 367.735 0%
capb 13,656,379.578 Max >300% 345.501 0% 317.468 0%
capc 11,646,596.974 Max >300% 553.624 0% 129.336 0%

strategy (which uses the MIP to solve the allocation problem) as well as those from both the
MIP algorithm and the BA applied independently. A comprehensive analysis and discussion
is outlined at the end of this section.

4.1. Experiments and Computational Results

In this subsection, we present the benchmarks applied for performance comparison and the
computational results obtained for the hybrid algorithm. Finally, we show a summary of the
principal results obtained. The computational experiments were performed on an Intel Core
Duo processor CPU T2700, 2.33 GHz with 2 GB of RAM and Windows XP operating system.
The BA algorithm was implemented in the JAVA programming language using NetBeans
IDE, and the MIP algorithm was modeled with the GUROBI solver.

To validate the algorithm and measure its convergence, we chose a set of
medium-size instances that have known optimal solutions, namely, capa, capb, and capc.
These instances were obtained from Beasley’s ORLibrary (http://people.brunel.ac.uk/∼
mastjjb/jeb/info.html). Additionally, a set of large instances (300 warehouses and 1000
clients, 500 warehouses and 1000 clients, and 1000 warehouses and 1000 clients) was created
using the strategy provided in [8]. The set of customers and the set of warehouses are
uniformly distributed over a plane of 10 × 10 distance units. The Euclidean distance between
a customer i and a warehouse j corresponds to the transportation cost Yij . The demand dj is
calculated using a uniform distribution U [5, 35]. The ICAP

i is calculated using U [100, 1600],
and we amplify the capacity of the warehouse to obtain harder instances. Finally, the fixed

cost of warehouse i is calculated by Fi = U[0, 90]+U[100, 110]
√
I

cap
i /10. This expression takes

into account the economies of scale [8]. As proposed in [8], we generate three different classes
of problems: 300 × 1000, 500 × 1000, and 1000 × 1000 (warehouses × customers). To avoid
any instance-dependent effects, we generated 10 different instances for each class. We also
executed the algorithm 30 times for each instance to assess and avoid outlier performance.
The results presented in this section correspond to the average values from these experiments.
The MIP algorithm was executed only once per instance due to its deterministic behavior,
and the results obtained from the MIP algorithm are presented in Table 2. The stop criterion
used in the three first instances (capa, capb, and capc) was GAP ≈ 0%, that is, we forced the
algorithm to find the (known) optimal solution. Because the optimal solution value is not
known for our generated large-scale instances, the algorithm was aborted after 2000 seconds
or GAP ≤ 1%, whichever occurred first.

Figures 3 and 4 show the convergence of two algorithms (MIP and BA + MIP) for the
instances 500 3 and 1000 4, respectively.

As shown in Figure 3 for the 500 3 instance, the two algorithms are both able to find
notably good solutions within the time allotted. As expected, the MIP requires more CPU
time than the BA-MIP hybrid algorithm to find the solution, and the solid line shows the LB
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Figure 3: Comparison of the convergence between the MIP solver and the BA-MIP algorithm (instance
500 3).
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Figure 4: Comparison of the convergence between the MIP solver and the BA-MIP algorithm (instance
1000 4).

of this instance. A remarkable feature of our hybrid approach is its “warm” initial solution.
As shown in Figure 3, the first iterations produce very good solutions that are quite close to
the best solution reached by the MIP algorithm after the 2,000 seconds. We assume that this
observation is due to our neighborhood-based start strategy.
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Figure 4 shows a similar situation for the 1000 4 instance. The main difference in this
case is the rapid convergence of the MIP algorithm. Despite this observation, the MIP is not
able to find a better solution than that obtained by our BA-MIP algorithm.

Table 2 shows the average results obtained by the four algorithms for the three
medium-size instances. The Opt column shows the optimal value produced for the respective
instance. The Time column reports the CPU time required by the respective algorithm to
reach the optimal value. The GAP column shows the difference between the average value
and the optimal value as a percentage. A value of GAP = 0% indicates that the optimal
value was reached, and GAP > 0% otherwise. The maximum time available for each instance
corresponds to the time in which the MIP algorithm was able to find the optimal value for
that instance.

As shown in Table 2, the BA + MIP and the LS + MIP were able to find the optimal
solution more quickly than the MIP solver.

These results demonstrate that the robustness of our algorithm highlights the speed of
our hybrid approach, which could be a determining factor for notably large-scale instances
in which the MIP is not able to find the optimal value within a reasonable CPU time.

The Time column in Table 3 shows the time (in seconds) in which the best value
was found by the respective algorithm. The GAP column shows the difference between the
average value and the lower bound value as a percentage. As stated previously, the maximum
time available for each instance was 2000 seconds. The excellent performance of our hybrid
approach is quite obvious; it outperforms the MIP approach in almost all cases, especially
those instances in which the number of warehouses is greater than or equal to 500. This
situation demonstrates the robustness of our algorithm as well as its reliability. It is also
important to note that, in most of the cases, the best value obtained by the MIP algorithm was
improved upon by our BA-MIP algorithm before 1500 seconds had elapsed, which implies
a time saving of 25% compared with the mathematical approach. Moreover, in most cases,
the best value provided by our hybrid algorithm was found near the time limit, which could
be considered as a quite promising feature because it means that our algorithm is able to
escape from local optima. Additionally, we note that, in the few cases in which the MIP
reached a better value than our hybrid approach did, the difference is not greater than 1%
of the GAP. The results obtained from the simple BA algorithm are surprisingly poor. We
believe this situation may be partially due to the size of the search space as well as to a
lack of precision in the parameter tuning. However, even when a careful parameter tuning
process was conducted, the improvement is only marginal if we consider the current GAP
between the LB for each instance and the UB obtained by BA. However, the LS-MIP obtains
very good results for all instances. These results confirm that even rather simple heuristic
strategies can be significantly improved when combined with mathematical programming
approaches. However, we note that most of the best values were obtained early in the time
elapsed, which may mean that the LS-MIP algorithm is not able to explore large spaces and
quickly converges to local minima. Despite this weakness, the good performance shown by
the LS-MIP algorithm encourages further exploration with different hybrid approaches.

Table 4 summarizes the results (GAP, as a percentage) obtained by our three
algorithms (the BA is not considered) independent of any instance-dependent effects. It can
be clearly observed that despite the effects provoked by particular instances, our algorithm
presents the most desirable features, that is, a reduced mean, which suggests that the result
is closer to the LB on average, and the small variance can be interpreted as a measure of
robustness and reliability.
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Table 3: Obtained results per algorithm for all (very) large instances.

Instance GAP MIP BA BA + MIP LS + MIP
Time (sec) GAP (%) Time (sec) GAP (%) Time (sec) GAP (%)

300 1 2.54 1,083.566 319.94 1,191.68 2.52 823,748 3.48
300 2 4.32 521.891 326.39 1,114.84 1.22 1,859.55 1.23
300 3 5.38 418.646 344.74 1,183.13 5.67 67.170 5.47
300 4 0.25 576.624 325.64 1,354.32 0.53 291.096 0.92
300 5 7.69 499.160 340.61 1,181.11 3.60 248,047 5.03
300 6 0.10 0.440 311.72 1,779.96 0.76 1,068.721 0.87
300 7 7.24 1,532.097 333.29 1,942.37 4.16 810.303 4.82
300 8 3.39 247.004 322.63 1,716.07 0.91 122.122 2.13
300 9 6.24 1,401.028 331.60 842.08 4.55 446.381 4.89
300 10 3.82 1,786.086 331.14 1111016 2.14 82.730 4.68
500 1 4.30 1,515.316 425.51 1,382.22 4.41 656.431 3.43
500 2 8.34 29.623 432.50 1,960.32 4.43 400.010 5.73
500 3 11.61 741.206 428.80 1,636.51 4.51 83.878 7.23
500 4 8.54 1,740.442 441.34 1,476.66 4.62 519.690 3.78
500 5 7.27 364.557 437.55 1,742.31 4.83 816.807 4.98
500 6 8.09 151.569 430.50 1,306.528 5.20 328.605 6.00
500 7 6.63 1,493.073 425.32 1,892.530 4.48 1,093.399 5.07
500 8 11.18 1,357.436 420.11 1,177.792 4.98 828,960 4.14
500 9 9.64 853.731 427.62 1,647.911 5.16 860.271 4.69
500 10 12.88 1,826.382 423.29 1,333.395 5.99 231,932 6.64
1000 1 18.75 89.000 331.06 1,514.020 15.62 246.482 17.13
1000 2 22.97 92.000 336.27 1,641.200 15.65 1,210.875 14.30
1000 3 20.33 85.000 337.88 1,979.140 16.45 1,165.605 15.22
1000 4 20.06 1,842.591 339.48 1,954.162 16.10 1,997.213 17.97
1000 5 17.91 88.000 332.41 1,974.203 16.64 305,483 17.60
1000 6 16.84 90.000 340.57 1,993.361 14.72 741838 14.41
1000 7 18.80 88.000 339.95 1,898.845 17.30 104.692 17.80
1000 8 19.20 89.000 322.16 1,948.752 14.31 1,206.733 14.76
1000 9 17.62 1,807.162 340.03 1,737.584 15.87 378.913 14.99
1000 10 18.93 317.728 340.53 1,074.975 17.25 609,155 16.98

Table 4: Summary of the results obtained by the MIP, LS-MIP, and BA-MIP.

MIP LS-MIP BA-MIP
Instances

300x 4.14 6.47 3.35 3.14 2.61 2.93
500x 8.85 5.89 5.17 1.37 4.86 0.22
1000x 19.14 2.64 16.12 2.04 15.99 0.87

5. Conclusions and Future Work

In this paper, we have presented a hybrid algorithm based on the BA and the MIP and used
it to solve the CFLP. The BA is applied primarily for the purpose of solving the location
problem, that is, finding a subset from the available set of locations that satisfy the entire
demand of the system. In contrast, the MIP is applied for the purpose of finding the optimal
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solution by considering a specific subset of locations, that is, solving the allocation problem.
Certain considerations are important and must be highlighted in this approach.

First, because the algorithm is able to find the optimal solution for each subset of
selected warehouses, we are able to fairly compare those subsets. At the same time, our
hybrid algorithm is able to find the optimal solution to medium-large problems, which is
not possible with the use of common local search strategies. Additionally, obtaining the
optimal solution allows us to compare the different strategies for warehouse selection and
local search.

Second, compared with the widely used local search approaches that implement a
swap in the assignation vector as a neighborhood move, our approach is able to visit more
solutions because the entire tree corresponding to the feasible allocations is considered for
each subset of warehouses in the search for the optimal solution of the subproblem by the
MIP algorithm.

Third, our BA does not require extensive computational resources because most of the
calculations are handled by the MIP solver, which is by far more efficient than many common
heuristics implementations.

Our hybrid BA-MIP algorithm was able to find the optimal solution for a set of
well-known large-scale instances found in the literature. Moreover, it outperformed both
the BA and MIP approaches as applied separately. Compared with the state-of-the-art
algorithms for location problems, our BA-MIP algorithm is highly competitive and reaches an
optimal solution using less CPU time than both exact and stochastic approaches. Moreover,
when the instances are notably large, the algorithm is able to find a better solution than
that of the MIP approach in a fraction of the time. As widely reported in the literature
over the last three decades, the combination of mathematical programming with heuristics
and/or metaheuristics (Matheuristics [1]) provides robust and straightforward approaches
to solving these types of problems.

In this paper, we have developed a hybrid algorithm using BA and LP using an
approach that has not yet been reported. Due to the hybrid nature of the algorithm, certain
changes were made in the structure of the BA heuristic. Use of the variable neighborhood
“size,” the neighborhood-based initialization procedure, the intensification procedure, and
the experienced foragers are the most important features of our implementation. These
distinctive components allow us to improve the performance of the simple BA when
combined with MIP.

The hybridization of BA with other such mathematical programming approaches as
interior point methods, column generation, and gradient-based algorithms shows promise
as a potentially valuable research area. Additionally, the application of similar hybrid
approaches to more complex large-scale problem will be an interesting future research line.
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[1] V. Maniezzo, T. Stützle, and S. Voß, Eds., Matheuristics: Hybridizing Metaheuristics and Mathematical
Programming, vol. 10, Annals of Information Systems, 2009.

[2] C. Blum, J. Puchinger, G. Raidl, and A. Roli, “Hybrid metaheuristics in combinatorial optimization: a
survey,” Applied Soft Computing Journal, vol. 11, no. 6, pp. 4135–4151, 2011.

[3] G. Cabrera, S. Roncagliolo, J. P. Riquelme, C. Cubillos, and R. Soto, “Hybrid particle swarm
optimization—simulated annealing algorithm for the probabilistic traveling salesman problem,”
Studies in Informatics and Control (SIC), vol. 21, no. 1, pp. 49–58, 2012.

[4] J. E. Beasley, “Lagrangean heuristics for location problems,” European Journal of Operational Research,
vol. 65, pp. 383–399, 1993.



14 Mathematical Problems in Engineering

[5] M. H. Kashan, N. Nahavandi, and A. H. Kashan, “DisABC: a new artificial bee colony algorithm for
binary optimization,” Applied Soft Computing, vol. 12, no. 1, pp. 342–352, 2012.

[6] C. Canel and B. M. Khumawala, “A mixed-integer programming approach for the international
facilities location problem,” International Journal of Operations & Production Management, vol. 16, no.
4, pp. 49–68, 1996.
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This paper presents an economic analysis model on value chain of taxi fleet with battery-swapping
mode in a pilot city. In the model, economic benefits of charging-swapping station group, taxi
company, and taxi driver in the region have been taken into consideration. Thus, the model
is a multiobjective function and multiobjective genetic algorithm is used to solve this problem.
According to the real data collected from the pilot city, the multiobjective genetic algorithm is
tested as an effective method to solve this problem. Furthermore, the effects of price of electricity,
price of battery package, life cycle of battery package, cost of battery-swapping devices and
infrastructure, and driving mileage per day on the benefits of value holders are analyzed, which
provide theoretical and practical reference for the deployment of electric vehicles, for the national
subsidy criteria adjusment, technological innovation instruction, commercial mode selection, and
infrastructure construction.

1. Introduction

Economic analysis on value chain of taxi fleet with battery-swapping mode in a pilot city is
a basic condition for the sustainable commercialization of electric vehicle operations. Some
factors, such as vehicle cost, life cycle of battery package, and reliability, are used to affect the
benefits of the value holders. In addition, electricity price, cost of battery-swapping devices
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and infrastructure, and national subsidy criteria also have impacts on the benefits of all
value holders as well as the sustainable commercial operation and popularization of electric
vehicles. There is much more analysis on current status, policies, regional development,
business models, and value chain management model of China electric vehicle demonstration
operations [1–5]. However, these traditional methods have qualitatively analyzed current
status, policies, regional development, business models, and value chain management model
of China’s electric vehicle demonstration operations. If an analyzed model can be proposed
to provide the economic effect by quantitative analysis, it is very important to judge the
feasibility of this project.

Many modeling approaches have been applied to evaluate the economic analysis.
Hamilton [6] presented a method on the economic analysis to model the changes in regime
which is based on the nonstationary time series and the business cycle. Aidt [7] provided
an economic analysis which considered the notion of a benevolent principal as a normative
theory of corruption.

To represent the economic analysis on value, the competitive nature about these factors
has occurred as a result of parallel development in the application of taxi fleet with battery-
swapping. In this paper, the model consists of three parts. One is empirical model of monthly
operating benefits of charging-swapping station group in the region, another is empirical
model of monthly operating benefits of taxi fleet company, and the third is empirical model of
monthly operating benefits of taxi fleet drivers. To reflect the effect of these factors which will
directly determine the effectiveness of the new project, the electricity price, battery package
price, battery package, battery-swapping devices, infrastructure, and driving mileage per day
need to be discussed. Thus, this paper took some pilot cities as an example and established a
multiobjective model which is attempted to optimize the economic analysis on value chain of
taxi fleet with battery-swapping mode in some pilot cities with a multiobjective model which
can describe the economic analysis from different aims.

Taxi fleet with battery-swapping mode in real world, which is related to large of
factors, is inefficient to be solved by classical optimization techniques and belongs to a class
of problems referred to as nondeterministic polynomial-time hard (NP-hard) [8]. Generally,
heuristics are considered as a first choice to solving these combinatorial optimization
problems [9–11]. Genetic algorithm [12], which is a multipurpose optimization tool, has
successfully been applied in a wide range of optimization problems [13, 14]. Furthermore,
GA has been used widely in transportation fields [15–17]. Altiparmak et al. [18] proposed
a genetic algorithm to find the solutions for multi-objective supply chain networks. Due to
many successful results of combination optimization applications with GA, GA is also used
to optimize this taxi fleet with battery-swapping economic mode in this paper.

Some studies have attempted for designing multi-objective genetic algorithms since
Schaffer [19]. There are also much literature about multi-objective genetic algorithm for
solving lots of complicated problems. Mansouri [20] proposed a multi-objective genetic
algorithm to solve a just-in-time sequencing problem, in which the variation of production
rates and the number of setups has been optimized simultaneously. Cochran et al. [21]
introduced a multi-objective genetic algorithm with a two-stage for solving parallel machine
scheduling problems. Ponnambalam et al. [22] proposed a multi-objective genetic algorithm
for solving assembly line balancing problems, where the number of workstations, the line
efficiency, and the smoothness index are considered as the performance criteria.

Since economic analysis on value chain of taxi fleet with battery-swapping mode is a
multi-objective mode, a multi-objective genetic algorithm is also attempted for solving the
mode. Thus, this paper is organized in the following way: Section 2 is about the problem of
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the basic notations and formulations; Section 3 contains a multi-objective genetic algorithm
for the problem; numerical analysis is carried out in Section 4; and, lastly, the conclusions are
drawn in Section 5.

2. Economic Benefits Analysis on Taxi Fleet Demonstration with
Battery-Swapping Mode

2.1. Empirical Model of Monthly Operating Benefits of Charging-Swapping
Station Group in the Region

Our main contribution is to design empirical model of monthly operating benefits of
charging-swapping station group in the region. Therefore, before the model is established,
we assume the following:

(1) in order to meet the normal operation of the taxi fleet, a charging-swapping station
group should be constructed in some demonstration area after comprehensive
consideration of various conditions, which is operated by ns charging-swapping
stations in a network and ensures the normal operation of the taxi fleet in the region;

(2) charging-swapping station group is responsible for the purchase of battery pack
assembled on taxi vehicles; each vehicle can only be fitted with one battery pack at
the same time, which is constituted by a number of subpacks;

(3) all the other costs are ignored except the expenditure and income listed by the
empirical model of operating benefits of charging-swapping station group in the
region;

(4) the cost of charge is charged according to vehicles mileage of the taxi fleet by the
charging-swapping station group in the region.

The monthly operating benefits of charging-swapping station group in the region B0 equals
the monthly total income of charging-swapping station group in the region Bst minus the
monthly total expenditure of charging-swapping station group in the region Cs, that is, Bo =
Bst − Cs.

The monthly total income of charging-swapping station group in the region is
calculated as

Bst =
ns∑

i=1

Bsi, (2.1)

in which Bst: total income of charging-swapping station group, unit: yuan; Bsi: monthly
income of the ith charging-swapping station in the group, unit: yuan; Ns: the total number of
the charging-swapping station in the group; i: the number of the charging-swapping station.
Consider

Bsi =
nv∑

v=1

C × Rvm, (2.2)

C: the charges per kilometer which is agreed by the charging-swapping station group and
the owner of thevehicle, unit: yuan/kilometer; Rvm: the monthly mileage of a vehicle;
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Bvm =
∑30

d=1 Rvmd, unit: kilometer, Rvmd: the daily mileage of a vehicle, nv: the total number of
the vehicles which is served by the charging-swapping station group.

The monthly total expenditure of charging-swapping station group in the region is
calculated as

Cs = Cd + Cp + Cb + Ce, (2.3)

in which Cd: total cost of the initial construction of the charging-swapping station group
in the region converted to monthly cost Cdc and monthly costs for facilities and equipment
maintenance Cdv, unit: yuan/month,

Cd = Cdc + Cdv, Cdc =
Cbc/Yc

12
, Cdv = Cbc ×Dde, (2.4)

Cbc: the total cost of the initial construction of the charging-swapping station group in the
region; Dde: the depreciation rate of the facilities and equipment of the charging-swapping
station group in the region, Yc: the useful lives or the depreciation period of the facilities
and equipment of the charging-swapping station group in the region, Cp: the total monthly
salaries of the professional services staffs of the charging-swapping station group, Cp =
Cpp ×Nps, unit: yuan; Cpp: the personal average monthly salary of the professional services
staffs of the charging-swapping station group, unit: yuan;Nps: the number of the professional
services staffs of the charging-swapping station group. Cb: The monthly depreciation cost of
the charging-swapping station group. Consider

Cb =

(
Rbn × nv × Pbp − nv × Pgb

)

Ybp/12
, (2.5)

Ybp: the useful lives or the depreciation period of battery package and Rbn: the number of
battery package of each vehicle, Rbn = (Rvm × 12 × Yv)/((Cbpc/Cper km) × Ncy), which is
influenced by the charging time of the battery. In order to ensure the normal operation of
vehicles, Rbn ≥ 3, Yv: the useful lives or the depreciation period of vehicles; according to the
relevant laws and regulations, Yv should meet the conditions Yv ≤ 600000/(Rvm × 12) and
Yv ≤ 8 at the same time. (According to mandatory retirement standard of motor vehicle, if
the taxi’s total mileage is more than 600000 km, or it has been used for more than 8 years, then
it must be scrapped.) Cbpc: available power for driving of each battery package, unit: kWh;
Cper km: the average consumption level of driving, unit: kWh/km; Ncy: of battery package;
unit: time; Pbp: the price of each battery package, unit: yuan; Pgb: state subsidies standards of
each battery package, unit: yuan;Ce: monthly charges for electricity paid to the electric power
provider by the charging-swapping station group, Pel: actual price of AC, unit: yuan/kWh;
η: the charging efficiency of the battery package.

Thus, the objective function of the monthly operating benefits of charging-swapping
station group in the region can be described as the following:

Max B0 = Bst − Cs. (2.6)
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2.2. Empirical Model of Monthly Operating Benefits of Taxi Fleet Company

Our main contribution is to design empirical model of monthly operating benefits of taxi fleet
company. Therefore, before the model is established, we assume the following:

(1) the income of taxi fleet company only come from the fee paid by all vehicles in the
fleet;

(2) every taxi has one driver;

(3) all the other costs are ignored except the expenditure and income listed in the
empirical model of the operating benefits of the taxi fleet company.

Then, the operating benefits of the taxi fleet company equals the difference between the
monthly fee paid to the taxi fleet by all vehicles Bst and the monthly total operating
expenditures of all the vehicles in the company Ccs, that is, Bco = Bcst − Ccs,

Ccs = Cvs + Ces + Cps + Cma, (2.7)

in which Ccs: monthly total operating expenditures of all the vehicles in the company, unit:
yuan; Bcst: monthly fee paid to the taxi fleet company by all vehicles, namely, Bcst = Cc × nv,
unit: yuan; Cc: monthly fee paid to the taxi fleet company per driver, Cc =

∑30
d=1 Cdds, unit:

yuan; Cdds: daily fee paid to the taxi fleet company per driver, unit: yuan; Cvs: total car cost
of all vehicles in the fleet bare (excluding battery pack) converted to monthly operational
expenses, Cvs = Pv × nv/Yv/12, unit: yuan; Pv: initial acquisition cost per vehicle (excluding
the battery package), unit: yuan; Ces: insurance cost of all the vehicles in the fleet converted
to monthly operational expenses, Ces =

∑nv
n=1(Cen/12); Cen: insurance cost standards per year

per vehicle, unit: yuan; Cps: fixed remuneration expenditure for all taxi drivers in the fleet,
Cps =

∑nv
n=1 Spp; Spp: fixed remuneration expenditure per driver per month, unit: yuan; Cma:

monthly maintenance fee for all the vehicles in the fleet, Cma =
∑nv

n=1 Cma per, unit: yuan;
Cma per : Monthly maintenance fee per vehicle in the fleet, unit: ypuan.

Thus, the objective function of monthly operating benefits of taxi fleet company can be
described as the following:

Max Bco = Bcst − Ccs. (2.8)

2.3. Empirical Model of Monthly Operating Benefits of Taxi Fleet Drivers

The monthly average operating benefits of new energy taxi fleet drivers Bdo, in which the
income equals the monthly average earnings per vehicle Bds and the fixed salary paid by taxi
fleet company Spp and its expenses include the monthly fee paid to the taxi fleet company
Cc and the average monthly charge fee paid to the charging-swapping station group in the
region Cde, is calculated as

Bdo = Bds + Spp − Cc − Cde, (2.9)

in which Bds: monthly earnings per vehicle, Bds =
∑30

d=1 Bpt × Tpv, unit: yuan; Bpt: the charges
paid by passengers per time, unit: yuan; Tpv: the number of service provided by a vehicle per
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day; Cde: the monthly charge fee paid to the charging-swapping station group in the region,
namely, Cde = C × Rvm, unit: yuan.

Thus, the objective function of monthly operating benefits of taxi fleet company can be
described as the following:

Max Bdo = Bds + Spp − Cc − Cde. (2.10)

2.4. Economic Efficiency Model of Taxi Fleet with Battery-Swapping

The region, company, and taxi driver are three different aspects which are directly affected
by the new taxi fleet with battery-swapping. To meet the benefits of all the three aspects, the
three objective functions should be considered simultaneously. Thus, the economic efficiency
model of taxi fleet with battery-swapping is constructed to achieve the following three
objectives:

Max Bst

Max Bco

Max Bdo,

(2.11)

3. Applying Multiobjective GA for the Economic Efficiency Model of
Taxi Fleet with Battery-Swapping Mode

3.1. Initialization

The initialization of the population is generated randomly according to some certain
constraints to ensure the feasibility of each population.

3.2. Fitness

The difference between traditional genetic algorithm and multi-objective genetic algorithm is
the number of objective functions. The economic efficiency model of taxi fleet with battery-
swapping has three objective functions. For each target i, there is an evolution based on the
merits of the objective function value and a feasible solution is attained. Then, based on
all objectives, the total fitness of each solution can be also attained. The total fitness can be
acquired according to the following:

fi
(
xj
)
=

{(
N + 1 − yi

(
xj
))2

yi
(
xj
)
> 1,

kN2 yi
(
xj
)
= 1,

f
(
xj
)
=

n∑

i=1

fi
(
xj
)

j = 1, 2, . . . , n,

(3.1)

whereN is the sum of all the individual, xj denotes the jth individual, yi denotes the number
of all the individuals on the objective i. fi(xj) is the fitness of xj based on the objective i.
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∑n
i=1 fi(xj) is the synthesized fitness of xj based on all the objectives. k is the random number

in (1, 2), which is used to adjust the weight of the fitness.
If there are four chromosomes (g1, g2, g3, g4), their objective values based on three

objectives are (1.6, 0, 1.4), (1.8, 0.6, 2.6), (2, 1, 2), and (2.1, 2.5, 3.2). To prevent the increase of
an individual to reduce the opportunity of other individual, k = 1.01. Then, to the objective
1, the fitness is (1, 4, 9, 16.16) and the order is (g1 < g2 < g3 < g4). To the objective 2, the
fitness is (16.16, 9, 4, 1) and the order is (g1 > g2 > g3 > g4). To the objective 3, the order is
(g1 > g2 > g3 > g4). To the objective 4, the order is (g1 > g3 > g4 > g2). According to (3.1), g1

has the maximum fitness value.

3.3. Crossover Operation

Crossover is a reproduction operation in GA, which is exchanging genetic information
between two parent chromosomes to produce two new children. In the paper, an arithmetic
crossover [23] is used to create new offsprings.

gtk,I = αig
t−1
k,I + (1 − αk)gt−1

k,II

gtk,II = αig
t−1
k,II + (1 − αk)gt−1

k,I ,
(3.2)

where gt−1
k,I

, gt−1
k,II

is a pair of “parent” chromosomes; gt
k,I

, gt
k,II

is a pair of “children”
chromosomes; αk is a random number between (0, 1); k ∈ [1, 2, 3] (k is the total genes for
the crossover operation).

3.4. Mutation Operation

Mutation is also a reproduction operation in GA, which is applied with a mutation rate to
avoid being trapped in local optimal during evolution. Assume that a chromosome is G =
(gt1, g

t
2, g

t
3), if the gt2 was selected for the mutation, the mutation can be shown in (3.3):

G′ =
(
gt−1

1 , gt2, g
t−1
3

)

gt2 =

{
gt−1

2 + Δ
(
t, gt2 max − gt−1

2

)
if random (0, 1) = 0

gt−1
2 + Δ

(
t, gt−1

2 − gt2 min

)
if random (0, 1) = 1.

(3.3)

The function Δ(t, y) retains a value between [0, y] given in the following:

Δ
(
t, y

)
= y ×

(
1 − r(1−t/Tmax)λ

)
, (3.4)

where r is a random number between [0, 1]; Tmax is maximum number of generations; here
λ = 3. This property causes this operation to make a uniform search in the initial space when
t is small and a very local one in later stages.
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Figure 1: The computing process of GA.

3.5. Termination

In this paper, the search continues until RMSEn-RMSEn−1 < 0.0001 or the number of
generation reaches the maximum number of generations Tmax.

4. Numerical Test

4.1. Model Calibration

GA is used to optimize the multi-objective mode of this paper. Before the implementation
of GA, there are four parameters for GA, namely, pc, pm, psize, and Tmax, that need to be
predetermined. Generally, pc varies from 0.3 to 0.9. pm varies from 0.01 to 0.1, psize is the
population size which is set according to the size of the samples. Tmax is the maximum
number of generation which can be determined according to a good convergence of
the calculation [24]. According the characteristic of this problem, the values of the four
parameters (pc, pm, psize and Tmax) are set as 0.65, 0.1, 80, and 2000, respectively.

The actual value of the problem in the model is collected in Table 1 based on the model
operational data of the battery-swapping mode fleet and infrastructure collected from the
pilot cities. Take 200 taxies in a region as an example, the GA reached convergence on the
1361 generation (Figure 1), and the results are shown as the following.

The profit of the taxi fleet company, operators of the infrastructure, and drivers of
the taxi fleet company is shown in Figure 2. Through analysis the following conclusion is
made: the early-stage construction cost of the charging-swapping stations distributed to
individual vehicles is excessively high due to the relatively large investment in local charging-
swapping stations and small number of vehicles served by the charging-swapping stations.
Consequently, the groups involved in the value chain of fleet demonstration of taxi fleet are
suffering serious financial loss, especially for the charging-swapping electricity stations.
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Table 1: The information of the instances.

Parameter Value

nv 30

C 0.75

Rvmd 428

Cbc 14,400,000

Dde 0.03

Yc 10

Npa 21

Cpp 3000

Ybp 5

Yv 3.8

Cbpc 12.5

Cper km 0.157

Ncy 1500

Pbp 75000

Pgb 60000

Pel 0.538

η 0.8

Cdds 280

Pv 150000

Cen 10000

Spp 2800

Cma per 800

Bpt 16

Tpv 55
Note: Tpv Approximately increases
with Rvmd in proportion.

1 2 3
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Figure 2: The profit of groups involved in the value chain of fleet demonstration of new energy taxi.
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4.2. Analysis on the Factors Influencing the Operation Profit

4.2.1. The Operational Load Rate of the Local Charging/Swapping Stations

The service frequency is improved with the operating efficiency of charging-swapping
station, which leads to the increase in the total number of taxis sharing the service. Figure 3
illustrates the profit variation of the value holders in the taxi fleet operation value chain in
the case of a rising operation load (i.e., the total number of the taxi fleet vehicles that enjoy
the service) of the local charging/swapping stations. Analysis manifests that the profit of taxi
fleet company and the local charging/swapping stations grows as the operation load rises
and the total profit increment of taxi drivers is proportional to that of the number of taxis.
The total gain of the value holders in the value chain is positive when the scale of the fleet is
close to 50 vehicles.

4.2.2. Early-Stage Construction Cost of the Local Charging/Swapping Stations

Refer to Figure 4 for the influence of early-stage construction cost of the local charging-
swapping electricity stations on the total profit of value holders involved in the value chain of
new energy taxi fleet demonstration. It is clear that the profit of the local charging-swapping
electricity stations diminishes drastically as the early-stage investment cost increases; the total
profit of value holders involved in the value chain appear negative when the investment scale
exceeds certain extent.

4.2.3. Lifespan of Battery Packages

The curve in Figure 5 illustrates the individual and total profit of value holders involved
in the value chain of fleet demonstration. It can be seen that lengthened lifespan of battery
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Figure 5: Influence of lifespan of battery packages on profit.

package leads to increment in the overall effectiveness of the charging/swapping stations in
the value chain of new energy taxi fleet demonstration and thus the total profit of all the value
holders.
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Figure 6: The variation of profit of the value holders involved in the value chain of fleet demonstration
with the average driving distance per day of a single vehicle.

4.2.4. The Average Driving Distance per Day of a Single Vehicle

To acquire the effect of the average driving distance per day of a single vehicle, the variation
of profit of the value holders involved in the value chain of fleet demonstration with the
average driving distance per day of a single vehicle can be shown in Figure 6.

It can be found in Figure 6 that the influence of average driving distance per day
of a single vehicle on the profit of the value holders involved in the value chain of fleet
demonstration. Analysis suggests that when the fleet is of a small-scale, the profit of taxi
fleet drivers grows significantly as the daily driving distance increases whilst the earnings
of the local charging/swapping stations remain negative but the amount of losses decrease
gradually. Comparing Figures 6(a) and 6(b) yields the following: the total profit of the value
holders involved in the value chain of fleet demonstration increases with average driving
distance per day of a single vehicle; as the scale of the fleet is enlarged, it is possible for the
value holders to make profit at an earlier stage and the total profit relies less on the daily
driving distance.

4.2.5. Price of Battery Packages

The influence of price of battery package on profit can be attained in Figure 7. It can be seen
that Figure 7 illustrates the influence of the price of battery package on the profit of the value
holders involved in the value chain of fleet demonstration. Analysis indicates that increment
in the price of battery leads to diminished profit of the local charging/swapping stations and
the total profit of the value holders involved in the model value chain.

4.2.6. Electricity Price

Figure 8 shows the influence of electricity price on the value holders in the value chain of
fleet demonstration. Analysis indicates that the total profit of the local charging/swapping
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stations as well as the total profit of the value holders in the model operation value is reduced
as the electricity price given by the electricity supplier rises.

5. Conclusions

The verified demonstration operation economic benefit models of changing/swapping taxi
fleet are solved by a multi-objective genetic algorithm. The influence of various factors on
the individual profit and total profit of the value holders involved in the value chain of fleet
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demonstration of taxi fleet, such as electricity price, lifespan and price of battery package,
construction cost of infrastructure, and driving mileage per day are summarized as the
following.

The total profit of the value holders involved in the value chain of taxi fleet
demonstration based on battery-swapping mode decreases as the electricity price rises. As
the price of battery packages at the early stage rises, the profit of the local battery charging-
swapping electricity groups decreases and thus the total profit of the value holders. With the
advances in battery technologies and lengthened lifespan of battery packages, the benefits
of the local charging/swapping stations increase significantly, which results in the enlarged
total profit of value holders in value chain of the taxi fleet demonstration.

In the case that the taxi fleet is relatively small, as the driving mileage per day (usage
rate) increases, the profit of taxi fleet drivers grows whilst the local charging/swapping
stations remain losing money but with decreasing financial loss. The total profit of the value
holders in the value chain of fleet demonstration grows with driving mileage of individual
vehicles per day; as the scale of fleet is enlarged, the total profit of the value holders in
the value chain of fleet demonstration is able to make profit at an earlier stage with total
profit relying less on driving mileage per day. As operation load rate of the local charging-
swapping electricity stations rises, the profit of the new taxi fleet company and suppliers
of infrastructure grows and the profit of taxi fleet drivers increases proportionally with the
number of taxis.

All value holders are able to make profit when the fleet scale is sufficiently large. The
total profit of value holders in value chain of the new energy taxi fleet demonstration can
be promoted effectively by adapting low-cost charging-swapping infrastructure, lowering
battery price, lengthening the lifespan of battery, and raising the operation efficiency of
charging-swapping stations.
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The improved bacterial foraging algorithm was applied in this paper to schedule the bus departing
interval. Optimal interval can decrease the total operation cost and passengers’ mean waiting
time. The principles of colony sensing, chemotactic action, and improved foraging strategy made
this algorithm adaptive. Based on adaptive bacteria foraging algorithm (ABFA), a model on one
bus line in Hohhot city in China was established and simulated. Two other algorithms, original
bacteria foraging algorithm (BFA) and genetic algorithm (GA), were also used in this model
to decide which one could greatly accelerate convergence speed, improve searching precision,
and strengthen robustness. The final result showed that ABFA was most feasible in optimizing
variables.

1. Introduction

Traffic demand becomes increasingly higher with the great development of social economy
and urbanization. With the large amount of private cars and limited road facilities, severe
traffic congestion occurs inevitably. Municipal governments and road transport authority
have strongly recommended public transportation for its higher passenger capacity and
smaller coverage area. So it is necessary to improve the quality of bus dispatching manage-
ment, and a wholesome and intelligent bus scheduling scheme is needed.

Bus interval scheduling is a complex optimization problem for its nonlinear and
multiobjective characteristics. It requires traffic planners to take round consideration of multi-
interests, such as bus operating enterprises and passengers. The relationship between the two
is contradictory. Obviously, bus operating enterprises always try to dispatch buses as few
as possible with the longest intervals and the highest profit, whereas passengers are the
opposite. According to the two contradictory characteristics, an optimal bus dispatching
interval model is urgent to be established to benefit both sides.
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As to the optimal algorithms, lots of intelligent algorithms have been adopted to solve
transportation optimal problems [1]. Intelligent algorithms enlightened by bacterium have
become fashionable recently. Back to the history of bacteria foraging algorithm (BFA), it was
initially proposed in 2002 by Passino [2] and applied to dealing with several engineering
problems [3–5] successfully. However, it was limited to solo modal function optimization
for its poor convergence behavior. So effort to pursue more adaptive algorithms goes on.
Muñoz et al. [6] proposed some methods to simplify the algorithm while maintaining its
core elements. These included the simplification of the algorithm architecture, the elimination
of the bacteria colony scale, a clear adaptation rule for the step size, the use of a uniform
distribution the position initialization, and the removal of the cell-to-cell communication. In
2008, Dasgupta et al. [7] mathematically analyzed the chemotactic step of a one-dimensional
BFA and proposed the adaptive step size for BFA. In the same year, Chen et al. [8] analyzed
how the run length unit parameter controlled the exploration and exploitation process of BFA
and then employed the adaptive search strategy to significantly improve the performance of
the original algorithm.

In this paper, the adaptive bacteria foraging algorithm was adopted to solve the
complex bus interval dispatching problem. Many variables were taken into consideration
such as dispatching interval, waiting time, load factor, economic efficiency, and trip service
level. Among them, dispatching interval was chosen as the control variable. To compare
which one was the best, genetic algorithm [9] (GA) and nonadaptive bacteria foraging
algorithm (BFA) were employed in optimizing this model. The simulation results, focusing
on minimizing two specific objective functions, depicted the advantages of the mentioned
algorithm.

The rest of the paper is organized as follows. Section 2 gives brief views of basic
and adaptive bacteria foraging algorithm. The theoretical optimal model for bus dispatching
interval is built in Section 3. Based on this model, the simulations on ABFA, GA, and BFA are
given in Section 4. Finally, Section 5 gives the conclusions.

2. Adaptive Bacteria Foraging Algorithm

2.1. Basic Bacteria Foraging Algorithm

To forage food, a bacterium needs to communicate with the group with its sensing abilities.
By generating common knowledge, developing group identity and recognizing the identity
of other colonies, bacterium engages in group decision-making [10]. A sort of collective
intelligence subsequently occurs. And this wit consists of four steps: chemotaxis, swarming,
reproduction, and elimination and dispersal [11–13].

(1) Chemotaxis

Basically, chemotaxis is a foraging strategy that implements a type of local optimization
where the bacteria try to climb up the nutrient concentration [7]. Swimming and tumbling
are two aspects of this step. The bacterium’s flagella rotation determines its foraging direction
in an anticipated route (swimming) or an unexpected one (tumbling). ϕ(j) stands for the unit
random length in the direction of a tumble, that is,

θi
(
j + 1, k, l

)
= θi
(
j, k, l

)
+ C(i)ϕ

(
j
)
, (2.1)
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where θi(j, k, l) means the ith bacteria’s jth chemotactic behavior at the kth reproductive and
lth elimination step. C(i) represents the step size adopted in the random route in a tumble.
And C is labeled as run length unit.

(2) Swarming

It is assumed that bacterium tends to inform others of its optimal food path, so group can
locate food area more swiftly. Swarming gathers bacterium into high-density group and then
forage food in a type of concentric circle, that is,

Jcc =
S∑

i=1

Jcc
i
(
θ, θi
(
j, k, l

))
=

S∑

i=1

⎡

⎣−dattract exp

⎛

⎝−wattract

P∑

m=1

(
θm − θmi

)2
⎞

⎠

⎤

⎦

+
S∑

i=1

⎡

⎣hrepellent exp

⎛

⎝−wrepellent

P∑

m=1

(
θm − θmi

)2
⎞

⎠

⎤

⎦,

(2.2)

where Jcc
i(θ, θi(j, k, l)) is the cost function value to be minimized; S is the bacterium

scale; P is the number of parameters to be optimized. dattract, wattract, hrepellent, and wrepellent

are different coefficients that are to be chosen carefully.

(3) Reproduction

The least healthy bacterium vanishes, and the other healthiest bacterium splits into two and
are released in the same position. This makes the population of bacteria constant.

(4) Elimination and Dispersal

Possibly in the current surroundings, bacterium’s life span changes slightly either by nutrient
supplements or other unexpected influence. Accidents can kill some bacteria colonies in one
second. But this has the effect of assisting in chemotaxis.

2.2. Adaptive Bacterial Foraging Algorithm

BFA is adaptive by adjusting the run length step parameter dynamically during its execution
process to balance the exploration or exploitation search [14]. Each bacterium has two
different foraging states in ABFA model.

(1) Exploration: imprecisely explore the regions never gone before quickly in the search
space in a large run length unit.

(2) Exploitation: exploit the potential regions slowly in its immediate vicinity in a small
run length unit.

The self-adaptive search is given in pseudocode in Table 1 below.

2.3. Algorithm Flowchart of ABFA

The flowchart of ABFA is listed below.



4 Mathematical Problems in Engineering

Table 1: Pseudocode for dynamic self-adaptive strategy [17, 18].

(1) FOR (each bacterium i) IN PARALLEL

(2) IF (Criterion-1) then

(3) Ci(t + 1) = Ci(t)/α; // exploitation

(4) εi(t + 1) = εi/β;

(5) ELSE IF (Criterion-2) then

(6) Ci(t + 1) = Cinitial; // exploration

(7) εi(t + 1) = εinitial;

(8) ELSE

(9) Ci(t + 1) = Ci(t);

(10) εi(t + 1) = εi;

(11) END IF

(12) END FOR IN PARALLEL
Where Criterion-2: exploration state; Criterion-1: exploitation state;
t: the current iterations; α, β: default constants; Ci(t): current run-
length unit of the ith bacteria; εi(t): the desired precision in the
current iteration of the ith bacteria; Cinitial: the original run length
unit; εinitial: the original precision.

Step 1. Initialize parameters like bacterium scale S, custom constants n, α, and β, run length
step Cinitial and precision εinitial, and position of bacterium colony.

Step 2 (chemotaxis and swarming). In this process, the signaling concentration (fitness value)
released on every path will be calculated. Bacterium will choose paths that own the highest
fitness value.

Step 3 (reproduction). Sort by the bacteria colony’s fitness values. The best half of the popula-
tion undergoes reproduction. And the rest are eliminated to accelerate convergence speed.

Step 4 (elimination and dispersal). The wholesome adaptive bacteria colony migrate to other
spaces randomly to expand the diversity of the colony.

Step 5 (judgment). If the current iteration is lower than the max iterations, then go to Step 2;
if not, the algorithm loop ends.

The algorithm flowchart is given below in Figure 1, where, S—the colony scale; t—the
current iterations; Ns—the max iterations in the current nutrient gradient; Xi—the current
location in searching space of the ith bacteria; flagi—the number of times that bacteria’s
fitness value has no continuous improvement.

3. Theoretical Optimal Model Building

Bus scheduling is a complex optimal problem influenced by varied external environment.
According to the specific and available data on bus dispatching, the following hypothesis
was made to establish a simulated model [15].

(1) The type of buses was identical. They were well operated and dispatched strictly
according to bus schedule, with no accidents on the road.
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Begin

Initialize: position X and associated run-length step Cinitial of the bacteria colony, set t = 0

i = 1

Tumble and move

m = 1

Fit(Xi(t + 1)) < Fit(Xi(t))?

Swim; flagi = 0

m > Ns? m = m + 1

Fit(Xi(t + 1)) < εi(t)?

Yes

Yes

Yes

Yes

Yes

Yes

No

No

No

No

No

No
Self-adaption

Ci(t + 1) = Ci
initial

εi(t + 1) = εiinitial

Ci(t + 1) = Ci(t)

εi(t + 1) = εi(t)

i < S? i = i + 1

t < max generation ?t = t + 1

End

Reproduction: the S/2 bacteria with the worst fitness die

and the other S/2 bacteria with the best fitness split

Elimination dispersal: for i = 1, 2, . . . , S, with probability Ped, eliminate and

disperse each bacterum

flagi = flagi + 1

flagi > Nu?

Ci(t + 1) = Ci(t)/α

εi(t + 1) = εi(t)/β

Figure 1: Flowchart of ABFA [15].

(2) Passengers’ traffic flow volume at a bus line was independent of each other; their
arrival distribution followed a uniform distribution.

(3) The dispatching interval of every two successive buses was identical in a given
period.

(4) The trip cost unit for passengers and operation cost unit for bus operating
enterprises were fixed.
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A certain bus line with its upstream travel direction was selected as the scheduling
object. The whole operating time was divided into several one-hour intervals. And the
theoretical optimization model was given below.

(1) Control Variable

Bus dispatching interval was chosen as control variable.

(2) Objective Function

Minimum bus operating cost and minimum passengers’ waiting cost were two optimal
objectives. In formula (3.1), f1 represented the operation cost bus enterprises invested one
day; in (3.2), f2 represented the trip cost passengers invested one day; in (3.3), f represented
the final minimum function with weighting coefficients given:

f1 =
∑K

k=1(tk/Δtk)
ts/((tmax + tmin)/2)

, (3.1)

f2 =

∑K
k=1
∑J

j=1 mj × ρkjΔtk2/
∑K

k=1
∑J

j=1 Ukj

(tmax + tmin)/2
, (3.2)

f = min
(
η × f1 + τ × f2

)
, (3.3)

where tk is time duration at kth interval; k = max/min means the upper or lower bound of
bus interval; k = s means the whole operating time span one day; Δtk is the kth dispatching
interval; mj is passenger volume at the jth site; ρkj , ukj is the density of passenger flow or
passenger volume arriving at the jth site in the kth interval; Ukj is the getting off at the jth
site in the kth interval; η, τ is weighting coefficient.

(3) Standard Constraint Condition

Formula (3.4) represented the mean bus load factor to be more than 75%; formula (3.5)
represented dispatching interval to be between the lower and upper bounds; (3.6)
represented condition to ensure profitability for bus enterprises.

Standard constraint condition

∑k
k=1
∑J

j=1 Ukj

Q ×∑K
k=1(tk/Δtk)

≥ 75%, (3.4)

tmin ≤ Δtk ≤ tmax, (3.5)

∑k
k=1
∑J

j=1 Ukj

∑K
k=1(tk/Δtk)

≥ 2.5 × L, (3.6)

where Q is the rated passenger capacity of a bus; K is time set K = {1, . . . , k, . . . K}, K is the
total time intervals; J is site set J = {1, . . . , j, . . . J}, J is the amount of bus sites of a line; L is
the length of the total bus line.



Mathematical Problems in Engineering 7

Table 2: Passenger volume in each site.

Time period Passengers get in Passengers get off Time period Passengers get in Passengers get off
06:01–07:00 98 52 13:01–14:00 69 78
07:01–08:00 74 105 14:01–15:00 85 90
08:01–09:00 83 97 15:01–16:00 49 45
09:01–10:00 54 52 16:01–17:00 63 81
10:01–11:00 85 69 17:01–18:00 78 93
11:01–12:00 52 44 18:01–19:00 89 96
12:01–13:00 48 45 19:01–20:00 79 59

Table 3: Adjacent site’s distance and average running time between sites.

Site no. Adjacent site’s
distance (m)

Running time
(min) Site no. Adjacent site’s

distance (m)
Running time

(min)

1 0 0 18 397 1.87
2 406 2.375 19 562 3.6
3 308 1.28 20 491 2.85
4 562 3.7 21 374 1.73
5 461 2.75 22 259 1.25
6 364 1.54 23 376 1.65
7 347 1.37 24 549 3.2
8 570 3.3 25 523 3.0
9 440 2.5 26 1100 6.7
10 389 2.1 27 563 3.25
11 607 3.7 28 395 1.95
12 709 4 29 397 1.94
13 533 3.1 30 426 2.75
14 604 3.4 31 407 2.25
15 552 3.5 32 714 5.1
16 385 1.75 33 199 0.8
17 546 3.2 34 424 2.5

4. Practical Simulation Based on Optimal Model

A bus line in its upstream travel direction in Hohhot city in China was selected as the
scheduling object. Several relevant data had been investigated and listed as follows: the
number of total sites was J = 34 sites; the operation period was 6:00–20:00 and divided into
K = 14 hours; the lower and upper bounds of bus dispatching interval were tmin = 2 min and
tmax = 15 min, with the rated passenger capacity Q = 100 persons.

4.1. Passenger Traffic Flow and Basic Data on Bus Site Facilities

Data on passenger volume in each site of the upstream line were shown in Table 2 and adja-
cent sites distance and average running time between them were displayed in Table 3.
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Table 4: Bus dispatching interval schedule based on ABFA.

Interval Bus departure schedule Departure times

1 6:00 :04 :08 :12 :16 :20 :24 :28 :32 15
:36 :40 :44 :48 :52 :56

2
7:00 :03 :06 :09 :12 :15 :18 :21 :24

20:27 :30 :33 :36 :39 :42 :45 :48 :51
:54 :57

3 8:00 :04 :08 :12 :16 :20 :24 :28 :32 15
:36 :40 :44 :48 :52 :56

4 9:00 :05 :10 :15 :20 :25 :30 :35 :40 12
:45 :50 :55

5 10:00 :05 :10 :15 :20 :25 :30 :35 :40 12
:45 :50 :55

6 11:00 :05 :10 :15 :20 :25 :30 :35 :40 12
:45 :50 :55

7 12:00 :05 :10 :15 :20 :25 :30 :35 :40 12
:45 :50 :55

8 13:00 :06 :12 :18 :24 :30 :36 :42 :48 10
:54

9 14:00 :06 :12 :18 :24 :30 :36 :42 :48 10
:54

10 15:00 :05 :10 :15 :20 :25 :30 :35 :40 12
:45 :50 :55

11 16:00 :04 :08 :12 :16 :20 :24 :28 :32 15
:36 :40 :44 :48 :52 :56

12
17:00 :03 :06 :09 :12 :15 :18 :21 :24

20:27 :30 :33 :36 :39 :42 :45 :48 :51
:54 :57

13 18:00 :04 :08 :12 :16 :20 :24 :28 :32 15
:36 :40 :44 :48 :52 :56

14 19:00 :06 :12 :18 :24 :30 :36 :42 :48 10
:54

Total bus departure times 190

4.2. Simulation Results and Analysis

The bus dispatching interval optimal model was built and simulated on ABFA comparison
with GA and BFA. First, basic settings were initialized: the population scale was 40. The
maximum iterations was 1000. α = β = 10. Cinitial = 0.1. εinitial = 100. The parameters of BFA
and GA were similarly set. Three graphs showing convergence trend were given in Figure 2.

It could be drawn from Figure 2 that ABFA was the best one to accelerate convergence
speed, improve searching precision, and strengthen robustness. So with the desired
algorithm, latest bus interval was calculated in Table 4. Each bus departure interval was



Mathematical Problems in Engineering 9

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0 200 400 600 800 1000

ABFA
GA
BFA

Iterations

Fi
tn

es
s

Figure 2: The convergence trend based on 3 algorithms [16].

Δt1 = 4; Δt2 = 3; Δt3 = 4; Δt4 = 5; Δt5 = 5; Δt6 = 5; Δt7 = 5; Δt8 = 6; Δt9 = 6; Δt10 = 5;
Δt11 = 4; Δt12 = 3; Δt13 = 4; Δt14 = 6.

5. Conclusions

In this paper, an interval optimal model was applied into one bus line in Hohhot city in
China. The bus interval dispatching issue was considered as a nonlinear and multiobjective
optimization. The enterprise profits, load factor, and dispatching interval were particularly
chosen as the primary parameters in this optimization. Two relevant objective functions
were defined. The proposed optimal algorithm, ABFA, combined colony sensing, chemotactic
action, and improved foraging strategy to solve the distributed bacterial optimization. For
comparison purpose, two other algorithms, GA and BFA, were employed to decide which
was the best one. Furthermore, extensive sight would be thrown years ahead to evaluate the
practical merits of ABFA in traffic and transportation optimization problems.
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Structural damage identification is to determine the structure health status and analyze the test
results. The three key problems to be solved are as follows: the existence of damage in structure, to
detect the damage location, and to confirm the damage degree or damage form. Damage generally
changes the structure physical properties (i.e., stiffness, mass, and damping) corresponding with
the modal characteristics of the structure (i.e., natural frequencies, modal shapes, and modal
damping). The research results show that strain mode can be more sensitive and effective for local
damage. The direct index method of damage location detection ISMSD is based on difference theory,
without the modal parameter of the original structure. FEM numerical simulation to partial crack
with different degree is done. The criteria of damage location detection can be obtained by strain
mode difference curve through cubic spline interpolation. Also the genetic algorithm box in Matlab
is used. It has been possible to identify the damage to a reasonable level of accuracy.

1. Introduction

Recently the development of new methods of evaluating the integrity of structures has
been attached great importance. The vibrational characteristics of structures can be easily
alternated once the damage occurs. In order to analyze the state of the structure integrity
and the location of structural damage, the modal analysis with vibrational test data is widely
employed [1], though the modal vectors were effectively ignored earlier [2, 3]. The reason
is that the parameters of modal analysis depend only on the mechanical characteristics of
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the structure. Considering this, the characteristics of modal vibration, that is, the natural
frequencies, mode shapes, and so on are considered to represent the state of structure [4].

Although damage index based on strain modal shape is much more sensitive [5–8],
in most cases, this index can only indicate the damage location both in undamaged and
damaged state with modal data. In fact, these kinds of methods are difficult to employ,
because the baseline under suddenness and geological disaster is difficult to master. The
problem is solved by Gu et al. [9], who put forward the direct index method of damage
location detection ISMSD based on difference theory without baseline modal parameters.
The index ISMSD contains three elements: the effective distance ratio between two adjacent
effective extreme points, the absolute difference value of the two effective extremums, and
the maximum absolute value of the effective extremum.

Then, the genetic algorithm was gradually applied to solve the problem of damage
detection [10]. The method is demonstrated on a simulated beam example and an
experimental plate example. Based on the genetic algorithm, Yi and Liu estimated the
structural damage with measured dynamic data [11]. Some improved strategies such as
multiparent crossover and adjustment of variables are introduced to detect the damage of
fixed-end beams and continuous beams. And some satisfied results are achieved. Based on
conventional modal analysis theory, Mares and Surace [12] coded a function of binary, and
a case of truss-type structure is used to identify the structural damage. And the accurate
identification of both the location and the degree of the damage had become possible to be
achieved.

Genetic algorithm appears to provide a robust search procedure for solving difficult
problems. Due to the way the genetic algorithm explores, the region of interest avoids
getting stuck at a particular local minimum and locates the global optimum. To formulate
an objective function, with the parameters related to the physical properties and state of
the structure, is the aim of the detection of damage in structures. When evaluated with the
true parameters, the maximum value of the objective function is obtained. Genetic search
algorithm is an optimization procedure which can be employed to determine the values of
these parameters by following an iteration process, selecting parameters to maximize the
objective function. When the optimization procedure is over, the state of the structure, that is,
where and how it is damaged is known.

The objectives of this paper are to develop and apply models to diagnose the
damage location and damage degree. This paper is organized as follows: the first section
provides a brief introduction to GA, the next section contains results and analyses including
performance evaluation of the methodology, and finally the conclusions are presented.

2. Model Development

Modal test of continuum structure uses a series displacements of discrete measuring points
to describe all order modes of mode functions. The mode results of all order are the ratio
of normalization displacements of discrete measuring points. The strain distributing can be
calculated by the difference of deformable displacements.

The vibrational differential equation of straight Euler beam in transverse section is

∂2

∂x2

(
EI

∂2u

∂x2

)
+ ρA

∂2u

∂x2
= 0. (2.1)
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The displacement containing all order modes of displacement φr(x) (r = 1, 2, . . .) is

u(x, t) = U(x)ejωt =
∞∑

r=1

φr(x)Qre
jωt. (2.2)

Curvature mode is the difference of displacement mode.
The discrete curvature mode can be approximately calculated by center difference

method as

φ′′rk =
φr(k−1) − 2φrk + φr(k+1)

dx2
≈ φr(k−1) − 2φrk + φr(k+1)

h2
(2.3)

φrk is the rth order of displacement amplitude; k is the calculation point; h is the distance
between two adjacent calculation points.

Suppose z(x) is the distance from the middle bending surface to any point, then the
strain of this point in x direction is

εz,x =
∂u

∂x
≈ ∂

2φrk

∂x2
z(x) = φ′′rkz(x). (2.4)

The relationship between strain mode and curvature mode can be transmitted through
formula (2.4). Strain mode shape is more sensitive than displacement mode shape at damage
detection.

The curve of strain mode shape has extremum and sharp variation at the damage
location for simply supported beam, which is the common structural style. The difference
curve of strain mode shape must be smoothed by cubic spline interpolation. Central
difference method is a numerical method. The advantages of this method are symmetry, a
certain accuracy, and easy to use. The format at the nonboundary nodes are central difference.
The format at boundary nodes is eccentric difference.

The beam is separated into n − 1 units, namely, n nodes. The equidistance is h. Φε
r(x)

is the rth order strain mode function. The basic equidistance difference format is

(
dΦε

r

dx

)

i

=
Φε
r(xi+1) −Φε

r(xi−1)
2h

. (2.5)

The difference formulation at boundary node 1 is

(
dΦε

r

dx

)

1
=

Φε
r(x2) −Φε

r(x1)
h

. (2.6)

The difference formulation at boundary node n is

(
dΦε

r

dx

)

n

=
Φε
r(xn) −Φε

r(xn−1)
h

. (2.7)
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When difference curve fits, the 2nd order difference values of two extreme points are

(
d2Φε

r

dx2

)

1

=
Φε
r(x1) + Φε

r(x3) − 2Φε
r(x2)

2h2
,

(
d2Φε

r

dx2

)

n

=
Φε
r(xn−2) + Φε

r(xn) − 2Φε
r(xn−1)

2h2
.

(2.8)

Nearby the sharp variation section or the peak value of the mode shape, the extreme
points at strain mode curve in damage are located. The damage location is at the curve’s
sharp variation section.

For actual engineering, Extreme point is unnecessarily just zero at the difference of
ideal curve. Three reasons are explained as follows: firstly, the space principles of measuring
point or unit classification in numerical simulation are not just at the damage location.
Secondly, the accuracy problem of both the strain mode test and the computation is to be
considered. Thirdly, the accuracy of difference computation is to be considered.

Interpolation method is used to solve the question of the zero point of strain mode
difference curve and confirm the extremums. The computational value at nodes is equal to
the supposed function. Many function values are calculated and the function curves draw.
Cubic spline interpolation is used in this paper, a widely used interpolation method.

3. Genetic Algorithm

Complex adaptive systems are extremely difficult to comprehend, when unexpected and
unpredictable results occur. Holland succeeds to solve this problem by presenting genetic
algorithm. In recent years, genetic algorithms are very popular procedure of robust research
for solving maximizing or minimizing a given objective function often subject to some
constraints [13–20].

Genetic algorithm derives from the process of natural selection and evolution. Because
of the inherent advantage of being able to process with a large population of designs
and facilitating arrival at the globally optimal solution, the philosophy of “survival of
the fittest” has been adopted. It is necessary to devise a general coding system for the
representation of the design variables, namely, a directly analogy of the DNA structure of
chromosomes. Most commonly, the design variables are coded by a bit-string which is a
binary representation. It can only be coded as integers. The progress of genetic algorithm
is in the same way of the natural evolution of a species: the fundamental concepts of
reproduction, chromosomal crossover, and occasional mutation of genes. Fitness function,
which determines possible solutions to the problem, is used to estimate the quality of the
represented solution (chromosome). Crossover is a reproduction operation in GA, which
is used to vary the programming from one generation to the next by exchanging genetic
information between parent chromosomes.

In applying the evolution theories to designing optimization, a number of candidate
design variables either randomly or heuristically are created. Then, they evolve over
generations to produce new designs which are “fitter.” The “fitness” of the designs is



Mathematical Problems in Engineering 5

evaluated according to the objective function, a specific optimization problem. The point with
no further improvement is the solution. This paper applies genetic algorithm to the problem
of damage detection using strain mode.

In the application to the damage detection in structures, the aim is to formulate
an objective function in terms of damage degree of the structure. The objective function
must be formulated in such a way that the maximum value is obtained when evaluated
with the true parameters. Genetic algorithm can be employed to determine the values of
these parameters by following an iteration process, selecting parameters to maximize the
objective function. When the optimization procedure arrives at the solution, the values of the
parameters indicate the state of the structure, that is, if, where and how it is damaged. The
detailed steps are shown as follows.

Step 1. Initialize: the initial population is generated with binary coding, and each individual
represents a initial solution.

Step 2. Individual evaluation: calculate the fitness value of each individual.

Step 3. Convergence judgment: implement Step 4, if the fitness value is still not convergent
or cannot reach the limit of iteration times, otherwise, terminate the calculation.

Step 4. Individual crossover, mutation, and selection: return to Step 2 after executing
crossover (one-point crossover), mutation (discrete mutation), and selection (sampling
randomly) process.

Thus, the search process of genetic search can be seen in Figure 1.

4. Example

In the genetic search procedure, selection, crossover, and mutation operators, each with a
given probability, are applied to each current population to create the new generations.
The results published by DeJong, Gerefenstette, and Schaffer indicate the most appropriate
parameter setting: a population size of 20–30 individuals, a crossover rate of 0.6–0.95, and a
mutation rate 0.01-0.02.

Take the “damage rate 6.25%” as an example to apply the calculation. Figure 2 shows
that during the 100 evolutional generations, the result began to converge after the 80th
iteration. Therefore, the final result is obtained: in the first order, the best value of ISMSD(2) is
convergent to 0.0048.

The mathematical model has solved the maximum of formula (4.5), in which x ∈
[1, 41]. Selecting binary code, the swarm number is 10. The length of binary code is 19.
Crossover probability is 0.95. The mutation probability is 0.01. After the 100 times of genetic
iterative, the results were close to the data of Table 1.

The example was a numerically simulated simply beams (see Figure 3) with a finite
element model. The characteristics of the beam were as follows: length l = 0.4 m, cross-
sectional area A = 0.0002 m2, in quarter span damage, a one fifth length of the beam width,
modulus of elasticity E = 211 Gpa, density ρ = 7850 kg/m3, Poisson radio μ = 0.33, damage
extent α1 = 6.25%h, α2 = 12.5%h, α3 = 25%h, α4 = 31.25%h, eight node solid 45 unit in Ansys,
25 grids at transverse section, 16 grids at vertical section, damage width w = 0.002 m.

On the basis of numerical simulation results of the strain modes, the smooth strain
mode difference curve can be draw based on central difference and cubic spline interpolation.
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Figure 1: Flowchart of the genetic search.
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Table 1: Damage location indices.

Damage location Order Damage degree
6.25% 12.5% 25% 31.25%

Quarter span

First order
ISMSD(1) 0.0018 0.0049 0.0111 0.0159
ISMSD(2) 0.0048 0.0092 0.0197 0.0238
ISMSD(3) 0.0011 0.0013 0.0114 0.0167
ISMSD(4) 0.0016 0.0022
ISMSD(5) 0.0010

Second order
ISMSD(1) 0.0162 0.0205 0.0673 0.1003
ISMSD(2) 0.0202 0.0497 0.1054 0.1647
ISMSD(3) 0.0137 0.0162 0.0655 0.0997
ISMSD(4) 0.0127 0.0000078 0.0035
ISMSD(5) 0.0122 0.0105
ISMSD(6) 0.0154

Third order
ISMSD(1) 0.0787 0.0877 0.1005 0.1335
ISMSD(2) 0.0110 0.0661 0.1699 0.2660
ISMSD(3) 0.0457 0.0754 0.0885 0.1821
ISMSD(4) 0.0544 0.0539 0.0649 0.0644
ISMSD(5) 0.0701 0.0707 0.0753

Note: overstriking index and overstriking data correspond to damage location.

Elements

Curvature

Figure 3: FEM modal of local damage in simply supported beam.

The figures (from Figures 4, 5, 6, and 7) were the smooth strain mode difference curves
after cubic spline interpolation. The damage extents were 6.25%, 12.5%, 25%, and 31.25% of
the height.

With the exception of supports, strain mode difference curves have sharp variation at
the damage location. For different damage degrees, strain mode curve is slightly different,
but the rule has some consistency.

4.1. Mathematical Model of Direct Index Method of Damage Location

4.1.1. Direct Index Method of Damage Location

From the data change at sharp variation zone between two adjacent extremums, damage
index was presented. The extents of the curve’s variation were reflected.
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Figure 4: When damage 6.25%, the first three strain modal difference curves.
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Figure 5: When damage 12.5%, the first three strain modal difference curves.
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Figure 6: When damage 25%, the first three strain modal difference curves.
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Figure 7: When damage 31.25%, the first three strain modal difference curves.



10 Mathematical Problems in Engineering

4.1.2. Effective Distance Ratio

The distance between two adjacent effective extremums is effective distance. Effective
distance ratio is the ratio of effective distance to span.

Suppose: span l, effective extremum points: x0, x1, x2, . . . , xp, effective extremums:
y0, y1, y2, . . . , yp, then the effective distance ratios are

I1j =

(
xj − xj−1

)

l
, j =

(
1, 2, . . . , p

)
. (4.1)

The smaller distance ratio of the two adjacent effective extremum is, the greater
probability of damage is as follows:

I2j =
∣∣yj2 − yj1

∣∣, j =
(
1, 2, . . . , p

)
. (4.2)

Let

I3j =
I2j

I1j
, j =

(
1, 2, . . . , p

)
. (4.3)

4.2. The Absolute Maximum of Effective Extremum: ISMSD

As strain mode difference curve of different orders was nonnormalized, the computational
results had no comparison.

In order to solve this problem, the results of formula (4.3), divided the absolute
maximum of effective extremums of all orders, the data of different orders can be compared

ISMSD
(
j
)
=

I2j

I1j max
(∣∣y0

∣∣,
∣∣y1

∣∣,
∣∣y2

∣∣, . . . ,
∣∣yq

∣∣) . (4.4)

Namely,

ISMSD
(
j
)
= l

∣∣yj2 − yj1
∣∣

(
xj − xj−1

)
max

(∣∣y0
∣∣,
∣∣y1

∣∣,
∣∣y2

∣∣, . . . ,
∣∣yq

∣∣) . (4.5)

Formula (4.5) is called the direct damage location index. The greater value it is, the
more probability of damage occurs. Combined with the rules of difference curve, the damage
location can be determined.

Based on formula (4.5), the numerical computation results of damage location indices
are listed in Table 1.

From the illustrative examples used, the method using genetic algorithms is very
useful to identify both the damage location and the damage degree with a reasonable
accuracy. The striking feature of genetic algorithm is that the optimal solution can be
determined even with perturbed data having noise. As a parallel search technique, the genetic
algorithm makes this approach attractive for problems of large dimensions.
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5. Conclusion

The damage indices of the first and second orders are obviously greater than others in
the table, and the damage degrees are in accordance with it. The direct index method can
accurately detect the damage location and damage degree, especially lower damage. Genetic
algorithm is a powerful tool. From the example, accurate identification of both damage
location and damage degree had been possible in the structure model. For a protracting beam,
there is no macrocrack. The difference curve of strain modes at the damage location has sharp
variation, but the numerical value probably is not zero.
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Discrete network design is an important part of urban transportation planning. The purpose of
this paper is to present a bilevel model for discrete network design. The upper-level model aims
to minimize the total travel time under a stochastic demand to design a discrete network. In the
lower-level model, demands are assigned to the network through a multiuser traffic equilibrium
assignment. Generally, discrete network could affect path selections of demands, while the results
of the multiuser traffic equilibrium assignment need to reconstruct a new discrete network. An
iterative approach including an improved genetic algorithm and Frank-Wolfe algorithm is used to
solve the bi-level model. The numerical results on Nguyen Dupuis network show that the model
and the related algorithms were effective for discrete network design.

1. Introduction

With the development of cities, travel demand is high and widely spread. The capacity of
the current transport system remains limited to accommodate the increasing demand. It has
emerged as an important area for progress in handling effective transport planning, in which
some new links or roadway segments are added to expanding the current system capacity.
The discrete network design problem (DNDP) deals with the selection of link additions to
an existing road network, with a given demand from each origin to each destination. The
objective of DNDP is often to optimize a given system performance measure such as to
minimize total system travel cost, while accounting for the route choice behaviors of network
users. Farvaresh and Sepehri [1] presented a single-level mixed integer linear formulation for
discrete network design. Miandoabchi and Farahani [2] presented a discrete network design
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model, in which the concurrent design of street capacity, street direction, and lane allocations
for two-way street are optimized based on the reserve capacity maximization. In traditional
transportation network design, the travel demand is often assumed as a constant and users
are assumed to belong to a single class. However, the assumptions are inappropriate to real-
life applications.

Different forms may be adopted for different aims in those literatures; but uncertainty
in decision making and the diversity of the users are not considered. This paper seeks to
make two contributions to the literature. Firstly, when the travel demand is uncertainty,
uncertain optimization theory will be used. Secondly, when the users are diversity, they will
be classified and treated, respectively. Therefore, a bi-level model was proposed for traffic
network design. The upper-level model takes the travel time as the main consideration factor
to optimize the network design model. Considering the fact that the travel demand changes
along with the change of the network, the lower-level model assigns the users again in the
network optimized by the upper-level model.

The uncertain transportation network design model based on the stochastic program-
ming theory assumes that travel demand is a stochastic variable submitting to a known
probability distribution. At the same time, the optimal network plan will be obtained with
stochastic bi-level programming model. Patriksson [3] considered demand uncertainty in
stochastic bi-level programming model, in which the upper-level model is to minimize
expected value of the objective function, and the lower-level model is the equilibrium
conditions of variation inequality.

Ukkusuri and Waller [4] provided the chance constrained programming model and
two-phase compensation stochastic programming model for designing the transportation
network with a single end and uncertain OD demand. When traffic flow meets the dynamic
user equilibrium condition, cell transmission model (CTM) can be used, and the numerical
calculation shows that the suboptimal solutions will be obtained without considering
the uncertainty of demand. Karoonsoontawong and Waller [5] established a continuous
transportation network design model under the demand uncertainty. Assume that every
demand situation meets a dynamic user equilibrium to describe the traffic flow based on
the CTM model of Daganzo [6]. The model minimizes the weighted average of the expected
mean value and the expected risk to improve model robustness against demand uncertainty.
Yang [7] analyzed the behavior of equilibrium flows with elastic demand which can be
used to measure the demand and performance characteristics of the transportation networks.
Li et al. [8] attempted to present road toll design model for congested road networks
with uncertain demand. A heuristic algorithm based on the sample average approximation
approach and a sensitivity analysis is used to solve the network design model.

There are two types of methods dealing with multiuser problem in transportation
network design problem. One method is to classify users according to traffic mode
characteristics and vehicle types; then each category of users has different cost functions.
Similar study has been done by Smith [9]; and so forth. Another method assumes that
vehicle types of travelers are the same and have the same effect on traffic flow; but there
are differences in time value. According to the different way of study, time value distribution
can be assumed as discrete or continuous, corresponding to limited categories of users or
infinite categories of users. Research about multiuser network equilibrium based on discrete
time value has been done by Daganzo [6], Yang and Zhang [10]. Research about multiuser
network equilibrium based on continuous time value has been done by Dial [11].

In order to correct the inappropriate assumptions in traditional transportation network
design, in this paper, the OD trip demand elements are supposed as stochastic variables
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submitting to given probability distribution. Travelers are divided into different groups by
the value of time and a novel multiuser network design model is established. However, for
network design, it is difficult to be solved through classical optimization techniques [12].
Recently many studies have proved that heuristic algorithms are suitable for large-scale
transit network optimization problems, such as ant colony algorithm [13–15] and simulated
annealing algorithm [16].

Genetic algorithm (GA) is a search heuristic that based on the idea extracting from
the process of natural evolution. Recently many studies have proved that genetic algorithm
is suitable for solving network design problem. Pattnaik et al. [17] presented a GA-based
optimization method to design transit network, in which the total cost of user and operator
was to be minimized. Agrawal and Mathew [12] presented an optimization model for transit
network. The model was aiming to minimize the total system cost which included the
operating cost and the generalized travel cost. Bielli et al. [18] developed a heuristic based on
GA to design transit network. In the heuristic, a multicriteria analysis was used to estimate
the fitness values. Thus, in this paper, GA is also used to solve our discrete network design
problem.

This paper has been organized in the following way. Section 2 describes the travelers
time value and multiuser classification; Section 3 is about the optimization model, including
the problem formulations and the basic notations of variables; Section 4 describes genetic
algorithm and Frank-Wolfe algorithm for discrete network design problem. Numerical
analysis is carried out in Section 5, and lastly, the conclusions are drawn in Section 6.

2. Analysis of the Fundamental Factors

2.1. Traveler Time Value

In economics, social activities can be abstracted into production and consumption behavior.
The elements to describe different activities are often different, and time consumption is often
used to measure the activity efficiency. Time as a resource, its value should be reasonable
measured for better and efficient allocation. Time value represents time saving in terms of
money. Under a given space-time environment, the factors that affect time value mainly
include traveler characteristics, travel purpose, transportation modes, and other aspects.

In different conditions, the influence degree of each factor is different. Evaluation
of traveler time value is a comprehensive reflection of these factors. The following is the
introduction of the main factors that affect traveler time value.

(1) Traveler Characteristics

Different social and economic characteristics often affect traveler behavior. The income
level is the greatest effect among their characteristics. High-income passengers pay more
attention to quickness, comfort, safety, and service level than the travel fee while low-income
passengers tend to use more time to save money.

(2) Travel Purpose

Travel purpose is the motive of a trip. When travelers are confronted with different travel
purposes, there are often different choices for them to select and different choices with
different time and cost. For example, a trip for work has time constraint while a trip for
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shopping has more free time; so the time value for work is more than the time value for
shopping. In some special circumstances, such as the traffic accidents or emergency which
need medical assistance, time value is much higher than that of normal work trip.

(3) Transportation Mode

Traveler time value is not only related to travel purpose, but also transportation mode.
Different transportation modes have different speeds, convenience, and comfort, and those
differences affect travelers to select different transportation modes. When travelers choose
some transportation modes, they often consider those factors like travel time, travel cost, and
the auxiliary or additional travel time. For example, car can provide prompt door to door
service, so its time value is high. The bus needs more time not only aboard bus but also out
of bus for waiting and walking; so its time value is low.

(4) Other Factors

In addition to the influences of the above factors on traveler time value, travel distance, road
traffic conditions, vehicles conditions, and the service level [19], to a certain degree, also have
influences on the evaluation of travelers time value.

2.2. User Classification

There are two types of methods dealing with multiuser problem in transportation network.
One method is to classify users according to transportation modes and vehicle types, in which
each category of users has its cost function. In this paper, for the convenience of the study,
all the traveler time values are also categorized into two kinds: discrete and continuous. In
the same way, the users are considered as two kinds: limited categories of users and infinite
categories. This paper assumes that the difference among transportation network users is the
traveler time value, and the other characteristic is not considered.

3. Multiuser Discrete Network Design Model under
OD Demand Uncertainty

3.1. Basic Notations

The following are the notations used in the model formulation.

N: Transportation network nodes set

A: Transportation network links set

Or : The trip generation flow from the terminal r

Ds: The trip attraction flow from the terminal s

Prs: The routes set from the origin terminal r to the destination terminal s

xa: Traffic flow on link a

ta(x): Travel time impedance function of link a

frs
k

: Traffic flow on path k between OD pair r and s
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crsk : Traffic cost on path k between OD pair r and s

δrs
a,k

: When a belongs to path k which is between OD pair r and s, δ = 1; otherwise δ = 0

A: Set of new built or expanded links

ya: Decision variable of link a, ya ∈ {0, 1}, when link will be new built or expanded,
ya = 1; otherwise, ya = 0

Ca: Transport capacity of link a

La: Length of link a

Ga(ya): Cost of new built or expanded link a

B: Budget of all the new built or expanded links

Ω: All possible scenarios set of uncertain travel demand

ω: Any realization of uncertain travel demand

pω: Realization probability of uncertain travel demand scenario w

ρ: Mean and variance weight of travel time given by planning decision makers.

3.2. Multiuser Assumption

Each group of travelers has similar social and economic characteristics (such as income level).
If travelers can be divided into discrete I groups according to time value, the time value of
travelers i from the origin terminal r to the destination terminal s is set to girs when i ∈ I.
Thus, the user cost includes two parts. One is the cost of travel time value which is related to
route flow; the other is the toll fee τa, which is a constant. The sum of the cost from two parts
is changed as the variation of the travel time value. Formula (3.1) is the generalized cost of
the use of link a by i group users. Formula (3.2) is the time cost on path k between OD pair
r and s. Formula (3.3) is the expenses cost on path k between OD pair r ands. Formula (3.4)
generalized the cost of the use of path k between OD pair r and s by i group users:

gia(xa) = ta(xa) +
1
ψi
τa, ∀a ∈ A, i ∈ I, (3.1)

crsk =
∑

ta(xa)δrsa,k, ∀r ∈ R, s ∈ S, k ∈ K, (3.2)

τrsk =
∑

τaδ
rs
a,k, ∀r ∈ R, s ∈ S, k ∈ K, (3.3)

grsk,i = c
rs
k +

1
ψi
τrsk , ∀r ∈ R, s ∈ S, k ∈ Prs, i ∈ I. (3.4)

3.3. Multiuser Network Optimization Model under OD Demand Uncertainty

OD trip demand of each group travelers is supposed as a random variable submitting to the
given probability distribution. In practical calculation, when Monte-Carlo random sampling
is used to form a demand scenario set Ω, any demand scenario realization is w. OD trip
demand is qi,ωrs , where i is the set of groups of travelers. Scenario realization probability is pω.
Multiuser discrete network design model under OD trip demand uncertainty includes upper-
level model (3.5) and lower-level model (3.6), which are correlated by network improved
decision variable y and traffic flow x.
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The upper-level model (3.5) is to minimize the system total travel time mean and
standard deviation with the random demand in all scenarios realization condition, when
planners choose new built and rebuilt links under the capital budget constraints. The lower-
level model (3.6) is the corresponding multiuser equilibrium of each demand scenario under
the improved decisions conditions decided by the upper-level model. On has

min Z(x,y) = ρ
∑

ω

pω
[
∑

a

xωa t
ω
a

(
xωa , ya

)
]
+
(
1 − ρ)

×
⎡

⎣
∑

ω

pω
{
∑

a

xωa t
ω
a

(
xωa , ya

) −
∑

ω

pω
[
∑

a

xωa t
ω
a

(
xωa , ya

)
]}2
⎤

⎦
1/2

,

(3.5)

s.t.
∑

a∈A
Ga

(
ya
) ≤ B, (3.5a)

ya ∈ {0, 1}, ∀a ∈ A, (3.5b)

where x = x(y) is implicit function of y, decided by lower-level model (3.6). On has

min T(x) =
∑
a

∫xωa
0 tωa (w)dw +

∑
a

∑
i∈I

1
ψi
xi,ωa τa (3.6)

s.t.
∑

k∈Prs
frs,ω
k,i

= qi,ωrs , ∀r ∈ R, s ∈ S, ∀i ∈ I, ω ∈ Ω (3.6a)

frs,ωk,i ≥ 0, ∀r ∈ R, s ∈ S, k ∈ Prs, i ∈ I, ω ∈ Ω (3.6b)

xi,ωa =
∑

r∈R

∑

s∈S

∑

k∈Prs
frs,ω
k,i

δrs,ω
ak

, ∀a, i ∈ I, ω ∈ Ω (3.6c)

xωa =
∑

i∈I
xi,ωa , ∀a, ω ∈ Ω. (3.6d)

Here, travel time of link a is described as BPR function.
The right balance between the mean and standard deviation is kept by weight factor

ρ (ρ ∈ [0, 1]), where ρ shows the prediction of the planners for the average performance of
uncertainty and the discrete degree of depart from the average performance. The bigger ρ
value is, the less the planners would like to select.

In this paper, the multiuser discrete network design problem under demand
uncertainty can be shown in Figure 1.
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Figure 1: The optimized process of discrete network design problem.

4. Solution Approach

4.1. Multiuser Traffic Equilibrium Assignment

Using Frank-Wolfe method to solve multiuser equilibrium model consists of the following
steps.

Step 1. Initialization: according to {t0a = ta(0)} and {τa}, 0-1 traffic assignment based on
generalized cost is conducted to each group of users demand {qirs}when n = 1.

Step 2. Updating travel time on each link: determining generalized cost gina (xna) of each group
of users on each link when tna = ta(xna), for all a.

Step 3. Searching for iterative direction: conduct 0-1 traffic assignment according to
generalized cost {gina (xna)} to each group of users and get a set of additional traffic flow {yina }.
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Step 4. Searching for iteration step length λn based on min0≤λn≤1T(xin + λn(yin − xin)): to seek

λn until it meets min0≤λn≤1T(xin + λn(yin − xin)).

Step 5. Updating road traffic flow on each link:

x
i(n+1)
a = xina + λn

(
yina − xina

)
, ∀a, i; xn+1

a = xna + λn
(
yna − xna

)
, ∀a. (4.1)

Step 6. Convergence test: if {xn+1
a } already meets specified convergence criteria, calculation

stops and {xn+1
a } are the balance solutions. Otherwise update n = n + 1, return to Step 2.

4.2. GA for Multiuser Discrete Transportation Network Design

GA is inspired by evolutionary biology like inheritance, selection, crossover, and mutation.
Based on a fitness function, GA attempts to retain relatively good genetic information
from generation to generation. GA has been used for solving approximately combinatorial
optimization problems [20]. In this paper, GA is adopted to solve multiuser discrete
transportation network design model under demand uncertainty. The following is the steps
of GA.

(1) Encoding

For a discrete network design, the added links or expanded links are to assign to the current
network. Thus, an integer-coded scheme is selected to represent the alternative links in
this paper, and a chromosome example is as shown in Figure 2, where “0” represents the
corresponding link remaining the current situation while “1” represents the links need to add
new links or be expanded. For example, the chromosome is 1100110000 which represents that
route no. 1, 2, 5, and 6 needs to add new links or be expanded. The other routes remain the
current situation.

(2) Fitness Function

Generally, GA is optimal searching method to find the maximum fitness of the individual
chromosome. Therefore, a constant Q is introduced to transform our objective function to a
maximum fitness function and the chromosomes are evaluated as follows:

M
(
f
)
=
Q

Z
, (4.2)

where M(f) is the fitness function and Q is a constant.
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(3) Selection

The basic part of the selection process is to stochastically select from one generation to create
the basis of the next generation. The requirement is that the fittest individuals have a greater
chance of survival than weaker ones. That is, the better the chromosomes are, the more
chances to be selected they have. Therefore, the Roulette wheel selection method is used
for the selection of chromosomes in this paper. In addition, to increase the performance of
GA, elitism is used for selection. That is, if the elitism parameter was set to R; then the top R
chromosomes in the population are copied to the next generation.

(4) Crossover

Crossover is a genetic operator that exchanges genetic information between two parents’
chromosomes to produce two new children chromosomes. The crossover operator occurs
during evolution according to a given crossover rate pc. In this paper, in crossover
operation, the two links are selected, based on a simple arithmetic crossover [20], from
the parent chromosomes and exchange the two links, and then generate two new children
chromosomes:

gentk,I = αigent−1
k,I + (1 − αk)gent−1

k,II ,

gentk,II = αigent−1
k,II + (1 − αk)gent−1

k,I ,
(4.3)

where gent−1
k,I ,gent−1

k,II is a pair of “parent” chromosomes; gentk,I ,gentk,II is a pair of “children”
chromosomes; αk is a random number between (0,1); k ∈ [1, 2, 3] (kis the total genes for the
crossover operation).

(5) Mutation

Like the crossover, the mutation operator is also associated with a mutation rate (Pm) to
determine whether or not the mutation operator is to be applied to the chromosome. An
arithmetic mutation like the crossover is designed, and then a new offspring chromosome is
acquired by mutation operator.

Assume a chromosome is G = (gent1, . . . ,gent
k
, . . . ,gentm), if the gent2 was selected for

the mutation, the mutation can be shown in (4.4):

G′ =
(

gent−1
1 , . . . ,gentk, . . . ,gent−1

m

)
,

gentk =

{
gent−1

k + Δ
(
t,gentkmax − gent−1

k

)
, if random(0, 1) = 0,

gent−1
k

+ Δ
(
t,gent−1

k
− gent

kmin

)
, if random(0, 1) = 1 .

(4.4)

The function Δ(t, y) returns a value between [0, y] given in (4.5).

Δ
(
t, y
)
= y ×

(
1 − r(1−t/Tmax)λ

)
, (4.5)
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Figure 3: The networks of Nguyen Dupuis.
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Figure 4: The solution of scenario I.

where r is a random number between [0, 1]; Tmax is the maximum number of generations;
here λ = 3. This property causes this operation to make a uniform search in the initial space
when t is small and a very local one in later stages.

5. Case Studies

5.1. Network Structure

In this paper, the test network of Nguyen and Dupuis [21] is used as a case study. This
network has 13 nodes, 19 links, and 4 OD pairs. The basic structures of this network is
shown in Figure 3, in which a red node is the symbol for a travel demand generation point,
a blue node is the symbol for a travel demand attract point, a solid line is the symbol for
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Table 1: The attribute of the Nguyen Dupuis network.

Link Free flow time Existing capacity Planning capacity Construction cost
1 12 250 500 100
2 12 250 500 100
3 12 250 500 100
4 24 150 250 100
5 12 250 500 100
6 12 250 500 100
7 12 250 500 100
8 12 250 500 100
9 12 250 500 100
10 12 250 500 100
11 12 250 500 100
12 12 250 500 100
13 24 150 250 100
14 12 250 500 100
15 12 250 500 100
16 12 250 500 100
17 12 250 500 100
18 36 150 250 100
19 12 250 500 100
20 24 0 250 100
21 24 0 250 100
22 24 0 250 100
23 24 0 250 100
24 12 0 500 100
25 24 0 250 100

Table 2: The data of OD.

Category Number Trip generation
and attraction

Truncation normal distribution of trip
generation and attraction

Trip generation site 1 O1 TN(O1, μO1)
4 O4 TN(O4, μO4)

Trip attraction site 2 D2 TN(D2, μD2)
3 D3 TN(D3, μD3)

a existing road, and a dotted line is the symbol for a road to be built. Table 1 shows the
basic information of the network, including free flow time, traffic capacity under the present
situation, traffic capacity under planning situation, construction cost, and so forth. Table 2
is OD trip demand information, including deterministic demand and truncated normal
distribution travel demand.

5.2. Calculation Results

This network is assumed to have three types of users, and the OD trip demand of each type of
users submits to truncation normal distribution; time value is set to 0.5, 1, and 2, respectively.
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Figure 6: The solution of scenario III.

There are 25 routes for new links and expanding links. So the parameters in genetic algorithm
are set as the following. That is population size as 40, evolutional generation range as 100,
chromosome length as 25, crossover probability as 0.8, and mutation probability as 0.01
(Table 3).
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Figure 7: The solution of scenario IV.

Table 3: The parameters of the scenario.

Scenario User demand Mutation coefficient μ Budget level Risk coefficient ρ Sample size
I 100/150/100 0 1000 1 1
II 50/250/50 0 1000 1 1
III 250/50/50 0 1000 1 1
IV 50/50/250 0 1000 1 1
V 100/150/100 0.2 1000 1 50
VI 100/150/100 0.5 1000 1 50
VII 100/150/100 0.2 1000 0.5 50
VIII 350 0 1000 1 1

The evolution process under deterministic OD trip demand is shown in Figures 4, 5,
6, and 7. The evolution process under uncertain OD trip demand is shown Figures 8, 9, and
10. The evolution process with only one type of users is shown in Figure 11.

Table 4 shows the calculation results of multiuser discrete transportation network
under OD trip demand uncertainty, from which we can obtain the following conclusion.

(1) Scenario I and scenario VIII have the same total demand of all OD pairs, while
scenario VIII has only one type of users and scenario I has three types of users.
Results show that network planning scheme based on multiuser equilibrium model
is different from that of single user model, and the total travel time of the system
based on multiuser equilibrium model is higher.

(2) Contrasting from scenario I to scenario IV, OD trips of each type of users are
different. The calculation results show that the OD trips proportion of different
users to the total amount of the network has a significant impact on the planning
scheme. In the transportation planning practice, the trip amount of different users
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Figure 9: The solution of scenario VI.

should be determined according to social and economic characteristics of the
region’s inhabitants to provide a more powerful support for transportation network
planning decision.

(3) Scenario V and scenario VI show the network planning results under the target
function of system expected total travel time under OD trip uncertainty. It shows
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Figure 11: The solution of scenario VIII.

that the greater the OD demand uncertainty degree is, the greater the mean of the
system total travel time is.

(4) Scenario V and scenario VII have the same degree of OD trip uncertainty. Risk
preference of decision makers influences the final network planning scheme.
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Table 4: The solution of the sample.

Scenario The fitter chromosome Newly built roads Extension roads Fitness value

I
011101010110

0000101010000 21, 22, 23, 25 2, 4, 5, 11, 13, 15 1.05 ∗ 105

II
100101010100

0001101010001 20, 23, 25 2, 4, 10, 11, 13, 15, 19 1.07 ∗ 105

III
110101011100

0000100100010 20, 21, 23, 25 2, 3, 4, 11, 14, 18 1.05 ∗ 105

IV
001101110100

0000011010100 22, 23, 25 1, 2, 4, 12, 13, 15, 17 1.11 ∗ 105

V
110000001100

0100001100111 20, 21 3, 4, 8, 13, 14, 17, 18, 19 1.14 ∗ 105

VI
000101010101

0001101100010 23, 25 2, 4, 6, 10, 11, 13, 14, 18 1.39 ∗ 105

VII
101101010101

0000001010001 20, 22, 23, 25 2, 4, 6, 13, 15, 19 6.91 ∗ 104

VIII 111100011100
0000001110000

20, 21
22, 23

2, 3, 4
13, 14, 15 9.15 ∗ 104

6. Conclusions

In this paper, a discrete transportation network design problem is investigated, in which the
trip generation flow and trip attraction flow are supposed as stochastic variables submitting
to the given probability distribution. When travelers are divided into different groups by
travel time value, a novel multiuser discrete network design model based on demand
uncertainty is established. Genetic algorithm and Monte-Carlo simulation algorithm are
integrated to solve the bi-level model for discrete network design. Calculation results on
Nguyen Dupuis network show that user heterogeneity has a significant impact on network
planning outcome under uncertain conditions. Furthermore, it can be found that GA is a
potential tool for multiuser discrete transportation network design problem.
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As the “first service station” for ships in the whole port logistics system, the tugboat operation
system is one of the most important systems in port logistics. This paper formulated the
tugboat scheduling problem as a multiprocessor task scheduling problem (MTSP) after analyzing
the characteristics of tugboat operation. The model considers factors of multianchorage bases,
different operation modes, and three stages of operations (berthing/shifting-berth/unberthing).
The objective is to minimize the total operation times for all tugboats in a port. A hybrid
simulated annealing-based ant colony algorithm is proposed to solve the addressed problem. By
the numerical experiments without the shifting-berth operation, the effectiveness was verified,
and the fact that more effective sailing may be possible if tugboats return to the anchorage base
timely was pointed out; by the experiments with the shifting-berth operation, one can see that the
objective is most sensitive to the proportion of the shifting-berth operation, influenced slightly by
the tugboat deployment scheme, and not sensitive to the handling operation times.

1. Introduction

Container terminal is an important part in international logistics and plays a significant role
in world trade. Recently, more and more people become to recognize the importance of
global logistic business via container terminals. As the throughput of containers in container
terminal increases and competition between ports becomes fierce, how to improve the
efficiency in container terminal has become an important and immediate challenge for port
managers. One of the most important performance measures in container terminals is to
schedule all kinds of equipment at an optimum level and to reduce the turnaround time
of vessels. Tugboat is one such kind of vital equipments in container terminal.

The performance of the tugboat operation scheduling has a direct influence on time
when a ship can start its handling operation and when a ship can leave the port. Scheduling
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Figure 1: Illustration of a typical tugboat operation process.

on tugboats with good performance may lower the turnaround of ships in a port. Thus the
tugboat scheduling problem is an important one to be solved in the field of the port logistics.

When ships arrive at a port, if their target berths are not available immediately,
they cannot enter into the berths directly and have to wait in the anchorage ground. Then
they have to be tugged by certain amount of tugboats according to some rules. Moreover,
the moving between two berths and the department of vessels also need to be tugged
by tugboats. To improve the ship operation efficiency, tugboats should be scheduled at an
optimum level.

According to the analysis mentioned above, the three types of service that a tugboat
can provide are (a) tugging coming ships to the berth (viz., berthing); (b) tugging ships
from one berth to another (namely, shifting-berth); (c) tugging ships leaving the berth (viz.,
unberthing). Not every ship will experience all the three types of services. That is, the shifting
berth operation is not necessary, while the berthing and unberthing operations are necessary
for all ships.

A typical tugboat operation process is illustrated in Figure 1. As Figure 1 shows, the
duration from the time when a tugboat starts tugging a ship to the finishing time of the
berthing operation is treated as stage 1, the duration when a tugboat starts tugging the exact
ship leaving the first berth to the finishing time when that ship enter into the second target
berth is treated as stage 2, and the duration from the starting time of the unberthing operation
to the time when the ship leaves the port is looked upon as stage 3.

Practically, tugboat scheduling managers allocate suitable tugboats to ships according
to their length. Each ship can have one or more tugboats serving for it simultaneously by the
scheduling rules.

The main idea of the scheduling rules is that big ships should be served by big tugboats
(as with the horsepower), and small ships should be served by small tugboats; if more than
one tugboat with the same horsepower are available, the allocation among the available
tugboats is made by some heuristic rules.

For example, there are six types of tugboats in a port according to the horsepower
unit, such as 1200PS, 2600PS, 3200PS, 3400PS, 4000PS, and 5000PS. The scheduling rules for
allocating are as follows:

(a) S1 (less than 100 meter): 1200PS (or bigger)∗1,

(b) S2 (100–200 meter): 2600PS (or bigger)∗2,
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(c) S3 (200–250 meter): 3200PS (or bigger)∗2,

(d) S4 (250–300 meter): 3400PS (or bigger)∗2,

(e) S5 (greater than 300 meter): 4000PS (or bigger)∗2.

And the heuristics rules concluded from real-world practice include

(a) TSD rule: choosing the tugboat with the shortest distance from the scheduled ship
to serve for it;

(b) FAT rule: choosing the tugboat which is the first available one for the scheduled
ship;

(c) UWAT rule: from the perspective of balancing all tugboats’ working amount,
choosing the tugboat with the minimum working amount up till now to serve for
the scheduled ship.

According to the hybrid flow shop theory, the tugboat scheduling can be considered
as a multiprocessor task scheduling problem (MTSP) with 3 stages. In the scheduling system,
tugboats are taken as movable “machines,” and ships have to experience the berthing,
shift-berth (if there exists this operation), and unberthing operations operated by tugboats
sequentially.

On the other hand, compared with a typical MTSP, the tugboat scheduling problem has
its own characteristics. Firstly, the exact same tugboat can provide all the three types of service
(berthing, shifting berth, and unberthing), which means that the machine set for all the three
stages is the same. This is different from a typical MTSP in which the available machine set in
each stage is not the same. Besides, not all ships have to experience the shift-berth operation,
which makes the problem different from a typical MTSP with the characteristics that all jobs
have to experience all the stages.

Anyway, the tugboat scheduling problem is a kind of unconventional scheduling
problem, an NP-hard problem which cannot be solved by exact methods. Some scholars have
begun to make research on the topic.

Ying and Lin [1] proposed the ant colony approach to solve the MTSP. Xuan and
Tang [2] explored the complexity of the MTSP and designed a Lagrange relaxation algorithm
combined with heuristic rules to solve the MTSP. Liu [3] established a mathematical model
on the tugboat scheduling problem combined with the MTSP theory and adopted the hybrid
evolutionary strategy to solve the model. Liu [4] established an tugboat scheduling model
considering the minimum operation distance of the tugboats, and compared the performance
of hybrid evolutionary strategy with the particle swarm optimization algorithm for solving
the addressed problem. Wang and Meng [5] used a hybrid method that combined ant colony
optimization and genetic algorithm to resolve the tugboat allocation problem. Wang et al.
[6] formulated a mix-integer model for the tugboat assignment problem combined with the
existing scheduling rules and analyzed the effects of the number and service capacity of
tugboats on the turnaround time of ships. Liu and Wang [7] considered the tugboat operation
scheduling problem as a parallel machine scheduling problem with special process constraint
and employed a hybrid algorithm based on the evolutionary strategy to solve the problem.
Dong et al. [8] adopted the improved particle swarm optimization combined with dynamic
genetic operators to solve the formulated tugboat dispatch model. Liu and Wang [9] used the
particle swarm optimization algorithm combined with the local search approach to solve the
tugboat scheduling model they proposed.

As we can see from the previous research, scholars have begun to use many
approaches to solve the tugboat scheduling problem, including the genetic algorithm, ant
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colony optimization, and particle swarm optimization. However, most literature only
considers the situation of single operation stage and single anchorage base and neglects
the influence of the tugboats’ and ships’ location information on the problem difficulty. That
makes the model formulated far from reality. Thus, this paper will make research on tugboat
scheduling problem considering multi-anchorage bases, different operation modes, and three
operation stages.

The rest of paper is organized as follows. Section 2 formulates a tugboat scheduling
model combined with the MTSP theory. Section 3 proposes a simulated annealing-based
ant colony algorithm to solve the formulated model, and Section 4 discusses the simulation
experiments using ACO in container terminals. Finally, we make conclusions and introduce
the future work in Section 5.

2. Model Formulation

2.1. Assumptions

The following assumptions are introduced for the formulation of the problem.

(a) The planning horizon is one day.

(b) Three operation stages (i.e., berthing, shifting-berth, and unberthing) are taken into
consideration, but not all ships have to experience the shifting-berth operation. For
ship which does not have to experience the second operation, assume there is a
virtual shifting-berth operation and the operation time for that is zero.

(c) The ready times for all the tugboats are 0, and all the tugboats are at the anchorage
bases at time 0; all the ships to be served have arrived at the anchorage ground at
time 0.

(d) There are three types of locations in a port: berths for ships to load/unload cargoes,
meeting locations where ships meet tugboats at the entrance of port, and the
anchorage bases.

(e) Two operation modes (restricted cross-operation mode RCOM and unrestricted
cross operation mode UCOM) may be adopted to schedule the tugboats in a port.

(f) All the ships enjoy the same precedence.

(g) The scheduling rules for allocating tugboats to ships are what we mentioned in
Section 1.

(h) The sailing speeds of all tugboats whenever sailing are the same.

(i) The tugboats may return to the anchorage base during the planning horizon
according to the scheduling plans.

In assumption (e), the RCOM means that all anchorage bases have their fixed service
area in the port, which means that each tugboat in every base can only operate in its
corresponding service area, while the UCOM means that all tugboats can operate in the whole
area of a port.



Mathematical Problems in Engineering 5

The first scheduling 
      round: 3.5 h

The second scheduling 
         round: 1.8 h

Tugboat m
sails to the

starting
place

of task a

Tugboat m
sails to the

starting
place

of task b

Tugboat m
sails to the

starting
place

of task c

Tugboat
m

operates
on task a

Tugboat
m

operates
on task b

Tugboat m
sails to the
anchorag
e base

Tugboat m
stands by at

the base

Tugboat m
sails to

the
anchorage

base

Tugboat
m

operates
on task c

out from the
anchorage base

arrives at the
anchorage base

sets out from the
base again

arrives at the
anchorage base

Tugboatm sets Tugboatm TugboatmTugboatm

Figure 2: Illustration of the tugboat scheduling rounds.

2.2. Definition of the Scheduling Round

Before the tugboat scheduling model is formulated, a concept named scheduling round
should be introduced first.

In practice, a scheduling round is used to define the duration from the time when a
tugboat leaves for its target place from the anchorage base to the time when it returns to
the base after finishing a certain amount of tasks (may be one task, maybe more than one).
As Figure 2 illustrates, tugboat m has to operate on three tasks (i.e., a, b, c) in the planning
horizon: after finishing the task a, the tugboat sails directly to the starting place of task b and
sails back to the anchorage after finishing the task b. That duration can be defined as the first
scheduling round of tugboat which lasts for 3.5 hours. On arriving at the anchorage base,
the tugboat stands by until it sails to the starting place of task c. After finishing the task c, m
sails back to the base again. And that duration from the time when m leaves the base again to
the time when it arrives at the base is the second scheduling round which lasts for 1.8 hours.
According to the definition, two scheduling rounds occur as to tugboat m in the planning
horizon, and the total duration for the two scheduling rounds for tugboat m is 3.5 h + 1.8 h =
5.3 h.

2.3. Notations

(a) Parameters

j, l: Stage index, j, l ∈ J = {1, 2, 3}, in which 1–3 represent berthing, shifting-berth, and
unberthing operations

i, k: Ship index

cyi: The descriptive binary parameter that illustrates whether ship i will experience
the shifting-berth operation (if cyi = 1, it means that ships i will experience the
shifting-berth operation, otherwise will not experience the operation)

m: Tugboat index

M: The set of all the tugboats

tam: Style of tugboat m (which may be 1–6, representing 1200PS, 2600PS, 3200PS,
3400PS, 4000PS, and 5000PS, resp.)

N: The set of all ships, N = {1, 2, . . . , n}
Si: Style of ship i
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seti: Set of tugboat style which can provide the related service for ship i

Oij : Operation of ship i at stage j

CMb: Set of tugboats in the anchorage base b (b ∈ B, B is the set of all the anchorage
bases); thus we can get

⋃
b∈B CMb = M

Mijb: Set of tugboats in base b that can serve for operation Oij based on the
scheduling rules; thus the set of tugboats in all the bases that can serve for operation
Oij can be expressed as Mij =

⋃
b∈B Mijb = {m | tam = seti, ∀m ∈ CMb}

Ejm: The set of ships that might be served by tugboat m at stage j

LOSij : Location where operation Oij starts (if j = 1, LOSij is the meeting place where
ship i meets tugboat at the entrance of the port; else if j = 2, LOSij is the first berth
where ship i loads/unloads its cargo; else if j = 3, LOSij is the second berth where
ship i loads/unloads its cargo, while LOSi3 = LOSi2 if cyi = 0)

LOFij : Location where operation Oij finishes (if j = 1, LOFij is the first berth where
shipi loads/unloads its cargo; else if j = 2, LOFij is the second berth where ship i
loads/unloads its cargo, while LOFi2 = LOFi1; else if j = 3, LOFij is the meeting
place where ship i meets tugboat at the entrance of the port)

ST(a, b): Duration for sailing between locations a and b

pij : Processing time of operation Oij

tbi: Sailing time of ship i from the waiting place to the berthing place, and tbi =
ST(LOSi1,LOFi2)

tei: Berthing time of ship i at berth

toai: Duration of ship i for loading and unloading cargoes at the first target berth

tobi: Duration of ship i for loading and unloading cargoes at the second target berth
(if there exists a shifting-berth operation)

tui: Unberthing time of ship i at berth

tli: Sailing time of ship i from the unberthing place to the place where ship i leaves
the port

smijkl: Set-up time between task Oij and Okl by tugboat m

bpm: The anchorage base where tugboat m belongs

H: A sufficiently large constant.
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(b) Decision Variables

xijm =

{
1, if Oij is assigned to tugboat m
0, otherwise,

ymijkl =

{
1, if Oij and Okl are assigned to the same tugboat m
0, otherwise,

umijkl =

{
1, if Oij precedes Okl

(
not necessarily immediately

)
on tugboat m

0, otherwise,

zmijkl =

{
1, if Oij immediately precedes Okl on tugboat m
0, otherwise,

wijm =

{
1, if tugboat m goes back to the anchorage base after completing operation Oij

0, otherwise.
(2.1)

(c) State Variables Decided by Decision Variables

TSij : The starting time of Oij

TFij : The finishing time of Oij

BTm: The setting-out time of tugboat m from its anchorage base in the planning
horizon

FTm: The returning time of tugboat m after finishing its last task in the planning
horizon

shmh: The duration of the hth scheduling round for tugboat m in the planning
horizon

gm: Number of the scheduling rounds for tugboat m in the planning horizon.

2.4. Model

(a) Objective

In this paper, the objective is to minimize the total operation times of tugboats, which can
be equal to the total duration for all the scheduling rounds of all tugboats. Thus we have to
derive the calculation method for scheduling rounds.

From the definition of the scheduling round, the relation between the decision variable
(wijm) and the quantity of scheduling rounds in the planning horizon (gm) can be concluded
as follow:

gm =
∣∣{wijm | wijm = 1, ∀i ∈N, ∀j ∈ J

}∣∣. (2.2)

Equation (2.2) means that the value of gm equals the times for which tugboatm returns
to the anchorage base.
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Define the set of tasks right before which tugboat m returns to the base as OSm, and all
the tasks in OSm are ordered by the operation sequence. By that definition, we come to know
the calculation method for duration of each scheduling round of tugboat m as follows:

shm1 = TFOSm{1} + ST
(
LOFOSm{1}, bp

) − BTm

shm2 = TFOSm{2} + ST
(
LOFOSm{2}, bp

) − (TSij − ST
(
bp,LOSij

))

{(
i, j
) | zmijkl = 1, (k, l) = OSm{1}

}

...

shmh = TFOSm{h} + ST
(
LOFOSm{h}, bp

) − (TSij − ST
(
bp,LOSij

))

{(
i, j
) | zmijkl = 1, (k, l) = OSm{h − 1}

}

...

shmgm = TFOSm{gm} + ST
(
LOFOSm{gm}, bp

) − (TSij − ST
(
bp,LOSij

))

{(
i, j
) | zmijkl = 1, (k, l) = OSm

{
gm − 1

}}
.

(2.3)

Equation (2.3) reveals the duration of each scheduling round equals the finishing time
when tugboat completes its last task in the scheduling round plus the sailing time from the
location where the last task of tugboat is completed to the tugboat’s anchorage base minus
the time when tugboat begins its first task in the scheduling round minus the sailing time
from the base to the location where the first task starts.

As it has been discussed before, the total operation times of tugboats are equal to the
total duration for all the scheduling rounds of all tugboats. Thus the objective function can be
expressed as follows:

Minimize F =
∑

m∈M

∑

h∈gm
shmh. (2.4)

(b) Constraints

The constraints in the proposed model include the following equations:

TSij ≥ 0, ∀i ∈N, ∀j ∈ J, (2.5)

TSi1 + pi1 + toai · cyi ≤ TSi2, ∀i ∈N,

TSi2 + pi2 + tobi · cyi + toai ·
(
1 − cyi

) ≤ TSi3, ∀i ∈N,
(2.6)

∑

m∈M
xijm = 1, Si = S1,

∑

m∈M
xijm = 2, otherwise,

∀i ∈N, ∀j ∈ J, (2.7)
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seti = {1, 2, 3, 4, 5, 6} Si = S1,

seti = {2, 3, 4, 5, 6} Si = S2,

seti = {3, 4, 5, 6} Si = S3,

seti = {4, 5, 6} Si = S4,

seti = {5, 6} Si = S5,

(2.8)

ymijkl ≤ 0.5
(
xijm + xklm

) ≤ ymijkl + 0.5, ∀i, k ∈ Ejm, ∀m ∈
⋃

b∈B
Mijb, ∀j, l ∈ J,

ymijkl = ymklij , ∀i, k ∈ Ejm, ∀m ∈
⋃

b∈B
Mijb, ∀j, l ∈ J,

(2.9)

umijkl + umklij = ymijkl, ∀i, k ∈ Ejm, ∀m ∈
⋃

b∈B
Mijb, ∀j, l ∈ J, (2.10)

umijkl − zmklij ≥ 0, ∀i, k ∈ Ejm, ∀m ∈
⋃

b∈B
Mijb, ∀j, l ∈ J, (2.11)

∑

k∈Elm

zmijkl ≤ 1, ∀i ∈ Ejm, ∀m ∈
⋃

b∈B
Mijb, ∀j, l ∈ J,

∑

k∈Elm

zmklij ≤ 1, ∀i ∈ Ejm, ∀m ∈
⋃

b∈B
Mijb, ∀j, l ∈ J,

(2.12)

TSij + pij + smijkl ≤ TSkl +H
(

1 − zmijkl
)
, ∀i, k ∈N, ∀m ∈

⋃

b∈B
Mijb, ∀j ∈ J,

TSkl + pkl + smklij ≤ TSij +H
(

1 − zmklij
)
, ∀i, k ∈N, ∀m ∈

⋃

b∈B
Mijb, ∀j ∈ J,

(2.13)

pij = tbi + tei, j = 1,

pij = (tui + ST(LOSi2,LOFi2) + tei) · cyi, j = 2 ∀i ∈N,

pij = tui + tli, j = 3,

(2.14)

smijkl = ST
(
LOFij ,LOSkl

) · zmijkl ∀i, k ∈N, ∀j, l ∈ J, ∀m ∈
⋃

b∈B
Mijb, (2.15)

wijm ·H ≥ zmijkl ·
[(

TSkl − TFij

) − (ST
(
LOFij , bpm

)
+ ST

(
bpm,LOSkl

))]
,

∀i, k ∈ Ejm, ∀m ∈
⋃

b∈B
Mijb, ∀j, l ∈ J,

wijm <

(
zmijkl ·

TSkl − TFij

2 × (ST
(
LOFij , bpm

)
+ ST

(
bpm,LOSkl

)) + 0.5

)
,

∀i, k ∈ Ejm, ∀m ∈
⋃

b∈B
Mijb, ∀j, l ∈ J,

(2.16)

xijm, y
m
ijkl, u

m
ijkl, z

m
ijkl, wijm = 0 or 1, ∀i, k ∈N, ∀m ∈

⋃

b∈B
Mijb, ∀j, l ∈ J. (2.17)
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Constraint (2.5) guarantees that each operation begins after time zero. Constraint
(2.6) ensures that for every ship, the shifting-berth operation begins only after the berthing
and handling operations are completed, and the unberthing operation begins only after the
shifting-berth and handling operations are completed. Constraint (2.7) means that if the style
of the ship is 1, only one tugboat is needed; otherwise, two tugboats are needed. Constraint
(2.8) defines the available set of tugboat style which can serve for ship i according to the
scheduling rules. Constraint (2.9) defines ymijkl = ymklij = 1 when xijm = xklm = 1. Constraint
(2.10) guarantees that every tugboat can only serve for one operation at any time. Constraint
(2.11) is set to make sure that um

ijkl
= 1 when zm

ijkl
= 1. Constraint (2.12) guarantees that there

are at most one predecessor and successor for operation Oij on tugbo at m. Constraint (2.13)
simultaneously determines that the starting time of any operation has to be after the time
when its immediately preceding task finishes. Constraint (2.14) defines the processing time
for each task. Constraint (2.15) defines the set-up time for each operation Oij . Constraint
(2.16) simultaneously determines when tugboat m should return to the anchorage base: if the
sum of the sailing time from the finishing place of Oij to the base and the sailing time from
the base to the starting place of Oij ’s successor task on tugboat m (i.e., Okl) is less than the
time cost if m directly sails to Okl’s starting place and waits there until the task begins, then
tugboat m should return to the base; otherwise, m should sail directly to Okl’s starting place.
Constraint (2.17) specifies the binary property of the decision variables.

3. Proposed Hybrid Algorithm (PHA)

3.1. The Basic Idea of the Ant Colony Algorithm

Ant colony metaheuristic is a concurrent algorithm in which a colony of artificial ants coop-
erates to find optimized solutions of a given problem (see Boveiri [10]). The ant algorithm
was first proposed by Dorigo et al. [11] as a multiagent approach to the traveling salesman
problem (TSP), and it has been utilized successfully to many difficult discrete optimization n
problems such as job shop scheduling, vehicle routing, graph coloring, sequential ordering,
and network routing.

The inspiring natural process of ACS is the foraging behavior of ants. A colony of ants
can identify the shortest pathway from a food source to their anthill without using visual
cues; they communicate through an aromatic substance, called pheromone. While walking,
ants secrete pheromone on the ground and follow, in probability, the pheromone previously
laid by other ants. Ants are more likely to follow pathways marked by a larger accumulation
of pheromone from other ants that have previously walked that route. Since ant searching
a food source by shorter pathways will come back to the anthill sooner than ants traveling
via longer pathways, the shorter pathways will have a higher traffic density than those of
the longer ones. Hence, the pheromone accumulation will build up more rapidly on shorter
pathways than on longer ones. Consequently, the fast accumulation of pheromone on the
shorter pathways will cause ants to quickly choose the shortest routes. The described foraging
behavior of ants can be used to solve scheduling problems by simulation: the objective value
(e.g., flow time) corresponds to the quality of the food source (e.g., distance), artificial ants
searching for the solution space simulate real ants searching for their environment, and an
adaptive memory corresponds to the pheromone trail. In addition, the artificial ants are
equipped with a local heuristic function to guide their search through the set of feasible
solutions [1].
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Figure 3: Flowchart of ant colony optimization.

The main procedure of the ant colony algorithm is as follows.

(a) Generate ant (or ants).

(b) Loop for each ant (until complete scheduling of tasks).

(i) Select the next task with respect to pheromone variables of ready tasks.

(c) Deposit pheromone on visited states.

(d) Daemon activities.

(e) Evaporate pheromone.

The flowchart of ant colony algorithm is illustrated as Figure 3.
However, the solutions were generated by each ant in the basic ant colony algorithm

by random, and those solutions may not be the optimal solutions or satisfactory solutions.
That makes the updating of the pheromone be done by random too, which may cause a lot
of time costs to get the optimal value, and that value may also be the local optima. To avoid
that phenomenon, the diversity of the population should be considered.

By that thought, we introduce the simulated annealing into the ant colony algorithm,
which can guarantee the quality of the search and avoid the phenomenon of the local optima.
Thus, the simulated annealing-based ant colony algorithm is proposed.

3.2. Procedure of the Proposed Algorithm

According to the analysis above, we introduce a simulated annealing-based ant colony algo-
rithm to solve the formulated tugboat scheduling problem. The basic procedure of the
algorithm is as Figure 4. In the algorithm, the ACO performs the role of simulation, while
the simulated annealing algorithm performs the role of searching for global optimization.

Step 1. Generate the initial tugboat scheduling plans (individuals) which act as representing
codes for the simulated annealing algorithm.
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Figure 4: Flowchart of the proposed algorithm.

Step 2. Generate new scheduling nodes used to apply for the ant colony algorithm.

Step 3. Apply the ant colony algorithm for the scheduling process.

Step 4. Compute the total operation time for all tugboats in the planning horizon as the key
indicator for the system.

Step 5. If the current temperature is less than the final temperature, then go to Step 9; else go
to Step 6.

Step 6. Reduce the temperature according to the predetermined rule.

Step 7. Let the individuals having better fitness be new parents.

Step 8. Based on the new parents, perform a new neighborhood search to get the new indi-
viduals.

Step 9. Output the best solution.
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3.3. Key Operations of the Algorithm

3.3.1. Ant Colony Optimization (ACO)

In the ant colony algorithm for solving the proposed problem, jobs are defined as ants and
resources are defined as nodes. The main procedure of ant colony optimization has been
discussed in Section 3.1, and in this section, two key operations of the ACO (i.e., initialization
of ants and updating of the pheromone) will be introduced.

(a) Initialization of Ants

According to the algorithm, a certain amount of ants have to be generated. In order to make
the schedules by which ants travel satisfy the requirements of the scheduling system, three
arrays were set in the algorithm: tour which represents tasks not yet operated; tournext which
represents the tasks to be operated in the next step; visited which represents tasks having been
operated. All the ants can only choose the tasks for the next operation from the tournext array,
so that the feasibility of the schedule traveled by ants can be guaranteed. Then, we just need
to judge whether all the tasks have been traveled. Then the schedule generated by ants in the
visited is the schedule we want.

The selection of nodes during the algorithm is referenced by the roulette wheel. Thus
the state transit rule can be concluded as.

pij =

⎧
⎪⎪⎨

⎪⎪⎩

[
τij(t)

]α[1/Tij
]β

∑
s∈allowed

[
τij(t)

]α[1/Tij
]β

0.

(3.1)

In (3.1), Tij means the processing time of ship i by tugboat j, allowed = tournext.

(b) Updating of the Pheromone

After all ants of a generation have traveled all the tasks, compute the total operation times o
the tugboats and update the pheromone according to those values. In our research, we choose
the five ants with the minimal operation times to update the pheromone, and the updating
rules are as follows:

τij =
(
1 − ρ)τij + Vτij , (3.2)

Vτij =
Q

Tmin
. (3.3)

In (3.2), ρ means the evaporation coefficient, Tmin in (3.3) means the minimal operation
times of all ants in the current generation, and Q is the quantity of pheromone in the unit path.

3.3.2. Simulated Annealing (SA)

The key operations in the simulated annealing include individual coding, initial individuals’
generation, and the neighborhood search scheme.
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(a) Individual Coding

In this paper, the real integer method is adopted to code for an individual. As every ship may
experience at most 3 stages of operation, we set the number of columns as three times of the
number of ships. Assume that there are 4 ships to be served (ship 1, 2 do not have to shift
a berth, while ship 3, 4 will experience a shifting-berth operation) and 3 available tugboats,
then the coding expression of the individuals should be a 5 × (3 × 6) matrix, which can be
illustrated as Figure 5.

The first row of the coding representation means the service order for ships, and the
next two rows are the indexes of tugboats serving for ships in the first row. Note that each
index appears three times in the first row: if it is the first time an index appears, it means that
the ship is berthing; for the second time it appears, it may be a virtual or real shifting-berth
operation; otherwise, the unberthing operation. The fourth and fifth rows are descriptive
parts which tell us whether tugboat 1 and 2 return to the base after finishing the task.

As ship 1 and 2 do not have to shift a berth, the virtual shifting-berth operations are
proposed to keep the total operations three times of the number of ships. That can be
illustrated as the shadow parts with diagonal lines in Figure 5. Besides, if the ship style is 1,
then an index of tugboat is generated from the available tugboat set to fill in the cor-
responding second row, and the third row is zero (as shown in the shadow parts with
grids); otherwise, two indexes of tugboats are generated to fill in the two rows. Thirdly, as all
tugboats have to return to the base after finishing their last tasks, the corresponding symbols
in the fourth or fifth rows should be 1 (as the shadow parts with dots).

According to that individual coding, the service order for ships in Figure 5 is as
follows: ship 2 (berthing)—ship 2 (virtual shifting-berth)—ship 3 (berthing)—ship 2 (unber-
thing)—ship 1 (berthing)—ship 3 (shifting-berth)—ship 4 (berthing)—ship 3 (unberthing)—
ship 1 (virtual shifting-berth)—ship 4 (shifting-berth)—ship 1 (unberthing)—ship 4 (unber-
thing). The tugboat providing the berthing service for ship 2 is tugboat 1, and after finishing
the berthing service for ship 2, tugboat 1 returns to the anchorage base, and so on.

(b) Initial Individuals’ Generation

The procedure for generating the initial schedule can be described as Figure 6.
As we can see from Figure 6, the procedure for the initial individuals’ generation

mainly include three parts: randomly generating the service order for ships; allocating
the tugboat serving for ships; deciding whether tugboats should return to the base after
completing the operation.
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(c) Neighborhood Search Scheme

The procedure for the neighborhood search scheme can be concluded as Figure 7.
Given a solution p, a neighbor of p can be obtained by using the three-point interchang-

ing scheme proposed in this section. The main idea is as follows: randomly generate three
positions in the original solution, so that the original solution is divided into five parts; let a,
b, c, d, s be the four partial solutions of p; a temporary solution is obtained by interchanging a
and b, c and d; based on the three rows of the temporary solution, calculate part s′ according
to the rules expressed by (2.16).
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However, during the neighborhood search process, the temporary solution may be an
infeasible solution. For example, the virtual shifting-berth operation (the shadow parts in
Figure 8) is after the unberthing operation, which is infeasible.

Thus it is necessary to modify the temporary solution. Steps for modifying the tem-
porary solution are as follows.

Step 1. Initialize p = 1.

Step 2. Judge if the second and third rows of the pth column are both zero.

(a) If both the values are zero, which means that the task in the pth column is a virtual
shifting-berth operation,

(i) search for two columns: one for the berthing operation for ship served in the
pth column; one for the unberthing operation for the same ship. Define the
places of the two columns as p1 and p2,

(ii) if p is less than p1, interchange values of the first three rows in the two col-
umns, then go to Step 3,

(iii) if p is larger than p2, interchange values of the first three rows in the two
columns, then go to Step 3.

(b) If the two values are not both zero, then go to Step 3.
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Table 1: Sailing times between each location.

P1 P2 P3 P4 P5 P6 P7 P8 M1 M2 B1 B2
P1 0 18 14 20 32 34 35 30 19 29 15 32
P2 18 0 23 15 31 33 27 35 21 33 12 35
P3 14 23 0 12 39 34 30 32 15 38 16 31
P4 20 15 12 0 35 38 31 39 12 31 18 34
P5 32 31 39 35 0 18 12 19 31 12 29 11
P6 34 33 34 38 18 0 13 15 34 11 36 15
P7 35 27 30 31 12 13 0 12 29 18 25 19
P8 30 35 32 39 19 15 12 0 33 15 39 12
M1 19 21 15 12 31 34 29 33 0 30 15 25
M2 29 33 38 31 12 11 18 15 30 0 28 16
B1 15 12 16 18 29 36 25 39 15 28 0 26
B2 32 35 31 34 11 15 19 12 25 16 26 0

Step 3. Judge if p is equal to 3 ∗ n:

(a) if p is equal to 3 ∗ n, then the modification is completed;

(b) else, set p = p + 1, and go to Step 2.

After being modified according to the steps introduced above, the temporary solution
can be changed to a new solution by deciding whether tugboats should return to the base
according to (2.16).

4. Computational Experiments

4.1. Experimental Data

To implement a comparison of the findings from the proposed algorithm, some experimental
data were randomly generated, details of which are as follows.

(a) Location data: the sailing times between each location (P1–P8, M1-M2, B1-B2) are
as Table 1. Therein, P1–P8 are locations of 8 berths; M1 is the location where ships
whose target berths P1–P4 meet tugboats at the entrance of port; M2 is the location
where ships whose target berths P5-P5 meet tugboats at the entrance of port; B1 and
B2 are two anchorage bases of tugboats whose service area are P1–P4 and P5–P8,
respectively.

(b) Ship data: styles of ships are generated to S1, S2, S3, S4, and S5 which take up about
10%, 20%, 40%, 20%, and 10% of the total ships, berthing/unberthing times, loading
and unloading times of ships are normally distributed in N(35,25), N(300,1600),
and the berthing locations of ships are uniformly distributed to P1–P8.

(c) Tugboat data: quantities of the six kinds of tugboats in the two anchorage bases are
all one.
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Table 2: Results of the PHA versus existing scheduling rules.

Number of ships RCOM UCOM
PHA TSD FAT UWAT PHA TSD FAT UWAT

10 3743 4222 4181 4280 3743 4200 4156 4245
15 4983 5551 5504 5609 4951 5485 5456 5575
20 6800 7436 7357 7483 6705 7353 7242 7451
25 8481 9132 9030 9220 8405 8900 8858 9100
30 10012 11185 10993 11530 9988 11031 10920 11235

Table 3: Results from the proposed algorithm under two different operation modes.

Number of ships Total operation times of all tugboats Average operation times of all tugboats
RCOM UCOM GAP1 RCOM UCOM GAP2

10 3743 3743 0 312 312 0
15 4983 4951 32 415 413 3
20 6800 6705 95 567 559 8
25 8481 8405 76 707 700 6
30 10012 9988 24 834 832 2

1Operation times of all tugboats under the RCOM—values under the UCOM; 2average operation times of all tugboats under
the RCOM—values under the UCOM.

4.2. Experiments without the Shifting-Berth Operation

Suppose the basic data are as shown in Section 4.1, no shifting-berth operation exists and all
tugboats do not return to the anchorage base during the planning horizon, use the proposed
hybrid algorithm to solve the established tugboat scheduling problem, and then we can get
the performance comparisons of the hybrid algorithm with three existing scheduling rules
with different number of ships, which are shown in Table 2.

As we can see from Table 2, the PHA’s solved results are all far less than those from the
three existing scheduling rules. All those can fully describe the efficiency of the PHA. Besides,
the performance of the three scheduling rules reveals the same rules: FAT is superior to TSD,
and TSD is better than UWAT. That is because the FAT rule considers both the TSD and UWAT
rules, while the UWAT rule only considers the uniform scheduling of every tugboat but might
cause the postponement of the waiting time of ships for tugboats.

Besides, we can see from Table 3 that the difference between the two operation modes
increases from zero and then decreases to near zero. The reason for that phenomenon can
be concluded as follows: when the number of ships is small and the available tugboats are
abundant, the optimal solution is the scheduling scheme under the RCOM (as the solutions
under the UCOM include those under the RCOM, so the optimal solution and optimal value
of the modes are the same), which means there is no need to transfer tugboats from another
anchorage base; as the number of the ships increases and the tugboat resource becomes scarce,
the cost for ships to wait for unoccupied tugboats in another anchorage base is less than that
of waiting for busy tugboats in its own anchorage base, so the UCOM is better than RCOM;
while the number of ships is great and all tugboats in both anchorage bases are busy, there
is no point of transferring tugboats from another anchorage base, which means the RCOM is
better.

After the basic analysis above, we compare the operation times on whether tugboats
return to the anchorage base during the planning horizon, the results of which can be shown
as Table 4.



Mathematical Problems in Engineering 19

Table 4: Comparisons between the total operation times on whether tugboats return to the base.

Number of ships

RCOM UCOM
Results if

tugboats do
not return to
the base (f1)

Results if
tugboats return
to the base (f2)

GAP∗
Results if

tugboats do
not return to
the base (f1)

Results if
tugboats return
to the base (f2)

GAP∗

10 3743 2675 39.93% 3743 2675 39.93%
15 4983 4005 24.42% 4951 3952 25.28%
20 6800 5285 28.67% 6705 5206 28.79%
25 8481 6575 28.99% 8405 6503 29.25%
30 10012 8007 25.04% 9988 7951 25.62%
∗Percentage that f1 is larger than that of f2, which can be calculated by (f1 − f2)/f2 × 100%.

Table 5: Results with different proportion of the shifting berth operation.

Number of ships Results with different proportion of the shifting-berth operation
0%1 5%2 GAP1a 10%3 GAP2b 15%4 GAP3c 20%5 GAP4d

10 2675 2845 6.36% 3076 13.04% 3224 20.52% 3415 27.66%
15 3952 4205 6.40% 4518 12.53% 4703 19.00% 4961 25.53%
20 5206 5485 5.36% 5824 10.61% 6121 17.58% 6452 23.93%
25 6503 6857 5.44% 7331 11.29% 7715 18.64% 8035 23.56%
30 7951 8381 5.41% 9122 12.84% 9423 18.51% 9731 22.39%
Average / / 5.79% / 12.06% / 18.85% / 24.61%

a(value of 2 − value of 1)/value of 1 × 100%; b(value of 3 − value of 1)/value of 1 × 100%; c(value of 4 − value of 1)/value of
1 × 100%; d(value of 5 − value of 1)/value of 1 × 100%.

Based on Table 4, we can see that the operation times if tugboats do not return to the
base are 30% larger than those if tugboats return to the base during the planning horizon.
That means if tugboats do not return to the base during the horizon, there exists at least 30%
of the total sailing routes which are ineffective sailing routes, which is infeasible and does not
coincide with the modern concept of green transportation.

4.3. Experiments with the Shifting-Berth Operation

In this section, sensitivity analysis of the three elements to the objective is to be made, and all
the experiments done are under the UCOM mode and based on the assumption that tugboats
can return to the anchorage base during the planning horizon.

(a) Sensitivity Analysis of the Proportion of the Shifting-Berth Operation

Assume that there are 0%, 5%, 10%, 15%, 20% of the total ships which have to experience the
shifting-berth operation, the minimal total operation times of all tugboats when the number
of ships is 10, 15, 20, 25, 30 are summarized in Table 5.

As we can see from Table 5, the GAPs (a, b, c, d) are all larger than the proportion
of the shifting-berth operation. That is because a single shifting-berth operation contains
an unberthing operation, a shift between the berths, and a berthing operation, thus needs
more tugboats’ resource than normal berthing and unberthing operations. So it is necessary
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Table 6: Results with different distribution characteristics of the handling operation times.

Number of ships
Results with different distribution characteristics of the handling
operation times
N(300, 1600)1 N(350, 2500)2 GAP1a N(400, 3600)3 GAP2b

10 2845 2815 −1.05% 2862 0.60%
15 4205 4240 0.83% 4200 −0.12%
20 5485 5522 0.67% 5488 0.05%
25 6857 6870 0.19% 6840 −0.25%
30 8381 8387 0.07% 8428 0.56%
Average / / 0.14% / 0.17%

a(value of 2 − value of 1)/value of 1 × 100%; b(value of 3 − value of 1)/value of 1 × 100%.

to reduce the number of shifting-berth operation in practice, so that the full utilization of
limited tugboat resources.

(b) Sensitivity Analysis of the Distribution Characteristics of the Handling Operation Times

Assume that the distribution characteristics of handling operation times of ships at berth are
N(300, 1600), N(350,2500), and N(400, 3600), the proportion of the shifting-berth operation is
5%. The results by the PHA are concluded in Table 6.

As we can see from Table 6, there is no obvious trend about the total operation times
according to the changing of the handling times of ships at berth. That is to say, the objective
function is not sensitive to the change of the handling times. The reason for that phenomenon
can be concluded as follows.

Compared with the operation times of tugboats, the handling times are much larger.
After completing a certain task, a tugboat can return to the base to have a rest and then sail
to its next target location. With the increase of the handling operation times, the wait times in
the base may also increase, which are not parts of the total operation times of tugboats. Thus,
the objective does not reveal obvious reaction to the change of the handling times.

(c) Sensitivity Analysis of the Tugboat Deployment Scheme

We then assume different deployment schemes of the available tugboats in the port (i.e.,
Scheme 1: the number of all types are 1; Scheme 2: the number of type 6 are 2, others are 1;
Scheme 3: the number of type 5 and 6 are 2, others are 1). The results solved by the PHA are
summarized in Table 7. Therein, the proportion of the shifting-berth operation is still 5%.

As Table 7 shows, the total operation times of all tugboats reveal a mild trend of
decrease as the number of tugboats deployed increases. That is to say, the total operation
times of tugboats can only be slightly reduced by simply increasing the number of tugboats
deployed, and the cost of increasing tugboats may well be larger than the time cost saved by
that. Under that circumstance, adding extra tugboats is not advised.

By the analysis, we can say that the objective is most sensitive to the proportion of
the shifting-berth operation, influenced slightly by the tugboat deployment scheme, and not
sensitive to the handling operation times.



Mathematical Problems in Engineering 21

Table 7: Results with different tugboat deployment schemes.

Number of ships Results with different tugboat deployment schemes
Scheme 11 Scheme 22 GAP1a Scheme 33 GAP2b

10 2845 2833 −0.42% 2808 −1.30%
15 4205 4186 −0.45% 4159 −1.09%
20 5485 5421 −1.17% 5394 −1.66%
25 6857 6807 −0.73% 6785 −1.05%
30 8381 8325 −0.67% 8299 −0.98%
Average / / −0.69% / −1.22%

a(value of 2 − value of 1)/value of 1 × 100%; b(value of 3 − value of 1)/value of 1 × 100%.

5. Concluding Remarks

This paper formulated the tugboat scheduling problem as a multiprocessor task scheduling
problem (MTSP). The model considers factors of multi-anchorage bases, different operation
modes, and three stages of operations (berthing/shifting-berth/unberthing). A hybrid
simulated annealing-based ant colony algorithm is proposed to solve the addressed problem.
By the numerical experiments without the shifting-berth operation, the effectiveness were
verified, and the fact that more effective sailing may be possible if tugboats return to the
anchorage base timely was pointed out; by the experiments with the shifting-berth operation,
the paper proved that the objective is most sensitive to the proportion of the shifting-berth
operation, influenced slightly by the tugboat deployment scheme, and not sensitive to the
handling operation times.

Future work about the topic should be to extend the problem from the static situation
to a dynamic one, although it may be much more difficult but more meaningful.

References

[1] K. C. Ying and S. W. Lin, “Multiprocessor task scheduling in multistage hybrid flow-shops: an ant col-
ony system approach,” International Journal of Production Research, vol. 44, no. 16, pp. 3161–3177, 2006.

[2] H. Xuan and L. X. Tang, “Dynamic hybrid flowshop scheduling problem with multiprocessor tasks,”
Computer Integrated Manufacturing Systems, vol. 13, no. 11, pp. 2254–2288, 2007.

[3] Z. Liu, “Hybrid evolutionary strategy optimization for port tugboat operation scheduling,” in Pro-
ceedings of the 3rd International Symposium on Intelligent Information Technology Application (IITA ’09),
pp. 511–515, November 2009.

[4] Z. Liu, “Port tugboat operation scheduling optimization considering the minimum operation dis-
tance,” Journal of Southwest Jiaotong University, vol. 46, no. 5, pp. 875–881, 2011.

[5] S. Wang and B. Meng, “Resource allocation and scheduling problem based on genetic algorithm and
ant colony optimization,” in Proceedings of the 11th Pacific-Asia Conference on Knowledge Discovery and
Data Mining (PAKDD ’07), vol. 4426 of Lecture Notes in Computer Science, pp. 879–886, Nanjing, China,
2007.

[6] S. Wang, I. Kaku, G. Chen, and M. Zhu, “Research on the modeling of Tugboat Assignment Problem
in container terminal,” Advanced Materials Research, vol. 433–440, pp. 1957–1961, 2012.

[7] Z. X. Liu and S. M. Wang, “Research on bi-objectives parallel machines scheduling problem with
special process constraint,” Computer Integrated Manufacturing Systems, vol. 11, no. 11, pp. 1616–1620,
2005.

[8] L. C. Dong, Z. Q. Xu, and W. J. Mi, “The dynamic tugboat schedule based on particle swarm algorithm
combined with genetic operators,” Mathematics in Practice and Theory, vol. 42, no. 6, pp. 122–133, 2012.

[9] Z. X. Liu and S. M. Wang, “Research on parallel machines scheduling problem based on particle
swarm optimization algorithm,” Computer Integrated Manufacturing Systems, vol. 12, no. 2, pp. 183–
296, 2006.



22 Mathematical Problems in Engineering

[10] H. R. Boveiri, “ACO-MTS: a new approach for multiprocessor task scheduling based on ant colony
optimization,” in Proceedings of the International Conference on Intelligent and Advanced Systems (ICIAS
’10), pp. 175–179, June 2010.

[11] M. Dorigo, G. DiCaro, and L. Gambardella, “Ant algorithm for discrete optimization,” Artificial Life,
vol. 5, no. 2, pp. 137–172, 1999.



Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2012, Article ID 530561, 21 pages
doi:10.1155/2012/530561

Research Article
Guidance Compliance Behavior on VMS Based on
SOAR Cognitive Architecture

Shiquan Zhong,1 Hongwei Ma,2 Lizhen Zhou,1 Xuelian Wang,3
Shoufeng Ma,1 and Ning Jia1

1 College of Management and Economic, Tianjin University, Tianjin 300072, China
2 Transportation Planning Center, Tianjin Municipal Engineering Design and Research Institute,
Tianjin 300051, China

3 School of Management, Hebei University of Technology, Tianjin 300130, China

Correspondence should be addressed to Hongwei Ma, mhw355@163.com

Received 13 July 2012; Accepted 18 September 2012

Academic Editor: Baozhen Yao

Copyright q 2012 Shiquan Zhong et al. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

SOAR is a cognitive architecture named from state, operator and result, which is adopted to
portray the drivers’ guidance compliance behavior on variable message sign (VMS) in this paper.
VMS represents traffic conditions to drivers by three colors: red, yellow, and green. Based on
the multiagent platform, SOAR is introduced to design the agent with the detailed description
of the working memory, long-term memory, decision cycle, and learning mechanism. With the
fixed decision cycle, agent transforms state through four kinds of operators, including choosing
route directly, changing the driving goal, changing the temper of driver, and changing the road
condition of prediction. The agent learns from the process of state transformation by chunking and
reinforcement learning. Finally, computerized simulation program is used to study the guidance
compliance behavior. Experiments are simulated many times under given simulation network and
conditions. The result, including the comparison between guidance and no guidance, the state
transition times, and average chunking times are analyzed to further study the laws of guidance
compliance and learning mechanism.

1. Introduction

Reality indicates that the effects are very limited if one just simply relies on constructing new
roadway, adding new traffic facilities or adopting traditional management methods to solve
the traffic problems [1]. Intelligent traffic systems (ITSs) have been put forward as early as 30
years ago, which is treated as one of the most important measures to solve traffic issues [2].
Among the various means and methods involved in ITS, traffic guidance can help drivers to
make more efficient route choices and reduce the anxiety and stress of trip, which is one of the
means that can truly improve the performance of systems and ensure traffic safety. Guidance
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compliance behavior is a basic problem in traffic guidance as it represents the perception
of driver to the guidance information, the trust degree in the information, and the regular
pattern of the degree variation. The guidance compliance rate is the external manifestation
of driver’s guidance compliance behavior, and an effective guidance system is established
based on the high compliance rate of its users [3].

In the past, the planning and design of traffic guidance system are normally based
on the assumptions that drivers completely obey the guidance or choose route according to
the compliance rate set by the system, [4–7], or simply think that drivers regard expected
benefit as a goal and they are assigned to the network with the users equilibrium after
system implementation [8–12]; however, the assumptions are not true. First, the guidance
compliance rate is not static but changes as drivers gain further knowledge of the rate
while the guidance system is implemented. Second, the guidance compliance behavior which
treats expected benefit as the only goal cannot reflect drivers’ real decision-making process.
Whether or not the drivers comply with the guidance information is not only related with
the expected travel time and trip cost, but also closely refer to their perception degree to the
guidance information, the familiarity with the road network, the attitude towards risk, the
release modes of guidance information, and the approach of information display. Finally, the
decision-making process of drivers in the previous guidance system planning and design
is viewed as absolutely rational, it is assumed that drivers have full awareness of guidance
information and that they have a clear perception of a good or a bad trip, and they completely
understand the current road network condition. However, many studies have shown that
the behavior of drivers in practice is limited rational [9]. Thus, traditional approaches of
guidance system planning and design are not effectively capable of reflecting the impacts
of release modes and display approaches of guidance information, the position of VMS in
the complex traffic environment on drivers’ thinking and decision-making processes, and the
changes of the trip demand and the spatial and temporal distribution of traffic flow following
the impacts.

Without the accurate estimations of the compliance rate and its evolutionary
process, drivers cannot perform effectively even if the system has provided good guidance
suggestions, so the expected guidance effect cannot be achieved. In fact, according to
investigation and research many researchers have shown that the guidance compliance rate
is far lower than the system expects [13–17]. Thus, Erke et al. [17] have pointed out that
it is not advisable to optimize in the process of system planning and design based on the
set rate which is close to 100% in order to maximize the utility. Because of the above facts,
many scholars have realized the significance of researching into the guidance compliance
behavior on planning and design the guidance system. Koutsopoulos and Xu [18] and Ozbay
and Bartin [19] have stated that the effects of travelers on both guidance compliance rate
and the change process of the rate must be considered if a guidance system wants to be
useful. Adler [20] has indicated that the successful implementation of the advanced traveler
information system (ATIS) and the in-depth research of the traffic flow model under the
guidance information are both very important in studying the traffic guidance compliance
behavior.

2. Literature Review

The traditional guidance theoretical methods and the methods of processing compliance rate
in guidance system design can be approximately divided into two categories. The first is
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based on the presupposition of the guidance compliance rate, such as Thakuriah and Sen [4],
Wang et al. [5] assumed that drivers completely obeyed the guidance when various guidance
strategies had been simulated, Deflorio [6] set the rate as a constant between 0 and 1, and Yin
and Yang [7] set the rate to match the assumption that drivers cost less travel time when
they obey the guidance than they did not. The second method avoids guidance compliance
rate but converses it to the method which is based on the random utility theory and user
equilibrium theory. Based on this method, multinomial probability model (MNP) [8, 9], the
theoretical model based on the generalized extreme value (GEV) [10], and the stochastic user
equilibrium model (SUE) are proposed [11, 12].

Many surveys show that the real guidance compliance rate deviates from the expected
rate severely after the guidance system is implemented [13–17], it challenges the traditional
methods of processing the compliance rate. Hence, many scholars realize that researching
the guidance compliance rate of the groups demands the study of guidance compliance
behavior from the individual point [18–20]. The main three methods of studying the guidance
compliance behavior are survey, experiment, and simulation models.

2.1. The Method Based on Survey

The most direct way to study the compliance behavior under a specific guidance system is
to survey the service groups and extract the factors affecting the actual compliance rate to be
analyzed for guiding the planning and design of the guidance system. The two main survey
methods are questionnaire and network monitoring. Bonsall and Joint [13] have investigated
100 drivers with vehicle-mounted guidance systems and found that 30% of the drivers did
not comply with the guidance information when they are familiar with the road network,
and 90% complied when they are unfamiliar. Cummings [14] discovered that only 4–7%
of the drivers obey the guidance in normal conditions and only 13% in special conditions
after investigating 20 variable message systems in Europe; in addition, 5% of the drivers
did not understand the information shown on the VMS, and over 10% misunderstood the
information. Tarry and Graham [15] monitored the VMS near Birmingham through the
network and found out that 27–40% of the drivers obeyed the guidance when the VMS
showed that an accident happened in front, but only 2–5% when the VMS just displayed
traffic jams without reporting the reasons. Swann et al. [16] investigated the VMS near
the estuary district in Forth of Scotland and found that 16% of the drivers routed to the
recommended path when VMS showed traffic congestions in the front. Erke et al. [17] found
that about 20% of the drivers followed the recommendation and almost 100% when the VMS
showed that the road ahead was closed through a spot field investigation on two sites of
motorways. Zhou and Wu [21] analyzed 497 valid questionnaires in Beijing and found that
proportions of drivers who would change the route, maybe change, would not change, and
did not know what to do were 16.9%, 65.4%, 11.5%, and 6.2%, respectively. Chen et al. [22]
and Mo and Yan [23] studied the parking guidance system in Nanjing and Shanghai and
concluded that the behavior of the driver in discovering, understanding, and complying
with the guidance information varied very much when drivers’ personal properties, travel
characteristics, and parking lot selection changed.

The above investigation results show that the compliance rate is normally low whether
for the vehicle-mounted guidance system or VMS. The main reasons of low rate have been
analyzed as follows: (1) there is no need for the guidance information because drivers are
familiar with the roads; (2) drivers do not notice the guidance information; (3) drivers do not
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understand the guidance information; (4) drivers do not believe the guidance information;
(5) the information is received too late that the drivers have chosen the route; (6) the readable
distance of VMS is too short, drivers have no time to read, and thus miss the guidance
information [13–17].

2.2. The Method Based on Experiment

The method based on experiment is to find out the laws of behavior occurrence and
some measures to affect the behavior by setting different guidance environments in the
road network to analyze the response of the drivers. Allen et al. [24] observed drivers
experiment with different OD and different roads congestion conditions, and the results
showed that their compliance rate is high (more than 70%) when using route suggestion
strategy. However, they did not consider that the recommended route would be congested
and then influenced the guidance compliance behavior, which actually was very common and
practical. Srinivasan and Jovanis [25] adopted the Designer Workbench model of Corypheaus
Corporation to create a software to develop experimental environments, in which different
display approaches of guidance information were used to test the effectiveness for 10
participants; they found that the display approach with the highest compliance rate was the
one using the countdown progress bar to show the distance between the current location and
the front crossing. Chen and Paul [26] allowed 99 participants to join a continuous 20-day
experiment in computerized simulation road network and found that the factors affecting
drivers’ guidance compliance rate were characteristics of guidance information (e.g., whether
the information had shown the recommended path or not, whether the road connected or
closed to highway or not), the characteristics of drivers (e.g., age, gender, and educational
level), and whether the information provided the reasons of accidents or congestion or not.
Wachinger and Boehm-Davis [27] found that drivers preferred different display modes and
seemed to be more willing to comply with the favorite one. Adler [20] divided 80 participants
into 4 groups, and two-factor measurement experiments with 20 persons per group, 15 times
per person were repeated successfully in a simulated road network. The result showed that
the compliance rates of drivers unfamiliar with the road network were higher than the
familiar ones because the familiar drivers benefited slightly from the guidance information.

2.3. The Method Based on Simulation Model

Due to the rapid development of computer technology, people have begun using simulation
model to study the guidance compliance behavior of drivers and have attained certain
achievements. Lu and Tan [28] proposed a complexity model of guidance compliance rate
based on Logit traffic assignment model and analyzed the changing properties of the rate
based on the simulation. Huang et al. [29] proposed a stochastic user equilibrium model
to study the changing process of the compliance rate in ATIS. In recent years, people have
paid increasing attention to the multiagent simulation techniques to study the guidance
compliance behavior of drivers. Adler and Blue [30] studied drivers’ guidance compliance
behavior from the perspective of cooperative game by simulating the interaction of various
agents in the traffic system. Wahle et al. [31] proposed a two-layer agent framework to
study the guidance compliance behavior of drivers; the first layer showed their perception
and reaction to guidance information, and the second layer described their decision-making
process. Dia [32] added beliefs and capacities of drivers and various rules of behavior into
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agents when the reactions of drivers to different traffic information had been studied, and
they proposed a agent framework with cognitive function. Based on this architecture, they
studied the changing process of the guidance compliance behavior.

3. Research Motivation

The current research results of guidance compliance behavior provide many methods and
basis to design, implement, and evaluate the traffic guidance system, the results also promote
the development of intelligent traffic system, but certain shortcomings still remain. First,
it is obviously unfeasible to presuppose the guidance compliance rate without scientific
analysis as there are so many factors influencing the rate. The way which converses the rate
leads to problem solving difficulty or deviation from the actual situation because of model
complexity and too many assumptions (e.g., travelers are assumed to be fully rational), and
there are still much work to do to apply it into practice. Second, it can only roughly reflect
drivers’ perception of guidance information with the method based on survey; moreover,
their guidance compliance behavior will change as time passes, so relying solely on survey to
analyze the internal causes of guidance compliance behavior scientifically and accurately is
not an easy work. Third, simulation is a good way to study the guidance compliance behavior,
but the development of the realistic guidance simulator costs too much. It is also difficult
to recruit volunteers to participate into the experiment for as long as several months, so the
simulation can only be done in a relatively short period. It is also worth studying whether the
memory, thinking, and decision-making reflected by this intensive simulation are consistent
with real conditions or not. Fourth, the current simulation models cannot reflect the actual
process of guidance compliance behavior because the studies on the process of perceiving,
recognizing and remembering information, the decision-making, feedback, and the impact of
these activities on the behavior are all insufficient.

As one of the three cognitive architectures, SOAR is based on chunks theory. It uses
rule-based memory to access search control knowledge and operators and finally achieves
common problem solving. This paper will adopt SOAR to build the cognitive process model
of guidance compliance behavior. This is mainly based on the following reasons. First,
as mentioned above, guidance compliance behavior is a dynamic learning process, which
changes as time passes. SOAR can learn from experience, which means it can remember how
it solves a previous problem and then uses the experiment and knowledge for subsequent
problem solving tasks. It can dynamically organize the accessible knowledge to decide and
also set subgoals dynamically if the knowledge is incomplete or inconsistent with decision
[33]. This is very similar with the thinking and decision-making of the guidance compliance
behavior of drivers. For example, a driver organizes and analyzes the received knowledge
according to his own judgment of the current road conditions and the past accuracy of the
guidance information to decide if he complies with the guidance or not under his certain
goal. If the driver receives the guidance information, he is not sure if it is correct, and he
is unfamiliar with the road network, he cannot make a decision to minimize the travel
time with the accessible knowledge, then, he is likely to set a subgoal to test the guidance
information. Drivers pay more attention to the accuracy of the guidance information and are
often more sensitive to the delay of the recommended path under this condition. Second,
as a mature cognitive theory, the content and framework of SOAR have been sufficiently
described, including the depth description of perception, memory, decision making process,
and learning mechanism; thus, SOAR portrays the guidance compliance behavior with a
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more actual architecture. Third, SOAR has been used to simulate different aspects of human
behavior successfully, such as team behavior, decision-making of people in virtual games,
and decision-making behavior of pilot, empirical supports are provided by many scholars
[34, 35]. Thus, SOAR provides a good idea to study traffic guidance compliance behavior.

Today, studying traffic guidance compliance behavior has received more and more
attention with the growing development of traffic guidance system. People have gradually
become conscious of the fact that more detailed simulations about traffic behavior are needed.
It is a hot topic of the emerging field to study guidance compliance behavior based on a
multiagent framework with the integration of multidisciplinary as the platform. In this paper,
based on the multiagent platform, SOAR architecture is added to describe the driver agent,
and the empirical method is combined to the computer simulation to study the guidance
compliance of drivers.

4. SOAR Cognitive Architecture

SOAR is a general intelligent architecture developed in 1987 by Laird et al. [36]. It is a
cognitive architecture with a wide range of applications, and it mainly focuses on knowledge,
thinking, intelligence, and memory. SOAR is constructed with the assumption that all
goal-oriented behavior can be likened to choosing an operator from a state. A state is
a representation of the current problem-solving situation; an operator transforms a state
(makes changes to the representation) and produces a new state. A goal is a desired outcome
of the problem-solving activity. As SOAR runs, it is continually trying to apply the current
operator and select the next operator (a state can have only one operator at a time), until the
goal has been achieved.

As shown in Figure 1 [35], SOAR architecture has the following main parts: input and
output interface, long-term memory, and working memory. There are also some underlying
mechanisms, such as decision-making and learning.

SOAR interacts with the environment through the perception and action interface
The environment is mapped into working memory through perception, and the inner
representations are returned to the exterior, after which actions are generated to act on the
environment through action interface. SOAR has two kinds of memories with different forms
of representation: a working memory that describes the current problem solving situations
and a long-term memory that stores long-term knowledge. In SOAR, the current situation,
including data from sensors, results of intermediate inferences, active goals, and active
operators, is held in working memory represented as a hierarchical graph of states or goals.
Long-term memory contains production memory, semantic memory, and episode memory.
SOAR achieves choosing and applying operators through decision-making cycle, which is a
fixed processing mechanism. Along with the decision cycle, SOAR has four different types
of learning mechanism, namely, reinforcement learning, chunking, episode learning, and
semantic learning [37].

5. Agent Design of Traffic Guidance Compliance Behavior

Vehicle and driver are integrated as a whole because their behaviors are inseparable in the
study of traffic guidance compliance behavior: the driver operates by observing the external
environment, and the vehicle interacts with the external environment by carrying out the
operation of the driver. Thus, the driver-vehicle unit is regarded as an agent in our study.
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Figure 1: SOAR architecture.

As Figure 2 shows, VMS uses three colors to represent the traffic condition of front
roads: red for traffic congestion, yellow for a little crowded, and green for smoothness. Here,
we will analyze how SOAR describes the specific guidance compliance behavior under VMS.
It is assumed that a driver A drives to his destination B. On his way, he passes a VMS which
shows he can reach B through any of the downstream roads (left road, forward road, and
right road) of crossing ahead. Driver A finally will choose one of the three roads according
to the combination of many factors, such as his familiarity with the road network, the
current guidance information on VMS, the traffic congestion situation in sight, the external
environment, and the former experience about the accuracy of the information shown on
VMS. The SOAR cognitive model is adopted to describe the guidance compliance behavior of
the driver when he passes the VMS repeatedly, including the process of perception, memory,
decision, and learning.

5.1. Problem Space, State, and Operator

Problem space is the internal representation of the problem. It contains three types of states:
initial state, intermediate state, and goal state. A state involves all the information of the
current situation in the problem solving process, as the results of perception, the description
of the current goal, and the problem space. An operator transforms a state to a new state. The
problem solving is to find out a sequence of operators to transform the initial state to a goal
state. Figure 3 is the problem space comprised by states and operators.

In Figure 3, squares represent states containing features and values, which reflect the
internal and external situations. Goal states, states in which features have values that indicate
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the goal has been achieved, are shaded. Arrows represent operators that change or transform
states.

In the guidance compliance scene, the initial state is the information, including
guidance information shown on VMS, the perception of the external traffic environment,
the judgment of the information accuracy, and the experience about the downstream road
conditions, when A drives into the visual range of VMS. Goal state is when A has chosen the
downstream route. The psychological process between initial state and goal state is described
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by intermediate states. Operators transform the initial state to immediate state and finally to
goal state through several immediate states. Four kinds of operators are considered in this
study, which are listed as follows.

(1) The first operator is choosing route, including the driver choosing to forward, left
or right.

(2) The second is changing road condition, according to the external environment and
his travel experience, the driver infers the downstream roads conditions which they
think are most consistent with the truth.

(3) The third is changing the driving goal from saving money (or saving time) to saving
time (saving money). Saving money requires the driver to choose the shortest path
to the destination, and saving time requires the driver to choose the path which
costs the least time to arrive at the destination.

(4) The fourth is changing mood. The driver may feel easy when the accuracy of
matching is high, while he may be impatient when the accuracy is low.

5.2. Working Memory

Dynamic information about the world and internal reasoning, including data from sensors,
results of intermediate inferences, hierarchy states, active goals and active operators, is all
held in the working memory.

In our guidance compliance scene, an agent is the unit of driver and vehicle, and the
agent achieves the goal state by transforming among several states in one decision-making
process. The attributes of any state involve the attributes of the driver, vehicle, and the
external traffic environment. The attributes of driver include gender, age, character, driving
years, monthly income, mood, his/her familiarity with the road network, the understanding
of the guidance signal, destination, driving goal, and the current location. The attributes of
the vehicle include the usage, size, and the speed, and the attributes of roads and surrounding
environment include the congestion situation of the current road in sight, the predicted
congestion situation of the downstream roads through perception, the true congestion of the
downstream roads by feedback, the current control signal of different directions, and the
guidance information shown on VMS. The state has some other attributes, such as the name
and the super state of the state. Parts of the attributes, such as the mood, driving goal, and
the predicted congestion situation, change with the transformation of states while the others
are static. The agents with the same static attributes are classified into one category. The value
range of each attribute is shown in Tables 1, 2, and 3.

5.3. Long-Term Memory

Long-term memory is the area where achievements are stored. Although all types of long-
term knowledge (procedural, semantic, and episodic) are useful, procedural knowledge is
primarily responsible for controlling behavior and maps directly onto operator knowledge.
Semantic and episodic knowledge usually come into play only when procedural knowledge
is somewhat incomplete or inadequate for the current situation. In our study of the traffic
behavior, procedural memory and episodic memory are involved.

The procedural knowledge is represented by production rules. The rules combine the
procedural knowledge with the operations to things. When some specific conditions are
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Table 1: The value ranges of the attributes of the driver.

Attribute (unit) Value 1 Value 2 Value 3 Value 4
Character Risky Steady Reserved /
Mood Easy Impatient / /
Gender Male Female / /
Driving years (year) 0-1 1–5 >5 /
Age (year) <25 25–40 >40 /
Incomings (yuan) <2000 2000–5000 5000–10000 >10000
Destination Area 1 Area 2 Area 3 /
Location 0 1 2 3
Driving goal Saving money Saving time / /
Familiarity Familiar Normal Strange /
Understanding level Do not notice Do not see Notice but misunderstand Understand

Table 2: The value ranges of the attributes of the vehicle.

Attribute (unit) Value 1 Value 2 Value 3
Speed (k/s) >60 40–60 <40
Size Small Normal Big
Type (according to usage) Private car Taxi Official car

Table 3: The value ranges of the attributes of the traffic environment.

Attribute (unit) Value 1 Value 2 Value 3
Current density 2 1 0
Predicted density 2 1 0
True density 2 1 0
Control signal G Y R
VMS sign G Y R

satisfied, a set of actions in the matched rule are triggered. When the associations between
goals and subgoals are triggered, production system is transformed from one to another, that
is, once a production system is triggered and implemented, the control of action or behavior
will be transformed to the other production system which meets the conditions. Production
is represented by an if-then rule. The “if” portion of each rule contains the conditions, while
the “then” portion contains action or behavior. Partial initial rules of an agent in the above
guidance compliance behavior are shown in Table 4.

In Table 4, [I] is for “if”, [T] is for “then”, and C-D, V-S, C-S, P-D, Des, Loc, Moo, and
M-A are short for current-density, VMS-sign, control-signal, predicted-density, destination,
location, mood, and match-accuracy, respectively. Take r8 as an example, which means that
if the current road is severely crowded, the VMS shows that all the roads are congested,
and the traffic light allows vehicles to turn right, then the driver becomes impatient, and the
matchaccuracy decreases by 10%. The meanings of other rules are expressed in the same way.
The above rules are just partial initial rules of the driver agent, the others are not given in
detail because of the limited space.

The episode knowledge is the specific experience and memories of a agent, and it is
the source of episodic learning. Episodic memory records the events and history that are
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Table 4: Partial initial rules of a driver agent.

Number If/then If/then If/then If/then If/then If/then If/then

r1 [I]C-D(2) [I]V-S(RRG) [I]C-S(RRG) [I]P-D(220) [I]Des(1) [I]Goal(T-S) [T]Loc
(3)

r2 [I]C-D(2) [I]V-S(RRG) [I]C-S(RRG) [I]P-D(221) [T]P-D(200) — —

r3 [I]C-D(2) [I]V-S(RRG) [I]C-S(RRG) [I]P-D(220) [I]Des(1) [I]Goal(M-S) [T]Goal
(T-S)

r4 [I]C-D(2) [I]V-S(RRG) [I]C-S(RRG) [I]P-D(200) [I]Goal(T-S) [T]Loc(2) —
r5 [I]Goal(M-S) [I]Des(1) [T]Loc(1) — — — —
r6 [I]Goal(M-S) [I]Des(2) [T]Loc(2) — — — —
r7 [I]Goal(M-S) [I]Des(3) [T]Loc(3) — — — —
r8 [I]C-D(2) [I]V-S(RRR) [I]C-S(RRG) [T]Moo (I) [T]M-A(↓0.1) — —
r9 [I]C-D(2) [I]V-S(RRR) [I]C-S(GGR) [I]Des(1) [T]Loc(1) — —
r10 [I]C-D(2) [I]V-S(RRR) [I]Goal(T-S) [T]Goal(M-S) — — —

embedded into experience. An episode can be used to answer questions about the past to
predict the outcome of possible courses of action or to help keep track of progress on long-
term goals. In SOAR, episodes are recorded automatically when a problem is solved [38].
An episode consists of a subset of the working memory elements that exist at the time of
recording. SOAR then selects those working memory elements that have been used recently.
The episode that best matches the cue is found and recreated in working memory. Once
the episode is retrieved, it can trigger rule firings, or even serve as the basis for creating
new cues for further searches of episodic memory. In the guidance compliance scene, once
a decision cycle is finished, episodic memory records the chosen operator and its preference
in the current state which contains the specific guidance information, control signal, current
density, predicted density, driving goal, destination and location, and preparing for the next
impasse coming.

Long-term memory changes dynamically, more episodes are added to the episodic
memory and new production rules are added to the procedural memory through the different
learning mechanisms in the process of decision-making.

5.4. Decision Cycle

The decision cycle is the most basic processing mechanism in SOAR. The core functions
of SOAR are selecting the operator and then applying it, but only a single operator can be
selected for a state at a given time.

The decision cycle starts with input, during which working memory elements are
created to reflect changes in perception. In our simulation, the initial state, including the
current location, the guidance information shown on VMS and the road conditions in sight,
of the guidance compliance problem, is created by the initial operator. The state elaboration
is not the knowledge directed toward selecting and applying the operator, but the knowledge
to create a new description of the state to affect the operator selection and application, after
which a new description can evoke the operator to be selected and applied. The stages of state
elaboration, operator proposal, operator selection, and operator application in the decision
cycle retrieve the rules in the long-term memory; however, comparison among operations is
achieved by preference.
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If the preferences can be compared successfully, such as there is only a single candidate
operator to be proposed or an operator is obviously better than the others, and then the
best selected operator of the current state will be added to the working memory. When the
collision among the operators occurs, as two operators have the best preference at the same
time, or operator A is better than B and B is better than A are both put forward, an impasse
requiring the chunking learning mechanism to solve is created.

In the simulation of the guidance scene, each rule in the long-term memory contains
conditions, the operator which matches the conditions, and the numeric preference of the
proposed operator. Once a new rule is added to long-term memory, the initial numeric
preference of the operator in the rule is judged, and its value can be updated along the
decision-making process according to the feedback from the external environment in order
to make it closer to reality and provide more precise information to drivers for decision.

5.5. Learning Mechanism

The SOAR agent of the guidance compliance behavior has four different learning
mechanisms. They generate the representation forms of knowledge in SOAR together, but
each of them has a different source of knowledge. The source of knowledge, learning time,
and learning outcome of different learning mechanisms are shown in Table 5. In this paper,
chunking and reinforcement learning are mainly introduced and adopted according to the
characteristics of the traffic guidance compliance behavior.

5.5.1. Chunking

Chunking occurs to learn when the impasse is solved, and the chunking rules are learned in
the process of solving a substate. An impasse is how an architect defines a lack of available
operators in the working memory of the system which make movement through the problem
space, and a new rule is automatically created to solve the current impasse. The establishment
of the chunking rule needs to analyze the production rules in the long-term memory and the
episodic cues relating to the results.

Taking the SOAR agent of guidance compliance behavior as an example, it is assumed
that the preferences of operator O1 which will change the predicted road condition and
operator O2 which will change the driving goal cannot be compared successfully (i.e., the
two operators are just as good or as bad with each other); thus, the decision cycle cannot
decide, and an impasse occurs. At the same time, a substate which is meant to solve the
impasse is produced. If S1 is the state producing an impasse, and S2 is the substate, we say
S1 is the super state of S2. An impasse can be solved by inputting new rules from outside,
recalling the episodic knowledge in long-term memory, or randomly selecting an operator
from several operators. The steps of solving an impasse in this paper are as follows.

(1) Conditions which bring impasse: O(si) = Φ or |O(si)| > 1 and p[omax(si)] −
p[osec(si)] < τ(s), where si is the current state transformed from the initial state
by i times state transition, and O(si) is the set of candidate operators under the
current state, its base number is |O(si)|. p[omax(s)] and p[osec(s)] are the best and
the second best operator of s, respectively, and τ(s) is the domain range for selecting
the operator of state s directly.
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Table 5: The comparison of the different learning mechanisms.

Learning mechanism Source of knowledge Learning time Learning outcome
Chunking The process of substates When the impasse is solved Chunking
Reinforcement learning Feedback or reward When reward happens New rule
Episodic learning Experience When a problem is solved Episodic memory

(2) The approach of solving an impasse: when the conditions of an impasse are
matched, the episodic memories containing the current state si are retrieved first
in order to find out the best operator to solve the impasse. If the episodic memories
do not contain the cue of state si, then the match accuracy of si decreases by step
λ, and all the long-term memories are to be searched for the matched operator to
move the problem to the goal state.

(3) The creation of the chunking rule: if T(se) − Te(se) ≤ ηz after agent exits out the
downstream road, the operators of solving the impasse are to be updated to create
chunking rules. T(se) is the true travel time, Te(se) is the expected travel time, and
ηz is the domain range of chunking rules. If the same rule is updated for continuous
ηg times, the operator in the rule is to be added to the state under which the impasse
happens in the decision cycle and chunking is achieved.

5.5.2. Reinforcement Learning

The source of reinforcement learning is the feedback of external environment, or what is often
called a “reward.” The reward can come from the “body,” in which a model is embedded (to
the model, this can be considered an external environment), or it can be generated internally
when the goal is achieved. Based on experience, reinforcement learning adjusts predictions of
future rewards which are then used to select actions that maximize future expected rewards.
In the SOAR agent of guidance compliance behavior, the driving time is associated with the
total feedback of the operator. pr(se) = [T(se) − Te(se)]

α is the total feedback under final
state se, the parameter α in this paper is set as 0.5, T(se) is the true travel time the agent
costs to get to the destination under state se, Te(se) = Td(t, l) + Tv[v(l)] is the expected travel
time, and Td is the mean driving time on road l at time t, and it indicates driver’s experience.
Tv[v(l)] = T(v, l)−Tr(l) represents the affection of road condition information shown on VMS
on travel time, T(v, l) is the mean travle time on road l when the guidance information is v,
and T(v, l) is the reference travel time on road l. The reference travel time adopted in this
paper is figured with the assumption that the percentage occupancy is 0.5.

Given that many states and operators are involved in one decision cycle of guidance
compliance behavior, the feedback is allocated to a state according to the distance between
the state and the goal state. The feedback of o(sk), which is the operator corresponding to
the kth state of the state transition path on cycle t, is λ[d(sk, se)]pr(se). pr(se) = [T(se) −
Te(se)]

α is the total feedback when the goal state se is reached, and α is 0.5. λ[d(sk, se), r(sk)]
is the weighting factor of pr(se) which are allocated to o(sk), and it is the function of d(sk, se)
and r(sk). d(sk, se) is the distance between sk and se, and r(sk) is the transition path. In
this paper, λ[d(sk, se), r(sk)] = (1/d(sk, se))/

∑|r(sk)|
i=1 (1/d(si, se)), where |r(sk)| is the state

number involving in state transition path which contains sk.
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6. Simulation Experiment and Analysis

6.1. Simulation Environment

The adopted simulation road network contains 6 nodes and 7 one-way three-lane (left-
turning, forward-going, and right-turning) roads, the structure and the length of roads are
shown in Figure 4. VMS is set about 100 meters far away crossing 2 on road s1. The guidance
information shown on VMS is the real-time traffic flow situation, which is represented by
different colors. The corresponding occupancy percentages of green, yellow, and red colors
are [0, 0.5], [0.5, 0.7], and [0.7, 1], respectively. Traffic flow is generated in crossing 1 and
passes the VMS on s1 to select one of the three downstream roads, including left (s2–s5),
forward (s3), and right (s4–s6), with the guidance of VMS to get to crossing 5, before finally
to crossing 6 in sequence. Crossing 2 and crossing 5 are equipped with two-phase fixed-time
controllers, while the others are not. The microscopic traffic flow simulation platform based
on the cellular automaton theory is adopted, and the free flow speed of each road is 60 km/h.
The departure frequency of crossing 1 is set to simulate for 30 continuous days from 5 am–
10 am (i.e., 540,000 seconds). In order to simulate the change law of guidance compliance
behavior during a long period after the VMS is newly set on road s1, the vehicle is required
to pass VMS repeatedly. Thus, a vehicle comes into s1 again after it exits out from crossing 6
if the departure frequency of crossing 1 is matched.

Based on the basic structure of road network, the lengths of entry and exit roads, the
position of VMS, and the traffic flow are adjusted accordingly. We find that the simulation
results are basically identical when the adjustments are not too large. Hence, the simulation
results and analysis for the basic structure mentioned above are only presented.

6.2. Simulation Results and Analysis

6.2.1. Guidance Effects

Two simulation experiments are conducted with the same road network and conditions
which are described in Section 6.1 except no VMS is set on s1 in one experiment, so that the
differences of traffic flow operation between guidance and without guidance can be studied.
Road s1 is divided into 10 sections represented by I1 to I10 from crossing 1 to crossing 2,
and the length of each section is 120 meters. Figures 5 and 6 are the spatial and temporal
distributions of vehicles with and without guidance in the 30th day.

When there is no guidance information shown on VMS, the average number of
vehicles on section I10 in peak period approaches 30 and its lasting time is long, the road
occupancy is more than 0.8, and the average amout of vehicles on I9 in peak time is also
over 20 (Figure 5). These indicate that the vehicle begins to decelerate at the place which
is a bit far from the downstream crossing, resulting in the decrease of traffic capacity on s1
in morning peak. On the other hand, when there is guidance information shown on VMS,
the mean number of vehicles on I10 and I9 decrease by 22.7% and 17.6%, respectively, from
7-8 am of the morning peak (Figure 6). These show that the guidance information alleviate
the congestion situation of morning peak on s1 effectively. In addition, comparing Figure 5
with Figure 6, the vehicle numbers of each section on s1 in off-peak time are pretty much
the same, which means that the guidance information does not bring an obvious effect when
traffic flow is small.
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Figure 4: The basic structure of road network in simulation.
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Figure 5: The spatial and temporal distribution of vehicles in each section on s1 without guidance.
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Figure 6: The spatial and temporal distribution of vehicles in each section on s1 with guidance.
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Figure 7 shows the effect of the guidance information on traffic flow in peak and off-
peak period from the perspective of vehicle speed on downstream roads. Whether there
is guidance information or not, vehicles on the downstream roads behind VMS remain at
high speed, especially in the morning between 5-6 am when they almost travel by free speed
entirely; thus, their travel time is almost the same no matter which route the drivers choose.
In this case, whether there is guidance or not has no obvious meaning to drivers. During
peak hours, the differences between guidance and without guidance are well represented
by speed. When there is no guidance information shown on VMS, s3 is congested severely
at 8 am, the average speed is just 24.87 km/s, but s2 keeps smooth with its average speed
being 36.35 km/s, and the speeds of s2 and s3 differ nearly by 50%. When there is guidance
information, the speeds of the downstream roads behind VMS are almost the same, and the
highest difference is just about 9.25%, which indicate that the capacities of the downstream
roads are maximized as VMS can allocate the traffic flow well in peak time. It also represents
the effectiveness of VMS in alleviating the traffic congestion.

6.2.2. The Guidance Compliance Regular Pattern and Learning Law

Figure 8 shows the route switching times of drivers in peak and off-peak time when there is
guidance information shown on VMS as well as the average switching time in all periods.
Simulation is used to investigate the guidance effects and its change regular pattern after
VMS is newly added on s1. Given that all agents are newly added in the initial stage of the
simulation, it takes some time for drivers to be acquainted with the guidance of VMS. The
initial route switching rate is close to 0.5, indicating that 50% of the drivers have chosen
different downstream roads when the same guidance information is encountered every two
times in this period, as the time goes by, the average route switching rate becomes 0.15 in the
10th day (Figure 8). In this process, drivers become more and more familiar with the guidance
performance of VMS. Whether the individual driver complies with the guidance or not, the
guidance compliance behavior of the driver groups represented by guidance compliance rate
has basically reached a stable state after drivers gradually adapt to the guidance function of
VMS.

Although the average guidance compliance rate is stable, the guidance compliance
behaviors of peak time and off-peak time are inconsistent. The route switching rate of peak
period is very low after being steady, which is about 0.07 (Figure 8). Thus, once the drivers
adapt to the VMS in the peak time, their guidance compliance habit will rarely change. This
also proves that the costs of changing behavior in the peak time are very high. The route
switching rate of off-peak period is twice that in peak time, indicating that drivers’ guidance
compliance behavior in off-peak time is with a certain degree of arbitrariness. This is because
the average vehicle speeds of the downstream roads are all high, and the differences of
choosing different routes are not obvious. This is also a reason for the ineffectiveness of the
guidance system in off-peak time.

The number of state transition is a significant indicator which reflects the degree
of difficulty involved in the process of decision-making. Figure 9 shows the average state
transition times of 800 agents on cycles 0–300, all the agents are chosen randomly from the
drivers whose decision cycles are over 300. At first, the average state transition number of
agents is 7, indicating that the route from initial state to goal state is a little complicated in
the beginning of the simulation, and several times of state transition and operator selection
are needed. With the increase of decision-making number, after several rounds of feedbacks
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Figure 7: The driving speed of vehicle on s2, s3, and s4 at different times.
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Figure 8: Route switching rate.

and learning, the operator of choosing route is directly reached through an average of a little
more than 1 time state transition. In this case, the map from current state to goal state is almost
finished directly in the decision-making process.

No matter how perfect the initial rules of SOAR agent are, it is still impossible to
contain all the rules to be used in the decision-making process. The initial rules and operators
are difficult to be set exactly the same with the actual situation, so rules can be added or
revised in the learning process, and chunking is the most important learning mechanism in
SOAR. Figure 10 shows the average chunking times in each decision-making process of all
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Figure 10: Average chunking times.

the chosen agents. The average chunking times of each decision-making is 3 in the beginning
of the simulation, which indicate that the initial rules are insufficient to support choosing
downstream route, so impasse may happen with a very high probability. The success of
chunking rapidly increases the rules of agents to support decision-making. Therefore, the
number of chunking decreases fast and gradually towards 0 along the decision-making
process. This is consistent with the decreasing tendency of state transition times in Figure 9.
When the goal state can be reached by one state transition, this indicates that the map from
the perception of external traffic situation and the guidance information shown on VMS to
the operator of choosing the downstream route is finished directly, and the chunking times
are 0 in this mapping process.
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Figure 11: Route switching rate of old drivers when new drivers are added.

6.2.3. The Effect of New Drivers Adding

The above simulation experiments investigate the changing laws of the guidance compliance
behaviors of drivers on s1 after adding VMS. In the beginning of simulation, all the agents are
newly added, and they are unaware of the guidance system. After several decision-making
processes after passing VMS, a set of cognitive experience about VMS is formed, and agents
finish choosing downstream route based on this cognitive experience. In our simulation, in
order to finish repeated decision-making process all the agents queue again to enter s1 after
they exit from s7. Thus, very few new agents are added under this condition. Based on the
simulation situation of the previous 30 days, 4 more simulation experiments are conducted to
simulate the traffic guidance situations from 5 am to 10 am of each day from the 30th to 60th
days. 1/6, 2/6, 3/6, and 4/6 of new agents are added to the four simulations, respectively
from the 35th day to inspect the effect of adding new agents on the guidance compliance
behavior of the old ones. Figure 11 shows the variation of the route switching rates of the old
agents after different percentages of new ones are added.

Adding 1/6 of new agents has little impact on the guidance compliance behavior of
old ones, their route switching rate still keeps stable. When the percentage increases to 3/6,
the interferences of new agents to the decision-making process of old ones are obvious, and
when 4/6 are added, the old agents almost recomplete one learning process, which is similar
to the learning of new agents (Figure 8). Their largest route switching rate approaches 0.5
and it takes 10 simulation days to reach stability. The above results indicate that the guidance
compliance behaviors of drivers have a certain anti-interference ability when the guidance
system reaches stability; however, in order to maintain stability, the adding proportion of
new drivers should be lower than 1/2 in this simulation.

7. Conclusions

In this paper, the formation mechanism and variation law of drivers’ guidance compliance
behavior are studied based on SOAR cognitive architecture. Traffic guidance system is a very
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large and complex system, and the study of guidance compliance behavior is a fundamental
problem in achieving the functions and goals of guidance system. This paper begins with
the analysis of individual driver, wherein the perception, memory, decision-making, and
learning of drivers’ guidance compliance behavior are described in detail based on SOAR
architecture. The guidance effect, guidance compliance law, learning law, and the anti-
interference ability of the behavior are analyzed through simulation. As there are many
factors affecting the guidance compliance behavior of drivers, apart from the impact of
driver individual described in this paper, the release mode and display approach of guidance
information, and the position of VMS all have a significant effect on guidance compliance
behavior, and further research on these aspects will be conducted in the future.
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